Ministry of Works and Transport The Republic of Uganda

ADVISOR FOR CAPACITY DEVELOPMENT IN ROAD CONSTRUCTION AND MAINTENANCE IN THE REPUBLIC OF UGANDA

FINAL REPORT

JUNE 2023

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

YACHIYO ENGINEERING CO., LTD.

IM JR 23-073

Contents

Project Location Map
Photographs
Abbreviations

Page

Chapter	1. Outline of the Project	1-1
1.1	Background of the Project	1-1
1.2	Objective of the Project	1-1
1.3	Members of the Project Team	1-2
1.4	Implementation Schedule	1-2
Chapter	2. Issues and Assistance Policy	2-1
2.1	Organization Structure of MoWT	.10
(1)	Operational System for Road Maintenance by the Department of Roads and Bridges	2-1
(2)	Equipment Management Structure by the Department of Mechanical Engineering Services	2-3
2.2	Capacity Assessment regarding Technical Evaluation Items	2-4
Chapter	3. Activity Report	3-1
3.1	Technical Assistance for Improvement of Policy Making, Planning and Budgeting in Road Management	3-1
(1)	Introduction of Asset Management	3-1
(2)	Preventive Maintenance System	3-1
(3)	Proposed Maintenance Frequency and Timing according to Road Classification and Service Level	3-2
3.2	Technical Assistance for Improvement of Road Maintenance System and Efficiency	3-3
(1)	Proper Use of Road Maintenance Equipment in Collaboration with Mechanical Team	3-3
(2)	Effective Use of Database System for District and Urban Roads	3-4
(3)	Measures for Cost Reduction on Road Construction and Maintenance	3-5
3.3	Technical Assistance for Improvement of Road Maintenance System and Efficiency	3-3
(1)	Effective Use of Private Sector Services	3-5
(2)	Training of Trainers (TOT) Programme for Development of Mechanics	3-6
(3)	Annual Maintenance Costs estimated for Service Life Time of Equipment	3-8
(4)	Countermeasure for Urgent Issue on Equipment Maintenance	3-9
(5)	Advice on Future Upgrading of MoWT's Mechanical Workshop	3-9

Chapter	4. Recommendations, etc	4-1
4.1	Recommendations to MoWT	4-1
4.2	Remained Issues and Lessons	4-1
(1)	Achievement and Future Issues based on Technical Evaluation Items of the Project	. 4-1
(2)	Other Remarkable Issues and Lessons	4-8
4.3	Proposed Future Assistance	.4-11

<u>Appendix</u>

- 1. Work Plan
- 2. Attendance List
- 3. Organization Structure of the Department of Roads and Bridges and the Department of Mechanical Engineering Services
- 4. Project Implementation Schedule (Plan/Actual)
- 5. Presentation Material for the Final Workshop
- 6. Recommendations

Project Location Map

Photographs

Kick-off Meeting

JICA Project Team explained the draft of Work Plan and discussed with participants from MoWT.

Following the kick-off meeting, JICA Project Team and focal counterpart from MoWT had a technical discussions.

TOT at NVTC

JICA Project Team conducted the basic course in the TOT in collaboration with Nakawa Vocational Training Center (NVTC) and all the programme at NVTC was successfully completed.

JICA expert provided a lecture on electronics together with the instructor from NVTC.

Reporting Session of Self-training

At the beginning of each field work, a workshop was held to report the results of the self-training by TOT members. TOT members prepared presentation materials and reported on their activities.

TOT at Bugembe Regional Mechanical Workshop In order to confirm the achievement of TOT, TOT members themselves provided an educational training to MoWT mechanics. The photo shows a lecture on how to use measuring equipment at the Bugembe Regional Mechanical Workshop.

Practical Training

At the machining shop of MoWT Workshop, JICA expert provided technical guidance on how to process and repair engine cylinder block liners.

Advanced Course on Compaction Equipment TOT was conducted in collaboration with local dealers. The photo shows the instruction of the hydraulic pressure measurement method using the actual equipment.

Joint Workshop between both civil and mechanical team The civil team and the mechanical team held a joint workshop. Participants had discussions to work together for an effective use of the GPS tracking system of equipment.

Practical Training

Practical training on how to disassemble, measure, and assemble small engines as well as educational methods was conducted at the Kampala Central Mechanical Workshop.

Advanced Course on Heavy Equipment TOT was conducted in collaboration with local dealers. The photo shows a lecture by JICA expert on the maintenance theory and precautions for the excavator.

<u>Closing Ceremony</u> Group photo after the closing ceremony of the Project. TOT members received the training completion certificate at the ceremony.

Abbreviations

AC	Assistant Commissioner
BMAU	Budget Monitoring and Accountability Unit
CE	Civil Engineer
CME	Chief Mechanical Engineer
CMES	Commissioner Mechanical Engineering Services
CW	Central Workshop
DEW	Director Engineering and Works
DEW/EIC	Director of Engineering and Works/Engineer in Chief
DRRU	District Road Rehabilitation Unit
FA	Force Account
FY	Fiscal Year
GPS	Global Positioning System
ITISPR	Integrated Transport and Infrastructure Services Programme Review
JBIC	Japan Bank for International Cooperation
JICA	Japan International Cooperation Agency
KCCA	Kampala Capital City Authority
ME	Mechanical Engineer
MoFPED	Ministry of Finance, Planning and Economic Development
MoWT	Ministry of Works and Transport
MSI	Mechanical Services Inspection
MSO	Mechanical Services Operations
NVTI (NVTC)	Nakawa Vocational Training Institute (Nakawa Vocational Training College)
OJT	On the Job Training
PS	Permanent Secretary
PXE	Principal Executive Engineer
RMW	Regional Mechanical Workshop
SE	Senior Engineer
SME	Senior Mechanical Engineer
TOT	Training of Trainers
ULGA	Uganda Local Government Association
UNIDO	United Nations Industrial Development Organization
UNRA	Uganda National Roads Authority
UR	Urban Roads
WM	Workshop Manager
ZE	Zonal Equipment
ZC	Zonal Centers

Chapter 1. Outline of the Project

1.1 Background of the Project

In August 2019, the Government of the Republic of Uganda (hereinafter referred to as Uganda) submitted a request to the Government of Japan for technical cooperation aimed at improving the policy making and planning capacity for road construction and maintenance managed by the Ministry of Works and Transport (hereinafter referred to as MoWT), improving road construction and maintenance systems, developing human resources for the proper utilization of road equipment. In response to this, the Japan International Cooperation Agency (hereinafter referred to as JICA) decided to dispatch a technical expert team (hereinafter referred to as the Project Team or the Expert Team or the Team) to implement the Technical Cooperation (hereinafter referred to as the Project).

1.2 Objective of the Project

The Project implements technical assistance for the staff in charge of road construction and maintenance and of managing road maintenance equipment owned by MoWT in order to improve their capacity in the field of road construction and maintenance.

Table 1-1 shows the project goals, expected outcomes and outline of activity.

Project Goals	MoWT personnel improve their capacity in the fields of road construction and							
110jeer Could	maintenance.							
Expected Outcomes Outcomes 1: Improvement measures for policy making, planning, and buc								
1	road construction and maintenance of MoWT are proposed.							
	Outcomes 2: A system for road construction and maintenance, including effective use							
	of road construction equipment, of MoWT is improved in visible							
	achievement of proper road construction/maintenance works for							
	fair/good conditions.							
	Outcomes 3: Capabilities of MoWT's road engineers, operators and mechanics through							
	road construction/maintenance and use of equipment is strengthened.							
Outline of Activity Activity 1-1: To evaluate and analyze current systems for policy making,								
	budgeting related to road construction and maintenance, then to advise							
	and recommend areas for improving the system.							
	Activities 2-1: To assess and analyze current systems for road construction and							
	maintenance including effective use of road construction equipment,							
	then to train and advise for improving the system.							
	Activity 3-1: To evaluate and analyze current issues of human resources, such as road							
	engineers, operators and mechanics, in charge of road construction and							
	maintenance, and the current status of equipment use/management, then							
	to train and advise personnel for the appropriate utilization and							
	management of equipment.							
	Activities 3-2: To develop a future improvement plan based on the issues identified							
	through Activities 3-1 above.							

Table 1-1 Project Goals, Expect	ted Outcomes and Outline of Activity
Tuble I I I I offeet Gould, Expect	cu outcomes and outmite of fielding

1.3 Members of the Project Team

The members of the Project Team are shown in Table 1-2.

Name	Organization	Assignment			
Isao TAKAHASHI	Yachiyo Engineering	Team Leader / Road Management Plan :			
	Co., Ltd.	Project Management			
		Assistance for improving the capacity for policy making and planning for road construction and maintenance			
		 Assistance for improving road construction and maintenance systems 			
Makoto SUGIYAMA*	Yachiyo Engineering	Road Construction/Maintenance Equipment Management :			
	Co., Ltd.	> Technical assistance for proper utilization of road			
		equipment			

Table 1-2 Members of the Project Team

Note: * In the 2nd field work, Mr. Makoto SUGIYAMA replaced his predecessor Mr. Etsuo HASHIGUCHI.

1.4 Implementation Schedule

The field work schedule of the Project is shown in Table 1-3.

 Table 1-3 Implementation Schedule

Year/Month		2021		2022										2023						
	4	5	•••	•••	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
Team Leader / Road Management Plan : Isao TAKAHASHI																				
Road Construction/Maintenance Equipment Management : Makoto SUGIYAMA		Field V			2 nd Fi	eld Wo			3 rd F	ield W				t th Fiel		ĸ		5 th Fie	ld Wo	

The Project Team conducted the five field works in Uganda as specified as follows:

1st Field Work

Explaining, discussing and finalizing of the work plan, analyzing actual capacity and issues of MoWT, commencing a training programme, etc.

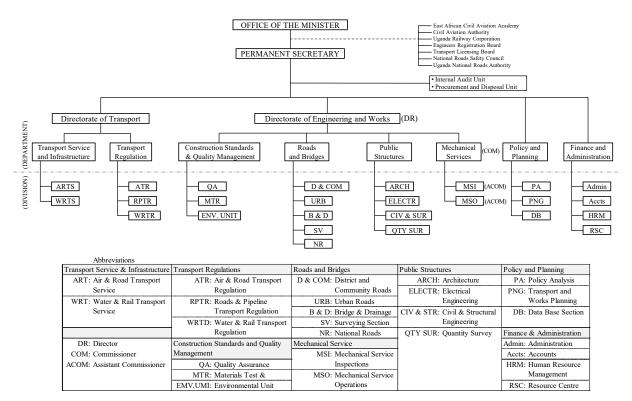
2nd Field Work to 4th Field Work

Interim feedback, conducting OJT (On-the-Job-Training), holding a workshop, interim evaluation, etc.

5th Field Work

Interim feedback, conducting OJT (On-the-Job-Training), holding a workshop, final evaluation, advising an improvement plan, etc.

During the 1st field work in Uganda, the Project Team held discussions with MoWT's focal counterparts (hereafter referred to as C/P) from the Department of Mechanical Engineering Services and the Department of Roads and Bridges, and explained the basic policy, method, and work schedule based on the drafted Work Plan for project implementation. In addition, the Project Team conducted the field


investigation to grasp the current situation and identify issues related to the capacities of C/P to maintain roads and to operate and manage road equipment. Through field investigations and discussions with the C/P, the Work Plan was finalized based on the agreement of MoWT's C/P (see Appendix-1 "Work Plan").

The list of members and organizations involved in the Project is shown in Appendix 2.

Chapter 2. Issues and Assistance Policy

2.1 Organization Structure of MoWT

The entire organization structure of MoWT is shown in Figure 2-1.

Source: MoWT

Figure 2-1 MoWT Organization Structure, as of April 2021

Of the MoWT organization structure above, structures of individual departments/divisions listed below aimed at technical assistance in the Project are shown in Appendix-3.

- Department of Roads and Bridges
- District and Community Access Roads Division
- Urban Roads Division
- Department of Mechanical Engineering Services
- Mechanical Service Inspection Division
- Mechanical Service Operation Division

(1) Operational System for Road Maintenance by the Department of Roads and Bridges

Road maintenance works for rural roads and urban roads in Uganda used to be implemented by private outsourcing method. However, road projects using this method had some problems such as management problems, lack of construction quality, etc. In order to resolve that situation, in 2012 the government of Uganda changed its policy to a direct operation system called the Force Account for road construction

and maintenance except national roads. As a result, since 2012, MoWT and local governments has worked together in road maintenance of rural roads and urban roads with the basic policy, that is, minor maintenance work is carried out by local governments, and major rehabilitation and/or construction is carried out by the Force Account.

In January 2013, MoWT issued the Force Account Guidelines as a framework for planning and implementation of road maintenance. The guidelines stipulate methodologies for planning and implementation, actions to be taken by related organizations, etc., in accordance with the basic policy of the Force Account. Moreover, the Force Account Guidelines were revised in August 2017, and prior to the revised edition, the Budget Monitoring and Accountability Unit (BMAU) under

- Inconsistencies within the URF and URA Acts
- Low operation funds allocation to designated agencies
- Not fully operational District Roads Rehabilitation Units
- Inadequate remuneration to the gangs
- Inadequate numbers and funding of the regional mechanical workshops

Source: BMAU Briefing Paper, May 2017

Figure 2-2 Key Policy Gaps

the Ministry of Finance, Planning and Economic Development pointed out five issues as the Key Policy Gaps for further improvement as shown in Figure 2-2.

The Guidelines stipulates the target users at the central and local government levels who should utilize it. Table 2-1 shows the classification and outline of works, construction method and structure for road maintenance and rehabilitation works stipulated by the latest Guidelines.

Classification of Works	Outline of Works	Construction Method (Manual/Mechanized) and Structure
1. Routine manual maintenance Target: gravel road, urban tarmac road	 Maintain the roads in serviceable condition throughout the year. Effective when the road has engineered features (camber, cross-fall and longitudinal gradient). 	
2. Routine mechanized maintenance Target: gravel road, urban tarmac road	 Replacement of lost gravel, light grading and re-shaping with a motor grader to restore the road shape. Carry out at intervals of 3 to 4 years depending on traffic volumes/axle loads, environmental (weather) conditions and initial quality of gravel. Best when it is carried out at the end of the rainy season. 	Implemented by a local government using zonal equipment distributed to it

Table 2-1Classification and Outline of Works, and Construction Method and Structure for
Road Maintenance and Rehabilitation Works stipulated in Force Account Guidelines

3. Periodic maintenance of district roads Target: gravel road	 Grading, shaping and re-gravelling For gravel roads, carry out when it has lost more than 70% of the original gravel irrespective of whether it has lasted 3 years or less. For urban roads, include sealing and re- construction to bitumen standard. 	 Mechanized work Implemented by a local government using zonal equipment distributed to it Rehabilitation of district roads is executed by the District Road Rehabilitation Units under MoWT
4. Rehabilitation Target: district road, urban road	 Restoring the road to its original condition. Opening and upgrading of earth roads to gravel standard. 	 Mechanized work Implemented by the Force Account when

Source: Revised Force Account Guidelines, August 2017

As shown in Table 2-1, although the scope of road maintenance and rehabilitation works, outline of works, method and structure, etc. are stipulated, well-planned road maintenance according to the said scope are not sufficiently implemented.

As for MoWT's budget allocation process for road maintenance and rehabilitation, firstly, the road engineer in charge of each region of the country submits an assessment report summarizing the survey results with estimated costs for candidate roads to be maintained or rehabilitated in the next fiscal year to the MoWT headquarter. Then, the headquarter screens candidates, and proceed to a budget application and approval procedures based on its final selection. When MoWT's road engineer prepares the assessment report, the engineer estimates labor costs, fuel costs, other expenses, etc. for respective works based on their own experience, and the cost amounts to be budgeted are accurately calculated by them. On the other hand, road engineers in regions grasp a demand for road maintenance or rehabilitation in the area under their jurisdiction, list up candidate roads for taking actions, and submit the assessment report to the headquarter. Only the roads less than half of the entire list are selected under chronic budget shortage of the government. As a result, the maintenance needs of rural roads are not adequately addressed.

After a new construction or rehabilitation work carried out by MoWT, a implementing organization for road maintenance is transferred to the one of local governments. Periodic inspection and small-scale road maintenance are inadequate, and a corrective maintenance that repeats large-scale rehabilitation after years has been normalized.

In the above situation the Project Team determined to study and propose an improvement method for the road management system that would be feasible under the MoWT's current implementation structure and budgetary condition.

(2) Equipment Management Structure by the Department of Mechanical Engineering Services

Road maintenance equipment under MoWT is operated and maintained by mechanical workshops located in four areas, namely Kampala, Bugembe, Gulu, and Mbarara.

Table 2-2 shows the outline of mechanical workshops under MoWT.

Name	Outline
Kampala	This Workshop is located in MoWT head office in Kampala. At present, only machining,
Central	welding, and woodworking shop are remained as production sections, and its function as
Mechanical	a mechanical workshop is limited.
Workshop	The Workshop has jurisdiction over the central region of the country including Kampala.
Bugembe	This Workshop was developed in 1996 under Japanese grant aid. Although the workshop
Regional	premises is a little small, it has the most complete facilities, workshop equipment and tools
Mechanical	among MoWT's workshops.
Workshop	The Workshop has jurisdiction over the eastern region of the country.
Gulu	The roofed building as a mechanical workshop is only a service pit for small vehicles.
Regional	Equipment maintenance is carried out outdoors, which also serves as a parking lot. There
Mechanical	is also a shortage of workshop equipment and tools.
Workshop	The Workshop has jurisdiction over the northern region of the country.
Mbarara	The roofed building as a mechanical workshop is only a parts warehouse and a storage
Regional	area for equipment awaiting repair. Equipment maintenance is carried out outdoors, which
Mechanical	also serves as a parking lot. There is also a shortage of workshop equipment and tools.
Workshop	The Workshop has jurisdiction over the western region of the country.

 Table 2-2
 Outline of MoWT Mechanical Workshop

Source: JICA Project Team

Since MoWT procured road maintenance equipment with loans from JBIC and a major Japanese bank in 2017, it has outsourced equipment maintenance, including periodic maintenance, to private dealers which are authorized distributors appointed by Japanese manufacturers. The outsourcing contract was planned to expire in April 2023, and with regard to implementing structure to maintain equipment after May 2023, the Project Team planned to give assistance to strengthen MoWT's structure with the option of continuously using private dealer's services.

2.2 Capacity Assessment regarding Technical Evaluation Items

In order to grasp the capacity and analyze issues of road engineers, equipment operators, mechanics, etc. of MoWT and related organizations, and the utilization and management of existing road equipment, the Project Team conducted a field survey and interviews in the 1st field work. The capacity of MoWT engineers, etc. was confirmed according to the evaluation items shown in Table 2-3.

1	Evaluation Items	Confirmation Items	Results
		1. Can he prepare or understand a	The site manager of the Force Account has a
		construction plan (methods, materials, personnel and equipment, execution processes, quality control items, safety measures, points to be noted in construction, etc.) that meet the site condition?	certain level of technical understanding. It is necessary to give assistance and technical advice on individual issues through the Project.
Road Construction and Maintenance		2. Can he carry out the works according to the construction plan?	Under the direction of the site manager, construction works can be carried out. However, further understanding and practices of safety measures at the site are required. It is necessary to give assistance and technical advice on individual issues through the Project.
	Road Construction and Maintenance Work	3. Can he provide adequate instruction and management to equipment operators and workers?	A road engineer can give his instruction when needed. However, further knowledge including more effective use of equipment, safety measures, etc. are required. In particular, road engineers need to work together with the equipment team and supervise operators properly to improve efficiency in equipment operations at sites.
		4. Can he share information on the operation status of equipment at the site, the presence or absence of defects, etc. with the Central Mechanical Workshop and the Regional Workshops in a timely manner?	It is necessary to make daily or regular communications on the equipment status with the Regional Mechanical Workshop. The Project Team attempts strengthen a communication system between the civil team and the mechanical team.
		5. Can he manage to control placement and operation of construction equipment?	It is necessary to establish a better communication system so that the civil team can quickly contact and coordinate with the Regional Mechanical Workshop in case that equipment malfunction occurs. The Project Team attempts strengthen a communication system between the civil team and the mechanical team.
ance		 Can he appropriately carry out daily and periodic inspections of roads under jurisdiction, emergency inspections after disasters, etc.? 	The civil team carries out a road inspection occasionally. However, the frequency of inspections has not been systematized, and it is common practice to conduct a survey and inspection after the road conditions have changed significantly due to deterioration over time or rainfall disasters. In the future, it is desirable to systematize daily and periodic inspections and shift from the current corrective maintenance system.
	Road Inspection, etc.	2. Can he accurately report the damage and deterioration status of roads based on the inspection results?	The template for reporting is described in the Road Maintenance Management Manual. MoWT's road engineer submits an assessment report summarizing (1) the current condition of the target road, (2) the necessary repair works and costs, and (3) the findings of the engineer based on the result of their field survey. The report is used by the MoWT headquarter for judging the necessity of road maintenance or rehabilitation work.
		3. Can he understand the necessity and urgency of repair plans according to the extent and extent of damage and deterioration?	Indicators for judging the necessity and urgency of maintenance are described in the Road Maintenance Management Manual. However, the manual is deemed not fully utilized, and the corrective maintenance against

 Table 2-3
 Technical Evaluation Items and Current Status (as of May 2021)

			for damage and deterioration that require large- scale rehabilitation is commonly carried out by MoWT.
	Inventory of Equipment	 Whether basic data such as equipment type, registration number, basic specification (type, maker, model, manufacturing year, serial no., capacity, engine output, purchase price, etc.) are recorded and the machines' conditions are updated. Whether machines' data are utilized for equipment management. 	Based on a comprehensive service agreement with a private dealer, the dealer manages the basic data of equipment. Through sharing equipment status (including minor maintenance records, etc.) with private dealers over the service life of equipment, MoWT is expected to actively utilize private dealers.
	Operation Record	 Whether machines' operation record (data) are updated regularly. 	Operational data for equipment, to which mechanical services are provided by the private dealer, is updated by the dealers. On the other hand, there are occasional shortages and delays in updating the equipment status managed by MoWT and host organizations. In the future, as a means for MoWT itself to record and update operational data, it is conceivable to use the GPS tracking system installed on equipment.
Construction Eq		 Whether machines' operation data are utilized for equipment management. 	Operational data for equipment, to which mechanical services are provided by the private dealer, is utilized by the dealers. Operational data of equipment managed by MoWT and host organizations is insufficient. In the future, MoWT is expected to manage operational data by using a GPS tracking system.
Construction Equipment Management	Maintenance	 Whether machines' maintenance/repair data are recorded properly. 	Maintenance and repair data for equipment, to which mechanical services are provided by the private dealer, is updated by the dealers. Maintenance and repair data for equipment managed by MoWT and host organizations is recorded in hard copy (paper), but it is not stored as data. MoWT needs to keep in touch with dealers to keep track of the equipment status in a timely manner.
	Record	2. Whether machines' maintenance/repair data are utilized for equipment management.	Maintenance and repair data for equipment, to which mechanical services are provided by the private dealer, is utilized by the dealers. The management of maintenance and repair data for equipment managed by MoWT and host organizations is insufficient. MoWT needs to keep in touch with dealers to keep track of the equipment status in a timely manner. In addition, it is desirable to share maintenance records with dealers for minor maintenance carried out by MoWT itself.
	Spare parts inventory control	 Whether receipts and issues of spare parts are recorded properly. Whether there is proper awareness of spare parts consumption (frequency of use) and quantities in inventory. Whether spare parts data are utilized for equipment management. 	MoWT needs to systematically procure additional parts according to the parts inventory
Instructor for Operator	Inspection	 Can he teach (coach) pre-operation inspection and closing inspection? 	TOT for improving operator's capacity is carried out by the UNIDO project. The Project collaborates with the UNIDO project. The UNIDO project aims a following goal in its operator training program. > MoWT master trainer: 50 persons

			 Operator: 360 persons Youth in human development: 80 persons
			In addition, the UNIDO project develops a
			Operator Training Center in Luweero district.
		1. Can he read (understand) indications	There is room for further capacity improvement
		of meters and gauges properly?	in skill.
		2. Can he work skillfully by using	TOT for improving operator's capacity is carried
	Operation	equipment?	out by the UNIDO project. The Project
		3. Can he teach (coach) how to operate	collaborates with the UNIDO project, grasps
		equipment and how to work by using	progress in UNIDO's training and give a
		equipment?	recommendation when needed.
		1. Does he fully understand safety	According to the MoWT Road Maintenance
		work in the construction site?	Management Manual, it explains as follows for example:
			 "It is the responsibility of the maintenance
			foreman or supervisor to insist that all risks
			are minimized."
			> "Operators and laborers alike must be
			informed of the potential risks and of
			procedures for working or close to
			machinery."
			On the other hand, safety work currently depends on the knowledge and experience of
	Safety Work		individual supervisors at each site, and operators
			are not fully aware of the precautions to be taken
			when operating equipment or when parking it.
			Since TOT by the UNIDO project includes
			safety instructions, the Project collaborates with
			the UNIDO project and give a recommendation
			when needed.
		2. Can he teach (coach) how to operate	Knowledge of hazard prediction and preventive
		equipment safely and how to work	measures depends on the site supervisor's
		safely?	experience. Therefore, it is desirable to standardize the knowledge and experience of
			supervisors on safe work as much as possible.
		1. Can he manage to use (operate)	The utilization of the mobile workshop is
		mobile workshop?	limited.
			It is necessary for MoWT to understand the
			specifications and performance of mobile
			workshops and to improve their capacity for
			maintenance of equipment, including safety work.
			A mobile workshop will be used as one of the
			teaching materials in the TOT for training
	Tools and		equipment mechanics implemented in this
	Equipment		project.
Inst		2. Can he use tools and workshop	There is room for further capacity improvement
ruc		equipment skillfully?	in knowledge and skill.
tor			MoWT's regional mechanical workshops have a
for			shortage of workshop equipment and tools, and the arrangement of them in the workshops is also
Mé			inadequate.
Instructor for Mechanic			It is necessary to encourage an understanding of
anic			the necessity and handling of workshop
			equipment and tools.
		1. Does he fully understand safety	There is room for further capacity improvement
		work in the workshop?	in knowledge and skill.
			In particular, it is desirable to improve knowledge and skills regarding slinging for
			crane works. General safety education including
	Safety Work		sling work should be provided through the TOT
			in the Project.
		2. Can he teach (coach) safety work in	There is room for further capacity improvement
1		the workshop?	in knowledge and skill.
			It is necessary to provide training on safety

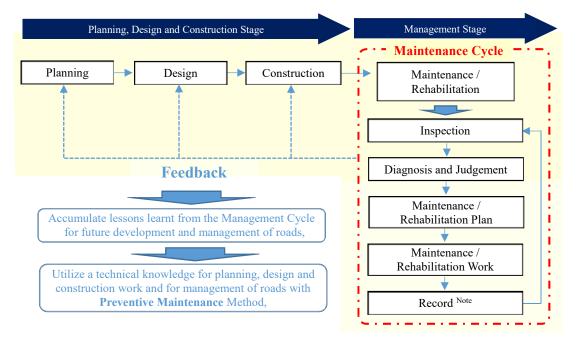
		guidance for mechanics through the TOT in the Project.
		1.Does he fully understand structure and function of the components/devices equipped for the construction equipment?There is room for further capacity improvement in knowledge and skill.1.Does he fully understand structure in knowledge and skill.There is room for further capacity improvement in knowledge and skill.1.It is necessary to acquire knowledge about the structure and function of equipment by utilizing actual equipment through the TOT in the Project.
	Repair Work	2. Does he have skill to inspect and maintain/repair construction equipment? There is room for further capacity improvement in knowledge and skill. It is necessary to implement the OJT for periodic inspection and maintenance work of equipment by using actual equipment through the TOT of the Project.
		3. Can he teach how to inspect and maintain/repair construction equipment (theory & practice)? There is room for further capacity improvement in knowledge and skill. It is necessary to train instructors for inspection and maintenance work by using actual equipment through the TOT of the Project.
Ма	Workshop Management	1. Can he manage workshop and spare parts store operation? MoWT procures necessary spare parts from private dealers as it needs. In continuing utilizing private dealers, MoWT needs to procure additional parts according to the parts inventory and operational status of equipment.
Manager for Equipment Management	Equipment Management	1.Can he manage to control repair/maintenance of construction equipment?The managers of MoWT's regional mechanical workshops have a certain level of ability to manage equipment, although there are some individual differences.2.Can he carry out troubleshooting of construction equipment and give proper directions to mechanics?However, it is desirable to further improve their capacity in order to operate and maintain their equipment more efficiently.3.Does he understand procurement procedure of spare parts and availability of suppliers?It is necessary to improve equipment management capacity in cooperation with private dealers.
ıt	Budget Management	1. Does he understand budget management (spare parts procurement and maintenance/repair of construction equipment)?Shortage of the equipment maintenance budget has been normalized. It is necessary to give advice on the necessary budget scale for appropriate maintenance of equipment through the Project.

Source: JICA Project Team

Based on the results described above, the Project Team proposed to provide the following technical assistance comprised of a) and b) through the Project.

- a) Technical assistance for improvement of road maintenance system and efficiency
 - To assist to maintain roads under its jurisdiction as assets as a road administrative agency, and to utilize the knowledge and lessons learned through the maintenance cycle of roads for future planning, design, construction supervision, etc.
 - > To assist to promote road maintenance by effectively using road maintenance equipment through horizontal collaboration between the civil team and the mechanical.
 - > To propose for improvement of policy making, planning, and budgeting.

- b) Technical assistance for improvement of the capacity of equipment operation and maintenance
 - > To strengthen the implementation structure in collaboration with private dealers for efficient operation and maintenance of equipment.
 - > To implement the TOT program for training mechanics, and assist for future self-development.
 - > To advise on budget issues, etc. for proper operation and maintenance of equipment.


Chapter 3. Activity Report

3.1 Technical Assistance for Improvement of Policy Making, Planning and Budgeting in Road Management

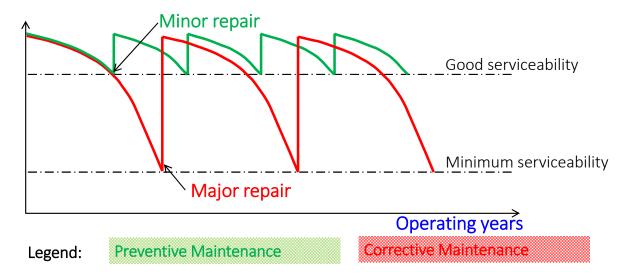
(1) Introduction of Asset Management

First, the Project Team explained the importance of a cycle of Asset Management, including survey/planning, design, construction, maintenance/renewal, in order for MoWT to improve a system of maintenance and rehabilitation works of roads under its jurisdiction, and to manage roads over the long term.

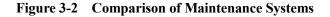
Moreover, the Project Team encouraged an understanding of road management based on an asset management flow. Figure 3-1 shows a work flow of the Asset Management to contribute to proper road management system.

Note: Database system for district and urban roads is effectively utilized in records of maintenance and rehabilitation work. Source: JICA Project Team

Figure 3-1 Work Flow in Asset Management


In implementing the maintenance cycle at the management stage shown in Figure 3-1, the Project Team advised active utilization of the database system for district and urban roads developed in the JICA's past project.

(2) Preventive Maintenance System


MoWT has been performing post-maintenance called as a Corrective Maintenance System, and have been forced to carry out costly large-scale road rehabilitation works. After all, rehabilitation costs tend to increase as a result of being left uncontrolled for many years without being able to respond within a limited road maintenance budget. In order to improve current situation, the Project Team explained the necessity of shift MoWT's maintenance method to a Preventive Maintenance System.

Moreover, the Project Team explained an example of small-scale maintenance in the Preventive Maintenance System, and the Team compared maintenance costs between preventive and corrective maintenance for the selected case example of road section under the jurisdiction of MoWT, and encouraged an understanding of superiority of the Preventive Maintenance System.

Figure 3-2 shows a conceptual diagram comparing the Corrective Maintenance and the Preventive Maintenance in the life cycle of road.

Source: JICA Project Team

Examples of small-scale maintenance with suitable equipment for works in case of the preventive maintenance and cost comparison with the corrective maintenance are summarized in Appendix 6 "Recommendations" and the Project Team explained in the 5th field work.

(3) Proposed Maintenance Frequency and Timing according to Road Classification and Service Level

In encouraging the preventive maintenance mentioned in the above previous section, it was important to set the frequency and timing of road maintenance in consideration of MoWT's annual budget constraints. For rural roads, there seems to be no clear criteria for judging the priority of maintenance or rehabilitation. The Project Team proposed to set a quantitative indicator to determine road surface conditions that require maintenance through discussions with the C/P.

Moreover, when prioritizing road maintenance, it is realistic to comprehensively judge not only the road condition but also the evaluation items such as the characteristics of roads to be considered and social circumstances, etc. Therefore, the Project Team proposed to introduce a point-adding method with evaluation items to determine the priority of maintenance.

The proposal for the above-mentioned quantitative indicator of road conditions and the point-adding method are summarized in Appendix 6 "Recommendations" and the Project Team explained in the 5th field work.

- 3.2 Technical Assistance for Improvement of Road Maintenance System and Efficiency
- (1) Proper Use of Road Maintenance Equipment in Collaboration with Mechanical Team

Through the Project implementation, officials of the Department of Roads and Bridges (i.e. civil team) and the Department of Mechanical Engineering Services (i.e. mechanical team) hold a joint workshop (hereafter referred to as the joint workshop) to share the current status of road maintenance and equipment maintenance and exchange opinions on issues for improvement. In the joint workshop, the mechanical team explained the outline of the GPS tracking system, and the data that can be collected from the system, such as the location of equipment, working days and hours, and the travel time of equipment (e.g. excavator), fuel consumption, etc. shared to all participants.

Based on the data collected from the GPS tracking system, the participants of the joint workshop grasped actual conditions and issues regarding the use of equipment in road maintenance and rehabilitation works by the civil team. Then, the participants exchanged opinions to resolve the grasped issues, and finally the resolution plan for future improvement was formulated as the Action Plan as shown in Table 3-1.

S/N	CHALLENGES	RESOLUTIONS	RESPONSIBLE ENTITY /PERSONS
1	Wear of undercarriage	 Long Equipment travel should be avoided Plan for the shifting of the equipment 	 Plant operator Civil engineer and mechanical foremen
2	Use of equipment when it is overdue for service	 Equipment should be parked whenever it is due for service. Service should only be under taken by trained persons. 	 Regional mechanical workshops Plant operators Mechanical foremen
3	Political pressure	 All political request should be official. 	 Permanent secretary Engineer in chief Regional managers
4	Lack of KOMTRAX information	 All managers and mechanical foremen should liase with TOT- mechanics and registered personnels 	 TOT-Mechanics
5	Over consumption of fuel	 Follow up on fuel consumption by use of komtrax Operators should be encouraged to use Eco mode when in normal operating situation 	 TOT mechanics and registered personnel.

Table 3-1 Challenges, Resolutions and Responsible Entity/Persons
in Road Maintenance Using Equipment

Source: Prepared by the participants of the joint workshop

The participants of the joint workshop horizontally develops the resolution plan shown in Table 3-1

within the organization, and the mechanical team and the civil team will regularly monitor the practice through the data to be collected by the GPS tracking system, accordingly.

In the future, in order for MoWT to utilize its equipment appropriately and promote road maintenance, close communication and reporting between the civil team and the mechanical team are essential. Therefore, through the joint workshop between both teams, the Project Team encouraged the understanding of importance of close collaboration as well as utilization of the GPS tracking system.

Before the Project, no one of MoWT used the GPS tracking system. Now the mechanical team could share the outline of the system, utilization methods, etc. with the civil team. After sharing so, the Department of Roads and Bridges (i.e. civil team) prepared a list of responsible managers (e.g. Force Account Managers, Deputy Force Account Managers) to be involved in the operation of the GPS tracking system and submitted it to the Department of Mechanical Engineering Services (i.e. mechanical team). Based on this list, the managers will also register access rights to the system as necessary so that and both teams will be able to jointly monitor status of their challenge.

(2) Effective Use of Database System for District and Urban Roads

Through a technical discussion with engineers in charge of the district and urban road database handled by the Department of Roads and Bridges, the Project Team recognized some issues regarding procedures for inspection and monitoring work after the completion of road maintenance works and budget shortages. Table 3-4 describes the operational status and issues to be improved.

Operational statusimprovedAfter completion of road maintenance works, MoWT engineers will travel to respective regions for final inspection, and personnel expenses, travel expenses and allowances, vehicle fuel costs, etc. will be required each time. Moreover, in the inspection, it is a rule that some technical staff from local governments (2 staff for rural roads and 4 staff for urban roads) participate, and the cost of these staff from local governments also needs to be borne by MoWT.To reduce cost for roa inspectionAlthough the final inspection is devised to be carried out collectively for each area as much as possible, it takes about 3 days for the inspection and information collection per district, and about 7 days for the subsequent GIS map editing work. The length of roads that can be inspected per day for each road type is 15 km per day for Urban Roads, 35 km per day for District Roads, and 20 km per day for Community Access Roads. In particular, because it is relatively difficult to carry out inspections by vehicles on theTo		
After completion of road maintenance works, MoWT engineers will travel to respective regions for final inspection, and personnel expenses, travel expenses and allowances, vehicle fuel costs, etc. will be required each time. Moreover, in the inspection, it is a rule that some technical staff from local governments (2 staff for rural roads and 4 staff for urban roads) participate, and the cost of these staff from local governments also needs to be borne by MoWT.To reduce road inspectionAlthough the final inspection is devised to be carried out collectively for each area as much as possible, it takes about 3 days for the inspection and information collection per district, and about 7 days for the subsequent GIS map editing work. The length of roads that can be inspected per day for each road type is 15 km per day for Urban Roads, 35 km per day for District Roads, and 20 km per day for Community Access Roads. In particular, because it is relatively difficult to carry out inspections by vehicles on theTo		Issues to be
After completion of road maintenance works, MoWT engineers will travel to respective regions for final inspection, and personnel expenses, travel expenses and allowances, vehicle fuel costs, etc. will be required each time. Moreover, in the inspection, it is a rule that some technical staff from local governments (2 staff for rural roads and 4 staff for urban roads) participate, and the cost of these staff from local governments also needs to be borne by MoWT.To reduce cost for roa inspectionAlthough the final inspection is devised to be carried out collectively for each area as much as possible, it takes about 3 days for the inspection and information collection per district, and about 7 days for the subsequent GIS map editing work. The length of roads that can be inspected per day for each road type is 15 km per day for Urban Roads, 35 km per day for District Roads, and 20 km per day for Community Access Roads. In particular, because it is relatively difficult to carry out inspections by vehicles on theTo reduce cost for roa inspection	Operational status	improved
Although the final inspection is devised to be carried out collectively for each area as much as possible, it takes about 3 days for the inspection and information collection per district, and about 7 days for the subsequent GIS map editing work. The length of roads that can be inspected per day for each road type is 15 km per day for Urban Roads, 35 km per day for District Roads, and 20 km per day for Community Access Roads. In particular, because it is relatively difficult to carry out inspections by vehicles on the	regions for final inspection, and personnel expenses, travel expenses and allowances, vehicle fuel costs, etc. will be required each time. Moreover, in the inspection, it is a rule that some technical staff from local governments (2 staff for rural roads and 4 staff for urban roads) participate, and the cost of these staff from local governments also needs to	To reduce a cost for road
much as possible, it takes about 3 days for the inspection and information collection per district, and about 7 days for the subsequent GIS map editing work. The length of roads that can be inspected per day for each road type is 15 km per day for Urban Roads, 35 km per day for District Roads, and 20 km per day for Community Access Roads. In particular, because it is relatively difficult to carry out inspections by vehicles on the		To immerse
district, and about 7 days for the subsequent GIS map editing work. The length of roads that can be inspected per day for each road type is 15 km per day for Urban Roads, 35 km per day for District Roads, and 20 km per day for Community Access Roads. In particular, because it is relatively difficult to carry out inspections by vehicles on the		1
that can be inspected per day for each road type is 15 km per day for Urban Roads, 35 inspection km per day for District Roads, and 20 km per day for Community Access Roads. In particular, because it is relatively difficult to carry out inspections by vehicles on the		•
particular, because it is relatively difficult to carry out inspections by vehicles on the		inspection
Community Access Dood increations have no chains but to community field survives on		
	Community Access Road, inspectors have no choice but to carry out field surveys on	
foot, resulting in poor work efficiency.		

Source: Prepared by JICA Project Team based on interviews with MoWT engineers

As of July 2022, there are a total of 136 districts in Uganda. The database management team of MoWT updates the database according to the performance of road maintenance work in each district each year, with their target to cover all 136 districts in every 2 years, which means that 68 districts are targeted every year. However, the results are insufficient to meet the target. As an example, Table 3-5 shows the

outcome in database update in financial year 2021/22.

		U	nite: Number of District
Indicator	Goal	Outcome	Achievement Ratio
Number of district	68	27	40%
updated in the year			
Number of district	17 ^{Note 1}	$1^{\text{st}}: 0^{\text{Note }2}$	0%
updated every quarter		2 nd : 9	53%
		3 rd : 9	53%
		4 th : 9	53%

 Table 3-5
 Outcome in Road Database Update (Financial Year 2021/22)

Note 1: According to the current efficiency of inspection, 1 inspector of MoWT can perform an average of 3 districts every quarter. Therefore, in order to achieve the goal, it is necessary to deploy about 6 engineers.
 Note 2: In the first quarter of the year, a work progress is subject to a schedule of budget allocation.

Source: Prepared by JICA Project Team based on interviews with MoWT engineers

Based on the above situation, in order to improve database management within a limited budget, it is important to improve the efficiency of road inspection and to reduce costs. Simplifying and speeding up inspections according to road classification are considered as possible measures, and introducing a drone for site inspections of the Community Access Road is one of technically feasible approach as proposed and discussed with engineers.

(3) Measures for Cost Reduction on Road Construction and Maintenance

After the Project Team confirmed the pavement structure and construction method, which was implemented by MoWT, through site investigations, the Team introduced a case example that contributes to the cost reduction of road construction by applying a pavement structure optimized according to future traffic forecasts, etc. The said case example was summarized in Appendix 6 "Recommendations" and the Project Team explained in the 5th field work..

3.3 Technical Assistance for Improvement of the Capacity of Equipment Operation and Maintenance

(1) Effective Use of Private Sector Services

The Project Team explained the rationality of using private sector services in the future in terms of the facilities and implementation structure of mechanical services by the existing Regional Mechanical Workshops under the Department of Mechanical Engineering Services, and proposed the scope of services that should be shared with the private sector.

Areas of mechanical services to be undertaken by MoWT's direct operation and areas to receive private sector services are defined as shown in Table 3-6, which was determined through the Project.

			Demarcation			
Service	Type of equipment	Main work items	Mo	Manufacturer /		
level	servicing and repair		Central Workshop	Regional Workshops	Local Dealer	
1 Light	Periodical Maintenance	Change lubricants, lubrication	0	0		
2	Inspection and adjustment	Adjusting brake, adjusting clutch etc.	0	0		
3	Minor repair and maintenance	Replacement of consumable parts	0	0		
4	Overhaul of the main component	Engine, clutch, transmission, hydraulic component etc. (mechanical component/device)	△ ^{Note 1}	∆ ^{Note 1}	0	
		Undercarriage of construction equipment (part replacement) Note 2	0	0	0	
5 Heavy	Trouble shooting and repair of electronic component /device	Electric/electronic/hydraulic control system, for engine, power train and hydraulic component etc.			0	
6	Major overhaul and repair, and modifications	Major overhaul/repair of equipment and modifications		1:1 001 0	0	

 Table 3-6
 Scope of Mechanical Services to be undertaken by MoWT and Private Sector

Note 1: JICA expert understands that MoWT has experience and achievements for small vehicles. Therefore, a repairing work of small vehicles are classified as MoWT's direct operation..

Note 2: Replacement of parts around the undercarriage of construction equipment is going to be carried out by MoWT directly or by utilizing private service providers, depending on the content of maintenance and MoWT's budgetary conditions. Source: Prepared by MoWT and JICA Project Team

(2) Training of Trainers (TOT) Programme for Development of Mechanics

For assistance for improving capacity to achieve the scope of mechanical services defined as Table 3-6, the Project Team conducted the TOT programme targeting MoWT's mechanics. Table 3-7 shows the outline of the TOT programme.

Training Course	Implementation period / Instructor	Training Items	Result
1. Basic Course (Common) for Vehicle	2 nd field works / NVTC ^{Note 1} and JICA expert	 Subject: Electrical equipment related to the vehicle The basics of electricity The basics of electronics. How to use the circuit tester How to use the failure diagnosis equipment Pneumatics and the basics of all pneumatics control circuits Pneumatics and hydraulic machine maintenance 	Completed in 2 nd field work
2. Basic Course (Common) for Construction Equipment	3 rd to 5 th field works / JICA expert	Subject: Construction equipment Outline How to use and teach measuring equipment Engine Electrical equipment Hydraulic system How to use welding equipment Undercarriage (wear resistant) How to do safety slings work Preparation of technical report for equipment repairing	Completed in 5 th field work
3. Advanced Course for Heavy Equipment (KOMATSU)	3 rd field works / Local dealer and JICA expert	 Subject: Monitor operation and diagnosis method How to operate the monitor panel of the following equipment How to do diagnosis using the monitor panel GPS tracking system utilization method General maintenance works, etc. 	Completed in 3 rd field work
4. Advanced Course for Vehicle (FUSO)	4 th field works / Local dealer and JICA expert	 Subject: Proper maintenance operation** for compaction equipment; How to maintain, diagnose and repair the following items. Engine system Transmission system Clutch system Brake system 	Completed in 4 th field work
5. Advanced Course for Compaction Equipment (SAKAI)	5 th field works / Local dealer and JICA expert	 Subject: Proper maintenance operation** for compaction equipment; How to maintain, diagnose and repair the following items. Engine system Transmission system Hydraulic system Brake system Undercarriage 	Completed in 3 rd field work
6. Practical Training Course with OJT	3 rd to 5 th field works / JICA expert	 Subject: OJT on the following items. Measuring equipment Engine Electrical equipment Hydraulic system How to use welding equipment How to do safety slings work Preparation of technical report for equipment repairing prining College 	Completed in 5 th field work

Table 3-7TOT Programme

Note 1: NVTC stands for Nakawa Vocational Training College Source: JICA Project Team

8 members, which was organized by 2 members nominated from Kampala Central Workshop and 2 each from 3 Regional Workshops (i.e. Bugembe, Gulu and Mbarara) respectively, continuously participated in the TOT until its completion. Attempting that these 8 members will serve as instructors for training mechanics in the future, MoWT nominated them in terms of not only their technical experience and skills, but also communication ability.

In Table 3-7, for Advanced Courses targeting heavy equipment, vehicle and compaction equipment, the

Project Team proposed to receive supplemental support for the TOT from local private dealers (authorized agents) through discussions with MoWT, and conducted these Advanced Courses. The 3 private dealers that cooperated with Advanced Course and the Nakawa Vocational Training Collage (NVTC) that cooperated with the Basic Course for vehicle offered training costs to cooperate with respective courses, MoWT, however, covered all the costs at its own budget so that the Project could was able to conduct sufficient trainings in all training courses.

After completing the entire course of the TOT programme, a written test and a practical test were conducted for the 8 TOT members. After receiving the test results, a certificate of training completion was awarded to all TOT members in reply to MoWT's demand.

Finally, the Project Team compiled a curriculum and training materials for training mechanics so that MoWT will be able to develop maintenance training by itself even after the Project.

(3) Annual Maintenance Costs estimated for Service Life Time of Equipment

MoWT procured 1,152 units of various equipment in 2017 through JBIC loan scheme. The Project Team calculated an annual maintenance cost as per maintenance items for those equipment expected over the service life and explained it. It has passed 5 years as of 2023 since MoWT procured, it is important to ensure the annual maintenance budget because equipment will require more and more maintenance.

Table 3-8 shows the expected regular and irregular maintenance items over the service life of equipment.

Classification	Service time	Maintenance items
Regular	250-500 hours	Engine oil, hydraulic oil, engine oil filter, fuel filter, grease (as needed)
	2,000~2,500 hours	Reversal (reuse) of pins and bushings of equipment (bulldozers, hydraulic excavators) that travels with a crawler
		system
	3,500~4,000 hours	Replacement of undercarriage parts for equipment (bulldozers, hydraulic excavators) that run on crawler system
	per constant	Vehicle tire replacement, construction machinery tooth and
	consumption	edge replacement
Irregular	_	Maintenance and repair of engines (overhaul), transmissions, hydraulic pumps, motors, hydraulic cylinders, brakes, cooling systems, air conditioners, body sheet metal, glass, etc.

 Table 3-8
 Items of Equipment Maintenance

Source: JICA Project Team

Moreover, Table 3-9 shows the annual maintenance costs for equipment procured in 2017 with JIBC loan. MoWT is recommended to coordinate in the government for the allocation of annual budget in reference to the annual maintenance costs shown in the table.

1 Morter Grader GD663-2 2 Wheel Loader WA250-5 3 Wheel Loader WA430-5 4 Excavator PC220-8 Standard 5 Excavator PC220-8 Long-Boom 6 Bulldozer D65EX-16 7 Wheel Backhoe Loader 8 8 Vibratory Roller 10ton SV520D 9 Pneumatic Tyre rollor TS200 10 Pedestrain Roller 0.8ton HV80 11 Plate compactors 4.3Hp PC63	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	55 40 30 55 55 55 55 50 40	10,450,000 7,200,000 9,600,000 13,750,000 14,850,000 15,400,000 6,700,000	1,045,000 720,000 960,000 1,375,000 1,485,000	6,270,000 4,320,000 5,760,000	1,254,000 864,000 1,152,000	143 122 13	179,322,000 105,408,000
2 Wheel Loader WA250-5 3 Wheel Loader WA430-5 4 Excavator PC220-8 Standard 5 Excavator PC220-8 Long-Boom 6 Bulldozer D65EX-16 7 Wheel Backhoe Loader 8 8 Vibratory Roller 10ton SV520D 9 Pneumatic Tyre rollor TS200 10 Pedestrain Roller 0.8ton HV80	10 10 10 10 10 10 10 10 10 10 10 10 10 10	40 30 55 55 55 55 50	7,200,000 9,600,000 13,750,000 14,850,000 15,400,000	720,000 960,000 1,375,000	4,320,000 5,760,000	864,000	122	
3 Wheel Loader WA430-5 4 Excavator PC220-8 Standard 5 Excavator PC220-8 Long-Boom 6 Bulldozer D65EX-16 7 Wheel Backhoe Loader 8 8 Vibratory Roller 10ton SV520D 9 Pneumatic Tyre rollor TS200 10 Pedestrain Roller 0.8ton HV80	10 10 10 10 10 10 10 10	30 55 55 55 55 50	9,600,000 13,750,000 14,850,000 15,400,000	960,000 1,375,000	5,760,000			105,400,000
4 Excavator PC220-8 Standard 5 Excavator PC220-8 Long-Boom 6 Bulldozer D65EX-16 7 7 Wheel Backhoe Loader 8 Vibratory Roller 10ton SV520D 9 Pneumatic Tyre rollor TS200 10 Pedestrain Roller 0.8ton HV80	10 10 10 10 10 10 10	55 55 55 55 50	13,750,000 14,850,000 15,400,000	1,375,000			13	14,976,000
5 Excavator PC220-8 Long-Boom 6 Bulldozer D65EX-16 7 7 Wheel Backhoe Loader 8 Vibratory Roller 10ton SV520D 9 Pneumatic Tyre rollor TS200 10 Pedestrain Roller 0.8ton HV80	10 10 10 10	55 55 50	14,850,000 15,400,000		8,250,000	1,650,000	21	34,650,000
7 Wheel Backhoe Loader 8 Vibratory Roller 10ton SV520D 9 Pneumatic Tyre rollor TS200 10 Pedestrain Roller 0.8ton HV80	10 10 10	50	- , ,		8,910,000	1,782,000	0	0
8 Vibratory Roller 10ton SV520D 9 Pneumatic Tyre rollor TS200 10 Pedestrain Roller 0.8ton HV80	10 10		6 700 000	1,540,000	9,240,000	1,848,000	25	46,200,000
9 Pneumatic Tyre rollor TS200 10 Pedestrain Roller 0.8ton HV80	10	40	0,700,000	670,000	4,020,000	804,000	31	24,924,000
10 Pedestrain Roller 0.8ton HV80			3,360,000	336,000	2,016,000	403,200	141	56,851,200
	10	45	2,574,000	257,400	1,544,400	308,880	4	1,235,520
11 Plate compactors 4.3Hp PC63		40	752,000	75,200	451,200	90,240	18	1,624,320
	7	40	100,000	14,286	60,000	30,000	20	600,000
12 Tampers/Rammers RS55E	7	30	96,300	13,757	57,780	28,890	18	520,020
13 Dump Truck 8ton	10	30	3,600,000	360,000	2,160,000	432,000	276	119,232,000
14 Dump Trucks with chip spreader	10	30	4,050,000	405,000	2,430,000	486,000	7	3,402,000
15 Cargo Truck 8ton	10	45	4,686,746	468,675	2,812,048	562,410	9	5,061,686
16 Water bowser 8,000L	10	45	4,934,798	493,480	2,960,879	592,176	138	81,720,249
17 Low bed tructor pay load 30ton	10	35	12,600,000	1,260,000	7,560,000	1,512,000	9	13,608,000
18 Self-loading truck pay load 15ton	10	45	11,250,000	1,125,000	6,750,000	1,350,000	21	28,350,000
19 Mobile Workshop	10	50	9,000,000	900,000	5,400,000	1,080,000	5	5,400,000
20 Mobile crane 35ton	10	25	10,750,000	1,075,000	6,450,000	1,290,000	1	1,290,000
21 Bitumen Distributor	10	30	5,980,914	598,091	3,588,548	717,710	4	2,870,839
22 Bulldozer D85EX-15R	10	40	12,800,000	1,280,000	7,680,000	1,536,000	0	
23 Tandem roller CR271 1.44ton	7	30	660,000	94,286	396,000	198,000	4	792,000
24 Vibratory Roller 15ton SV700	7	35	7,007,000	1,001,000	4,204,200	2,102,100	0	· · · · · · · · · · · · · · · · · · ·
25 Vibratory Roller 18ton SV700	7	45	9,900,000	1,414,286	5,940,000	2,970,000	0	
26 Double drum Vibratory Tandem Roller	7	50	6,545,000	935,000	3,927,000	1,963,500	1	1,963,500
27 Tandem roller SW800 10.4ton	7	25	3,325,000	475,000	1,995,000	997,500	0	
28 Vibrator combinmed roller TW504	7	30	1,650,000	235,714	990,000	495,000	1	495,000
Total in JPY	,	20	1,020,000	255,711	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	28,499,605	1	730,496,334
Total in USD						219,228		5,619,203

 Table 3-9
 Annual Equipment Maintenance Costs

Reference exchange rate: USD1 = JPY130 Source: JICA Project Team

(4) Countermeasure for Urgent Issue on Equipment Maintenance

Of the maintenance items shown in Table 3-8 in the previous section, the undercarriage on crawler system requires a particularly large-scale amount of maintenance costs. As of January 2023, bulldozers and excavators that run on the crawler system have exceeded 3,000 hours of operation, exceeding the permissible range for the undercarriage parts.

In order to ensure the function of the crawler system, maintenance of the undercarriage is urgently required. Specifically, it is necessary to replace old parts of the undercarriage with new parts, or otherwise to reuse the undercarriage parts by taking measures with the specific undercarriage rebuilding equipment. Otherwise, equipment with the crawler system will be inoperable due to excessive wear of the undercarriage parts.

The Project Team conducted a cost comparison to deal with the two cases of (1) replacing undercarriage parts and (2) reusing undercarriage parts rebuilt with the undercarriage rebuilding equipment, and then explained to MoWT as an urgent issue to be addressed. Details are described in Appendix 6 "Recommendations".

(5) Advice on Future Upgrading of MoWT's Mechanical Workshop

Of the four Central and Regional Mechanical Workshops (i.e. Kampala, Bugembe, Gulu, and Mbarara)

under MoWT, except for the Bugembe Regional Mechanical Workshop which was developed in 1996 with Japanese grant aid, other three workshop have insufficient facilities and equipment.

Based on the premise of the scope of mechanical services by MoWT shown in Table 3-6, the Project Team assumes that the existing workshop facilities and equipment will eventually need to be upgraded. In this case, considering the scale of MoWT's annual budget, it is recommended to avoid excessive workshop facility and equipment and upgrade to a simple mechanical workshop, which can be realized with the lowest initial cost. As one measure for simple mechanical workshop, the Project Team introduced a container workshop comprised of containers surrounding workshop facilities, and compiled workshop components with its initial cost for development in Appendix 6 "Recommendations".

Chapter 4. Recommendations, etc.

4.1 Recommendations to MoWT

Based on the knowledge and lessons learned from all activities in the Project, the Project Team created a recommendation document as Appendix 6 as items that MoWT is expected to work in future road maintenance and equipment operation and maintenance, and explained it to MoWT.

4.2 Remained Issues and Lessons

Future issues and lessons learned by the Project Team through the Project are shown as (1) and (2) below. These issues and lessons should be taken into consideration when MoWT implements future road maintenance and equipment operation/maintenance by itself, and similar projects will be considers in the future.

(1) Achievement and Future Issues based on Technical Evaluation Items of the Project

Table 4-1 shows the achievement status and issues at the time of Project completion based on the evaluation items described in Table 2-3.

			Confirmation Results at Project	Achievement and Future Issues at
Evaluation Items		Confirmation Items	Commencement Period (as of	Project Completion Period (as of
			May 2021)	May 2023)
Road Construction and Maintenance	Road Construction and Maintenance Work	 Can he prepare or understand a construction plan (methods, materials, personnel and equipment, execution processes, quality control items, safety measures, points to be noted in construction, etc.) that meet the site condition? Can he carry out the works according to the construction plan? 	May 2021) The site manager of the Force Account has a certain level of technical understanding. It is necessary to give assistance and technical advice on individual issues through the Project. Under the direction of the site manager, construction works can be carried out. However, further understanding and practices of safety measures at the site are required. It is necessary to give assistance and technical advice on individual issues through the Project.	May 2023) Regarding technical issues on a construction execution plan for MoWT, the Project Team explained design methods for pavement and road drainage, points to note in construction planning (including mobilization of equipment), etc. with Japan's experiences and examples. The Team explained examples of comparing construction costs depending on differences in construction methods, and also worked to raise awareness of cost reduction. In addition, when visiting road rehabilitation sites, the Project Team grasp individual issues at each site and provided technical materials and advice for countermeasures. Through these activities, the Project Team believe that the Team were able to share Japan's experience and knowledge in optimizing the efficiency of road maintenance within the scale of the annual budget. On the other hand, due to severe budgetary constraints for road maintenance and rehabilitation of MoWT, the annual amount of maintenance work was limited, and

Table 4-1Achievement and Future Issues based on Technical Evaluation Items of the Project
(as of May 2023)

	 Can he provide adequate instruction and management to equipment operators and workers? Can he share 	A road engineer can give his instruction when needed. However, further knowledge including more effective use of equipment, safety measures, etc. are required. In particular, road engineers need to work together with the equipment team and supervise operators properly to improve efficiency in equipment operations at sites. It is necessary to make daily or	therefore the number of maintenance/rehabilitation sections that could be used as a good case example for technical training during the Project period was also limited. In the future, based on the annual plan for road maintenance and rehabilitation to be implemented, continuing actual practices and studies by MoWT that utilizes actual construction execution plans and/or practical opportunities in actual works will be an issue. As mentioned above, since the annual work volume in road maintenance and rehabilitation of the entire MoWT is limited due to budgetary constraints, road engineers' improvement of their supervision and management capabilities is affected by how much they can have a practical experience. In the Project, the civil team (road engineers, site foreman, etc.) and the mechanical team shared information from the GPS tracking system of the
	4. Can he share information on the operation status of equipment at the site, the presence or absence of defects, etc. with the Central Mechanical Workshop and the Regional Workshops in a timely manner?	It is necessary to make daily or regular communications on the equipment status with the Regional Mechanical Workshop. The Project Team attempts strengthen a communication system between the civil team and the mechanical team.	from the GPS tracking system of the equipment, both teams strengthened close communication to improve inappropriate use of equipment so that MoWT will be able to eventually improve efficiency of road maintenance and rehabilitation. In the future, the challenge is to establish a solidarity between the two teams through a series of practical opportunities, from road maintenance and rehabilitation through its planning to implementation, while continuing to monitor the data recorded by the
	5. Can he manage to control placement and operation of construction equipment?	It is necessary to establish a better communication system so that the civil team can quickly contact and coordinate with the Regional Mechanical Workshop in case that equipment malfunction occurs. The Project Team attempts strengthen a communication system between the civil team and the mechanical team.	GPS tracking system.
Road Inspection, etc.	1. Can he appropriately carry out daily and periodic inspections of roads under jurisdiction, emergency inspections after disasters, etc.?	The civil team carries out a road inspection occasionally. However, the frequency of inspections has not been systematized, and it is common practice to conduct a survey and inspection after the road conditions have changed significantly due to deterioration over time or rainfall disasters. In the future, it is desirable to systematize daily and periodic inspections and shift from the	Through the Project, the Project Team explained the importance that MoWT regards roads under its jurisdiction as assets, and the importance of applying the lessons learned from the road maintenance cycle to subsequent road development and maintenance projects. Moreover, in the road maintenance and rehabilitation cycle, the Project Team encouraged the understanding of MoWT that a shift to the

				[=
			current corrective maintenance system to a preventive maintenance system.	Preventive Maintenance System that focuses on small-scale maintenance based on daily and periodic
		2. Can he accurately report the damage and deterioration status of roads based on the inspection results?	The template for reporting is described in the Road Maintenance Management Manual. MoWT's road engineer submits an assessment report summarizing (1) the current condition of the target road, (2) the necessary repair works and costs, and (3) the findings of the engineer based on the result of their field survey. The report is used by the MoWT headquarter for judging the necessity of road maintenance or rehabilitation work.	inspections would contribute to the reduction of life cycle costs. At that time, the Project Team compared the costs of the preventive maintenance and the conventional corrective maintenance, targeting specific road section under the jurisdiction of MoWT. As a result of the above mentioned activities, at the completion of the Project, MoWT's officials at management level commented that they understood the effectiveness of preventive maintenance. In the future, it is an issue that MoWT will implement daily and
		3. Can he understand the necessity and urgency of repair plans according to the extent and extent of damage and deterioration?	Indicators for judging the necessity and urgency of maintenance are described in the	periodic inspections and emergency inspections after a disaster in a timely manner, objectively evaluate the priority of maintenance work based on the inspection results, and reflect it in annual work plans and budgetary arrangement. In addition, in planning an annual work in road maintenance, referring to the accumulated data in the road database system developed in the past JICA technical cooperation project, primary selection of candidate road for inspection or maintenance will help MoWT improve the efficiency of maintenance planning. The current assessment report prepared and submitted by road engineer is in a format that contains a certain amount of information necessary to understand the condition of the target road, so it can be used as a good material for
Construction Equipment Management	Inventory of Equipment	 Whether basic data such as equipment type, registration number, basic specification (type, maker, model, manufacturing year, serial no., capacity, engine output, purchase price, etc.) are recorded and the machines' conditions are updated. Whether machines' data are utilized for equipment 	service agreement with a private dealer, the dealer manages the basic data of equipment. Through sharing equipment status (including minor maintenance records, etc.) with private dealers over the service life of equipment, MoWT is expected to actively utilize private dealers.	judging the priority of maintenance. Through the Project, the Project Team explained rationality of continuing to use private sector services provided by local dealers for operation and maintenance of equipment, and obtained MoWT's understanding. In the past, dealers used the GPS tracking system to monitor the status of MoWT equipment and manage the maintenance period, etc. Through the Project, MoWT became using the GPS tracking system so that it can manage equipment internally and in collaboration with private dealer. After the above activities, it is expected that efficiency of equipment management by the MoWT mechanical team will be improved, and the appropriate use of
		management.		equipment by the civil team will be

· · · · ·			1	
Operatic Record	m	 Whether machines' operation record (data) are updated regularly. Whether machines' operation data are utilized for equipment management. 	Operational data for equipment, to which mechanical services are provided by the private dealer, is updated by the dealers. On the other hand, there are occasional shortages and delays in updating the equipment status managed by MoWT and host organizations. In the future, as a means for MoWT itself to record and update operational data, it is conceivable to use the GPS tracking system installed on equipment. Operational data for equipment, to which mechanical services are provided by the private dealer, is utilized by the dealers. Operational data of equipment managed by MoWT and host organizations is insufficient. In the future, MoWT is expected to manage operational data by	also improved. On the other hand, although the GPS tracking system makes MoWT's equipment management more efficient, MoWT is expected to accumulate equipment operation records, maintenance/repair records, spare parts inventory, etc. in its own equipment ledger control system, and based on the accumulated data, MoWT will be able to further improve the efficiency of equipment management by developing a system for maintenance and repair of equipment by direct management or by the private sector, as well as the procurement of additional spare parts without delay. At present, MoWT's equipment ledger is paper-based, but it is conceivable to update it to a computer-based database ledger control system, and such a challenge is an issue to further improvement of
		1. Whether machines' maintenance/rep air data are recorded properly.	using a GPS tracking system. Maintenance and repair data for equipment, to which mechanical services are provided by the private dealer, is updated by the dealers. Maintenance and repair data for equipment managed by MoWT and host organizations is recorded in hard copy (paper), but it is not stored as data. MoWT needs to keep in touch with dealers to keep track of the equipment status in a timely manner.	efficiency in equipment management.
Mainten Record	ance	2. Whether machines' maintenance/rep air data are utilized for equipment management.	Maintenance and repair data for equipment, to which mechanical services are provided by the private dealer, is utilized by the dealers. The management of maintenance and repair data for equipment managed by MoWT and host organizations is insufficient. MoWT needs to keep in touch with dealers to keep track of the equipment status in a timely manner. In addition, it is desirable to share maintenance records with dealers for minor maintenance carried out by MoWT itself.	
Spare inventor control	parts y	 Whether receipts and issues of spare parts are recorded properly. Whether there is proper 	Spare parts are procured on an as-needed basis, and regional mechanical workshops keep a limited stock of parts. On the premise of continuing the above system, MoWT needs to systematically procure additional parts according to the	

I	Inspection	awareness of spare parts consumption (frequency of use) and quantities in inventory. 3. Whether spare parts data are utilized for equipment management. 1. Can he teach (coach) pre- operation inspection and closing inspection?	TOT for improving operator's capacity is carried out by the UNIDO project. The Project collaborates with the UNIDO project. The UNIDO project aims a following goal in its operator training program. > MoWT master trainer: 50 persons > Operator: 360 persons > Youth in human development: 80 persons In addition, the UNIDO project develops a Operator Training	Since the UNIDO project has been implementing the operator training programme in parallel with the Project, through discussions with the parties concerned at the commencement of the Project the roles to be undertaken by both projects were clarified, which means that the operator training was undertaken by UNIDO project, and the mechanic training was undertaken by JICA Project. During the Project period, progress was shared and opinions were exchanged with UNIDO project
Instruct			Center in Luweero district.	team on a regular and irregular basis, and the results were reflected in the activities of respective projects. Regarding the pre-operation and closing inspections of equipment, the inspection form prepared by the UNIDO project was reviewed by the JICA Project Team, and it was decided as the standard form based on mutual agreement. Under the
	Operation Safety Work	 Can he read (understand) indications of meters and gauges properly? Can he work skillfully by using equipment? Can he teach (coach) how to operate equipment and how to work by using equipment? Does he fully understand safety work in the construction site? 	There is room for further capacity improvement in skill. TOT for improving operator's capacity is carried out by the UNIDO project. The Project collaborates with the UNIDO project, grasps progress in UNIDO's training and give a recommendation when needed.	UNIDO project, pre-operation and closing inspection inspections guidance is being implemented based on the said form. The operator training programme by UNIDO project is ongoing.

all risks are minimized." much as the Team co "Operators and laborers alike must be informed of construction work, it	
	ICASULES TOP 2
alike must be informed of Construction work. It	is conceivable
the potential risks and of necessary to encour	
procedures for working or throughout the orga	
close to machinery." the top level of it to	
On the other hand, safety work involved in the con	struction work
	erators, and
knowledge and experience of workers).	
individual supervisors at each Therefore, it is a future	
site, and operators are not fully on systematic	enlightenment
aware of the precautions to be education related to s taken when operating equipment to develop a	comprehensive
or when parking it. guideline that include	
Since TOT by the UNIDO accident cases, lesso	
project includes safety introduction of	-
instructions, the Project countermeasures.	
collaborates with the UNIDO	
project and give a	
recommendation when needed.	
2. Can he teach Knowledge of hazard prediction As mentioned above	
(coach) how to and preventive measures educational activities operate depends on the site supervisor's safety, development	
operate equipmentdepends on the site supervisor's experience. Therefore, it is an issue.safety, development	or guidefilles is
safely and how desirable to standardize the By disseminating	the guidelines
	important to
supervisors on safe work as homogenize safe work	ork guidance at
much as possible. all construction site	
level or higher, and to	
measures accordin conditions and er	ng to site vironment of
respective sites.	whomment of
1. Can he manage The utilization of the mobile Through the TOT	for mechanics
to use (operate) workshop is limited. conducted in the Pro-	
mobile It is necessary for MoWT to Team provided practi	
workshop? understand the specifications using equipment and	
and performance of mobile in the mobile w workshops and to improve their activity could r	nake MoWT
	pen their
equipment, including safety understandings abou	
work. and performance	of mobile
A mobile workshop will be used workshop.	
as one of the teaching materials Regarding on-site	maintenance
in the TOT for training services using the mo	
equipment mechanics it is hoped that the equipment	
implemented in this project. actively used accommintenance needs an	
2 Can be use tools. There is room for further Through the TOT	
Tools and and workshop capacity improvement in mechanics, trainees	
Equipment equipment knowledge and skill.	nd tools for
skillfully? MoWT's regional mechanical equipment maintenar	
workshops have a shortage of Moreover, during the	
$\overline{\circ}$ workshop equipment and tools, and the arrangement of them in the MoWT with the Project Team procure	
the workshops is also necessary items f	
inadequate. maintenance such	
It is necessary to encourage an instruments, tools,	and safety
understanding of the necessity protective equipment	
and handling of workshop However, in order	
equipment and tools. continue to train in provide equipment	
provide equipment services, it is impo	
Regional Mechanica	
Regional Mechanica have sufficient equip including training eq	ment and tools

	Safety Work	 Does he fully understand safety work in the workshop? Can he teach (coach) safety work in the workshop? 	capacity improvement in knowledge and skill. In particular, it is desirable to improve knowledge and skills regarding slinging for crane works. General safety education including sling work should be provided through the TOT in the Project. There is room for further capacity improvement in	Through the TOT for training mechanics, all trainees acquired a certain level of knowledge and skills related to safety work such as slinging work and equipment maintenance in general. As mentioned above, the trainees of the TOT acquired a certain level of knowledge and skills related to safety work. In the future, the trainees of the TOT will perform as an instructor, and the issue is to continue to conduct safey works at each MoWT's Regional Mechanical Workshop, and to disseminate it horizontally within the organization.
	Repair Work	 Does he fully understand structure and function of the components/dev ices equipped for the construction equipment? Does he have skill to inspect and maintain/repair construction equipment? Can he teach how to inspect and maintain/repair construction equipment (theory & practice)? 	capacity improvement in knowledge and skill. It is necessary to acquire knowledge about the structure and function of equipment by utilizing actual equipment through the TOT in the Project. There is room for further capacity improvement in knowledge and skill. It is necessary to implement the OJT for periodic inspection and maintenance work of equipment by using actual equipment through the TOT of the Project. There is room for further capacity improvement in knowledge and skill. It is necessary to train instructors for inspection and maintenance work by using actual equipment	Through the TOT for training mechanics, all trainees understood the structural features and functions of equipment owned by MoWT, and learned the techniques for inspecting and maintaining the equipment. In the final test conducted at the end of TOT, the Project Team confirmed that all trainees had acquired the abilities and qualities to perform as an instructor. In the future, the issue is that the trainees of TOT of the Project will perform as an instructor and continuously work on the training of MoWT mechanics.
Manager for Equipment Management	Workshop Management	practice)? 1. Can he manage workshop and spare parts store operation?	parts from private dealers as it	It is important to continue to use private sector services provided by local dealers for operation and maintenance of equipment and procure an appropriate quantity of spare parts. Further efficiency improvement of equipment management including spare parts management can be expected by introducing a database ledger control system including spare part inventory management. On the other hand, MoWT's Mechanical Workshops have a shortage of facilities and workshop equipment for each service shop, and so the upgrading the workshop can be an issue in the future.

· · · ·				· · · · · · · · · · · · · · · · · · ·
	Equipment Management	 Can he manage to control repair/maintenan ce of construction equipment? Can he carry out troubleshooting of construction equipment and give proper directions to mechanics? Does he understand procurement procedure of spare parts and availability of suppliers? 	there are some individual differences. However, it is desirable to further improve their capacity in	Based on the premise that mechanical services provided by private dealers will be used, the TOT implemented in the Project improved capacity to maintain equipment in proper manner, and the trainees of TOT were trained as future instructors. In the future, it is an issue that MoWT will continue to develop human resources by mechanic instructors under the leadership of the manager of the Regional Mechanical Workshop, and aim to improve practical skills through daily equipment maintenance work.
	Budget Management	1. Does he understand budget management (spare parts procurement and maintenance/rep air of construction equipment)?	Shortage of the equipment maintenance budget has been normalized. It is necessary to give advice on the necessary budget scale for appropriate maintenance of equipment through the Project.	The Project Team calculated the annual maintenance costs over the service life of equipment owned by MoWT and explained it to MoWT. Since the scale of the above calculated costs exceeds the annual equipment maintenance budget allocated to MoWT in recent years, MoWT is recommended to pay attention to take a necessary coordination in the government in order to secure the budget.

Source: JICA Project Team

(2) Other Remarkable Issues and Lessons

In addition to the issues described at the rightmost column in Table 4-1 above, the following items are remarkable issues and lessons for MoWT to improve the efficiency of road maintenance and develop human resources by itself.

1) Operation under chronic budget shortfalls

MoWT's annual budget for road maintenance and equipment operation/maintenance has been shrinking in recent years. In particular, the financial crunch after the spread of COVID-19 is considered so serious.

For example, the annual budget for equipment operation and maintenance reduced about 50% in 2022 compared to 2019 before the spread of COVID-19. In FY2022, MoWT applied for an annual budget of US\$12 million for equipment maintenance, but only US\$3 million was approved.

The scale of the annual budget mentioned above is considered inadequate under the circumstances where maintenance costs for equipment which was procured from Japan will increase in the future. In the Project, after calculating the annual cost assumed to be necessary in the future for the maintenance of equipment procured from Japan, the Project Team and MoWT explained it to the officials in charge of financial affairs from MoFPED in an effort to obtain their understanding. Further coordination within the government is recommended for future budget increases.

As a matter of course, the budget scale for equipment operation and maintenance is on a downward trend, and in addition, under the circumstances where facilities and equipment of MoWT's Mechanical Workshops for equipment maintenance are inadequate and deteriorated, it is recommended to take into account the MoWT's budget scale when procurement of new equipment will be planned in the future. In the case of donor assistance for such a new procurement, it may be necessary for a donor side to take into account the MoWT's budgetary conditions and its future predict so that the scale of procurement will match the MoWT's annual budget.

2) Role as Responsible Organization for Road Administration

The District and Community Access Roads under the jurisdiction of MoWT will be transferred to the control of local governments after the completion of large-scale road rehabilitation work. Since the road maintenance equipment procured from Japan by MoWT in 2017 has been allocated to local governments, after the transfer of roads to local governments, local governments become a responsible authority for small-scale road maintenance using equipment allocated.

However, due to financial constraints for local governments and a lack of knowledge and technology regarding road maintenance, many years passed without proper road maintenance after the transfer, promoting in damage and deterioration that is difficult local governments to take a measure has been normalized.

As a result, the MoWT, which has no financial leeway, has to carry out large-scale rehabilitation work, and it results in an increase in total road maintenance costs.

In the Project, from the perspective that MoWT should show ownership as the highest organization in road administration of the country and supervise and guide local governments, the Project Team considered that it is desirable for MoWT to understands that shifting the way of thinking to asset management and preventive maintenance system would contribute to optimizing a life cycle cost of roads and horizontally disseminate to domestic road administration organizations.

At the completion of the Project, MoWT's officials at management levels expressed their intention to invite local government officials to MoWT and share the achievements of the Project and future efforts.

On the other hand, in Uganda where local roads like District and Community Access Road account for most of the length of the national road network, a system to continue small-scale and simple road inspection and maintenance involving local governments and local communities in regions is considered extremely important. Therefore, MoWT's intention to horizontally disseminate its knowledge to local governments is not a temporary one, and it is a major issue for both central and local governments to continue cooperation in the future to improve the management of roads under their jurisdiction.

3) Reform of Staff Consciousness

In order for MoWT to carry out road maintenance work with a limited annual budget, construction supervisors, equipment managers, mechanics, operators, etc. are required to understand their respective responsibilities in order to work on optimizing daily operation of owned equipment under the guidance of the management level of organization.

In particular, one of the factors is that MoWT equipment operators are likely non-permanent employees, and generally lack responsibility for daily routine inspection, cleaning, and basic maintenance of equipment as well as the operation of equipment. There are cases in which unreasonable driving operations ignoring equipment abnormalities and deformations become the norm, and as a result, repair costs increase due to equipment failures and deterioration, or cases in which repairs become impossible.

In terms of the above situation, the Project Team worked to encourage awareness of operators as one of players who are responsible for part of the equipment operation, such as by encouraging operators to inspect equipment at the beginning and end of daily work in collaboration with the UNIDO project which has been implementing the operator training programme. In addition, the Project Team created a standard format for a technical report to compile detailed equipment inspection and maintenance records so that all personnel involved in equipment (e.g. equipment managers, mechanics, and operators) can participate in preparing and sharing such reports within their respective scope of work. The Project Team worked to establish a reporting structure as part of daily work so that all players could continue to be involved.

In the future, especially regarding equipment operators, their supervisors will be required to train and guide them on the premise that operators will be replaced because of their employment status.

4.3 Proposed Future Assistance

Table 4-2 shows the proposed future assistance in the field of road maintenance.

	Table 4-2Proposed Future	Assistance
Item of Assistance	Background	Outline of Assistance
Technical	Upon the completion the Project, the following	Based on the background as mentioned, the
Cooperation for	outcomes was achieved	following technical cooperation for further
Capacity	i. The Project obtained MoWT's	improvement of road management and
Development in	understanding that rationally assessing the	maintenance by MoWT is conceivable.
Road Maintenance	necessity and urgency of road maintenance	a) To grasp an issue on operation of the
	based on regular and irregular inspections,	Database System for District and Urban
	and shifting to the preventive maintenance	Roads developed in the past JICA technical
	system on the assessment results would	cooperation, and upgrade and technical
	contribute to reducing the long-term	assistance for proper operation.
	maintenance costs of roads.	b) To assist to develop a ledger control database
	ii. The Project established a system in which the civil team (i.e. Department of Roads and	system for road maintenance equipment for further efficient operation and maintenance
	Bridges) and the mechanical team (i.e.	by MoWT in collaboration with a private
	Department of Mechanical Engineering	sector.
	Services) cooperate to grasp the status of	c) To establish a solidarity between the road
	equipment and improve improper use.	maintenance work by the civil team and
	iii. The Project defined the scope of mechanical	equipment management by the mechanical
	services to be shared with the private dealer	team in actual practices of above a) and b)
	in operation and maintenance of equipment	through implementing a series of pilot
	to continue using private sector services. In	project.
	addition, the Project developed a standard	
	format for a technical report to appropriately	Regarding the activities a) to c) mentioned
	and precisely report equipment maintenance	above, a) is an effective means for the
	and repair records within the MoWT	Department of Roads and Bridges to improve
	organization and with local dealers.	routine work related to a planning and budgeting
	iv. The Project developed instructors for future	for road maintenance and rehabilitation, and b)
	training of MoWT mechanics as well as a	aims to further improve the efficiency of
	training plan which can be conducted by	equipment management by the Department of
	MoWT itself.	Mechanical Engineering Services. By providing
		comprehensive assistance with both a) and b),
	Based on the above achievement from the	the functions and operational efficiency of
	Project, the following challenge are important	MoWT as a road administrator is able to be
	for MoWT to further improve its capacity and efficiency of road maintenance.	improved comprehensively, and eventually such assistance will contribute to the optimization of
	 To promote shifting to the preventive road 	the life cycle costs of both roads and equipment.
	maintenance to reduce long-term	Regarding a structure related to road facility
	maintenance costs. In this regard, it is	such as a box culvert and small-scale bridge
	considered effective to utilize the existing	under the control of MoWT, an area of road
	local road database of MoWT in selecting	facility to be targeted in the technical
	roads to be maintained, and the said existing	cooperation needs to be determined.
	database may be updated as necessary for	*
	operation.	
	> To develop a ledger control database system	
	to further efficient operation and	
	maintenance of equipment.	
Upgrading the	The Project defined the scope of mechanical	For functional enhancement of the Kampala
Central Mechanical	services to be shared with the private dealer, and	Central Workshop in order to perform as a head
Workshop and	conducted capacity development for equipment	quarter in management of road maintenance
Assistance for	maintenance.	equipment, the following assistance is
Functional	In order for MoWT to operate and maintain road	conceivable.
Enhancement of the	equipment appropriately and efficiently based	a) Improvement of a workshop building and
Regional Workshop	on the above achievements, it is considered	equipment of the Central Mechanical
	necessary to upgrade the existing mechanical	Workshop
	workshop in the future.	b) Capacity enhancement for functions as a
		head quarter
		Although functional enhancement of existing regional workshops such as Gulu (Northern
		Region) and Mbarara (Western Region) is also
		Region) and woarara (western Region) is also

 Table 4-2
 Proposed Future Assistance

conceivable, it is necessary to define a role between the central and the regional workshop
and consider the project component including
the undertakings by the recipient country.

Source: JICA Project Team

END

Appendix

- 1. Work Plan
- 2. Attendance List
- 3. Organization Structure of the Department of Roads and Bridges, and the Department of Mechanical Engineering Services
- 4. Implementation Schedule (Plan/Actual)
- 5. Presentation Material for the Final Workshop
- 6. Recommendations

Appendix 1. Work Plan

ADVISOR FOR CAPACITY DEVELOPMENT IN ROAD CONSTRUCTION AND MAINTENANCE IN THE REPUBLIC OF UGANDA

WORK PLAN

APRIL 2021

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

YACHIYO ENGINEERING CO., LTD.

Project Location Map

Contents

Project Location Map

1. Outlin	e of the Project	1
1.1	Background of the Project	1
1.2	Member of the Project Team	1
1.3	Itinerary	1
2. Implei	mentation Policy	2
2.1	Basic Policy for Project Implementation	2
2.1.1	Background and Objectives	2
2.1.2	Basic Issues on the Project	3
2.1.3	Technical Policy for the Project	4
2.1.4	Operational Policy for the Project	12
2.2	Method of Implementation	13
2.2.1	Work Plan Preparation and Finalization	13
2.2.2	Final Report	13
2.2.3	Activities for Outcomes	13
3. Implei	mentation Schedule	18
4. Items	Requested by the Project Team to the Uganda side	19

1. Outline of the Project

1.1 Background of the Project

In August 2019, the Government of the Republic of Uganda (hereinafter referred to as Uganda) submitted a request to the Government of Japan for technical cooperation aimed at improving the policy making and planning capacity for road construction and maintenance managed by the Ministry of Works and Transport (hereinafter referred to as MoWT), improving road construction and maintenance systems, developing human resources for the proper utilization of road equipment. In response to this, the Japan International Cooperation Agency (hereinafter referred to as JICA) decided to dispatch a technical expert team (hereinafter referred to as the "Project Team") to implement the Technical Cooperation (hereinafter referred to as the "Project").

This work plan was prepared by the Project Team to explain the goals, outcomes, outlines of the activities, etc. of the Project to the government officials of Uganda, and to obtain a sufficient understanding of the basic contents of the Project by the Uganda side.

1.2 Member of the Project Team

The members of the Team are as follows:

Name Organization		Assignment					
Isao TAKAHASHI	Yachiyo Engineering Co., Ltd.	Team Leader / Road Management Plan :					
		 Project Management 					
		 Assistance for improving the capacity for 					
		policy making and planning for road construction and maintenance					
		➢ Assistance for improving road					
		construction and maintenance systems					
Etsuo HASHIGUCHI	Yachiyo Engineering Co., Ltd.	Road Construction/Maintenance Equipment					
		Management :					
		 Technical assistance for proper utilization of road equipment 					

Table 1-1 Member of the Project Team

1.3 Itinerary

The proposed itinerary is shown as follows:

Year/Month					20	21										20	22							2023	3
	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Team Leader / Road Management Plan : Isao TAKAHASHI																									
Road Construction/Maintenance Equipment Management : Etsuo HASHIGUCHI																									

Table 1-2 Proposed Itinerary

Note: Above itinerary for each assignment of the Project Team can be rescheduled according to discussion among all parties (i.e. MoWT, JICA and the Project Team).

2. Implementation Policy

2.1 Basic Policy for Project Implementation

2.1.1 Background and Objectives

Uganda plays a key role in linking the Republic of Rwanda, the Democratic Republic of the Congo and the landlocked countries and regions surrounding the Republic of South Sudan to the Indian Ocean coastal states of the Republic of Kenya and the United Republic of Tanzania. As the linkages between these surrounding regions and countries as economic zones have been strengthened and regional trade is revitalizing, the development of road networks within the region is a crucial for the entire region. Moreover, since the main industry of Uganda is agriculture and the rural population is approximately 80% of the nation's population, securing stable transport functions for agricultural products both domestically and abroad is indispensable for the economic development of Uganda.

On the other hand, since road transport accounts for about 96% of Uganda's transport needs, domestic transport and socio-economic activities are mainly carried out along the road network. Therefore, it is essential that sufficient maintenance and improvement work of the road is sustained. Meanwhile, among the 159,366km total road length network composed of of national road under the jurisdiction of MoWT (about 20,854km), district road (about 38,603km), urban road (about 19,959km), and community access road (about 79,947km), the pavement ratio is only about 4% of the total. And sound maintenance and management of the road network is a challenge in service delivery.

In light of this situation, in 2012 the government of Uganda, with a loan of approximately US\$100 million from the Export-Import Bank of the Republic of China procured more than 1,405 road equipment from China and distributed it to local administrative agencies for the construction and maintenance of rural roads. However, after the distribution of China's equipment to rural areas, many of the equipment and materials were left unused because of various problems such as (1) insufficient technical level of road engineers and equipment operators, (2) insufficient budget allocation for road maintenance and equipment maintenance and (3) insufficient specifications for target construction types.

Subsequently, in 2014, the government of Uganda procured 1,152 more durable road equipment (650 road equipment and 502 vehicles) from Japan with a 17.8 billion Japanese yen financing from the Japan Bank for International Cooperation and the procurement equipment was distributed to local authorities in 2017. In the procurement and delivery of Japanese equipment and materials, continuous service provision activities were implemented such as initial operation trainings to equipment arrangement. However, while the two-year warranty period after the procurement of equipment has already expired, the shortage of skilled road engineers and the lack of technical level of equipment and plant operators, mechanics, etc. have not been resolved.

Based on such background, the government of Uganda requested the Japanese government for technical cooperation aimed at improving policy making and planning capabilities for road construction and maintenance, improving road construction and maintenance systems and developing human resources for the proper use of road equipment.

In light of the above-mentioned request, the Project aims to develop expected outcomes and achieve the project goals by implementing activities 1-1 to 3-2 shown in Table 2-1.

Table 2-1 Hojeet Goals, Expected Outcomes and Outline of Activity						
Project Goals	MoWT personnel improve their capacity in the fields of road construction and maintenance.					
Expected Outcomes	Outcomes 1: Improvement measures for policy making, planning, and budgeting for					
1	road construction and maintenance of MoWT are proposed.					
	Outcomes 2: A system for road construction and maintenance, including effective use					
	of road construction equipment, of MoWT is improved in visible					
	achievement of proper road construction/maintenance works for					
	fair/good conditions.					
	Outcomes 3: Capabilities of MoWT's road engineers, operators and mechanics through					
	road construction/maintenance and use of equipment is strengthened.					
Outline of Activity	Activity 1-1: To evaluate and analyze current systems for policy making, planning and					
	budgeting related to road construction and maintenance, then to advise					
	and recommend areas for improving the system.					
	Activities 2-1: To assess and analyze current systems for road construction and					
	maintenance including effective use of road construction equipment,					
	then to train and advise for improving the system.					
	Activity 3-1: To evaluate and analyze current issues of human resources, such as road					
	engineers, operators and mechanics, in charge of road construction and					
	maintenance, and the current status of equipment use/management, then					
	to train and advise personnel for the appropriate utilization and					
	management of equipment.					
	Activities 3-2: To develop a future improvement plan based on the issues identified					
	through Activities 3-1 above.					

Table 2-1 Project Goals, Expected Outcomes and Outline of Activity

2.1.2 Basic Issues on the Project

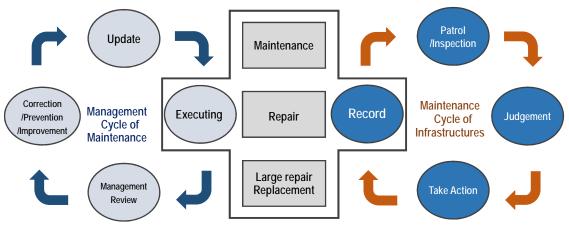
In 2012, the government of Uganda changed its policy of road improvement and maintenance from the private outsourcing system to the direct management system called a force account for some road construction and maintenance except for national road development, etc., and the road project has been developed by MoWT based on the force account guidelines. In recent years, the government of Uganda procured a large amount of road construction equipment through several past projects described in "2.1.1 Background and Objectives", but due to technical shortages among MoWT's road engineers, operators, mechanics, etc., such equipment owned tends to be poorly maintained leading to malfunctioning. In addition, the development and maintenance of roads have not been promoted sufficiently because of multiple factors such as the inappropriate system including planning and budget formulation for systematic road works and effective utilization of equipment. Especially, in the case of district roads, cases of defective maintenance on existing roads, such as stripping of existing asphalt pavement, exposure of base course, etc., are observed. In many cases, early deterioration is attributed to problems in the design or construction stage and further, one of the main factors is that the system of appropriate maintenance cycles after service has not been developed.

The Project aims at improving the basic capabilities of MoWT, as the counterpart (hereinafter referred to as "C/P"), for road construction and maintenance, as well as for the appropriate operation and maintenance of equipment. Especially, through the activities shown in "Outline of Activities" of Table 2-1, it is important for the C/P and other related organizations in Uganda to develop the ownership necessary for road projects and long-term operation of equipment, to carry out technical transfer at the basic level necessary for continuing the self-development of personnel such as operators and mechanics, and to examine further support programs in the future as necessary.

In order to achieve the project goals under the issues described above, the Project Team has proposed the advisor(s) to be dispatched to Uganda and major activities in each assignment as follows:

	Tuble 2.2 Member to Traver and Major Features									
Item	Advisor(s)	Major Activities								
1 st	- Takahashi	Explanation, discussion and decision of work plan, grasp of present status,								
Assignment	- Hashiguchi	arrangement of problems, start of training, etc.								
2^{nd} to 4^{th}	2^{nd} and 4^{th} :	Interim feedback, practical training (OJT) for trainees, workshop opening,								
Assignment	- Takahashi, except 3 rd	interim achievement evaluation, etc.								
	assignment									
	- Hashiguchi									
5 th	- Takahashi	Interim feedback, practical training (OJT) for trainees, workshop opening,								
Assignment	- Hashigushi	final achievement evaluation, final reporting and recommendation, etc.								

Table 2-2 Member to Travel and Major Activities

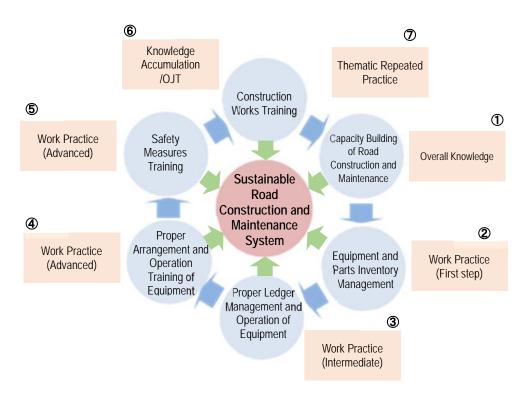

The details for above activities and means of implementation is described in "2.2.3 Activities for Outcomes".

2.1.3 Technical Policy for the Project

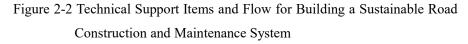
Notable policies from a technical point of view are described in the following (1) to (5).

(1) Support for improvement in policy, planning and budgeting

Through improving capabilities for a new construction and maintenance work, it is crucial to optimize a series of Asset Management Cycles: Survey and Planning, Design, Construction, Maintenance and Upgrading, in the long-term management of roads. Therefore, we propose improvement measures using the conceptual diagram of the Asset Management System shown in Figure 2-1. In order to properly operate these, it is crucial to continue the two cycles of organizational management assuming MoWT Central Organization (PDCA Cycle) and on-site management assuming the activities of local organizations. We will identify the causes of the current issues and consider remedial measures based on the intentions of the C/P. For example, if there are problems with the operation of site management for maintenance, inspection/repair, and renewal of district roads, proposals will be made based on PDCA cycle of organizational management, such as the creation of a system to realize effective improvement measures, and the formulation of policies and plans including budget formulation.

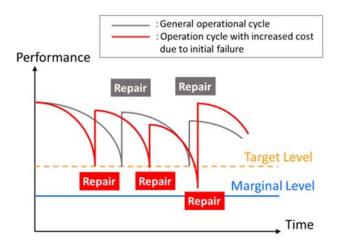


Source: Prepared by the Project Team


Figure 2-1 Conceptual Diagram of Asset Management System

(2) Support for improvement of road improvement and maintenance systems

The system of road improvement and maintenance in MoWT and related organizations, personnel assignment, business flow, and present state of road equipment utilization are grasped, and problems are analyzed. In order to effectively utilize the road equipment owned by MoWT and implement road improvement and maintenance appropriately and continuously, it is necessary to improve the Ministry staff capacity by repeatedly conducting training in various aspects such as maintenance of equipment (including parts inventory control), equipment operation by ledger control, proper arrangement and operation of equipment, work safety measures, and construction capacity, and to establish a work flow for road improvement and maintenance consisting of these aspects. Figure 2-2 shows technical support items and flow for the construction of sustainable road improvement and maintenance systems.

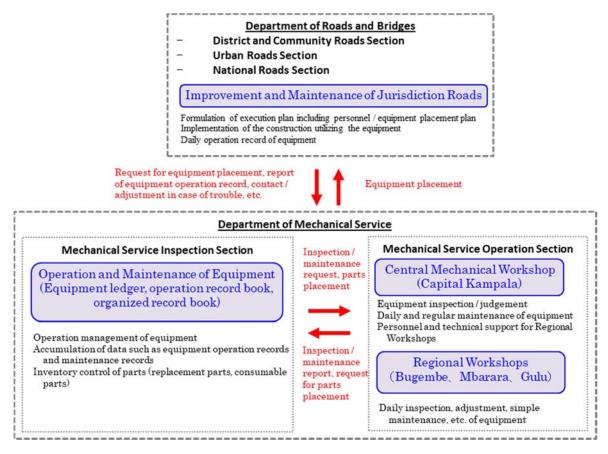


Source: Prepared by the Project Team

In addition, in the course of providing technical guidance for a series of road improvement and management systems based on Figure 2-2, after confirming the operation status and issues of the database developed under the "District and Urban Roads (DUR) Mapping and Roads Database Project (2015)", information update of the database and proposals for improvement as necessary will be made through the Project.

In developing countries in general including the East African region, deterioration of roads tends to be accelerated due to initial failures in the construction stage, such as improper material selection in subgrade and subbase course construction and asphalt pavement construction, contamination of materials with foreign matter, insufficient rolling pressure and poor finish after material laying and leveling. Such a tendency causes an increase in the cost of maintenance and repair work after construction, resulting in a insufficiency of the budget for road improvement and maintenance, as well as for the operation and maintenance of equipment (see Figure 2-3). Based on the above, the Project first verifies the type and cause of initial defects together with C/P, and second recognizes the fact that initial road improvement and maintenance are integral in the entire operation cycle in common with C/P. Third, it supports the preparation of construction plans (including construction methods, materials used, personnel and equipment, execution processes, quality control items, and points requiring attention in construction) that are required to mitigate initial defects. And advise on budgetary measures.

Source: Prepared by the Project Team


Figure 2-3 Conceptual Diagram of Road Operation Cycle

(3) Support for capacity building of road engineers, operators, mechanics, etc. through road equipment

In assisting road engineers, operators, mechanics, and others in MoWT and related organizations, it is essential to provide comprehensive technical support from the following perspectives: (1) proper equipment operation through the cooperation of road engineers and equipment managers; (2) capacity building of mechanics and operators; and (3) appropriate use of private services. Following are the implementation policies for each of the above (1) to (3).

1) Proper equipment operation through cooperation between road engineers and equipment managers

In the equipment operation and maintenance of MoWT, the Central Mechanical Workshop in Kampala City is used as the base, and the Regional Workshops are deployed in three domestic locations in Bugenbe, Mbarara, and Gulu. The equipment management operation system is established by a series of work flow with each department in charge of the Department of Mechanical Service responsible for the operation and management of equipment, and with the Department of Roads and Bridges responsible for the construction and maintenance of the roads. Figure 2-4 shows the operational flow chart of road improvement, maintenance and equipment operation by these related departments.

<u>Note: This Flowchart is the only tentative draft proposed by the Project Team and practicable flow for effective</u> <u>operation is to be discussed with MoWT through the Project.</u>

Source: Prepared by the Project Team

Figure 2-4 Flowchart of Road Improvement, Maintenance and Equipment Operation (Draft)

In the Project, the final work flow will be established after repeatedly reviewing the applicability of the above flow. In addition, an operation manual will be prepared to properly execute operations based on the same flow. In addition to these central and regional maintenance plants, MoWT provides guidance and advice on joint use of equipment with regional centers by deploying Zonal Centre located in nine locations throughout the country.

2) Strengthening of equipment maintenance system

Of the maintenance workshops of MoWT owned equipment, the Bugenbe the Regional Workshops was renovated with a grant aid in 1996, but the functions of buildings and maintenance equipment are limited in all maintenance workshops including the Central Mechanical Workshop. Therefore, it is in a situation where sufficient service cannot be provided for maintenance and repair of the equipment in possession.

Source: Photographed by the Project Team Figure 2-5 Mobile workshop (reference)

Based on the above, in order to properly maintain and repair equipment in a timely manner and to operate owned equipment in a sound manner over its useful life, it is desirable for the medium to long term to proceed with the construction and renovation of buildings at existing maintenance workshops and the enhancement of maintenance equipment. Meanwhile, the Project intends to make full use of the mobile workshop (see Figure 2-5) procured by Japan's aid in 2017, in order to respond to the need for highly urgent equipment maintenance in the short term and to foster personnel for operators and mechanics. The mobile workshop is the equipment which enables the business trip service by the rolling stock equipped with basic maintenance and repair by utilizing the equipment after organizing the arrangement of the equipment, its utilization status and operational problems.

Meanwhile, mechanics are the basis for guidance on this equipment. However, in order to share the actual situation of equipment repair caused by improper equipment operation during construction, we will propose the participation of operators in this training on maintenance equipment as necessary.

3) Appropriate use of private services

Recently, the latest construction equipment manufactured by manufacturers in Japan, Europe, U.S.A. and other developed countries has been changed from conventional mechanical equipment to computer control system. by the development of the electronization technology. As such computerized control progresses, not only is the response by users inefficient for maintenance, repairs, and maintenance above a medium-scale level that exceeds a simple level, but there is also a risk of deteriorating the condition. Especially in the equipment in which the computer control system is introduced, it is important that the user confirms the maintenance level and appropriately utilizes the service of manufacturers and/or distributors.

Table 2-2 shows maintenance and repair implementation categories with the private sector, which are considered desirable in view of the facilities and personnel systems of MoWT existing facilities. The implementation category will be optimized as appropriate through consultations with the C/P based on the local private service system.

					Demarcati	on		
Ser	vice	Type of equipment	Main work items	Mo	WT	Manufacturer /		
level servicing and repair			Main work nems	Central Mechanical Workshop	Regional Workshops	Designated Local Dealer		
1	Light	Periodical Maintenance	Change lubricants, lubrication	\bigcirc	0			
2		Inspection and adjustment	Adjusting brake, adjusting clutch etc.	0	0			
3		Minor repair and maintenance	Replacement of consumable parts	\bigcirc				
4		Overhaul of the main component	Engine, clutch, transmission, hydraulic component etc. (mechanical component/device)	0		(precision component)		
5		Trouble shooting and repair of electronic component /device	Electric/electronic/hydraulic control system, for engine, power train and hydraulic component etc.			(Inspection, trouble diagnose, and repair)		
6 H	eavy	Major overhaul and repair, and modifications	Major overhaul/repair of equipment and modifications			0		

Table 2-2 Maintenance and Repair Implementation Categories with MoWT and Private Sector (Draft)

Source: Prepared by the Project Team

Equipment procured through Japan's aid in 2017 also partially comprises equipment that has introduced a computer control system. For this reason, the relevant equipment will be reflected in the Project after exchanging opinions in detail, especially on the future service development of local distributors.

(4) Induction of C/P Ownership

In order to respect the independence of Uganda-related organizations, a seminar will be held by each department in charge as shown in Figure 2-4 above to understand a series of practical processes related to road improvement and maintenance, as well as the operation and management of equipment. And joint workshops will be held at the time of each trip to incorporate on-the-job training (OJT) such as joint tours in addition to lectures, and attention will be paid to continual process-improvement through PDCA cycling. Table 2-3 shows the outline of activities in seminars and workshops held by the Project.

Item	Subject Person	Purpose/Events	Timing, Location and Methods of Implementation
Seminar (General Meeting)	C/P personnel, road engineers and equipment managers	 Purpose: Arrangement of issues related to technology transfer Items to be implemented: (1) Conceptual explanation of the asset management system (2) Budget formulation and road improvement results and review based on road policies and plans (3) Technical issues based on cases of damage to existing roads, example of equipment arrangement during maintenance and repair (4) Introduction of examples of appropriate control items using the equipment management system (5) Issues with current road improvement and maintenance systems 	Timing: First Assignment (Provided, however, that (1) shall be implemented from time to time during the project period.) Location: MoWT Methods: Meeting and opinion exchange including expert lectures
		(6) Current technical problems in the operation and	

Table 2-3 Outline of activities in seminars and workshops

		management of aircraft (including equipment ledger	
		management), and problems in the operation system	
		(7) Discussion on measures to respond to the issues	
		mentioned in (5) and (6) above	
1st to 4th times Joint Workshop	C/P staff, road engineers, equipment managers, instructors (operators and mechanics)	 Purpose: Cross-sectional training sessions with the participation of departments in charge will enable organizations to understand the practical processes of road maintenance and equipment operation and create ownership. Items to be implemented: Explanation of the scope of work and reporting of activities by each department Technical Issues in Road Development and Maintenance Technical problems in the operation of the equipment management system (4) Problems in cooperation between the departments in charge of construction and the department is construction sites, timely reporting of daily operation records of road equipment, etc.) (5) Joint inspections of construction sites, plants, etc. around Kampala City (6) Joint inspection of Kampala Central Mechanical Workshop (7) Extracting requests and exchanging opinions from departments in charge 	Timing: Second to Fifth Assignment (Hold at least once per trip and hold additional as necessary) Location: Kampala Central Mechanical Workshop Methods: Joint participation-type training sessions and joint inspections
Equipment Management Workshop	Equipment managers, instructors (operators and mechanics)	 Purpose: Checking the progress of equipment guidance and evaluating the degree of achievement Items to be implemented: (1) Report on the status of equipment ledger management (2) Lectures on the planning and implementation of the maintenance and management cycle of road equipment and the timing of procuring spare parts (3) To extract requests and exchange opinions (4) Sharing of improvement issues until the next workshop 	Timing: Held as appropriate according to the progress of equipment guidance for each trip Location: Kampala Central Mechanical Workshop (Regional Workshops as required) Methods: Participatory training sessions

While the Project Team is not present in Uganda, the activities for the next dispatch and the tasks to be addressed until the workshop is held will be set up, and the C/P will devise ways to acquire technology and database operation know-how by exercising its ownership.

(5) Implementation of Training of Trainers

In order to achieve Outcomes 2 and 3, the Project Team assists MoWT to provide continuous and effective technical trainings for enhancing personnel competence. For the effective implementation of such trainings by MoWT, the Project Team conducts the training of trainers (TOT) who perform as the trainer in MoWT as well as the enhancement of the training system.

Technical support activities related to Outcomes 2 and 3 will be conducted using lectures, practical training, seminars, and OJTs in conjunction with PDCA cycling processes. The Project Team considers in the Project to coordinate with the "Project for Development of the Construction Equipment Operator Training Centre (Grant Aid)" being promoted by the United Nations Industrial Development Organization (UNIDO) since

August 2019 in developing the training curriculum and to share information with the said project.

Table 2-4 shows the content of training and TOT for capacity building.

Table 2-4 Contents of Training and TOT

Contents of Implementation		
> Recommend the introduction of the equipment management system by utilizing database to enhance and to		
improve efficiency in managing construction equipment. (e.g. Inventory of Equipment, Operation Record,		
Maintenance Record, Spare Parts Inventory Control)		
Study and grasp staff training system in MoWT (organization structure, composition of staff, facility, budget,		
management of training system, curriculum, capacity of the instructors etc.), and carry out technical transfer		
(TOT) to improve capacity development operation for MoWT personnel.		
> TOT participants (candidates of master instructor) shall be selected through recommendation by MoWT and		
interview by the Project Team.		
> TOT for instructors will be carried out by means of lecture, seminar/workshop and OJT.		
> During the period when the member of the Project Team is not available, staff training operation shall be		
carried out continuously by MoWT counterparts (C/Ps).		
Carry out simple TNA for selected TOT participants and preparation of TOT curriculum.		

Survey possibility of outsourcing TOT (short course) by local construction equipment dealer (by PPP). \geq

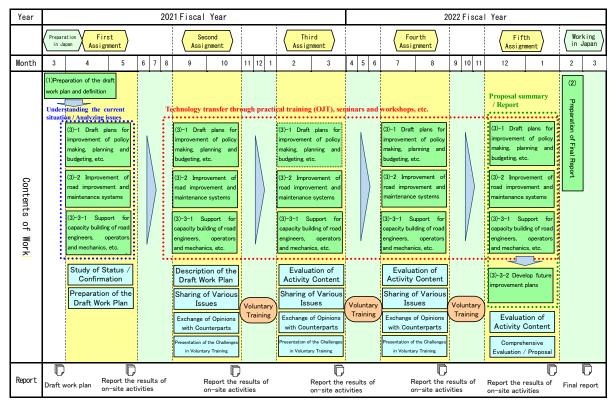
≻ Training of construction equipment operators/instructors shall be carried out in coordination with the

Equipment Operator Training Centre Project that is ongoing and undertaken by UNIDO.

2.1.4 Operational Policy of the Project

Notable policies for good operation under the Project are described in the following (1) to (2).

(1) C/P and consensus-building with relevant localities


In implementing the Project, in addition to the Department of Mechanical Services department responsible for the operation and maintenance of MoWT owned equipment, road engineers of the Department of Roads and Bridges responsible for construction and maintenance of roads are also the main trainees. Therefore, in order to smoothly conduct various training activities, it is important to explain the work plan and the progress of the training to the higher level of such departments and to make an agreement among the parties concerned.

(2) Activity under the spread of COVID-19

Since the spread of COVID-19 is not subsiding, all members need to adhere to the Ministry of Health Standard Operating Procedures such as proper wearing of masks, hand washing/hand sanitizing, maintaining social distancing (min 1m, preferably 2m), etc.

2.2 Method of Implementation

The flowchart of work implementation is shown below.

*The work process is based on the PDCA cycle and technology transfer to the counterparts is carried out appropriately.

*During the period when the experts work in Japan, the trainees conduct voluntary training activities and the experts are supposed to be monitoring their activities.

Figure 2-6 Flowchart of Work Implementation

2.2.1 Work Plan Preparation and Finalization

Through analysis and examination of the Application Form submitted by MoWT in August 2019 and related materials (national development plans, reports of past projects, etc.), the Project Team grasps the whole picture of the Project. Then, the Project Team drafts the Work Plan describing the basic policy, method of project implementation work schedule, etc.to explain it to MowT. The draft Work Plan needs to be finalized through a series of discussion with concerned parties.

2.2.2 Final Report

In conjunction with the contents of all activities in the entire project period and outcomes leading the project goals, the Project Team prepares a final report describing recommendations for future road management and operations by MoWT as well as issues and lessons left, if any.

2.2.3 Activities for Outcomes

The Project Team conducts the following activities in each of the first to fifth assignment in order to achieve

each outcomes efficiently. (The descriptions in parentheses indicate the methods and means of implementation.)

	Assignment
AA	Explanation and discussion of draft work plan (general meeting with C/P) Current road policy and planning, budget formulation and budget procedure flow, and identification and analysis of
	organizational issues
	(Collection and interview of materials such as medium-and long-term development plans, budget results and procedure flows, MoWT and organizational structure charts of relevant organizations)
\blacktriangleright	Identification and analysis of issues related to road improvement and maintenance systems
	(Organization, facility, budget, guideline of force account, confirmation of personnel and equipment arrangement results, current problems)
\triangleright	Identification and analysis of issues related to the operation and maintenance of road equipment
	(Investigation of the current status of organization, facility, budget, existing facility "Central Mechanical Workshop and Regional Workshops" confirmation of the state of maintenance of equipment management system, "Equipment
	ledger, equipment operation record, equipment inspection record and maintenance record, etc." including the existing
	equipment management ledger investigation of the present status of local equipment agency questionnaire survey and exchange of opinions on the working environment to operator and mechanic. Implementation of OJT related to improvement of equipment management system, such as introduction of database, if necessary.)
\succ	Technical level assessment of road engineers, operators and mechanics, as well as selection of operators and mechanics
	instructor candidates
	(simple paper test, inspection of actual work)
\blacktriangleright	Check whether there is a human resource development system in MoWT for operators, mechanics, etc.
	(It is proposed to introduce a training system for equipment mechanics and equipment operators if no human resource
	development system is available.)
\succ	Started training and held seminars
	(Practical training and joint seminars for C/P staff, road engineers, and equipment managers)
\triangleright	OJT for urgent issues
	(Instruction of road improvement plan "personnel and equipment arrangement plan", safety measures for construction
	and instruction of safe work and operation of equipment, improvement of equipment management system, instruction
	of maintenance and repair of equipment, etc.)
≻	Providing Challenges Up to the Next Assignment
	(Issues: Establishment of construction and process plans according to annual plans for road maintenance, improvement
	of equipment management systems)
Seco	nd to fourth Assignments
\succ	Confirmation and evaluation of the results of previous activities and subsequent voluntary activities
	(Improvement of road construction record, equipment management system "maintenance of equipment ledger,
	equipment operation record, equipment inspection record and maintenance record book, etc.")
\succ	Confirmation and evaluation of project progress and budget formation status based on road policies and plans
	(Confirmation of statistical data such as road improvement results and budget results, and monitoring of actual results in light of plans)
\succ	Technical instruction of road improvement and maintenance
	(Practical instruction to road engineers and operators through road construction and instruction of safety measures for
	construction work)
\succ	Technical instruction related to the construction and operation of equipment management systems
	(Maintenance of equipment ledger, equipment operation record, equipment inspection record and maintenance record
	book, etc.)
\succ	Technical instruction (lectures and practical training) for instructors [operators and mechanics]
\succ	Holding of workshops and evaluation of outcomes
	(Joint participatory training sessions with the participation of C/P staff, road engineers, equipment managers, operator
	instructors and mechanics instructors)
≻	Providing Challenges Up to the Next Assignment
	(Issue Items: Accumulation of records in the equipment management ledger, equipment inspection, accumulation of
	diagnostics and maintenance records, record of equipment operation record and construction record including asphalt
	plant, etc.)
<u>Fif</u> th	Assignment
≻	Confirmation and evaluation of results of voluntary activities since the last assignment *Implementation methods and
	means are the same as those of the above-mentioned second to fourth assignments
≻	Technical instruction related to road improvement and maintenance* Implementation methods and means are the same
	as those for the above-mentioned second to fourth assignments
\triangleright	Technical instruction related to the construction and operation of equipment management systems* Implementation
	methods and means are the same as those for the above-mentioned second to fourth assignments
≻	Technical instruction for instructors [operators and mechanics] * Implementation methods and means are the same as

	those for the above-mentioned second to fourth assignments
\succ	Workshop held and final outcomes evaluation * Implementation methods and means are the same as those for the
	above-mentioned second to fourth assignments
\succ	Follow-up training
	(Individual follow-up for each training target)
\succ	Following proposals and improvement plans
	- Proposal for appropriate policy/planning and budget formulation
	- Proposal improvement for road improvement and maintenance database
	- Establishment of improvement plans and proposal for the continued proper use, operation and maintenance of road equipment
	(Summary of proposals based on the survey and training results throughout the project, and explanations and
	discussions at the C/P meeting)
\succ	Final Reporting Meeting (General Meeting with C/P)

In addition, the important points to be considered especially for each outcome are shown below.

(1) Activities for Outcome 1

Table 2-5 shows the items that the Project Team need to study to identify and analyze the current status of policies, plans and budgets for road construction and maintenance.

Category	Items of Study		
Policies	Checking "Uganda Vision 2040"		
Plan	 Review and confirmation of performance of the second five-year national development plan (2015/16 2019/20) Confirmation of the Third Five-Year National Development Plan (2020/21-2024/25) and feasibility evaluation in light of the results of the Second Plan 		
Budget Formulation	 Confirmation of annual budget and performance breakdown (composition: UNRA, URF, KCC District, Municipality, Town Council, etc.) of Uganda Highway Fund (Uganda Road Fund) appropriateness assessment of distribution ratio in light of past results 		

Table 2-5 Items of Study

*UNRA: Uganda National Roads Authority, URF: Uganda Road Find, KCCA: Kampala Capital City Authority

Through the Project, the validity of these items are analyzed and shared with the C/P, and then advice and proposals are made for future policy making, planning and budget allocation.

(2) Activities for Outcome 2

In order to improve road construction and maintenance and equipment operation capabilities in MoWT and related organizations, the Project Team repeatedly conducts the OJT and workshops through the cycles shown in Figure 2-3 "Technical Support Items and Flow for Building a Sustainable Road Construction and Maintenance System". In addition, the Project Team intends to support MoWT to update the existing road database and also to propose to improve database operation as necessary.

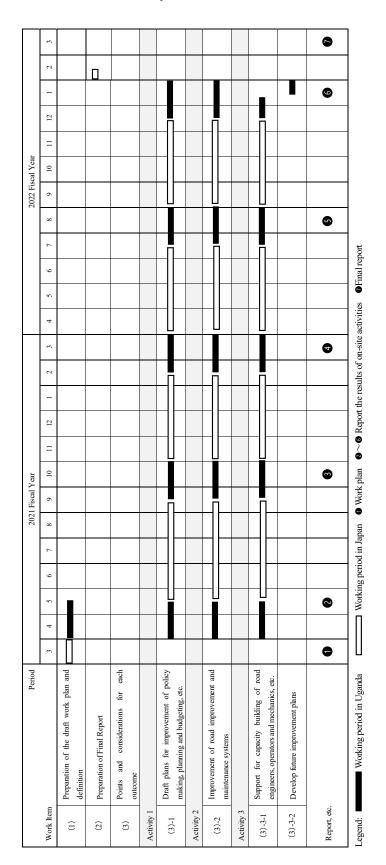
(3) Activities for Outcome 3

In order to analyze the current capacity of road engineers, operators, mechanics and other technical personnel of MoWT and related organizations, as well as the utilization and management status of existing road equipment, the Project Team evaluate items shown in Table 2-6 and shares the issues to be improved through the Project with MoWT.

	Confirmation of Comment Contents	
Evaluation Items		Confirmation of Current Contents
Road (1. Can he prepare or understand a construction plan (methods, materials, personnel and equipment, execution processes, quality control items, safety measures, points to be noted in construction, etc.) that meet the site condition?
	Dood Construction	2. Can he carry out the works according to the construction plan?
Constr	Road Construction and Maintenance Work	3. Can he provide adequate instruction and management to equipment operators and workers?
Road Construction and Maintenance		4. Can he share information on the operation status of equipment at the site, the presence or absence of defects, etc. with the Central Mechanical Workshop and the Regional Workshops in a timely manner?
ıd N		5. Can he manage to control placement and operation of construction equipment?
Aainte	Road Inspection, etc.	1. Can he appropriately carry out daily and periodic inspections of roads under jurisdiction, emergency inspections after disasters, etc.?
nance		2. Can he accurately report based on the inspection results the damage and deterioration status of roads?
		3. Can he understand the necessity and urgency of repair plans according to the extent and extent of damage and deterioration?
Ō	Inventory of Equipment	1. Whether basic data of the equipment type, registration number, basic specification (type, maker, model, manufacturing year, serial No., capacity, engine output, purchase price, etc.) are recorded and machines' conditions are updated.
onst		2. Whether machines' data are utilized for equipment management.
ruc Ma	Operation Record	1. Whether machines' operation record (data) are updated regularly.
Construction Equipment Management		2. Whether machines' operation data are utilized for equipment management.
n E gem	Maintenance Record	1. Whether machines' maintenance/repair data are recorded properly.
qui		2. Whether machines' maintenance/repair data are utilized for equipment management.
pm		1. Whether receipts and issues of spare parts recorded properly.
ent	Spare parts inventory	2. Whether be well aware of spare parts consumption (frequency of use) and quantity
	control	of inventory.
		3. Whether spare parts data are utilized for equipment management.
	Inspection	1. Can he teach (coach) pre-operation inspection and closing inspection?
In		1. Can he read (understand) indications of meters and gauges properly?
Ope	Operation	2. Can he work skillfully by using equipment?
Instructor for Operator		3. Can he teach (coach) how to operate equipment and how to work by using equipment?
ıC	Safety Work	1. Does he fully understand safety work in the construction site?
		2. Can he teach (coach) how to operate equipment safely and how to work safely?
In	Tools and Equipment	1. Can he manage to use (operate) mobile workshop?
stru		2. Can he use tools and workshop equipment skillfully?
Instructor	Safety Work	1. Does he fully understand safety work in the workshop?
		2. Can he teach (coach) safety work in the workshop?
or l	Repair Work	1. Does he fully understand structure and function of the components/devices equipped
Mec		for the construction equipment?
for Mechanic		 Does he have a skill to inspect and maintain/repair construction equipment? Can he teach how to inspect and maintain/repair construction equipment (theory & determined on the second seco
	W/11-	practice)?
-	Workshop	1. Can he manage workshop and spare parts store operation?
Manag M	Management	1. Can he manage to control repair/maintenance of construction equipment?
er f ana	Equipment Management	2. Can he carry out trouble shooting of construction equipment and give proper
for I		directions to mechanics?
Manager for Equipment Management		3. Does he understand procurement procedure of spare parts and availability of suppliers?
ıent	Budget Management	1. Does he understand budget management (spare parts procurement and maintenance/repair of construction equipment)?

Table 2-6 Evaluation Items and Confirmation of Current Contents

Source: Prepared by the Project Team


Based on the tasks determined according to the evaluation items shown in the table above, the Project Team supports the C/P to improve capability of trainees through OJT and workshops through daily road

construction and maintenance services and equipment operation and maintenance services based on Figure 2-4 "Flowchart of Road Improvement, Maintenance and Equipment Operation".

In addition, a future improvement plans is formulated and proposed based on issues extracted through all activities in the Project.

3. Implementation Schedule

The implementation schedule of the Project is shown in Table 3-1.

4. Items Requested by the Project Team to the Uganda side

For the smooth implementation of the Project, items requested by the Project Team to the Uganda side are as follows:

- 1) To assign personnel, operators, etc. to receive technical trainings by the Project Team.
- 2) To provide the Project Team with available relevant data, information and materials as required.
- 3) To provide suitable office space and its facilities such as electricity, internet and furniture necessary for the project activities and operational expenses for utilities.
- 4) To share information in a timely manner in the event of organizational restructuring, personnel changes including those involved in the Project, or changes in the scope of MoWT's work/service, etc.
- 5) To share the most up-to-date trends in road-related projects by other donors in a timely manner.

Appendix 2. Attendance List

Attendance List

Organization and Name Position

Ministry of Works and Transport

Mr. Bageya Waiswa	Permanent Secretary
Eng. Samson Bagonza Eng. Tony Bafirawala Kavuma	Director of Engineering and Works/Engineer in Chief Chief Mechanical Engineer
Eng.Stephen Kiwanuka Kitonsa	Commissioner Roads and Bridges
Eng. Tibesigwa Timothy	Assistant commissioner Mechanical Services Operations
Eng.Winfred Naluyinda	Assistant commissioner Mechanical Services Inspection
Eng. Lumonya Jacob	Principal Executive Engineer
Eng. Allan Ndangizi	Principal Executive Engineer
Eng ARISHABA AGGREY	Senior Mechanical Engineer
Eng. Godfrey Magala	Senior Engineer /Urban 1Roads
Eng. Kisitu Timothy	Senior Engineer
Eng. Gerald Obalim	Deputy Force Account Manager, North
Mr. Keeya Francis	Workshop Manager in Bugembe
Eng.Karani Hanning	Workshop Manager in Gulu
Mr. Amugambe Eliab Tumwine	Workshop Manager in Mbarara

Ministry of Finance, Planning and Economic Development

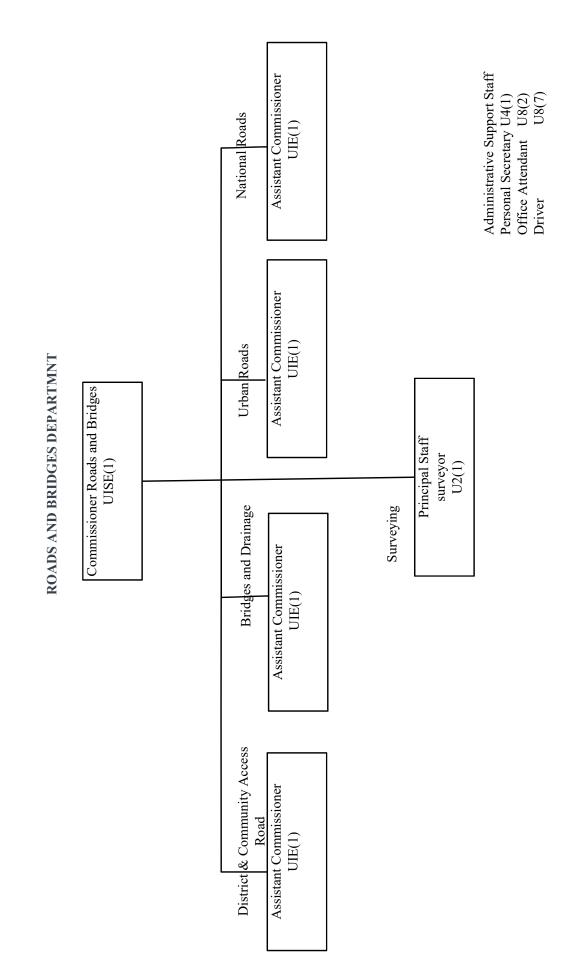
Mrs. Maris Wanyera	Ag. Director Debt and C	ash Management

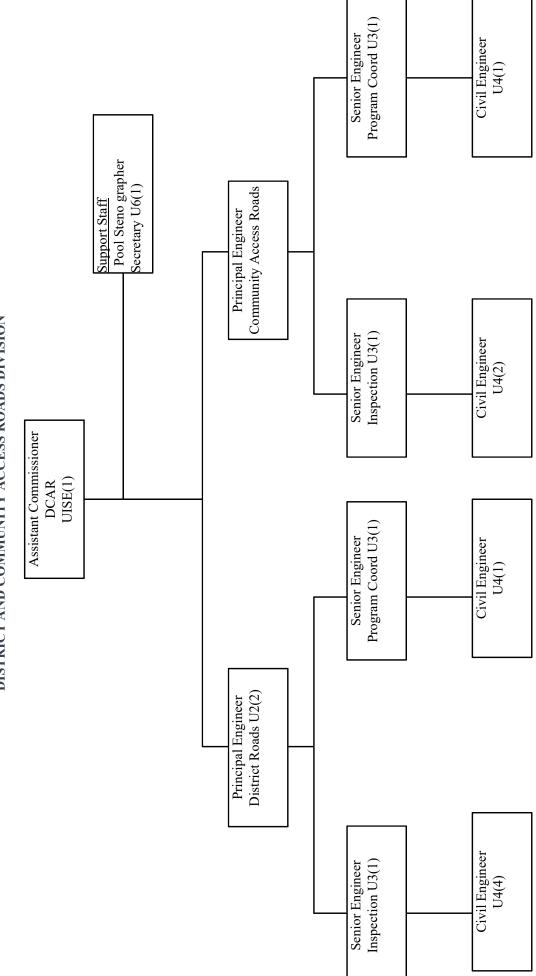
Nakawa Vocational Training Institute (NVTI)

Mr. Muwanga Godfrey Fred Principal

United Nations Industrial Development Organization (UNIDO)

Mr. Stefan Windberger Project

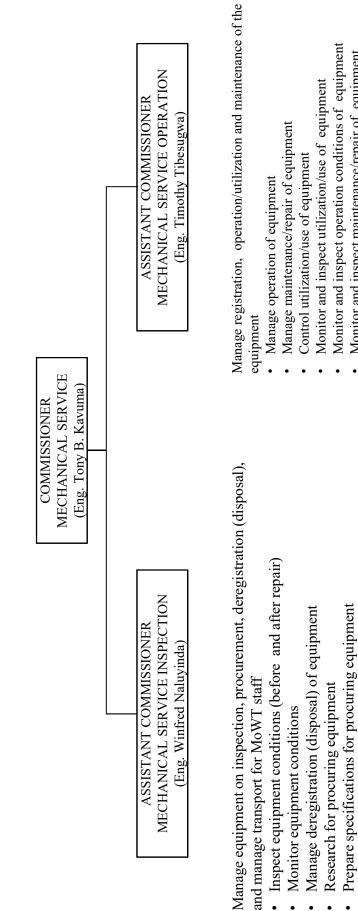

Project Coordinator


Japan International Cooperation Agency (JICA), Uganda Office

Mr. Yoichi Inoue	Chief Representative
Mr. Ichiro Fukuhara	Senior Representative
Mr. Koichiro Yamamoto	Representative
Ms. Atsumi Kani	Project Formulation Advisor
Mr. Makoto Terashima	Project Formulation Advisor
Ms. Meble Kasoma	Infrastructure Sector ODA and LOAN Operation

Appendix 3.

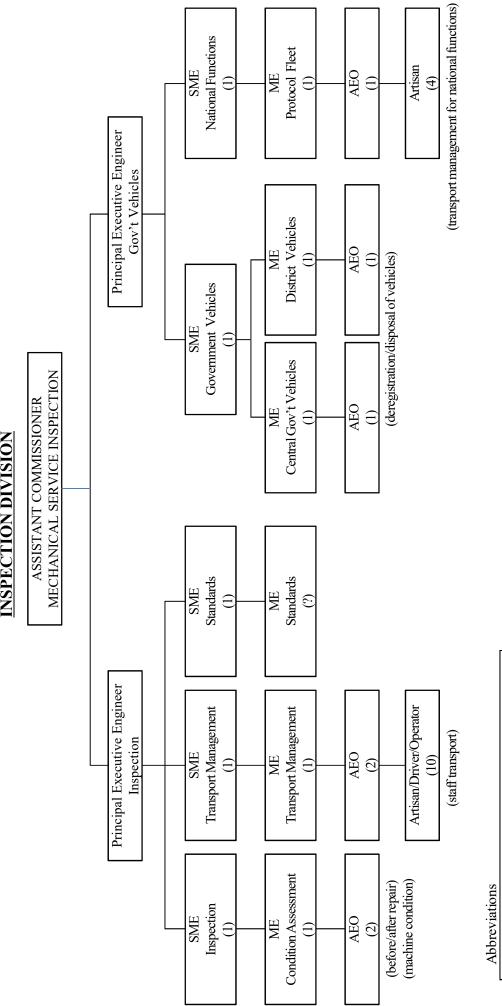
Organization Structure of the Department of Roads and Bridges, and the Department of Mechanical Engineering Services


DISTRICT AND COMMUNITY ACCESS ROADS DIVISION

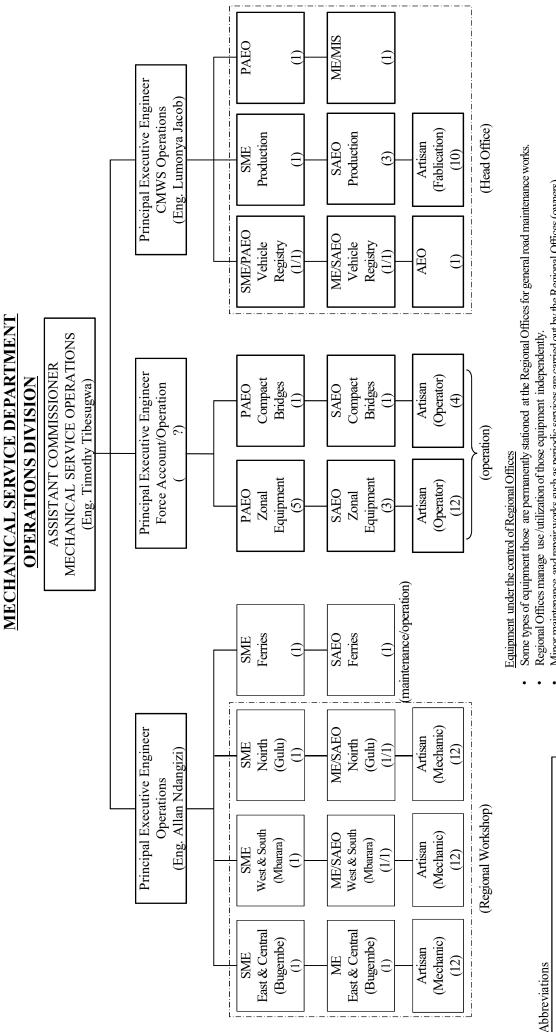
Senior Engineer Program Coord. U3(1) Civil Engineer U4(2) Assistant Commissioner Urban Roads UIE(1) Principal Engineer Urban Roads U2(2) Senior Engineer Inspection U3(2) Civil Engineer U4(4)

URBAN ROADS DIVISION

Support Staff Pool Steno. grapher Secretary U6(1)


MECHANICAL SERVICE DEPARTMENT

Inspect equipment conditions (before and after repair)


- Manage transport for MoWT staff
- Manage transport for national functions

- Monitor and inspect maintenance/repair of equipment
 - Manage registration of equipment
 - Control relocation of equipment

SME: Senior Mechanical EngineerME: Mechanical EngineerPAEO: Principal Assistant Engineering OfficerSAEO: Senior Assistant Engineering OfficerAEO: Assistant Engineering OfficerMIS: Management of Information System

MECHANICAL SERVICE DEPARTMENT INSPECTION DIVISION

SME: Senior Mechanical Engineer	ME: Mechanical Engineer	PAEO: Principal Assistant Engineering Officer	SAEO: Senior Assistant Engineering Officer	AEO: Assistant Engineering Officer	MIS: Management of Information System
SME	ME	PAEO	SAEO	AEO	MIS

- Minor maintenance and repair works such as periodic services are carried out by the Regional Offices (owners)
 - Major repairs of these equipment are carried out by Regional Workshops by request from the Regional Offices.
 - Outsourcing of repair works are managed by Regional Workshops.
- Regional Workshops manage/control procurement and storing operations for lubricants and spare parts for these equipment.
- Zonal Equipment
- Some types of equipment those are temporally stationed/deployed at the regional offices for the force account projects.
 - Mechanical Service Operation (MSO) division (Force Account Operation Section) manage/control these equipment.
 - MSO Division (Force Account Operation Section) controls deployment and relocation of these equipment.
 Regional Workshops where the equipment stationed are responsible to manage maintenance of these equipment.
 - Outsourcing of repair/maintenance works are controlled /managed by Regional Workshops.
- Regional Workshops manage/control procurement and storing operations for lubricants and spare parts for these equipment.

Appendix 4. Implementation Schedule (Plan/Actual)

Project Implementation Schedule (Plan/Actual)	:					4 4 6 4			:	4 4 9 4	-	,	44.04					ſ
Year/Month Onarder	Ist 2nd	March, 2022 rd 3rd	4th	lst	April, 2nd	2022 3rd	4th	1 st	2nd	, 2022 3rd	4th 1st	June, 2nd	2022 3rd	4th	lst	July, 202 2nd	2 3rd	4th
Disptch schedule 2nd field work											3rd field w							
Items of Activity											In the original plan, Team	Leader's 3rd as	ignment was 1	MM, but it was	divided into 3rd			
Activity 1-1											0.5MM and 4th 0.5MM. Therefore, the assimment period of the 3rd field work was shortened from the original plan.	period of the 3r	d field work w	is shortened fro	m the original p	lan.		
Evaluate and analyze current systems for policy making, planning and 1) budgeting																		
2) Interim meeting, review, etc.												_		÷1				
3) Advice/Recommendation																		
Activity 2-1																		
1) Assess and analyze current systems for road construction and maintenance																		
Assess present construction execution plan, construction and maintenance, enduality control, reporting																		
Assess amual planning of road construction/maintenance and actual records, road maintenance cycle, database of roads, badgeting																		
Assess implementation structure of Force Account																		
2) Advice/Recommendation														1				
Activity 3-1																		
1) Implementation of TOT														The schedu	The schedule for this course was finalized according	e was finalized	according	
Basic Course (Common) for Vehicle														to the sche Equipment	to the schedule of the advansed courses (compaction Equipment, heavy equipment) which were jointly	insed courses (c ent) which were	compaction e jointly	
Basic Course (Common) for Construction Equipment																Ē		
Advanced Course for Heavy Equipment (KOMATSU)																		
Advanced Course for Vehicle (FUSO)										-r i	In the original plan, this course was scheduled to be implemented in the 5th field work, but due to	was scheduled ork, but due to						
Advanced Course for Compaction Equipment (SAKAI)											schedule adjustments with local dealers and MoWT, the this course was implemented earlier.	il dealers and M ed earlier.	low1					
Practical Training Course with OJT																		
2) Reporting											Reparting self-training	8			Reporting TDT by	y trainees		
Activity 3-2																		
1) Develop a future improvement plan																		
2) Advice/Recommendation																		
Submission of Report																		
1) Interim Report				•														
2) Final Report																		
Legend 	Remarks: Activity 1, 2, 3-1 and 3-2 are corresponding to the one in Table 1-1 "Project Goals, Expected Outcomes and Outline of Activity". - During absent from Uganda, JICA experts monitor MoWTs self-training activities related to "Activity 3-1" and provide advice as necessary.	t are correspoi nda, JICA exp	iding to the or erts monitor l	te in Table 1- MoWT's self-	1 "Project Goal training activit	ls, Expected (ies related to	Outcomes and "Activity 3-1	d Outline of / " and provid	Activity". e advice as ne	cessary.								

Project Implementation Schedule (Plan/Actual)		4A	000		_	0	200	-			- 2022		-	Í								Γ
Quarter	lst	2nd 3n	3rd	4th	lst	2nd		 4th	1 st	2nd	1, 2022 3rd	4th	1 st		2nd 3rd	3rd	4th	lst	2nd	3rd	4	4th
Disptch schedule						4th field work	l work															
Items of Activity						,																
Activity 1-1																						
1) budgeting																						
2) Interim meeting, review, etc.																						
3) Advice/Recommendation																						
Activity 2-1																						
1) Assess and analyze current systems for road construction and maintenance														Actual pe	iod of the 4	th Field Work	Actual period of the 4th Field Work					
Assess present construction execution plan, construction and maintenance, quality control, reporting																						
Assess annual planning of road construction/maintenance and actual records, road maintenance cycle, database of roads, badgeting																						
Assess implementation structure of Fore Account																						
2) Advice/Recommendation																						
Activity 3-1																						
1) Implementation of TOT																						
Basic Course (Common) for Vehicle																						
Basic Course (Common) for Construction Equipment																						
Advanced Course for Heavy Equipment (KOMATSU)																						
Advanced Course for Vehicle (FUSO)																						
Advanced Course for Compaction Equipment (SAKAI)																						
Practical Training Course with OJT									•													
2) Reporting						Eeporting s	Feporting self-training			Repor	ting TOT by t	rainees										
Activity 3-2																						
1) Develop a future improvement plan																						
2) Advice/Recommendation																						
Submission of Report																						
1) Interim Report	•																					•
2) Final Report																						
Letend Plan Revised Plan, if anv Actual																						

	April, 2023	May, 2023
Derivation Derivation Internation Internation Other height with a planet and manual matrix and mat	1st 2nd 3rd 4th	1st 2nd 3rd 4th
System for polyty middag plumugual Image: control of the contro of the control of the control of the control o		
yes Image: Second S		
yearu (is poly number) yearu (is poly number) i i i i i i i i i i i i i i i i i i i		
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• </td <td></td> <td></td>		
with the state of the stat		
9 years for red ionationand matterians 1		
It you for not control out minimum It was a final for the final for		
use contraction and minitensec. i		
Investore •••••••••••••••••••••••••		
memore of frace Account		
i i		
Image: Sector		
for Valued i		
for Vehicle in of Vehicle <td></td> <td></td>		
Or Construction Equipment Image: Second		
wy Equipment (KOMATSU) in i		
icit (TUGO)		
appecied Equipment (SAKA) 		
with OIT 		
Reporting I		
Image: constraint of the sector of the		
2) Final Report		

Appendix 5. Presentation Material for the Final Workshop

<u>Contents</u>

1. Project Summary

- 2. Suggestions on Road Construction and Maintenance
 - (1) Preventive Road Maintenance System
 - (2) Action Plan in Road Maintenance Work for Its Cost Reduction and Proper Use of Road Maintenance Equipment

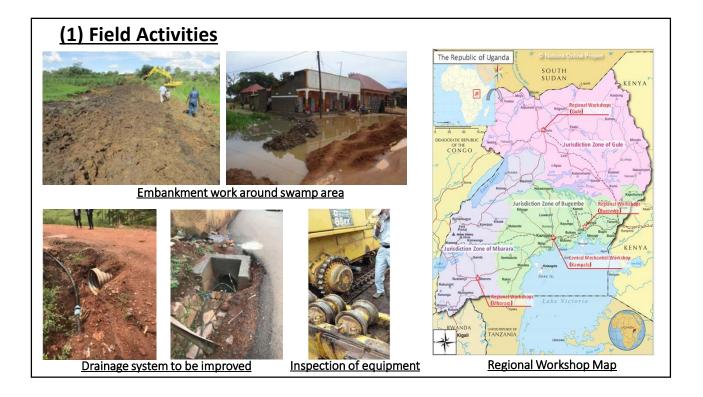
3. Suggestions on Proper Management and Maintenance of Road Equipment

- (1) Future Scope of Mechanical Services by MoWT Mechanical Workshop
- (2) Expected Annual Amount for Road Equipment Maintenance through Its Lifetime
- (3) Urgent Action suggested for Preventing a Breakdown of Heavy Equipment
- (4) Workshop Facility suggested for the Future in terms of Mechanical Services by MoWT

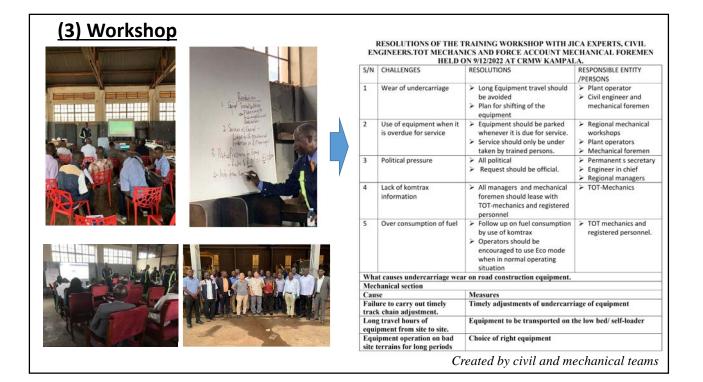
4. Expected Actions by MoWT

1. Project Summary

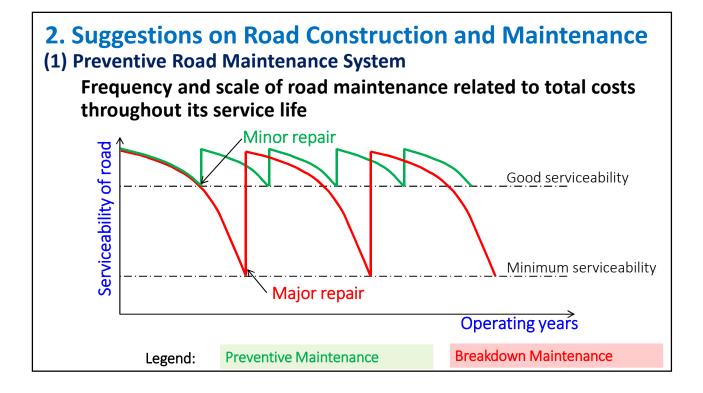
History of the Project

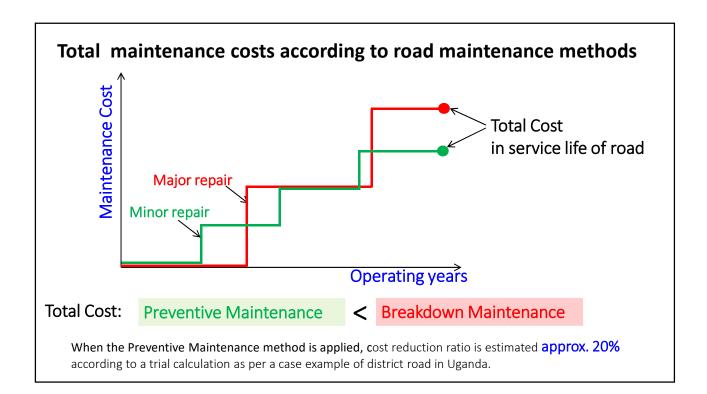

- 1. In 2017, the Government of Uganda procured 1,152 units of road construction and maintenance equipment from Japan at a cost of Approx. USD 150 million, and such equipment were distributed to 121 district and local governments, UNRA, KCCA, NEC and MoWT.
- 2. In 2021, JICA dispatched an expert team from Japan (hereinafter referred to as JICA Project Team) for capacity development for improvement of road construction and maintenance.
- 3. JICA Expert Team together with MoWT focal counterparts has developed expected outcomes leading the project goal.

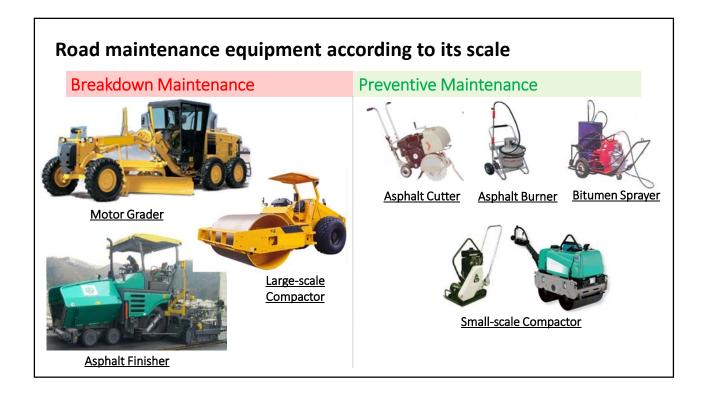
Project	MoWT personnel improve their capacity in the fields of road
Goals	construction and maintenance.
Expected	Outcomes 1:
Outcomes	Improvement measures for policy making, planning, and budgeting
	for road construction and maintenance of MoWT are proposed.
	Outcomes 2:
	A system for road construction and maintenance, including
	effective use of road construction equipment, of MoWT is
	improved in visible achievement of proper road
	construction/maintenance works for fair/good conditions.
	Outcomes 3:
	Capabilities of MoWT's road engineers, operators and mechanics
	through road construction/maintenance and use of equipment is
	strengthened.

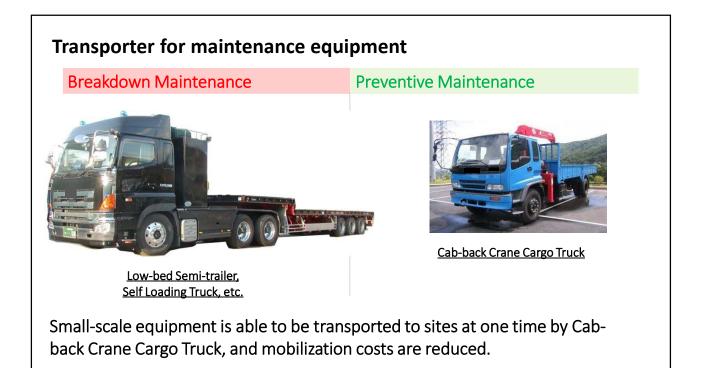

1. Project Summary

Major Activities

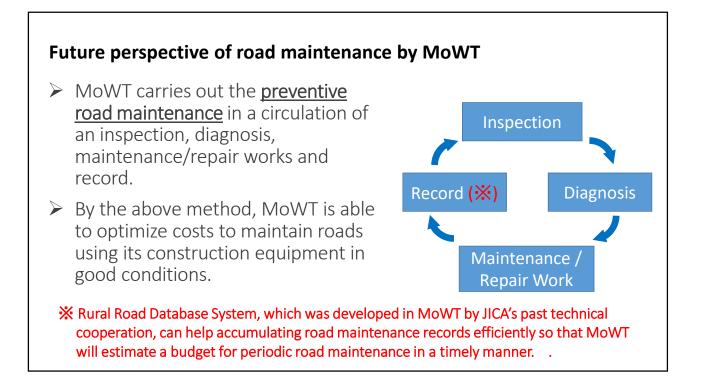

- 1. Analyze of current capacity, implementation structure, and planning and budgeting system of MoWT on road construction and maintenance, and mechanical services.
- 2. Give a technical advice to improve road maintenance work more efficiently as well as road equipment management.
- **3.** Carry out the Training of Trainer (TOT). 8 members nominated from the Regional Mechanical Workshop (i.e. Kampala, Bugembe, Gulu, Mbarara) received a training from JICA expert and local dealer, so that they will be able to perform as a trainer to develop MoWT mechanics in the future.
- 4. Hold and attend several workshops among all concerned parties (i.e. Mechanical and Civil teams) under the Project to share a technical knowledge and discuss an action plan.

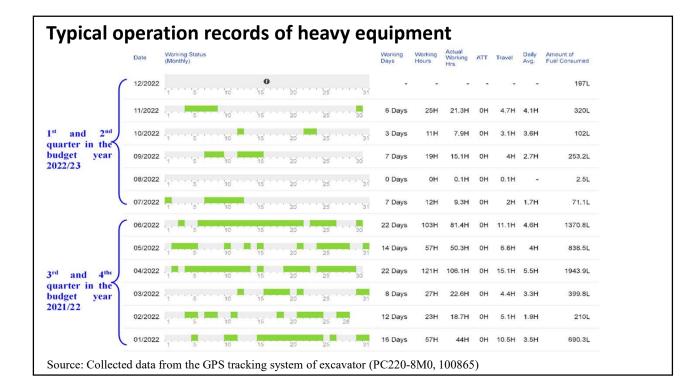



<section-header>(2) TOT ActivitiesImage: Specific Specif



<text><text><image><image><image><image>





(2) Action Plan in Road Maintenance Work for Its Cost Reduction and Proper Use of Road Maintenance Equipment

Issues to be resolved

- Remarkable gap between busy period and non-busy period in road maintenance work
- Over burden on equipment due to a long-distance travel of heavy equipment (e.g. excavators, bulldozers, rollers) that are not suitable for self-propulsion
- Inefficient fuel consumption due to long-distance travel of heavy equipment

Challenges, Resolutions and Responsible Entity/Persons in Road Maintenance Using Equipment

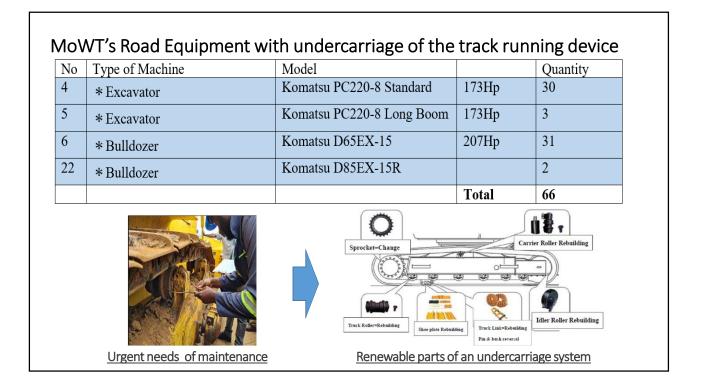
Wear of undercarriage Use of equipment when it is overdue	 Long Equipment travel (*) should be avoided Plan for the shifting of the equipment 	Plant operatorCivil engineer and mechanical foremen
• •		
for service	 Equipment should be parked whenever it is due for service. Service should only be under taken by trained persons. 	 Regional mechanical workshops Plant operators Mechanical foremen
Political pressure	All political request should be official.	 Permanent secretary Engineer in chief Regional managers
Lack of komtrax information	All managers and mechanical foremen should liaise with TOT-mechanics and registered personnel	> TOT-Mechanics
Over consumption of fuel	 Follow up on fuel consumption by use of komtrax Operators should be encouraged to use Eco mode when in normal operating situation 	 TOT mechanics and registered personnel.
Prepared by the part	icipants of the joint workshop between civil and mec	hanical teams
La ir O	ack of komtrax Iformation Iver consumption f fuel Prepared by the part	olitical pressure > All political request should be official. ack of komtrax > All managers and mechanical foremen should liaise with TOT-mechanics and registered personnel over consumption > Follow up on fuel consumption by use of komtrax > Operators should be encouraged to use Eco

3. Suggestions on Proper Management and Maintenance of Road Equipment

(1) Future Scope of Mechanical Services by MoWT Mechanical Workshop

Category of Maintenance Works	To be carried out by:
1. Routine service and minor repairs	MoWT Regional Mechanical
	Workshops
2. Major /Specialized repairs and overhauls	MoWT contracted franchised
	dealers/service providers

				Demarcation	1
Service level	Type of equipment servicing and repair	Main work items	Mc Central Workshop	WT Regional Workshops	Manufacturer / Local Dealer
1 Light	Periodical Maintenance	Change lubricants, lubrication	0	0	
2	Inspection and adjustment	Adjusting brake, adjusting clutch etc.	0	0	
3	Minor repair and maintenance	Replacement of consumable parts	0	0	
4	Overhaul of the main component	Engine, clutch, transmission, hydraulic component etc. (mechanical component/device)	\triangle Note 1	△ ^{Note 1}	0
		Undercarriage of construction equipment (part replacement) Note 2	0	0	0
5 Heavy	Trouble shooting and repair of electronic component /device	Electric/electronic/hydraulic control system, for engine, power train and hydraulic component etc.			0
6	Major overhaul and repair, and modifications	Major overhaul/repair of equipment and modifications			0
of s Note 2: Rep or b	mall vehicles are classified as M placement of parts around the u	ndercarriage of construction equi iders, depending on the content	ipment is going	to be carried ou	t by MoWT direct


through It	s Lif	etin	ne							
Name of Equipment	Estimated Value of Equipment (JPY)(CIP) (a)	Machine's life span (years) (b)	Mainte. cost Rate (in life span) (%) (c)	Total mainitenace cost (JP Y/unit)	Av. mainte. cost/year (JPY/unit) (d) = Value of equipment × (c/100)+ b	Mainte. cost for remained years (JPY/unit)	Mainte. cost per year for remained years (JPY per year/unit)	Number of equipment (unit) (e)	Total mainte. cost per year for remained years (JPY)	
1 Morter Grader GD663-2	19.000.000	10	55	10.450.000	1.045.000	6,270,000	1.254.000	143	179,322.000	
2 Wheel Loader WA250-5	18,000,000	10	55 40	7,200,000	720,000	4.320.000	864,000	143	105,408,000	
3 Wheel Loader WA430-5	32,000,000	10	30	9,600,000	960,000	5,760,000	1,152,000	13	14,976,000	
4 Excavator PC220-8 Standard	25,000,000	10	55	13,750,000	1,375,000	8,250,000	1,650,000	21	34,650,000	
5 Excavator PC220-8 Long-Boom	27,000,000	10	55	14,850,000	1,485,000	8,910,000	1,782,000	0	0	
6 Bulldozer D65EX-16	28,000,000	10	55	15,400,000	1,540,000	9,240,000	1,848,000	25	46,200,000	
7 Wheel Backhoe Loader	13,400,000	10	50	6,700,000	670,000	4,020,000	804,000	31	24,924,000	
8 Vibratory Roller 10ton SV520D	8,400,000	10	40	3,360,000	336,000	2,016,000	403,200	141	56,851,200	
9 Pneumatic Tyre rollor TS200	5,720,000	10	45	2,574,000	257,400	1,544,400	308,880	4	1,235,520	
10 Pedestrain Roller 0.8ton HV80	1,880,000	10	40	752,000	75,200	451,200	90,240	18	1. 1	
11 Plate compactors 4.3Hp PC63	250,000	7	40	100,000	14,286	60,000	30,000	20	600,000	
12 Tampers/Rammers RS55E	321,000	7	30	96,300	13,757	57,780	28,890	18	520,020	
13 Dump Truck 8ton	12,000,000	10	30	3,600,000	360,000	2,160,000	432,000	276	119,232,000	
14 Dump Trucks with chip spreader	13,500,000	10	30	4,050,000	405,000	2,430,000	486,000	7	3,402,000	
15 Cargo Truck 8ton	10,414,992	10	45	4,686,746	468,675	2,812,048	562,410	9	5,061,686	
16 Water bowser 8,000L	10,966,217	10	45	4,934,798	493,480	2,960,879	592,176	138	81,720,249	
17 Low bed tructor pay load 30ton	36,000,000	10	35	12,600,000	1,260,000	7,560,000	1,512,000	9	13,608,000	
18 Self-loading truck pay load 15ton	25,000,000	10	45	11,250,000	1,125,000	6,750,000	1,350,000	21	28,350,000	
19 Mobile Workshop	18,000,000	10	50	9,000,000	900,000	5,400,000	1,080,000	5	5,400,000	
20 Mobile crane 35ton	43,000,000	10	25	10,750,000	1,075,000	6,450,000	1,290,000	1	1,290,000	
21 Bitumen Distributor	19,936,380	10	30	5,980,914	598,091	3,588,548	717,710	4	2,870,839	
22 Bulldozer D85EX-15R	32,000,000	10	40	12,800,000	1,280,000	7,680,000	1,536,000	0	0	
23 Tandem roller CR271 1.44ton	2,200,000	7	30	660,000	94,286	396,000	198,000	4	792,000	
24 Vibratory Roller 15ton SV700	20,020,000	7	35	7,007,000	1,001,000	4,204,200	2,102,100	0	0	Total maintenance cost a
25 Vibratory Roller 18ton SV700	22,000,000	7	45	9,900,000	1,414,286	5,940,000	2,970,000	0	0	Total maintenance cost p
26 Double drum Vibratory Tandem Roller	13,090,000	7	50	6,545,000	935,000	3,927,000	1,963,500	1	1,963,500	year till the end of service
27 Tandem roller SW800 10.4ton	13,300,000	7	25	3,325,000	475,000	1,995,000	997,500	0	0	year this the end of service
28 Vibrator combinmed roller TW504	5,500,000	7	30	1,650,000	235,714	990,000	495,000	1	495,000	life:
Total in JPY							28,499,605		730,496,334	ine.
Total in USD							219,228		5,619,203	USD 5.6 million per yea

(3) Urgent Action suggested for Preventing a Breakdown of Heavy Equipment

Urgent action is needed for Repair of the Undercarriage of Crawler Equipment.

- The operating hours has reached 3,000 to 5,000 hours since the GoU procured equipment in 2017 under Japanese loan program, and the cost for repairs is increasing.
- In particular, undercarriage parts of <u>a Bulldozer and</u> <u>Excavator</u> have been rapidly deteriorated, and most of such equipment will soon breakdown unless undercarriage's spare parts will be urgently renewed with new parts or will be repaired by a dedicated equipment for rebuilding of undercarriage.

	1	1	1		UNIT: UG
No	Type of Machine	Model	Unit Price	Qty	Price
1	Excavator	Komatsu PC220-8 Standard	146,500,000	30	4,395,000,000
2	Excavator	Komatsu PC220-8 Long Boom	146,500,000	3	439,500,000
3	Bulldozer	Komatsu D65EX-15	182,500,000	31	5,657,500,000
4	Bulldozer	Komatsu D85EX-15R	219,000,000	2	438,000,000
					10,930,000,000
		procurement of spare parts, but not include air of undercarriage if MoWT	-	d rebu	Approx. USD 2,920,0
stir	mated cost for rep	air of undercarriage if MoWT	has dedicated	d rebu	Approx. USD 2,920,0 ilding equipmen UNIT: UGX
			-	d rebu Qty	Approx. USD 2,920,0 ilding equipmen
stir	mated cost for rep	air of undercarriage if MoWT	has dedicated		Approx. USD 2,920,0 ilding equipmen UNIT: UGX
Stir	mated cost for rep	air of undercarriage if MoWT Model	has dedicated	Qty	Approx. USD 2,920,0 ilding equipmen UNIT: UGX Price
<mark>stir</mark> No	mated cost for repType of MachineExcavator	air of undercarriage if MoWT Model Komatsu PC220-8 Standard	Image: has dedicated Unit Price 116,830,000	Qty 30	Approx. USD 2,920,0 ilding equipmen UNIT: UGX Price 3,504,900,000
<mark>Stir</mark> No 1 2	mated cost for repType of MachineExcavatorExcavator	air of undercarriage if MoWT Model Komatsu PC220-8 Standard Komatsu PC220-8 Long Boom	Unit Price 116,830,000 116,830,000	Qty 30 3	Approx. USD 2,920,0 ilding equipmen UNIT: UGX Price 3,504,900,000 350,490,000

Result of Comparison

- The initial cost for undercarriage rebuilding equipment is estimated approx. UGX6.4 billion (USD1,700,000) if MoWT will procure it.
- After procurement, MoWT can reduce UGX2.2 billion (USD580,000) of undercarriage repairing costs per single round of its repair for all 66 units of excavators and bulldozers.
- Moreover, the undercarriage rebuilding equipment can be used even for other manufacture's model, so that cost reduction will be continuously achieved beyond above amount.

(4) Workshop Facility suggested for the Future in terms of Mechanical Services by MoWT

- In terms of current facility and equipment in the regional workshops, MoWT will soon need to upgrade all workshops for proper and efficient in-house maintenance operation.
- In particular, both regional workshop in Gulu and Mbarara needs to be upgraded due to lack of facility and its deterioration.
- For the above, simple mechanical workshop equipped with only essential facilities, equipment, office room, etc., which can be developed at low cost, is recommended in terms of their function for mechanical services.

4. Expected Actions by MoWT

- 1. Proper preventive maintenance while optimizing the maintenance cost within limited budget.
- 2. Adequate budget for preventive and corrective maintenance for road equipment.
- 3. Proper planning and operation of road maintenance in collaboration of civil and mechanical teams, based on the Action Plan.
- 4. Continuous training led by ToT member to develop MoWT mechanics at respective Regional Mechanical Workshops.
- 5. Regular report on above achievement to JICA Uganda Office.

THANK YOU & GOD BLESS YOU

Appendix 6. Recommendations

ADVISOR FOR CAPACITY DEVELOPMENT IN ROAD CONSTRUCTION AND MAINTENANCE IN THE REPUBLIC OF UGANDA

Recommendations

June 2023

YACHIYO ENGINEERING CO., LTD.

Contents

Ch	apter 1. Recommendation on Road Management	1-1
1.	Improvement of Policy Making, Planning and Budgeting for Road Maintenance	1-1
2.	Improvement of Efficiency of Road Maintenance	1-8
3.	Measures for Cost Reduction of Road Construction1	-10
4.	Measure for Cleaning and Maintenance of Drainage Facility 1	-14

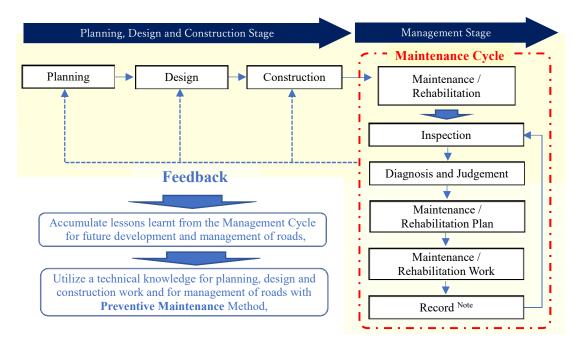
Chapter 2. Recommendations on Management

	of Road Maintenance Equipment	2-1
1.	Scope of Mechanical Services of MoWT Workshop	2-1
2.	Annual Maintenance Costs estimated for Service Life of Equipment	2-1
3.	Countermeasure for Urgent Issue on Equipment Maintenance	2-3
4.	Upgrading of MoWT's Mechanical Workshop	2-5
5.	Utilization of the GPS Tracking System	2-6
6.	Programme for Training of Mechanics	2-7

Annex

1.	Example of Pavement Design
	Technical Reference on Pavement Structure around Wetland
2.	Proposed Upgrading of MoWT Mechanical Workshop

3. Standard Form of Technical Report


Chapter 1. Recommendations on Road Management

1. Improvement of Policy Making, Planning and Budgeting for Road Maintenance

(1) Facilitating the Asset Management and Preventive Road Maintenance System

In order for MoWT to improve efficiency of road maintenance and rehabilitation works and manage roads in proper manner for a long term, it is crucial to optimize a series of Asset Management Cycle: planning, design, construction, maintenance and updating.

Figure 1-1 shows a work flow of the Asset Management to contribute to proper road management system.

Note: Database system for district and urban roads is effectively utilized in records of maintenance / rehabilitation work. Source: JICA Project Team

Figure 1-1 Work Flow in Asset Management

In a road management, there are many cases where roads have initial defects at the time of completion due to various factors. In that case, in addition to maintaining roads as per the maintenance cycle described in Figure 1-1 above, it is important that MoWT feedbacks what learnt through operation in the maintenance cycle to the previous stages, namely planning, design and construction, and improve the quality of the previous stage, for future practices as well as capacity improvement of asset management system.

In implementing the maintenance cycle at the management stage shown in Figure 1-1, it is recommended to actively utilize the Database System for District and Urban Roads developed in the JICA's past project.

(2) Preventive Maintenance System

MoWT has been performing post-maintenance called as a Corrective Maintenance System, and have been forced to carry out costly large-scale road rehabilitation works. After all, rehabilitation costs tend to increase

as a result of being left uncontrolled for many years without being able to respond within a limited road maintenance budget. In order to improve current situation, it is necessary to shift the maintenance method to a Preventive Maintenance System. For introduction of the Preventive Maintenance, it is important to record the presence and extent of road damage based on periodic and non-periodic inspections of roads under the jurisdiction, prioritize necessity and urgency of maintenance, and finally reflect it in application of annual budget in order to realize a systematic operation and maintenance of roads.

Figure 1-2 shows a conceptual diagram comparing the Corrective Maintenance and the Preventive Maintenance in the life cycle of road.

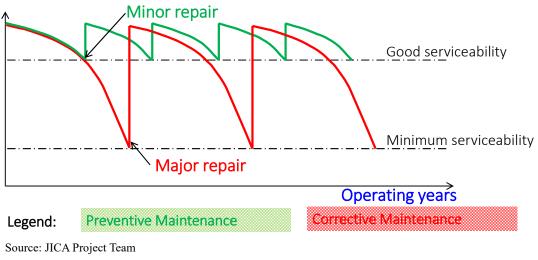
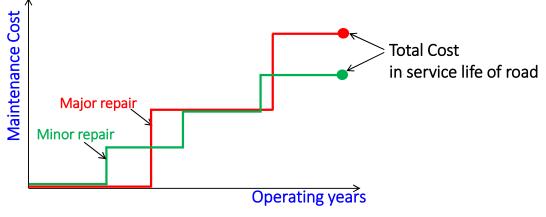



Figure1-2 Comparison of Maintenance Systems

The typical cost comparison for each maintenance system, namely the Corrective Maintenance and the Preventive Maintenance, shown in the above Figure 1-2 are as shown in Figure 1-3.

Source: JICA Project Team

Figure1-3 Comparison of Maintenance Cost by Maintenance Systems

Although the figure above is a conceptual diagram, it is possible to reduce the cost over the service life of roads by performing small-scale maintenance work in an appropriate cycle.

Above-mentioned small-scale maintenance includes repairing small potholes and ruts on road surfaces, repairing cracks in asphalt pavement, cleaning drainage structures and gutters, etc. as show in Figure 1-4 and Figure 1-5. These works can be carried out with relatively small-scale road maintenance equipment as shown in Figure 6.

Damaged area

Spray bitumen (e.g. Tack coat)

Source: JICA Project Team Figure1-4

Remove damaged area

Pave with mixed asphalt material

Road Maintenance with Filling Port Hole

Clean up the surface

Compaction

Melt asphalt into crack

Source: JICA Project Team

Fill with fine aggregates

Filled crack

Figure1-5 Road Maintenance with Filling Crack

Figure1-6 Road Maintenance Equipment by Maintenance Systems

While the Corrective Maintenance requires the large-scale transportation vehicle to mobilize large-scale equipment with several round trips to a site depending on the number of equipment to be used, the Preventive Maintenance requires the Cab-back Crane Cargo Truck to mobilize small-scale equipment which are able to be transported to a site at one time.

The Preventive Maintenance, therefore, contribute to reduction of mobilization costs including a fuel cost.

Next, a model section is selected from among the roads under the jurisdiction of the MoWT, and road maintenance costs are compared by simulating the Corrective Maintenance and the Preventive Maintenance. Table 1-1 is a trial calculation of the total road maintenance cost over a long period of about 10 years, using the LAPANA-ONYALA ROAD (6.7km) in Kitgum District in the northern region as a model section. According to the trial calculation, it is possible to reduce the cost of Preventive Maintenance to 81% of that of Corrective Maintenance. This trial calculation is only an example of roads in Uganda, but by implementing

periodic and planned minor maintenance and repair woks, it is possible to reduce total costs compared to the current Corrective Maintenance. In addition, the cost reduction effect is considered to be greater in remote areas where it is difficult to access with heavy equipment such as a bulldozer, excavator, large-scale compactor, etc.

							Unit: Ugx			
	Corrective M	Aaintenance	Preventive Maintenance							
Items	Major Reh	abilitation	Minor Ma	initenance	Minor Rel	T (1(1)				
	Cost per work	Total (a)	Cost per work	Sub-total	Cost per work	Sub-total	Total (b)			
Bush Clearing and Road Formation	18,975,000	37,950,000	5,692,500	17,077,500	11,385,000	11,385,000	28,462,500			
Road Gravelling	74,175,000	148,350,000	22,252,500	66,757,500	44,505,000	44,505,000	111,262,500			
Excavation for Road Drainage	7,705,000	15,410,000	2,311,500	6,934,500	4,623,000	4,623,000	11,557,500			
Plant Maintenance	14,999,250	29,998,500	2,999,850	8,999,550	8,999,550	8,999,550	17,999,100			
Construction Materials	105,418,000	210,836,000	31,625,400	94,876,200	63,250,800	63,250,800	158,127,000			
Labour/Staff Allowances.	42,680,000	85,360,000	25,608,000	76,824,000	25,608,000	25,608,000	102,432,000			
Administrative Expenses	21,700,000	43,400,000	6,510,000	19,530,000	13,020,000	13,020,000	32,550,000			
Quality Control	5,000,000	10,000,000	1,500,000	4,500,000	3,000,000	3,000,000	7,500,000			
Total	290,652,250	581,304,500	98,499,750	295,499,250	174,391,350	174,391,350	469,890,600			
Cost Reduction Ratio (b/a)										

Table1-1 Comparison of Road Maintenance Cost by Maintenance System

Source: Calculated by JICA Project Team based on cost estimation materials of MoWT

(3) Criteria to Determine Frequency and Timing for Maintenance according to Road Classification and Service Level

It is recommended to classify road surface conditions that require maintenance according to road classifications and the characteristics of passing vehicles, and to implement the Preventive Maintenance, accordingly. Table 1-2 shows the major type of traffic vehicles assumed according to the road classification, and organize the service level that can be stably passed for traffic vehicles with specific values of road surface conditions.

Road Classification / Pavement Structure	Major Type of Traffic	Recommended Road Surface Conditions to Ensure Service Levels for Stable Traffic	Estimated Frequency
Urban City Road / Asphalt Pavement	Normal passenger car, 4WD, Pick-up Truck, Heavy Vehicle, Agricultural Vehicle and Machine	 Keep the maximum depth of potholes and ruts below 4-5cm considering the height of normal passenger cars Since normal passenger cars (approximately 3.5 to 5m in length) pass, the number of potholes should be kept at 25 or less per 100m of road length (=100m in length/4m in length). Damage exceeding this makes it difficult for passenger cars to avoid potholes and hinders safe passage. Cracks are less than 30-35% of pavement area. 	Every 3 to 5 years. However, priority will be given to road surface inspection results after the rainy season.
District and Community Access Roads / Gravel or Earth Road	4WD, Pick-up Truck, Heavy Vehicle, Agricultural Vehicle and Machine	 Keep the depth of potholes and ruts to about 15 cm or less considering the vehicle height of the smallest passing vehicle (small truck). Keep the number of potholes below 20 per 100m road length (= 100m length/5m vehicle length), depending on the minimum number of passing vehicles (small trucks). Damage that exceeds this makes it difficult for passing vehicles to avoid potholes and hinders safe passage. 	Every 3 to 5 years. However, priority will be given to road surface inspection results after the rainy season.

 Table 1-2
 Condition of Road Surface Requiring Maintenance

Note

Light Truck $(2 \sim 3t)$: 4.7m or less in length

Middle Truck (4t) : 12m or less in length

Heavy Truck (10t and more) : 12m or less in length

Source: JICA Project Team

As a measure that a road administrator can quantitatively and objectively determine the timing and priority of maintenance and rehabilitation of roads under their jurisdiction under the limited road maintenance budget for every fiscal year, a method of evaluating priority by adding points based on the classification and characteristics of the road and the degree of deterioration is recommended.

This method is to assign points to a candidate road for maintenance based on the evaluation items shown in Table 1-3, and determines the priority and urgency of maintenance and rehabilitation based on the total score for reflecting the result to road maintenance and rehabilitation plan of the coming or later fiscal year.

No.	Category	Evaluation Items	Point Allocation
1	Characteristic of Road	Functional Classification	/10
		AADT (Annual average daily traffic), Unit Cost	/15
		Linkage to National Road Network - Number and	/10
		Class of connected roads	
2	Social Characteristic,	Population/Settlement within 2km of Road	/15
	e.g. Population,	Rate Production Centre - Markets, factories, farms,	/10
	Production Centers,	etc. within 2km of the road	
	Social Services	Number of Schools/Health within 2km of the Road	/10
3	Road Condition	Pot hole, rutting, drainage, etc.	/30
		Total	/100

Table 1-3Priority Evaluation Items and Point Allocationfor District and Community Access Roads

Source: MoWT's counterpart and JICA Project Team

The evaluation items and point allocation shown in Table 1-3 were set by MoWT's C/P and JICA expert through the Project. These evaluation items and point allocation can be appropriately modified or updated according to road characteristics and regional characteristics of regions of the country.

In addition, there is an example of indicators that are effective in quantitatively judging the need for repair based on the degree of cracks and ruts on asphalt paved roads, which is shown in Figure 1-7 for reference.

-		Calcu	lation	INICI	WICI0-10-1.5C -0.5D						
	Ru	itting	1	2	3	4	5	6	7	8	9
0	Crack		0-5 mm	5-10 mm	10-15 mm	12-20 mm	20-25 mm	25-30 mm	30-35 mm	35-40 mm	Over 40mm
ratio			2.5	7.5	12.5	17.5	22.5	27.5	32.5	37.5	40
1	0-5%	2.5	7.456	6.796	6.268	5.801	5.373	4.973	4.594	4.233	4.058
2	5-10%	7.5	6.685	6.025	5.497	5.03	4.602	4.202	3.823	3.462	3.287
3	10-15%	12.5	6.23	5.571	5.042	4.575	4.147	3.747	3.369	3.007	2.832
4	12-20%	17.5	5.89	5.231	4.702	4.235	3.808	3.408	3.029	2.667	2.492
5	20-25%	22.5	5.613	4.953	4.425	3.958	3.53	3.13	2.752	2.39	2.215
6	25-30%	27.5	5.376	4.717	4.188	3.721	3.293	2.893	2.515	2.153	1.978
7	30-35%	32.5	5.168	4.508	3.98	3.513	3.085	2.685	2.306	1.945	1.77
8	35-40%	37.5	4.981	4.321	3.793	3.326	2.898	2.498	2.119	1.758	1.583
9	Over40%	40	4.894	4.234	3.706	3.239	2.811	2.411	2.032	1.671	1.496

Calculation MCI MCI₀=10-1.5C^{0.3}-0.3D^{0.7}


Source: Maintenance Control Index (MCI)

Figure 1-7 Indicators for Judging Urgency of Repair based on Degree of Damage to Asphalt Pavement (Reference Case) In the future, when MoWT plans maintenance and rehabilitation of roads under its jurisdiction, it is recommended to utilize the local road database developed by the past JICA project. The database is updated by maintenance and rehabilitation work performed, and by periodically reviewing the accumulated data, it is possible to comprehensively grasp maintenance history, etc. and thus can be effectively used for prediction of a next maintenance period and planning.

2. Improvement of Efficiency of Road Maintenance

Figure 1-8 is an example of equipment operation record collected by the GPS tracking system installed in the KOMATSU excavator owned by MoWT. This data shows information of the location of equipment, the number of working days, working hours, travel hours, fuel consumption, etc., and it shows the following reality.

- a) Remarkable gap between busy period and non-busy period in road maintenance work
- b) Over burden on equipment due to a long-distance travel of heavy equipment (e.g. excavators, bulldozers, rollers) that are not suitable for self-propulsion
 (Note: For example, the manufacturer of excavator recommends self-propulsion within only 5 km per movement.)

c) Inefficient fuel consumption due to long-distance travel of heavy equipment

Source: Collected data from the GPS tracking system of excavator (PC220-8M0)

Figure 1-8 Example of Operation Record of Excavator collected from GPS Tracking System

In the case of the excavator shown in Figure 1-8, the number of working days in the first half of the fiscal year (July 1st to December 31st) is lower than in the second half, and the number of working days increases in the second half (January 1st to June 30th of the following year). Other excavators owned by MoWT also show large discrepancies in the number of working days per month. In particular, since the operation rate in the first half tends to be lower than in the second half, it is desirable to level the work volume of road maintenance throughout the year.

Moreover, as shown in Figure 1-8, travel hour accounts for a large proportion of the total working hours of equipment. This shows the fact that an excavator that is not suitable for self-propelled movement is moved over a long distance by self-propelled propulsion. Such long-distance self-propelled operation by the operator not only puts an excessive load on the undercarriage of equipment, shortening the life of equipment, but also increases costs due to inefficient fuel consumption.

Here, the data shown in Figure 1-9 is an example of the excavator that has been waiting for repair for a long time without replacing spare parts of the undercarriage system.

Monthly	Daily	04/202	2 - 12	2/2022 -	9items									
Date	Working S (Monthly)							Working Days	Working Hours	Actual Working Hrs.	ATT	Travel	Daily Avg.	Amount of Fuel Consumed
12/2022	1	5	10 1 1	15	20	25	31	0 Days	ОH	он	ОH	ОH	-	0L
11/2022	1	5	10	15	20	25	30	0 Days	ОH	ОH	0H	0H		0L
10/2022	1	5	10 1	15	20	25	31	0 Days	0H	0H	0H	оH	-	OL
09/2022	1	5	10	15	20	25	30	1 Days	2H	2H	оH	0.8H	2H	31L
08/2022	1	5	10	15	20	25	31	22 Days	171H	150.5H	оH	33.8H	7.7H	2370.3L
07/2022	1	5	10	15	20	25	31	15 Days	95H	83.6H	оH	10.7H	6.3H	1352L
06/2022	1	5	10	15	20	25	30	23 Days	154H	138.9H	он	32H	6.6H	2175L
05/2022	1	5	10	15	20	25	31	21 Days	135H	121.6H	он	26.2H	6.4H	1944.9L
04/2022		5	10	15	20	25	30	13 Days	49H	43.4H	ОH	6.1H	3.7H	690.5L

Source: Collected data from the GPS tracking system of excavator (PC220-8M0) Figure 1-9 Excavator Out Of Service after October 2022

Based on the above finding, as an initiative to improve the excessive load on equipment typified by longdistance self-propelled propulsion and inefficient fuel consumption, as well as to optimize road maintenance costs, the action plan shown in Table 1-4 was formulated. This action plan was made by participants from the civil team and the mechanical team in the joint workshop held during the Project.

		au Maintenance Osing Equipment	
S/N	CHALLENGES	RESOLUTIONS	RESPONSIBLE ENTITY /PERSONS
1	Wear of undercarriage	 Long Equipment travel should be avoided Plan for the shifting of the equipment 	 Plant operator Civil engineer and mechanical foremen
2	Use of equipment when it is overdue for service	 Equipment should be parked whenever it is due for service. Service should only be under taken by trained persons. 	 Regional mechanical workshops Plant operators Mechanical foremen
3	Political pressure	 All political request should be official. 	 Permanent secretary Engineer in chief Regional managers
4	Lack of komtrax information	 All managers and mechanical foremen should liaise with TOT- mechanics and registered personnel 	> TOT-Mechanics
5	Over consumption of fuel	 Follow up on fuel consumption by use of KOMTRAX Operators should be encouraged to use Eco mode when in normal operating situation 	TOT mechanics and registered personnel.

Table 1-4 Challenges, Resolutions and Responsible Entity/Persons

in Road Maintenance Using Equipment

Source: Prepared by the participants of the joint workshop

The achievement status of the action plan shown in Table 1-4 above can be monitored by the recorded data of the GPS tracking system.

3. Measures for Cost Reduction of Road Construction

(1) Optimization of Pavement Structure according to Traffic Demand

During site investigations in the Project, JICA expert was aware of some cases where hot-mix asphalt pavement with a thickness of 3 inches (= 7.62 cm) is applied to the surface layer on District Roads around residential areas. As long as JICA expert surveyed the traffic condition around such residential areas, the daily traffic volume was less than 500 vehicles on many routes, and there were no heavy vehicles at all. Roads in these residential areas are unlikely to see an increase in the number of heavy vehicles in the future except the case that there is particularly traffic demands to increase.

For such traffic conditions, the asphalt pavement of 3 inches in thickness is excessive increasing construction costs. For the above traffic volume, a surface layer thickness of about 2 inches (= 5.08cm) is considered sufficient according to the pavement design in Japan. By reviewing the thickness in the pavement design, construction costs can be reduced by about 20%.

For reference, Table 1-5 shows examples of pavement structures in multiple cases according to the traffic volume in Japan, and Annex 1 shows the design calculation of pavement thickness for each case. Also, a technical reference on pavement structures to be considered in wetlands with high groundwater levels is

enclosed in Annex 1 for the pavement design. The planned traffic volume applied to the pavement design reflects the traffic demand forecast after the road opened.

Traffic Volume (2 direction)	Vehicle Type	Design CBR (%)	Surface Asphalt Concrete	Base Course Graded Crushed Stone M-30	Sub base Course Crushed Stone C-40	Total (cm)	Remarks
200	Light 190	4	5	10	20	35	
vehicles/day	Heavy 10	6	5	10	15	30	Minimum
		8	5	10	15	30	Minimum
300	Light 285	4	5	15	20	40	
vehicles/day	Heavy 15	6	5	10	20	35	
		8	5	10	15	30	Minimum
500	Light 475	4	5	15	25	45	
vehicles/day	Heavy 25	6	5	15	20	40	
		8	5	10	20	35	
1,000	Light 950	4	5	15	30	50	
vehicles/day	Heavy 50	6	5	15	25	45	
		8	5	15	20	40	

 Table 1-5
 Example of Pavement Structure according to Traffic in Case of Japan

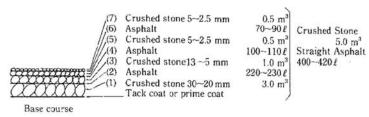
Note

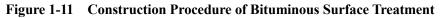
Narrow Road: 1-lane road 5-6 m wide Heavy Vehicle: 10-ton Truck Light Vehicle: 2-ton passenger car or light truck Source: JICA Project Team

In addition, other alternative for cost reduction is bituminous surface treatment by the Penetration Macadam Method. The features of the Penetrating Macadam method are shown below.

- Since the materials used are bitumen (asphalt) and aggregate, there is no need to manufacture a hot-mix asphalt material at an asphalt plant, so the manufacturing cost of hot-mix asphalt is unnecessary. Moreover, the amount of materials used is also less than that of hot-mix asphalt materials.
- > No asphalt finisher is required for construction. Therefore, transportation costs for construction equipment and fuel costs can be greatly reduced.
- There is no need to lay hot-mix asphalt materials, and construction efficiency can be improved by accumulating skills for spreading bituminous material and surface layer aggregates.
- Since spreading aggregates and bituminous materials can be done manually, construction with Laborbased Technology is also possible, which is expected to further cost reduction and create employment opportunities.

Figure 1-10 and Figure 1-11 show an example of pavement structure and construction reference photographs of bituminous surface treatment by the Penetration Macadam Method




Figure 1-10 Example of Cross Section of Bituminous Surface Treatment

Spray bitumen

Spread fine aggregates

Note: The upper part of the figure shows mechanical construction, and the lower part shows manual construction. Source: JICA Project Team

(2) Combined Use of the Labor-based Technology Method

Considering the limited annual budgets of MoWT and local governments for road maintenance, District Roads and Community Access Roads which have a daily traffic volume of less than 500 vehicles, except the case of large-scale damage caused by heavy rainfall, it is recommended to extend the service life of passable road by maintaining roads with small-scale road surface repairing and cleaning work regularly or on daily basis.

In the case of road construction using construction equipment, in addition to the cost of construction materials such as aggregate and asphalt, the cost of fuel to operate equipment accounts for a large proportion of the total construction cost. Therefore, for work that can be carried out mainly by labor, the use of Labor-based Technology (LBT) in addition to Equipment-based Technology (EBT) can reduce the cost of equipment mobilization and fuel, and is expected to significantly reduce road maintenance costs.

Figure 1-12 shows a typical work flow of road maintenance and rehabilitation by LBT.

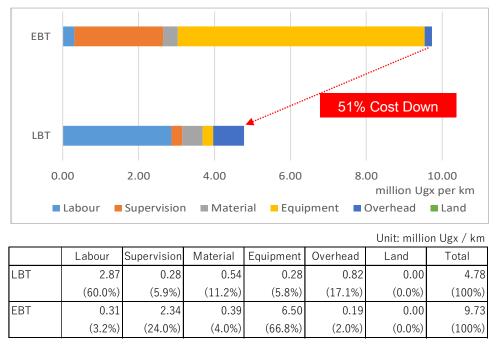


Figure 1-12 Work Flow of Road Maintenance with LBT

The following conditions are listed as regional characteristics suitable for road maintenance by LBT.

- The site is a rural area with a large population and a large unemployed population. (Not limited to unemployed people)
- > Daily traffic volume is low (About 500 vehicles or less)
- There is a need for road maintenance by local immigrants, but it is considered to be a low priority due to budget constraints.

Next, in the past study in Uganda, road maintenance costs by LBT and EBT were compared and explained as shown in Figure 1-13.

Source: An Opportunity for Employment Creation, Labour-based Technology in Roadworks, UGANDA, June 1999

Figure 1-13 Cost Reduction Data with LBT in the Past Study

According to the above figure, in the case of EBT, the equipment cost accounts for about 2/3 (66.8%) of the construction cost, while in the case of LBT, labor costs account for about 2/3 (60.0%). Also, by applying LBT, the construction cost per km was reduced by 51%. Although the study was validated by sampling a specific rural road in Uganda, the clear conclusion is that LBT reduces costs.

From the above, the effectiveness of LBT application is recognized as long as it is a regional road that meets the conditions listed above. By implementing work that can be done mainly by human power at low cost, it is expected that emphasis will be placed on the construction of structures such as box culverts and small bridges at places where traffic is bottlenecked due to insufficient drainage.

While sufficient management skills are required of on-site leaders in developing LBT, the human resources of road managers are also limited, so it is necessary to create a system that involves private construction companies and local communities.

4. Measure for Cleaning and Maintenance of Drainage Facility

At present, drainage pipe cleaning in Kampala City involves workers entering the pipes and manually scraping out sediments. In Kampala City, especially after rainfall during the rainy season, sediment from the hillsides flows downstream, causing sediment to accumulate in the drainage pipes and ditches, which in turn causes the drainage facilities to malfunction and flood the roads.

In the future, there is room to consider more efficient means of cleaning and maintenance of drainage facilities, depending on the amount of work and the degree of sediment deposition.

For reference, Figure 1-14 shows an example of equipment that enables mechanized cleaning and maintenance of drainage facilities.

Figure 1-14 High-pressure Drainage Cleaning Vehicle (Left) and Sludge Suction Truck (Right)

Chapter 2. Recommendations on Management of Road Maintenance Equipment

1. Scope of Mechanical Services of MoWT Workshop

In order for MoWT to properly operate and maintain its equipment, it is important to actively utilize private sector services for equipment maintenance, considering the structural characteristics of road equipment, which have recently become more complex due to electronic control, and the existing facilities, equipment, and personnel structure of the MoWT mechanical workshop. Table 2-1 shows the scope of mechanical services that are directly implemented by MoWT, as well as the scope that utilize private services.

				Demarcation	1
Service level	Type of equipment	Main work items	Mo	Manufacturer /	
level servicing and repair			Central Workshop	Regional Workshops	Local Dealer
1 Light	Periodical Maintenance	Change lubricants, lubrication	\bigcirc	\bigcirc	
2	Inspection and adjustment	Adjusting brake, adjusting clutch etc.	\bigcirc	0	
3	Minor repair and maintenance	Replacement of consumable parts	0	0	
4	Overhaul of the main component	Engine, clutch, transmission, hydraulic component etc. (mechanical component/device)	∕Note 1	∕Note 1	0
		Undercarriage of construction equipment (part replacement) Note 2	0	0	0
5 Heavy	Trouble shooting and repair of electronic component /device	Electric/electronic/hydraulic control system, for engine, power train and hydraulic component etc.			0
6	Major overhaul and repair, and modifications	Major overhaul/repair of equipment and modifications			0

 Table 2-1
 Scope of Mechanical Services to be undertaken by MoWT and Private Sector

Note 1: MoWT has experience and achievements for small vehicles. Therefore, a repairing work of small vehicles are classified as MoWT's direct operation.

Note 2: Replacement of parts around the undercarriage of construction equipment is going to be carried out by MoWT directly or by utilizing private service, depending on the content of maintenance and MoWT's budgetary conditions.

Source: Prepared by MoWT and the Project Team

Table 2-1 above was developed through consultation between MoWT and JICA Project Team throughout the Project. It is recommended that MoWT maintain a close communication and reporting system with local dealers and continue equipment maintenance and repair based on the work classification indicated in this table.

2. Annual Maintenance Costs estimated for Service Life of Equipment

As of 2023, more than five years will have passed since MoWT procured 1,152 units of Japanese equipment in 2017 through a JBIC loan, which will increasingly require equipment maintenance.

Table 2-2 shows the regular and irregular maintenance items expected over the life of equipment.

Classification	Service time	Maintenance items		
Regular	250-500 hours	Engine oil, hydraulic oil, engine oil filter, fuel filter, grease (as		
		needed)		
	2,000~2,500 hours	Reversal (reuse) of pins and bushings of equipment		
	, ,	(bulldozers, hydraulic excavators) that travels with a crawler		
		system		
	3,500~4,000 hours	Replacement of undercarriage parts for equipment (bulldozers,		
	-,	hydraulic excavators) that run on crawler system		
	per constant	Vehicle tire replacement, construction machinery tooth and		
	consumption	edge replacement		
Irregular	_	Maintenance and repair of engines (overhaul), transmissions,		
		hydraulic pumps, motors, hydraulic cylinders, brakes, cooling		
		systems, air conditioners, body sheet metal, glass, etc.		

 Table 2-2
 Items of Equipment Maintenance

Source: JICA Project Team

In order to implement the maintenance items shown in Table 2-2 above in a timely manner, it is essential to allocate the necessary annual budget over the service life of equipment. Table 2-3 shows the anticipated annual maintenance costs for Japanese equipment procured by MoWT in 2017.

Name of Equipment	Machine's life span	Mainte. cost Rate (in life span)	Total mainitenace cost (JPY/unit)	Av. mainte. cost/year (JPY/unit)	Mainte. cost for remained years (JPY/unit)	Mainte. cost per year for remained years (JPY per year/unit)	equipment	Total mainte. cost per year for remained years (JPY)
Name of Equipment	(years)	(%)	(JP Y/unit)	(JP Y/unit)	(JP Y/unit)	(JPY per year/unit)	(unit)	(JPY)
1 Morter Grader GD663-2	10	55	10,450,000	1,045,000	6,270,000	1.254.000	143	179,322,000
2 Wheel Loader WA250-5	10	40	7.200.000	720,000	4,320,000	864,000	143	105,408,000
3 Wheel Loader WA430-5	10	30	9,600,000	960,000	5,760,000	1,152,000	13	14,976,000
4 Excavator PC220-8 Standard	10	55	13,750,000	1,375,000	8,250,000	1,650,000	21	34,650,000
5 Excavator PC220-8 Long-Boom	10	55	14,850,000	1,485,000	8,910,000	1,782,000	0	0
6 Bulldozer D65EX-16	10	55	15,400,000	1,540,000	9,240,000	1,848,000	25	46,200,000
7 Wheel Backhoe Loader	10	50	6,700,000	670,000	4,020,000	804,000	31	24,924,000
8 Vibratory Roller 10ton SV520D	10	40	3,360,000	336,000	2,016,000	403,200	141	56,851,200
9 Pneumatic Tyre rollor TS200	10	45	2,574,000	257,400	1,544,400	308,880	4	1,235,520
10 Pedestrain Roller 0.8ton HV80	10	40	752,000	75,200	451,200	90,240	18	1,624,320
11 Plate compactors 4.3Hp PC63	7	40	100,000	14,286	60,000	30,000	20	600,000
12 Tampers/Rammers RS55E	7	30	96,300	13,757	57,780	28,890	18	520,020
13 Dump Truck 8ton	10	30	3,600,000	360,000	2,160,000	432,000	276	119,232,000
14 Dump Trucks with chip spreader	10	30	4,050,000	405,000	2,430,000	486,000	7	3,402,000
15 Cargo Truck 8ton	10	45	4,686,746	468,675	2,812,048	562,410	9	5,061,686
16 Water bowser 8,000L	10	45	4,934,798	493,480	2,960,879	592,176	138	81,720,249
17 Low bed tructor pay load 30ton	10	35	12,600,000	1,260,000	7,560,000	1,512,000	9	13,608,000
18 Self-loading truck pay load 15ton	10	45	11,250,000	1,125,000	6,750,000	1,350,000	21	28,350,000
19 Mobile Workshop	10	50	9,000,000	900,000	5,400,000	1,080,000	5	5,400,000
20 Mobile crane 35ton	10	25	10,750,000	1,075,000	6,450,000	1,290,000	1	1,290,000
21 Bitumen Distributor	10	30	5,980,914	598,091	3,588,548	717,710	4	2,870,839
22 Bulldozer D85EX-15R	10	40	12,800,000	1,280,000	7,680,000	1,536,000	0	_,,
23 Tandem roller CR271 1.44ton	7	30	660,000	94,286	396,000	198,000	4	792.000
24 Vibratory Roller 15ton SV700	7	35	7,007,000	1,001,000	4,204,200	2,102,100	0	0
25 Vibratory Roller 18ton SV700	7	45	9,900,000	1,414,286	5,940,000	2,970,000	0	0
26 Double drum Vibratory Tandem Roller	7	50	6,545,000	935,000	3,927,000	1,963,500	1	1,963,500
27 Tandem roller SW800 10.4ton	7	25	3,325,000	475,000	1,995,000	997,500	0	1,903,500
28 Vibrator combinmed roller TW504	7	30	1,650,000	235,714	990,000	495,000	1	495,000
Total in JPY	/	50	1,050,000	255,714	790,000	28,499,605	1	730.496.334
1 Otal III JF 1						20,499,605		/30,490,334
Total in USD						219,228		5,619,203

 Table 2-3
 Anticipated Annual Maintenance Costs

Reference exchange rate: USD1 = JPY130 Source: JICA Project Team

The annual maintenance costs shown in Table 2-3 above are calculated based on standard actual data in Japan, and actual maintenance costs will depend on the environment in which the equipment is used, construction conditions, and other factors. However, it is recommended that MoWT is aware that the above amount scale is necessary and reflect it in its annual budget application as appropriate.

3. Countermeasure for Urgent Issue on Equipment Maintenance

Among the maintenance items shown in Table 2-2, the one that requires particularly large maintenance costs is the crawler system; as of January 2023, bulldozers and excavator traveling with the crawler system have been in operation for more than 3,000 hours, exceeding the allowable wear of the undercarriage.

Therefore, maintenance of the undercarriage is urgently needed to maintain the functionality of the crawler system. Specifically, undercarriage parts must be replaced with new spare parts or reused by taking measures to recondition undercarriage parts. Otherwise, extreme wear of the undercarriage components will render the equipment inoperable.

Table 2-4 shows the list of locations and necessary measures for 25 bulldozers and 23 Excavators under the management of MoWT.

No.	Location	Model	Unit	Necessary Measures
1	Kampala	Bulldozer (D65EX-16)	5 units	Replace with new spare parts for the undercarriage, or rebuild those parts by using the undercarriage rebuilding equipment
		Excavator (PC220-8)	5 units	Ditto
2	Bugembe	Bulldozer (D65EX-16)	8 units	Ditto
		Excavator (PC220-8)	8 units	Ditto
3	Gulu	Bulldozer (D65EX-16)	6 units	Ditto
		Excavator (PC220-8)	5 units	Ditto
4	Mbarara	Bulldozer (D65EX-16)	6 units	Ditto
		Excavator (PC220-8)	5 units	Ditto

 Table 2-4
 List of Bulldozer and Excavator with Locations and Necessary Measures

Source: JICA Project Team

The estimated cost of MoWT's future purchases of spare parts for the undercarriage is shown in Table 2-5.

					Unit: UGX Note1	
No.	Equipment	Model	Unit Rate	Q'ty	Amount	
1	Excavator	KOMATSU PC-220-8 Standard	146,500,000	21	3,076,500,000	
				(30)	(4,395,000,000)	
2	Excavator	KOMATSU PC-220-8 Long	146,500,000	0	0	
		Boom		(3)	(439,500,000)	
3	Bulldozer	KOMATSU D65EX-15	182,500,000	25	4,562,500,000	
				(31)	(5,657,500,000)	
4	Bulldozer	KOMATSU D85EX-15R	219,000,000	0	0	
				(2)	(438,000,000)	
				Total	7,639,000,000	
					(10,930,000,000)	

 Table 2-5
 Estimated Cost for Renew of Undercarriage Spare Parts

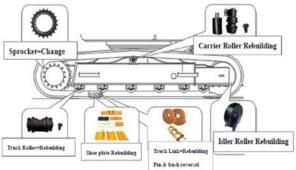
Note 1: Reference exchange rate: UGX1,000 = JPY37 (as of May 2023)

Note 2: Figures in parentheses for quantity and amount are totals including equipment under the control of UNRA and NEC, and figures outside the parentheses are the total extracted only for equipment under the control of MoWT. Source: JICA Project Team

Next, Table 2-6 shows the estimated cost of reusing undercarriage parts by using the undercarriage rebuilding equipment. In this case, MoWT needs to procure the undercarriage rebuilding equipment, and the initial cost for procurement is estimated to be about UGX6,400,000,000 (approximately USD1,700,000).

Table2-6	Estimated Cost for Reusi	ng Undercarriage Parts
----------	--------------------------	------------------------

					Unit: UGX Note1
No.	Equipment	Model	Unit Rate	Q'ty	Amount
1	Excavator	KOMATSU PC-220-8 Standard	116,830,000	21	2,453,430,000
				(30)	(3,504,900,000)
2	Excavator	KOMATSU PC-220-8 Long	116,830,000	0	0
		Boom		(3)	(350,490,000)
3	Bulldozer	KOMATSU D65EX-15	146,777,000	25	3,669,425,000
				(31)	(4,550,087,000)
4	Bulldozer	KOMATSU D85EX-15R	175,200,000	0	0
				(2)	(350,400,000)
				Total	6,122,855,000
					(8,755,877,000)


by Undercarriage Rebuilding Equipment

Note 1: Reference exchange rate: UGX1,000 = JPY37 (as of May 2023)

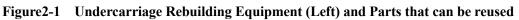

Note 2: Figures in parentheses for quantity and amount are totals including equipment under the control of UNRA and NEC, and figures outside the parentheses are the total extracted only for equipment under the control of MoWT. Source: JICA Project Team

Figure 2-1 shows a reference photograph of the undercarriage rebuilding equipment and various parts that can be reused with this equipment.

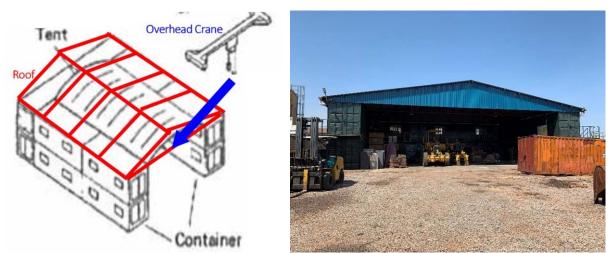
Source: JICA Project Team

The advantages in case that MoWT procures the undercarriage rebuilding equipment are shown below.

- Although initial investment costs are required to procure the undercarriage rebuilding equipment, once procured, costs can be reduced continuously compared to purchasing new spare parts.
- The undercarriage rebuilding equipment is a general-purpose product that is not limited to compatible manufacturers, so it can be used for a wide range of equipment with the crawler system.

After procurement of the undercarriage rebuilding equipment, a cost reduction of approximately 2.17 billion UGX will be possible for the undercarriage maintenance of 46 units (21 Excavators and 25 bulldozers) under MoWT's management, and it can also be used for equipment with the crawler system to be procured by MoWT in the future. Therefore, continuous cost reductions can be expected over the long term through the maintenance by using the undercarriage rebuilding equipment.

However, as mentioned at the beginning of this section, undercarriage maintenance is an urgent issue. Therefore, if it takes time to procure the undercarriage rebuilding equipment, new spare parts should be purchased and replaced with old parts as an immediate measure.


4. Upgrading of MoWT's Mechanical Workshop

Of the four Central and Regional Mechanical Workshops (i.e. Kampala, Bugembe, Gulu, and Mbarara) under MoWT, except for the Bugembe Regional Mechanical Workshop which was developed in 1996 with Japanese grant aid, other three workshop have insufficient facilities and equipment.

Under such circumstances, it is considered that existing facilities and equipment can provide a minimum level of service for the time being to cover the mechanical service categories directly managed by MoWT shown in Table 2-1. However, the frequency of equipment maintenance and repair is expected to increase as time goes by, and it is assumed that the existing facilities and equipment will eventually need to be upgraded. On the other hand, assuming the use of private services as defined in Table 2-1, planning excessive facility and equipment specifications for maintenance shops to be renewed in the future will lead to an increase in initial maintenance costs.

Based on the above, one measure, especially for the Mechanical Workshops in Gulu and Mbarara, which are regional organizations, is to establish compact and simple mechanical workshops that can provide equipment services based on the implementation categories in Table 2-1.

Figure 2-2 shows an example of a simple mechanical workshop.

Source: JICA Project Team (Lett), photograph of mechanical workshop of local dealer (Right) Figure 2-2 Example of Simple Mechanical Workshop

As shown in the figure above, a simple mechanical workshop building can be constructed with a perimeter wall of containers, and the inside of the containers can be used as an office and work space. Such a simple workshop is recommended as a realistic scale of development for local workshops under the constraints of MoWT's annual budget, since it can reduce not only the initial construction cost but also operation and

maintenance costs. For reference, the estimated costs for updating the MoWT Mechanical Workshop, including the simple container workshop, are shown in Annex 2.

5. Utilization of the GPS Tracking System

As mentioned in "2. Improvement of Efficiency of Road Maintenance" the recorded data from the GPS tracking system of the Komatsu excavator reveals a number of activities that cause budget pressures in road maintenance and equipment maintenance, such as long-distance self-propelled-propulsion of heavy equipment unsuitable for self-propelled propulsion and inefficient fuel consumption due to long-distance self-propelled propulsion.

It is recommended that the Department of Mechanical Engineering Services monitors the operational status of equipment as appropriate using a GPS tracking system, and then share the recorded data with the civil team and alert them to the need for proper equipment operation. Optimization of equipment operation will ultimately contribute to improvement of efficiency in road maintenance.

In addition to Komatsu's heavy equipment, the GPS tracking system is also installed on SAKAI's compaction equipment, allowing the location and operational status of each unit of compaction equipment to be monitored remotely.

6. Programme for Training of Mechanics

Table 2-7 shows the program for MoWT to continue training mechanics on its own. The training materials shown in the table are the materials used in TOT of the Project, and MoWT can continue the training by using them.

Training	Training Items	Training Materialas	Training
Course 1. Basic Course (Common) for Vehicle	 Subject: Electrical equipment related to the vehicle The basics of electricity The basics of electronics. How to use the circuit tester How to use the failure diagnosis equipment Pneumatics and the basics of all pneumatics control circuits Pneumatics and hydraulic machine maintenance 	Following NVTI (NAKAWA Vocational Training Institute) training materials: 1) Diagnosis 2) EWD (Electrical Wiring Diagram) 3) Fundamentals of Electricity 4) Lecture 1 Pneumatic systems 5) Lecture 2 Pneumatic systems	Period Approx. 5 days or more
2. Basic Course (Common) for Construction Equipment	 Subject: Construction equipment Outline How to use and teach measuring equipment Engine Electrical equipment Hydraulic system How to use welding equipment Undercarriage (wear resistant) How to do safety slings work Preparation of technical report for equipment repairing 	 Following Training Materials: 1)Basic Knowledge_Types and uses of vehicle-based construction machinery 2)Power train (Motor) 3)Hydraulic system 4)Tool and Measurement Instruction Manual 	Approx. 5 days or more
3. Advanced Course for Heavy Equipment (KOMATSU)	 Subject: Monitor operation and diagnosis method How to operate the monitor panel of the following equipment How to do diagnosis using the monitor panel GPS tracking system utilization method General maintenance works, etc. 	 Following Training Materials: 1) FOWA+G 2) Gen Safety & Precautions for Ope and Maintenance 3) General Information for Maintenance 4) PC220-8 Maintenance Outline 5) PC200-8 Checks before starting Maintenance 6) D85EX-15R & D65EX-16 Maintenance Outline 7) D85EX-15R & D65EX-16 Checks before starting Maintenance 8) WA430-5 & WA250-5 Maintenance Outline 9) WA430-5 & WA250-5 Checks before starting Maintenance 10) GD663A-2 Maintenance Outline 11) GD663A-2 Checks before starting Maintenance 12) WB93R-5E0 Maintenance Outline 13) WB93R-5E0 Checks before starting Maintenance 14) Machine Monitor (User mode) 15) PC220-8 Basic Struction & Function 16) D65EX-16 & D85EX-15R Basic Struction & Function 17) WA250-5 & WA430-5 Basic Struction & Function 	Approx. 10 days or more

 Table 2-7
 Programme for Training of Mechanics

			18) GD663A-2 Basic Struction &	
			Function	
			19) OMM	
			20) D65EX-16 OMM	
			21) D85EX-15R OMM	
			22) GD663A-2 OMM_1	
			23) GD663A-2 OMM 3	
			24) PC220-8M0 OMM	
			25) WA250-5 OMM	
			26) WA430-5 OMM	
			27) WB93R-5E0 OMM	
			28) POWER POINT - REPORT	
			KOMTRAX (GPS)	
4	Advanced	Subject: Proper maintenance operation	Following FUSO Training Materials:	Approx. 5
т.	Course for	for compaction equipment;		days or
	Vehicle	How to maintain, diagnose and repair	1)INTRODUCTION	more
	(FUSO)	the following items.	2)CHASSIS	more
	(1000)	 Engine system 	3) DIESEL ENGINE	
		 Transmission system 	4) ELECTRICAL DEVICES	
		Clutch system	5) ENGINE PARTS	
		Brake system	6)FAULT ANALYSIS	
		-	7) Pre-Delivery and Periodic Inspection	
			Manual (PDI)	
			8) TROUBLESHOOTI NG PROCEDURE	
			1	
			9) TROUBLESHOOTI NG PROCEDURE	
			2	
			10) WORKSHOP SAFETY	
5.	Advanced	Subject: Proper maintenance operation	Following SAKAI Training Materials:	Approx. 5
	Course for	for compaction equipment;	1) SV520 series Vibration Roller	days or
	Compaction	How to maintain, diagnose and repair	2) SV520 Precautions	more
	Equipment	the following items.	3) SV 520 Fuel System Filters	
	(SAKAI)	Engine system	4) SV 520 Periodical Maintenance	
		Transmission system	5) TS200 Static Pneumatic Tired Roller	
		Hydraulic system		
		Brake system	6) TS200 Precautions	
_		> Undercarriage	7) TS200 Periodical Maintenance	
6.	Practical	Subject: OJT on the following items.	Following Training Materials:	Practical
	Training	Measuring equipment	1) Safety in Gas Welding, Cutting and	training
	Course with	EngineElectrical equipment	Similar Processes	with OJT
	OJT	 Hydraulic system 	2) Excavator Grease Supply Position	through daily work
		 How to use welding equipment 	3) Examination Sheet for Engine	ually work
		 How to use welding equipment How to do safety slings work 	4) Score Evaluation Table for Engine	
			5) Examination Sheet for Hydraulic	
		Preparation of technical report for		1
		Preparation of technical report for equipment repairing	Cylinder	
		equipment repairing	-	
			6) Score Evaluation Table for Hydraulic	
			6) Score Evaluation Table for Hydraulic Cylinder	
			6) Score Evaluation Table for Hydraulic Cylinder7) Examination Sheet for Gas Cutting	
			6) Score Evaluation Table for Hydraulic Cylinder7) Examination Sheet for Gas Cutting8) .Score Evaluation Table for Gus Cutting	
			 6) Score Evaluation Table for Hydraulic Cylinder 7) Examination Sheet for Gas Cutting 8) Score Evaluation Table for Gus Cutting 9) Construction Machinery Maintenance 	
			 6) Score Evaluation Table for Hydraulic Cylinder 7) Examination Sheet for Gas Cutting 8) .Score Evaluation Table for Gus Cutting 9) Construction Machinery Maintenance Practical Test 	
			 6) Score Evaluation Table for Hydraulic Cylinder 7) Examination Sheet for Gas Cutting 8) .Score Evaluation Table for Gus Cutting 9) Construction Machinery Maintenance Practical Test 10) Power Matters 	
			 6) Score Evaluation Table for Hydraulic Cylinder 7) Examination Sheet for Gas Cutting 8) Score Evaluation Table for Gus Cutting 9) Construction Machinery Maintenance Practical Test 10) Power Matters 11) Slinging Skill Training Chapter 1 	
			 6) Score Evaluation Table for Hydraulic Cylinder 7) Examination Sheet for Gas Cutting 8) Score Evaluation Table for Gus Cutting 9) Construction Machinery Maintenance Practical Test 10) Power Matters 11) Slinging Skill Training Chapter 1 12) Slinging Skill Training Chapter 2 	
			 6) Score Evaluation Table for Hydraulic Cylinder 7) Examination Sheet for Gas Cutting 8) Score Evaluation Table for Gus Cutting 9) Construction Machinery Maintenance Practical Test 10) Power Matters 11) Slinging Skill Training Chapter 1 	

Source: JICA Project Team

Chapter 3. KPI to be monitored for Sustained Project Effectiveness

MoWT will use the knowledge and skills acquired through the Project to improve the efficiency of road maintenance work and equipment operation and maintenance work through its own activities. In order to sustain such self-reliant development, it is recommended that MoWT continue to monitor the progress of these efforts and issues on its own and share the status of its activities with JICA on a regular basis.

Table 3-1 shows the items that are recommended for continuous monitoring and sharing with JICA.

	Items	Objectives
1.	As for the results of training for mechanics by mechanic instructors, who have completed the TOT of the Project, including the time of implementation, participants, and training results (number of trainees who completed the training, field of study, etc.). (Note: When the instructor retires, it is advised to share this information with JICA along with the status of the appointment and succession of his/her successor.)	The planned and continuous training of mechanics is important for MoWT to maintain and improve its organizational capacity to properly maintain and repair its equipment.
2.	Monitoring results from the GPS tracking system, including the number of working days and hours the equipment was in operation, and the percentage of time in self-propelled-propulsion on its own to the total working hours.	Improving the excessive load on equipment and inefficient fuel consumption, as typified by long- distance self-propelled propulsion, will help extend the life of equipment and, ultimately, optimize road maintenance costs. It is important that the civil and equipment teams work together to monitor and continue to follow the Action Plan defined as Table 1-4.
3.	Progress of updating the Database of District and Urban Roads, and completion reports of road maintenance and rehabilitation works as supplementary explanatory documents when needed. (Note: Standard MoWT forms are acceptable for completion reports.)	Comprehensive ledger management through the Database is an effective means for forecasting the timing of road maintenance and rehabilitation, and for planning and budgeting.
4.	Status of preparation and reporting of the technical report on equipment maintenance and repair (see Annex 3). (Note: When sharing reports with JICA, it is acceptable to extract only some typical case examples, not all reports)	Precise reporting of equipment maintenance and repair records through the technical report format is not only a means of reporting equipment condition within the MoWT organization, but is also important for the effective use of private services by sharing them with dealers as needed.

Table 3-1 Monitoring Items and Objectives

Source: JICA Project Team

The above mentioned 4 items are the Key Performance Indicator (KPI) for MoWT to quantitatively confirm the achievement status of its future efforts. Continuous monitoring of these items is an effective means for MoWT to visualize its progress toward achieving its goal of improving the efficiency of road maintenance through the training and capacity building of road engineers, equipment managers, mechanics, and others, and through the proper use of its equipment. In addition, this continuous self-reliant development will help to encourage a sense of ownership as the highest level organization in road administration of the country of Uganda.

Annex 1 (1)

Example of Pavement Design in Japan

Example of Pavement Design in Japan Traffic Volume: 200 vehicles per day, Design C	DD . 40/		·	
1 Pavement Structure Design	<u>DR. 470</u>			
1 Tavement Structure Design				
1.1 Target pavement thickness				
The pavement design is based on the TA me	thod used in Japan.			
Target pavement thickness is calculated usin	g formula (1.1) based	on the C	umulative numbe	er of wheels
equivalent loads to 5 tons during the design	-			
TA= 3.84 N ^{0.16} / CBR ^{0.3}		formula	-	
TA : Total pavement thickness conve	```````````````````````````````````````		<i>,</i>	halt concrete (cm)
N : Cumulative number of wheels e	-		-	,
CBR : Subgrade CBR (%)	1		8 8 F	
-				
n N = Σi =1 (N(5 tons) x 365 x ai)	(formula	1.2)	
N : Cumulative number of wheels equ			,	
N(5 tons) : Number of equivalent wh		-	8 1	
$N(5 \text{ tons}) = (Wheel loads/5)^4 x Number$				
n : Design Period (normally 10 years				
ai: Traffic Growth Ratio)			
2 Target Total Pavement Thickness (TA)				
2.1 Design Condition				
Traffic Volume 200 Vehicles/day	Light Vehicle	190	Vehicles/day	95 %
	Heavy Vehicle	10	Vehicles/day	5 %

Design Period	10 years
Traffic Growth Ratio	3 %
Subgrade CBR	4 %

2.2 Light Vehicle N (5 tons)

2- ton Passenger Car or Light Truck

0.5 ton	0.5 ton
0.5 ton	0.5 ton

2.3 Heavy Vehicle N (5 tons)

Light Vehicle N (5 tons)

10- ton Heavy Truck

 $4 x (0.5/5)^{-4}$

=

= 0.0004

1.0 ton	4.0 ton
1.0 ton	4.0 ton

..

 $= 2 x (1.0/5)^{4} + 2 x (4.0/5)^{4}$ Heavy Vehicle N (5 tons) = 0.823

2.4 Cumulative number of wheels equivalent loads to 5 tons during the design period (N)

$$N = \sum_{i=1}^{10} (190 \times 0.0004 + 10 \times 0.823) \times 365x (1.03)^{i}$$

= 34,755

2.5 Calculation of TA

TA= 3.84 x (34,755) $^{0.16}$ / (4) $^{0.3}$ = 13.5

3 Conversion Coefficient

Table 3.1 shows conversion coefficient of pavement structure.

Table 3.1 C	of pavement Structure.		
Pavement St	ructure	Conversion Coefficient	
Asphalt Surface Course		1.00	
Base Course	(M-30)	0.35	
Bab-base Course	(C-40)	0.25	

 Table 3.1
 Conversion Coefficient of pavement Structure.

4 Pavement Structure

4.1 Design Pavement Structure

The pavement three layers: asphalt surface, base course, and sub-base course. Table 4.1 shows minimum thickness of each layer. TA' obtained by multiplying the thickness of each layer by the conversion coefficient shall be set to be equal to or greater than TA.

TA'=a1T1 + a2T2 + a3T3(Formula 4.1) $TA' \ge TA$

Table 4.1 Minimum Thickness Each Pavement Structure					
Pavement S	tructure	Minimum Thickness			
Asphalt Surface Cours	e	5cm			
Base Course	(M-30)	10cm			
Bab-base Course	(C-40)	12cm			

 Table 4.1
 Minimum Thickness Each Pavement Structure

Note: minimum thickness is 3 times of stone size

4.2 Design of Pavement Thickness

Table 4.2 shows the design pavement thickness (cm) of the three layers of the asphalt surface, base course, and sub-base course.

1 abic 4.2	Design of 1 av	
Pavement Structure		Pavement Thickness
Asphalt Surface Course		5 cm
Base Course	(M-30)	10 cm
Bab-base Course	(C-40)	20 cm

Table 4.2Design of Pavement Structure

TA'= 5 x1.0+ 10 x0.35+ 20 x0.25

 $13.5 \ge TA = 13.5$

TA'≧TA

Since TA' exceeds TA, the layer thickness in Table 4.2 is used as the design pavement thickness.

N: Cumulative number of wheels equivalent loads to 5 tons during 10 years

1	(0.0004	х	190 +	0.823	x	10)	x 365				3,032
2	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03)	3,123
3	(0.0004	х	190 +	0.823	x	10)	x 365 x	(1.03	$)^{2}$	3,216
4	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03	$)^{3}$	3,313
5	(0.0004	х	190 +	0.823	x	10)	x 365 x	(1.03	$)^{4}$	3,412
6	(0.0004	х	190 +	0.823	x	10)	x 365 x	(1.03	$)^{5}$	3,515
7	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03	$)^{6}$	3,620
8	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03	$)^{7}$	3,729
9	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03	$)^{8}$	3,840
10	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03)9	3,956
												N =	34,755

Traffic Volume: 200 vehicles per day, Design CBR: 6%

1 Pavement Structure Design

1.1 Target pavement thickness

TA= $3.84 \text{ N}^{0.16} / \text{CBR}^{0.3}$

The pavement design is based on the TA method used in Japan.

Target pavement thickness is calculated using formula (1.1) based on the Cumulative number of wheels equivalent loads to 5 tons during the design period (N) and the CBR of the subgrade.

(formula 1.1)

TA: Total pavement thickness converted into an equivalent thickness of hot mix asphalt concrete (cm)

 $N_{\rm }$: Cumulative number of wheels equivalent loads to 5 tons during the design period

CBR : Subgrade CBR (%)

n

 $N = \Sigma i = 1$ (N(5 tons) x 365 x ai)

(formula 1.2)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

 $N(5 \mbox{ tons})$: Number of equivalent wheel loads of each vehicle/ day

 $N(5 \text{ tons}) = (Wheel \text{ loads}/5)^4 x \text{ Number of wheels}$

n : Design Period (normally 10 years)

ai: Traffic Growth Ratio

2 Target Total Pavement Thickness (TA)

2.1 Design Condition

Traffic Volume	200 Vehicles/day	Light Vehicle	190	Vehicles/day	95 %
		Heavy Vehicle	10	Vehicles/day	5 %
Design Period	10 years				
Traffic Growth Ratio	3 %				
Subgrade CBR	6 %				

2.2 Light Vehicle N (5 tons)

2- ton Passenger Car or Light Truck

0.5 ton	0.5 ton
0.5 ton	0.5 ton

2.3 Heavy Vehicle N (5 tons)

Light Vehicle N (5 tons)

10- ton Heavy Truck

4 x (0.5/5) 0.0004

=

1.0 ton	4.0 ton
1.0 ton	4.0 ton

Heavy Vehicle N (5 tons) = $2 \times (1.0/5)^{-4} + 2 \times (4.0/5)^{-4}$ = 0.823 2.4 Cumulative number of wheels equivalent loads to 5 tons during the design period (N)

$$N = \sum_{i=1}^{10} (190 \times 0.0004 + 10 \times 0.823) \times 365x (1.03)^{i}$$

= 34,755

2.5 Calculation of TA

TA= 3.84 x (34,755) $^{0.16}$ / (6) $^{0.3}$ = 12.0

3 Conversion Coefficient

Table 3.1 shows conversion coefficient of pavement structure.

lable	icient of pavement Structure.	
Pa	vement Structure	Conversion Coefficient
Asphalt Surf	ace Course	1.00
Base Course (M-30)		0) 0.35
Bab-base Co	urse (C-40	0.25

 Table 3.1
 Conversion Coefficient of pavement Structure.

4 Pavement Structure

4.1 Design Pavement Structure

The pavement three layers: asphalt surface, base course, and sub-base course. Table 4.1 shows minimum thickness of each layer. TA' obtained by multiplying the thickness of each layer by the conversion coefficient shall be set to be equal to or greater than TA.

TA'=a1T1 + a2T2 + a3T3(Formula 4.1) $TA' \ge TA$

Table 4.1 Minimum Thickness Each Pavement Structure					
Pavement S	structure	Minimum Thickness			
Asphalt Surface Cours	e	5cm			
Base Course	(M-30)	10cm			
Bab-base Course	(C-40)	12cm			

 Table 4.1
 Minimum Thickness Each Pavement Structure

Note: minimum thickness is 3 times of stone size

4.2 Design of Pavement Thickness

Table 4.2 shows the design pavement thickness (cm) of the three layers of the asphalt surface, base course, and sub-base course.

10010 4.2	Design of I av	
Pavement Structure		Pavement Thickness
Asphalt Surface Course		5 cm
Base Course	(M-30)	10 cm
Bab-base Course	(C-40)	15 cm

Table 4.2Design of Pavement Structure

TA'= 5 x1.0+ 10 x0.35+ 15 x0.25

 $12.3 \ge TA = 12.0$

TA'≧TA

Since TA' exceeds TA, the layer thickness in Table 4.2 is used as the design pavement thickness.

N: Cumulative number of wheels equivalent loads to 5 tons during 10 years

1	(0.0004	х	190 +	0.823	x	10)	x 365				3,032
2	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03)	3,123
3	(0.0004	х	190 +	0.823	x	10)	x 365 x	(1.03	$)^{2}$	3,216
4	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03	$)^{3}$	3,313
5	(0.0004	х	190 +	0.823	x	10)	x 365 x	(1.03	$)^{4}$	3,412
6	(0.0004	х	190 +	0.823	x	10)	x 365 x	(1.03	$)^{5}$	3,515
7	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03	$)^{6}$	3,620
8	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03	$)^{7}$	3,729
9	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03	$)^{8}$	3,840
10	(0.0004	х	190 +	0.823	х	10)	x 365 x	(1.03)9	3,956
												N =	34,755

Traffic Volume: 300 vehicles per day, Design CBR: 4%

1 Pavement Structure Design

1.1 Target pavement thickness

TA= $3.84 \text{ N}^{0.16} / \text{CBR}^{0.3}$

The pavement design is based on the TA method used in Japan.

Target pavement thickness is calculated using formula (1.1) based on the Cumulative number of wheels equivalent loads to 5 tons during the design period (N) and the CBR of the subgrade.

(formula 1.1)

TA: Total pavement thickness converted into an equivalent thickness of hot mix asphalt concrete (cm)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

CBR : Subgrade CBR (%)

n

 $N = \Sigma i = 1$ (N(5 tons) x 365 x ai)

(formula 1.2)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

N(5 tons) : Number of equivalent wheel loads of each vehicle/ day

 $N(5 \text{ tons})=(Wheel \text{ loads}/5)^{4}x$ Number of wheels

n : Design Period (normally 10 years)

ai: Traffic Growth Ratio

2 Target Total Pavement Thickness (TA)

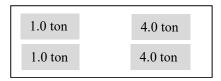
2.1 Design Condition

Traffic Volume	300 Vehicles/day	Light Vehicle	285	Vehicles/day	95 %
		Heavy Vehicle	15	Vehicles/day	5 %
Design Period	10 years				
Traffic Growth Ratio	3 %				
Subgrade CBR	4 %				

2.2 Light Vehicle N (5 tons)

2- ton Passenger Car or Light Truck

0.5 ton	0.5 ton
0.5 ton	0.5 ton


2.3 Heavy Vehicle N (5 tons)

Light Vehicle N (5 tons)

10- ton Heavy Truck

4 x (0.5/5) 0.0004

Heavy Vehicle N (5 tons) = $2 \times (1.0/5)^{-4} + 2 \times (4.0/5)^{-4}$ = 0.823 2.4 Cumulative number of wheels equivalent loads to 5 tons during the design period (N)

$$N = \sum_{i=1}^{10} (285 \times 0.0004 + 15 \times 0.823) \times 365x (1.03)^{i}$$

= 52.132

Calculation of TA 2.5

TA= 3.84 x (52,132) $^{0.16}$ / (4) $^{0.3}$ = 14.4

3 Conversion Coefficient

Table 3.1 shows conversion coefficient of pavement structure.

Table 3.1 Conversion Coefficient of pavement Structure.					
Pavement Str	ucture	Conversion Coefficient			
Asphalt Surface Course		1.00			
Base Course	(M-30)	0.35			
Bab-base Course	(C-40)	0.25			

4 Pavement Structure

4.1 **Design Pavement Structure**

The pavement three layers: asphalt surface, base course, and sub-base course. Table 4.1 shows minimum thickness of each layer. TA' obtained by multiplying the thickness of each layer by the conversion coefficient shall be set to be equal to or greater than TA.

TA'=a1T1 + a2T2 + a3T3(Formula 4.1) $TA' \ge TA$

Iable 4.1 Minimum Thickness Each Pavement Structure						
Pavement St	ructure	Minimum Thickness				
Asphalt Surface Course		5cm				
Base Course	(M-30)	10cm				
Bab-base Course	(C-40)	12cm				

T-11. 4 1 Minin T1.1.1 Each D at Stanat

Note: minimum thickness is 3 times of stone size

4.2 Design of Pavement Thickness

Table 4.2 shows the design pavement thickness (cm) of the three layers of the asphalt surface, base course, and sub-base course.

10010 4.2	Design of 1 av	
Pavement Structure		Pavement Thickness
Asphalt Surface Course		5 cm
Base Course	(M-30)	15 cm
Bab-base Course	(C-40)	20 cm

Table 4.2 Design of Pavement Structure

15 x0.35+ 20 x0.25 TA'= 5 x1.0+ . . . 14.4

$TA' \ge TA$

Since TA' exceeds TA, the layer thickness in Table 4.2 is used as the design pavement thickness.

N: Cumulative number of wheels equivalent loads to 5 tons during 10 years

1	(0.0004	х	285 +	0.823	х	15)	x 365				4,548
2	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03)	4,684
3	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{2}$	4,824
4	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{3}$	4,969
5	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{4}$	5,118
6	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{5}$	5,272
7	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{6}$	5,430
8	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{7}$	5,593
9	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{8}$	5,761
10	(0.0004	Х	285 +	0.823	х	15)	x 365 x	(1.03)9	5,934
												N =	52,132

Traffic Volume: 300 vehicles per day, Design CBR: 6%

1 Pavement Structure Design

1.1 Target pavement thickness

TA= $3.84 \text{ N}^{0.16} / \text{CBR}^{0.3}$

The pavement design is based on the TA method used in Japan.

Target pavement thickness is calculated using formula (1.1) based on the Cumulative number of wheels equivalent loads to 5 tons during the design period (N) and the CBR of the subgrade.

(formula 1.1)

TA: Total pavement thickness converted into an equivalent thickness of hot mix asphalt concrete (cm)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

CBR : Subgrade CBR (%)

n

 $N = \Sigma i = 1$ (N(5 tons) x 365 x ai)

(formula 1.2)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

N(5 tons) : Number of equivalent wheel loads of each vehicle/ day

 $N(5 \text{ tons}) = (Wheel \text{ loads}/5)^4 x \text{ Number of wheels}$

n : Design Period (normally 10 years)

ai: Traffic Growth Ratio

2 Target Total Pavement Thickness (TA)

2.1 Design Condition

Traffic Volume	300 Vehicles/day	Light Vehicle	285	Vehicles/day	95 %
		Heavy Vehicle	15	Vehicles/day	5 %
Design Period	10 years				
Traffic Growth Ratio	3 %				
Subgrade CBR	6 %				

2.2 Light Vehicle N (5 tons)

2- ton Passenger Car or Light Truck

0.5 ton	0.5 ton
0.5 ton	0.5 ton

2.3 Heavy Vehicle N (5 tons)

Light Vehicle N (5 tons)

10- ton Heavy Truck

4 x (0.5/5) 0.0004

1.0 ton	4.0 ton
1.0 ton	4.0 ton

Heavy Vehicle N (5 tons) = $2 \times (1.0/5)^{-4} + 2 \times (4.0/5)^{-4}$ = 0.823 2.4 Cumulative number of wheels equivalent loads to 5 tons during the design period (N)

10 $N = \Sigma i = 1$ (285 x $0.0004 + 15 \times 0.823$) x 365x (1.03)ⁱ = 52,132

2.5 Calculation of TA

TA= 3.84 x (52,132) $^{0.16}$ / (6) $^{0.3}$ = 12.8

3 Conversion Coefficient

Table 3.1 shows conversion coefficient of pavement structure.

Table 3.1Conversion Coefficient of pavement Structure.					
Pavement Stru	cture	Conversion Coefficient			
Asphalt Surface Course		1.00			
Base Course	(M-30)	0.35			
Bab-base Course	(C-40)	0.25			

4 Pavement Structure

4.1 **Design Pavement Structure**

The pavement three layers: asphalt surface, base course, and sub-base course. Table 4.1 shows minimum thickness of each layer. TA' obtained by multiplying the thickness of each layer by the conversion coefficient shall be set to be equal to or greater than TA.

TA'=a1T1 + a2T2 + a3T3 (Formula 4.1) $TA' \ge TA$

Table 4.1 Minimum Thickness Each Pavement Structure						
Pavement S	tructure	Minimum Thickness				
Asphalt Surface Course	2	5cm				
Base Course	(M-30)	10cm				
Bab-base Course	(C-40)	12cm				

Minir T-1.1. 4 1 T1.1.1 E. 1. D at Stanat

Note: minimum thickness is 3 times of stone size

4.2 Design of Pavement Thickness

Table 4.2 shows the design pavement thickness (cm) of the three layers of the asphalt surface, base course, and sub-base course.

10010 4.2	Design of I av	
Pavement Structure		Pavement Thickness
Asphalt Surface Course		5 cm
Base Course	(M-30)	10 cm
Bab-base Course	(C-40)	20 cm

Table 4.2 Design of Pavement Structure

TA'= 5 x1.0+ 10 x0.35+ 20 x0.25

13.5 ≧TA= 12.8

$TA' \ge TA$

Since TA' exceeds TA, the layer thickness in Table 4.2 is used as the design pavement thickness.

N: Cumulative number of wheels equivalent loads to 5 tons during 10 years

1	(0.0004	х	285 +	0.823	х	15)	x 365				4,548
2	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03)	4,684
3	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{2}$	4,824
4	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{3}$	4,969
5	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{4}$	5,118
6	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{5}$	5,272
7	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{6}$	5,430
8	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{7}$	5,593
9	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{8}$	5,761
10	(0.0004	Х	285 +	0.823	х	15)	x 365 x	(1.03)9	5,934
												N =	52,132

Traffic Volume: 300 vehicles per day, Design CBR: 8%

1 Pavement Structure Design

1.1 Target pavement thickness

TA= $3.84 \text{ N}^{0.16} / \text{CBR}^{0.3}$

The pavement design is based on the TA method used in Japan.

Target pavement thickness is calculated using formula (1.1) based on the Cumulative number of wheels equivalent loads to 5 tons during the design period (N) and the CBR of the subgrade.

(formula 1.1)

TA: Total pavement thickness converted into an equivalent thickness of hot mix asphalt concrete (cm)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

CBR : Subgrade CBR (%)

n

 $N = \Sigma i = 1$ (N(5 tons) x 365 x ai)

(formula 1.2)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

 $N(5 \mbox{ tons})$: Number of equivalent wheel loads of each vehicle/ day

 $N(5 \text{ tons}) = (Wheel \text{ loads}/5)^4 x \text{ Number of wheels}$

n : Design Period (normally 10 years)

ai: Traffic Growth Ratio

2 Target Total Pavement Thickness (TA)

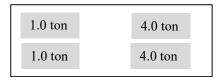
2.1 Design Condition

Traffic Volume	300 Vehicles/day	Light Vehicle	285	Vehicles/day	95 %
		Heavy Vehicle	15	Vehicles/day	5 %
Design Period	10 years				
Traffic Growth Ratio	3 %				
Subgrade CBR	8 %				

2.2 Light Vehicle N (5 tons)

2- ton Passenger Car or Light Truck

0.5 ton	0.5 ton
0.5 ton	0.5 ton


2.3 Heavy Vehicle N (5 tons)

Light Vehicle N (5 tons)

10- ton Heavy Truck

4 x (0.5/5) 0.0004

Heavy Vehicle N (5 tons) = $2 \times (1.0/5)^{-4} + 2 \times (4.0/5)^{-4}$ = 0.823 2.4 Cumulative number of wheels equivalent loads to 5 tons during the design period (N)

$$N = \sum_{i=1}^{10} (285 \times 0.0004 + 15 \times 0.823) \times 365x (1.03)^{i}$$

= 52,132

2.5 Calculation of TA

TA= 3.84 x (=) $^{0.16}$ / (8) $^{0.3}$ = 11.7

3 Conversion Coefficient

Table 3.1 shows conversion coefficient of pavement structure.

Table 3.1 Conversion Coefficient of pavement Structure.					
Pavement Stru	icture	Conversion Coefficient			
Asphalt Surface Course		1.00			
Base Course	(M-30)	0.35			
Bab-base Course	(C-40)	0.25			

 Table 3.1
 Conversion Coefficient of pavement Structure

4 Pavement Structure

4.1 Design Pavement Structure

The pavement three layers: asphalt surface, base course, and sub-base course. Table 4.1 shows minimum thickness of each layer. TA' obtained by multiplying the thickness of each layer by the conversion coefficient shall be set to be equal to or greater than TA.

TA'=a1T1 + a2T2 + a3T3(Formula 4.1) $TA' \ge TA$

Table 4.1 Minimum Thickness Each Pavement Structure						
Pavement St	tructure	Minimum Thickness				
Asphalt Surface Course		5cm				
Base Course	(M-30)	10cm				
Bab-base Course	(C-40)	12cm				

 Table 4.1
 Minimum Thickness Each Pavement Structure

Note: minimum thickness is 3 times of stone size

4.2 Design of Pavement Thickness

Table 4.2 shows the design pavement thickness (cm) of the three layers of the asphalt surface, base course, and sub-base course.

10010 4.2	Design of 1 av	
Pavement Structure		Pavement Thickness
Asphalt Surface Course		5 cm
Base Course	(M-30)	10 cm
Bab-base Course	(C-40)	15 cm

Table 4.2Design of Pavement Structure

TA'= 5 x1.0+ 10 x0.35+ 15 x0.25

 $12.3 \ge TA = 11.7$

TA'≧TA

Since TA' exceeds TA, the layer thickness in Table 4.2 is used as the design pavement thickness.

N: Cumulative number of wheels equivalent loads to 5 tons during 10 years

1	(0.0004	х	285 +	0.823	х	15)	x 365				4,548
2	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03)	4,684
3	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{2}$	4,824
4	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{3}$	4,969
5	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^4$	5,118
6	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{5}$	5,272
7	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{6}$	5,430
8	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{7}$	5,593
9	(0.0004	х	285 +	0.823	х	15)	x 365 x	(1.03	$)^{8}$	5,761
10	(0.0004	Х	285 +	0.823	х	15)	x 365 x	(1.03)9	5,934
												N =	52,132

Traffic Volume: 500 vehicles per day, Design CBR: 4%

1 Pavement Structure Design

1.1 Target pavement thickness

TA= $3.84 \text{ N}^{0.16} / \text{CBR}^{0.3}$

The pavement design is based on the TA method used in Japan.

Target pavement thickness is calculated using formula (1.1) based on the Cumulative number of wheels equivalent loads to 5 tons during the design period (N) and the CBR of the subgrade.

(formula 1.1)

TA: Total pavement thickness converted into an equivalent thickness of hot mix asphalt concrete (cm)

 $N_{\rm }$: Cumulative number of wheels equivalent loads to 5 tons during the design period

CBR : Subgrade CBR (%)

n

 $N = \Sigma i = 1 (N(5 \text{ tons}) \times 365 \text{ x ai})$

(formula 1.2)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

 $N(5 \mbox{ tons})$: Number of equivalent wheel loads of each vehicle/ day

 $N(5 \text{ tons}) = (Wheel \text{ loads}/5)^4 x \text{ Number of wheels}$

n : Design Period (normally 10 years)

ai: Traffic Growth Ratio

2 Target Total Pavement Thickness (TA)

2.1 Design Condition

Traffic Volume	500 Vehicles/day	Light Vehicle	475	Vehicles/day	95 %
		Heavy Vehicle	25	Vehicles/day	5 %
Design Period	10 years				
Traffic Growth Ratio	3 %				
Subgrade CBR	4 %				

2.2 Light Vehicle N (5 tons)

2- ton Passenger Car or Light Truck

0.5 ton	0.5 ton
0.5 ton	0.5 ton

2.3 Heavy Vehicle N (5 tons)

Light Vehicle N (5 tons)

10- ton Heavy Truck

4 x (0.5/5) 0.0004

1.0 ton	4.0 ton
1.0 ton	4.0 ton

Heavy Vehicle N (5 tons) = $2 \times (1.0/5)^{-4} + 2 \times (4.0/5)^{-4}$ = 0.823

=

2.4 Cumulative number of wheels equivalent loads to 5 tons during the design period (N)

$$N = \sum_{i=1}^{10} (475 \times 0.0004 + 25 \times 0.823) \times 365x (1.03)^{i}$$

= 86,887

2.5 Calculation of TA

TA= 3.84 x (86,887) $^{0.16}$ / (4) $^{0.3}$ = 15.6

3 Conversion Coefficient

Table 3.1 shows conversion coefficient of pavement structure.

Table 3.1 Con	version Coefficient	of pavement Structure.
Pavement Stru	cture	Conversion Coefficient
Asphalt Surface Course		1.00
Base Course	(M-30)	0.35
Bab-base Course	(C-40)	0.25

 Table 3.1
 Conversion Coefficient of pavement Structure.

4 Pavement Structure

4.1 Design Pavement Structure

The pavement three layers: asphalt surface, base course, and sub-base course. Table 4.1 shows minimum thickness of each layer. TA' obtained by multiplying the thickness of each layer by the conversion coefficient shall be set to be equal to or greater than TA.

TA'=a1T1 + a2T2 + a3T3(Formula 4.1) $TA' \ge TA$

Table 4.1	Minimum Thickness	Each Pavement Structure
Pavement St	ructure	Minimum Thickness
Asphalt Surface Course		5cm
Base Course	(M-30)	10cm
Bab-base Course	(C-40)	12cm

 Table 4.1
 Minimum Thickness Each Pavement Structure

Note: minimum thickness is 3 times of stone size

4.2 Design of Pavement Thickness

Table 4.2 shows the design pavement thickness (cm) of the three layers of the asphalt surface, base course, and sub-base course.

	Design of 1 av	
Pavement Structure		Pavement Thickness
Asphalt Surface Course		5 cm
Base Course	(M-30)	15 cm
Bab-base Course	(C-40)	25 cm

Table 4.2Design of Pavement Structure

TA'= 5 x1.0+ 15 x0.35+ 25 x0.25

 $16.5 \ge TA = 15.6$

TA'≧TA

Since TA' exceeds TA, the layer thickness in Table 4.2 is used as the design pavement thickness.

N: Cumulative number of wheels equivalent loads to 5 tons during 10 years

1	(0.0004	х	475 +	0.823	х	25)	x 365				7,579
2	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03)	7,807
3	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{2}$	8,041
4	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{3}$	8,282
5	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{4}$	8,530
6	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{5}$	8,786
7	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{6}$	9,050
8	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{7}$	9,321
9	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{8}$	9,601
10	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03)9	9,889
												N =	86,887

Traffic Volume: 500 vehicles per day, Design CBR: 6%

1 Pavement Structure Design

1.1 Target pavement thickness

TA= $3.84 \text{ N}^{0.16} / \text{CBR}^{0.3}$

The pavement design is based on the TA method used in Japan.

Target pavement thickness is calculated using formula (1.1) based on the Cumulative number of wheels equivalent loads to 5 tons during the design period (N) and the CBR of the subgrade.

(formula 1.1)

TA: Total pavement thickness converted into an equivalent thickness of hot mix asphalt concrete (cm)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

CBR : Subgrade CBR (%)

n

 $N = \Sigma i = 1$ (N(5 tons) x 365 x ai)

(formula 1.2)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

 $N(5 \mbox{ tons})$: Number of equivalent wheel loads of each vehicle/ day

 $N(5 \text{ tons})=(Wheel loads/5)^4 x$ Number of wheels

n : Design Period (normally 10 years)

ai: Traffic Growth Ratio

2 Target Total Pavement Thickness (TA)

2.1 Design Condition

Traffic Volume	500 Vehicles/day	Light Vehicle	475	Vehicles/day	95 %
		Heavy Vehicle	25	Vehicles/day	5 %
Design Period	10 years				
Traffic Growth Ratio	3 %				
Subgrade CBR	6 %				

2.2 Light Vehicle N (5 tons)

2- ton Passenger Car or Light Truck

0.5 ton	0.5 ton
0.5 ton	0.5 ton

2.3 Heavy Vehicle N (5 tons)

Light Vehicle N (5 tons)

10- ton Heavy Truck

4 x (0.5/5) 0.0004

1.0 ton	4.0 ton
1.0 ton	4.0 ton

Heavy Vehicle N (5 tons) = $2 \times (1.0/5)^{-4} + 2 \times (4.0/5)^{-4}$ = 0.823

=

2.4 Cumulative number of wheels equivalent loads to 5 tons during the design period (N)

$$N = \sum_{i=1}^{10} (475 \times 0.0004 + 25 \times 0.823) \times 365x (1.03)^{i}$$

= 86,887

Calculation of TA 2.5

TA= 3.84 x (86,887) $^{0.16}$ / (6) $^{0.3}$ = 13.8

3 Conversion Coefficient

Table 3.1 shows conversion coefficient of pavement structure.

Table 3.1 Conversion Coefficient of pavement Structure.						
Pavement Stru	cture	Conversion Coefficient				
Asphalt Surface Course		1.00				
Base Course	(M-30)	0.35				
Bab-base Course	(C-40)	0.25				

T-11.21 Coefficient of pavement Structur <u>____</u>

4 Pavement Structure

4.1 **Design Pavement Structure**

The pavement three layers: asphalt surface, base course, and sub-base course. Table 4.1 shows minimum thickness of each layer. TA' obtained by multiplying the thickness of each layer by the conversion coefficient shall be set to be equal to or greater than TA.

TA'=a1T1 + a2T2 + a3T3(Formula 4.1) $TA' \ge TA$

Table 4.1 Minimum Thickness Each Pavement Structure								
Pavement St	ructure	Minimum Thickness						
Asphalt Surface Course	;	5cm						
Base Course	(M-30)	10cm						
Bab-base Course	(C-40)	12cm						

T 11 4 1 N C · · **T**1 · 1 **F** 1 **B**

Note: minimum thickness is 3 times of stone size

4.2 Design of Pavement Thickness

Table 4.2 shows the design pavement thickness (cm) of the three layers of the asphalt surface, base course, and sub-base course.

	Design of 1 av	
Pavement Structure		Pavement Thickness
Asphalt Surface Course		5 cm
Base Course	(M-30)	15 cm
Bab-base Course	(C-40)	20 cm

Table 4.2 Design of Pavement Structure

TA'= 5 x1.0+ 15 x0.35+ 20 x0.25

15.3 ≧TA= 13.8

$TA' \ge TA$

Since TA' exceeds TA, the layer thickness in Table 4.2 is used as the design pavement thickness.

N: Cumulative number of wheels equivalent loads to 5 tons during 10 years

1	(0.0004	х	475 +	0.823	х	25)	x 365				7,579
2	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03)	7,807
3	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{2}$	8,041
4	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{3}$	8,282
5	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{4}$	8,530
6	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{5}$	8,786
7	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{6}$	9,050
8	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{7}$	9,321
9	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{8}$	9,601
10	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03)9	9,889
												N =	86,887

Traffic Volume: 500 vehicles per day, Design CBR: 8%

1 Pavement Structure Design

1.1 Target pavement thickness

TA= $3.84 \text{ N}^{0.16} / \text{CBR}^{0.3}$

The pavement design is based on the TA method used in Japan.

Target pavement thickness is calculated using formula (1.1) based on the Cumulative number of wheels equivalent loads to 5 tons during the design period (N) and the CBR of the subgrade.

(formula 1.1)

TA: Total pavement thickness converted into an equivalent thickness of hot mix asphalt concrete (cm)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

CBR : Subgrade CBR (%)

n

 $N = \Sigma i = 1$ (N(5 tons) x 365 x ai)

(formula 1.2)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

N(5 tons) : Number of equivalent wheel loads of each vehicle/ day

 $N(5 \text{ tons}) = (Wheel \text{ loads}/5)^4 x \text{ Number of wheels}$

n : Design Period (normally 10 years)

ai: Traffic Growth Ratio

2 Target Total Pavement Thickness (TA)

2.1 Design Condition

Traffic Volume	500 Vehicles/day	Light Vehicle	475	Vehicles/day	95 %
		Heavy Vehicle	25	Vehicles/day	5 %
Design Period	10 years				
Traffic Growth Ratio	3 %				
Subgrade CBR	8 %				

2.2 Light Vehicle N (5 tons)

2- ton Passenger Car or Light Truck

0.5 ton	0.5 ton
0.5 ton	0.5 ton

2.3 Heavy Vehicle N (5 tons)

Light Vehicle N (5 tons)

10- ton Heavy Truck

4 x (0.5/5) 0.0004

1.0 ton	4.0 ton
1.0 ton	4.0 ton

Heavy Vehicle N (5 tons) = $2 \times (1.0/5)^{-4} + 2 \times (4.0/5)^{-4}$ = 0.823

=

$$N = \sum_{i=1}^{10} (475 \times 0.0004 + 25 \times 0.823) \times 365x (1.03)^{i}$$

= 86,887

2.5 Calculation of TA

TA= 3.84 x (86,887) $^{0.16}$ / (8) $^{0.3}$ = 12.7

3 Conversion Coefficient

Table 3.1 shows conversion coefficient of pavement structure.

Table 3.1 Co	Table 3.1 Conversion Coefficient of pavement Structure.						
Pavement Str	ucture	Conversion Coefficient					
Asphalt Surface Course		1.00					
Base Course	(M-30)	0.35					
Bab-base Course	(C-40)	0.25					

 Table 3.1
 Conversion Coefficient of pavement Structure

4 Pavement Structure

4.1 Design Pavement Structure

The pavement three layers: asphalt surface, base course, and sub-base course. Table 4.1 shows minimum thickness of each layer. TA' obtained by multiplying the thickness of each layer by the conversion coefficient shall be set to be equal to or greater than TA.

TA'=a1T1 + a2T2 + a3T3(Formula 4.1) $TA' \ge TA$

Table 4.1	Minimum Thickness	Each Pavement Structure				
Pavement S	tructure	Minimum Thickness				
Asphalt Surface Course	e	5cm				
Base Course	(M-30)	10cm				
Bab-base Course	(C-40)	12cm				

 Table 4.1
 Minimum Thickness Each Pavement Structure

Note: minimum thickness is 3 times of stone size

4.2 Design of Pavement Thickness

Table 4.2 shows the design pavement thickness (cm) of the three layers of the asphalt surface, base course, and sub-base course.

Table 4.2	Design of Pav	ement Structure
Pavement Structure	e	Pavement Thickness
Asphalt Surface Course		5 cm
Base Course	(M-30)	10 cm
Bab-base Course	(C-40)	20 cm

1	(0.0004	х	475 +	0.823	х	25)	x 365				7,579
2	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03)	7,807
3	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{2}$	8,041
4	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{3}$	8,282
5	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{4}$	8,530
6	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{5}$	8,786
7	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{6}$	9,050
8	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{7}$	9,321
9	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03	$)^{8}$	9,601
10	(0.0004	х	475 +	0.823	х	25)	x 365 x	(1.03)9	9,889
												N =	86,887

Traffic Volume: 1,000 vehicles per day, Design CBR: 4%

1 Pavement Structure Design

1.1 Target pavement thickness

The pavement design is based on the TA method used in Japan.

Target pavement thickness is calculated using formula (1.1) based on the Cumulative number of wheels equivalent loads to 5 tons during the design period (N) and the CBR of the subgrade. TA= $3.84 \text{ N}^{0.16} / \text{CBR}^{0.3}$

(formula 1.1)

TA: Total pavement thickness converted into an equivalent thickness of hot mix asphalt concrete (cm)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

CBR : Subgrade CBR (%)

n

 $N = \Sigma i = 1$ (N(5 tons) x 365 x ai)

(formula 1.2)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

N(5 tons) : Number of equivalent wheel loads of each vehicle/ day

N(5 tons)=(Wheel loads/5)⁴ x Number of wheels

n : Design Period (normally 10 years)

ai: Traffic Growth Ratio

2 Target Total Pavement Thickness (TA)

2.1 Design Condition

Traffic Volume	1000 Vehicles/day	Light Vehicle	950	Vehicles/day	95 %
		Heavy Vehicle	50	Vehicles/day	5 %
Design Period	10 years				
Traffic Growth Ratio	3 %				
Subgrade CBR	4 %				

2.2 Light Vehicle N (5 tons)

2- ton Passenger Car or Light Truck

0.5 ton	0.5 ton
0.5 ton	0.5 ton

2.3 Heavy Vehicle N (5 tons)

Light Vehicle N (5 tons)

10- ton Heavy Truck

4 x (0.5/5)0.0004

1.0 ton	4.0 ton
1.0 ton	4.0 ton

 $2 x (1.0/5)^{4} + 2 x (4.0/5)^{4}$ Heavy Vehicle N (5 tons) 0.823 =

=

$$N = \sum_{i=1}^{10} (950 \times 0.0004 + 50 \times 0.823) \times 365x (1.03)^{i}$$

= 173.775

2.5 Calculation of TA

TA= 3.84 x (173,775) $^{0.16}$ / (4) $^{0.3}$ = 17.5

3 Conversion Coefficient

Table 3.1 shows conversion coefficient of pavement structure.

Table 3.1 Con	nversion Coefficient	of pavement Structure.		
Pavement Stru	icture	Conversion Coefficient		
Asphalt Surface Course		1.00		
Base Course	(M-30)	0.35		
Bab-base Course	(C-40)	0.25		

4 Pavement Structure

4.1 Design Pavement Structure

The pavement three layers: asphalt surface, base course, and sub-base course. Table 4.1 shows minimum thickness of each layer. TA' obtained by multiplying the thickness of each layer by the conversion coefficient shall be set to be equal to or greater than TA.

TA'=a1T1 + a2T2 + a3T3(Formula 4.1) $TA' \ge TA$

Table 4.1 Minimum Thickness Each Pavement Structure								
Pavement S	tructure	Minimum Thickness						
Asphalt Surface Course	2	5cm						
Base Course	(M-30)	10cm						
Bab-base Course	(C-40)	12cm						

 Table 4.1
 Minimum Thickness Each Pavement Structure

Note: minimum thickness is 3 times of stone size

4.2 Design of Pavement Thickness

Table 4.2 shows the design pavement thickness (cm) of the three layers of the asphalt surface, base course, and sub-base course.

Table 4.2	Design of Pav	ement Structure
Pavement Structu	re	Pavement Thickness
Asphalt Surface Course		5 cm
Base Course	(M-30)	15 cm
Bab-base Course	(C-40)	25 cm

1	(0.0004	х	950 +	0.823	x	50)	x 365				15,158
2	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03)	15,613
3	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{2}$	16,082
4	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{3}$	16,564
5	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^4$	17,061
6	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{5}$	17,573
7	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{6}$	18,100
8	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{7}$	18,643
9	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{8}$	19,202
10	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03)9	19,778
												N =	173,775

Traffic Volume: 1,000 vehicles per day, Design CBR: 6%

1 Pavement Structure Design

1.1 Target pavement thickness

The pavement design is based on the TA method used in Japan.

Target pavement thickness is calculated using formula (1.1) based on the Cumulative number of wheels equivalent loads to 5 tons during the design period (N) and the CBR of the subgrade. TA= $3.84 \text{ N}^{0.16} / \text{CBR}^{0.3}$

(formula 1.1)

TA: Total pavement thickness converted into an equivalent thickness of hot mix asphalt concrete (cm)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

CBR : Subgrade CBR (%)

n

 $N = \Sigma i = 1$ (N(5 tons) x 365 x ai)

(formula 1.2)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

N(5 tons) : Number of equivalent wheel loads of each vehicle/ day

N(5 tons)=(Wheel loads/5)⁴ x Number of wheels

n : Design Period (normally 10 years)

ai: Traffic Growth Ratio

2 Target Total Pavement Thickness (TA)

2.1 Design Condition

Traffic Volume	1000 Vehicles/day	Light Vehicle	950	Vehicles/day	95 %
		Heavy Vehicle	50	Vehicles/day	5 %
Design Period	10 years				
Traffic Growth Ratio	3 %				
Subgrade CBR	6 %				

2.2 Light Vehicle N (5 tons)

2- ton Passenger Car or Light Truck

0.5 ton	0.5 ton
0.5 ton	0.5 ton

2.3 Heavy Vehicle N (5 tons)

Light Vehicle N (5 tons)

10- ton Heavy Truck

 $4 \times (0.5/5)$ 0.0004

1.0 ton	4.0 ton
1.0 ton	4.0 ton

 $2 x (1.0/5)^{4} + 2 x (4.0/5)^{4}$ Heavy Vehicle N (5 tons) = 0.823 =

=

$$N = \sum_{i=1}^{10} (950 \times 0.0004 + 50 \times 0.823) \times 365x (1.03)^{i}$$

= 173.775

2.5 Calculation of TA

TA= 3.84 x (173,775) $^{0.16}$ / (6) $^{0.3}$ = 15.5

3 Conversion Coefficient

Table 3.1 shows conversion coefficient of pavement structure.

Table 3.1 Conversion Coefficient of pavement Structure.									
Pavement Stru	icture	Conversion Coefficient							
Asphalt Surface Course		1.00							
Base Course	(M-30)	0.35							
Bab-base Course	(C-40)	0.25							

 Table 3.1
 Conversion Coefficient of pavement Structure

4 Pavement Structure

4.1 Design Pavement Structure

The pavement three layers: asphalt surface, base course, and sub-base course. Table 4.1 shows minimum thickness of each layer. TA' obtained by multiplying the thickness of each layer by the conversion coefficient shall be set to be equal to or greater than TA.

TA'=a1T1 + a2T2 + a3T3(Formula 4.1) $TA' \ge TA$

Table 4.1 Minimum Thickness Each Pavement Structure										
Pavement S	tructure	Minimum Thickness								
Asphalt Surface Cours	e	5cm								
Base Course	(M-30)	10cm								
Bab-base Course	(C-40)	12cm								

 Table 4.1
 Minimum Thickness Each Pavement Structure

Note: minimum thickness is 3 times of stone size

4.2 Design of Pavement Thickness

Table 4.2 shows the design pavement thickness (cm) of the three layers of the asphalt surface, base course, and sub-base course.

Table 4.2	Design of Pav	ement Structure
Pavement Structure	e	Pavement Thickness
Asphalt Surface Course		5 cm
Base Course	(M-30)	15 cm
Bab-base Course	(C-40)	25 cm

1	(0.0004	х	950 +	0.823	x	50)	x 365				15,158
2	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03)	15,613
3	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{2}$	16,082
4	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{3}$	16,564
5	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{4}$	17,061
6	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{5}$	17,573
7	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{6}$	18,100
8	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^7$	18,643
9	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03	$)^{8}$	19,202
10	(0.0004	х	950 +	0.823	х	50)	x 365 x	(1.03)9	19,778
												N =	173,775

Traffic Volume: 1,000 vehicles per day, Design CBR: 8%

1 Pavement Structure Design

1.1 Target pavement thickness

The pavement design is based on the TA method used in Japan.

Target pavement thickness is calculated using formula (1.1) based on the Cumulative number of wheels equivalent loads to 5 tons during the design period (N) and the CBR of the subgrade. TA= $3.84 \text{ N}^{0.16} / \text{CBR}^{0.3}$

(formula 1.1)

TA: Total pavement thickness converted into an equivalent thickness of hot mix asphalt concrete (cm)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

CBR : Subgrade CBR (%)

n

 $N = \Sigma i = 1$ (N(5 tons) x 365 x ai)

(formula 1.2)

N : Cumulative number of wheels equivalent loads to 5 tons during the design period

N(5 tons) : Number of equivalent wheel loads of each vehicle/ day

N(5 tons)=(Wheel loads/5)⁴ x Number of wheels

n : Design Period (normally 10 years)

ai: Traffic Growth Ratio

2 Target Total Pavement Thickness (TA)

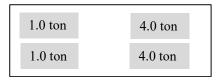
2.1 Design Condition

Traffic Volume	1000 Vehicles/day	Light Vehicle	950	Vehicles/day	95 %
		Heavy Vehicle	50	Vehicles/day	5 %
Design Period	10 years				
Traffic Growth Ratio	3 %				
Subgrade CBR	8 %				

2.2 Light Vehicle N (5 tons)

2- ton Passenger Car or Light Truck

0.5 ton	0.5 ton
0.5 ton	0.5 ton


2.3 Heavy Vehicle N (5 tons)

Light Vehicle N (5 tons)

10- ton Heavy Truck

 $4 \times (0.5/5)$ 0.0004

 $2 x (1.0/5)^{4} + 2 x (4.0/5)^{4}$ Heavy Vehicle N (5 tons) 0.823 =

=

$$N = \sum_{i=1}^{10} (950 \times 0.0004 + 50 \times 0.823) \times 365x (1.03)^{i}$$

= 173.775

Calculation of TA 2.5

TA= 3.84 x (173,775) $^{0.16}$ / (8) $^{0.3}$ = 14.2

3 Conversion Coefficient

Table 3.1 shows conversion coefficient of pavement structure.

Table 3.1 Conversion Coefficient of pavement Structure.									
Pavement Stru	icture	Conversion Coefficient							
Asphalt Surface Course		1.00							
Base Course	(M-30)	0.35							
Bab-base Course	(C-40)	0.25							

T-11.21 Coefficient of payement Structur <u>____</u>

4 Pavement Structure

4.1 **Design Pavement Structure**

The pavement three layers: asphalt surface, base course, and sub-base course. Table 4.1 shows minimum thickness of each layer. TA' obtained by multiplying the thickness of each layer by the conversion coefficient shall be set to be equal to or greater than TA.

TA'=a1T1 + a2T2 + a3T3(Formula 4.1) $TA' \ge TA$

Table 4.1 Minimum Thickness Each Pavement Structure									
Pavement St	tructure	Minimum Thickness							
Asphalt Surface Course		5cm							
Base Course	(M-30)	10cm							
Bab-base Course	(C-40)	12cm							

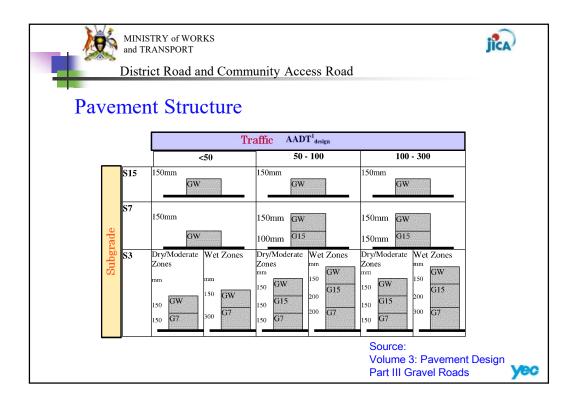
T-11. 4 1 Minin T1.1.1 Each D nt Struct

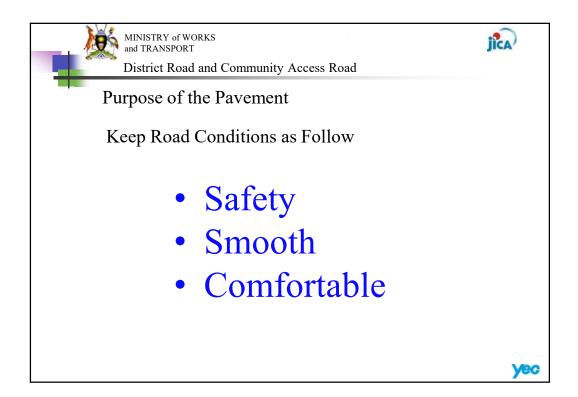
Note: minimum thickness is 3 times of stone size

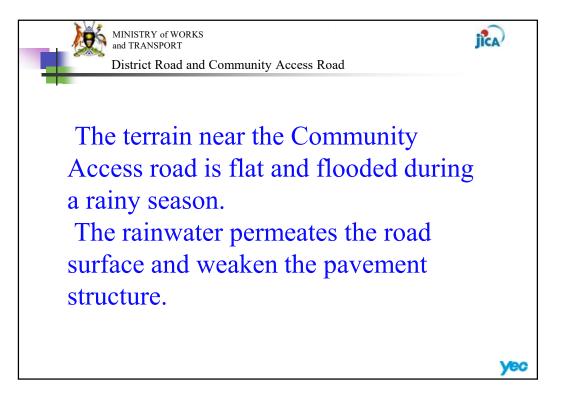
4.2 Design of Pavement Thickness

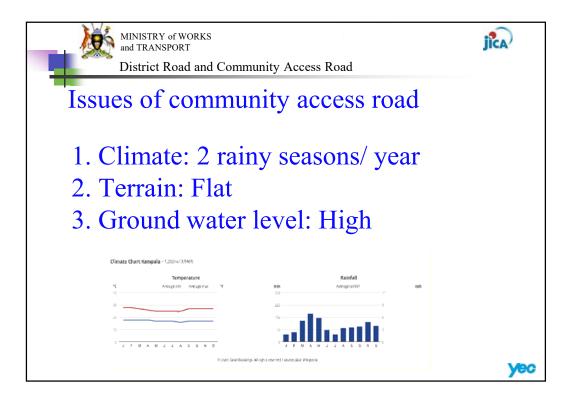
Table 4.2 shows the design pavement thickness (cm) of the three layers of the asphalt surface, base course, and sub-base course.

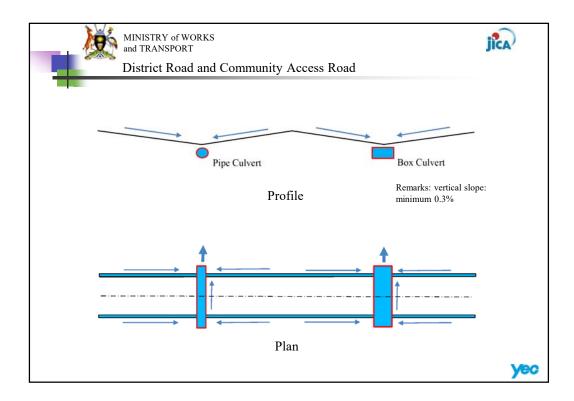
Table 4.2	Design of Pav	ement Structure
Pavement Structu	re	Pavement Thickness
Asphalt Surface Course		5 cm
Base Course	(M-30)	15 cm
Bab-base Course	(C-40)	20 cm

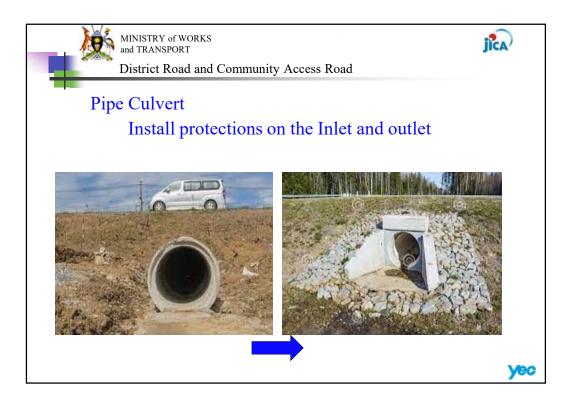

TA'= 5 x1.0+ 15 x0.35+ 20 x0.25 15.3 ≧TA= 14.2

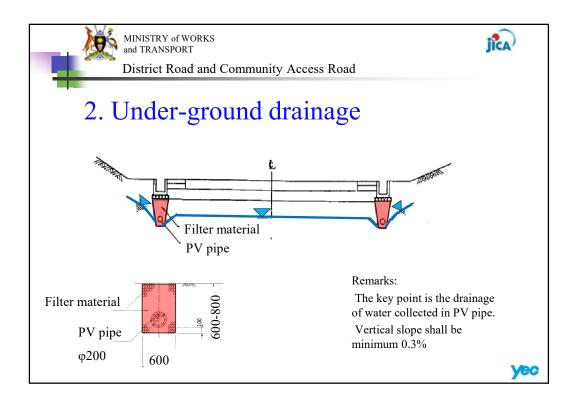

1	(0.0004	х	950 +	0.823	х	50)	x 365				15,158
2	(0.0004	х	950 +	0.823	х	50)	x 365 x	: (1.03)	15,613
3	(0.0004	х	950 +	0.823	х	50)	x 365 x	: (1.03	$)^{2}$	16,082
4	(0.0004	х	950 +	0.823	х	50)	x 365 x	: (1.03	$)^{3}$	16,564
5	(0.0004	х	950 +	0.823	х	50)	x 365 x	: (1.03)4	17,061
6	(0.0004	х	950 +	0.823	х	50)	x 365 x	: (1.03) ⁵	17,573
7	(0.0004	х	950 +	0.823	х	50)	x 365 x	. (1.03	$)^{6}$	18,100
8	(0.0004	х	950 +	0.823	х	50)	x 365 x	. (1.03	$)^{7}$	18,643
9	(0.0004	Х	950 +	0.823	х	50)	x 365 x	. (1.03	$)^{8}$	19,202
10	(0.0004	х	950 +	0.823	х	50)	x 365 x	. (1.03)9	19,778
												N =	173,775

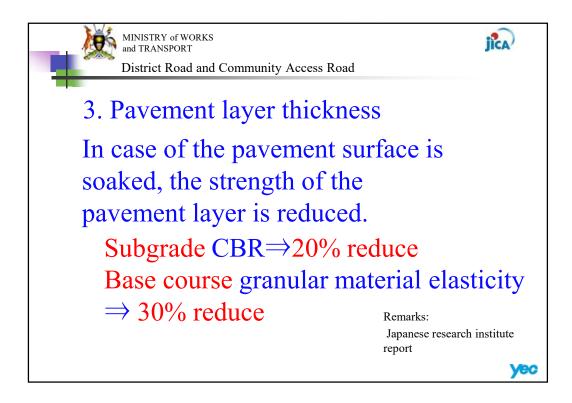

Technical Reference on Pavement Structure around Wetland

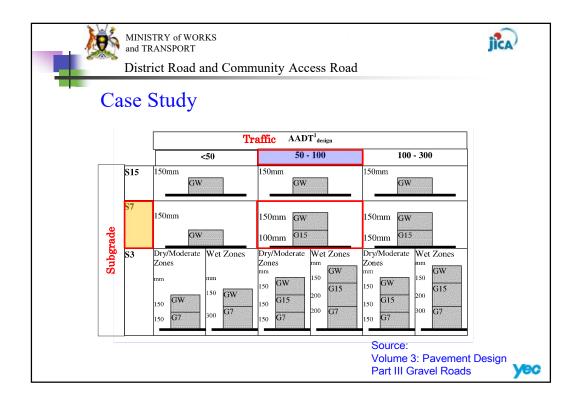

Pavement
DBST
Gravel

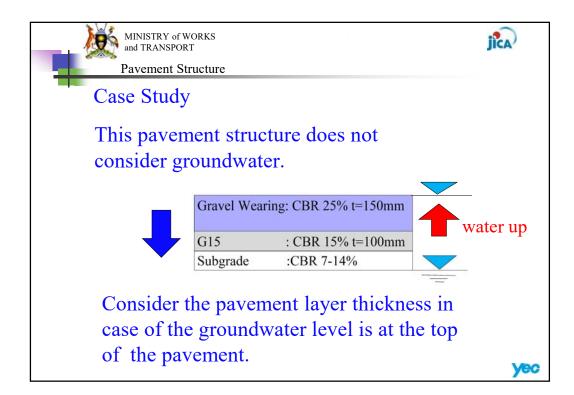


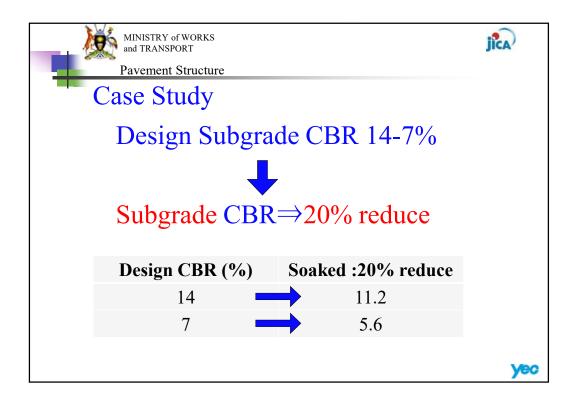


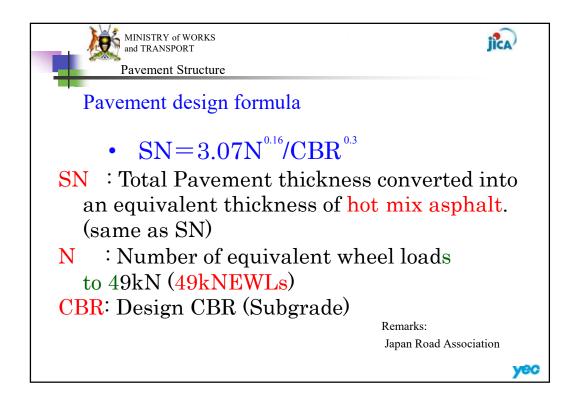


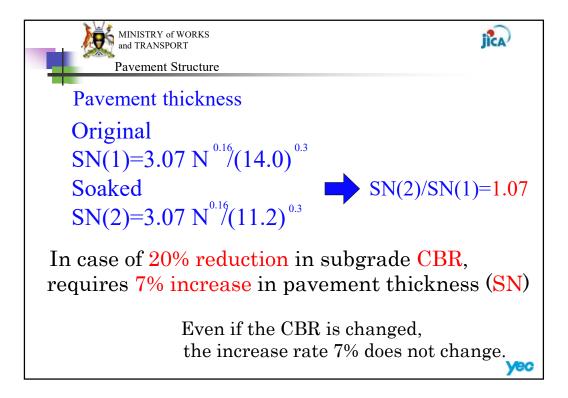


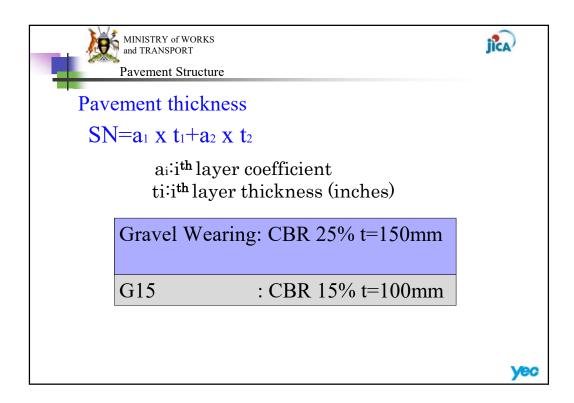


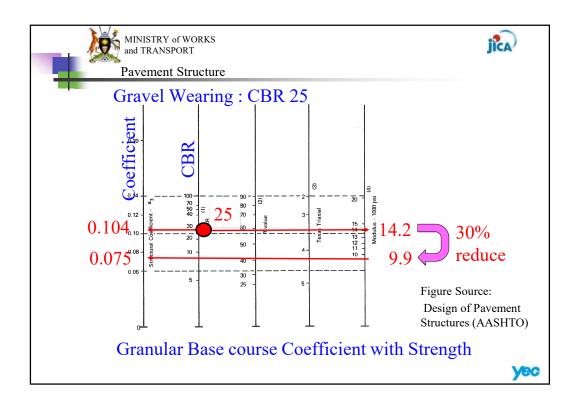


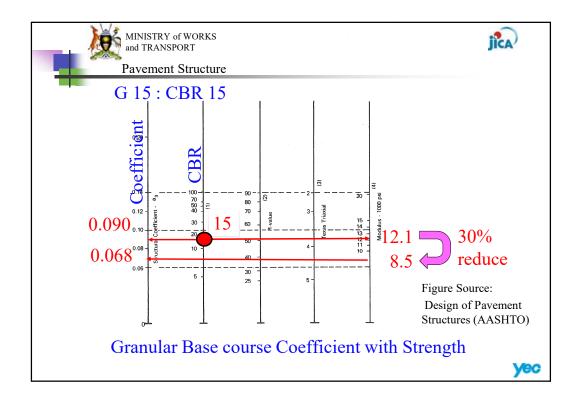


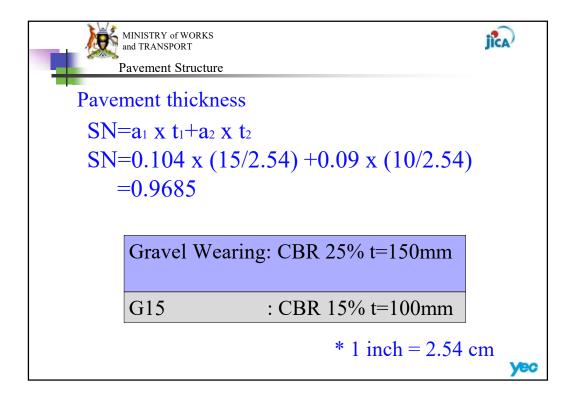


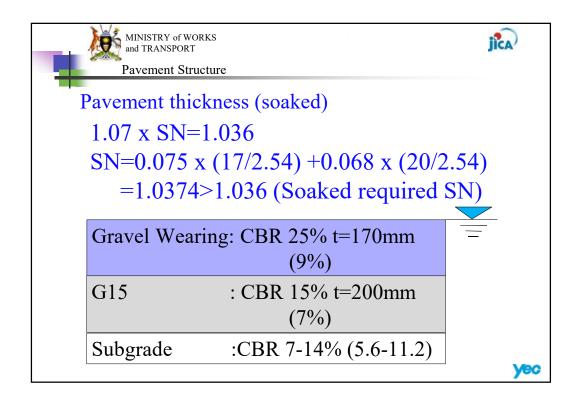


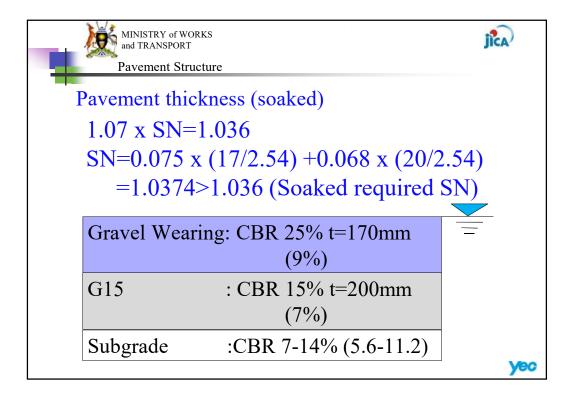

)Q	MINISTRY of WORKS and TRANSPORT		jica
	Pavement Structure		
	Traffic: AADT 50		
	Subgrade: S7 (CE	3K /-14%)	
	Gravel Wearing:	CBR 25% t=150mm	
	G15 :	CBR 15% t=100mm	
	Subgrade :	CBR 7-14%	
			yec

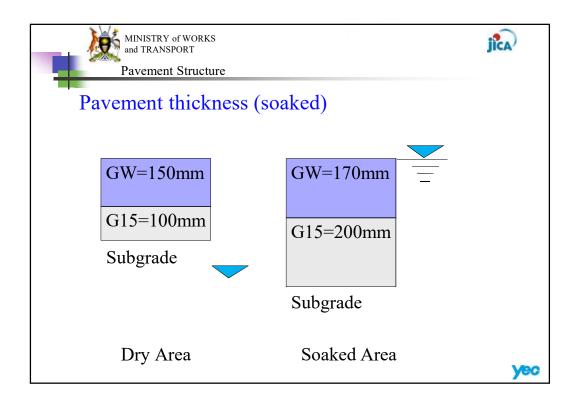












Proposed Upgrading of MoWT Mechanical Workshop

1. Central workshop

(1) Building

a) Body Shop, Machine Shop, Welding Shop, Hydraulic Shop, Electrical Equipment Shop, Tire Shop, Machine Shop, Workshop Toilet, etc.

Size : 45,000 mm x 25,000 mm = 1,125 m²

Approximate cost : $1,125m^2x USD4,000/m^2 = USD4,500,000$

b) Workshop office, tool room, office toilet, etc.

Size : 7,500 mm x 15,000 mm = 112.5 m²

Approximate cost : $112.5m^2 \times USD4,000/m^2 = USD450,000$

c) Warehouse

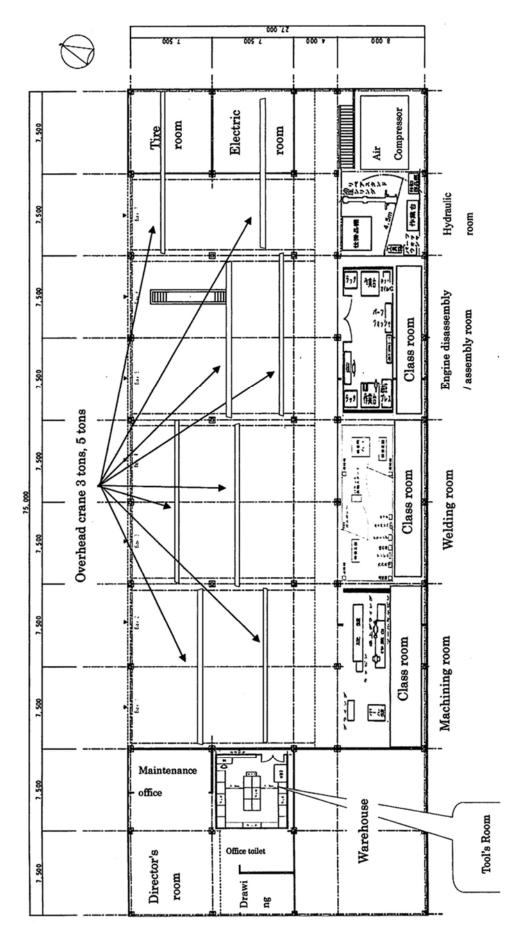
(2) Equipment

Size : 7,500mm x 10,000mm=75m²

Approximate cost : $75m^2 \times USD4,000/m^2 = USD300,000$

<u>Sub-total (a~c) USD5,250,000</u>

No.	Shop's name	Equipment name		Price (USD)
1	Body shop	Hydraulic presses, power tools, jacks, hoisting	1 set	478,500
		tools, tools, etc.		
2	Machine shop	Lathes, milling machines, drilling machines, etc.	1 set	321,000
3	Engine shop	Engine stand, engine disassembly and assembly tools,	1 set	85,700
		etc.		
4	Welding shop	Arc welders, gas welding equipment, welding-related	1 set	114,000
		tools, etc.		
5	Hydraulic shop	Cylinder split stand, pump/motor tools, etc.	1 set	107,000
6	Electrical shop	Alternator/starter tester, electric appliance,	1 set	40,000
7	Tire shop	Tire changer, air compressor	1 set	386,000
8	Tool room (tools etc.)	Common use special tools, common use large tools	1 set	178,000
9	Wash equipment	Car wash machine (30,000/unit)	2 units	60,000
10	Spare parts	Parts for machines in each shop	1 set	22,000
11	O/H crane	3 tons capacity (USD115,000/unit)	6 units	690,000
12	O/H crane	5 tons capacity (USD150,000/unit)	2 units	300,000
	·		Total	USD2,782,200


Total of buildings and equipment

(1) Building USD5,250,000

(2) Equipment USD2,782,200

Total amount (1+2) : USD8,032,200

The proposed layout plan (draft) is shown in the next section.

Proposed Layout of MoWT Central Mechanical Workshop

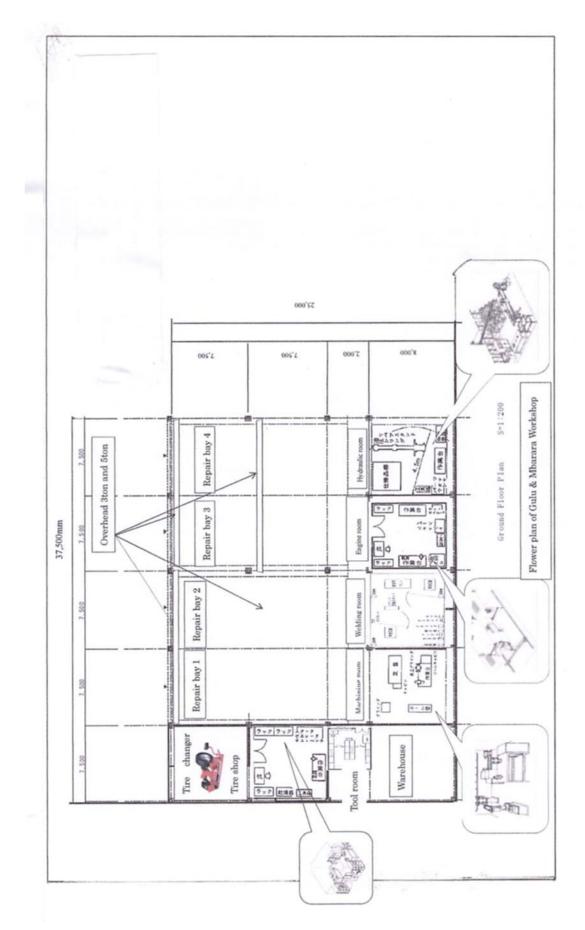
- 1. Gulu and Mbarara Regional Workshops (Plan A: Renewal by General Building)
 - (1) Building
 - a) Body Shop, Machine Shop, Welding Shop, Hydraulic Shop, Machine Room
 Size : 37,500mm x 25,000mm = 937.5m²
 Approximate cost : 937.5m²x USD4,000/m² = USD3,750,000
 - b) Tire shop, tool room, electronics shop, office toilet, etc.
 Size : 7,500mm x 17,000mm = 127.5m²
 Approximate cost : 127.5m² x USD4,000/m² = USD510,000
 - c) Warehouse

(2) Equipment

Size : 7,500mm x 8,000mm = 60m²

Approximate cost : $60m^2 \times USD4,000/m^2 = USD240,000$

<u>Sub-total (a~c) USD4,500,000</u>


No.	Shop's name	Equipment name	Q'ty	Price (USD)
1	Body shop	Hydraulic presses, power tools, jacks, 1 set		400,000
		hoisting tools, tools, etc.		
2	Machine shop	Lathes, milling machines, drilling	1 set	250,000
		machines, etc.		
3	Engine shop	Engine stand, engine disassembly and	1 set	60,000
		assembly tools, etc.		
4	Welding shop	Arc welders, gas welding equipment,	1 set	72,000
		welding-related tools, etc.		
5	Hydraulic shop	Cylinder split stand, pump/motor tools,	1 set	107,000
		etc.		
6	Electrical shop	Alternator/starter tester, electric	1 set	40,000
		appliance,		
7	Tire shop	tire changer, air compressor	1 set	400,000
8	Tool room (tools,	Common use special tools, common use	1 set	107,000
	etc.)	large tools		
9	Wash equipment	Washing machine	2 units	60,000
10	Spare parts	Parts for machines in each shop	1 set	22,000
11	O/H crane	3 tons capacity (USD 115,000/unit)	4 units	460,000
			Total	USD1,978,000

Total of buildings and equipment (per location)

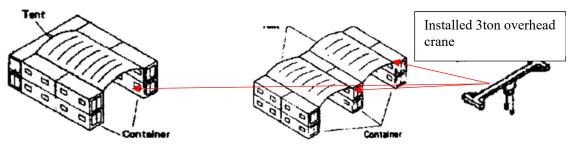
- (1) Building USD4,500,000
- (2) Equipment USD1,978,000

Total amount (1+2) : USD6,478,000

The proposed layout plan (draft) is shown in the next section.

Proposed Layout of MoWT Regional Mechanical Workshop in Gulu and Mbarara

1. Gulu and Mbarara Regional Workshops (Plan B: Renewal by Simple Container Building)


- (1) Building
 - a) Body shops, tire shops, welding shops, machine shops
 Size : 15,000mm x 30,000mm = 450m²
 Approximate cost : 450m²x USD4,000/m² = USD1,800,000
 - b) Toilet and shower room

Size : 5,000mm x 5,000mm = 25m²

Approximate cost : $25m^2 \times USD4,000/m^2 = USD100,000$

c) Container 40F & 20F (price including modification cost)

Propose a simple container structure as shown below.

Approximate cost of container structure

No.	Shop's name	Specification	Q'ty	Price (USD)
1	Tool room 40F	Windows, doorways, tool storage shelves,		43,000
	container	tool cabinets,		
2	Office 40F container	Windows, doorways, desks, A/C, document	1 set	22,000
		shelves, cabinets, etc.		
3	Conference room	windows, doorways, tables, cabinets, A/C	1 set	22,000
	40F container	projectors		
4	Warehouse 40F	Windows, doorways, parts organizing	1 set	43,000
	container	shelves, parts cabinets, desks,		
5	Electrical shop 40F	Windows, doorways, cabinets, workbenches,	1 set	22,000
	container	washing tables, etc.		
6	Men's locker room	Windows, doorways, lockers	1 set	18,000
	40F			
7	Women's locker	Windows, doorways, lockers	1 set	18,000
	room 40F			
8	Body shop tool room	Windows, doorways, parts organizing	1 set	14,500
	20F	shelves, parts cabinets, desks,		
9	Mechanic office 20F	Windows, doorways, desks, A/C, filing	1 set	14,500
		cabinets, cabinets, etc.		
10	Tire shop tool room	Windows, doorways, parts organizing	1 set	14,500
	20F	shelves, parts cabinets, desks,		

11	Hydraulic shop work	Windows, doorways, cabinets, workbenches,		22,000
	room 20F	washing tables, etc.		
12	Welding shop tool	Windows, doorways, parts organizing	1 set	14,500
	room 20F	shelves, parts cabinets, desks,		
13	Fuel pump work room	Windows, doorways, cabinets, workbenches,	1 set	22,000
	20F	washing tables, etc.		
			Total	USD290,000

(2) Equipment

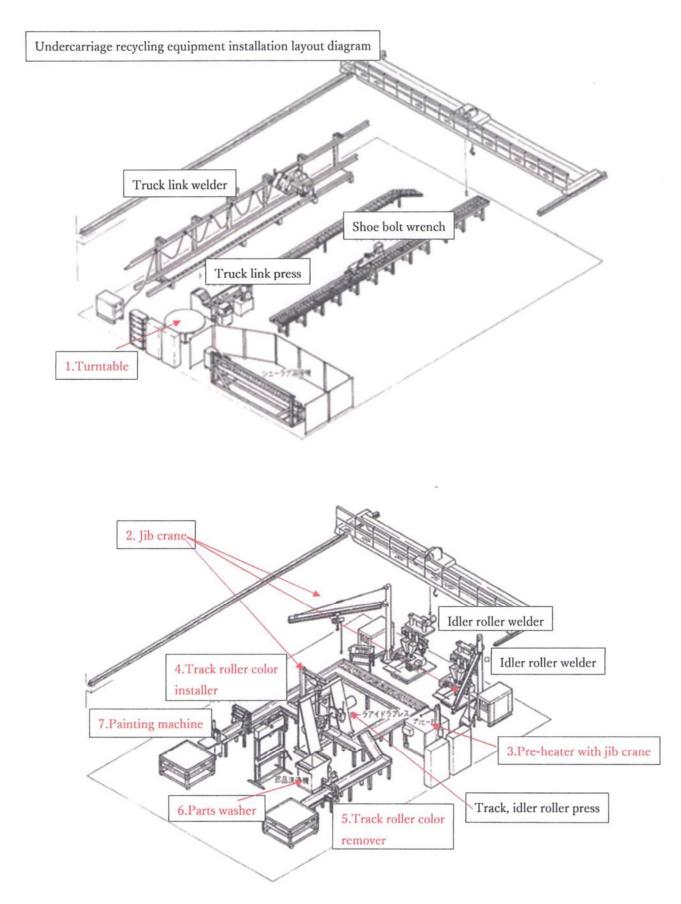
<u>Sub-total (a~c) USD2,190,000</u>

No.	Shop's name	Equipment name	Q'ty	Price (USD)
1	Body shop	Hydraulic presses, power tools, jacks,	1 set	400,000
		hoisting tools, tools, etc.		
2	Machine shop	Lathes, milling machines, drilling	1 set	250,000
		machines, etc.		
3	Engine shop	Engine stand, engine disassembly and	1 set	60,000
		assembly tools, etc.		
4	Welding shop	Arc welders, gas welding equipment,	1 set	72,000
		welding-related tools, etc.		
5	Hydraulic shop	Cylinder split stand, pump/motor tools,	1 set	107,000
		etc.		
6	Electrical shop	Alternator/starter tester, electric	1 set	40,000
		appliance,		
7	Tire shop	Tire changer, air compressor	1 set	400,000
8	Tool room (tools, etc)	Common use special tools, common use	1 set	107,000
		large tools		
9	etc.)	Washing machine	2 units	60,000
10	Wash equipment	Parts for machines in each shop	1 set	22,000
11	Spare parts	3 tons capacity (USD115,000/unit)	4 units	460,000
			Total	USD1,978,000

Total of buildings and equipment (per location)

- (1) Building USD2,190,000
- (2) Equipment USD1,978,000

Total amount (1+2) : USD4,168,000


1. Bugembe Regional Workshop

As one of the measures to improve the undercarriage of equipment (excavators, bulldozers) equipped with crawler belts, the introduction of rebuilding undercarriage equipment is conceivable. Reference prices are shown below. Approximate cost breakdown of undercarriage rebuilding equipment

No	Equipment name and usage	Reference photo	Q't	Price (USD)
1	Track link pin & bush press (supplied tool for D65, D85, PC220) *Machine for detaching and assembling each track link (replacement of pins and bushes, etc.)		1 set	286,000
2	Track link welder *A machine that reconstructs (welds) worn parts of each track link.		1 set	286,000
3	Carrier roller, track roller, idler roller rebuild (welding machine) *Equipment for rebuilding (welding) the worn parts of each roller.		1 set	560,000
4	Track roller, idler roller press *Used when disassembling and assembling rollers (overlay after disassembly and reassemble after overlaying).		1 set	220,000
5	Undercarriage Disassembly/Assembly Tools *Various tools for attaching/detaching/assembli ng the undercarriage of crawler belt running devices such as bulldozers and excavators.		1 set	50,000

6	A set of shoe bolt wrenches and sockets *Impact wrench for removing each shoe bolt.	1 set	190,000
7	Flux crusher * A crusher used to crush the hardened flux material and surplus flux material during overlay welding to make recycled products.	1 set	107,200
8	Automatic oil injection and leak detection device *Equipment for inspecting and injecting oil leaks from oil type bottle bushes and roller seals.	1 set	38,000
9	Track link winch * A device that winds up the removed track and makes it easier to store.	1 set	70,000
10	Lathe machine *Equipment that smoothly finishes the surface of the roller, etc. that has been built up.	1 set	150,000
		 Total	USD1,957,200

The proposed layout plan (draft) is shown in the next section.

Proposed Layout of Undercarriage Rebuilding Equipment

The Republic of Uganda Ministry of Works and Transport Technical Report

Annex 3

The Republic of Uganda	1 60	chnical Report		
Model	Number of	Number of	Date	Work site (location)
	Chassis	Engine		
KOMATSU				Mbarara Regional
				Mechanical Workshop
Mechanic's name	Repair date	Hour meter or		Reg. No
	(inspection date)	Km		

Main objective	Photography

Initial failure diagnosis (think about cause of failure)	Yes	No	If not, write a comment

Work contents	Photo of condition during inspection