添付資料 I

CUWC 内の体験型研修施設 (小規模下水道システム) 整備計画レポート

TECHNICAL ASSISTANCE PROJECT The Project for Enhancing Management Capacity of Sewage Works

SMALL-SCALE SEWERAGE SYSTEM MASTER PLAN FOR CUWC

FINAL REPORT

November 2019

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

NIPPON KOEI CO., LTD SEWERAGE BUSINESS MANAGEMENT CENTRE

SMALL-SCALE SEWERAGE SYSTEM MASTER PLAN FOR CUWC

FINAL REPORT

TABLE OF CONTENTS

CHAPTE	R 1 OUTLINE OF THE MASTER PLAN	1-1
1.1 Ba	ckground	1-1
1.2 Ob	jectives	1-1
1.3 Ou	Itline of the Master Plan	1-1
CHAPTE	R 2 BASIC SURVEY	2-1
2.1 Na	tural Condition	2-1
2.1.1	Topographic Survey	2-1
2.1.2	Geographical Survey	2-1
2.1.3	Water Quality Survey	2-2
2.2 Re	lated Plan	
2.2.1	Drainage System Mater Plan on Hanoi City	2-3
2.2.2	Admission Plan of CUWC	2-4
2.2.3	Construction Plan of CUWC	2-4
2.3 Ex	iting Facilities	2-5
2.3.1	Underground Facilities	2-5
2.3.2	Well and Water Treatment Plant	2-6
2.3.3	Septic Tank	2-6
2.3.4	Electric Facilities	2-7
CHAPTE	R 3 CONCEPTS FOR DEVELOPMENT OF SEWERAGE SYSTEM	3-1
3.1 Co	ncept of Planning Area	
3.2 M	ethod of Development	
3.3 Co	Ilection System	3-1
3.3.1	Type of Collection System	
3.3.2	Selection of Collection System	
CHAPTE	R 4 BASIC CONDITIONS OF PLAN	4-1
4.1 Pla	anned Target Year	
4.2 Co	llection Area	
4.3 Fra	ame of Population	
4.3.1	Basis of Population Forecast	
4.3.2	Frame of Population for Sewer Pipe	
4.3.3	Frame of Population for Sewage Treatment Plant	

4.4 Unit Amount of Sewage	
4.4.1 Unit Amount of Sewage	
4.4.2 Fluctuation Rate (Peak Coefficient)	
4.5 Planned Sewage flow rate	
4.5.1 Planned Sewage flow rate into Sewer Pipe	
4.5.2 Planned Sewage Flow Rate into Sewage Treatment Plant	
4.6 Unit Pollutant Load of Sewage	
4.7 Planned Pollutant Load of Sewage	
4.8 Rainfall Intensity of Drainage Planning	
4.8.1 Probability Year of Rainfall	
4.8.2 Formulas for Intensity of Rainfall	
4.9 Setting of Runoff Coefficient	
4.10 Design Conditions of Sewerage/Drainage Network	
4.10.1 Hydraulic Calculation Formula and Roughness Coefficients	
4.10.2 Material and Minimum Diameter	
4.10.3 Minimum and Maximum Velocity of Pipe	
4.10.4 Maximum Calculated Filling of Pipe	
4.10.5 Method for Connection of Pipe	
4.10.6 Minimum Earth Covering of Pipe	
CHAPTER 5 STUDY FOR LAYOUT OF MAIN FACILITIES	
5.1 Selecting the Location of Sewage Treatment Plant	
5.2 Outflow Water Quality	
5.2.1 National Technical Regulation on Domestic Wastewater	
5.2.2 Setting of Outflow Water Quality	
5.3 Layout of Sewer and Drainage Lines	
5.3.1 Layout of Sewer Lines	
5.3.2 Layout of Drainage Lines	
5.4 Considering the Necessity of Pumping Stations	
CHAPTER 6 PLAN OF SEWAGE PIPE	
6.1 Outline of Sewage Pipe	
6.2 Drawings of Sewage Pipe	
CHAPTER 7 PLAN OF DRAINAGE PIPE	
7.1 Outline of Drainage Pipe	
7.2 Drawings of Drainage Pipe	
CHAPTER 8 PLAN OF SEWAGE TREATMENT PLANT	
8.1 Sewage Treatment Process	
8.1.1 Comparison of Sewage Treatment Technologies	
8.1.2 Proposed Sewage Treatment Process	
8.2 Study on Sludge Treatment and Disposal Method	

8.2.	.1 Sludge Treatment Method	
8.2.	.2 Sludge Disposal Method	8-6
СНАРТ	TER 9 ENVIRONMENTAL IMPACT SURVEY	9-1
9.1 (Objective of Environmental Impact Assessment (Another Consideration is Required)	
9.2 \$	Simplified Evaluation of Improving Water Quality	
СНАРТ	TER 10 STUDY OF PROJECT COST	
10.1	Construction Cost Estimate	
10.1	1.1 Summary of Construction Works	
10.1	1.2 Construction Cost Estimate	
10.2	Project Implementation Plan	
СНАРТ	TER 11 EXPERIMENTAL TRAINING FACILITIES	11-1
11.1	Purpose and Example Case of Experimental Training Facilities	11-1
11.2	Proposed Pipe Facilities	11-2
11.3	Proposed Sewerage Treatment Facilities	11-3
11.4	Proposed Multipurpose Underground Utility Conduit	11-5

TABLE OF CONTENTS OF APPENDIX

Α	Flow Calculation Sheet of Sewage Pipe	a-1
B	Flow Calculation Sheet of Drainage Pipe	b-1
С	Design Calculation of Sewage Treatment Plant (for OD System)	c-1
D	Alternative Plan of "Johkasou" (Advanced Septic Tank Technology in Japan)	d-1
Е	Drawings of Small-Scale Sewerage System Master Plan	e-1

ABBREVIATION

ADB	Asian Development Bank
ATI	Administration of Technical Infrastructure
BOD	Biochemical Oxygen Demand
CAS	Conventional Activated Sludge Process
CIRD	Center for Infrastructure Research and Development
CNEE	Training Center of Water and Environment
COD	Chemical Oxygen Demand
C/P	Counterpart
CPC	City People's Committee
CUWC	College of Urban Works Construction
DOC	Department of Construction
DONRE	Department of Natural Resources and Environment
DPI	Department of Planning and Investment
F/S	Feasibility Study
GCUS	Japan Global Center for Urban Sanitation
GI	General Information
GIZ	Deutshe Geselleschaft fuur Internationale Zusammenarbeit
JICA	Japan International Cooperation Agency
JS	Japan Sewage Works Agency
JSWA	Japan Sewage Works Association
MABUTIP	Management Board of Urban Technical Infrastructure Development Project
M/D	Minutes of Discussion
MOC	Ministry of Construction
M/P	Master Plan
ODA	Official Development Aid
O&M	Operation and Maintenance
PIS	Project Implementation Support
PMB	Project Management Board
PMU	Project Management Unit
PPC	Provincial People's Committee
R & D	Research and Development
TOT	Training of Trainer
VSC	Vietnam Sewerage Center
VWSA	Vietnam Water Supply and Sewerage Association
WB	World Bank
WWTP	Wastewater Treatment Plant
STP	Sewage Treatment Plant

CHAPTER 1 OUTLINE OF THE MASTER PLAN

1.1 Background

Watching the actual facilities and equipment in the training course is very useful for everyone to promote an understanding of sewerage system as well as lecture style training. Therefore, this master plan is proposed the development of "Experienced-based training" facility, the small-scale sewerage facilities, in CUWC for the reason that the facility will be utilized for trainees to get a greater understanding of the structure and mechanism of sewerage facilities in the training courses to be organized in expected next phase.

Based on the above-described background, the study to prepare the draft development plan of "Experienced-based training" facility and the small-scale sewerage facilities, in CUWC is implemented.

1.2 Objectives

The main objective of the study is to formulate the small-scale sewerage system master plan for CUWC. And, this project is intended for provide various "Experiential Training" facilities to learn exceptional technique of sewerage system in Japan.

1.3 Outline of the Master Plan

Comprehensive summary of the master plan for CUWC is shown in the table below.

No.		Iter	ns	Con	tents	Remarks	
1	Target year			20	30		
2	Collection area			5.0	ha		
3	Collection system			Separate sew	erage system		
4	Frame of population of	of eac	h building for sewer pipe	5,166 j	hourly maximum		
5	Frame of population f	for sev	vage treatment plant	9,350 1	persons	1 day maximum	
(Unit amount of correct		Classified by use	20 to 150	L/person	TCVN14512.1000	
6	Unit amount of sewag	ge	Amount of infiltration	Total amount of da	ily average x 10 %	ICVN4513:1999	
7	Planned sewage flow	late	Daily average	232 n	n ³ /day		
/	(2030)		Daily maximum	310 n	n ³ /day	Avg.:Max.=0.75:1	
		Para	imeters	Designed inflow	Standard effluent	QCVN14:2008	
		BOI	D5 (mg/l)	185	30		
0	Standards effluent water quality	SS (mg/l)	145	50	<u>C 1</u>	
8		N (r	ng/l)	36	30	Class A	
		P (n	ng/l)	4	6		
		Tota	l coliforms (MPN/100ml)	-			
0	Water treatment meth	od	Sewage treatment plant $(300 \text{ m}^3/\text{day})$	Anoxic–Oxic	Main STP		
9	water treatment meth	ou	Johkasou (36 m ³ /day)	Advanced aerobics	sentic tank system	Building: D8	
			Thickening process	1 7 m	³ /day	1.5%	
10	Sludge treatment met	hod	Deviatorin a macaza	0.15 m ³ /day (2	5 Alver DS/devi)	1.5 /0	
			Dewatering process	0.15 m²/day (2	$3.0 \text{kg} \cdot D5/\text{day}$	1770	
11		.,.		Kational runoli lo	<u>с 1 и</u>		
11	Planned rainfall cond	ition	Return period	$\mathbf{P} = 2$	Grade II		
			Rainfall intensity	q = 5890 x (1+0.62)	$5 \log x 2) / (t+20)^{0.84}$	for Hanoi	

Table 1.3.1	Comprehensive Summary of the Master Plan
-------------	---

Source: JICA Consultant Team

CHAPTER 2 BASIC SURVEY OF PLANNING AREA

2.1 Natural Condition

2.1.1 Topographic Survey

(1) Terrain Features

The CUWC locates in Yen Thuong, Gia Lam, Hanoi with the total area of 5.1 ha. With spacious campus, the college offers beautiful view of suburban area. This location is the basin of Duong river of a tributary of Red river, and adjacent to Duc Tu lake. The land of CUWC has natural terrain which is relatively flat, tilted and lowered from northwest to southeast, altitude from 7.9 to 6.6 m of the ground elevation.

Source: JICA Consultant Team (Base map: OpenStreetMap) Figure 2.1.1 Location Map of CUWC

(2) On-site Survey

The JICA consultant team surveyed on the site for ground elevation, bottom level of existing drain, cross-sectional shape and material of the drain. The result of survey is compiled to the drawing "Layout of Existing Drainage System".

2.1.2 Geographical Survey

According to the inquiring survey to a technical management staff in CUWC, the geological condition of land located near river is the clay layer with backfilling (concrete, block, construction waste) is deposited from 0.0m to 3.0m in elevation, and a loose sandy silt (N=5-15) exists below the clay mixed soil. The on-site geographical survey is not including the scope of works in this study, then it should be

referred existing data/result and conducted in next stage. The report of geological survey in the past is shown the below.

- No.1: for construction of Multifunctional Building (No. B6), 2014
- No.2: for construction of Green Technology Building (No. 01), 2016

Figure 2.1.2 Location Map of Geological Survey on Multifunctional Building

<u> </u>	52			-										1		Î.					
ŀ	<u> 11</u>	ΙH	TF	۲Ų	ΗŐ	KHO	AN						Tở số:	1/2	Toạ độ	X: Y:					
CÔ	NG T	RÌNH		Nhà	i học đa	nàng 7 tầ	ing - Trư	ờng	CÐ	Xây	dựr	ng c	ông trình c	đô thị	Hố khoan	K1					
Ðļ	\ ĐIẾ	M		Xā `	Yên Thư	òng, huyé	n Gia Lá	im, I	hàn	ih ph	őН	là N	lội		Cao độ (m)	7.30					
ĐO	NVI.	KHẢC) SÁT	Trur	ng tâm C	luản lý kỹ	i thuật và	ı kiể	m đ	inh >	ây i	dựn	g		Mực n.d.đất	(m) -1.4					
NG	UỜU	ÂΡ		KS.	Nguyễn	Mạnh Cu	rờng		Ng	jày t	ắt c	đầu	28/05/2	2014	Độ sâu (m) 35.0						
NG	UỜI I	άÊΜ	TRA	ThS	. Phan T	ự Hướng			Ng	jày k	ết t	húc	29/05/2	2014	Lý trình						
Cột	Lán	dày 1)	sâu (r	độ (r	Mẫu và	a thí nghiệ	èm xuyêr	n tiêu	u ch	uẩn	SP	Г	Cột								
tỷ lệ	гор	, Bế	βġ	Cao (n	Ký hiệu	u đồ 20	SPT	(N3	0) 50	địa tẩng	MO TA CAC LOP ĐẠT										
									Ţ.	Ĺ	Ĺ	***	Đất l	ấp: Bê tông, gạ	ich vỡ, phế thải						
1											<u> </u>		*`*`*	xây d	dựng.	10 K.D					
2	1	3.2							-		+		****	Cát	san nền màu xá	im ahi					
2											1		* * *	our							
3			3.2	4.10							_		* *	5							
														Sét p	sha lẫn hữu cơ	màu nâu vàng.					
4	2 1.3 4.5 2.80 MA 4.5-47													Trạn	g thái dẻo mền	٦.					
5	4.5 2.80 M3 SPT1 4.5-4.7 3.7-5.15 2/3/5 N30=8 8												Sét p dẻo c	nhamàu nâu vài cứng.	ng. Trạng thái						
	IK1	1.5	6.0	1 30					-			+		Cát p	nàu xám g	hi. Trạng thái					
0	2		0.0	1.50										deo.							
7					M3 SPT2	7 0-7 45	2/3/4		_			<u>.</u>									
					01 12	1.0 1.40	N30=7				+										
8										-	+	+	ه ۲۳۶ می باد می می از می می از می ۲۰ می می می می می می می می می می ۲۰ می								
9	3	60												Cát l	nạt bụi màu xár	n nâu, xám ghi.					
	Ŭ	0.0			M4 SPT3	9.5-9.95	2/3/5		-		-			Net o	cau xop, trạng t 2.	hai bao hoa					
10							N30=8			-											
11											İ.										
										-	-	ļ									
12	2	a	12.0	-4.70	M5 SPT4	12.0-12.45	4/5/6 N30=11	-	11	- 55 - 550	-	-									
13							. N .00-17				T										
000.579 											<u> </u>	ļ									
14					M6 SPT5	14.0-14.45	5/6/7	-	13		+										
15	4	5.5			GED 93		N30=13		tt		+	+		Cát I	nạt bụi, có chỗ	cát hạt nhỏ, xen					
									1					кер ghi,:	via set pha deo xám xanh. Kết	mem mau xam cấu chặt vừa,					
16					M7 SPT6	16.0-16.45	6/8/10			8	+-			trạng	g thái bão hòa r	nước.					
47							N30=18	-+			+	+									
17			17.5	-10.20	M8	17 5-17 7			-+		<u>†</u>	1									
18					SPT7	17.7-18.15	10/13/15 N30=28	\square		28											
	5	40					10000000000000		-	/		-		Sét p	oha, có chỗ sét	màu nâu vàng,					
19	3	4.0							-#			1		nâu hông. Trạng thái dẻo cứng, có chỗ nửa cứng.							
20									1				1.1.11	ono	an oung						
GI	HI C	∟ HÚ∙									1	<u> </u>			N						
	an K		I M	äu ngu	yên dạng	• M	au phá hủ	У	•	Biếu	đô	giá t	trį N30		¥ — Mực n	ước dưới đất					

Figure 2.1.3 Soil Boring Log (K1) on Multifunctional Building

	224				2007#0														
ŀ	ЧÌР	١H	TF	RŲ	ΗŐ	KHO	AN						Tờ số:	1/2	Toạ độ	X: Y:			
CÔ.	NG T	RÌNH	8	Nhà	học đa	năng 7 tấ	ing - Trư	ờng	CĐ	Xây	dựn	ig c	ông trình d	đô thị	Hố khoan	K2			
Đ₽	1 ĐIÊ	M		Xã ۱	rên Thư	ờng, huyệ	n Gia Lá	àm, t	thàn	h pł	nố H	à N	ội		Cao độ (m)	7.10			
DŐ	N VĮ I	KHÅC) SÁT	Trur	ng tâm Q	uản lý kỹ	thuật và	a kiể	m đ	nh :	(ây (lựn	g		Mực n.d.đất (m) -1.2			
NG	UỜI I	ÂР		KS.	Nguyễn	Mạnh Cu	/ờng		Ng	iày l	pắt đ	lầu	29/05/2	2014	Độ sâu (m) 35.0				
NG	UÒLI	RIÊM	TRA	ThS	. Phan T	'ự Hướng	í.		Ng	iày l	cết ti	núc	30/05/2	2014	Lý trình				
Côt		ày)	âu ()	độ (Mẫu và	i thí nghiế	ệm xuyêi	n tiê	u ch	uẩn	SPT	Ē.	Côt		A 2				
tỷ lệ	Lop	Bê c (m	βġε	Cao (r	Ký hiệu	Độ sâu (m)	Giå trị SPT	ắu đồ SPT (N30) địa tầng					MO TA CAC LOP ĐẠT						
			2							Ĩ	Ĺ	Ĺ	*_*	Đất l	ấp: Bê tông, gạ	ch vỡ, phế thải			
1									-	╇	+		***	xây d	dựng.				
	1	3.4					5		+	┿	┿╍		* *	~~~	×	221 12			
2										T			* *	ghi.	san nen mau xa	m den, xam			
3									-	4	-		* *	285.23					
			3.4	3.70				\vdash	-	┿	+								
4					544	45 47	5	\vdash	+	╈	+			Sét r	nàu nâu đen, x: đảo mắm	àm đen. Trạng			
5				M1 4.5-4.7 SPT1 4.7-5.15 3/4/5 99 the second											aco mem.				
	2	3.6					-900-0		-	+	\downarrow								
6								\vdash	+	╀	+			Sét p	bha màu nâu đe	n, xám đen.			
7			7.0	0,10	M2	6.5-6.7			\uparrow	╈	\top			Trạn	g thai deo chay	26			
[]					SPT2	7.0-7.45	4/5/6 N30=11		11	T	1	ļ							
8									-+-										
~	3	35							+	╋	-			Cát	nạt bụi màu xán	nâu, xám ghi.			
9	Ŭ	0.0					3			╈	\mathbf{T}			Két c nước	câu xôp, trạng tỉ	nai bao hoa			
10					M3 SPT3	9.7-10.15	4/4/5 N30=9	-	9	T									
			10.5	-3.40			1,00 0			╇	<u> </u>	ļ							
11									-+-	┿	+	<u> </u>		Cát I	nat bui màu xán	n ghi, xám nâu.			
12					M4		1.0.2			T				Kết c	au chặt vừa, trạ	ing thái bão			
					SPT4	12.0-12.45	6/6/8 N30=14		1	\bot				noa	nuoc.				
13								-+	\mathbb{H}	╇		-							
14	4	6.0			M5					╈	+								
- 14					ŠPT5	14.0-14.45	2/4/8 N30=12		12	T	1			Cát I	nạt nhỏ màu xá	m ghi, xám đen.			
15)		\prod	4	1			Kết c	cấu chặt vừa, trạ nước	ing thái bão			
					140		2		+	╀	+	_		nou	1000.				
16			16.5	-9.40	SPT6	16.0-16.45	10/9/9 N30=18	H	-	3	+								
17										T			<i>[]]]</i>]						
										4	4								
18	5	35			M7 SPT7	18.0-18.2	7/8/10			+	+			Sét p	oha màu nâu và	ng, xám trắng.			
19		0.0			5117	10.2-10.03	N30=18	H	/	╈	1			Trạng thái đẻo cứng, có chỉ cứng.					
[]								ļ	1	T					8				
20			20.0	-12.90	M8 SPT8	19.8-20.0 20.0-20.45	2/3/3	4	+	- -	+								
01	IT C				2		N30=6		1	1	1								
G	H C	пU:	I M	ẫu ngu	yên dạng	• M	ẫu phá hủ	iy	•	Biểu	đố	giá t	ri N30	-	¥—— Mực ni	ước dưới đất			

Figure 2.1.4 Soil Boring Log (K2) on Multifunctional Building

ŀ	ЧÌР	ΙH	TF	₹Ų	ΗŐ	KHC	AN						Tờ số:	1/2	Toạ độ	X: Y:					
CÔ.	NG T	RÌNH	24	Nhà	học đa	năng 7 tấ	ing - Trư	ờng	CĐ	Xây	dựn	g c	ông trình q	đô thị	Hố khoan	К3					
ÐĿ	ÐIÊ	M		Xã ۱	Yên Thư	ờng, huyế	èn Gia La	àm, t	thàr	nh ph	ιố Η.	àN	lôi		Cao đô (m)	6.80					
DO	N VI)	KIIÅC) SÁT	Trur	na tâm C	uản lý kỹ	thuật vậ	a kiể	m đ	inh>	âv c	lun	а		Mưc n.d.đất	(m) -1.2					
NG	vön	ÂP		KS.	Nauvễn	Manh Ci	, Iàna	1.400	N	Jàv t	pắt đ	âu	27/05/2	2014	Đô sâu (m)	35.0					
NG	UÒLI	 ₹IÊM	TRA	ThS	Phan T	μ Ημάρα	<u></u>		N	jày k	tt	núc	28/05/2	2014	Lý trình						
		>	3	<u>بار</u>	Mẫu và	a thí nabié	èm xuvê	n tiê		uẩn	SPT	5	20/00/2								
tỷ lệ	Lớp	3ê dà (m)	ðð sê (m)	Cao d (m)	Ký hiệu	Độ sâu	Giá trị	Biể	u đồ SPT (N30) địa tầng						MÔ TẢ CÁC LỚP ĐẤT						
				Ŭ		(m)	SPT	10	20	30	40 5	0	× ×	Đất	Đất lấp: Bê tộng, gạch với phố th						
1	1	1.7								+	\mathbf{T}		* <u>`</u> *`*	xây	dựng.						
			1.7	5.10	11.431270	0.00100-500-60					ļ		****	Cat	san nen mau xa	im gni.					
2					M1 SPT1	1.8-2.0 2.0-2.45	2/3/4	-+r	+		+										
3							N80=7	$ \dagger $	+	-	+										
Ĭ						11-11 - 11777		11													
4	3	4.3			M2 SPT2	3.8-4.0 4.0-4.45	2/1/2	13	_		_			nâu,	xám ghi. Kết c	ău xốp, trạng					
Ŧ							N30=3	++	+	+	+-			thái	bão hòa nước.						
								\uparrow			T										
6			6.0	0.80	M3 SPT3	6.0-6.45	4/5/5		10		-										
							N30=10		-	+	-										
1									+	- -											
8					M4	00045	EIGIG				1										
					9F14	0.0-0.43	N30=12		[4	_	-										
9									\mathbf{H}	+				Cát	nạt bụi, có chố .	xen kẹp vỉa sét					
10					M5	9.8-10.0	0.76944							ghi.	deo mem mau Kết cấu chặt vù	xam nau, xam /a, trạng thái bão					
s estadan					SP15	10.0-10.45	5/9/9 N30=18		71	8	_			hòa	nước.						
11								$ \rightarrow $	4		+										
12	4	11.0			M6	23 99 85 69 506215	5.000-0000	1	\uparrow	\neg	\mathbf{T}										
					SPT6	12.0-12.45	3/2/2 N30=4	4													
13									+	_	-										
14					M7				\mathcal{H}		+										
14					ŠPT7	14.0-14.45	8/11/9 N30-20		1	20					25						
15									4	1	-			Cát l xám	nạt bụi, có chỗ nâu xám chi l	cát hạt nhỏ màu. Kết cấu chặt					
					140				\mathbb{H}	+	+	_		vừa,	trạng thái bão	hòa nước.					
16					SPT8	16.0-16.45	5/6/6 N30=12	H	12	+	+										
17			17.0	-10.20			1.0.0.00.00.00.00.00.00				1										
									-+		╂		11/1/1	101111-001	21 32 36 W	1 0.000					
18	5	2.5			M9	18.0-18.2			+		+			Sét j Tran	oha màu nâu và g thái đẻo cứng	àng, xám trắng. I					
19	. ×										1		1/1/1	and the		DAK.					
	500+4	0.0000000	19.5	-12.70						T				04	alaa aabo a bo	an Tarran					
20	6	4.0			M10 SPT9	19.8-20.0 20.0-20.45	4/5/5	╞╡	10	+	+		11/1/1	deo	ma mau nau va mềm.	ang. Trạng thai					
CI	не	L HÍI					<u> N30=10</u>		1	I	1			I							
u			I M	ắu ngu	yên dạng	• M	ắu phá hủ	iy	+	Biểu	đố g	giá t	ri N30	1 <u>21</u>	¥ Mực n	ước dưới đất					

Figure 2.1.5 Soil Boring Log (K3) on Multifunctional Building

Figure 2.1.6 Location Map of Geological Survey on Green Technology Building

—					1000											2252					
ŀ	ЧÌР	JH	TF	R Ų	ΗŐ	кно	AN						Tờ số:	1/2	Toạ độ	X: Y:					
CÔ.	NG TI	RÌNH	5	Trur	ng tâm N	Ċ, ĐT ƯI) và CG	CN :	xây	' dựn	g xa	ı hn	Việt Nam		Hố khoan	K1					
DĻ4	DIÊ	M		Trướ	ờng CĐ)	Kây dựng	CTÐT -	Yên	n Tł	nườn	g - C	Sia L	_âm - Hà N	l ội	Cao độ (m)	7.18					
ĐƠ	N VĮ I	ĸĦÂĊ) SÁT	Trur	ng tâm G	luản lý kỹ	thuật và	a kiể	ím (định	xây	dựn	ġ		Mực n.d.đất (m) -1.7						
NG	UÒLL	ÂΡ		Kỹ s	sư Nguyễ	n Đức Ki	nåi		N	lgày	bắt (1 ầu	26/02/2	2016	Độ sâu (m) 31.0						
NG	UÒI F	TÊM	TRA	ThS	. Phan T	'ự Hướng			N	lgày	kết t	húc	27/02/2	2016	Lý trình						
Côt	202	ày (âu)	độ	Mẫu và	i thí nghiệ	êm xuyê	n tiê	u c	huẩr	SP	Г	Côt		MÔ TẢ CÁC LỚP ĐẤT						
tỷ lệ	Lớp	Bêd (T	Độ s (m	Cao (m	Ký hiệu	Độ sâu (m)	Giá trị SPT	Biê	ud	ÔSP 0.30	r (N3	0) 50	địa tầng								
							<u> </u>	Ī		Ĩ	Ĩ	Ĭ.	× *								
1	1A	2.2									+	╞	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Đất	ấp: Cát san nềr	lẫn gạch vụn					
2	823.4	5399.0010		10. area				11126			╈	\vdash	***	mau	xam nau, xam	gni.					
Ê			2.2	4.98							T	L	1777								
3	1B	1.5						+			+-	-	14/2	Bùn đen.	đáy hổ lẫn cát x	ám ghi, xám					
4		<u> </u>	3.7	3.48	M1	3.8-4.0		+			+	+	7474								
					SPT1	4.2-4.65	1/1/2 N30=3	• 3			T										
5											+	-									
6	2	4.1			M2	5.8-6.0					+	+		Sét	oha màu xám na mầm	àu. Trạng thái					
Ŭ					SPT2	6.0-6.45	1.5/1.5/1. N30–3	•3			1	1		ueo	:o mêm.						
7											+	_									
			7.8	-0.62							╀	┢									
0	3	0.9	97	1.52							Ţ		,,,,,,,,	Cát pha màu xám đen. Trạng tha chảy.							
9			0.7	-1.32	M3 SPT3	8.8-9.0 9.0-9.45	1/1.5/3	-•4	5		4	_	1.1.1.1	Sét	oha màu xám gl	ni. Trạng thái					
10							N30=4.5	┝-┾-┿		┝╌┠	+-	╂		dẻo	mềm.						
nu					M4	10.5-10.7					İ	E									
11	TK2	4.3			SPT4	10.7-11.15	1/1.5/2.5 N30=4	•4			4	╞		Sét	oha xen kep via	cát pha, cát					
							1463-1310-144891	\mathbb{H}			+	+		nhỏ thái	màu xám nâu, > dẻo mềm	ám ghi. Trạng					
12								-+			+-	1		unar	deo mem.						
13			13.0	-5.82	M5 SPT5	13 0-13 45	7/7/6		11		Ţ	1									
					0, 10	1010 10110	N30=13				+	+									
14											$^{+}$	\top									
15	4	4.0			M6 SBT6	15 0 15 45	A1517				Ţ	1		Cát	nhỏ màu xám gi	ni. Kết cấu chặt					
1000	35				3-10	15.0-15.45	N30-12	_			+	_		vďa,	trạng thái bào r	ióa nước.					
16											╉	+									
17			17.0	-9.82	M7	17.0-17.2					T	L			- <u>-</u>						
	5	0.8	17.8	-10.62	SPT7	17.2-17.65	3/5/7 N30=12		12		+	\vdash		Sét i vàng	nàu xám nâu, x J. Trang thái ກບໍ	ám đỏ, xám a cứng.					
18								t-f			+	╉──	///////////////////////////////////////		53						
19	⊤к4	1.9			M8	18.8-19.0	2/2/5				1	1		Cát nâu,	pha xen kẹp sét xám ghi, xám v	pha màu xâm àng. Trạng thái					
			19.7	-12,52	0710	19.0-19.45	8/8/5 N30=8	Ħ	> 		+	$\left - \right $	111111	dẻo.							
20	TK5	3.1						-4		$\left \cdot \right $	+	t	(1:1:17)	Sét j mển	oha màu nâu đồ 1.	. Trạng thải dẻo					
GI	HI C	ΗÚ:	I M	ẫu ngu	yên dạng	• M	ẫu phá hi	iy	•	Biể	u đồ	giá t	tri N30	·;	v Mực ni	ước dưới đất					

Figure 2.1.7 Soil Boring Log (K1) on Green Technology Building

ŀ	HÌNH TRỤ HỐ KHOAN Tờ số: 1/2 Toạ độ X: Y: Toạ độ Y:																			
CÔ	NG TI	RÌNH	101000	- Trur	na tâm N	C. ĐT ƯI	D và CG	CN >	câv d	una	xanh	۱V	iêt Nam		Hố khoan	K2				
ÐL	ÐIÉ	M		Trườ	ing CĐ)	(âv dựng	CTÐT -	Yên	Thư	àna	- Gia	ı Lá	· àm - Hà N	Jôi	Cao đô (m)	7.17				
ÐÖ	N VI	кнåс) SÁT	Trur	na tâm C	uản lý kỹ	thuật và	a kiể	m đir	nh xá	uh ví	ína			Mưc n.d.đất (m) -4.2				
NG	uàn	ÂP		Kűs	ar Nouvễ	n Đức Ki	nái		No	av bi	ắt đầ		27/02/2	016	Đô sâu (m) 32.0					
NG	VÕH	стÉМ	TRA	ThS	Phan T	u Hướng			Ngà	ny ké	ết thủ	ic	28/02/2	016	Lý trình					
Cât		Á.	п	्र	Mẫu và	thí nghiê	èm xuyêi	n tiêi	u chu	ẩn S	SPT		Cât	.010		10				
tỷ lệ	Lớp	3ê dã (m)	ŝô ŝĉ (m)	Cao ((m)	Ký hiêu	Độ sâu	Giá trị	Biể	u đồ S	SPT (N30)		địa tầng		MÔ TẢ CÁC LỚP ĐẤT					
			-		0	(m)	SPT	10	20	30 4	0 50		* *							
1												,	* * *							
	1.4	24										-,	* * *	Đất	lấp: Cát san nềr	ı lẫn gạch vụn				
2	IA	5.4							+			}	* * *	màu	xám nâu, xám j	ghi.				
3													* * *							
1		e e	3.4	3.77									****							
4					M1 SPT1	4.0-4.2 4.2-4.65	1/1/2	€3	+	+		-ł								
5						22	N'30=3		1			1								
24	7	4.0						+++		<u> </u>		{		Sét	oha màu xám na	àu. Trạng thái				
6	2	4.0			M2 SPT2	6.0 - 6.2 6.2-6.65	1/2/3	+5	+	$\left \right $		-{		déo	mêm.					
7					(-540)(170)	E CARLES	N30=5	\square	T	1										
			Cite can U	2830.2%				4				ł								
8		D.	8.0	-0.83	M3 SPT3	7.8-8.0 8.0-8.45	0/0/0	0	-+			-ŧ	11111							
9	3	18			M4	90-92	130-0		+					Cát	oha màu xám đ	en. Trạng thái				
		1.0	0.0	7.67	M5	0.0-0.2		\prod]		chay						
10		0	9.0	-2.05	SPT4	9.7-10.15	1.5/2.5/5 N30=7.5	-17	.5	$\left - \right $		-ť								
11														Cát i tranc	nhỏ màu xám gi thái bão hòa n	ni. Kết cấu xốp, ước.				
															,					
12					M6 SPT5	12.0-12.45	4/7/8	-	+15			_								
12		370775					N30=15					-								
13	4	6.7																		
14					M7 SPT6	14.0-14.45	3/7/8		◆15			_		Cát	nhỏ màu xám gi	ni. Kết cấu chặt				
10						A 100 MILLION	N30=15		H	\mathbf{H}	-+-	-		vưa, nước	co cho xop, trại :.	ng thai bao noa				
15																				
16					SPT7	16 0-16 45	4/4/5		+	1										
_			16.5	-9.33	2		N30=9		+	+			11/11	Sét :	ກລຸ່ມ ແລ້ວ ກລຸ່ມ ຈ	ám vàng. Trang				
17	5	1.0	17.5	-10.33	M8	17.3-17.5			\uparrow			-		thái	nửa cứng.	an rang. rrany				
18		82			M9 SPT8	17.8-18.0	0/0/14		V											
	ß	5 9			Child.	.0.0-10.43	N30=20		120			{		Sét p	oha màu xám na	ău, xám vàng.				
19	U	5.6							+	+	$\neg \uparrow$	ŧ		Trạn	g thái dẻo mềm	2				
20					M10 SPT9	19.8-20.0	2/6/6		12			1	11/1/							
					0.10	20.0-20.40	N30=12		14				and a start of the							
Gł	H C	HU:	I Ma	ẫu ngu	yên dạng	• M	ẫu phá hủ	iy	◆ E	Biểu	đổ giá	á trị	N30	-	¥ — Mựcni	ước dưới đất				

Figure 2.1.8 Soil Boring Log (K2) on Green Technology Building

ŀ	ЧÌР	ΙH	ΤF	۲Ų	НŐ	кно	AN							Tờ số:	1/2	Toạ độ	X: Y:		
CÔi	NG TI	RÌNH	6	Trur	ng tâm N	IC, ĐT ƯI	D và CG	CN :	xây	dựr	ıg x	anh	Việ	t Nam		Hố khoan	K3		
ÐĮA	ÐIÉ	M		Trườ	ing CĐ 🕽	Xây dựng	CTĐT -	Yêr	n Th	nườn	g -	Gia	Lâr	n - Hà N	lội	Cao độ (m)	7.42		
DON VI KHẢO SẤT Trung tâm Quản lý kỹ thuật và kiểm định xây dựng										V-N 8	Mực n.d.đất	(m) -1.8							
NG.	UÕH	ÂР		Kỹ s	sư Nguyễ	ến Đức Ki	nải		N	gày	bắt	đầ	J	29/02/2	016	Độ sâu (m)	32.0		
NG.	UỜI P	CIÊM	TRA	ThS	. Phan T	rự Hướng			N	gày	kết	thú	с	01/03/2	016	Lý trình			
Cöt		ày)	âu)	đô ()	Mẫu và	à thí nghiệ	èm xuyêi	n tiê	u c	huẩi	n SI	эт	0	Côt					
ỷ lệ	Lớp	Bể d (m	Ðộ s (m	Cao (m	Ký hiệu	(ý hiệu Độ sâu Giả trị Biểu			u đồ SPT (N30) địa tầng			MO TA CAC LOP ĐAT							
			č			, ny					40		*	* *					
1										2		_		***					
2											-	+	- ×	**	_ *				
2	1A	4.3											_*	* *	Đất l màu	ăp: Cát san nê xám nâu, xám	ên lân gạch vụ Ighi.		
3									_			100	-*	* *					
,											-+-		- ×	* *					
т .			4.3	3,12	M1	4.3-4.5	1 510 510				1		1	× *					
5	2	1.5			3811	4.0-4.90	N30=5	71			-+-	-	-4		Sét p	oha màu xám o mềm	đen. Trạng thá		
6			5.8	1.62			8	f			-+	+	-4		ueo				
	3	1.2			SPT2	6.0-6.45	0/0/0 N30=0	0			1		1		Cát p chảu	oha màu xám (đen. Trạng thá		
7			7.0	0.42									4		chay	-0			
8					M2	7.8-8.0	ş				-+-		V						
0	TK2	2.5			SPT3	8.0 - 8.45	0.5/ 1.5 /1. N30=3	3					Y		Sét p	pha xen kẹp via cát pha, cát màu xám nậu, xám ghi, Trang			
9							2	44			_	4	-1		thái	dẻo mểm.			
10			9.5	-2.08	M3	9.8-10.0	2				+	+	1	<u> //</u>]					
10					SPT4	10.0-10.45	2/3/3 N30=6	16			3				Cát r	1hỏ màu xám i	nâu. Kết cấu x		
11									∖	_			12.7		trạng	; thái bão hòa	nước.		
10					MA		8		+	-	+								
12		70			SPT5	12.0-12.45	7/9/9 N30=18		+	18									
13	-	7.0								_		_			Cátr	nhỏ, có chỗ cá	t thô vừa màu		
					NAC		3		+		+	<u>ul c</u>	1.1		xám	nâu, xám ghi.	Kết cấu chặt		
14					SPT6	14.0-14.45	5/7/8 N30=15	H	-	5					vưa,	trạng thai bao	noa nước.		
15							ananana anna I												
							1		_	+	+	+							
16			16.5	-9.08	SPT7	16.0-16.45	9/14/14 N30=28			72	8	1		S. 25					
17							,			1			Z	11/1					
					M6	17 8-18 0	1		-/		-	-	-1/			Sét pha màu xám vàng, xám ghi. Trang thái déo cứng			
18	6	7.0			SPT8	18.0-18.45	5/6/10 N30=16		-	6	-+-	-	-1		Sét p				
19	25423						1007-1707- 7 76-0				_		V	1/1	Trái		' ' 9-		
20							1				-		-1						
20					M7	20.0-20.2		\vdash			-+-		-//	111/					

Figure 2.1.9 Soil Boring Log (K3) on Green Technology Building

L	ліг	IЦ	ТБ	211	нń	KHU						Tà cá	64/0	Toa độ	X:
1	111,	<u></u>	32335	<u>.</u>				-			correct 1 0	10 50	. 1/2		Y:
CO.	NG TI	RINH	12	Trur	ng tâm N	IC, Đ⊺ ƯI	D va CG		kây d	ựng:	xanh	Việt Nam		Hokhoan	K4
DIA DIEM Trưởng CĐ Xây dựng CTĐT - Yên Thưởng - Gia Lâm - Hà Nội								Nội	Cao độ (m)	7.40					
ĐÔ.	N VĮ I	КНАС) SÁT	Trur	ng tâm C	luản lý kỹ	thuật và	ı kiế	m địr	ıh xâ	iy dựi	ng	ana ana ana ana ana ana ana ana ana ana	Mực n.d.đất (m) -2.5
NG	ƯỜI I	ÂP		Kỹ s	sư Nguyễ	n Đức Ki	nåi		Ngà	ay bắ	it đầu	u 28/02/	2016	Độ sâu (m)	32.0
NG	UÒLI	TÊM I	TRA	ThS	. Phan T	'ự Hướng	2		Ngà	ay kê	t thú	c 29/02/	2016	Lý trình	
Cột	Lớp	dày m	sâu m)	o độ m)	Mẫu và	a thí nghié	èm xuyêi	n tiê	u chu	lần S	PT	Cột		MÔ TẢ CÁC L	ÓP ĐẤT
tý lệ		Bể (Độ)	Ca	Ký hiệu	Độ sâu (m)	Giá trị SPT	Biế 10	90 đó 3 20	SPI(1 30 40	N30) 0 50	địa tâng			
			5								_	***	×		
9										+	+	-*``*``	×		
2											-	*_*_	× Dất	lần: Cát can nần	lẫn qach uun
100	1A	4.3										* *	Mau mau	xâm nâu, xâm (ghi.
3										+	_	* *	*		
										+	-+-	* *	×		
4	2	03	4.3	3.10	M1	4.3-4.5				\square		× *	/Sét j	oha màu xám ná g thái dẻo mềm	lu, xám đen. ∖
5		0.0			SPI1	4.5-4.95	1/1/2 N30=3	13		$\left \right $		11/1/	1		2
222	TK1	1.4	0.0	1.10	M2	58-60		\vdash		++	_	-////	deo	pha màu xâm nà chảy.	tu. Trạng thái
6			6.0	1.40	SPT2	6.0-6.45	0.5/0.5/0. N30=1	1		+	-+-		1		
7	3	1.5					0.000				1		1 Cát 1 chảy	pha màu xâm đe 4	en. Trạng thái
		-	7.5	-0.10	M3	7.5-7.7		4-					1		
8		080121			SP13	7,7-8,15	1/2/2,5 N30=4.5	4	5	+		-/////	Sét p	ha xen kẹp vỉa	cát pha, cát
g	TK2	1.8								╈			thái d	nau xam nau, x 1ẻo mềm.	am gni. Trạng
1920			9.3	-1.90								<u> //////</u>	1-		
10					M4 SPT4	10.0-10.45	3/5/6		- 11		-+-	-	÷		
							N30=11	-		+	+				
1.1											T		Cát	nhỏ màu xám đơ	en. Kết cấu chặt
12					M5 SPT5	12 0-12 45	51717							trang that bao n	ida hudg.
10050					OF 10	12.0-12.40	N30=14		 ' −	+		-			
13	4	7.7							++-		+	- 19 29 69 5 407 44 - 19 40 40 10			
14					M6		-								
37. X					SPIG	14.0-14.45	6/7/8 N30=15		115		_				
15									\parallel				Cát	thô vừa, cát thô	màu xám đen,
16					M7					+	+		xam	ghi. Ket cau cha	at vua.
10					SPT7	16.0-16.45	7/8/11 N30=19		19						
17			17.0	-9.60			2.2.07 300					11111			
80344					M8	17 8-18 0				+	+	1/1/	Sát	nha màu vào né	υ χάρη νόρα
18	ткз	2.0			SPT8	18.0-18.45	8/10/11 N30=21		2	1 - 1	-		xám	ghi. Trạng thái	dẻo cứng.
19			19.0	-11.60	MQ	10.1.10.2						VIII	Sét	màu xám vàng.	Trạng thái nửa
	5	0.5	19.5	-12.10	MO	19.1-19.3			/			V////	cứng]. aha màu ular ai	u uha taa
20	6	2.0			SPT9	20.0-20.45	5/5/5 N30-10		10		-+-		Trạn	ng thái dẻo mềm	au, xam den.
GF	HI C	HÚ:	I M	ẫu ngu	yên dạng	• M	ẫu phá hủ	ıy	♦ E	Biểu ć	Jổ giá	trį N30	17	¥ Mực nu	rớc dưới đất

Figure 2.1.10 Soil Boring Log (K4) on Green Technology Building

2.1.3 Water Quality Survey

About existing condition of drainage system in CUWC, the system is combined with stormwater and gray water. Human waste from buildings/toilets is collected and pre-treated in septic tanks, and discharge into existing drainage of the college. And, human waste from some households above the garage is collected and pre-treated in septic tanks under the garage. These septic tanks are often clogged and dredged 1-2 times a year. Gray water from the kitchen of canteen and laundry drain of the dormitory are not treated in treatment facilities, and it directly discharge into existing drainage.

The samples water of drainage and lake were taken at junction boxes in January 2019 and tested in laboratory of the college. The results are shown in the table below.

No	Doromotors	Unit	Class		Re	ater Quali	ter Quality		
INO.	Farameters	Omt	Α	No.1	No.2	No.3	No.4	No.5	No.6
1	pH	-	5 - 9	8.2	8.3	8.3	8.2	8.5	8.5
2	$BOD_5 (20^{\circ} C)$	mg/l	30	14.2	8.2	13.7	<u>325</u>	<u>300</u>	<u>195</u>
3	Total suspended solids (TSS)	mg/l	50	15	13	10	<u>130</u>	<u>70</u>	24
4	Ammonium Nitrogen (NH ₄ -N)	mg/l	5	<u>24</u>	0.5	<u>27</u>	<u>90</u>	<u>93.5</u>	<u>36.6</u>
5	Nitrate (NO3 ⁻) (as N)	mg/l	30	21	3	20	<u>140</u>	<u>210</u>	<u>70</u>
6	Phosphates (PO ₄ ³⁻) (as P)	mg/l	6	0.3	1	0.5	18.8	<u>34.2</u>	<u>8.4</u>

Table 2.1.1Result of Water Quality Survey (1)

Note: Sampling 07/Jan/2019, Standard water quality on QCVN14: 2008 / BTNMT Source: CUWC

Table 2.1.2Result of Water Quality Survey (2)

No	Deremeters	Unit	Class	Result of Water Quality (No.1)					
INO.	Farameters	Om	Α	Time 8:30	Time 11:30	Time 17:30			
1	pH	-	5 - 9	8.2	8.2	8.2			
2	$BOD_5 (20^{\circ} C)$	mg/l	30	14.2	<u>43</u>	16			
3	Total suspended solids (TSS)	mg/l	50	15	<u>66</u>	17			
4	Ammonium Nitrogen (NH ₄ -N)	mg/l	5	<u>24</u>	<u>19</u>	<u>17</u>			
5	Nitrate (NO3 ⁻) (as N)	mg/l	30	21	<u>33</u>	25			
6	Phosphates (PO_4^{3-}) (as P)	mg/l	6	0.3	0.5	0.3			

Note: Sampling 14/Jan/2019, Standard water quality on QCVN14: 2008 / BTNMT Source: CUWC.

Source: JICA Consultant Team

Figure 2.1.11 Sampling and Laboratory in CUWC

The location of sampling water is shown in the Figure below.

- No.1: Manhole near dormitory (B8) (3 times/day)
- No.2: Youth Union pond
- No.3: Duc Tu lake
- No.4: Outlet of septic tank behind dormitory (B8)
- No.5: Manhole behind building (A12)
- No.6: Manhole behind Head Office (A2)

Source: JICA Consultant Team

Figure 2.1.12 Location of Sampling

2.2 Related Plan

2.2.1 Drainage System Mater Plan on Hanoi City

According to the Mater Plan of Drainage System by 2030 on Hanoi City, these catchments areas included CUWC is planned as "N9 Zoning" in the study. There are 3 catchments in the zoning as the below.

- (1) North-West Catchment (with area of 858 ha): discharging into Duc Tu Wastewater Treatment Plant with capacity of 65,000 m³/day;
- (2) The catchment including Yen Vien Town in north of Ha Huy Tap Road: discharging into Yen Thuong Wastewater Treatment Plant with capacity of 10,000 m³/day;
- (3) Last catchment discharges into Yen Vien Wastewater Treatment Plant with capacity of 10,000 m³/day;

The college is located in the catchment (2) as shown in the figure below.

Source: Vietnam Water, Sanitation and Environment Joint stock company

Figure 2.2.1	Mater Plan	of Drainage	System k	hv 2030	(N9 Zoning)
rigui e 2.2.1		UI DI alliage	System t	0y 2030	

2.2.2 Admission Plan of CUWC

The Admission Plan of CUWC by 2030 is calculated by data of students, residences in dormitory and staffs of the college and presented in table below.

No.		Object	Existing number (person)	Forecast 2030 number (person)	Remarks
		College	900	2,500	3 years course
1	Students	Intermediate	1,200	3,500	1.5 years course
1		Pre-intermediate	450	1,000	1.5 years course
		Short-term training courses	188	188	For 8 months
		Other training courses	250	250	For 8 months
2	Lectures a	and staffs	201	244	
3	Dormitor	у	638	878	
4	Canteen		600	750	Lunch + Dinner
5	Tenement	t (A1)	40	40	
		Total	4,467	9,350	

Fable 2.2.1	Admission	Plan of	CUWC	by 2030

Source: JICA Consultant Team (Based on the Admission Plan of CUWC by 2030)

2.2.3 Construction Plan of CUWC

The CUWC have the construction plan of new buildings. The CAD data of the construction plan which is received from CUWC use for base map for sewage system.

Source: CUWC

Figure 2.2.2 Construction Plan of CUWC

2.3 Exiting Facilities

2.3.1 Underground Facilities

The collected data of underground facilities is for the below.

- Water distribution pipe
- Electrical cable
- Drainage (by existing drawing and on-site survey)

The result of survey is compiled to the drawing "Layout of Existing Underground Facilities".

2.3.2 Well and Water Treatment Plant

Source: JICA Consultant Team

Source: JICA Consultant Team

Figure 2.3.2 Water Treatment Plant in CUWC

About the water supply facility in CUWC, there are the well and the water treatment plant funded by the French ODA which is supplying treated water for whole college and surrounding residential area. The operation conditions of the WTP are not monitored and recorded regular so it is difficult to assess. The existing capacity of WTP is about 200-300 m3/day. Based on the capacity of existing well pump, the maximum demand is about 250-300 m3/day because the flow of pump is 350-1,300 liters/minute and it's operated in 4-6 hours per day. At the beginning of October, the College has monitored and recorded, and at the end of November, the average water consumption is about 210 m³/day.

2.3.3 Septic Tank

Human waste from buildings/toilets is collected and pre-treated in septic tanks. These septic tanks are not adapted gray water from the kitchen of canteen or laundry drain of the dormitory.

Source: JICA Consultant Team

Figure 2.3.3 Septic Tank in CUWC

2.3.4 Electric Facilities

Existing electric facilities works of the college have been built in the past and is continuing to be invested under issued plan including.

- Completed internal roads connect all facilities and traffic works in the College by concrete or asphalt roads with width of 3.5m to 7.5m.
- Power supply: There is a transformer with capacity of 320KVA. The electric cables from transformer to facilities are put underground on cable trenches.

Source: JICA Consultant Team

Figure 2.3.4 Transformer and Electric Cable in CUWC

CHAPTER 3 CONCEPTS FOR DEVELOPMENT OF SEWERAGE SYSTEM

3.1 Concept of Planning Area

About catchment area model of sewerage system, in general, it is economic and easy to minimize the number of sewage treatment plant. However, planning several sewage treatment plants become economic when the centralized treatment area is distributed in several locations or existing sewage treatment plant is available.

According to the master plan of sewerage system by 2030 on Hanoi city, the study area of CUWC is planned N9 zoning area (as North-West catchment). However, the plan is not to be implemented immediately.

Regarding determination of the concept of sewerage system in CUWC, it shall be studied to the decentralized treatment to make early effect of the project even if the large treatment area is reasonable like the master plan. Therefore, on this project, small sewerage system is proposed inside CUWC area. And, the sewerage facilities will be used "experiential training" facilities on site for participants of the sewerage system training.

3.2 Method of Development

For method of development the project, it is necessary to study the financial sources of construction cost and O&M cost to define the investment amount.

In the case of public sewerage system, generally, financial resources of construction cost include i) financial support from international financial institution or bilateral financial supporting organization, ii) subsidy or debt loan from the central government, fundamental fund, own fund of project implementation organization (generally local government), iii) private-sector fund, iv) beneficiary liability. It is necessary to consider the funding method that combines the above-mentioned financial resources effectively.

In the case of this project in CUWC, generally, financial resources of construction cost will be done by subsidy or debt loan from the central government, fundamental fund, own fund of project implementation organization. In addition, i) private-sector fund (with trial operation for promotion of their technologies), ii) pilot /model project by JICA fund are thought as other methods. The funding method of financial resources will be considered on feasibility study as next step, so it still hasn't been decided.

3.3 Collection System

3.3.1 Type of Collection System

The type of sewerage system must be determined by taking into account the topography, meteorology, and the present condition of wastewater/storm drainage facilities.

There are mainly two types of sewerage system as "Separate" and "Combined". The separate system carries sanitary wastewater and stormwater in different conduits, while the combined system receives and convey both sanitary wastewater and stormwater in the same conduit. Besides these, "Interceptor" system is widely adopted in Vietnam. On the interceptor system, existing drainage pipe is used for transferring sewage and rainwater, and CSO (Combined Sewer Overflow) and interceptor (sewage transferring pipe) is newly installed as same as combined system, but septic tank remains.

3.3.2 Selection of Collection System

In this project, the separate sewerage system is adopted by the following reasons.

- As two separate sewers are provided to carry sewage and storm water, the volume of sewage to be inflowed/treated at sewerage treatment plant is small due to which cost of the plant can be made economical.
- The separate system is generally cheaper due to the fact that only sanitary sewage is required to be taken in closed sewer. In the case of using a part of existing drainage, the storm water can be taken in small drains which are constructed with much less cost.
- There is no fear of stream/lake pollution in the separate system, since without CSO. (On the combined system, there may be some overflow in heavy rain)
- This project is intended for provide various "experiential training" facilities to learn exceptional technique of Japan. The separate system is widely adopted in Japan on nowadays. Hence, the system can effectively utilize exceptional technique/material like house connection and house inlet etc. in Japan.

Table 3.3.1	Selection	of Collection	System
--------------------	-----------	---------------	--------

Collection system	Separate sewerage system

Source: JICA Consultant Team

CHAPTER 4 BASIC CONDITIONS OF PLAN

4.1 Planned Target Year

In case that the target year of public sewerage system was planned to be set for 10 or 20 years, the target area is supposed to be formulated based on the degree of development plan in the city or basin (region) after 10 or 20 years.

In this project, the future population follow to the Construction Master Plan 2030 of CUWC.

Table 4.1	.1	Planned larget year			
Target year		2030			
Source: JICA Consultant Team					

4 1 7

4.2 Collection Area

The collection area is all buildings and facilities in boundary of CUWC, and the area is about 5.0 ha. In basically, the collection area of sewage system and drainage system is same, but inflow of rainwater from outside is including in the collection area of drainage system.

Figure 4.2.1Collection Area of the Project

Source: JICA Consultant Team

4.3 Frame of Population

4.3.1 Basis of Population Forecast

Based on discussion with staff of Equipment Management Department of CUWC, the maximum service capacity of each building / facility is shown in the table below.

No.	Main facilities	Maximum number of residence or /student/staff (person)
1	Storage and Garage A1 (households above)	8 HHs x 5 residences (= 40 person)
2	Main Office A2	150 students + 50 lectures and staffs
3	Office of Boards and Unit and Dormitory A3	80 residences
4	5 floors Lecture House A4	50 residences + 700 students + 50 lectures and staffs
5	Workshop for Construction Practices No. 1 A5	It will be destroyed in future
6	Multifunctional Building A6	1,450 students and 50 staffs *
7	Workshop for construction practices No. 2 A7	now it is destroyed and rebuilt Green Technology Building with 300 students + 50 staffs expected *
8	Water Treatment Plant A8	-
9	Electric Practices Workshop A9 (now is destroyed and rebuilt Green Technology Building)	150 students and staffs (no septic tank)
10	Technical area and Main Workshop A10	200 students + 20 staffs
11	Welding and Plumbing Workshop A11	120-150 students (no septic tank)
12	Training Center for Water and Environment Sector A12	meeting and working area for 100 persons
13	Vietnam Germany Vocational Training Center A13	meeting and working area for 80 persons (no septic tank)
14	Workshop for bench and assembly practices A14	now is storage (no septic tank)
15	Guard House with Guest house above B1	30 residences
16	Guest House B2	60 residences
17	Moto bike parking No.1 B3	-
18	Lecture House and Hall B4	200 persons (no septic tank)
19	Moto bike parking No.2 B5	-
20	Canteen and dormitory behind B6	500 guests and 330 students
21	Transformer B7	-
22	Dormitory B8, B8 (future)	378 residences + 378 residences (future)
23	Gymnasium (future)	200 persons (future)

Table 4.3.1 Maximum Service Capacity of Each Building

Note: * Forecast based on the drawing. Source: CUWC

Table 4.3.2Number of beds in Dormitories

No.	Name of dormitory	Number of current residences in October 2018 (person)	Number of maximum beds (bed)
1	Dormitory – B1	10	30
2	Dormitory – B2	54	60
3	Dormitory – B6	200	330
4	Dormitory – B8	304	(378)
5	Dormitory – B8 (future)	-	378

No	Name of dormitory	Number of current residences in	Number of maximum beds	
INO.	Name of domitory	October 2018 (person)	(bed)	
6	Dormitory – A3	70	80	
	Total	638	878	

Note: Dormitory–B8 will be connected Johkasou. It is not counted in here. Source: CUWC

4.3.2 Frame of Population for Sewer Pipe

Maximum frame of population of each building is calculated under collected data of students, residences in dormitory and staffs of the College and presented in table below.

Area No.	Main facilities	Number of maximum Population (person)	
1	A1 Tenement	40	
	A2 (students)	150	
2	A2 (staffs)	50	
_	A3 Dormitory	80	
	A4 Residences	50	
3	A4 (students)	700	
	A4 (staffs)	50	
4	A6 (students)	1,450	
4	A6 (staffs)	50	
5	Green Building (students)	300	
5	Green Building (staffs)	50	
6	A10 (students)	200	
0	A10 (staffs)	20	
7	A12 (trainee)	100	
8	B1+B2 Dormitory	90	
0	B6 Canteen	500	
9	B6 Dormitory	330	
10	B8 Dormitory	378	
10	B8 Dormitory [future 2030]	378	
11	Gymnasium [future 2030]	200	
	Total	5,166	

 Table 4.3.3
 Maximum Frame of Population of Each Building

Source: JICA Consultant Team

4.3.3 Frame of Population for Sewage Treatment Plant

The CUWC have some classes in the morning, the afternoon and the evening (not regularly). The students and staffs use the canteen in lunch time and dinner time. Therefore, the number of users on daily maximum is larger than maximum frame of population of each building.

Based on the admission plan of CUWC by 2030, the maximum frame of population for sewage treatment plant (STP) is calculated under collected data of students, residences in dormitory and staffs of the college and presented in table below.

Table 4.3.4 Maximum Frame of Population for Sewage Treatment Plant

No.		Object	Existing number (person)	Forecast 2030 number (person)	Remarks
		College	900	2,500	3 years course
1		Intermediate	1,200	3,500	1.5 years course
1	Students	Pre-intermediate	450	1,000	1.5 years course
		Short-term training courses	188	188	For 8 months
		Other training courses	250	250	For 8 months
2	Lectures and staffs		201	244	
3	Dormitory		638	878	
4	Canteen		600	750	Lunch + Dinner
5	Tenement (A1)		40	40	
		Total	4,467	9,350	

Source: JICA Consultant Team (Based on the admission plan of CUWC for 2030)

4.4 Unit Amount of Sewage

4.4.1 Unit Amount of Sewage

In general, the water supplied to ordinary households is said to change according to lifestyle, the spread of water use equipment, or family composition. In addition, the commercial water is supplied to shops, restaurants, educational facilities, public offices, offices, school and service facilities, etc., and it is largely dependent on land use and city characteristics. In Vietnam, the water consumption unit shall be set by TCVN 4513:1998 (Internal water supply - Design standards).

The unit amount of sewage is calculated based on the water consumption unit of daily water as described above, and the amount of infiltration and inflow as underground penetration is added in it. The unit amount of sewage referring from TCVN 4513:1998 is shown in table below.

				8
No.	Water use place	Unit	Unit amount (liter)	Remarks
1	School (student)	1 person	20	TCVN 4513:1998
2	Lectures and staffs	1 person	76	From the regulation 99:1999
3	Dormitory	1 person (bed)	100	TCVN 4513:1998
4	Canteen	1 person	25	TCVN 4513:1998
5	Tenement	1 person	150	TCVN 4513:1998
6	(Infiltration)*	-	(10 %)	TCVN 7957:2008

Table 4.4.1Unit Amount of Sewage

Note: * The Amount of infiltration and inflow can be estimated by "total daily average amount" x 10 %. Source: TCVN 4513:1998 Internal water supply - Design standards

4.4.2 Fluctuation Rate (Peak Coefficient)

(1) Fluctuation Rate of Sewer Pipe

For designing of sewer pipe as hourly maximum sewage flow rate, the fluctuation rate (Ko) is referred as the table below. It is set based on TCVN 7957:2008 (Drainage and Sewerage - External Network and Facilities - Design Standard) depending on the average sewage flow rate. When the average sewage flow rate is less than 5 l/s, Ko max coefficient is determined to be 5.0.

Table 4.4.2Fluctuation Rate of Sewer Pipe

Coefficient	Average sewage flow rate (1/s)								
	5	10	20	50	100	300	500	1000	>5000
Ko max	2.5	2.1	1.9	1.7	1.6	1.55	1.5	1.47	1.44

Coefficient	Average sewage flow rate (l/s)								
	5	10	20	50	100	300	500	1000	>5000
Ko min	0.38	0.45	0.5	0.55	0.59	0.62	0.66	0.69	0.71

Source: TCVN 7957:2008 Drainage and Sewerage - External Network and Facilities - Design Standard

(2) Fluctuation Rate of Inflow into Sewage Treatment Plant

In general, the peak coefficient depends on many factors, such as the effects of flow from domestic, commercial, and public facilities, and the socioeconomic conditions in the area. The facilities must be designed to apply to the largest sewage flow. Peak coefficient 1.3 for direct area and 1.4 for indirect area are applied to the target area according to TCVN7957:2008.

4.5 Planned Sewage flow rate

4.5.1 Planned Sewage flow rate into Sewer Pipe

Since this project is small sewerage system as targeted to the college, the flow rate of sewage should be calculated in detail by each building in CUWC. The flow rate of sewage by each building is used to calculate the flow rate of pipes by point injection method. For designing of sewer pipe as hourly maximum sewage flow rate, the sewage flow rate on the flow rate calculation sheet take advantage of fluctuation rate (Ko). Planned sewage flow rate into sewer pipe is shown to the table below.

Area No	Main facilities	Population (person)	Unit amount (l/nerson/day)	Sewage flow rate (m^{3}/day)	Sewage flow rate (1/sec)
1	A1 Tenement	40	120	4.80	0.000056
	A2 (students)	150	20	3.0	0.000035
2	A2 (staffs)	50	76	3.8	0.000044
2	A3 Dormitory	80	100	8.0	0.000093
	A4 Residences	50	100	5.0	0.000058
3	A4 (students)	700	20	14.0	0.000162
	A4 (staffs)	50	76	3.8	0.000044
4	A6 (students)	1,450	20	29.0	0.000336
4	A6 (staffs)	50	76	3.8	0.000044
5	Green Building (students)	300	20	6.0	0.000069
3	Green Building (staffs)	50	76	3.8	0.000044
6	A10 (students)	200	20	4.0	0.000046
0	A10 (staffs)	20	76	1.5	0.000018
7	A12 (trainee)	100	76	7.6	0.000088
8	B1+B2 Dormitory	90	100	9.0	0.000104
0	B6 Canteen	500	25	12.5	0.000145
9	B6 Dormitory	330	100	33.0	0.000382
10	B8 Dormitory	378	100	37.8	0.000438
10	B8 Dormitory [future]	378	100	37.8	0.000438
11	Gymnasium [future]	200	20	4.0	0.000046
	Total	5,166	-	232.2	0.002688

Table 4.5.1Planned Sewage Flow rate into Sewer Pipe

Source: JICA Consultant Team

4.5.2 Planned Sewage Flow Rate into Sewage Treatment Plant

The planned sewage flow rate into sewage treatment plant is calculated based on unit amount of sewage and the admission plan of CUWC by 2030, and it is shown in table below.

				-	
No		Object	Forecast 2030	Unit amount	Sewage flow
INO.		Object	Number (person)	(liter/person/day)	rate (m ³ /day)
		College	2,500	20	50
		Intermediate	3,500	20	70
1	Students	Pre-intermediate	1,000	20	20
		Short-term training courses	188	20	4
		Other training courses	250	20	5
2	Lectures and staffs		244	76	19
3	Dormitor	у	878	100	88
4	Canteen		750	25	19
5	Tenement (A1)		40	120	5
6	Infiltration		-	(10 %)	28
		Total	0.250		308
		10141	9,330	-	(Round 310)

 Table 4.5.2
 Planned Sewage Flow Rate into Sewage Treatment Plant

Source: JICA Consultant Team

On this project, the frame of population for sewage treatment plant is calculated as maximum amount based on the admission plan of CUWC by 2030. On the premise of these, the daily average sewage flow is about 70 to 80 % of the daily maximum sewage flow rate (referenced the design standard for sewerage system by Japan Sewage Works Association). The factor 75 % as intermediate value is adopted to the fluctuation rate for sewage treatment plant.

 Table 4.5.3
 Planned Sewage Flow rate into Sewage Treatment Plant

Items	Fluctuation rate	Sewage flow rate (m ³ /day)
Daily average sewage flow rate	0.75	232
Daily maximum sewage flow rate	1.00	310

Source: JICA Consultant Team

4.6 Unit Pollutant Load of Sewage

On setting of inflow quality into sewage treatment plant, while BOD and SS are mainly used as a parameter of inflow of water quality, COD and nutrition concentrations (T-N, T-P) should also be examined at the discharging point in the public water body. In Vietnam, pollution load per person in domestic waste water is determined in according to TCVN 7957:2008. The unit pollution load is shown in table below. And Japan standards are attached for referring.

Table 4.6.1Unit Pollutant Load of Sewage in Vietnam

Parameter	Unit pollution load (g/person/day)
Suspended solid (SS)	60-65
BOD ₅ of sediment sewage	30-35
BOD ₅ of un-sediment sewage	65
Ammonia (N-NH ₄)	8
Phosphate (P_2O_5)	3.3
Chloride (Cl-)	10
Surfactant	2.0-2.5

Source: TCVN 7957:2008

Table 4.6.2Unit Pollutant Load of Sewage in Japan

Donomotor	Unit pollution load	Breakdown (g/person/day)			
Parameter	(g/person/day)	Human waste	Grey water		
BOD ₅	58	18	40		
COD	27	10	17		
SS	45	20	25		
T-N	11	9	2		
T-P	1.3	0.9	0.4		

Source: Japan Sewage Works Association

4.7 Planned Pollutant Load of Sewage

In generally, planned pollutant load into sewage treatment plant is calculated using with unit pollutant load of sewage, planned population, and sewage flow rate (average) against each facility/building. Since this study is preliminary master plan, the planned pollutant load roughly is calculated using the simple method (average rate of unit sewage amount) is shown in table below.

Parameter	Unit pollutant load (g/p/d)	Use rate*	Target unit pollutant load (g/p/d)	Planned Population (person)	Pollutant load (kg/day)	Average Sewage flow rate (m ³ /day)	Inflow quality into STP (mg/l)
BOD ₅	58	0.08	4.6		43.0	232	185
COD	27		2.2		20.6		89
SS	45		3.6	9,350	33.7		145
T-N	11		0.9		8.4		36
T-P	1.3		0.1	-	0.9		4

 Table 4.7.1
 Planned Pollutant Load of Sewage (by Simple Method)

Note: The use rate is roughly estimated by the average rate of unit sewage amount. There are many types of sewage source in

CUWC like students, staffs, dormitory, canteen etc. On this stage, the rate is roughly estimated by the average on total. The rate (20/250=0.08) is based on the students average as 20 l/person/day and the general average as 250 l/person/day. Source: JICA Consultant Team

4.8 Rainfall Intensity of Drainage Planning

4.8.1 Probability Year of Rainfall

The intensity of rainfall is generally indicated by assumed hourly rainfall flow, and unit is shown as "mm/hour", and the probability year means what year is occurrence interval of some intensity of rainfall.

If the probability year is determined as 20 to 30 years and more for short duration rainfall, prevention of inundation (flood) is more safety. However, the development of sewer is not economical due to increasing construction cost. While, if the target rainfall occurs a few times per year, frequency of inundation is high, and purpose of sewerage facilities s not achieved. Thus, the probability year is basically determined as 5 to 10 years for planning and design of sewer. In Vietnam, the probability year (the rainfall frequency) is determined to the Vietnam Standard TCVN 7957:2008. Normally it is designed with the probability year of 5-10 years for primary drainage system (Grade I) and 2 years for secondary drainage system (Grade II). 2 years as probability year is adapted to drainage system in CUWC.

Table 4.8.1Probably Year of Urban Area

City managerties	Facility scale				
City properties	Canal, river	Main sewer	Branch sewer		
Special and grade I city	10	5	2 - 1		
City grade II, III	5	2	1 - 0.5		
Other town and city	2	1	0.5 - 0.33		
a manni sana anna					

Source: TCVN 7957:2008

4.8.2 Formulas for Intensity of Rainfall

(1) Rational Formula

The rational formula is the most suitable to estimate planned runoff flow of rainfall. The rational formula is below.

 $Q_t = 1 / 360 \ge C \ge I \ge A$

Where,

Q: The planned maximum runoff flow of rainfall (m³/s), C: Outflow coefficient, I: Intensity of rainfall during concentration time of "t", A: Catchment area (ha)

(2) Rainfall Intensity Formula

According to TCVN7957:2008, rainfall intensity formula is adapted to the below.

$$q = \frac{A(1 + C \lg P)}{(t+b)^n}$$

Where,

q: Rainfall intensity (1/s.ha),

t: Concentration time (minutes),

P: Probably year (2 years in this case),

A, *C*, *b*, *n*- Parameters determined according to local rainfall conditions, can be selected according to Appendix B of TCVN 7957:2008; or refer that of neighbor area.

The parameters is for the below table applied to drainage system in CUWC.

 Table 4.8.2
 Climatic constants in the rain intensity formula of some cities

12 Ha Nai 5800 0.65 20 0.8	No. Cit	y A	С	b	n
15. Ha Nol 5890 0.05 20 0.8	13. Ha Noi	5890	0.65	20	0.84

Source: TCVN 7957:2008 Appendix B

(3) Concentration Time

The concentration time is total time with inflow time and flow-down time. The inflow time is the time that rainfall at the upper end flows into the most upstream of sewer. The flow down time is the time that rainfall flowed into sewer reaches to some point in sewer.

Concentration time (t) = Inflow time (t_1) + flow-down time (t_2)

(4) Inflow Time

The inflow time is determined as a range of 5 to 10 minutes. The inflow time is depending on penetration

capacity, pavement rate of road, density of houses, gradient of ground surface and distance of flowing down. In addition, the inflow time varies depend on the development condition of drainage facilities inside houses and street drain. The Kerby formula is a common to estimate the inflow time.

 $t_l = (2/3 \ge 3.28 \ge L \ge n / \sqrt{S})^{0.467}$

Where,

 t_i : Inflow time (minutes), *L*: Distance of flow (m), *S*: Gradient of flow, *n*: Delayed coefficient like roughness coefficient, *3.28*: Corresponding value from feet into a meter

The value of "n" in the formula varies under the condition of the catchment area, and it is difficult to estimate this value of "n". The inflow time is practically considered within 5 to 30 minutes.

(5) Flow-down Time

The flow-down time is total of each flow-down time that is estimated from distance of sewer and flow velocity in planned flow. It is necessary virtual sewer dimension and layout to determine the flow-down time.

4.9 Setting of Runoff Coefficient

The runoff coefficient is varied depend on topography, geology and condition of ground surface, frequency and intensity of rainfall. In Vietnam, runoff coefficient "C" is determined by the permeability calculation model. If the model could not determine by the mathematical model, the coefficient depends on the surface nature of the catchment area and probably year "P" that is selected in the following table.

Proportion of drainage surface		Probably year P (year)		
Г	roperties of dramage surface	2	5	10
Asphalt road		0.73	0.77	0.81
Roofs, co	oncrete surfaces	0.75	0.80	0.81
Grass, ga	rden, park (grass area less than 50%)			
	- Low slope 1-2%	0.32	0.34	0.37
	- Average slope 2-7%	0.37	0.40	0.43
	- High slope	0.40	0.43	0.45

Table 4.9.1Runoff Coefficient

Note: When the surface area has many different types of surfaces, C value is determined in average of different areas. Source: TCVN 7957:2008

4.10 Design Conditions of Sewerage/Drainage Network

4.10.1 Hydraulic Calculation Formula and Roughness Coefficients

(1) Manning Formula

The diameter and gradient of sewerage/drainage network is calculated by Manning formula.

$$Q = A \ge V$$

 $V = (1/n) \ge R^{2/3} \ge I^{1/2}$

Where,

Q: Flow (m³/s), A: Cross sectional area of pipe (m²), V: Velocity (m/s), n: Roughness

coefficient, R: Hydraulic radius (= A/P), P: Wet area perimeter (m), I: Hydraulic gradient

The points of consideration for the design is below.

- The sewer gradient is determined in accordance with ground slope as much as possible.
- The low velocity is determined as slightly increasing at downstream to avoid sedimentation of sewage in pipeline.
- The earth covering depth is determined as to minimize.

(2) Manning's Roughness Coefficients

Manning's roughness coefficients according to TCVN7957:2008 is shown to the table below.

8	8
Material	Roughness coefficients (n)
Reinforced concrete	0.013
Cast pipe	0.012
Steel pipe	0.012
Plastic pipe (nPVC, HDPE)	0.011

Table 4.10.1Manning's Roughness Coefficients

Source: TCVN 7957:2008

4.10.2 Material and Minimum Diameter

(1) Material and Minimum Diameter for Sewerage

Material of pipe for sewerage that have resistance against external pressure (earth pressure and upper loads) should be selected. Considering a quality (corrosion resistance) of material and existing construction of sewerage in recently, HDPE or nPVC is selected. Minimum diameter of D200 mm is determined from appropriately maintenance point of view.

(2) Material and Minimum Diameter for Drainage

Pipe and box-culvert is used for drainage. Reinforced concrete pipe and box-culvert is selected on experiential grounds. Minimum diameter of D300 mm or \Box 300 x 300mm is determined.

4.10.3 Minimum and Maximum Velocity of Pipe

The calculated speed of minimum sewage depends on the components and dimensions of suspended particles in wastewater, hydraulic radius or filling of channel or pipe. For sewerage and drainage, the minimum velocity corresponding to maximum calculated filling of the pipe shall be regulated as follows: (Source: QCVN 07-2:2016BXD)

- Diameter of 150 200 mm, V min = 0.7 m/s;
- Diameter of 300 400 mm, V min = 0.8 m/s;
- Diameter of 400 500 mm, V min = 0.9 m/s;
- Diameter of 600 800 mm, V min = 1 m/s;
- Diameter of 900 1200 mm, V min = 1.15 m/s;
- Diameter of 1300 1500 mm, V min = 1.2 m/s;
- Diameter of > 1500 mm, V min = 1.3 m/s.

The minimum velocity in culvert or pipe of sewage after biological treatment, it is allowed to be equal to 0.4 m/s. The maximum velocity of sewage in the metallic culvert shall not be more than 8 m/s, in the nonmetallic culvert shall not be more than 4 m/s. For drainage, it shall be 10 m/s and 7 m/s, respectively. However, maximum velocity should be applied the most appropriate velocity for sewer pipe such as less 3.0m/sec.

Minimum gradient of sewer is adopted as the below.

- Minimum gradient of sewer is 1/D (D: pipe diameter, mm)
- Minimum gradient of drainage ditch/trench on roadside must not less than 0.003

4.10.4 Maximum Calculated Filling of Pipe

The maximum calculated filling of pipe (h/D: water depth as margin) depends on the diameters and can be as follows: (Source: QCVN 07-2:2016BXD)

- For the pipe D = 200 300 mm, filling is not more than 0.6 D;
- For the pipe D = 350 450 mm, filling is not more than 0.7 D;
- For the pipe D = 500 900 mm, filling is not more than 0.75 D.
- For the pipe D > 900 mm, filling is not more than 0.8 D.
 Notes:

1) For the channels with the height from 0.9 m and the horizontal section have any shapes, the filling is not more than 0.8 H;

2) For the drainage and combined sewer culverts are designed to be filled completely.

4.10.5 Method for Connection of Pipe

There are some methods for connection of pipes as the below.

- Pipe top connection
- Water surface connection
- Pipe center connection
- Pipe bottom connection
- Drop connection

In order to reduce the construction cost of sewer line, it is necessary to make the earth covering of pipe as small as possible. However, the depth of excavation is relied on topographic condition of drainage basin and point of connection. The initial depth of a sewer is low, but it is increased when the pipeline is longer. On the pipe top connection, the installed depth will be increased but the flow of sewage will be smooth. The pipe top connection is adopted on this project.

4.10.6 Minimum Earth Covering of Pipe

The earth covering of pipe is decided based on the earth covering of starting point and the slope of pipe. In standard of QCVN 07-2:2016BXD, minimum earth covering of pipe (to top of pipe) is adopted to the below.
- In area without vehicle, minimum earth covering is 0.3 m
- In area where traffic is busy, minimum earth covering is 0.5 m
- In special cases where the depth is less than 0.5 m, protective measures must be taken

In addition, the maximum pipe depth is determined by calculation depending on pipe material, geotechnical and geotechnical conditions, construction methods and other technical factors. On this project, 0.6 m of minimum earth covering is adopted considering to connecting from house inlet and connection pipe of each building. On the detailed design of pipeline, actual bottom level of inlet box should be used based on measured survey.

CHAPTER 5 STUDY FOR LAYOUT OF MAIN FACILITIES

5.1 Selecting the Location of Sewage Treatment Plant

The location and site area of sewage treatment plant should be selected with consider the following points, as it affects the cost of sewer lines and pumping stations or the selection of sewage treatment methods.

- Getting enough site area of sewage treatment plant against inflow rate
- Locating at near outflow point (Duc Tu lake)
- Layout of sewer lines with rational and reasonable cost
- Unaffecting to land use, odor, noise, vibration, and damage to nearby residents.

After the site survey with staff of CUWC and JICA consultant team, the location of sewage treatment plant is decided in consideration of the above conditions, and it is shown in the figure below.

Source: JICA Consultant Team

Figure 5.1.1 Location of Sewage Treatment Plant

5.2 Outflow Water Quality

5.2.1 National Technical Regulation on Domestic Wastewater

The regulation of QCVN 14: 2008 / BTNMT specifies the permissible maximum value of the pollution parameters in the effluent of domestic wastewater as being discharged into the environment.

(1) Permissible maximum value of pollution parameters in domestic wastewater

Permissible maximum value of pollution parameters in domestic wastewater as being discharged into the water resource receiving wastewater must not exceed Cmax value calculated as follows:

$Cmax = C \ge K$

In which:

Cmax is the permissible maximum concentration of pollution parameters in domestic wastewater as being discharged into the receiving water resource calculated by milligram per liter of wastewater (mg/l);

C is the concentration values of pollution parameters specified in Table 5.2.1.

K is a coefficient taking into account the size and type of services facilities, public facilities and condominium specified in Table 5.2.2.

Do not apply the formula for calculating the permissible maximum concentration in effluent for parameter pH and total coliforms.

(2) C value of pollution parameters as a basis for calculating the permissible maximum value

C value of pollution parameters as a basis for calculating the permissible maximum value Cmax in domestic wastewater as being discharged into water resources receiving wastewater is specified in the Table below.

No	Daramatara	Unit	C value			
110.	Farameters	Unit	А	В		
1	pH	-	5 - 9	5 - 9		
2	$BOD_5(20^{\circ} C)$	mg/l	30	50		
3	Total suspended solids (TSS)	mg/l	50	100		
4	Total dissolved solids	mg/l	500	1000		
5	Sulfide (as H2S)	mg/l	1.0	4.0		
6	Ammonium (as N)	mg/l	5	10		
7	Nitrate (NO3-) (as N)	mg/l	30	50		
8	Animal fat and vegetable grease	mg/l	10	20		
9	Total surface-active substances	mg/l	5	10		
10	Phosphates (PO_4^{3-}) (as P)	mg/l	6	10		
11	Total coliforms	MPN/	3000	5000		

 Table 5.2.1
 Pollution Parameters as a Basis for Calculating the Permissible Maximum Value

Note:

- Column A specifies value of pollution parameters as a basis for calculating the permissible maximum value in domestic wastewater as being discharged into water resources used for the purpose of domestic water supply (with water quality equivalent to that in column A1 and A2 of the national technical Regulation on surface water quality).

- Column B specifies C value of pollution parameters as a basis for calculating the permissible maximum value in domestic wastewater as being discharged into water resources not used for the purpose of domestic water supply (with water quality equivalent to that in column B1 and B2 of the national technical Regulation on surface water or coastal water quality).

Source: QCVN14: 2008 / BTNMT

(3) Value of K coefficient

Depending on the type, size and area of use of service facilities, public facilities, apartment buildings and residential areas, businesses, the K value is applied to the Table below.

Table 5.2.2Value of K Coefficient Corresponding to Type of Service

Type of facilities	Size and area of use of facilities	Value of K coefficient
1. Hotel, rest house	From 50 rooms or hotel rated 3 stars or higher	1.0

Less than 50 rooms1.22. Agencies, offices, schools, research institutionsGreater than or equal to 10,000m²1.03. Department stores, supermarketsGreater than or equal to 5,000m²1.24. MarketsGreater than or equal to 1,500m²1.05. Restaurants, food storesGreater than or equal to 500m²1.06. Production facilities, armed force barracksFrom 500 people or more Less than 500 people1.27. Condominiums, residential areasFrom 50 apartments or more1.0	Type of facilities	Size and area of use of facilities	Value of K coefficient
2. Agencies, offices, schools, research institutionsGreater than or equal to $10,000m^2$ 1.03. Department stores, supermarketsGreater than or equal to $5,000m^2$ 1.04. MarketsGreater than or equal to $1,500m^2$ 1.05. Restaurants, food storesGreater than or equal to $500m^2$ 1.05. Restaurants, food storesGreater than or equal to $500m^2$ 1.06. Production facilities, armed force barracksFrom 500 people or more1.07. Condominiums, residential areasFrom 50 apartments or more1.0		Less than 50 rooms	1.2
schools, research institutionsLess than $10,000m^2$ 1.23. Department stores, supermarketsGreater than or equal to $5,000m^2$ 1.04. MarketsLess than $5,000m^2$ 1.25. Restaurants, food storesGreater than or equal to $500m^2$ 1.05. Restaurants, food storesGreater than or equal to $500m^2$ 1.06. Production facilities, armed force barracksFrom 500 people or more1.07. Condominiums, residential areasFrom 50 apartments or more1.0	2. Agencies, offices,	Greater than or equal to 10,000m ²	1.0
3. Department stores, supermarketsGreater than or equal to $5,000m^2$ 1.04. MarketsGreater than or equal to $1,500m^2$ 1.04. MarketsGreater than or equal to $1,500m^2$ 1.05. Restaurants, food storesGreater than or equal to $500m^2$ 1.06. Production facilities, armed force barracksFrom 500 people or more1.07. Condominiums, residential areasFrom 50 apartments or more1.0	institutions	Less than 10,000m ²	1.2
supermarketsLess than $5,000m^2$ 1.24. MarketsGreater than or equal to $1,500m^2$ 1.05. Restaurants, foodGreater than or equal to $500m^2$ 1.0storesLess than $1,500m^2$ 1.06. Production facilities, armed force barracksFrom 500 people or more1.07. Condominiums, residential areasFrom 50 apartments or more1.0	3. Department stores,	Greater than or equal to $5,000$ m ²	1.0
4. MarketsGreater than or equal to $1,500m^2$ 1.04. MarketsLess than $1,500m^2$ 1.25. Restaurants, food storesGreater than or equal to $500m^2$ 1.05. Restaurants, food storesLess than or equal to $500m^2$ 1.06. Production facilities, armed force barracksFrom 500 people or more1.07. Condominiums, residential areasFrom 50 apartments or more1.0	supermarkets	Less than 5,000m ²	1.2
4. MarketsLess than 1,500m²1.25. Restaurants, foodGreater than or equal to 500m²1.0storesLess than 500m²1.26. Production facilities, armed force barracksFrom 500 people or more1.07. Condominiums, residential areasFrom 50 apartments or more1.0	1 Montrata	Greater than or equal to $1,500m^2$	1.0
5. Restaurants, food storesGreater than or equal to $500m^2$ 1.0storesLess than $500m^2$ 1.26. Production facilities, armed force barracksFrom 500 people or more1.07. Condominiums, residential areasFrom 50 apartments or more1.01.2	4. Markets	Less than 1,500m ²	1.2
storesLess than 500m²1.26. Production facilities, armed force barracksFrom 500 people or more1.07. Condominiums, residential areasFrom 50 apartments or more1.01.01.21.2	5. Restaurants, food	Greater than or equal to 500m ²	1.0
6. Production facilities, armed force barracksFrom 500 people or more1.07. Condominiums, residential areasFrom 50 apartments or more1.01.0Less than 50 apartments1.2	stores	Less than 500m ²	1.2
armed force barracksLess than 500 people1.27. Condominiums,From 50 apartments or more1.0residential areasLess than 50 apartments1.2	6. Production facilities,	From 500 people or more	1.0
7. Condominiums, residential areasFrom 50 apartments or more1.01.2	armed force barracks	Less than 500 people	1.2
residential areas Less than 50 apartments 1.2	7. Condominiums,	From 50 apartments or more	1.0
	residential areas	Less than 50 apartments	1.2

Source: QCVN14: 2008 / BTNMT

5.2.2 Setting of Outflow Water Quality

It's expected to discharge treated water from STP to Duc Tu Lake, after that it inflows into Ngu Huyen Khe River to Duong River. In addition, according to N9 Zone planning, the CUWC area is located in the basin of Yen Thuong WWTP with the capacity of 10,000 m³/day. Therefore, it's proposed effluent wastewater meet column B of QCVN 14:2008/BTNMT in the future.

However, column A (Cmax= CA x K, K=1.0) as outflow water quality is adopted on this study, and the reason is shown below.

- The decision may be different at the design approval stage of each project depending on the environmental conditions etc.
- The regulation and application conditions may be changed to more severe values in the future
- For the purpose of introduce facilities of high-grade treatment method as "experiential training" facilities on site for participants of the sewerage system training.

5.3 Layout of Sewer and Drainage Lines

5.3.1 Layout of Sewer Lines

The point to be considered when considering the layout plan of sewer lines is shown below.

- In priority to plan by a gravity flow system (without pump station)
- Select route with pipe lines as short/shallow as possible
- Avoid touch to other underground cables/facilities
- Following the plans of land use and construction in future

5.3.2 Layout of Drainage Lines

When planning the layout of drainage lines, it's necessary to consider for layout of outlets with current topographic condition and drainage system. According to the site survey at CUWC area, there are existing 3 outlets to Duc Tu lake. As the situation of flooding in the past, those damage are not much.

So, existing drainage system would be working to some extent, but the drainage lines don't have enough capacity to flow and have many sediments such as sand and mud in the bottom, because it has no regularly cleaning works and appropriate gradient. Therefore, it is desirable to use the existing drainage lines as much as possible, and to improve the parts of low capacity.

Source: JICA Consultant Team

Figure 5.3.1 Layout of Sewer Lines

Source: JICA Consultant Team

Figure 5.3.2 Layout of Drainage Lines

5.4 Considering the Necessity of Pumping Stations

According to the Section 5.3.1 Layout of Sewer Lines, it's not needed a relay type pump station in the sewer system of CUWC, the sewer lines will be planned by a gravity flow system. The inflow/storage pump need to set inside the sewage treatment plant.

Regarding the drainage pump station, it's needed to consider with relation of water level of outflow point (Duc Tu lake). Based on the results of the data collection and hearing to staffs in CUWC, the water level of Duc Tu lake was not so high (less than 6.5 m) in spite of rainy season. According to the current situation, it would be not needed the drainage pump station against the water level with high frequency. However, there are a lot of inflow outlets of storm water into Duc Tu lake from around area, and large land developments are advancing at the area. So, it's expected to increase discharge water into the lake in future, and the water level of the lake may up more.

CHAPTER 6 PLAN OF SEWAGE PIPE

6.1 Outline of Sewage Pipe

The sewage pipe has an important function of eliminate the sewage and transport it to the sewage treatment plant and it is designed based on the Chapter 4 and 5. The procedure of the sewage pipe plan is as follows.

- Plan the sewage pipe route on general layout plan
- Make the flow calculation sheet of sewage pipe
- Draw the plan and profile drawings of sewage pipe
- Complete the general layout plan (diameter, gradient, length of pipe, etc.)

Source: JICA Consultant Team

6.2 Drawings of Sewage Pipe

- DWG-1: General Layout Plan of Sewage System
- DWG-2: Plan and Profile of Sewage Pipe

Document A-1: Flow Calculation Sheet of Sewage Pipe

CHAPTER 7 PLAN OF DRAINAGE PIPE

7.1 Outline of Drainage Pipe

The drainage pipe has an important function of immediately eliminate rainwater and minimize flood damage. It is designed based on the Chapter 4 and 5. The procedure of the sewage pipe plan is as follows.

- Plan the sewage pipe route on general layout plan
- Make the flow calculation sheet of drainage pipe
- Draw the plan and profile drawings of drainage pipe
- Complete the general layout plan (diameter, gradient, length of pipe, etc.)

Source: JICA Consultant Team

Figure 7.1.1 General Layout Plan of Drainage System

7.2 Drawings of Drainage Pipe

- DWG-1: General Layout Plan of Drainage System
- DWG-2: Plan and Profile of Drainage Pipe

Document A-1: Flow Calculation Sheet of Drainage Pipe

CHAPTER 8 PLAN OF SEWAGE TREATMENT PLANT

8.1 Sewage Treatment Process

8.1.1 Comparison of Sewage Treatment Technologies

Among the sewage treatment technologies, the technologies that have been applied in Vietnam include: i) Conventional Activated Sludge (CAS); ii) Anaerobic – Anoxic – Oxic (A2O); iii) Sequencing Batch Reactor (SBR); iv) Oxidation Ditch (OD); and v) Biological Trickling Filter (TF).

In general, for areas where available land for construction of sewage treatment plant is limited or land acquisition costs are high, it is appropriate to use CAS or A2O. These technologies require small land area. However, the operation is quite complicated and requires high investment capital and O&M costs.

Based on the review of currently applied sewage treatment technologies in Vietnam, generalized comparisons and evaluation have been conducted to select the technology which is shown in table below.

No	Items	CAS	A2O	SBR	OD	TF	
Α			Technical	Aspect			
1	Quality of effluent meets QCVN 14: 2008 / BTNMT	Yes	Yes	Yes	Yes	Yes	
2	Treatment capability	Medium	High	High	High	Medium	
3	N and P removal capability	Limited	Good	Good	Good	Limited	
4	Requirement of pre- sedimentation tank	Yes	No	No	No	Yes	
5	Requirement of sedimentation tank	Yes	Yes	No	Yes	Yes	
6	Odor generation	Yes	Yes	Yes	Yes	Yes	
7	Odor controlling	Yes	Yes	Yes	Hard	Hard	
8	Requirement for technology equipment	Medium,	Rather complicated	Complicated	Medium	Medium	
9	Flexibility in treating different flows and loads	Less flexible	Less flexible	Flexible	Flexible	Flexible	
10	Requirement of land area (/1,000 m ³)*	Medium 0.28 ha	Low 0.1 ha	Low 0.13-0.17 ha	High 0.25-0.52 ha	Medium 1.04 ha (Low 0.2 ha ***)	
11	Capability to withstand shock loads	Poor	Medium	Medium	Good	Good	
12	Ability of future expansion	Easy	Easy	Easy	Easy	Easy	
В			Operation and I	Maintenance			
1	Operation	Rather	Complicated	Very	Simple	Rather	

 Table 8.1.1
 Generalized Comparison of Sewage Treatment Technologies

No	Items	CAS	A2O	OD	TF								
	requirement	complicated		complicated		Complicated							
2	Requirement for operators' competence	Requirement for operators' Medium		High	Medium	Rather high							
3	Suitability to manual control	Difficult	Difficult	Impossible	Easy	Easy							
С	Construction and Operation Cost												
1	Construction cost (capacity range from 5,000- 10,000m ³ /day)**	Medium 12-14 VND mil./m ³	High 12-20 VND mil./m ³	High 18-20 VND mil./m ³	Medium 16-18 VND mil./m ³	Medium 12-14 VND mil./m ³							
2	Operation cost *	Medium1,182 VND/m ³	High 2,800 - 5,060 VND/m ³	Medium 1,830 VND/m ³	Medium 1,231 VND/m ³	Low 1,100 VND/m ³							
3	Electric consumption*	0.20 kWh/m ³	0.65 kWh/m ³	0.20 -0.43 kWh/m ³	0.44-0.51 kWh/m ³	0.22 kWh/m ³ (0.1 kWh/m ^{3***})							

Note: *Assessment Report on Operations of Vietnam Water and Wastewater Sector in 2013 and 2014 (Investment and Technology Transfer Consulting Ltd Co., 2016)

** Vietnam Urban Wastewater Management Review (WB, 2013)

*** MetaWater for Pre-Treatment Trickling Filter Technology (PTF)

Source: JICA Consultant Team

In addition to the above, Pre-treated Trickling Filter (PTF) system is advanced technology against TF system. PTF system is developed by of METAWATER Co., Ltd. (Japan) for developing countries. The system is adapted to "The Project for Water Quality Improvement for Japanese Bridge Area in Hoi An City" which is Japanese ODA grant aid project implemented by the JICA. The system is characterized by "low electricity consumption", "easy operation & maintenance", "stable treated water quality", "low life cycle cost".

Anoxic – Oxic (AO) system is similar technology to CAS or A2O, and the biological reaction tank is composed of two processes as anoxic and oxic condition. The system is characterized by "advanced BOD and P removal capability" and "space-saving of site area".

8.1.2 Proposed Sewage Treatment Process

The final selected sewage treatment process will be discussed and confirmed in detail by the CUWC and contracted consultant in next period of the implementation project.

In this study stage, the proposed 2 options of sewage treatment process conforming to the conditions of the project are as follows.

- Anoxic Oxic (AO) system (under the condition of narrow site area)
- Oxidation Ditch (OD) system (under the condition of wide site area)

(1) In case of AO system

The AO system will include an equalization tank with lifting stations and a package for secondary treatment. The secondary treatment will be of the biological treatment process with contact media and all necessary tanks, distribution chambers, pumping stations, auxiliary equipment and interconnecting

pipe work and chambers. In addition, sludge dewatering will be included to yield the excess of sludge to be stored before disposal, if necessary. The main process shall comprise the following components.

1) Equalization (or Retention) tank

The tank is integrated with lifting station with fine screens, submersible aerator, etc., an operation room above that tank (also underground) (including blowers, chemical system). The step should be installed to take easy when the operator needs to go down and check the equipment.

2) Secondary treatment process

The component should include all bioreactor systems (including anoxic tanks, aeration tank with contact media, mixed liquor mixing system, activated sludge recirculation system, waste activated sludge removal system, treated effluent storage tank, final pumping facility, all connecting piping, control instrumentations, backwashing equipment, and conveyance pumps, etc.).

It's proposed sewage treatment process under AO system as below.

Source: JICA Consultant Team Figure 8.1.1 Sewage Treatment Process under AO System

(2) In case of OD system

The OD system is a large circular basin equipped with aerators that is used to remove organic matter and pollutants from sewage through the processes of adsorption, oxidation, and decomposition. The features of the system are the followings.

- Structure is simple and not heavy, so maintenance work is very easy
- It is hard to be effected by load fluctuations and forms only a little sludge
- Low operating costs, since simple O & M

- Adoption rate is highest on small scale facility (less than 5,000 m³/day) in Japan

The main process shall comprise the following components.

1) Oxidation Ditch

The oxidation ditch is integrated with shallow ditch (depth 2 to 3 m) as large round or oval and mechanical aerators. The treatment process is controlled by the hydraulic residence time (HRT: 24 to 48 hours).

2) Final Settling Tank

Purpose of the final settling tank is an allowing the microorganisms and other solids to settle after biological treatment. The water aerobically treated is introduced into a final settling tank and subjected to solid-liquid separation, and the supernatant water is discharged outside as the treated water (after chlorination). A part of the sludge settled in the final settling tank is recirculated to the oxidation ditch through a sludge recirculation pipe and excess sludge is discharged from a pipe as the excess sludge. The sludge collector on the tank incorporates durable drives and bottom scraping rakes that will continuously remove settled sludge. The rake employs multiple bottom scraping blades that are angled to ensure that all settling sludge is captured and brought to the central sludge well.

It's proposed sewage treatment process under OD system as below.

Source: JICA Consultant Team

Figure 8.1.2 Sewage Treatment Process under OD System

The capacity calculation sheet of sewage treatment plant and the layout plan is attached to Appendix-C (Design Calculation of Sewage Treatment Plant) for reference.

8.2 Study on Sludge Treatment and Disposal Method

8.2.1 Sludge Treatment Method

The purpose of sludge treatment is volume reduction, solids weight reduction, sanitary stabilization and utilization. The followings are typical sludge treatment process.

Table 0.2.1 One i rocess for Studge freatment								
Purpose	Unit process							
Volume reduction	Thickening, Dewatering, Drying							
Solids weight reduction	Digestion, Incineration, Melting furnace							
Sanitary stabilization	Anaerobic digestion, Heat treatment, Composting, Incineration, Melting furnace							
Utilization	Composting, Incineration and Melting furnace							

 Table 8.2.1
 Unit Process for Sludge Treatment

Source: JICA Consultant Team

In case of sludge treatment of small-scale sewage system, the thickening or dewatering process is adapted in mostly the projects, since the process is low cost and simple operation. The drying process need wide site area, and the process is holding an issue of odor in urban area.

In this study stage, the proposed 2 options of sludge treatment method conforming to the conditions of the project are as follows.

- Thickening process (under on the condition of low cost)
- Dewatering process (under on the condition of using as experienced-based training facility)

(1) In case of Thickening Process

The gravity thickener tank is adapted in small-scale sewage system. The thickening is often the first step in a sludge treatment process. Sludge from settling tanks may be stirred (often after addition of clarifying agents) to form larger, more rapidly settling aggregates. The sludge may be thickened to about 4 % solids.

(2) In case of Dewatering Process

There are some methods to the mechanical dewatering process like the followings.

- Centrifuge Dewatering
- Belt Filter Press
- Chamber Filter Press
- Screw Press
- Multi-Disc-Type Screw Press

The recommended Multi-Disc-Type Screw Press on this study is as follow.

The Multi-Disc-Type Screw Press is invented by Japanese manufacturer. The dehydrator is an organic sludge dehydrator in which the feature of multi-disc dehydrator is added on the principle of the screw press. The cylinder screen, that incorporates the screw shaft, is comprised of a large number of fixed discs and movable discs that are placed alternately.

The features of the dehydrator are the followings.

- Immune to clogging, since only the movable discs move by contacting the outer periphery of the rotating screw.
- The dehydrator can be, in addition to the use for excess sludge generated from various types of sewage treatment methods, used for low concentration sludge (about 0.5%).
- It saves energy as it is operated by small-sized motors
- The dehydrator does not produce noise and vibration problems, since the screw shaft rotates in a very low speed

Source: AMCON INC. / TSURUMI MANUFACTURING CO., LTD. Figure 8.2.1 Sample Image of Dehydrator

8.2.2 Sludge Disposal Method

In Vietnam, sludge brings to disposal site by vacuum truck or dump truck, then it dumps at there. There are no other methods for sludge disposal at this moment unless particular environmental issue may arise. Therefore, on this section introduce some advanced sludge disposal methods of Japan, in order to promote the recycling and reuse of resources, and to reduce the amount of wastes which cause environmental issue in future.

- Facilities for Recycling Sludge (Compost, Material Use for Cement)

While the way of treating sludge such as compost and construction material is recommended in principle, it should be clearly clarified which entity/organization is the user of this product. For example, manufacturing of compost is little demand in the urban areas without little farmland around the city. Since almost all the user is very conservative for using the new products made of sludge, proposal of very attractive price might be the condition of using it, which is not feasible from the financial point of

view. In addition, the incinerator requires huge investment and O&M cost for complying with the standard of air pollution and the O&M itself is very sophisticated, it is not recommended to install these facilities except in the developed country such as Japan where landfill area is very limited.

However, in large cities in developing countries, acquisition of disposal site is getting difficult and sludge treatment and disposal process should be flexibly examined depending on the acquired site. Since the reduction of simple treatment is not effective, resulting in the requirement of large disposal site while O&M cost is less, and the transportation cost of sludge depends on the distance between sewage treatment plant and disposal site. So, the level of sludge treatment will be carefully decided based on the various factors such as the size of acquisition land including procedure of acquiring land, total investment and O&M cost, location and lifetime of disposal site, and so on.

CHAPTER 9 ENVIRONMENTAL IMPACT SURVEY

9.1 Objective of Environmental Impact Assessment (Another Consideration is Required)

Environmental Impact Assessment (EIA) is needed from the concept that EIA procedures at an earlier stage is essential for preventing serious environmental impacts and promoting a sustainable society.

The main objective of the EIA of sewerage system project is to study the socio-economic analysis on the project and their impact on the inhabitants that are living in near areas and their impact on the environment and how the results would affect the related policies. Sewage/wastewater is a very significant pollution source that has serious adverse impact both on the environment and local residents. Many, especially in developing urban areas in Vietnam, leave the sewage/wastewater to simply seep into the streets inducing bad odors, and possibly causing diseases.

The survey for EIA (Social Environment/ Natural Environment/ Deterioration of Environment) based on the environmental law should be done on the next stage of actual master plan.

9.2 Simplified Evaluation of Improving Water Quality

In this study, the improving water quality under the sewage system development is considered by simple method of evaluation.

In current, much grey water without treated is discharging from the college (canteen, dormitory, shower, laundry, etc.) into Duc Tu lake and public water body. The amount of pollution load will increase to future/2030 as shown in the table below.

In the case of OD system at the sewage treatment plant, the processing capability is 90% as removal rate against the design influent quality. Therefore, it will be expected to improving effect (as reduction rate; 86 % of BOD, 82 % of SS) of water quality under the sewage system development as shown the below table.

Item	Year	Number (person)	Removal rate	Calculation of generated pollution load	Generated pollution load (kg/day)	Reduction rate
	Existing (2018)	4,467	0%	4,467*40*0.08*1.0*1/1000	14.3	
BOD	Undeveloped 9,350 (2030)		0%	9,350*(40+18)*0.08*1.0*1/1000	29.9	
	Developed (2030)	9,350	90%	9,350*(40+18)*0.08*0.1*/1000	4.3	86%
	Existing (2018)	4,467	0%	4,467*25*0.08*1.0*1/1000	8.9	
SS	Undeveloped (2030)	9,350	0%	9,350*(25+20)*0.08*1.0*1/1000	18.7	
	Developed (2030)	9,350	90%	9,350*(25+20)*0.08*0.1*/1000	3.4	82%

 Table 9.2.1
 Improving Effect of Water Quality under the Sewage System Development

Source: JICA Consultant Team

CHAPTER 10 STUDY OF PROJECT COST

10.1 Construction Cost Estimate

10.1.1 Summary of Construction Works

Construction work items for sewerage and drainage for the small-scale sewerage system in CUWC are listed in below.

	č		8	,
No.	Work items	Unit	Quantity	Remarks
1	Sewer pipe (D200 mm)	m	849	@5,627,800VND
2	Manhole	nos	44	@3,652,400VND
3	Connection box	nos	17	@2,000,000VND
4	House connection pipe and demolish septic tank	nos	17	@6,700,000VND
5	Discharge pipe	m	52	@5,627,000VND
6	Sewage treatment plant	m ³ /day	310	@56,100,629VND

 Table 10.1.1
 Summary of Construction Works (Sewerage Works)

Source: JICA Consultant Team

 Table 10.1.2
 Summary of Construction Works (Drainage System)

No.	Work items	Unit	Quantity	Remarks
1	Drainage pipe (D300)	m	334	@6,923,339VND
2	Drainage pipe (D600)	m	217	@11,088,701VND
3	Box culvert (B300x300)	m	481	@3,620,777VND
4	Box culvert (B400x300)	m	125	@4,827,702VND
5	Box culvert (B500x500)	m	510	@7,241,553VND

Source: JICA Consultant Team

10.1.2 Construction Cost Estimate

Following preconditions are applied to the construction cost estimate.

- Construction unit cost of the same kind of sewerage and drainage are applied to pipe cost estimate
- Unit cost of sewer and drainage pipe is including all material cost, installation cost, and overhead cost.
- The cost of the sewage treatment plant by OD system refers to the existing project cost estimate in Japan. (as Prefabricated OD system: 300m³/day, dewatering facility is not including)
- Exchange rate is VND 1.0 = JPY 0.00477 as of April 2019.

Table 10.1.3Construction Cost Estimate

No	Works items	Estimated cost (million VND)	Estimated cost (million JPY)	Remarks
1	Sewerage Works			
1.1	Sewer system (for all)	5,379	25.7	
1.2	Sewage treatment plant (in case of OD system)	17,391	83.0	
	Total of Sewerage Works	22,770	108.6	
2	Drainage Works			
2.1	Drainage pipe	4,719	30.8	
2.2	Box culvert	6,038	20.5	
	Total of Drainage Works	10,757	51,3	
	Total Construction Cost	33,527	159.9	

Source: JICA Consultant Team

10.2 Project Implementation Plan

(1) Selection of Priority Project

The development goal of this master plan is set at 2030. The proposed sewerage and drainage system components shall be selected to attain the project objectives by 2030.

The sewerage system is a priority project in this master plan. So, it is selected that Phase1 (sewerage system project) implementation period is up to 2022. In general, project approval procedures for implementation takes long period in Vietnam. It assumes that this process takes about 1 years until 2020. Then, the project implementation stage will be proceeded from 2021. The implementation period of 2 years is relatively common as the scale of small-scale sewerage system.

On the other hand, the existing drainage system is installing in CUWC. It is early to construct Phase2 of the upgrade drainage system at this moment, therefore, it keeps studying more.

- Phase1: Sewerage system 2021 ~ 2022 (design and approval in 2020)
- Phase2: Drainage system $2025 \sim 2030$

(2) Staged Construction (Alternative Proposal)

In this study, based on the admission plan of CUWC by 2030, the maximum frame of population for sewage treatment plant is forecasted for the table below.

 Table 10.2.1
 Maximum Frame of Population for Sewage Treatment Plant

Item	Existing	Forecast 2030
	number (person)	number (person)
Maximum Frame of Population	4,467	9,350

Source: JICA Consultant Team

According to the basic survey, the existing water consumption is about 200 m³/day, and the amount of discharging sewage will be less more since there are existing septic tanks. As an alternative, the sewage treatment plant is able to be proposed staged construction by 2 steps, in consideration of different of existing frame and forecast frame. In that case, it is also possible to adopt two kinds of processing methods for the purpose of introduction various Japanese technologies.

- Phase1: Stage1 Sewage treatment plant 110 m³/day 2021 ~ 2022
- Phase1: Stage2 Sewage treatment plant 200 $m^3/day 2023 \sim 2024$
- or
- Phase1: Stage1 Sewage treatment plant 200 m³/day 2021 ~ 2022
- Phase1: Stage2 Sewage treatment plant 110 m³/day 2023 ~ 2024

CHAPTER 11 EXPERIMENTAL TRAINING FACILITIES

11.1 Purpose and Example Case of Experimental Training Facilities

(1) **Purpose of Experimental Training Facilities**

The experimental training facilities of small-scale sewerage system in CUWC is available for use for human resource development of sewerage system. The trainees or visitors can directly see and touch the facilities and receive training. The content of experimental training will be very effective measures more than ever.

(2) Example Case of Experimental Training Facilities in Japan

The Sewerage Technology Training Center has been established for human resource development and technology inheritance by Bureau of Sewerage Tokyo Metropolitan Government. The training center is located in Sunamachi Water Reclamation Center which is the second oldest waste water treatment plant in Tokyo. By providing simulated exercise opportunities or hands-on practices of various arenas, the training center promotes effective, efficient early-stage acquisition of knowledge and skills for the workers, and successful inheritance of technology and operational know-hows. These details are shown the below figure.

Source: JICA Consultant Team (Photo from Leaflet of Bureau of Sewerage Tokyo Metropolitan Government) Figure 11.1.1 Sewerage Technology Training Center in Tokyo

11.2 Proposed Pipe Facilities

(1) **Open-cut Construction Site Model**

This facility has an open-cut construction site model including earth retaining, sewer pipe, covering plate and suspended guard. As trainees can see and touch the model of open-cut construction site, they can learn names and usage of materials for earth retaining, piping method of sewer pipes and suspended guard method to understand the proper construction process and the points of construction supervising (See below Figure).

Source: Bureau of Sewerage Tokyo Metropolitan Government Figure 11.2.1 Example Case of Open-cut Construction Site Model

(2) Manhole Model

Trainees can easily see manhole and pipe. Trainees can understand names and structures of manholes, pipes and attached equipment and performing visual inspection of pipe (See below Figure).

Source: Bureau of Sewerage Tokyo Metropolitan Government Figure 11.2.2 Example Case of Manhole Model

11.3 Proposed Sewerage Treatment Facilities

(1) Treatment Tank with Removable Strengthened Glass Covers

In the case of experimental training facilities, the treatment tanks need to be constructed on ground or underground with high visibility. Example case of sewerage treatment plant with removable strengthened glass covers is shown for the below Figure.

Source: Sewerage treatment plant in Tongji University, China

Figure 11.3.1 Example Case of Treatment Tank with Removable Strengthened Glass Covers

(2) Signboard of the Treatment System and Coloring Pipes

Signboard of explaining for the technology of treatment system (process flow diagram) should be installed in order to in all trainees or visitors can easily understand. Also, a scale model of the sewerage treatment plant should come in useful for explaining. All pipes in the sewerage treatment plant should be painted each color by sewage, water, sludge, chemical etc. And, flow direction and connection destination are marked on the pipes. Example case of signboard of the treatment system and coloring pipes are shown for the below Figure.

Source: MLIT of Japan, Bureau of Sewerage Tokyo Metropolitan Government, Thanh Binh Phu My Joint Stock Company Figure 11.3.2 Example Case of Signboard of the Treatment System and Coloring Pipes

11.4 Proposed Multipurpose Underground Utility Conduit

(1) Explanation of Multipurpose Underground Utility Conduit

Multipurpose underground utility conduit is situated under roads, and electrical and telephone cables, gas piping, and water supply and sewerage lines in single conduit (box-culvert or pipe). This precludes the need to dig up roads, which in turn minimizes interruptions to traffic flow and maintains a stable supply of essential utilities when inspection and maintenance works. Example case of multipurpose underground utility conduit is shown for the below Figure.

Source: Ministry of Land, Infrastructure, Transport and Tourism, Japan Figure 11.4.1 Example Case of Multipurpose Underground Utility Conduit

(2) Considering the Utility Conduit for Adoption

The multipurpose underground utility conduit is very useful for inspection and maintenance works of existing facilities. Also, it is best for experimental training facilities, since it makes arrangement to directly see the facilities for trainees. For adoption the utility conduit in this project, it is needed to consider for the below.

- Detailed information from the manager of infrastructures are needed for the planning, because all pipes/cables are related to the construction of utility conduit (Adjusting it in detailed design).
- The utility conduit (box-culvert or pipe) which is inserted all infrastructure will be so large size (Probably more than 3.0 m).
- The utility conduit is too costly for the small-scale sewerage system (That doesn't merit much).

Adapting/installing of utility conduit should be as far as practicable confined to a part of short span. Therefore, the cost of utility conduit isn't included in this master plan.

SMALL-SCALE SEWERAGE SYSTEM MASTER PLAN FOR CUWC

<u>APPENDIX - A</u>

Flow Calculation Sheet of Sewage Pipe

		Distance Runoff						Sewer plan											
Manhole number		Each		Sewage	Total						Pipe		Depth of		Flow	Bottom	n Level	Ground	
		line	Longest	quantity	flow	Aver. Flow Qa (l/s)	Coeff. of dilution	Expected Flow Qe (l/s)	Kch	Max flow Qp (l/s)	section	h/d	Water	Gradient	velocity	Start	End	Level Start End	Cover Start End
Up	Down	m	m	l/s	l/s						mm		(m)	(permille)	m/s	m	m	m	m
-	Fix flo	w from Bu	uilding A1	0.000														6.81	0.60
S1-1	S1-2	22.00	22.00	1.000	1.056	1.056	0.000	0.000	5.000	1.056	• VU200	0.160	0.032	2.000		6.003	5.959	7.13	0.97
				0.000														7.13	0.99
S1-2	S2-1	21.50	43.50	1.000	1.056	1.056	0.000	0.000	5.000	1.056	 VU200 	0.160	0.032	2.000		5.939	5.896	7.45	1.35
				0.000														7.45	1.38
S2-1	S2-2	21.50	65.00	1.000	1.160	1.160	0.000	0.000	5.000	1.160	O VU200	0.165	0.033	2.000		5.866	5.823	7.12	1.09
				0.000							_							7.12	1.11
S2-2	S2-3	23.50	88.50	1.000	1.160	1.160	0.000	0.000	5.000	1.160	O VU200	0.165	0.033	2.000		5.803	5.756	6.75	0.79
				0.000							<u> </u>							6.75	0.81
S2-3	S2-4	14.50	103.00	1.000	1.160	1.160	0.000	0.000	5.000	1.160	⊙ VU200	0.165	0.033	2.000		5.736	5.707	6.63	0.72
00.4	00.4	47.00	400.00	0.000	4 4 9 9	4 400	0.000	0.000		4 400	A 144000	0.405	0.000	0.000			= 004	6.63	1.39
S2-4	\$3-1	17.00	120.00	1.000	1.160	1.160	0.000	0.000	5.000	1.160		0.165	0.033	2.000		5.035	5.001	6.73	1.52
00.4	01.1	10 50	400 50	0.000	4 004	4 004	0.000	0.000	F 000	4 004		0.400	0.000	0.000		4.074	4 000	6.73	1.55
53-1	54-1	19.50	139.50	1.000	1.331	1.331	0.000	0.000	5.000	1.331	♥ V0200	0.180	0.036	2.000		4.971	4.932	6.84	1.70
C/ 1	SE 1	20.00	150 50	1.000	1 050	1 050	0.000	0.000	5 000	1 050	① \/U200	0.210	0.042	2 000		4 002	1 960	0.84	1.73
54-1	55-1	20.00	159.50	0.001	1.000	000.1	0.000	0.000	5.000	1.000	© V0200	0.210	0.042	2.000		4.902	4.002	0.04	1.77
S5-1	\$5-2	24.00	183 50	1 000	2 122	2 122	0.000	0 000	5 000	2 122	• VII200	0 225	0.045	2 000		4 630	4 591	6.88	2.08
00-1	00-2	24.00	100.00	0.001	2.122	2.122	0.000	0.000	0.000	2.122	0 10200	0.220	0.040	2.000		4.000	4.001	6.88	2.00
S5-2	S6-1	23 00	206 50	1 000	2 122	2 122	0 000	0 000	5 000	2 122	• VU200	0 225	0.045	2 000		4 571	4 525	6.00	2 19
		20.00	200.00	0.002			0.000	0.000	0.000			0.220	0.0.0	2.000				6.92	2.22
S6-1	S7-1	14.63	221.13	1.000	2.998	2.998	0.000	0.000	5.000	2.998	• VU200	0.270	0.054	2.000		4.495	4.466	6.83	2.16
				0.003														6.83	2.21
S7-1	S7-2	15.95	237.08	1.000	3.537	3.537	0.000	0.000	5.000	3.537	• VU200	0.290	0.058	2.000		4.416	4.384	6.89	2.30
				0.003														6.89	2.32
S7-2	S8-1	15.00	252.08	1.000	3.537	3.537	0.000	0.000	5.000	3.537	 VU200 	0.290	0.058	2.000		4.364	4.334	6.95	2.41
				0.003														6.95	2.44
S8-1	S8-2	22.50	274.58	1.000	3.601	3.601	0.000	0.000	5.000	3.601	O VU200	0.295	0.059	2.000		4.304	4.259	6.85	2.38
				0.003														6.85	2.40
S8-2	S9-1	6.00	280.58	1.000	3.601	3.601	0.000	0.000	5.000	3.601	 VU200 	0.295	0.059	2.000		4.239	4.227	6.92	2.49
				0.003							_							6.92	2.51
S9-1	S9-2	4.64	285.23	1.000	3.601	3.601	0.000	0.000	5.000	3.601	● VU200	0.295	0.059	2.000		4.207	4.198	6.86	2.46
				0.003														6.86	2.48

Appendix: Sewerage system hydraulic calculation flowsheet

S9-2	S10-1	19.50	304.73	1.000	3.601	3.601	0.000	0.000	5.000	3.601	\odot \land	VU200	0.295	0.059	2.000	4.178	4.139	6.93	2.58
				0.003														6.93	2.61
S10-1	S10-2	26.00	330.73	1.000	3.689	3.689	1.000	3.689	5.000	3.689	\odot \land	VU200	0.300	0.060	2.000	4.109	4.057	7.01	2.75
				0.003														7.01	2.77
S10-2	S10-3	24.48	355.20	1.000	3.689	3.689	1.000	3.689	5.000	3.689	\odot \vee	VU200	0.300	0.060	2.000	4.037	3.988	7.09	2.90
				0.003														7.09	2.92
S10-3		5.14	360.34	1.000	3.689	3.689	1.000	3.689	5.000	3.689	\odot V	VU200	0.300	0.060	2.000	3.968	3.958	7.24	3.08
Fix flow	from D	ormitory B	1 and B2	0.000														7.34	0.50
S11-1	S11-2	22.00	22.00	1.000	1.104	1.104	0.000	0.000	5.000	1.104	\odot \land	VU200	0.165	0.033	2.000	6.633	6.589	7.88	1.08
				0.000														7.88	1.10
S11-2	S2-1	7.50	29.50	1.000	1.104	1.104	0.000	0.000	5.000	1.104	\odot \land	VU200	0.165	0.033	2.000	6.569	6.554	7.45	0.69
rom Bu	ilding A	2 and Dor	mitory A3	0.000														6.74	0.50
S12-1	S12-2	30.00	30.00	1.000	1.171	1.171	0.000	0.000	5.000	1.171	\odot \vee	VU200	0.170	0.034	2.000	6.033	5.973	6.74	0.56

		Dist	ance			-	Runoff								Sew	er plan				
Mar	nhole nber	Each		Sewage	Total							Pipe		Depth of		Flow	Bottom	Level	Ground	
		line	Longest	quantity	flow	Aver. Flow Qa (l/s)	Coeff. of dilution	Expected Flow Qe (l/s)	Kch	Max flow Qp (l/s)		section	h/d	Water	Gradient	velocity	Start	End	Level Start End	Cover Start End
Up	Down	m	m	l/s	l/s							mm		(m)	(permille)	m/s	m	m	m	m
S12-2	S3-1	30.00	60.00	0.000 1.000	1.171	1.171	0.000	0.000	5.000	1.171	\odot	VU200	0.170	0.034	2.000		5.928	5.868	6.74 6.73	0.60 0.66
w from	Dormito	ory and Ca	anteen B6	0.001															6.53	0.60
S13-1	S13-2	26.00	26.00	1.000	1.527	1.527	0.000	0.000	5.000	1.527	\odot	VU200	0.150	0.030	5.800		5.723	5.572	6.75	0.97
				0.001															6.75	0.99
S13-2	S4-1	18.00	44.00	1.000	1.527	1.527	0.000	0.000	5.000	1.527	\odot	VU200	0.190	0.038	2.000		5.552	5.516	6.84	1.12
Fix f	ow from	Office B	uilding A4	0.000															6.70	0.60
S14-1	S14-2	26.00	26.00	1.000	1.132	1.132	0.000	0.000	5.000	1.132	\odot	VU200	0.165	0.033	2.000		5.893	5.841	6.73	0.68
				0.000							_								6.73	0.70
S14-2	S14-3	24.50	50.50	1.000	1.132	1.132	0.000	0.000	5.000	1.132	\odot	VU200	0.165	0.033	2.000		5.821	5.772	6.76	0.78
Fix f	ow from	Office B	uilding A4	0.000	4 00 4	1 00 1	0.000	0.000	F 000	4 00 4	~	\/I.IOOO	0.000	0.040	40.000		E 4 E 7	4 000	6.76	1.40
\$14-3	\$5-1	10.00	60.50	1.000	1.264	1.264	0.000	0.000	5.000	1.264	0	VU200	0.080	0.016	48.800		5.157	4.669	6.84	1.96
	Fix flow	from Dor	mitory B8	0.000															6.85	0.60
S15-1	S15-2	25.00	25.00	1.000	1.438	1.438	0.000	0.000	5.000	1.438	\odot	VU200	0.185	0.037	2.000		6.043	5.993	6.90	0.70
	Fix flow	from Dor	mitory B8	0.000															6.90	0.89
S15-2	S6-1	20.50	45.50	1.000	1.876	1.876	0.000	0.000	5.000	1.876	\odot	VU200	0.210	0.042	2.000		5.807	5.766	6.92	0.95
	Fix flov	w from Gy	/mnasium	0.000							1								6.65	0.60
S16-1	S17-1	25.51	25.51	1.000	1.046	1.046	0.000	0.000	5.000	1.046	\odot	VU200	0.160	0.032	2.000		5.843	5.792	6.63	0.63
				0.000							_								6.63	0.65
S17-1	S17-2	29.74	55.25	1.000	1.046	1.046	0.000	0.000	5.000	1.046	\odot	VU200	0.160	0.032	2.000		5.772	5.713	6.61	0.69
047.0	047.0	40.40	70 74	0.000	4.040	1.040	0.000	0.000	F 000	1.040	~	1/1/2000	0.400	0.000	0.000		5 000		6.61	0.71
517-2	517-3	18.49	/3./4	1.000	1.046	1.046	0.000	0.000	5.000	1.046	\mathbb{P}	VU200	0.160	0.032	2.000		5.693	5.656	6.60	0.73
S17-3	S18-1	18 66	92 40	1 000	1 046	1 046	0 000	0 000	5 000	1 046	\odot	VU200	0 160	0.032	2 000		5 636	5 590	6 58	0.75
511-0	5101	10.00	02.40	0.000	1.040	1.040	0.000	0.000	0.000	1.040		10200	0.100	0.002	2.000		0.000	0.000	6.58	0.79
S18-1	S18-2	18.00	110.40	1.000	1.046	1.046	0.000	0.000	5.000	1.046	\odot	VU200	0.160	0.032	2.000		5.579	5.543	6.71	0.96

				0.000													6.71	0.98
S18-2	S7-1	16.47	126.87	1.000	1.046	1.046	1.000	1.046	5.000	1.046	⊙ VU200	0.160	0.032	2.000	5.523	5.490	6.83	1.13
F	ix flow f	rom Greer	n Building	0.000													7.05	0.60
S19-1	S19-2	19.00	19.00	1.000	1.113	1.113	0.000	0.000	5.000	1.113	⊙ VU200	0.165	0.033	2.000	6.243	6.205	7.21	0.80
ow fron	n Multi-f	unction Bu	uilding A6	0.000													7.21	0.82
S19-2	S19-3	21.00	40.00	1.000	1.303	1.303	0.000	0.000	5.000	1.303	 VU200 	0.135	0.027	6.200	6.185	6.055	7.21	0.95
				0.000													7.21	0.97
S19-3	S19-4	21.00	61.00	1.000	1.303	1.303	0.000	0.000	5.000	1.303	⊙ VU200	0.175	0.035	2.000	6.035	5.993	7.21	1.01
ow fron	n Multi-f	unction Bu	uilding A6	0.000													7.21	1.03
S19-4	S7-1	14.10	75.10	1.000	1.493	1.493	0.000	0.000	5.000	1.493	⊙ VU200	0.190	0.038	2.000	5.973	5.945	6.83	0.68
Fix flo	w from	Office Bui	lding A10	0.000													7.26	0.60
S20-1	S20-2	17.00	17.00	1.000	1.064	1.064	0.000	0.000	5.000	1.064	⊙ VU200	0.110	0.022	9.200	6.452	6.296	7.10	0.60

		Dist	ance				Runoff							Sew	er plan				
Ma	nhole mber	Each		Sewage	Total						Pine		Depth of		Flow	Bottom	າ Level	Ground	
i i i		line	Longest	quantity	flow	Aver. Flow Qa (I/s)	Coeff. of dilution	Expected Flow Qe (l/s)	Kch	Max flow Qp (l/s)	section	h/d	Water	Gradient	velocity	Start	End	Level Start Fnd	Cover Start Fnd
Up	Down	m	m	l/s	l/s						mm		(m)	(permille)	m/s	m	m	m	m
				0.000														7.10	0.62
S20-2	S8-1	16.50	33.50	1.000	1.064	1.064	0.000	0.000	5.000	1.064	⊙ VU200	0.110	0.022	9.300		6.276	6.123	6.95	0.62
raining	Centre	for Water	and Env.	0.000														7.06	0.60
S21-1	S10-1	14.00	14.00	1.000	1.088	1.088	0.000	0.000	5.000	1.088	⊙ VU200	0.110	0.022	9.300		6.253	6.123	6.93	0.60
				0.004														7.12	0.60
P1-1		52.36	52.36	1.000	4.590	4.590	1.000	4.590	1.000	4.590	• HDPE160	0.373	0.056	10.500		6.364	5.814	6.57	0.60

SMALL-SCALE SEWERAGE SYSTEM MASTER PLAN FOR CUWC

APPENDIX - B

Flow Calculation Sheet of Drainage Pipe

Appendix: Drainage system Hydraulic calculation sheet

			Ar	ea		Dista	ance	Concent	ration t	ime		Runo	ff			S	ewer plan				
Mai nur	nhole nber	Ro drain	ounding nage area	Conve	ersion area	Each			Each		Amo Storm	unt of water	Total	Pipe	0	Flow	Flow	Bottom	ı Level	Ground	
		Each line	increasing	Each line	increasing	line	Longest	Pipe average flow velocitv	line	Longest	Unit	Total	flow	section	Gradient	velocity	Rate	Start	End	Level Start End	Cover Start End
Up	Down	ha	ha	ha	ha	m	m	m/s	min	min	m³/s	m³/s	m³/s	mm	(permille)	m/s	m³/s	m	m	m	m
																				7.37	0.00
A1-1	A2-1	0.23	0.23	0.18	0.18	42.50	42.50	1.9	0.4	10.4	0.548	0.099	0.001	⊡3C300x300	13.2000	1.88	0.147	6.97	6.41	6.81	0.00
A2 1	A3 1	0.13	0.36	0 10	0.28	51.00	03 50	0.7	1 2	11.6	0 531	0 1/0	0.001	BC300×300	1 7000	0.67	0.053	6 / 1	632	6.81 6.72	0.00
A2-1	A3-1	0.13	0.30	0.10	0.20	51.00	93.00	0.7	1.2	11.0	0.551	0.149	0.001	E3C300X300	1.7000	0.07	0.055	0.41	0.32	6.72	0.00
A3-1	A4-1	0.08	0.44	0.06	0.34	50.50	144.00	0.6	1.4	13.0	0.512	0.174	0.001	⊡3C300x300	1.4000	0.61	0.048	6.32	6.25	6.75	0.10
														_						6.75	0.10
A4-1	A4-2	0.07	0.61	0.06	0.48	3.00	147.00	0.6	0.1	13.1	0.510	0.245	0.001	⊡3C300x300	1.4000	0.61	0.048	6.25	6.25	6.75	0.11
A4-2	A5-1	0.00	0.61	0.00	0.48	12 50	159 50	0.6	03	13 4	0 506	0 243	0 001	■3C300x300	1 4000	0.61	0 048	6 25	6 23	6.75	0.11
	7.0	0.00	0.01	0.00	0.10	.2.00		0.0	0.0		0.000	0.2.10	0.001			0.01	0.010	0.20	0.20	6.63	0.74
A5-1	A6-1	0.04	0.68	0.03	0.53	18.00	177.50	0.6	0.5	13.9	0.500	0.265	0.001	⊙ HP300	2.0000	0.61	0.043	5.56	5.52	6.83	0.98
			0.70		0.50	10 50	107.00						0.004				o 171	5.00		6.83	0.96
A6-1	A/-1	0.04	0.72	0.03	0.56	19.50	197.00	0.6	0.5	14.4	0.494	0.277	0.001	● HP600	0.8000	0.61	0.174	5.22	5.21	6.88	1.02
A7-1	A7-2	0.10	0.95	0.08	0.74	3.50	200.50	0.6	0.1	14.5	0.493	0.365	0.001	⊙ HP600	0.8000	0.61	0.174	5.18	5.17	6.88	1.05
					-				-											6.88	1.08
A7-2	A8-1	0.00	0.95	0.00	0.74	12.00	212.50	0.6	0.3	14.8	0.489	0.362	0.001	⊙ HP600	0.8000	0.61	0.174	5.15	5.14	6.88	1.09
40.4	40.4	0.00	4.00	0.00	0.04	40.50	004.00		0.5	45.0	0 400	0.400	0.001		0 0000	0.01	0 474	E 44	F 40	6.88	1.12
A8-1	A9-1	0.03	1.08	0.02	0.84	18.50	231.00	0.6	0.5	15.3	0.483	0.406	0.001		0.8000	0.61	0.174	5.11	5.10	6.95	1.20
A9-1	A9-2	0.14	1.44	0.11	1.13	13.00	244.00	0.6	0.4	15.7	0.479	0.541	0.001	⊙ HP600	0.8000	0.61	0.174	5.07	5.06	6.79	1.08
																				6.79	1.10
A9-2	A10-1	0.00	1.44	0.00	1.13	25.00	269.00	0.6	0.7	16.4	0.471	0.532	0.001	⊙ HP600	0.8000	0.61	0.174	5.04	5.02	6.98	1.31
A10 1	A11 1	0.04	1.66	0.03	1 30	4 50	273 50	0.6	0.1	16.5	0 470	0.611	0.001		0 8000	0.61	0 174	4 00	1 08	6.98	1.34
A10-1	ATT	0.04	1.00	0.05	1.50	4.50	275.50	0.0	0.1	10.5	0.470	0.011	0.001		0.0000	0.01	0.174	4.33	4.90	6.98	1.33
A11-1	A11-2	0.07	1.93	0.05	1.51	22.50	296.00	0.6	0.6	17.1	0.464	0.700	0.001	⊙ HP600	0.8000	0.61	0.174	4.95	4.94	7.13	1.54
														o						7.13	1.56
A11-2	A12-1	0.00	1.93	0.00	1.51	11.00	307.00	0.6	0.3	17.4	0.461	0.695	0.001	● HP600	0.8000	0.61	0.174	4.92	4.91	7.17	1.61
A12-1	CX1-1	0.11	2 10	0 09	1.65	21 00	328 00	0.6	0.6	18.0	0.454	0.750	0 001	⊙ HP600	0.8000	0.61	0 174	4 88	4 86	6.94	1.04
	0	0.11	2.10	5.00	1.50	_1.00	020.00	5.0	0.0	10.0	0.104	0.700	0.001	000	0.0000	0.01	Q. 17 T			6.94	1.46
CX1-1	CX1-2	0.31	2.52	0.25	1.99	19.50	347.50	0.6	0.5	18.5	0.449	0.894	0.001	⊙ HP600	0.8000	0.61	0.174	4.83	4.81	6.92	1.46
014.5	014.5		0							10.5	0.475				0.0000		o 1-1	1 70		6.92	1.48
CX1-2	CX1-3	0.00	2.52	0.00	1.99	30.00	377.50	0.6	0.8	19.3	0.442	0.879	0.001	● HP600	0.8000	0.61	0.174	4.79	4.77	6.67	1.25
CX1-3		0.00	2.52	0.00	1.99	16.50	394.00	0.6	0.5	19.8	0.437	0.870	0.001	⊙ HP600	0.8000	0.61	0.174	4.75	4.74	6.11	0.72

																				6.75	0.00
A4-1-1	A4-1-2	0.10	0.10	0.08	0.08	6.50	6.50	0.6	0.2	10.2	0.551	0.044	0.001	■3C300x300	1.4000	0.61	0.048	6.35	6.34	6.75	0.01
																				6.75	0.01
A4-1-2	A4-1-3	0.00	0.10	0.00	0.08	7.00	13.50	0.6	0.2	10.4	0.548	0.044	0.001	⊡3C300x300	1.4000	0.61	0.048	6.34	6.33	6.75	0.02
																				6.75	0.02
A4-1-3	A4-1	0.00	0.10	0.00	0.08	3.50	17.00	0.6	0.1	10.5	0.547	0.044	0.001	■3C300x300	1.4000	0.61	0.048	6.33	6.33	6.75	0.02
																				6.73	0.24
A5-1-1	A5-1	0.03	0.03	0.02	0.02	15.00	15.00	3.0	0.1	10.1	0.553	0.011	0.001	■3C300x300	33.7000	3.00	0.234	6.09	5.59	6.63	0.64

			Ar	ea		Dist	ance	Concent	tration	time		Runo	ff			S	ewer plar	l			
Mar nur	nhole nber	Ro drair	ounding nage area	Conve	ersion area	Each			Each		Amo Storm	unt of water	Total	Pipe		Flow	Flow	Bottom	n Level	Ground	
		Each line	increasing	Each line	increasing	line	Longes	t Pipe average flow velocitv	line	Longest	Unit	Total	flow	section	Gradient	velocity	Rate	Start	End	Level Start End	Cover Start End
Up	Down	ha	ha	ha	ha	m	m	m/s	min	min	m³/s	m³/s	m³/s	mm	(permille)	m/s	m³/s	m	m	m	m
																				6.86	0.00
A7-1-1	A7-1	0.13	0.13	0.10	0.10	63.50	63.50	0.6	1.8	11.8	0.528	0.053	0.001	■3C300x300	1.4000	0.61	0.048	6.46	6.37	6.88	0.11
																				6 70	0.00
A8-1-1	A8-1	0.10	0.10	0.08	0.08	57.50	57.50	0.6	1.6	11.6	0.531	0.042	0.001	■3C300x300	1.4000	0.61	0.048	6.30	6.22	6.88	0.26
A9-1-1	A9-1-2	0.22	0.22	0.18	0.18	44 00	44.00	0.0	12	11.2	0.536	0 097	0 001	■3C300x300	1 4000	0.61	0 048	6.32	6 26	6.72 6.72	0.00
		0.22	0.22								0.000	0.001						0.02	0.20	6.72	0.06
A9-1-2	A9-1	0.00	0.22	0.00	0.18	18.00	62.00	0.6	0.5	11.7	0.529	0.095	0.001	⊡3C300x300	1.4000	0.61	0.048	6.26	6.23	6.95	0.32
																				6.62	0.00
A10-1-1	A10-1-2	0.18	0.18	0.14	0.14	7.50	7.50	0.6	0.2	10.2	0.551	0.077	0.001	■3C300x300	1.4000	0.61	0.048	6.22	6.21	6.62	0.00
A10-1-2	A10-1-3	0.00	0.18	0.00	0.14	16.50	24.00	0.6	0.5	10.7	0.544	0.076	0.001	⊡3C300x300	1.4000	0.61	0.048	6.21	6.19	6.62 6.90	0.01 0.31
A10 1 2	A10 1 4	0.00	0.19	0.00	0.14	12 50	27.50		0.1	10.9	0.542	0.076	0.001		20,2000	0.00	0 191	6 10	5.01	6.90	0.31
A10-1-3	A10-1-4	0.00	0.18	0.00	0.14	13.50	37.50	2.3	0.1	10.0	0.042	0.070	0.001	L3C300x300	20.2000	2.32	0.101	0.19	5.91	6.96	0.65
A10-1-4	A10-1	0.00	0.18	0.00	0.14	21.50	59.00	0.6	0.6	11.4	0.533	0.075	0.001	■3C300x300	1.4000	0.61	0.048	5.91	5.88	6.98	0.70
																				7.04	0.00
A11-1-1	A11-1-2	0.20	0.20	0.16	0.16	29.50	29.50	2.9	0.2	10.2	0.551	0.088	0.001	⊙ нрзоо	43.8000	2.86	0.202	6.88	5.59	7.21	0.00 1.21
A11-1-2	A11-1	0.00	0.20	0.00	0.16	30.00	59.50	0.6	0.8	11.0	0.539	0.086	0.001	⊙ HP300	2.0000	0.61	0.043	5.57	5.51	7.13 6.98	1.23 1.14
																				7.26	0.00
A12-1-1	A12-1	0.06	0.06	0.05	0.05	31.00	31.00	0.9	0.6	10.6	0.545	0.027	0.001	■3C300x300	2.9000	0.88	0.069	6.86	6.77	7.17	0.00
																				0.00	0.00
A13-1	CX1-1	0.11	0.11	0.09	0.09	16.00	16.00	0.6	0.4	10.4	0.548	0.049	0.001	■3C300x300	1.4000	0.61	0.048	5.93	5.91	6.93 6.94	0.60

																				6.93	0.60
H1-1	H2-1	0.04	0.04	0.03	0.03	39.00	39.00	0.6	1.1	11.1	0.538	0.016	0.001	⊡3C400x400	1.0000	0.63	0.089	5.83	5.79	7.24	0.95
																				7.24	1.02
H2-1	H3-1	0.04	0.19	0.03	0.15	8.50	47.50	3.0	0.0	11.1	0.538	0.081	0.001	⊡3C400x400	22.5000	2.99	0.423	5.72	5.53	7.24	1.21
																				7.24	1.21
H3-1	H4-1	0.03	0.30	0.02	0.23	35.00	82.50	0.6	1.0	12.1	0.524	0.120	0.001	⊡3C400x400	1.0000	0.63	0.089	5.53	5.50	7.13	1.13
																				7.13	1.33
H4-1	H5-1	0.03	0.59	0.02	0.46	7.50	90.00	0.6	0.2	12.3	0.521	0.240	0.001	 HP300 	2.0000	0.61	0.043	5.47	5.45	7.19	1.41
																				7.19	1.44
H5-1	H5-2	0.10	0.84	0.08	0.65	18.00	108.00	0.6	0.5	12.8	0.514	0.334	0.001	⊙ HP300	2.0000	0.61	0.043	5.42	5.39	7.19	1.48

			Ar	ea		Dist	ance	Concent	ration	time		Runot	f			S	ewer plar	l			
Mar nun	nhole nber	Ro drair	ounding nage area	Conve	ersion area	Each			Each		Amo Storm	unt of water	Total	Pipe		Flow	Flow	Bottom	1 Level	Ground	
		Each line	increasing	Each line	increasing	line	Longes	Pipe average flow velocity	line	Longest	Unit	Total	flow	section	Gradient	velocity	Rate	Start	End	Level Start End	Cover Start End
Up	Down	ha	ha	ha	ha	m	m	m/s	min	min	m³/s	m³/s	m³/s	mm	(permille)	m/s	m³/s	m	m	m	m
115.0	110.4	0.00	0.04	0.00	0.05	00.00	404.00			10.4	0 500	0.000	0.004		0.0000	0.01	0.040	5.07	F 00	7.19	1.50
H5-2	H6-1	0.00	0.84	0.00	0.65	23.00	131.00	0.6	0.6	13.4	0.506	0.329	0.001	• HP300	2.0000	0.61	0.043	5.37	5.32	7.15	1.50
H6-1		0.05	1.12	0.04	0.86	16.00	147.00	0.6	0.4	13.8	0.501	0.431	0.001	⊙ HP300	2.0000	0.61	0.043	5.29	5.26	6.57	0.98
																				7.15	0.00
H7-1	H2-1	0.11	0.11	0.09	0.09	21.00	21.00	0.6	0.6	10.6	0.545	0.049	0.001	•3C400x400	1.0000	0.63	0.089	6.65	6.63	7.24	0.11
	LI2 1	0.00	0.00	0.06	0.06	21.00	21.00	0.6	0.6	10.6	0 5 4 5	0 022	0.001	BC400x400	1 0000	0.62	0 000	6 6 9	6 66	7.18	0.00
110-1	110-1	0.00	0.00	0.00	0.00	21.00	21.00	0.0	0.0	10.0	0.040	0.055	0.001		1.0000	0.03	0.009	0.00	0.00	1.24	0.00
																				7.00	0.00
H9-1	H4-1	0.26	0.26	0.21	0.21	39.50	39.50	0.6	1.1	11.1	0.538	0.113	0.001	⊙ HP300	2.0000	0.61	0.043	6.15	6.07	7.08	0.60
																				6.89	0.00
H10-1	H10-2	0.15	0.15	0.11	0.11	19.50	19.50	0.6	0.5	10.5	0.547	0.060	0.001	⊙ нР300	2.0000	0.61	0.043	6.56	6.52	7.00	0.15
H10-2	H10-3	0.00	0 15	0.00	0.11	22.00	41.50	0.6	0.6	11 1	0.538	0 059	0.001	 НР300 	2 0000	0.61	0.043	6 50	6 46	7.00	0.17
1110 2	1110 0	0.00	0.10	0.00	0.11	22.00	11.00	0.0	0.0		0.000	0.000	0.001	0 11 000	2.0000	0.01	0.010	0.00	0.10	7.02	1.14
H10-3	H5-1	0.00	0.15	0.00	0.11	38.50	80.00	0.6	1.1	12.2	0.522	0.057	0.001	⊙ HP300	2.0000	0.61	0.043	5.55	5.47	7.19	1.39
	110.4	0.00	0.00	0.47	0.47	70.50	70.50	1.0		40.0	0 5 4 4	0.000	0.001		0 5000	4.00	0.000	C 00	F 00	7.15	0.60
H11-1	H6-1	0.23	0.23	0.17	0.17	72.50	72.50	1.3	0.9	10.9	0.541	0.092	0.001	• HP300	8.5000	1.26	0.089	6.22	5.60	7.15	1.22
X1-1	X1-2	0.11	0.11	0.08	0.08	21.00	21.00	0.6	0.6	11.9	0.200	0.016	0.001	⊡3C500x500	0.7000	0.61	0.134	6.73	6.72	7.34 7.34	0.00 0.02
																				7.34	0.02
X1-2	X2-1	0.00	0.11	0.00	0.08	46.50	67.50	0.6	1.3	11.9	0.200	0.016	0.001	■3C500x500	13.0000	2.63	0.579	6.72	6.11	6.72	0.00
X2-1	X2-2	0.20	0.31	0.16	0.24	6.50	74.00	0.9	0.1	13.4	0.194	0.046	0.001	⊡3C500x500	1.5000	0.90	0.197	6.11	6.10	6.71	0.00
V 0 0	V0.0	0.00	0.04	0.00	0.04	E0 E0	120 50	0.0	4 4	40.4	0 10 4	0.040	0.004		0 7000	0.64	0 4 2 4	6 10	6.00	6.71	0.00
~2-2	∧∠-3	0.00	0.31	0.00	0.24	00.00	132.30	0.9	1.1	13.4	0.194	0.040	0.001	L3C300X300	0.7000	0.01	0.134	0.10	0.00	7.02	0.35

X2-3	X2-4	0.00	0.31	0.00	0.24	15.00	147.50	0.9	0.3	13.4	0.194	0.046	0.001	⊡3C500x500	0.7000	0.61	0.134	6.06	6.05	6.74	0.08	
																				6.74	0.08	
X2-4	X3-1	0.00	0.31	0.00	0.24	2.50	150.00	0.9	0.0	13.4	0.194	0.046	0.001	■3C500x500	0.7000	0.61	0.134	6.05	6.05	6.74	0.08	
																				6.74	0.08	
X3-1	X4-1	0.02	0.37	0.02	0.29	14.00	164.00	0.6	0.4	13.8	0.192	0.056	0.001	⊡3C500x500	0.7000	0.61	0.134	6.05	6.04	6.85	0.20	
																				6.85	0.20	
X4-1	X4-2	0.19	1.42	0.15	1.13	4.50	168.50	0.6	0.1	13.9	0.500	0.565	0.001	⊡3C500x500	0.7000	0.61	0.134	6.04	6.03	6.85	0.21	
																				6.85	0.21	
X4-2	X4-3	0.00	1.42	0.00	1.13	22.50	191.00	0.6	0.6	14.5	0.493	0.557	0.001	■3C500x500	0.7000	0.61	0.134	6.03	6.02	7.07	0.44	
																				7.07	0.44	
X4-3	X5-1	0.00	1.42	0.00	1.13	37.50	228.50	0.6	1.0	15.5	0.481	0.544	0.001	⊡3C500x500	0.7000	0.61	0.134	6.02	5.99	6.83	0.23	
			Ar	ea		Dist	ance	Concent	tration t	ime		Runot	f			Se	ewer plar	ı				
-------------------	-------	------------------------	---------------------------	--------------	---	-------	---------	----------------------------------	-----------	---------	-------	---------------	-----------------	--------------------	------------	----------	-----------	-------	--------	-----------------------	-----------------------	--
Manhole number		Rounding drainage area	Rounding drainage area		Rounding drainage area Conversion ar		Fach			Each	Fach	Amou Storm	unt of water	Total	Pipe		Flow	Flow	Bottom	n Level	Ground	
		Each line	increasing	Each line	increasing	line	Longest	Pipe average flow velocity	line	Longest	Unit	Total	flow	section	Gradient	velocity	Rate	Start	End	Level Start End	Cover Start End	
Up	Down	ha	ha	ha	ha	m	m	m/s	min	min	m³/s	m³/s	m³/s	mm	(permille)	m/s	m³/s	m	m	m	m	
																				6.83	0.23	
X5-1	X5-2	0.27	1.69	0.22	1.35	30.50	259.00	0.6	0.8	16.3	0.472	0.637	0.001	⊡ 3C500x500	0.7000	0.61	0.134	5.99	5.97	6.81	0.23	
X5-2	X5-3	0.00	1 69	0.00	1 35	42.00	301.00	0.6	12	17 5	0 459	0 620	0 001	■3C500x500	0 7000	0.61	0 134	5 97	5 94	6.81	0.23	
7.0 2	7.0 0	0.00	1.00	0.00	1.00	12.00	001.00	0.0		17.0	0.100	0.020	0.001		0.1000	0.01	0.101	0.01	0.01	6.76	0.21	
X5-3	X5-4	0.00	1.69	0.00	1.35	31.50	332.50	0.6	0.9	18.4	0.450	0.608	0.001	⊡3C500x500	0.7000	0.61	0.134	5.94	5.92	6.61	0.08	
																				6.61	0.08	
X5-4		0.00	1.69	0.00	1.35	4.00	336.50	0.6	0.1	18.5	0.449	0.607	0.001	⊡ 3C500x500	0.7000	0.61	0.134	5.92	5.92	6.60	0.07	
																				6.68	0.00	
X6-1	X3-1	0.04	0.04	0.03	0.03	27.50	27.50	0.6	0.8	10.8	0.205	0.006	0.001	⊡3C500x500	0.7000	0.61	0.134	6.07	6.05	6.74	0.08	
																			-	6 78	0.00	
X7-1	X7-2	0.85	0.85	0.68	0.68	63.00	63.00	0.6	1.8	11.8	0.528	0.359	0.001	⊡3C500x500	0.7000	0.61	0.134	6.17	6.13	6.83	0.09	
																				6.83	0.09	
X7-2	X7-3	0.00	0.85	0.00	0.68	20.00	83.00	0.6	0.6	12.4	0.520	0.353	0.001	■3C500x500	0.7000	0.61	0.134	6.13	6.11	6.83	0.11	
¥7.0	X7.4	0.00	0.05	0.00	0.00	04.00	404.00			40.0	0.540	0.040	0.004		0 7000	0.01	0.404	0.44	0.40	6.83	0.11	
X7-3	X7-4	0.00	0.85	0.00	0.68	21.00	104.00	0.6	0.6	13.0	0.512	0.348	0.001	L3C500x500	0.7000	0.61	0.134	6.11	6.10	7.07	0.36	
X7-4	X7-5	0.00	0.85	0.00	0.68	13.00	117.00	0.6	0.4	13.4	0.506	0.344	0.001	⊡3C500x500	0.7000	0.61	0.134	6.10	6.09	6.97	0.30	
																				6.97	0.27	
X7-5	X4-1	0.00	0.85	0.00	0.68	8.50	125.50	0.6	0.2	13.6	0.504	0.343	0.001	■3C500x500	0.7000	0.61	0.134	6.09	6.08	6.85	0.16	
																				6.90	0.00	
X8-1	X4-1	0.01	0.01	0.01	0.01	20.00	20.00	1.2	0.3	10.3	0.208	0.002	0.001	■3C500x500	2.5000	1.16	0.254	6.29	6.24	6.85	0.00	

SMALL-SCALE SEWERAGE SYSTEM MASTER PLAN FOR CUWC

APPENDIX - C

Design Calculation of Sewage Treatment Plant (for OD System)

APPENDIX - C

DESIGN CALCULATION OF SEWAGE TREATMENT PLANT (FOR OXIDATION DITCH SYSTEM)

1.1 Technical Features of Oxidation Ditch System

An oxidation ditch system is a modified activated sludge biological treatment process that uses long solids retention times (SRT) to remove biodegradable organics. The typical oxidation ditch is equipped with aeration rotors or brushes that provide aeration and circulation. Because of this feature, this process may be adaptable to the fluctuations in flows and loadings associated with wastewater of collection area. In generally, the structure of oxidation ditch is a large circular ditch equipped with aerators, and it has the following features

- Ensures stable, continuous dissolved oxygen measurement
- Generated sludge volume is relatively small
- Reduces operating costs
- Requires a large land area for layout

The number of tanks for reactor and sedimentation should be two or more for cleanings and repair works. If it is uneconomical to have two tanks, single tank system is accepted. Biological reactor tank should be 1.0 - 5.0 m in depth and 2.0 - 6.0 m in width. Capacity of the tank shall be calculated using planned maximum daily flow and the table below.

8	
Design Parameter	Range
HRT, h	24 - 36
MLSS, mg/1	3,000 - 4,000
Loading, kg BOD/kg MLSS/d	0.03 - 0.05
Return sludge recycle ratio, %	100 - 200
Required Oxygen, kgO2/kg BOD	1.4 - 2.2

Table.1Design Parameter for Oxidation Ditch Process

Source: Japan Sewage Works Association

Table.2	Design Parameter for Final Sedimentation
---------	---

Design Parameter	Range
Detention Time, hrs	6 - 12
Side Wall Depth, m	3.0 - 4.0
Overflow Rate, m ³ /m ² /d	8 -12
Overflow Rate, m ³ /m ² /d	8-12

Source: Japan Sewage Works Association

2.1 Proposed Prefabricated Oxidation Ditch System

For small scale oxidation system, precast concrete products are available. The prefabricated oxidation ditch (POD) system is suitable for wastewater treatment in small-scale sewerage facilities. Inside the round reactor is final sedimentation tank. Aerator for POD system is screw type device. The factory-made units (precast concrete wall) can be built in a shorter period and at a lower cost than traditional construction methods. The plan and section of this POD system is shown in Figure below.

Source: Japan Sewage Works Association

Source: JICA Consultant Team

Figure.2 Sample Case of Prefabricated Oxidation Ditch System in Japan

3.1 Basic Design Condition of Sewage Treatment Plant

Effluent quality shall meet law requirements. Design inflow shall be the planned maximum daily flow. Design influent quality shall combine planned raw sewage quality and load of return from sludge treatment process. Design inflow and influent quality shall consider variation along the time.

Table.3	Basic Design	Condition of Sewage	Treatment Plant in CUWC
		e officiations of severage	

Design Parameters	Design Conditions	Remarks		
Maximum daily flow (m ³ /d)	300	Calculated value (310)		
Influent BOD (mg/l)	200	Calculated value (185)		
Influent SS (mg/l)	200	Calculated value (145)		
Standard effluent BOD (mg/l)	20	QCVN-14:2008, Column A (30)		
Standard effluent SS (mg/l)	20	QCVN-14:2008, Column A (50)		
Total removal rate (%)	90	Oxidation Ditch process		

Source: JICA Consultant Team

4.1 Flow Diagram of Prefabricated Oxidation Ditch System

Source: JICA Consultant Team

Items Design Calculation Remarks 1. Pump pit - Structure type - Precast concrete manhole (D:1.8m) - Size - Diameter 1.8 m - Pump type - Submersible pump - Number of pumps - 2 sets (1 set stand-by) - $300 \text{ m}^3/\text{day} \ge 2.0 \text{ x} \frac{1}{24} \ge 1/60 = 0.42 \text{ m}^3/\text{min}$ - Pump capacity Screen - Type - Automatic screen with dewatering - 1.0 m³/min (for 2 sets pumps) - Flow rate - Screen width -2.5-5.0 mm - Number of screens - 1 set 2. Oxidation Ditch - Type - Precast concrete round reactor (with final sedimentation) - Maximum daily flow $- 300 \text{ m}^3/\text{day}$ - Influent BOD - 200 mg/l - 200 mg/l - 20 mg/l - 20 mg/l - Influent SS - Effluent BOD - Effluent SS - HRT - 24 hours - MLSS - 3,500 mg/l - 0.05 kgBOD/kgSS/day - BOD-SS Loading - Return sludge ratio 100 - 200 %- Tank size T3 t2 T1 T2 D d W Η h t1 13,500 7,000 3,100 4,100 3,700 150 150 300 300 400 Wt t1 W ,t2 3. Final sedimentation - Type - Precast concrete round tank (inside Oxidation Ditch) - Overflow Rate, $- 8 \text{ m}^{3}/\text{m}^{2}/\text{day}$ - Water depth - 3.0 m - Tank diameter - Diameter 7.0 m - Water area - 7.0 x 7.0 x $3.14/4 = 38.5 \text{ m}^2$ - Capacity - $38.5 \times 3.0 = 115.5 \text{ m}^3$

5.1 Design Calculation of Sewage Treatment Plant (Prefabricated Oxidation Ditch)

Items	Design Calculation	Remarks
4. Chlorination		
- Type	- Precast concrete ditch block $200 \text{ m}^3/4\text{ mm} = 0.208 \text{ m}^3/(\text{mm})$	
- Maximum daily flow	$- 300 \text{ m}^{3}/\text{day} = 0.208 \text{ m}^{3}/\text{min}$	
- Design capacity	$- 0.208 \times 15 - 3.2 \text{ m}^3$	
- Tank size	$- B1.2m \times H0.7m (WL) \times I.4.0 m = 3.36 m^3$	
	(U ditch block: 1.2 m x 1.2 m x 4.0 m)	
5. Sludge thickening tank		
- Type Maximum daily flow	- Precast concrete block $200 \text{ m}^3/\text{dev}$	
- SS removal rate	- 90 %	
- Sludge generation rate	- 75 %	
- Moisture of excess sludge	- 99.4 %	
- Moisture of thickening	- 98.5 %	
sludge		
- Sludge loading	-30 kg/m^2	
- Solid amount	$- 300 \times 200 \times 0.90 \times 0.75 \times 10^{-3} = 40.5 \text{ kg/day}$	
- Excess sludge	$-40.5 \times (100/0.0) \times 10^{-2} = 0.8 \text{ m}^2/\text{day}$	
- Tank size	$- B2.5m \times L2.5m \times H4.5m (1.5m \times 3)$	
Sludge storage tank		
- Type	- Precast concrete block	
- Storage days	- About 4 days $40.5 \times (100/1.5) \times 10^{-3} - 2.7 \text{ m}^3/\text{day}$	
- Tank size	$- 40.5 \times (100/1.5) \times 10^{-2.7} \text{ m/day}$ - B2.5m x L2.5m x H3.0m (1.5m x 2)	
		× ×
	Sludge thickening tank Sludge storage tank	pump pit
Sludge pump pit		
- Type	- Precast concrete block B2 5m x L4 0m x H2 4m (0.8m x 2)	
	$= D2.5111 \times L4.0111 \times H2.4111 (0.0111 \times 5)$	

Source: JICA Consultant Team, Asahi Concrete Works Co., Ltd.

SMALL-SCALE SEWERAGE SYSTEM MASTER PLAN FOR CUWC

APPENDIX - D

Alternative Plan of Johkasou (Advanced Septic Tank Technology in Japan)

APPENDIX - D

ALTERNATIVE PLAN BY JOHKASOU (ADVANCED SEPTIC TANK TECHNOLOGY IN JAPAN)

1.1 Technical Features of Johkasou

Johkasou is decentralized wastewater treatment technology unique to Japan for purifying wastewater discharged from general households using the properties of microorganisms to degrade organic contaminants. The structure of Johkasou is designed to fully demonstrate the purification functions of microorganisms. Septic tanks are widely used in Vietnam, but these tanks have structural, maintenance and control problems that make it difficult to ensure hygienic treatment of wastewater. On the other hand, Johkasou demonstrates excellent sewage treatment performance by combining anaerobic and aerobic treatments, and its structure is convenient in terms of maintenance and management. Example of the structure of small-scale Johkasou is shown the below figure.

Figure.1 Example of the Structure of Small-Scale Johkasou (FRP-made)

The capacity, the treatment process and the material of Johkasou are selectable, depending on the usage of the building, quantity and quality of wastewater to be treated, and the regulation issues of discharge areas. However, Johkasou are usually classified by the capacity in terms of number of users for design.

• Small-scale Johkasou:

Johkasou used for individual household and small-scale wastewater treatment with capacity of 5 to 50 persons, or average amount of wastewater less than 10 m³/day. Most small-scale Johkasou are made of plastics such as FRP (fiberglass reinforced plastic) or DCPD (Dicyclopentadiene) at factories.

• Medium-scale Johkasou:

Johkasou used for medium-scale wastewater treatment with capacity of 51 to 500 persons, or average amount of wastewater less than 100 m³/day. Medium-scale Johkasou are made of FRP at factories, or are built of reinforced concrete (RC) at sites of installation.

• Large-scale Johkasou:

Johkasou used for large-scale wastewater treatment with capacity of 501 persons, or average amount of wastewater more than 100 m³/day. Large-scale Johkasou are mainly built of reinforced concrete (RC) at sites of installation.

Example of the structure of Medium-scale Johkasou is shown the below figure.

Source: Okamura Vietnam Co., LTD **Figure.2** Example of the Structure of Medium-Scale Johkasou (FRP-made)

1.2 Proposed Johkasou as Pilot Project

The experimental training facilities of small-scale sewerage system in CUWC is aimed for human resource development of sewerage system. The many contents of installed facilities will be very effective trainings. Johkasou of Japanese technology shall be expected for understanding advanced sewage treatment process.

Installation of Johkasou for a building like dormitory (building: B8) in CUWC is proposed as a pilot project. A manufacturer of Johkasou can collect some test data on the site, and introduce the technology to trainees or visitors.

1.3 Basic Design Condition of Johkasou

Effluent quality shall meet law requirements. Design inflow shall be the planned average daily flow.

Design inflow and influent quality is shown in below table.

	•	· · · · · · · · · · · · · · · · · · ·
Design Parameters	Design Conditions	Remarks
Average daily flow (m^3/d)	36	Calculated value (37.8)
Influent BOD (mg/l)	200	Calculated value (185)
Influent SS (mg/l)	200	Calculated value (145)
Standard effluent BOD (mg/l)	30	QCVN-14:2008, Column A (30)
Standard effluent SS (mg/l)	50	QCVN-14:2008, Column A (50)

Table.1	Basic Design	Condition of Johkasou	(B8: Dormitory)
Lanc.L	Dasie Design	Condition of Johnason	(DO, DUI mitory)

Source: JICA Consultant Team

1.4 Flow Diagram of Johkasou

Source: JICA Consultant Team

1.5 Design of Johkasou

Source: JICA Consultant Team

Figure.4 Flow Diagram of Johkasou

