

NIPPON KOEI

1

VRE forecast

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

Overview of the VRE forecast model
Developing method of VRE forecast model

PON KOEI

It is said that the meteorological phenomenon that can be represented by the resolution of the numerical weather model is 5 to 8 times its size. The effect of terrain smaller than the resolution cannot be expressed. By using the statistical method, it is possible to correct short-term fluctuations and the bias of the meteorological model, and improve the prediction accuracy.

NIPPON KOEI

• Weather forecast for VRE can be calculated based on the weather models of the Japan Meteorological Agency and the Meteorological Organizations of each country.

 Weather forecast for VRE can be calculated based on the weather models of the Japan Meteorological Agency and the Meteorological Organizations of each country.

 The output of PV and wind power can be predicted from weather forecast results and specifications of facilities.

- CHUBU Electric Power
- The output of PV and wind power can be predicted from weather forecast results and specifications of facilities. — 全サイト予測発電量 Forecasting wind speed **Facility information** 40 € 4000 at wind power plant (image) wind turbine rated capacity wind turbine model number number of wind turbines wind turbine hub height power curve, etc. Facility information - 全サイト実績発電量 is needed for wind spec wind power at wi ... power generation analysis to develop plant at the plant statistical power generation model X_axis: timeline [year/month/day] prediction models for statistical Y axis: total amount of all power solar radiation **PV** power model output(wind+ PV) [kW] solar and wind at PV powe generation legend: historical result at the plant ant forecast for power output. generation output *Specification should be considered **Facility information** in detail at the time of design panel capacity, PCS capacity type of solar panel Forecast system of PV output panel azimuth/tilt angle, etg is installed at Central Load Dispatching Center in CEPCO.

The output of PV and wind power can be predicted from weather forecast results and specifications of facilities.

2. Developing method of the VRE forecast model

This flow diagram shows an example approach for predicting power output using weather forecasts. The overall flow is the same for PV and wind power. Facility information is mandatory to power generation.

2. Developing method of the VRE forecast model

Verification with historical data is ideal. Optimal parameters are adjusted by verification using weather observational data and power generation data. This will give you a more accurate forecast.

2. Developing method of the VRE forecast model

When forecasting future planned plants, historical power generation data cannot be obtained. At this time, it is desirable to verify the prediction accuracy using the nearest weather observational data managed by the National Meteorological Bureau.

NIPPON KOEI

Contents

- 1. Procedure for PV Forecasting
- 2. Irradiation Measurement System for PV Forecasting

1. Procedure for PV Forecasting

2. Irradiation Measurement System for PV Forecasting

- Measurement area in service area is divided into 14 areas based on regional irradiation characteristics and introduced PV capacity.
- Irradiation is measured by instrument ,called PV300, at every minute.
- ✓ The number of the Irradiation measuring points is 3 or more in each measurement area.
- Measurement data is transmitted to Central Load Dispatching Center by online.

◆PV300 (Installed by CEPCO)

Pyranometer

···· 39 locations

Facilities of Meteorological Agency

Pyranometer

Estimated

Irradiation

- ··· 3 locations
- ••• 5 locations

Contents

- 1. VRE Resource Development
- 2. Resource Potential
- 3. Wind Resource Development
- 4. Solar Resource Development
- 5. Future plan of VRE output forecast in CEB

1.VRE Resource Development

Past and future Growth of Renewable Energy based Generation Capacity 7000 6000 Future ORE Past Development Capacity Projection 5000 Solar 0007 (MW) 0000 (MW) VRE Wind Biomass 2000 Mini Hydro 1000 Major Hydro 0

Revised Base Case Plan- Draft LTGEP 2020-2039

Source: Made by CEB

2. Resource Potential

Solar Resource

Wind Resource

VRE Resources mapped by Sri Lanka Sustainable Energy Authority (SLSEA) in 2020

Source: Made by CEB

3. Wind Resource Development

Source: Made by CEB

Existing and Future Clusters

- Northwestern Cluster
- Mannar Cluster
- Northern Cluster
- Eastern Cluster

NIPPON KOEI

4. Solar Resource Development

Rooftop Capacity

Future Development

1. Ground Mounted Solar

- a. Large and Medium scale solar parks (10-100MW)
- b. Scattered small scale solar parks (1-10MW)
- c. Scattered small scale solar parks connected to LV Network

2. Rooftop Solar (Net Metering, Net Plus & Net Accounting)

Source: Made by CEB

4. Solar Resource Development

Large/Grid Scale Development

Source: Made by CEB

- 1. Resource Development Zones have been identified
- 2. Small scale geographically scattered development Programs will continue

- A centralized forecasting system providing a system wide forecasting is preferred
- Scale and the locations of future VRE resource development to be considered appropriately for developing the forecasting system

CHUBU Electric Power

4. Solar Resource Development

Source: Made by CEB

Contents

- 1. Forecast points of VRE
- 2. Overview of the VRE forecast for weather
- 3. Overview of the VRE forecast for output
- 4. The process of the VRE forecast model
- 5. Collected Data on developing the model
- 6. Delivery method of VRE forecast

1. Forecast Points of VRE

Forecast points

Information on forecast point

Forecast site	Information on forecast site	Lat/Lon
WPP1	Northern Wind Power Plant	9.55/80.35
WPP2	Mannar Wind Power Plant	9.050124, 79.792038
WPP3	Mampuri Wind Power Plant	8°0'36.37"N, 79°43'24.09"E
SPP1	Vydexa solar Power Plant	8°46'9.49"N, 80°31'39.88"E
SPP2	Solar One Ceylon Power	7°58'31.38"N 81°14'18.23"E
SPP3	Saga Solar Power	6.22/81.085
SPP4	Kuliyapitiya Area	7.5/80.05
SPP5	CEB Head office	6.9/79.8

2. Overview of the VRE forecast for Weather

• Weather forecast for VRE can be calculated based on the weather models of the Japan Meteorological Agency and the Meteorological Organizations of each country.

3. Overview of the VRE forecast for output

The output of PV and wind power can be predicted from weather forecast results and specifications of facilities.

NIPPON KOEI

4. The Process of the VRE forecast model

This flow diagram shows an example approach for predicting power output using weather forecasts. The overall flow is the same for PV and wind power. Facility information is mandatory to power generation.

5. Collected Data on developing the model

Historical data(as of Sep. 9, 2022)

Historical Data	WPP1	WPP2	WPP3
	Northern Wind Power Plant 10MW	Mannar Wind Power Plant 103.5MW	Mampuri Wind Power Plant 10MW
Weather (Wind Speed and direction)	From Jun 1,2021 to September 30,2021	From Jun 21,2021 to Jun 13,2022	-
VRE Output	From July 1, 2021 to Jun 13, 2022 From September 1, 2022 to September 9, 2022	From July 1,2021 to June 13,2022 From September 1,2022 to September 9,2022	From July 6,2021 to Jun 13,2022
Historical Data	SPP1	SPP2	SPP3
	Vydexa solar Power Plant 10MW	Solar One Ceylon Power 12.5MW	Saga Solar Power 10MW
Weather (Irradiation)	From July 1,2021 to October 21,2021	From Jun 1,2021 to October 21,2021	-
VRE Output	From July 1,2021 to Jun 13,2022	From Jun 1,2021 to June 13,2022	From July 1, 2021 to Jun 13, 2022 From September 1, 2022, to September 9, 2022
Historical Data	SPP4	SPP5	
	Kuliyapitiya Area 50kW	CEB Head office 90.9kW	
Weather (Irradiation at the nearest area of the installed location)	-	-	
VRE Output	From July 1, 2021 to September 12, 2022	From July 1,2021 to Jun 13,2022	

5. Collected Data on developing the model

Facility Information of VRE forecast (SPP)

	Utility PV			Roof-top PV	
	SPP1	SPP2	SPP3	SPP4	SPP5
Facility No.	Facility 4	Facility 5	Saga Solar POWER	Facility 3	Facility 1
Information/Site	10 MW Solar Power plant (Vydexa solar power plant)	Solar One Ceylon Power (Pudukadumalai) SPP	SAGA SOLAR POWER		Rooftop PV Colombo
Area	Vavuniyava	Welikanda	Hambantota	Kuliyapitiya	Slave Island
Premises	Privately Owned	Privately Owned			CEB Head office
Location (Lat/lon)	8°46'9.49"N, 80°31'39.88"E	7°58'31.38"N 81°14'18.23"E	6.22 , 81.085	7.469655377230161, 80.05004525435352	6.930312772873491, 79.84709213773222
Period of Installation	Jul-17	Dec-16	2015-2016	09/02/2018	installed 2019-jun-25
Panel Azimuth Angle			0	90°	30 degree
Panel Tilt Angle	Single-Axis Tracking	Single-Axis Tracking	5 degrees to 15	35°	8 degree
Type of Installation	Gound Mounted	Gound Mounted	GMFT	roof	on small structure
Type of PV Module	350p Monocrystalline	315Wp & 320Wp Polycrystalline	MULTI CRYSTALINE	Monocrystalline	MONO PERC
Total Panel Capacity	10 MW	12.5 MW	10MW	50 KW	90.9 KW
PCS or Inverter model			ABB	SMA Gmbh STP 25000 TL-30	TR10-20.0-TL-OUTD- S2X-400 X 1 no /TR10- 27-6-TL-OUTD-400 X 3 No
PCS or Inverter Capacity			1MW*10	25kVA	20kW X 1 No and 27kW X 3 No
Online Data Availability (If possible)				Yes	Yes
Past Data availability (If possible)				Yes	Yes

5. Collected Data on developing the model

Facility Information of VRE forecast (WPP)

	WPP1	WPP2	WPP3
Facility No.	Facility 3	Facility 2	Facility 1
Information	Northern Wind power plant	Mannr Wind power plant	Wind plant from cluster in Puttalam
Site	Vallimunai 10MW Wind Power plant	Thambapavani Wind Power plant (CEB)	Mampuri Wind Power Plant– Stage I
Area	Jaffna	Mannar Island	Puttalam
Premises	Beta Power (Pvt) Ltd	Thambapavani Wind Power plant	Mampuri Wind Power Plant
Location (Lat/lon)	9.556760792037888, 80.35954521288103	9.050124, 79.792038	8°0'36.37"N, 79°43'24.09"E
Period of Installation	December 2014	End 2020- Being Commissioned	2010
Number of wind turbines	8	30	8
Wind turbine rated capacity per unit	1,500 kW (ReGen VENSYS 82V82)	3,450kW	1,250kW
The second second second second second second second			
capacity	12 MW	103.5 MW	10 MW
Capacity Wind turbine hub height	12 MW 85m	103.5 MW 80 m	10 MW 60m
Power curve (includes cut-in, rated, cut-out wind speed)	12 MW 85m Cut-in wind speed: 2.5 m/s Rated wind speed: 13 m/s Cut-off wind speed: 22.5 m/s http://www.regenpowertech.com/10 4/wind-turbine	103.5 MW80 mRated power: 3,450 kWCut-in wind speed: 3 m/sCut-out wind speed: 22.5 m/sRe cut-in wind speed: 20 m/sWind class IEC IIIA/IEC IIBhttps://www.vestas.com/en/products/4-mw-platform/v1363_45_mw#!technical-specifications	10 MW 60m Power Curve Data- https://www.thewindpower.net/turbine_en_220 suzion_s64-1250.php
Power curve (includes cut-in, rated, cut-out wind speed)	12 MW 85m Cut-in wind speed: 2.5 m/s Rated wind speed: 13 m/s Cut-off wind speed: 22.5 m/s http://www.regenpowertech.com/10 4/wind-turbine	103.5 MW 80 m Rated power: 3,450 kW Cut-in wind speed: 3 m/s Cut-out wind speed: 22.5 m/s Re cut-in wind speed: 20 m/s Wind class IEC IIIA/IEC IIB https://www.vestas.com/en/products/4-mw-platform/v136- 3 45 mw#!technical-specifications	10 MW 60m Power Curve Data- https://www.thewindpower.net/turbine_en_220

Specification of the VRE forecast

Category	Contents
Data distribution periods	From July 1, 2021, to February 28, 2023
Forecast range	Up to maximum 78 hours ahead from initial time
Frequency	Twice a day (6 AM and 4 PM in Sri Lanka Standard Time)
Timestep	Every 15 min (<i></i> %Interpolated value)
Data variables	PV ①Total amount of solar radiation(W/m ²) ②PV power output(kW) WF ③wind speed(m/s) and direction ④WF power output (kW)
Forecasting point	8 points set by Latitude/longitude
File format	XML(two files, weather and VRE output)
Data access	HTTP-GET

6. Delivery method of VRE forecast

The data size of 2 XML file to be sent is expected to be about 200KB per delivery Data for the past 1 week is stored on JWA Hosting Server, if old data is needed

NIPPON KOEI

Contents

- 1. The viewpoints of candidate sites selection
- 2. Facility information
- 3. Examine existing sites at the preparation stage
- 4. Method to decide the forecast points for rooftop PV
- 5. Determination of Forecast Points of VRE

1. The viewpoints of candidate sites selection

When considering the candidate sites of the VRE forecast, the following viewpoints shall be taken into account

- ✓ Facility information availability(mandatory condition)
- ✓ Larger generation capacity (100MW>10MW>1MW)
- ✓ Availability of measured data (output and weather> output > weather)
- ✓ Sites to represent the north, south, east, and west regions of Sri Lanka
 - * The above inequality sign (>) indicates the priority.

2. Facility information

[PV, Utility-scale]

Using the following facility information, the amount of solar radiation is converted into PV power generation output This information should be organized by site.

PV facility information	example
Site name	Saga PV Site
Location(latitude/longitude)	Lat: 7.94YYYY, Lon: 81.25XXXX
Period of installation	1 year and 3 months since installation
panel azimuth angle	180° (due south)
panel tilt angle	10°
type of installation	Utility-scale
types of PV module	Monocrystalline Silicon, Polycrystalline Silicon, etc
Total amount of panel capacity (kW)	100,000kW
PCS series-name (manufacturer)	PCS-ABC1200E (produced by ABC solar Co.,Ltd.)
Total amount of PCS rated capacity (kW)	100,000kW
2. Facility information

[PV, Rooftop]

Using the following facility information, solar radiation is converted into Rooftop PV power generation per resident(household). These information should be organized by area.

Rooftop PV facility information	example
Area name	Rooftop South
Representative Location(latitude/longitude)	Lat: 7.94YYYY, Lon: 81.25XXXX
Period of installation	(If possible)
Representative panel azimuth angle	180° (due south)
Representative panel tilt angle	10°
type of installation	Rooftops
Representative types of PV module	Monocrystalline Silicon, Polycrystalline Silicon, etc
Representative panel capacity kW) %per resident(household)	4.5kW
PCS series-name (manufacturer)	(If possible)
Total amount of PCS rated capacity (kW)	(If possible)

2. Facility information

[Wind power]

Using the following facility information, wind speed and direction is converted into Wind power generation output. This information should be organized by site as in the table below.

Wind facility information	example				
Site name	ZZZZ WPP Site				
Location(latitude/longitude)	Lat: 7.94YYYY, Lon: 81.25XXXX				
Period of installation	8 months since installation				
number of wind turbines	11				
wind turbine rated capacity per unit (kW)	1,700 kW				
Total amount of wind turbine capacity (kW)	18,700 kW				
wind turbine hub height	60m				
power curve (includes cut–in, rated, cut–out wind speed) %please refer to product catalog of wind turbine.	Produced Power nom. Power nom. Power nom. Power nom. Power nom. Power nout speed out speed out speed out 				

3. Examine existing sites at the preparation stage

Distribution of the Existing VRE Sites as of 2020.Sep

Points of view to decide the points of rooftop PV

- Please set appropriate points (latitude and longitude) for forecasting.
 Concerning a distribution map of Rooftop PV with capacity level, it is better to select a capacity-intense area as a forecast location.
- Please investigate and create "Representative average facility information" for each area. Panel azimuth angle, tilt angle, types of PV module, and panel capacity are mandatory parameters.
- 3 Please create a profile of power consumption per resident to calculate surplus power generation from forecast output.
- 4 Please prepare the parameter of the number of Rooftops by area to reflect its rapid-growing. (e.g. monthly number of Rooftop PV, etc)
- 5 Is it possible to obtain data records of "all-quantity power generation per resident(household)"? It will be useful to verify the forecast accuracy.

CHUBU Electric Power

5. Determination of Forecast Points of VRE

Forecast points

Information on forecast point

Forecast site(Capacity)	Information on forecast site	Lat/Lon
WPP1(12MW)	Northern Wind Power Plant	9.55/80.35
WPP2(103.5MW)	Mannar Wind Power Plant	9.050124, 79.792038
WPP3(10MW)	Mampuri Wind Power Plant	8°0'36.37"N, 79°43'24.09"E
SPP1(10MW)	Vydexa solar Power Plant	8°46'9.49"N, 80°31'39.88"E
SPP2(12.5MW)	Solar One Ceylon Power	7 [°] 58'31.38"N 81°14'18.23"E
SPP3(10MW)	Saga Solar Power	6.22/81.085
SPP4(50KW)	Kuliyapitiya Area	7.5/80.05
SPP5(90.9KW)	CEB Head office	6.9/79.8

6.2.3 Data and the acquisition method for the development of VRE forecast model

Contents

1. Necessary data on developing the model

2. Acquisition method for the development of the VRE forecast model

The priority of collecting data for the development of the VRE forecast model

Target Site	Weather data Wind speed & direction for Wind power Solar irradiation for Solar power	Output data of VRE	Facility information
Existing Site	O	O	©
(Data source)	(CEB/IPP/DOM)	(CEB/IPP/etc.)	(CEB/IPP/etc.)
Planning Site	O	×	©
(Data source)	(DOM/etc.)	(CEB/IPP/etc.)	(CEB/IPP/etc.)

 \odot : Mandatory, \bigcirc : Desirable, \times : Not available DOM : Department of Meteorology, Sri Lanka

100

Condition	Weather data (CEB,IPP)	Weather data (DOM)	Output data of VRE	Facility informat ion
C1	0	×	0	0
C2	×	0	0	0
C3	×	×	0	0
C4	×	0	×	0
C5	×	×	×	0

Data acquisition condition

VRE Forecast Accuracy(image)

○ : Available,× : Not available
 DOM : Department of Meteorology, Sri Lanka

The Accuracy of the VRE forecast model depends on the condition of data acquisition

[Weather observation data]

Location, available variables, and any other additional information are also important for weather observational data.

additional information	example
station name (ID)	● ● station 001
administrator	CEB (or Department of Meteorology)
Location(latitude/longitude)	Lat: 7.94YYYY, Lon: 81.25XXXX
Variables	solar irradiation, wind speed/ direction, daily maximum/ minimum temperature, precipitation, hours of daylight etc.
observation frequency	every ten (10) minutes
period	available since Mar.2017

CHUBU Electric Power

2. Acquisition method for the development of the VRE forecast model

[Weather observation data]

Observational data (temperature, precipitation, solar radiation, etc)

:	年月日時	気温(°	' 気温(°	気温(°	降水量	降水量	隆水量	隆水量	降雪(c 降雪((c降雪	冒(c降雪)	c積雪	(c積雪(c積雪(c積雪(d日照問	白照時	日照時	日照問	風速(r	風速(r風速(風速(r風速	(r日射:	量日射量	冒日射量
																						風向	風向			
			品質情	均質番	号	現象な	品質情	も均質者	 手号	現象を	な品質	賃情均質	番号	現象を	な品質情	も均質者	番号	現象な	品質情	均質都	昏号	品質情報	品質情均質	番号	品質情	青均質番
	2020/1/1 1:00	3.7	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	3 1	. 0	1	8	1	. 6	8 北西	8	1	0 8	3 1
	2020/1/1 2:00	3.5	8	1	C) 1	. 8	8 1	. 0		1	8	L	0	1 8	8 1	. 0	1	8	1	4.3	8 北北西	8	1	0 8	3 1
	2020/1/1 3:00	3.6	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	3 1	. 0	1	8	1	4.8	8 北北西	8	1	0 8	3 1
	2020/1/1 4:00	4	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 0	1	8	1	4.7	8 北西	8	1	0 8	3 1
	2020/1/1 5:00	4.2	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 0	1	8	1	4.2	8 北北西	8	1	0 8	3 1
	2020/1/1 6:00	4.1	8	1	C) 1	. 8	8 1	. 0		1	8	L	0	1 8	8 1	. 0	1	8	1	4.7	8 北西	8	1	0 8	3 1
	2020/1/1 7:00	3.8	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 0	0	8	1	4.2	8 北北西	8	1	0 8	3 1
	2020/1/1 8:00	4.4	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	0.2	0	8	1	2.4	8 北	8	1 0.1	8 8	3 1
	2020/1/1 9:00	5.2	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	0.6	0	8	1	1.8	8 北北西	8	1 0.7	1 8	3 1
	2020/1/1 10:00	5.8	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	0.3	0	8	1	2	8 北北東	8	1 0.9	8 8	3 1
	2020/1/1 11:00	7	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 1	0	8	1	2.1	8 北北西	8	1 1.7	7 8	3 1
	2020/1/1 12:00	9.4	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	1	0	8	1	1.9	8 北北東	8	1 1.9	3 8	3 1
	2020/1/1 13:00	8.7	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 1	0	8	1	1.5	8 東北東	8	1 1.8	7 8	3 1
	2020/1/1 14:00	9.6	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 1	0	8	1	2.2	8 北	8	1 1.5	8 8	3 1
	2020/1/1 15:00	8.8	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 1	0	8	1	0.7	8西	8	1 1.1	3 8	3 1
	2020/1/1 16:00	7.9	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 1	0	8	1	2.2	8 南南東	8	1 0.5	5 8	3 1
_	2020/1/1 17:00	5.6	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	3 1	. 0.3	0	8	1	2.3	8 南	8	1 0.0	7 8	3 1
	2020/1/1 18:00	5.5	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 0	1	8	1	. 3	8 南	8	1	0 E	3 1
	2020/1/1 19:00	5.5	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 0	1	8	1	1.1	8 南南西	8	1	0 8	3 1
_	2020/1/1 20:00	4.9	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	3 1	. 0	1	8	1	0.7	8 西南西	8	1	0 8	3 1
	2020/1/1 21:00	4.3	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 0	1	8	1	0.6	8 南南東	8	1	0 E	3 1
	2020/1/1 22:00	5	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 0	1	8	1	2.3	8 西北西	8	1	0 8	3 1
	2020/1/1 23:00	4.3	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 0	1	8	1	1.3	8 北西	8	1	0 8	3 1
	2020/1/2 0:00	4.1	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 0	1	8	1	2.1	8 北西	8	1	0 E	3 1
	2020/1/2 1:00	4.7	8	1	C) 1	. 8	8 1	. C		1	8	L	0	1 8	8 1	. 0	1	8	1	1.8	8 北北西	8	1	0 E	3 1
	2020/1/2 2:00	4.2	8	1	C) 1	. 8	8 1	C		1	8	L	0	1 8	3 1	. 0	1	8	1	1.9	8 北	8	1	0 8	3 1

time

[Facility information(PV, Utility-scale)]

Using the following facility information, the amount of solar radiation is converted into PV power generation output This information should be organized by site.

PV facility information	example
Site name	Saga PV Site
Location(latitude/longitude)	Lat: 7.94YYYY, Lon: 81.25XXXX
Period of installation	1 year and 3 months since installation
panel azimuth angle	180° (due south)
panel tilt angle	10°
type of installation	Utility-scale
types of PV module	Monocrystalline Silicon, Polycrystalline Silicon, etc
Total amount of panel capacity (kW)	100,000kW
PCS series-name (manufacturer)	PCS-ABC1200E (produced by ABC solar Co.,Ltd.)
Total amount of PCS rated capacity (kW)	100,000kW

[Facility information(PV, Rooftop)]

Using the following facility information, solar radiation is converted into Rooftop PV power generation per resident(household). These information should be organized by area.

Rooftop PV facility information	example
Area name	Rooftop South
Representative Location(latitude/longitude)	Lat: 7.94YYYY, Lon: 81.25XXXX
Period of installation	(If possible)
Representative panel azimuth angle	180° (due south)
Representative panel tilt angle	10°
type of installation	Rooftops
Representative types of PV module	Monocrystalline Silicon, Polycrystalline Silicon, etc
Representative panel capacity kW) %per resident(household)	4.5kW
PCS series-name (manufacturer)	(If possible)
Total amount of PCS rated capacity (kW)	(If possible)

[Facility information(Wind power)]

Using the following facility information, wind speed and direction is converted into Wind power generation output. This information should be organized by site as in the table below.

Wind facility information	example					
Site name	ZZZZ WPP Site					
Location(latitude/longitude)	Lat: 7.94YYYY, Lon: 81.25XXXX					
Period of installation	8 months since installation					
number of wind turbines	11					
wind turbine rated capacity per unit (kW)	1,700 kW					
Total amount of wind turbine capacity (kW)	18,700 kW					
wind turbine hub height	60m					
power curve (includes cut–in, rated, cut–out wind speed) ※please refer to product catalog of wind turbine.	Produced Power nom. Power nout speed out speed out 					

[Facility information(VRE operation information)]

Operation information is useful for developing the VRE forecast model. For example, output reduction due to power control is not due to a meteorological phenomenon. Considering such information contributes to forecasting accuracy.

6.3.1 Comparison result of the actual and the predicted value

Contents

- 1. Comparison between the observed data and the forecasted data
- 2. Verification result of the accuracy of the VRE forecast model

1. Comparison between the observed data and the forecasted data

For SPP1 (Time series comparison)

Forecasted <u>Solar Irradiation and VRE output</u> data tend to be <u>underestimated</u>.
 <u>The fluctuation of actual data is larger than that of forecasted data.</u>

1. Comparison between the observed data and the forecasted data

For SPP2 (Time series comparison)

Forecasted <u>Solar Irradiation and VRE output</u> data tend to be <u>underestimated</u>.
 The fluctuation of actual data is larger than that of forecasted data

For WPP1 (Time series comparison)

Forecasted <u>Wind Speed</u> data tend to be <u>underestimated</u>.
 Forecasted <u>VRE output</u> data tend to be <u>overestimated</u>.

For WPP2 (Time series comparison)

Forecasted <u>Wind Speed</u> data tend to be <u>generally correct</u>.
 Forecasted <u>VRE output</u> data tend to be <u>overestimated</u>.

For WPP1 and WPP2 (Power Curve comparison)

1 About WPP1 and WPP2,

VRE forecast model was constructed based on similar power curve,

because the power curve information was not available.

Create a power curve based on the measured values (Wind Speed and Output) and apply it to the VRE forecast model.

2. Verification result of the accuracy of the VRE forecast model

We confirmed the current VRE forecast accuracy based on the observed data we received.

Accuracy of VRE forecast

140 $\frac{\sum_{i=1}^{N} \left| R_{fcst,i} - R_{obs,i} \right|}{\sum_{i=1}^{N} R_{obs,i}} \times 100$ Error(%) =120 Bad score 100 Robsi: Observed value, $R_{fcst,i}$: Forecasted value future goals (20%) Error (%) N: Sample number of targeting 80 period 60 40 20 Good score 0 WPP1 WPP2 WPP3 SPP1 SPP2 SPP3 SPP4 SPP5 2021/7/1~ 2021/7/1~ 2021/7/1~ 2021/7/1~ 2021/7/1~ 2021/7/6~ 2021/7/1~ 2021/7/1~ 2022/6/13 2022/6/13 2021/6/13 2022/6/13 2022/6/13 2022/6/13 2021/8/11 2022/6/13 N = 9942N = 15511 N = 13395N = N = N = N = 1015N = 10208 14659 12795 15774 No additional

data

IUBU

NIPPON KOEI

Contents

- 1. Obtaining the historical data for VRE accuracy improvement
- 2. Improvement of the VRE forecast model
- 3. The result of the improvement of the VRE forecast model

CEB provided the historical data to the JICA Expert team to develop the VRE forecast model so that the JICA Expert team develop the model and evaluated the accuracy of the VRE model by using the data below.

			SPP	WPP				
Receipt status		Utility PV		Roof	-top PV	W/DD1	WDD2	W/DD2
	SPP1	SPP2	SPP3	SPP4	SPP5	VVFFI	VVFF2	VVFFJ
	Vydexa solar power plant	Solar One Ceylon Power	SAGA SOLAR POWER		Rooftop PV Colombo	Vallimunai 10MW Wind Power plant	Mannar Wind power plant	Mampuri Wind Power Plant
Facility information (mainly location)	0	0	0	0	0	0	0	0
Weather observation data	O PYRANOMETER 2021/7/1~ 2021/10/21, 15min	O AIR TEMP, PYRANOMETER 2021/6/1~ 2021/10/21, 15min,	×	×	×	O Wind speed 2021/6/1~ 2021/9/30, 10min, Individual (8 turbins)	○ Wind speed 2021/6/21~ 2022/6/13, 10min, Individual (33 turbins)	×
VRE output data	○ 2021/7/1~ 2022/6/13, 5min, Total	0 2021/6/1~ 2022/6/13, 5min, Total		○ 2021/7/1~ 2021/8/11, 15min,	O 2021/7/1~ 2022/6/13, 5min, Total	O 2021/7/1~ 2022/6/13, 5min, Total	O 2021/7/1~ 2022/6/13, 10min, Total	2021/7/6~ 2022/6/13, 5min, Total

2. Improvement of the VRE forecast model

For WPP & SPP

- To calculate Error rate(%) correctly, exclude outliers in the data.
- Create correction coefficient to reduce Error from the relationship between the Actual data and the Forecast data.

For WPP

- For WPP
 Confirm the number of actual working wind turbines. to the VRE forecast model.

For SPP

Applied image.

- Investigate the cause of underestimation and difference in daily variations.
- Check the quality of observed data (solar radiation and solar power generation).

 Establish correction factors by comparing maximum values of observed and forecast data.

CHUBU

NIPPON KOEI

 The fluctuation of the actual data is much larger than that of forecasted data both irradiation and output

CHUBU Electric Power

NIPPON KOEI

 The fluctuation of the actual data is much larger than that of forecasted data both irradiation and output

NIPPON KOEI

✓ The accuracy improvement can be seen in both wind speed and output

HUBU

NIPPON KOEI

✓ The accuracy improvement can be seen in both wind speed and output

PON KOEI

✓ Forecast models both new and old tend to overestimation

CHUBU Flectric Power

6.4 Structure of the VRE forecast model of the whole land of Sri Lanka from the VRE forecast model

Contents

- 1. Methodology of approaching the area VRE forecast
- 2. Approach to area VRE forecast

NIPPON KOEI

(1) Preliminary analysis

1)Determination of the area represented by the forecast point2)Calculation of conversion factor(the ratio of outputs between point and area)

(2) Operational phase

- 1) Forecast weather at the forecast point
- 2) Forecast power output at the forecast point
- 3) Forecast areal power output representative by each forecast point
 - Multiply the power output at the forecast point by a conversion factor.
 - Summation of the number of power outputs by each VRE

2. Approach to Area VRE forecast

[Rooftop PV]

2. Approach to area VRE forecast

[SPP]

2. Approach to area VRE forecast

[WPP]

2. Approach to area VRE forecast

Forecast points

Information on forecast point

Forecast site (Total rated value)	Information on forecast site		Representative area (Total rated value)
WPP1(12MW)	Northern Win	d Power Plant	Area7(250MW)
WPP2(103.5MW)	Mannar Wind	Power Plant	Area8(315MW)
WPP3(10MW)	Mampuri V Plant	Vind Power	Area9(214.6MW)
SPP1(10MW)	Vydexa so Plant	lar Power	Area4(250MW)
SPP2(12.5MW)	Solar One (Ceylon Power	Area5(647MW)
		r Dowor	Area6(131MW)
SPP3(IUMW)	Saga Sola	rPower	Area3(63MW)
SPP4(50KW)	Kuliyapitiya	a Area	Area1(25.2 MW)
SPP5(90.9KW)	CEB Head	office	Area2(143 MW)
(Conversion	factor	
Forecast area (VRE type)	Conversion factor	Forecast area (VRE type)	Conversion factor
Area1(Roof top PV)	504	Area6(Utility PV)	13.1
Area2(Roof top PV)	1,573	Area7(Wind)	20.8
Area3(Roof top PV)	6.3	Area8(Wind)	3.04

Area9(Wind)

Area4(Utility PV)

Area5(Utility PV)

25

51.76

21.46

Contents

- 1. Overview of the VRE Conversion Tool
- 2. Example of the VRE Conversion Tool sheet
- 3. Evaluation of the accuracy of the VRE conversion tool

1. Overview of the VRE Conversion Tool

Difference between VRE forecast system and the tool

NIPPON KOEI

CHUBU Electric Power

1. Overview of the VRE Conversion Tool

MS Excel is made up of 3 types of below sheets.

- . Weather input data for SPP
- . Estimated VRE output data
- . Facility information for SPP
- Enter the same time series of the conversion source each weather data.
- Enter the facility information of the entered point.
- 3. Enter the number of points to be converted.
- 4. Press the button "Convert to VRE output".
- 5. VRE output time series data is output.

	A	в			D		E	F	
numt	er of point	5	3	Weather Da	ta Type : JWA Forecaste	d Data			
2	Time	No.1	U		No.3		No.4	No.	5
3	Date	Global solar radiation (%		Glob	al solar radiation (W/m2)		Global solar radiation (W/m2)	Global solar rad	iation (W/m2)
4 2021-11	-05T06:15		0	_		12	4		3
5 2021-1	-05T06:30		43			51	31		22
6 2021-1	-05T06:45	48	69			82	52		35
7 2021-1	-05107.00	84	113			132	90		01
9 2021-1	-0510715	157	202			233	130		116
10 2021-1	-05107.30	175	265			291	225		185
11 2021-11	-05T08:00	207	311			340	267		219
12 2021-11	-05T08:15	238	355			389	307		252
13 2021-11	-05T08.30	268	398			435	346		284
14 2021-1	-05T08:45	340	474			498	428		401
15 2021-1	-05109.00	371	515			541	400		437
17 2021	1-05109.15	426	553			61.9	503		504
18 2021		471	587			596	560		524
19 2021		94	615			625	588		550
20 2021		1	640			650	613		573
21 2021			661			671	635		594
22 2021		- 000 E70	672			604	402		579
24 2021		589	698			628	481		603
25 2021-1	-05T11:30	597	706			635	487		611
26 2021-11	I-05T11:45	621	751			590	495		450
27 2021-11	-05T12:00	623	752			591	496		451
28 2021-1	-05T12:15	P 621	749			589	495		450
30 2021-1	-05T12:30	576	628			570	402		447
31 2021-11	-05T13:00	566	616			559	422		435
32 2021-11	-05T13:15	553	601			546	412		425
33 2021-1	-05T13:30	537	583			530	401		41.4
34 2021-1	-05T13:45	527	445			539	356		366
35 2021-11	-05114300	401	420			D17	342		352
37									
38					_		~		
		A			В		U		U
1		faci	lity information	n			No 1		No 2
		1401		· · · ·	(0.)		140.1		140.2
- 2 -		latitu	de		()		8.7	/69302	
3		longitu	ido		(°)		803	REGEVE	
0		Iongia	aue		<u> </u>	_	00.0	000040	
4		panel azimu	ith angle					180	
5		renel tilt	angle		2			10	
6		turns of in-	telletie e		2			at a d	
0		type of ins	tallation			_	erouna-mour	ited	
7		types of P\	/ module				Monocrystall	line	
8	Т	otal amount of	panel capacity	/	kW	1		10.000	

	А	В	С	
1			Convert to VRE output	4
2	Time	No.1	No.2	
3	Date	estimated VRE output (kW)	estimated VRE output (kW)	e mated VRE output (kW)
4	2021-11-05T06:15	238.0	441.1	418.5
5	2021-11-05T06:30	402.1	707.8	672.9
6	2021-11-05T06:45	689.3	1159.1	1 083.2
7	2021-11-05T07:00	984.7	1610.5	1501.7
8	2021-11-05T07:15	8.4	2072.1	1912.0
9	2021-11-05T07:30		2718.3	2388.0
10	2021-11-05T07:45	E C	3190.2	2790.1
11	2021-11-05T08:00	- C	3641.5	3192.2
12	2021-11-05T08:15		4082.6	3569.7
13	2021-11-05T08:30	.1	4862.2	4086.7
14	2021-11-05T08:45	0 44.5	5282.7	4439.6
15	2021-11-05T09:00	3274.3	5672.5	4767.8
16	2021-11-05T09:15	3495.8	6041.8	5079.6
17	2021-11-05T09:30	3865.1	6021.3	4890.9
18	2021-11-05T09:45	4053.9	6308.5	5128.9
19	2021-11-05T10:00	4226.2	6565.C	5334.0
20	2021-11-05T10:15	4373.9	6780.4	5506.4

2. Example of the VRE Conversion Tool sheet (1/3)

Weather input data for WPP (e.g. Input sheet)

	A	В	С	D	E
1	number of point	2	Weather Data Type : JWA Forecasted Data		
2	Time	No.1	No.2	No.3	No.4
3	Date	Wind speed (m/s)	Wind speed (m/s)	Wind speed (m/s)	Wind speed (m/s)
4	202209010615	4.6	7.1		
5	202209010630	4.5	7.1		
6	202209010645	4.6	7.2		
7	202209010700	4.8	7.2		
8	202209010715	4.9	7.3		
9	202209010730	5	7.4		
10	202209010745	5.1	7.3		
11	202209010800	5.1	7.2		
12	202209010815	5.3	7.2		
13	202209010830	5.3	7.1		
14	202209010845	5.4	7.1		
15	202209010900	5.5	7.1		
16	202209010915	5.5	7.1		
17	202209010930	5.6	7.1		
18	202209010945	5.6	7.2		
19	202209011000	5.6	7.2		
20	202209011015	5.5	7.2		
21	202209011030	5.5	7.2		
78 22	202209011045	5.5	7.2		

2. Example of the VRE Conversion Tool sheet (1/3)

Weather input data for SPP (e.g. Input sheet)

number of point

3

Weather Data Type : JWA Forecasted Data

Time	No.1	No.2	No.3
Date	Global solar radiation (W/m2)	Global solar radiation (W/m2)	Global solar radiation (W/m2)
202209010615			3
202209010630			22
202209010645			42
202209010700			74
202209010715			108
202209010730			143
202209010745			169
202209010800			202
202209010815			233
202209010830			263
202209010845			309
202209010900			339
202209010915			366
202209010930			392
202209010945			443
202209011000			466
202209011015			487
202209011030			506
202209011045			575

2. Example of VRE Conversion Tool sheet (2/3)

Facility information for WPP

Old Version

facility information	No.1	No.2	No.3	
number of wind turbines		8	30	8
wind turbine rated capacity per unit	kW	1500	3450	1250
wind turbine hub height	m	85	80	60
Wind speed Classs (m/s)_0~30	kW			
0		0	0	0
0.5		0	0	0
1		0	0	0
1.5		0	0	0
2		0	0	0
2.5		25.9	0	0
3		52.4	34.5	0
3.5		85.8	113.3	0
4		125.7	211.8	11
4.5		175.1	329.9	35
5		240	472.6	64
5.5		342	645	90
6		430	850.7	128
6.5		531	1095	184
7		660	1377	239
7.5		790	1699	321
8		961	2058	403
8.5		1125	2450.7	541
9		1280	2854	679
9.5		1376	3193	825
10		1432.7	3414.6	970

New Version

facility information		No.1	No.2	No.3
number of wind turbines		8	30	8
wind turbine rated capacity per unit	kW	1500	3450	1250
wind turbine hub height	m	85	80	60
Wind speed Classs (m/s)_0~30	kW			
0		0	C	0
0.5		0	C	0
1		0	C	0
1.5		0.0143	C	0
2		3.33499	0.03586	0
2.5		10.4007	0.3108	0
3		28.0695	7.95574	0
3.5		56.2602	45.0725	0
4		87.2851	115.473	11
4.5		125.373	206.496	35
5		170.913	319.706	64
5.5		225.66	448.975	90
6		299.705	600.189	128
6.5		373.427	775.157	184
7		461.571	981.651	239
7.5		559.789	1217.92	321
8		667.268	1482.95	403
8.5		786.942	1780.18	541
9		916.402	2054.32	679
9.5		1018.99	2339.68	825
10		1147.3	2656	970
105		1234.53	290319	1095

 Power curves are adjusted based on the analyses between actual data and forecast data of wind speed and VRE output

2. Example of VRE Conversion Tool sheet (2/3)

Facility information for SPP

Old Version

facility information		No.1	No.2	No.3	No.4	No.5
latitude	deg	8.769302	7.975383333	6.22	7.469655377	6.930312773
longitude	deg	80.359545	81.23839722	81.085	80.05004525	79.84709214
panel azimuth angle	deg	-	-	180	270	210
panel tilt angle	deg	-	-	10	35	8
type of installation		ground-mounted	ground-mounted	ground-mounted	Roof-mounted	Roof-mounted
types of PV module	_	Mono PERC	Monocrystalline	Monocrystalline	Monocrystalline	Polycrystalline
Total amount of panel capacity	kW	10,000	12500	10000	179	90.885

New Version

facility information		No.1	No.2	No.3	No.4	No.5
latitude	deg	8.769302	7.975383333	6.22	7.469655377	6.930312773
longitude	deg	80.359545	81.23839722	81.085	80.05004525	79.84709214
panel azimuth angle	deg	-	-	180	270	210
panel tilt angle	deg	-	-	10	35	8
type of installation		ground-mounted	ground-mounted	ground-mounted	Roof-mounted	Roof-mounted
types of PV module		Mono PERC	Monocrystalline	Monocrystalline	Monocrystalline	Polycrystalline
Total amount of panel capacity	kW	10,000	12500	10000	179	90.885
*Correction parameter		1	1	0.72304022	0.861968895	0.882200678

 Correction parameters are set based on the analyses between actual data and forecast data of VRE output

2. Example of the VRE Conversion Tool sheet (3/3)

Estimated VRE output data (e.g. Beta WP, Mannar WP)						
		Convert to VRE output				
Time	No.1	No.2	No.3			
Date	estimated VRE output (kW)	estimated VRE output (kW)	estimated VRE output (kW)			
202209010615	2686.6	71251.2				
202209010630	2526.5	71251.2				
202209010645	2686.6	73805.7				
202209010700	3010.7	73805.7				
202209010715	3202.2	76360.1				
202209010730	3393.6	78914.5				
202209010745	3585.1	76360.1				
202209010800	3585.1	73805.7				
202209010815	3999.5	73805.7				
202209010830	3999.5	71251.2				
202209010845	4212.9	71251.2				
202209010900	4426.2	71251.2				
202209010915	4426.2	71251.2				
202209010930	4654.8	71251.2				
202209010945	4654.8	73805.7				
202209011000	4654.8	73805.7				
202209011015	4426.2	73805.7				
202209011030	4426.2	73805.7				
202209011045	4426.2	73805.7				

2. Example of the VRE Conversion Tool sheet (3/3)

Estimated VRE output data (e.g. Saga SP)

		Convert to VRE output	
Time	No.1	No.2	No.3
Date	estimated VRE output (kW)	estimated VRE output (kW)	estimated VRE output (kW)
202209010615	0.0	0.0	249.7
202209010630	0.0	0.0	476.7
202209010645	0.0	0.0	839.9
202209010700	0.0	0.0	1225.8
202209010715	0.0	0.0	1623.0
202209010730	0.0	0.0	1918.1
202209010745	0.0	0.0	2292.6
202209010800	0.0	0.0	2644.5
202209010815	0.0	0.0	2984.9
202209010830	0.0	0.0	3507.0
202209010845	0.0	0.0	3847.5
202209010900	0.0	0.0	4153.9
202209010915	0.0	0.0	4449.0
202209010930	0.0	0.0	5027.9
202209010945	0.0	0.0	5288.9
202209011000	0.0	0.0	5527.2
202209011015	0.0	0.0	5742.9
202209011030	0.0	0.0	6526.0
202209011045	0.0	0.0	6707.6

- Evaluation Period : Sep.1 to Sep.9 in 2022
- Evaluation Points: WPP1(Beta WP), WPP2(Mannar WP), and SPP3(Saga SP)
- Input data : Forecast data created by the weather forecast system during the evaluation period
- Output data : VRE output data calculated by the VRE conversion tool and VRE forecast system
- Referring data: VRE output data measured in the evaluation points provided by CEB

CHUBU Electric Power

NIPPON KOEI

CHUBU Electric Power

NIPPON KOEI

- 1. Sri Lanka entire VRE(SPP) output forecast verification
- 2. How to estimate whole Sri Lanka VRE
- 3. (FYI)How to make demand in CEPCO
- 4. (FYI) Supply demand actual value in CEPCO

1. Sri Lanka entire VRE(SPP) output forecast verification

	Forecast	Actual data
Weather forecast	Weather forecast model based on facility info(longitude, latitude)	Metering value by pyranometer, anemometer
Individual SPP VRE output	conversion tool based on weather forecast Weather Forecast JWA/DOM/Others	Metering value by SM(smart meter)
Whole Sri Lanka VRE output	Conversion factor \times SPP and WPP VRE output forecast based on weather forecast	Assuming that all rooftop PV are not necessarily equipped with SM, need to somehow estimate value.
		How does CEB estimate this value?

2. How to estimate whole Sri Lanka VRE

Sri Lanka case				
	weather forecast	weather actual	Output forecast	Output actual
IRBGS 132-400kV	Weather forecast model	Pyranometer at the spot		
Embedded Under 33kV		DOM meter		

Japan case(before all of SMs are equipped)

: ★

VRE actual value estimate = over 2MW VRE(monitored from CLDC)

Metering points by DOM

+Surplus power contract estimate(deducted by self consumption) +Total power purchase contract estimate

How to verify VRE output actual data in CEPCO

Even without SM, monthly metering for billing is available to verify the forecast data.

3. (FYI)How to make demand in CEPCO

- Whole demand = \sum generation = \sum Thermal + \sum Hydro + \sum mini Hydro + \sum nuclear + \sum Biomass + \sum WPP + \sum SPP + \sum others
- CEPCO has 4 types of demand;
 - 1 minute instant value : to show on power system board
 - 5 minute instant value : to post on <u>HP</u> for external
 - Preliminary value(30 min value) : fixed every 30 min
 - Confirmed value(30 min value) : fixed one day after target day

NIPPON KOEl

4.(FYI) Supply demand actual value in CEPCO

Contents

The tendency of forecast accuracy by condition
 The result of the improved VRE forecast model
 Alternative observation data for SPP and WPP
 How to improve the VRE forecast model
 Future plan of the project

1._The tendency of forecast accuracy by condition

Condition	Weather data (CEB,IPP)	Weather data (DOM)	Output data of VRE	Facility informat ion
C1	0	×	0	0
C2	×	0	0	0
C3	×	×	0	0
C4	×	0	×	0
C5	×	×	×	0

Data acquisition condition

 \bigcirc : Available, × : Not available DOM : Department of Meteorology, Sri Lanka

VRE Forecast Accuracy(image)

The Accuracy of the VRE forecast model depends on the condition of data acquisition

2. The result of the improved VRE forecast model

HUBU

3. Alternative observation data for SPP and WPP

Forecast Point	Improvement Plan
In common	 Check data recording specifications (instantaneous/average values) Collect the historical data(CEB, DOM, etc.)
WPP1	Analyze the data hourly/ seasonally
WPP2	Ditto
WPP3	 Adjust the Power Curve by historical data of wind speed Analyze the data hourly/ seasonally
SPP1	Analyze the data hourly/ seasonally
SPP2	Ditto
SPP3	Ditto
SPP4	Ditto
SPP5	Ditto

Within the project(Phase II)

- Collecting historical weather and VRE output data necessary to improve VRE forecast [1 month]
- Improve the accuracy of the VRE forecast model [3 months]
- Continue to deliver the improved VRE forecast [2 months]

At the end of the project

Proposal on how to obtain weather forecast data for VRE

forecast

- Parchasing the weather forecast data (e.g. Irradiation, wind speed) from Weather bender including JWA
 - Follow-up on output forecasts using the conversion tool

CEYLON ELECTRICITY BOARD

Sri Lanka Power Sector and Recent Developments

Transmission Planning Unit Transmission Division May 2020

1

ELECTRICITY DATA FOR 2018

- Installed capacity
- Peak Demand
- * Net Electricity Generated
- Generation Mix
- * Capacity Mix

- * Tr. And Dist. losses
- Load Factor
- ***** Access to Electricity
- * Elec. Consumption per Capita
- Avg. Cost per unit (at selling point 2018)
- Avg. selling price (2018)

- 4048 MW
- 2616 MW
- 15305 GWh
- Hydro and Other RE 46%
- Thermal 54 %
- Hydro & Other RE 49%
- Thermal 51%
- **7.9** %
- 66.8%
 - 99%
 - 626 kWh
 - 19.12 Rs/kWh
 - 16.29 Rs/kWh

EXISTING GENERATION SYSTEM

Power Plant	Capacity (MW)	Total Capacity (MW)	
Large Hydro			
Laxapana Complex	369.8		
Mahaweli Complex	816.8	1399	
Samanala Complex	212.25	1333	
Thermal (CEB)			
Lakvijaya Coal Power Plant	900		
Sapugaskanda	160		
Kelanitissa Thermal Complex	360	1504	
Uthuru Janani	24		
Barge Mounted Power Plant	60		
Thermal (IPP)			
West Coast Combined Cycle	270		
Sojitz Combined Cycle	163	533	
ACE Power Embilipitiya	100		

Other Renewable Energy Technology	No of Projects	Capacity (MW)
Mini Hydro Power	210	394
Biomass	12	37
Solar Power- Parks	8	51
Wind Power	15	128
Solar Roof Top (Approx.)		170
Total	780	

Total Installed Capacity 4216 MW

Updated as per the installed capacity on 31st December 2018

Installed Capacity and Generation as at 31st Dec 2019

	Installed Capacity (MW)	Generation (GWh)
Major Hydro	1399	3785
Mini-hydro	406	1001
Wind	128	340
Solar PV	251	242
Biomass	40	117
Coal	900	5360
Oil	1282	5014
	4406	15859

CAPACITY MIX OF THE BASE CASE PLAN FOR NEXT 20 YEARS

Major Renewable Projects in the Pipeline

Project	Present Status	Year of Operation
120MW Uma Oya	Under Construction	2021
35MW Broadlands	Under Construction	2020
31MW Moragolla	Under Construction	2023
15MW Thalpitigala	Feasibility Study Completed	2024
20MW Seethawaka	Prefeasibility Completed	2023
100 MW Mannar Wind Park	Under Construction	2020
37X1 MW Solar Parks	Under Construction	2021
90x1MW Solar Parks	Awarded/under Construction	2021
150 MW Dist. Solar	Bidding stage	2022
100 MW Solar Parks	Prefeasibility is being done	2020
100 MW Mannar Wind Ph 2	Procurement process yet to start	2023

Solar Power Development in the Pipeline

- LTGEP 2020 -2039 has identified cumulative capacity of 730 MW Solar power by 2025 which includes
- Rooftop Solar Power program
- 37x 1 MW Solar Parks
- 90 x 1 MW Solar Parks
- 2x10 MW Solar Parks
- 150 MW Dist. Solar Parks
- Utility Scale Solar Parks
- Pooneryn & Siymbalanduwa Land Based Locations Identified
- Floating Type / Highway Solar ..etc Concepts also envisioned

- LTGEP 2020 -2039 has identified cumulative capacity of 638 MW wind power by 2025 which includes
 - Mannar WPP Phase I
 - Mannar WPP Phase II and Phase III
 - 240 MW WPP at Pooneryn

2018 Sri Lankan Transmission System

Description	Number of GSS	Total Capacity (MVA)
Grid Substations		
132/33 kV	56	4474
220/132/33 kV	4	1600/380
220/33 kV	1	75
132/11 kV	5	369
220/132kV	4	1510

Transmission Lines	Length (km)		
220 kV, Double circuit	582		
220 kV, Single Circuit	20		
132 kV, Four Circuit	4		
132 kV, Double Circuit	1867		
132 kV, Single Circuit	415		
132 kV UG cable	51.5		

Reactive Power Sources	Capacity
Capacitors (BSC)	485 Mvar

Transmission Network Improvement

2018

Transmission Network Improvement

Future Options-conventional Generation HVDC Link Between Sri Lanka and India

- Technical and Economical feasibility studies are carried out between CEB and Power Grid India to interconnect two Networks by DC link.
- Project to be expedite as soon as the completion of the Feasibility Studies.

ORE CAPACITY ADDITIONS

Thank You ...

Technical issues and measures for supply and demand operation of Sri Lankan power system with increasing VRE.

Understanding the Daily Load Profile

Demand Curve on Typical Week Day -July 2019

Typical Demand Curve of Sunday

Demand Curve on 18th October 2020-Weekend

Coal 3 units are at minimum
 Load except for night peak

- Almost all Hydro plants during off peak are R/R and ponds to avoid the spilling
- Cyclic operation of Coal
 Plants is not possible
- No provision for further NCRE specially during off peak under present demand condition.

During off Peak

- Coal 3 units are at minimum Load
- No Thermal
- Hydro and available Wind

- Almost all Hydro plants during off peak are R/R and ponds to avoid the spilling
- Cyclic operation of Coal Plants is not possible
- No provision for further NCRE specially during off peak under present demand condition.

New Year 2019

New Year 2020

Sudden Demand Variation due to Rain

Solar Power Output Variation with Daily Total Generation Requirement

Variation of Solar Power at 11.00 hrs daily

Welikanda 10 MW Solar profile from Jan 2019 to July 2020

Hambanthota 30 MW Sloar Variation

Levelized Average varies between 40-50% of rated Capacity

Welikanda 10 MW Solar Variation

Wind Power Profile for last 4 days (Low wind period)

Norechchole 65 MW Wind Profile on April 2019

Wind Profile in high wind season

Day with very less fluctuations

Constraints in present power system operations with high VRE Penetration

- Maintain the balance between supply and demand with high VRE penetration specially in during low demand hours (during rainy day with high wind profiles, etc.).
- Cyclic operations of Coal plants are not possible.
- Even some of combined cycle plants also reluctant to do the cyclic operations due to frequent maintenance and high start up costs.
- Supply demand imbalance with Intermittent nature of the Solar and Wind with high VRE penetration.
- Non availability of real time monitoring facility of VRE

Possible measures to minimize the operational issues with high VRE Penetration

- New VRE projects shall be developed with provision for proper curtailment policy.
- Precise VRE forecasting system shall be implemented.
- Real time monitoring of VRE shall be facilitated at National System Control Centre. Further, remote controlling facility for switching ON/OFF of the grouped VRE installations when there are small scale VRE installations.
- Installation of Pump storage plants to cater the more VRE.
- Having a proper Reserve margin for catering the intermittency and costing the same.
- Declaration of Plant availability may be hourly (depending on the installed capacity)

Other Technical Issues

- Replacing conventional generators with VRE leads to lower the system inertia and significant affect the system frequency stability
- Replacing conventional generators with VRE leads to lower the capability of primary frequency regulation.
- Tripping of VRE s (specially Mini Hydro Plants) for system disturbances leading to intensify the frequency instability of the system.

Possible measures minimize the other technical issues with high VRE Penetration

- Emerging technologies for improving the system inertia shall be incorporated for future plans.
- Batteries can be used as fast acting reserves for primary frequency regulation with proper evaluation on cost vs requirement.
- VRE plants should be able to operate continuously during the system disturbances such as sudden frequency / voltage fluctuation. CEB VRE interconnection code must be satisfied.
- Maximum limit of VRE penetration shall be evaluated by considering the operational and other stability constraints in the system.

Thank You

Long Term Generation Expansion Plan

2023-2042

Generation Planning Unit Transmission & Generation Planning Branch Ceylon Electricity Board

Background

2021 July

CEYLON ELECTRICITY BOARD

LONG TERM GENERATION EXPANSION PLAN 2022-2041

2021 July-September

Key Highlights of Sri Lanka's Nationally Determined Contributions and Vision for a Low Carbon Future

Sri Lanka is highly vulnerable to the adverse impacts of climate change. The country focuses on building the resilience of Agriculture, Fisheries, Livestock, Health, Water, Biodiversity, Coastal and Marine, Tourism, Urban Planning and Human Settlement sectors

Sri Lanka's per capita greenhouse gas emission in 2010 was **1.02** tons and its global cumulative contribution in 2019 was **0.03%**.

Despite this low carbon footprint and highly vulnerable status, Sri Lanka commits to increase **32%** forest cover by 2030 and reduce greenhouse gas emissions by **14.5%** for the period of 2021-2030 from **Power (electricity generation)**, **Transport, Industry, Waste, Forestry, and Agriculture**

In order to realize this ambitious target, Sri Lanka further commits;

- > To achieve **70%** renewable energy in electricity generation by 2030
- > To achieve Carbon Neutrality by 2050 in electricity generation
- No capacity addition of Coal power plants

Sri Lanka has already launched following major initiatives;

- \succ Adopting 'Colombo Declaration on Sustainable Nitrogen Management' with an ambition to halve nitrogen waste by 2030
- Banning agro-chemicals and chemical fertilizer
- Promoting organic fertilizer and farming
- Banning single-use plastics
- Promoting E-mobility
- Promoting circular economy

Sri Lanka expects to achieve its **Carbon Neutrality** by 2050

2021 October

இ ஒ்னி இலங்கைப் பொதுப் பயன்பாடுகள் ஆணைக்குழு PUBLIC UTILITIES COMMISSION OF SRI LANKA

මතේ අංකය உழது இல. Your No.

PUC/LIC/AP21/01

දිනය නියනි 5th October 2021

- To achieve 70% renewable energy in electricity generation by 2030
- To achieve Carbon Neutrality by 2050 in electricity generation

අපේ අංකය

எமது இல.

No capacity addition of Coal power plants

The Commission requires you to submit the Least Cost Long Term Generation Expansion Plan prepared in compliance with the government policy on or before 30th June 2022.

Thank you, Yours Sincerely,

Public Utilities Commission of Sri Lanka

Public Utilities Commission of Janaka Ratnayake Chairman

Conditionally approved !!!

Global International Commitments

CLIMATE CRISIS Net zero pledges

More than **137 countries have committed to net zero**. India and Nigeria were the latest nations to make the pledge at COP26, with India expecting to reach the target by 2070.

CLIMATE

Pledge to quit coal

At COP26, more than 40 countries have pledged to shift away from coal

Afghanistan	Cook Islands	= Iraq	📕 Mozambique	Slovenia
Albania	Secosta Rica	I Ireland	Myanmar	Solomon Islands
Algeria	Côte d'Ivoire	Israel	📁 Namibia	Somalia
M Andorra	Croatia	I Italy	Mauru 🖬	South Africa
🛤 Angola	E Cuba	Jamaica	Is Nepal	South Sudan
Antiqua & Barbuda	Cyprus	I Japan	S Netherlands	Spain
Argentina	Czech Republic	E Jordan	New Zealand	Sri Lanka
Armenia	E Denmark	Kazakhstan	Nicaragua	E Sudan
Maustralia	Diibouti	# Kenva	I Niger	suriname 🛤
= Austria	I Dominica	Kiribati	II Nigeria	Eswatini
Azerbaijan	S Dominican Republic	North Korea	🗾 Niue	Sweden
E Bahamas	Ecuador	South Korea	Morway	Switzerland
📁 Bahrain	Egypt	Kuwait	🖬 Oman	Syria S
Bangladesh	El Salvador	Kvrgvzstan	Pakistan	🚍 Tajikistan
M Barbados	Equatorial Guinea	Laos	🗖 Palau	M Tanzania
Belarus	Eritrea	= Latvia	E Palestine	📻 Thailand
Belgium	💻 Estonia	I Lebanon	Panama	💴 Timor-Leste
Belize	📫 Ethiopia	I Lesotho	📁 Papua New Guinea	🖼 Togo
📁 Benin	European Union	📫 Liberia	I Paraguay	🚚 Tonga
💴 Bhutan	Fiji	📫 Libya	11 Peru	M Trinidad & Tobago
🚅 Bolivia	+ Finland	Eliechtenstein	Philippines	🖬 Tunisia
Bosnia & Herzegovina	II France	📁 Lithuania	Poland	📁 Turkey
🗮 Botswana	Gabon	= Luxembourg	Portugal	Turkmenistan
🛤 Brazil	🛤 Gambia	Se North Macedonia	Qatar 🖉	📰 Tuvalu
≤ Brunei	# Georgia	Madagascar	Romania	📁 Uganda
Bulgaria	Germany	Malawi	🛤 Russia	🗖 Ukraine
Burkina Faso	🚅 Ghana	🛤 Malaysia	🚅 Rwanda	C United Arab Emirates
🖾 Burundi	III Greece	Maldives	M St. Kitts & Nevis	United Kingdom
🗖 Cambodia	🗾 Grenada	Mali	🛤 St. Lucia	United States
Cameroon	🖬 Guatemala	💶 Malta	M St. Vincent & Grenadines	🛤 Uruguay
📢 Canada	💶 Guinea	Marshall Islands	📁 Samoa	🚍 Uzbekistan
📰 Cape Verde	💴 Guinea-Bissau	Mauritania	🛥 San Marino	🛤 Vanuatu
I CAR	🛤 Guyana	Mauritius	🛤 São Tomé & Príncipe	🖬 Venezuela
LI Chad	📫 Haiti	Mexico	🛤 Saudi Arabia	💴 Vietnam
🕨 Chile	= Honduras	Micronesia	III Senegal	= Yemen
📁 China	Hungary	Moldova	Me Serbia	Zambia
🖬 Colombia	Iceland	= Monaco	Seychelles	🜌 Zimbabwe
Second Comoros	India 🖾	Mongolia	Sierra Leone	
DRC	ndonesia 🛤	Montenegro	🚝 Singapore	
🜠 Congo	Iran 🚅	Morocco	Slovakia	

Policy Directives

GENERAL POLICY GUIDELINES FOR THE ELECTRICITY INDUSTRY

General Policy Guidelines formulated in terms of Section 5(1) of the Sri Lanka Electricity Act No. 20 of 2009 was approved by the Cabinet of Ministers as required by Section 5(3) of the Saud Act at its meeting held on 01.11.2021.

9. The GOSL has set the targets of achieving 70% of electricity generation in the country using renewable energy sources by 2030 and carbon neutrality in power generation by 2050, and has decided to cease building of new coal-fired power plants. The Cabinet of Ministers has approved these two policy elements that shall form the basis of Sri Lanka's future electricity capacity expansion planning.¹. Further, new addition of firm capacity will be from clean energy sources such as regasified liquefied natural gas (RLNG).

Repelling of clauses from 2019 General Policy Guideline that reflect.

Removal of firm capacity requirement of 2/3rd of demand of power.

+

Removal of firm capacity mix ratios defined from coal, Natural gas, locally refined oil and Hydro

+

Removal of 1/3rd of demand of power from NCRE sources.

Demand Forecast 2023-2047

Voor	Demand	System Loss	Generation	Peak	
rear	GWh	%	GWh	MW	
2023	16,741	7.95	18,186	3,021	
2024	17,705	7.89	19,222	3,149	Night Pea
2025	18,725	7.83	20,317	3,283	
2026	19,854	7.77	21,526	3,432	
2027	21,124	7.70	22,886	3,651	
2028	22,419	7.63	24,272	3,890	
2029	23,794	7.57	25,741	4,127	
2030	25,253	7.50	27,300	4,378	🛛 🦵 🖉 Day Peak
2031	26,801	7.45	28,958	4,645	
2032	28,165	7.40	30,415	4,880	50.000
2033	29,601	7.35	31,949	5,127	50,000
2034	31,099	7.30	33,548	5,385	45,000
2035	32,646	7.25	35,198	5,652	40,000
2036	34,241	7.25	36,917	5,929	35 000
2037	35,879	7.25	38,684	6,214	
2038	37,547	7.25	40,482	6,504	§ 30,000
2039	39,253	7.25	42,321	6,801	면 25,000
2040	41,002	7.25	44,207	7,106	E 20.000
2041	42,777	7.25	46,120	7,415	
2042	44,584	7.25	48,070	7,730	15,000 —
2043	46,431	7.25	50,061	8,051	10,000
2044	48,321	7.25	52,098	8,380	5,000
2045	50,259	7.25	54,188	8,718	
2046	52,248	7.25	56,332	9,064	2023
2047	54,315	7.25	58,560	9,426	

ak

Typical Day Load Curve Pattern

- Day Peak Growth Faster than Night Peak Growth.
- Day peak would surpass the Night peak in year 2026

Consideration in Different timeframes

Ultra Short	Very Short	Short	Medium	Long	Very Long
Term	Term	Term	Term	Term	Term
Sub second	Second to	Minutes to	Hours to	Days to	Months
to second	Minutes	Hours	Days	Months	to years
Dynamic Stability (Inertia, Grid Strength)	Primary and Secondary Frequency Control (AGC)	Automatic Generation Control, Economic Dispatch, regulating reserves	Hourly Dispatch, Unit commitment for day ahead	Unit Commitment, Scheduling, Monthly Capacity Adequacy	Hydro Thermal Coordination, Capacity adequacy, System Reliability

Resource Modelling - Solar Parks

System Advisor Model (SAM)

- Ground Mounted (Single Axis Tracking) / Floating Solar
- Hybrid Parks with Storage
- Dispatchable with Curtailment Policies

Resource Modelling - Distributed Solar

Location	Annual PF	Location	Annual PF	Location	Annual PF	Location	Annual PF
Dehiwala	17.80%	Horana	16.98%	Kurunegala	17.48%	Balangoda	17.36%
Colombo	17.74%	Veyangoda	16.90%	Anuradhapura	17.86%	Nuwaraeliya	15.46%
Katunayaka	17.91%	Pannala	18.03%	Vavuniya	17.72%	Habarana	17.58%
Bolawatta	17.97%	Chunnakam	18.50%	Kilinochchi	17.79%	Embilipitiya	17.80%
Madampe	18.08%	Mathugama	17.19%	Matara	18.49%	Mahiyanganaya	16.75%
Puttalam	18.07%	Kirindiwela	17.35%	Deniyaya	16.46%	Badulla	16.50%
Panadura	17.49%	Galle	18.23%	Nawalapitiya	15.87%	Polonnaruwa	17.60%
Pannipitiya	17.44%	Seethawaka	16.98%	Kiribathkumbura	16.87%	Hambanthota	18.95%
Biyagama	17.39%	Thulhiriya	17.33%	Pallekele	16.89%	Trincomalee	17.93%
Aniyakanda	17.49%	Maho	17.72%	Ukuwela	16.52%	Monaragala	17.38%
Ambalangoda	18.01%	Ratnapura	16.43%	Naula	17.22%	Ampara	17.69%
Kosgoda	17.82%	Kegalle	17.21%	Beliatta	18.24%	Vavunathivu	17.90%

Resource Modelling - Wind

Five wind regimes were identified and wind plants were modelled based on actual site measurements for wind Production estimation

Wind	Annual Plant
Regime	Factor
Mannar	40.7%
Puttalam	31.4%
Hill country	19.1%
Northern	34.1%
Eastern	27.3%

Highlights of the Base Case Plan

Increased Level of VRE Integration

- ~ 500 MW Annual Solar PV Capacity Additions
 - ~ 150 MW Annual Wind Capacity Additions

Large Scale Energy Storage Deployment

- 1,400 MW Pumped Storage development by 2032

 - 1,125 MW Battery Energy Storage development by 2030 / 4,670 MW Battery Energy Storage development by 2042

70% RE TARGET

More Flexible Thermal Generation

- 1,130 MW Gas Turbine Power Plants
 - 850 MW IC Engine Power Plants

High Initial Investment

- Average annual generation and storage capacity investment of 1.25 USD Billion up to 2030

- Average annual generation and storage capacity investment of 1.43 USD Billion up to 2042

*This investment requirement contains only the investments needed on generation capacity and storage additions.

Future Capacity Mix at Key Years

Base Case Plan Additions & Retirements

					Gross Ca	apacity Add	ition (MW)				
Year	Gas Turbines	IC Engines	Coal	Combined Cycle	Major Hydro	Battery Storage	Pumped Hydro	Short Term	ORE	Existing Plant Retirements	Battery Storage Retirements
2022					155				309		
2023				240 (GT)				320	407		
2024	130			350 (ST+GT)	31	20		(200)	623	(130)	
2025				110 (ST)		100			650	(255)	
2026		200				180		(120)	835		
2027	100					200			795		
2028						350			775	(10)	
2029						150	350		835		
2030						125	350		711	(31)	
2031						125	350		692	(12)	
2032						125	350		660	(385)	
2033						150			694	(14)	
2034	100					200			737	(347)	(20)
2035	100	250				245			705	(25)	(100)
2036	200					380			730	(40)	(180)
2037	200					400			775	(85)	(200)
2038		200				550			785	(85)	(250)
2039	200					350			820	(120)	(150)
2040		200				340			793	(413)	(125)
2041	100			400		340			958	(278)	(125)
2042						340			958	(264)	(125)
Total	1,130	850	0	1,100	31	4,670	1,400	0	14,938	(2,494)	(1,150)

Renewable Energy Development Annual Additions (in MW)

Туре	Major Hydro	Mini Hydro	Biomass	Wind	Distribution Network Embedded Solar	Grid Connected Partially Facilitated Solar	Grid Connected Fully Facilitated Solar (park)	Total Solar
Present Cumulative Capacity (2021)	1383	415	50	248	515	100	-	615
2022	155	20	10	-	160	94	-	254
2023	-	20	20	25	160	147	-	307
2024	31	20	20	60	160	223	100	483
2025	-	25	20	200	165	80	260	505
2026	-	25	20	290	170	70	260	500
2027	-	25	20	250	170	50	280	500
2028	-	25	20	200	170	40	310	520
2029	-	25	20	250	170	20	350	540
2030	-	10	20	200	170	30	250	450
2031	-	10	20	200	170	30	250	450
2032	-	10	20	150	170	30	250	450
2033	-	10	20	150	170	30	300	500
2034	-	10	20	150	180	30	300	510
2035	-	10	10	150	180	30	300	510
2036	-	10	10	150	190	30	300	520
2037	-	10	10	150	190	30	300	520
2038	-	10	10	150	200	30	300	530
2039	-	10	10	150	200	30	300	530
2040	-	-	10	150	200	20	300	520
2041	-	-	10	150	200	20	300	520
2042	-	-	10	150	200	20	300	520

Renewable Energy Development – Past & Future (Excluding Major Hydro)

Base Case Plan – Annual Investment Requirement

	Thermal	Renewables	Storage	Total
Average annual investment requirement for 2023-2030	USD 125 million	USD 744 million	USD 358 million	USD 1,226 million
Average annual investment requirement for 2031-2042	USD 109 million	USD 1,022 million	USD 446 million	USD 1,578 million
Average annual investment requirement for total horizon	USD 116 million	USD 911 million	USD 411 million	USD 1,438 million

Capacity Mix and Energy Mix (2030)

Capacity Mix

Energy Mix

Seasonality with Source of Generation

Typical Weekly Load Curve (Mon-Sun) - Dry Season 2030

Typical Weekly Load Curve (Mon-Sun) - High Wind Season 2030

Typical Weekly Load Curve (Mon-Sun) - Wet Season 2030

Renewable Curtailment for Year 2030

Distribution of RE Curtailments among days of the week

Distribution of RE Curtailments among hours of the day

Renewable Energy Curtailments (2023-2042)

Key Scenarios - Results

			Policy Constra	ined Scenarios	Policy Unconstrained Scenarios			
		1.	2.	3.	4.	5.	6.	7.
		70% RE by 2030 + No Coal (New Policy)	70% RE by 2030 Increasing RE Share beyond 2030 + No Coal	70% RE by 2030 HVDC Interconnection + No Coal	70% RE by 2030 Nuclear 2040 + No Coal	50% RE by 2030 With Coal Option Open Until 2030	60% RE by 2030 With Coal Option Open Until 2030	60% RE by 2030 + No Coal
	Major Hydro	31		31	31	31	31	31
ORE	ORE	13,795		13,795	13,795	10,097	11,608	11,065
Plant	NG CCY	1,100		1,100	1,100	1,110	1,100	1,100
Additions	NG GT/ ICE	1,930	Need Additional	1,580	1,880	4,030	3,820	4,130
2023-2042	Coal	-	Interventions	-	-	540	270	-
(MW)	Nuclear	-		-	600	-	-	-
	HVDC	-		500	-	-	-	-
	Battery	3,365		3,365	3,365	350	400	400
	PSPP	1,400		1,400	1,400	700	1,050	1,050
Present	Investment	10,119	Ŷ	10,400	10,220	7,589	7,946	7,498
Value	Operational	8,753	Ļ	8,483	8,766	10,203	9,561	10,357
Million	Total	18,872	t	18,883	18,986	17,792	17,507	17,855

*Scenarios were developed considering fuel costs used for planning studies and imposing limits on instantaneous asynchronous penetration.

Renewable Share Growth and Interventions to achieve Carbon Neutrality

THANK YOU !!!

<u>**1st Technical Seminar</u>** Supply-demand Balancing Operation Considering VRE Output Forecast</u>

15th December, 2020

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Introduction & Operation Overview

Supply-demand balancing operation is being more difficult due to a large amount of PV installation in Chubu area.

- In such a situation, <u>VRE output forecast is being more important and flexibility of PSPP</u> or battery, too.
- In this material, we focus on the day ahead operation in Chubu area, because CEB is planning to receive day ahead forecast data of VRE output from JWA in this project.

- Central Load Dispatching Center(CLDC) of CEPCO receives updated weather forecast data per 3 hours. (♥ in the table below)
- □ <u>The highlighted contents are the key operations for supply-demand balancing.</u>

D-1 1	D-1 1	D-11	7:00
Area demand prediction	• Area demand prediction	Area demand prediction	Area demand prediction
• VRE output forecast	• VRE output forecast	• VRE output forecast	• VRE output forecast
	• Plan submission of non-	Considering forecast	• Same as on the left
	dispatchable (IPP units etc)	error of VRE output	Content No.1
	power plant from	 PSPP scheduling and 	• Same as on the left
	generation entities	reserve margin (for	
		generation) considering	
		reservoir level	Content No.2
		 Unit scheduling of 	Change instruction
		thermal power plant(TPP)	
		 Instruction to TPP 	Content No.3

Operation for VRE output reduction

No.1 Considering forecast error of VRE output

- Solar forecast error is considered in day ahead operation in CLDC.
- □ The "modes" are classified by the "clearness index" " based on weather forecast.
- In the case of Mode 1 and 5, the downside forecast error is relatively small, meanwhile greater in the case of Mode 2-4.

Mode	1	2	3	4	5
Clearness Index	1~0.71	0.71~0.62	0.62~0.43	0.43~0.21	0.21~0
Weathe r	Clear Sunny	Sunny	Little cloudy	Cloudy	Rainy

No.2 PSPP RM distributed based on reservoir level

- There is kWh constraint of upper reservoir of PSPPs, therefore they do not keep their nominal capacity all time.
- CLDC evaluates **their RM for generation** by distributing kWh based on

upper reservoir water level to equalize the ratio of "RM / predicted demand" each time.

PPON KOEI

To deal with the forecast error, CLDC uses "tentative start-up instruction" to TPPs that

enables CLDC to extend the final judgement of unit commitment until their turbine start.

Schedule of TPPs Start-up (Cold Start-up)

3% indicated with green lines is the criterion of the least RM ratio of CEPCO.

RM goes down below 3% when the -3σ forecast error occurs.

CLDC gives the tentative start-up instruction to an additional 700MW TPP and RM ratio recovers over 3%.

Case study (Judgment of TPP start-up)

At D-1 23:00, the forecasted PV output reduction from D-1 17:00 is observed and RM becomes close to 3%, then CLDC determines an additional 700MW TPP start-up.

Operation for VRE surplus

How to consider VRE surplus in CEPCO

- CLDC pumps lower reservoir water up to keep the supply-demand balance in day time during spring and autumn.
- In the day ahead operation, <u>CLDC considers +3σ PV forecast error to confirm</u>

[MW] whether CLDC can keep the balance only with dispatchable resources.

- When CLDC can't keep the balance only with dispatchable resources, <u>CLDC controls</u> <u>non-dispatchable ones etc. based on "Priority Dispatch"</u>.
- The order of control of the output is determined by the cost of power generation and technical characteristics of the generating system.

(1)

(2)

(4)

- Output control of thermal power and water pumping operations (dispatchable)
- Ditto(Non-dispatchable except for biomass and VRE, day ahead instruction)
- ③ Export to other regions using interconnected lines(day ahead instruction)
 - Biomass output control(day ahead instruction)
- 5 Solar and wind power control(day ahead instruction)
- Output control of long-term fixed power sources (hydro, nuclear, geothermal)

Source: Agency for Natural Resources and Energy

04 PSPP Utilization Purposes

PSF	P Utilization Purposes	Today's content
	Purpose	Note
	Reserve Margin	kWh distribution of Reservoir
	Upward Balancing Reserve	
Generation	-> Load Frequency Control	Time Range < 5 min (From Stop Mode)
	→ Governor Free Capability	 Time Range < 10 sec (During Running) Chubu Criterion = 3% × Area Demand
_	Keep Frequency in N-1 Contingency by Shedding PSPP	 Time Range ≒ instant (During Running) Chubu Criterion = Keeping 59.5Hz in N-1 Contingency
Pump up	Downward Balancing Reserve	
	VRE Curtailment Reduction	Time Range > 15 min(From Stop Mode)
Pump up ↓ Generation	Economical Operation	Marginal Cost for Pumping up Divided by 70% vs Substituted Marginal Cost by PSPP Generation after Pumping up
Othor	Voltage Control	Operation of Voltage Control Mode
Other	Black Start	—

NIPPON KOEI

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

NIPPON KOEI

Specification of VRE Control System

December 24th, 2021

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.
Specification of VRE Control System

NIPPON KOEI

Specification of VRE Control System

How to operate with 30 min. resolutions schedule

Control Schedule can be set with 30 min. time resolution and 1% output resolution

How to operate with 30 min. resolutions schedule

CHUBU Electric Power

NIPPON KOEI

Technical Specification Details of PCS 1

1	Partial output control	Output change	 100%→0%(0%→100%) change of PCS nominal capacity is possible in the range of 5-10 min. This time should be adjustable with 1 min. resolution in the range above Error should be within 5% Change rate should be constant as 100%/ 5-10min in case of linear change. Step change is also possible, in this case, single control step should be within 10%
		Control resolution	1% of nominal capacity (Error should be within 5%)
		Conversion function from % to output	Converting provided % to appropriate output considering inputted panel capacity and PCS capacity (Input process should be secured with passwords)
2	Reverse flow protection	Protection accuracy	 Detection criteria regarding flow level and time are greater of 5% of nominal capacity and 150W, and within 5 min. (i.e. for those who intends all self-consumption) In 0% control cases, 1. For surplus purchase plants (such as there are some self consumption), no reverse flow at interconnection point or no generation output 2. For generation purchase plants, no generation output
3	Internal fault of "PCS functioning output control"	telecom fault (Internal one such as between control unit and PCS)	 Generation stop within 5 min. after detecting internal telecom fault When telecom functions are recovered, generation can restart automatically or manually

Technical Specification Details of PCS 2

4	Online control	Telecom frequency	 Schedules can be updated with 30 min. resolution Updating frequency (server-access timing) can be designated by CLDC servers
5	Schedule	Controllable period	 400 days × 48(one day divided by 30 min.) resolution and forward Schedules of certain period (i.e.only 1 day) can be updated
6	External fault of "PCS functioning output control"	Clock	 With telecom function Keeping synchronization with CLDC severs Without telecom function Clock setting is to be conducted by synchronization with GPS or vender servicemen Manual adjustment of clock after operation should be within 10 min. a day In case of outage, clock should not be stop If clock time record disappeared, it is required to stop operation until clock setting conducted by synchronization with GPS or vender servicemen Clock error should be within 60 sec. a month Clock setting should be conducted when annually updating fixed schedules in order to keep the accuracy above
		External telecom fault	Control with the latest schedule served before telecom fault

Renewable Energy Desk

Sep, 2022

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

- 1. Organization of Renewable Energy Desk
- 2. VRE output Forecast system
- 3. VRE Control System
 - 1. Structure of VRE Control System
 - 2. Chubu system overview

Organization of Renewable Energy Desk and Renewable Energy Desk's personnel

VRE output Forecast system

03 VRE Control System

Structure of VRE Output Control System

IUBU

NIPPON KOEI

Electric Power

No	Communication	output control	operation	morit	domorit		
	environment	schedule	previous day	on the day	ment	uement	
1	Dedicated line			real time control	high security	expensive	
2	linternet	flexible	RED send schedule to PCS	update schedule on server PCS control output automatically	low-cost low burden of generation company	low security	
3	none	fixed	Generation company update sch on power company's schedule	edule on site once a year based	no communication cost	long control time	

Chubu System Overview

NIPPON KOEI

Democratic Socialist Republic of Sri Lanka

The Project for Capacity Development on the Power Sector Master Plan Implementation Program

Standard asset responsibility and cost burden

Oct 2022

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Standard asset responsibility and cost burden in case of connecting Independent Power Producer

* As for the cost of power system equipment, the part that is frequently used in common is included in the electricity charge (transmission charge) paid by the power consumer as a "general burden".

NIPPON KOEI

Standard asset responsibility and cost burden in case of connecting extra high voltage consumer

Calculation method of burden cost

[The burden cost of Construction]

Transmission line form	Voltage	Burden Cost for 1cct Per construction length of 100m	Burden cost by CEPCO as general facility expenses
	22kV or 33kV	¥363/kW	
Overhead line	77kV	¥165/kW	
11110	154kV	¥88/kW	¥5 500/1/W
	22kV or 33kV	¥638/kW	±0, 000/ KW
Underground line	77kV	¥451/kW	
THE	154kV	¥242/kW	

If consumer need backup line(2cct), they need to pay additional 1/5 of the burden cost of construction

[A example of burden cost of Construction] • contract power is 3000kW, Transmission line is constructed by overhead line (300m×2cct), voltage is 77kV The burden cost(main line) : 165 * 3000 * 3 = 1,485,000Burden cost by CEPCO : $5,500 \times 3,000 = 16,500,000$ (this value is larger above one , so consumer don't need to pay for main line)

The burden cost(backup line) : 165*3000*3*0.2 = 297,000 The concept of general facility expenses is not applied to the backup line

Total burden cost by consumer: ¥297,000

Evaluation of VRE & hydro supply capability in long term planning

Sep, 2022

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Background

- CEB evaluates VRE supply capability in long term planning study as solar : 0%, wind : 2-3%, hydro : 5% - 50% of their nominal capacity.
- Japanese utility and OCCTO evaluate them greater compared to CEB and supply capability increase is expected to contribute to CEB efficient long term planning, therefore, we'd like to introduce how to evaluate in Japan.

Table	2.1.2.B:	Probabilities	of Hydro	Conditions

Hydro Condition	Probability
Very Wet	10%
Wet	20%
Medium	50%
Dry	15%
Very dry	5%

<De-rating factor % of solar & wind in Chubu>

<De-rating factor % of hydro in Chubu>

Run of river and resevoir hydro

Evaluation Indicators

- Japanese utility and OCCTO uses EUE(Expected Unserved Energy) instead of LOLP.
- EUE is expressed as k(M)Wh or k(M)Wh/kWd * year (kWd means electricity demand).
- EUE can be calculated by averaging each result of 10,000 times Monte Carlo yearly simulation in Japan.

	Example 1	Example 2	Use case
LOLP	Once/year	Twice / year	Former Japan
LOLE	3 hours/year	3 hours/year	UK
EUE	3MWh/year	5MWh/year	Japan

Evaluation Procedure (Definition & Solar)

Evaluation Procedure (PSPP)

- For PSPP, it is necessary to simulate pumping up & generation when calculating EUE.
- Basically, pumping up as much as possible is operational policy for evaluating EUE.

Electric Power

PSS/E renewable Dynamic Simulation

June 07, 2022

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Table Contents

- 1. Renewable Energy model
 - 1. Wind model
 - 2. PV model
- 2. Dynamic Simulation
 - 1. Conventional model
 - 2. PV model
 - 3. Wind model
- 3. Short Circuit calculation

01 Renewable Energy model

PSS/E Renewable Energy Model

Ma dal	Wind				P\/	BESS (Battery Energy Storage System)		DER (Distributed
Model	W1	W2	W3	W4	PV PV	2nd Generation	1st Generation	Energy Resource)
			WT3G1, WT3G2	WT4G1, WT4G2	PVGU1			
Generator /Converter	WT1G1	WT2G1	REGCA1 (Current source mo REGCB (New model : Voltage REGCC (Grid Forming Inverte	REGCA1 (Current source model) REGCB (New model : Voltage source model) REGCC (Grid Forming Inverter)			CBEST	DERAU1
	\backslash		WT3E1	WT4E1, WT4E2	PVEU1		\backslash	
Electrical Control		WT2E1	REECA1 (Wind, PV)		REECB1 (Simplified Model)	REECC1		
			REECDU1 (New model: Recommended for Wind, large scale PV, BEES. Momentary Cessation in large scale PV.)			-		
Mechanical	WT12T1		WT3T1	WTDTA1*	PANELU1 (Panel's output curve)			
(Drive Train)			WTDTA1	WTDTB*				
Pitch Control			WT3P1 WTPTA1 <mark>WTPTB</mark>		IRRADU1 (Solar irradiance profile)			
Aero Dynamic	WT12A1 (Unapproved by WT12A1U_B	Task Force)	WTARA1					
Gust								
	\square		REPCTA1				\square	
Plant Control (Auxiliary Control)			REPCA1 REPCC (Providing added flexibility in the specification of limits of the pitch controller)					
			PLNTBU1 with REAX3BU1 (Multi-Unit)	PLNTBU1 with REAUX4BU1 (Multi-Unit)				
Torque Control			WTTQA1					
Weak Grid				WTGWGOA* (Reduce Pref for post- fault recovery)				
IBFFR (Inertia Based Fast Frequency Response Mode)			WTGIBFFRA (Synthetic Inertia)					

Blue : Currently under development and/or being tested, Green : Testing not yet started.. * : optional

Wind Type

Current main trend is type 3 and 4

Туре	Name	Merit	Demerit	share
1	conventional directly connected induction generator	Low cost, simple Sturdy	Flicker voltage Voltage not adjustable	4.9%
2	wound rotor induction generator with variable rotor resistance	optimum output control	Expensive under 1MW	5.9%
3	doubly-fed induction generator	optimum output control Compact convertor	Limited speed range	63.3%
4	full converter interface	High efficiency	Full converter is necessary expensive	22.2%
	Source : User Group Meeting PSS@E Session 2	P35 (13 January 2022, SEMENS)	Source : BTM Cor	nsult

Source : User Group Meeting PSS@E Session 2 P38 (13 January 2022, SIEMENS)

Source : User Group Meeting PSS@E Session 2 P39 (13 January 2022, SIEMENS)

1st Generation							
Model Type	Wind Type 3 (version 32 and above)	Wind Type 4 (version 32 and above)					
Generator/Converter model	WT3G1, WT3G2	WT4G1, WT4G2					
Electrical Control Model	WT3E1	WT4E1, WT4E2					
Drive Train model	WT3T1						
Pitch Control Model	WT3P1						

Model Description	Model Name in V33.4 and above	Model Name in V34
Generator/Converter model	REGCAU1	REGCA1
Electrical Control Model	REECAU1	REECA1
Drive Train model	WTDTAU1	WTDTA1
Aerodynamic Model	WTARAU1	WTARA1
Pitch Control Model	WTPTAU1	WTPTA1
Torque Control Model	WTTQAU1	WTTQA1
Auxiliary Control Model	REPCAU1	REPCA1

The WECC and NERC Renewable Energy Modeling Working Group (REMWG) have unapproved the use of these 1st generation models. The suggestion is to use the 2nd generation models (REGCA or REGCB for modeling the Renewable Generator, and the REECD for modeling the EC model)

PSS®E 1st, 2nd Generation Large Scale PV Model

1st Generation	
Model Description	Model Name in V33.5 and above
Generator/Converter model	PVGU1
Electrical Control Model	PVEU1
Irradiance Model (Pitch Control)	IRRADU1
Panel Model (Mechanical System)	PANELU1

2nd Generation

Model Description	Model Name in V33.5 and above	Model Name in V34
Generator/Converter model	REGCAU1	REGCA1
Electrical Control Model	REECBU1	REECB1
Plant Control Model	REPCAU1	REPCA1

The WECC and NERC Renewable Energy Modeling Working Group (REMWG) have unapproved the use of these 1st generation models. The suggestion is to use the 2nd generation models (REGCA or REGCB for modeling the Renewable Generator, and the REECD for modeling the EC model)

BESS (Battery Energy Storage System) Model

CBEST

PSS®E 1st, 2nd Generation Battery Model

1st Generation	
Model Description	1st Generation Dynamic Model
Generator/Converter model	CBEST

2nd Generation		
Model Description	Model Name in V33.5 and above	Model Name in V34
Generator/Converter model	REGCAU1	REGCA1
Electrical Control Model	REECCU1	REECCU1
Plant Control Model	REPCAU1	REPCA1

The WECC and NERC Renewable Energy Modeling Working Group (REMWG) have unapproved the use of these 1st generation models. The suggestion is to use the 2nd generation models (REGCA or REGCB for modeling the Renewable Generator, and the REECD for modeling the EC model)

02 Dynamic Simulation

Base case Assumption

- Base case is Siemens sample model
- Fault at No.151 Bus

Analysis procedure of Dynamic Simulation (Ver. 34)

]	
(1) File \rightarrow Open \rightarrow File (Ctrl + O)	(8) Dynamics \rightarrow Perform simulation (STRT / RUN)
Open savnw.sav and savnw.sld in HPLC	Perform Dynamic Simulation
(2) Power Flow \rightarrow Solution \rightarrow Solve	Simulation options
$Click \rightarrow Solve$	Enter 1.1 (seconds) to "Run to" and click \rightarrow Run (three - phase short circuit for 0.1 seconds (1.0 to 1.1 seconds))
$Click \rightarrow Close$	$Click \rightarrow Close$
(3) File \rightarrow Open \rightarrow File (Ctrl + O)	(9) Dynamics \rightarrow Disturbances \rightarrow Clear fault
Open savnw.dyr in HPLC	$Click \rightarrow OK$
(4) Dynamics \rightarrow Channel Setup wizard	(10) Dynamics \rightarrow Perform simulation (STRT / RUN)
$Click \to Go$	Perform Dynamic Simulation
$Click \rightarrow Close$	Simulation options
(5) Dynamics \rightarrow Perform simulation (STRT / RUN)	Enter 10 (seconds) in Run to and click \rightarrow Run (analysis after clear fault for
Perform Dynamic Simulation	about 10 seconds (1.1 to 10 seconds))
Initialization options \rightarrow Enter the output file name	$Click \rightarrow Close$
(example: test.out)	
$Click \rightarrow Initialize$	
(6) Perform Dynamic Simulation	(11) File \rightarrow Open \rightarrow File (Ctrl + O)
Simulation options	Open test.out in EXAMPLE
Enter 1 (second) to "Run to" and 120 for "Print" , and click $ ightarrow$	$Click \rightarrow OK$
Run (steady state for 1 second).	(12) View \rightarrow To the right of Plot Tree \checkmark
$Click \rightarrow Close$	(13) View: Plot Tree
(7) Dynamics \rightarrow Disturbances \rightarrow Bus fault	Plot Data \rightarrow Channel Files \rightarrow test
Apply a Bus Fault	Move the contents to the plot area by drag and drop
Apply fault at bus \rightarrow Enter 151 (151: 500kV Bus)	(Output of 211 HYDRO-G and voltage of 153 MID 230 (230kV))
$Click \rightarrow OK$	

Comparison between with and without fault

Wind model Assumption

- Base case is Siemens sample model
- Fault at No.151 Bus

Wind model

For reference

© Chubu Electric Power Co., Inc. and Nippon Koei Co., Ltd. All rights reserved.

PV model (Output fluctuation model due to solar radiation fluctuation)

PV+Battery model Assumption

- Base case is Siemens sample model
- Fault at No.151 Bus

03 Short Circuit calculation (how to protect power system even though mass introduction of RE)

Short Circuit Calculation Procedure(on SLD screen)

1. Calculate power flow

NCSFC (Result)

Case : WF base.sav (Considering synchronous and asynchronous machine P and Q power) AT BUS 1 FARM MV 33.0001 AREA 1 *** FAULTED BUS IS: [FARM MV 1 33.000] *** 0 LEVELS AWAY *** PRE FAULT (kV L-G) VA:18.10+j0.22 POST FAULT (kV L-G) V+:0.00+j0.00 VA:0.00+j0.00 VB:0.00+j0.00 VC:0.00+j0.00 THEVENIN IMPEDANCE, X/R (PU) Z+:0.002167+j0.218856, 101.00845 X-----<u>----</u>-------X X-----X AREA CKT I/Z RE(I+) IM(I+)RE(IA) IM(IA) RE(IB) IM(IB) RE(IC) IM(IC) RE(Z+) IM(Z+) APP X/R 165.7 SYNCHRONOUS MACHINE 1 AMP/PU 165.7 2.0 2.0 -81.2 -144.5 -84.6 142.6 [POC MV 1 @1 AMP/PU 0.3 -7593.6 0.3 -7593.6 -6576.4 3796.5 6576.1 3797.0 0.000000 0.000000 0.00000 3 33.000] INITIAL SYM. S.C. CURRENT(I''k)(RMS) AMP 166.0 -7591.6 166.0 -7591.6 -6657.5 3652.0 6491.5 3939.6 7593.4 -88.75 7593.4 -88.75 7593.4 151.25 I''k (MAG/ANG) AMP 7593.4 31.25 Generator Output : 9MW + 0MVAR (V=0.9499) Case : WF NCSFC.sav (Set synchronous and asynchronous machine P and Q power outputs to 0) 1 *** FAULTED BUS IS: AT BUS 1 FARM MV 33.000] AREA 1 FARM MV 33.000] *** 0 LEVELS AWAY *** PRE FAULT (kV L-G) VA:17.90+j0.02 POST FAULT (kV L-G) V+:0.00+j0.00 VA:0.00+j0.00 VB:0.00+j0.00 VC:0.00+j0.00 THEVENIN IMPEDANCE, X/R (PU) Z+:0.002167+j0.218857, 101.00823 X----------THREE PHASE FAULT------X-----X AREA CKT I/Z RE(I+) IM(I+)RE(IA) IM(IA) RE(IB) IM(IB) RE(IC) IM(IC) RE(Z+) IM(Z+) APP X/R AMP/PU 0.0 -192.5 0.0 -192.5 -166.7 96.2 166.7 96.2 NON-CONVENTIONAL FAULT SOURCE 1 3 [POC MV 33.0001 1 @1 AMP/PU -177.7 -7604.6 -177.7 -7604.6 -6496.9 3956.2 6674.6 3648.4 0.000000 0.000000 0.00000 INITIAL SYM. S.C. CURRENT(I''k)(RMS) AMP -90.2 -7700.8 -90.2 -7700.8 -6624.0 3928.5 6714.2 3772.3 -90.67 I''k (MAG/ANG) 7701.4 7701.4 -90.67 7701.4 149.33 7701.4 29.33 AMP 0MW + 11 MVAR (Rated Capacity 10MVA×1.1)

	PSS@E *	Chubu Electric Power
Reactance of Generator	• Xd" (Xd', Xd)	Xd' (Xd" is used for calculation of electromagnetic induction voltage)
P, Q of Generator (Conventional Machine)	 Add P to active current & Add Q to reactive current (Based on the steady- state power flow calculation) Not considered 	Not considered
P, Q of Generator (Inverter)	 Add P to active current & Add Q to reactive current (Based on the steady- state power flow calculation) Voltage dependent (Per unit of rated current) Time dependent 	 Add rated current of inverter times X to reactive current (Grid Interconnection Rule in Japan : X=1.1 ~1.5)
Terminal Voltage of Generator	 Vt : Result of power flow calculation Vt = Specified Voltage (e.g. 1.0pu) 	• Vt = 1.0pu

* PSS@E has many other optional functions for short circuit calculations.

NIPPON KOEI

Electric Power

PSS/E Renewable Energy Model

Sep, 2022

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Table Contents

- 1. PSSE Renewable Energy model Overview
- 2. Generic Model schematic(Wind, Battery)
- 3. 2nd generation RE model
 - 1. Plant Control model (REPCA1 (Wind, PV, Battery))
 - 2. Generator model (REGCA1 (Wind, PV, Battery))
 - 3. Electrical Control model
 - 1. REECA1 (Wind, PV)
 - 2. REECB1 (PV)
 - 3. REECCU1(Battery)
- 4. SIM result example
 - 1. frequency control
 - 2. voltage control

IEEE 1547 Evolution of Grid Support Functions

¹Frequency response is the capability to modulate power output as a function of frequency.

²Mandatory capability for categories II and III under high-frequency conditions, mandatory for categories II and III under low-frequency conditions, optional for Category 1

³Inertial response is the capability for DERs to modulate active power in proportion to the rate of change of frequency.

NREL | 24

Source : Highlights of IEEE Standard 1547-2018 (NREL) (Revised by Chubu)

Second Generation

- LVRT (Low Voltage Ride Through)
- Voltage Control (Droop Control)
- Frequency Control (Droop Control)
- Momentary Cessation (Inverter Block and Recovery)

In the Future

Inertia Control (Synthetic Inertia)

First Generation

	Wind					BESS
Model	W1	W2	W3	W4	PV	(Battery Energy Storage System)
Generator /Converter	WT1G1	WT2G1	WT3G1, WT3G2	WT4G1, WT4G2	PVGU1	CBEST
Electrical Control		WT2E1	WT3E1	WT4E1, WT4E2	PVEU1	
Mechanical (Drive Train)	WT12T1		WT3T1		PANELU1 (Panel's output curve)	
Pitch Control			WT3P1		IRRADU1 (Solar irradiance profile)	
Aero Dynamic /Pseudo Governor	WT1	2A1				

Second Generation

Model	Wind (W3&W4)	PV	BESS Battery Energy Storage System	
Generator /Converter	REGCA1 (Current source model) REGCB (New model : Voltage source model)			
Electrical	REECA1 (W	/ind, PV) REECB1	REECC1	
Control	REECDU1 (New mod	el: Recommended for Wi	nd, large scale PV, BESS)	
Mechanical (Drive Train)	WTDTA1, WTDTB*			
Pitch Control	WTPTA1, WTPTB*			
Aero Dynamic	WTARA1			
Torque Control	WTTQA1			
Plant Control (Auxiliary Control)		REPCA1, REPCC*		
Weak Grid	WTGWGOA* (Reduce Pref for post-fault recovery)			
IBFFR (Inertia Based Fast Frequency Response Mode)	WTGIBFFRA* (Synthetic Inertia)			

* Currently under development and/or being tested

PSS/E Renewable Energy Model

Grid Support Function (Second Generation)

	PSS@E Model			
Support Function	Local	(each unit)	Plant Level	Note
	Inverter	Electrical	(Total units)	
LVRT (Low Voltage Ride Through)	REGCA1 (by LVPL(Low Votage Power Logic))	REECA1, REECC1, EECDU1 (by VDL(Voltage Dependent Limit))		If VDL is used, LVPL should be off.
Voltage Control		REECA1, REECB1, REECC1, REECDU1	REPCA1	Droop control (PI control)
Frequency Control			REPCA1	Droop control (PI control)
Momentary Cessation		REECA1, REECC1 (by VDL)		REECA1 : Delay in P Recovery (using Thld2)
and Recovery)		REECDU1 (by Vblkl , Vblkh)		Delay in PQ Recovery (using Tblk)
Inertia Control (Synthetic Inertia)		WTGIBFFRA*		Under development

Wind Power Generic Model schematic

Type 4

Source: Siemens 19-21 June 2018 | European PSS® UGM

Source: Wecc battery storage dynamic modeling guideline

Plant Control model (REPCA1 (Wind, PV, Battery))

ICONs	Value	Description	
М		Bus number for voltage control; local control if 0	CONs
M+1		Monitored branch FROM bus number for line drop compensation (if	J+17
		0 generator power will be used)	J+18
M+2		Monitored branch TO bus number for line drop compensation (if 0	
		generator power will be used)	J+19
M+3		Branch circuit id for line drop compensation (enter in single quotes)	
14.4		(If 0 generator power will be used)	J+20
M+4		VC Flag (droop flag):	J+21
		0: with droop if power factor control	J+22
		• 1: with line drop compensation	J+23
M+5		RefFlag (flag for V or Q control):	J+24
			J+25
		• 0: Q control	J+26
		1: voltage control	5120
M+6		Fflag (flag to disable frequency control):	STATEs
			К
		1: enable control	K+1
		• 0: disable	K+2
CONs	Value	Description	K+3
J		Tfltr, Voltage or reactive power measurement filter time constant (s)	K+4
J+1		Kp, Reactive power PI control proportional gain (pu)	Ki S
J+2		Ki, Reactive power PI control integral gain (pu)	K+5
J+3		Tft, Lead time constant (s)	K+0
J+4		Tfv, Lag time constant (s)	
J+5		Vfrz, Voltage below which State s2 is frozen (pu)	VARs
J+6		Rc, Line drop compensation resistance (pu)	
J+7		Xc, Line drop compensation reactance (pu)	11.1
J+8		Kc, Reactive current compensation gain (pu)	
J+9		emax, upper limit on deadband output (pu)	L+Z-Z
J+10		emin, lower limit on deadband output (pu)	L+3 3
J+11		dbd1, lower threshold for reactive power control deadband (<=0)	L+4-4
J+12		dbd2, upper threshold for reactive power control deadband (>=0)	L+5
J+13		Qmax, Upper limit on output of V/Q control (pu)	L+6
J+14		Qmin, Lower limit on output of V/Q control (pu)	L+7
J+15		Kpg, Proportional gain for power control (pu)	L+8
J+16		Kig, Integral gain for power control (pu)	

CONs	Value	Description
J+17		Tp, Real power measurement filter time constant (s)
J+18		fdbd1, Deadband for frequency control, lower threshold (specified as per unit frequency deviation) (<=0)
J+19		fdbd2, Deadband for frequency control, upper threshold (specified as per unit frequency deviation) (>=0)
J+20		femax, frequency error upper limit (pu)
J+21		femin, frequency error lower limit (pu)
J+22		Pmax, upper limit on power reference (pu)
J+23		Pmin, lower limit on power reference (pu)
J+24		Tg, Power Controller lag time constant (s)
J+25		Ddn, reciprocal of droop for over-frequency conditions (pu)
J+26		Dup, reciprocal of droop for under-frequency conditions (pu)
STATEs	Descripti	ion
К	Voltage Measurement filter	
K+1	Reactive power control filter	

К	Voltage Measurement filter
K+1	Reactive power control filter
K+2	PI controller for reactive power
K+3	Lead-lag in reactive power path
K+4	Real power filter
K+5	PI controller for real power
K+6	Power controller first order lag

VARs	Description		
L	Reference for voltage control (Vref)		
L+1+1	Reactive power reference (Qref)		
L+2-2	Frequency reference (Freq_ref)		
L+3	Active Power reference (Plant_pref)		
L+4 4	Line flow P MW		
L+5 5	Line flow Q MVAr		
L+6	Line flow MVA		
L+7	Q/V Deadband output		
L+8	Frequency deadband output		

Generator model (REGCA1 (Wind, PV, Battery))

VDL(Voltage Dependent Logic)

In case of voltage drop, Ip is reduced and Iq is increased

UBU

NIPPON KOEI

ICONs	Value	Description
М		Bus number for voltage control; local control if 0
M+1		PFFLAG: 1 if power factor control 0 if Q control (which can be controlled by an external signal)
M+2		VFLAG: • 1 if Q control • 0 if voltage control
M+3		QFLAG: • 1 if voltage or Q control • 0 if constant pf or Q control
M+4		PFLAG:1 if active current command has speed dependency0 for no dependency
M+5		PQFLAG, P/Q priority flag for current limit: • 0 for Q priority • 1 for P priority

CONs	Value	Description
J		Vdip (pu), low voltage threshold to activate reactive current injection logic
J+1		Vup (pu), Voltage above which reactive current injection logic is ac- tivated
J+2		Trv (s), Voltage filter time constant
J+3		dbd1 (pu), Voltage error dead band lower threshold (≤0)
J+4		dbd2 (pu), Voltage error dead band upper threshold (\geq 0)
J+5		Kqv (pu), Reactive current injection gain during over and undervolt- age conditions
J+6		Iqh1 (pu), Upper limit on reactive current injection Iqinj
J+7		Iql1 (pu), Lower limit on reactive current injection Iqinj
J+8		Vref0 (pu), User defined reference (if 0, model initializes it to initial terminal voltage)
J+9		lqfrz (pu), Value at which lqinj is held for Thld seconds following a voltage dip if Thld > 0

CONs	Value	Description
J+10		ThId (s), Time for which Iqinj is held at Iqfrz after voltage dip returns
		to zero (see Note 3)
J+11		ThId2 (s) (\geq 0), Time for which the active current limit (IPMAX) is held
		at the faulted value after voltage dip returns to zero
J+12		Tp (s), Filter time constant for electrical power
J+13		QMax (pu), limit for reactive power regulator
J+14		QMin (pu) limit for reactive power regulator
J+15		VMAX (pu), Max. limit for voltage control
J+16		VMIN (pu), Min. limit for voltage control
J+17		Kqp (pu), Reactive power regulator proportional gain
J+18		Kqi (pu), Reactive power regulator integral gain
J+19		Kvp (pu), Voltage regulator proportional gain
J+20		Kvi (pu), Voltage regulator integral gain
J+21		Vbias (pu), User-defined bias (normally 0)
J+22		Tiq (s), Time constant on delay s4
J+23		dPmax (pu/s) (>0) Power reference max. ramp rate
J+24		dPmin (pu/s) (<0) Power reference min. ramp rate
J+25		PMAX (pu), Max. power limit
J+26		PMIN (pu), Min. power limit
J+27		Imax (pu), Maximum limit on total converter current
J+28		Tpord (s), Power filter time constant
J+29		Vq1 (pu), Reactive Power V-I pair, voltage
J+30		Iq1 (pu), Reactive Power V-I pair, current
J+31		Vq2 (pu) (Vq2>Vq1), Reactive Power V-I pair, voltage
J+32		lq2 (pu) (lq2>lq1), Reactive Power V-I pair, current
J+33		Vq3 (pu) (Vq3>Vq2), Reactive Power V-I pair, voltage
J+34		lq3 (pu) (lq3>lq2), Reactive Power V-I pair, current
J+35		Vq4 (pu) (Vq4>Vq3), Reactive Power V-I pair, voltage
J+36		lq4 (pu) (lq4>lq3), Reactive Power V-I pair, current
J+37		Vp1 (pu), Real Power V-I pair, voltage
J+38		Ip1 (pu), Real Power V-I pair, current
J+39		Vp2 (pu) (Vp2>Vp1), Real Power V-I pair, voltage
J+40		Ip2 (pu) (Ip2>Ip1), Real Power V-I pair, current
J+41		Vp3 (pu) (Vp3>Vp2), Real Power V-I pair, voltage
J+42		Ip3 (pu) (Ip3>Ip2), Real Power V-I pair, current
J+43		Vp4 (pu) (Vp4>Vp3), Real Power V-I pair, voltage
J+44		Ip4 (pu) (Ip4>Ip3), Real Power V-I pair, current

STATEs	Description
К	Voltage Measurement filter
K+1	Real power filter
K+2	PI controller for reactive power
K+3	PI controller for voltage error
K+4	First Order lag for reactive current
K+5	First order lag for Pord
VAR	Description
L	Bus reference voltage (Vref0)
L+1	Storage of current state for state transition (possible values: 0, 1 or 2)
L+2	Power factor reference angle (pfaref), radians
L+3	user defined bias as calculated by the model
L+4	Timer for Thld counter
L+5	Previous value of power reference
L+6	Stored Ipmax value
L+7	Timer for Thld2 counter
L+8	Storage for voltage_dip (used only when ThId2 > 0)

1. This model can be used with Type 3 and 4 wind machines. When used for modeling of Type 3 wind machine, the other models to be used along with this model are regca1, repcta1 (optional), wtdta1, wtpta1, wtara1, wttqa1. When used for modeling of Type 4 machines, the other models to be used along with this control model are regca1, wtdta1, and repca1 (optional).

2. When used for modeling Type 3 machines set Pflag (i.e., ICON (M+4)) to 0. Speed dependency will be simulated by the Torque controller (WTTQA1).

3. Thid could be either zero, or less than zero or greater than zero.

a) If ThId > 0, then once voltage_dip (voltage_dip is a flag which is set and reset in the model. Voltage_dip is 0 if the Vdip<VT<Vup, else it is 1) becomes 0, Iqinj is held at Iqfrz for ThId seconds.

b) If ThId < 0, then once voltage_dip goes to 0, Iqinj remains state (equal to Iqv) for ThId seconds.

c) If ThId = 0 , then Iqinj goes back to zero as soon as Voltage_dip becomes 0.

4. pfaref (the power factor angle reference) value is initialized by the model based on initial real and reactive power outputs from the machine.

5. wg is the per unit generator speed and is set in the drive train model.

6. Qref is initialized by the model to a constant or can be connected to an external plant controller model).

7. Pref is initialized by the model to a constant or can be connected to an external plant controller model).

8. Normally Vbias is zero. The user specified Vbias value (which is in CON(J+21)) is used only when the QFlag=1, VFlag=0 and PfFlag=0. For all other combinations of QFlag, VFlag and PfFlag values, the Vbias value is either not required or is calculated and stored in VAR(L+3).

9. ICON(M) contains the remote bus number. If this is 0 or if the remote bus number is not specified then the local bus is used for control.

10. The VDL1 characteristics are defined by 4 pairs of Vq-Iq points (pu voltage versus reactive current).

Data for the first two pairs (Vq1, Iq1) and (Vq2, Iq2) is mandatory (i.e., these cannot be specified as zero). A maximum of 4 pairs of Vq-Iq points can be specified. The first Vq entry that has a zero value, signals the end of Vq-Iq data. Unused Vq- Iq pairs should be entered as zero. The Vq-Iq values should be such that Vq1 < Vq2 < Vq3 < Vq4, and $Iq1 \le Iq2 \le Iq3 \le Iq4$.

11. The VDL2 characteristics are defined by 4 pairs of Vp-Ip points (pu voltage versus active current). Data for the first two pairs (Vp1, Ip1) and (Vp2, Ip2) is mandatory (i.e., these cannot be specified as zero). A maximum of 4 pairs of Vp-Ip points can be specified. The first Vp entry that has a zero value, signals the end of Vp-Ip data. Unused Vp- Ip pairs should be entered as zero. The Vp-Ip values should be such that Vp1 < Vp2 < Vp3 < Vp4, and $Ip1 \le Ip2 \le Ip3 \le Ip4$

ICONs	Value	Description	CONs	Value	Description	
М		Bus number for voltage control; local control if 0	J+14		Kqp (pu), Reactive power regulator proportional gain	
M+1		PFFLAG (Power factor control flag):	J+15		Kqi (pu), Reactive power regulator integral gain	
		1 if power factor control	J+16		Kvp (pu), Voltage regulator proportional gain	
			J+17		Kvi (pu), Voltage regulator integral gain	
		• 0 if Q control (which can be controlled by an external signal)	J+18		Tiq (s), Time constant on delay s4	
M+2		VFLAG:	J+19		dPmax (pu/s) (>0) Power reference max. ramp rate	
			J+20		dPmin (pu/s) (<0) Power reference min. ramp rate	
		• THQ control	J+21		PMAX (pu), Max. power limit	
		0 if voltage control	J+22		PMIN (pu), Min. power limit	
M+3		QFLAG:	J+23		Imax (pu), Maximum limit on total converter current	
			J+24		Tpord (s), Power filter time constant	
		1 if voltage or Q control				
		0 if constant pf or Q control				
M+4		PQFLAG, P/Q priority flag for current limit:				
		O for Q priority				
		1 for P priority	STATES	Descripti	on	
CONs	Value	Description	K	Voltage Measurement filter		
1		Vdip (pu), low voltage threshold to activate reactive current injection	K+1	Real power filter		
		logic		PI controller for reactive power		
J+1		Vup (pu), Voltage above which reactive current injection logic is ac-		PI controller for voltage error		
		tivated	K+4	First Ord	er lag for reactive current	
J+2		Trv (s), Voltage filter time constant	K+5	First order lag for Pord		
J+3		dbd1 (pu), Voltage error dead band lower threshold (≤ 0)				
J+4		dbd2 (pu), Voltage error dead band upper threshold (≥ 0)				
J+5		Kqv (pu), Reactive current injection gain during over and undervolt-				
		age conditions	VAR	Descripti	on	
J+6		Igh1 (pu), Upper limit on reactive current injection Iginj	L	Bus refer	us reference voltage (Vref0)	
J+/		IqI1 (pu), Lower limit on reactive current injection Iqinj	L+1	Power fa	ctor reference angle (pfaref), radians	
J+8		Vref0 (pu), User defined reference (if 0, model initializes it to initial	L+2	Real curr	ent command (lpcmd)	
		terminal voltage)	L+3	Reactive	current command (lqcmd)	
J+9		(b), Filter time constant for electrical power				
J+10		QMin (pu) limit for reactive power regulator				
J+11		Qivin (pu) Inflit for reactive power regulator				
J+12		VMAX (pu), Max. limit for voltage control				
J+13		VMIN (pu), MIN. limit for voltage control				

© Chubu Electric Power Co., Inc. and Nippon Koei Co., Ltd. All rights reserved.

1. pfaref (the power factor angle reference) value is initialized by the model based on initial real and reactive power outputs from the machine.

2. Qref is initialized by the model to a constant or can be connected to an external plant controller model).

3. Pref is initialized by the model to a constant or can be connected to an external plant controller model).

4. ICON(M) contains the remote bus number. If this is 0 or if the remote bus number is not specified then the local bus is used for control.

5. In using REECB1 to model large scale PV, the other models to be used along with this model are REGCA1 and REPCA1 (optional)

Electrical Control model (REECCU1(Battery))

Electrical Control model (REECCU1(Battery))

ICONs	Value	Description	CONs	Value	Description
М		Bus number for voltage control; local control if 0	J+15		Kqi (pu), Reactive power regulator integral gain
M+1		PFFLAG (Power factor control flag):	J+16		Kvp (pu), Voltage regulator proportional gain
		1 if power factor control	J+17		Kvi (pu), Voltage regulator integral gain
		• 0 if 0 control (which can be controlled by an external signal)	J+18		Tiq (s), Time constant on delay s4
M+2		VFLAG:	J+19		dPmax (pu/s) (>0) Power reference max. ramp rate
			J+20		dPmin (pu/s) (<0) Power reference min. ramp rate
		• 1 If Q control	J+21		PMAX (pu), Max. power limit
		0 if voltage control	J+22		PMIN (pu), Min. power limit
M+3		QFLAG:	J+23		Imax (pu), Maximum limit on total converter current
		1 if voltage or Q control	J+24		Tpord (s), Power filter time constant
		O if constant of or O control	J+25		Vq1 (pu), Reactive Power V-I pair, voltage
M+5		POFLAG, P/O priority flag for current limit:	J+26		lq1 (pu), Reactive Power V-I pair, current
			J+27		Vq2 (pu) (Vq2>Vq1), Reactive Power V-I pair, voltage
		O for Q priority	J+28		lq2 (pu) (lq2>lq1), Reactive Power V-I pair, current
		1 for P priority	J+29		Vq3 (pu) (Vq3>Vq2), Reactive Power V-I pair, voltage
CONs	Value	Description	J+30		lq3 (pu) (lq3>lq2), Reactive Power V-I pair, current
J		Vdip (pu), low voltage threshold to activate reactive current injection	J+31		Vq4 (pu) (Vq4>Vq3), Reactive Power V-I pair, voltage
J+1		Vup (pu). Voltage above which reactive current injection logic is ac-	J+32		lq4 (pu) (lq4>lq3), Reactive Power V-I pair, current
		tivated	J+33		Vp1 (pu), Real Power V-I pair, voltage
J+2		Trv (s), Voltage filter time constant	J+34		Ip1 (pu), Real Power V-I pair, current
J+3		dbd1 (pu), Voltage error dead band lower threshold (\leq 0) dbd2 (pu). Voltage error dead band upper threshold ($>$ 0)	J+35		Vp2 (pu) (Vp2>Vp1), Real Power V-I pair, voltage
J+5		Kgv (pu), Reactive current injection gain during over and undervolt-	J+36		lp2 (pu) (lp2>lp1), Real Power V-I pair, current
		age conditions	J+37		Vp3 (pu) (Vp3>Vp2), Real Power V-I pair, voltage
J+6		Iqh1 (pu), Upper limit on reactive current injection Iqinj	J+38		Ip3 (pu) (Ip3>Ip2), Real Power V-I pair, current
J+/		IqI1 (pu), Lower limit on reactive current injection Iqinj	J+39		Vp4 (pu) (Vp4>Vp3), Real Power V-I pair, voltage
540		terminal voltage)	J+40		Ip4 (pu) (Ip4>Ip3), Real Power V-I pair, current
J+9		Tp (s), Filter time constant for electrical power	J+41		T, battery discharge time (s) (>0)
J+10		QMax (pu), limit for reactive power regulator	J+42		SOCini (pu). Initial state of charge
J+11		QMin (pu) limit for reactive power regulator	1,12		SOCmax (pu) Maximum allowable state of charge
J+12		VMAX (pu), Max. limit for voltage control	J+45		
J+13 J+14		VMIN (pu), MIN. limit for voltage control Kgp (pu), Reactive power regulator proportional gain	J+44		SOCMIN (pu), MINIMUM allowable state of charge

Electrical Control model (REECCU1(Battery))

Electrical Control model (REECCU1(Battery))

1. pfaref (the power factor angle reference) value is initialized by the model based on ini- tial real and reactive power outputs from the machine.

2. Qref is initialized by the model to a constant or can be connected to an external plant controller model).

3. Pref is initialized by the model to a constant or can be connected to an external plant controller model).

4. ICON(M) contains the remote bus number. If this is 0 or if the remote bus number is not specified then the local bus is used for control.

5. SOCini represents the initial state of charge on the battery and is a user entered value. This is entered in pu; with 1 pu meaning that the batter is fully charged and 0 means the battery is completely discharged.

6. SOCmax is the maximum allowable state of charge. By definition the maximum value would be 1 pu; however it may be set to a smaller value (e.g., 0.8 pu) to represent specific manufacturer requirements that the battery will remain at or below a certain charging level (e.g., 80 %).

7. SOCmax is the minimum allowable state of charge. By definition the minimum value would be 0 pu; however it may be set to a larger value (e.g., 0.2 pu) to represent specific manufacturer requirements that the battery will remain at or above a certain charging level (e.g., 20 %).

8. Other models to be used with REECC1 are, REGCA1, and REPCA1

9. An auxiliary signal model can be attached to the signal represented as Paux. This can be used for interfacing with supplemental models like power oscillation damping control.

SIM example of frequency control

Fault condition

- 1 Fault occurs at RE1 generator at 1sec.
- 2 Fault continues for 10sec.

With frequency control at RE generator

CHUBU Electric Power

REPCA : Fflag = 1

RE2 contributes to improvement of frequency.

Without frequency control at RE generator

REPCA : Fflag = 0

RE2 does not contributes to improvement of frequency.

SIM example of voltage control

Fault condition1 Fault occurs at No2 Bus(add -50Var) at 1.0s.2 Clear fault at 2.0s

UBU

voltage control

57

REECDU1 : Kqv = 0 (without voltage compensation in case of fault)

IBFFR Model (Modeled as Paux Controller)

WTGIBFFRA:

- · new model, currently being tested.
- Used for Type 3 & 4 wind machines. IBFFR stands for Inertia-Based Fast Frequency Response.
- This is also referred to as "synthetic inertia" or "emulated inertia". This is a supplemental control and is initiated only for under-frequency events

Using REECD for Modeling Large Scale PV with Momentary Cessation

SIEMENS

PLBVF1 Model use case for performing LVRT & LFRT studies

Page 68 Restricted | © Siemens 2022 | PSS® User Group Meeting - India and ME 2022

SIEMENS

Review Result of Grid Code

Oct, 2022

Chubu Electric Power Co., Inc. Nippon Koei Co., Ltd.

Introduction

In the review of Grid Code of Sri Lanka, JICA Expert Team mainly focused on the following 2 documents.

- GRID CODE, TRANSMISSION DIVISION CEYLON ELECTRICITY BOARD October 2018 (Final Draft)
- GRID CONNECTION REQUIREMENT FOR SOLAR/WIND POWER PLANTS ADDENDUM TO THE CEB GUIDE FOR GRID INTERCONNECTION OF EMBEDDED GENERATORS, DECEMBER 2000

GRID CONNECTION REQUIREMENT FOR SOLARPOWER PLANTS – ADDENDUM TO THE CEB GUIDE FOR GRID INTERCONNECTION OF EMBEDDED GENERATORS, DECEMBER 2000

GRID CONNECTION REQUIREMENT FOR WIND POWER PLANTS – ADDENDUM TO THE CEB GUIDE FOR GRID INTERCONNECTION OF EMBEDDED GENERATORS, DECEMBER 2000

Comparison with Grid Code of Japan and Ireland

In order to review them, JICA Expert Team referred to Grid Code of Hokkaido in Japan and Ireland.

Why Hokkaido?

For both solar and wind, limited rates of output change are defined Annual Peak demand is 5GW that is close to predicted annual peak demand of Sri Lanka in 2030 Has only DC interconnection with other areas

• Why Ireland?

Advancing country with respect to installed capacity of VRE and belongs to phase 5 presently Annual Peak demand o is 5GW that is close to predicted annual peak demand of Sri Lanka in 2030 Has only DC interconnection with Great Britain

Segmentation of Generation Equipment and Description

corresponding to each

Generation types	Specification	
Generating Units Conventional generation connected to transmission system (132kV – 400kV) (Thermal, Hydro etc.)		GRID CODE
IRBGS (Intermittent Resource Based Generating	Intermittent generation connected to transmission system(132kV – 400kV)	
Embedded Generators	All types of generation connected to distribution system (– 33kV)	TRANSMISSION DIVISION CEYLON ELECTRICITY BOARD October 2018 (Final Draft)

GRID CONNECTION REQUIREMENT FOR SOLARPOWER PLANTS – ADDENDUM TO THE CEB GUIDE FOR GRID INTERCONNECTION OF EMBEDDED GENERATORS, DECEMBER 2000

GRID CONNECTION REQUIREMENT FOR WIND POWER PLANTS – ADDENDUM TO THE CEB GUIDE FOR GRID INTERCONNECTION OF EMBEDDED GENERATORS, DECEMBER 2000

Examination Steps of GRID CODE

are described in the red boxes

NIPPON KOEI

02 GRID CODE

Highlighted Table Contents for Description Changes of GRID CODE

1 GENERAL CODE1
1.1 Introduction
1.2 Applicability
1.3 Objectives
1.4 Responsibilities
1.4.1 PUCSL
1.4.2 Transmission Licensee
1.4.3 Users
1.5 Hierarchy of Authority
1.6 Process to Review and Revise the Grid Code
1.6.1 Grid Code Enforcement and Review Panel (GCERP)
1.8 Partial Invalidity 3
1.9 Accuracy of Information 3
1.10 Conditions of Disclaimer 3
1 11 Confidentiality 3
1 12 Procedure for Settlement of Disputes
1.13 Communication between Transmission Licensee and Users
1 14 Interpretation 4
1.14.1 Definitions
1.14.2 Amendment of Standards
1.14.3 Information and Data
1.14.4 Gender
1.14.5 Including
1.14.6 Party, Person or Endty
1 15 Nominal Voltage Nominal Frequency 4
1.15 Norman Voltage, Norman Prequency
1.16 Definitions and Abbreviations
1.16 Definitions and Abbreviations 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12
1.16 Definitions and Abbreviations 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12
1.16 Definitions and Abbreviations 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13
1.16 Definitions and Abbreviations 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13
1.16 Definitions and Abbreviations 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13
1.16 Definitions and Abbreviations. 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13
1.16 Definitions and Abbreviations. 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14
1.16 Definitions and Abbreviations. 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14 2.9 Data to be Furnished by Transmission Licensee 14
1.16 Definitions and Abbreviations. 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14 2.9 Data to be Furnished by Transmission Licensee 14 2.9.1 Transmission Licensee System Data 14
1.16 Definitions and Abbreviations 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14 2.9 Data to be Furnished by Transmission Licensee 14 2.9.2 Data to be Furnished by Transmission Licensee on Demand 14
1.16 Definitions and Abbreviations 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14 2.9 Data to be Furnished by Transmission Licensee 14 2.9.2 Data to be Furnished by Transmission Licensee on Demand 14 2.9.4 Transmission Licensee's Right to Withhold Information 15
1.16 Definitions and Abbreviations 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14 2.9.1 Transmission Licensee System Data 14 2.9.2 Data to be Furnished by Transmission Licensee 14 2.9.3 Charges for Data 14 2.9.4 Transmission Licensee's Right to Withhold Information 15 2.9.5 Confidentiality of Information 15
1.16 Definitions and Abbreviations 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14 2.9.1 Transmission Licensee System Data 14 2.9.2 Data to be Furnished by Transmission Licensee on Demand 14 2.9.3 Charges for Data 14 2.9.4 Transmission Licensee's Right to Withhold Information 15 2.9.5 Confidentiality of Information 15 2.9.5 Lond to be furnished to Transmission Licensee 15
1.16 Definitions and Abbreviations. 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14 2.9.1 Transmission Licensee System Data 14 2.9.2 Data to be Furnished by Transmission Licensee on Demand 14 2.9.3 Charges for Data. 14 2.9.4 Transmission Licensee's Right to Withhold Information 15 2.10 Data to be furnished to Transmission Licensee 15 2.10 Data to be furnished to Transmission Licensee 15 2.10 Data to be furnished to Transmission Licensee 15 2.10 Data to be furnished to Transmission Licensee 15 2.10 Data to be furnished to Transmission Licensee 15 2.10 Data to be furnished to Transmission Licensee 15 2.10 Data to be furnished to Tran
1.16 Definitions and Abbreviations. 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14 2.9 Data to be Furnished by Transmission Licensee 14 2.9.2 Data to be Furnished by Transmission Licensee on Demand 14 2.9.4 Transmission Licensee's Right to Withhold Information 15 2.9.5 Confidentiality of Information 15 2.10 Data to be furnished to Transmission Licensee 15 2.10.1 Disposition of Data to be Supplied by Users to Transmission Licensee 15 2.10.2 Categories of Planning Data 15 2.10.2 Data to be furnished to Transmission Licensee 15 2.10.1 Disposition of Data to be Supplied by Users to Transmission Licensee 15 2.10.2 Categories of Planning Data 15
1.16 Definitions and Abbreviations. 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14 2.9 Data to be Furnished by Transmission Licensee 14 2.9.2 Data to be Furnished by Transmission Licensee on Demand 14 2.9.3 Charges for Data 14 2.9.4 Transmission Licensee's Right to Withhold Information 15 2.9.5 Confidentiality of Information 15 2.10 Data to be furnished to Transmission Licensee 15 2.10.1 Disposition of Data to be Supplied by Users to Transmission Licensee 15 2.10.3 Planning Data 15 2.10.4 Data submission Formats 16 2.10.3 Planning Data 15 2.10.4 Data submission Formats 16 2.10.3 Pla
1.16 Definitions and Abbreviations. 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14 2.9 Data to be Furnished by Transmission Licensee 14 2.9.2 Data to be Furnished by Transmission Licensee on Demand 14 2.9.3 Charges for Data 14 2.9.4 Transmission Licensee's Right to Withhold Information 15 2.9.5 Confidentiality of Information 15 2.10 Data to be furnished to Transmission Licensee 15 2.10.1 Disposition of Data to be Supplied by Users to Transmission Licensee 15 2.10.3 Planning Data 15 2.10.4 Data Submission Formats 16 2.10.5 Additional Specific Data 16
1.16 Definitions and Abbreviations. 4 2 GRID PLANNING CODE 11 2.1 Introduction 11 2.2 Applicability 12 2.3 Objectives 12 2.4 Responsibilities 12 2.4.1 Transmission Licensee 12 2.4.2 Users 13 2.5 Transmission System 13 2.6 Long Term Transmission Development Plan (LTTDP) 13 2.7 The Planning Period, Frequency of Updates and Date of Submission 13 2.8 Coordination of Planning Data 14 2.9 Data to be Furnished by Transmission Licensee 14 2.9.2 Data to be Furnished by Transmission Licensee on Demand 14 2.9.4 Transmission Licensee's Right to Withhold Information 15 2.9.5 Confidentiality of Information 15 2.10.1 Disposition of Data to be Supplied by Users to Transmission Licensee 15 2.10.2 Categories of Planning Data 15 2.10.3 Planning Data 16 2.10.4 Data Submission Formats 16 2.10.5 Additional Specific Data 16 2.10.6 Confidentiality of Information 17

	2.11 Waiving of Requirement to Supply Data	,
	2.12 Transmission Planning Studies	,
	2.12.1 Transmission System Planning Criteria17	,
	2.12.2 Transmission System Studies	1
	2.12.3 Distribution System Studies	1
	2.12.4 Generating Station Studies	j E
	2.12.6 Harmonic Studies	
	2.12.7 Voltage Assessment Studies	3
	2.13 Implementation)
	2.14 Long Term Transmission Development Plan)
	2.15 Long Term Generation Expansion Plan (LTGEP))
	2.16 Planning Period, Frequency of Updates and Date of Submission)
	2.17 Demand Forecast)
	2.18 Generation Planning Parameters)
	2.18.1 Peaking Availability)
	2.18.2 Power Supply Security Criteria)
	2.19 Economic Parameters	l
	2.19.1 Reference Date for Costs	
	2.19.2 Cost Database	
	2.19.4 Value of Unserved Energy	l l
	2.19.5 Reference Year for Discounted Cash Flow Analysis	ĺ
	2.20 Generation Planning Tools	!
	2.21 Development of the ReFERENCE CASE, BASE CASE AND SENSITIVITY STUDIES	!
	2.21.1 Development of the reference case plan	!
	2.21.2 Development of the Base Case Plan	2
	2.21.3 Sensitivity Studies	2
	2.22 Structure of the Long Term Constraint Expansion Plan	,
	2.24 The Least Cost Constraint Expansion Plan	,
,	2.24 The Least Cost Generation Expansion Han	
ľ	S GRID CONNECTION CODE	,
	3.1 Introduction	ŧ
	3.2 Applicability	ŧ.
	3.3 Objectives	ŧ.
	3.4 Transmission System Performance Criteria	ŧ.
	3.5 Declared Voltage	ŧ.
	3.5.1 Voltage Level	ŧ.
	3.6 System Power Quality	i .
	3.6.1 Frequency Variations	<i>i</i>
	3.6.3 Voltage Variations	, i
	3.6.4 Voltage Fluctuations	j
	3.6.5 Voltage Unbalance	i
	3.7 Equipment Standards	i i
	3.7.1 Basic Impulse Level	i .
	3.7.2 Power Frequency Withstand Voltage	,
	3.8 Current Distortion Limits	;
	3.9 Emission Limits of Fluctuating Loads	;
	3.10 Protection Arrangements and Fault Level Considerations	
		eserved.

CHUBU Electric Power

NIPPON KOEI

Highlighted Table Contents for Description Changes of GRID CODE

3.11 Neutral Grounding
3.12 Metering
3.13 SCADA & Communication
3.14 Safety
3.14.1 Equipment Numbering
3.16 Special Connection Requirements for Generating Units
3.16.1 Frequency Variation Capability
3.16.2 Voltage Variation Capability
3.16.3 Power Factor Variation Capability
3.16.4 Unbalanced Loading Capability
3.16.5 Load Following Capability
3.16.6 Fault Ride-through Capability
3.16.7 Black Start Capability
3.16.8 Line Charging Capability
3.16.10 Governor Response
3.16.11 Performance Monitoring Facility
3.16.12 Remote Monitoring Facility
3.16.13 Protection Relaving
3.16.14 Synchronising
3.17 Special Connection Requirements for Intermittent Resource Based Generating Units30
3.17.1 Power Factor Variation Capability
3.17.2 Reactive Power Capability
3.17.3 Current Distortion Limits
3.17.4 Emission Limits of Fluctuating Loads
3.17.5 Power Curtailment Requirement
3.17.6 Other Connection Requirements for IRBGS
3.18 Special Connection Requirements for Embedded Generating Units
3.19 Special Connection Requirements for Distribution Licensees
3.19.1 Under-Frequency Load Shedding31
3.19.2 Current Distortion Limits
3.19.3 Emission Limits of Fluctuating Loads
3.20 Special Connection Requirements for Transmission Customers
3.20.1 Under-Frequency Load Shedding
3.20.2 Current Distortion Limits
3.20.3 Emission Limits of Fluctuating Loads
3.21 Procedures for Application for Grid Connection
4 GRID OPERATIONS CODE 32
4.1 Introduction
4.2 Applicability
4.3 Objectives 32
4.4 Responsibilities 32
4 4 1 Transmission Lissana
4.4.2 System Operator 22
4.4.2 System Operator
4.5 Transmission Assat Mananament 33
4 5 1 Maintenance Planning
4.5.2 Preventive Maintenance Program
4.5.3 Follow-up Maintenance Program
4.5.4 Remedial Maintenance Program
4.5.5 Network Refurbishment Program
4.6 Outage Planning
4.6.1 Annual Transmission Outage Plan
4.6.2 Annual Generator Outage Plan
4.6.3 Outages Under Unforeseen Situations
4.6.4 Outages for Emergencies
4.6.5 Forced Outages
Grid Code – Revised October 2018 iv

9

4.7 Release of Generation Units
4.7.1 Postponement or Advancement of Outages
4.8 Making Generation Units Available Arter an Outage
4.9 Implementing Outage Programs
4.10 Dispatching of Generation
4.11 Frequency Control
4.12 Voltage Control
4.13 Switching Operations
4.14 System Operator Records
4.14.1 System Operator Reports
4.15 Contingency Planning
4.15.1 Restoration Plans
4.15.2 Voltage and Frequency
4.15.3 System Studies
4.15.5 Automatic Load Shedding
4.15.6 Manual Load Shedding
4.15.7 Demand Management Agreements
4.15.8 Demand Control through Other Measures40
4.16 Transmission System Protection
4.17 Communications and SCADA40
4.17.1 Operational and System Data40
4.18 Safety
4.18.1 Safety Manual
4.18.2 Safety Management System
4.18.3 Safety Precautions
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users 41
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users41 4.20 Significant Events/Incidents 41
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users41 4.20 Significant Events/Incidents
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users41 4.20 Significant Events/Incidents
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users41 4.20 Significant Events/Incidents
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users41 4.20 Significant Events/Incidents
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users41 4.20 Significant Events/Incidents
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users41 4.20 Significant Events/Incidents
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users41 4.20 Significant Events/Incidents
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users
4.19 Operating Instructions among Transmission Licensee and Other Licensees & Users

Inc. All rights reserved.

Highlighted Table Contents for Description Changes of GRID CODE

6.3 Objectives
6.4 Responsibilities
6.4.1 Transmission Licensee
6.4.2 Users
6.5 Metering: General Requirements
6.5.1 Generation/Transmission Boundary
6.5.3 Instanduon of Metering Systems and Ownership
6.6 Design Requirements
6.6.1 Accuracy of Meters and Associated Equipment
6.7.1 Data Storage 50 6.7.2 Ownership and Security of the Database 50 6.7.3 Meter Readings and Monitoring 50 6.7.4 Data Validation 50 6.8 Maintenance of Metering Systems 50
6.8.1 Maintenance, Testing and Auditing Programs 50 6.8.2 Testing of Metering Systems 50 6.8.3 Meter Systems Operating Outside the Prescribed Limits 51 6.9 Meter Testing Equipment 51
6.10 Disputes
ANNEX 1 TO THE GRID CODE
APPENDIX A – CRITERIA55

Generating Units

IRBGS

Embedded Generators

System Communication

3.13 SCADA & COMMUNICATION Sri Lanka A fully functional communication and SCADA System will be established and maintained by the Transmission Licensee. The Transmission Licensee will provide the necessary facilities at the Interconnection Point for the User to upload data to the SCADA system and to receive control signals from the SCADA system in accordance with the Connection Agreement. Communication and SCADA systems shall have the capability for the System Operator to carry out switching operations in the Transmission System and data acquisition. Voice and data communication facilities shall be secured against unauthorised access in accordance with the standards specified. The above requirement shall also apply to all IRBGS directly connected to grid substations.

It is necessary to write communication requirement with dedicated line for certain amount solar and wind(1MW- or 10MW-)

Pros and Cons	Step by step installation of grid code would be better considering cost impact for small VRE power plant and possibility of installing storage battery					
	10MW – solar and wind	1MW – solar and wind				
Controllable capacity(Grid code revision prior to 2025)	△Solar 1460MW/4209MW(35%) ○Wind 1090MW/1523MW(72%)	○Solar 1720MW/4209MW(41%)○Wind 1090MW/1523MW(72%)				
Cost burden of constructing communication equipment	OLess burden for large scale VRE					
Stable supply	\triangle Surplus power can't be covered completely \rightarrow \bigcirc can be covered with installation of 1,000MW battery in 2030 described on LTGEP	OSurplus power can be covered completely				

(System Communication) Controllable VRE considering curtailment volume in 2030

It is better to revise Grid Code prior to 2025 and validate it from 2025.

Otherwise, it will be needed to revise Grid Code again in order to expand the controllable RE borderline from 10MW to lower capacity or to increase battery duration.

VIPPON KOE

(System Communication) Specification of VRE Control System in Sri Lanka

(System Communication) Specification of VRE Control System in Japan

All requirements specified in generating Electric Power **Frequency Variation Capability** units part 3.16 shall apply to IRBGS NIPPON KOEI 3.16 SPECIAL CONNECTION REQUIREMENTS FOR GENERATING UNITS Sri Lanka 3.16.1 FREQUENCY VARIATION CAPABILITY Generating Units shall be capable of delivering the declared active and reactive power outputs within the system Frequency variations, specified in this GCC. The Transmission Licensee and a User may agree to lower active power delivering capability when system Frequency falls below one percent (1%) of the rated Frequency. Generating Units shall be protected against Frequency excursions outside the ranges specified in Appendix A Section 3.2(A). Ireland case 3.2 GENERATION LICENSEES WITH GENERATION FROM CONVENTIONAL RESOURCES <Former Description(roughly connected prior to 2019)> Sri Lanka FREQUENCY VARIATION CAPABILITY (GCC 3.16.1) (A) (a) operate continuously at normal rated output at Transmission System Frequencies in the range 49.5Hz to 50.5Hz; Table 3.2.A: Frequency Variation Capability remain synchronised to the Transmission System at Transmission System (b) Frequency (Hz) Duration Frequencies within the range 47.5Hz to 52.0Hz for a duration of 60 minutes; 50.5 - 52.0 60 minutes (c) remain synchronised to the Transmission System at Transmission System 49.5 - 50.5 Continuous Frequencies within the range 47.0Hz to 47.5Hz for a duration of 20 seconds 47.5 - 49.5 60 minutes Lower threshold is higher than required each time the Frequency is below 47.5Hz; others(49.5Hz) 47.0 - 47.5 30 seconds <Present Description(roughly connected after 2019) Japan case only for Generating Unit> Remain synchronised to the Transmission System and operate within the (w) **Continuous operation Connected at** frequency ranges and time periods specified in Table CC.7.3.1.1. range Table CC.7.3.1.1: Minimum Time Periods for Generation Units to Remain 48.5Hz - 50.5Hz All voltage Operational without Disconnecting Frequency Range Time Period 47 - 47.5 Hz 20 seconds Japanese lower threshold was determined based on the historical requirements. 47.5 - 48.5 Hz 90 minutes Ireland's lower threshold was determined based on commission regulation 2016/631 that integrated EU 48.5 - 49 Hz 90 minutes wide "Unlimited" ranae. 49 - 51 Hz Unlimited However, it was confirmed by Japanese vendors there is almost no additional cost for generators to expand 51 - 51.5 Hz 90 minutes

IRBGS

Generating Units

"continuous" range over the operational lowest frequency(Sri Lankan case : 47.0Hz)

15

Embedded Generators

51.5 - 52 Hz

60 minutes

CHUBU

Generating Units

IRBGS | Embedded Generators

Frequency Variation Capability

High Wind Season

1. Present continuous operation range is 49.5 – 50.5Hz in CEB Grid Code.

 Assuming that system coefficient K is equal to 5%(Hz/MW) approximately, it would be frequently to violate 49.5Hz in 2030 under 70% RE situation. Offpeak : 2,000MW × 5% (Hz/MW) × (0.5Hz/1Hz) = 50MW fluctuation leads to frequency violation (50MW out of ~1,000MW wind output) Peak : 3,500MW × 5% (Hz/MW) × (0.5Hz/1Hz) = 87.5MW fluctuation leads to frequency violation (87.5MW out of ~1,000MW wind output & ~ 2,000MW solar output)

Source : LTGEP 2023 - 2042

CHUBU

NIPPON KOEI

Electric Power

Power Factor Variation Capability

Generating Units

3.16 SPECIAL CONNECTION REQUIREMENTS FOR GENERATING UNITS

3.16.3 POWER FACTOR VARIATION CAPABILITY

18

Generating Units shall be capable of continuously delivering the declared outputs at any point between the Power Factors of **0.8 lagging and 0.9 leading**, in accordance with its reactive power Capability Curve, unless otherwise agreed in the Connection Agreement, and operate in voltage control mode to support dynamic reactive power requirements during disturbances.

IRBGS

Sri Lanka

	lanan casa	CC.7.3.6.1 Each Generat	ion Unit shall ha	all have the following Reactive Power capability as		
	Jupun cuse	measured at th	heir alternator term	ninals:	Ireland case	
Connected at	Power factor range	Voltage Range	Connected at:	At Registered Capacity between:	At 35% of Registered Capacity between:	
		99kV ≤ V ≤ 123kV		0.93 power factor leading to 0.85 power factor	0.7 power factor leading to 0.4 power	
	Between 0.85 laggin		110kV	lagging	factor lagging	
110V – 6.6kV	and 1.0	9 85kV ≤ V < 99kV		Unity power factor to 0.85 power factor lagging	0.7 power factor leading to 0.4 power factor lagging	
11kV -	Between 0.90 lagging and 0.95 leading	200kV ≤ V ≤ 245kV	220kV	0.93 power factor leading to 0.85 power factor lagging	0.7 power factor leading to 0.4 power factor lagging	
		190kV ≤ V < 200kV		Unity power factor to 0.85 power factor lagging	0.7 power factor leading to 0.4 power factor lagging	
		360kV ≤ V ≤ 420kV	400kV	0.93 power factor leading to 0.85 power factor lagging	0.7 power factor leading to 0.4 power factor lagging	
		350kV ≤ V < 360kV		Unity power factor to 0.85 power factor lagging	0.7 power factor leading to 0.4 power	
					factor lagging	

Electric Power

CHUBU

IRBGS

Embedded Generators

Power Factor Variation Capability

3.17.2 REACTIVE POWER CAPABILITY

Sri Lanka

IRBGS shall be capable of operating at any point within the Power Factor ranges given in Appendix A Section 3.3.1 Inless otherwise agreed in the Connection Agreement, and operate in voltage control mode to support dynamic reactive power requirements during disturbances.

3.3 GENERATION LICENSEES WITH INTERMITTENT RESOURCE BASED GENERATION SYSTEMS

3.3.1 POWER FACTOR VARIATION CAPABILITY (GCC 3.17.1) AND REACTIVE POWER CAPABILITY (GCC 3.17.2)

CC.7.3.6.1	Each	Generation	Unit	shall	have	the	following	Reactive	Power	capability	as
	meas	ured at their	altern	ator te	ermina	s:		In	eland	case	

N-lt	Connected at:	At Registered Capacity	At 35% of Registered
Range		between:	Capacity between:
Nunge			
99kV ≤ V ≤ 123kV		0.93 power factor leading	0.7 power factor
		to 0.85 power factor	leading to 0.4 power
		lagging	factor lagging
	110kV		
85kV ≤ V < 99kV		Unity power factor to	0.7 power factor
		0.85 power factor lagging	leading to 0.4 power
			factor lagging
$200kV \le V \le 245kV$		0.93 power factor	0.7 power factor
		leading to 0.85 power	leading to 0.4 power
		factor lagging	factor lagging
	220kV		
190kV ≤ V < 200kV		Unity power factor to	0.7 power factor
		0.85 power factor lagging	leading to 0.4 power
			factor lagging
360kV ≤ V ≤ 420kV		0.93 power factor	0.7 power factor
		leading to 0.85 power	leading to 0.4 power
		factor lagging	factor lagging
	400kV		
350kV ≤ V < 360kV		Unity power factor to	0.7 power factor
		0.85 power factor lagging	leading to 0.4 power
			factor lagging

Copyright © Chubu Electric To be examined with PSSE

Generating Units

Fault Ride-through Capability

All requirements specified in generating units part 3.16 shall apply to IRBGS

CHUBU Electric Power

NIPPON KOEI

3.16.6 FAULT RIDE-THROUGH CAPABILITY

Sri Lanka

IRBGS

Generating Units shall be capable of remaining synchronised during and following any fault disturbance anywhere on the Transmission System which could result in voltage dips at the HV terminals of the generator transformer of no greater than 95% of nominal voltage (5% retained) for fault durations up to and including the fault ride-through times as defined in Appendix A Section 3.2(C) and voltage dips of no greater than 50% of nominal Voltage. (i.e. 50% retained) for fault durations up to and including the fault ride through times as defined in Appendix A Section 3.2(C) and voltage dips of no greater than 50% of nominal Voltage. (i.e. 50% retained) for fault durations up to and including the fault ride through times as defined in Appendix A Section 3.2(C) (see also fault ride through envelopes in Appendix A Section 3.2(D)).

(D) FAULT RIDE-THROUGH CAPABILITY ENVELOPES (GCC 3.16.6)

(Fault Ride-through Capability) Japan Case

Japan case

<FRT applied to solar>

<FRT applied to wind >

Ireland case

VOLTAGE DIP MAGNITUDE	Fault Ride-Through Times				
	400 kV System	220 kV System	110 kV System		
95% (5% retained)	150 ms	150 ms	150 ms		
50% (50% retained)	450 ms	450 ms	450 ms		

<Former FRT(roughly connected prior to 2019)>

100% (U/p.u.) 0.450, 90% 80% 60% -----• 0.450, 50% 40% Voltage 0.150, 50% 20% 0.150.0% 0% 0.000 0.500 1.000 1.500 2.000 Time (seconds)

<Present FRT(roughly connected after 2019)>

(Fault Ride-through Capability) Ireland Case of Intermittent Generation

Ireland case

 U/U_n

90%-

15%-

0 150

625

A Controllable PPM shall remain connected to the Transmission System for Transmission System Voltage Dips on any or all phases, and shall remain Stable, where the Transmission System Phase Voltage measured at the HV terminals of the Grid Connected Transformer remains above the heavy black line in *Figure PPM* 1.1.

> Phase Voltage vs Time profile at HV Terminals of Grid-Connected Transformer

Fault Ride Through Capability of PPMs

<Present FRT(roughly connected after 2019)>

(f) Controllable PPMs connected to the Transmission System shall be capable of staying connected to the Transmission System and continuing to operate stably during Voltage Dips. The voltage-against-time profile specifies the required capability for the minimum voltage and Fault Ride-Through Time at the Connection Point before, during and after the Voltage Dip. That capability shall be in accordance with the voltageagainst-time profile a specified in Figure PPM1.4.2.

Figure PPM 1.1 - Fault Ride-Through Capability of Controllable PPMs <Output Recovery (Unchanged in 2019)>

(ms)

3000

(b) The Controllable PPM shall provide at least 90 % of its maximum Available Active Power or Active Power Set-point, whichever is lesser, as quickly as the technology allows and in any event within 500 ms of the Transmission System Voltage recovering to 90% of nominal Voltage, for Fault Disturbances cleared within 140 ms. For longer duration Fault Disturbances, the Controllable PPM shall provide at least 90% of its maximum Available Active Power or Active Power Set-point, whichever is lesser, within 1 second of the Transmission System Voltage recovering to 90% of the nominal Voltage.

© Chubu Electric Power Co., Inc. All rights reserved.

Generating Units

IRBGS

Embedded Generators

Specification of Thermal Generators

Regarding designated specification of conventional generators, no description other than adjustable governor speed droop settings (2-10%) and inherent dead band (within ± 0.05 Hz) are in Clause 3.16.10 **C** Sri Lanka

To be described referring to Japanese case, because they have been technically confirmed to be realizable with little additional cost (a few ten's of thousand dollars only with changing control logics, no need to change the specifications of generators, turbines and boilers) compared to existing thermal power plants in Japan.

Japan case			
Designated Specification Items	GT, GTCC	Thermal and mixed combustion biomass (e.g. with coal) other than GT, GTCC	Comments for Sri Lankan requirements
Target capacity	≧100MW		Most of thermal units described in Annex 8.3 in the latest LTGEP are more than 100MW, so it's applicable
GF ^{∗1} droop	≦4%		No need to revise because there is a already adjustable droop setting and it includes 4% below
GF output range	\geq 5%(Nominal output basis)	\geq 3%(Nominal output basis)	Technically applicable
LFC ^{*2} ramp rate	\geq 5%/min(Nominal output basis)	\geq 1%/min(Nominal output basis)	Technically applicable
LFC output range	$\geq \pm 5\%$ (Nominal output basis)		Technically applicable
EDC ^{*3} ramp rate	\geq 5%/min(Nominal output basis)	\geq 1%/min(Nominal output basis)	Technically applicable
Ramp rate in using EDC & LFC simultaneously	\geq 10%/min(Nominal output basis)	\geq 1%/min(Nominal output basis)	Technically applicable
Lower threshold of output range enabling to use LFC, EDC	\leq 50%(Nominal output basis)	\leq 30%(Nominal output basis)	Technically applicable
DSS Capability	Required (Down time Interval ≦8 hours)	_	Technically applicable
Output Reduction Preventing Function ^{*4}	Required	-	Technically applicable

*1 Governor Free, *2 Load Frequency Control, *3 Economic load Dispatching Control

24

*4 Function to keep output if frequency drops down to 48.5Hz, or be able to recover even if output decreases once with frequency drops

NIPPON KOEI

Embedded Generators

Ramp Rate Limitation

Electric Power

IRBGS

Embedded Generators

Control Prioritization

No description

5.6 Dispatch Procedures

Sri Lanka

NIPPON KOEI

System Operator will prepare a daily dispatch schedule and Generators will be requested to generate according to this schedule. All dispatchable Generating Units will be subject to central Dispatch instructions. The Dispatch shall be a least-cost, security-constrained Dispatch, meaning that generating unit commitments will be optimized with full recognition of unit availability unit start-up and operating costs, and grid constraints due to system operating limits and irrigation constraints in the case of multi-purpose hydropower Generating Units. Log notes shall be maintained regarding any deviation from the Daily Dispatch Plan, including the reasons for the same.

 \rightarrow There is a description " The Dispatch shall be a least-cost", however any concrete orders by types of generation are not described

			To be described for transparent operation referring to Japan case.			
	Japan case	?	That was discussed with NSCC in Sep 2022.			
0	Output control of thermal power and PSPP pumping, battery charging (dispatchable)					
1	Ditto(Non-dispatchable including mixed combustion biomass (e.g. with coal) ,					
	except for biomass, renewables and long-term fixed power sources *1)					
2	Export to other regions using interconnected lines					
3	Biomass(except for those using local resources*2) output control					
4	Biomass using local resources					
5	Solar and wind power control					
6	6 Output control of long-term fixed power sources (hydro(other than PSPP), nuclear, geothermal)					
*1 Generation types that has technical difficulties to control their output *2 Unutilized local biomassresources that potentially exist at power plants' location						

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

GRID CONNECTION REQUIREMENT FOR SOLAR/WIND POWER PLANTS

Output Control / Remote Control Facility

Generating Units

(Wind)3.1 Output Control

29

The wind farm shall provide the necessary controlling facility to limit the out put variation of the wind farm by incorporating necessary controls to individual wind turbines. The ramp rate will be defined for the grid substation and shall not exceed 10 MW/minute. The ramp rates applicable for individual wind farms will be distributed in terms of their installed capacity. The ramp rate shall be applicable to wind farms connected to a particular grid substation as depicted below.

IRBGS

(a) If the wind farm capacity is equal or greater than 5 MW.

(b) If the cumulative installed capacity of wind farms connected to a particular grid substation equal or exceeds 20 MW. (Wind farms having installed capacities less than 1 MW will be exempted though the capacities of such wind farms will be considered for calculation of cumulative installed capacity)

Extent is to be examined with PSSE

(Wind)3.2 Remote Control Facility	Sri Lanka				
Remote controlling facility from System Control Centre shall be provided for the main circuit breaker of the wind farm if the cumulative wind farms connected to a particular grid substation exceeds or equal 20 MW. The wind farms having installed capacities less than 1 N					
though the capacities of such wind farms will be considered for calculation of cumulative installed capacity.					
This requirement will be waive off for first 40 MW of wind farms. However, CEB reserve the right to control out puts of those plants, du situation such as restoration of power supply after an Islandwide supply failure, during very volatile wind situation and situations wher are not responsive to the ramp rates stipulated in section 3.1	uring an emergency re wind farm out puts				
Procedure of output control is adaptable and flexible not by circuit brea	ker but by PCS?				

It is necessary to write communication requirement with dedicated line for certain amount solar and wind(1MW- or 10MW-) for solar as well

Sri Lanka

IRBGS | Embedded Generators

Low Voltage Ride Through Capability

(Solar)4.5/(Wind)4.6 Low Voltage Ride Through (LVRT) Capability

Sri Lanka

NIPPON KOEI

The solar/wind power plant shall be connected to the grid during voltage disturbances (Under voltage conditions) of the power system for a short period of time. The low voltage margin required in the LVRT capability is beyond the low voltage margin stipulated under "4.2 Voltage Requirement". If the grid voltage at the point of interconnection reduces to 40% of the nominal voltage and remain at 40% of nominal voltage for a period less than 100 ms and then recover to a voltage level of 90% or higher within 3 seconds, the solar PV plant/wind farm shall remain connected to the grid. If the voltage during the disturbance reduces below the aforesaid voltage profile, the solar PV plant/wind farm shall trip.

(Wind)4.6.1 Applicability of LVRT capability The LVRT capability shall be applicable for any one of the cases described below.

Sri Lanka

Extent spread to all capacities to be examined with PSSE

(a) Wind farm having installed capacities 5 MW or above.

(b) If the cumulative installed capacity of wind farms connected to particular grid substation exceeds or equal to 20 MW, all the generating companies, except wind farms having installed capacities below 1 MW shall together or individually provide the LVRT facility either at point of common coupling or at 33 kV bus bar of the grid substation.

(Wind) 4.6.2. Exemptions from LVRT capability

The LVRT capability is waived off for following cases.

Extent spread to all capacities to be examined with PSSE

(a) The first wind farm developers will be exempted form LVRT capability whose total installed capacity is 40 MW.

(b) The wind farm having installed capacities less tan 1 MW

04 Scenarios for analyzing Grid Code with PSSE

Overview of Simulation Scenarios

		Fault case (N-1 fault + VRE fluctuation)	Usual case (No fault but VRE fluctuation)	(FRT simulation with battery 0№ • N-1 largest generator trip + \	VW) √RE ramp down + VRE trip case		
	FRT	\checkmark		• VRE ramp down + VRE trip case×2 Unstable : Need to revise FRT Stable			
	RoCoF	\checkmark		(RoCoF simulation with battery 0-500MW) N-1 largest generator trip +	No need to conduct RoCoF & Ramp Rate simulations		
Frequency regulation	Ramp Rate Limitation	\checkmark	\checkmark	VRE ramp down (Ramp Rate simulation with battery 0-500MW)	regarding FRT & Ramp Rate) <u>But only FRT is to be</u> <u>described based on FRT</u> <u>simulations</u>		
	Frequency Variation Capability	No simulat See ch	-√- ion required apter 02	• N-1 largest generator trip + VRE ramp down • Only VRE ramp down Proceed Voltage	Proceed Voltage		
Voltage regulation	Power Factor Variation Capability		\checkmark	↓ Simulation (PF simulation) Low demand + high wind + r	Simulation This solar case		

IRBGS Embedded Generators

Fault Ride Through(Scenario Overview)

- 1. Voltage thresholds covered in CEB Grid Code are 5% beyond for generating units & IRBGS, 40% beyond for embedded generators.
- 2. In the PSSE simulation, we'd like to confirm if voltage of 5% or 40% below occurs or not, and if it occurs, would like to confirm the amount of shedding VRE in the case of typical faults in CEB's study (Puttalamps or Biyagama transmission fault).
- 3. Considering such shedding VRE amount, we'd like to confirm if the frequency can keep stable or not. If it can't, it is better to describe FRT requirement that covers down to 0%.
- In addition, there is no description about output recovery rate after voltage recovery.
- It is better to refer to Japanese case because Japanese electrical engineers and manufacture engineer considered technical realizations and determined such requirements.

(In Ireland case, there is a description "As technology allows", so it is not sure that such requirement realization was confirmed with manufacture engineers)

<Other than Embedded Generators>

(D) FAULT RIDE-THROUGH CAPABILITY ENVELOPES (GCC 3.16.6)

<Embedded Generators>

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

NIPPON KOEI

IRBGS || En

Embedded Generators

Electric Powe

NIPPON KOEI

Fault Ride Through(Concrete Scenarios)

*Refer to Japanese or other contries' (Finland, Spain etc) requirement

Copyright © Chubu Electric Power Co., Inc. All rights reserved.

Concrete Scenarios

IRBGS | Em

Embedded Generators

NIPPON KOEI

RoCoF(Concrete Scenarios)

<Simulation Cases>

- 1. There is no RoCoF description in CEB Grid Code.
- 2. In the PSSE simulation, we'd like to confirm how much RoCoF occurs in the case of the severest fault (Puttalam bus fault + Solar ramp down) in CEB's study.
- 3. RoCoF is to be described with the confirmation number above + margin.

<Evaluation Indicators @ battery 0MW case >

RoCoF(measured within 100ms) ----- Observed RoCoF is to be a numerical requirement in revised Grid Code

Ex.1)**RoCoF \leq 2.0Hz/s @ Battery 0MW** \rightarrow Grid Code requirement for RoCoF is 2.0Hz/s.

Ex.2)**RoCoF > 2.0Hz/s @ Battery 0MW** \rightarrow This needs to be reduced with installation of batteries as per CEB's system wide protection's capability.

	Battery 0MW	Battery 100MW	Battery 200MW	Battery 300MW	Battery 400MW	Battery 500MW
PUTTALA M Bus						
Fault	Prioritize	ed cases!				

6 types of simulations **considering GTs' flexibility that can start up instantly** to identify appropriate amount of battery for frequency regulation

VRE Ramp Rate Limitation(Concrete Scenarios)

Generating Units

<Simulation Cases>

- 1. There is no description regarding ramp rate limitation for intermittent resources in CEB Grid Code.
- In the PSSE simulation, we'd like to confirm how much frequency is affected due to ramp rate of occur intermittent resources in the case of the severest fault (Puttalam bus fault + Solar ramp down) & usual situation(no fault but VRE output fluctuation occurs) in CEB's study. (Considering solar trip due to voltage drop if FRT is not to be revised to cover down to 0%)

IRBGS

- 3. In particular, there should be no load shedding in usual situation.
- 4. In addition, ramp rate limitation leads to obligation of installing battery with intermittent resources, so it is to be considered that **this requirement is** applicable to a certain amount of capacity considering financial impact on small size intermittent resources.

<evaluation @="" battery="" case="" indicators="" omw=""></evaluation>	or
PUTTALAM Bus Fault + Solar ramp down case : Nadir with Load Shedding < 47.0Hz	Ramp rate limitation description
Only VRE fluctuation case : Nadir <48.75Hz(Load shedding threshold)	with mitigation of VRE fluctuation)

	Battery	Battery	Battery	Battery	Battery	Battery
	0MW	100MW	200MW	300MW	400MW	500MW
Only VRE fluctuation	Prioritize	d cases!				

6 types of simulations **considering GTs' flexibility that can start up instantly** to identify appropriate amount of battery for frequency regulation (PUTTALAM Bus Fault case is the same case as RoCoF scenarios, so not need to simulate)

Embedded Generators

Power Factor Variation Capability(Concrete Scenarios)

Generating Units

<Simulation Cases>

- 1. Ireland Grid Code describes wider power factor variation capability compared to CEB Grid Code.
- 2. In the PSSE simulation, we'd like to confirm how much voltage deviation occurs in the case of usual situation (no fault and low demand + high wind + much solar case) with PF constraints described in CEB's Grid Code.

IRBGS

<Evaluation Indicators>

Each bus voltage < Grid Code Table 4.1.B (132-400kV : ±5%, 11-33kV:±6%)

- \rightarrow Expansion of PF requirement in the revised Grid Code in case of voltage breach.
 - Voltage breach bus is near IRBGS connection point : Expansion of IRBGS PF requirements
 - Voltage breach bus is near Embedded Generators : Newly describe PF requirements

Embedded Generators

05 Recommendation

Grid Code Revision Recommendation

Items	Generating Units	IRBGS	Embedded Generators		
System Communication	_	Equal to or more 10MW VREs are obligate to construct communication equipment with NSCC and keep controllable			
FRT Expand the existing requirements if it is found to be necessary with PSS/E					
RoCoF	Newly stipulate with PSS/E simulation				
Ramp Rate Limitation	_	_ Newly stipulate if it is found to be necessary with PSS/E			
Power Factor Capability	Expand the existing requirements or newly stipulate regarding embedded generators if it is found to be necessary with PSS/E				
Specification of Thermal Generators	Newly stipulate referring to Japanese requirements	_	_		
Control Prioritization	Newly stipulate referring to Japanese requirements	_	—		