THE REPUBLIC OF INDONESIA NATIONAL DISASTER MANAGEMENT AUTHORITY

DATA COLLECTION SURVEY ON DISASTER RISK REDUCTION

Input from JICA for Sulawesi Reconstruction Master Plan

FEBRUARY 2019

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) YACHIYO ENGINEERING CO., LTD. ORIENTAL CONSULTANTS GLOBAL CO., LTD

GE
CR (3)
19-055

THE REPUBLIC OF INDONESIA NATIONAL DISASTER MANAGEMENT AUTHORITY

DATA COLLECTION SURVEY ON DISASTER RISK REDUCTION

Input from JICA for Sulawesi Reconstruction Master Plan

FEBRUARY 2019

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) YACHIYO ENGINEERING CO., LTD. ORIENTAL CONSULTANTS GLOBAL CO., LTD

DATA COLLECTION SURVEY ON

DISASTER RISK REDUCTION

Table of contents

ocation Map	
CHAPTER 1. Background, purpose and outline of the survey	1
CHAPTER 2. Purpose of Master Plan	2
2.1 Master Plan Target Area	2
CHAPTER 3. Major Cause of Damage	
3.1 Earthquake damaged feature	
3.1.1 Road and bridge	
3.1.2 Port and Coastal Facilities	5
3.1.3 Airport	
3.1.4 Water Resources Facilities	9
3.1.5 Building Facilities	11
CHAPTER 4. Reconstruction Concept	
4.1 Basic concept	
4.2 Working Group for Reconstruction	16
CHAPTER 5. Features of This Disaster	17
5.1 Analysis of Disaster Mechanism	
5.2 Tsunami	18
5.2.1 Identification the Cause of Tsunami with Simulation	
5.2.2 Possibility of liquefaction along the coastal line	
5.2.3 Analysis of Tsunami	
5.3 Liquefaction-landslide	
5.3.1 History	
5.3.2 Analysis and Making Assumption	
5.3.3 Assuming the Conditions of Liquefaction-Landslide	
5.3.4 Analysis of Liquefaction-Landslide	
5.4 Shake	
5.4.1 Damaged Buildings by Shake	
CHAPTER 6. Disaster Risk Analysis Based Planning	46
6.1 Outline of Disaster Risk Map	
6.2 Tsunami and Coastal Area	49
6.3 Fault and Shake	
6.4 Liquefaction-Landslide	51
6.5 Flood	53
6.6 Sediment Disaster	54
6.7 Risk Assessment of Candidate for Relocation Site	55

CHAPTER 7. Packaged Resilient Infrastructure Redevelopment	
7.1 Basic Concept	58
7.2 Target	58
7.3 Procedure	<u></u> 59
7.3.1 Outline	
7.3.2 Set of the target disaster level (safety level)	60
7.3.3 Quantification of the Target Hazard	
7.3.4 Countermeasures against the target hazard	61
7.3.5 Design Code	
7.4 Inseparability of Infrastructure for Disaster Risk Reduction	
7.5 Tsunami countermeasures and Coastal Road network package	
7.5.1 Basic policy	
7.5.2 Regional Tsunami Countermeasures	
7.5.3 Tsunami-resistant design code	
7.5.4 Coastal road network	
7.6 Liquefaction landslide countermeasures package	69
7.6.1 Basic policy	69
7.6.2 Relocation to low risk area	
7.6.3 Groundwater level reduction	71
7.7 Earthquake countermeasures package	73
7.7.1 Basic policy	
7.7.2 Resilient and Redundant Infrastructure	
7.7.3 Avoidance right above the active faults	
7.7.4 Low Reinforcement of the Building Code	
7.8 Flood and sediment disaster countermeasures	
7.8.1 Basic policy	
7.8.2 Countermeasure	
7.9 Infrastructure for new settlement	
7.10 Projects in each sector	
7.10.1 Road and bridge	
7.10.2 Port	
7.10.3 Water resources	
7.10.4 Water supply	
7.11 Disaster Debris Management	
7.12 Project Road map for implementation	<u>94</u>
7.12.1 Quick start project	
7.12.2 Next step project	94
CHAPTER 8. Early Recovery of Community based Livelihood	96
8.1 General Condition	97
CHAPTER 9. New Regulations	
9.1 Spatial Plan	
9.2 Building Code Observance	103

List of Figures

Figure 1 : Master Plan Target Region	2
Figure 2 : Major Disaster Types and their Characteristics occurred in the Region	
Figure 3 : Location of Liquefaction along Coastline	8

Figure 4 : Tsunami Inundated Area in Palu Bay	
Figure 5 : Wide View of Damaged Bay Area	
Figure 6 : Wide View of Damaged Bay Area	
Figure 7 : Basic Concept for Regional Reconstruction	
Figure 8 : Illustration of Cascade Damage Mechanism in Central Sulawesi	
Figure 9 : Damaged Buildings in Biromaru	18
Figure 10 : Analysis of Tsunami Occurrence	
Figure 11 : Tsunami Damage in East Coast	
Figure 12 : Tsunami Damage at Shoreline along Palu City	19
Figure 13 : Assessment of Tsunami Height	20
Figure 14 : Tsunami Source Identification	
Figure 15 : Landslide and Liquefaction related Tsumnami	
Figure 16 : Tsunami Modeling Basis	22
Figure 17 : Tsunami Modeling (1)	22
Figure 18 : Tsunami Modeling (2)	23
Figure 19 : Mechanism of Tsunami	
Figure 20 : Extensive Liquefaction in Coastal Areas	25
Figure 21 : Characteristics of liquefied gravity flow in coastal area	26
Figure 22 : Comparison of the Palu River estuary just before and after the earthquake	
Figure 23 : Collapse by liquefaction or simple landslides occurred at many places along coastal li	ine
Figure 24 : Turnagain Heights, Anchorage, 1964	
Figure 25 : Analysis on Anchorage Liquefaction-Landslide	28
Figure 26 : Collapse of Petobo Point Top	29
Figure 27 : Collapse of Petobo Point	29
Figure 28 : Flow failed part of Petobo point	29
Figure 29 : End deposit part of Petobo point	29
Figure 30 : Relation between alluvial fan and liquefaction-landslide	30
Figure 31 : Diagram of Land Movement.	30
Figure 32 : Diagram of Liquefaction-Landslide Occurrence and Geological Profile	
Figure 33 : Cone Penetration Test in Petobo	
Figure 34 : Cone Penetration Test in Jono Oge	
Figure 35 : Analysis of liquefaction-liquefaction risk	
Figure 36 : Points of observational field survey to identify lateral displacement lineament in Palu	
which suspected as a fault	
Figure 37 : Collapse of the house on the surface rupture zone at 20181103-3 site	
Figure 38 : Collapse of the house on the surface rupture zone at 20181102-10 site	
Figure 39 : Surface rupture at 20181102-6 site, Cemara str. Donggala Kodi districts	
Figure 40 : Surface rupture at 20181103-2 site, Lasoso str., Palu City	
Figure 41 : Map of movement of land (from REUTERS GRAPHICS website)	
Figure 42 : Undersurface condition in Palu from Hennig et.al (2017) and surface condition by	
Watkinson and Hall (2017)	37
Figure 43 : Present-day GPS Movement in the Sulawesi Region (Socquet et al.2006)	
Figure 44 : Palu class 1 geophysical station	
Figure 45 : Seismometer field at Palu class 1 geophysical station	
Figure 46 : Record of Seismometer in Palu on 28th Oct, 2018	
Figure 47 : Resonance	40
Figure 48 : thickness of sedimentary layer to bed rock in Palu Area. Image source: Thein, et.al. (2015)	10
Figure 49 : Several documentations of damage high buildings in central area of Palu City	
Figure 49 : Several documentations of damage high buildings in central area of Palu City	
Figure 50 : Out-of-plane wall and column sway mechanism Figure 51 : Too small reinforced bars used in Roa Roa Hotel	
Figure 51 : Too small reinforced bars used in Koa Koa Hoter	
1 13010 J2 . JUIIII Iallulu	42

Figure 53 : Inadequate stirrup in Rusunawa Lere	42
Figure 54 : Inadequate stirrup in Rusunawa Lere	
Figure 55 : Non-deformed bars still used in Lere,	42
Figure 56 : Non-deformed bars still used	
Figure 57 : Inappropriate design of column and material	
Figure 58 : Collapsed of Mosque	
Figure 59 : Collapsed of Store	
Figure 60 : Damaged Roof of Stores	
Figure 61 : Tilting column of house and moving fence	
Figure 62 : Tilting column of house	
Figure 63 : Total Collapsed of House	
Figure 64 : Total Collapsed of House	
Figure 65 : Partial Collapsed of House	
Figure 66 : Collapsed by Land Subsidence	
Figure 67 : Collapsed by Land Subsidence	
Figure 68 : Disaster Hazard Zone (ZRB)	
Figure 69 : Tsunami inundated area (Source: Digital Globe Open Data Program)	
Figure 70 : Area inundated by tsunami	
Figure 70 : Area mundated by isunami	
Figure 72 : ZRB on tsunami and coastal landslide	
Figure 72 : ERD on tsunam and coastal landshide	
Figure 75 : Image of spatial plan on tsunami and coastal landshide	
Figure 74 : ZRB on Liquefaction-Landslide	
Figure 75 : Down stream of Jono Oge	
Figure 77 : ZRB on Flood	
Figure 78 : ZRB on Sediment Disaster Figure 79 : Petobo	
Figure 80 : Pombewe	
Figure 80 : Folioewe Figure 81 : Talise-Tondo	
•	
Figure 82 : Duyu Figure 83 : Gawalise	
•	
Figure 84 : Japan's Experience on Reconstruction Plan	
Figure 85 : Outline of Packaged Resilient Infrastructure Redevelopment	
Figure 86 : Procedure of Basic Reconstruction Plan for Infrastructures	
Figure 87 : Basic Criteria for Infrastructure under Disaster	
Figure 88 : Design Code	63
Figure 89 : Process for Design Code Application	
Figure 90 : Regional Countermeasure	64
Figure 91 : Coast Area Reconstruction Concept Diagram	
Figure 92 : Palu City Coastal Zone (plan image)	
Figure 93 : Palu Bay East and West Coast	
Figure 94 : The basic design of sea dike in Japan shows in Figure 94. The sea dike is resistant aga	
the target tsunami and storm tide	
Figure 95 : Basic design of sea dike in Japan	
Figure 96 : Tsunami-resilient sea dike	67
Figure 97 : Green sea dike	
Figure 98 : Ruko type building condition in coastal area	
Figure 99 : Tsunami wave pressure for structural design	
Figure 100 : Advantage of the piloti type and Ruko type	
Figure 101 : Fact and Development Policy for Liquefaction Landslide Countermeasure	
Figure 102 : Process for Design Code Application for Liquefaction Landslide Countermeasure	
Figure 103 : Low Risk Sites for Relocation	
Figure 104 : Irrigation and ground water control facilities	72

Figure 105 : Unmoved house with massive foundation in Jono Oge liquefaction damage area and	
image of liquefaction-landslide resistant building Liquefaction resistant building	
Figure 106 : Fact and Development Policy for Earthquake Countermeasure	
Figure 107 : Process for Design Code Application for Earthquake Countermeasure	
Figure 108 : Concept Diagram of Reconstruction Acceleration Logistics	
Figure 109: Spectral Acceleration for Palu	
Figure 110 : Image of Foundation Installation (Piling work)	
Figure 111 : Mechanism of Structural Defect	
Figure 112 : Eccentricity Distance between Gravity Center and Rigid Center	77
Figure 113 : Earthquake Force Concentration to Short Column	77
Figure 114 : Image Figure (3)	
Figure 115 : Images of Incorrect Reinforcement Installation for Concrete Structure	79
Figure 116 : Building Permit (IMB) and Construction Inspection Procedural Outline	80
Figure 117 : Recommendation about Improvement of IMB Process and MKK	80
Figure 118 : Recommendation for Structural Design and Construction Work Visualization (1)	81
Figure 119 : Recommendation for Structural Design and Construction Work Visualization (2)	
Figure 120 : Target infrastructure in the urban districts and suburbs of Palu City Area	83
Figure 121 : Target infrastructure in The East Side Mountain Area	84
Figure 122 : Target infrastructure in the gulf area and the upstream area	
Figure 123 : Palu Urban Area Liquefaction Landslide Site Map	86
Figure 124 : Palu City Coastal Zone (plan image)	87
Figure 125 : Image of Ring road	88
Figure 126 : Image of permanent and temporary road in Balaroa area	88
Figure 127 : Jembatan Palu II	89
Figure 128 : Roundaboud intersection in Palu	89
Figure 129 : Landslides in Donggala	
Figure 130 : Image of Slope Protection	89
Figure 131 : Earthquake Countermeasure of Existing Bridge	
Figure 132 : Coastal Logistic Network	
Figure 133 : Palu City Coastal Zone (plan image)	
Figure 134 : Disaster Debris Management Maps	
Figure 135 : Implementation Plan	
Figure 136 : Risk Analysis by Infrastructure	
Figure 137 : Example of Value Chain of Fish Farming and Possible Intervention by the Program .	
Figure 138 : Example of Value Chain of Furniture and Possible Intervention by the Program	
Figure 139 : Immediate Support by Stakeholders for Successful Implementation of "Shining on the	
People" Program	
Figure 140 : Possible Action Flow between Stakeholders including Japanese Company(s)	
Figure 141 : Recommendation about Improvement of IMB Process and MKK	103

List of Tables

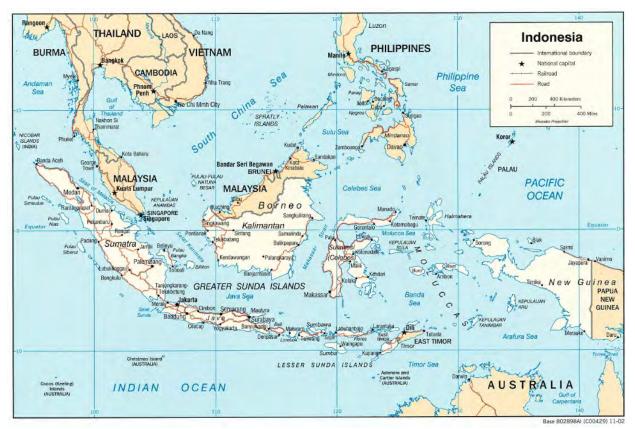

Table 1 : Current Status of the Target Region (Population, Industry and Community)	2
Table 2 : Numbers and Rates of the Damaged Bridges	4
Table 3 : Legend of Damage Level	4
Table 4 : Facility Damage Status	
Table 5 : Degree of damages of school buildings	11
Table 6 : Degree of damages of the Public building	11
Table 7 : Damages of Buildings	12
Table 8 : Analysis of Tsunami Phenomena	27
Table 9 : Analysis of Liquefaction-Landslide Phenomena	34
Table 10 : Analysis of building damage phenomena in central area of Palu City	44

Table 11 : Criteria and Guidance for Disaster Hazard Zone (ZRB) Table 12 : Some examples of Kaili tradition of place-names on disaster	
Table 12 : Some examples of Kall tradition of place-names on disaster	
	50
Table 14 : Criteria and Guidance for Disaster Hazard Zone (ZRB) on fault and shake	
Table 15 : Criteria and Guidance for Disaster Hazard Zone (ZRB) on liquefaction-liquefaction	52
Table 16 : Criteria and Guidance for Disaster Hazard Zone (ZRB) on flood	53
Table 17 : Criteria and Guidance for Disaster Hazard Zone (ZRB) on sediment disaster	54
Table 18 : Consideration Points in improving infrastructure	60
Table 19 : proposed facilities	71
Table 20 : proposed river facilities	92
Table 21 : SMEs and Cooperative existed in the Target Area	96
Table 22 : Categories and Definitions of SMEs	96
Table 23 : Possible Target Programs for Project Implementation	98
Table 24 : Related Ministries and Their Relation to Livelihood Recovery Program	.100
Table 25 : Guidance for Disaster Hazard Zone (ZRB)	.103

Appendix

Progress of examination of liquefaction landslide (inland area)

•

Location Map

Source: U.S. Central Intelligence Agency 2002

CHAPTER 1. Background, purpose and outline of the survey

The disaster data in Indonesia has been collected including Tsunami, flood, sediment disaster and so on in this study as the data collection survey. Meanwhile, the Republic of Indonesia (hereinafter referred to as "Indonesia") has been struck by a major earthquake in September 28, 2018 with the magnitude of 7.4 in the middle of Sulawesi. After the earthquake struck the region, tsunami swallowed at the coastal area of the city as well as liquefied land destroyed number of buildings and houses.

As an emergency response, basic data related to this complex disaster were collected to input for sulawesi reconstruction master plan. The collected data includes the result of geological survey in liquefaction and land slide area in Kota Palu, Kab. Sigi and Kab. Donggala and also in relocation area.

This report shows input from JICA for sulawesi reconstruction master plan and an appendix indicates the result of geological survey.

CHAPTER 2. Purpose of Master Plan

Indonesia has been struck by a major earthquake in September 28, 2018 with the magnitude of 7.4 in the middle of Sulawesi. This devastating earthquake had shaken the region with the epicenter around 80km from Palu city, the capital of Central Sulawesi Province. After the earthquake struck the region, tsunami at several meters in height swallowed the coastal area of the city as well as liquefied land destroyed number of buildings and houses with large amount of casualties reported. According to the official announcement by Badan Nasional Penanggulangan Bencana (BNPB) on October 21st, 2018, death toll accounted at 2,256, missing toll at 1,309, and over 220 thousand people are forced to evacuate. Estimated total loss by the disaster accounts 13.8 trillion Rupiah (approx. 100 billion Japanese yen).

The government of Indonesia after the disaster all together tries to stand together to fight against the disaster effect and recover from it by the slogan of "A Better, Safer, More Sustainable Rehabilitation and Reconstruction." Under such circumstance, a large demand of restoration and reconstruction master plan is growing, and the Japanese government is seeking the way to support Indonesian government to formulate the master plan, which will effectively utilize disaster recovery and reconstruction will take smooth progress by scientific and technological approaches, and the master plan itself should seek continuous reconstruction of the damaged region towards better development in the future. The damage recovery and reconstruction shall not be stalled and the development shall benefit to the region, further the master plan shall contribute to the national development expressed in the national development plan.

Source: Prepared by JICA Mission Team

Figure 1 : Master Plan Target Region

2.1 Master Plan Target Area

The target of the master plan formulation is set in the disaster affected region of Palu, Sigi, Donggala and surrounding areas in Central Sulawesi Province. There are some significant condition before the disaster occurrence of the region described below.

Table 1 : Current	Status of the Target Region	n (Population, Industry	v and Community)
	Palu	Sigi	Donggala
Population	342,754	215,030	277,620
Industry	Manufacturing, Fishery	Agricultu	re, Fishery
Community	SMEs, Co-operative	SMEs, Agricultural (Group, Fishery Group

Source: Prepared by JICA Mission Team based on the government agencies provided data.

CHAPTER 3. Major Cause of Damage

The earthquake at magnitude 7.4 was triggered by the lateral deviation to the Palu-Koro fault, and caused number of major effects as listed below.

- Displacement of faults
- Major vibration to corrupt building structures
- Seabed layer slides to generate tsunami
- Liquefaction and landslide at inland locations

As listed above, devastating damages were caused by multiple events of disaster, and the affected area is relatively large. There are two disaster phases, and the first phase has brought major damages to the infrastructure, such as roads, ports, irrigation to the status of dysfunction. The second disaster phase then brought social damages to the region.

Source: JICA Mission Team

Figure 2 : Major Disaster Types and their Characteristics occurred in the Region

3.1 Earthquake damaged feature

In order to strategize how to formulate a master plan, it is important to understand current status of disaster damage features in the target region. The following section summarizes damage and current status of critical infrastructure, transportation, irrigation and social service infrastructures.

3.1.1 Road and bridge

(1) Bridges

There are total 82 bridges in Palu City and its perimeter. The table below shows the numbers and rate of the damaged bridges. Number of bridges without damage includes the bridges under construction (Culvert and Steel truss bridge).

Table 2 : Numbers and Rates of the Damaged Bridges						
Item	Collapsed or Lost	Heavy Damage	Moderate Damage	Minor Damage	No Damage	Total
Number	2	3	3	61	13	82
(Jumbatan Palu IV)	(Donggala)					
	(South Palu)					
	(East Coast)	(Pantloan)				
Rate	2.4	3.7	3.7	74.4	15.8	100%
<u>с.</u>						

Source: JICA Mission Team

Table 3 : Legend of Damage Level			
Damage Level	Description		
Collapsed or Lost	Bridge that original shape is not kept, or it was lost by tsunami.		
Heavy Damage	Damage such as cracks with heavy deformation, buckling, break of re-bar rod. Recovery of traffic requires much time.		
Moderate Damage	Partial or local cracks, buckling, partial break of re-bar, separation of concrete. Traffic for rescue operation and transportation of help supplies is kept without restoring or within emergency treatment.		
Minor Damage	By simple repair, restoring of original functions is possible.		
Source: UCA Mission	n Taam		

Source: JICA Mission Team

Damages

Most of the bridges in Palu Ciry and its perimeter were damaged by the earthquake. However, very little bridges were damaged compared with a damage rate in Japan. There are possibility that loosen sand layers, which triggered liquefaction, has been softened by the move of earthquake. Nevertheless the damages of revetment around bridges were observed everywhere. Twelve (12) steel truss bridges, which are very strong structure, keeps their shape without heavy damages. However, small damages to concrete structures have occurred because of the moves of their heavy weights.

One steel arch structure (Jembatan Palu IV) was destroyed by the earthquake move in north-south direction.

Collapsed Jembatan Palu IV

Hit of Girder on Abutment

(2) Roads

Damages of the arterial roads in the central area of Palu City are a little except sidewalks. Curbstones and pavement are still crushed without restoring. However, there are many affected sections by the earthquake observed on the arterial road along the coastal line heading for Donggala and Pantoloan. Cracked and waved roads due to earthquake are seen, even though some section were restored. The damage of the road becomes serious so as to approach the stricken area, cracked and partially turned into gravel.

Collapse of Road near Liquefaction Area

Damaged Road Surface by Tsunami

3.1.2 Port and Coastal Facilities

(1) Port

Located in the central part of Sulawesi Island, there are three major harbors in Palu Bay, Pantoloan Port, Wani Port and Donggala Port. Besides this, there are some scattered small-scale ports and private-owned harbors.

The port of Pantoloan is located in the northeastern part of the city of Palu, about 20 km from the city of Palu. It is the largest harbor in the bay. It is positioned as a major port in the National Port Master Plan formulated in 2017 and it is a major gateway to economic activities in the region. Pantoloan Port is a commercial port, and Perindo 4, a state-owned port management company, is managing and operating the port. A regular route is in service between Makassar in the southern part of Sulawesi Island, Balikpapan in Kalimantan Island and Surabaya in Java Island.

Wani Port and Donggala Port are located in the administrative area of Donggala, unlike Pantoloan Port located in the administrative area of Palu City, Wani Port is 3 km north of Pantoloan Port, Donggala Port is Pull City Northwest, It is located about 40 km away from the city of Palu. Both ports are positioned as logistically collector ports in the nationwide port master plan and serve as a base for transporting goods in the port area. Both ports are non-commercial ports, and the management and operation of the ports is carried out by a port operation unit (umbrella of Ministry of Transportation of Indonesia).

In the city area in the Palu Bay including Palu City, the front is surrounded by the Palu Bay and the back is a mountain, and each urban area is connected by a road running along the coast, but from the eastern urban area to the western urban area on land Movement needs to detour greatly around Palu Bay (about 60 km from Donggara Port to Wani Port). For this reason, ports such as Pantoloan Port are important centers for economic activities in each area of the Palu Bay.

In addition, the road running west of the Palu bay is maintained so that the mountain is close to the coast, so it is in line with a steep slope, and in the event that a sediment disaster occurs, transportation of goods will have no choice but to rely on maritime transport. The road is also being maintained in the west side beyond the mountain, but it is similarly maintained along the steep slope along the coast.

- Pantloan Port
 - > Infrastructure of the Port was hardly damaged and can be used.
 - Cranes were damaged and need to be replaced.

- Road from this port to urban area is fine, so this port can be utilized as a transportation base for restoration and reconstruction.
- Wani & Donggara Port
 - > Both ports were heavily damaged by earthquake and tsunami.
 - In Wani Port, there are a lots of Debris and Wastes caused by tsunami and the Dock next to port was also destroyed.
 - > In Wani Port, several ships were stranded by tsunami. This can be utilized as Memorial place.
 - In both ports, a restoration and reconstruction policy of port facilities include disposal of Debris and Wastes based on the further survey and assessment.

Wani Port: Seawall / pier, behind facility / housing and other huge tsunami damage. Boat ride

Pantoloan Port: The damage is limited. Collapse of the gantry crane due to the earthquake.

• Donggala Port:

The former pier in the 1950s construction (by the Netherlands) was slightly damaged. Liquefaction in the landfill in recent years, traces of lateral flow. In addition, a part of the newly constructed harbor and pier collapsed due to large-scale collapse of the ground which is thought to be caused by liquefaction.1

Donggala Fishing Port: Pier damage

Coastal Protection

This section discusses the damage of September, 2018 disaster event and the proposed strategy for rehabilitation and reconstruction. The overall cost estimates for the coastal area is in the range of IDR780-2,600 billion (JPY6-20 billion), including construction of tsunami sea dyke, Donggala seawall restoration, coastal revetment rehabilitation, coast recovery, mangrove rehabilitation and plantation.

In the discussion, the coastal area of Palu Bay is divided into two zones; (1) Palu City Coastal Zone and (2) Palu Bay East and West Coast.

(2) Coastal facilities

1) Palu City Coastal Zone

The coastal part of Palu City has experienced significant structural damage and loss of life due to tsunami inundation and liquefaction landslide. Based on the observed liquefaction landslide (orange lines in below figure), it was judged that the areas within 120m from the coast line are suspicious for potential liquefaction landslide (Red colored zone in below figure). Further assessment of ground stability (e.g. soil boring tests) should be performed in order to determine the potential hazard areas. The tsunami inundation was observed within 100 to 450m from the coast line (red + yellow colored zones in below figure). These areas are prone to tsunami, and therefore should be restricted from being used for residential purpose, unless appropriate structural measures are implemented.

Source: JICA Mission Team Figure 3 : Location of Liquefaction along Coastline

2) Palu Bay East & West Coast

Tsunami inundation was rather limited to the areas close to the shoreline in the east and west coasts of Palu Bay, thanks to the topographical characteristics where the elevation quickly reaches 10m within tens of meters away from the shoreline. However, many houses and buildings located in the low elevation areas were devastated by tsunami. These areas should be restricted from being used for residential purpose, and limited to the use for day time activities, such as restaurants and fishing huts.

Figure 4 : Tsunami Inundated Area in Palu Bay

Ground soil settlements due to liquefaction and landslide were also observed along the east and west coasts of Palu Bay. In general, they seemed to occur on the beach or on the sea side of the coast line, and therefore did not affect the houses and buildings, except the landslide occurred near the Donggala Port. There was a significant landslide, most likely induced by liquefaction, which destroyed a number of buildings (see photo below). Immediate rehabilitation of the coastal protection structure is required. The inhabitants may need to be relocated considering the tsunami hazard.

Source: JICA Mission Team

Figure 5 : Wide View of Damaged Bay Area

- > Many houses and facilities were destroyed by earthquake and tsunami.
- Some coastal area can be utilized as a place to dispose of Debris and Wastes.

3.1.3 Airport

There are several structural damages identified due to earthquake all well as runway and taxiway facility damages.

IMPACT

Sysal jufry – palu Airport ATC Tower, collapse and cannot be operated. <u>CONTINGENCY PLAN</u> *Crisis-time* airplane in control using vhf – portable <u>FOLLOW-UP</u> Based on pp 77 on 2014 becoming evite airb Case us LEDND/(cime)

authority <u>Perum LPPNPI(</u>airnav indonesia), will be fixed this year.

DAMPAK Terminal Building (15196.72 m²) experience severe damage CONTINGENCY PLAN Passenger in emergency time will be accomodate in temporary terminal.

Follow-Up Revitalization plan in terminal in 2018 approximated needs Rp. 75.980.000.000,-

Mutiara SIS Al-Jufrie Airport

Air Sector Facility Damage

IMPACT There is structured damaged in a 500mlong runway.

CONTINGENCY PLAN

In crisis time, runway operated 2000 mx 45 m (able to serve atr 72 and 737 500 (mtow) B737 900/800/a 320 (rtow)

FOLLOW-UP

runway reconstruction require 500 m x 45 m Approximated cost : Rp. 45.000.000.000,-

3.1.4 Water Resources Facilities

(1) Irrigation Facilities

Irrigation facilities in Sigi Prefecture and Palu City received serious damages due to the earthquake. In the Gumbasa irrigation scheme, the main canal length is 36 km and the irrigation area is approximately 8,000ha, however the supply of irrigation water had been stopped because the facility is broken by the earthquake. Summary of damaged facilities are shown in the table below.¹

¹ Interview survey for Balai Wilayah Sungai III (Nov. 27)

	Table 4 : Facility Damage Status
Facilities	Damage situation
Weir (river water intake)	There is no serious damage.
Main Canal	The original form of the canal is lost in and around liquefied damage area. Huge number of cracks occur along 29km of the canal.
Secondary Canal	There are 20 secondary canals. Almost secondary canals are damaged.
Diversion Works	There are 58diversion works along main canal. More than half number of diversion works are serious damaged.
River Crossing Works	Many river crossing works allocated along main canal, the almost works is damaged and cannot be functioned.
Irrigable farm Land	Irrigated farm lands were lost due to liquefaction in below three areas
	Petobo : 14ha
	Jono Oge : 200ha
	Sibalaya : 40ha.
other	Many number of tertiary canals, small diversion boxes are damaged

Table 4 : Facility Damage Status

Source: JICA Mission Team

There are 99 medium and small scale irrigation scheme, total irrigation area 11,029ha in Sigi Prefecture. These irrigation facilities also had damage by earthquake, the quake damage assessment is currently proceeding in the prefecture.²

Destroyed irrigation canal in petobo area

Destroyed diversion work in Jono Oge area

(2) River Facilities

Most of the revetments along Palu River were damaged: cracked concrete walls, waved tops of bank, collapsed promenade of concrete bricks and lost walls. The small rivers are similar, too, and the same phenomena are seen.

² Interview survey for Palu City is not carried out at the present time(Nov. 28)

Cracks on Top of Banks

Collapse of Revetment

3.1.5 Building Facilities

(1) Damages

The building facilities had major damages due to earthquake and tsunami. Not only coastal area (Palu) but also inland area, such as Sigi, had large damages as well. In particular, damage to the building due to liquefaction of the ground is devastating. The table below summarizes the damage of schools and public facilities.

1) School building

Table 5 : Degree of damages of school buildings

		De			
Area	Classification	Heavy Damage	Slight to moderate Damage	No Damage	Total
	Primary School (SD)	32	73	24	129
Palu Area	Junior High School (SMP)	3	13	6	22
	Sub-Total	35	86	30	151
	Primary School (SD)	68	54	98	220
Sigi Area	Junior High School (SMP)	10	20	23	53
	Sub-Total	78	74	121	273
Total of Palu and Sigi area		113	160	151	424

Source: Ministry of Education Palu and Sigi

2) Public building

Table 6 : Degree of damages of the Public building

No	Use	De	Total		
	Use	Slight	Modelate	Heavy	Total
1	Public Office building	1	1		2
2	Ministry and Agency Building	8	8	12	30
3	District Office	2	5		8
4	Village office	25	7	3	46
5	Integrated Processing unit		1	1	2
6	Health Center	8	2	2	14
7	Subsidiary Helper of Community Health Center	10	3	2	28
	Total	54	27	20	130

Source: JICA Mission Team

3) Other Buildings

Table 7 : Damages of Buildings

No	Name of the building	Degree of Damages
1	Palu City Hospital ANUTAPURA	Totally damaged.
2	Province Hospital UNDATA	Slightly damaged but structure is not damaged.
3	Palu city fire station	Totally damaged.
4	Ministry of Public works building	Moderate damage but structure is not damaged.
5	Palu city Apartment house	Totally damaged.
6	Airport control tower	Totally damaged.
7	Palu city office	Slightly damaged but structure is not damaged.

Source: JICA Mission Team

(2) Location

Source: JICA Mission Team Note: SDN (Primary school) SMP (Junior high school) Figure 6 : Wide View of Damaged Bay Area

(3) Picture

1) Primary school: SDN INPRESS BALAROA (Palu City)

Before Earthquake

After Earthquake

2) Primary school: SDN INPRESS JONO OGE (SIGI prefecture)

Due to earthquake and liquefaction, the school buildings had totally destroyed

3) Palu City Hospital ANUTAPURA

Before Earthquake

After Earthquake: Totally damage

1) Airport control tower

Due to earthquake, the control tower had critical damages

Destroyed control room

Temporary Operation in the Prefabrication house

2) City apartment house

3) Shopping mall

CHAPTER 4. Reconstruction Concept

4.1 Basic concept

The goal of the reconstruction shall be in line with the national level redevelopment slogan as stated below.

Build Back Better, Safer, More Sustainable for Resilient Indonesia

The purpose of the reconstruction assistance project is to recover and reestablish in the region in the shortterm stage, and to reinstate regional industry and bring sustainable economic activities back to the disaster damaged region in the mid to long term stage. In order to achieve such objectives, redevelopment of infrastructure and livelihood in the region is fundamental, so that the effective and well-phased reconstruction plan should be made for appropriate implementation for the regional redevelopment promotion.

Through the reconstruction of the region, resilient society should be formed in order to protect and improve the society itself on both hard (infrastructure redevelopment) and soft (relocation, emergency evacuation, livelihood recovery) aspects, because the region and lives shall be protected against future disaster and uncertainty of effects for better and continuous production and living in a safe environment.

The basic concept for the regional reconstruction will be structured by three core actions as shown below.

Figure 7 : Basic Concept for Regional Reconstruction

The expected regional reconstruction master plan shall be formulated knowing the multiple disaster occurrence mechanism, especially of earthquake, tsunami, liquefaction and landslide. As a matter of fact, this earthquake disaster is very complicated due to the combination of tsunami and liquefaction, especially liquefaction brought enormous number of deaths. People living in there have to face with how to reduce the disaster risk. In order for that, people have to combine probable countermeasures by all means. The master planning should be implemented taking the following strategical actions into consideration.

- > To re-establish resilient society against disaster by "Build Back Better" philosophy
- > To formulate effective and efficient reconstruction master plan
- > To redevelop resilient region with appropriate urban and spatial development plans

- To setup risk reduction mechanism by infrastructure arrangement considering combination of multiple infrastructure.
- > To implement reconstruction projects in appropriate phasing expecting step-by-step method
- > To implement reconstruction by people-and-community-based perspective

The regional reconstruction plan should be formulated just after composing reconstruction master plan considering hazard, housing relocation, local industrial rehabilitation, community-based activities, overall infrastructure redevelopment, and others in Palu, Sigi and Donggala. In light of the above described hazard and risk assessment of the target region. There are several aspects to be incorporated in order to improve the affected region.

(1) Disaster Risk Analysis based planning

It is important to understand the mechanism of cascaded effect of disaster. There are several cascaded disasters which took place by mixing of different disasters. Tsunami is one kind of the results. Liquefaction-landslide also occurred in a cascaded mechanism, and made more devastating effect. Buildings noncompliance to the building code also made serial disaster effect leading casualty.

(2) Packaged Resilient Infrastructure Redevelopment for Comprehensive DRR

In order to reduce risk of such a complicated disaster, it must be necessary to combine all countermeasures effectively. That means not to recover each infrastructure as it existed, but to make a comprehensive plan to reduce risk even if there is some difference from original purpose of each infrastructure. For example, the purpose of river improvement is considered mainly for flood or water resources, but it can contribute the risk reduction of liquefaction-landslide by groundwater level reduction in affected area through making the water level of river much lower.

(3) Early Recovery of Community Based Livelihood

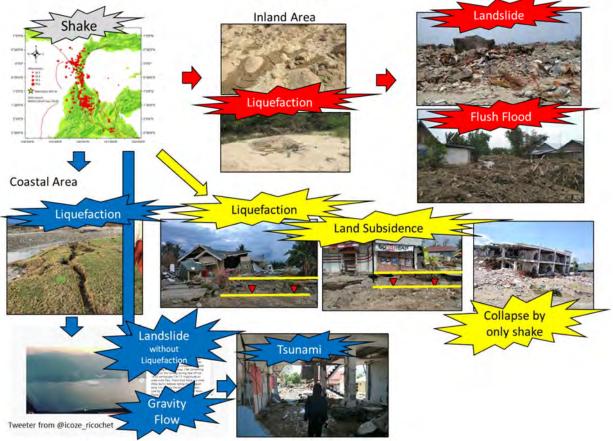
The target region has been growing by agriculture, fishery, sea port related industry and SMEs' small manufacturing industry, however there was no major regional core industry. The population has also grown by people seeking SME jobs. Most industrial activities have stalled as they have been affected by the disaster.

4.2 Working Group for Reconstruction

Badan Perencanaan Pembangunan Nasional (hereinafter referred to as "BAPPENAS"), the National Development and Planning Agency since September 28th, 2018 has been working on five (5) working groups.

Working Group 1:	Development of Spatial planning and disaster prone areas
Working Group 2:	Recovery and Reconstruction for infrastructure and areas
Working Group 3:	Recovery and social, culture and economic development
Working Group 4:	Funding and Cooperation
Working Group 5:	Regulation and governance

JICA and the mission team has put effort to prepare base data through series of official meetings and discussions with BAPPENAS and other concerned government agencies for the reconstruction master plan formulation, which is urgently demanded for assistance, and the tasks were more focusing on physical reconstruction and social rehabilitation that are in relation to the working group 1, 2 and 3 above.


CHAPTER 5. Features of This Disaster

5.1 Analysis of Disaster Mechanism

On the 28th, 2018 M7.5 Earthquake happened by Palu-Koro fault movement. This fault is actually already well-known as one of the dangerous faults in Indonesia and attract attention several researchers to monitor this fault activity (Berlier, 2001; Watkinson, et.al.2017). They have been discussing fault activity mechanism and its possibility to produce a big earthquake in the future. But, no one could expect that future earthquake would induce other kinds of disaster that might cause more serious impact because this earthquake disaster is very rare case in the world. Shake by this earthquake brought tsunami which attacked coastal area promptly and liquefaction which happened at several places and killed more than a thousand of people.

The 28th, 2018 M7.5 Palu earthquake is very special case because the earthquake induced others big disaster in surrounding area. Firstly, earthquake occurred in Donggala districts (Northern part of Palu). Then, tsunami hit Palu bay and coastal area. But actually, right after earthquake happened, liquefaction occurred at a lot of places and it caused enormous damage at various area. For this series of disaster, liquefaction and other Foundation disasters like land subsidence are main cause of damage in this disaster since it claimed many victims.

"Cascaded Disaster". We can call this disaster like this. This earthquake disaster is not simple, but complicated. In order to accomplish "Build Back Better", we have to analyze mechanism of each phenomena and consider countermeasures against each phenomenon.

Source: JICA Mission Team

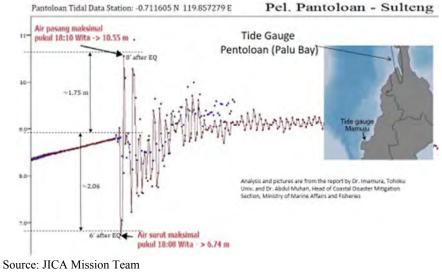

The shake of the earthquake induced other disaster in inland and coastal area and caused a lot of victims and destroyed building.

Figure 8 : Illustration of Cascade Damage Mechanism in Central Sulawesi

5.2 Tsunami

5.2.1 Identification the Cause of Tsunami with Simulation

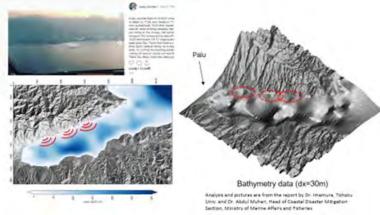

- (1) Measurement of Tsunami
 - > The nearest Tide Gauge at Pantoloan observed Tsunami
 - > This data was not sent to BMKG because of power failure
 - > The second nearest Tide Gauge is Mamuju at around 240km distance from Palu

Figure 9 : Damaged Buildings in Biromaru

- Tsunami is preceded by deep receding wave and is followed by maximum tsunami height of about 1.75 m
- Only two peaks of tsunami are observed with very short period of wave. This indicates that the source should be very local and the generation source area should not be too wide as it is represented from the observed wave period.
- > After the second peak, tsunami wave heights are no longer significant (less than ~30cm)
- (2) Cause of Tsunami

Video capturing the tsunami and immediate tsunami simulation based on the fault model by USGS indicates the devastating tsunami was caused by landslides

Source: JICA Mission Team Figure 10 : Analysis of Tsunami Occurrence

1) East Coastal Area of Palu Bay Affected from Tsunami

(Field Survey Site by Japanese Researcher)

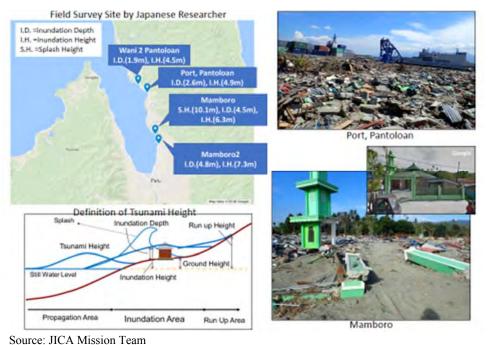


Figure 11 : Tsunami Damage in East Coast

- 2) South Coastal Area of Palu Bay Affected from Tsunami
 - ► Affected Area was limited up to 200~300m distance from coast line
 - > Though Splash was high around 10m, however inundation depth was up to 5m

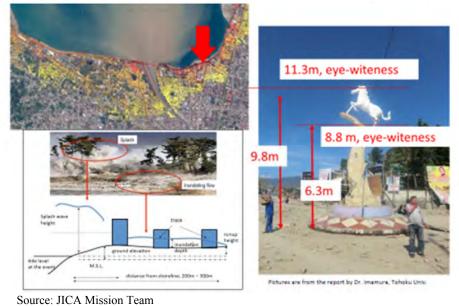
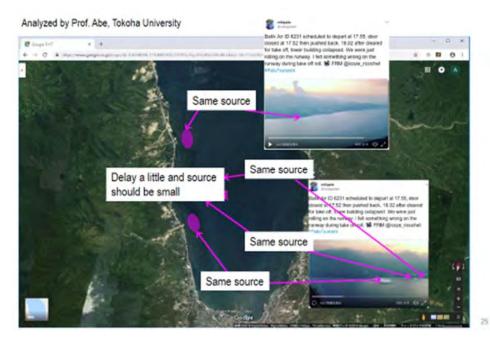


Figure 12 : Tsunami Damage at Shoreline along Palu City

- (3) Past Assessment of Tsunami Height in Palu
 - > This assessment was conducted with Australian assistance in 2013

- > These heights don't seem that Landslides were considered as cause of Tsunami
- However, according to this assessment, 3m is the maximum tsunami height at the coast for 500 year return period.
- That means tsunami in this disaster is higher than 500 years return period in most locations, though we have to be careful that the wave length of tsunami by this earthquake is much shorter than tsunami directly caused by rupture.


	Rank	District	Province	Probability	Max tsunami height at the co		ast for a:	
				of a tsunami with a height at the coast > 3m in a given year	100 year return period	500 year return period	2500 year return period	
Tsunami Hazard t for Indonesia	140	PALU	SULAWESI TENGAH	0.2%	1.7	3.0	5.9	

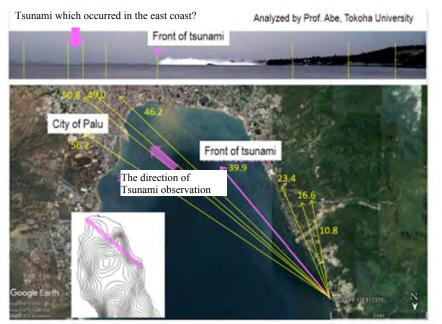

Source: JICA Mission Team

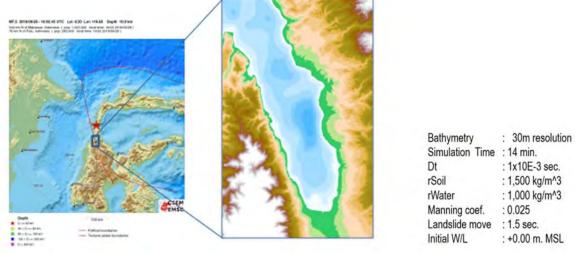
Figure 13 : Assessment of Tsunami Height

- (4) Outline of the tsunami analysis
 - Compiling the available data of the tsunami and making the topography and bathymetry data for the numerical simulation.
 - The source of the tsunami should be carefully selected by taking account of underwater/coastal landslides.

1) Identification of Tsunami source

Source: JICA Mission Team Figure 14 : Tsunami Source Identification

(5) Information of landslide and liquefaction related with tsunami generation

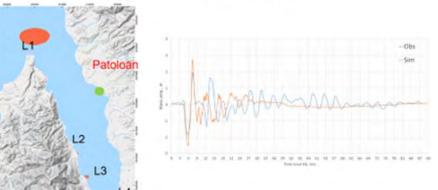

A Pantokoan	COM COM	110.		offshor	e longshore	direction
		矢印 11日 11日	面積 (m ⁵⁾ ※1	治理方 向長さ (m) 来2	中方向平均是(m) 臺3	沿岸方向角 (唐)※4
3	ALC: NO	1	59698	667	89	-35.2
A		2	13508	217	62	-272
10 × 13	- 18 V	2	28447	297	95	-30.6
	····	C 4	14856	108	BB	-109.6
CCU BU	38.39	5	11001	200	58	-139
EV RES		6	22951	327	70	+4.1
LC C		7	35183	517	66	-37.0
D	通い 二部 単語 かいつう	D	55211	555	99	-561
	E	9	9452	152	62	-66.4
		#2 D #3 B	御中の縁期の 同様÷ 沿岸身	ゆら算出	komma Kel., gaakitee	BECEN)

Source: JICA Mission Team Figure 15 : Landslide and Liquefaction related Tsumnami

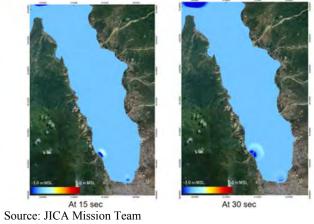
(6) Numerical modeling of the tsunami in Palu bay

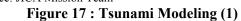
- Two-layer model is applied for tsunami was well as landslide.
- The computational area focus on the Palu bay only.
- Underwater landslide based on ellipsoid plane
- Safety landslide slope < 14 degree

Computational area



Source: JICA Mission Team


Figure 16 : Tsunami Modeling Basis


(7) Scenario for Numerical modeling of the tsunami

Possible scenario; fitted for the tidal records at the station of Pantoloan and tsunami heights along the coast and tsunami source is L1+L2+L3+L4 - Simulation time 90 min.

Composition of Wave Form at Patoloan Gauge

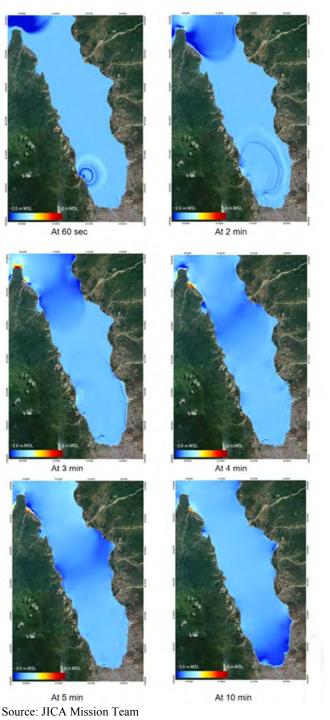
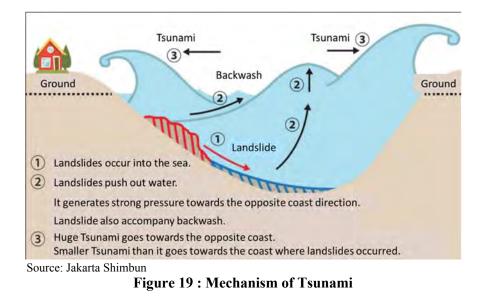



Figure 18 : Tsunami Modeling (2)

(8) Consideration

This simulation with available data on the tsunami at Palu bay in 2018/9/28 ; information, observation, survey and so on shows that underwater and coastal landslide should happen to generate the tsunami. There is some possibility that some of landslide was caused by liquefaction after shake.

5.2.2 Possibility of liquefaction along the coastal line

As remarked above, direct cause of tsunami was landslide in coastal and submarine area. In this chapter, mechanism of landslide will be shown.

As a result of the survey of the coastal area of Palu Bay, liquefaction occurred in some coastal areas. Figure 20 shows the representative liquefaction trace corresponding to the identified liquefaction point.

The photo on the upper right shows the situation where the drum tube rises up or buries randomly due to liquefaction and typically shows the effect of liquefaction. In the right center picture, fine grains of silt / clay content deposits on the ground with the sand were produced by liquefaction and thereafter cracks and voids were formed and it remains as a film after drying. The lateral photograph shows the sand trail including the fine grain content, which is evidence of liquefaction.

Furthermore, the photograph at the bottom right is a large spray sand trace directly behind the structure that is not affected by sediment transport by the tsunami, and it shows clearly the fact that liquefaction occurred in the ground. The lateral photograph is the sand deposit layer directly above the original ground.

Figure 20 : Extensive Liquefaction in Coastal Areas

When remarkable liquefaction occurs in the coastal area, the lumps collapse under the action of gravity. It is easy to flow a long distance and re-deposit by transiting in the form of a high concentration gravity flow in the sea. It is a feature, the series of processes from flow start to stop and its dynamics are dominated by the physics of the two-phase system of water and soil (Figure 21). It is clear that such "liquefaction gravity flow" brings about a huge impact on the occurrence of the tsunami (Sasa, UNESCO submarine landslide conference panelist chairman report, 2011, 2012)

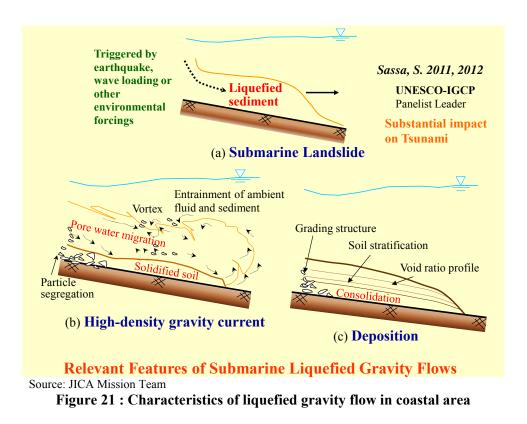


Figure 22 shows the situation immediately before and after the earthquake in the Palu river estuary area. It can be confirmed that the coastal land collapsed / flowed over a wide area of about 2.5 km along the coast and about 200 m in the shore-off direction. The cause of this phenomena would be liquefaction.

Source: JICA Mission Team Figure 22 : Comparison of the Palu River estuary just before and after the earthquake

Source: JICA Mission Team

Figure 23 : Collapse by liquefaction or simple landslides occurred at many places along coastal line

5.2.3 Analysis of Tsunami

In addition to above, JICA conducted collection of news on tsunami and hearing to local people. The table below is composed of all findings by JICA's survey.

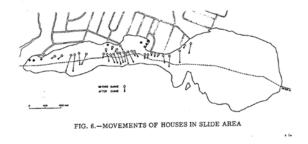
	 "Inundation Depths" are different from place to place, however it is 5m at most
	"Inundation Distance" from coast line is 300m at most
	Splash Height" is around twice or more than "Inundation Depths"
Fact	"Tsunami Arrival Time" is supposed arrive from a few minutes to 10 minutes after the earthquake
	InaTews could not work appropriately because of power failure
	Many people did not evacuate from coastal area
Analysis	 Landslides near and in Palu Bay caused Tsunami (Short inundation distance, high splash, speedy arrival and reproduction simulation)
1 1101 9 515	 Lack of people's awareness against Tsunami amplified casualties
	Lack of dike and inappropriate land use amplified casualties and damage

Source: JICA Mission Team

5.3 Liquefaction-landslide

5.3.1 History

"Liquefaction rarely kills people", this sentence is often said. However, more than thousand people were killed in this liquefaction. Lateral flow by liquefaction is usually limited up to around 10 m. However,


around 400m at most of land movement occurred. This kind of liquefaction is special to human beings. According to Dr. Ishihara, this kind of phenomena is the third time in the world history and it is the first time that liquefaction killed more than thousand people.

We show one previous case. In 1964, significant liquefaction-landslide occurred in Turnagain Heights in Anchorage. Displacement was of order of 100m.

Source: https://depts.washington.edu/liquefy/selectpiclique/ alaska64/landslideintowater.jpg

Figure 24 : Turnagain Heights, Anchorage, 1964

Source: Seed, H. B. and S. D. Wilson (1967) The Turnagain Heights Landslide, Anchorage, Alaska, Proc. ASCE 93(SM4): 325-353.

Figure 25 : Analysis on Anchorage Liquefaction-Landslide

5.3.2 Analysis and Making Assumption

In this time in Palu, liquefaction of foundation ground is induced by geologically young loose filled sand saturated with groundwater and seismic motion with a certain degree of strength. The estuary alluvial plain, where Palu city is located, is a typical liquefaction environment.

However, locally, it is known that the danger level is higher in landfills of old river channel and lake, and the risk is slightly lower in natural embankments such as natural levee. It is important to evaluate the ground properties by boring or simple site penetration test surface wave test, and elastic wave test.

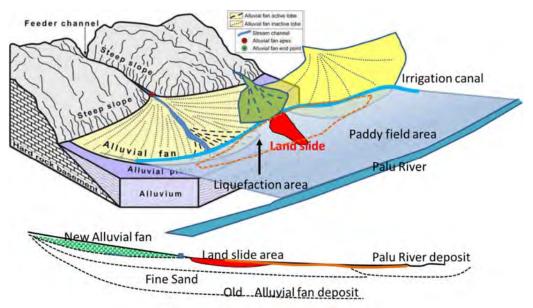
Flow failure of the slope occurred in Balaroa of Pala City West, Petobo, Jono Oge, Shibalaya in the east southern part of the city or Sigi. Between Jono Oge and Petobo there is Biromaru where liquefaction and ground cracks occurred, but it did not result in long movement.

- > Tensile crack initiation zone at the top: It has not reached flow (Figure 26).
- ➤ A zone where the surface layer is broken into a block of several meters in size and sliding fracture also occurs: Although it collapses, it has not reached a flow failure (Figure 27).
- Ground fluidized zone downstream from the sliding cliff: Long distance flow displacement of several hundred meters occurred, the surface ground was lost, and the lower layer from which water sprang out (Figure 28).
- Terminal flow material sedimentary zone: earth and sand and houses moving from upstream are accumulated (Figure 29)

Figure 26 : Collapse of Petobo Point Top

Figure 28 : Flow failed part of Petobo point

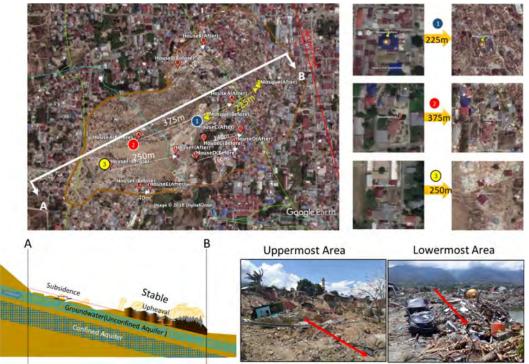
Figure 27 : Collapse of Petobo Point


Figure 29 : End deposit part of Petobo point

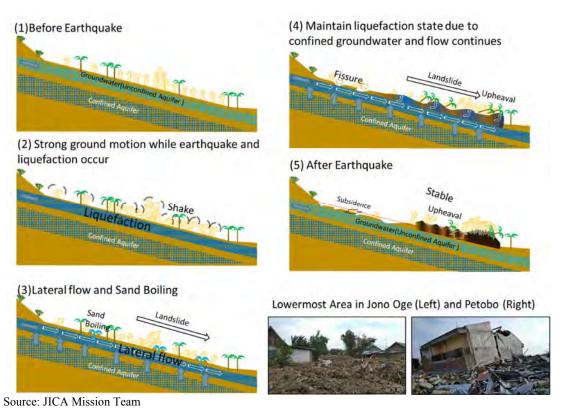
In the site where the surface layer was lost, the spring water continues as of even 3^{rd} November, indicating that groundwater continues to be supplied from other places. The idle zone was still soft and weak and it was difficult to step in. The gradient from this flow part to the downstream side is only about 2 to 3 degrees.

A small alluvial fan exists from the foot of the mountain above the source head of the collapse slope. It is a usual phenomenon that the abundant water current flowing in the basement of the fan becomes spring water at the fan end. Agricultural water is supplied to the paddy field from the irrigation canal.

Along the flow failure point, a large alluvial fan spreads from the foot of the mountain to the vicinity of the Palu River. However, liquefaction occurred at the toe of young fan, not old fan. The reason is why old fan has been compacted for long time, and water tends to gather to young fan. The lower end of the fluid sediment deposition this time is at the point aligned with the fan end of the large fan. As a result of flow failure occurring elsewhere in the past, the current large-scale alluvial fan was formed.


The collapse in this disaster seems to be the process of growing a small fan-shaped area to a large size. In other words, even in the near future ("the near future" means future on the geological time scale), liquefaction-landslide on the gentle slope like this will occur repeatedly.

Note: Alluvial fan could be divided into two kinds: "Fan" at steep slope, "Toe of fan" at point of inflection, and "Alluvial plain" at other parts.


Composed by JICA based on the picture from the following paper Gianluca Norini(2016) Delineation of alluvial fans from Digital Elevation Models with a GIS algorithm for the geomorphological mapping of the Earth and Mars **Figure 30 : Relation between alluvial fan and liquefaction-landslide**

There are around 400 m movement houses. Lower area of Jono Oge was devastated by flash flood. Those liquefaction kept going for a long time and it was due to plentiful groundwater, especially confined groundwater. However, we have not identified to what extent and to what amount confined aquifer exists under the ground. It should be clarified by further research.

Source: JICA Mission Team

Figure 31 : Diagram of Land Movement

Figure 32 : Diagram of Liquefaction-Landslide Occurrence and Geological Profile

5.3.3 Assuming the Conditions of Liquefaction-Landslide

Based on the assumption of the mechanism stated above, conditions of "liquefaction-landslide" could be arranged as below.

Firstly, 3 conditions are well-known as a general condition of liquefaction.

General 3 Conditions of Liquefaction

- 1. Strong shake continues for a long time.
- 2. The nature of soil is mainly loose sand at shallow depth.
- 3. The ground is saturated with groundwater up to shallow level.

Secondly, based on our analysis, additional 4 conditions should be added when we consider "Liquefaction-Landslide".

Additional 4 Conditions of "Liquefaction-Landslide" (more investigations needed to identify the exact mechanism)

- 4. There is a slope of very low gradient less than several percent.
- 5. Widespread capping layer (surface layer) of lower permeability overlying liquefiable loose sand layer.
- 6. Widespread highly liquefiable sand layer providing water sufficient to destabilize the gentle slope due to very strong shaking in focal area.
- 7. Artesian pressure leading to further destabilization in the above mechanism.

JICA conducted geotechnical survey, cone penetration test, in Petobo and Jono Oge in order to confirm the assumption. The result of test tells no contradiction to the assumption, however further investigation is necessary in order to prove the assumption. For example, there must have been a lot of confined aquifer under Jono Oge. Without that, such an enormous flood never occurred, and some people say water rose up to dozens meters height just after the earthquake.

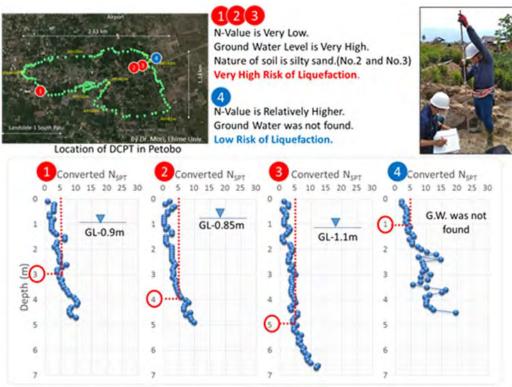


Figure 33 : Cone Penetration Test in Petobo

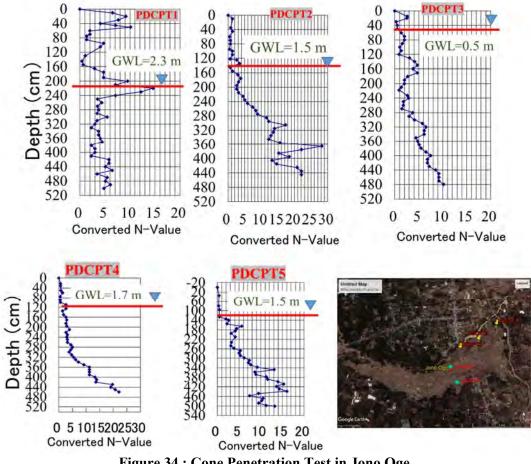


Figure 34 : Cone Penetration Test in Jono Oge

JICA / YACHIYO ENGINEERING CO.,LTD. , ORIENTAL CONSULTANTS GLOBAL CO.,LTD. JV

Based on above, JICA proposes a methodology of liquefaction-landslide risk assessment.

- 1. Alluvial Fan: New? or Small?
- 2. Point of Inflection: Steep to Gentle?
- 3. Groundwater Level: Shallow? or "Are there plants which prefer wet soil?"

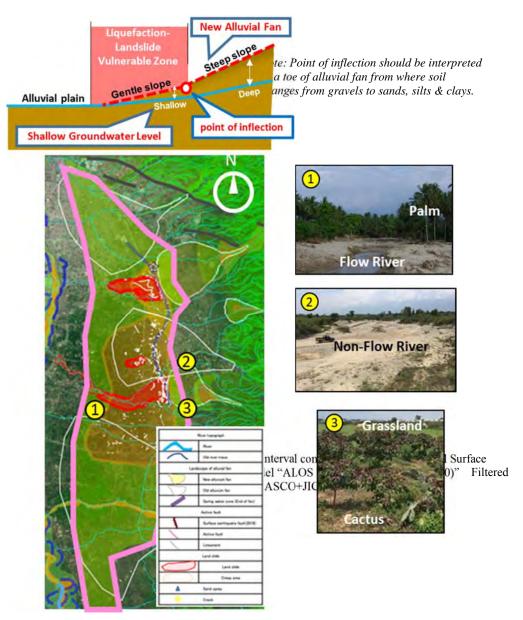


Figure 35 : Analysis of liquefaction-liquefaction risk

5.3.4 Analysis of Liquefaction-Landslide

		Table 9 : Analysis of Liquefaction-Landslide Phenomena➤ "Liquefaction" occurred in large areas
	Fact	 Affected areas have common aspects, 1. These areas are located with gentle slope around fan toe part of alluvial fan 2. Some people say groundwater naturally rose up to the ground when they put pipes into the ground of these areas or plants flourish which prefer wet soil 3. "Landslide" occurred in affected areas 4. Most of houses were much more severe damaged than houses in non-liquefaction areas
		There must be "Confined Aquifer" (pressured groundwater) under each area
I		 Affected areas would be supposed to have the common mechanism
	Analysis	 The mechanism is as below "Liquefaction" occurred because of strong shake and "Confined Aquifer" "Landslide" occurred because of slope and large-scale "Liquefaction" (It should be supposed to be like "Mudflow" in steep slope areas) Those phenomena brought about "Upheaval" or "Flush Flood" in downstream areas because a lot of soil surged from upstream They also brought about "Mudflow" with "Fissure" in upstream areas because a lot of soil disappeared towards downstream
		 There is a possibility to identify risk in accordance with geological points of view. 1. Alluvial Fan is new or small 2. Point of Inflection is steep to gentle 3. Groundwater Level is shallow, or there are plants which prefer wet soil

Source: JICA Mission Team

5.4 Shake

Surface displacement appeared in Lere Sub-district of Palu after disaster and show a lineament pattern to the southern part area. We did observational survey tracing displacement evidence in satellite. Figure 14 shows survey points of field observation. There are several parameters that should be checked to describe the fault characteristic such as calculating the displacement, vertical and horizontal offset also strike direction of the fault.

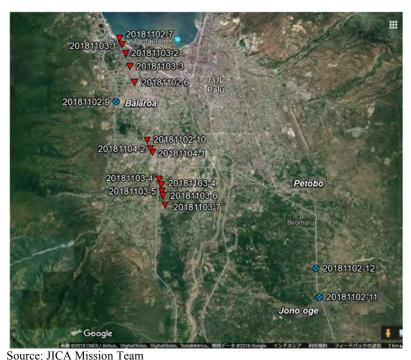
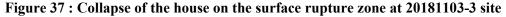


Figure 36 : Points of observational field survey to identify lateral displacement lineament in Palu which suspected as a fault


For each point survey, there is unique characteristic. It is just one or two house collapse completely, but the house beside it was not destroyed. The destroyed house is located right above the fault exactly. Shortly, in the vicinity of the surface rupture, the houses on the surface rupture zone destroyed, but the houses outside the surface rupture zone escaped collapse as shown in Figure 15.

Surface rupture with left lateral slip appeared over at least 7 km around the terminal part of alluvial fan in the western side of the flood plain as shown in Figure 17 and Figure 18. It has not been identified along the known active fault line in the western alluvial fan and mountainous area. Maximum left lateral displacement was 4.6 m with east side-up vertical offset of about 0.5 m.

Source: JICA Mission Team

Note: Asam II str. (Lere Sub-Districts) which have left lateral displacement: 4.5m, Vertical offset: 0.4m east side up, Strike direction: N30°W

Source: JICA Mission Team

Note: Padanjakaya str. Left lateral displacement: 4.6m, Vertical offset Figure 38 : Collapse of the house on the surface rupture zone at 20181102-10 site

Figure 39 : Surface rupture at 20181102-6 site, Cemara str. Donggala Kodi districts.

- Left lateral displacement: 4.6m
- Vertical offset: None
- Strike direction: N20°W

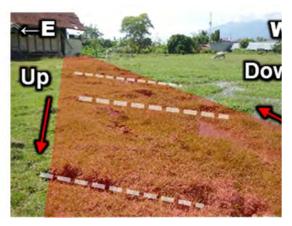


Figure 40 : Surface rupture at 20181103-2 site, Lasoso str., Palu City.

- Left lateral displacement: 3.5m
- Vertical offset: 0.6m east side up
- Strike direction: N15°W
- Surface rupture zone (red color mask) and echelon structure (white dashed lines)
- There is surface water on the down side (west side of surface rupture).

Interpretation of surface rupture

Since this field observation is limited by time and budget, it is necessary for continuation of surface ruptures survey. According to the analysis results using the satellite data from Reuters in Figure 19, it is possible that the surface rupture extended further to the south than our survey range. Investigating the property of the surface rupture is important for elucidating the earthquake mechanism. According to Watkinson and Hall, 2017 and Hennig et.al., 2017, the undersurface condition of Palu and surrounded area are explain as shown in Figure 42. This is geological map and illustration of cross-section through the Neck and Donggala Peninsula which include active fault, and geological material. Based on that picture, we can see there is an unknown active fault in the middle of Palu that actually close to liquefaction affected area (Balaroa). If we correlate the damage that occured after the disaster due to the shake, we assume that this is a surface rupture from current active fault.

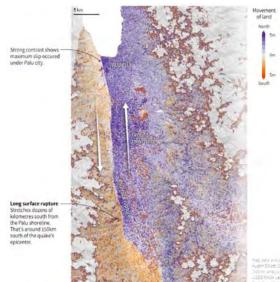
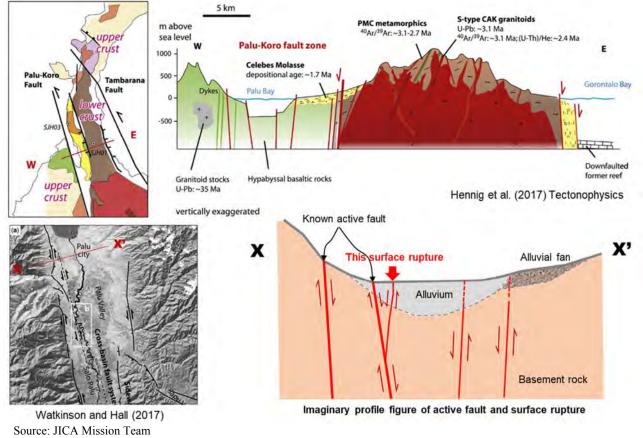
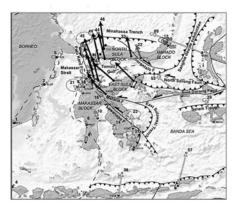




Figure 41 : Map of movement of land (from REUTERS GRAPHICS website)

Note: The surface rupture that currently occurred is assumed as a site effect condition from the known active fault movement. Figure 42 : Undersurface condition in Palu from Hennig et.al (2017) and surface condition by Watkinson and Hall (2017)

Palu-Koro Fault exists along plate boundary. Around 40mm of movement per year is observed with GPS survey (Socquet et al.2006) . As the maximum movement was 4m in this earthquake, it released accumulated energy around 100 years. That means earthquake with the scale similar to this earthquake may occur once 100 years.

Figure 43 : Present-day GPS Movement in the Sulawesi Region (Socquet et al.2006)

Palu Seismic Station

Figure 44 : Palu class 1 geophysical station

Figure 45 : Seismometer field at Palu class 1 geophysical station

BMKG at Palu (station code: PCI (Palu Celebes Island) is one of key stations that process seismic data to detect an earthquake in and around Palu using Seiscomp3 software, developed by GFZ, Germany. There is a new instrument granted by JICA in Palu BMKG office. This instrument has recorded the September 28th, 2018 earthquake.

The seismic processing system, SeisComP3, is working, but processing parameters might be optimized by BMKG officials. Particularly, a velocity model, or, a travel time table, might be modified so that location of the earthquake would be calibrated by the local or regional agency. The record of PCI station might be merged to the BMKG network data to improve an accuracy of hypocenter or get a better aftershock distribution which gives important information of surface structure. Though it is a "strong motion" of PCI station, it might be improved in order that it could pick an arrival time of each event if it has an amplitude large enough. So, it is recommended to combine those new installed station data to the current network data to locate aftershocks. It would enhance the quality of data processing while identify the location or earthquake mechanism.

5.4.1 Damaged Buildings by Shake

(1) General Condition of Building against to shake

Indonesia have national building code standard (SNI) for earthquake-resistant building, and this regulation should be fulfilled in building construction. One problem is that sometimes this regulation is not observed completely. However, this regulation should be observed while building construction to get earthquake-

resistant building. Another aspect to be consider is "Resonance". It depends on natural period for each building and the period of seismic wave that coming. Tall buildings usually have long own natural period, and short houses have short one. When the period of seismic wave matches own natural period, Resonance would occur and it would bring about severe damage.

According to seismometer record, dominant frequency was 0.2 to 0.6 Hz in Palu. That means "Dominant Period of Seismic Wave" was 1.7 to 5 seconds (Middle-Long Period). That would not cause damages of short houses, but cause damages of tall buildings due to "Resonance".

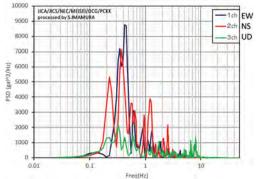


Figure 46 : Record of Seismometer in Palu on 28th Oct, 2018

Phenomena in central Palu is supposed to be the right case rather than the left case. That case is dangerous to high-rise building, but is not dangerous to low-rise building.

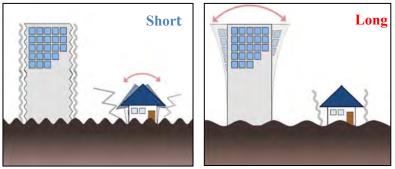
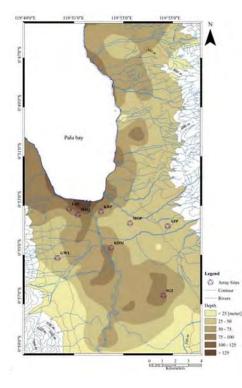
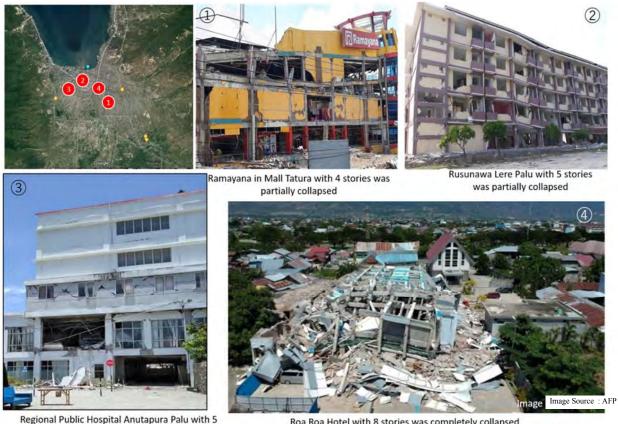



Figure 47 : Resonance

The dominant period of seismic wave is determined by the thickness of sedimentary layer. A thick sedimentary layer might amplify long period of seismic wave, so it is actually dangerous for high-rise building when earthquake happened. Palu has more than one hundred meter of sedimentary layer as result of Thein et.al (2015) that analyzed about estimation of S-wave velocity structure for sedimentary layered.

The thickness of sedimentary layer was estimated by using micro tremor array measurements as shown in Figure 19. This thickness should be considered as one of important point in constructing earthquake-resistant building.


Figure 48 : thickness of sedimentary layer to bed rock in Palu Area. Image source: Thein, et.al. (2015)

(2) Damage building and Failure Factors in Central Area of Palu City

There are a lot of high-rise buildings in Palu City since it is the center location of various activity such as tourism, trading, education and culture. But the strike of shake on September 28th, 2018 made a lot of building failures and produced many victims as shown in Figure 49. The analysis to identify the cause of failure building is really important to enhance the quality of building in the future. Here we show examples of building failures after conducting building safety observation by JICA mission team.

In central area of Palu City, there is a unique phenomenon that almost only high-rise buildings (4 stories or more) collapsed, while other low-rise buildings around collapsed high-rise building still stands. As stated, it can be explained because of resonance. The crucial problem is that some of high-rise buildings collapse, but other high-rise buildings remains. The cause of this collapse of some high-rise buildings was dominantly by inappropriate design including foundation or bad construction implementation that were observed in Mall Tatura, Rusunawa Lere, Anatapura Hospital and Roa Roa Hotel. The failures are caused by several points of view as below:

- Collapsed buildings doesn't seem to have used suitable foundation. Roa roa seems to have used Cakar Ayam Foundation which is suitable for swamp area. Rusunawa Lere seems to have used pile foundation and to have occurred "column sway", where failure mechanism occurred at column, not at beam (beam sway), and it would cause damage to the whole building (Figure 50 and Figure 51).
- Joint failure seems to have caused by column broken (Figure 52).
- Collapsed buildings doesn't seem to have used appropriate reinforced bars. Roa Roa hotel seems to have used very small reinforced bars narrower than 13 mm diameters, whereas in building code it should be minimum 13 mm (Figure 53–Figure 55).
- Collapsed buildings doesn't seem to use good quality of construction material, such as inappropriate size of concrete aggregate, bad quality of brick (Figure 56).
- Collapsed buildings doesn't seem to set suitable position of main reinforced bars, for example, in Mall Tatura (Figure 57).
- Supervision might be insufficient during construction work, due to the system or shortage of finance.

Regional Public Hospital Anutapura Palu with 5 stories was partially collapsed

Roa Roa Hotel with 8 stories was completely collapsed

Source: JICA Mission Team Figure 49 : Several documentations of damage high buildings in central area of Palu City

Figure 50 : Out-of-plane wall and column sway mechanism

Figure 51 : Too small reinforced bars used in **Roa Roa Hotel**

Figure 52 : Joint failure

Figure 54 : Inadequate stirrup in Rusunawa Lere

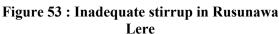


Figure 56 : Non-deformed bars still used

Figure 55 : Non-deformed bars still used in Lere,

Figure 57 : Inappropriate design of column and material

(3) Damage building and Failure Factors in Biromaru, Sigi Area

There are a lot of collapsed house with single story in Biromaru (But, some still stand without damage). This area could have been shaken and liquefied more than other areas around central Palu. Collapsed buildings with one story in Sigi area are shown from Figure 58 to Figure 67. Broken wall and roof and

tilting column are found in Sigi. The movement of the ground was found which caused the fence of the house move around 1 meter to 2 meter from the gate (Figure 61), as it was measured.

Figure 58 : Collapsed of Mosque

Figure 59 : Collapsed of Store

Figure 60 : Damaged Roof of Stores

Figure 62 : Tilting column of house

Figure 61 : Tilting column of house and moving fence

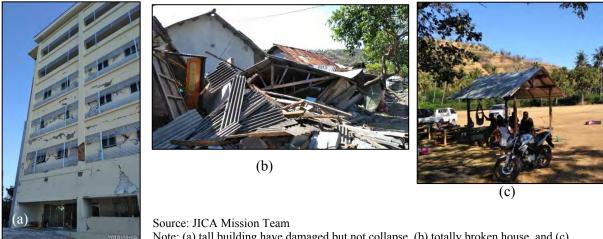
Figure 63 : Total Collapsed of House

Figure 64 : Total Collapsed of House

Figure 66 : Collapsed by Land Subsidence

Figure 65 : Partial Collapsed of House

Figure 67 : Collapsed by Land Subsidence


Table 10 : Analysis of building damage phenomena in central area of Palu City			
Fact	Several high-rise buildings (4 stories or more) collapsed and damaged		
	Quite a few short houses were damaged in central Palu		
	> A lot of house were collapsed in Sigi because of shake and land movement.		
Analysis	High-rise building collapse seem to have been enhanced by resonance that occurred when building natural period is similar with earthquake natural period.		
	The reason why most high building collapse and short building remains in central Palu is that it might be caused by long period wave of earthquake which brought severe damage		
	A thick sedimentary layer might amplify long period of seismic wave since Palu has more than one hundred meter of sedimentary layer		
	Long period of seismic wave has a feature to reach longer distance without decrease of energy than short period of seismic wave		
	Building Code should be reviewed from the view point of "Foundation"		
	The reason of Building collapse was mostly inappropriate design, construction material and construction work		
Source: JICA Mi	Source: JICA Mission Team		

(4) Analysis of building damage phenomena in central area of Palu City

44

(5) Phenomena on Building Collapse in Palu City Compared with Lombok (Just for reference)

A series of quakes including a powerful 6.9 magnitude tremor struck Lombok Island. This earthquake trigger landslide in some area. There are completely broken houses and non-damaged houses in the same place in Lombok as shown in Figure 41.

Note: (a) tall building have damaged but not collapse, (b) totally broken house, and (c) simple structure house with no damage

Figure 43. Building condition in Lombok after strike by series of earthquake

Table 10 : Analysis of building damage phenomena in Palu City and Lombok<High Buildings>

	There was no short house with damage in Mataram by Lombok Earthquake (Mataram is at 50km distance from epicenter)
	 Some tall buildings were damaged in Mataram
	 Resonance happened both in Palu and Mataram
	<short houses=""></short>
	Some are completely collapsed, Others are without damage
	 Even a simple structure stands without damage
Analysis	There is a possibility that disregard of "Building Code" or due to "Construction Failure" exist not only in Central Sulawesi but in most place in Indonesia.

Source: JICA Mission Team

Fact

CHAPTER 6. Disaster Risk Analysis Based Planning

6.1 Outline of Disaster Risk Map

Based on this earthquake disaster, from the viewpoint of not receiving the same kind of disaster again, we examined the risks of the area and created a risk map for each kind of disaster.

The criteria for zoning are as shown in the table below, and disaster hazard map based on this standard is shown below.

Table 11 : Criteria and Guidance for		
Zone	Criteria	Post disaster spatial guidance (requirement for land use)
ZRB 4 PROHIBITED ZONE (very High Level or most affected area in the disaster Sept 28th 2018)	 Located in liquefaction-landslide zone (after earthquake) (Petobo, Balaroa, Jono Oge, Lolu, Sibalaya and Sidondo 1) Located along the coastline, which is tsunami vulnerable area(outside of tsunami sea dike) or costal landslide vulnerable area. *This zone should be identified after setting the location and strrudture of dike. located right above the active fault appeared on the earth's surface Sediment Disaster Vulnerability Zone level "High" 	 Not allowed to rebuild houses after disaster. Building and Houses in this area should be relocated Prioritized to be used as protected area for DRR (example Tsunami green belt, Open green space) Can be used as disaster awareness area/to build monument
ZRB 3 RESTRICTED ZONE (High Level)	 Located in the cracked zone by liquefaction- landslide (after earthquake) Located in the tsunami inundated area (after earthquake) Within 15m along the active fault *This distance should be identified in accordance with "earthquake proof design". Sediment Disaster Vulnerability Zone level "Medium" Flood Hazard Zone "High" 	 New building in coastal area where tsunami inundated is limited for high building (>=2 stories), which can be used as multi-function (Tsunami vertical evacuation shelter) with perpendicular direction of the coastline. For Land utilization in Flood hazard area, minimum 2 stories houses are required. Development of roads and places for evacuation and green open space. New building is limited to earthquake, tsunami, liquefaction-landslide, flood and sediment disaster resistance building (using geotechnical and structural engineering) To limit house and land use intensity in level "Low", and periodically monitor the saturation level of ground water. Very strict controlling of existing residential land use and avoiding construction of new high-risk life line/critical facilities. Undeveloped areas in "very high" of liquefaction- landslide or "high" of sediment disaster should be prioritized the function of protected areas or non-built cultivation such as utilization of forestry, agriculture and plantation space for plants that do not require a lot of water.
ZRB 2 CONTROLLED ZONE (Medium Level)	 Liquefaction-landslide Hazard Zone (High) Buffer zone in which the uncertainty of tsunami risk Within 1km along the active fault Sediment Disaster Vulnerability Zone level "Low" Flood Hazard Zone "Medium" 	 Low Intensity for land utilization/usage Recommendation to follow "resistance building" of ZRB 3 in accordance with each risk.

Table 11 : Criteria and Guidance for Disa	ster Hazard Zone (ZRB)
---	------------------------

	1. Liquefaction-landslide Hazard Zone	
ZRB 1	(Medium)	
PROMOTED	2. Low tsunami risk zone	1 January Madiana Internetta Cantan daviti attication (associ
ZONE	3. Sediment Disaster Vulnerability Zone level	1. Low - Medium Intensity for land utilization/usage
(Low Level)	"very Low"	
	4. Flood Hazard Zone "Low"	

1. The area of "Liquefaction-landslide" in ZRB 3 should be reviewed with detail survey. In parallel, the regulation of "liquefaction-landslide resistance building" should be considered.

- 2. Assessed risk in this table is not simple "Liquefaction", but "Liquefaction-landslide". The reason is why simple "Liquefaction" will rarely kill people.
- 3. Regarding the earthquake-resilience of buildings, the risk of "Resonance" should be considered in designing by reference to micro zonation map. "Resonance" occurs when "Own Natural Period" of each building matches "The Dominant Period of Seismic Wave" at its location. For example, inspection of construction executing should be more frequent and more strict if there is risk of "Resonance", such as high-rise buildings in "long dominant period of seismic wave zone" or low-rise buildings in "short dominant period of seismic wave zone".

The guidance for each zone is also to be reviewed through further survey. When refining the risk map, risks were reviewed after conducting examinations and field surveys of academics and experts.

In addition to scientific perspective, it is important and efficient to consider the tradition handed over from the ancestors who lives there. Indigenous people, "Kaili", have a lot of tradition off place-names on disaster as below. However, we have to be careful that all area is not necessarily dangerous even if its name implicates disaster. We should identify where and what traditional name shows because the area of each place indicates a certain distance of land.

	imples of Kam traution of place-names on disaster
Place Name	Meaning
Balaroa (original name was "Puse Ntasi")	"The center of the sea" (because it was believed that this place connected the sea through mud hole)
Biromaru	"Swamps which decay grass"
Jono Oge	"Swamps where a lot of grass flourishes"
Duyu	"Landslide"
Source: Jakarta Shimbun	

Table 12 : Some examples of Kaili tradition of place-names on disaster

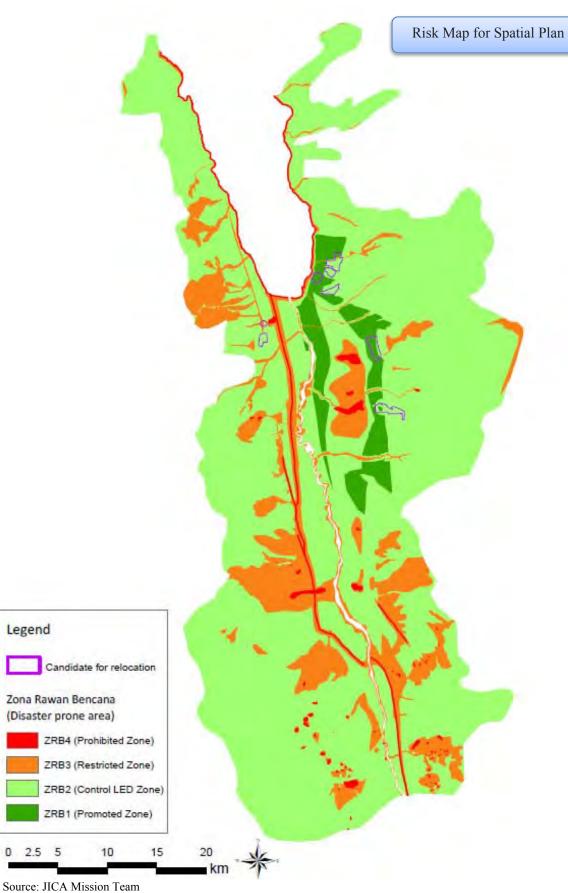


Figure 68 : Disaster Hazard Zone (ZRB)

6.2 Tsunami and Coastal Area

Damaged area in coastal area is confirmed by field survey etc. In coastal area, there are two type of damage. One was inundated by tsunami. The other was collapsed by landslide, which was caused directly by shake or through liquefaction phenomena by shake.

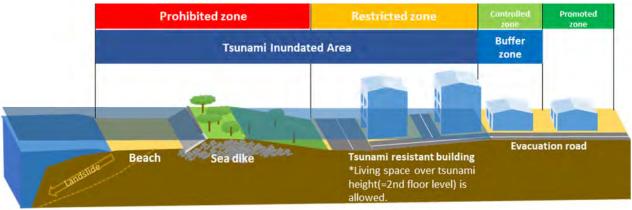
Source: JICA Mission Team Figure 69 : Tsunami inundated area (Source: Digital Globe Open Data Program)

Source: JICA Mission Team

Figure 70 : Area inundated by tsunami

Source: JICA Mission Team

Figure 71 : Landslide area


Table 13 : Criteria and Guidance for Disaster Hazard Zone (ZRB) on tsunami and coastal landslide

Zone	Criteria	
ZRB 4	Located along the coastline, which is tsunami vulnerable area (outside of tsunami sea dike) or costal landslide vulnerable area. *This zone should be identified after setting the location and structure of dike.	
ZRB 3	Located in the tsunami inundated area (after earthquake)	
ZRB 2	Buffer zone in which the uncertainty of tsunami risk	
ZRB 1	Low tsunami risk zone	

Source: JICA Mission Team

Figure 72 : ZRB on tsunami and coastal landslide

The outside of sea dike should be classified into ZRB 4. It depends on the specification of sea dike. Not only tsunami inundation, but also coastal landslide should be considered. Coastal landslide vulnerable are should be reviewed by detail bathymetric survey. The area of ZRB2 should be defined by detail topographic survey.

Source: JICA Mission Team

Figure 73 : Image of spatial plan on tsunami and coastal landslide

6.3 Fault and Shake

Table 14 : Criteria and Guidance for Disaster Hazard Zone (ZRB) on fault and shake

Zone	Criteria	
ZRB 4	Located right above the active fault appeared on the earth's surface	
ZRB 3	Within 15m along the active fault *This distance should be identified in accordance with "Earthquake-Resistance Design".	
ZRB 2	Within 1km along the active fault	

Many literature indicate there is main fault along the boundary between the mountains and plain in the west part of Palu. In this time, the fault appeared more 2 km east than the indicated main fault. It means it would be difficult to forecast where fault would appear beforehand. The areas within 1km along faults is appropriate to be assessed ZRB 3 in order to make people to pay attention to earthquake.

Regarding "Earthquake-Resistance Design" of buildings, the risk of "Resonance" should be considered in designing by reference to micro zonation map. "Resonance" occurs when "Own Natural Period" of each building matches "The Dominant Period of Seismic Wave" at its location. For example, inspection of construction executing should be more frequent and strict if there is risk of "Resonance", such as high-rise buildings in "long dominant period of seismic wave zone" or low-rise buildings in "short dominant period of seismic wave zone".

Figure 74 : ZRB on fault and shake

6.4 Liquefaction-Landslide

Liquefaction-landslide occurred not only Petobo, Balaroa, Jono Oge, but also Lolu, Sibalaya and Sidondo 1. These areas should be classified in the ZRB4.

The cracked areas by liquefaction-landslide, however which are not as severe as areas in ZRB 4, should be classified in the ZRB3. The area of "Liquefaction-landslide" in ZRB 3 should be reviewed with detail survey. In parallel, the regulation of "liquefaction-landslide resistance building" should be considered.


Regarding ZRB 2, hypothesis was formulated that there is high risk of liquefaction-landslide at the toe of new alluvial fan. Geotechnical survey including boring will verify this hypothesis by comparing the conditions for liquefaction-landslide with geographical and vegetative features. Vegetation is useful to easily estimate groundwater level. After the verification, the liquefaction-landslide vulnerable zone can be identified by the geographical and vegetative features. It is also important to assess that the presence of confined water.

The reason why the area near Palu River is "ZRB 1" is as below though more investigations needed. The slope of this area is very gentle, though groundwater level in this area is shallow. "Liquefaction-Landslide Risk" is Low though "Liquefaction Risk" is High-Medium

Zone	Criteria	
ZRB 4	Located in liquefaction-landslide zone (after earthquake) (Petobo, Balaroa, Jono Oge, Lolu, Sibalaya and Sidondo 1)	
ZRB 3	Located in the cracked zone by liquefaction-landslide (after earthquake)	
ZRB 2	Liquefaction-landslide Hazard Zone (High)	
ZRB 1	Liquefaction-landslide Hazard Zone (Low - very Low/ safe)	

Table 15 : Criteria and Guidance for Disaster Hazard Zone (ZRB) on liquefaction-liquefaction

Source: JICA Mission Team

Figure 75 : ZRB on Liquefaction-Landslide

6.5 Flood

The vicinity along the Palu River and its tributaries should be in the ZRB3. Flash flood inundated area from liquefaction-landslide area of Jono Oge should be in the ZRB3 in the view of flood. ZRB 2 should be identified by flood simulation or relative elevation.

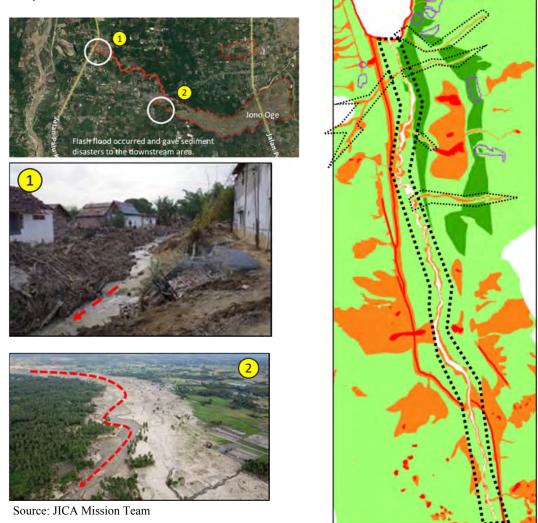


Figure 76 : Down stream of Jono Oge

Zone	Criteria
ZRB 4	-
ZRB 3	Flood Hazard Zone "High"
ZRB 2	Flood Hazard Zone "Medium"
ZRB 1	Flood Hazard Zone "Low"

Table 16 : Criteria and Guidance for Disaster Hazard Zone (ZRB) on flood

Source: JICA Mission Team

Figure 77 : ZRB on Flood

54

6.6 Sediment Disaster

As sediment-related disasters (Flash Flood, Steep Slope Collapse, Landslide, deep-seated landslide) occurred or would occur in

Table 17 : Criteria and Guidance for Disaster Hazard Zone(ZRB) on sediment disaster

Zone	Criteria
ZRB 4	Sediment Disaster Vulnerability Zone level "High"
ZRB 3	Sediment Disaster Vulnerability Zone level "Medium"
ZRB 2	Sediment Disaster Vulnerability Zone level "Low"
ZRB 1	Sediment Disaster Vulnerability Zone level "very Low"

various places, JICA confirmed the location of the disaster by field survey.

Flash Flood (1) (2) A rapid flood with collapsed sediment by rainfall, which speed is very rapid, such as $3\sim14m$ per second

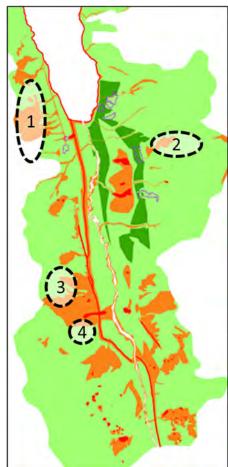
Steep Slope Collapse ③ A instantaneous collapse of steep slope by rainfall or earthquake

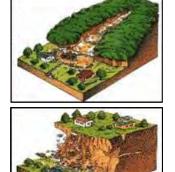
Source: JICA Mission Team

Figure 78 : ZRB on Sediment Disaster

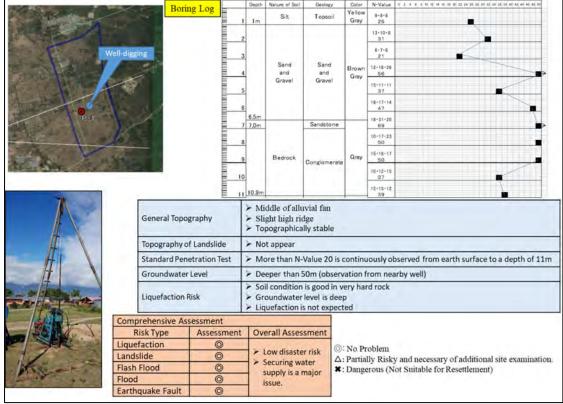
Landslide

Slow slip of a mass of earth because of water on the impermeable layer, which speed is very slow, such as $0.01 \sim 10$ mm per day


Deep-Seated Landslide 4

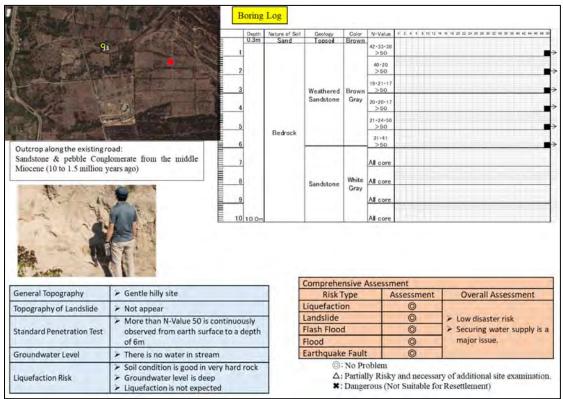

A landslide with enormous volume from a deep layer by rainfall or earthquake. (This kind of landslide is more difficult to identify the location than other kinds of sediment disasters.) In this location,

- > Huge amount of sediment has collapsed.
- \succ It could cause flash flood by following rain.
- The most severe incident is that it might make natural dam, which would bring devastation of downstream houses.
- Downstream residents should evacuate proactively.



6.7 Risk Assessment of Candidate for Relocation Site

In order to assess the risk, borehole testing has been conducted in each candidate for relocation site.


As a result, Petobo, Pombewe, Talise-Tondo and Duyu could be appropriate for relocation site. For all of them, it is the biggest issue how to secure water supply. Exact relocation site should be requested to pay attention to flood risk in Talise-Tondo. Duyu might have risk of active fault.

On the other hand, Gawalise is not suitable for relocation site. The reason is why some rupture appears on the surface and it might move to open. If we want to know this rupture would be opening and landslide would happen, we have to observe some years because continuous monitoring is necessary. This doesn't meet the condition to select as soon as possible.

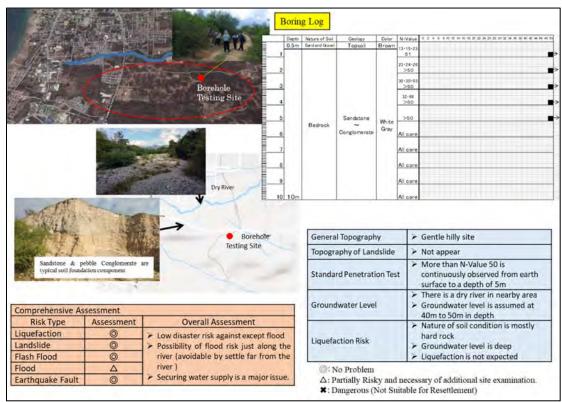
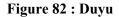

Source: JICA Mission Team

Figure 79 : Petobo

Source: JICA Mission Team

Figure 80 : Pombewe



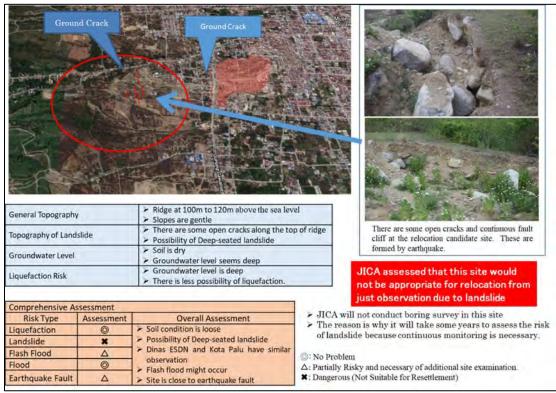

Source: JICA Mission Team

Figure 81 : Talise-Tondo

	Depth Nature of Sol	Geology	Color	N-Value	554466046000000000000000000000000000000		
Boring Lo	g			20-22-13			
				>50			
	2			>50			
	3			>50	•		
64) r .	4			>50	•		
	5			>50			
A SALE AND A SALE	6			All core			
D I	7			All core			
	8			All core			
ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:	9			Al core			
Contraction	10 10m Bedrock	Congiomerate	Gray	Al core			
		General	Topogr	aphy	Flat around the old quarry site		
A DE LA D		Topography of Landslide Standard Penetration Test Groundwater Level		andslide	Not appear		
A Martin				ration Test	More than N-Value 50 is continuously observed from earth surface to a depth of 5m		
et and and				evel	Groundwater level seems deep		
we can see only one crack on earth surface. However, it does not seem to be active fault.	Liquefaction Risk		ik.	 Soil condition is good in very hard rock Groundwater level is deep Liquefaction is not expected 			
	Compre	nensive As	sessm	ent			
The second s	Risk	Туре	Asse	essment	Overall Assessment		
	Liquefac	Liquefaction		0	Low disaster risk		
	Landslid	e		0	Though we can see only one crack on earth		
	Flash Flo	Flash Flood Flood Earthquake Fault		0	surface, there is some possibility of active fault		
	Flood			0	existence under the ground because this site is located right between faults in north and south.		
There is collapsed soil up from the site	Earthqua			Δ	 Securing water supply is a major issue 		
 It collapsed a long time ago It is already stable It has not reached relocation site 					ditional site examination.		

Source: JICA Mission Team

Source: JICA Mission Team

Figure 83 : Gawalise

CHAPTER 7. Packaged Resilient Infrastructure Redevelopment

7.1 Basic Concept

Realizing resilient region with effective infrastructure, experiences that Japan has been gifted even through tragic events should be referred to implement reconstruction. There would be some importance that could be brought into the region for actual action taking.

Lesson Learned by the Tohoku Great Earthquake and Tsunami in 2011 in Japan are as follows;

- There is no upper-limit of disaster hazard.
- The intensive hazard is unavoidable as long as we live in disaster-prone country.
- The victims, damage and loss cannot be perfectly prevented from the intensive hazard.

From this lesson-learned, the target to reduce intensive & extensive Risks is delivered. That is to minimize victims and economic losses, mobilize the best mix of Structure and Non-Structure measures.

To achieve this target, risk sensitive infrastructure reconstruction plan is crucial and we have to avoid reproducing same vulnerability again through reconstruction process.

The reconstruction process includes;

- To identify the disaster risk (what? How big? How often?) of each area
- To list possible countermeasures
- To consider constraints (cost, time, social acceptance)
- To optimize the countermeasures in the entire region

This knowledge delivered by Japan's experience is condensed into "Sendai Framework for Disaster Risk Reduction (2015)".

- 1. Understanding disaster risk
- 2. Strengthening disaster risk governance to manage disaster
- 3. Investing in disaster risk reduction for resilience
- 4. Enhancing disaster preparedness for effective response and to "Build Back Better" in recovery, rehabilitation and reconstruction

7.2 Target

Resilience means the ability of a system, community or society exposed to hazards to resist, absorb, accommodate to and recover from the effects of a hazard in a timely and efficient manner, including through the preservation and restoration of its essential basic structures and functions.

In order for the city to become disaster resilient, infrastructure also need to be resilient. Even the structure is strong, but once that is broken and difficult to recover, that is not called resilient infrastructure.

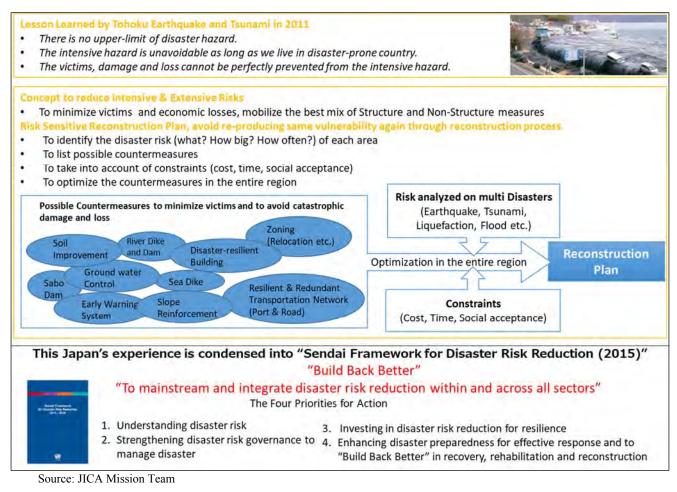


Figure 84 : Japan's Experience on Reconstruction Plan

7.3 Procedure


7.3.1 Outline

The infrastructures are categorized into some sectors such as Road and Bridge, Port, Sea Dike, River, Sabo, Irrigation, Water supply system, Public facility, etc. It is important to perform the reconstruction basic plan of each sector to contribute to the realization of "Resilient City against multiple disasters" based on the concept of "Build Back Better".

Source: JICA Mission Team

Source: JICA Mission Team

Figure 86 : Procedure of Basic Reconstruction Plan for Infrastructures

7.3.2 Set of the target disaster level (safety level)

To design the structure, the target hazard should be determined. The target hazard is the type and scale. The safety level of structure is endured against the target hazard.

Generally, the target hazard is the biggest recorded disaster. If the data are enough accumulated, the target hazard can be set by simulation model. In the case of tsunami, the recorded tsunami will be the target hazard. But the uncertainty of hazard can be considered.

In Japan, the sea dike was designed by the biggest recorded hazard (tsunami or tide) before the Tohoku Great Earthquake and Tsunami in 2011. This tragedy was occurred by the largest tsunami extremely higher than height of sea dike. Therefore, Japan set 2 levels of tsunami. The level 2 tsunami (bigger one) is for establishing integrated disaster countermeasures focused on the evacuation of people. The level 1 tsunami (smaller one) is for designing the heights of sea dike. The level 2 tsunami is the solution for the uncertainty when the data are enough accumulated. Even it is difficult set the level 2 tsunami, the possibility of bigger target hazard should be considered the design of one structure and multiple protection by another structures. The target disasters are composed of Earthquake, Tsunami, Liquefaction, Sediment and Flood compositely. However, these disasters don't have the influences on each sector of infrastructures equally. Therefore, safety level should be considered sufficiently based on relations and characteristics of both infrastructure and disaster as shown in Table 18.

Target	Points to consider for resistant design							
Infrastructure	Earthquake	Tsunami	Liquefaction landslide	Sediment	Flood			
Road and Bridge	v	Vulnerable area only	Vulnerable area only	Vulnerable area only	Vulnerable area only			
Port	\checkmark	✓	Vulnerable area only	Vulnerable area only	Vulnerable area only			
Sea Dike	v	✓	Vulnerable area only	Vulnerable area only	Vulnerable area only			
River / Sabo	\checkmark	Vulnerable area only	Vulnerable area only	\checkmark	✓			
Irrigation	v	Vulnerable area only	Vulnerable area only	Vulnerable area only	Vulnerable area only			
Water Supply system	✓	Vulnerable area only	Vulnerable area only	Vulnerable area only	Vulnerable area only			
Public facility	v	Vulnerable area only	Vulnerable area only	Vulnerable area only	Vulnerable area only			
Private building	\checkmark	Vulnerable area only	Vulnerable area only	Vulnerable area only	Vulnerable area only			
Communications · Broadcasting	v	Vulnerable area only	Vulnerable area only	Vulnerable area only	Vulnerable area only			

Table 18 : Consideration Points in improving infrastructure

Source: JICA Mission Team

7.3.3 Quantification of the Target Hazard

The selecting the target hazard level can quantify the target disaster hazard. In the case of tsunami, the hazard is inundation area, depth, or reach time. The hazard can be used for consideration of countermeasures.

7.3.4 Countermeasures against the target hazard

The design code selection should be carried out based on the procedures that first is to select of the safety level, the second is to quantify the target hazard, and the third is to select countermeasures against the target hazard. The countermeasures are consisted by "Prevention," "Mitigation," "Acceptation".

(1) Prevent from the target hazard

The building control by zoning, or spatial planning can prevent people and buildings from the target hazard. In case of tsunami, the coastal zone can be prohibited for housing.

(2) Mitigate the target hazard

The disaster protection facility can mitigate or reduce the target hazard. In the case of tsunami can reduce the tsunami inundation area.

(3) Accept the residual hazard

After preventing and mitigation the target hazard, people need to accept the residual hazard. The main countermeasure is evacuation. In the case of tsunami, the tsunami early warning system and evacuation facilities such as tsunami evacuation buildings and roads are necessary. Moreover, disaster education and evacuation drill at schools or communities can secure the safe evacuation.

7.3.5 Design Code

The design code for the infrastructure is necessary for the mitigation and the acceptation of the hazard. In the case of tsunami, sea dike should be endured against the destructive power of the tsunami and reduce the inundation area. Also, the tsunami evacuation building should be endured in the tsunami inundation for securing the lives of evacuated people.

7.4 Inseparability of Infrastructure for Disaster Risk Reduction

Based on BBB concept, reconstruction of some infrastructures in central Sulawesi Province should be planned in inseparable manner in order to maximize both efficiency of reconstruction process and effectiveness of disaster risk reduction that requires detailed risk analysis and prudent design in order to secure resilience against disaster and/or to mitigate levels of damages from tsunami / liquefaction.

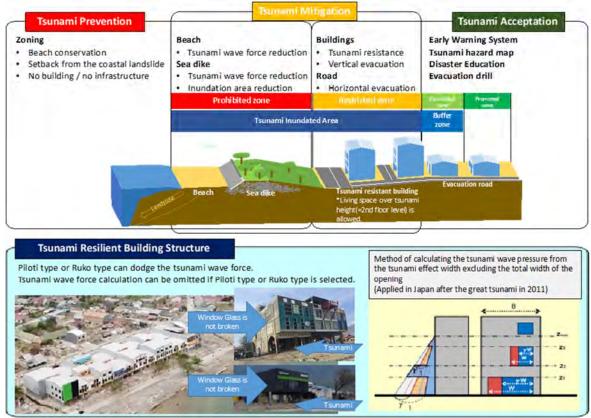
Toward formulation of the regional reconstruction master plan, the potential reconstruction components should be carefully analyzed to understand the latest condition to identify issues and challenges. Only with full understanding of the project issues, actual packages of infrastructure reconstruction in the region could be recognized to promise a better, safer and more sustainable society building. As discussed in the above section of 3.4, there are several infrastructure redevelopment related components considered as necessary to rebuild the region, and each concerned component is examined hereafter to identify challenges and issues toward reconstruction.

		Detail		ed Risk Analysis		
		Inseparability	Liquefaction- Landslide	Tsunami	Earthquake	Timing for Construction
Seal Dike		٠	1	1	1	Long
	Coastal Road (Including the Palu IV bridge)	•	~	1	1	Long
	Ring Road	•		1	1	Long
Road & Bridge	Ring Road in Liquefied Area	•	1		1	Long
	The other Roads (Simple Repair)					Short
	Multifunctional irrigation channel	•	1		1	Long
Irrigation	The other facilities				1	Short
	Groundwater level control	•	1		1	Long
Drainage	Other facilities				1	Short
D '	Groundwater level control	•	1		1	Long
River Improvement	The other facilities				1	Short
	Sediment control in Liquefied Area	•	1		1	Long
Sabo	The other facilities				1	Short
	Groundwater use	•	1		1	Long
Water Supply System	The other facilities				1	Short
Buildings	· · · · ·		1		1	Short
Sea Port			1	1	1	Short
Air Port			1		1	Short

Tsunami Countermeasures & Coastal Road Network Package

Liquefaction Countermeasures Package

Source: JICA Mission Team


Figure 87 : Basic Criteria for Infrastructure under Disaster

7.5 Tsunami countermeasures and Coastal Road network package

7.5.1 Basic policy

Wide Palu bay coastal area has affected by tsunami, and the area of roughly 400m distance from the coast has been damaged largely. The consideration of future occurrence of such earthquake, tsunami, coastal landslide shall be taken seriously in order to reconstruct the affected coastal areas better and resilient to protect people and society, and planning and designing of sea dike and road at the location as well as land use, and land reallocation should be carefully conducted. In order to effectively reconstruct these facilities at required quality, cost and schedule, the balance between land acquisition and infrastructure development cost has to also be carefully examined. There have been many people restarted their own buildings without permission and land use control within the tsunami affected area, thus there should be different kind of resettlement plan may need to be prepared (refer to Figure 89).

Setting up the land use control and regulation to the tsunami affected and some extended areas is necessary in order to effectively manage actual reconstruction without any unwanted effort, such as negotiation with illegally settled people, etc. Though, minimizing the land reallocation is one of the redevelopment keys to the location. Therefore, comprehensive plan of both land reallocation and infrastructure reconstruction (mainly roads, bridges and sea dikes) is urgently needed. This comprehensive plan should also include public space development for disaster prevention as well as public amenity provision. Considering the function of coastal area with building types is another key to energize the coastal area with safer environment for the people including particular buildings with piloti or the commercial and residential complex building locally called as "Ruko". The tsunami resistant design is required for these building. Based on the setback distance from the coastal line, spatial design and building types may differ, so that the land use and zoning regulation should also be carefully analyzed for any necessary adjustment specific for the Palu bay area.

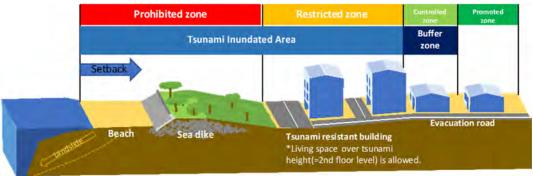
The coastal road network needs to be considered with tsunami countermeasures.

Source: JICA Mission Team

Figure 88 : Design Code

Figure 89 : Process for Design Code Application

7.5.2 Regional Tsunami Countermeasures



Source: JICA Mission Team

Figure 90 : Regional Countermeasure

(1) Palu city coastal zone

Considering the significant risk of coastal landslide and tsunami inundation, implementation of structural measures is recommended in this area, in order to protect Palu citizens from any coastal landslide and tsunami event equivalent to the 2018 earthquake and tsunami.

Source: JICA Mission Team

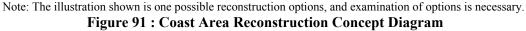


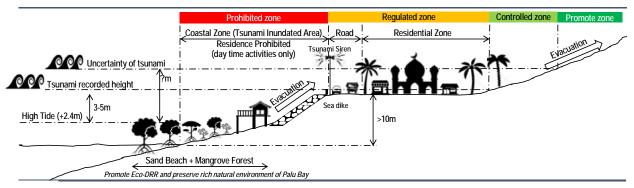
Figure 92 : Palu City Coastal Zone (plan image)

- Seafront area of 120m will be prohibited from building construction, considering the risk of coastal landslide. Existing houses and buildings within this zone need to be relocated to outside of this area.
- Earth filling sea dike (utilizing disaster debris) will be constructed behind the seafront area (120m setback), avoiding the coastal landslide hazard zone, in order to ensure the structural stability of the dike. The coastal road will be relocated behind the sea dike. In the Coastal area, it is necessary to reconstruct the provincial road for smooth logistics, reduction in traffic volume passing through Palu city area and improvement of redundancy at the occurrence of disaster. This area will be reserved for green plantation, and no structure or building will be allowed.
- In the areas behind the coastal road (i.e. inundated areas), building construction will be regulated. Only tsunami resistant buildings and structures will be permitted. Ground floor of buildings should not be used for residential purpose, and will be restricted to the use for day time activities (e.g. restaurants, retail shops, supermarket, parking, etc.)

There are a few other possible options that can be considered, such as constructing sea dike on coastal landslide hazard zone without set backing 120m (too risky) or constructing sea dike using rigid double-wall steel sheet pile structure (very expensive). The advantage of the proposed method can be summarized as follows, especially from a viewpoint of "Build Back Better (BBB)".

- Social Acceptance:
 - Setting development away from the tsunami affected area makes people to feel safer.
- <u>Risk & Safety:</u>

Coastal landslide hazard zone is avoided. Resilient earth fill sea dike is constructed, which is easy to restore even if heavily damaged.


➢ Cost:

Much less expensive compare to double-walled steel sheet piles. In addition, the sheet pile structure is not easy to restore if damaged. Setback makes the bridge span shorter than the damaged one.

The disadvantage is the wide area of land acquisition, which may require longer time for completing the project due to the negotiation with the land owners and coordination with the stakeholders.

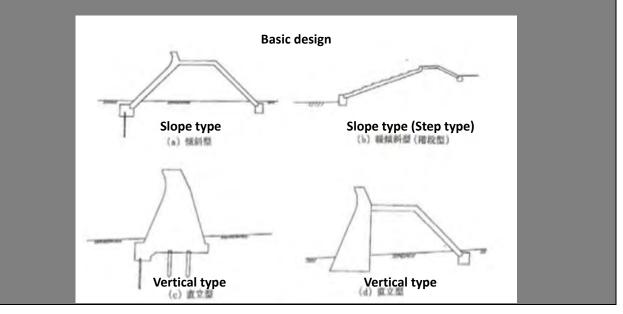
(2) East and West Coast of the Palu bay

On the east and west side of the Palu Bay, the low elevation areas close to the shoreline were devastated by tsunami. However, tsunami inundation was limited to narrow areas, thanks to the topographical characteristics (in general, elevation quickly reaches 10m). Considering that, and the rich and preserved nature in these areas, application of Eco-DRR concept is recommended, as illustrated in the figure below.

Source: JICA Mission Team

Figure 93 : Palu Bay East and West Coast

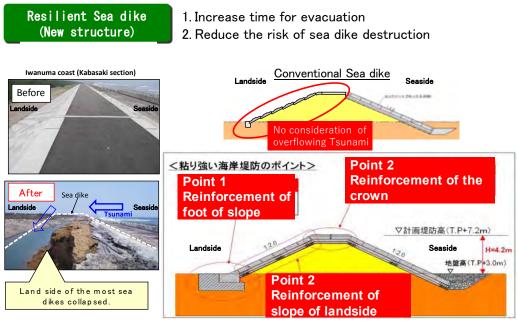
The strategy is as follows.


- The residential zone with higher elevation, and prohibited coastal zone from residential use. The coastal zone can only be used for day time activities such as restaurants and fishing ports.
- The sand beach and mangrove forest can decrease the distractive power of tsunami wave and mitigate tsunami impacts.
- ▶ Improvement of the tsunami early warning system and tsunami evacuation plan for safe evacuation, especially considering a very rare tsunami event that can impact the residential zone.
- On the west side of the Palu Bay there are several road slopes along the coastal road. It is necessary to protect road slope where landslides are expected due to earthquake or heavy rain. On the east side of the Palu Bay it is necessary to consider constructing a bypass road on the inland side to improve the coastal road redundancy.

For developing a more detailed plan, detailed information such as population data, building inventory data, topographic profiles, bathymetry profiles and soil boring tests are required along the coast of Palu Bay.

7.5.3 Tsunami-resistant design code

(1) Tsunami-resilient sea dike


The basic design of sea dike in Japan shows in Figure 94. The sea dike is resistant against the target tsunami and storm tide.

Source: JICA Mission Team Figure 95 : Basic design of sea dike in Japan

From the experience of the Tohoku great earthquake in 2011, the sea dike design was reviewed and was upgraded with tsunami-resilience. The tsunami-resilience is to reduce the risk of sea dike destruction and to increase time for evacuation.

The green sea dike is the sea dike covered with soil and vegetation behind the dike. The green sea dike can be more tsunami-resilient

Source: JICA Mission Team

Figure 96 : Tsunami-resilient sea dike

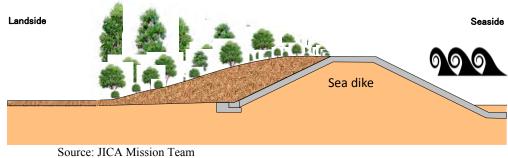


Figure 97 : Green sea dike

(2) Tsunami-resistant building

From the experience of the tsunami in central Sulawesi, the particular buildings with piloti or the commercial and residential complex building locally called as "Ruko" could stand still.

Source: JICA Mission Team Figure 98 : Ruko type building condition in coastal area

Tsunami wave pressure for structural design is developed based on the research of the Tohoku great earthquake in 2011. When the building has pars of opening, the wave pressure can be reduced. The method of calculating the tsunami wave pressure from the tsunami effect width excluding the total width of the opening is developed.

When the target tsunami hazard is the recorded tsunami in 2018, the tsunami inundation depth is mostly lower than 2nd floor. The tsunami went through the opening of building. If the piloti type or Ruko type is selected, tsunami wave force calculation can be omitted and the building can be resistant enough against tsunami.

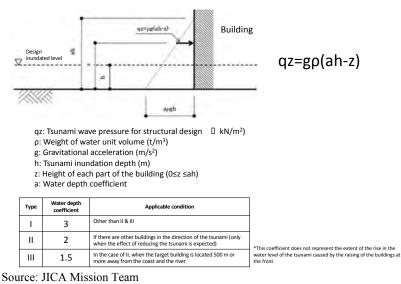
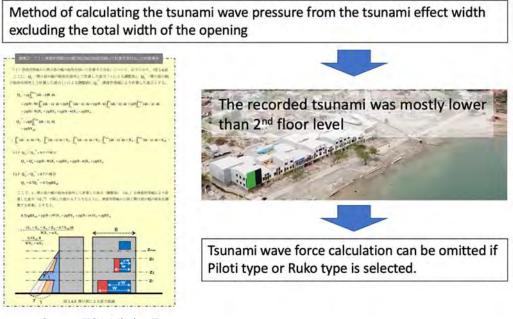



Figure 99 : Tsunami wave pressure for structural design

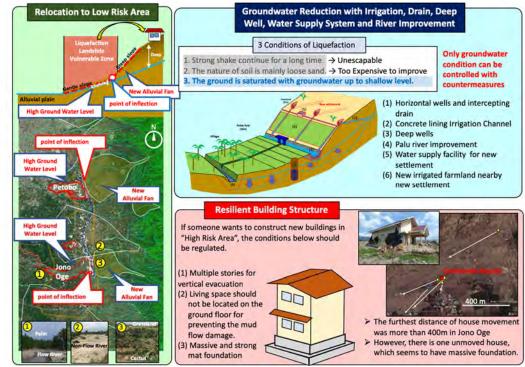
Source: JICA Mission Team

Figure 100 : Advantage of the piloti type and Ruko type

7.5.4 Coastal road network

It is necessary to reconstruct four lane provincial road for smooth logistics, reduction in traffic volume passing through Palu city area and improvement of redundancy at the occurrence of disaster. Road alignment of coastal road needs to be considered together with sea dike (Jl. Cumi-Cumi and Jl. Rajamoili). The Palu IV bridge needs to be reconstructed with a structure of earthquake resistance. The construction site needs to be selected considering road alignment and construction cost.

The coastal road network is the important infrastructure for tsunami evacuation. The radial roads are dangerous road network structure from the viewpoint of evacuation, as evacuation vehicles and people concentrate in the center of the city and cause traffic congestion. For safe and quick evacuation, the road network that does not intersect is necessary so that evacuation traffic does not overlap.


7.6 Liquefaction landslide countermeasures package

7.6.1 Basic policy

The relocation from the vulnerable zone can prevent people from the liquefaction-landslide disaster hazard.

The groundwater control is only mitigation of this hazard, because the shake by earthquake cannot be avoidable, the soil improvement in wide vulnerable area is too expensive.

The reinforcement of the building foundations can be resilient against the liquefaction-landslide.

Source: JICA Mission Team

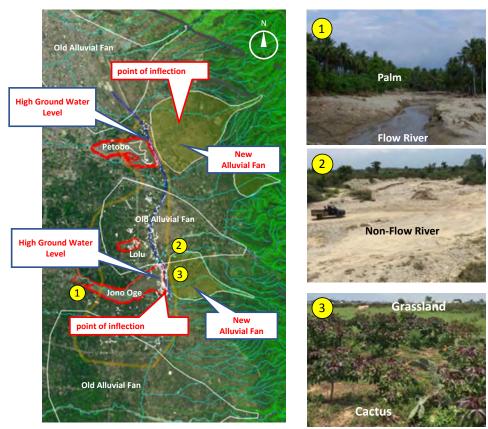

Figure 101 : Fact and Development Policy for Liquefaction Landslide Countermeasure

Figure 102 : Process for Design Code Application for Liquefaction Landslide Countermeasure

7.6.2 Relocation to low risk area

Based on the geological and vegetation condition and disaster risk map, the evacuee families should relocate to the safer area. The upper side from the damaged area is identified as the safe area from liquefaction-landslide hazard. The deep ground water of upper side decreases the liquefaction-landslide risk but makes the water supply difficult. The water supply easiness is the key to develop the new settlements.

Source: JICA Mission Team Figure 103 : Low Risk Sites for Relocation

7.6.3 Groundwater level reduction

(1) Multifunctional irrigation system

Damages took place in the inland area is mainly caused by liquefaction and related landslide. The earthquake oriented loose underground pressure triggered sand boiling by upward pressure of underground water, and the mix with landslide made its impact much larger. For developing safer living environment against such disaster, underground water control is highly necessary to reduce such risk in the region as large area of the region is covered with sand-based soil. The multifunctional irrigation system for the region should be well designed with underground catchment well to pump out underground water, and pumped water should be supplied to also newly developed farmland as well as utilized for potable use. Since many affected families before earthquake had engaged to agricultural production in the region, there is an effective spatial plan of housing and farmland development considering disaster mitigation. The principal of irrigation facilities reconstruction plan is to return to the function before earthquake. However, infiltration of irrigation water from the channel and paddy-fields into the underground can be considered one of the causes of liquefaction, therefore it is necessary to add functions to control infiltration from irrigation water. In addition, the facility to decrease underground water level is also proposed.

a. Proposed facilities

The proposed facilities are shown below table.

Table 19	: proposed	facilities
		Function

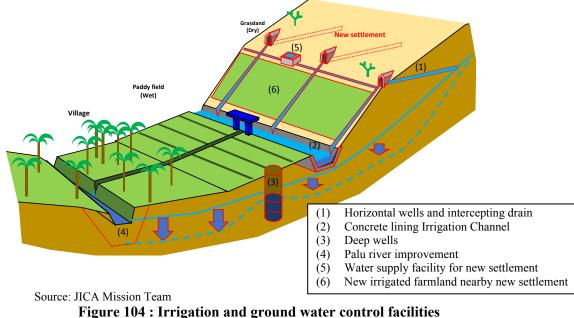
Facilities	Function
(1) Horizontal wells and intercepting drain	To reduce the underground water discharge volume into the liquefaction hazardous area.

To reduce infiltration water from the Gumbasa irrigation main channel

To reduce infiltration water from paddy-fields in and around the

To reduce surface water level of the Palu river.

To utilize the extracted groundwater for new settlement

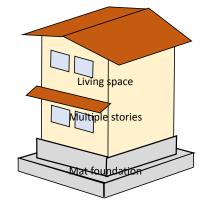

To utilize the extracted groundwater for new farmland

- (2) Concrete lining for the Gumbasa irrigation main channel
- (3) Deep wells
- (4) Palu river improvement
- (5) New water supply facility
- (6) New irrigated farmland

Source: JICA Mission Team

a. Facilities Allocation Image Irrigation and ground water control facilities allocation image is shown below figure.

liquefaction vulnerable area



(2) Liquefaction-landslide resistant building

For the new buildings in the liquefaction-landslide high risk area, the conditions below should be regulated.

- (i) Multiple stories for vertical evacuation
- (ii) Bed rooms should not be locafted on the ground floor
- (iii) Massive and strong mat foundation

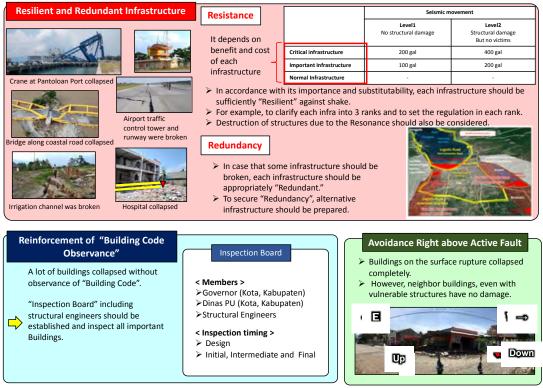

Source: JICA Mission Team

Figure 105 : Unmoved house with massive foundation in Jono Oge liquefaction damage area and image of liquefaction-landslide resistant building Liquefaction resistant building

7.7 Earthquake countermeasures package

7.7.1 Basic policy

The earthquake risk exists everywhere and cannot mitigate. Only avoidance right above active fault is necessary. Therefore, all infrastructure requires to review the earthquake-resistant design. To avoid tragedy by collapse of buildings, the construction quality should be inspected.

Source: JICA Mission Team

Figure 106 : Fact and Development Policy for Earthquake Countermeasure

Source: JICA Mission Team

Figure 107 : Process for Design Code Application for Earthquake Countermeasure

7.7.2 Resilient and Redundant Infrastructure

(1) 2 level of seismic movement

In accordance with its importance and substitutability, each infrastructure should be sufficiently "Resilient" against shake.

Earthquake safety level for shake can be classified 2 levels. The level 1 seismic movement is the middle scale and the one which all infrastructure can be experienced in the period of depreciation useful life. The level 2 seismic movement is the assumed maximum one.

Each infrastructure should be designed not to be damaged at all against the level 1 seismic movement. And it should be designed to protect the user's life even the structure might be heavily damaged against the level 2 seismic movement.

(2) Target infrastructure clarification

Each infrastructure can be clarified into 3 ranks (critical infrastructure, important infrastructure, normal infrastructure) for designing against 2 level seismic movements.

For example, the critical infrastructure is the one requires high safety can be the bridge of national road that connects ports, airports and central city. The important infrastructure is not the critical one but needs the earthquake-resistant design. The normal infrastructure is the one that does not need the earthquake-resistant design.

This clarification depends on benefit and cost of each infrastructure.

(3) Safety level against the seismic movement

Safety level for each infrastructure can be clarified by the Gal-value. The image is the safety levels for each type of infrastructure.

(4) Resilience against the resonance

It is assumed that some high-rise buildings collapsed by the resonance. Therefore, destruction of structures due to the resonance should also be considered. The target infrastructure can be the important bridges or high-rise buildings.

(5) Secure the redundancy of infrastructure network

Infrastructure which consists of network, such as road, water supply, telecommunication need to secure the redundancy. Securing redundancy means that even if one is disconnected by the earthquake, the other guarantees the connection.

Because of the earthquake related combined disaster, some important roads and bridges have damaged, and this has been causing difficulty of transportation in the region. It is necessary to repair damaged road and bridge in order to deliver imported emergency supply and food as well as construction materials for reconstruction.

It is beneficial to construct a ring road for smooth transportation of materials required for reconstruction activities, reduction in traffic volume passing through Palu city area and improvement of redundancy at the occurrence of disaster. By improving the existing roads, it is possible to complete the ring road early. (Jl. Munif Rahman, Jl. Gunung Gawalise, Jl. Padanjakaya, Jl. I Gusti Ngurah Rai, Jl. Jenderal Busuki Rahmat, Jl. Professor Mohammad Yamin)

In order to use as a ring road, it is necessary to widen the road, improve the pavement, reconstruct bridges (Jembatan Palu II and others) and improve the intersection on existing roads.

Currently, a large vehicle such as a truck cannot pass through the Balaroa area due to liquefaction d amage. Therefore, it is necessary to construct a temporary road in Balaroa area. When constructing a permanent road, there is a method of reinstalling with a Rock bolt and H shape Pile and reconstruct it in its original position.

For roads used for emergency activities and transportation of emergency supplies, Earthquake countermeasures are necessary for bridges and road slopes.

The urban area surrounded by this ring road has been developed, and future social framework analysis is mandatory to finalize the candidate route for the core transport and logistics services.

Source: JICA Mission Team Note: Yellow line indicates general concept of emergency logistics route Figure 108 : Concept Diagram of Reconstruction Acceleration Logistics

7.7.3 Avoidance right above the active faults

Buildings on the surface rupture collapsed completely. However, neighbor buildings, even with vulnerable structures have no damage. All active faults cannot be observed on the ground. New active fault might be found after next earthquake as the rupture appeared at 2 km distance in the east from famous active fault by this earthquake.

All infrastructure in this area should be resistant against the shake, and just avoid right above the observed active faults.

7.7.4 Low Reinforcement of the Building Code

Buildings seems collapsed because of the construction failure by neglecting the building code. The low enforcement of building code is necessary to improve the earthquake resistance of buildings. The buildings that many people use, such as public buildings (schools, hospitals), large commercial buildings (hotels, shopping mall) should be inspected carefully.

Therefore, the Inspection Board including structural engineers should be established and inspect every important Buildings.

(1) Establishment of Common Standard for Resistant building

1) Appropriate structural design

In vertical direction with rigid structural frame design, it is important that strong rigid structural parts and weak structural parts shall not be designed in the same elevation, as the earthquake force must be concentrated to the weak structural joints.

a. Adverse effect of the Prototype Design

City apartment house and Gasoline station is constructed by prototype design, same design is applied all of the area of Indonesian country regardless of the Seismic risk zoning and liquefaction area

In case of Palu city, Palu is categorized in the most critical area in the seismic risk zoning map, and as shown in Fig-1, the Spectral acceleration Sa for Palu is around 1.3g to 1.4g for the Period (T) around 0.2s

to 1.0s, this values is almost 2 times of north Jakarta area, however, the same design building are constructed in all of the area of Indonesia

In case of the Jakarta area, if five (5) story building, the column dimension shall at least 60 cm x $60 \text{ cm} \sim 80 \text{ cm}$ x 80 cm, however, in case of Palu apartment column dimension is only 30 cm x 50 cm, and main re-bar only 3-D16 was provided.

Comparing to magnitude of the Seismic, the size of the column and beams are too small, and provided re-bar also too small because of the Prototype Design that is not considered seismic risk zoning, this condition is the fundamental issue of the destroy the Building and Facilities

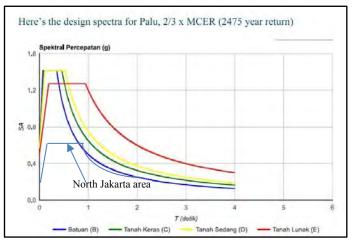


Figure 109: Spectral Acceleration for Palu

b. Different kind of Foundation applied for same building

Building-B was slide away around 50m from the original position due to Earthquake and totally destroyed.

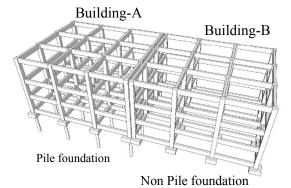
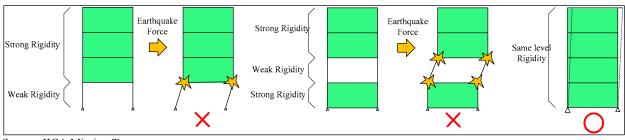



Figure 110 : Image of Foundation Installation (Piling work)

In case of the Hospital building (Anutapura Hospital), the structure of Building-A and B was separated by expansion joint, however due to Earthquake, Building-A is intact on the original position, but Building-B was slid away around 50m from original Position, and has been totally damaged. Unlikely happen usually, and structural drawing include foundation drawing is not find out, however, it is a possibility to apply different foundation type such as the Pile foundation was applied for Building-A and Non Pile foundation was applied for Building-B, it must be necessary more detailed investigation.

Source: JICA Mission Team

Figure 111 : Mechanism of Structural Defect

In horizontal direction, the eccentricity distance between building gravity center point and rigid center point of each floor must be less than 0.15, otherwise the building must be destroyed when earthquake occurs due to extra torsional force

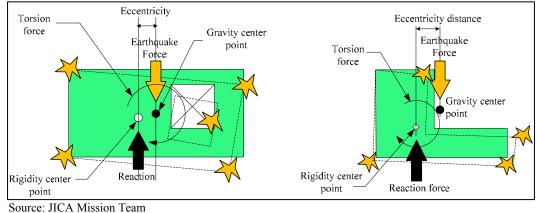


Figure 112 : Eccentricity Distance between Gravity Center and Rigid Center

No short column is recommended, otherwise, the earthquake force concentrate to the short column.

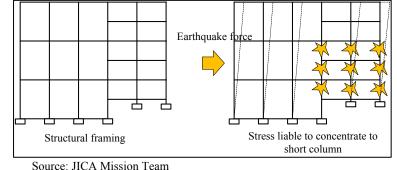
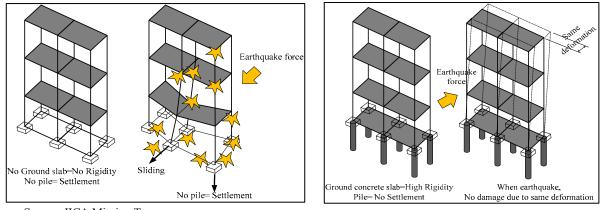



Figure 113 : Earthquake Force Concentration to Short Column

c. Importance of the rigidity of the ground floor concrete slab and Pile

Appropriately designed pile foundation, strong ground beam and ground concrete slab shall be given to a building so as to make toughness structure in order to avoid different deformation and settlement due to earthquake strike.

Source: JICA Mission Team

Figure 114 : Image Figure (3)

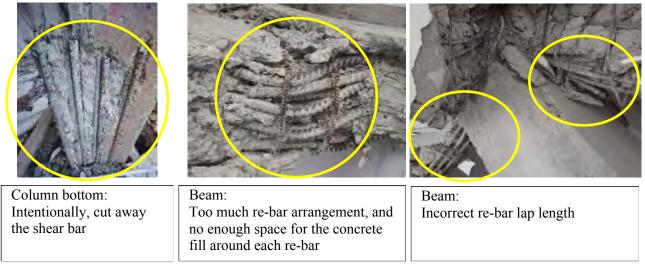
(2) Enhancement of "Building Code Observance"

Buildings seems collapsed because of the construction failure by neglecting the building code. The low enforcement of building code is necessary to improve the earthquake resistance of buildings. The buildings that many people use, such as public buildings (schools, hospitals), large commercial buildings (hotels, shopping mall) should be inspected carefully.

Therefore, the inspection Board including structural engineers should be established and inspect every important Buildings.

1) Reinforcing construction supervising work

Present condition of IMB (Building permit) and Supervising for the construction is as shown below. The building permit is issued from DPMPTSP after evaluation by SK (Technical team belong to ministry of public works). However, after issuing of IMB, actual supervision procedure on the construction site by Technical team from the government agency and/or other structural engineer has not been organized properly.


Recommendation of reinforcing of supervising work on the construction site is as below.

i) Incorrect and improper works on site

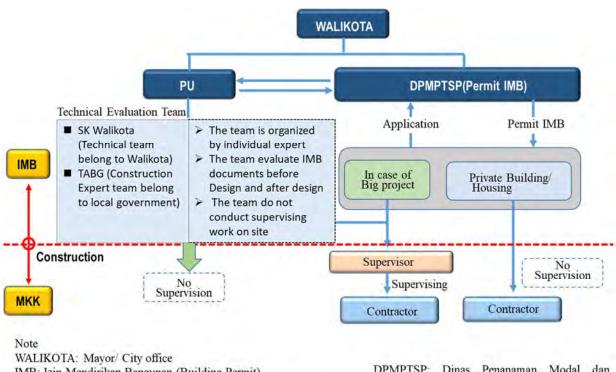
Incorrect construction work as shown below is one of the critical reason of the building collapse due to earthquake force input.

Mainly, these incorrect works are considered to happen because of:

- ✓ No knowledge of the worker
- \checkmark No proper supervision/inspection and quality control on site

Source: JICA Mission Team

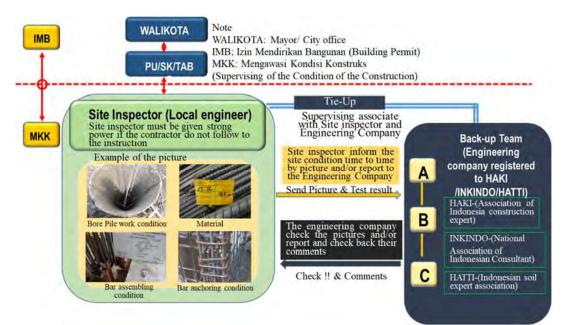
Figure 115 : Images of Incorrect Reinforcement Installation for Concrete Structure


ii) Recommendation about improvement of IMB process and establishment of organization in charge of MKK (Construction Supervision works)

Strengthening IMB procedure

- ✓ Before application of IMB, every applicant must be consulted by SK or TABG (Technical team), and their comments (if any) must be considered into the building design
- When IMB, every applicant must follow the instruction by SK or TABG
- ✓ In case of the construction works ongoing without IMB, WALIKOTA shall has a power to stop the construction works

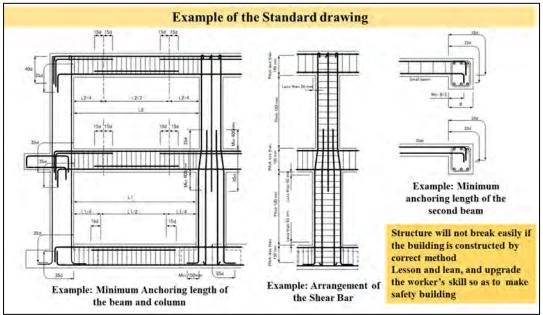
Strengthening MMK procedure (MMK=Construction supervising works)


 \checkmark Legalize the supervising work by the engineer for all concrete building works,

IMB; Izin Mendirikan Bangunan (Building Permit) MKK: Mengawasi Kondisi Konstruks (Supervising of the Condition of the Construction) DPMPTSP: Dinas Penanaman Modal dan Perijinan Terpadu Satu Pintu (Integrated Investment ans Lisensing Service)

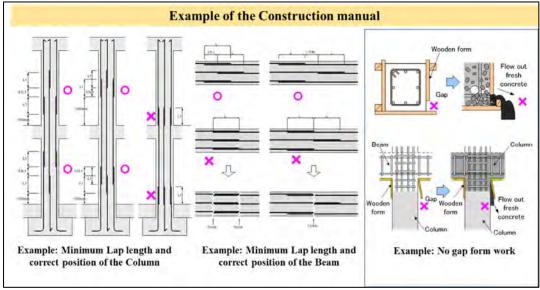
Source: JICA Mission Team

Figure 116 : Building Permit (IMB) and Construction Inspection Procedural Outline


Source: JICA Mission Team

In addition, it is necessary to give strong power to the site inspector so that the contractor must obey to his instruction.

 Legalize of the periodical site inspection by third engineer who associate in HAKI, INKINDO and/or HATTI


- ✓ Legalize, as one of the conditions of permit of IMB, the building owner must have a contract with the Site inspector and third engineer (Back-up team)
- iii) Recommendation to the visualization of construction manual with standard drawing
 - Make standard drawings and manual drawings for bar assembling works, form work and concrete pouring works so as to easy understanding for the site workers, and supervisor as well

✓ These standard drawings shall be authorized by SNI

Source: JICA Mission Team

Figure 118 : Recommendation for Structural Design and Construction Work Visualization (1)

Source: JICA Mission Team

Figure 119 : Recommendation for Structural Design and Construction Work Visualization (2)

7.8 Flood and sediment disaster countermeasures

7.8.1 Basic policy

In the catchment area of the Palu River that flows through the center of the afflicted area, 9 degrees of small and medium flood damage has occurred during the last 15 years. Flood damage will be expected to expand as the river beds tend to be chronically flooded with low river width, including Mainstream and Tributary, and the riverbed is rising by permanent sediment discharge. On the other hand, the liquefaction-landslides and sediment flows occurred due to the earthquake this time, but in the mountainous area large-scale deeplayer collapse and slope failure occurred, and the amount of sediment produced increased. Due to the situation after such a disaster, the risk of secondary sediment-related disasters is very high. These flood disasters and sediment-related disasters require wide-area measures.

	Tabel- 5.8.1 Flood dama	age history in Palu	u River
Date	Casualties	Evacuee	Facilities Damaged
Oct 14, 2003	0	0	0
May 7, 2007	2,112	13,280	0
Apr 24, 2008	0	0	0
Sep 17, 2008	0	0	0
Oct 24, 2008	19	98	0
Aug 25, 2012	6	101	212
Jan 16, 2014	0	0	2
Jan 17, 2014	0	1187	34
Oct 3, 2016	0	237	1
DUDD 1			

Source: BNPB http://bnpb.cloud/dibi/xdibi_list

Flood and sediment disaster countermeasures will be implemented based on the basic concept as follows.

Basic concept I : Improvement of the flood control capacity of the mainstream and tributary of Palu River flowing into the urban districts and suburbs of Palu City.
 Basic concept II : Suppression of secondary sediment-related disasters after this disaster.
 Basic concept III : Thorough comprehensive sediment control.

According to the basic policy, the following countermeasures are implemented.

Basic policy I

- > I-A: Expanding the flood capacity (Riverbed Excavation Work)
- > I-B: Fixation of river channel (Revetment, Series of Consolidation Dam or Ground Sill Work)
- > I-C: Reduce the constant water level of river channels (Lower River Channel Work)

Basic policy II

- > II-A: Suppression and capture of secondary movement of sediment (Check SABO Dam Work)
- > II-B: Strengthening warning evacuation system (The Observation System, The Warning system)

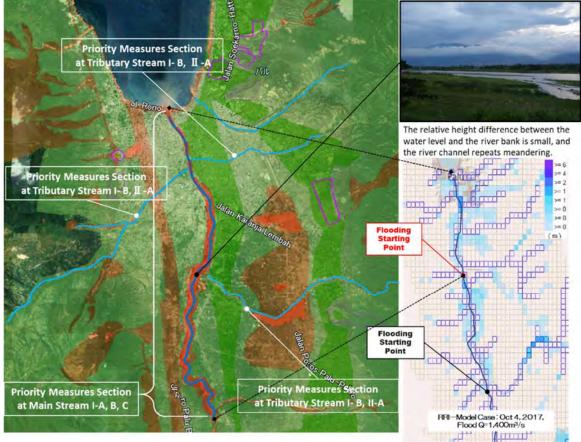
Basic policy III

> III-A: Suppressing harmful sediment discharge into the ocean

(Revetment, Series of Consolidation Dam or Ground Sill Work)

> III-B: Sediment supply balance (Watershed Measures)

Revetment, Series of Consolidation Dam or Ground Sill Work (BIEI River in Japan)

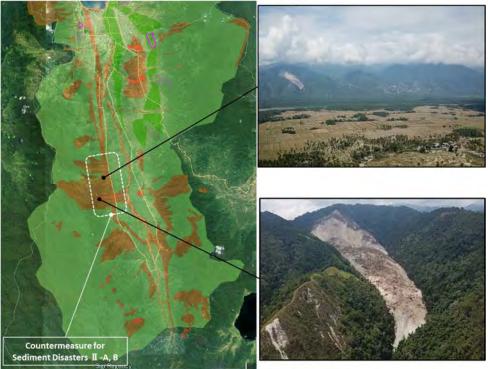


Check SABO Dam (WASHINO SAWA in Japan)

7.8.2 Countermeasure

(1) The urban districts and suburbs of Palu City Area

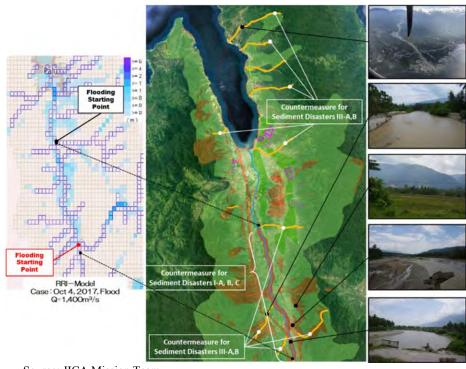
In order to improve the safety against flood damage, in the urban areas of the Palu and suburbs, excavate the riverbed of the Palu River to increase flood capacity and constantly reduce running water. In addition, in the tributary river which flows into the Palu River, the three-river inflow of sediment is remarkable, by the revetment and series of ground sill, to suppress the sediment inflow, and to reduce the water level of the water at all times. By lowering the water level of, the groundwater become low in this area, and it is effective for countering liquefaction landslides.


Source: JICA Mission Team

Note : The RRI model analysis results shown in the figure are based on rainfall data acquired from satellite data in the last 15 years and are subjected to flooding analysis.

Figure 120 : Target infrastructure in the urban districts and suburbs of Palu City Area

(2) The East Side Mountain Area

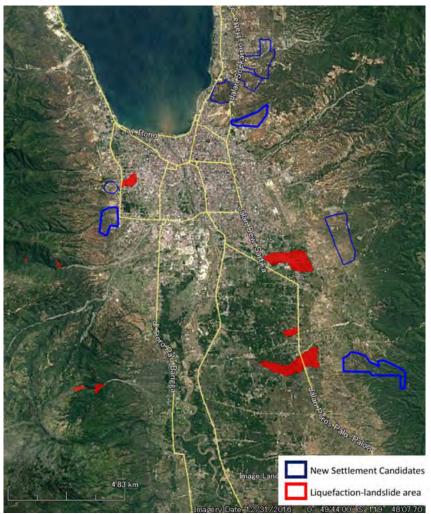

In this area, Large-scale deep-seated landslide caused, by earthquake and slope failures occur frequently. The main road and the village are in close proximity to the collapsed ground. Large-scale deep-seated landslide is likely to cause sediment collapse and outflow secondarily due to rainfall. Since it is difficult to deal with such large-scale collapse, it is necessary to observe soil sediment dynamics and take soft countermeasures by resident relocation and evacuation warning.

Source: JICA Mission Team Figure 121 : Target infrastructure in The East Side Mountain Area

The Gulf area and the upper stream area of the Palu River

Sediment discharge is remarkable in rivers dotted in this area. There is a high possibility of causing large sediment disasters in the main roads and villages in the downstream area of each river. In these rivers, a sabo dam is installed upstream and control of sediment discharge by Series of Consolidation Dam is necessary. In addition, in order to balance the supply of soil and sand and to preserve the natural environment that it should have, it is necessary to take measures as a watershed countermeasure.

Source: JICA Mission Team Figure 122 : Target infrastructure in the gulf area and the upstream area


7.9 Infrastructure for new settlement

There are seven (7) major liquefaction and landslides identified in the target area, and three (3) of them are large in area, and four (4) are relatively smaller. The four of these, which are located closer or within the Palu urban area, namely Balaroa, Petobo, Lolu and Jono Oge, have more impact to the people and communities, therefore large number of families should have evacuated (refer to Figure 123). And the people who live in coastal zone also lost their houses by tsunami.

The new settlements for evacuee families were nominated nearby damaged areas. The disaster risk has been already evaluated. To secure their daily lives, basic infrastructure such as road, water supply should be developed.

The settlements are located in mountain side, it is necessary to prevent isolation of settlements. The integrated road network with central Palu urban area and the new settlements should be considered.

Moreover, the settlements are located in dry areas and securing the water is the key for sustainable development of new settlements. The size of damaged farmland by liquefaction-landslide is estimated about 6,000ha, and quite large number of farmers has lost their farmland or production. New and safe farmland for relocated people should be developed nearby new settlement sites.

Source: JICA Mission Team Note: Red marked areas are disaster affected areas (tsunami and liquefaction landslide) Figure 123 : Palu Urban Area Liquefaction Landslide Site Map

7.10 Projects in each sector

7.10.1 Road and bridge

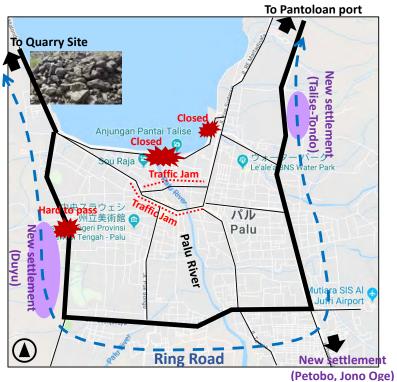
With considering the build-back-better of Road and Bridge sector, the following concepts are proposed.

(1) Coastal Road of central Palu city

It is necessary to reconstruct four lane provincial road for smooth logistics, reduction in traffic volume passing through Palu city area and improvement of redundancy at the occurrence of disaster. Road alignment of coastal road needs to be considered together with sea dike. (Jl. Cumi-Cumi and Jl. Rajamoili) The Palu IV Bridge needs to be reconstructed with a structure of earthquake resistance. The construction site needs to be selected considering road alignment and construction cost.

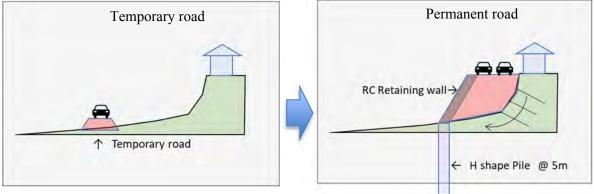
Source: JICA Mission Team Figure 124 : Palu City Coastal Zone (plan image)

(2) Central Palu city road


It is beneficial to construct a ring road for smooth transportation of materials required for reconstruction activities, reduction in traffic volume passing through Palu city area and improvement of redundancy at the occurrence of disaster.

In the Balaroa area, large vehicles which necessary for reconstruction activities can't pass through due to liquefaction damage. Therefore, it is necessary to construct a temporary road as soon as possible. When constructing a permanent road, there is a method of reinstalling with a Rock bolt and H shape Pile and reconstruct it in its original position.

Jl. Munif Rahman, Jl.Gunung Gawalise, Jl.Padanjakaya, Jl.I Gusti Ngurah Rai (The length is about 10 km) need to be widened and to improve pavement so that large vehicles can pass. Then, It is necessary to reconstruct the bridge across the Palu River including Jembatan Palu II to a four-lane bridge with earthquake resistance.


Since the traffic volume increases more than before, it is necessary to change the intersection structure from Roundaboud method to Signaling method.

It is necessary to consider the necessity of construction of a new ring road based on the residence relocation plan in Palu city.

Source: JICA Mission Team Figure 125 : Image of Ring road

Source: JICA Mission Team

Figure 126 : Image of permanent and temporary road in Balaroa area

Source: JICA Mission Team

Figure 127 : Jembatan Palu II

Source: JICA Mission Team **Figure 128 : Roundaboud intersection in Palu**

(3) West and East Coastal Road of Palu Bay

There are several road slopes along the west coastal road. Since it is an important road connecting South Sulawesi Province and Palu city area on the west coastal road, It is necessary to protect road slope where landslides are expected due to earthquake or heavy rain. (Jl. Ampera Surumana and Jl. Trans Palu-Donggala)

Since it is an important road connecting Pantolian port and Palu city area on the east side of the Pal Bay, it is necessary to consider constructing a bypass road on the inland side to improve the coastal road redundancy. (Jl. Trans Sulawesi and Jl. Tolitoli- Palu)

Bridges on roads that deliver emergency supply need to be countermeasures to prevent bridges collapse due to earthquakes.

Source: JICA Mission Team

Figure 130 : Image of Slope Protection

Source: MLIT

Figure 131 : Earthquake Countermeasure of Existing Bridge

7.10.2 Port

With considering of "build-back-better" for port sector, the following concepts are proposed.

- A new crane will be installed in Pantoloan Port to replace with the corrupted one.
- > Wani Port will be reconstructed and be Memorial Place which inform the menace of tsunami.
- > Donggala Port will be reconstructed by setting earthquake-resistant berth.

Source: JICA Mission Team Figure 132 : Coastal Logistic Network

For reconstruction of ports, the followings are proposed.

- ➢ To install urgently a new crane urgently in Pantoloan Port for the resumption of Container handling
- > To make a policy for restoration and reconstruction of Ports
- To introduce restoration method for damaged port facilities
- Measures to utilize the port and coast area as a place to dispose of Debris and Wastes
- > Policy using ports as a transportation base for restoration and reconstruction
- > To make a master plan for the utilization of Ports and Coastal area
- > To make a roadmap for restoration and reconstruction of Ports
- > To make necessary for reconstructing resilient port facilities against earthquake and tsunami
- > To establish organization structure consisting of stakeholders related to Port

7.10.3 Water resources

Coastal facilities

For reconstruction of coastal area is becomes a symbolic area of disaster restoration, the followings are proposed.

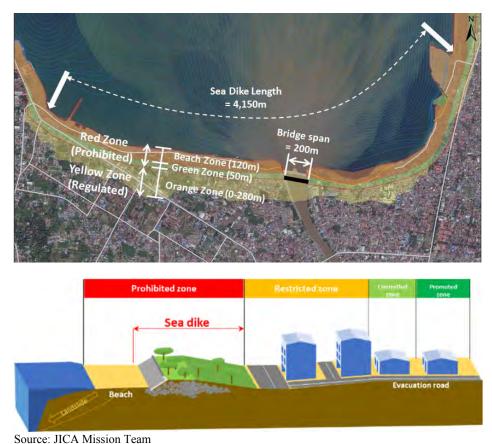


Figure 133 : Palu City Coastal Zone (plan image)

Sea dike

- In order to have enough time for evacuation, it is necessary to have a tenacious structure that is not easily destroyed.
- The height of the sea dike is set by detailed analysis and simulation in the future.
- By adopting gradual sea dike gradient slope, to make it easy to evacuate, and reduce space division.
- For the material of the sea dike, it is necessary to make good use of disaster debris, and displaced soil at construction.

Reconstruction of beach

• By reconstruction the beach area, regain the prosperity before the disaster.

Evacuation facility

• Evacuation route and evacuation facility should be prepared so that evacuation can be done in a short time from the occurrence of the earthquake to the arrival of the tsunami.

River facilities

The proposed facilities are shown below table.

Table 20 : proposed river facilities				
Works	Function			
(1) Reconstruction of river dike at the river mouth together with coastal facility.	It is necessary to have the height and structure of river dike that can withstand the flood flow and the tsunami uphill.			
(2) River channel excavation	Expanding the flood capacity			
(3) Lower River Channel Work	Reduce the constant water level of river channels			
(4) Revetment, Series of Ground Sill Work	Fixation of river channel.			



Sabo facilities

The proposed facilities are shown below table.

Table 3 : proposed river facilities

Works	Function
(1) Revetment, Series of Consolidation Dam Work	Fixation of river channel
(2) Check SABO Dam Work	Suppression and capture of secondary movement of sediment
(3) The Observation System, The Warning system	Strengthening warning evacuation system
(4) Watershed Measures	Sediment supply balance.

7.10.4 Water supply

In Palu city, only a third of its population was supplied by Donggala PDAM and Palu PDAM and the other by their own source such as deep wells. The coverage rate of water system was considerably low even before the earthquakes.

Due to the earthquakes, distribution networks were severely damaged as most of them were made of old asbestos concrete or PVC pipes.

With development of relocation, more population of Palu city seems to rely on the water supply system of PDAMs. Not only the installation of distribution networks but also the increase of treatment capacity could be urgent issues. For construction of water supply systems, the followings are proposed.

- Damaged facilities, such as intake and transmission channel and treatment plants, should be repaired urgently.
- The new boreholes should be developed in order to recover the damaged facilities and to supply for new residential areas due to the relocation of its population.

- For the urgent rehabilitation of distribution networks, the identification of vulnerable pipes is necessary to reduce the leakage.
- ➢ For the new Palu city, the improvement plan is necessary to realize the sound and resilient water supply system, such as the increase of water treatment capacities, distribution networks with proper zoning and capacity building of PDAMs to reduce non-revenue water.

7.11 Disaster Debris Management

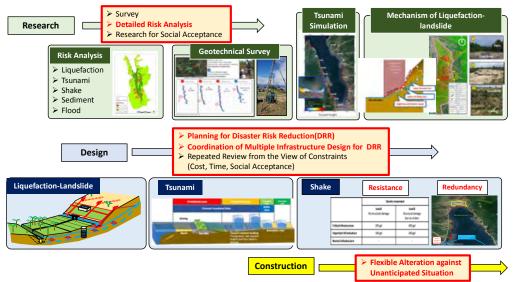
For disaster debris management, the following contents are proposed.

- > Policy
 - ✓ To decide the basic principle to utilize debris as construction materials for public works projects
 - ✓ To designate the emergency logistic road network for carrying the debris and construction materials
 - ✓ Utilization of disaster debris as material for construction of ports, ring roads and environmental friendly embankments in Palu city for reducing economic costs and environmental burdens due to debris disposal and extraction of virgin construction materials.
- > Action
 - ✓ Temporary debris storage site
 - To prepare temporary debris storage site nearby the public works project (the coastal area).
 - ✓ Emergency Logistic Road
 - To prepare the emergency logistic
 - ✓ Separation, Transportation and Stockpile
 - Conducting feasible separation (e.g. on-site only two types)
 - To separate roughly on the damaged site
 - To carry the debris to the storage site (the other to the final landfill site)
 - ✓ Utilization of Debris
 - To utilize the debris for materials to rehabilitate and reconstruct the infrastructure such as sea dike, road, etc.

Source: JICA Mission Team

Figure 134 : Disaster Debris Management Maps

7.12 Project Road map for implementation


7.12.1 Quick start project

To recover the regional economy and livelihood of people as soon as possible, the infrastructure should be rehabilitated quickly. The infrastructure which does not require the new disaster-resistant design, such as simple road repair, can be implemented anytime.

7.12.2 Next step project

The inseparable project package for DRR, such as tsunami countermeasures and redundancy road network package and liquefaction countermeasures package should be considered thoroughly. Because these packages need following time;

- The detail risk analysis and research for social acceptance
- The planning for DRR
- The review of disaster-resistant design code
- The sufficient coordination of multiple infrastructure design for DRR
- The repeated review from the view of constraints

Source: JICA Mission Team

Figure 135 : Implementation Plan

			Detailed Risk Analysis			
		Inseparability of Planning	Liquefaction- Landslide	Tsunami	Shake (Building Code)	Timing for Construction
Seal Dike		•	1	1		6 month later
	Coastal Road (Including Palu IV)	•	1	1	✔ (Bridge)	6 month later
	Ring Road	•				4 month later
Road & Bridge	Road in Liquefied Area	••	1			4 month later
	Other Roads (Simple Repair)					2 month later
Irrigation		•	1			6 month later
Drainage		•	1			6 month later
River Improvement	_	•	1			6 month later
	Sabo Dam at Sibalaya	•	1			6 month later
Sabo	Sabo Dam at Upstream of new settlement candidates					4 month later
Water Supply System					1	4 month later
Building					1	4 month later
Sea Port			1		1	4 month later
Air Port			1		1	2∼4 month later

Tsunami Countermeasures & Road Network Package

Liquefaction Countermeasures Package

Source: JICA Mission Team

Figure 136 : Risk Analysis by Infrastructure

CHAPTER 8. Early Recovery of Community based Livelihood

8.1 General Condition

(1) Housing

By the disaster, about fifty thousand households are evacuated to the shelters. The disaster affected people have started moving into temporary housing in November, 2018 in Sigi District and these progresses will be extended soon to other areas. According to officials of command post in Palu city and Sigi and Donggala Districts, victims will move into temporary resettlement collectively by original community basis.

Therefore, each community could stay together in same temporary shelter area, and could maintain their solidarity and potential to resume their livelihood activities by re-forming SMEs/Co-operatives/Groups integrating new members who lost their asset such as farming land.

(2) Livelihood

Many SMEs, Co-operatives, and Groups (Agricultural and Fishery) in Kulurahan and Desa have been active since before the disaster. Many victims belonged to small-scale industries as a member of SMEs/Co-operatives/Groups for food processing, handicraft, fish farming, agriculture, etc. Workshops of furniture, accessories and food processing have largely affected, and shopping malls, supermarkets, general markets and small retails were also damaged at large. Rice field, other farming lands and irrigation facilities were largely damaged, and many fishermen have lost their boats, ships, fishnets and fish cages. Some aquaculture businesses and ice factories also have lost their businesses.

(3) Characteristics of SMEs and Co-operative

SMEs and Co-operatives are expected target of livelihood recovery activities because of providing livelihoods for the people. The number of SMEs and Cooperatives existed in the Palu city and Sigi and Donggala Districts is shown in table below.

Table 21 : SMEs and Cooperative existed in the Target Area				
	Palu	Sigi	Donggala	
SMEs	N/A	28,157	1,058	
Co-operative*	216 (182)	72 (56)	132 (80)	

Source: JICA Mission Team, interview with department of Co-operative and SMEs of each local governmet Note: the number of cooperative means registered number and the number in blanket means number of active cooperatives

According to the Law No.20/2008, the SMEs is defined as business entities and categorized into four classes such as micro, small, medium and large according to their business scale as shown in the table below. It means that in order to recover the SMEs, certain amount of financial support is required.

	Table 22 : Categories and Definitions	of SMEs		
	Net assets*	Annual sales		
Micro enterprise	Max. Rp 50,000,000	Max. Rp. 300,000,000		
Small enterprise	More than Rp.50,000,000 up to a max. Rp. 500,000,000	More than Rp. 300,000,000 up to Rp. 2,500,000,000		
Medium enterprise	More than Rp.500,000,000 up to a max. Rp. 10,000,000,000	More than Rp. 2,500,000,000 up to Rp. 50,000,000,000		
*Note: Not including land and building of their place of business				

*Note: Not including land and building of their place of business Source: Law No.20/ 2008 regard micro, small and medium enterprises

On the other hand, the Co-operative is a legal entity which based on cooperative principles as a peoples economic and kinship value movement with individual or organizational member by Law No.25 /1992: law

for cooperative. Therefore, the objectives of some cooperative are not for economic activities but other purpose. Here, it is also shown in above table, it is said that the constant proportion of inactive cooperatives exist due to various reasons. Therefore, the Co-operative who has suitable objective and actual activity record of the activities should be selected as target.

8.2 Livelihood Recovery for "Shining on the People"

In consideration with the above mentioned conditions, it is significant for the government and/or NGOs to facilitate these victims to resume their livelihood activities by providing them with materials, tools/machinery and their working space. These victims are expected to obtain something to live for by resuming their own livelihood activities with neighbors/people in community. The local government shall take important role to provide trauma healing to the victims as well as civil servants throughout these supports.

At the same time, showing victims brighter future by positive slogan for recovery and reconstruction. The followings are one of example:

Livelihood Recovery "Shines on the people" through Restoration for SMEs and Cooperation's Foundation and its Recovery

The livelihood recovery program would be implemented by the tentative schedule shown as below.

Program procedure is summarized hereafter, and one of potential program targets, which could be supported quickly are: Resume Symbolic Snack "Onion Fry", Rattan, Tile, Bamboo goods, Goat, Fish Feed, Bag, Onion Fry in Innovation Village initiated in Palu city; then Market and Workshop should be reconstructed along with near future Relocation Site Plan.

(1) Recovery of Livelihood and Community Restoration

In general, the victims have various constraints on the livelihood recovery. Therefore, the livelihood recovery activities and its procedure should consider the constraints and find required assistances to solve it. In the context of the livelihood recovery, the victims are categorized into two groups that one is a people who live in or will return to original community but lost livelihood and the other is a people who cannot return the original community and move to temporary houses. The both are targets for livelihood recovery program but necessary approaches for them are difference.

Even if the first group continues the same livelihood activities as before the disaster, the causes of loss of their livelihood should be clarified and necessary measures are taken in the improvement. For example, if they lost the workspace by earthquake, the quake-resistant building method should be applied in the reconstruction of workspace. The other group will decide the livelihood activities based on the skills and willingness of the members newly formed.

For both groups, it is important to hold community consultation to make consensus among community to identify their demand and dreams towards implementation of recovery program. The following are main steps forward recovery of livelihood and community restoration:

1. Re-forming Cooperatives/SMEs/Groups by integrating new members with Trauma Healing to

victims in temporary house and others.

- 2. Provide tools/machinery and temporary workshop for resuming their livelihood activities such as Food processing, Rattan/Basket, Sewing, community-based fish hatchery, etc.
- 3. Organize/Conduct Training, Marketing Support, cash for works for construction works.

For this purpose, series of the community consultation will be organized. Especially, the community consultation to re-organize the Cooperative/SMEs/Groups and select the livelihood activities should be held at least two times. In the first meeting, their idea and willingness will be listened and concluded draft idea. Then, after the community organizes the internal meeting, like one month after the first meeting, the second meeting will be held to decide their livelihood activities.

For those who lost their livelihood resources such as farmers and their households.

- 1. Conduct counseling to them for their job creation.
- 2. Integrate them into the Cooperatives/SMEs/Groups or organize vocational training for their new job.

Based on the livelihood activities carried out in the target area, possible target programs are summarized are shown in table below.

Sector	Table 23 : Possible Target F Title	Candidate area	Notes and Considerations
Fishery	Restart of Fishery	Donggala and Palu	Renting boat and equipment for fisherman's group
	Reconstruction of ice production facilities for Improvement of fishery	Donggala	Reconstruction of the facilities with considering tsunami
Fish farming	Production of fish feed	Palu, Sigi	Consider synergy with other activities
	Restart of fish hatchery	Palu	Ditto
	Reconstruction of fish farn	Palu, Sigi	Ditto
Agriculture	Intensive vegetable production	Palu, Sigi, Donggala	Consider market
	Poultry and small livestock	Palu, Sigi, Donggala	Consider market
Food production	Reconstruction of workspace and/or providing equipment to produce snacks	Palu, Sigi, Donggala	quake-resistant workspace
Fabric production	Reconstruction of collapsed fabric center	Donggala	quake-resistant workspace, Considering market
	Providing lacking equipment and materials	Donggala	Identify the group and provide the equipment and materials in short term
Furniture and Handcraft	Reconstruction of workspace and/or providing equipment to produce snacks furniture	Palu, Sigi, Donggala	Considering market capacity
Bike repair	Reconstruction of workspace and/or providing equipment for repair the bike	Palu, Sigi, Donggala	quake-resistant workspace
Market	Reconstruction of collapsed market	Palu, Sigi, Donggala	quake-resistant market building
People's Market (Kiosk)	Reconstruction of collapsed Kiosk	Palu, Sigi, Donggala	quake-resistant shop
Women's Empowerment	Increasing women economy by recovering traditional markets and home-based businesses	Palu, Sigi, Donggala	For example, establish bakery in temporary houses

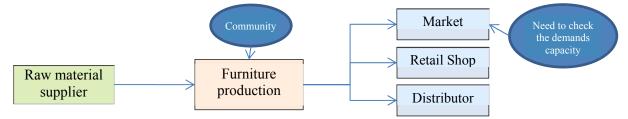
Table 23 : Possible Target Programs for Project Implementation

JICA / YACHIYO ENGINEERING CO.,LTD., ORIENTAL CONSULTANTS GLOBAL CO.,LTD. JV

Establishment women friendly center

Palu, Sigi, Donggala Vocational training, disaster management training and primary health service

Source: JICA Mission Team


Source: JICA Mission Team

Even the community decides same livelihood recovery activity as the economic activity before the disaster; they might face difficulty due to changes of situation in various locations by the disaster. For example, one community will start aquaculture, but they cannot start properly due to lack of supplying of fish feed and fish juveniles. Moreover, the market of the products should be checked before start the activities too. It means that the value chain should be checked to select the target activities. The value chain means relation between production, processing and distribution and marketing, so that if several activities are implemented in one value chain, the synergistic effect can be expected.

Source: JICA Mission Team

Figure 137 : Example of Value Chain of Fish Farming and Possible Intervention by the Program

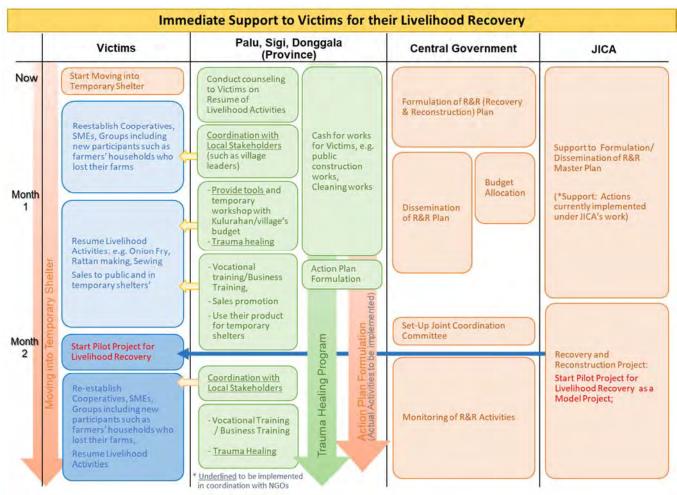
Source: JICA Mission Team

(2) Related Institutions and Mechanism

Currently, here are several Ministries and their regional agencies involved in the livelihood support. Their jurisdictions and possible relation to the livelihood recovery is shown in below.

Figure 138 : Example of Value Chain of Furniture and Possible Intervention by the Program

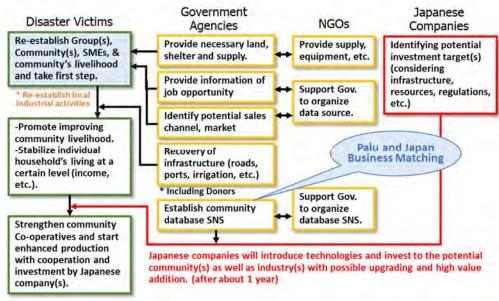
Name of Ministry	Jurisdiction	Related activities with recovery of livelihood	
Ministry of	Support industrial entities and commercial activities	Market, Home Industry (furniture	
Industry and Commerce	Proving guidance and training for industry and commerce entities	production etc.)	
	Relation with chamber of commerce		
Ministry of	Strengthen the SMEs and cooperatives.	Economic activities of micro, small and	
Cooperative and SMEs	Providing training and introducing financial access	medium enterprise and cooperatives	
Ministry of Fishery	Promotion of fisheries, aquaculture, food processing.	Re-organization of fishery, food	
and Marine	Organization of fishermen	processing related to seafood	
Ministry of	Management of tertiary canal and small reservoir.	Re-organization of farmers, vegetable	
Agriculture	Extension services	production	
Ministry of social affair	Conducting social security	Coordinate the trauma healing	


Table 24 : Related Ministries and Their Relation to Livelihood Recovery Program

Source: JICA Mission Team

Each Ministry and its agencies have its jurisdiction. And, some of them are prohibited to provide the equipment and material directly for the beneficiaries, even it might be effectiveness. So that, in order to implement the activities sustainably, some kinds of mechanism is required, for example necessary equipment for recovery of livelihood will be provided and the group will return its cost to revolving fund like LPDB-KUMKM when they have certain profit.

For smooth implementation of livelihood recovery program, key stakeholders at various level should be included at due step. The key stakeholders are local government, community leader, central government, NGOs, and implementing partners.


The followings are coming three month's schedule to support victims in terms of livelihood recovery and community restoration:

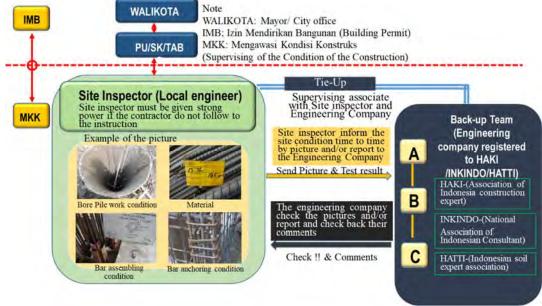
Source: JICA Mission Team

Figure 139 : Immediate Support by Stakeholders for Successful Implementation of "Shining on the People" Program

There would be also possible private sector support from Japan in case their technology or know-how matches the community-based livelihood recovery program. In case such business matching could be realized, some more activities among stakeholders would be considered necessary.

Source: JICA Mission Team

CHAPTER 9. New Regulations


9.1 Spatial Plan

New Regulations should be established to observe the Spatial Plan. In parallel, some kind of mechanism should be considered in order to secure the observance of new regulations.

Table 25 : Guidance for Disaster Hazard Zone (ZRB)		
Zone	Post disaster spatial guidance (requirement for land use)	
ZRB 4	 Not allowed to rebuild houses after disaster. Building and Houses in this area should be relocated Prioritized to be used as protected area for DRR (example Tsunami green belt, Open green space) Can be used as disaster awareness area/to build monument 	
ZRB 3	 New building in coastal area where tsunami inundated is limited for high building (>=2 stories), which can be used as multi-function (Tsunami vertical evacuation shelter) with perpendicular direction of the coastline. For Land utilization in Flood hazard area, minimum 2 stories houses are required. Development of roads and places for evacuation and green open space. New building is limited to earthquake, tsunami, liquefaction-landslide, flood and sediment disaster resistance building (using geotechnical and structural engineering) To limit house and land use intensity in level "Low", and periodically monitor the saturation level of ground water. Very strict controlling of existing residential land use and avoiding construction of new high-risk life line/critical facilities. Undeveloped areas in "very high" of liquefaction-landslide or "high" of sediment disaster should be prioritized the function of protected areas or non-built cultivation such as utilization of forestry, agriculture and plantation space for plants that do not require a lot of water. 	
ZRB 2	 Low Intensity for land utilization/usage Recommendation to follow "resistance building" of ZRB 3 in accordance with each risk. 	
ZRB 1	-	

9.2 Building Code Observance

New organization should be established in order to observe "Building Code" at the phase of construction work.

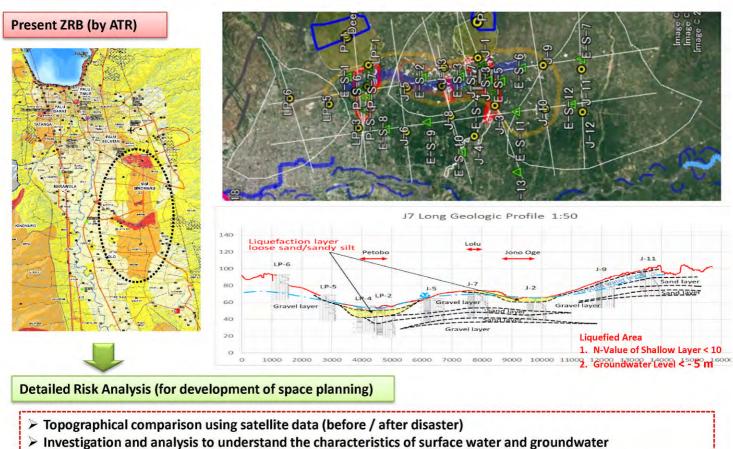
Source: JICA Mission Team

Figure 141 : Recommendation about Improvement of IMB Process and MKK

Appendix

• Progress of examination of liquefaction landslide (inland area)

Progress of examination of liquefaction landslide (inland area)

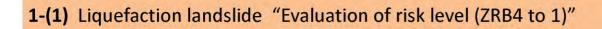

Contents

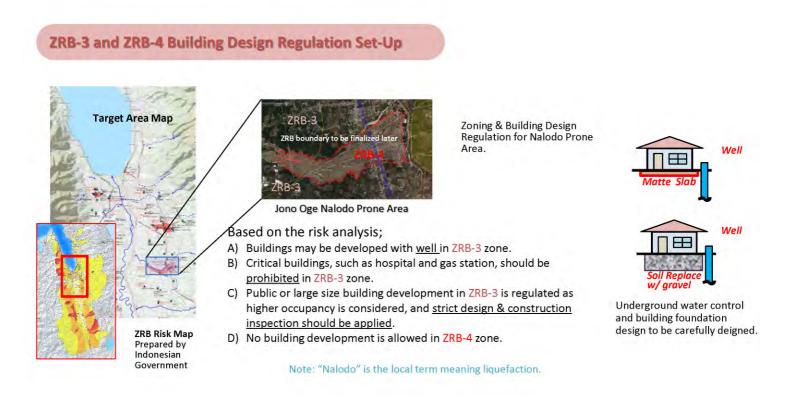
1. Approach on elaboration of ZRB	02
2. Design policy of measures against liquefaction landslide (tentative)	…18
3. Groundwater flow analysis(Getflows) & Monitoring of groundwater	···26
4. Land-use after completion of measures against liquefaction landslide	···29
5. Progress of survey and analysis	30

February 2019

JICA Project Team

1. Approach on elaboration of ZRB


- > Additional geological survey (boring, trench, Swedish type penetration test) in order to confirm the
- distribution of the detailed geological layer
- Survey to understand the geological structure over a wide area Appendix-1----


Zone and Typology	Definition/ Criteria	Post Disaster Spatial Direction (Provision on the use of space/area)
ZRB4 (PROHIBITED ZONE)	4 L: Massive liquefacted zone (after earthquake) (such as: Petobo, Balaroa, Jono Oge, Lolu and Sibalaya)	 Prohibited (not allowed) to rebuild and new development. Existing houses in this zone are recommended to be relocated. Prioritized to be used as protected area, open green space (RTH) and monument.
ZRB3 (Limited Zone)	3 L: Liquefaction Hazard Zone "Very High"	 It is prohibited to build new residential houses and important & high-risk facilities (according to SNI 1726, including hospitals, schools, meeting venue, stadiums, energy centers, telecommunication centers) Reconstruction of residential houses should be reinforced according to applicable standards (SNI 1726) In area that has not been built yet and inside the Liquefaction zone "very High", priority is given as protected area or non-built cultivation area (agriculture, plantations, forestry). Agriculture with less water (For example, Field crop)
ZRB2 (CONTROLLED ZONE)	2 L: Liquefaction Hazard Zone "High"	 New development will require earthquake resistance design refer to applicable standards (SNI 1726) Land utilization/usage level "Low intensity".
ZRB1 (DEVELOPED ZONE)	1 L: Liquefaction Hazard Zone "Medium"	 New development will require earthquake resistance design refer to applicable standards (SNI 1726) Land utilization/usage level "Low to Medium Intensity"

Land-use regulation and building-code in each ZRB

*Notes:

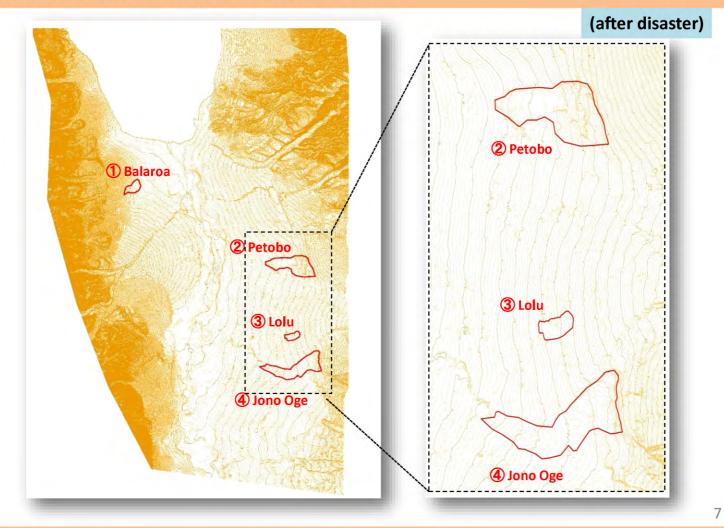
Each disaster-prone area will be equipped with routes, signs and evacuation space. Source: Ministry of ATR/BPN, 2018 Source: Bappenas, 2018

4

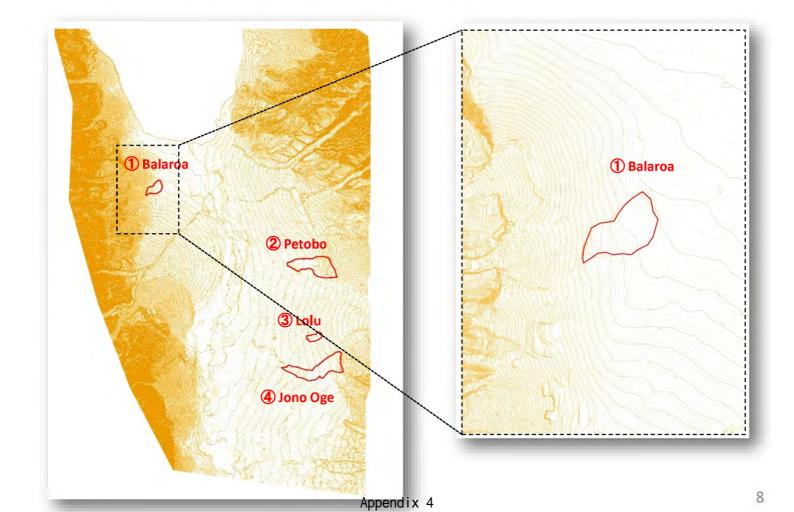
1-(1) Liquefaction landslide "Evaluation of risk level (ZRB4 to 1)"

Draft evaluation methodology of risk level

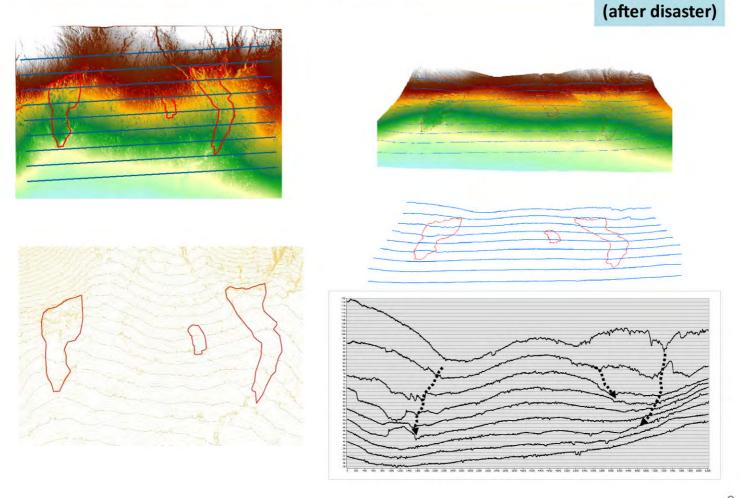
STEP	Contents	Evaluation indicator	Criteria
STEP-1	Interpretation of topographic map, satellite / aerial photo	 Evaluation of topographic change (volume of subsidence, amount of movement and etc.) by comparing the topographic map and satellite / aerial phots before & after disaster Evaluation of geography characteristics (Slope factor: 2-3%, top soil: cap effect) * Satellite data and satellite photo before & after the disaster are already procured 	Zoning of risk area of liquefaction landslide (ZRB4 to 1) *The affected area of large-scale liquefaction landslide will be selected as ZBR4
STEP-2(1)	Simple soil survey result (Swedish type penetration test, N-value)	 Groundwater level from the ground surface Thickness of liquefaction layer (Sand layer with N-value N≦10) 	 ZRB 4 (If it meets BOTH conditions) Groundwater level from the ground surface: Less than -3.0m Thickness of liquefaction layer: More than 2m ZRB 3 (If it meets BOTH conditions) Groundwater level from the ground surface: Less than -5.0m Thickness of liquefaction layer: More than 2m ZRB 2 (If it meets EITHER conditions) Groundwater level from the ground surface: Less than -5.0m Thickness of liquefaction layer: More than 2m ZRB 2 (If it meets EITHER conditions) Groundwater level from the ground surface: Less than -5.0m Thickness of liquefaction layer: More than 2m ZRB 1 Except for ZRB 4, 3, 2
STEP-2(2)	Evaluation by liquefaction resistance (FL)	 Groundwater level from the ground surface Thickness of liquefaction layer (FL < 1.0) 	Basically, above criteria will be applied, even though STEP-2(2) will be applied to clarify a boundary of ZRB 4 to 2. *Evaluation indicator of liquefaction layer is different (Sand layer with N-value N \leq 10 or FL < 1.0) 5


1-(2) Interpretation of topographic map (2m grid)

Area (ha) Place 1) Balaroa 32.5 2 Petobo 2 Petobo 153.7 3 Lolu 22.0 3 Lolu ④ Jono Oge 168.8 ④ Jono Oge


(after disaster)

Append	iх	3
--------	----	---

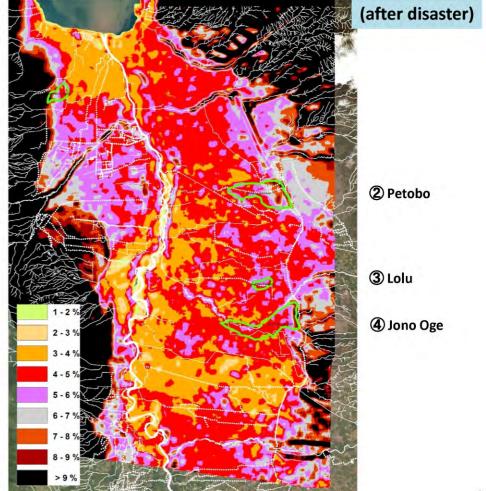

1-(2) Interpretation of topographic map (2m grid)

1-(2) Interpretation of topographic map (2m grid)

1-(2) Interpretation of topographic map (2m grid)

1-(2) Interpretation of topographic map

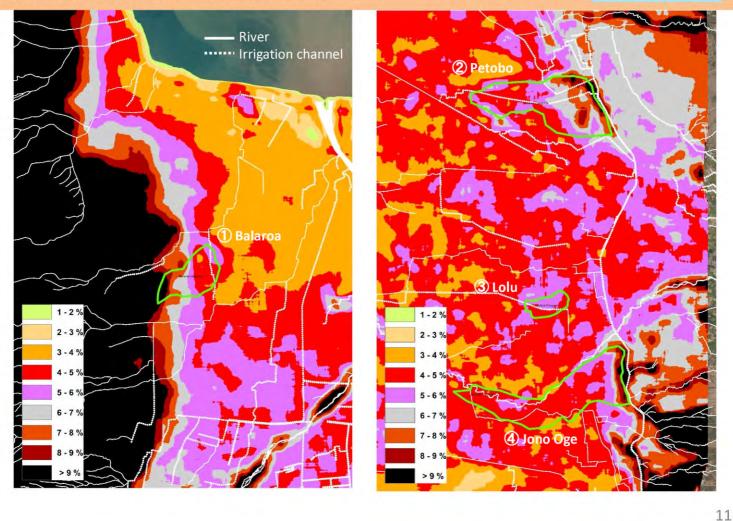
9

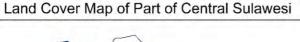

1) Balaroa

Slope factor is visualized using the satellite topography data after the disaster.

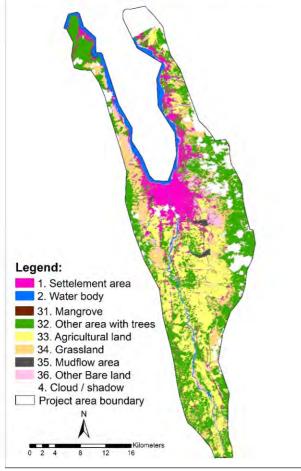
Data of river and irrigation channel are added.

Amount of change before/after the disaster using satellite topography data will be implemented


Condition of large-scale
liquefaction landslide area (① to
④) is shown in the following page.


Appendix 5

1-(2) Interpretation of topographic map


(after disaster)

1-(2) Interpretation of topographic map (surface vegetative cover)

(after disaster)

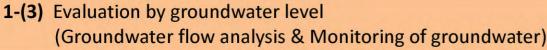
Result of the vegetation survey in the Palu River basin

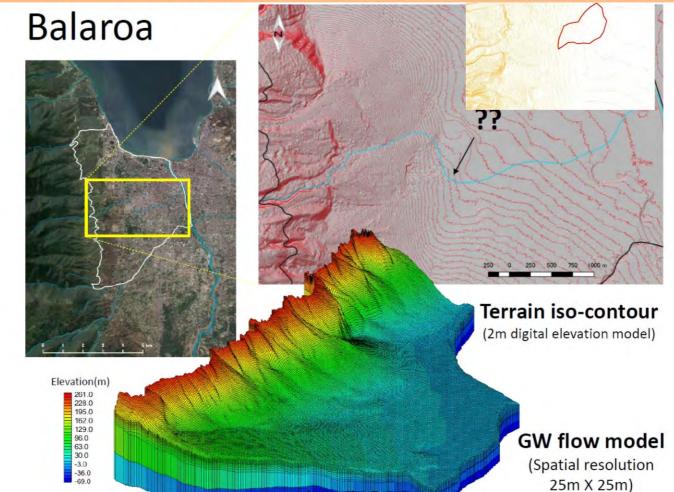
Assuming the surface land cover, such as cap effect: aquiclude distribution, based on the result of the vegetation survey in the Palu River basin (implemented in Dec. 2017)

The land is basically used as an agricultural land except for the urban area of Palu. Condition of surface cover can be one of the factors of cap effect, which takes an important role in liquefaction landslide.

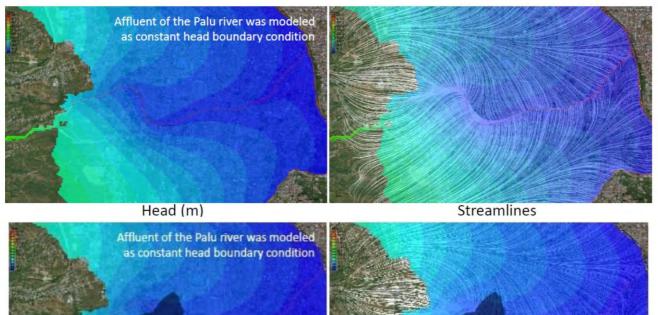
1-(3) Evaluation by groundwater level (Groundwater flow analysis & Monitoring of groundwater)

Confirmation of the groundwater level


7ap 382 303 263 263 263 148 86 26 40 Palu river Groundwater flow analysis **Confirmation of the**


groundwater flow

Proposed place of groundwater level monitoring

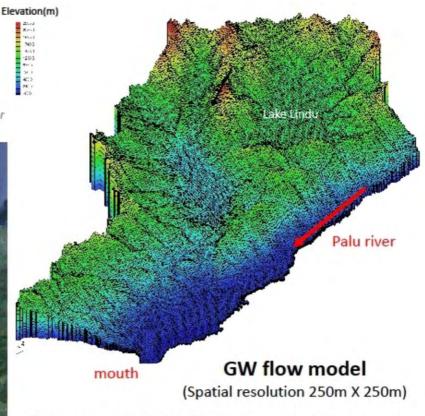

Water leakage from the irrigation channel will be included in the analysis condition

1-(3) Evaluation by groundwater level (Groundwater flow analysis & Monitoring of groundwater)

Computed head and streamlines

Head (m)

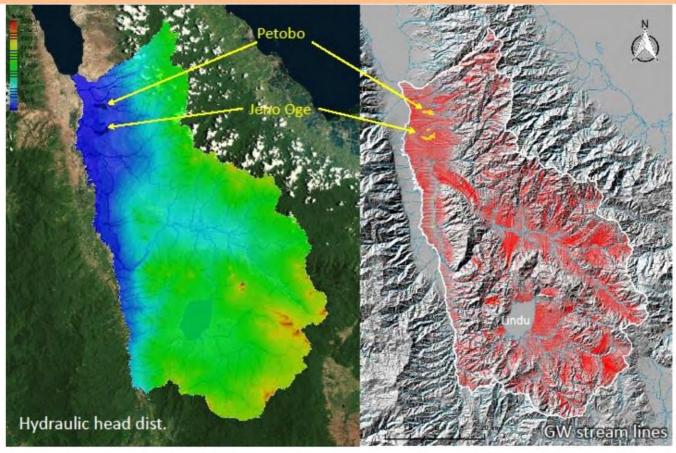
Streamlines


1-(3) Evaluation by groundwater level (Groundwater flow analysis & Monitoring of groundwater)

Gumbasa

Stream network Sungai Sulawesi (ArcGIS online)

: this map use data by geographic information agency, scale 1:250.000 this river use data RBI(scale 1:250.000)



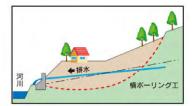
Homogeneous distribution of hydraulic conductivity was assumed because of the roughly visual estimation of the possible GW flow pattern.

Appendix 8

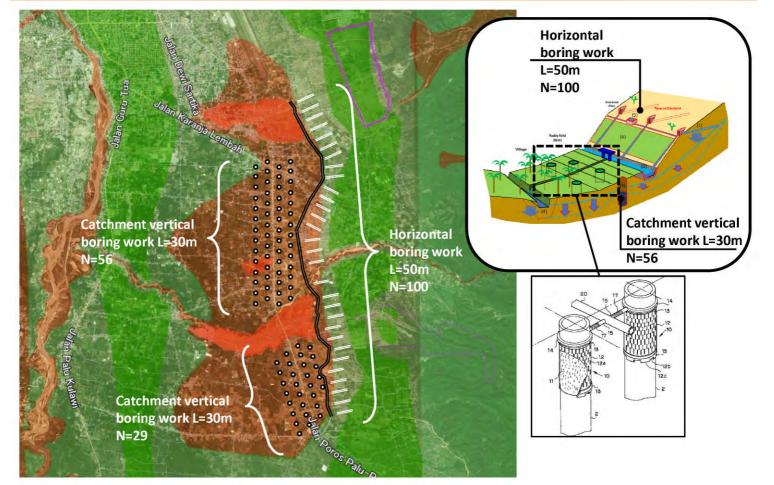
1-(3) Evaluation by groundwater level (Groundwater flow analysis & Monitoring of groundwater)

Preliminary visualized GW flow pattern depicted by using 3D numerical model Gumbasa (Model A2)

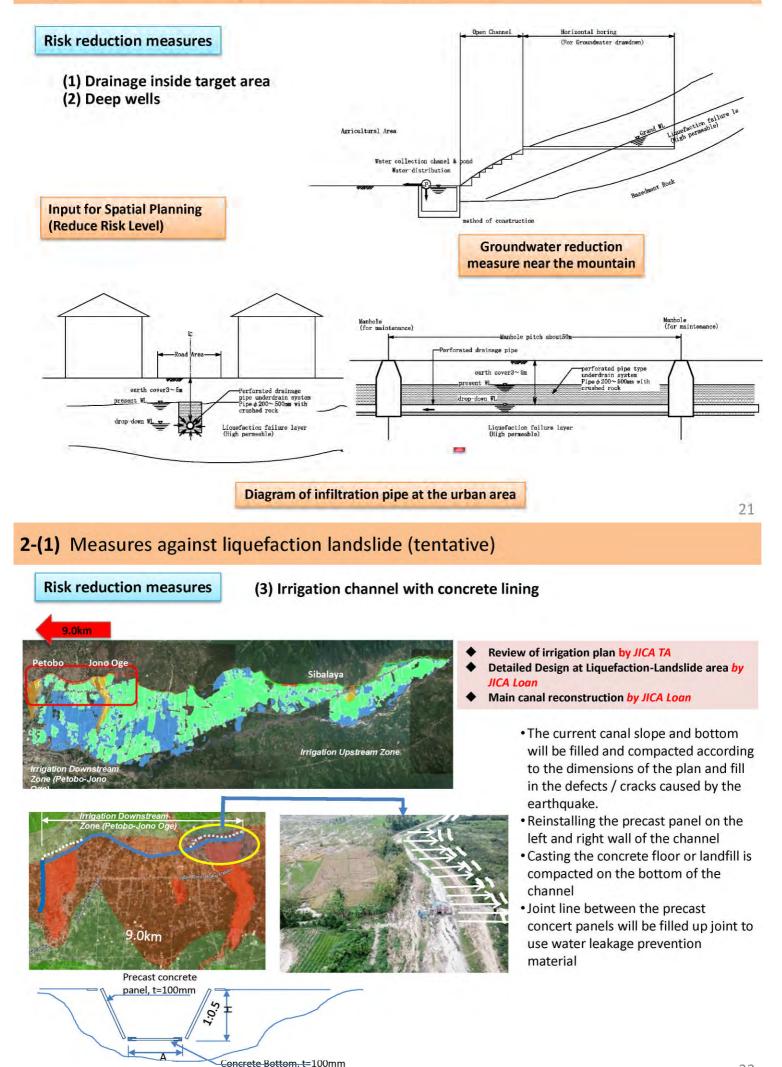
2. Design policy of measures against liquefaction landslide (tentative)

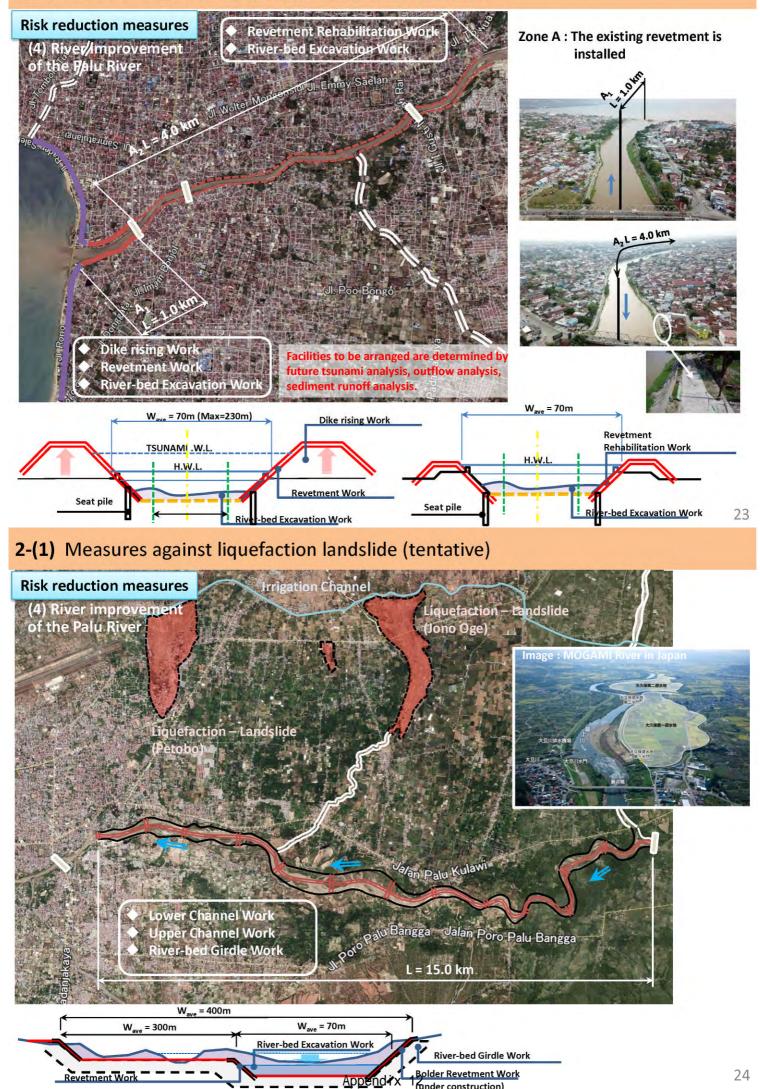

<section-header>

N=56


Catchment vertical boring work L=30m **Risk reduction measures**

- (1) Drainage inside target area
- (2) Deep wells

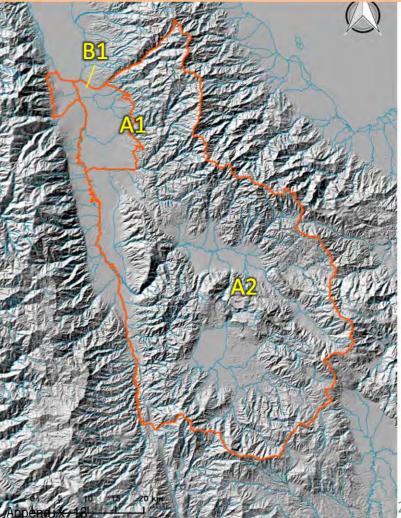



2-(1) Measures against liquefaction landslide (tentative)

2-(1) Measures against liquefaction landslide (tentative)

2-(1) Measures against liquefaction landslide (tentative)

Measures	Contents	Detailed contents
	1) Rod compaction	Penetrate an iron rod with vertical vibration into a loose sandy soil (limitation of penetration depth will be approximately 5m)
Compaction measures	2) Vibro-flotation	Water is injected from the edge of the steel pipe (hollow cylinder) in addition to vibration
	3) Sand compaction pile	Openable and closable device is attached on edge of the steel pipe (30-40cm in diameter)
Drain acceleration measure		Excess pore water pressure is dissipated since excess pore water pressure in the sand layer increases during earthquake (gravel drain)
Groundwater reduction measure		Put a splitter wall (5 to 10m intervals) underground. Pump up groundwater inside the splitter wall
Grid-improvement measure		Put the grid-splitter wall underground. Enhance the stiffness of entire soil. Control the soil deformation during earthquake.


Other measures against liquefaction landslide

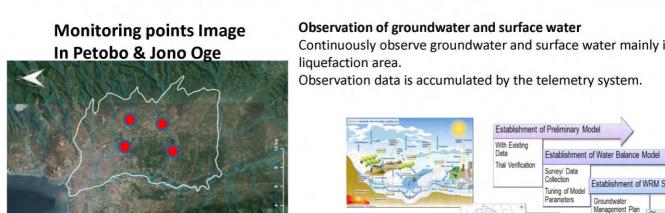
*Not only groundwater reduction measure, but also other measures will be examined and utilized, and select the best measure for the target area

3. Groundwater flow analysis(Getflows) & Monitoring of groundwater

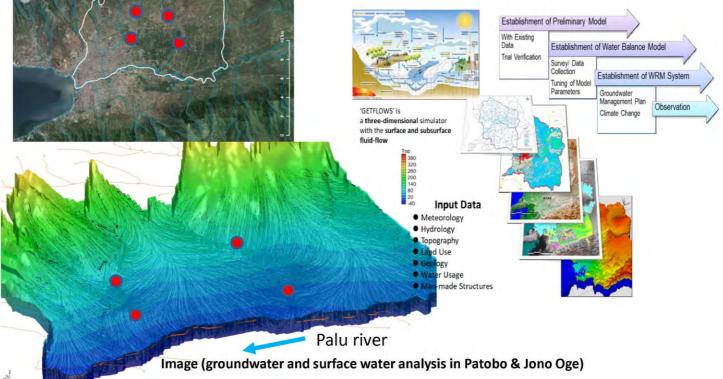
Boundaries of groundwater flow simulation models

Model	Region	Area
A1	Petobo, Jeno Oge	140km ²
A2	Gumbasa	2180km ²
B1	Balaroa	28km ²

3. Groundwater flow analysis(Getflows) & Monitoring of groundwater


Parameter setting

Geology	Hydraulic conductivity (m/s)	Porosity (-)
Surface soil	1.15 X 10 ⁻⁵	Not used (in steady state run)
Sand gravel	1.15 X 10 ⁻⁵	Not used (in steady state run)
Basement	impermeable	Not used (in steady state run)

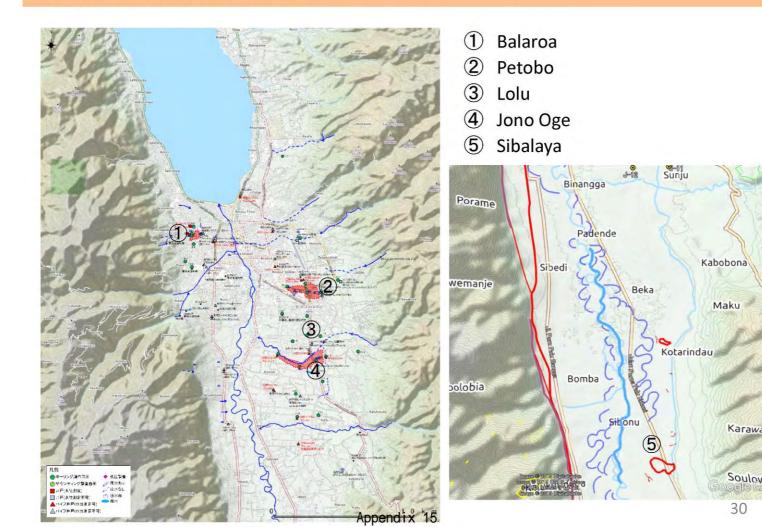

Meteorology	Value	Note
Precipitation(mm/d)		Averaged in 1976-2017
Air temperature (degC)		
Evapotranspiration (mm)		Harmon's equation

Boundary conditions	Assign to
Recharge	Ground surface without streams
Constant head	Streams
No flow	All lateral faces

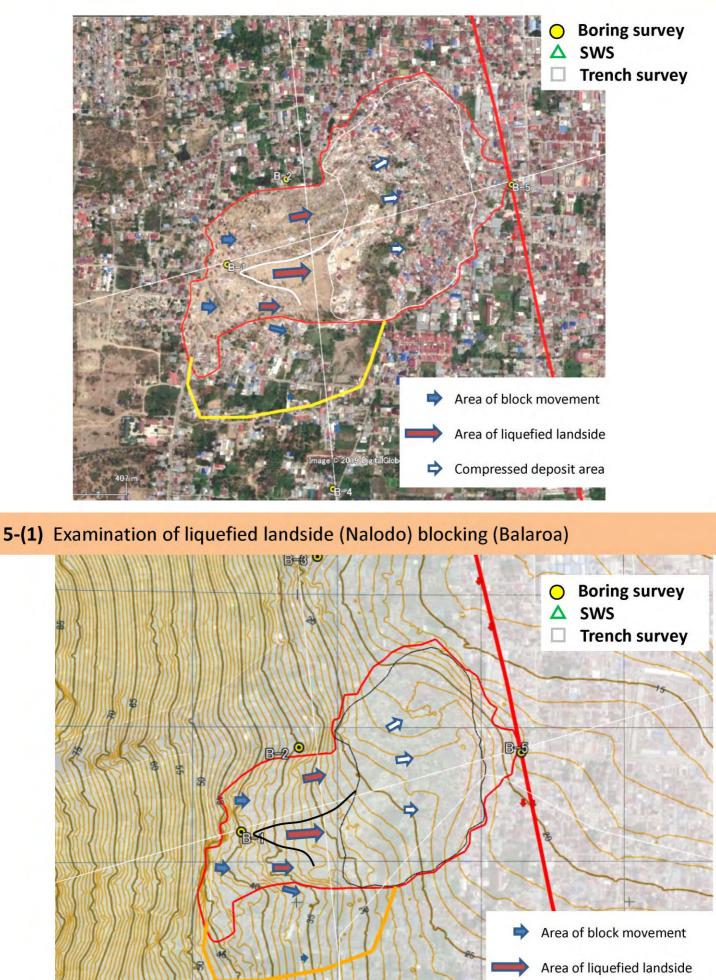
3. Groundwater flow analysis(Getflows) & Monitoring of groundwater

Continuously observe groundwater and surface water mainly in

4. Land-use after completion of measures against liquefaction landslide



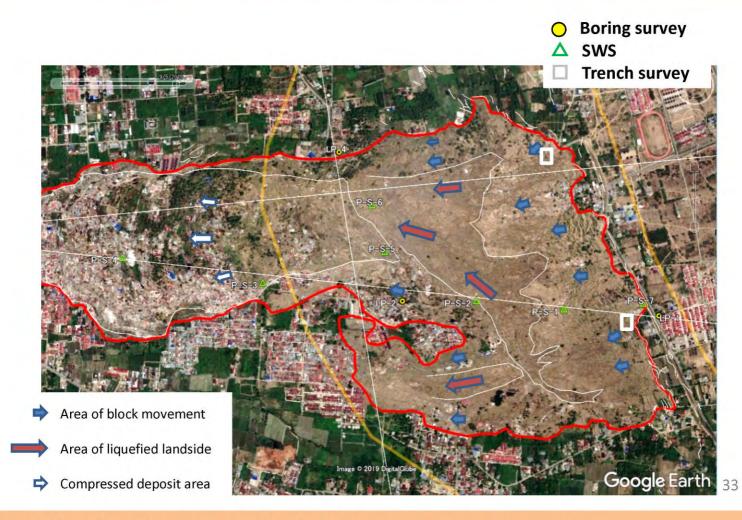
Future land-use of ZRB 4


- Present land-use of ZRB 4
 - ✓ Off-limits zone / Residence-prohibited area (Open green space, memorial area)
- Future land-use of ZRB 4 after completion of measures
 - ✓ Open green space
 - ✓ Memorial park
 - ✓ Agricultural land (except for paddy field)
 - ✓ Agricultural land
 - ✓ Residential area

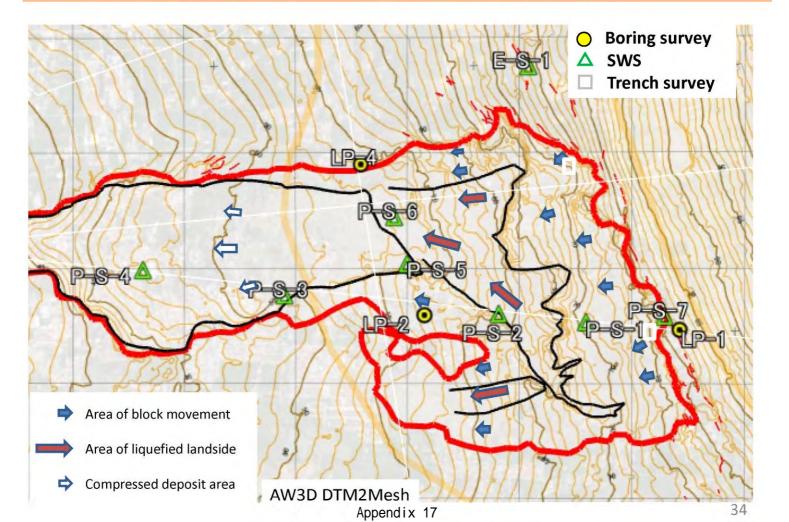
Place	Area (ha)
1 Balaroa	32.5
2 Petobo	153.7
3 Lolu	22.0
④ Jono Oge	168.8

5. Progress of survey and analysis

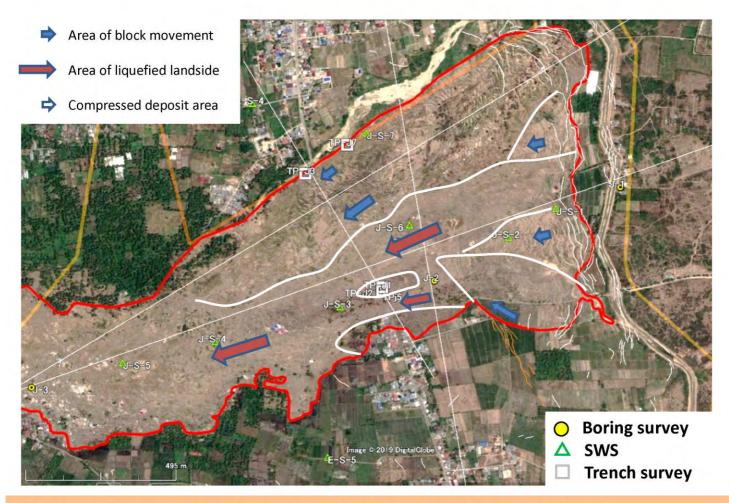
5-(1) Examination of liquefied landside (Nalodo) blocking (Balaroa)

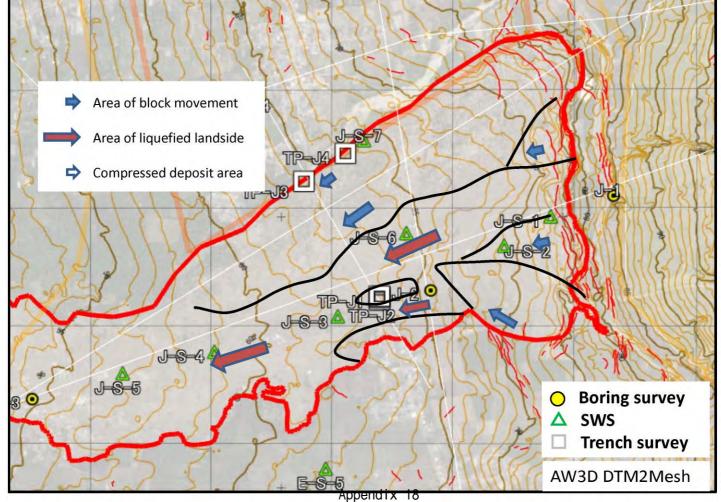


Appendix 16

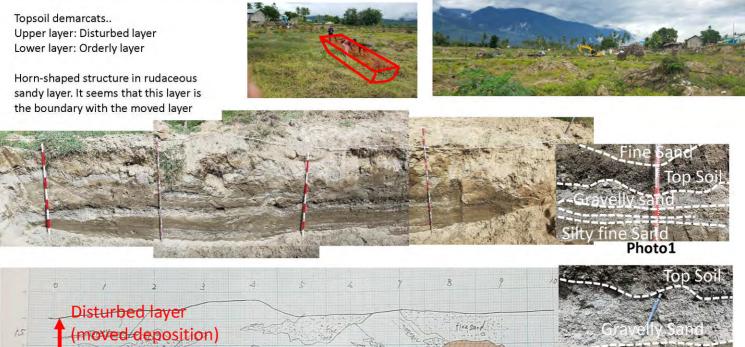

AW3D DTM2Mesh

32


5-(1) Examination of liquefied landside (Nalodo) blocking (Petobo)


5-(1) Examination of liquefied landside (Nalodo) blocking (Petobo)

5-(1) Examination of liquefied landside (Nalodo) blocking (Jono Oge)


5-(1) Examination of liquefied landside (Nalodo) blocking (Jono Oge)

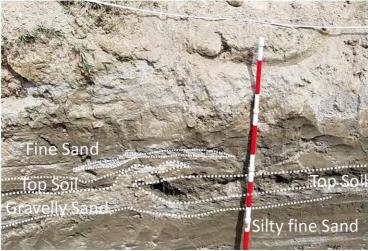
Summary

- Nalodo can be classified roughly, "Area of block movement", "Area of liquefied landside", and "Compressed deposit area".
- "Area of block movement" is located near the top of the Nalodo, "Area of liquefied landside (core of Nalodo)" is located at the central upper part and "Compressed deposit area" is located at the end.
- One stream of "Area of liquefied landside" and "Area of block movement" is identified in Balaroa and several streams are identified in Petobo and Jono Oge. Depth of flowage and amount of movement are differ at a place.

5-(2) Result of additional trench survey (Sibalaya TP-S2)

Rough drawing of TP-S2

10


0,5

Silty fine Sanc

Liguetoctor Photo2

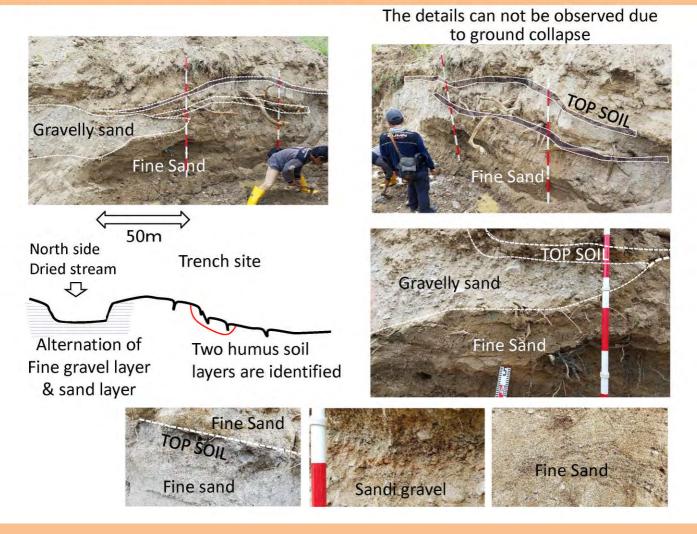
5-(2) Result of additional trench survey (Sibalaya TP-S2)

TP-S2 Trench

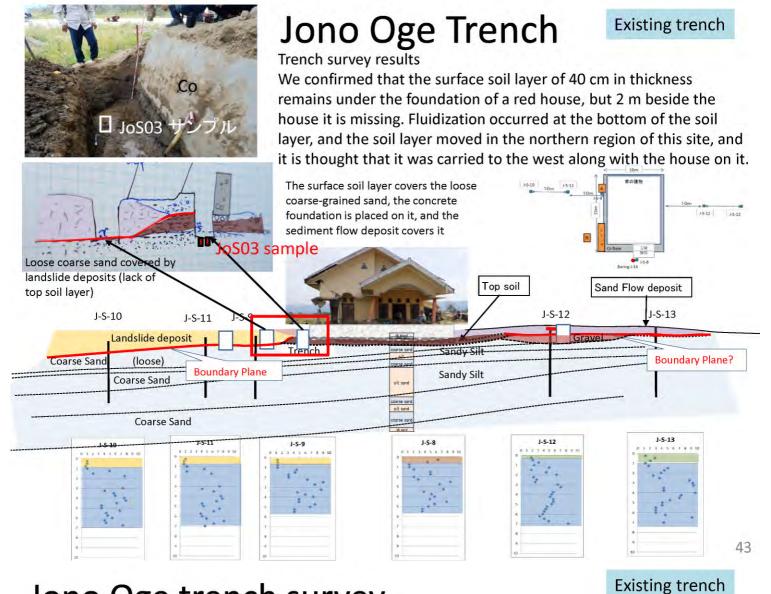
5-(2) Result of additional trench survey (Sibalaya TP-S3)

Horn-shaped structure is identified between humus soil layers. It can be an evidence of liquefaction.

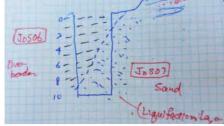
Cross-section of the deposited area in Sibalaya. Trench survey will be implemented in the future.


Extruded deposition and old surface soil (humus soil layer) can be identified on the bottom.

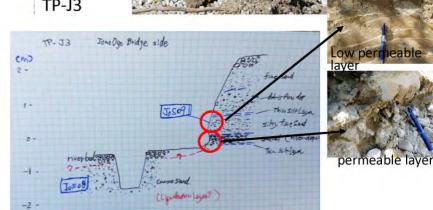
> Movement direction of moved soil mass


Disturbed layer (moved deposition) 14 2 sand Soil layer can be identified above and underneath the gravel layer. Silty Sano Sitty Son Sity Sano Boundary of moved layer cannot confirmed. Therefore, be =Gjavby movement was occurred more SITY than 2.5m in depth. Cari sit 0 silt Liquetacion Layer Under Pole Pole Pole Appendix 20

5-(2) Result of additional trench survey (Jono Oge TP-Jo7)


5-(2) Result of additional trench survey

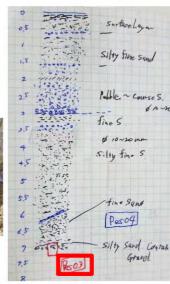
- Additional trench survey (approx. 2m in depth), 2 sites @ Sibalaya, 1 site @ JonoOge
- TP-S2: It is assumed that the lower surface of humus soil layer (aquiclude) is the boundary of moved layer (1m in depth from the ground surface).
- TP-S3: Moved layer (layer of liquefied landside) was not confirmed up to 2.5m in depth. Therefore, it is assumed that the movement was occurred more than 2.5m in depth.
- Thickness of gravelly sandy layer underneath of humus soil layer is 20cm at TP-S2 and 1m at TP-S3, which is located 200m away from TP-S2. Horn-shaped structure is identified between humus soil layers. It can be an evidence of liquefaction.
- Several humus soil layers are formed in-between the sand, which produced by floods and from the upper slope, and sand and gravel according to the survey at the 2 sites in Sibalaya. These humus soil layers and unconsolidated sand produced by floods form the alternation structure. It seems that the layers become saturated condition and liquefied by earthquake vibration, and functioned as an impervious membrane.
- TP-Jo7: Disturbed layer including two humus soil layers is confirmed. Alternation of fine gravel layer & sand layer, whose thickness is 2.5m in depth, is confirmed at the adjacent dried stream in north side. Even though, different depositions are distributed along the stream and in the flood plain. Difference of deposition (existence of humus soil layers) might be one of the occurrence factors of the Nalodo.



Jono Oge trench survey

TP-J4 TP-J3 Involge Pridge side

Confirm boundary between sediment and foundation ground

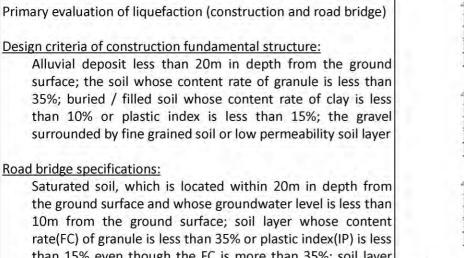


Petobo Test Pit

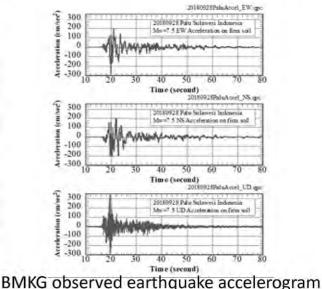
TP-B1 1223 Petobo (LP1F) Test Pit P-1 sundy site Course 55 & Cobbole silty fine sand 2 3 3.5 feso2 DE clayly 5:1+ ** それろ 5 Pormiability test sample Pesol

45

Trench sample analysis



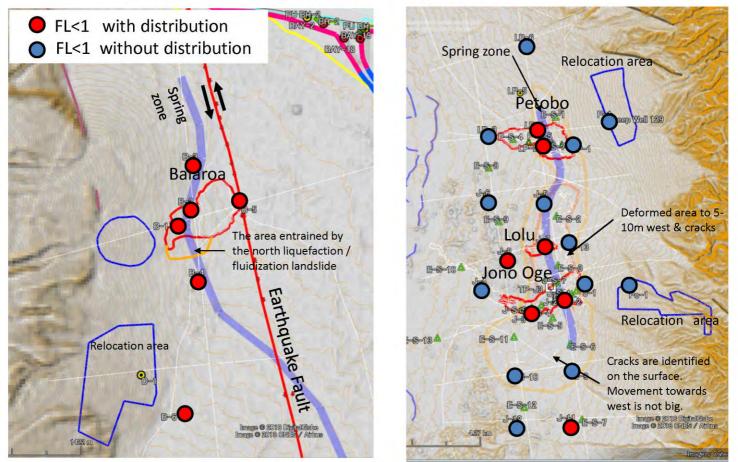
Appendix 23


5-(3) Evaluation of liquefaction resistance (FL)

Calculation condition of liquefaction resistance(FL)

- Calculation of liquefaction resistance is based on the "Road bridge specifications". Tentatively applied earthquake vibration for evaluation of liquefaction is level 2 (type 2). Design horizontal seismic factor on the ground surface is set as K_{hgL0}=0.6, which is the standard value of 3rd soil of level 2 earthquake vibration.
- It is a bigger value comparing with the surface horizontal maximum acceleration at the BMKG observation point, α_{max} = 281cm/sec²

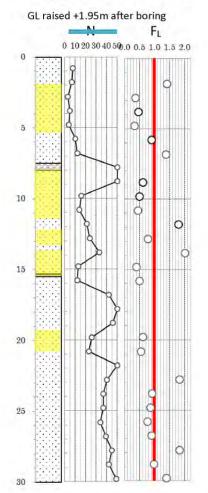
rate(FC) of granule is less than 35% or plastic index(IP) is less than 15% even though the FC is more than 35%; soil layer whose average grain diameter (D50) is less than 10mm and 10% grain diameter (D10) is less than 1mm.

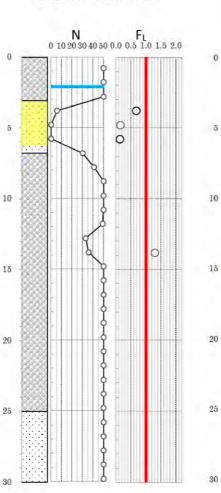


*Concern: Maximum acceleration in a vertical element is bigger than a horizontal element

47

5-(3) Evaluation of liquefaction resistance (FL)

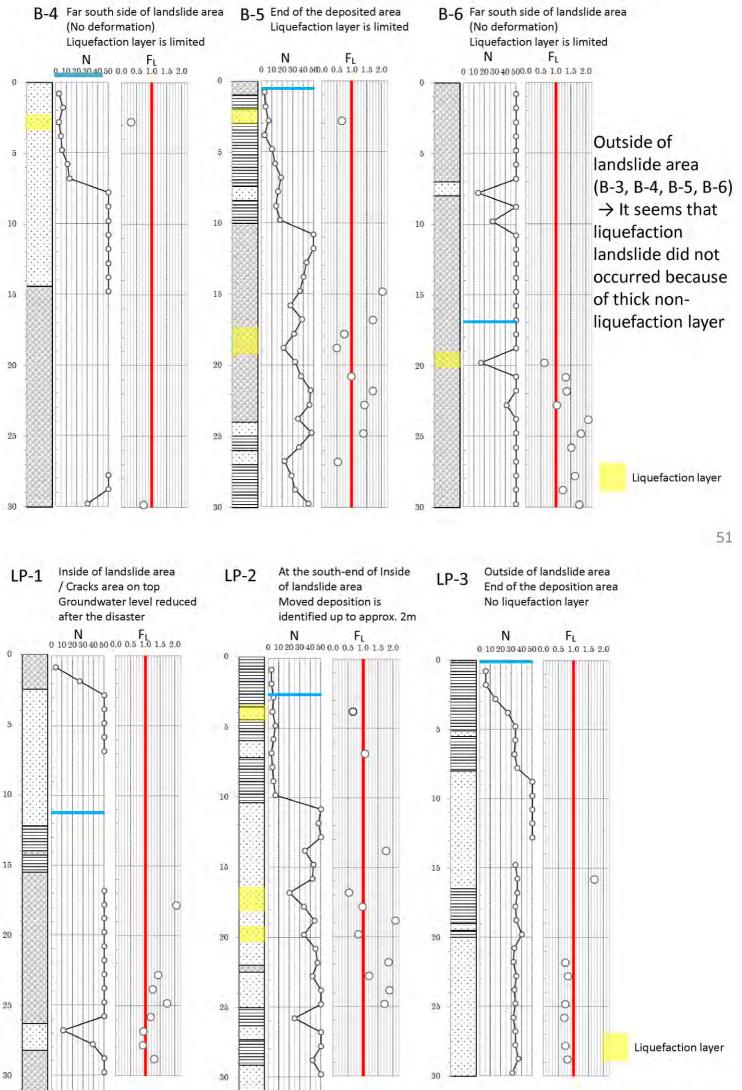

Horizontal distribution of liquefaction resistance (FL)


Boring (example of Evaluation of liquefaction resistance)

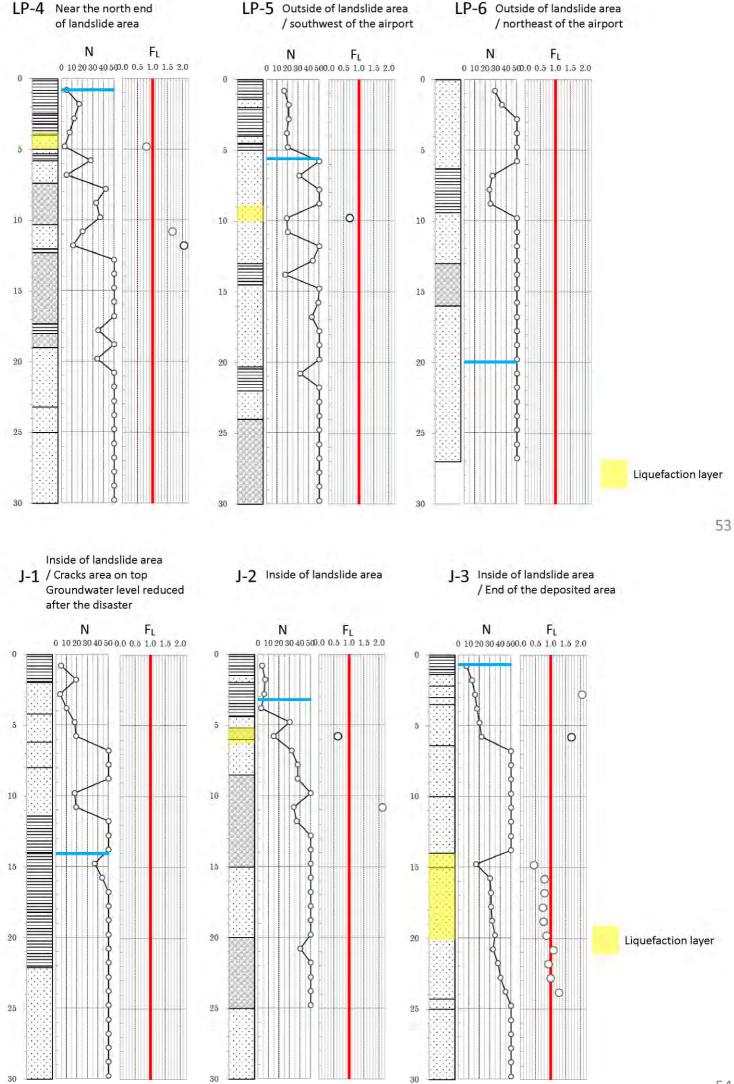
No.	1		Name	e B-	-1					Loc	ation	Baral	oa								LNG;	08161	38 m E	LAT	9899	0701 m	s Sta	ndard Dept for ″sv″	
Hight Hole M			Tota	Total Advan		30.00m	Grour	Ground Water Level		-1.95m		Ground High		ight	t 4.55m		Lateral Seismic Facter				0.600		Type of eismic Motion		m Type2			0.00m	
Depth		I	Drilling L	og	1	Unit Weight	Valu	Type of	Phy	sical	Test	Valu Calcur			Lique	faction	n Judg	gment	(Valu Calcur									$P_{\rm L}$	
		0 10 20 30 4	0.50			kN/m ⁸																		000	5 1 0	1.5 2.0		26.59	
0 ^m	- i	1020304				_	Ν	Туре	FC	Iр	D_{50}	$\sigma_{ m v}$		N_1	$N_{\rm a}$	$R_{\rm L}$	$C_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{ m v}$	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.	0 1.0	1.5 2.0	W	$F_{\rm L}$ Δ	
	<u> </u>	9					8		%	•	mm		kN/m ²			•	•	-	kN/m ²	kN/m ²		-	•				9.60		
	~~l	9						Sandy Soil		•	0.331	35.1	-2.4	17.6		0.784			35.1		. 0.905					2	9.10		
	201	¢ III						Sandy Soil		•	0.149	54.6	7.1	6.6		0.258			54.6		6 0.890			d			8.60		
	ા	ò						Sandy Soil		•	0.266	74.1	16.6	9.8		0.299			74.1		0.875			ļģ				0.459 4.3	
5 -		6					4	Sandy Soil	24.4	•	0.378	93.6	26.1	7.1	11.7	0.235	1.444	0.339	93.6		6 0.860			0			7.60	0.320 5.1	
	200	Ŋ					10	Sandy Soil	26.2	•	0.339	113.1	35.6	16.1	26.2	0.468	2.000	0.936	113.1	55.1	0.845	1.040	0.899		d		7.10	0.899 0.7	
	: I	. 6	7.50	Sa	nd	19.5	12	Sandy Soil	27.1	•	0.317	132.6	45.1	17.7	29.3	0.705	2.000	1.411	132.6	64.6	6 0.830	1.022	1.380			3	6.60	1.000 0.0	
	Dicition of		08.00	Sand an	d Grav	el 21.0	68	Gravelly Soil	12.5	•	8.419	152.6	55.1	92.4	71.7	134.97	2.000	269.9	152.6	74.6	6 0.815	1.000	269.8				6.10	1.000 0.0	
	200		۵				12	Sandy Soil	22.0	-	0.364	172.4	64.9	15.1	22.2	0.339	1.787	0.605	172.4	84.4	0.800	0.980	0.617	ł	5		5.60	0.617 2.1	
10	\sim	0					16	Sandy Soil				191.9	74.4	18.8	18.8	0.296	1.645	0.486	191.9	93.9	0.785	0.963	0.505				5.10	0.505 2.5	
10]		K I					14	Sandy Soil				211.4	83.9	15.5	15.5	0.266	1.548	0.412	211.4	103.4	0.770	0.944	0.436	H			4.60	0.436 2.5	
	::::[T N I					21	Sandy Soil	20.5		0.358	230.9	93.4	21.9	30.4	0.839	2.000	1.677	230.9	112.9	0.755	0.926	1.811	ΤM		0	4.10	1.000 0.0	
	~~f	ΙL					24	Sandy Soil				250.4	102.9	23.6	23.6	0.371	1.894	0.702	250.4	122.4	0.740	0.908	0.773		0	Ŭ	3.60	0.773 0.8	
	201	11 N					33	Sandy Soil				269.9	112.4	30.8	30.8	0.893	2.000	1.785	269.9	131.9	0.725	0.890	2.006		М <mark>.</mark>		3.10	1.000 0.0	
	: : : [15.30	Sa	nd	19.5	13	Sandy Soil				289.4	121.9	11.5	11.5	0.233	1.440	0.336	289.4	141.4	0.710	0.872	0.385	ÌЦ		Ιĭ	2.60	0.385 1.5	
15	<u></u>	Ĭ	15.50	S	ilt	17.5	12	Sandy Soil	22.9	-	0.339	308.5	131.0	10.2	15.6	0.267	1.551	0.414	308.5	150.5	0.695	0.855	0.484	ΠM		++	2.10	0.484 1.0	
	I						42	Sandy Soil				328.0	140.5	33.9	33.9	1.520	2.000	3.041	328.0	160.0	0.680	0.836	3.636	ΗY	' 		1.60	1.000 0.0	
	<u> </u>		<u>ال</u>				51	Sandy Soil				347.5	150.0	39.4	39.4	3.792	2.000	7.584	347.5	169.5	0.665	0.818	9.273				1.10	1.000 0.0	
	00 t		Ϋ́				46	Sandy Soil	24.9		0.338	367.0	159,5	34.1	52.3	21.74	2.000	43.47	367.0	179.0	0.650	0.799	54.38				0.60	1.000 0.0	
	I						26	Sandy Soil				386.5	169.0	18.5							0.635						0.10	0.612 0.0	
20 -	::::I	119						Sandy Soil					178.5								0.620			H	2	++		0.547	
-	<u>.</u>	1 9						Sandy Soil													0.605			+ 6	2			1.000	
-1	공급		8—						10.7		0.017																	1.000	
-	::: : }	1						Sandy Soil	13.7		0.817	445.0		25.4							0.590					0		0.901	
	~:+	- I I P						Sandy Soil				464.5		22.7							0.575				Q				
25-	221	P						Sandy Soil				484.0		22.0							0.560				0	++		0.864	
	21	9	—					Sandy Soil						19.5							0.545				0			0.753	
	~:-	- 2	R —			_		Sandy Soil				523.0		21.7							0.530				Q			0.894	
	200 J		<u>}</u>					Sandy Soil	14.1	•	0.738	542.5		24.3							6 0.515					0	H	1.000	
	:::I	-	<u>ا</u>					Sandy Soil				562.0	254.5	22.0							0.500				0			0.971	
30			80.00	Sa	nd	19.5	49	Sandy Soil				581.5	264.0	24.9	24.9	0.414	2.000	0.828	581.5	283.5	6 0.485	0.597	1.387			3		1.000	
								_																	_	_	_		
Rema	rk																												

B-1 Inside of landslide area

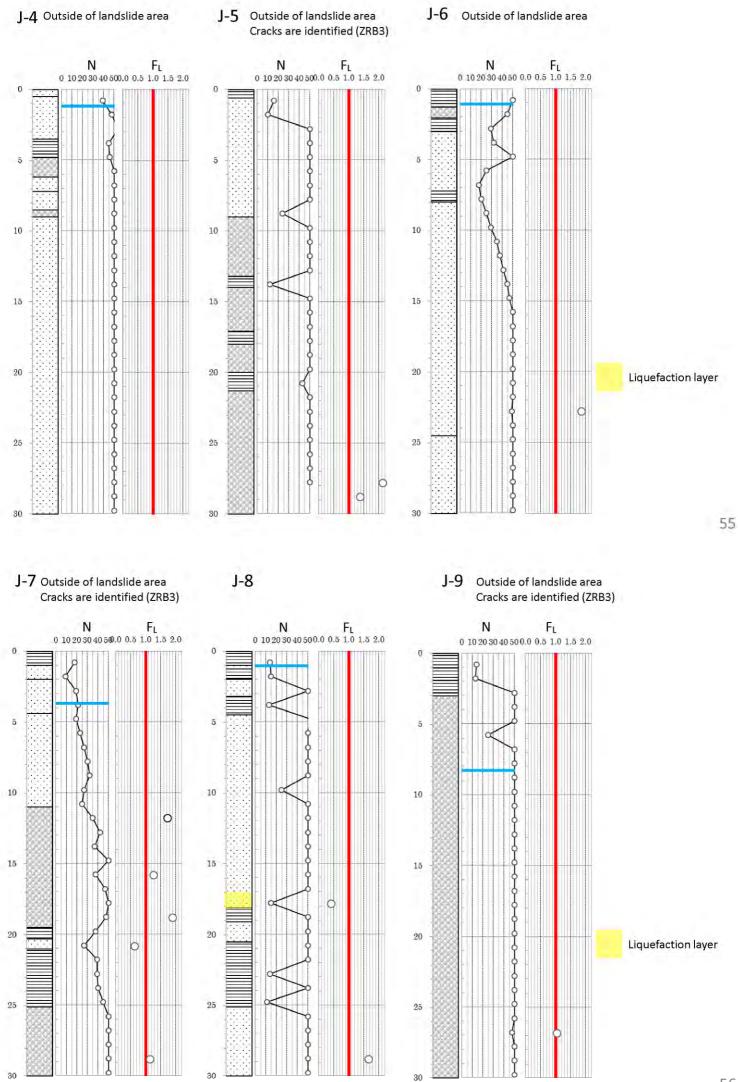
B-2 Near landslide are

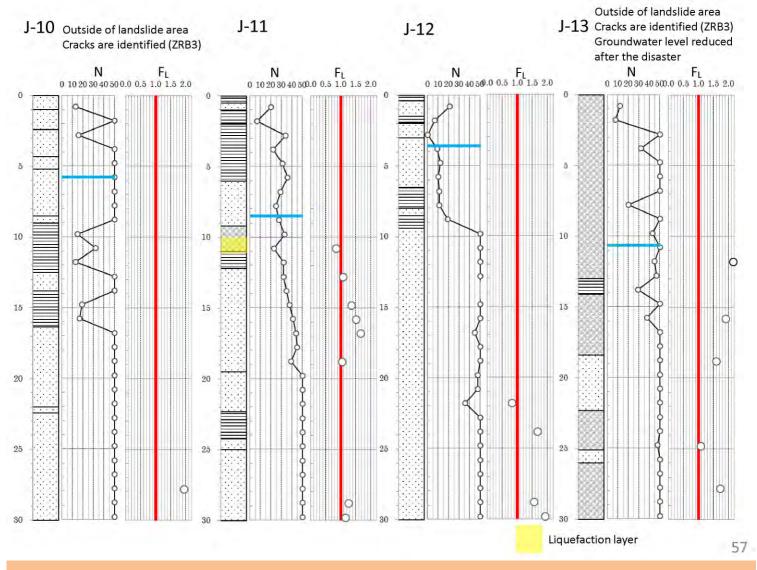


B-3 Far north side of landslide area (No deformation) Liquefaction layer is deep N Fi N FL 0 10 20 30 40 50 0.0 0.5 1.0 1.5 2.0 ļ


0 Ó

C C C C


Liquefaction layer



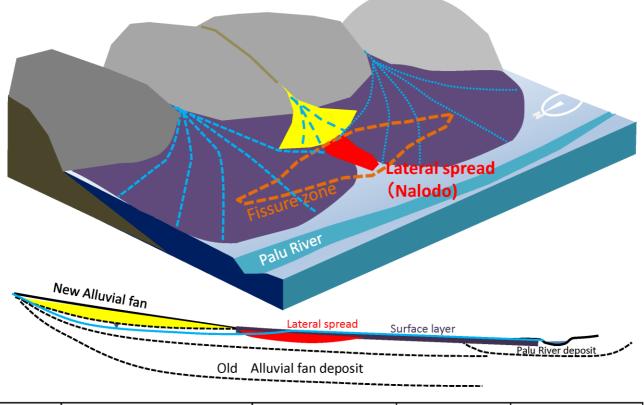
Appendix 26

Appendix 27

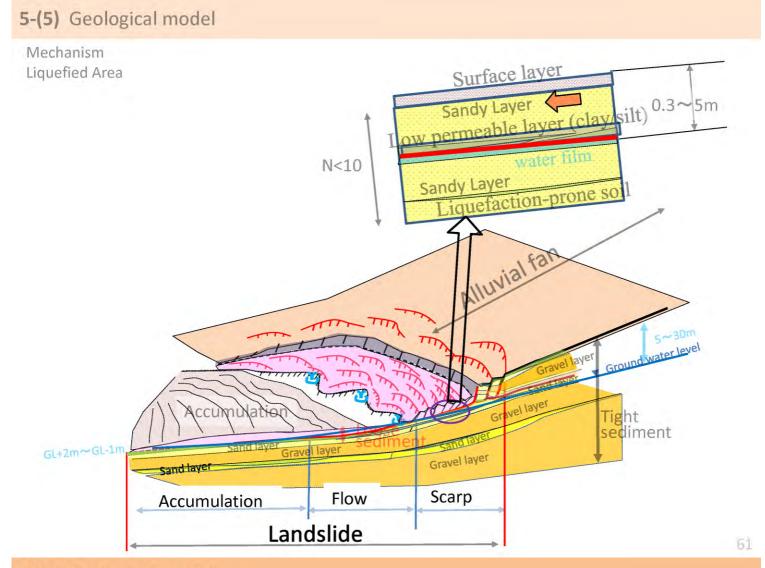
5-(3) Evaluation of liquefaction resistance (FL)

Issues on evaluation of liquefaction resistance

1. Condition of liquefaction landslide

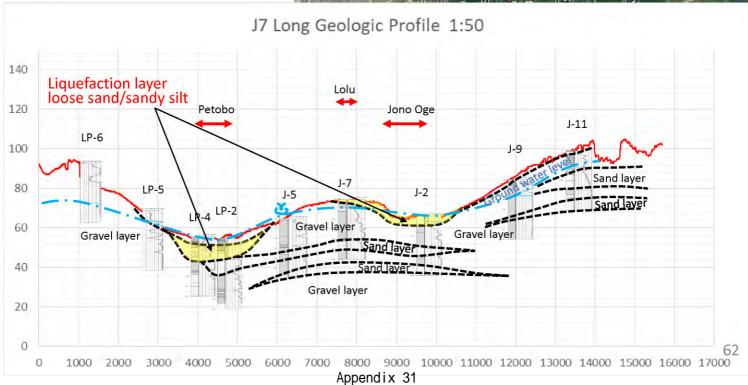

- Alternation of new sandy mudflow, which is provided by the flood, and sand & gravel deposition are identified at a lower slope at the end of alluvial fan. Moreover, thin silty clay and humus soil layers are existing in-between the alternation.
- Nalodo is occurred where the small new alluvial fan at the upper slope was created and the boundary of old wide alluvial fan. This place is relatively gentle slope and concave-shape. Moreover, new deposition which N-value is less than 10 is identified in Baralao, Petobo, Jono Oge by the boring survey.
- 2. Relation between liquefaction resistance and liquefaction landslide
- There is a distribution of "FL < 1" even outside of Nalodo (B-3, 4, 5, 6) in Balaroa. Evaluation of Nalodo requires to consider gradient, thickness of upper non-liquefaction layer, existence of cap and so on.
 → Refer to the following page
- 3. Issues on evaluation of liquefaction resistance
- FL might be evaluated as a dangerous side, especially for a sample of standard penetration test (penetration length 30 – 50cm) of drill hole at an alternation of sand & silt layers because the thickness of each layer is few centimeters to 1m (maximum)
- Evaluation using the sampling at an outcrop is required for the evaluation of thin layer because thin sand layers might exist between the layers especially at the silt layer, which is identified by the boring
- In case the liquefaction is evaluated by the groundwater level after the landslide, it might not be evaluated properly especially at the place where groundwater level decreased

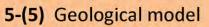
Analysis of the Nalodo

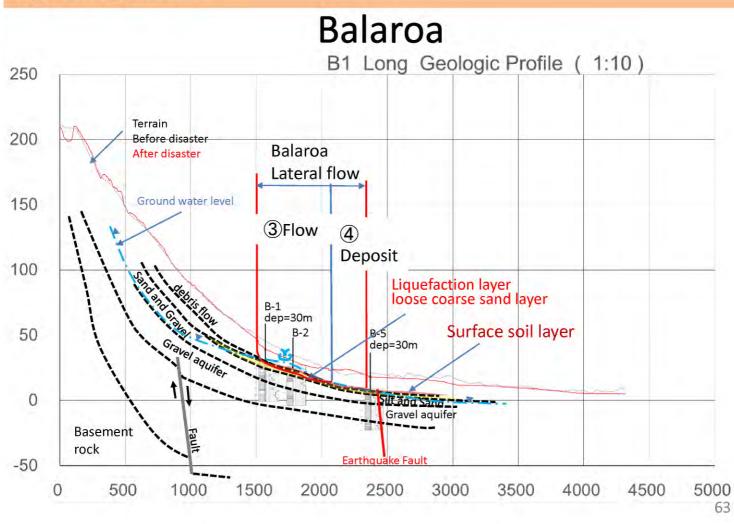

It is assumed that the Nalodo is occurred when the condition meets the following factors

			Thickness of		Liquefaction r	esistance (FL)	
		Slope / Gradient	upper non- liquefaction layer	With / without of cap	Soil characteristics (N-value, gradation)	Groundwater level	Existence of Liquefaction landslide
	ope including vial fan	More than 5%		Without	N>30-50	GL-20~50m	Not occurred
			Less than a	With			
			couple of meters	Without			Occurred
	New deposition is	1-4%			FL	<1	Not occurred
Lower slope including the end	distributed		More than a couple of meters				Large-scale liquefaction landslide is not occurred
of alluvial fan	New	1-4%			FL	>1	Not occurred
	deposition is NOT distributed	Less than 1%					Large-scale liquefaction landslide is not occurred 59

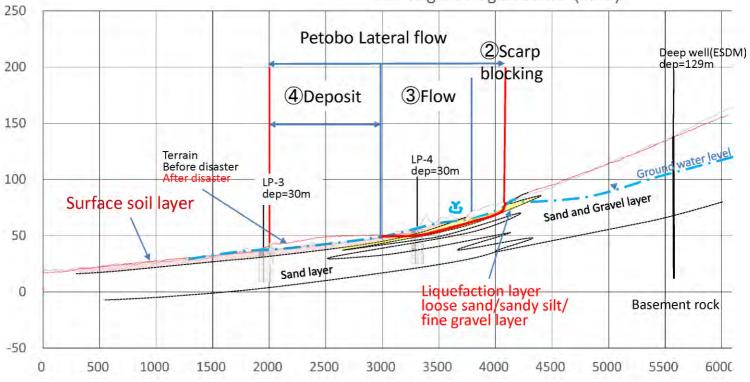
5-(5) Geological model

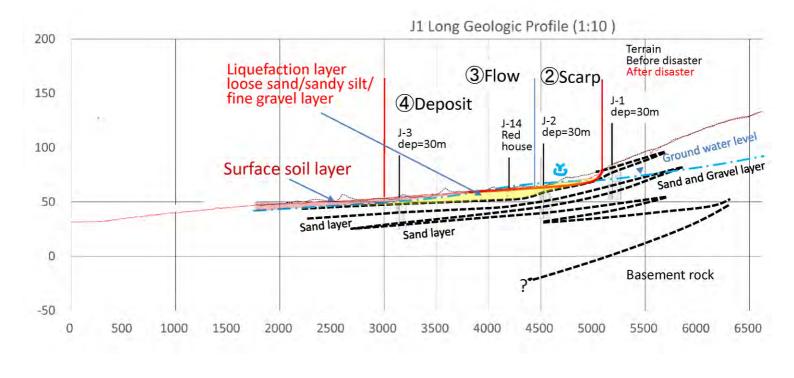

	New Alluvial fan area	Land slide area	Paddy field area	Palu River
Geology	Gravel/Course Sand	Fine Sand/Thin Silt layer (Weakest layer)	Fine Sand//Silt	Sand/Silt/Gravel
Ground water level	Deep(more than10m)	Shallow (confined aquifer) AppendIX 30	Shallow	Shallow




5-(5) Geological model

South-North Geologic Profile




5-(5) Geological model

Petobo

P1 Long Geologic Profile (1:10)

Jono Oge

5-(6) Future soil / groundwater survey

Future survey and analysis

- Maximum depth of fluidization is less than 10m. It is approximately 1-3m from the present ground
- Additional trench survey (Trench survey is effective to confirm the Liquefaction / fluidization layer and mechanism of large-scale fluidization)
- Additional drawing of geologic profile reflecting the boring survey result
- Trial of 3D geological model using 2m grid topography data
- Additional survey for drain location and confirming the efficacy of groundwater reduction (permeability, supplied amount of groundwater from the top of the alluvial fan)

• Reference data

B-1	
-----	--

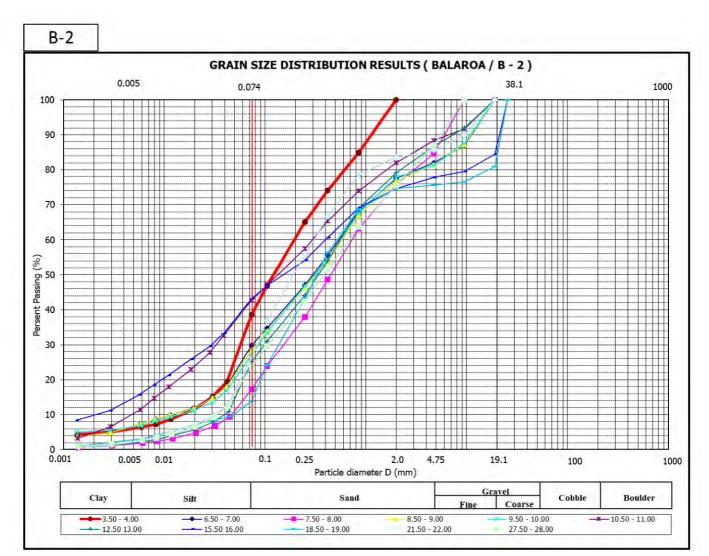
-8.50 - 9.00

11.50 - 12.00

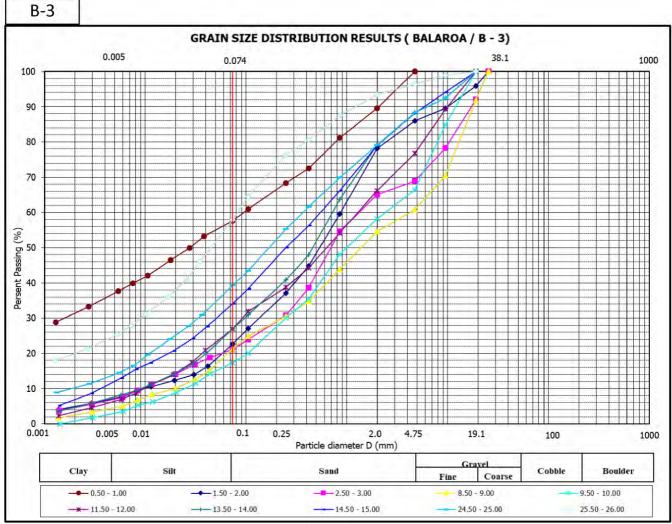
No.	1		Name	B-1					Loca	ation	Bara	oa								LNG;	081613	38 m E	LAT;	9899	701 m S	Standard Depth for "sv"
Hight Hole N			Tota	Advance	30.00m	Groun	d Water	Level	-1	.95m	Gro	und H	ight	4	.55m		ral Sei Facter			0.600		Type of mic Mo		Ty	/pe2	0.001
Depth			Drilling Lo	og	Unit Weight	Valu	Type of	Phy	sical [·]	Test	Valu Calcur			Lique	factio	n Judg	gment	(Valu Calcur								P_{L}
	0.1	0203040	150		kN/m ³																		0.05	10	.5 2.0	26.59
0 ^m		020304	100			N	Туре	FC	Iр	D_{50}		$\sigma_{\rm v}$	N_1	$N_{\rm a}$	$R_{\rm L}$	Cw	R	$\sigma_{\rm v}$		$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.0	1.0	10 2.0	$W F_{\rm L} \Delta P$
	i i i i				_	8	-	%	-		kN/m ³				-	-	-	kN/m ²		-	-	-	-		-	9.60 1.000 0.00
	19						Sandy Soil		•	0.331	35.1	-2.4			0.784			35.1		0.905			-	<pre></pre>	2 -	9.10 1.000 0.00
_	i k						Sandy Soil		•		54.6	7.1			0.258					0.890			0		-	8.60 0.358 5.52
	. P					-	Sandy Soil		-	0.266	74.1	16.6	9.8		0.299			74.1		0.875			- Q		-	8.10 0.459 4.38
5	:::: \	┝┼┼┼╉╌╉					Sandy Soil		•	0.378	93.6	26.1	7.1				0.339	93.6		0.860			0		++	7.60 0.320 5.17
-	: : : ₹		7.50	0.1	10.5		Sandy Soil		•		113.1	35.6					1.411			0.845 0.830			- 11	q	-	7.10 0.899 0.7 6.60 1.000 0.00
-			7.50	Sand Sand and Grave	19.5 1 21.0		Sandy Soil Gravelly Soil		•	_	132.6 152.6	45.1 55.1	17.7 92.4							0.830			-	C	2	6.10 1.000 0.00
-			1 000	Sand and Grave	1 21.0		Sandy Soil				152.6	64.9								0.815			- 11			5.60 0.617 2.1
-			Ŷ				Sandy Soil	22.0		0.364		74.4								0.800			- C		-	5.10 0.505 2.5
0		9			_		Sandy Soil				211.4	83.9	15.5							0.770			P		┝╍╍┾╍	4.60 0.436 2.5
-		٩II					Sandy Soil	90 F		0.358	230.9									0.755			- 0		-	4.10 1.000 0.0
-		8			_		Sandy Soil	20.0		0.000		102.9								0.740			-		0	3.60 0.773 0.8
		٩			_		Sandy Soil													0.725			- 1	0		3.10 1.000 0.0
-			15.30	Sand	19.5		Sandy Soil					121.9								0.710			-		O	2.60 0.385 1.5
5		ρ III	15.50	Silt	17.5		Sandy Soil	99 Q		0.339	308.5		10.2							0.695			-0		┼╌╌┼╌	2.10 0.484 1.0
[10.00	Silt	17.5		Sandy Soil	22.0		0.005										0.680			- 0		-	1.60 1.000 0.0
-		T T	۲ ا		_		Sandy Soil					150.0								0.665			- 11		-	1.10 1.000 0.0
-			8				Sandy Soil	24.9		0.338										0.650			- 11		-	0.60 1.000 0.0
-			9				Sandy Soil			01000										0.635					-	0.10 0.612 0.0
0 -		19					Sandy Soil				406.0									0.620					++	0.547
-					_		Sandy Soil				425.5									0.605			- 0		-	1.000
-			8				Sandy Soil	19.77		0.017	445.0									0.590			- 1		-	1.000
-		l l	1				Sandy Soil	10.7	-	0.817		207.0	25.4							0.590			•		0	0.901
-		Ϊ					Sandy Soil													0.575			-	9	-	0.864
25		ſ	\parallel				Sandy Soil													0.560				9	++	0.864
-		١IR					Sandy Soil													0.545				2 C	-	0.894
		1					Sandy Soil	14.1		0.729										0.530				9		1.000
-			ί				Sandy Soil	14.1	-	0.108		245.0 254.5								0.515					0	0.971
			30.00	Sand	19.5		Sandy Soil													0.300			-	0		1.000
30 +			0,0.00	Sand	19.5	49	Gainay Soli				001.0	204.0	24.9	24.9	0.414	2.000	0.020	001.0	200.0	0.400	0.397	1.007				1.000

B-1 GRAIN SIZE DISTRIBUTION RESULTS (BALAROA / B - 1) 0.005 38.1 0.074 1000 100 ---------90 80 ----------------70 -----60 ----Persent Passing (%) 6 05 / 30 20 10 +++ ----++-0.001 0.1 0.005 0.01 0.25 2.0 19.1 4.75 100 1000 Particle diameter D (mm) Gravel Clay Silt Cobble Boulder Sand Coarse Fine 5.50 - 6.00 1.50 - 2.00 2.50 - 3.00 3.50 - 4.00 4.50 - 5.00 -7.50 - 8.00

18.50 - 19.00

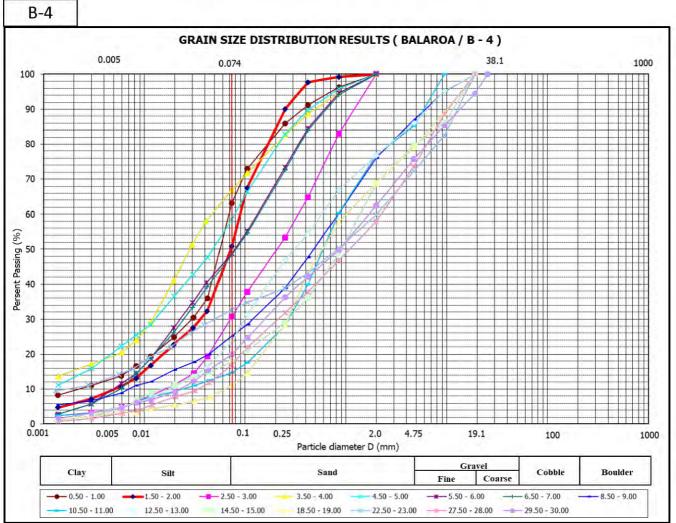

Appendix 35

15.50 - 16.00


22.50 - 23.00

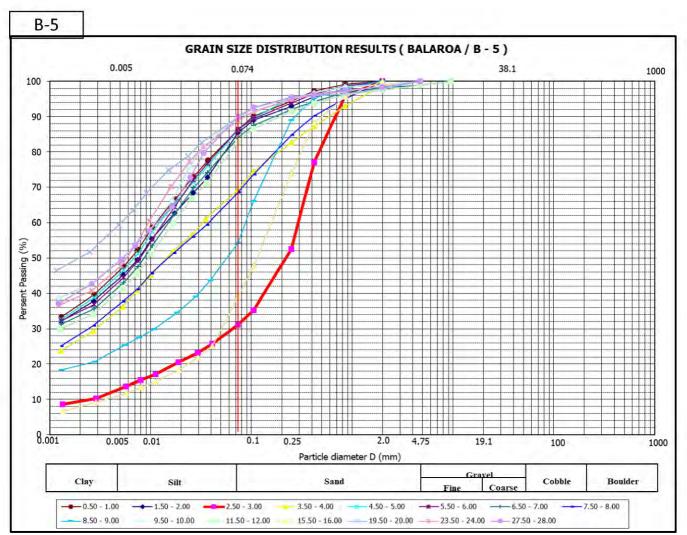
27.50 - 28.00

E	B-2																										
No. 1		Nam	ne <mark>B-</mark>	2				Loca	ation	Bara	oa								LNG:	08162	96 m E	LAT:	9899	931 m S		dard Do or ″sví	
Hight Hole Mo		Tot	tal Advanc	e 30.00	<mark>)m</mark> Gr	round Wate	r Level	2	.10m	Gro	und H	light	4	.55m	Late	ral Seis Facter	smic	(0.600		Type o mic Me		Ту	/pe2	P		.00m
Depth		Drilling	Log	Un Weig		alu of	Phy	sical ⁻	Test	Valu Calcur	ie for ate N ₁		Lique	factior	n Judį	gment	(Value Calcura									$P_{\rm L}$	
				kNħ	m ³																				1	5.29	
0 ^m	0 10 20	30 40 50			1	N Type	FC	Iр	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	N_{a}	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{ m v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.5	1.0 1	.5 2.0	W	$F_{\rm L}$	$\Delta P_{\rm L}$
0		6			Ę	500 -	%	-	mm	kN/m^2	kN/m^2			-	-	-	kN/m^2	kN/m^2	-	-	-				9.60	1.000	0.000
B		6			Ę	500 Gravely So	1		2.000	34.2	34.2	815.7	815.7	18718089.06	2.000	37436779.3	34.2	34.2	0.905	-	-				9.10	1.000	0.000
B		3.1	0 Sand and	Gravel 19	9.0	500 Gravely So	1		2.000	53.2	46.2	731.5	731.5	11338054.48	2.000	22716509.D	53.2	46.2	0.890	0.615	36953254				8.60	1.000	0.000
·	· · o++					6 Sandy So	38.6	-	0.130	72.6	55.6	8.1	18.2	0.290	1.627	0.471	72.6	55.6	0.875	0.685	0.688		>		8.10	0.688	2.529
5						0 Sandy So	1			92.1	65.1	0.0	0.0	0.098	1.000	0.098	92.1	65.1	0.860	0.730	0.134				7.60	0.134	6.579
° .	::					0 Sandy So	1			111.6	74.6	0.0	0.0	0.098	1.000	0.098	111.6	74.6	0.845	0.758	0.129	0			7.10	0.129	6.182
Ŀ		6.8	30 Sai	nd 19	9.5	30 Gravely So	29.9	-	0.308	131.1	84.1	33.1	42.8	6.344	2.000	12.69	131.1	84.1	0.830	0.776	16.35				6.60	1.000	0.000
		N				41 Gravely So	17.3	-	0.442	152.1	95.1	42.2	52.2	21.52	2.000	43.04	152.1	95.1	0.815	0.782	55.04				6.10	1.000	0.000
]§		N				50 Gravely So	28.3	-	0.333	173.1	106.1	48.3	61.8	58.35	2.000	116.7	173.1	106.1	0.800	0.783	149.0				5.60	1.000	0.000
- 10 R	88 I I I	6				50 Gravely So	27.1	-	0.322	194.1	117.1	45.4	58.4	42.04	2.000	84.08	194.1	117.1	0.785	0.781	107.7				5.10	1.000	0.000
10 -						50 Gravely So	42.8	-	0.146	215.1	128.1	42.9	60.5	51.49	2.000	103.0	215.1	128.1	0.770	0.776	132.8				4.60	1.000	0.000
- 19	881111	J				49 Gravely So	1		2.000	236.1	139.1	39.8	39.8	4.057	2.000	8.115	236.1	139.1	0.755	0.769	10.56				4.10	1.000	0.000
R						33 Gravely So	25.2	-	0.350	257.1	150.1	25.5	32.4	1.180	2.000	2.361	257.1	150.1	0.740	0.760	3.105				3.60	1.000	0.000
1		Z				36 Gravely So	1		2.000	278.1	161.1	26.5	26.5	0.486	2.000	0.971	278.1	161.1	0.725	0.751	1.294				3.10	1.000	0.000
18		N			Ę	500 Gravely So	1		2.000	299.1	172.1	351.2	351.2	379686.25	2.000	759372.5	299.1	172.1	0.710	0.740	1025910		Ĭ		2.60	1.000	0.000
15 -		I				65 Gravely So	43.2	5.0	0.167	320.1	183.1	43.7	60.6	52.22	2.000	104.4	320.1	183.1	0.695	0.729	143.3				2.10	1.000	0.000
		IIII				74 Gravely So	1		2.000	341.1	194.1	47.6	47.6	12.36	2.000	24.71	341.1	194.1	0.680	0.717	34.47				1.60	1.000	0.000
18	881111	III				50 Gravely So	1		2.000	362.1	205.1	30.9	30.9	0.913	2.000	1.826	362.1	205.1	0.665	0.704	2.593				1.10	1.000	0.000
8	881111	IIII				65 Gravely So	14.0	-	0.338	383.1	216.1	38.6	49.4	15.36	2.000	30.71	383.1	216.1	0.650	0.691	44.44	-			0.60	1.000	0.000
		IIII				72 Gravely So	1		2.000	404.1	227.1	41.2	41.2	5.006	2.000	10.01	404.1	227.1	0.635	0.678	14.77				0.10	1.000	0.000
20 -		ΠĬ				74 Gravely So	1		2.000	425.1	238.1	40.8	40.8	4.732	2.000	9.464	425.1	238.1	0.620	0.664	14.25					1.000	
- 8		Ĭ				71 Gravely So	26.4	-	0.206	446.1	249.1	37.8	51.3	19.34	2.000	38.68	446.1	249.1	0.605	0.650	59.53	-				1.000	
18	881 I I I	IIII				69 Gravely So	1		2.000	467.1	260.1	35.5				4.004										1.000	
18		IIIII				75 Gravely So			2.000							5.455										1.000	
1	881111	J 5.0	0 Sand and	Gravel 2	1.0	75 Gravely So			2.000							4.489										1.000	
25		T I J	- Gana and			69 Sandy So			2.000			32.4				2.350										1.000	
		IIIII				72 Sandy So			2.000		301.4					2.578										1.000	
	글:[]]]	ĭ				69 Sandy So		-	0.392		310.9	30.8				20.54										1.000	
		IIII	_			74 Sandy So			5.002	587.4		32.2				2.276										1.000	
		3 0.0	0 Sai	nd 19	9.5	75 Sandy So				606.9	329.9					2.149						-H 11				1.000	
30 - ·																						uuuu					
Remar	·k																										

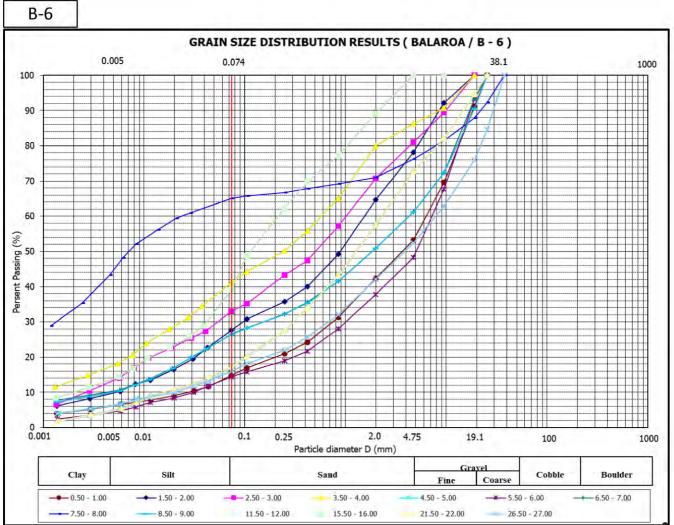


B-3								
No. 1	Name <mark>B-3</mark>		Location	Baraloa		LNG; 0816347 m E LAT	9900455 m S	Standard Depth for ″sv″
Hight of Hole Mouth	Total Advance	30.00m Ground Water Leve	- <mark>0.30m</mark>	Ground Hight	4.55m Lateral Seismic Facter	0.600 Type of Seismic Motion	Type2	0.00m
Depth	Drilling Log	Unit Valu Type Ph	ysical Test	Value for Calcurate N ₁	Liquefaction Judgment (Value f Calcurate			$P_{\rm L}$
0 10203	30 40 50	kN/m ³			D D	· · · · · · · · · · · · · · · · · · ·	.5 1.0 1.5 2.0	4.13
0 ^m 010203		N Type FC	<i>I</i> p <i>D</i> ₅₀			$F_{\rm V}$ $F_{\rm d}$ L $F_{\rm L}$		$W F_{\rm L} \Delta P_{\rm L}$
	Ŷ	150 - %	- mm		attin a	V/m ²		9.60 1.000 0.000
	Ý	150 Gravelly Soil 22.7	- 0.571			19.8 0.905 1.036 734315		9.10 1.000 0.000
		150 Gravelly Soil 21.2	- 0.726			30.8 0.890 1.019 366785		8.60 1.000 0.000
		500 Gravely Soil 21.3				11.8 0.875 1.002 37412330		8.10 1.000 0.000
5 88		Gravelly Soil 17.3	- 1.064			52.8 0.860		7.60 1.000 0.000
		Gravelly Soil		121.8 60.8		53.8 0.845		7.10 1.000 0.000
		Gravelly Soil Gravelly Soil		142.8 71.8 163.8 82.8		74.8 0.830		6.60 1.000 0.000
			0.000					6.10 1.000 0.000
	Ý	61 Gravelly Soil	2.000			96.8 0.800 0.916 146.2		5.60 1.000 0.000
10 -		56 Gravelly Soil	2.000		5 54.5 27.78 2.000 55.56 205.8 1			5.10 1.000 0.000
	8	150 Gravely Soil	2.000		2 137.2 4098.79 2.000 8197.6 226.8 1			4.60 1.000 0.000
	K	44 Gravely Soil 27.0			0 44.5 8.127 2.000 16.25 247.8 1			4.10 1.000 0.000
	- B	150 Gravely Soil			7 122.7 2331.02 2.000 4662.0 268.8 1			3.60 1.000 0.000
		6 Gravely Soil 26.9		3 289.8 148.8 4.7		10		3.10 0.270 2.262
15 -	15.40 Sand and Gravel			310.8 159.8 4.4				2.60 0.281 1.871
		10 -	2.000		-	72.4 0.695 0.799 -		2.10 1.000 0.000
	17.30 Silt	17.5 41 -		347.9 176.9 28.2		79.9 0.680 0.789		1.60 1.000 0.000
	No.	150 Gravelly Soil	2.000		6 99.6 793.42 2.000 1586.8 367.2 1			1.10 1.000 0.000
	4	150 Gravelly Soil	2.000		5 95.5 636.25 2.000 1272.5 388.2 2			0.60 1.000 0.000
20 -	6	150 Gravelly Soil	2.000		7 91.7 514.03 2.000 1028.1 409.2 2			0.10 1.000 0.000
	4	300 Gravelly Soil	2.000	430.2 219.2 176.4	4 176.4 14175.20 2.000 28350.6 430.2 2	22.2 0.620 0.720 39375		1.000
	4	120 Gravelly Soil	2.000	451.2 230.2 68.0	0 68.0 100.25 2.000 200.5 451.2 2	33.2 0.605 0.702 285.6		1.000
	6	115 Gravelly Soil	2.000	472.2 241.2 62.8	8 62.8 64.11 2.000 128.2 472.2 2	44.2 0.590 0.684 187.4		1.000
RSS []]]	4.20 Sand and Gravel	21.0 120 Gravelly Soil	2.000	493.2 252.2 63.3	3 63.3 67.05 2.000 134.1 493.2 2	55.2 0.575 0.667 201.2		1.000
		17 Sandy Soil 39.3	- 0.186	5 513.3 262.3 8.7	7 19.6 0.303 1.671 0.507 513.3 2	55.3 0.560 0.650 0.780	0	0.780
-25	26.30 Sand	19.5 35 Sandy Soil 57.9	6.7 0.048	8 532.8 271.8 17.4	4 66.9 92.07 2.000 184.1 532.8 2	74.8 0.545 0.634 290.5		1.000
	N	100 Gravelly Soil	2.000	553.0 282.0 48.3	3 48.3 13.43 2.000 26.86 553.0 2	35.0 0.530 0.617 43.56		1.000
	l	150 Gravelly Soil	2.000		2 70.2 120.68 2.000 241.4 574.0 2			1.000
	I	300 Gravelly Soil	2.000		4 136.4 3968.64 2.000 7937.3 595.0 3			1.000
30	30.00 Sand and Gravel				3 88.3 421.24 2.000 842.5 616.0 3			1.000
00								
Remark								

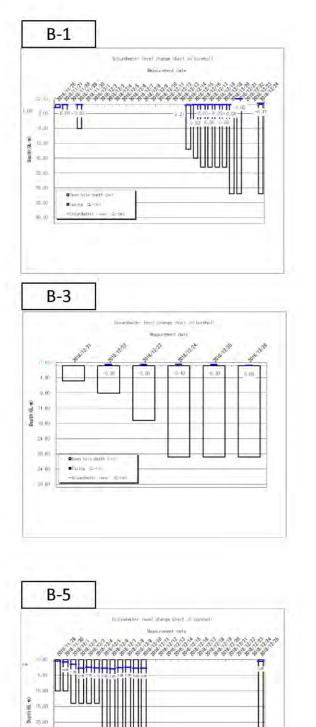
No.	1	Name	в-4				Loca	ation	Baral	oa								LNG:	081642	23 m E	LAT:	9899102	2 m S		dard Depth
Hight Hole M	it of	Total Adv	ance	30.00m	Ground Water	Level			Grou		light	4	.55m		ral Sei Facter		(0.600		Type o mic Mo		Тур	e2	1	o <u>r ″sv″</u> 0.001
Depth		Drilling Log		Unit Weight	Valu of	Phy	sical	Test	Valu Calcuri			Lique	factior	n Judg	gment	(Valu Calcu									$P_{\rm L}$
				kN/m ³																					6.01
om	0 102030	10 50			N Type	FC	Iр	D_{50}	$\sigma_{\rm v}$	$\sigma_{\rm v}'$	N_1	N_{a}	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{\rm v}$	$\sigma_{\rm v}'$	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.5	1.0 1.5	2.0	W	$F_{\rm L} \Delta F$
0	: lo]				3 -	%	-	$\mathbf{m}\mathbf{m}$	$kN/m^{\rm S}$	$\rm kN/m^{3}$			-	-	-	$\rm kN/m^{\circ}$	kN/m°	-	-	1.1				9.60	1.000 0.00
	:::[\				7 Sandy Soil	50.9	-	0.073	35.1	11.1	14.7	47.3	11.86	2.000	23.72	35.1	17.1	0.905	1.114	21.28				9.10	1.000 0.00
					3 Sandy Soil	30.8	-	0.220	54.6	20.6	5.6	11.2	0.231	1.432	0.331	54.6	26.6	0.890	1.096	0.302	0			8.60	0.302 6.00
	: δ				5 Sandy Soil	66.9	20.2	0.029	74.1	30.1	8.5	44.0	7.575	2.000	15.15	74.1	36.1	0.875	1.077	14.06				8.10	1.000 0.00
5 -	::::[\				6 Sandy Soil	58.5	18.7	0.049	93.6	39.6	9.3	39.3	3.692	2.000	7.385	93.6	45.6	0.860	1.059	6.974				7.60	1.000 0.00
0	8				11 Sandy Soil	48.8	7.1	0.080	113.1	49.1	15.7	47.2	11.60	2.000	23.19	113.1	55.1	0.845	1.040	22.29				7.10	1.000 0.00
1					13 Sandy Soil	48.3	6.9	0.082	132.6	58.6	17.2	50.4	17.45	2.000	34.90	132.6	64.6	0.830	1.022	34.15				6.60	1.000 0.00
1		1 0			141 Sandy Soil				152.1	68.1	173.6	173.6	13104.75	2.000	26209.5	152.1	74.1	0.815	1.003	26120				6.10	1.000 0.00
		I			90 Sandy Soil	25.1	-	0.502	171.6	77.6	103.7	157.2	8040.05	2.000	16080.1	171.6	83.6	0.800	0.985	16326				5.60	1.000 0.00
		I			61 Sandy Soil				191.1	87.1	66.0	66.0	84.97	2.000	169.9	191.1	93.1	0.785	0.966	175.8				5.10	1.000 0.00
10 -		I			50 Sandy Soil	14.7	-	0.633	210.6	96.6	51.0	59.4	46.24	2.000	92.48	210.6	102.6	0.770	0.948	97.55				4.60	1.000 0.00
		Ĭ			69 Sandy Soil				230.1	106.1	66.6	66.6	89.46	2.000	178.9	230.1	112.1	0.755	0.930	192.5				4.10	1.000 0.00
		Ĭ			84 Sandy Soil	23.6	-	0.319	249.6	115.6	76.9	113.0	1530.40	2.000	3060.8	249.6	121.6	0.740	0.911	3360				3.60	1.000 0.00
		4.40		19.5	70 Sandy Soil				269.1	125.1	61.0	61.0	54.02	2.000	108.0	269.1	131.1	0.725	0.893	121.1				3.10	1.000 0.00
		Ĭ			135 Gravely Soil	17.8	-	0.931	289.2	135.2	111.8	125.2	2582.64	2.000	5165.3	289.2	141.2	0.710	0.872	5922				2.60	1.000 0.00
15 -	1888	tΥ			Gravely Soil			2.000	310.2	146.2	-	-	-	-	-	310.2	152.2	0.695	-	-	-			2.10	1.000 0.00
					Gravely Soil				331.2		-	-	-	-	-	331.2	163.2	0.680	-	-	-			1.60	1.000 0.00
					Gravely Soil				352.2	168.2	-	-	-	-	-	352.2	174.2	0.665	-	-	-			1.10	1.000 0.00
					Gravely Soil	11.0	-	0.623	373.2	179.2	-	-	-	-	-	373.2	185.2	0.650	-		-				1.000 0.00
					Gravely Soil				394.2		-	-	-	-		394.2			-					0.10	1.000 0.00
20 -		111			Gravely Soil				415.2		-	-	-	-		415.2			-						1.000
					Gravely Soil				436.2		-					436.2					+				1.000
	889 H I I I I					20.77		0.004								457.2					-				1.000
	6666H				Gravely Soil	32.1	-	0.834	457.2		-	-	-	-					-	-					
	888H			_	Gravely Soil				478.2		-	-	-	-		478.2			-	-					1.000
-25 -		+		_	Gravely Soil				499.2		-	-	-	-		499.2			-	-			-+		1.000
				_	Gravely Soil				520.2		-	-	-	-		520.2			-						1.000
	888 H I I I I			_	Gravely Soil	10.5			541.2		-	-	-	-		541.2			-	-	+				1.000
		Ŷ		_	75 Gravely Soil	16.9	-		562.2									0.515							1.000
		0		-	120 Gravely Soil	10.5			583.2		56.8							0.500							1.000
-30 -	<u> </u>	1 30.00		21.0	30 Gravely Soil	19.8	-	0.872	604.2	300.2	13.8	15.6	0.267	1.551	0.414	604.2	306.2	0.485	0.574	0.721	μЩζ				0.721
				_																					


Г

Appendix 38


76

E	3-5]																										
No. 1		Name	B-5					Loca	ation	Bara	oa								LNG;	08169	12 m E	LAT	989	99918	m S		dard De or "sv"	pth
Hight o Hole Mor		Tota	Advance	30.00m	Groun	d Water	Level	0	.55m	Gro	und H	light	4	.55m	Late	eral Sei Facte			0.600		Type o smic Me			Гуре	2		0.	00m
Depth		Drilling Lo	og	Unit Weight	Valu	Type of	Phy	sical ⁻	Test	Valu Calcur			Lique	factio	n Jud	gment	(Valu Calcu	e for rate L)									P_{L}	
				kN/m ³																				_			3.59	
0 ^m	0 102030				Ν	Туре	FC	Ip	D_{50}	$\sigma_{ m v}$	$\sigma_{ m v}$ '	N_1	N_{a}	$R_{\rm L}$	$C_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{ m v}'$	$r_{\rm d}$	L	$F_{ m L}$	0.0 0.	5 1.0	1.5 ž	2.0	W	$F_{ m L}$	ΔP_{L}
		1.00	Top Soil or Back	<−fill 15.0	3	-	%	-	$\mathbf{m}\mathbf{m}$	kN/m^2	kN/m^2			-	-	-	kN/m^2	kN/m ²	-	-	-					9.60	1.000	0.000
		2.00	Silt	17.5	4	-	85.4	22.8	0.008	29.0	16.5	7.9	-	-	-	-	29.0	16.5	0.905	0.954	-					9.10	1.000	0.000
·.	- la l	3.00	Sand	19.5	7	Sandy Soil	31.1	-	0.229	48.1	25.6	12.4	22.9	0.354	1.839	0.652	48.1	25.6	0.890	1.003	0.650		b			8.60	0.650	3.011
LE					3	-	69.4	12.2	0.015	66.0	33.5	4.9	-	-	-	-	66.0	33.5	0.875	1.034	-					8.10	1.000	0.000
5	811				10	-	86.3	24.1	0.007	83.5	41.0	15.3	-	-		-	83.5	41.0	0.860	1.051	-					7.60	1.000	0.000
	Ь				13	-	86.4	23.6	0.008	101.0	48.5	18.6	-	-	-	-	101.0	48.5	0.845	1.056	-					7.10	1.000	0.000
		7.40	Silt	17.5	19	-	84.1	22.1	0.009	118.5	56.0	25.6	-	-	-	-	118.5	56.0	0.830	1.053	-					6.60	1.000	0.000
		8.40	Sand	19.5	16	Sandy Soil	68.7	12.2	0.015	136.8	64.3	20.3	97.2	701.24	2.000	1402.5	136.8	64.3	0.815	1.040	1348					6.10	1.000	0.000
					14	-	54.3	-	0.020	155.5	73.0	16.6	-	-		-	155.5	73.0	0.800	1.022	-					5.60	1.000	0.000
		10.00	Silt	17.5	18	-	90.0	22.6	0.005	173.0	80.5	20.3	-	-	-	-	173.0	80.5	0.785	1.012	-					5.10	1.000	0.000
10					50	Gravely Soil			2.000	193.3	90.8	52.9	52.9	23.24	2.000	46.48	193.3	90.8	0.770	0.983	47.27			m		4.60	1.000	0.000
100	331	Ĭ			57	Gravely Soil	82.8	23.5	0.010	214.3	101.8	56.4	103.6	975.36	2.000	1950.7	214.3	101.8	0.755	0.953	2046					4.10	1.000	0.000
18		ľ			43	Gravely Soil			2.000	235.3	112.8	40.0	40.0	4.149	2.000	8.298	235.3	112.8	0.740	0.926	8.962					3.60	1.000	0.000
12	291 I I I I	X			40	Gravely Soil			2.000	256.3	123.8	35.1	35.1	1.854	2.000	3.707	256.3	123.8	0.725	0.900	4.118					3.10	1.000	0.000
		X			37	Gravely Soil			2.000	277.3	134.8	30.7	30.7	0.885	2.000	1.770	277.3	134.8	0.710	0.876	2.021				Ц	2.60	1.000	0.000
15 -		21			28	Gravely Soil	38.9	-	0.119	298.3	145.8	22.1	31.8	1.059	2.000	2.118	298.3	145.8	0.695	0.853	2.484				Y	2.10	1.000	0.000
12	291 I I M	N			39	Gravely Soil			2.000	319.3	156.8	29.2	29.2	0.702	2.000	1.404	319.3	156.8	0.680	0.831	1.690					1.60	1.000	0.000
100		Я			31	Gravely Soil			2.000	340.3	167.8	22.2	22.2	0.339	1.788	0.606	340.3	167.8	0.665	0.809	0.749			0		1.10	0.749	0.276
18		211			21	Gravely Soil			2.000		178.8								0.650				0				0.493	
						Gravely Soil	89.9	23.3	0.002		189.8	20.9							0.635			HIG	2				1.000	
20 -		K				Gravely Soil			2.000	403.3	200.8	23.9							0.620						+		0.970	
-8	88H	N -				Gravely Soil			2.000		211.8	28.4							0.605				9				1.000	
		l li				Gravely Soil			2.000	445.3		26.7							0.590					0			1.000	
	38H	24.00	Condorad Con	vel 21.0			00.0	00.7														-HUU		9			1.000	
1		N I	Sand and Gra			Gravely Soil	88.9	23.5	0.006			19.6							0.575									
25 -		25.00	Sand	19.5		Sandy Soil					243.6		26.0	0.401	⊿.000	0.922			0.560					q	++		1.000	
+ +	╤╫║║┢	26.00	Silt	17.5	36						251.5	19.0	•	- 0.000	1.40.4	0.002			0.545			HIII					1.000	
- <u>+</u>	<u>-</u> ¶	27.00	Sand	19.5		Sandy Soil	00.7	00.7	0.00-				11.3	0.232	1.434	0.332			0.530		0.520	HIÇ					0.520	
		2			29		90.1	23.4	0.005	541.0		14.6	-	-	-	-			0.515			+					1.000	
- E		N			32						276.0	15.7	-	•	-	-			0.500								1.000	
-30 -		b 30.00	Silt	17.5	45	-				576.0	283.5	21.6	-	-	-	-	576.0	283.5	0.485	0.591	-		μu	ЩШ	Ш		1.000	
				_																			-		_		_	
Remark	ĸ																											



Appendix 39

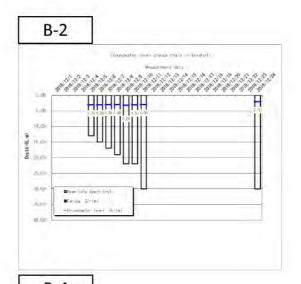
	B-6																													
No. 1	1		Name	e B-	·6					Loca	ation	Bara	loa								LNG;	08162	35 m E	LAT	989	7507	m S		dard De or "sv"	
Hight Hole Mo			Tota	l Advanc	e	30.00m	Ground	l Water	Level	16	.91m	Gro	und H	light	4	.55m	Late	eral Sei Facter		(0.600		Type c mic M		Т	уре	2		0.	.00m
Depth		D	Drilling L	.og		Unit Weight	Valu	Type of	Phy	sical	Test		ue for rate N_1		Lique	factio	n Judį	gment	(Valu Galcur										$P_{\rm L}$	
	0.1	0203040	050			kN/m ³		-	TO							n		n						0.0 0.3	5 1.0	1.5 5	2.0		0.04	
om	2999 m		1				N 150	Туре	FC %	Iр		σ_{v}		N_1	Na	$R_{\rm L}$	Cw	R	$\sigma_{\rm v}$ kN/m ²	$\sigma_{v'}$	r _d	L	$F_{\rm L}$			mm	m		F _L 1.000	
<u> </u>			Ŷ				200	-		-	mm	kN/m ²		944 7	974.9	110700.00		239053.3			0.005	-								
<u> </u>	884		Ŷ				200	Gravelly Sol		•	0.911	34.2							34.2		0.905			1					1.000	
			Ŷ					Gravelly Sol			0.532	53.2						151944.4			0.890			-					1.000	
			Ŷ					Gravelly Sol		8.1	0.245	72.2						120977.8			0.875								1.000	
5	88 H		Ŷ					Gravelly Soi		•	4.117							1479.8				-				+++++			1.000	
	22 H		0	0.1		10.0		Gravelly Sol		•			110.2	70.8				100.4					-	1					1.000	
<u> </u>	2020		7.00			19.0		Gravelly Soil			1.891		129.2	46.1				21.24					-	1					1.000	
· ·		\sim	8.00	Sa	nd	17.5		Sandy Soil		19.5								44.44					-	1					1.000	
⊢_R	23 H		×					Gravelly Sol	26.3	•	1.890							2559.7					-	-					1.000	
10		\sim						Gravelly Soi			2.000		184.7	18.7				0.483				-	-			4			1.000	
B			6			_		Gravelly Sol			2.000		203.7	93.2				1119.8				-	-						1.000	
R	224		<u>م</u>					Gravelly Sol	16.9	•	1.407		222.7	30.8				2.374				-	-						1.000	
<u> </u>			<u>ه</u>					Gravelly Soil					241.7	27.8				1.147				-	-	- 1					1.000	
B	88.		Ŷ				150	Gravelly Sol			2.000	260.7	260.7	77.1	77.1	202.22	2.000	404.4	260.7	260.7	0.725	-	-					3.10	1.000	0.000
15 -			Υ.				61	Gravelly Soi			2.000	279.7	279.7	29.7	29.7	0.749	2.000	1.497	279.7	279.7	0.710	-	-					2.60	1.000	0.000
10			Ŷ				50	Gravelly Soil	39.2	•	0.120	298.7	298.7	23.1	33.2	1.344	2.000	2.688	298.7	298.7	0.695	-	-					2.10	1.000	0.000
R	22 L		Ц				68	Gravelly Sol			2.000	317.7	317.7	29.8	29.8	0.768	2.000	1.535	317.7	317.7	0.680	-	-					1.60	1.000	0.000
			J				72	Gravelly Soi			2.000	336.7	327.8	30.8	30.8	0.893	2.000	1.787	336.7	327.8	0.665	0.410	4.361					1.10	1.000	0.000
B	88 []		Y				85	Gravelly Sol			2.000	355.7	336.8	35.5	35.5	1.995	2.000	3.991	355.7	336.8	0.650	0.412	9.693					0.60	1.000	0.000
. R			T				17	Gravelly Sol			2.000	374.7	345.8	7.0	7.0	0.191	1.302	0.249	374.7	345.8	0.635	0.413	0.604		5			0.10	0.604	0.040
20 -							52	Gravelly Soi			2.000	393.7	354.8	20.8	20.8	0.318	1.718	0.546	393.7	354.8	0.620	0.413	1.322			5			1.000	
1 1			Ĭ				51	Gravelly Soi	17.1		1.391	412.7	363.8	20.0	21.1	0.322	1.732	0.558	412.7	363.8	0.605	0.412	1.355			1			1.000	
E R	881		1				41	Gravelly Sol			2.000	431.7	372.8	15.7	15.7	0.268	1.556	0.418	431.7	372.8	0.590	0.410	1.019		ĽĽ	1			1.000	
	88 I I		N -				67	Gravelly Sol			2.000		381.8	25.2				0.849							Ĭ		Ц		1.000	
1 18	8811		Ĭ –					Gravelly Sol			2.000		390.8	24.0				0.736									M-		1.000	
25	88 H		ĭ					Gravelly Sol			2.000		399.8	22.1				0.601								ЦY	1		1.000	
			Ĭ –					Gravelly Sol	15.9			507.7		95.9				688.4								Y			1.000	
	88 H I		Ĭ					Gravelly Sol	10.0		2.000		417.8	22.7				0.634											1.000	
⊨ –Ř	88 H I		Ĭ					Gravelly Sol			2.000		426.8	18.1				0.469								μ			1.000	
			Å 0.00	Sand an	d Gravel	19.0		Gravelly Sol					435.8	23.2				0.405							C	11			1.000	
30	6363 LL		0.00	Sanuan	u Gravel	19.0	03				2.000	301.7	-100.0	40.4	40.4	0.000	1.000	5.670	504.7	-200.0	0.400	0.011	1.110		1	10	ш		1.000	
Remar	ck.	-					-	-	_																	+	-	-	-	
rtemar	N																													

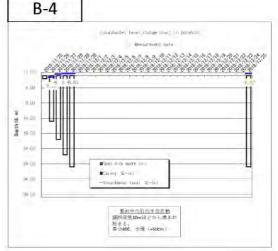
Appendix 40

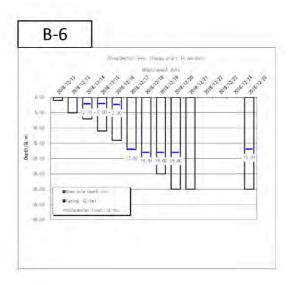
սոոր

Ofper light deal + lim

Düsink wir(b) -Troublettillere

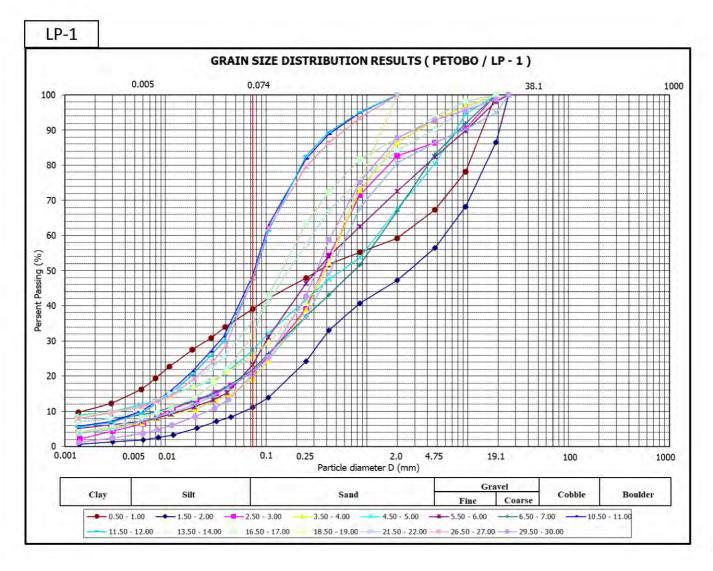

Ш


28.00

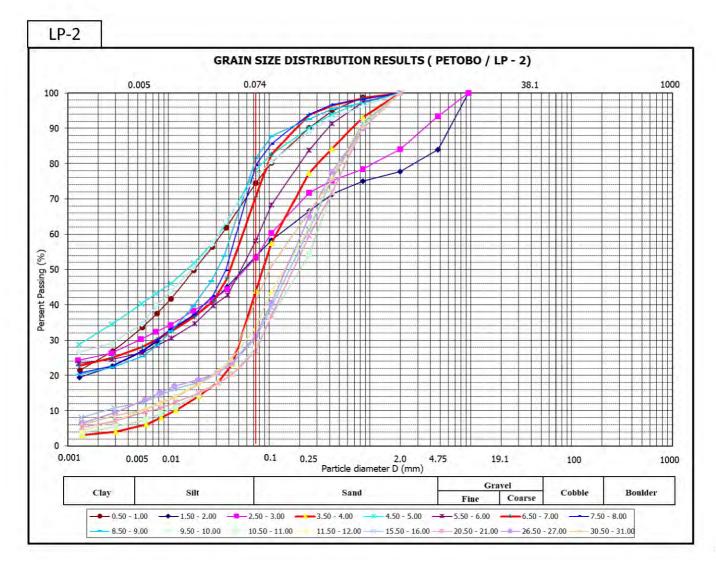

10.00

15,10

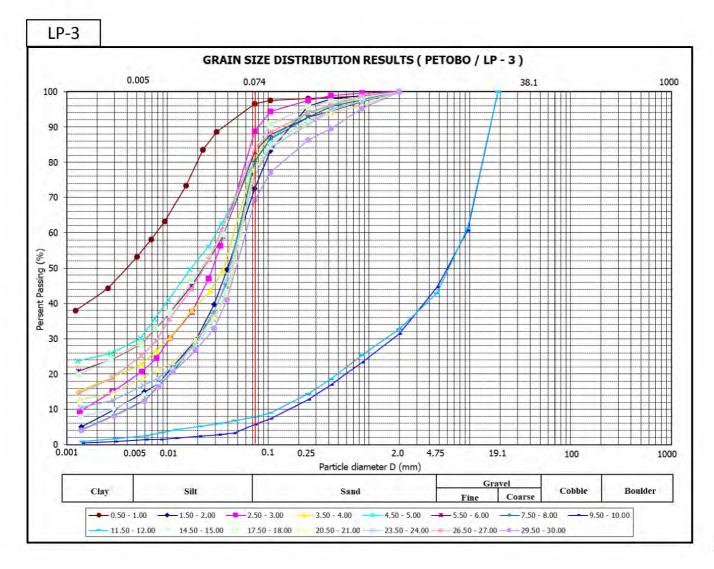

49,10



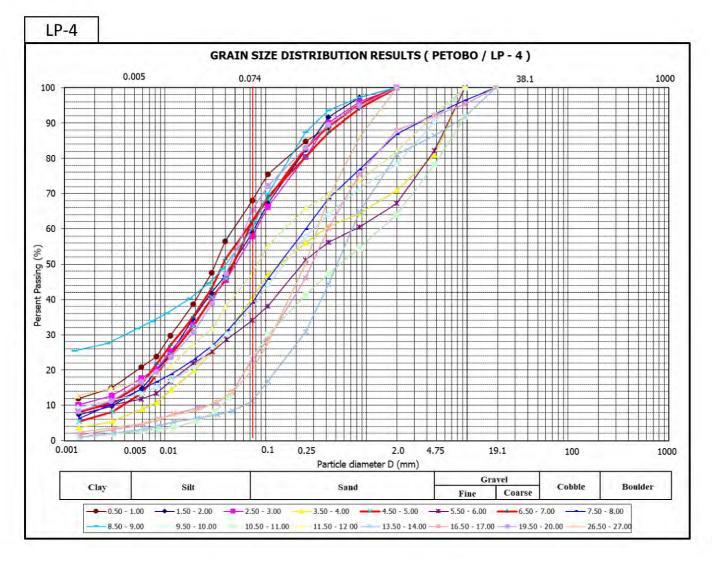
Petobo

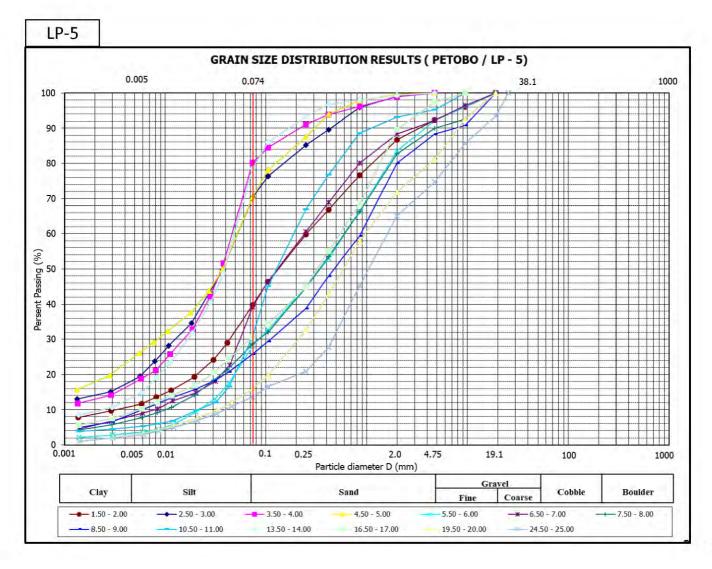


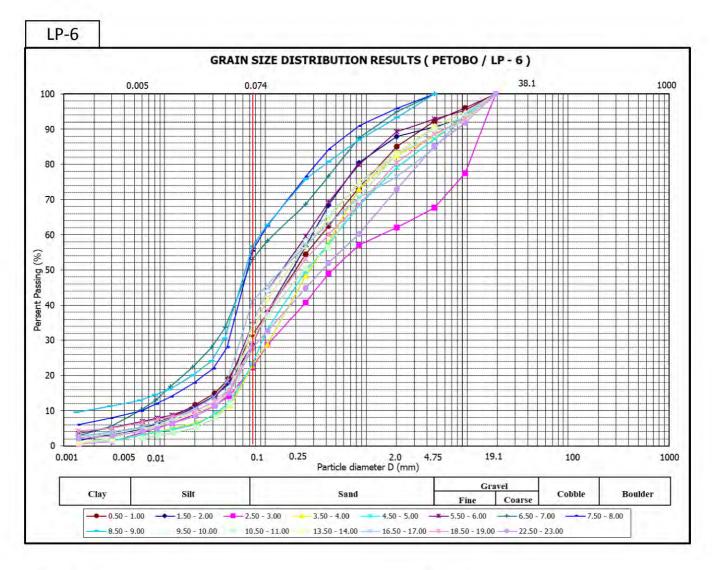
1			Name	LP-1						Loca	ation	Peto	bo								LNG;	08253'	76 m E	LAT	989	5789 m		dard Dep "or ″sv″
t of Nout	h		Tota	l Advance	3	5.00m	Groun	d Water	Level	11	.22m	Gro	und H	ight	4	.55m		ral Sei Facter		().600		Type of mic Mo		Т	ype2		0.0
		D	rilling L	og		Unit Weight	Valu	Type of	Phy	sical .	Test	Valu Calcur			Lique	factio	n Judį	gment	(Valu Calcur									$P_{\rm L}$
						kN/m ³																						0.00
	0 10 2	0 30 40	50				Ν	Туре	FC	Iр	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	$N_{ m a}$	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.	5 1.0	1.5 2.0	W	$F_{\rm L}$
	BATT	İΠΠΤ					4	-	%	-	mm	kN/m ³	kN/m ³			-	-	-	kN/m^2	kN/m^3	-	-	-					1.000
88		41	2.50	Sand and G	ravel	19.0	27	Grave ly Soil	11.1	-	2.818	34.2	34.2	44.0	41.7	5.386	2.000	10.77	34.2	34.2	0.905	-	-				9.10	1.000
20	9	\mathbb{N}	1				52	Sandy Soil	21.1	-	0.371	52.8	52.8	72.0	99.6	796.58	2.000	1593.2	52.8	52.8	0.890	-	-				8.60	1.000
÷			Ĭ				54	Sandy Soil	19.4	-	0.376	70.3	70.3	65.5	86.8	384.55	2.000	769.1	70.3	70.3	0.875	-	-				8.10	1.000
1			ĭ				58	Sandy Soil	27.4	13.4	0.591	87.8	87.8	62.5	100.1	816.34	2.000	1632.7	87.8	87.8	0.860	-	-				7.60	1.000
÷	:1+++		ĩ				53	Sandy Soil	23.3	-	0.330	105.3	105.3	51.4	75.3	177.23	2.000	354.5	105.3	105.3	0.845	-	-			T	7.10	1.000
÷			Î				55	Sandy Soil	21.9	-	0.770	122.8	122.8	48.5	68.8	107.17	2.000	214.3	122.8	122.8	0.830	-	-				6.60	1.000
Ŀ.			Î					Sandy Soil				140.3	140.3			-	-		140.3	140.3	0.815		-				6.10	1.000
÷								Sandy Soil				157.8	157.8						157.8	157.8	0.800	-		-			5.60	1.000
11								Sandy Soil				175.3	175.3		-	-	-	-	175.3	175.3	0.785	-	-				5.10	1.000
÷	: -+++							Sandy Soil	48.7	6.3	0.077				-					192.8		-	-			+-+		1.000
			12.20	Sand		17.5		- Sandy Soil			0.079								210.3					-				1.000
• • •			12.20	Janu		11.5		-	47.4	5.0	0.015		212.0						227.8				_	-				1.000
			14.00	Silt		17.5		-	35.7	E 17	0.183								245.3					-				1.000
									35.7	5.7	0.165			-									_					1.000
	3		14.30		rave	21.0		-					228.0						263.8			-	-			+ +		
88	8. II.		15.50	Silt		17.5		Grave Ty Soil				282.4					-		282.4			-						1.000
	84.111		<u>م</u>					Gravely Soil	31.4	-		303.4		34.3				25.69						- 1				1.000
8	84.11		<u>ه</u>				~~	Gravely Soil			2.000	324.4	258.6	26.9				1.021								Ċ		1.000
88			<u>ا</u>				54	Grave I y Soil	25.7	-	0.387	345.4	269.6	27.0	34.0	1.534	2.000	3.068	345.4	269.6	0.650	0.499	6.142	_				1.000
	8111		6				57	Grave I y Soil			2.000	366.4	280.6	27.6	27.6	0.560	2.000	1.121	366.4	280.6	0.635	0.497	2.253				0.10	1.000
	8 IIII		1				59	Gravely Soil			2.000	387.4	291.6	27.7	27.7	0.568	2.000	1.136	387.4	291.6	0.620	0.494	2.299					1.000
88	8111		Υ.				55	Grave I y Soil	21.4	-	0.441	408.4	302.6	25.1	31.0	0.932	2.000	1.865	408.4	302.6	0.605	0.490	3.807					1.000
8	SI U		<u>I</u>				53	Grave Ly Soil			2.000	429.4	313.6	23.5	23.5	0.368	1.884	0.693	429.4	313.6	0.590	0.485	1.430					1.000
			Ι—				51	Gravely Soil			2.000	450.4	324.6	22.0	22.0	0.335	1.777	0.596	450.4	324.6	0.575	0.479	1.245	-	С	ЛI		1.000
	8111		ĬТ				59	Grave by Soil			2.000	471.4	335.6	24.7				0.812							. I Y	1.1		1.000
ä	8 HT		L 30	Sand and G	rave	21.0		Grave Ly Soil			2.000		346.6	20.8				0.546								.HYH		1.000
-	뛰니		0.00	oand and d	avoi	21.0		Sandy Soil	49.0			512.6		4.4				0.419							μ			0.916
÷	ΗY	Ы	28.20	0		19.5		Sandy Soil	40.0		0.018		366.3	15.2				0.415							9			0.905
		R	28.20	Sand		19.5					0.000														q			1.000
	84111		<u>۲</u>					Grave ly Soil	00 F					21.3				0.565							C	2		
	9.HH		የ					Gravelly Soil	20.5	-	0.328	573.5	387.7	21.5	27.6	0.560	2.000	1.119	573.5	387.7	0.485	0.430	2.601		ЩШ		i	1.000
8	84111						60																					
8	8H						59																					
8							53																					
8	811						60		31.3	-	0.193																	
56	8 W.L	μШ	J 35	Sand and (Grave	21	59																					

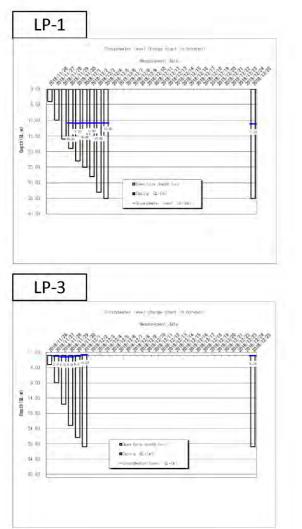


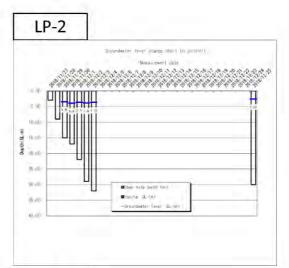
L	P-2																											
No. 1		Nam	e <mark>LP-</mark> 2	2				Loc	ation	Peto	bo								LNG;	08244	72 m E	LAT	989	5841	m S		dard D or ‴sv	
Hight of Hole Mour		Tot	al Advance	32.00m	Groun	d Water	Level	2	2.60m	Gro	und H	ight	4	.55m	Late	eral Se Facte			0.600		Type o mic Me		Т	Гуре	:2			.00m
Depth		Drilling	Log	Unit Weight	Valu	Type of	Phy	sical	Test	Valu Calcur	ie for ate N ₁		Lique	factio	n Jud	gment		ue for irate L)									P_{L}	
				kN/m ³			-							-							_	000	5 1.0	15	2.0		3.53	
0 ^m	0 10203				N	Туре	FC	Iр	D_{50}	σ_{v}	$\sigma_{\rm v}$	N_1	N_{a}	$R_{\rm L}$	\mathcal{C}_{W}	<i>R</i>	σ_{v}		$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.	110	1.0.	2.0	W	$F_{\rm L}$	
	_ 01111	1.10) Landslide	Dep. 15.5	3		%	-	mm	kN/m ²	kN/m ²	5.0		•	•		kN/m ²	kN/m ²	-	•	•						1.000	
— E		3.60) Silt	15.5	3		53.8 53.3	8.7 11.3		27.9 43.4	27.9	5.2 7.6					21.0		0.905								1.000	
	₽	4.50		19.5		– San dy Soil		7.0		40.4 59.7	41.4	5.8	167	0.976		0.437	1011		0.850		0 666	-					0.666	
	. e I	4.00	, oanu	19.0	7		78.1			78.6	56.6	9.4	10.7	0.210	1.002		78.6		0.860		0.000		0				1.000	
5 -	39	6.00) Silt	17.5	5			11.7		96.1	64.1	6.3							0.845						÷ 1		1.000	
	- 9	7.20		19.5		San dy Soil		10.2		115.2		3.6			2.000	0.830			0.830		1.060						1.000	
	- P			1010	4	-	79.5	9.1	0.037	133.5	81.5	4.5					133.5		0.815				P				1.000	
	= ?				5	-	81.5		0.031	151.0	89.0	5.3		-	-		151.0	89.0	0.800	0.814		-				5.60	1.000	0.000
	1	10.40) Silt	17.5	7	-	76.3	13.4	0.017	168.5	96.5	7.1			-		168.5	96.5	0.785	0.822						5.10	1.000	0.000
10 -		.			50	San dy Soil	27.9	-	0.215	186.8	104.8	48.6	79.2	233.98	2.000	468.0	186.8	104.8	0.770	0.823	568.4			1111		4.60	1.000	0.000
		ΠX-			48	San dy Soil	33.6		0.155	206.3	114.3	44.3	81.0	265.00	2.000	530.0	206.3	114.3	0.755	0.817	648.4					4.10	1.000	0.000
·:·		ΠX.			50	San dy Soil				225.8	123.8	43.9	43.9	7.398	2.000	14.80	225.8	123.8	0.740	0.810	18.28					3.60	1.000	0.000
		\mathcal{N}			35	San dy Soil				245.3	133.3	29.3	29.3	0.706	2.000	1.411	245.3	133.3	0.725	0.800	1.764			С	,	3.10	1.000	0.000
		1			43	San dy Soil				264.8	142.8	34.4	34.4	1.635	2.000	3.269	264.8	142.8	0.710	0.790	4.140			ĬŬ		2.60	1.000	0.000
15 -		I			42	San dy Soil	30.6		0.166	284.3	152.3	32.1	55.8	32.25	2.000	64.50	284.3	152.3	0.695	0.778	82.89			Ш	TT_	2.10	1.000	0.000
]· ·					20	San dy Soil				303.8	161.8	14.7	14.7	0.259	1.525	0.395	303.8	161.8	0.680	0.766	0.516	5	5			1.60	0.516	0.775
::	: [TN				34	San dy Soil				323.3	171.3	24.0	24.0	0.381	1.926	6 0.733	323.3	171.3	0.665	0.753	0.974					1.10	0.974	0.029
::					44	San dy Soil				342.8	180.8	29.8	29.8	0.769	2.000	1.537	342.8	180.8	0.650	0.739	2.080				0	0.60	1.000	0.000
					34	San dy Soil				362.3	190.3	22.2	22.2	0.340	1.790	0.608	362.3	190.3	0.635	0.725	0.838		0	Ш		0.10	0.838	0.016
		0			45	San dy Soil	26.9	•	0.189	381.8	199.8	28.4	45.7	9.590	2.000	19.18	381.8	199.8	0.620	0.711	26.99						1.000	
		2 22.00) Sand	19.5	47	San dy Soil				401.3	209.3	28.6	28.6	0.640	2.000	1.280	401.3	209.3	0.605	0.696	1.840			c	5		1.000	
		X 22.50	Sand and C	aravel 21.0	42	San dy Soil				421.6	219.6	24.7	24.7	0.403	2.000	0.807	421.6	219.6	0.590	0.679	1.187		C)			1.000	
		þ			50	San dy Soil				441.1	229.1	28.4	28.4	0.624	2.000	1.247	441.1	229.1	0.575	0.664	1.878			ς	2		1.000	
25 -		5.00				San dy Soil					238.6	27.5							0.560		1.707		,	0	Щ.		1.000	
	- I a	26.30		17.5	25						246.5	13.4							0.545								1.000	
		07.30) Sand	19.5		San dy Soil	31.4	•	0.161		255.0	26.2	46.6	10.74	2.000				0.530		34.68						1.000	
		18			50						263.5	25.5			-				0.515								1.000	
	╡╢║║	X 29.10) Silt	17.5	42						271.0	20.9	•						0.500								1.000	
_30		ΗÞ				San dy Soil				551.9	279.9	39.4	39.4	3.757	2.000	7.514	551.9	279.9	0.485	0.574	13.10	(IIII	μш	ЩЦ	Ш		1.000	
				40.5	90		41.1	•	0.102														-	+				
<u>⊢_</u> †∸		32	2 Sand	19.5	98																			-				
					50																			+				
																								+				
35																							-	+				
Remark					50											-						-	+	+	_			
Nemark					- 50				_														_		_			

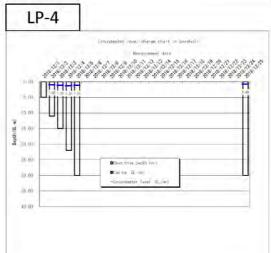

Appendix 43


LF	o-3																												
No. 1			Name	LP-3						Loca	ation	Peto	bo								LNG;	08227	21 m E	LAT;	9896	5233 m S		dard De for ″sv″	
Hight of Hole Mout			Total	Advance	30	0.00m	Groun	d Water	Level	0	.13m	Gro	und H	ight	4	.55m		ral Sei Facter			0.600		Type o mic Mo		T	ype2		0.	00m
Depth		Dr	illing Lo	og		Unit Weight	Valu	Type of	Phy	sical	Test	Valu Caleur			Lique	faction	n Judg	gment	(Valu Calcur	e for nate L⟩								$P_{\rm L}$	
						kN/m ³																						0.00	
m	0 1020	30 40	50				Ν	Туре	FC	Iр	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	$N_{\rm a}$	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.5	1.0	1.5 2.0	W	$F_{\rm L}$.	$\Delta P_{ m L}$
			0.20	Top Soil or Ba	ck-fill	15.0	6	-	%	-	$^{\rm mm}$	$\rm kN/m^3$	$\mathrm{k}N/\mathrm{m}^3$			-	-	-	$\mathrm{kN/m}^{\otimes}$	$kN/m^{\rm S}$	-	-	-				9.60	1.000	0.000
	<u> </u>						6	-	72.5	12.9	0.040	31.0	14.3	12.1	-	-	-	-	31.0	14.3	0.905	1.177	-	_			9.10	1.000	0.000
	= \ \						15	-	88.7	13.5	0.026	48.5	21.8	27.8	-	-	-	-	48.5	21.8	0.890	1.188	-				8.60	1.000	0.000
	≡. N						27	-	80.7	22.4	0.037	66.0	29.3	46.2	-	-	-	-	66.0	29.3	0.875	1.182	-				8.10	1.000	0.000
5		b.	5.10	Silt		17.5	34	-	80.2	20.2	0.017	83.5	36.8	54.1	-	-	-	-	83.5	36.8	0.860	1.170	-				7.60	1.000	0.000
		8	5.50	Sand		19.5	34	-	82.9	17.2	0.023	101.8	45.1	50.2	-	-	-	-	101.8	45.1	0.845	1.144	-				7.10	1.000	0.000
							33	-				119.3	52.6	45.8	-	-	-	-	119.3	52.6	0.830	1.129	-	.			6.60	1.000	0.000
		Q	8.00	Silt		17.5	36	-	80.2	11.3	0.043	136.8	60.1	47.0	-	-	-	-	136.8	60.1	0.815	1.113	-	_			6.10	1.000	0.000
			6				55	Sandy Soil				155.9	69.2	67.2	67.2	93.79	2.000	187.6	155.9	69.2	0.800	1.081	173.5	_			5.60	1.000	0.000
10			6				64	Sandy Soil	5.7	-	6.372	175.4	78.7	73.2	73.2	151.41	2.000	302.8	175.4	78.7	0.785	1.049	288.6				5.10	1.000	0.000
10 ·			6				65	Sandy Soil				194.9	88.2	69.8	69.8	116.89	2.000	233.8	194.9	88.2	0.770	1.021	229.1				4.60	1.000	0.000
			6				99	Sandy Soil	7.9	•	6.583	214.4	97.7	100.4	100.4	827.62	2.000	1655.2	214.4	97.7	0.755	0.994	1666				4.10	1.000	0.000
			6				67	Sandy Soil				233.9	107.2	64.3	64.3	73.04	2.000	146.1	233.9	107.2	0.740	0.968	150.8				3.60	1.000	0.000
								Sandy Soil				253.4	116.7	-	-	-	-	-	253.4	116.7	0.725	-	-				3.10	1.000	0.000
		6					34	Sandy Soil	78.0	11.8	0.045	272.9	126.2	29.5	162.4	9457.29	2.000	18914.6	272.9	126.2	0.710	0.921	20540				2.60	1.000	0.000
15		8	16.50	Sand		19.5	36	Sandy Soil				292.4	135.7	29.8	29.8	0.760	2.000	1.520	292.4	135.7	0.695	0.898	1.692				2.10	1.000	0.000
	=[Ы					36	-				311.3	144.6	28.5	-	-	-	-	311.3	144.6	0.680	0.878	-			Ĭ	1.60	1.000	0.000
		K.					34	-	84.0	17.1	0.022	328.8	152.1	26.0	-	-	-	-	328.8	152.1	0.665	0.862	-				1.10	1.000	0.000
		Y	19.00	Silt		17.5	35	-				346.3	159.6	25.9	-	-	-	-	346.3	159.6	0.650	0.846	-	-			0.60	1.000	0.000
		В	19.50	Sand		19.5	40	-				364.8	168.1	28.6	-	-	-	-	364.8	168.1	0.635	0.826	-	-			0.10	1.000	0.000
20		R	20.00	Silt		17.5	33	Sandy Soil	77.9	11.9	0.047	383.9	177.2	22.7	127.4	2815.85	2.000	5681.7	383.9	177.2	0.620	0.806	6991			TITT		1.000	
1.1		81					32	Sandy Soil				403.4	186.7	21.2	21.2	0.323	1.736	0.560	403.4	186.7	0.605	0.784	0.715		5			0.715	
1.		N					35	Sandy Soil				422.9	196.2	22.4	22.4	0.342	1.800	0.616	422.9	196.2	0.590	0.763	0.808		1			0.808	
		Ŝ					33	Sandy Soil	76.5	11.5	0.043	442.4	205.7	20.3	112.7	1506.87	2.000	3013.7	442.4	205.7	0.575	0.742	4063	-	1			1.000	
		Į I					34	Sandy Soil				461.9	215.2	20.3	20.3	0.311	1.695	0.527	461.9	215.2	0.560	0.721	0.731		4			0.731	
-25		81						Sandy Soil				481.4				0.292									1			0.681	
	::::::::::::::::::::::::::::::::::::::	ß						Sandy Soil		17.3	0.023					1956.97								TIIN	1			1.000	
		ХI						Sandy Soil		2		520.4				0.292												0.722	
		Т					~ ~	Sandy Soil					253.2			0.302									1			0.786	
30		N	30.00	Sand		19.5		Sandy Soil		10.2	0.050					226.83									1			1.000	
Remark																											+	-	-
																				_							÷		_

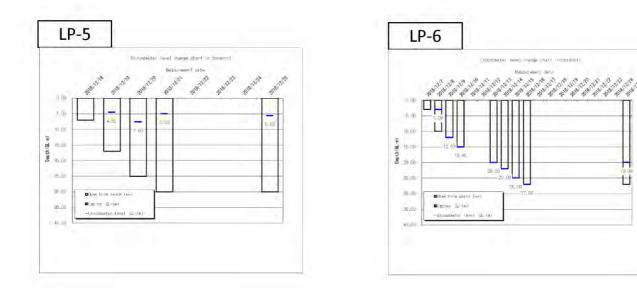

L	.P-4																												
No. 1		1	Name	LP-4	1					Loca	ation	Peto	bo								LNG;	08242	46 m E	LAT;	9896	6370 n	n S		rd Depth ″sv″
Hight Hole Mo			Total	Advance	3	0.00m	Groun	d Water	^r Level	0	.80m	Gro	und H	ight	4	. <mark>55</mark> m		ral Sei Facter		(0.600		Type o mic Me		Т	ype2	2		0.00m
Depth		Dri	illing Lo	og		Unit Weight	Valu	Type of	Phy	sical	Fest	Valu Calcur			Lique	factio	n Judį	gment	(Valu Calcur	ie for rate L)								Р	L
						kN/m ³																				1 - 0		1.0	33
om	0 10 20		50				Ν	Туре	FC	Iр	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	$N_{\rm a}$	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{ m v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.5	5 1.0 .	1.5 2.	.0	W = F	$F_{\rm L} \Delta P_{\rm L}$
							5	-	%	-	$^{\rm mm}$	kN/m°	$\mathrm{kN/m}^{\otimes}$			-	-	-	$\rm kN/m^{3}$	kN/m^{\odot}	-	-	-	_ []			9	.60 1.0	000.0 000
E	= N		2.50	Silt		15.5	17	-		13.1	0.049	27.9	17.9	32.9	-	-	•	-	27.9		0.905		-	-					000.000
	j ș		3.00	Silt		17.5	12	-			0.052	44.0	24.0	21.7	-	-	-	-	44.0		0.890		-	-					000.0 000
- F	, A		3.20	Sand		19.5	8	-			0.153	61.9	31.9	13.3	-	-	-	-	61.9		0.875		-						000.0 000
5 .	- K		4.00	Silt		17.5		Sandy Soil			0.055	81.0	41.0				2.000		81.0		0.860				o				786 1.628
		×	5.00	Sand		19.5		Sandy Soil			0.237	99.5	49.5	39.8				317.5	99.5		0.845								000.0 000
	\therefore		5.30	Sand		19.5		Sandy Soil			0.038	119.0						2.334			0.830								000.0 000
		\rightarrow	5.80	Silt		17.5		Gravelly Soil			0.148	139.1	69.1					281.8			0.815								000.0 000
	884 I I	Ŕ	7.40	Sand		19.5		Gravelly Soil			0.041	160.1	80.1	37.4				98.45			0.800								000.0 000
10		b	10.30	Sand and G	iravel	21.0		Gravelly Soil		4.5	0.168	181.1	91.1					53.81			0.785					4	÷		000.0 000
		1						Sandy Soil		•	0.578	201.4						1.532								0			000.0 000
l	A		12.00	Sand		19.5		Sandy Soil	47.4	5.1	0.084	220.9						1.857								1	Q I		000.0 000
			12.30	Silt		17.5		Gravelly Soil			2.000	240.5						36.86											000.0 000
	884		•					Gravelly Soil	11.2	•	0.474	261.5						187.9											000.0 000
15		440	-					Gravelly Soil			2.000	282.5						34.85						- Hereite		4!	÷		000.0 000
			}					Gravelly Soil			2.000	303.5						20.99											000.0 000
	889. I I		9	Sand and G	iravel	21.0		Gravelly Soil	23.0	•	0.297	324.5			56.5	34.41	2.000	68.82					85.54						000.0 000
E		Q	18.00	Silt		17.5	35						173.8	24.4	-						0.665			1					000.0 000
<u></u>		$ \rangle$	19.00	Sand and G	iravel	21.0		Gravelly Soil			2.000	364.1						6.177											000.0 000
-20 -	:::							Sandy Soil	65.3	9.9	0.045	383.9						1439.3								ЩШ			000.0 000
	:::	$ \uparrow $	þ				59	Sandy Soil				403.4	203.4	36.7	36.7	2.431	2.000	4.862	403.4	203.4	0.620	0.738	6.592	-				1.0	000
· ·		0	þ				62	Sandy Soil				422.9	212.9	37.3	37.3	2.673	2.000	5.346	422.9	212.9	0.605	0.721	7.417	. 1				1.0	000
		0	33.20	Sand		19.5	58	Sandy Soil				442.4	222.4	33.7	33.7	1.469	2.000	2.938	442.4	222.4	0.590	0.704	4.173					1.0	000
	· ·		þ				59	Sandy Soil				461.9	231.9	33.2	33.2	1.349	2.000	2.698	461.9	231.9	0.575	0.687	3.928					1.0	000
-25 .		44	\$ 5.00	Sand		19.5	66	Sandy Soil				481.4	241.4	36.0	36.0	2.177	2.000	4.355	481.4	241.4	0.560	0.670	6.501	_		ЩШ	4	1.0	000
		0	þ				63	Sandy Soil				500.9	250.9	33.4	33.4	1.384	2.000	2.769	500.9	250.9	0.545	0.653	4.243					1.0	000
:	<::		þ				66	Sandy Soil	20.1	-	0.249	520.4	260.4	34.0	46.3	10.32	2.000	20.64	520.4	260.4	0.530	0.635	32.49					1.0	000
:			ļ				66	Sandy Soil				539.9	269.9	33.0	33.0	1.301	2.000	2.601	539.9	269.9	0.515	0.618	4.210					1.0	000
	:		þ				63	Sandy Soil				559.4	279.4	30.7	30.7	0.877	2.000	1.754	559.4	279.4	0.500	0.600	2.922					1.0	000
30 .		ېللل	3 0.00	Sand		19.5	64	Sandy Soil				578.9	288.9	30.3	30.3	0.831	2.000	1.662	578.9	288.9	0.485	0.583	2.851			ЩШ		1.0	000
D	4.																									+-		—	
Remar	ĸ																												

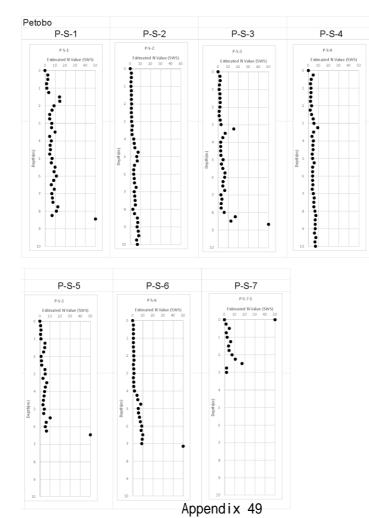



L	.P-5]																									
No. 1		Nam	e LP-5					Loca	ation	Peto	bo								LNG;	08236	92 m E	LAT;	989	97486 r	n S S	Standard De for ″sv″	
Hight Hole Mo		Tot	al Advance	30.00m	Groun	d Water	Level	5	.59m	Gro	und H	ight	4	.55m	Late	ral Sei Facter			0.600		Type o mic Mo			Гуре2	2	0.	.00m
Depth		Drilling	Log	Unit Weight	Valu	Type of	Phy	sical	Test	Valu Calcur			Lique	factio	n Jud	gment		ie for rate L)								$P_{ m L}$	
				kN/m ³																						1.55	
0 ^m	0 10203	04050			Ν	Туре	FC	Iр	D_{50}	$\sigma_{ m v}$	$\sigma_{ m v}$ '	N_1	N_{a}	$R_{ m L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{ m v}$	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.2	5 1.0	1.5 2	.0	$W = F_{\rm L}$	$\Delta P_{\rm L}$
L		1.40) Silt	15.5	17	•	%	•	mm	$\rm kN/m^2$	kN/m^2			-	-	-	kN/m^2	kN/m ²	•	-	-	- 1			9	.60 1.000	0.000
. E		2.00) Sand	17.5	21	Sandy Soil	39.7	•	0.145	28.7	28.7	36.2	74.4	165.98	2.000	332.0	28.7	28.7	0.905	-	-				9	.10 1.000	0.000
L E					21	-	70.3	9.3	0.038	44.6	44.6	31.2		-	-	-	44.6	44.6	0.890		•				8	.60 1.000	0.000
Ē		4.00) Silt	15.5	19	-	80.2	7.4	0.036	60.1	60.1	24.8		-	-	-	60.1		0.875	-	-	- 1			8	.10 1.000	0.000
5	<u>ام</u>	4.50) Sand	17.5	20	-	70.5	9.2	0.037	76.6	76.6	23.2	-	-	-	-	76.6	76.6	0.860	-	-		ш.		7	.60 1.000	0.000
		5.00) Silt	15.5		Sandy Soil		•	0.358	93.7	91.6	56.8	92.6	541.07	2.000	1082.1	93.7	91.6	0.845	0.518	2087	- 1			7	.10 1.000	0.000
				_		Sandy Soil		-	0.142	111.2	99.1	31.2	63.9	70.56	2.000	141.1	111.2	99.1	0.830	0.559	252.6	- 1			6	.60 1.000	0.000
	::: 			_	58	Sandy Soil	28.6	-	0.353	128.7	106.6	55.8	92.1	525.85	2.000	1051.7	128.7	106.6	0.815	0.590	1782	-			6	.10 1.000	0.000
				_	58	Sandy Soil	25.9	•	0.496	146.2	114.1	53.6	83.2	306.26	2.000	612.5	146.2	114.1	0.800	0.615	996.2	-			5	.60 1.000	0.000
10-1	. 0				19	Sandy Soil				163.7	121.6	16.9	16.9	0.278	1.587	0.441	163.7	121.6	0.785	0.634	0.696		0		5	.10 0.696	1.551
10	: d				20	Sandy Soil	30.8	-	0.138	181.2	129.1	17.1	30.6	0.869	2.000	1.738	181.2	129.1	0.770	0.648	2.680				4	.60 1.000	0.000
		\mathbb{N}_{0}			63	Sandy Soil				198.7	136.6	51.8	51.8	20.66	2.000	41.33	198.7	136.6	0.755	0.659	62.74				4	.10 1.000	0.000
		13.00) Sand	17.5	44	Sandy Soil				216.2	144.1	34.9	34.9	1.807	2.000	3.613	216.2	144.1	0.740	0.666	5.426				3	.60 1.000	0.000
E		14.50) Silt	17.5	18	-	78.5	9.8	0.039	233.7	151.6	13.8	-	-	-	-	233.7	151.6	0.725	0.670	-				3	.10 1.000	0.000
E.	≕ [[] `	H_{0}			63	Sandy Soil				251.8	159.7	46.6	46.6	10.82	2.000	21.63	251.8	159.7	0.710	0.671	32.22				2	.60 1.000	0.000
15 -		6			57	Sandy Soil				271.3	169.2	40.5	40.5	4.499	2.000	8.999	271.3	169.2	0.695	0.668	13.46				2	.10 1.000	0.000
		l R			43	Sandy Soil	30.6	-	0.336	290.8	178.7	29.4	51.3	19.36	2.000	38.73	290.8	178.7	0.680	0.664	58.35				1	.60 1.000	0.000
		N_			59	Sandy Soil				310.3	188.2	38.8	38.8	3.461	2.000	6.922	310.3	188.2	0.665	0.658	10.53				1	.10 1.000	0.000
	::[[J			58	Sandy Soil				329.8	197.7	36.8	36.8	2.488	2.000	4.977	329.8	197.7	0.650	0.650	7.652				0	.60 1.000	0.000
		b 0.30) Sand	19.5	70	Sandy Soil	16.0	•	0.625	349.3	207.2	42.9	52.1	21.20	2.000	42.40	349.3	207.2	0.635	0.642	66.04				0	.10 1.000	0.000
20 -					32	-				367.8	215.7	19.0	-	-	-	-	367.8	215.7	0.620	0.634	-				Π	1.000	
E		82.00) Silt	17.5	84	-				385.3	223.2	48.7	-	-	-	-	385.3	223.2	0.605	0.626	-					1.000	
		III I			69	Sandy Soil				404.4	232.3	38.8	38.8	3.437	2.000	6.874	404.4	232.3	0.590	0.616	11.16					1.000	
		J 4.00) Sand	19.5	72	Sandy Soil				423.9	241.8	39.3	39.3	3.695	2.000	7.391	423.9	241.8	0.575	0.605	12.23					1.000	
	888 i I I I	I I I			79	Grave by Soil	13.5		1.125	444.6	252.5	41.6	45.4	9.158	2.000	18.32	444.6	252.5	0.560	0.591	30.97					1.000	
-25 -		Ĭ		_	77	Grave by Soil			2.000	465.6	263.5	39.3	39.3	3.692	2.000	7.384	465.6	263.5	0.545	0.578	12.79	-	m		ti	1.000	
		III X				Grave by Soil			2.000	486.6						16.00										1.000	
		IIIX –			00	Grave by Soil				507.6						10.63										1.000	
		III X				Grave by Soil										1.879										1.000	
		J 0.00	Sand and Gra	vel 21.0		Grave ly Soil				549.6						2.540										1.000	
30																											
Remar	ĸ																										

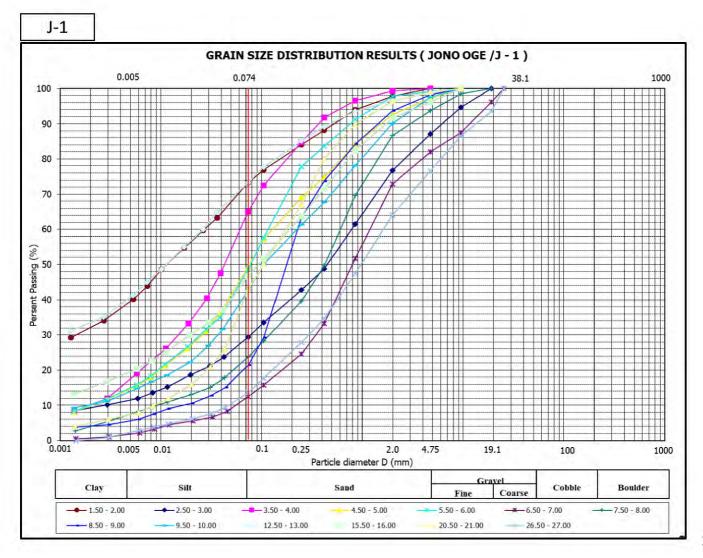


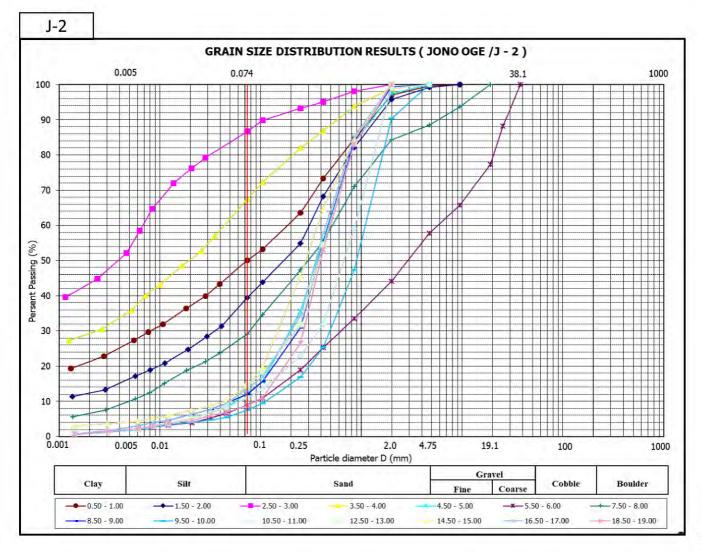
l	LP-6																											
No.	1		Name	LP-6					Loca	ation	Peto	bo								LNG;	08239	03 m E	LAT;	9899	203 m S		dard Depth or ″sv″]
Hight Hole M			Tota	Advance	27.00m	Groun	nd Water	Level	20	.00m	Gro	und H	ight	4	.55m		ral Sei Factei			0.600		Type o mic M		Т	ype2		0.00m	A
Depth		Dr	illing L	og	Unit Weight	Valu	Type of	Phy	sical	Fest	Valu Calcur			Lique	faction	n Judg	gment	(Valu Calcu	ue for rate L)								$P_{\rm L}$	
	0.4000				kN/m ³																		0.0.0.7	1.0			0.00	
om	0 1020	3040	50			Ν	Туре	FC	Iр	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	$N_{\rm a}$	$R_{ m L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{ m v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.5	1.0	1.5 2.0	W	$F_{\rm L}$ $\Delta P_{\rm L}$	4
Ľ.	\cdots	d				29	•	%	-	$\mathbf{m}\mathbf{m}$	kN/m ³	kN/m^3			-	-	-	kN/m^{\odot}	kN/m [⊗]	-	-	-	_			9.60	1.000 0.000	1
		Q					Sandy Soil		•	0.198	31.5	31.5					1604.2	31.5		0.905	•	-	-				1.000 0.000	н.
			ģ				Sandy Soil		•	0.475	49.0	49.0				2.000		49.0	49.0	0.890	-	-				8.60	1.000 0.000	4
			۶.			62	Sandy Soil	22.8	•	0.281	66.5	66.5	77.2	111.2	1405.53	2.000	2811.1	66.5	66.5	0.875	-	-	- 1			8.10	1.000 0.000	1
5 -			۶.				Sandy Soil			0.258	84.0	84.0	70.6	102.9	943.40	2.000	1886.8	84.0	84.0	0.860	-	-	·			7.60	1.000 0.000	1
<u> </u>			6 .30	Sand	17.5		Sandy Soil		•	0.160	101.5	101.5		110.2	1342.68	2.000	2685.4				-	-	-				1.000 0.000	н.
						27	-	53.0	•	0.069	118.0	118.0	24.4	-	-	-	-	118.0	118.0	0.830	-	-				6.60	1.000 0.000	1
		5				24	-	55.4	-	0.068	133.5	133.5	20.0	-	-	-	-	133.5	133.5	0.815	-	-				6.10	1.000 0.000	4
		LI.	9.40	Silt	15.5	25	-	56.6	•	0.065	149.0	149.0	19.4	-	-	-	•	149.0	149.0	0.800	-	-				5.60	1.000 0.000	Į.
10-	····		6			62	Sandy Soil	34.4	-	0.165	165.3	165.3	44.8	83.2	305.56	2.000	611.1	165.3	165.3	0.785	-	-	·			5.10	1.000 0.000	4
10	· · · [[]		9			60	Sandy Soil	30.1	-	0.246	182.8	182.8	40.3	69.0	109.52	2.000	219.0	182.8	182.8	0.770	-	-				4.60	1.000 0.000	4
			۶.			61	Sandy Soil				200.3	200.3	38.4	38.4	3.202	2.000	6.404	200.3	200.3	0.755	-	-				4.10	1.000 0.000	1
			b 3.00	Sand	17.5	64	Sandy Soil				217.8	217.8	37.8	37.8	2.922	2.000	5.845	217.8	217.8	0.740	-	-				3.60	1.000 0.000	4
- F			6			59	Grave ly Soil	32.4		0.153	236.5	236.5	32.7	45.9	9.791	2.000	19.58	236.5	236.5	0.725	-	-				3.10	1.000 0.000	4
			l l			60	Grave by Soil			2.000	255.5	255.5	31.3	31.3	0.980	2.000	1.961	255.5	255.5	0.710	-	-				2.60	1.000 0.000	1
15			b 6.00	Sand and Gra	vel 19.0	500	Grave by Soil			2.000	274.5	274.5	246.7	246.7	71614.18	2.000	143228.4	274.5	274.5	0.695	-	-	·		TIII	2.10	1.000 0.000	1
			l			63	Sandy Soil	41.0		0.077	292.3	292.3	29.6	64.1	72.18	2.000	144.4	292.3	292.3	0.680	-	-				1.60	1.000 0.000	1
1			I			64	Sandy Soil				309.8	309.8	28.6	28.6	0.644	2.000	1.288	309.8	309.8	0.665	-	-				1.10	1.000 0.000	
1			I			60	Sandy Soil	29.1		0.172	327.3	327.3	25.7	43.6	7.124	2.000	14.25	327.3	327.3	0.650	-	-				0.60	1.000 0.000	
			Ĭ			55	Sandy Soil				344.8	344.8	22.5	22.5	0.346	1.812	0.627	344.8	344.8	0.635	-	-				0.10	1.000 0.000	1
20 -			ί –			66	Sandy Soil				362.3	354.3	26.4	26.4	0.483	2.000	0.966	362.3	354.3	0.620	0.380	2.541				ľ	1.000	1
			Ĭ			66	Sandy Soil				379.8	361.8	26.0	26.0	0.459	2.000	0.918	379.8	361.8	0.605	0.381	2.410					1.000	1
1	···		Ĭ			69	Sandy Soil	27.7		0.108	397.3	369.3	26.7							0.590							1.000	1
			Ĭ				Sandy Soil				414.8		25.5							0.575							1.000	1
			Ĭ				Sandy Soil				432.3		25.4							0.560							1.000	1
-25		++	Ĭ				Sandy Soil					391.8	25.4							0.545							1.000	1
			47.00	Sand	17.5		Sandy Soil				467.3		25.0							0.530							1.000	
	····		Y	ound	11.0	00	Sandy Soil				484.8				-			484.8			-	-					1.000	
							-				502.3		-	-	-			502.3			-						1.000	
							-				519.8			-	-			519.8			-						1.000	
30			-								510.0							510.0	1	5.100			uuu					
Rema	vele					<u> </u>																<u> </u>		_	-			1
1 CIIId																								_				

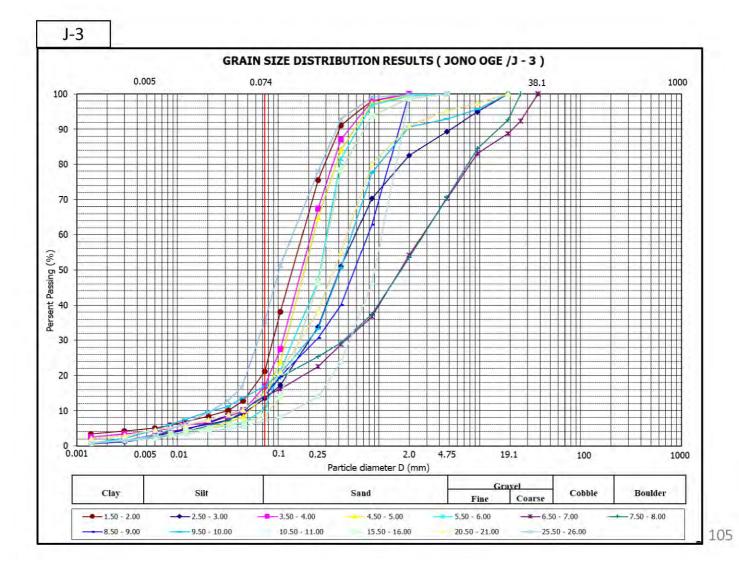


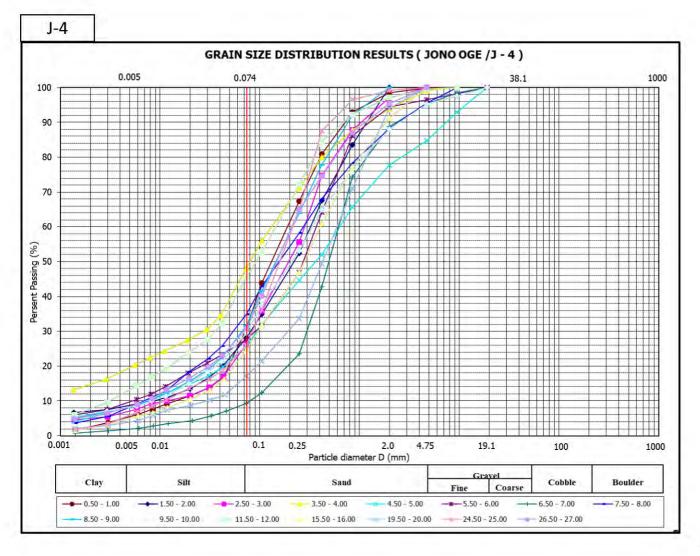


U

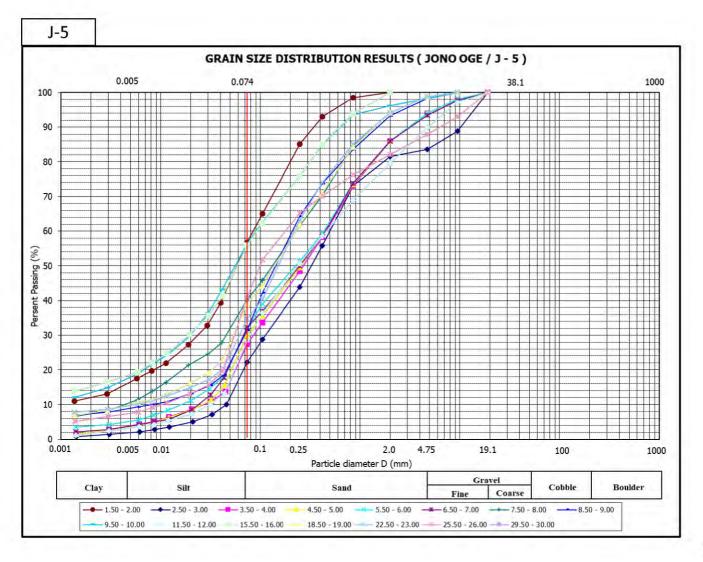

Swedish weight sounding test


Jono Oge

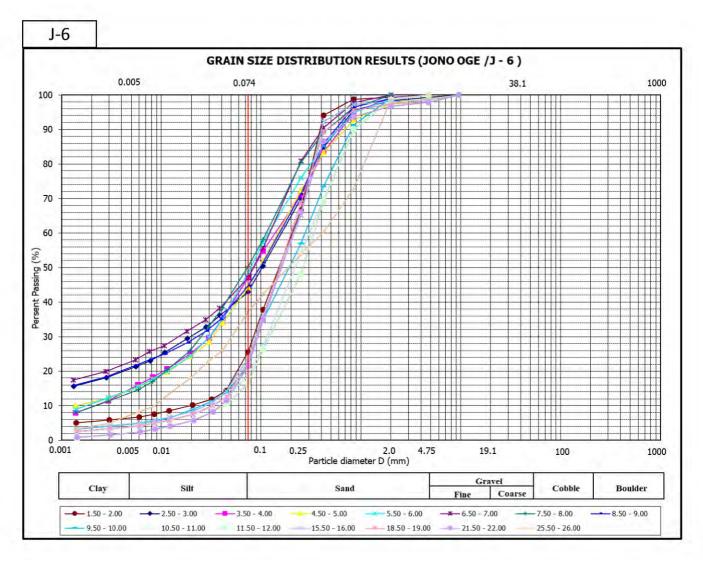

	J-1																							_	01		_
No.	1	Name	J-1					Loca	ation	Jono	Oge								LNG;	825742	.00 m E	LAT	98912	240.00 m	s Sta	Indard Depth for ″sv″	h
Hight Hole M		Total A	dvance	30.00m	Groun	d Water	Level	14	.08m	Gro	und H	light	4	l.55m	Late	eral Sei Facte			0.600		Type o mic M		т	ype2		0.00	m
Depth		Drilling Log		Unit Weight	Valu	Type of	Phy	rsical ⁻	Test		ue for rate N ₁		Lique	factio	n Jud	lgment		ue for rate L)								$P_{\rm L}$	
				kN/m ³																						0.00	
om	0 10203	304050			Ν	Туре	FC	Iр	D_{50}	σ_{v}	$\sigma_{\rm v}$ '	N_1	N_{a}	$R_{\rm L}$	$c_{\rm w}$		$\sigma_{ m v}$		$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.3	3 1.0	1.5 2.0		$F_{\rm L} \Delta F$	
	<u> </u>				5	-	%	-	mm	kN/m ⁸				-	-	•		kN/m ⁸		-	-					1.000 0.0	
		2.00	Silt	15.5	19	-		21.7	0.012		27.9	33.0		-			27.9		0.905			-				1.000 0.00	
	. q					Sandy Soil		•	0.459	45.0	45.0					5 0.332			0.890			-				1.000 0.0	
	- N	4.20	Sand	17.5		Sandy Soil			0.044		62.5	12.8				99.44			0.875							1.000 0.0	
-5-	··· 8					Sandy Soil			0.077		80.0	20.4				0 108.6			0.860					44		1.000 0.00	
	a	6.20	Sand	17.5		Sandy Soil		5.0	0.079		97.5					0 71.07			0.845	-						1.000 0.0	
		10				Sandy Soil		-		115.0) 295.5				-						1.000 0.00	
		4 8.00	Sand	17.5		Sandy Soil		-	0.426		132.5) 17014.0										1.000 0.00	
						Sandy Soil		-	0.193	150.0	150.0) 1549.7										1.000 0.00	
10 -		TI.				Sandy Soil		•	0.105	167.5	167.5	12.9				2.056									_	1.000 0.0	
	::: Å	11.40	Sand	17.5	19	Sandy Soil				185.0	185.0	12.7	12.7	0.243	1.471	0.357	185.0	185.0	0.770							1.000 0.0	
l i					75	-					201.7	46.9	-	•					0.755							1.000 0.0	
		l l b			99	-	73.4	22.2	0.012	217.2	217.2	58.6	-	•		• •	217.2	217.2	0.740	-						1.000 0.0	
		4.00	Silt	15.5	75	-				232.7	232.7	42.1	-	-	•	• •	232.7	232.7	0.725	-	-					1.000 0.0	
15		ď			37	-				248.2	241.0	20.2	-	-		• •	248.2	241.0	0.710	0.439					2.60	1.000 0.0	100
10]		6			44	-	46.8	5.9	0.094	263.7	246.5	23.6	-	-		• •	263.7	246.5	0.695	0.446		·			2.10	1.000 0.0	00
		118			150	-				279.2	252.0	79.2	-	-		• •	279.2	252.0	0.680	0.452					1.60	1.000 0.0	100
		b 8.20	red silt	15.5	80	-				294.7	257.5	41.5	-	•		• •	294.7	257.5	0.665	0.456		· []]]			1.10	1.000 0.0	00
		l l l			113	-				311.4	264.2	57.5	-	-		• •	311.4	264.2	0.650	0.459		· []]]			0.60	1.000 0.0	00
E		l l			150	-				328.9	271.7	74.6	-	-			328.9	271.7	0.635	0.461		· []]]			0.10	1.000 0.0	00
20		J			75	-	42.9	-	0.105	346.4	279.2	36.5	-	-		-	346.4	279.2	0.620	0.461				IIII		1.000	
		82.10	Silt	17.5	125	-				363.9	286.7	59.6	-	-			363.9	286.7	0.605	0.461						1.000	
1		l l l			150	Sandy Soil				382.8	295.6	69.7	69.7	115.95	2.000	231.9	382.8	295.6	0.590	0.458	506.1					1.000	
1	· [[J			90	Sandy Soil				402.3	305.1	40.8	40.8	4.697	2.000	9.394	402.3	305.1	0.575	0.455	20.66					1.000	
		IJ			150	Sandy Soil				421.8	314.6	66.3	66.3	87.14	2.000	0 174.3	421.8	314.6	0.560	0.450	387.1					1.000	
-25		IJ			150	Sandy Soil				441.3	324.1	64.7	64.7	75.85	2.000) 151.7	441.3	324.1	0.545	0.445	340.9			T		1.000	
		I			150	Sandy Soil	13.6	-	1.028	460.8	333.6	63.2	71.1	129.09	2.000	258.2	460.8	333.6	0.530	0.439	588.0					1.000	
		IJ			150	Sandy Soil				480.3	343.1	61.7	61.7	57.89	2.000	0 115.8	480.3	343.1	0.515	0.432	267.8					1.000	
		IIII			150	Sandy Soil					352.6	60.3				0 101.5										1.000	
		Å 0.00	Sand	19.5	150	Sandy Soil				519.3	362.1	59.0	59.0	44.59	2.000	89.19	519.3	362.1	0.485	0.417	213.8					1.000	_
30										-														- Harrison and Andrewson	-		
Rema	rk														<u> </u>						<u> </u>	<u> </u>	<u> </u>	-		+	-
																							<u> </u>				_


	J-2	2																											
No.	1		I	Name	<mark>J−2</mark>						Loc	ation	Jono	Oge								LNG;	825140	.52 m E	LAT;	98909	23.74 m		ndard Depth for ″sv″
Hight Hole M				Tota	Advance	25.0)0m 0	Groun	d Water	Level	ŝ	3.20m	Gro	und H	light	4	.55m		ral Sei Facter			0.600		Type o mic Mo		т	ype2		0.00m
Depth			Dr	illing Lo	og		Jnit aight	Valu	Type of	Phy	sical	Test	Valu Calcur			Lique	factio	n Judg	gment	(Valu Calcur									$P_{\rm L}$
						kN	N/m ³																			1.0	1 - 0 (2.60
0 ^m		0 1020	30408	50				Ν	Туре	FC	Iр	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	N_{a}	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.3	5 1.0	1.5 2.0	W	$F_{\rm L} \Delta P_{\rm L}$
		0		1.50	Silt	1	15.5	4	-	%		$^{\rm mm}$	kN/m^3	kN/m ³			-	-	-	kN/m ²	kN/m^{2}	•	-	-	-				1.000 0.000
		q		2.00	Sand	1	17.5		Sandy Soil		5.7	0.186	28.5	28.5		26.4	0.478	2.000	0.956			0.905	-	-	_				1.000 0.000
		0						6	-	86.7	29.0		44.4	44.4	8.9	-		•	-	44.4		0.890	-	-	-				1.000 0.000
		4		4.40	Silt		15.5	3	-		15.3	0.020	59.9	53.9	4.1	-	-	-	-	59.9		0.875		-					1.000 0.000
5	·.·.			5.20	Sand		19.5	30	Sandy Soil		-	0.370	77.0	61.0	38.9				11.68			0.860					4		1.000 0.000
			1	6.00	Sand and G	ravel 2	21.0		Gravelly Soil		-	3.171	97.4	71.4	18.0				0.438			0.845			_ K	>			0.634 2.597
		1 I I I	b II						Sandy Soil		-	0.306	117.2		36.0				102.4			0.830			-				1.000 0.000
	::::I		Ы	8.50	Sand]	19.5	38	Sandy Soil		-	0.384	136.7	90.7	40.2				13.24			0.815			-				1.000 0.000
	000		d,					38	Gravelly Soil	7.5	-	0.923	156.7	100.7	37.9	42.4	6.018	2.000	12.04	156.7	100.7	0.800	0.747	16.12	_				1.000 0.000
10				þ				67	Gravelly Soil	10.9	-	0.705	177.7	111.7	62.7	72.9	148.61	2.000	297.2	177.7	111.7	0.785	0.749	396.7	_		4		1.000 0.000
10			0					34	Gravelly Soil			2.000	198.7	122.7	30.0	30.0	0.790	2.000	1.581	198.7	122.7	0.770	0.748	2.113	_		Ιt		1.000 0.000
			۱ <u>۵</u>					37	Gravelly Soil			2.000	219.7	133.7	30.9	30.9	0.911	2.000	1.821	219.7	133.7	0.755	0.744	2.447	_				1.000 0.000
			ΠŅ	6				50	Gravelly Soil	14.3	-	0.386	240.7	144.7	39.6	49.8	16.18	2.000	32.36	240.7	144.7	0.740	0.738	43.82					1.000 0.000
				8				50	Gravelly Soil			2.000	261.7	155.7	37.7	37.7	2.858	2.000	5.716	261.7	155.7	0.725	0.731	7.820				3.10	1.000 0.000
15				5.00	Sand and G	ravel 2	21.0	50	Gravelly Soil	14.4	-	0.288	282.7	166.7	35.9	46.8	11.06	2.000	22.12	282.7	166.7	0.710	0.722	30.63				2.60	1.000 0.000
	111			β –				52	Sandy Soil			2.000	302.5	176.5	35.9	35.9	2.117	2.000	4.233	302.5	176.5	0.695	0.715	5.925	_			2.10	1.000 0.000
				۶.				52	Sandy Soil	13.6	-	0.364	322.0	186.0	34.5	38.9	3.515	2.000	7.030	322.0	186.0	0.680	0.706	9.955				1.60	1.000 0.000
				l				54	Sandy Soil				341.5	195.5	34.6	34.6	1.701	2.000	3.401	341.5	195.5	0.665	0.697	4.881				1.10	1.000 0.000
	::::			۶.				50	Sandy Soil	8.7	-	0.400	361.0	205.0	30.9	30.9	0.915	2.000	1.830	361.0	205.0	0.650	0.687	2.665				0.60	1.000 0.000
	::::I			b 0.00	Sand	1	19.5	50	Sandy Soil				380.5	214.5	29.9	29.9	0.776	2.000	1.551	380.5	214.5	0.635	0.676	2.296				0.10	1.000 0.000
20 -			8					60	Gravelly Soil			2.000	401.2	225.2	34.6	34.6	1.694	2.000	3.387	401.2	225.2	0.620	0.663	5.113					1.000
				6				300	Gravelly Soil			2.000	422.2	236.2	166.6	166.6	10714.18	2.000	21428.4	422.2	236.2	0.605	0.649	33036					1.000
				6				214	Gravelly Soil			2.000	443.2	247.2	114.7	114.7	1652.42	2.000	3304.8	443.2	247.2	0.590	0.634	5209					1.000
1				Υ.				750	Gravelly Soil			2.000	464.2	258.2	388.5	388.5	609357.82	2.000	1218715.6	464.2	258.2	0.575	0.620	1965558					1.000
				J 5.00	Sand and G	ravel 2	21.0	375	Gravelly Soil			2.000	485.2	269.2	188.0	188.0	19331.90	2.000	38663.8	485.2	269.2	0.560	0.605	63867					1.000
-25 -	1.1.1								Sandy Soil				505.0	279.0	-	-		-	-	505.0	279.0	0.545	-						1.000
	$\pm \pm 1$								Sandy Soil				524.5	288.5	-	-	-	-	-	524.5	288.5	0.530	-						1.000
									Sandy Soil				544.0	298.0	-	-	-	-	-	544.0	298.0	0.515	-	-					1.000
	\mathbb{R}^{1}								Sandy Soil					307.5	-	-	-	-		563.5			-	-					1.000
	::::I			30.00	Sand	1	19.5		Sandy Soil				583.0	317.0	-	-		-	-	583.0	317.0	0.485	-	-					1.000
-30 -																									-				
Rema	irk																												

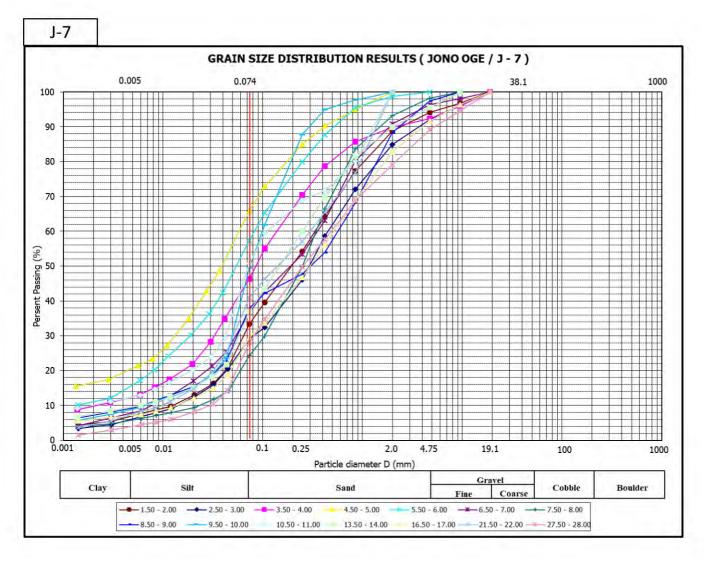
	J-3																									
No.	1	Name	J–3				Loc	ation	Jono	Oge								LNG;	823812	.00 m E	LAT;	989055	7.00 m (SI	idard D for ″sv	
High Hole N		Total A	dvance	30.00m	Ground Wat	er Level	0).70m	Gro	und H	light	4	.55m		ral Sei Facter		(0.600		Type of mic Mo		Тy	pe2		0	0.00m
Depth		Drilling Log		Unit Weight	Valu of	Phy	/sical	Test	Valu Calcur			Lique	factio	n Judį	gment	(Valu Calcu	ue for rate L)								$P_{\rm L}$	
				kN/m ³																					2.68	
m		0304050			N Typ	FC	Ip	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	N_{a}	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	$r_{ m d}$	L	$F_{\rm L}$	0.0 0.5	1.0 1	.5 2.0	W	$F_{\rm L}$	ΔP_{L}
Ŭ		1.40	Silt	15.5	8 -	%	-	$^{\rm mm}$	kN/m ²	$\mathrm{k}\mathrm{N}/\mathrm{m}^2$			-	-	-	$\mathrm{kN/m^2}$	kN/m ²	-	-	-	_			9.60	1.000	0.000
		2.20	Sand	19.5	13 Sandy S	oil 21.2	-	0.151	29.5	18.5	25.0	35.2	1.886	2.000	3.772	29.5	18.5	0.905	0.866	4.357				9.10	1.000	0.000
	···	3.00	Sand	19.5	16 Sandy S	oil 13.4	-	0.410	49.0	28.0	27.8	31.2	0.955	2.000	1.910	49.0	28.0	0.890	0.934	2.045			0	8.60	1.000	0.000
	÷÷ []	3.50	Sand	19.5	18 Sandy S	oil 17.0	-	0.187	68.5	37.5	28.5	35.6	2.039	2.000	4.077	68.5	37.5	0.875	0.959	4.253			ΠT	8.10	1.000	0.000
	:::[]}				20 Sandy S	oil 14.3	-	0.198	88.0	47.0	29.1	33.6	1.444	2.000	2.888	88.0	47.0	0.860	0.966	2.990				7.60	1.000	0.000
5 -		6.40	Sand	19.5	22 Sandy S	₀ 10.7	-	0.266	107.5	56.5	29.6	30.3	0.825	2.000	1.649	107.5	56.5	0.845	0.964	1.710			0	7.10	1.000	0.000
- 1	<u></u> [[135 Sandy S	oil 14.1	-	1.724	127.0	66.0	168.8	192.0	21450.76	2.000	42901.5	127.0	66.0	0.830	0.958	44783			Ť	6.60	1.000	0.000
1		l			222 Sandy S	oil 15.4	-	1.746	146.5	75.5	259.4	306.6	200461.01	2.000	400922.0	146.5	75.5	0.815	0.949	422662				6.10	1.000	0.000
- 1		IJIJ			175 Sandy S	oil 14.2	-	0.609	166.0	85.0	191.9	218.9	40406.22	2.000	80812.4	166.0	85.0	0.800	0.937	86235				5.60	1.000	0.000
		J0.00	Sand	19.5	163 Sandy S	oil 17.1	-	0.414	185.5	94.5	168.4	208.7	32072.12	2.000	64144.2	185.5	94.5	0.785	0.924	69401				5.10	1.000	0.000
10 -		III			93 Sandy S	oil 7.1	-	0.937	205.0	104.0	90.9	90.9	490.23	2.000	980.5	205.0	104.0	0.770	0.910	1077				4.60	1.000	0.000
- 1		III			102 Sandy S	oil			224.5	113.5	94.5	94.5	603.36	2.000	1206.7	224.5	113.5	0.755	0.896	1347				4.10	1.000	0.000
- 1		III			96 Sandy S	oil			244.0	123.0	84.6	84.6	333.76	2.000	667.5	244.0	123.0	0.740	0.880	758.1	-			3.60	1.000	0.000
		4.00	Sand	19.5	111 Sandy S	oil			263.5	132.5	93.2	93.2	560.43	2.000	1120.9	263.5	132.5	0.725	0.865	1296	-			3.10	1.000	0.000
		15.00	Sand	19.5	17 Sandy S	oil			283.0	142.0	13.6	13.6	0.250	1.496	0.374	283.0	142.0	0.710	0.849	0.441	ТЦ			2.60	0.441	1.453
15 -	····				30 Sandy S	oil 8.5	-	0.270	302.5	151.5	23.0	23.0	0.356	1.846	0.658	302.5	151.5	0.695	0.832	0.791	HΥ		P	2.10	0.791	0.439
-		Ĭ			31 Sandy S	oil			322.0	161.0	22.8	22.8	0.352	1.831	0.644	322.0	161.0	0.680	0.816	0.790		1		1.60	0.790	0.337
		Ϊ			31 Sandy S	oil			341.5	170.5	21.9	21.9	0.334	1.773	0.593	341.5	170.5	0.665	0.799	0.742				1.10	0.742	0.284
					32 Sandy S	oil			361.0	180.0	21.8	21.8	0.332	1.765	0.585	361.0	180.0	0.650	0.782	0.749	- 5	(0.60	0.749	0.151
		Ω.			35 Sandy S	oil			380.5	189.5	22.9	22.9	0.354	1.839	0.652	380.5	189.5	0.635	0.765	0.852	-	1		0.10	0.852	0.015
20 -		ŭΗ			33 Sandy S		-	0.369	400.0						0.820							_			1.000	
		KI I			38 Sandy S				419.5						0.670						+	P			0.918	
		N			40 Sandy S				419.0						0.703						-•	9			0.986	
		8 24.20	Sand	19.5	40 Sandy S 45 Sandy S				439.0						0.703							9	-		1.000	
		85.00		19.5	45 Sandy S 81 Sandy S										0.892							0			1.000	
-25 -		1 000	Sand	19.5	0.4			0.102	478.0														 			
		111			122 Sandy S		-	0.103	497.5						4724.2								-		1.000	
		Î Î Î			120 Sandy S				517.0						125.3						-				1.000	
		1 I P			135 Sandy S				536.5						207.9										1.000	
		0	. .	10.7	107 Sandy S				556.0						45.76										1.000	
30		8 0.00	Sand	19.5	210 Sandy S	oil			575.5	284.5	100.7	100.7	842.70	2.000	1685.4	575.5	284.5	0.485	0.588	2865			μιιμ		1.000	
																								_		$ \longrightarrow $
Rema	ark																									

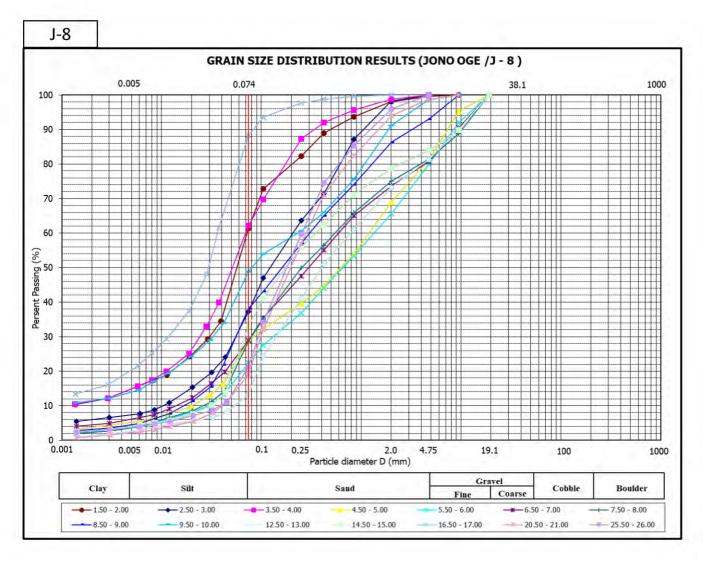


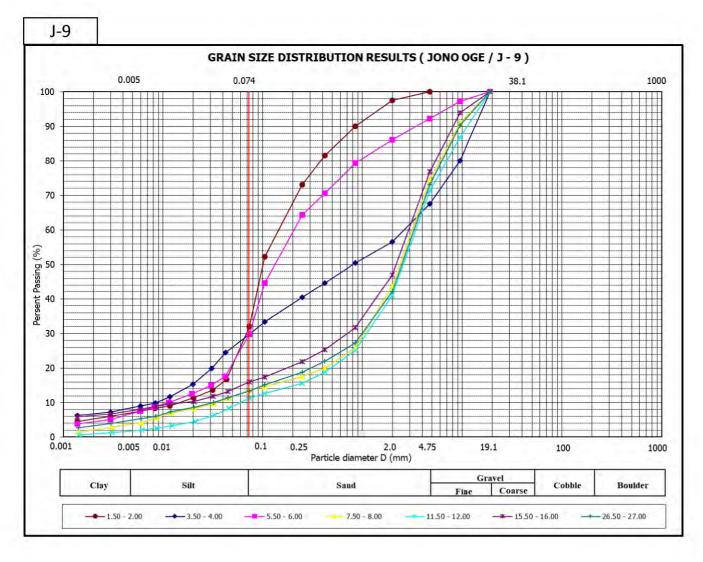
	J-4																											
No.	1		Name	J-4					Loca	ation	Jono	Oge								LNG;	822542.	.00 m E	LAT;	989139	0.00 m S		dard De or ″sv″	pth
High Hole N			Tota	Advance	30.00m	Groun	nd Water	Level	1	.20m	Gro	und H	ight	4	.55m	Late	eral Sei Facter		(0.600		Type o mic Mo		Ту	pe2		0.0	00m
Depth		D	rilling L	og	Unit Weight	Valu	Type of	Phy	sical ⁻	Test	Valu Calcur			Lique	factio	n Jud	gment	(Valu Calcu	ue for rate L)								$P_{\rm L}$	
	0.10	203040	50		kN/m ³																		0.0 0.5	101	5 9 0		0.00	
m	0 10	203040	-		_	N	Туре	FC	Iр	D_{50}	σ_{v}	$\sigma_{\rm v}$ '	N_1	$N_{\rm a}$	$R_{\rm L}$	$c_{\rm w}$	R	σ_{v}	$\sigma_{\rm v}$	$r_{\rm d}$	L	F_{L}	0.0 0.0	1.0 1.	0 2.0	W	$F_{\rm L}$	
		d	0.50	Sand	17.5	39		%	-	mm	kN/m ⁸	kN/m ³			•	•	•	kN/m ⁸	kN/m ²	-	•	-			_		1.000 0	_
			8				Sandy Soil		•	0.230	31.5	25.5					8595.2	31.5		0.905							1.000 0	
			3.50	Sand	17.5		Sandy Soil		-	0.209	49.0	33.0		139.1	4385.52	2.000	8771.0	49.0		0.890		11065					1.000 0	
		0	1			45		48.1	5.6	0.082	66.5	40.5	69.2	-	-	-	-	66.5		0.875		-	- 1				1.000 0	_
5 -	5555		4.80	Silt	17.5		Grave ly Soil		•	0.374	84.0	48.0					629.4			0.860							1.000 0	
	2000 - I I		86.20	Sand and Grav	/el 21.0 19.5		Grave ly Soil Sandy Soil			0.280	105.0 125.1	59.0					1617.0			0.845							1.000 0	
			4 7.20 1 8.50	Sand Sand			Sandy Soil		-	0.519	125.1	69.1 78.6					208.5 4057.5			0.830 0.815							1.000 0	_
			Å 9.00	Sand and Grav	19.5 /el 21.0		Grave ly Soil			0.172	144.6	88.6					634.3			0.815							1.000 0	_
	3.3.3		6 5.00	Sand and Grav	/er 21.0		Sandy Soil			0.100		98.4					4462.5			0.785							1.000 0	
10 -	··· ⊹∔	+++	î				Sandy Soil			0.221		107.9					91.41										1.000 0	
			Ŷ				Sandy Soil			0.094	200.5						7567.2										1.000 0	
-			Ŷ		_		Sandy Soil			0.054		126.9					45.53										1.000 0	_
			Ŷ				Sandy Soil				262.4						41.63										1.000 0	_
-			Î				Sandy Soil				281.9						76.55										1.000 0	
15 -		+++	î		_		Sandy Soil			0.288	301.4						525.5										1.000 0	_
			Î		_		Sandy Soil			0.200	320.9						79.85										1.000 0	
			Î			73	Sandy Soil				340.4						36.51									1.10	1.000 0	0.000
			Ĭ		_	78	Sandy Soil				359.9		52.2				43.27									0.60	1.000 0	0.000
			Ĭ			76	Sandy Soil	17.2	-	0.433	379.4	193.4			56.28	2.000	112.6	379.4	193.4	0.635	0.747	150.6				0.10	1.000 0	0.000
20 -			ĭ			80	Sandy Soil				398.9	202.9	49.8	49.8	16.29	2.000	32.58	398.9	202.9	0.620	0.731	44.56					1.000	
			χ			70	Sandy Soil				418.4	212.4	42.1				11.53										1.000	
	[∴:		Ĭ				Sandy Soil				437.9						15.68										1.000	_
			Ĭ				Sandy Soil				457.4						10.86										1.000	
			Ĭ				Sandy Soil			0.175	476.9						116.7										1.000	
25 -			ĭ				Sandy Soil					250.4					6.244										1.000	
			Ι.		_		Sandy Soil		-	0.162	515.9						107.8										1.000	
			Ĭ				Sandy Soil				535.4		33.6				2.857										1.000	
	[∵∷[[]]		Į –			76	Sandy Soil				554.9	278.9	37.0	37.0	2.574	2.000	5.148	554.9	278.9	0.500	0.597	8.629					1.000	
20			J 0.00	Sand	19.5	70	Sandy Soil				574.4	288.4	33.2	33.2	1.344	2.000	2.689	574.4	288.4	0.485	0.579	4.641					1.000	
-30 -																												
Rema	ark																											

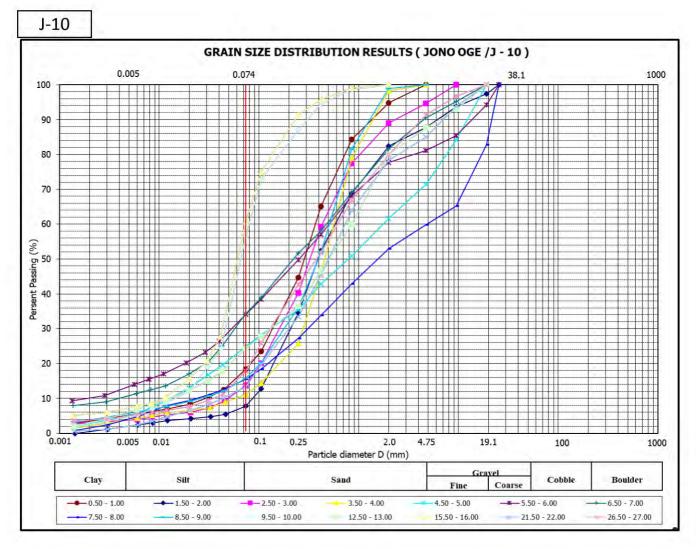


	J-5	5																											
No.	1			Name	<mark>J−5</mark>						Loca	ation	Jono	Oge								LNG;	824476	.00 m E	LAT;	98941	36.00 m	5	dard Depth for ″sv″
High Hole M				Total	Advance	28	.00m	Groun	d Wate	r Level	-1	.95m	Gro	und H	ight	4.	.55m		ral Sei Facter			0.600		Type o mic Mo		Т	/pe2		0.00m
Depth			Dr	illing Lo	g		Unit Weight	Valu	Type of	Phy	sical ⁻	Test	Valu Calcur			Lique	factior	n Judg	gment	(Valu Galcu	ie for rate L)								$P_{\rm L}$
							kN/m ³																						0.00
0 ^m		0 10 20	30 40	50				Ν	Туре	FC	I p	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	N_{a}	$R_{\rm L}$	$C_{\rm W}$	R	$\sigma_{ m v}$	$\sigma_{ m v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.0	5 1.0 1	5 2.0	W	$F_{\rm L}$ $\Delta P_{\rm L}$
0		6	Ш	0.60	Silt		17.5	16	-	%	-	$\mathbf{m}\mathbf{m}$	kN/m^2	kN/m^2			-	-	-	kN/m^2	kN/m ²	-	-	-			IΠ	9.60	1.000 0.000
		L & L						10	Sandy Soil	56.8	4.9	0.061	33.9	-3.6	25.6	92.9	551.98	2.000	1104.0	33.9	15.9	0.905	1.157	953.8				9.10	1.000 0.000
	\cdots		$\uparrow \downarrow$	0				63	Sandy Soi	22.2	-	0.337	53.4	5.9	141.1	199.5	25828.00	2.000	51656.0	53.4	25.4	0.890	1.122	46025				8.60	1.000 0.000
	$\cdot \cdot \cdot \cdot$			۶.				58	Sandy Soi	27.5	-	0.277	72.9	15.4	115.5	184.3	17542.90	2.000	35085.8	72.9	34.9	0.875	1.096	32003				8.10	1.000 0.000
-5-				۶.				53	Sandy Soi	30.1	-	0.257	92.4	24.9	94.9	160.1	8808.67	2.000	17617.3	92.4	44.4	0.860	1.074	16411				7.60	1.000 0.000
, v	\sim			۶.				57	Sandy Soi	32.0	-	0.211	111.9	34.4	92.8	162.8	9578.78	2.000	19157.6	111.9	53.9	0.845	1.052	18206	_			7.10	1.000 0.000
				۶.				57	Sandy Soi	32.2	-	0.250	131.4	43.9	85.1	150.0	6374.88	2.000	12749.8	131.4	63.4	0.830	1.032	12357	_			6.60	1.000 0.000
	\cdots			۶.				54	Sandy Soi	40.2	-	0.144	150.9	53.4	74.4	152.8	6996.49	2.000	13993.0	150.9	72.9	0.815	1.012	13828				6.10	1.000 0.000
			Ł	9.00 (Gravelly silty	sand	19.5	24	Sandy Soi	31.4	-	0.156	170.4	62.9	30.7	54.4	27.52	2.000	55.04	170.4	82.4	0.800	0.992	55.47				5.60	1.000 0.000
10 -				0				65	Gravelly Soil	56.3	7.0	0.058	191.1	73.6	76.9	119.5	2033.76	2.000	4067.5	191.1	93.1	0.785	0.966	4209				5.10	1.000 0.000
10				۶.				59	Gravelly Soil			2.000	212.1	84.6	64.9	64.9	77.01	2.000	154.0	212.1	104.1	0.770	0.941	163.7	_			4.60	1.000 0.000
				Ŷ				58	Gravelly Soil	28.4	-	0.243	233.1	95.6	59.5	79.2	233.48	2.000	467.0	233.1	115.1	0.755	0.917	509.2	_			4.10	1.000 0.000
				3.20	Sand and Gr	ravel	21.0	55	Gravelly Soil	1		2.000	254.1	106.6	52.9	52.9	23.46	2.000	46.92	254.1	126.1	0.740	0.894	52.46	_			3.60	1.000 0.000
		. 6±	\square	14.00	Silt		17.5	12	-				273.0	115.5	11.0	-	-	-	-	273.0	135.0	0.725	0.879	-	_			3.10	1.000 0.000
15 -			\rightarrow	0				64	Gravelly Soil			2.000	293.3	125.8	55.6	55.6	31.30	2.000	62.60	293.3	145.3	0.710	0.860	72.82				2.60	1.000 0.000
10				۶.				51	Gravelly Soil	56.0	6.5	0.058	314.3	136.8	41.9	65.2	78.93	2.000	157.9	314.3	156.3	0.695	0.838	188.3	_			2.10	1.000 0.000
				b 7.10	Sand and Gr	ravel	21.0	55	Gravelly Soil			2.000	335.3	147.8	42.9	42.9	6.471	2.000	12.94	335.3	167.3	0.680	0.817	15.83	_			1.60	1.000 0.000
				b 8.00	Silt		17.5	67	-				353.9	156.4	50.3	-	-	-	-	353.9	175.9	0.665	0.803	-				1.10	1.000 0.000
				6				74	Gravelly Soil	39.1	•	0.152	374.2	166.7	53.2	74.6	168.21	2.000	336.4	374.2	186.2	0.650	0.784	429.3				0.60	1.000 0.000
20 -				2 0.00	Sand and Gr	ravel	21.0	50	Gravelly Soil			2.000	395.2	177.7	34.3	34.3	1.627	2.000	3.253	395.2	197.2	0.635	0.763	4.262				0.10	1.000 0.000
20			В	21.30	Silt		17.5	43	-				413.4	185.9	28.6	-	-	-	-	413.4	205.4	0.620	0.748	-			III		1.000
	1.1.1			6				55	Gravelly Soil			2.000	432.6	195.1	35.3	35.3	1.912	2.000	3.824	432.6	214.6	0.605	0.731	5.228					1.000
				6				64	Gravelly Soil	34.8		0.166	453.6	206.1	39.4	54.8	28.67	2.000	57.34	453.6	225.6	0.590	0.711	80.60					1.000
				6				69	Gravelly Soil			2.000	474.6	217.1	40.9	40.9	4.746	2.000	9.493	474.6	236.6	0.575	0.692	13.72					1.000
				6				56	Gravelly Soil			2.000	495.6	228.1	31.9	31.9	1.083	2.000	2.167	495.6	247.6	0.560	0.672	3.223					1.000
-25 -		L T T		6				62	Gravelly Soil	40.9	-	0.100	516.6	239.1	34.1	50.1	16.74	2.000	33.49	516.6	258.6	0.545	0.653	51.29					1.000
1				6				58	Gravelly Soil			2.000	537.6	250.1	30.8	30.8	0.898	2.000	1.797	537.6	269.6	0.530	0.634	2.834					1.000
1				6				56	Gravelly Soil			2.000	558.6	261.1	28.8	28.8	0.654	2.000	1.308	558.6	280.6	0.515	0.615	2.127			6		1.000
								50	Gravelly Soil			2.000	579.6	272.1	24.8	24.8	0.410	2.000	0.820	579.6	291.6	0.500	0.596	1.376		C			1.000
-30		111		30.00	Sand and Gr	avel	21.0		Gravelly Soil			2.000	600.6	283.1	-	-	-	-	-	600.6	302.6	0.485	-				1		1.000

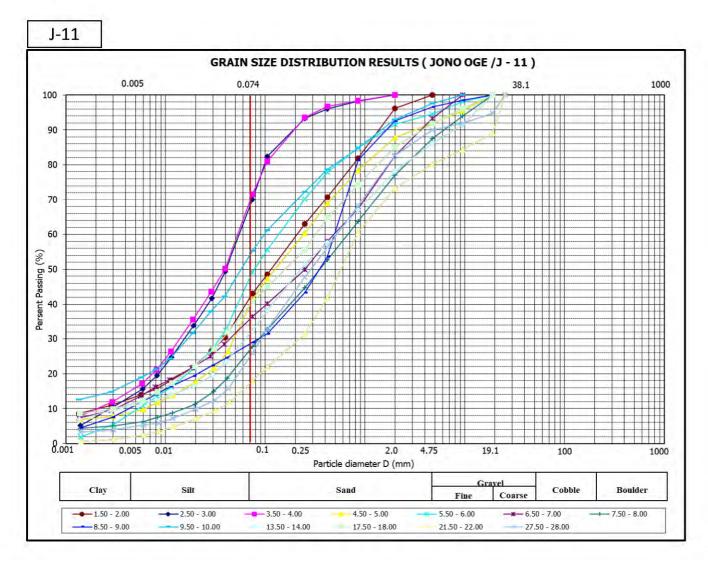

Remark


۷o.	1	Name	J-6					Loca	ation	Jono	Oge								LNG;	822628.	00 m E	LAT;	989419	9.00 m		dard Do for ″sv′	
Hight Iole N		Total Ac	lvance 8	30.00m	Ground	Water	Level	1	.07m	Gro	und H	ight	4	.55m		ral Seis Facter		(0.600		Γype o mic Μα		Ту	pe2		0.	.00r
epth		Drilling Log		Unit Weight	Valu	Type of	Phy	sical T	Test		te for rate N_1		Lique	factior	n Judg	gment	(Valu Calcur									$P_{\rm L}$	
				kN/m ³																						0.00	
m	0 10 20 3	0 40 50			N	Туре	$F\mathbf{C}$	Iр	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	N_{a}	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.5	1.0 1	.5 2.0	W	$F_{\rm L}$	ΔP
Ŭ.		1.30	Silt	15.5	51	-	%	-	$\mathbf{m}\mathbf{m}$	kN/m^{3}	kN/m^3			-	-	-	$kN/m^{\rm S}$	kN/m^{\otimes}	-	-	-				9.60	1.000	0.00
	333	2.05 Sa	nd and Gravel	21.0	45 c	ravelly Soil	25.6	-	0.166	30.7	23.4	81.9	113.8	1589.04	2.000	3178.1	30.7	23.4	0.905	0.713	4460				9.10	1.000	0.00
E		3.00	Silt	17.5	29	-	43.0	10.5	0.103	49.0	31.7	48.5	-	-	-	-	49.0	31.7	0.890	0.825	-				8.60	1.000	0.00
	···· [)	5			32 s	an dy Soil	47.1	6.9	0.086	68.1	40.8	49.1	131.1	3259.79	2.000	6519.6	68.1	40.8	0.875	0.876	7444				8.10	1.000	0.00
_]		\mathbf{N}			50 s	an dy Soil	44.2	-	0.097	87.6	50.3	70.6	169.1	11538.00	2.000	23076.0	87.6	50.3	0.860	0.898	25692				7.60	1.000	0.00
5					25 s	andy Soil	48.5	6.5	0.079	107.1	59.8	32.7	93.0	554.63	2.000	1109.3	107.1	59.8	0.845	0.908	1222				7.10	1.000	0.00
1	··· [[]	7.20	Sand	19.5	18 s	andy Soil	47.0	11.6	0.085	126.6	69.3	22.0	60.7	52.45	2.000	104.9	126.6	69.3	0.830	0.909	115.4				6.60	1.000	0.0
	<u>≕</u> []]	8.00	Silt	17.5	20	-	50.3	6.4	0.073	144.9	77.6	23.0	-	-	-	-	144.9	77.6	0.815	0.913	-				6.10	1.000	0.0
1					25 s	andy Soil	44.8	10.6	0.099	164.0	86.7	27.1	68.5	104.41	2.000	208.8	164.0	86.7	0.800	0.908	230.1				5.60	1.000	0.0
	··· []]				29 s	andy Soil	21.5	-	0.179	183.5	96.2	29.7	42.0	5.601	2.000	11.20	183.5	96.2	0.785	0.898	12.47				5.10	1.000	0.0
					35 s	andy Soil	18.8	-	0.203	203.0	105.7	33.9	44.5	8.137	2.000	16.27	203.0	105.7	0.770	0.887	18.35				4.60	1.000	0.0
		Д			38 s	andy Soil	16.5		0.264	222.5	115.2	34.9	42.9	6.457	2.000	12.91	222.5	115.2	0.755	0.875	14.77				4.10	1.000	0.0
	···	1			41 s	an dy Soil				242.0	124.7	35.8	35.8	2.090	2.000	4.180	242.0	124.7	0.740	0.861	4.853				3.60	1.000	0.0
		X			45 s	an dy Soil				261.5	134.2	37.5	37.5	2.761	2.000	5.522	261.5	134.2	0.725	0.847	6.517				3.10	1.000	0.0
		Ĭ			47 s	andy Soil				281.0	143.7	37.4	37.4	2.727	2.000	5.454	281.0	143.7	0.710	0.833	6.551				2.60	1.000	0.0
5 -	· · · [] + + + +	X			50 s	andy Soil	23.6		0.174	300.5	153.2	38.1	56.5	34.56	2.000	69.11	300.5	153.2	0.695	0.818	84.53		-		2.10	1.000	0.0
		Ĭ			56 s	andy Soil				320.0	162.7	40.9	40.9	4.783	2.000	9.565	320.0	162.7	0.680	0.802	11.93				1.60	1.000	0.0
-		Ĭ			58 s	andy Soil				339.5	172.2	40.7	40.7	4.637	2.000	9.275	339.5	172.2	0.665	0.786	11.80				1.10	1.000	0.0
		Ĭ			63 s	andy Soil	22.8	-	0.169	359.0	181.7	42.5	61.7	57.66	2.000	115.3	359.0	181.7	0.650	0.770	149.7				0.60	1.000	0.0
		Ĭ			69 s	an dy Soil				378.5	191.2	44.9	44.9	8.566	2.000	17.13	378.5	191.2	0.635	0.754	22.73	•			0.10	1.000	0.0
0 -		Ĭ			71 s	andy Soil				398.0	200.7	44.6	44.6	8.194	2.000	16.39	398.0	200.7	0.620	0.737	22.22		-			1.000	
-		Ĭ			69 s	andy Soil	21.4		0.175	417.5	210.2					86.79						-				1.000	
-	···	Ĭ				andy Soil			01210		219.7	28.8				1.307						-				1.000	
-1		4.50	Sand	19.5		andy Soil					219.7					1.761								0		1.000	
		1	Janu	15.0		andy Soil					238.7	41.3				10.15										1.000	
5-	· · -++++	11				andy Soil	27.2		0.202		236.7	41.5				455.9							-			1.000	
-		Î				andy Soll andy Soll	51.3	-	0.202		248.2	40.1 38.9				455.9										1.000	
	::::H	Î				andy Soil andy Soil					267.2	38.9 39.3				6.987 7.468										1.000	
	••••	1				an dy Soll an dy Soll										4.539										1.000	
		PPPPPPPPPPPPP		10.5							276.7																
0 +		1 00.00 Gra	velly silty sand	19.5	/1 s	andy Soil				973.9	286.2	33.9	33.9	1.909	⊿.000	3.018	078.0	280.2	0.480	0.983	5.178			μιιμ		1.000	

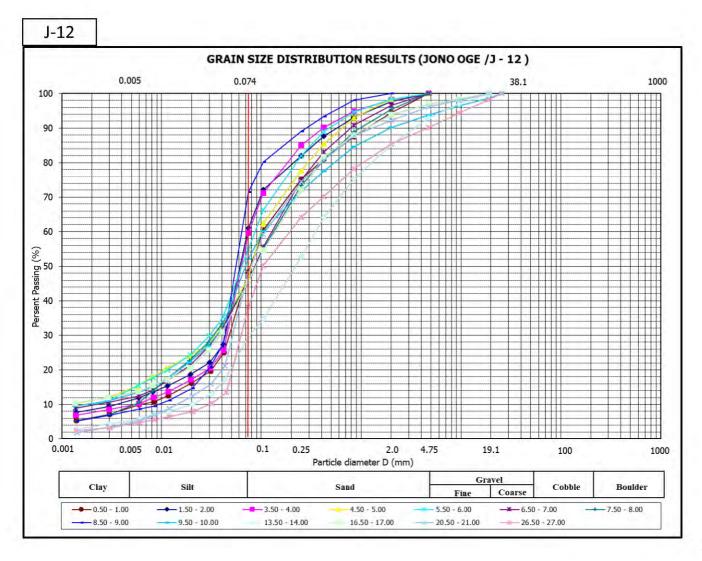

	J-7																									
No.	1	Name	e <mark>J-7</mark>					Loca	ation	Jono	Oge								LNG;	824564	.00 m E	LAT;	989271	21.00 m S		ard Depth ‴sv″
Hight Hole M		Tota	l Advance	30.00m	Groun	d Water	Level	3	.71m	Gro	und H	ight	4	.55m	Late	ral Sei Facter			0.600		Type o mic Mo		Ту	pe2		0.00m
epth		Drilling L	.og	Unit Weight	Valu	Type of	Phy	sical ⁻	Fest	Valu Calcur			Lique	factio	n Jud	gment	(Valu Calcur					I			I	P _L
				kN/m ³																					0.	.00
om	0 10203	304050			Ν	Туре	FC	Ip	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	$N_{\rm a}$	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{ m v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.5	1.0 1	.5 2.0	W.	$F_{\rm L} \Delta P_{\rm L}$
		1.00	Silt	15.5	18	-	%	-	$\mathbf{m}\mathbf{m}$	kN/m^3	$\mathrm{k}\mathrm{N}/\mathrm{m}^{\mathrm{S}}$			-	-	-	kN/m^{\otimes}	$\rm kN/m^{\rm S}$	-	-	-				9.60 1.	.000 0.000
		2.00	Sand	17.5	9	Sandy Soil	33.4	-	0.208	29.5	29.5	15.4	29.3	0.710	2.000	1.420	29.5	29.5	0.905	-						.000 0.000
					19	Sandy Soil	29.1	-	0.303	47.0	47.0	27.6	46.8	11.05	2.000	22.11	47.0	47.0	0.890	-	-				8.60 1.	.000 0.000
		4.40	Gravelly s	and 17.5	21	Sandy Soil	46.4	-	0.087	64.5	63.6	26.7	71.4	131.97	2.000	263.9	64.5	63.6	0.875	0.532	495.9				8.10 1.	.000 0.000
<u> </u>					19	Sandy Soil	65.9	8.9	0.040	82.8	71.9	22.8	102.4	918.43	2.000	1836.9	82.8	71.9	0.860	0.594	3092				7.60 1.	.000 0.000
	::: b				23	Sandy Soil	57.4	7.6	0.057	102.3	81.4	25.8	95.1	624.72	2.000	1249.4	102.3	81.4	0.845	0.637	1961				7.10 1.	.000 0.000
	···[[]]]				27	Sandy Soil	36.7	-	0.204	121.8	90.9	28.5	56.1	33.14	2.000	66.28	121.8	90.9	0.830	0.667	99.36				6.60 1.	.000 0.000
		811			30	Sandy Soil	24.4	-	0.252	141.3	100.4	29.9	45.4	9.227	2.000	18.45	141.3	100.4	0.815	0.688	26.82				6.10 1.	.000 0.000
1		811			32	Sandy Soil	38.0		0.314	160.8	109.9	30.2	60.8	52.82	2.000	105.6	160.8	109.9	0.800	0.702	150.5				5.60 1.	.000 0.000
1		[27	Sandy Soil	49.6	•	0.075	180.3	119.4	24.2	72.2	140.96	2.000	281.9	180.3	119.4	0.785	0.711	396.5				5.10 1.	.000 0.000
		11.00	Sand	19.5	25	Sandy Soil	50.7		0.073	199.8	128.9	21.4	66.5	88.78	2.000	177.6	199.8	128.9	0.770	0.716	248.0				4.60 1.	.000 0.000
1	05550 T				35	Grave ly Soil			2.000	220.5	139.6	28.4	28.4	0.620	2.000	1.241	220.5	139.6	0.755	0.715	1.735			0	4.10 1.	.000 0.000
T	8881111	N			42	Grave by Soil			2.000	241.5	150.6	32.4	32.4	1.165	2.000	2.330	241.5	150.6	0.740	0.712	3.274			M	3.60 1.	.000 0.000
		X -			37	Grave by Soil	37.0	•	0.163	262.5	161.6	27.2	37.8	2.928	2.000	5.856	262.5	161.6	0.725	0.706	8.290	•			3.10 1.	.000 0.000
1		IN.			150	Grave by Soil			2.000	283.5	172.6	105.1	105.1	1053.13	2.000	2106.3	283.5	172.6	0.710	0.699	3011				2.60 1.	.000 0.000
1					38	Grave by Soil			2.000	304.5	183.6	25.5	25.5	0.435	2.000	0.871	304.5	183.6	0.695	0.691	1.259	1	0		2.10 1.	.000 0.000
1		N.			47	Grave by Soil	29.6		0.309	325.5	194.6	30.2	39.0	3.553	2.000	7.107	325.5	194.6	0.680	0.682	10.42	•	Υ		1.60 1.	.000 0.000
1		l l X			150	Grave by Soil			2.000	346.5	205.6	92.5	92.5	539.75	2.000	1079.5	346.5	205.6	0.665	0.672	1606	•			1.10 1.	.000 0.000
1	88811111	1 19.50	Sand and G	ravel 21.0	48	Grave by Soil			2.000	367.5	216.6	28.5	28.5	0.628	2.000	1.256	367.5	216.6	0.650	0.661	1.899	•			0.60 1.	.000 0.000
믭		20.30	Silt	17.5	38	-				387.5	226.6	21.8	-		-				0.635		-	•		I Y -	0.10 1	.000 0.000
Ē		21.00	Sand	19.5		Sandy Soil					235.1		15.0	0.262	1.536	0.403					0.628					.628
		N		2010	39		41.0		0.154	423.9		21.2		-					0.605			+ 0				.000
-E		ĭ —			39	-	41.0		0.104		250.5	20.7							0.590			-				.000
愇		<u>۱</u>			40						250.5	20.7	-						0.550							.000
-Ē		25.10	Silt	17.5	40						265.5	20.7							0.575			- ·				.000
-6		N 1025.10	JIIC	11.9		Grave by Soil			9.000				79.0	150.19	9.000	318.3					540.9		-			.000
-1	858 H	l l							2.000	496.3		73.8														
÷		1 P				Grave by Soil	00.0		2.000	517.3						10.47										.000
-1		1 P				Grave by Soil	28.0	•	0.254	538.3						1034.7								-		.000
-	858 H I I I I	b 0.00	0 1 10	1 01 0		Grave by Soil			2.000	559.3						0.622						-	p			.000
0 -		 8 0.00	Sand and G	ravel 21.0	150	Grave Iy Soil			2.000	580.3	319.4	65.5	65.5	81.21	2.000	162.4	580.3	319.4	0.485	0.528	307.4	ШШ.		μιιμ	1.	.000
ema	rk																									


	J-8																											
No.	1		Name	J-8					Loc	ation	Jono	Oge								LNG;	823337	.00 m E	LAT;	989234	5.00 m S		dard Dept or ″sv″	:h
	ht of Mouth		Total	Advance	30.00m	Groun	d Water	^r Level	1	.05m	Gro	und H	light	4	.55m		ral Sei Facte			0.600		Type of mic Mo		Ту	pe2		0.00)m
Depth	n		Drilling Lo	g	Unit Weight	Valu	Type of	Phy	sical	Test	Valu Calcur			Lique	factio	n Judį	gment	(Valu Calcu	ue for rate L)								$P_{\rm L}$	
					kN/m ³																						0.66	
om	. C	0 102030	4050			Ν	Туре	FC	Ip	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	N_{a}	$R_{\rm L}$	$c_{\rm w}$	R	σ_{v}	$\sigma_{\rm v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.5	1.0 1	.5 2.0	W	$F_{ m L}$ ΔI	$P_{\rm L}$
0		0	1.00	Silt	15.5	14	-	%	-	$^{\rm mm}$	kN/m^3	$\mathrm{k}\mathrm{N}/\mathrm{m}^3$			-	-	-	$\mathrm{kN/m}^3$	kN/m^3	-	-	-				9.60	1.000 0.0)00
		. ol	1.25	Sand	17.5	15	-	61.2	6.5	0.059	29.5	22.0	27.7	-	-	-	-	29.5	22.0	0.905	0.728	-				9.10	1.000 0.0)00
			2.00	Silt	17.5	53	Sandy Soil	37.3	-	0.131	48.6	31.1	89.1	172.5	12730.27	2.000	25460.5	48.6	31.1	0.890	0.834	30519				8.60	1.000 0.0)00
			3.20	Sand	19.5	13	-	62.1	6.3	0.054	66.9	39.4	20.2	-	-	-	-	66.9	39.4	0.875	0.891	-				8.10	1.000 0.0)00
5			4.50	Silt	17.5	52	Sandy Soil	28.9	-	0.668	85.0	47.5	75.2	124.2	2472.85	2.000	4945.7	85.0	47.5	0.860	0.923	5358				7.60	1.000 0.0)00
0			8			64	Sandy Soil	22.4	-	0.695	104.5	57.0	85.7	122.0	2266.83	2.000	4533.7	104.5	57.0	0.845	0.929	4879				7.10	1.000 0.0)00
]::::I		ļ			64	Sandy Soil	29.0	-	0.306	124.0	66.5	79.7	131.7	3334.50	2.000	6669.0	124.0	66.5	0.830	0.928	7184				6.60	1.000 0.0)00
			8			65	Sandy Soil	28.7	-	0.252	143.5	76.0	75.7	124.4	2496.81	2.000	4993.6	143.5	76.0	0.815	0.923	5410				6.10	1.000 0.0)00
]::::{					59	Sandy Soil	38.1	-	0.177	163.0	85.5	64.5	127.2	2798.13	2.000	5596.3	163.0	85.5	0.800	0.915	6117				5.60	1.000 0.0)00
10	$\left \cdots \right $	a				25	Sandy Soil	48.8	6.6	0.081	182.5	95.0	25.8	74.7	170.44	2.000	340.9	182.5	95.0	0.785	0.905	376.8				5.10	1.000 0.0)00
10	1 1					56	Sandy Soil				202.0	104.5	54.6	54.6	28.06	2.000	56.13	202.0	104.5	0.770	0.893	62.87				4.60	1.000 0.0	000
	1::::[I			68	Sandy Soil				221.5	114.0	62.8	62.8	64.08	2.000	128.2	221.5	114.0	0.755	0.880	145.6				4.10	1.000 0.0	000
	1:1:1		IJ			65	Sandy Soil	13.2	-	0.404	241.0	123.5	57.1	63.5	68.13	2.000	136.3	241.0	123.5	0.740	0.866	157.3				3.60	1.000 0.0)00
	1 1		I			68	Sandy Soil				260.5	133.0	56.9	56.9	36.18	2.000	72.35	260.5	133.0	0.725	0.852	84.95				3.10	1.000 0.0	000
	1		Ĭ			62	Sandy Soil	32.9	-	0.191	280.0	142.5	49.6	89.4	449.94	2.000	899.9	280.0	142.5	0.710	0.837	1075	•			2.60	1.000 0.0	000
15			Ĭ			61	Sandy Soil				299.5	152.0	46.7	46.7	10.94	2.000	21.88	299.5	152.0	0.695	0.821	26.64				2.10	1.000 0.0)00
			Ĭ			67	Sandy Soil	88.2	9.4	0.030	319.0	161.5	49.2	308.5	206483.58	2.000	412967.2	319.0	161.5	0.680	0.806	512622	•			1.60	1.000 0.0	000
			18.10	Sand	19.5	15	Sandy Soil				338.5	171.0	10.6	10.6	0.225	1.414	0.318	338.5	171.0	0.665	0.790	0.403	6			1.10	0.403 0.6	356
			19.10	Silt	17.5	58	-				356.6	179.1	39.6	-			-	356.6	179.1	0.650	0.776	-	ŀΜ			0.60	1.000 0.0	000
	-		2 0.50	Sand	19.5	64	Sandy Soil				375.5	188.0	42.2	42.2	5.787	2.000	11.57	375.5	188.0	0.635	0.761	15.22	•			0.10	1.000 0.0	000
20 -			ŤΪ			66	-	19.1	-	0.210	394.4	196.9	42.0	-		-	-	394.4	196.9	0.620	0.745	-				1	1.000	
			I X			53	-				411.9	204.4	32.8					411.9	204.4	0.605	0.731						1.000	_
	Ħ	i L	Hĭ –			14					429.4		8.4							0.590			-				1.000	-
		· ~~~				59						219.4	34.7							0.575			-				1.000	-
			25.10	Silt	17.5	11					464.4		6.3							0.560							1.000	-
-25				ont	11.0		Sandy Soil	91.9	-	0.195	483.3		28.9	40.6	4 582	2.000				0.545		13.68	-				1.000	
		•	Ĭ				Sandy Soil			0.150		245.3								0.530			1				1.000	-
	(:::)ł		I I				Sandy Soil				522.3									0.515							1.000	-
			Î				Sandy Soil				541.8									0.515			-		ШII-		1.000	-
	(B)		L 0.00	Sand	19.5		Sandy Soll													0.485			+		9		1.000	-
-30 -			100.00	Sand	19.5	07	Sandy Soll				901.9	273.8	əə.1	əə.1	1.847	2.000	2.000	901.9	210.8	0.400	0.090	4.449					1.000	-
Rem	ark																											

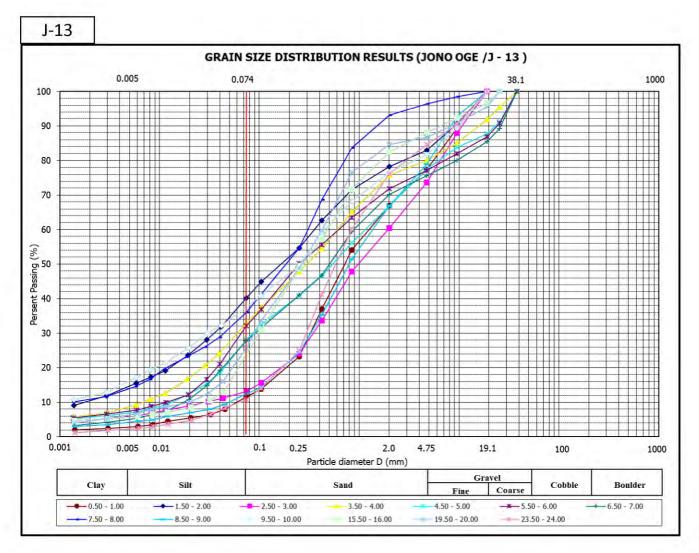
No. 1 Name Hight of Hole Mouth Total Adv Depth Drilling Log	J-9 ance 30.00m Unit Weight kN/m ²	Groun	d Water Type	_		_	Jono O	ge									825484 (00 m E	LAT:	988863	1.00 m S		dard Depth
Hole Mouth I otal Adv	Unit Weight	IN		Level	8.3	30m										LING,	o ao ao an	50 III 13	LAI,			f	for ″sv″
Depth Drilling Log	Weight	Valu	Type				Ground	d Hig	ght	4.	.55m		ral Sei Facter		().600		'ype o nic Mo		Ту	be2		0.00r
	kN/m ³		of	Phys	sical Te	est	Value for Calcurate .		Li	iquef	factior	n Judg	ment	(Valu Calcur									$P_{\rm L}$
																							0.00
0 1020304050		Ν	Туре	FC	Ip .	D_{50}	$\sigma_{\rm v}$ σ	v' 1	N_1	$N_{\rm a}$	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{ m v}$ '	$r_{ m d}$	L	$F_{ m L}$	0.0 0.5	1.0 1.	5 2.0	W	$F_{\rm L} \Delta P$
		14	-	%	- 1	mm	kN/m ² kN	/m ²			-	-	-	$\mathrm{kN/m^2}$	$\mathrm{kN/m^2}$	-	-	-	. [1.000 0.00
		13	-	32.1	- (0.101	27.9 2	7.9 2	22.6	-	-	-	-	27.9	27.9	0.905	•	-				9.10	1.000 0.00
3.00	Silt 15.	5 94	-				43.4 43	3.4 14	40.9	-	-	-	-	43.4	43.4	0.890	-	-				8.60	1.000 0.00
		375	Gravelly Soil	29.8	- (0.814	61.7 6	1.7 48	84.1 5	52.1	3111085.94	2.000	6222171.9	61.7	61.7	0.875	-	-				8.10	1.000 0.00
5		375	Gravelly Soil		2	2.000	80.7 80	0.7 42	23.0 42	23.0	905730.91	2.000	1811461.8	80.7	80.7	0.860	-	-				7.60	1.000 0.00
		25	Gravelly Soil	29.7	- 0	0.144	99.7 99	9.7 2	25.0 8	35.3	1.934	2.000	3.867	99.7	99.7	0.845	-	-				7.10	1.000 0.00
		300	Gravelly Soil		2	2.000	118.7 11	8.7 27	70.3 2'	70.3	110475.60	2.000	220951.2	118.7	118.7	0.830	-	-				6.60	1.000 0.00
		375	Gravelly Soil	13.7	- 2	2.560	137.7 13	7.7 30	06.9 29	95.1	167440.82	2.000	334881.6	137.7	137.7	0.815	-	-				6.10	1.000 0.00
		250	Gravelly Soil		2	2.000	156.7 15	1.7 19	91.7 19	91.7	21268.56	2.000	42637.1	156.7	151.7	0.800	0.496	85818				5.60	1.000 0.00
		300	Gravelly Soil		2	2.000	175.7 16	0.7 22	21.1 22	21.1	42327.53	2.000	84655.1	175.7	160.7	0.785	0.515	164443				5.10	1.000 0.00
		144	Gravelly Soil		2	2.000	194.7 16	9.7 10	02.1 1	02.1	906.68	2.000	1813.4	194.7	169.7	0.770	0.530	3422				4.60	1.000 0.00
		120	Gravelly Soil	11.3	- 2	2.819	213.7 17	8.7 8	82.0 7	7.6	209.72	2.000	419.4	213.7	178.7	0.755	0.542	774.5				4.10	1.000 0.00
		214	Gravelly Soil		2	2.000	232.7 18	7.7 14	41.2 14	41.2	4720.13	2.000	9440.3	232.7	187.7	0.740	0.550	17156				3.60	1.000 0.00
		102	Gravelly Soil		2	2.000 :	251.7 19	6.7 6	65.0 6	55.0	77.96	2.000	155.9	251.7	196.7	0.725	0.556	280.2	-			3.10	1.000 0.00
		500	Gravelly Soil		2	2.000	270.7 20	5.7 30	08.3 30	08.3	205929.88	2.000	411859.8	270.7	205.7	0.710	0.560	734918				2.60	1.000 0.00
15 - X		75	Gravelly Soil	16.0	- 2	2.274	289.7 21	4.7 4	44.8 4	13.9	7.424	2.000	14.85	289.7	214.7	0.695	0.562	26.40				2.10	1.000 0.00
I I I I I I I I I I I I I I I I I I I		500	Gravelly Soil		2	2.000	308.7 22	3.7 28	89.4 28	89.4	152770.24	2.000	305540.5	308.7	223.7	0.680	0.563	542872				1.60	1.000 0.00
X		500	Gravelly Soil		2	2.000	327.7 23	2.7 28	80.8 28	80.8	132435.51	2.000	264871.0	327.7	232.7	0.665	0.562	471568				1.10	1.000 0.00
		500	Gravelly Soil		2	2.000	346.7 24	1.7 27	72.7 2	72.7	115264.04	2.000	230528.1	346.7	241.7	0.650	0.559	412239				0.60	1.000 0.00
XIIIIIIX		500	Gravelly Soil		2	2.000	365.7 25	0.7 26	65.0 20	65.0	100695.12	2.000	201290.3	365.7	250.7	0.635	0.556	362505				0.10	1.000 0.00
20 - X		500	Gravelly Soil		2	2.000	384.7 25	9.7 25	57.8 2	57.8	88279.16	2.000	176558.3	384.7	259.7	0.620	0.551	320531					1.000
		500	Gravelly Soil		2	2.000	403.7 26	8.7 25	51.0 2	51.0	77653.31	2.000	155206.6	403.7	268.7	0.605	0.545	284886					1.000
			Gravelly Soil				422.7 27																1.000
			Gravelly Soil				441.7 28												-				1.000
			Gravelly Soil				460.7 29																1.000
25 - 25			Gravelly Soil				479.7 30																1.000
			Gravelly Soil	13.5			479.7 30 498.7 31	_											-1111				1.000
			Gravelly Soil	10.0			517.7 32												-	Υ			1.000
			Gravelly Soil				536.7 33																1.000
0.00 Sanc	and Gravel 19.		Gravelly Soil				555.7 33																1.000
30 0000 Sand	ranu Graver 19.	61 (5	anaveny soil		2	2.000	000.7 34	v.i J	51.0 5	91.0	0.994	2.000	1.009	000.7	540.7	0.400	0.474	0.909					1.000
Remark						-											_						

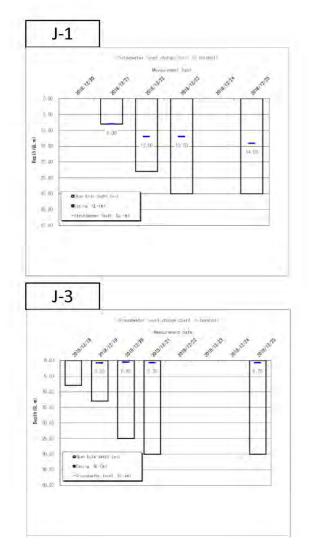


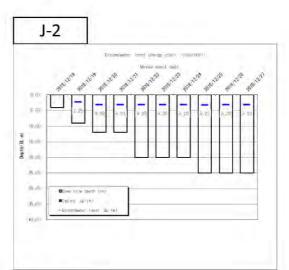
No. 1			Name	<mark>J-10</mark>					Loc	ation	Jono	Oge								LNG;	823748.	00 m E	LAT;	988854	7.00 m		ndard Dep for ″sv″
Hight of Hole Mou			Total	Advance	30.00n	n Grou	Ground Water Level		5.80m		Ground Hight		ight	4.55m		Lateral Seismic Facter			(0.600	Type of Seismic Motion			Type2			0.0
Depth		Dr	lling Lo	g	Unit Weight	: Val	Type of	Phy	sical [·]	Test	Valu Calcur			Lique	factio	n Judį	gment	(Valu Galcur									P_{L}
					kN/m ³																						0.00
om	0 10	203040	0			Ν	Type	FC	Ip	D_{50}	$\sigma_{ m v}$	$\sigma_{ m v}$ '	N_1	N_{a}	$R_{\rm L}$	C _w	R	$\sigma_{ m v}$	$\sigma_{ m v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.5	1.0 1	5 2.0	W	$F_{\rm L}$ Δ
Ŭ L			1.00	Sand	17.	5 1	3 -	%	-	$^{\rm mm}$	kN/m ²	kN/m ²			-	-	-	kN/m^2	kN/m^2	-	-	-	_ [9.60	1.000 0.
		\rightarrow	52.40	Gravelly sa	nd 17.	5 5	6 Sandy Soil	7.8	-	0.397	31.5	31.5	93.8	93.8	580.04	2.000	1160.1	31.5	31.5	0.905	-	-				9.10	1.000 0.
``						1	6 Sandy Soil	13.8	-	0.337	49.0	49.0	22.9	26.0	0.461	2.000	0.922	49.0	49.0	0.890	-	-				8.60	1.000 0.
:			4.30	Sand	17.	5 5	8 Sandy Soil	11.1	-	0.471	66.5	66.5	72.2	75.0	173.58	2.000	347.2	66.5	66.5	0.875	-	-				8.10	1.000 0.
-6-1-1			5.20	Gravelly sa	nd 17.	5 6	4 Sandy Soil	24.8	-	0.803	84.0	84.0	70.6	106.8	1142.66	2.000	2285.3	84.0	84.0	0.860	-	-				7.60	1.000 0.
	-1		b			5	3 Sandy Soil	34.1	-	0.255	101.5	101.5	52.5	96.8	683.45	2.000	1366.9	101.5	101.5	0.845	-	-				7.10	1.000 0.
	::		5			6	1 Sandy Soil	34.3	-	0.231	119.0	109.0	57.9	106.9	1148.96	2.000	2297.9	119.0	109.0	0.830	0.544	4228				6.60	1.000 0.
			8.50	Sand	17.	5 5	7 Sandy Soil	15.5	-	1.664	136.5	116.5	52.0	61.9	58.83	2.000	117.7	136.5	116.5	0.815	0.573	205.4				6.10	1.000 0.
			59.00	Gravelly sa	nd 19.	5 5	🚺 Sandy Soil	15.8	-	0.400	154.6	124.6	43.7	52.6	22.55	2.000	45.10	154.6	124.6	0.800	0.595	75.74				5.60	1.000 0.
10 =		+				1	5 -	56.5	-	0.068	172.5	132.5	12.6	-	-	-	-	172.5	132.5	0.785	0.613	-				5.10	1.000 0.
		No				3	2 -				190.0	140.0	25.9	-	-	-	-	190.0	140.0	0.770	0.627	-				4.60	1.000 0.
			12.50	Silt	17.	5 1	3 -				207.5	147.5	10.2	-	-	-	-	207.5	147.5	0.755	0.637	-				4.10	1.000 0.
	=[[[5			6	🚺 Sandy Soil	24.2	-	0.529	225.6	155.6	45.2	67.9	99.37	2.000	198.7	225.6	155.6	0.740	0.644	308.8				3.60	1.000 0.
<u> </u>			J 3.80	Sand	19.	5 5	3 -				245.1	165.1	38.3	-		•	-	245.1	165.1	0.725	0.646	-	-			3.10	1.000 0.
1		4				1	9 -				262.6	172.6	13.3		-	-	-	262.6	172.6	0.710	0.648	-				2.60	1.000 0.
15		$\overline{1}$	16.35	Silt	17.	5 1	7 -	60.7	-	0.063	280.1	180.1	11.6	-	-	•	-	280.1	180.1	0.695	0.648	-				2.10	1.000 0.
- 1 .	-11		5			5	9 Sandy Soil				298.5	188.5	38.8	38.8	3.436	2.000	6.872	298.5	188.5	0.680	0.646	10.64				1.60	1.000 0.
			ζ			6	7 Sandy Soil				318.0	198.0	42.5	42.5	6.076	2.000	12.15	318.0	198.0	0.665	0.641	18.97				1.10	1.000 0.
	:::::::::::::::::::::::::::::::::::::::		ζ			7	1 Sandy Soil				337.5	207.5	43.5	43.5	7.023	2.000	14.05	337.5	207.5	0.650	0.634	22.15	•			0.60	1.000 0.
			ζ			6	1 Sandy Soil				357.0	217.0	36.1	36.1	2.213	2.000	4.426	357.0	217.0	0.635	0.627	7.063				0.10	1.000 0.
20			ζ			5	8 Sandy Soil				376.5	226.5	33.3	33.3	1.355	2.000	2.710	376.5	226.5	0.620	0.618	4.385					1.000
			§ 2.00	Gravelly sa	nd 19.	5 6	3 Sandy Soil	13.2	-	0.528	396.0	236.0	35.0	39.1	3.581	2.000	7.162	396.0	236.0	0.605	0.609	11.76					1.000
- <u>-</u>			2.40	Sand	19.		5 Sandy Soil					245.5	35.0			2.000											1.000
-13			ζ		10.		5 Sandy Soil					255.0	34.0			2.000											1.000
	::::::::::::::::::::::::::::::::::::::		ζ				8 Sandy Soil					264.5	34.6			2.000											1.000
25	::		ζ			_	3 Sandy Soil					274.0				2.000											1.000
-10	- HI.		ζ				() Sandy Soil	17.9	-	0.386		283.5	28.9			2.000											1.000
	:::		ζ				8 Sandy Soil	11.0		3.000		293.0	27.2			2.000									Ц		1.000
			ť				2 Sandy Soil					302.5	28.3			2.000									9		1.000
			3 0.00	Gravelly sa	nd 19.	_	7 Sandy Soil									2.000							+				1.000
30			30.00	Graveny sa	nu 19.	0 0	/ Swing Sol				002.0	012.0	49.0	49.0	0.100	2.000	1.000	002.0	012.0	0.400	0.010	2.000					1.000

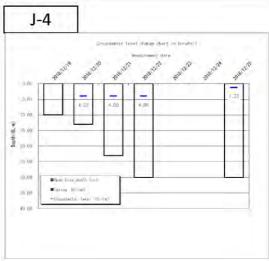


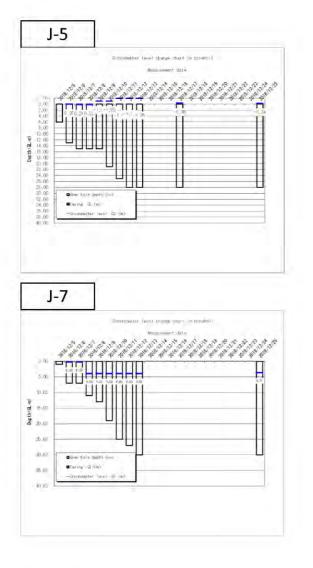
No. I Name J-11 Location Jono Oge LNG3 Second Noin LAI 1 Second Noin Second Noin <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th>					_																										
No. I Name J-11 Location Jono Oge LNG3 Second Noin LAI 1 Second Noin Second Noin <td></td> <td>J-1</td> <td>1</td> <td></td>		J-1	1																												
Hight of Hole Mouth Total Advance 30.00m Ground Water Level 8.50m Ground Hight 4.55m Lateral Seismic Factor 0.600 Type of Seismic Motion Type of Type of Type of Seismic Motion Type of Type of Type of Seismic Motion Type of Type of Type of Type of Seismic Moti	No.	1			1	Nam	e	J-11					Loca	ation	Jono	Oge								LNG:	825351.	.00 m E	LAT	9887	/130.00	m S	Standard Depth
Depth Drilling Log Unit Weight Value of b Type of b Physical Test Calcurate A1 Value for Calcurate A1 Liquefaction Judgment (Value for Calcurate L) (Value for Calcurate A1) (Value for Calcurate A1) <th(< td=""><td></td><td></td><td></td><td></td><td></td><td>Tot</td><td>al Ad</td><td>vance</td><td>30.00m</td><td>Grour</td><td>nd Water</td><td>r Level</td><td>8</td><td>.50m</td><td>Gro</td><td>und H</td><td>ight</td><td>4</td><td>.55m</td><td></td><td></td><td></td><td></td><td>0.600</td><td></td><td></td><td></td><td>7</td><td>Гурей</td><td>2</td><td>0.00m</td></th(<>						Tot	al Ad	vance	30.00m	Grour	nd Water	r Level	8	.50m	Gro	und H	ight	4	.55m					0.600				7	Гурей	2	0.00m
Depth Delive billing Log Weight Value of Physical Fet Calcurate Ni Clausate N	Hole	Wouth					1			IN	Turne						-				Facter				Sels	mic Mc	tion	1		_	
0 1020304050 0 N Type FC N	Depth	1			D	rilling	Log			Valu		Phy	sical	Test				Lique	factio	n Judg	gment										
m integral in			0.10	1203	3040	50			kN/m ³				-												-		0.0.0.	510	152	0	
1.00 Sand 17.5 7 - 43.0 - 0.119 28.9 28.9 1.0 - 28.9 <td>0^m</td> <td>1 </td> <td></td> <td>111</td> <td></td> <td><u> </u></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Iр</td> <td></td> <td></td> <td></td> <td>N_1</td> <td>Na</td> <td>$R_{\rm L}$</td> <td>$C_{\rm W}$</td> <td>R</td> <td></td> <td></td> <td>$r_{\rm d}$</td> <td>L</td> <td>F_{L}</td> <td></td> <td>1.0</td> <td>1.5 2</td> <td>111</td> <td>D D</td>	0 ^m	1 		111		<u> </u>	_						Iр				N_1	Na	$R_{\rm L}$	$C_{\rm W}$	R			$r_{\rm d}$	L	F_{L}		1.0	1.5 2	111	D D
2.00 Silt 15.5 34 - 70.0 5.6 0.041 44.4 44.4 5.05 - 44.4 44.4 0.800 - - 4.6 1.000 0.0 5 - - - 1.00 0.013 - 1.01 0.013 7.6 0.60 0.039 59.9 59.9 59.9 59.9 59.9 59.9 0.875 - - 4.0 8.00 1.000 0.0 0.000			$\left \right $	þ									-						-	-	-			-	•	-	-				
5 1			ď	L														-		-	-				-	-					-
5 31 - 41.2 - 0.135 75.4<			•		PI	2.0	0	Silt	15.5									-		-	-				-	-	-				
5 6.0 Gravelly silt 15.5 36 - 49.3 - 0.049 90.9 <				R			-						6.6					-	-	-	-				-	-	•				-
10 10 100 100 100 10	5 -			₩	8	100	0 0		15.5				-					-		-	-				-	-				H	-
10 25 Sand 17.5 25 sand 17.5 27.8 . 0.363 125.5					9	0.0	G	ravelly sit	15.5				-					54.9	97 90	9.000	54.57						-				
10 9.20 Sand 17.5 28 28.9 0.360 14.0 14.0 27.7 38.5 3.292 2.00 6.584 14.0 0.400 0.400 14.43 14.0 14.0 0.400 14.0 14.0 0.400 14.0 14.0 0.400 14.0 14.0 0.400 14.0		100			811	-																					-				
10 33 \$\$m\$y\$ \$\$m\$y				19	21 1	0.2	0	Sand	17.5																0.490	13.43	- 1				
10 32 6 mark 5ml 23 6 mark 5ml 200 183.6 160.6 17.0 0.279 1.590 0.443 183.6 160.6 0.70 0.528 0.839 4.0 0.839 0.00			•	1	٩11	0.2	0	Janu	17.5				79														-				
12.20 Silt 17.5 32 - 201.8 168.8 22.8 - - 201.8 168.8 0.755 0.541 - 4.10 1.000 0.00	10 -	1888	-++	Н	₽Н	11.0	n San	d and Gravel	21.0				1.4														+			4H	
32 Sundy Seil 220.5 177.5 22.0 22.0 0.335 1.777 0.596 220.5 177.5 0.740 0.551 1.081		<u> </u>		9			_							2.000						-						- 0.000	- 1	0			
					Î	12.2		one	11.0									22.0	0.335	1 777						1.081	-				
35 Sandy Soit 32.3 - 0.235 240.0 187.0 23.2 42.2 5.802 2.000 11.60 240.0 187.0 0.725 0.558 20.79					8									0.235		187.0											•	P			3.10 1.000 0.000
250 5 196 5 24 2 24 2 0 389 1 955 0 761 250 5 196 5 0 710 0 562 1 353					٩																									!	2.60 1.000 0.000
	15 •		-+	H	۱ <u>۲</u>	1																					+		q	4H	2.10 1.000 0.000
					Ň										298.5	215.5	26.2	26.2	0.470	2.000	0.940	298.5	215.5	0.680	0.565	1.664			Ŷ		1.60 1.000 0.000
45 Sandy Sail 40.5 - 0.173 318.0 225.0 25.9 55.5 31.20 2.000 62.41 318.0 225.0 0.665 0.564 110.7					10	2				45	Sandy Soil	40.5	-	0.173	318.0	225.0	25.9	55.5	31.20	2.000	62.41	318.0	225.0	0.665	0.564	110.7			γ		1.10 1.000 0.000
19.50 Fine sand 19.5 39 Sandy Sel 337.5 234.5 21.8 0.332 1.765 0.586 337.5 234.5 0.650 0.561 1.044					ľ	19.5	0 1	Fine sand	19.5	39	Sandy Soil				337.5	234.5	21.8	21.8	0.332	1.765	0.586	337.5	234.5	0.650	0.561	1.044	-				0.60 1.000 0.000
					١Ň					54	Sandy Soil				357.0	244.0	29.2	29.2	0.702	2.000	1.405	357.0	244.0	0.635	0.557	2.521		P			0.10 1.000 0.000
20 56 Sandy Seal 376.5 253.5 29.4 29.4 0.723 2.000 1.446 376.5 253.5 0.620 0.552 2.618 1.00	20 -	1223	Ηt	Ħ	11	ĭ				56	Sandy Soil				376.5	253.5	29.4	29.4	0.723	2.000	1.446	376.5	253.5	0.620	0.552	2.618	1			tt –	1.000
42.30 Coarse sand 19.5 56 Smdy Sell 18.0 - 0.607 396.0 263.0 28.6 36.8 2.486 2.000 4.972 396.0 263.0 0.605 0.546 9.101						L.30	0 C	oarse sand	19.5	56	Sandy Soil	18.0	-	0.607	396.0	263.0	28.6	36.8	2.486	2.000	4.972	396.0	263.0	0.605	0.546	9.101					1.000
			1			Ĭ			2010																		-				
4.20 Silt 17.5 57 - 432.0 27.8 432.0 279.0 0.575 0.534 - 1.000		Ē				K4.20	0	Silt	17.5																	-	-				
5.00 Coarse sand 19.5 59 Smdy Sell 450.7 287.7 28.0 28.0 0.591 2.000 1.182 450.7 287.7 0.560 0.526 2.247 1.000		<u> </u>	11			T												28.0	0.591	2.000						2.247					
25 65 Smdy Sal 470.2 297.2 30.1 30.1 0.802 2.000 1.603 470.2 297.2 0.545 0.517 3.100 1.000	-25			Ħ	ΤĦ	Ĭ			2010																			m	att the	ti-	
68 Sandy Sail 489.7 306.7 30.7 0.882 2.000 1.763 489.7 306.7 0.530 0.508 3.474 1.000		18년				Į –																									
58 Samdy Sail 26.0 - 0.195 509.2 316.2 25.5 40.4 4.440 2.000 8.880 509.2 316.2 0.515 0.497 17.85		100	11			Į				58	Sandy Soil	26.0	-	0.195	509.2	316.2	25.5	40.4	4.440	2.000	8.880	509.2	316.2	0.515	0.497	17.85					1.000
52 Sandy Said 528.7 325.7 22.3 22.3 0.342 1.799 0.615 528.7 325.7 0.500 0.487 1.264		1	[[]]			Į				52	Sandy Soil				528.7	325.7	22.3	22.3	0.342	1.799	0.615	528.7	325.7	0.500	0.487	1.264	TIII.	1	5		1.000
30 1.000 Fine sand 19.5 50 Sandy Seal 548.2 335.2 21.0 21.0 0.320 1.725 0.552 548.2 335.2 0.485 0.476 1.160 1.100 1.000	30	1		Ш	Ш	b 0.0	0 1	Fine sand	19.5	50	Sandy Soil				548.2	335.2	21.0	21.0	0.320	1.725	0.552	548.2	335.2	0.485	0.476	1.160		ШÈ			1.000

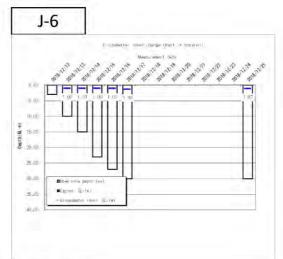

30 Remark

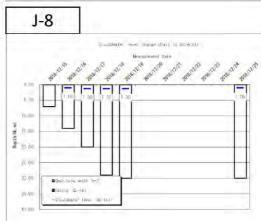


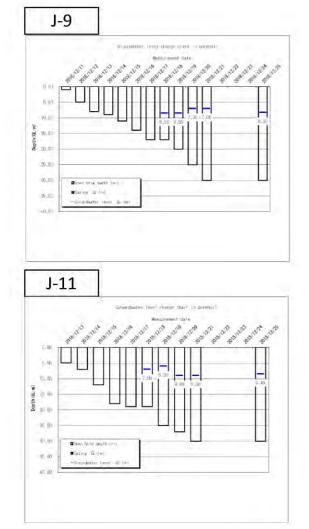

No. 1	-12	Name	<mark>J-12</mark>					Loc	ation	Jono	Oge								LNG;	823649	.00 m E	LAT;	98870	990.00 m S		dard Depth or ″sv″	
Hight Iole Mo		Total /	Advance	30.00m Ground Water Level			<mark>3.60m</mark>		Ground Hight		ight	4.55m		Lateral Seismic Facter			().600	Type of Seismic Motion			т	ype2		0.00n		
epth		Drilling Log		Unit Weight	Valu	Type of	Phy	sical	Test	Valu Calcur			Lique	factio	n Judg	gment	(Valu Calcur									$P_{\rm L}$	
				kN/m ³																						0.00	
0 ^m	0 102030	04050			Ν	Туре	FC	I p	D_{50}	$\sigma_{ m v}$	$\sigma_{ m v}$ '	N_1	N_{a}	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{ m v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.5	1.0	1.5 2.0	W	$F_{\rm L}$ $\Delta P_{\rm I}$	
	···	0.40	Silt	15.5	21	-	%	-	$^{\rm mm}$	kN/m^2	$\mathrm{kN/m^2}$			-	-	-	$\mathrm{kN/m^2}$	$\mathrm{kN/m}^2$	-	-	-				9.60	1.000 0.000	
		1.50	Sand	17.5	7	-	61.1	-	0.063	30.1	30.1	11.9	-	-	-	-	30.1	30.1	0.905	-	-				9.10	1.000 0.000	
Ŀ	· · • •	2.00	Silt	15.5	0	Sandy Soil				47.2	47.2	0.0	0.0	0.098	1.000	0.098	47.2	47.2	0.890	•	-				8.60	1.000 0.000	
·		3.00	Sand	17.5	9	Sandy Soil	59.6	-	0.065	64.7	62.7	11.5	48.5	13.70	2.000	27.40	64.7	62.7	0.875	0.542	50.60				8.10	1.000 0.000	
	6				12	Sandy Soil	46.7	6.3	0.080	82.2	70.2	14.6	41.1	4.912	2.000	9.824	82.2	70.2	0.860	0.604	16.26				7.60	1.000 0.000	
<u>`</u>]:		6.50	Fine sand	17.5	10	Sandy Soil	54.9	5.8	0.066	99.7	77.7	11.5	42.8	6.396	2.000	12.79	99.7	77.7	0.845	0.650	19.67				7.10	1.000 0.000	
╞	<u> </u>				11	-	45.7	-	0.087	117.2	85.2	12.0	-	-	-	-	117.2	85.2	0.830	0.685	-				6.60	1.000 0.000	
E		8.00	Silt	17.5	11	-	45.2	-	0.089	134.7	92.7	11.5	-	-	-	-	134.7	92.7	0.815	0.710	-				6.10	1.000 0.000	
Ē		8.50	Sand	19.5	19	-	71.4	-	0.058	153.2	101.2	18.9	-	-	-	-	153.2	101.2	0.800	0.726	-				5.60	1.000 0.000	
Ē		9.40	Silt	17.5	75	Sandy Soil	52.2	5.3	0.070	171.5	109.5	71.0	219.0	40430.61	2.000	80861.2	171.5	109.5	0.785	0.737	109650	-			5.10	1.000 0.000	
1		I.			50	Sandy Soil				191.0	119.0	45.0	45.0	8.649	2.000	17.30	191.0	119.0	0.770	0.741	23.34				4.60	1.000 0.000	
1:		Ĭ			68	Sandy Soil				210.5	128.5	58.2	58.2	41.27	2.000	82.54	210.5	128.5	0.755	0.742	111.3				4.10	1.000 0.000	
٦ŀ		I			50	Sandy Soil				230.0	138.0	40.9	40.9	4.752	2.000	9.505	230.0	138.0	0.740	0.740	12.85				3.60	1.000 0.000	
1		ĬĬ			74	Sandy Soil	29.5		0.229	249.5	147.5	57.8	97.0	691.11	2.000	1382.2	249.5	147.5	0.725	0.736	1879				3.10	1.000 0.000	
1:					500	Sandy Soil				269.0	157.0	374.4	374.4	512767.09	2.000	1025534.2	269.0	157.0	0.710	0.730	1405532				2.60	1.000 0.000	
٦ŀ		ΪĬ			69	Sandy Soil				288.5	166.5	49.6	49.6	15.81	2.000	31.61	288.5	166.5	0.695	0.722	43.77	+-		1	2.10	1.000 0.000	
1		X			45	Sandy Soil	45.6	5.7	0.089	308.0	176.0	31.1	80.4	253.31	2.000	506.6	308.0	176.0	0.680	0.714	709.8				1.60	1.000 0.000	
1		N I			72	Sandy Soil				327.5	185.5	47.9	47.9	12.78	2.000	25.56	327.5	185.5	0.665	0.704	36.30	•			1.10	1.000 0.000	
1:		II			56	Sandy Soil				347.0	195.0	35.9	35.9	2.136	2.000	4.273	347.0	195.0	0.650	0.694	6.159	•			0.60	1.000 0.000	
7		1 X			48	Sandy Soil				366.5	204.5	29.7	29.7	0.757	2.000	1.514	366.5	204.5	0.635	0.683	2.218				0.10	1.000 0.000	
다.	· : : [] - + + + +	11			48	Sandy Soil	48.1		0.079	386.0	214.0	28.7	81.1	265.46	2.000	530.9	386.0	214.0	0.620	0.671	791.6			1		1.000	
<u>:</u>					36	Sandy Soil				405.5	223.5	20.9	20.9	0.318	1 720	0.547	405.5	223 5	0.605	0.658	0.831					0.831	
-1		N				Sandy Soil					233.0					1.988						-	9			1.000	
-11		Î		_		Sandy Soil					242.5					1.059						-				1.000	
-1:		Î				Sandy Soil					242.5					2.075						-		0		1.000	
÷	:::::::::::::::::::::::::::::::::::::::	1				Sandy Soll					261.5	32.3				2.3075								++++		1.000	
-1:		l î				Sandy Soil Sandy Soil	20.0		0.088		261.5					2.307										1.000	
-1:							50.4	-	0.008																	1.000	
-ŀ		1				Sandy Soil Sandy Soil					280.5 290.0					1.726 0.873						-				1.000	
-1:		P 0.00	C J	10.5																		-		9			
0 +		80.00	Sand	19.5	- 59	Sandy Soil				961.5	299.5	27.1	27.1	0.526	2.000	1.051	991.9	299.5	0.485	0.545	1.928			ЩÖ	_	1.000	

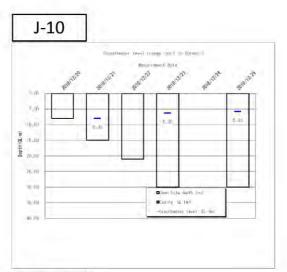


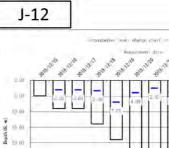

No. <mark>1</mark>			Name	J-13					Loca	ation	Jono	Oge								LNG;	825336	.96 m E	LAT;	989262	23.66 m		ndard D for ″sv				
Hight Hole Mo			Total Advance			al Advance 30.00m Ground Water Level					Gro	und H	ight	4	. <mark>55</mark> m		Lateral Seismic Facter					Type o mic M			/pe2		0.00				
epth		D	rilling Lo	g	Unit Weight	Valu	Type of	Phy	sical ⁻	Test		the for rate N_1		Lique	factio	n Judį	gment	(Valu Calcur									$P_{\rm L}$				
	0.101	20 30 40	50		kN/m ³																		0.0 0.5	101	= 9.0		0.00				
0 ^m	0 102	20 30 40	50			N	Туре	FC	Iр	D_{50}	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	N_1	$N_{\rm a}$	$R_{\rm L}$	$c_{\rm w}$	R	$\sigma_{ m v}$	$\sigma_{\rm v}$ '	$r_{\rm d}$	L	$F_{\rm L}$	0.0 0.5	1.0 1	.5 2.0	W	F_{L}	$\Delta P_{\rm I}$			
R	þ					12	-	%	-	mm	kN/m ³	kN/m ³			•	-	-	kN/m°	kN/m ²	-	-	-	- 1			9.60	1.000	0.000			
	l d					8	Gravelly Soil	40.2	5.5	0.181	34.2	34.2	13.1	18.0	0.287	1.619	0.465	34.2	34.2	0.905		-	_			9.10	1.000	0.00			
8	831.11	\square	þ			150	Gravelly Soil	13.1	•	1.046	53.2	53.2	207.0	228.0	49055.64	2.000	98111.3	53.2	53.2	0.890	-	-				8.60	1.000	0.00			
R						32	Gravelly Soil	32.8	-	0.305	72.2	72.2	38.3	49.5	15.64	2.000	31.27	72.2	72.2	0.875	-	-				8.10	1.000	0.00			
5			þ			50	Gravelly Soil	28.1	-	0.572	91.2	91.2	52.7	63.1	65.41	2.000	130.8	91.2	91.2	0.860	-	-				7.60	1.000	0.00			
	881.11		Ŷ			150	Gravelly Soil	32.1	-	0.247	110.2	110.2	141.5	187.7	19217.41	2.000	38434.8	110.2	110.2	0.845	-	-				7.10	1.000	0.00			
$-\mathbf{R}$	831.11					150	Gravelly Soil	27.9	-	0.530	129.2	129.2	128.0	154.6	7413.91	2.000	14827.8	129.2	129.2	0.830	-	-				6.60	1.000	0.00			
		LT				20	Gravelly Soil	36.1	-	0.200	148.2	148.2	15.6	21.2	0.323	1.735	0.560	148.2	148.2	0.815	-	-				6.10	1.000	0.00			
- 18	881111		0			150	Gravelly Soil	12.5	-	0.811	167.2	167.2	107.5	122.7	2327.21	2.000	4654.4	167.2	167.2	0.800	-	-				5.60	1.000	0.00			
\mathbb{R}	88 F H I					43	Gravelly Soil	37.5	5.8	0.255	186.2	186.2	28.5	37.7	2.880	2.000	5.760	186.2	186.2	0.785	-	-				5.10	1.000	0.00			
)			5			90	Gravelly Soil			2.000	205.2	203.8	55.9	55.9	32.36	2.000	64.72	205.2	203.8	0.770	0.465	139.2				4.60	1.000	0.00			
- 13	88111		ľ			45	Gravelly Soil			2.000	224.2	212.8	27.1	27.1	0.520	2.000	1.039	224.2	212.8	0.755	0.477	2.178			c	4.10	1.000	0.00			
-R			13.00	Sand and Gra	vel 19.0	47	Gravelly Soil			2.000	243.2	221.8	27.4	27.4	0.542	2.000	1.083	243.2	221.8	0.740	0.487	2.226					1.000	0.00			
Ē			14.10	Silt	17.5	29	-				261.0	229.6	16.5	-			-	261.0	229.6	0.725	0.494	-				3.10	1.000	0.00			
15	55 I I I	IN	1			150	Gravelly Soil			2.000	281.0	239.6	82.4	82.4	289.84	2.000	579.7	281.0	239.6	0.710	0.499	1161				2.60	1.000	0.00			
	831111		1			38	Gravelly Soil	23.8	-	0.277	302.0	250.6	20.2	26.4	0.480	2.000	0.959	302.0	250.6	0.695	0.502	1.909	+-			2.10	1.000	0.00			
-12		IN				117	Gravelly Soil			2.000	323.0	261.6	60.0	60.0	49.07	2.000	98.14	323.0	261.6	0.680	0.504	194.9	-		IY	1.60	1.000	0.00			
-8	88111		1 8.40	Sand and Gra	vel 21.0	150	Gravelly Soil			2.000	344.0	272.6	74.4	74.4	166.59	2.000	333.2	344.0	272.6	0.665	0.503	662.0	-			1.10	1.000	0.00			
-P			Ĭ			51	Sandy Soil				364.4	283.0	24.6	24.6	0.400	2.000	0.800	364.4	283.0	0.650	0.502	1.594	-			0.60	1.000	0.00			
			Ĭ			150	Sandy Soil	25.8	-	0.262	383.9	292.5	70.4	108.7	1255.30	2.000	2510.6	383.9	292.5	0.635	0.500	5022	-		ΥI	0.10	1.000	0.00			
너	· : + + +		ĭ				Sandy Soil					302.0								0.620					++-		1.000				
÷			2.30	Sand	19.5	150						311.5	66.9							0.605							1.000				
-lè			1	Ganu	19.9		Gravelly Soil			9.000	443.1		43.0							0.590							1.000	-			
-6	884 H		Î					10.7																							
$-\beta$	88H		DE 10	S			Gravelly Soil	10.7	-	0.620	464.1		63.3							0.575							1.000				
; - ļĒ	808 <u>-</u>	+++	ĭ	Sand and Gra			Gravelly Soil			2.000		343.7	19.7							0.560				р.	•		1.000				
- 12	id U		8 6.00	Sand	19.5		Sandy Soil			0.00-		353.7	32.1							0.545						_	1.000				
-8	88H		Ŷ				Gravelly Soil				525.8		58.7							0.530							1.000				
-6	889 H H		Ŷ				Gravelly Soil					375.4	24.4							0.515					0		1.000				
-8	88-H H		¢	a			Gravelly Soil				567.8		55.9							0.500							1.000				
, 15	<u>86 III</u>	цш	B 0.00	Sand and Gra	vel 21.0	99	Gravelly Soil			2.000	588.8	397.4	36.0	36.0	2.168	2.000	4.336	588.8	397.4	0.485	0.431	10.06			μш		1.000				







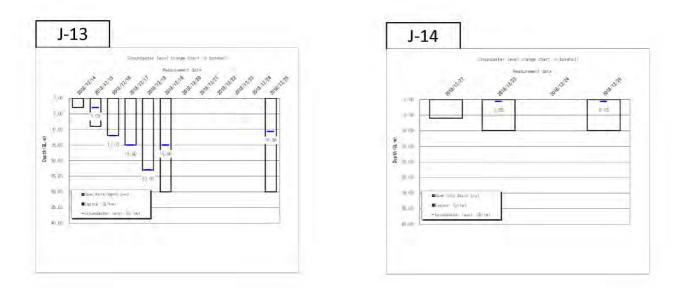




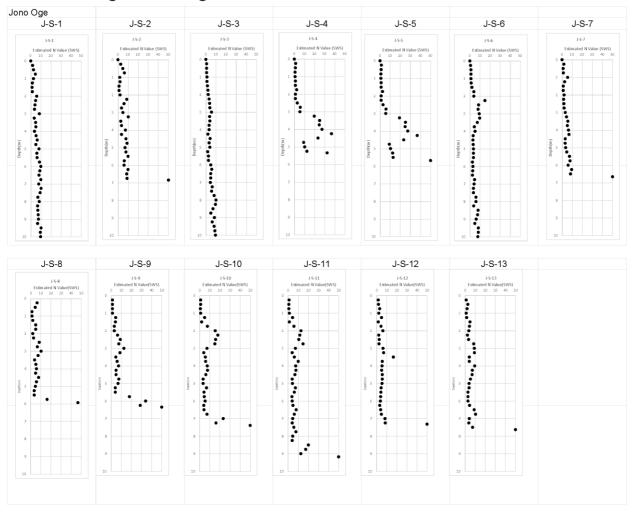
12/24

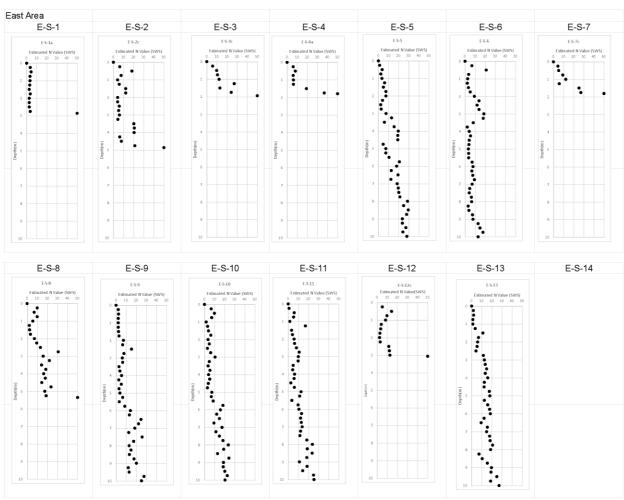
Paris I P.

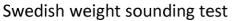
99-00

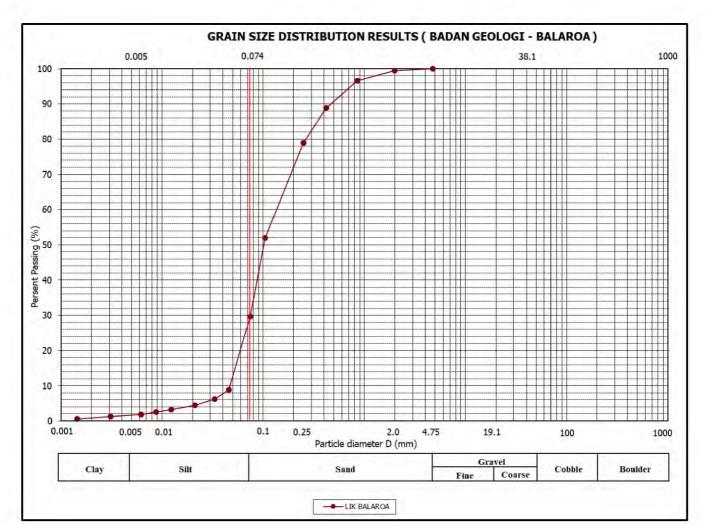

3D:00

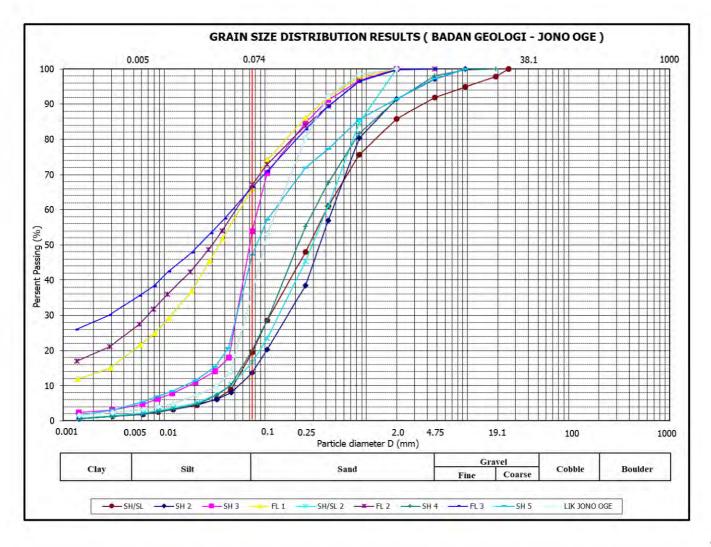
JB 00

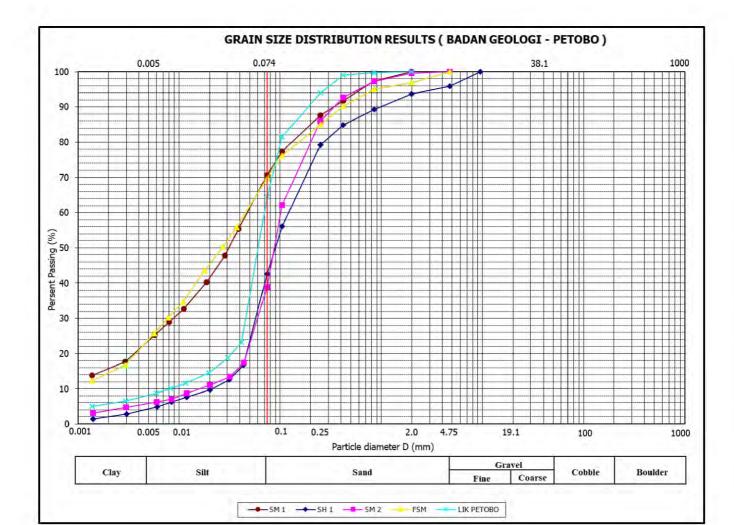

10.00

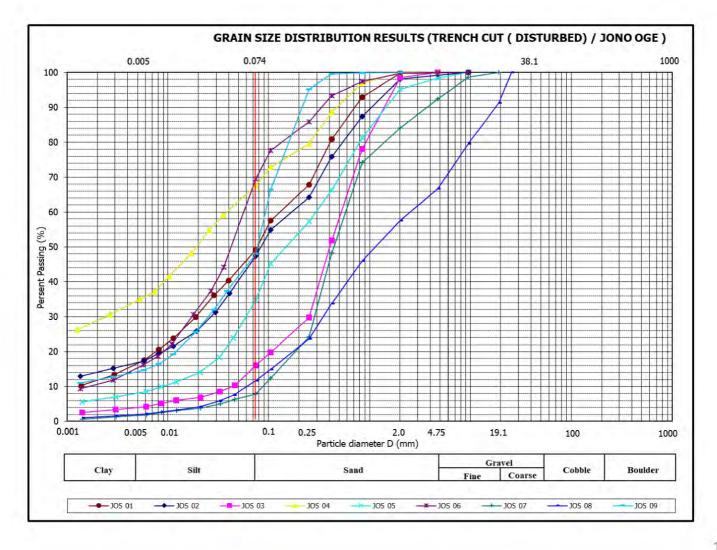

Course have wroth (

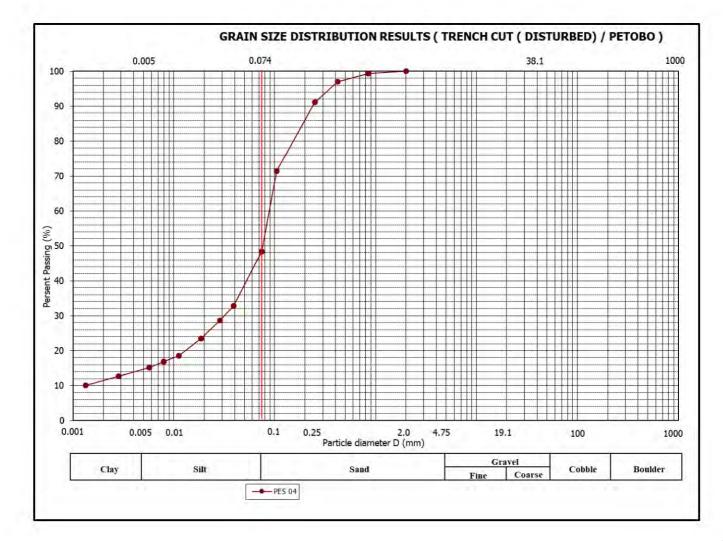

autoric la

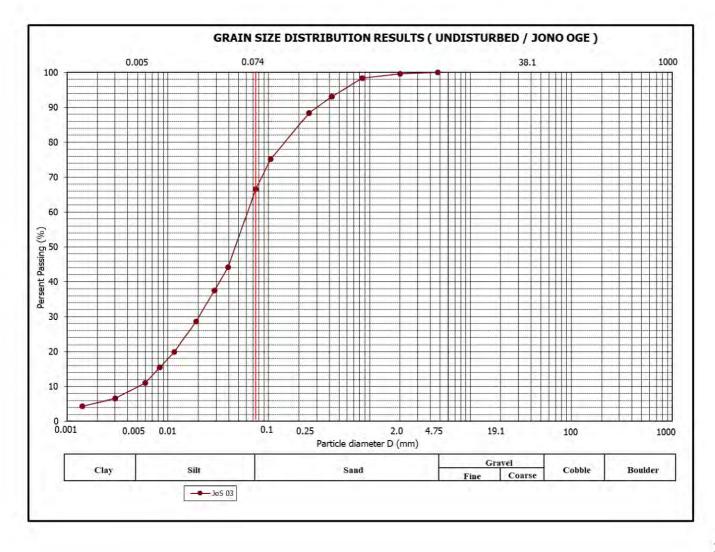


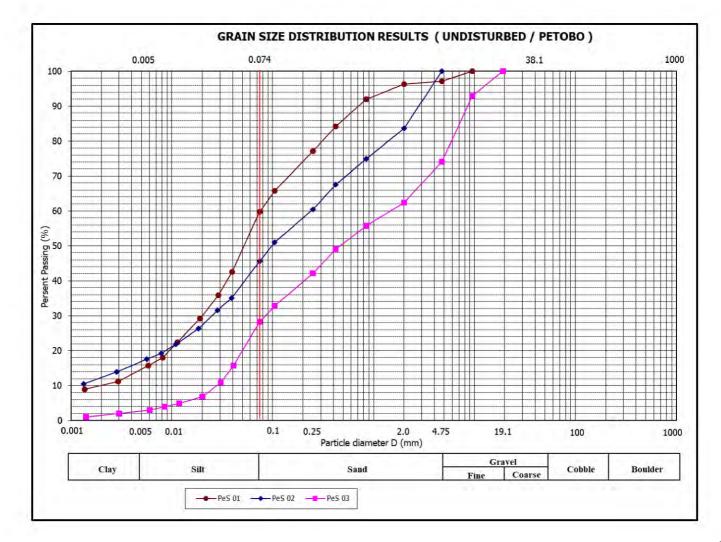

Swedish weight sounding test

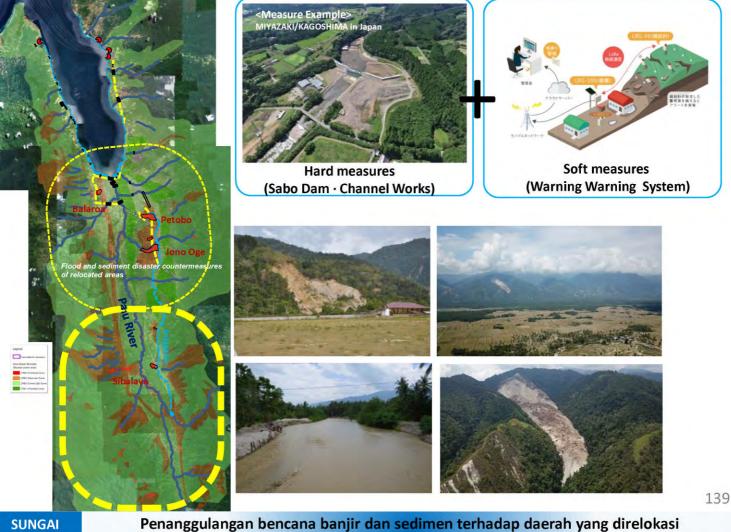


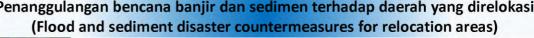


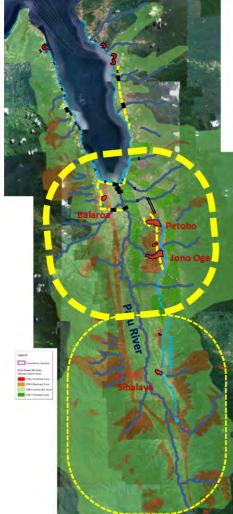





Appendix 67

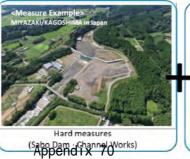

Appendix 68




Appendix 69

SUNGAI 3c Peningkatan Sungai dan kontrol Sedimen (Aliran Atas Sungai Palu dan DAS sungai lain) (River Improvement and Sediment control (Up stream of Palu River)

SUNGA C-3d


Duyu

Relocation areas Pombewe/Oloboju

Tondo/Talise

(Warning Evacuation System)

