Section 3. Distribution System Adjustment

3.1 Importance of the Facility Plan Considered NRW 3-1

3.1 Importance of the Facility Plan Considered NRW

A reservoir not only controls the volume of water distribution, but also reduces water pressure in water pipes.

At many places, water is distributing through pipelines bypassing a reservoir to transmit water to high altitude or to prevent overflow of the reservoirs. The use of these bypass pipelines has led to the distribution of highly pressurised water, which has been a cause of leakage, in an intended water distribution area.

Water distributed through a pipeline that directly branches off from a transmission pipeline is highly pressurised and the distribution of such water has caused leakages. The review of the distribution block based on the re-development of reservoirs is needed for leakage reduction.

What is most important is to develop the distribution facilities in consideration for minimizing NRW from the beginning of the planning and design stage.

Section 4. Water Leakage Survey and Repair

4.1 Visible Leakage Survey (Passive Leakage Control) 4-1
4.2 Step Test for Leakage Survey 4-3
4.3 Invisible Leakage Survey 4-6
4.4 Leakage Detection 4-12
4.5 Leakage Data Analysis 4-17
Reference;
4.1 Flow Measurement R4-1
4.2 Leakage Sound R4-9
4.3 5YSP Monitoring Sheet
Leakage Report 5YSP
S7: Leakage Information System R4-12
S8: Inspection of Leak Repair R4-13
Leakage Record Sheet (Sample) R4-14

4.1 Visible Leakage Survey (Passive Leakage Control)

Passive leakage control is a procedure whereby water loss is tackled when leakage is visible or when problem is reported from the public.

1) Selection of the Survey Area and Review of Records in the Area

Make a review of all leak repair records of the survey area and their causes to clarify leak pattern and places where the leakage used to take place. Under normal conditions, visible leaks are usually found on the weakest points of pipelines like tees, bends, flanges, unions, valves, inlets and outlets of the structure (ex. meter chambers, tanks, reservoirs, pipe bridges, etc.), where unexpected land subsidence takes place.

2) Customer Survey

In the course of the customer survey undertaken for "Customer Meter Survey/ Customer Survey", visible leaks may be found on the customer connections, especially on stopcocks, meters and unions. When the leaks are found, the team for meter replacement shall gauge how much water are being lost per minute and shall repair them immediately for recording leak amount, their causes, water pressure, location, materials used, time spent for repair, any water losses during repair, etc.
4) Pipeline Survey

The survey team shall carry out pipeline survey by walking on foot along the pipelines located within the survey area. The team shall pay particular attention to those installed in the area of swamps and valleys where the normal routine work by WASAC used to lack full monitoring and maintenance.
5) Repair and Record

When leaks are found, the volume of water lost on that leakage shall be estimated. The team shall repair immediately and record them in a proper format as stated above. Procurement of materials, tools and equipment required for repair shall be under responsibility of the leader.
6) Inflow Measurement to the Area

After completion of the visible leak repair in the survey area, the team shall measure inflow rate to the survey area for continuing several weeks, preferably one month. The total inflow and water consumption by the customers will give NRW rate of the survey area.
7) Report

The leader shall report the outcome of their activities to NRW unit. (refer to Reporting sheet od 5YSP: Leakage Information System)

4.2 Step Test for Leakage Survey

I. Objectives

This step test is a part of process usually applied in advance to initiate NRW reduction in a survey area.

At the survey area divided into several subzones, portable flow meters shall be installed on all inlets and outlets.

Flow volume of each subzone can be obtained approximately by closing boundary valves step by step.

To obtain leakage volume of the subzones, it is appropriate to conduct the test during night time when water consumption falls minimum (minimum night flow: Qmnf).

Thus, the test is a kind of survey that provides information on priority areas for the NRW reduction activity.

At the selected prioritized subzones, the survey team initiate full-scale NRW reduction in terms of physical loss, that is not only invisible but also visible.

II. Preparatory Work

Major preparatory work shall include the following:

1) Review all data and drawings regarding pipeline network and customers (POC) information in the survey area.
2) Confirm location of the subzone boundaries.
3) If considered appropriate, conduct hydraulic isolation to confirm the survey boundaries and the hydraulic independence of the subzones.
4) Check the functional condition of the subzone boundary valves.
5) Provide valve if boundary valve is not existing.
6) Replace the boundary valve if it is in malfunction.
7) If boundary valve is not existing and it will be not provided, prepare the place to install of the ultrasonic flow meter at that place instead of the valve.

III. Survey Procedures

Sample procedures of the step test in Kadobogo are given as below.

1) The survey team will install portable (ultrasonic) flow meters on the inlet.
2) After ten-minutes measurement (or five minutes, depending on the local condition) by the Step Test, compute flow rate difference subzone by subzone.
3) Identify subzone with excessive flow rate
4) Conduct flow measurement and leak detection on the existing pipelines in that subzone with excessive flow rate
5) Find leakage of the ground surface on the existing pipelines and service connection
6) Continue the leak detection on the existing pipelines by excavating where required (underground invisible leak) as given on Procedures for Modified Step Test
7) Locate the leak point by GPS, measure leakage rate by buckets or measurement, identify causes of leak and take photos, when leak found
8) Repair the leaks, take photos and record quantity of tools, materials and manpower used for repair in the leak repair record sheet

Step test procedures Case 1

Using boundary valves and one ultrasonic flow meter

	Step Test Procedures	Measured Subzone
1	Install an ultrasonic flow meter at inlet flow meter chamber, at PM1 pilot area	
2	Start flow measurement at one minute interval during the following procedures	
3	Close boundary valves, V14 and V15	$1-4$
4	Close boundary valve V13 after a 10 minutes measurement	$1-3$
5	Close boundary valve V12 after a 10 minutes measurement	$1-2,1-1$
6	Close boundary valve V11 after a 10 minutes r measurement	
7	Confirm no water flow and open all valves	$1-1$
	Open boundary valve V11	$1-2$
	Open boundary valve V12 after a 10 minutes measurement	$1-3,1-4$
	Open boundary valve V13 after a 10 minutes measurement	
	Open boundary valve V14 and V15 after a 10 minutes measurement	
8	Record all data obtained	
9	Continue step test at PM2 and PM3 pilot areas	

Step test procedures Case 2

Using two ultrasonic flow meters instead of boundary valves

	Step Test Procedures	Measured Subzone
1	Install two ultrasonic flow meters at V15 and at V13 and measure	$1-3$
3	Replace a flow meter from V15 to V14 and measure	$1-4$
4	Replace a flow meter from V13 to V12 and measure	$1-2$
5	Replace a flow meter from V12 to Inlet and measure	$1-1$
6	Record all data obtained	
7	Continue step test at PM2 and PM3 pilot areas	

Reference; Minimum Night Flow Survey

The MNF is the lowest inflow in the DMA over 24 hours of the day, which occurs depending on consumption patterns but reportedly, between 00:00 and 04:00 a.m. when most of the customers are probably not consuming and the flow at this time is predominantly leakage.

Water losses on any given supply system increase over time due to infrastructure deterioration, meter under-reading/failure, non-authorized consumption etc.

To quantify and understand the level of water loss occurring on a supply network it is necessary to undertake a water balance or minimum night flow test. Daily demand levels on a network increase and decrease depending on the time of day but, generally speaking, levels of demand between the hours of 00:00 \& 04:00 am are at a minimum. It is therefore necessary to monitor and record flows during these hours to get a true representation of a network's level of water loss.

The following image is of a typical daily cycle of water consumption:

Flow Chart of Step Test

Qmnf Step Test Measurement 2

4.3 Invisible Leakage Survey

I. Objectives

Most water leaks occur in visible places such as underground or hidden place on the ground. It may take a few months before it rises up on the surface for you to see, or it is not rises up to the ground even if it passes at time.

Leaks in underground plumbing can be caused by many different factors, including age or driving over pipe with heavy trucks or equipment, poor initial installation, leaking joints or valves, or high pressure in the distribution water network.

Invisible leakage survey is for locating invisible leakage hardly detectable.
The step test is to determine priority areas for NRW reduction. At survey area divided into several subzones, NRW rate of each subzone can be computed from the water consumption and inflow rate obtained by closing boundary valves step by step.

Priority for NRW reduction can be given to the subzones with a larger NRW rate. At the selected prioritized zones, the survey team conducts more elaborate leakage survey and detection.

As far as visible leakage is concerned, it is easy to locate and repair them. Regarding invisible underground leakage, it is another issue. Leakage detection shall be conducted. And it requires some special technology and experience. Due to geographical condition where leak sounds are less detectable, it is, indeed, hardly possible to locate leak points. To cope with this issue, the step test focuses on pipelines (secondary and tertiary distribution mains), instead of subzones set up.

Portable flow meters, to be properly installed on the pipelines gives precious information on abnormal or excessive flow rate. Based on this information, probable leak points can be located within a short span length of several meters.

II. Preparatory Work

WASAC branch offices shall first select several patches of survey areas to conduct NRW reduction. This selection might be easy when the normal step test precedes the modified. To confirm appropriateness of the area, the staffs concerned shall carry out preparatory work, including the following;

- Collecting and making a review of all customer and pipeline data, diameter, pipe materials, year of installation, leak repair records and pipe rehabilitation in the survey
area, prepare pipeline sketch, a list of customers, POCs, and monthly water consumption
- Allocate average flow rate at each pipeline in advance from the consumption data of each POC
- Prepare work schedule, tools, logistic such as survey vehicles, equipment to be utilized in the survey.
- Organize a survey team which consists of five members

III. Survey Procedures

1) Branch technicians shall confirm customer POCs and pipeline drawings prepared above, by carrying out asset survey (pipe alignment, pipe materials, diameter, earth covering over the pipe, leaks, etc.) by closing inlet valves and/or conducting hydraulic isolation and by visiting all customers
2) Measure distance of the located pipeline from the property of permanent structure (bridge, electric pall, etc.) and update the sketch of the pipeline and customers as shown on Figure - Pipeline Sketch
3) The team shall determine proper spots of flow measurement to carry out the work efficiently, with a view to the pipeline length and location, number of customers, and volume of water flow
4) When considered necessary, inlet valves shall be installed (Note: additional installation of the ultrasonic portable flow meter, in most cases, will offset a lack of gate valves)
5) Make a review of and revise the work schedule based on the survey above
6) The team initiate the work, by installing ultrasonic flow meters on the proposed spots of the inlet and the branched mains
7) After ten-minute measurement, compute flow rate difference, based on flow rate measured
8) Continue flow rate measurement on the existing and the inlet main
9) Identify pipelines with excessive flow rate
10) Continue the flow rate measurement on the other mains and branches by excavation where required (invisible leak)
11)After locating the pipeline with excessive flow rate, excavate the most probable spot and locate leaks
11) Obtain X-Y coordinates of the leak points by GPS, measure leakage rate by buckets, identify causes of leak and take photos/video if found
13)Repair leaks, take photos and record quantity of tools, materials and manpower used for repair in the leak repair record sheet

Figure- Pipeline Sketch

Signs of underground leaks include:

- Unusually wet spots in landscaped areas and/or water pooling on the ground surface.
- An area that is green, mouldy, soft, or mossy surrounded by drier conditions.
- A notable drop in water pressure/flow volume.
- Heaving or cracking of paved areas.
- Sink holes or potholes.
- Unexplained sudden increase in water use, consistently high water use.

4.4 Leakage Detection

4.4.1 Acoustic leakage sound detection method

Most appropriate leakage detection methods for WASAC distribution network is "Acoustic Leakage Sound Detection Method". About water pipeline network system in Rwanda, distance between fittings of pipeline is long, therefore "Analysis of sound source method" is difficult to adopted.

Leak sound is propagated to the valve or water meter from the leak point. Accordingly, propagated sound at the fitting is identified as the leak sound by the acoustic survey devices. Leak sound is checked by the listening stick at the meter or valve. It is the loudest which is nearest to the leak point.
"Acoustic Bar" and "Electric Acoustic Bar" are used for point survey such as survey at valves, fire hydrants, and meters.

(1) Point Survey

Many leakages occur at service connections. Point survey can detect service pipe line and distribution line. Necessary procedure is as follows:

- Visit customer's house and inform the customer the purpose of leakage survey and get permission to get in the property and check meter and stop valve.
- Hear leak noise at customer's meter or stop valve using an acoustic bar or an electric acoustic bar.
- Shut a valve and hear the noise again when the leak noise is detected, if leak noise stops, leakage occurs after stop valve. If the leak noise continues, leak occurs before stop valve.
- At same time, to observe around the meter and confirm existence of illegal connection.
- When leakage is found, measure leakage volume using measuring devices and repair the leak.

(2) Line survey:

It is necessary to survey on the road for detecting leaks on distribution pipeline survey using a head phone type leak detector (ground microphone). Necessary procedure is as follows:

- Hear leak noise on the road using a leak detector.
- Walk along pipeline, stop and touch ground microphone on the surface of the ground
about 5 seconds and hear the noise at every step.
- When leak noise is detected, mark the point on the ground and write report about the place.
- After checking leaks by confirmation survey, measure leakage volume and repair leaks.

(3) Equipment

1) Acoustic Bar

An acoustic bar is the basic device used for the leak detection survey. An acoustic bar is a very simple device without electronic parts and maintenance for a long time. It is the most basic device for leak detection.

Listening stick consists of acoustic bar which is made of stainless steel or steel and head part which has a room and a vibration plate.

When listening stick is contacted to fittings, leak sound is propagated to the bar and amplified the sound by the vibration plate in the head part. There is no sound if there is no leak.

When a leak generates on the fitting, it has sounds like a "SHEE" or "HUEE". Surveyor should check the sound at all fittings, and if a strange sound is heard, mark it on the survey map. It is identified as a leak point by the confirmation survey.

Fig. 1 Structure of Acoustic Bar

Boring method
Even when leakage is found but it is difficult to pinpoint the place of the leakage. Boring method will identify exact place of leakage and improve burden of repairing work.

Fig. 3 Boring Method

2) Electric Acoustic Bar

Leak noise on non-metallic pipe is small with low frequency. It is difficult to distinguish for small sound. An Electric Acoustic Bar can amplify such a small sound and easy to distinguish through the head phone or sound level meter.

Acoustic survey using electric acoustic bar is to make contact to the valve or meter and check the sound and level meter. Fig. 5-19 shows nearest point from which leak a largest sound with 75other points further from the leak point has, the sound becomes smaller.

Leak surveyor can identify the rough leak point by the sound level.

Fig. 4 Electric Acoustic Bar

Fig. 5 Image of Sound Level Check

3) Headphone type Leak Detector (Ground Microphone)

Water leak detector is the representative device for the pinpoint method. It has a long history and has been used on the leak detection survey.

Fig. 6 shows the detection of the peak point on the

Fig. 6 Peak Point ground surface by the sensor of water leak detector. Generally, the leak point has loud sound, and headphone type leak detector can identify the peak point.

Water leak survey team should consist of at least two staff and separate each other. One staff walk along the main pipe and detect leakage, the other staff detect the leak on the service pipe. They keep a distance to avoid foot noise of each other. If a strange sound is heard, mark the place on the survey map.

Fig. 7 Headphone Type Leak Detector

Fig. 8 Image of Listening Leak Sound

(4) Drilling type vibration measurement method

This specification to be used for acoustic (sound) investigation is to drill seismometrics bar into the top of large size pipe and acquire leakage sound (dummy leakage sound) which transmit through pipe. This is called as drilling type vibration measurement method because seismometric bar is drilled into pipe.

The following system and equipment are used for drilling type vibration measurement method.

As shown in the figure below, different size of drilling holes was made every 1 m pitch. Then carefully contact the seismometric bar with pipe not to damage pipe and investigate existence of leakage by using leakage detection equipment.

4.4.2 Analysis of sound source method

- Correlated leak detection method

Install two detectors (extension) at both side of pipe and observe/evaluate waveform shape difference.

To confirm whether interrelated waveform available or not. And input data of number of model pipeline, length (actual length), sound wave velocity, pipe material and diameter of pipe. Based on data, calculation
 will start. From leakage points, distance will show in the screen.

Sound-level meter

Install censer roger at fire hydrants, gate valves and water meters and record (memorize) the sound level in the measuring time. Analyze the data in three dimensions by special software. Based on the three-dimension figure, Judge whether abnormal sound is found or any leakage from pipe line.

- Multipoint correlation method

Logger type correlation leakage detector with non-wireless type.

4.5 Leakage Data Analysis

Whenever leak repair was conducted the related data shall be reported. Using those data, we can identify the main cause of the leakage and take countermeasures.

1) Necessary data for leak point should be:

- Date
- Pipe diameter
- Pipe material
- Pipe category
- Leak point (for example: joint, fittings.....etc)
- Cause of leak
- Location (geographical coordinate: x and y)
- Administrative location (Cellule and village)
- Reported time
- Closed time
- Volume of lost water
- Materials used for repair

Example of leakage information format of 5YSP

[The format of leakage information]

DWASAC																																						
Leakage Information System																																						
Branch Kachru																																						
Period April 2018																																						
ω_{0}^{∞}	Oze	\mid	$\begin{array}{\|l\|} \hline \text { Pbe } \\ \text { Mesta } \\ \hline \end{array}$	Ppe aligory	Lexix zee pore	Casse ctine rax	Location geographiccoordinates)		$\begin{array}{\|c\|} \hline \text { Location } \\ \text { Admin } \\ \text { (Cel and Village) } \end{array}$			$\begin{gathered} \text { coskg } \\ \text { Hemem } \\ \hline \text { H\| } \\ \hline \end{gathered}$				Teepenng	$\begin{array}{\|c\|} \hline \text { Response } \\ \text { time } \\ \hline \end{array}$	Losw water		Natrausen	$\left.\right\|^{\text {Repopreq }}$	Commentray																
-																																						
-																																						
\square																																						
-																																						
\square																																						

2) Analysis of Leakage

Analyzing leakage information data through (Example: GIS, excel Pivot table) we can identify the flowing issues:

- Identify the location of leakage point on the Map.
- Assist to determine priority area to be taken reduction measures of NRW by knowing the frequent occurrence position of leakage.
- Which pipe material has the biggest problem
- Which part of the network has leakage?
- What is the main causes of leakage?
- etc.

Result of the analysis of leakage data can be utilized for following activities to make more surely:

- Pressure control by installation of PRV or Construct BPT
- Network rehabilitation (replacement of pipeline)
- Project evaluation

Distribution \& Service Pipe Replacement

Fig. 1 Plotting of the Leakage Repair Point

Trend in number of Leakage Repair

Kadobogo Pilot Atea
Leakage Repair Nember

Msam	PM1	PM2	PM3	Tonal
Ang-17	1	1	4	6
5ep-17	5	4	4	13
O6-17	13	1	3	14
Nov-17	13	1	3	20
Dec-17	6	2	1	9
Jan-15	5	3	4	12
Feb-18	6	1	0	9
Mas-13	3	1	7	11
Agr-18	5	5	1	17
May-18	2	1	2	5
Jan-18	2	2	1	6
Jut 18	2	0	3	5
Aunc-18	16	0	2	18
Sep-18	5	9	1	6
Oet-18	7	0	0	7
Nos-18	6	9	0	6
Dec-18	5	0	0	5
Jan-19	4	0	1	5
Feb-19	3	0	1	4
Mas-19	Nodar	So dar	Nodatz	0
tase 19	2	0	0	2
May-19	2	0	0	2
Jat 19	1	0	0	1
Jarl9	0	0	\pm	2
Aung 19	3	0	0	3
5ep-19	2	1	1	3
Texal	116	± 5	4	180
Avonge	4.5	1.3	18	73

Fig. 2 Plotting of the Leakage Repair Point

Ruyenai Pilot Arva

Leakage Repair Number (10 months)

Tarm	RY1	RY2	RY3
Before PRV installation			
	200	28	28
Dec-18~Seß-19	173	22	36
After PRV installation			

Leakage Repair Number per Month

Year	RY1	RY2	RY3	Total
2017	21.7	2.2	1.2	28.8
2018	21.9	2.8	3.2	27.8
2019	16.9	2.1	3.0	22.0

Fig. 3 Plotting of the Leakage Repair Point

m3/place	
Place	Volume/Place
8,683	25
2,916	41
915	65
845	71
1,261	112
305	159
692	229
440	342
120	442
31	554
92	723
90	1,130
6	1,431
14	1,766
7	2,216
7	2,804
1	4,522
0	0
0	0
16,425	77
1,267,381	
77	

 | 65 | Rate m3/Place |
| :--- | :--- | :--- |

そ	January	February	March	April	May	June	July	TOTAL
25	23,986	42,814	21,919	20,806	44,686	44,404	20,700	219,315
32	10,505	21,588	14,093	12,646	24,134	23,729	12,415	119,110
40	5,652	10,309	6,556	5,562	13,565	11,485	5,923	59,052
50	8,125	8,761	8,831	9,185	9,467	6,924	8,407	59,699
63	20,302	25,125	20,077	21,087	19,180	17,385	18,283	141,439
75	6,835	6,676	5,882	8,584	5,246	9,379	5,882	48,484
90	24,951	27,240	19,686	20,830	27,469	20,602	17,626	158,403
110	19,491	25,988	23,252	21,885	19,491	20,517	19,833	150,456
125	8,390	7,948	8,390	9,273	7,948	3,091	7,948	52,988
140	2,769	2,216	554	1,108	9,416	554	554	17,171
160	13,022	9,405	7,958	10,852	9,405	7,958	7,958	66,558
200	14,695	11,304	19,217	9,043	15,826	12,434	19,217	101,736
225	0	4,292	0	2,861	0	1,431	0	8,584
250	0	3,533	0	3,533	10,598	7,065	0	24,728
280	0	2,216	0	4,431	4,431	4,431	0	15,509
315	8,412	5,608	0	0	2,804	2,804	0	19,629
400	0	0	0	0	4,522	0	0	4,522
500	0	0	0	0	0	0	0	0
600	0	0	0	0	0	0	0	0
Total Loss	167,135	215,021	156,415	161,685	228,187	194,192	144,745	1,267,381
Supply	3647942	3,265,264	3,582,770	3,560,437		3,260,627		
Loss\%	4.6\%	6.6\%	4.4\%	4.5\%	\#DIV/0!	6.0\%	\#DIV/0!	\#DIV/0!

Flow rate : $2 \mathrm{~m} / \mathrm{sec}$
Time from leak occurrence to repair completion: 5 hours Water unit price: $565 \mathrm{Rwf} / \mathrm{m} 3$
Leakage volume $=$ Area X Verosity $(2 \mathrm{~m} / \mathrm{s})$ X 5 hours

Reference 4.1 Flow Measurement

Handling and attention to use Ultrasonic Flow Meter and Electromagnetic Flow Meter

(1) Principle of Ultrasonic Flow Meter measurement

Ultrasonic flow meter comprises of time difference of the transmit method, time difference by inverse number method, sing-around measurement method and Doppler method.

Each method has its own characteristics. In this chapter, the project explains the most popular method of time difference by inverse number method (frequency difference method).

Transducer (ultrasonic censor) should be installed at

Fig -1 Principle of Measurement a certain location of pipe and receive ultrasonic wave.
When there is no flow, time to take from upstream A to downstream, "Tab" will be equal to time from downstream B to upstream A, "Tba". When there is flow, ultrasonic wave flow from A to B will be forward direction with follow wind. Thus, speed of transmit of ultrasonic wave will be faster comparing with there is no flow. On the contrary, speed of transmit from B to A will become slower than speed no water flowing against that water is flowing.
(2) Method of installation of Sensors (V, Z, W, others)

1) V method

This method is also called reflect mode. It is advisable to install by this mode method because installation of transducer is easy.

And when a transducer cannot be installed at opposite side, a transducer can be easily installed at same side to another one.

Fig-2 Setting by V Method

2) Z method

This method is also called direct mode. Route of ultrasonic wave can be shortened and used for transmitting of wave is not good for pipe and /or fluid to measure flows.

When material of pipe is plastic, transmit of wave will be attenuated. In this case, it is advisable to use direct method to measure flow.

In addition to this, reflect mode needs two times of pipe length comparing with direct mode. When straight pipe is not enough, direct mode method is recommended to be installed.

Z Method
Fig-3 Setting by Z Method

3) W method

There are some flow meters which V method is superimposed to measure flow. This is called W method.

4) Inside welding method

Accuracy to measure only flow inside of pipe will be

Fig-4 Setting by W Method increased outstandingly. Censor is installed inside of pipe from the beginning to apply the welding method for large size transmission and distribution pipes.

(3) Characteristics of ultrasonic flow meter

1) There is no obstacles inside of pipe

There are no materials to disturb flow inside pipe. Therefore, the following strong points will be available.

- Head loss will be zero, but head loss will be occurred for small size pipe due to bindings.
- Structure is simple, and trouble is seldom developed.

2) Pipe inside is clean

When transmitter/receiver are installed at outside of pipe, flow measuring pipe inside is completely contactless with any devices.

3) No influence by density and viscosity of flow

Signal of flow will be proportional to volume of the flow but not influenced by density and viscosity of the fluid in principle.

4) Wide range of measuring flow

Full scale flow of the ultrasonic flow meter can be adjusted freely at the converter side. Signal of the flow will be appeared at nearly zero pint and wide range of flow can be measured by one ultrasonic flow meter. Wide range of ultrasonic flow meters have been made for diameter of several meters in large size and 4 mm in small size.

5) High accuracy

It is said that accuracy of the wetted type ultrasonic flow meter is 1 to 2% for full scale meter but now accuracy is 0.5% of the indicated value due to the technological development.

6) Quick response

Ultrasonic flow meter can be adjusted against variation of flow quickly because mass and thermal capacity are not involved. It is also able to adjust pulsatile flow.

7) Possible to measure for opposite direction flow

Structure of upstream and downstream is symmetrical and can be measured for the opposite flow.

8) Others

- Cost is constant for large size meter.
- Contactless completely with fluid
- Repairing work can be made without interrupting flow.

However, error factor to estimate thickness of pipe and refraction of ultrasonic wave will increase. Thus, accuracy of the measurement at full scale will be 2 to 3%.
(4) Attention points to measure by ultrasonic flowmeter

Position of installation of sensor will be greatly influenced to accuracy of measuring. The following conditions must be kept to measure.

1) Need straight pipe

Ultrasonic flow meter needs straight pipe at the upstream 10 times of diameter and downstream 5 times of diameter pipe. Longer straight pipe will be necessary under some pipe line conditions (when lateral line is increased, straight pipe length be decreased but cost will increase).

2) Air bubble

Air bubble in the fluid will block the flow of ultrasonic wave. Only small amount of air bubble will stop operation of ultrasonic flowmeter and this is the most outstanding week point. However, recently new ultrasonic flowmeter is made by devising signal processing against air bubble which is less influenced to measure the flow.

3) Outer diameter of serial pipes to be measured

Outer diameter of pipe is same even different pressure-resistance pipe such as 16 bar and 10bar. Thickness of pipe wall is different. For example, PVC DN160mm 16bar is 12.94 mm and 10 bar is 9.03 mm .

Sometimes, different pressure-resistance pipes are installed on a same pipeline. Without measurement of pipe wall thickness, if setting parameter are same, measurement result becomes error. Because sound speed on PVC and water are much different.

For example, measured value on DN160mm PVC 16bar pipe is around 80m3. Measured value on DN160mm PVC 10bar pipe same parameter of 16 bar becomes around 70 m 3 . Lesson learned above experience are as follows:

- Sometimes different thickness of pipes is used on same pipeline.
- Measure pipe wall thickness every time.
- Think outside the box.

Table-1 Attention Point for Setting of Ultrasonic Flow Meter

Position	Install at downstream of fittings	Install at upstream of fittings
90° bend		
T-shaped pipe		

Reducer

Avoid pipeline which fluid will not be full flow

Fig-5 Possible Non-Water Filled Point

- Install Sensors in $\pm 45^{\circ}$ of horizontal line to avoid accumulated air and sediments

Fig-6 Setting Position of Sensors

- Avoid welded part and joint

Fig-7 Setting Position of Sensors avoid Welded Part
(5) Installation points of Electromagnetic Flow Meter

- No water filled

Fig-8 Non-Water filed Part

- Not approved appearance dead air space

Fig-9 Dead Air Space

- Pay attention to install near water tank

Fig-11 Sediments in the Pipe

- Sediments in the pipe
- Installation Position to Valves

Fig-12 Correction of Installation Position

- Necessary Distance to Valves

Incase of All type of full open valve (incase of full open gate vale does not need distance)

Fig-13 Necessary Distance

- Approve close related use of sluice valve

Incase of controlling valve such as ball valve, butterfly valve etc.

Fig-14 Necessary Distance to Controlling Valve

- Necessary Distance to Bend and Joint Flow

Fig-15 Bend and Joint Flow

- Avoid Electric Magnetic Noise

Fi -16 Electric Magnetic Noise

Reference 4．2 Leakage Sound

（1）Occurrence of leakage sound

Leakage sound will find out when pipeline is damaged and sound will occur from a hole where pressured water leaked outside and make noise．

Characteristic of leakage sound is distributed ranging from low（below 0.1 kHz ）to high sound （above 1.0 kHz ）．It is within the range of 0.5 kHz to 2.0 kHz which human being can easily hear．

（2）Variation of leakage sound with environment

1）There is no same leakage sound
The different leakage sound will occur due to different size／dimension of damaged part， different pipe material／quality，different installation conditions，and different pressure conditions．

2）Change of leakage sound due to time passing
Leakage sound will be changed by water pressure change when customer use water．It will change with time passing．The low pressure makes low sound and the high pressure makes the sound louder．

3）Change of leakage sound due to velocity of spouted water
The faster velocity makes the higher sound，and the slower velocity make the lower sound．Where size of damaged part is small，high leakage sound will occur．On the other hand，where size of damaged part is large，low leakage sound will occur．

4）Leakage sound will change according to condition of surroundings
Leakage sound will change according to the depth of pipe laying and earth pressure against pipe will affect volume of spouted water．And sound of spherical shaped wave near the damaged part and sound of plane shaped wave distant from damaged part will transmit．

（3）Transmitting leakage sound

1）Location of transmitting leakage sound
Leakage sound will transmit at rate of speed around 「approximately $1,400 \mathrm{~m} / \mathrm{sec} 」$ in the soil ，「approximately $250 \sim 700 \mathrm{~m} / \mathrm{sec}$ 」 in the sandy soil and \lceil approximately $1,000 \mathrm{~m} / \mathrm{sec} \sim 2,000 \mathrm{~m} / \mathrm{sec}\rfloor$ in the loamy layer．

Speed of transmitting will vary according to pipe material and diameter and transmitting leakage sound will also vary depending on pipe material and diameter.
2) Leakage sound transmitting for composite pipe, metal and nonmetal pipes

Transmitting speed will vary according to the junctions of pipe material and diameter. It is because elastic modulus will change depending on pipe material and diameter.

Transmitting speed of leakage sound for nonmetal pipe is slower than that of metal pipe and distance is also shorter due to different elastic modulus.
Note:
Elastic modulus is explained that when stress is added to the uniform elastic body, proportionally distortion will occur. Proportional constant in the formula is called elastic modulus and nonmetal pipe's elastic modulus is bigger than that of metal pipe.
3) Frequency wave and attenuation of leakage sound

When scale layer sticking inside of pipe, transmitting speed will vary according to formation of scale layer. And the more the scale layer formed, the slower the speed.

Leakage sound will vary the place where we hear the sound and distance from source of sound. Various leakage sounds such as high sound (low frequency wave), middle sound and low sound (high frequency wave) will occur at the leakage point.
Only low sound will be heard where high sound will be attenuated at the higher place than leakage location.

When leakage sound travels long distance, high sound of leakage will be attenuated and disappear in the middle of distance.

On the contrary, rate of attenuated for low sound is rather little and travel up to far place. When we hear low leakage sound, location of leakage place is rather far from the place where hearing sound in general, even though. It is defined as echo of leakage sound as imaging technical terms.

Table Factor of Leakage Sound

Leakage Sound	Low sound (Low frequency zone)	High sound (High frequency zone)
Diameter	Small	Large
Material	Ductile iron pipe, Steel pipe, Asbestos cement pipe, Lead pipe, Stainless pipe	Polyethylene pipe, Vinyl pipe
Aged year	New pipe (no scale layer and corrosion)	Old pipe (many scale layer and corrosion)
Joint	Welding, Lead joint	Rubber joint
Transmitting distance	Far	Short

（4）Acoustic sound listening method and other leakage detection method

Leakage detection method by audible sound listening method

1）Leakage detection method by audible listening is to estimate leakage availability，condition and location which will occur from the damaged pipe and listening at exposed meters，appurtenances and listening at the surface of road and detecting leakage．

2）Outline of leakage and tone quality
Audible range of frequency zone of leakage sound detected by leakage detection equipment at present is classified as three categories of $\lceil 0.2 \sim 5 \mathrm{kHz}\rfloor$ ，「less than Hz\lrcorner and $「$ low sound（below 0.5 KHz ）」 as shown in Outline of leakage and the table below．

Item	High sound	Middle sound	Low sound
Frequency zone	Above1．0kHz	$0.5 \sim 1.0 \mathrm{kHz}$	Under 0.5 kHz
Size of leakage	Small	big	Very big
Dimension leakage hole	Complicated	Simple	Simple
Flow in leakage hole	Very fast	Slow	Very slow
Diameter of pipe	Small diameter	Middle diameter	Large diameter
Material of pipe	Steel pipe and stainless pipe	Ductile iron pipe，asbestos cement pipe， polyethylene pipe and vinyl pipe	
Distance	Near	Far	Very far
Water pressure	High	Low	Very low

Leakage Information System

∞

Section 5. Replacement of Pipe Network

5.1 Necessity of Pipe Network Replacement 5-1
5.2 Procedure of the Replacement Work 5-1
5.3 Example of the Pipe Network Replacement in Kadobogo 5-2
5.4 Improvement of the Present Pipe Installation Work 5-34
5.5 Service Pipe Connection 5-49
Reference;
5.1 Standardization of Piping Work R5-1
5.2 Guideline of pipe laying R5-10
5.3 Safety Management R5-38
5.4 Calculation Method of Thrust Block R5-44
5.5 Catalogue of Pipe Drilling Machine- R5-61

Section 5. Replacement of Pipe Network

5.1 Necessity of Pipe Network Replacement

It is recognized that real cause of leakage is pipe network itself, when much leakage is still existing after high water pressure was controlled and partial leak repairs were repeated. In such a case it is required that whole distribution pipe network including service pipes in the identified area having leakage problem is replaced.

5.2 Procedure of the replacement work

Work procedure is as follows;

1) Preparation of general work schedule

- Selection of the problem area
- Survey of the existing pipe network condition
- Design for proposed pipe network
- Procurement of the equipment and materials
- Installation work of the equipment and materials
- Effect evaluation of replacement work

2) Selection of the problem area

- Selection of the specific area which has serious leakage problem in the distribution network, based on the information such as result of Qmnf measurement, leakage repair record, plotting map of leakage history and knowledge of the branch office staffs.
- Identify the lines which have repetition of the leaks and has substandard materials.

3) Survey of the existing pipe network condition

- Clarify existing pipeline route (XY Coordinate), length, material, class, diameter
- Confirm the location of existing valves and its functional condition
- Clarify the number of connections to be replaced
- Making customer list supplied by pipe line (POC list)
- Approval of the customers
- Proposal on additional equipment such as stop valve

4) Design for proposed pipe network

- Design of new piping diagram (location, material, class, diameter, length) in line with Pipe Standard of WASAC
- Propose additional valve installation
- Protection at the road crossing
- Concrete thrust block
- Bill of Quantity of the pipe to be replaced (Pipes, Fittings, Accessories, Valve) and replacement work
- Cost estimation of the Material and the Construction (Removal, Installation)

5) Procurement of the equipment and materials

- Procurement schedule and replacement schedule
- Implementation of the procurement work

6) Installation work and effect evaluation

- Preparation of detail work schedule
- Qmnf measurement before replacement work
- Installation of pipes and additional equipment such as stop valve
- Supervisory work of the installation on Quality, Progress and Safety Management
- Finished dimension measurement, Pressure Test
- Photo record
- Qmnf measurement after replacement work

7) Reporting

- Preparation of As-build Drawing
- Preparation of Work Report (Contents of the Work, Test result, Photo)
- Updating GIS Data

5.3 Example of the Pipe Network Replacement in Kadobogo

As an example of pipe replacement work, the case which was conducted in Kadobogo is shown next page.
"Dignifying Life"

Kigali,
N ${ }^{0} 11.07 .024 /$ /icherf/18/DUWSS -WASAC/jb

Ms. Izumi SHOII

Leader
JICA Monitoring Mission Team
Japan

Dear Madam,

RE: SUBMISSION OF THE PLAN TO REPLACE THE SERVICE PIPES IN KADOBOGO

Reference made to the Minutes of Meeting between JICA monitoring mission team and CEO, WASAC signed on 28 ${ }^{\text {th }}$ Aug. 2018.
According to 3-3. Eliminate Obstacle Factors in the Minutes of Meeting, we are pleased to submit the plan to replace the service pipes in kadobogo as attached

I thank you for your usual cooperation

Yours sincerely,

Mr. Méthode RUTAGUNGIRA

Project Director \&

Director of UWSS, WASAC
The Republic of Rwanda

Cc: JICA Rwanda

[^0]"Dignifying Life"
BILL OF QUANTITY FOR SERVICE PIPE REPLACEMENT IN KADOBOGO.

Part I. PM1 (Sub-zone 1-3)

"Dignifying Life"

BILL OF QUANTITY FOR SERVICE PIPE REPLACEMENT IN KADOBOGO.

Part I. PM1 (Sub-zone 1-4)

N°	DESCRIPTION	UNIT	Qty	Unit price	Total price(Rwf)
1	SUPPLY AND LAYING OF PIPES				
1	The following prices include :				
2	Earthwork by excavation and backfilling				
3	Excavation and backfilling in loose ground up to 0.60 m depth average, including all accruals.	Im	512.00	1,000	512,000
	SUBTOTAL I				512,000
II	Supply pipes of;				
1	PVC (Ganga type) pipes ND32 NP 16	Pcs	65.00	18,000	1,170,000
2	PVC (Ganga type) pipes ND25 NP 16	Pcs	41	12,000	492,000
	Sub -Total				1,662,000
V	ACCESSORIES AND FITTINGS				
1	Screwed clamp for pvc 63*1" NP 16 (type DI)	Pcs	6	18,600	111,600
2	Screwed clamp for pvc 63*3/4" NP 16 (type DI)	Pcs	4	14,700	58,800
3	Nipple I' galvanized NP 16	Pcs	21	2,000	42,000
4	Nipple 3/4" galvanized NP 16	Pcs	42	1,500	63,000
5	Union I" galvanized NP 16	Pcs	25	2,500	62,500
6	Union 3/4" galvanized NP 16	Pcs	29	1,800	52,200
7	Galvanized reducer I' * $3 / 4^{\prime \prime}$	Pcs	25	1,500	37,500
8	Galvanized end cup 3/4" NP 16	Pcs	8	1,500	12,000
9	ball valve I" NP 16	Pcs	9	12,000	108,000
10	ball valve 3/4" NP 16	Pcs	32	10,000	320,000
11	Galvanized Tee I" NP 16	Pcs	23	1,500	34,500
12	Galvanized Tee 3/4" NP 16	Pcs	2	1,200	2,400
13	Galvanized elbow (90°) I' NP 16	Pcs	2	1,500	3,000
14	Galvanized elbow (90°) 3/4" NP 16	Pcs	12	1,200	14,400
15	Galvanized Socket I" NP 16	Pcs	67	1,500	100,500
16	Galvanized Socket 3/4" NP 16	Pcs	35	1,200	42,000
17	Teflon	Pcs	80	450	36,000
	Sub -Total				1,100,400
	Grand Total				3,274,400

${ }^{\circ}$	DESCRIPTION	UNIT	Qty	Unit price	Total price(Rwf)
v	CIVIL WORKS				
1	Demolition of cement pavement, parking area paved and hardcore pavement (road)	Lump Sum	1		-
	MATERIAL NEEDED FOR REPAIRING THOSE DIFFERENTS AREAS				
1	Fine sand	Truck	1	80,000	80,000
2	Gravel sand	Truck	I	70,000	70,000
3	Cement	Bag	12	15,000	180,000
4	Water	Lump Sum	1	20,000	20,000
	LABOR				
8	Masons	Num	6/day		
9	Manpower	Num	12/day		
	Sub -Total				
	Total				350,000
	GRAND TOTAL(1-3 +1-4 + Civil Works)				4,612,550

Total Amount: Four millions Six Hundreds Twelve, Five
Hundreds and Fifty Rwandan Francs

The Project for Strengthening NRW Water Management in Kigali City Water Network
Schedule of Implementation for
the Service Pipe Replacement in Kadobogo Pilot Area 1 (PM1)

No	Work Item	Sep-18	Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19
1	Proposal of actual plan to replace the service pipes							
2	JICA Evaluation and Approval							
3	Budget allocation							
4	Preparation of Procurement of the materials							
5	 6 Procurement of the materials rate 7 Preparation of replacement implementation plan 8 Installation of the materials (Replacement work) 9 Measurement of water loss/ NRW rate (Evaluation of the effect)							

dew ruozqns osoqopey

Figure- Pipeline to be Replaced in S

Details of Pipeline Replacement

Subzone1-3
(1)

Legend:

- HDPE pipeline to be replaced (1inch)
—— HDPE pipeline to be replaced ($3 / 4 \mathrm{inch}$)

Subzone1-4

(3)
(4)

63 mm PVC

zones 1-3 \& 1-4, PM1Area, Kadobogo

No.	point_of_c	X	Y	Diameter	User Category
Subzone 1-3					
1	203519484	-1.913818	30.081224	3/4"	Domestic Use
2	204711464	-1.914030	30.080926	3/4"	Domestic Use
3	203519308	-1.913934	30.080884	3/4"	Domestic Use
4	204713516	-1.913749	30.081082	3/4"	Domestic Use
5	203519109	-1.913822	30.080739	3/4"	Domestic Use
6	203519235	-1.914299	30.080100	3/4"	Domestic Use
7	204710097	-1.914014	30.080647	3/4"	Domestic Use
8	203519908	-1.914236	30.080974	3/4"	Domestic Use
9	204712302	-1.914799	30.080359	3/4"	Domestic Use
10	203512623	-1.914710	30.079926	3/4"	Domestic Use
11	203512621	-1.914689	30.080530	3/4"	Domestic Use
12	203512615	-1.914504	30.080171	3/4"	Domestic Use
13	203512622	-1.914330	30.080231	3/4"	Domestic Use
14	204713984	-1.914364	30.080473	3/4"	Domestic Use
15	203512626	-1.914555	30.080618	3/4"	Domestic Use
16	204713353	-1.914649	30.080573	3/4"	Domestic Use
17	203512785	-1.914946	30.080050	3/4"	Domestic Use
18	203519910	-1.914162	30.080882	3/4"	Domestic Use
19	203519976	-1.914110	30.081028	3/4"	Domestic Use
20	203519461	-1.913825	30.081058	3/4"	Domestic Use
21	204711433	-1.913996	30.080873	3/4"	Domestic Use
22	204713746	-1.914931	30.079971	3/4"	Domestic Use
23	204711315	-1.914439	30.080408	3/4"	Domestic Use
24	204715143	-1.915035	30.080135	3/4"	Domestic Use
25	204715126	-1.914685	30.080405	3/4"	Domestic Use
Subzone 1-4					
1	204712824	-1.915377	30.080824	3/4"	Domestic Use
2	202217730	-1.916548	30.081495	3/4"	Domestic Use
3	204710551	-1.915004	30.080785	3/4"	Domestic Use
4	202219000	-1.916433	30.079428	3/4"	Domestic Use
5	204710828	-1.915617	30.080047	3/4"	Domestic Use
6	203514752	-1.915730	30.079172	3/4"	Domestic Use
7	202219013	-1.916455	30.079102	3/4"	Domestic Use
8	203514749	-1.916374	30.078901	3/4"	Domestic Use
9	202219319	-1.916739	30.079569	3/4"	Domestic Use
10	203511082	-1.916813	30.079589	3/4"	Domestic Use
11	204711201	-1.917056	30.079634	3/4"	Domestic Use

No.	point_of_c	X	Y	Diameter	User Category
12	202219018	-1.916641	30.079462	3/4"	Domestic Use
13	202219436	-1.916918	30.079247	3/4"	Domestic Use
14	203514503	-1.917248	30.078856	3/4"	Domestic Use
15	204711523	-1.916151	30.079467	3/4"	Domestic Use
16	202219736	-1.915886	30.079318	3/4"	Domestic Use
17	203519478	-1.916017	30.079401	3/4"	Domestic Use
18	204710096	-1.915989	30.079177	3/4"	Domestic Use
19	204715022	-1.916267	30.079093	3/4"	Domestic Use
20	204710148	-1.916529	30.079034	3/4"	Domestic Use
21	204714032	-1.916502	30.079000	3/4"	Domestic Use
22	203519644	-1.917200	30.079380	3/4"	Domestic Use
23	203511905	-1.917293	30.079147	3/4"	Domestic Use
24	203511650	-1.917118	30.078984	3/4"	Domestic Use
25	204710326	-1.917042	30.078975	3/4"	Domestic Use
26	203514411	-1.916958	30.079137	3/4"	Domestic Use
27	204712388	-1.916884	30.079084	3/4"	Domestic Use
28	202219046	-1.916699	30.078940	3/4"	Domestic Use
29	202219066	-1.916734	30.078744	3/4"	Domestic Use
30	203519579	-1.916889	30.078741	3/4"	Domestic Use
31	202216900	-1.917083	30.078822	3/4"	Domestic Use
32	203514410	-1.917393	30.078864	3/4"	Domestic Use
33	202219572	-1.917480	30.079023	3/4"	Domestic Use
34	202219105	-1.915443	30.080323	3/4"	Domestic Use
35	204710999	-1.915243	30.080358	3/4"	Domestic Use
36	204713877	-1.915173	30.080530	3/4"	Domestic Use
37	203512625	-1.914865	30.080749	3/4"	Domestic Use
38	204710480	-1.916841	30.081171	3/4"	Domestic Use
39	204713198	-1.915397	30.080002	3/4"	Domestic Use
40	204710461	-1.915399	30.079685	3/4"	Domestic Use
41	204713241	-1.916019	30.081207	3/4"	Domestic Use
42	204711832	-1.915881	30.080510	3/4"	Domestic Use
43	203515019	-1.915673	30.080658	3/4"	Domestic Use
44	204711279	-1.915795	30.080525	3/4"	Domestic Use
45	202219024	-1.915990	30.080055	3/4"	Domestic Use
46	204710000	-1.916529	30.081295	3/4"	Domestic Use
47	204711126	-1.916601	30.081138	3/4"	Domestic Use
48	203519617	-1.916368	30.081196	3/4"	Domestic Use
49	204780044	-1.916764	30.081421	3/4"	Domestic Use

Table - List of POC

No.	point_of_c	X	Y	Diameter	User Category
50	202217421	-1.915602	30.079871	3/4"	Domestic Use
51	204712865	-1.915435	30.080310	3/4"	Domestic Use
52	204712926	-1.915155	30.079808	3/4"	Domestic Use
53	203519604	-1.915632	30.079649	3/4"	Domestic Use
54	204710499	-1.915814	30.079533	3/4"	Domestic Use
55	204710498	-1.915847	30.079464	3/4"	Domestic Use
56	203519356	-1.915333	30.079849	3/4"	Domestic Use
57	203519499	-1.916683	30.081266	3/4"	Domestic Use
58	204710766	-1.916391	30.081007	3/4"	Domestic Use
59	204710426	-1.915735	30.080956	3/4"	Domestic Use
60	204712166	-1.915677	30.080843	3/4"	Domestic Use
61	204710965	-1.916311	30.080823	3/4"	Domestic Use
62	204712370	-1.916803	30.080815	3/4"	Domestic Use
63	204713681	-1.916658	30.080897	3/4"	Domestic Use
64	204714386	-1.916833	30.080917	3/4"	Domestic Use
65	204715032	-1.916966	30.079980	3/4"	Domestic Use
66	204713175	-1.915258	30.080156	3/4"	Domestic Use
67	203519629	-1.915670	30.080046	3/4"	Domestic Use
68	204711209	-1.915587	30.079929	3/4"	Domestic Use
69	203514845	-1.915503	30.080054	3/4"	Domestic Use
70	204710523	-1.915618	30.080218	3/4"	Domestic Use
71	204711397	-1.915855	30.079780	3/4"	Domestic Use
72	202219031	-1.916119	30.079585	3/4"	Domestic Use
73	203511267	-1.916701	30.078566	3/4"	Domestic Use
74	202219051	-1.916642	30.078552	3/4"	Domestic Use
75	203519631	-1.916223	30.081283	3/4"	Domestic Use
76	204711632	-1.916433	30.081261	3/4"	Domestic Use
77	204711229	-1.915992	30.081060	3/4"	Domestic Use
78	204711467	-1.916598	30.079141	3/4"	Domestic Use
79	203515428	-1.915605	30.079179	3/4"	Domestic Use
80	204711548	-1.916400	30.079038	3/4"	Domestic Use
81	202219295	-1.917113	30.079222	3/4"	Domestic Use
82	203511534	-1.917258	30.079535	3/4"	Domestic Use
83	203511535	-1.917141	30.079681	3/4"	Domestic Use
84	204710458	-1.916362	30.081307	3/4"	Domestic Use
85	203516272	-1.915977	30.080719	3/4"	Domestic Use
86	204711196	-1.916189	30.081424	3/4"	Domestic Use
87	204710374	-1.916526	30.081394	3/4"	Domestic Use

No.	point_of_c	X	Y	Diameter	User Category
88	204711123	-1.915979	30.079770	3/4"	Domestic Use
89	203519230	-1.915778	30.079720	3/4"	Domestic Use
90	204712719	-1.916230	30.080952	3/4"	Domestic Use
91	203511743	-1.915581	30.080132	3/4"	Domestic Use
92	203512624	-1.915060	30.080405	3/4"	Domestic Use
93	204712954	-1.915182	30.080177	3/4"	Domestic Use
94	202219107	-1.916470	30.079610	3/4"	Domestic Use
95	203512304	-1.916390	30.080938	3/4"	Domestic Use
96	203514753	-1.915668	30.079057	3/4"	Domestic Use
97	204710080	-1.916777	30.079962	3/4"	Domestic Use
98	204713586	-1.915802	30.079968	3/4"	Domestic Use
99	204713332	-1.915443	30.080545	3/4"	Domestic Use
100	203514704	-1.915364	30.080236	3/4"	Domestic Use
101	204711489	-1.915705	30.079929	3/4"	Domestic Use
102	204713388	-1.915985	30.081295	3/4"	Domestic Use
103	204711349	-1.915980	30.081433	3/4"	Domestic Use
104	204711700	-1.916594	30.079044	3/4"	Domestic Use
105	204715485	-1.916415	30.079228	3/4"	Domestic Use
106	204715439	-1.915677	30.079028	3/4"	Domestic Use
107	204715376	-1.917157	30.079187	3/4"	Domestic Use
108	204811324	-1.916890	30.078837	3/4"	Domestic Use
109	204710700	-1.916879	30.081281	3/4"	Domestic Use
110	204710754	-1.916669	30.080755	3/4"	Domestic Use
111	204714285	-1.915923	30.081229	3/4"	Domestic Use
112	204715304	-1.916208	30.081308	3/4"	Domestic Use
113	203514727	-1.916037	30.080612	3/4"	Domestic Use
114	204710028	-1.916238	30.080367	3/4"	Domestic Use
115	204710832	-1.915757	30.080727	3/4"	Domestic Use
116	203514980	-1.915335	30.080424	3/4"	Domestic Use
117	204712825	-1.916341	30.081364	3/4"	Domestic Use
118	204715358	-1.916040	30.081118	3/4"	Domestic Use
119	204715451	-1.916109	30.079627	3/4"	Domestic Use
120	204710428	-1.915500	30.081142	3/4"	Domestic Use
121	204715165	-1.915774	30.080904	3/4"	Domestic Use
122	204715517	-1.915690	30.080966	3/4"	Domestic Use
123	203519424	-1.916227	30.080462	3/4"	Domestic Use
124	203519482	-1.915766	30.081705	3/4"	Domestic Use
125	204713502	-1.915804	30.081558	3/4"	Domestic Use

No.	point_of_c	X	Y	Diameter	User Category
126	204710781	-1.916120	30.081765	3/4"	Domestic Use
127	204711103	-1.916489	30.081904	3/4"	Domestic Use
128	204711244	-1.915149	30.081516	3/4"	Domestic Use
129	204710184	-1.916146	30.081609	3/4"	Domestic Use
130	204710854	-1.915963	30.081802	3/4"	Domestic Use
131	204712632	-1.915842	30.081702	3/4"	Domestic Use
132	204714129	-1.916497	30.081629	3/4"	Domestic Use
133	204714724	-1.916416	30.081749	3/4"	Domestic Use
134	204712880	-1.916250	30.082678	3/4"	Domestic Use
135	204713165	-1.916265	30.082202	3/4"	Domestic Use
136	203519659	-1.916261	30.082353	3/4"	Domestic Use
137	204713813	-1.915783	30.082676	3/4"	Domestic Use
138	204712110	-1.916080	30.082432	3/4"	Domestic Use
139	203515726	-1.915964	30.082594	3/4"	Domestic Use
140	204710002	-1.915551	30.082168	3/4"	Domestic Use
141	203512619	-1.915831	30.082108	3/4"	Domestic Use
142	203519245	-1.916141	30.082276	3/4"	Domestic Use
143	203519085	-1.915941	30.081986	3/4"	Domestic Use
144	204710205	-1.916568	30.081648	3/4"	Domestic Use
145	203512630	-1.916173	30.081943	3/4"	Domestic Use
146	202217800	-1.916901	30.082017	3/4"	Domestic Use
147	204710235	-1.916713	30.081908	3/4"	Domestic Use
148	203514274	-1.916852	30.081897	3/4"	Domestic Use
149	204713289	-1.915756	30.081058	3/4"	Domestic Use
150	204713820	-1.915623	30.081140	3/4"	Domestic Use
151	204711469	-1.915673	30.081102	3/4"	Domestic Use
152	204713779	-1.915720	30.081071	3/4"	Domestic Use
153	204713942	-1.915764	30.081045	3/4"	Domestic Use
154	204712008	-1.915060	30.081373	3/4"	Domestic Use
155	204711228	-1.915844	30.081277	3/4"	Domestic Use
156	204710427	-1.916063	30.081599	3/4"	Domestic Use
157	203519531	-1.916115	30.082348	3/4"	Domestic Use
158	204714097	-1.915956	30.082716	3/4"	Domestic Use
159	204713551	-1.916203	30.082583	3/4"	Domestic Use
160	204715076	-1.916467	30.082414	3/4"	Domestic Use
161	202218107	-1.916902	30.082058	3/4"	Domestic Use
162	204713846	-1.916111	30.082048	3/4"	Domestic Use
163	204711683	-1.915856	30.081444	3/4"	Domestic Use

Table - List of POC

No.	point_of_c	X	Y	Diameter	User Category
164	204715017	-1.916724	30.081853	3/4"	Domestic Use
165	203519618	-1.915488	30.081396	3/4"	Domestic Use
166	204712511	-1.916716	30.081833	3/4"	Domestic Use
167	204714391	-1.915758	30.081604	3/4"	Domestic Use
168	204711076	-1.916234	30.081555	3/4"	Domestic Use
169	203519084	-1.915940	30.082089	3/4"	Domestic Use
170	204710377	-1.916065	30.081746	3/4"	Domestic Use
171	204710378	-1.915832	30.081627	3/4"	Domestic Use
172	204711074	-1.916202	30.081524	3/4"	Domestic Use
173	204712281	-1.915330	30.082088	3/4"	Domestic Use
174	204715155	-1.915828	30.082838	3/4"	Domestic Use
175	204715213	-1.915319	30.081638	3/4"	Domestic Use
176	204715299	-1.916539	30.082058	3/4"	Domestic Use
177	204715331	-1.916626	30.082004	3/4"	Domestic Use
178	204715046	-1.915660	30.082249	3/4"	Domestic Use
179	204714777	-1.915717	30.082427	3/4"	Domestic Use
180	204710178	-1.915972	30.082497	3/4"	Domestic Use
181	204711269	-1.915921	30.082274	3/4"	Domestic Use
182	203512860	-1.914847	30.081034	3/4"	Domestic Use
183	203519691	-1.914635	30.081541	3/4"	Domestic Use
184	203516393	-1.915061	30.081680	3/4"	Domestic Use
185	204713943	-1.914938	30.083554	3/4"	Domestic Use
186	204713976	-1.915152	30.083724	3/4"	Domestic Use
187	204712482	-1.915433	30.083122	3/4"	Domestic Use
188	204714232	-1.915522	30.082871	3/4"	Domestic Use
189	204714070	-1.915554	30.082835	3/4"	Domestic Use
190	204711062	-1.915319	30.082757	3/4"	Domestic Use
191	204712098	-1.914582	30.082706	3/4"	Domestic Use
192	204712422	-1.914459	30.082600	3/4"	Domestic Use
193	204710702	-1.914982	30.083140	3/4"	Domestic Use
194	204711022	-1.914517	30.081039	3/4"	Domestic Use
195	203512616	-1.914504	30.080924	3/4"	Domestic Use
196	204712153	-1.914345	30.081192	3/4"	Domestic Use
197	204711375	-1.914321	30.081081	3/4"	Domestic Use
198	204712148	-1.914258	30.081216	3/4"	Commercial
199	204714953	-1.913860	30.081367	3/4"	Domestic Use
200	204712729	-1.915182	30.082953	3/4"	Domestic Use
201	204712731	-1.915349	30.082987	3/4"	Domestic Use

Table - List of POC

No.	point_of_c	X	Y	Diameter	User Category
202	204712964	-1.915377	30.083063	3/4"	Domestic Use
203	204712474	-1.914098	30.082477	3/4"	Domestic Use
204	204712916	-1.913863	30.082422	3/4"	Domestic Use
205	204714231	-1.914975	30.081719	3/4"	Domestic Use
206	203516021	-1.915226	30.082362	3/4"	Domestic Use
207	204712564	-1.913995	30.082430	3/4"	Domestic Use
208	204711163	-1.914215	30.081745	3/4"	Domestic Use
209	203512761	-1.914401	30.081363	3/4"	Domestic Use
210	203514313	-1.914218	30.081496	3/4"	Domestic Use
211	203519396	-1.913797	30.081756	3/4"	Domestic Use
212	203519611	-1.913786	30.081908	3/4"	Domestic Use
213	204710012	-1.913724	30.082103	3/4"	Domestic Use
214	204710013	-1.913729	30.082254	3/4"	Domestic Use
215	204710308	-1.914058	30.082559	3/4"	Domestic Use
216	203512769	-1.914383	30.081463	3/4"	Domestic Use
217	204711124	-1.914466	30.081771	3/4"	Domestic Use
218	204714735	-1.914940	30.082226	3/4"	Domestic Use
219	203519880	-1.914672	30.082333	3/4"	Domestic Use
220	203519876	-1.914666	30.082395	3/4"	Domestic Use
221	204710393	-1.915008	30.082442	3/4"	Domestic Use
222	204710254	-1.915267	30.082573	3/4"	Domestic Use
223	204712483	-1.914478	30.081200	3/4"	Commercial
224	204713699	-1.914504	30.082072	3/4"	Domestic Use
225	204711428	-1.914463	30.082108	3/4"	Domestic Use
226	204713857	-1.915035	30.083610	3/4"	Domestic Use
227	204780043	-1.915508	30.083103	3/4"	Domestic Use
228	204710369	-1.915038	30.081959	3/4"	Domestic Use
229	204714842	-1.913702	30.082357	3/4"	Domestic Use
230	204710386	-1.914119	30.081296	3/4"	Domestic Use
231	204712889	-1.914980	30.081213	3/4"	Domestic Use
232	203512762	-1.914275	30.081457	3/4"	Domestic Use
233	204710699	-1.914570	30.081782	3/4"	Domestic Use
234	204711358	-1.914819	30.082044	3/4"	Domestic Use
235	204713153	-1.914434	30.081739	3/4"	Domestic Use
236	204713635	-1.914263	30.081463	3/4"	Domestic Use
237	203519390	-1.913825	30.081768	3/4"	Domestic Use
238	204710072	-1.914117	30.082151	3/4"	Domestic Use
239	204712291	-1.914524	30.081895	3/4"	Domestic Use

Table - List of POC

No.	point_of_c	\mathbf{X}	\mathbf{Y}	Diameter	User Category
240	204712293	-1.914534	30.082207	$3 / 4^{\prime \prime}$	Domestic Use
241	204713380	-1.915460	30.083110	$3 / 4^{\prime \prime}$	Domestic Use
242	204713733	-1.915391	30.082898	$3 / 4^{\prime \prime}$	Domestic Use
243	204715180	-1.915018	30.082988	$3 / 4^{\prime \prime}$	Domestic Use
244	204715205	-1.914101	30.082590	$3 / 4^{\prime \prime}$	Domestic Use
245	204715253	-1.913896	30.082322	$3 / 4^{\prime \prime}$	Domestic Use
246	204710912	-1.913901	30.082388	$3 / 4^{\prime \prime}$	Domestic Use
247	204713520	-1.914877	30.083120	$3 / 4^{\prime \prime}$	Domestic Use

POCs with service connections of substandard quality materials

No.	point_of_c	\mathbf{X}	\mathbf{y}	Dimeter	User Category
Subzone 1-3					
1	204711464	-1.914030	30.080926	$3 / 4^{\prime \prime}$	Domestic Use
2	204711433	-1.913996	30.080873	$3 / 4^{\prime \prime}$	Domestic Use
3	204717822	-	-	$3 / 4^{\prime \prime}$	Domestic Use

Subzone 1-4					
1	204710832	-1.915757	30.080727	$3 / 4^{\prime \prime}$	Domestic Use
2	203512624	-1.915060	30.080405	$3 / 4^{\prime \prime}$	Domestic Use
3	204712291	-1.914524	30.081895	$3 / 4^{\prime \prime}$	Domestic Use
4	202219105	-1.915443	30.080323	$3 / 4^{\prime \prime}$	Domestic Use
5	204712288	-	-	$3 / 4^{\prime \prime}$	Domestic Use
6	204711428	-1.914463	30.082108	$3 / 4^{\prime \prime}$	Domestic Use
7	204717762	-	-	$3 / 4^{\prime \prime}$	Domestic Use
8	203519641	-	-	$3 / 4^{\prime \prime}$	Domestic Use
9	204710012	-1.913724	30.082103	$3 / 4^{\prime \prime}$	Domestic Use
10	204714842	-1.913702	30.082357	$3 / 4^{\prime \prime}$	Domestic Use
11	204710013	-1.913729	30.082254	$3 / 4^{\prime \prime}$	Domestic Use
12	204712916	-1.913863	30.082422	$3 / 4^{\prime \prime}$	Domestic Use
13	204710072	-1.914117	30.082151	$3 / 4^{\prime \prime}$	Domestic Use
14	203519390	-1.913825	30.081768	$3 / 4^{\prime \prime}$	Domestic Use
15	204713635	-1.914263	30.081463	$3 / 4^{\prime \prime}$	Domestic Use

Pipe Replacement in Kadobogo Pilot Project Area 1

February, 2019

ITEM OF PRESENTATION

1. INTRODUCTION
2. SCHEDULE OF PIPE REPLACEMENT
3. TEAM FOR PIPE REPLACEMENT
4. OBSERVATIONS
5. TRENCH PREPARATION AND CONTROL
6. LAYING CONDITIONS
7. PRESSURE TEST PROCEDURES
8. PRESSURE RESULTS
9. RECOMMANDATIONS

Baseline data by Qmnf Survey

INTRODUCTION

The replacement of the existing pipes in Kadobogo was made on the area presenting the repetition of the leaks.
During the activities of reduction of water loss in the pilot, we found that the repetitions of the leaks were caused by the substandard pipe of type HDPE. The solution was to elaborate all frequent leak pipes to replace them.
These part of network which are pipes of distributions and services in the Subzone 3 and 4 of PM 1, totaling in 1000 meters for 6 Zones.

Kadobogo Subzone Map

Material and work preparation

JICA RESPONSIBILITY

NO	DESCRIPTIONS	COMMENTS
1	Procurement of the pipes and accessories	Done, on December 2018
2	Excavations of trench and Back-filling work	Done, from $4 / 2 / 2019$
3	Procure all material needed for protection, preparation soil	Done
4	Assistance work	Done

WASAC RESPONSIBILITY

NO	DESCRIPTIONS	COMMENTS
$\mathbf{1}$	 Plumbers) for installation new pipes	Available, from Kacyiru branch
$\mathbf{2}$	 assistant masons) for repairing the civil work	Not available
	Procure the material needed for repairing civil work (sand, cement, gravel)	Not done
$\mathbf{4}$	Supervision of work	Done

SCHEDULE AND PROGRESS

SCHEDULE OF PIPE REPLACEMENT IN KADOBOGO PILOT AREA																			
Feb-19																			
PILOTZONE	WEEK 1 (Days)					WEEK2(Days)						WEEK 3(Days)				WEEK 4 (Days)			
	4	6	6 7	8 9	10	11	12.13	131	1415	516	171	18192	202	122	23.24	225	25	27	
Excavation work, Backfilling work, New connection and Civil work																			
Subzone 1-3 \&	1		00\% Fin	inished															
Code number	1																		
Excavation work, Backfilling work, New connection and Civil work																			
 Code number			3			4		5				2					2		6
	100\% Finished											50\% done							

OBSERVATIONS DONE

- The pipeline situation on map not matching with the situation on field
- The many repairing was done to sub standard pipe show us the repetition leaks
- The WASAC standard for new connection should cause the weakness of pipe (For example, 3 to 5 saddles for connection in 1 m of main pipe) Each customer has owner saddle, which causes many holes to the main pipe.
- The current situation on the ground will not correspond with the BOQ elaborated during the calculation of the necessary materials. During the replacement, we found that the drawings used to calculate the materials are totally different with the situations of the pipes to be replaced.
- Also during the installation of the new pipes, we are obliged to put the new valves and the other accessories accompanied for all the branches (connections) of the customers. In the estimation of materials, some branches are not considered at that time of preparation of BOQ, because the MAP and current situation on site different.
- Consequently, the materials especially the accessories are insufficient, the extra-materials will be procured for complete all the replacement.

TRENCH CONTROL AND PREPARATION

- Before laying, the technician should make verification measurement of the trench (depth, width, straight alignment or curves size) by usin g the tape measurement, form work, cable,...
- We must prepare the bottom of the trench, by the soil sifted before I aying the pipe and also after the installation of the pipe, the soil shou Id be sifted for protection reasons pipe. (10 to 20 centimeters botto m and top)

Standard work

Key components:

1. Mail backfill including road construction, if any
2. Initial backfill: Sifted soil
3. Side fill : Sifted soil
4. Upper bedding : Sifted soil
5. Lower bedding : Sifted soil
6. Depth of cover
7. Embedment
8. Seeding
9. Ground surface

PHOTOS

LAYING CONDITION

- The pipe must be laid in the middle of the slice, it must not have the zig zag
- Avoid direct curves, the correct curve of a pipe must be done regularly without broken the pipe. Radius of the curve must be at least large and more open.
- The application of Teflon must be the number limited between 5 to 7 times if thickness of Teflon is 1 mm . To much Teflon can cause also mal connection.
- The pipe must have a good number treads and also the accessory must be well fixed to ensure the good connection to the pipe

PRESSURE TEST

- Testing the pressures after the pipe is also important to check all points of the connections (valves, plugs, unions, ..) are well connected to ensure goo d resistance to pressure available.
- In Kadobogo case, the pressure available change between 9 to 11 bars, but the test done, we have extended 5 bars more, because it is important to predict that the water source can change and can cause the pressure change in the area, directly to the pipes. So the test done was 16 bars.
- The good test should resist between 5 to 10 minutes with the result of the same bar or reduced to 5\% only. The result after should the 16 bars or 15.2 bars.
- If the result change under 5% of reduction, There is leakage, the test shoul d be repeated until the correct result, after finding the leak and repairing it.

Pressure Test result

Result after 10 minutes Sub zone 1-3

ZONE TESTED	DATE	RESULTS AFTER 10 MUNITES	COMMENTS
Sub zone 1-3, N0 1	$22 / 2 / 2019$	16 Bars	Good result
Sub zone 1-3, N0 2	$25 / 2 / 2019$	16 Bars	Good result
Sub zone 1-3, N0 3	$26 / 2 / 2019$	16 Bars	Good result
Sub zone 1-3, N0 4	$26 / 2 / 2019$	15.8 Bars	Good result
Sub zone 1-3, N0 5	$27 / 2 / 2019$	16 Bars	Good result
Sub zone 1-3, N0 6	----------	No test (No big change pipe)	Good result
Sub zone 1-3, N0 7	$28 / 2 / 2019$	15.5 Bars	Good result
Sub zone 1-3, N0 8	$28 / 2 / 2019$	16 Bars	Good result

AS BUILT DRAWING AND RECORD

RECOMMANDATIONS

1. It is recommended that the new connections can be made from other pipes of near by customers, for to reduce the saddles creating holes on the main pipe, because they increase the risk of causing the number of leaks, the weakness of a main pipe through too close holes and so this solution decreases the expense by the length of the pipes used, by the supreme saddles, ----
2. It is recommended that the pipes and accessories used during the new connections should have and with the required pressure. for this moment, the pipe resist the 20 bars are available on market, in this case all the change of the pressures will not cause the leak.
3. It is also recommended that the technicians must consider a reception trench and control the size, good supervision during installation (pipe laying, Teflon using, fitting connection, back-filling conditions, ----)
4. The as-built drawing, coordinates location, and all important information, change done during installation should be presented and reported to GIS section for update the document.

5.4 Improvement of the Present Pipe Installation Work

Note: Refer to attached sheet of Power Point with video phot

5.4.1 Causes of Leakage

The causes of the leakage in pipe network itself are aging, substandard materials and inappropriate installation work. In this section, problems on "Pipe Materials", "Procurement Procedure of Materials" and "Pipe Laying and Jointing Methods" are described.

1) Pipe Materials

There are many substandard pipe materials are sold in the market Kigali. Even the pipe printed "PE 100 (ISO/TR9080)", they sometimes crack by high water pressure as Fig. 1. PE 100 is described as "By increasing the high molecular part and increasing the number of tie molecules that connect the crystal structure, cracks between crystal parts are less likely to occur, improving long-term hydrostatic pressure strength and environmental stress cracking resistance. By optimizing the low molecular part, it improves impact resistance and secures moderate flexibility." So, PE 100 is not easy to be cracked. Cracked and burst HDPE is substandard one. And their pipe thickness is not uniform, the crosssection of pipe is not double circle. The inside of circle is eccentric. So, thinnest wall is week against high water pressure.

2) Procurement Procedure of Materials

Fig. 1 Leaked PEP

Fig. 2 Cross-section of PEP

For house connection, customers procure pipe materials. Customers don't pay attention to leakage of upstream of customer meter, because it is not measured by customer meter. Usually, customers want to save money to buy materials. They have tendency to buy cheap pipe materials even if that is substandard quality.
3) Pipe Laying and Jointing Methods

- Pipe Laying

When pipes are laid in the earth, backfilling of pipe laying ditches is soils dug at the site. The soils usually contain stones and rocks. They damage to laying plastic pipes. It causes leakage.

- Jointing Methods

For small size pipes, screw jointing is usually adopted, even pipe materials are plastics. Screwed part of plastic pipes become thin and weak.

- Service Pipe Connection

When service pipe is connected to distribution pipeline, the hole on the pipeline is usually bored by heated iron bar. It is not clear circle and smooth. It causes some friction at the connection point.

5.4.2 Proposed Proper Measures

Now, it is required to make a higher specific standard. When it is easy to get good quality polyethylene pipe in the market, polyethylene pipe should be used for small size pipes. Because, polyethylene pipe (PE 100) is not easy to be cracked as described above.

(1) Pipe Materials

- Pipe Materials

At present in case of small size pipe, PVC GANGA (U.P.V.C) is the most reliable pipe materials in the market Kigali. During substandard pipe materials are popular in the market, it is better to use PVC GANGA.

Polypropylene (PPR) \& PE100 should be used with standard. Confirm materials by pressure test. List the name of product company which pipes are passed by the pressure test.

- Design Water Pressure

Design water pressure should be 16 bar. Even under pressure control, 16 bar is recommendable to use.

(2) Procurement Procedure of Materials

WASAC should order customers to buy good quality pipe materials produced by the listed company by WASAC. Otherwise, WASAC provides customers pipe materials produced by listed company.

It is very important to check pipe surface condition whether there is some scratch or damages or not. If there is some scratch or damages on the surface. It will be a cause of leakage.

(3) Pipe Laying

1) Connection Method

a. Screw joint with seal tape

For small size PVC pipe, screwing joint method is adopted. In this case, the wind seal tape keeps the water-tightness of the screw. Wind seal tape (Teflon tape) about 6 to 7 rounds remaining one thread of screw as Fig.6. When winding tape is finished, fit the seal tape with your fingers as Fig.7. It becomes familiar if you try to press it with nails and fingers.

Fig. 6 Rapping Taping

Fig. 7 Fit Tape

b. Mechanical compression fitting

Fig. 8 Repairing HDPE

Fig. 9 Screwing of uPVC

Fig. 10 Coupling (screw)

Screwing of plastic pipe such as HDPE and uPVC is not recommendable, because screwed part of plastic pipe becomes week against pulling out.

For repairing of plastic pipe it's better to use mechanical compression joint such as following figures:

Fig. 11 Mechanical compression joint (MCJ)

Compression couplings are another form of non-permanent jointing for HDPE pipes. As indicated below, the general components of a compression fitting or coupling are a body, a threaded compression nut, an elastomer seal ring or O-ring, a stiffener and a grip ring.

Compression fittings are popular because they do not require soldering, so they are comparatively quick and easy to use and require no special tools or skills to operate. Because compression fittings are not permanent, they are especially useful in installations that may require occasional disassembly or partial removal for maintenance.

c. Rubber ring joint

Rubber ring should be set correct position, if not it will be a cause of leakage. Procedure of joint method is as followings:

Fig. 13 Setting a rubber ring
Fig. 14 Leaks caused by incorrect positioned rubber ring

Fig. 15 Step 1

Fig. 16 Step 2

Fig. 17 Step 3

Step 1:
Check scraped pipe edge, mark and rubber ring setting situation. Remove sand and mud with the waste clothing on the inner face of the socket and the surface of the insertion pipe end.

Step 2:
Apply pipe joint lubricant uniformly to the surface of the rubber ring and the insertion pipe end (scraped pipe edge). Absolutely, use dedicated pipe joint lubricant.

Step 3:
Align the pipe axis and insert it to the mark position. Inspect the position of the rubber ring over the entire circumference using a check gauge.

Note:

- If there is a problem such as twisting in the rubber ring, remove it with an inserter etc. to pull out the rubber ring. Check that the rubber ring has no abnormality and the condition of the rubber ring and apply the pipe joint lubricant and insert it again.
- If the pipe joint lubricant enters the back side of the rubber ring, it will cause pulling out of the rubber ring so wash the inner surface of the pipe socket and the rubber ring, remove the pipe joint lubricant and reinstall the rubber ring.

d. Socket fusion welding

For small size (up to DN50mm) polyethylene pipe, socket fusion welding method should be adopted. Socket fusion welding is a widely used technique for assembling plastics piping systems using injection moulded fittings. Socket fusion device is shown in Fig. 18. Procedure of welding is as follows:

Fig. 18 Socket Fusion Device
a. Assemble the male and female bushings on the cold plate and connect the welder to the power network. Wait for the sound or light signal (see the user's manual of the welder) that informs that the actual temperature is reached.
b. Cut the tube perpendicularly to its axis using the suitable pipe cutter.
c. Find a sheet that shows the welding parameters (diameter, pipe insertion depth, heating time, fusion time and time prior to testing) as Table 1.
d. Mark the insertion depth on the pipe.
e. Make a longitudinal mark as a reference on the external surfaces of the pipe and fitting to avoid

Table. 1 Welding Parameter (Sample)

	Heat Up Time (seconds) diameter		Max SDR 11 SDR 7.3	SDR 17	Change-over (seconds)		Clamped (seconds)	Total (minutes)
$1 / 2^{\prime \prime}$ $(20 \mathrm{~mm})$	5	NA	4	6	2			
$3 / 4^{\prime \prime}$ $(25 \mathrm{~mm})$	7	NA	4	10	2			
$1 "$ $(32 \mathrm{~mm})$	8	NA	6	10	4			
$1-1 / 4^{\prime \prime}$ $(40 \mathrm{~mm})$	12	NA	6	20	4			
$1-1 / 2^{\prime \prime}$ $(50 \mathrm{~mm})$	18	NA	6	20	4			
$2 "$ $(63 \mathrm{~mm})$	24	10	8	30	6			
$2-1 / 2^{\prime \prime}$ $(75 \mathrm{~mm})$	30	15	8	30	6			
$3 " \prime$ $(90 \mathrm{~mm})$	40	22	8	40	6			
$\mathbf{4}^{\prime \prime}$ $(110 \mathrm{~mm})$	50	30	10	50	8			
$5 "$ $(125 \mathrm{~mm})$	60	35	10	60	8			

f. Place the ends to be welded close to each other to be able to begin the heating process of the components simultaneously.
g. After checking the surface temperature of both bushings, insert the pipe into the female bushing without rotating it and the fitting over the male bushing up to the depth previously marked. This position should be maintained for the heating time tl as shown in Table1. Do not heat up the parts to be welded twice.

Fig. 19 Inserting Socket
h. After the heating time, quickly remove the elements from the bushings and insert them one inside the other, within time t2, until you reach the insertion depth previously marked. Be careful not to rotate the pipe into the fitting and carefully align the reference longitudinal signs.

2) Drilling for Service Pipe Connection

Use a drilling device as Fig. 22 for making a hole on distribution pipe to connect a service pipe instead of using a heated iron bar. Heated iron bar is not suitable because it cannot make a clear hole on distribution pipeline.

Fig. 20 Heated iron bar

Fig. 21 Drilling by heated iron bar

Fig. 22 Drilling Device

3) Important point of backfilling

For backfilling, use soils without stones and rocks especially surroundings of pipeline to avoid damage to them. Remove stones and rocks from backfilling soils.

For backfilling, use sands surroundings of pipeline to avoid damage to them as Fig. 23. Sands are used 30 cm upper and under the pipe. Back fill by soils at the site removed stones and rocks upper the sand bed.

Fig. 24 Digging

Fig. 25 Pipe laying condition

Fig. 26 Standard backfilling and tamper

- The bottom of the ditch should flatten well and be tamped. After that, sand is spread

75 mm (minimum), and flattened.

- Compact the sides of the pipe well.
- Compact pipe overlay 150 mm (minimum) with sand or good quality soil.
- For soil compaction, use a tamper.

(4) Tools of Piping Work

1) Maintenance of tools

When using a die to thread the pipe, use oil as a lubricant so that thread (screw) becomes clear and damage of the die becomes less. Check tools whether they are good condition or not. If tools are not good condition, the result of work becomes bad as Fig. 28.

Fig. 27 condition of screwing pipe

Fig. 28 Screwed pipe by bad condition die
2) Recommendable tools and fittings stored at branch offices

At every branch office, following tools and fittings as Table 2 should be stored and they should be maintained and replenished at regular intervals.

Table 2 Tools necessary for joining plastic pipes

Tool Name	Purpose	photo
Permanent Marker	Marking for cutting position	

| Pipe Cutter 2types | Cutting pipes |
| :--- | :--- | :--- | :--- |

Plumbers Wide Jaw Adjustable Wrench Tightening of bolt and nut and others	
Pipe Wrench	Connecting of pipes and others
Pipe Threader	Cut thread on pipes
Frease	To tap for service connection
Devices	

Present Pipe Material Hole Making by Heated Iron Bar Screw Joint with Seal Tape Cutting Pipe

1. Pipe replacement planning

1-3. Selection and Maintain of Material

2. Present way of drilling for service pipe connection

1. Drilling for service pipe connection by heated iron bar

2. Install the good equipment in branch and enhance the technician ability.

3. Install the good equipment in branch and enhance the technician ability.

1-4. Pipe Cleaning

5.5 Service Pipe Connection

Recommended procedure for service pipe connection is as shown below.
Note: Refer to attached sheet of Power Point with video phot

1. Pipe Drilling Procedure
(1) Dig enough space to set the drilling tool and saddle.
(2) Clean the main pipe.
(3) Clean the rubber of saddle.
(4) Set the saddle and fix bolts.
(5) Fit the drilling tool to the gate valve by the nipple and confirm the position of spindle.
(6) Locate the ratchet onto the drill spindle and work the ratchet in a clockwise direction to the main.
(7) Open the relief valve to remove pipe pieces when you feel the main cut perfectly.
(8) The drill spindle moves to your side when you pull the drill spindle slightly.
(9) Close the gate valve and remove the drilling tool.
2. Measurement of water pressure
(1) Set pressure gage after drilling.
(2) Measure the water pressure after relief the air from relief valve.
※ Record the range of water pressure if the water pressure would move sharply.
3. Measurement of chlorine
(1) Pour water test tube until 70%
(2) Put a pack of DPD into water
(3) Confirm Chorine figure within 30 seconds
(4) Clean up test tube after measuring
4. Confirm pipe position
(1) Confirm the distribution pipe position including depth
(2) Cheek service pipe depth
5. Screw threading
(1) Using oil
6. Pipe cutting and connection
(1) Use Oil when you make the screw of steel pipe.
(2) Round of Teflon is around 15 times with good fitness.
7. Reporting
(1) Recording site position, pipe position, water pressure, chorine figure.
(2) Schematic drawing.

Training on Service Pipe Connection

1. Recommended Pipe Drilling procedure

(1)Dig enough space

(2)Clean the main Pipe

(3)Clean the rubber of Saddle

(4)Set the Saddle and fix the bolt

1. Pipe Drilling procedure

(5) Fit the Drilling machine

(7)Open the relief valve

1. Pipe Drilling procedure

(8)The Drill spindle moves to your side

(9)Close the gate valve and remove drilling

2. Measurement of water pressure

3. Measurement of water Chlorine

4. Confirm the Pipe position and depth

System hayout

5. Compaction of backfilling soil

Remove stone!

Compaction!

This parts is most important for carefully back filling and compaction.

6. Screw threading by use oil

Make the screw thread by water !?

Make the screw thread by oil.

7. Reporting

Reference-1 Standardization of Piping Work

1. Standard of materials and works

1.1 Standard of piping works

(1) Transmission Pipes

Pipelines or conduits which carry water from one point to another without intermediate service connection

A water pipe is designed to transport treated drinking water to Distribution reservoir

a. Pipe Material

In transmission, the pipe material in minimum shall be made up of High-Density Poly Ethylene (HDPE), Ductile Iron (DI) and PVC material.

The selection of pipe material depends upon several factors. Some of the major factors are listed below:
i. Diameter of the pipe and internal pressure.
ii. Quality of water i.e. some sources of water may be corrosive in nature.
iii. Type of soil where the pipelines is to be laid i.e. hard, soft, saline soil etc.
iv. Atmospheric temperature where the pipeline is to be laid.
v. Distance between the source and the terminal point i.e. pipe laying and maintenance involvement.
vi. Expected backfilling on the pipe.

b. Pipe sizes

For the transmission main, the diameter of pipes shall be ranging from 160 mm and above depending on the design. (This size can change according to availability of water quantity)

c. Design Water Pressure

The rating pressure for each pipe size will depend on working condition and design but should not be rated below 16 bars.

(2) Distribution pipeline

Distribution main usually conveys large amounts of water over long distances from a storage tank within the distribution system. Distribution mains are typically smaller in diameter than the transmission mains and generally follow the city streets.

A water pipe is designed to transport treated drinking water to consumers. The varieties include large diameter main pipes which supply entire towns, smaller lines that supply a street or group of buildings.

a. Pipe Material

In distribution, the pipe material in minimum shall be made up of High-Density Poly Ethylene (HDPE) and PVC material.

b. Pipe sizes

For the distribution main, the diameter of pipes shall be ranging from 75 mm and above depending on the design.

c. Design Water Pressure

The rating pressure for each pipe size will depend on working condition and design but should not be rated below 16 bars.

(3) Services pipe and meter connection

The water service supply line delivers potable water to your home from the distribution water main. the clamp saddle should be made of Ductile iron with blue epoxy coating

1) Pipe sizes

The water service line for a residential home are small diameter pipes located within individual buildings. Typically, are $3 / 4$ " pipe that can be seen entering your building near the water meter.

2) Pipe material

The pipe material in minimum shall be made up of GANGA, High-Density Poly Ethylene (HDPE) or polypropylene (PPR). At present in case of small size pipe, PVC GANGA is the most reliable pipe materials in the Kigali market.

3) Design Water Pressure

Design water pressure should be 16 bar, but under pressure control, 10 bar is also used.

4) Meter Installation

a. Customer meter installation

Fig. 1 Standard Meter Installation with Meter Box

Meter Installation Standard with Meter Box

When a customer wants to install a meter box, the water meter and the stop valve should be able to be changed easily in the box. Therefore, short length pipes; two 10 cm pipes are installed to make a space for replacement of them in the box and one union joint should be installed both sides of water meter and before a stop-valve shown as Fig 1.

Handling of Key for Meter Box

If a customer locks the meter box, WASAC must keep spare key with POC number so that the field officer can open when staff of WASAC reads meter index and change the meter or stop valve.

Other considerations

- Distance from domestic distribution pipe to water meter should be 90 m maximum in urban areas and 200 m in rural areas.
- Distance from the main entrance to the meter should be between 1 and 2 m at accessible place.

b. Bulk meter installation

Guidelines for Bulk water meter installation
$>$ Water meter should be installed horizontally inside the concrete waterproof chamber in the same level as mainline or raised to ground level according to site condition to avoid ground water flooding inside the chamber.
$>$ Should not be installed in basement, pump room, upper floors or roof of a building under any circumstances.
$>$ Bulk meter should not be allowed to fall or to receive impact damage during installation
$>$ Meter should be installed according to the arrows shown on the body of the meter
$>$ Meter register shall be arranged so that the meter will be read easily from outside the chamber
$>$ Pipes, valves or other fittings used to connect the meter must be high quality, no corrosive metal, non- toxic, heavy duty etc.
$>$ Installation of T or bend immediately before or after should be avoided
$>$ The meter should be always full of water to avoid air flow through the meter
$>$ Proper concrete support must be provided on valve, strainer, pipes or other fittings to avoid any displacement of the meter and associated fittings.
$>$ All connections must be thoroughly checked for leak after meter installation
> A non-return valve shall be installed after the meter if the supply is coming from two directions to avoid reverse flow through the meter, as per the site conditions.
> Valves shall be fitted downstream and upstream to isolate the meter for maintenance
> Consumer shall install a separate valve outside the meter chamber on the pipeline to isolate water supply for any maintenance works.

c. Accessories and fittings

Water material other than pipes are called accessories or fittings. When installed and operated under condition by which they were designed, accessories and fitting must maintain their functional characteristics over their operating life due to the constant material properties

The standards sizes of fittings in mm are the following:

Steel and DI: $\quad 40,50,60,65,80,100,125,150,200,250,300$, etc.
Plastic: $\quad 50,63,75,90,110,125,140,160,180,200,225,280,315$, etc.
Fittings and accessories must be free from defects and surface imperfection which can impair their compliance with requirement.

Material

The material in which accessories and fitting are made up is selected as per design pressure and operation conditions (e.g.: Ductile iron for PN 16 bars, cast iron or Stainless steel for 25 bars and above, for rated pressure less than 16 bars Plastic accessories and fitting are also allowable)

Flanged joint

Flanged joint must be designed to facilitate attachment to flanges whose dimensions and tolerance comply with ISO 7005-2 or EN 1092-2, this ensure interconnection between all flanged components.

Rubber Gasket

The design of rubber gasket must be conforming to appropriate international standard. Its material must be conforming to the requirement of ISO 4633 for water application.

1.2 Standard of works

When customers purchase pipes, they have tendency to buy cheap one, in consequence they are substandard quality. Otherwise, WASAC purchase and provide good quality pipe materials instead of customers. When materials have to be purchased by customers WASAC is in obligation of checking and testing before they will be used.

It is very important to check pipe surface condition whether there is some scratch or damages or not. If there is some scratch or damages on the surface. It will be a cause of leakage.

Before laying the pipes, the technician should make sure that trench is meeting standard (depth, width, straight alignment or curves size) by using the tape measurement, form work, cable, etc.

Once the trench excavation is completed, you must prepare the pipe bed, using fine sand or sifted soil before the installation of the pipe,
a. Pipe installation

1. Mail backfill including road construction, if any
2. Initial backfill
3. Side fill
4. Upper bedding
5. Lower bedding
6. Depth of cover
7. Embedment
8. Seeding
9. Ground surface

Table:

S/N	Components of layout system	Pipe diameter $20-50 \mathrm{~mm}$	Pipe diameter $63-110 \mathrm{~mm}$	Pipe diameter 125 - 200 mm	Pipe diameter 225 - 400 mm
1	Mail backfill including (including upper bedding)	Min 40 cm	Min 60 cm	Min 70 cm	Min 100 cm
2	Initial backfill	$10-20 \mathrm{~cm}$	$10-20 \mathrm{~cm}$	$10-20 \mathrm{~cm}$	$10-20 \mathrm{~cm}$
3	Side fill	Min 20 cm	Min 25 cm	Min 30 cm	Min 35 cm
4	Upper bedding	$10-20 \mathrm{~cm}$	$10-20 \mathrm{~cm}$	$10-20 \mathrm{~cm}$	$10-20 \mathrm{~cm}$
5	Lower bedding	Min 20 cm	Min 20 cm	Min 20 cm	Min 20 cm
6	Depth of cover	Min 40 cm	Min 60 cm	Min 70 cm	Min 100 cm
7	Embedment	Min $30 \mathrm{~cm}+\varnothing$ of pipe			
8	Seeding	Min 30 cm	Min 30 cm	Min 30 cm	Min 30 cm
9	Trench Bottom to Ground surface	Min 70 cm	Min 90 cm	Min 110 cm	Min 130 cm

b. Pressure Test

Objective

Hydrostatic pressure tests are performed to ensure the safety, reliability, and leak tightness of piping systems. A pressure test is required for a new system before use or an existing system after repair, alteration and replacement.

Pressure test machine

Procedure

Pressure tests must always be performed under controlled conditions, following an approved test plan, and documented in a test record. A single approved test plan may be used for several similar tests, but a separate test record is required for each.

The procedure follows three major steps:

Step 1: planning

The engineer in charge must establish a pressure test plan to be approved by the supervisor

Step 2: Performing

The engineer in charge must prepare necessary material and equipment prior to start pressure test then follows the following:
\checkmark Ensures the pressure gauges used have current calibration stickers
\checkmark Removes all persons not involved with the test from the immediate test area
\checkmark Installs the calibrated test gauge so it is always visible
\checkmark Fills and vents system as necessary to remove as much air as practical
\checkmark Ensures that water used for the test is at not less than ambient temperature,
\checkmark Pressurizes the system, raising the pressure in the system gradually until the designated test pressure is achieved
\checkmark Maintains this test pressure for 10 minutes before inspection. Then, if test is above maximum allowable working pressure (MAWP), reduces to MAWP while making a full through inspection for leaks.
\checkmark If there is leakage in the system, performs the following as appropriate: Ensure repairs is performed and continue the process
\checkmark When the test is completed, vents the test pressure to atmosphere and returns the devices to normal configuration

Step3: Record

The result of pressure test must be recorded and submit copy to the supervisor.

Reference-2 Guideline of Pipe Laying

1. Distribution and Service Pipeline Layout
1.1. Distribution pipeline layout

In this chapter, distribution pipeline means secondary and tertiary pipelines.
a. It is advisable that distribution pipelines layout is a network shape and do not become a dead end.
b. When pipeline becomes dead end, install a vale for flushing sands in the pipeline.
c. It is better to interconnect distribution pipelines laid in a boundary of adjacent different supply areas.
d. Install valves at every branch so that a suspended water supply area becomes smallest.

1.2. Service pipeline Layout

In this chapter, service pipeline means the pipeline from distribution pipe line to a customer's meter diameter from 3/4inch to one inch. The standard layout of service pipeline is as Fig 1.2.1.

Fig 1.2.1 Example layout of service pipeline

Explanation 1

Where a distribution main and a secondary distribution pipeline are laid in parallel, it is the principle to connect a service pipe to secondary pipeline. Therefore, it is advisable that a secondary distribution pipeline will be planned lying on the road where many service connections are expected.

If a service pipeline is connected to a distribution main, it is inconvenient to suspend water supply on distribution main, when a service pipe connection construction, a pipe repair or maintenance is done.

Explanation 2

Water accumulates in the dead end pipeline, as a result of it the water quality becomes bad or water pressure does not be equalized. Therefore, it is necessary to install a valve at the end of pipeline for drain water.

Even some accident occurs or shut valves both sides of construction point on the pipeline, the water suspended area becomes smaller if pipelines are interconnected as a network.

Explanation 3

It is principle to lay service pipeline as a rising gradient.
If the service pipeline is laid as a rising gradient, the air accumulated in the pipeline can be released so that it is possible to prevent to become water flow area narrow. In addition, it is possible to prevent dirty water is not supplied to customer when the dirty water is produced by an accident or a construction work.

2. Transportation and Storage

2.1. Transportation

2.1.1. Transportation of Polyethylene Pipes

a. There are no special tools or treatment for their loading and unloading, but it is considered not to be thrown and dragged, because polyethylene is easy to be fragile.
b. It is necessary to use cushioning to protect polyethylene pipe for fear of bumping against edge of truck bed.
c. It is necessary to fix pipes tightly by bands for fear of making scratches by shaking while transportation.

Fig.2.1.1 Loading Way of Polyethylene Pipes

2.1.2 Transportation of PVC Pipes

a. There are no special tools or treatment for their loading and unloading, but it is considered not to make an impact to pipes using a rope.
b. It is necessary to insert cushioning between pipes and a truck bed and a rope to protect pipe for fear of deformation and bumping into each other.
c. It is necessary not to be thrown and dragged, because surface fragile becomes a cause of weakness of pipes same as polyethylene pipe.

Fig 2.1.2 Example of Transportation of PVC Pipes

2.2. Storage

2.2.1 Storage of Polyethylene Pipes

a. It is to be desired to pile pipes horizontal up to 1.5 m height.
b. It is necessary to avoid leaving pipes outside for prevention of dirtiness and disappearing of expression on the pipe surface.
c. Fittings must be stored in the room by packaging and arrangement.
d. A material of pipe edge might become depleted by direct sunlight. If a pipe edge was not protected properly, it is recommendable to cut pipe edge about 10 cm and use it.

Explanation 1

If polyethylene pipe is exposed to sunlight for a long time, deterioration progresses due to the influence of ultraviolet rays.

Explanation 2

In the case of vertical stacking, load collapse tends to occur and the lower pipe is easy to deform, so lay it as horizontally as possible. Since all stacked pipe weights are pushed to the lowest pipes, they must be kept in a flat place.

Explanation 3

Since the lower pipe is flattened when stacking in many stages, it is preferable to set the stacking height within 1.5 m .

2.2.2 Storage of PVC Pipe

Like polyethylene pipe, PVC is also a plastic material, so it will deform due to high temperature by direct sunlight or deteriorate due to ultraviolet rays.

When it is inevitable to keep PVC pipes outdoors, a place with a roof is desirable, but it should be covered with a sheet to shield from direct sunlight and improve breathability so that heat does not stay.

【Staggered Arrangement】

Fig 2.2.1 Example of storage of PVC Pipes
3. Joining

3.1. Tools

The tools used for joining plastic tubes are as follows.
Table 3.1.1 Tools necessary for joining plastic pipes

Use	Tool Name	Purpose
Cutting	Permanent Marker	Marking for cutting position
	Pipe Cutter	Cutting pipes
	Scraper	Deburring of cut surface
	Convex Rule	Measure cutting position
Joining	Waste (Soft cloths)	Wipe off dirt
	Lubricant (for PVC Pipe)	For push-on joint (insertion)
	Check Gage (for PVC Pipe)	Confirmation of insertion condition of rubber ring
	Adjustable Wrench	Tightening of bolt and nut
	Torque Wrench	Tightening force management
	Crowbar	Push on pipe

3.2. Cutting

	Work Instruction	Photos
1	1) When cutting a pipe with a diameter of 50 mm or more, draw a marker line with a marker at the cutting position. 2) Cut in a direction perpendicular to the tube axis along the marked line with a pipe cutter. 3) It is better to avoid cutting with a saw. ※ There are two kinds of blades of pipe cutter, for polyethylene and PVC pipes. ※ Be sure to replace with a blade suitable for the type of pipe to be cut.	
2	4) Remove burrs on the cut surface with a scraper or a metal file.	
3	5) If burrs remain on the cut surface of pipe end, it will hurt the rubber ring of the fitting.	

	Work Instruction	Photos
	6)Wipe off cut surface and surroundings of pipe so that mud and sand do not stick	

Explanation 1

When determining the length of cutting pipe, check the depth of the pipe socket and draw a marker line at the cutting location. If the diameter is 30 mm or more, wind the tape in a direction perpendicular to the tube axis and draw a straight line along the tape.

Explanation 2

Touch the blade on the marked line and tightens lightly and cuts the pipe with rotating.

Explanation 3

If there are scratches on the pipe, cut it again so that there are no scratches on the jointing part

3.3. Joining Procedure

3.3.1. Joining of Polyethylene Pipes (Union coupling)

	Work Instruction	Before inserting the pipe, draw a line with a marker 8 cm and 9 cm from the end of the pipe. (In the case of $\mathrm{DN}=50 \mathrm{~mm})$
2)It is easily to check whether both pipes are neatly in the vicinity of the center by this line.		
3)The depth of insertion depends on the pipe diameter.		
4)Insert the union coupling joint in following order: (1)clamping ring, (2inner ring, (3)union body to the one pipe.		
5)At this time, wipe off the sand and dust attached to the surface of the pipe clean with a cloth.		
6)When the end of the union body is inserted to a marked line, tighten the clamping ring slowly. 7he initial tightening is done by hand, and tightening of the finish is done with a dedicated tool.		

3.3.2. Joining of PVC Pipes

There are two types of PVC pipes, one using a rubber ring and the other using an adhesive. Here, the joining with a rubber ring will be described.

In PVC pipe of rubber ring joint, one end is a socket and the other is a pipe-end.

Fig 3.3.1. Joining of PVC Pipes

The total length of one PVC pipe is 6.0 m , but the effective length (EL) excluding the socket is as follows.

Table3.3.1. Effective Length of PVC Pipe
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Nominal } \\ \text { Diameter } \\ \text { (DN) }\end{array} \begin{array}{c}\text { External Diameter } \\ \text { (DE) }\end{array} \begin{array}{c}\text { Socket Length } \\ \text { (B) }\end{array}\right)$

	Work Instruction
1)The depth of the socket is as shown in Table3.3.1, but before inserting the pipe, confirm the depth of the socket. Drow a line with a marker at a position of a predetermined depth from the pipe end of the socket. 3) With this line, it is easy to check whether the pipe is inserted to correct position.	
4)It is recomended to write two marks at intervals of 1 cm as shown on the right. 5) "Lo" is the depth of the socket and the other line is written 1cm inside it. 6) When inserting, insert so that the pipe end of the socket will come to the middle of these lines. lf insert the pipe to the end of socket, the pipe may be damaged when the pipe moves due to water pressure.	
8)Lubricate evenly in the circumferential direction of the inner rubber portion of the socket and then the outer surface of the pipe-end. In the case of a pipe-end, lubricate the entire circumference from end to line.	

	Work Instruction	Photos
3	10) Align the pipe, and then push it in the socket and join. ※ If there is no dedicated tool, push the pipe with the force of the lever by the crowbar. ※ In this case, be sure to use wood as a cushoning. ※ After aligning the pipes, it is easy to insert the pipe by pushing the bar at a stretch.	
	11) After insertion, use a check gauge to check whether the pipe is evenly in the socket.	
4	※ If pipe is correctly inserted, the value of the gauge is the same regardless of where the circumference is measured. ※ When the value of the gauge is different, there is a possibility that the rubber is displaced inside the socket.	
5	※ Make sure that the end of the socket is between the marking lines.	

【Case of Trouble】

	Trouble	Photo
1	1) Forced insertion without pipe chamfering. ※ Rubber ring caught and it got detached, leakage occurred.	
2	2) Dedicated lubricant was not used. ※ Because of using soap, grease, oil, etc., the rubber ring deteriorated, leakage occurred.	
3	3) Forced insertion with a hammer or the like. ※ Water leakage occurred due to separation of the rubber rings or cracks in the pipe.	

3.4. Notes on Joining

a. For the joint, select a place where there is no scratch on the pipe as much as possible.

Polyethylene pipes tend to scratch the surface, so if there are scratches, the durability against external forces falls. Therefore, when a scratch is found at the time of cutting, select a part without scratches and cut it again.
b. Cut polyethylene pipe perpendicular to the pipe axis. When determining the dimensions, confirm the length from the socket of the fitting joint, draw a line with a marker beforehand in the cutting place.
c. If mud adheres to the pipe surface of the joint part, it scratches the rubber ling of the joint part and the pipe surface. Since this scratch leads to future leakage, be sure to wipe the surface of the connection part with waste.
d. When joining with steel pipes, meters, valves etc., join the joint them first. If the polyethylene pipe and the joint are first joined, the polyethylene pipe will be twisted when screwed into the joint and the steel pipe.
e. Since the internal parts (color, rubber ring) of the union coupling for the polyethylene pipe used for construction once cannot be reused, it must be replaced with new parts.

4. Laying Method

4.1 Laying method of polyethylene pipe
a. For backfilling around the polyethylene pipe, you must use sand or screened good quality soil. In particular, it is necessary to exclude stones, concrete pieces, brick pieces and other stiff substances having a size of 2 mm or more.
b. The excavation width of the ditch ensures the outer diameter of the pipe plus 30 to 70 cm ; the work can be carried out efficiently.
c. The burial depth is preferably 120 cm in the case of a roadway. However, it must be adjusted according to the existing pipe laying conditions. Since it is necessary to lay sand on the bottom of the pipe, the excavation depth should be "earth cover plus tube outside diameter plus 10 to 15 cm ".
d. The bottom of the ditch should flatten well and be solidified. After that, sand and good quality soil is spread 10 to 15 cm , and flattened.
e. Be sure to make a flat floor with sand or soil before laying down the polyethylene pipe.

When sand is dumped after laying polyethylene pipe, sand does not sufficiently reach the bottom of the pipe, and compaction cannot be sufficiently compacted.
f. It is desirable that the polyethylene pipe is buried as tortuous as possible in the ditch.
g. Fill back $10-15 \mathrm{~cm}$ each time with sand or good quality soil; tamp it firmly on the pipe and thrust. When the upper part of the pipe is covered with sand or high quality soil by 10 cm or more fill it with excavated soil in 10 to 15 cm each and fill it back.
h. When using a vibrating compactor, use it after the soil covering depth at the top of the pipe becomes 50 cm or more. Using a compactor in a shallow cover of the pipe may damage pipes and fittings.

Explanation 1

When the surface of the buried polyethylene pipe is hit by pieces of stone, concrete, wood chips, etc., a very large force locally acts. As a result, a crack of the pipe occurs, causing water leakage.

Of particular importance is the material used for back filling around the pipe. It is important to use sand that does not contain stone or brick fragments larger than 2 mm in size, or that is well screened.

Explanation 2

(1)Excavation Section

For the width of the excavation ditch, the pipe diameter plus 30 to 70 cm is standard. When joining work in the ditch, when replacing the pipe, it is necessary to secure the necessary width and length.
(2) Finish of ditch bottom

Remove the stone from the groove bottom and the side and flatten it. If irregularities cannot be avoided by rocks, etc., fill up sand or good quality soil and make it flat.
(3)Sand bed

Finish the ditch floor by sand or well-screened good quality soil on a leveled ditch bottom with a thickness of 10 to 15 cm . Failure to do this work is troublesome, because a local external force acts on a part of the polyethylene pipe, leading to breakage of the pipe.

Excavated ditch bottom

Bad pipe laying
Polyethylene pipe

Fig4.4.1 Protection of pipe bottom

Explanation 3

(4) Pipe laying

When pulling the polyethylene pipe in the groove, do it by hand as much as possible.

If the ditch is deep, a person stands inside and outside the ditch and hands down.
In the case of a long and coiled tube, place it in a ditch so that straiten its curls and meanders it.

Do not drag when carrying the pipe.

Polyethylene pipe

Excavated ditch bottom

Fig4.1.2. How to handle rolled polyethylene pipe

Explanation 4

(5)Backfilling of pipe

For backfilling, use sand or good quality soil.
Use soil that has been screened so that stones and brick fragments larger than 2 mm in size do not get mixed in.

Clayed soil that was excavated once, the soil particles are disturbed and cannot be compacted enough, so it should not be used for the road part.

For backfilling, set the depth to about 10 to 15 cm every time, tamp it well and move to the next layer backfill.

The first tamping is particularly important for backfilling. If the surrounding and the bottom of the pipe are not sufficiently filled back, the pipe breaks again as time passes.

For adjustment of the height difference, do not bite stones or wooden pieces at the bottom of the pipe.

To adjust the difference in elevation, use materials that come into contact with the pipe on a large surface such as a thick plate, square material, etc. Remove it promptly after adjustment and pack the sand sufficiently.

Before reaching the upper 30 cm of the pipe, fill with human power using sand or good quality soil. In doing so, be careful not to scratch the surface of the pipe.

Outside the road part, from the soil covering 30 cm to the surface of the earth, the soil generated at the site may be used, but solids such as stones and rocks of 10 cm or more must be removed.

If soil can cover 60 cm or more of the pipe, it can be compacted by the compactor

	Work Instruction	Photos
1	1) The bottom of the ditch should flatten well and be tamped. After that, sand is spread 10 to 15 cm , and flattened. ※ Be sure to make a flat floor with sand or soil before laying down the polyethylene pipe. ※ When sand or soil is backfilled after laying polyethylene pipe, sand or soil does not sufficiently reach the lower part of the pipe and tamping cannot be sufficient.	
2	2) Tamp tightly with sand up to 10 cm above the top of the pipe. ※ The first tamping is particularly important for backfilling. If the surrounding and the bottom of the pipe are not sufficiently filled back, the pipe breaks again as time passes. 3) After that, fill it with sand or good quality soil with 10 to 15 cm tall and backfill. However, do not use soil containing stones, rocks, concrete blocks, etc.	
3	4) Be sure to backfill with human power until you reach the top 30 cm of the pipe. 5) Afterwards it is able to tamp with tamping mahine.	

Explanation 5

(6)Protection of pipe

In the case of being installed in parallel with or crossing the existing pipe, it is desirable to take a space of 30 cm or more.

If it is not able to avoid distance of 30 cm or more, protect the polyethylene pipe with a sheath tube.

A sheath tube is a PVC pipe or a steel pipe having a large diameter enough to cover the outside of the pipe to be protected, and it is a thing that put outside and protects a pipe.

The length of the sheath tube should be more than 30 cm each at both ends more than other buried objects.

Place a polyethylene pipe of the same diameter on both ends of the sheath tube so that it does not come into direct contact with the sheath tube and the pipe to be protected.

Fig4.1.3. Protection method ofthe pipe near obstacle
Table4.1.1. Relation between PE Pipe and Sheath Tube (PVC)

Polyrthylene Pipe (PE)	Sheath Tube (PVC)	
Outer Diameter (mm)	Nominal Diameter	Inside Diameter (mm)
40	50	54.6
50	75	77.2
63	100	100.5
110	-	-

4.2 Laying method of PVC pipe

The method of laying pipes is the same as that of polyethylene pipes, and careful laying must be done so as not to receive shocks.

Fig4.2.1. Section of PVC pipe laying
In the case of laying the pipe in the road, if the laying depth is less than 80 cm , the circumference of the pipe shall be protected in a special way.

Option 1: Surround the pipe with sand and solidify it around by reinforced concrete.
Option 2: Surround the pipe with sand and lay a reinforced concrete plate on top of it.

Fig4.2.2. Protetion methods of PVC pipe
4.3 Protection of PVC pipe fittings

In the socket type joint using the rubber ring, when the internal water pressure increases, a force tending to deviate in the axial direction of the pipe occurs. This force is called "thrust load", which increases in proportion to the size of the tube external sectional area.

Therefore, it is necessary to protect by the concrete block at the joint part, the pipe end part, the branch part, the bent part, the part where the bore changes, in order to prevent the movement due to the thrust load.

Fig4.4.1. Direction of load

5. Inverted Siphon

a. When polyethylene pipe is to be passed under the river, take as far as possible as far as possible from each other, and lay it by protecting with a sheath tube.
b. The piping slope before and after the inverted siphon is set to 45° or less, and it is constructed so that the polyethylene pipe is bent and raised. Since the bent portion is easily damaged, the foundation and protection must be adequately provided

Explanation 1

The use of a polyethylene pipe in an inverted siphon is safe because there is no joint and no fear of pulling -off.

Because the external force is easy to act on the rising part, it is necessary to apply the foundation and protection sufficiently, it is desirable to apply it with a gentle slope of 45° or less.
6. Pipe bending

6.1. Bending of polyethylene pipe

a. Since polyethylene pipes are made very flexible, they can be bent unless they have excessive radius of curvature. For example, in the case of PN 16 DN63 mm pipe, if the amount of displacement is $L=180$ to 200 cm per 5 m straight pipe, the pipe body will not be affected.

Table6.1.1. Allowable angle of bending by 5 m long

Diameter	50 mm	75 mm	100 mm	150 mm	200 mm
Angle (θ)	55°	40°	30°	20°	15°
Distance (L)	220 cm	170 cm	125 cm	90 cm	60 cm

Fig6.1.1 Allowable bending
This allowable displacement can also be indicated by the bending radius, which is roughly 20 times the outer diameter.

In this case, the standard minimum bending radius (Rmin) is as follows:
Table 6.1.2. Minimum bending radius

Diameter	13 mm	20 mm	25 mm	30 mm	40 mm	50 mm
Minimum Bending Radius $\left(R_{\min }\right)$	45 cm	55 cm	70 cm	85 cm	100 cm	120 cm

b. When laying the bent part, sufficiently tamp the surround of the pipe with backfilling sand or soil so that the pipe is fixed in the center of the ditch.

Explanation 1

The polyethylene pipe has very high flexibility, so it can be laid while bending. However, if it is bent beyond the limit, the pipe becomes flattened, not only the flow rate decreases, but also the life of the pipe decreases.

It is absolutely to avoid bending by directly applying a flame using a burner or the like.

6.2. Bending of PVC pipe

Although bending of PVC pipes is not allowed in principle, some bending pipe can be performed depending on the construction conditions of the site. In this case, the allowable bending distance is as follows.

DN	$\mathbf{h (c m})$
50	16
75	13
100	10

Fig6.2.1. Allowable radius of bend

7. Branch from existing pipe

At branching of the service pipe, a branch is made by using a branch saddle. Also, dedicated tool should be used for tapping. Note that the branch tapping saddle shown in the figure below is easy to tap because it has a built-in blade for tapping.

Fig 7.1.1 Example layout of branch

Fig 7.1.2 Branch saddle
8. Repair of existing polyethylene pipe

8.1. When the scratch is small and shallow

In this case, protect the scratched part with a repair band.

Fig8.1.1 Method for repairing minor leakage
Table8.1.1. Criteria for repair method

Extent of scratch	Extent of judgment	Repair method
Small, shallow	$1 / 4$ or less of the circumference or Axial scratches are less than diameter length	Repair band
Big, deep	$1 / 4$ or more of circumference or Axial scratches are larger than diameter length	Exchange for new pipe

Fig8.1.2 Plastic repair ban

8.2. When the scratch is relatively deep

In the case where the scratch is deep or wide, the stress from the inside is locally generated by the water pressure from the inside, and it may burst. Cut the pipe with a length of 20 cm or more including the scratch part, replace with a new pipe using 2 sockets.

Before inserting the pipe, draw a line with magic at 8 cm from the end of the tube and 9 cm . (In the case of $\mathrm{DN}=50 \mathrm{~mm}$) With these lines, it is easy to check whether both pipes are neatly in the vicinity of the center.

9. Squeeze off method
9.1. About squeeze off method

This method is an urgent procedure for water leakage and extension of pipeline, etc., when there is no valve for stopping water in the polyethylene pipeline and flowing water can not be stopped.

Fig9.1.1. Outline of squeeze-off construction method
In order to clamp the polyethylene pipe, the following designate compressor is used.

Fig9.1.2. Designate compressor for squeeze method

9.2. Post-compression treatment

The pipe after release of compression gradually returns to its original shape due to internal pressure, but it is desirable to correct it so that it is close to a circle if possible by the following equipment.

Even if the pipe is compressed as slowly as possible, a very small invisible crack is generated in the compressed part, and if it is used for a long period of time, there is a fear that the tube will be damaged.

The pictures of the most compressed parts viewed under a microscope are as follows. Very small cracks are generated on the inner surface side of the pipe. This crack appears only on the inner surface side of the pipe, and water leakage does not occur even through water in this state.

Section of the compression part 1

Section of the compression part 2

Reinforcement with repair band

Enlarged view of the compression part

Reference-3 Safety Management

1. Prior consultation with concerned authorities

Fig. 1 MINFR

Fig. 2 RTDA

Fig. 3 REG
Fig. 4 National Police

Before start the construction work, it is necessary to consult with concerned authorities such as MNINFR, RTDA, REG, and Traffic Police etc. about sharing information, planning, collaboration and supporting.

2. Public announcement (Customer satisfaction)

Fig. 5 RTV

Fig. 6 SNS

Fig. 7 Radio broadcasting

When the construction work is planning, it is necessary to announce the working schedule, working outline and water suspension schedule using mass media (in case of big construction work), SNS and WASAC web site, and also it is necessary announcement by meter readers for local area.

Public announcement at a branch office

Fig. 8 Emergency communication system at Remera branch office

Fig. 8 shows the emergency communication system noted at Remera branch office. It is very important the notice and it is recommendable at every branch office.

3. Confirmation of the obstacle matters

Fig. 9 Important point 1

It is very important to take attention to obstacle matters such as power cables, telecommunication cables and so on. It is necessary to confirm working duration, protection methods, and emergency organization with related authorities.

4. Identify the working area

It is very important to avoid disasters of all party concerned with the work and third party, so it is necessary to identify the working area and to protect the working area from third party by net, tape and sign boards for restriction to enter (e.g. "No Entry", "Keep Out" etc.).

5. Protect workers and third party against accidents

Fig. 11 Sign Board

Fig. 12 Attention Tape

Fig. 13 Sign

Fig. 14 Protection Net

Protect workers and third party against accidents using net, tapes, and sign board etc.
It is very useful to take a Tool-Box Meeting as a safety meeting.
Tool-Box Meeting (TBM):
TBM is a task that talks about the content of the day's work, methods, setups and problems in a short time, and instructs instruction, centering on the employee's head. The TBM is done not only before starting work but also during work and workplace meeting according to progress of work.

Fig. 15 Scenery of TBM

Fig. 16 Samples of sign

6. Soil Handling

6.1 Soil Wall Collapse

Fig. 17 Soil wall collapse

Trenching and excavation procedures are performed through the piping work, it should be taken care about injurer in trenching accidents.

6.2 Protection against Wall Collapse

Fig. 18 Shape of Open Cut Trench

Fig. 19 Avoid Heaving (cohesive soil)

Open Cut Trench: (source http://www.hsewebsite.com/excavation/)
Category 1 - Cohesive soils of firm to stiff consistency that are fissured (Category 1b) or unfissured (Category 1a). These soils are generally of medium to high plasticity but may also include glacial clay tills of low to medium plasticity. These
soils usually have low moisture content and most often occur above the water table.
Category 2 - Cohesive soils of soft consistency and non cohesive silt soils. The cohesive soils can be of medium to high plasticity while the silt soils are of non to low plasticity. These soils typically have high moisture contents and will tend to fill voids left between the excavation walls and shoring.

When excavate the open cut trench in low to medium plasticity soil, the shape of trench should be followed as Fig. 18.

Heaving: (source https://serveforsafety.com/excavation-safety/)
When excavate a trench in cohesive soil, following matters should be done to avoid heaving.

- Dump excavated earth/Soil min. 1 M away from the lip of trench/excavation.
- Don't allow vehicle movement at least 2 M from the edge of excavation/trench.

Fig. 20 Soil Retaining Wall 1
Fig. 21 Soil Retaining Wall 2
Cross-trench bracing is used in utility trench excavations for prevention of soil wall collapse. It is available to use wooden piles and timber plates.

μ :Coefficient of Frictional Resistance within Concrete and Soil

Coefficient of Frictional Resistance within Concrete and Soil

Type of the soil	Coefficient of Frictional	Type of the soil	Coefficient of Frictional
Compaction	0.50	Gravel	0.60
Soil of muddy	0.33	Clay	$0.20 \sim 0.50$
Small Cobble stone	0.60	Dry sand	0.50
Cobble stone	0.50	Norumal sand or wet sand	$0.20 \sim 0.33$

【Reference:The Design Criteria for Water Supply Facilities 2012 P509 Table-7.7.1】

Unit Weight of Soil		
Type	Condition	Unit weight
Norumal sand	Dry	14.0
	Including the water	16.0
Sand	Dry	16.0
	Including the water	18.0
Clay mingling sand	Dry	20.0
	Including the water	15.0
	saturated with water	19.0
Clay	Dry	16.0
	Including the water	20.0
Saturated with water	-	

Internal Friction Angle

Type	Condition	Internal friction
Norumal sand	Dry	$30 \sim 40$
	Including the water	45
Sand	Dry	$30 \sim 35$
	Including the water	40
Clay mingling sand	Dry	$20 \sim 25$
	Including the water	$40 \sim 45$
	saturated with water	$20 \sim 25$
Clay	Dry	$40 \sim 45$
	Including the water	$20 \sim 25$
	saturated with water	$14 \sim 20$
Silt		$10 \sim 20$

Exercise of Calculatio

Thrust Block

Exercise(Thrust Force)

How does thrust power occur?

Answer (Thrust Force)

$$
\mathrm{P}=2 \mathrm{P}^{\prime}=2 \mathrm{pAsin} \theta / 2
$$

Exercise (Calculaition)

Basic data

Pipe Material: DIP
Pipe Nominal Diameter: 600mm
Pipe External Diameter: 630.8 mm
Pipe Weight of pipe: 1.23
Bent: 90°
Internal Pressure: PN16 (1,600 kN/m²)
Depth of Pipe Head from ground: 1.2 m
Type of the soil: Compaction, Normal sand Dry

Exercise (Calculaition)

Which type is suitable?

Type A	
B	1.50
H	1.50
I	1.50
L	2.25
h1	0.75
h2	2.25

Type B	
B	2.50
H	2.00
I1	1.80
L	3.05
h1	0.50
h2	2.50

Type C	
B	3.00
H	2.50
I1	2.50
L	4.00
h1	0.30
h2	2.80

Answer

Type A	
B	1.50
H	1.50
I	1.50
L	2.25
h1	0.75
h2	2.25

Friction Resistance Force within Bottom of Soil $\mu \mathrm{W}=\mu^{*} \mathrm{~W}$			96.47
Passive Earth Resistance Force of Back of Concrete $\mathrm{E}=1 / 2^{*} \mathrm{Ce} \mathrm{e}^{*} \gamma \mathrm{~s}^{*}\left(\mathrm{~h} 2^{\wedge} 2-\mathrm{h} 1^{\wedge} 2\right)^{*} 1$			460.78
Thrust Force of Bending Point (force of outside direction) $\mathrm{P}=2^{*} \mathrm{p}^{*} \mathrm{~A} * \operatorname{SIN}(\theta / 2)$	kN		701.45
$\begin{aligned} & \text { Cross Section Area of Pipe } \\ & \mathrm{A}=\mathrm{D} 2^{\wedge} 2^{*} \pi / 4 \end{aligned}$	m2		0.31
Total Wight against Bottom of Concrete $\mathrm{W}=\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3$	kN		192.94
Load from Soil W $1=2 * 11 * B^{*} \gamma \mathrm{~s} * \mathrm{~h} 1$	kN		47.25
Load from Water and Pipe W2 $=\left(\mathrm{Wp}+\pi / 4^{*} \mathrm{D}^{\wedge} 2^{*} 2^{*} 11^{*} \gamma \mathrm{w}\right)$	kN		12.00
Load from Concrete W3 $=2 * 11 *\left(\mathrm{~B}^{*} \mathrm{H}-\pi / 4^{*} \mathrm{D}^{\wedge}{ }^{\wedge} 2\right)^{*} \gamma \mathrm{C}$	kN		133.69
Length of Projection of back of Concrete $1=2 * L^{*} \operatorname{COS}(\theta / 2)$	m		3.18
Coefficient of Passive Earth Resistance Force $\mathrm{Ce}=\mathrm{TAN}(45+\Phi / 2)^{\wedge} 2$			4.60
Unit Weight of Pipe Wp=Unit Weight of Pipe*11*2	kN		3.69
Total Resistance Force of Thrust Block $\mathrm{R}=\mu \mathrm{W}+\mathrm{E}$	kN		557.25
Safety Rate Sf=R/P			0.79
More than Safty Tate x 1.5 is OK		NG	

Answer

Type B	
B	2.50
H	2.00
I1	1.80
L	3.05
h1	0.50
h2	2.50
Type C C	
H	3.00
I1	2.50
L	2.50
h1	4.00
h2	0.30

Type	Safety Rate	Volume of Concrete
B	1.52	$16.87 \mathrm{~m}^{3}$
C	2.66	$35.94 \mathrm{~m}^{3}$

Pipe model

GL

Pipe Material: DIP
PiPe Nominal Diameter: 200mm
PiPe Extemal Diameter: 220mm
Bent: 45°
Internal Pressure: PN16
Depth of Pipe Head from ground: 1.2 m
Type of the soil: Compaction, Norumal sand, Dry

	Unit	PN16
Bent: θ	-	45.00
Nominal Diameter : D	m	0.200
External Diameter:D2	m	0.220
Depth of Pipe Head from ground	m	1.20
Internal Pressure:p	kN/m2	1600
Coefficient of Frictional Resistance within Concrete and Soil: μ		0.50
Unit Weight of Soil: $\gamma \mathrm{s}$	kN/m3	14.00
Internal Friction Angle of Soil: φ	-	30.00
Unit weight of Water: $\gamma \mathrm{w}$	kN/m3	9.80
Unit Weight of Pipe	kN/m	1.23
Unit Weight of Concrete: $\gamma \mathrm{c}$	kN/m3	23.00
B	m	1.00
H	m	1.00
11	m	0.60
L	m	0.81
h1	m	0.60
h2	m	1.60
C	m	0.39
Friction Resistance Force within Bottom of Soil $\mu \mathrm{W}=\mu * \mathrm{~W}$		19.24
$\mathrm{E}=1 / 2 * \mathrm{Ce}^{*} \gamma^{*} *\left(\mathrm{~h} 2^{\wedge} 2-\mathrm{h} 1^{\wedge} 2\right) * 1$		68.90
$\mathrm{P}=2 * \mathrm{p} * \mathrm{~A} * \operatorname{SIN}(\theta / 2)$	kN	46.55
Cross Section Area of Pipe $\mathrm{A}=\mathrm{D} 2^{\wedge} 2^{*} \pi / 4$	m2	0.04
Total Wight against Bottom of Concrete $\mathrm{W}=\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3$	kN	38.48
Load from Soil W1=2*11*B* $\gamma_{\mathrm{s}} * \mathrm{~h} 1$	kN	10.08
Load from Water and Pipe $\mathrm{W} 2=\left(\mathrm{Wp}+\pi / 4 * \mathrm{D}^{\wedge} 2 * 2 * 11 * \gamma \mathrm{w}\right)$	kN	1.85
Load from Concrete $\mathrm{W} 3=2 * 11 *(\mathrm{~B} * \mathrm{H}-\pi / 4 * \mathrm{D} 2 \wedge 2)^{*} \gamma \mathrm{c}$	kN	26.55
Length of Projection of back of Concrete $1=2 * \mathrm{~L} * \operatorname{Cos}(\theta / 2)$	m	1.49
Coefficient of Passive Earth Resistance Force $\mathrm{Ce}=\mathrm{TAN}(45+\Phi / 2)^{\wedge} 2$		3.00
Unit Weight of Pipe $\mathrm{Wp}=$ Unit Weight of Pipe ${ }^{1} 11 * 2$	kN	1.48
Total Resistance Force of Thrust Block $\mathrm{R}=\mu \mathrm{W}+\mathrm{E}$	kN	88.14
Safety Rate Sf=R/P		1.89
More than Safty Tate x 1.5 is OK		OK
Bearing Force of Ground for Supporting Thrust block $\sigma=\mathrm{W} / \mathrm{B} * 11$	kN/m2	32.06
Volume of Thrust Block	m3	1.20
Volume of Pipe (deduction)	m3	0.05
Volume of Concrete	m3	1.15
Aggregate ($\mathrm{t}=20 \mathrm{~cm}$)	m3	0.24
Formwork	m2	4.32

:fill in numerical value
:A safety factor can be included by adjusting numerical value becoming OK

	Unit	PN40				
Bent: θ	-	90.00	45.00	22.50	11.25	2.50
Nominal Diameter: D	m	0.600	0.600	0.600	0.600	0.600
External Diameter:D2	m	0.635	0.635	0.635	0.635	0.635
Depth of Pipe Head from ground	m	1.00	1.00	1.00	1.00	1.00
Internal Pressure:p	kN/m2	4000	4000	4000	4000	4000
Coefficient of Frictional Resistance within Concrete and Soil: μ		0.50	0.50	0.50	0.50	0.50
Unit Weight of Soil: γ s	kN/m3	16.00	16.00	16.00	16.00	16.00
Internal Friction Angle of Soil: φ	-	30.00	30.00	30.00	30.00	30.00
Unit weight of Water: $\gamma \mathrm{w}$	kN/m3	9.80	9.80	9.80	9.80	9.80
Unit Weight of Pipe	kN/m	1.67	1.67	1.67	1.67	1.67
Unit Weight of Concrete: $\gamma \mathrm{c}$	kN/m3	23.00	23.00	23.00	23.00	23.00
B	m	2.70	2.70	1.20	1.20	1.20
H	m	3.50	2.30	2.00	1.20	1.20
11	m	2.20	2.20	2.40	1.90	0.50
L	m	3.55	2.76	2.52	1.96	0.51
h1	m	0.80	0.80	0.32	0.72	0.72
h2	m	4.30	3.10	2.32	1.92	1.92
C	m	0.85	1.64	2.28	1.84	0.49
Friction Resistance Force within Bottom of Soil $\mu \mathrm{W}=\mu^{*} \mathrm{~W}$		547.94	383.99	140.39	83.78	22.05
Passive Earth Resistance Force of Back of Concrete $\mathrm{E}=1 / 2^{*} \mathrm{Ce}^{*} \gamma_{\mathrm{s}} *\left(\mathrm{~h} 2^{\wedge} 2-\mathrm{h} 1^{\wedge} 2\right)^{*} 1$		2150.76	1097.57	626.23	296.47	78.00
Thrust Force of Bending Point (force of outside direction) $\mathrm{P}=2 * \mathrm{p}^{*} \mathrm{~A}$ * $\operatorname{SIN}(\theta / 2)$	kN	1791.48	969.54	494.27	248.33	55.27
Cross Section Area of Pipe $\mathrm{A}=\mathrm{D} 2^{\wedge} 2^{*} \pi / 4$	m2	0.32	0.32	0.32	0.32	0.32
Total Wight against Bottom of Concrete $\mathrm{W}=\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3$	kN	1095.88	767.99	280.79	167.57	44.10
Load from Soil W1=2*11*B* ${ }^{2} *$ h 1	kN	152.06	152.06	29.49	52.53	13.82
Load from Water and Pipe $\mathrm{W} 2=\left(\mathrm{Wp}+\pi / 4 * \mathrm{D}^{\wedge} 2 * 2 * 11 * \gamma \mathrm{w}\right)$	kN	19.52	19.52	21.30	16.86	4.44
Load from Concrete $\mathrm{W} 3=2 * 11 *\left(\mathrm{~B} * \mathrm{H}-\pi / 4 * \mathrm{D}^{\wedge} 2\right)^{*} \gamma \mathrm{c}$	kN	924.29	596.40	230.00	98.18	25.84
Length of Projection of back of Concrete $1=2 * \mathrm{~L} * \operatorname{COS}(\theta / 2)$	m	5.02	5.10	4.94	3.90	1.03
Coefficient of Passive Earth Resistance Force $\mathrm{Ce}=\mathrm{TAN}(45+\Phi / 2)^{\wedge} 2$		3.00	3.00	3.00	3.00	3.00
Unit Weight of Pipe Wp=Unit Weight of Pipe*11*2	t	7.33	7.33	8.00	6.33	1.67
Total Resistance Force of Thrust Block $\mathrm{R}=\mu \mathrm{W}+\mathrm{E}$	kN	2698.70	1481.56	766.63	380.26	100.05
Safety Rate Sf=R/P		1.51	1.53	1.55	1.53	1.81
More than Safty Tate x 1.5 is OK		OK	OK	OK	OK	OK
Bearing Force of Ground for Supporting Thrust block $\sigma=W / B * 11$	kN/m2	92.25	64.65	48.75	36.75	36.75
Volume of Thrust Block	m3	41.58	27.32	11.52	5.47	1.44
Volume of Pipe (deduction)	m3	1.39	1.39	1.52	1.20	0.32
Volume of Concrete	m3	40.19	25.93	10.00	4.27	1.12
Aggregate ($\mathrm{t}=20 \mathrm{~cm}$)	m3	2.38	2.38	1.15	0.91	0.24
Formwork	m2	49.07	32.03	23.37	11.37	4.65
Excavation amount	m3	51.084	36.828	13.3632	8.7552	2.304

[^1]:A safety factor can be included by adjusting numerical value becoming OK

Design procedure of the thrust block by Excel

bigger than 1.5 : OK

OK

OPERATING INSTRUCTIONS FOR

J1 Drilling Machine

1. Machine to be operated by trained personnel.

 2. Instructions to be read before use.| Hy-Ram Mansfield | Hy-Ram Bury |
| :--- | :--- |
| Pelham Street | 9 Portland |
| Mansfield | Industrial Estate |
| Nottinghamshire | Portland Street |
| NG18 2EY | Bury |
| | Lancashire |
| | BL9 6EY |

Tel: 01617641721
Fax: 01617620577

Hy-Ram Enfield Unit 2, Riverwalk Business Park
Riverwalk Road Enfield
EN3 7QN

Tel: 02088058010
Fax: 02088056010

Hy-Ram Livingston 18 Napier Square Houstoun Road Trading Estate Livingston West Lothian EH54 5DG

TEL: 01506440233
Fax: 01506440266

4ccutters
PVCCutters
Holesaw Cutter

J1 Drilling Machine \& Accessories
Facilitates underpressure drilling on service type fittings, especially useful where service connections are made through saddle straps, clamps and welded nipples where inserting directly into the main is not possible.

Description	Application	Cutter Sizes	Body Adaptors
Hy-Ram J1-1 Underpressure Drilling Machine	Drilling through Saddle Straps, Saddle Clamps, Ferrule Straps and Welded Nipples.	19 mm \& 24 mm 3/4* \& 1"AC $3 / 4$ \& 1 1 PVC	$3 / 4^{\prime \prime} \& 1^{\prime \prime} \mathrm{BSP}$

Ref	Product code	Description	
	130-000165	Junior J1-1 Drilling Machine Kit	(®®)
Kit includes			
A		Junior J1-1 Drilling Machine	
B	661-000035	11 Holesaw Spindle	
C	300-000004	10.5 mm Plug Inserter	
D	300-000005	8.00 mm Plug inserter	
E	711-000007	Ratchet Spanner	
F	300-000001	1 1'Ferrule Adaptor	
G	300-000002	34*Ferrule Adaptor	
H	363-000003	$114^{*}{ }^{\prime} \mathrm{BSP}$ Gate Valve (c/w 2×1 "bushes)	
1	045-000057	Black Carrying Case 20° Auto Latch	

Cutters \& Accessories

Product code	Description
$130-000169$	$3_{4} 4^{\prime} \mathrm{AC}$ Cutter
$130-000168$	$1^{\prime \prime} \mathrm{AC}$ Cutter
$130-000166$	33^{\prime} PV C Cutter
$130-000167$	$1^{\prime \prime}$ PV C Cutter

```
Product code Description
117-000058 Holesaw Cutter \(19 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right.\) BSP \()\)
117-000020 Holesaw Cutter \(24 \mathrm{~mm}\left(3 / 4^{\circ}\right.\) BSP)
640-000055 J1 Drill Body Spacer (for use with EBCO Gunmetal Self Tapping Ferrule Straps)
```

Hyram recommend that a pressure test is completed prior to the use of the J1 Drilling Machine. The following test pumps are available for hire and purchase.

Hydrostatic Test Pumps

Rothenberger APso Pump
Fressure testing purnp for carrying out hydrostatic pressure tests in water pipework systerns.

Maximum Pressure:	60kar
Tank capacity:	12 litres
Connection:	12° BSP

Product code	Descoption	
$652-000015$	BP50 Pressure Test Pump	es
$101-000161$	Bedidement Gaige	

Virax 262030 Pump
Pressute testing pump for carrying out hydrostatic presyure tests on water pipework systerms.
Maximum Pressure: 50 bar .
Tank capacity: 5 litres
Connections 12 "BS

Product ced	Desaption	
$652-000033$	Virax Pressure Test Pump	88
$161-000129$	Replacement Gauge	

This unit is design and manufactured by Hyram Engineering Co Ltd.
Hy-Ram Engineering Co Ltd has a policy of continuous improvement in product quality and design. Hy-Ram Engineering Co Ltd therefore reserves the right to change the specification of its models at any time, without prior notice.

Important!

This manual forms a part of the product to which it relates. It should be kept for the life of the product. Any amendments issued by Hy-Ram Engineering Co Ltd should be incorporated in the text. The manual should be passed to any subsequent holder or user of this product.

Safety Information

The Hy-Ram J1 Drilling Machine should only be used by trained and competent operators. As an operator, always ensure that you fully understand how the equipment functions and that you are fully aware of the dangers. Always wear the necessary protective clothing including adequate eye protection, hard hat, gloves, overalls, protective boots etc.

Prior to commencing work, always ensure that the drill kit is complete and fully serviceable. If in doubt replace.

Product Information

The J1 Drilling machine will drill through the centre of $3 / 4$ " BSP (British Standard Pipe) \& 1" BSP Ferrules and nipples.

The Machine operation:

1. Fit the ferrule to the pipe using a wrap around gun metal strap or a repair clamp with a threaded outlet.
2. Remove the plug from the centre of the ferrule.
3. Fit the appropriate adaptor onto the ferrule along with the gate valve.
4. Fit the drill on to the gate valve with the appropriate cutter fitted.
5. Ensure the gate valve is fully open.
6. Connect Hydrostatic Test Pump to port on Drilling Machine. Bleed air back through pump. After bleeding, pressure test to approx. $11 / 2$ times mains pressure. Check for leakage.
7. Disconnect Hydrostatic Test Pump.
8. Locate the ratchet onto the drill spindle and work the ratchet under load in a clockwise direction to drill the main.

DO NOT APPLY EXCESSIVE PRESSURE, LET THE CUTTER DO THE WORK! 95\% OF FAILED DRILLINGS ARE DUE TO OPERATOR ERROR. EXCESSIVE PRESSURE (RESULTING IN HOLESAW DAMAGE) IS THE MOST COMMON PROBLEM.
9. Once the hole has been drilled retract the cutter and shut off the gate valve.
10. Use the relief valve on the side of the drill to remove any pressurized water.
11. Remove the drill and fit the plug inserter spindle with the ferrule plug fitted on the end.
12. Open gate valve and re-fit the plug to isolate the water.
13. Use the relief valve on the side of the drill to remove any pressurized water.
14. Remove the drill, valve and adaptors and the drilling is now complete.

Thread on the drill body $=1^{\prime \prime}$ BSP
Ferrule adaptor sizes $\quad=3 / 4^{\prime \prime}$ BSP \& 1" BSP
Please note gate valves should be $11 / 4$ "BSP bushed down either side to $1^{\prime \prime}$ BSP to allow sufficient clearance for the cutters to travel thorough the valve internal bore.

To drill through a nipple

1. Insert the nipple into the pipe clamp.
2. Fit a gate valve to the nipple (Would need to be a $1 \frac{1}{4 \prime \prime}$ BSP gate valve bushed down to the same size as the nipple on one side and bushed down to 1 " BSP on the drill side).
3. Fit the drill on to the gate valve with the appropriate cutter fitted.
4. Ensure the gate valve is fully open.
5. Connect Hydrostatic Test Pump to port on Drilling Machine. Bleed air back through pump. After bleeding, pressure test to approx. $11 / 2$ times mains pressure. Check for leakage.
6. Disconnect Hydrostatic Test Pump.
7. Locate the ratchet onto the drill spindle and work the ratchet under load in a clockwise direction to drill the main.

DO NOT APPLY EXCESSIVE PRESSURE, LET THE CUTTER DO THE WORK! 95\% OF FAILED DRILLINGS ARE DUE TO OPERATOR ERROR. EXCESSIVE PRESSURE (RESULTING IN HOLESAW DAMAGE) IS THE MOST COMMON PROBLEM.
8. Once the hole has been drilled retract the cutter and shut off the gate valve.
9. With the gate valve closed open the relief valve on the side of the drill to remove any pressurized water.
10. Remove the drill and the pipe is now live up to the gate valve.
11. Connect whatever pipe work you desire to the 1 " BSP side of the gate valve.

Certificate of Calibration.

- This product has been inspected and tested in accordance with the ISO9001 quality control systems and procedures in place at Hyram Engineering Co Ltd.
- This product has no calibration period, periodic, safety inspections should be carried out by the operator if in any doubt please contact the manufacturer for further information

Decommissioning \& Disposal Instructions

These give the instructions for decommissioning and disposal of the equipment and confirm how it is to be taken out of service safely, in respect of the Essential Health and Safety Requirements.

- If a Hyram tool has reached the end of its useful working life and cannot be refurbished it must be disposed of through a licensed scrap or waste disposal facility. Alternatively, a reverse engineering company could be used to strip the equipment for recycling purposes.
- Disposal is the responsibility of the Customer this can also be achieved by returning the product back to the manufacturer.

Warranty Information.

1. Extent of Warranty.
(a) Hy-Ram Engineering Co Ltd warrants to the end-user customer that its products will be free from defects in materials and workmanship, for six months after the date of purchase by the end-user customer, subject to providing proof of purchase.
(b) If Hy-Ram Engineering Co Ltd receives, during the warranty period, notice of a defect in product which is covered by this warranty, Hy-Ram Engineering Co Ltd shall either repair or replace the product, at its option. Any replacement product may be either new or like-new, provided that it has functionality at least equal to that of the product being replaced.
(c) All warranty work will be carried out by Hy-Ram Engineering Co Ltd unless otherwise agreed. On-site warranty and repair or replacement services are available from authorised Hy-Ram Engineering Co Ltd service facilities world-wide.
(d) Customers shall prepay shipping charges for products returned to Hy-Ram Engineering Co Ltd for warranty service, and Hy-Ram Engineering Co Ltd will charge for return of the products back to the customer.
(e) This warranty statement gives the customer specific legal rights. The customer may also have other rights which vary from country to country in the world.

Pre-conditions for Warranty Application.

Hy-Ram Engineering Co Ltd' warranty covers only those defects which arise as a result of normal use of the product, and this warranty shall only apply in the following circumstances:
(a) All the instructions contained in the operating manual have been complied with
(b) And none of the following apply:
(i) Improper or inadequate maintenance;
(ii) Physical abuse;
(iii) Unauthorised modification, misuse or any use not in accordance with the operating manual and good industry practice;
(iv) Operation outside the products specifications;
(v) Improper site preparation or maintenance; and
(vi) Faulty pipe or fittings.

Limitations of Warranty.

(a) Hy-Ram Engineering Co Ltd does not warrant the operation of any product to be uninterrupted or error free.
(b) Hy-Ram Engineering Co Ltd makes no other warranty of any kind, whether express or implied, with respect to its products. Hy-Ram Engineering Co Ltd specifically disclaims the implied warranties of satisfactory quality and fitness for a particular purpose.
(c) To the extent that this warranty statement is inconsistent with the law of the locality where the customer uses the product, this warranty statement shall be deemed modified by the minimum necessary to be consistent with such local law.
(d) To the extent allowed by local law, the remedies provided in this warranty statement are the customer's sole and exclusive remedies.
(e) This tool has been designed for the range of fittings available at the time of its design and development. Hy-Ram Engineering Co Ltd can accept NO liability for the unit's ability or otherwise to work with new or different fittings that subsequently appear in the market place.

Section 6. Water Distribution Reservoir Management

6.1 Necessity of the Reservoir Management 6-1
6.2 Standard 6-2
6.3 Function Survey of the Reservoirs 6-2
6.4 Setting Plan of Float Valve 6-3
Reference:
6.1 Reservoir Survey Sheet R6-1
6.2 Result of the Reservoir Survey for Urgent Task -R6-6
6.3 Location Map and List of the reservoirs in Kigali City R6-7
6.4 Schematic Map of the Distribution System - R6-14
6.5 Schematic Drawings of the Reservoirs R6-15
6.6 Catalogue of Float Valve R6-65

6.1 Necessity of the Reservoir Management

(1) Role of the Reservoir

The reservoir is a basin to store treated water for the purposes of receiving water transmitted from the water treatment plant and distribute water to the service area according to its demand (daily demand especially peak demand) in regulating the hourly fluctuation of water demand.

The reservoir is built in the vicinity of the service area and it is situated at the elevated place for the distribution network so that distribution by gravity flow can be made.

The reservoir has a function to reduce the excessive pressure of the transmission line by storing water in the free water surface.

Operator shall check the amount of water (water level) in the reservoir at appointed times of the day. The maximum water level to be maintained in the reservoir at each early morning should be known to ensure that the system demand is met for the day and the water level should be recorded. Check of water levels at other times of the day will enable to determine if any unusual consumption conditions have occurred.

In case of intermittent supply (rationing), timings for supply of water in the distribution areas are fixed in advance. The water shall be supplied to sub-areas during particular fixed hours by operation of the necessary valves. Routine valve operations are normally done at the reservoirs.

(2) Problem of the Reservoir

1) Use of Bypass Pipe

When the reservoir cannot be used due to its repair and so forth, it is needed for water to directly be distributed bypassing the reservoir. Therefore, a bypass pipe connecting from the inlet line to the outlet line for drawing water is provided.

It becomes the problem that this bypass pipe is used to supply water for the service area of the high altitude than a reservoir which has additionally incorporated after the construction of the reservoir. Pressure from of the transmission pipe directly

Because the pressure of the transmission line acts to the service area directly, the water pressure in the service area becomes higher, and leaks of water in the area increase.
2) No setting or Malfunction of Float Valve

Water level control to prevent overflow of the reservoir is one of the most important management to reduce physical loss. In many cases of existing reservoirs in WASAC water distribution networks, float valves are not installed or not in functioning condition. There is a case overflow cannot be stopped because the inflow valve is not working well. In addition, there is also a case operator for operating valves is not always assigned.

When there is not the setting of float valve, following action are being taken now to prevent overflow;

- Inflow valve is frequently operated at every low and high water level
- Inflow pipe is disconnected from transmission pipe (abandonment of the function as the reservoir)
- Bypass is used daylong or night-time (abandonment of the function as the reservoir)
- Inflow valve is closed in night-time (abandonment of the function as the reservoir)

Because even these are not performed properly, overflow occurs frequently.

6.2 Standard

1) WASAC Standard (Water Supply and Sewerage Systems Procedure Manual)

No description about the figure of volume of the reservoir
2) Japanese Standard (The Design Criteria for Water Supply Facilities: Ministry of Health, Labor and Welfare)

The standard effective capacity of the service reservoir is set at 12 hours equivalent of the maximum daily supply of the service area.

6.3 Function Survey of Reservoir

It is necessary to perform the function survey for the management of the reservoir. Required items to be survey are as follows;

- Service area of reservoir in the distribution network GIS map
- Inflow condition (source, water pressure at inlet, frequency and time)
- Water level fluctuation (continuous measuring for 24 hours by data logger)
- Outflow condition (supply area, time)
- Overflow condition (frequency, time)
- Float valve condition
- Valve working condition (inlet, outlet, inlet check valve)
- Use situation of the bypass pipe (frequency, time)
- Operator duty system (number, shift)
- Flow meter situation

The hearing information from an operator and neighbouring inhabitants is very important, and it is necessary to measure a water level change with water level measuring device with a data logger.

Refer to Reservoir survey sheet, Photo Sheet and Schematic drawing attached hereto.

6.4 Setting Plan of FV

Following setting plan of FV shall be performed.

- Preparation of BoQ of the equipment and materials
- Procurement of the equipment and materials
- Installation of FV
- FV Effect Measurement (Water level measurement of the reservoir)

Note the following about the setting of the float valve;
\checkmark Gate Valve should be installed to allow to maintenance operation.
\checkmark Observe the overflow level and make sure that the outlet flange is always above it, this is to avoid backflow.
\checkmark In case of excessive pressure drop (Dp) across the float valve, to avoid cavitation and possible damages to the float valve, a direct acting pressure reducing valve (PRV) should be installed before the water reach to the reservoir

[^2]\checkmark Function: Automatically controls the rate of filling, and will shut off when a predetermined water level is reached.
\checkmark Type: an equilibrium, single seat upstream pressure balanced float valve
\checkmark Installation body pattern: angle pattern.
\checkmark Pressure: PN16 bars
\checkmark Max. allowable pressure drop (Dp) across the valve: more than 8 bar (to avoid cavitation)
\checkmark Structure: Ductile Iron body, epoxy coating, stainless steel float

Procedure for the Survey and Rehabilitation Work of Reservoirs

List up proposed survey reservoirs selected by Branch Office

Site visit survey for collecting information
Water level measurement
Flow measurement

Analysis of the Problem

Selection of the reservoirs for rehabilitation

Preparation of BoQ of equipment and materials

Procurement of equipment and materials

Installation of FV and other equipment

Effect measurement (Flow measurement)

Reservoir Survey Sheet

Date: 9th April, 2020

No.	Item	Details
A: General		
1	Number of Reservoir	
2	Name of Reservoir	
3	ID Code	
4	Ward	Sector: , District: , Cell: , Village:
5	Branch Office	Nyarugenge, Nyamirambo, Kacyiru, Gikondo, Remera, Kanombe
6	Location	Latitude: , Altitude: , Altitude
7	Function of Reservoir	Storage, Kiosk Reservoir, BPT
8	Age of Reservoir	year
9	Storage Capacity	m3
10	Service area of the Reservoir	
B: Operational Condition		
1	Operational Condition	Operational, Not Operational, Abandoned
2	Operator Assignment	No operator, 1 person, 2 shift in a day, 2 shift in a week,
	Action against to overflow	
3	Wall Leakage	Flowing, Oozed, Nothing
4	Overflow observation	_ times/month, __times/week
	Phenomenon	
	Reason of overflow	
5	Bypass-flow operation	Always/ Nothing, Timing:
	Reason of bypass operation	
6	Inflow Condition	Source:
		Water pressure at inlet:
		Frequency and time:
7	Water level movement	Proper movement, always low level, always no water
8	Issue on Functional Condition	
C:Structure		
1	Form of Reservoir	Circular, Rectangular, Hexagon, Dimension:
2	Foundation	Underground, Semi-ground, Ground, Elevated
3	Structure Material	Concrete, Stones, Steel, Plastic, Other(
4	Inside Dimension	D: $/ \mathrm{L}: \times \mathrm{B}: \quad, \mathrm{H}:$
5	Remarks/ Issue	

Other Information:

Photo Sheet

Reservoir Name:
No:

Photo Sheet
Reservoir Name:
No:

MONT KIGALI (Bas)
 RESERVOIR(300CUM)

LEGEND

1,4,5.Valve DN 150
2,6.Valve DN 200
3. Valve DN 100
7. Tee DN 200×150
8. Tee DDN 150
9. Meter 100
10.Reducer DN 200x100

1. Case of Present Operation Status of the Existing Reservoir

Case	Reservoir	Present Way of Operation
1	$\begin{array}{\|l} \text { Gacuriro(24,25) } \\ \text { Primaire(32) } \end{array}$	Overflow frequently because of inflow valve trouble and no float valve setting
2	Ayabaraya(26)	Inflow pipe is disconnected from a main distribution pipe for prevention of overflow (abandonment of the function as the reservoir)
3	Kigali Bas(113)	For prevention of overflow, inflow valve is frequently operated at every low and high water level.
4	Muendo(72) Nyarurama(118) Chez lando(15)	For prevention of overflow in the night, all inflow valve are closed (Because of much water distribution in daytime, tank is not filled with water) (No water distribution in nighttime)
5	Kibagabaga(71) Nyarutarama(121)	Bypass is used by night for prevention of overflow
6	Fawe	Bypass is used daylong for prevention of overflow (abandonment of the function as the reservoir)

2. Conditions of the Reservoir for Needs of Floater Valve

- Inflow rate is enough to fill the Tank.
- Water fills the full capacity of the tank. Water level rises up to high water level.
- Floater valve is not installed, or it does not function.
- Bypass is always used to prevent overflow.
- Bypass is used at nighttime to prevent overflow.
- Inflow valve is always closed to prevent overflow.
- Inflow valve is closed when water level rises up to high water level.
- Operator is not fulltime-stay at the reservoir site. Especially nighttime.

Result of Reservoir Survey for Argent Task

Date	Branch Name	Reservoir Name	No		ply Condi			Operational				Measures to be taken	Remarks	
				Water Level	Inflow	Outiow	Supply Hours	Floater Valve	Over Flow	Operator Shift	By-pass			
$\begin{aligned} & \text { Sept } 2 \\ & \text { (Mon) } \end{aligned}$	Nyamirambo	Mont Kigali Bas (Golf Mike- Nyakabanda) Resp: Branch	113	High	From Mt. Kigali haut EL1792. The inflow valve is closed at night and any time when operator found overflow. The impulse of in-flow is very strong (EL1792-Kigali Bas EL1683=109m).	Supplied to Nyakabanda Reservoir Supplied net work: -Kivugiza, -Rwarutabura, -Nyakabanda	24 h except power cut or leakage on pipeline	No float Valve DN200 x 1 No flunge at the end of in-flow pipe. Flange volt number 12.	Over flowing can be in one or two houres and many times a month. Day time and night time. Over flow pipe DN110	two shift a day (12 hours x 2)	None	Float valve DN200 is needed urgently as it overflowing any time. Over flow pipe shall be rize up about 300 mm . Additional one sluse valve shloud be set to the existing one in order to decrease cavitation impact.	Capacity of the tank is too small to the distribution discharge. In-flow rate is too big and high pressure. At every one or two houres, operator has to close and open the in-flow valve to prevent overflow and to fill the water in the tank. Function of this tank is just BPT not Reservoir. Cavitation is occured at operation of in-flow valve when close it because of too high pressure.	н
$\begin{aligned} & \text { Sept } 3 \\ & \text { (Tue) } \end{aligned}$	Nyamirambo	Mwendo- Rwesero, Resp: Branch	72	Low	Dn 110 from Mt. Kigali haut. In flow valve is closed night time (18:00-6:00) due to lack of Floa Valve. Mt. Kigali haut EL1792. Mwendo 72 EL1583 Diffe. 209m	Out flow is working only day time.	12 hours	No float Valve DN80 $\times 1$	Over flowing in night time when inflow valve is not closed	One operator working day time and moving into the whole network.	None	Float Valve ND90 is needed to help night supply Pressure reduction on the inflow pipeline (EL 1690?): DN100 (PRV should be installed)	Inlet valve is closed night to prevent overflow Leakage at AirValve and on inflow pipe line.	н
Sept 3 (Tue)	Gikondo	EP GIKONDO (Primaire), Resp: Branch	32	Low	From Rebero and Mburabutura PS,Upper and Down. Water pressure from Rebero was low. Each inflow pipes are connected. From Mubrabutura inlet is bottom of the tank. Two inlet valves are not well function.	Supplying a big part of Gikondo Area.	24 haurs	No float valve DN110 x 1	5 times a month at night	One Operator 24h seven days,	By pass pipes connecting two inlets	Float Valve needed: DN 100 In let Valve dn 80 mm is not working, always open (Needs urgent replacement)	In flow valve is not function, over flow always. Tow infow valves are needed for both inlet.	н
Sept 3 (Tue)	Gikondo	NYARURAMA, Resp: Branch	118	Low	From Re	DN 110 to Kabare Area	5-7 Haurs	No float valve DN110	2 time	One operator 24 hours,	No bypass	Float Valve 100 needed. Over flow pipe is lower than inlet needs some modification before Float installation.	Inlet valve is closed night to prevent overllow	н
$\begin{aligned} & \text { Sept } 2 \\ & \text { (Mon) } \end{aligned}$	Kacyiru	Gacuriro (Kadobogo PM3)	24, 25	High	Inflow Valves can not be closed. Inflow impuls is ordinaly	- Taxtail area '- Other network	24 houres	Existing x 1, DN200, No function No existing x 1 , DN200	Very often at night	One Operator $1 \times 24 \times 7 \times 12$	Bypass is used for UTEX Rwanda because there is high area on the middle point to Utex.	Needed float valve DN200 $\times 2$ Inflow Valves should replaced DN200 x 2	In flow valve is not function, over flow always.. Daytime high consumption, so the overflow not occure in daytime. All inflow and outflow valves are not function so that these shoud be replaced (Number: **).	н
$\begin{aligned} & \text { Sept } 2 \\ & \text { (Mon) } \end{aligned}$	Remera	$\begin{aligned} & \text { Kibagabaga } \\ & \text { (Hospital) } \end{aligned}$	71	Low (Main Pipe Probrem)	Ntora, Rationing 2day /week	Kibagabaga Zone	24 Haurs depending of Rationning program.	$\begin{aligned} & \text { Exist, No function, } \\ & \text { DN200 } \end{aligned}$	Yes	$1 \times$ daytime Network maintenance	Nighttime bypass due to overflow	Need Float Valve Urgently	Bypass is used night to prevent overflow	н
Sept 2 (Mon)	Remera	Nyarutarama (Near Stadium)	121	(Main Pipe Probrem)	Ntora- Nyarutarama-	Nyarutarama, Nyabisindu zones	24 Haurs	No exist, DN110	Lot	1x24×7x12 Network mintenance	Nighttime bypass due to overflow	Need Float Valve Urgenty	Bypass is used night to prevent overflow	H
$\begin{aligned} & \text { Sept } 2 \\ & \text { (Mon) } \end{aligned}$	Remera	Chez lando	15	Low (Main Pipe Probrem)	From Ntora-Gishushu Inflow valve closed nighttime.	Urwego Village	24 Haurs	Exist, No function, DN150	Daytime high consumption but nighttime over flow is occure, so inflow valve is closed night time.	1124x7x12	No bypass	Need Float Valve Urgenty	Inlet valve is closed night to prevent overllow	H
Sept 3 (Tue)	Kanombe	$\begin{aligned} & \text { Ayabaraya } \\ & \text { (Gako) } \end{aligned}$	26	No water because inflow pipe disconnected	Inflow pipe DN80 branched from main of Karenge I DN300 Public tap high pressure	To Gako /Ayabaraya zones	NA	No Exist. DN80	No	One looking nearest network	Main pipe to Network (Required pressure controle) Branched off inflow pipe to the reservoir.	Needs piping rehabilitation at Inlet and Outlet and Float Valve Dn 80.	In flow pipe is disconnected to prevent overflow. PRV shall be installed on the main pipe to distribution network. Distribution area of Reservoir shall be cralified.	н

Reservoir Survey Desire 190821

Date	Time	Reservoir Name	No	Structure				WLat Visit	Storage Condition	Supply Condition			Operational Condition				Measures to be taken	Priority
				Shape	Capacity (m3)	Inlet (mm)	outtet(mm)			Inflow	Outiow	Supply Hours	Floater Valve	Over flow	Operator Shitt	By-pass		
25.07.2019	9:15	Mont Kigali Bas (Golf MikeNyakabanda) Resp: Branch	113	Hexa, Concrete	400	200	200	High	Normal, No leakage	From Mt. Kigali haut. The inflow valve is closed at night and any time when operator found overflow.	Supplied areas: -Kivugiza, -Rwarutabura -Nyakabanda	$\begin{aligned} & 24 \mathrm{~h} \text { except power } \\ & \text { cut or leakge on } \\ & \text { pipeline } \end{aligned}$	No float Valve DN200 x 1	Over flowing can be in 30 minutes and many times a month.	two shift day	None	Float valve DN200 is needed urgently as it overflowing any time	H
25.07.2019	10:21	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Mwendo- } \\ \text { Rwesero, Resp: } \\ \text { Branch } \end{array} \\ \hline \end{array}$	72	Circle, Concrete	50	90	90	Low	Normal, No leakage	Dn 110 from Mt. Kigali haut. In flow valve is closed night time (18:00-6:00) due to lack of Float valve.	Out flow is working only day time.	12 hours	No float Valve DN80 x 1	Over flowing in night time when infow valve is not closed	One operator working day time and moving into the whole network.	None	Float Valve ND90 is needed to help night supply	H
25.07.2019	12:22	$\begin{array}{\|c} \text { Mount Kgli haut } \\ \text { Resp: Kimisagara } \end{array}$	101	Circle, Concrete	400	300	200	Low	Normal, No leakage	Pumping from Karenge station	Supply to Mount Kigali bas	24 hours	No Float Valve DN300 x 1	Not Over flowing	Operator: shift?	None	No need of float valve now but in the future	L
25.07.2019	13:35	NyakabandaGolf4 (Ruwezamenyo) Resp: Branch	146, 148	$\begin{gathered} \text { Hexa, } \\ \text { Concrete } \times 2 \end{gathered}$	600×2	200×2	200	High	Normal, No leakage	from Mount Kigali bas	There is issue of back flow on one pipeline	24 haurs	No float valve, DN200 x 2	Overflow: sometime	Operator: shift?, Indicator is there to show operators the level of water in reservoir.	None	need to localize the source or install anti return valve	ᄂ
29.07.2019	12:12	Rugarama (Rubona), Resp: Branch	138	Circle, Stone	100	80	90	Low	Normal, No leakage	from Mount Kigali haut, Main pipeline $\varnothing 110$ mm now has got 4 junctions from it:, 110 Nyakabanda-Kabeza, 110 Nyakaband Sun city, 110 Kugasoko, NB: All those doesn't have shut off Valve and cant allow water to reach the main reservoir.	Supplied areas: -Rugarama	3.5 haurs	No Float Valve DN80 x 1	None	Some times	None	need independent pipeline., Float Valve not needed now	ᄂ

Gikondo																		
Date	Time	Reservoir Name	No	Shape	${ }_{\text {capacity }{ }^{\text {St }} \text { 3 }}$	linet (mm)	Outlet(mm)	WL at Visist	Storage Condition	Inflow Sup	$\frac{\text { aply Condition }}{\text { Outiow }}$	Supply Hours	Floater Valve	$\frac{\text { Operational C }}{}$	Operator Shitt	By-pass	Measures to be taken	Priority
30.07.2019	10:15	Murambi, Resp: Branch	104	Circle, Stone	50	110	110	High	Normal, No Leakage	From Nyanza Military camp	$\begin{aligned} & \begin{array}{l} \text { supplying Murambi } \\ \text { areaa } \end{array} \end{aligned}$	24 haurs	No float Valve, DN100 x 1	$\begin{aligned} & \text { Over flow is often } \\ & \text { happening. } \end{aligned}$	No Operator,	By pass some time	Float Valve: needed	H
30.07.2019	12:27	Rwandatel, Resp: Branch	144	${ }_{c}^{\text {circle, }}$?	400	300	Low	Norral, No Leakge	From Mont Kigali In let Valve is not working.	Supplied areas: - $\mathrm{-K7}$ - -Magarama Branch.,	24 haurs	No float Valve, DN110 x 1	Reservoir is much over flowing.	One operator 24 hours,	None	Float Valve: not needed now	เ
30.07.2019	1:30	67, Resp: Branch	39, 40	Hexa, Concrete	600×2	200×2	200×2	Low	Normal,No Leakage	From Rwandatel Reservoir, in let valves can't be closed	Kicukir Area	24 haurs	No Float Valve DN200 x 2	Over flows is often happening but not too much.	Two operators,	Yes	Float Valve: not needed now	เ
31.07.2019	8:54	EP GIKONDO (Primaire), Resp: Branch	32	Circular, Concrete	400	PVC110, D: $: 80($ (Bottom $)$	$\left\|\begin{array}{c} \text { out let: } 110 \& \\ { }^{\prime \prime}, 0 \end{array}\right\|$	Low	Normal,No Leakage	From Rebero and Mburabutura PS,Upper and Down.	Supplying a big part of Gikondo Area.	${ }^{\text {H }}$ Haurs	No float valve DN110 x	$\begin{aligned} & 5 \text { times a month at } \\ & \text { night } \end{aligned}$	$\begin{aligned} & \text { One Operator 24h } \\ & \text { seven days, } \end{aligned}$	$\begin{aligned} & \text { By pass pipes } \\ & \text { conneting two } \\ & \text { inlets } \end{aligned}$	Float Valve needed: 100 In let Valve dn 80 mm is not working, always open (Needs urgent replacement),	H
31.07.2019	9:26	RUJUGIRO (Kuri Petito Prince) Resn: Branch	88	Circular, Concrete	100	80	$3^{\prime \prime}$	Middle	Normal, No Leakage Elevation: 1610 m	From Gikondo Carierre	Supplied areas: -RUJUGIRO VILLAGE	24 Haurs	Reservoir has a new float valve in good condition.	None	No need operator.	None	No Need of float Valve	-
31.07.2019	9:42	ReberoCARRIERE, Resp: Branch	134	Circular, Stone	50	80	$\begin{aligned} & \text { Gikondo PVC } \\ & 90, \\ & \text { Outlet 2: } \\ & \text { Kimisange, } \end{aligned}$	Middle	There is a found leakage in out let EP Gikondo manhole.	Supplying res: Rebero	Out let1: EP Gikondo PVC 90, Outlet 2: Kimisange Outlet 3: Kibelion	24 Haurs	No float valve DN80*1	None	One operator 24 hour	None	Needed float valve 3 ".-Float Valve: 3" bridee Needed.	M
31.07.2019	10:28	Rebero, Resp: Branch	133	Circular, Stone	200	In let1: D: 4", In let2: PVC: 200 from Kimisange	110 and $3^{\prime \prime}$	Low	Leaking on surface always.	From Mont Kigali and Kimisange. Water comes from Pumping station .	Supplied areas: Carriere Reservoir Rujugiro Reservoir BNR,-Nyiragasaz	24 Haurs	No float valve DN110 x1, DN200 x 1	1 times in 3 months at night	One operator 24 hours.	None	Float Valve: Needed but getting water from pumps.	M
31.07.2019	11:13	NYARURAMA, Resp: Branch	118	Circular, Concrete	125	PVC: 110	110	Low	Normal,No Leakage	From Rebero	ON 110 to Kabare Area	5-7 Haurs	No float valve DN110	2 times in a months	One operator 24 hours,	None	Float Valve 100 needed. Over flow pipe is lower than inlet needs some modificatio before Float installation.	H

Nyarugenge

				Structure						Supply Condition			Operational Condition				Measures to be taken	Priority
Date	Time	Reservoir Name	No					WL at Visit	Storage Condition				Floater Valve	Over flow	Operatoe Shift	By-pass		
No Need		$\begin{aligned} & \text { Nyabitare MTN } \\ & \text { Antena } \end{aligned}$		Circle, Stone					Located in RuyenziPilot area, the project will be responsible									
2019/7/31	14:11	$\begin{array}{l}\text { Shatton } \\ \text { metallique } \\ \text { (Plateau) }\end{array}$	$\begin{aligned} & 127,128, \\ & 129 \\ & { }_{12}, \end{aligned}$	Elevated 3	250x3				Reservoir will be replaced? Could not enter	Pumping from Centre Ville			DN150 3					เ
No Need		$\begin{array}{\|l} \hline \text { All reservoirs in } \\ \text { Pumping stations } \end{array}$							$\begin{aligned} & \text { Not concerned in this } \\ & \text { mission } \end{aligned}$									

2019/8/7	9:33	Kabizoz	54	Circle, Concrete	250	200	Low	$\left\lvert\, \begin{aligned} & \text { Oil Tank North } \\ & \text { Consumption bigger than } \\ & \text { inflow. No storage }\end{aligned}\right.$ inflow. No storage.	Pumping	No Exist x 1, DN200+Reducer150	$1 \times 24 \times 7$

	Time	Reservoir Name	No	Shape	Capacity m ${ }^{\text {3 }}$	Inlet (mm)	Outlet(mm)	WLat Visit	Storage Condition	Inflow	Outiow	Supply Hours	Floater Valve	Operational Condition	Operatoe Shitt	By-pass	Measures to be taken	Priority
		Utexrwa																
-		Fawe	${ }^{21}$	Circular, Concrete						Ntora	No overflow because of bypass use.		${ }^{\text {No Existing, }{ }^{\text {ON100 }} \text { (}}$			Always		-
		Public Library	55															
09.08.2019	9:40	Gacuriro	24,25	Circular, Concrete	400×2	200×2		High		Inflow Valves can not be closed.			Existing x 1, DN200, No function No existing x 1, DN200	Very often at night			Needed float valve DN200 x 2 Inflow Valves should replaced DN200 x 2	H
-		Rwankuba	145						New reservoir under guarranty time, no need to make visi									

Date	Time	Reservoir Name		Structure				What Visit	Storge Condition	Supply Condition			Operational Condition				Measures to be taken	Priority
	Time	Reservoir Name	No	Shape	Capacity m	Inlet (mm)	Outtet(mm)	WLat Visit	Storage Condition	Inflow	Outiow	Supply Hours	Floater Valve	Over flow	Operato Shift	By-pass		
2019/8/19	Pass	G 10 Kimironko	33	Rect Concrete	100	90	90	Low	Normal, No Leakage	From Kinyinya Bas	Kimironko zone and BCR Area.	15-18 Haurs	None	No	One Operator 24 Haurs	None	No need of float Valve now	L
2019/8/19	9:30	Buhoro	7,8	$\begin{aligned} & \text { Rect, Conc/ } \\ & \text { Circular, } \\ & \text { Stone } \end{aligned}$	100	200		Low	7: No use, 8:Cercle Consumption bigger than inflow. No storage.	Pumping, Rationing			No exist, DN200		3 for Res. and Pupingstation	bypass		L
2019/8/19	10:00	Masoroho (Haut)(Free zone)	96	Rect Concrete	1,000	200	200	Low	Normal,No leakage	Karenge, Masoroho Bas, Rationing Tue, Fry	Economic Zone	24 Haurs depending of Rationning program.	Noo exist, DN200	No	$1 \times 24 \times 7 \times 12$	No bypass	No need of float Valve now	เ
2019/8/19	10:22	Kibagabaga	71	Circular, concrete	200	200	200	Low	Normal,No leakage	Ntora, Rationing 2day /week	Kiibagabaga Zone	24 Haurs depending of Rationning program. program.	Exist, No function, ON200	yes	1daytime	Nightrime bypass due to overfiow	Need Float Valve Urgenty	H
2019/8/19	11:10	Nyarutarama	121	Circular, Concrete	400	${ }^{110}$	${ }^{3 \prime}$	High	Some Leakages on the Surface.	Norora- Nyarutarama-	Nyarutarama, Nyabisindu zones	24 Haurs	No exist, DN110	Lot	1124x7x12	Nighttime bypass due to overflow	Need float Valve Urgently	н
2019/8/19	11:27	Chez lando	15	$\begin{aligned} & \text { Circular, } \\ & \text { Stone, } \end{aligned}$	200	150	110	High	Momozono, Leak from wall	From Ntor-Gishushu	Urwego Village	24 Haurs	$\begin{array}{\|l} \hline \text { Exist, No function, } \\ \text { DN150 } \\ \hline \end{array}$	ves	1124x7x12	No bypass	Need Float Valve Urgently	H
		Bumbogo	\times															
2019/8/19	11:49	G8-Remera	34,35	Hexa, Concrete/ Rect, Concrete	600, 1500	$\left\|\begin{array}{l} \text { Hexa:200, 250/ } \\ \text { Reet } ; 30 \times 2 \end{array}\right\|$	160, 200, 110	$\begin{aligned} & \text { 34: Middle } \\ & \text { 35: Low } \end{aligned}$	Stadium Consumption bigger than inflow. Less storage.	From Karenge and Nove	Stade, Kabeza and Bibare	24 Haurs	34:No exist. DN200*2, DN250*2	No	2: day \& night	None	No need of float Valve now	เ

Date	Time	Reservoir Name	No	Shape	Capacity m 3	Inlet (mm)	Outiet(mm)	WLat Visit	Storage Condition	Inflow	Outilow	Supply Hours	Floater Valve	Over flow	Operator Shit	By-pass	Measures to be taken	Priority
2019/8/19	13:38	$\begin{aligned} & \text { Ayabaraya } \\ & \text { (Gako) }\end{aligned}$	26	Circular, Concrete	50	80	${ }_{90}$	Low	Not Used	From Karenge !	To Gako /Ayabaraya zones	NA	Exist. DN80	no	$\begin{array}{l}\text { One looking nearest } \\ \text { network }\end{array}$	Yes	Needs Network Rehabilitation at Inlet and Outlet and Float Valve Dn 80.	H
2019/8/19	14:40	$\begin{array}{\|l} \hline \begin{array}{l} \text { Cyaruzinge } \\ \text { (Gasogi?) } \end{array} \\ \hline \end{array}$	16	$\begin{aligned} & \text { circular, } \\ & \text { Concrete } \end{aligned}$	No more information				Could not enter	Karenge	No more information							?
2019/8/19	15:16	Nezerwa	107	Elevated	No more information				Could not enter	Rationing			DN200	No more information				L

No	No of Reservoir visited	With Float Valve	With Float Valve not functioning	Without Float Valve/	Urgent to be installed	Recommendation
	22	1	3	18	10	$\ldots \ldots$.

Reservoirs List No.	Qgis		
	Objectid	Location_N	Capacity
125	155	Nzove 1 New	1000
	156	Nzove 1 New	1000
67	157	Karama	1000
	158	Karama	1000
100	159	Mont Kigali	2500
	160	Mont Kigali	2500
124	161	Nzove	1000
126	162	Nzove 1	1000
-	163	Tete	150
-	164	Rushyubi	50
-	165	Burema	50
-	166	Mata	100
-	167	Karembure	25
-	168	Akarambi	10
-	169	Nyarurenzi	100
-	170	Kwamuganga	10
-	171	Skol	100
-	172	NULL	100

RUBONA RESERVOIR(50 CUM)
Nyge-2
Gihara Centre
$\stackrel{\bar{c}}{\bar{c}}$

\qquad To Kagina Pump
From Gisenyi
To MTN
To Rugalika

LEEEND
1,2,3. Vanne
DN 90

LEGEND
1,2. Vanne DN
100
RUYENZI RESERVOIR(400 CUM)
Nyge -6

RUGALIKA/SHELI RESERVOIR(10
 CUM)

1.Valve DN 90
2, 4.Valve DN 60
3. Valve 100

 CUM)

$\left(\begin{array}{l}0 \\ \vdots \\ 0 \\ \vdots \\ \hdashline\end{array}\right)$

$\frac{\text { AMAKAWA RESERVOIR }}{(250 \text { CUM) }}$

(童)
JALI Camp Militaire 1
reservoir(400 CUM)

CUM)

.Tee DN 300x200
2.Vanne DN 200
3.Tee reduced DN 200x80
4.Tee DN80

5,6,7,8. Vanne DN 80
9. Meter 100
10. Vanne DN 100
11. Tee DN 300×100

CHATEAU METALLIQUE

 RESERVOIR(.... CUM)

KARAMA RESERVOIR
 (400 CUM)

JALI CAMP MILITARY 2
RESERVOIR (125 CUM)

KATABARO RESERVOIR

 (... CUM)
INDATWA VILLAGE RESERVOIR(5
CUM)

NYAKABANDA RESERVOIR(1200
CUM)
Nymb-1

26-30
(

$\underset{\varnothing}{\substack{110 \mathrm{PVC}}}$ From Kivugiza
Towards
Muhoza

$\frac{\text { KIGALI RESERVOIR }}{(50 \mathrm{CUM})}$

GACULIRO RESERVOIR(...

CUM)

LEGEND

1,2,4,6,7.Valve DN 200
3.Valve DN 250
5. Valve DN 100

VISION 2020 RESERVOIR(...

 CUM)

NTORA RESERVOIR

(10000CUM)

LEGEND

1,2. Valve DN 600
3. Meter 75
4. Meter 50
5. Reducer 600x400
FAWE GIRLS SCHOOL RESERVOIR

LEGEND

1,2,3,4. Valve DN 100
$5,6,7$. Tee DN 100

RWANDATEL RESERVOIR (75

 CUM)WR 3
(Stone)

LEGEND
1,2,4,5. Valve DN 80
3. Valve DN 100
6. Tee DN 90
7. Tee DN 100x90
8. Meterabo
PETIT PRINCE RESERVOIR(...

GIKONDO PRIMAIRE

 RESERVOIR (400 CUM)

NYARURAMA I
 RESERVOIR(125CUM)

1,2,3. Valve DN 100
4. Water meter DN 100
$\frac{N}{i}$
$\frac{0}{6}$
0

REBERO RADAR
 RESERVOIR(250CUM)

LEGEND
1,2,3,4,5,6,7,8. Valve DN 200
9. Valve DN 150 10,11. Tee DN 200
12,13. Water meter DN 100
14. Water meter DN 200
15. Reducer DN 150×200
OGLXOOL NO 」əכnpəy 91
17,18. Reducer DN 200x100

1.Clamp DN 200x3/4"

GATENGA/KUMUNYINYA
蒿
RESERVOIR
(5 CUM)
Towards
kumunyinya
LEGEND
1.Clamp DN 40x3/4"

GOLFE 10

MASORO BAS RESERVOIR

From
Rmra- 4

FREE ZONE RESERVOIR

$\frac{\text { BUMBOGO SAINT LEONARD }}{\text { RESERVOIR (400 CUM) }}$

KIBAGABAGA RESERVOIR

$\frac{\text { CHEZ LANDO RESERVOIR }}{(200 \text { CUM })}$

GOLFE 8 RESERVOIR

NYARUTARAMA
RESERVOIR(...CUM)

KARAMA-Regie (10 CUM)
N
\vdots
E
\vdots
\vdots
든 气

 Kn

spıemol

 5.Tee DN $1 \frac{11}{4}$
KABEZA/REGIE RESERVOIR (20 CUM)

From
Giporoso

LEGEND
 ${ }^{4} \varepsilon \times^{4}{ }^{\text {w }}$
 Oヘd
RUSHESHE Kiosk Reservoir
(10 CUM)

NYARUREMBO/KABEZA
RESERVOIR (30 CUM)

aNヨอヨา

 4. Water meter DN $\frac{3 "}{4}$
 7.Reducer DN 1"x ${ }_{4}^{3 "}$ 8.Tee DN $\frac{3 n}{4}$
 From
 Моןләло » ¥nousem'LI

GAKO/MURAMBI RESERVOIR

(250 CUM)

12. Reducer Tee DN 300x125
13. Washout \& overflow
NGARAMA Kiosk Reservoir (40
CUM)
Knmb - 11
0N30ヨ7

 15.Water Tap
KANYETABI Kiosk Reservoir(10

BENINKA RESERVOIR

（25 CUM）

∞
$\stackrel{\infty}{1}$
\vdots
\vdots
\vdots
$\varnothing 90$ PVC

BYIMANA/BUSANZA
RESERVOIR
(20 CUM)

O^d 06Ø
1.Clamp DN90x40
5. Washout \& overflow
6. Water tap
$\stackrel{\circ}{\circ}$

RADARI Kiosk Reservoir (20 CUM)

AYABARAYA RESERVOIR
 (30 CUM)

N N E. En

CYIMO CHURCH RESERVOIR
угомұәи
ош!кэ sрлемод
уломұәи
eбekny spıемо_

LEGEND
1,2.Valve DN 100
3.Valve DN 150

BIHEMBE CITY RESERVOIR

 (100 CUM)

∞ \mathbf{N} $\mathbf{0}$ \mathbf{E} \mathbf{y}

RUSORORO RESERVOIR

LEGEND
1,2,3,4,5,6,7,8,9,10.Valve DN 200
11,14,15,18.Reducer DN 200x150
12,13,16,17. Reducer DN 150×100 19,20. Water meter DN 100

Float valve with balanced single seat Mod. ATHENA

The ATHENA is an equilibrium, single seat upstream pressure balanced float valve, which automatically controls the constant level of a tank or reservoir, regardless of upstream pressure variations, and will shut off when the maximum level is reached. Thanks to its exclusive technology ATHENA brings the concept of reliability and performance to the highest standards.

Technical features and benefits

■ Body in GJS 500-7 with three ways, allowing the installation both with an angle or a globe pattern, containing an interchangeable sealing seat and piston in stainless steel and a sliding bush in bronze.

- Mobile block composed of the main shaft, obturator, gasket retainer and piston featuring a unique self-cleaning technology (pat. pending) to reduced the accumulation of dirt and maintenance operations.
- The lever mechanism is obtained from a double rod in rolled steel (single rod for DN 40/50/65) which, by means of stainless steel pivots, puts the shaft in communication with the float which imparts the movement allowing the opening or closing of the valve.
- A large float in stainless steel AISI 304 is connected to the above mentioned rods by means of a stainless steel pipe, onto which it exerts a vertical force.
- Thanks to the balanced single seat the valve will perform with high sensitivity, perfect water tightness even with low pressure values.
- The movements of the obturator during opening and closing are not affected by the incoming water pressure, meaning that transient effects are avoided.

Applications

- Water distribution systems.
- Fire protection storage tanks.
- Irrigation systems.
- Whenever the constant level regulation and control function is required.

Operating principle

Flanged to the incoming pipe, and driven by a large float in stainless steel, the valve automatically controls the water level inside the tank by cutting off the supply whenever it reaches the maximum level and reopens again as soon as it drops.

Open valve
As soon as the water level drops inside the tank the lever, to which the float is connected, will push down the mobile block to the open position allowing the water flow through the valve.

Closed valve
When the water level inside the tanks has reached the maximum level the float, thanks to the lever, will move up the obturator closing the passage through the valve.

Optional

Installation. Athena has been designed with a three ways body, to allow both the installation as an angle and globe pattern level control valve, simply by placing the blind flange to the desired outlet.

- Anti freezing device. On request the valve is provided with a $3 / 8$ " G threaded outlet, which can be used as an anti-freezing device, simply by replacing the tap with a drainage ball valve discharging directly into the tank.
During the winter season, when the temperature drops consistently, the partial opening of the drainage port will create a flow rate inside the valve avoiding frost and possible damages.
- Rod rotation. The rod is normally aligned with the valve axis. It is possible to rotate it on site, with an angle of $45^{\circ} / 90^{\circ}$, to fit the installation requirements.

Technical data

Installation

- Make sure that the supply pipe has the flanges drilled according to the requested PN and that ATHENA is installed in a horizontal position, properly fixed and sustained.
■ Gate valves and filters have to be installed to allow for maintenance operations, and to prevent dirt from reaching the internal components of the valve.
- Position the valve in a place which is easy to reach and wide enough for maintenance and control purposes.
■ Observe the overflow level and make sure that the outlet flange is always above it, this is to avoid backflow.
- In case of excessive Dp, to avoid cavitation and possible damages to the valve, a direct acting pressure reducing valve CSA VRCD series should be installed.

Working conditions

Max temperature $70^{\circ} \mathrm{C}$.
Max pressure PN 16 (please contact us for higher values). To avoid cavitation the Max Dp across the valve should be limited to 8,5 bar for angle pattern, and 6,5 bar for globe pattern installations.

Standard

Designed in compliance with EN-1074/4.
Flanges according to EN 1092/2.
Epoxy painting applied through fluidized bed technology blue RAL 5005.
Changes and variations on the flanges and painting details available on request.

DN mm	40	50	65	80	100	125	150	200	250	300
Kv $\left(\mathrm{m}^{3} / \mathrm{h}\right) / \mathrm{bar}$	21,6	21,6	46,8	68,4	108	155	245	360	648	1008

DN mm	40	50	65	80	100	125	150	200	250	300
Kv $\left(\mathrm{m}^{3} / \mathrm{h}\right) / \mathrm{bar}$	18,4	18,4	39,6	59,4	90	133	209	313	576	864

$\begin{aligned} & \mathrm{DN} \\ & \mathrm{~mm} \end{aligned}$	$\underset{\mathrm{mm}}{\mathrm{~A}}$	$\underset{\mathrm{mm}}{\mathrm{~B}}$	$\underset{\mathrm{cm}}{\mathrm{C}}$	$\begin{gathered} \mathrm{D} \\ \mathrm{~mm} \end{gathered}$	$\underset{\mathrm{mm}}{\mathrm{~L}}$	$\underset{\mathrm{mm}}{\mathrm{H}}$	$\underset{\mathrm{mm}}{\mathrm{R}}$	$\begin{gathered} \mathrm{h} \\ \mathrm{~mm} \end{gathered}$	Weight Kg
40	230	82,5	173	165	600	$\begin{aligned} & \varnothing 220 \\ & \varnothing 220 \\ & \varnothing 220 \end{aligned}$		105	21,0
50	230	82,5	173	165	600			105	21,0
65	290	92,5	193	185	600			180	25,6
80	310	100	212	200	800	200	300	210	32,6
100	350	125	225	220	800	180	400	267	41,0
125	400	125	230	250	800	180	400	267	49,0
150	480	162	351	285	1000	250	400	400	78,5
200	600	183	380	340	1000	250	400	418	118,0
250	730	270	540	405	1220	300	500	510	162,0
300	850	300	610	460	1400	400	500	610	250,0

www.bermad.com.au

Head loss coefficient for angle pattern

Kv coefficient representing the flow rate flowing through the valve fully open, and producing a head loss of 1 bar.

Head loss coefficient for globe pattern

Kv coefficient representing the flow rate flowing through the valve fully open, and producing a head loss of 1 bar.

Distributed by Bermad Water Technologies

Technical details

N.	Component	Standard material	Optional
1	Body	ductile cast iron GJS 500-7	
2	Cap	painted steel Fe 37	
3	Guiding bushing	bronze CuSn5Zn5Pb5 (painted Fe 37 for DN 250-300)	stainless s. AISI 304/316
4	O-ring	NBR	EPDM/Viton
5	Lip gasket	NBR	EPDM/Viton
6	Seat	stainless steel AISI 304	stainless steel AISI 316
7	O-ring	NBR	EPDM/Viton
8	Guiding shaft	stainless steel AISI 303	stainless steel AISI 316
9	Blocking nut	stainless steel AISI 304	stainless steel AISI 316
10	Piston	stainless steel AISI 303	stainless steel AISI 316
11	Guiding ring	stainless s. AISI 303 (painted Fe 37 for DN 250-300)	stainless s. AISI 304/316
12	Counter-seat	NBR	polyurethane
13	Plane gasket	stainless s. AISI 303 (AISI 304 for DN 200-250-300)	stainless steel AISI 316
14	Obturator	stainless steel AISI 303	stainless steel AISI 316
15	Tightening nut	stainless steel AISI 304	stainless steel AISI 316
16	Studs, nuts and washers	zinc-plated steel Fe 37	stainless s. AISI 304/316
17	Upper coupling	zinc-plated steel Fe 37	stainless s. AISI 304/316
18	Lower coupling	stainless steel AISI 303	
19	Pivots	stainless steel AISI 304	stainless steel AISI 316
20	Blocking nut	zinc-plated steel Fe 37	stainless s. AISI 304/316
21	Shaft pivot	zinc-plated steel Fe 37	stainless s. AISI 304/316
22	Upper lever	zinc-plated steel Fe 37	stainless s. AISI 304/316
23	Lower lever	zinc-plated steel Fe 37	stainless s. AISI 304/316
24	Float coupling	stainless steel AISI 304	stainless steel AISI 316
25	Float rod	stainless steel AISI 304	
26	Float		

Section7. Water Distribution Volume Management

7.1 Necessity of the Water Distribution Volume Control 7-1
7.2 Setting of the Opening of Inlet Valve• 7-5
Reference;
7.1 Correlation between NRW and Input, Billed R7-1
Correlation between Billed and Input
7.2 Record of Valve Opening in Kadobogo R7-5

7. 1 Necessity of Flow Control

1) Correlation between Input Volume and NRW volume

Following figures show results of NRW survey of Pilot Project in Kadobogo and Ruyenzi. Based on these results, correlations between input volume, billed consumption and NRW volume were estimated as shown in the table below.

Result of Correlation Coefficient of Pilot Project

Pilot Area	Correlation Coefficient $\left(\mathbf{R}^{\mathbf{2}}\right)$				Remarks
Kadobogo	Whole	PM1	PM2	PM3	
NRW Rate\%	27	22	38	29	
Input-Billed	0.12	0.63	0.23	0.06	Should be correlated. But actually low.
Input-NRW	0.75	0.64	0.96	0.88	High correlation
Billed-NRW	0.04	0.08	0.43	0.01	No correlation
Ruyenzi	Whole	RY1	RY2	RY3	
NRW Rate\%	58	58	62	52	
Input-Billed	0.07	0.01	0.17	0.04	Should be correlated. But actually low.
Input-NRW	0.87	0.89	0.98	0.54	High correlation
Billed-NRW	0.34	0.18	0.29	0.27	No correlation

- Correlation between Input volume and NRW volume is high.
- Correlation between Input volume and Billed volume is low
- Correlation between Billed volume and NRW volume is low
- NRW decreases by reducing input volume

If it is the pipeline of the closed system, there should be a correlation between Input Volume and Billed Consumption. However, correlation is not seen from a result showing in the above table. Correlation is seen only in PM1 of Kadobogo having relatively low NRW rate. Billed Consumption has some changes seasonally, but that is approximately
constant generally. On the other hand, strong correlation is seen in Input Volume and NRW Volume.

Some quantity of loss might be necessary in order to fulfill the water demand. But above result means that excessive Input Volume drifts as a leakage regardless of Billed Consumption. Thus, this excessive input volume should be removed in flow control at the inlet point.

Continuous flow control is possible by the pressure control of PRV, but some reduction must be possible by existing Inlet Valve when PRV cannot be installed. In other words, Inlet Valve opening should be set in the maximum inflow of the day so that the pressure will meet with minimum required pressure for distribution. And that fixed valve opening should be always maintained in same condition.

Kadobogo

Ruyenzi

Kadobogo Monthly Data

Volume	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar- 18	Apr-18	May-18	Jun-18	Jul- 18	Aug-18
Input Ave	20,241	20,378	19,032	17,727	17,442	19,556	20,993	21,270	21,148	21,047	22,049	22,227	22,815	22,304
Billed Ave	14,044	15,011	15,006	13,534	13,421	13,877	14,008	13,232	12,810	12,633	13,887	14,446	15,685	16,104
NRW Ave	6,197	5,367	4,026	4,193	4,020	5,679	6,985	8,038	8,338	8,413	8,162	7,781	7,130	6,201
NRW Rate	31%	26%	21%	24%	23%	29%	33%	38%	39%	40%	37%	35%	31%	28%

Sep-18	Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19
21,803	20,421	19,450	18,597	17,736	17,109	16,196	15,964	16,999	18,114	19,505	19,415	18,951	18,200	17,829
16,211	15,628	14,763	15,203	15,061	15,006	13,713	13,253	13,139	13,453	13,864	14,326	14,278	13,293	12,781
5,592	4,793	4,687	3,394	2,675	2,104	2,482	2,711	3,860	4,662	5,641	5,089	4,673	4,908	5,048
26\%	23\%	24\%	18\%	15\%	12\%	15\%	17\%	23\%	26\%	29\%	26\%	25\%	27\%	28\%

Ruyenzi Monthly Data

Volume	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18
Input Ave	54,836	57,281	56,322	50,530	42,830	41,605	44,847	48,519	48,981	49,235	48,496
Billed Ave	19,500	18,156	17,260	16,604	17,728	20,750	21,758	21,650	19,186	19,106	20,001
NRW Ave	35,336	39,125	39,062	33,926	25,102	20,855	23,089	26,868	29,795	30,128	28,495
NRW Rate	64%	68%	69%	67%	59%	50%	51%	55%	61%	61%	59%

Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19
48,046	45,030	45,073	43,772	45,119	44,762	47,621	50,361	50,055	48,353	48,307
21,543	20,807	19,937	19,493	19,549	20,835	22,393	23,829	22,333	20,636	19,576
26,503	24,223	25,136	24,279	25,570	23,927	25,228	26,532	27,723	27,717	28,731
55%	54%	56%	55%	57%	53%	53%	53%	55%	57%	59%

2) Flow Control

Generally, as for the relational expression between pressure and leak quantity, it is considered that the leak quantity from a hole is expressed in a kind of orifice, and it is expressed as below;

$$
\begin{aligned}
\mathrm{Q}=\mathrm{A} & \times \mathrm{V}=\mathrm{A} \times \mathrm{C} \sqrt{ } 2 \mathrm{~g} \mathrm{~h} \\
\mathrm{Q}=\mathrm{C} & \times \mathrm{A} \times \mathrm{P}^{\wedge} \quad(0.5) \\
\mathrm{Q} & : \text { Leak quantity } \\
\mathrm{C} & : \text { Coefficient by the shape of the leak hole } \\
\mathrm{A} & : \text { Area of the leak hole } \\
& \mathrm{P}: \text { Pressure }
\end{aligned}
$$

The quantity of leak will be proportional to $1 /$ square of the water pressure, and quantity of leak increases if the water pressure becomes higher.

$\mathrm{Q}=$ Billed consumption + Leak $q 1+$ Leak $q 2+$ Leak $q 3$

Function of the Gate Valve

7.2 Setting of the Opening of Inlet Valve

Valve opening was set at 16.75 rounds to 4.0 bar P2

Kadobogo M3		PM2, PM3 No Water			Date: January 30, 2020			
Wheel Round	Time	Pressure P1		Index: 5 minutes				
		Start (bar)	End (bar)	Start	End	Volume $(\mathrm{m} 3 / 5 \mathrm{~m})$	Rate (m3/h)	Rate (\%)
0	8:52	4.9	5.0	389.30	391.20	1.90	22.80	100\%
1						0.00	0.00	0\%
2						0.00	0.00	0\%
3						0.00	0.00	0\%
4						0.00	0.00	0\%
5						0.00	0.00	0\%
6						0.00	0.00	0\%
7						0.00	0.00	0\%
8						0.00	0.00	0\%
9						0.00	0.00	0\%
10	9:00	5.1	5.2	392.30	394.16	1.86	22.32	98\%
11								
12	9:06	5.6	5.0	394.70	396.68	1.98	23.76	104\%
13								
14	9:15	5.0	5.1	397.60	399.55	1.95	23.40	103\%
15	9:20	5.1	5.5	400.10	402.03	1.93	23.16	102\%
15.50	9:27	5.0	5.0	402.60	404.60	2.00	24.00	105\%
15.75	9:32	5.0	5.1	405.20	407.05	1.85	22.20	97\%
16.00	9:40	5.0	5.0	407.40	409.28	1.88	22.56	99\%
16.25	9:45	5.0	4.5	410.00	411.82	1.82	21.84	96\%
16.37	9:55	4.5	4.2	412.80	414.85	2.05	24.60	108\%
16.37	10:00	3.5	3.6	416.20	417.98	1.78	21.36	94\%
16.50	10:10	3.0	3.6	419.00	420.72	1.72	20.64	91\%
16.75	Setting		4.0					0\%

Correlation bettween Input Volume and NRW Volume
Kadobogo

				Sep-17			Dec-17		Feb			Ma																					
Input	19,054	20,389	21,279	19,466	16,350	17,36	18,609	22						22,862		20,913	21,358	18,991	18,000	18,800	16,408	16,120	16,059	12	19,27	19,404	19,885	18,956	18,012	17,633	17,843		
Billed	11,345	13,412	17,374	14,246	13,397	12,959	13,908	14,765	13,351	11.579	13,499	12,822	15,340	15,175	16.541	16.595	15,996	14,792	14,000	16,816	14,367	13,834	12,939	12.886	13,92	13.880	14,221	14.877	13,736	11,265	13.342		
NRW				5,220	2,953			7.929													2.041		3.120										
ut PM1	9,634	10,070	10,309	9,631	8,412	8.537	8.791	9,577	8,391	7.179	8,995	9,134	10,134	11,272	11.607	10,204	9,417	9,410	9,509	9.509	7,676	8.199	8.568	8.521	10,60	9,507	10,527	9,460	9,957	7.782	7,916		
Billed PM1	6,057	6,902	9,089	7,286	6,882	6,766	7.122	7,710	6,002	5,808	6,790	6,684	8,182	7.930	8.708	8,326	7.384	7,609	7.011	8,314	6.843	7,308	${ }^{6.686}$	7.135	6.747	6,968	7.227	7,268	7.538	5.674	6,203		
NRW PM1	3,577	3.168	1.220	${ }^{2,345}$	1,530	1,771	1.669	${ }_{1.867}$	1.789	1,371	2,205	2,450	1.952	3,342	2.899	1.878	2.033	1.801	2.498	1,95	833	891	1.882	1,386	3,313	2.539	3,300	2,19	2,19		1,713		
Input PM2	1.049	1,81	1,758	1,730	1,105	1,108	1.889	2,061	1.519	1,243	1,659	2,330	1.978	872	789	965	1,108	${ }^{892}$	910	${ }_{899}$	${ }^{834}$	701	${ }^{644}$	570	723	1,158	硅		1,316	1.560	1.066		
$B_{1 i l e d ~ P M 2 ~}^{\text {d }}$		501	839		668	692	768	531	664	503	557	322	742	547	668	849		718	863	869	${ }^{742}$	701	534	494									
NRW PM2	670	780	919	${ }^{1,064}$	437	416	721	1.530	855	740	1,102	1,708	1.236	325	121	116	200	174	47	30	92	0	110	76	76	486	229	116	45	99	397		
Input PM	8.371	9,038	9,212	8.105	6,833	7,721	${ }_{8}^{8,329}$	11,056	11,767	11,017	11,674	10,209	10,333	10,718	10,742	9,744	10,833	8,889	7.581	8,392	7,998	7.220	6,847	6,621	8.44	8.739	8.556	8,604	7.039	8,291	8,861		
${ }^{\text {Billed PM3 }}$	4,909	6,009	7.446	6,294	${ }^{5}, 847$	5,501	6.018	${ }^{6,524}$	6,085	5,268	6,152	5.816	${ }^{6.416}$	6,698	7.165	7.420	7,204	6,465	6.126	7.633	6,782	5.825	5.719	5,357	6,098	6,240	6.421	6,833					
NRW PM3	3,462	3.029	1,766	1.811	986	2,220	2,311	4,532	5.682	5,749	5,522	4,393	3.917	4.020	3,577	2,324	3,629	2,224	1.455	759	1.116	1,395	1,128	1,264	2.346	2.49	2,135	1,771	1.542	3,262	2,391		
Volume		${ }^{\text {Jul-17 }}$	Aug 17	Sep-17	Oct-17]	Nor-17	Dec-17	Jan-18	Feb-18	Mar-18	Ap-18	May 18 b	Jun-18	Jul18	Aug-18	Sep-18	Oct-18	Nor-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Jul-19	Aug 19	Sep-19	Oct-19	(oor-19			
Input $A 1$		20,241	20,378	19,032	17,727	17,442	19.56	20,993	21,270	21,148	21.047	22.049	22.27	22.815	22.304	21.803	20.421	19,450	18,597	17,736	17,109	16,196	15,964	16.999	18.114	19.505	19,415	18,951	18,200	${ }^{17,82}$	19,466	1.17	
$B_{i l l e d ~}^{\text {Av }}$		14,044	15.011	15,006	13,534	13,421	${ }^{13,87}$	14,008	13,232	12,810	12.633	13.887	14,446	15.685	16,104	16,211	15,628	14,763	15,203	15,061	15,006	13,713	13,253	13.139	13,453	13.864	${ }_{14,326}$	14,278	13,293	12,78	14,195	1.14	
NRW Ave		${ }^{6,197}$	5.367	4,026	4,193	4.020	5.679	${ }^{6,985}$	8.038	8,388	8,413	8.162	7,781	${ }_{7} 7.30$	6,201	5.592	4,793	4.887	3,394	${ }^{2,675}$	2,104	2.482	2.71	3,860	4.662	5,64	5,088	4,6	4.98	5,048	5,271	1.60	0.40
NRW Rat							29	${ }^{33}$			${ }^{40 \%}$				28\%			244		15\%	12\%				26%	29\%						1.51	
Inout Ave PM		10.004	10.003	9,451	8.860	8.580	8.968	8,920	8.382	8,188	8,436	9.421	10,180	11.004	11.028	10,409	9.677	9,445	9,47	8,89	8.461	8.148	8.429	9,050	9,363	10.031	${ }^{9,83}$	9,88	8.966	8.45	9,308		
Billed Ave PM		${ }^{7,34}$	${ }^{7,759}$	7,752	6,978	${ }_{6,923}$	7.19	${ }^{7,145}$	6,70	6,400	6,427	7.219	7.599	${ }^{8,273}$	8,321	${ }^{8,139}$	7,73	7,33	${ }^{7,64}$	7,38	7.488	6,946	7,043	6.856	6,95	6,98	7,15	7,3,	${ }^{6,82}$	${ }_{6,47}$	7.255	1.15	\%
NRW Ave PM		2.655	2.24	1,698	${ }^{1.882}$	${ }^{1.657}$	1.769	1,775	${ }^{1.67}$	1,788	2,009	2,202	2.581	2,731	2,76	2.27	1.90	2,11	${ }^{1.83}$	${ }^{1.50}$	973	1,20	${ }^{1.386}$	2,19	2.41	3.05	${ }^{2.677}$	${ }^{2.537}$	2,40	1.980			
NRW Rato				18\%	21\%	19\%	203	208	208	22\%	248	23\%	25\%	25\%	25\%	228	20	22	19	17	${ }^{11}$	157	16	24	${ }^{268}$	30\%		26	24	238	22\%		
Input Ave P PN		1.363	1.590	1.531	${ }_{1}^{1,314}$	1.234	1.553	1.690	1,608	1.474	1.644	1,889	1.627	1.213	875	${ }^{954}$	${ }^{98}$	970	90	${ }^{88}$	81	${ }^{726}$	${ }^{638}$	${ }^{646}$	817	89	${ }^{95}$	1.00	${ }^{1,25}$	${ }_{1}^{1,31}$	1.185	1.59	
Billed Ave PM		573	669	${ }^{724}$	675	709	664	${ }^{654}$	566	575	461	540		${ }_{652}$	${ }^{688}$	${ }^{808}$		${ }^{830}$	${ }_{81}$	${ }^{82}$	${ }^{71}$	${ }^{65}$	${ }_{57}$	${ }^{558}$	604	${ }^{631}$					665	1.25	
NRW Ave PM2		790	921	80	${ }^{639}$	525	889	1.035	1.042	89	1.183	1.349	1.090	561	187	146	16	140	84	56	41	67	62	87	213	264	27	32	57	670			
NRW Rato		59	58\%	${ }^{53}$	49	43.	57\%	619	${ }_{6} 6$	614	${ }^{72 \%}$	${ }^{719}$	67\%	46^{4}	21\%	15\%	179\%	$1{ }^{14}$		6%	5\%	9	${ }^{10}$	${ }^{142}$	268	299	299		${ }^{46}$,	
Inout Ave PM		8,874	8.785	8.050	7.553	7.628	9.035	10,384	${ }^{11,280}$	${ }^{11,486}$	10,967	10,739	10.420	10.598	10.41	10.440	9,755	9.034	8,22]	7.957	7,887	7,322	${ }^{6.896}$	7.304	7.935	8.580	${ }_{8,633}$	${ }_{8.066}$	7.97	8,064			
Billed Ave PM		6,121	6,583	${ }^{6,529}$	5,881	5,789	6,014	6,209	5,959	5,835	5,745	6.128	6,310	6,760	7.094	7,263	7.030	6,598	6,74	6,847	6,747	6.109	5.634	5,725	5.898	6,253	6.498	${ }^{6,25}$	5,788	5,665	6,276	1.16	0.90
NRW Ave PM		2,752	2,202	${ }^{1.521}$	1.672	1.839	3,021	4,175	5,321	5.651	5,221	4,611	4,110	3.838	3,307	3.177	2,726	2.436	1.479	1.110	1,990	1.213	1.262	1.579	2.036	${ }^{2,327}$	${ }^{2,13}$	${ }_{1}^{1.81}$	2,192	2,388			
NRW Rea		31\%	25\%)	19\%	22\%	2480	338	40\%	47\%	499\%	48\%	43%	39\%	36\%)	32\%	30\%	28\%	27\%	18\%	148	148	17\%	18\%	22\%	26%	27%	25\%	${ }^{238}$	278	30\%	29\%	1.71	0.48

Input and NRW: High Relation
Billed and NRW: No relation
Input and Billed: No lelation

Input and NRW: High relation
Billed and NRW: No relation
Input and Billed: No eleation

[^3]Correlation bettween Input Volume and NRW Volume
Ruyenzi

Input and NRW: Relation

Input and NRW: High relation
Billed and NRW: No relation
Input and Billed: No lelation

Input and NRW: High relation
Billed and NRW: No relation Billed and NRW: No relation
Input and Billed: No lelation

[^4]Kadobogo M3 PM2，PM3 No Water
Date：January 30， 2020

Wheel Round	Time	Pressure P1		Index： 5 minutes			Rate（m3／h）	Rate（\％）
		Start（bar）	End（bar）	Start	End	Volume $(\mathrm{m} 3 / 5 \mathrm{~m})$		
0	8：52	4.9	5.0	389.30	391.20	1.90	22.80	100\％
1						0.00	0.00	0\％
2						0.00	0.00	0\％
3						0.00	0.00	0\％
4						0.00	0.00	0\％
5						0.00	0.00	0\％
6						0.00	0.00	0\％
7						0.00	0.00	0\％
8						0.00	0.00	0\％
9						0.00	0.00	0\％
10	9：00	5.1	5.2	392.30	394.16	1.86	22.32	98\％
11								
12	9：06	5.6	5.0	394.70	396.68	1.98	23.76	104\％
13								
14	9：15	5.0	5.1	397.60	399.55	1.95	23.40	103\％
15	9：20	5.1	5.5	400.10	402.03	1.93	23.16	102\％
15.50	9：27	5.0	5.0	402.60	404.60	2.00	24.00	105\％
15.75	9：32	5.0	5.1	405.20	407.05	1.85	22.20	97\％
16.00	9：40	5.0	5.0	407.40	409.28	1.88	22.56	99\％
16.25	9：45	5.0	4.5	410.00	411.82	1.82	21.84	96\％
16.37	9：55	4.5	4.2	412.80	414.85	2.05	24.60	108\％
16.37	10：00	3.5	3.6	416.20	417.98	1.78	21.36	94\％
16.50	10：10	3.0	3.6	419.00	420.72	1.72	20.64	91\％
16.75	Setting		4.0					0\％

P1は使用量によって常に変動する。
16．75回転で4．Obarに設定した。

[^0]: KN4 Av 8, CENTENARY HOUSE, Nyarugenge District, Kigali City, PO Box 537, Rwanda. e-mail:
 wasac@wasac.rw,www.wasac.rw

[^1]: fill in numerical value

[^2]: Specification (reference);

[^3]: Input and NRW: Relation
 Billed and NRW: No relation
 Input and Billed: Relation

[^4]: Ruyenzi RY1

