

The battery system for mitigate the VRE output fluctuation

(Demonstration test with island as field of power system)

July 1, 2020

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

2030 year energy plan in Japan

In Japan, we are aiming to realize an "energy mix" toward the SDGs achievement in 2030.

In order to stably use the electric power obtained from wind power generation, etc., it is necessary to establish the operation technology of the electric power system.

For that purpose, establishment of energy storage technology is important.

In Japan, demonstration test on a remote island simulating the energy mix of 2030

Output prediction and output control/suppression of wind power and solar power generation, coordinated operation control with existing power sources and energy storage such as storage batteries.

Construction of a grid system capable of maximally accepting renewable energy by utilizing energy storage.

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

Outline of verification test

Source : NEDO Repot

Overview of demonstration equipment

 Wind power generation equipment (WT: 300kW×2unites, Battery: 500kWh, PCS:500kW)

②Solar power generation equipment(PV: 318kW, PCS: 315kW)

③Storage battery equipment (Battery: 500kWh×2 PCS: 1,000kW×2unites)

④Small PV equipment +
 Storage battery equipment
 (PV:5kV~12kV, Battery: 12kWh, PCS:10kW)

③Storage battery equipment

④Small PV equipment +Storage battery equipment

Source : NEDO Repot

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

Object of battery control

We will verify the optimized control of the entire power system by effectively controlling the combination of renewable energy and storage battery equipment.

	Object	Contents of control	Device
Countermeasure of surplus power	Renewable energy output control Energy storage direct control	Renewable energy suppression control Surplus power charging by energy storage	Renewable energy generation + Storage battery equipment
Comparison of pumped storage and storage battery	Demand shift when suppressing renewable energy	Renewable energy suppression control Storage battery charge power control	Renewable energy generation + Storage battery equipment
Mitigation of frequency fluctuations	Mitigating output fluctuations on the renewable energy side	Storage battery charge power control	WT/PV+ Storage battery equipment
	Frequency fluctuation suppression control to mitigate fluctuations in renewable energy and demand	Power consumption control	HP
Power generation plan	Imbalance compensation with power generation plan	Storage battery charge power control	WT/PV+ Storage battery equipment

Source : NEDO Repot

Control of short cycle/long cycle fluctuation

Short cycle fluctuation control

For rapid fluctuations in renewable energy such as PV and WT, the frequency adjustment mode of the storage battery itself is used.

Long cycle fluctuation control

For slow fluctuations in load, pumped storage power generation, storage batteries, etc. will be used to take measures against fluctuations.

PON KOEI

Storage system fluctuation suppression test results

- 1 Frequency fluctuation suppression
- It will be charged when the system frequency exceeds the upper limit of 50.1Hz.
- It will be discharged when the system frequency falls below the lower limit of 49.9Hz.

2 Peak cut

- It will be discharged when the system power demand exceeds the upper limit of 2500kW.
- It will be charged when the system power demand falls below the lower limit of 2450 kW.

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

Studies on Stabilizing a Power System with Massive PV Penetration using VSG (VSG: Virtual Synchronous Generator)

November 4, 2020

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

01 | Introduction

02 Details of Developed Prototype VSG

03 Stability Studies using the Prototype VSG Model

04 Conclusion

1.1 Introduction

1.2 Generator stability

A fault is removed.

When many conventional generating units are disconnected and replaced by PV, synchronizing and/or damping power tend to decrease as the PV doesn't have inertia.

The synchronizing power is the power to restore a rotor to the rated rotation speed and the damping power is the power to damp the rotor's swing as a damper.

To maintain stability,

• Synchronizing Power (Ks) $[\Delta P/\Delta \delta]$

The power to restore original and stable position of synchronous generator against acceleration and de-acceleration in case of disturbance.

• Damping Power (Kd) $[\Delta P / \Delta \omega]$

The power to damp generator oscillations in case of disturbance

1 In case no synchronizing power and damping power \cdot \cdot \cdot

It becomes unstable due to excessive acceleration

1.4 Synchronizing Power and Damping Power

NIPPON KOEl

1. 5 Virtual Synchronous Generator (VSG)

Release due to Inertia

④Conventional Generators have both Synchronizing Power (SP) & Damping Power (DP)
Energy Storage &

Virtual Synchronous Generator (VSG)

Conventional Generator (Rotary synchronous generator)

A device that behaves in the same way as a rotary synchronous generator in response to system disturbances such as failures. This device consists of a power supply (storage battery) and an inverter, and by appropriately controlling these, it has synchronization power and damping power.

VSG prototype model is developed/ studied using regenerative type DC supply in lieu of a storage battery as a viable solution to stabilize power system

In this study:

①The impact of different PV penetration levels on the dynamic and transient stability was evaluated.
②As a countermeasure, the prototype Virtual

Synchronous Generator was developed and its effectiveness was checked experimentally using an analog simulator.

Where, Virtual Synchronous Generator (VSG)

- It consists of an inverter combined with some power sources
- (PV connected with battery, Battery only etc.).
- It behaves as a rotating type synchronous generator when a system disturbance occurs.

2.1 Basics of VSG

In this circuit, the power flows from DC supply to an analog simulator via an inverter unit. By using the regenerative supply, power can be absorbed and supplied.

2.2 Schematic Diagram of Prototype VSG

In this circuit, the power flows from DC supply to an analog simulator via an inverter unit. By using the regenerative supply, power can be absorbed and supplied.

2.3 Details of VSG Model

%These equations are modeled on RTDSTM.

19

ON KOE

2.3 Control scheme of the VSG model

2.4 Specification of Prototype VSG

The main Specification of the Prototype VSG.

Category	Value
Rated frequency(AC)	60Hz
Rated capacity(AC)	10kVA
Rated output(AC)	10kW
Transformer Primary voltage(AC)	275V _{rms}
PWM Carrier frequency	10kHz

Before a prototype was manufactured, the specifications were determined using a digital model.

3.1 Experimental System

3.2 Experimental Conditions

23

NIPPON KOEI

3.3 Evaluation Method of Dynamic Stability Results

The dynamic stability is assessed using the criterion that synchronizing power coefficients $K_S > 0$ and damping power coefficients $K_D > 0$. The K_S , K_D are computed as follows. 🔆

$$K_{S} = \frac{dP}{d\delta} = \frac{M(\sigma^{2} + \omega^{2})}{\omega_{0}} \qquad \text{M[s]:inertia constant} \\ \omega_{0}[\text{rad/s]: rated angular frequency} \\ K_{D} = \frac{dP}{d\omega} = -2M\sigma \ (\sigma < 0) \qquad \text{$$\ensuremath{\mathbb{K}}$P.KUNDUR, Power System Stability and Control,1994}}$$

Where, the eigenvalue(σ and ω) of a analysis result is estimated by the Prony analysis.

Eigen value
$$y(t) = Ae^{(\sigma + j\omega)t}$$

y(t): signal of interest, A : amplitude, t: time, σ : damping ω : angular frequency of an oscillation mode.

3.4 Dynamic Stability Results

(1) With the increase of PV penetration level, the *K_S* and *K_D* decrease due to reduced number of the connecting synchronous generators.
 (2) *K_S* and *K_D* are increased by using the VSG which has the ability to improve the dynamic stability.

25

PON KOE

PV	VSG	Fault Duration				
Level [%]	Or PV2 with FRT on	4cycle	6cycle	8cycle	10cycle	12cycle
0.0	-	0	0	\bigcirc	\bigcirc	×
15.4	PV2	0	0	\bigcirc	\bigcirc	×
	VSG	\bigcirc	0	0	\bigcirc	\bigcirc
38.5	PV2	\bigcirc	0	\triangle	×	×
	VSG	\bigcirc	\bigcirc	\bigcirc		\bigcirc
69.2	PV2	×	×	×	×	×
	VSG	\bigcirc	\bigcirc	\bigcirc	0	0

Unstable

 \bigcirc :Stable \triangle : Oscillatory \times : Unstable (Out-of-step)

 With the increase of the PV penetration level, the generators tend to become unstable even when a fault duration is short.
 All the cases with VSG become stable.

3.6 Evaluation Method of Transient Stability Results

With the voltage phase difference δ between Bus 1 and Infinite Bus, a transient stability is judged as follows.

Stable : $| \delta | \leq 90 \deg$ Unstable : $| \delta | > 90 \deg$

Where, measured time duration is 18 [sec]

27

IUBU

4. Conclusion

- -The impact of different PV penetration levels on the dynamic and transient stability was assessed by performing experiments using an analog simulator and PV models.
- -The prototype VSG was developed and its effectiveness was checked experimentally to improve the dynamic and transient stability.
- -In future studies, it is important to optimize the VSG capacity and its placement with respect to a realistic power system with massive PV penetration.
- -The field testing is also important to get more insight about practicality in the real world system.

2019fy PSPP Utilization and its purposes in Chubu Area

2019fy Data

	PSPP Total Capacity in Chubu	PSPP Total Generated Energy	PSPP Total Pumped Energy
1)All PSPPs	3,880MW	1090GWh	810GWh (Energy for Generation 810×70% = 567GWh)
②Without run of river PSPPs that have inflow to reservoir	2,603MW	437GWh	611GWh (Energy for Generation $611 \times 70\% = 428$ GWh)
[GWh] 250 200 150 100 50 0 -50 -50 -50 -100		$[GWh] Alr 250 200 150 100 50 0 -50 0^{0} 2^{0} k^{0} 6^{0} 8^{0} 0^{0}-100-150-200$	nost balanced un of river PSPPs flow to reservoir
Generated Energy	Pumped up Energy	Generated Energy	y ■ Pumped up Energy

PSPP Utilization Purposes

	Purpose	Note
Generation	Supply Capability	kWh distribution of Reservoir (See slide No.4)
	Upward Reserve Margin	
	Load Frequency Control	Time Range < 5 min (From Stop Mode)
	Governor Free Capability	 Time Range < 10 sec (During Running) Chubu Criterion = 3% × Area Demand (See slide No.5)
	Downward Reserve Margin	
Pump up	→ VRE Curtailment Reduction	Time Range > 15 min(From Stop Mode)
	Keep Frequency in N-1 Contingency by Shedding PSPP	 Time Range ≒ instant (During Running) Chubu Criterion = Keeping 59.5Hz in N-1 Contingency
Pump up ↓ Generation	Economical Operation	Marginal Cost for Pumping up Divided by 70% vs Substituted Marginal Cost by PSPP Generation after Pumping up
Other	Voltage Control	Operation of Voltage Control Mode
Other	Black Start	-

What is "kWh distribution of Reservoir and PSPP Hydro"

- There is a kWh constraint of Reservoir and PSPP Hydro, therefore they do not keep their nominal capacity all time.
- It is a common measure to evaluate their supply capability as distributing their kWh based on reservoir water level to each time to equalize reserve ratio against predicted demand in Japan.

Generation in a day of 1st week. May 2020

- We utilize PSPP pump-up function to maximize the VRE generation in day time.
- Simultaneously another PPSP unit is started up for generation to keep enough Frequency Containment Reserve(Governor Free) and keep to run at minimum output.

NIPPON KOEI

Outline of Storage battery

May 20, 2020

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

≻ If Renewable Energy output increases greatly when demand is low,

supply demand balance cannot be maintained even if output of existing supply
capabilities (thermal power) is controlled to the limit (power generation >>demand)

- Utilize storage energy
- Measures Utilize inter-regional transmission lines, control Renewable Energy output
 - Restriction of interconnected Renewable Energy

Storage Energy

- Countermeasure to absorb fluctuation of Renewable Energy output
- Technology for stabilizing power flow

Technology of Storage Energy	Shape of storage	Method	Characteristic
Storage battery	Chemical energy	Lead, Ni, NaS Li, Redox	Charge and discharge repeatedly
(CAES : Compressed Air Energy Storage	Pressure energy	compress air at night, Use it daytime to generate power	Efficiency is high, because combustion energy is not necessary.
Hydrogen storage	Chemical energy	Use for fuel battery	Fuel battery vehicle
Pumped storage	Hydro energy	Pumping water with surplus electricity, Discharge when needed	Low running cost And Long-term usage

source: NEDO(new energy and industrial technology development organization) renewable energy technology white book ver.2
Use of Storage batteries

畜エネルギーシステムの導入先

Battery name		Energy density ⁄ Output density	Charge and discharge efficiency	Cycle longevity	Characteristics	Price
Lead storage		0/0	\bigcirc	\bigcirc	Average charge is necessary	Ø
NaS		\odot / \triangle	Ø	\bigcirc	Heater loss	Ø
Ni hydrogen		©/O	\bigcirc	Ø	Average charge is necessary	\bigcirc
Li		\odot / \bigtriangleup	Ø	\bigcirc	None	\bigtriangleup
Vanadium redox flow		0/A	\bigcirc	\bigcirc	Pump loss	\bigcirc

Lead storage Battery

	1 ① 1 ① 1 ① 1 ① 1 ① 1 ① 1 ① 1 ① 1 □
Large capacity achievement	1MWh
Charge and discharge speed	1C (1 hour from full charge to empty by rated current)
Efficiency of charge and discharge	75~87%
Longevity	4500cycle(15 years)
Energy density	Volume energy density: approx. 40~80Wh/L Weight energy density(theory):167Wh/kg Weight energy density(actual):35Wh/kg
Price	500\$/kWh, 2000\$/kW,
Technical level	practical
Pocontly longovity	v becomes longer

source: NEDO(new energy and industrial technology development organization) renewable energy technology white book ver.2

NaS Battery

Na Negative e (sulfur) Na Negative e (sodium)	electrode electrode
Large capacity achievement	200MWh
Charge and discharge speed	0.2~0.5C ≻NAS battery : 34MW
Efficiency of charge and discharge	90% NAS Battery PCS Building Control Building
Longevity	4500cycle(15 years)
Energy density	Volume energy density: approx. 140~170Wh/L Weight energy density(theory):780Wh/kg Weight energy density(actual):110Wh/kg
Price	400\$/kWh, 2000\$/kW, 300~400\$/kWh in 2020
Technical level	practical
High energy dens	sity, Large capacity achievement

source: NEDO(new energy and industrial technology development organization) renewable energy technology white book ver.2

NaS Battery

Assumption of Installed capacity : 500MWh(2020) 1,000MWh(2030) Assumption of System price: 370USD/kWh(2020) 140USD/kWh(2030)

XIncludes O&M costs and amortization costs.

source: 平成27年度新エネルギー当導入促進調査 再生可能エネルギー当の関連産業に関する調査(平成28年3月 みずほ情報総研株式会社)

Ni hydrogen

Push Fixe	Gigacell structure Heat sink drogen storage alloy) Negative electrode (hydrogen storage alloy) Separator Negative electrode Negative electrode Separator Separator Separator Separator Separator	<complex-block><complex-block><complex-block></complex-block></complex-block></complex-block>
	Charge and discharge speed	1~max 10C
	Efficiency of charge and discharge	80~90%
	Longevity	6000~8000 cycle(20 years)
	Energy density	Volume energy density: approx. 40~100Wh/L Weight energy density(theory):275Wh/kg Weight energy density(actual):60Wh/kg
	Price	3000\$/kWh, 1000\$/kW, 400\$/kWh in 2020
	Technical level	practical
	Longevity is long but tomp	aratura managament is nacessary avnensive

source: NEDO(new energy and industrial technology development organization) renewable energy technology white book ver.2

Large capacity achievement	Hundreds~thousands kWh
Charge and discharge speed	max 3C
Efficiency of charge and discharge	94~96%
Longevity	3500 cycle(10 years)
Energy density	Volume energy density: approx. 140~210Wh/L Weight energy density(theory):360Wh/kg Weight energy density(actual):120Wh/kg
Price	2000\$/kWh, 1500\$/kW, 500\$/kWh in 2020
Technical level	practical

High energy density, Short term fluctuation control, microgrid source: NEDO(new energy and industrial technology development organization) renewable energy technology white book ver.2

Li

Assumption of Installed capacity : 52.5MWh(2020) 347.5MWh(2030) Assumption of System price : 1,380USD/kWh(2020) 1,040USD/kWh(2030)

☆Includes O&M costs and amortization costs.

source: 平成27年度新エネルギー当導入促進調査 再生可能エネルギー当の関連産業に関する調査(平成28年3月 みずほ情報総研株式会社)

Vanadium redox flow	(Ger	発電 heration	Charge 充電 ↓ ↑ 放電 Discharge 交流/直流変換器 AC/DC converter E樁 Positive セル Negative 負機	
		V ⁵⁺ /V ⁴⁺ 電解液タンク Electrolyte tank	The second seco	V2+ V3+ 電解液タンク Electrolyte tank → 放電 Discharge
Large capacity achievement	1000 kWh	Pump		Pump
Charge and discharge speed	max 1C			
Efficiency of charge and discharge	80~90%	redox:	reduction a	and <u>ox</u> idation
Longevity	20 years(el	ectrolyte is	s usable perma	inently)
Energy density	Volume ene Weight ene Weight ene	ergy densi ergy densit ergy densit	ty: none y(theory):103W y(actual):6~12V	/h/kg /Vh/kg
Price	600\$/kWh,	4000\$/kW	/	
Technical level	practical			
Instant response is useful for	or instant vo	oltage dro	p. Energy de	nsity is small.

source: NEDO(new energy and industrial technology development organization) renewable energy technology white book ver.2

Assumption of Installed capacity : 15MWh(2020) 105MWh(2030) Assumption of System price : 500USD/kWh(2020) 260USD/kWh(2030)

ill ≫ Includes O&M costs and amortization costs.

Practical examples of using storage batteries in Japan ① (Buzen Storage Battery Substation (Kyushu Electric Power Company))

Installation area	14,000m ²
Demonstration period	2015-2016
Storage battery type	Nas battery
Output capacity	Output:50,000kW Capacity:300,000kWh
Purpose	Measures against frequency fluctuations

Practical examples of using storage batteries in Japan (2) (Nishi Sendai Substation (Touhoku Electric Power Company))

Installation area	6,000m² (100m×60m)
Demonstration period	2013-2017
Storage battery type	Li battery
Output capacity	Output:20,000kW Capacity:20,000kWh
Purpose	Measures against frequency fluctuations

Capital and Operation costs (NAS)

Object	Costs	Other
	【Capital Cost】 2,880,000USD(2.88MUSD) (2,400USD/kW, 400USD/kWh)	(※) If you plan to replace only the
NAS 1200kW/ 7200kWh (6hours) (Container NAS Battery : 3600kWh + PCS : 600kW × 2 parts)	 [Operating Cost] Total cost : 81,000 USD / year 1. Contract with a call center in the event of an abnormality : 6,000 USD / year (90,000 USD / 15 years) Check operation data (only when an abnormality occurs) Accepting inquiries in the event of an abnormality, etc. 2. Periodic inspection of NAS battery: 35,000 USD / year (525,000 USD / 15 years) Inspection every two years Replace all items recommended by the manufacturer ([*]) 3. Regular inspection of PCS: 40,000 USD / year (600,000 USD / 15 years) Inspection and replacement of all parts recommended by the manufacturer ([*]) 	deteriorated parts, you can reduce the inspection cost. The cost will change depending on the installation conditions and specifications. The cost of power loss due to charging and discharging is not included in the operation cost

Capital and Operation costs (Lithium ion)

Object	Costs	Others
	【Capital Cost】 25,000,000USD (25MUSD) (5,000USD/kW, 833USD/kWh)	The cost will change depending on the installation
Li 5MW 30MWh(6hours)	[Operating Cost] 750,000USD/year Annual operating cost is about 3% of capital cost (Inspection, replacement of parts, etc.)	conditions and specifications. The cost of power loss due to charging and
		discharging is not included in the operation cost.

Capital and Operation costs (Redox Flow)

Object	Costs	Others
Redox Output : 5MW Capacity : 30MWh (6hours)	[Capital Cost] 19,500,000USD (19.5MUSD) (3,900USD/kW, 650USD/kWh) [Operating Cost] 195,000 USD / year Annual operating cost is about 1% of capital cost	The cost will change depending on the installation conditions and specifications. The cost of power loss due to charging and discharging is not included in the operation cost.

Cost varies depending on capacity.

The recommended maintenance items and schedule are as follows.

*recommended

		Interval*	Year																					
			(Year)	Install	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ann	ual I	nspection	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Par	s Re	placement																						. [
	1	Fuse	10											0										
	2	Heat Exchanger Fan	5						0					0					0					
	3	Electrolyte Pump	5						0					0					0					
ery	4	Pump Inverter	10											0										
att	5	(N ₂ Gen.) Compressor**	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ă .	6	(N ₂ Gen.) Cylinder**	2			0		0		0		0		0		0		0		0		0		
ê	7	(N ₂ Gen.) Electric Valve**	4					0				0				0				0				
_	8	(BMS) Touch Panel	10											0										
	9	(BMS) CPU Board	10											0										
	10	(BMS) Power supply unit	5						0					0					0					
	11	Cooling fan	5						0					0					0					
	12	Circuit breaker	10											0										
~	13	Touch Panel	10											0										
ğ	14	Relay	10											0										
"	15	Electrolytic capacitor	10											0										
	16	Fuse	10											0										
	17	Power supply unit	10											0										

PSPP Capacity Consideration in Sri Lanka and Japan

Installed PSPP Capacity as Balancing Resources

(MW)

Control Area	(A) PSPP Capacity	(B) Peak Demand 2019fy	(C) Installed PV Capacity	(D) Installed WF Capacity	A/B	A/C+D
Hokkaido	800	4,940	1,880	480	16%	34%
Tohoku	460	14,170	5,760	1,580	3%	6%
Tokyo	11,400	55,090	14,720	430	21%	75%
Chubu	3,880*	25,370	8,970	370	15%	42%
Hokuriku	0	5,030	1,030	160	0%	0%
Kansai	4,880	28,160	5,720	120	17%	84%
Chugoku	2,120	10,750	4,930	360	20%	40%
Shikoku	690	5,010	2,750	280	14%	23%
Kyushu	2,350	15,620	9,440	580	15%	23%
Okinawa	0	1,480	350	14	0%	0%
*The capacity inc	ludes PSPPs owned	by other companie	es la constant		J	

Mar 2020 data

Source : OCCTO, METI

Graph(2029 Condition of Sri Lanka)

Graph(2039 Condition of Sri Lanka)

<2039 data>

(MW)

Control Area	(A) (B) PSPP Annual Capacity Demand		(C) Installed PV Capacity	(D) Installed WF Capacity	A/B	A/C+D
Sri Lanka (Victoria)	1,400	7,155	2,210	1,323	20%	40%
Sri Lanka (Maha)	600	7,155	2,210	1,323	8%	17%

Suggestion (Simulations of appropriate PSPP capacity

Is it worthy for you to conduct simulations to calculate appropriate PSPP capacity? <**Objective function**>

Total Merit = (CO₂ emission price[USD/MWh] + thermal marginal cost[USD/MWh]) × thermal generation reduction*[MWh]

*VRE curtailment reduction × 70% (PSPP efficiency)

<What will C/P do?>

To conduct the following simulation on several patterns of installed PSPP capacity and output simulation result as VRE curtailment reduction by cumulative MWh until 2030.

If you agree with this suggestion, we would like to output the simulation result prior to the next site survey planned in October.

Simulation Premises and Output Image1

OWhen the simulations with various scenario are until 2030, they are for battery installation considering PSPP installation will be after 2030.

Therefore, installed capacity is reduced from the original one, and it includes 50MW battery CEB planned to install in 2025.

OThe time of battery installation is 2025, considering CEB's 50 MW battery installation plan?

Installed Battery Capacity [MW]	Thermal Generation Reduction [cumulative MWh until 2030]	CO ₂ Emission Reduction Merit [USD]	Thermal Generation Reduction Merit [USD]	Total Merit [USD]
50				
50+100				
50+200				
50+300				
50+400				
50+500				

OIf it is possible to conduct <u>a simulation with only base case scenario</u> from 2031 until 2039, it is for PSPP & battery installation.
O<u>The installation time is 2030 considering PSPP construction period</u>?
OInstalled capacity includes 50MW + 100MW battery CEB planned to install in 2025 and 2030.
OInstalled capacity is up to 150MW+1400MW considering constructions of both maha3 and Victoria in 2030 are not realistic.

Installed battery & PSPP Capacity [MW]	Thermal Generation Reduction [cumulative MWh until 2039]	CO ₂ Emission Reduction Merit [USD]	Thermal Generation Reduction Merit [USD]	Total Merit [USD]
150+200				
150+400				
150+600				
150+800				
150+1000				
150+1200				
150+1400				

Cost Benefit Evaluation of Reinforcement of Hokkaido-Honshu HVDC link

Copyright © CHUBU Electric Power Co., Inc. All Rights Reserved.

Examination of storage battery introduction amount

December 16, 2021

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Examination of storage battery introduction amount

How to proceed with the examination of the amount of storage batteries introduced

Calculate the amount of storage battery installed from the surplus power. In case of proceeding with Proposal (1) In case of proceeding with Proposal (2) Based on the Curtailment Requirement Consider the amount of storage batteries to be installed by comprehensively judging the calculated by CEB, consider the amount of storage batteries introduced in consideration power source composition and power of PSPP. demand. Merit Merit Surplus power can be judged Compared to proposal⁽²⁾, the amount of comprehensively based on the nature of work is small and evaluation does't take time each power source. Demerit Demerit It cannot be evaluated from various aspects The amount of work is larger than that of such as suppression of thermal power proposal⁽¹⁾, and it takes time and effort. generation because it is not judged by the power source composition,

We would like to proceed with proposal ①. What is your opinion from CEB?

Requests from JICA expert team ①

In case of proceeding with Proposal ①

- Please tell us the calculation conditions of the data provided above.
- Please tell us the forecast VRE Curtailment Requirement data for 2030 and 2040.

In case of proceeding with Proposal ②

We would like to receive the following information (data).

- Data for the maximum and minimum power demand curves for a day.
- 2 Power generation configuration and the amount of power generated by each power generation in case 1.
- ③ Suppressible power generation (MW) such as thermal power generation etc. according to solar / wind power generation.
- The amount of solar and wind power targets introduced by 2025 and 2030. (equipment capacity: MW)

Considering of storage battery introduction amount

PPON KOEI

1 SDDP simulation calculation result

When not installing a storage battery

Contents of discussion with CEB Aiming to introduce 70% of renewable energy in 2030, consider the optimum introduction amount based on the storage battery introduction cost, etc.

- SDDP simulation with a storage battery capacity of 5 patterns (500MW*4h, 1,000MW*4h, 1,500MW*4h, 2,000MW*4h, 2,500MW*4h)
- Calculate the renewable energy ratio (%), surplus electricity, thermal fuel cost, and CO2 emissions.

1 SDDP simulation calculation result

①In case of introduction of 500 MW storage battery

	Total Thermal	LVPS 1	LVPS 2	LVPS 3	New CCY 1	New CCY 2	KCCP 1	KCCP 2	West Coast	Uthuru Janani	Kelanitis sa New GTs	Containerize d Emergency Power Plant	Firm Thermal Power
Annual Fuel Cost (USD													
million)	546	83	106	/5	11	81	15	o /	90	2	0	1	9
Annual CO2 Emissions													
(Tons)	8,881,666	2,255,000	2,906,000	2,050,700	452,750	477,830	86,607	43,146	534,380	14,632	310	5,407	54,903

②In case of introduction of 1,000 MW storage battery

① SDDP simulation calculation result

③In case of introduction of 1,500 MW storage battery

	Total Thermal	LVPS 1	LVPS 2	LVPS 3	New CCY 1	New CCY 2	KCCP 1	KCCP 2	West Coast	Uthuru Janani	Kelanitis sa New GTs	Containerized Emergency Power Plant	Firm Thermal Power
Annual Fuel Cost (USD million)	507.53	72.22	106.26	75.20	67.68	70.08	10.60	7.35	93.08	1.77	0.02	0.24	3.02
Annual CO2 Emissions (Tons)	8434750	1973100	2903400	2054800	399930	414090	62661	43438	550010	13382	114	1991	17834

④In case of introduction of 2,000 MW storage battery

	Total Thermal	LVPS 1	LVPS 2	LVPS 3	New CCY 1	New CCY 2	KCCP 1	KCCP 2	West Coast	Uthuru Janani	Kelanitis sa New GTs	Containerize d Emergency Power Plant	Firm Thermal Power
Annual Fuel Cost (USD													
million)	499.63	68.98	106.50	75.19	74.37	67.49	10.91	5.51	86.66	1.22	0.00	0.02	2.77
Annual CO2 Emissions													
(Tons)	8322133	1884600	2909900	2054500	439480	398820	64493	32588	512070	9180	0	157	16345

1 SDDP simulation calculation result

CHUBU Electric Power

⑤In case of introduction of 2,500 MW storage battery

1568	200	200	500		600	200	1523	4040	
4760	247	-353	-383	14296	1859	1388	4380	6669	205
Total Hydro	PSPP (Gen)	PSPP (Pump)	Battery Storage	Total ORE	Mini Hydro	Biomass	Wind	Solar	Total ORE Curtailment s
212.589	0	-198	-282.06	1613.8	330	160	1123.8	0	0
212.589	65.964	-198	-144.52	1695.5	330	160	1205.5	0	0
264.04	44.229	-198	1211.4	394.86	130.56	6.0398	250.81	7.4504	1320.174
212.589	24.858	-198	-1047.7	2522.32	330	160	1216.3	816.02	0
212.589	154.17	-198	-1595.9	3310.8	330	160	1230.3	1590.5	0
310.964	184.36	-198	-2091.3	4044.8	330	160	1170.7	2384.1	0
317.789	151.25	-198	-2154.9	4226.8	330	160	1248.4	2488.4	0
317.961	197.96	-198	2159	0	0	0	0	0	4495.1
386.229	197.96	-198	-2463	4581.7	330	160	1181.4	2910.3	0
319.684	137.22	-198	1318.1	731.269	82.055	52.464	197.99	398.76	3075.79
289.269	197.96	-198	-1792.1	3897.8	330	160	1195.9	2211.9	0
291.873	193.39	-198	-1483.3	3585.4	330	160	1239.5	1855.9	0

The ORE curtailment includes battery discharge.

ORE curtailment capacity max affects the PCS installation burden of power generators.

2 Optimal amount of storage batteries to be introduced

[Batteries introduction amount examination conditions and priorities]

- 1 70% introduction of renewable energy in 2030
- ② Storage battery introduction cost (storage battery, Inverter)
- ③ Reduction of fuel cost for thermal power generation
- ④ Reduction of CO2 emissions
- (5) PCS installation burden cost on the power generation side

Mn USD	Mn USD
Inverter price / MW	Battery price / MWh
0.3	1.04

		Rep	Re	Replacement cycle: 10 years					
%	MW	Hours	Mn USD	Mn USD	Tons	Mn USD	MW	Mn USD	Mn USD
RE percentage	Battery Capacity	Battery Duration	Battery Installation Cost(Yearly)	Thermal Fuel Cost	CO2 Emission	CO2 Emission Cost	RE Curtailment capacity max	PCS Installation Cost	Total Cost(Annual)
70	2500	4	743.3333333	497	8,297,217	41	4,495	135	1,417
70	2000	4	594.6666667	500	8,322,133	42	4,152	125	1,260
69	1500	4	446	508	8,434,750	42	3,545	106	1,102
68	1000	4	297.3333333	522	8,619,086	43	3,363	101	964
67	500	4	148.6666667	546	8,881,666	44	2,802	84	823

Battery price is assumed to be 2030 (lithium battery)
 Storage battery: 1,040 USD / kWh Converter: 300 USD / kW Replacement cycle: 15 years

If 70% is the first priority in 2030, 2,000 MW storage battery will be introduced.

② Optimal amount of storage batteries to be introduced

[Cost-effectiveness of introducing storage batteries]

	Replacement cycle: 15 years Replacement cycle: 10												
%	MW	Hours	Mn USD	Mn USD	Tons	Mn USD	MW	Mn USD	Mn USD				
RE percentage	Battery Capacity	Battery Duration	Battery Installation Cost(Yearly)	Thermal Fuel Cost	CO2 Emission	CO2 Emission Cost	RE Curtailment capacity max	PCS Installation Cost	Total Cost(Annual)				
70	2500	4	743.3333333	497	8,297,217	41	4,495	135	1,417				
70	2000	4	594.6666667	500	8,322,133	42	4,152	125	1,260				
69	1500	4	446	508	8,434,750	42	3,545	106	1,102				
68	1000	4	297.3333333	522	8,619,086	43	3,363	101	964				
67	500	4	148.6666667	546	8,881,666	44	2,802	84	823				

According to the SDDP simulation results, the renewable energy introduction rate increases by only about 1% for the introduction of 500 MW storage battery.

Consideration is needed to achieve the 70% renewable energy introduction target in 2030, such as cost effectiveness and further curbing of thermal power generation.

<u>**1st Technical Seminar</u>** (Comparison of the cost merit between PSPP and storage battery)</u>

15th December, 2020

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Purpose of power storage technology

Types of power storage technology

75

		Technology of Storage Energy	Technology of Storage EnergyShape of storage						
1		Storage battery	Chemical energy	NAS, Li (Lithium-ion battery) Vanadium redox flow					
		CAES (Compressed Air Energy Storage)	Pressure energy	compress air at night, using it daytime to generate power					
Comparis	son	Hydrogen storage	Chemical energy	Use for fuel battery					
		PSPP (Pumped storage power plants)	Hydro energy	Pumping water with surplus electricity, discharge when needed					

We would like to propose the best method for Sri Lanka.

Examination of Pros and cons of PSPP and Battery, Determining the Direction

There are some options as balancing power.

- Careful consideration of advantages and disadvantages for prospective options rather than PSPP is very important
- After thorough discussions with the C/P and JICA, final conclusions would be made regarding what should be the best balancing power source and reported at the 1st Technical Seminar.

Item	Merit	Demerit	
PSPP	 Large scale development Low running cost Long-term usage 	 Long development term (5 years for construction, 5 years and over for land negotiation) Require the resettlement Staged development is impossible. Initial investment is large and financing (loan) is difficult. Development sites is limited Operation is restricted by river law Loss is bigger than storage battery: about 30% 	6,000 5,000 4,000 3,000 1,000
Battery	 Short development term Total within 2 years(6 months for design, 1 year for construction) Staged develop is possible Low loss (5-15%) Significant price decline (Expected to fall by 40% in the next 5 years)	 Unit price of storage batteries is still high, but the rate of decline is large. The standard life of the storage battery is about 10 years. 	 1,000 2015 2020 Year 2025 2030 Year ✓ Battery innovation is remarkable, price drop is remarkable as well ✓ Reversal of construction costs would be real within 10 years

Comparison of PSPP and Storage battery 1

			/			CHUBI	J				
		PSPP		Storage	Ba	attery (NAS)					
		(Assuming Maha3 (※1)	Current		Around 2030 ye	ear					
	Condition	Output:600MW Generation / Discharge Time: 6hours Storage capacity: 3,600MWh									
	Construction (MUSD)	720		1,080		378					
1)	Construction Cost (US cents / kWh)	20		32		11					
	Construction Cost / Replacement cycle (US cents / kWh / year) PSPP : 40year Storage Battery : 20year	0.5	0	1.6	\bigtriangleup	0.6	0				
	Condition	Days of operation: 250day Times of operation: 1,500h / year									
	 (A)Power generation cost for equipment (US cents ∕ kWh) (Annual expense ratio: **%) 	4.8 (6%)		12.0 (10%)		4.0 (10%)					
2)	(B)Power generation cost for PSPP operation or Storage battery operation (US cents / kWh)	10.0		10.0							
	(C)Power generation efficiency (loss) (US cents / kWh)	3.0 (PSPP efficiency: 70%)		1.0 (Storage Battery efficiency: 90%)							
	Power generation Cost (US cents / kWh): (A)+(B)+(C)	17.8	0	23.0	\bigtriangleup	15.0	0				

Source: Potential Capacity and Cost of Pumped-Storage Power in Japan Proposal Paper for Policy Making and Governmental Action toward Low Carbon Societies (January 2020 Japan Science and Technology Agency)

Comparison of PSPP and storage battery²

		PSPP		NAS Battery	Li	Battery	/	Redox flow			
3	Construction period (Year)	8~10	\land	1~2							
4	Replacement cycle (Year)	40 (※2)	0	15 🗸	<u> </u>	~20	\bigtriangleup	20	\land		
(5)	Advantages	 Suitable for surplus electricity countermeasures. Large scale development Long-term usage 	 Suitable for frequency fluctuation countermeasures. Staged develop is possible Low loss (10-30%) Significant price decline The construction period is short. 								
	Disadvantages	 Development sites is limited. Staged development is impossible Loss is bigger than storage battery about 30%). /:	The replacement cycle of the storage battery (10~20 year) is shorter than PSPP.							
ΓNο	tices	•									

(※1) The comparison target of the storage battery was the PSPP of Maha3. Because Victoria Lake's investigation has many uncertainties.

(※2) The replacement cycle of PSPP (40year) is described from the Maha3 report. (Average 40year : Civil works 50year, Hydro-mechanical and electro-mechanical equipment 35year)

source: Potential Capacity and Cost of Pumped-Storage Power in Japan Proposal Paper for Policy Making and Governmental Action toward Low Carbon Societies (January 2020 Japan Science and Technology Agency)

Suggestion from JICA Expert Team

Thank you for attention

Practical examples of using NAS battery in Japan (Buzen Storage Battery Substation (Kyushu Electric Power Company))

Installation area	14,000m ²			
Demonstration period	2015-2016			
Storage battery type	NAS battery			
Output capacity	Output:50MW Capacity:300MWh			
Purpose	Measures against frequency fluctuations			

NAS Battery

XIncludes O&M costs and amortization costs.

source: 平成27年度新エネルギー当導入促進調査 再生可能エネルギー当の関連産業に関する調査(平成28年3月 みずほ情報総研株式会社)

Practical examples of using Li battery in Japan (Nishi Sendai Substation (Touhoku Electric Power Company))

Installation area	6,000m² (100m×60m)			
Demonstration period	2013-2017			
Storage battery type	Li battery			
Output capacity	Output:20MW Capacity:20MWh			
Purpose	Measures against frequency fluctuations			

XIncludes O&M costs and amortization costs.

source: 平成27年度新エネルギー当導入促進調査 再生可能エネルギー当の関連産業に関する調査(平成28年3月 みずほ情報総研株式会社)

Practical examples of using Vanadium redox flow battery in Japan (Minamihayakita Substation (Hokkaido Electric Power Company))

Exterior view of storage battery building

Electrolyte tank

Installation area	5,000m ²				
Demonstration period	2013-2019				
Storage battery type	Vanadium redox flow battery				
Output capacity	Output:15MW Capacity:60MWh				
Purpose	Measures against frequency fluctuations				

Vanadium redox flow

XIncludes O&M costs and amortization costs.

source: 平成27年度新エネルギー当導入促進調査 再生可能エネルギー当の関連産業に関する調査(平成28年3月 みずほ情報総研株式会社)

Democratic Socialist Republic of Sri Lanka

The Project for Capacity Development on the Power Sector Master Plan Implementation Program

Capacity of Battery Storage introduction

Sep 2022

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

SDDP Calculation results(Review of the last meeting)

- Main ideas for improvement of the RE ratio
 - The effect of improving the renewable energy ratio from a supply side
 - Calculation method of the SNSP permission level
- Optimal capacity of storage battery introduction

SDDP simulation calculation result

①In case of introduction of 2,000 MW storage battery

	Total Thermal	LVPS 1	LVPS 2	LVPS 3	New CCY 1	New CCY 2	KCCP 1	KCCP 2	West Coast	Uthuru Janani	Kelanitis sa New GTs	Containerize d Emergency Power Plant	Firm Thermal Power
Annual Fuel Cost (USD													
million)	499.63	68.98	106.50	75.19	74.37	67.49	10.91	5.51	86.66	1.22	0.00	0.02	2.77
Annual CO2 Emissions													
(Tons)	8322133	1884600	2909900	2054500	439480	398820	64493	32588	512070	9180	0	157	16345

②In case of introduction of 1,000 MW storage battery

Supply side

• Thermal power

• Lower to the minimum output

- Daily start and stop during daytime
- PSPP, Battery
 - Charge during surplus power(SMP: cheap), discharge during peak time(SMP: expensive)
 - SOC
- VRE
 - Reduce curtailment
- Demand side
 - Demand side management
 - Electricity tariff (Time of Use)
 - Market incentive
 - Create new demand such as hydrogen

Transmission side

Interconnect with India

SMP: system marginal price

Supply demand curve sorted by curtailment amount

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

Improved RE ratio by lowering thermal power output during curtailment (Battery capacity : 1000MW)

Pick up the time when the thermal power is not the lowest even though there is a curtailment

Mini	mum Loa	ading	Level (I	MW)			180	180	180	140	140	100	110	108	0	45	5	550										
In	stalled C	Capac	city (MW	I)			270	270	270	350	350	161	163	270	27	130	50	1100	1568	200	200	1000		600	200	1523	4040	
Т	otal Gen	neratio	on (GWh	ı)	27315	9098	1668	2322	1953	957	881	140	61	1084	14	0	1	16	4762	319	-456	-245	13837	1837	1373	4315	6312	664
Month	Day	H	Hour		Demand	Total Thermal	LVPS 1	LVPS 2	LVPS 3	New CCY 1	New CCY 2	KCCP 1	KCCP 2	West Coast	Uthuru Janani	Kelanitis sa New GTs	Containeriz ed Emergency	Firm Thermal Power	Total Hydro	PSPP (Gen)	PSPP (Pump)	Battery Storage	Total ORE	Mini Hydro	Biomass	Wind	Solar	Total ORE Curtailmen ts
1	1		13	Sun	2624.7	810	270	270	270	0	0	0	0	0	0	0	0	0	108.651	0	-198	-437.09	2341.136	66.936	100	148.3	2025.9	821

■ the time when the thermal power is not the lowest even though there is a curtailment = 1,048h /8760h

Improvement generation amount = when total ORE curtailment >0 $\sum_{i=1}^{3} (LVPS \ i \ -180) = 179.1$ GWh

Improved RE ratio = 179.1 / annual ORE generation = 179.1 / 14502 = 1.24%

If we decrease the thermal power output to the lowest level , we can improve RE ratio.

But you mentioned you have to continue outputting the thermal power generation of the fixed quantity to hold SNSP level down to 65% or less.

Outline of SNSP(the System Non-Synchronous Penetration)

Non-Synchronus Power Output + Import(Direct current cooperation line)

Demand + Export(Direct current cooperation line)

In Sri Lanka, SNSP level must be controlled by 65% or less. In Ireland, SNSP level has already reached 75%.

SNSP(%) =

At first, if SNSP exceeded 50%, it was expected that the simultaneous dropout of the renewable-energy power occurred.

They raised SNSP in these 5 years from 50% to 75% by carrying out measures for the renewableenergy introduction. In addition, they plan to raise SNSP to 95% in 2030

Main countermeasures of grid

RE introduction rate	Issues	Countermeasures		Status			
High	Decrease of short circuit capacity	Review of the protection cod	operation	No introduction (For Off grid)			
	Inertial force dropout in the grid	 Establishment of the estimation of inertial power quantity in real Development of PCS with the maintenance function 	tion technique al time ne frequency	Under introduction examination in Ireland,UK,Tex as etc)			
	Fluctuation of short frequency	 Battery storage Governor free operation Load Frequency Control etc 	Ancillary service market has been formed in some				
	Fluctuation of long frequency	 Output control of PV Forecast of RE output 		countries.(inclu ding Japan)			
	Lack of transmission	Connect & Manage	This project's ta	arget			
	capacity	Conductor temperature man dynamic rating					
	Voltage flicker	 Prevention of independent of 					
Low	The voltage movement of the distribution line	vement • Development of the smart inverter					

Main improvement measures of SNSP(in case of Ireland)

Subject	Concrete contents
Decrease of synchronous power output	The 2018 third-quarter : 23,000MWs The 2019 fourth-quarter : 20,000MWs The 2020 first-quarter : 17,500MWs
Reconsideration of RoCoF(Rate of Change of Frequency)	The 2018 third-quarter : 0.5HZ/s The 2019 fourth-quarter : 1.0HZ/s
Adoption of various kind of the ancillary service	In addition to 11 existing services, they introduce 3 following services The 2018 third-quarter : FFR (Fast Frequency Response) The 2019 third-quarter : DRR (Dynamic Reactive Response) and FPFAPR (Fast Post-Fault Active Power Recovery)
Modification of Grid Code	Consideration of modification of the following Grid Code About wind power, Voltage control at steady state and dynamic control of the active power and reactive power

These are similar with our activities in this project. we can raise an future SNSP permission level.

Calculation method of the SNSP permission level

[Simulation image of SNSP]

[Requirements for analysis]

- Quantity of synchronization power supply dropout (Main thermal power plant output, OO% of demand ...etc.)
- RoCoF (Defined by Grid Code, It can be improved by introduction of PCS)
- Frequency recovery limit (47.0-52.0Hz)

Optimal capacity of storage battery introduction

In case of 1000MW storage battery, by curtailing thermal output, the RE ratio improve from 68.1% to 69.3%, and we can reduce annual cost 15 Million USD.

We could considerably get rid of the differences of RE ratio between 1000MW and 2000MW, so we would like to conduct future consideration based on 1000MW introduction.

Democratic Socialist Republic of Sri Lanka

The Project for Capacity Development on the Power Sector Master Plan Implementation Program

Cost Evaluation

Nov 2022

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Battery Cost

NaS : $15,000 \neq kWh \times 4 = 400 USD/kW$

NaS battery is mainly made by Japanese manufacturers(NGK), so I referred to Japanese materials.

 $Li : 200USD/kWh \times 4 = 800USD/kW$

Li battery is mainly made by international companies, so I referrerd to NREL(National Renewable Energy Laboratory)

Figure ES-2. Battery cost projections for 4-hour lithium ion systems.

【出典: National Renewable Energy Laboratory 「Cost Projections for Utility-Scale Battery Storage: 2021 Update 」】

Optimal capacity of storage battery introduction

- 1. Present continuous operation range is 49.5 50.5Hz in CEB Grid Code.
- Assuming that system coefficient K is equal to 5%(Hz/MW) approximately, it would be frequently to violate 49.5Hz in 2030 under 70% RE situation.
 Offpeak : 2,000MW × 5% (Hz/MW)× (0.5Hz/1Hz) = <u>50MW</u> fluctuation leads to frequency violation (50MW out of ~1,000MW wind output)

Peak : 3,500MW × 5% (Hz/MW)× (0.5Hz/1Hz) = $\underline{87.5MW}$ fluctuation leads to frequency violation (87.5MW out of ~1,000MW wind output & ~2,000MW solar output)

Li battery capacity

PPON KOEl

200MW (50% SOC)

Capacity	Annualized Battery Cost	Total Cost Saving				
(MW)	(USD m	illion)				
0	0	0				
500	62	69				
1,000	124	117				
1,500	186	143				
2,000	247	153				

1st Technical Seminar (Issues of PSPP)

15th December, 2020

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Maha3 and Victoria Lake PSPP: Locations

Maha3 PSPP: General Layout Image

Victoria Lake PSPP: General Layout Image

4 Source: Google Earth

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

	Maha 3 PSPP		Victoria Lake PSPP	
	Upper Reservoir	Lower Reservoir	Upper Reservoir	Lower Reservoir
HWL	EL. 815 m	EL. 292.5 m	EL. 1160 m	EL. 438 m
LWL	EL. 794.4 m	EL. 276.4 m	EL. 1125 m	EL. 407 m
Drawdown	20.5 m	16.1 m	35 m	31 m
Gross Capacity	3.71 mil. m ³	6.22 mil. m ³	5.5 mil. m ³	10.0 mil. m ³
Available Capacity	3.15 mil. m ³	3.20 mil. m ³	5.1 mil. m ³	5.1 mil. m ³
Reservoir Area	0.22 km ²	0.24 km ²	0.17 km ²	0.3 km ²
Dam Height	59 m	74 m	40 m	42 m

₅ Source: JICA Reports

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

Maha3 PSPP: Longitudinal Profile of Waterway

Source: Development Planning on Optimal Power Generation for Peak

⁶ Demand in Sri Lanka, 2015, JICA

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

CHUBU Electric Power

NIPPON KOEI

Structures	Check points	Major considerable issues
Upper storage dam	Safety of dam foundationWater tightness	 Thick talus deposits/highly weathered rocks on left bank Impermeable layer seems to be deep on left bank (more than 50 m in depth)
Reservoir	Landslide risksWater seepage risks	 No information, but daily fluctuation of water level might thick weather zone on the left bank might trigger landslides especially on left bank covered with thick overburden. No information, but seepage risks on left bank are anticipated.
Water way	 Landslide risks of portals Rock condition along water ways 	 No information Geological structures nearly parallel to the waterway route. NE-SW lineaments (possible faults) were identified.
Underground powerhouse	Rock condition	 Biotite gneiss according to existing geological map. No critical issues according to the Report (2015)
Lower storage dam and reservoir	 Same as upper storage dam and reservoir (Safety of dam foundation, Water tightness, Landslide risks and Water seepage risks) 	 No critical issues according to the Report (2015)

Maha3: Layout of the Structures and Geological Issues

Source: Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka, 2015, JICA, JICA

⁸ Study Team added the geological information.

Copyright © Chubu Electric Power Co., Inc. All rights reserved.
Maha3: Land Use and Location of Houses in Upper Reservoir

Source: Development Planning on Optimal Power Generation for Peak

⁹ Demand in Sri Lanka, 2015, JICA

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

Electric Powe

NIPPON KOEI

Victoria Lake PSPP: Longitudinal Profile of Waterway

Source: Project on Electricity Sector Master Plan Study in Democratic

¹⁰ Socialist Republic of Sri Lanka, 2018, JICA

Structures	Check points	Major considerable issues
Upper storage dam	Safety of dam foundationWater tightness	Possibility of landslide risksNo information
Reservoir	Landslide risksWater seepage risks	DittoNo information
Water way	 Landslide risks of portals Rock condition along water ways 	 No information One lineament (possibly fracture zone) crossing the tunnel.
Underground powerhouse	Rock condition	No information
Lower storage dam and reservoir	 Safety of dam foundation, Water tightness, Landslide risks and Water seepage risks 	No information

Victoria Lake PSPP: Geological Lineament and Landslide

Upper reservoir and Possible landslide (black line)

Source: Project on Electricity Sector Master Plan Study in Democratic

12 Socialist Republic of Sri Lanka, 2018, JICA

Victoria Lake PSPP: Protection Area

Source: Project on Electricity Sector Master Plan Study in Democratic Socialist Republic of Sri Lanka, 2018, JICA

13

Record of Francis Type Reversible Pump Turbine

¹⁴ Demand in Sri Lanka, 2015, JICA

Victoria Lake PSPP: Lower Dam

¹⁵ Source: Project on Electricity Sector Master Plan Study in Democratic Socialist Republic of Sri Lanka, 2018, JICA

	Maha3 PSPP	Victoria Lake PSPP
Source of Info.	 Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka, 2015, JICA 	 Project on Electricity Sector Master Plan Study in Democratic Socialist Republic of Sri Lanka, 2018, JICA
Geology	 Site investigation: in 2015 Upper dam: thick deposit on the left bank of the talus Lower dam: no critical issue Waterway: layers nearly parallel to the water route 	 Site reconnaissance: in 2018 Upper dam: possibility of existence of landslide Lower dam: unclear Waterway: lineament
Environment	 Environmental study: in 2015 Natural: out of the protection area Social: resettlement of 28 households within the inundated area. 	 Site reconnaissance: in 2018 Natural: lower dam within the protection area. Social: direct impacts on the village may not be substantial.
Technical Aspect		 Pumping head: more than 700m Lower dam: construction in the Victoria Lake

	Installed Capacity	Project Cost Base Year 2014	USD per kW	Source
Maha3 PSPP	600MW	USD 638 mil.	USD 1,060/kW	2015, JICA
Victoria Lake PSPP	700MW (1 st Stage)	USD 590 mil.	USD 840/kW	2018, JICA

- Investigation is more advanced in Maha 3 PSPP compared to Victoria Lake PSPP, especially for geological information.
- For Victoria Lake PSPP, there are critical aspects on which further examination is needed in the next stage, such as upper reservoir geology, lower dam construction in Victoria Lake and construction in forest sanctuary.
- Therefore, at this stage it is adequate to consider the Maha3 PSPP's cost as the benchmark of PSPP cost for comparison with the battery option.
- The said Maha3 PSPP's cost is escalated with annual price escalation at 2% to obtain 2020 price; thus <u>USD 1,200/kW</u> is considered as the benchmark of PSPP cost for comparison with battery.

#	Issue	Approach
1	Basic Sequence, Tasks and Schedule	CEB to confirm.
2	Permission for investigation in Sanctuary Area	JICA's policy is still being confirmed.
3	Counterpart in CEB	CEB to formulate.
4	Existing topographic maps (Grid No. 5521, scale 1:10,000 issued by Survey Department of Srilanka)	CEB to assist JICA Expert to obtain.
5	Subcontractor	JICA Expert to determine with bidding/quotation in accordance with JICA guideline.

Geo. Investigation Item	Maha 3	Victoria Lake
Topographic survey	Done	N/A
Geological mapping	Done (dam sites)	N/A
Geophysical prospecting	N/A	N/A
Core drilling	Done (dam sites)	N/A
Laboratory test	Done (dam sites)	N/A
Exploratory adit	N/A	N/A

Step 1: Tasks

Step	Tasks	Remarks
Step 1 Capacity Building (C/B) by J	ICA Expert	
Geological investigation on Victoria Lake PSPP	 Geological investigation by subcontractor Topographic survey Geological mapping Core drilling with site tests (SPT and permeability test) at upper & lower dam sites Laboratory tests Preparation of geological investigation report Activities by JICA Expert Preparation of technical specifications Procurement of subcontractor Supervision of subcontractor's activities Check of subcontractor's geological investigation report Recommendation for further geological investigation for Victoria Lake PSPP 	 Same items & levels of geo. inv. as done for Maha3 in 2015 Output of the activities is; Geological investigation Report for Victoria Lake PSPP prepared by the subcontractor and checked by JICA Expert The followings are Not included in the Scope 1: Geophysical prospecting (seismic prospecting and electrical resistivity prospecting) Core drillings for underground powerhouse and underground tunnels Underwater core drilling for lower dam at Victoria Lake Review of Maha3's geology Environmental survey Layout study Comparison & prioritization among Maha3 and Victoria Activities at Lower Dam and Lower Reservoir area are subject to permission by CEB & JICA, as they are within the protected area. If not permitted, investigations at these area shall be omitted from the scope of Step 1.

Schedule

	20	20						20)21						20)22	20)23
	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1-6	7-12	1-6	7-12
												ļ				2 ve	ars	
FS with ADB's Fund															◄	- /		
Procurement of Consultant																		
Feasibility Study																		
Prioritization														4				
Full swing F/S																		
ADB's Disbursement																		
JICA: Geo Investigation in Victo	oria sit	e											-					
Preparation																		
Procurement of subcontractor									0	46.0				marg	in against			
Geological Investigation									8 mon	tns –				unexpe	ected delay	<u></u>		
by subcontractor																		
Topographic survey																		
Geological mapping																		
Core drilling with site tests							1	1										
Laboratory tests																		
Investigation Report													ļ					
JICA: Assignment of Experts																		
Shingu																		
Wada														1				
	-						 				1		1					

Victoria Lake PSPP: General Layout Image

23 Source: Google Earth

Victoria Lake PSPP: Protection Area

Source: Project on Electricity Sector Master Plan Study in Democratic Socialist Republic of Sri Lanka, 2018, JICA

24

Democratic Socialist Republic of Sri Lanka

The Project for Capacity Development on the Power Sector Master Plan Implementation Program

2nd Technical Seminar

Evaluation on Geological Investigation Result at Victoria PSPP site

December 22nd, 2021

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Basic Sequence of Overall Schedule

NIPPON KOEI

Victoria Lake PSPP: Longitudinal Profile of Waterway

Source: Project on Electricity Sector Master Plan Study in Democratic

³ Socialist Republic of Sri Lanka, 2018, JICA

IUBU Electric Power NIPPON KOEI

Geological Investigation: Plan of Mapping

Geological Mapping

Geological Investigation: Plan of Core Boring

Geological Sections A-A

Geological Sections B-B

8

Geological Sections C-C

Geological Sections D-D

Evaluation of Investigation Result (1/3)

For upper area of Victoria PSPP site, fatal geological risks seem not exist, based on investigation results in this stage (2021)

 Possibility of landslide risks seem low around upper dam site and penstock areas → need final confirmation in F/S 1st stage

Large outcrop of fresh rock inside possible landslide block

11

No identical phenomena of landslide around slope

Evaluation of Investigation Result (2/3)

However, some considerable issues are identified for upper area of Victoria PSPP site

- Basically, water permeability seems low around upper dam site and reservoir area, but possible minor seepage should be considered at right bank \rightarrow need evaluation in F/S stage

Evaluation of Investigation Result (3/3)

- Quartzite around right bank of upper dam foundation seems fragile in core sample, while seems hard in outcrop. \rightarrow caused by drilling operation inside tight-joint rich zone ? \rightarrow difficult to estimate geotechnical parameters \rightarrow recommending adit observation with in-situ tests, such as rock shear test and loading test in F/S stage

Fragile core sample (BH-02: 15-20m)

Hard outcrop of quartzite around right bank of upper dam site

NIPPON KOEI

Conclusion (1/2)

Structures	Check points	Major conceivable issues					
		Focused by JICA (2018)	Based on this investigation (2021)				
Upper storage dam	 Safety of dam foundation Water tightness 	 Possibility of landslide risks No information 	 Possibility of landslide risks seem low. Basically tight, but possible minor seepage at right bank. Quartzite at right bank seems. moderately weak, need to check strength of quartzite. Original dam axis should be slightly shifted to upstream side in consideration of creep length and stability of foundation rock. 				
Reservoir	 Landslide risks Water seepage risks 	 Possibility of landslide risks No information 	 No landslide risks. Seepage risks seem low, but need check narrow ridges condition surrounding reservoir. 				
Upper water way	 Landslide risks of portals Rock condition along water ways 	 No information No information 	 Possibility of landslide risks seem low. No identified risks along penstock. Quartzite around intake seems moderately weak, need to check strength of quartzite. Possibility of minor water inflow. 				

Conclusion (2/2)

	Major conceivable issues						
	Focused by JICA (2018)	Based on this investigation (2021)					
1. Rock condition	1. No information	 No information, but possibly marble layer is not so thick, based on the regional geological mapping weak and permeable sheared zone and anisotropic biotite gneiss described in published geological map 					
 Landslide risks of portals Rock condition along water ways 	 No information Two lineaments (possibly fracture zone) crossing the tunnel. 	 No information Two lineaments (possibly fracture zone) crossing the tunnel. 					
Safety of dam foundation, water tightness, landslide and water seepage risks	No information	No information, but following issues are described in published geological map - permeable marble - weak and permeable shared zone - anisotropic biotite gneiss					
	 Rock condition Landslide risks of portals Rock condition along water ways Safety of dam foundation, water tightness, landslide and water seepage risks 	Focused by JICA (2018)1. Rock condition1. No information1. Landslide risks of portals1. No information 2. Two lineaments (possibly fracture zone) crossing the tunnel.Safety of dam foundation, water tightness, landslide and water seepage risksNo information					

No geotechnical investigation were conducted in this stage (2021)

Basic Sequence of Overall Schedule

NIPPON KOEI

Recommendation in Next F/S 1st Stage

Proposed layout of geological investigation for Victoria Lake site in Next F/S 1st stage

NIPPON KOEI

PSPP On-site Training in WG2 (Geology & Geological Investigations)

October 28, 2020

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Agenda of Today's Program

Time	Contents					
0.20 12.00	✓ 2nd Meeting of WG2- PSPP(Pumped Storage Power Plant) On-site Training					
9:30-12:00	(Remotely, On the Desk)					
9:30-9:40	Address by Dr. Suresh Chand Verma, WG2 Team Leader, JICA Expert Team					
	1. Issues of geology on Maha 3 and Victoria Lake PSPP development by Mr. WADA					
	Masaki, JICA Expert Team					
	1-1 Upper and Lower Storage Dams					
9:40-10:10	1-2 Upper and Lower Reservoirs					
	1-3 Waterways					
	1-4 Underground Powerhouse					
	1-5 Questions & Answers					
	2. Recommended scope and schedule of geological investigation at F/S level for					
	Maha 3 and Victoria Lake PSPP that will be performed by CEB in the future by					
	Mr. SHINGU Hirohisa, JICA Expert Team					
10:10-10:40	2-1 Contents of Geological Investigation					
	2-2 Bill of Quantity					
	2-3 Schedule					
	2-4 Questions & Answers					
10:40-10:55	Break					
	3. General guidance on each item of geological investigations for PSPP by CEB in					
	the future by Mr. SHINGU Hirohisa, JICA Expert Team					
10.55 11.25	3-1 Geophysical Surveys					
10.33-11.23	3-2 Core Drilling					
	3-3 Field and Laboratory Tests					
	3-4 Questions & Answers					
11:25-11:50	4. Discussion					
11:50-12:00	Address by Mr. D. S. R. Alahakoon, WG2 Leader of Management, CEB					

1. Issues of Geology on Maha3 and Victoria Lake PSPP Development

Maha3 PSPP: Longitudinal Profile of Waterway

Source: Development Planning on Optimal Power Generation for Peak

⁴ Demand in Sri Lanka, 2015, JICA

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

CHUBU Electric Powe

NIPPON KOEI

Victoria Lake PSPP: Longitudinal Profile of Waterway

Source: Project on Electricity Sector Master Plan Study in Democratic

5 Socialist Republic of Sri Lanka, 2018, JICA

	Maha3 PSPP	Victoria Lake PSPP
Source of Info.	 Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka, 2015, JICA 	 Project on Electricity Sector Master Plan Study in Democratic Socialist Republic of Sri Lanka, 2018, JICA
Geology	 Site investigation: in 2015 Upper dam: thick deposit on the left bank of the talus Lower dam: no critical issue Waterway: layers nearly parallel to the water route 	 Site reconnaissance: in 2018 Upper dam: possibility of existence of landslide Lower dam: unclear Waterway: lineament
Environment	 Environmental study: in 2015 Natural: out of the protection area Social: resettlement of 28 households within the inundated area. 	 Site reconnaissance: in 2018 Natural: lower dam within the protection area. Social: direct impacts on the village may not be substantial.
Technical Aspect		 Pumping head: more than 700m Lower dam: construction in the Victoria Lake

1. Issues of Geology on Maha 3 Site

Structures	Check points	Major considerable issues
Upper storage dam	Safety of dam foundationWater tightness	 Thick talus deposits/highly weathered rocks on left bank Impermeable layer seems to be deep on left bank (more than 50 m in depth)
Reservoir	Landslide risksWater seepage risks	 No information, but daily fluctuation of water level might thick weather zone on the left bank might trigger landslides especially on left bank covered with thick overburden. No information, but seepage risks on left bank are anticipated.
Water way	 Landslide risks of portals Rock condition along water ways 	 No information Geological structures nearly parallel to the waterway route. NE-SW lineaments (possible faults) were identified.
Underground powerhouse	Rock condition	 Biotite gneiss according to existing geological map. No critical issues according to the Report (2015)
Lower storage dam and reservoir	 Same as upper storage dam and reservoir (Safety of dam foundation, Water tightness, Landslide risks and Water seepage risks) 	 No critical issues according to the Report (2015)

Maha3: Layout of the Structures and Geological Issues

Source: Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka, 2015, JICA, JICA

⁸ Study Team added the geological information.

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

Maha3: Geological Map of Upper dam

Source: Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka, 2015, JICA

Maha3: Geological Section of Upper Dam (Original)

Source: Development Planning on Optimal Power Generation for Peak 10 Demand in Sri Lanka, 2015, JICA

Maha3: Geological Section of Upper Dam (Reviewed)

Another possibility of geological section along dam axis

Source: Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka, 2015, JICA, JICA Study Team reviewed.

sidual soil forn

xfremely soft. Very friable and tends to powderize

NIPPON KOEI

Maha3: Geological Map of Lower Dam

Source: Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka, 2015, JICA

CHUBU

NIPPON KOEI

Electric Power

Maha3: Geological Section of Lower Dam (Original)

Source: Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka, 2015, JICA

NIPPON KOEI

Maha3: Geological Section of Lower Dam (Reviewed)

Source: Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka, 2015, JICA 14 JICA Study Team Reviewed.

NIPPON KOEI

Maha3: Summary of Laboratory tests

Appendix A.12.1

Table A.12.1.5-2 Detailed results of laboratory tests

Borehole	total test depth section	rock type	Rock class (by CECB tentative classification)	dry density. Satu rock mass.	urated density, w	ater content for	r oven dry density, surface saturated density, absorption for coarse U aggregate				UCS	tensile strength	soundness	alkali reactivity test (chemical method)	abrasion (Los Angels)
				rock core			coarse aggregat	e from core			rock core	rock core	coarse	coarse	coarse
													aggregate from	aggregate from	aggregate from
													core	core	core
ASTM No.				D2216	D2216	D2216	C127	C127	C127	C127	D7012	D3967	C88	C289	C131
				moisture %	dry density	saturated	apparent	dry density	saturated	absorption %	MPa	MPa	loss %	reduction of	abrasion value
					kg/m ³	density kg/m ³	specific gravity	kg/m ³	density kg/m ³					alkalinity	% (100, 500
						, ,								mmol/l	rev)
BHL01	8.7-10.7m	Biotite Gneiss	CM	0.1	2,844.16	2,853.70					40.58	1.61			
	10.7-12.6m	Biotite Gneiss	CH				2.73	2,620	2,660	1.4					
	15.75-22.58m	Biotite Gneiss	A	0.0	2,698.34	2,703.80	2.74	2,670	2,700	0.8	22.07	5.61	1	149.2	15, 53
	36.51-41.32m	Biotite Gneiss	A	0.0	2,731.22	2,739.15									
BHL02	2.35-3.05m	Biotite Gneiss	CH								23.00	4.71			
	4.32-8.5m	Biotite Gneiss	A	0.0	2,746.45	2,750.03	2.76	2,680	2,710	1.0	30.43	8.35			
	36.57-40.9m	Biotite Gneiss	A	0.0	2,686.41	2,690.61	2.78	2,710	2,730	0.8	25.89	7.08	1	185.7	13, 50
BHL03	5.12-9.90m	Biotite Gneiss	A	0.1	2,860.93	2,864.11	2.76	2,710	2,730	0.6	49.40	4.20			
	14.42-19.0m	Biotite Gneiss	A										2	52.1	27, 74
	20.0-28.14m	Biotite Gneiss	A	0.1	2,788.79	2,793.00	2.8	2,750	2,770	0.6	28.84	4.67			
BHU03	10.8-11.72m	Granitic Gneiss	В	0.1	2,628.64	2,634.83	2.65	2,570	2,600	1.0					
	11.72-12.77m	Granitic Gneiss	В								49.66	5.69			
	24.63-29.32m	Granitic Gneiss	A	0.1	2,706.79	2,711.64	2.69	2,630	2,650	0.7	67.14	7.28	2	50.1	13, 49
	38.01-42.63m	Biotite Gneiss	A	0.1	2,621.33	2,625.19	2.67	2,630	2,640	0.6	29.01	7.95			
BHU02	5.0-6.4m	Biotite Gneiss	В	0.1	2,722.04	2,726.41					26.80	6.30			
	10.7-15.9m	Granitic Gneiss	A	0.1	2,612.72	2,620.38	2.66	2,610	2,620	0.7	100.43	5.04			
	32.2-41.3m	Granitic Gneiss	A	0.1	2,607.02	2,611.49	2.66	2,600	2,620	0.8	68.96	7.41	1	53.3	11, 45
BHU01	27.800-37.500	Biotite Gneiss	CM	1.1	2,687.20	2,694.82	2.65	2,520	2,570	1.7	77.60	10.64			
	49.500-50.510	Biotite Gneiss	A	0.1	2,770.97	2,772.58	2.77	2,730	2,740	0.4	86.57	7.23			
	51.205-55.190	Biotite Gneiss	A	0.2	2,772.04	2,774.16	2.77	2,720	2,740	0.5	39.16	14.30			
Total No. o	f samples to be	e used		16	16	16	13	13	13	13	15	15	4	4	4

Physical properties seems to be suitable for concrete aggregates/rock materials. However, JICA report (2015) mentioned some of these tests were not conducted properly.

These rock parameters needs to be confirmed by proper laboratory tests in FS stage.

Source: Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka, 2015, JICA

2. Issues of Geology on Victoria Lake Site

According to the JICA Study 2018 report,

- There are No detailed geological investigations in Victoria site.
- The project area is covered by metamorphic rocks.
- Four lineaments were identified by satellite image interpretation by use of google images

Structures	Check points	Major considerable issues
Upper storage dam	Safety of dam foundationWater tightness	Possibility of landslide risksNo information
Reservoir	Landslide risksWater seepage risks	DittoNo information
Water way	 Landslide risks of portals Rock condition along water ways 	 No information One lineament (possibly fracture zone) crossing the tunnel.
Underground powerhouse	Rock condition	No information
Lower storage dam and reservoir	 Safety of dam foundation, Water tightness, Landslide risks and Water seepage risks 	No information

Victoria Lake PSPP: Geological Lineament and Landslide

Upper reservoir and Possible landslide (black line)

Source: Project on Electricity Sector Master Plan Study in Democratic

17 Socialist Republic of Sri Lanka, 2018, JICA

 $\label{eq:copyright} \texttt{Copyright} \ \texttt{Copyright}$

Victoria Lake PSPP: Upper Dam

Comment:

- Foundation condition needs to be further assessed. It may be required to provide sealing to cover the bottom of the reservoir also.
- Stability Dam failure, if occurred, may result in serious damage of the exposed penstock.

Source: Project on Electricity Sector Master Plan Study in Democratic Socialist Republic of Sri Lanka, 2018, JICA

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

2. Recommended Scope and Schedule of Geological Investigation at F/S level for Maha 3 and Victoria Lake PSPP that will be performed by CEB in the future

Guideline and Manual for Hydropower Development Vol. 1 Conventional Hydropower and Pumped Storage Hydropower

March 2011

Japan International Cooperation Agency

Electric Power Development Co., Ltd.

JP Design Co., Ltd.

Introduction of Guideline and Manual by JICA

- JICA has a guideline and manual for Hydropower development.
- The document can be downloaded by the following URL: <u>https://openjicareport.jica.go.jp/pdf/120248</u> <u>81_01.pdf</u>
- Based on this document, status and necessary geological investigation of Maha 3 and Victoria Lake by F/S level is proposed.

Geological Investigations in Each Stage

Source: Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka, 2015, JICA

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

21

Progress to Date

■ Maha3 is in F/S Stage, while Victoria Lake is in Pre-F/S Stage.

Investigation Stage	Major Investigation Items	Maha 3	Victoria Lake
	Literature survey	Done	Done
Pre-feasibility study (M/P, Pre-F/S)	Topographic survey	Scale =1:5000, 1.14 km2 Scale =1:1000, 1.0 km2	N/A
	Geological reconnaissance	Done	Done
	Geological mapping	Available at upper dam and lower dam site only	N/A
	Geophysical prospecting	N/A	N/A
Feasibility Study (F/S)	Exploratory drilling	Upper dam site: 3 drill holes Lower dam site: 3 drill holes	N/A
	Laboratory rock test	Done	N/A
	Exploratory adit (if necessary)	N/A	N/A
	Exploratory drilling	N/A	N/A
Detailed design Study	Exploratory adit	N/A	N/A
(D/S or D/D)	In-situ rock test	N/A	N/A
	Laboratory test	N/A	N/A
Geotechnical investigation during construction	Geotechnical investigation & recording of geological information during construction	N/A	N/A

F/S: 1st Stage

- 1st stage geological investigation
- Layout study
- Determine to proceed or not

F/S: 2nd Stage

Full-Swing Level

- 2nd stage geological investigation
- Basic design
- Project feasibility

Scope of Geological Investigation for Maha 3 to be conducted in 1st Stage of F/S

Major Investigation Items	Status	Scope of Geological Investigation in 1 st Stage of F/S
Literature survey	Done	en e
Topographic survey	Scale =1:5000, 1.14 km2 Scale =1:1000, 1.0 km2	-
Geological reconnaissance	Done	-
Geological mapping	Available at upper dam and lower dam site only	Geological mapping of all the area is needed
Geophysical prospecting	N/A	 Seismic and electric survey is required at the following; > Upper Dam: Thick overburden on left bank (Seepage risk) > Waterway and Underground powerhouse: No geological information is available.
Exploratory drilling	Upper dam site: 3 drill holes Lower dam site: 3 drill holes	 Exploratory drilling with on-site test is required at the following; > Upper Dam: Thick overburden on left bank (Seepage risk)
Laboratory rock test	Done	To be additionally done

Assumed Quantities of Geological Investigation for Maha 3 to be conducted in 1st Stage of F/S

	Item		Requirer	Requirement				
			Specification	Q'ty	Unit			
In	vestigation	l						
	Geologic	al Mapping						
	G-01	Surface geological survey	1/10.000	10	km2			
	Seismic P	Prospecting						
	S-01	Upper dam	1 profile & 2 axes	1.2	km			
	S-02	Waterway	center line	3.0	km			
	Electrical	Resistivity Prospecting						
	E-01	Upper dam	1 profile & 2 axes	1.2	km			
	E-02	Upper dam, ridge over left bank	1 section	0.5	km			
	E-03	Waterway	center line	3.0	km			
	Core Dril	ling						
	B-01	Upper dam, left bank, upstream	vertical, soil	20	m			
			vertical, rock	40	m			
	B-02	Upper dam, left bank, downstream	vertical, soil	20	m			
			vertical, rock	40	m			
	In-situ Te	est						
	T-01	Standard penetration test	core drilling	40	nos.			
	T-02	Permeability test	core drilling	16	nos.			
	Laborato	ry Tests for Rock Cores						
	L-01	Water absorption and bulk specific gravity	rock core	10	test			
	L-02	Unconfined compression of rock core specimen	rock core	10	test			
	L-03	Tensile strength	rock core	10	test			
	L-04	Ultrasonic test of core sample	rock core	20	test			
	L-05	Los Angels Abrasion	rock core	5	test			
	L-06	Soundness	rock core	5	test			
	L-07	Alkali reactivity	rock core	5	test			

25

Invostigation Itom	Unit	Otv	Month							
	Unit	Qty	1	2	3	4	5	6	7	
Geological mapping	km2	10								
Seismic prospecting	km	4.2								
Electrical resistivity prospecting	km	4.7								
Core drilling (2 boreholes)	m	120								
Standard penetration test (SPT)	nos	40								
Permeability test	nos	16			I					
Laboratory tests (7 Types)	test	20								
Preparation of Investigation report	L.S.	1								

Scope of Geological Investigation for Victoria to be conducted in 1st Stage of F/S

Major Investigation Items	Status	Scope of Geological Investigation in 1st stage of F/S
Literature survey	Done	
Topographic survey	N/A	Topographic mapping of all the area is needed
Geological reconnaissance	Done	-
Geologic mapping	N/A	Geological mapping of all the area is needed
Geophysical prospecting	N/A	 Seismic and electric survey is required at the following; > Upper Dam and Lower Dam: Safety of dam foundation, landslide and seepage risks > Waterway and Underground powerhouse: No geological information
Exploratory drilling	N/A	 Exploratory drilling with on-site test is required at the following; > Upper Dam: Safety of dam foundation, landslide and seepage risks > Lower Dam: Safety of dam foundation, landslide and seepage risks
Laboratory rock test	N/A	To be done

Assumed Quantities of Geological Investigation for Victoria to be conducted in 1st Stage of F/S

Item	Requirer	Requirement					
	Specification	Q'ty	Unit				
Investigation							
Topographic Mapping							
T-01 Detailed mapping	1/1,000	2.5	km2				
Geological Mapping			L				
G-01 Surface geological survey	1/10.000	20	km2				
Seismic Prospecting							
S-01 Upper dam	1 axis & 2 profiles	1.2	kn				
S-02 Waterway	center line	6.0	kn				
Electrical Resistivity Prospecting							
E-01 Upper dam	1 profile & 2 axes	1.2	kn				
E-02 Waterway	center line	6.0	kn				
Core Drilling			L				
B-01 Upper dam, #1	vertical, soil	15	n				
	vertical, rock	25	n				
B-02 Upper dam, #2	vertical, soil	15	n				
	vertical, rock	25	n				
B-03 Upper dam/Intake, #3	vertical, soil	15	n				
	vertical, rock	25	n				
B-04 Upper dam/Penstock, #4	vertical, soil	15	n				
	vertical, rock	25	n				
B-05 Lower dam, #1	vertical, soil	20	n				
	vertical, rock	40	n				
B-06 Lower dam, #2	vertical, soil	20	n				
	vertical, rock	40	n				
In-situ Test							
T-01 Standard penetration test	bore-hole	100	nos				
T-02 Permeability test	bore-hole	36	nos				
Laboratory Tests for Rock Cores			L				
L-01 Water absorption and bulk specific gravity	rock core	30	tes				
L-02 Unconfined compression of rock core specimen	rock core	30	tes				
L-03 Tensile strength	rock core	30	tes				
L-04 Ultrasonic test of core sample	rock core	20	tes				
L-05 Los Angels Abrasion	rock core	5	tes				
L-06 Soundness	rock core	5	tes				
L-07 Alkali reactivity	rock core	5	tes				

NIPPON KOEI

28

Assumed Schedule of Geological Investigation for Victoria to be conducted in 1st Stage of F/S

Investigation Itom			Oty									
	Unit	QLY	1	2	3	4	5	6	7	8	9	10
Topographic mapping	km2	2.5										
Geological mapping	km2	20										
Seismic prospecting	km	7.2										
Electrical resistivity prospecting	km	7.2	I									
Core drilling (6 boreholes)	m	280										
Standard penetration test (SPT)	nos	100										
Permeability test	nos	36										
Laboratory tests (7 Types)	test	30										
Preparation of Investigation report	L.S.	1										

Scope, quantities and schedule of geological investigation for Maha3 and Victoria to be conducted in 2nd stage of F/S will depend on the output of the geological investigation and layout study in 1st stage of F/S.

The following scope will be at least required.

Major Investigation Items	Status	Scope of Geological Investigation 2 nd stage of F/S
Exploratory drilling	Partly done in 1 st Stage	 Exploratory drilling with on-site test will be required at the following; For both Maha3 and Victoria > 1 drilling for underground powerhouse > 2 drillings for underground tunnel For Victoria only > 1 underwater drilling for lower dam
Laboratory rock test	Partly done in 1 st Stage	To be done

Check List for Geological Investigations at F/S Stage

Investigation Items	Contents
Literature survey	 Following literatures are obtained? Geological map (scale 1/500,000 or more) Aerial Photos Seismic data Other geological info (mines, springs, etc.) Seismic factor is analyzed (in case of seismic-prone area)?
Geological reconnaissance Geologic mapping	 > The investigation area is covering entire planning area with sufficient marginal area of 300m or more? > Geological conditions are clarified? Stratigraphy and formation Rock type and distribution Age > Faults are available at the planning area? Dip and Strike Active or non-active Associating with share zone with spring or fault breccia > Any negative geological structure is identified? (e.g. dip slope) > Characteristics of recent river deposit at dam site are clarified? Grain size and packing Permeability > Weathering of rock is clarified at dam site? Talus deposit Weathering at outcrops > Is there any open cracks or joints available at dam foundation? > Any geohazard-prone area is clarified as landslide, collapse, rockfall, etc? > Any special rock are available at the area as limestone?

Investigation Items	Contents
Geological reconnaissance (Landslide survey)	 Interpretation of topography by topo-map and/or aerial photo is conducted? Occurrence of Landslide and collapse with evaluation of their activity in entire planning area Site reconnaissance of landslide/geohazard survey is conducted?
Geophysical prospecting	 The contents of geological investigation is sufficient? Geophysical prospecting at dam axis and underground powerhouse
Exploratory drilling	 The contents of geological investigation is sufficient? 3 to 5 exploration drillings at dam foundation

3. General Guidance on Each Item of Geological Investigations for PSPP by CEB in the future

- Seismic Survey
- Electrical Sounding
- 3-2 Core Drilling
- 3-3 Field and Laboratory Tests
- Standard Penetration Tests (SPT)
- On-site permeable Tests (Lugeon test)

3-4 Questions & Answers

- Result of seismic prospecting shows seismic velocity of ground
- > Talus deposit, loosen part of foundation can be found

Output (Geophysical Section)

• Electrical Sounding (Resistivity Survey)

- Ground resistivity is measured through electrodes
- > Resistivity structure may contribute the interpretation of geological structure.

Source: https://archive.epa.gov/esd/archive-geophysics/web/html/resistivity_methods.html

(video available)

Source: https://www.tohochikakoki.co.jp/

Core drilling machine

System and Equipment
3-2 Core Drilling and Sampling

Source: http://www.soilsystem.jp/business/business1

Core Drilling at site

Source: http://hitec-homedoctor.co.jp/

Drilled Core

3-3 Field and Laboratory Tests

Standard Penetration Tests (SPT)

https://geologyengineering.com/2019/08/standard-penetration-test/

Test Procedure

https://www.pwri.go.jp/team/geosearch/tech_01_02.html

Testing

Permeability test "Lugeon test"

http://www.geotesting.info/geotest/Lugeon_test.html

Test Equipment

https://geolab-ikram.com/soil-investigation/

Test at Drilled Borehole

Management of geological investigations

- Quality control
- Cost control
- Schedule control
- Safety control

Selection of qualified geotechnical company is most important.

- Monitoring work progress
- Periodical inspection at site

Thank you

Democratic Socialist Republic of Sri Lanka The Project for Capacity Development on the Power Sector Master Plan Implementation Program (2nd Technical Seminar)

How to Proceed the Development of the Pumped Storage Power Plant

Transmission and Generation Planning Branch Transmission Division Ceylon Electricity Board Sri Lanka

December 22, 2021

Pumped Storage Hydropower Plant

2

Firm Power Sources

Non-Firm Power Sources

Short time Variations

Controllable

Energy Balancing

TIME

Advantages of Pumped Storage Hydropower

Plants

- ENERGY BALANCING (PEAK POWER SUPPORT)
- FIRMING OUTPUT OF INTERMITTENT RESOURCES
- STABILITY AND INERTIA (MECHANICAL)
- ANCILLARY GRID SERVICES
 - FREQUENCY CONTROL
 - SPINNING RESERVE (INCREMENTAL AND DECREMENTAL)

MOST PROMISING SITES

Maha3 Site (Aranay	vake)
Capacity (MW)	600
Rated Head (m)	486
Upper Pond (MCM)	3.94
Lower Pond (MCM)	6.33
Peak Time (H)	6.00
Capital Cost (US\$/kW)	1063

V	Vewat	thenna-	Victor	ia Site

Capacity (MW)	1400
Rated Head (m)	686
Upper Pond (MCM)	5.5
Lower Pond (MCM)	10
Peak Time(H)	6.00
Capital Cost (US\$/kW)	689

PROPOSED LOCATIONS OF ARANAYAKA (MAHA 3) SITE

PROPOSED LOCATIONS OF WEWATHENNA-VICTORIA SITE

Proposed Plot Plan of Wewathenna-Victoria

WAY FORWARD

LIST OF PROPOSED EXPERTS FOR THE STUDIES

Project Manager/ Team Leader

Expert Geologist

Specialist Civil Engineering

Environmental Expert

Civil Eng. (Tunnelling & Underground works)

Civil Eng. (other structures and roads)

Civil Eng. (cost & quantities)

Civil Eng. (construction planning)

Hydro-Mechanical Engineer

Electro-Mechanical Engineer

Hydrologist

Economist

Geotechnical Engineer

Ecologist

Sociologist

Pumped Storage Specialist

Specialist Hydro-Mechanical

Specialist Electro-Mechanical

Specialist Power Systems

PRESENT PROGRESS (CONSULTANCY PROCUREMENT)

STUDY SCHEDULE

Study Scope

- TECHNICAL FEASIBILITY
 - TOPOGRAPHICAL SURVEY
 - GEOLOGICAL, GEOTECHNICAL AND MATERIAL STUDIES
 - HYDROLOGICAL STUDIES
 - POWER SYSTEM STUDIES
- ENVIRONMENTAL FEASIBILITY
 - PHYSICAL, BIOLOGICAL & SOCIAL ENVIRONMENT
- ECONOMIC/FINANCIAL FEASIBILITY
- FEASIBILITY LEVEL DESIGN
- IMPLEMENTATION PLANNING AND CONSTRUCTION SCHEDULE

Implementation Phases

- ENVIRONMENT & OTHER APPROVALS
- PROJECT FINANCING
- TENDERING
- DETAIL DESIGN
- CONSTRUCTION
 - CIVIL CONSTRUCTIONS (UPPER/LOWER RESERVOIRS, TUNNELS/PENSTOCKS, POWER HOUSE, ETC.)
 - MECHANICAL/ ELECTRICAL EQUIPMENT (PUMP-TURBINE, MOTOR-GENERATOR, AUXILIARY SYSTEMS, ETC)
 - TRANSMISSION INTERCONNECTION (TR. LINE AND SWITCH YARD)
- TESTING & COMMISSIONING

CONTRIBUTION OF JICA ON PSHP STUDIES

JR 15-021

Sri Lanka Ceylon Electricity Board

> Development Planning on Optimal Power Generation for Peak Demand in Sri Lanka

> > **Final Report**

February 2015

Japan International Cooperation Agency Electric Power Development Co., Ltd. Ministry of Power and Renewable Energy (MPRE) Ceylon Electricity Board (CEB)

> Project on Electricity Sector Master Plan Study in Democratic Socialist Republic of Sri Lanka

> > **Final Report**

March, 2018

Japan International Cooperation Agency (JICA)

Tokyo Electric Power Company Holdings, Inc. (TEPCO HD) TEPCO Power Grid, Incorporated (TEPCO PG) Tokyo Electric Power Services Co., Ltd. (TEPSCO)

THE PROJECT FOR CAPACITY DEVELOPMENT ON THE POWER SECTOR MASTER PLAN IMPLEMENTATION PROGRAM

TRAINING ON GEOLOGICAL INVESTIGATIONS

Session	Date
Online session	2020-10-28
Online session	2021-07-08
Site training	2021-10-26
Online session	2021-10-28

THANK YOU