

DaCRISS

Workshop/Training on STRADA

Orientation A: Transport Planning and STRADA B: Technical process of STRADA

24 March 2010

Danang JICA Study Team

Objectives of the Workshop/Training

- To understand possible function of STRADA in urban transport planning
- To practice step-by-step technical process of STRADA
- To discuss next steps to deepen knowledge and skills

Program

- Day 1 Orientation
 (24/03) A. Transport planning and STRADA
 B. Technical process of STRADA
- Day 2
 C. Installation of STRADA and DaCRISS
 (25/03)
 database
 D. Variaus use of Lliphway Departer
 - D. Various use of Highway Reporter
 - E. Matrix manipulation
 - F. Practice (1)
- Day 3 G. Practice (2) (26/03) Discussion and wrap-up

A. TRANSPORT PLANNING AND STRADA

3

Areas of STRADA Application

- Road network analysis/planning
- Road project (road section, bridge, flyover, etc) assessment
- Intersection analysis
- Demand management analysis
- Transit line analysis
- Others

Road Network Planning Process

- Step 1: Build road network plan (based on urban plan) Step 2: Prepare demand data (OD trip table)
- Step 3: Analyze network performance to identify supply-demand gaps
- Step 4: Prepare alternative road networks and improvement plans
- Step 5: Repeat Step 3 (feedbacks) Step 6: Select optimum alternative

Person Trip Survey

- "Person trip" refers to the movement of a person
- The Person Trip Survey aims to capture all movements on one day by investigating
 - "what kind of person" moved ,

"when",

- "for what purpose",
- "from where" ,"to where", and
- "by what modes of transportation"

Transport Demand Forecast

■Future Demand (2008-2025)

- Total daily demand: 2,284 (000) trips/day -> 6,666 (000) trips/day *2.92 (incl. 745 (000) walk)
 413 (000) PCU/day -> 1241 (000) PCU/day *2.93
- Average trip length:

4.59 km -> 8.53 km *1.86

Traffic load (PCU-km): 2.93 * 1.86 = 5.45

assumed modal share: bus 35%, car 15%, M/C 50%, and average occupancy: bus 15, car 2.0, M/C 1.3

7

Trip Generation and Attraction 2008 and 2025)

Trip Distribution (OD Table)

0.	-	10 X		- 29	0	**	1.	4		E				
	h k	1 13	4	15	k	17	16]9.	10	111	10	- Iti	14	
1	0	9053	7573	\$196	0975	4376	4005	2527	5460	1700	2145	4270	2947	122
2	1295	0	1864	7913	2477	3091	2920	579	5490	635	1096	1267	475	141
3	7336	1901	0	2718	7470	1322	781	1068	5505	827	716	658	392	. 04
4	5,379	1008	28/09	0	1997	1201	1904	1233	47.06	1,200	5479	1454	1371	154
5	837%	2065	1364	1126	0	1199.	FORE	478	1999	403	543	1407	825	12
4	1101	29/1	C2P5	1215	1.986	0	12:0	458	1962	-45/	812	BH N	87.8	15
7	4271	5578	858	1078	1112	1224	- 6	345	2548	365	413	685	130	5
1	2258	-6/15	1089	1274	492	489	36	0	3458	40.7	.50#	0.099	/198	3
9	70,00	329.4	5104	0017	2014	1915	2200	547.4	0,	2996	2403	2216	1948	30
10	1970	631	(001	1382	804	458	341	420	対称	0	722	441	258	- 5
11	2279	218	108	7.506	690	546	383	325	2642	151	10	688	304	82
12	4264	8392	682	7514	14(1)	969	583,	338	2632	#70	879	Ŵ	413	161
13	2191	211	430	1417	865	400	204	190	1952	305	:900	47.5	¢.	
14	5447	1639	1075	1707	1402	1108	1001	330	3548	81.5	710	1068	516	
15	2400	1616	905	1190-	MAX.	990	1157.	502	1698	455	662	1011	4.05	22
16	1987	875	591	830	436	410	210	375	2154	310	278	202	112	3
17	5745-	1903	.982	1849	- 684	1050	1191	540	3900	-554	580	857	229	
14	4281	1651	939	1900	1125	1248	874	416	2986	\$34	843	878	201	.10
18	2510	890	578	915	707	782	361	204	1018	329	443	第97	130	. 8
20	.225	.235	201	.245	127	122	255	728	195	100	216	586	150	21
24	2019	583	474	7415	647	451	251	222	2078	338	571	556	791	
77	354	501	455	870		294	397	292	1074	219	2299	615	354	- 9
23	1343	- 28	211	104	152	264	215	182	1020	213	481	402	307	- 44
24	1529	\$24	816	1100	+03	368	292	326	2306	2027	用12	167	228	. 4
26	214	200	(10)	104	179	167	3.09	200	908	-116	000	209	136	2
26	. 783	229	- 291	452.	199.	102	101	122	627.	360	207	196	93	Z
0														

Impact of "Do Nothing"/"Do Committed" Network

■Congestion Ration (V/C)

2008

2025 Do Nothing

2025 Do Committed

Analysis of "Do Nothing" Network

		2008	2025	2025/ 08
Traffic Dem	and (000 PCU)	424	1,241	2.9
Traffic	affic PCU-km (000)		11,172.2	4.3
Load	PCU-hrs (000)	59.1	473.1	8.0
Travel	Ave. Travel Speed (kph)	43.9	23.6	0.5
Features	Ave. V/C Ration	0.18	0.69	3.7
Transport	Vehicle Operating Cost	284.6	1,920.9	6.8
Cost	Passenger Time Cost	359.6	6,307.1	17.5
(000 US\$)	Total	644.2	8,228.0	12.8

11

Analysis of "Do Committed" Network

		2008	2025	2025/ 08
Traffic Dem	and (000 PCU)	424	1,241	2.9
Traffic	PCU-km (000)	2,594.4	10,939.1	4.2
Load	PCU-hrs (000)	59.1	368.4	6.2
Travel	Ave. Travel Speed (kph)	43.9	29.7	0.7
Features	Ave. V/C Ration	0.18	0.60	3.3
Transport	Vehicle Operating Cost	284.6	1,662.4	5.8
Cost	Passenger Time Cost	359.6	4,866.7	13.5
(000 US\$)	Total	644.2	6,529.1	10.1

Future Scenario

		Mod	lal Sha	ire (%)	Average Occupancy (pax)			
	M/C	Car	Bus	M/C	Car	Bus		
Base Target			15	35	1.3	2.0	36	
	1. Present	94	2	4	1.3	2.0	15	
	2. Target	70	20	10	1.3	2.0	15	
Alternative	3. Strong Bus Improvement	35	15	50	1.3	2.0	50	
	4. Increased of Car Use	60	30	10	1.3	2.0	15	

Traffic Assignment on Future Network by Scenario

Proposed Master Plan Network

A8-141

13

Effects of Master Plan Network

		2008	2025	2025/ 08
Traffic Dem	and (000 PCU)	424	1,241	2.9
Traffic	PCU-km (000)	2,594.4	6,035.5	2.3
Load	PCU-hrs (000)	59.1	154.4	2.6
Travel	Ave. Travel Speed (kph)	43.9	39.1	0.9
Features	Ave. V/C Ration	0.18	0.38	2.0
Transport	Vehicle Operating Cost	284.6	799.4	2.8
Cost	Passenger Time Cost	359.6	2,096.0	5.8
(000 US\$)	Total	644.2	2,895.3	4.5

B. TECHNICAL PROCESS OF STRADA

- 1. Outline of JICA STRADA
- 2. OD Table
- 3. Network
- 4. Parameter
- 5. Traffic Assignment

18

What is "JICA STRADA" ?

- JICA STRADA is a computer software developed by JICA for application in transport demand analysis and assignment. It is an abbreviation of "System for TRAffic Demand Analysis".
- This software has been adopted among the world cities such as...
 - Metro Manila (Philippines: 1999, 2002, 2005)
 - Hanoi (Vietnam: 2005)
 - Lima (Peru: 2004)
 - Ho Chi Minh City (Vietnam: 2004)
 - Nairobi (Kenya: 2004)
 - Jakarta (Indonesia: 2003)
 - Cairo (Egypt: 2002)
 - ...etc.

17

Possible Analysis

- Road Network Evaluation
- Road Project Evaluation
- Mass Transit Evaluation
- Traffic Flow Analysis at intersections
- Road Use Fee Setting
- Environmental Impact Evaluation
-etc

Structure of JICA STRADA

 Composed by 17 programs for data basic processing, traffic assignment and transport evaluation for traffic demand analysis

4 Steps Method

• 4 Step Method: OD Creation

4 Steps Method: Input & Output

• 4 Steps Method: Framework

Network Editor

- Edit of Network, Create of Assignment parameter
- Enhancement of a visual data check function

Matrix Manipulator

- Edit of OD matrix, Zonal Attributes ,Trip Generation and Attraction
- Control total adjustment, Calculation across two or more OD matrices and across files
- Displaying data, Division and consolidation of zones

Incremental Assignment

• Traffic Demand Assignment by Incremental Approach

Highway Reporter

- Displaying Assignment Results, The metafile output of a display
- Route information, Directional traffic, Interzonal Time distance

What is OD Table?

-Need to know the movements of people/commodities between any two zones

Zoning System on DaCRISS

OD Table (Matrix)

A8-145

How to Make OD Table for the Present Situation

Various Types of OD in STRADA

- AOD : normal type (Showing traffic demand between zones ...etc)
- IOD : impedance matrix (Showing travel time between zones ...etc)
- GAD : generation/attraction (Showing generation and attraction on each zones)

OD Table: Calculation

+: add

- : minus

- *: multiply (only Aij*Bij=Cij)
- /: divide (only Aij/Bij=Cij,Bij>0)

OD Table: Zoning Calculation

35

Adjusting OD

- by Total/Mode/File
- by FRATAR Method

Showing OD

Road Network on DaCRISS

The Flow for Traffic Assignment

• Building network

- Travel speed
- Link capacity
- > QV function

• Preparation of Parameter File

- Zone centroid
- Time equivalence (Value of Time)
- Link cost function
- Average occupancy
- > PCU (Passenger car unit) factor by mode
- Vehicle trips are assigned on the network
 Several assignment technique

39

37

40

Zone į

Zone i

Building Network: Road Network on DaCRISS

Cala	Name of David	Orderie	Destimation	Kind of	Length	Aspl	halt	No. of	Classes	Consister
Code	Name of Road	Origin	Destination	Road	(km)	L (Km)	W (m)	Lanes	Clearance	Capacity
U01	Lê Duẫn	Bạch Đằng	Điện Biên Phủ	Urban	2.223	2.223	15.00	4	1.00	56,25
U02	Đống Đa	Bạch Đằng	Ông Ích Khiêm	Urban	1.800	1.800	15.20	4	1.20	56,25
U03	Bạch Đằng	Đống Đa	Đường 2/9	Urban	2.542	2.542	15.00	4	1.00	56,25
U04	Ông Ích Khiêm	Nguyễn Tất Thành	Thanh Duyên	Urban	0.030	0.030	16.00	4	2.00	56,25
U05	Trần Phú	Đống Đa	Trưng Nữ Vương	Urban	3.046	3.046	8.80	3	-1.70	42,50
U06	Đường 2/9	Bạch Đằng	Cầu Tuyên Sơn	Urban	3.377	3.377	21.00		0.00	85,00
N01	NH 14B	Cầu Tuyên Sơn	Núi Thành	NH	-		21.00	e	i 0.00	85,00
U07	Phan Đăng Lưu	Đường 2/9	Trường Ng.Hiền	Urban	0.550	0.550	14.00	4	0.00	56,25
		Trường Nguyễn Hiền	Nguyễn Hữu Thọ	Urban	0.908	0.908	14.00	4	. 0.00	56,25
U08	3 tháng 2	Nguyễn T.Thành	Bạch Đằng	Urban	1.000	1.000	21.00		. 0.00	85,00
U09	Trần Đăng Ninh	Đường gom cầu Tuyên Sơn	Đường ven sông	Urban	0.455	0.455	15.00	4	1.00	56,25
1110	Duràng 30.4	Quảng trường 29/3	Nguyễn Hữu Tho	Urban	1 200	1 200	21.00		0.00	85.00

Building Network: Travel Speed and Link Capacity

			Carria	ge-way						Qmax/hour			Qmax/day	
	Urban/			Í	No. of				Service	Service	Service	Service	Service	Service
Class	Rural	Vmax	Min	Max	Lanes	Cross Section (max)	Fixed	per m	Level 1	Level 2	Level 3	Level 1	Level 2	Level 3
		80			2		1,300		2,600			26,000		
	Urban	100			4		2,200		8,800			88,000		
Car		100			6		2,200		13,200			132,000		
Exclussive		70			2		1,000		2,000			20,000		
	Rural	80			4		1,760		7,000			70,000		
		80			6		1,760		10,600			106,000		
		30		<6m	2	3m	2,500		1,300	1,400	1,600	16,250	17,500	20,000
		35	7m	<12m	2+α	3.5+2.5m	2,500	250	1,300	1,400	1,600	16,250	17,500	20,000
	Urban	40	13m	<20m	4+α	3.5+3.5+2.0m	2,200	300	4,500	5,100	5,600	56,250	63,750	70,000
		45	21m	<28m	6	3.5+3.5+3.5+2.0	2,200	300	6,800	7,600	8,400	85,000	95,000	105,000
Primary		50	29m<		8	3.5+3.5+3.5+3.5+2.0	2,200		9,000	10,100	11,300	112,500	126,250	141,250
Timary		40		<6m	2	3m	2,500		1,700	1,900	2,300	17,000	19,000	23,000
		45	7m	<12m	2+α	3.5+2.5m	2,500	250	1,700	1,900	2,300	17,000	19,000	23,000
	Rural	50	13m	<20m	4+α	3.5+3.5+2.0m	2,200	300	5,900	6,700	7,900	59,000	67,000	79,000
		55	21m	<28m	6	3.5+3.5+3.5+2.0	2,200	300	8,900	10,100	11,900	89,000	101,000	119,000
		60	29m<		8	3.5+3.5+3.5+3.5+2.0	2,200		11,900	13,500	15,800	119,000	135,000	158,000
		30		<6m	2	3m	2,500		1,100	1,300	1,400	13,750	16,250	17,500
		35	7m	<12m	2+α	3.5+2.5m	2,500	200	1,100	1,300	1,400	13,750	16,250	17,500
	Urban	40	13m	<20m	4+α	3.5+3.5+2.0m	2,200	220	3,900	4,400	4,900	48,750	55,000	61,250
		45	21m	<28m	6	3.5+3.5+3.5+2.0	2,200	220	5,900	6,700	7,400	73,750	83,750	92,500
Secondary		50	29m<		8	3.5+3.5+3.5+3.5+2.0	2,200		7,900	8,900	9,900	98,750	111,250	123,750
occondary		40		<6m	2	3m	2,500		1,300	1,500	1,800	13,000	15,000	18,000
		45	7m	<12m	2+α	3.5+2.5m	2,500	200	1,300	1,500	1,800	13,000	15,000	18,000
	Rural	50	13m	<20m	4+α	3.5+3.5+2.0m	2,200	220	4,600	5,200	6,200	46,000	52,000	62,000
		55	21m	<28m	6	3.5+3.5+3.5+2.0	2,200	220	6,900	7,900	9,200	69,000	79,000	92,000
		60	29m<		8	3.5+3.5+3.5+3.5+2.0	2,200		9,200	10,500	12,300	92,000	105,000	123,000
		25		<6m	2	3m	2,500		1,100	1,200	1,400	13,750	15,000	17,500
	Urban	30	7m	<12m	2+α	3+2.5m	2,500	200	1,100	1,200	1,400	13,750	15,000	17,500
Tertion		35	13m	<20m	4+α	3.5+3.5+2.0m	2,200	200	3,800	4,300	4,800	47,500	53,750	60,000
roiddiy		35		<6m	2	3m	2,500		900	1,100	1,300	9,000	11,000	13,000
	Rural	40	7m	<12m	2+α	3.5+2.5m	2,500	200	900	1,100	1,300	9,000	11,000	13,000
		45	13m	<20m	4+α	3.5+3.5+2.0m	2,200	200	3,300	3,700	4,400	33,000	37,000	44,000

41

Building Network: QV function

Using GIS Converter

- The file conversion between the data: MapInfo, ArcView ⇔ STRADA
- Network, Zone Figure, Line Data, Zone Centroid, Assignment Results

Preparation of Parameter File

- Zone centroid
- Time equivalence (Value of Time)
- Link cost function
- Average occupancy
- PCU (Passenger car unit) factor by mode

General Total Total Territory The	Consideration (Dubus Color) Others
g Zard Cannol dect.com/ 37 Dirac Zintralia 30 Mart Subar 11 1985 Tana 2 None Subar Tana 2 1985 Tana Tana 4 None Subar Tana 4 None Tana Tana 5 None Tana Tana 6 None Tana Tana 7 Tana Tana Tana	Along Hans for Hodd Anag men Hand (1) Strong me

B SmpF_woNet.PAR		B Sample per
General Zone Time Value OV Turn Controls Output Option Of	Hers	Same 20re Ten/40 20 [functions] SuperControl Office]
Me if Links THE Processed	i i Sara	Post Tere Volue V Factor IES Aug Pless
No. of Rooms 1.427 In Club Experime No. of Zones 1.20 In System Costnue No. of Hindes 2. In Texas of Days (E.	· com	1 000000 700 130 120 100.000
A supported Option B Table Shows Fig Mode P Table Shows Table P Table Shows Table P Table Shows Table P Table Shows Table Table Shows Table Table Shows Table Table Shows Table Table Table Shows Table Tabl	100 10000 11000	1 000000 100 100 100 100
initial Looding		9 10

Highway Type Assignment

- Incremental Assignment
 - OD trips are divided n times and assigned on shortest route. Shortest route is searched at each time according to travel time calculated by QV function
- Diversion Rate Assignment
 - Network includes toll road, two routes shortest route w or w/o toll road are searched and diversion between those are calculated
- Equilibrium Assignment
 - Equilibrium situation on a network is calculated reflecting that road users select optimal travel route

QV Function and Link Performance Function

• Highway Type Assignment

Parameters for BPR Function

- Highway Type Assignment
 - Incremental and equilibrium using QV function are not so different but theoretically BPR function should be used for the equilibrium assignment
 - Both parameters for BPR function (USA parameter and Dutch parameter) have not been examined yet in the Vietnamese situation and it is considered that original parameters should be needed aside from these known parameters.

47

45

Traffic Assignment

• The Transit Assignment Program loads OD passenger trips of public transportation by searching feasible paths of low generalized costs in the transit line network.

Network : Highway Type Network Line Data : Bus/Rail Route **OD** Table : Public Parameter : Generalized cost/Time value Output : Mode/Route/Link Information, Station OD

Combination of Highway/ Transit

- Highway type by mode
- Highway type -> Transit

using IRE for input for Transit (preload pcu to link)

• Transit -> Highway type

using IRE for input for Highway type (preload pcu by pax to link)

Evaluation

- Network Performance
 - Volume Capacity Ratio (VC Ratio)
 - > Average Speed
 - Vehicle (PCU) Km
 - > Vehicle (PCU) Hour
- Economic Indices: Direct Impact
 - > Vehicle Operating Cost (VOC)
 - > Travel Time Cost (TTC)

- Comparison of "With" case and "Without case"
- Economic Indices: Indirect Impact
 - Loss by Accident / Injury and Death
 - > Air Pollution / Noise

Traffic Assignment Result

51

49