CHAPTER 6CLIMATE CHANGE ADAPTATION
MEASURES FOR WATER RESOURCES
MANAGEMENT PLANS OF THE BRANTAS
RIVER BASIN

6.1 Planning Methodology of the Water Resources Management Plans Reflecting Climate Change Impacts

6.1.1 Planning Methodology of Water Use

The planning method is applied in the same method under the present climate condition. The difference between the present climate and future climate is 1) a natural flow in the Brantas River basin and 2) an irrigation water demand at each irritation area.

The safety level of the water supply to each demand is the same as the present planning methodology.

6.1.2 Planning Methodology of Rainstorms and Floods

(1) Multiple Scenario Approach

The JICA Project Team 2 (Team 2) discussed with the Indonesian side the planning methodology which enables to reflect concretely climate change impacts in the water resources management plans (POLA and RENNCANA) using projection results of climate change impacts in 2050. The formulation of the water resources management plans needs to consider uncertainty inherent in the projected climate change impacts. Hence, Team 2 provided materials and discussion points concerning the "Multiple Scenario Approach (MSA)" as a planning methodology and commenced a discussion on MSA. MSA is outlined as stated hereunder.

[Multiple Scenario Approach (MSA)¹]

To comprehensively cope with the occurrence of different levels of hazards in the changing conditions of vulnerable areas by socioeconomic factors such as increasing wealth, population growth, urbanization and industry agglomeration as well as the uncertainty such as climate change, a methodology to formulate a Disaster Risk Reduction (DRR) strategy is required.

Currently, most countries have been adapting the approaches which set a target protection (safety) level based on a preset particular hazard in a fixed scenario, which is the "Deterministic Approach" (see Figure 6.1.1). However, the capacity of this approach for adaptation to the uncertainty is not necessarily sufficient, and further flexibility of disaster management plans and resilience of countermeasures are also required even for a wide range of projected risks. Therefore, a concept of "Multiple Scenario Approach" is created so as to minimize the damage and losses under the multiple scenarios by a comprehensive combination of structural and non-structural measures.

¹ Adapted from Presentation prepared for Second Seminar in the captioned Project by Dr. Hitoshi BABA, Senior Advisor, Japan International Cooperation Agency

In this approach, multiple disaster scenarios from multiple hazard scales are to be considered so as to assign the target safety levels differently to various options and coordinate the appropriate options (see Figure 6.1.1).

It is expected that most of the countermeasures planned by the different target protection levels can contribute to damage mitigation through synergetic effects and redundancy by the combination of measures.

Using the tool in Figure 6.1.2, several options of (DRR) measures which should be conducted yearly can be selected.

The position on the total cost curve in Figure 6.1.2 approaches to the **Point of Cost Optimum (PCO²)** as DRR measures are conducted year by year.

Deterministic Approach Source: Adapted from Presentation for 2nd Seminar in the Project by Dr. Hitoshi BABA, JICA

Figure 6.1.1 Approaches to Target Safety Level Setting in DRR Strategy

Source: Adapted from Presentation for 2nd Seminar in the Project by Dr. Hitoshi BABA, JICA

Figure 6.1.2 Assessment Tool for Strategic "Target Setting" in MSA

Most of the countries suffering from natural disasters might be in the left side position in Figure 6.1.2. Such situation has to be shifted to the right by investing protection and reducing

² located at the intersection between the probable damage and protection cost curves

The total cost of the disaster management (= probable damage + protection cost) decreases to and increases from **PCO** through taking DRR measures.

the damage cost with the aim of reducing the total cost of disaster management.

The goal of the "Basin-wide Water Resources Management Strategy" is supposed to stay in the position of PCO in the situation with uncertainty and the PCO is the best condition for sustainable execution of the management. In this approach, the respective options of measures are assessed in terms of (i) strategic policies, (ii) investment costs/financial availability, and (iii) damage mitigation value.

(2) Target Safety Level of Climate Chane Adaptation Measures

Regarding MSA, Team 2 had several discussions with the Indonesian side including three workshops in DGWR/MPWH (Jakarta) and BBWS Brantas (Surabaya) with the aim of sharing the concept and methodology of MSA. Through discussions, the following were confirmed by the Indonesian side and Team 2.

Regarding the "**Point of Cost Optimum (PCO)**" in MSA for an object area, there are two cases of relationship with criteria for "Flood Protection Level (FPL)", which are

- 1) In the case of (a), the safety level corresponding to the FPL shall be adopted for the climate change adaptation measures of the object area. and,
- 2) In the case of (b), the safety level corresponding to the PCO shall be adopted for the climate change adaptation measures of the object area.

(a) Case 1: PCO < FPL and (b) Case 2: PCO > FPL.

Source: JICA Project Team 2 Figure 6.1.3 Criteria for Protection Level

To comprehensively tackle with the occurrence of different levels of hazards, together with the changing conditions of vulnerable areas by the socioeconomic factors such as increasing wealth, population growth, urbanization, and industry agglomeration, as well as the uncertainty such as climate change, a methodology is needed to formulate a disaster risk reduction strategy which takes a consistent approach.

Most of the countries have been adapting such approaches as setting target protection level

⁽³⁾ Single Scenario Approach³

³ Adapted from Presentation prepared for Second Seminar in the captioned Project by Dr. Hitoshi BABA, Senior Advisor, Japan International Cooperation Agency

based on a preset particular hazard in fixed scenario, which is "Deterministic Approach" as Approach A or Approach B, as described below.

Approach A: <u>Supplemental measures for extremes over the planned</u> <u>security level</u>. Supplemental measures will be provided for the extreme flood or extreme drought which exceeds the originally planned rainfall or discharge based on the past hydro-meteorological data. Water system shall basically be managed without changing the original plans but with consideration of future security level change due to climate change impacts or any uncertain events. Japan is the typical example that selected this approach.

Approach B: Improving measures based on <u>periodical revision of planned</u> <u>security level</u>. The planned rainfall and discharge will be periodically revised by reviewing the previous ones taking into account the observed and projected variation due to climate change impacts or any uncertainty. Nederland is the typical example that selected this approach.

6.2 Optimization of the Existing Water Resources Management Facilities to Mitigate Climate Change Impacts on Rainstorms, Floods and Draughts

6.2.1 Rainstorms and Floods

The Sutami Dam has a large volume of flood control space. However, the inflow discharge under the future climate condition is increased during flood events. The flood control space requires larger space compared with the present climate condition. Therefore, it is recommended that the full supply level in the rainy season is changed from EL. 275.50m to EL. 263.50m in the medium scenario.

6.2.2 Drought

The storage volume for the water supply of the Sutami Dam has also a large volume. The inflow discharge under the future climate condition during the dry season is smaller than the present climate condition. It is required that an additional storage volume be in the reservoir. Therefore, it is recommended that the full supply level is changed from EL. 272.50m to EL. 274.90m in the medium scenario under the future climate condition.

6.3 Identification of Other Adaptation Measures against Climate Change Impacts

6.3.1 Adaptation Measures against Rainstorms and Floods

(1) Structural Measures

The four tributaries are selected through the discussion with BBWS Brantas. These river basins are frequently inundated under present climate condition.

Some structural adaptation measures can be applied against rainstorms and floods. This shows applicable structural adaptation measures to target river basins.

	Widas	Ngotok	Sadar	Tawing
Dam	There are four dam	There is no dam	There is no dam	There is no dam
	planning.	planning.	planning.	planning.
	The catchment area of			
	all dams is very small			
	compared with the			
	Widas River basins.			
	Therefore, the flood			
	control efficiency by			
	the dams is too small.			
	Catchment area:			
	whole: $1,350$ km ²			
	Ked worsk 32 km ²			
	Kuncir 70km ²			
	Ketandan 13km ²			
Retarding	It is possible to	There are many	here are many houses	The width of the
Basin	construct a retarding	houses located	located	inundation area is
	basin.	in/surrounded the	in/surrounded the	narrow. And some
	However, it requires a	inundation area.	inundation area.	villages are located in
	large amount of	It requires a large	It requires a large	these areas. It is not
	compensation cost.	amount of	amount of	effective because the
		compensation cost.	compensation cost.	space of the retarding
			It is not effective due	basin is small.
D'I	D 111	D 11.	to the flooding type.	D 111
Dike	Possible to construct a	Possible to	Possible to construct	Possible to construct
Dradging	dike	There is no notual	a dike	a dike
Excavation	present river cross	river cross section		river cross section
of Riverbed	section data	data	confluence between	data
oridited	It is difficult to study	It is difficult to	tributary and the	It is difficult to study
	the excavation of the	study the	Sadar River. The	the excavation of the
	riverbed.	excavation of the	water level of the	riverbed.
		riverbed.	Sadar River impacts	
			to water level of	
			tributaries.	
			Therefore,	
			excavation of the	
			riverbed to the	
			tributaries is not	
Floodplain	There are some natural	It is difficult to	It is difficult to	It is difficult to
Management	retarding basins	control land use	control land use	control land use
management	These areas can be	because flood plain	because flood plain	because flood plain
	utilized based on the	area is located near	area is located near	area from breach
	flood plain	Mojokerto city.	Mojokerto city.	point to near the
	management.	_ <i>`</i>	· ·	confluence of
				mainstream.
				The flood
				management area is a
			Di	large area.
Applicability	Dike D_{i}	Dike	Dike	Dıke
	Dike + Ketarding basin	Dike+ excavation ¹		
	management	cross section		
	management	survey)		
		~~····		

 Table 6.3.1 Applicable Adaptation Measures to Target River Basins

Note: * 1; It is necessary to study this alternative after the execution of the river cross section survey. (In this project, it is not studied because the survey works are not included.)

Source: JICA Project Team 2

- 1) Widas River Basin
- (a) Alternatives to the Adaptation Measures

The following adaptation measures are selected and Table 6.3.2 shows the summary of alternatives.

- i) Flood dike
- ii) Flood dike + retarding basin
- iii) Flood dike + floodplain management

	U U	(
Alternatives	Flood dike	Flood dike + Retarding	Flood dike + floodplain	
		basin	management	
Structure	 Dike construction 	 Dike construction 	 Dike construction 	
		Construction of the		
		retarding basin		
Land acquisition and	 Dike alignment 	Dike alignment	Dike alignment	
resettlement	_	➢ Alignment of the	_	
		retarding basin		
		▶ Inside of the		
		retarding basin		
Damage	Zero at planned	➢ Zero at planned	➢ Some damages are	
_	safety level	safety level	remained at the	
	-	-	safety level of dike	

Table 6.3.2 Summary of Alternatives (Widas River Basin)

Source: JICA Project Team 2

(b) Medium Scenario

Dike + Flood Management

a) Selection of the Applied Adaptation Measure

As a result of the construction cost and damage estimation, the following adaptation measures of each probable flood are selected as shown in Table 6.3.3. Table 6.3.4 shows the proposed measures and Figure 6.3.1 shows the expected flood dike alignment.

					(Unit	: IDR Mil.
Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year
Dike	27,757	67,408	111,331	200,213	253,481	345,871
Dike + Retarding Basin	32,139	143,477	186,673	277,590	333,074	416,262

61,006

 Table 6.3.3 Comparison of Alternative Structures (Medium Scenario)

93,828

110,194

118,607

128,001

Selected AlternativeDikeDike+ Flood Plain ManagementNote: The total cost is estimated based on the economic cost.Source: JICA Project Team 2

29,541

Note: Figure shows the inundation area of the 30-year probable flood under the medium scenario with dike alignment. Source: JICA Project Team 2

	~			
Figuro 6 3 1	Concentual Pla	n for Proposed	Dilzo Alignmon	t of the Wides River
	Conceptual 1 la		ι Dike Angninen	i ul the willas hivel
0	1	1		

II	2	5	10	20	50	100			
Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year			
Upper Widas									
Discharge (m ³ /s)	384	527	632	855	985	1,175			
Total Length (m)	5,516	6,516	6,516	6,516	7,516	7,516			
Average height (m)	0.9	1.5	1.8	2.1	2.1	2.3			
		Kedung	and Kuncir						
Discharge (m ³ /s)	305	424	523	776	886	1,125			
Total Length (m)	6,000	11,000	12,000	12,000	13,000	14,000			
Average height (m)	0.5	0.6	1.0	1.6	1.6	1.8			
		Lowe	er Widas						
Discharge (m ³ /s)	654	901	996	1,014	1,021	1,038			
Total Length (m)	25,000	34,000	34,000	34,000	34,000	34,000			
Average height (m)	0.9	1.3	1.5	1.5	1.6	1.6			
Management Area (ha)	-	100	300	500	500	500			

Table 6.3.4 Basic Feature of the Proposed Measures (Medium Scenario)

b) Results of inundation analysis

The inundation analysis in the Widas River basin is applied on a 2-D unsteady flow analysis by using International River Interface Cooperative (iRIC) software. The analysis results are summarized in Table 6.3.5.

10	Table 0.5.5 Inundation Area of Each Return reflow (Wedium Sechario)								
Average	Maximum	Irrigatio	on Area	Housin	ig Area				
Return	Inundation	Inundation	Inundation	Inundation	Inundation				
Period	Area (ha)	Depth (m)	Area (ha)	Depth (m)	Area (ha)				
(year)									
2	65	0.58	23	0.59	19				
5	597	0.71	106	0.68	71				
10	1,194	0.80	309	0.64	188				
30	3,120	0.93	699	0.75	666				
50	4,174	0.97	880	0.83	862				
100	6,161	1.01	1,348	0.91	1,221				

Table 6.3.5 Inundation Area of Each Return Period	(Medium Scenario)
---	-------------------

Note: Inundated irrigation area is applied to the average one during flood event because damage coefficient is estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

The structural measures are selected by using the multi-scenario approach. Table 6.3.6 and Figure 6.3.3 show the result of multi-scenario approach.

Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)
Period (year)	Structural	(IDR 10 ⁶)	(IDR 10 ⁶)	(IDR 10 ⁶)
	Measures (m ³ /s)			
2	654	27,757	72,560	100,317
5	901	58,028	52,034	110,063
10	996	81,264	37,376	118,639
30	1,014	97,630	26,219	123,849
50	1,021	104,800	19,075	123,875
100	1,038	27,757	14,724	128,001

Fable 6.3.6 Result of Selection	of the Structural Measures	(Medium Scenario)
		(

Note: The cost and damage are applied 10% of discount rate and 10% of discount for economic cost and benefit. The construction period is assumed to be a 3-year period. The damage is accumulated during a 50-year period. Source: JICA Project Team 2

(c) Low Scenario

a) Selection of the Applied Adaptation Measure

As a result of the construction cost and damage estimation, the following alternatives are selected as shown in Table 6.3.7 and shows the proposed measures.

					(Unit: I	DR Mil.)
Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year
Dike	9,353	67,408	94,385	172,902	186,259	229,249
Dike + Retarding Basin	11,499	132,003	169,936	242,205	263,279	277,765
Dike + Flood Management	10,639	61,010	76,934	102,231	109,166	113,991
Selected Alternative	Dike	Dike+ Flood Plain Management				

Table 6.3.7 Comparison of Alternative Structures (Low Scena)	rio)
--	------

Note: Total cost is estimated based on the economic cost. Source: JICA Project Team 2

Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year		
Upper Widas								
Discharge (m ³ /s)	307	527	597	786	833	916		
Total Length (m)	5,516	6,516	6,220	6,516	6,516	6,516		
Average height (m)	0.5	1.5	1.7	2.1	2.1	2.2		
		Kedung and k	Kuncir					
Discharge (m ³ /s)	248	413	494	707	756	826		
Total Length (m)	1,000	11,000	12,000	12,000	12,000	12,000		
Average height (m)	1.7	0.6	0.8	1.4	1.5	1.6		
		Lower Wie	das					
Discharge (m ³ /s)	551	901	974	1,012	1,012	1,019		
Total Length (m)	21,000	34,000	34,000	34,000	34,000	34,000		
Average height (m)	0.5	1.3	1.4	1.5	1.5	1.5		
Management Area (ha)	-	100	300	500	500	500		

Table 6.3.8 Basic Feature of the Proposed Measures (Low Scenario)

Source: JICA Project Team 2

Results of the Inundation Analysis b)

The inundation analysis in the Widas River basin is applied on a 2-D unsteady flow analysis by using iRIC. The analysis results are summarized in Table 6.3.9.

				(,
Average	Maximum	Irrigation Area		Housir	ng Area
Return	Inundation	Inundation	Inundation	Inundation	Inundation
Period	Area (ha)	Depth (m)	Area (ha)	Depth (m)	Area (ha)
(year)					
2	30	0.57	23	0.53	6
5	463	0.68	89	0.67	36
10	925	0.77	249	0.70	95
30	2,589	0.89	571	0.73	508
50	2,949	0.92	627	0.74	624
100	3,550	0.96	751	0.79	756

Table 6.3.9 Inundation Area of Each Return Period (Low Scenario)

Inundated irrigation area is applied to the average one during flood event because damage coefficient is Note: estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

Structural measures are selected by using multi-scenario approach. Table 6.3.10 and Figure 6.3.3 show the result of multi-scenario approach.

			(,
Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)
Period (year)	Structural	(IDR 10 ⁶)	(IDR 10 ⁶)	(IDR 10 ⁶)
	Measures (m ³ /s)			
2	551	9,353	43,342	52,695
5	901	58,028	33,210	91,239
10	974	69,807	25,841	95,649
30	1,012	89,662	21,283	110,945
50	1,012	95,363	16,857	112,220
100	1,019	99,265	14,726	113,991

 Table 6.3.10
 Result of Selection of the Structural Measures (Low Scenario)

Note: The cost and damage are applied 10% of discount rate and 10% of discount for economic cost and benefit. The construction period is assumed to be a 3-year period. The damage is accumulated during a 50-year period. Source: JICA Project Team 2

- (d) High Scenario
- a) Selection of the Applied Adaptation Measure

As a result of the construction cost and damage estimation, the following alternatives are selected as shown in Table 6.3.11. Table 6.3.12 shows the proposed measures.

	-				– (Unit	: IDR Mil.)
Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year
Dike	29,797	94,385	152,742	300,891	419,979	571,166
Dike + Retarding Basin	32,139	168,327	228,436	377,201	490,657	647,539
Dike + Flood Management	29,797	80,961	109,996	138,692	159,146	185,165
Selected Alternative	Dike		Dike+ Flo	od Plain Ma	nagement	

Table 6.3.11 Comparison of Alternative Structures (High Scenario)

Note: Total cost is estimated based on the economic cost. Source: JICA Project Team 2

Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year			
	Upper Widas								
Discharge (m ³ /s)	384	593	717	1,069	1,305	1,629			
Total Length (m)	5,516	6,516	6,516	7,516	7,516	7,516			
Average height (m)	0.9	1.7	2.0	2.2	2.5	2.9			
Kedung and Kuncir									
Discharge (m ³ /s)	305	413	494	707	756	826			
Total Length (m)	6,000	12,000	12,000	13,000	14,000	15,000			
Average height (m)	0.5	0.8	1.3	1.8	2.0	2.4			
		Lower	r Widas						
Discharge (m ³ /s)	696	901	974	1,012	1,016	1,019			
Total Length (m)	25,000	34,000	34,000	36,000	36,000	37,000			
Average height (m)	0.9	1.4	1.5	1.6	1.6	1.7			
Management Area (ha)	-	390	500	500	500	500			

Source: JICA Project Team 2

b) Results of the Inundation Analysis

The inundation analysis in the Widas River basin is applied on a 2-D unsteady flow analysis by using iRIC. The analysis results are summarized in Table 6.3.13.

The structural measures are selected by using a multi-scenario approach. Table 6.3.14 and Figure 6.3.3 show the results of the multi-scenario approach.

Table 6.3.13 Inundation Area of Each Return Period (High Scenario)

Average	Maximum	Irrigation Area		Housin	ng Area
Return	Inundation	Inundation	Inundation	Inundation	Inundation
Period	Area (ha)	Depth (m)	Area (ha)	Depth (m)	Area (ha)
(year)					
2	223	0.62	36	0.59	74
5	872	0.78	248	0.62	263
10	2,090	0.84	451	0.65	566
30	5,094	0.98	1,173	0.73	1,479
50	6,980	1.11	1,646	0.86	2,225
100	7,871	1.24	1,997	0.98	2,564

Note: Inundated irrigation area is applied to the average one during flood event because damage coefficient is estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

			ν O	,
Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)
Period (year)	Structural	(IDR 10 ⁶)	(IDR 10 ⁶)	(IDR 10 ⁶)
	Measures (m ³ /s)			
2	675	29,797	115,836	145,633
5	970	69,461	104,896	174,357
10	1,028	109,996	77,238	187,234
30	1,074	138,692	49,677	188,369
50	1,093	159,146	35,910	195,057
100	1,165	185,165	29,454	214,619

c) Selection of Target Discharge for Adaptation Measure

MSA is applied to decide the target discharge for the adaptation measures. Figure 6.3.2 shows the result of MSA.

Note: The green line is a design discharge under the present climate condition. The green color discharge is shown at the Upper Widas River basin because the flood inundation is allowed at a middle reach. Source: JICA Project Team 2

Figure 6.3.2 Result of the Multiple Scenario Approach (Widas River Basin)

The three scenarios are not shown in the optimum point. Therefore, the target discharge is set at the same design discharge of the present climate condition. The adaptation measure of each scenario is shown in Table 6.3.15.

Climate Scenario	Medium Low High			
Adaptation Measure	Dike + Flood Management			
Protection Level ^{*1}	17-year	22-year	10-year	
Peak Discharge at the Downstream (after	710	m ³ /s(Upper Wida	s) *2	
adaptation)				
Upper Widas				
Dike Hight		1.9m		
Dike Length	6.5 km			
Kedung and Kuncir				
Dike Hight		1.2 m		
Dike Length		11.5 km		
Lower Widas				
Dike Hight		1.5 m		
Dike Length		34.3 km		

 Table 6.3.15 Summary of the Adaptation Measure for Each Scenario (Widas River)

Note:*1: The protection level is estimated to each scenario. *2: The design discharge under the present climate condition.

Source: JICA Project Team 2

- 2) Ngotok River Basin
- (a) Medium Scenario
- a) Results of the Inundation Analysis

The inundation analysis in the Ngotok River basin is applied on a 2-D unsteady flow analysis by using iRIC. The analysis results are summarized in Table 6.3.16.

Average	Maximum	Irrigation Area		Housin	ng Area
Return	Inundation	Inundation	Inundation	Inundation	Inundation
Period	Area (ha)	Depth (m)	Area (ha)	Depth (m)	Area (ha)
(year)					
2	214	0.71	8	0.51	102
5	781	0.88	25	0.60	303
10	1,185	0.98	41	0.70	500
30	1,969	1.09	76	1.04	926
50	2,564	1.14	103	1.06	1,239
100	3,666	1.22	150	1.07	1,755

Table 6.3.16 Inundation Area of Each Return Period (Medium Scenario)

Note: Inundated irrigation area is applied to the average one during flood event because damage coefficient is estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

b) Alternatives of the Adaptation Measures

The dike structure is selected from the comparative study as shown in Table 6.3.1.

c) Selection of the Adaptation Measures

The basic feature of the selected adaptation measure is shown in Table 6.3.17 while Figure 6.3.3 shows the expected flood dike alignment.

			*			,
Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year
Discharge (m ³ /s)	600	759	910	1,228	1,457	1,832
Total Length (m)	9,600	16,500	22,300	34,900	43,100	55,500
Average Height (m)	0.6	0.7	0.8	1.0	1.3	1.7
Source: HCA Project To	om)	•				

Table 6.3.17 **Basic Feature of the Proposed Flood Dike (Medium Scenario)**

Note: The figure shows the inundation area of a 30-year probable flood under the medium scenario with dike alignment.

Source: JICA Project Team 2

Figure 6.3.3 Conceptual Plan for the Proposed Flood Dike Alignment of the Ngotok River

The design discharge for structural measures is selected by using the multi-scenario approach. Table 6.3.18 and Figure 6.3.3 show the results of the multi-scenario approach.

Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)
Period (year)	Structural	(IDR 10 ⁶)	(IDR 10 ⁶)	(IDR 10 ⁶)
	Measures (m ³ /s)			
2	600	12,025	254,117	266,142
5	759	18,158	183,946	202,104
10	910	19,929	135,729	155,658
30	1,228	43,118	53,234	96,352
50	1,457	49,786	20,133	69,919
100	1,832	72,852	0	72,852

 Table 6.3.18
 Result of Selection of the Structural Measures (Medium Scenario)

Note: The cost and damage are applied 10% of discount rate and 10% of discount for economic cost and benefit. The construction period is assumed to be a 3-year period. The damage is accumulated during a 50-year period. Source: JICA Project Team 2

- (b) Low Scenario
- a) Results of the Inundation Analysis

The inundation analysis results are summarized in Table 6.3.19.

Average	Maximum	Irrigatio	on Area	Housing Area		
Return Period (year)	Inundation Area (ha)	Inundation Depth (m)	Inundation Area (ha)	Inundation Depth (m)	Inundation Area (ha)	
2	215	0.71	8	0.51	102	
5	781	0.88	25	0.60	303	
10	1,019	0.94	34	0.66	415	
30	1,827	1.07	70	1.04	849	
50	2,052	1.10	80	1.05	971	
100	2,301	1.12	91	1.05	1,104	

Table 6.3.19	Inundation Area	of Each Return	Period ((Low Scenario)	
--------------	-----------------	----------------	----------	----------------	--

Note: Inundated irrigation area is applied to the average one during flood event because damage coefficient is estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

b) Alternative of the Adaptation Measures

The alternative adaptation measures are same as the medium scenario.

c) Selection of the Adaptation Measures

The reason of selection of adaptation measures is the same as the medium scenario.

The basic feature of the selected adaptation measure is shown in Table 6.3.20.

			-	•		
Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year
Discharge (m ³ /s)	600	759	845	1,171	1,261	1,358
Total Length (m)	9,600	16,500	20,100	32,800	36,000	39,700
Average height (m)	0.6	0.7	0.7	1.0	1.1	1.2
a Hain i H	•					

Table 6.3.20 Basic Feature of the Proposed Flood Dike (Low Scenario)

Source: JICA Project Team 2

The structural measures are selected by using a multi-scenario approach. Table 6.3.21 and Figure 6.3.4 show the results of the multi-scenario approach.

Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)
Period (year)	Structural	(IDR 10 ⁶)	(IDR 10 ⁶)	(IDR 10 ⁶)
	Measures (m ³ /s)			
2	600	11,483	224,637	236,120
5	759	17,261	154,466	171,727
10	845	21,073	114,418	135,491
30	1,171	39,658	38,608	78,266
50	1,261	44,634	12,651	57,285
100	1,358	49,189	0	49,189

Table 6.3.21 Result of Selection of the Structural Measures (Low Scenario)

Note: The cost and damage are applied 10% of discount rate and 10% of discount for economic cost and benefit. The construction period is assumed to be a 3-year period. The damage is accumulated during a 50-year period. Source: JICA Project Team 2

- (c) High Scenario
- a) Results of the Inundation Analysis

The inundation analysis results are summarized in Table 6.3.22.

b) Alternative of the Adaptation Measures

The alternative adaptation measures are the same as the medium scenario.

c) Selection of the Adaptation Measures

The reason of selection of the adaptation measures is the same as the medium scenario. The basic feature of the selected adaptation measure is shown in Table 6.3.23.

The structural measures are selected by using the multi-scenario approach. Table 6.3.24 shows the total value of the cost and damage.

Average	Maximum	Irrigation Area		Housing Area		
Return Period (year)	Inundation Area (ha)	Inundation Depth (m)	Inundation Area (ha)	Inundation Depth (m)	Inundation Area (ha)	
2	485	0.80	15	0.54	186	
5	1,040	0.95	35	0.66	425	
10	1,678	1.05	63	1.04	767	
30	3,115	1.18	127	1.06	1,507	
50	4,492	1.28	182	1.08	2,097	
100	6,408	1.42	250	1.09	2,788	

Table 6.3.22 Inundation Area of Each Return Period (High Scenario)

Note: Inundated irrigation area is applied to the average one during flood event because damage coefficient is estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

 Table 6.3.23
 Basic Feature of the Proposed Flood Dike (High Scenario)

			-		-	
Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year
Discharge (m ³ /s)	668	853	1,110	1,652	2,079	2,575
Total Length (m)	12,500	20,100	30,700	49,700	62,900	76,000
Average height (m)	0.6	0.7	0.9	1.5	2.1	2.9
a Hatp ' T	•					

Source: JICA Project Team 2

Table 6.3.24 Result of Selection of the Structural Measures (High Scenario)

Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)
Period (year)	Structural	(IDR 10 ⁶)	(IDR 10 ⁶)	(IDR 10 ⁶)
	Measures (m ³ /s)			
2	668	13,637	464,532	478,169
5	853	21,268	366,201	387,469
10	1,110	35,613	226,120	261,733
30	1,652	64,629	88,036	152,665
50	2,079	92,294	31,966	124,260
100	2,575	130,646	0	130,646

Note: The cost and damage are applied 10% of discount rate and 10% of discount for economic cost and benefit. The construction period is assumed to be a 3-year period. The damage is accumulated during a 50-year period. Source: JICA Project Team 2

d) Selection of Target Discharge for Adaptation Measure

MSA is applied to decide the target discharge for the adaptation measures. Figure 6.3.4 shows the result of the MSA.

The total cost and damage optimum point obtained are from the medium and high scenarios. The low scenario does not show the optimum point. Therefore, the target discharge is set at the same design discharge of the present climate condition. The adaptation measure of each scenario is shown in Table 6.3.25.

Note: The green line is a design discharge under the present climate condition Source: JICA Project Team 2

E' (2 4 D 14 - 4	CAL - N/ 14! 1 -	C	-L (NI	$\mathbf{D} = \mathbf{D}$
FIGHTE 6 14 RESULT A	The VIIIITINIE	Scenario Annroa	en i Nontak Kiver	' Kacini
I IZUI C 0.5.4 ICcoult 0	i inc munipic	Scenario rippi va		Dasing
8	1	11		

 Table 6.3.25
 Summary of the Adaptation Measure for Each Scenario (Ngotok River)

Climate Scenario	Medium	Low	High		
Adaptation Measure	Dike				
Protection Level ^{*1}	50-year	17-year	50-year		
Peak discharge (before adaptation)	835 m ³ /s	660 m ³ /s	991 m ³ /s		
Peak discharge (after adaptation)	1,457 m ³ /s	947 m ³ /s ^{*2}	2,079 m ³ /s		
Dike Hight	1.3 m	0.8 m	2.1 m		
Dike Length	43.1 km	24.1 km	62.9 km		

Note:*1: The protection level is estimated to each scenario. *2: The design discharge under the present climate condition

Source: JICA Project Team 2

- 3) Sadar River Basin
- (a) Medium Scenario
- a) Results of the Inundation Analysis

The inundation analysis in the Sadar River basin is applied to a 2-D unsteady flow analysis by using iRIC. The analysis results are summarized in Table 6.3.26.

The dike structure is selected from comparative study as shown in Table 6.3.1.

b) Alternatives of the Adaptation Measures

The dike structure is selected from comparative study as shown in Table 6.3.1.

c) Selection of the Adaptation Measures

The basic feature of the selected adaptation measure is shown in Table 6.3.27 while Figure 6.3.5 shows the expected flood dike alignment.

				•	,
Average	Maximum	Irrigation Area		Housing Area	
Return	Inundation	Inundation	Inundation	Inundation	Inundation
Period	Area (ha)	Depth (m)	Area (ha)	Depth (m)	Area (ha)
(year)					
2	294	0.88	107	1.11	56
5	355	0.94	144	1.11	65
10	396	0.94	174	1.11	71
30	447	0.96	193	1.11	75
50	504	0.96	208	1.11	83
100	610	0.97	262	1.11	97

 Table 6.3.26 Inundation Area of Each Return Period (Medium Scenario)

Note: Inundated irrigation area is applied to the average one during flood event because damage coefficient is estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

Table 6 3 27	Basic Fea	ture of the P	roposed Flo	od Dike (Medium 9	Scenario)
	Dasic r ca	ture or the r	Toposcu Pio	JULI DIKU	viculum »	Julian 101

Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year
Discharge (m ³ /s)	82	108	118	161	178	199
Total Length (m)	2,720	3,840	5,180	10,920	11,340	12,100
Average height (m)	0.30	0.40	0.50	0.50	0.60	0.70
	-					

Source: JICA Project Team 2

Note: The figure is shown in the inundation area of a 30-year probable flood under the medium scenario with dike alignment.

Source: JICA Project Team 2

Figure 6.3.5 Conceptual Plan for the Proposed Flood Dike Alignment of the Sadar River

The structural measures are selected by using the multi-scenario approach Table 6.3.28 and Figure 6.3.6 show the result of multi-scenario approach.

Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)	
Period (year)	Structural	(IDR 10 ⁶)	(IDR 10 ⁶)	(IDR 10 ⁶)	
	Measures (m ³ /s)				
2	82	2,521	61,850	64,371	
5	108	2,751	28,335	31,086	
10	118	3,111	13,360	16,471	
30	161	4,017	4,275	8,292	
50	178	4,548	1,374	5,922	
100	199	5,228	0	5,228	

 Table 6.3.28 Result of Selection of the Structural Measures (Medium Scenario)

(b) Low Scenario

a) Results of the Inundation Analysis

The inundation analysis results are summarized in Table 6.3.29.

Average	Maximum	Irrigation Area		Housing Area		
Return Period (year)	Inundation Area (ha)	Inundation Depth (m)	Inundation Area (ha)	Inundation Depth (m)	Inundation Area (ha)	
2	294	0.85	107	1.11	56	
5	343	0.93	138	1.11	64	
10	374	0.94	162	1.11	67	
30	429	0.96	186	1.11	72	
50	451	0.96	194	1.11	76	
100	504	0.97	215	1.11	85	

Table 6.3.29 Inundation Area of Each Return Period (Low Scenar	rio)
--	------

Note: Inundated irrigation area is applied to the average one during flood event because damage coefficient is estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

b) Alternative of the Adaptation Measures

The alternative adaptation measures are the same as the medium scenario.

c) Selection of the Adaptation Measures

The reason of the selection of the adaptation measures is the same as the medium scenario.

The basic feature of the selected adaptation measure is shown in Table 6.3.30.

			- I		······································	
Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year
Discharge (m ³ /s)	82	108	118	149	161	168
Total Length (m)	2,720	3,840	5,180	8,050	10,920	11,340
Average height (m)	0.3	0.4	0.5	0.5	0.5	0.6
a Hat D T	•					

Table 6.3.30 Basic Feature of the Proposed Flood	d Dike (Low Scenario)
--	-----------------------

Source: JICA Project Team 2

The structural measures are selected by using the multi-scenario approach. Table 6.3.31 and Figure 6.3.6 show the results of the multi-scenario approach.

				,
Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)
Period (year)	Structural	(IDR 10 ⁶)	(IDR 10 ⁶)	(IDR 10 ⁶)
	Measures (m ³ /s)			
2	82	2,521	60,944	63,465
5	108	2,733	27,353	30,086
10	118	3,062	12,422	15,484
30	149	3,479	3,839	7,318
50	161	3,893	1,178	5,071
100	168	4,379	0	4,379

 Table 6.3.31 Result of Selection of the Structural Measures (Low Scenario)

- (c) High Scenario
- a) Results of the Inundation Analysis

The inundation analysis results are summarized in Table 6.3.32.

, e ,						
Average	Maximum	Irrigation Area		Housing Area		
Return	Inundation	Inundation	Inundation	Inundation	Inundation	
Period	Area (ha)	Depth (m)	Area (ha)	Depth (m)	Area (ha)	
(year)						
2	305	0.90	113	1.11	57	
5	367	0.94	149	1.11	67	
10	410	0.94	181	1.11	72	
30	519	0.96	215	1.11	84	
50	621	0.99	268	1.11	97	
100	1,276	0.99	503	1.11	192	

Table 6.3.32	Inundation	Area of Each	Return Period	(High Scenario)
--------------	------------	--------------	----------------------	-----------------

Note: Inundated irrigation area is applied to the average one during flood event because damage coefficient is estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

b) Alternative of the Adaptation Measures

The alternative adaptation measures are the same as the medium scenario.

c) Selection of the Adaptation Measures

The reason of selection of the adaptation measures are the same as the medium scenario. The basic feature of selected adaptation measure is shown in Table 6.3.33.

Table 6 3 33 I	Basic Feature	of the Propose	d Flood Dike	(High Scenario)
1 abit 0.5.55 1	Dasic F cature	of the fropose	a Flood Dike	(Ingli Scenario)

			-	· · ·	,	
Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year
Discharge (m ³ /s)	89	115	130	184	210	345
Total Length (m)	2,800	5,180	11,130	11,340	12,500	17,400
Average height (m)	0.3	0.5	0.5	0.7	0.7	1.3

Source: JICA Project Team 2

The structural measures are selected by using the multi-scenario approach. Table 6.3.34 and Figure 6.3.6 show the result of multi-scenario approach.

Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)	
Period (year)	Structural	(IDR 10 ⁶)	(IDR 10 ⁶)	(IDR 10 ⁶)	
	Measures (m ³ /s)				
2	89	2,526	66,932	69,458	
5	115	3,160	32,065	35,225	
10	130	4,114	16,010	20,124	
30	184	5,124	5,791	10,915	
50	210	5,406	2,399	7,805	
100	345	12,195	0	12,195	

Table 6.3.34 Result of Selection of the Structural Measures (High Scenario)

d) Selection of the Target Discharge for Adaptation Measure

MSA is applied to decide the target discharge for the adaptation measures. Figure 6.3.6 shows the result of MSA.

Note: The green line is a design discharge under the present climate condition Source: JICA Project Team 2

Figure 6.3.6 Result of the Multiple Scenario Approach (Sadar River Basin)

The total cost and damage optimum point is obtained from the high scenario. The medium and low scenarios are not shown in the optimum point. Therefore, the target discharge is set at the same design discharge of the present climate condition. The adaptation measure of each scenario is shown in Table 6.3.35.

 Table 6.3.35
 Summary of the Adaptation Measure for Each Scenario (Sadar River)

			,	
Climate Scenario	Medium	Low	High	
Adaptation Measure	Dike			
Protection Level ^{*1}	16-year	18-year	50-year	
Peak discharge (before adaptation)	61 m ³ /s	60 m ³ /s	101 m ³ /s	
Peak discharge (after adaptation)	$130 \text{ m}^{3}/\text{s}^{*2}$	$130 \text{ m}^{3}/\text{s}^{*2}$	210 m ³ /s	
Dike Hight	0.5 m	0.5 m	0.7 m	
Dike Length	6.8 km	6.8 km	12.5 km	

Note:*1: The protection level is estimated for each scenario. *2: The design discharge under the present climate condition (25-year probable flood under present climate condition)

Source: JICA Project Team 2

- 4) Tawing River Basin
- (a) Medium Scenario
- a) Results of the Inundation Analysis

The inundation analysis in the Tawing River basin is applied at a 1-D and 2-D unsteady flow analysis. The analysis results are summarized in Table 6.3.36.

b) Alternatives of the Adaptation Measures

The dike structure is selected from comparative study as shown in Table 6.3.1.

c) Selection of the Adaptation Measures

The basic feature of the selected adaptation measure is shown in Table 6.3.37 and Figure 6.3.7 shows the expected flood dike alignment. The structural measures are selected by using the multi-scenario approach. and Figure 6.3.8 show the result of the multi-scenario approach.

Average	Maximum	Irrigation Area		Housir	ng Area
Return	Inundation	Inundation	Inundation	Inundation	Inundation
Period	Area (ha)	Depth (m)	Area (ha)	Depth (m)	Area (ha)
(year)					
2	599	1.34	238	0.98	274
5	720	1.70	293	1.23	340
10	773	1.85	329	1.36	364
30	833	2.08	380	1.52	399
50	870	2.22	398	1.61	422
100	916	2.36	426	1.73	447

Table 6.3.36 Inundation Area of Each Return Period (Medium Scenario)

Note: Inundated irrigation area is applied to the average one during flood event because damage coefficient is estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

Table 6.3.37 Basic Feature of the Proposed Flood Dike (Medium Scenario)

2-year	5-year	10-year	30-year	50-year	100-year
185	235	288	397	456	542
14,600	18,800	21,800	26,600	27,600	28,000
1.0	1.3	1.6	2.1	2.4	3.1
	2-year 185 14,600 1.0	2-year 5-year 185 235 14,600 18,800 1.0 1.3	2-year 5-year 10-year 185 235 288 14,600 18,800 21,800 1.0 1.3 1.6	2-year 5-year 10-year 30-year 185 235 288 397 14,600 18,800 21,800 26,600 1.0 1.3 1.6 2.1	2-year5-year10-year30-year50-year18523528839745614,60018,80021,80026,60027,6001.01.31.62.12.4

Source: JICA Project Team 2

Table 6.3.38 Result of Selection of the Structural Measures (Medium Scenario)

Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)
Period (year)	Structural	(IDR 10 ⁶)	$(IDR 10^{6})$	$(IDR \ 10^{6})$
	Measures (m ³ /s)			
2	185	7,984	97,491	105,475
5	235	12,755	43,222	55,977
10	288	18,428	18,661	37,089
30	397	30,693	5,737	36,430
50	456	37,626	1,789	39,415
100	542	53,138	0	53,138

Note: The cost and damage are applied 10% of discount rate and 10% of discount for economic cost and benefit. The construction period is assumed to be a 3-year period. The damage is accumulated during a 50-year period. Source: JICA Project Team 2

Note: The figure is showing the inundation area of a 30-year probable flood under medium scenario with dike alignment.

Figure 6.3.7 Conceptual Plan for the Proposed Flood Dike Alignment of the Tawing River

- (b) Low Scenario
- a) Results of the Inundation Analysis

The inundation analysis in the Tawing River basin is applied at a 1-D and 2-D unsteady flow analysis. The analysis results are summarized in Table 6.3.39.

Average	Maximum	Irrigation Area		Housir	ng Area
Return Period	Inundation Area (ha)	Inundation Depth (m)	Inundation	Inundation Depth (m)	Inundation
(year)	Alea (lia)	Deptil (III)	Alca (lla)	Deptil (III)	Area (lia)
2	567	1.25	172	0.91	258
5	702	1.64	253	1.18	332
10	748	1.79	293	1.30	351
30	810	2.01	335	1.47	385
50	823	2.05	344	1.50	392
100	851	2.13	353	1.55	409

 Table 6.3.39
 Inundation Area of Each Return Period (Low Scenario)

Note: Inundated irrigation area is applied to the average one during flood event because damage coefficient is estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

b) Alternatives of the Adaptation Measures

Dike structure is selected from comparative study as shown in Table 6.3.1.

c) Selection of the Adaptation Measures

The basic feature of the selected adaptation measure is shown in Table 6.3.40.

Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year
Discharge (m ³ /s)	175	217	267	352	384	418
Total Length (m)	14,000	17,400	20,200	25,800	26,600	28,000
Average height (m)	0.9	1.2	1.5	1.8	2.0	2.2
Source: IIC A Project Team 2						

Table 6.3.40	Basic Feature of the P	Proposed Flood Dike	(Low Scenario)
	Dusic I cuture of the I	Toposcu I loou Dine	(Low Scenario)

The structural measures are selected by using the multi-scenario approach. Table 6.3.41 and Figure 6.3.8 show the result of the multi-scenario approach.

			(,
Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)
Period (year)	Structural	(IDR 10 ⁶)	$(IDR 10^{6})$	(IDR 10 ⁶)
	Measures (m ³ /s)			
2	175	7,026	94,361	101,387
5	217	10,647	41,782	52,429
10	267	15,251	17,974	33,225
30	352	23,088	5,377	28,465
50	384	27,000	1,647	28,647
100	418	31,748	0	31,748

Table 6.3.41 Result of Selection of the Structural Measures (Low Scenario)

Note: The cost and damage are applied 10% of discount rate and 10% of discount for economic cost and benefit. The construction period is assumed to be a 3-year period. The damage is accumulated during a 50-year period. Source: JICA Project Team 2

- (c) High Scenario
- Results of the Inundation Analysis a)

The inundation analysis in the Tawing River basin is applied at a 1-D and 2-D unsteady flow analysis. The analysis results are summarized in Table 6.3.42.

Average	Maximum	Irrigation Area		Housing Area	
Return	Inundation	Inundation	Inundation	Inundation	Inundation
Period	Area (ha)	Depth (m)	Area (ha)	Depth (m)	Area (ha)
(year)					
2	648	1.48	238	1.06	302.8
5	748	1.78	293	1.30	351
10	800	1.98	329	1.44	381
30	894	2.31	380	1.68	436
50	978	2.40	398	1.84	471
100	1,019	2.52	426	1.95	492

 Table 6.3.42
 Inundation Area of Each Return Period (High Scenario)

Note: Inundated irrigation area is applied to the average one during flood event because damage coefficient is estimated from inundation period and inundation depth. Inundation area of housing area is applied to the maximum one in the housing area during flood event because damage coefficient is estimated from inundation depth only.

Source: JICA Project Team 2

Alternatives of the Adaptation Measures b)

The dike structure is selected from the comparative study as shown in Table 6.3.1.

Selection of the Adaptation Measures c)

The basic feature of the selected adaptation measure is shown in Table 6.3.43.

Hazard Scale	2-year	5-year	10-year	30-year	50-year	100-year
Discharge (m ³ /s)	200	267	335	499	610	763
Total Length (m)	14,000	17,400	20,200	25,800	26,600	28,000
Average height (m)	1.1	1.5	1.8	2.7	3.5	4.3
S HCAD TT 2						

Table 6 3 43	Basic Feature	of the Pron	osed Flood D	hike (High	Scenario)
Table 0.3.43	Dasic reature	e of the rrop	useu rioou D	nke (mgn	Scenario)

The structural measures are selected by using the multi-scenario approach. Table 6.3.44 and Figure 6.3.8 show the result of multi-scenario approach.

				/
Return	Discharge with	Cost (1)	Damage (2)	(1)+(2)
Period (year)	Structural	(IDR 10 ⁶)	(IDR 10 ⁶)	(IDR 10 ⁶)
	Measures (m ³ /s)			
2	200	9,213	103,261	112,474
5	267	16,120	46,155	62,275
10	335	23,974	20,406	44,380
30	499	44,821	6,358	51,179
50	610	63,608	1,952	65,560
100	763	91,936	0	91,936

Note: The cost and damage are applied 10% of discount rate and 10% of discount for economic cost and benefit. The construction period is assumed to be a 3-year period. The damage is accumulated during a 50-year period. Source: JICA Project Team 2

Selection of Target Discharge for Adaptation Measure d)

The MSA is applied to decide the target discharge for adaptation measures. Figure 6.3.8 shows the result of MSA.

Note: The green line is a design discharge under the present climate condition Source: JICA Project Team 2

Figure 6.3.8 **Result of the Multiple Scenario Approach (Tawing River Basin)**

The total cost and damage optimum point is obtained in all scenarios. The adaptation measure of each scenario is shown in Table 6.3.45.

Climate Scenario	Medium	Low	High	
Adaptation Measure		Dike		
Protection Level ^{*1}	30-year	30-year	10-year	
Peak Discharge (before adaptation)	264 m ³ /s	250 m ³ /s	241 m ³ /s	
Peak Discharge (after adaptation)	397 m ³ /s	352 m ³ /s	335 m ³ /s	
Dike Hight	2.1 m	1.8 m	1.8 m	
Dike Length	26.6 km	25.8 km	20.2 km	

 Table 6.3.45
 Summary of the Adaptation Measure for Each Scenario (Tawing River)

Note:*1: The protection level is estimated to each scenario. The planned design discharge of the present climate condition is 290 m³/s.

Source: JICA Project Team 2

5) Porong River Basin

The protection level of the Porong River was already decided and the dike was constructed. Therefore, the heightening of the existing dike is proposed. The following height and length were proposed to a 50-year probable flood of each scenario as shown in Table 6.3.46.

 Table 6.3.46
 Summary of the Adaptation Measure for Each Scenario (Porong River)

Climate Scenario	Medium	Medium Low High			
Adaptation Measure		Dike			
Protection Level ^{*1}		50-year			
Peak Discharge (after adaptation)	1,710 m ³ /s	1,620 m ³ /s	2,030 m ³ /s		
Dike Height	0.8 m	0.5m	1.0 m		
Dike Length	40.1 km	28.4km	44.3km		

Note:*1: The protection level is estimated at each scenario. Source: JICA Project Team 2

(2) Non-Structural Measures

The non-structural measures against the rainstorms and floods are explained below,

All of the non-structural measures are applicable to the medium, low and high scenarios because the non-structural measures are the qualitatively ones. The non-structural measures in the Brantas River basin are;

- 1) Upgrading of the Flood Forecasting and Warning System (FFWS),
- 2) Community based Early Warning System (EWS),
- 3) Preparation of the Hazard Map for Several Probable Floods,
- 4) Designation of the Evacuation Center from the Existing Public Facilities and Construction of the Evacuation Center
- 5) Strengthening of the Flood Prevention Organization,
- 6) Preparation of the Business Continuity Plan (BCP) and Business Continuity Management (BCM) by Private Companies and Local Governments,
- 7) Preparation of the Flood Action Plan, and
- 8) Land Use Control to the Frequently Flood Inundation Area.
- 1) Upgrading of the FFWS
- (a) Present situation

The PJT-I is operating the FFWS in the Brantas River basin since 1990s. They monitored the water levels at several important gauging stations and river structures. Recently, they installed the real time monitoring system of the rainfall data and water level data by using

Global System for Mobile communications (GSM). There are 62 rainfall gauging stations and 36 water level gauging stations. They collected hourly data from these stations.

At present, the PJT-I stand by the flood operation when the hourly rainfall or 4 hours accumulated rainfall exceed the following condition:

- More than 50mm/hr
- More than 100mm during 4 hours

In addition, the PJT-I informs related agencies when the water level becomes higher than the alert water level. There are three alert levels (Red, Yellow, and Green) in Indonesia. Figure 6.3.9 shows the flow chart of the relation among the regional agencies for the disaster management, BBWS Brantas and PJT-I. However, the PJT-I does not carry out flood forecasting.

(b) Future Climate Condition

According to the future projection results of the flood estimated by Team 1, the number of flood and peak discharge will be increased under future climate condition. The following measures are required to execute FFWS under future climate condition.

a) Cooperation with BMKG and Effective Use of Radar Rain Gauge

There are 27 weather radars operated across the country by BMKG in 2013. All of those radars are C-band doppler with single polarization. Figure 6.3.10 shows C-band doppler radar network in 2013.

As of 2013, there are 23 radar sites that have been connected via micro pulse lidar (MPL) data communications to the Hydrometeorological Decision Support System (HDSS) that is the radar mosaic system at the BMKG.

According to the masterplan of BMKG's radar network for the ten years period (2006 - 2016), the total number of weather radars of Indonesia will be 51 doppler weather radars to cover most of the provinces and cities. In the future, C-band doppler radar will cover the whole Indonesia.

Under the future climate condition, extreme flood events will be increased. At that time, data from the weather radar is useful to grasp the rainfall distribution area. Therefore, it is effective to the flood forecasting of PJT-I. The PJT-I and BBWS Brantas shall shear the data of HDSS while the rainfall data under BMKG.

b) Installation of Flood Forecasting Model

The frequency of the gate operation and alert issuance of the water level will be increased. Therefore, the lead time to action the flood fighting, gate operation, and evacuation are important things. If the flood forecasting can be done, they have a lead time to prepare these actions.

c) Store of Data

The PJT-I shall store hourly data to each flood event. These data are effective to analyze the planned design flood and/or inundation analysis under future climate condition. And these

data are useful to the water utilization plan. It is required for the big capacity data storage server.

The proper arrangement and density of the gauging stations promote the improvement of the flood forecasting accuracy.

d) Review of the Designated Water Level

According to the PJT-I staffs, the three alert levels in the Brantas River basin are decided from the following methods.

Red alert level (Siaga Merah)

The red water level at the river station is decided below 50cm lower than crest elevation of the dike. And the water level at dam reservoir is set at a high water level that is estimated from the abnormal flood discharge.

> Yellow and green alert level (*Siaga Kuning* and *Siaga Hijau*)

These alert levels are decided from the flow capacity and condition of the riverine area.

The present alert water level is shown in Figure 6.3.11.

Source: PJT-I and BBWS Brantas

Figure 6.3.9 Flood Information Flow Chart among Related Agencies

Source: " CURRENT STATUS OF WEATHER RADAR DATA EXCHANGE, Regional Report on the current status of weather radar operated in RA V and its data exchange, submitted by Riris Adriyanto, WMO, 19.04.2013"

Figure 6.3.10 Indonesia C-Band Doppler Weather Radar Network (as of April 2013)

 $\label{eq:seturation} \end{tabular} \end{tabular} is the seturation of the seturat$

Figure 6.3.11 Alert Water Level in the Brantas River Basin

Establishment of the alert water level in Japan

In Japan, four kinds of water levels are established as shown in .

Warning and alert water levels shall be re-studied considering the lead time for evacuation and mobilization of flood fighting team. The water level setting concept and methodology shall be decided by MPWH DGWR because of the different criteria of each river basin and no consideration of lead time for the evacuation and mobilization of the flood fighting team.

Source: Ministry of Land, Infrastructure, Transportation and Tourism Japan

Figure 6.3.12 Setting Water Levels for Floods

2) Establishment of Community based Early Warning System (EWS)

The community based EWS shall be established at frequently flood inundation areas. Twenty one villages were established a community based EWS in the Brantas River basin handled by the PJT-I.

In the Bengawan Solo River basin, the flood information system for community based EWS was established under the PJT-I (see Figure 6.3.13). However, these systems are not established in the Brantas River basin due to lack of budget.

3) Preparation of Several Flood Hazard Maps for Several Probable Floods

Several inundation maps of the past flood events were mentioned in some papers and reports. However, authorized flood hazard map of the probable flood is not found in the website of the local governments.

The hazard map is an important tool for an evacuation or planning of flood management. The peak discharge and flood volume will be increased under the future climate condition. The flood damage under the future climate condition will become worse from the present condition. Several flood inundation maps of several probable floods are required for planning.

It is important to establish an updated system/procedure of hazard maps when the climate condition, geographical condition, urbanization, and advancing technology are changed.

The Project for Assessing and Integrating Climate Change Impacts into the Water Resources Management Plans for Brantas and Musi River Basins (Water Resources Management Plan)

Source: Flood management in the Brantas and Bengawan Solo River Basin, Indonesia Material for Asian Water Cycle Simposium,2016 prepared by PJT-I

Figure 6.3.13 Community Based Early Warning System in the Bengawan Solo

4) Designation of the Evacuation Center from the Existing Public Facilities and Construction of the Evacuation Center

If the flood inundation situation occurs at a residential area, people will evacuate out of the inundation area. Afterwards, they rest at public facilities such as a mosque, school ground, stadium, etc. Some public facilities cannot be used due to flood inundation.

The local governments shall designate an evacuation center and decide the evacuation route by using several flood inundation maps.

And if the evacuation centers are not enough, new evacuation centers shall be planned and constructed to consider the increasing number of floods and deeper and wider inundation area from the hazard maps.

On the other hand, many persons do not evacuate to the evacuation center in the present situation because they worry that someone would steal their assets when they evacuate.

When the residents do not consider evacuating out of the inundation area, affected people need to respond to the vertical evacuation. The following measures are considered to the vertical evacuation;

- When they construct a new building, a raised-floor-style building is constructed.
- > When they construct a new building, a two-story building is constructed. During the flood event, the important assets and residents evacuate to the second floor.
- In addition, residents who carry out vertical evacuation give information to a village leader. The village leader grasps who is located in the evacuation center and their own houses.
- 5) Strengthening of the Flood Prevention Organization
- (a) Capacity Development of the Flood Fighting Team

The flood fighting is one of the tasks of the regional agency for disaster management (BPBD) of regency. The flood fighting team belonging to BPBD takes actions towards flood prevention with BBWS Brantas, PJT-I and other concerned agencies. The BPBD Team is a main actor to flood fighting. It is necessary to keep a high level of knowledge and skills to

flood fighting. Therefore, the capacity development of the BPBD Team and related agencies is required.

(b) Improvement of the Equipment to Flood Fighting Activities

The removal type flood wall is a useful equipment to protect overtop of flood water from the dike.

<Planning of Removal type flood wall>

Firstly, the breaching points along the existing dike are studied by using the inundation analysis results. Then, the required height and length of the removable type flood wall are evaluated. Based on the analysis results, the removable type flood walls are purchased and stocked near the breaching points. The flood fighting team shall study how to construct removal type flood walls through the capacity development program.

6) Preparation of the Business Continuity Plan (BCP) and Area Business Continuity Management (BCM) by Private Companies and Local Governments

A business continuity plan (BCP) is a plan to help ensure that business processes can continue during a time of emergency or disaster. In order to reduce flood damages, BCP shall be prepared by the private companies and local governments because the frequency of flood events will be increased under future climate condition. The central government shall prepare guidelines of the BCP.

In addition, the collaboration of each industrial company, local governments, and other companies is necessary to restart the operation of each company as soon as possible. Therefore, preparation of the Area BCM is required to be collaborated with them.

7) Preparation of the Advance Flood Action Plan

The water resources management team (*Tim Koordinasi Pengelolaan Sumber Daya Air*: TKPSDA) shall prepare the advance flood action plan that is organized for action of the disaster prevention (flood) and implementing agencies in time series focusing on "when", "who", and "what to do".

8) Limitation of Land Use at Frequently Inundated Area

The local governments prepare the spatial plan. At that time, they shall consider the frequently inundated area from several flood hazard maps. Under the future climate condition, the inundated area will be expanded compare with the present condition.

The local governments shall consider land use control at flood inundation area in future.

6.3.2 Adaptation Measures against Drought

- (1) Structural Measures
- 1) Saving Water
- (a) Reduction of Non-Revenue Water (NRW) of PDAM Water

The domestic water demand in 2050 was estimated considering the reduction of NRW. There are two kinds of target that were set from the present NRW as shown in Figure 6.3.14 and Table 6.3.47.

The adaptation measures to save intake water are considered reducing NRW from 25% to 20%. Water demand at intake location with adaptation measures is reduced 1.411 m³/s. Adaptation measure is considered replacement of distribution pipes.

(b) Reduction of Leakage Water from Irrigation Canal

In the DGWR design criteria, the irrigation efficiency is defined based on the water conveyance loss of the irrigation canal. As the design target, the loss is set at 10% for main canal and 15% for the secondary and tertiary canals and thereby the irrigation efficiency is calculated at 65% (= $0.9 \times 0.85 \times 0.85$). In the Brantas River basin, 484 surface water irrigation schemes with design command area over 100 ha share about 75% of the whole command areas by 484 schemes accounting for 13%. It is commonly understood that the current level of conveyance loss of the tertiary canal system is still around 30% and thereby reduction of the leakage water from the existing irrigation canal systems is one of the high level of conveyance loss is caused by deteriorated or not yet facilitated condition of tertiary canal system, it is essential to implement a tertiary canal system improvement works such as the replacement to pre-cast concrete block lining canal.

(c) Recycle Plant of Industrial Companies

For the reduction of industrial water demand, the adaptation measure to save industrial water is the installation of recycle plant. The re-use ratio from the sewage is about 1.4% in Japan. Therefore, it is assumed that the industrial water is reduced to 1% of the industrial water demand. The industrial water will be saved 0.210 m^3 /s (18,144 m^3 /day).

	• •	
Target of NRW	25%	20%
Regency/ City	 Batu City 	 Kediri Regency
	Malang Regency	Blitar Regency
	Malang City	Jombang Regency
	Sidoarjo Regency	Tulungagung Regency
	Mojokerto Regency	Nganjuk Regency
	Kediri City	Gresik Regency
	Mojokerto City	
	Surabaya City	
	Trenggalek Regency	
	Blitar City	

Table 6.3.47Each Target Group for Demand Forecast in 2050

Source: JICA Project Team 2

Figure 6.3.14 NRW until 2050 for the Demand Forecast in 2050

- 2) Increasing Store Water
- (a) Proposed Dams
- a) Water Resource Development Plan

In the course of the Project, the data and information related to the proposed river facilities in the Brantas River basin have been collected and reviewed. The data sources are shown below:

- > POLA 2010
- RENCANA 2013 (Draft)
- Review POLA 2015(Draft)
- (i) POLA 2010

In POLA 2010, there were 13 proposed dams for the water resources development plan in the Brantas River basin as shown in Table 6.3.48.

No	Dam Reservoir	Short term (2006-2010)	Medium term (2011-2020)	Long term (2021-2030)
1	Genteng I Reservoir	Study, pre-design, D/D	Implementation	
2	Tugu Reservoir	Study, pre-design, D/D	Implementation	
3	Beng Reservoir	Study, pre-design, D/D	Implementation	
4	Kedungwarak Reservoir	Study, pre-design, D/D	Implementation	
5	Ketandan Reservoir		Study, pre-design, D/D	Implementation
6	Semantok Reservoir		Study, pre-design, D/D	Implementation
7	Kuncir Reservoir	Study, pre-design, D/D	Implementation	
8	Babadan Reservoir		Study, pre-design, D/D	Implementation
9	Lesti III Reservoir	Design Details	Study, pre-design, D/D	
10	Kepanjen Reservoir		Study, pre-design, D/D	Implementation
11	Lumbang Sari Reservoir		Study, pre-design, D/D	Implementation
12	Kesamben Reservoir	Study, pre-design	D/D	Implementation
13	Konto II Reservoir		Study, pre-design, D/D	Implementation
Service: DOL 4 (2010)				

Table 6.3.48Proposed Dams in the Brantas River Basin in POLA 2010

Source: POLA(2010)

(ii) RENCANA 2013 (Draft)

In RENCANA 2013 (Draft), there were 10 proposed dams presented in the figure of water resources development plan. Comparing with the POLA 2010, there were six proposed dams (Bagong, Kampak, Nglemi, Sumber Agung, Kembangan, and Kali Lanang) that were newly added.

(iii) Review POLA 2015(Draft)

The concept of water resources development until 2030 in Review POLA 2015 (Draft) has been revised from POLA 2010. The list of dam structures is changed, and the list of ponds, development plan of ponds and long storage structures are added to Review POLA 2015 (Draft).

In Review POLA 2015 (Draft), there were 23 proposed dams listed up with their location, storage capacity and function. Comparing with the RENCANA 2013 (Draft), 10 proposed dams were newly added.

(iv) List of Proposed Dams in Water Resource Development Plan

Consequently, there are 29 proposed dams in total in the Brantas River Basin based on the above plans. The list of the proposed dams is presented in Table 6.3.49.

b) Status of the Proposed Dams until 2030

In Review POLA 2015 (Draft), there are five (5) dams to be constructed in the Brantas River basin until 2030, which are:

By Year 2020:	Tugu Dam, Lesti III Dam,
By Year 2025:	Bagong Dam, Semantok Dam, and
By Year 2030:	Beng Dam.

c) Status of Other Proposed Dams

The latest information for the proposed dams and river facilities are collected as presented in Table 5.3.31.

The site inspection for major proposed dams, i.e. Lesti III, Genteng I, Kont II, Tugu, Babadan and Semantok Dams was carried out in September, 2016. The main finding is shown in Table 6.3.50.

No	Name	MP	POLA	RENCANA	REVIEW
110.	Ivanie	1998	2010*1	2013*2	POLA (2015)
1	Genteng I Dam	0	Scenario 1,2	L	0
2	Tugu Dam	0	Scenario 1-2	S	0
3	Beng Dam	0	Scenario 1,2,3	-	0
4	Kedungwarak Dam	0	Scenario 1,2,3	L	0
5	Ketandan Dam	0	Scenario 1	-	0
6	Semantok Dam	0	Scenario 1	S	0
7	Kuncir Dam	0	Scenario 1,2	-	0
8	Babadan Dam	0	Scenario 1	-	0
9	Lesti III Dam	0	Scenario 1,2,3	-	0
10	Kepanjen Dam	0	Scenario 1	-	0
11	Lumbang Sari Dam	0	Scenario 1	-	0
12	Kesamben Dam	0	Scenario 1,2,3	-	0
13	Konto II Dam	0	Scenario 1	-	0
14	Bagong Dam	-	-	S	-
15	Kampak Dam	-	-	М	-
16	Nglemi Dam	-	-	М	-
17	Sumber Agung Dam	-	-	М	-
18	Kembangan	-	-	М	-
19	Kali Lanang	-	-	L	-
20	Krangkates IV&V	-	-	-	0
21	Marmoyo Dam	-	-	-	0
22	Brangkal – Plandaan Dam	-	-	-	0
22	Kembar Dam	-		-	0
23	Jenesgelaran – Jurangbang				
24	Kopen Dam	-	-	-	0
25	Jarak Dam	-	-	-	0
26	Gembrong Dam	-	-	-	0
27	Jatijejer Dam	-	-	-	0
28	Jinggring Dam	-	-	-	0
29	Sabo Dinoyo Dam	-	-	-	0
	Number of Proposed Dams	13	13	10	23

 Table 6.3.49
 List of the Proposed Dams in the Past and Current Water Resources Plans

Note: *1 Scenario 1- Strong Economic Condition, Scenario 2- Normal Economic Condition, Scenario 3- Weak Economic Condition, *2 S: Short Term, M: Medium Term: L: Long Term

Source: JICA Project Team 2
No.	Name	Updated Information based on the Interview with BBWS, as of December 2016
1	Contanto I Done	The Study has not yet been completed. The implementation is postponed after 2017
1	Genteng I Dam	because of the tight budget and government policy is given to irrigation.
2	Tugu Dam	See Table 5.3.31.
3	Beng Dam	See Table 5.3.31.
4	Kadun gwaralt Dam	Social issues are arisen and the project is almost canceled. It is the same as the last
4	Kedungwarak Dam	time.
5	Ketandan Dam	Social issues are arisen and the project is almost canceled.
6	Semantok Dam	See Table 5.3.31.
7	Kuncir Dam	The study was finished in 2015. The construction of the weirs was completed.
8	Bahadan Dam	Only a small dam was constructed in 2007. The rehabilitation study of the dam is
0	Dubudun Dum	being undertaken.
9	Lesti III Dam	See Table 5.3.31.
10	Kepanjen Dam	No information
11	Lumbang Sari Dam	No information
12	Kesamben Dam	PJT-1/PLN has a plan to construct a weir for the power supply.
13	Konto II Dam	The construction works of the small consolidation dam was stared in 2016. There
		are series of facilities for sediment control.
14	Bagong Dam	See Table 5.3.31.
		F/S is being undertaken by the local consultant. The Final Report will be provided
		within 2016.
		People in Brenggolo Sub Village, Bogoran Village, Kampak District Sub District,
		and Trenggalek Regency at June 2016 had demonstrations rejecting the
		establishment of the Kampak Dam. Approximately 106 households were affected,
		where they are restless because until now the plan is not socialized in detail,
15	Kampak Dam	regarding the area to be affected as well as the relocation process. The residents are
		asked to fill out questionnaires related to the development plan. The contents of the
		questionnaire also lead to land acquisition, whereas the study for the construction of
		the dam is still in the feasibility study stage.
		At the Study Investigation Design (SID), there are three alternatives locations. The
		Benefit Cost Ratio (BCR) was declared unfit because of an error calculation of the
		impact of flooding, so it is necessary to do re-calculation. (BCR for flood control
		<1)
16	Nglemi Dam	F/S will be conducted in 2020's
17	Sbr Agung Dam	F/S will be conducted in 2020's
		Plan for study in 2016 if fund is available.
18	Kembangan	The design is prepared by the local government (Trenggalek Regency), and the
		design proposes a small dam (they called EMBUNG) for irrigation.
19	Kali Lanang	Plan for study in 2016 if fund is available
20	Krangkates IV&V	Plan for additional hydroelectric power generation.
21	Marmovo Dam	Only a leaflet is available. The plan is a small dam (H=6m, V=96,000m ³) for
		irrigation and domestic water.
22	Brangkal – Plandaan Dam	No information
23	Kembar Dam	No information
- 24	Jenesgelaran – Jurangbang	
24	Kopen Dam	No information
2	Jarak Dam	No information
26		The Study Investigation Design (SID) was already finish at 2010.
26	Gembrong Dam	The plan is for a small dam (H=14m, V=144,000m ²) for irrigation, domestic and
27	Letter Dem	Industrial water supply.
27	Jatijejer Dam	
		I ne SID was already finished in 2016. Initially, it was planned to build a large dam
		but got cancelled. The present plan is a small dam (H = 15m, V = $71,000$ m ³) for
28	Jinggring Dam	irrigation water supply.
	000	In the SID, the design covers another dam site for the Janging Dam adjacent to the
		Junggring Dam. The present plan of the Janging Dam is also a small dam ($H = 15$ m,
		$V = 31,000 \text{ m}^3$) for irrigation water supply.
29	Sabo Dinoyo Dam	No information

Table 6.3.50 Present Status of the Proposed Dam in the Brantas River Basin as of December 2016

Table 6.3.51	Result of Site Inspections for the Major Proposed Dams
--------------	--

No.	Name	Main Findings of Site Inspection ^{*1}
1	Genteng I Dam	 F/S was already done in 2002. The proposed dam is a large dam with 82 m in height. It is necessary to construct saddle dams, a large area of land acquisition, resettlements and replacement of primary roads. At the time of the inspection, the number of affected houses is increased due to the development of the proposed reservoir area because it has passed 14 years since the completion of its F/S.
2	Tugu Dam	 The construction works is on-going, as of Sept 3, 2016 the progress of construction ± 53.8 %. At the time of the inspection, the excavation works of the dam is almost finished, and the foundation works has been started. The geotechnical problems are arisen because the dam site is located in the land sliding areas. Many large cracks are found on the shotcrete covering the slopes of the abutment at both left and land sides. BBWS Brantas is currently undertaking the study for the countermeasures.
6	Semantok Dam	 There are two alternative dam sites. BBWS Brantas had proposed the Alternative-2 (more upstream than Alternative-1), but it was rejected by the local government. At present, the local government proposes the construction of the Alternative-1. At the time of the inspection for the Alternative-1, it was confirmed a necessity for land acquisition and resettlement of around 200 houses. The dam type is a kind of structure having the functions of dike embankment and retarding basin. As per information from the chief of the village, the local residents do not object for the project implementation.
8	Babadan Dam	 The plan of the dam was prepared in MP1985. It was planned as a trans basin scheme. At present, BBWS Brantas has no information for the dam. At the time of inspection, it was confirmed that the land use is mainly for agriculture and few people are living in the proposed site. Because the site is hilly area, the dam type will be similar as the Benin Dam.
9	Lesti III Dam	 The D/D was completed in 2014. The dam is designed as a gated dam with a height of around 30 m considering mitigation of the social impacts. The dam site seemed to be good for construction from the viewpoints of access and topography. Since the sediment yield from the basin is large, the sediment management system shall be necessary.
13	Konto II Dam	 The plan of the dam was prepared in MP 1985. At present, the construction of small dams is proposed in the upstream of the Selorejo Dam to control the sediment inflow.

Note: *1: Number is referred to Table 6.3.51, *2 Site Visit Sep. 8-10, 2011 Source: JICA Project Team 2

d) Priority of Proposed Dams

As mentioned above, there are 29 proposed dams, which will be confirmed through the data collection in the course of the Project.

These dams are classified into three categories as shown below:

Category A

At present, the Government of Indonesia identifies 65 priority dams which are prioritized for implementation as National Strategic Projects. Among these dams, three dams are Tugu Dam, Semantok Dam, and Bagon Dam, which are identified in the Brantas River basin.

In addition, as mentioned in the above there are five dams to be constructed in the Brantas River basin until 2030 in Review POLA 2015 (Draft), which are the following:

By Year 2020: Tugu Dam, Lesti III Dam,By Year 2025: Bagong Dam, Semantok Dam, andBy Year 2030: Beng Dam.

The above five dams are considered as the first prioritized dams in the Brantas River basin.

Category B

The dams to be classified in the Category B are the ones that have detailed plan and information based on the previous master plans, feasibility studies and detailed designs.

Category C

The dams to be classified in the third class are the ones that have no or very few detail information.

Based on the above criteria, the 29 proposed dams are classified as shown in Table 6.3.52.

Priority	Dam		
Category A	Tugu Dam, Beng Dam, Semantok Dam,		
(Strategic Projects listed in REVIEW POLA 2015)	Lesti III Dam, and Bagong Dam		
Category B	Genteng Dam, Kedungwarak Dam,		
(Projects that are completed study and design)	Ketandan Dam, Kuncir Dam, Babadan Dam,		
	Kepanjen Dam, Lumbang Sari Dam,		
	Kesamben Dam, Konto II Dam, and Kampak Dam		
Category C	Nglemi Dam, Sbr Agung Dam, Kembangan,		
	Kali Lanang, Krangkates IV&V, Marmoyo Dam,		
	Brangkal – Plandaan Dam,		
	Kembar Dam, Jenesgelaran – Jurangbang		
	Kopen Dam, Jarak Dam, Gembrong Dam,		
	Jatijejer Dam, Jinggring Dam, and		
	Sabo Dinoyo Dam		

 Table 6.3.52
 Priority of the Proposed Dams in the Brantas River Basin

Source: JICA Project Team 2

e) Effects of the Proposed Dams in the Project

For the proposed dams of Categories A and B, the basic information of the dam location, purpose, dam type and basic dimension, and reservoir storage capacity is presented in Table 6.3.53.

These proposed dams are taken into consideration of the other climate change adaptation measures against droughts by increasing the store water.

N	Nama	River Basin/	D	Dam			Reservoir Capacity (Million m ³)		
0	Name	River	Purpose	Туре	Length (m)	Height (m)	Gross	Effective	Dea d
1	Genteng I Dam	Lesti River basin/ Genteng River	F, I, SC	R	441.0	84.0	82.0	76.1	5.9
2	Tugu Dam	Ngrowo River basin/ Keser River	F, I, U	R	245.9	81.0	9.3	7.8	1.6
3	Beng Dam	Beng River	I, P,U	R	70.0	32.0	121.6	88.1	33.5
4	Kedungwarak Dam	Widas River basin/ Kedungwarak River	I, P,U	R	164.3	25.3	13.6	9.0	4.6
5	Ketandan Dam	Widas River basin/ Ketandan River	Ι	R	128.5	33.5	6.1	4.9	1.2
6	Semantok Dam	Widas River basin/ Semantok River	F, I, P	R	92.5	38.5	22.4	18.3	4.1
7	Kuncir Dam	Widas River basin/ Kuncir River	F, I, P, U	R	450.5	100	30.5	22.5	8.0
8	Babadan Dam	Bendokrosok	F, P, U	R	179	80	100.0	84.0	16.0
9	Lesti III Dam	Lesti River basin/ Lesti River	I, P, SC	R	346	30	7.4	4.0	3.4
10	Kepanjen Dam	Brantas River	P, SC	Е	320	20	1.3	0.5	0.8
11	Lumbang Sari Dam	Brantas River	P, SC	Е	378	28	5.7	0.9	4.8
12	Kesamben Dam	Brantas River	P, U	GW	171	11.5	6.6	6.2	0.4
13	Konto II Dam	Konto River	F, P, SC	R	1004	120	73.0	63.0	10.0
14	Bagong Dam	Bagon River		R	330	81.79	17.4	-	-
15	Kampak	Tugu River	F, U	R	316	70	6.20	5.67	0.53

 Table 6.3.53
 Type and Basic Dimension of Proposed Dams

Note: U: Urban water supply, I: Irrigation, F: Flood control, P: Hydropower, SC: Sediment control

R: Rockfill, E: Earthfill, GW: Gated Weir

Source: The Latest Reports/Documents collected by JICA Project Team 2

- (b) Heightening of Sutami Dam
- a) Function of Dam Heightening

The reservoir storage volume to be developed by the proposed dam heightening can be utilized for i) water use, ii) flood control, or iii) for both purposes by introducing the control water level. It will be necessary to carry out a detailed study in order to determine this. In this preliminary study, it is assumed that the dam heightening is aiming at developing the water use storage taking into account more urgent requirements and benefits in the Brantas River basin.

b) Preliminary Study for Dam Heightening

The study for the dam heightening is the target for Sutami Dam which has the largest storage capacity in the Brantas River basin. Since Sutami Dam reservoir is directly connected with the Lahr Dam reservoir through a connecting channel, the following three cases are considered:

Case 1: Sutami Dam heightening

Case 2: Lahor Dam heightening

Case 3: Heightening of both dams

Table 6.3.54 shows the feature of both dams.

The increased volume by 1 m heightening of each case is roughly estimated based on the

H-V curve. In this study, Case 1 is adopted considering the larger increased volume by heightening.

Item	Sutami Dam	Lahor Dam
Flood Water Level (FWL)	EL.277.0 m	EL. 275.7 m
Reservoir Area (at FWL)	19 km ² (at EL. 277 m)	4.0 km ²
Reservoir Area (at EL. 280 m)	21 km ² (at EL. 280 m)	5.0 km ² (at EL. 280 m)
Increase of the Storage Volume by 1m	20MCM/m	5MCM/m
heightening		

Table 6.3.54Reservoir Condition of Both Dams

Source: JICA Project Team 2

c) Height of Dam Heightening

The topography of Sutami Dam site shows that the ground elevation in the surrounding area of the left dam abutment is around EL. 280.0 m. Referring to the topographic maps of the scale of 1:50,000, the number of bridges and villages to be affected by the proposed dam heightening is roughly counted as shown in Table 6.3.55. And the present conditions surrounding Sutami Dam is shown in Figure 6.3.14.

If it is assumed that the reservoir area of EL. 287.5 m (Case 2), there are a lot of existing bridges and villages to be relocated in connection with the dam heightening. On the other hand, as shown in Case 1: a small scale of dam heightening, the social impact can be mitigated. In addition, in the previous geological study report pointed out that there is a pervious sandy layer at the right dam abutment in the area with elevation of around 278.0 m.

Case	Case1	Case 2	
Dam Heightening	(+2.5 m)	(+15.0 m)	
	NWHL=EL. 275 m	NWHL=EL. 287.5 m	
Number of affected bridges	14	22(4)	
Number of affected villages	0	23 (5)	

Table 6.3.55Dam Heightening Case

Note: *1 This study is conducted for two cases referring to available contour lines (EL. 275.0 m, EL. 287.5 m) in the existing topographic map of 1:50:000, *2 The value in parenthesis shows the data of Lahor Dam Source: JICA Project Team 2

Taking into consideration the above, dam heightening by 5 m was adopted in this study to mitigate the social impact and technical condition. Table 6.3.56 shows the expected features. In this proposal, the NHWL is raised from EL. 272.7 m to EL. 277.5 m, and the dam crest elevation is raised from EL. 279.0 m to EL. 284.0 m.

Item	Dimension	Remarks				
Height of Dam Heightening	5.0 m					
Downstream Slope of the Heightening	1:2.6	Ref. Design of Murayama				
		Reservoir in Japan				
Embankment Volume	1,198,000 m ³	Preliminary estimate				
Required Facility	New spillway	L = 460m				
	Gate at connecting channel					
	Saddle Dam	L = 1,000 m, H = 3 m				

Table 6.3.56Additional Case of Dam Heightening

Source: Google Earth Pro

Figure 6.3.15 Present Conditions surrounding Sutami Dam Reservoir

d) Layout of Dam Heightening

The layout plan of the dam heightening is presented in Table 6.3.15.

(c) Dredging of Reservoir

At present, Sutami Dam, Sengguruh Dam, Wlingi Dam and Selorejo Dam are carried out the maintenance dredging. Table 6.3.57 shows the present annual dredging volume of each dam reservoir.

Dam	Annual Dredging Volume (m ³)
Sengguruh Dam	270,000
Sutami Dam	375,000
Wlingi Dam	370,000
Selorejo Dam	280,000

 Table 6.3.57
 Annual Dredging Volume of Each Dam Reservoir

Source: Result of Interview to PJT-I on March 16, 2016

On the other hand, the sediment inflow will increase under future climate conditions because of the higher rainfall intensity and other impacts. Table 6.3.58 shows sediment inflow volume under the present and future climate conditions.

 Table 6.3.58
 Annual Sediment Inflow under Present and Future Climate Conditions

Dam	Present Sediment	Future Sediment Inflow (SF) (10 ³ m ³)			Incrementa to Clim	al Sediment I ate Change (Inflow due (10^3m^3)
	Inflow	Medium	Low High		Medium	Low	High
	(SP)	(α=1.15)	$(\alpha = 1.10)$ $(\alpha = 1.25)$				
	$(10^3 m^3)$	````	~ /	· · · ·			
Sengguruh	5,400	6,210	5,940	6,750	810	540	1,350
Sutami	4,850	5,578	5,335	6,063	728	485	1,213
Wlingi	5,600	6,440	6,160	7,000	840	560	1,400
Selorejo	680	782	748	850	102	68	170

Source: JICA Project Team 2

Figure 6.3.16 Layout of Sutami Dam Heightening

The required number of dredgers are estimated from the actual annual dredging volume as shown in Table 6.3.59.

Even the dredger is required from 1 to 5, additional spoil banks of the dredging material are required. The required spoil bank volume is shown in Table 6.3.60.

		_					
Dam	Present	Increment Volume due to Climate		Required Number of Dredger			
	Annual	Change (10^3m^3)		(nos.)			
	Dredging	Medium	Low	High	Medium	Low	High
	Volume			_			_
	$(10^3 m^3)$						
Sengguruh	270	810	540	1,350	3	2	5
Sutami	375	728	485	1,213	2	1	3
Wlingi	370	840	560	1,400	2	2	4
Selorejo	280	102	68	170	1	1	1

 Table 6.3.59
 Required Number of Dredger against Climate Change Impact

Source: JICA Project Team 2

Dam	Required Vo	lume of Spoil E	Bank (10 ³ m ³)	Required Vol./Present Annual Dredging			
					Volume		
	Medium Low High			Medium	Low	High	
Sengguruh	1,080	810	1,620	4.0	3.0	6.0	
Sutami	1,103	860	1,588	2.9	2.3	4.2	
Wlingi	1,210	930	1,770	3.3	2.5	4.8	
Selorejo	382	348	450	1.4	1.2	1.6	

Table 6.3.60Required Volume of Spoil Bank

Source: JICA Project Team 2

It is difficult to maintain a spoil bank surrounding the reservoir area except the Selorejo Dam because the spoil bank volume is required around three to four times of present spoil bank.

(2) Non-Structural Measures

The non-structural measures against the drought are proposed as follows;

- 1) Changing the water source from the surface water to groundwater
- 2) Intermittent and shallow depth irrigation practice
- 3) Introducing system of rice intensification (SRI)
- 4) Public relations of the reservoir water level of each dam
- 5) Domestic water supply support system among adjacent river basin
- 6) Preparation of the advance drought action plan (Timeline for drought)
- 1) Changing the Water Source from the Surface Water to Groundwater

The surface water demand is bigger than the groundwater demand. Therefore, a part of the surface water demand is shifted to the groundwater considering the available groundwater potential.

2) Intermittent and Shallow Depth Irrigation Practice

The minimum requirement for promoting this non-structural on-farm level irrigation water management practice is to facilitate tertiary irrigation and drainage canal system coupled with land leveling work of paddy field. Prior to meeting such requirement, it is also needed to set up institutional arrangement activities and to strengthen the receptive capacity of the stakeholders concerning on-farm level irrigation water management practices. If land acquisition activity is required for facilitating tertiary drainage canals, it is indispensable to take community-based actions for achieving consensus among stakeholders. Therefore, non-structural practice is limitedly recommendable for the irrigation schemes with fewer requirements for social consideration.

3) System Rice Intensification (SRI)

In relation to improve the efficiency of irrigation water use through promoting the SRI method, the main concern of Government of Indonesia (GOI) is to make the SRI more popular in intensive rice cultivation areas. The core practices of the SRI are to supply quality seed and fertilizers, to extend the line planting method of young-aged seedlings, to carry out through leveling works of paddy field, and to conduct intermittent and shallow depth irrigation practices. The Ministry of Agriculture has encouraged the provincial governments to establish and operate demonstration plots for disseminating the SRI method to rice farmers focusing on the demonstration of line planting and qualified farm inputs. Although the effectiveness of the SRI method on irrigation scheme, the Bogor Agricultural University in Indonesia reported its experimental result indicating that the irrigation water consumption for the dry season could be reduced by 3.35% by applying the SRI method.

4) Public Relations of Reservoir Water Level of Each Dam

To recognize the drought situation in the residential people in the Brantas River basin, PJT-I shall promote a public relation of the reservoir condition,

At present, everybody can see today's reservoir water level on PJT-I web page (see Figure 6.3.17).

Source: Web page of PJT-I (http://jasatirta1.co.id/id_ID/)

Figure 6.3.17 Today's Reservoir Water Level of Each Reservoir operated by PJT-I

To explain the severe situation during drought year, it is important to show the time series of the actual reservoir water level and planned water level and the actual release water discharge and planned one.

5) Domestic Water Supply Support System among the Adjacent River Basin

At present, there is no agreement of assistance to the adjacent river basin among TKPSDA when a serious drought has happened at adjacent river basins.

They shall make a framework of this agreement and discuss the condition of supply rule, water source, and supply method.

The Brantas River basin adjoins the WS. Bengawan Solo, WS. WELANG-REJOSO and WS. BONDOYUDO-BEDADUNG.

And the water conveyance method shall be established such as the preparation of tank lories,

increasing water conveyance capacity of pipeline, etc.

6) Preparation of the Advance Drought Action Plan

TKPSDA shall prepare the advance drought action plan that is organized for action of disaster prevention (drought) and implementing agencies in time series focusing on "when", "who", and "what to do". It shall be considered to study the action of drought during the dry season before the actual drought situation.

- (3) Groundwater Resources Management
- 1) Sustainable Groundwater Cycle

A conceptual diagram of the water cycle and its regulatory factors is shown in Figure 6.3.18. The groundwater is one of the components constituting the water cycle of the Earth. The groundwater flowing through a recharge area - flow area - discharge area path forms a regional water circulatory system from a shallow unconfined groundwater to deep confined groundwater. The adaptation measures for the groundwater resources under the future climate change are nothing but these measures will keep this groundwater cycle sound and sustainable.

Although the individual components are constantly changing in the groundwater cycle, it can be considered that the dynamic equilibrium state of the cycle is maintained. When some changes occur in the components, the cycle shifts to the new dynamic equilibrium state by the natural regulating function. However, if the change exceeds the capacity of the function, e.g., sudden and significant changes like climate change, the dynamic equilibrium state of the cycle may collapse and the groundwater resources may eventually fall into critical situation.

A sustainable water cycle is a state of the water cycle in which the function of water for the human activities and environmental preservation are properly maintained and it includes not only the physical aspect but also the chemical/ecological and cultural aspects of the water cycle.

Source: Round-table conference on future groundwater use (2007); retouched

Figure 6.3.18 Conceptual Diagram of Water Cycle and its Regulatory Factors

The process of restoration in the groundwater resources from the viewpoint of the water cycle is shown in Table 6.3.61. First, the causes of the groundwater problems such as well drying-up, land subsidence, salt water intrusion, disappearance of spring water, decrease in spring water volume, and groundwater pollution need to be removed and the use of groundwater shall be optimized. Next, the groundwater cycle improvement, which is strengthening the function of the groundwater cycle, improving the groundwater quality and conserving the ecosystems shall be implemented. Finally, the groundwater cycle is to be maintained through sustainable conservation activities on a local basis.

Step	Objective	Measures for Restoration
1	Resolution of the groundwater problems	Prohibition of excessive pumping extraction (Optimization of groundwater use)
2	Improvement of the groundwater circulation	Enhancement of groundwater cycle system (Recharge area - Flow area - Discharge area), water quality improvement / ecosystem conservation
3	Conservation of the groundwater circulation	Sustainable conservation activities on a local basis (residents and municipalities)

Table 6 3 61	Process fo	r Restoration	in Ground	dwater Resource
1 abic 0.3.01	110005510	I RESIDIATION	in Ground	IWALCI INCSUULCE

Source: JICA Project Team 2

In the Brantas River basin, there might be a high possibility that the groundwater problems mentioned above are progressing quietly along with the economic development especially in the urban areas. However, the actual conditions of these groundwater problems are not grasped accurately now. If the influence of the future climate change is added to the present conditions, it is obvious that the situation will become worse. The important things to do are to start implementing measures for the groundwater resources as soon as possible.

2) Impacts of Climate Change on Groundwater Resources

The impacts on the groundwater resources due to climate change in the Brantas River basin can be divided largely into direct and indirect items.

- I. Direct items
 - The impacts on the groundwater recharge caused by the change of amount, duration and intensity of precipitation (aspect of groundwater quantity)
 - > The reduction of the groundwater recharge due to increase in evapotranspiration accompanying temperature rise (aspect of groundwater quantity)
 - The saltwater intrusion into coastal areas and rivers and changes in groundwater flow system caused by sea level rise (aspect of groundwater quantity and quality)
- II. Indirect items
 - The impacts on the groundwater recharge due to the change of covering conditions of the soil: natural vegetation and growing crops (aspect of groundwater quantity)
 - The increase in the dependency on groundwater due to instability of surface water resources (aspect of groundwater quantity)
 - The groundwater pollution in the alluvial areas caused by frequent flooding (aspect of groundwater quality)

Since the impact of drought on groundwater resources is particularly concerned in the Brantas River basin, adaptation measures of the groundwater resources against droughts are described here. In the groundwater resources, the components that are most directly and indirectly affected by the droughts are the groundwater recharge and pumping rates. The amount of groundwater recharge may reduce due to the decrease of precipitation and increase of evapotranspiration caused by temperature rise.

To know the degree of influence by climate change on groundwater recharge, the data of the present situation and future situation (Medium Scenario) in watersheds provided by Team 1 for each of the 16 municipalities is compiled and compared in Table 6.3.62. The ratios (%) of the future groundwater recharge to current groundwater recharge drastically decreases as going downstream (lower altitude) under the future climate conditions, the measures for recharge in the middle stream and downstream areas are required to maintain a sustainable groundwater cycle.

e Brantas River Basin Ratio of Groundwater Recharge (Future in Medium Scenario/ Present)
(Batu Regency) 92%
(Blitar Regency etc.) 70 to 80 %
fojokerto City etc.) 50 to 60 %
(Future in Medium Scenario/ P (Batu Regency) 92% Blitar Regency etc.) 70 to 80 % Aojokerto City etc.) 50 to 60 %

 Table 6.3.62
 Ratios of Future Groundwater Recharge to Current Groundwater Recharge

Source: JICA Project Team 2

3) Measures for Groundwater Resources

The adaptation measures for groundwater resources are largely divided into structural and non-structural measures. The structural measures are to improve the storage capacity in an aquifer using structures or to strengthen a groundwater extraction capacity from the pumping wells. Meanwhile, the non-structural measures are aiming at a sustainable use of groundwater by grasping the actual usage of groundwater, establishing appropriate rules of conservation and management methods through laws and regulations, and complying with them.

The actual measures considered for the Brantas River basin are shown in Table 6.3.63. However, most realistic facilities are injection wells among the proposed facilities under the present situation to improve effectively.

Type of Measure	Method	Purpose and Example
Structural	Improvement of the aquifer storage capacity	To strengthen a recharge capacity and promote recharging, the artificial recharging into aquifers is effective; such as injection wells, rainwater storage, and infiltration facilities, and promotion of underground penetration from paddy fields, reservoirs, and check dams. The location should be decided based on the groundwater potential study and additional detailed groundwater survey.
	Strengthening of the groundwater extraction capacity	To acquire an alternative water source to unstable surface water under the future climate change, new well construction as additional groundwater development which should be proposed based on a groundwater potential study. The location of the well should be decided as the result of an additional detailed groundwater survey.
	Survey on the actual condition of the groundwater use	To understand the current situation of groundwater problems and identify areas which require restriction of pumping and groundwater development regulation.
Non-structural	Resolution of the groundwater problems	To control the pumping rates and groundwater development regulations which are carried out based on the survey results of the actual usage
	Conservation of the groundwater cycle	To establish laws and regulations concerning the groundwater conservation and sustainable management system

 Table 6.3.63
 Actual Measures Considered for the Brantas River Basin

Source: JICA Project Team 2

6.3.3 Sabo Management

(1) Target for Sabo Management

The Sabo plan in the Brantas River basin has been prepared for unstable sediment, which is defined as sediment flowed out by rain. For example, the surface soil disturbed by the deforestation has the conditions which are likely to be eroded by rain. The cultivated land developed vastly is put in the same situation as well. Also, landslide, slope failure, riverbank erosion, and riverbed erosion are thought to be a source of sediment discharge.

The total amount of unstable sediment in the Brantas River basin was estimated to be 114.8 million m³. Those in the upper Brantas and the upper Lesti areas are estimated to be approximately 7.6 million m³ and 5.5 million m³. (Refer to the Report on Engineering Studies for the Brantas River and the Bengawan Solo River Basins Water Resources Existing Facilities Rehabilitation and Capacity Improvement Project (JBIC LOAN NO. IP-510 (2005)).

(2) Existing Plan and Actions

The implementation of sediment control works was divided into three stages in consideration of harmful river conditions and construction costs, as presented in Table 6.3.64 by the above mentioned JBIC Report (2005). The Urgent Plan was already implemented and completed, then the Mid Term Plan is being implemented as the second stage.

This Sediment Management Plan is planned until 2050, without the consideration of climate change.

Phased Plan	Target Year	Sediment Management Plan	Remarks
Urgant Dlan	2008	• Sabo plan (Urgent Sabo works)	Implemented by the Project (WREFR
Orgenit Flan	2008	 Riverbed management plan 	& CIP) JBIC Loan No. IP-510
			 Upper Brantas River basin
		• Watershed conservation M/P	 Brangkal River basin
Mid Term	ⁿ 2025	• watershed conservation w/r	Lekso River basin
Plan			Upper Konto River basin
		• Saha plan (Driarity Saha warka)	Sabo facilities on harmful rivers of
		• Sabo plan (Priority Sabo works)	high priority
Long Term	2050	• Sabo plan (Long term Sabo	Sabo facilities on harmful rivers of
Plan	2030	works)	middle and low priority

Table 6.3.64	Proposed	Comprehens	sive Basin-	wide Sediment	Management Plan
		1			8

Source: Main Report, WREFR & CIP Project, JBIC Loan No. IP-510

The climate change will bring about an increase in unstable sediment production, so the above plan should be reviewed in consideration of climate change. However, the production of the unstable sediment is not related with the rainfall well, hence it is difficult to estimate the amount of surplus unstable sediment. An increase of heavy rain by the climate change may accelerate the production of unstable sediment, and hence it is recommended that the above Comprehensive Basin-wide Sediment Management Plan be implemented earlier than scheduled in the JBIC Report (2005).

(3) Proposed Measures

The increase ratio of sediment inflow under the future climate (2050) was shown in Table 6.3.65. It was calculated based on the change of "I" (maximum hourly rainfall in a series of rainfall) of the USLE formula and is expected to be 15% against the dam reservoirs on an average in comparison with that under the present climate (2000).

		(Average)
Scenario	Whole Basin	6 Dams*
Low (2050/2000)	1.19	1.09
Medium (2050/2000)	1.12	1.12
High (2050/2000)	1.33	1.24
Average	1.21	1.15

Table 6.3.65Ratios of the Sediment Increase

Note: *: Sengguruh, Sutami, Wlingi, Lodoyo, Selorejo, and Wonorejo Dams Source: JICA Project Team 2

The measures against production and sedimentation of fine-grained sediment are considered as stated below:

- > Use of coagulant against fine-grained sediment,
- > Dredging/Excavation of the Sabo facility, and
- > Watershed conservation in the Sabo management

6.3.4 Watershed Conservation

- (1) Adaptation Measures against Rainstorms and Floods
- 1) Water Quality Management against Heavy Rain

The water quality degradation by the heavier rain should be controlled by reducing soil degradation of Sabo measures such as the check dams, contour cropping, gabions, and agroforestry. These structural adaptation measures are included in the Sabo management.

2) Water Quality Management against Fertilizer Application

The appropriate application of fertilizer contributes to keeping the discharge of eutrophication substances by flood.

The water quality degradation during lower water should be controlled by (1) keeping the current lowest water level as well as (2) wastewater treatment

3) Watershed Management

Improving of the water retaining capacity in a watershed by the forest cover will contribute to the adaptation measures against rainstorms and floods by reducing the surface runoff as well as facilitating the rainwater absorption into the ground.

However, it is noted that forest stands (trees) will worsen the damage in combination with water and soil in case of the strong flush flood and/or landslide.

The priority target areas will be considered from 1) the existence of forest areas, 2) upper watershed (in consideration of settlement directly below), 3) relationship with important aquifers, and 4) critical land area. Considering the future land use, keeping the forest land at the present level is important and the improvement of the quality of forest is also effective. Since the production forest counts for nearly 70% of the recorded forest land, it is very important that the production forest is sustainably managed by the well-planned cycle from plantation to harvest.

The plantation outside these forestlands should also be promoted to increase the forest area without changing the land use.

To maximize the adaptation capacity with watershed conservation, it is also necessary to monitor the impact to the vegetation by climate change such as rainfall pattern change, temperature rise, and forest fires.

No.	Forest type	Target Area	Ratio (forest land)	Consideration points for prioritization
1	Conservation forest	51,582ha	9.9%	- Protection
				- Fire prevention
				- Monitoring
2	Protection forest	113,918ha	21.9%	- Protection
				- Conservation work
				- Fire prevention
				- Monitoring
3	Production forest	354,944ha	68.2%	- Sustainable management
				- Fire prevention
				- Monitoring
4	Outside the recorded	All Brantas	-	- Promotion of plantation in the
	forest land	River basin		slopes
				- Promotion of plantation for
				fencing for the residential area
				and agriculture area
				- Promotion of agroforestry
				- Promotion of green area in the
				city

Tabla 6 3 66	Watershed Conservation against Rainstorms and Flood	c
Table 0.3.00	water sneu Conservation against Rainstorins and Flood	5

Source: JICA Project Team 2, Review POLA 2015 indicates total recorded forest land is 520,498.7ha.

Source: Forest Department, East Java Province Note: ◎: Conservation forest, •: Production forest

Figure 6.3.19 Forestland in East Java Province

- (2) Adaptation measures against droughts
- 1) Water Quality Management by Wastewater Treatment

The water quality degradation during the lower water can be controlled by promoting the wastewater treatment system such as waste water treatment plant, septic tank and *Jokaso*. However, these measures are not climate change adaptation measures but the normal water quality management activities.

2) Water Quality Management by Water Level

The water quality degradation during the lower water should be controlled by keeping the current lowest water level.

Since it is difficult to estimate the water quality change by the flow level change, it is recommended to keep the water level in every existing monitoring points as the current lowest water level. On the other hand, the priority points can be identified with the water quality. It is more necessary to keep the water level in the points with lower water quality.

3) Watershed Conservation

The contribution of watershed conservation effort against droughts is difficult to be evaluated, while the forest cover is regarded to be effective to some extent. The forest cover will help retaining the water resources and stabilize the water discharge from the water source area which mitigates the impact on the drought in the lower watershed. Thus, the climate change adaptation measures by watershed conservation is to improve the forest management especially in the upper watershed.

However, it is also known that the forest cover will negatively contribute to the water resources by evaporation through the breathing of the trees and vegetations.

The green areas can nurture the ground water resources by allowing the rainfall to be absorbed efficiently especially in the development areas covered by the concrete.

No.	Forest type	Target Area	Ratio (forest land)	Consideration points for prioritization
1	Conservation forest	51,582ha	9.9%	- Protection
				- Fire prevention
				- Monitoring
2	Protection forest	113,918ha	21.9%	- Protection
				- Rehabilitation work
				- Fire prevention
				- Monitoring
3	Production forest	354,944ha	68.2%	- Sustainable management
				- Fire prevention
				- Monitoring
4	Outside the recorded	All Brantas	-	- Promotion of green area in the
	forest land	River basin		city

Table 6.3.67Watershed Conservation against Droughts

Source: JICA Project Team 2, Review POLA 2015 indicates total recorded forest land is 520,498.7ha.

6.4 Strategic Environmental Assessment (SEA)

The Project examined the adaptation measures for the forecasted climate change conditions in 2050. In this examination, the Strategic Environmental Assessment (SEA) was applied to consider environmental and social impacts from the early stage of formulating the plans/projects. Then, the adaption measures selected in the process of SEA were examined at the Initial Environmental Evaluation (IEE) level.

This section explains the legal framework of the environmental assessment including SEA in Indonesia, the study method of the Project and the results of environmental and social considerations at IEE level.

6.4.1 Legal Framework on Environment in Indonesia

(1) Legal Framework related to Environmental Assessment and SEA in Indonesia

In Indonesia, Law No. 32/2009, namely Law on Environmental Protection and Management (UU No. 32/2009) is the principle law on conservation of natural resources and management of environment by clarifying the environmental permission for implementing a project.

The law defines to conduct an Environmental Impact Assessment (AMDAL in Bahasa Indonesia), Environmental Management/Monitoring Efforts (UKL-UPL in Bahasa Indonesia) or Environmental Statement (SPPL in Bahasa Indonesia) according to the scale of the business and/or activity. The criteria for AMDAL and UKL-UPL related to the adaptation measures of the Project are summarized in Table 6.4.1.

UU No. 32/2009 requests the government and regional governments to conduct SEA for: i) spatial plan including regional long/mid-term development plan and ii) policies, plans and/or programs potential to cause environmental impacts and/or risks by involving communities and stakeholders. The law requests to contain assessment in SEA below:

- > the capability of the environment to support and carry development,
- estimated environmental impact and risks,
- > performance of service/ecosystem service,
- > efficiency in the utilization of natural resources,
- > vulnerability and capacity of adaptation to climate change, and
- security and potential of biological diversity

	AMDAL (Permen LH No.5/2012)	UKL-UPL ¹ (Permen PU No.10/2008)	SPPL
(1) Constructing new dams	 Height: More than 15 m Inundate area: More than 200 ha Water storage: More than 500,000 m³ 	 Height: 6 to 15 m Inundate area: 50 to 200 ha Water storage: 300,000 to 500,000m³ 	Small scale project not classified as AMDAL or UKL-UPL
(2) Rehabilitating the irrigation canal and distribution of the pipelines of PDAMs	None	Not mentioned, but UKL-UPL is necessary	Ditto
(3) Changing the water source from the surface to groundwater by constructing new wells	Intaking groundwater more than 50 liters/second	 Community use: 2.5 to 50 liters/second Commercial use: 1.0 to 50 liters/second 	Ditto
(4) Constructing dike ²	 [Large City] Length: More than 5km Dredging: More than 500,000m³ [Medium City] Length: 10km Dredging: More than 500,000m³ [Rural Area] Length: 15km Dredging: More than 500,000m³ 	 [Large City] > Length: 1 to 5km > Dredging: 50,000 to 500,000m³ [Medium City] > Length: 3 to 10km > Dredging: More than 100,000 to 500,000m³ [Rural Area] > Length: 5 to 15km > Dredging: 150,000 to 500,000m³ 	Small scale project not classified as AMDAL or UKL-UPL

 Table 6.4.1
 Criteria on Environmental Study

Note: 1: More detailed criteria to conduct UKL-UPL is defined by the governor.

2: Permen LH No. 5/2012 does not show conditions to conduct the environmental study for dike constructions. However, canal is sometimes regarded as dike in Indonesian language. Accordingly, canal for flood described in No. 5 of Section I in Appendix I was applied.

Source: JICA Project Team 2

In order to improve such a situation, Government Regulation No. 46/2016 on Process for the Implementation of Strategic Environmental Assessment (PP No.46/2016), was issued in 2016. PP No. 46/2016 stipulates the procedure for approving SEA and contents to be studied in SEA as summarized in Table 6.4.2.

Target Projects	Contents to be Studied	Approval Procedure
 Spatial plan including detailed plans National long-term development plan (RPJP)for a period of 20 years Regional RPJP National med-term development plan (RPJM) for a period of five years Regional RPJM Coastal zone and small island plans including the detailed plans Zoning plans for specific national strategic areas and marine conservation areas Policies, plans and/or programs with potential impact to the living environment such as: Land use policies/plans including air and/or water use Other policies, plans or program based on request from public 	 Assessment of the effectiveness and impact of a policy, plan, and/or program from the viewpoint of environment Examine alternatives Prepare recommendation to improve the policy, plan and/or program suitable for sustainable development 	 A policy maker submits the SEA application (i.e., SEA report) to the minister or the governor. The minister or the governor reviews the completeness of the SEA application within three working days from receipt of the application. The minister or the governor validates the SEA application within a maximum period of 20 working days. The minister or the governor announces the approval of the SEA application within three days. If the minister or the governor regards the SEA application as not completed, it is returned to the policy maker.

Table 6.4.2Summary of SEA in PP No. 46/2016

Source: JICA Project Team 2 based on PP No. 46/2016

(2) Current Status of SEA in Indonesia and East Java Province

The Ministry of Foreign Affairs of Denmark (DANIDA) is considered as a major funding agency in supporting the SEA framework in Indonesia, and has been a supporter since 2008 through the Environmental Support Program Phase 2 (ESP 2) and the Phase 3 (ESP 3). Approximately 130 to 150 SEAs have been implemented in Indonesia as of September 2016 according to DANIDA's investigation⁴.

It was found from the interview with BAPPEDA in the East Java Province in September 2016 that SEA study in BAPPEDA was implemented from 2014 since No. 67/2012 was actually implemented from 2014 in East Java Province.

Regarding the regional environmental agency (*Badan Linkungan Hidup Daerah*: BLHD) in East Java Province, there was no SEA study in BLHD in East Java Province as of September 2016 according to the interview with BLHD officers.

6.4.2 Study Approach on Environmental and Social Considerations for the Project

The JICA Guidelines for Environmental and Social Considerations (April 2004 and April 2010) introduces the concept of SEA when the Master Plan studies are conducted, and encourage the project proponents to ensure environmental and social considerations from the early stage of project planning. The JICA Guidelines indicates the following procedure as the

⁴ Referred from Restricted procedure: National Conference on Strategic Environmental Assessment (SEA)-Indonesia (Available from

http://um.dk/en/danida-en/business/contracts/short/contract-opportunitie/newsdisplaypage/?newsid=834e6bdb-c958-4040-b2 83-fe932a4aaf3e, accessed on 5 Jan. 2018)

standard for conducting SEA⁵.

- i) Survey of basic conditions (policies, regulations, and geography, etc.),
- ii) Formulate development scenario/alternatives,
- iii) Scoping and setting indicators for evaluation,
- iv) Stakeholder meetings,
- v) Survey, prediction, analysis, evaluation of impacts,
- vi) Mitigation measures, and
- vii) Selection of programs/projects

Referring to the SEA steps in Indonesia, the preparation procedure of RENCANA for the Brantas River basin, the JICA Guidelines and the characteristics of the Project such as conditions and progress, environmental and social considerations for the Project was examined with the steps below and illustrated in Figure 6.4.1.

- i) First of all, the first stakeholder meeting was held to explain the project outline, the study method and the concept of SEA,
- ii) The current conditions were confirmed by collecting secondary data and three scenarios of the future climate change conditions in 2050 (i.e., low, medium and high scenarios) were forecasted based on the current conditions,
- iii) With and without adaptation measures were examined,
- iv) Alternatives under climate change in 2050 were examined,
- v) The third stakeholder meeting was held to refresh the project outline, to explain the method of scoping, and to have opinion exchanging on the alternatives,
- vi) Applicable adaptation measures were selected from the alternatives referring to the comments at the second stakeholder meeting, specific measures at each category of adaptation measure under each scenario were examined, and possible environmental impact to specific adaptation measures were examined,
- vii) The third stakeholder meeting was held to explain the scoping results and to have opinion exchanging on the adaption measures to be applied, and
- viii) The final adaptation measures were examined referring to the comments raised at the second stakeholder meeting.

⁵ Referred from Strategic Environmental Assessment (SEA) for Master Plan Study in Developing Countries: Experience under JICA's Guidelines for Environmental and Social considerations (available from <u>http://conferences.iaia.org/2013/pdf/Final%20papers%20review%20process%2013/Strategic%20Environmental%20Assessm</u> ent%20(SEA)%20for%20Master%20Plan%20Studies%20in%20Developing%20Countries.pdf, accessed on 5 Jan. 2018)

Source: JICA Project Team 2

Figure 6.4.1 SEA Study Flow for the Project

6.4.3 Examination Results

(1) Examination of "With and Without Adaptation Measures"

The "With" and "Without" Adaptation Measures under the climate change conditions in 2050 was examined. The Without Adaptation Measures means not implementing any adaptation measures under the forecasted climate change conditions in 2050 while the With Adaptation Measures means implementing adaptation measures. As a result of the examination of the With and Without Adaptation Measures as shown in Table 6.4.3, implementing the adaptation measures is considered as necessary under the future climate conditions in 2050.

(2) Alternative Examinations

There are structural and non-structural measures for the adaptation measures. The structural measures are to tackle future climate conditions by constructing the structures while non-structural measures are to tackle the future climate conditions by improving and/or enhancing soft components such as social institutions including raising the public awareness.

Table 6.4.4 shows the outline of alternatives on structural and non-structural measures.

Generally, the implementing measures related to the soft components will not bring physically adverse impact to natural and social environment since it will enhance or strengthen the social system or people's awareness. Thus, the alternatives were examined by focusing on the structural measures from technical, efficiency, and environmental viewpoints. Table 6.4.5 is the summary of structural measures listed in Table 6.4.4.

The result of alternatives examinations related to the structural measures is shown in Table 6.4.6

Cata		
Category	Without Adaptation Measures	With Adaptation Measures
Water Resources	The current forest cover may be	Keeping the forest cover and
Conservation	degraded due to the change of	improving its quality through
	rainfall and temperature.	appropriate and sustainable forest
	Flood, drought, and water	management actions.
	temperature rise may affect the	Monitoring and adapting the
	ecosystem (habitat, seasonal	measure on ecosystem.
	migration, and life cycle).	Reducing the load of pollutant into
	[By higher peak discharge and	river system from non-point
	rainfall] the pollutants from the	sources such as fertilizer from the
	non-point sources such as fertilizer	agricultural land and
	from the agricultural land,	sedimentation.
	sedimentation will be increased.	Maintaining the water quality by
	[By drought] the water quality will	keeping the water level.
	be deteriorated by the enrichment	
	effect during lower discharge.	
Water Resources	The reservoir volumes will be	Increasing the water supply
Utilization	reduced compared with the present	capacity by constructing new
	ones.	dams and heightening of existing
	The supply side will not be able to	dams.
	satisfy the safety level of the water	Saving water loss by replacing old
	utilization. This situation will be	pipelines of PDAMs and
	severe.	rehabilitating irrigation canals.
	> The sediment inflow will be	Saving the water demand by
	increased compared with the present	applying SRI.
	situation.	Improving the sediment situation.
Water Destructive Force	> The dike will be broken frequently	> Reducing the impact in the
Control	due to extreme flood events.	flooded area by constructing
	> The peak discharge will be higher	structures such as dikes and
	than the present situation and the	implementing non-structural
	frequency of the flood events will be	measures such as FFWS.
	also increased due to climate change	
	condition.	
	> The damage area of the dike, public	
	infrastructures, houses, industrial	
	companies, and crop will be	
	expanded. The magnitude of the	
	rehabilitation works will be	
	increased.	
	infrastructures, houses, industrial companies, and crop will be expanded. The magnitude of the rehabilitation works will be increased	

Table 6.4.3Comparison of With and Without Adaptation Measures

Category	Sub-Category	Types of	Alternatives
	~ ^	Measures	
Water	Surface	Structural	\blacktriangleright Erosion control works (ex. check dams, gabions,
Resources	Erosion	Measures	etc.)
Management		Non-structural	Land use management
		Measures	 Forest plantation, rehabilitation and conservation Contour cultivation
	Recharge of	Structural	None
	Groundwater	Measures	
		Non-structural	> Water conservation works (e.g., expansion of green
		Measures	areas)
			> Forest plantation, rehabilitation and conservation
			> Land use management
	Water Quality	Structural	\succ Erosion control works (ex. check dams, gabions,
		Measures	etc.)
		Non-structural	> Land use management
		Measures	 Forest plantation, rehabilitation and conservation
			Contour cultivation
			➤ Law enforcement of waste water discharge
			Control of fertilizer and pesticide application
	Forest	Structural	None
	Management	Measures	
	e	Non-structural	> Planning of plantation and forest conservation
		Measures	considering the temperature rise and water
			availability
	Illegal	Structural	None
	Logging	Measures	
		Non-structural	➢ Patrolling
		Measures	Law enforcement on the export of logs
	Securing	Structural	Replacement of irrigation channel
	Water Volume	Measures	Replacement of water pipe
		Non-structural	Enhancing education on water-saving
		Measures	
Water	Demand	Structural	None
Resources		Measures	
Utilization		Non-structural	Reducing per capita (Education)
		Measures	Reducing irrigation water (Real time operation,
	Committee	Store at a set	SRI)
	Suppry	Mangurag	To increase storage volume
		Ivicasures	P To reduce the sediment innow by constructing said pocket, check dam, groundcill, and hank protection
			> Heightening of the existing dams
			 Construction of new dams nonds and other storage
			structures
			[To create additional water]
			 Construction of desalination plant
		Non-structural	[To increase storage volume]
		Measures	To use coagulant against fine-grained sediment
			> To dredge/excavate the Sabo facility
			> Watershed conservation
			> To increase dredging capacity (increasing the
			number and capacity of the dredger)
			> To change the full supply level (Reservoir
			operation)
			[To utilize treated water]
			\succ Flushing the water of toilet in hotels, buildings,
			factories, etc.
		1	Cooling water in factories

Table 0.4.4 Outline of Alter hattyes	Table 6.4.4	Outline of Alternatives
--------------------------------------	--------------------	--------------------------------

Category	Sub-Category	Types of Measures	Alternatives
Water Destructive Force Control	-	Structural Measures	 Heightening of the dike To create flood control space in the existing dams (Reservoir operation) To create flood control space in the new dams Construction of the retarding basin (artificial)
		Non-structural measures	 To apply temporary structure such as movable type flood wall* Construction of sufficient number of substantial evacuation centers* Capacity development of the flood fighting teams Installation of high accuracy the Flood Forecast Warning System (FFWS) Installation of community based early warning system Strengthening of the rainfall and discharge measurement network (Increase of equipment and new technology) Preparation of hazard maps and evacuation root maps Changing the reservoir operation rule To keep natural retarding basin (limitation of land use)

Note: * These measures are actually constructing structures. Since the scale of structures is small, they are regarded as non-structural measure in this Project.

Source: JICA Project Team 2

Table 6.4.5	Summary of Alternatives on Structural Measures
-------------	--

Category	Alternatives on Structural Measures	
Water Resources Conservation	Erosion control works (ex. check dams, gabions etc.)	
Water Resources Utilization	Rehabilitation of irrigation channel	
	Replacement of water pipe	
	Reduce sediment flow (sand pocket, check dam, groundsill, and bank protection)	
	Construction of new dams, ponds, and other storage structures	
	Heightening of existing dams	
	Construction of desalination plant	
	 Utilize treated water (recycle plant) 	
Water Destructive Force	Heightening of existing dikes	
Control	Construction of dikes	
	> Allocation of flood control space in new dams and heightening of existing	
	dams	
	Construction of retarding basin (artificial)	

Table 6.4.6Results of Alternative	Examinations/ Scoping
-----------------------------------	------------------------------

Alternative	Technical Aspect	Environment	Efficiency	Evaluation
Measures				
1. Water Resource	es Conservation			
Erosion Control	-	-	The effective adaptation	-
Work			measures on water	
			resources conservation are	
			basically considered as	
			combination of the	
			structural measures related	
			to water resources	
			utilization (shown in	
			"Reduce sediment flow" 2.	

Alternative Measures	Technical Aspect	Environment	Efficiency	Evaluation
			Water Resources Utilization) and non-structural measures on water resources conservation. As for non-structural measures on water resources conservation, control for using pesticide or management of water level in a river are considered as applicable.	
2. Water Resource	es Utilization	The rehabilitation	The rehabilitation of tertiany	0
of the irrigation channel	irrigation channel is much easier and more practical than constructing a new irrigation channel.	work will be conducted only at the current irrigation channel and will not require additional area. Thus, significant environmental impact will not be assumed.	canal is considered as efficient to the reduce water loss and economical than constructing new irrigation channel.	
Replacement of the water pipe	Same as the rehabilitation of the irrigation channel, replacement of water pipe is easier and more practical than constructing new water pipe.	Same as the rehabilitation of irrigation channel, replacement work will be conducted only at the current water pipe area and additional area will not be required. Thus, the significant environmental impact will not be assumed.	Same as rehabilitation of the irrigation channel, replacement of water pipe is considered as efficient and economical than constructing a new water pipe.	0
Reduce sediment flow (sand pocket, check dam, groundsill, and bank protection)	<u>Groundsill</u> : Groundsill is effective to improve the sediment while it will have a possibility to cause scoring at the downstream area.	<u>Groundsill:</u> Groundsill will have a possibility to change the habitation conditions of aquatic fauna and landscape.	<u>Groundsill:</u> The groundsill is able to improve the sedimentation by stabilizing the riverbed from an abrasive action. The construction cost of the groundsill itself will not be high, but the cost for regular maintenance will be required.	X
	Bank Protection: There will be no complicated technical issues although it depends on the actual field condition.	Bank Protection: The bank protection is considered as the changing aquatic fauna at the river bank area though it depends on the type of bank protection.	Bank Protection: Same as groundsill, bank protection is able to improve sedimentation by stabilizing river bank from an abrasive action, but regular maintenance will be required.	×

Alternative Measures	Technical Aspect	Environment	Efficiency	Evaluation
	<u>Check Dam:</u> There will be any no complicated technical issues on construction and operation of check dam although it depends on the topographical and geographical condition.	<u>Check Dam:</u> A check dam will require a large area and is considered to cause quite a large scale of natural and social environmental impact although the possible impact is dependent on the location and scale of a structure	<u>Check Dam:</u> This method may be functioned to improve the sedimentation conditions. However, natural and social environmental impact is considered as quite large. Overall, this method is considered as not efficient.	×
	Sand Pocket: Same as check dam, there will be no complicated technical issues on construction and operation of sand pocket although it depends on the topographical and geographical condition.	Sand Pocket: A sand pocket will require a large area and is considered to cause quite a large scale of natural and social environmental impact although the possible impact is dependent on the location and scale of a structure.	Sand Pocket: Due to the same reason as the check dam, this method is also considered as not efficient.	X
Construction of new dams, ponds, and other storage structures		-	New dams that are studied by BBWS Brantas were examined and a total of seven dams were selected as recommended/applicable adaptation measures although some of the new dam construction will contain natural and social environmental impact. The details are shown in Table 6.4.7 and Supporting Report J.	0
Heightening of existing dams	There will be no complicated technical issues on the heightening of the Sutami Dam. However, regular sediment management in the Sutami Dam will be required for an effective dam operation.	Acquiring some area will be required for the heightening of the Sutami Dam.	From the existing dams, the heightening of the Sutami Dam is considered as efficient from its location and the largest storage capacity in the Brantas River basin.	0
Construction of desalination plant	It will create water but needs large volume of energy in the process of creating water.	There will be an impact to the aquatic flora and fauna due to a discharge of concentrated water, thermal discharge, or large volume of sludge	The cost for construction and operation of a plant is considered as high.	×

Alternative	Technical Aspect	Environment	Efficiency	Evaluation
Utilize treated water (recycle plant)	-	-	To reduce water demand, recycle plant is necessary to be examined by each industrial company (This shall be examined	-
3. Water Destruc	tive Force Control		separately from the Project).	
Heightening of the existing dikes	There will be no complicated technical issues on the heightening existing dikes.	The heightening of the existing dikes is considered not to cause any significant natural and social environmental impact	It is efficient to heighten the existing dikes to protect the areas along the river.	0
Construction of new dikes	There will be no any complicated technical issues on constructing new dikes.	There will be an impact to natural and social environment since the area currently has no existing structure.	Other influent areas do not have dike. Thus, construction of a new dike in these areas is necessary.	0
Allocation of flood control space in new dams and heightening of existing dams	The reservoir volumes are firstly allocated to the water supply and the remaining capacity will be allocated for flood control. In this case, there is a possibility to decrease water volumes for water utilization if sedimentation occurs although it depends on the function and capacity of a dam.	There will be an impact on water utilization in case enough water volumes for water utilization is not secured.	It will be economical compared with other structural measures. However, a measure for sedimentation is necessary to be additionally applied to let this method function. Thus, it is less efficient compared with the other measures.	×
Construction of retarding basin (artificial)	The construction of the retarding basin will not be complicated than widening/improving the existing rivers.	The retarding basin can be used as a green area under the normal operation condition, and there is a record in Japan that such green area can be developed as a rich habitation of flora and fauna. However, since the retarding basin will require large scale of land acquisition and change in land use, the impact to social environment is considered as significant.	The flood will be effectively controlled for a short period compared with the normal river condition (i.e., without retarding basin). In addition, the construction cost is considered as economical compared with constructing a structure.	×

Note: Evaluation, O: Recommendable, X: Not recommendable, -: Not applicable Source: JICA Project Team 2 Adaptation measures for "Erosion Control Work" in Water Resources Management are considered as combination of structural measures for "Reduce sediment flow" in Water Resources Utilization and non-structural measures in Water Resources Management. Accordingly, there were no structural measures established in the Water Resources Management. As for the "Reduce sediment flow" in water utilization, there was no recommendable structural measures. Accordingly, only the non-structural measures such as using coagulant against the fine-grained sediment, dredging/excavating Sabo facilities and watershed conservation were recommended as adaptation measures.

In the process of alternative examinations/ scoping, the examinations for selecting new dams from the lists of dams in RENCANA for the Brantas River basin was conducted. Among the 28 dams listed in RENCANA, a total of seven dams were selected from the technical, efficiency, and environmental viewpoints. The environmental issues are explained in Supporting Report J.

(3) Impact Evaluation for the Selected Structural Measures

These specific structural adaptation measures selected in Table 6.4.7 were conducted.

Generally, the conceivable environmental and social impacts by the Project were preliminary identified based on the Project description and general environmental and social conditions in and around the Project area. Then, the impacts of pollution, natural environment and social environment, health and safety, and emergency risk are evaluated. However, there were many restrictions for conducting scoping in the Project. Accordingly, scoping for the Project was conducted with the conditions and method as explained below:

- For constructing new dams, there were studies for the selected seven dams. Thus, the scale and location examined in the existing studies were used for scoping.
- ➢ For rehabilitating irrigation canal and distribution pipelines of PDAMs, there was no specific information on scale and location. Thus, the general idea for rehabilitating irrigation canal and distribution pipelines was used for scoping.
- For changing water sources from the surface to groundwater, the location and size of wells were not specifically examined in the project although necessary numbers of wells at the region-wise were examined. Thus, scoping was conducted to a general idea for constructing new wells.

The environmental and social impacts were evaluated as A to D in accordance with the following criteria;

- > A (+/-): The significant positive/negative impact is expected at this study level.
- > B(+/-): The positive/negative impact is expected but not significant at this study level.
- C: The extent of the impact is unknown or not clear. Further examination is needed. It should be taken into consideration that impacts may become clear as the study progresses.
- **D**: Negligible or no impact is expected at this study level.

The summary of scoping results is explained in Table 6.4.9 and detail study results are explained in Supporting Report J.

No.	Name of Dams in RENCANA	Evaluation	Project Status
1	Genteng I Dam	Selected	F/S report was prepared in 2002
2	Tugu Dam	-	Currently under construction
3	Beng Dam	-	F/S report was prepared in 2003
4	Kedungwarak Dam	Selected	F/S report was prepared in 2005
5	Ketandan Dam	Selected	F/S report was prepared in 2005
6	Semantok Dam	-	Currently under construction
7	Kuncir Dam	Selected	F/S report was prepared in 2008
0	Pahadan Dam	Selected	Study was conducted in 1985 as a part of M/P
0	Babadan Dam		for the Brantas River basin
0	Lasti III Dam	-	Project status was not sure though there was a
9	Lesu III Dam		F/S report prepared in 1995
10	Kananian Dam	-	This is included as a part of M/P for the
10	Kepanjen Dam		Brantas River basin conducted in 1985
11	Lumbang Sari Dam	-	This is included as a part of M/P for the
11	Lumbang San Dam		Brantas River basin conducted in 1985
12	Kesamben Dam	-	Review F/S report was prepared in 1982
12	Konto II Dam	Selected	This is included as a part of M/P for the
15	Konto II Dani		Brantas River basin conducted in 1985
14	Bagong Dam	-	F/S report was prepared in 2013 and LARAP
14	Bagoing Dann		was prepared in 2016
15	Kampak Dam	Selected	F/S report was prepared in 2016
16	Nglemi Dam	-	Report was not available
17	Sumber Agung Dam	-	Report was not available
18	Kembangan	-	Report was not available
19	Kali Lanang	-	Report was not available
20	Marmoyo Dam	-	Brief material report was prepared in 2010.
21	Brangkal – Plandaan Dam	-	Report was not available
22	Kembar Dam Jenesgelaran –	-	Report was not available
22	Jurangbang		
23	Kopen Dam	-	Report was not available
24	Jarak Dam	-	Report was not available
25	Gembrong Dam	-	A study was prepared in 2010
26	Jatijejer Dam	-	Report was not available
27	Jinggring Dam	-	Brief material report was prepared in 2016
28	Sabo Dinoyo Dam	-	Report was not available

Table 6.4.7Examination Results for Selecting Dam

Source: JICA Project Team 2

Table 6.4.8Selected Structural Measures

Categories			Structural Adaptation Measures	
Water	Res	ources	1. Constructing new dams	
Utilization			2. Heightening the Sutami dam	
			3. Rehabilitation works of tertiary irrigation canal	
			4. Replacement of the PDAMs' pipeline	
			5. Constructing new wells	
			6. Constructing sand pocket for dredging and using coagulant	
			against fine-grained sediment	
Water Dest	ructive	Force	1. Heightening the existing dikes	
Control			2. Constructing new dikes	

	Natural		Social Environment			
	Envir	onment		-		
	Protected	Ecosystem	Land	Livelihood	Brief Description of Possible Major	
	Area		Acquisition		Impacts	
			and Resettlement			
1. Water Res	ources Util	ization				
Constructing					Constructing new dams requires land	
new dams	$D \sim R_{-}$	$B_{-} \sim \Lambda_{-}$	$\mathbf{B}_{-} \sim \mathbf{A}_{-}$	B/B_+^*	acquisition and changing land use, which	
	D D-	D- A-	D- A-	D/D	may cause impact on the ecosystem,	
TT 1 4 1					resettlement and livelihood.	
Heightening					Heightening may require some areas	
Dam					impact may be small compared with	
Dum	B-	B-	В-∼А-	B-/B+	constructing new dams, land acquisition	
					and changing land use may cause	
					impacts to the ecosystem, resettlement	
					and livelihood.	
Rehabilitation					Rehabilitation may be implemented	
of tertiary					pipelines. Thus, there may not be any	
Callal	D	D	D	B-/B+	negative impacts although temporary	
					limitation of irrigation may be occurred	
					during the rehabilitation work.	
Replacement					Replacement may be implemented	
of PDAMs					within the area of the PDAM pipelines.	
pipeline	D	D	D	B-/B+	Thus, there may not be any significant	
					limitation of water use may be occurred	
					during the replacement work.	
Changing					The impact on the resettlement and land	
water source					use may be very limited. However, while	
from surface					the water volume may be secured due to	
to	D∼B-	B-	B-	B-/B+	new wells, there is a possibility that the	
by					surround areas may be affected	
constructing					surround areas may be arrected.	
new wells						
2. Water Des	tructive Fo	rce Control		1	r	
Heightening					Heightening the existing dikes will not	
the existing	D∼B-	B-	B-	B-/B+	require additional areas. So, the impact	
аке					considered as small	
Constructing					Constructing dikes requires some areas.	
new dikes	Do D	р	D	D /D -	Although the relocation impact at the	
	D,~R-	В-	В-	D- / B +	rural area will be small, it will be caused	
					at some extent in the medium area.	

Table 6.4.9	Summary of Impact E	Evaluation for the S	Selected Structural Measures
-------------	---------------------	----------------------	------------------------------

Note: * Impact related to number of affected households or size/ location of land to be acquired is not able to be exactly identified from existing information. In case that large number of households will be affected or large area will be acquired, impact to livelihood may be categorized as A-. Source: JICA Project Team 2

Source: JICA Project Team 2

The requirements of the environmental and social considerations based on the project description currently examined for each specific adaptation measure were confirmed. There was no specific project description for rehabilitating the irrigation canal and distribution pipelines as the previous section explained, the environmental requirements were examined in general. In case resettlement will be identified, preparation of a resettlement action plan is

necessary following to the international standards although its preparation is not necessarily mandated under the Indonesian legal framework of land acquisition and resettlement. Table 6.4.10 to Table 6.4.12 shows the confirmation results.

	Kedung warak	Babadan	Kont II	Kuncir	Genteng I	Ketandan	Kempak
Environmental Requirement	AMDAL						
Resettlement	No ¹	No ²	No ²	Large	Large	No ³	Small-Large

 Table 6.4.10
 Environmental Requirements for Constructing Selected Seven Dams

Note: 1. F/S report (2005) showed 644 houses in two villages would be affected. According to the satellite image, however, the houses were not confirmed for the area where we visited. Thus, the resettlement was regarded as "no" in this report.

2. There was no information on the land acquisition impact in the M/P report. Houses were not confirmed around the area where the JICA Project Team 2 visited. Accordingly, the resettlement was regarded as "no" in this report. There were houses at the surrounding area of the visited point as per satellite image.

3. M/P report (1895) showed ten affected houses although the houses were not confirmed around the area where the JICA Project Team 2 visited. Thus, the resettlement was regarded as "no" in this report. There were small number of houses at the surrounding area of the visited point as per satellite image.

Source: JICA Project Team 2

Table 6.4.11Environmental Requirements for Rehabilitating Canal and Pipelines and
Changing Water Sources

	Environmental Requirement	Resettlement
Rehabilitating irrigation canal and distribution pipelines of PDAMs	SPPL	Small (Not required unless the area for canal or pipelines is expanded)
Changing water source from surface to groundwater by constructing new wells	UKL-UPL or SPPL	Small (As per location and size of wells)

Source: JICA Project Team 2

Table 6.4.12 Environmental Requirements for Dike Construction

	Widas River (Rural Area)	Sadar River (Medium Area)	Brangkal River (Medium Area)	Tawing River (Rural Area)
Environmental Requirement	AN		MDAL	
Resettlement	Small	Small	Small-Medium	Small-Medium

Source: JICA Project Team 2

(4) Provisional Mitigation Measures to Possible Environmental Impact by Implementing Selected Adaptation Measures

The mitigation measures for the possible negative impact of the selected adaptation measures were examined as shown in Table 6.4.13.

Table 6.4.13	Summary of Provisional Mitigation Measures to Possible Environmental Impact by
	Applying Selected Adaptation Measures

	Possible Major Impacts	Provisional Mitigation Measures to Possible Negative Impact of Selected Adaptation Measures
Water Resources	s Utilization	
Constructing new dams	 [Natural Environment] Terrestrial and aquatic flora and fauna will be impacted due to decreasing green area and decreasing river flow. Aquatic flora and fauna at the downstream may be more seriously affected than the terrestrial flora and fauna due to decreasing water quality and reducing water volume. There is a possibility to change the hydrological conditions due to construction of new dams. There is a possibility that a new dam construction will affect topography or geology in case it is not stable. [Social Environment] Constructing new dams requires land acquisition and changing land use, which may cause impact on resettlement and livelihood. 	 [Natural Environment] 1&2 Keep environmental flow by controlling water flow to downstream 3. Examine the appropriate design of the dam and a construction method to minimize the impact to topography or geology [Social Environment] Preparing a relocation/resettlement plan by enhancing the participation of the project affected households through holding consultation meetings in a timely manner and obtaining an agreement from them before staring relocation/resettlement.
Rehabilitation of tertiary canal	 [Natural Environment] ➢ Rehabilitation may be implemented within the area of current canal. Thus, there may not be any negative impacts. [Social Environment] 1. There may be temporary limitation of water supply to irrigation areas. 2. There is a possibility of a temporary disturbance of access to social infrastructure during rehabilitation works. 	 [Social Environment] 1. Schedule rehabilitation works to minimize the limitation of supplying water to irrigation areas 2. Secure accessibility to social infrastructure by arranging the deter roads
Replacement of PDAMs pipeline	 [Natural Environment] 1. Replacement work may be implemented within the area of the current pipelines. Thus, there may not be any negative impacts. [Social Environment] 1. There may be a temporary limitation of water supply to the households during replacement work 2. There is a possibility of temporary disturbance of access to social infrastructure during the replacement works 	 [Social Environment] 1. Schedule the replacement works to minimize the limitation of water supply to households 2. Secure accessibility to social infrastructure by arranging the deter roads
Changing water source from surface to groundwater by constructing new wells	 [Natural Environment] Constructing new wells requires a small area, and the areas to install new wells are the urbanized areas. Thus, the impact to natural environment is considered as limited. [Social Environment] 1. While water volume may be secured due to new wells, there is a possibility that the water quality and water flow at the surround areas may be affected. 	[Social Environment] 1. Examine areas and depth of wells considering the conditions of wells at the surrounding area.

	Possible Major Impacts	Provisional Mitigation Measures to Possible Negative Impact of Selected
Heightening	[Natural Environment]	Adaptation Measures
of the existing dam (Sutami Dam)	 There is a possibility that the water volume and water quality at the downstream may be deteriorated. [Social Environment] Heightening may require some areas behind the existing dam. Although the impact may be smaller than constructing new dams, land acquisition and changing land use may cause impacts to resettlement and livelihood. 	 Keep environmental flow by controlling water flow to downstream. [Social Environment] Preparing relocation/resettlement plan by enhancing participation of project affected households through holding consultation meetings in timely manner, and obtaining agreement from them before staring relocation/resettlement.
Construction of sand pocket for dredging	 [Natural Environment] Constructing sand pocket requires a large area, which may cause an impact on terrestrial and aquatic flora and fauna. [Social Environment] 1. Constructing sand pocket requires land acquisition and changing land use, which may cause impact on resettlement and livelihood. 	 [Natural Environment] 1. Examine the design of sand pocket to minimize necessary construction areas, and cut trees only at the designated area. [Social Environment] 1. Preparing relocation/resettlement plan by enhancing participation of project affected households through holding consultation meetings in timely manner, and obtaining agreement from them before staring relocation/resettlement
Water Destruct	tive Force Control	
Heightening the existing dikes	 [Natural Environment] 1. Heightening the existing dikes will include bank protection and it will affect aquatic flora and fauna at the river bank areas. [Social Environment] > Heightening the existing dike will not require land. Thus, there will not be any impact of land acquisition and resettlement. 	[Natural Environment]1. Use environmentally friendly method of bank protection
Constructing new dikes	 [Natural Environment] 1. Constructing dikes may disturb the animals to cross a river. 2. Same as heightening the existing dikes, constructing new dikes may affect aquatic flora and fauna at the river bank areas. [Social Environment] 1. Constructing new dikes requires land acquisition. For the areas of less population such as rural areas, altering land use may be necessary while the resettlement will be at medium areas. 	 [Natural Environment] 1. Check the animal movement at the dike construction areas, and examine the necessity to arrange the roads for animal moving. 2. Use environmentally friendly method of bank protection [Social Environment] 1. Preparing the relocation/resettlement plan by enhancing the participation of the project affected households through holding consultation meetings in a timely manner and obtaining agreement from them before starting the relocation/resettlement. For altering land use, prepare the income rehabilitation plan by holding the consultation with eligible households in timely manner.

(5) Stakeholder Meetings

A total three times of Stakeholder Meetings (SHM) were held to explain the project outline and examination results as well as having an opinion exchange. The summary of each stakeholder meeting is shown in Table 6.4.14 and related documents of SHM are explained in Supporting Report J.

	Date and Venue	No. of	Major Discussion Points
		Participants	
1st SHM	5 Feb. 2016 10:00 – 11:30 Hall BBWS Brantas, Surabaya	32 persons	 There was a question whether the project dealt with the climate change only or not. It was answered by the JICA Project Team 2 that other factors would consider separately. There was a suggestion to make a guideline of the proper water management to improve the current problematic conditions of water use. There was a question of difference between SEA and EIA. It was answered by the JICA Project Team 2 that SEA evaluates broader issues at more comprehensive level through obtaining feedback from key stakeholders.
2nd SHM	15 Sep. 2016 15:00 – 16:30 Swiss Belinn Tunjungan, Surabaya	33 persons	 There was a request to explain the calculation method of the maximum flood discharge in 2050. It was answered by the JICA Project Team 2 that two approaches (i.e. i) calculation for the large catchment area, and ii) calculation for tributaries as small catchment area). There was a comment of importance on people's education since the types of problem may be differed at the upper, middle and downstream. It was answered from the JICA Project Team 2 that the continuous education by NGO is important. There was a comment of weakness on law enforcement to implement regulations though there were many regulations. It was suggested by the JICA Project Team 2 to mention law enforcement when POLA is revised.
3rd SHM	29 Nov. 2017 9:00 – 11:30 Regent's Park Hotel, Malang	60 persons	 There was a comment to examine water quality in SEA since water quality in the Brantas River basin was serious. It was answered by the JICA Project Team 2 that water quality was examined in this Project and the examination result would be included in the final report. There was a comment to examine more rational adaptation measures and the possibility to heighten the Sutami Dam. It was answered by the JICA Project Team 2 that more rational adaptation measures were examined. As for Sutami Dam, behind the existing Sutami Dam (not heightening Sutami Dam itself) would be heightened

Table 6.4.14Summary of Stakeholder Meeting

6.5 Formulation of Priority Actions, Preliminary Cost Estimation and Implementation Schedule for Adaptation and Mitigation Measures against Climate Change Impacts

6.5.1 Rainstorms and Floods

- (1) Methodology
- 1) General

As there is no manual or guideline for economic analysis of flood protection sector in Indonesia, the economic evaluation is conducted based on the "Manual of Economical Investigation of Flood Disaster" developed by the Ministry of Land, Infrastructure and Transportation and Tourism (MILT), in Japan.

Basically, the reduced flood damages of many kinds of assets influenced by the project implementation are considered as the economic benefits of the project. Based on this manual, the flood damages are broadly divided into categories of direct damages and indirect damages. The direct damages are physical damage on assets and crops caused by flood, while indirect damages are other economic losses such as suspension of economic activities. The categorization of damage items by the manual and the quantified economic damages in this Project are shown in Table 6.5.1

Categorization of Damage	Damage Item	Calculation in this Analysis	
	House	Done	
	Household Asset	Done	
	Fixed Asset for Business Use	-	
Direct Damage	Stock Asset for Business Use	-	
Direct Damage	Fixed Asset for Agricultural and Fishery Household Use	-	
	Stock Asset for Agricultural and Fishery Household Use	-	
	Agricultural Crops	Done	
	Infrastructure	Done	
Indirect Damage	Operation Loss of Enterprise due to Business Suspension		
	Income Loss of the Household due to the Expense from the Flood	ne Done, assumed at 10% of House and Household Asset Damage	
	Suspension of Transportation		
	Economic Loss by Suspension of Lifeline		
	Mental Damage by Flood		

 Table 6.5.1
 Major Direct and Indirect Damage

Source: JICA Project Team 2

2) Each Damage Item

The formula for estimating of each damage item is described in Table 6.5.2.

ladie 6.5.2 Estimatio	n Formula for Major Direct and Indirect Damage
Damage Item	Formula for Estimating Damage Calculation
Damage to Houses	"Number of Affected Household" x "Average Value of House" x "Damage Rate"
Damage to Household Asset	"Damage to House" x 10%
Damage to Agricultural Crops	"Affected Area of Agricultural Field" x "Crop Yield " x "Economic Value of Paddy" x "Damage Rate"
Damage of Infrastructure	"Direct Damage of House and Household Asset" x 131.1%
Indirect Damage	"Direct Damages" x 10%

 Table 6.5.2
 Estimation Formula for Major Direct and Indirect Damage
3) Estimation of the Expected Annual Average of Damage Reduction

To estimate "the expected annual average of damage reduction", firstly "averted damage by project" in each of the return period is calculated; secondly "average damage reduction" and "provability" of each return period are multiplied to calculate the "annual average damage reduction".

The "expected annual average damage reduction", which shows the difference of the damage under "With" and "Without" case scenario will be the economic benefit in the calculation of EIRR in ECONOMIC ANALYSIS AMD PROJECT EVALUATION in Supporting Report L.

		Flood Da	mage			
Return Period	Without Project (a)	With Project (b)	Averted Damage by Project (a) – (b)	Average of Damage Reduction	Provability	Annual Average Damage Reduction
1			D0=0			
year			D0-0	(D0+D1)/2	1 - (1/2) = 0.500	d1=(D0+D1)/2
2	L1	1.2	D1 = L1 - L2	(00+01)/2	1 (1/2) 0.500	x 0.500
years	D 1	112	DI EI EZ	(D1+D2)/2	(1/2)- $(1/5)$ = 0.300	d2=(D1+D2)/2
5	1.3	1.4	D2=L3-L4	(01102)/2	(112) (115) 01500	x 0.300
years	2.5	D .		$(D^{2}+D^{3})/2$	(1/5)-(1/10)=0.100	d3=(D2+D3)/2
10	1.5	1.6	D3=L5-L6	(02:03)/2	(175) (1710) 0.100	x 0.100
years	1.5	LU	D5 E5 E0	(D3+D4)/2	(1/10) - (1/20) = 0.050	d4=(D3+D4)/2
20	L7	1.8	D4=L7-L8	(05+01)/2	(1/10) (1/20) 0.050	x 0.050
years	27	LU	DILIE	(D4+D5)/2	(1/20) - (1/30) = 0.017	d5=(D4+D5)/2
30	19	T 10	D5=I 9-I 10	(D4+D3)/2	(1/20) (1/50) 0.017	x 0.017
years	L)	110	D5 E7 E10	(D5+D6)/2	(1/30)- $(1/50)$ = 0.013	d6=(D5+D6)/2
50	T 11	T 12	D6=I 11-I 12	(D3+D0)/2	(1/50)-(1/50) 0.015	x 0.013
years	LII	LIZ	D0-L11-L12	(D6+D7)/2	(1/50) - (1/100) = 0.010	d7=(D6+D7)/2
100	T 12	T 14	D7-I 13 I 14	(D0+D7)/2	(1/30)-(1/100)-0.010	x 0.010
years	L13	L14	D/-L13-L14			
Expec	ted Annua	Average		$d1 \pm d2 =$	-d3+d4+d5+d6+d7	
Damage Reduction		a1+a2+a3+a4+a3+a0+a/				

 Table 6.5.3
 Estimation Method of Expected Average Annual Damage Reduction

Source: JICA Project Team 2

(2) Structural Measures

The structural measures are summarized in Table 6.5.4.

Scenario	River	Discharge (m^{3}/s)	Туре	Height	Length
Medium	Widas	710 (Upper)	Dike(New)+FM	1.9^{*1}	6.5 ^{*1}
Wiedlam	Widub	/10 (Opper)	Direction)	1.2^{*2}	11.4^{*2}
				1.5*3	34.3*3
	Ngotok	1,457	Dike(New)	1.3	43.1
	Sadar	130	Dike(New)	0.5	6.8
	Tawing	397	Dike(New)	2.1	26.6
	Porong	1,710	Dike(Heightening)	0.8	40.1
Low	Widas	680	Dike(New)+FM	1.9*1	6.5^{*1}
				1.2^{*2}	11.4^{*2}
				1.5*3	34.3 ^{*3}
	Ngotok	947	Dike(New)	0.8	24.1
	Sadar	130	Dike(New)	0.5	6.8
	Tawing	352	Dike(New)	1.8	25.8
	Porong	1,620	Dike(Heightening)	0.5	28.4
High	Widas	680	Dike(New)+FM	1.9^{*1}	6.5^{*1}
_				1.2*2	11.4^{*2}
				1.5*3	34.3*3
	Ngotok	2,079	Dike(New)	2.1	62.9
	Sadar	210	Dike(New)	0.7	12.5
	Tawing	335	Dike(New)	1.8	20.2
	Porong	2,030	Dike(Heightening)	1.0	44.3

Table 6.5.4Structural Measures for Floods

Note: FM means Flood Management, *1: Upper Widas, *2: Kedung and Kuncir, *3: Lower Widas Source: JICA Project Team 2

(3) Preliminary Cost Estimation

The cost of the following structural measures for water resources management is estimated.

Target flood control measures

- New dike construction
- Dike heightening

Procedure of cost estimation

- i) Set the standard cross sections for each target river
- ii) Calculate the unit cost of the dike embankment based on the cost of each works such as earth fill, sod facing, stripping and surface coarse and draw the unit cost curve
- iii) Calculate the construction at several cases based on the assumed unit cost
- 1) Basic condition

The basic condition for the preliminary cost estimation is as follows:

- Convert the unit cost at 2011 value to the cost at 2017 value
- > The project cost is calculated based on the following items.
 - Direct cost
 - Compensation cost : Land acquisition cost, resettlement cost
 - Administration cost
 - Engineering service

- Contingency cost : Physical contingency, Price escalation
- Value-added tax (VAT)
- According to the past study reports and implementation programs of other similar projects, each of the cost rate is set as follows.
 - Administration cost : 10% of direct cost
 - Engineering service : 12% of direct cost
 - Physical contingency : 7% of direct cost, administration cost, compensation cost, engineering service and price escalation
 - Price escalation : No consideration in the Project
 - Compensation cost : 40% of direct cost (Land acquisition cost and resettlement cost)
 - VAT : 10% of direct cost, engineering service, physical contingency, and price escalation
- 2) Cost of Heightening of Dike Construction

The direct cost of the dike heightening for the Porong River is shown in Table 6.5.5

Scenario	Medium	Low	High
Height (m)	0.8	0.5	1.0
Length (km)	40.1	28.4	44.3
Direct Cost (IDR Mil.)	42,758	19,675	59,433

 Table 6.5.5
 Direct Cost of Dike Heightening for the Porong River

Source: JICA Project Team 2

3) Cost of New Dike Construction

The direct cost of the new dike construction to each river is shown in Table 6.5.6 to Table 6.5.9.

Table 0.5.0 Direct Cost of the Whas River						
	Upper		Kedung & Kuncir	Lower		
Height (m)		1.9	1.2		1.5	
Length (km)		6.5	11.5		34.3	
Direct Cost (IDR Mil.)					54,362	

Table 6.5.6	Direct Cost of t	he Widas River
14010 0.0.0	Direct Cost of th	ic withas inver

Source: JICA Project Team 2

Table 6 5 7	Direct	Cost of t	he Ngatak	River
1 abic 0.3.7	υπιιί		ne ngotok	INIVUI

		8	
Scenario	Medium	Low	High
Height (m)	1.3	0.8	2.1
Length (km)	43.1	24.1	62.9
Direct Cost (IDR Mil.)	32,438	11,816	75,579

Source: JICA Project Team 2

Table 6.5.8 Direct Cost of the Sadar River	Table 6.5.8	Direct Cost of the Sadar River	
--	-------------	---------------------------------------	--

Scenario	Medium	Low	High
Height (m)	0.5	0.5	0.7
Length (km)	6.8	6.8	12.5
Direct Cost (IDR Mil.)	2,582	2,582	6,097

Scenario	Medium	Low	High			
Height (m)	2.1	1.8	1.8			
Length (km)	26.6	25.8	20.2			
Direct Cost (IDR Mil.)	38,851	31,760	26,285			

Table 6 5 9	Direct	Cost	of the	Tawing	River
1 abic 0.3.7	Difte	CUSI	or the	Tawing	NIVU

4) Project Cost

The project cost is estimated based on several assumptions as explained above. Table 6.5.10 to Table 6.5.14 show the project cost of each river basin.

			(Unit: IDR Mil.)
Scenario		Medium	Low	High
Direct Cost	а	42,758	19,675	59,433
Compensation Cost	b=a x 0.4	17,103	7,870	23,773
Administration Cost	c=a x0.1	4,276	1,967	5,943
E/S Cost	d=a x 0.12	5,131	2,361	7,132
Price Escalation		0	0	0
Physical Contingency	e = (a+b+c+d)x0.07	4,490	2,066	6,240
Sub-total	f	73,758	33,939	102,521
VAT	g=f x 0.1	7,376	3,394	10,252
Total	f+g	81,134	37,333	112,773

Table 6.5.10	Project	Cost of the	Porong	River
14010 0.5.10	TTUJECE	Cost of the	TUTUNE	IN VU

Source: JICA Project Team 2

	3		(Unit: IDR Mil.)
Scenario		Medium, Low, High	
Direct Cost	a		54,362
Compensation Cost	b=a x 0.4		21,745
Administration Cost	c=ax0.1		5,436
E/S Cost	d=a x 0.12		6,523
Price Escalation			0
Physical Contingency	e = (a+b+c+d)x0.07		5,708
Sub-total	f		93,774
VAT	g=f x 0.1		9,377
Total	f+g		103,151

Source: JICA Project Team 2

Table 6.5.12Project Cost of the Ngotok River

			(Unit: IDR Mil.)
Scenario		Medium	Low	High
Direct Cost	а	32,438	11,816	75,579
Compensation Cost	b=a x 0.4	12,975	4,727	30,231
Administration Cost	c=a x0.1	3,244	1,182	7,558
E/S Cost	d=a x 0.12	3,893	1,418	9,069
Price Escalation		0	0	0
Physical Contingency	e = (a+b+c+d)x0.07	3,406	1,241	7,936
Sub-total	f	55,956	20,384	130,373
VAT	g=f x 0.1	5,596	2,038	13,037
Total	f+g	61,552	22,422	143,410

	U			(Unit: IDR Mil.)
Scenario		Medium	Low	High
Direct Cost	a	2,582	2,582	6,097
Compensation Cost	b=a x 0.4	1,033	1,033	2,439
Administration Cost	c=a x0.1	258	258	610
E/S Cost	d=a x 0.12	310	310	732
Price Escalation		0	0	0
Physical Contingency	e = (a+b+c+d)x0.07	271	271	640
Sub-total	f	4,454	4,454	10,518
VAT	g=f x 0.1	445	445	1,052
Total	f+g	4,899	4,899	11,570

Table 6.5.13 Project Cost of the Sadar River

Source: JICA Project Team 2

1:	able 6.5.14 Project (Cost of the Tav	ving River	
			(Unit: IDR Mil.)
Scenario		Medium	Low	High
Direct Cost	а	38,851	31,760	26,285
Compensation Cost	b=a x 0.4	15,540	12,704	10,514
Administration Cost	c=a x0.1	3,885	3,176	2,628
E/S Cost	d=a x 0.12	4,662	3,811	3,154
Price Escalation		0	0	0
Physical Contingency	e = (a+b+c+d)x0.07	4,079	3,335	2,760
Sub-total	f	67,017	54,786	45,341
VAT	g=f x 0.1	6,702	5,479	4,534
Total	f+g	73,719	60,265	49,875

Table 6.5.14 Project Cost of the Tawing River

Source: JICA Project Team 2

5) Economic Evaluation

The economic evaluation is conducted for the major flood control measures; where there are 12 economic analyses are made, i.e., in the four river basins (Widas, Sadar, Ngotok, and Tawing) under three climate scenarios (low, medium, high). The results of the economic evaluation are summarized in Table 6.5.15.

From the table the following considerations are made:

- Since the proposed measures for the Ngotok, and Sadar River basins have a considerably high EIRR in all cases of the scenarios which is greater than 9% to 12% of the minimum required discount rates for international donors, they seem to be economically feasible.
- In case of EIRR for Widas and Tawing River basin, they are lower than the minimum required rate therefore it is recommended that the plans should be reviewed and/or modified if necessary.
- ➤ This analysis is a rough estimation as the future climate change is not easy to forecast. Considering all of the EIRRs of the four river basins, there is so much difference among them; it is recommended that these plans should be modified if necessary, considering the climate change and other situation in the future.

Scenario	River Basin	EIRR (%)	NPV (Billion IDR)	B/C
	Widas	3.0%	-31	0.4
Low	Ngotok	82.7%	101	9.3
Low	Sadar	118.4%	51	22.9
	Tawing	6.4%	-12	0.7
Medium	Widas	5.7%	-27	0.6
	Ngotok	50.9%	194	5.3
	Sadar	117.6%	68	23.0
	Tawing	4.9%	-26	0.6
	Widas	8.8%	-8	0.9
High	Ngotok	41.3%	337	4.2
	Sadar	74.4%	68	10.5
	Tawing	7.2%	-10	0.8

 Table 6.5.15
 Summary of Economic Evaluation (Rainstorms and Floods)

6) Possible Fund Source of the Project

Most of the fund sources of the measures proposed in this project have not been decided. However, the most probable fund source of these measures would be the national budget (*Anggaran Pendapatan dan Belanja Negara*; APBN) as the construction or heightening of the dike is normally not conducted by donor project considering that the necessary amount of fund is not comparatively much and the necessary technical level is not high.

In order to secure the APBN, the necessary procedures should be followed.

(4) Non-Structural Measures

All considerable non-structural measures against rainstorms and floods shall be carried out. The following measures are considered. The detail explanation of the non-structural measures is mentioned in Section 6.3.1.

- 1) Upgrading of Flood Forecasting and Warning System (FFWS),
- 2) Community-based Early Warning System (EWS),
- 3) Preparation of the Hazard Map for Several Probable Floods,
- 4) Designation of the Evacuation Center from Existing Public Facilities and Construction of Evacuation Center
- 5) Strengthening of Flood Prevention Organization,
- 6) Preparation of Business Continuity Plan (BCP) and area Business Continuity Management (BCM) by Private Companies and Local Governments,
- 7) Preparation of Flood Action Plan, and
- 8) Land Use Control to Frequently Flood Inundation Area.

6.5.2 Drought

- (1) Structural Measures
- 1) Replacement of PDAM's Pipeline

As described in the above section 6.3.2, the replacement of pipelines in order to reduce the ratio of non-revenue water would be implemented. The cost of repairing pipe for non-revenue water is shown in Table 6.5.16.

2) Construction of Recycle Plant

For the reduction of industrial water demand, the adaptation measure uses to save industrial water is the installation of recycle plant. The re-use ratio from sewage is about 1.4% in Japan. Therefore, it is assumed that industrial water is reduced by 1% of the industrial water demand. The industrial water that will be saved is $0.210 \text{ m}^3/\text{s}$ (18,144 m $^3/\text{day}$).

The unit cost of construction of the recycling plant of sewage treatment is applied which is referred to the data of existing project in Indonesia. The cost of the recycling plant for sewage water is shown in Table 6.5.17.

								USD1=13	3,341.82IDR
	Dopulation					Total Cost	Total Cost	Pipe Replacen	nent Initial Cost
City and Regency	(person)	Total (km)	NRW 2010	NRW2050	Reduction	(USD)	(USD)	USD	IDR(billion Rp.)
	(person)					NRW 2010	NRW 2050		13341.82
1.Batu City	190,184	176.8	37%	25%	12%	1,896,032	1,325,282	570,750	7.615
2. Malang Regency	2,446,218	1,500.0	36%	25%	11%	11,977,500	8,227,500	3,750,000	50.032
3.Malang City	820,243	1,692.7	38%	25%	13%	17,674,834	12,767,884	4,906,950	65.468
4.Kediri Regency	1,499,768	429.0	22%	20%	2%	550,176	550,176	0	0.000
5.Blitar Regency	1,116,639	513.8	26%	20%	6%	1,793,130	1,793,130	0	0.000
6.Sidoarjo Regency	1,941,497	1,461.0	33%	25%	8%	9,481,890	5,829,390	3,652,500	48.731
7. Mojokerto Regency	1,025,443	319.7	32%	25%	7%	2,616,989	1,540,039	1,076,950	14.368
8. Jombang Regency	1,202,407	713.0	30%	20%	10%	5,715,450	5,715,450	0	0.000
9.Kediri City	268,507	339.5	33%	25%	8%	2,218,369	1,357,869	860,500	11.481
10.Mojokerto City	120,196	0.2	56%	25%	31%	7,220	6,220	1,000	0.013
11.Surabaya City	2,765,487	4,262.7	34%	25%	9%	30,798,152	20,141,352	10,656,800	142.181
12.Trenggalek Regency	674,411	402.2	41%	25%	16%	5,263,380	3,980,880	1,282,500	17.111
13.Blitar City	131,968	378.1	39%	25%	14%	3,768,650	2,776,900	991,750	13.232
14.Tulungagung Regency	990,158	453.0	30%	20%	10%	2,868,083	2,868,083	0	0.000
15.Nganjuk Regency	1,017,030	300.0	25%	20%	5%	984,000	984,000	0	0.000
16. Gresik Regency	1,177,042	817.4	23%	20%	3%	1,267,199	1,267,199	0	0.000
						98,881,052	71,131,352	27,749,700	370.232

Table 6.5.16 Cost of Repairing Pipe for Non-Revenue Water

Source: Prepared by JICA Project Team 2 based on the data from Direktori Perpamsi 2010

 Table 6.5.17
 Cost of Recycling Plant Construction

Itom	Unit cost	Plant capacity	Cost
Itelli	(IDR million /m ³)	(m^3)	(IDR billion)
Recycling plant construction cost	4.251	75,200	319.68

Source: JICA Project Team 2

3) Rehabilitation of Tertiary Irrigation Canal

The following approach is prerequisite for improvement of tertiary canal system:

- To identify the target schemes with the design irrigation command area of over 100 ha;
- To undertake the inventory survey in a participatory manner for the purpose of confirming the farmers' needs and generating their consensus;

- To promote the participatory design work of the tertiary canal network layout using a precast concrete block for minimizing the unusable paddy field on contribution basis; and
- > To collaborate with local agencies concerned for realizing the public financial assistance to participatory implementation of the tertiary canal improvement works.
- 4) Construction of New Dams

For the proposed dams of Categories A and B, basic information of the dam location, purpose, dam type and basic dimension, and reservoir storage capacity is presented in Table 6.3.53.

These proposed dams are taken into consideration of the other climate change adaptation measures against droughts by increasing store water. There are additional dams to be considered for adaptation measures which are summarized in Table 6.5.18.

	·		
New Dam	Medium	Low	High
Genteng I	0	-	0
Kempok	-	-	0
Babadan	0	0	0
Kont II	0	0	0
Kuncir	0	-	0
Kedungwarak	0	0	0
Ketandan	-	-	0

Table 6.5.18Summary of Additional Dams for Each Scenario

Note: "O" applied as an adaptation measure, "-" not applied as an adaptation measure Source: JICA Project Team 2

5) Preliminary Cost Estimation

The cost of following drought control measures for climate change adaptation is estimated.

Target drought control measures

- Construction of new dam
- Heightening the dam body of Sutami dam
- Rehabilitation of tertiary irrigation canal
- Replacement of PDAM's pipeline
- Construction of recycle plant
- (2) Estimation of Unit Cost
- 1) Construction of New Dam

The construction cost of the new dam is calculated from the unit cost of dam body per volume. The unit cost is estimated from the direct construction cost of the existing dams.

The basic conditions for the preliminary cost estimation are the following:

- The construction cost means direct construction cost without tax excluding the cost of land acquisition, compensation for affected people, and site management.
- Exclude the cost of the power house

- > Target the dams which were constructed after 1998
- Set August 2017 as standard month of inflation rate
- To convert to the cost at August 2017, use the inflation rate of public investment and construction cost shown in the website of Statistics Indonesia (BPS)
- Consider the construction cost index by province excluding the dams located in the East Java Province (Jatibarang Dam; Central Java)

Procedure for Cost Estimation

- i) Set unit cost of dam construction per cubic meter based on the existing data of the volume of dam body and total construction cost
- ii) Convert the unit cost to the present value (price in August 2017)
- iii) Draw the cost curve based on the converted unit cost
- iv) Estimate the cost of the target dams

The unit cost curve of new dam construction is created based on existing eight rockfill dams and two earthfill dams. The result of the unit cost of rockfill dam is shown in Table 6.5.19 and the result of unit cost curve in Figure 6.5.1. The result of unit cost of earthfill dam is shown in Table 6.5.20 and the result of unit cost curve in Figure 6.5.2.

No.	Dam Name	Prov.	Vol.	Unit Cost	Coefficent*1	Unit Cost at 2017
			(10^6 m^3)	$(IDR \ 10^{3}/m^{3})$		$(IDR \ 10^{3}/m^{3})$
1	Babadan	East Java	8.32	50.89	4.527	230.38
2	Genteng I	East Java	3.12	84.42	4.527	382.17
3	Kuncir	East Java	5.91	123.83	1.428	176.83
4	Kampak	East Java	1.27	414.53	1.033	428.21
5	Tugu	East Java	7.80	210.16	1.125	236.43
6	Bagong	East Java	3.70	198.33	1.088	215.78
7	Bajulmati	East Java	0.75	570.17	2.003	1,142.05
8	Jatibarang	Central Java	0.61	857.62	1.357	1,163.79

 Table 6.5.19
 Unit Cost of Direct Construction Cost (Rockfill Dam)

Note: Coefficient is estimated from escalation from estimated year to 2017 and regional economic condition. Escalation of base year is applied 2000 year.

Escalation is estimated from inflation rate of public investment (website of Statistics Indonesia (BPS), <u>https://www.bps.go.id/subject/4/konstruksi.html#subjekViewTab3</u>)).

Source: JICA Project Team 2 estimated based on data from BBWS Brantas and BBWS Pemali Juana

Table 6.5.20	Unit Cost of Direct Construction Cost (Earthfill Dam)

No.	Dam Name	Prov.	Vol.	Unit Cost	Coefficent*1	Unit Cost at 2017
			(10^6 m^3)	$(IDR10^{3}/m^{3})$		$(IDR \ 10^{3}/m^{3})$
1	Kedungwarak	East Java	0.17	323.4	2.572	831.78
2	Semantok	East Java	1.94	783.7	1.038	813.48

Note: Coefficient is estimated from escalation from estimated year to 2017 and regional economic condition. Escalation of base year is applied 2000 year.

Escalation is estimated from inflation rate of public investment (website of Statistics Indonesia (BPS), https://www.bps.go.id/subject/4/konstruksi.html#subjekViewTab3)).

Source: JICA Project Team 2 estimated based on data from BBWS Brantas

Source: JICA Project Team 2

2) Heightening the Dam Body of the Sutami Dam

The unit cost is set based on the existing dams' construction cost of the embankment, spillway, and spillway gate. The data of the Tugu Dam, Bagong Dam, Semantok Dam and Jatibarang Dam are referred because they have the construction cost divided by the construction type. The unit cost of the embankment, spillway, spillway gate and gate at connecting channel are shown from Table 6.5.21 to Table 6.5.25.

No.	Dam Name	Prov.	Vol.	Cost	Unit Cost	Coefficent*1	Unit Cost at
			$(10^6 \mathrm{m}^3)$	(IDR	(IDR		2017
				Mil.)	$10^{3}/m^{3}$)		$(IDR \ 10^{3}/m^{3})$
1	Bagong	East Java	3.70	409,248	110.6	1.037	115
2	Tugu	East Java	7.80	879,532	112.8	1.125	127
	Average	9					121

Table 6.5.21	Unit Cost of Direct Construction Cost (Embankment)
--------------	--

Note: Coefficient is estimated from escalation from estimated year to 2017 and regional economic condition. Escalation of base year is applied 2000 year.

Escalation is estimated from inflation rate of public investment (website of Statistics Indonesia (BPS), <u>https://www.bps.go.id/subject/4/konstruksi.html#subjekViewTab3</u>).

Source: JICA Project Team 2 estimated based on data from BBWS Brantas

Table 6.5.22	Unit Cost of Direct Construction Cos	t (Spillway)
--------------	--------------------------------------	--------------

No.	Dar	n Name	Area (m ²)	Cost (IDR Mil)	Unit Cost (IDR 10 ³)	Coefficent*1	Unit Cost at 2017
				M11.)			$(IDR 10^3)$
1	Bagong	30m x 300m	9,000	194,067	21,563	1.037	22,361
2	Semantok	46.2m x 110m	5,082	124,749	24,547	1.125	27,615
Average						25,000	

Note: Coefficient is estimated from escalation from estimated year to 2017 and regional economic condition. Escalation of base year is applied 2000 year.

Escalation is estimated from inflation rate of public investment (website of Statistics Indonesia (BPS), https://www.bps.go.id/subject/4/konstruksi.html#subjekViewTab3)).

Source: JICA Project Team 2 estimated based on data from BBWS Brantas

Table 6.5.23Unit Cost of Direct Construction Cost (Spillway Gate)

No.	Dam Name	Prov.	Width	Cost	Unit Cost	Coefficent*1	Unit Cost at
			(m)	(IDR	(IDR 10 ³)		2017
				Mil.)			(IDR 10 ³)
1	Tugu	East Java	35	12,015	343,286	1.125	386,197

Note: Coefficient is estimated from escalation from estimated year to 2017 and regional economic condition. Escalation of base year is applied 2000 year.

Escalation is estimated from inflation rate of public investment (website of Statistics Indonesia (BPS),

https://www.bps.go.id/subject/4/konstruksi.html#subjekViewTab3)).

Source: JICA Project Team 2 estimated based on data from BBWS Brantas

Table 6.5.24	Unit Cost of Direct Construction	Cost (Gate at C	Connecting Channel)
--------------	----------------------------------	-----------------	-----------------------------

	: Cost at 2017
	$(R \ 10^3)$
1 Jatibarang Flap Gate 600mm 36,852 36,852 1.357	50,008

Note: Coefficient is estimated from escalation from estimated year to 2017 and regional economic condition. Escalation of base year is applied 2000 year.

Escalation is estimated from inflation rate of public investment (website of Statistics Indonesia (BPS), https://www.bps.go.id/subject/4/konstruksi.html#subjekViewTab3)).

Source: JICA Project Team 2 estimated based on data from BBWS Pemali Juana

3) Restoration of Irrigation Canal

The unit cost of the restoration of tertiary irrigation canal is set as below referring to the unit cost used in a Yen Loan project.

Table 6.5.25	Unit Cost of Construction Cost (Tertiary Canal)	

		-
Item	2017/2	2017/8
Unit cost of the restoration of tertiary irrigation canal (IDR Million/ha)	19.45	19.78
Year index	1.000	1.017

4) Replacement of the PDAMs' Pipeline

The cost of updating the water pipe is estimated not by unit cost but by direct cost calculation.

5) Installation of Recycling Plant for Sewage Water

The unit cost of the construction of recycling plant of sewage treatment is applied as seen in Table 6.5.26, which is referred to the data of the existing project in Indonesia.

Tabla 6 5 76	Unit Cost of Docuoling Plant Construction
Table 0.3.20	Unit Cost of Recyching Flant Construction

Item	Unit cost (IDR Million/m ³)
Unit cost of recycling plant construction	4.251
Source: JICA Project Team 2	

- (3) Cost Estimation
- 1) Construction of New Dam

The direct construction costs of seven new dams are estimated based on the assumed unit cost. The results of the construction cost are shown in Table 6.5.27.

Basic Condition

- According to the existing report, each cost rate is set as follows.

(Ratio of direct construction cost)

- Administration cost : 10%
- Engineering service : 15%
- Physical contingency : 6%
- Price escalation : No consideration in the Project
- Compensation cost : 25% (Land acquisition cost and resettlement cost)
- VAT : 10%

				(Unit: IDR Mil
Dam Name		Kedungwarak	Kuncir	Babadan
Dam Type		Earthfill	Rockfill	Rockfill
Embankment $(10^3 m^3)$		216	6,850	8,300
Direct Cost	a	194,400	1,870,050	1,925,600
Compensation Cost	b=a x 0.25	48,600	467,513	481,400
Administration Cost	c=a x0.1	19,440	187,005	192,560
E/S Cost	d=a x 0.15	29,160	280,508	288,840
Price Escalation		0	0	0
Physical Contingency	e = (a+b+c+d)x0.06	17,496	168,305	173,304
Sub-total	f	309,096	2,973,381	3,061,704
VAT	g=f x 0.1	30,910	297,338	306,170
Total	f+g	340,006	3,270,719	3,367,874

Table 6.5.27 Construction Cost of New Dams

Dam Name	Kont II	Genteng I	Ketandan	Kempak
Dam Type	Rockfill	Rockfill	Rockfill	Rockfill
Embankment (10 ³ m ³)	9,300	3,000	158	1,270
Direct Cost	1,897,200	1,143,000	263,544	544,830
Compensation Cost	474,300	285,750	65,886	136,208
Administration Cost	189,720	114,300	26,354	54,483
E/S Cost	284,580	171,450	39,532	81,725
Price Escalation	0	0	0	0
Physical Contingency	170,748	102,870	23,719	49,035
Sub-total	3,016,548	1,817,370	419,035	866,281
VAT	301,655	181,737	41,904	86,628
Total	3,318,203	1,999,107	460,939	952,909

Source: JICA Project Team 2

Table 6.5.28 Summary of Total Cost to Each Scenario

			(Unit: IDR Bil.
New Dam	Medium	Low	High
Genteng I	1,999	-	1,999
Kempak	-	-	953
Babadan	3,368	3,368	3,368
Kont II	3,318	3,318	3,318
Kuncir	3,271	-	3,271
Kedungwarak	340	340	340
Ketandan	-	-	461
Total	12,296	7,026	13,710

Note: "O" applied as an adaptation measure, "-" not applied as an adaptation measure Source: JICA Project Team 2

2) Heightening of the Dam Body of the Sutami Dam

The direct construction cost of heightening the dam body of the Sutami Dam is estimated based on the assumed unit cost. The width of the spillway is assumed as 20 m. The results are shown in Table 6.5.29.

Basic Condition

- According to the existing report, each cost rate is set as follows.

(Ratio of direct construction cost)

- Administration cost : 10%
- Engineering service : 15%

50

272

175,748

43,937

17,575

26,362

3.817 267,439

26,744

294,183

0

1

2,250

600mm

H=3m

- Physical contingency : 6%
- Price escalation : No consideration in the Project

LS

m³

а

- VAT : 10%
- Compensation cost : 25% (Land acquisition cost, resettlement cost)

Table 0.5.29	rrojec	Cost of Heigh	tening Dam Do	uy of Sutainf L	Jain
Item	Unit	Unit Price (IDR 10 ³)	QTY	Amount (IDR 10 ⁶)	Remark
Heightening of main dam	m ³	121	1,198,000	144,958	H=5m
Replacement of spillway	m ²	25,000	920	23,000	460mx20m
Replacement of Spillway Gate	m	387,000	20	7,740	W=20m

50,000

121

b=a x 0.25

c= a x 0.10

d= a x 0.15

e

 $f=(a+b+c+d) \ge 0.06$

g

h=g x 0.1

Table 6.5.29 Project Cost of Heightening Dam Body of Sutami Dam

Total Source: JICA Project Team 2

Replacemen tof gate at connecting chanel

Saddle Dam

Direct Cost

Compensation Cost Administration Cost

Engineering Service

Price Escalation

Physical Contingency

Sub-total

VAT

3) Restoration of Irrigation canal

The cost of the restoration of irrigation canal is estimated referring to a report of a Yen Loan Project. The results are shown in Table 6.5.30.

4) Replacement of PDAMs' Pipeline

The cost of repairing pipe for the non-revenue water is shown in Table 6.5.16.

5) Recycling Plant for Sewage Water

The cost of the recycling plant for the sewage water is shown in Table 6.5.17.

	Ir	Irrigation Area	Irrigaiton Canal	Irrigation Tertiary	
	Irrigation Scheme	(ha)	repair cost	Canal cost	
		(lia)	(million Rp./ha)	(billion Rp.)	
Tributaries	DI_Kedung kandang	5,160	19.78	102	
	DI_Molek	3,883	19.78	77	
	DI_Jaruma I & II	2,449	19.78	48	
	DI_Ngasinan	1,185	19.78	23	
	DI_Bagong	857	19.78	17	
	DI_Siman	23,060	19.78	456	
	DI_Bening	8,752	19.78	173	
	DI Kedung Soko	1,554	19.78	31	
	DI_Bareng	800	19.78	16	
	Di_Padi Pomahan	4,309	19.78	85	
Main Stream	DI_Lodagung	12,217	19.78	242	
	DI_Mrican Kanan	17,612	19.78	348	
	DI_Mrican Kiri	12,729	19.78	252	
	Di_Jatimlerek	1,812	19.78	36	
	DI_Mentrus	3,632	19.78	72	
	DI_Jatikulon	638	19.78	13	
	DI_BrantasDelta	12,206	19.78	241	
Total		112,855		2,232	

 Table 6.5.30
 Construction Cost of Restoration of Irrigation Canal

6) Economic Evaluation

The economic evaluation is conducted for the major measures for the water resources development and water supply. Three of the economic analyses under the three climate scenarios (low, medium, high) are conducted. The results of the economic evaluation are summarized in Table 6.5.31.

From the table, the following considerations are made:

- Since the proposed measures in the case of low scenario have a considerably high EIRR of 13.8% that is greater than 9% to 12% of the minimum required discount rates for international donors, it seems to be economically feasible.
- In the other scenarios, the proposed measures are not economically feasible, and it is recommended that the plans be reviewed and/or modified if necessary.
- This analysis is a rough estimation as the future climate change is not easy to forecast therefore these plans should be modified if necessary, considering climate change and other situation in the future.

Scenario	EIRR (%)	NPV (IDR in Billion)	NPV(B/C)
Low	13.8%	4,169	1.6
Medium	3.2%	-6,309	0.3
High	3.5%	-6,788	0.3

 Table 6.5.31
 Summary of Economic Evaluation (Drought)

7) Possible Fund Source of the Project

Most of the fund sources of the measures proposed in this project have not been decided.

In the Brantas River basin; some of the new dams, namely; Tugu Dam, Semantok Dam, and Bagong Dam, are under construction and financed by APBN.

As above mentioned, some of the donors are considering to organize a financial support for these measures in the areas, therefore not only APBN but also donor loans including JICA loan could be another source in the future.

(4) Non-structural Measures

All considerable non-structural measures against drought shall be carried out. The following measures are considered. A detail explanation of non-structural measures is mentioned in Section 6.3.2.

- 1) Changing water source from surface water to groundwater
- 2) Land leveling and readjustment of paddy field
- 3) Intermittent and shallow depth irrigation practice
- 4) Step-wise Introducing system of rice intensification (SRI)
- 5) Public relations of reservoir water level of each dam
- 6) Domestic water supply support system among adjacent river basin
- 7) Preparation of advance drought action plan

6.5.3 Groundwater Resources Management

Groundwater is an environmental element which supports an ecosystem for animals and plants which plays an important role in people's daily life and economic activities as water resources as well and has fostered local societies and culture. Furthermore, multifaced uses of groundwater are being made in recent years, for example as emergency water sources at the time of natural disasters (e.g. big earthquakes, volcanic eruptions, floods etc.) or regional tourism using spring water and artesian wells.

However, from the technical, temporal and financial aspects, it is difficult for the Brantas River basin to develop such kinds of societies quickly where advanced utilization of groundwater can be practiced. Therefore, it is desirable for the Brantas River basin to promote adaptation measures by use of structural measures in conjunctions with grasping actual conditions of groundwater use and to introduce appropriate regulations and management. There are no universal adaptation measures to minimize the impact of climate change on groundwater, and hence the goal is to mitigate its impact by using realistic measures. Therefore, it is necessary to deal with direct and indirect impacts due to climate change by incorporating adaptation measures into the water resources management plans (Review POLA2015 (Draft) / RENCANA) and enhancing existing relevant management systems and measures.

(1) Structural Measures for Brantas River Basin

The structural measures include enhancement of the aquifer storage capacity and strengthening of groundwater extraction as well as improvement of physical infrastructure and technology to minimize groundwater pollution. The recommended structural adaptation measures for groundwater resources in the Brantas River basin are as follows:

> To enhance aquifer storage capacity: Installation of injection wells

It is the measures for urban municipalities where groundwater resources may be tight. Malang City, Mojokerto City, Kediri City and Blitar City can be identified as target areas.

To strengthen groundwater extraction: Additional groundwater development by drilling new wells

Groundwater should be developed as an alternative water source of surface water when a drought event comes. It is possible to introduce it in Batu City, Malang Regency, Kediri Regency, Blitar Regency, Jombang Regency, Blitar City, Tulungagung Regency, and Nganjuk Regency except for municipalities whose groundwater demand is already tight and those located in coastal areas. However, further investigation is necessary to identify appropriate development areas.

- (2) Non-structural Measure for Brantas River Basin
 - Short-term plan (first ten years from the start):

The first step is to grasp the actual conditions of groundwater utilization by an inventory survey and to promote regulations and use them properly, especially placing importance to (i) restriction of groundwater extraction to prevent saltwater intrusion and land subsidence in coastal areas and (ii) groundwater development regulation to prevent depletion of groundwater resources in urban areas.

> Long-term plan (second ten years from the start):

A system will be provided to establish appropriate conservation and sustainable use by cooperating with concerned parties for each region.

The procedures for the adaptation measures in the Brantas River basin are summarized in Table 6.5.32.

Stage	Expected Duration	Non-structural Measure	
1	5 years	• Enhancing the capacity of aquifers: Promotion of groundwater recharge	Grasp actual groundwater usage and emergency measures
		• Groundwater development survey: Detailed investigation for the development of new groundwater	
2	5 years	• Strengthening the groundwater extraction: New groundwater development	Regulation for pumping and groundwater development (resolution of groundwater problems)
		• Enhancing the capacity of aquifers: Promotion of groundwater recharge (continued)	
3	10 years	Monitoring, evaluation and additional measures concerning the capacity enhancement of aquifer	Preservation of groundwater environment through institutional improvement/ strengthening (Conservation of groundwater cycle)

Table 6.5.32	Procedures for Ada	ntation Measures in	the Brantas	River Basin
14010 0.0.02	1 I occuai es foi mua	plation measures in	i the Drantas	INITED DASIN

(3) Priority actions for Brantas River basin

The recommended process to implement adaptation measures is as follows:

First Stage (5 years)

Strengthening the capacity of aquifer should be started because it is necessary to increase groundwater quantities in aquifers from the viewpoint of preserving groundwater, maintaining an ecosystem by groundwater, and underground storage of water. In addition, a groundwater development survey should be conducted to strengthen the groundwater extraction management. Meanwhile, surveys on actual groundwater usage for pumping restrictions and groundwater development regulations are also conducted, and the restrictions and regulations are to be issued urgently if necessary.

Second Stage (5 years)

Water conservation is promoted to disperse water sources and to reduce the risk of water shortage during drought. New groundwater development should be based on the results of the groundwater development survey. Strengthening the capacity of aquifers should also be conducted. Meanwhile, it is expected that groundwater problems will be resolved by implementing pumping restrictions and groundwater development regulations based on a groundwater usage survey.

Third Stage (10 years)

Monitoring and evaluating the capacity improvement of the aquifers will be conducted and additional measures should be taken if necessary. As institutional improvements are made to promote the use of groundwater, and discussions on the way of groundwater management should be carried out.

- (4) Approximate Well Construction Cost for Additional Groundwater Demand
- 1) Basic Specifications and Unit Prices

The approximate construction cost of the new well was examined for the additional groundwater demand. The basic specifications and unit prices set in the study are as shown in Table 6.5.33 and Table 6.5.34. The basic specifications and unit prices differ between mountainous areas and plains. Any specifications and unit prices are applied considering the groundwater development area of each municipality.

Since basically the groundwater is taken from rock formation in mountainous areas, the specifications are set as follows: i) maximum supposed discharge is 1,000m³/day, ii) depth of the borehole is 200m, and iii) diameter of casing is 150 mm. On the other hand, the groundwater is pumped from the sedimentary aquifer in the plains, and the capacity of aquifer should be high. Therefore, the specifications are set as follows: i) maximum supposed discharge is 2,000m³/day, ii) depth of borehole is 150m, and iii) diameter of casing is 200m.

The preliminary survey such as electrical sounding is usually conducted before drilling. The drilling cost per meter is different between mountainous areas and plains and the unit price of drilling in mountainous regions is more expensive than in plains. After drilling, the pump is installed after test pumping and water quality analysis, but the price of pump depends on the pumping capacity. The estimated installation cost per well finally became the same for mountainous regions and plains in this study.

Zone	Maximum Supposed Discharge	Depth of Borehole	Diameter of Casing	
	m³/day	m	mm	
Mountain	1000	200	150	
Plain	2000	100	200	

 Table 6.5.33
 Basic Specifications for Drilling Borehole

Source: JICA Project Team 2

Table 6.5.34	Unit Prices and T	Fotal Cost for	Well Construction	Works
--------------	-------------------	-----------------------	-------------------	-------

(Unit: IDR in Million									
Zone	Preliminary Survey	Cost of Drilling		Preliminary Survey Cost of Drilling		Test Pumping etc.	Pump Installation	Total Cost	
	/ well	/ m	/ well	/ well	/ well	/ well			
Mountain	36	1.8	360	120	36	552			
Plain	36	3.0	300	120	96	552			

Source: JICA Project Team 2

2) Approximate Well Construction Cost

Based on the specifications, the unit prices and additional groundwater demand for each municipality, the installation cost of new wells was estimated. Table 6.5.35 shows the approximate well construction costs for the initial additional groundwater demand while Table 6.5.36 shows the approximate well construction cost when allocating the groundwater demand exceeding the groundwater recharge in Blitar City to Blitar Regency. The latter is

more expensive because it requires another new well for the additional groundwater demand in Blitar City and Blitar Regency. In order to cover the additional groundwater demand through drilling new wells and installing pumps, it was estimated that roughly IDR 60 billion as budget would be necessary.

 Table 6.5.35
 Approximate Well Construction Costs for Initially Supposed Additional Groundwater

 Demand

				Specification				Cost (10 ⁶ Rp.)						
City / Regency	Addition Den	al Water 1and	Zone	Maximum Supposed Discharge	No. of BH	Depth of BH	Diameter of Casing	Preliminary Survey	Cost of	Drilling	Test Pumping etc.	Pump Installation	Total	Cost
	m ³ /s	m ³ /day		m ³ /day	-	m	mm	/ well	/ m	/ well	/ well	/ well	/ well	Total
1. Batu C.	0.18	15,552	Mountain	1000	16	200	150	36	1.8	360	120	36	552	8,832
2. Malang R.	0.48	41,472	Mountain	1000	42	200	150	36	1.8	360	120	36	552	23,184
3. Malang C.	0.00	0	Mountain	-	-	-	-	-	-	-	-	-	-	-
4. Kediri R.	0.06	5,184	Plain	2000	3	100	200	36	3.0	300	120	96	552	1,656
5. Blitar R.	0.01	864	Mountain	1000	1	200	150	36	1.8	360	120	36	552	552
6. Sidoarjo R.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
7. Mojokerto R.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
8. Jombang R.	0.00	0	Plain	-	-	-	-	-		-	-	-	-	-
9. Kediri C.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
10. Mojokerto C.	0.00	0	Plain	-	-	-	-	-		-	-	-	-	-
11. Surabaya C.	0.00	0	Plain	-	-	-	-	-		-	-	-	-	-
12. Trenggalek R.	0.00	0	Mountain	-	-	-	-	-	-	-	-	-	-	-
13. Blitar C.	0.49	42,336	Mountain	1000	42	200	150	36	1.8	360	120	36	552	23,184
14. Tulungagung R.	0.01	864	Mountain	1000	1	200	150	36	1.8	360	120	36	552	552
15. Nganjuk R.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
16. Gresik R.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
Total	1.23	106,272												57,960

Source: JICA Project Team 2

Table 6.5.36Approximate Well Construction Cost When Allocating Groundwater Demand
Exceeding Groundwater Recharge in Blitar City to Blitar Regency

				Specification			Cost (10 ⁶ Rp.)							
City / Regency	Addition Den	al Water nand	Zone	Maximum Supposed Discharge	No. of BH	Depth of BH	Diameter of Casing	Preliminary Survey	Cost of	Drilling	Test Pumping etc.	Pump Installation	Total	Cost
	m ³ /s	m ³ /day		m ³ /day	-	m	mm	/ well	/ m	/ well	/ well	/ well	/ well	Total
1. Batu C.	0.18	15,552	Mountain	1000	16	200	150	36	1.8	360	120	36	552	8,832
2. Malang R.	0.48	41,472	Mountain	1000	42	200	150	36	1.8	360	120	36	552	23,184
3. Malang C.	0.00	0	Mountain	-	-	-	-	-	-	-	-	-	-	-
4. Kediri R.	0.06	5,184	Plain	2000	3	100	200	36	3.0	300	120	96	552	1,656
5. Blitar R.	0.35	30,505	Mountain	1000	31	200	150	36	1.8	360	120	36	552	17,112
6. Sidoarjo R.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
7. Mojokerto R.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
8. Jombang R.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
9. Kediri C.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
10. Mojokerto C.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
11. Surabaya C.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
12. Trenggalek R.	0.00	0	Mountain	-	-	-	-	-	-	-	-	-	-	-
13. Blitar C.	0.15	12,695	Mountain	1000	13	200	150	36	1.8	360	120	36	552	7,176
14. Tulungagung R.	0.01	864	Mountain	1000	1	200	150	36	1.8	360	120	36	552	552
15. Nganjuk R.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
16. Gresik R.	0.00	0	Plain	-	-	-	-	-	-	-	-	-	-	-
Total	1.23	106,272												58,512

Source: JICA Project Team 2

6.5.4 Sabo Management

(1) Use of Coagulant against Fine-grained Sediment

At present, the sediment dredged in a reservoir is disposed to a spoil bank around the reservoir. However, the place for a spoil bank is usually filled up soon and it is difficult to look for alternative places near the reservoir. At that time, the use of coagulant against fine-grained sediment in a dam reservoir is an effective measure.

Recently, in Japan, experiments were carried out for the use of civil engineering materials and agricultural materials by mixing coagulant with soil with high clay content. Putting sediment solidified by coagulant into and mixing it with cultivated soil is considerably expected to be effective against soil erosion. An experiment for practical use in the Brantas River basin may solve the said problem. **Photo. 6.5.1** shows an improvement example with coagulant.

Sample like Sludge

Line and the second secon

Agitation by Backhoe

Gradually begin to coagulate Completely coagulated Condition Source: http://www.pref.okinawa.lg.jp/site/kankyo/hozen/mizu_tsuchi/redclay/info/h27kouryuusyuukai_yokousyuu.html

Photo 6.5.1 Improvement Example with Coagulant

(2) Dredging of Sabo Facilities

Regular dredging of existing Sabo facilities increases their trap capacities. This is effective in trapping unstable sediments, as well as fine-grained sediments. Dredging is conducted when the reservoir of Sabo facilities is filled up by sediment. The dredging of Sabo facilities in the upstream area of the Sengguruh Dam is highly prioritized, due to the existence of large amount of unstable sediments produced by Mt. Semeru.

(3) Watershed Conservation under Sabo Management

The factors of sediment discharge are presumed to be mainly surface erosion, riverbank/riverbed erosion, slope failure and watershed development such as deforestation and extension of cultivated lands.

The former are natural phenomena. Therefore, prevention measures are mainly structural such as the Sabo facilities. But the latter has a possibility of an artificial factor. Therefore, it is important that restriction of development considering the prevention of surface soil erosion should be carefully conducted. Specifically, these operations are proper preservation and management on the forest or cultivated land. Sabo facilities are structural measures but such operations are non-structural measures.

Proper preservation and management on the forest meant a multiple-layered forest and agro-forestry. Specifically, the management on the forest floor is one of the indispensable managements to prevent surface soil erosion.

One proper development of cultivated land is to make terraces with reverse slopes, which is called "Terracing", this will prevent surface soil outflow. It is also important to cover the ground by grass straw or something to prevent erosion by raindrops. A good example is

observed in the Brantas River basin (Photos 6.5.2 and Photos 6.5.3).

Example of Proper Agro-Forestry (Hillside of Mt. Wilis; 23/05/2014)

Cassava & Undergrowth

Forest & Cultivated Land

Source: JICA Project Team 2

Photo 6.5.2

Terracing with Reverse Slope

Bare Ground covered by Dead Grass

Photo 6.5.3 Example of Proper Development (Hillside of Mt. Wilis ; 23/05/2014)

6.5.5 Watershed Conservation

Source: JICA Project Team 2

- (1) Priority Actions as Climate Change Measures on Rainstorms and Floods
- 1) Water Quality Management

As discussed in 6.3.4 (1), the priority action is to control the excessive fertilizer application in agriculture. The action is non-structural measures.

2) Watershed Conservation

As discussed in 6.3.4 (1), the priority actions are to maximize the water retaining capacity by keeping the forest cover and improving the quality of forest. These actions are non-structural measures.

No.	Priority actions	Detail actions	Target Forest	Consideration points for prioritization
1	Protection of forest	 Protection from illegal felling 	 Conservation forest Protection forest 	 Upper watershed Area where larger rainfall change is expected (especially more rainfall) Area with higher productive aquifers Critical area
2	Fire prevention	 Fire prevention works Preparation for firefighting equipment Monitoring of hot spots 	 Conservation forest Protection forest Production forest 	 Upper watershed Area where larger rainfall change is expected (especially less rainfall) Area where lower ground water level is expected Critical area
3	Rehabilitation work	- Regeneration improvement works	- Protection forest	 Upper watershed Area where larger rainfall change is expected (especially more rainfall) Area with higher productive aquifers Critical area
4	Sustainable management	- Sustainable forestry practice	- Production forest	 Upper watershed Area where larger rainfall change is expected (especially more rainfall) Area with higher productive aquifers Area where lower ground water level is expected Critical area Large forest concession holder
5	Monitoring	- Monitoring of impact to the ecosystem by climate change	 Conservation forest Protection forest Production forest 	 Area where rainfall pattern is changed Area where higher temperature rise is expected Area where disease or pest attack is recorded Critical area where soil is degraded by climate change
6	Promotion of plantation outside forest land	 Public information and environmental education Technical support and seedling production 	- Outside forest land	 Upper watershed Area with the slopes City area

 Table 6.5.37
 Watershed Conservation against Rainstorms and Floods

(2) Priority Actions as Climate Change Measures against Droughts

1) Water Quality Management

As discussed in 6.3.4 (2), the priority action is to keep the current lowest water level especially in the river system whose water quality is degraded. The action is the non-structural measures.

2) Watershed Conservation

As discussed in 6.3.4 (2), priority actions are to maximize the water retaining capacity by keeping the forest cover and improving the quality of forest. It is also noted that the forest cover is generally appreciated for its water retaining capacity, while it may also increase the evaporation by the breath of trees and eventually reduces the available water volume in the watershed.

No.	Priority actions	Detail actions	Target Forest	Consideration points for prioritization
1	Protection of forest	- Protection from illegal felling	 Conservation forest Protection forest 	 Upper watershed Area where larger rainfall change is expected (especially more rainfall) Area with higher productive aquifers Critical area
2	Fire prevention	 Fire prevention works Preparation for firefighting equipment Monitoring of hot spots 	 Conservation forest Protection forest Production forest 	 Upper watershed Area where larger rainfall change is expected (especially less rainfall) Area where lower ground water level is expected Critical area
3	Rehabilitation work	- Regeneration improvement works	- Protection forest	 Upper watershed Area where larger rainfall change is expected (especially more rainfall) Area with higher productive aquifers Critical area
4	Sustainable management	- Sustainable forestry practice (such as	- Production forest	 Upper watershed Area where larger rainfall change is expected (especially more rainfall) Area with higher productive aquifers Area where lower ground water level is expected Critical area Large forest concession holder
5	Monitoring	- Monitoring of impact to the ecosystem by climate change	 Conservation forest Protection forest Production forest 	 Area where rainfall pattern is changed Area where higher temperature rise is expected Area where disease or pest attack is recorded Critical area where soil is degraded by climate change
6	Promotion of plantation outside forest land	 Public information and environmental education Technical support and seedling production 	- Outside forest land	 Upper watershed Area with the slopes City area

 Table 6.5.38
 Watershed Conservation against Drought

6.6 Proposed Climate Change Measures to be Incorporated into POLA and RENCANA

The contents of the adaptation and mitigation measures which are proposed to be incorporated into POLA and RENCANA in the next review stage reflecting climate change impacts are stated hereunder. The adaptation measures are compiled to (i) water resources management, (ii) sabo management, (iii) watershed conservation and (iv) groundwater management. And Table 6.6.1 is compiled based on the study results of the adaptation and mitigation actions against climate change impacts as of the target year 2050.

Table 6.6.1Climate Change Measures to Five Pillars

1. Water Resources Conservation

Goals / Targets to be Achieved	Climate Change Measure
(1) Protection and conservation of	of Water Resources
Boundary of a watershed conservation area must be defined in spatial plans prepared by local governments	Boundary of watershed conservation area must be defined in spatial plans as soon as possible.
Adjustment of land use plan between provincial government and each regency/ city	Adjustment of land use in each spatial plan by regencies must be adjusted as soon as possible.
<u>Construction of recharge wells</u> Legislation for construction of recharge well at each house to obtain building permit.	Construction of recharge wells is itself one of the climate change measures for groundwater resources protection and conservation. However, the effective area for recharge wells in regional scale may be changed from the present climate condition.
	Legislation for construction of recharge wells at each house is to obtain building permits that shall be developed as soon as possible.
Green open space (RTH) is set at more than 30% in the rural	Considering more risk on the forest fire and fire prevention measures need to be strengthened.
Iorest area.	Impact on the ecosystem by climate change shall be monitored and studied to keep and/or improve the current vegetation. Selection of the plantation species should also be considered to adopt the climate change.
Society has a high understanding to the importance of the environmental management and conservation for river water in the Brantas River basin	Considering more importance of the environmental management and conservation for river water in Brantas River basin, the environmental education and public information shall be strengthened.
Establishment of the water resources utilization zone considering water demand and location of the water source	At present, this method is useful due to the sufficient water. Under the future climate condition, the water resources utilization zone shall be changed from the present climate condition.
developed area.	Monitoring of the intake discharge and supply discharge from the storage structures shall be carried out following present monitoring system.
Utilization of water resources in the zones and control of supply water from water resources	To follow present water allocation system At present, TKPSDA considers run-off in the Brantas River in a drought year, normal year and rich year. The water demands are collected from request of the farmers associations and license volume of PDAMs and industrial companies. Based on the three cases, PJT-I carries out simulation of water allocation to use water demand and run-off. PJT-I adjusts water demand from the trial and error simulation. Finally, TKPSDA decides that the water allocation to next year in the Brantas River basin.

Goals / Targets to be Achieved	Climate Change Measure
	Under the future climate condition, PJT-I shall use simulated run-off data.
Control of upland cultivation	To maintain a small size of wetland paddy field plots on slope for keeping sustainable water retention capacity
	To rehabilitate or improve the function of terracing in dry upland field areas for reducing surface soil loss by erosion and sedimentation in reservoir
Reducing the degraded land (critical land)	The degraded land shall be rehabilitated as soon as possible to reduce the risk of flood and soil removal to keep water conservation capacity of the watershed.
Preservation of protected forests, nature reserves and conservation area	Conservation of protected areas especially in the upper river basin will be more important for enhancing water retaining capacity
	Considering the increase in risk of the forest fire, fire prevention measures need to be strengthened.
	Impact on the ecosystem from the climate change shall be monitored and studied to protect flora and fauna.
(2) Water Preservation	
Construction of new	Replacement of PDAM's pipeline
infrastructure, rehabilitation and	Rehabilitation and/or reconstruction of tertiary canal
maintenance of water supply	Construction of the recycle plant by each industrial
Constructure for water saving	Company Destance wells enhance groundwater stores compaits
in all houses	under the future climate condition
Improvement water quality	 Water quality degradation by the heavy rain shall be
from the environmental	controlled by reducing soil degradation by Sabo measures
management	such as check dams, contour cropping, gabions, and
C C	agroforestry. The appropriate application of fertilizer also
	contributes to keep the discharge of eutrophication substances by the flood.
	➢ Water quality degradation during lower water by climate
	change impact shall be controlled by (1) keeping the
	current lowest water level as well as (2) wastewater treatment.
Construction of storage	 Five new dams are proposed to the medium scenario.
structures	1 1
Water license is given to the	\succ At present, an amount of the water right is sometimes
actual water demand.	bigger than an actual water intake volume. This matter
	shall be settled under the present climate condition.
Control of groundwater source	To develop new groundwater resource, an investigation of the groundwater development for drilling new well shall be needed.
	 It is important to monitor the groundwater level and spring
	water discharge continuously. The monitoring system shall
	The survey on the actual use of groundwater shall be
	implemented to identify the area for regulation. Then
	compiling laws and regulations on groundwater at an
	operational level should be developed as soon as possible
Enabling community's role in	 Water storing facilities such as rainfall storage by tank and
storing water	underground, are installed in each village and each house.
(3) Water quality management an	nd water pollution control
Maintaining Program-based	> Wastewater treatment facilities are installed and properly
pollution control management	operated for companies and human settlement with the law
(PKOKASIH) activities regularly throughout WS Brantas	enforcement to meet the wastewater quality standard.

2. Water Resources Utilization

Goals / Targets to be Achieved	Climate Change Measure	
(1) Water Resources Operation/ Maintenance		
Achievement adjustment of the	\succ To adjust a spatial plan considering the demand center and	
spatial plan to collaborate the	availability of surface water in future spatial plan	
local governments (East Java		
Province and Regency/ City)		
Application of the water	 Future water utilization zone maps shall be prepared based 	
utilization zone maps	on future spatial plan	
Water demand forecast up to 20	> It is noted that the unit water requirement is affected from	
years	the climate change condition.	
(2) Water Resources Provision		
Construction of new	> Five new dams shall be constructed under the medium	
infrastructure, rehabilitation and	scenario.	
maintenance of water supply	Rehabilitation of tertiary canals in irrigation schemes.	
infrastructure	 Replacement of PDAM's pipeline 	
	Construction of recycle plant by each industrial company.	
(4) Water Resources Use		
Even the available water in the	> The available water under the future climate condition will	
Brantas River basin is an	not be enough. Additional measures (saving water and	
adequate volume, uneven	increasing storage water) shall be applied.	
distribution of water demand	> The local governments shall consider water allocation in	
occurred.	their territories during the preparation of spatial plan.	
(5) Water Resources Development	nt	
Utilization and re-development	Heightening of the Sutami Dam, if necessary.	
of existing water sources	 Rehabilitation of existing ponds 	
(6) Water Resources Extension		
Creation of incentive and	Already created this system and implemented by PJT-1.	
disincentives mechanisms for		
water management by all		
parties in WS Brantas		

3. Water Destructive Force Control

Goals / Targets to be Achieved	Climate Change Measure
(1) Disaster Prevention	
Achievement of the comprehensive flood control	Extreme flood will be increased under future climate condition. Therefore, strengthening of non-structural measures is an important issue.
	Mainstream was already constructed dike system. In Brantas River, flood control structure shall be constructed to tributaries. At this time, several conditions, such as climate condition, and land use, shall be considered. The protection level in the tributary shall be considered from the above condition and protection level of mainstream.
	 Strengthening of the non-structural measures
	 Preparation of flood management plan considering climate change impact (It shall be included in POLA)
	Execution of the detailed study to selected rivers.
	 Construction of flood management structure based on the flood management plan
	Preparation of advance flood action plan
Achievement to establish a community-based early warning	 To increase the number of community-based EWS (present: 21 villages)
system	Installation of EWS by using smart phone in the Brantas River basin (PJT-I already developed this system in Bengawan Solo.)
Development of river degradation control from	Some control structures were already installed. BBWS Brantas shall execute construction works following the

Goals / Targets to be Achieved	Climate Change Measure
technical and non-technical	proposed structures under the Water Resources Existing
measures	Facilities Rehabilitation and Capacity Improvement
	Project.
Improvement sediment	Installation of additional dredger to Selorejo Dam
dredging program and review of	
POLA of Reservoir operation	
(All Reservoirs in the Brantas	
River basin)	

4. Water Resources Information System

Goals / Targets to be Achieved	Climate Change Measure
(1) Improvement of Government	Role
Achievement of the comprehensive flood control	Preparation of advance Flood Action Plan and shearing of its plan. It is organized for action of disaster prevention (flood) and implementing agencies in time series focusing on "when", "who", and "what to do".
(2) Provision of accurate information	ition
Achievement of the water resources information system including the development of inter-agency management information system	Water resources information system was already developed by BBWS Brantas. Some information and data related to the water resources by BBWSBS were stored in this system. However, local governments are not put into their own data; even they exchange a memorandum of understanding. Firstly, related agency put into their data, such as rainfall, water level, and structural information to the data server. The information and data under PJT-I are not sheared. These problems shall be settled as soon as possible.

Source: JICA Project Team 2

6.6.1 Climate Change Measures against Rainstorms and Floods

(1) Water Resources Management

Structural Measures

The structural measures are decided from the protection level under the future climate condition. The protection level is set from damage cost (MSA) considering the priority of the development schemes in the Brantas River basin and balance of protection level of other tributaries. The proposed structures considering the future climate condition can increase the protection level for the present. However, it is necessary to consider the combination of the dike and other structural measures when the detail flood management planning under future climate condition is carried out.

The target protection level is reconsidered when the climate condition and land use are changed and assets of the affected people are increased.

Non-Structural Measures

It is necessary that the affected people and related agencies take action based on the non-structural measures, when the extreme flood event is occurred.

The climate change measures are studied in above sections. Table 6.6.2 and Table 6.6.3 show climate change measures.

Location	Measures	Protection Level
Widas River	Dike construction (Height = 1.9 m at upper Widas R.,	
	1.2 m at Kedung R. and 1.5 m at lower Widas R.,	17 year
	Length = 52.3 k m)	
Ngotok River	Dike construction (Height = 1.3 m , Length = 43.1 km)	50 year
Sadar River	Dike construction (Height = 0.5 m , Length = 6.8 km)	16 year
Tawing River	Dike construction (Height = 2.1 m , Length = 26.6 km)	30year
Porong River	Dike construction (Height = 0.8 m , Length = 40.1 km)	50 year

 Table 6.6.2
 Structural Measures against Rainstorms and Floods (Medium Scenario)

Table 6.6.3	Non-Structural Measures against Rainstorms and Floods
	Tion off actural fileasares against rainstorms and ribous

Measure	Details
Upgrading FFWS	 Developing the flood forecasting model
	> Flood forecasting information service to concerned
	agencies and communities
	Storing hourly rainfall and water level data to server
Community based EWS	Increasing the number of target communities
	> Developing the information system by using smart
	phone
Evacuation	Preparation of hazard maps for several probable floods
	 Designation of the evacuation centers considering inundation area
	 Construction of the evacuation centers considering inum dation area
Land Lizz Control	Inundation area
Land Use Control	inundation area
	> Local governments shall consider the restricted areas
	which are frequently inundated area.
Flood Action Plan	> It is organized for action of disaster prevention (flood)
	and implementing agencies in time series focusing on
	"when", "who", and "what to do".
Capacity Development of	> It is necessary to keep a high level of knowledge and
Flood Fighting Team	skills to flood fighting. Therefore, the capacity
	development of the flood fighting teams and concerned
	agencies are required.
Business Continuity Plan/	A business continuity plan/ management (BCP/ BCM)
Management	is a plan to help ensure that business processes can
	continue during a time of emergency or disaster. The
	private companies and local governments shall prepare
	BCP or BCM.

Source: JICA Project Team 2

(2) Sabo Management

The climate change measures for the Sabo management are studied in the previous sub-sections. Table 6.6.4 shows non-structural measures against climate change impact. The structural measure is to implement the current basin-wide sediment management plan ahead of the original schedule.

Measures	Details	
Use of coagulant against	 Consolidation of dredged sediment 	
fine-grained sediment	> Able to use for civil engineering materials or	
	agricultural materials	
Dredging	Regular dredging of existing Sabo facilities to increase	
	their trap capacity	
	> Highest Priority: Dredging of Sabo facilities in the	
	upstream areas of Sengguruh Dam	
Comprehensive Sediment	Basin-wide Sabo plan in addition to the volcanic Sabo	
Management Plan	plan against the Brantas River basin	

 Table 6.6.4
 Non-Structural Measures against Sedimentation for Sabo Management

(3) Watershed Conservation

Regarding the watershed conservation against the rainstorm and floods, in POLA, the forest management is generally described from the point of forest land classification and critical land.

The climate change may make an impact more serious and preventive measures to keep and improve the current forest cover are the key for adaptation. Yet, the impact on the forest ecosystem is unknown by the climate change, and it is important to start the preventive measures as well as monitoring of the forest ecosystem especially in the priority areas which is contributing to water retaining capacity or which is to be affected by the rain pattern change and temperature rise.

Thus, it is proposed to include in POLA and RENCANA as follows.

Policy level: to keep and improve the forest cover in the forest land as well as the whole Brantas watershed.

6.6.2 Climate Change Measures against Drought

(1) Water resources management

Tables 6.6.5 and 6.6.6 show adaptation measures to future climate condition.

(2) Groundwater Resources Management

The operational policies on groundwater resource management in current Review POLA/RENCANA are presented in Table 6.6.7. The directions of the operational policies for managing groundwater resources in the Brantas River basin are related to two aspects: Water Resource Conservation and Water Resources Utilization.

Measures	Location	Details		
Kedungwarak Dam	Widas River basin	Type: Rockfill, Hight:25.3m, Crest length:164.3m		
Kuncir Dam	Widas River basin	Type: Rockfill, Hight:100m, Crest length:450.5m		
Babadan Dam	Bendokrosok	Type: Rockfill, Hight:80m, Crest length:179m		
Kont II Dam	Konto River	Type: Rockfill, Hight:120m, Crest length:1,004m		
Genteng I Dam	Kesti River	Type: Rockfill, Hight:84m, Crest length:441m		

 Table 6.6.5
 Structural Measures against Drought

Measure	Details	
Changing water sources from	➢ PDAM Water of Blitar: 0.48m ³ /s	
surface water to groundwater	➢ Industrial Water: Upper reach: 0.66m ³ /s	
	Middle reach: 0.09m ³ /s	
	Additional wells are required.	
Introducing SRI	Even though the effectiveness of SRI method on irrigation water saving has yet to be commonly quantified on the irrigation scheme basis, experimental works done by the Bogor Agricultural University in Indonesia revealed that SRI method applied to dry season rice cultivation can be reduced by 3.35% of irrigation water consumption and increased by 9.15% of irrigation water productivity (g grain/ kg water) compared with conventional irrigation regimes.	
Preparation of drought action plan	It is organized for the action plan of local governments, private companies, hospitals, and residents before and during drought situation.	
Public relations of reservoir water level of each dam	 PJT-I shows time series of actual and planned water levels in the website. When the actual water level is lower than the planned water level, the local governments shall inform the 	
	residential people through public relation.	
Domestic water supply support system	When the domestic water supply is in severe situation in the Brantas River basin compared with the adjacent river basins, domestic water supply from the adjacent basins by using tank lories and increasing supply water volume through pipeline shall be carried out.	
	representative agencies at the adjacent river basins.	

Table 6 6 6	Non-structural	Measures	against	Drought
1 abic 0.0.0	11011-Sti uttui ai	wicasuics	agamst	DIVUZIII

Aspects	Strategy in Review POLA/ RENCANA	Operational Policy Proposed in Review POLA/RENCANA
Water Resources Conservation	Construction of infiltration well in every house as set in the Regional Regulation, which can be associated as the requirement for obtaining a Building Construction Permit (IMB), power supply and other facilities (entire area of Brantas River basin)	Selective issuance of IMB (Building Construction Permit) and provision of other public service facilities such as electricity and telephone.
Water Resources Utilization	Groundwater use permit and groundwater allocation as well as control of the distribution of groundwater exploited by optimizing the water's benefits (the entire Brantas River basin)	Compiling the laws and regulations on groundwater at the operational level. Providing counseling or imposing sanctions to those who extract groundwater without permission

Source: JICA Project Team 2

The preservation of groundwater should consider maintaining a balance between recharging and groundwater extraction. Some methods of groundwater management are (1) artificial groundwater recharging and (2) control of groundwater extraction. The construction of infiltration (injection) wells in every house as set in the Regional Regulation is a measure to enhance a groundwater storage capacity, while groundwater use permit and groundwater allocation as well as control of groundwater distribution are measures to prevent uncontrolled groundwater extraction. The countermeasures proposed in the Review POLA/RENCANA and adaptation measures against droughts under the climate change with the target year of 2050 are compared in Table 6.6.8. The measures presented in the Review POLA/RENCANA are effective against future climate change, but some additional measures targeting a drought in 2050 can be proposed here. The additional measures are to establish basic data to enable a wider response to climate change which is difficult to predict and adapt to, and to make the measures in the Review POLA/RENCANA more specific.

Table 6.6.8	Countermeasures in Review POLA/RENCANA and Proposed Additional Adaptation
	Measures in 2050

Countermeasures in Review POLA/ RENCANA		Proposed adaptation measures against droughts in 2050
Artificial groundwater recharging	~	Artificial groundwater recharging using injection well
using injection well	>	Investigation of the groundwater development for drilling new well including groundwater potential study
	>	Establishment of monitoring system for groundwater level and spring water
Control of groundwater extraction under the lows and regulations		Survey on the actual use of groundwater to identify the area for regulation
		Control of groundwater extraction under the laws and regulations

Source: JICA Project Team 2

(3) Watershed Conservation

Regarding the watershed conservation against droughts, in POLA, the forest management is generally described from the point of forest land classification and critical land.

The climate change may make an impact more serious and preventive measures to keep and improve current forest cover is the key for adaptation. Yet the impact on the forest ecosystem is unknown by the climate change, and it is important to start preventive measures as well as monitoring of the forest ecosystem especially in the priority areas which is contributing to the water retaining capacity of which is to be affected by the rain pattern change and temperature rise.

Thus, it is proposed to include in POLA and RENCANA as follows.

Policy level: to keep and improve the forest cover in the forest land as well as the whole Brantas watershed.

6.6.3 Organization and Institution

(1) Relevant Agencies

As presented in Table 6.6.1, the proposed climate change adaptation measures in the Brantas River basin cover a lot of ground and thus there are various implementing and related agencies. Table 6.6.9 summarizes the goals/ targets of the proposed adaptation measures and expected implementing agencies. Among others, the key relevant agencies and coordinating bodies at the basin level are enumerated in Table 6.6.9.

Table 6.6.9 Proposed Measures and Expected Implementing Agencies				
Aspect	Sub-aspect	No	Goals / Targets of Climate Change Measure	Expected Agencies
		1	Definition of watershed conservation areas	BPDASHL, Dishut, forest
				departments of LGs
		2	Adjustment of land use plan between province	DPRKPCK, BAPPEDA, spatial
			and each regency/ city	planning departments of LGs
		3	Legislation for construction of private recharge well	ESDM of LGs, BBWS-B
		4	Achievement of green open space (RTH) of more	BPPW JTIM, settlement
	1.1 Protection and		than 30%	departments of LGs
	conservation of water resources	5	Environmental education and public information	DLH, PJT-I, Others
		6	Establishment of water resources use zone	BBWS Brantas, BAPPEDA, water
			considering water demand and water source	resources departments of LGs
		7	Utilization of water resources in the zones and	TKPSDA, PJT-I, BBWS Brantas,
			control of water supply	PDAMs, Others, Private sector
1. Water		8	Control of upland cultivation	Agriculture departments of LGs
Resources		9	Reducing degraded land (flood critical land)	BAPPEDA, BBWS Brantas
Conservation		10	Preservation of protected forests, nature reserves	BPDASHL, Dishut, PJT-I,
			and conservation area	Perum Perhutani
		11	Construction, rehabilitation and maintenance of	BBWS Brantas, PJT-I, PDAMs,
		10	water supply infrastructure for water saving	LGs, Private sector
		12	Construction of recharge wells in all houses	ESDM of LGs, BBWS Brantas
	1.2 Water	13	Improvement of water quality through	BBWS Brantas, DLH, PJ1-I, LGs,
	preservation	1.4	Construction of stores structures	Private sector
	-	14	Construction of storage structures	BBWS Brantas, LUS
		15	Control of groundwater source	BBWS Brantas, PJ1-1
		17	Enabling community's role in storing water	L Gs. Others
	1 3 Water quality	18	Maintaining Program based pollution control	DIH LGs Others
	management and	10	management (PROKASIH) activities	DEII, EOS, Otiers
	pollution control			
	2.1 Water	19	Adjustment of spatial plan considering demand	DPRKPCK, BAPPEDA, LGs
	resources		center and surface water availability	
	operation/	20	Application of water utilization zone maps	DPRKPCK
	maintenance	21	Water demand forecast up to 20 years	BBWS Brantas, PDAMs
	2.2 Water	22	Construction, rehabilitation and maintenance of	BBWS Brantas, PJT-I, PDAMs,
	resources		water supply infrastructure	LGs, Private sector
2. Water	provision			
Resources	2.3 Water	23	Implementation of measures for efficient water	TKPSDA, BBWS Brantas, PJT-I,
Utilization	resources use		use (in terms of water saving, storage, allocation,	PDAMs, Private sector, LGs,
	2.4.11/-4	24	$\frac{\text{elc.}}{1}$	DDWC Dreater DIT L L Ca
	2.4 water	24	ources	BBWS Brantas, PJ I-I, LGS
	development		sources	
	2.5 Water	25	Creation of incentive and disincentives	PIT-I BBWS Brantas
	resources	20	mechanisms for water management	
	extension		6	
		26	Implementation of comprehensive flood control	BBWS Brantas, PJT-I, LGs
		27	Establishment of a community-based early	BBWS Brantas, PJT-I, BPBD
3. Water	3.1 Disaster		warning system	
Destructive	prevention	28	Control of river degradation through technical	BBWS Brantas, PJT-I
Force Control	prevention		and non-technical measures	
		29	Improvement of sediment dredging program and	PJT-I, BBWS Brantas
		2.0	review of reservoir operation	
4. Water	4.1 Improvement	30	Implementation of comprehensive flood control	TKPSDA, BBWS Brantas, PJT-I,
Resources	of government role	21	Establishment of water as seen as informer'	BPBD, LGS
Information	4.2 FIOVISION OI	51	establishment of water resources information	DD w 5 Dramas, PJ I-I, LUS
System	information		Inter-Agency Management Information System	
L	1 manon		men ingener indendent information bystem	

Table 6.6.9	Proposed Measures	and Expected Im	plementing Agencies
14010 0101/	i i oposeu measures	und Enpected Im	premenencing rigeneres

Notes: 1) Abbreviations other than those listed below are commented in the following main body.

LGs (Local Governments): relevant sectoral departments of provincial and city / regency governments ESDM (Energi dan Sumber Daya Mineral) = Energy and Mineral Resources

BPPW JTIM (Balai Prasarana Permukiman Wilayah Jawa Timur) = East Java Regional Settlement Infrastructure Agency

Perum Perhutani is a state-owned enterprise that has the duty and authority to plan, manage, exploit and protect forests.

2) Expected implementing agencies were discussed with some agencies through interviews mentioned below and comments and suggestions from the agencies have been reflected in the above table.

(2) Outline of Interview Surveys on Organizational and Institutional Concerns

Most of the proposed climate change adaptation measures are supposed to be implemented by more than one agency and to involve various sectors. In order to clarify the issues and concerns in implementing the proposed measures, interview surveys were conducted in August 2019.

The interview was conducted based on the questionnaire, which is composed of four aspects, namely organizational functions, institutional constraints, human resources and funding as summarized in Table 6.6.10. Since some questions are not applicable for some agencies, the questions were properly selected depending on the agency. Besides, the emphasis was put on identifying the issues through discussions rather than collecting information itself.

Category	Questions
Organizational Functions	Q 1-1) Implementing related agencies for the respective measures
	Q 1-2) Demarcations of roles and responsibilities between agencies
	Q 1-3) Inefficiencies in operation due to overlapping functions and
	so forth
	Q 1-4) Issues in coordination
Institutional Constraints	Q 2-1) Unharmonized laws and regulations between sectors
	Q 2-2) Surveillance systems of illegal behaviors
	Q 2-3) Law enforcement of illegal behaviors
	Q 2-4) Improvement of existing regulations
Human Resources	Q 3-1) Shortage of human resources
	Q 3-2) Personnel capacity to be strengthened
Funding	Q 4-1) Issues in budgetary arrangement system
	Q 4-2) Performance of fund management
	Q 4-3) Financial capacity of local governments

 Table 6.6.10
 Summary of Questions on Organizational and Institutional Concerns

Source: JICA Project Team 2

(3) Results of Interview Surveys on Organizational and Institutional Concerns

The major findings from the interviews are summarized and enumerated in Table 6.6.11. The source of description is presented at the end of each description.

Findings	Source				
Organization functions (for Q1-1 to Q1-3)					
Responsibility of the spatial planning at a provincial level was	BAPPEDA JATIM,				
changed from BAPPEDA to DPRKPCK in January 2019 in accordance with the Government Regulation No.18/2016.	DPRKPCK JATIM				
BAPPEDA is responsible for short/medium/long-term planning and budgeting at the provincial level. Once the budget is allocated, the respective departments (dinas) are supposed to implement the projects. The demarcation and procedure are clear.	BAPPEDA JATIM				
ESDM is generally considered responsible for groundwater management, although BBWS Brantas also has a section dealing with groundwater.	Dinas PU SDA JATIM				
A hydrological, hydrogeological and hydro-climatological	BBWS Brantas,				
BBWS Brantas, PJT-I, BMKG and the local governments.	Dinas PU SDA JATIM,				
However, it has not been discussed which agency will be proactive in operating it in the future.	PJT-I,				
TKPSDA and Forum DAS are coordinating bodies established under the frameworks of MPWH and MEF, respectively. Water resources management and watershed management sometimes overlap.	PJT-I				
DLH is responsible for controlling water pollution from industries. On the other hand, the water quality of overall river is managed by BBWS Brantas and PJT-I.	DLH JATIM				
BPPW, which was newly established in 2019 in each province, will be a leading agency of green open space (RTH) to be implemented in urban areas. BPDASHL is basically responsible for forest areas.	BBWS Brantas				
Coordination between agencies (for Q1-4)					
TKPSDA holds regular meetings basically four times a year. In addition, BBWS-Brantas' O&M division that is a leading body of TKPSDA holds individual discussions with member agencies.	BBWS Brantas				
Water allocation is annually determined by TKPSDA meetings	BBWS Brantas,				
through discussions among BBWS Brantas, PJT-I and the local governments. PJT-I estimates the detailed water demand at each intake point, while BBWS Brantas is responsible for the overall water balance calculation for the basin by using the detailed calculation results provided by PJT-I.	PJT-I				
Since various forums are organized, there are no obvious problems	BAPPEDA JATIM,				
in coordination even among different sectors.	DLH JATIM				
Regional Spatial Planning Coordination Team (TKPRD ⁷) is a	Dinas PU SDA JATIM				
coordinating body established at the provincial and city/regency levels, respectively and its members are relevant departments and stakeholders.	DPRKPCK JATIM				
The discrepancy of spatial plans between the province and	BBWS Brantas				
city/regency is sometimes caused by planning time-lag. In other cases, it is caused by a policy difference in either conservation or development. In that case, provincial BAPPEDA should coordinate	DPRKPCK JATIM				

Table 6.6.11	Findings th	rough Inter	view Survey
--------------	-------------	-------------	-------------

 ⁶ SIH3 (Sistem Informasi Hidrologi Hidrogeologi Hidroklimat)
 ⁷ TKPRD (Tim Koordinasi Perencanaan Ruang Daerah)

Findings	Source		
with both sides. The recognition of the initial response in the event of a disaster has not been shared among agencies. The general matters have been determined, while details have not in some cases.	Dinas PU SDA JATIM		
Law enforcement to illegal behaviors (for Q2-1 to Q2-3)			
TKPSDA engages in educational activities on illegal dumping and illegal mining. However, neither TKPSDA nor PPNS have authority to control the illegal behaviors. BBWS is not authorized to directly control factories that cause water pollution therefore, only informs the authorities by an official letter	BBWS Brantas		
DPRKPCK is not in a position to perform law enforcement even if illegal buildings or activities are found. They can only inform the authorities. The surveillance systems should be established by city/regency governments.	DPRKPCK JATIM		
Local governments have a system of Satpol PP for environmental conservation and maintaining security in the area. Satpol PP is authorized to take actions against illegal behaviors including removal of illegal building in the river area	DPRKPCK JATIM, Dinas PU Bina Marga dan SDA Kab. Sidoarjo		
DLH is authorized to perform law enforcement. For example, if a problem is found through a periodic surveillance, the factory operations can be suspended	DLH JATIM		
Regulations to be added or improved (for Q2-4)			
General regulations to be referred by BAPPEDA seem adequate,	BAPPEDA JATIM,		
while more detailed regulations to be referred by each sectoral department may be improved or added.	DPRKPCK JATIM		
Since the ministerial regulations are legislated by each sector,	DLH JATIM,		
governments. To define them clearly and in more detail, the regional regulations are legislated at a local level.	Dinas PU Bina Marga dan SDA Kab. Sidoarjo		
Local governments tend not to deal with issues outside the jurisdiction in order to avoid problems in audits. It is better to create a regulation that can deal with such cases more flexible.	BBWS Brantas		
Human resources (for Q3-1 & Q3-2)			
Although entire BAPPEDA has about 200 staff, the sub-division dealing with climate change issues has only ten staff. There is a lack of expertise in climate change.	BAPPEDA JATIM		
The decision-making level of the staff is sufficient, but the practical level of the staff in the field is insufficient in terms of both quality and quantity.	Dinas PU SDA JATIM		
DPRKPCK has about 30 staff for the section dealing with spatial planning. However, they are also in charge of evaluating city/regency spatial plans and thus manpower is not sufficient.	DPRKPCK JATIM		
Technical field that require capacity development are: climate	*1: BAPPEDA JATIM		
change ⁻¹ , spatial mapping using GIS ^{*2} , civil engineering and water resources management ^{*3} , and basic civil engineering, especially	*2: DPRKPCK JATIM		
water resources management ^{*4} .	*3: Dinas PU Bina Marga dan SDA Kab. Sidoarjo		
	*4: BBWS Brantas		
Findings	Source		
--	--		
Financial arrangements (for Q4-1 to Q4-3)			
When an unexpected budget is required, a special budget can be applied for if it is caused by a disaster event. However, if it is caused by a sudden event other than a disaster, the budget could not be secured.	BBWS Brantas		
Since the emphasis tends to be placed in the construction stage, a sufficient budget for planning could not be secured. In those cases, the satisfactory analysis may not be conducted at the survey and planning stage.			
Financial capacities of most local governments do not seem to be adequate and therefore they often rely on BBWS Brantas.			
There are no obvious problems in the financing system itself.	BAPPEDA JATIM,		
	DRPKPCK JATIM,		
	Dinas PU Bina Marga dan SDA Kab. Sidoarjo		
Despite the increasing impacts of climate change, the budget for the countermeasures remains at the previous level with little increase	BAPPEDA JATIM		
A new budgeting system will be introduced from next year. It enables allocation of river-specific budget from the national government to provincial government	Dinas PU SDA JATIM		
There are no obvious problems in the financial capacity. The funds are operated in accordance with the priorities considering community opinions as well	Dinas PU Bina Marga dan SDA Kab. Sidoarjo		
Others			
There is no trouble in administrative boundaries of the existing lands in East Java. However, there are cases in which the administrators of the newly-generated lands due to sedimentation or eruption could not be definitively determined. In other cases, when the administrative boundaries do not match the topographical conditions, then both sides are confused on the use of the land	DRPKPCK JATIM		

Source: JICA Project Team 2

(4) Considerations

As stated above, the interview surveys revealed the both good and poor aspects. As a whole, the existing institutional framework and organizational arrangement for water resources management in the Brantas River basin seem adequate. However, some significant concerns were identified. Since some of them are common to that of the Musi River basin, remedial actions are recommended in Chapter 12 together with the Musi River basin.