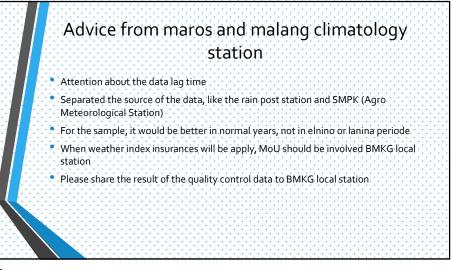

| Outline | Previous Activity       |
|---------|-------------------------|
|         | Japan Training Activity |
|         | Working Plan            |
|         | Progress                |













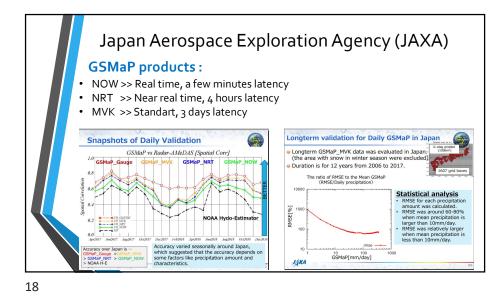


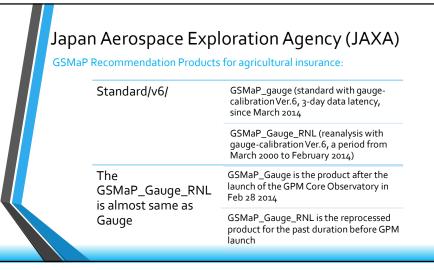

| Su |                      |                      |           |          |       |           |          |   |                      |              |           |         |                      |           |          |
|----|----------------------|----------------------|-----------|----------|-------|-----------|----------|---|----------------------|--------------|-----------|---------|----------------------|-----------|----------|
|    | vnop Banvu           | wangi ya K           | aliklatak |          |       |           |          | s | ynop Banyuwa         | ingi vs Kali | klatak    |         |                      |           |          |
| -  |                      | Synop vs R           |           | Synop vs | GSMaP | Rain post | vs GSMaP |   | Smoothness           | Synop vs     | Rain post | Synop v | s GSMaP              | Rain post | vs GSMa  |
|    | R^2                  | daily                | sum       | daily    | sum   | daily     | sum      |   | Smoothness           | daily        | sum       | daily   | sum                  | daily     | sum      |
|    | 2009                 | 0.146                | 0.748     | -0.027   | 0.977 | 0.091     | 0.955    |   | 2009                 | 1.91         | 9.02      |         | 3.84                 |           | 3.2      |
|    | 2010                 | 0.014                | 0.987     | -0.189   | 0.996 | -0.054    | 0.994    |   | 2010                 | 1.75         | 51.60     |         | 2.50                 |           | 44.2     |
|    | 2011                 | 0.001                | 0.955     | -0.093   | 0.995 | 0.015     | 0.876    |   | 2011                 | 2.00         | 6.68      |         | 2.10                 |           | 8.9      |
|    | 2012                 | 0.103                | 0.923     | -0.117   | 0.984 | 0.087     | 0.845    |   | 2012                 | 1.98         | 7.99      |         | 2.76                 |           | 7.2      |
|    | 2013                 | -0.127               | 0.973     | 0.876    | 0.996 | 0.096     | 0.963    |   | 2013                 | 3.62         | 3.47      |         | 1.47                 |           | 4.2      |
|    | 2014                 | -0.830               | 0.979     | 0.783    | 0.968 | 0.237     | 0.947    |   | 2014                 | 2.66         | 3.38      |         | 3.71                 |           | 5.9      |
|    | 2015                 | 0.015                | 0.977     | 0.732    | 0.992 | 0.152     | 0.981    |   | 2015                 | 3.22         | 3.02      |         | 2.01                 |           | 2.4      |
|    | 2016                 | -0.072               | 0.975     | 0.746    | 0.974 | 0.238     | 0.989    |   | 2016                 | 3.11         | 4.36      |         | 4.88                 |           | 2.9      |
|    | 2017                 | -0.047               | 0.948     | 0.870    | 0.964 | 0.088     | 0.874    |   | 2017                 | 2.23         | 6.47      |         | 4.91                 |           | 7.4      |
|    | 2018                 | 0.008                | 0.956     | 0.876    | 0.978 | 0.046     | 0.839    |   | 2018                 | 2.39         | 4.29      |         | 3.34                 |           | 6.9      |
| S  | ynop Banyu           |                      |           |          |       |           |          | 5 | ynop Banyuwa         | ngi vs Kalil | datak     |         |                      |           |          |
| F  | Proportion           | Synop vs             |           | Synop v  |       | Rain post |          |   | Hit rate in          | Synop vs     | Rain post | Synop v | s GSMaP              | Rain post | vs GSMaF |
|    |                      | daily                | sum       | daily    | sum   | daily     | sum      | L | contingency          | daily        | dasarian  | daily   | dasarian             | daily     | dasarian |
|    | 2009                 | 0.47                 | 0.90      |          |       |           |          |   | 2009                 | 0.92         | 0.75      |         | 0.86                 |           | 0.83     |
|    | 2010                 | 0.61                 | 0.99      |          | 0.88  |           |          |   | 2010                 | 0.85         | 0.78      |         | 0.89                 |           | 0.7      |
|    | 2011                 | 0.46                 | 1.19      |          |       |           |          |   | 2011                 | 0.92         | 0.72      |         | 0.94                 |           | 0.6      |
|    | 2012                 | 0.79                 | 1.43      |          | 1.03  |           |          |   | 2012                 | 0.90         | 0.81      |         | 0.94                 |           | 0.7      |
| 1  | 2013                 | 0.23                 | 1.60      |          | 0.88  |           |          |   | 2013                 | 0.84         | 0.83      |         | 0.97                 |           | 0.8      |
| -  | 2014                 | 0.25                 | 1.23      |          |       |           |          | - | 2014                 | 0.92         | 0.81      |         | 0.92                 |           | 0.8      |
|    | 2015                 | 0.31                 | 1.01      |          | 1.11  |           |          |   | 2015                 | 0.91         | 0.92      |         | 0.97                 |           | 0.89     |
|    |                      |                      |           |          |       |           |          |   |                      |              |           |         |                      |           |          |
| F  | 2016                 | 0.29                 | 1.10      |          | 1.09  |           |          | - | 2016                 | 0.88         | 0.81      |         | 0.86                 |           | 0.86     |
| E  | 2016<br>2017<br>2018 | 0.29<br>0.32<br>0.34 | 1.10      | 0.81     | 0.94  | 0.37      | 0.94     | E | 2016<br>2017<br>2018 | 0.88         | 0.75      |         | 0.86<br>0.94<br>0.97 |           | 0.86     |

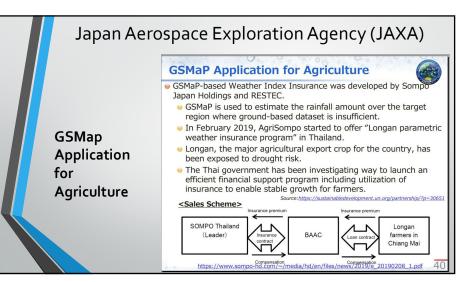
|                                                                                  | -                                                                                      | 018                                                                                  |                                                                         |                                                                             |                                                                          |                                                                                |                                                                                                      |                                                                                      |                                                                                       |                  |                                                                             |                    |                                                                  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------|--------------------|------------------------------------------------------------------|
| Synop Marc                                                                       |                                                                                        |                                                                                      |                                                                         |                                                                             |                                                                          |                                                                                | Synop Maros ve                                                                                       |                                                                                      |                                                                                       |                  |                                                                             |                    |                                                                  |
| R^2                                                                              | Synop vs F                                                                             |                                                                                      | Synop vs                                                                |                                                                             | Rain post v                                                              |                                                                                | Smoothness                                                                                           | Synop vs                                                                             |                                                                                       |                  | s GSMaP                                                                     | Rain post          |                                                                  |
|                                                                                  | daily                                                                                  | sum                                                                                  | daily                                                                   | sum                                                                         | daily                                                                    | sum                                                                            |                                                                                                      | daily                                                                                | sum                                                                                   | daily            | sum                                                                         | daily              | sum                                                              |
| 2009                                                                             | 0.311                                                                                  | 0.983                                                                                | 0.478                                                                   | 0.980                                                                       | 0.281                                                                    | 0.958                                                                          | 2009                                                                                                 | 1.23                                                                                 | 2.52                                                                                  |                  | 3.77                                                                        |                    | 4.1                                                              |
| 010                                                                              | 0.001                                                                                  | 0.993                                                                                | -0.008                                                                  | 0.879                                                                       | -0.124                                                                   | 0.831                                                                          | 2010                                                                                                 | 1.46                                                                                 | 2.85                                                                                  |                  | 13.89                                                                       |                    | 18.4                                                             |
| 2011                                                                             | 0.046                                                                                  | 0.996                                                                                | 0.438                                                                   | 0.988                                                                       | 0.027                                                                    | 0.991                                                                          | 2011                                                                                                 | 1.88                                                                                 | 1.75                                                                                  |                  | 3.33                                                                        |                    | 2.37                                                             |
| 2012                                                                             | 0.268                                                                                  | 0.926                                                                                | 0.268                                                                   | 0.963                                                                       | -0.138                                                                   | 0.787                                                                          | 2012                                                                                                 | 1.12                                                                                 | 10.23                                                                                 |                  | 6.79                                                                        |                    | 10.30                                                            |
| 2013                                                                             | 0.355                                                                                  | 0.985                                                                                | 0.388                                                                   | 0.960                                                                       | 0.137                                                                    | 0.966                                                                          | 2013                                                                                                 | 0.89                                                                                 | 3.15                                                                                  |                  | 6.01                                                                        |                    | 6.59                                                             |
| 2014                                                                             | 0.526                                                                                  | 0.986                                                                                | 0.510                                                                   | 0.937                                                                       | 0.285                                                                    | 0.950                                                                          | 2014                                                                                                 | 0.81                                                                                 | 2.35                                                                                  |                  | 6.19                                                                        |                    | 5.78                                                             |
| 2015                                                                             | 0.699                                                                                  | 0.985                                                                                | 0.225                                                                   | 0.966                                                                       | 0.468                                                                    | 0.979                                                                          | 2015                                                                                                 | 0.69                                                                                 | 2.30                                                                                  |                  | 2.91                                                                        |                    | 3.02                                                             |
| 2016                                                                             | 0.340                                                                                  | 0.972                                                                                | 0.510                                                                   | 0.978                                                                       | 0.522                                                                    | 0.980                                                                          | 2016                                                                                                 | 0.97                                                                                 | 5.38                                                                                  |                  | 4.67                                                                        |                    | 3.7                                                              |
| 2017                                                                             | 0.300                                                                                  | 0.993                                                                                | 0.498                                                                   | 0.985                                                                       | 0.177                                                                    | 0.975                                                                          | 2017                                                                                                 | 1.01                                                                                 | 2.18                                                                                  |                  | 3.28                                                                        |                    | 4.16                                                             |
| 2018                                                                             | 0.410                                                                                  | 0.990                                                                                | 0.273                                                                   | 0.985                                                                       | 0.221                                                                    | 0.991                                                                          | 2018                                                                                                 | 0.88                                                                                 | 2.25                                                                                  |                  | 2.62                                                                        |                    | 2.0                                                              |
| 2010                                                                             | 0.410                                                                                  | 0.990                                                                                | 0.275                                                                   | 0.505                                                                       | 0.221                                                                    | 0.991                                                                          | 2018                                                                                                 | 0.00                                                                                 |                                                                                       |                  |                                                                             |                    |                                                                  |
|                                                                                  | s vs Gentun                                                                            | g                                                                                    |                                                                         |                                                                             |                                                                          |                                                                                | Synop Maros vs                                                                                       | Gentung                                                                              |                                                                                       |                  |                                                                             |                    |                                                                  |
| ynop Maro                                                                        |                                                                                        | g                                                                                    | Synop vs                                                                |                                                                             | Rain post v                                                              |                                                                                |                                                                                                      |                                                                                      | Rain post                                                                             | Synop v          | s GSMaP                                                                     | Rain post          | vs GSMaF                                                         |
| Synop Maro                                                                       | s vs Gentun<br>Synop vs<br>daily                                                       | <b>g</b><br>Rain post<br>sum                                                         | Synop vs<br>daily                                                       | GSMaP<br>sum                                                                | Rain post v<br>daily                                                     | vs GSMaP<br>sum                                                                | Synop Maros vs<br>Hit rate in<br>contingency                                                         | Gentung<br>Synop vs<br>daily                                                         | Rain post<br>dasarian                                                                 | Synop v<br>daily | s GSMaP<br>dasarian                                                         | Rain post<br>daily | dasarian                                                         |
|                                                                                  | s vs Gentun<br>Synop vs                                                                | g<br>Rain post                                                                       | Synop vs                                                                | GSMaP                                                                       | Rain post v                                                              | vs GSMaP                                                                       | Synop Maros vs<br>Hit rate in                                                                        | Gentung<br>Synop vs                                                                  | Rain post<br>dasarian<br>0.81                                                         |                  | s GSMaP                                                                     |                    | dasarian                                                         |
| nop Maro<br>Proportion                                                           | s vs Gentun<br>Synop vs<br>daily                                                       | <b>g</b><br>Rain post<br>sum                                                         | Synop vs<br>daily                                                       | GSMaP<br>sum<br>0.590<br>0.510                                              | Rain post v<br>daily                                                     | rs GSMaP<br>sum<br>0.710<br>0.530                                              | Synop Maros vs<br>Hit rate in<br>contingency                                                         | Gentung<br>Synop vs<br>daily                                                         | Rain post<br>dasarian<br>0.81<br>0.72                                                 |                  | s GSMaP<br>dasarian                                                         |                    | dasarian<br>0.8                                                  |
| Synop Maro<br>Proportion<br>2009                                                 | s vs Gentun<br>Synop vs<br>daily<br>0.480                                              | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020                                     | Synop vs<br>daily<br>0.550<br>0.220<br>0.440                            | GSMaP<br>sum<br>0.590<br>0.510<br>0.590                                     | Rain post v<br>daily<br>0.507<br>0.017<br>0.248                          | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560                                     | Synop Maros vs<br>Hit rate in<br>contingency<br>2009                                                 | Gentung<br>Synop vs<br>daily<br>0.88                                                 | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89                                         |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92                                 |                    | dasarian<br>0.8<br>0.6                                           |
| Proportion<br>2009<br>2010                                                       | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470                                     | g<br>Rain post<br>sum<br>0.710<br>0.920                                              | Synop vs<br>daily<br>0.550<br>0.220<br>0.440<br>0.423                   | GSMaP<br>sum<br>0.590<br>0.510                                              | Rain post v<br>daily<br>0.507<br>0.017                                   | rs GSMaP<br>sum<br>0.710<br>0.530                                              | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010                                         | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75                                         | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89<br>0.80                                 |                  | s GSMaP<br>dasarian<br>0.89<br>0.64                                         |                    | dasarian<br>0.83<br>0.61<br>0.83                                 |
| Synop Marc<br>Proportion<br>2009<br>2010<br>2011                                 | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470<br>0.480                            | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020                                     | Synop vs<br>daily<br>0.550<br>0.220<br>0.440                            | GSMaP<br>sum<br>0.590<br>0.510<br>0.590                                     | Rain post v<br>daily<br>0.507<br>0.017<br>0.248                          | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560                                     | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010<br>2011                                 | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75<br>0.79                                 | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89                                         |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92                                 |                    | dasarian<br>0.83<br>0.61<br>0.83<br>0.69                         |
| Synop Maro<br>Proportion<br>2009<br>2010<br>2011<br>2012                         | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470<br>0.480<br>0.670                   | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020<br>0.701                            | Synop vs<br>daily<br>0.550<br>0.220<br>0.440<br>0.423<br>0.566<br>0.804 | GSMaP<br>sum<br>0.590<br>0.510<br>0.590<br>0.662<br>0.848<br>1.040          | Rain post v<br>daily<br>0.507<br>0.017<br>0.248<br>0.125                 | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560<br>0.857                            | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010<br>2011<br>2012                         | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75<br>0.79<br>0.83                         | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89<br>0.80<br>0.78<br>0.78                 |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92<br>0.71                         |                    |                                                                  |
| Synop Maro<br>Proportion<br>2009<br>2010<br>2011<br>2012<br>2013                 | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470<br>0.480<br>0.670<br>0.645          | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020<br>0.701<br>0.980                   | Synop vs<br>daily<br>0.550<br>0.220<br>0.440<br>0.423<br>0.566          | GSMaP<br>sum<br>0.590<br>0.510<br>0.590<br>0.662<br>0.848                   | Rain post v<br>daily<br>0.507<br>0.017<br>0.248<br>0.125<br>0.449        | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560<br>0.857<br>0.815                   | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010<br>2011<br>2012<br>2013                 | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75<br>0.79<br>0.83<br>0.86                 | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89<br>0.80<br>0.78                         |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92<br>0.71<br>0.89                 |                    | dasarian<br>0.8<br>0.6<br>0.8<br>0.6<br>0.8<br>0.8               |
| Synop Marco<br>Proportion<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014        | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470<br>0.480<br>0.670<br>0.645<br>0.834 | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020<br>0.701<br>0.980<br>1.023          | Synop vs<br>daily<br>0.550<br>0.220<br>0.440<br>0.423<br>0.566<br>0.804 | GSMaP<br>sum<br>0.590<br>0.510<br>0.590<br>0.662<br>0.848<br>1.040          | Rain post<br>daily<br>0.507<br>0.017<br>0.248<br>0.125<br>0.449<br>0.542 | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560<br>0.857<br>0.815<br>0.927          | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014         | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75<br>0.79<br>0.83<br>0.86<br>0.87         | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89<br>0.80<br>0.78<br>0.78                 |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92<br>0.71<br>0.89<br>0.83         |                    | dasarian<br>0.83<br>0.61<br>0.83<br>0.69<br>0.83                 |
| Synop Marc<br>Proportion<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015 | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470<br>0.670<br>0.645<br>0.834<br>0.925 | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020<br>0.701<br>0.980<br>1.023<br>1.114 | Synop vs<br>daily<br>0.550<br>0.440<br>0.423<br>0.566<br>0.804<br>0.588 | GSMaP<br>sum<br>0.590<br>0.510<br>0.590<br>0.662<br>0.848<br>1.040<br>0.820 | Rain post<br>daily<br>0.507<br>0.248<br>0.125<br>0.449<br>0.542<br>0.518 | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560<br>0.857<br>0.815<br>0.927<br>0.657 | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015 | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75<br>0.79<br>0.83<br>0.86<br>0.87<br>0.91 | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89<br>0.80<br>0.78<br>0.80<br>0.78<br>0.80 |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92<br>0.71<br>0.89<br>0.83<br>0.89 |                    | dasarian<br>0.83<br>0.61<br>0.83<br>0.83<br>0.83<br>0.83<br>0.83 |






# Sompo's Agricultural Insurance Activities


#### Main points:

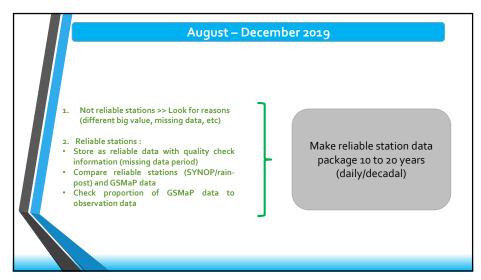

- Weather Index is calculated by Insurance company, but case in Myanmar and Thailand when using GSMaP data, weather index calculated by private company (RESTEC/ The Remote Sensing Technology Center of Japan)
- 2. Meteorological agency prepare reliable meteorological data and the data should be accessable by public
- 3. The length of climate data affects premium price
- 4. GSMaP data used to filling missed observation data

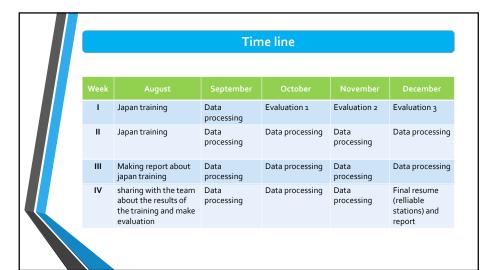
(case study : Myanmar and Thailand)

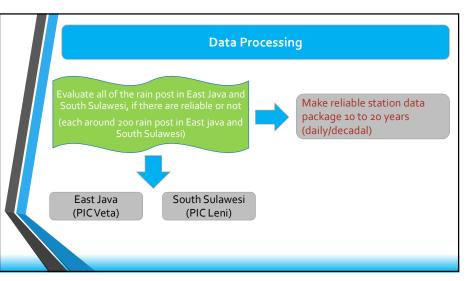









# National Agriculture and Food Research Organization (NARO) in Morioka Main points: Agricultural under Changing Climate Projected Climate Change International efforts to project the impact on rice future Early Warning System for current climatic variability Visit Gradiotron (an open laboratory) Temperature gradient chamber CO2 supply and control









## Progress December 2019

#### Trial for scripts and software.

Continue to extract GSMaP data and pick up data from GSMaP (2005~2008)
 >> done

#### SYNOP-rain-post comparison.

- Continue to extend comparison from 2009 2018 to 2005 2018 for the other SYNOP rain post in East Java and South Sulawesi
- East Java : 3 SYNOP and 7 rain post, has finished for 2005 2018.
- South Sulawesi : 3 SYNOP and 3 rain post, has finished for 2008 2018.

#### [Challenge] develop software.

• Let's try to develop software (Python or C) referring Excel sheet equations. Tonouchi tries to code it in C, hopefully until next visit(probably Jan. 2020)



| 29 |
|----|
|----|

| Rain Post         | Lat      | Lon      | Year  | Distance |             | 12                 | Smoot     | thness  | Propo  | rtion      | Hit rate in conti | ingency sheet | Reliable |
|-------------------|----------|----------|-------|----------|-------------|--------------------|-----------|---------|--------|------------|-------------------|---------------|----------|
| Rain Post         | Lat      | LON      | rear  | (km)     | daily       | sum                | daily     | sum     | daily  | sum        | dasarian          | daily         |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 |       |          |             |                    |           |         |        |            |                   |               |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2005  | 6        | 0.008       | 0.943              | 2.236     | 5.110   | 0.483  | 1.581      | 0.778             | 0.877         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2006  |          | 0.167       | 0.976              | 1.725     | 4,397   | 0.749  | 1.396      | 0.833             | 0.918         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2007  |          | 0.063       | 0.998              | 1.826     | 149.724 | 0.977  | 0.998      | 0.694             | 0.855         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2008  |          | 0.106       | 0.976              | 1.758     | 3.714   | 0.734  | 1.725      | 0.857             | 0.885         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2009  |          | 0.146       | 0.748              | 1.909     | 9.017   | 0.471  | 0.900      | 0.750             | 0.918         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2010  |          | 0.014       | 0.987              | 1.752     | 51.598  | 0.609  | 0.987      | 0.778             | 0.855         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2011  |          | 0.001       | 0.955              | 1.998     | 6.682   | 0.461  | 1.191      | 0.722             | 0.923         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2012  |          | 0.103       | 0.923              | 1.978     | 7.989   | 0.792  | 1.426      | 0.806             | 0.902         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2013  |          | -0.127      | 0.973              | 3.617     | 3.469   | 0.235  | 1.598      | 0.833             | 0.841         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2014  |          | -0.083      | 0.979              | 2.660     | 3.377   | 0.251  | 1.230      | 0.806             | 0.923         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2015  |          | 0.015       | 0.977              | 3.220     | 3.039   | 0.306  | 1.011      | 0.917             | 0.910         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2016  |          | -0.072      | 0.975              | 3.107     | 4.364   | 0.287  | 1.099      | 0.806             | 0.877         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2017  |          | -0.047      | 0.948              | 2.227     | 6.472   | 0.315  | 0.924      | 0.750             | 0.874         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2018  |          | 0.008       | 0.956              | 2.388     | 4.294   | 0.335  | 0.998      | 0.806             | 0.901         |          |
| •                 |          |          |       |          |             |                    |           |         |        |            |                   |               |          |
|                   |          |          | R^2   | _        |             | Smoothn            | ess       |         |        |            | ency sheet        |               |          |
|                   |          | daily    | su    |          |             | laily<br>smoot) <2 | .0        | sum     | dasari | an > 0.666 | daily<br>7        |               |          |
|                   |          | <0.4     | <0.7  |          | 1 (mostly s |                    |           |         |        | <0.667     |                   |               |          |
|                   |          | negatif  | negat | lif      | NG          | (Not smoo          | oth) >5.0 |         |        |            |                   |               |          |

| GSMAP             | Lon      | Lat      | Year    | R/      | 2         | Smoot        | thness | Propo  | rtion      | Hit rate in con | tingency sheet | Reliable |
|-------------------|----------|----------|---------|---------|-----------|--------------|--------|--------|------------|-----------------|----------------|----------|
| GSIMAP            | Lon      | Lat      | rear    | daily   | sum       | daily        | sum    | daily  | sum        | dasarian        | daily          |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2005    | 0.167   | 0.994     |              | 2.017  | 0.477  | 0.905      | 0.889           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2006    | -0.029  | 0.956     |              | 5.671  | 0.274  | 0.927      | 0.889           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2007    | 0.002   | 0.988     |              | 2.949  | 0.229  | 0.759      | 0.917           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2008    | -0.064  | 0.994     |              | 1.860  | 0.240  | 0.884      | 0.971           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2009    | -0.027  | 0.977     |              | 3.840  | 0.293  | 0.942      | 0.861           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2010    | -0.189  | 0.996     |              | 2.498  | 0.175  | 0.884      | 0.889           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2011    | -0.093  | 0.995     |              | 2.102  | 0.300  | 1.186      | 0.944           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2012    | -0.117  | 0.984     |              | 2.762  | 0.217  | 1.028      | 0.944           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2013    | 0.876   | 0.996     |              | 1.474  | 0.687  | 0.877      | 0.972           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2014    | 0.783   | 0.968     |              | 3.708  | 0.803  | 0.923      | 0.917           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2015    | 0.732   | 0.992     |              | 2.011  | 0.871  | 1.109      | 0.972           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2016    | 0.746   | 0.974     |              | 4.884  | 0.854  | 1.094      | 0.861           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2017    | 0.870   | 0.964     |              | 4.914  | 0.808  | 0.942      | 0.944           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2018    | 0.876   | 0.978     |              | 3.338  | 0.828  | 0.939      | 0.972           |                |          |
|                   | 1        | R        | ^2      |         | Smo       | othness      |        | Hitrat | e in conti | ngency sheet    |                |          |
|                   |          | daily    | sum     |         | daily     | ouncoo       | sum    | _      | arian      | daily           |                |          |
|                   |          | >=0.4    | >=0.7   | OK (    | very smoo | t) <2.0      | 1      |        | > 0.66     | 567             |                |          |
|                   |          | <0.4     | <0.7    | SM (mos | tly smoot | n) 2.0 - 5.0 | )      |        | <0.66      | 57              |                |          |
|                   |          | negatif  | negatif | 1 3     | NG (Not : | smooth) >5   | 5.0    |        |            |                 |                |          |

^

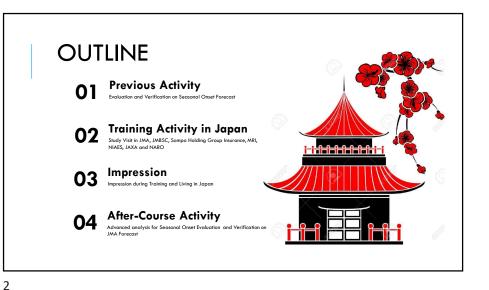
| GSMAP      | Lon      | Lat      | Year    | R/       | 2          | Smoot      | thness | Propo | rtion   |             | tingency sheet | Relia |
|------------|----------|----------|---------|----------|------------|------------|--------|-------|---------|-------------|----------------|-------|
|            |          |          |         | daily    | sum        | daily      | sum    | daily | sum     | dasarian    | daily          |       |
| Kaliklatak | -8.18533 | 114.3402 | 2005    | -0.029   | 0.9548     |            | 4.873  | 0.186 | 0.516   | 0.75        |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2006    | 0.220    | 0.868      |            | 9.954  | 0.335 | 0.642   | 0.778       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2007    | 0.101    | 0.963      |            | 7.286  | 0.130 | 0.231   | 0.556       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2008    | 0.198    | 0.983      |            | 3.407  | 0.315 | 0.507   | 0.829       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2009    | 0.091    | 0.955      |            | 3.206  | 0.375 | 0.956   | 0.833       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2010    | -0.054   | 0.994      |            | 44.202 | 0.078 | 0.994   | 0.750       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2011    | 0.015    | 0.876      |            | 8.914  | 0.317 | 0.854   | 0.694       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2012    | 0.087    | 0.845      |            | 7.268  | 0.244 | 0.704   | 0.778       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2013    | 0.096    | 0.963      |            | 4.283  | 0.280 | 0.577   | 0.806       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2014    | 0.237    | 0.947      |            | 5.916  | 0.622 | 0.834   | 0.833       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2015    | 0.152    | 0.981      |            | 2.404  | 0.507 | 1.114   | 0.889       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2016    | 0.238    | 0.989      |            | 2.936  | 0.481 | 0.977   | 0.861       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2017    | 0.088    | 0.874      |            | 7.454  | 0.369 | 0.935   | 0.750       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2018    | 0.046    | 0.839      |            | 6.950  | 0.273 | 0.846   | 0.778       |                |       |
| -          |          |          |         |          |            |            |        |       |         |             |                |       |
|            | _        | R/       | -       |          | Smoot      | hness      |        |       |         | gency sheet |                |       |
|            |          | daily    | sum     |          | daily      |            | sum    | dasa  |         | daily       |                |       |
|            | >        | =0.4     | >=0.7   | OK (v    | ery smoot) | <2.0       |        |       | > 0.666 | 57          |                |       |
|            | <        | 0.4      | <0.7    | SM (most | ly smooth) | 2.0 - 5.0  |        |       | <0.66   | 7           |                |       |
|            | n        | egatif   | negatif | 1        | NG (Not sn | nooth) >5. | 0      |       |         |             |                |       |

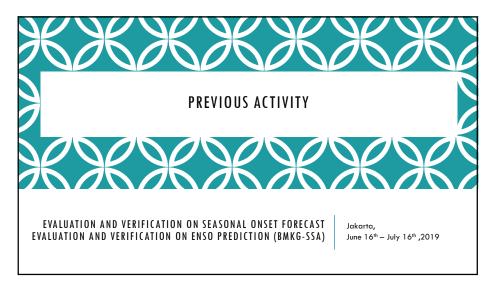
| Role       | n Post       | Lat   | Lon      | Year  | Distanc |            | 2       | Smoot     | hness  | Propo | rtion      | Hit rate in cont | ingency sheet | Reliable |
|------------|--------------|-------|----------|-------|---------|------------|---------|-----------|--------|-------|------------|------------------|---------------|----------|
| han        | Trosc        | Lat   | LOIT     | rear  | (km)    | daily      | sum     | daily     | sum    | daily | sum        | dasarian         | daily         |          |
| Stamet Bar | nyuwangi -8. | 21667 | 114.3833 |       |         |            |         |           |        |       |            |                  |               |          |
| Alas Malar | .g -8.3      | 316   | 114.252  | 2005  | 18      | -0.061     | 0.971   | 3.018     | 4.242  | 0.340 | 1.267      | 0.667            | 0.874         |          |
| Alas Malar | ·g -8.3      | 316   | 114.252  | 2006  |         | 0.011      | 0.987   | 2.180     | 3.194  | 0.580 | 1.680      | 0.806            | 0.888         |          |
| Alas Malar | ·g -8.       | 316   | 114.252  | 2007  |         | -0.008     | 0.968   | 2.158     | 11.201 | 0.372 | 1.575      | 0.806            | 0.901         |          |
| Alas Malar | ·g -8.       | 316   | 114.252  | 2008  |         | -0.108     | 0.981   | 2.845     | 3.141  | 0.288 | 1.509      | 0.771            | 0.879         |          |
| Alas Malar | ·g -8.       | 316   | 114.252  | 2009  |         | 0.028      | 0.950   | 2.553     | 5.311  | 0.508 | 1.308      | 0.833            | 0.890         |          |
| Alas Malar | ·g -8.3      | 316   | 114.252  | 2010  |         | -0.139     | 0.985   | 2.914     | 4.546  | 0.344 | 1.660      | 0.667            | 0.808         |          |
| Alas Malar | ıg -8.:      | 316   | 114.252  | 2011  |         | -0.060     | 0.867   | 3.772     | 9.867  | 0.215 | 1.276      | 0.750            | 0.921         |          |
| Alas Malar | ig -8.3      | 316   | 114.252  | 2012  |         | -0.077     | 0.945   | 4.183     | 4.640  | 0.337 | 1.630      | 0.861            | 0.885         |          |
| Alas Malar | g -8.        | 316   | 114.252  | 2013  |         | 0.085      | 0.963   | 1.537     | 5.712  | 0.589 | 1.367      | 0.750            | 0.879         |          |
| Alas Malar | -8.1         | 316   | 114.252  | 2014  |         | 0.148      | 0.948   | 1.761     | 4.766  | 0.713 | 1.478      | 0.750            | 0.901         |          |
| Alas Malar | ·g -8.       | 316   | 114.252  | 2015  |         | 0.003      | 0.933   | 2.924     | 4.297  | 0.589 | 1.959      | 0.861            | 0.888         |          |
| Alas Malar | ·g -8.3      | 316   | 114.252  | 2016  |         | 0.182      | 0.985   | 1.422     | 4.045  | 1.147 | 2.139      | 0.750            | 0.866         |          |
| Alas Malar | -8.:         | 316   | 114.252  | 2017  |         | 0.028      | 0.981   | 1.702     | 4.026  | 0.718 | 1.959      | 0.667            | 0.838         |          |
| Alas Malar | -8.          | 316   | 114.252  | 2018  |         | 0.399      | 0.968   | 1.070     | 4.021  | 1.066 | 1.575      | 0.833            | 0.915         |          |
|            |              | Г     | F        | R^2   |         |            | Smoot   | ness      | -      | Hitra | ite in con | tingency shee    | et l          |          |
|            |              | t     | daily    | su    | m       |            | daily   |           | sum    | _     | sarian     | daily            |               |          |
|            |              |       | >=0.4    | >=0.7 |         | OK (ver    | smoot)  | <2.0      |        |       | > 0.       | 6667             |               |          |
|            |              |       | <0.4     | <0.7  |         | 5M (mostly | smooth) | 2.0 - 5.0 |        |       | <0.        | .667             |               |          |
|            |              |       | negatif  | negat | HF      | NO         | (Not sm | ooth) >5. | 0      |       |            |                  |               |          |

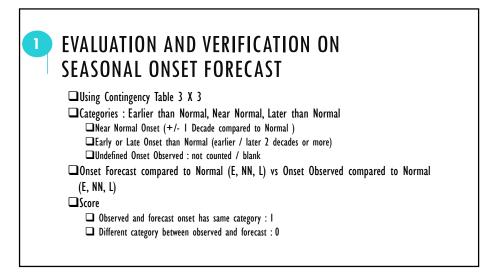
| GSMAP       | 1      | 1.0     | Mana       | R      | ^2          | Smoot      | hness   | Propo       | ortion                 | Hit rate in cont         | ingency sheet | Reliable |
|-------------|--------|---------|------------|--------|-------------|------------|---------|-------------|------------------------|--------------------------|---------------|----------|
| GSMAP       | Lon    | Lat     | Year       | daily  | sum         | daily      | sum     | daily       | sum                    | dasarian                 | daily         |          |
| Alas Malang | -8.316 | 114.252 | 2005       | -0.080 | 0.945       |            | 6.460   | 0.179       | 0.665                  | 0.611                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2006       | 0.031  | 0.993       |            | 1.903   | 0.205       | 0.580                  | 0.833                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2007       | -0.031 | 0.9892      |            | 35.057  | 0.172       | 0.989                  | 0.861                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2008       | -0.100 | 0.959       |            | 4.418   | 0.150       | 0.628                  | 0.771                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2009       | -0.047 | 0.952       |            | 4.511   | 0.183       | 0.709                  | 0.778                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2010       | -0.054 | 0.982       |            | 5.410   | 0.078       | 0.571                  | 0.667                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2011       | -0.158 | 0.892       |            | 471.246 | 0.115       | 0.115                  | 0.722                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2012       | -0.114 | 0.942       |            | 3.952   | 0.115       | 0.637                  | 0.889                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2013       | -0.147 | 0.969       |            | 4.699   | 0.100       | 0.650                  | 0.806                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2014       | -0.070 | 0.867       |            | 7.742   | 0.124       | 0.621                  | 0.750                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2015       | -0.065 | 0.975       |            | 3.296   | 0.129       | 0.531                  | 0.778                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2016       | -0.160 | 0.981       |            | 4.288   | 0.113       | 0.499                  | 0.722                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2017       | -0.125 | 0.968       |            | 5.944   | 0.120       | 0.495                  | 0.722                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2018       | -0.045 | 0.970       |            | 2.914   | 0.158       | 0.585                  | 0.889                    |               |          |
|             |        |         | _          |        |             |            |         |             |                        |                          | 1             |          |
|             |        | daily   | R^2<br>sum | _      | Sr<br>dail  | noothness  | su      |             | rate in co<br>lasarian | ntingency sheet<br>daily |               |          |
|             |        | >=0.4   | >=0.7      | C      | 0K (very sm |            | su      | .m <u>c</u> |                        | .6667                    |               |          |
|             |        | <0.4    | <0.7       | SM (r  | nostly smo  | oth) 2.0 - | 5.0     |             | <0                     | .667                     |               |          |
|             |        | negatif | negatif    |        | NG (No      | ot smooth) | >5.0    |             |                        |                          |               |          |

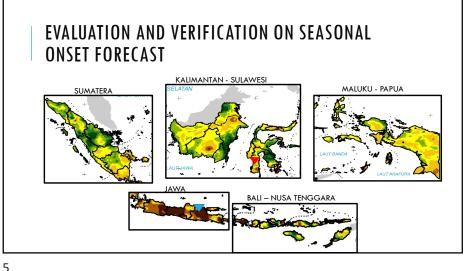
| Rain Post      | Lat   | Lon     | Year  | Distance | R/        | 2          | Smoot    | thness  | Propo       | rtion      | Hit rate in cont | ingency sheet | Reliab |
|----------------|-------|---------|-------|----------|-----------|------------|----------|---------|-------------|------------|------------------|---------------|--------|
| Rain Post      | Lat   | LON     | Tear  | (km)     | daily     | sum        | daily    | sum     | daily       | sum        | dasarian         | daily         |        |
| Stamet Paotere | -5.11 | 119.42  |       |          |           |            |          |         |             |            |                  |               |        |
| Barombong      | -5.20 | 119.50  | 2008  | 13       | 0.075     | 0.974      | 1.780    | 3.123   | 0.226       | 0.495      | 0.850            | 0.833         |        |
| Barombong      | -5.20 | 119.50  | 2009  |          | 0.355     | 0.936      | 1.330    | 3.964   | 0.306       | 0.385      | 0.906            | 0.903         |        |
| Barombong      | -5.20 | 119.50  | 2010  |          | 0.113     | 0.972      | 1.636    | 4,781   | 0.173       | 0.509      | 0.792            | 0.639         |        |
| Barombong      | -5.20 | 119.50  | 2011  |          | 0.287     | 0.988      | 1.300    | 2.571   | 0.398       | 0.583      | 0.858            | 0.889         |        |
| Barombong      | -5.20 | 119.50  | 2012  |          | 0.207     | 0.970      | 1.360    | 3.675   | 0.362       | 0.692      | 0.899            | 0.806         |        |
| Barombong      | -5.20 | 119.50  | 2013  |          | 0.366     | 0.850      | 1.008    | 8.383   | 0.484       | 0.657      | 0.893            | 0.800         |        |
| Barombong      | -5.20 | 119.50  | 2014  |          | 0.176     | 0.966      | 1.437    | 3.448   | 0.252       | 0.488      | 0.885            | 0.861         |        |
| Barombong      | -5.20 | 119.50  | 2015  |          | 0.499     | 0.990      | 0.891    | 1.928   | 0.396       | 0.542      | 0.915            | 0.778         |        |
| Barombong      | -5.20 | 119.50  | 2016  |          | 0.378     | 0.849      | 0.868    | 11.536  | 0.307       | 0.273      | 0.928            | 0.844         |        |
| Barombong      | -5.20 | 119.50  | 2017  |          | 0.313     | 0.948      | 1.019    | 5.276   | 0.314       | 0.557      | 0.871            | 0.778         |        |
| Barombong      | -5.20 | 119.50  | 2018  |          | 0.500     | 0.986      | 0.752    | 2.388   | 0.397       | 0.534      | 0.879            | 0.861         |        |
|                | 10000 | 100000  |       |          |           |            | <u> </u> | 100,000 | 2012/201    | 12333      |                  |               | -      |
|                |       |         | R^2   |          |           | Smoothne   | ess      |         | Hit rate in | o continge | ency sheet       |               |        |
|                |       | daily   | su    | ım       | d         | laily      |          | sum     | dasaria     | n          | daily            |               |        |
|                |       | >=0.4   | >=0.7 | ,        | OK (very  | smoot) <2  | .0       |         |             | > 0.6667   | ,                |               |        |
|                |       | <0.4    | <0.7  | SM       | (mostly s | mooth) 2.0 | 0 - 5.0  |         |             | <0.667     |                  |               |        |
|                |       | negatif | negat |          | NG        | (Not smoo  | th) >5.0 |         |             |            |                  |               |        |

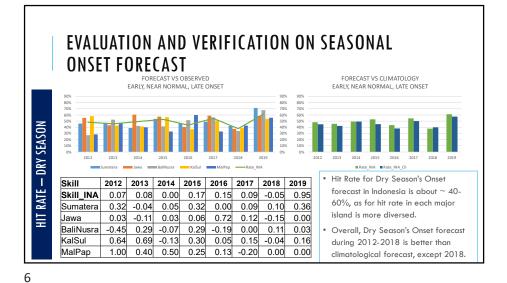
| 669.440        |         | 1963.0   | <u></u> |         | R^2          | Smoo      | thness    | Prop  | ortion         | Hit rate in cont | ingency sheet | Reliable |
|----------------|---------|----------|---------|---------|--------------|-----------|-----------|-------|----------------|------------------|---------------|----------|
| GSMAP          | Lon     | Lat      | Yea     | daily   | sum          | daily     | sum       | daily | sum            | dasarian         | daily         |          |
| Stamet Paotere | -5.1137 | 119.4198 | 200     | 3 0.28  | 0.981        |           | 3.831     | 0.496 | 0.801          | 0.830            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 200     | 0.00    | 59 0.968     |           | 4.426     | 0.390 | 0.824          | 0.972            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | -0.0    | 55 0.985     |           | 4.133     | 0.353 | 0.924          | 0.833            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 0.03    | 0.977        |           | 3.930     | 0.369 | 0.777          | 0.833            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 2 0.00  | 0.986        |           | 2.503     | 0.253 | 0.908          | 0.944            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 3 0.00  | 0.969        |           | 5.710     | 0.386 | 0.942          | 0.944            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 0.03    | 0.989        |           | 2.541     | 0.390 | 0.995          | 0.833            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 5 0.04  | 0.966        |           | 3.188     | 0.492 | 1.106          | 0.861            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | -0.15   | 0.987        |           | 2.471     | 0.168 | 0.926          | 0.944            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | -0.0    | 0.987        |           | 3.205     | 0.303 | 0.705          | 0.806            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 3 0.03  | 0.970        |           | 4.178     | 0.357 | 0.818          | 0.917            |               |          |
|                |         | Г        | R       | ^2      |              | Smoothn   | less      | 1     | Hit rate in co | ontingency sheet | 1             |          |
|                |         |          | daily   | sum     |              | daily     |           | sum   | dasarian       | daily            |               |          |
|                |         | >=       | 0.4     | >=0.7   | OK (very     | smoot) <  | 2.0       |       | >              | 0.6667           |               |          |
|                |         | <0.      | .4      | <0.7    | SM (mostly s | mooth) 2. | 0 - 5.0   |       | <              | 0.667            |               |          |
|                |         |          | gatif   | negatif | NG           | (Not smoo | oth) >5.0 |       |                |                  |               |          |

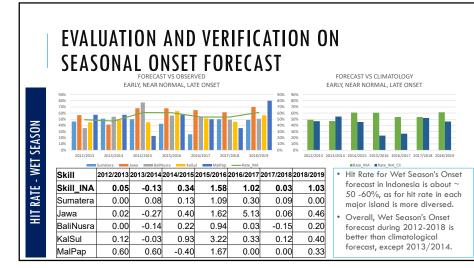

| GSMAP     | Lon  | Lat     | Year    |        | ^2          | Smoot        | thness  | Propo | rtion   | Hit rate in c | ontingency sheet | Reliab |
|-----------|------|---------|---------|--------|-------------|--------------|---------|-------|---------|---------------|------------------|--------|
| GSIVIAF   | LON  | Lat     | fear    | daily  | sum         | daily        | sum     | daily | sum     | dasarian      | daily            |        |
| Barombong | -5.2 | 119.5   | 2008    | 0.181  | 0.970       |              | 3.620   | 0.757 | 1.391   | 0.8           | 90               |        |
| Barombong | -5.2 | 119.5   | 2009    | 0.202  | 0.859       |              | 5.811   | 0.796 | 1.794   | 0.8           | 71               |        |
| Barombong | -5.2 | 119.5   | 2010    | -0.142 | 0.948       |              | 9.420   | 0.636 | 1.651   | 0.6           | 11               |        |
| Barombong | -5.2 | 119.5   | 2011    | 0.365  | 0.959       |              | 5.176   | 0.793 | 1.208   | 0.8           | 06               |        |
| Barombong | -5.2 | 119.5   | 2012    | 0.137  | 0.949       |              | 6.188   | 0.626 | 1.190   | 0.8           | 33               |        |
| Barombong | -5.2 | 119.5   | 2013    | 0.396  | 0.865       |              | 9.666   | 0.794 | 1.357   | 0.7           | 94               |        |
| Barombong | -5.2 | 119.5   | 2014    | 0.167  | 0.940       |              | 6.556   | 0.955 | 1.885   | 0.7           | 22               |        |
| Barombong | -5.2 | 119.5   | 2015    | 0.187  | 0.965       |              | 3.921   | 1.635 | 1.803   | 0.7           | 78               |        |
| Barombong | -5.2 | 119.5   | 2016    | -0.152 | 0.777       |              | 395.740 | 0.363 | 3.635   | 0.6           | 88               |        |
| Barombong | -5.2 | 119.5   | 2017    | 0.066  | 0.952       |              | 6.231   | 0.624 | 1.175   | 0.8           | 00               |        |
| Barombong | -5.2 | 119.5   | 2018    | 0.239  | 0.937       |              | 7.135   | 0.833 | 1.444   | 0.7           | 78               |        |
| •         |      |         |         |        |             |              |         |       |         |               |                  |        |
|           |      |         | R^2     |        |             | oothness     |         |       |         | gency sheet   |                  |        |
|           |      | daily   | sum     |        | daily       |              | sum     | dasa  | rian    | daily         |                  |        |
|           |      | >=0.4   | >=0.7   | 0      | K (very smo | ot) <2.0     |         |       | > 0.666 | 57            |                  |        |
|           |      | <0.4    | <0.7    | SM (m  | iostly smoo | th) 2.0 - 5. | 0       |       | <0.66   | 7             |                  |        |
|           |      | negatif | negatif |        | NG (Not     | smooth) >    | 5.0     |       |         |               |                  |        |

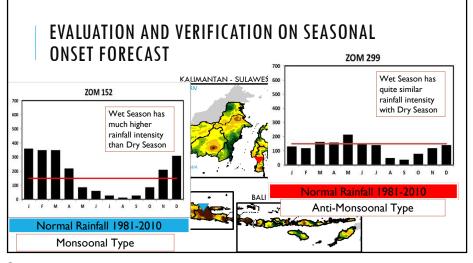

| International         Cutor                                                                                                                                                                   | Rain Post      | Lat   | Lon     | Year   | Distance | R^2                  |             | Smoothness |          | Proportion |       | Hit rate in contingency sheet |       | Reliabl |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|---------|--------|----------|----------------------|-------------|------------|----------|------------|-------|-------------------------------|-------|---------|
| Seppong         -3.30         120.40         2008         13         0.029         0.991         1.562         4.813         0.222         0.499         0.709         0.667           Seppong         -3.30         120.40         2009         -0.033         0.977         2.837         6.849         0.152         0.371         0.830         0.548           Seppong         -3.30         120.40         2010         -0.167         0.985         2.022         7.222         0.166         0.565         0.668         0.778           Seppong         -3.30         120.40         2011         -0.061         0.988         1.192         41.495         0.216         0.511         0.080         0.611           Seppong         -3.30         120.40         2012         -0.022         0.974         2.267         9.269         0.149         0.333         0.790         0.501           Seppong         -3.30         120.40         2013         -0.022         0.974         2.267         9.269         0.149         0.333         0.790         0.508           Seppong         -3.30         120.40         2013         -0.022         0.974         2.2167         0.154         0.408         0.40                                                                                                                                                                                                                   |                |       |         | rear   | (km)     | daily                | sum         | daily      | sum      | daily      | sum   | dasarian                      | daily |         |
| Sepong         -3.30         120.40         2009         -0.035         0.97         2.837         6.849         0.12         0.37         0.830         0.548           Sepong         -3.30         120.40         2010         -0.617         0.985         2.082         7.222         0.186         0.566         0.668         0.778           Sepong         -3.30         120.40         2011         -0.661         0.986         1.192         41.495         0.216         0.511         0.606         0.611           Sepong         -3.30         120.40         2013         -0.621         0.976         2.267         9.36         0.149         0.33         0.700         0.640           Sepong         -3.30         120.40         2013         -0.621         0.976         2.267         9.36         0.149         0.33         0.700         0.640           Sepong         -3.30         120.40         2013         -0.621         0.976         2.267         9.369         0.149         0.33         0.700         0.480           Sepong         -3.30         120.40         2014         -0.621         0.966         2.012         1.045         0.508         0.709         0.639                                                                                                                                                                                                                              | Stamet Masamba | -2.50 | 120.40  |        |          |                      |             |            | _        |            |       |                               |       |         |
| No.         Observation         O | Seppong        | -3.30 | 120.40  | 2008   | 13       | 0.029                | 0.991       | 1.56       | 4.811    | 0.262      | 0.499 | 0.749                         | 0.667 |         |
| Normal         3.30         120.40         2011         -0.061         0.961         1.192         41.493         0.216         0.511         0.080         0.611           Seppong         -3.30         120.40         2012         -0.022         0.974         2.267         9.266         0.511         0.080         0.610         0.550           Seppong         -3.30         120.40         2013         -0.062         0.974         2.267         9.266         0.149         0.33         0.709         0.648           Seppong         -3.30         120.40         2013         -0.062         0.985         2.622         2.231         0.154         0.400         0.708         0.468           Seppong         -3.30         120.40         2014         -0.022         0.965         2.12         10.413         0.155         0.568         0.793         0.659           Seppong         -3.30         120.40         2015         -0.012         0.965         2.176         3.581         0.183         0.464         0.772         0.531           Seppong         -3.30         120.40         2017         0.017         0.977         0.555         0.717         0.555         0.721         0.558                                                                                                                                                                                                                   | Seppong        | -3.30 | 120.40  | 2009   |          | -0.035               | 0.977       | 2.83       | 7 6.849  | 0.152      | 0.371 | 0.830                         | 0.548 |         |
| Sepong         3.30         120.40         2012         0.022         0.974         2.267         9.269         0.149         0.333         0.790         0.500           Sepong         3.30         120.40         2013         0.066         0.895         2.622         2.319         0.145         0.400         0.700         0.448           Sepong         3.30         120.40         2014         0.406         0.895         2.622         2.319         0.145         0.400         0.700         0.448           Sepong         3.30         120.40         2014         0.402         0.968         2.012         10.413         0.135         0.506         0.795         0.659           Sepong         -3.30         120.40         2015         -0.012         0.963         2.134         8.308         0.177         0.487         0.852         0.651           Sepong         -3.30         120.40         2015         -0.046         0.995         2.176         3.51         0.183         0.464         0.772         0.531           Sepong         -3.30         120.40         2017         0.017         0.987         1.952         7.170         0.272         0.505         0.721                                                                                                                                                                                                                                | Seppong        | -3.30 | 120.40  | 2010   |          | -0.167               | 0.985       | 2.08       | 2 7.222  | 0.186      | 0.565 | 0.668                         | 0.778 |         |
| Seppong         3.30         120.40         2013         0.065         0.895         2.622         2.319         0.154         0.400         0.708         0.488           Seppong         3.30         120.40         2014         0.021         0.968         2.012         10.43         0.155         0.505         0.795         0.659           Seppong         -3.30         120.40         2015         -0.012         0.963         2.134         8.306         0.177         0.487         0.852         0.651           Seppong         -3.30         120.40         2016         -0.046         0.995         2.176         3.51         0.18         0.446         0.772         0.531           Seppong         -3.30         120.40         2017         0.997         1.952         7.170         0.272         0.555         0.721         0.558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Seppong        | -3.30 | 120.40  | 2011   |          | -0.061               | 0.968       | 1.19       | 41.495   | 0.216      | 0.511 | 0.808                         | 0.611 |         |
| Seppong         -3.30         120.40         2014         -0.021         0.968         2.012         10.433         0.155         0.568         0.795         0.669           Seppong         -3.30         120.40         2015         -0.012         0.966         2.134         8.306         0.177         0.487         0.652         0.661           Seppong         -3.30         120.40         2015         -0.046         0.995         2.176         3.581         0.183         0.446         0.772         0.531           Seppong         -3.30         120.40         2017         0.017         0.987         1.952         7.170         0.272         0.505         0.721         0.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Seppong        | -3.30 | 120.40  | 2012   |          | -0.022               | 0.974       | 2.26       | 7 9.269  | 0.149      | 0.333 | 0.790                         | 0.500 |         |
| Seppong         -3.30         120.40         2015         -0.012         0.963         2.134         8.306         0.177         0.487         0.852         0.611           Seppong         -3.30         120.40         2016         -0.046         0.995         2.176         3.581         0.183         0.464         0.772         0.531           Seppong         -3.30         120.40         2017         0.997         1.952         7.170         0.272         0.505         0.721         0.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Seppong        | -3.30 | 120.40  | 2013   |          | -0.063               | 0.895       | 2.62       | 2 22.319 | 0.154      | 0.400 | 0.780                         | 0.486 |         |
| Seppong         -3.30         120.40         2016         -0.046         0.995         2.176         3.581         0.183         0.464         0.772         0.531           Seppong         -3.30         120.40         2017         0.017         0.995         1.952         7.170         0.272         0.565         0.721         0.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Seppong        | -3.30 | 120.40  | 2014   |          | -0.021               | 0.968       | 2.01       | 2 10.431 | 0.195      | 0.508 | 0.795                         | 0.639 |         |
| Seppong -3.30 120.40 2017 0.017 0.987 1.952 7.170 0.272 0.505 0.721 0.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Seppong        | -3.30 | 120.40  | 2015   |          | -0.012               | 0.963       | 2.13       | 4 8.308  | 0.177      | 0.487 | 0.852                         | 0.611 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Seppong        | -3.30 | 120.40  | 2016   |          | -0.046               | 0.995       | 2.17       | 6 3.581  | 0.183      | 0.464 | 0.772                         | 0.531 |         |
| Seppong -3.30 120.40 2018 -0.081 0.966 2.475 9.919 0.164 0.428 0.811 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Seppong        | -3.30 | 120.40  | 2017   |          | 0.017                | 0.987       | 1.95       | 2 7.170  | 0.272      | 0.505 | 0.721                         | 0.583 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Seppong        | -3.30 | 120.40  | 2018   |          | -0.081               | 0.966       | 2.47       | 5 9.919  | 0.164      | 0.428 | 0.811                         | 0.500 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |       | daily   | -      | n        |                      |             |            |          | dasarian   |       |                               |       |         |
| R^2 Smoothness Hit rate in contingency sheet<br>daily sum daily sum dasarian daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       | >=0.4   | >=0.7  |          | OK (very smoot) <2.0 |             |            |          | > 0.6667   |       |                               |       |         |
| daily sum daily sum dasarian daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       | <0.4    | <0.7   | SM (     | mostly sm            | ooth) 2.0 - | 5.0        |          | <0.667     |       |                               |       |         |
| daily         sum         daily         sum         dasarian         daily           >=0.4         >=0.7         OK (very smoot) <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |       | negatif | negati | 4        | NG (N                | ot smooth   | ) >5.0     |          |            |       |                               |       |         |

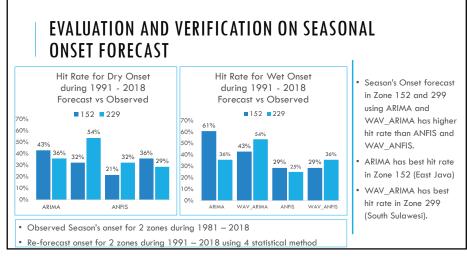

| GSMAP          | Lon  | Lat     | Year   |        | R^2         |              | Smoothness |       | rtion  | Hit rate in contingency sheet |       | Reliable |
|----------------|------|---------|--------|--------|-------------|--------------|------------|-------|--------|-------------------------------|-------|----------|
| GSIVIAF        | LOIT | Lat     | real   | daily  | sum         | daily        | sum        | daily | sum    | dasarian                      | daily | Reliable |
| Stamet Masamba | -2.5 | 120.4   | 2008   | -0.227 | 0.999       |              | 15.474     | 0.322 | 0.918  | 0.889                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2009   | -0.145 | 0.993       |              | 931.296    | 0.317 | 1.048  | 0.806                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2010   | -0.192 | 0.987       |              | 5.881      | 0.362 | 1.058  | 0.944                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2011   | -0.159 | 0.997       |              | 2.136      | 0.285 | 0.937  | 0.806                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2012   | -0.216 | 0.999       |              | 1.859      | 0.304 | 0.967  | 0.889                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2013   | -0.260 | 1.000       |              | 1.102      | 0.261 | 0.980  | 0.944                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2014   | -0.252 | 0.996       |              | 3.114      | 0.213 | 0.834  | 0.944                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2015   | -0.107 | 0.998       |              | 1.993      | 0.367 | 1.046  | 0.889                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2016   | -0.231 | 0.998       |              | 2.255      | 0.285 | 0.954  | 0.889                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2017   | -0.289 | 0.993       |              | 1.491      | 0.324 | 1.029  | 0.944                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2018   | -0.152 | 0.998       |              | 2.277      | 0.376 | 1.073  | 0.806                         |       |          |
| •              |      |         |        |        |             |              |            |       |        |                               |       |          |
|                |      |         | R^2    |        |             | noothness    | 1          |       |        | ngency sheet                  |       |          |
|                |      | daily   | / sun  | n      | dail        | y            | sun        | n das | sarian | daily                         |       |          |
|                |      | >=0.4   | >=0.7  | 0      | OK (very sm | oot) <2.0    |            |       | > 0.60 | 667                           |       |          |
|                |      | <0.4    | <0.7   | SM (   | mostly smo  | oth) 2.0 - ! | 5.0        |       | <0.6   | 67                            |       |          |
|                |      | negatif | negati | f      | NG (N       | ot smooth)   | >5.0       |       |        |                               |       |          |


| GSMAP   | Lon  | Lat  | Yea     |          | R^2              | Smoothness |             | Proportion |          | Hit rate in contingency sheet |       | Reliable |
|---------|------|------|---------|----------|------------------|------------|-------------|------------|----------|-------------------------------|-------|----------|
| GSMAP   | Lon  | Lat  | t Te    | ar daily | / sum            | daily      | sum         | daily      | sum      | dasarian                      | daily | Kellable |
| Seppong | -3.3 | 120. | .4 20   | .0- 80   | <b>393</b> 0.991 |            | 15.474      | 0.295      | 1.513    | 0.694                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 09 -0.   | 0.937            |            | 931.296     | 0.270      | 2.179    | 0.613                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 10 -0.4  | 428 0.936        |            | 5.881       | 0.277      | 1.473    | 0.694                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 11 -0.3  | 281 0.931        |            | 2.136       | 0.310      | 1.489    | 0.611                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 12 -0.   | 0.941            |            | 1.859       | 0.382      | 2.222    | 0.444                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 13 -0.4  | 424 0.826        |            | 1.102       | 0.160      | 1.955    | 0.441                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 14 -0.   | 0.944            |            | 3.114       | 0.413      | 1.930    | 0.694                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 15 -0.1  | 314 0.952        |            | 1.993       | 0.215      | 1.807    | 0.611                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 16 -0.   | 346 0.995        |            | 2.255       | 0.349      | 1.721    | 0.625                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 17 -0.4  | 446 0.981        |            | 1.491       | 0.279      | 1.630    | 0.528                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 18 -0.   | 339 0.855        |            | 2.277       | 0.385      | 2.011    | 0.528                         |       |          |
|         |      |      |         |          |                  |            |             |            |          |                               |       |          |
|         |      |      |         | ^2       |                  | Smoothn    | ess         |            |          | ntingency sheet               |       |          |
|         |      |      | daily   | sum      | d                | aily       |             | sum        | dasarian | daily                         |       |          |
|         |      | >    | >=0.4   | >=0.7    | 0.7 OK (very     |            | smoot) <2.0 |            | > (      | 0.6667                        |       |          |
|         |      | <    | <0.4    | <0.7     | SM (mostly s     | mooth) 2.  | 0 - 5.0     |            | <        | 0.667                         |       |          |
|         |      |      | negatif | negatif  | NG               | Not smoo   | oth) >5.0   |            |          |                               |       |          |

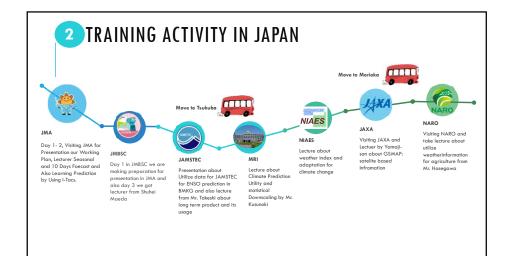










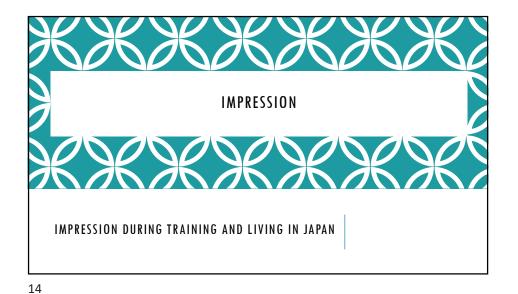


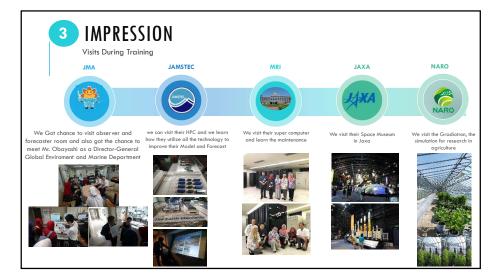



# LECTURES THAT CAN BE APPLIED IN **OPERATIONAL WORK**

In JMA we learning about how dynamical atmospheric circulation can really affect to our



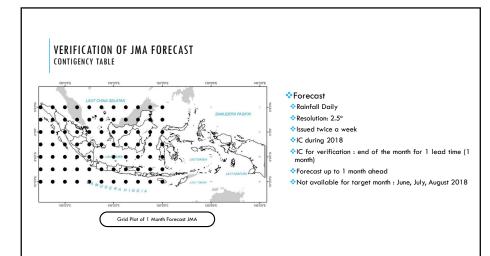

In JAMSTEC we inform them about how we utilize their ENSO prediction as a based for making analogy prediction and also we got to know how well the ENSO prediction by JMA from Mr. Takeshi

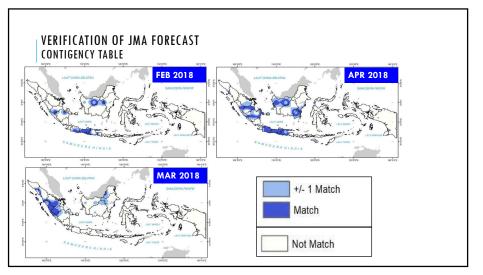

In JAXA, we learned how to utilize the GSMAP data and how to get the data and also we know how well the GSMAP data, this kind of infomation really benefit for our sub-division since we are making rainfall analysis by using GSMAP daily data

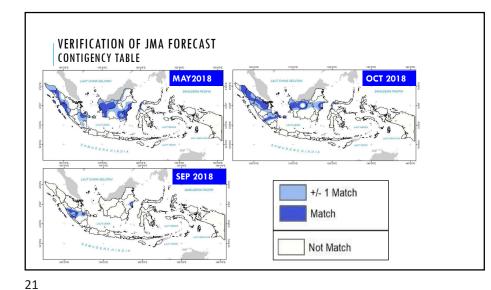


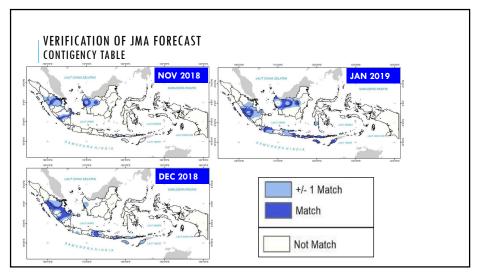
Λ

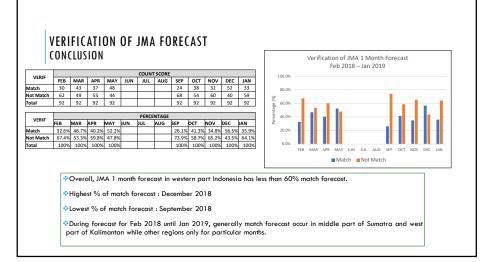


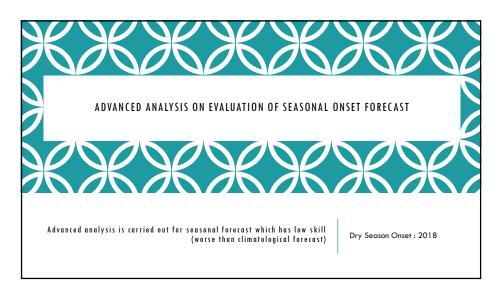


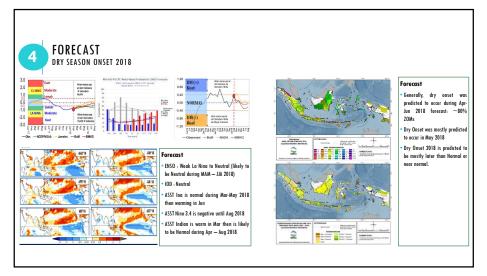



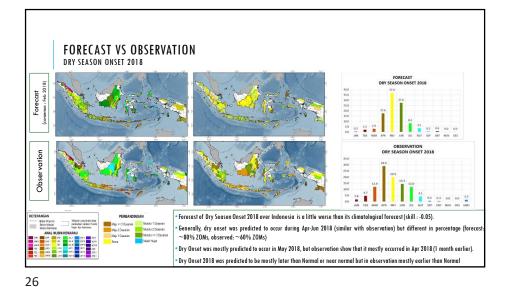



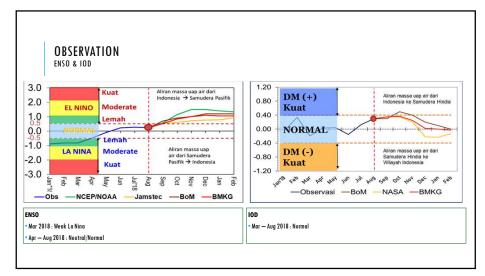



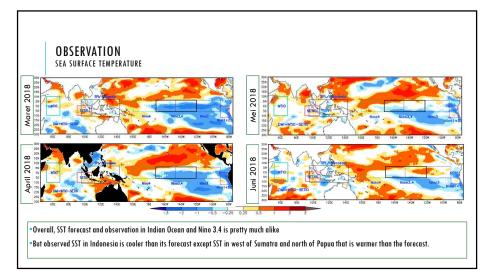



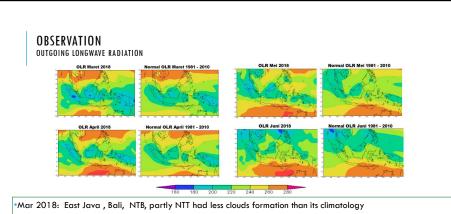



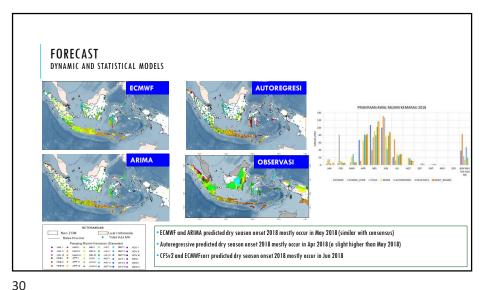











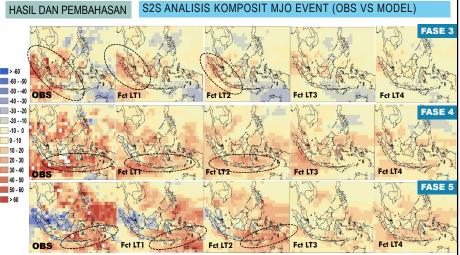

•Apr - Jun 2018: area with less clouds formation than its climatology become larger (Java, Bali, Nusa Tenggara)
•Java, Bali, Nusa Tenggara had less clouds than its climatology during Mar – Jun 2018 while northern Indonesia had more clouds formation than its climatology



29

| CONCLUSION                                                                      |                                                                                                                                                                                                                                                   |  |  |  |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Forecast                                                                        | Observation                                                                                                                                                                                                                                       |  |  |  |  |  |
| • ENSO : Weak La Nina to Neutral                                                | • ENSO : Weak La Nina to Neutral                                                                                                                                                                                                                  |  |  |  |  |  |
| IOD : Neutral                                                                   | • IOD : Neutral                                                                                                                                                                                                                                   |  |  |  |  |  |
| ASST Ina is normal during Mar-May 2018 then warming in Jun                      | • Overall, SST forecast and observation in Indian Ocean and Nino 3.4 is pretty                                                                                                                                                                    |  |  |  |  |  |
| <ul> <li>ASST Nino 3.4 is negative until Aug 2018</li> </ul>                    | much alike but observed SST in Indonesia is cooler than its forecast excep<br>SST in west of Sumatra and north of Papua that is warmer than the forecast.                                                                                         |  |  |  |  |  |
| ASST Indian is warm in Mar then is likely to be Normal during Apr — Aug<br>2018 | Jord and the vest of somethic and norm of rapid and is warmen main more cast.<br>Jordy Ball, Nava Tenggara had less clouds than its climatology during Mar-<br>Jun 2018 while northern Indonesia had more clouds formation than it<br>climatology |  |  |  |  |  |
| •Generally, dry onset was predicted to occur during Apr-Jun 2018                | •Generally, dry onset occured during Apr-Jun 2018 : ~60% ZOMs                                                                                                                                                                                     |  |  |  |  |  |
| forecast: ~80% ZOMs                                                             | •Dry Onset mostly occurred in Apr 2018 (1 month earlier than forecast).                                                                                                                                                                           |  |  |  |  |  |
| •Dry Onset was mostly predicted to occur in May 2018                            | •Dry Onset 2018 was mostly earlier than Normal                                                                                                                                                                                                    |  |  |  |  |  |
| •Dry Onset 2018 is predicted to be mostly later than Normal or near normal.     |                                                                                                                                                                                                                                                   |  |  |  |  |  |

### DRY SEASON ONSET 2018


CONCLUSION

•Model Forecast cannot capture cooling SST over Indonesia and warming SST in west Sumatra •Among individual models, Autoregressive is individual model that is the most similar to observed Dry Onset 2018 over Java, Bali, Nusa Tenggara.

Still need to analysis other parameters like wind, monsoon, etc

Difficult to evaluate where to improve because model forecast cannot capture the cooling SST in Indonesia We expect your advice for this study case.









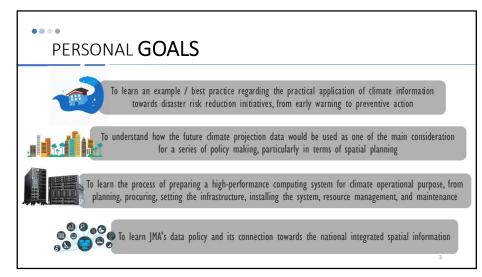


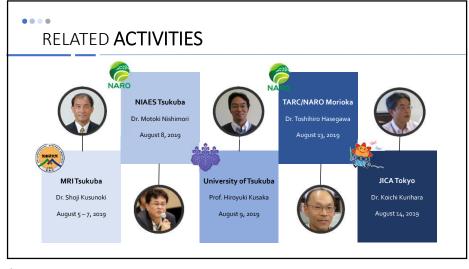
PROJECT OF CAPACITY DEVELOPMENT FOR THE IMPLEMENTATION OF AGRICULTURAL INSURANCE IN INDONESIA

#### . . . .

### **TRAINING SUMMARY / ACTION PLAN**

ENHANCING ABILITIES FOR METEOROLOGICAL / CLIMATOLOGICAL DATA USAGE July 29th, 2019 - August 16th, 2019


#### 1


KEY ACTIVITY 3 (ENHANCE ANALYSIS ABILITIES OF RISK ANALYSIS FOR CLIMATE CHANGE DATASET) .... **Current Activity** Next Activity Key activity 3 is supposed to provide 3 days in MRI, 5 participants 2.5 months in MRI, using MRI's HPC for 2 climate change projection data and information to support the implementatio researchers of climate change adaptation technology Medium resolution AGCM (20 km) based on Support for further downscaling into 5km within the agricultural insurance project

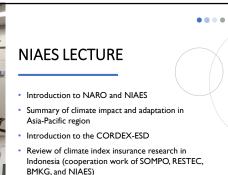
resolution

2

global warming scenarios





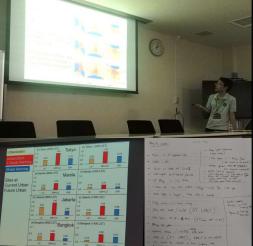

#### **MRI TRAINING**

- Explanation on global warming situation and IPCC
- Utilization of MRI-AGCM data for analyzing future climate projection
- Exercise on the utilization of GrADS-based tools for producing figures, charts, and analysis of MRI-AGCM data
- regarding future condition of climate condition in





6




- Lecture of the effect of hydrometeorological extremes on serial productivity in Indonesia (cooperation work of SOMPO, RESTEC, BMKG, and NIAES)
- Introduction to NARO-APCC crop forecast service



- model simulation of Asian mega-cities

- 5. Backup options





#### **TARC/NARO VISIT**

- Summary of future climate projection
- Introduction to the AgMIP activity
- Explanation of the project regarding the sensitivity of rice crop towards the effect of CO<sub>2</sub> fertilization

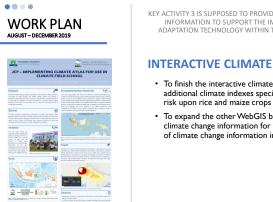
. . . .

- Implementation of the climate extreme warning for cold summer case in Tohoku region
- Visit to the Gradiotron
- Explanation on the utilization of the Gradiotron facility for global warming studies

#### **FINAL LECTURE**

- Explanation on the role of IMA in disseminating information during the a disaster event
- · Explanation about the working process and responsible parties in the mitigation effort of a disaster event
- Explanation on how to approach public users in anticipating disaster events






KEY ACTIVITY 3 IS SUPPOSED TO PROVIDE CLIMATE CHANGE PROJECTION DATA AND INFORMATION TO SUPPORT THE IMPLEMENTATION OF CLIMATE CHANGE ADAPTATION TECHNOLOGY WITHIN THE AGRICULTURAL INSURANCE PROJECT

#### **CLIMATE PROJECTION INFORMATION**

- To finish the climate change atlas of Indonesia based on the future climate projection data
- To finish the high-resolution climate change atlas of Maluku and Papua area based on the statistical downscaling result
- To extend the analysis for the future climate projection data using the lesson learned from this training
- To provide high-resolution future climate projection information of Indonesian area based on research activities of 2 BMKG scientists in MRI (August – November)

9



KEY ACTIVITY 3 IS SUPPOSED TO PROVIDE CLIMATE CHANGE PROJECTION DATA AND INFORMATION TO SUPPORT THE IMPLEMENTATION OF CLIMATE CHANGE ADAPTATION TECHNOLOGY WITHIN THE AGRICULTURAL INSURANCE PROJECT

#### **INTERACTIVE CLIMATE ATLAS**

- To finish the interactive climate atlas platform with the additional climate indexes specifically adjusted for the climate risk upon rice and maize crops
- To expand the other WebGIS based platform in displaying climate change information for the purpose of serving the needs of climate change information in CEWS

.... WORK PLAN AUGUST-DECEMBER 2019

10



KEY ACTIVITY 3 IS SUPPOSED TO PROVIDE CLIMATE CHANGE PROJECTION DATA AND INFORMATION TO SUPPORT THE IMPLEMENTATION OF CLIMATE CHANGE ADAPTATION TECHNOLOGY WITHIN THE AGRICULTURAL INSURANCE PROJECT

#### **OTHERS**

- To continue support various institution/agencies/ministries in terms of implementing the convergence of climate change information towards disaster risk reduction effort
- To support the next JICA project (Climate Change Phase II) in terms of using the climate projection information for spatial planning
- To deliver the information regarding HPC development for technical meeting forum later in Jakarta. BMKG is right now currently preparing high budget to initiate an integrated HPC system.

л

#### ....

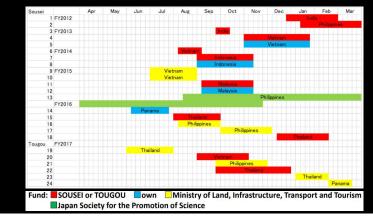
#### IMPRESSIONS

- Appropriate arrangement of training agenda and schedule
- Supportive and helpful program coordinator
- Welcoming and supportive lecturers and counterparts
- Fancy lunch and dinner occasions
- Several interesting site visits
- Respectful environment





# NHRCM high-resolution climate simulation over INDONESIA


Ari Kurniadi / Apriliana Rizqi Fauziyah



# BACKGROUND

- The international collaborative research with developing countries is conducted by the MRI to produce the detail structure of the future climate change projection in tropical and sub-tropical Asian regions.
- This work was partially conducted under the framework of "the Integrated Research Program for Advanced Climate Modeling" supported by the TOUGOU Program of MEXT of Japan.

#### BACKGROUND



# Sistem yang digunakan selama di MRI

1. ES (Earth Simulator) ; supercomputer milik JAMSTEC yang kami gunakan untutk running model NHRCM



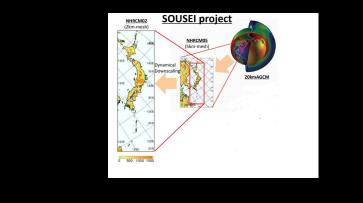
2. MRI Cluster system ; pengolahan sekaligus penyimpanan output hasil downscaling



# Earth Simulator komponen

 lunar (lunar.jamstec.go.jp)
 Now you can login
 kogn :: 00 Password : pattern password
 moon (moon.es3.jamstec.go.jp)
 mars (mars.jamstec.go.jp)

6

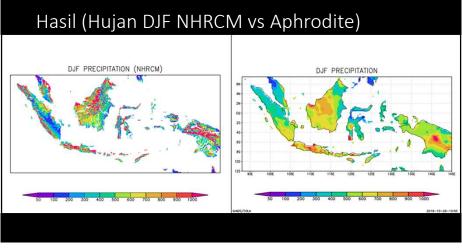

8

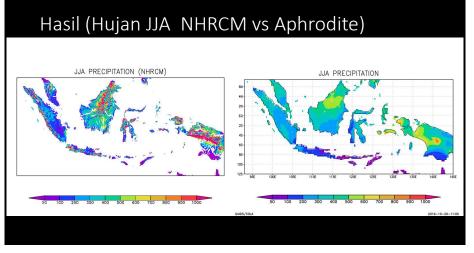
# MRI cluster

appc130.mri-jma.go.jp

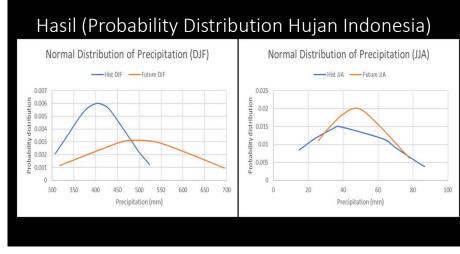
- tempat penyimpanan hasil keluaran NHRCM

# Methodology

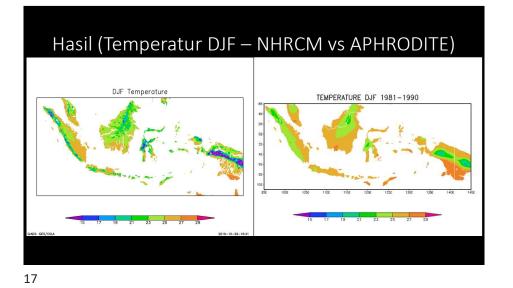


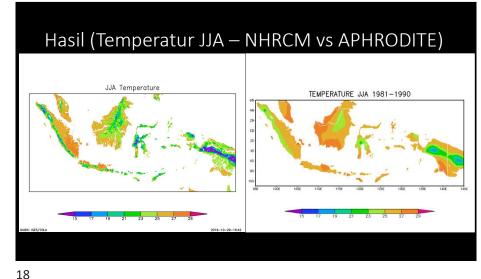


# Methodology

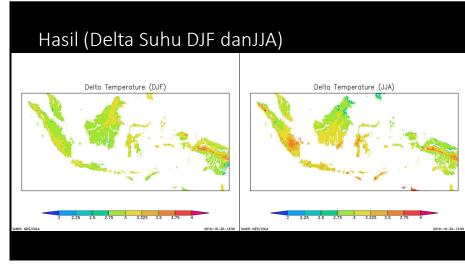
- AGCM 20 km sebagai forcing
- Downscale ke resolusi 5 km (1081 x 421 grid) dengan Batasan longitude 93.7 144.1 dan latitude 12.2 7.2
- Waktu 1 September 1981-1990 untuk present (target 20 years)
- Waktu 1 September 2079-2088 untuk future (target 20 years)
- Menggunakan satu scenario yaitu RCP8.5
- Untuk data 1 bulan pertama tidak dipakai menghindari efek dari model spin-up







13



# Hasil Temperatur







# CONCLUSION

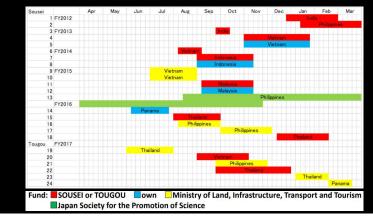
- Simulasi NHRCM dengan resolusi 5 km untuk Indonesia selama 10 tahun periode present (1981-1990) dan 10 tahun periode future (2079-2088) telah dilaksanakan untuk wilayah Indonesia.
- Hasil simulasi NHRCM dapat merepresentasikan hujan musiman di Indonesia
- Hasil simulasi NHRCM dapat merepresentasikan suhu Indonesia, namun overestimate di wilayah dataran tinggi terutama wilayah gunung.
- NHRCM memiliki keunggulan dalam merepresentasikan topografi Indonesia baik dalam menampilkan hujan dan suhu.

# Next

- Untuk memenuhi target proyek mereka, NHRCM untuk Indonesia masih perlu dilakukan untuk perioda 10 tahun baik untuk present dan future dengan resolusi 5 km dengan menggunakan RCP8.5.
- Target selanjutnya adalah resolusi 2 km untuk pulau tertentu.
- Manual proses pengerjaan NHRCM berdasarkan proses yang sudah dilakukan sudah dibuatkan (<u>https://drive.google.com/file/d/1nDIIQFYJxWJ4iU-</u> xahkkGHSaaDBfsEvo/view?usp=sharing)



# NHRCM high-resolution climate simulation over INDONESIA


Ari Kurniadi / Apriliana Rizqi Fauziyah



# BACKGROUND

- The international collaborative research with developing countries is conducted by the MRI to produce the detail structure of the future climate change projection in tropical and sub-tropical Asian regions.
- This work was partially conducted under the framework of "the Integrated Research Program for Advanced Climate Modeling" supported by the TOUGOU Program of MEXT of Japan.

#### BACKGROUND



# Sistem yang digunakan selama di MRI

1. ES (Earth Simulator) ; supercomputer milik JAMSTEC yang kami gunakan untutk running model NHRCM



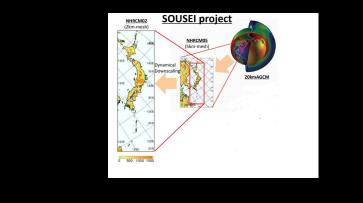
2. MRI Cluster system ; pengolahan sekaligus penyimpanan output hasil downscaling



# Earth Simulator komponen

 lunar (lunar.jamstec.go.jp)
 Now you can login
 kogn :: 00 Password : pattern password
 moon (moon.es3.jamstec.go.jp)
 mars (mars.jamstec.go.jp)

6

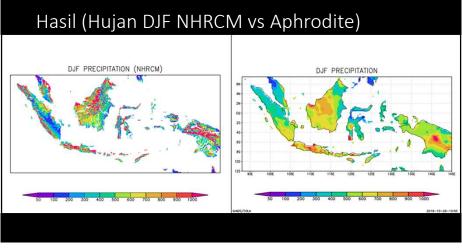

8

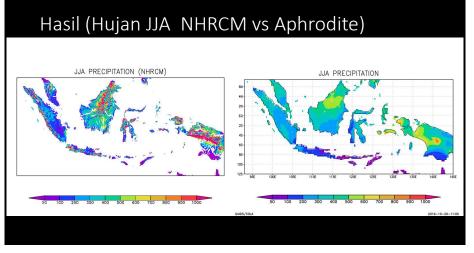
# MRI cluster

appc130.mri-jma.go.jp

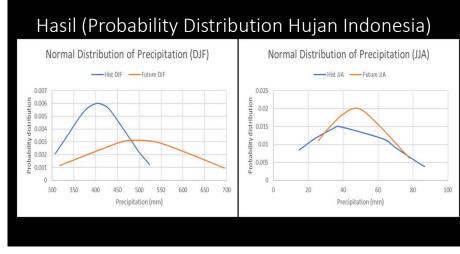
- tempat penyimpanan hasil keluaran NHRCM

# Methodology

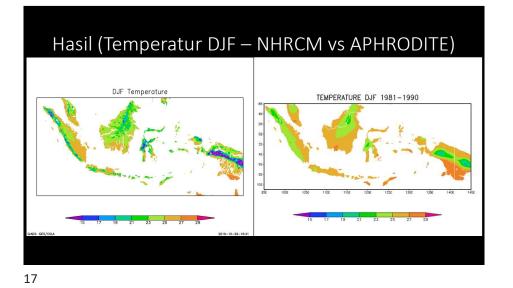


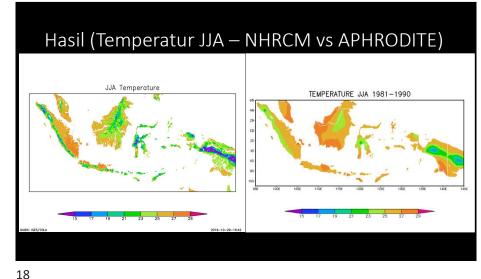


# Methodology

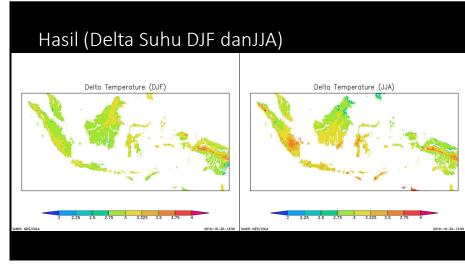
- AGCM 20 km sebagai forcing
- Downscale ke resolusi 5 km (1081 x 421 grid) dengan Batasan longitude 93.7 144.1 dan latitude 12.2 7.2
- Waktu 1 September 1981-1990 untuk present (target 20 years)
- Waktu 1 September 2079-2088 untuk future (target 20 years)
- Menggunakan satu scenario yaitu RCP8.5
- Untuk data 1 bulan pertama tidak dipakai menghindari efek dari model spin-up







13



# Hasil Temperatur







# CONCLUSION

- Simulasi NHRCM dengan resolusi 5 km untuk Indonesia selama 10 tahun periode present (1981-1990) dan 10 tahun periode future (2079-2088) telah dilaksanakan untuk wilayah Indonesia.
- Hasil simulasi NHRCM dapat merepresentasikan hujan musiman di Indonesia
- Hasil simulasi NHRCM dapat merepresentasikan suhu Indonesia, namun overestimate di wilayah dataran tinggi terutama wilayah gunung.
- NHRCM memiliki keunggulan dalam merepresentasikan topografi Indonesia baik dalam menampilkan hujan dan suhu.

# Next

- Untuk memenuhi target proyek mereka, NHRCM untuk Indonesia masih perlu dilakukan untuk perioda 10 tahun baik untuk present dan future dengan resolusi 5 km dengan menggunakan RCP8.5.
- Target selanjutnya adalah resolusi 2 km untuk pulau tertentu.
- Manual proses pengerjaan NHRCM berdasarkan proses yang sudah dilakukan sudah dibuatkan (<u>https://drive.google.com/file/d/1nDIIQFYJxWJ4iU-</u> xahkkGHSaaDBfsEvo/view?usp=sharing)



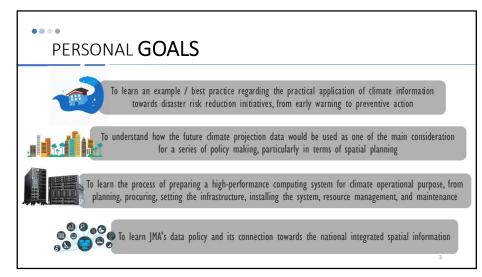


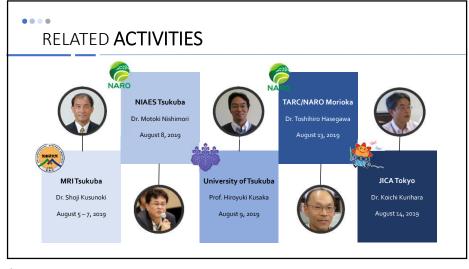
PROJECT OF CAPACITY DEVELOPMENT FOR THE IMPLEMENTATION OF AGRICULTURAL INSURANCE IN INDONESIA

#### . . . .

# **TRAINING SUMMARY / ACTION PLAN**

ENHANCING ABILITIES FOR METEOROLOGICAL / CLIMATOLOGICAL DATA USAGE July 29th, 2019 - August 16th, 2019


#### 1


KEY ACTIVITY 3 (ENHANCE ANALYSIS ABILITIES OF RISK ANALYSIS FOR CLIMATE CHANGE DATASET) .... **Current Activity** Next Activity Key activity 3 is supposed to provide 3 days in MRI, 5 participants 2.5 months in MRI, using MRI's HPC for 2 climate change projection data and information to support the implementatio researchers of climate change adaptation technology Medium resolution AGCM (20 km) based on Support for further downscaling into 5km within the agricultural insurance project

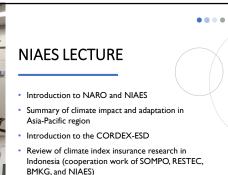
resolution

2

global warming scenarios





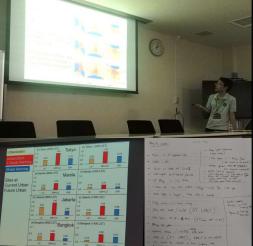

## **MRI TRAINING**

- Explanation on global warming situation and IPCC
- Utilization of MRI-AGCM data for analyzing future climate projection
- Exercise on the utilization of GrADS-based tools for producing figures, charts, and analysis of MRI-AGCM data
- regarding future condition of climate condition in





6




- Lecture of the effect of hydrometeorological extremes on serial productivity in Indonesia (cooperation work of SOMPO, RESTEC, BMKG, and NIAES)
- Introduction to NARO-APCC crop forecast service



- model simulation of Asian mega-cities

- 5. Backup options





# **TARC/NARO VISIT**

- Summary of future climate projection
- Introduction to the AgMIP activity
- Explanation of the project regarding the sensitivity of rice crop towards the effect of CO<sub>2</sub> fertilization

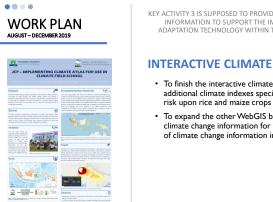
. . . .

- Implementation of the climate extreme warning for cold summer case in Tohoku region
- Visit to the Gradiotron
- Explanation on the utilization of the Gradiotron facility for global warming studies

## **FINAL LECTURE**

- Explanation on the role of IMA in disseminating information during the a disaster event
- · Explanation about the working process and responsible parties in the mitigation effort of a disaster event
- Explanation on how to approach public users in anticipating disaster events






KEY ACTIVITY 3 IS SUPPOSED TO PROVIDE CLIMATE CHANGE PROJECTION DATA AND INFORMATION TO SUPPORT THE IMPLEMENTATION OF CLIMATE CHANGE ADAPTATION TECHNOLOGY WITHIN THE AGRICULTURAL INSURANCE PROJECT

#### **CLIMATE PROJECTION INFORMATION**

- To finish the climate change atlas of Indonesia based on the future climate projection data
- To finish the high-resolution climate change atlas of Maluku and Papua area based on the statistical downscaling result
- To extend the analysis for the future climate projection data using the lesson learned from this training
- To provide high-resolution future climate projection information of Indonesian area based on research activities of 2 BMKG scientists in MRI (August – November)

9



KEY ACTIVITY 3 IS SUPPOSED TO PROVIDE CLIMATE CHANGE PROJECTION DATA AND INFORMATION TO SUPPORT THE IMPLEMENTATION OF CLIMATE CHANGE ADAPTATION TECHNOLOGY WITHIN THE AGRICULTURAL INSURANCE PROJECT

#### **INTERACTIVE CLIMATE ATLAS**

- To finish the interactive climate atlas platform with the additional climate indexes specifically adjusted for the climate risk upon rice and maize crops
- To expand the other WebGIS based platform in displaying climate change information for the purpose of serving the needs of climate change information in CEWS

.... WORK PLAN AUGUST-DECEMBER 2019

10

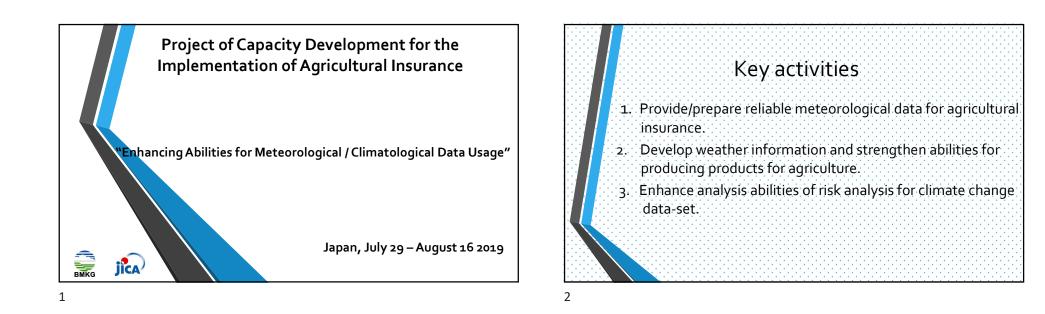


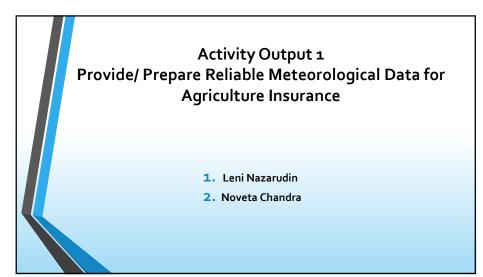
KEY ACTIVITY 3 IS SUPPOSED TO PROVIDE CLIMATE CHANGE PROJECTION DATA AND INFORMATION TO SUPPORT THE IMPLEMENTATION OF CLIMATE CHANGE ADAPTATION TECHNOLOGY WITHIN THE AGRICULTURAL INSURANCE PROJECT

#### **OTHERS**

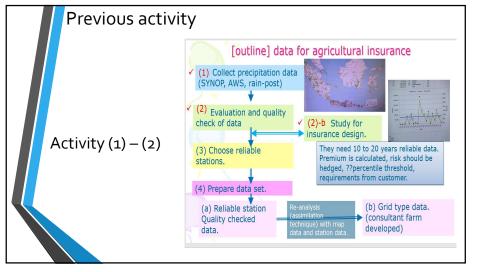
- To continue support various institution/agencies/ministries in terms of implementing the convergence of climate change information towards disaster risk reduction effort
- To support the next JICA project (Climate Change Phase II) in terms of using the climate projection information for spatial planning
- To deliver the information regarding HPC development for technical meeting forum later in Jakarta. BMKG is right now currently preparing high budget to initiate an integrated HPC system.

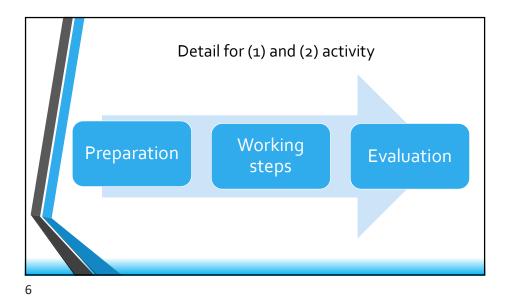
л

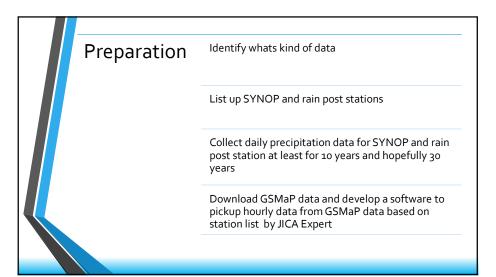

#### ....

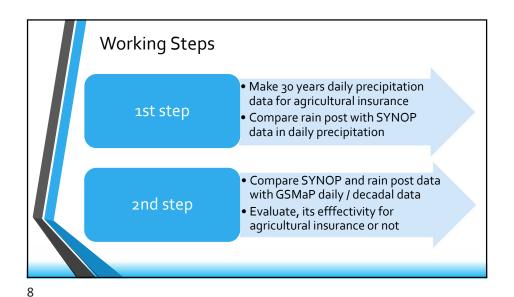

## IMPRESSIONS

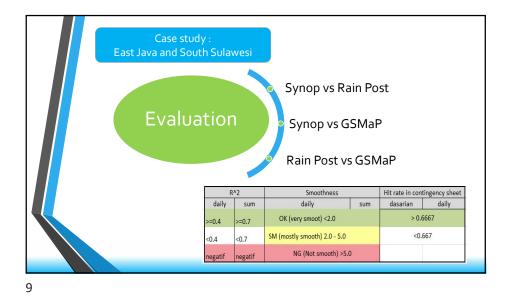
- Appropriate arrangement of training agenda and schedule
- Supportive and helpful program coordinator
- Welcoming and supportive lecturers and counterparts
- Fancy lunch and dinner occasions
- Several interesting site visits
- Respectful environment

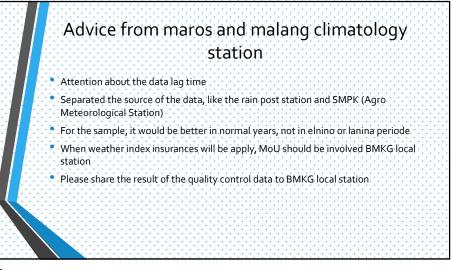




| Outline | Previous Activity       |
|---------|-------------------------|
|         | Japan Training Activity |
|         | Working Plan            |
|         | Progress                |













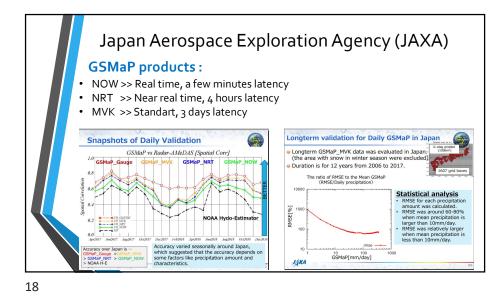


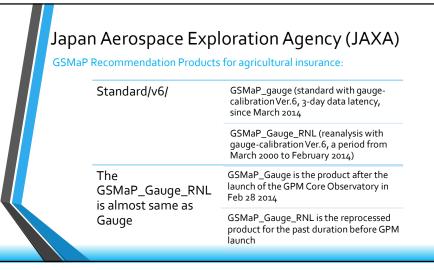

| Su |                      |                      |           |          |       |           |          |   |                      |              |           |         |                      |           |          |
|----|----------------------|----------------------|-----------|----------|-------|-----------|----------|---|----------------------|--------------|-----------|---------|----------------------|-----------|----------|
|    | vnop Banvu           | wangi ya K           | aliklatak |          |       |           |          | s | ynop Banyuwa         | ingi vs Kali | klatak    |         |                      |           |          |
| -  |                      | Synop vs R           |           | Synop vs | GSMaP | Rain post | vs GSMaP |   | Smoothness           | Synop vs     | Rain post | Synop v | s GSMaP              | Rain post | vs GSMa  |
|    | R^2                  | daily                | sum       | daily    | sum   | daily     | sum      |   | Smoothness           | daily        | sum       | daily   | sum                  | daily     | sum      |
|    | 2009                 | 0.146                | 0.748     | -0.027   | 0.977 | 0.091     | 0.955    |   | 2009                 | 1.91         | 9.02      |         | 3.84                 |           | 3.2      |
|    | 2010                 | 0.014                | 0.987     | -0.189   | 0.996 | -0.054    | 0.994    |   | 2010                 | 1.75         | 51.60     |         | 2.50                 |           | 44.2     |
|    | 2011                 | 0.001                | 0.955     | -0.093   | 0.995 | 0.015     | 0.876    |   | 2011                 | 2.00         | 6.68      |         | 2.10                 |           | 8.9      |
|    | 2012                 | 0.103                | 0.923     | -0.117   | 0.984 | 0.087     | 0.845    |   | 2012                 | 1.98         | 7.99      |         | 2.76                 |           | 7.2      |
|    | 2013                 | -0.127               | 0.973     | 0.876    | 0.996 | 0.096     | 0.963    |   | 2013                 | 3.62         | 3.47      |         | 1.47                 |           | 4.2      |
|    | 2014                 | -0.830               | 0.979     | 0.783    | 0.968 | 0.237     | 0.947    |   | 2014                 | 2.66         | 3.38      |         | 3.71                 |           | 5.9      |
|    | 2015                 | 0.015                | 0.977     | 0.732    | 0.992 | 0.152     | 0.981    |   | 2015                 | 3.22         | 3.02      |         | 2.01                 |           | 2.4      |
|    | 2016                 | -0.072               | 0.975     | 0.746    | 0.974 | 0.238     | 0.989    |   | 2016                 | 3.11         | 4.36      |         | 4.88                 |           | 2.9      |
|    | 2017                 | -0.047               | 0.948     | 0.870    | 0.964 | 0.088     | 0.874    |   | 2017                 | 2.23         | 6.47      |         | 4.91                 |           | 7.4      |
|    | 2018                 | 0.008                | 0.956     | 0.876    | 0.978 | 0.046     | 0.839    |   | 2018                 | 2.39         | 4.29      |         | 3.34                 |           | 6.9      |
| S  | ynop Banyu           |                      |           |          |       |           |          | 5 | ynop Banyuwa         | ngi vs Kalil | datak     |         |                      |           |          |
| F  | Proportion           | Synop vs             |           | Synop v  |       | Rain post |          |   | Hit rate in          | Synop vs     | Rain post | Synop v | s GSMaP              | Rain post | vs GSMaF |
|    |                      | daily                | sum       | daily    | sum   | daily     | sum      | L | contingency          | daily        | dasarian  | daily   | dasarian             | daily     | dasarian |
|    | 2009                 | 0.47                 | 0.90      |          |       |           |          |   | 2009                 | 0.92         | 0.75      |         | 0.86                 |           | 0.83     |
|    | 2010                 | 0.61                 | 0.99      |          | 0.88  |           |          |   | 2010                 | 0.85         | 0.78      |         | 0.89                 |           | 0.7      |
|    | 2011                 | 0.46                 | 1.19      |          |       |           |          |   | 2011                 | 0.92         | 0.72      |         | 0.94                 |           | 0.6      |
|    | 2012                 | 0.79                 | 1.43      |          | 1.03  |           |          |   | 2012                 | 0.90         | 0.81      |         | 0.94                 |           | 0.7      |
| 1  | 2013                 | 0.23                 | 1.60      |          | 0.88  |           |          |   | 2013                 | 0.84         | 0.83      |         | 0.97                 |           | 0.8      |
| -  | 2014                 | 0.25                 | 1.23      |          |       |           |          | - | 2014                 | 0.92         | 0.81      |         | 0.92                 |           | 0.8      |
|    | 2015                 | 0.31                 | 1.01      |          | 1.11  |           |          |   | 2015                 | 0.91         | 0.92      |         | 0.97                 |           | 0.89     |
|    |                      |                      |           |          |       |           |          |   |                      |              |           |         |                      |           |          |
| F  | 2016                 | 0.29                 | 1.10      |          | 1.09  |           |          | - | 2016                 | 0.88         | 0.81      |         | 0.86                 |           | 0.86     |
| E  | 2016<br>2017<br>2018 | 0.29<br>0.32<br>0.34 | 1.10      | 0.81     | 0.94  | 0.37      | 0.94     | E | 2016<br>2017<br>2018 | 0.88         | 0.75      |         | 0.86<br>0.94<br>0.97 |           | 0.86     |

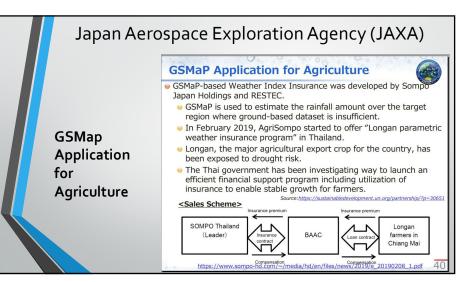
|                                                                                  | -                                                                                      | 018                                                                                  |                                                                         |                                                                             |                                                                          |                                                                                |                                                                                                      |                                                                                      |                                                                                       |                  |                                                                             |                    |                                                                  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------|--------------------|------------------------------------------------------------------|
| Synop Marc                                                                       |                                                                                        |                                                                                      |                                                                         |                                                                             |                                                                          |                                                                                | Synop Maros ve                                                                                       |                                                                                      |                                                                                       |                  |                                                                             |                    |                                                                  |
| R^2                                                                              | Synop vs F                                                                             |                                                                                      | Synop vs                                                                |                                                                             | Rain post v                                                              |                                                                                | Smoothness                                                                                           | Synop vs                                                                             |                                                                                       |                  | s GSMaP                                                                     | Rain post          |                                                                  |
|                                                                                  | daily                                                                                  | sum                                                                                  | daily                                                                   | sum                                                                         | daily                                                                    | sum                                                                            |                                                                                                      | daily                                                                                | sum                                                                                   | daily            | sum                                                                         | daily              | sum                                                              |
| 2009                                                                             | 0.311                                                                                  | 0.983                                                                                | 0.478                                                                   | 0.980                                                                       | 0.281                                                                    | 0.958                                                                          | 2009                                                                                                 | 1.23                                                                                 | 2.52                                                                                  |                  | 3.77                                                                        |                    | 4.1                                                              |
| 010                                                                              | 0.001                                                                                  | 0.993                                                                                | -0.008                                                                  | 0.879                                                                       | -0.124                                                                   | 0.831                                                                          | 2010                                                                                                 | 1.46                                                                                 | 2.85                                                                                  |                  | 13.89                                                                       |                    | 18.4                                                             |
| 2011                                                                             | 0.046                                                                                  | 0.996                                                                                | 0.438                                                                   | 0.988                                                                       | 0.027                                                                    | 0.991                                                                          | 2011                                                                                                 | 1.88                                                                                 | 1.75                                                                                  |                  | 3.33                                                                        |                    | 2.37                                                             |
| 2012                                                                             | 0.268                                                                                  | 0.926                                                                                | 0.268                                                                   | 0.963                                                                       | -0.138                                                                   | 0.787                                                                          | 2012                                                                                                 | 1.12                                                                                 | 10.23                                                                                 |                  | 6.79                                                                        |                    | 10.30                                                            |
| 2013                                                                             | 0.355                                                                                  | 0.985                                                                                | 0.388                                                                   | 0.960                                                                       | 0.137                                                                    | 0.966                                                                          | 2013                                                                                                 | 0.89                                                                                 | 3.15                                                                                  |                  | 6.01                                                                        |                    | 6.59                                                             |
| 2014                                                                             | 0.526                                                                                  | 0.986                                                                                | 0.510                                                                   | 0.937                                                                       | 0.285                                                                    | 0.950                                                                          | 2014                                                                                                 | 0.81                                                                                 | 2.35                                                                                  |                  | 6.19                                                                        |                    | 5.78                                                             |
| 2015                                                                             | 0.699                                                                                  | 0.985                                                                                | 0.225                                                                   | 0.966                                                                       | 0.468                                                                    | 0.979                                                                          | 2015                                                                                                 | 0.69                                                                                 | 2.30                                                                                  |                  | 2.91                                                                        |                    | 3.02                                                             |
| 2016                                                                             | 0.340                                                                                  | 0.972                                                                                | 0.510                                                                   | 0.978                                                                       | 0.522                                                                    | 0.980                                                                          | 2016                                                                                                 | 0.97                                                                                 | 5.38                                                                                  |                  | 4.67                                                                        |                    | 3.7                                                              |
| 2017                                                                             | 0.300                                                                                  | 0.993                                                                                | 0.498                                                                   | 0.985                                                                       | 0.177                                                                    | 0.975                                                                          | 2017                                                                                                 | 1.01                                                                                 | 2.18                                                                                  |                  | 3.28                                                                        |                    | 4.16                                                             |
| 2018                                                                             | 0.410                                                                                  | 0.990                                                                                | 0.273                                                                   | 0.985                                                                       | 0.221                                                                    | 0.991                                                                          | 2018                                                                                                 | 0.88                                                                                 | 2.25                                                                                  |                  | 2.62                                                                        |                    | 2.0                                                              |
| 2010                                                                             | 0.410                                                                                  | 0.990                                                                                | 0.275                                                                   | 0.505                                                                       | 0.221                                                                    | 0.991                                                                          | 2018                                                                                                 | 0.00                                                                                 |                                                                                       |                  |                                                                             |                    |                                                                  |
|                                                                                  | s vs Gentun                                                                            | g                                                                                    |                                                                         |                                                                             |                                                                          |                                                                                | Synop Maros vs                                                                                       | Gentung                                                                              |                                                                                       |                  |                                                                             |                    |                                                                  |
| ynop Maro                                                                        |                                                                                        | g                                                                                    | Synop vs                                                                |                                                                             | Rain post v                                                              |                                                                                |                                                                                                      |                                                                                      | Rain post                                                                             | Synop v          | s GSMaP                                                                     | Rain post          | vs GSMaF                                                         |
| Synop Maro                                                                       | s vs Gentun<br>Synop vs<br>daily                                                       | <b>g</b><br>Rain post<br>sum                                                         | Synop vs<br>daily                                                       | GSMaP<br>sum                                                                | Rain post v<br>daily                                                     | vs GSMaP<br>sum                                                                | Synop Maros vs<br>Hit rate in<br>contingency                                                         | Gentung<br>Synop vs<br>daily                                                         | Rain post<br>dasarian                                                                 | Synop v<br>daily | s GSMaP<br>dasarian                                                         | Rain post<br>daily | dasarian                                                         |
|                                                                                  | s vs Gentun<br>Synop vs                                                                | g<br>Rain post                                                                       | Synop vs                                                                | GSMaP                                                                       | Rain post v                                                              | vs GSMaP                                                                       | Synop Maros vs<br>Hit rate in                                                                        | Gentung<br>Synop vs                                                                  | Rain post<br>dasarian<br>0.81                                                         |                  | s GSMaP                                                                     |                    | dasarian                                                         |
| nop Maro<br>Proportion                                                           | s vs Gentun<br>Synop vs<br>daily                                                       | <b>g</b><br>Rain post<br>sum                                                         | Synop vs<br>daily                                                       | GSMaP<br>sum<br>0.590<br>0.510                                              | Rain post v<br>daily                                                     | rs GSMaP<br>sum<br>0.710<br>0.530                                              | Synop Maros vs<br>Hit rate in<br>contingency                                                         | Gentung<br>Synop vs<br>daily                                                         | Rain post<br>dasarian<br>0.81<br>0.72                                                 |                  | s GSMaP<br>dasarian                                                         |                    | dasarian<br>0.8                                                  |
| Synop Maro<br>Proportion<br>2009                                                 | s vs Gentun<br>Synop vs<br>daily<br>0.480                                              | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020                                     | Synop vs<br>daily<br>0.550<br>0.220<br>0.440                            | GSMaP<br>sum<br>0.590<br>0.510<br>0.590                                     | Rain post v<br>daily<br>0.507<br>0.017<br>0.248                          | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560                                     | Synop Maros vs<br>Hit rate in<br>contingency<br>2009                                                 | Gentung<br>Synop vs<br>daily<br>0.88                                                 | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89                                         |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92                                 |                    | dasarian<br>0.8<br>0.6                                           |
| Proportion<br>2009<br>2010                                                       | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470                                     | g<br>Rain post<br>sum<br>0.710<br>0.920                                              | Synop vs<br>daily<br>0.550<br>0.220<br>0.440<br>0.423                   | GSMaP<br>sum<br>0.590<br>0.510                                              | Rain post v<br>daily<br>0.507<br>0.017                                   | rs GSMaP<br>sum<br>0.710<br>0.530                                              | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010                                         | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75                                         | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89<br>0.80                                 |                  | s GSMaP<br>dasarian<br>0.89<br>0.64                                         |                    | dasarian<br>0.83<br>0.61<br>0.83                                 |
| Synop Marc<br>Proportion<br>2009<br>2010<br>2011                                 | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470<br>0.480                            | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020                                     | Synop vs<br>daily<br>0.550<br>0.220<br>0.440                            | GSMaP<br>sum<br>0.590<br>0.510<br>0.590                                     | Rain post v<br>daily<br>0.507<br>0.017<br>0.248                          | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560                                     | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010<br>2011                                 | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75<br>0.79                                 | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89                                         |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92                                 |                    | dasarian<br>0.83<br>0.61<br>0.83<br>0.69                         |
| Synop Maro<br>Proportion<br>2009<br>2010<br>2011<br>2012                         | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470<br>0.480<br>0.670                   | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020<br>0.701                            | Synop vs<br>daily<br>0.550<br>0.220<br>0.440<br>0.423<br>0.566<br>0.804 | GSMaP<br>sum<br>0.590<br>0.510<br>0.590<br>0.662<br>0.848<br>1.040          | Rain post v<br>daily<br>0.507<br>0.017<br>0.248<br>0.125                 | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560<br>0.857                            | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010<br>2011<br>2012                         | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75<br>0.79<br>0.83                         | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89<br>0.80<br>0.78<br>0.78                 |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92<br>0.71                         |                    |                                                                  |
| Synop Maro<br>Proportion<br>2009<br>2010<br>2011<br>2012<br>2013                 | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470<br>0.480<br>0.670<br>0.645          | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020<br>0.701<br>0.980                   | Synop vs<br>daily<br>0.550<br>0.220<br>0.440<br>0.423<br>0.566          | GSMaP<br>sum<br>0.590<br>0.510<br>0.590<br>0.662<br>0.848                   | Rain post v<br>daily<br>0.507<br>0.017<br>0.248<br>0.125<br>0.449        | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560<br>0.857<br>0.815                   | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010<br>2011<br>2012<br>2013                 | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75<br>0.79<br>0.83<br>0.86                 | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89<br>0.80<br>0.78                         |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92<br>0.71<br>0.89                 |                    | dasarian<br>0.8<br>0.6<br>0.8<br>0.6<br>0.8<br>0.8               |
| Synop Marco<br>Proportion<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014        | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470<br>0.480<br>0.670<br>0.645<br>0.834 | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020<br>0.701<br>0.980<br>1.023          | Synop vs<br>daily<br>0.550<br>0.220<br>0.440<br>0.423<br>0.566<br>0.804 | GSMaP<br>sum<br>0.590<br>0.510<br>0.590<br>0.662<br>0.848<br>1.040          | Rain post<br>daily<br>0.507<br>0.017<br>0.248<br>0.125<br>0.449<br>0.542 | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560<br>0.857<br>0.815<br>0.927          | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014         | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75<br>0.79<br>0.83<br>0.86<br>0.87         | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89<br>0.80<br>0.78<br>0.78                 |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92<br>0.71<br>0.89<br>0.83         |                    | dasarian<br>0.83<br>0.61<br>0.83<br>0.69<br>0.83                 |
| Synop Marc<br>Proportion<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015 | s vs Gentun<br>Synop vs<br>daily<br>0.480<br>0.470<br>0.670<br>0.645<br>0.834<br>0.925 | g<br>Rain post<br>sum<br>0.710<br>0.920<br>1.020<br>0.701<br>0.980<br>1.023<br>1.114 | Synop vs<br>daily<br>0.550<br>0.440<br>0.423<br>0.566<br>0.804<br>0.588 | GSMaP<br>sum<br>0.590<br>0.510<br>0.590<br>0.662<br>0.848<br>1.040<br>0.820 | Rain post<br>daily<br>0.507<br>0.248<br>0.125<br>0.449<br>0.542<br>0.518 | rs GSMaP<br>sum<br>0.710<br>0.530<br>0.560<br>0.857<br>0.815<br>0.927<br>0.657 | Synop Maros vs<br>Hit rate in<br>contingency<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015 | Gentung<br>Synop vs<br>daily<br>0.88<br>0.75<br>0.79<br>0.83<br>0.86<br>0.87<br>0.91 | Rain post<br>dasarian<br>0.81<br>0.72<br>0.89<br>0.80<br>0.78<br>0.80<br>0.78<br>0.80 |                  | s GSMaP<br>dasarian<br>0.89<br>0.64<br>0.92<br>0.71<br>0.89<br>0.83<br>0.89 |                    | dasarian<br>0.83<br>0.61<br>0.83<br>0.83<br>0.83<br>0.83<br>0.83 |






# Sompo's Agricultural Insurance Activities


# Main points:

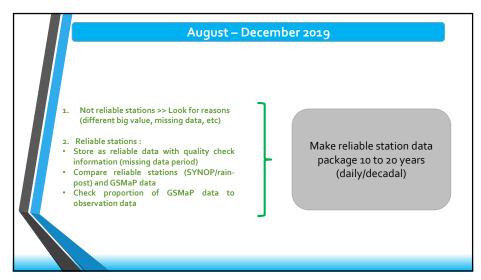

- Weather Index is calculated by Insurance company, but case in Myanmar and Thailand when using GSMaP data, weather index calculated by private company (RESTEC/ The Remote Sensing Technology Center of Japan)
- 2. Meteorological agency prepare reliable meteorological data and the data should be accessable by public
- 3. The length of climate data affects premium price
- 4. GSMaP data used to filling missed observation data

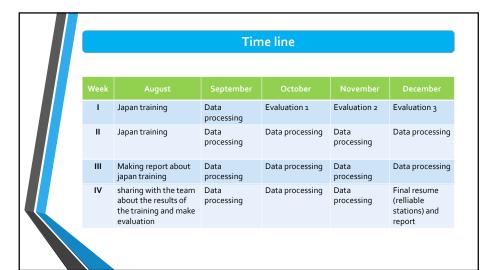
(case study : Myanmar and Thailand)

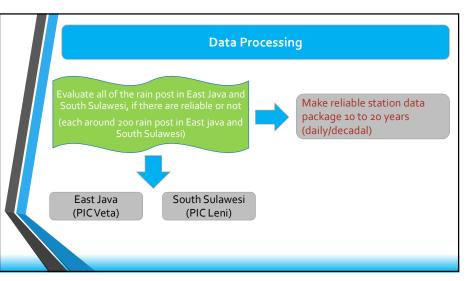









# National Agriculture and Food Research Organization (NARO) in Morioka Main points: Agricultural under Changing Climate Projected Climate Change International efforts to project the impact on rice future Early Warning System for current climatic variability Visit Gradiotron (an open laboratory) Temperature gradient chamber CO2 supply and control









# Progress December 2019

#### Trial for scripts and software.

Continue to extract GSMaP data and pick up data from GSMaP (2005~2008)
 >> done

#### SYNOP-rain-post comparison.

- Continue to extend comparison from 2009 2018 to 2005 2018 for the other SYNOP rain post in East Java and South Sulawesi
- East Java : 3 SYNOP and 7 rain post, has finished for 2005 2018.
- South Sulawesi : 3 SYNOP and 3 rain post, has finished for 2008 2018.

#### [Challenge] develop software.

• Let's try to develop software (Python or C) referring Excel sheet equations. Tonouchi tries to code it in C, hopefully until next visit(probably Jan. 2020)



| 29 |
|----|
|----|

| Rain Post         | Lat      | Lon      | Year  | Distance |             | 12                 | Smoot     | thness  | Propo  | rtion      | Hit rate in conti | ingency sheet | Reliable |
|-------------------|----------|----------|-------|----------|-------------|--------------------|-----------|---------|--------|------------|-------------------|---------------|----------|
| Rain Post         | Lat      | LON      | rear  | (km)     | daily       | sum                | daily     | sum     | daily  | sum        | dasarian          | daily         |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 |       |          |             |                    |           |         |        |            |                   |               |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2005  | 6        | 0.008       | 0.943              | 2.236     | 5.110   | 0.483  | 1.581      | 0.778             | 0.877         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2006  |          | 0.167       | 0.976              | 1.725     | 4,397   | 0.749  | 1.396      | 0.833             | 0.918         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2007  |          | 0.063       | 0.998              | 1.826     | 149.724 | 0.977  | 0.998      | 0.694             | 0.855         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2008  |          | 0.106       | 0.976              | 1.758     | 3.714   | 0.734  | 1.725      | 0.857             | 0.885         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2009  |          | 0.146       | 0.748              | 1.909     | 9.017   | 0.471  | 0.900      | 0.750             | 0.918         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2010  |          | 0.014       | 0.987              | 1.752     | 51.598  | 0.609  | 0.987      | 0.778             | 0.855         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2011  |          | 0.001       | 0.955              | 1.998     | 6.682   | 0.461  | 1.191      | 0.722             | 0.923         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2012  |          | 0.103       | 0.923              | 1.978     | 7.989   | 0.792  | 1.426      | 0.806             | 0.902         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2013  |          | -0.127      | 0.973              | 3.617     | 3.469   | 0.235  | 1.598      | 0.833             | 0.841         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2014  |          | -0.083      | 0.979              | 2.660     | 3.377   | 0.251  | 1.230      | 0.806             | 0.923         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2015  |          | 0.015       | 0.977              | 3.220     | 3.039   | 0.306  | 1.011      | 0.917             | 0.910         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2016  |          | -0.072      | 0.975              | 3.107     | 4.364   | 0.287  | 1.099      | 0.806             | 0.877         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2017  |          | -0.047      | 0.948              | 2.227     | 6.472   | 0.315  | 0.924      | 0.750             | 0.874         |          |
| Kaliklatak        | -8.18533 | 114.3402 | 2018  |          | 0.008       | 0.956              | 2.388     | 4.294   | 0.335  | 0.998      | 0.806             | 0.901         |          |
| •                 |          |          |       |          |             |                    |           |         |        |            |                   |               |          |
|                   |          |          | R^2   | _        |             | Smoothn            | ess       |         |        |            | ency sheet        |               |          |
|                   |          | daily    | su    |          |             | laily<br>smoot) <2 | .0        | sum     | dasari | an > 0.666 | daily<br>7        |               |          |
|                   |          | <0.4     | <0.7  |          | 1 (mostly s |                    |           |         |        | <0.667     |                   |               |          |
|                   |          | negatif  | negat | lif      | NG          | (Not smoo          | oth) >5.0 |         |        |            |                   |               |          |

| GSMAP             | Lon      | Lat      | Year    | R/      | 2         | Smoot        | thness | Propo  | rtion      | Hit rate in con | tingency sheet | Reliable |
|-------------------|----------|----------|---------|---------|-----------|--------------|--------|--------|------------|-----------------|----------------|----------|
| GSIMAP            | Lon      | Lat      | rear    | daily   | sum       | daily        | sum    | daily  | sum        | dasarian        | daily          |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2005    | 0.167   | 0.994     |              | 2.017  | 0.477  | 0.905      | 0.889           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2006    | -0.029  | 0.956     |              | 5.671  | 0.274  | 0.927      | 0.889           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2007    | 0.002   | 0.988     |              | 2.949  | 0.229  | 0.759      | 0.917           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2008    | -0.064  | 0.994     |              | 1.860  | 0.240  | 0.884      | 0.971           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2009    | -0.027  | 0.977     |              | 3.840  | 0.293  | 0.942      | 0.861           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2010    | -0.189  | 0.996     |              | 2.498  | 0.175  | 0.884      | 0.889           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2011    | -0.093  | 0.995     |              | 2.102  | 0.300  | 1.186      | 0.944           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2012    | -0.117  | 0.984     |              | 2.762  | 0.217  | 1.028      | 0.944           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2013    | 0.876   | 0.996     |              | 1.474  | 0.687  | 0.877      | 0.972           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2014    | 0.783   | 0.968     |              | 3.708  | 0.803  | 0.923      | 0.917           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2015    | 0.732   | 0.992     |              | 2.011  | 0.871  | 1.109      | 0.972           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2016    | 0.746   | 0.974     |              | 4.884  | 0.854  | 1.094      | 0.861           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2017    | 0.870   | 0.964     |              | 4.914  | 0.808  | 0.942      | 0.944           |                |          |
| Stamet Banyuwangi | -8.21667 | 114.3833 | 2018    | 0.876   | 0.978     |              | 3.338  | 0.828  | 0.939      | 0.972           |                |          |
|                   | 1        | R        | ^2      |         | Smo       | othness      |        | Hitrat | e in conti | ngency sheet    |                |          |
|                   |          | daily    | sum     |         | daily     | ouncoo       | sum    | _      | arian      | daily           |                |          |
|                   |          | >=0.4    | >=0.7   | OK (    | very smoo | t) <2.0      | 1      |        | > 0.66     | 567             |                |          |
|                   |          | <0.4     | <0.7    | SM (mos | tly smoot | n) 2.0 - 5.0 | )      |        | <0.66      | 57              |                |          |
|                   |          | negatif  | negatif | 1 3     | NG (Not : | smooth) >5   | 5.0    |        |            |                 |                |          |

^

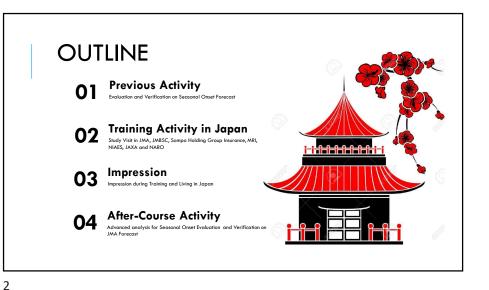
| GSMAP      | Lon      | Lat      | Year    | R/       | 2          | Smoot      | thness | Propo | rtion   |             | tingency sheet | Relia |
|------------|----------|----------|---------|----------|------------|------------|--------|-------|---------|-------------|----------------|-------|
|            |          |          |         | daily    | sum        | daily      | sum    | daily | sum     | dasarian    | daily          |       |
| Kaliklatak | -8.18533 | 114.3402 | 2005    | -0.029   | 0.9548     |            | 4.873  | 0.186 | 0.516   | 0.75        |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2006    | 0.220    | 0.868      |            | 9.954  | 0.335 | 0.642   | 0.778       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2007    | 0.101    | 0.963      |            | 7.286  | 0.130 | 0.231   | 0.556       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2008    | 0.198    | 0.983      |            | 3.407  | 0.315 | 0.507   | 0.829       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2009    | 0.091    | 0.955      |            | 3.206  | 0.375 | 0.956   | 0.833       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2010    | -0.054   | 0.994      |            | 44.202 | 0.078 | 0.994   | 0.750       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2011    | 0.015    | 0.876      |            | 8.914  | 0.317 | 0.854   | 0.694       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2012    | 0.087    | 0.845      |            | 7.268  | 0.244 | 0.704   | 0.778       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2013    | 0.096    | 0.963      |            | 4.283  | 0.280 | 0.577   | 0.806       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2014    | 0.237    | 0.947      |            | 5.916  | 0.622 | 0.834   | 0.833       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2015    | 0.152    | 0.981      |            | 2.404  | 0.507 | 1.114   | 0.889       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2016    | 0.238    | 0.989      |            | 2.936  | 0.481 | 0.977   | 0.861       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2017    | 0.088    | 0.874      |            | 7.454  | 0.369 | 0.935   | 0.750       |                |       |
| Kaliklatak | -8.18533 | 114.3402 | 2018    | 0.046    | 0.839      |            | 6.950  | 0.273 | 0.846   | 0.778       |                |       |
| -          |          |          |         |          |            |            |        |       |         |             |                |       |
|            | _        | R/       | -       |          | Smoot      | hness      |        |       |         | gency sheet |                |       |
|            |          | daily    | sum     |          | daily      |            | sum    | dasa  |         | daily       |                |       |
|            | >        | =0.4     | >=0.7   | OK (v    | ery smoot) | <2.0       |        |       | > 0.666 | 57          |                |       |
|            | <        | 0.4      | <0.7    | SM (most | ly smooth) | 2.0 - 5.0  |        |       | <0.66   | 7           |                |       |
|            | n        | egatif   | negatif | 1        | NG (Not sn | nooth) >5. | 0      |       |         |             |                |       |

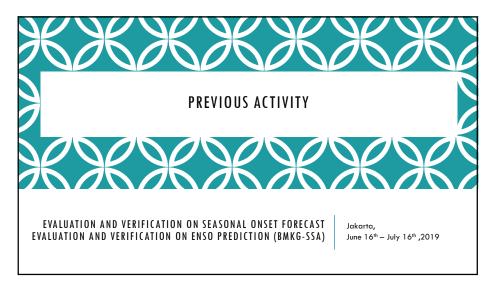
| Role       | n Post       | Lat   | Lon      | Year  | Distanc |            | 2       | Smoot     | hness  | Propo | rtion      | Hit rate in cont | ingency sheet | Reliable |
|------------|--------------|-------|----------|-------|---------|------------|---------|-----------|--------|-------|------------|------------------|---------------|----------|
| han        | Trosc        | Lat   | LOIT     | rear  | (km)    | daily      | sum     | daily     | sum    | daily | sum        | dasarian         | daily         |          |
| Stamet Bar | nyuwangi -8. | 21667 | 114.3833 |       |         |            |         |           |        |       |            |                  |               |          |
| Alas Malar | .g -8.3      | 316   | 114.252  | 2005  | 18      | -0.061     | 0.971   | 3.018     | 4.242  | 0.340 | 1.267      | 0.667            | 0.874         |          |
| Alas Malar | ·g -8.3      | 316   | 114.252  | 2006  |         | 0.011      | 0.987   | 2.180     | 3.194  | 0.580 | 1.680      | 0.806            | 0.888         |          |
| Alas Malar | ·g -8.       | 316   | 114.252  | 2007  |         | -0.008     | 0.968   | 2.158     | 11.201 | 0.372 | 1.575      | 0.806            | 0.901         |          |
| Alas Malar | ·g -8.       | 316   | 114.252  | 2008  |         | -0.108     | 0.981   | 2.845     | 3.141  | 0.288 | 1.509      | 0.771            | 0.879         |          |
| Alas Malar | ·g -8.       | 316   | 114.252  | 2009  |         | 0.028      | 0.950   | 2.553     | 5.311  | 0.508 | 1.308      | 0.833            | 0.890         |          |
| Alas Malar | ·g -8.3      | 316   | 114.252  | 2010  |         | -0.139     | 0.985   | 2.914     | 4.546  | 0.344 | 1.660      | 0.667            | 0.808         |          |
| Alas Malar | ıg -8.:      | 316   | 114.252  | 2011  |         | -0.060     | 0.867   | 3.772     | 9.867  | 0.215 | 1.276      | 0.750            | 0.921         |          |
| Alas Malar | ig -8.3      | 316   | 114.252  | 2012  |         | -0.077     | 0.945   | 4.183     | 4.640  | 0.337 | 1.630      | 0.861            | 0.885         |          |
| Alas Malar | g -8.        | 316   | 114.252  | 2013  |         | 0.085      | 0.963   | 1.537     | 5.712  | 0.589 | 1.367      | 0.750            | 0.879         |          |
| Alas Malar | -8.1         | 316   | 114.252  | 2014  |         | 0.148      | 0.948   | 1.761     | 4.766  | 0.713 | 1.478      | 0.750            | 0.901         |          |
| Alas Malar | ·g -8.       | 316   | 114.252  | 2015  |         | 0.003      | 0.933   | 2.924     | 4.297  | 0.589 | 1.959      | 0.861            | 0.888         |          |
| Alas Malar | ·g -8.3      | 316   | 114.252  | 2016  |         | 0.182      | 0.985   | 1.422     | 4.045  | 1.147 | 2.139      | 0.750            | 0.866         |          |
| Alas Malar | -8.:         | 316   | 114.252  | 2017  |         | 0.028      | 0.981   | 1.702     | 4.026  | 0.718 | 1.959      | 0.667            | 0.838         |          |
| Alas Malar | -8.          | 316   | 114.252  | 2018  |         | 0.399      | 0.968   | 1.070     | 4.021  | 1.066 | 1.575      | 0.833            | 0.915         |          |
|            |              | Г     | F        | R^2   |         |            | Smoot   | ness      | -      | Hitra | ite in con | tingency shee    | et l          |          |
|            |              | t     | daily    | su    | m       |            | daily   |           | sum    | _     | sarian     | daily            |               |          |
|            |              |       | >=0.4    | >=0.7 |         | OK (ver    | smoot)  | <2.0      |        |       | > 0.       | 6667             |               |          |
|            |              |       | <0.4     | <0.7  |         | 5M (mostly | smooth) | 2.0 - 5.0 |        |       | <0.        | .667             |               |          |
|            |              |       | negatif  | negat | HF      | NO         | (Not sm | ooth) >5. | 0      |       |            |                  |               |          |

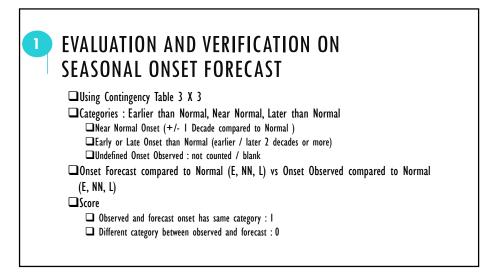
| GSMAP       | 1      | 1.0     | Mana       | R      | ^2          | Smoot      | hness   | Propo       | ortion                 | Hit rate in cont         | ingency sheet | Reliable |
|-------------|--------|---------|------------|--------|-------------|------------|---------|-------------|------------------------|--------------------------|---------------|----------|
| GSMAP       | Lon    | Lat     | Year       | daily  | sum         | daily      | sum     | daily       | sum                    | dasarian                 | daily         |          |
| Alas Malang | -8.316 | 114.252 | 2005       | -0.080 | 0.945       |            | 6.460   | 0.179       | 0.665                  | 0.611                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2006       | 0.031  | 0.993       |            | 1.903   | 0.205       | 0.580                  | 0.833                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2007       | -0.031 | 0.9892      |            | 35.057  | 0.172       | 0.989                  | 0.861                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2008       | -0.100 | 0.959       |            | 4.418   | 0.150       | 0.628                  | 0.771                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2009       | -0.047 | 0.952       |            | 4.511   | 0.183       | 0.709                  | 0.778                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2010       | -0.054 | 0.982       |            | 5.410   | 0.078       | 0.571                  | 0.667                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2011       | -0.158 | 0.892       |            | 471.246 | 0.115       | 0.115                  | 0.722                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2012       | -0.114 | 0.942       |            | 3.952   | 0.115       | 0.637                  | 0.889                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2013       | -0.147 | 0.969       |            | 4.699   | 0.100       | 0.650                  | 0.806                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2014       | -0.070 | 0.867       |            | 7.742   | 0.124       | 0.621                  | 0.750                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2015       | -0.065 | 0.975       |            | 3.296   | 0.129       | 0.531                  | 0.778                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2016       | -0.160 | 0.981       |            | 4.288   | 0.113       | 0.499                  | 0.722                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2017       | -0.125 | 0.968       |            | 5.944   | 0.120       | 0.495                  | 0.722                    |               |          |
| Alas Malang | -8.316 | 114.252 | 2018       | -0.045 | 0.970       |            | 2.914   | 0.158       | 0.585                  | 0.889                    |               |          |
|             |        |         | _          |        |             |            |         |             |                        |                          | 1             |          |
|             |        | daily   | R^2<br>sum | _      | Sr<br>dail  | noothness  | su      |             | rate in co<br>lasarian | ntingency sheet<br>daily |               |          |
|             |        | >=0.4   | >=0.7      | C      | 0K (very sm |            | su      | .m <u>c</u> |                        | .6667                    |               |          |
|             |        | <0.4    | <0.7       | SM (r  | nostly smo  | oth) 2.0 - | 5.0     |             | <0                     | .667                     |               |          |
|             |        | negatif | negatif    |        | NG (No      | ot smooth) | >5.0    |             |                        |                          |               |          |

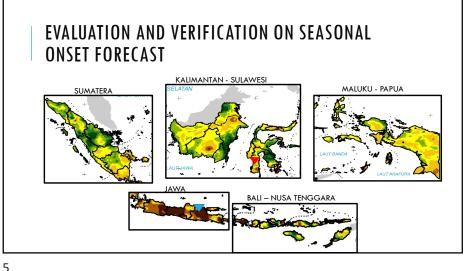
| Rain Post      | Lat   | Lon     | Year  | Distance | R/        | 2          | Smoot    | thness  | Propo       | rtion      | Hit rate in cont | ingency sheet | Reliab |
|----------------|-------|---------|-------|----------|-----------|------------|----------|---------|-------------|------------|------------------|---------------|--------|
| Rain Post      | Lat   | LON     | Tear  | (km)     | daily     | sum        | daily    | sum     | daily       | sum        | dasarian         | daily         |        |
| Stamet Paotere | -5.11 | 119.42  |       |          |           |            |          |         |             |            |                  |               |        |
| Barombong      | -5.20 | 119.50  | 2008  | 13       | 0.075     | 0.974      | 1.780    | 3.123   | 0.226       | 0.495      | 0.850            | 0.833         |        |
| Barombong      | -5.20 | 119.50  | 2009  |          | 0.355     | 0.936      | 1.330    | 3.964   | 0.306       | 0.385      | 0.906            | 0.903         |        |
| Barombong      | -5.20 | 119.50  | 2010  |          | 0.113     | 0.972      | 1.636    | 4,781   | 0.173       | 0.509      | 0.792            | 0.639         |        |
| Barombong      | -5.20 | 119.50  | 2011  |          | 0.287     | 0.988      | 1.300    | 2.571   | 0.398       | 0.583      | 0.858            | 0.889         |        |
| Barombong      | -5.20 | 119.50  | 2012  |          | 0.207     | 0.970      | 1.360    | 3.675   | 0.362       | 0.692      | 0.899            | 0.806         |        |
| Barombong      | -5.20 | 119.50  | 2013  |          | 0.366     | 0.850      | 1.008    | 8.383   | 0.484       | 0.657      | 0.893            | 0.800         |        |
| Barombong      | -5.20 | 119.50  | 2014  |          | 0.176     | 0.966      | 1.437    | 3.448   | 0.252       | 0.488      | 0.885            | 0.861         |        |
| Barombong      | -5.20 | 119.50  | 2015  |          | 0.499     | 0.990      | 0.891    | 1.928   | 0.396       | 0.542      | 0.915            | 0.778         |        |
| Barombong      | -5.20 | 119.50  | 2016  |          | 0.378     | 0.849      | 0.868    | 11.536  | 0.307       | 0.273      | 0.928            | 0.844         |        |
| Barombong      | -5.20 | 119.50  | 2017  |          | 0.313     | 0.948      | 1.019    | 5.276   | 0.314       | 0.557      | 0.871            | 0.778         |        |
| Barombong      | -5.20 | 119.50  | 2018  |          | 0.500     | 0.986      | 0.752    | 2.388   | 0.397       | 0.534      | 0.879            | 0.861         |        |
|                | 10000 | 100000  |       |          |           |            | <u> </u> | 100,000 | 2012/201    | 12333      |                  |               | -      |
|                |       |         | R^2   |          |           | Smoothne   | ess      |         | Hit rate in | o continge | ency sheet       |               |        |
|                |       | daily   | su    | ım       | d         | laily      |          | sum     | dasaria     | n          | daily            |               |        |
|                |       | >=0.4   | >=0.7 | ,        | OK (very  | smoot) <2  | .0       |         |             | > 0.6667   | ,                |               |        |
|                |       | <0.4    | <0.7  | SM       | (mostly s | mooth) 2.0 | 0 - 5.0  |         |             | <0.667     |                  |               |        |
|                |       | negatif | negat |          | NG        | (Not smoo  | th) >5.0 |         |             |            |                  |               |        |

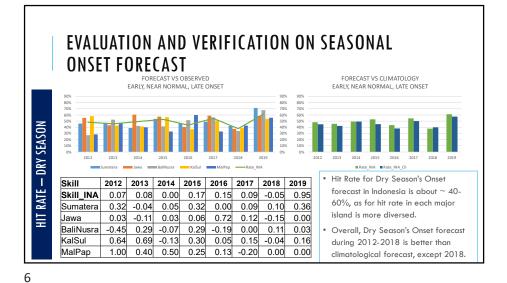
| 669.440        |         | 1963.0   | <u></u> |         | R^2          | Smoo      | thness    | Prop  | ortion         | Hit rate in cont | ingency sheet | Reliable |
|----------------|---------|----------|---------|---------|--------------|-----------|-----------|-------|----------------|------------------|---------------|----------|
| GSMAP          | Lon     | Lat      | Yea     | daily   | sum          | daily     | sum       | daily | sum            | dasarian         | daily         |          |
| Stamet Paotere | -5.1137 | 119.4198 | 200     | 3 0.28  | 0.981        |           | 3.831     | 0.496 | 0.801          | 0.830            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 200     | 0.00    | 59 0.968     |           | 4.426     | 0.390 | 0.824          | 0.972            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | -0.0    | 55 0.985     |           | 4.133     | 0.353 | 0.924          | 0.833            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 0.03    | 0.977        |           | 3.930     | 0.369 | 0.777          | 0.833            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 2 0.00  | 0.986        |           | 2.503     | 0.253 | 0.908          | 0.944            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 3 0.00  | 0.969        |           | 5.710     | 0.386 | 0.942          | 0.944            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 0.03    | 0.989        |           | 2.541     | 0.390 | 0.995          | 0.833            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 5 0.04  | 0.966        |           | 3.188     | 0.492 | 1.106          | 0.861            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | -0.15   | 0.987        |           | 2.471     | 0.168 | 0.926          | 0.944            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | -0.0    | 0.987        |           | 3.205     | 0.303 | 0.705          | 0.806            |               |          |
| Stamet Paotere | -5.1137 | 119.4198 | 201     | 3 0.03  | 0.970        |           | 4.178     | 0.357 | 0.818          | 0.917            |               |          |
|                |         | Г        | R       | ^2      |              | Smoothn   | less      | 1     | Hit rate in co | ontingency sheet | 1             |          |
|                |         |          | daily   | sum     |              | daily     |           | sum   | dasarian       | daily            |               |          |
|                |         | >=       | 0.4     | >=0.7   | OK (very     | smoot) <  | 2.0       |       | >              | 0.6667           |               |          |
|                |         | <0.      | .4      | <0.7    | SM (mostly s | mooth) 2. | 0 - 5.0   |       | <              | 0.667            |               |          |
|                |         |          | gatif   | negatif | NG           | (Not smoo | oth) >5.0 |       |                |                  |               |          |

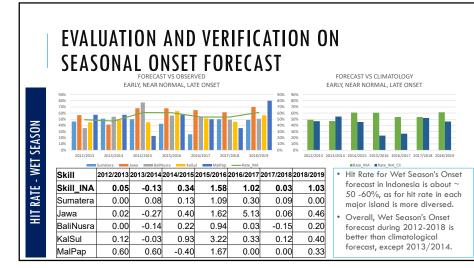

| GSMAP     | Lon  | Lat     | Year    |        | ^2          | Smoot        | thness  | Propo | rtion   | Hit rate in c | ontingency sheet | Reliab |
|-----------|------|---------|---------|--------|-------------|--------------|---------|-------|---------|---------------|------------------|--------|
| GSIVIAF   | LON  | Lat     | fear    | daily  | sum         | daily        | sum     | daily | sum     | dasarian      | daily            |        |
| Barombong | -5.2 | 119.5   | 2008    | 0.181  | 0.970       |              | 3.620   | 0.757 | 1.391   | 0.8           | 90               |        |
| Barombong | -5.2 | 119.5   | 2009    | 0.202  | 0.859       |              | 5.811   | 0.796 | 1.794   | 0.8           | 71               |        |
| Barombong | -5.2 | 119.5   | 2010    | -0.142 | 0.948       |              | 9.420   | 0.636 | 1.651   | 0.6           | 11               |        |
| Barombong | -5.2 | 119.5   | 2011    | 0.365  | 0.959       |              | 5.176   | 0.793 | 1.208   | 0.8           | 06               |        |
| Barombong | -5.2 | 119.5   | 2012    | 0.137  | 0.949       |              | 6.188   | 0.626 | 1.190   | 0.8           | 33               |        |
| Barombong | -5.2 | 119.5   | 2013    | 0.396  | 0.865       |              | 9.666   | 0.794 | 1.357   | 0.7           | 94               |        |
| Barombong | -5.2 | 119.5   | 2014    | 0.167  | 0.940       |              | 6.556   | 0.955 | 1.885   | 0.7           | 22               |        |
| Barombong | -5.2 | 119.5   | 2015    | 0.187  | 0.965       |              | 3.921   | 1.635 | 1.803   | 0.7           | 78               |        |
| Barombong | -5.2 | 119.5   | 2016    | -0.152 | 0.777       |              | 395.740 | 0.363 | 3.635   | 0.6           | 88               |        |
| Barombong | -5.2 | 119.5   | 2017    | 0.066  | 0.952       |              | 6.231   | 0.624 | 1.175   | 0.8           | 00               |        |
| Barombong | -5.2 | 119.5   | 2018    | 0.239  | 0.937       |              | 7.135   | 0.833 | 1.444   | 0.7           | 78               |        |
| •         |      |         |         |        |             |              |         |       |         |               |                  |        |
|           |      |         | R^2     |        |             | oothness     |         |       |         | gency sheet   |                  |        |
|           |      | daily   | sum     |        | daily       |              | sum     | dasa  | rian    | daily         |                  |        |
|           |      | >=0.4   | >=0.7   | 0      | K (very smo | ot) <2.0     |         |       | > 0.666 | 57            |                  |        |
|           |      | <0.4    | <0.7    | SM (m  | iostly smoo | th) 2.0 - 5. | 0       |       | <0.66   | 7             |                  |        |
|           |      | negatif | negatif |        | NG (Not     | smooth) >    | 5.0     |       |         |               |                  |        |

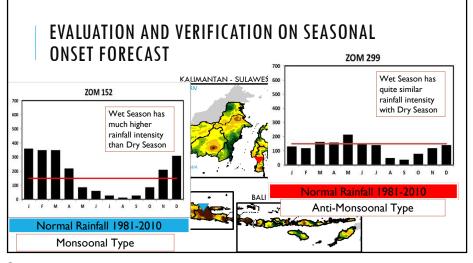

| International         Cutor                                                                                                                                                                   | Rain Post      | Lat   | Lon     | Year   | Distance | R^2                  |             | Smoothness |          | Proportion |       | Hit rate in contingency sheet |       | Reliabl |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|---------|--------|----------|----------------------|-------------|------------|----------|------------|-------|-------------------------------|-------|---------|
| Seppong         -3.30         120.40         2008         13         0.029         0.991         1.562         4.813         0.222         0.499         0.709         0.667           Seppong         -3.30         120.40         2009         -0.033         0.977         2.837         6.849         0.152         0.371         0.830         0.548           Seppong         -3.30         120.40         2010         -0.167         0.985         2.022         7.222         0.166         0.565         0.668         0.778           Seppong         -3.30         120.40         2011         -0.061         0.988         1.192         41.495         0.216         0.511         0.080         0.611           Seppong         -3.30         120.40         2012         -0.022         0.974         2.267         9.269         0.149         0.333         0.790         0.501           Seppong         -3.30         120.40         2013         -0.022         0.974         2.267         9.269         0.149         0.333         0.790         0.508           Seppong         -3.30         120.40         2013         -0.022         0.974         2.2167         0.154         0.408         0.40                                                                                                                                                                                                                   |                |       |         | rear   | (km)     | daily                | sum         | daily      | sum      | daily      | sum   | dasarian                      | daily |         |
| Sepong         -3.30         120.40         2009         -0.035         0.97         2.837         6.849         0.12         0.37         0.830         0.548           Sepong         -3.30         120.40         2010         -0.617         0.985         2.082         7.222         0.186         0.566         0.668         0.778           Sepong         -3.30         120.40         2011         -0.661         0.986         1.192         41.495         0.216         0.511         0.606         0.611           Sepong         -3.30         120.40         2013         -0.621         0.976         2.267         9.36         0.149         0.33         0.700         0.640           Sepong         -3.30         120.40         2013         -0.621         0.976         2.267         9.36         0.149         0.33         0.700         0.640           Sepong         -3.30         120.40         2013         -0.621         0.976         2.267         9.369         0.149         0.33         0.700         0.480           Sepong         -3.30         120.40         2014         -0.621         0.966         2.012         1.045         0.508         0.709         0.639                                                                                                                                                                                                                              | Stamet Masamba | -2.50 | 120.40  |        |          |                      |             |            | _        |            |       |                               |       |         |
| No.         Observation         O | Seppong        | -3.30 | 120.40  | 2008   | 13       | 0.029                | 0.991       | 1.56       | 4.811    | 0.262      | 0.499 | 0.749                         | 0.667 |         |
| Normal         3.30         120.40         2011         -0.061         0.961         1.192         41.493         0.216         0.511         0.080         0.611           Seppong         -3.30         120.40         2012         -0.022         0.974         2.267         9.266         0.511         0.080         0.610         0.550           Seppong         -3.30         120.40         2013         -0.062         0.974         2.267         9.266         0.149         0.33         0.709         0.648           Seppong         -3.30         120.40         2013         -0.062         0.985         2.622         2.231         0.154         0.400         0.708         0.468           Seppong         -3.30         120.40         2014         -0.022         0.965         2.12         10.413         0.155         0.568         0.793         0.659           Seppong         -3.30         120.40         2015         -0.012         0.965         2.176         3.581         0.183         0.464         0.772         0.531           Seppong         -3.30         120.40         2017         0.017         0.977         0.555         0.717         0.555         0.721         0.558                                                                                                                                                                                                                   | Seppong        | -3.30 | 120.40  | 2009   |          | -0.035               | 0.977       | 2.83       | 7 6.849  | 0.152      | 0.371 | 0.830                         | 0.548 |         |
| Sepong         3.30         120.40         2012         0.022         0.974         2.267         9.269         0.149         0.333         0.790         0.500           Sepong         3.30         120.40         2013         0.066         0.895         2.622         2.319         0.145         0.400         0.700         0.448           Sepong         3.30         120.40         2014         0.406         0.895         2.622         2.319         0.145         0.400         0.700         0.448           Sepong         3.30         120.40         2014         0.402         0.968         2.012         10.413         0.135         0.506         0.795         0.659           Sepong         -3.30         120.40         2015         -0.012         0.963         2.134         8.308         0.177         0.487         0.852         0.651           Sepong         -3.30         120.40         2015         -0.046         0.995         2.176         3.51         0.183         0.464         0.772         0.531           Sepong         -3.30         120.40         2017         0.017         0.987         1.952         7.170         0.272         0.505         0.721                                                                                                                                                                                                                                | Seppong        | -3.30 | 120.40  | 2010   |          | -0.167               | 0.985       | 2.08       | 2 7.222  | 0.186      | 0.565 | 0.668                         | 0.778 |         |
| Seppong         3.30         120.40         2013         0.065         0.895         2.622         2.319         0.154         0.400         0.708         0.488           Seppong         3.30         120.40         2014         0.021         0.968         2.012         10.43         0.155         0.505         0.795         0.659           Seppong         -3.30         120.40         2015         -0.012         0.963         2.134         8.306         0.177         0.487         0.852         0.651           Seppong         -3.30         120.40         2016         -0.046         0.995         2.176         3.51         0.18         0.446         0.772         0.531           Seppong         -3.30         120.40         2017         0.997         1.952         7.170         0.272         0.555         0.721         0.558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Seppong        | -3.30 | 120.40  | 2011   |          | -0.061               | 0.968       | 1.19       | 41.495   | 0.216      | 0.511 | 0.808                         | 0.611 |         |
| Seppong         -3.30         120.40         2014         -0.021         0.968         2.012         10.433         0.155         0.568         0.795         0.669           Seppong         -3.30         120.40         2015         -0.012         0.966         2.134         8.306         0.177         0.487         0.652         0.661           Seppong         -3.30         120.40         2015         -0.046         0.995         2.176         3.581         0.183         0.446         0.772         0.531           Seppong         -3.30         120.40         2017         0.017         0.987         1.952         7.170         0.272         0.505         0.721         0.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Seppong        | -3.30 | 120.40  | 2012   |          | -0.022               | 0.974       | 2.26       | 7 9.269  | 0.149      | 0.333 | 0.790                         | 0.500 |         |
| Seppong         -3.30         120.40         2015         -0.012         0.963         2.134         8.306         0.177         0.487         0.852         0.611           Seppong         -3.30         120.40         2016         -0.046         0.995         2.176         3.581         0.183         0.464         0.772         0.531           Seppong         -3.30         120.40         2017         0.997         1.952         7.170         0.272         0.505         0.721         0.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Seppong        | -3.30 | 120.40  | 2013   |          | -0.063               | 0.895       | 2.62       | 2 22.319 | 0.154      | 0.400 | 0.780                         | 0.486 |         |
| Seppong         -3.30         120.40         2016         -0.046         0.995         2.176         3.581         0.183         0.464         0.772         0.531           Seppong         -3.30         120.40         2017         0.017         0.995         1.952         7.170         0.272         0.565         0.721         0.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Seppong        | -3.30 | 120.40  | 2014   |          | -0.021               | 0.968       | 2.01       | 2 10.431 | 0.195      | 0.508 | 0.795                         | 0.639 |         |
| Seppong -3.30 120.40 2017 0.017 0.987 1.952 7.170 0.272 0.505 0.721 0.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Seppong        | -3.30 | 120.40  | 2015   |          | -0.012               | 0.963       | 2.13       | 4 8.308  | 0.177      | 0.487 | 0.852                         | 0.611 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Seppong        | -3.30 | 120.40  | 2016   |          | -0.046               | 0.995       | 2.17       | 6 3.581  | 0.183      | 0.464 | 0.772                         | 0.531 |         |
| Seppong -3.30 120.40 2018 -0.081 0.966 2.475 9.919 0.164 0.428 0.811 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Seppong        | -3.30 | 120.40  | 2017   |          | 0.017                | 0.987       | 1.95       | 2 7.170  | 0.272      | 0.505 | 0.721                         | 0.583 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Seppong        | -3.30 | 120.40  | 2018   |          | -0.081               | 0.966       | 2.47       | 5 9.919  | 0.164      | 0.428 | 0.811                         | 0.500 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |       | daily   | -      | n        |                      |             |            |          | dasarian   |       |                               |       |         |
| R^2 Smoothness Hit rate in contingency sheet<br>daily sum daily sum dasarian daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       | >=0.4   | >=0.7  |          | OK (very smoot) <2.0 |             |            |          | > 0.6667   |       |                               |       |         |
| daily sum daily sum dasarian daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       | <0.4    | <0.7   | SM (     | mostly sm            | ooth) 2.0 - | 5.0        |          | <0.667     |       |                               |       |         |
| daily         sum         daily         sum         dasarian         daily           >=0.4         >=0.7         OK (very smoot) <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |       | negatif | negati | 4        | NG (N                | ot smooth   | ) >5.0     |          |            |       |                               |       |         |

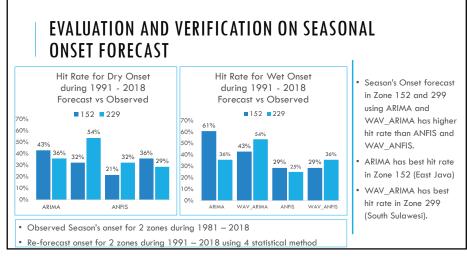

| GSMAP          | Lon  | Lat     | Year   |        | R^2         |              | Smoothness |       | rtion  | Hit rate in contingency sheet |       | Reliable |
|----------------|------|---------|--------|--------|-------------|--------------|------------|-------|--------|-------------------------------|-------|----------|
| GSIVIAF        | LOIT | Lat     | real   | daily  | sum         | daily        | sum        | daily | sum    | dasarian                      | daily | Reliable |
| Stamet Masamba | -2.5 | 120.4   | 2008   | -0.227 | 0.999       |              | 15.474     | 0.322 | 0.918  | 0.889                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2009   | -0.145 | 0.993       |              | 931.296    | 0.317 | 1.048  | 0.806                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2010   | -0.192 | 0.987       |              | 5.881      | 0.362 | 1.058  | 0.944                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2011   | -0.159 | 0.997       |              | 2.136      | 0.285 | 0.937  | 0.806                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2012   | -0.216 | 0.999       |              | 1.859      | 0.304 | 0.967  | 0.889                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2013   | -0.260 | 1.000       |              | 1.102      | 0.261 | 0.980  | 0.944                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2014   | -0.252 | 0.996       |              | 3.114      | 0.213 | 0.834  | 0.944                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2015   | -0.107 | 0.998       |              | 1.993      | 0.367 | 1.046  | 0.889                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2016   | -0.231 | 0.998       |              | 2.255      | 0.285 | 0.954  | 0.889                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2017   | -0.289 | 0.993       |              | 1.491      | 0.324 | 1.029  | 0.944                         |       |          |
| Stamet Masamba | -2.5 | 120.4   | 2018   | -0.152 | 0.998       |              | 2.277      | 0.376 | 1.073  | 0.806                         |       |          |
| •              |      |         |        |        |             |              |            |       |        |                               |       |          |
|                |      |         | R^2    |        |             | noothness    | 1          |       |        | ngency sheet                  |       |          |
|                |      | daily   | / sun  | n      | dail        | y            | sun        | n das | sarian | daily                         |       |          |
|                |      | >=0.4   | >=0.7  | 0      | OK (very sm | oot) <2.0    |            |       | > 0.60 | 667                           |       |          |
|                |      | <0.4    | <0.7   | SM (   | mostly smo  | oth) 2.0 - ! | 5.0        |       | <0.6   | 67                            |       |          |
|                |      | negatif | negati | f      | NG (N       | ot smooth)   | >5.0       |       |        |                               |       |          |


| GSMAP   | Lon  | Lat  | Yea     |          | R^2              | Smoothness |             | Proportion |          | Hit rate in contingency sheet |       | Reliable |
|---------|------|------|---------|----------|------------------|------------|-------------|------------|----------|-------------------------------|-------|----------|
| GSMAP   | Lon  | Lat  | t Te    | ar daily | / sum            | daily      | sum         | daily      | sum      | dasarian                      | daily | Kellable |
| Seppong | -3.3 | 120. | .4 20   | .0- 80   | <b>393</b> 0.991 |            | 15.474      | 0.295      | 1.513    | 0.694                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 09 -0.   | 0.937            |            | 931.296     | 0.270      | 2.179    | 0.613                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 10 -0.4  | 428 0.936        |            | 5.881       | 0.277      | 1.473    | 0.694                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 11 -0.3  | 281 0.931        |            | 2.136       | 0.310      | 1.489    | 0.611                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 12 -0.   | 0.941            |            | 1.859       | 0.382      | 2.222    | 0.444                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 13 -0.4  | 424 0.826        |            | 1.102       | 0.160      | 1.955    | 0.441                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 14 -0.   | 0.944            |            | 3.114       | 0.413      | 1.930    | 0.694                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 15 -0.1  | 314 0.952        |            | 1.993       | 0.215      | 1.807    | 0.611                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 16 -0.   | 346 0.995        |            | 2.255       | 0.349      | 1.721    | 0.625                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 17 -0.4  | 446 0.981        |            | 1.491       | 0.279      | 1.630    | 0.528                         |       |          |
| Seppong | -3.3 | 120. | .4 20   | 18 -0.   | 339 0.855        |            | 2.277       | 0.385      | 2.011    | 0.528                         |       |          |
|         |      |      |         |          |                  |            |             |            |          |                               |       |          |
|         |      |      |         | ^2       |                  | Smoothn    | ess         |            |          | ntingency sheet               |       |          |
|         |      |      | daily   | sum      | d                | aily       |             | sum        | dasarian | daily                         |       |          |
|         |      | >    | >=0.4   | >=0.7    | 0.7 OK (very     |            | smoot) <2.0 |            | > (      | 0.6667                        |       |          |
|         |      | <    | <0.4    | <0.7     | SM (mostly s     | mooth) 2.  | 0 - 5.0     |            | <        | 0.667                         |       |          |
|         |      |      | negatif | negatif  | NG               | Not smoo   | oth) >5.0   |            |          |                               |       |          |

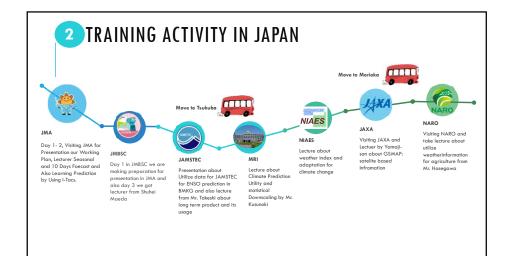










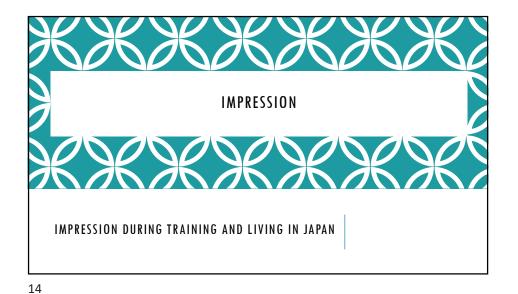


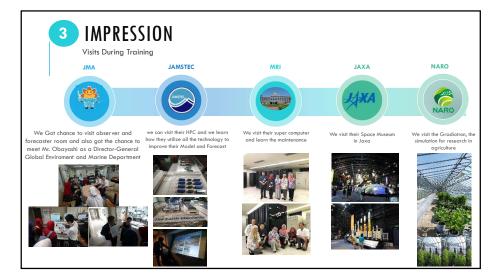



# LECTURES THAT CAN BE APPLIED IN **OPERATIONAL WORK**

In JMA we learning about how dynamical atmospheric circulation can really affect to our



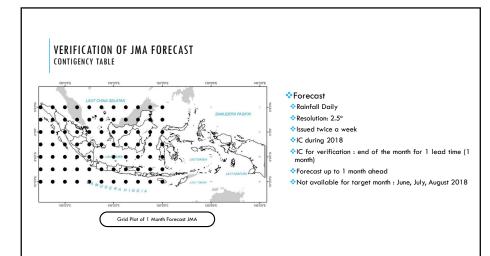

In JAMSTEC we inform them about how we utilize their ENSO prediction as a based for making analogy prediction and also we got to know how well the ENSO prediction by JMA from Mr. Takeshi

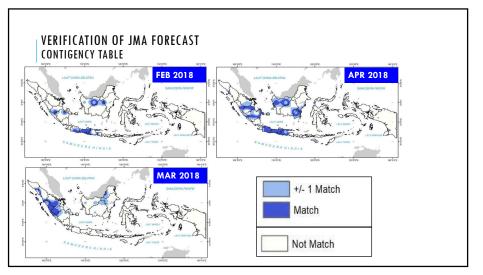

In JAXA, we learned how to utilize the GSMAP data and how to get the data and also we know how well the GSMAP data, this kind of infomation really benefit for our sub-division since we are making rainfall analysis by using GSMAP daily data

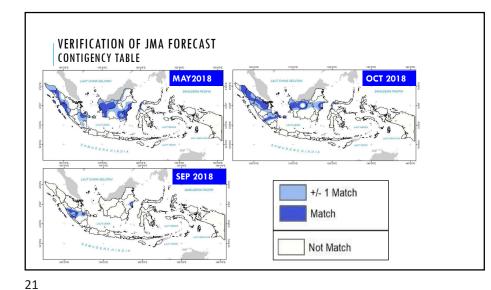


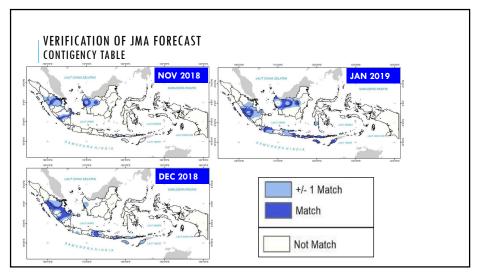
Λ

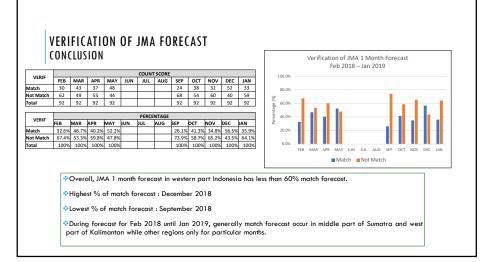


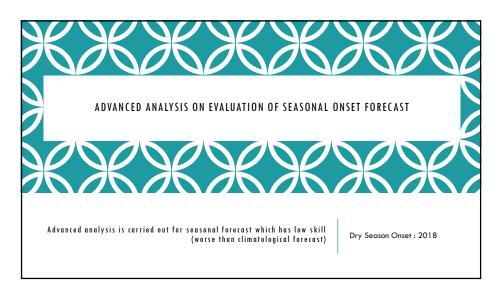


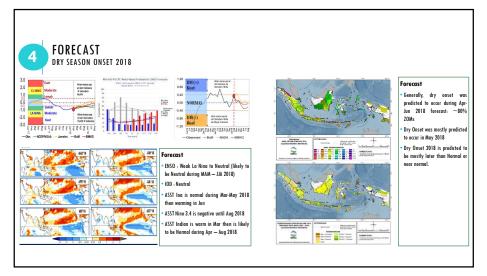



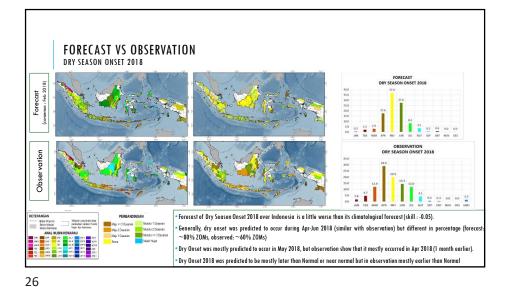



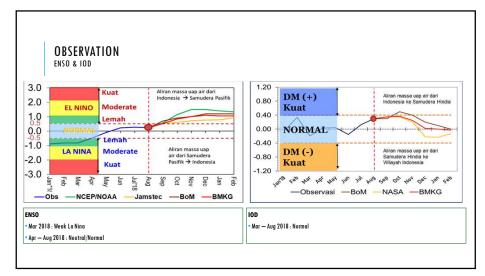



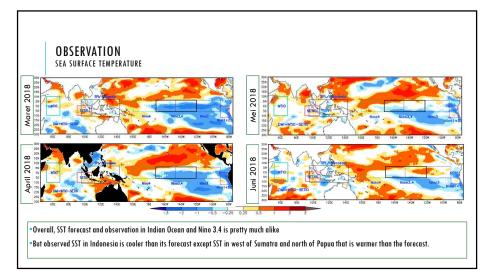



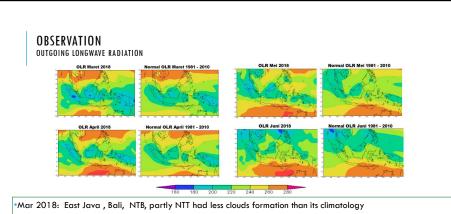



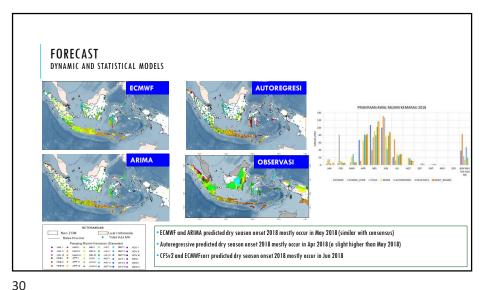











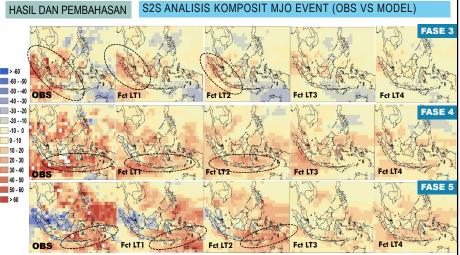

•Apr - Jun 2018: area with less clouds formation than its climatology become larger (Java, Bali, Nusa Tenggara)
•Java, Bali, Nusa Tenggara had less clouds than its climatology during Mar – Jun 2018 while northern Indonesia had more clouds formation than its climatology



29

| CONCLUSION                                                                      |                                                                                                                                                                                                                                                   |  |  |  |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Forecast                                                                        | Observation                                                                                                                                                                                                                                       |  |  |  |  |  |
| • ENSO : Weak La Nina to Neutral                                                | • ENSO : Weak La Nina to Neutral                                                                                                                                                                                                                  |  |  |  |  |  |
| IOD : Neutral                                                                   | • IOD : Neutral                                                                                                                                                                                                                                   |  |  |  |  |  |
| ASST Ina is normal during Mar-May 2018 then warming in Jun                      | • Overall, SST forecast and observation in Indian Ocean and Nino 3.4 is pretty                                                                                                                                                                    |  |  |  |  |  |
| <ul> <li>ASST Nino 3.4 is negative until Aug 2018</li> </ul>                    | much alike but observed SST in Indonesia is cooler than its forecast excep<br>SST in west of Sumatra and north of Papua that is warmer than the forecast.                                                                                         |  |  |  |  |  |
| ASST Indian is warm in Mar then is likely to be Normal during Apr — Aug<br>2018 | Jord and the vest of somethic and norm of rapid and is warmen main more cast.<br>Jordy Ball, Nava Tenggara had less clouds than its climatology during Mar-<br>Jun 2018 while northern Indonesia had more clouds formation than it<br>climatology |  |  |  |  |  |
| •Generally, dry onset was predicted to occur during Apr-Jun 2018                | •Generally, dry onset occured during Apr-Jun 2018 : ~60% ZOMs                                                                                                                                                                                     |  |  |  |  |  |
| forecast: ~80% ZOMs                                                             | •Dry Onset mostly occurred in Apr 2018 (1 month earlier than forecast).                                                                                                                                                                           |  |  |  |  |  |
| •Dry Onset was mostly predicted to occur in May 2018                            | •Dry Onset 2018 was mostly earlier than Normal                                                                                                                                                                                                    |  |  |  |  |  |
| •Dry Onset 2018 is predicted to be mostly later than Normal or near normal.     |                                                                                                                                                                                                                                                   |  |  |  |  |  |

# DRY SEASON ONSET 2018


CONCLUSION

•Model Forecast cannot capture cooling SST over Indonesia and warming SST in west Sumatra •Among individual models, Autoregressive is individual model that is the most similar to observed Dry Onset 2018 over Java, Bali, Nusa Tenggara.

Still need to analysis other parameters like wind, monsoon, etc

Difficult to evaluate where to improve because model forecast cannot capture the cooling SST in Indonesia We expect your advice for this study case.







