Minutes

MeetingEquityMeeting Reference Number:Equity_06072022

Date: 06 July 2022 **Time:** 0900 hrs EAT

Venue: Equity Center, Upper Hill **Minutes prepared by:** Tollander

Invitees	Title/Designation
1. Edwin Oluoch	Senior relationship manager, Institutions and Public Sector banking
2. Ishmael Karani	Relationship manager, Corporate and Public Sector Banking
3. Kimura Kazunari	JICA
4. Shibata Satoko	JICA
5. Tollander Wabwire	JICA

Absent with apologies

Invitees	Title/Designation
1. NA	N/A

Purpose: Bank's opinions on bankability based on shared teasers

Ishmael: What channels do they use to collect?

We need the accounts to be held with us for visibility and comfort.

Equity has a foundation that deals with environmental sustainability projects (including solar panels). We are likely to link a project featuring solar panels to our experts on the Foundation side. The team agreed to share a contact if there is a need to access the Foundation at a later point.

Teaser 1: Turn-over/month about 78 million.

Edwin: We depend on regular revenues when assessing financials, but there are scenarios where the WSPs get donations, grants, and subsidies. e.g., WSTF grants may have featured in the cash flows of WSPs who participated in the OBA Program. We do isolate such and compute turn-over less such grants.

Kazunari clarified, that the 936 million revenues for this case did not include grants.

Edwin: We also look at O&M, and bank statements (historical), i.e., purely cash-flow lending.

Ishmael: We can extend the lending period to between 5-10 years and use cash-flow lending as a work-around for collateral.

Edwin: The Bank would be fine if a WSP could make repayments based on their cash flow.

Water.org has a project where they want to pick 6 WSPs. KfW wants to pick 5-6, under their AOD Program while JICA wants to identify and work with 5. There is a need for some coordination on how this gets done in this ecosystem.

Don't just pick the top (by WASREB rated). Consider weak ones and bring them up to speed.

On Bankability of Teaser 1, with 936 million in revenues, is good, and the solar element is good as it goes towards the reduction of energy costs.

Ishmael thinks that this is a good project. Can be a flagship/model project that can involve the Foundation's work on solar equipment and related capacity support.

Interest rates are regulated, so not much can be done on that front, but based on our internal assessments, we can re-assess based on future income flows of the WSP.

Public Finance Management Act, 2016 requires that approvals for borrowing be obtained from respective Counties, then through National Treasury.

Edwin: Banks take collateral as a psychological element [There is a legal requirement to secure or make provisions for bad debts for every doubtful loan, whether secured or not.

We are happy to do cash flows.

Teaser A-2

Project good.

We can still accommodate this.

A three-year grace period to overhaul meters may be too long. It may need procuring (90 days), and another short period for installation.

According to CBK, you can lend up to 25% of total holdings. Equity can lend up to 40 billion to a single obligor. There is a lot of liquidity that sits in, so amounts are not an issue. (1.03 trillion Asset size. Widest branch network, including agencies)

So, cash flows are critical. The problem is are they able to repay?

If piping is also being done, we can consider paying your supplier directly to avoid the diversion of funds.

A three-year moratorium is too high.

Ishmael thinks 10 years is a long time. The Bank can give 1-year moratorium. 3 years high.

There will be BoQs, and stages where funds can be paid in chunks, and pay the supplier directly, as due diligence to avoid diversion. Funding can be designed as Projects. Based on the status on the ground and supporting documents. There are a lot of governance problems, and influence from County leadership. Procurement can be inflated.

Banks can deal directly with suppliers.

Bank asks who suppliers are, and at what rate?

Bank checks on rates from other similar suppliers, and once comfortable, pay the supplier.

B-1

Still have a facility under AoD

Edwin: Good project based on purpose.

A four-year moratorium is too long, and a repayment period is too long, the maximum we can give is 10 years.

Grace period is included in the project period.

Ishmael: the rehabilitation may need to be done in phases.

This project is not likely to increase revenues unless there is also an increase in connections.

Kimura: EBITDA includes the grant, but the revenues do not.

Edwin: We would want to remove any grant components as far as possible. Looking at the figures, subject to other cost structures, this still looks doable.

Among the smallest WSPs as per Bank's opinion.

Ishmael: We can have a look at whether rehabilitation will improve revenues. Back to cash flows and its operations.

What's the need? is it increasing consumption and ultimately payment?

Bank: We would tentatively consider medium-low, based on the unavailability of information, the repayment period (10-15), sounds a bit strained in terms of cash flows. The equity ratio is not strong. NRW figures are unavailable as well. Rated low.

Can be considered subject to the improvement of the moratorium and 10-15 years.

Phasing to verify viability would be key. Suggested.

Cost of facilities

Other Credit Life insurance (0.0625% of the amount) Loan processing 1-3%, subject to negotiation Interest rates 10-15%, reducing/fixed No other recurrent fees.

Notes: Securitisation

Prudential Guidelines, 2013, sect. 1.4.4, Credit Risk" - is defined as the current or prospective risk to earnings and capital arising from an obligor's failure to meet the terms of any contract with the bank or if an obligor otherwise fails to perform as agreed.

Minutes

MeetingNational Bank of KenyaMeeting Reference Number:WB_27042022

Date: 27 April 2022 **Time:** 0900 hrs EAT

Venue: Head Office, NBK, Harambee Ave **Minutes prepared by:** Tollander

Invitees	Title/Designation
1. Fredrick Kioko	Head of Change, Integration, and PM, NBK
2. Pithon Mutiga	WaSH Financing for Water SMEs and WSPs
3. Reuben Ng'ang'a	RM, Institutional banking Sector
4. Jamila Kata	Relationship Manager, WaSH
5. Fujii Masayuki	JICA
6. Kazunari Kimura	JICA
7. Nogami Masaharu	JICA
8. Satoko Shibata	JICA
9. Tollander Wabwire	JICA

Absent with apologies

Invitees	Title/Designation
1.	

Proceedings:

Fredrick

- NBK is about 53(1968) years sits since its formation, as a government institution to design banking and finance programs.
- 2019, September, NBK was acquired 100% by KCB PLC, (KCB PLC is owned 28% by government), a regional bank with a presence in Kenya, Tanzania, Rwanda, South Sudan and lately intending to enter the Democratic Republic of Congo (DRC).
- NBK is keen on a partnership to drive business and sustainability in water market.
- During Covid-19, NBK focused on 6 impact areas namely, Agriculture, health, education, energy, water, and sustainable communities [Social impact areas].
- At the end of 2020, NBK designed a water program 'Majikonnect' (with support from Aqua for All (AfA), from the Netherlands, bringing in TA to targets). Majikonnect has launched at end of September 2021.
- NBK's key stakeholders included the regulator (WASREB), Kenya water Institute (KeWI), technology companies (Safaricom), and Smart People Africa (for smart Metering) among others.

Reuben

- NBK is keen on public WSPs. As per the 2010 Constitution, the services were devolved, and the Companies are now owned by local Counties. Key challenges include a lack of collateral, need for lower-priced money.
- NBK has been financing based on cash-flows, supporting with efficient user-fee collections to improve efficiency, improving NRW (physical and financial), with solutions such as smart metering to enhance efficiencies, high overheads, and governance improvement.
- NBK is in discussions with African Guarantee Fund (AGF)¹ for possible guarantee schemes to de-risk funding. Currently, financing cost is still expensive (interest @ 13%, but we are looking for partners who can help reduce this to about 9%) to make it competitive.
- Working with WASREB to help approve adjusted tariffs to accommodate additional financing.
- NBK seeks letters of no-objection.
- Take Debentures on moveable assets, where applicable. (20% of book value, to factor depreciation, for comfort. Common practice is guided by the law but is a matter of last resort.)
- Require that all monies be channeled through the Bank for the entire period of the loans, so we have visibility of its financial operations through escrow accounts.
- Phasing of projects for sustainability.
- NBK focuses on Tier 2&3 WSPs in urban and Peri-urban regions.
- NBK does not take tier 1 because it has received multiple supports before.
- NBK has many applications but have currently screened 7 out of all applications for possible funding. Common areas of support include billing efficiency, collections, and expansion of networks among others.

Fredrick

• Through AfA, NBK got TA to WSPs enabling us to lower rates by a point as an incentive.

- NBK developed a curriculum through KeWI to focus on the entire sector and target our staff working with water SMEs and WSPs.
- NBK is co-sponsors of KeWI symposium on how to reduce NRW, with Safaricom and NBK being the anchor sponsors, to enable us to influence policy and good practice in the water sector.
- NBK also runs an exchange program with KeWI
- NBK forecasted to finance KES 5 billion in the next 5 years.
- NBK is financing a pipeline of small retail outlets, water vendors, ATMs, trucks and bowsers, and some in the sanitation worth KES 150 million.
- In response to whether the bank has experience with long-term financing, NBK focus on short-term financing, about 5-years with a higher impact on last-mile connectivity, with easy revenue collection.
- Longest project NBK has gone into is 84 months-long but phased development. WSPs are struggling with cash-flow problems and thus the phasing, to be able to manage. Eldoret piloted 3,000 smart metering

¹ AGF: African Guarantee Fund is a non-bank financial institution whose objective is to promote economic development, increase employment and reduce poverty in Africa by providing financial institutions with guarantee products and capacity development assistance specifically intended to support SMEs in Africa.

connections, and then a full rollout of 10,000. This requires TA as well and the cash flows these WSPs have are very limiting.

Reuben

- NBK requires collateral/guarantees.
- If NBK gets guarantees of about 50%, then the rest on Debentures and other collateralization available, WASREB rating, and collection accounts.
- Affordable guarantee schemes blended with debt financing will make it easier to lend to these public WSPs.

Jamila

 Had some experience financing WSPs on a long-term basis (OBA). These were phased projects as well, covered in part by guarantee and debt (blended).

Fredrick

- Thinks that TA on both ends of the market divide is necessary (approved engineering, designs, and technical project appraisals, before presentation for financing).
- NBK is in advanced talks with AGF, and NBK may finalize in the next 1 month. AGF is still expensive, but NBK are still looking for partners who can help bring this lower.

Reuben

- On responding to the question on the difference in lending to WSPs and other ordinary SMEs, going by the requirements listed on the NBK water program, differences lie in lack of P&L (don't make a profit), lack of securities, poorer/political governance structures, and not well trained to manage companies, need for the regulator to assign you repayment through formal tariff adjustment.
- Subject to other public-good dynamics, e.g., the government changed tariffs through a directive during Covid-19 despite the linked financial obligations between financiers and the companies.
- NBK would like to have visibility of other financing facilities/guarantees.
- NBK has collaborated/discussed with Development Finance Corporation (DFC), WSTF (OBA), and the DFC guarantee scheme to supplement AGF, which is more expensive.

Fredrick

- NBK has gone to WASREB for training to learn about financing the WSPs.
- A single project maybe around \$ 2 million dollars based on the kind of applications NBK has received in the past.
- The Program for us gives us a structure to understand the sector and to interact with key stakeholders effectively.
- The Program is funded by National Bank of Kenya funds but is open to new partnerships. AfA provides TA in product development, studying technical requirements, marketing, visiting sites, and curriculum development for water financing to WSPs and SMEs. Nairobi alone has 8,000 water vendors, therefore a key sector.
- AfA provides grants to facilitate/deploy financing programs and TA for preliminary services to a project (regulator, government, public participation at the local levels. AfA will pay for the engineers that will support a project NBK is pursuing.
- There are similarities between this JICA's project role and AfA.
- NBK advertises/presents at different water for a and symposia targeting WSPs and water SMEs, where decision-makers happen.

Reuben

- NBK has financed Bomet, Kakamega, and Malindi for water for smart meters, and ERP systems.
- Thika water, \$ 2 million for new 10,000 connections
- Murang'a South Water Company (with complete feasibility, 20% of own resources, engineering done through WASHFIN, DFC)
- Kisumu, new office building, already approved
- Upper Tana Water Fund, establishing an endowment fund to protect the water catchment that supplies Nairobi).
- Solar for Kikuyu and Kiambu water, awaiting letters of no objection from their respective Counties.

- In general, NBK seeks to unlock a \$ 14 million pipeline.
- All WSPs are free to apply to NBK Water Program.
- NBK is seeking collaboration where some of our support overlaps with some of these SMEs.
- NBK is pursuing a partnership with Water Equity, a US-based water Fund that funds water projects, for a loan worth \$ 10 million, negotiated at 3.5% p.a. for 5 years.
- Collateral, pricing of loan and need for TA are the biggest challenge in lending to WSPs.
- JICA can also be a Technical Assistance partner

Minutes

Meeting	National Bank of Kenya (NBK)	Meeting Reference Number:	NBK_070720221000
Date:	07 July 2022	Time:	1000 hrs EAT
Venue:	NBK Head Quarters, Harambee Ave	Minutes prepared by:	Tollander

Invitees	Title/Designation
1. Fredrick Kioko	Head of Change, Integration, and PM, NBK
2. Reuben Ng'ang'a	RM, Institutional Banking Sector
3. Jamila Kata	Relationship Manager, WaSH
4. Fuji Masayuki	JICA
5. Kazunari Kimura	JICA
6. Satoko Shibata	JICA
7. Tollander Wabwire	JICA

Absent with apologies

Invitees	Title/Designation
1. NA	N/A

Purpose: To obtain the Bank's insights on the bankability of shared teasers.

Jamila: Status on African Guarantee Fund (AGF) contract finalization

- On 30th June, the Bank signed a term-sheet (with AGF risk), awaiting a formal offer. We estimate to finalize this by end of July.
- Guarantee period 5 yrs.
- Cost is 2.1-2.4% of the loan amount, one-off covering the outstanding (on a reducing balance basis). This cost is normally passed on to the client in full.
- Interest about 13%.
- AGF covers between 50-75% of the loan, based on groups of facilities. It is often higher for say special groups energy-related, climate, and women-led businesses. The water companies will be covered at 50%, while the rate will vary for other water value chain actors depending on the specific type of business.
- Agua for All, a Partner in the sector has met the one-time fee for the guarantee.
- Maximum cover is 100 million, considered on a case-by-case basis.

Jamila: Status on Water Equity contract

- Water Equity (another Partner), approved a USD 10 million facility, sent term sheet, awaiting formal (offer) letter. The Bank (NBK) is in the final stages of this partnership. This is a debt facility for onward lending, and it will be disbursed in two equal tranches of USD 5 million upon depletion of the first transfer.
- Water equity facility (denominated in USD) was obtained at a 4.5% interest rate and will be lent at 9%, the prevailing market rate for USD loans in Kenya.

Kioko: Interest rate for WSP is still 13%. On responding to the question [from Kazunari] on how the WSP would benefit if the Bank was going to lend at the market rate, said that there would be a reduction by a unit on the one-off appraisal fees (i.e., 2%, instead of 3%), other services (digital revenue collection capabilities offered by the Bank), capacity building, water conferences, social programs. WSPs working with NBK get a Package Value from the water program designed as a first in Kenya.

Bank's opinion on shared teasers.

A-1

Kioko: Grace period: We expect that interest would be paid during the grace period.

Repayment, the electricity cost, can be diverted to cover the loan repayments.

Phasing that can allow some usage for converted revenues to be available for initiating payments.

We would take customers' master collection accounts, as a risk measure. The incentive on the part of the WSP would be to have access to a good digital collection system, which may not be available at their current bank. Multichannel payment. The guarantee element would work only if within the project implementation period.

For small loans, we still need to take the partnership arrangements that span longer periods (Programmatic view to lending). We would also hold debentures as well, as a form of collateral, in addition to taking up the master collection accounts.

Teaser A-2

[Same WSP, different project]

Grace period: Need more info on smart meters, and why 10 years? Maybe 5-years at most.

The period goes beyond the planned guarantee period of 5 years and may need to have a special request to exceed the period by entering new negotiations with the guarantor.

Suggested phasing, to align, and to ensure that the loan term and the guarantee fully overlap.

Are they metering larger customers? Corporates? Hospitals? Industries? schools/colleges? What is the proposed metering strategy? [large users first], then retail, can be a good approach.

Collections are important because, in management quality, metering, and collections, we get the story early, and patterns of drought can be seen. Collection data helps to reinforce repayments, combined with better collection systems.

Teaser B-1

Kioko:

- Low appetite/I would score this lower than earlier teasers.
- What's the strategy? are they increasing collections? NRW reduction? The project is good if it can show how they will keep up cash flows. The impact on collections is likely to be direct in the case of failure. If not done properly, collections will be hit.
- Management quality is important. NRW vs patterns of the collection will give signs of collection issues/efficiency.
- If the Bank happened to pick this project, it may require that smart meters be added for better collection tracking.
- Considering high O&M for most WSPs, the net revenues are likely to stay depressed for this case. WASREB may not approve the review of the tariff. Chances are that this project may not get the requested KES 100 million for this project [Kioko's opinion].
- It is also likely to get push-back from the public because they are getting tariff hikes without visible improvement in quality of supply/service likely to be the outcome of infrastructure overhaul/improvement alone.

Jamila: On the question about TA scope from JICA, Kazunari clarified that we will offer TA from both tech and financial, including tender assistance.

Kioko: thinks that support through implementation would be important for building the capacity of the sectors to see through projects successfully. Consider implementation support, because of ownership structure and the risk of changing leadership at the counties, an element which can be mitigated by strong PM. For instance, financial release with some input from TA support. Critical for project continuity.

Fuji: On approval from Counties, Kioko clarified that WSPs independently approve borrowing at the Board level and the County only indicates whether they are ok with the request to obtain finance from a particular financial institution. The County does not decide on behalf of the WSP.

According to Kioko, once all requirements are met, the Bank will typically take not more than 30 days to disburse.

Minutes

Family Bank

MeetingFamily BankMeeting Reference Number:COB/KE_22062022

Date: 22 June 2022 **Time:** 10:00 hrs EAT

Venue: Family Bank Head Office **Minutes prepared by:** Tollander

Invitees		Title/Designation
1.	Fenasio Thariki	Family Bank Senior Manager, SME
2.	Shohei Yamamoto	JICA Team (deputy team leader)
3.	Kazunari Kimura (Online)	JICA Team (Deputy team leader)
4.	Nogami Masaharu	JICA Team
5.	Satoko Shibata	JICA Team
6.	Wabwire Tollander	JICA Team

Absent with apologies

Invitees	Title/Designation
1. NA	

Bank structure for the water sector

- ✓ 2 members specialized for water sector;
 - Denis Ndonga (Small WSPs)
 - Stephen Siwa (WaSH, previously worked at Eldoret WSP)

Bank lending performance in the Water Sector

- ✓ Bank has experience lending to WSPs, both small private and Public.
- ✓ Banks, along with partner institutions, have prioritized lending to public WSPs in an environment where blended funds (WSTF) and risk sharing models (e.g., credit guarantees, African Guarantee Fund (AGF), ring-fenced collection, credit loss pools) are being implemented.
- ✓ The longest loan issued in this sector was a 10-year loan with a WSTF grant partnership. The bank's highest WSP was KES 160 million without a partner.

Loan terms and conditions

- ✓ Interest Rate: 12-15% (including loan processing fee)
- ✓ Guarantee: Guarantee fee (1-2% of the loan) paid first. Result is that the loan facility becomes quite expensive and that makes the offer unattractive for WSP.
- ✓ Security: The regulatory requirement is to cover 100% of the bank's loans. However, there is room for innovation here, as the collateral does not have to be tangible collateral, such as physical assets.
- ✓ Loan term: with a partner, the bank can provide a 10-15 year loan.

Bank's WSP financing initiatives

- ✓ The Family Bank is working on a structure for financing WSPs.
 - 1. Expert placement for WSPs
 - 2. OBA (WSTF) and USAID "pay-for-performance" (Palladium)
 - 3. Facilitate loans to the water sector, drawing on lessons learned from loans to other sectors
 - 4. A percentage of the loan amount is returned to the bank's branch earnings as an incentive.
- ✓ The bank offers a loan called "Maji-Plus". The bank lend up to KES 1 million on an unsecured basis for a maximum term of 2 years. The reason for this is to keep the term as short as possible, since it is unsecured, and to match the credit guarantee period, which in the case of AGFs is often 2 years.
- ✓ Guarantees: AGF's guarantees focus on short-term loans and do not cover more than two years. Banks are looking for other options to grant longer-term guarantees. (Guarantees are always necessary due to various risks, such as WSP political risk, governance, collateral issues, etc.)

Assistance the Bank needs for WSP financing

- ✓ Key elements that the Bank may partner with include (but are not limited to)
 - 1. Structuring for unsecured financing
 - 2. Ring-fencing for collections
 - 3. Project quality (bankability and effectiveness) prior to submission to the bank

- 4. NRW problem resolution
- 5. Governance Improvements

MINUTES OF MEETING OF THE PROJECT FOR STRENGTHENING CAPACITY OF WATER SERVICE PROVIDERS ON FORMULATING BANKABLE PROJECT PLANS HELD IN THE WATER SECRETARY'S OFFICE, MAJI HOUSE ON 12^{TH} JULY, 2022 AT 8.30AM

PRESENT

<u>NAME</u>	ORGANISATION
1. ENG. SAMWEL A. O. ALIMA	MINISTRY OF WATER, SANITATION AND IRRIGATION, WATER
	SECRETARY- CHAIRING
2. MASAYUKI FUJII	JICA TEAM, TEAM LEADER/WATER SUPPLY PLANNING 1
3. SHOHEI YAMAMOTO	JICA TEAM, DEPUTY TEAM LEADER/WATER SUPPLY PLANNING 2
4. KAZUNARI KIMURA	JICA TEAM, DEPUTY TEAM LEADER/FINANCIAL ANALYSYS/BUSINESS
	PLANNING1
5. GEORGE KARANJA	JICA TEAM, COORDINATOR

AGENDA

- 1. Opening Remarks from the Chairperson
- 2. Introductions
- 3. Presentation and discussion on the priority projects
- 4. AOB

1. OPENING REMARKS FROM THE CHAIRPERSON

The meeting was chaired by the Water Secretary, Eng. Samwel A. O. Alima. In his opening remarks, he welcomed the JICA Team and said requested the meeting to proceed since the time was short.

2. INTRODUCTIONS

The JICA Team introduced themselves led by Mr. Fujii.

3. PRESENTATION AND DISCUSSION ON THE PRIORITY PROJECTS

Mr. Fujii of JICA Team (Team Leader) started by recommending that he will start with the conclusion after which the Water Secretary can give his comments. The Water Secretary agreed to this.

Mr. Fujii of JICA Team then started by sharing a handout (attached to these minutes as **Annex 1**) showing a schedule of the 12 WSPs and the proposed projects for funding. The handout also indicated the phasing of this project into Phase II (year 2023) and III (year 2024). Blue and orange bar graphs for five of the WSPs while it was blank for the other WSPs. He explained that the blue bars indicated projects recommended for commercial financing for those WSPs with willingness to take commercial loans, while the orange bars indicated the projects that will be recommended to JICA for feasibility study.

For the 7 WSPs in which the graphs were blank, Mr. Fujii of JICA Team informed that:

- Isiolo WSP had stated that they do not want to borrow any loan.
- Nzoia and Mavoko WSPs had no project since they had not provided any information after being requested to do so.
- Ngagaka WSP was only interested with a grant from the Water Works Authority.
- Eldoret WSP has a very good project but since it is already at the tendering stage, there was no room for cooperation with the JICA Team.
- Embu WSP already has experience in borrowing funds from banks and other sources and is interested in blended funds and not pure commercial loans, hence will be excluded from the project.
- Murang'a WSP's project was not so good and therefore had been excluded from the JICA project.

Mr. Fujii of JICA Team then stated that they were looking for opportunities for pure commercial funding and that 4 WSPs (Ruiru Juja, Nakuru, Kisumu and Nanyuki) had good projects for pure commercial funding. He elaborated the projects as follows:

- i) Nakuru WSP: High efficiency pumps and solar panels at Nairobi Road borehole site.
- ii) Nanyuki WSP: Replacement of old pipelines in Nanyuki Town.
- iii) Kisumu WSP: Replacement of old pipelines and pumps. However, they already have some

borrowed funds hence will require approval from their Board of Directors to

borrow more.

iv) Ruiru Juja WSP: A very easy project of pipe replacement

He also stated that the JICA Team had recommended three WSPs (Nanyuki, Kisumu and Meru) for feasibility study.

Mr. Fujii of JICA Team then clarified that Nanyuki can negotiate with banks for the commercial loan but Kisumu would need assistance from the JIA Team. He also said that they would wish to select 6 WSPs but although Murang'a WSP wants to borrow in combination with grant funding, it has 3 no so good projects including one very big project estimated at Ksh 2 billion.

Eng. S. A. O. Alima (Water Secretary) recommended that the JICA Team do a feasibility study for Murang'a WSP. He also suggested the team scrutinize all the 87 WSPs using the new rating on creditworthiness. Mr. Fujii of JICA Team said it would be too much work but also regretted that they had not take any WSP in Coast Region due to their poor financial status.

Eng. S. A. O. Alima (Water Secretary) recommended to the team to try Mombasa WSP. He also suggested the Nairobi WSP to which Mr. Yamamoto said that it is too big has poor financials. Eng. S. A. O. Alima then confirmed to the team to take Murang'a WSP and also strongly requested the team to take Mombasa WSP.

Eng. S. A. O. Alima (Water Secretary) enquired whether the project could consider resource development projects taking into account that Nakuru WSP has no other source in case the boreholes are exhausted. Mr. Yamamoto of JICA Team said that Nakuru's borehole source is good.

Eng. S. A. O. Alima (Water Secretary) further enquired whether any of the WSPs had a non-revenue water project. Mr. Yamamoto replied that the best way to reduce NRW is first to replace all pipes, secondly to install accurate meters and thirdly to develop the WSP's capacity. He also said the Eldoret WSP is implementing some non-revenue water project.

Eng. S. A. O. Alima (Water Secretary) then confirmed that the JICA Team's recommendation to take Nanyuki and Kisumu WSPs for commercial funding and feasibility study; Nakuru and Ruiru Juja WSPs for commercial funding and, Meru WSP for feasibility study. He further confirmed that the JICA Team will add Murang'a and Mombasa WSPs for feasibility study.

Mr. Kimura of JICA Team then shared a handout titled "Bank Interview on Teasers" (attached to these minutes as **Annex 2**). It contained a summary of interviews with commercial banks whereby they were provided with financial status of WSPs (without indicating the WSPs identities) and their projects size, loan requirements (amounts), proposed grace/repayment periods and other financial data. He explained that to tease is to provide with information without revealing the source. He further explained that they visited three banks and provided three projects from the WSPs on the teaser as follows:

Bank Symbol	X	Υ	Z
Bank name	Equity Bank	Cooperative Bank	National Bank
Project Symbol	A-1	A-2	B-1
WSP Name	Nakuru	Nakuru	Nanyuki

The project costs were ranged from Kshs 100 million to 470 million with implementation periods of 3 to 4 years.

Mr. Kimura of JICA Team said that the results of the teaser was that Equity Bank was very positive to the teaser while Cooperative Bank was the least positive.

Fujii of JICA Team said that Nakuru WSP had indicated that they do not want to shift to National Bank because their main bank is different. He also said that for Kisumu WSP, the feasibility study is a long-term study since it will take 1.5 years. He indicated that the Team will discuss with JICA and inform the outcome of the discussions to the Water Secretary.

Mr. Yamamoto expressed his worry that Nzoia and Mavoko WSP may complain of being left out of the project. Eng. S. A. O. Alima (Water Secretary) said that they cannot complain because they did not provide the information when they were requested. He said that he will tell them not to come for the meeting in September since they do not have any project.

AOB

There was no any other business and the meeting ended at 8.55 am.

SUBMISSIONS

For	For	
Ministry of Water, Sanitation and Irrigation	JICA TEAM	
Eng. Samwel A. O. Alima	Mr. Masavuki FUIII	

Water Secretary Ministry of Water, Sanitation and Irrigation The Republic of Kenya Team Leader JICA TEAM

Annex 1: Schedule of the 12 WSPs and the proposed projects for funding.

Annex 2: Bank Interview on Teasers

MINUTES OF MEETING OF THE PROJECT FOR STRENGTHENING CAPACITY OF WATER SERVICE PROVIDERS ON FORMULATING BANKABLE PROJECT PLANS HELD IN NAKURU ON 30^{TH} JUNE, 2022 AT 11.00AM

ORGANISATION, POSITION

PRESENT

NAME

-		
1.	MARGARET KINYANJUI	NAWASSCO - CHAIRING, TECHNICAL MANAGER
2.	JAMES M. GATHAURU	NAWASSCO, COMMERCIAL MANAGER
3.	ISAAAC M. MAKORI	NAWASSCO, FINANCE MANAGER,
4.	LEONARD MUTAI	NAWASSCO, Non-Revenue Water Officer
5.	CATHERINE MUTWIWA	MINISTRY OF WATER, SANITATION AND IRRIGATION, JICA DESK
		ASSISTANT
6.	MASAYUKI FUJII	JICA TEAM, TEAM LEADER/WATER SUPPLY PLANNING 1
7.	SHOHEI YAMAMOTO	JICA TEAM, DEPUTY TEAM LEADER/WATER SUPPLY PLANNING 2
8.	KAZUNARI KIMURA	JICA TEAM, DEPUTY TEAM LEADER/FINANCIAL ANALYSYS/BUSINESS
		PLANNING1
9.	SATAKO SHIBATA	JICA TEAM, FINANCIAL ANALYSYS/BUSINESS PLANNING2
10.	TAKASHI NAKAJIMA	JICA TEAM, WATER SUPPLY PROJECT DESIGN 2
11.	TAISUKE WATANABE	JICA TEAM, WATER SUPPLY PROJECT DESIGN 1
12.	GEORGE KARANJA	JICA TEAM, COORDINATOR

AGENDA

- 1. Opening Remarks from the Chairperson
- 2. Introductions
- 3. Presentation and discussion on the priority projects
- 4. AOB

1. OPENING REMARKS FROM THE CHAIRPERSON

The meeting was chaired by the Technical Manager, Eng. Margaret Kinyanjui. In her opening remarks, she started by welcoming the members present and informed that the Managing Director was absent for another meeting. The Finance Manager also welcomed the members and hoped that the JICA team was now familiar with NAWASCO.

2. INTRODUCTIONS

The Technical Manager lead NAWASSCO team in self-introduction after. She then requested the JICA team to introduce themselves which they did.

3. PRESENTATION AND DISCUSSION ON THE PRIORITY PROJECTS

a) Confirmation of Project Fund Trends

Mr. Fujii, JICA Team Leader, shared a handout showing the 4 priority projects submitted by NAWASCO and proceeded to take the members through it (attached to this minutes).

The JICA Team Leader stated that the JICA Team was looking for opportunity to work with NAWASSCO unless the latter had already found other funding. The Technical Manager reconfirmed that they had not yet found other funds and were eager to work with the team. She said that NAWASSCO had applied for AOD for priority project IV (Network Improvement/extension and NRW reduction and management Plan) and other sewer improvement project (network expansion and construction of sewer treatment plant and had a meeting with KFW on Monday the 27th June. It is a National Government project estimated at Kshs 5.6 billion (mainly loan and some grant) and is to be implemented through the WWDA but to be paid by NAWASSCO.

JICA Team Leader sought to know whether NAWASSCO was having any discussion with Aqua For All. The Technical Manager stated that there had not been any discussions. She also sought clarification on the conditions of the funding; whether it will be a loan or a grant or a mix of the two.

The Finance Manager stated that if it is a loan, then payment will be through tariff increment or take-over by the National Government in liaison with the County Government since the WSP's mandate is provision of water services. He confirmed that NAWASSCO has no loan in the balance sheet but pays fees to the WWDA to offset any loan taken. Currently, NAWASSCO pays Kshs 39 million per year through tariff to offset a Kshs 1.4 billion (including interest) loan. Therefore, if another loan is taken and the volume of water does not increase, the tariff will need to be increased to cover the loan.

b) Priority Project II: Installation of Solar panels for pumping, high efficient pumps (for development and improvement of Boreholes)

The Technical Manager(TM) stated that NAWASSCO is in discussions with the WWDA but not yet finalized. At first the option was to identify an investor who would implement the project with his own funds and then recover his investment over time through the revenue. However, the option is not possible since it would be single sourcing method of procurement and not recommended in the procurement law.

Mr. Yamamoto of JICA Team informed that if single sourcing method of procurement is adopted then this project cannot proceed.

The TM stated that the procurement process is still under consideration but single sourcing is not allowed. She said that the WSP prefers availability of a financier for the project through loan or grant or blended.

c) Priority Project I: Installation of Smart meters in all zones (Northern, Eastern, Western, Central and Southern)

The Commercial Manager (CM) intends to make all the 40,000meters smart. They have determined the cost to be Kshs 12,000 per connection. He said that most of the existing meters are not smart-ready and they have been buying those that are smart-ready in the last 4 years. They have 15,000 smart-ready meters of which 4,000 are already installed at a cost of Kshs 7 million. They plan to start with the central zone which has 9,500 connections.

JICA Team Leader enquired whether the company is willing to borrow money from commercial banks where the interest is around 13 to 14%

The CM said that the WSP has experts who have been looking at the efficiency to determine whether the loan can be paid by the improved efficiency. He said that they had piloted with 300 meters from January 2021 and found that the efficiency can cover for the cost.

d) Priority Project III: Production optimization project at Kabatini

The TM said that they are looking for technical assistance to come up with documentation i.e. feasibility study, basic design, tender documents, etc. (since this a completely new project). She said that the site has more water potential but land is not available and may have to be procured. She said that Kshs 720 million is just a rough estimated cost. She indicated that they do not have the geotechnical survey data and water balance calculation result.

Mr. Yamamoto of JICA Team enquired the number of boreholes and whether their distribution networks can be separated into blocks. The TM said that their distribution networks cannot be separated because all the water must first go to Mireroni for treatment through a transmitted transmission main.

e) Potential for Commercial Borrowing

Mr. Kimura of JICA Team enquired which project between priority project I and II has more potential for commercial borrowing.

The CM stated that priority project II has more potential for commercial borrowing. The NAWASSCO Team therefore confirmed that priority project II is now first priority and priority project I is now second priority. However, they said that the two projects should be presented for consideration.

Mr. Kimura of JICA Team explained that the goal for this meeting is to prepare a teaser for commercial banks. JICA team will show a teaser without mentioning the name of the WSP and requesting them for their opinion whether bankable or not.

The TM said that Priority Project II (Installation of Solar panels and high efficiency pumps) is the priority. However, for those sites where land is not available, the installation of more efficient pumps is the priority since it is already piloted and found to be ok.

Ms. Shibata of JICA Team enquired whether NAWASSCO has collateral for taking a loan. The CM said that the assets are owned by the County Government and therefore the WSP has no collateral.

For Installation of Solar panels and high efficiency pumps (estimated cost Kshs 270 million), the Finance Manager said that there is need for a grace period of 3 years (the implementation period) while the loan can be paid within 4 years making the total loan period 7 years. They expect to cover the loan using the 35% of Kshs 20 million per month expected savings from the project.

Mr. Kimura of JICA Team requested for the audit report for the year 2020/2021 but was informed that it was not yet out. He therefore enquired whether the JICA team can provide the financials for year

2020/2021 to the commercial banks to which the FM accepted. Mr. Kimura also enquired why NAWASSCO did not apply for AOD from WSTF for option 1 or 2. The TM said that they applied for Kshs 150 million AOD funds for a different water project and a sanitation project with the water component being Kshs 95 million. The WSP's contribution is between 10% and 40%.

It was also confirmed that NAWASSCO had already shared the documents for energy reduction project with the JICA team.

Regarding the project for Installation of Solar panels for pumping and high efficient pumps, the TM said that there is need to procure land while the land is available for the project on smart meters.

Mr. Fujii of JICA team enquired again whether NAWASSCO feels that the project is feasible and if so, whether they have the willingness to take a loan if the JICA team contacts banks. The TM answered yes.

Mr. Fujii of JICA Team then enquired the approval process if banks agree. The NAWASSCO team replied as follows:

- 1. The management confirms that the project is viable and can pay for itself.
- 2. The management then prepare and present a paper to the board.
- 3. If the board approves, the management obtains no objection from the County Government to borrow commercial loan.
- 4. The management then process tenders and implements the project.

Mr. Kimura of JICA team informed that the JICA team can assist with the modelling of the project.

Mr. Yamamoto of JICA team enquired what the percentage of O&M cost is the electricity bill. This was given as 25% by the FM.

The TM informed the meeting that they are now revising the project cost from 270 million to 302 million. She also clarified that the solarization will be for 24 boreholes and not 28 as erroneously understood by the JICA team from the borehole schedule shared earlier, since there is no land at the site of the other 4 boreholes.

However, Mr. Fujii of JICA team stated that preliminary assessment shows that solar projects benefit is very small and hence not viable.

The TM also informed that the cost estimate includes the prefunding costs such as for feasibility and design. To this, Mr. Fujii informed that this JICA consultancy is free of charge.

The JICA team then requested to visit one of the sites. The TM proposed the team visit the Nairobi Road site.

In his closing remarks, the CM thanked the JICA team for holding this meeting and being puncyual and welcomed them again in future.

JICA Team Leadergave his closing remarks requested whether it was alright for the JICA team to prepare the financial and technical briefs and present to banks without indicating the name of the WSP as a teaser. The TM said that this was okay. Mr. Fujii then informed that the team will request for any information from NAWASSCO if needed.

There being no other business, the meeting ended at 12.00pm.

4. AOB

Site visit to Nairobi Road Boreholes

During the site visit, the following was noted:

- a) The site has two boreholes:
 - 6" diameter pipe, yield 24m3/hr; funded by National Government through Covid relieve
 - 8" diameter pipe, yield 70m3/hr; funded as CSR by the road contractor
 - The two boreholes are new hence do not need new pumps.
- b) The site has a 4,500 m3 storage tank, a dozing house and an office.
- c) There is space for solar panels in front and behind the tank. The tank roof can also accommodate more panels.
- d) Any excess power from the panels can be transmitted to some other 4 boreholes (2 old and 2 new).

Mr. Yamamoto said that for the project that will be selected, the JICA team will do the study, tender documents, etc together with NAWASSCO staff as capacity building on preparation of bankable project plans.

For	For
Nakuru Water and Sanitation Services Company	JICA TEAM

Ms. Margaret Kinyanjui Technical Manager Nakuru Water and Sanitation Services Company The Republic of Kenya Mr. Masayuki FUJII Team Leader JICA TEAM

Annex 1: priority projects

MINUTES OF MEETING OF THE PROJECT FOR STRENGTHENING CAPACITY OF WATER SERVICE PROVIDERS ON FORMULATING BANKABLE PROJECT PLANS HELD IN NANYUKI ON ${f 1}^{ST}$ JULY, 2022 AT 8.45AM

PRESENT

<u>NAME</u>		ORGANISATION, POSITION		
1.	CAROLINE KIHONGE	NAWASCO – CHAIRING, HUMAN RESOURCES & ADMINISTRATION		
2	WACHIDA CAKHDU	MANAGER,		
2.	WACHIRA GAKURU	NAWASCO, COMMERCIAL MANAGER		
3.	PAUL MWANGI	NAWASCO, FINANCE MANAGER		
4.	CATHERINE MUTWIWA	MINISTRY OF WATER, SANITATION AND IRRIGATION, JICA DESK		
		ASSISTANT		
5.	MASAYUKI FUJII	JICA TEAM, TEAM LEADER/WATER SUPPLY PLANNING 1		
6.	SHOHEI YAMAMOTO	JICA TEAM, DEPUTY TEAM LEADER/WATER SUPPLY PLANNING 2		
7.	KAZUNARI KIMURA	JICA TEAM, DEPUTY TEAM LEADER/FINANCIAL ANALYSYS/BUSINESS		
		PLANNING1		
8.	SATAKO SHIBATA	JICA TEAM, FINANCIAL ANALYSYS/BUSINESS PLANNING2		
9.	TAKASHI NAKAJIMA	JICA TEAM, WATER SUPPLY PROJECT DESIGN 2		
10.	TAISUKE WATANABE	JICA TEAM, WATER SUPPLY PROJECT DESIGN 1		
11.	GEORGE KARANJA	JICA TEAM, COORDINATOR		

AGENDA

- 1. Opening Remarks from the Chairperson
- 2. Introductions
- 3. Presentation and discussion on the priority projects
- 4. AOB

1. OPENING REMARKS FROM THE CHAIRPERSON

The meeting was chaired by the Human Resources & Administration Manager, Ms. Caroline Kihonge. She also requested that the meeting proceed starting with the financials to which was unanimously agreed by all present.

2. INTRODUCTIONS

Ms. Caroline led the NAWASCO team in self-introduction. She then requested the JICA team to introduce themselves which they did.

3. PRESENTATION AND DISCUSSION ON THE PRIORITY PROJECTS

Mr. Fujii of JICA Team then shared a handout showing the 3 priority projects submitted by NAWASCO (attached to these minutes as Annex 1) and said that priority project I and II are within the scope of grant aid request to JICA.

Mr. Kimura of JICA team stated that the interest rate on loans is very high such that for a loan of 1 billion, the interest would be in the range of 150 million per year. He therefore enquired from NAWASCO the amount of loan they had in mind.

The Finance Manager suggested that they should start by first determining the amount needed to complete the project followed by discussions on the loan amount. He also said that there is need to carry out a cost-benefit analysis to make a decision.

Mr. Fujii of JICA Team enquired whether NAWASCO was willing to borrow Kshs 1.2 billion from commercial banks. The FM said they are hoping for blended (loan and grant) financing. Mr. Fujii said that there is need to first consider pure borrowing of Kshs 1.2 billion, and then do design together with NAWASCO staff, followed by submitting to Maji House to be used to apply for a loan and grant.

Ms. Catherine, Ministry said that Kisumu and Embu WSPs had Cooperative Bank loan accounts (escrow accounts) into which they were making daily cash deposits to pay their loans. They had also obtained no objection from their County Governments to take the loans.

Mr. Fujii of JICA Team enquired which project was submitted for grant aid to JICA in 2021. Ms. Caroline stated that it is another project and none of the three in the priority list. Ms. Shibai of JICA Team said that the requests were received very recently in May 2022 and hence analysis is only starting.

Mr. Kimura of JICA Team enquired whether how far NAWASCO had gone with Kenya Pooled Water Fund (KPWF). Ms. Caroline said that KPWF had only prepared a financial model based on WASREB's creditworthiness index for WSPs but did not share the model with NAWASCO. She further said that NAWASCO has since been working to improve their creditworthiness.

The FM, NAWASCO also stated that NAWASCO has never borrowed for projects from commercial banks but for asset financing such as vehicles. He added that NAWASCO is hoping to borrow project loans spanning 15-20 years. Mr. Kimura, JICA team said that this is very difficult and that banks normally want to give loans for around 5 years.

Mr. Kimura of JICA Team enquired the to know NAWASCO's main bank. The FM said it is Kenya Commercial Bank; but also have accounts in Family Bank and National Bank which are currently catering for WASHFIN project that is geared towards water.

The CM enquired how the JICA team will come in if NAWASCO decides to go the commercial bank route. Mr. Kimura, JICA team said the team will assist with the financial analysis. However, the team is looking at Kshs 100 or 150 million maximum to discuss with commercial banks.

Ms. Shibata of JICA team noted that the current tariff expires next year and hence review should start now if any loan is to be captured in the tariff. The CM said that the current tariff became effective in September 2019 and expires in September 2023 but there is indexation in the current tariff to cater for

inflation. A new tariff application will be submitted to WASREB thereafter. He also said that it is not possible to increase the tariff by more than 10% and hence there is need for simulation with various loan amounts.

Mr. Fujii of JICA Team said that the Kenya Government is keen to achieve SDG6 on water but there are no funds. The government is trying negotiate for a loan facility with WB through WSTF where WSPs can access at low interest rates (say 6%) but this is not finalized. Therefore, the only option currently is the commercial loan route. He said that the team will assist in preparation of bankable project proposals and tariff modelling.

Mr. Nakajima of JICA Team shared a handout (attached to these minutes as Annex 2) and made a power point presentation titled "Project component based on the Project Size" with 3 cases:

Case-1: 100 million Kshs – Rehabilitation of WTP, Trunk main (4.6km), Secondary pipeline (6.0Km), Tertiary pipeline (6.9Km), Water kiosks (5Nos), Installation of PRV, GV; SMART cold-water meters (domestic- 53 nos).

Case-2: 250 million Kshs — Rehabilitation of WTP, Trunk main (4.6km), <u>Secondary pipeline (12.8Km)</u>, <u>Tertiary pipeline (14.9Km)</u>, <u>Water kiosks (5Nos)</u>, Installation of PRV, GV; <u>SMART cold-water meters (domestic- 53 nos, Electro-Magnetic: 65 nos)</u>, <u>Improvement of water meters (15,274 nos)</u>, <u>Replacement of AC/GI pipeline to HDPE (11.3Km)</u>.

Case-3: 350 million Kshs — Rehabilitation of WTP, Trunk main (4.6km), Secondary pipeline (12.8Km), Tertiary pipeline (14.9Km), Water kiosks (10Nos), Installation of PRV, GV; SMART cold-water meters (domestic- 53 nos, Electro-Magnetic: 65 nos), Improvement of water meters (15,274 nos), Replacement of AC/GI pipeline to HDPE (20.8Km).

Key to the cases:

- The <u>underlined</u> are the differences between Case 1 and Case 2.
- The **bold** are the differences between Case 2 and Case 3.
- The presentation also indicated the areas to be affected by each case on the map.
- Case 1 was marked as urgent in the design report and was to be implemented by 2019.
- The analysis of each case was also shared as a handout (attached to these minutes as Annex 3)

Mr. Nakajima of JICA Team then requested NAWASCO to discuss and consider depending on the amount of loan they can take from the bank.

Ms. Caroline said that she was happy with all the three cases and that they had given NAWASCO a clearer picture to consider.

Mr. Kimura of JICA Team presented a one page brief on the three cases and enquired whether it was okay for the JICA team to visit some banks the following week and show the brief as a teaser without indicating the name of the WSP. NAWASCO said it was okay.

Mr. Kimura of JICA Team enquired on the preferred grace period and repayment period. The managers stated that they would hope for a grace period of 4 years and a repayment period of 10-15 years.

Ms. Shibata of JICA Team said that NAWASCO had Kshs 30 million land and enquired whether it can present as collateral for the loan. The FM said that use of the land would require approval from the County Government and that the Title Deed is not ready and processing it takes a long time. They recommended that the land should not be considered for this project.

Mr. Kimura of JICA Team noted that KCB is NAWASCO's main bank and enquired whether it was possible to borrow from other banks. The FM said it is possible.

Ms. Shibata of JICA Team enquired whether NAWASCO will manage to obtain no objection from the county government and WASREB. The FM said they will manage. He also said that the National Government must approve the loan even if the county government will give guarantee. However, the county government must confirm that the WSP can pay the loan before it approves.

Ms. Caroline expressed NAWASCO's hope of benefiting from the proposed infrastructure bond by the county Government stating that repayable finance is now an option since the national and county governments have no money.

Mr. Kimura enquired whether KPWF had any specific project with Ms. Caroline responding in the negative. He also enquired whether NAWASCO was working with Aqua-for-All which had taken over KPWF's mandate; and again received a negative response from Ms. Caroline.

Ms. Caroline informed that Priority project III had become a critical priority and needs detailed design. She said that NAWASCO had carried out the detailed design of Priority project I at a cost of Kshs million from own funds. She also said that topographical survey was on Priority project III (Honi River) project was ongoing using own funds.

Mr. Kimura of JICA Team enquired whether NAWASCO has any AOD project. Ms. Caroline said no but a proposal (mainly on sanitation) of Kshs 74 million was submitted to WSTF. The maximum amount disbursable is Kshs 60 million to be implemented in 1 year.

In his closing remarks, Mr. Fujii of JICA Team said that the team will hold meetings with some banks at the end of the following week. He also indicated that the team will visit NAWASCO after the coming elections. He further indicated that Priority project III (Honi River) is one of the long-term candidates for JICA support.

Ms. Caroline's closing remarks was that they were happy with the meeting and expressed hope of seeing positive progress.

4. <u>AOB</u>

There was no any other business and the meeting ended	at	12.30pm
---	----	---------

For Nakuru Water and Sanitation Services Company	For JICA TEAM	
 Ms. Margaret Kinyanjui	 Mr. Masayuki FUJII	

Technical Manager Nakuru Water and Sanitation Services Company The Republic of Kenya Team Leader JICA TEAM

Annex 1 : priority projects

Annex 2: Project component based on the Project Size - ppt presentation

Annex 3: Project component based on the Project Size - Detailed Analysis

MINUTES OF MEETING OF THE PROJECT FOR STRENGTHENING CAPACITY OF WATER SERVICE PROVIDERS ON FORMULATING BANKABLE PROJECT PLANS HELD IN KISUMU ON 4^{TH} JULY, 2022 AT 12.00PM

PRESENT

NAME

_		
1.	ENG. MOSES JURA	KIWASCO, CHIEF ENGINEER TECHNICAL SERVICES - CHAIRING
2.	GEOFFREY OPIYO	KIWASCO, PLANNING & DESIGN CHIEF ENGINEER
3.	LIECH M. JOB	KIWASCO, NRW ENGINEER
4.	BRAMWEL OUMA	KIWASCO, GIS ANALYST
5.	CATHERINE MUTWIWA	MINISTRY OF WATER, SANITATION AND IRRIGATION, PC
		(ASSISTANT) JICA DESK
6.	MASAYUKI FUJII	JICA TEAM, TEAM LEADER/WATER SUPPLY PLANNING 1
7.	SHOHEI YAMAMOTO	JICA TEAM, DEPUTY TEAM LEADER/WATER SUPPLY PLANNING 2
8.	KAZUNARI KIMURA	JICA TEAM, DEPUTY TEAM LEADER/FINANCIAL ANALYSYS/BUSINESS
		PLANNING1
9.	TAKASHI NAKAJIMA	JICA TEAM, WATER SUPPLY PROJECT DESIGN 2
10.	GEORGE KARANJA	JICA TEAM, COORDINATOR

ORGANISATION

AGENDA

- 1. Opening Remarks from the Chairperson
- 2. Introductions
- 3. Presentation and discussion on the priority projects
- 4. AOB

1. OPENING REMARKS FROM THE CHAIRPERSON

The meeting was chaired by the Chief Engineer Technical Services (CETS), Eng. Moses Jura. In his opening remarks, he welcomed the JICA Team and said that they were happy that JICA had considered to work with KIWASCO and hoped there will benefit from the partnership.

2. INTRODUCTIONS

Eng. Jura led the KIWASCO team in self-introduction. He then requested the JICA team to introduce themselves which they did.

3. PRESENTATION AND DISCUSSION ON THE PRIORITY PROJECTS

Mr. Fujii of JICA Team (Team Leader) said that during the previous visit, they had said that they were looking for opportunities. Subsequently, KIWASCO provided three projects for consideration whether on bankability. He thus informed that the purpose of the day's was to visit and understand the projects better and to confirm the priority project. He then shared a handout showing the 3 priority projects submitted

by NAWASCO (attached to these minutes as **Annex 1**) and said that Priority I project is new and the JICA Team would like to visit it. He also said that Priority II project is also new. The CETS said that they had applied for AOD for Priority II project but its funding is not yet confirmed. He further said that Priority III project was included in the application. He said that they had applied for two projects but the second one called Nyamasaria was approved for funding.

Mr. Fujii of JICA Team said that there are two commercial financing options in Kenya: commercial loan from banks and the financing facility being developed by the National Government through the WSTF (not yet available). Therefore, if KIWASCO needs financing now, it needs to consider commercial loan.

The CETS said that they are aware of the way funding has changed with WSTF doing small grants, the AOD and the commercial loans. He added that KIWASCO has a facility that is helping in construction of the new offices, and the tariff was recently reviewed and includes a Kshs 1.4 billion loan used to augment the water treatment plants.

Mr. Fujii of JICA Team enquired whether KIWASCO is currently viable in terms of accessing loans, to which the CETS replied in the negative for now. He said that the details on this issue can be explained by the Managing Director but they are also in the share document called "Kisumu Financial Model". He said that this puts Kisumu in a very tricky position because there is need to expand the water supply to achieve Vision 2030. He wondered how this expansion will be achieved.

Mr. Fujii of JICA Team said that they will discuss the issue with JICA later and added that KIWASCO has no viability to take a loan for now.

Mr. Yamamoto of JICA Team said that in the previous meeting, KIWASCO had said they wanted to implement Priority II project (cost Kshs 400 million) through pure commercial financing. The CETS said he was not in the meeting. However, Mr. Opiyo said that he wanted to know the costing to determine which project is viable for commercial financing based on sustainability.

Mr, Yamamoto said Priority I project is difficult since it requires a lot of money. He said that for Priority II project, some components can be used for commercial financing meaning that there is still some opportunity for commercial financing.

The CETS said that he was requesting for a study for Priority I project. Mr. Opiyo said that Priority II comprises three components (Expansion of pipeline, Electromechanical and Dunga WTP rehabilitation) which are already in the strategic plan hence they can be implemented in parts. Mr. Yamamoto said that there is therefore need to visit the site for the three components. He also said that there is also need to visit the site for Priority I project.

Mr. Opiyo said that there is need to implement Priority II project based on financials but there is also need to determine how the cost will be covered. Mr. Kimura of JICA Team said that bankability should be covered by the whole WSP's financials.

The CETS said that the loan for construction of the new office building is Kshs 200 million. The other loan is the Kshs 1.4 billion taken in 2016 by the National Government on behalf of KIWASCO for implementation

of projects through the WWDA. KIWASCO committed to pay the loan since it was the beneficiary. Ms. Catherine of Ministry said that this type of loan is called legacy loan. She said that the National Government offsets some of the loan.

The CETS said that the Kshs 1.4 billion loan is a challenge since it should be paid through the tariff but KIWASCO tariff is slightly high already. He said that there have been some discussions on restructuring the loan. He said that the loan was taken under the Water Act 2002 where the National Government could take loans and the Water Services Board (now WWDA) would implement, both acting on behalf of the WSP. He however said that this arrangement is not working well for WSP because the are unable to pay the loans.

Mr. Kimura of JICA Team wondered whether KIWASCO signed the loan contract and if not, has no obligation of repaying it. The CETS replied that KIWASCO did not sign the loan contract but that the challenge is that KIWASCO needed the money and that was the only way to access it.

Mr. Kimura of JICA Team enquired whether KIWASCO cannot take another loan when it is still servicing the existing Kshs 1.4 billion. Ms. Catherine of the Ministry said it cannot take another loan.

Mr. Kimura of JICA Team enquired whether KIWASCO is currently paying only a small portion of the Kshs 1.4 billion loan. Mr. Opiyo said yes and they are now looking for ways to accelerate the payment. He added that the only loan allowed for now is the last mile connectivity since they currently have three loans. The CETS said that the position of the finance department is that it is currently difficult to take another loan.

Mr. Kimura of JICA Team enquired whether KIWASCO can take a loan if it can generate viable benefits. The CETS said yes, if if it can elevate the financial position.

The CETS said that the issue of commercial and blended finance was discussed in a WASPA meeting the previous week and it was realized that only Embu and Nyeri WSPs had managed to access commercial financing.

Mr. Kimura of JCA Team enquired whether KIWASCO is comfortable to take a loan at 14% interest rate if the project is financially viable. Mr. Opiyo said the rate is quite high and needs further discussions. The CETS said that there is need to hear from the Commercial Manager and indicated his preference for blended financing.

Mr. Fujii of JICA Team to be shown the outlines of Priority I and III projects. The following projects were presented:

- a) The CETS showed a presentation of a desk study that was carried out in 2021 on the water demand in Kisumu as follows:
 - i) Kajulu WTP capacity is 80,000m3/day and was expected to serve upto year 2030. However, this capacity has never been achieved. Furthermore, River Kajulu dries up during the dry season and often becomes too turbid during the rainy season sometimes forcing temporary closure of the treatment plant. Luckily, the lake is available to optimize the treatment plant. However, this cannot be done during the dry season due to the invasive water hyacinth that clog the pumping

equipment. Pollution of the lake water at the intake is also continuing to reduce the treatability of the water over time. This pointed to the need for a new project to supply Kisumu with adequate water.

- ii) The above situation led to a desk study carried out which resulting in a report titled "The Study on Demand and Alternative Water Treatment Facilities". The proposal involves developing two WTPs to draw water from Lake Victoria (well away from the city to reduce pollution) and install smart (high-efficiency) pumps and solar power/power grid to reduce pumping costs. The estimated project cost is Kshs 3.5 billion, would cover water demand upto year 2039 and has the following features:
 - One treatment plant at Rainbow on the western side of the city. Install transmission pipes to and construct tanks at Kodiaga and Coptic areas
 - Another treatment plant at Buoye on the eastern side of the city. Install transmission pipes to and construct an elevated tank at Kibos (KPA compound).

The report was presented to the Board of Directors (BOD) which directed that a detailed study be undertaken to check whether the idea is viable.

The CETS stated that the project is the solution to the water problems in Kisumu and appealed for JICA's help to carry out the detailed feasibility and to the full development.

b) Mr. Opiyo explained Priority II project (Kibuye-Migosi-Chiga dedicated distribution booster line and reservoir upgrade and automation) which has four parts is a rehabilitation project to alleviate the current water shortages caused by drought.

Mr. Fujii of JICA Team enquired whether the rehabilitation would be necessary if Priority I project was implemented. Mr. Opiyo agreed with Mr. Yamamoto of JICA Team that the rehabilitation would not be necessary since it is a short-term measure. Mr. Fujii said that the Priority I project very nice but it is too expensive (Kshs 3.5 billion). However, the pipeline is Kshs 264 million. Mr. Yamamoto said if a new pipeline has to e installed, then there is no need for two WTPs since O&M would be more expensive. Mr.Opiyo said that the water at Dunga intake is already green hence it's under great threat. Mr. Yamamoto said that there is need to confirm the condition of the pumps and also visit the proposed sites of the new WTPs. The CETS said visit the sites would need 3 to 4 hours.

Mr. Yamamoto reminded the CETS that he was to prepare the concept note for Priority 2 project. The CETS and Mr. Opiyo promised to prepare and provide the concept note to the team. The meeting adjourned for the site visit.

4. SITE VISIT

a) Visit to proposed Rainbow WTP site

The site was found to be suitable for a WTP. However, there is need to acquire adequate land.

b) Visit to proposed Kodiaga elevated tank site

Mr. Yamamoto said the site seems too high and the correct location will be determined by calculations.

c) Visit to Coptic Tank (existing) site

No comments were made on this site.

d) Visit to proposed Kibos Elevated tank site

The actual proposed site could not be reached because it is within the compound of the Kenya Ports Authority (KPA). The proposal is to request for space from KPA to build the tank and sign an MOU.

e) <u>Visit to Proposed Buoye WTP site</u>

The visit ended 2.5km from the proposed site due to lack of access road. The area is very low laying and flat. There were signs of flooding with one local house having a flood water mark upto the window seal. However, a developer lady who has constructed a one-storey mansionette agreed to talked to the team and said that the flood water came once from upstream and entered her house upto about 4 inches. She said that the flooding stayed for about one month.

f) Visit to Kibuye booster pumping station

The tour guide said that during the dry season, the capacity of the pumps and transmission pipe are not adequate to cater for some areas hence there is need to replace them and make the pumps smart.

g) Visit to Riat Site

The site has a ground tank, elevated steel tank and a pumping station. No observation was noted.

The site visit ended at 6.30pm.

5. WRAP UP MEETING HELD ON 5TH JULY 2022

The meeting started at 8.30am and was attended by the same members as on the previous day.

Mr. Fujii thanks KIWASCO staff for the meeting and site visit the previous day and said that the JICA Team had obtained very good information and have understood KIWASCO's plans. He said that it is obvious Kisumu has to take water from the lake.

He noted that Priority I project is a big project while for Priority III project, there is need to minimize pumping in the rainy season and try to utilize Kajulu river water.

Mr. Opiyo said that there is usually a period of 4 to 5 months of uncertainty due to drought. He said that they try to shut down Kajulu in the rainy season due to high turbidity. Further, there is the problem of quality at Dunga intake due to the hyacinth, hence they try to balance the two sources.

The ETS said that they understand the concern on Priority I project and they will try to re-check the costbenefit analysis

Mr. Yamamoto requested for a copy of the submitted AOD proposal. The CETS promised to share all the proposals submitted for AOD with the JICA Team.

The CETS said they know that Priority I project is a capital-intensive project but requested JICA to help on it. He also said they have understood the need to have only one and not two WTPs. He said that there is need for a feasibility study and that this assistance is a special request from KIWASCO to JICA. Mr. Yamamoto said that the JICA Team has understood this request.

Mr. Yamamoto said that they had requested for a concept note for the Dunga-Kibuye transmission project during the previous visit but had not received yet any. He enquired to be given a brief.

Mr. Opiyo said that Dunga -Kibuye has 3 transmission pipes as follows:

- a) An old asbestos pipe 9" diameter: It has many bursts due to age and needs replacement. It was excluded from submission to JICA Team because it had been submitted AOD funding request.
- b) 14-inch diameter uPVC pipe: There has been many improvements e.g. change in pumps and hence it is susceptible to many bursts if it is not realigned. It needs to be replaced with HDPE pipes. It was also submitted for AOD funding.
- c) 24-inch diameter steel pipe: It is just like the 14-inch pipe.

The CETS and Mr. Opiyo said that there is need to add Dunga-Kibuye line to Priority III project. It was not shared with the JICA Team because it is among those projects submitted to Covid Local Support Grant (CLSG) programme for funding. CLSG is a fully grant programme initiated in 2020 during Covid outbreak and is still scrutinizing the applications.

Mr. Yamamoto requested KIWASCO to share, in a prioritized manner, all the proposals submitted for AOD funding excluding those already funded. He said that the priority for study is still No.1 but the priority for implementation should be provided immediately on the day.

Mr. Kimura of JICA Team presented a one-page brief indicating that the JICA Team will visit some banks the following day and show them some project teasers without indicating the name of the WSP to see their reaction- whether the projects are bankable or not. He requested for a small project costing 100-200 million. The CETS said that it is okay to share with banks. He added that the proposals submitted for AOD funding are okay for this purpose and promised to share in a prioritized manner to avoid confusion. Mr. Kimura requested KIWASCO to share the projects requiring a loan. He also requested KIWASCO to share the WSP's revenue, costs, projects concept notes, financial position and any collateral available.

Mr. Yamamoto said that the JICA Team will hold discussions with JICA within the week and reminded KIWASCO to send the concept note for Priority II project otherwise it will be omitted.

He also wondered whether KIWASCO had any NRW reduction project. Mr. Opiyo said that they have metering and zoning which are med- to long-term. The Dunga asbestos distribution pipe was also listed as a NRW reduction project.

Mr. Yamamoto enquired the target for NRW reduction if the pipe is replaced to which Mr. Liech gave as 8%. Mr. Yamamoto was sterned and said that 8 % was very big and the pipe should be replaced immediately.

Mr. Opiyo then shared a list of the 10 projects (table below) submitted for CLSG and AOD funding and indicated that the first 5 projects had been funded leaving the other 5 projects.

	Summary Works Covid Local Support Grants (CLSG) Support Proposal					
Priority	No.	Description Of Works	Cost Estimate	Total Length (m)	Modal Dia. (mm)	Remark (s)
4	1	Arina Overhaul Works	27,212,637	6,018	63	Under Review for approval by WSTF
4	2	Gudka Estate Overhaul Works	6,433,734	2,000	63	Under Review for approval by WSTF
4	3	Lower Railways Overhaul Works	8,014,548	1,400	63	under Review for approval by WSTF
3	4	Kajulu-Mamboleo Asbestos Overhaul Works	113,357,055	13,250	200	LVWATSAN Proposal
3	5	Kamaler-Guba Upgrade Works	66,925,103	8,400	250	Under Review for approval by WSTF
1	6	Millimani 14-Inch Distribution Main Overhaul	41,442,828	1,800	350	LVWATSAN Proposal
1	7	9" Asbestos Overhaul	22,152,964	1,150	225	LVWATSAN Proposal
2	8	Production Plants Pump	38,508,089	Ot	her	Not Taken
2	9	VFDS	32,499,819			Not Taken
	10	Metering	101,336,001	Other		Not Taken
		Proposal Grand Total	457,882,778	34,018		

After consideration, Mr. Yamamoto recommended that the JICA Team will consider supporting the study for a new WTP at Rainbow as Priority I project. Priority 1 on the above table will then be Priority II project while Priority 2 will be Priority III project for commercial financing. He requested the CETS to prepare the concept notes for Priority II and III projects and send to the JICA Team within the day.

<u>AOB</u>

The CETS expressed gratitude to the JICA Team for considering KIWASCO for the project and said they do not take it for granted. He said that they will share the information requested for with the JICA Team within the day and will continue working with the team.

There was no any other business and the meeting ended at 9.05 am.

SUBMISSIONS

For Kisumu Water and Sanitation Company	For JICA TEAM		
 Eng. Moses Jura			
Chief Engineer Technical Services	Mr. Masayuki FUJII		
Kisumu Water and Sanitation Company	Team Leader		
The Republic of Kenya	JICA TEAM		

Annex 1: priority projects

Appendix - 4 Questionnaire for the 13 Candidate WSPs (Electronic data only)

WSP-1

Embu WSP (EWASCO)

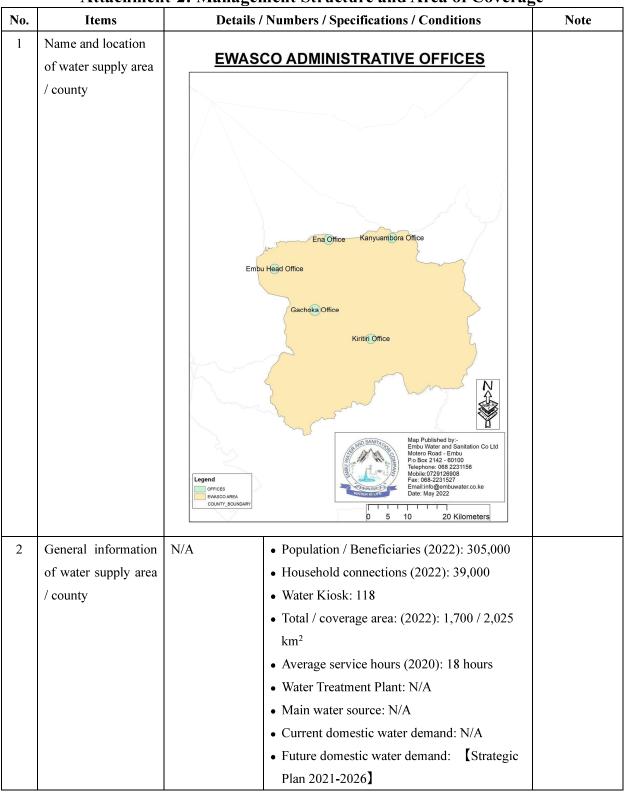
Project for Strengthening Capacity of Water Service Providers on Formulating Bankable Project Plans

Questionnaire (EWASCO)

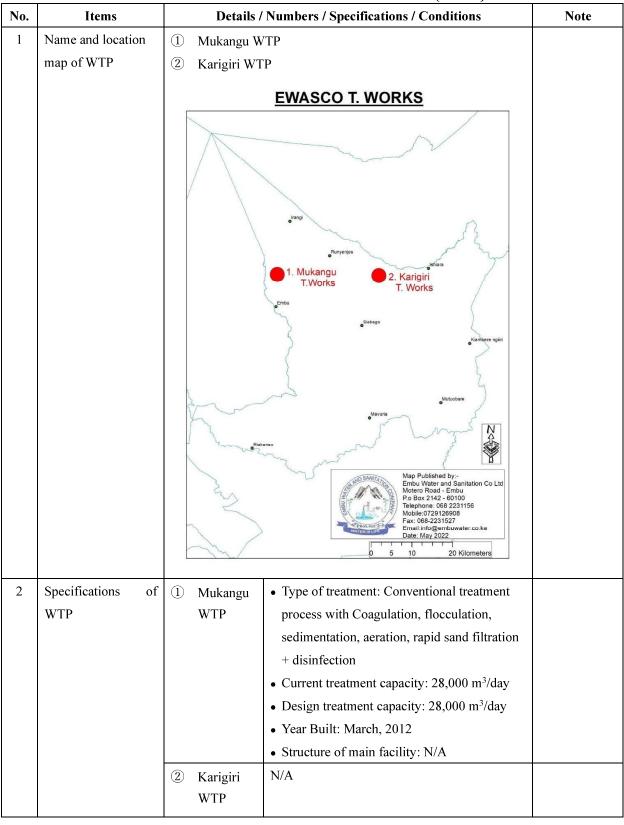
No.	Questions	Answers
1	Are you willing to borrow the money from	Yes.
	commercial bank when selected as target WSP?	
2	Kindly specify last 10 years project with major project	• The OBA sewerage project work KES 450
	comportment and amount, and source of fund for each	million sourced from the Commercial bank
	project.	Kiambi JICA Grant for expanding Treatment
		works
		• 28 km lines extension Muthatari to Meka and
		Kiamuringa to Muchonoke
		Muchonoke to Gangara Pipeline Tana Kithimu
		area expansion source
3	Kindly provide the WSP long term plan with annual	【Strategic Plan 2021-2026】
	budget for O&M and investment for water supply	
	system.	
4	Do you currently offer or intended to be offer any fund	Yes. We have just submitted a proposal to WSTF
	from doner, AOB, OBA, KPWF, own fund or any	for a KES 148 million for service improvement
	others? If yes, kindly provide the detail.	project.
5	Kindly provide the documents $\underline{\text{listed in Attachment 1 to}}$	【Strategic Plan 2021-2026】
	6 and Data Collection List.	
6	Kindly fill in the details for the overview of water	[Attachment 1 to 6]
	supply facilities as shown in Attachment 1 to 6.	
7	What is the reason for the inactive connections?	■ No payment
		□ No water due to technical problem such as no
		pressure, blockages and so on
		■ There is any other alternative source.
		□ Deactivate the account during rainy season
		■ Any other reason, if any please specify
		Customer's request for termination of account
8	What kind of sensitization for the inactive connections	• Lipa pole (slow payment) initiative
	to reconnection have been carried out?	Come we talk approach

No.	Questions	Answers
9	Kindly provide the current total water demand (m³/day)	Nt (May 2022) = P (Jan 2022) x ert
	with calculation method and excel file.	Nt = Future Population, P = Current Population
		e = Exponential, r = Population Growth Rate
		t = Time
		P (Jan 2022) x ert = Nt (May 2022)
		236019 x 2.718(0.014x4/12) = 237,123 heads
		Water Demand = Population x Consumption
		Domestic Demand = 237,123x0.1 m ³ /day
		Domestic Water Demand = 23,713 m ³ /day
		For industries, irrigation and animals the
		estimated demand is 15,000 m ³ /day
		Total Current Water Demand 38,713 m ³ /day
10	Kindly provide the details for the water demand	$P_{(2022)} \times e^{rt} = Nt_{(2032)}$
	projection with calculation method and excel file.	$236,019 \times 2.718^{(0.014\times10)} = 27,149 \text{ m}^3/\text{day}$
		For industries, irrigation and animals the
		projected demand is 18,000 m ³ /day
		Total Projected Water Demand 45,148 m³/day
11	Challenges Faced in the Water Supply Facilities	☐ Enough to develop the future demand
	1) Potential of Water Source	□ Enough for current demand
		■ Not enough
		■ Need additional water sources
	2) Raw Water Quality	☐ Meet the standard for drinking purpose
		■ Meeting the standard but deteriorating
	3) Intake Facility	
	Intake Volume	☐ Sufficient for future water demand
		□ Sufficient for current demand
		■ Not sufficient for current demand
	Facility Condition	■ Good
		□ Fair
		☐ Deteriorating but can utilize
		☐ Need rehabilitation and augmentation

	Questions	Answers		
ĺ	4) Raw Water Transmission System			
	Transmission Volume	□ Sufficient for future water demand		
		□ Sufficient for current demand		
		■ Not sufficient for current demand		
	Facility Condition	□ Good		
		□ Fair		
		■ Deteriorating but can utilize		
		□ Need rehabilitation and augmentation		
	5) Water Treatment Plant			
	Treatment Volume	□ Sufficient for future water demand		
		□ Sufficient for current demand		
		■ Not sufficient for current demand		
	Facility Condition	□ Good		
		□ Fair		
		□ Deteriorating but can utilize		
		■ Need rehabilitation and augmentation		
	6) Water Distribution Systems			
	Water Pressure	☐ Meeting the standards for water pressure		
		■ Not all area meeting the standards for water		
		pressure		
		☐ Not meeting the standard when high demand		
		□ Not meeting the standard		
	7) Household Connection	□ Using the saddle clamp with cock		
		■ Using the saddle clam		
		■ Using the tee		
	8) Water Meter	■ Using the piston type		
		□ Using propeller type		
		Reason of selecting above: Its more accurate		
		and also measures low volumes		

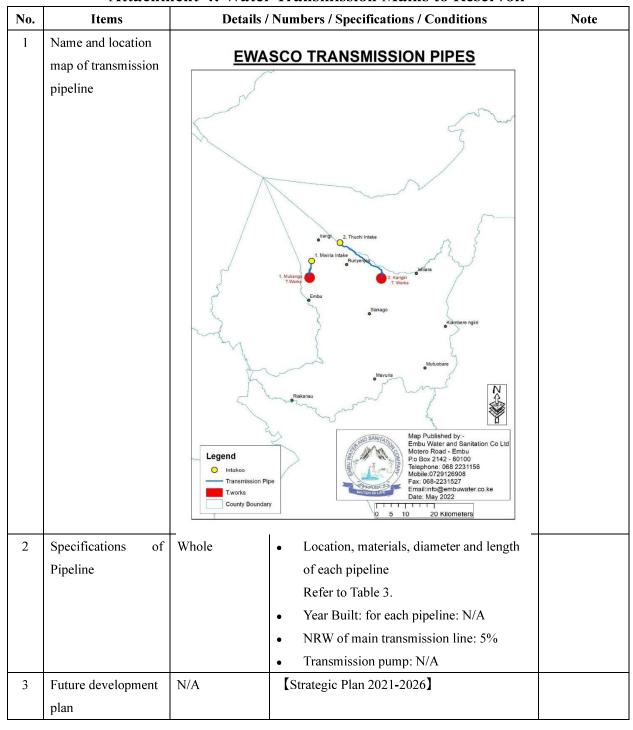

No.	Questions	Answers
	9) Non-Revenue Water (NRW)	
	Reason and each percentage	■ Old pipe
		□ Poor material use
		■ High pressure
		■ Meter inaccuracy
		■ Illegal connection
		■ Poor workmanship
		□ Others
	10) Billing System	
	How do you read the water meter?	□ By manual
		■ By smart Phone
		□ By smart meter
	What kind of software for billing system is using?	☐ Enterprise Resource Planning (ERP)
		■ JICS
		□ Other

Attachment-1: Main Water Source

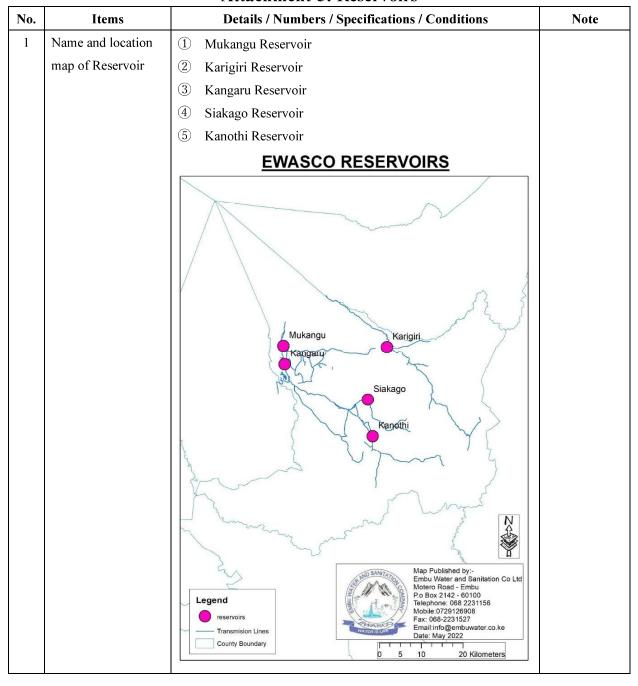

No.	Items	Details / Numbers / Specifications / Conditions	Note
1	Name and location	① Rupingazi River Intake	
	map of water source	② Thuchi River Intake	
	and intake facility	EWASCO (KENYA) INTAKES LOCATION	
		INTAKE 1 Is on River Rupingazi Map Published By: Embu Water and Sacilation Co Lts Moter Road - Embu Thuchi Thuchi Map Published By: Embu Water and Sacilation Co Lts Moter Road - Embu Thuchi The Sacrific Research Thuchi The Sacrific Research Thuchi The Sacrific Research Thuchi The Sacrific Research Thuchi Thuchi The Sacrific Research Thuchi The Sacrific Research Thuchi The Sacrific Research Thuchi The Sacrific Research Thuchi Th	
2	Specifications of		
	water source and	• Intake capacity: 1,200 m³/hour, 28,000	
	intake facility	Intake m ³ /day	
		Year Built: Dec 2006 and upgraded in 2012	
		• Streuture of intake facility (Elevation +1671	
		masl):	
		 Intake well: 2 m × 7 m × 15 m × 1 Grit chamber: 1.5 m × 1.5 m × 3 m 	
		◆ Grit chamber: 1.5 m × 1.5 m × 3 m ◆ Pump: N/A	
		▼ rump. tv/A	

		② Thuchi	• Water source capacity: 1.2 mil m³/day	
		River	• Intake capacity: 500 m ³ /hour, 12,000 m ³ /day	
		Intake	Year Built: Dec 2010	
			Structure of intake facility (Elevation +1614	
			masl):	
			• Intake well: $1.5 \text{ m} \times 8 \text{ m} \times 18 \text{ m} \times 1$	
			◆ Grit chamber: 1.5 m × 1.5 m × 3 m	
			◆ Pump: N/A	
3	Outstanding annual	N/A	• Maximum intake: 1,500 m ³ /h, April in 2020	
	and seasonal		• Minimum intake: 500 m³/h, October in 2020	
	fluctuation / trend, if		Permanent river or seasonal river:	
	any		Permanent river	
4	Future development	N/A	【Strategic Plan 2021-2026】	
	plan			

Attachment-2: Management Structure and Area of Coverage

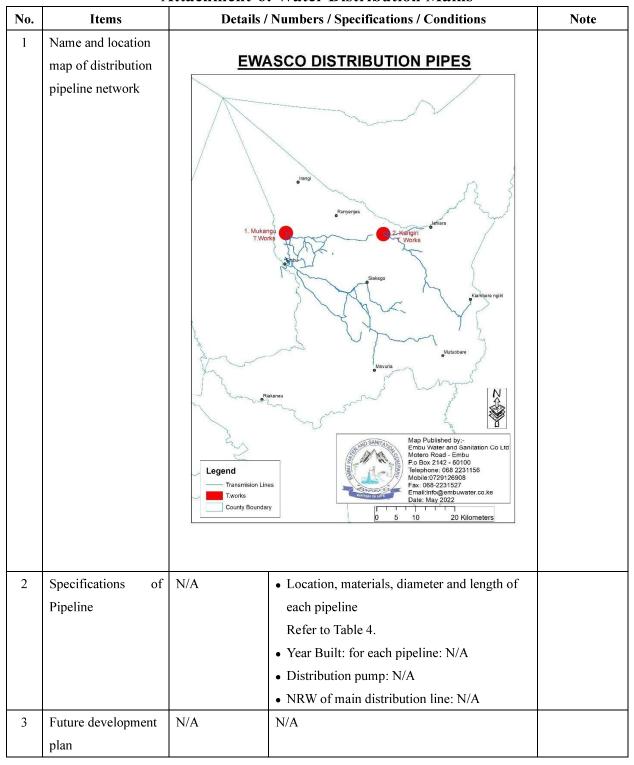


Attachment-3: Water Treatment Plant (WTP)



3	Water treatment	1	Mukangu	Utilization of plant capacity: 85 %
	conditions		WTP	Hours for WTP Utilization: 24
				Flow diagram of the water treatment process:
				N/A
				Type and amount of chemicals used during
				the process (2020) for during the dry and
				rainy seasons:
				◆ PAC: 350 kg/day
				◆ Sodium hypochlorite: 30 kg/day
				◆ Concentrated sulfuric acid: 550 kg/day
				◆ Lime: 60 kg/day
				Annual Operation and maintenance cost and
				its breakdown: N/A
				◆ Labor cost: N/A
				◆ Chemical cost: N/A
				Electricity cost: N/A
				◆ Maintenance cost: N/A
				◆ Other cost: N/A
		2	Karigiri	N/A
			WTP	
4	Water quality test	1	Mukangu	Main items to be tested in each process and
			WTP	frequency of the test (raw water, after
				treatment and so on):
				Refer to
				Table 1.
				Compliance with water quality standards:
				Refer to Table 2.
		2	Karigiri	N/A
			WTP	
5	Future development	N/A	1	【Strategic Plan 2021-2026】
	plan			
1	i e	1		i I

Attachment-4: Water Transmission Mains to Reservoir



Attachment-5: Reservoirs

2	Specifications of	1	Mukangu	Current capacity: N/A
	reservoir		Reservoir	Year Built: N/A
		② Karigiri		Structure of main facility:
			Reservoir	◆ Reservoir: N/A
		3	Kangaru	Distribution pump: N/A
			Reservoir	◆ Water flow measurement facility: N/A
		4	Siakago	◆ Generator facility: N/A
			Reservoir	
		(5)	Kanothi	
			Reservoir	
3	Operation and	1	Mukangu	Flow diagram of reservoir: N/A
	maintenance and		Reservoir	Type and amount of chemicals used before
	Water quality test	2	Karigiri	distribution if any: N/A
			Reservoir	Sodium hypochlorite: N/A
		3	Kangaru	Annual Operation and maintenance cost and
			Reservoir	its breakdown: N/A
		4	Siakago	◆ Labor / maintenance cost: N/A
			Reservoir	Electricity cost: N/A
		(5)	Kanothi	◆ Other cost: N/A
			Reservoir	Main items to be tested in reservoir: N/A
				Compliance with water quality standards:
				N/A
4	Future development	N/A	\ \	N/A
	plan			

Attachment-6: Water Distribution Mains

Table 1 Water Quality

PARAMETER	UNITS	PROCESS	FREQUENCY	KENYA STANDARD (Maximum)	
		Raw, Treated	Bi-hourly		
Turbidity	NTU	Clarified, Filtered	Twice /Day	5	
		Consumer points	Twice/ week		
		Raw, Treated	Bihourly		
PH	-	Clarified, Filtered	Twice /Day	6.5 -8.5	
		Consumer points	Twice/ week		
		Raw, Treated	Bihourly		
Temperature	°C	Clarified, Filtered	Twice /Day	-	
		Consumer points	Twice/ week		
		Raw, Treated	Bihourly	15	
Color	PCU	Clarified, Filtered	Twice /Day		
		Consumer points	Twice/ week		
Total	mg/L	Raw, Treated	Bihourly		
Dissolved		Clarified, Filtered	Twice /Day	1000	
units		Consumer points	Twice/ week		
Total Hardness	ma/I	Raw, Treated	Twice /Day	200	
Total Hardness	mg/L	Consumer points	Twice/ week	300	
Managina	/T	Raw, Treated	Twice /Day	100	
Magnesium	mg/L	Consumer points	Twice/ week	100	
Residual	/፲	Treated	Twice /Day	0.2	
Chlorine	mg/L	Consumer points	Twice/ week	0.2	
Fecal	MPN/100ML	Treated	Once /Day	Not detectable	
Coliform	WIPIN/TUUMIL	Consumer points	Twice/ week	not detectable	
Nitrata	ma/I	Raw, Treated	Twice /Day	50	
Nitrate	mg/L	Consumer points	Twice/ week	50	

Source: EWASCO

Table 2 Compliance with Water Quality Standards

EWASCO Network	No. of tests	No. of tests conducted	No. of tests within Kenya Standards
Residual Chlorine	900	1,390	956
Bacteriological	372	474	450
PH & Turbidity	480	2,772	2,718
Other physiochemical tests	92	478	478

Source: EWASCO

Table 3 Transmission Pipe

EWASCO TRANSMISSION PIPE LENGTHS BREAKDOWN (METERS)									
SIZE (mm) G.I D.I P.V.C H.D.P.E SHARE TOTAL YEAR									
DN500		5,887			1.29	5,887	2010 to 2012		
DN355			5,900.00		1.30	5,900	2007 to 2010		
DN200	218		22,036		4.89	22,254	2010 to 2012		

Source: EWASCO

Table 4 Distribution Pipe

	EWASCO TRANSMISSION PIPE LENGTHS BREAKDOWN (METERS)									
SIZE (mm)	SIZE (mm) G.I D.I P.V.C H.D.P.E SHARE TOTAL									
DN315	18		39,296		8.64	39,314	2010 to 2012			
DN250	54		9,337		2.06	9,391	2010 to 2012			
DN225	107		53,118		11.70	53,225	2010 to 2012			
DN160	314		136,842	4,012	31.02	141,168	1973, 2010 to 2012			
DN110	334		67,750	4,012	15.84	72,096	1973, 2010 to 2012			
DN90	356		95,403	10113	23.26	105,872	1973, 2010 to 2012			
TOTALS	1,183	-	401,746	18,137	92.52	421,066				

Source: EWASCO

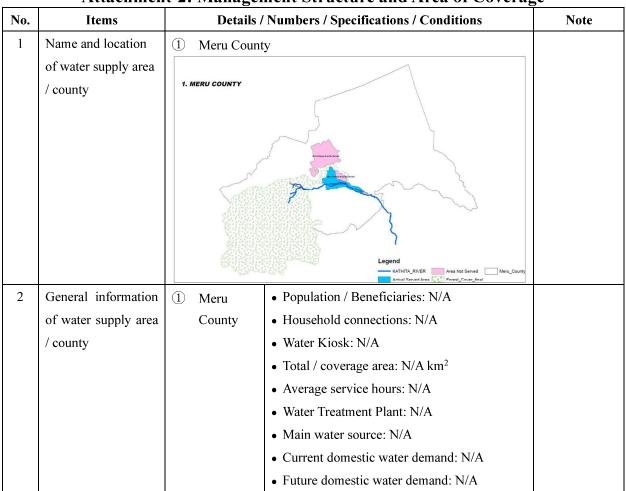
WSP-2

Meru WSP (MEWASS)

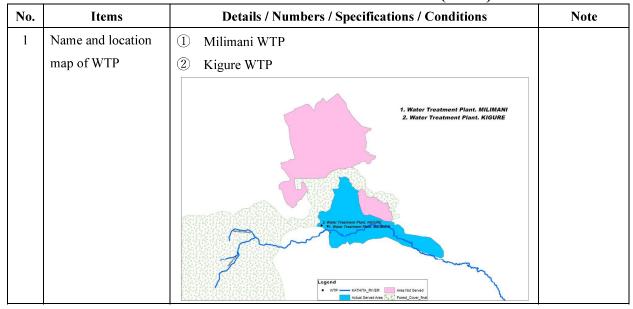
Project for Strengthening Capacity of Water Service Providers on Formulating Bankable Project Plans

Questionnaire (MEWASS)

No.	Questions	Answers
1	Are you willing to borrow the money from	Yes.
	commercial bank when selected as target WSP?	
2	Kindly specify last 10 years project with major project	N/A
	comportment and amount, and source of fund for each	
	project.	
3	Kindly provide the WSP long term plan with annual	N/A
	budget for O&M and investment for water supply	
	system.	
4	Do you currently offer or intended to be offer any fund	N/A
	from doner, AOB, OBA, KPWF, own fund or any	
	others? If yes, kindly provide the detail.	
5	Kindly provide the documents <u>listed in Attachment 1 to</u>	N/A
	6 and Data Collection List.	
6	Kindly fill in the details for the overview of water	[Attachment 1 to 6]
	supply facilities <u>as shown in Attachment 1 to 6</u> .	
7	What is the reason for the inactive connections?	□ No payment
		□ No water due to technical problem such as no
		pressure, blockages and so on
		☐ There is any other alternative source.
		☐ Deactivate the account during rainy season
		☐ Any other reason, if any please specify
8	What kind of sensitization for the inactive connections	N/A
	to reconnection have been carried out?	
9	Kindly provide the current total water demand (m³/day)	N/A
	with calculation method and excel file.	
10	Kindly provide the details for the water demand	N/A
	projection with calculation method and excel file.	
11	Challenges Faced in the Water Supply Facilities	
	1) Potential of Water Source	□ Enough to develop the future demand
		☐ Enough for current demand
		□ Not enough
		□ Need additional water sources


No.	Questions	Answers
	2) Raw Water Quality	☐ Meet the standard for drinking purpose
		☐ Meeting the standard but deteriorating
	3) Intake Facility	
	Intake Volume	☐ Sufficient for future water demand
		□ Sufficient for current demand
		□ Not sufficient for current demand
	Facility Condition	□ Good
		□ Fair
		☐ Deteriorating but can utilize
		☐ Need rehabilitation and augmentation
	4) Raw Water Transmission System	
	Transmission Volume	□ Sufficient for future water demand
		□ Sufficient for current demand
		□ Not sufficient for current demand
	Facility Condition	□ Good
		□ Fair
		□ Deteriorating but can utilize
		□ Need rehabilitation and augmentation
	5) Water Treatment Plant	
	Treatment Volume	☐ Sufficient for future water demand
		□ Sufficient for current demand
		□ Not sufficient for current demand
	Facility Condition	□ Good
	1 active Condition	□ Fair
		☐ Deteriorating but can utilize
		□ Need rehabilitation and augmentation
	6) Water Distribution Systems	Need fenabilitation and augmentation
	Water Distribution Systems Water Pressure	Maeting the standards for water pressure
	water riessure	☐ Meeting the standards for water pressure
		□ Not all area meeting the standards for water
		pressure
		□ Not meeting the standard when high demand
		□ Not meeting the standard

No.	Questions	Answers
	7) Household Connection	☐ Using the saddle clamp with cock
		□ Using the saddle clam
		□ Using the tee
	8) Water Meter	□ Using the piston type
		□ Using propeller type
		Reason of selecting above:
	9) Non-Revenue Water (NRW)	
	Reason and each percentage	□ Old pipe
		□ Poor material use
		☐ High pressure
		□ Meter inaccuracy
		□ Illegal connection
		□ Poor workmanship
		□ Others
	10) Billing System	
	How do you read the water meter?	□ By manual
		□ By smart Phone
		□ By smart meter
	What kind of software for billing system is using?	
		☐ Enterprise Resource Planning (ERP)
		□ JICS
		□ Other


Attachment-1: Main Water Source

No.	Items	Details /	Numbers / Specifications / Conditions	Note
1	Name and location	① Kathita River		
	map of water source	② Gatobora Sp	oring	
	and intake facility	1. Kathita River. 2. Gatobora Spring. Legend Gatobora Spring Make MATHIA RIVER Area Not Served		
2	Specifications of	① Kathita	Water source capacity: N/A m³/day	
	water source and	River	• Intake capacity: N/A m³/hour, N/A m³/day	
	intake facility	② Gatobora	• Year Built: N/A	
		Spring	Streuture of intake facility (Elevation + N/A)	
			masl):	
			◆ Intake well: N/A	
			◆ Grit chamber: N/A	
			◆ Pump: N/A	
3	Outstanding annual	N/A	Maximum intake: N/A	
	and seasonal		Minimum intake: N/A	
	fluctuation / trend, if		Permanent river or seasonal river: N/A	
	any			
4	Future development	N/A	N/A	
	plan			

Attachment-2: Management Structure and Area of Coverage

Attachment-3: Water Treatment Plant (WTP)

WTP (2) Kigure WTP (3) Kigure WTP (4) Water treatment conditions (5) Milimani conditions (6) Wigure WTP (7) Wigure WTP (8) Kigure WTP (9) Kigure WTP (1) Milimani conditions (1) Milimani conditions (2) Kigure WTP (3) Kigure WTP (4) Water quality test (5) Milimani WTP (8) Kigure WTP (9) Kigure WTP (1) Milimani WTP (2) Kigure WTP (3) Kigure WTP (4) Water quality test (5) Milimani WTP (8) Kigure WTP (9) Kigure WTP (1) Milimani WTP (2) Kigure WTP (3) Milimani WTP (4) Water quality test (5) Milimani WTP (6) Kigure WTP (7) Kigure WTP (8) Kigure WTP (9) Kigure WTP (1) Milimani WTP (2) Kigure WTP (3) Milimani WTP (4) Water quality test (5) Milimani WTP (8) Kigure WTP (9) Kigure WTP (1) Milimani WTP (2) Kigure WTP (3) Milimani WTP (4) Water quality test (5) Milimani WTP (6) Kigure WTP (7) Milimani WTP (8) Kigure WTP (9) Kigure WTP (1) Milimani WTP (2) Kigure WTP (3) Milimani WTP (4) Water quality test (5) Milimani WTP (8) Kigure WTP (9) Kigure WTP (1) Milimani WTP (2) Kigure WTP (3) Milimani WTP (4) Water quality test (5) Milimani WTP (8) Kigure WTP (9) Kigure WTP (1) Milimani WTP (2) Kigure WTP (3) Milimani WTP (4) Water quality test (5) Milimani WTP (8) Concentrated sulfuric acid: N/A %/day (6) Chemical cost: N/A (7) Hours for WTP Utilization of plant capacity: N/A % (7) Hours for WTP Utilization of Plant capacity: N/A % (8) Hours for WTP Utilization of Plant capacity: N/A % (8) Hours for WTP Utilization of Plant capacity: N/A % (8) Hours for WTP Utilization of Plant capacity: N/A % (8) Hours for WTP Utilization of Plant capacity: N/A % (8) Hours for WTP Utilization of Plant capacity: N/A % (9) Hours for WTP Utilization of Plant capacity: N/A % (6) Hours for WTP Utilization of Plant capacity: N/A % (7) Hours for WTP Utilization of Plant capacity: N/A % (8) Hours for WTP Utilization of Plant capacity: N/A water under the water treatment popularity N/A (8) Hours for WTP Utilization of Plant capacity: N/A water under the water treatment popul	2	Specifications of	1)	Milimani	• Type of treatment: N/A		
Design treatment capacity: N/A m³/day Year Built: N/A Structure of main facility: N/A % Hours for WTP Utilization: N/A Hours for WTP Utilization: N/A Flow diagram of the water treatment process: N/A Type and amount of chemicals used during the process for during the dry and rainy seasons: PAC: N/A kg/day Sodium hypochlorite: N/A kg/day Concentrated sulfuric acid: N/A kg/day Lime: N/A kg/day Annual Operation and maintenance cost and its breakdown: N/A Labor cost: N/A Chemical cost: N/A Maintenance cost: N/A Other cost: N/A Maintenance cost: N/A Other cost: N/A		•	•				
• Year Built: N/A • Structure of main facility: N/A % • Structure of plant capacity: N/A % • Hours for WTP Utilization: N/A • Hours for WTP Utilization: N/A • Flow diagram of the water treatment process: N/A • Type and amount of chemicals used during the process for during the dry and rainy seasons: • PAC: N/A kg/day • Sodium hypochlorite: N/A kg/day • Concentrated sulfuric acid: N/A kg/day • Lime: N/A kg/day • Annual Operation and maintenance cost and its breakdown: N/A • Labor cost: N/A • Chemical cost: N/A • Chemical cost: N/A • Other cost: N/A • Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00		W 11	②		_	•	
Structure of main facility: N/A Water treatment conditions By Rigure WTP By Rigure WTP Parameter WTP Strigure WTP Water quality test WTP Structure of main facility: N/A % Hours for WTP Utilization: N/A Flow diagram of the water treatment process: N/A Type and amount of chemicals used during the process for during the dry and rainy seasons: PAC: N/A kg/day Sodium hypochlorite: N/A kg/day Concentrated sulfuric acid: N/A kg/day Lime: N/A kg/day Annual Operation and maintenance cost and its breakdown: N/A Electricity cost: N/A Other cost: N/A Other cost: N/A Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00			1)	_			
### Water quality test Water quality test Williamani wTP Wi				** **			
conditions WTP (2) Kigure WTP WTP (3) Kigure WTP WTP (4) Hours for WTP Utilization: N/A • Flow diagram of the water treatment process: N/A • Type and amount of chemicals used during the process for during the dry and rainy seasons: • PAC: N/A kg/day • Sodium hypochlorite: N/A kg/day • Concentrated sulfuric acid: N/A kg/day • Lime: N/A kg/day • Annual Operation and maintenance cost and its breakdown: N/A • Labor cost: N/A • Chemical cost: N/A • Maintenance cost: N/A • Other cost: N/A • Other cost: N/A • Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A • Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00	3	Water treatment	<u>(1)</u>	Milimoni			
Flow diagram of the water treatment process: N/A • Type and amount of chemicals used during the process for during the dry and rainy seasons: • PAC: N/A kg/day • Sodium hypochlorite: N/A kg/day • Concentrated sulfuric acid: N/A kg/day • Lime: N/A kg/day • Annual Operation and maintenance cost and its breakdown: N/A • Labor cost: N/A • Chemical cost: N/A • Other cost: N/A • Other cost: N/A • Maintenance cost: N/A • Other cost: N/A • Maintenance water, after treatment and so on): N/A • Compliance with water quality standards: Parameter Compliance (%)			1)			-	
WTP N/A Type and amount of chemicals used during the process for during the dry and rainy seasons: PAC: N/A kg/day Sodium hypochlorite: N/A kg/day Concentrated sulfuric acid: N/A kg/day Lime: N/A kg/day Annual Operation and maintenance cost and its breakdown: N/A Labor cost: N/A Chemical cost: N/A Chemical cost: N/A Chemical cost: N/A Maintenance cost: N/A Other cost: N/A Other cost: N/A Maintenance cost: N/A Other cost: N/A Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 PH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00 Chemical 100.00		Conditions	②				
Type and amount of chemicals used during the process for during the dry and rainy seasons: PAC: N/A kg/day Sodium hypochlorite: N/A kg/day Concentrated sulfuric acid: N/A kg/day Lime: N/A kg/day Lime: N/A kg/day Annual Operation and maintenance cost and its breakdown: N/A Labor cost: N/A Chemical cost: N/A Electricity cost: N/A Maintenance cost: N/A Maintenance cost: N/A Maintenance cost: N/A Maintenance cost: N/A Cother cost: N/A Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 PH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00			1	_		iter treatment process.	
seasons: PAC: N/A kg/day Sodium hypochlorite: N/A kg/day Concentrated sulfuric acid: N/A kg/day Lime: N/A kg/day Annual Operation and maintenance cost and its breakdown: N/A Labor cost: N/A Chemical cost: N/A Chemical cost: N/A Maintenance cost: N/A Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 PH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					Type and amount of che	emicals used during	
PAC: N/A kg/day Sodium hypochlorite: N/A kg/day Concentrated sulfuric acid: N/A kg/day Lime: N/A kg/day Annual Operation and maintenance cost and its breakdown: N/A Labor cost: N/A Chemical cost: N/A Electricity cost: N/A Maintenance cost: N/A Other cost: N/A Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A Kigure WTP Kigure WTP WTP Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					the process for during the	he dry and rainy	
Sodium hypochlorite: N/A kg/day Concentrated sulfuric acid: N/A kg/day Lime: N/A kg/day Annual Operation and maintenance cost and its breakdown: N/A Labor cost: N/A Chemical cost: N/A Electricity cost: N/A Maintenance cost: N/A Other cost: N/A Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					seasons:		
Concentrated sulfuric acid: N/A kg/day Lime: N/A kg/day Annual Operation and maintenance cost and its breakdown: N/A Labor cost: N/A Labor cost: N/A Electricity cost: N/A Electricity cost: N/A Maintenance cost: N/A Other cost: N/A Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					◆ PAC: N/A kg/day		
Lime: N/A kg/day Annual Operation and maintenance cost and its breakdown: N/A Labor cost: N/A Chemical cost: N/A Maintenance cost: N/A Maintenance cost: N/A Other cost: N/A Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					Sodium hypochlorite	e: N/A kg/day	
Annual Operation and maintenance cost and its breakdown: N/A Labor cost: N/A Chemical cost: N/A Maintenance cost: N/A Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					Concentrated sulfuri	c acid: N/A kg/day	
its breakdown: N/A • Labor cost: N/A • Chemical cost: N/A • Chemical cost: N/A • Maintenance cost: N/A • Other cost: N/A • Other cost: N/A • Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A • Compliance with water quality standards: Parameter Compliance (%)					◆ Lime: N/A kg/day		
Labor cost: N/A Chemical cost: N/A Electricity cost: N/A Maintenance cost: N/A Other cost: N/A Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00 Chemical 100.00 Chemical 100.00 Chemical 100.00 Colour 100.00 Colo					Annual Operation and r	maintenance cost and	
Chemical cost: N/A Electricity cost: N/A Maintenance cost: N/A Other cost: N/A Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					its breakdown: N/A		
Water quality test Water quality test Omega					◆ Labor cost: N/A		
 ◆ Maintenance cost: N/A ◆ Other cost: N/A 4 Water quality test ① Milimani WTP ② Kigure WTP ② Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00 					◆ Chemical cost: N/A		
◆ Other cost: N/A 4 Water quality test ① Milimani WTP ② Kigure WTP ② Compliance with water quality standards: Parameter Parameter Compliance (%) Residue Chlorine Bacteriologicals Tests 100.00 Bacteriologicals Tests 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					◆ Electricity cost: N/A		
4 Water quality test ① Milimani WTP ② Kigure WTP • Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A • Compliance with water quality standards: Parameter Compliance (%) Residue Chlorine Bacteriologicals Tests 100.00 pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					◆ Maintenance cost: N/A		
WTP (2) Kigure WTP (3) Example (Compliance with water quality standards: (4) Parameter (5) Residue Chlorine (6) Bacteriologicals Tests (7) Description (Colour Pop.94) (8) Turbidity (9) Turbidity (100.00) (10					◆ Other cost: N/A		
Turbidity 100.00 Chemical 100.00 Chemical 100.00 100	4	Water quality test	1	Milimani	Main items to be tested	in each process and	
WTP • Compliance with water quality standards: Parameter Compliance (%)				WTP	frequency of the test (ra	w water, after	
Parameter Compliance (%) Residue Chlorine 100.00 Bacteriologicals Tests 100.00 pH			2	Kigure	·		
Residue Chlorine				WTP	Compliance with water	quality standards:	
Bacteriologicals Tests 100.00 pH					Parameter	Compliance (%)	
pH 100.00 Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					Residue Chlorine	100.00	
Colour 99.94 Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					Bacteriologicals Tests	100.00	
Turbidity 90.70 Alkalinity 100.00 Chemical 100.00					pН	100.00	
Alkalinity 100.00 Chemical 100.00					Colour	99.94	
Chemical 100.00					Turbidity 90.70		
, , , , , , , , , , , , , , , , , , ,					Chemical	100.00	
5 Future development N/A N/A	5	Future development	N/A	1	N/A		
plan		plan					

Attachment-4: Water Transmission Mains to Reservoir

No.	Items	Details / Numbers / Specifications / Conditions		Note
1	Name and location	① Junction to ST-03		
	map of transmission	② HLT to ST-01		
	pipeline	③ ST-01 to ST-02		
		④ ST-01 (Butterfly) to ST		
		⑤ ST-04		
		6 HLT to ST-08		
		7 WTP - HLT		
			Capital Capi	
2	Specifications of	① Junction • Loc	ation, materials, diameter and length	
	Pipeline	to ST-03 of e	ach pipeline: N/A	
		② HLT to Yea	r Built: for each pipeline: N/A	
		ST-01 • NR	W of main transmission line: 5%	
			nsmission pump: N/A	
		ST-02		
		④ ST-01		
		(Butterfly) to ST-02		
		⑤ ST-04		
		6 HLT to		
		ST-08		
		7 WTP -		
		HLT		
3	Future development	N/A N/A		
	plan			

Attachment-5: Reservoirs

No.	Items	Details	/ Numbers / Specifications / Conditions	Note
1	Name and location map of Reservoir	N/A		
2	Specifications of reservoir	N/A	 Current capacity: Refer to Table 1. Year Built: Refer to Table 1. Structure of main facility: Reservoir: N/A Distribution pump: N/A Water flow measurement facility: N/A Generator facility: N/A 	
3	Operation and maintenance and Water quality test	N/A	 Flow diagram of reservoir: N/A Type and amount of chemicals used before distribution if any: N/A Sodium hypochlorite: N/A Annual Operation and maintenance cost and its breakdown: N/A Labor / maintenance cost: N/A Electricity cost: N/A Other cost: N/A Main items to be tested in reservoir: N/A Compliance with water quality standard: N/A 	
4	Future development plan	N/A	N/A	

Attachment-6: Water Distribution Mains

No.	Items	Details	/ Numbers / Specifications / Conditions	Note
1	Name and location map of distribution pipeline network	N/A		
2	Specifications of Pipeline	N/A	 Location, materials, diameter and length of each pipeline: N/A Year Built: for each pipeline: N/A Distribution pump: N/A NRW of main distribution line: N/A 	
3	Future development plan	N/A	N/A	

Table 1 MEWASS Storage Facilities

	MEWASS STORAGE FACILITIES						
Location (area)	Туре	Year of installation	Capacity (m ³)	In use/not in use (reason)			
Milimani	Reinforced Concrete	2017	500	In use			
Milimani	Masonry	1985	455	In use			
Milimani	Masonry	1985	395	In use			
Milimani	Masonry	1985	91	In use			
Milimani	Elevated Steel Tank	2003	80	In use			
Kigure	Elevated Steel Tank	2003	150	In use			
Kigure	Masonry	2016	80	In use			
Kigure	Masonry	1985	215	In use			
Kigure	Masonry	1985	215	In use			
Irinda	Reinforced Concrete	2003	242	In use			
Gakoromone	Reinforced Concrete	2003	242	In use			
Kaaga	Elevated Steel Tank	200	170	In use			
Kenya Re	Masonry	1992	1000	In use			
Kinoru	Reinforced Concrete	2003	988	In use			
Giaki	Masonry	2016	125	In use			
	TOTAL		4,868.00				

Source: MEWASS

WSP-3

Ngagaka WSP (NGAWASCO)

Project for Strengthening Capacity of Water Service Providers on Formulating Bankable Project Plans

Questionnaire (NGAWASCO)

No.	Questions	Answers
1	Are you willing to borrow the money from	Yes
	commercial bank when selected as target WSP?	
2	Kindly specify last 10 years project with major project	Irangi Pipeline (CDF & NGAWASCO, KES
	comportment and amount, and source of fund for each	70 million)
	project.	Intake:14 km transmission main (DN 250),
		Distribution:10km (DN 160) ,11.2 km (DN
		100) and 110.6 km (DN 20 – 75)
3	Kindly provide the WSP long term plan with annual	【Strategic Plan 2019-2024】
	budget for O&M and investment for water supply	
	system.	
4	Do you currently offer or intended to be offer any fund	No.
	from doner, AOB, OBA, KPWF, own fund or any	
	others? If yes, kindly provide the detail.	
5	Kindly provide the documents <u>listed in Attachment 1 to</u>	Noted.
	6 and Data Collection List.	
6	Kindly fill in the details for the overview of water	[Attachment 1 to 6]
	supply facilities <u>as shown in Attachment 1 to 6</u> .	
7	What is the reason for the inactive connections?	■ No payment
		☐ No water due to technical problem such as no
		pressure, blockages and so on
		■ There is any other alternative source.
		☐ Deactivate the account during rainy season
		■ Any other reason, if any please specify
		Disconnection on owner's request
8	What kind of sensitization for the inactive connections	Customer's negotiated agreement with
	to reconnection have been carried out?	structured payment to offset arrears and
		paying current bill.
9	Kindly provide the current total water demand (m³/day)	Current total water demand: 8,100 m ³ /day
	with calculation method and excel file.	
10	Kindly provide the details for the water demand	N/A
	projection with calculation method and excel file.	

No.	Questions	Answers
11	Challenges Faced in the Water Supply Facilities	■ Enough to develop the future demand
	1) Potential of Water Source	□ Enough for current demand
		□ Not enough
		□ Need additional water sources
	2) Raw Water Quality	☐ Meet the standard for drinking purpose
		■ Meeting the standard but deteriorating
	3) Intake Facility	
	Intake Volume	■ Sufficient for future water demand
		☐ Sufficient for current demand
		□ Not sufficient for current demand
	Facility Condition	□ Good
		■ Fair
		□ Deteriorating but can utilize
		□ Need rehabilitation and augmentation
	4) Raw Water Transmission System	
	Transmission Volume	☐ Sufficient for future water demand
		□ Sufficient for current demand
		■ Not sufficient for current demand
	Facility Condition	□ Good
	racinty condition	□ Fair
		□ Deteriorating but can utilize
		■ Need rehabilitation and augmentation
	5) Water Treatment Plant	
	Treatment Volume	☐ Sufficient for future water demand
	Treatment votame	□ Sufficient for current demand
		■ Not sufficient for current demand
		a rvot sufficient for current demand
	Facility Condition	□ Good
		□ Fair
		□ Deteriorating but can utilize
		■ Need rehabilitation and augmentation

No.	Questions	Answers
	6) Water Distribution Systems	☐ Meeting the standards for water pressure
	Water Pressure	■ Not all area meeting the standards for water
		pressure
		■ Not meeting the standard when high demand
		□ Not meeting the standard
	7) Household Connection	■ Using the saddle clamp with cock
		☐ Using the saddle clam
		■ Using the tee (with cock)
	8) Water Meter	■ Using the piston type
		■ Using propeller type
		Reason of selecting above: Water contains silt
		and debris.
	9) Non-Revenue Water (NRW)	■ Old pipe
	Reason and each percentage	■ Poor material use
		■ High pressure
		■ Meter inaccuracy
		■ Illegal connection
		□ Poor workmanship
		□ Others
	10) Billing System	□ By manual
	How do you read the water meter?	■ By smart Phone
		□ By smart meter
	What kind of software for billing system is using?	☐ Enterprise Resource Planning (ERP)
		□ JICS
		■ Other: Maji Voice

Attachment-1: Main Water Source

No.	Items	Details / I	Numbers / Specifications / Conditions	Note
1	Name and location	① Thambana R	liver	Inside Mt.
	map of water source			Kenya forest
	and intake facility			
2	Specifications of	① Thambana	Water source capacity: N/A m³/day	
	water source and	River	• Intake capacity: 663 m³/hour, 15,912 m³/day	
	intake facility	(1982)	• Year Built: 1982 and 2012	
		② Kathambana	Structure of intake facility (Elevation	
		River	River +1,951m and 2,081 masl):	
		(2012)	(2012) ◆ Intake weir: 1 m × 1.5 m × 15 m × 2 no.	
			(Reinforced concrete)	
			◆ Grit chamber: N/A	
			◆ Pump: N/A	
3	Outstanding annual	Thambana River	Maximum intake: N/A	
	and seasonal	and Kathambana	Minimum intake: N/A	
	fluctuation / trend, if	River	ver • Permanent river or seasonal river:	
	any		Permanent river	
4	Future development	N/A	N/A	
	plan			

Attachment-2: Management Structure and Area of Coverage

No.	Items	Details /	Numbers / Specifications / Conditions	Note			
1	Name and location	① Ngagaka Wa	① Ngagaka Water Supply				
	of water supply area	Embu Coun	Embu County serving Ngandori, Gaturi & Kagaari locations.				
	/ county						
2	General information	Ngagaka,	Ngagaka, • Population / Beneficiaries (2020): 76,000				
	of water supply area	Embu County	Embu County • Household connections (2022): 11,120				
	/ county		Water Kiosk: N/A				
			• Total / coverage area: (2022): 80 km²				
			• Average service hours (2020): 23 hours				
			Water Treatment Plant: Kathuniri WTP				
			Main water source: Thambana River and				
			Kathambana River				
			Current domestic water demand (2022):				
			8,100 m ³ /day				
			• Future domestic water demand (2032):				
			10,213.8 m³/day				

Attachment-3: Water Treatment Plant (WTP)

No.	Items		Details / Numbers / Specifications / Conditions				
1	Name and	1	Kathuniri V	VTP			
	location map of	2	Proposed Ir	rangi WTP			
	WTP						
2	Specifications of	1	Kathuniri	Type of treatment: Partial treatment with baffled			
	WTP		WTP	sedimentation + chlorine disinfection			
				• Current treatment capacity (2022): 6,048 m³/day			
				• Design treatment capacity (2022): 6,825 m³/day			
				Year Built: 1982			
				Structure of main facility			
				Sedimentation basin: 100 m³, 8 m× 8 m× 1.8 m,			
				Baffled, RC			
				Retention raw water tank: 225 m³, 10.7 m			
				diameter, masonary			
3	Water treatment	1	Kathuniri	Utilization of plant capacity: 89 %			
	conditions		WTP	Hours for WTP Utilization: 24			
				• Flow diagram of the water treatment process:			
				Sedimentation/Chlorination/Transmission/			
				Distribution			

				 Type and amount of chemicals used during the process (2020) for during the dry and rainy seasons: PAC: N/A Sodium hypochlorite: 6.5 kg/day Concentrated sulfuric acid: N/A Lime: N/A
				Annual Operation and maintenance cost and its
				breakdown: N/A
				◆ Labor cost: N/A
				◆ Chemical cost: N/A
				Electricity cost: N/A
				◆ Maintenance cost: N/A
				• Other cost: N/A
4	Water quality test	1	Kathuniri	Main items to be tested in each process and
			WTP	frequency of the test (raw water, after treatment
				and so on): N/A
				Compliance with water quality standards: N/A
5	Future	1	IRANGI	• Treatment capacity: 6,912 m³/day (Additional)
	development plan		WTP	Target year: 2023
				Purpose: Reduce the loads of existing facility
				and to boost the water supply within Runyenjes
				Town to meet the demand in year 2032

Attachment-4: Water Transmission Mains to Reservoir

No.	Items		Details /	Numbers / Specifications / Conditions	Note		
1	Name and location	1	Kathuniri gr	ravity transmission line			
	map of transmission	2	Irangi gravit	ty transmission line			
	pipeline						
2	Specifications of	1	Kathuniri	Location, materials, diameter and length			
	Pipeline		line	of each pipeline			
				Refer to Table 1.			
				Year Built: for each pipeline: 1982			
				NRW of main transmission line: N/A			
				Transmission pump: N/A			
		2	Irangi line	Location, materials, diameter and length			
				of each pipeline			
				Refer to Table 2.			
				Year Built: for each pipeline: 2012			
				NRW of main transmission line: N/A			
				Transmission pump: N/A			
3	Future development	1	Irangi line	Location, materials, diameter and length of			
	plan			each pipeline (additional / reconstruction)			
				(Please let us know by table.)			
				Scheduled year: 2023			
				Purpose: To boost the water supply within			
				Runyenjes Town to meet the demand in year			
				2032 and constructed in same period with			
				Irangi WTP			

Attachment-5: Reservoirs

No.	Items	Details /		Numbers / Specifications / Conditions	Note
1	Name and location	1	Kathande Ta	nks	
	map of Reservoir	2	Kathangari 7	Γanks	
		3	Kigumo Tan	k	
2	Specifications of	1	Kathande	• Current capacity: 100 m³	
	reservoir		Tanks	• Year Built: 1992	
				• Structure of main facility:	
				• Reservoir	
				Type: Ground	
				Material: Masonry	
				Size: 50 m^3 , $\times 2 \text{ no}$.	
				• Distribution pump: N/A	
				◆ Water flow measurement facility: N/A	
				◆ Generator facility: N/A	
		2	Kathangari	• Current capacity: 150 m³	
			Tanks	Fanks • Year Built: 1992	
				Structure of main facility:	
				◆ Tank	
				Type: Ground	
				Material: Masonry	
				Size: 50 m^3 , $\times 3 \text{ no}$.	
				• Distribution pump: N/A	
				◆ Water flow measurement facility: N/A	
				◆ Generator facility: N/A	
		3	Kigumo	• Current capacity: 50 m ³	
			Tank	• Year Built: 1992	
				• Structure of main facility:	
				◆ Tank	
				Type: Ground	
				Material: Masonry	
				Size: 50 m^3 , $\times 1$ no.	
				◆ Distribution pump: N/A	
				◆ Water flow measurement facility: N/A	
				◆ Generator facility: N/A	
3	Operation and	1	Kathande	• Flow diagram of reservoir: N/A	
	maintenance and		Tanks	Type and amount of chemicals used before	
	Water quality test			distribution if any: N/A	

				◆ Sodium hypochlorite: N/A	
				Annual Operation and maintenance cost and	
				its breakdown: N/A	
				◆ Labor / maintenance cost: N/A	
				• Electricity cost: N/A	
				• Other cost: N/A	
				Main items to be tested in reservoir: Chlorine	
				residual	
				Compliance with water quality standards:	
				N/A	
		2	Kathangari	Ditto	
			Tanks		
		(3)	Kigumo	Ditto	
			Tank		
4	Future development	1	Wanjira	• Design capacity: 225 m³ ×2no., RC (Steel)	
	plan		Tank	Scheduled year: 2024	
				• Purpose: retaining 450 m³ to boost the	
				service hour within Kevote and Kavutiri	
				Market Centres to meet the demand in year	
				2032.	

Attachment-6: Water Distribution Mains

No.	Items	Details	/ Numbers / Specifications / Conditions	Note		
1	Name and location map of distribution pipeline network	① Ngagaka di	Ngagaka distribution network			
2	Specifications of Pipeline	① Ngagaka lines	 Location, materials, diameter and length of each pipeline (Refer to Table 3.) Year Built: for each pipeline: N/A Distribution pump: N/A NRW of main distribution line: N/A 			
3	Future development plan	① Runyenjes lines	 Location, materials, diameter and length of each pipeline (additional). (Please let us know by table.) Scheduled year: 2023~2024 Purpose: To boost the water supply within Runyenjes Town to meet demand in 2032 			

Table 1 Transmission Lines (Kathuniri Line)

Transmission Lines							
Diameter (mm) HDPE PVC ST Total (km)							
250	-	1.1	-	1.1			

Source: NGAWASCO

Table 2 Transmission Lines (Irangi Line)

Transmission Lines							
Diameter (mm) HDPE PVC ST Total (km)							
250	-	14.0	-	14.0			

Source: NGAWASCO

Table 3 Distribution Lines (Ngagaka Line)

Distribution Lines							
Diameter (mm)	Year built.	HDPE	PVC	ST	Total (km)		
250	1982	-	5.5	-	5.5		
200	1982/2012	-	6.1	-	6.1		
160	2012	-	10	-	10.0		
100	1982/2012	-	24.5	-	24.5		
less than 100	2022/1982/2012	2.0	462.8	-	482.8		
SUM		2.0	508.9	-	510.9		

Source: NGAWASCO

WSP-4

Murang'a WSP (MUWASCO)

Project for Strengthening Capacity of Water Service Providers on Formulating Bankable Project Plans

Questionnaire (MUWASCO)

No.	Questions	Answers
1	Are you willing to borrow the money from	Yes
	commercial bank when selected as target WSP?	
2	Kindly specify last 10 years project with major project	Murang'a Urban Water Supply Project (Tana
	comportment and amount, and source of fund for each	WWDA / African Development Bank)
	project.	Irati intake: 15 km, steel raw water main
		(DN 350), 15,000 m ³ /day and clear water
		transmission mains
		Sewerage extension project including
		Maturation ponds: KES 175 million
		Water component: KES 514 million
3	Kindly provide the WSP long term plan with annual	[MUWASCO Budget Long-term Plan]
	budget for O&M and investment for water supply	
	system.	
4	Do you currently offer or intended to be offer any fund	Yes. AoD application to WSTF done (KES
	from doner, AOB, OBA, KPWF, own fund or any	149 million)
	others? If yes, kindly provide the detail.	
5	Kindly provide the documents $\underline{\text{listed in Attachment 1 to}}$	Noted.
	6 and Data Collection List.	
6	Kindly fill in the details for the overview of water	[Attachment 1 to 6]
	supply facilities <u>as shown in Attachment 1 to 6</u> .	
7	What is the reason for the inactive connections?	■ No payment
		■ No water due to technical problem such as no
		pressure, blockages and so on
		■ There is any other alternative source.
		☐ Deactivate the account during rainy season
		☐ Any other reason, if any please specify
8	What kind of sensitization for the inactive connections	Public Baraza
	to reconnection have been carried out?	Telephone calls
9	Kindly provide the current total water demand (m 3 /day)	Total Current Water Demand: 28,820 m ³ /day
	with calculation method and excel file.	Current Supply Area 15,000 m ³ /day
10	Kindly provide the details for the water demand	2030: 33,962 m³/day
	projection with calculation method and excel file.	2040: 41,715 m³/day
		2050: 51,259 m³/day

No.	Questions	Answers
11	Challenges Faced in the Water Supply Facilities	☐ Enough to develop the future demand
	1) Potential of Water Source	□ Enough for current demand
		□ Not enough
		■ Need additional water sources
	2) Raw Water Quality	■ Meet the standard for drinking purpose
		☐ Meeting the standard but deteriorating
	3) Intake Facility	
	Intake Volume	□ Sufficient for future water demand
		□ Sufficient for current demand
		■ Not sufficient for current demand
	Facility Condition	□ Good
		■ Fair
		□ Deteriorating but can utilize
		□ Need rehabilitation and augmentation
	4) Raw Water Transmission System	
	Transmission Volume	□ Sufficient for future water demand
		□ Sufficient for current demand
		■ Not sufficient for current demand
	Facility Condition	□ Good
	racing condition	■ Fair
		☐ Deteriorating but can utilize
		□ Need rehabilitation and augmentation
	5) Water Treatment Plant	
	Treatment Volume	□ Sufficient for future water demand
		□ Sufficient for current demand
		■ Not sufficient for current demand
	Facility Condition	□ Good
		■ Fair
		☐ Deteriorating but can utilize
		□ Need rehabilitation and augmentation

No.	Questions	Answers
	6) Water Distribution Systems	☐ Meeting the standards for water pressure
	Water Pressure	■ Not all area meeting the standards for water
		pressure
		□ Not meeting the standard when high demand
		□ Not meeting the standard
	7) Household Connection	■ Using the saddle clamp with cock
		☐ Using the saddle clam
		□ Using the tee
	8) Water Meter	■ Using the piston type
		☐ Using propeller type
		Reason of selecting above: Accuracy
	9) Non-Revenue Water (NRW)	■ Old pipe
	Reason and each percentage	□ Poor material use
		■ High pressure
		■ Meter inaccuracy
		■ Illegal connection
		□ Poor workmanship
		□ Others
	10) Billing System	□ By manual
	How do you read the water meter?	■ By smart Phone
		□ By smart meter
	What kind of software for billing system is using?	■ Enterprise Resource Planning (ERP)
		□ JICS
		□ Other

Attachment-1: Main Water Source

No.	Items		Details / Numbers / Specifications / Conditions			
1	Name and location	1	Irati River			
	map of water	2	Kayahwe R	iver		
	source and intake					
	facility					
2	Specifications of	1	Irati River	• Water source capacity: 10,000 m³/day		
	water source and			• Intake capacity: 625 m³/hour, 15,000 m³/day		
	intake facility			• Year Built: 2013 (ADB)		
				• Structure of intake facility (Elevation +1,562		
				masl):		
				◆ Intake well: 16 m × 2 m × 3 m × 1 (Mass		
				Concrete)		
				Grit chamber: N/A		
				• Pump: N/A		
		2	Kayahwe	• Water source capacity: 10,000 m³/day		
			River	• Intake capacity: 208 m³/hour, 5,000 m³/day		
				Year Built: 1975		
				Structure of intake facility (Elevation +1,345)		
				masl):		
				◆ Intake well: 16 m × 2 m × 3 m × 1 (Mass		
				Concrete)		
				◆ Grit chamber: N/A		
				◆ Pump: N/A		
3	Outstanding annual	N/A	1	Maximum intake: N/A		
	and seasonal			Minimum intake: N/A		
	fluctuation / trend,			Permanent river or seasonal river: N/A		
	if any					
4	Future	1	Kayahwe	• Intake capacity: 5,000 m³/day (Additional)		
	development plan		River	New raw water main approx. 100 m in length		
				(DN 300) to the existing plus expansion of the		
				current treatment works		
				Scheduled year: 2023		
				Purpose: To boost the water supply within		
				Murang'a Town		
				https://goo.gl/maps/GxyaTyZSQ4d63MJM6		

	2	Mathioya	• Intake capacity: 25,000 m³/day (New)	
		N. River	• Scheduled year: 2024-2027	
			Purpose: To increase the water supply, reliability	
			and coverage to the New Murang'a Municipality	
			that covers 330 km ² against the current coverage	
			of 145 km ²	
			• https://goo.gl/maps/nGAkthMkYSP3Npsg9	

Attachment-2: Management Structure and Area of Coverage

No.	Items		Details / Numbers / Specifications / Conditions		
1	Name and location	1	Murang'a Mu	nicipality / Murang'a County	
	of water supply area		Refer to Figur	e 1.	
	/ county				
2	General information	1	Muranga'a	Population / Beneficiaries (2020): 102,000	
	of water supply area		Municipality	• Household connections (2022): 16,000	
	/ county			(active)	
				Water Kiosk: 4	
				• Total / coverage area: (2022): 145 km ²	
				Average service hours (2020):18 hours	
				Water Treatment Plant: Kiawambeu WTP	
				Main water source: Irati River	
				Current domestic water demand (year	
				2022): 28,820 m³/day	
				• Future domestic water demand (year 2040):	
				41,715 m³/day	

Attachment-3: Water Treatment Plant (WTP)

No.	Items		Details /	Note		
1	Name and location map of WTP	1 2	Kiawambeu Y Kayahwe W7			
2	Specifications of WTP	1	Kiawambeu WTP	•	Type of treatment: Rapid filtration with coagulation + chlorine disinfection Current treatment capacity (Year 2022): 15,000 m³/day Design treatment capacity (Year 2022): 15,000 m³/day Year Built: 2014 Structure of main facility: Receiving well: 4 m³, 1 m × 2 m × 2 m × 1 no., retention time 1 min, RC Flocculation basin channels: 233 m³, 9 m × 0.4 m × 1.8 m × 36 no., slow speed stirrer × 2, RC Sedimentation basin: 600 m³, 10 m × 30 m × 2 m × 2 no., Inclined plate 2 line × 4 sets, RC Rapid sand filtration: 5 m × 5 m × 4 × 4 no., filtration speed 75 m/day, graded sand Clear water tank: 2,000 m³, 20 m × 22.5 m × 5m, concrete	

3 Water treatment conditions	② Kayahwe WTP	 Type of treatment: Slow sand filtration with coagulation + chlorine disinfection Current treatment capacity (2022, year): 5,000 m³/day Design treatment capacity (Year 1975): 5,000 m³/day Year Built: 1975 Structure of main facility: Receiving channel: N/A m³, 15 m × 0.5 m × 1.5 m × 1 no., retention time 1 min, RC Flocculation basin: 15 m³, 2.5 m × 3 m × 2 m × 1no., slow speed stirrer × 2, RC Sedimentation basin: N/A m³, 7 m × 16 m × 3 m × 2no., RC Slow sand filtration: 3.5 m × 3.5m × 3 no., filtration speed 40 m/day, graded sand Clear water tank: 225 m³, 10m, concrete Utilization of plant capacity: 50 % Hours for WTP Utilization: 24 Flow diagram of the water treatment process: Raw water → Inlet chamber (Dosing of alum and pre-chlorination) → Flocculation channels → Sedimentation tanks → Sand filters → Filter gallery (Dosing of chlorine) → Clear water storage tank Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: PAC: 200 kg/day Sodium hypochlorite: 15 kg/day Concentrated sulfuric acid: N/A Lime: 100 kg/day Annual Operation and maintenance cost and its breakdown: N/A Labor cost: N/A 	
------------------------------	---------------	---	--

 Chemical cost: N/A Electricity cost: N/A Maintenance cost: N/A Other cost: N/A Other cost: N/A Utilization of plant capacity: 100 % Hours for WTP Utilization: 24 Flow diagram of the water treatment process: Raw water → Inlet chamber (Dosing of alum and pre-chlorination) → Flocculation chambers → Sedimentation tanks → Sand filters (Dosing of chlorine) → Clear water storage tank Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: PAC: 200 kg/day Sodium hypochlorite: 12 kg/day
 Maintenance cost: N/A Other cost: N/A Utilization of plant capacity: 100 % Hours for WTP Utilization: 24 Flow diagram of the water treatment process: Raw water → Inlet chamber (Dosing of
 ◆ Other cost: N/A ② Kayahwe WTP • Utilization of plant capacity: 100 % • Hours for WTP Utilization: 24 Flow diagram of the water treatment process: Raw water → Inlet chamber (Dosing of alum and pre-chlorination) → Flocculation chambers → Sedimentation tanks → Sand filters (Dosing of chlorine) → Clear water storage tank • Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: • PAC: 200 kg/day • Sodium hypochlorite: 12 kg/day
 ② Kayahwe WTP • Utilization of plant capacity: 100 % • Hours for WTP Utilization: 24 Flow diagram of the water treatment process: Raw water → Inlet chamber (Dosing of alum and pre-chlorination) → Flocculation chambers → Sedimentation tanks → Sand filters (Dosing of chlorine) → Clear water storage tank • Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: • PAC: 200 kg/day • Sodium hypochlorite: 12 kg/day
 WTP Hours for WTP Utilization: 24 Flow diagram of the water treatment process: Raw water → Inlet chamber (Dosing of alum and pre-chlorination) → Flocculation chambers → Sedimentation tanks → Sand filters (Dosing of chlorine) → Clear water storage tank Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: PAC: 200 kg/day Sodium hypochlorite: 12 kg/day
Flow diagram of the water treatment process: Raw water → Inlet chamber (Dosing of alum and pre-chlorination) → Flocculation chambers → Sedimentation tanks → Sand filters (Dosing of chlorine) → Clear water storage tank • Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: • PAC: 200 kg/day • Sodium hypochlorite: 12 kg/day
process: Raw water → Inlet chamber (Dosing of alum and pre-chlorination) → Flocculation chambers → Sedimentation tanks → Sand filters (Dosing of chlorine) → Clear water storage tank • Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: • PAC: 200 kg/day • Sodium hypochlorite: 12 kg/day
Raw water → Inlet chamber (Dosing of alum and pre-chlorination) → Flocculation chambers → Sedimentation tanks → Sand filters (Dosing of chlorine) → Clear water storage tank • Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: • PAC: 200 kg/day • Sodium hypochlorite: 12 kg/day
alum and pre-chlorination) → Flocculation chambers → Sedimentation tanks → Sand filters (Dosing of chlorine) → Clear water storage tank • Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: • PAC: 200 kg/day • Sodium hypochlorite: 12 kg/day
chambers → Sedimentation tanks → Sand filters (Dosing of chlorine) → Clear water storage tank • Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: • PAC: 200 kg/day • Sodium hypochlorite: 12 kg/day
filters (Dosing of chlorine) → Clear water storage tank • Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: • PAC: 200 kg/day • Sodium hypochlorite: 12 kg/day
storage tank • Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: • PAC: 200 kg/day • Sodium hypochlorite: 12 kg/day
 Type and amount of chemicals used during the process (2022) for during the dry and rainy seasons: ◆ PAC: 200 kg/day ◆ Sodium hypochlorite: 12 kg/day
the process (2022) for during the dry and rainy seasons: • PAC: 200 kg/day • Sodium hypochlorite: 12 kg/day
rainy seasons: ◆ PAC: 200 kg/day ◆ Sodium hypochlorite: 12 kg/day
 ◆ PAC: 200 kg/day ◆ Sodium hypochlorite: 12 kg/day
◆ Sodium hypochlorite: 12 kg/day
◆ Concentrated sulfuric acid: N/A
◆ Lime: 100 kg/day
Annual Operation and maintenance cost and
its breakdown: N/A
◆ Labor cost: N/A
◆ Chemical cost: N/A
◆ Electricity cost: N/A
◆ Maintenance cost: N/A
◆ Other cost: N/A
4 Water quality test ① Mukangu • Main items to be tested in each process and
WTP frequency of the test (raw water, after
treatment and so on):
Refer to Table 1.
Compliance with water quality standards:
Refer to Table 1.

		2	Karigiri	Main items to be tested in each process and
			WTP	frequency of the test (raw water, after
				treatment and so on):
				Refer to Table 1.
				Compliance with water quality standards:
				Refer to Table 1.
5	Future development	1	Kayahwe	• Treatment capacity: 5,000 m³/day
	plan		WTP	(Additional)
				Target year: 2030
				Purpose: The TW serves the lower parts of
				Murangá Municipality. The current demand is
				met by the current supply. However, with the
				rapid growth in population and urbanization,
				the demand is expected to overtake supply by
				2030 thus the need for expansion of the
				treatment facilities. The current water sources
				can accommodate further abstraction of 5,000
				m3/day
		2	Mathioya	• Treatment capacity: 25,000 m³/day (New)
			WTP	• Scheduled year: 2024- 2027
			constructed	Purpose: Muwasco currently serves 145 km²
			in	which is expected to expand to 330 km ² with
			Murang'a	the revision of municipality boundaries.
			County	This will require investment in more water
			•	sources and treatment facilities. The project
				will treat 15,000 m ³ /day to cater for the
				increased demand.
				The treatment works shall be located at
				Gikoe Primary school, Mathioya
				Constituency
				https://goo.gl/maps/SgRCXqEAkTk1rAjW9
		l		<u> </u>

Attachment-4: Water Transmission Mains to Reservoir

No.	Items	Details /	Note	
1	Name and location map of transmission pipeline	① Raw water t	ransmission line (Gravity)	
2	Specifications of Pipeline	N//A	 Location, materials, diameter and length of each pipeline Refer to Table 2 Year Built: for each pipeline: N/A NRW of main transmission line: N/A Transmission pump: N/A 	
3	Future development plan	N/A	 Kayahwe – Kiawambeu raw water pipeline (315 mm HDPE) Length: 9 km Scheduled year: 2023 Purpose: The objective of the project is to increase the flow of water into the existing treatment facilities at Kiawambeu. With a capacity of 15,000 m³/day, the TW only treats approximately 8,000 m³/day. The gap will be filled by the new sources of water. This will bridge the current supply demand within Murang'a Town. (Currently proposed for financing through AoD – estimated to cost approx. KES 150 million) 	
			Proposed New Murang'a Municipality Water Supply Project (Refer to Table 3)	

Attachment-5: Reservoirs

No.	Items	Details /	Numbers / Specifications / Conditions	Note
1	Name and location map of Reservoir	N/A		
2	Specifications of reservoir	N/A	 Current capacity: N/A Year Built: N/A Structure of main facility: Reservoir: N/A Distribution pump: N/A Water flow measurement facility: N/A Generator facility: N/A 	
3	Operation and maintenance and Water quality test	N/A	 Flow diagram of reservoir: N/A Type and amount of chemicals used before distribution if any: N/A Sodium hypochlorite: N/A Annual Operation and maintenance cost and its breakdown: N/A Labor / maintenance cost: N/A Electricity cost: N/A Other cost: N/A Main items to be tested in reservoir: N/A Compliance with water quality standards: N/A 	
4	Future development plan	N/A	N/A	

Attachment-6: Water Distribution Mains

No.	Items	Details /	Numbers / Specifications / Conditions	Note
1	Name and location	Refer to Figure 1	Refer to Figure 1.	
	map of distribution			
	pipeline network			
2	Specifications of	N//A	Location, materials, diameter and length of	
	Pipeline		each pipeline (Refer to Table 4.)	
			Year Built: for each pipeline: N/A	
			Distribution pump: N/A	
			NRW of main distribution line: N/A	
3	Future development	N/A		
	plan			

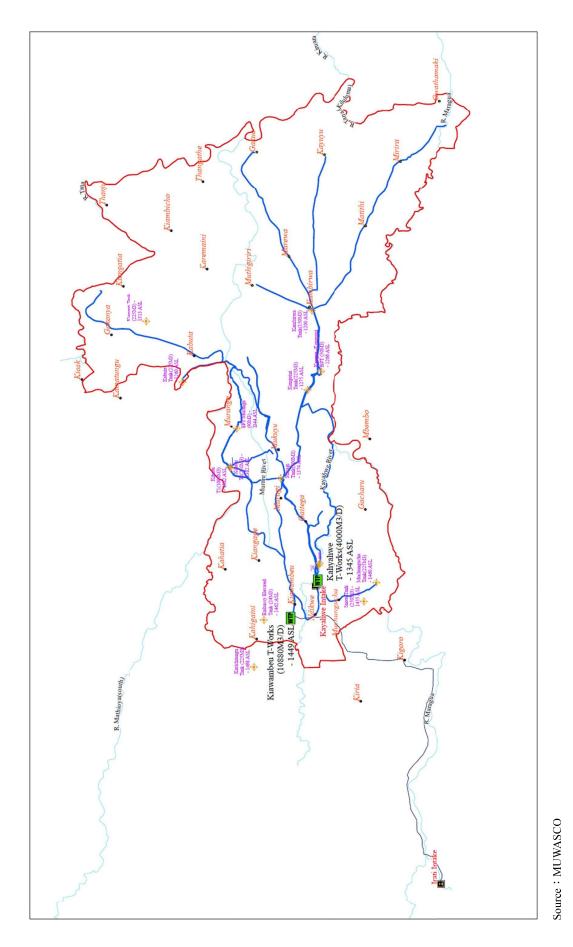


Figure 1 MUWASCO Distribution Main Network

Table 1 Water Quality Test

COUINTY: MURANG'A MONTHLY WATER QUALITY ASSESSMENT: Reporting Month System Description: System Description: Mare production to town (m3/month) Number of separate networks									
MOVILITY WATER QUALITY ASSESSMENT: Reporting Month System Description: Water production to town (m3/month) Number of separate networks									
System Description: Water production to town (m3/month) Number of separate networks		Jan-22			Feb-22			Mar-22	
Water production to town (m3/month) Number of separate networks									
Number of separate networks		273,501		266,185				250,372	
		2		2				2	
Water provided through network 1(m3/ month)	KIAWAMBEU	182,334		180,457				170,518	
Please list all the networks		KIAWAMBEU		07/50	KIAWAMBEU			KIAWAMBEU	
Report on required and conducted tests:									
Is there a monitoring program in	JANUARY			FEBRUARY			MARCH		
Networks 1 KTAWAMBETT	Number of tests	Number of tests	Number of tests within	Number of tests	Number of tests	Number of tests within	Number of tests	Number of feets	Number of tests within
MAWANDEO	planned according to guideline	conducted	Standard		conducted	Standard	ng to		Standard
Residual chlorine	159	878	829	159	979	626	159	702	702
Bacteriological	29	15	15	29	15	15	29	15	15
Turbidity, pH, colour	40	1650	1650	40	2383	2383		00	2700
Other physio-chemical	40	1650	1650	40	2383	2383	40	2700	2700
KAYAHWE	Number of tests planned according to	Number of tests conducted	Number of tests within Standard	Number of tests planned according to	Number of tests conducted	Number of tests within Number of tests Standard planned according	Number of tests planned according to	Number of tests conducted	Number of tests within Standard
Residual chlorine	93	182		93	168	168	93	081	180
Bacteriological	35	2		35	2	2	35		2
Turbidity, pH. colour	23	180		23	180	180	23	081	180
Other physio-chemical	23	180		23	180	180	23	180	180
Please list all the networks									
Total number of tests in networks	Number of tests required per year	Number of tests conducted -JAN	Number of tests within Standard	Number of tests required per year	Number of tests conducted- FEB	Number of tests within Number of tests Standard required per yea	Number of tests required per year	Number of tests conducted -MARCH	Number of tests within Standard
Residual chlorine	220	098	098	220	794		220	882	882
Bacteriological	86	20	20	86	20		86	20	20
urbidity, pH, colour	22	1,832	1,832	55	2,562	2,562	55	2,880	2,880
Other physio-chemical Treatment Work 1	55	1832	1832	55	2562	2562	55	2880	2880
Number of tests required per year Number of tests conducted									
Residual chlorine									
Bacteriological									
Turbidity, pH, colour									
Other physio-chemical									
Treatment chemicals for water									
nc									
Chamity ATTIM 10 800 VCS									
Chemical SODA ASH 240 KGS									
Chemical HTH 2,208 KGS									
Please list all chemicals used									
In case of deviation from No. of planned tests give reasons and state what action was taken:	p								
In case of non-compliance for water quality above acceptable limits of tested samples give reasons and state what action was	S								
Taken Additional comments									

Source: MUWASCO

Table 2 Water Transmission Mains

Water Transmission Mains						
DIAMETER	Steel (Km)	HDPE (Km)	PVC (Km)	TOTAL (Km)	SHARE (%)	
DN 400	2.3	-	-	2.3	4.57	
DN 350	15.0	-	-	15.0	29.82	
DN 300	-	-	12.0	12.0	23.86	
DN 280	-	9.0	-	9.0	17.89	
DN 250	7.0	-	-	7.0	13.91	
DN 200	5.0	-	-	5.0	9.94	
Sum	29.3	9.0	12.0	50.3	100%	

Source: MUWASCO

Table 3 Water Transmission Mains (Future Development Plan)

Water Transmission Mains							
DIAMETER	Steel (Km)	HDPE (Km)	PVC (Km)	TOTAL (Km)	SHARE (%)		
DN 500	12	-	-	12	12%		
DN 200	-	29	-	29	30%		
DN 250	-	36	-	36	37%		
DN 450	-	20	-	20	21%		
Sum	12	85	-	97	100%		

Source: MUWASCO

Table 4 Water Distribution Mains

Water Distribution Mains						
DIAMETER	Steel (Km)	HDPE (Km)	PVC (Km)	TOTAL (Km)	SHARE (%)	
DN 400	2.3	-	-	2.3	4.57	
DN 350	15	-	-	15	29.82	
DN 300	-	-	12	12	23.86	
DN 280	-	9	-	9	17.89	
DN 250	7	-	-	7	13.91	
DN 200	5	-	-	5	9.94	
Sum	29.3	0	12	50.3	100%	

Source: MUWASCO

WSP-5

Ruiru-juja WSP (RUJWASCO)

Project for Strengthening Capacity of Water Service Providers on Formulating Bankable Project Plans

Questionnaire (RUJWASCO)

No.	Questions	Answers
1	Are you willing to borrow the money from	Yes
	commercial bank when selected as target WSP?	
2	Kindly specify last 10 years project with major project	N/A
	comportment and amount, and source of fund for each	
	project.	
3	Kindly provide the WSP long term plan with annual	[Strategic Plan 2022-2027]
	budget for O&M and investment for water supply	
	system.	
4	Do you currently offer or intended to be offer any fund	Githurai Water Supply Project (AWWDA -
	from doner, AOB, OBA, KPWF, own fund or any	KFW project)
	others? If yes, kindly provide the detail.	: Expansion of pumping works to 28,000
		m ³ /day, treatment plant, raw water main,
		transmission main and distribution network.
		Project cost: KES 1.6 billion
		Completion date: October 2022.
5	Kindly provide the documents <u>listed in Attachment 1 to</u>	Noted.
	6 and Data Collection List.	
6	Kindly fill in the details for the overview of water	[Attachment 1 to 6]
	supply facilities <u>as shown in Attachment 1 to 6</u> .	
7	What is the reason for the inactive connections?	■ No payment
		■ No water due to technical problem such as no
		pressure, blockages and so on
		□There is any other alternative source.
		☐ Deactivate the account during rainy season
		☐ Any other reason, if any please specify
8	What kind of sensitization for the inactive connections	Homestead visits for installment payment of
	to reconnection have been carried out?	bills
9	Kindly provide the current total water demand (m^3/day)	138,579 m ³ /day (includes the greater Githurai
	with calculation method and excel file.	area)
10	Kindly provide the details for the water demand	2023: 149,195 m³/day
	projection with calculation method and excel file.	2024: 160,683 m³/day
		2025: 173,056 m³/day

No.	Questions	Answers
11	Challenges Faced in the Water Supply Facilities	☐ Enough to develop the future demand
	1) Potential of Water Source	□ Enough for current demand
		□ Not enough
		■ Need additional water sources (Dams and
		boreholes)
	2) Raw Water Quality	■ Meet the standard for drinking purpose
		☐ Meeting the standard but deteriorating
	3) Intake Facility	
	Intake Volume	□ Sufficient for future water demand
		□ Sufficient for current demand
		■ Not sufficient for current demand
	Facility Condition	■ Good
	Table Condition	□ Fair
		☐ Deteriorating but can utilize
		□ Need rehabilitation and augmentation
	4) Raw Water Transmission System	
	Transmission Volume	□ Sufficient for future water demand
		□ Sufficient for current demand
		■ Not sufficient for current demand
	Facility Condition	■ Good
	Tability Condition	□ Fair
		□ Deteriorating but can utilize
		□ Need rehabilitation and augmentation
	5) Water Treatment Plant	
	Treatment Volume	□ Sufficient for future water demand
		□ Sufficient for current demand
		■ Not sufficient for current demand
	Facility Condition	■ Good
	1 acmity Condition	□ Fair
		□ Deteriorating but can utilize
		☐ Need rehabilitation and augmentation

No.	Questions	Answers
	6) Water Distribution Systems	☐ Meeting the standards for water pressure
	Water Pressure	□ Not all area meeting the standards for water
		pressure
		■ Not meeting the standard when high demand
		□ Not meeting the standard
	7) Household Connection	■ Using the saddle clamp with cock
		□ Using the saddle clam
		□ Using the tee
	8) Water Meter	■ Using the piston type
		□ Using propeller type
		Reason of selecting above: Affordable
	9) Non-Revenue Water (NRW)	■ Old pipe (30%)
	Reason and each percentage	□ Poor material use
		□ High pressure
		■ Meter inaccuracy (10%)
		■ Illegal connection (60%)
		□ Poor workmanship
		□ Others
	10) Billing System	□ By manual
	How do you read the water meter?	■ By smart Phone
		□ By smart meter
	What kind of software for billing system is using?	□ Enterprise Resource Planning (ERP)
		□ JICS
		■ Other (Utility Master funded by internal
		revenue in 2018)

Attachment-1: Main Water Source

No.	Items	Details	/ Numbers / Specifications / Conditions	Note
1	Name and location	① Jacaranda	/ Ruiru River	
	map of water source	② Ruiru Tow	n / Ruiru River	
	and intake facility	③ Ndarugu R	River	
		4 7 no boreh	oles (St Kizito, Mwihoko primary, Kiuu police	
		post, Githu	ırai Mixed, St Hellen ACK Langata, Kimbo police	
		post, Mum	bi)	
		Refer to Figure	1.	
2	Specifications of	① Jacaranda	Water source capacity: N/A m³/day	
	water source and	/ Ruiru	• Intake capacity: 541 m³/hour, 13,000 m³/day	
	intake facility	River	• Year Built: 2013	
			Structure of intake facility (Elevation N/A)	
			masl):	
			◆ Intake well: N/A	
			• Grit chamber: N/A	
			◆ Pump: N/A	
		② Ruiru	• Water source capacity: N/A m³/day	
		Town /	• Intake capacity: 62.5 m ³ /hour, 1,500 m ³ /day	
		Ruiru	• Year Built: N/A	
		River	Structure of intake facility (Elevation N/A	
			masl):	
			◆ Intake well: N/A	
			◆ Grit chamber: N/A	
			◆ Pump: N/A	
		③ Ndarugu	• Water source capacity: N/A m³/day	
		River	• Intake capacity: 208 m ³ /hour, 5,000 m ³ /day	
		(New	• Year Built: N/A	
		WTP)	Structure of intake facility (Elevation N/A	
			masl):	
			◆ Intake well: N/A	
			◆ Grit chamber: N/A	
			◆ Pump: N/A	

		4	Ndarugu	Water source capacity: N/A m³/day	
			River (Old	• Intake capacity: 62.5 m³/hour, 1,500 m³/day	
			WTP)	Year Built: N/A	
				Structure of intake facility (Elevation N/A	
				masl):	
				◆ Intake well: N/A	
				◆ Grit chamber: N/A	
				◆ Pump: N/A	
		(5)	7 no	Water source capacity: N/A m³/day	
			boreholes	• Intake capacity: 83 m³/hour, 2,000 m³/day	
				Year Built: N/A	
				Structure of intake facility (Elevation N/A	
				masl):	
				◆ Intake well: N/A	
				◆ Grit chamber: N/A	
				◆ Pump: N/A	
3	Outstanding annual	N/A	1	Maximum intake: N/A	
	and seasonal			Minimum intake: N/A	
	fluctuation / trend, if			Permanent river or seasonal river: N/A	
	any				
4	Future development	N/A	Λ		
	plan				

Attachment-2: Management Structure and Area of Coverage

No.	Items	Details /	Numbers / Specifications / Conditions	Note	
1	Name and location	① Ruiru town,	Gitambaya, Murera, Mugutha, Ruiru East,		
	of water supply area	Thome, Mei	Thome, Membley		
	/ county	② Thome, Kim	nbo		
		③ Juja town, G	Greefield, Kalimoni, Jujafarm, Highpoint,		
		Ndarugu, K	Ndarugu, Kenyatta Road, Weteithie (Malaba, Kibute,		
		Nyasaba, M	Nyasaba, Muthaara)		
		4 Gachororo,	Gachororo, Greenfield, Mirimaini		
		⑤ Mwihoko, K	5 Mwihoko, Kiuu, Kimbo		
		Refer to Figure 1			
2	General information	① Ruiru	Population / Beneficiaries: N/A		
	of water supply area	town,	• Household connections: 25,520		
	/ county	Gitambaya,	• Water Kiosk: N/A		
		Murera,	Total / coverage area: N/A		

	Mugutha,	Average service hours: N/A
	Ruiru East,	Water Treatment Plant: N/A
	Thome,	Main water source: N/A
	Membley	Current domestic water demand: N/A
2	Thome,	Future domestic water demand: N/A
	Kimbo	
3	Juja town,	Population / Beneficiaries: N/A
	Greefield,	Household connections:10,483
	Kalimoni,	Water Kiosk: N/A
	Jujafarm,	Total / coverage area: N/A
	Highpoint,	Average service hours: N/A
	Ndarugu,	Water Treatment Plant: N/A
	Kenyatta	Main water source: N/A
	Road,	Current domestic water demand: N/A
	Weteithie	Future domestic water demand: N/A
	(Malaba,	
	Kibute,	
	Nyasaba,	
	Muthaara)	
4	Gachororo,	
	Greenfield,	
	Mirimaini	
(5)	Mwihoko,	Population / Beneficiaries: N/A
	Kiuu,	Household connections: 3,797
	Kimbo	Water Kiosk: N/A
		Total / coverage area: N/A
		Average service hours: N/A
		Water Treatment Plant: N/A
		Main water source: N/A
		Current domestic water demand: N/A
		Future domestic water demand: N/A

Attachment-3: Water Treatment Plant (WTP)

No.	Items	Details	/ Numbers / Specifications / Conditions	Note
1	Name and location	① Jacaranda	WTP	
	map of WTP	② Juja WTP	② Juja WTP	
		③ Juja Comp	3 Juja Composite WTP	
		4 Ruiru Com	posite WTP	
		Refer to Figure	1.	
2	Specifications of	① Jacaranda	Type of treatment: Conventional treatment	
	WTP	WTP	process with coagulation, flocculation,	
			sedimentation, aeration, rapid sand filtration	
			+ disinfection	
			• Current treatment capacity: N/A m³/day	
			• Design treatment capacity: 13,000 m³/day	
			• Year Built: 2013	
			• Structure of main facility:	
			Flocculation units: $10,050 \times 10,000 \times 2,000$	
			mm	
			Sedimentation tanks: $22,500 \times 10,000 \times$	
			3,150 mm	
			Filtration units: $52,00 \times 4,850 \times 4,770 \text{ mm}$	
			Clear water tank: 6,000 m ³ , RC masonry	
		② Juja WTP	• Type of treatment: Conventional treatment	
			process with coagulation, flocculation,	
			sedimentation, aeration, rapid sand filtration	
			+ disinfection	
			• Current treatment capacity: N/A m³/day	
			• Design treatment capacity: 6,000 m ³ /day	
			• Year Built: 2013	
			Structure of main facility:	
			Flocculation units: $6,520 \times 4,070 \times 1,300$	
			mm	
			Sedimentation tanks: $12,000 \times 3,950 \times$	
			3,000 mm	
			Filtration units: $2,950 \times 3,100 \times 3,950 \text{ mm}$	
			Clear water tank: 150 m ³ , RC masonry	

	1				1
		3	Juja	Type of treatment: Composite filtration	
			Composite	treatment	
			WTP	Current treatment capacity: N/A m³/day	
				Design treatment capacity: 1,500 m³/day	
				Year Built: N/A	
				Structure of main facility:	
				Clear water tank: 150 m ³ , RC masonry	
		4	Ruiru	Type of treatment: Composite filtration	
			Composite	treatment	
			WTP	Current treatment capacity: N/A m3/day	
				Design treatment capacity: 1,500 m3/day	
				Year Built: N/A	
				Structure of main facility:	
				Clear water tank: 150 m3, RC masonry	
3	Water treatment	1	Jacaranda	Utilization of plant capacity: N/A %	
	conditions		WTP	Hours for WTP Utilization: N/A	
		2	Juja WTP	Flow diagram of the water treatment process:	
		3	Juja	N/A	
			Composite	Type and amount of chemicals used during	
			WTP	the process for during the dry and rainy	
		4	Ruiru	seasons:	
			Composite	◆ PAC: N/A kg/day	
			WTP	◆ Sodium hypochlorite: N/A kg/day	
				◆ Concentrated sulfuric acid: N/A kg/day	
				◆ Lime: N/A kg/day	
				Annual Operation and maintenance cost and	
				its breakdown: N/A	
				◆ Labor cost: N/A	
				◆ Chemical cost: N/A	
				◆ Electricity cost: N/A	
				◆ Maintenance cost: N/A	
				◆ Other cost: N/A	
	1	1			

4	Water quality test	1	Jacaranda	Main items to be tested in each process and	
			WTP	frequency of the test (raw water, after	
		2	Juja WTP	treatment and so on):	
		3	Juja	Refer to Table 1.	
			Composite	Compliance with water quality standards:	
			WTP	Refer to Table 1.	
		4	Ruiru		
			Composite		
			WTP		
5	Future development	N/A		N/A	
	plan				

Attachment-4: Water Transmission Mains to Reservoir

No.	Items	Details /	Numbers / Specifications / Conditions	Note
1	Name and location	Refer to Figure 1		
	map of transmission			
	pipeline			
2	Specifications of	N/A	Location, materials, diameter and length	
	Pipeline		of each pipeline: N/A	
			Year Built: for each pipeline: N/A	
			NRW of main transmission line: N/A	
			Transmission pump: N/A	
3	Future development	N/A	N/A	
	plan			

Attachment-5: Reservoirs

No.	Items		Details /	Numbers / Specifications / Conditions	Note
1	Name and location	1	Jacaranda W	/TP clear water tank	
	map of Reservoir	2	Juja WTP cl	ear water tank	
		3	Juja Composite WTP clear water tank		
		4	Ruiru Composite WTP clear water tank		
2	Specifications of	1	Jacaranda	• Current capacity: 6,000 m ³	
	reservoir		WTP clear	Year Built: N/A	
			water tank	Structure of main facility:	
				• Reservoir: N/A	
				Distribution pump: N/A	
				◆ Water flow measurement facility: N/A	
				◆ Generator facility: N/A	
		2	Juja WTP	• Current capacity: 150 m ³	
			clear	ear • Year Built: N/A	
			water tank	ater tank • Structure of main facility:	
				• Reservoir: N/A	
				◆ Distribution pump: N/A	
				◆ Water flow measurement facility: N/A	
				◆ Generator facility: N/A	
		3	Juja	• Current capacity: 150 m ³	
			Composite	Year Built: N/A	
			WTP clear	Structure of main facility:	
			water tank	• Reservoir: N/A	
				Distribution pump: N/A	
				◆ Water flow measurement facility: N/A	
				◆ Generator facility: N/A	
		4	Ruiru	• Current capacity: 150 m ³	
			Composite	• Year Built: N/A	
			WTP clear	Structure of main facility:	
			water tank	◆ Reservoir: N/A	
				◆ Distribution pump: N/A	
				◆ Water flow measurement facility: N/A	
				◆ Generator facility: N/A	

3	Operation and	1	Jacaranda	Flow diagram of reservoir: N/A
	maintenance and		WTP clear	Type and amount of chemicals used before
	Water quality test		water tank	distribution if any: N/A
		2	Juja WTP	◆ Sodium hypochlorite: N/A
			clear	Annual Operation and maintenance cost and
			water tank	its breakdown: N/A
		3	Juja	◆ Labor / maintenance cost: N/A
			Composite	Electricity cost: N/A
			WTP clear	◆ Other cost: N/A
			water tank	Main items to be tested in reservoir: N/A
		4	Ruiru	Compliance with water quality standards:
			Composite	N/A
			WTP clear	
			water tank	
4	Future development	N/A	Λ	N/A
	plan			

Attachment-6: Water Distribution Mains

No.	Items	Deta	ils / Numbers / Specifications / Conditions	Note	
1	Name and location	① Ruiru W	① Ruiru Water Network		
	map of distribution	② Juja Wat	② Juja Water Network		
	pipeline network	3 Githurai	Water Network		
		Refer to Figu	re 1.		
2	Specifications of	① Ruiru	Location, materials, diameter and length of		
	Pipeline	Water	each pipeline		
		Network	Refer to Table 2.		
			• Year Built: for each pipeline: N/A		
			• Distribution pump: N/A		
			• NRW of main distribution line: N/A		
		② Juja Wat	2 Juja Water • Location, materials, diameter and length of		
		Network	Network each pipeline		
			• Refer to Table 3.		
			• Year Built: for each pipeline: N/A		
			• Distribution pump: N/A		
			• NRW of main distribution line: N/A		
		③ Githurai	Location, materials, diameter and length of		
		Water	each pipeline		
		Network	• Refer to Table 4.		
			• Year Built: for each pipeline: N/A		
			• Distribution pump: N/A		
			• NRW of main distribution line: N/A		
3	Future development	N/A	N/A		
	plan				

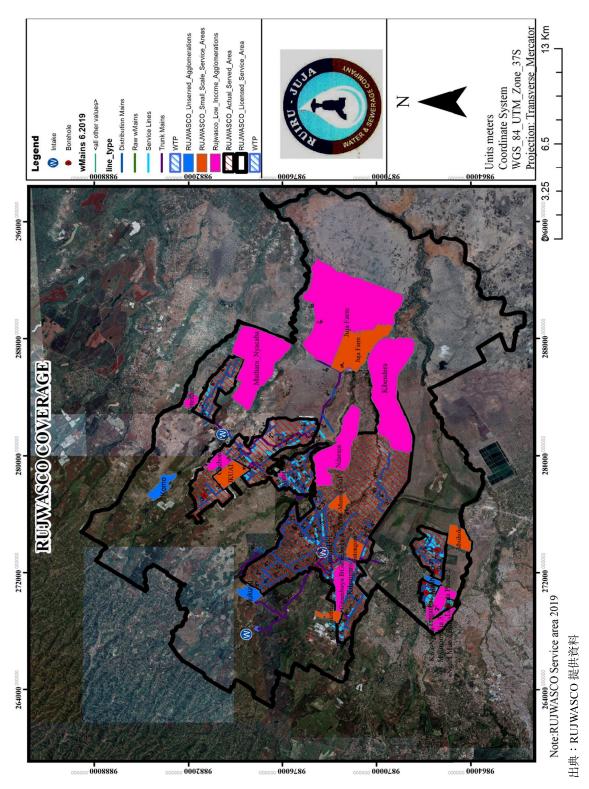


Figure 1 RUJWACO Coverage Area 1

Table 1 Water Quality and Compliance

WTP	TYPE OF	TESTS	FREQUENCY	COMPLIANCE
	WATER	CONDUCTED	OF TESTS	WITH STANDARDS
	Raw water	pН		100%
		conductivity	2 4:/1	100%
		turbidity	2 times/day	0%
		color		0%
Jacaranda w/s	Treated water	рН		100%
		conductivity		100%
		turbidity	5 times/day	96%
		Residual chlorine		100%
		color		95%
	Raw water	pН		100%
		conductivity	2 timos/day	100%
		turbidity	2 times/day	0%
		color		0%
Ruiru w/s	Treated water	рН		100%
		conductivity	5 times/day	100%
		turbidity		95%
		Residual chlorine		98%
		color		95%
	Raw water	рН		100%
		conductivity	2 times/day	100%
		turbidity		0%
		color		0%
Juja Old	Treated water	рН		100%
		conductivity		100%
		turbidity	5 times/day	98%
		Residual chlorine		95%
		color		97%
	Raw water	рН		100%
		conductivity	2 times/day	100%
		turbidity	2 times/day	0%
		color		0%
Juja New	Treated water	рН		100%
		conductivity		100%
		turbidity	5 times/day	97%
		Residual chlorine		96%
		color		95%

出典:RUJWASCO 提供資料

Table 2 Ruiru Water Distribution Network

		Ruiru Water Network	
		wMains	
	Polyvinyl Chloride (PVC)	Cast Iron (CI)	High-Density Polyethylene (HDPE)
Size(Inches)	Length	Length	Length
2.5"	0.0	0.0	3.0
3"	28.2	0.2	33.9
4"	17.5	0.2	45.2
6"	5.0	0.3	21.5
8"	3.8	239.3	29.6
10"	0.0	0.0	4.1
12"	0.0	0.0	0.0
18"	0.0	1.3	0.0
20"	0.0	6.6	0.0
Sum	54.5	247.8	137.3
		wService Lines	
	Polyvinyl Chloride (PVC)	Cast Iron (CI)	High-Density Polyethylene (HDPE)
Size(Inches)	Length	Length	Length
0.5"	1.7	0.0	0.0
0.75"	3.5	0.0	0.0
1"	5.8	0.3	36.4
1.25"	0.0	0.0	4.8
1.5"	77.0	0.2	144.9
2"	42.9	0.1	47.0
2.25"	0.0	0.0	3.2
Sum	130.8	0.6	236.3

出典:RUJWASCO 提供資料

Table 3 Juja Water Distribution Network

		Juja Water Network	
		wMains	
	Polyvinyl Chloride (PVC)	Cast Iron (CI)	High-Density Polyethylene (HDPE)
Size(Inches)	Length	Length	Length
3"	15.7	0.0	35.4
4"	14.3	0.0	23.1
5"	0.6	0.0	0.0
6"	4.5	0.0	20.5
8"	4.5	0.0	34.3
10"	0.0	0.0	0.0
12"	0.0	2.5	0.0
Sum	39.7	2.5	113.2
		wService Lines	
	Polyvinyl Chloride (PVC)	Cast Iron (CI)	High-Density Polyethylene (HDPE)
Size(Inches)	Length	Length	Length
0.75"	2.8	0.0	0.2
1"	35.9	0.0	19.7
1.5"	85.6	0.4	70.3
2"	43.3	0.0	36.2
Sum	167.5	0.4	126.4

出典:RUJWASCO 提供資料

Table 4 Githurai Water Distribution Network

	Githurai Water Network				
	wMains				
	High-Density Polyethylene (HDPE)				
Size(Inches)	Length				
3"	11.8				
4"	2.5				
6"	0.4				
8"	0.0				
10"	0.0				
12"	0.0				
18"	0.0				
20"	0.0				
Sum	14.6				

出典:RUJWASCO 提供資料

WSP-6

Mavoko WSP (MAVWASCO)

Project for Strengthening Capacity of Water Service Providers on Formulating Bankable Project Plans

Questionnaire (MAVWASCO)

No.	Questions	Answers
1	Are you willing to borrow the money from	Yes.
	commercial bank when selected as target WSP?	
2	Kindly specify last 10 years project with major project	WSTF (UPC): KES 100 million (2nd to 5th)
	comportment and amount, and source of fund for each	Call)
	project.	Mavoko Water Supply: KES 2.8 billion
		Athi River Slums Sewer: KES 100 million
		Mombasa Road Relocation: KES 150
		million cumulative
3	Kindly provide the WSP long term plan with annual	Noted.
	budget for O&M and investment for water supply	
	system.	
4	Do you currently offer or intended to be offer any fund	No.
	from doner, AOB, OBA, KPWF, own fund or any	
	others? If yes, kindly provide the detail.	
5	Kindly provide the documents <u>listed in Attachment 1 to</u>	Noted.
	6 and Data Collection List.	
6	Kindly fill in the details for the overview of water	[Attachment 1 to 6]
	supply facilities <u>as shown in Attachment 1 to 6</u> .	
7	What is the reason for the inactive connections?	□ No payment
		■ No water due to technical problem such as no
		pressure, blockages and so on
		■ There is any other alternative source.
		☐ Deactivate the account during rainy season
		☐ Any other reason, if any please specify
8	What kind of sensitization for the inactive connections	SMS communication
	to reconnection have been carried out?	Notices through public posters
9	Kindly provide the current total water demand (m³/day)	Approximately 20,000 m ³ /day
	with calculation method and excel file.	
10	Kindly provide the details for the water demand	N/A
	projection with calculation method and excel file.	


No.	Questions	Answers
11	Challenges Faced in the Water Supply Facilities	☐ Enough to develop the future demand
	1) Potential of Water Source	☐ Enough for current demand
		■ Not enough
		■ Need additional water sources (Stoni Athi,
		Mbagathi)
	2) Raw Water Quality	☐ Meet the standard for drinking purpose
		■ Meeting the standard but deteriorating (1,000 –
		2,000 NTU for turbidity during rainy season)
	3) Intake Facility	
	Intake Volume	□ Sufficient for future water demand
		□ Sufficient for current demand
		■ Not sufficient for current demand (due to
		seasonal river)
	Facility Condition	
		□ Good
		□ Fair
		□ Deteriorating but can utilize
		■ Need rehabilitation and augmentation
	4) Raw Water Transmission System	
	Transmission Volume	□ Sufficient for future water demand
		■ Sufficient for current demand
		□ Not sufficient for current demand
	Facility Condition	■ Good
		□ Fair
		□ Deteriorating but can utilize
		□ Need rehabilitation and augmentation
	5) Water Treatment Plant	
	Treatment Volume	□ Sufficient for future water demand
		■ Sufficient for current demand
		□ Not sufficient for current demand
	Facility Condition	■ Good (New Mavoko WTP)
		■ Fair (Old Mavoko WTP)
		□ Deteriorating but can utilize
		☐ Need rehabilitation and augmentation

o.	Questions	Answers
	6) Water Distribution Systems	☐ Meeting the standards for water pressure
	Water Pressure	■ Not all area meeting the standards for water
		pressure
		□ Not meeting the standard when high demand
		□ Not meeting the standard
	7) Household Connection	☐ Using the saddle clamp with cock
		■ Using the saddle clam
		■ Using the tee
	8) Water Meter	■ Using the piston type
		☐ Using propeller type
		Reason of selecting above: N/A
	9) Non-Revenue Water (NRW)	■ Old pipe (15%)
	Reason and each percentage	■ Poor material use (5%)
		■ High pressure (5%)
		■ Meter inaccuracy (35%)
		■ Illegal connection (15%)
		■ Poor workmanship (10%)
		■ Others (15%)
	10) Billing System	□ By manual
	How do you read the water meter?	■ By smart Phone
		□ By smart meter
	What kind of software for billing system is using?	☐ Enterprise Resource Planning (ERP)
		□ JICS
		■ Other: Majics by SULIS

Attachment-1: Main Water Source

No.	Items	Details /	Numbers / Specifications / Conditions	Note
1	Name and location	① Kasoito Riv	er Intake	
	map of water source	② KMC Dam	KMC Dam	
	and intake facility	Refer to Figure 1		
2	Specifications of	① Athi River	Water source capacity: N/A m³/day	
	water source and		• Intake capacity: N/A m³/hour, N/A m³/day	
	intake facility		Year Built: N/A	
			Structure of intake facility (Elevation N/A	
			masl):	
			◆ Intake well: N/A	
			• Grit chamber: N/A	
			• Pump: N/A	
		② KMC	Water source capacity: N/A m³/day	
		Dam	• Intake capacity: N/A m³/hour, N/A m³/day	
			Year Built: N/A	
			Structure of intake facility (Elevation N/A	
			masl):	
			◆ Intake well: N/A	
			• Grit chamber: N/A	
			◆ Pump: N/A	
3	Outstanding annual	N/A	Maximum intake: N/A	
	and seasonal		Minimum intake: N/A	
	fluctuation / trend, if		Permanent river or seasonal river:	
	any		Seasonal River	
4	Future development	N/A	N/A	
	plan			

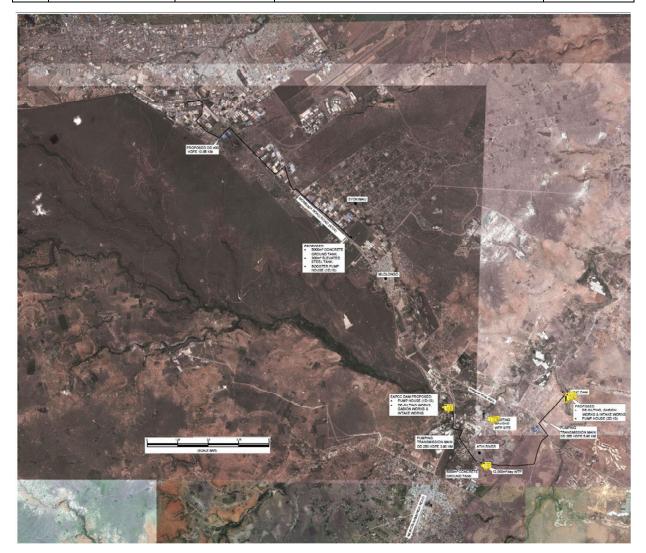
Attachment-2: Management Structure and Area of Coverage

Attachment-3: Water Treatment Plant (WTP)

No.	Items	De	tails / Numbers / Specifications / Conditions	Note	
1	Name and location	① New N	1avoko WTP		
	map of WTP	② Old M	Old Mavoko WTP		
		Refer to Fig	efer to Figure 1.		
2	Specifications of	① New	Type of treatment: Rapid filtration with		
	WTP	Mavol	co coagulation + chlorine disinfection		
		WTP	• Current treatment capacity (2021): 6,000		
			m³/day		
			• Design treatment capacity: 10,000 m³/day		
			Year Built: March, 2021		
			Structure of main facility: N/A		
		② Old	Type of treatment: Convectional treatment		
		Mavol	process with Coagulation, flocculation,		
		WTP	sedimentation, aeration, rapid sand filtration		
			+ disinfection		
			• Current treatment capacity: 28,000 m³/day		
			• Design treatment capacity: 28,000 m³/day		
			Year Built: March, 2012		
			Structure of main facility:		
			• Receiving well: 2,000 m³, 27 m× 7.5 m×		
			9.8 m×1, RC		

	3	Water treatment conditions	① New Mavoko WTP	 Utilization of plant capacity: 50 % Hours for WTP Utilization: 24 Flow diagram of the water treatment process: N/A Type and amount of chemicals used during the process for during the dry and rainy seasons: PAC: N/A kg/day Sodium hypochlorite: N/A kg/day Concentrated sulfuric acid: N/A kg/day Lime: N/A kg/day Annual Operation and maintenance cost and its breakdown: N/A Labor cost: N/A Chemical cost: N/A Electricity cost: N/A Maintenance cost: N/A Other cost: N/A Other cost: N/A
			② Old Mavoko WTP	N/A
•	4	Water quality test	 New Mavoko WTP Old Mavoko WTP 	Main items to be tested in each process and frequency of the test (raw water, after treatment and so on): N/A Compliance with water quality standards: N/A
•	5	Future development plan	N/A	N/A

Attachment-4: Water Transmission Mains to Reservoir


No.	Items		Details / N	lumb	ers / Specifications / Conditions	Note
1	Name and location	1	Pumping Transmission Main (HDPE OD 355)			
	map of transmission	2	Pumping Trans	smiss	ion Main (HDPE OD 250)	
	pipeline	Ref	er to Figure 1.			
2	Specifications of	1	Pumping	•	Location, materials, diameter and length	
	Pipeline		Transmission		of each pipeline:	
			Main (HDPE		Total length: 5.90 km	
			OD 355)	•	Year Built: for each pipeline: N/A	
				•	NRW of main transmission line: N/A	
				•	Transmission pump: N/A	
		2	Pumping	•	Location, materials, diameter and length	
			Transmission		of each pipeline:	
			Main (HDPE		Total length: 3.90 km	
			OD 250)	•	Year Built: for each pipeline: N/A	
				•	NRW of main transmission line: N/A	
				•	Transmission pump: N/A	
3	Future development	N/A		N/A	1	
	plan					

Attachment-5: Reservoirs

No.	Items	Details /	Numbers / Specifications / Conditions	Note
1	Name and location	① Elevated Ste	eel Tank	
	map of Reservoir	② Concrete Go	ound Tank	
		Refer to Figure 1	efer to Figure 1.	
2	Specifications of reservoir	Refer to Figure 1 ① Elevated Steel Tank ② Concrete Gound Tank	 Current capacity: N/A Year Built: N/A Structure of main facility: Reservoir: N/A Distribution pump: N/A Water flow measurement facility: N/A Generator facility: N/A Current capacity: 5,000 m³ Year Built: N/A Structure of main facility: Reservoir: N/A Distribution pump: N/A Water flow measurement facility: N/A Generator facility: N/A 	
3	Operation and maintenance and Water quality test	 Elevated Steel Tank Concrete Gound Tank 	 Flow diagram of reservoir: N/A Type and amount of chemicals used before distribution if any: N/A Sodium hypochlorite: N/A Annual Operation and maintenance cost and its breakdown: N/A Labor / maintenance cost: N/A Electricity cost: N/A Other cost: N/A Main items to be tested in reservoir: N/A Compliance with water quality standards: N/A 	
4	Future development plan	N/A	N/A	

Attachment-6: Water Distribution Mains

No.	Items	Details /	Numbers / Specifications / Conditions	Note
1	Name and location	N/A		
	map of distribution			
	pipeline network			
2	Specifications of	N/A	Location, materials, diameter and length of	
	Pipeline		each pipeline: N/A	
			Year Built: for each pipeline: N/A	
			Distribution pump: N/A	
			NRW of main distribution line: N/A	
3	Future development	N/A	N/A	
	plan			

Source: MAVWASCO

Figure 1 Mavoko Water Supply Improvement Proposed Measures

WSP-7

Nakuru WSP (NAWASSCO)

Project for Strengthening Capacity of Water Service Providers on Formulating Bankable Project Plans

Questionnaire (NAWASSCO)

No.	Questions	Answers
1	Are you willing to borrow the money from	Yes.
	commercial bank when selected as target WSP?	
2	Kindly specify last 10 years project with major project	N/A
	comportment and amount, and source of fund for each	
	project.	
3	Kindly provide the WSP long term plan with annual	Noted.
	budget for O&M and investment for water supply	
	system.	
4	Do you currently offer or intended to be offer any fund	Yes.
	from doner, AOB, OBA, KPWF, own fund or any	
	others? If yes, kindly provide the detail.	
5	Kindly provide the documents <u>listed in Attachment 1 to</u>	Noted.
	6 and Data Collection List.	
6	Kindly fill in the details for the overview of water	[Attachment 1to 6]
	supply facilities as shown in Attachment 1 to 6.	
7	What is the reason for the inactive connections?	■ No payment
		■ No water due to technical problem such as no
		pressure, blockages and so on (shortage of water)
		■ There is any other alternative source.
		(Itare Dam Project by WWDA, dam (100,000
		m ³ /day but to Nakuru 85,000 m ³ /day) collect
		water from river)
		■ Deactivate the account during rainy season
		(However, not common in urban areas)
		☐ Any other reason, if any please specify
8	What kind of sensitization for the inactive connections	Advertise through social media for
	to reconnection have been carried out?	reconnections.
		Arrangement for payment.
		Clinics open meetings.
		Survey carried out to understand the source of
		water, reasons for inactive connections.

No.	Questions	Answers
9	Kindly provide the current total water demand (m³/day)	70,000 m ³ /day.
	with calculation method and excel file.	
10	Kindly provide the details for the water demand	N/A
	projection with calculation method and excel file.	
11	Challenges Faced in the Water Supply Facilities	☐ Enough to develop the future demand
	1) Potential of Water Source	☐ Enough for current demand
		■ Not enough (12 boreholes being drilled able to
		increase the water production by 20,000 m³/day
		to 60,000 m ³ /day.)
		■ Need additional water sources (Current
		available boreholes: 29, additional 11 will be
		drilled to make a total of 40 in two months,
		another 20 boreholes are planned to be drilled.)
	2) Raw Water Quality	■ Meet the standard for drinking purpose
		(Flouride (4 - 8 QPM) blend with river water to
		lower floride level to 2)
		☐ Meeting the standard but deteriorating
	3) Intake Facility	
	Intake Volume	☐ Sufficient for future water demand
		□ Sufficient for current demand
		■ Not sufficient for current demand (Water
		service coverage: 93%, Increase the capacity of
		Mereroni Intake to 8,000 m ³ /day)
	Facility Condition	□ Good
		□ Fair
		■ Deteriorating but can utilize
		☐ Need rehabilitation and augmentation

No.	Questions	Answers
	4) Raw Water Transmission System	
	Transmission Volume	■ Sufficient for future water demand (AC Pipe:
		50 - 100 years, GI and PVC, HDPE being laid
		lately)
		□ Sufficient for current demand
		☐ Not sufficient for current demand
	Facility Condition	□ Good
		□ Fair
		■ Deteriorating but can utilize
		☐ Need rehabilitation and augmentation
	5) Water Treatment Plant	
	Treatment Volume	☐ Sufficient for future water demand
		■ Sufficient for current demand (if fully utilized)
		□ Not sufficient for current demand
	Facility Condition	□ Good
		□ Fair
		■ Deteriorating but can utilize
		☐ Need rehabilitation and augmentation
	6) Water Distribution Systems	■ Meeting the standards for water pressure (Water
	Water Pressure	pressure (10 m) in CBD is met)
		■ Not all area meeting the standards for water
		pressure (Rationing (Tuesday and Thursday)
		done to other areas. Pressure cannot build to 10
		m. Rationing program shared with all Nakuru
		residents.)
		☐ Not meeting the standard when high demand
		☐ Not meeting the standard
	7) Household Connection	■ Using the saddle clamp with cock
		☐ Using the saddle clam
		☐ Using the tee
	8) Water Meter	■ Using the piston type (For small water meter)
		■ Using propeller type (For big water meter)
		Reason of selecting above:

No.	Questions	Answers
	9) Non-Revenue Water (NRW)	Current NRW: 31%
	Reason and each percentage	■ Old pipe
		□ Poor material use
		☐ High pressure
		□ Meter inaccuracy
		■ Illegal connection
		□ Poor workmanship
		□ Others
	10) Billing System	■ By manual (Photo of water meter read will be
	How do you read the water meter?	posted on the software installed in the smart
		phone)
		□ By smart Phone
	What kind of software for billing system is using?	□ By smart meter
		■ Enterprise Resource Panning (ERP)
		□ JICS
		□ Other

Attachment-1: Main Water Source

No.	Items	Details /	Numbers / Specifications / Conditions	Note	
1	Name and location	① Surface sour	rces: Mireroni and Malewa River Intakes		
	map of water source	② Ground sour	② Ground sources: boreholes from 4 well-fields that had a total		
	and intake facility	of 25 boreho	of 25 boreholes.		
		o 15 newl	y drilled boreholes to be commissioned soon.		
		o This wil	l bring the total to 40 boreholes.		
		Possible addition	s of more boreholes from the KFW project.		
		Refer to Figure 1			
2	Specifications of	① Surface	Water source capacity: N/A m³/day		
	water source and	sources	• Intake capacity: N/A m³/hour, N/A m³/day		
	intake facility		Year Built: N/A		
			Strcuture of intake facility (Elevation N/A		
			masl):		
			◆ Intake well: N/A		
			◆ Grit chamber: N/A		
			◆ Pump: N/A		
		② Ground	Ground Refer to Table 1.		
		sources	sources		
3	Outstanding annual	N/A	/A • Maximum intake: N/A		
	and seasonal		Minimum intake: N/A		
	fluctuation / trend, if		Permanent river or seasonal river: N/A		
	any				
4	Future development	① Mireroni	Intake capacity: capacity still under review		
	plan	river	under the KFW project		
		intake	Scheduled year: Scheduled to commence by		
		revision	June 2022		
		(Project under	Project under Purpose: To boost the water supply within the		
		KFW)	(FW) service area		
		② Additional	Feasibility study in the identified sites		
		20	undergoing to establish the expected yield.		
		boreholes	Scheduled year: Scheduled to commence by		
		(Project under	June 2022		
		KFW)	Purpose: To increase coverage of the drinking		
			water to underserved and un-served areas.		

Attachment-2: Management Structure and Area of Coverage

No.	Items	Details /	Numbers / Specifications / Conditions	Note	
1	Name and location	100% of Nakuru	100% of Nakuru East and Nakuru West Sub-Counties and part of		
	of water supply area	sublocations alon	sublocations along the Solai corridor in Bahati Subcounty		
	/ county	The area is divide	ed into five administrative zones: Central zone,		
		Northern zone, S	outhern zone, Eastern zone and Western zone.		
		Refer to Source:	NAWASSCO		
		Figure 2.			
2	General information	NAWASSSCO	NAWASSSCO • Population / Beneficiaries (2019): 533,800		
	of water supply area	Service Area	Household connections (2022): 52,600		
	/ county		• Water Kiosk: 72		
			• Total / coverage area: (2022): 320 km ²		
			• Average service hours (2020): 19 hours		
			Water Treatment Plant: 4 WTP		
			Main water source: Surface and ground		
			water		
			Current domestic water demand (year 2022):		
			80,000 m ³ /day		
			Future domestic water demand (year 2050):		
			190,000 m³/day		
			Refer to		

Attachment-3: Water Treatment Plant (WTP)

No.	Items		Numbers / Specifications / Conditions	Note			
1	Name and location	1	Mireroni Trea	tment Works (Surface and ground water)			
	map of WTP	2	Malewa Treati	ment Works (Surface water)			
		3	Olbanita Treat	tment Works (Ground water)			
		4	4 Nairobi Road Treatment Works (Ground water)				
		Refer	r to Source: N				
		Figur	re 4.				
2	Specifications of	1	Mireroni	Type of treatment: Full water treatment			
	WTP	,	Treatment	during rainy season and Chlorination for			
		,	Works	ground water.			
				Current treatment capacity (during rainy)			
				seasons): 4,500 m³/day			
				• Design treatment capacity: 6,000 m³/day			
				Year Built: 1913			
				Structure of main facility: N/A			
				Refer to Source: NAWASSCO			
				Figure 5 and Table 2.			
		2	Malewa	Type of treatment: Rapid filtration with			
		,	Treatment	coagulation + chlorine disinfection			
		,	Works	• Current treatment capacity: 2,200 m ³ /day			
				• Design treatment capacity: 2,500 m ³ /day			
				Year Built: 1952			
				• Clear water tank Capacity: 1,000 m ³ ,			
				concrete tank			
				Refer to Source: NAWASSCO			
				Figure 6.			
		3	Olbanita	Type of treatment: N/A			
		,	Treatment	Current treatment capacity: N/A			
		,	Works	Design treatment capacity: N/A			
		4	Nairobi	Year Built: N/A			
]	Road	Clear water tank Capacity: N/A			
		,	Treatment	The water quality of the groundwater is			
		,	Works	compatible with the KAS: EAS 12:2018 and			
				thus, do not require any treatment except for			
				preventive disinfection using chlorine lime.			
				Refer to Source: NAWASSCO			
				Figure 7.			

3	Water treatment	1	Mireroni	Utilization of plant capacity: N/A
	conditions		Treatment	Hours for WTP Utilization: N/A
	- COM G 2010		Works	Flow diagram of the water treatment
				process:
				N/A
				Type and amount of chemicals used during
				the process (2020) for during the dry and
				rainy seasons:
				◆ Sodium hypochlorite: 12,000 kg/yr
				◆ Alum: 18,000kg/yr
				◆ Soda ash: 3,600 kg/yr
				Annual Operation and maintenance cost and
				its breakdown: 20.8 Mil Ksh/year (estimate
				cost)
				◆ Labor cost: 5.4 Mil Ksh/year (estimate)
				◆ Chemical cost: 10.3 Mil Ksh/year
				• Electricity cost: 4.8 Mil Ksh/year
				Maintenance cost: 0.2 Mil Ksh/year
				• Other cost: 0.1 Mil Ksh/year
		2	Malewa	Utilization of plant capacity: N/A
			Treatment	Hours for WTP Utilization: N/A
			Works	Flow diagram of the water treatment
				process:
				N/A
				Type and amount of chemicals used during
				the process (2020) for during the dry and
				rainy seasons:
				◆ Sodium hypochlorite: 1,200 kg/yr
				◆ Alum: 6,000kg/yr
				◆ Soda ash: 600 kg/yr
				Annual Operation and maintenance cost and
				its breakdown: 5.3 Mil Ksh/year (estimate
				cost)
				• Labor cost: 2.9 Mil Ksh/year (estimate)
				Chemical cost: 2.1 Mil Ksh/year
				Electricity cost: 0.1 Mil Ksh/year
				Maintenance cost: 0.1 Mil Ksh/year
				Other cost: 0.1 Mil Ksh/year

	3	Olbanita	Utilization of plant capacity: N/A
		Treatment	Hours for WTP Utilization: N/A
		Works	Flow diagram of the water treatment
			process:
			N/A
			Type and amount of chemicals used during
			the process (2020) for during the dry and
			rainy seasons:
			◆ Sodium hypochlorite: 5,520 kg/day
			Annual Operation and maintenance cost and
			its breakdown: 58.5 Mil Ksh/year (estimate
			cost)
			◆ Labor cost: 2 Mil Ksh/year (estimate)
			◆ Chemical cost: 2.5 Mil Ksh/year
			◆ Electricity cost: 48 Mil Ksh/year
			Maintenance cost: 5 Mil Ksh/year
			Other cost: 1 Mil Ksh/year
	4	Nairobi	Utilization of plant capacity: N/A
		Road	Hours for WTP Utilization: N/A
		Treatment	Flow diagram of the water treatment
		Works	process:
			N/A
			Type and amount of chemicals used during
			the process (2020) for during the dry and
			rainy seasons:
			◆ Sodium hypochlorite: 6,000 kg/yr
			Annual Operation and maintenance cost and
			its breakdown: 7.4 Mil Ksh/year (estimate
			cost)
			• Labor cost: 3.4 Mil Ksh/year (estimate)
			◆ Chemical cost: 2.7 Mil Ksh/year
			• Electricity cost: 0.2 Mil Ksh/year
			Maintenance cost: 1 Mil Ksh/year
			Other cost: 0.1 Mil Ksh/year
			Suite Seed strain really suit

4	Water quality test	1	Mireroni	Main items to be tested in each process and
			Treatment	frequency of the test (raw water, after
			Works	treatment and so on):
		2	Malewa	pH, turbidty in raw water and residue
			Treatment	chlorine after treatment which are done 3
			Works	times per day
		3	Olbanita	Compliance with water quality standards:
			Treatment	【Lab Data Analysis Report】
			Works	N/A
		4	Nairobi	
			Road	
			Treatment	
			Works	
5	Future development	1	Construction	Purpose: To accommodate the additional
	plan		of dosing	volume from the boreholes
			towers at	• Target year: 2022-2023
			Olbanita-	
			bahati	
			reservoir,	
			Eastern	
			reservoir	
			and western	
			reservoir	
		2	Ndundori	Feasibility study in progress
			Mireroni	Scheduled year: to commence in June 2022
			new water	Purpose: To accommodate the extra volume
			treatment	from the revised intake and ensure clean,
			plant (refer	safe and portable water to those who were
			to map in	getting raw water along the way before
			attachment	reaching the treatment plant at Milimani.
			1)	

Attachment-4: Water Transmission Mains to Reservoir

No.	Items	Details / Numbers / Specifications / Conditions	Note
1	Name and location	Refer to Source: NAWASSCO	
	map of	Figure 8.	
	transmission	① Nairobi road reservoir-:	
	pipeline	Baharini BH- reservoir: 350mm, GI, rehabilitated in 2008	
		• Nairobi Road BH – reservoir: 200 mm, AC, 19	
		Mireroni TW- reservoir: 350 mm GI	
		② Western tank:	
		• Malewa TW – reservoir: 350 mm, GI	
		③ Eastern tank:	
		Kabatini BH-reservoir: DN 200, HDPE	
		• Gilgil-Reservoir: DN 350, GI - 1952	
		④ High rise bahati tank:	
		Olbanita TW -reservoir: DN 400, GI	
		⑤ Prison road reservoir:	
		Mireroni TW - reservoir: DN 300, GI	
		• Gilgil-Reservoir: 350 mm, AC	
		6 Milimani high rise reservoir:	
		Mireroni TW -reservoir:	
		⑦ Mireroni TW reservoir:	
		• Kabatini BH-reservoir: DN 400, GI	
		Bahati high rise reservoir – reservoir: DN 400, GI	
		Mireroni Intake-reservoir: DN 350, GI	
		Nairobi Road reservoir- reservoir (not functional): DN 200, GI	
		8 Malewa reservoir:	
		Malewa intake-reservoir: DN 200, AC	

2	Specifications of	(1)	Nairobi road	Location, materials, diameter and length of	
	Pipeline		reservoir	each pipeline	
	1 ipenne				
		2	Western	Distribution Network NAWASSCO Characterization	
			tank	Material of pipes GI,HDPE, PVC,AC	
		3	Eastern tank		
		4	High rise	Diameters DN 25, DN 32, DN 40, DN	
			bahati tank	50, DN 63, DN 75, DN 90, DN 100, DN 110, DN 150,	
		(5)	Prison road	DN 160, DN 200, DN 225,	
			reservoir	DN 250, DN 300, DN	
		6	Milimani	350,DN 400, DN 500, DN 600	
			high rise	Total lengths 841045.18 m	
				Years of construction 1940-2020	
			reservoir	Temperature of water in 37° C	
		7	Mireroni	the system Number of Tanks 7	
			TW	Trained or tame	
			reservoir	Year Built: for each pipeline: N/A	
		8	Malewa	NRW of main transmission line: N/A	
			reservoir	Transmission pump: N/A	
3	Future development	1)	Trunk main	Feasibility still underway on several routes to	
	plan		from	accommodate the additional boreholes around	
	pian		Ndundori	Ndundori area (specific details to be availed	
			proposed	soon by the consultants)	
			BHs to		
			Nairobi		
			Road		
			reservoir		
		2	Rerouting of	N/A	
			raw water		
			main from		
			Ndundori		
			intake to		
			Nairobi		
			Road		
			reservoir.		

	_			
	3	Construction	Length: Approximately 6.5 km	
		of 16" rising	Diameter: DN 400	
		main from	Material: GI	
		Kabatini –		
		Mireroni		
		TW		
	4	Raising	Length: Approximately 6.2 km	
		main from	Diameter: DN 350	
		Baharini BH	Material: GI	
		to Nairobi		
		Road		
		reservoir		

Attachment-5: Reservoirs

No.	Items	Details / Numbers / Specifications / Conditions	Note
1	Name and location	① Eastern Reservoir	
	map of Reservoir	② Western Reservoir	
		③ Prison Road Reservoir	
		Bahati Reservoir	
		Nairobi road Reservoir	
		6 Mereroni Reservoir	
		7 Milimani High Level Reservoir	
		8 Malewa Reservoir	
		Refer to Table 3.	
2	Specifications of	① Eastern Refer to Table 3.	
	reservoir	Reservoir	
		② Western	
		Reservoir	
		③ Prison Road	
		Reservoir	
		④ Bahati	
		Reservoir	
		⑤ Nairobi road	
		Reservoir	
		6 Mereroni	
		Reservoir	
		7 Milimani	
		High Level	
		Reservoir	
		8 Malewa	
		Reservoir	

3	Operation and	1	Eastern	Flow diagram of reservoir: N/A
	maintenance and		Reservoir	Type and amount of chemicals used before
	Water quality test	2	Western	distribution if any: N/A
			Reservoir	Sodium hypochlorite: N/A
		3	Prison Road	Annual Operation and maintenance cost
			Reservoir	and its breakdown: KES 0.4 million
		4)	Bahati	(Cleaning of the tanks for twice a year,
			Reservoir	Servicing and replacement of valves)
		(5)	Nairobi road	◆ Labor / maintenance cost: N/A
			Reservoir	◆ Electricity cost: N/A
		6	Mereroni	◆ Other cost: N/A
			Reservoir	Main items to be tested in reservoir: N/A
		7	Milimani	Compliance with water quality standards:
			High Level	N/A
			Reservoir	
		8	Malewa	
			Reservoir	
4	Future development	1	Construction	◆ Design capacity 200 m³
	plan		of a 200 m^3	◆ Material: Concrete
			tank at	◆ Scheduled year: June 2022
			Heshima	Purpose: To serve the unserved and
			area	underserved residents of Heshima village
				who are situated on the higher areas of the
				Solai corridor.
		2	Recommend	◆ Capacity 4,000 m ³
			a tank at	◆ Material: Concrete
			hyrax hill	Scheduled year: N/A
				Purpose: To maintain a constant pumping
				head for the pump that will ensure
				continuous and reliable water supply to
				residents of eastern zone and parts of
				Southern zone.

Attachment-6: Water Distribution Mains

No.	Items	Details / N	Numbers / Specifications / Conditions	Note
1	Name and location	The service area is	divided into five main DMAs that serve as the	
	map of distribution	administrative bour	ndaries.	
	pipeline network	i.e., Northern zone,	southern zone, eastern zone, western zone and	
		central zone.		
		Refer to Source: NA	AWASSCO	
		Figure 9.		
2	Specifications of	① All service	Location, materials, diameter and length of	
	Pipeline	areas	each pipeline	
			Refer to Table 4	
			Year Built: for each pipeline: N/A	
			Distribution pump: N/A	
			NRW of main distribution line: N/A	
3	Future development	① Replacement	Assorted pipe sizes	
	plan	of AC lines	Scheduled year: 2022-2023	
		and old and		
		dilapidated		
		pipelines in		
		southern		
		zone		

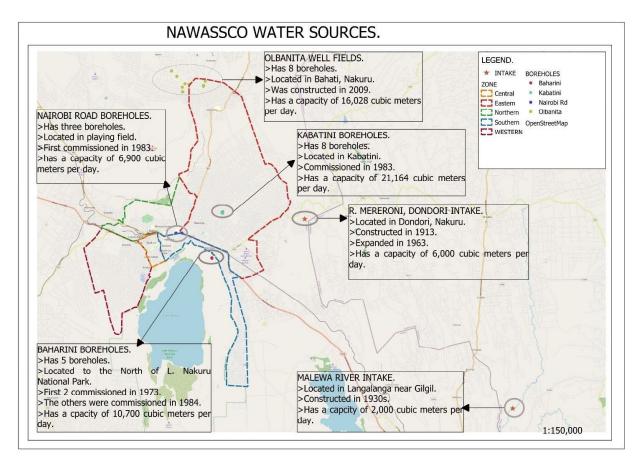


Figure 1 NAWASSCO Water Source

Table 1 Profile of Well Fields

Well No	Station	Borehole No.	Casing Dia	G.I drop Pipe Dia	Borehole depth	Discharge	Total head	Static Water Level	Dynamic Water Level
			inch	inch	(m)	m³/hr		(m)	(m)
1.	KABATINI	1	10"	6"	150	133	130	39.90	45
	WELFIELD	2	10"	6"	149	145	130	40.50	50.60
		3	10"	6"	62.5	148	130	37.00	43.52
		4	10"	6"	150	146	130	36.81	43.62
		5	8"	4"	150	80	130	41.4	50.70
		6	10"	6"	150	108	130	41.90	41.54
		7	10"	6"	150	108	130	41.85	45.04
		8	10"	6"	150	133	130	38.50	55.43
2.	BAHARINI	1	10"	4"	71	54	127	54.18	57.48
	WELFIELD	2	8"	4"	90	67	127	51.58	53.21
		3	10"	4"	80	67	127	54.18	54.15
		4	10"	6"	100	150	127	52.59	55.59
		5	10"	6"	73	96	127	53.23	55.05
3.	NAIROBI	4	8"	4"	120	96	120	84.32	85.18
	ROAD	5	8"	4"	130	60	120	83.60	86.19
	WELFIELD	6	8"	4"	120	80	120	84.90	85.23
4.	OLBANITA	1	10"	5"	300	96	184	137.20	182.28
	WELFIELD	2	10"	5"	300	76.3	165	159	198.94
		3	10"	5"	300	95,6	178	156.80	199.46
		4	10"	5"	300	84.9	176	166.23	190.0
		5	10"	5"	300	110	174	158.93	166.0
		6	10"	5"	300	125.6	238	152.00	166.93
		7	10"	5"	251	57.7	172	145.64	184.72
		7A	10"	3"	257	14.1	184	145.4	-

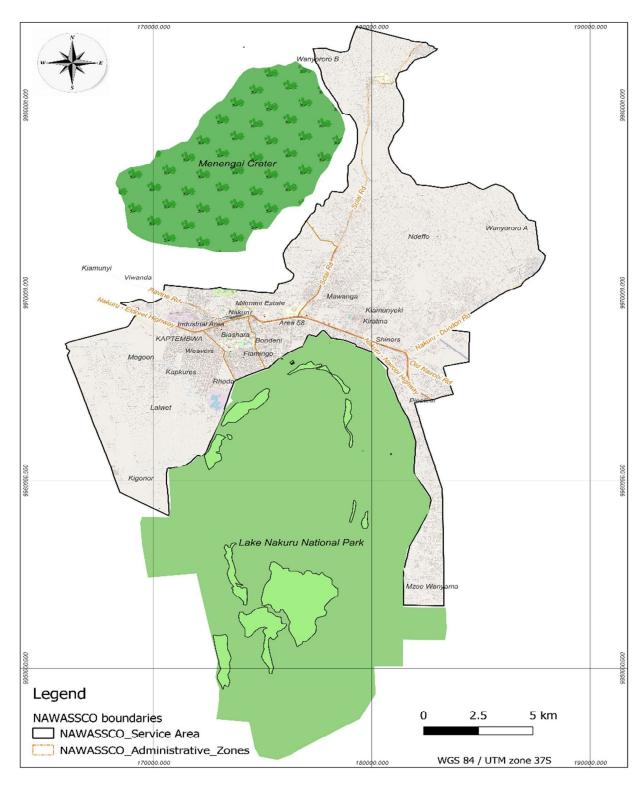


Figure 2 NAWASSCO Service Area

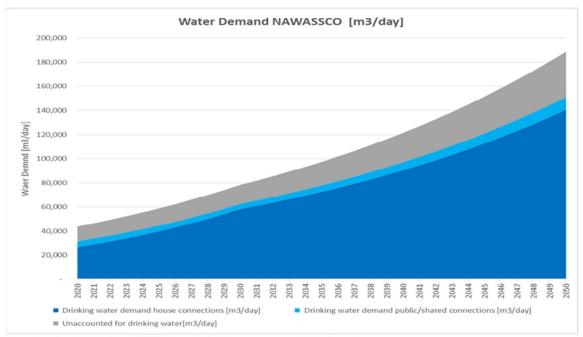
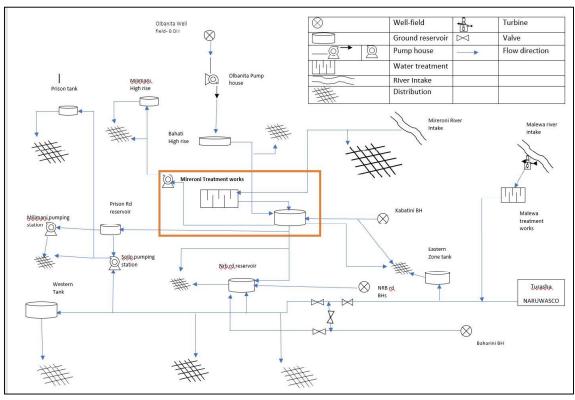



Figure 17 NAWASSCO's Water Demand up to 2050, including water supply from Itare Dam

Figure 3 NAWASSCO Water Demand Projection

Figure 4 NAWASSCO Treatment Works

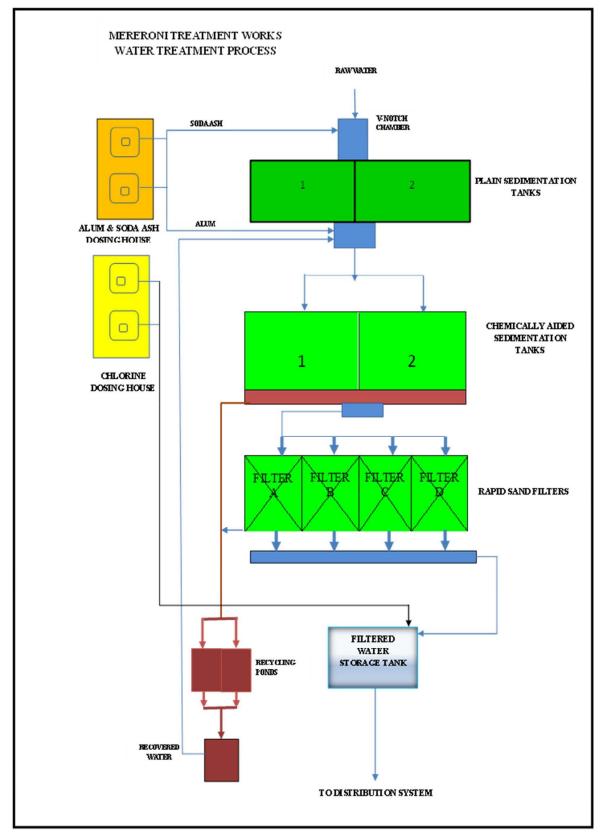


Figure 5 Mereroni Treatment Works

Table 2 Mereroni Treatment Works

Parameter	Units					
Receiving	g chamber					
Retention time	Approximately 1.5min.					
Weir						
Plain sedime	entation basin					
Туре	Hydraulic, Horizontal flow type					
Surface loading rate	$1 \mathrm{m}^3/\mathrm{m}^2/\mathrm{hr}$					
Desilting method	Manual					
Rapid Mixi	ng Chamber					
Туре	Power driven agitator pump.					
Mixing Head	about 2.6m					
Chemically aided s	edimentation basin					
Туре	Conventional, Vertical flow type					
Surface loading rate	$1 \mathrm{m}^3/\mathrm{m}^2/\mathrm{hr}$					
Desludging method	Manual/hydraulic					
Filters						
Type	Conventional, constant flow rate, with back					
	washing and surface washing					
Filtration rate	$5\mathrm{m}^3/\mathrm{m}^2/\mathrm{hr}$					
Backwash rate	30-35m ³ /m ² /hr					
Surface wash rate	9m ³ /m ² /hr backwash and surface wash					
Time	8 min.					
Clear water	er reservoir					
Retention Time	1 hr					
Chemical d	osing facility					
Aluminu	m sulfate					
Form	Lump					
Stock volume	60 day's quantity					
Dosing method	Gravity					
Dosing rate, max.	Max: 90mg/L					
	Avg: 50 mg/L					
	Min: 20mg/L					
Sod	a ash					
Form	Lump					
Stock volume	60 day's quantity					
Dosing method	Gravity					
Dosing rate, max.	Max: 100mg/L					

	Avg: 50 mg/L			
	min.: 10mg/L			
Chlorine lime				
Form	Lump			
Stock volume	60 day's quantity			
Dosing method	Gravity			
Dosing rate, max.	Max: 2.5 mg/L			
	Avg: 1.5 mg/ L			
	Min: 1.0mg/			

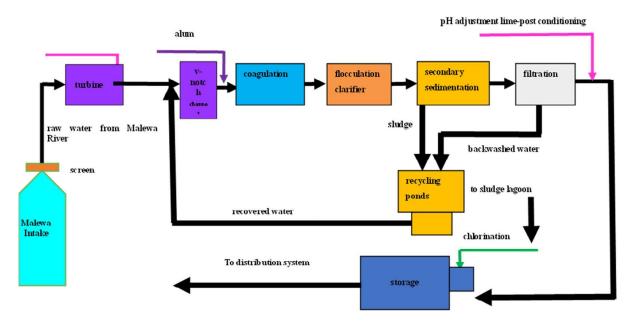
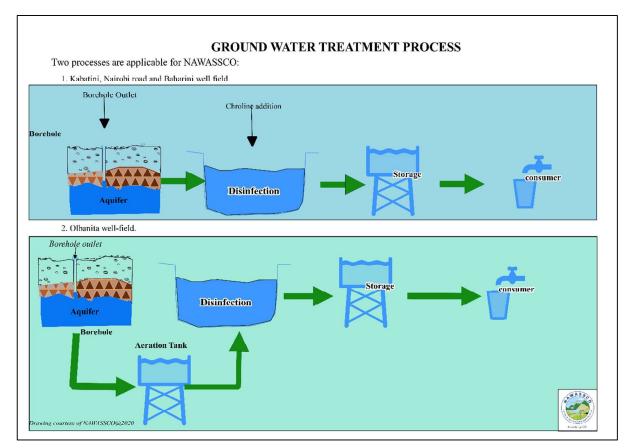
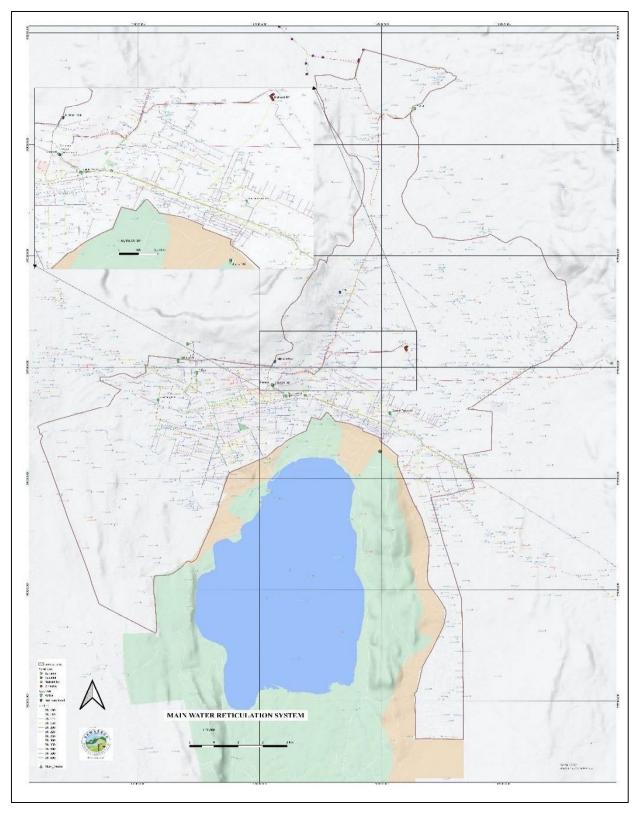




Figure 6 Malewa Treatment Works

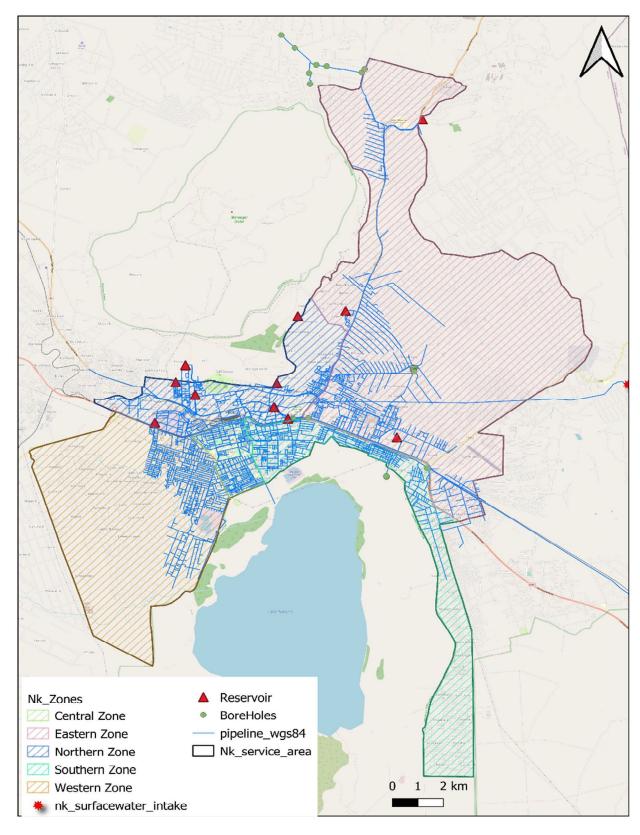

Figure 7 Groundwater Treatment Process

Figure 8 Transmission Mains

Table 3 NAWASSCO Reservoirs

Location/Area	Name	Capacity m ³	X-Section	Year constructed	Material	Type	Status
Eastern Zone	Eastern	4,000	Rectangular	1990	Concrete	Ground	Active
	Reservoir					mounted	
Western Zone	Western	6,000	Rectangular	1990	Concrete	Ground	Active
	Reservoir					mounted	
	Prison Road	1,000	Rectangular	1990	Concrete	Ground	Active
	Reservoir					mounted	
	Bahati	2,500	Rectangular	2009	Concrete	Ground	Active
	Reservoir					mounted	
	Nairobi road	3,375	Rectangular	1964	Concrete	Ground	Active
	Reservoir					mounted	
Central,	Mereroni	3,375	Cylindrical	1983	Concrete	Ground	Active
Southern &	Reservoir					mounted	
Western Zone							
Northern Zone	Milimani High	1,000	Rectangular	1983	Concrete	Ground	Not
	Level Reservoir					mounted	functional
Eastern &	Malewa	1,000	Rectangular	1952	Concrete	Ground	Active
Western Zone	Reservoir					mounted	

Figure 9 Distribution Mains

Table 4 Distribution Mains

N.A	NAWASSCO WATER RETICULATION PIPEWORK BREAKDOWN					
LENGTH IN AGE (M)						
AC	0-10 YEARS	10-20 YEARS	>20 YEARS	TOTALS (M)		
DN 100			2017	2017		
DN 150			3803	3803		
DN 200			1618	1618		
DN 225			10939	10939		
DN 250			23740	23740		
DN 300			1725	1725		
DN 600			33378	33378		
DN 75			2906	2906		
GI						
DN 100			2266	2266		
DN 150			10436	10436		
DN 200			866	866		
DN 225			14249	14249		
DN 250			1388	1388		
DN 300			1338	1338		
DN 32			909	909		
DN 350			15087	15087		
DN 400		3043	15277	18320		
DN 50			820	820		
DN 500			940	940		
DN 75			262	262		
HDPE						
DN 100	2374	718		3092		
DN 150	1380	1002		2382		
DN 200	1312	619		1931		
DN 250	2004			2004		
DN 32	1621	220		1841		
DN 40	1190	798		1988		
DN 400		281		281		
DN 50	670	1911		2581		
DN 75	5470			5470		
PVC						
DN 100	24444.994	51251.976	47482.97	123179.94		

TOTALS (M)	167183.7783	251409.8917	422451.51	841045.18
DN 75	19873.411	40618.55567	44885.77333	105377.74
DN 50	47129.869	69564.521	93582.48	210276.87
DN 400	811.3595	3245.438	17154.9275	21211.725
DN 40	18026.33193	19759.3444	13594.48967	51380.166
DN 350	494.7397	1978.9588	2473.6985	4947.397
DN 32	15064.4581	3973.8624	1612.3205	20650.641
DN 300	997.5441	3990.1764	16402.6305	21390.351
DN 250	346.157	1959.128	1730.785	4036.07
DN 25	3947.3973	6581.1992	3478.9865	14007.583
DN 225	26.1555	729.422	130.7775	886.355
DN 200	848.4504	5374.8016	4242.252	10465.504
DN 150	19151.9108	33790.5082	31715.419	84657.838

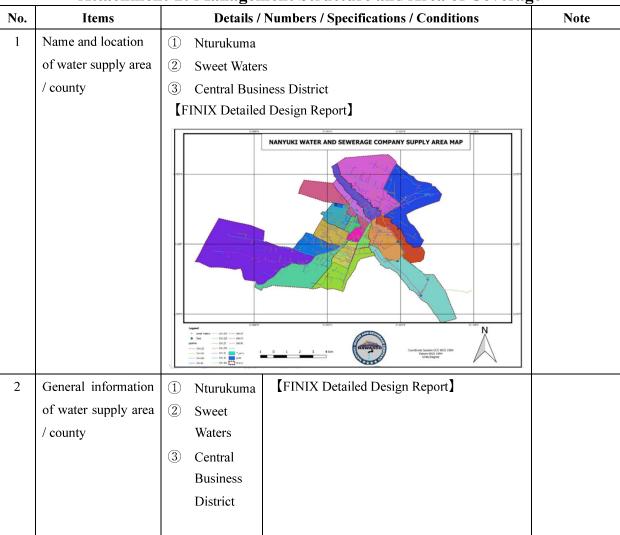
WSP-8

Nanyuki WSP (NAWASCO)

Project for Strengthening Capacity of Water Service Providers on Formulating Bankable Project Plans

Questionnaire (NAWASCO)

No.	Questions	Answers
1	Are you willing to borrow the money from	Yes.
	commercial bank when selected as target WSP?	
2	Kindly specify last 10 years project with major project	Refer to Table 1.
	comportment and amount, and source of fund for each	
	project.	
3	Kindly provide the WSP long term plan with annual	【Strategic Plan 2019-2024】
	budget for O&M and investment for water supply	【Strategic Plan 2019-2023】
	system.	
4	Do you currently offer or intended to be offer any fund	Yes.
	from doner, AOB, OBA, KPWF, own fund or any	AOD from WSTF: Sanitation Project
	others? If yes, kindly provide the detail.	WAHFIN: Customer Meter Replacement
5	Kindly provide the documents <u>listed in Attachment 1 to</u>	Noted.
	6 and Data Collection List.	
6	Kindly fill in the details for the overview of water	[Attachment 1 to 6]
	supply facilities as shown in Attachment 1 to 6.	
7	What is the reason for the inactive connections?	■ No payment
		■ No water due to technical problem such as no
		pressure, blockages and so on
		□There is any other alternative source.
		☐ Deactivate the account during rainy season
		☐ Any other reason, if any please specify
8	What kind of sensitization for the inactive connections	SMS: Send Customized messages to the
	to reconnection have been carried out?	customers
9	Kindly provide the current total water demand (m 3 /day)	2019: 15,165 m ³ /day
	with calculation method and excel file.	
10	Kindly provide the details for the water demand	2030: 24,633.55 m³/day
	projection with calculation method and excel file.	2040: 34,748.06 m ³ /day
11	Challenges Faced in the Water Supply Facilities	☐ Enough to develop the future demand
	1) Potential of Water Source	□ Enough for current demand
	ay a stational ox made. Source	■ Not enough
		■ Need additional water sources (Surface water)


No.	Questions	Answers
	2) Raw Water Quality	■ Meet the standard for drinking purpose
		☐ Meeting the standard but deteriorating
	3) Intake Facility	
	Intake Volume	☐ Sufficient for future water demand
		☐ Sufficient for current demand
		■ Not sufficient for current demand
	Facility Condition	■ Good (Boreholes)
		□ Fair
		■ Deteriorating but can utilize (Surface water)
		☐ Need rehabilitation and augmentation
	4) Raw Water Transmission System	
	Transmission Volume	☐ Sufficient for future water demand
		☐ Sufficient for current demand
		■ Not sufficient for current demand
	Facility Condition	□ Good
		□ Fair
		☐ Deteriorating but can utilize
		■ Need rehabilitation and augmentation
	5) Water Treatment Plant	
	Treatment Volume	□ Sufficient for future water demand
		□ Sufficient for current demand
		■ Not sufficient for current demand
	Facility Condition	- 0 - 1
	Facility Condition	□ Good
		□ Fair
		□ Deteriorating but can utilize■ Need rehabilitation and augmentation
	6) Water Distribution Systems	☐ Meeting the standards for water pressure
	Water Pressure	□ Not all area meeting the standards for water
	water ressure	pressure
		■ Not meeting the standard when high demand
		□ Not meeting the standard
	7) Household Connection	■ Using the saddle clamp with cock
	.,,====================================	☐ Using the saddle clam
		☐ Using the tee
		O

No.	Questions	Answers
	8) Water Meter	■ Using the piston type (Mostly)
		■ Using propeller type
		Reason of selecting above:
	9) Non-Revenue Water (NRW)	■ Old pipe (61%)
	Reason and each percentage	□ Poor material use
		☐ High pressure
		■ Meter inaccuracy (31%)
		□ Illegal connection
		□ Poor workmanship
		■ Others: Unbilled authorized (8%)
	10) Billing System	□ By manual
	How do you read the water meter?	■ By smart Phone
		□ By smart meter
	What kind of software for billing system is using?	■ Enterprise Resource Planning (ERP)
		□ JICS
		□ Other

Attachment-1: Main Water Source

No.	Items	Details	/ Numbers / Specifications / Conditions	Note		
1	Name and location		(Nanyuki High, Yard, Njoguiini, Katheri)			
	map of water source		ter (Nanyuki River, Likii River)			
	and intake facility	[FINIX Detaile	[FINIX Detailed Design Report]			
2	Specifications of	① Boreholes				
	water source and	(Nanyuki	• Intake capacity: 65 m³/hours, 1,578 m³/day			
	intake facility	High,	• Year Built: N/A			
		Yard,	ard, • Structure of intake facility (Elevation + N/A			
		Njoguiini,	masl):			
		Katheri)	◆ Intake well: N/A			
			◆ Grit chamber: N/A			
			◆ Pump: N/A			
			【FINIX Detailed Design Report】			
		② Surface	Surface • Water source capacity: N/A m³/day			
		water				
		(Nanyuki	• Year Built: N/A			
		River,	Structure of intake facility (Elevation + N/A			
		Likii	masl):			
		River)	◆ Intake well: N/A			
			◆ Grit chamber: N/A			
			• Pump: N/A			
			【FINIX Detailed Design Report】			
3	Outstanding annual	N/A	【FINIX Detailed Design Report】			
	and seasonal					
	fluctuation / trend, if					
	any					
4	Future development	N/A	【FINIX Detailed Design Report】			
	plan					

Attachment-2: Management Structure and Area of Coverage

Attachment-3: Water Treatment Plant (WTP)

No.	Items	Details / Numbers / Specifications / Conditions	Note
1	Name and location	① New Nanyuki WTP	
	map of WTP	② Old Nanyuki WTP	
		[FINIX Detailed Design Report]	
2	Specifications of WTP	 New Nanyuki WTP Type of treatment: Convectional treatment process with Coagulation, flocculation, sedimentation, aeration, rapid sand filtration 	
		 + disinfection Current treatment capacity: 11,000 m³/day Design treatment capacity: 11,248 m³/day Year Built: N/A Structure of main facility: N/A [FINIX Detailed Design Report] 	
		 Old Nanyuki WTP • Type of treatment: Convectional treatment process with Coagulation, flocculation, sedimentation, aeration, rapid sand filtration + disinfection • Current treatment capacity: 1,000 m³/day • Design treatment capacity: 3,410 m³/day • Year Built: N/A • Structure of main facility: N/A [FINIX Detailed Design Report] 	
3	Water treatment conditions	 New Nanyuki Nanyuki WTP Hours for WTP Utilization: 24 Flow diagram of the water treatment process:	

	plan	11/71	1 I I I I I I I Detailed Design Report	
5	Future development	WTP N/A	【FINIX Detailed Design Report】	
		Nanyuki	N/A	
		② Old	Compliance with water quality standards:	
		WTP	treatment and so on): N/A	
		Nanyuki	frequency of the test (raw water, after	
4	Water quality test	① New	Main items to be tested in each process and	
			【FINIX Detailed Design Report】	
			◆ Other cost: N/A	
			Maintenance cost: N/A	
			◆ Electricity cost: N/A	
			◆ Chemical cost: N/A	
			◆ Labor cost: N/A	
			its breakdown: N/A	
			Annual Operation and maintenance cost and	
			◆ Lime: N/A kg/day	
			Concentrated sulfuric acid: N/A kg/day	
			◆ Sodium hypochlorite: N/A kg/day	
			◆ PAC: N/A kg/day	
			seasons:	
			the process for during the dry and rainy	
			Type and amount of chemicals used during	
		WTP	• Flow diagram of the water treatment process: N/A	
		Nanyuki		
		② Old	 Utilization of plant capacity: 30 % Hours for WTP Utilization: 24	
			【FINIX Detailed Design Report】	
			• Other cost: N/A	
			Maintenance cost: N/A	

Attachment-4: Water Transmission Mains to Reservoir

No.	Items	Details /	Numbers / Specifications / Conditions	Note
1	Name and location	Refer to Table 2.		
	map of transmission	【FINIX Detaile	d Design Report】	
	pipeline			
2	Specifications of	N/A	Location, materials, diameter and length	
	Pipeline		of each pipeline	
			Refer to Table 2.	
			【FINIX Detailed Design Report】	
			Year Built: for each pipeline: N/A	
			NRW of main transmission line: N/A %	
		Transmission pump: N/A		
3	Future development	N/A	I/A [FINIX Detailed Design Report]	
	plan			

Attachment-5: Reservoirs

No.	Items	Details /	Details / Numbers / Specifications / Conditions		
1	Name and location	10 Reservoirs.			
	map of Reservoir	【FINIX Detaile	d Design Report		
2	Specifications of	10 Reservoirs	• Current capacity: 8,275 m ³		
	reservoir		• Year Built: N/A		
			Structure of main facility:		
			• Reservoir: N/A		
			◆ Distribution pump: N/A		
			◆ Water flow measurement facility: N/A		
			◆ Generator facility: N/A		
			【FINIX Detailed Design Report】		

3	Operation and	10 Reservoirs	Flow diagram of reservoir: N/A	
	maintenance and		Type and amount of chemicals used before	
	Water quality test		distribution if any: N/A	
			Sodium hypochlorite: N/A	
			Annual Operation and maintenance cost and	
			its breakdown: N/A	
			Labor / maintenance cost: N/A	
			Electricity cost: N/A	
			◆ Other cost: N/A	
			Main items to be tested in reservoir: N/A	
			Compliance with water quality standards:	
			N/A	
			【FINIX Detailed Design Report】	
4	Future development	N/A	【FINIX Detailed Design Report】	
	plan			

Attachment-6: Water Distribution Mains

No.	Items	Details /	Details / Numbers / Specifications / Conditions		
1	Name and location map of distribution pipeline network	Refer to Table 2. [FINIX Detailed]	Refer to Table 2. 【FINIX Detailed Design Report】		
2	Specifications of Pipeline	N/A	 Location, materials, diameter and length of each pipeline Refer to Table 2. [FINIX Detailed Design Report] Year Built: for each pipeline: N/A NRW of main transmission line: N/A % Transmission pump: N/A 		
3	Future development plan	N/A			

Table 1 Summary of NAWASCO Previous Funded Projects

No	Project	Project components	Project cost	Financier	Year	Current
	Name		(KES million)		completed	Status
1	Solio	■ Rehabilitation of intake	143	Government of	2019	Operational
	settlement	■ 31.05km gravity mains		Finland and		
	scheme	■ 37.2 km distribution lines		Government of		
	Water	■ Construction of 2		Sweden-through		
	project	masonry water storage		Water Sector		
		tanks (225m³ each)		Trust Fund-		
		 Construction of office 		120m		
		block				
		 Accompanying measures 		Laikipia County-		
		on catchment conservation		23m		
		 Last mile- 65Km tertiary 		Total- 143m		
		lines				
2	Katheri	■ Construction of 108m³	22.2	Water Sector	2018	Operational
	Nyariguni	elevated steel tank- which		Trust Fund		
	Water	was to address both				
	project	pressure and increase				
		storage;				
		■ Construction of 22.23km				
		pipeline extension- to reach				
		out to new consumers				
		Procurement and				
		Installation of 228 water				
		meters as accompanying				
		measures to the project.				
3	Majengo	■ Replacement of 23.7km	19	Water Sector	2017	Operational
	Thingithu	Pipeline with HDPE		Trust Fund		
	water	Construction of 1No.				
	project	Water kiosk				

4	Ngei Water	Network re-alignment	7.1	Water Sector	2022	Operational
	Project	and upgrade to HDPE-	,,,	Trust Fund		o p controller
	,	4.3km of dia. 63mm to				
		40mm				
		Installation of zonal				
		meters for monitoring				
		NRW-2No, DN 63mm				
		 Consumer connection 				
		transfers 298No. from old				
		to new connection				
		 Replacement of old 				
		consumer meters 298No,				
		R250, 15mm				
5	Elevated	■ Construction of 2No	8.5	NAWASCO	2022	Operational
	steel tanks	Elevated Steel tanks of				
		108m ³ each				
6	Makurian-	■ Construction of 3No.	97.5	Laikipia County	2022	Testing
	Osirua	Masonry tanks of 225m ³		through Kenya		Phase
	Water	each		Devolution		
	Project	■ Construction of 2No.		Support		
		Masonry tanks of 135m ³		Programme		
		each		KES 97.5million		
		■ Construction of 2No.				
		Masonry tanks of 75m ³				
		each				
		 Rehabilitation of intake 				
		■ 7.63Km Gravity main				
		■ 28.8Km Transmission				
		lines				
		■ 40.41Km Distribution				
		lines				

Source: NAWASCO

Table 2 Summary of Existing Mainlines

Pipeline	Pipeline capacity m³/day	Discharge m³/s	Pipe length (m)	Pipe Diameter (mm)	Total Head Loss	Terminal Head available (m)
Main distributor (from Old t/works)	1500	0.0174	3,005	DN 160 AC class B	29.84	38.53
Transmission pipe to Nanyuki tank	700	0.0130	1,248	DN 110 AC class D	16.77	62.72
Transmission pipe to the Army tank	700	0.0116	652	DN 110 AC class D	14.78	61.23

Source: NAWASCO