

Key activities

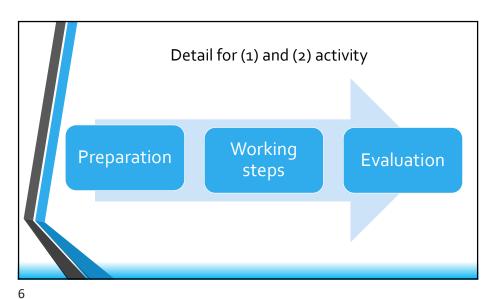
- 1. Provide/prepare reliable meteorological data for agricultural insurance.
- 2. Develop weather information and strengthen abilities for producing products for agriculture.
- 3. Enhance analysis abilities of risk analysis for climate change data-set.

1

Activity Output 1
Provide/ Prepare Reliable Meteorological Data for Agriculture Insurance

1. Leni Nazarudin
2. Noveta Chandra

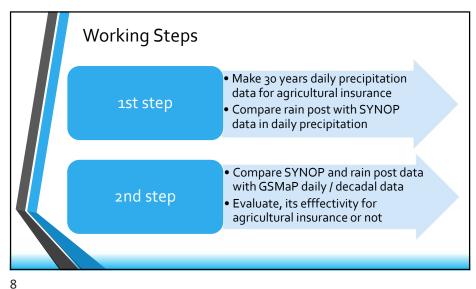
Outline Previous Activity


Japan Training Activity

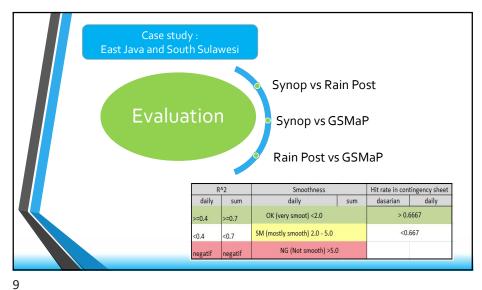
Working Plan

Progress

3



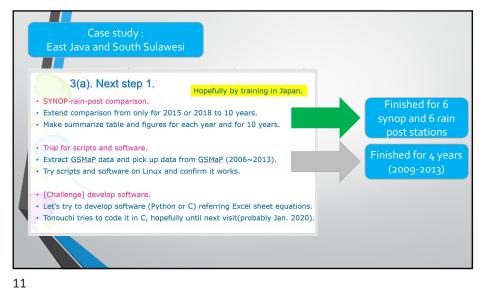
Preparation


List up SYNOP and rain post stations

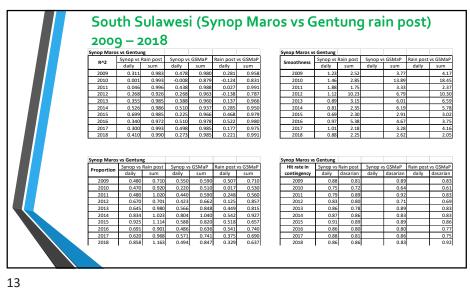
Collect daily precipitation data for SYNOP and rain post station at least for 10 years and hopefully 30 years

Download GSMaP data and develop a software to pickup hourly data from GSMaP data based on station list by JICA Expert

7



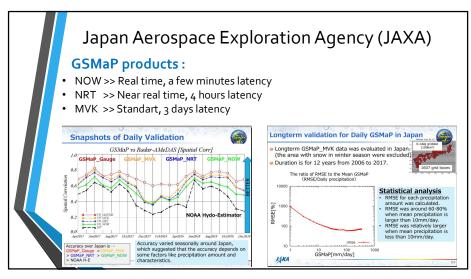
Advice from maros and malang climatology station

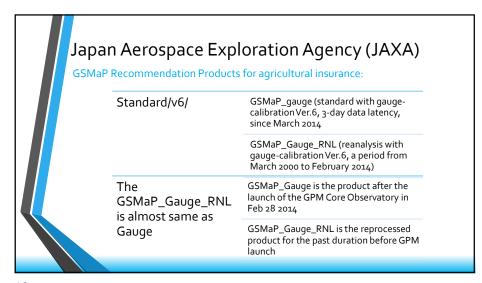

Attention about the data lag time

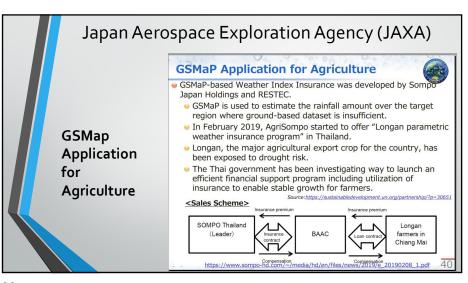
10

- Separated the source of the data, like the rain post station and SMPK (Agro Meteorological Station)
- For the sample, it would be better in normal years, not in elnino or lanina periode.
- When weather index insurances will be apply, MoU should be involved BMKG local
- Please share the result of the quality control data to BMKG local station

Synop Bany							Synop Banyuw		the section				
							Synop Banyuw	Synop vs		C	s GSMaP	Rain pos	
R^2	Synop vs I		Synop vs		Rain post		Smoothness	daily	sum	daily	sum	daily	VS G.
	daily	sum	daily	sum	daily	sum	2009	1.91	9.02	uany	3.84	ualiy	31
2009	0.146	0.748	-0.027 -0.189	0.977	0.091 -0.054	0.955	2010	1.75	51.60		2.50		
2010	0.014	0.987	-0.189	0.995	0.015	0.994	2010	2.00	6.68		2.10		
2011	0.001	0.955	-0.093	0.995	0.015	0.876	2012	1.98	7.99		2.76		
2012	-0.127	0.923	0.876	0.984	0.087	0.845	2012	3.62	3.47		1.47		
2013	-0.127	0.979	0.783	0.968	0.030	0.947	2014	2.66	3.38		3.71		
2015	0.015	0.977	0.732	0.992	0.152	0.981	2015	3.22	3.02		2.01		
2016	-0.072	0.975	0.746	0.974	0.238	0.989	2016	3.11	4.36		4.88		
2017	-0.047	0.948	0.870	0.964	0.088	0.874	2017	2.23	6.47		4.91		
2018	0.008	0.956	0.876	0.978		0.839	2018	2.39	4.29		3.34		
Synop Bany	Synonye		Synon v	s GSMaP	Rain nost	vs GSMaP	Synop Banyuwa			C	- CCM-D	Dain and	
Synop Bany Proportion	Synonye	Rain post	Synop v daily	s GSMaP sum	Rain post	vs GSMaP sum	Hit rate in	Synop vs	Rain post			Rain post	
	Synop vs	Rain post sum	daily	sum	daily	sum	Hit rate in contingency	Synop vs daily	Rain post dasarian	Synop v daily	dasarian	Rain post	dasar
Proportion	Synop vs daily	Rain post sum 0.90	daily 0.29	sum 0.94	daily 0.38	sum 0.96	Hit rate in contingency 2009	Synop vs daily 0.92	Rain post dasarian 0.75		dasarian 0.86		dasar
Proportion 2009	Synop vs daily 0.47	Rain post sum 0.90 0.99	daily 0.29 0.17	sum 0.94 0.88	daily 0.38 0.08	sum 0.96 0.99	Hit rate in contingency	Synop vs daily	Rain post dasarian 0.75		dasarian		dasar
Proportion 2009 2010	Synop vs daily 0.47 0.61	Rain post sum 0.90 0.99 1.19	0.29 0.17 0.30	sum 0.94 0.88 1.19	daily 0.38 0.08 0.32	0.96 0.99 0.85	Hit rate in contingency 2009 2010	Synop vs daily 0.92 0.85	Rain post dasarian 0.75 0.78		dasarian 0.86 0.89		vs GSM dasar (
2009 2010 2011	Synop vs daily 0.47 0.61 0.46	8ain post sum 0.90 0.99 1.19 1.43	0.29 0.17 0.30 0.22	0.94 0.88 1.19	daily 0.38 0.08 0.32 0.24	0.96 0.99 0.85 0.70	Hit rate in contingency 2009 2010 2011	Synop vs daily 0.92 0.85 0.92	Rain post dasarian 0.75 0.78 0.72		0.86 0.89 0.94		dasar
2009 2010 2011 2012	Synop vs daily 0.47 0.61 0.46 0.79	Rain post sum 0.90 0.99 1.19 1.43	0.29 0.17 0.30 0.22 0.69	0.94 0.88 1.19 1.03 0.88	daily 0.38 0.08 0.32 0.24 0.28	0.96 0.99 0.85 0.70	Hit rate in contingency 2009 2010 2011 2012	Synop vs daily 0.92 0.85 0.92 0.90	Rain post dasarian 0.75 0.78 0.72 0.81		0.86 0.89 0.94 0.94		dasar
2009 2010 2011 2012 2013	Synop vs daily 0.47 0.61 0.46 0.79	Rain post sum 0.90 0.99 1.19 1.43 1.60	daily 0.29 0.17 0.30 0.22 0.69 0.80	0.94 0.88 1.19 1.03 0.88	daily 0.38 0.08 0.32 0.24 0.28 0.62	0.96 0.99 0.85 0.70 0.58	Hit rate in contingency 2009 2010 2011 2012 2013	Synop vs daily 0.92 0.85 0.92 0.90	Rain post dasarian 0.75 0.78 0.72 0.81 0.83		0.86 0.89 0.94 0.94		dasar
Proportion 2009 2010 2011 2012 2013 2014 2015 2016	Synop vs daily 0.47 0.61 0.46 0.79 0.23 0.25 0.31	Rain post sum 0.90 0.99 1.19 1.43 1.60 1.23 1.01	daily 0.29 0.17 0.30 0.22 0.69 0.80 0.87 0.85	sum 0.94 0.88 1.19 1.03 0.88 0.92 1.11	daily 0.38 0.08 0.32 0.24 0.28 0.62 0.62	0.96 0.99 0.85 0.70 0.58 0.83 1.11	Hit rate in contingency 2009 2010 2011 2012 2013 2014	Synop vs daily 0.92 0.85 0.92 0.90 0.84	Rain post dasarian 0.75 0.78 0.72 0.81 0.83 0.81		0.86 0.89 0.94 0.94 0.97		dasar
Proportion 2009 2010 2011 2012 2013 2014 2015	Synop vs daily 0.47 0.61 0.46 0.79 0.23 0.25	Rain post sum 0.90 0.99 1.19 1.43 1.60 1.23 1.01	daily 0.29 0.17 0.30 0.22 0.69 0.80 0.87 0.85	sum 0.94 0.88 1.19 1.03 0.88 0.92 1.11	daily 0.38 0.08 0.32 0.24 0.28 0.62 0.62	0.96 0.99 0.85 0.70 0.58 0.83 1.11	Hit rate in contingency 2009 2010 2011 2012 2013 2014 2015	Synop vs daily 0.92 0.85 0.92 0.90 0.84 0.92	Rain post dasarian 0.75 0.78 0.72 0.81 0.83 0.81		0.86 0.89 0.94 0.94 0.97 0.97		dasar




Sompo's Agricultural Insurance Activities


Main points:

- 1. Weather Index is calculated by Insurance company, but case in Myanmar and Thailand when using GSMaP data, weather index calculated by private company (RESTEC/The Remote Sensing Technology Center of Japan)
- 2. Meteorological agency prepare reliable meteorological data and the data should be accessable by public
- The length of climate data affects premium price
- 4. GSMaP data used to filling missed observation data (case study: Myanmar and Thailand)

19

_

Study visit : NARO Institute for Agro-Environmental Sciences (NIAES)

21

NARO Institute for Agro-Environmental Sciences (NIAES)

- Collaboration Research on Cimate Index Insurances for farmers in Indonesia with SOMPO, RESTEC and BMKG funded by JICA-BOP (Bojonegoro, East java) >> claim threshold for insurance was 79 mm from oct-nov in Bojonegoro
- Hydrological and Extreme Effects on Serial Production Variabilities in Indonesia *referred to Dr. Lizumi's collaboratted with T.Sakai (NIAES) and JICA-BMKG Training Program 2014 >> index extreme per comodity

22

Study visit : National Agriculture and Food Research Organization (NARO)

National Agriculture and Food Research Organization (NARO) in Morioka

Main points:

- 1. Agricultural under Changing Climate
 - Projected Climate Change
 - International efforts to project the impact on rice future
 - Early Warning System for current climatic variability
- 2. Visit Gradiotron (an open laboratory)
 - Temperature gradient chamber
 - CO2 supply and control

The combine effects of T and CO₂ can be tested

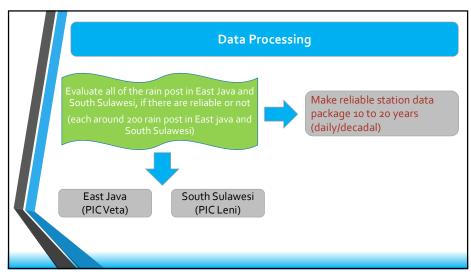
23

_

August – December 2019

1. Not reliable stations >> Look for reasons (different big value, missing data, etc)

2. Reliable stations:


• Store as reliable data with quality check information (missing data period)

• Compare reliable stations (SYNOP/rain-post) and GSMaP data

• Check proportion of GSMaP data to observation data

26

		Tim	ne line		
Week	August	September	October	November	December
I	Japan training	Data processing	Evaluation 1	Evaluation 2	Evaluation 3
II	Japan training	Data processing	Data processing	Data processing	Data processing
III	Making report about japan training	Data processing	Data processing	Data processing	Data processing
IV	sharing with the team about the results of the training and make evaluation	Data processing	Data processing	Data processing	Final resume (relliable stations) and report

27

Progress December 2019

Trial for scripts and software.

• Continue to extract GSMaP data and pick up data from GSMaP (2005~2008) >> done

SYNOP-rain-post comparison.

- Continue to extend comparison from 2009 2018 to 2005 2018 for the other SYNOP – rain post in East Java and South Sulawesi
- East Java: 3 SYNOP and 7 rain post, has finished for 2005 2018.
- South Sulawesi: 3 SYNOP and 3 rain post, has finished for 2008 2018.

[Challenge] develop software.

Let's try to develop software (Python or C) referring Excel sheet equations.

Tonouchi tries to code it in C, hopefully until next visit(probably Jan. 2020)

29 30

Rain Post	Lat	Lon	Year	Distance	R^	2	Smoot	hness	Propo	rtion	Hit rate in conf	tingency sheet	Reliable
Nam Post	Lat	LON	Tear	(km)	daily	sum	daily	sum	daily	sum	dasarian	daily	
Stamet Banyuwangi	-8.21667	114.3833											
Kaliklatak	-8.18533	114.3402	2005	6	0.008	0.943	2.236	5.110	0.483	1.581	0.778	0.877	
Kaliklatak	-8.18533	114.3402	2006		0.167	0.976	1.725	4,397	0.749	1.396	0.833	0.918	
Kaliklatak	-8.18533	114.3402	2007		0.063	0.998	1.826	149.724	0.977	0.998	0.694	0.855	
Kaliklatak	-8.18533	114.3402	2008		0.106	0.976	1.758	3.714	0.734	1.725	0.857	0.885	
Kaliklatak	-8.18533	114.3402	2009		0.146	0.748	1.909	9.017	0.471	0.900	0.750	0.918	
Kaliklatak	-8.18533	114.3402	2010		0.014	0.987	1.752	51.598	0.609	0.987	0.778	0.855	
Kaliklatak	-8.18533	114.3402	2011		0.001	0.955	1.998	6.682	0.461	1.191	0.722	0.923	
Kaliklatak	-8.18533	114.3402	2012		0.103	0.923	1.978	7.989	0.792	1.426	0.806	0,902	
Kaliklatak	-8.18533	114.3402	2013		-0.127	0.973	3.617	3.469	0.235	1.598	0.833	0.841	
Kaliklatak	-8.18533	114.3402	2014		-0.083	0.979	2.660	3.377	0.251	1.230	0.806	0.923	
Kaliklatak	-8.18533	114.3402	2015		0.015	0.977	3.220	3.039	0.306	1.011	0.917	0.910	
Kaliklatak	-8.18533	114.3402	2016		-0.072	0.975	3.107	4.364	0.287	1.099	0.806	0.877	
Kaliklatak	-8.18533	114.3402	2017		-0.047	0.948	2.227	6.472	0.315	0.924	0.750	0.874	
Kaliklatak	-8.18533	114.3402	2018		0.008	0.956	2.388	4,294	0,335	0.998	0.806	0.901	
		daily	R^2			Smoothne ally	ess		Hit rate i		ency sheet daily		
			Su		OK (very		0	sum	dasarı	> 0.666			
		>=0.4	>=0.7										
		<0.4	<0.7	SM	l (mostly sr	nooth) 2.0	0 - 5.0			<0.667			
		negatif	negat	if	NG (Not smoo	th) >5.0				- 1		

	GSMAP	Lon	Lat	Year	R^	2	Smoot	hness	Propo	rtion	Hit rate in con	tingency sheet	Reliable
	GSIWAP	Lon	Lat	rear	daily	sum	daily	sum	daily	sum	dasarian	daily	
Star	met Banyuwangi	-8.21667	114.3833	2005	0.167	0.994		2.017	0.477	0.905	0.889		
Star	met Banyuwangi	-8.21667	114.3833	2006	-0.029	0.956		5.671	0.274	0.927	0.889		
Star	met Banyuwangi	-8.21667	114.3833	2007	0.002	0.988		2.949	0.229	0.759	0.917		
Star	met Banyuwangi	-8.21667	114.3833	2008	-0.064	0.994		1.860	0.240	0.884	0.971		
Star	met Banyuwangi	-8.21667	114.3833	2009	-0.027	0.977		3.840	0.293	0.942	0.861		
Star	met Banyuwangi	-8.21667	114.3833	2010	-0.189	0.996		2.498	0.175	0.884	0.889		
Star	met Banyuwangi	-8.21667	114.3833	2011	-0.093	0.995		2.102	0.300	1.186	0.944		
Star	net Banyuwangi	-8.21667	114.3833	2012	-0.117	0.984		2.762	0.217	1.028	0.944		
Star	net Banyuwangi	-8.21667	114.3833	2013	0.876	0.996		1.474	0.687	0.877	0.972		
Star	met Banyuwangi	-8.21667	114.3833	2014	0.783	0.968		3.708	0.803	0.923	0.917		
Star	met Banyuwangi	-8.21667	114.3833	2015	0.732	0.992		2.011	0.871	1.109	0.972		
Star	met Banyuwangi	-8.21667	114.3833	2016	0.746	0.974		4.884	0.854	1.094	0.861		
Star	met Banyuwangi	-8.21667	114.3833	2017	0.870	0.964		4.914	0.808	0.942	0.944		
Star	met Banyuwangi	-8.21667	114.3833	2018	0.876	0.978		3.338	0.828	0.939	0.972		
									_				
		-		^2			othness	_			ngency sheet		
			daily	sum	OK	daily ery smoot	1-20	sum	das	orian > 0.66	daily 67		
				>=0.7						<0.66	177		
			<0.4	<0.7		tly smooth				<0.66	"		
			negatif	negatif		NG (Not s	mooth) >5	5.0			- 1		

31

_

GSMAP	Lon	Lat	Year	R/	2	Smoo	thness	Propo	rtion	Hit rate in con	ntingency sheet	Reliable
GSIVIAP	Lon	Lat	Tear	daily	sum	daily	sum	daily	sum	dasarian	daily	
Kaliklatak	-8.18533	114.3402	2005	-0.029	0.9548		4.873	0.186	0.516	0.75		
Kaliklatak	-8.18533	114.3402	2006	0.220	0.868		9.954	0.335	0.642	0.778		
Kaliklatak	-8.18533	114.3402	2007	0.101	0.963		7.286	0.130	0.231	0.556		
Kaliklatak	-8.18533	114.3402	2008	0.198	0.983		3.407	0.315	0.507	0.829		
Kaliklatak	-8.18533	114.3402	2009	0.091	0.955		3.206	0.375	0.956	0.833		
Kaliklatak	-8.18533	114.3402	2010	-0.054	0.994		44.202	0.078	0.994	0.750		
Kaliklatak	-8.18533	114.3402	2011	0.015	0.876		8.914	0.317	0.854	0.694		
Kaliklatak	-8.18533	114.3402	2012	0.087	0.845		7.268	0.244	0.704	0.778		
Kaliklatak	-8.18533	114.3402	2013	0.096	0.963		4.283	0.280	0.577	0.806		
Kaliklatak	-8.18533	114.3402	2014	0.237	0.947		5.916	0.622	0.834	0.833		
Kaliklatak	-8.18533	114.3402	2015	0.152	0.981		2.404	0.507	1.114	0.889		
Kaliklatak	-8.18533	114.3402	2016	0.238	0.989		2.936	0.481	0.977	0.861		
Kaliklatak	-8.18533	114.3402	2017	0.088	0.874		7.454	0.369	0.935	0.750		
Kaliklatak	-8.18533	114.3402	2018	0.046	0.839		6.950	0.273	0.846	0.778		
•												
		R/	12		Smoot	thness		Hit rate	in contin	gency sheet		
		daily	sum		daily		sum	dasa	rian	daily		
		>=0.4	>=0.7	OK (v	ery smoot)	<2.0			> 0.666	57		
		<0.4	<0.7	SM (most	ly smooth)	2.0 - 5.0			<0.66	7		
		negatif	negatif	- 1	NG (Not sr	nooth) >5	.0					

Rain Po	st Lat	Lon	Year	Distance		^2	Smoot	hness	Propo	rtion	Hit rate in con	tingency sheet	Reliabl
Kain Fi	St Lat	LON	rear	(km)	daily	sum	daily	sum	daily	sum	dasarian	daily	
Stamet Banyu	vangi -8.21667	114.3833											
Alas Malang	-8.316	114.252	2005	18	-0.061	0.971	3.018	4.242	0.340	1.267	0.667	0.874	
Alas Malang	-8.316	114.252	2006		0.011	0.987	2.180	3.194	0.580	1.680	0.806	0.888	
Alas Malang	-8.316	114.252	2007		-0.008	0.968	2.158	11.201	0.372	1.575	0.806	0.901	
Alas Malang	-8.316	114.252	2008		-0.108	0.981	2.845	3.141	0.288	1.509	0.771	0.879	
Alas Malang	-8.316	114.252	2009		0.028	0.950	2.553	5.311	0.508	1.308	0.833	0.890	
Alas Malang	-8.316	114.252	2010		-0.139	0.985	2.914	4.546	0.344	1.660	0.667	0.808	
Alas Malang	-8.316	114.252	2011		-0.060	0.867	3.772	9.867	0.215	1.276	0.750	0.921	
Alas Malang	-8.316	114.252	2012		-0.077	0.945	4.183	4.640	0.337	1.630	0.861	0.885	
Alas Malang	-8.316	114.252	2013		0.085	0.963	1.537	5.712	0.589	1.367	0.750	0.879	
Alas Malang	-8.316	114.252	2014		0.148	0.948	1.761	4.766	0.713	1.478	0.750	0.901	
Alas Malang	-8.316	114.252	2015		0.003	0.933	2.924	4.297	0.589	1.959	0.861	0.888	
Alas Malang	-8.316	114.252	2016		0.182	0.985	1.422	4.045	1.147	2.139	0.750	0.866	
Alas Malang	-8.316	114.252	2017		0.028	0.981	1.702	4.026	0.718	1.959	0.667	0.838	
Alas Malang	-8.316	114.252	2018		0.399	0.968	1.070	4.021	1.066	1.575	0.833	0.915	
			R^2			Smoot			100	*- !	tingency she		
		daily	_	um		daily	illess	sum		sarian	daily	et	
		>=0.4	>=0.	7	OK (ver	y smoot)	<2.0			> 0.	6667		
		<0.4	<0.7	_	M (mostly	smooth)	2.0 - 5.0			<0.	667		
		negatif	nega	100	NO	3 (Not sm	noth) >5.	0					

GSMAP	Lon	Lat	Year	R	^2	Smoot	hness	Propo	rtion	Hit rate in conf	tingency sheet	Reliable
GSIVIAP	Lon	Lat	rear	daily	sum	daily	sum	daily	sum	dasarian	daily	
Alas Malang	-8.316	114.252	2005	-0.080	0.945		6.460	0.179	0.665	0.611		
Alas Malang	-8.316	114.252	2006	0.031	0.993		1.903	0.205	0.580	0.833		
Alas Malang	-8.316	114.252	2007	-0.031	0.9892		35.057	0.172	0.989	0.861		
Alas Malang	-8.316	114.252	2008	-0.100	0.959		4.418	0.150	0.628	0.771		
Alas Malang	-8.316	114.252	2009	-0.047	0.952		4.511	0.183	0.709	0.778		
Alas Malang	-8.316	114.252	2010	-0.054	0.982		5.410	0.078	0.571	0.667		
Alas Malang	-8.316	114.252	2011	-0.158	0.892		471.246	0.115	0.115	0.722		
Alas Malang	-8.316	114.252	2012	-0.114	0.942		3.952	0.115	0.637	0.889		
Alas Malang	-8.316	114.252	2013	-0.147	0.969		4.699	0.100	0.650	0.806		
Alas Malang	-8.316	114.252	2014	-0.070	0.867		7.742	0.124	0.621	0.750		
Alas Malang	-8.316	114.252	2015	-0.065	0.975		3.296	0.129	0.531	0.778		
Alas Malang	-8.316	114.252	2016	-0.160	0.981		4.288	0.113	0.499	0.722		
Alas Malang	-8.316	114.252	2017	-0.125	0.968		5.944	0.120	0.495	0.722		
Alas Malang	-8.316	114.252	2018	-0.045	0.970		2.914	0.158	0.585	0.889		
											-	
			R^2			noothness				ntingency sheet		
		daily	sum		dail K (very sm		St	um d	asarian > 0	daily		
		>=0.4	>=0.7		nostly smo		5.0			1.667		
		<0.4	<0.7	SIVI (r			200000		٧,	.007		
		negatif	negatif		NG (N	ot smooth)	>5.0					

Rain Post			Year	Distance	R'	2	Smoot	thness	Propo	rtion	Hit rate in con	tingency sheet	Reliable
Kain Post	Lat	Lon	rear	(km)	daily	sum	daily	sum	daily	sum	dasarian	daily	
Stamet Paotere	-5.11	119.42											
Barombong	-5.20	119.50	2008	13	0.075	0.974	1.780	3.123	0.226	0.495	0.850	0.833	
Barombong	-5.20	119.50	2009		0.355	0.936	1.330	3.964	0.306	0.385	0.906	0.903	
Barombong	-5.20	119.50	2010		0.113	0.972	1.636	4,781	0.173	0.509	0.792	0.639	
Barombong	-5.20	119.50	2011		0.287	0.988	1.300	2.571	0.398	0.583	0.858	0.889	
Barombong	-5.20	119.50	2012		0.207	0.970	1.360	3.675	0.362	0.692	0.899	0.806	
Barombong	-5.20	119.50	2013		0.366	0.850	1.008	8.383	0.484	0.657	0.893	0.800	
Barombong	-5.20	119.50	2014		0.176	0.966	1.437	3.448	0.252	0.488	0.885	0.861	
Barombong	-5.20	119.50	2015		0.499	0.990	0.891	1.928	0.396	0.542	0.915	0.778	
Barombong	-5.20	119.50	2016		0.378	0.849	0.868	11.536	0.307	0.273	0.928	0.844	
Barombong	-5.20	119.50	2017		0.313	0.948	1.019	5.276	0.314	0.557	0.871	0.778	
Barombong	-5.20	119.50	2018		0.500	0.986	0.752	2.388	0.397	0.534	0.879	0.861	
	•			-									•
			R^2			Smoothne	ess	1	Hit rate in	continge	ency sheet		
		daily	SU	ım	d	laily		sum	dasaria	in	daily		
		>=0.4	>=0.7	,	OK (very	smoot) <2	.0			> 0.6667	,		
		<0.4	<0.7	SM	1 (mostly s	mooth) 2.0	- 5.0			<0.667			
		negatif	nega		NG	(Not smoo	th) >5.0						

35

_

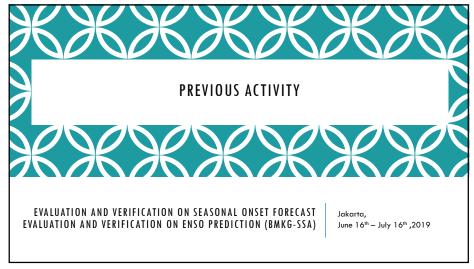
GSMAP	1	Lat	Year		R^2	Smoo	thness	Prop	ortion	Hit rate in contin	ngency sheet	Reliable
GSMAP	Lon	Lat	Year	daily	sum	daily	sum	daily	sum	dasarian	daily	
Stamet Paotere	-5.1137	119.4198	2008	0.28	0.981		3.831	0.496	0.801	0.830		
Stamet Paotere	-5.1137	119.4198	2009	0.00	0.968		4.426	0.390	0.824	0.972		
Stamet Paotere	-5.1137	119.4198	2010	-0.06	0.985		4.133	0.353	0.924	0.833		
Stamet Paotere	-5.1137	119.4198	2011	0.0	0.977		3.930	0.369	0.777	0.833		
Stamet Paotere	-5.1137	119.4198	2012	0.00	0.986		2.503	0.253	0.908	0.944		
Stamet Paotere	-5.1137	119.4198	2013	0.00	0.969		5.710	0.386	0.942	0.944		
Stamet Paotere	-5.1137	119.4198	2014	0.03	0.989		2.541	0.390	0.995	0.833		
Stamet Paotere	-5.1137	119.4198	2015	0.04	0.966		3.188	0.492	1.106	0.861		
Stamet Paotere	-5.1137	119.4198	2016	-0.15	0.987		2.471	0.168	0.926	0.944		
Stamet Paotere	-5.1137	119.4198	2017	-0.0	0.987		3.205	0.303	0.705	0.806		
Stamet Paotere	-5.1137	119.4198	2018	0.03	0.970		4.178	0.357	0.818	0.917		
		F	R	^2 sum		Smoothr		sum	Hit rate in co	ontingency sheet		
		>=		>=0.7		smoot) <		Sulli		0.6667		
		<0.	.4	<0.7	SM (mostly s	mooth) 2	.0 - 5.0		<	0.667		
		200	gatif	negatif	NG	(Not smo	oth) >5.0					

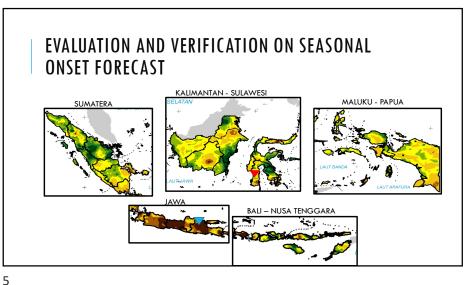
GSMAP	Lon	Lat	Year		^2		thness	Propo	rtion	Hit rate in co	ntingency sheet	Reliable
GSIVIAF	LOII	Lat	Teal	daily	sum	daily	sum	daily	sum	dasarian	daily	
Barombong	-5.2	119.5	2008	0.181	0.970		3.620	0.757	1.391	0.89	0	
Barombong	-5.2	119.5	2009	0.202	0.859		5.811	0.796	1.794	0.87	1	
Barombong	-5.2	119.5	2010	-0.142	0.948		9.420	0.636	1.651	0.61	1	
Barombong	-5.2	119.5	2011	0.365	0.959		5.176	0.793	1.208	0.80	6	
Barombong	-5.2	119.5	2012	0.137	0.949		6.188	0.626	1.190	0.83	3	
Barombong	-5.2	119.5	2013	0.396	0.865		9.666	0.794	1.357	0.79	4	
Barombong	-5.2	119.5	2014	0.167	0.940		6.556	0.955	1.885	0.72	2	
Barombong	-5.2	119.5	2015	0.187	0.965		3.921	1.635	1.803	0.77	8	
Barombong	-5.2	119.5	2016	-0.152	0.777		395.740	0.363	3.635	0.68	8	
Barombong	-5.2	119.5	2017	0.066	0.952		6.231	0.624	1.175	0.80	О	
Barombong	-5.2	119.5	2018	0.239	0.937		7.135	0.833	1.444	0.77	8	
			R^2		Sm	oothness		Hit rat	e in contin	gency sheet		
		daily	sum		daily		sum	dasa	rian	daily		
		>=0.4	>=0.7	0	K (very smo	ot) <2.0			> 0.666	57		
		<0.4	<0.7	SM (n	nostly smoo	th) 2.0 - 5.	.0		<0.66	7		
		negatif	negatif		NG (Not	smooth) >	>5.0					

Samet Masamba -2.50 120.40 2008 13 0.029 0.991 1.562 4.811 0.262 0.499 0.749 0.667	Rain Post	Lat	Lon	Year	Distance	R/	2	Smoot	hness	Propo	rtion	Hit rate in conti	ngency sheet	Relia
Seppong -3.30 120.40 2008 13 0.029 0.991 1.562 4.811 0.262 0.499 0.749 0.667	Rain Post	Lat	Lon	rear	(km)	daily	sum	daily	sum	daily	sum	dasarian	daily	
Seppong -3-30 120.40 2009 -0.035 0.977 2.837 6.849 0.152 0.371 0.830 0.548 Seppong -3-30 120.40 2010 -0.167 0.985 2.082 7.222 0.186 0.565 0.668 0.778 Seppong -3-30 120.40 2011 -0.061 0.968 1.192 41.495 0.216 0.511 0.808 0.611 Seppong -3-30 120.40 2012 -0.022 0.974 2.267 9.269 0.149 0.333 0.790 0.500 Seppong -3-30 120.40 2013 -0.068 0.885 2.622 2.2319 0.154 0.400 0.780 0.486 Seppong -3-30 120.40 2014 -0.021 0.969 2.012 10.431 0.198 0.508 0.795 0.659 Seppong -3-30 120.40 2015 -0.012 0.969 2.134 8.308 0.177 0.487 <td< td=""><td>Stamet Masamba</td><td>-2.50</td><td>120.40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Stamet Masamba	-2.50	120.40											
Seppong -3.30 120.40 2010 -0.167 0.985 2.082 7.222 0.186 0.565 0.668 0.778 Seppong -3.30 120.40 2011 -0.061 0.368 1.192 41.495 0.216 0.511 0.808 0.611 Seppong -3.30 120.40 2012 -0.022 0.974 2.267 9.269 0.149 0.333 0.790 0.500 Seppong -3.30 120.40 2013 -0.063 0.895 2.622 2.2339 0.154 0.400 0.780 0.486 Seppong -3.30 120.40 2014 -0.021 0.968 2.012 10.431 0.195 0.508 0.795 0.639 Seppong -3.30 120.40 2015 -0.012 0.963 2.134 8.308 0.177 0.487 0.852 0.611 Seppong -3.30 120.40 2016 -0.046 0.995 2.176 3.581 0.183 0.464 <td< td=""><td>Seppong</td><td>-3.30</td><td>120.40</td><td>2008</td><td>13</td><td>0.029</td><td>0.991</td><td>1.562</td><td>4.811</td><td>0.262</td><td>0.499</td><td>0.749</td><td>0.667</td><td></td></td<>	Seppong	-3.30	120.40	2008	13	0.029	0.991	1.562	4.811	0.262	0.499	0.749	0.667	
Seppong -3.30 120.40 2011 -0.061 0.968 1.192 41.495 0.216 0.511 0.808 0.611 Seppong -3.30 120.40 2012 -0.022 0.974 2.267 9.269 0.149 0.333 0.790 0.500 Seppong -3.30 120.40 2013 -0.063 0.895 2.622 22.319 0.154 0.400 0.780 0.486 Seppong -3.30 120.40 2014 -0.021 0.968 2.012 10.431 0.195 0.508 0.795 0.639 Seppong -3.30 120.40 2015 -0.012 0.963 2.134 8.308 0.177 0.487 0.852 0.611 Seppong -3.30 120.40 2016 -0.046 0.995 2.176 3.581 0.183 0.464 0.772 0.531 Seppong -3.30 120.40 2017 0.017 0.987 1.952 7.170 0.272 0.505	Seppong	-3.30	120.40	2009		-0.035	0.977	2.837	6.849	0.152	0.371	0.830	0.548	
Seppong -3.30 120.40 2012 -0.022 0.974 2.267 9.269 0.149 0.333 0.790 0.500 Seppong -3.30 120.40 2013 -0.063 0.895 2.622 22.319 0.154 0.400 0.780 0.486 Seppong -3.30 120.40 2014 -0.021 0.968 2.012 10.431 0.195 0.508 0.795 0.639 Seppong -3.30 120.40 2015 -0.012 0.963 2.134 8.308 0.177 0.487 0.852 0.611 Seppong -3.30 120.40 2016 -0.046 0.995 2.176 3.581 0.183 0.464 0.772 0.531 Seppong -3.30 120.40 2017 0.017 0.987 1.952 7.170 0.272 0.505 0.721 0.583	Seppong	-3.30	120.40	2010		-0.167	0.985	2.082	7.222	0.186	0.565	0.668	0.778	
Seppong -3.30 120.40 2013 -0.63 0.895 2.622 22.319 0.154 0.400 0.780 0.486 Seppong -3.30 120.40 2014 -0.021 0.968 2.012 10.431 0.195 0.508 0.795 0.639 Seppong -3.30 120.40 2015 -0.012 0.963 2.134 8.308 0.177 0.487 0.852 0.611 Seppong -3.30 120.40 2016 -0.046 0.995 2.176 3.581 0.183 0.464 0.772 0.531 Seppong -3.30 120.40 2017 0.017 0.987 1.952 7.170 0.272 0.505 0.721 0.583	Seppong	-3.30	120.40	2011		-0.061	0.968	1.192	41.495	0.216	0.511	0.808	0.611	
Seppong -3.30 120.40 2014 -0.021 0.968 2.012 10.431 0.195 0.508 0.795 0.639 Seppong -3.30 120.40 2015 -0.012 0.963 2.134 8.308 0.177 0.487 0.852 0.611 Seppong -3.30 120.40 2016 -0.046 0.995 2.176 3.581 0.183 0.464 0.772 0.531 Seppong -3.30 120.40 2017 0.017 0.987 1.952 7.170 0.272 0.505 0.721 0.583	Seppong	-3.30	120.40	2012		-0.022	0.974	2.267	9.269	0.149	0.333	0.790	0.500	
Seppong -3.30 120.40 2015 -0.012 0.963 2.134 8.308 0.177 0.487 0.852 0.611 Seppong -3.30 120.40 2016 -0.046 0.995 2.176 3.581 0.183 0.464 0.772 0.531 Seppong -3.30 120.40 2017 0.017 0.987 1.952 7.170 0.272 0.505 0.721 0.583	Seppong	-3.30	120.40	2013		-0.063	0.895	2.622	22.319	0.154	0.400	0.780	0.486	
Seppong -3.30 120.40 2016 -0.046 0.995 2.176 3.581 0.183 0.464 0.772 0.531 Seppong -3.30 120.40 2017 0.017 0.987 1.952 7.170 0.272 0.565 0.721 0.583	Seppong	-3.30	120.40	2014		-0.021	0.968	2.012	10,431	0.195	0.508	0.795	0.639	
Seppong -3.30 120.40 2017 0.017 0.987 1.952 7.170 0.272 0.505 0.721 0.583	Seppong	-3.30	120.40	2015		-0.012	0.963	2.134	8.308	0.177	0.487	0.852	0.611	
	Seppong	-3.30	120.40	2016		-0.046	0.995	2.176	3.581	0.183	0.464	0.772	0.531	
Seppong -3.30 120.40 2018 -0.081 0.966 2.475 9.919 0.164 0.428 0.811 0.500	Seppong	-3.30	120.40	2017	_	0.017	0.987	1.952	7.170	0.272	0.505	0.721	0.583	
	Seppong	-3.30	120.40	2018		-0.081	0.966	2.475	9.919	0.164	0.428	0.811	0.500	
				R^2		S	moothnes	s	Н	it rate in c	ontingenc	y sheet		
R^2 Smoothness Hit rate in contingency sheet			daily	sun	n	dai	ly	S	um	dasarian	d	aily		
			>=0.4	>=0.7	(OK (very sr	noot) <2.0			>	0.6667			
daily sum daily sum dasarian daily			<0.4	<0.7	SM (mostly sm	ooth) 2.0 -	5.0		<	0.667			
daily sum daily sum dasarian daily			negatif	negati		NG (N	ot smooth	1 >5 0						

GSMAP	Lea	1.0	Year	R	2	Smoo	thness	Propo	rtion	Hit rate in con	tingency sheet	Reliable
GSMAP	Lon	Lat	Year	daily	sum	daily	sum	daily	sum	dasarian	daily	Kellable
Stamet Masamba	-2.5	120.4	2008	-0.227	0.999		15.474	0.322	0.918	0.889		
Stamet Masamba	-2.5	120.4	2009	-0.145	0.993		931.296	0.317	1.048	0.806		
Stamet Masamba	-2.5	120.4	2010	-0.192	0.987		5.881	0.362	1.058	0.944		
Stamet Masamba	-2.5	120.4	2011	-0.159	0.997		2.136	0.285	0.937	0.806		
Stamet Masamba	-2.5	120.4	2012	-0.216	0.999		1.859	0.304	0.967	0.889		
Stamet Masamba	-2.5	120.4	2013	-0.260	1.000		1.102	0.261	0.980	0.944		
Stamet Masamba	-2.5	120.4	2014	-0.252	0.996		3.114	0.213	0.834	0.944		
Stamet Masamba	-2.5	120.4	2015	-0.107	0.998		1.993	0.367	1.046	0.889		
Stamet Masamba	-2.5	120.4	2016	-0.231	0.998		2.255	0.285	0.954	0.889		
Stamet Masamba	-2.5	120.4	2017	-0.289	0.993		1.491	0.324	1.029	0.944		
Stamet Masamba	-2.5	120.4	2018	-0.152	0.998		2.277	0.376	1.073	0.806		
			R^2			noothness				ngency sheet		
		daily	sun		dail		sur	n das	arian	daily		
		>=0.4	>=0.7	(K (very sm	ioot) <2.0			> 0.60	567		
		<0.4	<0.7	SM (i	mostly smo	oth) 2.0 -	5.0		<0.6	67		
		negatif	negati	f	NG (N	ot smooth)	>5.0					

GSMAP	Lon	Lat	W		R^2		thness	Prop	ortion	Hit rate in contin	gency sheet	Reliable
GSMAP	Lon	Lat	Yea	daily	sum	daily	sum	daily	sum	dasarian	daily	Keliable
Seppong	-3.3	120.4	200	8 -0.3	93 0.991		15.474	0.295	1.513	0.694		
Seppong	-3.3	120.4	200	9 -0.2	72 0.937		931.296	0.270	2.179	0.613		
Seppong	-3.3	120.4	201	0 -0.4	28 0.936		5.881	0.277	1.473	0.694		
Seppong	-3.3	120.4	201	1 -0.2	81 0.931		2.136	0.310	1.489	0.611		
Seppong	-3.3	120.4	201	2 -0.2	90 0.941		1.859	0.382	2.222	0.444		
Seppong	-3.3	120.4	201	3 -0.4	24 0.826		1.102	0.160	1.955	0.441		
Seppong	-3.3	120.4	201	4 -0.1	96 0.944		3.114	0.413	1.930	0.694		
Seppong	-3.3	120.4	201	5 -0.3	14 0.952		1.993	0.215	1.807	0.611		
Seppong	-3.3	120.4	201	6 -0.3	46 0.995		2.255	0.349	1.721	0.625		
Seppong	-3.3	120.4	201	7 -0.4	46 0.981		1.491	0.279	1.630	0.528		
Seppong	-3.3	120.4	201	8 -0.3	39 0.855		2.277	0.385	2.011	0.528		
			R^	2		Smoothn	ess	H	lit rate in co	ntingency sheet		
		c	daily	sum	d	laily		sum	dasarian	daily		
		>=0).4	>=0.7	OK (very	smoot) <2	2.0		> (0.6667		
		<0.4	4	<0.7	SM (mostly s	mooth) 2.	0 - 5.0		<1	0.667		
		neg		negatif	NG	(Not smoo	oth) >5.0					

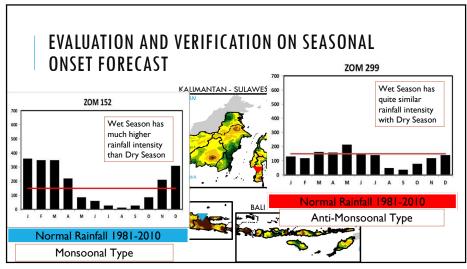

OUTLINE

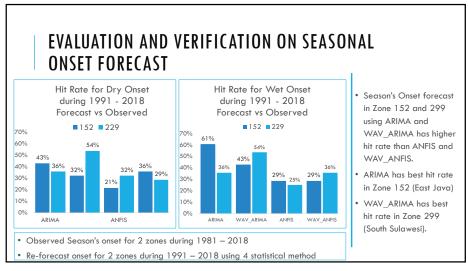

O1 Previous Activity
Evaluation and Verification on Seasonal Onset Forecast

O2 Training Activity in Japan
Study Visit in JMA, JMBSC, Sampo Holding Group Insurance, MRI,
NIAES, JAXA and NARO

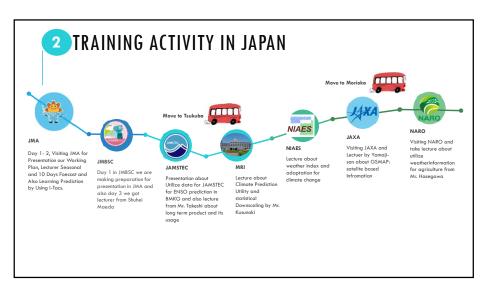
O3 Impression
Impression during Training and Living in Japan

O4 After-Course Activity
Advanced analysis for Seasonal Onset Evaluation and Verification on
JMA Forecast





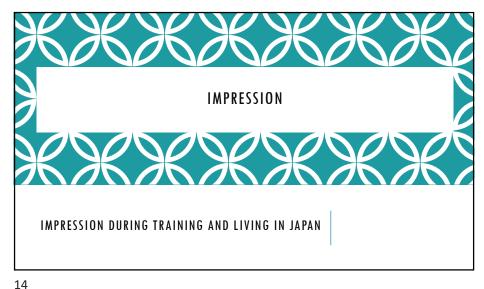
EVALUATION AND VERIFICATION ON SEASONAL **ONSET FORECAST** FORECAST VS OBSERVED EARLY, NEAR NORMAL, LATE ONSET FORECAST VS CLIMATOLOGY EARLY, NEAR NORMAL, LATE ONSET SEASON · Hit Rate for Dry Season's Onset 2012 2013 2014 2015 2016 2017 2018 2019 RATE forecast in Indonesia is about ~ 40 -Skill_INA 0.07 0.08 0.00 0.17 0.15 0.09 -0.05 0.95 60%, as for hit rate in each major 0.32 -0.04 0.05 0.32 0.00 0.09 0.10 Sumatera island is more diversed. 높 0.06 0.72 0.12 -0.15 0.00 Jawa 0.03 -0.11 0.03 BaliNusra -0.45 0.29 -0.07 0.29 -0.19 0.00 0.11 0.03 Overall, Dry Season's Onset forecast 0.69 -0.13 0.30 0.05 0.15 -0.04 0.16 KalSul during 2012-2018 is better than MalPap 1.00 0.40 0.50 0.25 0.13 -0.20 0.00 0.00 climatological forecast, except 2018.


6

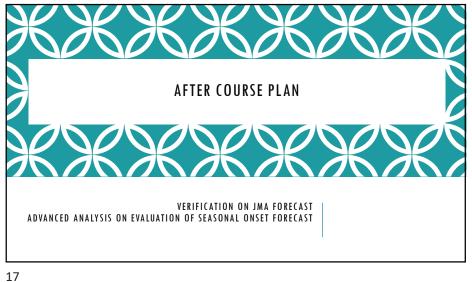
EVAL SEAS		L 01	ISET	FOF)N O	
	FΔ	FORECAST RLY, NEAR NO	VS OBSERV				F	FORECAST VS CLIMATOLOGY EARLY, NEAR NORMAL, LATE ONSET
90% 80% 70% 60% 40% 20% 10% 00% 20% 10% 00% 2022/2013	2013/2014 Supplement	2014/2015 20	015/2016 2017 Sra KalSu	16/2017 2017, MailFao	2018 2018/20	70% 7 60% 6 50% 5 40% 4 30% 3 20% 2 10% 1	2006 2006 2006 2006 2006 2006 2006 2006	013/2014 2014/2015 2015/2015 2015/2017 2017/2018 2018/2019 BRate NA Reate NA Ci
Skill	2012/2013	2013/2014 2				017/2018	2018/2019	Hit Rate for Wet Season's Onset
	0.05	-0.13	0.34	1.58	1.02	0.03	1.03	forecast in Indonesia is about ~
Skill_INA Sumatera	0.00	0.08	0.13	1.09	0.30	0.09	0.00	50 -60%, as for hit rate in each
Jawa	0.02	-0.27	0.40	1.62	5.13	0.06	0.46	major island is more diversed.
BaliNusra	0.00	-0.14	0.22	0.94	0.03	-0.15	0.20	 Overall, Wet Season's Onset forecast during 2012-2018 is
KalSul	0.12	-0.03	0.93	3.22	0.33	0.12	0.40	better than climatological
MalPap	0.60	0.60	-0.40	1.67	0.00	0.00	0.33	forecast, except 2013/2014.

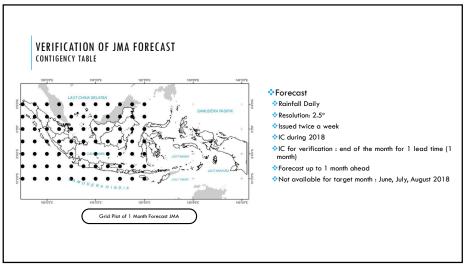
LECTURES THAT CAN BE APPLIED IN OPERATIONAL WORK

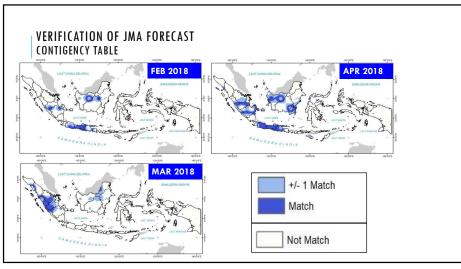
In JMA we learning about how dynamical atmospheric circulation can really affect to our seasonal/monthly variability and also we can use I-Tacs as a tools to make the analyse for atmospheric condition. And also we asking them to provide us reforecast data and observed data for ENSO prediction to compared it with our ENSO prediction with SSA

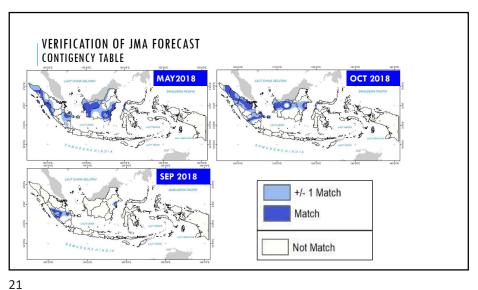

In JAMSTEC we inform them about how we utilize their ENSO prediction as a based for making analogy prediction and also we got to know how well the ENSO prediction by JMA from Mr. Takeshi

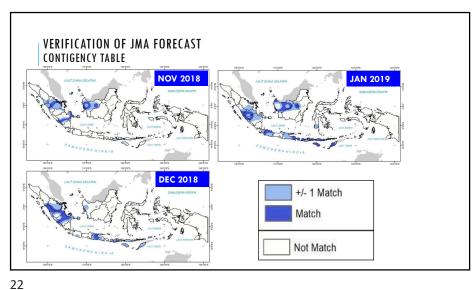
In JAXA, we learned how to utilize the GSMAP data and how to get the data and also we know how well the GSMAP data, this kind of infomation really benefit for our sub-division since we are making rainfall analysis by using GSMAP daily data


11

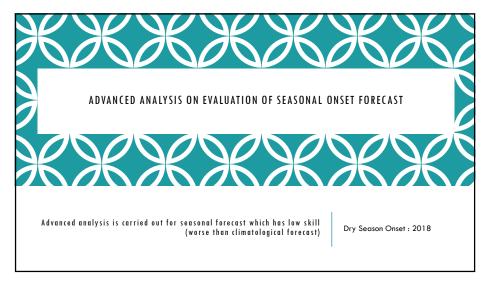


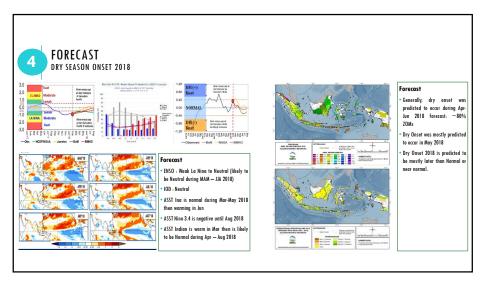


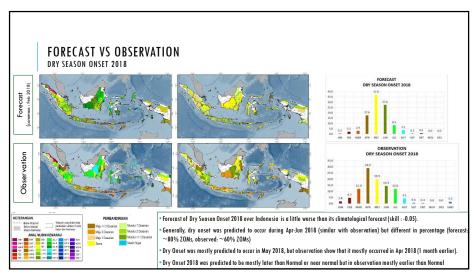


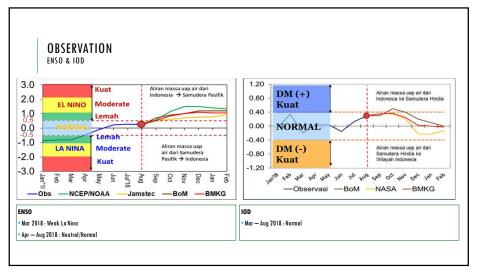

VERIFICATION OF JAM FORECAST CONTIGENCY TABLE *BMKG produces monthly deterministic rainfall forecast (mm) which is divided into: ❖9 categories **Quantitative** (0-20, 21-50, 51-100, 101-150, 151-200, 201-300, 301-400, >500) Match: if observation rainfall categories has difference maximum 1 category with the forecast (difference value -1, +1, 0 defined as

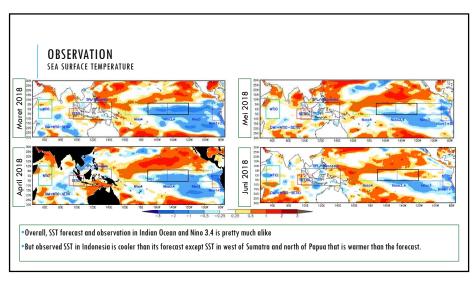
18

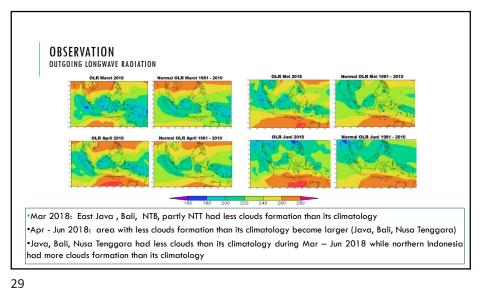


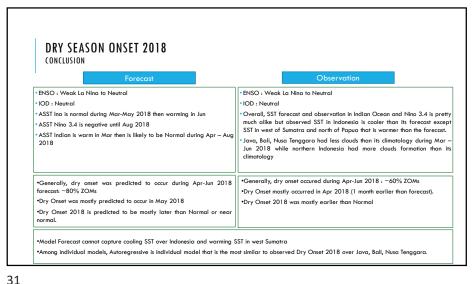







10	ON(LUS	ION													Ve	rificat				1 Mo Jan 2		Fore	ecast	1		
VERIE							SCORE			_	_			100.0%													
	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN															
Match	30	43	37	48			_	24	38	32	52	33		80.0%									_				
Not Match Total	62 92	49 92	55 92	92			_	68 92	54 92	92	40 92	59 92	8										П				
otai	92	92	92	92			L	92	92	92	92	92	986	60.0%		П	. 1	Ι.					1				
						PERCE	NTAGE						Percentage (%)	40.0%		ш		Ш					1	-1	_		_
VERIF	FEB	MAR	APR	10.2% 52.2% 26.1% 41.3% 34.8% 56.5% 35.9	JAN	Per										П											
Match	32.6%	46.7%						26.1%						20.0%	-	Н		Н				_	Н	-	-11		Н
lot Match	67.4%	53.3%	59.8%	47.8%				73.9%	58.7%	65.29	43.5%	64.1%						Ш					П				
Total	100%	100%	100%	100%				100%	100%	1009	100%	100%		0.0%	-	FR M	AR APR		AY JL	10.1	ш	NIG 4	SEP	OCT	NO	V DEC	LAN
															-	ED IV	MR APR							UCI	NUN	DEC	JAN
																			Лatch		Not M	latch					
	_												_												_	=	
	*	Overd	ıll, JM	A 1 n	nonth	forec	ast in	weste	ern po	art Ind	donesi	a has le	ess tha	n 60)%	mat	ch for	rec	ast.								
	•	Highe	st % d	of ma	tch fo	recas	t : De	cemb	er 20	18																	
	•	Lowes	t%o	f mat	ch for	ecast	: Sep	temb	er 20	18																	
	Ι.																										
	•	During	fore	cast f	or Fe	b 20	18 un	til Jar	201	9, ge	neral	y matc	h fore	cast	oc	cur i	n mid	ldle	pa	rt o	f Su	mati	ra	and	we	st	
		art of	Kalin	nanta	n whil	e oth	er rec	ions (only f	or po	rticulo	r mont	ıs.														





27

FORECAST DYNAMIC AND STATISTICAL MODELS • ECMWF and ARIMA predicted dry season onset 2018 mostly occur in May 2018 (similar with consensus) Autoregressive predicted dry season onset 2018 mostly occur in Apr 2018 (a slight higher than May 2018) • CFSv2 and ECMWFcorr predicted dry season onset 2018 mostly occur in Jun 2018

DRY SEASON ONSET 2018 CONCLUSION

30

32

•Model Forecast cannot capture cooling SST over Indonesia and warming SST in west Sumatra

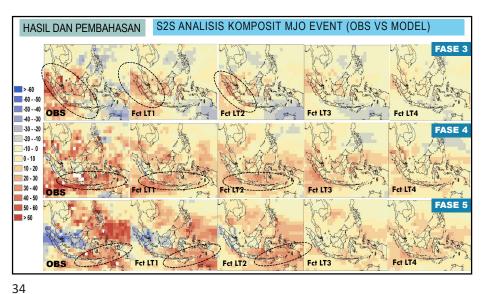
Among individual models, Autoregressive is individual model that is the most similar to observed Dry Onset 2018 over Java, Bali, Nusa Tenggara.

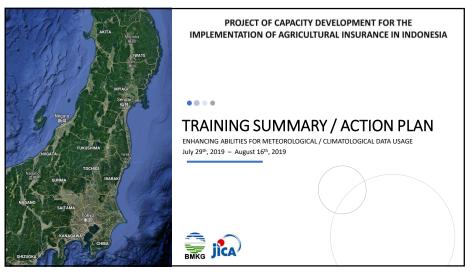
Still need to analysis other parameters like wind, monsoon, etc

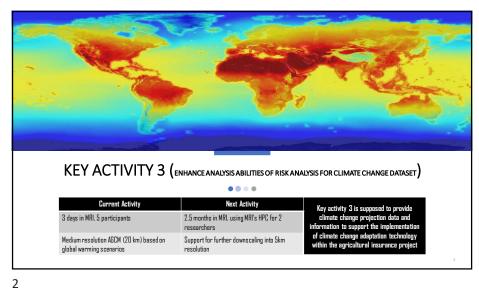
Difficult to evaluate where to improve because model forecast cannot capture the cooling SST in Indonesia We expect your advice for this study case.

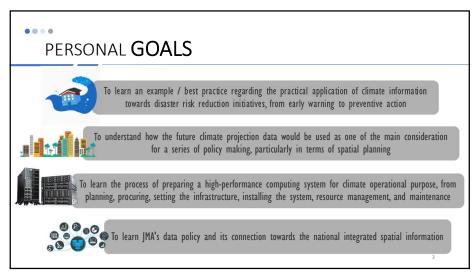
S2S (SUB SEASONAL TO SEASONAL) PREDICTION FOR EXTREME EVENT IN JAKARTA

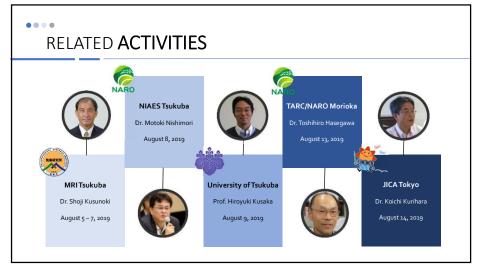
- Extreme events such high rainfall cause flood in Jakarta.
- We need to provide early warning information to avoid damage and loss. One of the ways, we need to enhance capability of \$2\$ prediction for climate early warning.
- So, for this study case we would like to identify ECMWF S2S Prediction for LT 1-3 dasarian (ten-daily/dekad)


Loss of Flood Jakarta 2007


- 4.3 trillion rupiah.
- The displaced population reached 320,000 by 7 February 2007.


BIG FLOOD IN JAKARTA


2002 2007 2013





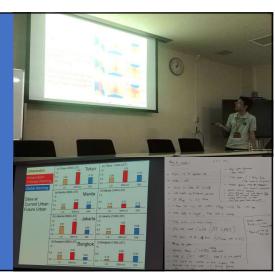
MRI TRAINING

- · Introduction to MRI activit
- Explanation on global warming situation and IPCC report
- Explanation on climate projection dataset
- Utilization of MRI-AGCM data for analyzing future climate projection
- Exercise on the utilization of GrADS-based tools for producing figures, charts, and analysis of MRI-AGCM data
- Presentation session from each participants regarding future condition of climate condition in Indonesia

6

8

NIAES LECTURE

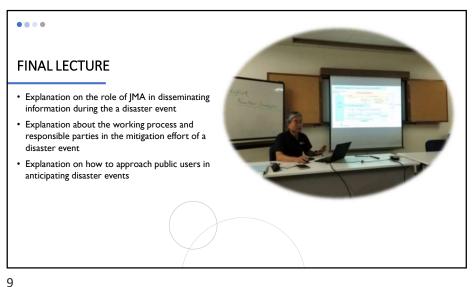

- Introduction to NARO and NIAES
- Summary of climate impact and adaptation in Asia-Pacific region
- Introduction to the CORDEX-ESD
- Review of climate index insurance research in Indonesia (cooperation work of SOMPO, RESTEC, BMKG, and NIAES)
- Lecture of the effect of hydrometeorological extremes on serial productivity in Indonesia (cooperation work of SOMPO, RESTEC, BMKG, and NIAES)
- Introduction to NARO-APCC crop forecast service

TSUKUBA UNIV. LECTURE

- Visit to the new CCS GPU-based supercomputing system
- Lecture on impact of urbanization within the model simulation of Asian mega-cities
- Discussion of the best practice of HPC system preparation, including:
- Consideration of GPU/CPU based system
- 2. Price-to-performance ratio
- 3. Electrical power infrastructure and cooling system
- 4. HDD Filesystem

5

- 5. Backup options
- 6 OS images / Disk-less system


TARC/NARO VISIT

- Summary of future climate projection
- Introduction to the AgMIP activity
- Explanation of the project regarding the sensitivity of rice crop towards the effect of CO₂ fertilization

...

- Implementation of the climate extreme warning for cold summer case in Tohoku region
- · Visit to the Gradiotron
- Explanation on the utilization of the Gradiotron facility for global warming studies

7

.... **WORK PLAN** AUGUST - DECEMBER 2019

KEY ACTIVITY 3 IS SUPPOSED TO PROVIDE CLIMATE CHANGE PROJECTION DATA AND INFORMATION TO SUPPORT THE IMPLEMENTATION OF CLIMATE CHANGE ADAPTATION TECHNOLOGY WITHIN THE AGRICULTURAL INSURANCE PROJECT

CLIMATE PROJECTION INFORMATION

- · To finish the climate change atlas of Indonesia based on the future climate projection data
- · To finish the high-resolution climate change atlas of Maluku and Papua area based on the statistical downscaling result
- To extend the analysis for the future climate projection data using the lesson learned from this training
- To provide high-resolution future climate projection information of Indonesian area based on research activities of 2 BMKG scientists in MRI (August – November)

10

KEY ACTIVITY 3 IS SUPPOSED TO PROVIDE CLIMATE CHANGE PROJECTION DATA AND INFORMATION TO SUPPORT THE IMPLEMENTATION OF CLIMATE CHANGE ADAPTATION TECHNOLOGY WITHIN THE AGRICULTURAL INSURANCE PROJECT

INTERACTIVE CLIMATE ATLAS

- To finish the interactive climate atlas platform with the additional climate indexes specifically adjusted for the climate risk upon rice and maize crops
- To expand the other WebGIS based platform in displaying climate change information for the purpose of serving the needs of climate change information in CEWS

KEY ACTIVITY 3 IS SUPPOSED TO PROVIDE CLIMATE CHANGE PROJECTION DATA AND INFORMATION TO SUPPORT THE IMPLEMENTATION OF CLIMATE CHANGE ADAPTATION TECHNOLOGY WITHIN THE AGRICULTURAL INSURANCE PROJECT

OTHERS

- To continue support various institution/agencies/ministries in terms of implementing the convergence of climate change information towards disaster risk reduction effort
- To support the next JICA project (Climate Change Phase II) in terms of using the climate projection information for spatial
- To deliver the information regarding HPC development for technical meeting forum later in Jakarta. BMKG is right now currently preparing high budget to initiate an integrated HPC

^