

# **JICA PILOT PROJECT**

# ការផ្ទៀងផ្ទាត់ភាពត្រឹមត្រូវនៃការវាស់វែងព្រំឌី ជាមួយប្រព័ន្ធ Khmer GEONET

Accuracy Verification of Cadastral Survey with Khmer GEONET



**JUNE 2024** 

# **Presentation Outline**

- I. Overview of the Demonstration Project
- **II. Work Performed**
- III. Use of Khmer GEONET
- **IV. Recommendation**
- V. Conclusion

### **I. Overview of the Demonstration Project**

The main purpose of the pilot project is to demonstrate the accuracy of RTK survey by GNSS rover under field conditions.

Accuracy can be measured in two main ways;

- 1) absolute accuracy in relation to known points and;
- 2) relative accuracy, or the variability of coordinates (X,Y and Z) over time.

### Implementation Period

- 1) Work at the site: JUL 2023 SEP 2023
- 2) Reporting: SEP 2023 NOV 2023

### I. Overview of the Demonstration Project (Con.)



- Location of the demonstration project site
- (1) In and around the three stations in Phnom Penh, Kandal, Kampong Speu and Takeo provinces
- (2) Siem Reap Province; and
- (3) Stung Treng Province

### I. Overview of the Demonstration Project (Con.)

This pilot project will focus on testing of absolute accuracy. The main parameters that will be tested are;

- 1) Comparison of accuracy when connected to the Network RTK vs. Single Station RTK
- 2) Comparison of accuracy of different makes and models of GNSS rover receiver
- 3) Comparison of accuracy under different Ionospheric conditions.
- 4) Determination of accuracy at longer distances from the nearest station e.g., 10, 20, 30, 40, 50, 70, 100 km
- 5) Determine the repeatability of measurements under field conditions by surveying the same temporary points, representing a cadastral boundary, on different days.

### I. Overview of the Demonstration Project (Con.)

The equipment listed below were used for the demonstration project.

| No. | Make     | Model     | Frequencies | H Accuracy, RTK                                                                                         |
|-----|----------|-----------|-------------|---------------------------------------------------------------------------------------------------------|
| 1   | Topcon   | HiPer VR  | 3           | 5 mm + 0.5 ppm                                                                                          |
| 2   | Topcon   | HiPer SR  | 2           | 10 mm + 0.8 ppm                                                                                         |
| 3   | Trimble  | R10       | 3           | 8 mm + 1 ppm (Single)<br>8 mm + 0.5 ppm (Network)                                                       |
| 4   | Trimble  | R8s       | 3           | 8 mm + 1 ppm (Single)<br>8 mm + 0.5 ppm (Network)                                                       |
| 5   | СНС      | i80       | 3           | 8 mm + 1 ppm (Single)<br>8 mm + 0.5 ppm (Network)                                                       |
| 6   | SinoGNSS | T300 Plus | 3           | 8 mm + 1 ppm (Single)                                                                                   |
| 7   | ZED-F9P  |           | 2           | 10 mm + 1 ppm (Single) (1km baseline)<br>Manufacturer's note "ppm limited to baselines up<br>to 20 km." |

### **II. Work performed**

- The Khmer GEONET system is able to broadcast both a Network RTK (NRTK) correction and a Single Station RTK (SSRTK).
- The NRTK correction for Khmer GEONET is set to Virtual Reference Station (VRS) mode.

### Note: Trimble Pivot Software and Hardware Alloy + ACR

In summary the expectation is that the NRTK corrections (VRS), will

- Allow longer baselines between rover and reference station
- Be more accurate compared to SSRTK due to localized modeling of the tropospheric and Ionospheric
- Shorter initialization times compared to SSRTK

### **II. Work performed (Con.)** (1) Results of Network RTK vs. Single Station

### National Control Point 5 about 44km from KSP CORS Station





Date: 30-07-2023 Receiver Model: Trimble R10 Survey Method: Continuous Topo; 1sec. Fix Type: RTK Fix Mount Point: VRS Average # of satellites: 14

Number of observations: 478

### **II. Work performed (Con.)** (1) Results of Network RTK vs. Single Station RTK

Horizontal coordinates of observation over known point 5 with R10 Receiver



# **II. Work performed (Con.)** (1) Results of Network RTK vs. Single Station RTK

Horizontal coordinates of observation over known point 5E with Topcon Hiper VR Receiver



### **II. Work performed (Con.)** (1) Results of Network RTK vs. Single Station RTK

Elevation of observations over known point 5E

Elevatior R10 Point 5E



### (1) Results of Network RTK vs. Single Station RTK

Comparison of observed coordinates vs known coordinate 5E with different receivers

|                              | East        | North        | Δ East | Δ North | Linear |
|------------------------------|-------------|--------------|--------|---------|--------|
| 5E Known                     | 447804.8032 | 1266636.7141 |        |         |        |
| R8s VRS Obs. Av.             | 447804.8113 | 1266636.7234 | 0.008  | 0.009   | 0.012  |
| R8s RRS Obs. Av.             | 447804.8170 | 1266636.7203 | 0.014  | 0.006   | 0.015  |
| Topcon Hiper VR VRS Obs. Av. | 447804.8092 | 1266636.7158 | 0.006  | 0.002   | 0.006  |
| Topcon Hiper VR RRS Obs. Av. | 447804.8253 | 1266636.7270 | 0.022  | 0.013   | 0.026  |
| CHC i80 VRS                  | 447804.8209 | 1266636.711  | 0.018  | -0.004  | 0.018  |
| CHC i80 RRS                  | 447804.7956 | 1266636.707  | -0.008 | -0.007  | 0.010  |
| Sino 070 VRS                 | 447804.8058 | 1266636.718  | 0.003  | 0.004   | 0.005  |
| Sino 070 RRS                 | 447804.8219 | 1266636.718  | 0.019  | 0.004   | 0.019  |
| Trimble R10 VRS              | 447804.805  | 1266636.725  | 0.002  | 0.011   | 0.011  |
| Trimble R10 RRS              | 447804.8931 | 1266636.698  | 0.090  | -0.016  | 0.091  |
| Topcon SR VRS                | 447804.8164 | 1266636.72   | 0.013  | 0.006   | 0.014  |
| Topcon SR RRS                | 447804.8405 | 1266636.715  | 0.037  | 0.000   | 0.037  |

### (1) Results of Network RTK vs. Single Station RTK

Comparison of observed coordinates vs known coordinate 808D with different receivers

|                              | East        | North        | Δ East | Δ North | Linear |
|------------------------------|-------------|--------------|--------|---------|--------|
| 808D Known                   | 473113.1740 | 1272888.1020 |        |         |        |
| R8s VRS Obs. Av.             | 473113.1817 | 1272888.1021 | 0.008  | 0.000   | 0.008  |
| R8s RRS Obs. Av.             | 473113.1700 | 1272888.0927 | -0.004 | -0.009  | 0.010  |
| Topcon Hiper VR VRS Obs. Av. | 473113.1892 | 1272888.091  | 0.015  | -0.011  | 0.019  |
| Topcon Hiper VR RRS Obs. Av. | 473113.2068 | 1272888.126  | 0.033  | 0.024   | 0.041  |
| CHC i80 VRS                  | 473113.151  | 1272888.072  | -0.023 | -0.030  | 0.038  |
| CHC i80 RRS                  | 473113.2506 | 1272888.022  | 0.077  | -0.080  | 0.111  |
| Sino 070 VRS                 | 473113.1868 | 1272888.07   | 0.013  | -0.032  | 0.034  |
| Sino 070 RRS                 | 473113.1774 | 1272888.084  | 0.003  | -0.018  | 0.018  |
| Trimble R10 VRS              | 473113.1899 | 1272888.101  | 0.016  | -0.001  | 0.016  |
| Trimble R10 RRS              | 473113.1347 | 1272887.53   | -0.039 | -0.572  | 0.573  |
| Topcon SR VRS                | 473113.0545 | 1272888.056  | -0.119 | -0.046  | 0.128  |
| Topcon SR RRS                | 473113.1398 | 1272888.056  | -0.034 | -0.046  | 0.058  |

# (2) Comparison of accuracy of different makes and models of GNSS rover receiver

Although different manufacturers use different chips and technologies on board the receiver, the main factors affecting rover performance are;

- 1. The number of constellations tracked e.g. GPS, BeiDou, GLONASS
- 2. The frequencies tracked i.e. L1, L2, L5

Shows the specifications of the rover receivers utilized on this project.

Only two of the models were dual frequency; the Topcon HR and the ZED-F9P.

### **II. Work performed (Con.)** (3) Comparison of accuracy under different lonospheric conditions



Trimble Pivot Platform includes powerful integratory monitoring functions to predict rover performance in the field.

 ✓ It is a very useful tool to predict the rover performance.



### (3) Comparison of accuracy under different lonospheric conditions



### (3) Comparison of accuracy under different lonospheric conditions

Sessions for observing under different ionospheric conditions

| No | Session Time  | 195    | IRIM | GRIM  | Δ to known point (m) |
|----|---------------|--------|------|-------|----------------------|
| 1  | 08:00 - 09:00 | Medium | 0.01 | 0.006 | 0.095                |
| 2  | 11:30 - 12:30 | High   | 0.02 | 0.015 | 0.028                |
| 3  | 14:40 - 15:30 | High   | 0.01 | 0.015 | 0.038                |
| 4  | 16:30 - 17:00 | Medium | 0.02 | 0.014 | 0.008                |

Ionospheric activity as measured by the I95 index varied from Medium (I95 > 4) and High (I95 > 8).

*Note: Medium values relate to 195 values of > 4 and high values > 8* 

# (4) Determination of accuracy at longer baseline distances from the nearest station

Fixing performance vs. baseline length for ZED-F9P GNSS receiver

| Distance (km) | ZED-F9P | Trimble R10 | Trimble R8s | SinoGNSS | CHC i80 |
|---------------|---------|-------------|-------------|----------|---------|
| 10            | 100     |             |             |          |         |
| 20            | 100     | 100         | 100         | 100      | 97      |
| 30            | 96      |             |             |          |         |
| 40            | 85      |             |             |          |         |
| 50            | 74      | 100         | 100         | 100      | 100     |
| 70            | 51      |             |             |          |         |
| 100           | 3       |             |             | 100      |         |

To determine the accuracy of longer baseline distances, two tests were devised;

- 1. A check of the fixing performance at different distances from the nearest CORS station; and
- 2. Calculate the accuracy of observed vs. known coordinates for different distances from the nearest CORS station.

# (4) Determination of accuracy at longer baseline distances from the nearest station

Horizontal errors observed over known points at increasing distance

| No. | Point ID | Nearest CORS<br>Station | Distance to<br>station (KM) | Δ East | Δ North | Linear | Date  |
|-----|----------|-------------------------|-----------------------------|--------|---------|--------|-------|
| 1   | 5E       | KSP                     | 5.7                         | 0.002  | 0.011   | 0.011  | 23/09 |
| 2   | 808D     | PNH                     | 18.1                        | 0.016  | -0.001  | 0.016  | 24/09 |
| 3   | 21A      | KND                     | 48.4                        | 0.016  | -0.018  | 0.024  | 21/09 |
| 4   | 6D       | KNG                     | 86.9                        | 0.033  | 0.024   | 0.036  | 27/09 |

For the second set of checks, four known points were selected at increasing distance from the nearest CORS station and a Trimble R10 rover setup over each point. Observations were made for 5 minutes over each point and the results are given in Table above.

As you can see, the error is quite small and increasing linearly, even to a distance of 86 km from the nearest base station.

# (4) Determination of accuracy at longer baseline distances from the nearest station

Horizontal Errors Vs. distance to nearest CORS station



Based on the tests over four known points, it can be concluded the positioning accuracy of Khmer GEONET is high and increases linearly with distance from the nearest station. This means that the network correction is accurate reliable even at moderate distances (30 - 50 km).

### (5) Determine the repeatability of measurements under field conditions

Two sites were selected for determining the repeatability of field measurements; 1 Location in Kandal Province and another location in Kampong Speu Province.

The procedure was as follow

- 1. Setup tripod over 4 points
- 2. Measure 4 points in RTK mode
- 3. Repeat measure 3 times in succession
- 1. Move instrument to all points
- 2. Repeat steps 1-3



(5) Determine the repeatability of measurements under field conditions





Boundary Survey Scheme in Angk Snuol District

Boundary Survey Scheme in Phnum Sruoch District

(5) Determine the repeatability of measurements under field conditions

| Name        | Easting    | Diff.   | Northing    | Diff.   | Elev. | Diff.   | Start Time      | End Time        |
|-------------|------------|---------|-------------|---------|-------|---------|-----------------|-----------------|
| Boundary1-1 | 469533.742 |         | 1271519.702 |         | 7.027 |         | 7/31/2023 15:23 | 7/31/2023 15:23 |
| Boundary1-2 | 469533.741 | (0.001) | 1271519.702 | 0.000   | 7.027 | 0.000   | 7/31/2023 15:23 | 7/31/2023 15:23 |
| Boundary1-3 | 469533.739 | (0.002) | 1271519.702 | -       | 7.024 | (0.003) | 7/31/2023 15:23 | 7/31/2023 15:23 |
| Boundary2-1 | 469442.219 |         | 1271524.216 |         | 7.346 |         | 7/31/2023 15:52 | 7/31/2023 15:52 |
| Boundary2-2 | 469442.218 | (0.001) | 1271524.216 | 0.000   | 7.343 | (0.002) | 7/31/2023 15:52 | 7/31/2023 15:52 |
| Boundary2-3 | 469442.217 | (0.001) | 1271524.216 | (0.000) | 7.344 | 0.000   | 7/31/2023 15:52 | 7/31/2023 15:52 |
| Boundary3-1 | 469427.044 |         | 1271415.808 |         | 7.266 |         | 7/31/2023 15:56 | 7/31/2023 15:56 |
| Boundary3-2 | 469427.047 | 0.003   | 1271415.811 | 0.002   | 7.270 | 0.004   | 7/31/2023 15:56 | 7/31/2023 15:56 |
| Boundary3-3 | 469427.045 | (0.002) | 1271415.81  | (0.000) | 7.266 | (0.004) | 7/31/2023 15:56 | 7/31/2023 15:56 |
| Boundary4-1 | 469536.016 |         | 1271417.536 |         | 7.055 |         | 7/31/2023 16:15 | 7/31/2023 16:15 |
| Boundary4-2 | 469536.016 | (0.000) | 1271417.533 | (0.003) | 7.054 | (0.001) | 7/31/2023 16:15 | 7/31/2023 16:15 |
| Boundary4-3 | 469536.019 | 0.003   | 1271417.53  | (0.003) | 7.056 | 0.002   | 7/31/2023 16:15 | 7/31/2023 16:16 |
|             | Mean       | (0.000) |             | (0.000) |       | 0.000   |                 |                 |
|             | Max        | 0.003   |             | 0.003   |       | 0.004   |                 |                 |

Boundary Survey Results at Ank Snuol Site

### (5) Determine the repeatability of measurements under field conditions

| Name        | Easting    | Diff.  | Northing    | Diff.  | Elev.  | Diff.  | Start Time     | End Time       |
|-------------|------------|--------|-------------|--------|--------|--------|----------------|----------------|
| Boundary1-1 | 434825.136 |        | 1261137.258 |        | 36.498 |        | 8/1/2023 11:00 | 8/1/2023 11:00 |
| Boundary1-2 | 434825.135 | -0.001 | 1261137.259 | 0.001  | 36.499 | 0.002  | 8/1/2023 11:00 | 8/1/2023 11:00 |
| Boundary1-3 | 434825.131 | -0.004 | 1261137.26  | 0.001  | 36.505 | 0.005  | 8/1/2023 11:00 | 8/1/2023 11:01 |
| Boundary2-1 | 434876.952 |        | 1261035.41  |        | 36.3   |        | 8/1/2023 11:49 | 8/1/2023 11:49 |
| Boundary2-2 | 434876.952 | -      | 1261035.412 | 0.002  | 36.298 | -0.002 | 8/1/2023 11:49 | 8/1/2023 11:49 |
| Boundary2-3 | 434876.952 | -0.001 | 1261035.411 | -0.001 | 36.3   | 0.001  | 8/1/2023 11:49 | 8/1/2023 11:49 |
|             | Mean       | 0      |             | 0      |        | 0      |                |                |
|             | Max        | 0.004  |             | 0.002  |        | 0.005  |                |                |

Boundary Survey Results at Phnum Sruoch

### **III. Using Khmer GEONET**

| ← → C 😁 khmergeo                              | net.xyz                 |                                            |                                | Khm                                                               | er GEC        | DNET data u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | used                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------|-------------------------|--------------------------------------------|--------------------------------|-------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                         | The free trial will be ex                  | tended till 25th June          | 2024, please r                                                    | register now  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | KHMER GEONE             | Т <u>НОМЕ</u>                              | REGISTRATION                   | SERVICES                                                          | LOGIN         | FAQ MORE Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ANNOUNCEMENT                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               |                         |                                            |                                | Sil.                                                              |               | and the second se | And in case of the local division of the | and the second sec |
| Khmer GEONET                                  |                         |                                            | Khmer GE                       | ONET                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • Home                                        | Create Account          | > <u>Home</u> > Login                      | L                              | ogin                                                              | n             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Sensor Map</li> <li>Login</li> </ul> | Register a new account: | <ul> <li>Sensor</li> </ul>                 | <ul> <li>Sensor Map</li> </ul> |                                                                   |               | Loain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Register     External Links                   | Ре                      | <ul> <li>Login</li> <li>Registe</li> </ul> | r P                            | Please enter your organization, user name and password to log in: |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | word to log in:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>MLMUPC</li> </ul>                    | First Name:             | External Links     MLMUPC                  |                                |                                                                   | Organization: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | Last Name:              |                                            |                                |                                                                   |               | User Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | Address:                |                                            |                                |                                                                   | Password:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               |                         |                                            |                                |                                                                   | Rememb        | Remember me next time got your password? Login                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               |                         |                                            |                                |                                                                   | orgot your    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | Zip Code:               |                                            |                                |                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                               | City:                   |                                            | IP address Port                |                                                                   |               | XXX.XXX.XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XX.XXX                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | District:               |                                            |                                |                                                                   |               | XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | Country:                |                                            | Mou                            | nt point                                                          | t             | BRS & VRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | E-Mail:                 |                                            |                                |                                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               |                         | Separate multiple e-mails by ","           | Use                            | r name                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | Additional E-Mail:      |                                            |                                |                                                                   |               | 29 07 2023 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 05 08 2023                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | Phone Number Home:      |                                            | <b>Perio</b>                   | od of us                                                          | e             | 13 08 2023 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 29 09 2023                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                               | Phone Number Business:  |                                            | RT                             | (/ Post                                                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | Phone Number Mobile:    | [                                          | proc                           | essing                                                            |               | KIK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | Language:               | <none default=""></none>                   | Sa Sa Sa                       | tellite<br>ns used                                                |               | GPS/GLONAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS/BeiDou/Gali                           | ileo/QZSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                               |                         | INI                                        | CAMDO                          | DIA                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### **Problems occurred and solutions**

- No major problems were encountered with the Khmer GEONET network during the pilot project.
- No other related activities were performed during the pilot project.
- Based on the testing that we conducted, there are no outstanding issues to be resolved.



Good points using KhmerGEONET: Based on the work conducted for this demonstration project would note the following positive points;

1. NRTK networks are more reliable than single base station networks, because even if a single station is offline, a correction signal can still be broadcast to rovers in that area.

2. NRTK networks are more accurate than single base solutions, particularly in their ability to model errors caused by ionospheric activity.

3. Khmer GEONET produces, precise, reliable network corrections that users can trust.

4. Khmer GEONET is based on open standards, meaning that all makes and models of GNSS rover receiver are supported, allowing access by a larger user base.

### Good points using KhmerGEONET:

5. The availability Khmer GEONET will reduce the cost and complexity for organizations who would otherwise have to operate their own base station. This will mean the wider adoption of GNSS positioning technologies over older surveying methods.

6. Khmer GEONET is based on an official, robust calculation of station

coordinates, meaning that accuracy will be achieved and there will be a

consistency between positioning by different organizations.

7. Khmer GEONET has proven to have a higher availability (uptime) than other base station infrastructure. This will mean that works can be completed in less time and for a lower cost.

### Good points using KhmerGEONET:

8. The availability of static data for download from Khmer GEONET is of great benefit for survey and engineering projects who need to establish control points on site.

9. Khmer GEONET has a large, active community and support is available to users who are learning the system or experiencing problems.

10. Khmer GEONET opens the possibility, for the first time, applications beyond land survey, including land and water navigation, precision agriculture, self-driving transportation to name a few.

### **IV. Recommendation**

We would request the following points for improvement;

- 1. Increased coverage in the country of Khmer GEONET
- 2. Guidance for users on the impact of ionospheric activity on survey accuracy, especially leading up to the solar maximum in July 2025.
- 3. Communication of periods of periods of highest solar activity on a daily basis
- 4. Practical guidance on how to manage/mitigate the impact on solar activity in the context of cadastral survey.

### V. Conclusion

In conclusion, the results of the pilot project indicate that Khmer GEONET, with 5 stations is already providing a robust, reliable and acute correction to rovers in the field, operating under typical conditions.

With the expansion of the network to 99 stations, this reliability and robustness can be expected to increase, particularly in terms of redundancy and also for **Trimble Pivot** to model geometric error, the non-linear errors in the network and ionopheric error will consider how that might be impacting rover performance.

# សូមអរគុណ



# **Report of JICA Pilot Project**

# (Utilize Khmer GEONET data in the construction project)

June 5 2024

IKEE PAVING SYSTEMS TOPCON CORPORATION

## JICA · Khmer GEONET Pilot project (Construction) in Cambodia

### **Project Overview**

- In this project, it was decided to evaluate the accuracy and workability of the conventional survey method for civil engineering construction and GNSS-based surveying using 3 cases.
- 1: Comparisons between Local RTK and N-RTK surveys (used Khmer GEONET)
- 2: Comparisons between the conventional survey (level survey) and GNSS survey (RTK survey by mmGPS)
- 3: Comparisons between Static survey and N-RTK(used Khmer GEONET)











The IPS was Established in 2015 (In Cambodia)

### > VISION

Our construction company envisions pioneering innovation, sustainability, and efficiency in a developed country. Through cutting-edge technology, green practices, and a commitment to safety and quality, we aim to lead the industry while contributing to urban development and economic growth.

#### > Service:

- Road Work Service and Consultation
- Road and Pavement Construction
- Road Stabilize Method Using Special Emulsion



✤ Machinery Rental

Η ΤΟΡΟΟΛ






REE PAVING SYSTEMS

1: Comparisons between Local RTK and N-RTK surveys (used Khmer GEONET)

 It was decided to compare Local RTK and N-RTK (used Khmer GEONET) surveys using the First order Grand Control Point "KAND" located in Ta Khmau City, about 10 km south of Phnom Penh.

• RTK base point was established at the First order Grand Control Point KAND. Observation was performed at 5 points at a football pitch near the base point. The observation was performed by switching between Local RTK and N-RTK. (used Khmer GEONET)



1: Comparisons between Local RTK and N-RTK surveys (used Khmer GEONET)

### <u>Result</u>

|       |       |             |            |        | RTK vs N-RTK  |        |        |
|-------|-------|-------------|------------|--------|---------------|--------|--------|
|       |       | Х           | Y          | Н      | $\triangle X$ | ΔY     | ΔH     |
|       | CP01  | 1269085.567 | 494369.84  | -3.754 | 0.013         | -0.009 | -0.057 |
|       | CP02  | 1269100.714 | 494369.331 | -3.763 | 0.018         | 0.013  | -0.013 |
| RTK   | CP03  | 1269122.901 | 494369.271 | -3.68  | 0.014         | -0.003 | -0.004 |
|       | CP04  | 1269070.061 | 494369.286 | -3.77  | 0.012         | 0.002  | -0.056 |
|       | CP 05 | 1269047.824 | 494369.401 | -3.818 | 0.005         | 0.004  | -0.062 |
|       | CP01  | 1269085.554 | 494369.849 | -3.697 |               |        |        |
|       | CP02  | 1269100.696 | 494369.318 | -3.75  |               |        |        |
| N-RTK | CP03  | 1269122.887 | 494369.274 | -3.676 |               |        |        |
|       | CP04  | 1269070.049 | 494369.284 | -3.714 |               |        |        |
|       | CP05  | 1269047.819 | 494369.397 | -3.756 |               |        |        |

⇒The average differences in accuracy between Local RTK survey using the locally established Grand Control Points and N-RTK survey (used Khmer GEONET) were 1.2 cm for X, 0.2 cm for Y, and -3.8 cm for H.





IKEE PAVING SYSTEMS

1: Comparisons between Local RTK and N-RTK surveys (used Khmer GEONET)

• N-RTK survey (used Khmer GEONET) requires 20 minutes for observation, compared to 100 minutes for RTK survey, resulting in a 500% increase in productivity.

• N-RTK survey (used Khmer GEONET) requires 2 workers (or man-hours), compared to 3 for the RTK survey, resulting in a 150% increase in productivity.



|       | Look for & go to GCP | Set up base | Preparation of survey | surveying time | Number of Surveying staff | Working productivity |
|-------|----------------------|-------------|-----------------------|----------------|---------------------------|----------------------|
| N-RTK | Omins                | 0mons       | 5mins                 | 15mins         | 2 persons                 | $\odot$              |
| RTK   | 60mins               | 20mins      | 5mins                 | 15mins         | 3 persons                 | 0                    |

Reference of the second second

- 2: Comparisons between the conventional survey (level survey) and GNSS survey (RTK survey by mmGPS)
- Measurement site used for the selection of measurement areas were the JICA National Road No. 5
   Improvement Project (in Phum Puk Chhma district in the suburbs of Battambang City).
- It was made to calculate coordinates of Grand Control Point (1 point) for base station of RTK survey and Grand Control Points (2 points) for set up laser transmitter by conducting Static survey at the site.



2: Comparisons between the conventional survey (level survey) and GNSS survey (RTK survey by mmGPS)

- The cross-sections were provided with a pitch of 10 meters. Measurements were performed at 6 points per crosssection.
- Measurements were performed twice on the road surface previous and after the paved area. The pavement thickness was calculated from the height data.
- After measuring with the conventional method (level survey), the same point was measured with RTK (mmGPS) method.



- Observation points for each cross-section
- E1: A point 1.5 m from the center on the cross-section
- E2: A point 2.35 m from the center on the cross-section
- E3: A point 4.4 m from the center on the cross-section
- E4: A point 5.75 m from the center on the cross-section
- E5: A point 7.75 m from the center on the cross-section
- E6: A point 9.0 m from the center on the cross-section





8

## 2: Comparisons between the conventional survey (level survey) and GNSS survey (RTK survey by mmGPS)

### <u>Result</u>

Unit : m

| STATION/Survey | E1                                    |                                    | E2                                        |                                       | E3                                    |                                           | 5.                                    |                                       | E4                                        |   | E5      |                                       | E6                                    |                                           |                                       |                                       |                                           |                                       |                                       |                                           |
|----------------|---------------------------------------|------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|---|---------|---------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|
| Result         | Paving<br>thickness<br>(Level)<br>(m) | Paving thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) | Paving<br>thickness<br>(Level)<br>(m) | Paving<br>thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) | Paving<br>thickness<br>(Level)<br>(m) | Paving<br>thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) | 5 | Result  | Paving<br>thickness<br>(Level)<br>(m) | Paving<br>thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) | Paving<br>thickness<br>(Level)<br>(m) | Paving<br>thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) | Paving<br>thickness<br>(Level)<br>(m) | Paving<br>thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) |
| 281+820        | 0.053                                 | 0.051                              | 0.045                                     | 0.053                                 | 0.052                                 | 0.045                                     | 0.057                                 | 0.055                                 | 0.045                                     |   | 281+820 | 0.058                                 | 0.053                                 | 0.045                                     | 0.062                                 | 0.051                                 | 0.045                                     | 0.052                                 | 0.064                                 | 0.045                                     |
| 281+830        | 0.057                                 | 0.049                              | 0.045                                     | 0.059                                 | 0.051                                 | 0.045                                     | 0.063                                 | 0.051                                 | 0.045                                     |   | 281+830 | 0.063                                 | 0.052                                 | 0.045                                     | 0.053                                 | 0.055                                 | 0.045                                     | 0.062                                 | 0.059                                 | 0.045                                     |
| 281+840        | 0.061                                 | 0.049                              | 0.045                                     | 0.055                                 | 0.052                                 | 0.045                                     | 0.061                                 | 0.056                                 | 0.045                                     |   | 281+840 | 0.061                                 | 0.056                                 | 0.045                                     | 0.059                                 | 0.054                                 | 0.045                                     | 0.062                                 | 0.059                                 | 0.045                                     |
| 281+850        | 0.054                                 | 0.046                              | 0.045                                     | 0.063                                 | 0.052                                 | 0.045                                     | 0.066                                 | 0.055                                 | 0.045                                     |   | 281+850 | 0.059                                 | 0.051                                 | 0.045                                     | 0.053                                 | 0.046                                 | 0.045                                     | 0.045                                 | 0.045                                 | 0.045                                     |
| 281+860        | 0.059                                 | 0.045                              | 0.045                                     | 0.063                                 | 0.052                                 | 0.045                                     | 0.064                                 | 0.056                                 | 0.045                                     |   | 281+860 | 0.061                                 | 0.057                                 | 0.045                                     | 0.053                                 | 0.050                                 | 0.045                                     | 0.052                                 | 0.051                                 | 0.045                                     |
| 281+870        | 0.058                                 | 0.053                              | 0.045                                     | 0.063                                 | 0.059                                 | 0.045                                     | 0.065                                 | 0.058                                 | 0.045                                     |   | 281+870 | 0.066                                 | 0.059                                 | 0.045                                     | 0.060                                 | 0.060                                 | 0.045                                     | 0.055                                 | 0.054                                 | 0.045                                     |
| 281+880        | 0.051                                 | 0.052                              | 0.045                                     | 0.058                                 | 0.055                                 | 0.045                                     | 0.061                                 | 0.058                                 | 0.045                                     |   | 281+880 | 0.069                                 | 0.060                                 | 0.045                                     | 0.053                                 | 0.055                                 | 0.045                                     | 0.056                                 | 0.058                                 | 0.045                                     |
| 281+890        | 0.045                                 | 0.054                              | 0.045                                     | 0.054                                 | 0.056                                 | 0.045                                     | 0.055                                 | 0.058                                 | 0.045                                     |   | 281+890 | 0.056                                 | 0.059                                 | 0.045                                     | 0.054                                 | 0.054                                 | 0.045                                     | 0.061                                 | 0.063                                 | 0.045                                     |
| 281+900        | 0.049                                 | 0.053                              | 0.045                                     | 0.053                                 | 0.052                                 | 0.045                                     | 0.051                                 | 0.054                                 | 0.045                                     |   | 281+900 | 0.052                                 | 0.054                                 | 0.045                                     | 0.051                                 | 0.048                                 | 0.045                                     | 0.066                                 | 0.062                                 | 0.045                                     |
| 281+910        | 0.052                                 | 0.057                              | 0.045                                     | 0.056                                 | 0.062                                 | 0.045                                     | 0.050                                 | 0.059                                 | 0.045                                     |   | 281+910 | 0.054                                 | 0.059                                 | 0.045                                     | 0.054                                 | 0.060                                 | 0.045                                     | 0.051                                 | 0.060                                 | 0.045                                     |
| 281+920        | 0.051                                 | 0.060                              | 0.045                                     | 0.056                                 | 0.060                                 | 0.045                                     | 0.050                                 | 0.058                                 | 0.045                                     |   | 281+920 | 0.052                                 | 0.055                                 | 0.045                                     | 0.049                                 | 0.056                                 | 0.045                                     | 0.054                                 | 0.064                                 | 0.045                                     |

⇒ The average observation difference of 66 observation points on all 11 cross-sections in the evaluation area was  $\pm 4$  mm in accuracy, so it can be used for normal surveying even with GNSS survey method (mmGPS).

2: Comparisons between the conventional survey (level survey) and GNSS survey (RTK survey by mmGPS)

- The level survey requires 7 minutes for installation, compared to 20 for the RTK survey, resulting in a 35% decrease in productivity.
- Both the level survey and RTK survey require 5 minutes for observation per section, resulting in equivalent productivity, or 100%.
- The level survey requires 5 workers, compared to 2 for the RTK survey, resulting in a 250% increase in productivity.



|              | See Bsck sight | Set up base | Preparation of survey | surveying time(1 cross section) | Number of Surveying staff | Working productivity |
|--------------|----------------|-------------|-----------------------|---------------------------------|---------------------------|----------------------|
| Level Survey | 2mins          | Omins       | 5mins                 | 5mins                           | 5 persons                 | 0                    |
| RTK(mmGPS)   | 0mins          | 20mins      | 5mins                 | 5mins                           | 2 persons                 | $\bigcirc$           |

### **Conclusion**

 It was understood that the use of N-RTK surveying using Khmer GEONET in the construction field is a highly productive surveying method that ensures the same level of measurement accuracy as conventional methods.

 With the expansion of the Khmer GEONET CORS network in Cambodia, anyone can use N-RTK anytime, anywhere, and we believe that the use of N-RTK will expand not only in the construction field, but also in the agriculture, transportation, and automobile applications!

## # TOPCON



Thank you very much for your attention. អរគុណច្រើនសម្រាប់ការយកចិត្តទុកដាក់របស់អ្នក។.







Provided from IKEE OAVING SYSTEMS, open ceremony of National road No.5



## Khmer GEONET

## **Demonstration Project**

(Agri-Sector)

## Feb-Aug2023

JC Agricultural Cooperatives Co., Ltd.

#### Chaffe II DODOWNER er negrisses toorbigt geven als plinterers schulge anter privation corrections avalgence: 010 545 498 / 068 514 799 086 805 247 / 078 298 345

JCAC was founded for supporting local farmers in Cambodia, providing machinery service and smart-agri-solution.

Add: #21, Dang Kao Teab Village, Tul Ta Ek Sangkat, Battambang City, Battambang Province.

## About US\_JC Agricultural Cooperatives

### About Company

JC Agricultural cooperative co., Ltd.(JCAC) was registration since 21-November-2016

llangie milijaneges Sunnynge



standering and stranger STREET CONTRACTOR IN In an and the state of the stat

TEN OWNER

## **Our Scope\_ Location of project**





## **Finding local farmers to collaborate**



|   |                   | <b>A</b>                                                | Distt   |        |         |
|---|-------------------|---------------------------------------------------------|---------|--------|---------|
| N | Customer Name     | Customer Address                                        | Range   | Actual | Farm HA |
| 1 | Mr.Sat Saem       | Tropangron Village, Ampil Commune ,SPR city.            | 5km     | 5.82km | 1.5     |
| 2 | Ms.Khoeun Samnang | Trobangron Village, Ampil Commune ,SPR city.            | 5km     | 5km    | 1.5     |
| 3 | Mr.Tol            | Donnum Village ,Mean Chey commune Bakong district ,SRP. | 10-15km | 13km   | 1       |
| 4 | Mr.Orl            | Donnum Village ,Mean Chey commune Bakong district ,SRP. | 10-15km | 13km   | 2       |
| 5 | Ms.Nhaoch         | Donnum Village ,Mean Chey commune Bakong district ,SRP. | 10-15km | 13km   | 1       |
| 6 | Mr.Chea           | Lvea Village Tropangthom commune Bakong district ,SRP   | 17-20km | 17km   | 2       |
| 7 | Mr.Vanndy         | Lvea Village Tropangthom commune Bakong district ,SRP   | 17-20km | 17km   | 1       |
| 8 | Mr.Than           | Lvea Village Tropangthom commune Bakong district ,SRP   | 17-20km | 17km   | 1       |







Copyright © 2008 JC Holdings Co., ltd. All rights reserved.

## **Machineries used for demonstration**

### DJI AgrasT10



- Drone for spraying chemicals/fertilizer from above the farmland
- Sprayed free for local farmers who collaborate with us for this project

### DJI Phantom4 RTK

JC Group



- Drone for taking pictures
- Flight for standard deviation analysis

## **Spray Drone Flight**

















## **Difference between RTK and GNSS**

### Landing by RTK Flight



### Landing by GNSS Flight

Q

JC Group



## **KUMIKI** for standard deviation analysis





3D survey service, Kumiki



Survey assisting tool to automatically process any types of terrain data



Note : Now introducing in Cambodia supported by JICA Project





| Distance | Coordinate | Standard Deviation (m) |         |            |  |  |  |
|----------|------------|------------------------|---------|------------|--|--|--|
| fromCORS |            | RTK                    | Non-RTK | Difference |  |  |  |
|          | х          | 0.064                  | 0.240   | -0.176     |  |  |  |
| 12km     | у          | 0.032                  | 0.315   | -0.283     |  |  |  |
|          | z          | 0.021                  | 0.292   | -0.271     |  |  |  |
|          | х          | 0.075                  | 0.369   | -0.294     |  |  |  |
| 17km     | у          | 0.102                  | 0.301   | -0.199     |  |  |  |
|          | Z          | 0.410                  | 0.299   | 0.111      |  |  |  |

Drone Flight under KhmerGEONET showed more accurate result than GNSS



- RTK flight under Khmer GEONET shows more accuracy in coordinate information than GNSS(No-RTK) flight
- In Current operation custom, flight of spray-drone does not necessarily require accurate coordinate information
- But in the future, various "Smart-Agri-Solutions" which require accurate coordinate information will be introduced in Cambodia, and Khmer GEONET must be the necessary IT infrastructure
  - Self-drive/drive assistant service of tractor and harvester
  - Irrigation system with auto-water-adjusting function

## Khmer GEONET Data Used



| IP address        | cgd09.khmergeonet.xyz                  |
|-------------------|----------------------------------------|
| Port⇔             | 2101↩                                  |
| Mount point       | RRS_RTCM32                             |
| User name⇔        | JCG↩                                   |
|                   | 16-Mar-2023 - 28-Mar-2023∉             |
| Period of use⇔    | 11-April-2023– 24-May-2023∉            |
|                   | 14-June-2023– 25-July-2023             |
| RTK/ Post         |                                        |
| processing        |                                        |
| Satellite systems | GPS, BeiDou, GLONASS, Gallileo         |
| used↩             | (picture of drone controller as below) |





# Thank you for kind attention

**Project on Establishment of Continuously Operating Reference Station (CORS) for Land Management** and Infrastructure Development

#### PLANNING PAPER OF THE DEMONSTRATION PROJECT FOR **JICA PILOT PROJECT**





Assessment for the Efficiency and Accuracy of Khmer GEONET CORS **Application for Flood Inundation Study in Siem Reap Town** 



### **CONTENT:**

#### I. BACKGROUND

- ABOUT US
- OBJECTIVE OF THE PROJECT

### **II. METHOD AND TOOLS**

- STATIC SURVEY
- REAL TIME KENAMATIC SURVEY (RTK)
- DRONE SURVEY

### **III. FINDING AND DISCUSSION**

- COMPARISION RESULT FROM KHMER GEONET VS NATIONAL BM ZERO GRADE
- EFFICIENCY OF USING KHMER GEONET

#### **IV. APPLICATION FOR FLOOD INUNDATION STUDY IN SIEM REAP CITY**

#### **V. CONCLUSION**



### I. BACKGROUND

#### ABOUT US:

KEY CONSULTANTS (CAMBODIA) Ltd. is a Cambodian consulting firm with over 20 years of experience. KCC offers a wide range of services including Water Sanitation & Environment, **Topography and GIS**, Urban Planning and Design, Water Resources and Rural Infrastructure, and Social Economic and Institutional Development. Our team of professionals aims to provide clients with cost-effective solutions.



### I. BACKGROUND

#### OBJECTIVE OF THE PROJECT

#### The study was aimed:

- (i) To compare the advantages of using a CORS-connected unmanned aerial vehicle (UAV) versus the National BM zero-order control
- (ii) To compare the coordinate data obtained from KHMER GEONET CORS SIE-1 and the coordinate data obtained from the National BM zero-order control and
- (iii) To use the Digital Elevation Model (DEM) as the product from the CORS for flood study.



### I. BACKGROUND

#### OBJECTIVE OF THE PROJECT

#### The study was aimed:

- (i) To compare the advantages of using a CORS-connected unmanned aerial vehicle (UAV) versus the National BM zero-order control
- (ii) To compare the coordinate data obtained from KHMER GEONET CORS SIE-1 and the coordinate data obtained from the National BM zero-order control and
- (iii) To use the Digital Elevation Model (DEM) as the product from the CORS for flood study.





#### STATIC SURVEY

- Both of KHMER GOENET CORS SIE-1
  and National BM Zero-order were used
  as Static Reference points
- (ii) Five Ground Check Points were measured by using Static Survey and RTK Survey in order to compare the result from both Reference Stations.





#### STATIC SURVEY



#### REAL TIME KENAMATIC SURVEY (RTK)

- Several brands of GNSS rovers were used to connect to Khmer Geonet Cors such as CHC-i90, Sokkia GRX-3
- (ii) The measurement was performed along river bank and river bed of the Siem Reap river in order to get coordinate and elevation of points of interest.



#### DRONE SURVEY

- Multi Rotor Drone (DJI M300 RTK) was used to conduct aerial photogrammetry with two different references (Khmer GEONET and National BM zero-order)
- (ii) Pix4D Mapper software was assisted for images mosaic and DTM generation.
- (iii) Coordinate of Ground Check Points
  were extracted from both Orthophoto
  images data set to compare its
  accuracy.



#### DRONE SURVEY

- Multi Rotor Drone (DJI M300 RTK) was used to conduct aerial photogrammetry with two different references (Khmer GEONET and National BM zero-order)
- (ii) Pix4D Mapper software was assisted for images mosaic and DTM generation.
- (iii) Coordinate of Ground Check Points
  were extracted from both Orthophoto
  images data set to compare its accuracy
  from GIS software.









#### CONDUCTED MEASUREMENT

Five data set (N, E, Z) of ground check points were acquired from different method of measurement

- Static Survey (Ref. point Khmer Geonet Cors)
- Static Survey (Ref. National BM Zero-Order)
- RTK ( Ref. point Khmer Geonet Cors)
- Extracted from orthophoto image (Ref.point Khmer Geonet)
- Extracted from orthophoto image (Ref.point National BM Zero-order)



### TABLE-1 COORDINATE DATA FROM STATIC SURVEY (REF. BM ZERO-ORDER)

|       | STATIC SURVEY (RE | F.BM ZERO-ORDER) |              |
|-------|-------------------|------------------|--------------|
| name  | Northing          | Easting          | Ellip height |
| CHK-1 | 1477721.979       | 376231.393       | -5.2034      |
| CHK-2 | 1477455.407       | 376772.368       | -4.9582      |
| СНК-З | 1476967.918       | 376278.781       | -5.5722      |
| CHK-4 | 1476066.983       | 375596.223       | -6.1195      |
| CHK-5 | 1475865.337       | 376147.175       | -6.8843      |

### TABLE-3 COORDINATE DATA FROM RTK SURVEY (REF. KHMER GEONET CORS SIE-1)

|       | RTK SURVEY ( KHMER | GEONET CORS SIE-1 | )            |
|-------|--------------------|-------------------|--------------|
| name  | Northing           | Easting           | Ellip height |
| CHK-1 | 1477721.990        | 376231.398        | -4.979       |
| CHK-2 | 1477455.439        | 376772.371        | -4.665       |
| CHK-3 | 1476067.006        | 375596.201        | -5.857       |
| CHK-4 | 1476967.935        | 376278.778        | -5.310       |
| CHK-5 | 1475865.332        | 376147.174        | -6.627       |
|       | 000                |                   |              |

### TABLE-2 COORDINATE DATA FROM STATIC SURVEY (REF. KHMER GEONET CORS SIE-1)

| STATIC SURVEY (KHMER GEONET CORS SIE-1) |             |            |              |  |  |  |  |
|-----------------------------------------|-------------|------------|--------------|--|--|--|--|
| name                                    | Northing    | Easting    | Ellip height |  |  |  |  |
| CHK-1                                   | 1477721.996 | 376231.396 | -4.967       |  |  |  |  |
| CHK-2                                   | 1477455.425 | 376772.369 | -4.569       |  |  |  |  |
| CHK-3                                   | 1476967.938 | 376278.784 | -5.195       |  |  |  |  |
| CHK-4                                   | 1476067.005 | 375596.228 | -5.886       |  |  |  |  |
| CHK-5                                   | 1475865.360 | 376147.178 | -6.498       |  |  |  |  |

#### TABLE-4 COORDINATE DATA EXTRACTED FROM DRONE IMAGERY (REF. BM ZERO-ORDER)

| EXTRACTED FROM DRONE IMAGERY (REF. BM ZERO-ORDER) |             |            |              |  |  |  |  |
|---------------------------------------------------|-------------|------------|--------------|--|--|--|--|
| name                                              | Northing    | Easting    | raster value |  |  |  |  |
| CHK-1                                             | 1477721.959 | 376231.321 | -5.081       |  |  |  |  |
| CHK-2                                             | 1477455.464 | 376772.432 | -4.794       |  |  |  |  |
| СНК-3                                             | 1476967.925 | 376278.767 | -5.408       |  |  |  |  |
| CHK-4                                             | 1475865.404 | 376147.216 | -6.647       |  |  |  |  |
| CHK-5                                             | 1476067.017 | 375596.192 | -5.895       |  |  |  |  |
|                                                   |             |            |              |  |  |  |  |

#### TABLE-5 COORDINATE DATA EXTRACTED FROM DRONE IMAGERY (REF. KHMER GEONET CORS SIE-1)

| EXTRACTED FROM DRONE IMAGERY (KHMER GEONET CORS SIE-1) |             |            |              |  |  |  |  |
|--------------------------------------------------------|-------------|------------|--------------|--|--|--|--|
| name                                                   | Northing    | Easting    | raster value |  |  |  |  |
| CHK-1                                                  | 1477721.970 | 376231.355 | -4.755       |  |  |  |  |
| CHK-2                                                  | 1477455.450 | 376772.381 | -4.452       |  |  |  |  |
| CHK-3                                                  | 1476967.948 | 376278.736 | -5.100       |  |  |  |  |
| CHK-4                                                  | 1475865.405 | 376147.184 | -6.302       |  |  |  |  |
| CHK-5                                                  | 1476066.991 | 375596.204 | -5.613       |  |  |  |  |

#### DISCUSSION:

(i) Using Statistical analysis to find out the accuracy of the measurement from the above five different methods.

| ABLE-6 CC | ORDINATE CHEC | K POINT FROM FIV | 'E DIFFERENT MET | HOD           |
|-----------|---------------|------------------|------------------|---------------|
| Point     | Method        | Northing         | Easting          | Ellip. Height |
| CHK-1     | 1             | 1477721.979      | 376231.393       | -5.203        |
|           | 2             | 1477721.996      | 376231.396       | -4.967        |
|           | 3             | 1477721.990      | 376231.398       | -4.979        |
|           | 4             | 1477721.959      | 376231.321       | -5.081        |
|           | 5             | 1477721.970      | 376231.355       | -4.755        |
|           | 1             | 1477455.407      | 376772.368       | -4.958        |
|           | 2             | 1477455.425      | 376772.369       | -4.569        |
| CHK-2     | 3             | 1477455.439      | 376772.371       | -4.665        |
|           | 4             | 1477455.464      | 376772.432       | -4.794        |
|           | 5             | 1477455.450      | 376772.381       | -4.452        |
| СНК-З     | 1             | 1476967.918      | 376278.781       | -5.572        |
|           | 2             | 1476967.938      | 376278.784       | -5.195        |
|           | 3             | 1476967.935      | 376278.778       | -5.310        |
|           | 4             | 1476967.925      | 376278.767       | -5.408        |
|           | 5             | 1476967.948      | 376278.736       | -5.100        |
| СНК-4     | 1             | 1476066.983      | 375596.223       | -6.120        |
|           | 2             | 1476067.005      | 375596.228       | -5.886        |
|           | 3             | 1476067.006      | 375596.201       | -5.857        |
|           | 4             | 1476067.017      | 375596.192       | -5.895        |
|           | 5             | 1476066.991      | 375596.204       | -6.302        |
| СНК-5     | 1             | 1475865.337      | 376147.175       | -6.884        |
|           | 2             | 1475865.360      | 376147.178       | -6.498        |
|           | 3             | 1475865.332      | 376147.174       | -6.627        |
|           | 4             | 1475865.404      | 376147.216       | -6.647        |
|           | 5             | 1475865.405      | 376147.184       | -6.302        |
|           |               |                  |                  |               |
TABLE-7 STATISTICAL ANALSIS FOR CHECK POINT-1 FROM FIVE DIFFERENT METHOD

| DISCUSSION: |  |
|-------------|--|
|-------------|--|

 (i) Using Statistical analysis to find out the accuracy of the measurement from the above five different methods.

| METHOD                   | Diff N                                                             | Diff E                                                                                                                                                                                                                                                                              | RMSE_N                                                                                                                                                                                                                                                                                                                                                                                                                                   | RMSE_E                                                                                                                                                                                                                                                                    |
|--------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method-1                 | 0.000061999774                                                     | 0.020398799970                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                           |
| Method-2                 | 0.017261999892                                                     | 0.023498800001                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                           |
| Method-3                 | 0.011261999840                                                     | 0.025498799980                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                           |
| Method-4                 | 0.019398000091                                                     | 0.051960200013                                                                                                                                                                                                                                                                      | 0 013308004                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.030405187                                                                                                                                                                                                                                                               |
| Method-5                 | 0.009188000113                                                     | 0.017436199996                                                                                                                                                                                                                                                                      | 0.013300004                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                           |
| Лean                     |                                                                    | 0.00000000012                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                           |
| tandar Deviation of Diff |                                                                    | 0.033994032189                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                           |
|                          | 0.00000020995                                                      | 0.00000000766                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                           |
|                          | 0.920438638322                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                           |
|                          | METHOD<br>Method-1<br>Method-2<br>Method-3<br>Method-4<br>Method-5 | METHOD      Diff N        Method-1      0.000061999774        Method-2      0.017261999892        Method-3      0.011261999840        Method-4      0.019398000091        Method-5      0.009188000113        Method-5      0.014878801012        0.00000020995      0.920438638322 | METHOD      Diff N      Diff E        Method-1      0.000061999774      0.020398799970        Method-2      0.017261999892      0.023498800001        Method-3      0.011261999840      0.025498799980        Method-4      0.019398000911      0.051960200013        Method-5      0.009188000113      0.017436199996        Method-5      0.014878801012      0.033994032189        0.020000020995      0.0000000766      0.0000000766 | METHODDiff NDiff ERMSE_NMethod-10.0000619997740.0239879970Method-20.0172619998920.02349880001Method-30.0112619998400.02549879980Method-40.019398000910.05196020013Method-50.009188001130.01743619996Method-50.0148788010120.033994032189Method-50.000000209950.0000000766 |

TABLE-8 STATISTICAL ANALSIS FOR CHECK POINT-2 FROM FIVE DIFFERENT METHOD

| Point                                                     | METHOD   | Diff N         | Diff E         | RMSE_N      | RMSE_E      |
|-----------------------------------------------------------|----------|----------------|----------------|-------------|-------------|
|                                                           | Method-1 | 0.029908000259 | 0.015980400029 |             |             |
| CHK-2                                                     | Method-2 | 0.012008000165 | 0.015380400000 |             |             |
|                                                           | Method-3 | 0.001991999801 | 0.013380400022 |             |             |
|                                                           | Method-4 | 0.026651999680 | 0.047982599994 |             |             |
| CHK-2<br>lean<br>andar Deviation of Diff<br>aired T-Tests | Method-5 | 0.013271999778 | 0.003241400002 | 0.019642422 | 0.024428678 |
| Vean                                                      |          | 0.00000000233  | 0.00000000012  |             |             |
| Standar Deviation of Diff                                 |          | 0.021960895222 | 0.027312092423 |             |             |
| Paired T-Tests                                            |          | 0.00000023707  | 0.00000000953  |             |             |
| Correlation Analysis                                      |          | 0.880174441809 |                |             |             |
|                                                           |          |                |                |             |             |

#### DISCUSSION:

 Using Statistical analysis to find out the accuracy of the measurement from the above five different methods.

| Point                     | METHOD   | Diff N                  | Diff E                 | RMSE_N          | RMSE_E      |  |
|---------------------------|----------|-------------------------|------------------------|-----------------|-------------|--|
|                           | Method-1 | 0.014926000033          | 0.012068200042         |                 |             |  |
|                           | Method-2 | 0.005274000112          | 0.014868200000         |                 |             |  |
| СНК-З                     | Method-3 | 0.002274000086          | 6 0.008868200006       |                 |             |  |
|                           | Method-4 | 0.008085999871          | 0.002300799999         |                 |             |  |
|                           | Method-5 | 0.015463999938          | 0.033503799990         | 0.010585748     | 0.017737802 |  |
| Mean                      |          | 0.00000000047           | 0.00000000012          |                 |             |  |
| itandar Deviation of Diff |          | 0.011835226218          | 0.019831465461         |                 |             |  |
| Paired T-Tests            |          | 0.00000008798           | 0.00000001313          |                 |             |  |
| Correlation Analysis      |          | 0.918899458717          |                        |                 |             |  |
| TABLE-10                  |          | TISTICAL ANALSIS FOR CH | IECK POINT-4 FROM FIVE | DIFFERENT METHO | D           |  |
| Point                     | METHOD   | Diff N                  | Diff E                 | RMSE_N          | RMSE_E      |  |
|                           | Method-1 | 0.017786000157          | 0.013580399973         |                 |             |  |
|                           | Method-2 | 0.004613999743          | 0.018180399959         |                 |             |  |
|                           |          |                         |                        |                 |             |  |

#### TABLE-9 STATISTICAL ANALSIS FOR CHECK POINT-3 FROM FIVE DIFFERENT METHOD

| Point                                               | METHOD   | Diff N         | Diff E         | RMSE_N      | RMSE_E      |  |
|-----------------------------------------------------|----------|----------------|----------------|-------------|-------------|--|
|                                                     | Method-1 | 0.017786000157 | 0.013580399973 |             |             |  |
|                                                     | Method-2 | 0.004613999743 | 0.018180399959 |             |             |  |
| СНК-4                                               | Method-3 | 0.005613999907 | 0.008819600043 |             |             |  |
|                                                     | Method-4 | 0.016963999951 | 0.017325600027 | 0.012200815 | 0.013597433 |  |
|                                                     | Method-5 | 0.009406000143 | 0.005615600036 | 0.012209815 |             |  |
| Mean<br>Standar Deviation of Diff<br>Paired T-Tests |          | 0.00000000140  | 0.00000000035  |             |             |  |
|                                                     |          | 0.013650988272 | 0.015202392337 |             |             |  |
|                                                     |          | 0.00000022883  | 0.00000005137  |             |             |  |
|                                                     |          |                |                |             |             |  |

#### DISCUSSION:

 (i) Using Statistical analysis to find out the accuracy of the measurement from the above five different methods.

| Point                             | METHOD   | Diff N         | Diff E         | RMSE_N      | RMSE_E      |
|-----------------------------------|----------|----------------|----------------|-------------|-------------|
|                                   | Method-1 | 0.030537999934 | 0.010540199932 |             |             |
|                                   | Method-2 | 0.007437999826 | 0.007240199891 |             |             |
| CHK-5                             | Method-3 | 0.035437999992 | 0.011240199907 |             |             |
|                                   | Method-4 | 0.036132000154 | 0.030619800091 | 0.004400007 | 0.015684311 |
|                                   | Method-5 | 0.037282000063 | 0.001599199895 | 0.031429967 |             |
| Mean<br>Standar Deviation of Diff |          | 0.00000000093  | 0.00000000093  |             |             |
|                                   |          | 0.035139771231 | 0.017535592383 |             |             |
| Paired T-Tests                    |          | 0.00000005926  | 0.000000011876 |             |             |

TABLE-11 STATISTICAL ANALSIS FOR CHECK POINT-5 FROM FIVE DIFFERENT METHOD



#### DISCUSSION:

 (i) Using Statistical analysis to find out the accuracy of the measurement from the above five different methods.



15

#### EFFICIENCY OF USING KHMER GEONET:

 (i) Required budget was calculated for field data collection by two different method (Khmer Geonet Cors vs Conventional method

#### TABLE-12 COST EXPANCE USING CONVENTIONAL METHOD

| No. | Description            | Unit   | Qty. | Approximate<br>Amount (USD) |
|-----|------------------------|--------|------|-----------------------------|
| 1   | GNSS receiver          | No     | 5    |                             |
| 2   | GNSS receiver operator | person | 5    |                             |
| 3   | Leveling Instrument    | No     | 2    | ¢5 580 00                   |
| 4   | Leveling operator      | person | 6    | \$5,580.00                  |
| 5   | Leveling staff holder  | person | 4    |                             |
| 6   | Transportation         | No     | 1    |                             |

#### TABLE-13 COST EXPANCE USING KHMER GEONET CORS SIE-1

| No. | Description            | Unit   | Qty. | Approximate<br>Amount (USD) |
|-----|------------------------|--------|------|-----------------------------|
| 1   | GNSS receiver          | No.    | 5.00 |                             |
| 2   | GNSS receiver operator | person | 5.00 | \$ 2,400.00                 |
| 3   | Transportation         | No.    | 1.00 |                             |

#### EFFICIENCY OF USING KHMER GEONET:

 (i) Required budget was calculated for field data collection by two different method (
 Khmer Geonet Cors vs
 Conventional method





- Acquired accurate data from Khmer Geonet Cors plays as fundamental data for for representing the terrain characteristic of the focus area ( a part of Siem Reap City).
- The precision of the data from the measurement is the key to make the flood inundation simulation appearance closed to the reality.



# **1. Hydrological Basin**

- □ Siem Reap River is an artificial waterway which intercepted during 10<sup>th</sup>-11<sup>th</sup> CE; where the southerly Pouk branch from the Kulen Mountains (main river basin) to an offtake canal system in temple zone and through Siem Reap town.
- □ The evolution of the watersheds: (A) natural watersheds; and (B) present watersheds is shown in figure below



# 2. Secondary Data Collection and Numerical Analysis

- Hydrological is secondary data, where 18 ground stations exist in Siem Reap Province
- Above 83% hydromet stations within data range over 15-years are continuously recoding while the newly AWS station have been recording over 6 years long.
- There are four hydromet stations sited surrounding the project area and Siem Reap basin; where the stations at Prasat Keo, Banteay Srey, Prasat Bakong and the station in the town have been collected



### 2. Secondary Data Collection and Numerical Analysis (cont.)

- □ The long-term average (LTA) of annual rainfall at the four key stations were revealed by 1,300 mm and by 1,418 at Siem Reap station which are remarkable over 50% exceedance.
- A statistical analysis was made for this period by fitting the annual maxima with a Log Pearson III distribution on 21 years of daily rainfall records collected from the Siem Reap station, resulting in extreme daily rainfall



| Return Period [year]    | 2  | 5   | 10  | 20  | 50  | 100 | 20  |
|-------------------------|----|-----|-----|-----|-----|-----|-----|
| Daily Rainfall [mm/day] | 92 | 136 | 168 | 200 | 244 | 279 | 310 |



# 3. Hydrological Modeling Setup

Hydrological analysis was performed to understand the characteristics of surface hydrological process, and make an estimation for the surface hydrological situation in different amplitudes of meteorological events happened on a terrain.

- Sketching from terrain to flow, HEC-HMS performed orders of works including:
- Watershed delineation
- Subbasins and reaches hydrologic method and parameters determination
- Meteorological data input
- Rainfall-Runoff simulations for calibration, validation and hydrograph production



# 3. Hydrological Modeling Setup (Cont.)

- Land cover was used as second parameter beside rainfall for rainfall-runoff simulation
- Soil Conservation Service (SCS) method was derived from Land 0 Cover and used in the Hydrological modeling setup.
- Control point at Prasat Keo with Stage and Discharge was used 0 to calibrate the model
- Statistical model performance was used to test accuracy of the 0 model setup and revealed good agreement from 2000-2012 and 2013-2021.
- Two phases were performed before and after Tasom Dam construction
- The result flow hydrograph of Hydrological model are used for 0 Hydraulic Model 250 Osim

200

(M3/S)





### 4. Hydrodynamic Model Setup

- □ The Hydrodynamic model of HEC-RAS, the 2D unsteady flow model was applied to generate overland flood.
- In this study, DTM from <u>Global Terrain Data FABDEM</u>, Drone DTM and River Surface created from river cross section survey were mosaiced together to be terrain of the model. The river shape from Tasom Dam was modified assumedly along the digitized alignment until connecting to the bathymetric surveyed section.
- Inline structures along the river were taken into account in the model
- Land cover was used to assign roughness coefficient or Manning's value





### 5. Flood Result

□ The 20& 50 Year return period flood extent has slightly spilled over riverbank after improvement of the flood structure of the riverine.



### 5. Flood Result

- □ The 100 and 200 Year return period flood extent were generated
- □ It's remarkable 100& 200 year return period, flooding spilled into the project area



### **V. CONCLUSION**

- KHMER GEONET CORS is able to provide centimeter level accuracy compared to the other methods
- KHMER GEONET CORS provides convenient and cost-effective method to conduct the land survey, drone survey.
- Users can instantly commence the measurement by just accessing to the Khmer Geonet Cors through Username and Password.
- A flood study in an urban area previously required extensive ground-based measurements over the study area, which resulted in exorbitant expenses. The advent of drone surveys and the current existence of Khmer Geonet Cors undoubtedly facilitate rapid access, precise data acquisition, and cost-effectiveness in generating digital terrain models (DTM) and aerial photographs, which are indispensable for flood modeling and analysis.
- In case in urgent situation of coming flood, quick DTM data from Khmer GEONET Cors reference survey for flood simulation will save the town from inundation since we can make flood control or prevention in advance on time.
- As soon as the Khmer Geonet service becomes nationwide, it is anticipated that it will provide significant assistance in the fields of agriculture, topographical surveying, land surveying, infrastructure management such as bridge deformation monitoring, and navigation as well.

### **V. CONCLUSION**





10

# **THANK YOU!**

÷.

### រដ្ឋាភរនិភស្វយ័ត ក្រុខភ្លំពេញ នេសភ PHNOM PENH WATER SUPPLY AUTHORITY

13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85 - 13.85

THE SUPPLY IN

#### PHNOM PENH WATER SUPPLY AUTHORIT

(PPWSA)

# មនមទ្ធាញម្រទដ្តិនៃភារម្រើប្រាស់ឧមភរណ៍ខំនួយភ្លូ១ ភារសិភ្សាគម្រោទ

#### Presentation On The History Of Using of assistive devices In

Project Study Aids

### ຍາສື່ສາເ

ຄາອສາເ

١.

- រូមទង្គិ រ.ន.ស.ដ
- ສາເເບິ່ງອາຄ່ DGPS
- II. **ຊຍສາຄ**ົ່ລ
  - ភាះច្រើច្រាស់ DGPS ( រូខភាព)
  - នាះច្រើទ្រាស់ DRONE DJI PHANTHOM4 PRO ( រួចនាព)
- III. មនពិសោធន៍ភាទោរ
  - **ភាទោះសិន្យភូមំពខ់ទេ** DN500MM NR-3
  - **ភារខារអនុទដ្ដ** CORS-DGPS
- IV. រូមសិន្ទនាពភាទោរ
  - តារាទលន្ធឥលភាទោះដែលឧន្ទលចាន
- V. **ភារប្រៀបចៀប** CORS JICA VS CORS GCDC
  - ສານອະເຊິງຂະສົງຂ
- VI. សរុទសេទភ្លឺ

- I. Background
  - History of PPWSA
  - Usage of DGPS
- II. Tools

.

- Usage of DGPS ( Pic)
- Usage of Drone DJI Phanthom4 Pro ( Pic)
- III. Work Experience
  - The study of DN500mm water pipeline NR-3
  - Cors-DGPS
- IV. Work efficiency
  - Result of work
- V. Comparison of CORS Jica Vs CORS DCGC
  - Comparison of Point GDPS
- VI. Summary

#### ຄາອສາເ

#### ÷ ប្រវត្តិ រ.ទ.ស.ភ

អំពីនាយកដ្ឋានផលិតកម្ម និងផ្គត់ផ្គង់ទឹក

(ABOUT WATER PRODUCTION AND SUPPLY DEPARTMENT)

- ស្ថិតក្រោមការដឹកនាំផ្ទាល់របស់អគ្គនាយក នៃរដ្ឋាករទឹកស្វយ័តក្រុងភ្នំពេញ។
- > UNDER THE DIRECT SUPERVISION OF THE DIRECTOR GENERAL OF THE PHNOM PENH WATER SUPPLY AUTHORITY.

Ι.

- សម្ថតភាពក្នុងការផលិតនិងផ្គត់ផ្គង់ទឹកស្អាតក្នុងឆ្នាំ ២០២១ ដល់ ២០៣០.
- ABILITY TO PRODUCE AND SUPPLY CLEAN WATER IN 2021 TO 2030
  ទី១ រោងចក្រញាក់ខែង (BAKHENG WTP)
  - សម្ថតភាពផលិត (PRODUCTION CAPACITY/D)<u>390,000 M3/D</u>
    ទី២ រោងចក្រ ជ្រោយចង្វារ CHROY CHANGWAR WTP
  - សម្ថតភាពផលិត (PRODUCTION CAPACITY/D) <u>130,000 M3/D</u>
    ទី៣ រោងចក្រ ភូមិព្រែក (PHUM PREK WTP)
  - សម្ថតភាពផលិត (PRODUCTION CAPACITY/D) <u>195,000 M3/D</u>
    ទី៤ រោងចក្រ ចំការមន (CHAMCAR MORN WTP)
  - សម្តតភាពផលិត (PRODUCTION CAPACITY/D) <u>52,000 M3/D</u>
    ទី៥ រោងចក្រ និរោធ (NIROTH WTP)
  - សម្ថតភាពផលិត (PRODUCTION CAPACITY/D) <u>260,000 M3/D</u>
    ទី៦ រោងចក្រ តាខ្មៅ (TA KHMOA WTP)
  - សម្ថតភាពផលិត (PRODUCTION CAPACITY/D) <u>30,000 M3/D</u>
    ទី៧ រោងចក្រ បឹងធំ (BOENG THOM WTP)
  - សម្តតភាពជលិត (PRODUCTION CAPACITY/D) **5,0<u>00 M3/D</u>**

# 

- ការជ្រើសរើសក្នុងការប្រើសេវាកម្ម DGPS ធ្វើអោយការងារ របស់យើងប្រសើរឡើង នូវភាពជាក់លាក់និងត្រឹមត្រូវនៃទី តាំង GPS របស់យើង ព្រមទាំង សម្ថតភាពក្នុងការចាប់យក សញ្ញារបស់ទីតាំងច្បាស់លាស់និងមានភាពលំអៀងតិច។
- CHOOSING TO USE THE DGPS SERVICE IMPROVES OUR WORK WITH THE ACCURACY AND PRECISION OF OUR GPS LOCATIONS, AS WELL AS OUR ABILITY TO CAPTURE PRECISE LOCATION SIGNALS WITH LESS BIAS.



#### \* အားဗျားစြား DGPS



- ប្រើប្រាស់សំម្រាប់បង្កើតប្លង់មើលពីលើ ដែលត្រូវបានភ្ជាប់ជាមួយ នឹងប្លង់ ពុះបណ្តោយ និងបង្ហាញពីទីតាំងដៅបំពង់។
- Used to create a top view plan that is associated with a longitudinal split plan to indicate the position of the pipe.
- ប្រើប្រាស់សំរាប់បង្កើតផែនទី, ផែនទីយោង ឬប្លង់ទីតាំង។
- Used to create maps, reference maps, or location maps.
- ប្រើសំរាប់ត្រួតពិនិត្យ និងកំណត់ទីតាំងផ្លូវ, បំពង់, លូ ,ខ្សែភ្លើង។

Used to inspect and locate roads, pipes, drains, power lines.

ប្រើសំរាប់ស្វែងរក ចំនុច ឬ ទីតាំងដែលមានស្រាប់ តាមរយះប្រពន្ធ័GPS។

- Used to find existing points or locations through GPS.
- ប្រើសំរាប់វិភាគ និង បង្កើត រយះកំពស់ដី, ក្រឡាផ្ទៃ, និង មាឌដីចាក់បំពេ ញ។
- Used to analyze and create soil height, surface area, and fill volume.

#### 



- ប្រើប្រាស់សំម្រាប់បង្កើតប្លង់រូបភាពមើលពីលើ ដែលត្រូវបានភ្ជាប់ជាមួយ ចំណុចកូអរដោនេ។
- Used to create a top-level image layout that is associated with coordinates.
- ប្រើប្រាស់សំរាប់បង្កើតផែនទី, ផែនទីយោង ឬប្លង់ទីតាំង រូបភាពកាត់ទទឹងផ្លូវ។
- Used to create maps, reference maps, or location diagram of road map.
- ប្រើសំរាប់ត្រួតពិនិត្យ និងកំណត់ទីតាំងផ្លូវ, បំពង់, លូ និងស្ថានដី តាមរយះរូប ភាពប្លង់មើលពីលើ(Plan View)។
- Used to monitor and locate roads, pipelines, sewers and landscapes through Plan view
- ប្រើសម្រាប់វិភាគ និង វាស់ក្រឡាផ្ទៃ, ប្រវែងក្រោយពីយកទិន្ន័យពី Drone មក វិភាកក្នុង កម្មវិធី Pix4Dmapper និងបំឡែងទៅជា File KMZ,KML,DXF,Tif,PNG,JPG...។
- Used to analyze and measure area, length, after taking data from the drone to analyze in Pix4Dmapper will be converted to File KMZ, KML, DXF, Tif, PNG, JPG....
- ប្រើសម្រាប់ធ្វើជាទិន្ន័យ Contours ដោយបានមកពីរូបភាពប្លង់រូបភាពមើលពី លើ។
- Used for Contours data from the image layout view above.

#### ຍຂຕີເសາສຂໍສາເອາເ



- ≻ ការងារចុះអនុវត្តលើគម្រោងដាក់បំពង់មេនៅផ្លូវNR-3
  - គម្រោងនេះមានទីតាំងនៅរាជធានីភ្នំពេញ ហើយ ការសិក្សាប្លង់បំពង់មេនាំទឹកស្អាត DN500MM ដែលមានប្រវែង ១៥០០ម តាមបណ្តោយផ្លូវជាតិ លេខ៣ នេះស្ថិតនៅខាងមុខបុរីពិភពថ្មី៣ កែងនិង ផ្លូវ136DT សង្កាត់ភ្លើងឆេះរទះ ខណ្ឌពោធិ៍ដែនជ័ យ។
  - THE PROJECT IS LOCATED IN PHNOM PENH AND THE STUDY OF DN500MM WATER PIPELINE DESIGN WITH 1500M
     LENGTH ALONG NATIONAL ROAD 3 IS IN
     FRONT OF BOREY NEW WORLD III NR-3
     CORNER STREET 136DT, SANGKAT
     PLEUNG CHEH ROTEH, KHAN POR DEN
     CHEY. 7

#### \* အားဖြောဆ် DGPS



ដាយ

Bre Chum Roa (UNI

Image © 2023 Airbus

PHUM 1

#### \* အား၊ ဖြားစုံ DGPS



ຈາກເຫຼຍິອາຄ່ AUTO-LEVEL



#### IV. រូបសិន្តភាពភាះខារ

- Surveying projects the result of verification of accuracy degradation:
  - X-Valve (BM.J3, Manhole PPWSA, EDC Pole)



#### • Y-Valve (BM.J3, Manhole PPWSA, EDC Pole)



Z-Valve (BM.J3, Manhole PPWSA, EDC Pole)



11

# V. នាះម្រៀះឆ្ងៀទ Core Jica Vs Core GCDC

Table 1.Comparison of Point GDPS

|                  |              | DIFFERENCE  |        |
|------------------|--------------|-------------|--------|
| POINT            | Northing (m) | Easting (m) | Z (m)  |
| BM.J3            | 0.188        | -0.225      | -0.652 |
| Manhole<br>PPWSA | 0.245        | -0.384      | -0.811 |
| EDC Pole         | 0.621        | -0.551      | -0.210 |

#### CONCLUSION

- គម្រោងនេះបានផ្តល់ការគាំទ្រផ្នែកបច្ចេកទេសសម្រាប់ការអភិវឌ្ឍន៍ និងប្រតិបត្តិការនៃ KHMER GEONET CORS
- THE PROJECT WILL PROVIDE TECHNICAL SUPPORT FOR THE DEVELOPMENT AND OPERATION OF KHMER GEONET CORS
- ការពង្រឹងសមត្ថភាពប្រតិបត្តិការ និងថៃទាំមជ្ឈមណ្ឌលទិន្នន័យ
- STRENGTHENING THE OPERATION AND MAINTENANCE CAPABILITIES OF THE DATA CENTER
- លើកកម្ពស់ការប្រើប្រាស់ទិន្នន័យKHMER GEONET CORSដើម្បីបង្កើនប្រសិទ្ធភាពជាក់លាក់ខ្ពស់នៃសេវាកម្ម។
- PROMOTING THE UTILIZATION OF KHMER GEONET CORS DATA TO INCREASE THE EFFICIENCY OF SURVEYING BY HIGH-PRECISION POSITIONING SERVICE.
- រួមចំណែកមិនត្រឹមតែដល់ការអភិវឌ្ឍន៍ប្រកបដោយប្រសិទ្ធភាព និងការធ្វើបច្ចុប្បន្នភាពការសិក្សាគ្រោងប្រពន្ធ័ទឹកស្អាតប៉ុណ្ណោះទេ ប៉ុន្តែថែមទាំងវិស័យផ្សេងទៀតផងដែរ។
- THIS WILL CONTRIBUTE NOT ONLY TO THE EFFECTIVE DEVELOPMENT FOR THE STUDY OF WATER SUPPLY SCHEMES, BUT ALSO TO THE EFFECTIVE IMPLEMENTATION OF OTHER SECTORS AS WELL.



Project on Establishment of Continuously Operating Reference Stations (CORS) for Land Management and Infrastructure Development

JICA Pilot Project Demonstration project Implementation Report

January 2024

Aruna Technology Ltd., Royal University of Agriculture,

General Department of Cadastral and Geography, MLMUPC

#### Table of Contents

| 1. ( | Overv  | view of the demonstration project 1                |
|------|--------|----------------------------------------------------|
| 1.1  | Nan    | ne of the demonstration project 1                  |
| 1.2  | Вас    | kground and purpose of the demonstration project 1 |
| 1.3  | Brie   | ef description of the demonstration project1       |
| 1.4  | Imp    | plementation period 1                              |
| 1.5  | Loc    | ation of the demonstration project site2           |
| 1.6  | Mer    | nbers                                              |
| 1.7  | Equ    | ipment used for the demonstration project          |
| 2. C | Detail | s of the work                                      |
| 2.1  | Woi    | rk performed6                                      |
| 2.3  | 1.1    | Preparation                                        |
| 2.3  | 1.2    | Implementation                                     |
| 2.:  | 1.3    | Results                                            |
| 2.2  | Use    | of KhmerGEONET                                     |
| 2.2  | 2.1    | Details of the KhmerGEONET data used32             |
| 2.2  | 2.2    | Problems occurred and solutions                    |
| 2.3  | Oth    | er related activities32                            |
| 3. \ | Way f  | orward33                                           |
| 3.1  | Futi   | ure outlook of the business using Khmer GEONET     |
| 3.2  | Abc    | out KhmerGEONET33                                  |
| 1)   | G      | ood points using KhmerGEONET33                     |
| 2)   | Is     | ssues to be solved                                 |
| 3)   | R      | equest for improvement                             |
| 4. ( | Conclu | usion35                                            |

#### 1. Overview of the demonstration project

#### 1.1 Name of the demonstration project

EN: Accuracy Verification of Cadastral Survey with Khmer GEONET

#### 1.2 Background and purpose of the demonstration project

Cadastral boundary survey is one of the main survey activities of the MLMUPC and perhaps the largest single application for survey in Cambodia. The main purpose of the demonstration project is to test the performance of Khmer Geonet for cadastral boundary survey.

#### 1.3 Brief description of the demonstration project

The main purpose of the pilot project is to demonstrate the accuracy of RTK survey by GNSS rover under field conditions. Accuracy can be measured in two main ways;

(1) absolute accuracy in relation to known points;

(2) relative accuracy, or the variability of coordinates (X,Y and Z) over time.

A considerable amount of testing has already been undertaken by the Pasco consultant team, therefore, this pilot project will focus on testing of absolute accuracy. The main parameters that will be tested are;

(1) Comparison of accuracy when connected to the Network RTK vs. Single Station  $\mathsf{RTK}$ 

(2) Comparison of accuracy of different makes and models of GNSS rover receiver

(3) Comparison of accuracy under different Ionospheric conditions.

(4) Determination of accuracy at longer distances from the nearest station e.g., 10, 20, 30, 40, 50, 70, 100 km

(5) Determine the repeatability of measurements under field conditions by surveying the same temporary points, representing a cadastral boundary, on different days.

#### 1.4 Implementation period

Preparation: JUL 2023 – JUL 2023

Work at the site: JUL 2023 – SEP 2023

Reporting:

SEP 2023 - NOV 2023

| Work Items/ Year & Month                                       |  | 2023 |   |   |   |    |    |  |
|----------------------------------------------------------------|--|------|---|---|---|----|----|--|
|                                                                |  | 6    | 7 | 8 | 9 | 10 | 11 |  |
| Sign a contract with Pasco                                     |  |      |   |   |   |    |    |  |
| Preparation of the pilot project                               |  |      |   |   |   |    |    |  |
| Making a pilot project implementation plan                     |  |      |   |   |   |    |    |  |
| Obtainment of necessary permits                                |  |      |   |   |   |    |    |  |
| Performance of the Pilot Project                               |  |      |   |   |   |    |    |  |
| Survey work in Phnom Penh, Kandal and Kampong Speu             |  |      |   |   |   |    |    |  |
| Survey work in Siem Reap                                       |  |      |   |   |   |    |    |  |
| Survey work in Stung Treng                                     |  |      |   |   |   |    |    |  |
| Additional work in Takeo, Kg. Chhnang, Kg. Thom and Kg. Cham   |  |      |   |   |   |    |    |  |
| Evaluation of Result                                           |  |      |   |   |   |    |    |  |
| Making final Report                                            |  |      |   |   |   |    |    |  |
| JICA seminar, Presentation material, Case study leaflet, Pilot |  |      |   |   |   |    |    |  |
| project implementation report                                  |  |      |   |   |   |    |    |  |
| JICA seminar (postponed)                                       |  |      |   |   |   |    |    |  |
| Final deadline of Case study leaflet (promotion material)      |  |      |   |   |   |    |    |  |
| Final deadline of Pilot project implementation report          |  |      |   |   |   |    |    |  |

#### Table 1-1 Plan and actual of the schedule

#### 1.5 Location of the demonstration project site

There were three project sites for implementing the demonstration project;

In and around the three stations in Phnom Penh, Kandal, Kampong Speu and Takeo provinces

Siem Reap Province; and

Stung Treng Province

The project sites are show in Figure 1-1 below. The known points selected for this project are detailed in Table 1-2 below.

| No | Point ID | Easting     | Northing     | Height<br>(Ellipsoid) | Nearest<br>CORS Station | Distance to station (KM) |
|----|----------|-------------|--------------|-----------------------|-------------------------|--------------------------|
| 1  | 808D     | 473113.174  | 1272888.102  | 5.158                 | PNH                     | 18.1                     |
| 2  | 5E       | 447804.8032 | 1266636.7141 | 18.7966               | KSP                     | 5.7                      |
| 3  | 5        | 414116.0260 | 1246699.2066 | 87.0256               | KSP                     | 44.7                     |
| 4  | 21A      | 477047.9927 | 1213405.8972 | -5.0353               | KND                     | 48.4                     |
| 5  | 4A       | 440029.6343 | 1367524.8155 | 3.0156                | KNG                     | 27                       |
| 6  | 6D       | 494316.7759 | 1435590.5539 | 9.8026                | KNG                     | 86.9                     |

|  | Table 1-2 Sur | nmary of known | points included | ' in | pilot | project |
|--|---------------|----------------|-----------------|------|-------|---------|
|--|---------------|----------------|-----------------|------|-------|---------|
For all points except 808D, the coordinates were provided by the GDCG in the form of benchmark description cards (See Annex 1). For point 808D, supplied coordinates were not in the CGD09 coordinate system, so a static observation was made on the 24<sup>th</sup> September 2023 and the coordinates calculated using Trimble Business Center. The calculation can be found in Annex 2.



Figure 1-1 Location of the demonstration project site

#### 1.6 Members

#### The members listed below performed the demonstration project.

#### Table 1-3 List of members

| NO. | Name                                                 | Company/Organisation/Department/Title                                                                | Role              |
|-----|------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------|
| 1   | Paul Gager                                           | Aruna Technology Ltd                                                                                 | Project Director  |
| 2   | Sami Sivuth                                          | Aruna Technology Ltd                                                                                 | Project Manager   |
| 3   | Chan Yuthea                                          | Aruna Technology Ltd                                                                                 | Surveying         |
| 4   | Pav Rotha                                            | Royal University of Agriculture                                                                      | Support surveying |
| 5   | Sin Sotheany                                         | General Department of Cadastral and Geography                                                        | Lead Surveying    |
| 6   | Chin Chharom                                         | General Department of Cadastral and Geography                                                        | Surveying         |
| 7   | Kuch Jeudi                                           | General Department of Cadastral and Geography                                                        | Surveying         |
| 8   | Chea Saran                                           | General Department of Cadastral and<br>Geography                                                     |                   |
| 9   | Kandal, Kampong<br>Speu,<br>Siemreap,<br>Stung Treng | Provincial Department of Land<br>Management, Urban Planning, Construction<br>and Cadastre (PDLMUPCC) | Support surveying |

## 1.7 Equipment used for the demonstration project

The equipment listed below were used for the demonstration project.

|     |          |           | 1 1         |                                  |
|-----|----------|-----------|-------------|----------------------------------|
| No. | Make     | Model     | Frequencies | H Accuracy, RTK                  |
| 1   | Topcon   | HiPer VR  | 3           | 5 mm + 0.5 ppm                   |
| 2   | Topcon   | HiPer SR  | 2           | 10 mm + 0.8 ppm                  |
| 3   | Trimble  | R12       | 3           | 8 mm + 1 ppm (Single)            |
|     |          |           |             | 8 mm + 0.5 ppm (Network)         |
| 4   | Trimble  | R8s       | 3           | 8 mm + 1 ppm (Single)            |
|     |          |           |             | 8 mm + 0.5 ppm (Network)         |
| 5   | СНС      | i80       | 3           | 8 mm + 1 ppm (Single)            |
|     |          |           |             | 8 mm + 0.5 ppm (Network)         |
| 6   | SinoGNSS | T300 Plus | 3           | 8 mm + 1 ppm (Single)            |
| 7   | ZED-F9P  |           | 2           | 10 mm + 1 ppm (Single) (1km      |
|     |          |           |             | baseline)                        |
|     |          |           |             | Manufacturer's note "ppm limited |
|     |          |           |             | to baselines up to 20 km."       |

| Table | 1-4 | l ist | of | equinm  | ≏nt | used |
|-------|-----|-------|----|---------|-----|------|
| rabie | 1 7 | LISU  | UI | equipin |     | useu |

## 2. Details of the work

#### 2.1 Work performed

#### 2.1.1 Preparation

Once the contract was signed, the preparation phase of the project commenced in the last week of July 2023. This involved finalizing the fieldwork plan, allocating personal to perform assigned tasks and checking and preparing the equipment. A kick off meeting was held between all involved parties to inform them of the plan and to make final adjustments before mobilization to the field.

#### 2.1.2 Implementation

The implementation of the project commenced in the last week of July 2023 and ran through to the end of October. The fieldwork was conducted by two teams, one of which was mobilized twice, since they were required to come back to Phnom Penh to provide inputs into other work programs.

#### 2.1.3 Results

#### 2.1.3.1 Comparison of accuracy of Network RTK vs. Single Station RTK

#### Purpose of test

The Khmer GEONET system is able to broadcast both a Network RTK (NRTK) correction and a Single Station RTK (SSRTK). The NRTK correction for Khmer GEONET is set to Virtual Reference Station (VRS) mode.

A virtual reference station is an imaginary, unoccupied reference station which is only a few meters from the RTK user. For this position, observation data are created from the data of surrounding reference stations as though they had been observed on that position by a GPS receiver. The concept of virtual reference stations (VRS) offers new possibilities. The principle is to interpolate the data of several reference stations in order to obtain the correction data for the rovers, which reduces the systematic influences of the RTK measurement decisively. Not only may the allowed distance between the reference station and the rover be increased, but also the reliability of the system is heightened. Should a reference station fail temporarily, for example, the correction data are computed with the surrounding reference stations. In addition, productivity is improved by clearly shorter initialization times.

Source: https://gisresources.com/virtual-reference-station/

Furthermore, the Network Processor module in Trimble Pivot will also create network specific atmospheric models:

The Network Processor module is one of the central calculation units of Trimble Pivot Platform. It is responsible for the creation of tropospheric and ionospheric models of your reference station network. Trimble Pivot Platform generates corrections from these network models and transmits them to the rover in the field. Source: Trimble Pivot Help Documentation

In summary the expectation is that the NRTK corrections (VRS), will

- Allow longer baselines between rover and reference station
- Be more accurate compared to SSRTK due to localized modeling of the tropospheric and ionospheric
- Shorter initialization times compared to SSRTK

Indeed, most manufacturers will express the accuracy of their receivers in terms of Single baseline and Network RTK, with the Network RTK method having a lower ppm value.

Table 2-1: Example manufacturer's specification for Rover receiver (Trimble

D10)

|                               | R10)       |                     |
|-------------------------------|------------|---------------------|
| REAL TIME KINEMATIC SURVEYING |            |                     |
| Single Baseline <30 km        |            |                     |
|                               | Horizontal | 8 mm + 1 ppm RMS    |
|                               | Vertical   | 15 mm + 1 ppm RMS   |
| Network RTK <sup>3</sup>      |            |                     |
|                               | Horizontal | 8 mm + 0.5 ppm RMS  |
|                               | Vertical   | 15 mm + 0.5 ppm RMS |

One other point to mention is that the current network of 5 stations in the Khmer GEONET is the minimum number required for NRTK/VRS and two stations are quite far north of the three near Phnom Penh. It could be expected that once the network is denser, the performance will improve.

2.1.3.2 Results of Network RTK vs. Single Station

#### National Control Point 5

National control point 5 is located in Treaeng Trayueng commune, Phnom Sruoch District, Kampong Speu province, about 44km from the Kampong Speu CORS Station, KSP. The control point is located close to a brick wall and there is also a building close the wall on the adjacent property (see Figure 2-1 below).



Figure 2-1: Trimble R10 receiver setup on national control point "5"

Several receivers were setup over this point to collect data for comparison. Data collect from the Trimble R8s is summarized as follows;

| Date:                    | 30-07-2023                                |
|--------------------------|-------------------------------------------|
| Receiver Model:          | Trimble R8s                               |
| Survey Method:           | Continuous Topo (Recorded every 1 second) |
| Number of observations:  | 478                                       |
| Fix Type:                | RTK Fix                                   |
| Mount Point:             | VRS                                       |
| Average # of satellites: | 14                                        |







Figure 2-3: Horizontal coordinates of observation over known point 5 with Topcon Hiper VR Receiver



Figure 2-4: Elevation of observations over known point 5

As can be seen in Figure 2-2 and Figure 2-4, the observation data was about 4cm offset from the known coordinates on average and the observed elevation range from +60mm above control point elevation to -90mm below.

In conclusion, site conditions are far from ideal with significant obstruction to the sky. Even though an RTK Fix was achieved, the low number of satellites indicates weak geometry.

#### National Control Point 5E

National control point 5E is located in Chbar Mon commune, Chhbar Mon District, Kampong Speu province, about 5km from the Kampong Speu CORS Station, KSP.

Several receivers were setup over this point to collect data for comparison. Data collect from the Trimble R8s and Topcon Hiper VR is summarized as follows;

| Date:           | 01-08-2023                                |
|-----------------|-------------------------------------------|
| Receiver Model: | Trimble R8s                               |
| Survey Method:  | Continuous Topo (Recorded every 1 second) |

| Number of observations:  | 1807                                      |
|--------------------------|-------------------------------------------|
| Fix Type:                | RTK Fix                                   |
| Mount Point:             | VRS                                       |
| Average # of satellites: | 16                                        |
|                          |                                           |
| Data                     | 20.07.2022                                |
| Date.                    | 50-07-2025                                |
| Receiver Model:          | Trimble R8s                               |
| Survey Method:           | Continuous Topo (Recorded every 1 second) |
| Number of observations:  | 478                                       |
| Fix Type:                | RTK Fix                                   |
| Mount Point:             | RRS                                       |
| Average # of satellites: | 14                                        |



Figure 2-5: Horizontal coordinates of observation over known point 5E with R8s Receiver



Figure 2-6: Horizontal coordinates of observation over known point 5E with Topcon Hiper VR Receiver



Figure 2-7: Elevation of observation over known point 5E with R8s Receiver

|                     | East        | North        | Δ East | Δ North | Linear |  |  |
|---------------------|-------------|--------------|--------|---------|--------|--|--|
| 5E Known            | 447804.8032 | 1266636.7141 |        |         |        |  |  |
| R8s VRS Obs. Av.    | 447804.8113 | 1266636.7234 | 0.008  | 0.009   | 0.012  |  |  |
| R8s RRS Obs. Av.    | 447804.8170 | 1266636.7203 | 0.014  | 0.006   | 0.015  |  |  |
| Topcon Hiper VR VRS |             |              |        |         |        |  |  |
| Obs. Av.            | 447804.8092 | 1266636.7158 | 0.006  | 0.002   | 0.006  |  |  |
| Topcon Hiper VR RRS |             |              |        |         |        |  |  |
| Obs. Av.            | 447804.8253 | 1266636.7270 | 0.022  | 0.013   | 0.026  |  |  |
| CHC i80 VRS         | 447804.8209 | 1266636.711  | 0.018  | -0.004  | 0.018  |  |  |
| CHC i80 RRS         | 447804.7956 | 1266636.707  | -0.008 | -0.007  | 0.010  |  |  |
| Sino 070 VRS        | 447804.8058 | 1266636.718  | 0.003  | 0.004   | 0.005  |  |  |
| Sino 070 RRS        | 447804.8219 | 1266636.718  | 0.019  | 0.004   | 0.019  |  |  |
| Trimble R10 VRS     | 447804.805  | 1266636.725  | 0.002  | 0.011   | 0.011  |  |  |
| Trimble R10 RRS     | 447804.8931 | 1266636.698  | 0.090  | -0.016  | 0.091  |  |  |
| Topcon SR VRS       | 447804.8164 | 1266636.72   | 0.013  | 0.006   | 0.014  |  |  |
| Topcon SR RRS       | 447804.8405 | 1266636.715  | 0.037  | 0.000   | 0.037  |  |  |

Table 2-2: Comparison of observed coordinates vs known coordinate 5E with

different receivers

## Table 2-3: Comparison of observed coordinates vs known coordinate 808D with

different receivers

|                     | East        | North        | Δ East | Δ North | Linear |
|---------------------|-------------|--------------|--------|---------|--------|
| 808D Known          | 473113.1740 | 1272888.1020 |        |         |        |
| R8s VRS Obs. Av.    | 473113.1817 | 1272888.1021 | 0.008  | 0.000   | 0.008  |
| R8s RRS Obs. Av.    | 473113.1700 | 1272888.0927 | -0.004 | -0.009  | 0.010  |
| Topcon Hiper VR VRS | 473113.1892 | 1272888.091  | 0.015  | -0.011  | 0.019  |
| Obs. Av.            |             |              |        |         |        |
| Topcon Hiper VR RRS | 473113.2068 | 1272888.126  | 0.033  | 0.024   | 0.041  |
| Obs. Av.            |             |              |        |         |        |
| CHC i80 VRS         | 473113.151  | 1272888.072  | -      | -0.030  | 0.038  |
|                     |             |              | 0.023  |         |        |
| CHC i80 RRS         | 473113.2506 | 1272888.022  | 0.077  | -0.080  | 0.111  |
| Sino 070 VRS        | 473113.1868 | 1272888.07   | 0.013  | -0.032  | 0.034  |
| Sino 070 RRS        | 473113.1774 | 1272888.084  | 0.003  | -0.018  | 0.018  |
| Trimble R10 VRS     | 473113.1899 | 1272888.101  | 0.016  | -0.001  | 0.016  |
| Trimble R10 RRS     | 473113.1347 | 1272887.53   | -0.039 | -0.572  | 0.573  |
| Topcon SR VRS       | 473113.0545 | 1272888.056  | -0.119 | -0.046  | 0.128  |
| Topcon SR RRS       | 473113.1398 | 1272888.056  | -0.034 | -0.046  | 0.058  |

**Conclusion 1.** Network RTK vs. Single Station RTK - Based on the observations made from the field data, it can be concluded that in almost all cases, connecting to the VRS mountpoint is more accurate than connecting to the Single station RTK.

#### National Control Point 808D

National control point 808D is located in Baek Chan commune, Angk Snuol District, Kandal province, about 18km from the Phnom Penh CORS Station, PNH.

Several receivers were setup over this point to collect data for comparison. Data collect from the Trimble R8s and Topcon Hiper VR is summarized as follows;

| Date:                   | 31-07-2023                                |
|-------------------------|-------------------------------------------|
| Receiver Model:         | Trimble R8s                               |
| Survey Method:          | Continuous Topo (Recorded every 1 second) |
| Number of observations: | 898                                       |
| Fix Type:               | RTK Fix                                   |
| Mount Point:            | VRS                                       |
|                         |                                           |
| Date:                   | 31-07-2023                                |
| Receiver Model:         | Trimble R8s                               |
| Survey Method:          | Continuous Topo (Recorded every 1 second) |
| Number of observations: | 901                                       |
| Fix Type:               | RTK Fix                                   |
| Mount Point:            | RRS                                       |

The observation data is presented in Figure 2-8 below and a comparison between the average VRS and RRS coordinates in

|                   | EAST        | NORTH        | Diff X | Diff Y |
|-------------------|-------------|--------------|--------|--------|
| Known Coordinates | 473113.1740 | 1272888.1020 |        |        |
| Mean VRS          | 473113.1817 | 1272888.1021 | -0.007 | 0      |
| Observation       |             |              |        |        |

| Mean RRS    | 473113.1700 | 1272888.0927 | 0.004 | 0.009 |
|-------------|-------------|--------------|-------|-------|
| Observation |             |              |       |       |

Table 2-4. It should be noted that although the average coordinates for the RRS observation was quite close to the mean coordinates, the scatter was larger than the VRS coordinates.

|                   | EAST        | NORTH        | Diff X | Diff Y |
|-------------------|-------------|--------------|--------|--------|
| Known Coordinates | 473113.1740 | 1272888.1020 |        |        |
| Mean VRS          | 473113.1817 | 1272888.1021 | -0.007 | 0      |
| Observation       |             |              |        |        |
| Mean RRS          | 473113.1700 | 1272888.0927 | 0.004  | 0.009  |
| Observation       |             |              |        |        |

*Table 2-4: Comparison of average VRS and RRS coordinates to control point coordinates.* 



Figure 2-8: Comparison of Observations of RRS vs VRS over known point 808D with R8s receiver

**17 |** Page



Accuracy Verification of Cadastral Survey with Khmer GEONET – Final Report

Figure 2-9: Comparison of Observations of RRS vs VRS over known point 808D with Topcon HiPer VR receiver

2.1.3.3 Comparison of accuracy of different makes and models of GNSS rover receiver

Although different manufacturers use different chips and technologies on board the receiver, the main factors affecting rover performance are;

- 1. The number of constellations tracked e.g. GPS, BeiDou, GLONASS
- 2. The frequencies tracked i.e. L1, L2, L5

Table 1-4 shows the specifications of the rover receivers utilized on this project. Only two of the models were dual frequency; the Topcon HR and the ZED-F9P.

#### 2.1.3.4 Comparison of accuracy under different Ionospheric conditions

#### Background

Trimble Pivot Platform includes powerful integratory monitoring functions to predict rover performance in the field. From the Trimble Pivot Help:

In a reference station network the most critical error components are, first, the differential ionospheric residual error between the reference station network and the rover, i.e. the level of differential ionosphere the rover "sees" in the data, and, second, the geometric errors. If these effects are known, they can improve the RTK reliability and productivity of rovers working in a networking system. The Network Processor module removes the linear parts of these effects by applying ionospheric and geometric corrections to the raw data.

Under disturbed ionospheric condition, ionospheric residuals cannot be considered as linear. The Network Processor module also describes the potential non-linear residual errors in the generated data stream transmitted to the user. This can also be considered as integrity monitoring for residual interpolation and ambiguity resolution in the network. **It is a very useful tool to predict the rover performance**.

To find the non-linear residual errors, the Network Processor module omits one reference station from the interpolation that uses adjacent stations and then compares the interpolation results at that station with the real measurements. It computes the interpolation error separately for the ionospheric and the geometric contribution, and it provides a weighted RMS over all satellites.

For stations at the border of a network, only extrapolations are possible. Therefore, the Network Processor module cannot provide the non-linear residuals. For example, for the stations A, B, and C in the figure below, no remaining residual errors can be estimated. Source: Trimble Pivot Help Manual



Figure 2-10: Diagram of example network and residual calculations

The Network Processor module creates a graphic overview on the predicted rover performance in terms of the Predicted Ionospheric Error (IRIM) and the Predicted Geometric Error (GRIM). For each hour of the day, it accumulates the RMS values of all network stations (except those stations building the edges of the network) for the ionospheric part as well as for the geometric part. It computes the 95% interpolation uncertainty value, where the worst 5% of the data are rejected. The highest then remaining value for the respective hour is displayed.

**Conclusion 2. Predicting Rover Performance -** Since the current Khmer GEONET only includes 5 stations, it could be expected that it is likely not possible to accurately calculate the non-linear residuals. However, once the network is expanded, this function of Trimble Pivot will be very important in understanding rover performance and communicating this information to users. This is especially true as we approach the solar maximum in July 2025, when ionospheric disturbance is expected to have a bigger impact on GNSS performance and accuracy.

To check the accuracy under different ionospheric conditions, observations were made on the 23<sup>rd</sup> September 2023 with the following session times.

| Date:                | 23-09-2023    |
|----------------------|---------------|
| Receiver Model:      | Trimble R12   |
| Observation Period1: | 08:00 - 09:00 |

Page | 20

| Observation Period2: | 11:30 - 16:00 |
|----------------------|---------------|
| Observation Period3: | 16:30 - 17:00 |
| Known Point:         | 808D          |

The ionospheric conditions reported by Trimble Pivot Platform are shown in the figures below. There are three main indicators of ionospheric conditions; Ionospheric Index (I95), Predicted Ionospheric Error (IRIM) and Predicted Geometric Error (GRIM).



Figure 2-11: I95 Index on 23-09-2023



Figure 2-12: Predicted Ionospheric Error (IRIM) on 23-09-2023



Figure 2-13: Predicted Geometric Error (GRIM) on 23-09-2023



Figure 2-14: Comparison of Observations under different ionospheric conditions

The graph below shows the Ionospheric Index and Total Electron Count (TEC) as reported by <u>https://www.gnssplanning.com/</u> for the time and location of field the observations.



Figure 2-15: Ionospheric Conditions over time on 23-09-2023

A summary of the results of the observations over time are given in Table 2-5 below.

| No | Session Time  | 195    | IRIM | GRIM  | Δ to known<br>point (m) |
|----|---------------|--------|------|-------|-------------------------|
| 1  | 08:00 - 09:00 | Medium | 0.01 | 0.006 | 0.095                   |
| 2  | 11:30 - 12:30 | High   | 0.02 | 0.015 | 0.028                   |
| 3  | 14:40 - 15:30 | High   | 0.01 | 0.015 | 0.038                   |
| 4  | 16:30 - 17:00 | Medium | 0.02 | 0.014 | 0.008                   |

*Table 2-5: Sessions for observing under different ionospheric conditions* 

#### Note: Medium values relate to I95 values of > 4 and high values > 8

From the figures and summary above it can be seen that there is no clear correlation between higher I95 values and larger errors. The largest error (0.095 m) was observed during a period of medium I95 activity as was the smallest error (0.008 m). For the two periods of high I95 activity, the error was not that high 0.028 and 0.38 respectively.

There is seemingly no strong correlation between the I95 value and the predicted Geometric (GRIM) errors, as reported by Trimble Pivot (Figure 2-11 to Figure 2-15).

**Conclusion 3.** Ionospheric activity as measured by the I95 index varied from Medium (I95 > 4) and High (I95 > 8). However, for the four observation periods on the date of observation, no clear correlation was found between the I95 index and the error observed over a known point. It is recommended that further investigation be conducted to understand the influence of high ionospheric activity.

## 2.1.3.5 Determination of accuracy at longer baseline distances from the nearest station

To determine the accuracy of longer baseline distances, two tests were devised;

- 1. A check of the fixing performance at different distances from the nearest CORS station; and
- 2. Calculate the accuracy of observed vs. known coordinates for different distances from the nearest CORS station.

Table 2-6 below shows the results of the checks of the fixing performance at different distances from the nearest CORS station. These observations were not over known points, but over temporary locations. All receivers permed well at all distances, except the ZED-F9P, which saw decreasing fixed performance with increased distance from the nearest base.

| Distance<br>(km) | ZED-F9P | Trimble<br>R10 | Trimble<br>R8s | SinoGNSS | CHC i80 |
|------------------|---------|----------------|----------------|----------|---------|
| 10               | 100     |                |                |          |         |
| 20               | 100     | 100            | 100            | 100      | 97      |
| 30               | 96      |                |                |          |         |
| 40               | 85      |                |                |          |         |
| 50               | 74      | 100            | 100            | 100      | 100     |
| 70               | 51      |                |                |          |         |
| 100              | 3       |                |                | 100      |         |

Table 2-6: Fixing performance vs. baseline length for ZED-F9P GNSS receiver

For the second set of checks, four known points were selected at increasing distance from the nearest CORS station and a Trimble R10 rover setup over each point. Observations were made for 5 minutes over each point and the results are given in Table 2-7 and Figure 2-16 below. As you can see, the error is quite small and increasing linearly, even to a distance of 86 km from the nearest base station.

| No. | Point ID | Nearest<br>CORS<br>Station | Distance<br>to station<br>(KM) | Δ East | Δ North    | Linear | Date  |
|-----|----------|----------------------------|--------------------------------|--------|------------|--------|-------|
| 1   | 5E       | KSP                        | 5.7                            | 0.002  | 0.011      | 0.011  | 23/09 |
| 2   | 808D     | PNH                        | 18.1                           | 0.016  | -<br>0.001 | 0.016  | 24/09 |
| 3   | 21A      | KND                        | 48.4                           | 0.016  | -<br>0.018 | 0.024  | 21/09 |
| 4   | 6D       | KNG                        | 86.9                           | 0.033  | 0.024      | 0.036  | 27/09 |

| Table 2-7: Horizontal errors observed over l | known points at | increasing distance |
|----------------------------------------------|-----------------|---------------------|
|----------------------------------------------|-----------------|---------------------|





**Conclusion 4.** Based on the tests over four known points, it can be concluded the positioning accuracy of Khmer GEONET is high and increases linearly with distance from the nearest station. This means that the network correction is accurate reliable even at moderate distances (30 – 50 km).

# 2.1.3.6 Determine the repeatability of measurements under field conditions for cadastral survey.

Two sites were selected for determining the repeatability of field measurements; Location 1 at Prey Popel Village, Peuk Commune, Angk Snuol District, Kandal Province and location 2 at Anlong Thloeng Village, Moha Sang Commune, Phnum Sruoch District, Kampong Speu Province.

The procedure was as follows:

- 1. Setup tripod over point 1
- 2. Measure point in RTK mode
- 3. Repeat measure 3 times in succession
- 4. Move tripod to point 2
- 5. Repeat steps 1-3



Figure 2-17: Tripod Setup for boundary survey



Figure 2-18: Boundary Survey Scheme in Angk Snuol District



Figure 2-19: Boundary Survey Scheme in Phnum Sruoch District

The results for the boundary survey are shown below for the CHCi80 receiver. It can be seen that the difference between measurements of the same point is very small, with a maximum difference of 3mm X, 2mm Y and 5mm Z across the two sites.

|             |            | - 144   |             | - 100   |       | - 100   |                 |                 |
|-------------|------------|---------|-------------|---------|-------|---------|-----------------|-----------------|
| Name        | Easting    | Diff.   | Northing    | Diff.   | Elev. | Diff.   | Start Time      | End Time        |
| Boundary1-1 | 469533.742 |         | 1271519.702 |         | 7.027 |         | 7/31/2023 15:23 | 7/31/2023 15:23 |
| Boundary1-2 | 469533.741 | (0.001) | 1271519.702 | 0.000   | 7.027 | 0.000   | 7/31/2023 15:23 | 7/31/2023 15:23 |
| Boundary1-3 | 469533.739 | (0.002) | 1271519.702 | -       | 7.024 | (0.003) | 7/31/2023 15:23 | 7/31/2023 15:23 |
| Boundary2-1 | 469442.219 |         | 1271524.216 |         | 7.346 |         | 7/31/2023 15:52 | 7/31/2023 15:52 |
| Boundary2-2 | 469442.218 | (0.001) | 1271524.216 | 0.000   | 7.343 | (0.002) | 7/31/2023 15:52 | 7/31/2023 15:52 |
| Boundary2-3 | 469442.217 | (0.001) | 1271524.216 | (0.000) | 7.344 | 0.000   | 7/31/2023 15:52 | 7/31/2023 15:52 |
| Boundary3-1 | 469427.044 |         | 1271415.808 |         | 7.266 |         | 7/31/2023 15:56 | 7/31/2023 15:56 |
| Boundary3-2 | 469427.047 | 0.003   | 1271415.811 | 0.002   | 7.270 | 0.004   | 7/31/2023 15:56 | 7/31/2023 15:56 |
| Boundary3-3 | 469427.045 | (0.002) | 1271415.81  | (0.000) | 7.266 | (0.004) | 7/31/2023 15:56 | 7/31/2023 15:56 |
| Boundary4-1 | 469536.016 |         | 1271417.536 |         | 7.055 |         | 7/31/2023 16:15 | 7/31/2023 16:15 |
| Boundary4-2 | 469536.016 | (0.000) | 1271417.533 | (0.003) | 7.054 | (0.001) | 7/31/2023 16:15 | 7/31/2023 16:15 |
| Boundary4-3 | 469536.019 | 0.003   | 1271417.53  | (0.003) | 7.056 | 0.002   | 7/31/2023 16:15 | 7/31/2023 16:16 |
|             | Mean       | (0.000) |             | (0.000) |       | 0.000   |                 |                 |
|             | Мах        | 0.003   |             | 0.003   |       | 0.004   |                 |                 |

Table 2-8: Boundary Survey Results for CHC i80 receiver at Ank Snuol Site

Table 2-9: Boundary Survey Results for CHC i80 receiver at Phnum Sruoch

| Name        | Easting    | Diff.   | Northing    | Diff.   | Elev.  | Diff.   | Start Time     | End Time       |
|-------------|------------|---------|-------------|---------|--------|---------|----------------|----------------|
| Boundary1-1 | 434825.136 |         | 1261137.258 |         | 36.498 |         | 8/1/2023 11:00 | 8/1/2023 11:00 |
| Boundary1-2 | 434825.135 | (0.001) | 1261137.259 | 0.001   | 36.499 | 0.002   | 8/1/2023 11:00 | 8/1/2023 11:00 |
| Boundary1-3 | 434825.131 | (0.004) | 1261137.26  | 0.001   | 36.505 | 0.005   | 8/1/2023 11:00 | 8/1/2023 11:01 |
| Boundary2-1 | 434876.952 |         | 1261035.41  |         | 36.300 |         | 8/1/2023 11:49 | 8/1/2023 11:49 |
| Boundary2-2 | 434876.952 | -       | 1261035.412 | 0.002   | 36.298 | (0.002) | 8/1/2023 11:49 | 8/1/2023 11:49 |
| Boundary2-3 | 434876.952 | (0.001) | 1261035.411 | (0.001) | 36.300 | 0.001   | 8/1/2023 11:49 | 8/1/2023 11:49 |
|             | Mean       | (0.000) |             | (0.000) |        | 0.000   |                |                |
|             | Мах        | 0.004   |             | 0.002   |        | 0.005   |                |                |

**Conclusion 5.** To simulate a real-world cadastral boundary survey, field tests were conducted to determine the repeatability of surveys of the same point on the same day. The results indicate the difference between repeated measures of the same point is very small, with a maximum of 4mm difference and an

average difference sub-mm. This demonstrates the robustness and reliability of Khmer GEONET for cadastral mapping purposes.

#### 2.2 Use of KhmerGEONET

#### 2.2.1 Details of the KhmerGEONET data used

Khmer GEONET was used as follows.

| Table | 2-10 | Khmer  | GFONET | data | used |
|-------|------|--------|--------|------|------|
| TUDIC | 2 10 | RITICI | GLONLI | uutu | uscu |

| IP address             | 221.120.160.130                 |
|------------------------|---------------------------------|
| Port                   | 2101                            |
| Mount point            | RRS & VRS                       |
| User name              |                                 |
| Devied of yes          | 29 07 2023 – 05 08 2023         |
| Period of use          | 13 08 2023 – 29 09 2023         |
| RTK/ Post processing   | RTK                             |
| Satellite systems used | GPS/GLONASS/BeiDou/Galileo/QZSS |

#### 2.2.2 Problems occurred and solutions

No major problems were encountered with the Khmer GEONET network during the pilot project.

#### 2.3 Other related activities

No other related activities were performed during the pilot project.

## 3. Way forward

#### 3.1 Future outlook of the business using Khmer GEONET

To date, cadastral survey has relied on single GNSS base stations of unknown providence that are subject outages due to power or communication failure. With the expansion of Khmer GEONET, cadastral surveyors and others will have access to a low cost, accurate and reliable correction source. Because Khmer GEONET is maintained by the department with responsibility for positioning in Cambodia, the GDCG, users can trust that the positions are official and will allow them to integrate their maps and drawings with other agencies and organizations. The net result will be more projects delivered on time and with lower cost, more land parcels surveyed per year, the reduction or elimination of large positioning errors and general economic prosperity.

#### 3.2 About KhmerGEONET

#### 1) Good points using KhmerGEONET

The availability of NRTK for the first time in Cambodia is of great benefit to surveyors, particularly cadastral surveyors. Based on the work conducted for this demonstration project would note the following positive points;

- 1. NRTK networks are more reliable than single base station networks, because even if a single station is offline, a correction signal can still be broadcast to rovers in that area.
- 2. NRTK networks are more accurate than single base solutions, particularly in their ability to model errors caused by ionospheric activity.
- 3. Khmer GEONET produces, precise, reliable network corrections that users can trust.
- 4. Khmer GEONET is based on open standards, meaning that all makes and models of GNSS rover receiver are supported, allowing access by a larger user base.
- The availability Khmer GEONET will reduce the cost and complexity for organizations who would otherwise have to operate their own base station. This will mean the wider adoption of GNSS positioning technologies over older surveying methods.
- 6. Khmer GEONET is based on an official, robust calculation of station coordinates, meaning that accuracy will be achieved and there will be a consistency between positioning by different organizations. Presently, other organizations use a range of national reference control points for GNSS positioning, with unknown accuracy.
- 7. Khmer GEONET has proven to have a higher availability (uptime) than other base station infrastructure. This will mean that works can be completed in less time and for a lower cost.

- 8. The availability of static data for download from Khmer GEONET is of great benefit for survey and engineering projects who need to establish control points on site.
- 9. Khmer GEONET has a large, active community with more than 1,300 registered users and more than 250 weekly active users and support is available to users who are learning the system or experiencing problems.
- 10. Khmer GEONET opens the possibility, for the first time, applications beyond land survey, including land and water navigation, precision agriculture, self-driving transportation to name a few.

#### 2) Issues to be solved

Based on the testing that we conducted, there are no outstanding issues to be resolved. Of course, the current network of 5 stations has limited coverage, therefore can only be applied to cadastral survey within vicinity of this network. Expansion of the network to cover the whole country would be of great benefit to this activity, which is of national importance.

#### 3) Request for improvement

We would request the following points for improvement;

- 1. Increased coverage in the country of Khmer GEONET
- 2. Guidance for users on the impact of ionospheric activity on survey accuracy, especially leading up to the solar maximum in July 2025.
- 3. Communication of periods of periods of highest solar activity on a daily basis
- 4. Practical guidance on how to manage/mitigate the impact on solar activity in the context of cadastral survey.

## 4. Conclusion

In conclusion, the results of the pilot project indicate that Khmer GEONET, with 5 stations is already providing a robust, reliable and acute correction to rovers in the field, operating under typical conditions. With the planned expansion of the network, this reliability and robustness can be expected to increase, particularly in terms of redundancy and also for Trimble Pivot to model the non-linear errors in the network and consider how that might be impacting rover performance.

One area that should receive close attention is the impact that ionospheric disturbance is having on network performance and how that impacts accuracy during peaks, which often happen each day.

Project on Establishment of Continuously Operating Reference Stations (CORS) for Land Management and Infrastructure Development

# JICA Pilot Project Demonstration project Imprementation Report

October 2023 IKEE PAVING SYSTEMS TOPCON CORPORATION TOPCON POSITIONING ASIA

## Table of Contents

| 1.   | Overview of the  | e demonstration project                  | 1  |
|------|------------------|------------------------------------------|----|
| 1.1. | Name of the      | demonstration project                    | 1  |
| 1.2. | Background a     | and purpose of the demonstration project | 1  |
| 1.3. | Brief descript   | ion of the demonstration project         | 1  |
| 1.4. | Implementati     | ion period                               | 2  |
| 1.5. | Location of th   | ne demonstration project site            | 2  |
| 1.6. | Members          |                                          | 4  |
| 1.7. | Equipment us     | sed for the demonstration project        |    |
| 2.   | Details of the w | /ork                                     | 8  |
| 2.1. | Work perform     | ned                                      | 8  |
| 2.1. | 1. Preparation   | ۱                                        | 8  |
| 2.1. | 2. Implement     | ation                                    | 11 |
| 2.1. | 3. Results       |                                          | 15 |
| 2.2. | Use of Khmer     | r GEONET                                 | 23 |
| 2.2. | 1. Details of t  | he Khmer GEONET data used                | 23 |
| 2.2. | 2. Problems o    | occurred and solutions                   | 23 |
| 2.3. | Other related    | activities                               | 23 |
| 3.   | Way forward      |                                          | 26 |
| 3.1. | Future outloo    | ok of the business using Khmer GEONET    | 26 |
| 3.2. | About Khmer      | GEONET                                   | 26 |
| 1)   | Benefits of      | using Khmer GEONET                       | 26 |
| 2)   | Issues to b      | e solved                                 | 26 |
| 3)   | Requests fo      | or improvement                           | 27 |
| 4.   | Conclusion       |                                          | 28 |

## 1. Overview of the demonstration project

#### 1.1. Name of the demonstration project

EN: Utilize Khmer GEONET data in the construction project

KM: ការប្រើប្រាស់ទិន្នន័យ Khmer GEONET ក្នុងគម្រោងសាងសង់

#### 1.2. Background and purpose of the demonstration project

The background behind the use of Khmer GEONET distribution data for civil engineering surveying was the establishment of five Continuously Operation Reference Stations (CORSs) in Cambodia and the start of Khmer GEONET operation.

In this project, it was decided to evaluate the accuracy and workability of the conventional survey method for civil engineering construction and GNSS-based surveying.

Accuracy comparisons were made between Static survey and N-RTK survey methods, and accuracy and workability comparisons were also made between N-RTK and RTK survey methods. This project objective was to use the evaluation and findings to provide information, including advice, on the use of N-RTK survey using Khmer GEONET provided data for future civil engineering surveys.

#### 1.3. Brief description of the demonstration project

1: Comparisons of the civil engineering construction survey methods between the conventional survey (level survey) and GNSS survey (RTK survey by mmGPS).

• Accuracy comparisons were made between the conventional method (level survey) and GNSS survey method (mmGPS). The results showed that the average difference among the 66 observation points on 11 cross-sections in the assessment area was approximately ±4 mm in accuracy.

• In terms of workability, the operating time was the same for both the conventional method (level survey) and GNSS survey method (mmGPS). The conventional method required 5 workers while GNSS survey required only 2, less than half of that number.

2: The results of comparisons between Static survey and N-RTK survey showed that the fixed rate of the N-RTK survey was lower, and it was not possible to perform the accuracy comparison under this condition.

3: Comparisons between N-RTK and RTK surveys
• For accuracy, the average differences were 1.2 cm for X, 0.2 cm for Y, and -3.8 cm for H, which is generally acceptable when used as N-RTK survey. In terms of operating time and number of people, N-RTK survey resulted in higher productivity.

\*Details are available in 2.1.3 "Results."

# 1.4. Implementation period

Preparation: Feb 2023 – Mar 2023

Work at the site: Mar. 2023 – Jun. 2023

Reporting: Jun. 2023 – Oct. 2023





# 1.5. Location of the demonstration project site

The project was carried out at the site of the National Road No. 5 Improvement Project in Phum Puk Chhma district, near Battambang City.

Address: Phum Puk Chhma, Cambodia

Location on route drawings: PK282 + 100 to PK281 + 300

Coordinates: X: 1443404.556, Y: 312330.616

(From the observation point results of Static survey near the implementation site.)



Figure 1-1 Location of the demonstration project site (Source from Google map)



Figure 1-2 Location of the demonstration project site (Phum Puk Chhma, National Road 5 improvement project site)

# 1.6. Members

The members listed below performed the demonstration project.

| NO. | Name               | Company/Organization                 | Role                                                                  |
|-----|--------------------|--------------------------------------|-----------------------------------------------------------------------|
| 1   | Kazunori Miyamoto  | IKEE Paving Systems                  | Project Manager                                                       |
| 2   | Bun Sereyvathanak  | IKEE Paving Systems                  | Support field survey & data calculation                               |
| 3   | Seang Sotheany     | IKEE Paving Systems                  | Support field survey & data calculation                               |
| 4   | Naoyuki Tamaki     | TOPCON CORPORATION                   | Assistant Project<br>Manager                                          |
| 5   | Takashi Ogawa      | TOPCON POSITIONING<br>ASIA(THAILAND) | Prepare equipment                                                     |
| 6   | Koichiro Fuse      | TOPCON POSITIONING ASIA              | Support data calculation & evaluation                                 |
| 7   | Shunichi Takahashi | TOPCON POSITIONING ASIA              | Data calculation & evaluation                                         |
| 8   | Soun Tivea         | CAM-ES                               | Prepare equipment<br>(import & export work) &<br>Support field survey |
| 9   | Pauv Amrong        | CAM-ES                               | Prepare equipment<br>(import & export work) &<br>Support field survey |
| 10  |                    |                                      |                                                                       |

| Table 1-2 LISCOL MEMORIES | Table | 1-2 | List | of | members |
|---------------------------|-------|-----|------|----|---------|
|---------------------------|-------|-----|------|----|---------|

# 1.7. Equipment used for the demonstration project

The equipment listed below were used for the demonstration project.

| NO. | Name                            | Quantity | Remarks<br>(specifications, usage,<br>etc.) |
|-----|---------------------------------|----------|---------------------------------------------|
| 1   | TOPCON GNSS Receiver HiPerHR    | 2        | GNSS Receiver                               |
| 2   | TOPCON GNSS Receiver HiPerVR    | 1        | GNSS Receiver                               |
| 3   | TOPCON Field Controller FC-5000 | 1        | Field computer                              |
| 4   | TOPCON Field Controller FC-6000 | 2        | Field computer                              |
| 5   | TOPCON mmGPS Laser Transmitter  | 2        | Surveying option equipment                  |

Table 1-3 List of equipment used

| NO. | Name                                       | Quantity | Remarks<br>(specifications, usage,<br>etc.) |
|-----|--------------------------------------------|----------|---------------------------------------------|
| 6   | TOPCON mmGPS Laser Receiver                | 1        | Surveying option equipment                  |
| 7   | GNSS External Battery & Tripod             | 3        | Survey accessories                          |
| 8   | WIFI router                                | 3        | Data communication                          |
| 9   | TOPCON Magnet Tools (Calculation Software) | 1        | Calculation software                        |
|     |                                            |          |                                             |

# GNSS receiver HiPerHR



| GNSS TECHNOLO                   | GIES (SIGNAL TRACKING)                                                                                                             |  |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| GPS                             | L1 C/A, L1C, L1P(Y), L2P(Y), L2C, L5                                                                                               |  |  |  |  |  |  |
| GLONASS                         | L1 C/A, L1P, L2C/A, L2P, L3C                                                                                                       |  |  |  |  |  |  |
| Galileo                         | E1, E5a, E5b, E5 AltBOC, E6                                                                                                        |  |  |  |  |  |  |
| BeiDou                          | B1, B2, B3                                                                                                                         |  |  |  |  |  |  |
| IRNSS (NavIC)                   | SPS-L5                                                                                                                             |  |  |  |  |  |  |
| SBAS                            | WAAS/EGNOS/MSAS                                                                                                                    |  |  |  |  |  |  |
| QZSS                            | L1 C/A, L1C, L2C, L5, LEX                                                                                                          |  |  |  |  |  |  |
| L-band                          | Yes                                                                                                                                |  |  |  |  |  |  |
| Universal Tracking<br>Channels™ | 452 GNSS channels Vanguard Technology™ with Universal<br>Tracking Channels™; 4 reserved for L-band                                 |  |  |  |  |  |  |
| TILT™                           | Topcon Integrated Leveling Technology™                                                                                             |  |  |  |  |  |  |
| GNSS Antenna                    | Integrated Full wave Fence Antenna™ technology with internal<br>ground plane                                                       |  |  |  |  |  |  |
| POSITIONING PER                 | FORMANCE                                                                                                                           |  |  |  |  |  |  |
| Precision Static                | H: 3 mm + 0.1 ppm   V: 3.5 mm + 0.4 ppm                                                                                            |  |  |  |  |  |  |
| Static/Fast Static*             | H: 3 mm + 0.3 ppm   V: 5 mm + 0.5 ppm                                                                                              |  |  |  |  |  |  |
| RTK                             | H: 5 mm + 0.5 ppm   V: 10 mm + 0.8 ppm                                                                                             |  |  |  |  |  |  |
| Code Differential GNSS          | H: <0.4m   V: <0.6m                                                                                                                |  |  |  |  |  |  |
| RTK, TILT Compensated           | H: 1.3 mm <sup>/</sup> "Tilt; Tilt ≤ 10°   H: 1.8 mm/"Tilt; Tilt > 10°<br>Maximum recommended angle for tilt compensation is 15°** |  |  |  |  |  |  |
| COMMUNICATION                   | S                                                                                                                                  |  |  |  |  |  |  |
| Internal Radio (Optional)       | 405-470 MHz UHF or FH915 spread spectrum<br>Max Transmit Power: 1W<br>Range: 5-7 km typical: 15 km in optimal conditions.***       |  |  |  |  |  |  |
| Cellular                        | 3.5G                                                                                                                               |  |  |  |  |  |  |
| LongLink™ Bluetooth             | Up to 328.1 m / 1000 ft                                                                                                            |  |  |  |  |  |  |
| WE                              | Yes                                                                                                                                |  |  |  |  |  |  |
| Bluetooth™                      | Yes                                                                                                                                |  |  |  |  |  |  |
| Connectors                      | 1 Power, 1 Serial, 1 USB, 2 Connectors                                                                                             |  |  |  |  |  |  |
| DATA FORMAT AN                  | D MEMORY                                                                                                                           |  |  |  |  |  |  |
| Data Output                     | TPS, RTCM, CMR/CMR+, NMEA, BINEX                                                                                                   |  |  |  |  |  |  |
| Internal Memory                 | 8 GB                                                                                                                               |  |  |  |  |  |  |
| Update Rate                     | Up to 20Hz                                                                                                                         |  |  |  |  |  |  |
| POWER                           |                                                                                                                                    |  |  |  |  |  |  |
| External Power Supply           | 9.0 - 28.0 V DC                                                                                                                    |  |  |  |  |  |  |
| Battery                         | Internal: Li-ion 5,200 mAh, 3.7 V<br>External: Li-ion 2,900 mAh, 7.2 V (Hot swappable)                                             |  |  |  |  |  |  |
| Operating time with radio       | Up to 9 hours with included batteries.<br>Refer to the operator's manual for more information                                      |  |  |  |  |  |  |
| HARDWARE                        |                                                                                                                                    |  |  |  |  |  |  |
| Dimensions (W x H)              | 11.5 cm x 13.2 cm (4.53 in x 5.20 in)                                                                                              |  |  |  |  |  |  |
| Weight                          | 1.172 kg (2.58 lb) with batteries                                                                                                  |  |  |  |  |  |  |
| Ingress Protection              | Dust and water IP67                                                                                                                |  |  |  |  |  |  |
| Vibration                       | MIL-STD 810G                                                                                                                       |  |  |  |  |  |  |
| Drop                            | Survive 2m pole drop on concrete surface                                                                                           |  |  |  |  |  |  |
| Operating Temperature           | -40° C to +65° C (-40° F to +149° F)                                                                                               |  |  |  |  |  |  |
| Humidity                        | 100%                                                                                                                               |  |  |  |  |  |  |

#### GNSS receiver HiPerVR

|                 |               |                                                                                     | Positioning P                       | Performance                                                                                                            |
|-----------------|---------------|-------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1               |               |                                                                                     | Static/<br>Fast Static              | H: 3 mm + 0.4 ppm<br>V: 5 mm + 0.5 ppm*                                                                                |
|                 | GNSS Tracki   | na                                                                                  | RTK                                 | H: 5 mm + 0.5 ppm<br>V: 10 mm + 0.8 ppm                                                                                |
|                 | Channel Count | annel Count 226 with Topcon's patented<br>Universal Tracking Channels™              |                                     | H: 1.3 mm/°Tilt; Tilt ≤ 10°<br>V: 1.8 mm/°Tilt; Tilt > 10°<br>Maximum recommended an<br>for tilt compensation is 15°.* |
|                 |               | technology.                                                                         | DGPS                                | 0.25 m HRMS                                                                                                            |
|                 | Signal        |                                                                                     | L-Band, D<br>Corrections<br>Service | H: < 0.1 m (95%)<br>V: < 0.2 m (95%)                                                                                   |
|                 | GPS Signals   | L1 C/A, L1C <sup>+</sup> L2C, L2P(Y), L5<br><sup>1</sup> L1C when signal available. | Operational<br>Time                 | RX mode - 10hr<br>TX mode 1W - 6hr<br>Use of external 12V battery is                                                   |
|                 | GLONASS       | <sup>‡</sup> L3C when signal available.                                             |                                     | with internal radio in transmit mode                                                                                   |
|                 | Galileo       | E1/E5a/E5b/Alt-BOC                                                                  | Internal Radios                     | 425-470 MHz UHF radio<br>Max Transmit Power: 1W<br>Range: 5-7 km typical; 15 km                                        |
|                 | BeiDou/BDS    | B1, B2                                                                              |                                     | in optimal conditions.***                                                                                              |
|                 | IRNSS         | L5                                                                                  | Memory                              | Internal Non-removable 8 GB<br>SDHC                                                                                    |
| -               | 00040         |                                                                                     | Environmental                       | Ingress Rating - IP67                                                                                                  |
|                 | SBAS          | WAAS, EGNUS, MSAS,                                                                  |                                     | Operating Temp –<br>-40°C to 70°C                                                                                      |
| [ (COP TOP COD) |               | SAGAIN (LT/LD*)                                                                     |                                     | Humidity – 100%, condensing                                                                                            |
|                 | L-band        | TopNET Global D & C                                                                 |                                     | Drop and Topple –<br>1.0 m drop to concrete.<br>2.0 m pole drop to concrete.                                           |
|                 | QZSS          | L1 C/A, L1C, L1-SAIF, L2C, L5                                                       | Dimensions                          | 150 x 100 x 150 mm<br>(w x h x d)                                                                                      |
|                 |               |                                                                                     | Weight                              | <1.15 kg                                                                                                               |
|                 |               |                                                                                     |                                     |                                                                                                                        |

### mmGPS Laser Transmitter LZ-T5

| Operating range               |                                           | Plumb beam               |                                       |
|-------------------------------|-------------------------------------------|--------------------------|---------------------------------------|
| Zone radius                   | 300 m (985 ft) *1                         | Light source             | Laser diode (visible laser)           |
| Zone width                    | +/-10° (5 m to 30 m), +/-5 m (30 m to 300 | Laser class              | Class 2                               |
| tone widen                    | m)*                                       |                          |                                       |
|                               |                                           | Communication section    |                                       |
| General accuracy              |                                           | Serial                   | One port, in compliance with RS-232C  |
| laiaht ann man i              | 5 mm + 50 ppm X D (D: Horizontal distance | Bluetooth                | One port, v2.1 + EDR                  |
| reignic accuracy              | [mm])*                                    | Range                    | 10 m (in controller communication)    |
|                               | *When used in combination with the PZS-1  |                          |                                       |
|                               |                                           | Power source section     |                                       |
| Thannels                      | 4                                         | Standard battery         | Ni-MH battery pack BT-67Q             |
|                               |                                           | Charging time            | Approx. 7 hours (using with Ad-11D/at |
| aser                          |                                           |                          | +20°C (+68°F))                        |
| ight source                   | Laser diode (invisible laser)             | Operating time           | Approx. 18 hours (at +20°C (+68°F))   |
| .aser class                   | Class 1                                   | Range of charging        | 10 to 40°C                            |
|                               |                                           | temperature              |                                       |
| Auto leveling section         |                                           |                          |                                       |
| Auto leveling range           | +/-3°                                     | General                  |                                       |
| into retream Bronge           | 12                                        | Protection against water | IP66 (based on the standard IEC60529) |
| ensitivity of circular level  | 10 ft / 2 mm                              | and dust                 | 2015. 5015/ 45. (2015)                |
| constrainty of circular level |                                           | Operating temperature    | -20°C to +50°C (-4°F to +122°F)       |
| Potational speeds             | 600 rpm                                   | Storable temperature     | -30°C to +60°C (-22°F to +140°F)      |
| totational speeds             | ooorpin                                   | range                    |                                       |
|                               | 1                                         | Dimensions               | 232(W) x 192(D) x 280(H) mm [9.1(W) x |
|                               |                                           |                          | /.8(D) x 11.0(H) inj                  |
|                               |                                           | Weight                   | 4.3 kg (9.5 lbs) (Ni-MH battery type: |
|                               |                                           |                          | including B1-6/Q)                     |



# mmGPS Laser Receiver PZS-1



| Detective angle                               |                                             |
|-----------------------------------------------|---------------------------------------------|
| Horizontal                                    | +/- 10°                                     |
| Vertical                                      | +/- 10°                                     |
| Serial port                                   | RS-232C                                     |
| Power supply                                  | BT-62Q                                      |
| Continuous operating time at +20°C<br>(+68°F) | Approx. 8 hours                             |
| Tripod screw                                  | 5/8 inch x 11 thread                        |
| Operating temperature                         | -20°C to +50°C (-4°F to +122°F)             |
| Protection against water                      | IPX6 (Based on the standard<br>IEC60529)    |
| Dimensions                                    | Approx. 170(W) x 86(D) x 144(H)<br>mm       |
|                                               | Approx. [6.69(W) x 3.38(D) x<br>5.67(H) in] |
| Weight                                        | Approx. 1 kg [2.2 lbs] (With<br>battery)    |

# Field Computer FC-5000 / FC-6000



|                     |                                                                                                  | -          |
|---------------------|--------------------------------------------------------------------------------------------------|------------|
| Hardware            |                                                                                                  | Enviror    |
| CPU                 | Intel® Atom™ Z3745<br>Processor                                                                  | Water/Du   |
| OS                  | Windows <sup>®</sup> 10                                                                          | Operatin   |
| Memory              | 4 GB LPDDR3 RAM,<br>SD slot, user accessible                                                     | Tempera    |
| Display             | 7 in. Sharp screen,<br>Wide XGA at 1280 x 800                                                    | MIL-STD    |
| GPS                 | Type: uBlox NEO M8M<br>Accuracy: 2-5 m                                                           |            |
|                     | Channels: 72<br>Update Rate: 5 Hz                                                                | Dimensio   |
| Camera              | Rear: 8 megapixel with                                                                           | (I x w x h |
|                     | LED Illumination<br>Front: 2 megapixel                                                           | Operatin   |
| Wireless Conne      | ectivity                                                                                         |            |
| Bluetooth®          | Long-range Bluetooth<br>Smart Ready wireless<br>technology, v4.0 +EDR,<br>Class 1.5, BLE support |            |
| Wi-Fi               | 802.11 a/b/g/n<br>2.4 GHz and 5 GHz                                                              |            |
| Cellular (optional) | Internal GSM 4G LTE                                                                              |            |

| Environmental             |                                                                                                            |
|---------------------------|------------------------------------------------------------------------------------------------------------|
| Water/Dust Rating         | IP68 certified                                                                                             |
| Operating Temp            | -20°C to 50°C                                                                                              |
| Temperature Shock         | MIL-STD 810G                                                                                               |
| MIL-STD 810G              | Drop 4 ft. (1.2 m), vibration,<br>humidity, tumble spec:<br>1,000 1.6 ft. / 0.5 m<br>tumbles (2,000 drops) |
| Dimensions<br>(I x w x h) | 13.71 x 3.45 x 21.5 cm                                                                                     |
| Operating Time            | Up to 15 hours<br>(5 hours internal batteries,<br>10 hours with swappable<br>batteries)                    |

# 2. Details of the work

# 2.1. Work performed

# 2.1.1. Preparation

The following items were prepared for the National Road No. 5 Improvement Project in Phum Puk Chhma district in the suburbs of Battambang City.

- [1]A plan was made to calculate coordinates of Grand Control Point (1 point) for base station of RTK survey and Grand Control Points (2 points) for set up laser transmitter by conducting Static survey at the site.
- [2]A simultaneous observation program was prepared to perform Static survey (for [1]) and N-RTK survey simultaneously.
- [3]Interviews were held on the conventional survey method with Tekken Corporation, the construction company involved in the National Road No. 5 project, to determine how to compare the conventional survey method with RTK survey (mmGPS) method.
- [4]A method of comparing the accuracy and workability between the N-RTK and RTK surveys using locally established Grand Control Points was determined.
  \*However, the survey for the work described in [4] was carried out in another location. (See 2.1.2 "Implementation" for details.)
- [5]The required mmGPS equipment was imported / exported smoothly. The reason for importing the equipment was cited as "for use in JICA project," and a simultaneous application was made to export the equipment about 3 months after import. The equipment was imported into Cambodia on a provisional import basis without delay.



Figure 2-1 [1] Image of Static survey (Source from Google Map)



Figure 2-2 [2] Image of RTK vs N-RTK (Source from Google Map)



Figure 2-3 [3] Image of RTK (mmGPS)vs Level survey



Figure 2-4 Meeting for surveying plan with MLMUPC and GDCG



Figure 2-5 Meeting for surveying plan with Tekken JV



Figure 2-6 Meeting for surveying plan with Construction surveying team

# 2.1.2.Implementation

1: Conducting Static and N-RTK surveys on site

To obtain the coordinates of the three Grand Control Points (1 for the base station for the RTK survey and 2 for set up laser transmitters) for on-site measurement, 3 points were established on the site and Static survey was carried out. N-RTK survey was also conducted simultaneously.

As for the measurement technique, the survey was carried out under the following conditions and methods.

Receivers used: 3 GNSS receivers (TOPCON, HiPerHR and HiPerVR) in total.

Observation: 2 measurements were carried out simultaneously for Static survey and N-RTK survey.

Observation conditions: Continuous measurement was conducted at the same observation points for 10 hours.

For the observation span, data acquisition was performed once per second for both Static and N-RTK surveys.

Satellites used: GPS, GLONASS, QZSS, GALILEO, BEIDOU

N-RTK observation conditions: See 2.2.1 "Khmer GEONET data utilization" below.





Figure 2-7 Static Survey (Left: Survey for RTK base station / Right: Survey for set up mmGPS equipment)

The survey results are given in 2.1.3 "Results."

2. Comparisons of accuracy and workability between N-RTK and RTK surveys using locally established Grand Control Points

The work was planned for this site on the National Road No. 5, but at a meeting with GDCG, it was found that there were no Grand Control Points near the site. As a result of that meeting, it was decided to conduct the survey in another location.

It was decided to compare N-RTK and RTK surveys using the First order Grand Control Point "KAND" located in Ta Khmau City, about 10 km south of Phnom Penh.

RTK base point was established at the First order Grand Control Point KAND. Observation was performed at 5 points at a football pitch near the base point. The observation was performed by switching between N-RTK and RTK surveys.

As for the measurement technique, the surveys were carried out under the following conditions and methods.

Receivers used: 2 GNSS receivers (TOPCON and HiPerHR) in total.

Observation: RTK and N-RTK surveys were conducted.

Observation conditions: RTK and N-RTK surveys were conducted once each. Observation was performed once per second for a total of 10 seconds, and the average value was recorded.

Satellites used: GPS, GLONASS, QZSS, GALILEO, BEIDOU

N-RTK observation conditions: See 2.2.1 "Khmer GEONET data utilization" below.



Figure 2-8 Location MAP for N-RTK vs RTK in Ta Khmau city

(Provided from GDCG, Map data source from Open street map)





Figure 2-9 Comparison of N-RTK vs RTK survey (Pictures are setting for RTK)





Figure 2-10 Comparison of N-RTK survey vs RTK survey (Pictures are collecting data on survey points)

Comparisons of workability and the survey results are given in 2.1.3 "Results."

3. Comparisons between the conventional and GNSS (mmGPS) survey methods in the road improvement project

RTK survey (mmGPS) was conducted using the Grand Control Points established according to Item 1 under 2.1.2. "Implementation of static survey."

• Measurement was performed within an observation range of 300m from the route PK271 + 700 to PK282 + 000. (The evaluation was conducted within a total range of 100 m from the point where the laser transmitter set up to just fore and back the 50-m mark (PK281 + 820 to 920).)

• The cross-sections were provided with a pitch of 10 meters. Measurements were performed at 7 points per cross-section. (The 7th point was not used for accuracy evaluation because it was outside the road surface.)

• Measurements were performed twice on the road surface previous and after the paved area. The pavement thickness was calculated from the height data.

• After measuring with the conventional method (level survey), the same point was measured with RTK (mmGPS) method.

• RTK (mmGPS) measurement was performed once per second for a total of 10 seconds at each measurement point, and the average value was recorded.





Figure 2-11 Comparison of level survey vs RTK (mmGPS) survey

The survey results are given in 2.1.3 "Results."

# 2.1.3.Results

# 1: Results of Static and N-RTK surveys

# 1-1: The calculation results of Static survey were as follows.

Table 2-1 Calculation result of static survey

|                                           | Х           | Y          | Н      | Lat |     |           | Lon  |     |           | Н      |
|-------------------------------------------|-------------|------------|--------|-----|-----|-----------|------|-----|-----------|--------|
| GB-01(RTK Base)                           | 1443404.556 | 312330.616 | 12.581 | 13° | 03′ | 03.23271″ | 103° | 16′ | 09.39916″ | 12.581 |
| LT-01(Laser Transmitter set position)     | 1443856.412 | 312348.876 | 14.505 | 13° | 03′ | 08.56841″ | 103° | 16′ | 09.96809″ | 14.505 |
| LT-02(Sub Laser Transmitter set Position) | 1443577.281 | 312337.881 | 14.515 | 13° | 03′ | 08.85457″ | 103° | 16′ | 09.60114″ | 14.515 |



Figure 2-12 Static calculation by survey office software (TOPCON Magnet Office)

1-2: Differences between Static and N-RTK surveys

The positioning results of N-RTK survey were as follows:

GB-01 (Grand Control Point for the RTK base station)



Table 2-2 Results of N-RTK survey (GB-01)

# LT-01 (Grand Control Point for laser transmitter)

Table 2-3 Results of N-RTK survey (LT-01)

|            | Data   | %     |   |                                   |
|------------|--------|-------|---|-----------------------------------|
| Autonomous | 0      | 0.0   |   | N-RTK survey accounted for 10% or |
| DGPS       | 0      | 0.0   |   | and normal observation was not    |
| Float      | 8,934  | 35.5  |   | performed.                        |
| Fixed      | 1,696  | 6.7   | Í |                                   |
| Mis Fixed  | 14,570 | 57.8  |   |                                   |
| Total      | 25,200 | 100.0 | ] |                                   |

# LT-02 (Sub-Grand Control Point for laser transmitter)

|            | Data   | %     |   |                                   |
|------------|--------|-------|---|-----------------------------------|
| Autonomous | 481    | 1.9   |   | N-RTK survey accounted for 10% or |
| DGPS       | 0      | 0.0   |   | and normal observation was not    |
| Float      | 23,597 | 93.6  |   | performed.                        |
| Fixed      | 126    | 0.5   | ľ |                                   |
| Mis Fixed  | 996    | 4.0   |   |                                   |
| Total      | 25,200 | 100.0 |   |                                   |

Table 2-4 Results of N-RTK survey (LT-02)

# Results and discussion of Static and N-RTK surveys

- It was not possible to perform a difference comparison between Static and N-RTK surveys because the fixed rates of N-RTK measurements at all 3 points were low and the measurements were not performed successfully. (See the red boxes in Tables 2-2 to 2-4.)
- The distance to the nearest CORS from the observation point was about 75 km, which was the probable cause of the failure to perform successful measurements in N-RTK survey. (Generally, the observable range is within about 30 km from the observation point to the nearest CORS.) When conducting N-RTK survey (or RTK survey), it is necessary to perform measurement within a 30km radius of an existing CORS or to establish a base point for RTK at the site to conduct RTK survey.
- 2: Comparisons of accuracy and workability between N-RTK and RTK surveys using locally established Grand Control Points

# 2-1: The comparison results of the accuracy between N-RTK and RTK surveys using the locally established Grand Control Points were as follows.

|       |      |             |            |        | RTK vs N-RTK  |        |        |
|-------|------|-------------|------------|--------|---------------|--------|--------|
|       |      | Х           | Y          | Н      | $\triangle X$ | ΔY     | ∆H     |
|       | CP01 | 1269085.567 | 494369.84  | -3.754 | 0.013         | -0.009 | -0.057 |
|       | CP02 | 1269100.714 | 494369.331 | -3.763 | 0.018         | 0.013  | -0.013 |
| RTK   | CP03 | 1269122.901 | 494369.271 | -3.68  | 0.014         | -0.003 | -0.004 |
|       | CP04 | 1269070.061 | 494369.286 | -3.77  | 0.012         | 0.002  | -0.056 |
|       | CP05 | 1269047.824 | 494369.401 | -3.818 | 0.005         | 0.004  | -0.062 |
|       | CP01 | 1269085.554 | 494369.849 | -3.697 |               |        |        |
|       | CP02 | 1269100.696 | 494369.318 | -3.75  |               |        |        |
| N-RTK | CP03 | 1269122.887 | 494369.274 | -3.676 |               |        |        |
|       | CP04 | 1269070.049 | 494369.284 | -3.714 |               |        |        |
|       | CP05 | 1269047.819 | 494369.397 | -3.756 |               |        |        |

#### Table 2-5 Differences of N-RTK survey vs RTK survey



Figure 2-13 Location of N-RTK survey vs RTK survey

# <u>2-2: The results of comparisons of workability between N-RTK and RTK surveys using</u> the locally established Grand Control Points were as follows.

|       | Look for & go to GCP | Set up base | Preparation of survey | surveying time | Number of Surveying staff | Working productivity |
|-------|----------------------|-------------|-----------------------|----------------|---------------------------|----------------------|
| N-RTK | Omins                | 0mons       | 5mins                 | 15mins         | 2 persons                 | O                    |
| RTK   | 60mins               | 20mins      | 5mins                 | 15mins         | 3 persons                 | 0                    |

# Consideration of comparison results of accuracy and workability between N-RTK survey and RTK survey using locally established Grand Control Points

- The average differences in accuracy between N-RTK survey and RTK survey using the locally established Grand Control Points were 1.2 cm for X, 0.2 cm for Y, and -3.8 cm for H, which were generally acceptable and comparable for N-RTK surveys.
- In terms of workability, N-RTK survey differs from the RTK survey using the locally established Grand Control Points. N-RTK survey requires no base station and makes it possible to start observation by creating a connection with the Khmer GEONET. This means that N-RTK survey can be conducted in less time than RTK survey. It also requires fewer workers and man-hours.

N-RTK survey requires 20 minutes for observation, compared to 100 for RTK survey, resulting in a 500% increase in productivity.

N-RTK survey requires 2 workers (or man-hours), compared to 3 for the RTK survey, resulting in a 150% increase in productivity.

- 3. Comparisons between the conventional and GNSS (mmGPS) survey methods in the road improvement project
- <u>3-1: Accuracy comparisons between the conventional survey (level survey) and GNSS</u> survey (mmGPS)

Accuracy comparisons were performed between the conventional survey method (level survey) and GNSS survey (mmGPS) method.

The pavement thickness values measured by the conventional level survey (road surface heights previous and after the paved area are measured to calculate the pavement thickness) were used as reference values to compare with the values observed by GNSS survey (mmGPS).

Measurement was performed within an observation range of 300 m from the route PK271 + 700 to PK282 + 000. A comparative evaluation was conducted within a total range of 100 m from the point where the laser transmitter of the mmGPS was set up to just fore and back the 50-m mark (PK281 + 820 to 920).



Observation points for each cross-section

- E1: A point 1.5 m from the center on the cross-section
- E2: A point 2.35 m from the center on the cross-section
- E3: A point 4.4 m from the center on the cross-section
- E4: A point 5.75 m from the center on the cross-section
- E5: A point 7.75 m from the center on the cross-section
- E6: A point 9.0 m from the center on the cross-section

Figure 2-14 Survey for thickness of survey (mmGPS)

| STATION/Survey | E1                                    |                                    |                                           | E2                                    |                                       |                                           | E3                                    |                                       |                                           |  |
|----------------|---------------------------------------|------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|--|
| Result         | Paving<br>thickness<br>(Level)<br>(m) | Paving thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) | Paving<br>thickness<br>(Level)<br>(m) | Paving<br>thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) | Paving<br>thickness<br>(Level)<br>(m) | Paving<br>thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) |  |
| 281+820        | 0.053                                 | 0.051                              | 0.045                                     | 0.053                                 | 0.052                                 | 0.045                                     | 0.057                                 | 0.055                                 | 0.045                                     |  |
| 281+830        | 0.057                                 | 0.049                              | 0.045                                     | 0.059                                 | 0.051                                 | 0.045                                     | 0.063                                 | 0.051                                 | 0.045                                     |  |
| 281+840        | 0.061                                 | 0.049                              | 0.045                                     | 0.055                                 | 0.052                                 | 0.045                                     | 0.061                                 | 0.056                                 | 0.045                                     |  |
| 281+850        | 0.054                                 | 0.046                              | 0.045                                     | 0.063                                 | 0.052                                 | 0.045                                     | 0.066                                 | 0.055                                 | 0.045                                     |  |
| 281+860        | 0.059                                 | 0.045                              | 0.045                                     | 0.063                                 | 0.052                                 | 0.045                                     | 0.064                                 | 0.056                                 | 0.045                                     |  |
| 281+870        | 0.058                                 | 0.053                              | 0.045                                     | 0.063                                 | 0.059                                 | 0.045                                     | 0.065                                 | 0.058                                 | 0.045                                     |  |
| 281+880        | 0.051                                 | 0.052                              | 0.045                                     | 0.058                                 | 0.055                                 | 0.045                                     | 0.061                                 | 0.058                                 | 0.045                                     |  |
| 281+890        | 0.045                                 | 0.054                              | 0.045                                     | 0.054                                 | 0.056                                 | 0.045                                     | 0.055                                 | 0.058                                 | 0.045                                     |  |
| 281+900        | 0.049                                 | 0.053                              | 0.045                                     | 0.053                                 | 0.052                                 | 0.045                                     | 0.051                                 | 0.054                                 | 0.045                                     |  |
| 281+910        | 0.052                                 | 0.057                              | 0.045                                     | 0.056                                 | 0.062                                 | 0.045                                     | 0.050                                 | 0.059                                 | 0.045                                     |  |
| 281+920        | 0.051                                 | 0.060                              | 0.045                                     | 0.056                                 | 0.060                                 | 0.045                                     | 0.050                                 | 0.058                                 | 0.045                                     |  |

Table 2-7: Paving thickness data of E1 to E6 (PK281 + 820 to PK281 + 920) 100 m

| STATION/Survey |                                       |                                       | E5                                        |                                       |                                       | E6                                        |                                       |                                       |                                           |
|----------------|---------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|
| Result         | Paving<br>thickness<br>(Level)<br>(m) | Paving<br>thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) | Paving<br>thickness<br>(Level)<br>(m) | Paving<br>thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) | Paving<br>thickness<br>(Level)<br>(m) | Paving<br>thickness<br>(mmGPS)<br>(m) | Thickness<br>reguation<br>(over 0.045)(m) |
| 281+820        | 0.058                                 | 0.053                                 | 0.045                                     | 0.062                                 | 0.051                                 | 0.045                                     | 0.052                                 | 0.064                                 | 0.045                                     |
| 281+830        | 0.063                                 | 0.052                                 | 0.045                                     | 0.053                                 | 0.055                                 | 0.045                                     | 0.062                                 | 0.059                                 | 0.045                                     |
| 281+840        | 0.061                                 | 0.056                                 | 0.045                                     | 0.059                                 | 0.054                                 | 0.045                                     | 0.062                                 | 0.059                                 | 0.045                                     |
| 281+850        | 0.059                                 | 0.051                                 | 0.045                                     | 0.053                                 | 0.046                                 | 0.045                                     | 0.045                                 | 0.045                                 | 0.045                                     |
| 281+860        | 0.061                                 | 0.057                                 | 0.045                                     | 0.053                                 | 0.050                                 | 0.045                                     | 0.052                                 | 0.051                                 | 0.045                                     |
| 281+870        | 0.066                                 | 0.059                                 | 0.045                                     | 0.060                                 | 0.060                                 | 0.045                                     | 0.055                                 | 0.054                                 | 0.045                                     |
| 281+880        | 0.069                                 | 0.060                                 | 0.045                                     | 0.053                                 | 0.055                                 | 0.045                                     | 0.056                                 | 0.058                                 | 0.045                                     |
| 281+890        | 0.056                                 | 0.059                                 | 0.045                                     | 0.054                                 | 0.054                                 | 0.045                                     | 0.061                                 | 0.063                                 | 0.045                                     |
| 281+900        | 0.052                                 | 0.054                                 | 0.045                                     | 0.051                                 | 0.048                                 | 0.045                                     | 0.066                                 | 0.062                                 | 0.045                                     |
| 281+910        | 0.054                                 | 0.059                                 | 0.045                                     | 0.054                                 | 0.060                                 | 0.045                                     | 0.051                                 | 0.060                                 | 0.045                                     |
| 281+920        | 0.052                                 | 0.055                                 | 0.045                                     | 0.049                                 | 0.056                                 | 0.045                                     | 0.054                                 | 0.064                                 | 0.045                                     |

# <u>3-2: Comparisons of workability between the conventional survey (level survey) and</u> <u>RTK survey (mmGPS)</u>

Workability comparisons were performed between the conventional survey method (level survey) and RTK survey (mmGPS) method.

Table 2-8 Comparison list of level survey vs RTK (mmGPS) survey

|              | See Bsck sight | Set up base | Preparation of survey | surveying time (1 cross section) | Number of Surveying staff | Working productivity |
|--------------|----------------|-------------|-----------------------|----------------------------------|---------------------------|----------------------|
| Level Survey | 2mins          | 0mins       | 5mins                 | 5mins                            | 5 persons                 | 0                    |
| RTK(mmGPS)   | 0mins          | 20mins      | 5mins                 | 5mins                            | 2 persons                 | 0                    |

# Consideration of comparison results of accuracy and workability between the conventional survey and RTK survey (mmGPS) in the road improvement project

• Comparison of the measured layer thickness values for the accuracy of the conventional survey (level survey) and GNSS survey (mmGPS).

The average observation difference of 66 observation points on all 11 cross-sections in the evaluation area was  $\pm$ 4 mm in accuracy, so it can be used for normal surveying even with GNSS survey method (mmGPS).

• Workability comparisons were performed between the conventional survey (level survey) and RTK survey (mmGPS). The results showed that while RTK survey (mmGPS) takes longer to set up, the measurement time is the same as the conventional survey, and it requires fewer surveyors.

The level survey requires 7 minutes for installation, compared to 20 for the RTK survey, resulting in a 35% decrease in productivity.

Both the level survey and RTK survey require 5 minutes for observation per section, resulting in equivalent productivity, or 100%.

The level survey requires 5 workers, compared to 2 for the RTK survey, resulting in a 250% increase in productivity.

\*The conventional survey (level survey) only records the height, but the RTK survey (mmGPS) uses three-dimensional coordinates. On-site workers had positive commented about the use of RTK survey because the 3 dimensional data can be used at the site in various ways, such as to confirm the location of survey points.

# 2.2. Use of Khmer GEONET

# 2.2.1. Details of the Khmer GEONET data used

Khmer GEONET was used as follows.

| Table 2-9 | Khmer | GEONET | data | used |
|-----------|-------|--------|------|------|
|-----------|-------|--------|------|------|

| IP address             | 221.120.160.130                                                                                 |
|------------------------|-------------------------------------------------------------------------------------------------|
| Port                   | 2101                                                                                            |
| Mount point            | VRS_RTCM32                                                                                      |
| User name              | TOPCON                                                                                          |
| Period of use          | Mar17, 2023 – Mar 17, 2023 (Test)<br>Mar 22, 2023 – Mar 28, 2023<br>Mar 31, 2023 – Mar 31, 2023 |
| RTK / Post processing  | Both RTK & post processing used                                                                 |
| Satellite systems used | GPS, GLONASS, QZSS, GALILEO, BEIDOU                                                             |

# 2.2.2. Problems occurred and solutions

Date and time of problem: 9:00 to 11:30 on March 24, 2023

Description of problem: The Khmer GEONET server froze, and corrected data for N-RTK surveying could not be accessed, preventing the start of surveying.

Solution: The server was restored through user support recovery work, and survey work was resumed.

# 2.3. Other related activities

#### 1) Training in Japan

Representatives of Cambodian government-affiliated organizations came to Japan to obtain a deeper understanding of CORSs usage and operation. They visited Topcon's Training Center and received training on using data from CORS such as GNSS and ICT Construction.

Training date: August 15, 2023

Training site: Topcon Kanto Training Center

Training objective: For participants to understand the importance of the operation and use of CORSs and the distribution of stable CORS data.

Demonstrations of GNSS surveying and ICT construction system were conducted. The validity of real-time data was verified.

Training participants: A total of 10 representatives from Cambodian governmentaffiliated organizations including MLMUPC, LMUPCC, and GDCG Training content

Training content for Sessions 1 & 2: Demonstrations in the field

VRS survey demonstrations to show the accuracy of distributed data.

Demonstrations of ICT construction (Excavator/Dozer) to show the productivity improvements from ICT construction (semi-automated construction)



Figure 2-15 GNSS and ICT Construction Training at the TOPCON Kanto Training Center

Using CORS data from Japan, we taught the participants that using CORSs can result in greater efficiency not only in surveying but also in the construction field, and that the CORS data can be used in various fields.

\*Training was also provided in Japan in November 2022, but its content is not covered in this report as it was prior to the signing of this project contract.

# 3. Way forward

# 3.1. Future outlook of the business using Khmer GEONET

# IKEE PAVING SYSTEMS

We are engaged in construction work locally in Cambodia with a focus on infrastructure construction. Being able to use real-time, high-precision positional information for on-site surveying and construction will make it possible to survey and confirm the exact location regardless of the worker's technical ability, allowing us to prevent mistakes before they can occur and enabling highly productive construction. We would like to use the real-time data from Khmer GEONET for any projects within the applicable range.

# **TOPCON CORPORATION**

Through this JICA pilot project (surveying), we demonstrated how GNSS (mmGPS) can be used at construction sites to improve the surveying efficiency and the productivity of N-RTK surveys using real-time data from Khmer GEONET.

We would like to educate local users in Cambodia about the benefits of using realtime data from Khmer GEONET in N-RTK surveys and other activities to improve the efficiency of surveying using GNSS at construction sites.

# 3.2. About Khmer GEONET

# 1) Benefits of using Khmer GEONET

It is very significant that the Khmer GEONET data distribution has made real-time, high-precision position corrected information available anytime and for anyone to use.

# 2) Issues to be solved

At this point, 5 CORSs have already been established in Cambodia, but the utilization range is limited. Real-time surveying using Khmer GEONET is only available in the neighboring areas of these stations.

It is desirable to expand the utilization range by adding CORSs in consideration of future utilization in the surveying and construction fields.

# 3) Requests for improvement

As previously noted in 2.2.2 "Problems occurred and solutions," there was an issue where the server frozed during use and it was not possible to conduct N-RTK survey. The server needs to operate stably.

As described in 3.2.2. "Issues in use," the usable area for N-RTK surveys is limited. The area of availability in Cambodia should be expanded.

# 4. Conclusion

Activities related to civil engineering and construction surveying were carried out as a pilot project to utilize high-precision positioning data.

During the activity period, we contributed by sharing observation information using 5 CORSs in Cambodia and ensuring the stable operation of Khmer GEONET as part of the pilot project.

For users of high-precision positioning data, what is most important is that stable measurement is possible and the data is available *anytime*, *anywhere*, for *anyone* to use.

We hope that the data measurements and the recommendations provided through this civil engineering and construction survey will be useful in the future.

Finally, the sites used for the selection of measurement areas were the JICA National Road No. 5 Improvement Project (sections: Battambang to Thlea Ma'am and Sri Sophorn to Poipet / Phase II). On November 22, 2023, government officials and construction representatives from both Cambodia and Japan gathered at the site for an opening ceremony, and service began at the site.

We would like to express our congratulations to the government-affiliated organizations of Cambodia and Japan for the successful opening ceremony, and we would like to thank JICA and Tekken Corporation, who provided the site, for their cooperation in the demonstration experiment at the site.



Figure 3-1 Opening ceremony for National Road No. 5 in Kampong Chhnang Province

End of Report

Project on Establishment of Continuously Operating Reference Stations (CORS) for Land Management and Infrastructure Development

# JICA Pilot Project Demonstration project Implementation Report

October 2023

JC Agricultural Cooperatives Co.,Ltd.

# Table of Contents

| 1. Ov  | verview of the demonstration project                | 1  |
|--------|-----------------------------------------------------|----|
| 1.1.   | Name of the demonstration project                   | 1  |
| 1.2.   | Background and purpose of the demonstration project | 1  |
| 1.3.   | Brief description of the demonstration project      | 1  |
| 1.4.   | Implementation period                               |    |
| 1.5.   | Location of the demonstration project site          |    |
| 1.6.   | Members                                             | 4  |
| 1.7.   | Equipment used for the demonstration project        | 4  |
| 2. De  | etails of the work                                  | 5  |
| 2.1.   | Work performed:                                     | 5  |
| 2.1.1. | Preparation                                         | 5  |
| 2.1.2. | Implementation                                      | 7  |
| 2.1.3. | Results                                             | 21 |
| 2.2.   | Use of KhmerGEONET                                  | 21 |
| 2.2.1. | Details of the Khmer GEONET data used               | 21 |
| 2.2.2. | Problems occured and solutions                      | 22 |
| 2.3.   | Other related activities                            | 22 |
| 3. W   | /ay forward                                         | 23 |
| 3.1.   | Future outlook of the business using KhmerGEONET    | 23 |
| 3.2.   | About KhmerGEONET                                   | 23 |
| 1)     | Good points using KhmerGEONET                       | 23 |
| 2)     | Issues to be solved                                 | 23 |
| 3)     | Request for improvement                             | 24 |
| 4. Co  | onclusion                                           | 25 |

# 1. Overview of the demonstration project

# 1.1. Name of the demonstration project

EN: Accuracy Verification of Agri-Drone auto flight for spraying fertilizer and chemicals

# 1.2. Background and purpose of the demonstration project

Currently many local farmers are starting to make use of an auto-flight drone for spraying fertilizer and chemicals using GPS data in Cambodia. But under GNNS flight, without RTK network service, we assume the drone will not be able to fly accurately. Especially when spraying chemicals on farms by drone, inaccurate drone flight might lead to damage to other farm land, or even health

damage to people who stay near the spraying spot.

Our demonstration project analyses the difference of accuracy between RTK flight and Non-RTK flight, and confirms if RTK flight would work for more accurate and safer agricultural chemical spray by drone.

# 1.3. Brief description of the demonstration project

Purpose :

Analysis of accuracy difference between RTK and Non-RTK flight by chemicalspraying drone

# Contents :

Comparison of actual drone flight, under RTK(Khmer GEONET) and Non-RTK, and coordinate data (X and Y) difference analysis

#### Result :

The difference of RTK and Non-RTK flight of the drone could not be felt physically nor visibly by the drone operator. But we could confirm difference by coordinate data, RTK flight was more accurate than Non-RTK flight

# 1.4. Implementation period

Preparation : Feb 2023 – Mar 2023

Work at the site :Mar 2023 – Aug 2023

Reporting : Aug 2023 – Sep 2023

Table 1-1 Plan and actual of the schedule

| March Harry (March 0, March                                                |        | Deserves | 2022 |   |   |   |   |   |   |   |   |
|----------------------------------------------------------------------------|--------|----------|------|---|---|---|---|---|---|---|---|
| Work Items/ Year & Month                                                   |        | Progress | 2    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Sign a contract with Decas                                                 |        | 100.0%   |      |   |   |   |   |   |   |   |   |
| Sign a contract with Pasco                                                 | Actual | 100.0%   |      |   |   |   |   |   |   |   |   |
| Preparation of the pilot project                                           |        | 18.8%    |      |   |   |   |   |   |   |   |   |
| Making a nilet project implementation plan                                 | Plan   | 25.0%    |      |   |   |   |   |   |   |   |   |
|                                                                            | Actual | 25.0%    |      |   |   |   |   |   |   |   |   |
| Event import of a guinmont                                                 | Plan   | 0.0%     |      |   |   |   |   |   |   |   |   |
| Exportimpon of equipment                                                   | Actual | 0.0%     |      |   |   |   |   |   |   |   |   |
| Obtainment of passagery parmits                                            | Plan   | 50.0%    |      |   |   |   |   |   |   |   |   |
| Obtainment of necessary permits                                            | Actual | 50.0%    |      |   |   |   |   |   |   |   |   |
|                                                                            |        | 0.0%     |      |   |   |   |   |   |   |   |   |
|                                                                            | Actual | 0.0%     |      |   |   |   |   |   |   |   |   |
| Performance of the Pilot Project                                           |        | 12.4%    |      |   |   |   |   |   |   |   |   |
| Cathoring and coloctions the local formers collaborating for pilot project | Plan   | 30.0%    |      |   |   |   |   |   |   |   |   |
| Gathening and selections the local famers collaborating for pilot project  | Actual |          |      |   |   |   |   |   |   |   |   |
| Drang flight with without KUMED CEONET/Druggegen / Deiny gegen             | Plan   | 7.0%     |      |   |   |   |   |   |   |   |   |
| Drone hight with/without KHWER GEONET(Dry season / Rainy season)           | Actual |          |      |   |   |   |   |   |   |   |   |
| Analysing the differece of drone flight accuracy between with/without      | Plan   | 0.0%     |      |   |   |   |   |   |   |   |   |
| KHMER GEONET                                                               | Actual | 0.0%     |      |   |   |   |   |   |   |   |   |
| Regular communication with SSCA (State Secretaria of Civil Aviation) and   | Plan   | 50.0%    |      |   |   |   |   |   |   |   |   |
| APSARA Authority for drone flight rule                                     | Actual | 50.0%    |      |   |   |   |   |   |   |   |   |
| Summarizing the result of analysis and creating report                     | Plan   | 0.0%     |      |   |   |   |   |   |   |   |   |
|                                                                            | Actual | 0.0%     |      |   |   |   |   |   |   |   |   |
|                                                                            | Plan   | 0.0%     |      |   |   |   |   |   |   |   |   |
|                                                                            | Actual | 0.0%     |      |   |   |   |   |   |   |   |   |
|                                                                            | Plan   | 0.0%     |      | [ |   |   |   |   |   |   |   |
|                                                                            | Actual | 0.0%     |      |   |   |   |   |   |   |   |   |

# 1.5. Location of the demonstration project site

# Address:

5km: https://maps.app.goo.gl/6w33f1qxp5HXLFcW7 12km: https://maps.app.goo.gl/WvNxUXjuxsVavXwL9 17km: https://maps.app.goo.gl/CnLTPgkCyjEXPi9B6

Coordinates:



Figure 1-1 Location of the demonstration project site

# 1.6. Members

The members listed below performed the demonstration project.

| N<br>O. | Name                      | Company/Organisation                                                          | Role                                                                                  |
|---------|---------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1       | Ko Honam(Mr.)             | JC Agricultural Cooperatives Co.,Ltd.<br>/ President CEO                      | Project Manager                                                                       |
| 2       | Nourn Kunthy(Ms.)         | JC Agricultural Cooperatives Co.,Ltd.<br>/ Smart-Agri-Service Dept. Manager   | Drone & Software<br>Operator                                                          |
| 3       | Chheing Samphors<br>(Ms.) | JC Agricultural Cooperatives Co.,Ltd.<br>/ Smart-Agri-Service Dept. Assistant | Drone & Software<br>Operator                                                          |
| 4       | Yoeurt Kimhak(Mr.)        | JC Agricultural Cooperatives Co.,Ltd.<br>/ Mechanic Department Manager        | Mechanic / Driver                                                                     |
| 5       | Pay Chanthan(Mr.)         | JC Agricultural Cooperatives Co.,Ltd.<br>/ Mechanic Department Assistant      | Mechanic / Driver                                                                     |
| 6       | Noriko Yamaguchi<br>(Ms.) | JC Agricultural Cooperatives Co.,Ltd.<br>/ SeamReap Dept. Manager             | Manager in Siem<br>Reap                                                               |
| 7       | Thor Phalkun(Ms.)         | C Agricultural Cooperatives<br>Co.,Ltd. / SeamReap Dept. Assistant            | Translator in Siem<br>Reap (negotiation<br>with farmers)                              |
| 8       | Lach Phina(Ms.)           | JC Agricultural Cooperatives Co.,Ltd.<br>/ SeamReap Dept. Assistant           | Translator in Siem<br>Reap (negotiation<br>with farmers)                              |
| 9       | Rouen Chhaneary<br>(Ms.)  | JC Leadings Co.,Ltd. / Translator                                             | Translator in Phnom<br>Penh (discussion<br>with governmental<br>institution/officers) |

#### Table 1-2 List of members

# 1.7. Equipment used for the demonstration project

The equipment listed below were used for the demonstration project.

| N<br>O. | Name            | Quantity | Remarks (specifications, usage, etc.)   |  |  |
|---------|-----------------|----------|-----------------------------------------|--|--|
| 1       | DJI Agras T10   | 1        | Spray chemicals/fertilizer on farm land |  |  |
|         |                 |          | -GNSS receiver : D-RTK Technology       |  |  |
| 2       | DJI Phantom4RTK | 1        | Take picture of farm land               |  |  |
|         |                 |          | -GNSS receiver : D-RTK Technology       |  |  |

Table 1-3 List of equipment used

# 2.1. Work performed:

We selected 3 location in difference distance from CORS to farm land in order to analyze the accuracy of Network RTK by Khmer GEONET in each distance, assuming it more accurate if closer to CORS

- 5km /10-13km / 17-20km

We found and negotiated with several farmers in each location, and gathered some farmers who collaborate with our project, with promise that we will make free spray drone (fertilizer and chemicals) on their farm land in return to their collaboration. We conducted drone flight by RTK(with Khmer GEONET) and Non-RTK mode, and confirmed difference operator feels physically and visibly.

Also we used "KUMIKI" system to analyze the coordinate date difference with each coordinate data we can derive from pictures taken by drone.

# 2.1.1.Preparation

<Equipment> We prepared 2 drones as below; 1.Drone for spraying fertilizer/chemicals : DJI AgrasT10

2.Drone for taking pictures : DJI Phantom4 RTK

We have both above as our own stock, so no importing.



Figure 2-1 Left: AgrasT10 / Right: Phantom4RTK

<Arrangement of the site>

We searched chief of village in each distance (5km/10-12km/17km from CORS) and asked him to find the farmer who can collaborate with us.

We gathered 8 farmers who agreed collaboration.

|   |                   |                                                         | Disttance from CORS |        |         |
|---|-------------------|---------------------------------------------------------|---------------------|--------|---------|
| N | Customer Name     | Customer Address                                        | Range               | Actual | Farm HA |
| 1 | Mr.Sat Saem       | Tropangron Village, Ampil Commune ,SPR city.            | 5km                 | 5.82km | 1.5     |
| 2 | Ms.Khoeun Samnang | Trobangron Village, Ampil Commune ,SPR city.            | 5km                 | 5km    | 1.5     |
| 3 | Mr.Tol            | Donnum Village ,Mean Chey commune Bakong district ,SRP. | 10-15km             | 13km   | 1       |
| 4 | Mr.Orl            | Donnum Village ,Mean Chey commune Bakong district ,SRP. | 10-15km             | 13km   | 2       |
| 5 | Ms.Nhaoch         | Donnum Village ,Mean Chey commune Bakong district ,SRP. | 10-15km             | 13km   | 1       |
| 6 | Mr.Chea           | Lvea Village Tropangthom commune Bakong district ,SRP   | 17-20km             | 17km   | 2       |
| 7 | Mr.Vanndy         | Lvea Village Tropangthom commune Bakong district ,SRP   | 17-20km             | 17km   | 1       |
| 8 | Mr.Than           | Lvea Village Tropangthom commune Bakong district ,SRP   | 17-20km             | 17km   | 1       |

Table 2-1 : Information of local farmers collaborated

<Necessary Permission>

1. SSCA (State Secretariat of Civil Aviation)

SSCA is the governmental department which takes in charge of formal regulation of civil aviation in Cambodia.

We had meeting with SSCA on 14<sup>th</sup> Mar 2023, and confirmed that we don't have to get permission of drone flight lower than 100m height, except the area close to Angkor Heritage where APSARA authority controls

2. APSARA Authority (Authority for the Protection of the Site and Management of the Region of Angkor)

APSARA Authority is the organization for the protection and management of the Region of Angkor.

We officially requested APSARA Authority for permission of drone flight in each location.

APSARA authority sent official letter to us telling the location 5km from CORS is included in coverage of APSARA Authority management, so they did not allow flight in the 5km location.
| AFSAKA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inform<br>Mr. NUON KUNTHY, Head of Donation, JC Agricultural Collection Co., Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Subject: Case request for testing the use of agricultural drones to help spray weeds and fertilizers on farmers' fields<br>In Trapeang Run Village, Ampil<br>Reference Commune, Prasat Bakong District, Siem Reap Province.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I would like to inform the President that the APSARA Authority cannot allow<br>the use of agricultual drones to spray weeds and fertilizers on the land of two farmers in Trapeang<br>Run village, Ampil commune, Prasat district. Bakong, Siem Reap Province, from<br>May to August 2023, as the proposed site is located in the Angkor resort area, where all<br>uses are prohibited and should not be located in the World Heritage Site for chemical<br>testing. Which can lead to various negative side effects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Please be informed accordingly, Mr. Chairman. Please accept,<br>Sir, the assurances of my highest consideration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Copy<br>Memory Market Market Market<br>Memory Market<br>M |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Figure 2-2 : Official Letter from APSARA authority

# 2.1.2.Implementation

[Monthly Implementation Detail]

MARCH2023

<Gathering Farmers>

Period/Date : 1<sup>st</sup> Mar 2023 – 20<sup>th</sup> Mar 2023

We visited several local farmers who live/have their farm land in the location 5 km/10-15 km/17-20 km

We found and negotiated with some farmers, and could get agreement for collaboration as below; 2 farmers at 5Km point

3 farmers at 10-15km point

3 farmers at 17-20km point.

<Drone Flight> 1.

Date:16-Mar-2023

Detail: Compare RTK flight and Non-RTK flight, which one is good for spray chemicals and liquid fertilizer for farmer 10km -15km

2.

Date:28-Mar-2023

Detail: Compare RTK flight and Non-RTK flight, which one is good for spray chemicals and liquid fertilizer for farmer 17km-20km.

But we couldn't connect with RTK due to the weakness of internet radio.



Figure 2-3 Screenshot of drone controller during flight (just for reference)

<Other implementation>

Date 14Mar2023

Communication with SSCA

We confirmed if we need to apply permission to SSCA for each drone flight. SSCA told us if the flight lower than 100m, not necessary to ask for permission. SSCA added that when we fly in Siem Reap close to any heritage, we should confirm APSARA Authority if any procedure necessary.

#### Date 29Mar2023

Communication with APSARA Authority

#### APSARA Authority

have 2 farmer and 5km from CORs but this location control by APSARA authority, so the APSARA said if we want to fly the drone that location we have to make the request letter send to their manager for approval and sign



Figure 2-4 : Location 5km from CORS

#### April2023

<Drone Flight>

1 . Date:11-April-2023

Detail: We still try to compare Non-RTK and RTK flight to find different point.

2. Date :20230426

Detail: We have the plan go to flight but the farmer said we can't go because the farmers have to prepare farm (cut tree that have in farm).

<Other implementation>

Find new farmer :3 old farmers that we got before 17km to 20km can't connect with RTK, So we have to find more new farmers.



Figure 2-5 Location 17km from CORS



Figure 2-6 Screenshot of drone controller during flight (just for reference)

#### MAY2023

<Drone Flight>

1. Date: 20230510

Detail: We went to flight 17km from CORs, but when we arrived the location and start flight our controller have problem. It can't turn on. We have to go back and send the controller of drone spray to phnom penh for fixing.

2.Date: 24-May-2023

Detail: We try to flight three customers 17km from CORS but we can't find the different point.

5km from CORS: After we prepare request letter for flight the drone send to The APSARA authority. We got reply letter and they said they not allow all drone flight in the apsara location and they also said we should not use Apsara location for flight the drone.



Figure 2-7 : Location 5km from CORS



Figure 2-8 Screenshot of drone controller during flight (just for reference)

JUNE2023 <Drone Flight>

We conducted 3flights NON-RTK and RTK flight for spray chemicals (weed killer)

Date 2023/6/14

**. Mr.To**I's farm: We confirmed and compared RTK and NON-RTK flight a bit different only return home.

Date 20230619

. **Mr.Orl's farm**: We tried watching by video and by eyes if any change between RTK flight and NON-RTK flight, but we could not recognized any difference.

Date 20230626

. **Mr.Ms.Nhaoch's farm: The** same as above, NON-RTK flight and RTK flight looked same by sight (eye).



Figure 2-9 Screenshot of drone controller during flight (just for reference)



Figure 2-10 : Screenshot of auto flight plan

#### JULY2023

Date: 2023-July-11

We conducted 3flights NON-RTK and RTK flight for spray liquid fertilizer

.Mr.Chea's farm: We confirmed and compared RTK and NON-RTK flight but we didn't see different point both are still the same.

#### Date: 2023-July-17

.Mr.Vandy's farm: We confirmed and compared RTK and NON-RTK flight this time RTK fast connecting with our drone and for spray liquid fertilizer not different.

#### Date: 2023-July-25

.Mr.Than's farm: We try to compare RTK and NON-RTK flight but we cannot find good point and different point from both (RTK and NON-RTK flight). Reaction from farmer: They are really happy when JCAC flight drone for them without charge service from them.



Figure 2-11 : Mr.Than's farm



Figure 2-12 : Screenshot of auto flight plan

[Physical and Visible Difference of accuracy between RTK and Non-RTK flight ]

We conducted comparison of RTK flight and Non-RTK flight several times throughout this project.

But visibly, it seems difficult to let drone operate feel the difference during the flight. Just by watching the drone flight, operator could not recognize the difference of flight accuracy, speed, and any other movement.

RTK flight after drone flight finish it will come back home automatically the same Non-RTK but we don't need to use manually the drone will auto landing by itself and the same place before flight this is the good point that we see with RTK flight. When flight finishes (goes through the flight plan), the drone automatically come back to the landing point.

When landing at the point, operator could recognize the RTK flight drone was more accurate than Non-RTK flight.

In Non-RTK flight, the drone landed at the point strayed larger from the planned landing point than the drone in RTK flight.



Figure 2-13 RKT flight : Departure and Landing point



Figure 2-14 Non-RKT flight : Departure and Landing point

[Coordination Data Difference of accuracy between RTK and Non-RTK flight ]

The difference of RTK flight and Non-RTK flight was difficult to recognize physically and visibly by drone operator. Even though we could recognize the landing point difference, the difference was not so large and would not be the matter for drone operating farmers.

So additionally, we conducted the "coordination data difference analysis", making use of the pictures taken by drone during flight.

The analysis compares "map coordinate information included in the pictures" and #coordinate information which drone figured out".

The KUMIKI system, developed by SkymatiX Inc.(Japanese company) can issue the difference automatically by uploading the pictures into their cloud-analysis system. This system is used in another JICA project whose counterpart is MPWT(Ministry of Public Works and Transportation) / DPWT(Department of Public Works and Transportation), for improvement of drone survey for infrastructure civil work.

| Distance | Coordinate | Standard Deviation (m) |         |            |
|----------|------------|------------------------|---------|------------|
| fromCORS |            | RTK                    | Non-RTK | Difference |
|          | х          | 0.064                  | 0.240   | -0.176     |
| 12km     | у          | 0.032                  | 0.315   | -0.283     |
|          | z          | 0.021                  | 0.292   | -0.271     |
|          | х          | 0.075                  | 0.369   | -0.294     |
| 17km     | у          | 0.102                  | 0.301   | -0.199     |
|          | z          | 0.410                  | 0.299   | 0.111      |

Table 2-2 Standard deviation difference analysis by KUMIKI

In terms of the coordinate date difference, we could recognize the big difference of accuracy between RTK flight and Non-RTK flight.

In 12km, the standard deviation was several cm for RTK, and several tens of cm for Non-RTK.

In 17km, the accuracy of RTK also becomes worse (in y and z coordinate). This implies that the further from CORS, the less accuracy of coordinate.

We attach the part of report picture, which shows standard deviation.

#### Table 2-3 : KUMIKI Report RTK flight (12km from CORS)

# 🔩 KUMIKI

RTK / 12km

| 外部パラメータ |          |          |          |
|---------|----------|----------|----------|
| GPS誤差   | X方向誤差(m) | Y方向誤差(m) | Z方向誤差(m) |
| 平均值     | -0.001   | 0.000    | -0.001   |
| 標準偏差    | 0.064    | 0.032    | 0.021    |
| RMSE    | 0.064    | 0.032    | 0.021    |

撮影位置の相対的な誤差です。

#### <annotation>

| GPS error          | X error (m) | Y error (m) | Z error (m) |
|--------------------|-------------|-------------|-------------|
| Average            | -0.001      | 0.0000      | -0.001      |
| Standard Deviation | 0.064       | 0.032       | 0.021       |
| RMSE               | 0.064       | 0.032       | 0.021       |

Relative error of picture spot

Table 2-4:KUMIKI Report\_Non-RTK flight (12km from CORS)



# Non-RTK / 12km

#### 外部パラメータ

| GPS誤差 | X方向誤差(m) | Y方向誤差(m) | Z方向誤差(m) |
|-------|----------|----------|----------|
| 平均值   | -0.008   | 0.012    | -0.013   |
| 標準偏差  | 0.240    | 0.315    | 0.292    |
| RMSE  | 0.241    | 0.315    | 0.292    |

撮影位置の相対的な誤差です。

#### <annotation>

| GPS error          | X error (m) | Y error (m) | Z error (m) |
|--------------------|-------------|-------------|-------------|
| Average            | -0.008      | 0.012       | -0.013      |
| Standard Deviation | 0.240       | 0.315       | 0.292       |
| RMSE               | 0.241       | 0.315       | 0.292       |

Relative error of picture spot

# 🔩 ΚυΜΙΚΙ

RTK / 17km

### 外部パラメータ

| GPS誤差 | X方向誤差(m) | Y方向誤差(m) | Z方向誤差(m) |
|-------|----------|----------|----------|
| 平均值   | -0.002   | 0.003    | -0.018   |
| 標準偏差  | 0.075    | 0.102    | 0.410    |
| RMSE  | 0.075    | 0.102    | 0.411    |

撮影位置の相対的な誤差です。

<annotation>

| GPS error          | X error (m) | Y error (m) | Z error (m) |
|--------------------|-------------|-------------|-------------|
| Average            | -0.002      | 0.003       | -0.018      |
| Standard Deviation | 0.075       | 0.102       | 0.410       |
| RMSE               | 0.075       | 0.102       | 0.411       |

Relative error of picture spot

Table 2-6 : KUMIKI Report\_Non-RTK flight (17km from CORS)

# 🔩 ΚυΜΙΚΙ

#### Non-RTK / 17km

外部パラメータ

| GPS誤差 | X方向誤差(m) | Y方向誤差(m) | Z方向誤差(m) |
|-------|----------|----------|----------|
| 平均值   | -0.029   | -0.009   | 0.009    |
| 標準偏差  | 0.369    | 0.301    | 0.299    |
| RMSE  | 0.370    | 0.301    | 0.299    |

撮影位置の相対的な誤差です。

#### <annotation>

| GPS error          | X error (m) | Y error (m) | Z error (m) |
|--------------------|-------------|-------------|-------------|
| Average            | -0.029      | -0.009      | 0.009       |
| Standard Deviation | 0.369       | 0.301       | 0.299       |
| RMSE               | 0.370       | 0.301       | 0.299       |

Relative error of picture spot

# 2.1.3. Results

By technical accuracy difference analysis making use of coordinate information, we could recognize the accuracy of RTK flight comparing to Non-RTK flight.

Nevertheless, drone operator could not feel the difference physically and visibly. Therefore, in the current situation of agricultural drone usage by local farmers, it will be difficult to induce local farmers to join KhmerGEONET because there will be no change in efficiency (manpower, time, etc).

About detail explanation and photos, refer to 2.1.1 Implementation, in paragraph below.

[Physical and Visible Difference of accuracy between RTK and Non-RTK flight ]

[Coordination Data Difference of accuracy between RTK and Non-RTK flight ]

# 2.2. Use of KhmerGEONET

#### 2.2.1. Details of the Khmer GEONET data used

Khmer GEONET was used as follows.

| IP address        | cgd09.khmergeonet.xyz                  |  |
|-------------------|----------------------------------------|--|
| Port              | 2101                                   |  |
| Mount point       | RRS_RTCM32                             |  |
| User name         | JCG                                    |  |
|                   | 16-Mar-2023 - 28-Mar-2023              |  |
| Period of use     | 11-April-2023– 24-May-2023             |  |
|                   | 14-June-2023– 25-July-2023             |  |
| RTK/ Post         | Notwork DTV                            |  |
| processing        |                                        |  |
| Satellite systems | GPS, BeiDou, GLONASS, Gallileo         |  |
| used              | (picture of drone controller as below) |  |

|     | <del>8</del> 8 |                                       | RTK Settings        | ♥ <20 €9 8:56<br>X |
|-----|----------------|---------------------------------------|---------------------|--------------------|
|     | <u>⊼</u>       | Longitude<br>Altitude<br>Course Angle |                     |                    |
|     | •))            | GPS Satellites<br>BeiDou<br>GLONASS   |                     |                    |
| 200 | RTK            | Gallileo                              | Antenna 1 Antenna 2 |                    |
| A   | HD             | STD                                   |                     |                    |

Figure 2-15 Screenshot of Drone Controller showing GNSS used for flight

# 2.2.2.Problems occured and solutions

In the location far from the center of the city, internet radio becomes weaker and it becomes more difficult to let drone connect to KhmerGEONET.

In general, farm lands are located in province, far from the city. Internet radio weakness in province could be the big issue for easy usage of KhmerGEONET.

The solutions depend on the improvement of internet coverage in province.

#### 2.3. Other related activities

- Study about network RTK mechanism and Khmer GEONET
- Meeting with General Department of Cadastre and Geography in Sieam Reap, confirming the location of CORS.
- Several manager class meeting in Japan and Cambodia
- Made contract for KUMIKI system usage for compensation.
- Free drone service of spraying fertilizer/chemicals for farmers who collaborated with us for this project.

# 3.1. Future outlook of the business using KhmerGEONET

In terms of agricultural usage to which KhmerGONET might affect, drone for spraying fertilizer/chemicals ("spray drone" hereafter) will be the only existing IT solution currently.

There are some other IT solutions/software services for local farmers using internet, but we could not recognize any other solutions/services which require more accurate coordinate information than current GNSS(without RTK).

And even for the spray drone, we confirmed that it would be difficult to let drone operator (assuming local farmers who own and use spray drone) feel the difference of efficiency (such as accuracy of drone flight, reducing manpower, time-saving,etc) in RTK flight comparing to Non-RTK flight physically and visibly.

But we confirmed that RTK flight shows more accuracy in coordinate information than No-RTK flight. Therefore, in case that any other IT solutions/software services for agriculture, which requires more coordinate accuracy, was introduced and prevailed in Cambodia, KhmerGEONET would work for it.

Possible IT solutions/software services for agriculture as above, which is called "Smart-Agriculture Solutions", will be as below

- Self-drive/drive assistant service of tractor and harvester
- Irrigation system with auto-water-adjusting function

Smart-Agriculture Solutions as above surely increase efficiency (reducing man power, saving time), which may induce local farmers to join Khmer GEONET with payment.

# 3.2. About KhmerGEONET

#### 1) Good points using KhmerGEONET

In terms of coordinate information, standard deviation of RTK flight under KhmerGEONET shows much better accuracy than Non-RTK flight.

#### 2) Issues to be solved

In terms of spray drone usage for agriculture, internet coverage issues would be the most difficult thing.

Farm lands are often located in province far from city, and internet radio is very weak in those area.

Improvement of internet coverage in province must be necessary.

### 3) Request for improvement

In terms of agriculture sector, necessary improvement would be expansion of smart-agri-solution variety and internet coverage, not the improvement of KhemrGEONET service quality.

We confirmed the accuracy of coordinate by KhmerGEONET. Therefore, we expect the introduction of more sophisticated smart-agri-solution which require the accuracy of KhmerGEONET in Cambodia in the future.

# 4. Conclusion

We could recognize the accuracy of RTK flight comparing to Non-RTK flight by technical accuracy difference analysis making use of coordinate information.

Nevertheless, drone operator could not feel the physical and visible difference between RTK flight and Non-RTK flight.

This means currently it is difficult to let drone operator, who we assume is the local farmers using drone for spraying fertilizer/chemicals, feel any improvement of efficiency such as reducing manpower, saving time, etc.

In case more sophisticated smart-agri-solutions which requires more accurate coordinate information, such as autonomous driving of tractor/harvester, autoirrigation system, etc are introduced and prevailed in Cambodia in the future, the demand for Khmer GEONET in agricultural sector will expand practically. Project on Establishment of Continuously Operating Reference Stations (CORS) for Land Management and Infrastructure Development

# JICA Pilot Project Demonstration Project Implementation Report



June 2023 Key Consultants (Cambodia)

# **Table of Contents**

| 1 | Ov  | ervi  | ew of the demonstration project                       | 1 |
|---|-----|-------|-------------------------------------------------------|---|
|   | 1.1 | Na    | me of the demonstration project                       | 1 |
|   | 1.2 | Ba    | ckground and purpose of the demonstration project     | 1 |
|   | 1.3 | Bri   | ef description of the demonstration project           | 1 |
|   | 1.4 | Loo   | cation of the demonstration project site              | 3 |
|   | 1.5 | Me    | embers                                                | 6 |
|   | 1.6 | Eq    | uipment used for the demonstration project            | 6 |
| 2 | De  | tails | s of the work                                         | 9 |
|   | 2.1 | Wo    | ork performed                                         | 9 |
|   | 2.1 | .1    | Preparation                                           | 9 |
|   | 2.1 | .2    | Implementation1                                       | 0 |
|   | 2.1 | .3    | Topographical surveyed data processing1               | 5 |
|   | 2.2 | Su    | rveyed Results1                                       | 9 |
|   | 2.2 | 2.1   | Northing and Easting comparison1                      | 9 |
|   | 2.2 | 2.2   | Survey Cost Benefits2                                 | 5 |
|   | 2.3 | Us    | e of Khmer GEONET20                                   | 8 |
|   | 2.3 | 8.1   | Details of the Khmer GEONET data used20               | 8 |
|   | 2.3 | 8.2   | Problems occurred and solutions29                     | 9 |
|   | 2.4 | Ap    | plicable of Khmer GEONET for urban flood assessment29 | 9 |
|   | 2.4 | .1    | Hydrological modeling                                 | 0 |
|   | 2.4 | .2    | Hydrodynamic model                                    | 2 |

|   | 2.4 | .3 Inundation result                              | 34 |
|---|-----|---------------------------------------------------|----|
|   | 2.4 | .4 Conclusion of flood simulation                 | 36 |
| 3 | Wa  | y forward                                         | 37 |
|   | 3.1 | Future outlook of the business using Khmer GEONET | 37 |
|   | 3.2 | About Khmer GEONET                                | 37 |
|   | a.  | Good points using Khmer GEONET                    | 37 |
|   | b.  | Issues to be solved                               | 37 |
|   | c.  | Request for improvement                           | 38 |
| 4 | Cor | nclusion                                          | 39 |

# **1** Overview of the demonstration project

# 1.1 Name of the demonstration project

Flood Inundation Study in Siem Reap Town Using Khmer GEONET

# **1.2 Background and purpose of the demonstration project**

Under the Ministry of Land Management, Urban Planning, and Construction, the General Department of Cadastral and Geography (GDCG) has been providing Continuously Operated Reference Station (CORS) service in Cambodia, known as Khmer GEONET. Internet-connected Khmer GEONET provides correct dataset for registered GNSS users to attain few centimeter-level precisions around the CORS.

Khmer GEONET currently operates five continuously operational reference stations in Phnom Penh, Kandal, Kampong Speu, Siem Reap, and Stung Streng under the technical support and cooperation of JICA having started in early of 2021. Users are able to have freely access to the service where the station signal are covering until October 26, 2023.

The objective of this assignment is to demonstrate the functionality of CORS, its accuracy, limitation observation to the GNSS rover, as well as the advantages of using Khmer GENONET CORS in land surveying, mapping and drone survey.

Prior to the official introduction of the service, efficiency and accuracy are by far the most crucial factors. In light of this, JICA, via PASCO Corporation, has awarded the contract to Key Consultants (Cambodia) as an independent local consultant firm to conduct study and evaluate the capability and effectiveness of the established CORS, named "SIE-1", located in Siem Reap province.

The study is aimed to (i) compare the advantages of using a CORS-connected unmanned aerial vehicle (UAV) versus the National BM zero-order control and (ii) to compare the coordinate data obtained from Khmer GEONET CORS SIE-1 and the coordinate data obtained from the National BM zero-order control and (iii) to use the Digital Elevation Model (DEM) as the product from the CORS for flood study.

# 1.3 Brief description of the demonstration project

SIE-1 CORE is located in Siem Reap; was established in front of administrative offices of Siem Reap province and selected to use for the study and evaluate its functionality.

In addition to make data even useful, the study utilized raster DTM obtained from drone photogrammetry software to model a flood extension map over the study area. The map obviously extended from the bridge that is located at the AMANSARA hotel all the way down to the water gate that is currently in place.

Khmer GEONET is an internet-connected service that provides its consumers with numerous benefits in the disciplines of land surveying, engineering surveying, and

Page | 1

mapping. The system is capable of providing users with centimeter-level accuracy, which is required for engineering surveying tasks such as site setting out, road boundary setting, canal boundary setting out, topographical map surveying, etc. In addition, the system reduces the number of GNSS receivers typically required at least two GNSS receivers for measuring by the user. By registering with Khmer GEONET and purchasing a GNSS receiver, users of Khmer GEONET can save thousands of dollars on their initial investment budget. Then, they can conduct measurements in the surveying. Moreover, Khmer GEONET can effectively reduce the time-consuming process of data collection. By not requiring their own RTK base station, users can save time in the field and begin working immediately upon connecting to the Khmer GEONET where they are standing nearby. Additionally, the user can obtain the GPS Rinex file from the Khmer GEONET if post-processing is required.

In contracts, the conventional method or traditional RTK method requires more sources to operate. Users are required to purchase at least two GNSS receivers, one of which serves as the base station and the other as a rover, resulting in a significant initial investment cost. In addition, users must spend more time in the field setting up the base station and have a great deal of work to do, such as delivering the GNSS receiver base and rover, the GPS antenna, and the battery, resulting in a substantial expenditure on transportation and labor. In addition, antenna-based RTK restricts measurement. The user is discouraged from taking measurements beyond 20 kilometers from the base station.

The result is shown that, the horizontal and vertical data accuracy varied from millimeters to centimeters as a consequence of measurements made at five measurement checkpoints using various reference stations and techniques. The outcome demonstrates the usefulness and efficiency of doing thorough surveys and mapping utilizing Khmer GEONET CORS across the target region. There is a little discrepancy of acquired data between Khmer GEONET CORS data and National BM zero-order data.

Flooding result also revealed the goodness of the CORS, as the model was setup within the combination of free source DTM within low resolution of 30m for basinwide of Siem Reap River. The flood assessment found also the details of flood extent over the pilot area, in which; the result will help the local authority or the municipality to prepare for any development. However, the pilot area of detailed information or the surveyed area from the topographical data was not covered entire of the municipality.

It would be useful to have more topographic data covering the whole city, where urban expansion will be taking place in the near future. As the Siem Reap town is lying along the river; river flood might occur due to uncertainty of climate and rainfall. The study of flood assessment within the wide area of topographical data will be helpful to improve and protect the town from any disastrous due to the change of human being and natural.

| Preparation      | : Apr 2023 – Jun 2023           |
|------------------|---------------------------------|
| Work at the site | : 23 April 2023 – 28 April 2023 |
| Work Processing  |                                 |

Reporting

: 05 May 2023 – 30 June 2023

Table 1-1 Plan and actual of the schedule

| No              | o. Work Items/ Year & Month P                |        | Drogross | 2023 |   |   |   |   |   |   |   |   |    |    |    |
|-----------------|----------------------------------------------|--------|----------|------|---|---|---|---|---|---|---|---|----|----|----|
| NO.             |                                              |        | Progress | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1               |                                              | Plan   | 1000/    |      |   |   |   |   |   |   |   |   |    |    |    |
| 1               | Sign a contract with Pasco                   | Actual | 100%     |      |   |   |   |   |   |   |   |   |    |    |    |
|                 | Preparation of the pilot project             |        | 100%     |      |   |   |   |   |   |   |   |   |    |    |    |
| 2               | Desk study Data collection (Lludrology Team) | Plan   | 100%     |      |   |   |   |   |   |   |   |   |    |    |    |
| 2               | Desk study Data collection (Hydrology Team)  | Actual | 100%     |      |   |   |   |   |   |   |   |   |    |    |    |
| 2               | 3 Hydrological Analysis (Hydrology Team)     | Plan   | 100%     |      |   |   |   |   |   |   |   |   |    |    |    |
| 3               |                                              | Actual |          |      |   |   |   |   |   |   |   |   |    |    |    |
| 4               | Conducted drone fly (Drone Aerial            | Plan   | 100%     |      |   |   |   |   |   |   |   |   |    |    |    |
| 4               | Photographic Team)                           | Actual | 100%     |      |   |   |   |   |   |   |   |   |    |    |    |
| -               | Cross section survey of Siem Reap River and  | Plan   | 1000/    |      |   |   |   |   |   |   |   |   |    |    |    |
| 5               | Checkpoints (Topography Survey Team)         | Actual | 100%     |      |   |   |   |   |   |   |   |   |    |    |    |
| 6 <sup> 1</sup> | Image Processing (Drone Aerial Photographic  | Plan   | 1000/    |      |   |   |   |   |   |   |   |   |    |    |    |
|                 | & Topography Survey Team)                    | Actual | 100%     |      |   |   |   |   |   |   |   |   |    |    |    |
| 7               | Depart and Manaina                           | Plan   | 1000/    |      |   |   |   |   |   |   |   |   |    |    |    |
| 7               | Report and Mapping                           | Actual | 100%     |      |   |   |   |   |   |   |   |   |    |    |    |

#### 1.4 Location of the demonstration project site

The project site is located in the center of Siem Reap town where Siem Reap River is also compounded in the study boundary. The boundary has an area of 144ha with approximate of 2km length stretching along the river downward to Ang Krapeu head structure and the upper boundary is in Royal Independence Gardens.

It's clearly seen the boundary of the study shown in Table 1-2 below.

|                   |              | 51000   |           |
|-------------------|--------------|---------|-----------|
| Point             | Positioning  | E (m)   | N (m)     |
| P-01              | Top Left     | 376,197 | 1,477,849 |
| P-02              | Top Right    | 376,874 | 1,477,605 |
| P-03              | Bottom Left  | 375,512 | 1,475,973 |
| P-04              | Bottom Right | 376,189 | 1,475,729 |
| CORS SIE-1        | Point        | 380,263 | 1,478,968 |
| SIEM (ZERO-ORDER) | Point        | 371,550 | 1,482,704 |

Table 1-2 Project boundary positioning

Khmer GEONET CORS SIE-1 is located approximately of 6km from the project site; while another zero-order BM was installed in 1997 located inside the Siem Reap international airport is about 8km from the site were used in this study. Location of the site demonstration and the BM-points are illustrated in the **Figure 1-1** below; while the description card of national BM zero-order in the airport is shown in **Figure 1-2**.



Figure 1-1 Location of the demonstration project site and BM-points



Figure 1-2 Description Card of National BM Zero-order

### 1.5 Members

Two teams were deployed in the study; in which topographical survey team was led the team and accompanied with Hydrological team to conduct flood study by using the product such digital elevation generated from drone and ground survey. The deployment teams are described in the **Table 1-3** below.

| NO. | Name                | Company/Organization                          | Role                                            |  |  |
|-----|---------------------|-----------------------------------------------|-------------------------------------------------|--|--|
| 1   | Mr.Prak Chamrouen   | Key Consultants (Cambodia)                    | Head department of GIS and Topographical Survey |  |  |
| 2   | Mr.Chan Thanin      | Key Consultants (Cambodia)                    | Civil Engineer/Topo Team Leader                 |  |  |
| 3   | Mr.Sam Kosal        | Key Consultants (Cambodia)                    | Civil Engineer/Cad & GIS operator               |  |  |
| 4   | Mr.Vet Layveng      | Key Consultants (Cambodia)                    | Geology Engineer/Cad & GIS operator             |  |  |
| 5   | Mr. Kim Techor      | Key Consultants (Cambodia)                    | Rural Engineer/Cad & GIS operator               |  |  |
| 6   | Mr. Uk Samseiha     | Key Consultants (Cambodia)                    | Head department of Hydrology and Modeling       |  |  |
| 7   | Mr. Seak Sothearith | Key Consultants (Cambodia) Hydraulic Engineer |                                                 |  |  |

|--|

#### **1.6 Equipment used for the demonstration project**

Four major equipment were deployed in the study such as UAV model eBeeX and DJI Matrice drone; receiver and boat to conduct both ground and water depth of the river. Each equipment is listed in **Table 1-4** below with its functionality and specification.

| No. N   | lame                     | Qty. | Remarks (specifications, usage, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|--------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U.<br>R | JAV models eBee X<br>RTK | 01   | <ul> <li>Fully autonomous navigation including take-off<br/>and landing and automatic control of the on-<br/>board camera</li> <li>Wingspan: 116cm</li> <li>Weight (incl. supplied camera &amp; battery):1.1 -<br/>1.4kg depending on depending on camera<br/>and battery</li> <li>Cameras: senseFly S.O.D.A. 3D</li> <li>Automatic 3D flight planning: eMotion 3</li> <li>Cruise speed: 40-110 km/h</li> <li>Max. flight time: Standard: 60 minutes /<br/>Endurance Extension: 90min</li> <li>Max. flight range: Standard: 47 km / Endurance<br/>Extension: 95 km</li> </ul> |

Table 1-4 List of equipment used

| No. | Name                                 | Qty. | Remarks (specifications, usage, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-----|--------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 2   | DJI Matrice M300 RTK                 | 01   | <ul> <li>Dimensions: Unfolded, propellers excluded,<br/>810x670x430 mm (LxWxH)<br/>Folded, propellers included, 430x420x430<br/>mm (LxWxH)</li> <li>Diagonal Wheelbase: 895 mm</li> <li>Weight (with single downward gimbal) Approx.<br/>3.6 kg (without batteries)<br/>Approx. 6.3 kg (with two TB60 batteries)</li> <li>Single Gimbal Damper's Max Payload: 930g</li> <li>Max Takeoff Weight: 9 kg</li> <li>Operating Frequency: 2.4000-2.4835 GHz<br/>5.725-5.850 GHz</li> <li>RTK Positioning Accuracy</li> <li>When RTK enabled and fixed:</li> <li>1 cm+1 ppm (Horizontal)</li> <li>1.5 cm + 1 ppm (Vertical)</li> </ul>                                                                                                                                                                                  |  |  |  |
| 3   | GNSS receiver models<br>Sokkia GRX-3 | 02   | <ul> <li>GNSS Tracking: 226 with patented Universal<br/>Tracking Channels technology</li> <li>GPS signal: L1 C/A, L1C', L2C, L2P(Y), L5,<br/>L1C when signal available</li> <li>GLONASS signal: L1 C/A, L1P, L2C/A, L2P,<br/>L3C', L3C when signal available</li> <li>Galileo signal: E1/E5a/E5b/Alt-BOC</li> <li>BeiDou/BDS signal: B1, B2</li> <li>IRNSS signal: L5</li> <li>SBAS signal: WAAS, EGNOS, MSAS, GAGAN<br/>(L1/L5')</li> <li>L-band signal: TopNET Global D&amp;C Correction<br/>services</li> <li>QZSS signal: L1 C/A, L1C, L1-SAIF, L2C, L5</li> <li>Static/Fast static: H 3mm +0.4ppm, V 5mm +<br/>0.5ppm</li> <li>RTK: H 5mm+0.5ppm; V 10mm+0.8ppm</li> <li>Internal Radios: 425-470MHz UHF radio, Max<br/>transmit power 1w, Range 5-7km</li> <li>GPS signal: L1C, L1C/A, L2E, L5</li> </ul> |  |  |  |
| 4   | GNSS receiver models<br>CHC i90 pro  | 04   | <ul> <li>GPS signal: L1C, L1C/A, L2E, L5</li> <li>Channels: 336 channels</li> <li>GLONASS signal: L1C/A, L2 C/A, L3 CDMA</li> <li>Galileo signal: E1, E5a, E5b, EAltBOC, E6</li> <li>BeiDou singal: B1, B2, B3</li> <li>SBAS signal: L1C/A, L5</li> <li>QZSS signal: L1 C/A, S1 SAF, L2C, L5, LEX</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

| No. | Name | Qty. | Remarks (specifications, usage, etc.)                           |
|-----|------|------|-----------------------------------------------------------------|
|     |      |      | <ul> <li>IRNSS signal: L5</li> </ul>                            |
|     |      |      | <ul> <li>L-BAND signal: RTX</li> </ul>                          |
|     |      |      | • RTK: H 8mm+1ppm RMS; V 15mm+1ppm                              |
|     |      |      | RMS                                                             |
|     |      |      | • PPK: H 2.5mm+1ppm RMS; V 5mm+0.5ppm                           |
|     |      |      | RMS                                                             |
|     |      |      | Static: H 2.5mm+0.5ppm RMS; V 5mm+0.5ppm RMS                    |
|     |      |      | Network modem:                                                  |
|     |      |      | <ul> <li>Integrated 4G modem, LTE (FDD); B1, B2, B3.</li> </ul> |
|     |      |      | B4. B5. B7. B8. B20                                             |
|     |      |      | <ul> <li>DC-HSPA+/HSPA+/HSPA/UMTS</li> </ul>                    |
|     |      |      | • B1, B2, B5, B8                                                |
|     |      |      | EDGE/GPRS/GSM                                                   |
|     |      |      | • 850/900/1800/1900MHz                                          |
|     |      |      | UHF Radio:                                                      |
|     |      |      | <ul> <li>Standard Internal Rx/Tx: 410-470MHz</li> </ul>         |
|     |      |      | Transmit Power: 0.5W to 2W                                      |
|     |      |      | • Protocol: CHC. Transparent. TT450.                            |
|     |      |      | SATEL 3AS                                                       |
|     |      |      | <ul> <li>Link rate: 9600 bps to 19200 bps</li> </ul>            |
|     |      |      | Range: 5km under optimal conditions                             |
|     |      |      | Data formats:                                                   |
|     |      |      | BTCM2x BTCM 3x CMB CMB+                                         |
|     |      |      | SCMRX input and output                                          |
|     |      |      | HCN HRC RINEX 2 11 3 02                                         |
|     |      |      | • NMEA 0183 output                                              |
|     |      |      | NTRIP Client NRTIP Caster                                       |
|     |      |      |                                                                 |

# 2 Details of the work

#### 2.1 Work performed

#### 2.1.1 Preparation

Prior to implementing the work, some necessary tasks had been initially prepared in the following steps:

- The UAV firmware and flight control software were verified to be up-to-date; the memory space was purged of all previous data, the UAV was pre-connected to Khmer GEONET using an activated username and password, and the UAV battery and charger were inspected for functionality. The body, swing, propeller, and wind tube of the UAV were inspected and affirmed to be free of fractures, defects, etc;
- GNSS receiver firmware, and GNSS's control device firmware were confirmed up-to-date, GNSS receiver were pre-connected to Khmer GEONET via provided username and password;
- The outboard engine was serviced by draining the machine oil and gear oil and then refilling them;
- The fiberglass boat's bottom was examined to make sure no cracks had formed.
- Site reconnaissance had been observed the following day the team arrived Siem Reap city;
- The proposed UAV take-off and landing locations were inspected for obstruction objects such as structures, tall trees, telecommunication antennas;
- Since the study area was a sensitive area, the permission letter was requested from GDCG. The GDCG, on the other hand, was not able to issue the letter prior to implementing the work on time. However, due to the better coordination between GDCG and Provincial Department of Land Management, Urban Planning and Construction, the Siem Reap provincial administrative and relevant officers were officially notified;
- Inline structures and site condition were observed, in which hydrological characteristic were identified in associated available dataset from relevant establishment and satellite data;
- Secondary data such rainfall, flow dataset was obtained from the Provincial Department of Water resources and Metrology and used to conduct numerical and statical analysis before input into Hydrological model;
- The product from topographical survey associated with hydrological result were input together into hydrodynamic model to conduct flood inundation modeling and flood mapping to difference scenarios and return period were prepared accordingly;

#### 2.1.2 Implementation

Photogrammetry survey was used to generate three-dimensional point clouds from the specialized drone camera; in which the DEM was generated by using Pix4D mapper application; the interface of the application is shown in **Figure 2-1**.



Figure 2-1 Three-dimensional point cloud obtained from drone camera and constructed in Pix4D mapper software

Drone imagery couldn't reach to the underneath of the water surface, however; river bathymetric or river cross-section in-situ the study area has been surveyed along the defined 2km alignment of Siem Reap River to construct an interpolated surface of the river bank and river bed elevation by using GNSS receiver. The bathymetric survey activity is shown in **Figure 2-2**.



Figure 2-2 River bathymetric surveying activity

As indicated in the objective of the study; a major task was to compare the differential and beneficiary of utilizing an unmanned aerial vehicle connected with Khmer GEONET CORS and the National BM zero-order control. Observing the coordinate data obtained from Khmer GEONET CORS SIE1 and from the National BM zero-order control were discussed in the section below.

In order to evaluate the accuracy retrieved from Khmer GEONET CORS; five checkedpoints on the ground were used to observe its values (N, E, Z). Five ground checkedpoints used for this project are CHK-01, CHK-02, CHK-03, CHK-04, and CHK-05 by utilizing GNSS receivers.

Five-time measurements were performed at each of the examined points.

a. The 1<sup>st</sup> measurement was performed by using Static Survey, setting up GNSS receivers on CHK-01, CHK-02, CHK-03, CHK-04, and CHK-05 with a minimum observation duration of two hours respectively. The satellite elevation mask was set to 10 degrees from the horizontal axis; and the data recording interval was 01 second.

Raw GPS files known as Receiver Independent Exchange Format (RINEX) were collected from receivers of these control points once the observation finished; the RINEX file at reference station CORS SIE1 at the current time was acquired by Khmer GEONET.

- b. The 2<sup>nd</sup> measurement was also performed by using Static Survey, setting up GNSS receivers on checked-points and on the national BM-SIAM zero-took three hours in observation.
- c. The 3<sup>rd</sup> measurement was performed by using Real Time Kinematic Survey (RTK) by connecting GNSS receiver to the Khmer GEONET CORS SIE1 with the distance approximately of 6km.
- d. The 4<sup>th</sup> and 5<sup>th</sup> measurements, in which the coordinate of checked points were obtained directly from drone imagery, are shown in the figure 2.3 2.7. Raw images were obtained from DJI M300 RTK and the image mosaic was processed in Pix4D Mapper. The Khmer GEONET CORS SIE1 and the National BM zero-order base stations were utilized in order to compare their respective results.

As mentioned in the above section, the drone camera sensor could not reach to the riverbed elevation. Furthermore, a specialized sensor was needed. However, the river cross-section survey was performed by utilizing an RTK survey and linked to Khmer GEONET CORS SIE1 with the following configuration:

- Protocol: NRTIP
- Data link: PDA network or Internet-Connected Device
- Domain/IP: cgd09.khmerGEONET.xyz
- Port:2101
- Mount point: RRS\_RTCM32

The following activities shown in the **Table 2-1** are the activities in setting up of Static survey at each checked-points by using GNSS receivers and drone flight preparation connecting to CORS SIE1 and Checked-point 3.

| De                                                                                                | tailed of activities performed |
|---------------------------------------------------------------------------------------------------|--------------------------------|
| Static Survey was carried<br>out on the ground<br>checked-point CHK-01<br>Starting Time: 9:19AM – |                                |
| 12.00PM (UTC+7)                                                                                   |                                |
| frequency models CHC-<br>i90 pro                                                                  |                                |
| Static Survey was carrying<br>out on the ground<br>checked-point CHK-02.                          |                                |
| Starting Time: 9:13AM-<br>12:02PM (UTC+7)                                                         |                                |
| GNSS receiver with dual frequency models Sokkia GRX-3                                             |                                |

Table 2-1 Activity performed in setting up static and drone survey

| Static Survey was carrying<br>out on the ground<br>checked-point CHK-03 |  |
|-------------------------------------------------------------------------|--|
| Starting Time: 9:03AM –<br>12:02PM (UTC+7)                              |  |
| GNSS receiver with dual frequency models Sokkia GRX-3                   |  |
| Static Survey was carrying<br>out on the ground check-<br>point CHK-04  |  |
| Starting Time: 9:10AM –<br>12:00PM (UTC+7)                              |  |
| GNSS receiver with dual frequency models CHC-i90pro                     |  |
| Static Survey was carrying<br>out on the ground<br>checked-point CHK-05 |  |
| Starting Time: 9:10AM –<br>12:00PM (UTC+7)                              |  |
| GNSS receiver with dual frequency models Sokkia GRX-3                   |  |

Static Survey was carrying out on the National BM SIEM zeroorder

Starting Time: 9:10AM – 12:00PM (UTM+7)

GNSS receiver with dual frequency models CHC-i90pro.



NRTIP host: 192.168.1.1

Port: 9901

Mountpoint: RTCM3.2

Satellite used:

GPS 8, Beidou 9, Glonass 5, Galileo 7

Note: The GNSS receiver was installed on CHK-03, and its coordinate received from static survey with BM SIEM as the reference station.




Multi rotors drone models DJI M300 RTK received the correction data from Khmer GEONET CORS SIE-1 NTRIP host: cgd09.khmerGEONET.xy z Port: 2101 Mountpoint: **RRS RTCM3.2** Satellite used: GPS 10, Beidou 9, Glonass 5, Galileo 5 Khmer GEONET CORS SIE-1 located in front of Administration center of Siem Reap.

#### 2.1.3 Topographical surveyed data processing

RINEX files have been imported into MAGNET Tools Ver.4.3.2.0 software to conduct data processing and network adjustment. Some parameters had been configured prior to processing the data:

- a. Coordinate System: Projection UTM Zone 48N: 102E to 108E, Datum: WGS1984
- b. Confidence level was set to 95%
- c. Least Squares Formula had been used to compute Traverse Adjustment
- d. Satellite filter angle was set to 10 degrees
- e. Traverse Distance Precision was obtained from the Horizontal Control Network Standard in Federal Geodetic Control Committee (FGCC) as shown in **Table 2-2**. The Third-order, class II has been chosen.

| Table 2-2 Distance accuracy Standard (FG | CC) |
|------------------------------------------|-----|
|------------------------------------------|-----|

| Classification         | Minimum distance accuracy |
|------------------------|---------------------------|
| First-order            | 1:100,000                 |
| Second-order, Class-I  | 1:50,000                  |
| Second-order, Class-II | 1:20,000                  |
| Third-order, Class-I   | 1:10,000                  |
| Third-order, Class-II  | 1:5,000                   |

A distance accuracy calculate the value of 1:a that computed from a minimally constrained, correctly weight, least squares adjustments by:

#### a=d/s

#### Where:

- **a**: is a distance accuracy denominator
- **s**: is propagated standard deviation of distance between survey points obtained from the least square adjustment
- **d**: is horizontal between survey points
- Static horizontal precision was set to 0.02m
- Horizontal Tolerance for loop closure precision was set to 0.03m

Pix4D Mapper, a photogrammetry application, was used to mosaic the images. RTKbased drone model (DJI Matrice 300 RTK) was used to capture the images over the study area at a flying altitude of 270m; the image resolution was captured by 3cm pixels; the image side and front overlap was set to 80%; and the speed of the drone to capture the images was 15 m/s.

The final DTM was generated by using ArcMap's break line feature to combine the DTM retrieved from Pix4D with data from a ground survey.

The **Figure 2-3 to 2-7** depict the locations of ground checkpoints CHK-01, CHK-02, CHK-03, CHK-04, and CHK-05 that were initially placed on the ground prior to flying the drone. The locations were discovered at the open sky, at the visible place where the drone's camera could capture the clear images from top view. The coordinate data (N, E) was extracted from high-resolution aerial photograph using the **Identify tools of ArcMap software.** 



Figure 2-3 The coordinate data of CHK-01 was obtained from drone imagery



Figure 2-4 The coordinate data of CHK-02 was obtained from drone imagery



Figure 2-5 The coordinate data of CHK-03 was obtained from drone imagery



Figure 2-6 The coordinate data of CHK-04 was obtained from drone imagery



Figure 2-7 The coordinate data of CHK-05 was obtained from drone imagery

The elevations of ground checkpoints (ellipsoid height), on the other hand; were extracted from the final improved Raster DTM using **Extract Values to Points ArcMap** as illustrated in **Figure 2-8**.



Figure 2-8 The elevation of ground checked points (ellipsoid height) were extracted from raster DTM using **Extract Value to Point** 

#### 2.2 Surveyed Results

#### 2.2.1 Northing and Easting comparison

In the analysis step, the accuracy assessment of the Khmer GEONET CORS was conducted by comparing the coordinate of the 5-ground checkpoints obtained from the

static survey at the national BM zero-order (SIAM) with the coordinate determined by static survey measured from Khmer GEONET CORS.

**Table 2-3 and 2-4** show the differences of horizontal and vertical RMS for the 5 checkpoints. The analysis of goodness fit test between the static survey from Khmer GEONET CORS SIE1 and the static survey from BM SIAM have shown that the discrepancies of the Northing and Easting shown in **Figure 2-9 to 2** with a few mm difference with the standard deviation of 0.01106m and mean of -0.01456m respectively. In contrast, the error of elevation was revealed by 20-30cm and the **Figure 2-11** and **Table 2-5** show the difference of elevation (ellipsoid height) of checkpoints.

|               | STATIC OBSERVATION FROM KHMER GENOET CORS SIE1 |           |         |          |          |              |          |                  |                   |                       |          |        |
|---------------|------------------------------------------------|-----------|---------|----------|----------|--------------|----------|------------------|-------------------|-----------------------|----------|--------|
| Name          | dN (m)                                         | dE (m)    | dHt (m) | Horz RMS | Vert RMS | Distance (m) | Duration | Solution<br>Type | GPS<br>Satellites | GLONASS<br>Satellites | Status   | RMS(m) |
| CKH-02-CKH-03 | -487.487                                       | -493.587  | -0.627  | 0.001    | 0.001    | 693.884      | 1:48:05  | Fixed            | 7                 | 7                     | Adjusted | 0.001  |
| CKH-02-CKH-05 | -1590.064                                      | -625.191  | -1.93   | 0.001    | 0.001    | 1708.917     | 1:03:25  | Fixed            | 7                 | 6                     | Adjusted | 0.002  |
| CKH-02-SIE1   | 1513.048                                       | 3491.332  | 7.561   | 0.003    | 0.006    | 3805.925     | 1:53:50  | Fixed            | 7                 | 8                     | Adjusted | 0.007  |
| CKH-02-CKH-04 | -1388.421                                      | -1176.14  | -1.317  | 0.001    | 0.001    | 1820.002     | 1:53:50  | Fixed            | 7                 | 8                     | Adjusted | 0.002  |
| CKH-02-CKH-01 | 266.571                                        | -540.973  | -0.394  | 0.001    | 0.002    | 603.213      | 1:40:39  | Fixed            | 7                 | 7                     | Adjusted | 0.003  |
| CKH-03-CKH-05 | -1102.577                                      | -131.606  | -1.293  | 0.001    | 0.001    | 1110.637     | 1:03:25  | Fixed            | 7                 | 6                     | Adjusted | 0.001  |
| CKH-03-SIE1   | 2000.532                                       | 3984.906  | 8.21    | 0.003    | 0.006    | 4459.852     | 1:57:35  | Fixed            | 7                 | 7                     | Adjusted | 0.007  |
| CKH-03-CKH-04 | -900.93                                        | -682.559  | -0.701  | 0.001    | 0.001    | 1130.529     | 1:49:02  | Fixed            | 7                 | 7                     | Adjusted | 0.001  |
| CKH-03-CKH-01 | 754.057                                        | -47.387   | 0.226   | 0.001    | 0.001    | 755.703      | 1:40:39  | Fixed            | 7                 | 7                     | Adjusted | 0.001  |
| CKH-05-SIE1   | 3103.119                                       | 4116.52   | 9.499   | 0.004    | 0.007    | 5156.226     | 1:03:25  | Fixed            | 7                 | 6                     | Adjusted | 0.008  |
| CKH-05-CKH-04 | 201.645                                        | -550.948  | 0.623   | 0.001    | 0.002    | 586.812      | 1:03:25  | Fixed            | 7                 | 6                     | Adjusted | 0.002  |
| CKH-05-CKH-01 | 1856.637                                       | 84.219    | 1.539   | 0.002    | 0.003    | 1858.936     | 1:03:25  | Fixed            | 7                 | 6                     | Adjusted | 0.003  |
| SIE1-CKH-04   | -2901.472                                      | -4667.469 | -8.882  | 0.002    | 0.004    | 5496.99      | 1:10:57  | Fixed            | 7                 | 8                     | Adjusted | 0.004  |
| SIE1-CKH-01   | -1246.478                                      | -4032.302 | -7.968  | 0.002    | 0.003    | 4221.486     | 1:40:39  | Fixed            | 7                 | 7                     | Adjusted | 0.004  |

Table 2-3 Static observation from Khmer GEONET CORS SIE1

| STATIC OBSERVATION FROM NATIONAL BM (SIAM) ZERO-ORDER |           |           |         |          |          |              |          |                  |                   |                       |          |        |
|-------------------------------------------------------|-----------|-----------|---------|----------|----------|--------------|----------|------------------|-------------------|-----------------------|----------|--------|
| Name                                                  | dN (m)    | dE (m)    | dHt (m) | Horz RMS | Vert RMS | Distance (m) | Duration | Solution<br>Type | GPS<br>Satellites | GLONASS<br>Satellites | Status   | RMS(m) |
| BM-SIEM-CKH-<br>01                                    | -4982.208 | 4480.514  | -2.777  | 0.003    | 0.005    | 6701.891     | 2:40:39  | Fixed            | 7                 | 7                     | Adjusted | 0.0059 |
| BM-SIEM-CKH-<br>02                                    | -5248.776 | 5021.495  | -2.509  | 0.002    | 0.004    | 7265.414     | 2:52:35  | Fixed            | 7                 | 8                     | Adjusted | 0.005  |
| BM-SIEM-CKH-<br>03                                    | -5736.265 | 4527.906  | -3.143  | 0.002    | 0.005    | 7309.447     | 2:54:40  | Fixed            | 7                 | 7                     | Adjusted | 0.005  |
| BM-SIEM-CKH-<br>04                                    | -6637.205 | 3845.357  | -3.697  | 0.003    | 0.006    | 7672.200     | 2:53:32  | Fixed            | 7                 | 8                     | Adjusted | 0.0065 |
| BM-SIEM-CKH-<br>05                                    | -6838.851 | 4396.307  | -4.454  | 0.003    | 0.005    | 8131.653     | 2:03:25  | Fixed            | 7                 | 7                     | Adjusted | 0.0056 |
| CKH-01-CKH-02                                         | -266.5716 | 540.975   | 0.263   | 0.001    | 0.002    | 603.213      | 2:40:39  | Fixed            | 7                 | 7                     | Adjusted | 0.0026 |
| CKH-01-CKH-03                                         | -754.0597 | 47.387    | -0.357  | 0.001    | 0.001    | 755.703      | 2:40:39  | Fixed            | 7                 | 7                     | Adjusted | 0.0012 |
| CKH-01-CKH-04                                         | -1654.997 | -635.168  | -0.916  | 0.001    | 0.002    | 1773.062     | 2:40:39  | Fixed            | 7                 | 7                     | Adjusted | 0.0017 |
| CKH-01-CKH-05                                         | -1856.643 | -84.220   | -1.670  | 0.002    | 0.003    | 1858.937     | 2:03:25  | Fixed            | 7                 | 6                     | Adjusted | 0.0034 |
| CKH-02-CKH-03                                         | -487.4889 | -493.589  | -0.627  | 0.001    | 0.001    | 693.884      | 2:48:05  | Fixed            | 7                 | 7                     | Adjusted | 0.0011 |
| CKH-02-CKH-04                                         | -1388.426 | -1176.144 | -1.188  | 0.001    | 0.001    | 1820.002     | 2:53:50  | Fixed            | 7                 | 8                     | Adjusted | 0.0016 |
| CKH-02-CKH-05                                         | -1590.069 | -625.193  | -1.930  | 0.001    | 0.001    | 1708.917     | 2:03:25  | Fixed            | 7                 | 6                     | Adjusted | 0.0016 |
| CKH-03-CKH-04                                         | -900.9326 | -682.561  | -0.572  | 0.001    | 0.001    | 1130.529     | 2:49:02  | Fixed            | 7                 | 7                     | Adjusted | 0.0014 |
| CKH-03-CKH-05                                         | -1102.581 | -131.607  | -1.293  | 0.001    | 0.001    | 1110.637     | 2:03:25  | Fixed            | 7                 | 6                     | Adjusted | 0.0013 |
| CKH-04-CKH-05                                         | -201.6452 | 550.950   | -0.754  | 0.001    | 0.002    | 586.812      | 2:03:25  | Fixed            | 7                 | 6                     | Adjusted | 0.0021 |



Figure 2-9 The difference of Northing data of Checkpoint



Figure 2-10 The difference of Easting data of checkpoint



Figure 2-11 The difference of elevation (ellipsoid height) of checkpoints

| POINT              | DIFFERENCE   |             |         |  |  |  |  |
|--------------------|--------------|-------------|---------|--|--|--|--|
| FOINT              | Northing (m) | Easting (m) | Z (m)   |  |  |  |  |
| CKH-01             | -0.0172      | -0.0031     | -0.2364 |  |  |  |  |
| CKH-02             | -0.0179      | -0.0006     | -0.3892 |  |  |  |  |
| CKH-03             | -0.0202      | -0.0028     | -0.3772 |  |  |  |  |
| CKH-04             | -0.0224      | -0.0046     | -0.2335 |  |  |  |  |
| CKH-05             | 0.0049       | 0.0007      | -0.2573 |  |  |  |  |
| Mean               | -0.0146      | -0.0021     | -0.2987 |  |  |  |  |
| Standard Deviation | 0.0111       | 0.0021      | 0.0778  |  |  |  |  |

Table 2-5 Comparison of Static survey for CORS Vs National BM (Airport)

At the examined points, the comparison of data from the Khmer GEONET CORS RTK and the National BM SIEM static survey was also observed. In **Figures 2-12** and **2-13**; in which the differences of northing and easting data range from a few millimeters respectively; while elevation data range from 22-39cm as seen in **Figure 2-14** and **Table 2-6** below.



Figure 2-12 The difference of Northing data getting from BM SIEM and Khmer GEONET CORS



Figure 2-13 The difference of Easting data getting from BM SIEM and Khmer GEONET CORS



Figure 2-14 The difference elevation (ellipsoid height) of BM SIEM and Khmer GEONET CORS SIE1

| DOINIT             | DIFFERENCE   |             |         |  |  |  |  |  |
|--------------------|--------------|-------------|---------|--|--|--|--|--|
| POINT              | Northing (m) | Easting (m) | Z (m)   |  |  |  |  |  |
| CKH-01             | -0.0112      | -0.0051     | -0.2244 |  |  |  |  |  |
| CKH-02             | -0.0319      | -0.0026     | -0.2932 |  |  |  |  |  |
| CKH-03             | -0.0172      | 0.0032      | -0.2622 |  |  |  |  |  |
| CKH-04             | -0.0234      | 0.0224      | -0.2625 |  |  |  |  |  |
| CKH-05             | 0.0049       | 0.0007      | -0.2573 |  |  |  |  |  |
| Mean               | -0.0158      | 0.0037      | -0.2599 |  |  |  |  |  |
| Standard Deviation | 0.0139       | 0.0109      | 0.0244  |  |  |  |  |  |

Table 2-6 Comparison of RTK Survey Vs Static Survey (CORS)

Comparing data from drone imagery with two different reference stations at Khmer GEONET CORS SIE1 and National BM SIEM was the final step in determining the checkpoints' accuracy. The **Figure 2-15** demonstrates that the variance in Northing and Easting data extends from a few millimeters to 2.6 centimeters. On the other hand, **Figure 2-16** depicts an Easting difference between 1 cm and 5 cm, whereas **Figure 2-17** and **Table 2-7** show an elevation difference between 23 cm and 38 cm.



Figure 2-15, the difference of Northing from drone imagery



Figure 2-16, the difference of Easting from drone imagery



Figure 2-17, the difference of elevation from drone imagery

Table 2-7 Comparison of DTM (Drone RTK base CORS) Vs DTM (Drone RTK base National BM)

| POINT     |              | DIFFERENCE  |         |  |  |  |  |  |  |
|-----------|--------------|-------------|---------|--|--|--|--|--|--|
| FUINT     | Northing (m) | Easting (m) | Z (m)   |  |  |  |  |  |  |
| CKH-01    | -0.0102      | -0.0345     | -0.3254 |  |  |  |  |  |  |
| СКН-02    | 0.0134       | 0.0512      | -0.3415 |  |  |  |  |  |  |
| СКН-03    | -0.0235      | 0.0312      | -0.3085 |  |  |  |  |  |  |
| СКН-04    | -0.0011      | 0.0322      | -0.3444 |  |  |  |  |  |  |
| CKH-05    | 0.0264       | -0.0117     | -0.2818 |  |  |  |  |  |  |
| Mean      | 0.0010       | 0.0137      | -0.3203 |  |  |  |  |  |  |
| Standard  | 0.0196       | 0.0355      | 0.0259  |  |  |  |  |  |  |
| Deviation |              |             |         |  |  |  |  |  |  |

#### 2.2.2 Survey Cost Benefits

Understanding of cost expenditure of surveying by using ground National BM and the CORS will facilitate the work progress. The cost estimation to the uses of each typical of benchmark is discussed in the following section.

As discussed in the above section; in which the Khmer GEONET CORS and National BM were used and analyze of its accuracy of data acquisition and time consuming in connecting the benchmark.

It's clearly understood that; the project must include at least one static point and links to National BM in order to operate RTK drones while using National BM as a reference base.

In Cambodia, there is only one zero-order BMs available and connected to the Asia-Pacific GPS network found in Siem Reap International Airport; while one of first-order BM is available in each province.

Accessing to the firs-order BM faced challenges due to it's lengthy to the study area; it's important to have more CORS stations to facilitate in any development related to ground measurement.

The RTK is required to capture coordinate data in the field, many temporary benchmarks (TBMs) must also be established in the project area. Conventional RTK, which employs a single base station and transmits corrections to rovers via the UHF radio frequency has limited about distance. The length of the observation should be less than 20 kilometers, or the accuracy gets poor. This enables the surveyors to develop more efficient plan for transferring coordinate data from the national BM to the project area, a process that typically involves static surveying, which incurs additional costs, time, equipment, main power, transportation, etc.

On the other hand, Khmer GEONET CORS stations can be used in a wide range of applications, including land surveying, construction, engineering, and mapping. The high-precision GNSS information can be used to create detailed maps, survey land. Khmer GEONET CORS provide effectiveness and work efficiency by reducing time-consuming and cost. CORS which stands for Continuously Operating Reference Station are designed to operate continuously, 24hours a day, seven days a week, providing real-time GNSS information to users. The GNSS data collected by the CORS station is processed and transmitted to users via the internet, allowing them to access high-precision positioning information from anywhere, at any time.

Table 2-5 indicates that the work required for conventional survey, and six typical of actions are to be carried out for the surveying progress. It's noticed that, number of operator and equipment receivers requires more manpower to operate; which revealed of time consuming and cost expenditure for these labor works.

Conventional surveying requires two steps: (i) coordinate data are transferred from the national ground BM to ground checkpoints by using static survey, and then (ii) the cross-section is completed by using RTK survey. Prior to conducting the RTK survey, the static survey created multiple RTK base station. Typically, RTK transmits the correction to the rover via UHF radio frequency; however, interference from any UHF radio frequency can cause a delay in determining the rover's precise position. In addition, operating with RTK drones requires an RTK base. Consequently, more resources were required to complete the operation. The distance between the national BM and our study area was also a concern, as more hours of static observation were required to improve the accuracy of GPS network processing. On top of that, RTK bases typically require one GNSS operator to standby to avoid any lost, unintentionally damaged, or relocated its position by humans.

The cost expenditure by using numbers of operator and time consuming for conventional method is provided in **Table 2-5** for 144 hectares of ground survey. The cost is depended on various condition; such weather, site accessibility, site condition and collaborative of the local authority.

| No. | Description            | Unit   | Qty. | Approximate<br>Amount (USD) |
|-----|------------------------|--------|------|-----------------------------|
| 1   | GNSS receiver          | No     | 5    |                             |
| 2   | GNSS receiver operator | person | 5    |                             |
| 3   | Leveling Instrument    | No     | 2    | ¢5 580 00                   |
| 4   | Leveling operator      | person | 6    | φ5,560.00                   |
| 5   | Leveling staff holder  | person | 4    |                             |
| 6   | Transportation         | No     | 1    |                             |

Table 2-8 Approximate cost of using conventional survey

In contrast, in **Table 2-6** has shown the cost expenditure of the completion of topographical surveying work for 144 hectares of ground survey by connecting to Khmer GEONET CORS. There are only three actions to conduct the survey as described in the table; in which; number of operators are minimized to operate with different equipment in the surveying task.

The GNSS receivers are similarity used to carry out the static survey which was done in conventional method; while the GNSS raw data are to be obtained from Khmer GEONET CORS. Additionally, the RTK survey to measure any river cross-section are simultaneously conducted without waiting for any completion of the static survey. RTK drone is easily connected and quickly received the correction data from Khmer GEONET CORS via the provisional of username and password. The working duration by using the CORS consumed less effort and cost expense are decreased, however; the cost is depended on various condition; such weather, site accessibility, site condition and collaborative of the local authority.

| No. | Description            | Unit   | Qty. | Approximate<br>Amount (USD) |
|-----|------------------------|--------|------|-----------------------------|
| 1   | GNSS receiver          | No.    | 5.00 |                             |
| 2   | GNSS receiver operator | person | 5.00 | \$ 2,400.00                 |
| 3   | Transportation         | No.    | 1.00 |                             |

Table 2-9 Approximate cost of using Khmer GEONET CORS

Comparison of both survey methodologies; the usage of Khmer GEONET CORS spends by half of conventional method by reducing operators and timing. As per unit of hectare area; using the CORS will cost approximately US\$ 17/ha while conventional method will cost close to 40US\$/ha. The cost expense for topographical data collection is mainly depended on the sites condition, and timing of each project areas nonetheless. The comparison of the cost estimation for both methods is illustrated in Figure 2-18, in which, the cost as per hectare area is shown.



Figure 2-18, the estimate of the comparison cost between KhmerGEONET vs Conventional Survey Method

## 2.3 Use of Khmer GEONET

To gain access to Khmer GEONET, our team was required to register with a username and password. Khmer GEONET certified the account activation via the email address providing during registration. The RINEX static log file at the current session was requested from our team to the Khmer GEONET, once the post processing is needed.

In the field, we were required to select the correct mount point and remain within its service area, otherwise, the CORS correction would not be accurate. Currently, there are five Khmer GEONET CORSs, three of which are network CORS and two of which are standalone CORS functions. The measurements were typically carried out between 8a.m-12p.m, 2p.m-5p.m.

2.3.1 Details of the Khmer GEONET data used

The details of Khmer GEONET data used are described as the following.

| IP address             | cgd09.khmerGEONET.xyz              |
|------------------------|------------------------------------|
| Port                   | 2101                               |
| Mount point            | RRS_RTCM3.2                        |
| User name              | OuSamrach                          |
| Period of use          | 25 April 2023 – 30 April 2023      |
| RTK/ Post processing   | Real Time Kinematic, Static Survey |
| Satellite systems used | GPS, Glonass, Beidou, Galileo,     |

| Table 2-10 Khmer GEONET da | nta used |
|----------------------------|----------|

#### 2.3.2 Problems occurred and solutions

The position of the rovers got fixed quickly without any delay, however; problem encounter was found when the rover was placed under the tree branches or near the building wall. To take over this problem, the operator should wait at least 5 minutes to get fully connecting to the CORS and fixed position.

#### 2.4 Applicable of Khmer GEONET for urban flood assessment

Hydrological analysis is an essential work representing the natural phenomenon of water in the watershed of study area. It provides discharges which would flow across the study area depending on its magnitudes caused by different rainfall intensity. An accuracy and validated of input data such DTM is quite crucial to present the reliable of the model result; in which the result of vulnerable area due to flood potential was discussed below.

The result using the Khmer GEONET was used to equip in the hydrodynamic model by combining with other parameters; where the flood depth and inundation area reflected to difference event or extreme probability in the study area.

To produce flood inundation, performed hydrological analysis by using HEC-HMS model with the inputs of available and surveyed DTM dataset to create basinwide of Siem Reap River are required.

The following schematic of Figure 2-20 describes the procedure of flood assessment; in which the dataset from the result using the Khmer GEONET product is the primary input to assess the potential of inundation area.



Figure 2-19 Flow chart of Flood indication assessment

#### 2.4.1 Hydrological modeling

The dataset of Khmer GEONET CORS combined with the available digital elevation model were used to delineate rainfall catchment over the Siem Reap River.

To delineate the watershed, the combination of the Khmer GEONET CORSs and Digital Terrain Model (DTM) with the correction of bathymetric survey and the DTM clipping from Global Terrain Data – FABDEM (A 30 m global map of elevation with forests and buildings removed) for the study area was used. Using the built-in GIS tools in HEC-HMS to process the watershed delineation; in which Siem Reap River basin was delineated within the area of 537km<sup>2</sup> shown in Figure 2-21 which is stretching from Kulen mountain to the Tonlesap lake as downstream boundary of Siem Reap River basin.



Figure 2-20 Siem Reap River basin and sub catchment

Siem Reap River is an artificial waterway which intercepted during 10<sup>th</sup>-11<sup>th</sup> CE<sup>1</sup>; where the southerly Pouk branch from the Kulen Mountains (main river basin) to an offtake canal system in temple zone and through Siem Reap town. Siem Reap River currently feeds water to ancient reservoirs such Baray and Moats. The water level is crucially conserved to maintain the foundation of ancient temple.

Several structures were observed at particular spots of Siem Reap river; it's clearly understood that there was only one head structure called Tum Nub Barang built over decades before 2012 and functioning to discharge water into temple area and minimize flood in the town.

Ta Som head structure, a new head structure was built and has been operating since 2013. The structure was built to evacuate potential of flow water from the huge river basin from Kulen mountain and navigate flow into major temple.

<sup>&</sup>lt;sup>1</sup> Water management in Angkor: Human impacts on hydrology and sediment transport, Kummu, 2009

The primary result of the hydrologic model; in which simulated flow at a gauge was used to calibrate the model for long-term time series from the year 2000-2012. The calibrated result was observed on the goodness and fit test before input into hydrodynamic model. The graphic below shows the comparison of flow discharging at a stage gauge in Siem Reap River for 2000-2012.



Figure 2-21 Comparison flow of staging gauge in Siem Reap River, 2000-2012

After Ta Som head structure was built and functioned; river flood potential was observed to have significantly decreased. However, urban flood in the city still occurred due to insufficient of urban infrastructure such urban drainage. The graph below shows the comparison result of gauging station and used as validated result from the hydrologic model and to be used for flooding assessment.





The 2D unsteady flow model was applied to generate overland flood. The most significant challenge for the hydrodynamic models is the availability of suitable digital elevation models (DEM) or digital terrain models (DTM). The DEM/DTM can be representing land surface feature in the study area. It provides information on surface elevations of the riverbed and the flood plain. The accuracy and scale of the DEM

directly impact to land elevation surface used in the hydrodynamic model. Also, DTM or digital surface model can provide details of the terrain necessary for applying hydrodynamic modeling.

| Data Input                               | Parameter                    | Unit                   |
|------------------------------------------|------------------------------|------------------------|
| DEM                                      | Digital Elevation/Topography | Meter                  |
| Land Cover Manning Roughness Coefficient |                              | Dimensionless          |
| Boundary<br>Condition                    | Flow Hydrograph              | Cubic meter per second |

| Table 2-11 Data | a requirement and | l input for l | Hydrodynamic | model |
|-----------------|-------------------|---------------|--------------|-------|
|-----------------|-------------------|---------------|--------------|-------|

In this study, DTM from <u>Global Terrain Data – FABDEM</u> as mentioned in section above, Drone DTM and River Surface created from river cross section survey were mosaiced together to be terrain of the model. The river shape from Tasom Dam was modified assumedly along the digitized alignment until connecting to the bathymetric surveyed section. This modification simply assumed the river section as a trapezoidal with bottom width of 20m, side slope of 3:1 and upstream invert elevation of 20m.



Figure 2-23 Pre-processing of improvement DTM



Figure 2-24 The post processing of improvement DTM

### 2.4.3 Inundation result

Once the river geometric, inflow and floodplain were prepared, result unsteady flow simulation was done chronologically to convey flood routing from the hydrological outfall to the downstream of the study area. GIS aids were required to symbolize the inundation area from the result of RAS-mapper.

It's revealed its accuracy of the surveyed DTM has more relatively high precision compared to the available DTM of FAB which is similar to other sources DTM such a free access of SRTM with lower resolution of 30m.

According to simulation result within the input of extreme event; the river flood is able to reach to the river bank within the return period of 50-year. However, for the return period extreme event of 100-year and 200-year return period; flooding is spilled from the river flow.

The flood extends for 50, 100, and 200 are illustrated in Figure 2-25 to 2-27. It's clearly seen for the study area; the free access of DTM has lower accuracy of elevation with less detailed information of floodplain.

To have more detail and precise of inundation depth for urban development and planning; having citywide of ground topographical data is quite important.

Page | 34



Figure 2-25 Flood extent map for 50-year return period



Figure 2-26 Flood extent map for 100-year return period



Figure 2-27 Flood extent map for 200-year return period

#### 2.4.4 Conclusion of flood simulation

To get flood result, there are two major steps in which two hydrologic models were used. A primary hydrological model for rainfall and runoff calculation was prepared for setting up the river basin and to generate flow hydrograph within difference magnitudes for the input of the secondary hydrodynamic model.

The major requirement data to be used for hydrological model setup are rainfall, stage water level, landuse or landcover and additional inline structures are also input into the model.

As resulted from the hydrologic model, flow hydrograph is used for hydrodynamic model. The digital elevation model (DEM) is the primary parameter to be used and setup 2D unsteady flow; while land cover is used for roughness surface flow. The reliable result of inundation is depended on the accuracy of available DEM. In the study, the DEM was generated from the KHMER GEONET CORS and combined with the extensive area from free sources DEM are used to prepare flood modeling.

The flood result has shown goodness of the detail inundated information in the study area. For future investment or development, however, the topographical area such production from KHMER GEONET CORS is required to cover the city and it will assist the governor to have proper planning and aware of any exceedance flood.

# 3 Way forward

#### 3.1 Future outlook of the business using Khmer GEONET

We plan to implement the technologies which we used for the demonstration project in our business in the following way:

- Use Khmer GEONET as the reference station to establish Temporary Bench Mark (TBM). As demonstrate above, Khmer GEONET could provide the result as better as the National BM.
- Around Phnom Penh Area, we may use Khmer GEONET for engineering surveying such as canal alignment setting out, road alignment setting out, or bathymetric survey for some areas of TonleSap river and Mekong River located nearby Phnom Penh City.
- Additionally, we may use Khmer GEONET as our reference station, once the photogrammetry survey is required. For a project in Phnom Penh or nearby Phnom Penh, in Siem Reap town or Stueng Streng town. Khmer GEONET is ideal for our reference station.

In spite of this, Khmer GEONET service coverage remains a major concern as we implement our work. Currently, service is only available within a 20-kilometer radius of Phnom Penh, a 20-kilometer radius of CORS in Siem Reap town, and a 20-kilometer radius of CORS in Steung Streng province. This restriction will be our greatest challenge. We are unable to utilize the service to the extent that we desired. In addition, the signal strength of the internet service is still our concerns when using Khmer GEONET. In Cambodia, the internet connection is only reliable in the major cities and towns; it may not be stable in remote areas or even some areas close to the cities.

#### 3.2 About Khmer GEONET

a. Good points using Khmer GEONET

There are so many good points provided by Khmer GEONET. The 1<sup>st</sup> was time consumption. As Khmer GEONET just required an internet connection and a username and password to access the CORS, our team was able to get right to work. while implementing through National BM included extra steps including setting up temporary points in the study area, which took more time. Second, Khmer GEONET matched the precision offered by the National BM in terms of accuracy.

b. Issues to be solved

There were no issues encountered during the execution of this project. Within the study area, the signal strength from Khmer GEONET CORS was strong, and the CORS correction was very rapid. Nonetheless, the study location was chosen in the downtown area of Siem Reap, where 4TE signals are extremely stable, so there were no issues with the connection. It is difficult to demonstrate that the service still remains

high-quality when users reside in areas with weak Internet connectivity or when they are located some distance from the CORS.

c. Request for improvement

In terms of service extensibility, there are some areas that require development despite its current benefits. The limitation of the service should to be expanded by establishing additional CORS throughout the country, and those CORS should be function as the network CORS that is able to provide a correction via VRS mode (Visual Reference Station). As a result of data sharing between additional base stations, the network is evidently able to provide rovers with even more accurate correction. On the top of that, with network CORS, users could be automatically connected from the closest CORS where they are staying.

Additionally, the users support should be enhanced. Currently, in order to obtain the static log file, users must contact the supporter directly via social media platforms such as Telegram, which can be an inconvenient process. Khmer GEONET should implement a web-based interface that enables users to upload their static log files into the system and receive a comprehensive processing report. This kind of service is provided by AUSOS (Online GPS Processing Service) under the Australian government through Geoscience Australia. Users can submit dual-frequency geodetic-quality GPS RINEX data to the GPS data processing system, and the submission report will be sent back the users. In case, this service could be provided by Khmer GONET. We strongly believe that the GNSS's users will change their mind instead of using conventional method to this service in the future.

In addition, final correction geoid model should be finalized and put on the service as soon as possible. As this model play important role of providing an accurate orthometric height (MSL) to the rovers and is necessarily required in land surveying work.

# 4 Conclusion

In the study, we demonstrated that Khmer GEONET CORS is capable of delivering a more accurate surveying and mapping result. With the accuracy ranges between few mm to few centimeters in horizontal as proved above, this outcome is suitable with land surveying work including engineering surveying, cadastral surveying, hydrographic surveying as well. Furthermore, once Khmer GEONET has completed its geoid correction model for Cambodia, which will enhance the accuracy of its elevation in the near future despite the issue with elevation accuracy found in this study. Additionally, the study demonstrates that Khmer GEONET CORS provides superior data correction for all GNSS products. RTK Drone, DJI Matrix 300, CHC-i90 Pro, and Sokkia GRX-3 are prime examples; all the receivers got their positions fixed quickly within seconds from the CORS. Working hours and costs were also discussed. It took two days to obtain topographical survey data from the field using Khmer GEONET CORS, resulting in a decrease in cost, whereas it took four and a half days with National BM, resulting in an increase in cost to conduct the work.

Within an urban development, accessing to ground topography is quite necessary for road, drainage improvement and riverbank protection. The study also revealed the goodness of the production by using ground topography as the result connecting from the Khmer GEONET CORS. As discussion in post processing and result, getting high quality of ground data such Digital Terrain Model, which was required less timing to process. The process will lead the local authority and government who has capabilities of modeling and development design to prepare and plan in timely manner to develop for sustainable of urban infrastructure.

In the near future, it is strongly believed that the trend of using Khmer GEONET will have gradually increased by the time that the service area is widely expanded and its correction geoid model (MSL) is ready to be put on the service.

Project on Establishment of Continuously Operating Reference Stations (CORS) for Land Management and Infrastructure Development

JICA Pilot Project Demonstration project Implementation Report

> June 2024 PHNOM PENH WATER SUPPLY AUTHORITY (PPWSA)

# Table of Contents

| 1. Over | view of the demonstration project1                    |  |  |
|---------|-------------------------------------------------------|--|--|
| 1.1.    | Name of the demonstration project 1                   |  |  |
| 1.2.    | Background and purpose of the demonstration project 1 |  |  |
| 1.3.    | Brief description of the demonstration project        |  |  |
| 1.4.    | Implementation period 2                               |  |  |
| 1.5.    | Location of the demonstration project site            |  |  |
| 1.6.    | Members 4                                             |  |  |
| 1.7.    | Equipment used for the demonstration project5         |  |  |
| 2. Deta | ils of the work10                                     |  |  |
| 2.1.    | Work performed10                                      |  |  |
| 2.1.1.  | Preparation10                                         |  |  |
| 2.1.2.  | Implementation11                                      |  |  |
| 2.1.3.  | Result14                                              |  |  |
| 2.2.    | Use of Khmer GEONET17                                 |  |  |
| 2.2.1.  | Details of the KhmerGEONET data used17                |  |  |
| 2.2.2.  | Problems occured and solutions17                      |  |  |
| 3. Way  | forward18                                             |  |  |
| 3.1.    | Future outlook of the business using Khmer GEONET18   |  |  |
| 3.2.    | About Khmer GEONET19                                  |  |  |
| 1)      | Good points using Khmer GEONET19                      |  |  |
| 2)      | Issues to be solved19                                 |  |  |
| 3)      | Request for improvement19                             |  |  |
| 4. Conc | lution                                                |  |  |
| 5. Refe | 5. Reference Data                                     |  |  |

# 1. Overview of the demonstration project

#### 1.1. Name of the demonstration project

EN: Transmission Main DN500mm on National Road 3 (NR3)

Extension project water services

KM: Length of Project 350m (ប្រវែងរបស់គម្រោង ៣៥០.ម), (Km: 0+000 to 0+350)

#### 1.2. Background and purpose of the demonstration project

**Overall Plan View** 



#### Figure 1-1 Overall Plan View

The General Department of Cadastral and Geography (GDCG), which is part of the Ministry of Land Management, Urban Planning, and Construction, has been offering the Khmer GEONET Continuously Operated Reference Station (CORS) service in Cambodia. For registered GNSS users to achieve a few centimetre-level precisions near the CORS, the appropriate dataset is made available through the internet-connected Khmer GEONET.

With the technical assistance and cooperation of JICA, which began in early 2021, Khmer GEONET presently runs five continuously operating reference stations in Phnom Penh, Kandal, Kampong Speu, Siem Reap, and Stung Streng. As long as the station signals are visible, users can access the service without restriction until June 26, 2024.

This assignment's goal is to demonstrate CORS' functioning, accuracy, and limitations observation to the GNSS rover, as well as the benefits of using Khmer GENONET CORS for mapping, road drainage alignment, subterranean obstacle detection, and drone surveying.

The purpose of the study is to (i) examine the benefits of adopting a CORSconnected system and (ii) compare the coordinate data produced from the National BM zero-order control with the coordinate data obtained from Khmer GEONET CORS PNH-1.

#### 1.3. Brief description of the demonstration project

This project is location on National Road 3 (NR3) Phleung Chheh Roteh Commune Por Sen Chey District Phnom Penh City.

PNH-1 CORE is located in Phnom Penh; was established in front of Ministry of Land Management, Urban Planning and Construction and selected to use for the study and evaluate its functionality.

A web-based service called Khmer GEONET offers its users a variety of advantages in the fields of mapping, engineering surveying, and land surveying. For engineering surveying jobs like site laying out, setting out road and canal boundaries, surveying topographical maps, etc., the system may provide users with centimetre-level accuracy. Additionally, the system decreases the requirement for GNSS receivers, which is normally at least two GNSS receivers for user measurement. Users of Khmer GEONET can save thousands of dollars on their initial investment budget by signing up with Khmer GEONET and buying a GNSS receiver. They can then use the surveyor to take measurements. Additionally, Khmer GEONET can speed up the laborious process of data collection.

The conclusion of measurements taken at two measurement checkpoints using various reference stations and procedures is that the horizontal and vertical data accuracy varied from millimetres to centimetres. The results show the value and effectiveness of conducting detailed investigations and mapping using Khmer GEONET CORS throughout the target area. The data gathered for Khmer GEONET CORS and National BM zero-order differ slightly from one another.

#### 1.4. Implementation period

| We had preparation: | April 2023 – June 2023 |
|---------------------|------------------------|
| Work at the site:   | May 2023 – June 2023   |
| Reporting:          | Aug 2023 – Sep 2023    |

| No/Date     | Starting Date | Working Date | Remark |
|-------------|---------------|--------------|--------|
| Preparation | April 2023    | June 2023    |        |
| Site actual | May 2023      | June 2023    |        |
| Reporting   | Aug 2023      | Sep 2023     |        |



#### Table 1-2 Plan and actual of the schedule

## 1.5. Location of the demonstration project site

The project's location is in Phnom Penh, which is also included within the research's study boundary. The boundary is approximately 350 meters long and covers an area of 3.5 hectares along National Road Number 3. at the intersection of route 136DT and National route Number 03 in Phleung Chheh Roteh Commune, Por Sen Chey District, Phnom Penh City, in front of Borey New World III. Please see Figure 1-1 and the coordination below:

Coordinates:

Start project (E:480271.248,N:1271466.44)

End project (E:480203.622, N:1271229.698)



Figure 1-2 Location of the demonstration project site

Khmer GEONET PNH-1 is located approximately of 15.5km from the project site.

#### 1.6. Members

In the study, two teams were dispatched, with Team 01 and Team 02 leading the topographical survey team utilizing two GNSS receivers on opposite sides of the road. Tables 1-3 below include descriptions of the deployment teams.

| Table 1-3 List of members |                         |                      |                  |
|---------------------------|-------------------------|----------------------|------------------|
| NO.                       | Name                    | Company/Organisation | Role             |
| 1                         | Mr.Chhang Kimyi         | PPWSA                | Project Manager  |
| 2                         | Mr. Sear Reachsey       | PPWSA                | Engineer Drawing |
| 3                         | Mr. Sear Pisen          | PPWSA                | Engineer Drawing |
| 4                         | Mr Pheng Daro           | PPWSA                | Engineer Drawing |
| 5                         | Mr. Phorn Tola          | PPWSA                | Surveyor         |
| 6                         | Mr. Chhun Karona        | PPWSA                | Surveyor         |
| 7                         | Mr. Im Sokly            | PPWSA                | Surveyor         |
| 8                         | Mr. Chan Cheanrothana   | PPWSA                | Safety Quard     |
| 9                         | Mr. Sok Chanly          | PPWSA                | Safety Quard     |
| 10                        | Mr. Phor Lyvichearavuth | PPWSA                | Safety Quard     |

### 1.7. Equipment used for the demonstration project

The attach photos step by step within the detail below







Select Config

Find and Select code Receiver



Select Cors Jica (PNH-1)

Select Survey and Map survey



Waiting Device to Fix and Get Points



The Each equipment is listed in Table 1-4 below with its functionality and specification.

| NO   | Name                                               | O'ty  | Remarks (specifications, usage, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|----------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1100 |                                                    | Q UJ  | remarks (specifications) asage, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 01   | GNSS receiver models CHC i80<br>"DGPS (Brand CHC)" | 2sets | <ul> <li>220 channels with simultaneously tracked satellite signals GPS: L1C/A, L1C, L2C, L2E, L5 GLONASS: L1C/A,L1P, L2C/A, L2P, L3 SBAS: WAAS, EGNOS, MSAS Galileo: E1, E5A, E5B (test) BeiDou: B1, B2 (optional) Performance specifications(1)</li> <li>Real Time Kinematics (RTK) Horizontal: 8 mm + 1 ppm RMS Vertical: 15 mm + 1 ppm RMS Initialization time: typically &lt; 5 s Initialization reliability: typically &gt; 99.9%</li> <li>Rapid Static Horizontal: 5 mm + 1 ppm RMS Vertical: 10 mm + 1 ppm RMS</li> <li>Post Processing Static Horizontal: 2.5 mm + 0.5 ppm RMS Vertical: 3.5 mm + 0.5 ppm RMS Baseline Length: ≤ 300 km Electrical</li> <li>Power consumption: 3.2 W</li> <li>Li-ion battery capacity: 6600 mAh / 7.4 V</li> <li>Battery life: typical 12 hours in RTK mode</li> <li>External power: 12 ~ 36 VDC</li> <li>Auto switch between battery and external power Communications</li> <li>1x UHF antenna port</li> <li>1x 7-pin LEMO port, for power supply, data download, and USB update</li> <li>1X 7-pin serial port, for power supply and correction output</li> <li>Integrated GSM/GPRS modem, supporting HSPA/HSPA+ and 4G (optional) network WCDMA 850/900/1700/1900/2100 EDGE/GPRS/GSM 850/900/1800/1900</li> <li>Multimode Bluetooth® completely compatible with Android, Windows Mobile, IOS and Win7/Win8 OS</li> <li>Wi-Fi, 802.11 B/G/N, supporting AP, 150 m(2) distance, 108 Mbps</li> <li>Interface: 1x power button, 1x FN button, 1x LCD display</li> <li>Optional radio modem (3): Internal Rx/Tx: 403-473 MHz External Tx DL5: 1W - 20W adjustable</li> <li>Protocols: RTCM2.1, RTCM2.3, RTCM3.0, RTCM3.1, CMR, CMR+ input and output</li> </ul> |

Table 1-4 List of equipment used

| NO. | Name | Q'ty | <b>Remarks</b> (specifications, usage, etc.)                  |
|-----|------|------|---------------------------------------------------------------|
|     |      |      | NMEA0183 output RINEX and HCN outputs for GNSS raw data NTRIP |
|     |      |      | • Data Storage: 16/32 G, extended up to 64G HCN,              |
|     |      |      | RINEX GPS device mounts as a USB external hard drive Physical |
|     |      |      | • Size (HxD): 140 x 124 mm (5.5 x 4.9 in)                     |
|     |      |      | • Weight: 1.5 kg with battery (53 oz)                         |
|     |      |      | • Operating temperature: -45 °C to +75 °C (-49°F to 167°F)    |
|     |      |      | • Storage temperature: -50 °C to +85°C (-58°F to 185°F)       |
|     |      |      | • Humidity: 100% condensation                                 |
|     |      |      | • Waterproof and dust proof: IP67 - protected from            |
|     |      |      | temporary immersion to depth of 1 meter, floats               |
|     |      |      | • Shock: survives a 3-meter drop on to concrete               |
|     |      |      | (1) Accuracy and reliability specifications may be            |
|     |      |      | affected by multipath, satellite geometry and                 |
|     |      |      | atmospheric conditions. Performances assume                   |
|     |      |      | general GPS practices                                         |
|     |      |      | (2) Wi-Fi working distance would be affected by               |
|     |      |      | obstacles, magnetic field or electric field.                  |
|     |      |      | (3) UHF type approvals are country specific.                  |
#### 2.1. Work performed

#### 2.1.1. Preparation

Some relevant activities had been initially planned in the following steps before the job was implemented:

• The firmware of the GNSS receiver and its control device were confirmed to be up-to-date, and the GNSS receiver was already linked to Khmer GEONET using the given username and password.

• Gets point on site have 2 teams, on either side of the road (The time is connected Device ready). We are gotten point on manhole box optic cable box, line road (concrete or asphalt, sidewalk Karola) curb Electric Light pano sign tree home BM EDC and Gate Valve......

• Export point project gate on site than we did draft point line on the computer work on official.

The equipment needs for the implement project:

| N° | Descriptions               | Quantities | Remarks             |
|----|----------------------------|------------|---------------------|
| 01 | Car                        | 1 car      | Include with Diesel |
| 02 | DGPS CHC i80               | 2 sets     |                     |
| 03 | Hummer                     | 2 pcs      |                     |
| 04 | Nail of BM                 | 10 pcs     |                     |
| 05 | Fibber Measuring Tape 100m | 1 pc       |                     |
| 06 | Measure Hand 10m           | 2 pcs      |                     |
| 07 | Sika Anchor Fix            | 1 set      | Made BM references  |
| 08 | Red Spray                  | 2 cans     |                     |
| 09 | White Safety Helmet        | 6 pcs      |                     |
| 10 | White Safety Glove         | 6 sets     |                     |
| 11 | Safety Clothing            | 6 pcs      |                     |
| 12 | Safety Eyewear             | 6 pcs      |                     |
| 13 | Mass Protection            | 6 pcs      |                     |
| 14 | Safety Shoes               | 6 sets     |                     |
| 15 | Drilling Machine 18V Bosch | 1 set      |                     |

| Table | 2-1 | The  | equipment needs |
|-------|-----|------|-----------------|
| rabic | ~ - | 1110 | equiprine needs |

| 16 | Traffic Cone | 2 pcs |  |
|----|--------------|-------|--|
| 17 | Other        |       |  |

### 2.1.2.Implementation

We had been starting for site surveying and inspection since May 2023 till June 2023 for our work.

• We start get the point for complete data on site in the project, next time they are export data report CSV file to PC after this check report error and verify. For design plan view at office. And after determining if there is a lack of data, we will research and collect additional data as needed on site again.

• The Fist measurement was completed using Real Time Kinematic Survey (RTK), which involved connecting a GNSS receiver over a roughly 15.5-kilometer distance to the Khmer GEONET CORS PNH-1.

As noted in the section above, the survey was carried out using an RTK survey and connected to Khmer GEONET CORS PNH-1 in the manner described below:

- Protocol: NRTIP
- Data link: PDA network or Internet-Connected Device
- Domain/IP: cgd09.khmerGEONET.xyz
- Port:2101
- Mount point: RRS\_RTCM32



Figure 2-1 Report of site Survey on NR3

The following activities shown in Table 2-1 are the activities in setting up the RTK survey at each checked point by using GNSS receiver preparation connecting to CORS PNH-1 and checked BMj-1.

|                                     | Detailed of activities performed |
|-------------------------------------|----------------------------------|
| Khmer GEONET CORS                   | atters.                          |
| PNH-1 located in front of Ministry  |                                  |
| of Land Management, Urban           |                                  |
| Planning and Construction.          |                                  |
| CORS Phnom Penh                     |                                  |
| PNH100KHM                           |                                  |
| CGD09/ITRF2005 (Epoch               |                                  |
| 2009.56)                            |                                  |
| X: -1603672.132 m                   |                                  |
| Y: 6038739.374 m                    |                                  |
| Z: 1277314.715 m                    |                                  |
| Lat/Long                            |                                  |
| 11 37 47.14065 N                    |                                  |
| 104 52 20.71325 E                   |                                  |
| Height (m):                         | 7                                |
| Geoid (EGM 2008): -13.036           |                                  |
| Ellipsoid Height: 2.707             |                                  |
| Orthometric Height: 15.743          |                                  |
| WGS 84/UTM Zone 48                  |                                  |
| Coordinates:                        |                                  |
| 1285617.021 N                       |                                  |
| 486093.120 E                        |                                  |
| Base receiver CHC-180. The          |                                  |
| connection parameter:               |                                  |
| NRTIP host: 192.168.1.1             |                                  |
| Port: 9901                          |                                  |
| Mountpoint: RTCM3.2                 |                                  |
| Satellite used:                     |                                  |
| GPS 8, Beidou 9, Glonass 5, Galileo | NR3                              |
| '<br>Note: The GNSS receiver was    |                                  |
| installed on BM-i3 and its          |                                  |
| coordinate received from survey     |                                  |
| with BM as the reference station.   |                                  |

Table 2-2 Activity performed in setting up

#### 2.1.3. Result

After implementing this project, we obtained the results of the Khmer GEONET ratio and the National Geodetic Control Points for X and Y were not significantly different, we were able to accept that. Khmer GEONET and National Geodetic Control Points There are differences for Z, but we think this is due to differences in height reference systems

Surveying projects the result of verification of accuracy degradation:



Table 2-3 X-Values (BM, Manhole PPWSA, EDC Pole for 50Ps) of National Geodetic Control Points (NGCT)Vs Khmer Geonet CORS

Table 2-4 Y-Values (BM. Manhole PPWSA, EDC Pole for 50Ps) of National Geodetic Control Points (NGCT)Vs Khmer Geonet CORS



15 | P a g e



Table 2-5 Z-Values (BM. Manhole PPWSA, EDC Pole for 50Ps) of National Geodetic Control Points (NGCT)Vs Khmer Geonet CORS

Table 2-6 Comparison of Point between National Geodetic Control Points(NGCP) and Khmer-Geonet CORS



# 2.2. Use of Khmer GEONET

## 2.2.1. Details of the KhmerGEONET data used

This is the key points of **Khmer GEONET** was used as follows.

| IP address             | cgd09.khmergeonet.xyz              |
|------------------------|------------------------------------|
| Port                   | 2101                               |
| Mount point            | RTCM3.2                            |
| User name              |                                    |
|                        | 21 April 2023 – 22 April 2023      |
| Period of use          | 16 May 2023 – 19 May 2023          |
|                        | 06 June 2023 – 06 June 2023        |
| RTK/ Post processing   | Real Time Kinematic, Static Survey |
| Satellite systems used | GPS, Glonass, Beidou, Galileo,     |

Table 2-7 Khmer GEONET data used

#### 2.2.2. Problems occured and solutions

In the field, we were required to select the correct mount point and remain within its service area; otherwise, the **CORS** correction would not be accurate. Currently, there are five **Khmer GEONET**, three of which are network **CORS** and two of which are single **CORS** functions.

Occurred:

- Situation: The weather is hot on field approximates times (11:00am to 03:00pm) Temperature 30C° to 35C°. Sometime the weather has a lot of cloudy gloomy sky.
- Location: Private or Line Optic Cable has a lot of high building and under high tree.
- Time: Encountered any problems when using **Khmer GEONET** connecting device a satellite is low show not fix (single, float). Good satellite (15/35).
- Solved: Shutdown, restart rover and reconnect.
- The position of the rovers got fixed quickly without any delay, however; problem encounter was found when the rover was placed under the tree branches or near the building wall. To take over this problem, the operator should wait at least 5 minutes to get fully connecting to the **CORS** and fixed position.

#### 3.1. Future outlook of the business using Khmer GEONET

For this implement project we had found the **Khmer GEONET** reference network has several advantages over traditional **CORS** systems. One of the most importance is its high level of accuracy. **Khmer GEONET** reference network uses high-precision **CORS** receivers and antennas, which are able to provide accurate positioning information to within a few centimeters. This level of accuracy is essential for many applications, such as surveying and mapping, construction, and transportation.

**Khmer GEONET** reference network also provides a wide coverage area. The network of reference stations is strategically placed throughout a specific area, which allows users to access accurate positioning information from almost anywhere within that area. This is particularly useful for industries such as construction, where accurate positioning information is needed for large projects that cover a wide area.

Finally, **Khmer GEONET** reference network is relatively cost-effective. The system is operated by government agencies and private companies, which means that users do not have to invest in expensive equipment or pay for costly data subscriptions. This makes **CORS** reference network an affordable option for many industries.



Figure 3-1 Map of 5CORS Network

#### 3.2. About Khmer GEONET

#### 1) Good points using Khmer GEONET

For easy connection to a device, satellite 8/32 get points are available. There are so many good points provided by **Khmer GEONET**. The first was time consumption. Our team was able to get started immediately away since **Khmer GEONET** only needed an internet connection and a login and password to access the CORS, but installing through National BM required additional processes, including establishing up temporary points in the research region, which took more time. Second, **Khmer GEONET**'s accuracy matched that of the National BM's precision.

#### 2) Issues to be solved

In the implementation of our project, there are also some issues caused by the internet that occurred during the implementation. This uncertainty has led us to spend more time on implementation and verification. There are two issues. First, it could be caused by internet used with CORE factors, secondly when users practiced in areas with weak Internet, but for the user's practicing we already deal with that. The most important thing is we would like to expand the scope internet of **CORS** to refine all available data accurately and precisely as more as possible.

However, Cambodia is developing in almost all areas, such as infrastructure, irrigation systems, water supply, and location applications that require further capacity building in addition to progress in this area.

#### 3) Request for improvement

In our opinion, the improvement of **Khmer GEONET** should be installed in the **CORS** substitution network soon at another province project. It greatly improves the frequency and number of satellites on the field. We have needed more users for operations and support work.

Based on of implementation project that we done on National Road 3 above, it shows us that the implementation process is highly efficient, data retrieval is clear and fast. At the same time of getting new results, we also have the challenges mentioned above. So, what we insist on and what we should address is the issue of expanding the scope of access to data in Widespread use. The most improvement of **Khmer GEONET** should be installed in the core substitution network soon at another province project. It greatly improves the frequency and number of satellites on the field. We have needed more users for operations and support work.

# 4. Conclution

In short of the project **Khmer GEONET** is considered one of the most accurate ways. The range of operation of every particular system in case of best performance given by **Khmer GEONET**. The most importance of **Khmer GEONET** over to the advantages of user, helps our team to survey more area and more precisely with the greater accuracy. With these added advantages and features, the gathered data helps the team to prepare Detailed Project Report better and more accurate than before.

We also hope that in the near future, all the developments of **Khmer GEONET** will have a wider scope, whether in the city or in the provinces and can facilitate the development of key areas where demand is weak.

# 5. Reference Data

| No | Natior      | nal Geodetic Co | ontrol Poin | nt       |             | Khmer Geo  | onet    |          |        | Dec    |          |         |
|----|-------------|-----------------|-------------|----------|-------------|------------|---------|----------|--------|--------|----------|---------|
|    | North       | East            | Ele         | Solution | North       | East       | Ele     | Solution | North  | East   | Ele      |         |
| 1  | 1271451.035 | 480254.611      | 1.3258      | Fix      | 1271450.847 | 480254.836 | 1.97804 | Fix      | 0.188  | -0.225 | -0.65224 | BM.J3   |
| 2  | 1271451.039 | 480254.605      | 1.3288      | Fix      | 1271450.845 | 480254.836 | 1.97709 | Fix      | 0.194  | -0.231 | -0.64829 | BM.J3   |
| 3  | 1271451.049 | 480254.612      | 1.3293      | Fix      | 1271450.846 | 480254.834 | 1.9767  | Fix      | 0.203  | -0.222 | -0.6474  | BM.J3   |
| 4  | 1271465.271 | 480266.701      | 1.4264      | Fix      | 1271465.099 | 480266.918 | 2.10467 | Fix      | 0.172  | -0.217 | -0.67827 | BM.J2   |
| 5  | 1271465.255 | 480266.708      | 1.421       | Fix      | 1271465.097 | 480266.918 | 2.1141  | Fix      | 0.158  | -0.21  | -0.6931  | BM.J2   |
| 6  | 1271465.253 | 480266.696      | 1.4159      | Fix      | 1271465.1   | 480266.918 | 2.10284 | Fix      | 0.153  | -0.222 | -0.68694 | BM.J2   |
| 7  | 1271466.648 | 480271.019      | 1.617       | Fix      | 1271466.44  | 480271.248 | 2.30033 | Fix      | 0.208  | -0.229 | -0.68333 | Curb    |
| 8  | 1271465.759 | 480270.514      | 1.6495      | Fix      | 1271465.551 | 480270.719 | 2.30891 | Fix      | 0.208  | -0.205 | -0.65941 | Curb    |
| 9  | 1271465.256 | 480269.565      | 1.6529      | Fix      | 1271465.103 | 480269.805 | 2.33009 | Fix      | 0.153  | -0.24  | -0.67719 | Curb    |
| 10 | 1271467.223 | 480254.396      | 1.4464      | Fix      | 1271467.09  | 480254.702 | 2.22166 | Fix      | 0.133  | -0.306 | -0.77526 | Curb    |
| 11 | 1271467.453 | 480254.053      | 1.4296      | Fix      | 1271467.307 | 480254.342 | 2.1893  | Fix      | 0.146  | -0.289 | -0.7597  | Curb    |
| 12 | 1271467.945 | 480253.904      | 1.4279      | Fix      | 1271467.751 | 480254.178 | 2.09924 | Fix      | 0.194  | -0.274 | -0.67134 | Curb    |
| 13 | 1271467.917 | 480254.558      | 1.5618      | Fix      | 1271467.708 | 480254.789 | 2.25561 | Fix      | 0.209  | -0.231 | -0.69381 | Sign    |
| 14 | 1271468.184 | 480254.593      | 1.5539      | Fix      | 1271467.567 | 480255.664 | 2.22797 | Fix      | 0.617  | -1.071 | -0.67407 | Sign    |
| 16 | 1271472.24  | 480255.227      | 1.5121      | Fix      | 1271472.135 | 480254.926 | 2.14245 | Fix      | 0.105  | 0.301  | -0.63035 | Sign    |
| 17 | 1271472.33  | 480254.691      | 1.5045      | Fix      | 1271472.699 | 480255.013 | 2.17556 | Fix      | -0.369 | -0.322 | -0.67106 | Sign    |
| 18 | 1271472.896 | 480254.793      | 1.4955      | Fix      | 1271475.017 | 480255.239 | 2.11558 | Fix      | -2.121 | -0.446 | -0.62008 | Curb    |
| 19 | 1271475.203 | 480255.042      | 1.4094      | Fix      | 1271475.011 | 480255.225 | 2.10584 | Fix      | 0.192  | -0.183 | -0.69644 | Curb    |
| 20 | 1271478.031 | 480257.302      | 1.4153      | Fix      | 1271477.842 | 480257.588 | 2.08306 | Fix      | 0.189  | -0.286 | -0.66776 | Curb    |
| 21 | 1271477.558 | 480260.007      | 1.452       | Fix      | 1271477.363 | 480261.562 | 2.79647 | Fix      | 0.195  | -1.555 | -1.34447 | Ft-EDC  |
| 22 | 1271476.574 | 480261.385      | 1.5986      | Fix      | 1271476.398 | 480262.888 | 2.769   | Fix      | 0.176  | -1.503 | -1.1704  | Ft- EDC |
| 23 | 1271475.244 | 480260.451      | 1.5921      | Fix      | 1271475.02  | 480261.766 | 2.86018 | Fix      | 0.224  | -1.315 | -1.26808 | Ft- EDC |

Table 5-1 Table of site implementation 300Ps

| 24 | 1271481.088 | 480263.748 | 1.3706 | Fix | 1271480.902 | 480264.015 | 2.09135 | Fix | 0.186  | -0.267 | -0.72075 | Curb     |
|----|-------------|------------|--------|-----|-------------|------------|---------|-----|--------|--------|----------|----------|
| 25 | 1271480.579 | 480271.061 | 1.3902 | Fix | 1271480.368 | 480271.257 | 2.09603 | Fix | 0.211  | -0.196 | -0.70583 | Curb     |
| 26 | 1271477.684 | 480272.439 | 1.6077 | Fix | 1271477.456 | 480272.713 | 2.5563  | Fix | 0.228  | -0.274 | -0.9486  | Curb     |
| 27 | 1271479.959 | 480284.787 | 1.3509 | Fix | 1271479.765 | 480285.068 | 2.14594 | Fix | 0.194  | -0.281 | -0.79504 | Curb     |
| 28 | 1271477.762 | 480285.609 | 1.4795 | Fix | 1271477.514 | 480285.92  | 2.26242 | Fix | 0.248  | -0.311 | -0.78292 | Curb     |
| 29 | 1271477.355 | 480285.985 | 1.5208 | Fix | 1271477.136 | 480286.299 | 2.28832 | Fix | 0.219  | -0.314 | -0.76752 | Curb     |
| 30 | 1271477.187 | 480286.485 | 1.5199 | Fix | 1271476.941 | 480286.783 | 2.29685 | Fix | 0.246  | -0.298 | -0.77695 | Curb     |
| 31 | 1271476.783 | 480289.575 | 1.5651 | Fix | 1271476.558 | 480289.925 | 2.27029 | Fix | 0.225  | -0.35  | -0.70519 | Curb     |
| 32 | 1271476.818 | 480290.006 | 1.5398 | Fix | 1271476.595 | 480290.368 | 2.27165 | Fix | 0.223  | -0.362 | -0.73185 | Curb     |
| 33 | 1271477.11  | 480290.506 | 1.5116 | Fix | 1271476.847 | 480290.875 | 2.2442  | Fix | 0.263  | -0.369 | -0.7326  | Curb     |
| 34 | 1271478.541 | 480292.143 | 1.4237 | Fix | 1271478.315 | 480292.503 | 2.27026 | Fix | 0.226  | -0.36  | -0.84656 | Curb     |
| 35 | 1271478.941 | 480292.259 | 1.4134 | Fix | 1271478.675 | 480292.623 | 2.24116 | Fix | 0.266  | -0.364 | -0.82776 | Curb     |
| 36 | 1271479.169 | 480291.935 | 1.4293 | Fix | 1271478.937 | 480292.328 | 2.22319 | Fix | 0.232  | -0.393 | -0.79389 | Curb     |
| 37 | 1271487.626 | 480293.017 | 0.8137 | Fix | 1271487.381 | 480293.401 | 1.62512 | Fix | 0.245  | -0.384 | -0.81142 | MH-PPWSA |
| 38 | 1271488.628 | 480292.997 | 0.797  | Fix | 1271488.363 | 480293.374 | 1.62007 | Fix | 0.265  | -0.377 | -0.82307 | MH-PPWSA |
| 39 | 1271488.63  | 480293.932 | 0.8045 | Fix | 1271488.391 | 480294.358 | 1.62717 | Fix | 0.239  | -0.426 | -0.82267 | MH-PPWSA |
| 40 | 1271487.679 | 480294.015 | 0.8086 | Fix | 1271487.428 | 480294.4   | 1.62412 | Fix | 0.251  | -0.385 | -0.81552 | MH-PPWSA |
| 41 | 1271488.082 | 480289.558 | 0.8329 | Fix | 1271487.852 | 480289.912 | 1.64881 | Fix | 0.23   | -0.354 | -0.81591 | MH-PPWSA |
| 42 | 1271488.093 | 480288.491 | 0.8108 | Fix | 1271486.79  | 480289.913 | 1.6585  | Fix | 1.303  | -1.422 | -0.8477  | MH-PPWSA |
| 43 | 1271487.024 | 480289.553 | 0.805  | Fix | 1271486.754 | 480288.845 | 1.63526 | Fix | 0.27   | 0.708  | -0.83026 | MH-PPWSA |
| 44 | 1271486.973 | 480288.478 | 0.7986 | Fix | 1271487.819 | 480288.83  | 1.64941 | Fix | -0.846 | -0.352 | -0.85081 | MH-PPWSA |
| 45 | 1271488.445 | 480286.121 | 0.8036 | Fix | 1271488.214 | 480286.482 | 1.6508  | Fix | 0.231  | -0.361 | -0.8472  | MH-PPWSA |
| 46 | 1271487.561 | 480286.054 | 0.7992 | Fix | 1271487.322 | 480286.453 | 1.64936 | Fix | 0.239  | -0.399 | -0.85016 | MH-PPWSA |
| 47 | 1271487.541 | 480285.2   | 0.7891 | Fix | 1271487.327 | 480285.584 | 1.64528 | Fix | 0.214  | -0.384 | -0.85618 | MH-PPWSA |
| 48 | 1271488.443 | 480285.252 | 0.8079 | Fix | 1271488.201 | 480285.591 | 1.66327 | Fix | 0.242  | -0.339 | -0.85537 | MH-PPWSA |
| 49 | 1271487.745 | 480282.108 | 0.8111 | Fix | 1271487.513 | 480282.493 | 1.61363 | Fix | 0.232  | -0.385 | -0.80253 | RC       |
| 50 | 1271486.615 | 480263.796 | 0.9347 | Fix | 1271486.383 | 480264.161 | 1.69161 | Fix | 0.232  | -0.365 | -0.75691 | AR       |
| 51 | 1271485.728 | 480259.941 | 0.9753 | Fix | 1271485.481 | 480260.294 | 1.72041 | Fix | 0.247  | -0.353 | -0.74511 | AR       |
| 52 | 1271483.753 | 480256.391 | 1.0289 | Fix | 1271483.479 | 480256.76  | 1.75423 | Fix | 0.274  | -0.369 | -0.72533 | AR       |

| 53 | 1271480.865 | 480252.864 | 1.0979 | Fix | 1271480.601 | 480253.207 | 1.81567 | Fix | 0.264 | -0.343 | -0.71777 | AR     |
|----|-------------|------------|--------|-----|-------------|------------|---------|-----|-------|--------|----------|--------|
| 54 | 1271477.361 | 480249.579 | 1.1432 | Fix | 1271477.116 | 480249.913 | 1.88422 | Fix | 0.245 | -0.334 | -0.74102 | AR     |
| 55 | 1271474.193 | 480248.385 | 1.1318 | Fix | 1271473.935 | 480248.764 | 1.89127 | Fix | 0.258 | -0.379 | -0.75947 | AR     |
| 56 | 1271452.339 | 480245.284 | 1.0991 | Fix | 1271452.136 | 480245.663 | 1.92743 | Fix | 0.203 | -0.379 | -0.82833 | AR     |
| 57 | 1271453.677 | 480254.31  | 1.6801 | Fix | 1271453.47  | 480254.692 | 2.49539 | Fix | 0.207 | -0.382 | -0.81529 | Karola |
| 58 | 1271449.609 | 480253.777 | 1.6132 | Fix | 1271449.376 | 480254.134 | 2.46037 | Fix | 0.233 | -0.357 | -0.84717 | Karola |
| 59 | 1271433.289 | 480242.768 | 0.8841 | Fix | 1271433.13  | 480243.084 | 1.80795 | Fix | 0.159 | -0.316 | -0.92385 | AR     |
| 60 | 1271399.056 | 480238.31  | 0.8805 | Fix | 1271398.877 | 480238.608 | 1.83609 | Fix | 0.179 | -0.298 | -0.95559 | AR     |
| 61 | 1271373.308 | 480234.9   | 0.8572 | Fix | 1271373.135 | 480235.213 | 1.86338 | Fix | 0.173 | -0.313 | -1.00618 | AR     |
| 62 | 1271358.37  | 480232.962 | 0.8646 | Fix | 1271358.198 | 480233.257 | 1.83728 | Fix | 0.172 | -0.295 | -0.97268 | AR     |
| 63 | 1271343.721 | 480231.095 | 0.8382 | Fix | 1271343.545 | 480231.328 | 1.52875 | Fix | 0.176 | -0.233 | -0.69055 | AR     |
| 64 | 1271314.233 | 480227.245 | 0.8374 | Fix | 1271314.034 | 480227.482 | 1.51405 | Fix | 0.199 | -0.237 | -0.67665 | AR     |
| 65 | 1271293.984 | 480224.556 | 0.8242 | Fix | 1271293.772 | 480224.78  | 1.52176 | Fix | 0.212 | -0.224 | -0.69756 | AR     |
| 66 | 1271279.103 | 480222.695 | 0.8032 | Fix | 1271278.919 | 480222.943 | 1.53252 | Fix | 0.184 | -0.248 | -0.72932 | AR     |
| 67 | 1271259.208 | 480219.906 | 0.8473 | Fix | 1271259.024 | 480220.123 | 1.58066 | Fix | 0.184 | -0.217 | -0.73336 | AR     |
| 68 | 1271244.556 | 480218.042 | 0.8699 | Fix | 1271244.331 | 480218.231 | 1.55902 | Fix | 0.225 | -0.189 | -0.68912 | AR     |
| 69 | 1271238.596 | 480226.836 | 0.9131 | Fix | 1271238.403 | 480227.124 | 1.6477  | Fix | 0.193 | -0.288 | -0.7346  | Curb   |
| 70 | 1271243.589 | 480227.471 | 0.9218 | Fix | 1271243.363 | 480227.69  | 1.65416 | Fix | 0.226 | -0.219 | -0.73236 | Curb   |
| 71 | 1271245.005 | 480229.393 | 1.019  | Fix | 1271244.827 | 480229.648 | 1.67631 | Fix | 0.178 | -0.255 | -0.65731 | Curb   |
| 72 | 1271244.911 | 480230.125 | 0.9729 | Fix | 1271244.689 | 480230.341 | 1.71011 | Fix | 0.222 | -0.216 | -0.73721 | Curb   |
| 73 | 1271243.135 | 480231.572 | 1.0139 | Fix | 1271242.937 | 480231.764 | 1.71515 | Fix | 0.198 | -0.192 | -0.70125 | Curb   |
| 74 | 1271238.443 | 480230.876 | 1.042  | Fix | 1271238.23  | 480231.107 | 1.77528 | Fix | 0.213 | -0.231 | -0.73328 | Curb   |
| 75 | 1271237.141 | 480238.558 | 0.9707 | Fix | 1271236.934 | 480238.758 | 1.72237 | Fix | 0.207 | -0.2   | -0.75167 | Curb   |
| 76 | 1271242.294 | 480239.201 | 0.934  | Fix | 1271242.097 | 480239.489 | 1.65961 | Fix | 0.197 | -0.288 | -0.72561 | Curb   |
| 77 | 1271243.442 | 480240.742 | 0.8718 | Fix | 1271243.237 | 480241.03  | 1.66736 | Fix | 0.205 | -0.288 | -0.79556 | Curb   |
| 78 | 1271242.688 | 480246.22  | 0.9845 | Fix | 1271242.469 | 480246.604 | 1.72713 | Fix | 0.219 | -0.384 | -0.74263 | Curb   |
| 79 | 1271248.375 | 480248.413 | 0.9591 | Fix | 1271248.208 | 480248.698 | 1.62715 | Fix | 0.167 | -0.285 | -0.66805 | CR     |
| 80 | 1271250.041 | 480235.458 | 0.9948 | Fix | 1271249.848 | 480235.658 | 1.74566 | Fix | 0.193 | -0.2   | -0.75086 | CR     |
| 81 | 1271250.92  | 480228.251 | 0.8047 | Fix | 1271250.728 | 480228.476 | 1.51222 | Fix | 0.192 | -0.225 | -0.70752 | CR     |

| 82  | 1271258 223 | 480229 318 | 0 9037 | Fix | 1271258 028 | 480229 549 | 1 58872 | Fix | 0 195  | -0.231 | -0.68502 | Curb |
|-----|-------------|------------|--------|-----|-------------|------------|---------|-----|--------|--------|----------|------|
| 83  | 1271256.699 | 480230.64  | 0.9933 | Fix | 1271256.485 | 480230.881 | 1.63786 | Fix | 0.214  | -0.241 | -0.64456 | Curb |
| 84  | 1271256.492 | 480232.204 | 0.9946 | Fix | 1271256.293 | 480232.45  | 1.66016 | Fix | 0.199  | -0.246 | -0.66556 | Curb |
| 85  | 1271257.872 | 480233.582 | 1.1439 | Fix | 1271257.684 | 480233.806 | 1.87336 | Fix | 0.188  | -0.224 | -0.72946 | Curb |
| 86  | 1271255.919 | 480237.488 | 0.9945 | Fix | 1271255.755 | 480237.737 | 1.75089 | Fix | 0.164  | -0.249 | -0.75639 | Curb |
| 87  | 1271256.704 | 480238.402 | 0.9947 | Fix | 1271256.517 | 480238.633 | 1.68014 | Fix | 0.187  | -0.231 | -0.68544 | Curb |
| 88  | 1271254.177 | 480250.423 | 0.9862 | Fix | 1271253.971 | 480250.67  | 1.7584  | Fix | 0.206  | -0.247 | -0.7722  | Curb |
| 89  | 1271254.758 | 480245.982 | 0.972  | Fix | 1271254.557 | 480246.232 | 1.71348 | Fix | 0.201  | -0.25  | -0.74148 | Curb |
| 90  | 1271255.408 | 480245.06  | 0.9532 | Fix | 1271255.187 | 480245.292 | 1.62563 | Fix | 0.221  | -0.232 | -0.67243 | Curb |
| 91  | 1271256.742 | 480244.574 | 1.0228 | Fix | 1271256.536 | 480244.81  | 1.72235 | Fix | 0.206  | -0.236 | -0.69955 | Curb |
| 92  | 1271281.229 | 480247.841 | 1.0379 | Fix | 1271281.051 | 480248.068 | 1.65896 | Fix | 0.178  | -0.227 | -0.62106 | Curb |
| 93  | 1271282.302 | 480241.788 | 0.9499 | Fix | 1271282.143 | 480242.055 | 1.76238 | Fix | 0.159  | -0.267 | -0.81248 | Curb |
| 94  | 1271282.71  | 480236.817 | 1.1727 | Fix | 1271282.542 | 480237.038 | 1.97037 | Fix | 0.168  | -0.221 | -0.79767 | Curb |
| 95  | 1271283.324 | 480232.635 | 0.8676 | Fix | 1271283.128 | 480232.862 | 1.69713 | Fix | 0.196  | -0.227 | -0.82953 | Curb |
| 96  | 1271288.896 | 480233.219 | 0.7519 | Fix | 1271288.675 | 480233.481 | 1.49592 | Fix | 0.221  | -0.262 | -0.74402 | MH   |
| 97  | 1271289.049 | 480231.773 | 0.7619 | Fix | 1271288.847 | 480231.972 | 1.44986 | Fix | 0.202  | -0.199 | -0.68796 | MH   |
| 98  | 1271290.124 | 480231.886 | 0.7435 | Fix | 1271289.945 | 480232.085 | 1.44971 | Fix | 0.179  | -0.199 | -0.70621 | MH   |
| 99  | 1271289.943 | 480233.339 | 0.7427 | Fix | 1271289.733 | 480233.575 | 1.41648 | Fix | 0.21   | -0.236 | -0.67378 | MH   |
| 100 | 1271315.36  | 480236.695 | 0.8053 | Fix | 1271315.492 | 480237.829 | 2.30317 | Fix | -0.132 | -1.134 | -1.49787 | MH   |
| 101 | 1271315.485 | 480235.736 | 0.8094 | Fix | 1271315.612 | 480236.875 | 2.29639 | Fix | -0.127 | -1.139 | -1.48699 | MH   |
| 102 | 1271316.467 | 480235.872 | 0.7759 | Fix | 1271316.579 | 480237.008 | 2.26226 | Fix | -0.112 | -1.136 | -1.48636 | MH   |
| 103 | 1271316.337 | 480236.817 | 0.7783 | Fix | 1271316.468 | 480237.944 | 2.28151 | Fix | -0.131 | -1.127 | -1.50321 | MH   |
| 104 | 1271316.537 | 480237.072 | 0.9323 | Fix | 1271316.654 | 480238.201 | 2.46374 | Fix | -0.117 | -1.129 | -1.53144 | Curb |
| 105 | 1271317.669 | 480238.74  | 0.9858 | Fix | 1271317.812 | 480239.896 | 2.52081 | Fix | -0.143 | -1.156 | -1.53501 | Curb |
| 106 | 1271317.485 | 480240.181 | 1.0315 | Fix | 1271317.624 | 480241.312 | 2.56711 | Fix | -0.139 | -1.131 | -1.53561 | Curb |
| 107 | 1271315.867 | 480241.235 | 1.1927 | Fix | 1271315.996 | 480242.372 | 2.69942 | Fix | -0.129 | -1.137 | -1.50672 | Curb |
| 108 | 1271316.929 | 480244.901 | 1.0797 | Fix | 1271317.044 | 480246.062 | 2.5994  | Fix | -0.115 | -1.161 | -1.5197  | Curb |
| 109 | 1271315.355 | 480246.163 | 0.9959 | Fix | 1271315.5   | 480247.315 | 2.52521 | Fix | -0.145 | -1.152 | -1.52931 | Curb |
| 110 | 1271326.492 | 480247.633 | 0.975  | Fix | 1271326.584 | 480248.938 | 3.13811 | Fix | -0.092 | -1.305 | -2.16311 | Curb |

| 111 | 1271324.999 | 480245.503 | 1.0624 | Fix | 1271325.09  | 480246.803 | 3.2546  | Fix | -0.091 | -1.3   | -2.1922  | Curb |
|-----|-------------|------------|--------|-----|-------------|------------|---------|-----|--------|--------|----------|------|
| 112 | 1271326.877 | 480242.664 | 1.1375 | Fix | 1271326.966 | 480244.006 | 3.23557 | Fix | -0.089 | -1.342 | -2.09807 | Curb |
| 113 | 1271325.578 | 480241.293 | 0.9546 | Fix | 1271325.66  | 480242.634 | 3.11372 | Fix | -0.082 | -1.341 | -2.15912 | Curb |
| 114 | 1271325.8   | 480239.629 | 0.9207 | Fix | 1271325.853 | 480240.981 | 3.06639 | Fix | -0.053 | -1.352 | -2.14569 | Curb |
| 115 | 1271327.505 | 480238.492 | 0.8971 | Fix | 1271327.563 | 480239.835 | 2.97626 | Fix | -0.058 | -1.343 | -2.07916 | Curb |
| 116 | 1271326.95  | 480238.294 | 0.7558 | Fix | 1271327.006 | 480239.619 | 2.82411 | Fix | -0.056 | -1.325 | -2.06831 | MH   |
| 117 | 1271327.148 | 480237.214 | 0.7479 | Fix | 1271327.212 | 480238.547 | 2.81393 | Fix | -0.064 | -1.333 | -2.06603 | MH   |
| 118 | 1271328.258 | 480237.376 | 0.7385 | Fix | 1271328.299 | 480238.715 | 2.79923 | Fix | -0.041 | -1.339 | -2.06073 | MH   |
| 119 | 1271328.076 | 480238.446 | 0.7414 | Fix | 1271328.139 | 480239.823 | 2.77195 | Fix | -0.063 | -1.377 | -2.03055 | MH   |
| 120 | 1271353.764 | 480241.841 | 0.749  | Fix | 1271353.845 | 480243.157 | 2.68223 | Fix | -0.081 | -1.316 | -1.93323 | MH   |
| 121 | 1271353.899 | 480240.973 | 0.8562 | Fix | 1271353.553 | 480241.253 | 1.49035 | Fix | 0.346  | -0.28  | -0.63415 | MH   |
| 122 | 1271355.009 | 480241.107 | 0.9786 | Fix | 1271354.643 | 480241.419 | 1.48823 | Fix | 0.366  | -0.312 | -0.50963 | MH   |
| 123 | 1271354.891 | 480241.878 | 0.79   | Fix | 1271354.551 | 480242.305 | 1.42333 | Fix | 0.34   | -0.427 | -0.63333 | MH   |
| 124 | 1271376.7   | 480244.805 | 0.7803 | Fix | 1271376.507 | 480245.044 | 1.47988 | Fix | 0.193  | -0.239 | -0.69958 | MH   |
| 125 | 1271376.787 | 480243.727 | 0.7603 | Fix | 1271376.603 | 480243.948 | 1.47579 | Fix | 0.184  | -0.221 | -0.71549 | MH   |
| 126 | 1271377.909 | 480243.849 | 0.7762 | Fix | 1271377.735 | 480244.068 | 1.46595 | Fix | 0.174  | -0.219 | -0.68975 | MH   |
| 127 | 1271377.829 | 480244.987 | 0.779  | Fix | 1271377.61  | 480245.224 | 1.49733 | Fix | 0.219  | -0.237 | -0.71833 | MH   |
| 128 | 1271377.241 | 480245.082 | 0.951  | Fix | 1271377.011 | 480245.322 | 1.69761 | Fix | 0.23   | -0.24  | -0.74661 | Curb |
| 129 | 1271378.729 | 480246.969 | 0.993  | Fix | 1271378.509 | 480247.189 | 1.73787 | Fix | 0.22   | -0.22  | -0.74487 | Curb |
| 130 | 1271378.583 | 480248.095 | 0.9638 | Fix | 1271378.346 | 480248.297 | 1.72669 | Fix | 0.237  | -0.202 | -0.76289 | Curb |
| 131 | 1271376.924 | 480249.233 | 1.1677 | Fix | 1271376.699 | 480249.462 | 1.911   | Fix | 0.225  | -0.229 | -0.7433  | Curb |
| 132 | 1271377.945 | 480253.079 | 1.0207 | Fix | 1271378.172 | 480254.1   | 1.83625 | Fix | -0.227 | -1.021 | -0.81555 | Curb |
| 133 | 1271376.586 | 480254.219 | 0.9853 | Fix | 1271376.828 | 480255.231 | 1.78674 | Fix | -0.242 | -1.012 | -0.80144 | Curb |
| 134 | 1271386.928 | 480255.652 | 0.9705 | Fix | 1271386.733 | 480255.86  | 1.6435  | Fix | 0.195  | -0.208 | -0.673   | Curb |
| 135 | 1271386.081 | 480254.059 | 0.9782 | Fix | 1271385.875 | 480254.275 | 1.70198 | Fix | 0.206  | -0.216 | -0.72378 | Curb |
| 136 | 1271388.106 | 480250.754 | 1.1511 | Fix | 1271387.85  | 480251.073 | 2.13295 | Fix | 0.256  | -0.319 | -0.98185 | Curb |
| 137 | 1271386.617 | 480249.176 | 0.9414 | Fix | 1271386.374 | 480249.524 | 1.93632 | Fix | 0.243  | -0.348 | -0.99492 | Curb |
| 138 | 1271386.837 | 480247.302 | 0.9259 | Fix | 1271386.649 | 480247.54  | 1.60689 | Fix | 0.188  | -0.238 | -0.68099 | Curb |
| 139 | 1271388.035 | 480246.476 | 0.919  | Fix | 1271387.83  | 480246.688 | 1.61967 | Fix | 0.205  | -0.212 | -0.70067 | Curb |

| 1.40 | 1071000.006 | 100016 007 | 0 7556 | Π.  | 1071007.007 | 400046 500 | 1 40 450 | Π.  | 0.000  | 0.001  | 0.70000  | G 1  |
|------|-------------|------------|--------|-----|-------------|------------|----------|-----|--------|--------|----------|------|
| 140  | 12/1388.096 | 480246.287 | 0./556 | F1X | 12/138/.88/ | 480246.508 | 1.48458  | F1X | 0.209  | -0.221 | -0.72898 | Curb |
| 141  | 1271388.243 | 480245.401 | 0.7649 | Fix | 1271388.052 | 480245.626 | 1.47498  | Fix | 0.191  | -0.225 | -0.71008 | Curb |
| 142  | 1271389.134 | 480245.566 | 0.7598 | Fix | 1271388.945 | 480245.783 | 1.45514  | Fix | 0.189  | -0.217 | -0.69534 | Curb |
| 143  | 1271389.01  | 480246.43  | 0.761  | Fix | 1271388.8   | 480246.649 | 1.46686  | Fix | 0.21   | -0.219 | -0.70586 | Curb |
| 144  | 1271415.107 | 480249.844 | 0.772  | Fix | 1271415.034 | 480251.235 | 1.1518   | Fix | 0.073  | -1.391 | -0.3798  | Curb |
| 145  | 1271415.259 | 480248.791 | 0.8033 | Fix | 1271415.214 | 480250.193 | 1.19829  | Fix | 0.045  | -1.402 | -0.39499 | Curb |
| 146  | 1271416.239 | 480250.046 | 0.811  | Fix | 1271416.152 | 480251.439 | 1.22855  | Fix | 0.087  | -1.393 | -0.41755 | Curb |
| 147  | 1271416.394 | 480248.959 | 0.7991 | Fix | 1271416.345 | 480250.355 | 1.2032   | Fix | 0.049  | -1.396 | -0.4041  | Curb |
| 148  | 1271441.476 | 480253.264 | 0.8198 | Fix | 1271441.374 | 480254.702 | 1.22112  | Fix | 0.102  | -1.438 | -0.40132 | Curb |
| 149  | 1271441.637 | 480252.257 | 0.8255 | Fix | 1271441.503 | 480253.65  | 1.23671  | Fix | 0.134  | -1.393 | -0.41121 | Curb |
| 150  | 1271442.724 | 480252.368 | 0.7986 | Fix | 1271442.596 | 480253.792 | 1.24178  | Fix | 0.128  | -1.424 | -0.44318 | Curb |
| 151  | 1271442.549 | 480253.447 | 0.8166 | Fix | 1271442.436 | 480254.89  | 1.23114  | Fix | 0.113  | -1.443 | -0.41454 | Curb |
| 152  | 1271441.583 | 480253.496 | 0.9459 | Fix | 1271441.76  | 480254.615 | 1.78498  | Fix | -0.177 | -1.119 | -0.83908 | Curb |
| 153  | 1271442.916 | 480255.125 | 0.9296 | Fix | 1271443.099 | 480256.197 | 1.81535  | Fix | -0.183 | -1.072 | -0.88575 | Curb |
| 154  | 1271442.844 | 480256.546 | 0.9749 | Fix | 1271443.023 | 480257.622 | 1.81546  | Fix | -0.179 | -1.076 | -0.84056 | Curb |
| 155  | 1271441.14  | 480257.699 | 1.1133 | Fix | 1271441.345 | 480258.809 | 1.97811  | Fix | -0.205 | -1.11  | -0.86481 | Curb |
| 156  | 1271442.122 | 480261.54  | 0.9932 | Fix | 1271442.307 | 480262.598 | 1.78364  | Fix | -0.185 | -1.058 | -0.79044 | Curb |
| 157  | 1271440.671 | 480262.694 | 0.9142 | Fix | 1271440.876 | 480263.764 | 1.74632  | Fix | -0.205 | -1.07  | -0.83212 | Curb |
| 158  | 1271440.008 | 480268.949 | 0.9735 | Fix | 1271439.789 | 480269.132 | 1.6927   | Fix | 0.219  | -0.183 | -0.7192  | Curb |
| 159  | 1271500.401 | 480225.139 | 1.1651 | Fix | 1271500.302 | 480226.125 | 2.89804  | Fix | 0.099  | -0.986 | -1.73294 | GV   |
| 160  | 1271507.073 | 480229.278 | 0.9081 | Fix | 1271506.834 | 480229.578 | 1.72132  | Fix | 0.239  | -0.3   | -0.81322 | AR   |
| 161  | 1271507.335 | 480228.185 | 0.8948 | Fix | 1271507.097 | 480228.492 | 1.77583  | Fix | 0.238  | -0.307 | -0.88103 | DG   |
| 162  | 1271495.05  | 480223.58  | 1.0942 | Fix | 1271494.83  | 480223.796 | 1.78308  | Fix | 0.22   | -0.216 | -0.68888 | Pano |
| 163  | 1271481.145 | 480224.715 | 0.8343 | Fix | 1271480.939 | 480224.96  | 1.53091  | Fix | 0.206  | -0.245 | -0.69661 | DG   |
| 164  | 1271480.95  | 480225.764 | 0.8758 | Fix | 1271480.738 | 480225.984 | 1.52953  | Fix | 0.212  | -0.22  | -0.65373 | AR   |
| 165  | 1271472.404 | 480223.598 | 0.868  | Fix | 1271472.161 | 480223.846 | 1.53352  | Fix | 0.243  | -0.248 | -0.66552 | DG   |
| 166  | 1271472.193 | 480224.61  | 0.8684 | Fix | 1271471.953 | 480224.852 | 1.56088  | Fix | 0.24   | -0.242 | -0.69248 | AR   |
| 167  | 1271465.727 | 480212.332 | 1.3323 | Fix | 1271465.512 | 480212.649 | 2.05314  | Fix | 0.215  | -0.317 | -0.72084 | EDC  |
| 168  | 1271465.298 | 480212.224 | 1.2218 | Fix | 1271465.104 | 480212.563 | 2.02445  | Fix | 0.194  | -0.339 | -0.80265 | EDC  |

| 169 | 1271465.399 | 480211.69  | 1.3315 | Fix   | 1271465.094 | 480212.037 | 2.17869 | Fix | 0.305 | -0.347 | -0.84719 | EDC  |
|-----|-------------|------------|--------|-------|-------------|------------|---------|-----|-------|--------|----------|------|
| 170 | 1271465.792 | 480211.744 | 1.2304 | Fix   | 1271465.528 | 480212.086 | 2.14597 | Fix | 0.264 | -0.342 | -0.91557 | EDC  |
| 171 | 1271458.643 | 480221.865 | 0.8425 | Fix   | 1271458.482 | 480222.059 | 1.60772 | Fix | 0.161 | -0.194 | -0.76522 | DG   |
| 172 | 1271458.502 | 480222.9   | 0.8717 | Fix   | 1271458.335 | 480223.119 | 1.63243 | Fix | 0.167 | -0.219 | -0.76073 | AR   |
| 173 | 1271435.099 | 480216.814 | 1.1727 | Fix   | 1271434.898 | 480217.098 | 1.98897 | Fix | 0.201 | -0.284 | -0.81627 | Pano |
| 174 | 1271417.399 | 480216.415 | 0.8315 | Fix   | 1271417.284 | 480216.734 | 1.7072  | Fix | 0.115 | -0.319 | -0.8757  | DG   |
| 175 | 1271417.229 | 480217.457 | 0.8566 | Fix   | 1271417.092 | 480217.765 | 1.72098 | Fix | 0.137 | -0.308 | -0.86438 | AR   |
| 176 | 1271420.055 | 480211.374 | 1.3138 | Fix   | 1271419.926 | 480211.613 | 2.0893  | Fix | 0.129 | -0.239 | -0.7755  | Home |
| 177 | 1271398.914 | 480208.067 | 1.1775 | Fix   | 1271398.727 | 480208.279 | 1.81697 | Fix | 0.187 | -0.212 | -0.63947 | Pano |
| 178 | 1271398.517 | 480211.405 | 1.0971 | Fix   | 1271398.275 | 480211.568 | 1.67903 | Fix | 0.242 | -0.163 | -0.58193 | Pano |
| 179 | 1271400.508 | 480204.688 | 1.3021 | Fix   | 1271399.887 | 480205.239 | 1.5122  | Fix | 0.621 | -0.551 | -0.2101  | EDC  |
| 180 | 1271383.084 | 480211.913 | 0.7781 | Fix   | 1271382.91  | 480212.26  | 1.68913 | Fix | 0.174 | -0.347 | -0.91103 | DG   |
| 181 | 1271382.976 | 480212.863 | 0.7962 | Fix   | 1271382.805 | 480213.207 | 1.70006 | Fix | 0.171 | -0.344 | -0.90386 | DG   |
| 182 | 1271366.43  | 480209.412 | 0.9266 | Fix   | 1271366.297 | 480209.743 | 1.77305 | Fix | 0.133 | -0.331 | -0.84645 | Sign |
| 183 | 1271362.191 | 480209.01  | 0.8056 | Fix   | 1271362.07  | 480209.785 | 2.8227  | Fix | 0.121 | -0.775 | -2.0171  | MH   |
| 184 | 1271361.418 | 480208.904 | 0.7841 | Fix   | 1271361.298 | 480209.687 | 2.80611 | Fix | 0.12  | -0.783 | -2.02201 | MH   |
| 185 | 1271361.51  | 480208.126 | 0.8347 | Fix   | 1271361.388 | 480208.894 | 2.85236 | Fix | 0.122 | -0.768 | -2.01766 | MH   |
| 186 | 1271362.314 | 480208.287 | 0.845  | Fix   | 1271362.172 | 480209.072 | 2.83905 | Fix | 0.142 | -0.785 | -1.99405 | MH   |
| 187 | 1271346.583 | 480206.329 | 0.8841 | Float | 1271346.459 | 480206.682 | 1.58248 | Fix | 0.124 | -0.353 | -0.69838 | Tree |
| 188 | 1271334.631 | 480205.537 | 0.815  | Fix   | 1271334.423 | 480205.752 | 1.4771  | Fix | 0.208 | -0.215 | -0.6621  | DG   |
| 189 | 1271334.545 | 480206.581 | 0.8182 | Fix   | 1271334.326 | 480206.803 | 1.49051 | Fix | 0.219 | -0.222 | -0.67231 | AR   |
| 190 | 1271328.388 | 480204.713 | 0.8527 | Fix   | 1271328.177 | 480204.938 | 1.56158 | Fix | 0.211 | -0.225 | -0.70888 | MH   |
| 191 | 1271327.259 | 480204.562 | 0.8195 | Fix   | 1271327.047 | 480204.803 | 1.55528 | Fix | 0.212 | -0.241 | -0.73578 | MH   |
| 192 | 1271327.372 | 480203.721 | 0.9005 | Fix   | 1271327.186 | 480203.979 | 1.63941 | Fix | 0.186 | -0.258 | -0.73891 | MH   |
| 193 | 1271328.447 | 480203.918 | 0.9194 | Fix   | 1271328.261 | 480204.164 | 1.6398  | Fix | 0.186 | -0.246 | -0.7204  | MH   |
| 194 | 1271329.049 | 480202.816 | 0.9968 | Fix   | 1271328.849 | 480203.077 | 1.71227 | Fix | 0.2   | -0.261 | -0.71547 | Road |
| 195 | 1271329.068 | 480199.186 | 1.1017 | Fix   | 1271328.828 | 480199.427 | 1.74569 | Fix | 0.24  | -0.241 | -0.64399 | Road |
| 196 | 1271331.226 | 480198.988 | 1.0251 | Fix   | 1271331.024 | 480199.224 | 1.67503 | Fix | 0.202 | -0.236 | -0.64993 | Road |
| 197 | 1271331.309 | 480202.294 | 0.9744 | Fix   | 1271331.097 | 480202.55  | 1.64738 | Fix | 0.212 | -0.256 | -0.67298 | Road |

| 198 | 1271332.196 | 480196.982 | 1.2541 | Fix | 1271332.408 | 480198.479 | 3.13237 | Fix | -0.212 | -1.497 | -1.87827 | Home |
|-----|-------------|------------|--------|-----|-------------|------------|---------|-----|--------|--------|----------|------|
| 199 | 1271312.411 | 480202.609 | 0.8127 | Fix | 1271312.19  | 480202.84  | 1.43835 | Fix | 0.221  | -0.231 | -0.62565 | DG   |
| 200 | 1271312.207 | 480203.666 | 0.8128 | Fix | 1271311.998 | 480203.889 | 1.479   | Fix | 0.209  | -0.223 | -0.6662  | AR   |
| 201 | 1271307.569 | 480198.123 | 1.0135 | Fix | 1271307.315 | 480198.395 | 1.71603 | Fix | 0.254  | -0.272 | -0.70253 | Pano |
| 202 | 1271307.773 | 480196.076 | 1.003  | Fix | 1271307.482 | 480196.854 | 2.69807 | Fix | 0.291  | -0.778 | -1.69507 | Pano |
| 203 | 1271289.911 | 480199.632 | 0.7896 | Fix | 1271289.703 | 480199.849 | 1.43424 | Fix | 0.208  | -0.217 | -0.64464 | DG   |
| 204 | 1271289.751 | 480200.589 | 0.8246 | Fix | 1271289.547 | 480200.823 | 1.4715  | Fix | 0.204  | -0.234 | -0.6469  | AR   |
| 205 | 1271289.351 | 480192.225 | 1.9478 | Fix | 1271289.4   | 480193.495 | 1.65285 | Fix | -0.049 | -1.27  | 0.29495  | Tree |
| 206 | 1271263.218 | 480196.008 | 0.7759 | Fix | 1271263.01  | 480196.232 | 1.40691 | Fix | 0.208  | -0.224 | -0.63101 | DG   |
| 207 | 1271263.034 | 480197.078 | 0.8256 | Fix | 1271262.849 | 480197.308 | 1.45251 | Fix | 0.185  | -0.23  | -0.62691 | AR   |
| 208 | 1271250.385 | 480195.684 | 0.8141 | Fix | 1271250.203 | 480195.889 | 1.47726 | Fix | 0.182  | -0.205 | -0.66316 | AR   |
| 209 | 1271248.628 | 480188.281 | 1.1841 | Fix | 1271248.434 | 480188.478 | 1.83444 | Fix | 0.194  | -0.197 | -0.65034 | Road |
| 210 | 1271246.972 | 480180.443 | 1.2965 | Fix | 1271246.806 | 480180.617 | 1.9557  | Fix | 0.166  | -0.174 | -0.6592  | Road |
| 211 | 1271240.984 | 480179.86  | 1.2858 | Fix | 1271240.793 | 480180.077 | 1.95666 | Fix | 0.191  | -0.217 | -0.67086 | Road |
| 212 | 1271241.652 | 480186.707 | 1.2559 | Fix | 1271241.444 | 480186.935 | 1.90902 | Fix | 0.208  | -0.228 | -0.65312 | Road |
| 213 | 1271241.205 | 480194.808 | 0.9273 | Fix | 1271241.025 | 480195.039 | 1.6543  | Fix | 0.18   | -0.231 | -0.727   | Road |
| 214 | 1271232.904 | 480192.071 | 0.7576 | Fix | 1271232.799 | 480192.403 | 1.5112  | Fix | 0.105  | -0.332 | -0.7536  | DG   |
| 215 | 1271232.875 | 480192.335 | 0.8042 | Fix | 1271232.776 | 480192.65  | 1.49575 | Fix | 0.099  | -0.315 | -0.69155 | DG   |
| 216 | 1271232.794 | 480193.352 | 0.7786 | Fix | 1271232.67  | 480193.634 | 1.51171 | Fix | 0.124  | -0.282 | -0.73311 | DG   |
| 217 | 1271231.475 | 480193.183 | 0.7813 | Fix | 1271231.373 | 480193.478 | 1.47055 | Fix | 0.102  | -0.295 | -0.68925 | DG   |
| 218 | 1271231.715 | 480191.894 | 0.7703 | Fix | 1271231.579 | 480192.202 | 1.46664 | Fix | 0.136  | -0.308 | -0.69634 | DG   |
| 219 | 1271229.698 | 480203.622 | 1.2785 | Fix | 1271229.549 | 480203.853 | 1.98326 | Fix | 0.149  | -0.231 | -0.70476 | Curb |
| 220 | 1271228.573 | 480205.251 | 1.3292 | Fix | 1271228.376 | 480205.51  | 2.05425 | Fix | 0.197  | -0.259 | -0.72505 | Curb |
| 221 | 1271234.499 | 480205.283 | 1.6031 | Fix | 1271234.298 | 480205.537 | 2.19572 | Fix | 0.201  | -0.254 | -0.59262 | EL   |
| 222 | 1271234.764 | 480205.31  | 1.5751 | Fix | 1271234.583 | 480205.539 | 2.23336 | Fix | 0.181  | -0.229 | -0.65826 | EL   |
| 223 | 1271234.802 | 480205.027 | 1.5584 | Fix | 1271234.611 | 480205.274 | 2.18068 | Fix | 0.191  | -0.247 | -0.62228 | EL   |
| 224 | 1271234.5   | 480205.008 | 1.5285 | Fix | 1271234.315 | 480205.201 | 2.24062 | Fix | 0.185  | -0.193 | -0.71212 | EL   |
| 225 | 1271237.178 | 480205.762 | 1.7884 | Fix | 1271236.992 | 480206.799 | 3.92337 | Fix | 0.186  | -1.037 | -2.13497 | Ts   |
| 226 | 1271236.615 | 480205.561 | 1.5015 | Fix | 1271236.569 | 480205.872 | 2.14897 | Fix | 0.046  | -0.311 | -0.64747 | Ts   |

| 227 | 1271236.651 | 480205.274 | 1.4604 | Fix | 1271236.544 | 480205.626 | 2.11127 | Fix | 0.107  | -0.352 | -0.65087 | Ts   |
|-----|-------------|------------|--------|-----|-------------|------------|---------|-----|--------|--------|----------|------|
| 228 | 1271236.906 | 480205.364 | 1.4485 | Fix | 1271236.939 | 480206.514 | 3.63121 | Fix | -0.033 | -1.15  | -2.18271 | Ts   |
| 229 | 1271237.806 | 480204.644 | 1.3156 | Fix | 1271237.625 | 480204.905 | 2.07137 | Fix | 0.181  | -0.261 | -0.75577 | Curb |
| 230 | 1271238.485 | 480205.568 | 1.322  | Fix | 1271238.277 | 480205.766 | 2.02016 | Fix | 0.208  | -0.198 | -0.69816 | Curb |
| 231 | 1271237.585 | 480206.443 | 1.323  | Fix | 1271237.426 | 480206.652 | 2.03591 | Fix | 0.159  | -0.209 | -0.71291 | Curb |
| 232 | 1271264.56  | 480209.925 | 1.3182 | Fix | 1271264.146 | 480211.103 | 2.24565 | Fix | 0.414  | -1.178 | -0.92745 | Curb |
| 233 | 1271263.727 | 480208.953 | 1.3213 | Fix | 1271263.287 | 480210.154 | 2.22752 | Fix | 0.44   | -1.201 | -0.90622 | Curb |
| 234 | 1271264.812 | 480208.143 | 1.334  | Fix | 1271264.279 | 480209.178 | 2.39226 | Fix | 0.533  | -1.035 | -1.05826 | Curb |
| 235 | 1271266.555 | 480209.133 | 1.5879 | Fix | 1271266.361 | 480209.363 | 2.25558 | Fix | 0.194  | -0.23  | -0.66768 | EL   |
| 236 | 1271266.856 | 480209.155 | 1.6109 | Fix | 1271267.156 | 480210.339 | 2.07256 | Fix | -0.3   | -1.184 | -0.46166 | EL   |
| 237 | 1271266.756 | 480209.437 | 1.5534 | Fix | 1271266.382 | 480210.624 | 2.42601 | Fix | 0.374  | -1.187 | -0.87261 | EL   |
| 238 | 1271266.508 | 480209.407 | 1.5908 | Fix | 1271266.674 | 480210.615 | 3.90979 | Fix | -0.166 | -1.208 | -2.31899 | EL   |
| 239 | 1271282.642 | 480211.25  | 1.6482 | Fix | 1271282.615 | 480212.662 | 1.8086  | Fix | 0.027  | -1.412 | -0.1604  | Pano |
| 240 | 1271282.956 | 480211.288 | 1.6261 | Fix | 1271282.796 | 480211.551 | 2.24275 | Fix | 0.16   | -0.263 | -0.61665 | Pano |
| 241 | 1271282.928 | 480211.58  | 1.6503 | Fix | 1271282.743 | 480211.8   | 2.2971  | Fix | 0.185  | -0.22  | -0.6468  | Pano |
| 242 | 1271282.631 | 480211.539 | 1.6372 | Fix | 1271282.574 | 480211.876 | 2.45669 | Fix | 0.057  | -0.337 | -0.81949 | Pano |
| 243 | 1271286.585 | 480212.859 | 1.3608 | Fix | 1271286.794 | 480213.981 | 1.83922 | Fix | -0.209 | -1.122 | -0.47842 | Curb |
| 244 | 1271286.817 | 480211.034 | 1.3641 | Fix | 1271287.04  | 480212.175 | 1.84142 | Fix | -0.223 | -1.141 | -0.47732 | Curb |
| 245 | 1271299.932 | 480213.524 | 1.5362 | Fix | 1271299.751 | 480213.749 | 2.27928 | Fix | 0.181  | -0.225 | -0.74308 | EL   |
| 246 | 1271300.24  | 480213.544 | 1.5471 | Fix | 1271300.044 | 480213.76  | 2.28717 | Fix | 0.196  | -0.216 | -0.74007 | EL   |
| 247 | 1271300.247 | 480213.878 | 1.5452 | Fix | 1271300.005 | 480214.065 | 2.28392 | Fix | 0.242  | -0.187 | -0.73872 | EL   |
| 248 | 1271299.896 | 480213.781 | 1.5718 | Fix | 1271299.72  | 480214.03  | 2.26541 | Fix | 0.176  | -0.249 | -0.69361 | EL   |
| 249 | 1271316.405 | 480215.723 | 1.559  | Fix | 1271316.195 | 480215.939 | 2.326   | Fix | 0.21   | -0.216 | -0.767   | Pano |
| 250 | 1271316.812 | 480215.775 | 1.6098 | Fix | 1271316.614 | 480215.988 | 2.28865 | Fix | 0.198  | -0.213 | -0.67885 | Pano |
| 251 | 1271316.798 | 480216.171 | 1.6256 | Fix | 1271316.57  | 480216.588 | 2.01487 | Fix | 0.228  | -0.417 | -0.38927 | Pano |
| 252 | 1271316.334 | 480216.138 | 1.654  | Fix | 1271316.184 | 480216.375 | 2.26952 | Fix | 0.15   | -0.237 | -0.61552 | Pano |
| 253 | 1271321.382 | 480215.556 | 1.396  | Fix | 1271321.178 | 480215.844 | 2.16756 | Fix | 0.204  | -0.288 | -0.77156 | Curb |
| 254 | 1271320.984 | 480217.433 | 1.3695 | Fix | 1271320.793 | 480217.664 | 2.08161 | Fix | 0.191  | -0.231 | -0.71211 | Curb |
| 255 | 1271334.317 | 480218.092 | 1.4954 | Fix | 1271334.031 | 480218.349 | 2.35333 | Fix | 0.286  | -0.257 | -0.85793 | EL   |

| 256 | 1271334.602 | 480218.112 | 1.5062 | Fix | 1271334.338 | 480218.358 | 2.35543 | Fix | 0.264 | -0.246 | -0.84923 | EL   |
|-----|-------------|------------|--------|-----|-------------|------------|---------|-----|-------|--------|----------|------|
| 257 | 1271334.575 | 480218.406 | 1.4554 | Fix | 1271334.317 | 480218.674 | 2.37193 | Fix | 0.258 | -0.268 | -0.91653 | EL   |
| 258 | 1271334.27  | 480218.383 | 1.4747 | Fix | 1271334.006 | 480218.624 | 2.36578 | Fix | 0.264 | -0.241 | -0.89108 | EL   |
| 259 | 1271351.102 | 480220.186 | 1.6173 | Fix | 1271350.851 | 480220.465 | 2.45933 | Fix | 0.251 | -0.279 | -0.84203 | Pano |
| 260 | 1271351.469 | 480220.237 | 1.6493 | Fix | 1271351.295 | 480220.443 | 2.28835 | Fix | 0.174 | -0.206 | -0.63905 | Pano |
| 261 | 1271351.429 | 480220.577 | 1.6057 | Fix | 1271351.269 | 480220.823 | 2.31431 | Fix | 0.16  | -0.246 | -0.70861 | Pano |
| 262 | 1271351.066 | 480220.569 | 1.6193 | Fix | 1271350.849 | 480220.809 | 2.26344 | Fix | 0.217 | -0.24  | -0.64414 | Pano |
| 263 | 1271353.4   | 480221.609 | 1.3414 | Fix | 1271353.22  | 480221.835 | 2.04142 | Fix | 0.18  | -0.226 | -0.70002 | Curb |
| 264 | 1271353.443 | 480219.795 | 1.3649 | Fix | 1271353.245 | 480220.014 | 2.03495 | Fix | 0.198 | -0.219 | -0.67005 | Curb |
| 265 | 1271368.873 | 480222.594 | 1.5273 | Fix | 1271368.686 | 480222.826 | 2.21799 | Fix | 0.187 | -0.232 | -0.69069 | EL   |
| 266 | 1271369.157 | 480222.636 | 1.5039 | Fix | 1271368.978 | 480222.864 | 2.2189  | Fix | 0.179 | -0.228 | -0.715   | EL   |
| 267 | 1271369.101 | 480222.952 | 1.5213 | Fix | 1271368.936 | 480223.155 | 2.21698 | Fix | 0.165 | -0.203 | -0.69568 | EL   |
| 268 | 1271368.792 | 480222.906 | 1.5121 | Fix | 1271368.644 | 480223.117 | 2.14292 | Fix | 0.148 | -0.211 | -0.63082 | EL   |
| 269 | 1271385.64  | 480224.687 | 1.5627 | Fix | 1271385.468 | 480224.914 | 2.26431 | Fix | 0.172 | -0.227 | -0.70161 | Pano |
| 270 | 1271386.095 | 480224.697 | 1.5202 | Fix | 1271385.905 | 480224.949 | 2.23795 | Fix | 0.19  | -0.252 | -0.71775 | Pano |
| 271 | 1271386.09  | 480225.166 | 1.5065 | Fix | 1271385.893 | 480225.418 | 2.29373 | Fix | 0.197 | -0.252 | -0.78723 | Pano |
| 272 | 1271385.6   | 480225.127 | 1.5224 | Fix | 1271384.676 | 480225.638 | 3.41088 | Fix | 0.924 | -0.511 | -1.88848 | Pano |
| 273 | 1271384.837 | 480225.748 | 1.3303 | Fix | 1271384.634 | 480225.976 | 2.04732 | Fix | 0.203 | -0.228 | -0.71702 | Curb |
| 274 | 1271384.616 | 480223.901 | 1.3155 | Fix | 1271384.439 | 480224.117 | 2.05528 | Fix | 0.177 | -0.216 | -0.73978 | Curb |
| 275 | 1271402.677 | 480227.019 | 1.599  | Fix | 1271402.444 | 480227.258 | 2.38479 | Fix | 0.233 | -0.239 | -0.78579 | EL   |
| 276 | 1271402.991 | 480227.047 | 1.5787 | Fix | 1271402.729 | 480227.301 | 2.40291 | Fix | 0.262 | -0.254 | -0.82421 | EL   |
| 277 | 1271402.908 | 480227.356 | 1.578  | Fix | 1271402.698 | 480227.594 | 2.369   | Fix | 0.21  | -0.238 | -0.791   | EL   |
| 278 | 1271402.609 | 480227.348 | 1.586  | Fix | 1271402.401 | 480227.577 | 2.33284 | Fix | 0.208 | -0.229 | -0.74684 | EL   |
| 279 | 1271419.676 | 480228.477 | 1.3786 | Fix | 1271419.449 | 480228.732 | 2.13113 | Fix | 0.227 | -0.255 | -0.75253 | Curb |
| 280 | 1271419.495 | 480230.28  | 1.3564 | Fix | 1271419.296 | 480230.522 | 2.13753 | Fix | 0.199 | -0.242 | -0.78113 | Curb |
| 281 | 1271420.931 | 480229.276 | 1.5918 | Fix | 1271420.749 | 480229.499 | 2.32862 | Fix | 0.182 | -0.223 | -0.73682 | Pano |
| 282 | 1271421.409 | 480229.312 | 1.5822 | Fix | 1271421.211 | 480229.647 | 2.52587 | Fix | 0.198 | -0.335 | -0.94367 | Pano |
| 283 | 1271421.334 | 480229.823 | 1.5688 | Fix | 1271421.135 | 480230.093 | 2.37652 | Fix | 0.199 | -0.27  | -0.80772 | Pano |
| 284 | 1271420.849 | 480229.725 | 1.5798 | Fix | 1271420.634 | 480229.984 | 2.32784 | Fix | 0.215 | -0.259 | -0.74804 | Pano |

| 285 | 1271436.9   | 480231.512 | 1.6893 | Fix | 1271436.648 | 480231.745 | 2.44259 | Fix | 0.252 | -0.233 | -0.75329 | EL    |
|-----|-------------|------------|--------|-----|-------------|------------|---------|-----|-------|--------|----------|-------|
| 286 | 1271437.197 | 480231.544 | 1.6139 | Fix | 1271436.991 | 480231.782 | 2.3281  | Fix | 0.206 | -0.238 | -0.7142  | EL    |
| 287 | 1271437.153 | 480231.853 | 1.6313 | Fix | 1271436.941 | 480232.097 | 2.37735 | Fix | 0.212 | -0.244 | -0.74605 | EL    |
| 288 | 1271436.829 | 480231.809 | 1.6283 | Fix | 1271436.652 | 480232.052 | 2.28396 | Fix | 0.177 | -0.243 | -0.65566 | EL    |
| 289 | 1271451.289 | 480233.461 | 1.6346 | Fix | 1271451.092 | 480233.721 | 2.37269 | Fix | 0.197 | -0.26  | -0.73809 | Pano  |
| 290 | 1271451.786 | 480233.484 | 1.6188 | Fix | 1271451.575 | 480233.749 | 2.28452 | Fix | 0.211 | -0.265 | -0.66572 | Pano  |
| 291 | 1271451.697 | 480233.995 | 1.5914 | Fix | 1271451.503 | 480234.246 | 2.33546 | Fix | 0.194 | -0.251 | -0.74406 | Pano  |
| 292 | 1271451.228 | 480233.935 | 1.7043 | Fix | 1271451.057 | 480234.134 | 2.14146 | Fix | 0.171 | -0.199 | -0.43716 | Pano  |
| 293 | 1271471.188 | 480236.024 | 1.6705 | Fix | 1271471.013 | 480236.272 | 2.23025 | Fix | 0.175 | -0.248 | -0.55975 | EL    |
| 294 | 1271471.488 | 480236.069 | 1.6746 | Fix | 1271471.29  | 480236.306 | 2.31632 | Fix | 0.198 | -0.237 | -0.64172 | EL    |
| 295 | 1271471.468 | 480236.389 | 1.6501 | Fix | 1271470.9   | 480236.655 | 2.22628 | Fix | 0.568 | -0.266 | -0.57618 | EL    |
| 296 | 1271471.146 | 480236.322 | 1.699  | Fix | 1271470.941 | 480236.571 | 2.48224 | Fix | 0.205 | -0.249 | -0.78324 | EL    |
| 297 | 1271471.446 | 480235.308 | 1.4293 | Fix | 1271471.302 | 480235.535 | 2.01167 | Fix | 0.144 | -0.227 | -0.58237 | Curb  |
| 298 | 1271471.237 | 480237.107 | 1.4443 | Fix | 1271470.974 | 480237.394 | 2.19467 | Fix | 0.263 | -0.287 | -0.75037 | Curb  |
| 299 | 1271474.172 | 480235.696 | 1.4498 | Fix | 1271473.972 | 480235.92  | 2.19953 | Fix | 0.2   | -0.224 | -0.74973 | Curb  |
| 300 | 1271474.907 | 480236.749 | 1.4475 | Fix | 1271474.685 | 480237.028 | 2.19391 | Fix | 0.222 | -0.279 | -0.74641 | Curb  |
| 301 | 1271473.867 | 480237.436 | 1.3875 | Fix | 1271473.599 | 480237.71  | 2.03044 | Fix | 0.268 | -0.274 | -0.64294 | Curb  |
| 302 | 1271514.076 | 480242.721 | 1.4409 | Fix | 1271513.888 | 480242.99  | 2.06553 | Fix | 0.188 | -0.269 | -0.62463 | Curb  |
| 303 | 1271513.217 | 480241.765 | 1.476  | Fix | 1271512.995 | 480242.041 | 2.19679 | Fix | 0.222 | -0.276 | -0.72079 | Curb  |
| 304 | 1271514.345 | 480241.007 | 1.4018 | Fix | 1271514.147 | 480241.262 | 2.07251 | Fix | 0.198 | -0.255 | -0.67071 | Curb  |
| 305 | 1271516.113 | 480241.973 | 1.6696 | Fix | 1271515.829 | 480242.273 | 2.53202 | Fix | 0.284 | -0.3   | -0.86242 | EL    |
| 306 | 1271516.376 | 480242     | 1.6542 | Fix | 1271516.15  | 480242.226 | 2.24628 | Fix | 0.226 | -0.226 | -0.59208 | EL    |
| 307 | 1271516.307 | 480242.312 | 1.6537 | Fix | 1271516.136 | 480242.567 | 2.22867 | Fix | 0.171 | -0.255 | -0.57497 | EL    |
| 308 | 1271516.036 | 480242.297 | 1.5808 | Fix | 1271515.845 | 480242.468 | 2.22095 | Fix | 0.191 | -0.171 | -0.64015 | EL    |
| 309 | 1271523.69  | 480242.237 | 1.4411 | Fix | 1271523.469 | 480242.496 | 2.02843 | Fix | 0.221 | -0.259 | -0.58733 | Curb  |
| 310 | 1271523.332 | 480244.01  | 1.4465 | Fix | 1271523.09  | 480244.375 | 2.14848 | Fix | 0.242 | -0.365 | -0.70198 | Curb  |
| 311 | 1271533.998 | 480244.47  | 1.5465 | Fix | 1271533.779 | 480244.811 | 2.1082  | Fix | 0.219 | -0.341 | -0.5617  | TBM16 |
| 312 | 1271551.767 | 480245.941 | 1.4878 | Fix | 1271551.582 | 480246.234 | 2.1091  | Fix | 0.185 | -0.293 | -0.6213  | Curb  |
| 313 | 1271551.547 | 480247.73  | 1.4464 | Fix | 1271551.037 | 480248.267 | 2.1107  | Fix | 0.51  | -0.537 | -0.6643  | Curb  |

| b   | 1271552.038 | 480247.025 | 1.6968 | Fix | 1271551.788 | 480247.244 | 2.09789 | Fix | 0.25  | -0.219 | -0.40109 | EL       |
|-----|-------------|------------|--------|-----|-------------|------------|---------|-----|-------|--------|----------|----------|
| 315 | 1271551.649 | 480247.074 | 1.699  | Fix | 1271551.518 | 480247.194 | 2.26951 | Fix | 0.131 | -0.12  | -0.57051 | EL       |
| 316 | 1271551.717 | 480246.671 | 1.6789 | Fix | 1271551.539 | 480246.938 | 2.34573 | Fix | 0.178 | -0.267 | -0.66683 | EL       |
| 317 | 1271552.07  | 480246.72  | 1.6569 | Fix | 1271551.825 | 480246.987 | 2.29647 | Fix | 0.245 | -0.267 | -0.63957 | EL       |
| 318 | 1271546.473 | 480257.751 | 0.905  | Fix | 1271545.99  | 480259.463 | 2.23318 | Fix | 0.483 | -1.712 | -1.32818 | AR       |
| 319 | 1271546.201 | 480258.842 | 0.902  | Fix | 1271545.943 | 480259.137 | 2.27422 | Fix | 0.258 | -0.295 | -1.37222 | DG       |
| 320 | 1271539.438 | 480258.277 | 0.9636 | Fix | 1271539.224 | 480258.604 | 1.93344 | Fix | 0.214 | -0.327 | -0.96984 | Home     |
| 321 | 1271534.691 | 480257.492 | 1.0868 | Fix | 1271534.506 | 480257.836 | 1.7174  | Fix | 0.185 | -0.344 | -0.6306  | Home     |
| 322 | 1271533.931 | 480257.922 | 1.0282 | Fix | 1271533.743 | 480258.166 | 1.72157 | Fix | 0.188 | -0.244 | -0.69337 | Pano     |
| 323 | 1271527.008 | 480255.258 | 0.9727 | Fix | 1271526.725 | 480255.56  | 1.74646 | Fix | 0.283 | -0.302 | -0.77376 | AR       |
| 324 | 1271526.783 | 480256.274 | 1.018  | Fix | 1271526.503 | 480256.6   | 1.78926 | Fix | 0.28  | -0.326 | -0.77126 | DG       |
| 325 | 1271509.768 | 480252.988 | 0.953  | Fix | 1271509.494 | 480253.267 | 1.7946  | Fix | 0.274 | -0.279 | -0.8416  | AR       |
| 326 | 1271509.533 | 480254.065 | 0.9603 | Fix | 1271509.294 | 480254.378 | 1.83148 | Fix | 0.239 | -0.313 | -0.87118 | DG       |
| 327 | 1271505.797 | 480254.937 | 0.9242 | Fix | 1271505.54  | 480255.183 | 1.76287 | Fix | 0.257 | -0.246 | -0.83867 | AR       |
| 328 | 1271503.331 | 480256.611 | 0.8619 | Fix | 1271503.074 | 480256.859 | 1.86085 | Fix | 0.257 | -0.248 | -0.99895 | AR       |
| 329 | 1271501.521 | 480258.471 | 0.8621 | Fix | 1271501.307 | 480258.776 | 1.75974 | Fix | 0.214 | -0.305 | -0.89764 | AR       |
| 330 | 1271499.806 | 480260.862 | 0.8017 | Fix | 1271499.575 | 480261.139 | 1.65098 | Fix | 0.231 | -0.277 | -0.84928 | AR       |
| 331 | 1271498.733 | 480262.771 | 0.7769 | Fix | 1271498.511 | 480263.073 | 1.63701 | Fix | 0.222 | -0.302 | -0.86011 | AR       |
| 332 | 1271498.661 | 480267.018 | 0.7236 | Fix | 1271498.447 | 480267.373 | 1.70647 | Fix | 0.214 | -0.355 | -0.98287 | AR       |
| 333 | 1271498.697 | 480274.912 | 0.8408 | Fix | 1271498.451 | 480275.235 | 1.60109 | Fix | 0.246 | -0.323 | -0.76029 | AR       |
| 334 | 1271500.315 | 480266.262 | 1.0827 | Fix | 1271500.031 | 480266.52  | 1.73593 | Fix | 0.284 | -0.258 | -0.65323 | EDC pole |