Annex 2

Step-by-step Guideline for MIKE 11-RR (NAM) Model

Biala River basin (EABD)

Pirinska Bistritsa River basin (WABD)

JICA Study Team

1. Biala River Basin

/Available information for model

From Core Data of GIS-DB

- Digital elevation model (50m grid)
- RiverNetwork and Catchment boundary

From Analysis Data of GIS-DB

- Monthly Potential Evapo-Transpiration (1km grid)

From TimeSeries Data of GIS-DB

- Daily average water quantity at HMS 62800 (2000 2005)
- Daily precipitation at precipitation sts. at 43450, 44410, 44420 (2000 2005)
- Daily average temperature at Meteorological st. at 43010 (Haskovo) (2000-2005)

/Model setting

Total catchment Area: 598.77 km²

Number of catchment for Rainfall-Runoff model (NAM Catchment): 1 Number of river for MIKE11-HD: 1 (for next exercise)

In this exercise, effect of water abstraction and waste water discharge is neglected. Therefore, it is regarded that daily average water quantity at 62800 is almost equal to quasi-natural water quantity.

(1) Input data

1) Average Precipitaton

Average precipitation over a catchment is estimated by the following equation.

$$P_{ave} = C_{elc} P_{ave0}$$

$$C_{ele} = exp[0.0003(E_{ave} - E_{ave_P})]$$

$$P_{ave0} = \sum C_{pn} P_n$$

$$E_{ave_p} = \sum C_{pn} E_n$$

where P_{ave} = average precipitation (mm), P_{ave0} = average precipitation before correction for elevation difference (mm), C_{ele} = correction coefficient for elevation difference between average elevation of catchment and one for precipitation sts. (-), E_{ave} = average elevation of catchment (m), E_{ave_p} = average elevation of precipitation stations (m), P_n = precipitation at station "n" (mm), C_{pn} = Thiessen coefficient for station "n" (-), E_n = elevation at station "n" (m). Average elevation of catchment is derived from digital elevation model.

Thiessen coefficients for each precipitation station are calculated as follows.

Total catchment of Biala River Basin (NAM Catchment:BI_M)

Average elevation of catchment (m) E _{ave}	418	Catchment Area (km²)	598.77
---	-----	-------------------------	--------

Station No.	43450	44410	44420	Average elevation of Precipitation sts. E _{ave P}
Thiessen Coefficient Cpn	0.060	0.643	0.296	N/A
Elevation (m) E _n	240	100	450	212

Correction coefficient for elevation difference (m) C_{ele} 1.064

Watershed for HMS62800

Average elevation of catchment (m) E _{ave}	452	Catchment Area (km ²)	506.71
---	-----	--------------------------------------	--------

Station No.	43450	44410	44420	Average in catchment E _{ave_P}
Thiessen Coefficient Cpn	0.071	0.579	0.350	N/A
Elevation (m) E _n	240	100	450	233

Correction coefficient for elevation difference (m) C_{ele} 1.068

2) Average Potential Evapo-Transpiration

Average potential evapo-transpiration for a catchment is derived from 1km grid monthly evapo-transpiration.

3) Daily Average Temperature

Daily average temperature at Meteorological st. at 43010 (Haskovo) is directly used for simulation.

Elevation of Meteorological St. (m) at 43010	230
---	-----

4) Elevation **p**ne distribution

Catchment area is divided into several elevation zones for snow module in NAM model. Based on digital elevation model, area for each elevation zone within total catchment area is calculated as follows.

Elevation Zone (m)	0 – 200	200 - 400	400 -600	600 - 800	800 - 1000	1000- 1200	1200- 1400
Representative Elevation (m)	100	300	500	700	900	1100	1300
Area (km ²)	59.58	231.92	210.33	77.28	13.32	6.26	0.08
Elevation Zone	1400-	1600-	1800-	2000-	2200-	2400-	2600-
(m)	1600	1800	2000	2200	2400	2600	2800
Representative Elevation (m)	1500	1700	1900	2100	2300	2500	2700
Area (km ²)	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Total Catchment of Biala River Basin (NAM Catchment:BI_M)

Watershed for HMS62800

Elevation Zone (m)	0 – 200	200 - 400	400 -600	600 - 800	800 - 1000	1000- 1200	1200- 1400
Representative Elevation (m)	100	300	500	700	900	1100	1300
Area (km ²)	21.57	183.45	204.76	77.28	13.32	6.26	0.08
Elevation Zone (m)	1400- 1600	1600- 1800	1800- 2000	2000- 2200	2200- 2400	2400- 2600	2600- 2800
Representative Elevation (m)	1500	1700	1900	2100	2300	2500	2700
Area (km ²)	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5) Precipitation correction for each elevation pne

Catchment area is divided into several elevation zones for snow module in NAM model. Amount of precipitation for each elevation zone is corrected based on the following equation.

$$R_i = 100 \{ exp[0.0003 (E_i - E_{ave})] \ 1 \}$$

where R_i = Correction ratio (%), E_i = average elevation of each elevation zone (m), E_{ave} = average elevation of catchment (m),.

Correction ratio for each elevation zone is calculated as follows.

Elevation Zone (m)	0 – 200	200 - 400	400 -600	600 - 800	800 - 1000	1000- 1200	1200- 1400
Representative Elevation (m)	100	300	500	700	900	1100	1300
Ri (%)	-9.09	-3.47	2.50	8.83	15.56	22.71	30.30
Elevation Zone (m)	1400- 1600	1600- 1800	1800- 2000	2000- 2200	2200- 2400	2400- 2600	2600- 2800
Representative Elevation (m)	1500	1700	1900	2100	2300	2500	2700
Ri (%)	38.35	46.91	55.99	65.64	75.88	86.76	98.31

Total Catchment of Biala River Basin (NAM Catchment:BI_M)

Watershed for HMS62800

Elevation Zone (m)	0 – 200	200 - 400	400 -600	600 - 800	800 - 1000	1000- 1200	1200- 1400
Representative Elevation (m)	100	300	500	700	900	1100	1300
Ri (%)	-10.02	-4.46	1.45	7.72	14.39	21.46	28.97
Elevation Zone (m)	1400- 1600	1600- 1800	1800- 2000	2000- 2200	2200- 2400	2400- 2600	2600- 2800
Representative Elevation (m)	1500	1700	1900	2100	2300	2500	2700
Ri (%)	36.94	45.41	54.40	63.95	74.09	84.85	96.29

6) Input file name

	Total catchment of Biala River	Watershed for HMS62800
	Basin (NAM Catchment: BI_M)	
DailyPrecipitation	DailyPrecipitation_Biala.dfs0	DailyPrecipitation_62800.dfs0
Monthly PET	MonthlyPET_Biala.dfs0	MonthlyPET_62800.dfs0
DailyAveTemperature	DailyAveTemperature.dfs0	DailyAveTemperature.dfs0
DailyAveWaterQuantity	N/A	DailyAveDischarge_62800.dfs0
for calibration		
Elevation zone	NAM_Parameters_Training.xls	NAM_Parameters_Training.xls
Precipitation correction	NAM_Parameters_Training.xls	NAM_Parameters_Training.xls
ratio for each elevation		
zone		

2. Pirinska Bistritsa River Basin

/Available information for model

From Core Data of GIS-DB

- Digital elevation model (50m grid)
- RiverNetwork and Catchment boundary
- From Analysis Data of GIS-DB
- Monthly Potential Evapo-Transpiration (1km grid)

From TimeSeries Data of GIS-DB

- Daily average water quantity at HMS 51590 (2000 2005)
- Daily precipitation at precipitation sts. at 61600, 61610, 61640, 61660, 61670 (2000 2005)
- Daily average temperature at Meteorological st. at 15712 (Sandanski) (2000-2005)

/Model setting

Total catchment Area: 508.29 km²

Number of catchment for Rainfall-Runoff model (NAM Catchment): 1 Number of river for MIKE11-HD: 1 (for next exercise)

In this exercise, effect of water abstraction and waste water discharge except intake by Pirinska Bistritsa-HPP is neglected. Observed data at HMS51590 is strongly affected by HPP. Based on monthly used water amount by Pirinska Bistritsa HPP, quasi-natural flow at HMS 51590 is estimated (2001-2004 only).

(2) Input data

1) Average Precipitaton

Average precipitation over a catchment is estimated by the following equation.

$$P_{ave} = C_{elc} P_{ave0}$$

$$C_{ele} = exp[0.0003(E_{ave} - E_{ave_P})]$$

$$P_{ave0} = \sum C_{pn} P_n$$

$$E_{ave_p} = \sum C_{pn} E_n$$

where P_{ave} = average precipitation (mm), P_{ave0} = average precipitation before correction for elevation difference (mm), C_{ele} = correction coefficient for elevation difference between average elevation of catchment and one for precipitation sts. (-), E_{ave} = average elevation of catchment (m), E_{ave_p} = average elevation of precipitation stations (m), P_n = precipitation at station "n" (mm), C_{pn} = Thiessen coefficient for station "n" (-), E_n = elevation at station "n" (m). Average elevation of catchment is derived from digital elevation model.

Thiessen coefficients for each precipitation station are calculated as follows.

Total catchment of Pirinska Bistritsa River Basin (NAM Catchment:ST_PIR)

Average elevation of catchment (m) 1015 E _{ave}	Catchment Area (km²)	508.29
--	-------------------------	--------

Station No.	61600	61610	61640	61660	61670	Average elevation of Precipitation sts. E _{ave P}
Thiessen Coefficient Cpn	0.100	0.377	0.059	0.167	0.298	N/A
Elevation (m) E _n	710	760	100	860	382	620

Correction coefficient for elevation difference (m) C_{ele} 1.126

Watershed for HMS51590

Average elevation of catchment (m) E _{ave}	1507	Catchment Area (km ²)	133.71
---	------	--------------------------------------	--------

Station No.	61600	61610	61640	61660	61670	Average elevation of Precipitation sts. E _{ave P}
Thiessen Coefficient Cpn	0.012	0.047	0.00	0.624	0.318	N/A
Elevation (m) E _n	710	760	100	860	382	702

Correction coefficient for elevation difference (m) C_{ele} 1.273

2) Average Potential Evapo-Transpiration

Average potential evapo-transpiration for a catchment is derived from 1km grid monthly evapo-transpiration.

3) Daily Average Temperature

Daily average temperature at Meteorological st. at 15712 (Sandanski) is directly used for simulation.

Elevation of Meteorological St. (m) at 15712	206
---	-----

4) Elevation pne distribution

Catchment area is divided into several elevation zones for snow module in NAM model. Based on digital elevation model, area for each elevation zone within total catchment area is calculated as follows.

Elevation Zone (m)	0 – 200	200 - 400	400 -600	600 - 800	800 - 1000	1000- 1200	1200- 1400
Representative Elevation (m)	100	300	500	700	900	1100	1300
Area (km ²)	18.39	62.09	70.96	51.35	58.09	52.20	60.76
Elevation Zone (m)	1400- 1600	1600- 1800	1800- 2000	2000- 2200	2200- 2400	2400- 2600	2600- 2800
Representative Elevation (m)	1500	1700	1900	2100	2300	2500	2700
Area (km ²)	51.65	34.10	20.09	11.41	10.10	7.10	0.00

Total Catchment of Pirinska Bistritsa River Basin (NAM Catchment:ST_PIR)

Watershed for HMS51590

Elevation Zone (m)	0 – 200	200 - 400	400 -600	600 - 800	800 - 1000	1000- 1200	1200- 1400
Representative Elevation (m)	100	300	500	700	900	1100	1300
Area (km ²)	0.00	0.18	3.22	7.98	10.92	14.62	22.06
Elevation Zone (m)	1400- 1600	1600- 1800	1800- 2000	2000- 2200	2200- 2400	2400- 2600	2600- 2800
Representative Elevation (m)	1500	1700	1900	2100	2300	2500	2700
Area (km ²)	18.49	18.15	12.56	8.34	10.09	7.10	0.00

5) Precipitation correction for each elevation pne

Catchment area is divided into several elevation zones for snow module in NAM model. Amount of precipitation for each elevation zone is corrected based on the following equation.

$$R_i = 100 \{ exp[0.0003(E_i - E_{ave})] \ 1 \}$$

where R_i = Correction ratio (%), E_i = average elevation of each elevation zone (m), E_{ave} = average elevation of catchment (m),.

Correction ratio for each elevation zone is calculated as follows.

Elevation Zone (m)	0 – 200	200 - 400	400 -600	600 - 800	800 - 1000	1000- 1200	1200- 1400
Representative Elevation (m)	100	300	500	700	900	1100	1300
Ri (%)	-24.02	-19.32	-14.33	-9.03	-3.40	2.57	8.91
Elevation Zone	1400-	1600-	1800-	2000-	2200-	2400-	2600-
(m)	1600	1800	2000	2200	2400	2600	2800
Representative Elevation (m)	1500	1700	1900	2100	2300	2500	2700
Ri (%)	15.65	22.80	30.39	38.45	47.01	56.11	65.76

Total Catchment of Pirinska Bistritsa River Basin (NAM Catchment:ST_PIR)

Watershed for HMS51590

Elevation Zone (m)	0 – 200	200 - 400	400 -600	600 - 800	800 - 1000	1000- 1200	1200- 1400
Representative Elevation (m)	100	300	500	700	900	1100	1300
Ri (%)	-34.43	-30.38	-26.07	-21.50	-16.65	-11.49	-6.02
Elevation Zone (m)	1400- 1600	1600- 1800	1800- 2000	2000- 2200	2200- 2400	2400- 2600	2600- 2800
Representative Elevation (m)	1500	1700	1900	2100	2300	2500	2700
Ri (%)	-0.21	5.96	12.51	19.47	26.86	34.70	43.03

6) Input file name

	Total catchment of Pirinska Bistritsa River Basin (NAM Catchment: ST_PIR)	Watershed for HMS51590
DailyPrecipitation	DailyPrecipitation_PirinskaB.dfs0	DailyPrecipitation_51590.dfs0
Monthly PET	MonthlyPET_PirinskaB.dfs0	MonthlyPET_51590.dfs0
DailyAveTemperature	DailyAveTemperature.dfs0	DailyAveTemperature.dfs0
DailyAveWaterQuantity for calibration	N/A	DailyAveDischarge_51590_cal.dfs0
Area for each elevation zone	NAM_Parameters_Training.xls	NAM_Parameters_Training.xls
Precipitation correction ratio for each elevation zone	NAM_Parameters_Training.xls	NAM_Parameters_Training.xls

3. Model set-up

Here, example for Biala River Basin is shown. Set-up procedure for Pirinska Bistritsa River Basin is principally same.

Select "Input" tab. Set "RR parameters" file. You can browse available files in the project by pressing "" button.	Uktoberte Modeled Modele Text Pool Net Pool Net Network Class-sectores Classectores Class-sectores
Select "Simulation" tab. Select "Fixed time step" for time step type. Set values for "Time step", "Unit".	Workeit Model Mickeit Model Simulation Invest Time shop type Time shop Time shop type Time shop Time shop type Time shop Simulation Part Simulation Start Simulation Start Simulation Start Parks Topo of condition File Parks and Time Point Simulation Point Simulation Add to Heistart Point Simulation Point Simulation AD Simulation Simulation Point Simulation Point Simulation Point Simulation AD Simulation Point Simulation AD Simulation Point Simulation Point Simulation Point Simulation Point Simulation Point Simulation Point Simulation Point Simulation
Click "Apply Default". Then, simulation period is automatically adjusted for available maximum period based on the input timeseries data.	Workingt = Modeling Modeling Tensisties Dave 1 Housing the step Tensisties Dave 1 Found time step Tensisties Tensisties

Manually adjust simulation period. For Biala river, 2000/08/01 to 2006/01/01 For Pirinska Bistritsa river, 2001/08/01 to 2004/10/31 Select "Parameter Files" for Initial Condition.	Models Peouls Start Simulation Period Time step Los Tore step type Time step Disconstruction End Ferrical Disconstruction End RR time step multiplier Privat Disconstruction Hotstert flamame HD Ferrical Ferrical
Select "Results" tab. Set values for "Storing Frequency", "Unit". Filename can be "blank". In this case, result file will be made in the same directory of .sim11 file.	Image: Strate
Click "SAVE" button to save .sim11 file. Set filename. Click "OK".	Note: First Starte Frequency Und HD Barrier Frequency Und AD Starte Frequency Starte Frequency Name Color Starte Frequency Indicator Starte Frequency Starte Frequency Name Color Starte Frequency Indicator Starte Frequency Starte Frequency

4. Calibration

Open project. Double click ".sim11" file prepared by 3 . Then, simulation editor appears.	
Select "Input" tab. Click "Edit".	Concentration Concentration Part Files Fetreo/k Part Files Edd. Resenters Concentration Resenters Concentration Concentration Edd. Resenters Concentration Resenters Concentration Resenters Concentration Resenters Concentration Resenters Concentration Resenters Edd. Resenters Edd.
Now, .rr11 file is editable.	Contribution Print Later Catchment I MAN UNIT IMAP Union FDH DRUT Treasure ins Catchment I Contribution Catchment I code type Print Contribution Catchment area Print Contribution Table NAM Table NAM Table NAM State NAM Table NAM State NAM State NAM State NAM

Reference:

Parameters and those ranges for calibration for HMS62800 (Parameters are not yet finalized.)

Parameter	Fit	Initial Value	Lower Bound	Upper Bound
Jmax	2	102	5	200
Lmax		399	50	400
CQOF	~	0.34	0.1	0.6
CKIF		200	200	1000
CK1.2	~	10.6	3	72
TOF		0.0292	0	0.99
TIF	2	0.936	0	0.99
TG	~	0.38	0	0.99
CKBF		500	300	5000

CQLOW 1 100 CKLOW 1e+004 1e+003 3e+004

Parameters and those ranges for calibration for HMS51590

Parameter	Fit	Initial Value	Lower Bound	Upper Bound
Umax	<u>र</u>	10.5	5	200
Lmax		385	50	400
CQOF		0.108	0.1	0.6
CKIF		500	500	1000
CK1.2		55.9	3	72
TOF		0.671	0	0.7
TIF		0.694	0	0.7
TG	<u> </u>	0.186	0	0.7
CKBF		500	500	5000
QLOW		50	1	100
KLOW		1e+004	1e+003	3e+004

5. Run the model with calibrated parameters

Model set-up procedure for total catchment area is same as one for calibration.

In this exercise, model set-up for Biala River Basin and Pirinska Bistritsa River Basin have been prepared.

For Biala river basin:

001_BialaBialaBi ala_RRonly.sim11

For Pirinska Bistritsa River Basin:

002_PriniskaBistritsa/PiriniskaBistritsaPirinskaB_RRonly.sim11

Open those set-up files, and enter the calibrated parameters. Run the model, then see the results with MIKE View.

6. Change of Input file

Exercise:

Let's see what happen if precipitation amount increases 10%.

In this case, you may need to change input file for precipitation. This can be done in Temporal Analysts for ArcGIS. However, in this exercise, method to use Excel is introduced.

End of Exercise

Homework - Trial assessment on effect of global warming on run-off

It is said that global warming will bring about increase of average temperature and change of precipitation amount.

Change of precipitation amount would directly affect to run-off amount. In addition, increase of average temperature would alter Potential Evapo-Transpiration and snow melting process.

In this exercise, we change the precipitation amount, temperature by several scenarios. Then, we investigate how such change could alter the run-off amount, using the mode set-up in the training course.

Scenarios

			Precipitation	
		No change	+10%	-10%
Temperature	No change	Case 0	-	-
	+3 degree	Case 1	Case 2	Case 3

Note: Case 0 is existing condition.

Same temporal patterns of precipitation and temperature as 2001-2005 are used. However, average values are changed according to the above scenarios.

PET when temperature increases with 3 degree is prepared.

For Biala River Basin: MonthlyPET_Biala_p3.dfs0 For Pirinska Bistritsa River basin: MonthlyPET_PirinskaB_p3.dfs0

Changed temperature is also prepared.

DailyAveTemperature_p3.dfs0

Please change precipitation amount and try to simulate with the above scenarios by changing input files.

Compare the results and discuss the effects of increase of temperature and change of precipitation.

Annex 3

Step-by-step Guideline for MIKE 11 HD model

Biala River basin (EABD)

Pirinska Bistritsa River basin (WABD)

JICA Study Team

1. Biala River Basin

/ Available information for model

From Core Data of GIS-DB

- Digital elevation model (50m grid)
- RiverNetwork and Catchment boundary
- Google Earth

/ Model setting

Total catchment Area: 598.77 km²

Number of catchment for Rainfall-Runoff model (NAM Catchment): 1

(Previous Exercise)

Number of river for MIKE11-HD: 1

(1) Input data

Cross-section

No actual cross-section data are available.

Instead of using actual cross-section data, simplified cross-section data are used for upstream-end and downstream end of MIKE11 river network.

Downstream end:

Chainage = 0 m Elevation from DEM = 34.6 m Average channel slope from DEM = 0.00386 Approximate width of river (referred Google Earth) = 50 m

Upstream end:

Chainage = 32521.42 m Elevation from DEM = 160.0 m Approximate width of river (referred Google Earth) = 50 m

Output from Rainfall-Runoff Model (RR) is linked to MIKE11-HD river network.

Rainfall-Runoff Catchment is sub-divided into two parts. One is upstream reach and another is downstream reach.

Those two parts are linked to the river network as follows:

	NAM	Area	Branch	Upper	Lower
	Catchment	(km²)	Name	Chainage	Chainage
	Name				
Downstream part	Biala	225.40	BI_M	0	32521
Upstream part	Biala	373.37	BI_M	32521	32521

(3) Input File Name

Cross-section data:	CS_Biala.xls
RR-Link	RRlink_Biala.xls

2. Pirinska Bistritsa River Basin

/ Available information for model

From Core Data of GIS-DB

- Digital elevation model (50m grid)
- RiverNetwork and Catchment boundary
- Google Earth

/ Model setting

Total catchment Area: 508.29 $\rm km^2$

Number of catchment for Rainfall-Runoff model (NAM Catchment): 1

(Previous Exercise)

Number of river for MIKE11-HD: 1

(1) Input data

Cross-section

Data for one cross-section in the middle reach of the river are available. For upstream end and downstream end of MIKE11 river network, copied cross-section from the one in the middle reach are used. However, elevations for upstream end and downstream end are modified by referring DEM.

Downstream end:

Chainage = 0 m Elevation from DEM = 56.6 m Average channel slope from DEM = 0.00582

Upstream end:

Chainage = 14615.81 m Elevation from DEM = 147.7 m

(2) RR-HD Link

Output from Rainfall-Runoff Model (RR) is linked to MIKE11-HD river network.

Rainfall-Runoff Catchment is sub-divided into two parts. One is upstream reach and another is downstream reach.

Those two parts are linked to the river network as follows:

	NAM	Area	Branch	Upper	Lower
	Catchme	(km²)	Name	Chainage	Chainage
	nt Name				
Downstream part	PirinskaB	119.76	ST_PIR	0	14615
Upstream part	PirinskaB	388.53	ST_PIR	14615	14615

(3) Input File Name

Cross-section data:	CS_PirinskaB.xls
RR-Link:	RRlink_PirinskaB.xls

3. Model set-up

Here, example for Biala River Basin is shown. Set-up procedure for Pirinska Bistritsa River Basin is principally same except setting of cross-section data.

Setting-up .nwk11 file

Dialog "Layers" appears. Click button.	Elvers X Add/Nemove Layers Overlaw Manager File type Filename Elver Pin CVMIKETT Travers_2000 BiolaSHP MEXT1 BiolaNMCatchment Biolastre Elver Pin CVMIKETT Travers_2000 BiolaSHP MEXT1 BiolaNHMC Biolastre Elver Pin CVMIKETT Travers_2000 BiolasHMC Biolastre
New line appears.	Edward X Add/Remove Layers Overlay Manager File type Filename 1 Shape File CVMIKET1 Training 2000 Builard HP, MEXT1 Builar MAMCatchment Bialasho 3 Shape File CVMIKET1 Training 2000 Builard HP, MEXT1 Builar MAMCatchment Bialasho 3 Shape File CVMIKET1 Training 2000 Builard HP, MEXT1 Builar MAMCatchment Bialasho 3 Shape File CVMIKET1 Training 2000 Builard HP, MEXT1 Builard ManBower Serment Bialasho 5 Shape File CVMIKET1 Training 2000 Builard HP, MEXT1 Builard Marbower Serment Bialasho 5 Shape File CVMIKET1 Training 2000 Builard HP, MEXT1 Builard Marbower Serment Bialasho 5 Shape File CVMIKET1 Training 2000 Builard HP, MEXT1 Builard Marbower Serment Bialasho 4 > 0K #+>2th >
Select "Shape File" from File type field. Then, Click "…".	File type 1 Shape File C:¥Documents and § 2 Shape File C:¥Documents and § 3 Shape File C:¥Documents and § 4 Shape File C:¥Documents and § 5 Shape File C:¥Documents and § 5 Shape File C:¥Documents and § 5 Shape File C:¥Documents and § 6 Shape File C:¥Documents and § 7 Shape File C:¥Documents and § 8 Shape File C:¥Documents and § 9 Shape File C:¥Documents and § 9 Shape File C:¥Documents and § 9 Shape File 9 Shape File 1

Preparation of files for HD simulation

Select tab" Bed Resist".	Eislehdil Add. Output Flood Plain Resist. User Det. Marks Encroachment Heat Balance Time Series Oncorn Free Groundwater Leakage Mix Coet W.L. Incr - Ourves W.L. Inc Initial Wins Bird Resist. Bied Resist. Toolbox Wave Approx Default Vakaes Quast Steady
Set resistance Formula as "Manning (M)".	Approach C Uniform Section C Treple zone Olobal Values Resistance Number Fill Resistance Number Resis
Set Global values for Resistance Number as "25". Then, save the .hd11 file	Local Values

Set Cross-section file for Biala river basin

(for Pirinska Bistritsa River, please see after p.31)

Set Cross-section file for Pirinska Bistritsa River basin

Click, "Edit" on Cross-sections. Then, cross-section editor appears. Click "Insert Cross-section".	Image: Construct of the provide structure Image: Constructure Image: Construct of t
Dialog "Insert branch" appears. Set values as follows. River name " ST_PIR" Topo ID " Existing" First chainage "7905" Then, click "OK".	Insert branch X River name ST_PIR Topo ID Existing First chainage 7905 Cross section ID OK
New cross-section is inserted.	PirinskaBxns11 - Modified River name Topo ID Chainage Cross section ID 0.00 0.00 0.00 Section Type Radius Type Datum Dpen Image Image Coordinates Image Image Correction of X coor Morphological Model Apply X Y Left Image Image Right Image Image Resistance numbers Image Image Transversal Distribution High/Low flow zones Image Resistance Type Relative resistance Image Image Image Image Image Imag

(for Biala River, please skip to p.39)

Setting .bnd11 file

h-Q relation is automatically calculated. Highlight line 1, then press "Insert" button in your key board.	h Q 1 34.6 0 2 34.725 0.112647187 3 34.85 0.715265056 4 34.975 2.108840335 5 35.1 4.541650014 6 35.225 8.234559372 7 35.35 13.39030146 8 35.475 20.19831435 9 35.6 28.83768004 10 44.6 3315.300230
New line is inserted.	h Q 1 0 0 2 34.6 0 3 34.725 0.11264718 4 34.85 0.715265056 5 34.975 2.108840335 6 35.1 4.541650014 7 35.225 8.234559372 8 35.35 13.39030146 9 35.475 20.19831435 10 35.6 28.83768004 11 44.6 3315.300230
Insert "0.001" at Q column, line 2. Select line 11, then press "Tab" button in your key board. You will get new line 12. Insert "100"(big number) at h column. Insert "10000"(big number) at Q column". These are for preventing stopping simulation caused by initial instability.	h G 2 34.6 0.001 3 34.725 0.112647187 4 34.85 0.715265056 5 34.975 2.108840335 6 35.1 4.541650014 7 35.225 8.234559372 8 35.35 13.39030146 9 35.475 20.19831435 10 35.6 28.83768004 11 44.6 9315.300230 12 100 10000

Set values for constant discharge as "0.001". (After you enter the value, you should press "return" key.)	✓Include HD calculation ☐Include AD boundaries ☐Mike 12
Note: In this exercise, RR-HD link will be applied. Therefore, inlet discharge can be zero. However, it is better to give very small amount of discharge at upstream end for stabilizing simulation.	Data Type TS Type File / Value T 1 Discharge: Consta 0.001
Save the .bnd11 file and close it.	

4. Preparation of Initial Hot start file

MIKE11-HD becomes easily unstable when it starts from rough estimation of initial condition such as approximation of uniform flow condition.

To prevent this instability, very small time step is required. However, it is not so good idea to use so small time step for entire simulation.

MIKE11-HD has several options for time-step. Adaptive time-step can work very well for changing time step automatically corresponding to the requirement to prevent instability of simulation. However, when RR-HD link is applied, you can not use the option "Adaptive time-step".

To overcome this situation, you have to prepare "Initial Hot start file".

After you prepare "Initial Hot start file", you can use relatively large time step with option "fixed time step" without the initial instability.

Select tab "Simulation" from simulation editor again. Set Time step type as "Fixed time step" Set Time step and unit as "5" & " Min"	Bislasin11 - Modified Models Inor Models Inor Time step type Time step Time step type Time step Fond time step F Min Simulation Simulation Simulation Find time step F Simulation Simulation Simulation Simulation Period 2000/01/01 Simulation Simulation Period 2000/01/01 Simulation RR time step multiplier Interesting multiplier RR time step multiplier HD Hotstart Date and Time HD Hotstart Simulation AD Instantion Instantion ST Instantion Instantion RR Fersion Fire Instantion RR Fersion Fire Instantion
Set Initial condition for HD For Type of condition, "Hotstart" For Hotstart filename "/001_Biala/Biala/HDint_temp.res11" For Hotstart date and Time "2000/01/01 23:00:00"	Bislasin11 - Modified Models Simulation Simulation RR Period Period
Select tab "Results". Change result file name as "HDint_temp2.res11" Click "OK".	Made byor Semiatric Smalle byor Person P

5. RR-link and run the model

End of Exercise