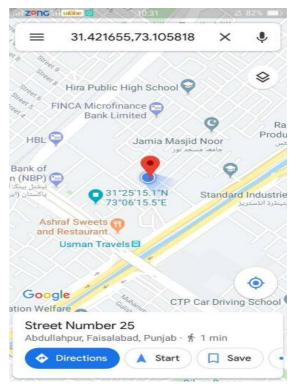

29 26-2-2020 (Consumer Comments: low water pressure, use water by pumping)









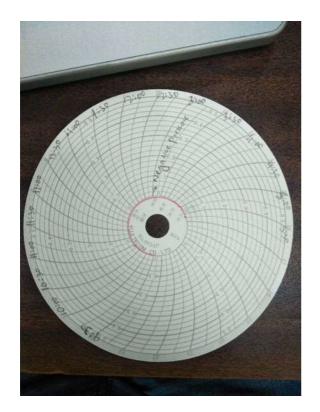


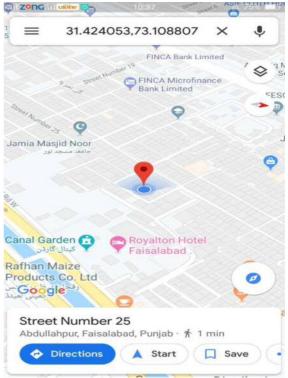

### 30 24-10-2019(Consumer Comments: Pressure is very low and water quality problem)





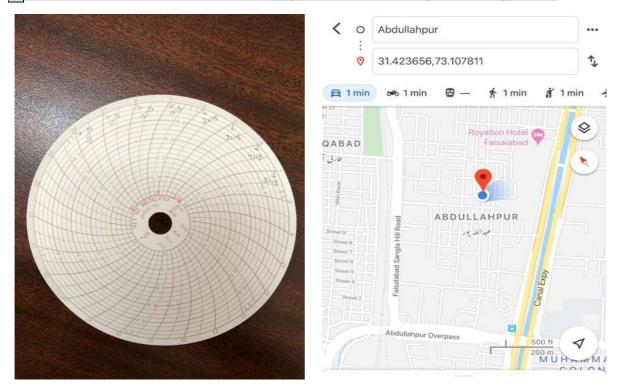










### 31 29-10-2019(Consumer Comments: water not come whole day)

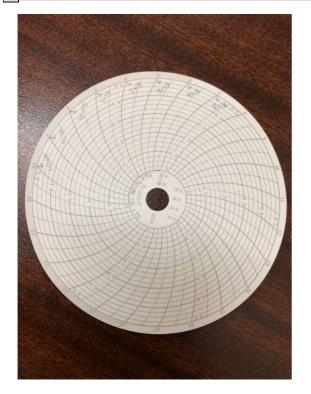


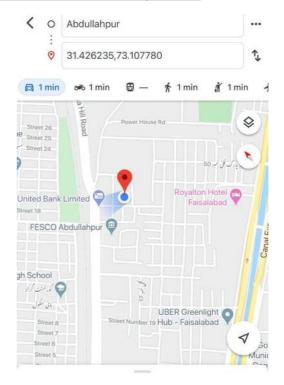




32 9-3-2020 (Consumer Comments: Low water pressure, not used daily due to low pressure)





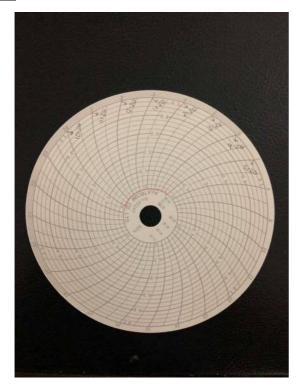



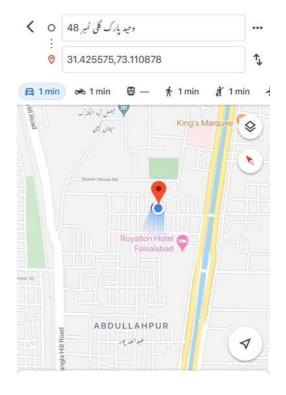





33 5-3-2020 (Consumer Comments: disconnect water connection due to low pressure)







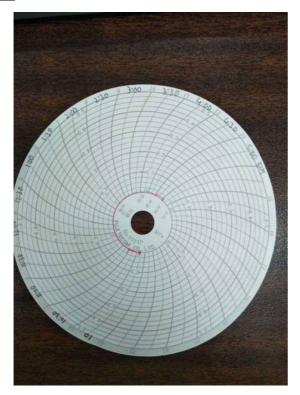


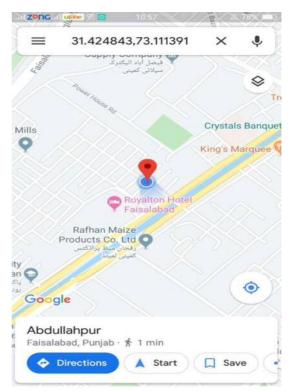

34 4-3-2020 (Consumer Comments: not using water due to low pressure and mixing with sewerage)





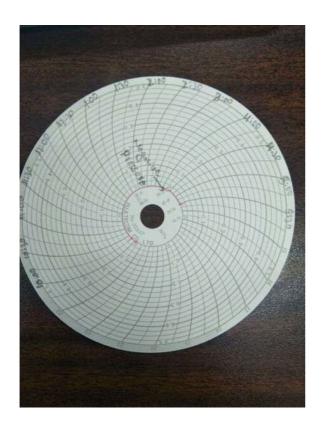










### 35 31-10-2019(Consumer Comments: Water pressure and water quality problem)



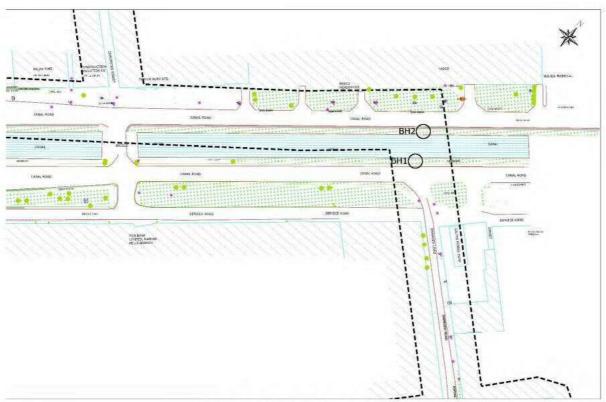




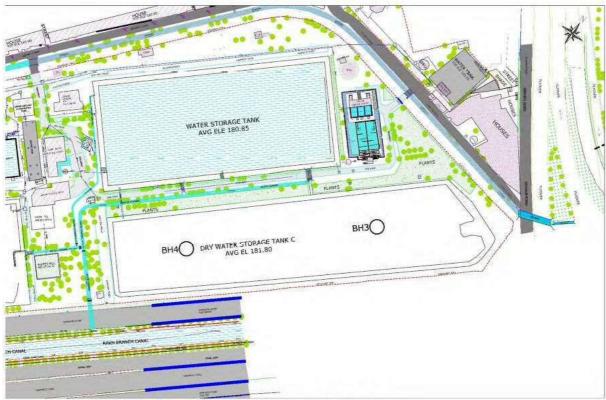

### 36 5-11-2019(Consumer Comments: Water has zero pressure)



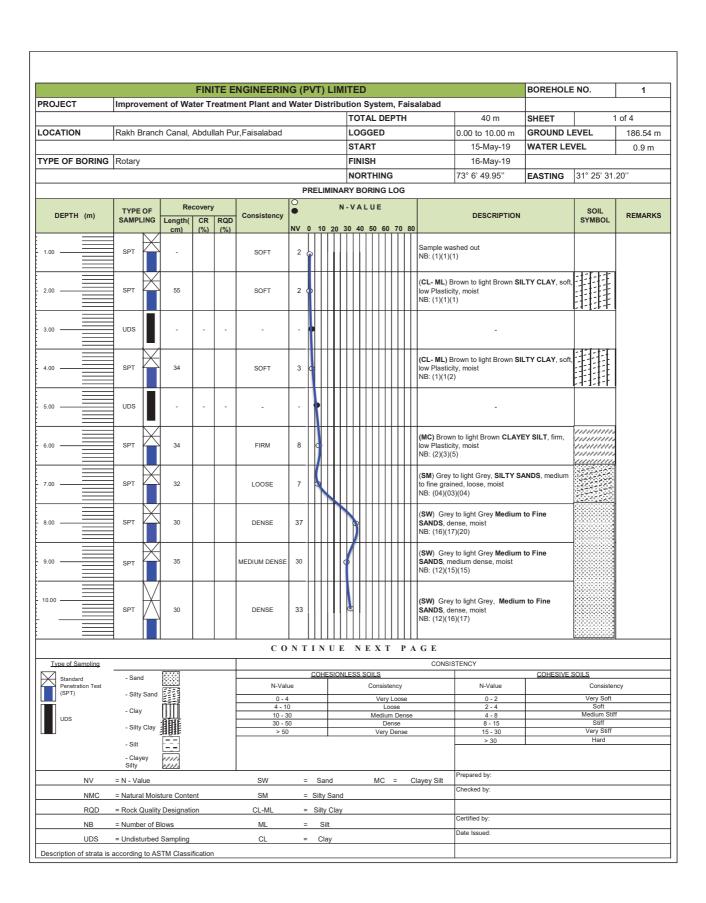


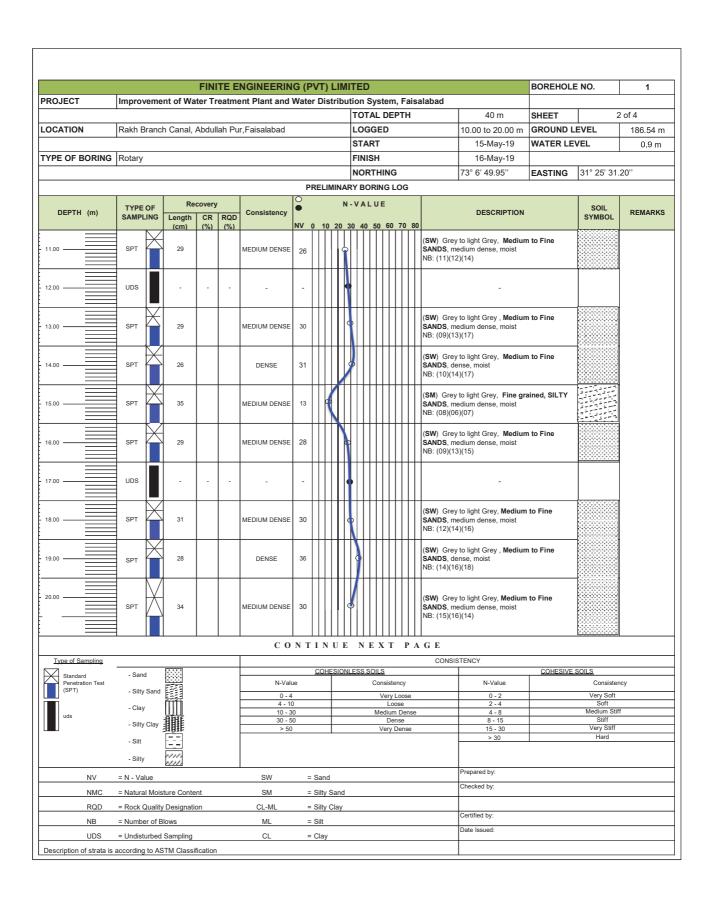


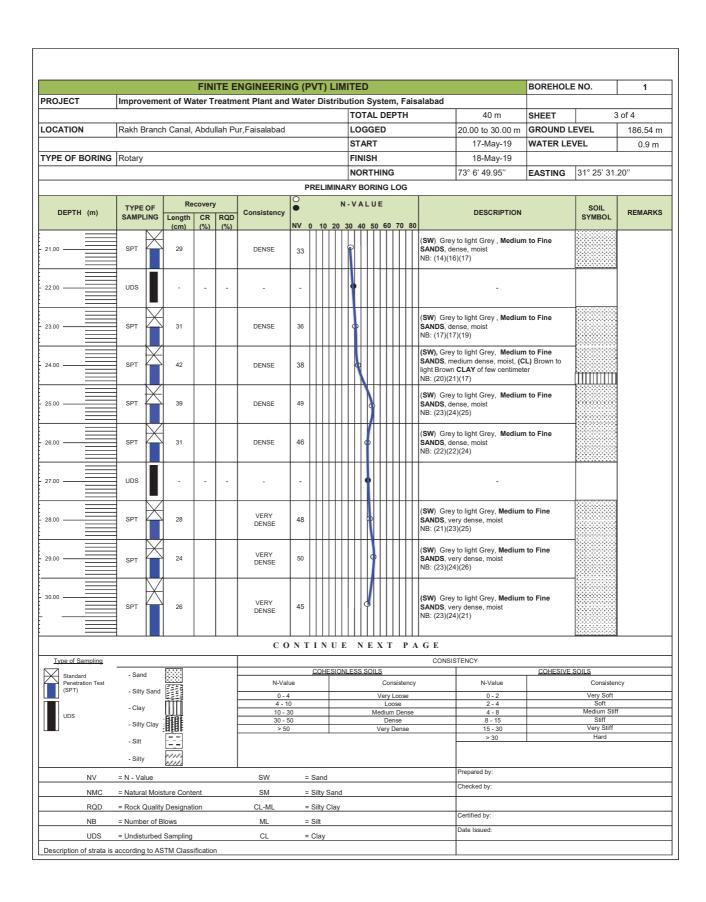


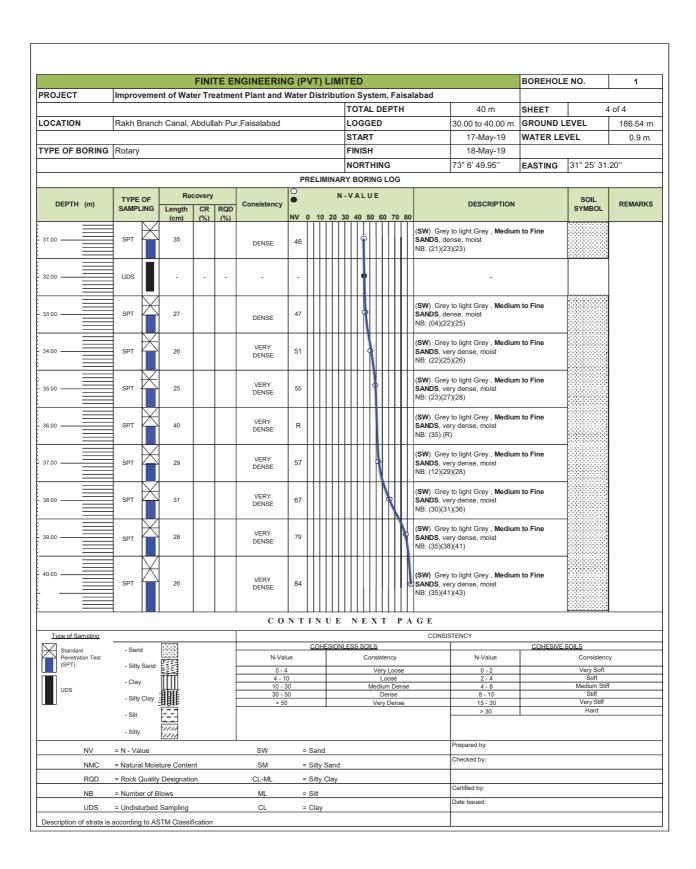



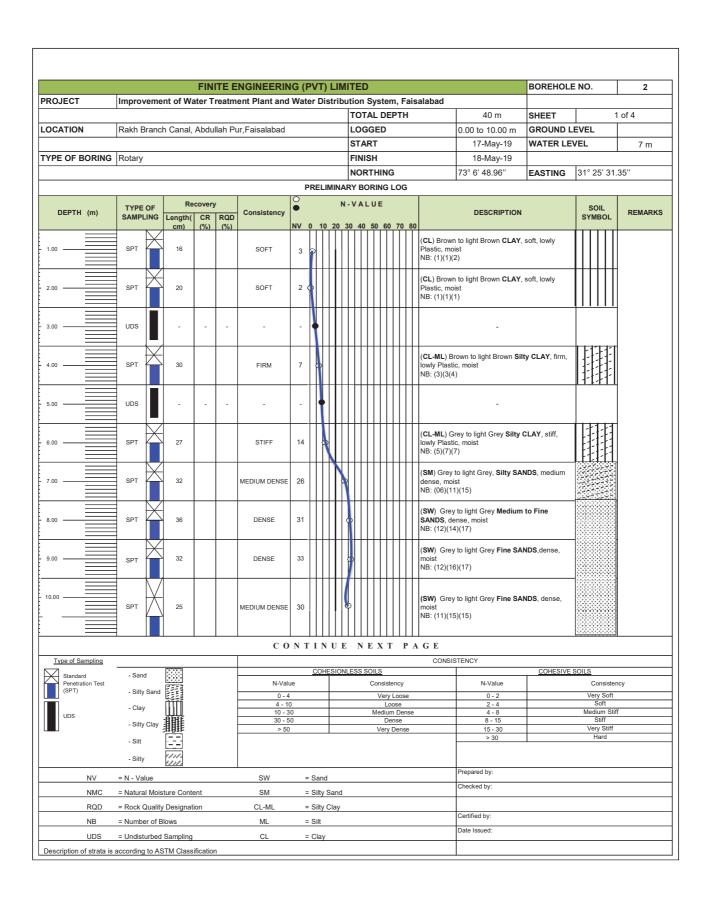


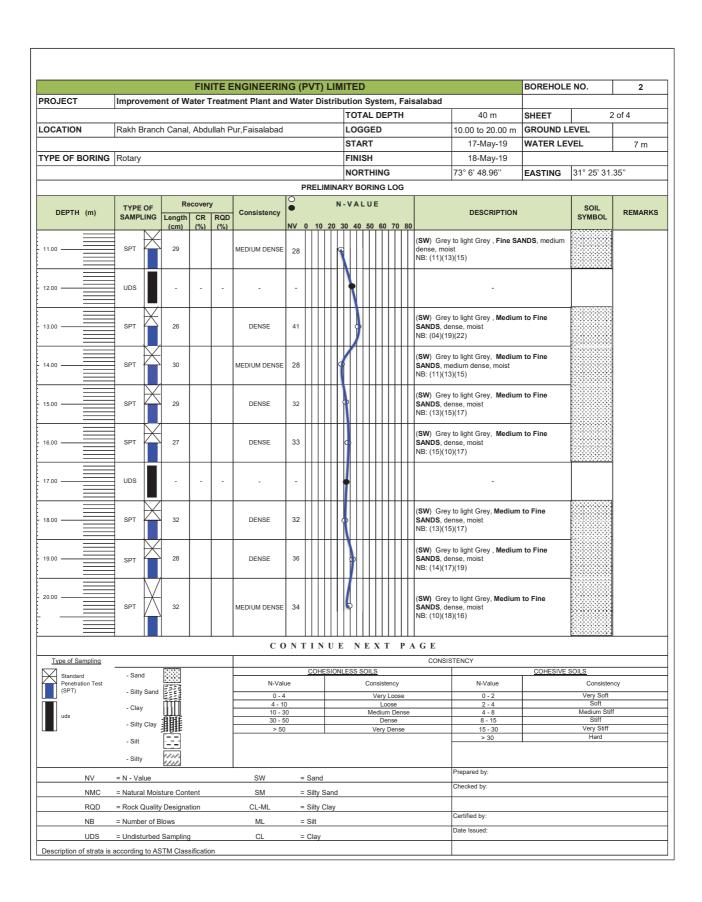


### Appendix7 References (2) Results on Geotechnical Survey

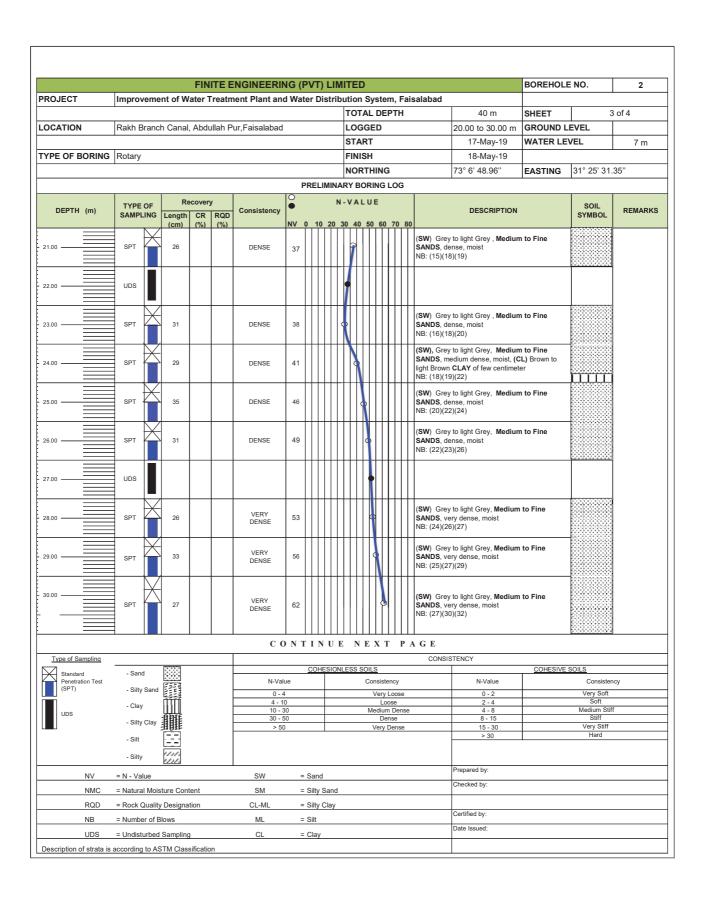


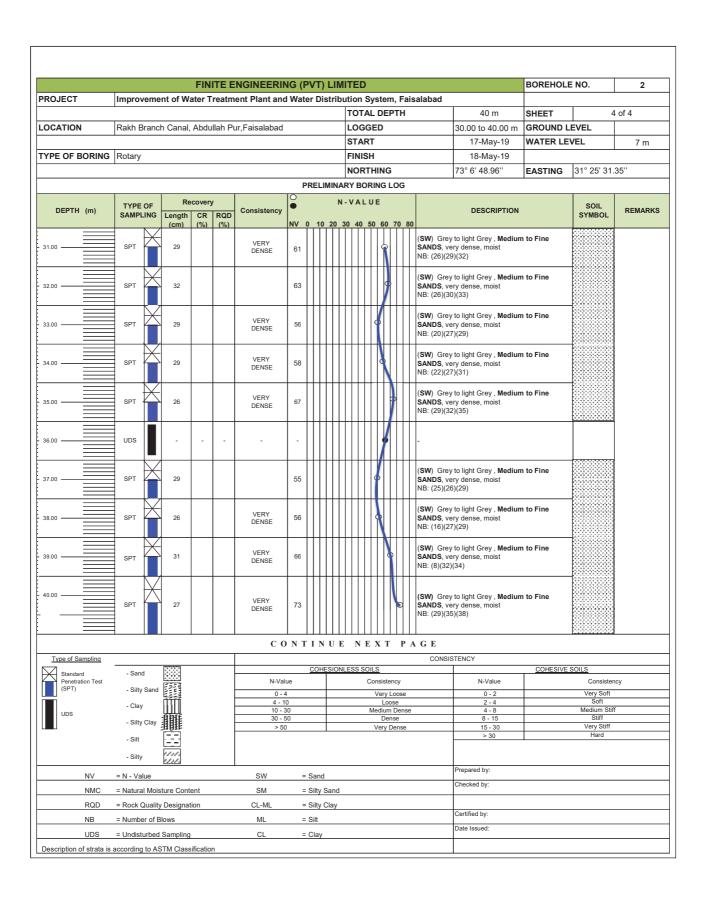


LOCATION OF BH1 AND BH2

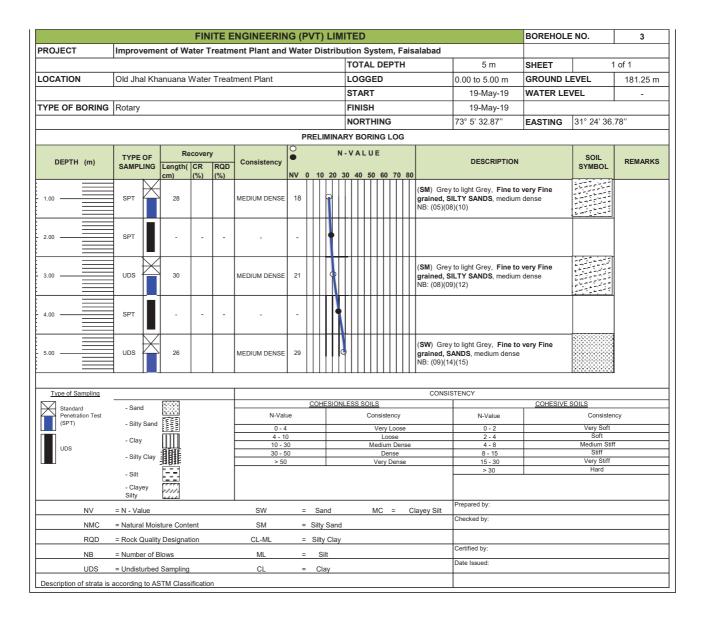


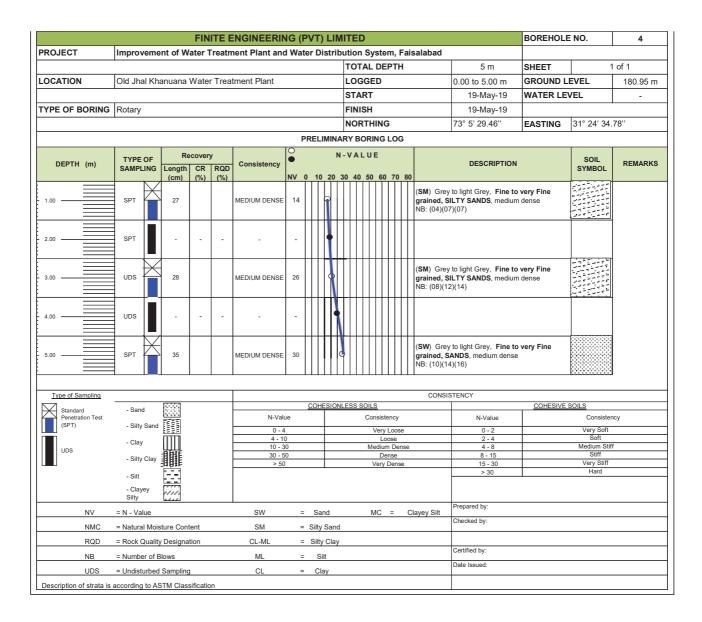


LOCATION OF BH3 AND BH4



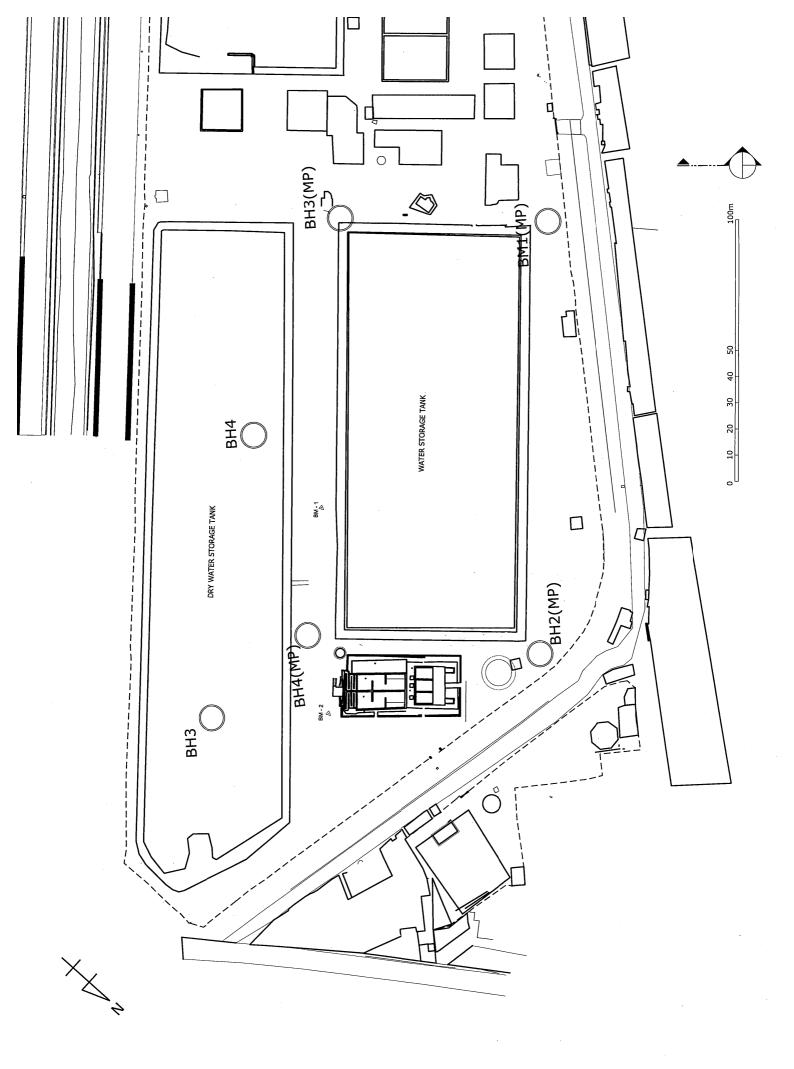












# Project for Improvement of Water Treatment Plant and Water Distribution System, Faisalabad



Table 6: Summary of Laboratory Results

|           | Depth |          | NMC   | Specific | Bulk    | Partic     | Particle Size Distribution | ution       | Particle | Particle Size Distribution | bution | Direct   | Direct Share Test |
|-----------|-------|----------|-------|----------|---------|------------|----------------------------|-------------|----------|----------------------------|--------|----------|-------------------|
| BH<br>No. | (m)   | Sample   | (%)   | ڻ<br>ن   | (kN/m³) | Gravel (%) | Sand                       | Silt & Clay | (%) T.T  | P.L (%)                    | P.I    | Cohesion | Angle of internal |
|           | ,     | (Sec.)   | 0 0 7 | 9,0      |         | c          | (/0)                       | (0/)        |          |                            |        | (NI a)   |                   |
|           | Ţ     | 1 (DS)   | 5.61  | 2.60     | ' (     | 0          | 11                         | 60          | ' (      | ' 6                        | . (    | -        | 1                 |
|           | 3     | 29 (UDS) | 27.3  | 2.67     | 19.3    | 0          | 6                          | 9.1         | 29       | 20                         | 6      | •        | •                 |
|           | 2     | 30 (UDS) | 22    | 2.68     | 20      | 0          | 10                         | 06          | 27       | 20                         | 7      | •        | 1                 |
|           | 10    | 2 (DS)   | 14    | 2.65     |         | 0          | 96                         | 4           | 1        | -                          | 1      | -        | -                 |
|           | 12    | 15 (UDS) | -     | -        | 17.3    | -          | -                          | -           | -        | •                          | -      | 1.4      | 29                |
| BH-1      | 17    | 16 (UDS) | -     | -        | 17.9    | -          | -                          | -           | -        | -                          | 1      | 8.0      | 30                |
|           | 20    | 3 (DS)   | 10.6  | 2.66     | 1       | 0          | 62                         | 3           | 1        | 1                          | 1      | -        | 1                 |
|           | 22    | 17 (UDS) | 1     |          | 16.7    | -          | -                          | -           | ,        | 1                          | ı      | 1        | 31                |
|           | 27    | 18 (UDS) | 1     | 1        | 18.1    | -          | -                          | -           | -        | 1                          | -      | 6.0      | 32                |
|           | 32    | 19 (UDS) | -     | -        | 17.2    | -          | -                          | -           | -        | -                          | -      | 1.1      | 32                |
|           | 40    | 4 (DS)   | 28.3  | 2.67     | 1       | 0          | 62                         | 3           | -        | -                          | -      | -        | 1                 |
|           | 1     | 5 (DS)   | 17.3  | 2.68     | -       | 26         | 23                         | 51          | -        | -                          | -      | -        | 1                 |
|           | 3     | 31 (UDS) | 17    | 2.67     | 18.4    | 0          | 12                         | 88          | 25       | 20                         | 5      | -        | -                 |
|           | 5     | 32 (UDS) | 14.1  | 2.69     | 19.6    | 12         | 7                          | 81          | 28       | 20                         | 8      | -        |                   |
|           | 10    | 6 (DS)   | 13.6  | 2.67     | 1       | 0          | 96                         | 4           | -        | -                          | -      | -        | 1                 |
|           | 12    | 20 (UDS) | -     | 1        | 17.3    | 1          | -                          |             | -        | -                          | 1      | 0.4      | 29                |
| BH-2      | 17    | 21 (UDS) | 1     | -        | 16.2    | ı          | -                          | 1           | -        | -                          | -      | 0.8      | 30                |
|           | 20    | 7 (DS)   | 22.7  | 2.65     | 1       | 0          | 97                         | 3           | -        | -                          | -      | -        | -                 |
|           | 22    | 22 (UDS) | 1     | 1        | 17.6    | -          | 1                          | -           | 1        | 1                          | 1      | 1.1      | 32                |
|           | 27    | 23 (UDS) | 1     | -        | 16.6    | -          | -                          | -           | -        | -                          | -      | 0.4      | 32                |
|           | 36    | 24 (UDS) | -     | -        | 16.9    | -          | -                          | -           | -        | -                          | -      | 1.2      | 33                |
|           | 40    | 8 (DS)   | 20.1  | 2.66     | 1       | 12         | 68                         | 20          |          | -                          | 1      |          | 1                 |
|           | 1     | 9 (DS)   | 4.7   | 2.69     | -       | 0          | 93                         | 7           | 1        | -                          | 1      | -        | 1                 |
|           | 2     | 25 (UDS) | 1     | 1        | 16      | 1          | _                          | -           | 1        | 1                          | -      | 1.8      | 27                |
| BH-3      | 3     | 10 (DS)  | 5.8   | 2.65     | 1       | 0          | 89                         | 11          | -        | -                          | -      | -        | -                 |
|           | 4     | 26 (UDS) | -     | -        | 16.6    | -          | -                          | -           | -        | -                          | -      | 1.6      | 29                |
|           | 5     | 11 (DS)  | 4.8   | 2.66     | 1       | 0          | 93                         | 7           |          | -                          | 1      | -        | 1                 |
|           | 1     | 12 (DS)  | 10.1  | 2.67     | 1       | 0          | 92                         | 8           | -        | -                          | -      | -        | -                 |
|           | 2     | 27 (UDS) | 1     | -        | 16.1    | 1          | -                          | 1           | -        | -                          | -      | 1.6      | 28                |
| BH-4      | 3     | 13 (DS)  | 6.1   | 2.66     | 1       | 0          | 95                         | 5           | 1        | 1                          | 1      | -        | 1                 |
|           | 4     | 86 (UDS) | 1     | 1        | 16.1    | 1          | -                          | 1           | 1        | 1                          | •      | 1.4      | 29                |
|           | 5     | 14 (DS)  | 4.7   | 2.67     | _       | 1          | 92                         | 7           | '        | ,                          | '      | -        | 1                 |



App 7(2)-13

|          |                    |                       | ECO      | OS L        | td.;     | GEC | TEC   | CHNI      | CAL      | L SERVICES                |      |       |         |
|----------|--------------------|-----------------------|----------|-------------|----------|-----|-------|-----------|----------|---------------------------|------|-------|---------|
|          |                    | Loca                  | tion: WT |             |          |     |       |           |          | Project: WASA Master Plan |      |       |         |
|          |                    | Bore                  | Hole No  | .: 01       |          |     |       |           |          | Fig No.                   |      |       |         |
| B        | ORE HOLE LOG       | Туре                  | of Borin | g: Ro       | tary     |     |       |           |          | Date Started: 30-11-17    |      |       |         |
|          |                    |                       | nination |             |          |     |       |           |          | Date Completed: 02-12-17  |      |       |         |
|          |                    | Grou                  | ınd Wate | er Tak      | ole: 3   |     |       |           |          | Logger: Umer              |      |       |         |
|          |                    | loq                   |          |             |          |     | etrat |           |          | Ro                        | cove | ery   |         |
| Depth(m) | Sample Description | Classification Symbol | Legend   | Sample Type | Moisture | 150 |       | 150<br>mm | N-Values | N- Profile (B) Lds        | CR % | RQD % | Remarks |
| 2        | clay               | CL                    |          | DS          |          | 1   | 1     | 1         | 2        | 29                        |      |       |         |
| 4        | Silty clay         | CL-N                  | 1L       | DS          |          | 1   | 1     | 2         | 3        | 27                        |      |       |         |
| 6        | Silty sand         | SM                    |          | DS          |          | 5   | 9     | 9         | 18       |                           |      |       |         |
| 8        | Fine graind sand   | SW                    |          | DS          |          | 8   | 11    | 12        | 23       | 23                        |      |       |         |
| 10       | do                 | SW                    |          | DS          |          | 8   | 10    | 14        | 24       | 10 36                     |      |       |         |
| 12       | do                 | SW                    |          | DS          |          | 9   | 11    | 12        | 23       | 12 33                     |      |       |         |
| 14       | do                 | SW                    |          | DS          |          | 10  | 14    | 19        | 33       | 14 34                     |      |       |         |
| 16       | do                 | SW                    |          | DS          |          | 18  | 22    | 23        | 45       | 16                        |      |       |         |
| 18       | do                 | SW                    |          | DS          |          | 10  | 12    | 15        | 27       | 18 40                     |      |       |         |
| 20       | do                 | sw                    |          | DS          |          | 17  | 20    | 18        | 38       | 20 38                     |      |       |         |
| 22       | do                 | SW                    |          | DS          |          | 12  | 10    | 10        | 20       | 22 40                     |      |       |         |
| 24       | do                 | SW                    |          | DS          |          | 12  | 12    | 21        | 33       | 24 40                     |      |       |         |
|          | Silty clay         | CL-N                  | 1L       | DS          |          | 9   | 13    | 27        | 40       | 26                        |      |       |         |
|          | Silty sand         | SM                    |          | DS          |          | 10  | 14    | 27        | 41       | 28                        |      |       |         |
|          | Medium graind sand | SW                    |          | DS          |          | 11  | 19    | 20        | 39       | 30                        |      |       |         |
| 32       | do                 | SW                    |          | DS          |          | 11  | 26    | 45        | 71       | 32 27                     |      |       |         |
|          | do                 | SW                    |          | DS          |          | 13  | 27    | 50        | 77       | 34                        |      |       |         |
|          | Med-course sand    | SW                    |          | DS          |          | 14  | 28    | 50        | 78       | 36 28                     |      |       |         |
| 38       |                    | SW                    |          | DS          |          | 20  | 26    | 38        | 64       | 38                        |      |       |         |
| 40       | do                 | SW                    |          | DS          |          | 30  | 36    | 50        | 86       | 40                        |      |       |         |
| Che      | cked By:           |                       |          |             |          |     |       |           |          |                           |      |       |         |

|          |                    |                       | ECC      | OS L        | td.;     | GEC | TEC       | CHN    | ICAI     | L SERVICES                    |          |      |       |         |
|----------|--------------------|-----------------------|----------|-------------|----------|-----|-----------|--------|----------|-------------------------------|----------|------|-------|---------|
|          |                    |                       | tion: WT |             | al       |     |           |        |          | Project: WASA Master Plan     |          |      |       |         |
|          |                    |                       | Hole No  |             |          |     |           |        |          | Fig No.                       |          |      |       |         |
| B        | ORE HOLE LOG       |                       | of Borin |             |          |     |           |        |          | Date Started: 03-12-2017      |          |      |       |         |
|          |                    |                       | nination |             |          |     |           |        |          | Date Completed: 04-12-17      |          |      |       |         |
|          |                    |                       | ınd Wate | er Tak      | ole: 1   |     | etrat     | tion I |          | Logger: Umer                  |          |      |       |         |
|          |                    | nbo                   |          |             |          |     | /alue     |        |          |                               | Re       | cove | ry    |         |
| Depth(m) | Sample Description | Classification Symbol | puəßəŢ   | Sample Type | Moisture | 150 | 150<br>mm | 150    | N-Values | N- Profile  0 20 40 60 80 100 | SPT (cm) | CR % | RQD % | Remarks |
| 2        | clay               | CL                    |          | DS          |          | 5   | 5         | 7      | 12       | 0 2                           | 39       |      |       |         |
| 4        | Silty clay         | CL-N                  | 1L       | DS          |          | 5   | 6         | 8      | 14       |                               | 33       |      |       |         |
| 6        | Silty sand         | SM                    |          | DS          |          | 6   | 7         | 11     | 18       |                               | 36       |      |       |         |
| 8        | Fine graind sand   | SW                    |          | DS          |          | 8   | 13        | 14     | 27       | 8                             | 30       |      |       |         |
| 10       | do                 | SW                    |          | DS          |          | 9   | 11        | 13     | 24       | 10                            | 29       |      |       |         |
| 12       | do                 | sw                    |          | DS          |          | 9   | 11        | 16     | 28       | 12                            | 30       |      |       |         |
| 14       | do                 | SW                    |          | DS          |          | 10  | 14        | 16     | 30       | 14                            | 31       |      |       |         |
| 16       | do                 | sw                    |          | DS          |          | 25  | 30        | 31     | 61       | 16                            | 35       |      |       |         |
| 18       | do                 | sw                    |          | DS          |          | 20  | 24        | 25     | 49       | 18                            | 34       |      |       |         |
| 20       | do                 | sw                    |          | DS          |          | 17  | 25        | 29     | 54       | 20                            | 30       |      |       |         |
| 22       | do                 | sw                    |          | DS          |          | 15  | 16        | 16     | 32       | 22                            | 22       |      |       |         |
| 24       | do                 | SW                    |          | DS          |          | 16  | 18        | 20     | 38       | 24                            | 25       |      |       |         |
| 26       | do                 | sw                    |          | DS          |          | 8   | 17        | 25     | 42       | 26                            | 32       |      |       |         |
| 28       | Clay               | CL                    |          | DS          |          | 15  | 14        | 31     | 45       | 28                            | 27       |      |       |         |
| l        | Medium graind sand | sw                    |          | DS          |          | 16  | 19        | 26     | 45       | 30                            | 39       |      |       |         |
| 32       | do                 | sw                    |          | DS          |          | 18  | 21        | 24     | 45       | 32                            | 28       |      |       |         |
| 34       |                    | SW                    |          | DS          |          | 22  | 26        | 28     | 54       | 34                            | 38       |      |       |         |
|          | Med-course sand    | SW                    |          | DS          |          | 25  | 30        | 35     | 65       | 36                            | 28       |      |       |         |
| 38       |                    | SW                    |          | DS          |          | 30  | 45        | 40     | 75       | 38                            | 25       |      |       |         |
| 40       |                    | SW                    |          | DS          |          | 40  | 40        | 50     | 90       | 40                            | 14       |      |       |         |
|          | cked By:           |                       |          |             |          |     |           |        |          |                               |          |      |       |         |

|          |                    |                       | ECO      | OS L        | td.;     | GEC | TEC   | CHN | CAL      | L SERVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
|----------|--------------------|-----------------------|----------|-------------|----------|-----|-------|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|          |                    | Loca                  | tion: WT |             |          |     |       |     |          | Project: WASA Master Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|          |                    | Bore                  | Hole No  | .: 03       |          |     |       |     |          | Fig No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| B        | ORE HOLE LOG       | Туре                  | of Borin | g: Ro       | tary     |     |       |     |          | Date Started: 05-12-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
|          |                    | Tern                  | nination | Dept        | h: 40    | m   |       |     |          | Date Completed: 06-12-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
|          |                    | Grou                  | ınd Wate | er Tak      | ole: 2   |     |       |     |          | Logger: Umer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|          |                    | pol                   |          |             |          |     | etrat |     |          | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| <u></u>  |                    | Classification Symbol | _        | Sample Type | ė        | _ \ | /alue | S   | S        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S       |
| Depth(m) | Sample Description | ion                   | Legend   | le T        | Moisture |     |       |     | N-Values | N- Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | кетагкѕ |
| )e       |                    | cat                   | Fee      | m p         | Noi      | 150 | 150   | 150 | ۷-۷      | N- Profile SPT (cm) RQD % SPT (cm) R | ב<br>ב  |
|          |                    | ssif                  |          | Sa          | _        | mm  | mm    | mm  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|          |                    | Cla                   |          |             |          |     |       |     |          | 0 20 40 60 80 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| 2        | clay               | CL                    |          | DS          |          | 2   | 3     | 4   | 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 4        | Silty Sand         | SM                    |          | DS          |          | 2   | 6     | 10  | 16       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 6        | Silty sand         | SM                    |          | DS          |          | 8   | 11    | 12  | 23       | 6 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| 8        | Fine graind sand   | SW                    |          | DS          |          | 10  | 12    | 15  | 27       | 8 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| 10       | do                 | SW                    |          | DS          |          | 12  | 18    | 20  | 38       | 10 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 12       | do                 | SW                    |          | DS          |          | 12  | 17    | 22  | 39       | 12 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 14       | do                 | SW                    |          | DS          |          | 22  | 32    | 35  | 67       | 14 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 16       | do                 | SW                    |          | DS          |          | 17  | 17    | 29  | 37       | 16 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 18       | do                 | SW                    |          | DS          |          | 11  | 14    | 18  | 32       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 20       | do                 | SW                    |          | DS          |          | 22  | 26    | 23  | 39       | 20 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 22       | do                 | SW                    |          | DS          |          | 15  | 18    | 21  | 39       | 22 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 24       | do                 | SW                    |          | DS          |          | 15  | 19    | 21  | 40       | 24 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|          | do                 | SW                    |          | DS          |          | 15  | 20    | 35  | 55       | 26 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| l        | Silty sand         | SM                    |          | DS          |          | 23  | 30    | 32  | 62       | 28 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|          | Medium graind sand | SW                    |          | DS          |          | 19  | 29    | 38  | 67       | 30 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 32       | do                 | SW                    |          | DS          |          | 14  | 38    | 50  | 88       | 32 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|          | do                 | SW                    |          | DS          |          | 20  | 29    | 30  | 59       | 1             <del>                         </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
|          | Med-course sand    | SW                    |          | DS          |          | 11  | 36    | 50  | 88       | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 38       |                    | SW                    |          | DS          |          | 20  | 39    | 50  | 89       | <del>1</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 40       | do                 | SW                    |          | DS          |          | 12  | 30    | 50  | 80       | 40 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Che      | cked By:           |                       |          |             |          |     |       |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

|          |                    |                       | ECC      | OS L        | td.;     | GEC | OTEC      | HNI | CAL      | L SERVICES                                                                     |
|----------|--------------------|-----------------------|----------|-------------|----------|-----|-----------|-----|----------|--------------------------------------------------------------------------------|
|          |                    | Loca                  | tion: WT |             |          |     |           |     |          | Project: WASA Master Plan                                                      |
|          |                    | Bore                  | Hole No  | .: 04       |          |     |           |     |          | Fig No.                                                                        |
| В        | ORE HOLE LOG       | Турє                  | of Borin | g: Ro       | tary     |     |           |     |          | Date Started: 07-12-2017                                                       |
|          |                    | Tern                  | nination | Dept        | h: 40    | m   |           |     |          | Date Completed: 08-12-17                                                       |
|          |                    | Grou                  | ınd Wate | er Tak      | ole: 2   |     |           |     |          | Logger: Umer                                                                   |
|          |                    | pol                   |          |             |          |     | etrat     |     |          | Recovery                                                                       |
| Depth(m) | Sample Description | Classification Symbol | Legend   | Sample Type | Moisture | 150 | 150<br>mm | 150 | N-Values | N- Profile   SPT (cm)   SPT (cm)   R@D % 0 00 00 00 00 00 00 00 00 00 00 00 00 |
| 2        | clay               | CL                    |          | DS          |          | 4   | 9         | 10  | 19       | 35                                                                             |
| 4        | Silty clay         | CL                    |          | DS          |          | 5   | 9         | 12  | 21       | 39                                                                             |
| 6        | Silty sand         | SM                    |          | DS          |          | 10  | 10        | 13  | 23       | 33                                                                             |
| 8        | Fine graind sand   | SW                    |          | DS          |          | 7   | 11        | 12  | 23       | 30                                                                             |
| 10       | do                 | SW                    |          | DS          |          | 9   | 14        | 16  | 30       | 33                                                                             |
| 12       | do                 | SW                    |          | DS          |          | 11  | 14        | 15  | 29       | 33                                                                             |
| 14       | do                 | SW                    |          | DS          |          | 9   | 16        | 19  | 35       | 28                                                                             |
| 16       | do                 | SW                    |          | DS          |          | 13  | 15        | 15  | 30       | 34                                                                             |
| 18       | do                 | SW                    |          | DS          |          | 11  | 13        | 16  | 29       | 38                                                                             |
| 20       | do                 | sw                    |          | DS          |          | 17  | 17        | 15  | 32       | 28                                                                             |
| 22       | do                 | sw                    |          | DS          |          | 11  | 14        | 16  | 30       | 32                                                                             |
| 24       | do                 | sw                    |          | DS          |          | 18  | 21        | 23  | 44       | 35                                                                             |
| 26       | Silty clay         | CL                    |          | DS          |          | 10  | 35        | 34  | 69       | 31                                                                             |
| 28       | Silty sand         | SM                    |          | DS          |          | 24  | 27        | 36  | 63       | 32                                                                             |
| 30       | Medium graind sand | sw                    |          | DS          |          | 25  | 34        | 39  | 73       | 28                                                                             |
| 32       |                    | SW                    |          | DS          |          | 11  | 27        | 35  | 62       | 25                                                                             |
| 34       | do                 | SW                    |          | DS          |          | 25  | 29        | 37  | 66       | 33                                                                             |
| 36       | Med-course sand    | SW                    |          | DS          |          | 27  | 30        | 28  | 58       | 25                                                                             |
| 38       | do                 | SW                    |          | DS          |          | 25  | 30        | 31  | 61       | 33                                                                             |
| 40       | do                 | SW                    |          | DS          |          | 19  | 18        | 24  | 42       | 34                                                                             |
| Che      | cked By:           |                       |          |             |          |     |           |     |          |                                                                                |

|          |                    |                       | ECC       | OS L        | td.;     | GEC | TEC       | CHN   | ICAI     | SERVICES                      |          |      |       |         |
|----------|--------------------|-----------------------|-----------|-------------|----------|-----|-----------|-------|----------|-------------------------------|----------|------|-------|---------|
|          |                    |                       | tion: Abo |             | n Pur    | OHR | 1         |       |          | Project: WASA Master Plan     |          |      |       |         |
|          |                    |                       | Hole No   |             |          |     |           |       |          | Fig No.                       |          |      |       |         |
| B        | ORE HOLE LOG       |                       | of Borin  |             |          |     |           |       |          | Date Started: 10-12-2017      |          |      |       |         |
|          |                    |                       | nination  |             |          |     |           |       |          | Date Completed: 11-12-2017    |          |      |       |         |
|          |                    |                       | ınd Wate  | eriak       | oie: 1   |     | etrat     | ion I |          | Logger: Umer                  |          |      |       |         |
|          |                    | gr                    |           |             |          |     | /alue     |       |          |                               | Re       | cove | ry    |         |
| Depth(m) | Sample Description | Classification Symbol | Legend    | Sample Type | Moisture | 150 | 150<br>mm | 150   | N-Values | N- Profile  0 20 40 60 80 100 | SPT (cm) | CR % | RQD % | Remarks |
| 2        | Silty clay         | CL-N                  | 1L        | DS          |          | 3   | 2         | 4     | 6        |                               | 30       |      |       |         |
| 4        | Silty Sand         | SM                    |           | DS          |          | 5   | 6         | 8     | 14       |                               | 34       |      |       |         |
| 6        | Silty sand         | SM                    |           | DS          |          | 8   | 12        | 14    | 26       |                               | 32       |      |       |         |
| 8        | Fine graind sand   | sw                    |           | DS          |          | 10  | 13        | 16    | 29       |                               | 34       |      |       |         |
| 10       | do                 | sw                    |           | DS          |          | 11  | 13        | 12    | 25       |                               | 30       |      |       |         |
| 12       | do                 | sw                    |           | DS          |          | 13  | 15        | 19    | 34       |                               | 29       |      |       |         |
| 14       | do                 | sw                    |           | DS          |          | 20  | 22        | 23    | 45       |                               | 30       |      |       |         |
| 16       | Claye Silt         | ML                    |           | DS          |          | 16  | 19        | 21    | 40       |                               | 35       |      |       |         |
| 18       | Fine graind sand   | sw                    |           | DS          |          | 10  | 17        | 19    | 36       |                               | 35       |      |       |         |
| 20       | do                 | sw                    |           | DS          |          | 7   | 14        | 27    | 41       |                               | 33       |      |       |         |
| 22       | do                 | sw                    |           | DS          |          | 9   | 15        | 30    | 45       |                               | 22       |      |       |         |
| 24       | do                 | sw                    |           | DS          |          | 14  | 22        | 16    | 38       |                               | 38       |      |       |         |
| 26       | Silty clay         | CL-N                  | 1L        | DS          |          | 4   | 15        | 26    | 41       |                               | 25       |      |       |         |
|          | Silty sand         | SM                    |           | DS          |          | 18  | 20        | 24    | 44       |                               | 34       |      |       |         |
| 30       | Medium graind sand | SW                    |           | DS          |          | 14  | 15        | 22    | 37       |                               | 29       |      |       |         |
| 32       | do                 | SW                    |           | DS          |          | 13  | 40        | 50    | 90       |                               | 25       |      |       |         |
| ١        | do                 | SW                    |           | DS          |          | 10  | 20        | 39    | 59       |                               | 29       |      |       |         |
| 36       | Med-course sand    | SW                    |           | DS          |          | 12  | 33        | 29    | 62       |                               | 32       |      |       |         |
| l        | do                 | SW                    |           | DS          |          | 19  | 26        | 33    | 63       |                               | 28       |      |       |         |
| 40       | do                 | SW                    |           | DS          |          | 30  | 45        | 50    | 95       |                               | 32       |      |       |         |
|          | cked By:           |                       |           |             |          |     |           |       |          |                               |          |      |       |         |

|          |                    |                       | ECC                  | OS L        | td.;     | GEC  | TEC       | CHN | ICAI     | L SERVICES                          |          |      |       |         |
|----------|--------------------|-----------------------|----------------------|-------------|----------|------|-----------|-----|----------|-------------------------------------|----------|------|-------|---------|
|          |                    |                       | tion: Ma             |             | Tow      | n OH | IR NC     | ).2 |          | Project: WASA Master Plan           |          |      |       |         |
| _        |                    |                       | Hole No              |             |          |      |           |     |          | Fig No.                             |          |      |       |         |
| B        | ORE HOLE LOG       |                       | of Borin             |             |          |      |           |     |          | Date Started: 13-12-2017            |          |      |       |         |
|          |                    |                       | nination<br>and Wate |             |          |      |           |     |          | Date Completed: 14-12-2017          |          |      |       |         |
|          |                    |                       | ing wate             | eriak       | oie: 1   |      | etrat     | ion |          | Logger: Umer                        |          |      |       |         |
|          |                    | Jan                   |                      | ا ا         |          |      | /alue     |     |          |                                     | Re       | cove | ry    |         |
| Depth(m) | Sample Description | Classification Symbol | Pegend               | Sample Type | Moisture |      | 150<br>mm |     | N-Values | <b>N- Profile</b> 0 20 40 60 80 100 | SPT (cm) | CR % | RQD % | Remarks |
| 2        | clay               | CL                    |                      | DS          |          | 4    | 5         | 7   | 12       |                                     | 25       |      |       |         |
| 4        | Clayey Silt        | ML                    |                      | DS          |          | 5    | 7         | 10  | 17       |                                     | 30       |      |       |         |
| 6        | Silty sand         | SM                    |                      | DS          |          | 11   | 14        | 16  | 30       |                                     | 35       |      |       |         |
| 8        | Silty sand         | SM                    |                      | DS          |          | 10   | 16        | 17  | 33       |                                     | 22       |      |       |         |
| 10       | Fine graind sand   | sw                    |                      | DS          |          | 9    | 10        | 12  | 22       |                                     | 31       |      |       |         |
| 12       | do                 | sw                    |                      | DS          |          | 15   | 15        | 21  | 36       |                                     | 33       |      |       |         |
| 14       | do                 | sw                    |                      | DS          |          | 11   | 14        | 18  | 32       |                                     | 28       |      |       |         |
| 16       | do                 | sw                    |                      | DS          |          | 15   | 10        | 22  | 32       |                                     | 30       |      |       |         |
| 18       | do                 | sw                    |                      | DS          |          | 15   | 17        | 21  | 38       |                                     | 30       |      |       |         |
| 20       | do                 | sw                    |                      | DS          |          | 13   | 17        | 18  | 35       |                                     | 28       |      |       |         |
| 22       | do                 | sw                    |                      | DS          |          | 9    | 29        | 45  | 74       |                                     | 27       |      |       |         |
| 24       | do                 | SW                    |                      | DS          |          | 22   | 34        | 35  | 69       |                                     | 33       |      |       |         |
| 26       | do                 | SW                    |                      | DS          |          | 12   | 18        | 35  | 53       |                                     | 27       |      |       |         |
| 28       | do                 | SW                    |                      | DS          |          | 18   | 28        | 37  | 65       |                                     | 27       |      |       |         |
| 30       | Medium graind sand | SW                    |                      | DS          |          | 20   | 31        | 42  | 73       |                                     | 35       |      |       |         |
| 32       | do                 | SW                    |                      | DS          |          | 30   | 41        | 50  | 91       |                                     | 35       |      |       |         |
| 34       | do                 | SW                    |                      | DS          |          | 29   | 42        | 47  | 89       |                                     | 48       |      |       |         |
| 36       | Med-course sand    | SW                    |                      | DS          |          | 30   | 37        | 49  | 86       |                                     | 28       |      |       |         |
| 38       |                    | SW                    |                      | DS          |          | 30   | 33        | 35  | 68       |                                     | 26       |      |       |         |
| ١        | do                 | SW                    |                      | DS          |          | 32   | 35        | 40  | 75       |                                     | 22       |      |       |         |
| Che      | cked By:           |                       |                      |             |          |      |           |     |          |                                     |          |      |       |         |



# University of Engineering & Technology, Lahore Department of Civil Engineering Geotechnical Engineering Laboratory

## SUMMARY OF THE TEST RESULTS

Geotechnical Investigation for WASA Master Plan, Faisalabad

Project:

M/S ECOS Ltd

Client:

| BH/ TP No. | Sample No | Depth<br>(m) | NMC<br>(%) | Bulk Density<br>(kN/m³) | Specific<br>Gravity<br>G <sub>s</sub> |
|------------|-----------|--------------|------------|-------------------------|---------------------------------------|
|            | 1 (UDS)   | -            | 21.68      | 19.21                   | 2.7                                   |
|            | 2 (UDS)   | 7            | 25.05      | 18.64                   | 2.67                                  |
|            | 3 (NDS)   | 14           | 17.96      | 14.55                   | 2.65                                  |
| 3          | 4 (UDS)   | 19           | 18.27      | 16.08                   | 2.67                                  |
| .O-H9      | s (UDS)   | 25           | 24.24      | 20.55                   | 2.65                                  |
|            | e (UDS)   | 30           | 23.88      | 15.74                   | 2.66                                  |
|            | 7 (UDS)   | 35           | 25.17      | 13.48                   | 2.69                                  |
|            | 8 (NDS)   | 40           | 17.67      | 15.90                   | 2.68                                  |
|            | (SQN) 6   | က            | 9.61       | 20.48                   | 2.7                                   |
|            | 10 (UDS)  | 2            | 7.50       | 18.93                   | 2.67                                  |
|            | 11 (UDS)  | 15           | 7.32       | 16.97                   | 2.67                                  |
| 0          | 12 (UDS)  | 20           | 4.32       | 16.31                   | 2.66                                  |
| 20-U2      | 13 (UDS)  | 25           | 17.34      | 19.79                   | 2.65                                  |
|            | 14 (UDS)  | 30           | 27.66      | 18.30                   | 2.67                                  |
|            | 15 (UDS)  | 35           | 14.41      | 12.48                   | 2.67                                  |
|            | 16 (UDS)  | 40           | 19.27      | 18.44                   | 2.65                                  |





### University of Engineering & Technology, Lahore 2 Department of Civil Engineering Geotechnical Engineering Laboratory

## SUMMARY OF THE TEST RESULTS

Geotechnical Investigation for WASA Master Plan, Faisalabad


Client:

Project:

M/S ECOS Ltd

| BH/ TP No. | Sample No | Depth<br>(m) | NMC<br>(%) | Bulk Density<br>(KN/m³) | Specific<br>Gravity<br>G <sub>s</sub> |
|------------|-----------|--------------|------------|-------------------------|---------------------------------------|
|            | 17 (UDS)  | 5            | 2.37       | 16.54                   | 2.66                                  |
|            | 18 (UDS)  | 11           | 7.22       | 20.71                   | 2.67                                  |
|            | 19 (UDS)  | 15           | 9.19       | 17.99                   | 2.67                                  |
| -          | 20 (UDS)  | 21           | 20.48      | 17.94                   | 2.66                                  |
| BH-03      | 21 (UDS)  | 25           | 21.92      | 20.86                   | 2.67                                  |
|            | 22 (UDS)  | 31           | 26.52      | 16.14                   | 2.66                                  |
|            | 23 (UDS)  | 35           | 24.92      | 20.47                   | 2.65                                  |
|            | 24 (SPT)  | 40           | 16.53      |                         | 2.65                                  |
|            | 25 (UDS)  | 2            | 4.32       | 16.20                   | 2.67                                  |
|            | 26 (UDS)  | 11           | 6.41       | 17.78                   | 2.67                                  |
|            | 27 (UDS)  | 15           | 12.36      | 17.35                   | 2.67                                  |
| 70         | 28 (UDS)  | 21           | 9.82       | 26.16                   | 2.66                                  |
| 5          | 29 (UDS)  | 25           | 17.35      | 19.44                   | 2.65                                  |
|            | 30 (NDS)  | 31           | 22.79      | 18.65                   | 2.67                                  |
|            | 31 (SPT)  | 36           | 32.67      |                         | 2.66                                  |
|            | 32 (SPT)  | 40           | 22.86      |                         | 2.65                                  |





### University of Engineering & Technology, Lahore Geotechnical Engineering Laboratory

## SUMMARY OF THE TEST RESULTS

Geotechnical Investigation for WASA Master Plan, Faisalabad

Client:

Project:

|   | 7 |   |
|---|---|---|
|   | + |   |
| ( | J | 2 |
| ( | ļ | 2 |
| i | Ĺ | ١ |
| ( | Ų | 2 |
|   | 2 | > |
|   |   |   |
|   |   |   |

|            |           |              |         |                         |                                       | ř  |
|------------|-----------|--------------|---------|-------------------------|---------------------------------------|----|
| BH/ TP No. | Sample No | Depth<br>(m) | NMC (%) | Bulk Density<br>(kN/m³) | Specific<br>Gravity<br>G <sub>s</sub> |    |
|            | 33 (NDS)  | 2            | 9.23    | 17.74                   | 2.65                                  | _  |
|            | 34 (UDS)  | 11           | 7.28    | 16.47                   | 2.65                                  | _  |
|            | 35 (UDS)  | 15           | 15.10   | 16.46                   | 2.66                                  |    |
| -          | 36 (UDS)  | 21           | 23.43   | 18.48                   | 2.67                                  |    |
| BH-03      | 37 (UDS)  | 25           | 24.64   | 17.79                   | 2.67                                  |    |
|            | 38 (UDS)  | 31           | 23.30   | 17.50                   | 2.67                                  |    |
|            | 39 (SPT)  | 36           | 19.62   |                         | 2.67                                  |    |
|            | 40 (SPT)  | 40           | 20.11   |                         | 2.67                                  |    |
|            | 41 (UDS)  | 1.5          | 20.39   | 17.17                   | 2.70                                  |    |
|            | 42 (UDS)  | 2            | 21.26   | 16.61                   | 2.65                                  | 77 |
|            | 43 (UDS)  | 11           | 7.78    | 15.98                   | 2.67                                  |    |
| 90 70      | 44 (UDS)  | 15           | 9.63    | 18.34                   | 2.68                                  |    |
| 5          | 45 (UDS)  | 21           | 6.79    | 16.12                   | 2.67                                  |    |
|            | 46 (UDS)  | 25           | 18.72   | 18.05                   | 2.66                                  |    |
|            | 47 (SPT)  | 32           | 20.46   |                         | 2.65                                  |    |
|            | 48 (SPT)  | 36           | 22.78   |                         | 2.67                                  |    |

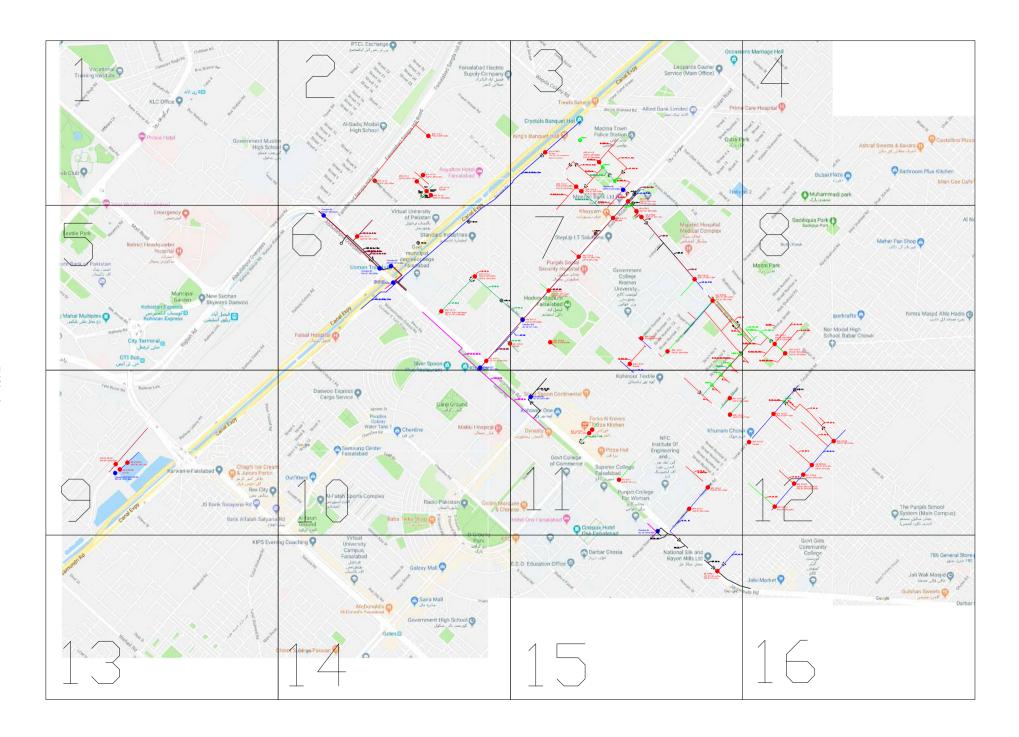


### **Appendix7 References**

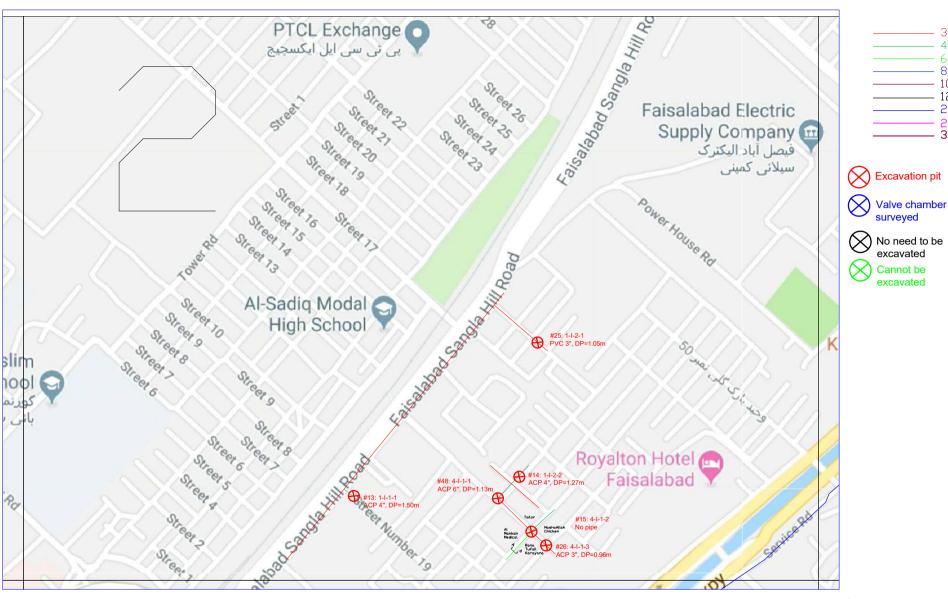
### (3) Results on Excavation and Underground Infrastructure Observation Survey

Survey List (Excavation and underground structure observation survey)

|      |      |                     |                 | derground structure observ                                                                               |                                                      | I                                       | I                         |       |
|------|------|---------------------|-----------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|---------------------------|-------|
| Sr.# | MAP# | Pit/Chamber<br>Name | Excavation date | Pipe to be identified                                                                                    | Actual identified pipe                               | Road                                    | Pavement                  | Notes |
| 1    | 6    | <b>⑤</b> −II−1−1    | 27-Jun          | Installation point of a valve on Ex.<br>Distribution Main (DN250)                                        | PVC DN100, DP=1.8m<br>PVC DN100, DP=1.9m             | Main Rd (Susan Rd)                      | No pavement (green belt)  |       |
| 2    | 3    | ⑥-PM-7              | 28-Jun          | Intersection point of Ex. Distribution<br>Main (DN300) and proposed Distribution<br>Primary Main (DN450) | CIP DN250, DP=1.43m<br>CIP DN250, DP=1.43m           | Main Rd (Susan Rd)                      | No pavement (green belt)  |       |
| 3    | 9    | ⑥-EX-01             | 28-Jun          | Intersection pointof Ex.Distribution<br>Main (DN600) and proposed<br>Interconnecting Main.               | AC DN600, DP=1.65m                                   | Inside Old JK WTP                       | No pavement               |       |
| 4    | 9    | ⑥-EX-02             | 29-Jun          | Intersection point of Ex.Distribution<br>Main (DN600) and proposed<br>Interconnecting Main.              | No pipe                                              | Inside Old JK WTP                       | No pavement               |       |
| 5    | 7    | ⑥-TM-3              | 1-Jul           | Intersection point of Ex. Distribution<br>Main (DN250) and proposed<br>Transmission Main (DN450)         | AC DN250, DP=1.52m                                   | Main Rd (Green Belt Rd)                 | No pavement (shoulder)    |       |
| 6    | 7    | ⑥-PM-9              | 1-Jul           | Intersection point of Ex. Distribution<br>Main (DN250) and proposed Distribution<br>Primary Main (DN450) | AC DN250, DP=1.18m                                   | Main Rd (Green Belt Rd)                 | Brick (shoulder)          |       |
| 7    | 11   | ②-II-3-1            | 2-Jul           | Point of cutting or installation of a valve on Ex. Distribution Main (DN150)                             | AC DN200, DP=1.1m                                    | Town Rd (Madina Town)                   | No pavement<br>(shoulder) |       |
| 8    | 12   | ⑥-РМ-13             | 2-Jul           | Intersection point of Ex. Distribution<br>Main (DN200) and proposed Distribution<br>Primary Main (DN300) | AC DN200, DP=1.43m<br>CIP DN75, DP=1.43m             | Town Rd (Madina Town)                   | Asphalt                   |       |
| 9    | 15   | ⑥-РМ-12             | 3-Jul           | Intersection point of Ex. Distribution<br>Main (DN300) and proposed Distribution<br>Primary Main (DN300) | Steel DN300, DP=0.23m<br>Steel DN200, DP=0.23m       | Main Rd (Jaranwala Rd)                  | Asphalt                   |       |
| 10   | 3    | ⑥−TM−2              | 4-Jul           | Intersection point of Ex. Distribution<br>Main (DN600) and proposed<br>Transmission Main (DN450)         | No pipe                                              | Main Rd (Service road of<br>Canal Expy) | Asphalt                   |       |
| 11   | 11   | ①-II-3-1            | 13-Jul          | Connecting point of Ex. Distribution<br>Main (DN100) and proposed Distribution<br>Secondary Main (DN200) | No pipe                                              | Town Rd (Madina Town)                   | No pavement (shoulder)    |       |
| 12   | 11   | ①-II-3-1A           | 13-Jul          | Connecting point of Ex. Distribution<br>Main (DN100) and proposed Distribution<br>Secondary Main (DN200) | AC DN150, DP=1.25m                                   | Town Rd (Madina Town)                   | No pavement (shoulder)    |       |
| 13   | 2    | ①-I-1-1             | 14-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN200)  | AC DN100, DP=1.50m                                   | Town Rd (Abdullar Pur)                  | Concrete                  |       |
| 14   | 2    | ①-I-2-2             | 15-Jul          | Connecting point of Ex. Distribution<br>Main (DN100) and proposed Distribution<br>Secondary Main (DN150) | AC DN100, DP=1.27m                                   | Town Rd (Abdullar Pur)                  | Asphalt                   |       |
| 15   | 2    | <b>④</b> −I−1−2     | 15-Jul          | Cutting point of Ex. Distribution Main (DN150)                                                           | No pipe                                              | Town Rd (Abdullar Pur)                  | Asphalt                   |       |
| 16   | 7    | ①-II-1-6            | 16-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)  | AC DN250, DP=1.75m<br>CIP DN75, DP=1.75m             | Main Rd (Susan Rd)                      | No pavement (green belt)  |       |
| 17   | 7    | ①-II-1-5            | 16-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)  | AC DN250, DP=1.24m<br>CIP DN150, DP=1.24m            | Main Rd (Susan Rd)                      | No pavement (green belt)  |       |
| 18   | 6    | ①-II-1-1            | 17-Jul          | Connecting point of Ex. Distribution<br>Main (DN100) and proposed Distribution<br>Secondary Main (DN150) | AC DN100, DP=1.5m<br>(new)<br>AC DN50, DP=1.2m (old) | Town Rd (Madina Town)                   | Tile, Asphalt             |       |
| 19   | 6    | ①-II-1-2            | 17-Jul          | Connecting point of Ex. Distribution<br>Main (DN100) and proposed Distribution<br>Secondary Main (DN150) | AC DN100, DP=0.57m<br>AC DN100, DP=0.57m             | Town Rd (Madina Town)                   | Asphalt                   |       |
| 20   | 11   | <b>⑤</b> -II-4-1    | 18-Jul          | Installation point of a valve to Ex.<br>Distribution Main (DN200)                                        | AC DN200, DP=1.74m                                   | Town Rd (Madina Town)                   | Asphalt                   |       |
| 21   | 12   | ①-II-4-3            | 18-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)  | PVC DN75, DP=1.10m                                   | Town Rd (Madina Town)                   | Asphalt                   |       |
| 22   | 7    | ①-II-3-2            | 19-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)  | PVC DN75, DP=0.70m                                   | Town Rd (Madina Town)                   | Asphalt                   |       |
| 23   | 3    | ①-II-1-8            | 19-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)  | PVC DN100, DP=1.00m<br>PVC DN75, DP=1.00m            | Town Rd (Madina Town)                   | Asphalt                   |       |
| 24   | 3    | ①-II-1-7            | 19-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)  | PVC DN75, DP=0.90m<br>PVC DN75, DP=0.90m             | Town Rd (Madina Town)                   | Asphalt                   |       |


| Sr.#                    | MAP# | Pit/Chamber<br>Name | Excavation date | Pipe to be identified                                                                                    | Actual identified pipe                                       | Road                                   | Pavement                    | Notes                                                       |
|-------------------------|------|---------------------|-----------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|-----------------------------|-------------------------------------------------------------|
| 25                      | 2    | _                   | 21-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)  | PVC DN75, DP=1.05m                                           | Town Rd (Abdullar Pur)                 | Concrete, Asphalt           |                                                             |
| 26                      | 2    | <b>④</b> −I−1−3     | 21-Jul          | Cutting point of Ex. Distribution Main (DN75)                                                            | ACP DN75, DP=0.96m                                           | Town Rd (Abdullar Pur)                 | Concrete, Asphalt           |                                                             |
| 27                      | 12   | ①-II-4-4            | 22-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN200)  | ACP DN200, DP=1.45m                                          | Town Rd (Madina Town)                  | Asphalt                     |                                                             |
| 28                      | 11   | ①-II-4-2            | 22-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)  | ACP DN100, DP=1.75m                                          | Town Rd (Madina Town)                  | Tile (shoulder)             |                                                             |
| 29                      | 7    | ③-II-1-1            | 23-Jul          | Cutting point of Ex. Distribution Main (DN100)                                                           | PVC DN150, DP=0.80m                                          | Main Rd (Susan Rd)                     | No pavement (green<br>belt) | Count as 2 pits because of more than 3m2 of excavation area |
| 30                      | 7    | ③-II-1-3            | 23-Jul          | Cutting point of Ex. Distribution Main (DN75)                                                            | No pipe                                                      | Main Rd (Susan Rd)                     | No pavement (green belt)    |                                                             |
| 31                      | 11   | ①-II-4-1            | 24-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)  | ACP DN100, DP=1.45m                                          | Town Rd (Madina Town)                  | Asphalt                     |                                                             |
| 32                      | 7    | ①-II-2-1            | 24-Jul          | Connecting point of Ex. Distribution<br>Main (DN100) and proposed Distribution<br>Secondary Main (DN150) | PVC DN150, DP=0.93m                                          | Town Rd (Madina Town)                  | Asphalt                     |                                                             |
| 33                      | 3    | <b>4</b> -II-1-2    | 26-Jul          | Cutting point of Ex. Distribution Main (DN75)                                                            | ACP DN100, DP=0.68m<br>PVC DN75, DP0.68m                     | Town Rd (Madina Town)                  | Asphalt                     |                                                             |
| 34                      | 7    | ⑥−PM−8              | 26-Jul          | Intersection point of Ex. Distribution<br>Main (DN250) and proposed Distribution<br>Primary Main (DN400) | ACP DN250, DP=1.30m<br>PVC DN150, DP01.30m                   | Main Rd (Green Belt Rd)                | No pavement (shoulder)      |                                                             |
| 35                      | 9    | ⑥-EX-03             | 27-Jul          | Connecting point of Ex.Arterial Main (DN800) and proposed Interconnecting Main.                          | DIP DN800, DP=2.30m                                          | Town Rd (Jhal)                         | Asphalt                     |                                                             |
| 36                      | 7    | ①-II-3-3            | 27-Jul          | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)  | No pipe                                                      | Town Rd (Madina Town)                  | Tile                        |                                                             |
| 37                      | 8    | <b>4</b> -II-4-2    | 28-Jul          | Cutting point of Ex. Distribution Main (DN75)                                                            | PVC DN150, DP=0.66m<br>PVC DN75, DP=0.66m                    | Town Rd (Madina Town)                  | Asphalt                     |                                                             |
| 38                      | 8    | <b>4</b> -II-4-1    | 28-Jul          | Cutting point of Ex. Distribution Main (DN75)                                                            | PVC DN150, DP=0.67m<br>PVC DN75, DP=0.67m                    | Town Rd (Madina Town)                  | Asphalt                     |                                                             |
| 39                      | 7    | ③-II-2-2            | 29-Jul          | Cutting point of Ex. Distribution Main<br>(DN150)                                                        | ACP DN250, DP=1.70m                                          | Main Rd (Green Belt Rd)                | No pavement<br>(shoulder)   |                                                             |
| 40                      | 7    | ③-II-2-3            | 29-Jul          | Cutting point of Ex. Distribution Main (DN150)                                                           | ACP DN100, DP=1.45m                                          | Town Rd (Madina Town)                  | Brick (shoulder)            | Count as 2 pits because of more than 3m2 of excavation area |
| 41                      | 7    | ③-II-3-1            | 30-Jul          | Cutting point of Ex. Distribution Main (DN200)                                                           | No pipe                                                      | Main Rd (Susan Rd)                     | Tile, Asphalt               |                                                             |
| 42                      | 11   | ③-II-4-1            | 31-Jul          | Cutting point of Ex. Distribution Main (DN75)                                                            | PVC DN200, DP=1.40m                                          | Town Rd (Madina Town)                  | Asphalt                     |                                                             |
| 43                      | 12   | ③-II-4-6            | 31-Jul          | Cutting point of Ex. Distribution Main (DN75)                                                            | ACP DN200, DP=1.43m                                          | Town Rd (Madina Town)                  | Asphalt                     |                                                             |
| 44                      | 12   | ③-II-4-2            | 1-Aug           | Cutting point of Ex. Distribution Main (DN75)                                                            | No pipe                                                      | Town Rd (Madina Town)                  | Asphalt                     |                                                             |
| 45                      | 12   | ③-II-4-4            | 1-Aug           | Cutting point of Ex. Distribution Main<br>(DN150)                                                        | PVC DN200, DP=0.60m                                          | Town Rd (Madina Town)                  | Asphalt                     |                                                             |
| 46                      | 12   | ③-II-4-5            | 1-Aug           | Cutting point of Ex. Distribution Main<br>(DN75)                                                         | ACP DN200, DP=1.30m<br>(OLD)<br>PVC DN200, DP=0.50m<br>(NEW) | Town Rd (Madina Town)                  | Asphalt                     |                                                             |
| 47                      | 6    | ②-I-1-1             | 2-Aug           | Installation point of a valve to Ex.<br>Distribution Main (DN250)                                        | ACP DN250, DP=1.45m                                          | Main Rd (Faisalabad<br>Sangla Hill Rd) | Asphalt                     |                                                             |
| 48                      | 2    | <b>④</b> −I−1−1     | 2-Aug           | Cutting point of Ex. Distribution Main<br>(DN100)                                                        | ACP DN150, DP=1.13m                                          | Town Rd (Abdullar Pur)                 | Concrete, Asphalt           |                                                             |
| Valve chambers surveyed |      |                     |                 |                                                                                                          |                                                              |                                        |                             |                                                             |
| Chamber<br># 1          | 6    | ⑤-II-1-1            | -               | Installation point of a valve on Ex.<br>Distribution Main (DN250)                                        | AC DN250, DP=1.98m                                           | Main Rd (Susan Rd)                     | -                           |                                                             |
| Chamber<br># 2          | 11   | ⑥-РМ-10             | -               | Intersection point of Ex.Distribution<br>Main (DN300) and proposed Distribution<br>Primary Main (DN400)  | DN250, DP=1.98m                                              | Main Rd (Jaranwala Rd)                 | -                           |                                                             |
| Chamber<br># 3          | 11   | ⑥-РМ-11             | -               | Intersection point of Ex.Arterial Main<br>(DN500) and proposed Distribution<br>Primary Main (DN300)      | AC DN300, DP=0.92m                                           | Main Rd (Jaranwala Rd)                 | -                           |                                                             |

| Sr.#            | MAP #               | Pit/Chamber<br>Name  | Excavation date | Pipe to be identified                                                                                                                         | Actual identified pipe                   | Road                                   | Pavement | Notes |
|-----------------|---------------------|----------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|----------|-------|
| Chamber<br># 4  | 3                   | <b>4</b> )-II-1-5    | -               | Cutting point of Ex. Distribution Main (DN75)                                                                                                 | DN75, DP=0.92m                           | Town Rd (Madina Town)                  | -        |       |
| Chamber<br># 5  | 6                   | ⑥-PM-4               | -               | Intersection point of Ex.Arterial Main<br>(DN800) and proposed Distribution<br>Primary Main (DN300)                                           | DIP DN800, DP=3.66m                      | Main Rd (Canal Expy)                   | -        |       |
| Chamber<br># 6  | 6                   | ⑥-PM-5               | -               | Intersection point of Ex.Arterial Main<br>(DN600) and proposed Distribution<br>Primary Main (DN300)                                           | DIP DN800, DP=4.58m                      | Main Rd (Canal Expy)                   | -        |       |
| Chamber<br># 7  | 6                   | ⑥-РМ-6               | -               | Intersection point of Ex.Arterial Main<br>(DN800) and proposed Distribution<br>Primary Main (DN300)                                           | DIP DN800, DP=3.66m                      | Main Rd (Jaranwala Rd)                 | -        |       |
| Chamber<br># 8  | 6                   | ⑥-TM-1 /<br>⑥-PM-1   | _               | Intersection point of Ex.Arterial Main<br>(DN800) and proposed Transmission<br>Main (DN450) and proposed Distribution<br>Primary Main (DN300) | DIP DN800, DP=2.44m                      | Main Rd (Faisalabad<br>Sangla Hill Rd) | -        |       |
| Chamber<br># 9  | 9                   | ⑥-EX-01 /<br>⑥-EX-02 | -               | Intersection point of Ex.Distribution<br>Main (DN600) and proposed<br>Interconnecting Main.                                                   | DIP DN600, DP=1.98m                      | Inside Old JK WTP                      | -        |       |
| Chamber<br># 10 | 7                   | ③-II-1-1             | _               | Cutting point of Ex. Distribution Main (DN100)                                                                                                | AC DN250, DP=1.52m<br>AC DN150, DP=1.52m | Main Rd (Susan Rd)                     | -        |       |
| No need         | to be ex            | cavated              |                 |                                                                                                                                               |                                          |                                        |          |       |
| -               | 3                   | ⑥-PM-2               | -               | Intersection point of Ex. Distribution<br>Main (DN250) and proposed Distribution<br>Primary Main (DN400)                                      | -                                        | Main Rd (Susan Rd)                     | -        |       |
| -               | 3                   | ⑥-РМ-3               | -               | Intersection point of Ex. Distribution<br>Main (DN300) and proposed Distribution<br>Primary Main (DN400)                                      | -                                        | Main Rd (Susan Rd)                     | -        |       |
| -               | 12                  | ⑤-II-4-2             | -               | Installation point of a valve to Ex.<br>Distribution Main (DN200)                                                                             | -                                        | Town Rd (Madina Town)                  | -        |       |
| -               | 6                   | ①-I-1-2              | -               | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN200)                                       | -                                        | Main Rd (Canal Expy)                   | -        |       |
| -               | 6                   | ①-II-1-3             | -               | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)                                       | -                                        | Town Rd (Madina Town)                  | -        |       |
| -               | 6                   | ①-II-1-4             | -               | Connecting point of Ex. Distribution<br>Main (DN75) and proposed Distribution<br>Secondary Main (DN150)                                       | -                                        | Town Rd (Madina Town)                  | -        |       |
| Cannot b        | Cannot be excavated |                      |                 |                                                                                                                                               |                                          |                                        |          |       |
| -               | 3                   | <b>4</b> -II-1-1     | -               | Cutting point of Ex. Distribution Main (DN75)                                                                                                 | -                                        | Town Rd (Madina Town)                  | -        |       |
| -               | 3                   | <b>4</b> -II-1-3     | -               | Cutting point of Ex. Distribution Main (DN75)                                                                                                 | -                                        | Town Rd (Madina Town)                  | -        |       |
| -               | 3                   | <b>4</b> -II-1-4     | -               | Cutting point of Ex. Distribution Main<br>(DN75)                                                                                              | -                                        | Town Rd (Madina Town)                  | -        |       |
| -               | 7                   | ③-II-1-2             | -               | Cutting point of Ex. Distribution Main<br>(DN75)                                                                                              | -                                        | Main Rd (Susan Rd)                     | -        |       |
| -               | 3                   | ③-II-2-1             | -               | Cutting point of Ex. Distribution Main (DN200)                                                                                                | -                                        | Main Rd (Susan Rd)                     | -        |       |
| -               | 11                  | <b>4</b> -II-2-1     | -               | Cutting point of Ex. Distribution Main (DN75)                                                                                                 | -                                        | Town Rd (Madina Town)                  | -        |       |
| -               | 11                  | <b>④</b> -II-2-2     | -               | Cutting point of Ex. Distribution Main (DN75)                                                                                                 | -                                        | Town Rd (Madina Town)                  | -        |       |
| -               | 7                   | <b>④</b> -II-2-3     | -               | Cutting point of Ex. Distribution Main (DN75)                                                                                                 | -                                        | Town Rd (Madina Town)                  | -        |       |
| -               | 7                   | <b>4</b> -II-2-4     | -               | Cutting point of Ex. Distribution Main (DN75)                                                                                                 | -                                        | Town Rd (Madina Town)                  | -        |       |
| -               | 12                  | ③-II-4-3             | -               | Cutting point of Ex. Distribution Main (DN75)                                                                                                 | -                                        | Town Rd (Madina Town)                  | -        |       |


Notes:

- 1  $To identify \ actual \ connecting \ point \ of \ new \ distribution \ secondary \ main \ and \ existing \ distribution \ tertiary \ main.$
- To identify actual isolation point (installing valve or cutting & plugging) between existing distribution primary main (to be used) and existing distribution secondary main (not to be used). 2
- 3 4 5 To identify actual isolation point (installing valve or cutting & plugging) between existing distribution secondary main and existing distribution tertiary main. To identify actual isolation point (installing valve or cutting & plugging) of existing distribution tertiary main at boundary of DMA.

  To identify actual valve installation point on existing primary or secondary main to isolate distribution area.
- To identify actual location (alignment and depth) of existing underground infrastructure (big water supply pipe such as arterial main and primary main, sewerage pipe, drainage channel, commutation cable, etc.) in order to define alignment and depth of new transmission main and new distribution primary main.



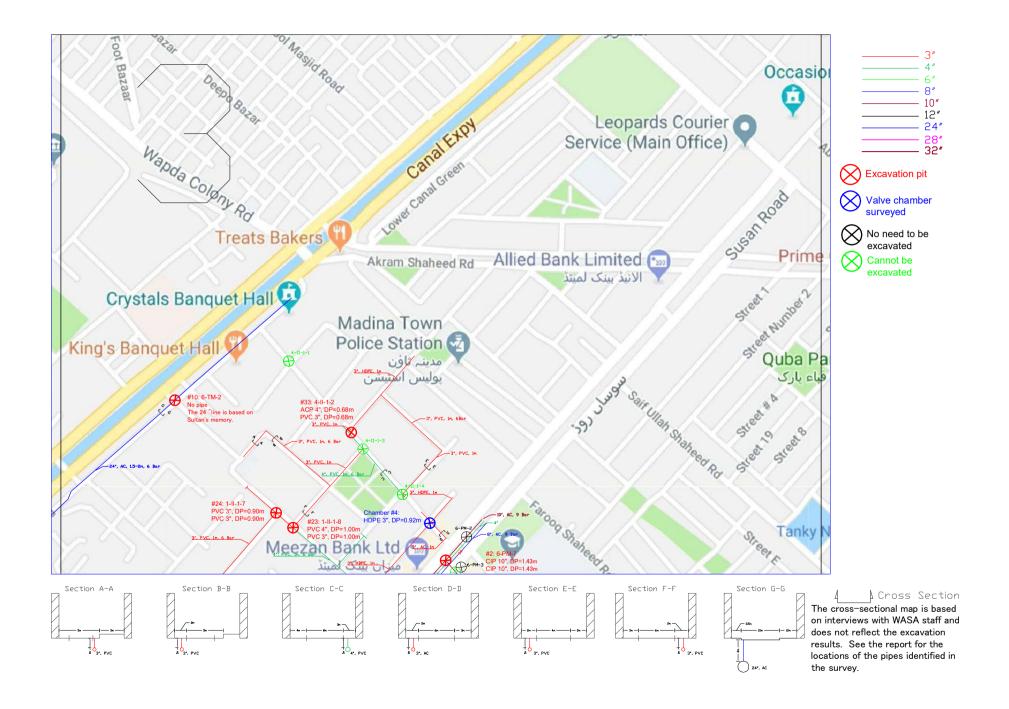
Section A-A

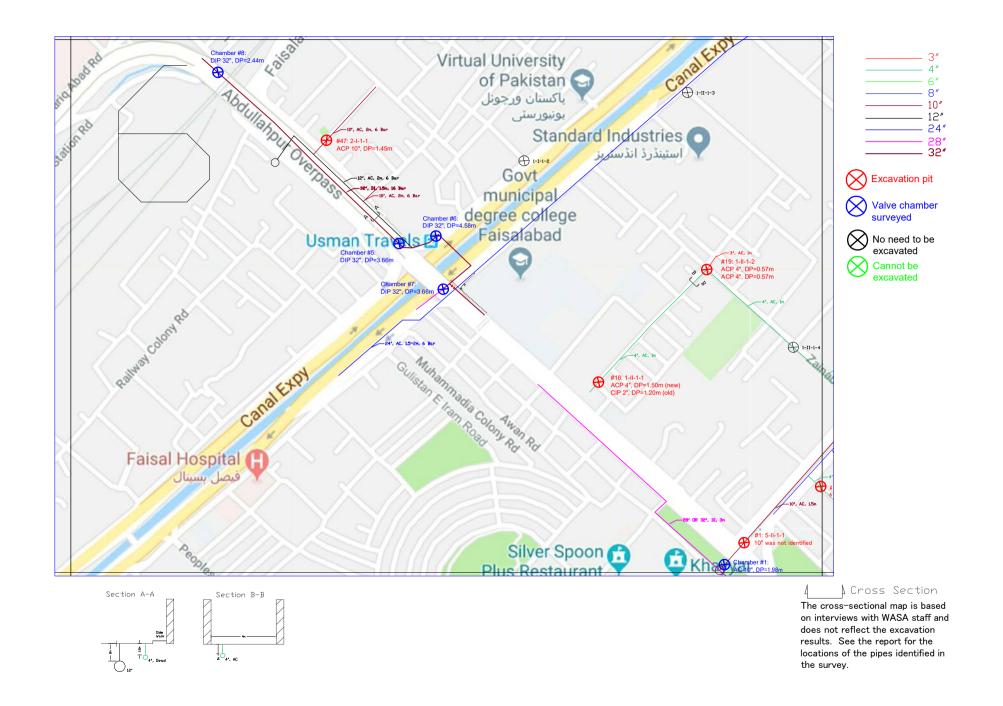




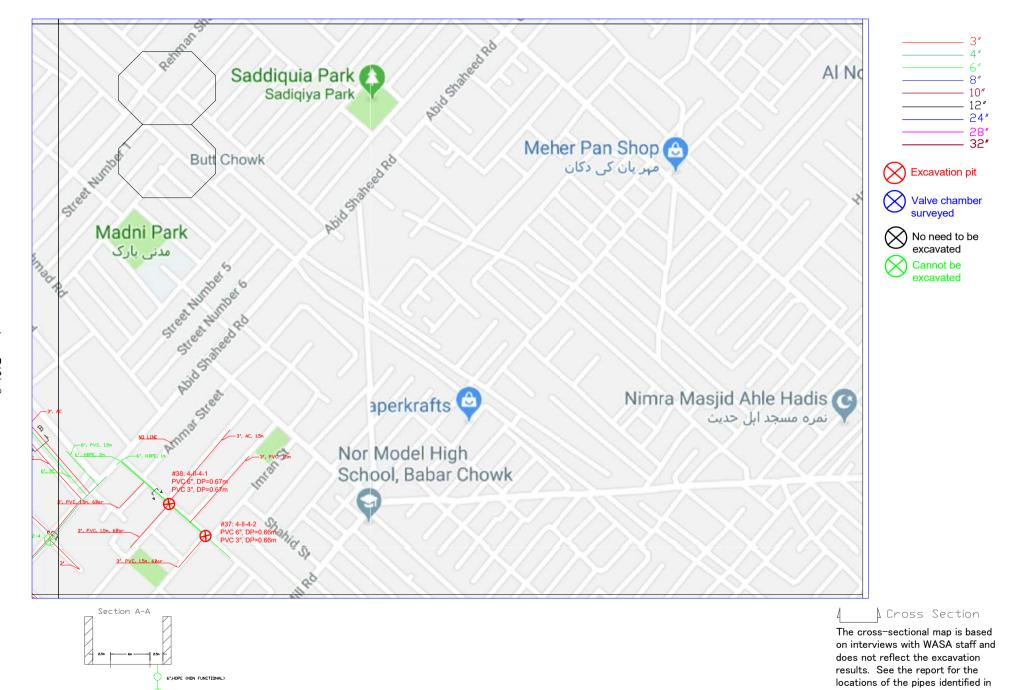
8"

- 10"

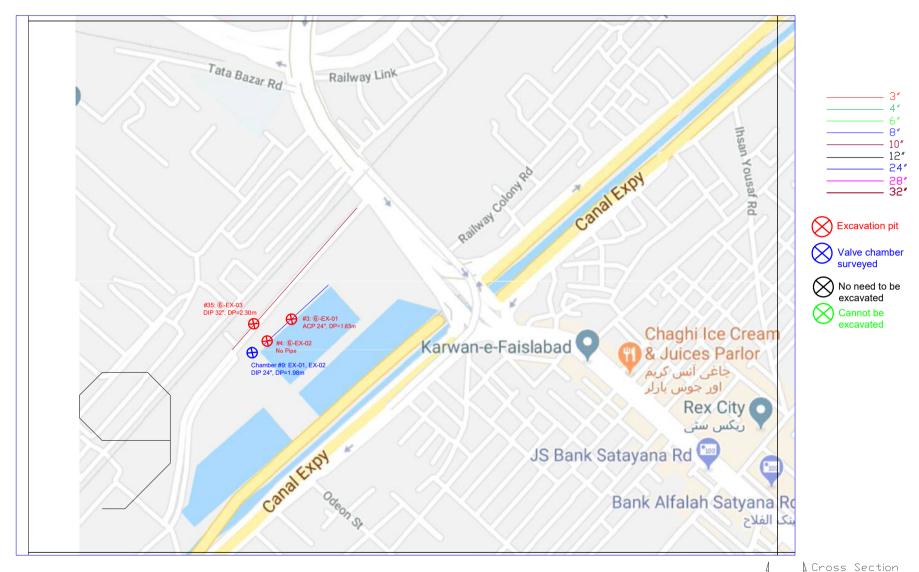

- 12"


24"


28"


32"

The cross-sectional map is based on interviews with WASA staff an does not reflect the excavation results. See the report for the locations of the pipes identified in the survey.










the survey.



The cross-sectional map is based on interviews with WASA staff and does not reflect the excavation results. See the report for the locations of the pipes identified in the survey.

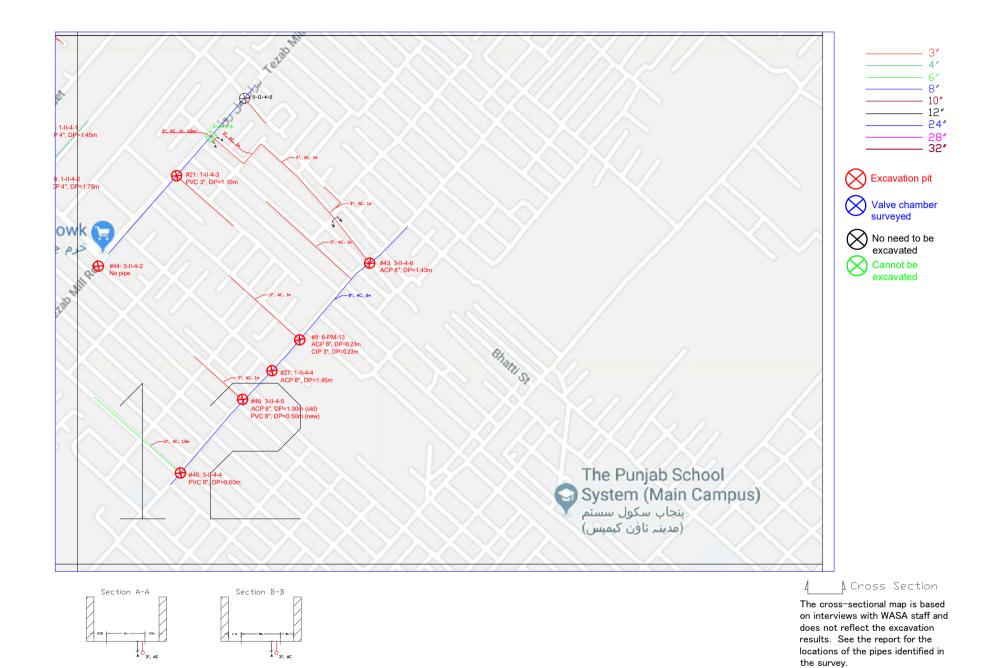


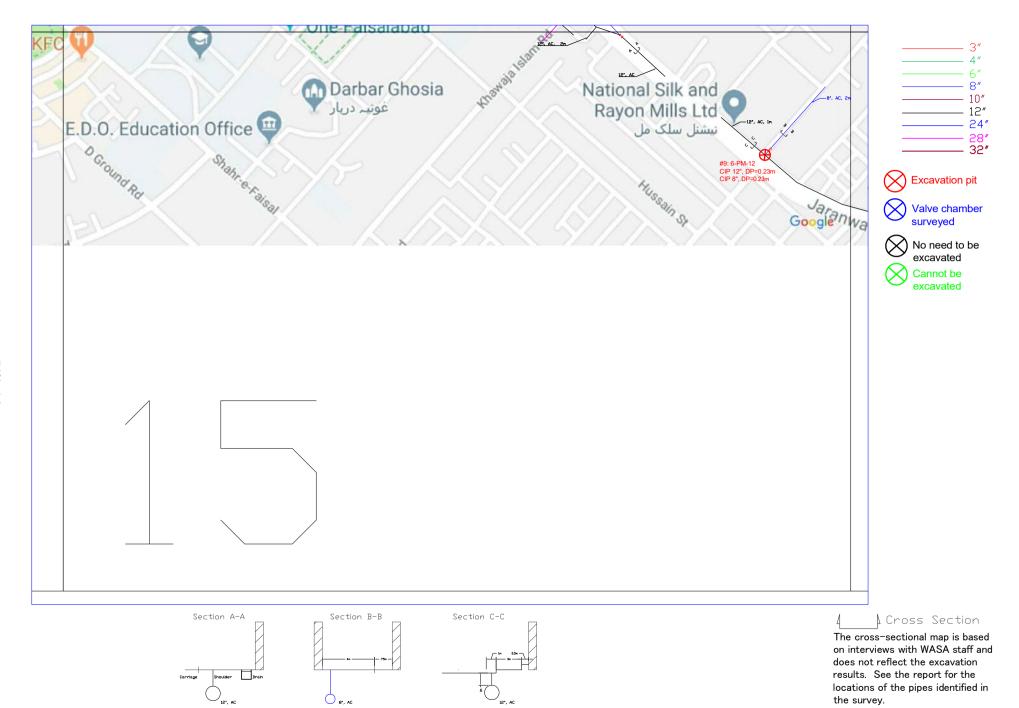
Cross Section

The cross-sectional map is based on interviews with WASA staff and does not reflect the excavation results. See the report for the locations of the pipes identified in the survey.

8"

10" - 12"


24" 28"


- 32"

surveyed

excavated







# Appendix7 References (4) Preliminary Design

Preliminary Design

| 1 | ,   | Technical Parameter of Intake and Treatment Facilities                     | 1-1      |
|---|-----|----------------------------------------------------------------------------|----------|
|   | 1.1 | Intake and Raw Water Transmission Facilities                               | 1-1      |
|   | (1) | Planned Intake Capacity                                                    | 1-1      |
|   | (2) | Flow Diagram of Intake and Raw Water Transmission                          | 1-1      |
|   | (3) | Intake and Raw Water Transmission Facilities                               | 1-1      |
|   | 1.2 | Water Treatment Plant Facilities                                           | 1-4      |
|   | (1) | Pre-Treatment Facilities (Flash Mixing, Flocculation and Sedimentation tar | nks) 1-4 |
|   | (2) | Rapid Sand Filter and Clear Water Reservoir/Treated Water Transmission     |          |
|   |     | Pump Station                                                               | 1-8      |
|   | (3) | Waste Water Treatment Facilities                                           | 1-13     |
| 2 |     | Raw Water Quality and Chemical Dosage                                      | 2-1      |
|   | 2.1 | Raw Water Quality                                                          | 2-1      |
|   | (1) | Raw Water Quality Data                                                     | 2-1      |
|   | (2) | Estimated Raw Water Quality                                                | 2-2      |
|   | 2.2 | Chemical Dosage                                                            | 2-10     |
|   | (1) | Water Treatment Capacity                                                   | 2-10     |
|   | (2) | Raw Water Quality                                                          | 2-10     |
|   | (3) | Chemicals                                                                  | 2-10     |
|   | (4) | Chemical Dosage                                                            | 2-10     |
| 3 | -   | Hydraulic Profile of Intake and Water Treatment Plant                      | 3-1      |
|   | 3.1 | Hydraulic Analysis of Intake and Raw Water Transmission                    | 3-1      |
|   | (1) | Flow Diagram                                                               | 3-1      |
|   | (2) | Hydraulic Analysis                                                         | 3-1      |
|   | 3.2 | Hydraulic Analysis of Water Treatment Plant                                | 3-4      |
|   | (1) | Flow Diagram                                                               | 3-4      |
|   | (2) | Hydraulic Analysis                                                         | 3-4      |
| 4 | -   | Distribution Center                                                        | 4-1      |
|   | 4.1 | Dimensions of Distribution Center DZ I – Abudulah Pur                      | 4-1      |
|   | (1) | Water Demand                                                               | 4-1      |
|   | (2) | Distribution Center                                                        | 4-1      |
|   | 4.2 | Dimensions of Distribution Center DZ II - Madina Town No.2                 | 4-2      |

| (1)     | Water Demand                                                              | 4-2  |
|---------|---------------------------------------------------------------------------|------|
| (2)     | Distribution Center                                                       | 4-2  |
| 5       | Treated Water Transmission and Distribution System                        | 5-1  |
| 5.1     | Brief Description of Water Transmission and Distribution System           |      |
| (1)     |                                                                           |      |
| (2)     |                                                                           | 5-2  |
| 5.2     | Design of Transmission Main                                               | 5-4  |
| (1)     | Hydraulic Analysis and Sizing of Transmission Main                        | 5-5  |
| 5.3     | Distribution Main System                                                  | 5-7  |
| (1)     | Hydraulic/Network Analysis and Sizing of Distribution Primary Main (2038) | 5-7  |
| (2)     | Network Analysis and Sizing of Distribution Secondary Main                | 5-9  |
| Referen | ce: Distribution System for Requirement in Year 2028                      | 5-20 |
| (1)     | Hydraulic / Network Analysis and Sizing of Distribution Primary Main      | 5-20 |
| (2)     | Network Analysis and Sizing of Distribution Secondary Main                | 5-22 |
| Attache | d Table                                                                   |      |
| 1-1     | Volume of Clear Water Reservoir at Canal Stoppage                         | 1-11 |
| 1-2     | Mass Balance                                                              | 1-17 |
| 1-3a    | Volume of Sludge Buffer Tank                                              | 1-18 |
| 1-3b    | Volume of Waste Water Tank                                                | 1-19 |
| 2-1a    | Water Quality Data of RBC and RWSW                                        | 2-3  |
| 2-1b    | Turbidity Change between RBC and RWSR Water                               | 2-3  |
| 2-1c    | Effect of RWSR                                                            | 2-3  |
| 2-2a    | Raw Water Quality – Temperature                                           | 2-4  |
| 2-2b    | Raw Water Quality – pH                                                    | 2-5  |
| 2-2c    | Raw Water Quality – Turbidity                                             | 2-6  |
| 2-3a    | Water Quality Test Result by JICA Consultant in M/P                       | 2-7  |
| 2-3b    | Past Water Test Result in M/P                                             | 2-7  |
| 2-4     | Results of Settling Test                                                  | 2-8  |
| 2-5     | Clarified Water Turbidity in RWSR                                         | 2-9  |
| Attachr | nent                                                                      |      |
| 1-1     | Sludge Extraction of Sedimentation Tank                                   | 1-20 |
| 3-1     | Mixing Intensity of Flash Mixing Tank                                     | 3-10 |

| 3-2 | Mixing Intensity and GT-Value of Slow Mixing  | 3-10  |
|-----|-----------------------------------------------|-------|
| 3-3 | Head Loss of Clarified Water Extraction       | .3-11 |
| 3-4 | Head Loss of Filter                           | 3-12  |
| 4-1 | Capacity of Ground Reservoir (Detention Time) | 4-3   |

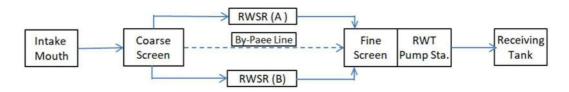
1. Technical Parameter of Intake and Treatment Facilities

#### 1. Technical Parameter of Intake and Treatment Facilities

#### 1.1 Intake and Raw Water Transmission Facilities

# (1) Planned Intake Capacity

Production capacity is set at 45,500 m3/d (10 mgd).


Intake capacity is designed at 5% of production capacity.

Therefore, design capacity of intake becomes 47,900 m<sup>3</sup>/d (45,500 x 1/(1-5%).

note: Water right from the Irrigation Department is 20 cfs (48,900 m<sup>3</sup>/d) which exceeds above design capacity of intake.

# (2) Flow Diagram of Intake and Raw Water Transmission

Water of the irrigation canal (RBC: Rahk Branch Canal) is transmitted through coarse screen to the existing raw water storage reservoirs (RWSR A and B). Clarified water in RWSR is transmitted to the raw water transmission pump station after screening by fine screen, then it is transferred to the Receiving tank for water purification process. The by-pass line is provided for direct transmission to the raw water transmission pump station during winter season when raw water turbidity becomes low in the irrigation canal. The flow diagram of intake and transmission is shown in flow chart below.



#### (3) Intake and Raw Water Transmission Facilities

#### 1) Intake Mouth

Water is taken from RBC at its most down stream, where its cross section is about 12m width bottom with no lining and concrete lining at the both sides with slope of 1:1.5. Water depth is measured at a.1.54 m where water level and bottom level is measured as + 184.86 and + 183.32 respectively, thus area of cross section becomes about 22 m2. According to the irrigation canal authority, the design flow there is 11. 27 m3/s and velocity is calculated at 0.51 m/s. Right after the intake point, water is diverted to Dijkot Disty (distribution canal). According to the information by a operator in OJK WTP, water level of the canal is stable within a small change.

#### Dimensions of Intake Mouth

Main road runs along RBC at the intake point, therefore limited space is available for construction of intake mouth (about 3.3 m between road edge and canal shoulder).

| Front Yard front yard level (50 cm higher than canal bed) Inflow velocity |                                                                                                       |                                      |       | 183.82 m<br>0.6 m/s                     |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------|-------|-----------------------------------------|
| Cross section                                                             | 2 intake mouths are provided each having dimensions                                                   | width water depth cross section area |       | 0.6 m<br>1.01 m<br>0.606 m <sup>2</sup> |
|                                                                           | inflow velocity                                                                                       | cross section area                   |       | 0.46  m/s < 0.6                         |
| Appurtenant Facilities                                                    | Stop log at mouth<br>screen is provided in the water treats<br>the site of intake mouth for operation | •                                    | space | e available at                          |

#### 2) Raw Water Transmission Main (Intake mouth ~ Coarse screen)

| Pipe Materials | Ductile Cast Iron |
|----------------|-------------------|
| Diameter       | 800 mm            |
| Velocity       | 1.10 m/s          |

3) Coarse Screen and Branch Valve Chamber

Coarse Screen Number 1 unit

Type Manual operation bar screen width 1.6 m height 3.0 m

bar spacing 5.0 m

Branch Valve Number to RWSR A & B and By-pass to RWS Pump Sta. 3 units

Type Short body butterfly valve Diameter 800 mm

4) Inflow and Outflow of RWSR

Inflow Transmission pipe is installed to prevent short cut flow from inflow to outflow

and to utilized capacity and surface area of RWSR effectively.

Pipe Materials Reinforced concrete pipe Diameter 900 mm

Outflow pit Provide two weirs placed at the pit for each RWSR for surface water intake, where

submerged weir is used

Overflow rate per one weir  $0.277 \text{ m}^3/\text{s}$ Weir width 1.0 mOverflow height 0.5 m

During canal stoppage period, a gate is provide at the bottom of the pit to intake stored

canal water in RWSR

Number 1 unit Size 600 x 600 mm

Outlet Pipe (RWSR ~ RWT Pump Sta.)

Pipe Materials Ductile Cast Iron
Diameter 800 mm
Velocity 1.10 m/s

5) Raw Water Transmission Pump Station

Receiving Chamber Fine screen is provided in channels before pump well of RWT Pump Sta.

The dimensions of channel are

 Width
 1.15 m

 Length
 2.9 m

 Height
 4.3 m

Install a gate at inflow and outflow of the channel respectively for maintenance of fine

screen

Number at each channel 2 units Size 600 x 600 mm

Fine Screen Type Automatic vertical mesh screen

Number 2 units width 1 m height 5.4 m mesh 12 mm

Pump Well Dimensions of pump well is determined to fit those pump room (length and height)

Width3.6 mLength19.6 mWater depth4.3 mEffective capacity $303 \text{ m}^3$ Detention time9 min

Pump Room Dimensions of pump room is determined based on capacity and number of pumps

with appurtenant equipment (flow meter, control valve, etc.)

Width 4.2 m Length 20.0 m Height below beam soffit 6.6 m

Electric Room Dimensions of electric room is determined to meet the spaces required for

electric panels for power, pumps and control together with hatch room, etc. Width  $$4.2\ m$$  Length  $$20.0\ m$$ 

Height below beam soffit 3.5 m

# (6) Raw Water Transmission Main

Dimensions of a flow meter and a control valve which are installed in the pump room.

Flow meter Type Electric magnetic flow meter
Diameter 500 mm

Flow control valve Type 500 mm
Butterfly valve

Diameter 500 mm

Transmission Main (Raw Water Transmission Pump Sta. ~ Receiving Well)

Pipe Materials Ductile Cast Iron
Diameter 700 mm

# 1.2 Water Treatment Plant Facilities

# (1) Pre-Treatment Facilities (Flash Mixing, Flocculation and Sedimentation Tanks)

|    | Production Capacity |              |            |          |             |                          | $45,500 \text{ m}^3/6$       | d       |
|----|---------------------|--------------|------------|----------|-------------|--------------------------|------------------------------|---------|
|    | Treatment Capacity  | 処理過程の        | ロス         | 5%       | i           |                          | 47,900 m <sup>3</sup> /c     | d       |
|    |                     |              |            |          |             |                          | $2,000 \text{ m}^3/1$        | h       |
|    |                     |              |            |          |             |                          | 33.3 m <sup>3</sup> /1       | min     |
|    |                     |              |            |          |             |                          | 0.554 m <sup>3</sup> /s      | S       |
| 1) | Receiving Tank      |              |            |          |             |                          |                              |         |
|    | Detention time      |              |            |          |             |                          | 3 min                        |         |
|    | Number of comparts  |              |            |          |             |                          | 2 unit                       | S       |
|    | Dimensions per      | Width        |            |          |             |                          | 3.0 m                        |         |
|    | compartment         | Length       |            |          |             |                          | 3.0 m                        |         |
|    |                     | Water depth  |            |          |             |                          | 5.5 m                        |         |
|    |                     | Capacity     | (per tank  | ()       |             |                          | $49.5 \text{ m}^3$           |         |
|    | Appurtenant         | Inlet pipe   |            | Diameter | 700 m       | nm                       | 1 no.                        |         |
|    |                     | Inflow gate  |            | Size     | 600 x 600 m | ım                       | 2 unit                       | S       |
|    |                     | By-pass gate | 2          | Size     | 500 x 500 m |                          | el 1 nuit                    | S       |
|    |                     | Outlet pipe  |            | Diameter | 600 m       | ım                       | 2 nos                        |         |
|    |                     | Drain pipe   |            | Diameter | 150 m       | nm                       | 2 nos                        |         |
| 2) | Flash Mixing Tank   |              |            |          |             |                          |                              |         |
|    | Mixing Method       |              |            |          |             | Hydrauli                 | ic Mixing (Water             |         |
|    | Mixing Intensity    |              |            |          |             |                          | 500 sec                      | -1      |
|    | Number of Tanks     |              |            |          |             |                          | 2 tank                       | 7.7     |
|    | Treatment Capacity  | per Tank     |            |          |             | 23,950 m <sup>3</sup> /d | $0.277 \text{ m}^3/\text{s}$ | S       |
|    |                     |              |            |          | a           | t Inflow                 | at Outflow (M                | (ixing) |
|    | Detention Time      |              |            |          |             | 146 sec                  | 24 sec                       |         |
|    | Dimensions          | V            | Vidth      |          |             | 3.0 m                    | 3.0 m                        |         |
|    |                     | L            | ength      |          |             | 3.0 m                    | 0.8 m                        |         |
|    |                     | V            | Vater dep  | oth      |             | 4.5 m                    | 2.8 m                        |         |
|    |                     | C            | apacity    |          |             | $40.5 \text{ m}^3$       | $6.72 \text{ m}^3$           |         |
|    | Mixing Intensity    | V            | Vater tem  | perature |             |                          | 15 °C                        |         |
|    |                     | N            | lixing int | tensity  |             | 0 <del>0</del> 0         | 497 sec                      | -1      |
|    |                     |              |            |          |             |                          |                              |         |

| Mixing Intensity             |                                |                              |
|------------------------------|--------------------------------|------------------------------|
| $G = (1/\mu x) (\rho x g x)$ | $q \times hf / V)^{0.5} =$     | 497 sec <sup>-1</sup>        |
| 2210.                        | μ: Viscosity                   | 0.00098 kg/m/s               |
|                              | ρ : Specific gravity of water  | $1,000 \text{ kg/m}^3$       |
|                              | g: Gravity acceleration        | $9.8 \text{ m/sec}^2$        |
|                              | q : Flow rate                  | $0.277 \text{ m}^3/\text{s}$ |
|                              | hf: Head loss (freefall depth) | 0.60 m                       |
|                              | V : Volume                     | $6.72 \text{ m}^3$           |

# 3) Flocculation Tank

Method Up-and-Down Flow Number of Tanks 4 tanks Treatment Capacity per Tank 11,975 m<sup>3</sup>/d  $0.139 \text{ m}^3/\text{s}$ Mixing Intensity about  $20 \sim 60 \text{ sec}^{-1}$ Number of Channels 4 列 Dimensions per Channel Width 1.85 m Length 9.75 m Water depth 3.5 ~ 3.8 m Detention Time about 30 min Energy of Dissipation (GT-value) about 80,000

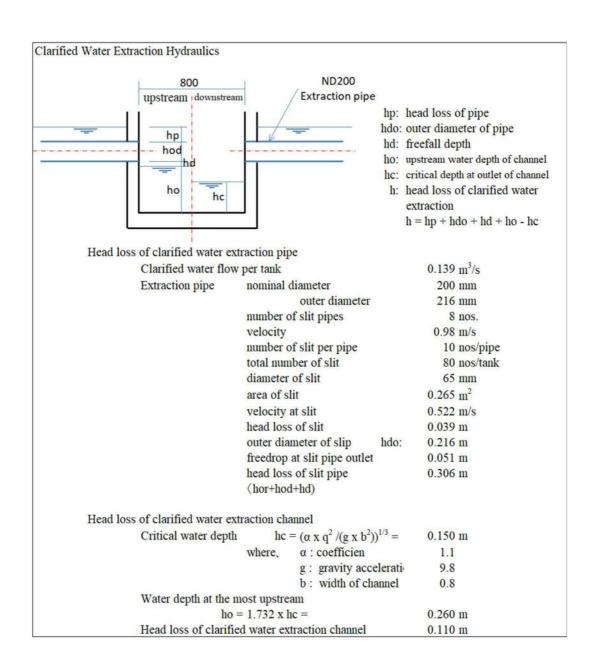
| $G = (1/\mu^* (\rho^*))$ | g * q * h  | f / V))^0.5               |                            |
|--------------------------|------------|---------------------------|----------------------------|
| where,                   | μ:         | viscosity (15°C)          | 0.00098 kg/m/s             |
|                          | ρ:         | specific gravity of water | $1,000 \text{ kg/m}^3$     |
|                          | g:         | gravity acceleration      | 9.8 m/s^2                  |
|                          | <b>q</b> : | flow rate                 | variable m <sup>3</sup> /s |
|                          | V:         | volume                    | variable m <sup>3</sup>    |

# **Energy Dissipation by Phases**

a. Designed Treatment Capacity (Day Maximum Demand in 2038) per Tank 0.1386 m³/s

| 4                         |                |        | Channel            | Number                           |        |        |
|---------------------------|----------------|--------|--------------------|----------------------------------|--------|--------|
| Dimensions                | unit           | No.1   | No.2               | No.3                             | No.4   | Total  |
| Baffle Wall               | nos.           | 5      | 5                  | 5                                | 5      | 20     |
| Baffle Plate              | nos.           | 3      | 4                  | 5                                | 6      | 18     |
| slit dia. and layout      | mm             |        | <sup>w</sup> 300 x | <sup>h</sup> 80 x <sup>n</sup> 4 |        |        |
| area of slit              | m <sup>2</sup> | 0.288  | 0.384              | 0.480                            | 0.576  | -      |
| Velocity at Slit          | m/s            | 0.481  | 0.361              | 0.289                            | 0.241  | -      |
| Head Loss at Slit         | m              | 0.164  | 0.092              | 0.059                            | 0.041  | 0.356  |
| Volume of Channel         | m <sup>3</sup> | 68.1   | 65.2               | 63.5                             | 62.4   | 259.2  |
| width                     | m              | 1.85   | 1.85               | 1.85                             | 1.85   | -      |
| length                    | m              | 9.7    | 9.7                | 9.7                              | 9.7    | -      |
| water depth               | m              | 3.80   | 3.63               | 3.54                             | 3.48   | 3.61   |
| Detention time of Channel | sec            | 491    | 470                | 458                              | 450    | 1,869  |
| Mixing Intensity          | sec-1          | 57.8   | 44.2               | 35.9                             | 30.2   | 43.6   |
| GT-value                  | -              | 28,400 | 20,800             | 16,400                           | 13,600 | 79,200 |

b. Designed Treatment Capacity (Day Minimum Demand in 2038) per Tank  $0.1048 \text{ m}^3/\text{s}$ 

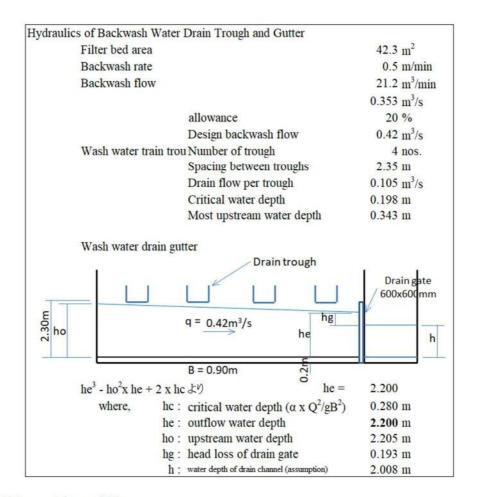

|                           |                |        | Channel            | Number                           |        |        |
|---------------------------|----------------|--------|--------------------|----------------------------------|--------|--------|
| Dimensions                | unit           | No.1   | No.2               | No.3                             | No.4   | Total  |
| Baffle Wall               | nos.           | 5      | 5                  | 5                                | 5      | 20     |
| Baffle Plate              | nos.           | 3      | 4                  | 5                                | 6      | 18     |
| slit dia. and layout      | mm             |        | <sup>w</sup> 300 x | <sup>h</sup> 80 x <sup>n</sup> 4 |        |        |
| area of slit              | m <sup>2</sup> | 0.288  | 0.384              | 0.480                            | 0.576  | -      |
| Velocity at Slit          | m/s            | 0.364  | 0.273              | 0.218                            | 0.182  | -      |
| Head Loss at Slit         | m              | 0.094  | 0.053              | 0.034                            | 0.023  | 0.204  |
| Volume of Channel         | m <sup>3</sup> | 65.5   | 63.8               | 62.9                             | 62.3   | 255    |
| width                     | m              | 1.85   | 1.85               | 1.85                             | 1.85   | -      |
| length                    | m              | 9.7    | 9.7                | 9.7                              | 9.7    | -      |
| water depth               | m              | 3.65   | 3.56               | 3.50                             | 3.47   | 3.55   |
| Detention time of Channel | sec            | 625    | 609                | 600                              | 594    | 2,428  |
| Mixing Intensity          | sec-1          | 44.6   | 33.9               | 27.4                             | 22.6   | 33.3   |
| GT-value                  | -              | 27,900 | 20,600             | 16,400                           | 13,400 | 78,300 |

|                           |                |        | 水路ナ                | ンバー                              |        |        |
|---------------------------|----------------|--------|--------------------|----------------------------------|--------|--------|
| Dimensions                | unit           | No.1   | No.2               | No.3                             | No.4   | Total  |
| Baffle Wall               | nos.           | 5      | 5                  | 5                                | 5      | 20     |
| Baffle Plate              | nos.           | 3      | 4                  | 5                                | 6      | 18     |
| slit dia. and layout      | mm             |        | <sup>w</sup> 300 x | <sup>h</sup> 75 x <sup>n</sup> 4 |        |        |
| area of slit              | m <sup>2</sup> | 0.317  | 0.384              | 0.480                            | 0.576  | -      |
| Velocity at Slit          | m/s            | 0.198  | 0.163              | 0.130                            | 0.109  | -      |
| Head Loss at Slit         | m              | 0.028  | 0.019              | 0.012                            | 0.008  | 0.067  |
| Volume of Channel         | m <sup>3</sup> | 63.0   | 62.5               | 62.1                             | 61.9   | 250    |
| width                     | m              | 1.85   | 1.85               | 1.85                             | 1.85   | -      |
| length                    | m              | 9.7    | 9.7                | 9.7                              | 9.7    | -      |
| water depth               | m              | 3.51   | 3.48               | 3.46                             | 3.45   |        |
| Detention time of Channel | sec            | 1,007  | 999                | 992                              | 989    | 3,987  |
| Mixing Intensity          | sec-1          | 24.8   | 20.5               | 16.4                             | 13.4   | 19.3   |
| GT-value                  | -              | 25,000 | 20,500             | 16,300                           | 13,300 | 75,100 |

| ) | Sedimentation Tank |              |                        |                     |                               |              |                        |
|---|--------------------|--------------|------------------------|---------------------|-------------------------------|--------------|------------------------|
|   | Metod              |              |                        |                     | I                             | nclining Tul | be                     |
|   | Number of Tank     |              |                        |                     |                               |              | tanks                  |
|   | Treatment Capacity | per Tank     |                        |                     | $12,000 \text{ m}^3/\text{d}$ | 500          | m <sup>3</sup> /h      |
|   | Surface Loading    |              |                        |                     |                               | 1            | $m^3/h/m^2$            |
|   | Efficiency         |              |                        |                     |                               | 80           | %                      |
|   | Inclining Tube     | Size of tul  | oe .                   |                     |                               | 80 x 80      | mm                     |
|   |                    | Installation | n height               |                     |                               | 1.0          | m                      |
|   |                    | Installation | n angle to horizontal  |                     |                               | 60           | deg.                   |
|   |                    | Effective a  | area                   |                     |                               | 0.577        | $m^2/m$                |
|   |                    | Module of    | f inclining tube (1.0  | 0 x 1.0m)           |                               | 7.22         | m <sup>2</sup> /module |
|   |                    | Effective a  | area of tank           |                     |                               | 625          | m <sup>2</sup> /tank   |
|   |                    | Number o     | f modules              |                     |                               | >87          | units/tank             |
|   | Dimension of Tank  | Width        | Number of compar       | tments              |                               | 2            | compartments           |
|   |                    |              | Number of module       | s per compartme     | ent                           | 4            | units                  |
|   |                    |              | Distance between n     |                     |                               | 10           | cm                     |
|   |                    |              | Width of clarified wa  | ter collecting char | nnel (incl.side wall)         | 1.3          | m                      |
|   |                    |              | Width per tank         |                     |                               | 9.7          | m                      |
|   |                    | Length       | Number of module       | s (87 x 1/8)        |                               | 11           | units                  |
|   |                    |              | Installation length of | modules (incl. spac | e between modules)            | 12.0         | m                      |
|   |                    |              | Stilling zone length   | (incl. wall) (1     | .5 + 0.25)                    | 1.75         | m                      |
|   |                    |              | Length of tank         |                     |                               | 13.75        | m                      |
|   |                    | Water depth  | Water depth above      | inclining tube      |                               | 0.8          | m                      |
|   |                    |              | Installation height of | of inclining tube   | (incl. support)               | 1.2          | m                      |
|   |                    |              | Height under the in    | clining tube        |                               | 1.5          | m                      |
|   |                    |              | Free board             |                     |                               | 0.4          | m                      |
|   |                    |              | Total water depth      |                     |                               | 3.5          | m                      |
|   | Clarified Water    | Method       |                        |                     |                               | Pipes        |                        |
|   | Extraction         |              | Extraction pipe        | Diameter            |                               | 200          | mm                     |
|   |                    |              | Number of pipes        |                     |                               | 4            | nos/compartment        |
|   |                    |              | Weir loading           |                     |                               | < 200        | $m^3/d/m$              |
|   |                    | Clarified v  | water extraction char  | nnel                |                               | Reinforce    | concrete               |
|   |                    |              | **                     |                     |                               | 0.0          |                        |

0.8 m

Net width




# (2) Rapid Sand Filter and Clear Water Reservoir/Transmission Pump Station)

# 1) Rapid Sand Filter

| a. Treatment Capacity |                    |                                   |         |                               |
|-----------------------|--------------------|-----------------------------------|---------|-------------------------------|
| Production            |                    |                                   |         | $45,500 \text{ m}^3/\text{d}$ |
| Treatment capacity    | loss               | 3 %                               |         | $46,900 \text{ m}^3/\text{d}$ |
| b. Dimensions         |                    |                                   |         |                               |
| Type                  | Filter media       |                                   |         | single layer)                 |
|                       | Filtration         |                                   |         | istant rate                   |
|                       | Flow control       |                                   | Equal   | split at inlet                |
| Filtration Rate       |                    |                                   |         | 140 m/d                       |
| Filter Media          | Filter sand Effect | tive size                         |         | 0.9 mm                        |
|                       |                    | rmity coefficient                 |         | 1.4                           |
|                       |                    | ness of sand layer                |         | 100 cm                        |
|                       | Supporting Numb    |                                   |         | 4 layers                      |
|                       |                    | ness of each layer                |         | 5 cm                          |
|                       |                    | e of particle size                |         | $2 \sim 50 \text{ mm}$        |
|                       | Thick              | ness of gravel layer              |         | 20 cm                         |
| Underdrain            | Type               |                                   | nc      | zzle type                     |
|                       | Head loss at back  | cwashing                          | Maximum | 70 cm                         |
| Number of Filters     |                    |                                   |         | 8 filters                     |
|                       | Filtration flow pe | r filter                          |         | $5,860 \text{ m}^3/\text{d}$  |
| Dimensions of         | Width              |                                   |         | 4.5 m                         |
| Filter                | Length             |                                   |         | 9.4 m                         |
| 11101                 | Filter area        |                                   |         | 42.3 m <sup>2</sup>           |
|                       | Timer area         | Filtration rate                   |         | 139 m/d                       |
|                       | Height             | Titration face                    |         | 5.75 m                        |
|                       | Treight            | Water depth above sand            |         | 1.25 m                        |
|                       |                    | Clogging loss                     |         | 1.30 m                        |
|                       |                    | Thickness of Filter sand and grav | vel     | 1.2 m                         |
|                       |                    | Underdrain                        |         | 1.1 m                         |
|                       |                    | Free board                        |         | 0.9 m                         |
|                       |                    | ******                            |         | was a second                  |
|                       | Backwash           | Width                             |         | 0.9 m                         |
|                       | drain gutter       | Length                            |         | 9.4 m                         |
|                       |                    | Water depth                       |         | 4.5 m                         |
|                       | Operation/         | Width                             |         | 4 m                           |
|                       | Pipe gallery       | Length                            |         | 44.4 m                        |
|                       |                    |                                   |         |                               |

| Filter Washing | Method         |                                      | Air + Backwash          |
|----------------|----------------|--------------------------------------|-------------------------|
|                | Air Scouring   | Scouring rate                        | 0.9 ~ 1.0 m/min         |
|                |                | Scouring time                        | 10 min                  |
|                | Backwash       | Rate of initial backwash (Air+Water) | 0.25 m/min              |
|                |                | Washing time                         | $2 \sim 3 \text{ min}$  |
|                |                | Backwasing (water only)              | $8 \sim 10 \text{ min}$ |
|                | Backwash water | Number of (1 池当たり)                   | 4 本                     |
|                | drain trough   | Width                                | 40 cm                   |
|                | 0.00           | Height                               | 40 cm                   |
|                |                | Length                               | 4.65 m                  |



Pipe, Valves and Gates of Filte

| pipe· valve· gate   | size (mm) | velocity (m/s) | pipe· valve· gate | size (mm) | velocity (m/s |
|---------------------|-----------|----------------|-------------------|-----------|---------------|
| Inlet gate          | 300 x 300 | 0.76           | Backwash main     | 500       | 2.01          |
| Wash drain gate     | 600 x 600 | 1.10           | Air pipe          | 250       | 15.3          |
| Filtered water pipe | 250       | 1.51           | Air main          | 300       | 7.8           |
| Filtered water main | 800       | 1.08           | Filter drain pipe | 150       | -             |
| Backwash pipe       | 450       | 2.48           | Filter drain main | 200       | -             |

# 2) Clear Water Reservoir and Treated Water Transmission Pump Station

#### a. Clear Water Reservoir

| Detention Time*            |                                                                                                          | apprx. | 1.2 h                                                                    |
|----------------------------|----------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------|
| Capacity                   |                                                                                                          |        | 2,280 m <sup>3</sup>                                                     |
| Number of Compartment      |                                                                                                          |        | 2 nos.                                                                   |
| Dimensions per Compartment | Width Length Effective water depth Total volume Effective volume (approx. 98%) Free board Detention time |        | 15.8 m<br>17.2 m<br>4.5 m<br>1,223 m<br>2,400 m3<br>0.65 m<br>1.27 hours |

注\* refer to Attached Table 1-1 volume of Clear Water Reservoir at Canal Stoppage

## b. Treated Water Transmission Pump Station

| ansimission F | rump Station                                                                              |                                                                                                                                                                                          |
|---------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                                                           | iber of                                                                                                                                                                                  |
| Width         | including pipe gallery of punp suction and delivery pipes                                 | 9.4 m                                                                                                                                                                                    |
| Length        |                                                                                           | 32.4 m                                                                                                                                                                                   |
| Height        | below beam soffit                                                                         | 7.8 m                                                                                                                                                                                    |
| Dimensi       | ons of electric room is determined to meet the spaces requir                              | ed for                                                                                                                                                                                   |
| electric      | panels of power, pumps and controlst together with hatch roo                              | om, etc.                                                                                                                                                                                 |
| Width         |                                                                                           | 4.2 m                                                                                                                                                                                    |
| Length        |                                                                                           | 32.4 m                                                                                                                                                                                   |
| Height        | below beam soffit                                                                         | 3.5 m                                                                                                                                                                                    |
|               | Dimensi<br>pumps v<br>Width<br>Length<br>Height<br>Dimensi<br>electric<br>Width<br>Length | Length Height below beam soffit  Dimensions of electric room is determined to meet the spaces require electric panels of power, pumps and control式 together with hatch roow Width Length |

#### Volume of Clear Water Reservoir at Canal Stoppage Attached Table 1 – 1

1 In Year 2028

Water Demand Day Maximum Water Demand 17,860 m3/d

> Day Minimum Water Demand 13,500 m<sup>3</sup>/d  $750 \text{ m}^3/\text{h}$

Supply hour at 18 hours (5 to 22)

Supply Treatment Plant (12 hours operation  $3,700 \text{ m}^3/\text{d}$  $310 \text{ m}^3/\text{h}$ 

from Arterial Main

9,800 m<sup>3</sup>/d 1,640 m<sup>3</sup>/h

note: Receiving water from Arterial Main for 6 hours/day (3 times each 2 hours)

water demand is assumed as minimum demand, i.e., about 75% of Day Maximum demand

Canal close is for 21 days

Efective capacity of RWSRs of A and B is 78,300 m3 3,700 m3/d

#### 1.1 Constant Transmission Flow

|    |       | Supp        | ly     |        | Demai          | nd     | Balance |       | Trans. Flow |
|----|-------|-------------|--------|--------|----------------|--------|---------|-------|-------------|
| hr | WTP   | Arterial M. | Total  | Σ      | (Transmission) | Σ      |         |       | Rate        |
|    |       |             |        |        |                |        |         | 750   |             |
| 1  |       |             | 0      | 0      |                | 0      | 0       | 750   |             |
| 2  |       |             | 0      | 0      |                | 0      | 0       | 750   |             |
| 3  |       |             | 0      | 0      |                | 0      | 0       | 750   |             |
| 4  |       |             | 0      | 0      |                | 0      | 0       | 750   |             |
| 5  |       |             | 0      | 0      | 750            | 750    | -750    | 0     | 100%        |
| 6  |       | 1,640       | 1,640  | 1,640  | 750            | 1,500  | 140     | 890   | 100%        |
| 7  | 310   | 1,640       | 1,950  | 3,590  | 750            | 2,250  | 1,340   | 2,090 | 100%        |
| 8  | 310   |             | 310    | 3,900  | 750            | 3,000  | 900     | 1,650 | 100%        |
| 9  | 310   |             | 310    | 4,210  | 750            | 3,750  | 460     | 1,210 | 100%        |
| 10 | 310   |             | 310    | 4,520  | 750            | 4,500  | 20      | 770   | 100%        |
| 11 | 310   |             | 310    | 4,830  | 750            | 5,250  | -420    | 330   | 100%        |
| 12 | 310   | 1,640       | 1,950  | 6,780  | 750            | 6,000  | 780     | 1,530 | 100%        |
| 13 | 310   | 1,640       | 1,950  | 8,730  | 750            | 6,750  | 1,980   | 2,730 | 100%        |
| 14 | 310   |             | 310    | 9,040  | 750            | 7,500  | 1,540   | 2,290 | 100%        |
| 15 | 310   |             | 310    | 9,350  | 750            | 8,250  | 1,100   | 1,850 | 100%        |
| 16 | 310   |             | 310    | 9,660  | 750            | 9,000  | 660     | 1,410 | 100%        |
| 17 | 310   |             | 310    | 9,970  | 750            | 9,750  | 220     | 970   | 100%        |
| 18 | 310   | 1,640       | 1,950  | 11,920 | 750            | 10,500 | 1,420   | 2,170 | 100%        |
| 19 |       | 1,640       | 1,640  | 13,560 | 750            | 11,250 | 2,310   | 3,060 | 100%        |
| 20 |       |             | 0      | 13,560 | 750            | 12,000 | 1,560   | 2,310 | 100%        |
| 21 |       |             | 0      | 13,560 | 750            | 12,750 | 810     | 1,560 | 100%        |
| 22 |       |             | 0      | 13,560 | 750            | 13,500 | 60      | 810   | 100%        |
| 23 |       |             | 0      | 13,560 |                | 13,500 | 60      | 810   | 100%        |
| 24 |       |             | 0      | 13,560 |                | 13,500 | 60      | 810   | 100%        |
|    | 3,720 | 9,840       | 13,560 |        | 13,500         |        |         |       |             |

1.2 Water Level Control (Transmission Flow Control)

|    |      | Supp        | ly     |        | Dema           | nd     | Balanc | :e    | Trans. Flow |
|----|------|-------------|--------|--------|----------------|--------|--------|-------|-------------|
| hr | WTP  | Arterial M. | Total  | Σ      | (Transmission) | Σ      |        |       | Rate        |
|    |      |             |        |        |                |        |        | 600   |             |
| 1  |      |             | 0      | 0      | 0              | 0      | 0      | 600   |             |
| 2  |      |             | 0      | 0      | 0              | 0      | 0      | 600   |             |
| 3  |      |             | 0      | 0      | 0              | 0      | 0      | 600   |             |
| 4  |      |             | 0      | 0      | 0              | 0      | 0      | 600   |             |
| 5  |      |             | 0      | 0      | 600            | 600    | -600   | 0     | 80%         |
| 6  |      | 1,640       | 1,640  | 1,640  | 900            | 1,500  | 140    | 740   | 120%        |
| 7  | 310  | 1,640       | 1,950  | 3,590  | 975            | 2,475  | 1,115  | 1,715 | 130%        |
| 8  | 310  |             | 310    | 3,900  | 900            | 3,375  | 525    | 1,125 | 120%        |
| 9  | 310  |             | 310    | 4,210  | 750            | 4,125  | 85     | 685   | 100%        |
| 10 | 310  |             | 310    | 4,520  | 600            | 4,725  | -205   | 395   | 80%         |
| 11 | 310  |             | 310    | 4,830  | 600            | 5,325  | -495   | 105   | 80%         |
| 12 | 310  | 1,640       | 1,950  | 6,780  | 900            | 6,225  | 555    | 1,155 | 120%        |
| 13 | 310  | 1,640       | 1,950  | 8,730  | 975            | 7,200  | 1,530  | 2,130 | 130%        |
| 14 | 310  |             | 310    | 9,040  | 900            | 8,100  | 940    | 1,540 | 120%        |
| 15 | 310  |             | 310    | 9,350  | 750            | 8,850  | 500    | 1,100 | 100%        |
| 16 | 310  |             | 310    | 9,660  | 600            | 9,450  | 210    | 810   | 80%         |
| 17 | 310  |             | 310    | 9,970  | 600            | 10,050 | -80    | 520   | 80%         |
| 18 | 310  | 1,640       | 1,950  | 11,920 | 750            | 10,800 | 1,120  | 1,720 | 100%        |
| 19 |      | 1,640       | 1,640  | 13,560 | 900            | 11,700 | 1,860  | 2,460 | 120%        |
| 20 |      |             | 0      | 13,560 | 600            | 12,300 | 1,260  | 1,860 | 80%         |
| 21 |      |             | 0      | 13,560 | 600            | 12,900 | 660    | 1,260 | 80%         |
| 22 |      |             | 0      | 13,560 | 600            | 13,500 | 60     | 660   | 80%         |
| 23 |      |             | 0      | 13,560 | 0              | 13,500 | 60     | 660   |             |
| 24 |      |             | 0      | 13,560 | 0              | 13,500 | 60     | 660   |             |
|    | 3720 | 9,840       | 13,560 |        | 13,500         |        |        |       | 1.00        |

Dimensions of Reservoir

Constant Transmission Flow Water Level Control width (m) 31.6 (15.8m x 2 - 0.4) 31.6 (15.8m x 2 - 0.4) length (m) 21.6 (4.4m x 5span - 0.4) 17.2 (4.4m x 4span - 0.4) water depth (m) 4.5 4.5 Effective Area (m2) 683 (wall thick: 0.4m) 544 (wall thick: 0.4m) 3,072 2,446 volume (m3)

# (3) Waste Water Treatment Facilities

Waste water treatment facilities are composed of /Sludge Buffer Tank/Waste Water Tank, Sludge Thickener and Sludge Drying Bed

#### 1) Sludge Buffer Tank

#### a. Sludge Extraction of Sedimentation Tank

| Treatment Flow | $47,900 \text{ m}^3/\text{d}$ |
|----------------|-------------------------------|
|                | Maximum Turbidity             |

| Sludge | Sludge extraction    | (times of extraction) | 4 times/d                    |
|--------|----------------------|-----------------------|------------------------------|
|        | Maximum Turbidity    | (RWST outflow)        | 200 NTU                      |
|        | Clarified Water Turk | pidity                | 5 mg/l                       |
|        | Alum Dosage rate (S  | Solid 17%)            | 33 mg/l                      |
|        | TS/Turbidity         |                       | 1.0                          |
|        | Sludge               | Solid weight          | 9,710 kg/d                   |
|        |                      | Sludge content        | 1.0%                         |
|        |                      | Sludge flow           | $970 \text{ m}^3/\text{d}$   |
|        |                      | Allowance             | 20%                          |
|        |                      |                       | $1,160 \text{ m}^3/\text{d}$ |

Sludge flow per extraction 290 m<sup>3</sup>/time

Two tanks of Sludge buffer tank is planned including one stand-by, each having volume of 250 m<sup>3</sup> (refer to Attached Table 1-3a Volume of Sludge Buffer Tank)

# b. Dimensions of Sludge Holding Tank

Number of Tank 2 tanks

Capacity (at Maximum turbidity,200 NTU) 250 m<sup>3</sup>

Time for Sludge Transfer to Sludge Thickener Continuous pump operation under water level control

| Dimensions | Width                 | 4.2 m             |
|------------|-----------------------|-------------------|
|            | Length                | 20.0 m            |
|            | Effective water depth | 3.0 m             |
|            | Volume                | $504 \text{ m}^3$ |

#### c. Appurtenant Equipment

Mixer

Submersible mixers to prevent settlement of sludge in tank and transfer sludge with uniform sludge content as possible to sludge thickener. Two mixers per compartment is installed.

#### Sludge transfer pump

Sludge is transferred by submersible waste water pumps. Two units of pumps including one stand-by are installed in each tank.

Sludge is pumped to a chamber located on top slab of sludge holding tank, from where sludge is transferred to sludge thickener by gravity.

From the said sludge chamber, half of sludge is transferred to sludge thickener and remaining sludge is transferred directly to sludge drying bed by gravity to avoid large scale of sludge thickener when raw water turbidity becomes high.

High turbid raw water of 1,000 NTU or larger will occur only several times in wet sean in a year.

#### 2) Waste Water Tank

a. Backwash Waste Water and Supernatant Water

| Treatment Flow of Filter | $46,900 \text{ m}^3/\text{d}$ |
|--------------------------|-------------------------------|
| Number of Filter         | 8 filters                     |

Filter Backwash Waste Water

| Filter bed area | $42.3 \text{ m}^2$ |
|-----------------|--------------------|
|                 |                    |

| Filter bed area   |              |               |                        |                 | $42.3 \text{ m}^2$           |
|-------------------|--------------|---------------|------------------------|-----------------|------------------------------|
|                   | Washing      | rate (        | m <sup>3</sup> /min) t | ime(min)        | waste water                  |
|                   |              | initial       | 0.25                   | 2~3             | 21                           |
|                   |              | Final         | 0.5                    | 8~10            | 169                          |
| Filter run        |              |               |                        |                 | 48 h                         |
| Washing time per  | day          |               |                        |                 | 4 times/d                    |
| Waste water volum | ne           |               |                        |                 | 190 m <sup>3</sup> /time     |
|                   | Allowance    |               |                        |                 | 20%                          |
|                   |              |               |                        |                 | $910 \text{ m}^{3}/\text{d}$ |
|                   | Inflow of Ba | nckwash was   | te water p             | er time         | 230 m <sup>3</sup> /time     |
| Sllid weight      | Inflow and o | outflow turbi | dity is 5 a            | nd 1 respective | ely 190 kg/d                 |
| Solid content     |              |               | SAFAR CLEASE SAFA      |                 | 0.21%                        |

# Supernatant (24 hours continuous inflow)

850 m<sup>3</sup>/d from Sludge Thickener from Sludge Drying Bed 300 m<sup>3</sup>/d

Number of waste water tank is two tanks including one stand-by, each having volume of 210 m<sup>3</sup> (refer to Attached Table 1-3b Volume of Waste Water Tank)

#### b. Dimensions of Waste Water Tank

Number of Tank 2 tanks

210 m<sup>3</sup> Volume per tank

Time for Dewateringr Continuous pump operation under water level control

| Dimensions | Width                 | 4.2 m  |
|------------|-----------------------|--------|
|            | Length                | 20.0 m |
|            | Effective water depth | 2.5 m  |
|            | Volume                | 210 m3 |

#### c. Appurtenant Equipment

Submersible mixers to prevent settlement sludge in waste water in tank and transfer waste water Mixer with uniform sludge content as possible to receiving tank for recycle use. Two mixers per tank is installed.

# Waste water transfer pump

Two submersible waste water pumps including one stand-by are installed in each compartment.

# Pumps for Preventing Overflow

Because no appropriate waste water drain facilities is available around the water treatment plant, all waste water and overflows of plant inflow to the waste water tank.

Therefore, drain pumps are planned to be installed in the waste water tank to drain the RWSR in ordinal plant operation. As required, drain water is pumped to drain channel (former irrigation distribution canal which is not utilized at the present) located along north-west boundary wall of the plant.

| 4) | Sludge Thickener                                                                                                |             |                             |                     |                               |
|----|-----------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|---------------------|-------------------------------|
|    | Type                                                                                                            |             |                             | Gravity Ce          | nter Feed Thickener           |
|    | Sludge (solid weight                                                                                            | t)          |                             |                     | 10,080 kg                     |
|    | Sludge Loading                                                                                                  |             |                             |                     | $20 \text{ kg/d/m}^2$         |
|    | Number of Thicken                                                                                               | er          |                             |                     | 2 池                           |
|    | Surface Area requir                                                                                             | ed          |                             |                     | $504 \text{ m}^2$             |
|    | 111                                                                                                             |             |                             |                     | 252 m <sup>2</sup> /thickener |
|    | Dimensions                                                                                                      | Diameter    |                             |                     | 12.8 m                        |
|    |                                                                                                                 | Effective   | water depth                 |                     | 3.5 m                         |
|    |                                                                                                                 | Sludge      | Depth                       |                     | 0.5 m                         |
|    |                                                                                                                 | Deposit     | Sludge volume)              |                     | $64 \text{ m}^3$              |
|    |                                                                                                                 | Slope of    |                             |                     | 10%                           |
|    |                                                                                                                 | -           | enter feed chamber          | Dia.                | 2.5 m                         |
|    |                                                                                                                 | Size Slud   | ge extraction pit           | Dia.                | 2.2 m                         |
|    | Sludge Extraction                                                                                               | Type of s   |                             | Ro                  | otating type                  |
|    | 100 To | Extraction  | n pipe                      | Dia.                | 150 mm                        |
| 5) | Thickened Sludge T                                                                                              | ransfer Dun | nn Station                  |                     |                               |
| 2) | Pump Room                                                                                                       | Basement    | • 1                         |                     | 60 m <sup>2</sup>             |
|    | rump Room                                                                                                       | Dascincii   | Width                       |                     | 5 m                           |
|    |                                                                                                                 |             | Length                      |                     | 12 m                          |
|    |                                                                                                                 |             | Height                      |                     | 5.55 m                        |
|    |                                                                                                                 |             | Height                      |                     | 3.33 III                      |
|    | Electric Room                                                                                                   | Ground F    | loor                        |                     | 60 m2                         |
|    |                                                                                                                 |             | Width                       |                     | 5 m                           |
|    |                                                                                                                 |             | Length                      |                     | 12 m                          |
|    |                                                                                                                 |             | Height                      | below beam soffit   | 3.5 m                         |
| 6) | Sludeg Drying Bed                                                                                               |             |                             |                     |                               |
|    | Sludge (Solid Weigl                                                                                             | nt)*1       |                             |                     | 911,400 kg/年                  |
|    | Annual Sludge Load                                                                                              | ling        |                             |                     | $220 \text{ kg/m}^2$          |
|    | Floor Area of Sludg                                                                                             | e Drving B  | ed                          |                     | $4,140 \text{ m}^2$           |
|    | Number of Beds                                                                                                  | , ,         |                             |                     | 7 beds                        |
|    | Area                                                                                                            |             |                             |                     | $600 \text{ m}^2/\text{bed}$  |
|    | Dimensions                                                                                                      | Width       |                             |                     | 20 m                          |
|    |                                                                                                                 | Length      |                             |                     | 30 m                          |
|    |                                                                                                                 | Filter      | Sand                        |                     | 30 cm                         |
|    |                                                                                                                 |             | Gravel                      |                     | 20 cm                         |
|    |                                                                                                                 | Water de    | pth above sand              |                     | 1.5 m                         |
|    |                                                                                                                 | Free boar   |                             |                     | 50 cm                         |
|    | Appurtenant                                                                                                     | Piping      | Inlet Pipe                  | PE                  | 150 mm                        |
|    | Faculities and                                                                                                  | 10          | Supernatant Drain           | RCP                 | 150 mm                        |
|    | Equipment                                                                                                       | Stop log    | (at supernatant drain pit)  | W x H (20cm x 8nos) |                               |
|    | ***                                                                                                             | Ramp        | (for dried sludge disposal) | W x L (3.0 x 7.5m)  | 1 pl/bed                      |

Note \*1: Sludge (Solid Weight)

|           | Q =       | 47,900 | The state of the s |         |                                   |
|-----------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|
| Month     | Turbidity | Alum   | Sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | Sludge by Seasons                 |
|           | (average) |        | kg/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kg/mon  | Dry Season Wet Season Annual (kg) |
| Jan       | 21        | 29     | 1,091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33,800  | 33,800                            |
| Feb       | 16        | 27     | 830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23,200  | 23,200                            |
| Mar       | 32        | 34     | 1,674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51,900  | 51,900                            |
| Apr       | 46        | 42     | 2,435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73,100  | 73,100                            |
| May       | 44        | 41     | 2,328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72,200  | 72,200                            |
| Jun       | 67        | 50     | 3,530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105,900 | 105,900                           |
| Jul       | 121       | 59     | 6,218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 192,800 | 192,800                           |
| Aug       | 114       | 58     | 5,871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 182,000 | 182,000                           |
| Sep       | 52        | 44     | 2,744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82,300  | 82,300                            |
| Oct       | 22        | 30     | 1,151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35,700  | 35,700                            |
| Nov       | 19        | 28     | 984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29,500  | 29,500                            |
| Dec       | 18        | 28     | 937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29,000  | 29,000                            |
| Ave/Total | 48        | 39     | 2,483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 911,400 | kg/year 203,100 708,300 911,400   |

# **Attached Table 1-2** Mass Balance

Maximum Turbidity of Canal Water: 1,000 NTU and Raw Water Storage Reservoir: 200 NTU

| Water & Wast               | re      | RW        | /SR          | Treatment         | Flow after        | Waste wa | ater/Sludge  | note                                  |                           |               |
|----------------------------|---------|-----------|--------------|-------------------|-------------------|----------|--------------|---------------------------------------|---------------------------|---------------|
| Water Stream               |         | Turbidity | Solid weight | Flow              | Treatment         | Flow     | Sokid weight |                                       |                           |               |
|                            |         | NTU       | mg/l         | m <sup>3</sup> /d | m <sup>3</sup> /d | $m^3/c$  | kg/d         |                                       |                           |               |
| Treatment Pr<br>Production | rocess  |           |              | 45,500            |                   |          |              |                                       |                           |               |
| Treatment Fl               | ow      | 200       | 200          |                   | 47,900            | 34       | •            | Loss of treatment (est<br>TSS/NTU = 1 | imated)<br>.0             | 59            |
| Sedimentation              | Inflow  | 200       | 200          | 47,900            |                   |          | 10,080       | Alum dosage 66, sludg                 | ge concent                | ration 0.85%  |
| Tank                       | Outflow |           |              |                   | 46,720            | 1,180    | )            | Loss of treatment                     |                           | 2.59          |
| Rapid                      | Inflow  | 9.2       | 5            | 46,720            |                   |          | 190          | Washing per Filter                    |                           | 190 m³/filter |
| Sand Filter                | Outflow |           | 1            |                   | 45,810            | 910      | )            | washing time                          | 4 filters/c               | 1 1.99        |
| Clear Water                | Inflow  |           | 1            | 45,810            |                   |          |              | treated water turbidity               |                           | 1 mg/l        |
| Resevoir                   | Outflow |           | 1            |                   | 45,620            | 190      | 50           | other loses 19                        | $90 \text{ m}^3/\text{d}$ | 0.409         |

注: Refer to analysis in "losses in treatment process" below for figures shown in the above table

Waste Water Treatment

|               |         | Turbidity | Solid weight | Treatment flow | flow after<br>treatment | Recycle<br>Water | Solid weight | note                               |           |
|---------------|---------|-----------|--------------|----------------|-------------------------|------------------|--------------|------------------------------------|-----------|
|               |         | NTU       | mg/l         | m3/d           | m3/d                    | m3/d             | kg/d         |                                    |           |
| Sludge Buffer | inflow  |           | 8,500        | 1,180          | -                       |                  | 10,080       | Sludge content 0.85                | %         |
| Tank          | outflow |           | 8,500        |                | 1,180                   |                  | 10,080       | Loss                               | 2.5%      |
| Sludge        | inflow  |           | 8,500        | 1,180          |                         |                  | 10,080       | Sludge content 0.85%               | ,         |
| Thickener     | outflow |           | 30,000       |                | 330                     |                  | 9,900        | outflow to sludge drying bed 3%    | 28.3%     |
|               | 1900c   |           | 210          |                | 850                     | 850              | 180          | supernatant water (sludge content) | 0.02%     |
| Sludge        | inflow  |           | 30,000       | 330            |                         |                  | 9,900        | 10 20                              |           |
| Drying Bed    | inflow  |           | 329,000      |                | 30                      |                  | 9,870        | Dewatered sludge (sludge content)  | 35%       |
|               |         |           | 100          |                | 300                     | 300              | 30           | supernatant water                  |           |
| Waste Water   | inflow  |           | 210          |                |                         | 850              | 180          | Inflow from sludge thickener       |           |
| Tank          |         |           | 100          |                |                         | 300              | 30           | Inflow from sludge drying bed      |           |
|               |         |           | 180          |                |                         | 1,150            | 210          | Total of supenatant water          |           |
|               | outflow |           | 180          |                |                         | 1,150            | 210          | Turbidity of recycle water 0.02%   | (200mg/l) |
|               |         |           |              |                |                         | 910              | 190          | from waste water tank              |           |
| Recycling     | inflow  |           | 1,150        |                |                         | 1,150            | 210          | from Recycling Sump                |           |
|               |         |           | 200          |                |                         | 45,840           | 9,170        | from Raw water                     | 4.5%      |
|               |         |           | 200          |                |                         | 47,900           | 9,570        | Total inflow                       |           |

| Clarifier: | Treatment capacity                   | 47,900 m3/d | Filter:   | Treatment capacity                    | 46,690 m3/d  |
|------------|--------------------------------------|-------------|-----------|---------------------------------------|--------------|
|            | Turbidity                            | 200 NTU     |           | No. of filter for wash                | 4 filters/d  |
|            | Alum Dosage (8% liquid Alum)         | 66 mg/l     |           | Filter area                           | 42.3 m2      |
|            | Solid                                | 10,320 kg/d |           | Washing rate & time                   |              |
|            | Sludge extraction                    |             |           | initial w/air                         | 0.25 x 2min  |
|            | Effluent to filter                   | 5 mg/l      |           | backwashing                           | 0.5 x 8min   |
|            | or 17,700 x 5/(350+80x0.234) =       | 236 kg/d    |           | Wahing waste water                    | 190 m3/filte |
|            |                                      | 3%          |           |                                       | 760 m3/d     |
|            | Sludge content                       | 1%          |           | Allowance                             | 20%          |
|            | Sludge volume                        | 1,010 m3/d  |           |                                       | 910 m3/d     |
|            | Allowance for design of              | 20%         |           | Loss of Backwash waste water          | 1.9%         |
|            |                                      | 1210 m3/d   |           | Solid content in backwash waste water |              |
|            | Loss of sludge extraction            | 2.5%        |           | Turbidity of filtered water           | 1 mg/l       |
|            |                                      |             |           | Solid                                 | 190 kg/d     |
|            |                                      |             |           | Solid content                         | 173 mg/l     |
| Clear Wa   | ter Reservoir                        |             |           |                                       |              |
|            | Sludge content of filtered water     | 1 mg/l      | Total los | s in treatment process                | 2,310 m3/s   |
|            | Minor water loss for plant operation | 0.4%        |           |                                       | 5%           |
|            | Loss of water                        | 190 m3/d    |           |                                       |              |

Attached Table 1-3a Volume of Sludge Buffer Tank

| Time | Inflow | Outflow | Balance | Cumulativ | e      |
|------|--------|---------|---------|-----------|--------|
|      |        |         |         | 150       |        |
| 1    |        | 50      | -50     | 100       |        |
| 2    |        | 50      | -50     | 50        |        |
| 3    |        | 50      | -50     | 0         |        |
| 4    | 300    | 50      | 250     | 250       | Sludge |
| 5    |        | 50      | -50     | 200       |        |
| 6    |        | 50      | -50     | 150       |        |
| 7    |        | 50      | -50     | 100       |        |
| 8    |        | 50      | -50     | 50        |        |
| 9    |        | 50      | -50     | 0         | A      |
| 10   | 300    | 50      | 250     | 250       | Sludge |
| 11   |        | 50      | -50     | 200       |        |
| 12   |        | 50      | -50     | 150       |        |
| 13   |        | 50      | -50     | 100       |        |
| 14   |        | 50      | -50     | 50        |        |
| 15   |        | 50      | -50     | 0         |        |
| 16   | 300    | 50      | 250     | 250       | Sludge |
| 17   |        | 50      | -50     | 200       |        |
| 18   |        | 50      | -50     | 150       |        |
| 19   |        | 50      | -50     | 100       |        |
| 20   |        | 50      | -50     | 50        |        |
| 21   |        | 50      | -50     | 0         |        |
| 22   | 300    | 50      | 250     | 250       | Sludge |
| 23   |        | 50      | -50     | 200       |        |
| 24   |        | 50      | -50     | 150       |        |
|      |        | 1,200   |         |           |        |

Volume of Sludge Holding Tank 250 m

Attached Table 1-3b Volume of Waste Water Tank

(filter wahing: 4 time/d, continuous inflow of supernatant)

| Time | Infdlow                 |        |              |       | Outflow | Balance | Cumulative |
|------|-------------------------|--------|--------------|-------|---------|---------|------------|
|      | Backwash<br>Waste Water | 10.770 | Spernatant 2 | Total |         |         | 228        |
| 1    |                         | 35     | 13           | 48    | 86      | -38     | 190        |
| 2    |                         | 35     | 13           | 48    | 86      | -38     | 152        |
| 3    |                         | 35     | 13           | 48    | 86      | -38     | 114        |
| 4    |                         | 35     | 13           | 48    | 86      | -38     | 76         |
| 5    |                         | 35     | 13           | 48    | 86      | -38     | 38         |
| 6    |                         | 35     | 13           | 48    | 86      | -38     | 0          |
| 7    | 228                     | 35     | 13           | 275   | 86      | 190     | 190        |
| 8    |                         | 35     | 13           | 48    | 86      | -38     | 152        |
| 9    |                         | 35     | 13           | 48    | 86      | -38     | 114        |
| 10   |                         | 35     | 13           | 48    | 86      | -38     | 76         |
| 11   | 228                     | 35     | 13           | 275   | 86      | 190     | 266        |
| 12   |                         | 35     | 13           | 48    | 86      | -38     | 228        |
| 13   |                         | 35     | 13           | 48    | 86      | -38     | 190        |
| 14   |                         | 35     | 13           | 48    | 86      | -38     | 152        |
| 15   | 228                     | 35     | 13           | 275   | 86      | 190     | 342        |
| 16   |                         | 35     | 13           | 48    | 86      | -38     | 304        |
| 17   |                         | 35     | 13           | 48    | 86      | -38     | 266        |
| 18   |                         | 35     | 13           | 48    | 86      | -38     | 228        |
| 19   | 228                     | 35     | 13           | 275   | 86      | 190     | 418        |
| 20   |                         | 35     | 13           | 48    | 86      | -38     | 380        |
| 21   |                         | 35     | 13           | 48    | 86      | -38     | 342        |
| 22   |                         | 35     | 13           | 48    | 86      | -38     | 304        |
| 23   |                         | 35     | 13           | 48    | 86      | -38     | 266        |
| 24   |                         | 35     | 13           | 48    | 86      | -38     | 228        |
|      | 910                     | 850    | 300          | 2,060 | 2,060   | -0      |            |

Volume of Waste Water Tank 418

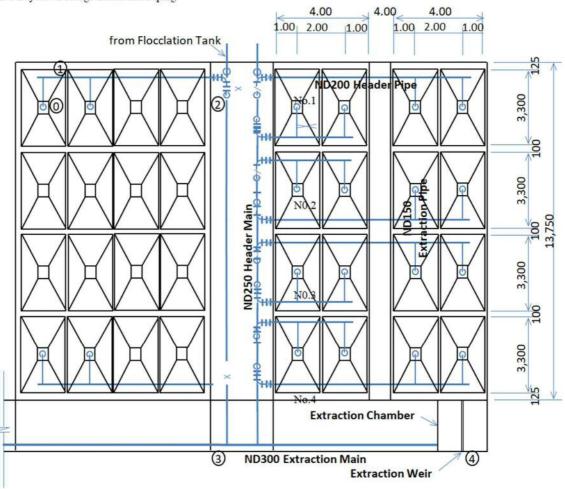
Backwash waste water and supernatant inflow

(refer to Attached Table 1-2 Mass balance)

backwash waste water 910 m3/d 4times/d

Supernatant 1 Sludge Thickener: 850 m3/d 24hours continuous Supernatant 2 Sludge Drying Bed: 300 m3/d 24hours continuous

# **Attachment 1-1** Sludge Extraction of Sedimentation Tank


#### 1 Sludge Volume

| Turbidity                    | Maximum 7               | Turbidity      |             | Annual Ave              | erage Turbid   | ity         |
|------------------------------|-------------------------|----------------|-------------|-------------------------|----------------|-------------|
|                              | Flow(m <sup>3</sup> /d) | Turbidity(NTU) | Sludge (kg) | Flow(m <sup>3</sup> /d) | Turbidity(NTU) | Sludge (kg) |
|                              | 47,900                  | 200            | 10,010      | 47,900                  | 45             | 2,300       |
| Flocculation Tank 5.0%       |                         |                | 501         |                         |                | 115         |
| Settling Tank 95.0%          |                         |                | 9,510       |                         |                | 2,185       |
| Sludge                       |                         |                |             |                         |                |             |
| Sludge content (extraction): |                         |                | 1%          |                         |                | 0.5%        |
| Sludge volume (m3/d)         |                         |                | 1,001       |                         |                | 437         |
| Flocculation Tank            |                         |                | 50          |                         |                | 22          |
| Settling Tank                |                         |                | 951         |                         |                | 415         |

note: It is assumed that 5% of sludge is settled in the Floccutation Tank and remaining of 95% is in the Settling Tank.

# 2 Sludge Extraction

# 2.1 Layout of Sludge Extraction Piping



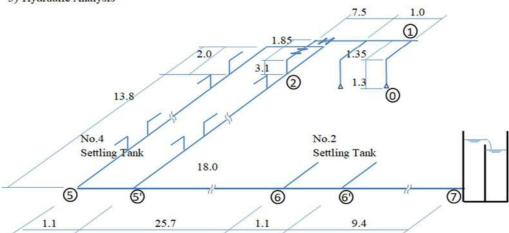
#### 2.2 Sludge Extraction

| Number of tank for Simultaneous Sludge Extraction          | 1 tank    |
|------------------------------------------------------------|-----------|
| Sludge Extraction per day                                  | 1 times/d |
| Interval of Sludge Extraction per Tank                     | 6 h       |
| per sludge hopper (simultaneous extraction from 2 hoppers) | 45 min    |

#### 2.3 Sludge Extraction Hydraulics

#### 1) Levels

Water level of Sedimentation Tank (ST) + 187.32 m


Overflow Weir Tip Level of Sludge Extraction Chamber (SEC) + 185.76 m

Level Deference Overflow height of weir 0.14 m
Water level of ST - Overflow height of SEC) 1.42 m

#### 2) Sludge Extraction Flow and Extraction Time

Sludge extraction flow per a hopper 35.1 l/s Sludge extraction time per two hopper2 ホッパー当たり 7.1 min per tank 1.5 h

#### 3) Hydraulic Analysis



(Max. Turbidity)

section 1 ~ 2: 
$$Q = q \text{ I/s}$$
 ND: 200 mm length-1: 1 m  
 $Q = 2q \text{ I/s}$  ND: 200 mm length-1: 12.45 m  
 $h2 = f1 \times 11/d \times v1^2/2g + (f2 \times 12/d + fy + 2 \times fb90 + fy + fbe) \times v2^2/2$ :

 $h2 = f1 \times 11/d \times v1^2/2g + (f2 \times 12/d + f\gamma + 2 \times fb90 + fv + fbe) \times v2^2/2g = 491.1 \text{ q}^2$ 

where, fl x l1/d = 0.15 f2 x l2/d = 1.91 f $\gamma$  = 0.87 fb90 = 0.3 fv = 0.3 (B.V) fbe = 0.99

| 0.074 D0: 150 D        |
|------------------------|
| = 0.874 Dβ: 150 Dγ: 20 |

 ${\bf 2}$  . Raw Water Quality and Chemical Dosage

## 2 Raw Water Quality and Chemical Dosage

# 2.1 Raw Water Quality

#### (1) Raw Water Quality Data

Existing old Jhal Khanuana water treatment plant (Old JK WTP: slow sand filtration plant) takes raw water from Rakh Branch Canal (RBC). High turbid raw water is reduced its turbidity in Raw Water Storage Reservoirs (RWSRs) for slow sand filtration. The planned rapid filtration plan will continues to intakes the same raw water source.

At the down stream of RBC, rapid sand filtration plant named New Jhal Kanuana Water Treatment Plant (New JK WTP) constructed under the financial aid of French Government is in operation using the same raw water. Water quality data from both water treatment plant, therefore available.

Important water quality parameters for plant design include water temperature, pH, turbidity, alkalinity. Inanition, water quality parameters of ammonium, iron and manganese are also required to grasp chlorine consumption.

Water quality Data of water temperature, pH and turbidity during  $2012 \sim 14$  period is available from Old JK WTP. And from New JK WTP, daily data is also available for the same water quality parameters during  $2016 \sim 18$  period. These data is presented in Attached Table 2-1 and 2-2.

Only limited water quality data is available for ammonium, iron and manganese. These water quality parameters are available from Master Plan Study as shown in Attached Table 2-3.

The present plan uses the existing RWSRs to reduce high turbidity of raw water for treatment. The effect of RWSR is able to estimate by comparing turbidities between raw water (canal water) and clarified water by RWSR. Data of Old JK WTP in 2012  $\sim$  14 show the reduction rate as 60  $\sim$  90% for raw water turbidity of 50 NTU or lower. For high turbidity raw water, the reduction rate is 80  $\sim$  90% against raw water turbidity of 50  $\sim$  500 NTU and very high rate of 96%  $\sim$  97% for raw water turbidity of 500  $\sim$  800 NTU. These data may indicate large detention time of RWSR affect the above high turbidity reduction rate. However, these data varied widely as shown in Attached Table 2-1.

In the second site survey, settling test was carried out to grasp the effect of RWSR reduction of high turbidity of raw water. The rest results are shown in attached table 2-4 and summarized as follows:

- Existing two RWSRs are available, each having detention time as 24 hours against planed treatment capacity of 47,900 m<sup>3</sup>/d.
- The test results show the following reduction of turbidity ranging 80 ~ 800 NTU and settling time.

| Turbidity    | NTU      | 800 | 600 | 400 | 190      | 80 |
|--------------|----------|-----|-----|-----|----------|----|
| Settling tim | e (hour) |     |     |     |          |    |
| 6            |          | 320 | 116 | 185 | 58       | 47 |
| 12           |          | 185 | 71  | 93  | <u>-</u> | -  |
| 24           |          | 76  | 41  | 63  | 16       | 24 |

 From the above test results, it is estimated that 90% of reduction rate for high turbid water of 500 NTU or more and 70% of reduction rate for turbidity of 100 NTU or less in 24 hours settling time.

Following reduction rate of raw water is estimated taking the settling efficiency of RWSR into account.

| Raw Water Turbidity (NTU) | < 50 | 100 | 150 | 250 | > 500 |
|---------------------------|------|-----|-----|-----|-------|
| Reduction Rate            | 60%  | 65% | 70% | 75% | 80%   |

The estimated turbidity reduced in RWSR for one year is presented in Attached Table 2-5 using annual data of turbidity in 2017/18 obtained from New JK WTP.

For other water quality parameters of alkalinity, ammonium, iron and manganese, the following test results are shown in below table (refer to attached table 2-3).

|                       |               | Water Quality Parameters |            |           |                  |
|-----------------------|---------------|--------------------------|------------|-----------|------------------|
| Data ource            | Water Source  | Alkalinity               | Iron       | manganese | Ammonium         |
|                       |               | mg/l                     | mg/l       | mg/l      | mg/l             |
| Panjab prvince (2009) | Cenab River*1 | -                        | 0.81       | 0.02      | -                |
| WSA-F (2013 ~ 16)     | RBC*2         | -                        | -          | -         | 0.3              |
|                       |               |                          |            |           | $(0.1 \sim 0.5)$ |
| ЛСА Теат (2016)       | Cenab River   | 110 ~ 133 0              | 0.18 ~ 0.3 | < 0.01    | < 0.01           |
| in Master Plan Study  | RBC*2         | 70 ~ 120 0               | 0.36 ~ 0.8 | < 0.01    | < 0.01           |

Note\*1: Water Source of RBC

## (2) Estimated Water Quality

Raw water of RBS is planned to be transfer to RWSR and water is treated using clarified water in RWSR. Turbidity of raw water will be therefore reduced significantly, on the other hand little change is expected for such water quality parameters as water temperature, pH, alkalinity, ammonium, iron and manganese. Reduction of turbidity will affect largely for chemical consumption for coagulation. On the other hand chlorine consumption will not be affected due to little change of ammonium, iron and manganese RWSR which affect chlorine consumption.

Future water quality is estimated for chemical application plan as shown in below table.

| Water Quality     |      | Future Plan (2038) |         |         |  |
|-------------------|------|--------------------|---------|---------|--|
| Parameter         | unit | Maximum            | Average | Minimum |  |
| Water temperature | °C   | 30                 | 33      | 11      |  |
| pН                | -    | 8.7                | 8.2     | 7.6     |  |
| Turbidity         | NTU  | 200                | 48      | 10      |  |
| Alkalinity        | mg/l | 120                | 90      | 70      |  |
| Ammonium          | mg/l | 0.05               | 0.03    | 0.01    |  |
| Iron              | mg/l | 0.8                | 0.5     | 0.3     |  |
| Manganese         | mg/l | 0.05               | 0.02    | 0.01    |  |

Note: Past water quality data (2017 ~ 2019) of RBC shows that high turbidities (more than 1000 NTU) occurs 1 ~ 5 times in July ~ August period, where the maximum turbidity was 1400 NTU. In design of water treatment, 1000 NTU is used as the maximum turbidity for consideration of economy.

<sup>\*2:</sup> Rakh Branch Canal figures in paresis show minimum~maximum