
Annex 5.1.29 Training Material: "O&M on Pump" for ToT at WASA Rawalpindi

Operation and Maintenance of Pump

- Operation of system
- Ensuring effective routine running of system timely and daily.
- Stability
- Efficient
- Safely
- <u>Maintenance</u>
- Keep of structures/system including planned
- Preventive or Corrective maintenance
- Repair

Operation and Maintenance Plan

- Preparation of O&M Plan
- Preparation of a plan involves list of routine tasks, specific tasks at regular intervals including inspection of system (Daily, Weekly, Quarterly, Annually etc.)
- Plan also involves a checklist for operation, supervision and maintenance.

Standard Operating Procedure for Pump 1. Check on the panel door the 3 indicator lights are illuminated. If the indicator lights are off check the position of Main breaker. Turning the main breaker On will illuminate the indicator lights. But if the situation remains the same then there will be shut off from Wapda's side. بای ن ک ک درواز عیرچوک کوی ک دوآفی کتالی شروش دی می اگراش اے کالی شروش دی قای رگی ی کی ناگ در بی دوش نی وی کاری کی ک کار اشراع کالی از شراع کالی ی شروش دی می کاری از می دوش دی می کاری از می دوش در می می دوش در می می دوش در می می دوش در می می دوش در می در می در می در می دوش در می در می دوش در می در می در می در می در می دوش در می در در می در می در می در می در در می می در می در

Dry Running trip) (کے اشراح کی روشن کی چیک کوں ۔

Standard operating procedure

• 4. Check the indicator light status of (Earth leakage trip).

(Earth Leakage Trip)شار یک وچی کیوی.


- 5. You can only start the pump if all the above four indicator lights are in off state. In case anyone of above light is in on state do inform the respective operation supervisor.
- آپپمپکوصرف اسصورتمی شروع سکت میں جبولپر دی چاروں اش ار کے الی یٰ ٹسن د موں.
 اگر ولپرک کوئی ورشن ی چلر می موتوم تائق مرز مشن و ایزرک و مطیعوی .
- 6. Before Pump start check main braker on or not?

م ن ر وک ر آن ی ان می د

• **7.**The (Duty selector switch) is in ON position.

ڈیٹی س کی ٹر س کی چ آن مو۔

5

Standard operating procedure

• **11.**After starting the pump, ON the Chlorine dosing pump to start the dosing of Chlorine.

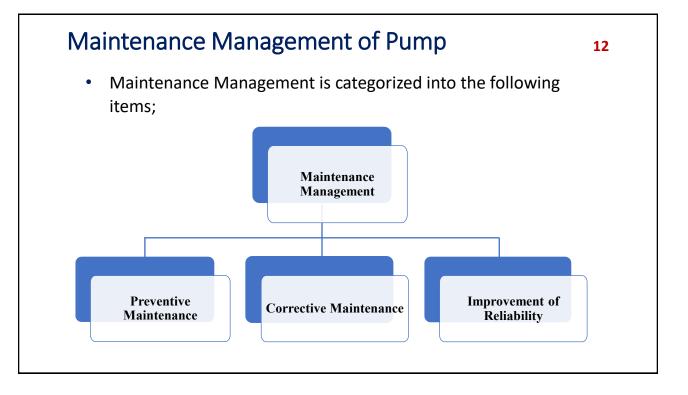
پمپ بخک بعد کلورین پمپ پایی.

• **12.** After starting the main pump make sure the complete absence of abnormal noise or vibration in motor and pump. In occurrence of any such behavior immediately inform the respective site supervisor.

Daily operation Record

- Daily operation record Parameters
- Pump capacity
- Total Head
- Discharge pressure
- Chlorinator setting
- Motor heating, Noise
- Voltage(V), Ampere(A), Motor Output(KW)
- Leakage

Daily Operation Record Sheet (Tube Well Pumping Station)


9

10

Rated Ampere: Location / Code: Pump Capacity cusec A Total Head m Rated Rotation Speed: rpm Submission Date Approved by (Engineer) L/hr kW Chlorinator Capacity Rated Motor Output Prepared by (Operator) Rated Voltage: Chlorinator Setting: % S-No. Unit Results Total Items 1 Date 2 Start Time 3 Stop Time 4 hour **Operating Hours** m³ 5 Flow Meter Reading (Start) 6 Flow Meter Reading (Stop) m³ 7 Flow Amount (No.6 - No.5) m³ Bar / MPa 8 Pressure Gauge Reading 9 Voltage v 10 Ampere А 11 Operation of Chlorinator Done / Not Normal / 12 Motor Heating High 13 Abnormal Sound/Noise Yes / No 14 Leakage Yes / No 15 Remarks

Daily Operation Record Sheet (Disposal Pumping Station) 11

Pump Capacity:		cusec	R	ated Ampere:	A		Location / Code:				
Total Head:		m	Rated Rotation Speed:		rpm		Submission Date:		/ /		
Rated Motor Output:		kW					Approved by (Engineer)				
Rated Voltage:		v					Prepared by	(Operator)			
S- No.	Items	Unit	Results							Total	
1	Date	-									
2	Start Time	-	:	:	:	:	:	:	:	:	
3	Stop Time	-	:	:	:	:	:	:	:	:	
4	Operating Hours	hour									
5	Suction Pressure	Bar / MPa									
6	Discharge Pressure	Bar / MPa									
7	Voltage	V									
8	Ampere	A									
9	Motor Heating	Normal / High									
10	Abnormal Sound/Noise	Yes / No									
11	Leakage (except pump)	Yes / No									
12	Cleaning of Screen	Done / Not									
13	Remarks										

Parameters for Monthly/Yearly inspection(Preventive maintenance) ¹³

- Pump capacity
- Total Head
- Chlorinator capacity/setting
- Gland packing leakage
- Voltage(V), Ampere(A), Motor Output(KW)
- Oil Level/Grease
- · Operation of discharge valve
- Vibration
- Insulation
- Connections
- Overhaul

Monthly Inspection Record Sheet (Vertical Pump)

Pump Capacity: Rated Ampere: Location / Code: cusec A Total Head: Rated Rotation Speed: Inspection Date: rpm m Chlorinator Capacity: Approved by Rated Motor Output: kW (only for Tube Well) L/hr (signature) Chlorinator Setting: Prepared by (only for Tube Well) % (signature) Rated Voltage: ν S-Measurement Items Unit Result Standard Remarks No. 1 Leakage Amount at Grand Packing mL/min Proper / Not $q = 0.5 \times d (mm, shaft dia.)$ According to the caluculation Only for Tube Well 2 **Dosing Amount of Chlorine Solution** L/hr Proper / Not sheet 3 Oil Level _ Proper / Not According to the level gauge S-Check / Maintenance Items Unit Result Remarks No. 4 Retightening of Grand Packing -Done / Not In case that leakage amount is excess. In case that the measured value does't meet the Done / Not 5 Adjusting the setting value of Chlorinator calculated value. 6 Refilling Oil Done / Not In case that oil level is low. _ 7 Operation of Discharge Valve Functioning / Not -< Comments / Findings>

14

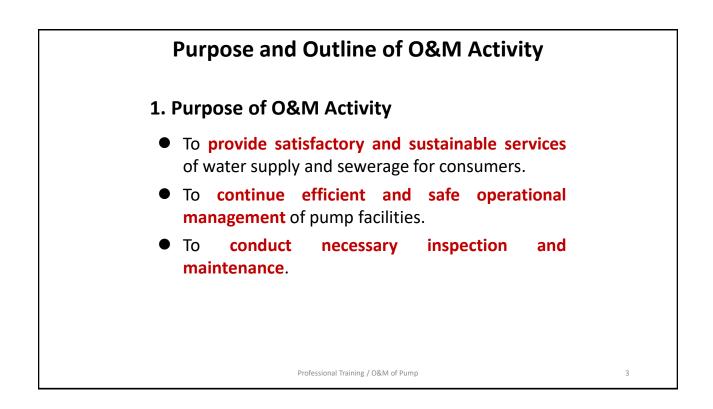
	Pump Capacity:	cused	Ra	ted Ampere:		A Loc	ation / Code:	
	Total Head:	m	Rated Rot	ation Speed:	rpi	n Ins	pection Date:	/ /
	Rated Motor Output:	kW		or Capacity: r Tube Well)	L/ł		oved by nature)	
	Rated Voltage:	, \		ator Setting: r Tube Well)		%Prepared b	oy (signature)	
S-No.	Measurement Items	Unit	Measurement L	ocation/Direction	n* Measu	red Value	Standard Value*	Remarks
	Vibration		1	Axial (A))		–Upper Limit:	
			(Drive Mounting Surface/Lower Motor	Orthogonal (X)		8.5 (less than 200kW),		
			Bearing)	Orthogonal	I (Y)		9.5 (above 200kW)	
1		mm/s	2 (Pump Bearing/Lower	Axial (A))		-Upper Limit:	
				Orthogonal	I (X)		8.5 (less than 200kW),	
			Motor Bearing)	Orthogonal	I (Y)		9.5 (above 200kW)	
2	Insulation	MΩ	** Accord	ing to the electri	ical inspection shee	et	A	1-1-
S-No.	Maintenance Items		Result	Remarks				2
3	Retightening of Anchor Bolts	1	Done / Not			×	x () Y	
4	Replace of Grand Packing	1	Done / Not	every 1 to 4 years (depending on the condition)				
5	Replace of Oil/Grease		Done / Not	every 1 to 4 years (depending on the condition)				

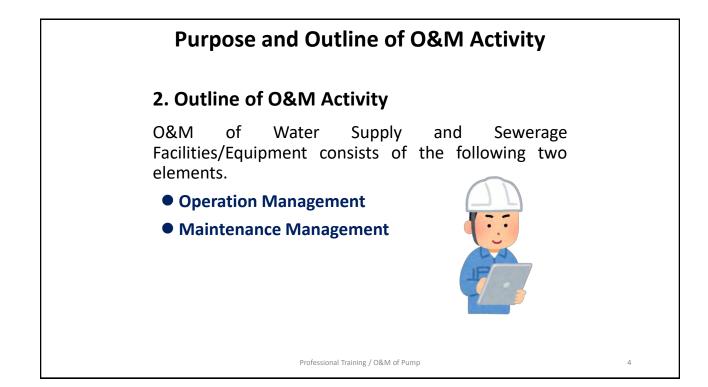
Instruments use for Inspection

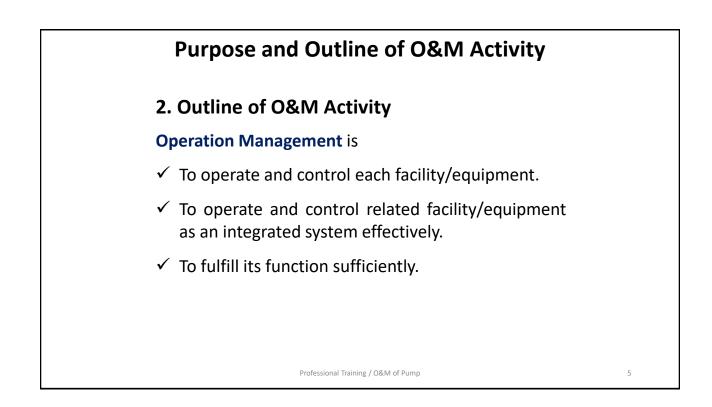
- Vibration meter
- Clamp meter
- Insulation meter

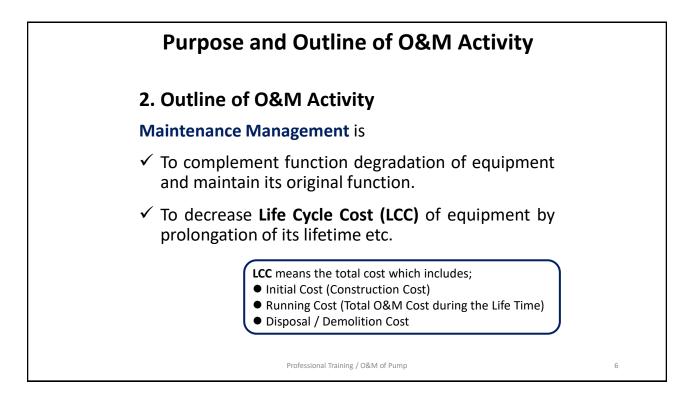
Troubleshooting of Pump

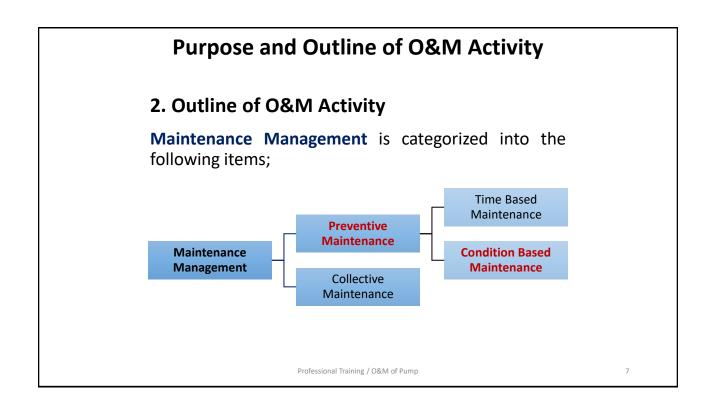
Annex 5.1.30 Training Material: "O&M on Pump" for Pilot In-house Training and In-house Training at WASA Rawalpindi

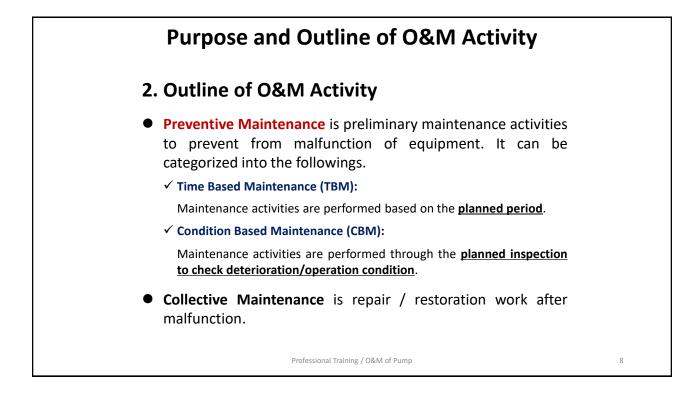

Operation and Maintenance (O&M) OF PUMP

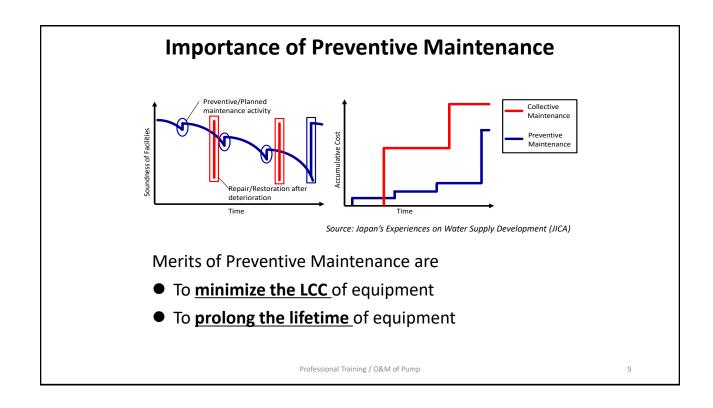

Professional Training / O&M of Pump

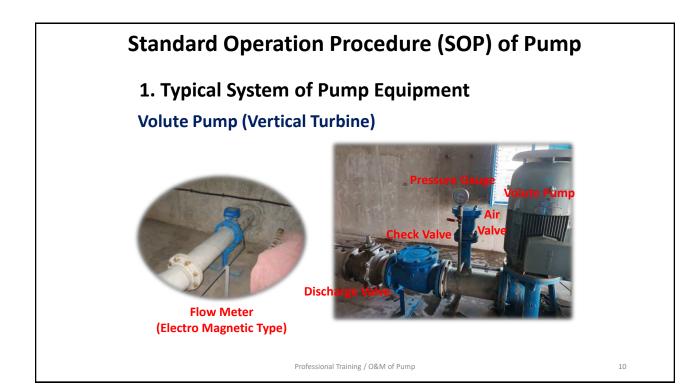

Table of Contents

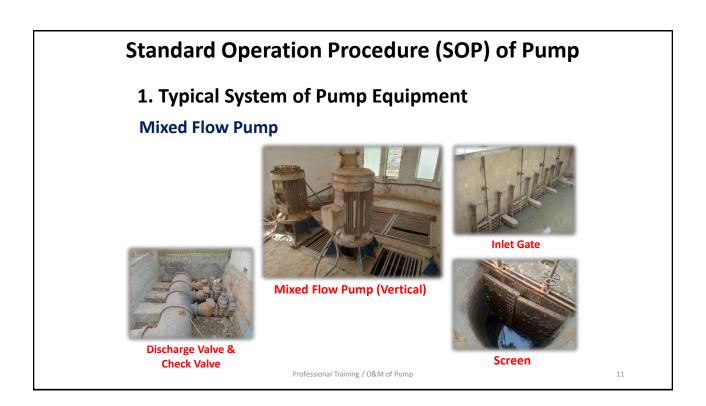

- 1. Purpose and Outline of O&M Activity
- 2. Importance of Preventive Maintenance
- 3. Standard Operation Procedure (SOP) of Pump
- 4. How to Conduct Daily Inspection
- 5. How to Conduct Periodic Inspection
- 6. Planning of Periodic Inspection & Maintenance

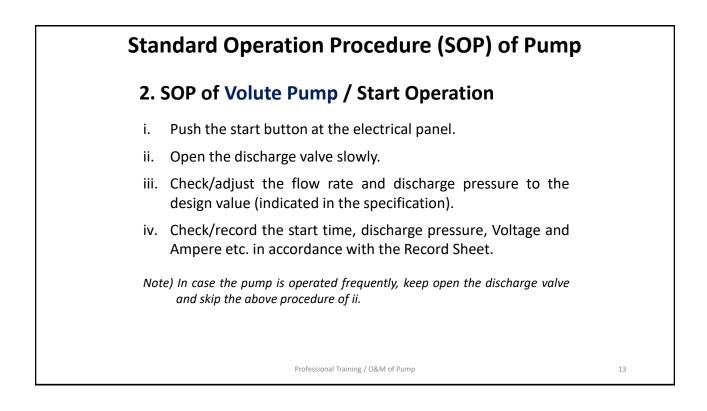

1









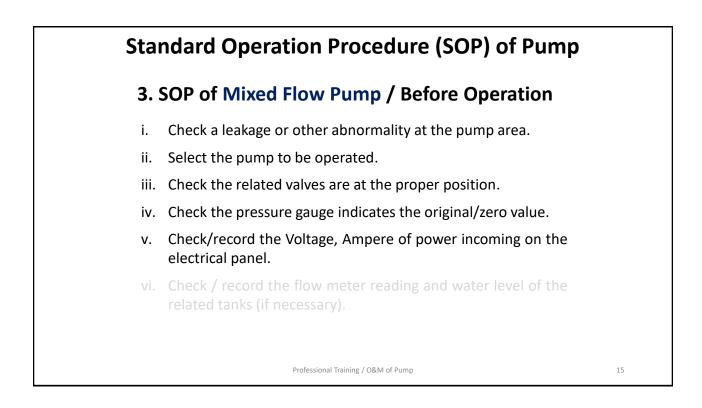


Standard Operation Procedure (SOP) of Pump

2. SOP of Volute Pump / Before Operation

- i. Check a leakage or other abnormality at the pump area.
- ii. Select the pump to be operated.
- iii. Check the related valves are at the proper position.
- iv. Check the lubricate water tank is filled with water.
- v. Check the pressure gauge indicates the original/zero value.
- vi. Check/record the Voltage, Ampere of power incoming on the electrical panel.
- vii. Check/record the flow meter reading and water level of the related tanks (if necessary).

Professional Training / O&M of Pump

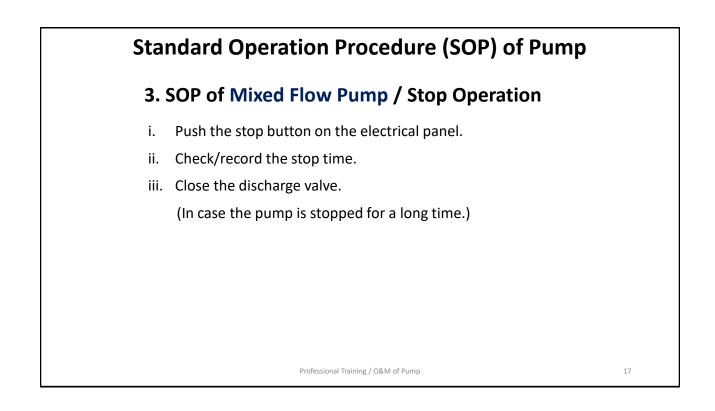


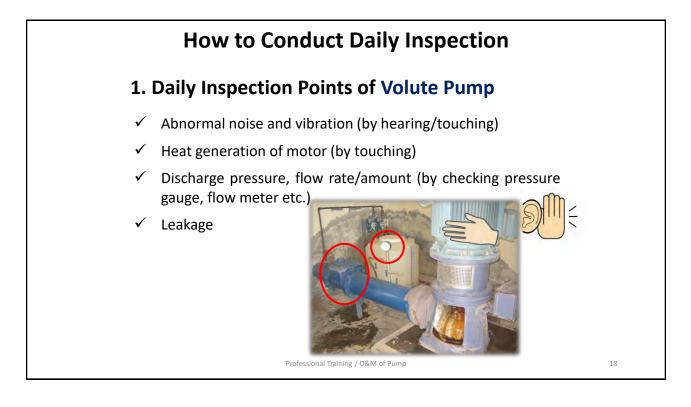
Standard Operation Procedure (SOP) of Pump

2. SOP of Volute Pump / Stop Operation

- i. Push the stop button on the electrical panel.
- ii. Check/record the flow meter reading and stop time.
- iii. Close the discharge valve.

(In case the pump is stopped for a long time.)

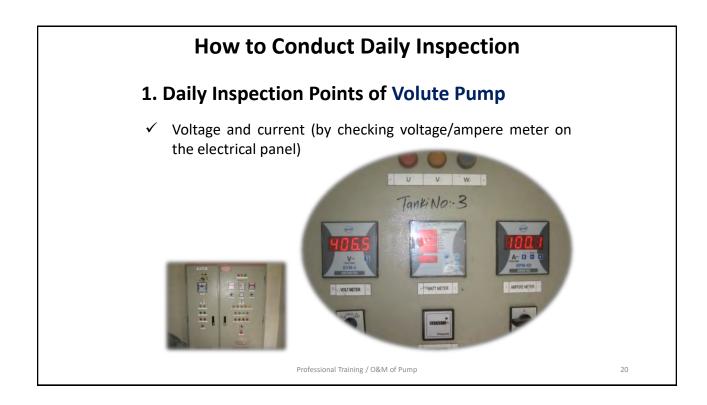



3. SOP of Mixed Flow Pump / Start Operation

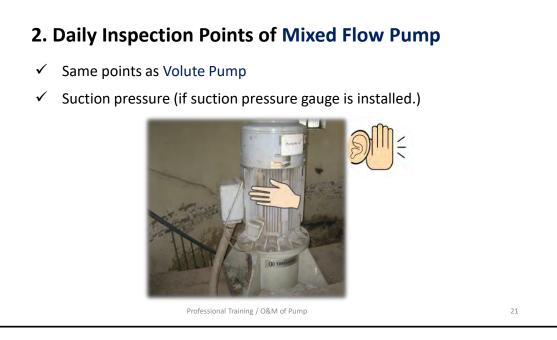
- i. Push the start button at the electrical panel.
- ii. Open the discharge valve slowly.
- iii. Check/adjust the flow rate and discharge pressure to the design value (indicated in the specification).
- iv. Check/record the start time, suction/discharge pressure, Voltage and Ampere etc. in accordance with the Record Sheet.

Note) In case the pump is operated frequently, keep open the discharge valve and skip the above procedure of ii.

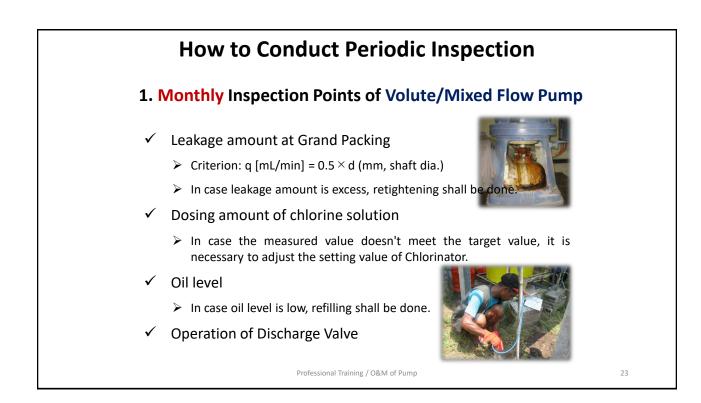
Professional Training / O&M of Pump

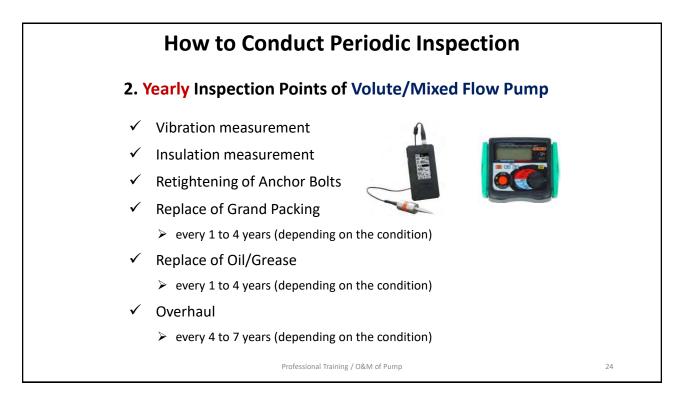


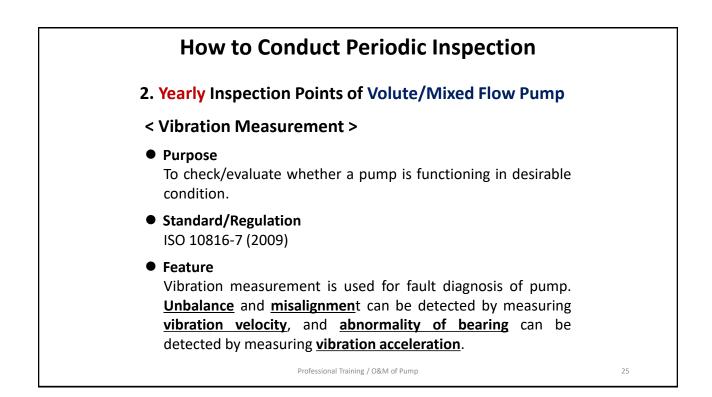
How to Conduct Daily Inspection

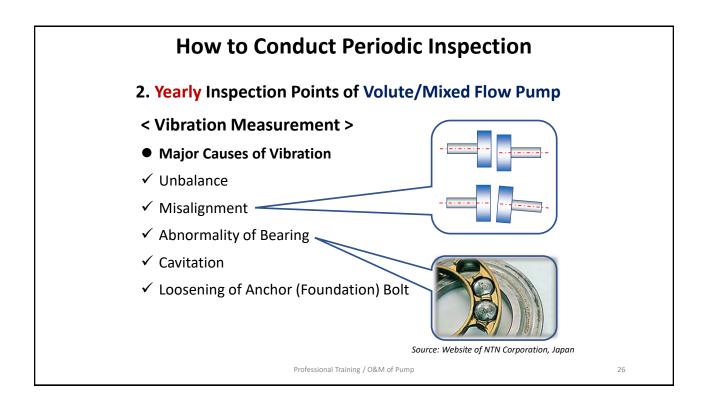

1. Daily Inspection Points of Volute Pump

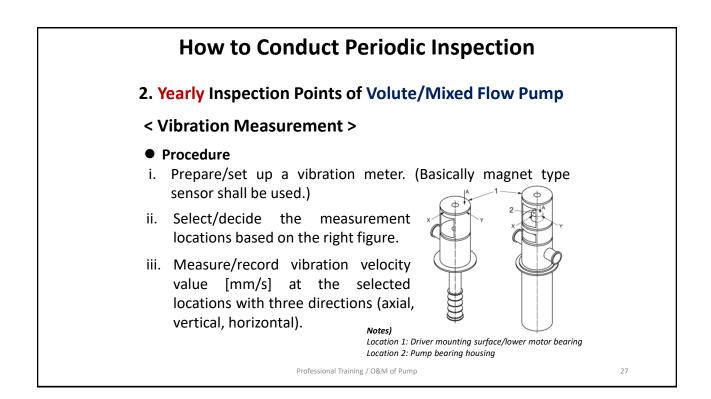
Excessive heat generation of motor can be checked by sense of touch.


Surface Temperature	Sense of Touch	Remarks
40 °C	Somewhat warm	Feel slightly warm. Normal
45 °C	Warm	Feel comfortably warm. condition
50 °C	Somewhat hot	Your palm turns red if you touch it for a few minutes.
60 °C	Hot	Can hold your hand for a few seconds.
70 °C	Extremely hot	Can hold one finger for a few seconds.
80 °C	Extremely hot	Can hold one finger for only one second.
	Professional	Training / O&M of Pump




How to Conduct Daily Inspection



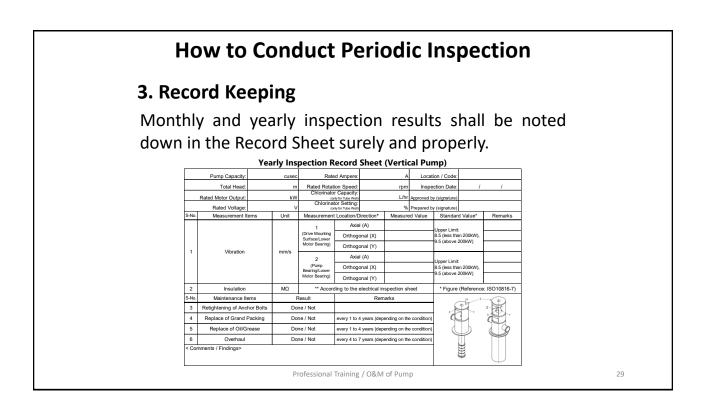

How to Conduct Daily Inspection 3. Record Keeping Daily inspection results and other operation records shall be noted down in the Record Sheet surely and properly. Daily Operation Record Sheet (Tube Well Pumping Station) Pump Capacity: Rated Ampere: A Location / Code Total He ssion Da Sub r Outpu Rated Voltage: Unit Dat Start Time Stop Time Operating Hour hour m³ ount (No.6 - No.5 m³ re Gauge Re ar / MPa Voltage ion of Chlo one / No Motor He Yes / No Yes / No Professional Training / O&M of Pump 22

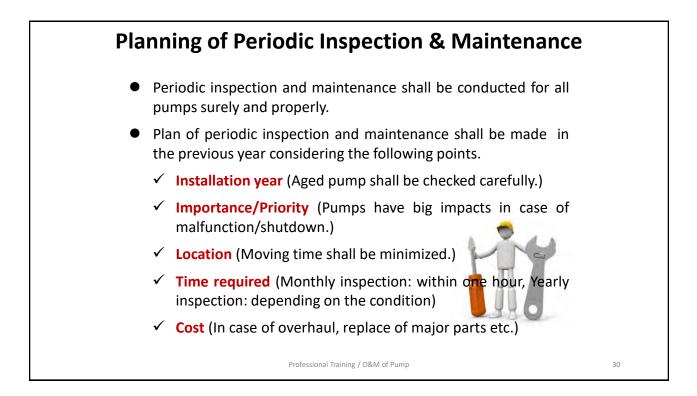
2. Yearly Inspection Points of Volute/Mixed Flow Pump

< Vibration Measurement >

Evaluation

The results shall be evaluated according to the below table.


Zone	Description	Vibration Velocity Limit*			
zone	Description	≤ 200 kW**	>200kW**		
А	Newly commissioned machine	3.2	4.2		
В	Unrestricted long-term operation	5.1	6.1		
С	Limited operation	8.5	9.5		
D	Risk of damage	> 8.5	> 9.5		


Notes)

* The root-mean-square (r.m.s) value in mm/s

** The applicable motor capacity of industrial pump, which is categorized into Category II (pumps for general or less critical application), is above 1 kW.

Professional Training / O&M of Pump

Annex 5.1.31 Supplemental Material for WTP at WASA Rawalpindi: Major Points of O&M

Major Points of Operation and Maintenance (O&M) for Water Treatment Plant WASA, Rawalpindi (RLWTP) THIS DOCUMENT IS PREPARED FOR TRAINING PURPOSES. IT CONTAINS A SAMPLE PREVENTIVE MAINTENANCE PLAN FOR THE WATER TREATMENT PLANT. IT IS HIGHLY RECOMMENDED TO USE MANUFACTURER'S MANUALS FOR PREVENTIVE MAINTENANCE.


JICA Expert Team

<u>Contents</u>

Flow I	Diagram
Design	ed Parameters2
Con	iponents:2
Major	Points of O&M for RLWTP
1.	Primary Screen
2.	Flash Mixer
3.	Clarifier5
4.	Rapid Sand Filter (RSF)
5.	Air Blower
6.	Electrical Panels
7.	Wiring and cables
8.	Conduit and Raceways18
9.	Grounding systems
10.	Electrical motors
11.	Electrical monitoring and control systems
12.	Backup power supply (Generator) testing22
13.	Inspect Lighting System
Schedu	le of electrical activities24
Sheet #	⁴ 1: Preventive Maintenance Record25
Sheet #	⁴ 2: Device Inspection Sheet

Flow Diagram

Designed Parameters

	ty: 28 MGD (existing 23 MGD)				
Intake:	•	Rawal Dam			
	Freated Water Quality:				
Turbidity		-	< 1 FTU (24 hr Average)		
Color		5	< 5H		
	pН		= 7.5 ~ 9.5		
	Residua	l Chlorine	$= 0.3 \sim 1 \text{ mg/L}$		
Comp	onents:		-		
-		e Channels			
	Screens (Coarse Hand Ral	xe Bar) x 3		
Flow n		ent and control ch	·		
	Butterfl	y Valves (Electric	Actuated)		
	Flow M	easures (Venturi	and Magnetic)		
Raw w	ater Aerat	ion			
	Blower	(Air Flow = 6 m^3	/ min) x 2		
Flash r	nixer/ Dis	tribution chambe	r		
	Geared	eared Drives x 2			
	Mixer (Shaft Mounted)				
Clarifi	er (Round	Shape)			
Flocculator x 2		x 2			
	Sludge S	crapper			
	Clarifier	Area	= 475 m ²		
	Up flow	velocity	= 2.55m/hr		
	Flow $= 336 \text{ L/s}$		= 336 L/s		
Clarification Rate =		tion Rate	= 6.39 MGD/ Clarifier		
Clarifi	Clarifier (Rectangular Shape)				
	Clarifier Area =		= 4 x 190 = 760 m ²		
	Up flow velocity $= 2.2 \text{ m/hr}$		= 2.2 m/hr		
	Flow	Flow $= 475 \text{ L/s}$			
	Hydrauli	c Flocculator			
	Sludge co	oncentrators			
	Clarificat	tion Rate	= 9.03 MGD		
Filters	Filters				
	Rapid Sa	Rapid Sand Gravity (Constant Head)			

Media (Silica Sand 0.95mm, Effective Size, 1.4 m thick layer)

Filtration Rate	MAX: 6.5 m/h, AVE: 5.4 m/h
Outflow turbidity	< 1 NTU
Output Flow	= 7.9 ML/d/ filter
Rate of filtration	= 110 G/ft2/h

Backwash system

Combined air and water washing

Air scour rate	= 30 m/h	
Water Wash rate	= 22 m/h	
	= 40 m/h	
Nozzles opening	= 0.2 mm	
Backwash time	= 13 - 20 min/ filter	

Coagulation

15 % Aluminum Sulphate Solution

Disinfection

Chlorine injection by means of chlorinators with range 2-20 kg/ hr Chlorine supply: 1 ton drums liquid chlorine

· · · ·

Chlorine dosing

Gas

Major Points of O&M for RLWTP

1. Primary Screen

The function of primary screen is to stop large floating objects to get inside the intake channel. However, screen must be monitored regularly to see whether any foreign objects are stuck with the vertical bars and if so, remove promptly.

2. Flash Mixer

- 1) Operation of Flash Mixer
- ✓ Check whether the blades of Flash Mixer are submerged.
- \checkmark Push the start button to start the flash mixer.
- ✓ Check and confirm for smooth operation of Flash Mixer.
- \checkmark Push the stop button to stop the Flash Mixer.

Notes) In case Alum is not injected during low turbidity season, the mixer can be stopped for energy saving purpose.

- 2) Inspection/Maintenance of Flash Mixer
- ✓ Daily and periodic inspection shall be performed according to the below table, and the results shall be recorded in logbook/mWater form.

Points of inspection & maintenance	Frequency
Oil level and its leakage	
Current and Voltage	Daily
Excessive heat generation of motor	
Abnormal noise, vibration	
Operating condition	

Table: Inspection Points of Flash Mixer

Check/retightening of anchor bolts	Monthly	
Complete change of lubricant and grease	In accordance with the instruction	
	manual	

3. Clarifier

- 1) Start-up & Operation Procedures
- ✓ Perform a jar test on the influent raw water to determine the appropriate chemical dosages. Since this test is essential for good treatment, the plant operator should enter the test results in the proper logs and records to ensure the appropriate information is available to all stakeholders.
- ✓ Complete a general inspection of the clarifier systems. Note and report any equipment in need of maintenance or repair.
- \checkmark Check and confirm that each inlet gate of each flocculator to be used is open.
- \checkmark Check and confirm that each de-sludge valves of each clarifier to be used is closed.
- ✓ Based on the jar test results, prepare the necessary chemical feed systems for startup.
- ✓ Inform the concerned operation staffs to take necessary steps of valve operation to fed raw water to receiving wells from raw water conveyance.
- ✓ Alum shall be injected on regular basis. Lime and Chlorine shall be dosed depending on the jar test results and growth of algae at flocculator and clarifier walls.
- ✓ From the mixing chamber, raw water with mixed chemicals shall be fed to the clarifier where the flocculated solids settle down as sludge.

Observation, Monitoring and Sludge Removal

- ✓ There should not be any floating objects in the clarifier. If any, it should be removed promptly.
- ✓ Coagulation, flocculation, and sedimentation condition of suspended solids shall be checked. If the results are found not satisfactory, dosage rate of alum & lime shall be adjusted. It is recommended for operation to control the pH at flocculation around 7.0. Chemical dosing rate have to be determined by jar test.
- ✓ Sludge shall be withdrawn from each tank, through de-sludge valves.
- ✓ Each of the clarifiers shall be cleaned and washed out at least twice a year. However, the schedule of cleaning may be determined based on process requirements. In general, one after another so plant operation can continue at full capacity.

Facility	Contents of inspection & maintenance	Frequency
Receiving Well	Check and confirm flow rate of raw water	
	Check and confirm quality (turbidity, pH, alkalinity)	
	of raw water	
	Perform jar test on raw water samples when	Daily
	significant raw water quality changes are	
	experienced. Adjust coagulant dosages.	
	Check and confirm condition of mixing	
	Calibrate chemical feeders	Monthly
	Check for cracks, deterioration of concrete, existence	
	of leaks	Yearly
	Operation status of respective types of valves, gates,	Tearry
	& mixer etc.	

Table: Inspection and Maintenance Schedule

	Cleaning and maintenance of receiving well & mixing chamber	
Clarifier	Check and confirm proper growth of flocs	
	Check settling condition of flocs	Daily
	Check and confirm settled water quality (turbidity)	
	Check for existence of trash, algae etc.	
	Check for cracks, deterioration of concrete, existence	
	of leaks	
	Operation status of respective types of valves, mixers	Yearly
	and sludge collectors.	
	Touch-up paint of valves and other machinery	
	Cleaning and maintenance of Clarifier	

- 2) Start-up & Operation Procedures of the mixer and sludge collector (For the Circular Clarifiers)
- ✓ Ensure all relevant main switches for mixers and sludge collectors are energized.
- ✓ Turn on applicable control power. Except for maintenance, mixers and sludge collectors should always be running.
- \checkmark Visually check the operating condition of mixers and sludge collector.

Table: Checklist for Mixers and Sludge Collectors

Timing	Points to be checked
Before starting operation	Power supply, voltage and capacity are suitable.
	Wiring is connected properly.
	Bearing's oil and grease are enough.
During operation	Drive-current is normal.
	Is there any strange sound and vibration during
	operation?
	Is there any strange sound from bearing and oil
	seal?
	Is there any strange smell and smoke?
	Surface temperature of driving units are normal.

4. Rapid Sand Filter (RSF)

- 1) Operation Procedures of Filtration
- ✓ During the filtration process, the inlet and outlet valves shall be opened.
- ✓ The following points shall be checked/performed properly.

Table: Daily O&M of RSF

Points to be checked	Notes	
Observe the water level in the RSF	When the water level in the filter reaches	
	the pre-set level for the start of the	
	backwashing of filters, the backwashing	
	process shall be started.	
Remove any floating materials	Use net or any other suitable tools	
Measure turbidity, pH, EC, TDS and	Note down the results in a logbook/mWater	
residual chlorine etc. of treated water	form. If the value of any parameter is found	
collected at the entrance of the clear	more than the standard value, investigate	
water tank (effluent of the filters)	the cause of such value and take necessary	
	countermeasure.	
Check and confirm filtration rate (ave:	Same height of water above influent weir	
5.4m/hr., max:6.5m/hr.), and filter run	installed at inlet of each filter shall be	
time. Same filtration rate from the	confirmed by adjustment (if necessary) of	
clarifier to all filters shall be	inflow valve or influent weir.	
maintained.		

2) Operation Procedures of Backwash

There are two conditions for filter backwash. The first condition is the design high water level. The need for filter backwashing is determined by closely monitoring the individual water level of each filter. When the level in filter reaches the highest design level, the filter is ready to be backwashed. The second condition is time. An RSF should be backwashed at least once every 24-hour. Nevertheless, the filters are to be backwashed only one at a time.

- ✓ Close the inlet valve of the target RSF and wait until the inside water level goes down to the designed level (below the effluent trough). When the water level reaches to the designed value, the outlet valve shall be closed.
- Air scouring is performed by operating the related valves and air blower for at least 5 minutes. However, this value shall be adjusted depend on the effectiveness of air scouring. The design velocity is 30 m/hr.
- ✓ Only backwash is performed by operating the related valves and backwash pump for approx. 10 min in order to wash out the suspended matters removed from the filter sand by air scouring. The design velocity is 22 or 40m/hr., and the backwash period shall be adjusted depend on the effectiveness of backwash (The appearance of surface water shall be clean enough.).
- ✓ After the backwash pump is stopped, the Air Vent Valve shall be opened to exhaust the remaining air. After that, the Air Vent Valve shall be closed, and the Inlet valve shall be opened to fill the water.
- 3) Operation of Air Blowers
- ✓ Visually check the condition of air blower for any defects or damage.
- ✓ Set/confirm the selector switch position to select the air blower to be operated on the blower LOP.
- ✓ Set/confirm the selector switch position to select "LOCAL" or "REMOTE" on the blower LOP.
- \checkmark Push the lamp test button to ensure all lamps are working.
- ✓ Ensure all the related valves are opened and the Air Scouring Valve (motorized valve) of target RSF is opened.
- \checkmark Push the "ON" button start the blower.
- ✓ Check the discharge pressure, current and voltage.
- ✓ Push "OFF" button to stop the blower after operating the set period.
- ✓ Close the Air Scouring Valve.
- ✓ The start and stop time and the above measured values shall be recorded in logbook/mWater form.

5. Air Blower

 ✓ Daily and periodic inspection shall be performed according to the below table, and the results shall be recorded in logbook/mWater form.

Points of inspection & maintenance	Frequency
Oil level and its leakage	
Casing/Bearing temperature	
Discharge pressure and current	Daily
Condition of belt (wear etc.)	
Abnormal noise, vibration	
Measurement and correction of belt tension	
Cleanness of lubricant	Monthly
Check the condition of suction filter	
Complete change of lubricant and grease (in accordance with the	
instruction manual)	Yearly
Check the condition (degree of wear) of oil seal, belt and bearing.	

Table: Inspection Points of Air Blower

Table: Troubleshooting of Air Blower

Symptom	Cause	Countermeasure
Abnormal	Power or motor problem	Repair faulty component of
rotation of blower		power line or motor
	Foreign materials inside blower	Disassemble blower and
		remove foreign materials
	No oil inside bearing and dust or	Clean and refill oil
	rust present	
	Bearing damaged and rotor in	Replace bearing and repair
	contact with side frame or casing	contacted part
	Fuse blowing during running due	Replace with specified fuse
	to too low fuse rating	
	Tar attached to rotor	Disassemble and clean
Generation of	Foreign materials inside blower	Disassemble to remove
abnormal sounds		
Generation of	Loose bolts	Retighten bolts
abnormal sounds	Bearing wear	Replace bearing

Symptom	Cause	Countermeasure
	Air leakage	Inspect pipeline system
	Inferior contact or breakage of gear	Adjust or repair gear
	Rotor in contact with casing or another rotor	Disassemble and repair
Severe vibration	Looseness of foundation bolt	Retighten bolts
	Poor installation	Correct installation
	Poor pipe support	Correct pipe support
	Insufficient belt tension	Adjust tension
	Incorrect alignment of centre	Align shaft center
	High discharge pressure	Set to regulated discharge pressure by adjusting discharge valve
High discharge pressure with	Discharge valve closed	Open valve and adjust to regulated pressure
deficient capacity	Pipeline system at discharge side clogged	Clean pipes at discharge side
	Faulty safety valve	Repair or replace safety valve
	Abnormality in pressure gauge	Repair or replace
Low discharge	Filter at suction side clogged	Clean or replace filter
pressure with deficient capacity	Air leakage from discharge tube system	Repair leaking part and replace packing
	Suction tube clogged	Repair leaking part and replace packing
	Incorrect clearance of blower	Correct clearance
	Deficient rotation speed	Adjust belt tension
	Faulty safety valve	Repair or replace safety valve
	Incorrect selection of capacity	Re-select and replace blower
Overload of	Discharge pressure higher than	Set/adjust discharge pressure
electric motor and	specification	to specification
excessive rise of	Excessive or insufficient lubricant	Maintain appropriate level
temperature		of lubricant

Symptom	Cause	Countermeasure
	Excessive or deficient viscosity of	Use recommended oil
	oil due to incorrect selection	
	Faulty ampere meter	Repair or replace
	Bearing wear	Replace bearing
	Motor worn out	Repair or replace
Oil leakage	Inferior fastening of bolt at oil	Fasten by binding with
	level gauge	Teflon tape
	Wear on oil seal or o-ring	Replace oil seal and O-ring
	Wear on gear case packing	Replace packing
	Oil cock loosened due to vibration	Re-fasten oil injection bore
		and drain cock
	Excessive oil	Maintain appropriate level in
		oil level gauge

- 4) Operation of Backwash Pump
- ✓ Visually check the condition of pumps for any defects or damage.
- \checkmark Set/confirm the selector switch position to select the pump to be operated on the LOP.
- ✓ Set/confirm the selector switch position to select "LOCAL" or "REMOTE" on the LOP.
- \checkmark Push the lamp test button to ensure all lamps are working.
- ✓ Ensure all the related valves are opened and the Backwash Valve and Backwash Waste Valve (motorized valve) of target RSF are opened.
- \checkmark Push the "ON" button start the pump.
- ✓ Check the discharge pressure, current and voltage.
- ✓ Close the Backwash Valve after passing the pre-set period.
- ✓ After the Backwash Valve is fully closed, push "OFF" button to stop the pump.
- ✓ Close the Backwash Waste Valve.
- ✓ The start and stop time and the above measured values shall be recorded in logbook/mWater form.

5) Daily Inspection of Backwash Pump

The following points shall be checked in daily inspection. Inspection results including the measured values shall be recorded in record sheet/mWater form.

✓ Abnormal noise and vibration (by hearing/touching)

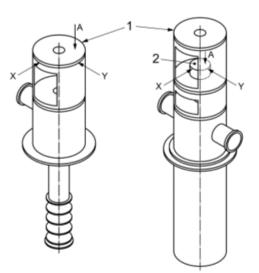
- ✓ Heat generation of motor (by touching)
- ✓ Discharge pressure, flow rate/amount (by checking pressure gauge, flow meter etc.)
- ✓ Leakage
- ✓ Voltage and current (by checking voltage/ampere meter on the electrical panel)

6) Monthly Inspection of Backwash Pump

The following points shall be checked in monthly inspection. Inspection results including the measured values shall be recorded in record sheet/mWater form.

- ✓ Leakage amount at Grand Packing Criterion: q [mL/min] = 0.5×d (mm, shaft dia.) In case leakage amount is excess, retightening shall be done.
- ✓ Operation of Discharge Valve

7) Yearly Inspection of Backwash Pump


The following points shall be checked/performed in yearly inspection. Inspection results including the measured values shall be recorded in record sheet/mWater form.

- ✓ Vibration measurement (See the detail procedure as shown below)
- ✓ Insulation measurement
- ✓ Retightening of Anchor Bolts
- ✓ Replace of Grand Packing every 1 to 4 years (depending on the condition)
- ✓ Replace of Oil/Grease every 1 to 4 years (depending on the condition)
- ✓ Overhaul

every 4 to 7 years (depending on the condition)

< Procedure of Vibration Measurement >

- ✓ Prepare/set up a vibration meter. (Basically, magnet type sensor shall be used.)
- ✓ Select/decide the measurement locations based on the right figure.
- ✓ Measure/record vibration velocity value [mm/s] at the selected locations with three directions (axial, vertical, horizontal).
- ✓ The results shall be evaluated according to the below table.

Notes)

Location 1: Driver mounting surface/lower motor bearing Location 2: Pump bearing housing

7000	Description	Vibration Ve	locity Limit*
Zone	Description	≤ 200 kW**	> 200kW**
А	Newly commissioned machine	3.2	4.2
В	Unrestricted long-term operation	5.1	6.1
С	Limited operation	8.5	9.5
D	Risk of damage	> 8.5	> 9.5

Notes)

The root-mean-square (r.m.s) value in mm/s

* The applicable motor capacity of industrial pump, which is categorized into Category II (pumps for general or less critical application), is above 1 kW.

8) Inspection and Maintenance of RSF

The following points shall be checked/performed in periodic inspection and maintenance. Inspection results including the measured values shall be recorded in record sheet/mWater form.

Frequency	Points to be checked/performed	Notes
Monthly	Check and confirm time needed	Carry out backwashing of the filter and
	for complete cleaning.	record the values as found. Compare it
		with the value of previous records

Table: Inspection and Maintenance of RSF

Frequency	Points to be checked/performed	Notes
1 7	Check and confirm the cleaning	Make sure that the backwash water is
	condition of the filter after	evenly distributed during
	backwash.	backwashing. Check at the end of the
		backwash period whether the water is
		entirely clean or not and that the top of
		filter can be seen or not.
	Take a sample of the backwash	If turbidity exceeds 10 NTU
	waste at the end of the	adjust/increase the backwash and air
	backwashing and measure the	scouring time.
	turbidity of the waste.	
	Check and confirm current, oil	Check during operation and
	level, vibration, water leak and	backwashing of the filters
	oil leak of motorized valves.	
	Check the flow rate of air blower	Compare it with the design flow rate
	and backwash pump during	and also with the previous values.
	backwashing.	Adjust the flow by the related valve if
		required.
Yearly	Drain out the filter and inspect	Open the related drain valves for an
	the filter bed condition (mud	inspection of the filter bed. When mud
	balls etc.), cracks on walls etc.	balls are noticed in an early stage,
		these shall be removed by scraping the
		top layer of the bed.
	Cleaning of walls, back wash	Take necessary steps as required.
	troughs etc.	
	-	If a decrease of depth is found, try to
	bed and compare it with the	identify the cause:
	previous result. Check whether	✓ Check on the loss of sand during
	filter sand exists in the backwash	backwashing.
	gutter.	 Refill the bed with specified filter sand.
Every 5	Check the condition of strainers,	Repair if any damage is identified.
years	bottom/structure of the filter.	
	Study on filter sand	Conduct a required analysis such as
	(contamination of filter media,	sieve analysis of the filter sand. Fill
	occurrence of mud balls,	with new filter sand if analysis of the

Frequency	Points to be checked/performed	Notes
	effective diameter, uniformity	filter bed revealed that filter bed does
	coefficient, filter layer thickness	not meet the specifications any more.
	etc.)	

6. Electrical Panels

Equipment Required:

- 1. Digital Insulation / Continuity Testers (KEW 3005A)
- 2. Power analyzer (KEW 6315)
- 3. Earth tester (KEW 4105A)
- 4. AC/DC Digital Clamp Meters (KEW 2046R)
- 5. Temperature gun (Smart Sensor AT 380)

Safety Measures:

- 1. Ensure all power sources are de-energized before beginning work
- 2. Wear personal protective equipment (PPE), including electrical gloves, safety glasses, and a hard hat
- 3. Follow all manufacturer instructions and safety guidelines when using equipment

- 1. Visual Inspection:
 - Inspect the electrical panels for any visible signs of damage, including cracks, corrosion, and loose or missing parts.
 - Ensure all labels and identification markers are legible and in good condition.
- 2. <u>Tightening of Connections:</u>
 - Using a torque screwdriver, tighten all electrical connections in the panels to the manufacturer's recommended specifications.
 - Check for any loose or overheated connections and replace as necessary.
- 3. <u>Insulation Continuity Test:</u>
 - Using an insulation continuity tester, check the insulation resistance of each circuit within the panel.
 - Record the readings and compare them to previous results to identify any trends or potential issues.
- 4. <u>Power Quality Analysis:</u>

- Using a power analyzer, monitor the electrical characteristics of the panel and connected equipment.
- Analyze the data to identify any abnormalities or areas for improvement.
- 5. <u>Temperature Measurement:</u>
 - Using a temperature gun, measure the temperature of the electrical components in the panel, including breakers, fuses, and bus bars.
 - Compare the readings to previous results and manufacturer specifications to identify any potential issues.
- 6. <u>Cleaning and Lubrication:</u>
 - Clean the interior of the electrical panels using a soft, dry cloth.
 - Apply lubricant to any moving parts, such as hinges and latches, to ensure proper operation.
- 7. <u>Documentation:</u>
 - Use the forms in mWater Portal and mWater Surveyor to ease the record-keeping
 - Record all maintenance activities and readings
 - Schedule any necessary repairs or replacements based on inspection and testing results.

Schedule: Quarterly

7. Wiring and cables

Equipment required:

- 1. Digital Insulation / Continuity Testers (KEW 3005A)
- 2. AC/DC Digital Clamp Meters (KEW 2046R)
- 3. Non-contact voltage tester (UNI-T UT 12D ROW)
- 4. Cable ties
- 5. Cable supports
- 6. Replacement cables as needed

Safety measures:

- 1. Ensure power is turned off before any maintenance is performed
- 2. Use proper personal protective equipment, including gloves and eye protection
- 3. Follow all manufacturer instructions and safety guidelines when using equipment

- Visually inspect all wiring and cables for signs of wear, damage, or corrosion. Replace any damaged cables.
- 2. Check all cable ties and supports for tightness and security. Replace any damaged or missing cable ties or supports.
- 3. Use the insulation resistance tester to measure the insulation resistance of each cable. Record the readings.
- 4. Use the digital multimeter to check each cable's voltage and current levels. Record the readings.
- 5. Verify that all cables are properly grounded.
- 6. Document any issues found during the inspection and testing and schedule any necessary repairs or replacements.

8. Conduit and Raceways

Equipment Required:

- 1. Non-contact voltage tester (UNI-T UT 12D ROW)
- 2. Digital Insulation / Continuity Testers (KEW 3005A)
- 3. Conduit reamer and cutter
- 4. Fish tape
- 5. Wire brush
- 6. Lubricant for conduits and raceways
- 7. Replacement conduits and raceways as needed

Safety Measures:

- 1. Before starting any work, ensure that the power supply to the conduits and raceways is turned off and locked out to prevent accidental start-up.
- 2. Wear appropriate personal protective equipment (PPE) such as insulated gloves and safety glasses to prevent electric shocks and eye injuries.
- 3. Use only insulated tools to work on the conduits and raceways.
- 4. Make sure that the work area is well-lit and free from any hazards such as water or other liquids.

- 1. Inspect the conduits and raceways for any signs of damage or wear, such as cracks, dents, or rust. Replace any damaged conduits or raceways as needed.
- 2. Use a non-contact voltage tester to ensure no electrical current flows through the conduits or raceways.

- 3. Use a conduit reamer and cutter to clean the conduit ends and remove any burrs or sharp edges.
- 4. Use a wire brush to clean the inside of the conduits and raceways. Make sure to remove any debris or dirt that may cause clogging or damage to the wires.
- 5. Apply a lubricant to the inside of the conduits and raceways to reduce friction and wear on the wires.
- 6. Use fish tape to pull new wires through the conduits and raceways as needed.
- 7. Inspect the raceway supports and hangers for any signs of damage or wear. Replace any damaged or worn-out supports or hangers as needed.
- 8. Test the continuity of the wires using an insulation continuity tester.
- 9. Use a temperature gun to check for any hot spots that may indicate loose connections or overloaded circuits.
- 10. Record all inspections and maintenance activities in a logbook for future reference.

Schedule: Semi-Annually

9. Grounding systems

Equipment:

- 1. Digital Insulation / Continuity Testers (KEW 3005A)
- 2. Non-contact voltage tester (UNI-T UT 12D ROW)
- 3. Earth tester (KEW 4105A)
- 4. AC/DC Digital Clamp Meters (KEW 2046R)

Safety measures:

- Follow all lockout/tagout procedures to ensure that the grounding system is not energized during maintenance.
- Wear appropriate personal protective equipment (PPE), including gloves and safety glasses, when performing maintenance.
- Do not touch any electrical connections or equipment with bare hands.
- Ensure that the area around the grounding system is clear of debris and other hazards.

Step-by-Step Guide:

1. Inspect the grounding system for any visible damage or signs of wear, such as corroded connections or broken wires.

- Use the ground resistance tester to measure the resistance of the grounding system. Record the results and compare them to previous measurements to identify any trends or changes.
- 3. Use the clamp-on ammeter to measure the current flowing through the grounding system. Compare the results to previous measurements to identify any changes.
- 4. Use the megohmmeter to perform an insulation resistance test on the grounding system. Record the results and compare them to previous measurements to identify any trends or changes.
- 5. Replace any damaged or worn components as needed.
- 6. Turn the power back on to the grounding system and verify that it is functioning properly.

Schedule:

- Visual inspection: quarterly
- Testing: annually

10. Electrical motors

Equipment:

- 1. Power analyzer (KEW 6315)
- 2. Digital Insulation / Continuity Testers (KEW 3005A)
- 3. Earth tester (KEW 4105A)
- 4. AC/DC Digital Clamp Meters (KEW 2046R)
- 5. Temperature gun (Smart Sensor AT 380)
- 6. Grease gun
- 7. Lubricant

Safety Measures:

- Ensure that the motor is disconnected from the power source before conducting any maintenance work.
- Wear appropriate personal protective equipment (PPE), such as gloves and safety glasses.
- Use proper lifting techniques and equipment when handling heavy motor components.

- 1. Inspect the motor for any signs of wear or damage, such as frayed wires or broken parts.
- 2. Check the motor's insulation resistance using a Megohmmeter or insulation tester, following the manufacturer's instructions.
- 3. Use a power analyzer to test the motor's voltage, current, and power consumption, and compare the results to the manufacturer's specifications.
- 4. Inspect the motor's bearings and lubricate as needed using a grease gun and the appropriate lubricant.
- 5. Use a multimeter to check the motor's connections and measure the resistance, and repair or replace any damaged or faulty components as needed.
- 6. Use an infrared thermometer or temperature gun to measure the motor's temperature and ensure it is within the acceptable range.
- 7. Conduct a visual inspection of the motor's grounding system and use an earth tester to measure the system's resistance to ground.
- 8. Clean the motor's exterior and surrounding area as needed.
- 9. Use the forms in mWater Portal and mWater Surveyor to ease the record-keeping
- 10. Record all maintenance activities and readings
- 11. Schedule any necessary repairs or replacements based on inspection and testing results.

Schedule:

- Inspect and test the motor quarterly
- Lubricate the motor's bearings quarterly or as recommended by the manufacturer.
- Conduct a full maintenance and inspection of the motor annually.

11. Electrical monitoring and control systems

Equipment Required:

1. Earth tester (KEW 4105A)

Safety Measures:

- Turn off power to the system before starting any maintenance or testing procedures
- Use appropriate personal protective equipment, such as gloves and safety glasses
- Follow lockout/tagout procedures to prevent unexpected power sources from energizing the system
- Use caution when working with live electrical components

Step-by-Step Guide:

- 1. Inspect all electrical monitoring and control system components for damage or wear, such as frayed wiring or cracked HMI screens, PLCs, HMIs, Sensors, transmitters, Data loggers, Signal conditioners, Network switches and routers
- 2. Clean any dirty or dusty components using a soft, dry cloth or compressed air.
- 3. Test sensors and transmitters for accuracy using a signal conditioner and a data logger.
- 4. Test PLCs and HMIs for proper function using test software or built-in diagnostic tools.
- 5. Test network switches and routers for proper communication between devices.
- 6. Test power quality using a power analyzer, checking for voltage drops or other anomalies.
- 7. Test grounding systems using an earth tester.
- 8. Replace any worn or damaged components as needed.

Schedule:

- Inspect and clean components monthly
- Testing Annually
- Replace worn or damaged components as needed

12. Backup power supply (Generator) testing

Tools/ equipment required:

- 1. AC/DC Digital Clamp Meters (KEW 2046R)
- 2. Oil
- 3. Coolant
- 4. Battery tester

Safety measures:

- 1. Wear personal protective equipment (PPE), including gloves and safety glasses, to protect against electrical shock and flying debris.
- 2. Make sure the generator is completely shut off before starting the maintenance.
- 3. Ensure that the testing area is well-ventilated to avoid the buildup of exhaust fumes.

Step-by-Step Guide:

1. Inspect the emergency generator for any signs of damage.

- 2. Clean the generator to remove any dirt or debris.
- 3. Check the oil level and add oil if needed.
- 4. Check the coolant level and add coolant if needed.
- 5. Check the battery for any signs of corrosion.
- 6. Turn on the generator and test its electrical output using a multimeter.
- 7. Check for leaks or unusual noises coming from the generator.
- 8. Turn off the generator.

Schedule: Annually

13. Inspect Lighting System

Equipment Required: LED light bulbs, cleaning materials, safety gloves, safety goggles

<u>Safety Measures:</u> Wear appropriate PPE including gloves and goggles when working with lighting systems.

Step-by-Step Guide:

- 1. Turn off power to the lighting system.
- 2. Inspect the lighting system and replace any burnt-out bulbs.
- 3. Clean the light fixtures.
- 4. Turn the power back on.

Schedule: Monthly

Schedule of electrical activities

Sr.	Maintenance Activity	Monthly	Quarterly	Semi-	Annually
#				annually	
1	Electrical panels (Inspect)	\checkmark			
2	Electrical panels (Test)		\checkmark		
3	Wiring and Cables testing			\checkmark	
4	Conduct and Raceways				
	inspection				
5	Grounding System testing				
6	Electrical Motor (Inspect and		\checkmark		
	test)				
7	Electrical monitoring and control				\checkmark
	system				
8	Backup power supply				\checkmark
	(Generator) testing				
9	Replacement of worn or	as	as needed	as	as needed
	damaged parts	needed		needed	

Pr_{i}	Preventive Maintenance Record	Mainte	nance	Record		Motor	Specificat	ion: Rate	<u>Motor Specification:</u> Rated Capacity (kW/HP)	(kW/HP)		Ev:	Evaluation Criteria	Criteria			
App	Approved by :					Rated	Rated Voltage (V)	(Rated CI	Rated Current(A)_		× ×	✓:Good ×:No care a	tt all or n	GoodSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSo	newly in	stalled
Insp	Inspected by :					Efficiency	ley	Power Factor	actor	RPM		i ĕ 	Δ : Need to be improved Not available to be c	oe improv able to b	▲: Needto be improved →. Not available to be checked		
Site	Site /Pump Name :	ne :										•				_	
								insulation Re	Insulation Resistance Test	it					Earth	Earth Resistance Test	Test
Sr.	Inspection	Bolt						~1	≥1 MΩ							<5Ω	
No.	Date	Tightening	U1 - E	V1 - E	W1 - E	U2 - E	V2 - E	W2 - E	U1 - V1	U1 - W1	V1 - W1	U2 - V2	U2 - W2	V2 - W2	Earthing Pit	Motor	MCU
1																	
2																	
3																	
		-	Voltage (V)			Current (A)						Temperature (°C)	ure (°C)				
Sr.	In		± 10%			± 5%			ON duratic	ON duration > 30 min, Upto 70°C	Upto 70°C			OFF	OFF duration > 30 min	min	
No.	Date	RY	RB	YB	Я	Y	в	MCB	KI	ĸ	ĸ	O/L Relay	MCB	K1	K2	ĸ	O/L Relay
1																	
2																	
7																	
- К	- Remarks -																

Sheet # 1: Preventive Maintenance Record

Dev	Device Inspection Sheet	Sheet	Motor S	Motor Specification:	tion:	Rate	Rated Capacity (kW/HP)	ity (k	W/HP)									
Appr	Approved by :		Rated V	Rated Voltage (V)	v	Rated C	Rated Current(A)	(Effic	Efficiency_			Evaluation Criteria	<u>Criteria</u> X · No 6	riteria X • No core at all or need to be newly inchalled	need to he	i when	setallad
Inspe	Inspected by :		Power Factor	actor		RPM						<u>১</u> ব	. Need to	Δ : Need to be improved	ed -:)	-: Not available to be checked	le to be c	hecked
			Conti	inuity Te	Continuity Test of components (Using Clamp Meter)	nponents	s (Using	Clamp	Meter)		Current	ut.			Relays A	Relays Adjustments		
C				Circı	Circuit Breakers	ters		Magnetic Contactor	netic vctor	L	Transformer	mer	*	Over/Under Voltage Relay	er lay	Over Current (Thermal) Relay	urrent Relay	Y- Timer
No.	Site /Pump Name	Inspection Date	MCCB	MCB 1	MCB 1 MCB 2 MCB 3 MCB 4 K1	MCB 3	MCB 4	KI KI		Fuse	CT1 CT2 CT3		Under Voltage Trinning		Over ±10% of Voltage rated Tripping Triming voltage of Eumetion	Tripping Value	Value Set	Not less than 5 seconds
													Function		motor	T ULCON		o secondo
1																		
7																		
3																		
4																		
S																		
- Rei	- Remarks -																	

Sheet # 2: Device Inspection Sheet

Annex 5.1.32 Supplemental materials for tubewell operation at WASA Rawalpindi

- Checklist for Tube Well Operation (Submersible)
- Troubleshooting of Tubewell
- Pump Selection

ىشى وب يول كوچالن يى ليمن مے چى كلىس ٹ)Submersible(

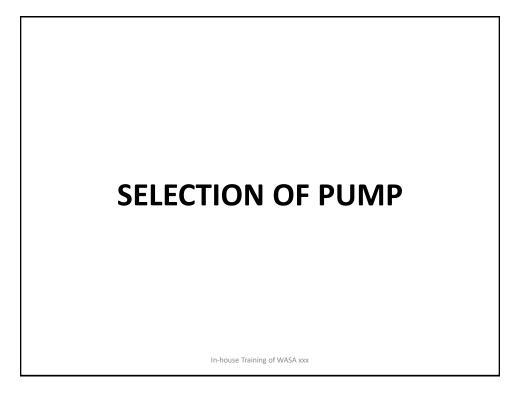
Tube well Number:		خ	تارى	(M	ont	:h_							_,Y	ea	r			_)					Sł	nift_					_
Parameters	1	2	3	4	5	6	7 8	3 9																		2			
									0	1	2	3	4	5	6	7	8									8			
	1 1									_	-	-	r		1				Be	efor	e (Ope	ra	tion	ے/	يبى	نىن	ں ش <u>ں</u>	بارا ;
چن لي دينى ان (lights) کاکم ر درمى مى																													
کوئ میں (relay)ائ عیب اس میں مرے																													
تاركىغ شرىن زدر س تى س	-													/								/							
ووائٹی ہٹی ہی کمے اور حد (limit) کے الدر منتقن ی 360-440V															/														
																			Du	rin	<u>g</u> (Ope	rat	ion	ان/	ےدور	_ح	ش	برآ;
ولو / valve کر ہال ہے۔)																							1						
بپالىلى ك (leakage) نى مەدر ما																													
وولٹی بیٹھی کہے اور حد (limit) کے لیدر میں 360-440V																													
ىتىن وفى زب كرن ل ولى السري مر المريم (I rated = A)																			\land		<		/						
بجلیکا میں (electric meter) الجرر مارے																		7											
پوش (pressure) معمولگ ی جد جن م																													
الووان (chlorinator) الجرر مام																													
موٹرک و (rest time) فی امنے																													
سفط بحکی مے الم اللہ کے مرح										T																			
								- 1		_			1	L	1						Re	cor	d k	Keep	ping	هن/ع	<u>ڑ</u> ک	<u>م</u> ار	_ى
الگیسک (log book) عن اب ٹی کھلی ارے	ŝ																												

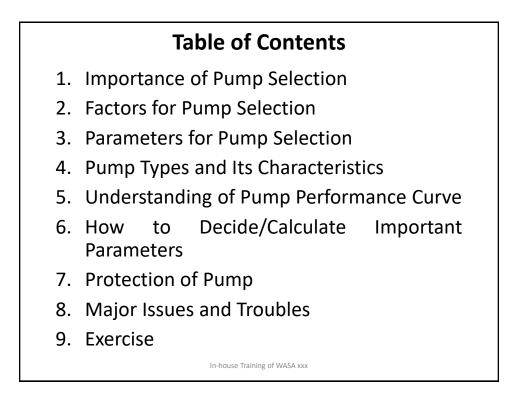
The Project for Improving the Capacity of WASAs in Punjab Province Phase 2

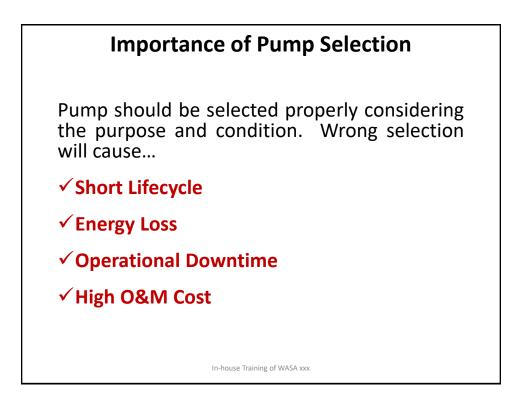
TROUBLESHOOTING AT TUBE WELL

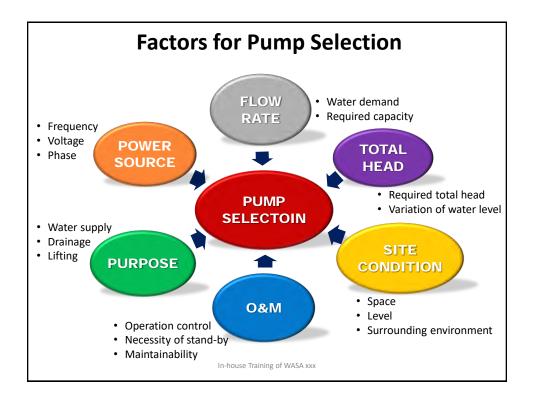
O&M (operation and maintenance) manuals are supplied with all control panels, pumps, motors etc., and should be used as a guide for all troubleshooting. Those manuals are specifically made for individual equipment and are generally sufficient for any or all problems which may be encountered.

This document is for training purposes only and shall provide some general information about the O&M of a Motor Control Panel at the Tube well station. You are strongly recommended to use the O&M manual of that particular facility to do some troubleshooting.


PRECAUTIONS!!!

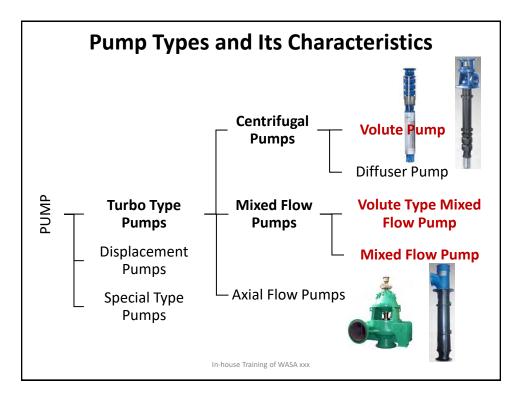

- Anyone testing electrical systems should take precautions to ensure the safety of themselves, others and equipment under test.
- Always assume that all wiring and parts are energized.
- Even though connections to the panel have been broken, it is possible that other circuits are still "hot/ energized".
- All work on the panel should be done by a qualified technician.


Symptoms	Cause	Countermeasures
Pump does not start		If there is no or improper incoming
1		power then contact the relevant
		Distribution Company (DISCO) for
		the power to resume.
	Check for the fault lamps	Find the cause and do the
		countermeasure as recommended
		below as per the relevant issue.
Lights on the Panel	Power supply issue	Wait for the power supply to
are not working		resume.
die not working	Light is burnt out	Replace the light.
	Loose connections	Tight the connection.
		Ŭ
Lighta flightaring on	Wire is damaged	Repair or replace the damaged wire.
Lights flickering or	Poor connections	Check and tighten all electrical
dim		connections.
	Voltage fluctuations	Use a multimeter to measure the
		voltage and address fluctuations.
	Defective light bulbs or	Replace any faulty light bulbs or
	indicators	indicators.
Circuit Breaker is	Short circuit	Look for burn mark, loose
tripping		connection or damaged
		components. Replace the damaged
		component.
	Operating current is slightly	Check the section "Motor is
	high	overheating".
	Abnormal voltage	Check for unstable voltage
		conditions and address any issues
		with the power supply.
	Circuit breaker is undersized or	Replace the circuit breaker.
	damaged	-
	Ground faults	Perform insulation resistance tests
		to identify and address ground
		faults.
Overload Relay is	Mechanical issues with the	Check for any mechanical problems
tripping	motor	with the motor, such as
11 0		misalignment, bearing issues,
		impeller being clogged, shaft being
		stuck or coupling problems.
		Address any mechanical issues
		found.
	Abnormal voltage	Check for voltage fluctuations or
		imbalances in the electrical supply.
		Address any issues with the power
		supply company.
	Motor windings are short	Rewind the motor and do the in-
	who which is an short	house testing including (IR Test,
		Resistance test, No-load test and
		On-load test).
		On-ioau test).

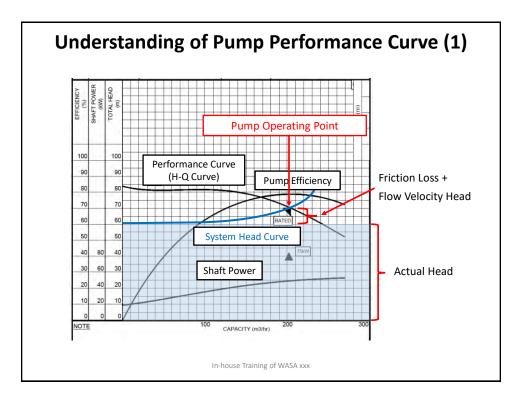

		If repairing doesn't work then replace the motor.
	Relay is malfunction	Swap the relay with the recommended type and specifications.
	Poor ventilation or cooling of the motor	Verify that the motor is adequately ventilated and cooled. Ensure that cooling fans are working correctly and that the motor is not overheating.
Over/ Under Voltage relay is tripping	Voltage is more than 440V or less than 360	Transformer rating or tapping issue, since it is at the power supply end so contact IESCO
	Relay is malfunction	Swap the relay with the recommended type and specifications.
	Wiring or connection issues	Inspect and tighten loose connections. Perform a visual inspection of wiring and connections. Repair or replace damaged wiring and conduct continuity tests on relevant wiring.
	Motor is overload or damaged	Inspect motor insulation for faults. Verify that the motor insulation is in good condition.
Smoke, smell or discoloring of wire	Overheating in the panel	Look for the cause of overheating which may be resolved by: tightening the loose connections, replacing the undersized wires, changing the damaged contactor, relay, breaker or other components
	Short-circuit	Replace damaged components and ensure proper insulation.
	Insufficient ventilation or cooling	Ensure proper ventilation around the panel. Install additional cooling fans or ventilation as needed. Also, verify the ambient temperature of the area.
Water-Level- Switch is tripping	Water level is too low	Deep dig the issue and use a suitable countermeasure, for example, lower the pump or use a smaller pump etc.
	Loose connection/ damaged wire Water-Level-Switch is	Repair or replace the cables/ wires. Test the water level switch and if it
Voltage is unstable	malfunction Voltage fluctuations or imbalances when the motor is switched OFF	isn't operating properly, replace it. Check the main wire and any abnormality in the transformer and energy meter. Address any issues with the power supply company.

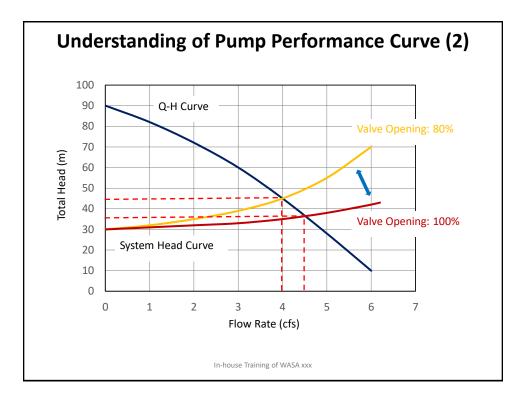
	Voltage fluctuations or imbalances when the motor is switched ON	Check the electrical connections at the terminals of equipment, cable insulation and insulation of the motor.
Motor is overheating	Check for adequate water flow and cooling around the motor	Do the cooling arrangements as per the recommendation of the manufacturer.
	Ensure proper voltage and current levels Blockage in the mechanical section	Check for the imbalance voltages and currents and resolve the issue. Check for any mechanical problems with the motor, such as misalignment, bearing issues, impeller being clogged, shaft being stuck or coupling problems. Address any mechanical issues found.
	Rewound motor is installed	Rewinding normally causes the change in the drawing current so check the drawing current and contact the CONTRACTOR if the value is more than the rated value
Too much noise	Check for loose or misaligned	
and/or vibration	parts within the pump assembly	
	Inspect the impeller and casing	
	for debris or damage.	
Leakage in pipe		
Valves not working	Valve deteriorated	
Leakage in valve	Gland packing issue	
C	Gas kit issue	
Leakage in joints	Gas kit issue	
Leakage from pump	Gland packing issue	
Pressure is too low	Check for clogs or debris in the pump intake or impeller	Remove debris and clean components.
	Check for leaks in the system	
Pressure is too high	Check the valve	
Water flowrate is	Impeller is stuck	
too low	_	
	Check the valve	
	Water level is too low	
Water flow rate is too high	Check the valve	
	Water level is too high	
Chlorinator is not	Check the voltages in the switch	
working	board and connections of shoe	

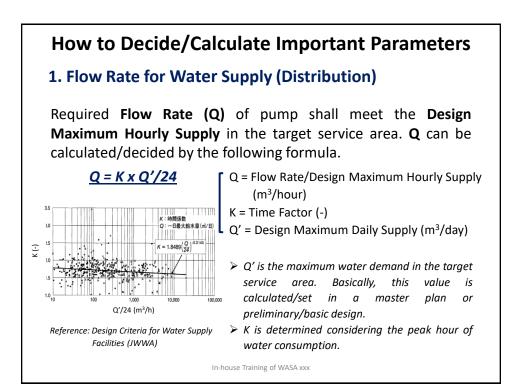
Parameters for Pump Selection

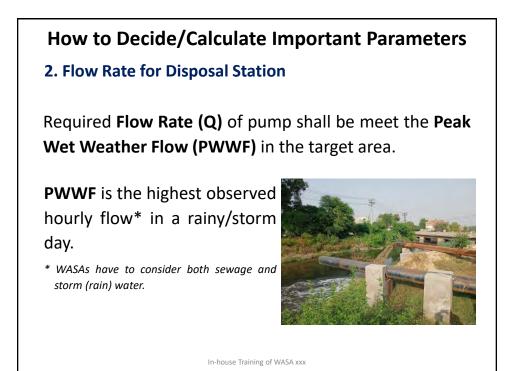

 ✓ Pump Type [Centrifugal, Mixed-flow, Axial-flow, Submersible, Horizontal/Vertical]

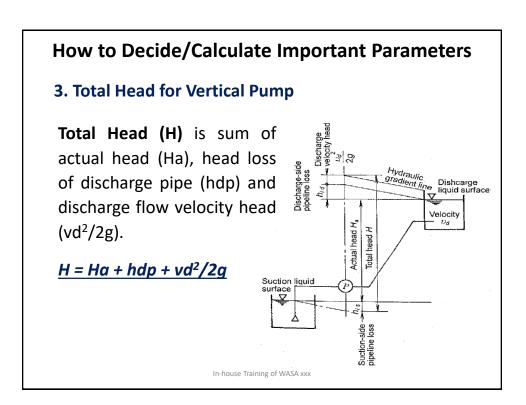
✓ Flow Rate Q [cusec, m³/h]

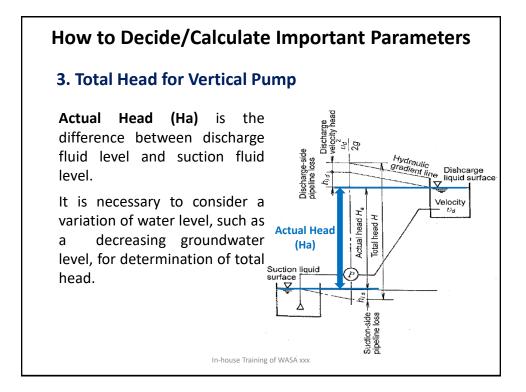

- ✓ Total Head H [m, ft]
- ✓ Discharge Diameter [mm]
- ✓ Motor Output [kW, HP]
- ✓ Pump Efficiency [%]
- ✓ Others: Quantity, Liquid Type, Material, Paint,

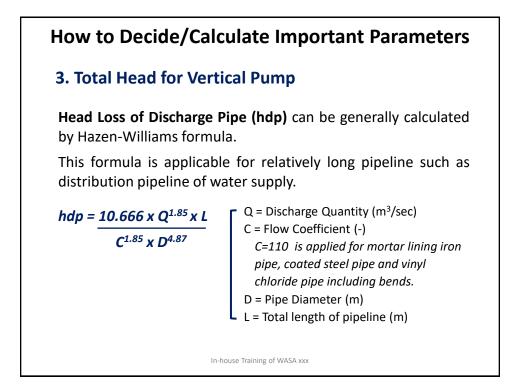

Installation/Maintenance Space etc.

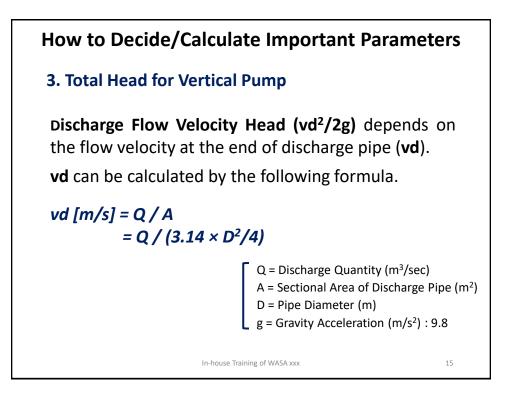

In-house Training of WASA xxx

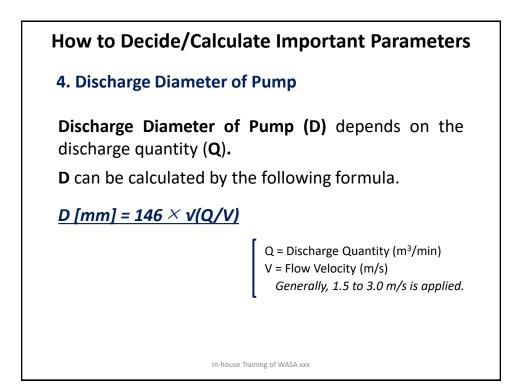


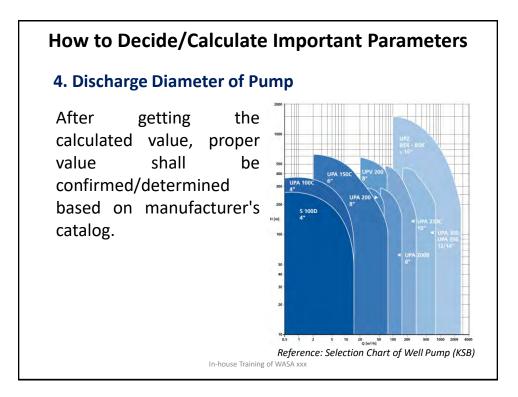

	Pump Types and Its Characteristics			
	Volute Pump	Volute Type Mixed Flow Pump	Mixed Flow Pump	
Outline	 Total Head (m): 10 to 800 Dia. (mm): 40 to 2,000 Mainly for Intake, Transmission & Distribution of Water Supply 	 Total Head (m): 2.5 to 30 Dia. (mm): 150 to 5,000 Mainly for Storm Drainage & Disposal of Sewerage 	 Total Head (m): 2.5 to 60 Dia. (mm): 150 to 5,000 Mainly for Intake of Water Supply, Storm Drainage & Disposal of Sewerage 	
Merits	 Good Suction Performance High Pump Efficiency in a wide range of discharge 	 Lighter Weight than Volute Less Installation Area 	e Pump	
Demerits	Demerits • Heavy Weight • Large Installation Area • Less Pump Efficiency than Volute Pump • Less Suction Performance than Volute Pump • Les			
	In-P	ouse Training of WASA xxx		

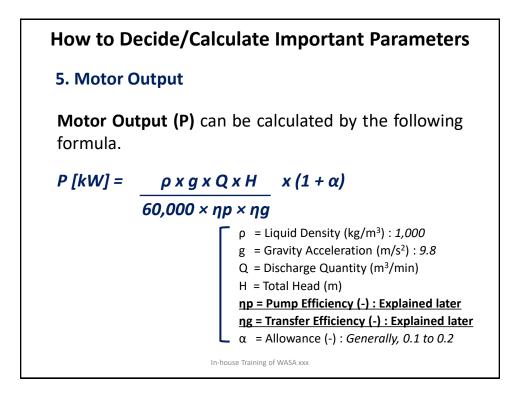


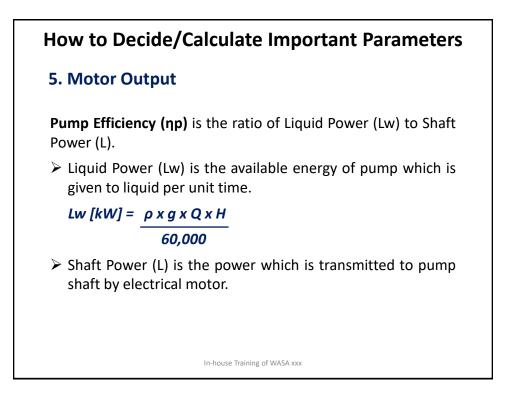


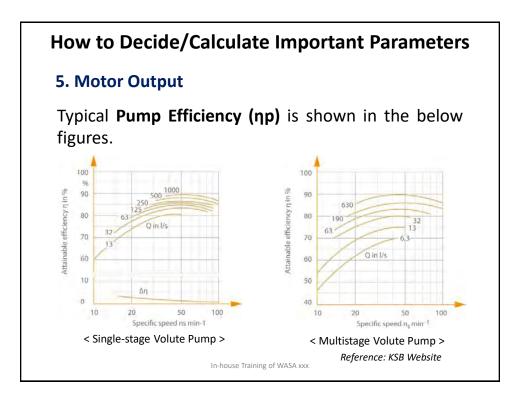


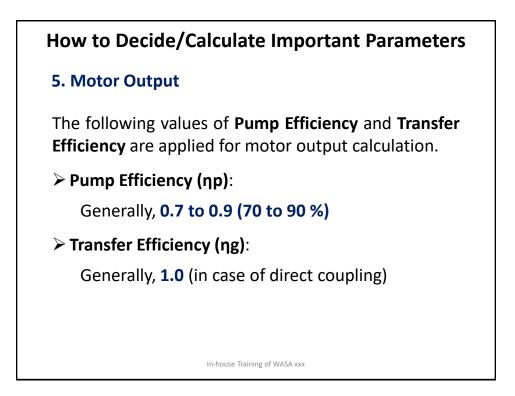


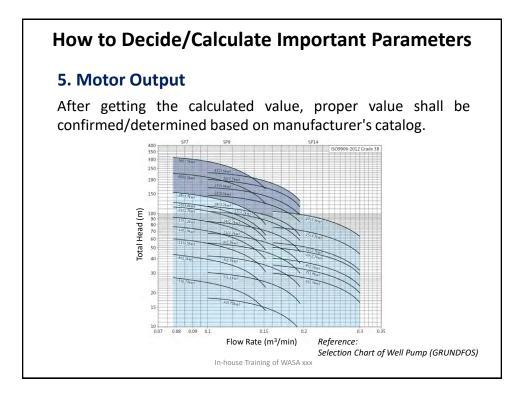


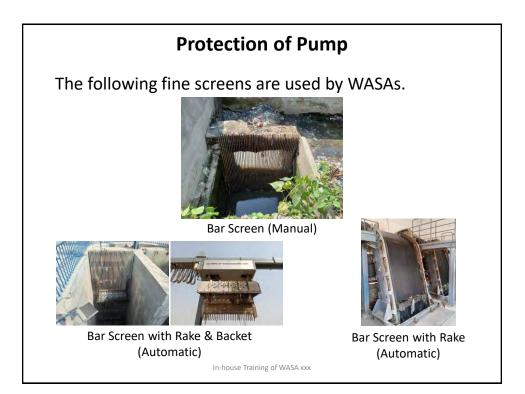


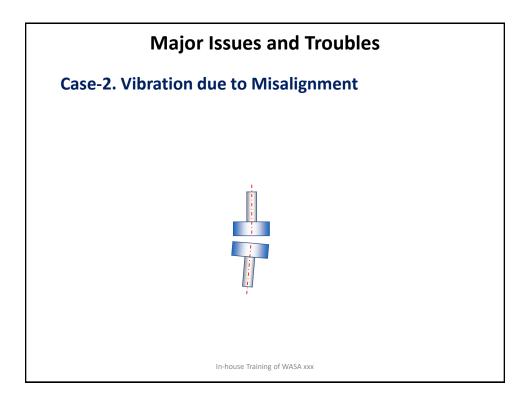


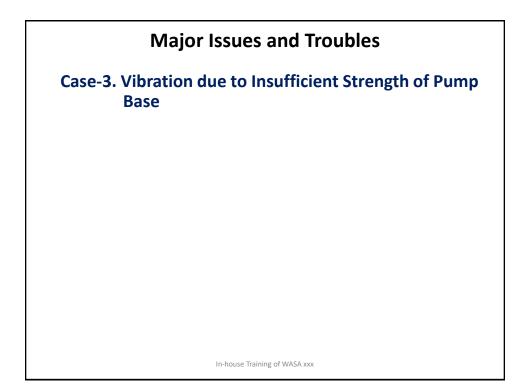


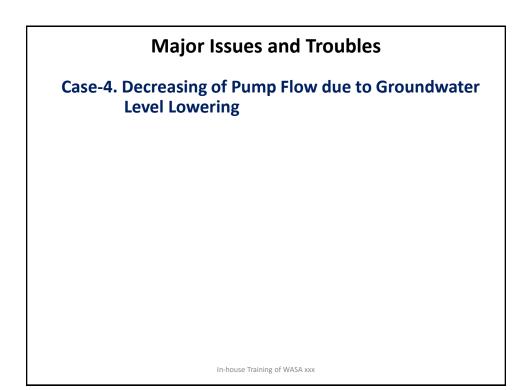







Protection of Pump


Screen shall be selected and installed properly to avoid entering foreign materials into pumps.


	Coarse Screen	Fine Screen
Outline	To remove large foreign materials	To remove small foreign materials
Scale Spacing	50 to 150 mm	25 to 50 mm (1/10 to 1/30 of pump discharge diameter)
Operation	Manual	Manual or Automatic
	In-house Training of WAS/	XXX A

Exercise
In-house Training of WASA xxx

Annex 5.1.33 MM on 2nd TAC held on 10th June, 2022

MINUTES OF MEETING

2nd Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, June 10th, 2022.

06/22 Mr. M. Ghufran, 1 Managing Director WASA Lahore

Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team,

G 1	2 nd Technical Advisory Committee Meeting for the Project Titled "The Project for			
Subject:	Improving the Capacity of WASAs in Punjab Province Phase 2"			
Date:	Friday, 10 th June, 2022 Time: 10:00 am			
Venue:	Head office, WASA Lahore.			
Participants:	 Mr. Muhammad Irfan, Water and S Mr. M. Nadeem, DD WASA Multa Mr. Khurram Nabeel Butt, DD (Online) Mr. Roohan Javaid, DD WASA Fa: Mr. Noor Rabbani, AD P&D WAS Japanese side Dr. Nobuyuki Sato, Chief Advisor, Ms. Mikiko Azuma, JICA Experts Mr. Yusaku Numajiri, JICA Expert Mr. Kazuhiro Kayanoma, JICA Ex Mr. Muhammad Hafeez, JICA Coordination 	g, WASA Lahore (Secretary TAC) VASA Lahore ASA Lahore E&M Specialist, Al-Jazari Academy ewerage Specialist, Al-Jazari Academy n/ WASA Coordinator (Online) WASA Gujranwala/ WASA Coordinator isalabad/ WASA Coordinators (Online) A Rawalpindi/ WASA Trainer (Online) JICA Experts Team Team (Online) perts Team ts Team perts Team (Online)		
Summary	Technical Advisory Committee for the project has approved the training schedules and contents for "O&M on Sewerage and Drainage" and "O&M of Mechanical and Electrical Equipment", which will be implemented from 13 th 17 th June, 2022.			
	N AND DECISIONS			
The Meeting	started with opening remarks from Mr. N	Ghufran, MD WASA Lahore.		

- Dr Sato, Chief Advisor, JICA Experts Team, explained that the schedule and content of the trainings will be flexibly adjusted due to high temperature and load shedding.
- Mr. Muhammad Irfan, Water and Sewerage Specialist, Al-Jazari Academy, explained the schedule and contents of the training "O&M on Sewerage and Drainage" (see Attachment 1).
- Mr. Jawad Shahid, Vice Principal, E&M Specialist, Al-Jazari Academy, explained the schedule and contents of the training "O&M on Mechanical and Electrical Equipment" (see Attachment 2).

After that explanation, there was a question from WASA Gujranwala. The question was whether a topic of a motor for pump is included or not. Mr. Jawad Shahid answered that it is included.

Decisions:

The training schedules and contents for "O&M on Sewerage and Drainage" and "O&M on Mechanical and Electrical Equipment" were approved.

The meeting ended with note of thanks from the Chair.

22

Attachment 1

Training schedules for "O&M on Sewerage and Drainage"

M.

你

Operation & Maintenance of Sewerage and Drainage System Training Schedule (JICA Phase-II) 2022

(JC

-			Session-1			Se	Session-2			Session-3	
	Module	1"Le	1 st Lecture	2 nd Lecture	Tea 10:45 am-11:00 am	3rd Lecture		4 th Lecture	Lunch 1:15 pm-2:00 pm	5 th Lecture	6 th Lecture
		09:00 am-9:15 am	9:15 am-10:00 am	10:00 am-10:45 am		11:00 am-11:45 am 11:48	11:45 am-12:15 pm	12:15 am-1:15 pm		2:00 pm-3:30 pm	3:30 pm-4:00 pm
Monday June 13, 2022	Module 01 Cleaning of Severage & Prainage Pipelines	Welcoming Remarks Parnarks Parnicipant Introduction Course Overview Training Expectations	 Removal of Blockages in Sever Lines Latest Cleaning Latest Cleaning Eatest Cleaning Drainage & Drainage System 	Introduction to Sewer Carmera (Parts + Working) (Demonstration) - Repair & Maintenance of Sewerage & Drainage Pipelines	(uoi	FIELD WORK (Unpack-Assemble-Install-Use-Packing) • Manhole & Sewer & Inspection with Carmera	nstall-Use-Packi ispection with Ca	ing) mera	(noi	FIELD WORK Manhole & Sewer & Inspection with Carnera (Evalution of Manhole & Sewer)	Quick Win Measures (QVMs) Conclusion on Day's Activities
	Module 02 Flow Measurement Channels	- Recap of Previous Day Activities	 Objectives Types of Drains Methods & Formulae 	FIELD WORK (Unpack- Assemble- Install-Use- Packing) • Velocity Meter	Tea Break As per Site Visit Situat	FIELD WORK (Unpack-Assemble-Install-Use-Packing) • Velocity Meter	Istall-Use-Packi	(Bu	Lunch & Prayer Break (As per Site Visit Situat	FIELD WORK • Measuring Flow Velocity in Open Chanel • Calculation of Flow Rate	Quick Win Measures (QWMs) Conclusion on Day's Activities
Wednesday Jun 15, 2022	Module 3 & 4 Wastewater Treatment (MWT)	Basics of WNVT WNVT Technologies	- Rapid Testing of Wastewater Samples with Kits (BOD, pH, DO)	• How to Clean & Maintain Ponds of WWTP		 Fianacial Comparison of Various Technology w.r.t. CAPEX & OPEX 	of Various Techn	ABopo		• Most Suitable Technology	 Reflections Group Picture Certificates

Academy Team: Engr. Muhammad Irfan, Engr. Syed Fallad Hussain, Engr. Haris Bin Khawar

ALJAZARI

Attachment 2

Training schedules for "O&M on Mechanical and Electrical Equipment"

m

抗

	1st Day: 16th June (Thu)		
Time	Activity	Notes	
0.20 0.45	Introduction		
9:30 - 9:45	Orientation		
	Basics of Pump	Exercise by using the pump model	
	•Typical components of pump facility.		
	•Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head)	Trainees will check/measure each	
9:45 - 11:00	•Electrical parameters (Voltage, Ampere)	parameter by themselves.	
	Parallel & series pump operation		
	•Pump performance curve (Relationship between flow and discharge pressure)	Trainees will demonstrate each items busing the pump model.	
	·Relationship between flow and current		
11:00 - 12:00	Understanding of Ultrasonic Flow Meter	Exercise by using the pump model	
	• What will happen if we don't follow 10d recommendation ?		
	•What will happen if the setting value of pipe thickness is wrong?	Trainees will demonstrate each items	
	•What will happen if the setting value of pipe diameter is wrong ?	using a ultrasonic flow meter on the pump model.	
	•What will happen if the setting of pipe material is wrong ?		
	• What will happen if the installation distance of sensor is not proper ?		
12:00 - 13:00	Basics of Asset Lifecycle Analysis with Examples	Lecture with showing good practices in France	
13:00 - 14:00	Lunch & Prayer Break		
14:00 - 15:00	Data Analysis •Making a pump performance curve by Excel.	Exercise by using Excel	

Time Schedule of O&M of Mechanical Equipment Training (Draft)

	2nd Day: 17th June (Fri)	
Time	Activity	Notes
	Vibration Analysis and its importance Understanding of Vibration Meter	
09:00-10:00	Use of Vibration Meter • Installation of Vibration Meters on Machinery	Vibration Analysis field activity or Disposal Station
10:00 - 12:30	Site Visit to WASA-L Disposal Station • Understanding of actual O&M activities • Understanding of vibration meter • Vibration measurement and filling the record sheet	Practical Training at the site
12:30 - 14:00	Move to AJWA, Lunch & Prayer Break	
	Preparation of Maintenance Plan for Pump Facilities	
14:00 - 15:00	Q&A	IIIN.
15:00 - 15:15	Closing	

Annex 5.1.34 MM on 3rd TAC held on 14th October, 2022

MINUTES OF MEETING

3rd Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, October 14th, 2022.

Mr. Abdul Latif Deputy Managing Director (O&M) WASA Lahore

Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team,

Subject:	3 rd Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"		
Date:	Friday, October 14, 2022 Time: 03:00 pm		
Venue:	Head office, WASA Lahore.		
Participants:	 Mr. Riaz Mujtaba, Director Trainin Mr. Hisham Pervaiz Vasser, Directa Mr. Jawad Shahid, Vice Principal, J Ms. Rebia Suhail, Sr. Instructor, Al Mr. Muhammad Hafeez, JICA Coo Mr. Muhammad Hafeez, JICA Coordinator Mr. M. Nadeem, DD WASA Multa Mr. Khurram Nabeel Butt, DD WA Mr. Roohan Javaid, Director WASA Mr. Aziz Ullah Khan, DD WASA H Japanese side Dr. Nobuyuki Sato, Chief Advisor, Mr. Hiroyuki Tabusa, JICA Experta Mr. Kazuhiro Kayanoma, JICA Exp 	or, WASA Lahore E&M Specialist, Al-Jazari Academy -Jazari Academy rdinator r n/ WASA Coordinator (Online) SA Gujranwala/ WASA Coordinator (Online) A Faisalabad/ WASA Coordinator (Online) Rawalpindi/ WASA Coordinator (Online) JICA Experts Team erts Team s Team	
Decisions	 Technical Advisory Committee approved the schedule of professional "Leakage Control, Plumbing and Pipe Replacement Plan" from 25th October, 2022 along with the recommended improvements in the cont Technical Advisory Committee approved the schedule and content of training for "O&M of Mechanical and Electrical Equipment" from 8th November, 2022. Committee also accepted: Practical activity approach for "Professional Training" on abo two courses. 		

Wat 12

ii.	The role of "WASA coordinators meetings" includes a part of PCC from
	upcoming PCC
iii.	The discussion for collaboration work between WASA and AJWA starts
	from the upcoming TAC

DISCUSSIONS

The Meeting started with opening remarks from the chair.

- The Chief Advisor, JICA Experts Team, explained the agenda. The main items presented by him included:
 - 1. Approval of professional training for "Leakage Control, Plumbing and Pipe Replacement Plan" from 25th to 27th of October, 2022.
 - Approval of professional training for "O&M of Mechanical and Electrical Equipment" from 8th to 10th of November, 2022
 - 3. Proposal of WASA Coordinators Meeting
 - 4. Proposal for collaboration work between WASA Lahore and AJWA
- For the training at AJWA, Chief Advisor emphasized on an importance of activities in the training. He explained that the lectures and videos put the trainees in the passive learning mode. The approach by JET is to maximize the outcome of the training by the trainings in the constructive and interactive learning mode.
- Ms. Rebia explained the time plan and activity-outcomes of the training course, "Leakage Control, Plumbing and Pipe Replacement Plan". Comments from the participants included:
 - i. Mr. Hisham told that nomenclature and terminologies in the course should be revised as per understanding of WASA staff. He requested a few modifications in the models and to update the content as per the daily work of WASA staff. The content should reflect daily work of Assistant Directors and Sub Engineers. He further requested to explain the role of models for the training.
 - ii. Mr. Roohan requested to make the content more descriptive. He was of the view that the pictures only were not enough for the understanding.
 - iii. Mr. Khurram informed that they wanted to learn the specifications of water meters, useful in WASA system in this course.
 - iv. Dr. Sato explained the activity by NRW model. The details are as follows.i) The flow between a) a bulk meter and consumer meters, and b) a ultrasonic flow meter and a water meter could be compared.
 - ii) The terminologies would be updated as per understanding of WASAs.

iii) The supporting documents can be shared to the participants during training.

iv) Water meters are explained with disassembled actual material for the type of single jet, multi jet, and rotary piston type.

- Mr. Jawad explained the time plan and activity-outcomes of the training course, "O&M of Mechanical and Electrical Equipment". Comments from the participants included:
 - i. Mr. Hisham told that the course content was fine but the main role of the officers to supervise and ensure proper implementation of the maintenance plan should be included.
 - ii. Mr. Roohan suggested to add the design of the motor control panel. In addition, he suggested to add the sizing of the cables, circuit breaker, magnetic contactor, protection relays and other component.
 - iii. Mr. Khurram requested to add the maintenance of transformer.
 - Mr. Jawad agreed to add the preventive maintenance plan and electrical panel design as recommended.
 - v. Dr. Sato explained that in TNA the course topics were prioritized. Transformer was not concluded as the high priority among the requested topics as per discussion with WASAs and an evaluation be JET. So, it would be difficult to include the transformers at this stage.
- Mr. Jawad recommended to have a working group for each course so the development of course content would be improved. He was of the view that meetings among JICA Expert, counterpart from AJWA and master trainer of WASAs should be organized to prepare the content for every course.
- Chair approved the both professional trainings along with the recommended changes by the forum and recommended further discussions on the other agenda items by Chief Advisor.

Annex 5.1.35 MM on 4th TAC held on 2nd November, 2022

MINUTES OF MEETING

4th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, November 2nd, 2022.

Mr. Abdul Latif Deputy Managing Director WASA Lahore

估廃作

Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team,

Subject:	4 th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"	
Date:	Wednesday, November 2 nd , 2022	Time: 03:00 pm
Venue:	Head office, WASA Lahore.	
Participants:	 Pakistani side Mr. Abdul Latif, Deputy Managing Direct Mr. Souman Khalid, Deputy Secretory, H Mr. Riaz Mujtaba, Director Training, WA Mr. Hisham Pervaiz Vasser, Project Direct (Foreign Trainings), WASA Lahore Ms. Zaeema Aman, Deputy Director Training Mr. Jawad Shahid, Vice Principal, E&M S Mr. Fahad Hussain, Instructor, Al-Jazari A Ms. Rebia Suhail, Sr. Instructor, Al-Jazari A Ms. Rebia Suhail, Sr. Instructor, Al-Jazari A Mr. Muhammad Hafeez, JICA Coordinator Mr. M. Nadeem, DD WASA Multan/ WA Mr. Khurram Nabeel Butt, DD WASA Gu Mr. Roohan Javaid, Director WASA Faisa Mr. Aziz Ullah Khan, DD WASA Rawalp Japanese side Dr. Nobuyuki Sato, Chief Advisor, JICA I Mr. Tatsuo Tomidokoro, JICA Experts Tem Mr. Hiroyuki Tabusa, JICA Experts Tem 	AUD&PHED SA Lahore (Secretary TAC) etor Planning (LWWMP) / Focal Person ning, WASA Lahore Specialist, Al-Jazari Academy Academy i Academy i Academy or SA Coordinator (Online) alabad/ WASA Coordinator (Online) alabad/ WASA Coordinator (Online) oindi/ WASA Coordinator (Online) Experts Team am eam in (Online)
Decisions		ved the schedule and content of professiona Drainage" from 22nd to 24th of November,

22 Asy

- practical activity approach for "Professional Training" on above approved course.
- an improvement of professional training, "Leakage Control, Plumbing and Pipe Replacement Plan" conducted from 25th to 27th October, 2022.
- iii) guest lecturers by experience staff from WASAs for "Professional Training"

DISCUSSIONS

The Meeting started with opening remarks from the chair.

- The Chief Advisor, JICA Experts Team, explained the agenda and practical activity approach for "O&M on Sewerage and Drainage".
- Mr. Fahad explained the time plan and learning-outcomes of the training course, "O&M on Sewerage and Drainage". Comments from the participants included:
 - i. Ms. Zaeema asked about water quality test. She was of the view that it takes 5 days to obtain a value of BOD normally. Dr. Sato explained that those kits can give an instant value in a short time, and give tentative values of water quality.
 - ii. Mr. Souman and Mr. Rohan requested to know the experience of the trainers. He is of the view that AJWA should invite the retired staff from WASAs having relevant experiences to enhance the quality of their trainings by using their knowledge and experience.
 - iii. Mr. Sanwal (WASA Faisalabad) and Mr. Abdul Moeed (WASA Multan) requested to add software training such as sewer-cad, mWater, and GIS in sewerage sector. Mr. Rohan requested for remodelling, hydraulic modelling, separate and combined system of sewerage and drains. Mr. Hisham highlighted mWater is capable to develop database of sewerage related complaints. Dr. Sato explained that the training topics were decided according to the training needs assessment in the first year. But we can discuss it accordingly.
 - iv. Mr. Hisham asked the details of public awareness included in "O&M on Sewerage and Drainage". He was of the view that sewer camera can be very useful to monitor pipe condition and locating buried manholes and branches. Mr. Fahad explained that
 - a) school children would be invited,
 - b) sewer camera would be used to observe inside sewer pipe,
 - c) children can watch inside sewer pipe through big screens,
 - d) it is explained for generation of overflow by garbage, etc.

15 08

- Miss Rebia explained the feedback of professional training "Leakage Control, Plumbing and Pipe Replacement Plan" from 25th to 27th October, 2022. She informed how the model was improved and the positive feedback from the trainees. In addition, her recommendation was to involve the senior staff of WASAs from the course development stage. There was no participation from WASA Multan. WASA Multan will find out the reason of it.
- Mr. Jawad requested the chair to know the status issuance of the funds in this fiscal year and involvement of the experienced staff from WASAs to the professional trainings.

12 Dag

Annex 5.1.36 MM on 5th TAC held on 21st December, 2022

5th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, December 21st, 2022.

(Aller

Mr. Mian Muhammad Munir, Deputy Managing Director (F, A&R) WASA Lahore

法院心

Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team,

Subject:	5th Technical Advisory Committee Meeting for the Project Titled "The Project for						
Subject.	Improving the Capacity of WASAs in Punjab Province Phase 2"						
Date:	Wednesday, December 21, 2022	Time: 02:00 pm					
Venue:	Head office, WASA Lahore.						
Participants :	 Trainings), WASA Lahore (Chairperson of Mr. Souman Khalid, Deputy Secretory (UI Mr. Riaz Mujtaba, Director Training, WAS Ms. Zaeema Amman, Deputy Director Tra Mr. Jawad Shahid, Vice Principal, E&M S Ms. Rebia Suhail, Sr. Instructor, Al-Jazari Mr. Fahad, Instructor, Al-Jazari Academy Mr. Muhammad Hafeez, JICA Coordinato Mr. Ismaeel Azeem Khan, JICA Coordinato Mr. Adnan Nisar Khan, Deputy Managing Mr. Ali Hasnain, AD WASA Multan/ WA Mr. M. Haseeb, AD WASA Rawalpindi (O Japanese side Dr. Nobuyuki Sato, Chief Advisor, JICA F Mr. Tatsuo Tomidokoro, JICA Experts Te Mr. Yusaku Numajiri, JICA Experts Team Mr. Kazuhiro Kayanoma, JICA Experts Team 	SA Lahore (Secretary TAC) ining, WASA Lahore specialist, Al-Jazari Academy Academy r tor Director WASA Faisalabad (Online) SA Coordinator (Online) (Online) Dolline) Experts Team am					
Decisions	professional training for "O&M of Mech to 28th of December, 2022.2. Technical Advisory Committee approved	anical and Electrical Equipment" from 26th the proposed schedule and contents with fev "Leakage Control, Plumbing and Pipe					

- i. Practical activity approach using applicable Softwares for "Professional Training"
- ii. Site visiting tour at WASA Faisalabad and other WASAs
- iii. The discussion for the improvement of professional and in-house trainings among HUD, WASAs and AJWA

DISCUSSION

The meeting started with opening remarks from the chair.

- The Chief Advisor, JICA Experts Team, explained the agenda and brief regarding following:
 - Approval of professional training of "O&M on Mechanical and Electrical Equipment" from 26th to 28th December, 2022.
 - Approval of professional training of "Leakage control, Plumbing and Pipe Replacement Plan" from 17th to 19th January, 2023
 - 3. Training program in Japan on May June 2023.
 - 4. Progress of In-house training at each WASA.

For the training at AJWA, Chief Advisor emphasized on an importance of constructive and interactive learning in the training. He explained the benefits of mWater application for database development.

Training course "O&M on Mechanical and Electrical Equipment":

Mr. Jawad explained the time schedule and activity-outcomes of the training course, "O&M of Mechanical and Electrical Equipment". He further explained i) the feedback of trainees in the course of "O&M on Sewerage and Drainage" conducted from 22nd to 24th of November, 2022, and ii) improvements in the upcoming cycle based on that feedback by the trainees form the previous training of "O&M of Mechanical and Electrical Equipment". He proposed the following improvements in the existing training contents:

i) use of mWater Application

ii) use of QGIS

iii) introduction, installation, and uses in the field

The proposal was approved by the committee.

1 sh

Training course, "Leakage Control, Plumbing and Pipe Replacement Plan":

Ms. Rebia explained the time schedule, contents and activity-outcomes of the training course, "Leakage Control, Plumbing and Pipe Replacement Plan". She proposed following changes in the existing course:

- i) Pipe network model to install OHR to compare the difference between gravity and pressurized flow
- ii) How to use ultrasonic flow meter
- iii) HDPE pipes butt fusion joint
- iv) mWater and QGIS in the field

The committee approved with following changes in the proposed course:

Mr. Hisham recommended to exclude component of making connection with OHR during training session as it has no practical implication. Instead proposed to include Pros & cons of existing Supply methodologies in different WASAs with the use of examples such as direct supply or supply through OHR. Site visits of respective WASAs to witness the aforestated methodologies may also be included.

Mr. Adnan endorsed the proposal and recommended site visit to WASA Faisalabad for visit of water supply scheme where Water supply is being maintained through OHR.

General Recommendations by the Committee:

- Mr. Souman recommended that the faculty of AJWA and the master trainers of WASA Lahore should work together to prepare the course outline. The faculty of AJWA may participate the inhouse trainings at all WASAs to enhance their learning. As a result, both sides can learn from each other to improve the quality of trainings. He also informed that the department received the request of procuring equipment for the professional and inhouse trainings from AJWA. He requested all WASAs to go through the list and review the need of equipment for the in-house trainings. He insisted WASA Lahore for participation in all AJWA Trainings irrespective of same course being conducted in-house. He also recommended to add training on water meter of all types being used in all WASAs
- Mr. Hisham proposed that in case AJWA Faculty has to participate in in-house trainings, they may send written request to respective WASA.

of the

- Mr. Ali requested the training of mWater application for further extended contents. He explained the benefits of visiting sites of WASA Lahore during trainings, and requested to have trainings at the sites of other WASAs especially at WASA Faisalabad.
- Mr. Adnan concurred with the proposal to invite trainees & respective AJWA Faculty members.
- Ms. Zaeema explained the progress of the in-house trainings of WASA Lahore.
- Mr. Adnan explained the progress of the in-house trainings of WASA Faisalabad.
- Mr. Nadeem explained the progress of the in-house trainings of WASA Multan. He informed that WASA Multan has been using m-water application to record crown failure of sewer pipes. In addition, he requested to have the velocity meter once in a month for maintaining the flow rate data of Waste Water Treatment Plant.
- Mr. Ali explained the progress of the in-house trainings of WASA Gujranwala. He explained that the number of complaints by customers in sewerage sector have reduced as low as 70% by the application of preventive maintenance through in-house trainings.
- Mr. Haseeb explained the progress of the in-house training of WASA Rawalpindi.
- Mr. Jawad informed that AJWA staff accompanies JICA experts to WASAs for the development of in-house trainings. He agreed on the recommendation of AJWA's involvement for the in-house trainings. He furthers agreed with the idea of taking trainees to other WASA as well.
- Dr. Sato appreciated the open discussion by the forum to improve quality of professional and inhouse trainings. He requested the continuation of similar discussions which are very important for the sustainability.
- Chair thanked JICA experts for their support, and approved both professional trainings. He also recommended further discussions on the other agenda items by Chief Advisor, AJWA and WASAs.

15

Annex 5.1.37 MM on 6th TAC held on 3rd March, 2023

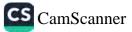
6th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

64

Lahore, March 3rd, 2023.

Mr. Mian Muhammad Munir, Deputy Managing Director (F, A&R), WASA Lahore.

Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team.



Subject:	6th Technical Advisory Committee Improving the Capacity of WASAs in	Meeting for the Project Titled "The Project for n Punjab Province Phase 2"		
Date:	Friday, March 3, 2023	Time: 11:30 am		
Venue:	Head office, WASA Lahore.			
Participants:	 Mr. Souman Khalid, Deputy Sect. Mr. Hisham Pervaiz Vasser, Pro (Foreign Trainings), WASA Laho Mr. Riaz Mujtaba, Director Train Mr. Saleem Ashraf, DMD WASA Mr. Roohan Javaid, Director WA Mr. Roohan Javaid, Director WA Mr. M. Nadeem, DD WASA Mu Mr. Ali Hasnain, AD WASA Guj Mr. Jawad Shahid, Vice Principa Mr. Salman Hashmi, Al-Jazari Ao Mr. Mujtaba Bashir, Al-Jazari Ao Mr. Muhammad Hafeez, JICA Co Japanese side Dr. Nobuyuki Sato, Chief Adviso Mr. Hiroyuki Tabusa, JICA Expert Ms. Mikiko Azuma, JICA Expert 	oject Director Planning (LWWMP) / Focal Person ore ing, WASA Lahore (Secretary TAC) A Rawalpindi (Online) SA Faisalabad/ WASA Coordinator (Online) Itan/ WASA Coordinator (Online) iranwala (Online) I, E&M Specialist, Al-Jazari Academy cademy cademy coordinator		
Decisions	Technical Advisory Committee approved the proposed schedule and contemprofessional training for "O&M of Mechanical and Electrical Equipment" from to 9 th March 2023.			
DISCUSSION				
The meeting s	tarted with opening remarks from the c	hair.		

- Dr. Sato informed the agenda of the meeting to discuss and approve the schedule and contents of
 professional training for "O&M of Mechanical and Electrical Equipment" from 7th to 9th March
 2023.
- Mr. Jawad explained the schedule and contents for the training course. He further explained the learning outcomes of each component of the training.
- Mr. Hisham recommended that the solar energy section should include working out the requirements and maintenance of the system by the participants. He further recommended that a well developed scenario-wise action plan should be prepared by the trainers and presented in TAC meeting for approval on which the trainees could be trained to practice in field. He reminded that the training content must be the one which is duly approved by TAC. He further added that trainings should be related to daily on-job work by WASA. He recommended that the requests by other participants to include detailed design of components may be taken into consideration subject to need-based assessment in next phase (Phase 3) of the project.
- Mr. Roohan requested to include the content for detailed design sizing of the panel, cables and its
 components, updating drawings after completion of troubleshooting and also include trouble
 shooting at installations required on daily basis at field. He further told that there should be no
 lecture, only hands-on activities should be included.
- Mr. Souman added that a smart blend of both lectures and hands-on activity should be used but lectures should be for the introduction only. AJWA should develop custom build models related to scenario of each WASA to provide hands-on trainings to the trainers.
- Mr. All requested to add the detailed design courses in the civil, mechanical and electrical sections
 particularly related to disposal station.
- Dr. Sato explained that some components of design is included in the training individually. A
 complete design course will be too long and may not be feasible to cover in this project.
- Mr. Jawad agreed to the suggestion to add the customized action plan and sizing of control panel as
 discussed. Two activities are already added which include making of basic MCU circuit and plotting
 Q-H curve on miniature pumping station. More can be added on a later stage. He further informed
 to the forum that as per mandate of TAC mentioned in the record of discussion, curriculum of three
 courses under supported by JICA experts is discussed and approved in this forum whereas Al-Jazari
 Academy is conducting a total number of 21 courses yearly. In addition, he requested WASAs to
 send the nominations for the approved training. He apprised the forum that custom made models
 have been developed by the academy.

12

 Chair thanked JICA experts for their support, and approved the professional training for "O&M of Mechanical and Electrical Equipment" from 7th to 9th March 2023.

\$ 32

Annex 5.1.38 MM on 7th TAC held on 5th April, 2023

7th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, April 5th, 2023.

Mr. Mian Muhammad Munir, Deputy Managing Director (F, A&R), WASA Lahore

Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team,

Subject:7th Technical Advisory Committee Meeting for the Project Titled "T Improving the Capacity of WASAs in Punjab Province Phase 2"			
Date:	Wednesday, 5 April, 2023 Time: 11:30 AM		
Venue:	Head office, WASA Lahore.		
Participants:	 Mr. M. Nadeem, Deputy Director, WASA Multan/ WASA Coordinator (Online Ms. Rebia Suhail, Sr. Instructor, Al-Jazari Academy Mr. Salman Hashmi, Instructor, Al-Jazari Academy Mr. Muhammad Hafeez, JICA Coordinator Japanese side Dr. Nobuyuki Sato, Chief Advisor, JICA Experts Team Mr. Tatsuo Tomidokoro, JICA Experts Team 	ne)	
 Technical Advisory Committee approved the proposed changes in s contents of professional training for "O&M of Mechanical and Equipment" from 2nd to 4th of May, 2023. Technical Advisory Committee approved the proposed changes in se contents of professional training for "Leakage Control, Plumbing Replacement Plan" from 29th to 31st May, 2023. 			
DISCUSSION	N		

• Ms. Rebia Suhail, Sr Instructor Al-Jazari Academy, explained the agenda. The main items presented by her included:

6 52

- Approval of professional training of "O&M on Mechanical and Electrical Equipment" from 2nd to 4th May, 2023.
- Approval of professional training of "Leakage control, Plumbing and Pipe Replacement Plan" from 29th to 31st May, 2023.

For the training in AJWA, Ms. Rebia Suhail and Mr. Salman explained the previous trainings and newly added activities.

- Mr. Salman explained the schedule and activity-outcomes of the training course, "O&M of Mechanical and Electrical Equipment", and Ms. Rebia explained "Leakage Control, Plumbing and Pipe Replacement" She further explained the feedback of trainees and improvements in the upcoming training based on that feedback by the trainees from the previous trainings. It is also informed that its dashboard creation and analysis of the data by "mWater" application will be used in the training. And as new addition, design software "EPANET" will be introduced and used in the training on how to develop pipe network with necessary parameters. For mechanical component, "mWATER" application will be used on site for analyzing hydraulic parameters for energy audit. In this time, visiting lecturer from WASA Lahore will be invited for the more exposure and interaction of knowledge sharing between WASAs.
- Mr. Salman Hashmi explained that asset risk management, mWATER and hydraulic parameters are newly added in the training "Operation and maintenance of mechanical and electrical equipment".
- Mr. Hisham asked about the responsible person from AJWA for energy audit, and a visiting lecturer from WASA Lahore.
- Ms. Rebia answered that it will be coordinated with Mr. Waqas Liaqat. He can give some briefing
 on operation and maintenance. Mr. Salman told that he is the trainer for energy audit. Then for site
 activity of energy audit, it could be jointly carried out.
- Mr. Hisham told that mWATER and QGIS analysis need more data from multiple sites. In addition, the time allocation should be 1 day for mWATER and QGIS, and 2 days for design software "EPANET".
- Mr. Souman Khalid asked i) difference between previous and in this content for leakage control, plumbing and pipe replacement course, and ii) any possibility to conduct training for 4 days as participants can learn more about design software.
- Ms. Rebia answered that i) mWATER dashboard creation for leakage repair site and analysis is newly added, and ii) EPANET for designing water supply system is newly added. For leakage

repair site, we will coordinate with WASA Lahore.

- Dr Sato told that Mr Kinno will attend the training. His assignment is very limited. Therefore, "Leakage control, Plumbing and Pipe Replacement Plan" in this time is focused on more to software. The training could be done for 4 days. However, it might be difficult for WASA staff to attend due to the daily work.
- Mr. Roohan asked how to analyze the data. The water supply network is different in Lahore and Faisalabad. Water source in Lahore is ground water. On the other hand, surface water but from very far canal is used in Faisalabad.
- Mr. Salman Hashmi answered the activity of form creation on mWATER as per WASA's needs.
- Ms. Rebia told that mWATER portal (in-built features) will be prepared based on WASA's needs.
- Ms. Zaeema asked the trainer for the training of EPANET. If the participants do not have the background, it may be difficult to learn.
- Mr. Hafeez told that WASA Lahore is interested in design software. If the training on EPANET design software includes from basics, it is easier for the participants to understand.
- Ms. Rebia explained that the training on EPANET software includes basic features, creation of a pipe network model, and designing of water supply system.
- Mr. Hisham suggested the submission of formal request to MD WASA Lahore for the visiting lecturer from WASA Lahore, which was endorsed by the rest of the participants.
- Mr. Nadeem told the course content is fine. The activity and design-based software will be helpful. In addition, visiting lecturer from WASA Lahore will be valuable because WASA Lahore has multiple type of data on GIS and hands on experience of field.
- Closing remarks: Both course contents and activities were approved.

in

Annex 5.1.39 MM on 8th TAC held on 5th October, 2023

8th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, October 5th, 2023.

Mr. Mian Munir Deputy Managing Director(F,A&R) WASA Lahore

Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team,

Subject:	8 th Technical Advisory Committee Meeting for the Project Titled "The Project					
Subject.	Improving the Capacity of WASAs in Punjab Province Phase 2"					
Date:	Thursday, October 5th, 2023	Time: 11:00 am				
Venue:	Head Office, WASA Lahore.					
Participants:	 Pakistani side: Mr. Mian Muhammad Munir E Mr. Riaz Mujtaba, Director Tra Mr. Abid Hussainy, Principal A Mr. Hisham Pervaiz Vasser, Principal Trainings), WASA La Mr. Roohan Javaid, Director S Mr. Jawad Shahid, Vice Princi Mr. Hassaan Ullah Khan, Sect Ms. Zaeema Aman, Deputy Direct Mr. M. Nadeem, Deputy Direct Mr. Ali Husnain, Deputy Direct 	ewerage, WASA Faisalabad pal, E&M Specialist, Al-Jazari Academy ion Officer (Tech), HUD & PHED (Online) irector Training, WASA Lahore ctor WASA Multan (Online) ctor WASA Multan (Online) stant Director WASA Rawalpindi (Online) actor, Al-Jazari Academy or, Al-Jazari Academy ari Academy				
	Japanese side					
	Dr. Nobuyuki Sato, Chief Advisor, JICA Experts Team					
	Mr. Kazuhiro Kayanoma, JICA Experts Team					
	Mr. Muhammad Hafeez, JICA Coordinator					
	Mr. Wajih-Ud-Din, JICA Coo	rdinator				
		all.				
		In the second				

Decisions	 Technical Advisory Committee approved the proposed schedule and content of professional training for "Leakage Control, Plumbing and Pipe Replacement Plan" from 18th to 20th October, 2023. (attached as Annex-A)) Technical Advisory Committee approved the proposed schedule and content of professional training for " O&M of Electrical and Mechanical course" from 21st November to 23rd November, 2023. (attached as Annex-B)
-----------	--

DISCUSSIONS

The Meeting started with opening remarks and welcome from the Chairperson.

- Engr. Rebia Suhail explained the plan of professional training "Leakage Control, Plumbing and Pipe Replacement Plan", which includes new topics of training regarding reduction of physical losses.
- Mr. Hisham highlighted that practical activity on 3rd day for leakage detection complements the overall purpose of instant training. However, the use of leak detection equipment is not feasible in water supply system of WASA Lahore owing to limited access & insufficient number of known valves locations, and low pressure in distribution lines due to intermittent water supply. However, he explained that it might be feasible to use equipment in Johar Town Pilot area/training center Gulshan-e-Ravi. He further apprised that WASA Lahore is developing Pilot DMAs where leakage detection activity can be carried out on routine basis.
- Mr. Jawad Shahid shared his experience in Phase 1 on the difficulty of identifying leakage from water pipe deeply installed from the surface of ground even through use of equipment.
- Engr. Rebia Suhail said if site was not arranged then leakage detection yard may be used for practical activity, which was established in Phase-1 at AJWA.
- Mr. Hafeez explained that the training would be for beginners' level and related to patrol along pipelines. The activity regarding leakage training was proposed at a site near the academy.
- Mr. Rohan explained that WASA Faisalabad has only 3 isolated areas with sufficient pressure for leak detection activity. Sometimes acoustic leak detector & helium method is not suitable under service condition of WASA Faisalabad. We should obtain knowledge and skills on some other ways and easier methods to identify leakages.
- Mr. Hisham explained that leakage detection in water supply lines is carried out mostly for resolving complaints of water shortage, low pressure or contaminated water without use of equipment. However, focus should also be diverted towards using leakage detection equipment for water conservation.

35

- Ms. Zaeema asked whether the nomination for the training topic on EPAnet software is separately selected or not.
- Engr. Rebia Suhail explained that the same or new trainees may participate in the course of "Leakage Control, Plumbing and Pipe Replacement Plan". However, WASA can decide who to nominate either the same as before or new. The training will include i) an inspection of theoretical data by EPAnet and actual values from water distribution model, and ii) analysis by comparison of both data.
- Mr. Salman Hashmi explained the plan of professional training "O&M of Electrical and Mechanical course".
- Mr. Hisham highlighted the comparison of feedback options in "Leakage Control, Plumbing and Pipe Replacement Plan" and "O&M of Electrical and Mechanical course". He suggested to use indicator of "not satisfactory" etc. in place of "Satisfactory" or "Good" as minimum level of grading.
- Engr. Rebia Suhail explained that we attended the international training, which recommended not to use such words due to discouragement of the trainer.
- Mr. Salman Hashmi informed that the feedback is now being used as shown in his course.
- Mr. Hafeez appreciated the Energy Audit activity, however he expressed that importance shall be given for recommendation of remedy (e.g.to use bigger impeller instead of replacing new pump and motor to improve discharge)
- Mr. Roohan suggested to include training on setting of critical temperature of motor thermistors. relays, their configurations, and pump sizing.
- Mr. Salman Hashmi explained that these are considered as "design component", which are not required to be added in this time.
- Mr. Hisham elaborated that recommended setting of breakers for motor protection or preventive action in case of some emergency situations/ trouble shooting may be added. He further recommended that input of KSB/Progressive may be sought on the remedies in practice during dayto-day trouble shooting activities as they are involved as outsourced-contractor for O&M of Tubewells of WASA Lahore.
- Mr. Abid Hussainy raised that due to Audio issue at last session of meeting, the committee could not get comments or reviews of WASA Gujranwala, Faisalabad and Multan on professional training. It was proposed to share the PPTs with WASA's comments and suggestion to be incorporated as appropriated for the upcoming training.

Annex 5.1.40 MM on 9th TAC held on 1st December, 2023

9TH TECHNICAL ADVISORY COMMITTEE MEETING FOR THE PROJECT TITLED "THE PROJECT FOR IMPROVING THE CAPACITY OF WASAS IN PUNJAB PROVINCE PHASE 2"

Lahore, December 1st, 2023.

Mr. Mian Munir Deputy Managing Director(F,A&R) WASA Lahore

法院仲幸

Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team

S-1-1	9th Technical Advisory Committee Meeting for the Project Titled "The Project						
Subject:	Improving the Capacity of WASAs in Punjab Province Phase 2"						
Date:	Friday, December 1st, 2023	Time: 11:00 am					
Venue:	Head Office, WASA Lahore.						
	Pakistani side:						
	Mr. Mian Munir, Deputy Managir	ng Director (F,A&R), WASA Lahore (Chairperson)					
	• Mr. Hisham Pervaiz Vasser, Proje	ct Director Planning (LWWMP) / Focal Person					
	(Foreign Trainings), WASA Laho	re					
	Mr. Riaz Mujtaba, Director Traini	ng, WASA Lahore (Secretary TAC)					
	• Mr. Abdul Latif, Director Planning	g and Evaluation, WASA Lahore					
	Ms. Zaeema Aman, Deputy Direct	tor Training, WASA Lahore					
	• Mr. Asad Ali, Deputy Director Design, WASA Faisalabad						
	• Mr. Hassaan Ullah Khan, Section Officer (Technical), HUD & PHED (Online)						
	• Mr. M. Nadeem, Deputy Director, WASA Multan (Online)						
Participants:	• Mr. Abdul Wahab, Deputy Director Operation and Maintenance. WASA Gujranwala						
r articipants.	(Online)						
	Mr. Muhammad Haseeb, AD M&E, WASA Rawalpindi (Online)						
	Mr. Muhammad Irfan, Water & Sewerage Specialist (AJWA)						
	• Mr. Syed Fahad Hussain, Instructor Sewerage (AJWA)						
	Mr. Muhammad Uzair Safdar, Instructor Water Quality (AJWA)						
	Japanese side						
	Dr. Nobuyuki Sato, Chief Advisor, JICA Experts Team						
	Mr. Tatsuo Tomidokoro, JICA Experts Team (Online)						
	Mr. Yusaku Numajiri, JICA Experts Team (Online)						
	Mr. Muhammad Hafeez, JICA Coordinator						
	1. Technical Advisory Committee	approved the proposed schedule and content of					
	professional training for "O&M on Sewerage and Drainage" from 12th to 14th December,						
Decisions	2023.						
	av	14					

DISCUSSIONS

The Meeting started with opening remarks and welcome from the Chairperson.

- Syed Fahad Hussain explained the agenda of the meeting and started his presentation on Professional Training of "O&M of Sewerage & Drainage" from 12th to 14th December 2023.
- His explanation included the revised contents, which are i) Analysis of Crown Failure Data on mWater Portal, ii) Visiting Faculty from WASA Multan to share their knowledge regarding crown failures, iii) Use of Metal Locator to find out the lost / buried manholes (previous training feedback), iv) Estimation of drain sludge volume using mWater (previous training feedback).
- Mr. Hassaan commented that foreign countries having same issues such as crown failure etc. should also be included in the training.
- Mr. Irfan explained that example of WASA Multan is included in the training. The international examples will also be considered for future trainings.
- Mr. Hisham said that WASA Lahore also faces crown failure issues and have more experienced officers regarding the issue on crown failure. The experience on WASA Lahore could also be added into the trainings.
- Mr. Irfan acknowledged it.
- Mr. Irfan explained real time calculation of sludge which includes i) sludge measuring rod, ii) cross section, iii) length of the drain etc.
- Mr. Hisham mentioned that sections of drains are not uniform and varies width and depth at place to place. In case of the calculation by WASA, bucket size, excavator type, capacity of dump truck, number of buckets are used. Therefore, this method shall be more useful and included in the training.
- Mr. Irfan acknowledged to add WASA's calculation methodology.
- Dr. Sato emphasized that the coordination between WASA expert and academy shall be made before training.
- Mr. Hafeez emphasized that calculation should be made on intermediate / secondary drain around 20 feet wide instead of a small width drain at Moulana Shoukat Ali Road, which is usually chosen by the AJWA for this purpose.
- Mr. Hisham mentioned that crown failure are few in a year. Therefore, the data registration on mWater would not be so beneficial. On the other hand, the leakage issue occurs daily basis repaired by the lower staff. These are not much known to the management. Therefore, the leakage data may be beneficial to be saved on mWater for the information to the management.

- Mr. Nadeem highlighted that the issue of crown failure is very critical as they have been facing multiple crown failure complaints all around Multan. A map showing the location of crown failure in Multan was also shown in the meeting and emphasized the importance of analysis.
- Ms. Zaeema mentioned regarding a proposal of Mr. Tomidokoro that the field staff shall be included for the training since the staff have less theoretical knowledge of crown failure.
- Mr. Hafeez mentioned that material of manhole cover has been shifted from metallic to nonmetallic. Therefore, metal locators will not be used for finding manhole covers.
- Mr. Hisham mentioned that WASA should be careful and more vigilant when there is road construction work because it is very difficult to find non-metallic manhole covers once covered by under asphalt. Therefore staff need to mark manholes on m-water or GIS.
- Mr. Hassaan mentioned according to his experience in attending the training that in many cases, guest speakers explained more to field work with a wide variety of experiences but less academic concept and less skill as lecturers. AJWA and WASA Training Center need to be considered.
- Mr. Irfan acknowledged it.
- Ms. Zaima suggested a meeting with the guest speaker before the training.
- Mr. Irfan thanked JICA and Japanese experts. He mentioned that he learned a lot from JICA projects since 2016.
- Mr. Hisham thanked everyone and closed the meeting.

Ø STZ

Annex 5.1.41 Time Schedule for Training in Summer 2022

Operation & Maintenance of Sewerage and Drainage System Training Schedule (JICA Phase-II) 2022

			Session-1			Session-2				Session-3			
Sr. No.	Day and Date	Module Name	1 st L	ecture	2 nd Lecture	Tea 10:45 am-11:00 am	3 rd Lecture 4 th Lecture				Lunch 1:15 pm-2:00 pm	5 th Lecture	6 th Lecture
			09:00 am-9:15 am	9:15 am-10:00 am	10:00 am-10:45 am		11:00 am-11:45 am	11:45 am-12:15 pm	12:15 am-1:15 pm		2:00 pm-3:30 pm	3:30 pm-4:00 pm	
	Monday June 13, 2022	Module 01 Cleaning of Sewerage & Drainage Pipelines	Welcoming Remarks Participant Introduction Course Overview Training Expectations	 Removal of Blockages in Sewer Lines Latest Cleaning Techniques of Sewerage & Drainage System 	Introduction to Sewer Camera (Parts + Working) (Demonstration) Repair & Maintenance of Sewerage & Drainage Pipelines	ion)		K ble-Install-Use-Pack & Inspection with Ca		(uo	FIELD WORK • Manhole & Sewer & Inspection with Camera (Evalution of Manhole & Sewer)	• Quick Win Measures (QWMs) • Conclusion on Day's Activities	
2	Tuesday Jun 14, 2022	Module 02 Flow Measurement of Open Channels	Recap of Previous Day Activities	Objectives Types of Drains Methods & Formulae	FIELD WORK (Unpack- Assemble- Install-Use- Packing) • Velocity Meter	Tea Break (As per Site Visit Situation)	FIELD WOR (Unpack-Assemb • Velocity Meter	K le-Install-Use-Pack	ing)	Lunch & Prayer Break (As per Site Visit Situation)	FIELD WORK • Measuring Flow Velocity in Open Chanel • Calculation of Flow Rate	 Quick Win Measures (QWMs) Conclusion on Day's Activities 	
3	Wednesday Jun 15, 2022	Module 3 & 4 Wastewater Treatment (WWT)	Basics of WWT WWT Technologies	Rapid Testing of Wastewater Samples with Kits (BOD, pH, DO)	How to Clean & Maintain Ponds of WWTP		Fianacial Compari w.r.t. CAPEX & OF	son of Various Techr PEX	nology		• Most Suitable Technology	Reflections Group Picture Certificates	

Academy Team: Engr. Muhammad Irfan, Engr. Syed Fahad Hussain, Engr. Haris Bin Khawar

Time Schedule of O&M of Mechanical Equipment Training (Draft)

1st Day: 16th June (Thu)							
Time	Activity	Notes					
9:30 to 9:45	Introduction						
	Orientation						
	Basics of Pump	Exercise by using the pump model					
	 Typical components of pump facility. 						
9:45 to 11:00	 Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head) Electrical parameters (Voltage, Ampere) 	Trainees will check/measure each parameter by themselves.					
	Parallel & series pump operation						
	•Pump performance curve (Relationship between flow and discharge pressure)	Trainees will demonstrate each iems by using the pump model.					
	•Relationship between flow and current						
	Understanding of Ultrasonic Flow Meter	Exercise by using the pump model					
11:00 to 12:00	 •What will happen if we don't follow 10d recommendatio •What will happen if the setting value of pipe thickness is wrong ? •What will happen if the setting value of pipe diameter is wrong ? •What will happen if the setting of pipe material is wrong •What will happen if the installation distance of sensor is not proper ? 	Trainees will demonstrate each iems by using a ultrasonic flow meter on the pump model.					
12:00 -13:00	Basics of Asset lifecycle analysis with examples.	Concept of Asset Life cycle analysis					
13:00 to 14:00	Lunch & Prayer Bro	eak					
14:00 to 15:00	Data Analysis •Making a pump performance curve by Excel.	Exercise by using Excel. (PCs shall be prepared.)					

2nd Day: 17th June (Fri)								
Time	Activity	Notes						
9:30 to 10:30	Vibration Analysis and its importance Understanding of Vibration Meter •Use of Vibration Meter • Installation of Vibration Meters on Machinery							
10:30 to 11:00) Move to the Site							
11:00 to 13:00	Site Visit to WASA Disposal Station Prepration of Mainteniance Plan for Facility Vibration Measurement	Practical Training at the site						
13:00 to 14:00	Vibration measurement							
14:00 to 14:45	• Filling the record sheet							
14:45 to 15:00	Lunch & Prayer Break							
	Preparation of Report, Q&A Closing							

Annex 5.1.42 Time Schedule for Training in Fall 2022

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

1 st Day 25	Tuesday October,2022	gois
Time	Topics/Description	Resource Person
08:30 am - 09:00 am	Attendance and Seating	Muhammad Mujahid
09:00 am - 09:10 am	Recitation of Holy Quran	
Opening Session		
09:10 am - 9:20 am	Opening and Welcome Remarks	Principal AJWA
09:20 am - 09:30 am	Introduction – Participants and Trainers Expectations from the Training	All
09:30 am - 09:40 am	Contents and Objectives of the Course	Engr. Rebia Suhail
Ice-Breaking Session		
09:40 am - 10:00 am	Ice-Breaking:	Ms. Najam-ul-Sahar
10:00 am – 10: 15 am Introductory Sessions	Program Agenda of Training	Engr. Rebia Suhail
10:15 am - 10:30 am	Introduction to m-Water App	Engr. Rebia Suhail
10:30 am - 11:00 am	Downloading and Installation of M-Water App/Portal	Engr. Haris-Bin-Khawar
11:00 am - 11:15	Tea Break	
11:15 am - 11:30 am	Activity Form (Form Filling)	Engr. Haris-Bin-Khawar
11:30 am - 12:30 pm	Form Creation Activity	All
12:30 am - 01:00 pm	Worksheet (Assignment)	All
01:00 pm – 02:00 pm	Lunch and Prayer Break	
02:00 pm – 02: 30 pm	Introduction to Q-GIS	Engr. Uzair Safdar and Muhammad Mujahid
02:30 pm – 03: 00 pm	M-Water Data Input in Q-GIS	All
03:00 pm – 03:30 pm	Visualization and Presentation of Leakage Repair Data in Q-GIS	All
03:30 pm – 03:45 pm	Presentation of Activity	Participants
03:45 pm – 04:00 pm	Implementation Plan in all WASAs/Departments	Participants

2nd Day

PROGRAM AGENDA

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

WednesdayOctober,2022

Time	Topics/Description	Resource Person	
09:00 am - 09:15 am	Attendance and Seating	Course Team	
09:15 am - 09:30 am	Pre-Evaluation Form	Rabbia Naimat	
Opening Session			
09:30 am - 9:40 am	Module Overview	Mr. Kayanoma	
09:40 am - 09:50 am	Course Objectives	Engr. Fahad Hussain	
09:50 am - 10:00 am	Program Agenda & Learning Outcomes	Engr. Rebia Suhail	
Interactive Sessions			
10:00 am - 10:30 am	Demonstration of Water Pipe Network Model	Engr. Fahad Hussain	
10:30 am – 11:00 am	Identification of components (Activity)	Engr. Rebia Suhail	
11:00 am – 11:15	Tea Break		
11:15 am -11:45 am	Assembling and Dissembling of Different Type of Meters	Engr Fahad Hussain and Mr. Kayanoma	
11:45 am - 12:15 pm	How to Read the water meters (Activity)	Course Team and Participants	
12:15pm – 12:45 pm	Comparison of Bulk Meter with Consumer Meters (Activity)	Course Team and Participants	
12:45 am – 01:15 pm	Measure NRW by Creating Leakage	Engr Fahad Hussain	
01:15 pm – 02:00 pm	Lunch and Prayer Break		
02:00 pm – 02:30 pm	Water Meter Accuracy by using Bucket of 5 Liter (Activity)	Course Team and Participants	
02:30 pm – 03:00 pm	Pressure and Flow Measurements by using Gate Valve	Mr. Wajih (JICA Team)	
03:00 pm – 03:40 pm	Cutting and Jointing of PPRC Pipe (Activity and Competition)	Participants & Course Team	
03:40 pm – 03:50 pm	Post Evaluation Forms	Najam-ul-Saher	
03.40 pm = 03.30 pm		Najam a vanor	

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

3rd Day 27 Thursday October,2022

Time	Topics/Description	Resource Person
09:00 am - 09:30 am	Attendance and Seating	Muhammad Mujahid
09:30 am - 09:40 am	Pre-Evaluation Form	Rabbia Naimat
Opening Session		
09:40 am - 09:50 am	Module Overview	Dr. Satu
09:50 am - 10:00 am	Program Agenda and Learning Outcomes	Engr. Rebia Suhail
10:00 am - 10:05 am	Course Objectives	Engr. Farhan Riaz
Interactive Sessions		
10:15 am - 10:30 am	Parameters of HDPE Pipes	Engr. Farhan Riaz
10:30 am - 11:00 am	Exercise on Calculation of SDR & MOP	All Participants
11:00 am - 11:15	Tea Break	
11:15 am - 11:30 am	Assembling and Dissembling of Valves	Engr. Farhan Riaz
11:30 am - 12:00 pm	Components of Valves (Activity)	All Participants
12:00 pm – 12:15 pm	Demonstration of Pressure Test Activity	Engr. Farhan Riaz
12:15 pm – 01:15 pm	Activity on Pressure Testing Model	All Participants
01:15 pm – 02:00 pm	Lunch and Prayer Break	
02:00 pm – 02: 15 pm	Post Evaluation Form	Najm-ul-Saher
02:15 pm – 02: 30 pm	Reflections and Submission	All Paricipants
02:30 pm – 02:45 pm	Closing Remarks	Principal/VP
02:45 pm – 03:00 pm	Certificate Distribution and Group Photo	

O&M of Electrical and Mechanical Equipment

Training Schedule

Sr. No.	Day & Date	Session I 09:00 AM - 10:00 AM	Session II 10:00 AM - 11:00 PM		Session III 11:15 AM - 12:00 PM	Session IV 12:00 PM - 01:00 PM		Session V 02:00 PM - 03:00 PM
1	Tuseday 8th Nov 2022	- Introduction and Icebreaking - Expectations from Training -Introduction to Motor Control Unit -Operation of each component of MCU	Commisioning of Motor Control Unit Hands on Testing of Different components of MCU Connection and use of following items in MCU Switch ON / OFF MCCB / MCB Magnetic Contactor Electronic OV / UV Relay		Commisioning of Motor Control Unit Use of following items in circuit -Timer Relay -Voltmeter and ammeter -Water level switch for submersible pumps	Commisioning of Motor Control Unit Making of Motor Starters for MCU 1. DOL (Direct Online Circuit) 2. Star Delta Circuit	k	Sizing of electrical Circuits Cable Sizing MCCB Magnetic Contactor
2	Wednesday 9th Nov 2022	Previous Day's Wrap-up -Insulation testing of Control Panel -Earth resistance Testing -Power Factor improvement	Pratical Acticity on Energy Audit using miniature pumping station -Electrical Parameters of Energy Audit - Mechanical Parameters of Energy Audit - Pump Performance Curve - Specific Energy	Tea Break	Hands on Activity on Miniature Pumping Station Typical components of pump facility. Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head) Parallel & series pump operation QH Curve- Flow and Current Correlation Pump performance curve(Relationship between flow and discharge pressure) Comparison of Ultrasonic Flow meter with Velocity type Water meter	Facility Failure analysis -Pump Failure -Motor Failure -Control Panel Failure	Lunch and Prayer Break	Causes of Failure for -Vertical turbine Pump -Submersible Pump
3	Thursday 10th Nov 2022	Previous Day's Wrap-up -How to Prepare Energy Audit Report -Energy Assesment Tool -Data Collection and Analysis using Excel -Energy benchmarking	Actual Issues faced during Energy Audit by WASAs -How to Prepare Energy Development Plan		Industrial Visit to Control Panel Manufacturer or Field Visit to WASA Tubewell, Disposal Station Prepration and implementation of Mainteniance plan for Facility - Energy Audit at WASA Tubewell -Hands on Use of Power Analyzer, Ultrasonic flow meter, power meter, Water Level Detector, Vibration Meter, Earth Resistance Tester. etc			Prepration of Mainteniance Schedule by Participants Process Improvement Operations Optimization Efficiency Planning Feedback on topics for upcoming training Evaluation of training Closing ceremony

Course Lead:	Mr. Jawad Shahid, Mr. Tabusa
Course Team	Mr. Farhan Riaz, Mr. Mujtaba Bashir, Mr. Talha Rashid

Operation & Maintenance of Sewerage and Drainage System Training Schedule (JICA Phase-II) 2022

					Session-1			Session-2		Session-3	3
S N	r. o.	Day and Date	Module Name	1 st Lo	ecture	2 nd Lecture	Tea 11:00 am-11:20 am	3 rd Lecture	Lunch 1:15 pm-2:15 pm	4 th Lecture	6 th Lecture
				09:00 am-9:15 am	9:15 am-10:00 am	10:00 am-11:00 am		11:20 am-01:15 pm		2:15 pm-3:15 pm	3:15 pm-3:30 pm
	1	Tuesday 22 November 2022	Module 01 Cleaning of Sewerage & Drainage Pipelines	Welcoming Remarks Recitation of Holy Quran & National Anthem Participant Introduction Course Overview	Activity • Sewer / Manhole Camera (Public Awarenes Regarding Overf	s to Children	tion)	FIELD WORK Demonstration • Introduction to Sewer Camera (Parts + Working) (Unpack-Assemble-Install-Use-Packing) • Manhole & Sewer Inspection with Camera	Lunch & Prayer Break (As per Site Visit Situation)	FIELD WORK • Manhole & Sewer Inspection with Camera	 Quick Win Measures (QWMs) Conclusion on Day's Activities
	2	Wednesday 23 November 2022	Module 02 Flow Measurement of Open Channels	• Recap of Previous Day Activities	Class Room Activ (Unpack - Assem Use - Packing) • Velocity Meter	•	Tea Break (As per Site Visit Situation)	FIELD WORK (Unpack-Assemble-Install-Use-Packing) • Velocity Meter • Measuring Flow Velocity in Open Chanel		Class Room Excercise • Calculation of Flow Rate	 Quick Win Measures (QWMs) Conclusion on Day's Activities
	3	Thursday 24 November 2022	Module 03 Wastewater Treatment (WWT)	• Recap of Previous Day Activities	• Rapid Testing of Samples with Kit (BOD, pH, DO)			Basics of WWT Procedure for Selecting Best Wastewater Treatment Technologies (Comparison of Process, Land Requirement, Required Effluent Quality, CAPEX&OPEX)		 Cost Estimation of Sludge Removal including Volume Calculation and Work Plan Methodology 	Reflections Group Picture Certificates

JICA Team: Mr. Tomidokoro, Engr. Wajih Course Lead: Engr. Syed Fahad Hussain, Course Team: Engr. Muhammad Irfan

O&M of Electrical and Mechanical Equipment

26th to 28th December 2022

	·							
Sr. No.	Day & Date	09:00 AM - 10:00 AM	10:00 AM - 11:00 PM		11:15 AM - 12:00 PM	12:00 PM - 01:00 PM		02:00 PM - 03:00 PM
1	Monday 26th December 2022	Orientation Session - Introduction and Icebreaking - Expectations from Training - Introduction to Pumps Introduction to Motors	Deparation and Maintenance of Pump Deparation Data Tube well and Disposal Station and link and for record keeping Use of mWater application Introduction, Installation and Uses in Field The Work of the data for maintenance of motors using m-water application Energy Audit Parameters link with M-water application - How to create form on m-water application for operation and maintenance of electrical and mechanical components - How can use the data and link with QGIS		entative mainteniance f motors using m-water application nk with M-water application cation for operation and maintenance of nanical components	-	Operation and maintenance of valves on Tube well ,Disposal and on pipe netwrok and record its data on m-water Application	
2	Tuesday 27th December 2022	- Electrical Parame - Mechanical Param - Pump Perfo	miniature pumping station ters of Energy Audit eters of Energy Audit rmance Curve c Energy	Pumping station Typical components of pump facility rrgy Audit - Parallel & series pump operation			Lunch Break	Scnario Based Learing Activity - Pump Failure - Motor Failure - Control Panel Failure Causes of Failure for - Vertical turbine Pump - Submersible Pump - Protection measures for Pumps
3	Wednesday 28th December 2022	Last Day's Wrap-up - How to prepare Energy Audit Report - Energy Assesment Tool - Data Collection and Analysis using Excel - Energy benchmarking	- Hands on use of Power Analyzer, U					

Annex 5.1.43 Time Schedule for Training in Spring 2023

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

Tuesday Januaru,2023

1st Day

Time	Topics/Description	Resource Person
09:15 am - 09:30 am	Attendance and Seating	Muhammad Mujahid
09:30 am - 09:35 am	Recitation of Holy Quran	Muhammad Mujahid
09:35 am - 09:40 am	National Anthem	Waqas
Opening Session		
09:40 am - 9:45 am	Opening and Welcome Remarks	Principal/VPAJWA
09:45 am - 09:55 am	Introduction - Participants and Trainers Expectations from the Training	All
09:55 am - 10:05 am	Module Overview	Mr. Kayanoma
10:05 am - 10:15 am	Program Agenda & Learning Outcomes	Engr. Rebia Suhail
Interactive Sessions		
10:15 am - 10:40 am	Demonstration of Water Pipe Network Model	Engr. Fahad Hussain
10:40 am - 11:00 am	Identification of components (Activity)	All Participants
10:40 am - 11:00 am 11:00 am - 11:15	Identification of components (Activity) Tea Break	All Participants
	· · ·	All Participants Engr. Fahad Hussain
11:00 am - 11:15	Tea Break	
11:00 am - 11:15 11:15 am -12:00 am	Tea Break Hands on Activity on Model	Engr. Fahad Hussain Engr. Fahad and
11:00 am - 11:15 11:15 am -12:00 am 12:00 am - 12:45 pm	Tea Break Hands on Activity on Model How to Read the water meters (Activity) Assembling and Dissembling of Different	Engr. Fahad Hussain Engr. Fahad and Participants Engr Fahad Hussain
11:00 am - 11:15 11:15 am -12:00 am 12:00 am - 12:45 pm 12:45pm - 01:15 pm	Tea BreakHands on Activity on ModelHow to Read the water meters (Activity)Assembling and Dissembling of Different Type of Meters	Engr. Fahad Hussain Engr. Fahad and Participants Engr Fahad Hussain and Mr. Uzair
11:00 am - 11:15 11:15 am -12:00 am 12:00 am - 12:45 pm 12:45 pm - 01:15 pm 12:45 am - 01:15 pm	Tea BreakHands on Activity on ModelHow to Read the water meters (Activity)Assembling and Dissembling of Different Type of MetersUltra-Sonic Flow meter	Engr. Fahad Hussain Engr. Fahad and Participants Engr Fahad Hussain and Mr. Uzair
11:00 am - 11:15 11:15 am -12:00 am 12:00 am - 12:45 pm 12:45 pm - 01:15 pm 12:45 am - 01:15 pm 01:15 pm - 02:00 pm	Tea BreakHands on Activity on ModelHow to Read the water meters (Activity)Assembling and Dissembling of Different Type of MetersUltra-Sonic Flow meterLunch and Prayer Break	Engr. Fahad Hussain Engr. Fahad and Participants Engr Fahad Hussain and Mr. Uzair Uzair and Mujtaba
11:00 am - 11:15 11:15 am -12:00 am 12:00 am - 12:45 pm 12:45 pm - 01:15 pm 12:45 am - 01:15 pm 01:15 pm - 02:00 pm 02:00 pm - 02:30 pm	Tea Break Hands on Activity on Model How to Read the water meters (Activity) Assembling and Dissembling of Different Type of Meters Ultra-Sonic Flow meter Lunch and Prayer Break Introduction to EPA.NET	Engr. Fahad Hussain Engr. Fahad and Participants Engr Fahad Hussain and Mr. Uzair Uzair and Mujtaba Uzair Uzair Safdar Participants &

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

2nd Day 18 Wednesday January,2023

Time	Topics/Description	Resource Person	
09:15 am - 09:30 am	Attendance and Seating	Muhammad Mujahid	
09:30 am - 09:40 am	Pre-Evaluation Form	Rabbia Naimat	
Opening Session			
09:40 am - 09:50 am	Program Agenda and Learning Outcomes	Engr. Rebia Suhail	
09:50 am - 10:00 am	Course Contents and Objectives	Engr. Farhan Riaz	
Interactive Sessions			
10:00 am - 10:30 am	Demonstration for Procedure of Butt Fusion Welding	Engr. Farhan Riaz	
10:30 am – 11:00 am	HDPE Pipes Parameters	Engr. Farhan Riaz	
11:00 am - 11:15	Tea Break		
11:15 am - 11:30 am	Exercise on Calculation of SDR & MOP	All Participants	
11:30 am – 12:30 pm	Hands-On Activity on Butt Fusion	All Participants	
12:30 pm – 01:15 pm	Assembling and Disassembling of Valves and Threads (Activity Group1 & Group 2)	Engr. Farhan Riaz & Engr. Uzair Safdar	
01:15 pm – 02:15 pm	Lunch and Prayer Break		
02:15 pm – 02: 30 pm	Post Evaluation Form	Pedagogy Team	
02:30 pm – 02: 45 pm	Downloading and Installation of M-Water App/Portal	Engr. Uzair & Muhammad Mujahid	
	Approna		

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

3 rd Day	January,2025	QGIS
Time	Topics/Description	Resource Person
09:15 am - 09:30 am	Attendance and Seating	Muhammad Mujahid
09:30 am - 09:40 am	Pre-Evaluation Form	Ms. Rabbya Naimat
Opening Session		
09:40 am - 10:00 am	Program Agenda and Learning Outcomes	Engr. Rebia Suhail
10:00 am - 10:15 am	Course Contents and Objectives	Engr. Uzair Safdar
Interactive Sessions		
10:15 am – 11:15 am	Form Creation Activity	Engr. Uzair Safdar
11:00 am - 11:15	Tea Break	
11:15 am -12:30 pm	On Site Form Filling Activity	Participants & Course Team
12:30 pm – 01:15 pm	Introduction to Q-GIS	Engr. Uzair Safdar
01:15 pm – 02:15 pm	Lunch and Prayer Break	
02:15 pm – 02: 30 pm	M-Water Data Input in Q-GIS	Muhammad Mujahid
02:30 pm – 03: 00 pm	Visualization and Presentation of Leakage Repair Data in Q-GIS	Muhammad Uzair
03:00 pm – 03:15 pm	Presentation of Activity	All Participants
03:15 pm – 03:30 pm	Quiz	All Participants
03:30 pm – 03:40 pm	Post Evaluation Forms	Pedagogy
03:40 pm – 03:50 pm	Conclusion on day's Activities and Reflections	Participants
03:50 pm – 04:00 pm	Certificate Distribution and Group Photo	All Participants

Operation & Maintenance of Sewerage and Drainage System Training Schedule (JICA Phase-II) February 2023

				Session-1			Session-2		Session-3	3
ir. o.	Day and Date	Module Name	1 st L	ecture	2 nd Lecture	Tea 11:00 am-11:20 am	3 rd Lecture	Lunch 1:00 pm-2:00 pm	4 th Lecture	6 th Lecture
			09:00 am-9:15 am	9:30 am-10:00 am	10:00 am-11:00 am		11:20 am-01:00 pm		2:00 pm-3:15 pm	3:15 pm-3:30 pm
1	Tuesday 14 February 2023	Module 01 Cleaning of Sewerage & Drainage Pipelines	Welcoming Remarks Recitation of Holy Quran Participant Introduction Course Overview (JICA Expert)	Demonstrat • Introduction to Se (Parts + Working) (Unpack-Assembl Packing) (Mr. Fahad)	wer Camera		ACTIVITY • Sewer / Manhole Inspection with Camera (Public Awareness to Children Regarding Overflow from Sewer) (Mr. Irfan & Mr. Fahad)		FIELD WORK • Manhole & Sewer Inspection with Sewer Camera (Mr. Fahad)	 Quick Win Measures (QWMs) Conclusion on Day's Activities
2	Wednesday 15 February 2023	Module 02 mWater	• Recap of Previous Day Activities (Mr. Fahad)	 Introduction to mV Downloading and mWater App/Porta (Mr. Uzair) 	Installation of	Tea Break	Hands-On Exercise • Creation and Customization of Data Collection Form in mWater Portal (Mr. Uzair)	Lunch & Prayer Break	 How to Visualize Overflow & Crown Failure Data in QGIS Analysis of Data in QGIS (Mr. Uzair) 	 Quick Win Measures (QWMs) Conclusion on Day's Activities
3	Thursday 16 February 2023	Module 03 Flow Measurement & Wastewater Treatment	• Recap of Previous Day Activities (Mr. Fahad)	• Flow Rate Calcula (Mr. Irfan & Mr. Fa	·		 Rapid Testing of Wastewater Samples with Kits (BOD, pH, DO) Sludge Estimation of Drain (Add on Demand) (Mr. Fahad) 		Reflections Group Picture Certificates	

JICA Team: Mr. Tomidokoro Course Lead: Engr. Syed Fahad Hussain Course Team: Engr. Muhammad Irfan, Engr. Uzair Safdar

O&M of Electrical and Mechanical Equipment 7th to 9th March 2023

					-					
Sr. No.	Day & Date	09:00 AM - 10:00 AM	10:00 AM - 11:00 PM		11:15 AM - 12:00 PM	12:00 PM - 01:00 PM		02:00 PM - 03:00 PM		
1	Tuesday 7th March 2023	Orientation Session - Introduction and Icebreaking - Expectations from Training -Introduction to MCU -Types of Control Panels	Introduction to Different components of MCU -MCB, MCCB -Magnetic Contactors - Use of Protective relays -PFI Capacitors		-MCB, MCCB -Magnetic Contactors - Use of Protective relays		MCU Identification and rectification of faults -MCB, Working and configuration of each component of MCU MCCB Introduction to Motor Starters g -Magnetic Contactors 1. DOL (Direct Online Circuit) - Use of Protective relays 2. Star Delta Circuit			Hands on Activity Commissioning of a basic MCU Connection and use of following items in MCU Switch ON / OFF MCCB / MCB Magnetic Contactor
2	Wednesday 8th March 2023	Last Day's Wrap-up - Components of MCU -Types of Panels - Parameters of Pumps and Motors	Energy Audit Activity on miniature pumping station - Electrical Parameters of Energy Audit - Mechanical Parameters of Energy Audit - Pump Performance Curve - Scenario Based Learing Activity - Pump Failure - Motor Failure - Control Panel Failure Causes of Failure for - Vertical turbine Pump - Submersible Pump - Protection measures for Pumps	Tea	Hands on Activity on miniature pumping station - Typical components of pump facility - Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head) - Parallel & series pump operation - Flow and Current Correlation Pump performance curve (Relationship between flow and discharge pressure) - Comparison of Ultrasonic Flow Meter with Velocity type Water Meter <u>Exercise</u> - Making pump performance curves in case of single, parallel and series pump	Use of mWater application - Creation of forms using mWater Application - Data Analysis using mWater Data collection and Analysis using Microsoft Excel	Lunch Break	Use of mWater applicaton - Data input and creation of forms Data collection and Analysis using Microsoft Excel		
3	Thursday 9th March 2023	Last Day's Wrap-up - How to prepare Energy Audit Report - Energy Assessment Tool - Data Collection and Analysis using Excel - Energy benchmarking	Case Study Solarization of Disposal Station 0.75 MW Field Visit to WASA Disposal Station - Identification for capacity for generation of Solar Energy - Types of Panels and Inverters Installed - Use of Motor Starters - Substation for Net-Metering					Prepration of Maintenance Plan for Facility / Action Plan according to Each WASA (Process Improvement, Operations Optimization, Efficiency Planning) Feedback on topics for upcoming training & Closing Ceremony		

Annex 5.1.44 Time Schedule for Training in Summer 2023

O&M of Electrical and Mechanical Equipment

The Urban Unit

Training Schedule

Sr. No.	Day & Date	09:00 AM - 10:00 AM	10:00 AM - 11:00 PM		11:15 AM - 12:00 PM 12:00 PM - 01:00 PM			02:00 PM - 03:00 PM
1	First Day	Orientation Session - Introduction and Icebreaking - Expectations from Training - Pre Evaluation Forms	Operation and Maintenance of Pump Operation Data Tube well and Disposal Station and link and for record keeping use of mWater application Introduction, Installation and Uses in Field	 Predictive Maintenance Techniques - Asset Risk and Condition Assessment of electromechanical components - How to collect and record data - Deployment of data collection forms for miniature model for energy audit 			Hands-on activity on assembly and disassembly of valves with basic operation and maintenance techniques	
2	Second Day	Orientation Session - Introduction to performance measuring tools (Flow meter, Vibrometer, etc) - Parameters of Hands-on Activity	Hands-on Activity on Miniature Pumping Station - Typical components of pump facility - Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head) - Parallel & series pump operation - Flow and Current Correlation - Pump performance curve (Relationship between flow and discharge pressure) - Comparison of Ultrasonic Flow Meter with Velocity type Water Meter	Tea	Energy Audit Activity on - Electrical Parame - Mechanical Param - Exercise of Vibration - Pump Perfo Hands on Activity on miniature pum mWater a	Lunch Break	Exercise - Demostration of Data Visualisation on mWater Portal - Introduction of pump performance curves in case of single, parallel and series pump operation	
3	Third Day	Last Day's Wrap-up - How to prepare Energy Audit Report - Energy Assesment Tool - Data collection and Analysis using Excel - Energy benchmarking	Field Visit to WASA_Tube Well Station - Understanding of actual O&M activities - Exercise of Vibration & Ultrasonic Flow Meter - Filling the daily and monthly inspection sheet - Measurement of Electrical Parameters - Measurement of Hydraulic Parameters - Energy Audit of Tube well pump Station - Flow measurement through different techniques - Hands on use of Power Analyzer, Ultrasonic Flow Meter, Water Level Detector, Vibration Meter, Earth Resistance Tester. etc - mWater exercise					Prepration of Mainteniance Plan for Facility (Process Improvement, Operations Optimization, Efficiency Planning) Feedback on topics for upcoming training & Closing Ceremony

LEAKAGE CONTROL, PLUMBING & PIPE REPLACEMENT PLAN

Tentative Training Schedule (JICA Phase-II) 2023

Si No		Day & Date	Module Name	Introductory Session	Session-1		Session-2		Session-3	Closing Session
				09:00 am-9:15 am	9:15 am-11:00 am		11:15 am-1:15 pm		2:15 pm-3:30 pm	3:00 pm-4:00 pm
		29th May, 2023	Module 1 mWater App/Portal	Welcoming Remarks Participant Introduction Module Overview Expectations from Module	 Introduction to M-Water App Downloading and Installation of M-Water App Practical Activity Data collection using mWater App in field related to Leakage repair work 		 Hands-On Exercise Case study regardiing various mWater forms alresdy in use in different WASAs Creation and customization of Data Collection Form in M-Water Portal 		Hands on Exercise Introduction to DashBoard Feature in mWater Portal Creation of Dashboard in mWater Portal Use of filter in Excel to analyze data for pipe repalcement 	• Formative Quiz • Conclusion on Day's Activities
2	2	30th May, 2023	Module 2 QGIS	Recap of previous Day Activities Contents & objectives of the course Expectations from Module	Knowledge Sharing Q-GIS by WASA Lahore (Visiting Faculty) Hands on Exercise Introduction to QGIS Using different features of QGIS Types of Data input in QGIS	Tea Break 11:00am-11:15 am	Hands on Exercise • Extracting data from mWater portal in excel Format • Importing mWater data in QGIS • How to Visualize Leakage Repair Data in QGIS • Analysis of Data in QGIS	Lunch & Prayer Break 1:15 pm-2:15 pm	How to create shapfile in QGIS and its utiliziation in Pipe Repalcement Planning	• Formative Quiz • Conclusion on Day's Activities
3	3	31st May, 2023	Module 3 EPANET	Recap of previous Day Activities Contents & objectives of the course Expectations from Module	Hands on Exercise Introduction to EPANET software Importance of EPANET Steps in using EPANET software Understanding the layout and different features of EPANET		Knowledge Sharing of Pipe Replacement Planning by WASA Lahore (Visiting Faculty) Hands on exercise Creating a water network model in EPANET Use of EPANET in Pipe Repalcement Comparison of data received related to pressure, head etc. from EPANET simulation with actual data collected from the model.		Hands on exercise • Creating a water supply system in EPANET • Formative Quiz • Conclusion on Day's Activities	Certificate Distribution Group Photo

Chief Advisor: Dr. Sato

Japanese Expert: Mr. Kinno, Mr. Kayanoma

Course Lead :Engr. Rebia Suhail

Course Team: Engr. Muhammad Uzair Safdar, Muhammad Mujahid

Annex 5.1.45 Time Schedule for Training in Fall 2023

LEAKAGE CONTROL, PLUMBING & PIPE REPLACEMENT PLAN

Training Schedule (JICA Phase-II) 2023

Sr. No.	Day & Date	Module Name	Introductory Session	Session-1		Session-2			
1	Wednesday 18th OCT, 2023	Module 1 MWater	09:30 am-9:45 am • Welcoming Remarks • Participant Introduction • Module Overview • Expectations from Module	9:45 am-10:45 am Hands-On Exercise • Introduction to M-Water App • Downloading and Installation of M-Water App/Portal • Application of the Data Collection Form in Actual Repair Works al Activity on M-Water		11:00 am-12:00 am 12:00 am - 1:00 pm Hands on Activity on M-Water • Creation and customization of Data Collection Form in M-Water Porta • Analysis of data collected using mwater for effctive pipe repalcement planning			Case study Guest lecture Multan Share the exp mWatre. • Water leakag • Costumer su Based on the o and use for fu
2	Thursday 19th OCT, 2023	Module 2 Pip Replacement Planning	• Module Overview • Expectations from Module	Pipe network Model • Demonstration of Pipe Network Model • Name of each component and its role on pipe network model	Tea Break 10:45 am-11:00 am	Practical Activity EPANET Introduction to EPANET software –In			How to use El water pressur water demanc Compare the a Software value
3	Friday 20th OCT, 2023	Module 3 Leakage Control	Module Overview Expectations from Module	Hands-On Exercise • Introduction to NRW and its causes • How to prevent and reduce Water Leakage • The procedure of water leakage detection		Practical Activity Leakage survey at site • The introduction of leakage detection equipment • How to use leakage equipment • Try to find actual leakage • To record the data by mWater on site	Certificate Distribution Group Photo		

Chief Advisor: Dr. Sato

Japanese Expert: Mr. KAYANOMA

Course Lead :Engr. Rebia Suhail

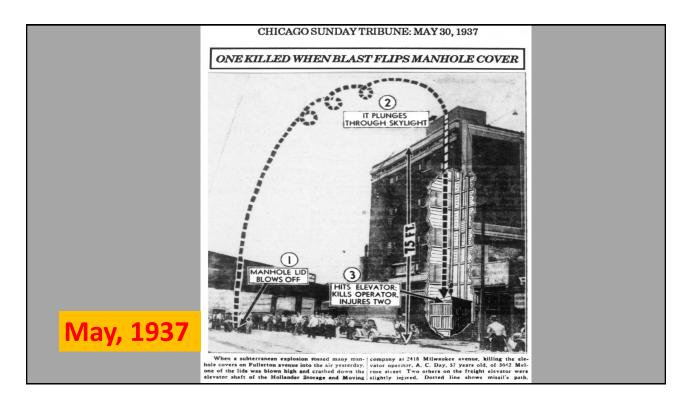
Course Team: Engr. Syed Fahad Hussain, Engr. Farhan Riaz Engr. Uzair Safdar, Muhammad Mujahid

bitudy lecturer Mr. Nadeem from WASA- the experience and knowledge of re. • Questionaries er leakage record umer survey on the collected data how to analyse e for futter pipe network plan. • Conclusion on Day's Activities o use EPANET for the calculation of pressure and volume properly as pe demand. • Questionaries • Conclusion on	Session-3	Closing Session
Iecturer Mr. Nadeem from WASA- the experience and knowledge of re. er leakage record umer survey on the collected data how to analyse e for futter pipe network plan. o use EPANET for the calculation of pressure and volume properly as pe demand. • Questionaries • Conclusion on Day's Activities	2:00 pm-3:30 pm	3:30 pm-4:00 pm
pressure and volume properly as pe demand.• Questionaries • Conclusion on Day's Activitiesare the acttual values with EPA NET	cturer Mr. Nadeem from WAS e experience and knowledge eakage record her survey h the collected data how to ar	of • Questionaries • Conclusion on Day's Activities
	essure and volume properly mand. the acttual values with EPA	• Questionaries • Conclusion on Day's Activities

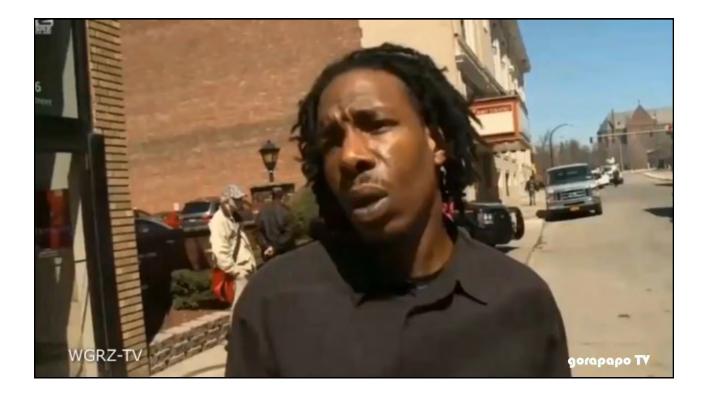
O&M of Electrical and Mechanical Equipment

21-23/NOV/2023

Sr. No.	Day & Date	09:00 AM - 10:00 AM	10:00 AM - 11:00 PM		11:15 AM - 12:00 PM 12:00 PM - 01:00 PM			02:00 PM - 03:00 PM
1	21-Nov-23	Orientation Session - Introduction and Icebreaking - Expectations from Training -Introduction to MCU -Types of Control Panels	Introduction to Different components of MCU -Introduction to Motor Starters -Single Line Diagram for Electrical Circuits -Causes and Effects of low Power Factor	Break	Hands on Activity on Commissioning of a -Connections of Magnetic Contactor, Push -Connections of a DOL Starter			-Cable sizing and equipment (MCCB, MCB, Contactors Sizing)
2	22-Nov-23	Orientation Session - Introduction to performance measuring tools (Flow meter, Vibrometer, etc) - Parameters of Hands-on Activity	Operation and Maintenance of Pump and induction motor -Operation Data Tube well and Disposal Station -Link for record keeping by use of mWater application	Tea	 Parallel & series pump operation Flow and Current Correlation Pump performance curve (Relationship be 	ponents of pump facility arameters (Flow Rate, Discharge Pressure, Total Head) eries pump operation		Energy Audit Activity on miniature pumping station - Electrical Parameters of Energy Audit & fill the form on mWater app - Mechanical Parameters of Energy Audit & fill the form on mWater app - Exercise of Vibration - Draw QH Curve on Excel
3	23-Nov-23	Last Day's Wrap-up - How to prepare Energy Audit Report - Energy Assessment Tool - Data collection and Analysis using Excel - Energy benchmarking	Energy Audit by KSB Team Introduction to Reverse Engineering Method					Prepration of Mainteniance Plan for Facility (Process Improvement, Operations Optimization, Efficiency Planning) Feedback on topics for upcoming training & Closing Ceremony


Operation & Maintenance of Sewerage and Drainage System Training Schedule (JICA Phase-II) December 2023

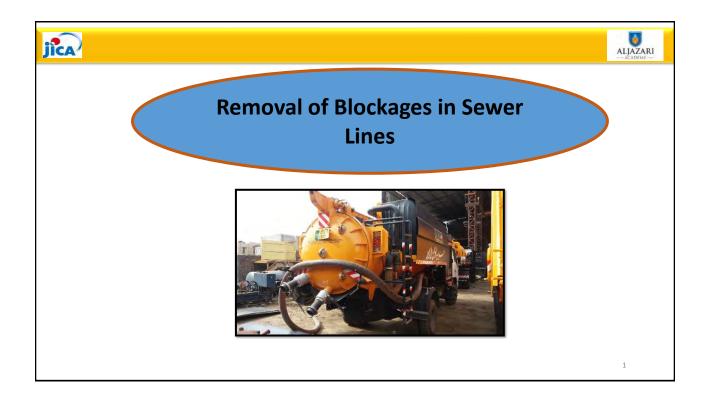
Sr. No.	Day and Date	Module Name	Session-1		Tea 11:00 am-11:20 am	Session-2	Lunch 1:00 pm-2:00 pm	Session-3			
			09:30 am-9:45 am	9:45 am-10:15 am	10:15 am-11:00 am		11:20 am-01:00 pm		2:00 pm-3:00 pm	3:00 pm-3:30 pm	
1	Tuesday 12 December 2023	Module 01 Cleaning of Sewerage & Drainage Pipelines	Welcoming Remarks Participant Introduction Pre Evaluation Course Overview (JICA Expert)	 Inspection of Sewe Introduction to Sew (Parts + Working) (Mr. Fahad) 			FIELD WORK • Sewer / Manhole Inspection with Camera (Public Awareness to Children Regarding Overflow from Sewer) (Mr. Fahad)		Introduction to mWater App Installation of mWater App / Portal (Mr. Uzair)	Quick Win Measures (QWMs) Conclusion on Day's Activities	
2	Wednesday 13 December 2023	Module 02 Data Analysis mWater	• Recap of Previous Day Activities	Creation & Custor Crown Failure Da Form in mWater (Mr. Uzair)	ata Collection	Tea Break	• Analysis of Crown Failure Data on mWater Portal • Analysis of Data in QGIS (Mr. Uzair)	Lunch & Prayer Break	Guest Lecturer (Mr. Nadeem - WASA Multan) • Share the Experience of Crown Failu • Identification of Root Causes Based mWater Data • Remedial Measures & Future Planni	on Historical	
3	Thursday 14 December 2023	Module 03	 Recap of Previous Day Activities 	FIELD WORI • Use of Metal Local Premises) Mr. Irfan / Mr. Faha	tor (Academy		Guest Lecturer (Mr. Mehdi - WASA Lahore) • Sludge Estimation of Drain Calculation using mWater (Current Practice in WASA Lahore)		• Post Evaluation • Reflections • Group Picture • Certificates		

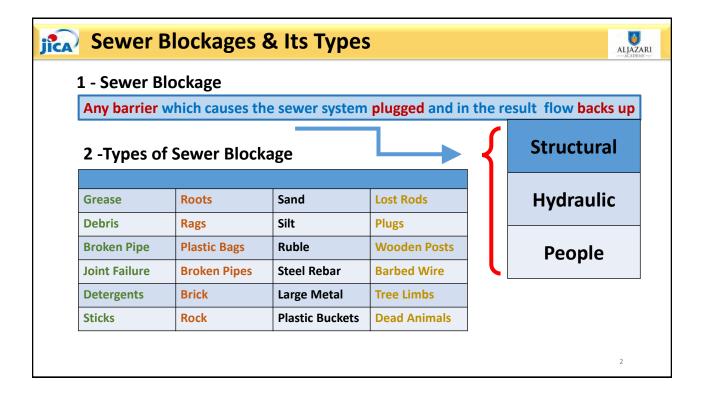

JICA Experts : Dr. Noboyuki Sato, Mr. Tomidokoro Course Team: Engr. Syed Fahad Hussain, Engr. Muhammad Irfan, Engr. Uzair Safdar

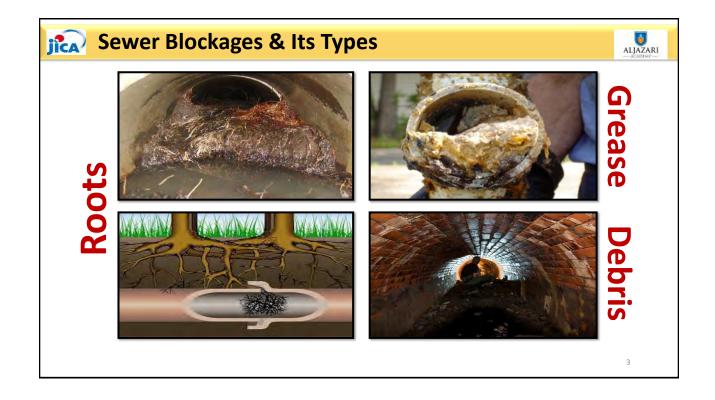
Annex 5.1.46 Training Material for "O&M of Sewerage and Drainage" in Summer 2022

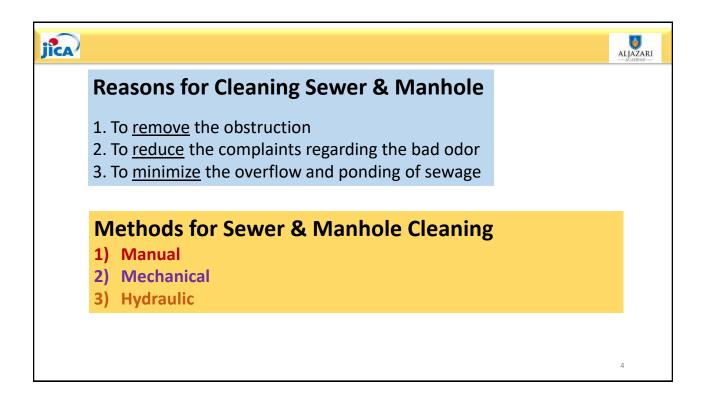
Candy Color Ideas

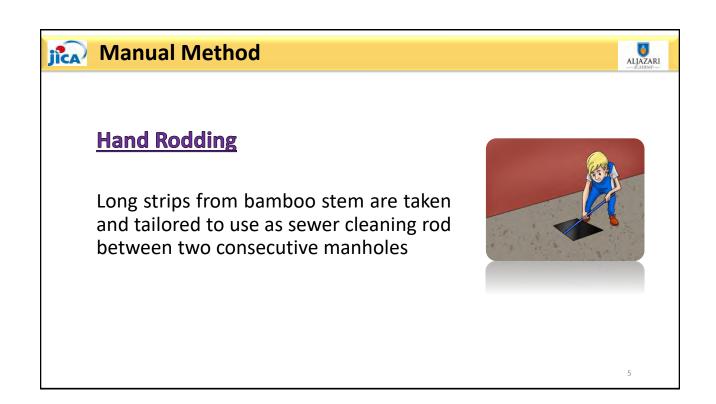
Blue : A boss you respected and why?

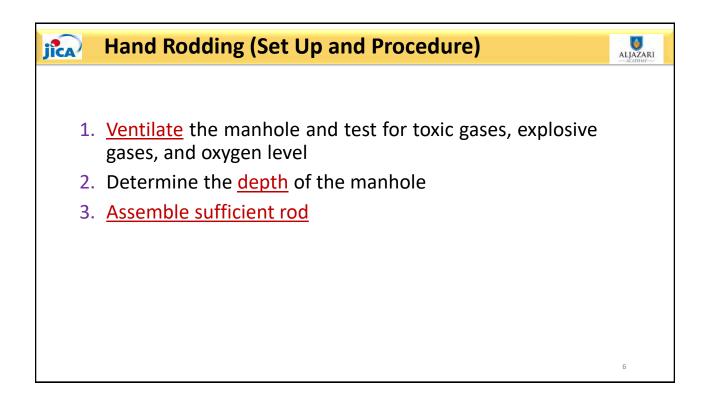

Green: A reason why you are proud to belong to your organization.?

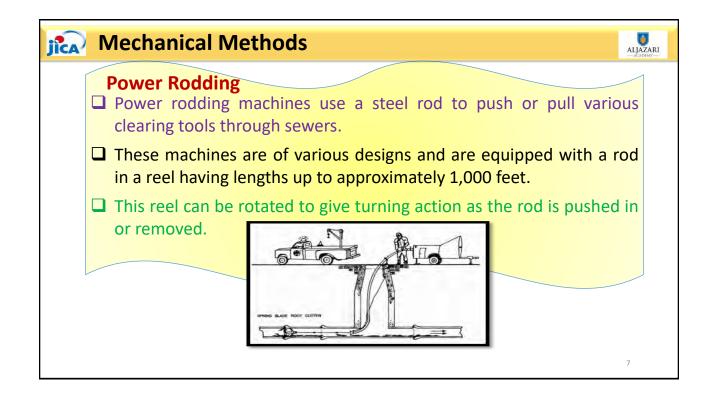

Orange: An embarrassing moment at work.

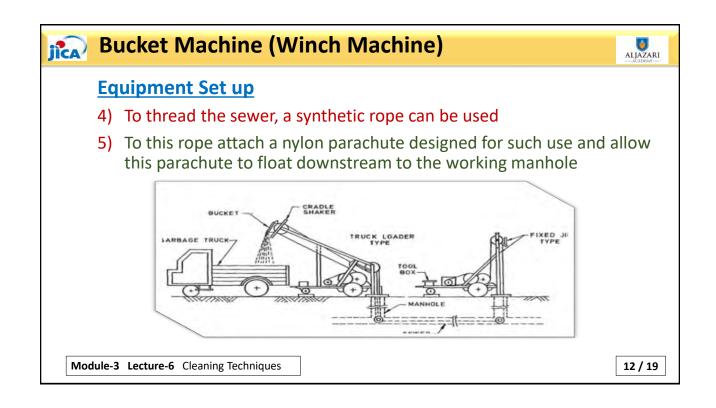

Red: Your biggest working success.

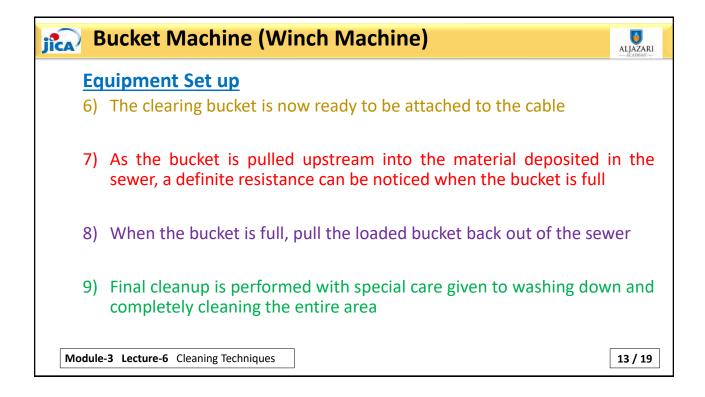

Yellow: The funniest moment at work.

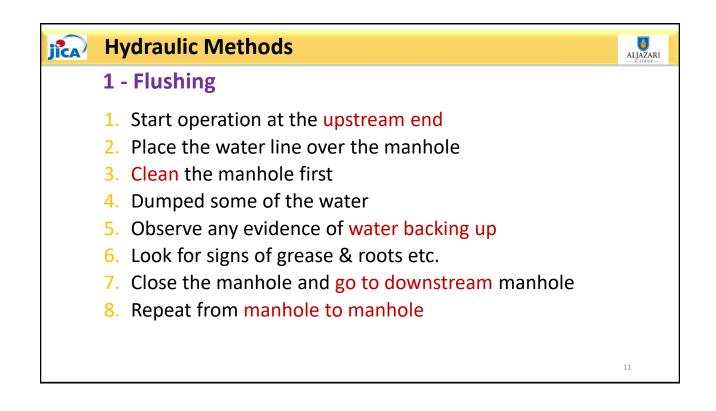

Purple: A time at organization where you have failed and, what you learnt from it.

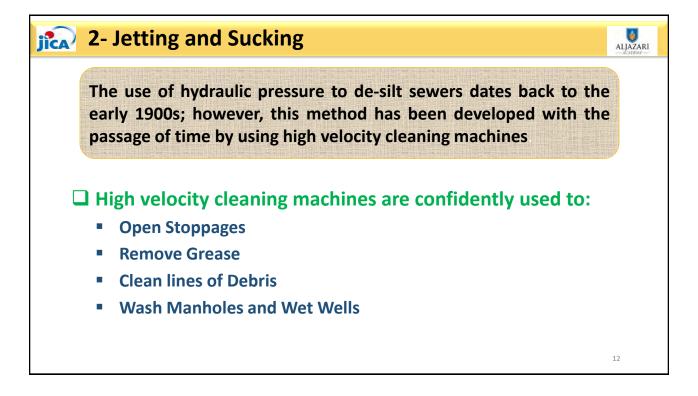




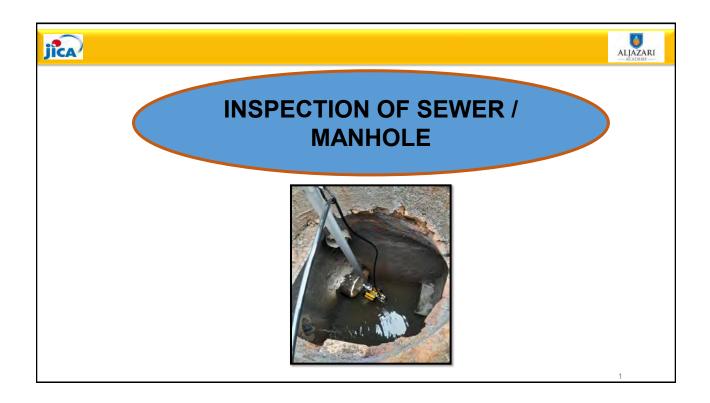


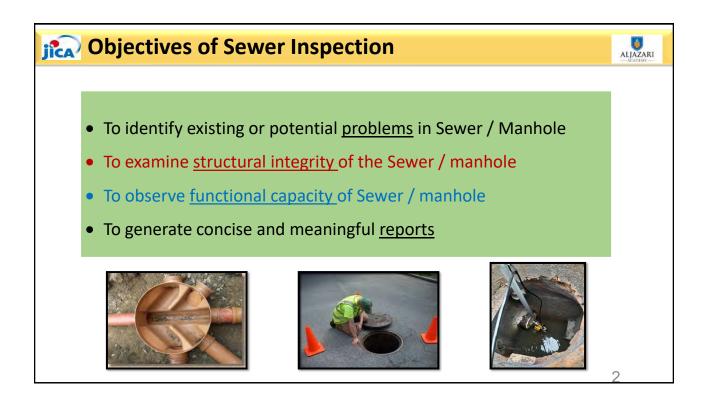



Equipment Set up


- 1) Position the <u>two machines</u> over the respective manholes
- 2) Place the pads under the stabilizer feet of the machine and jack them down. The lower manhole roller is lowered into the manhole.

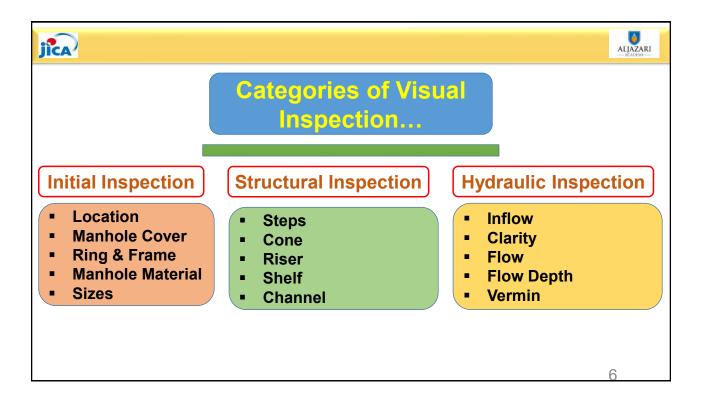
ALIAZARI

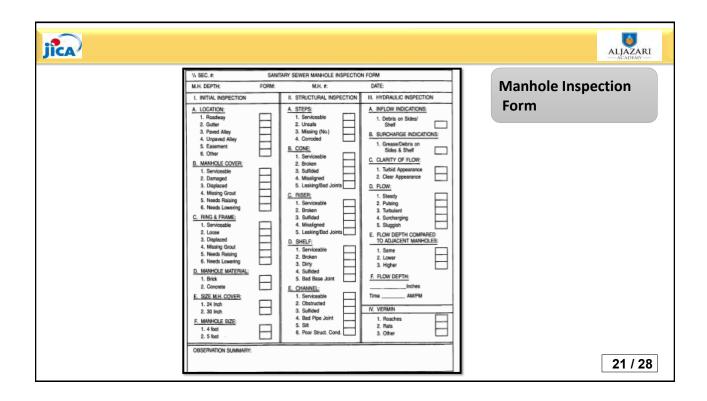


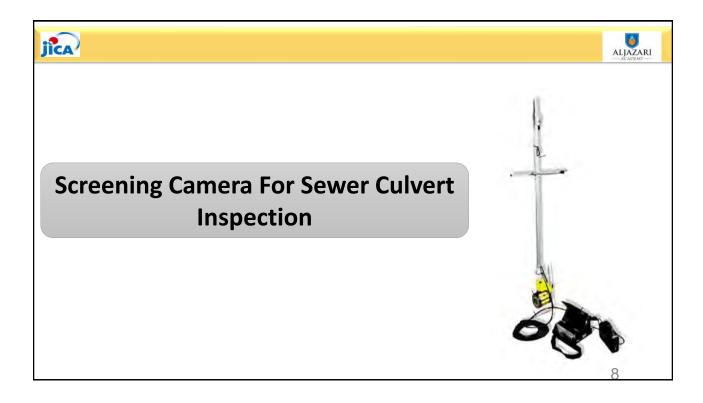


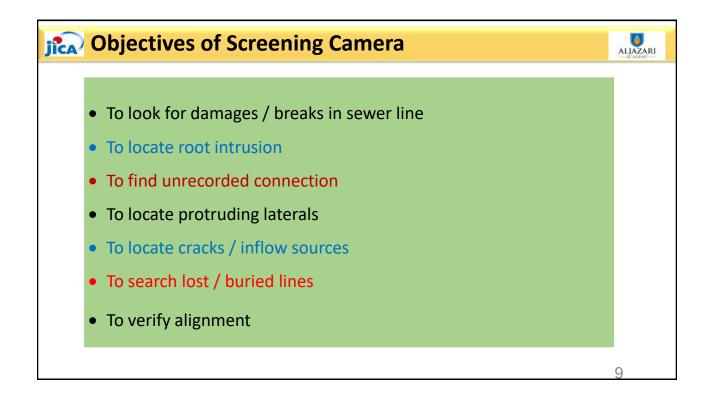
jîca E	quipment Set up and Operation
Sr. No.	Set up and working
1	Fill the water tank from a fire hydrant close to the area where you will do the cleaning
2	Start at the top or highest point in the collection system
3	Select the appropriate nozzle for the size of pipe to be cleaned
4	Install the proper size sand or debris trap in the downstream manhole
5	Turn the reel directional control to "Out" and lower the hose and cleaning nozzle into the manhole
6	Turn the water valve on and start the high pressure pump
	13

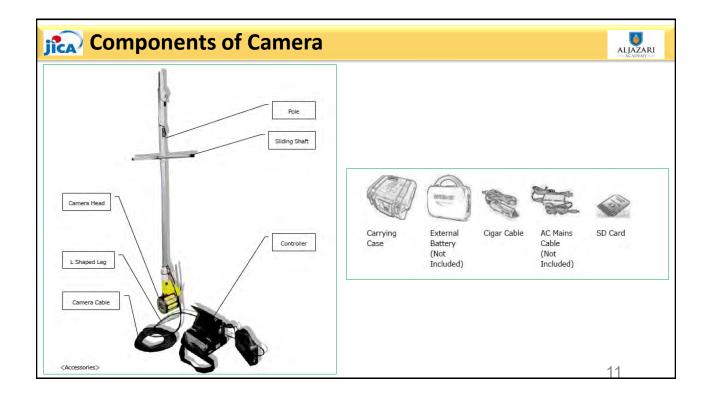
ica e	quipment Set up and Operation
Sr. No.	Set up and working
7	First try 50 feet to check the situation in the sewer
8	By increasing pressure you may be able to go farther
9	Retest the manhole atmosphere for sewer gases to be sure the ventilation procedures are effective
10	Allow an operator properly equipped with a safety harness to enter the manhole and shovel the debris into a bucket which in turn is pulled to the surface with a hand line
11	During all this jetting operation sucking machine will suck all the dislodged silt and debris from the same manhole by a 4 inch hose
12	Sucker will be emptied at drain or some other purpose built area
	14

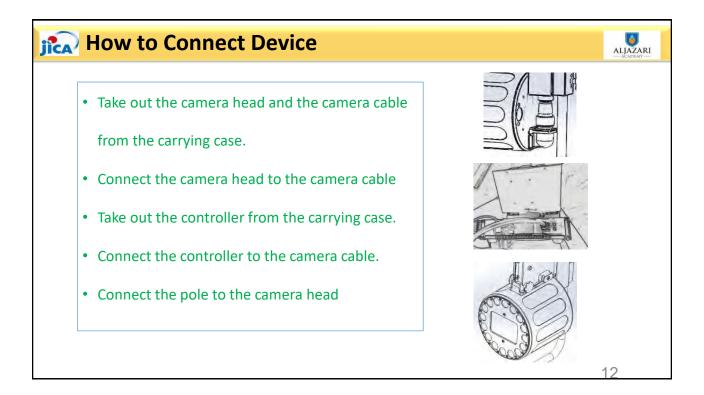


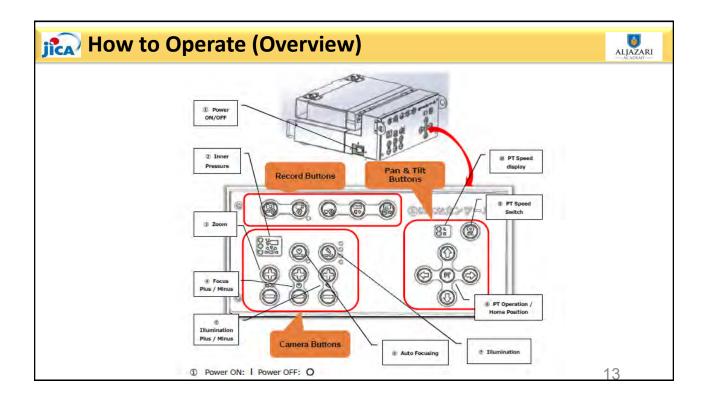



jîca		
	INSPECTION	METHODS
	Visual	Camera
		3

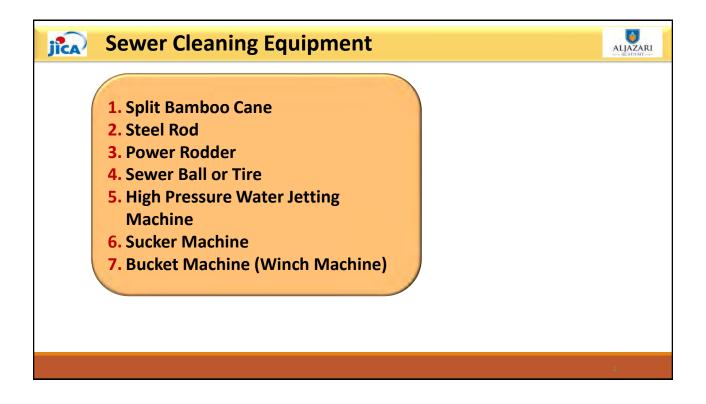

jîca	Visual Inspection		
	Arrangements before In	spection:	
•	Map of the Collection System Metal Detector	 Scrapers and Wire Brushes for Cleaning the Manhole Ring Powerful Flashlight 	
•	Warning Devices, Safety Cones and Traffic Safety Devices	Gas Detection Devices	JJ 🛜
•	Manhole Lid Removal Device	Blower and Hose for Ventilating Manhole	
•	Leather Gloves		



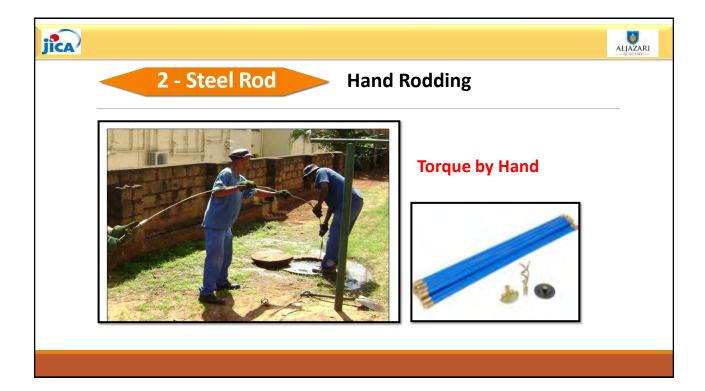


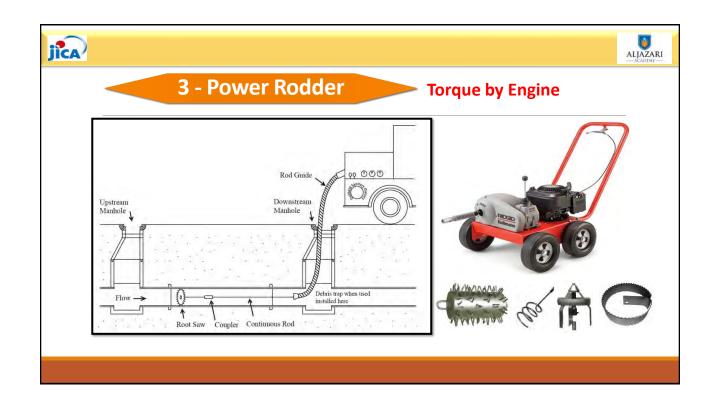


jîca	Compone	ents of	Camera			
		System	Camera Head	 1 pc		
		2)	Camera Cable (10m)	 1 pc		
		3)	Controller	 1 рс		
		4)	Pole (4.5m : 3-stage telescopic)	 1 pc		
		Accessories				
			Carrying Case			
			Cigar Cable			
			AC Mains Cable			
		5)	Instruction Manual (this document)	 1 pc		
					,	0

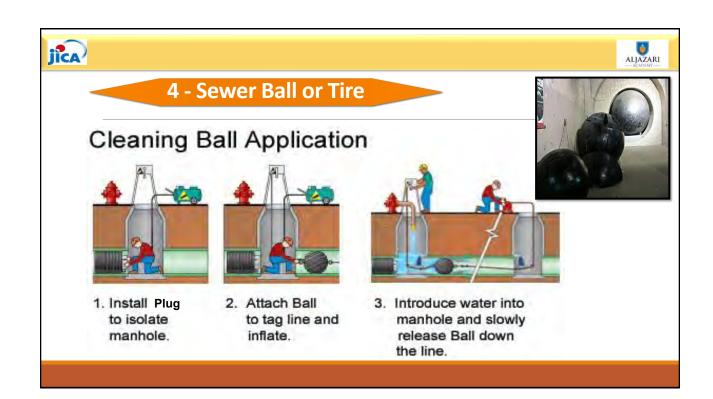


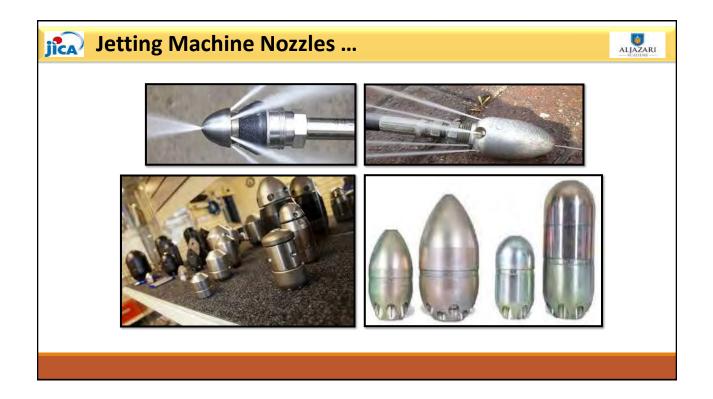
jica Contacts:

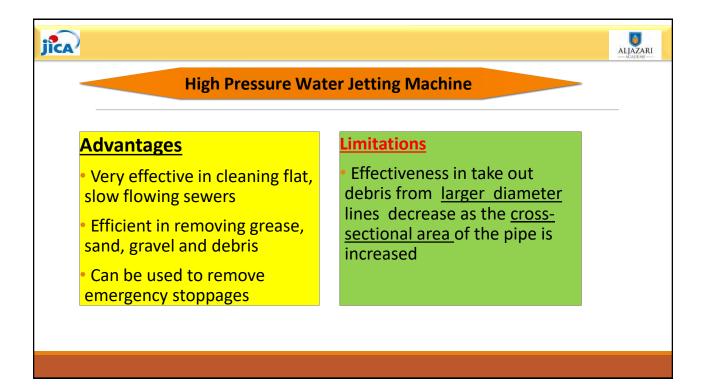

Name	Designation	Contact No.	E-Mail
Mr. Tomidokoro	JICA Expert		
Mr. Muhammad Irfan	Course Leader	+92-(0)321-4890151	cemis2010@gmail.com
Mr. Wajih	JICA Coordinator		
Mr. Syed Fahad Hussain	Project Officer	+92-(0)332-4461657	fahadshah407@gmail.com

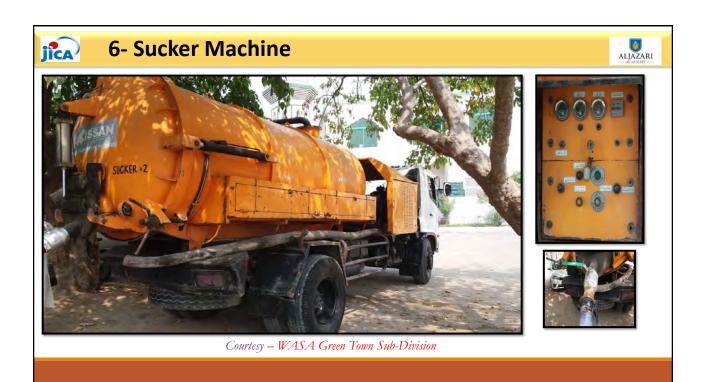

ALJAZARI —ACADEMY —

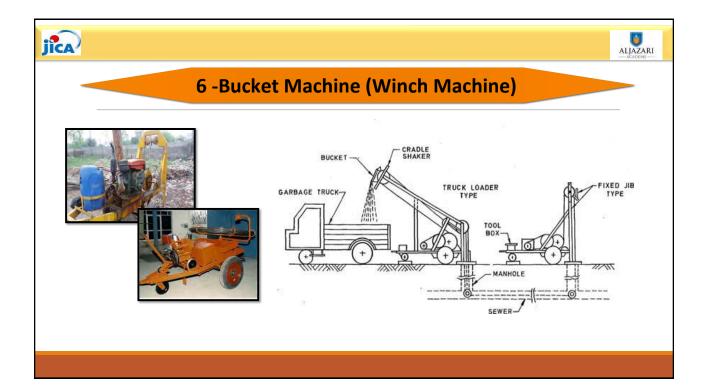


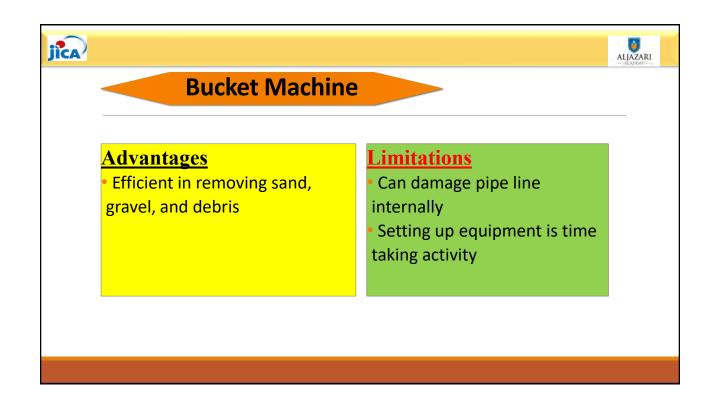


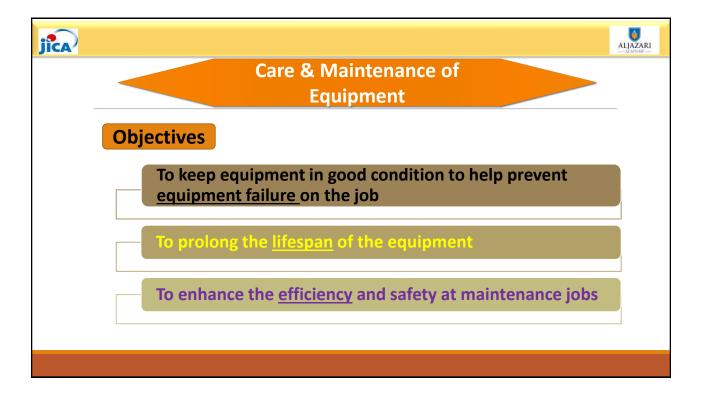


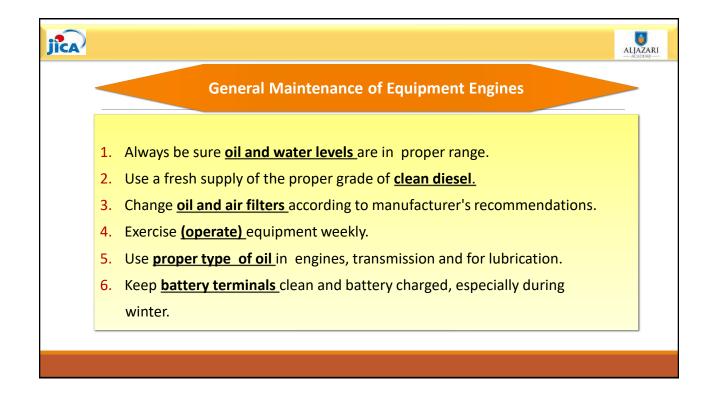


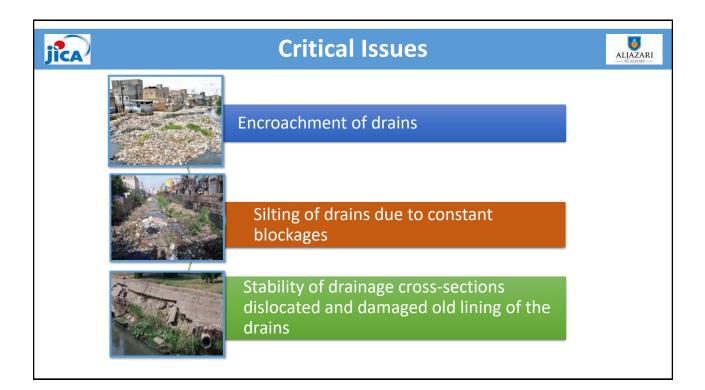


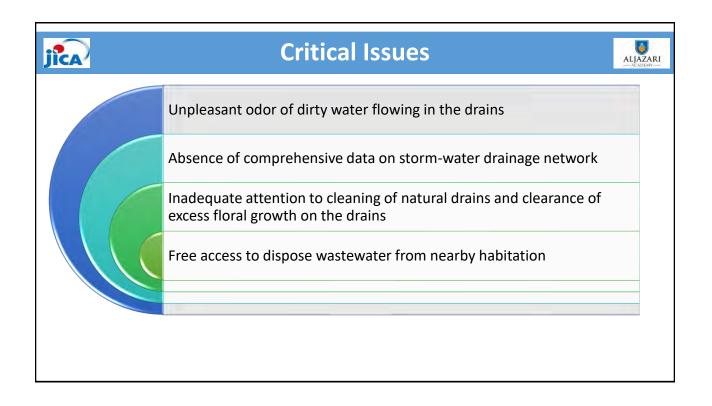


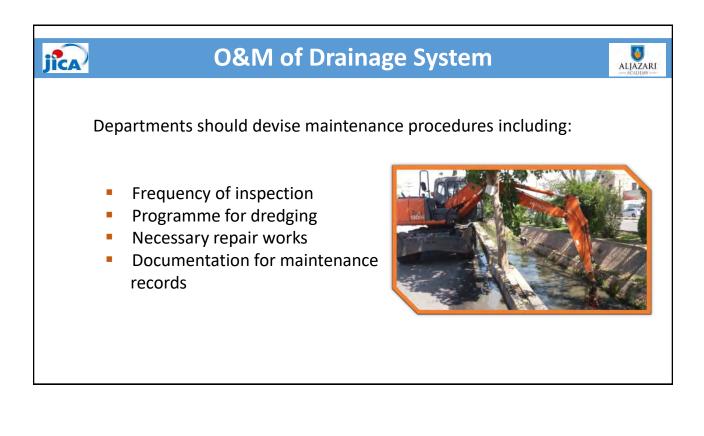


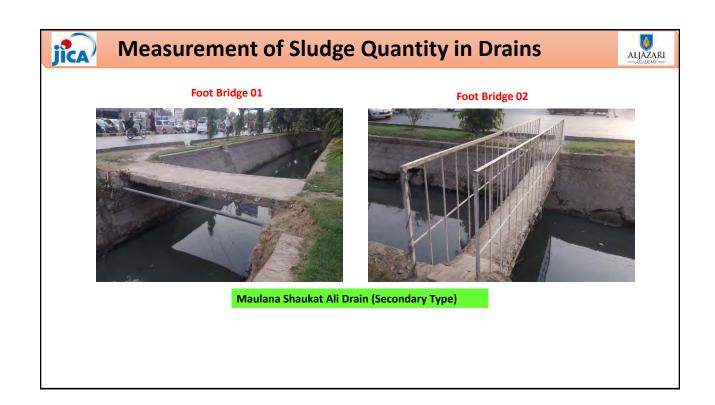


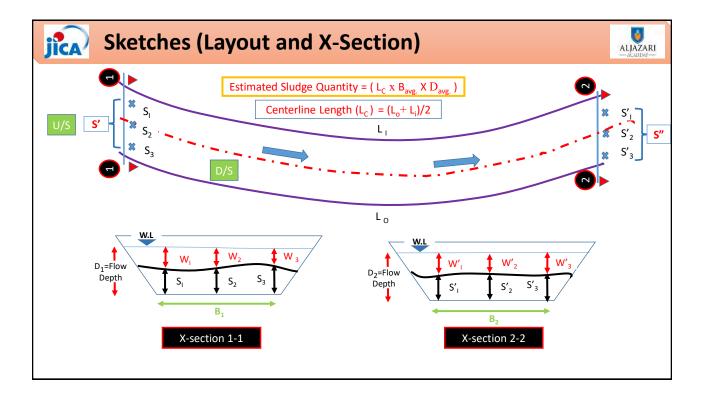


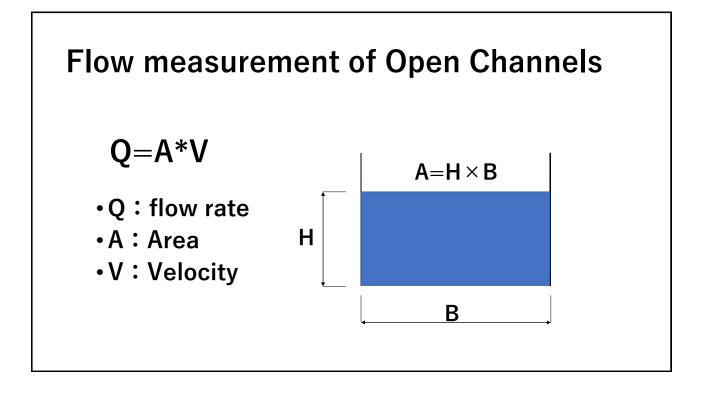


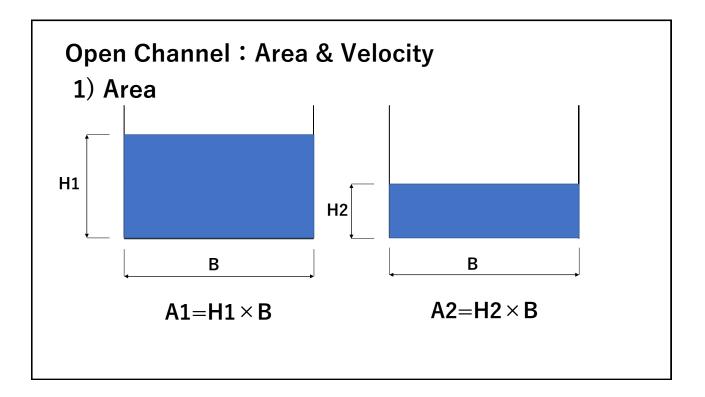


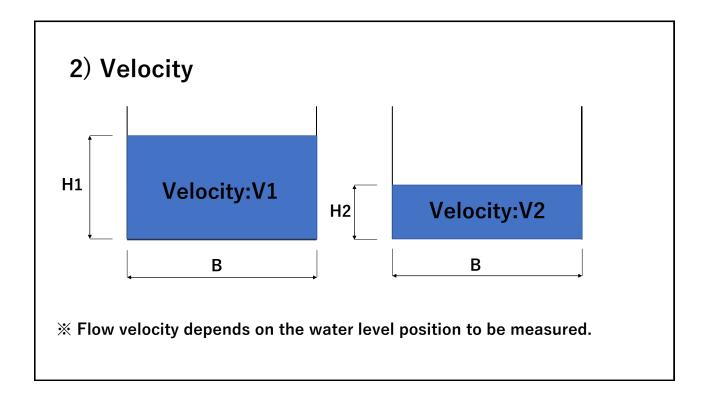


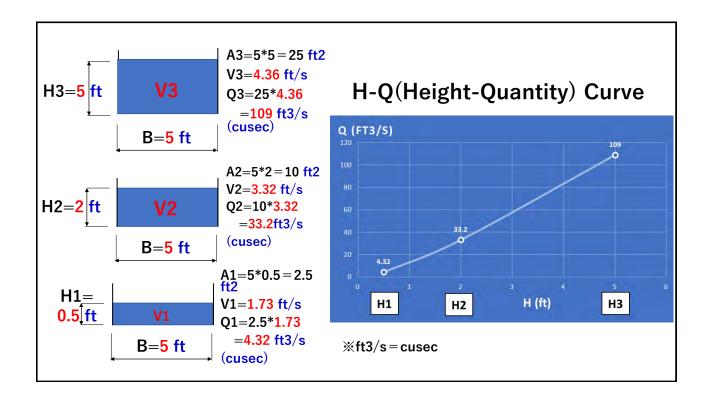




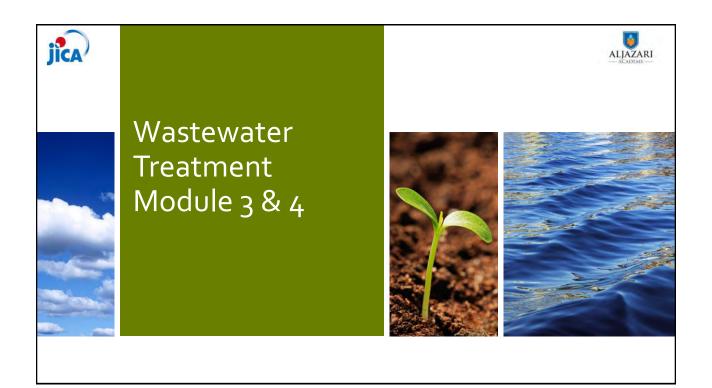


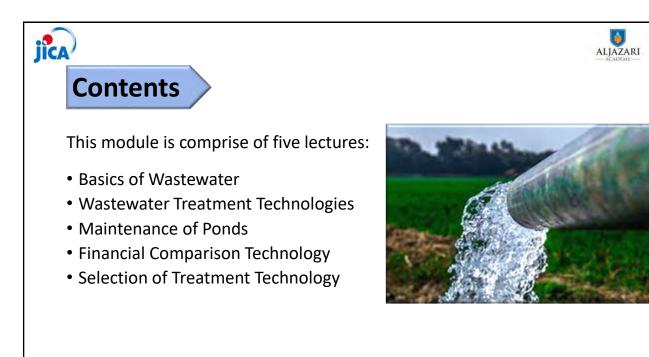




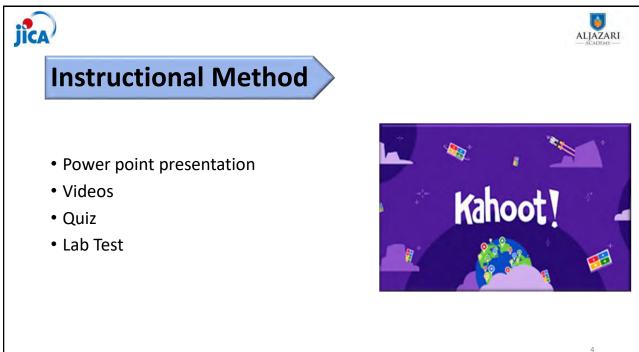

Sludge Volume Calculation

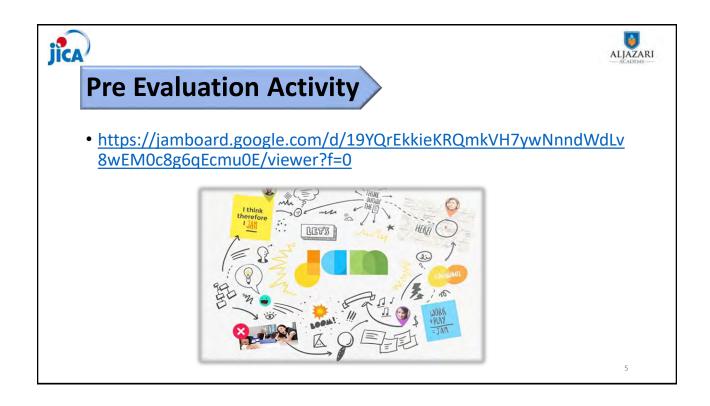
Depth at Foot 1 s _n = (D- W _n)	Avg. Depth at Foot 1 S _{avg}	Depth at Foot 2 S _n = (D- W _n)	Avg. Depth at Foot 2 S' _{avg}	Overall Avg. Depth D _{avg}	Width at Foot 1 B ₁	Width at Foot 2 B ₂	Avg. Width B _{avg}	Length Inner L _i	Length Outer L _o	L _c	Sludge Volume V	
S1 Image: S2 Image: S3 Image: S3 <th image<="" th=""><th></th><th>S'₁ S'₂ S'₃</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th>S'₁ S'₂ S'₃</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		S' ₁ S' ₂ S' ₃									
D ₁ = D ₂ =		= (L _C X	dge Quantii B _{avg.} X D _{avg.}	S' = (S'' = ($(L_0 + L_1)$ $S_1 + S_2 + S_2$ $S'_1 + S'_2 + S_2$ $S' + S'' + S_2'$	₃ +) / 1 S′ ₃ +) ,	n / n	tch is cu	rved)			
	Estim		dge Quanti XX)	ty (Vol)		$B_1 + B_2 + I$						

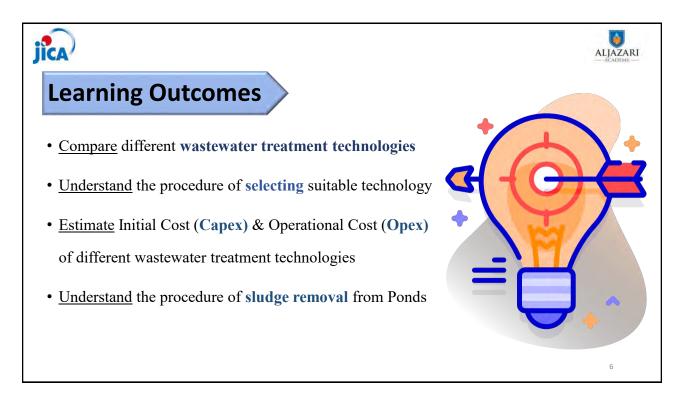




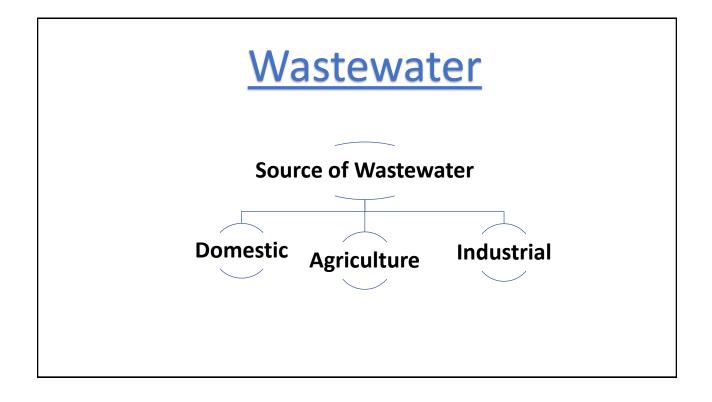
	Measurement of Discharge in Channel / Drain									
JICA	Left	cm/s	Center	cm/s	Right	cm/s	Marks	25	ALJAZARI	
	V1		V4		V7			m	ft	
	V2		V5		V8		Width			
	V3		V6		V9		Depth			
	Avg.		Avg.		Avg.					
Avg of 9 Points (cm/s)										
Avg of 9 Points (m/s)										
Avg of 9 Points (ft/s)										
						Name				
Q = A X V						Designation				
						Organization				
						Obtained Marks				

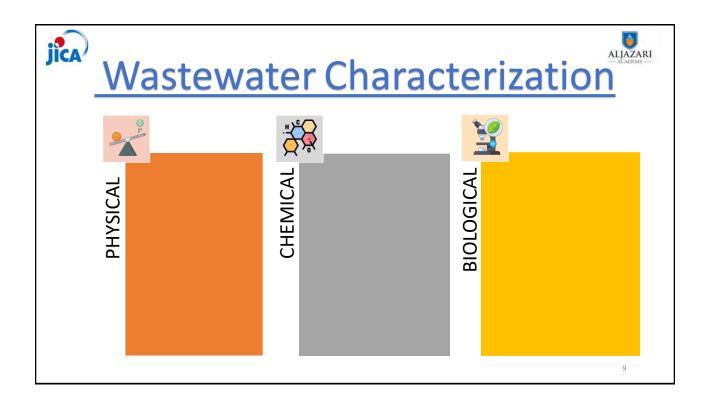

3

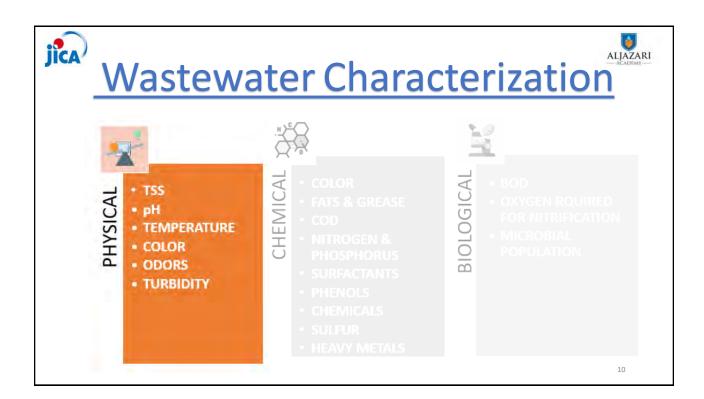

Instructional goals

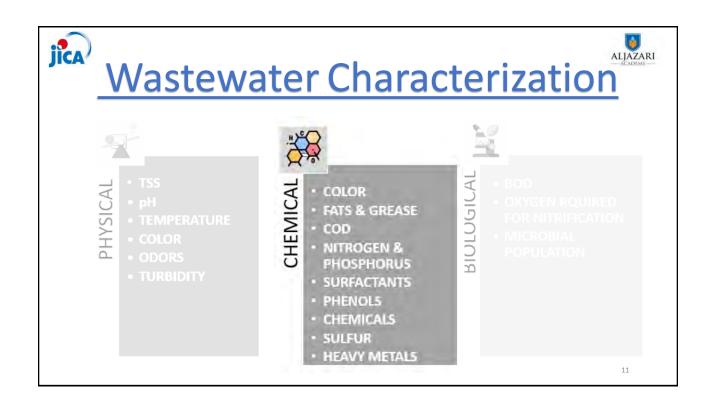

jica

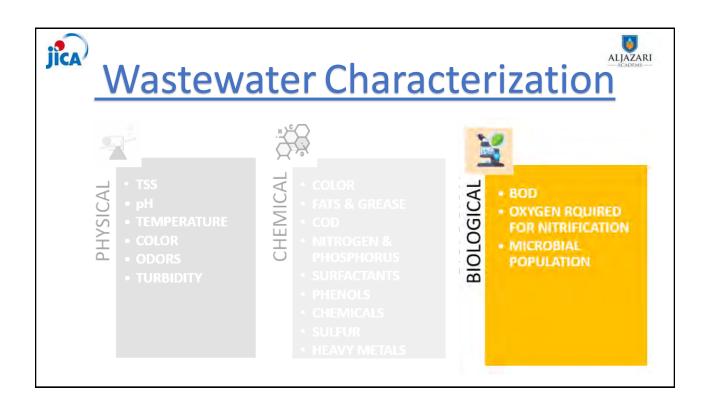
- Basics characteristics of wastewater
- Compare different wastewater treatment technologies
- Choose correct treatment Technologies
- How to remove sludge from ponds?

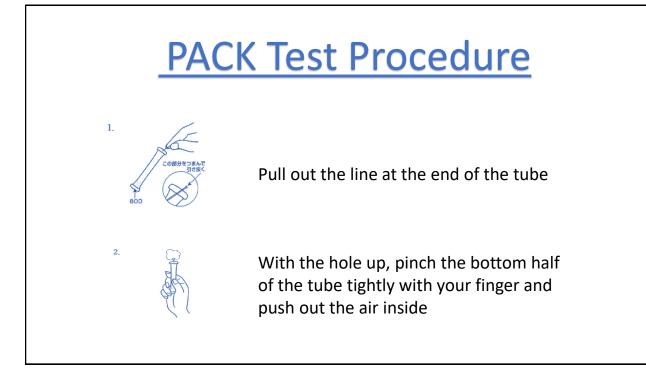




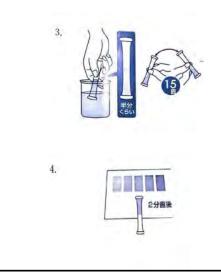








Biochemical Oxygen Demand

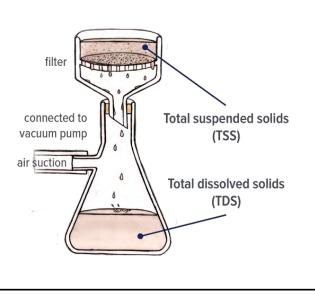

BOD represents the amount of oxygen consumed by bacteria and other microorganisms while they decompose organic matter under aerobic (oxygen is present) conditions at a specified temperature

PACK Test Procedure

Continue to place the hole in the test water, loosen the pinching fingers, and wait until half of the water is absorbed. Shake the tube gently 15 times to prevent leakage

Immediately after 2 minutes, place the tube on top of the standard color and compare the colors.

Chemical Oxygen Demand


The chemical oxygen demand is an indicative measure of the amount of oxygen that can be consumed by reactions in a measured solution.

It is commonly expressed in mass of oxygen consumed over volume of solution which in SI units is milligrams per liter.

Total Suspended Solids

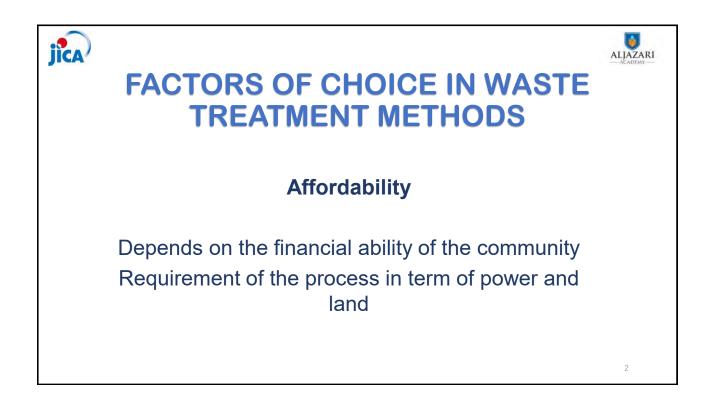
Total Suspended Solids (TSS) are **solids in water that can be trapped by a filter**. TSS can include a wide variety of material, such as silt, decaying plant and animal matter, industrial wastes, and sewage.

	<u>Wast</u>	ewa	ter l	NEQs	
S.No	Parameter	Existing Standards		ards	
0.110	Falaneter		Into Inland Water	Into Sewage Treatment⁵	Into Sea [®]
1.	Temperature or Temperature	40°C	=<3 °C	=< 3 ° C	=<3 °C
2.	pH value	6-10 pH	6 - 9	6 - 9	6 - 9
3.	5-days Biochemical Oxygen Demand (BOD ₁) at 20°C ¹	80 mg/l.	80	250	80**
4.	Chemical Oxygen Demand (COD) ¹	150 mg/l.	150	400	400
5.	Total suspended solids	150 mg/l.	200	400	200
6.	Total dissolved solids	3500 mg/l.	3500	3500	3500
7.	Grease and oil	10 mg/l.	10	10	10
8.	Phenolic compounds (as phenol)	0.1 mg/l.	0.1	0.3	0.3
9.	Chloride (as CI)	1000 mg/l.	1000	1000	SC
10.	Fluoride (as F)	20 mg/l.	10	10	10
11.	Cyanide (as CN) total	2 mg/l.	1.0	1.0	1.0
12.	An-ionic detergents ² (as MBAS)	20 mg/l.	20	20	20
13.	Sulphate (SO ₄)	600 mg/l.	600	1000	SC
14.	Sulphide (S)	1.0 mg/l.	1.0	1.0	1.0
15.	Ammonia (NH ₃)	40 mg/l.	40	40	40
16.	Pesticides, herbicides, fungicides and insecticides ³	0.15 mg/l.	0.15	0.15	0.15

THANK YOU

Case	Stu	d	
Case	Stu	u	162

Technology	Volume	Unit	Capital Cost	Unit	Land Requirement	Unit	Annual Operation & maintenance Cost (US \$/P.E)	Country
Activated Sludge Process	20,000– 400,000	(m3/d)	50.0–60.8	(US \$/m3/d)	0.73–1.01	(m2/m3/d)		India
Waste Stabilization Ponds	20,000– 400,000	(m3/d)	12.4–18.0	(US \$/m3/d)	12.5–14.0	(m2/m3/d)		India
Waste Stabilization Ponds	50,000	P.E	35.6	(US \$ /PE)	1.7	(m2/P.E)	0.53	Egypt
UASB + Trickling filters	50,000	P.E	31.5	(US \$ /PE)	0.22	(m2/P.E)	0.71	Egypt


Technology Comparison – Capex & Opex

DESCRIPTION	ASP-EA	MBR	UF	RO
рН	7.0-8.5	7.0-8.5	7.0-8.5	5.8-6.2
BOD, mg/l	<30	<5	<5	<5
COD, mg/l	<100	<15	<15	<5
TSS, mg/l	<30	BDL	BDL	BDL
Area, m ² / m ³ of Wastewater	25	13		
Civil Cost , Rs. in Million / m ³	0.8-1.0	0.4-0.5		
Equipment/ Plant Cost , Rs. in Million / m³	0.7-0.9	1.5 – 1.6	0.4 - 0.5	0.30 - 0.35
Power Cost , Rs. / m ³ @ Rs. 14.0 / kW - HR	23.2	45.2	7.7	12.97
Chemical Cost , Rs. / m³	10.8	9.1	0.6	7.6
Membrane Replacement Rs. / m ³ (Average Life 3 Years)		15.3	4.0-8.0	5.6
Membrane Replacement Rs. / m ³ (Average Life 5 Years)		9.2	2.2-4.8	3.4

Above Case Study is based on wastewater influent characteristics , pH: 8, BOD : 1400 mg/l , COD : 3500 mg/l , TSS : 700 mg/l and Flow : 50 m³/ hr.

Selection of Treatment Technology

FACTORS OF CHOICE IN WASTE TREATMENT METHODS

Acceptability

Depends upon performance of the treatment system Pollution control authority (EPAs or DAs) Riparian public

FACTORS OF CHOICE IN WASTE TREATMENT METHODS

Manageability

Refers to routine operation of the plant and its maintenance and repair Will it be possible to repair the machinery locally

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex,	Low initial cost and lower	Low initial cost and low ongoing
expensive ongoing energy &	ongoing energy & operations	energy & operations costs, but
operations costs	costs	several common problems
Shock & Peak Loads Can Upset	Easily Accepts Shock & Peak	Problems With Shock & Peak
Process	Loads	Loads
Prescreening Equipment	No Prescreening Equipment	No Prescreening Equipment
Generally Required	Required	Required
Aeration Required for Both	Aeration Required only for	No Aeration used for Oxygen
Oxygen & Mixing	Oxygen Demand	Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation	Possible Future Sludge Removal	Possible Future Sludge Removal
Required	Required	Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex,	Low initial cost and lower	Low initial cost and low ongoing
expensive ongoing energy &	ongoing energy & operations	energy & operations costs, but
operations costs	costs	several common problems
Shock & Peak Loads Can Upset	Easily Accepts Shock & Peak	Problems With Shock & Peak
Process	Loads	Loads
Prescreening Equipment	No Prescreening Equipment	No Prescreening Equipment
Generally Required	Required	Required
Aeration Required for Both	Aeration Required only for	No Aeration used for Oxygen
Oxygen & Mixing	Oxygen Demand	Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation	Possible Future Sludge Removal	Possible Future Sludge Removal
Required	Required	Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex,	Low initial cost and lower	Low initial cost and low ongoing
expensive ongoing energy &	ongoing energy & operations	energy & operations costs, but
operations costs	costs	several common problems
Shock & Peak Loads Can Upset	Easily Accepts Shock & Peak	Problems With Shock & Peak
Process	Loads	Loads
Prescreening Equipment	No Prescreening Equipment	No Prescreening Equipment
Generally Required	Required	Required
Aeration Required for Both	Aeration Required only for	No Aeration used for Oxygen
Oxygen & Mixing	Oxygen Demand	Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation	Possible Future Sludge Removal	Possible Future Sludge Removal
Required	Required	Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex,	Low initial cost and lower	Low initial cost and low ongoing
expensive ongoing energy &	ongoing energy & operations	energy & operations costs, but
operations costs	costs	several common problems
Shock & Peak Loads Can Upset	Easily Accepts Shock & Peak	Problems With Shock & Peak
Process	Loads	Loads
Prescreening Equipment	No Prescreening Equipment	No Prescreening Equipment
Generally Required	Required	Required
Aeration Required for Both	Aeration Required only for	No Aeration used for Oxygen
Oxygen & Mixing	Oxygen Demand	Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation	Possible Future Sludge Removal	Possible Future Sludge Removal
Required	Required	Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex,	Low initial cost and lower	Low initial cost and low ongoing
expensive ongoing energy &	ongoing energy & operations	energy & operations costs, but
operations costs	costs	several common problems
Shock & Peak Loads Can Upset	Easily Accepts Shock & Peak	Problems With Shock & Peak
Process	Loads	Loads
Prescreening Equipment	No Prescreening Equipment	No Prescreening Equipment
Generally Required	Required	Required
Aeration Required for Both	Aeration Required only for	No Aeration used for Oxygen
Oxygen & Mixing	Oxygen Demand	Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation	Possible Future Sludge Removal	Possible Future Sludge Removal
Required	Required	Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds			
High CAPEX	Low CAPEX	Lowest CAPEX			
High initial cost and complex, expensive ongoing energy & operations costs	Low initial cost and lower ongoing energy & operations costs Low initial cost and low on energy & operations costs, several common problems				
Shock & Peak Loads Can Upset Process	Easily Accepts Shock & Peak Loads	Problems With Shock & Peak Loads			
Prescreening Equipment Generally Required	No Prescreening Equipment Required	No Prescreening Equipment Required			
Aeration Required for Both Oxygen & Mixing	Aeration Required only for Oxygen Demand	No Aeration used for Oxygen Demand			
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems			
Sludge Handling & Regulation Required	Possible Future Sludge Removal Required	Possible Future Sludge Removal Required			
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals			
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise			

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds				
High CAPEX	Low CAPEX	Lowest CAPEX				
High initial cost and complex,	Low initial cost and lower					
expensive ongoing energy &	ongoing energy & operations					
operations costs	costs Everal common problems					
Shock & Peak Loads Can Upset	Easily Accepts Shock & Peak	Problems With Shock & Peak				
Process	Loads	Loads				
Prescreening Equipment	No Prescreening Equipment	No Prescreening Equipment				
Generally Required	Required	Required				
Aeration Required for Both	Aeration Required only for	No Aeration used for Oxygen				
Oxygen & Mixing	Oxygen Demand	Demand				
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems				
Sludge Handling & Regulation	Possible Future Sludge Removal	Possible Future Sludge Removal				
Required	Required	Required				
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals				
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise				

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex,	Low initial cost and lower	Low initial cost and low ongoing
expensive ongoing energy &	ongoing energy & operations	energy & operations costs, but
operations costs	costs	several common problems
Shock & Peak Loads Can Upset	Easily Accepts Shock & Peak	Problems With Shock & Peak
Process	Loads	Loads
Prescreening Equipment	No Prescreening Equipment	No Prescreening Equipment
Generally Required	Required	Required
Aeration Required for Both	Aeration Required only for	No Aeration used for Oxygen
Oxygen & Mixing	Oxygen Demand	Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation	Possible Future Sludge Removal	Possible Future Sludge Removal
Required	Required	Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds				
High CAPEX	Low CAPEX	Lowest CAPEX				
High initial cost and complex,	Low initial cost and lower					
expensive ongoing energy &	ongoing energy & operations					
operations costs	costs					
Shock & Peak Loads Can Upset	Easily Accepts Shock & Peak	Problems With Shock & Peak				
Process	Loads	Loads				
Prescreening Equipment	No Prescreening Equipment	No Prescreening Equipment				
Generally Required	Required	Required				
Aeration Required for Both	Aeration Required only for	No Aeration used for Oxygen				
Oxygen & Mixing	Oxygen Demand	Demand				
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems				
Sludge Handling & Regulation	Possible Future Sludge Removal	Possible Future Sludge Removal				
Required	Required	Required				
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals				
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise				

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex,	Low initial cost and lower	Low initial cost and low ongoing
expensive ongoing energy &	ongoing energy & operations	energy & operations costs, but
operations costs	costs	several common problems
Shock & Peak Loads Can Upset	Easily Accepts Shock & Peak	Problems With Shock & Peak
Process	Loads	Loads
Prescreening Equipment	No Prescreening Equipment	No Prescreening Equipment
Generally Required	Required	Required
Aeration Required for Both	Aeration Required only for	No Aeration used for Oxygen
Oxygen & Mixing	Oxygen Demand	Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation	Possible Future Sludge Removal	Possible Future Sludge Removal
Required	Required	Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

An example of comparison:						
Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge			BOD <20	10	100	
Aerated Lagoon	100	50	BOD<50	20	50	
Stabilization Pond			50 <bod<70< td=""><td>30</td><td>30</td><td>Selected</td></bod<70<>	30	30	Selected

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 100 hectors and required effluent quality of BOD should be less than 80mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge			BOD <40	20	100	
Aerated Lagoon	80	100	BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	27

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 50 hectors and required effluent quality of BOD should be less than 80mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge	80	50 BOD<6	BOD <20	20	100	
Aerated Lagoon			BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 20 hectors and required effluent quality of BOD should be less than 80mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge	80	20	BOD <40	20	100	
Aerated Lagoon			BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 80 hectors and required effluent quality of BOD should be less than 80mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge	80		BOD <40	20	100	
Aerated Lagoon		80	BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 80 hectors and required effluent quality of BOD should be less than 50mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge	50	80	BOD <40	20	100	
Aerated Lagoon			BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

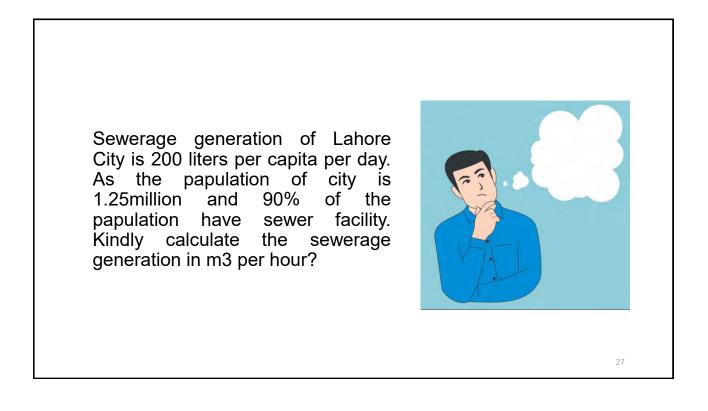
Kindly choose the most suitable method for treatment of wastewater. As the total area available is 80 hectors and required effluent quality of BOD should be less than 25mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge	25	80	BOD <40	20	100	
Aerated Lagoon			BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 100 hectors and required effluent quality of BOD should be less than 70mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge	70	100	BOD <40	20	100	
Aerated Lagoon			BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. BOD of influent is 250mg/l. As the total area available is 80 hectors and required effluent quality of BOD should be less than 70mg/l?

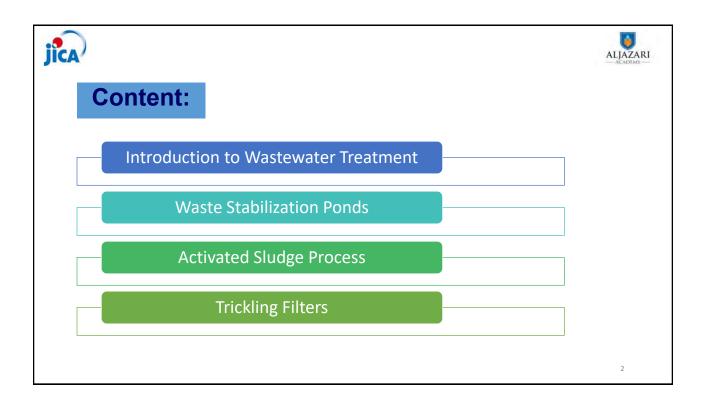

Treatment Technologies	Required BOD	Available Area	Removal rate of BOD	Area	Cost	Evaluation
Conventional Activated Sludge	70	80	<90%	20	100	
Aerated Lagoon			<60%	75	50	
Stabilization Pond			<40%	95	45	

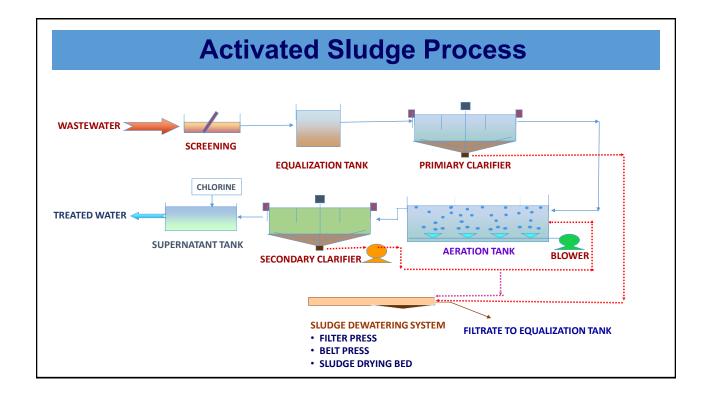
Kindly choose the most suitable method for treatment of wastewater. BOD of influent is 200mg/l. As the total area available is 80 hectors and required effluent quality of BOD should be less than 100mg/l?

Treatment Technologies	Required BOD	Available Area	Removal rate of BOD	Area	Cost	Evaluation
Conventional Activated Sludge	100	80	80%	20	100	
Aerated Lagoon			60%	60	50	
Stabilization Pond			50%	75	45	

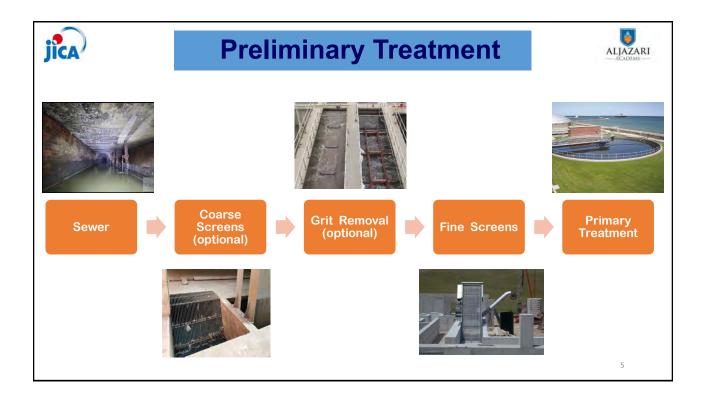
Kindly choose the most suitable method for treatment of wastewater. BOD of influent is 240mg/l. As the total area available is 80 hectors and required effluent quality of BOD should be less than 100mg/l?

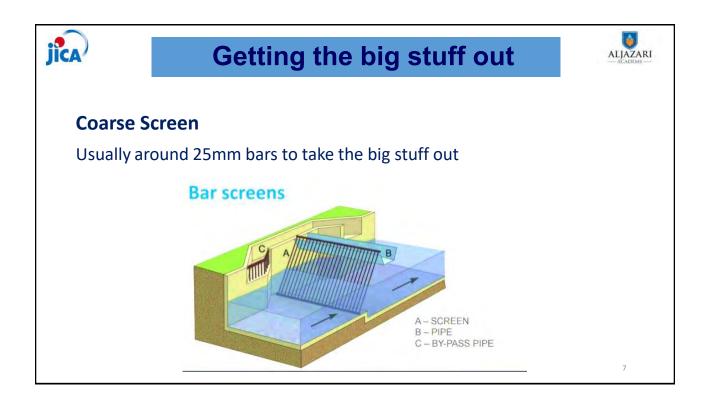
Treatment Technologies	Required BOD	Available Area	Removal rate of BOD	Area	Cost	Evaluation
Conventional Activated Sludge	100	80% 80 50%	80%	20	100	
Aerated Lagoon			50	50		
Stabilization Pond			50%	75	45	

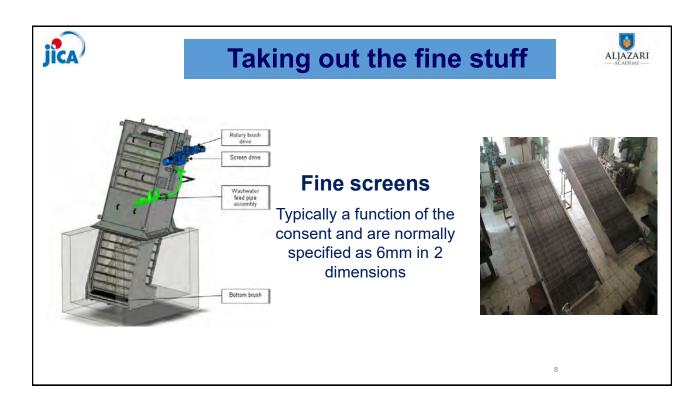


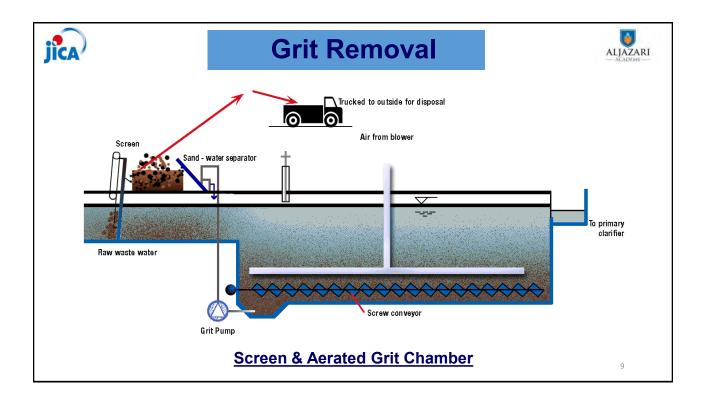

Wastewater Treatment Technologies

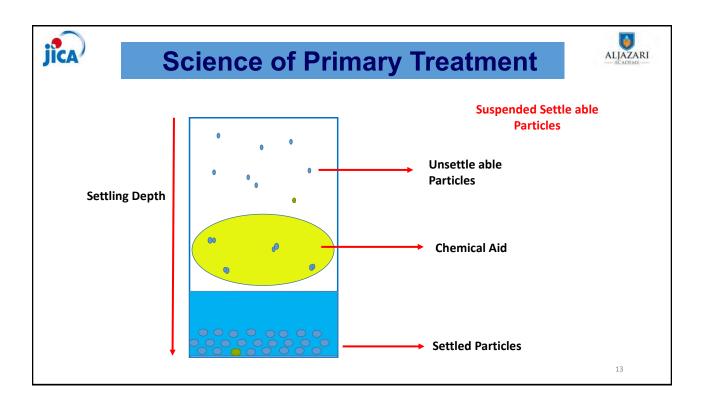
jica

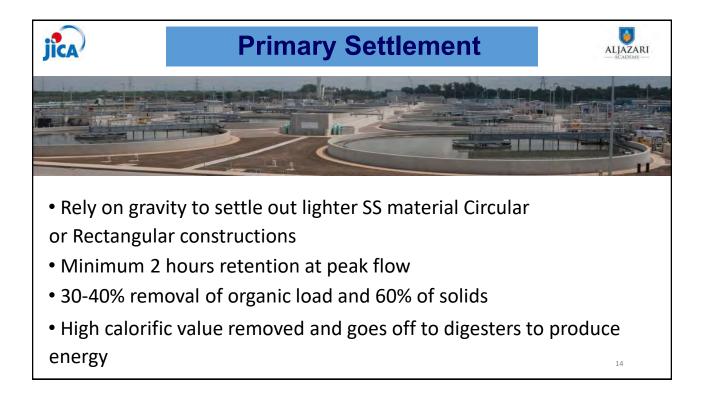


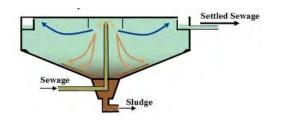




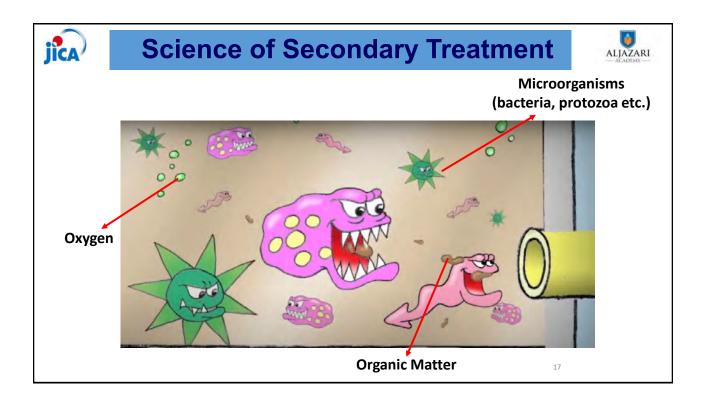


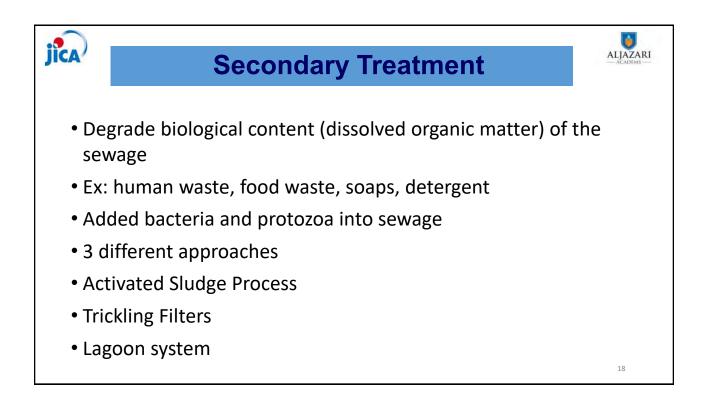


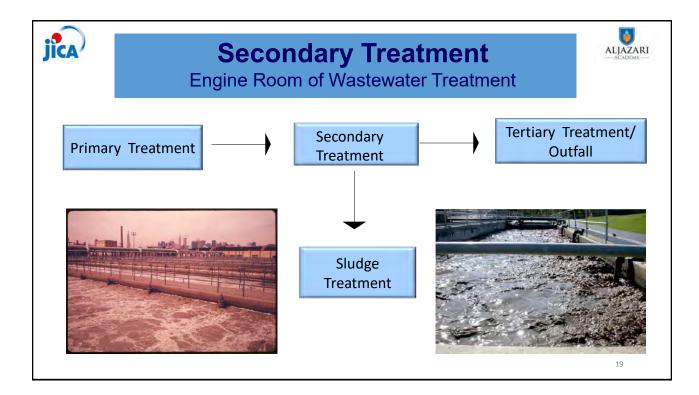


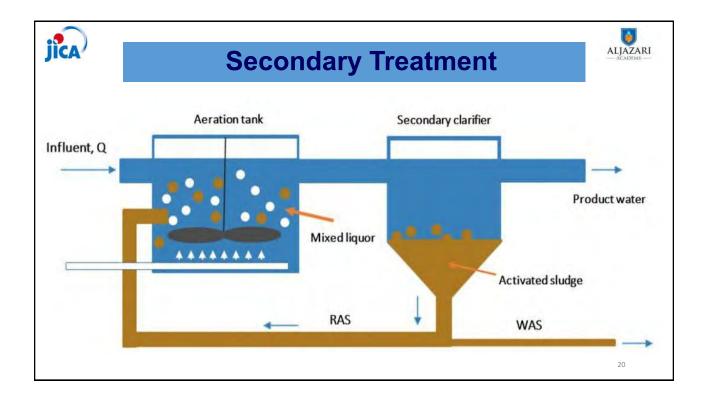

Primary Settlement

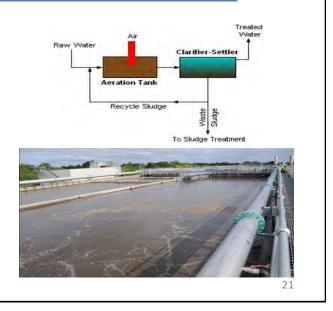
ŵ

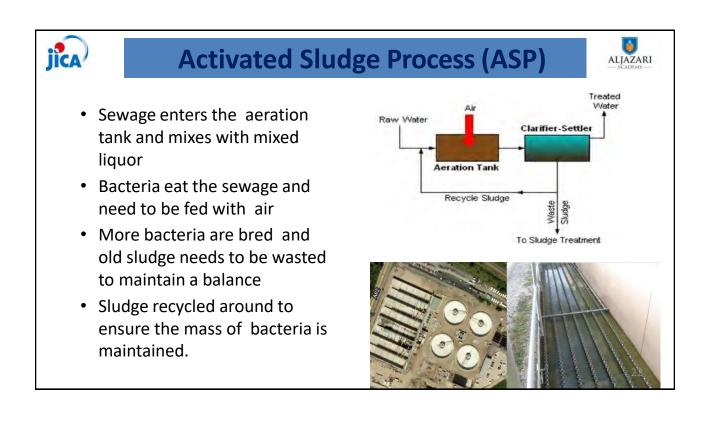

ALJAZARI

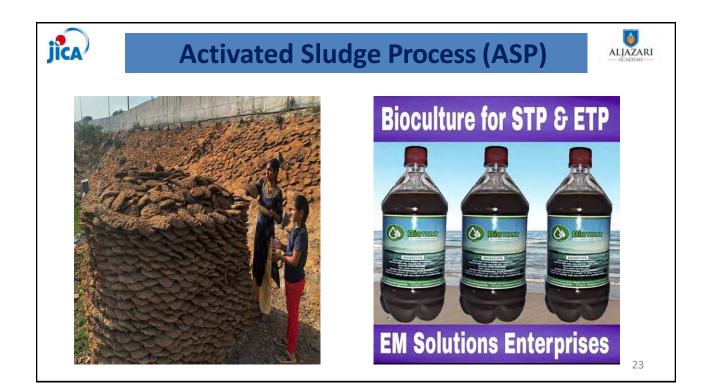

15

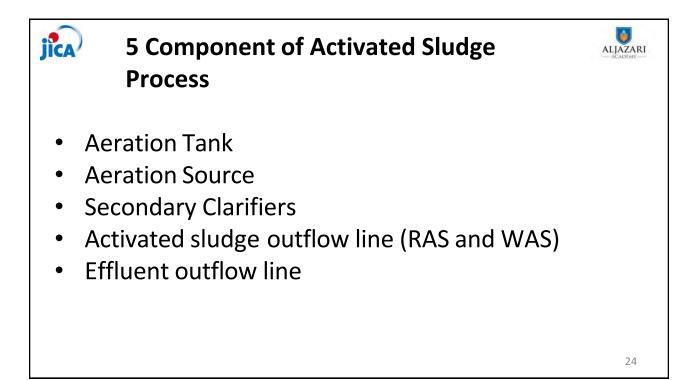

- Fluid retention time of at least 2 hours
- Scraper bridge scrapes it into the Hopper
- Sludge collects in the bottom
- Sludge removed by pump periodically either manually, by timer, solids mode or level control








Activated Sludge Process (ASP)


Activated sludge consists of a mass of micro-organisms which feed on pollutants in the sewage. The bacteria is suspended in liquid and is called "mixed liquor", it is mixed with sewage and aerated in aeration basins before passing to final settlement tanks where it is settled and the sludge returned. The effluent produced is of a high quality.

ŵ.

Aeration Source

jica

Ensure that adequate oxygen is fed into the tank provided pure oxygen or compressed air

Activated Sludge Process

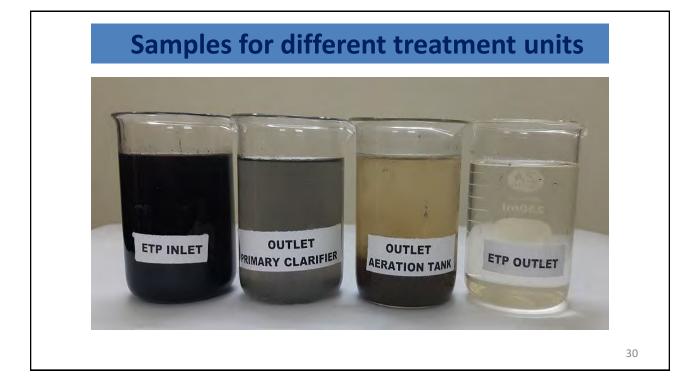
Secondary Clarifiers

Activated-sludge solids separate from the surrounding wastewater

Activated Sludge Process

Pump activated sludge back to the aeration tank **Effluent outflow line** discharged effluent into bay or tertiary treatment plant

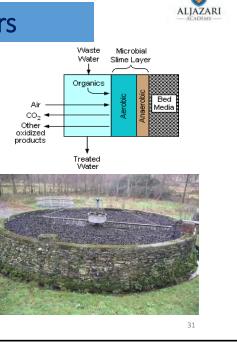
Activated Sludge Process (ASP)


Advantages

- Very efficient producing a high quality effluent
- Common technique with a lot of industry knowledge
- Very adaptable to increasing loads
- Can be adapted for Nutrient Removal

Disadvantages

- Energy intensive
- More complicated to operate than fixed film processes
- Produces more sludge than fixed film



Trickling Filters

- Fixed film process meaning the bacteria grows on the rocks and settled sewage is applied to it
- Settled sewage is dosed onto the filters using mechanical distributors.
- Parts of the slime regularly break away from the media surface and final settlement in humus tanks is required to produce a high quality final effluent.

Trickling Filters

Filter Media

- The filter media provides a surface for the biomass to grow upon and is generally made of slag, stone or plastic.
- The biomass requires air to survive and this is achieved through natural ventilation within the filter. This relies on fresh air having a direct path to the base of the filter which is achieved through vent pipes, holes or open center wells. It is important that these are kept clear.

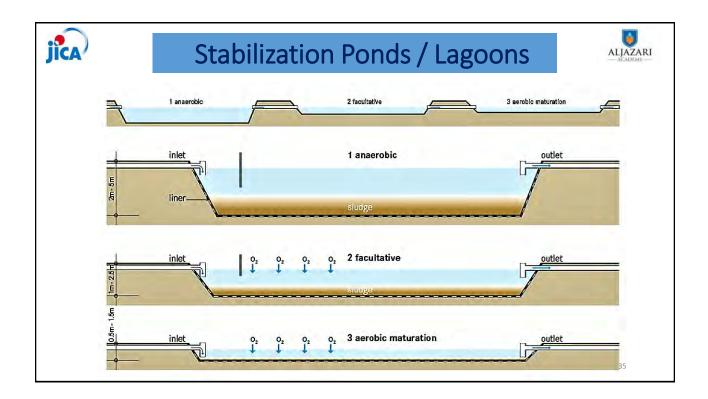
Recirculation

 To maintain good wetting of filters most sites recirculate a flow of final effluent. This improves performance by a mixture of dilution and better distribution of flow throughout the filter

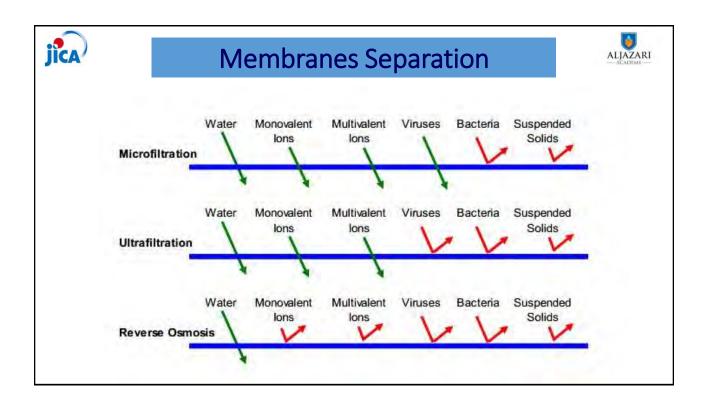
ŵ.

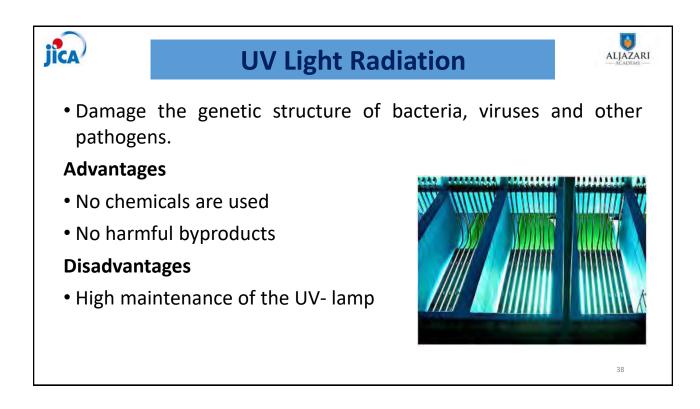
Trickling Filters

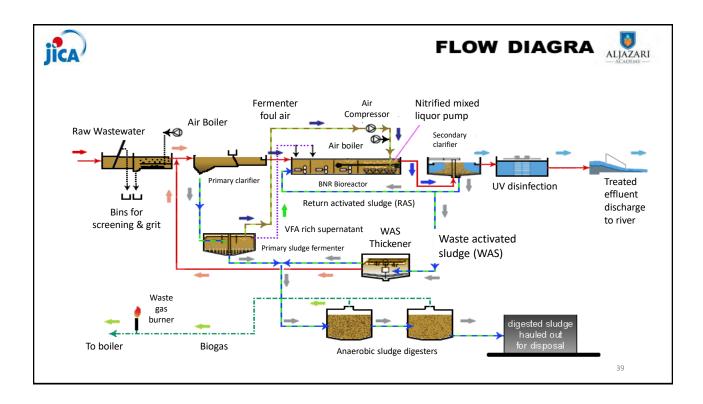
Advantages

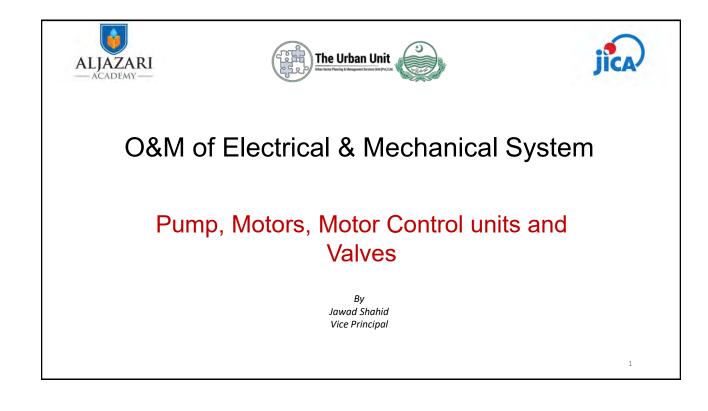

- Simple and easy to operate
- Low or no power
- Relatively cheap to build
- Resilient and robust to change and toxic shock
- Adaptable

Disadvantages


- Large land take
- Not as efficient a removal process as suspended growth
- Not resistant to the cold
- Overgrowth and clogging

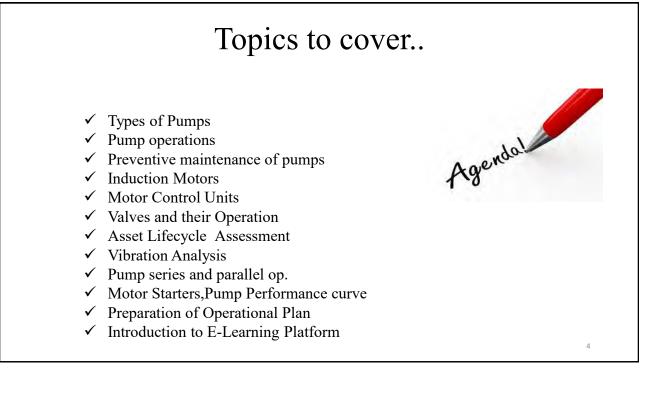






Annex 5.1.47 Training Material for "O&M of Mechanical and Electrical Equipment" in Summer 2022

Importance of Tube Well Pumps



This could be my home !

Importance of Disposal Station Pumps

This could be our children !

Icebreaker and Class Introduction

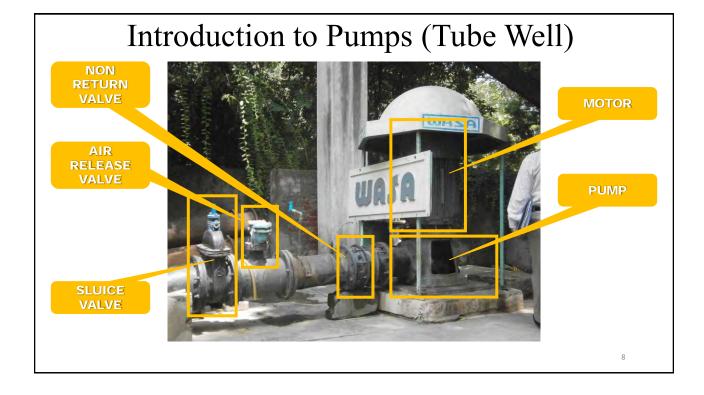
Now it is your turn...

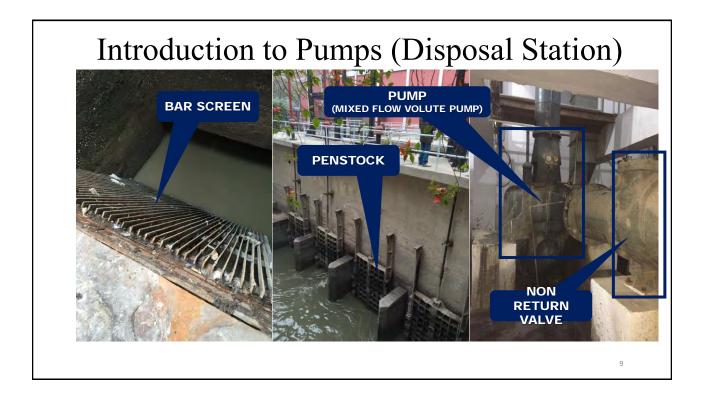
- Degree and backgrounds?
- Share your work experience relative to

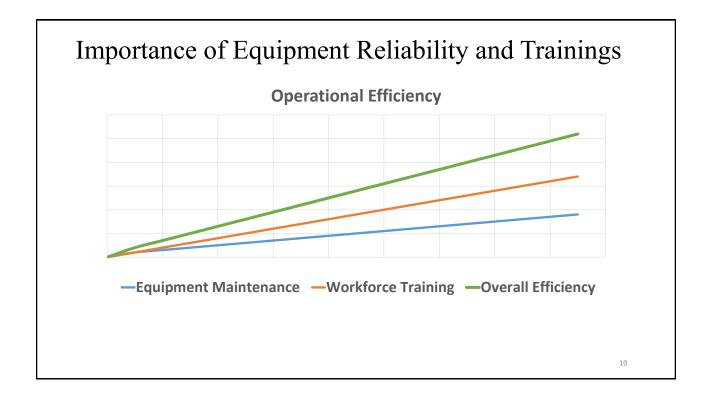
WASA equipment?

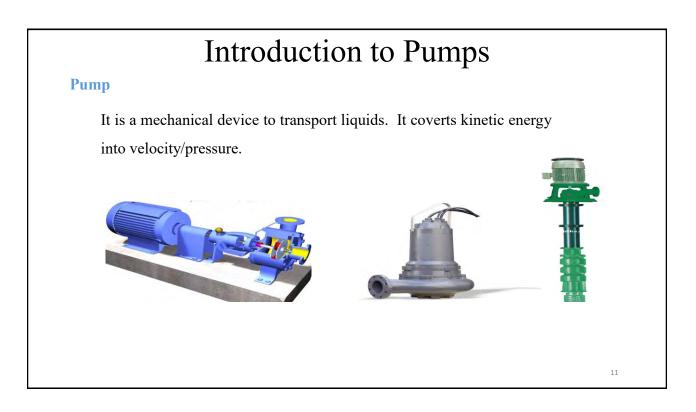
Brainstorming

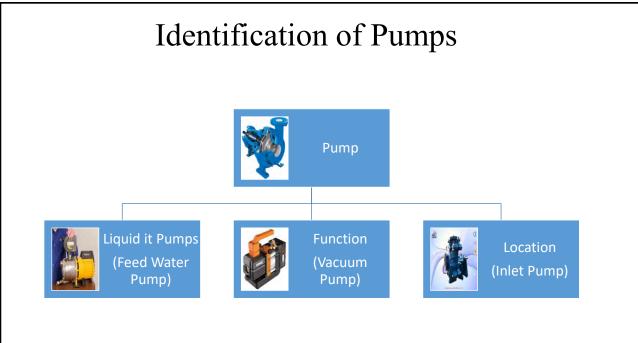
Now it is your turn...


- Any prior experience on Pumps?
- Why interested in this Module?
- What best skills do you bring to the class?

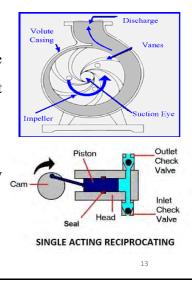



Resources and Handouts


- Owner's Manual, KSB Pumps
- Pumps and Pumping (Arasmith, S. 2006)
 ACR Publications, London
- Participant lecture notes, Module 1
- Class presentations, Module 1



Introduction to Pumps


Two major categories:

i) Centrifugal Pumps

The Pump in which energy is continuously added to increase the fluid velocities within the machine. This type is most commonly used in water and sanitation industry.

ii) Positive Displacement Pumps

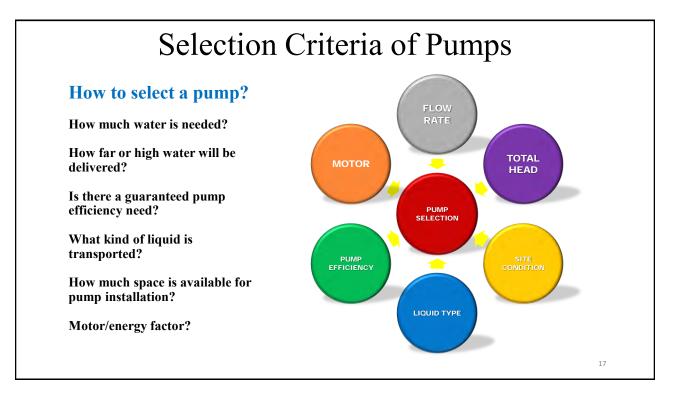
The pump in which the energy is periodically added by application of force.

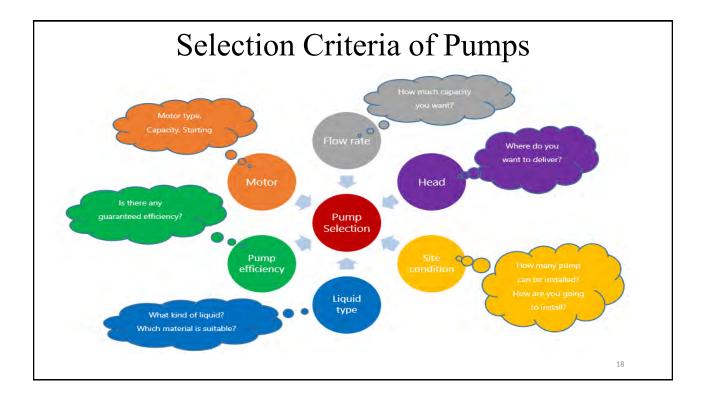
Introduction to Pumps

Centrifugal Pumps

Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid flow. The rotational energy typically comes from an engine or electric motor.

<section-header><section-header><image><image><image>


Introduction to Pumps


General Design and Parameters...

All equipment should be selected properly. Wrong selection will cause...

✓ Short lifecycle

- ✓ Operational downtime
- ✓ Energy loss
- ✓ Major capital loss

Selection Criteria of Pumps

Parameters

✓ Flow Rate [cusec, m3/h, l/s]

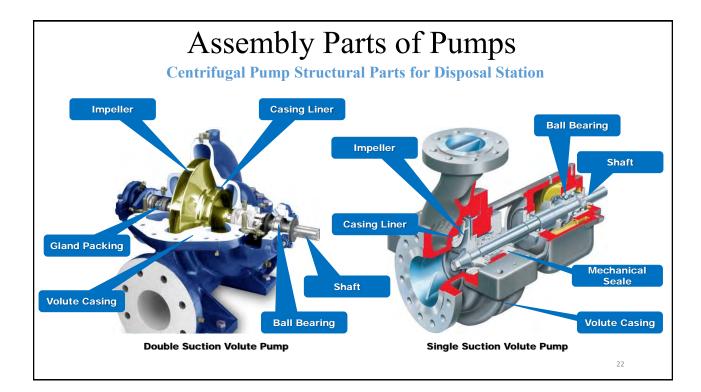
✓ Total Head [m, ft.]

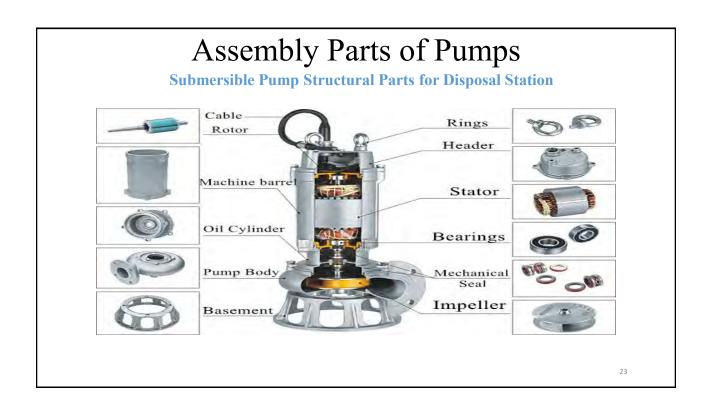
✓ Motor Output [kW, HP]

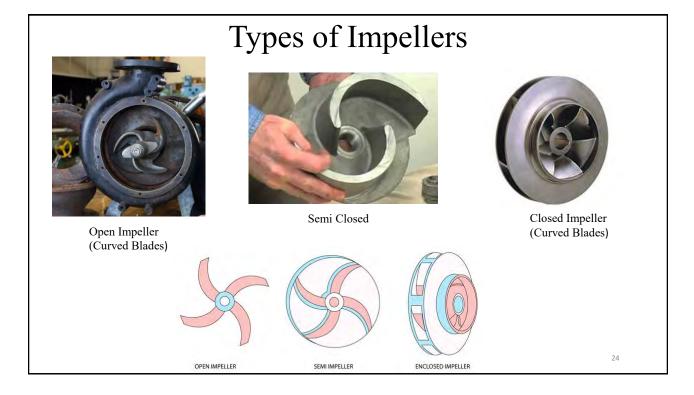
✓ Pump Type [water supply, wastewater)

Selection Criteria for Pumps

Other Parameters


✓ Materials [cast iron, steel, food grade]


✓Liquid Type [clean water, waste water]

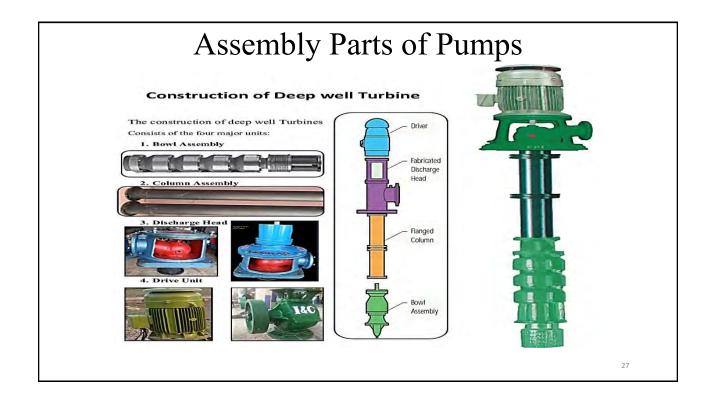

✓ Paint [anti corrosion]

✓ Available Installation Space [m2, ft2]

Introduction to Pump	Design B	asics
Centrifugal Pump Nameplate and Designation Specification:		
Discharge Diameter: 40500mm(1.620inc	h)	
Flow Capacity: 106000m ³ /h		
Head: 680m Name Plate and Designation	VAS	B BOMBAS HIDRAULICAS S/A VZEA PAULIISTA-SP DNE 55-11-45968500 DE IN BRAZIL
KWP K 100 - 250	KSB	
	OP	YEAR
Types series	Q m³/h	H m
Impeller form	n rpm	
Discharge nozzle DN Nominal impeller dia. in mm	0581	168 BRN 37
		21

Introduction to Pumps

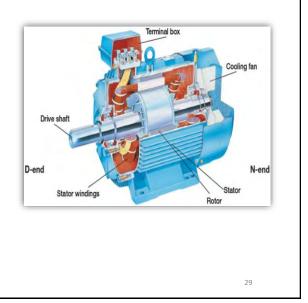
Vertical Turbine Pump

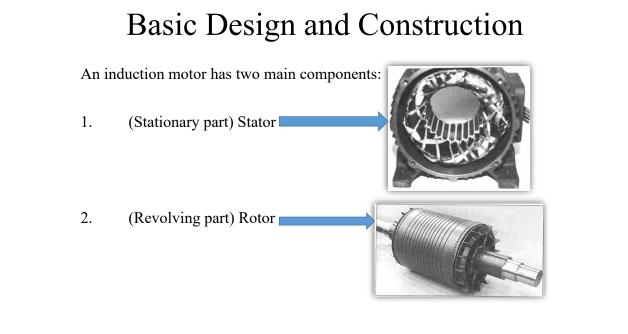

These pumps are commonly used in groundwater wells. These pumps are driven by a shaft rotated by a motor on the surface

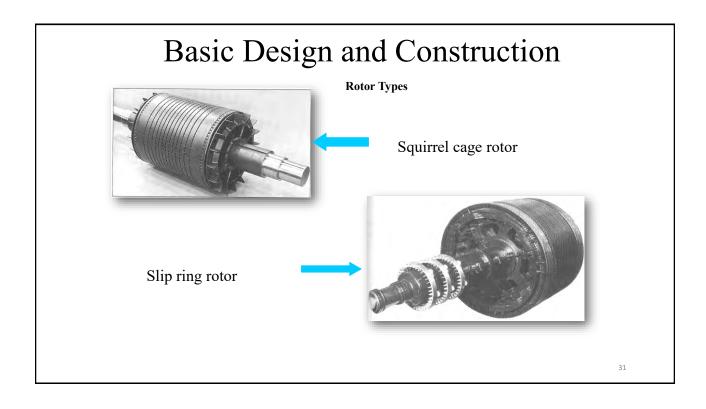
Introduction to Pumps Types

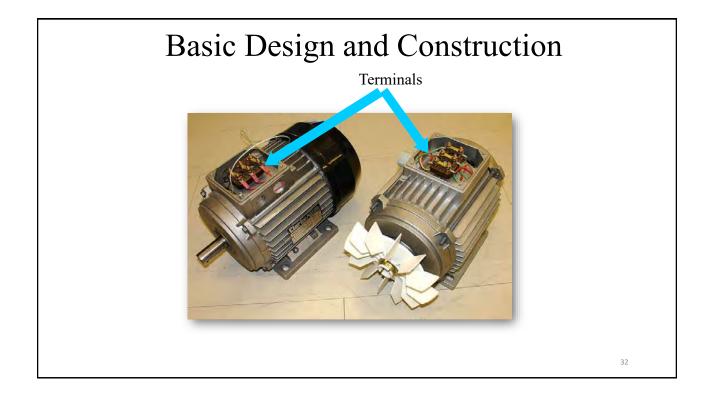
Submersible Pump

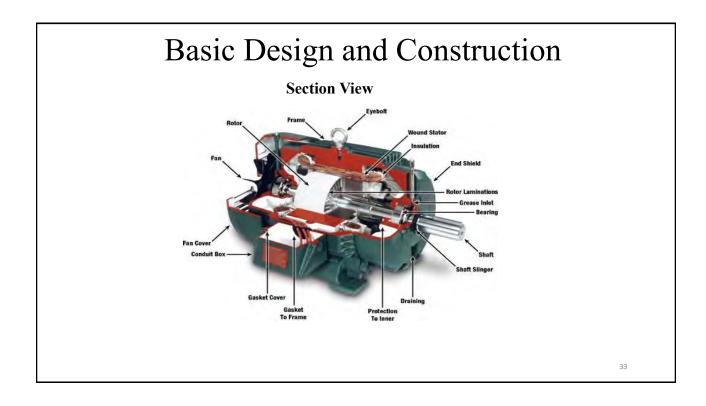
A type of pump in which the motor and pump both are in the ground water reservoir. Motor is water proof and electricity is provided to the motor by a water proof cable.

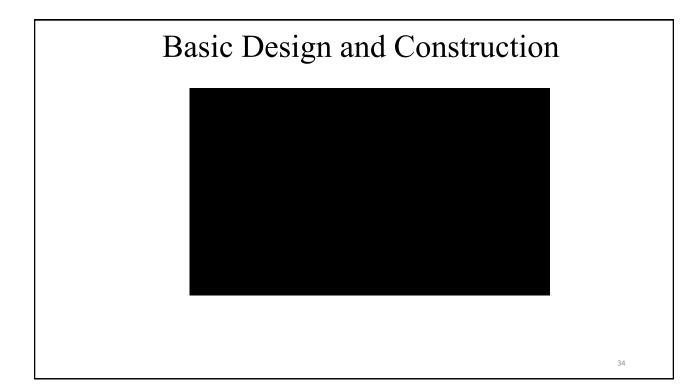


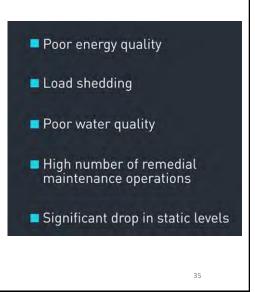



Comparison of Vertical pump and Submersible pump					
	Vertical shaft centrifugal pump (Tube well)	Submersible motor pump (tube well)			
Picture					
Bore size	Cover a wide range	Max bore: approx. 200 mm			
Flow capacity	Cover a wide range	Small			
Head	Cover a wide range	Cover a wide range			
Efficiency	Small bore: almost equal with submersible motor pump Big bore: Max eff. approx.90%	Maximum: approx. 80%			
Installation	complex	Easy			
Maintenance	complex	Easy			
Cost	Expensive than Submersible motor pump	Cheaper than Vertical shaft pump			
Vibration/Noise	Need attention	No need to pay attention compare to Vertical pump			
Leakage	Need attention	No need to pay attention compare to Vertical $pump_{\otimes}$			


Introduction to 3 phase Induction Motors


- Electrical motor is an electromechanical device, which converts electrical energy to mechanical energy.
- Three-phase induction motors are the most common electrical motors used in the industry.

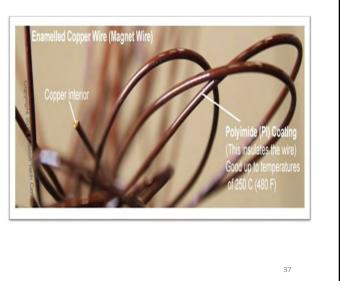




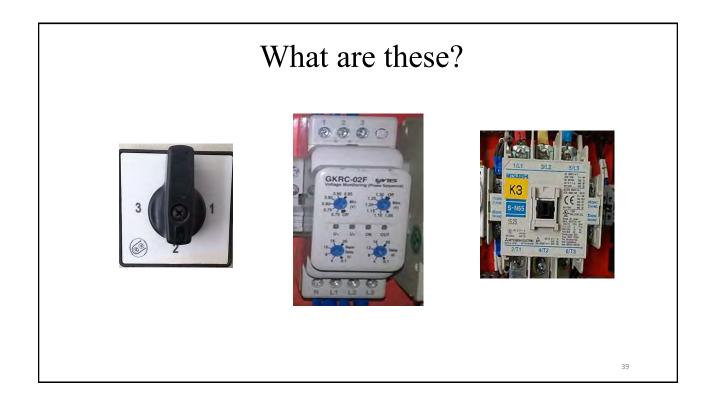
Motor Burnout and Rewinding

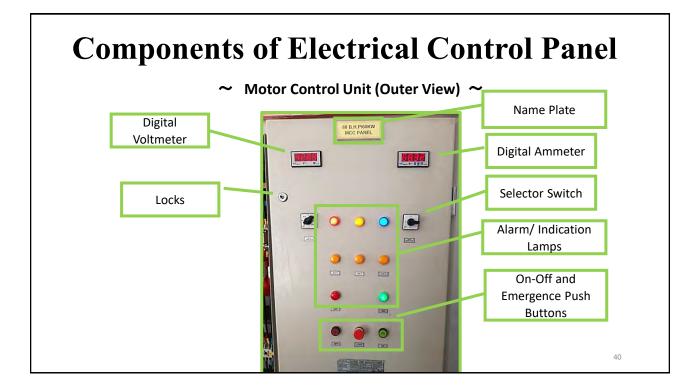
Causes...

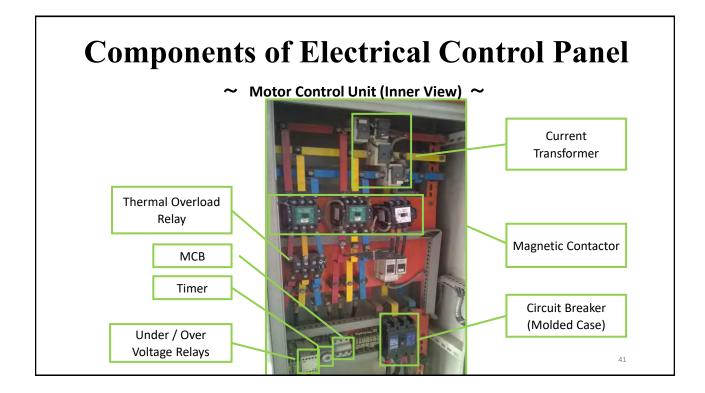
- 1. Fluctuation in phase voltages
- 2. Malfunctioning of protective relays
- 3. Manufacturing defects
- 4. Damage before or during installation
- 5. Improper installation
- 6. Misapplication (overload)


Motor Burnout and Rewinding

- Copper or aluminum wire should be used for rewinding the motor
- Preferably inside of the winding wire should be enameled copper wire (magnet wire)


Motor Burnout and Rewinding


- After re-winding the assembly should be coated with risen and baked.
- Special care should be taken when inserting the rotor into the stator assembly.



Introduction to Panel Components

Selector Switches

 ✓ Used to select among each of the three phases to monitor currents and voltages on ampere and voltmeter.

Ampere & Voltmeter meter

 ✓ Digital and analog type Ampere and Volt meters are used by WASAs

1. Circuit Breakers

Circuit breakers are switches that open/close electric • circuits in normal and abnormal conditions specially in case of a short circuit.

2. Contactor

✓ A power contactor is typically used for "on / off" control of motors. A relay can be installed on the circuit for overload protection. Electromagnetic force works to "open /close" the contacts.

Protective Relays

✓ Protective relays detect electrical faults, isolate the faults from system and activate alarms is a faulty condition sensed

Thermal Relay

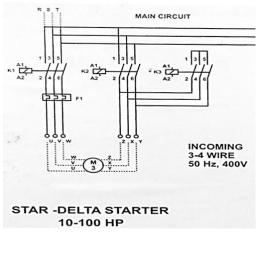
Under/Over Voltage Relay

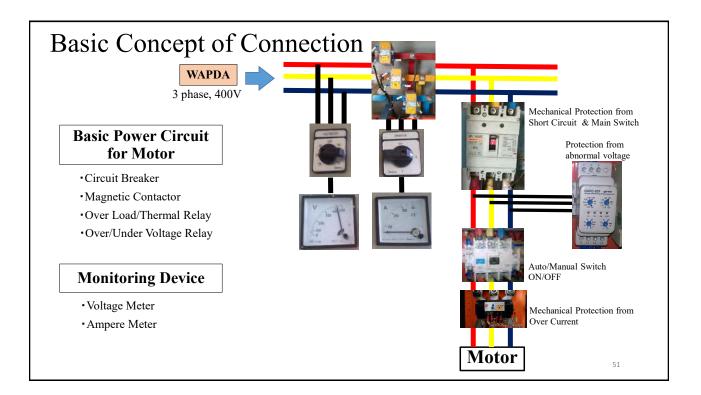
Phase Failure Relay

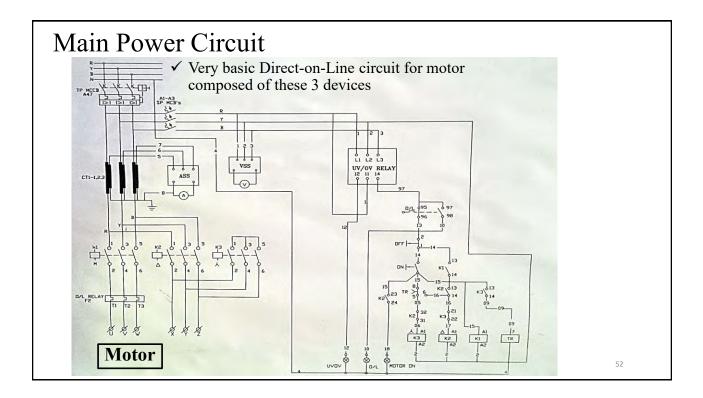
5. Current transformers (CT)

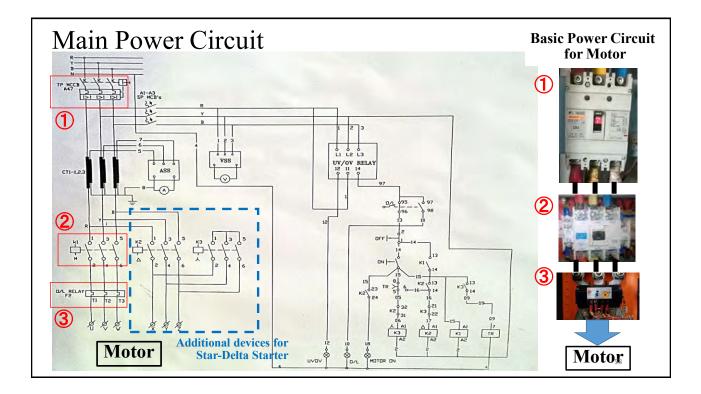
✓ CT's are used for stepping down current to be measured safely. It is also applied to protective relays

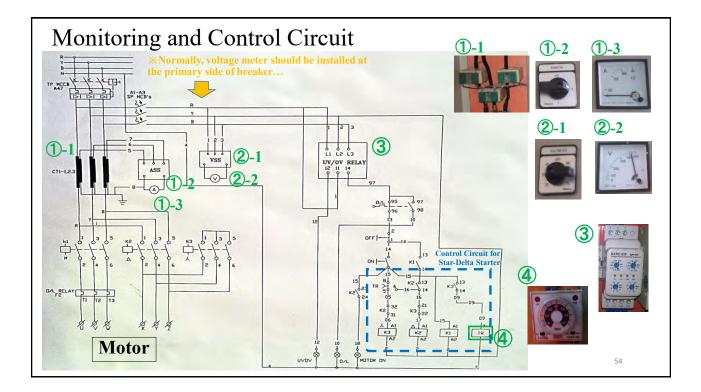
6. Timer


✓ Use to convert the motor connections from Star to Delta after specific time




WIRING DIAGRAMS


Wiring Diagram


- \checkmark Shows how the components are connected
- \checkmark It should be always available at the site

Introduction and selection of valves

Valve

A valve is a device that regulates, directs or controls the flow of a fluid

by opening, closing, or partially obstructing various passageways.

Valve Functions

- ✓ Stopping and starting fluid flow.
- ✓ Varying (throttling) the amount of fluid flow.
- ✓ Controlling the direction of fluid flow.
- ✓ Regulating process pressure.
- ✓ Relieving component or piping pressure.

Introduction and selection of valves

Classification of Valves

The following are some of the commonly used valve classifications, based on mechanical motion:

Linear Motion Valves.

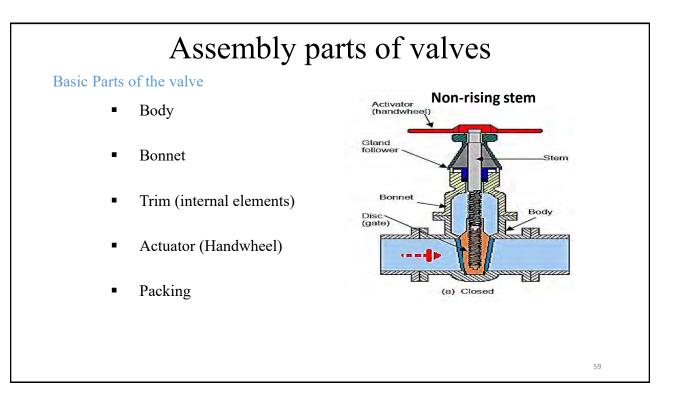
The valves in which the closure member, as in gate or sluice, moves in a straight line to allow, stop, or throttle the flow.

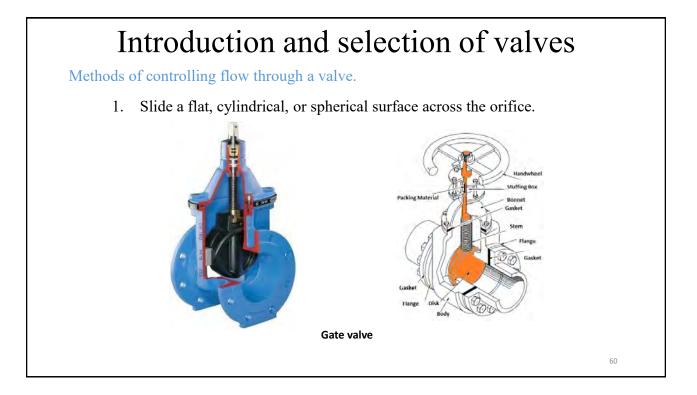
Introduction and selection of valves

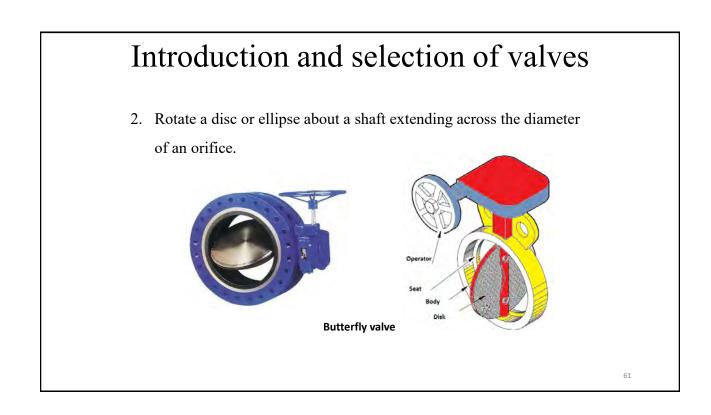
Classification of Valves

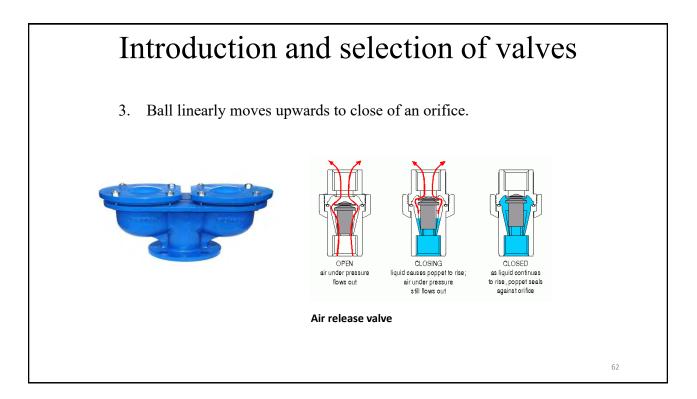
Rotary Motion Valves.

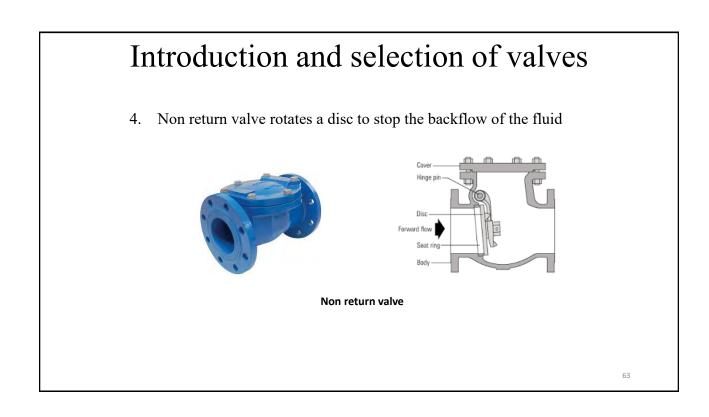
When the valve-closure member travels along an angular or circular path, as in butterfly valves.

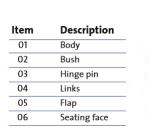

Quarter Turn Valves.

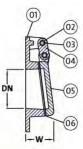

Some rotary motion valves require approximately a quarter turn, 0 through 90° , motion of the stem to go to fully open from a fully closed position or vice versa.


Introduction and selection of valves


Classification of valves based on motion


Valve types	Linear motion	Rotary motion	Quarter turn
Gate Valve	X		
Air release valve	X		
Butterfly valve		Х	Х
Non-return valve		X	Х
Flap valve		Х	

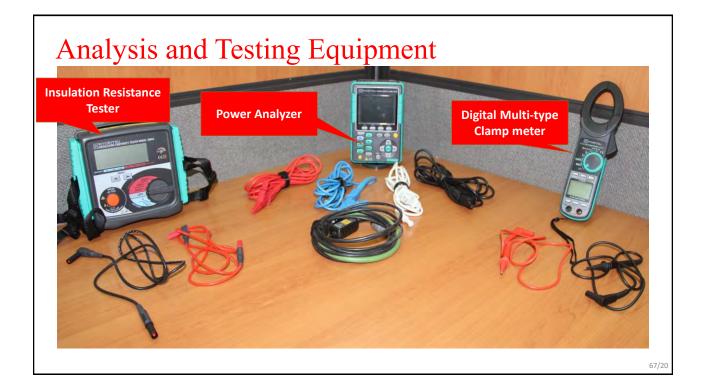




Introduction and selection of valves

5. **Flap valve** rotates a cover disc to hinder air suction and backflow of the fluid. Installed at the open end of discharge pipe.

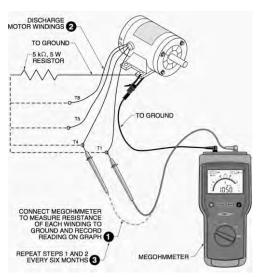
Flap valve


Insulation Testing for 3-Phase Motor

What is "Insulation Resistance"?

- Insulation resistance is the value showing if there is electrical leakage or not with the measured equipment.
- Insulation resistance tester is a tool to check how properly the system/equipment is insulated.
- If the value show less than 1 M Ω , need to be cared. If less than 0.4 M Ω (i.e. for 400V), detect the faulty parts and replace them immediately.
- It is necessary to check not only one time value but also the trend and comparison with the previous value.

Insulation Resistance Tester


Step By Step Procedure for Insulation Testing

- 1. Connect the terminals of insulation tester black with earth and red with $U_{1,}$ V_1 and W_1 one by one with energize insulation tester and note values.
- 2. Cross winding insulation test

Connect the terminals in the pattern

$$U_1 - V_1$$
, $U_1 - W_1$, $V_1 - W_1$ and
 $U_2 - V_2$, $U_2 - W_2$, $V_2 - W_2$

Energize the system and note down values. Minimum insulation resistance value should be more the $1 \text{ M}\Omega$.

Sample Format for Preventive Maintenance

Sub Division :		Moto	otor Specification		Rated Capacity (kW/HP)	
Site Name:		Rated Voltage	Rated Ampere	Efficiency	Power Factor	RPM
Equipment Name:		(V)	(A)	-	-	
Date						
Inspected By						
Weather						
Bo	It Tightening					
	U1-E	U2-E				
Insulation	V1-E	V2-E				
Resistance	W1-E	W2-E				
(MΩ)	U1-V1	U2-V2				
()	V1-W1	V2-W2				
	W1-U1	W2-U2				

(2) Test in Running Condition

Voltage by	R	Y					
Clamp Meter	YB BR						
(V)							
Ampere by	R						
Clamp Meter	Ý						
(A)	E	3					
P	Power Factor						
Vibration	Upper Bearing	Lower Bearing					
Revolution	n Per Minut	e (RPM)					
-	Upper Bearing	Lower Bearing					
Temperature	Shaft						
Reference for	Insulation Res	sistance Value	:	$Good \rightarrow m$	ore than 1.0MΩ		
Need to Adjust, C	Jean,Care →	$1.0M\Omega \sim 0.4M$	Need to repa	ir immediately	\rightarrow less than 0.4	MΩ	
- Remarks -							
							69/2

Issues in Pumps

Trouble shooting Pumps

- 1. Corrosion
- 2. Cavitation
- 3. Change in Flow and Pressure

Issues in Pumps

Trouble shooting Pumps

- 1. Corrosion
- 2. Cavitation
- 3. Change in Flow and Pressure

Troubleshooting

Trouble shooting Pumps

- 1. Troubles are of 3 types: mechanical, hydraulic and motor related
 - ✓ Mechanical troubles: Breakage of coupling or shaft
 - Hydraulic troubles: Failure to deliver water, reduction in discharge and over loading.
 - ✓ Motor troubles: If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- Flow rate increases check if system head decreased, is motor tripping on overloading?

Trouble shooting Pump

- Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.
- Vibrations check obstruction in suction, cavitation, impeller with solid particle logged in vane, system alignment (shaft, coupling etc.), tightening of installation bolts
- Seal leakage while running or at shut down? check suction conditions, wear in parts, pump speed, changes in system.

Troubleshooting

Trouble shooting Centrifugal Pump

No liquid delivered

- Lack of prime
- Speed of electric motor or engine too low
- Discharge head too high
- Suction lift too high
- Impeller plugged
- Vapor lock in suction line

Trouble shooting Centrifugal Pump

Not enough water discharge

- Air leaks
- Worn wearing rings
- Damaged impeller
- Defective foot valve
- Worn gaskets

Troubleshooting

Trouble shooting Centrifugal Pump

Overloading of Motor / Engine

- Low discharge head
- Packing too tight
- Bent shaft
- Distorted casing
- Pump speed too high

Trouble shooting Vertical Turbine Pump

- 1. If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- 2. Flow rate increases check if system head decreased, is motor tripping on overload?
- 3. Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.

Troubleshooting

Trouble shooting Vertical Turbine Pump

- Vibrations check obstruction in suction, impeller with solid particle logged in vane.
- There is excessive leakage from the stuffing box The packing is defective. Replace any packing that is worn or damaged

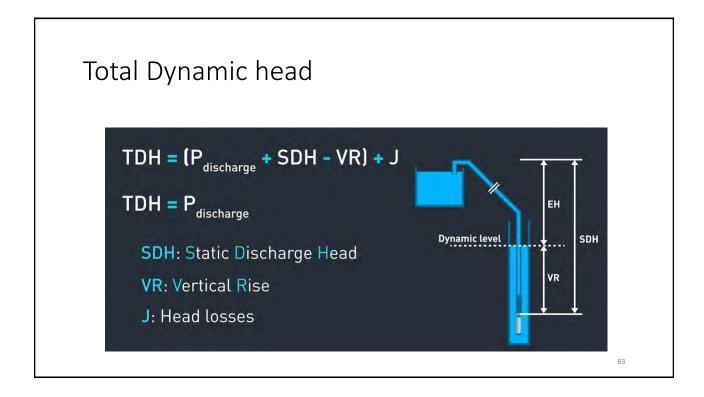
Trouble shooting Submersible Pump

- 1. If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- 2. Flow rate increases check if system head decreased, is motor tripping on overload?
- 3. Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.

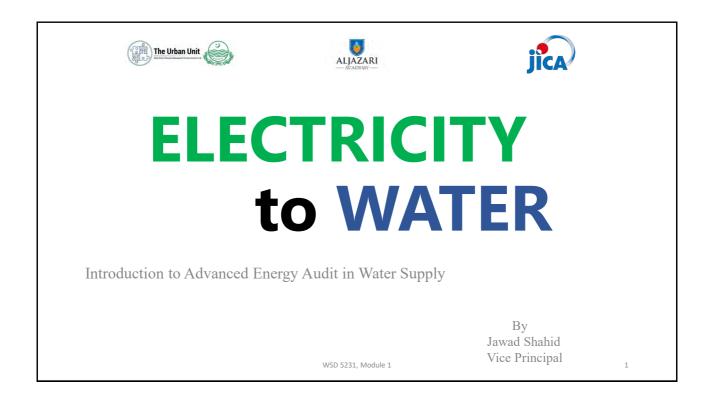
Troubleshooting

Trouble shooting Submersible Pump

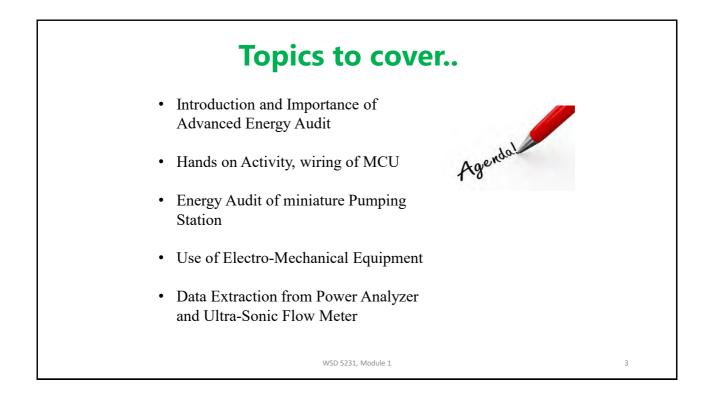
- 4. Vibrations check obstruction in suction, impeller with solid particle clogged in vane.
- 5. Sand in well discharge and/or excessive pump impeller wear

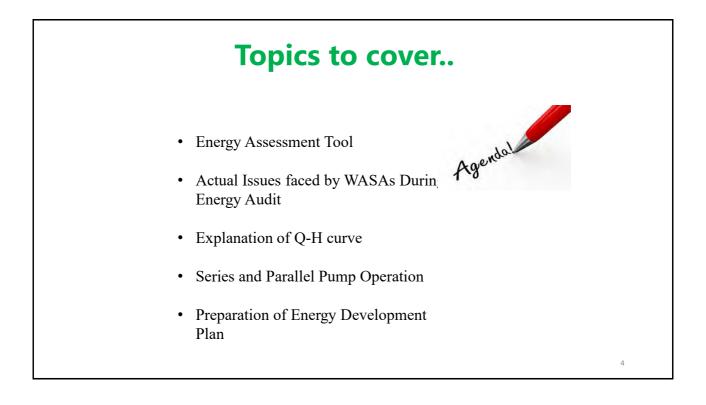

Possible problem	Solution
Damaged well screen or gravel envelope	In some cases a drilling contractor may be able to replace or repair the screen or gravel envelope.
Flow is drawing sand into the well	Throttle back the flow rate to reduce the problem. A drilling contractor may also need to redevelop the bore to flush out the sand around the bore screen (or take other measures as appropriate).

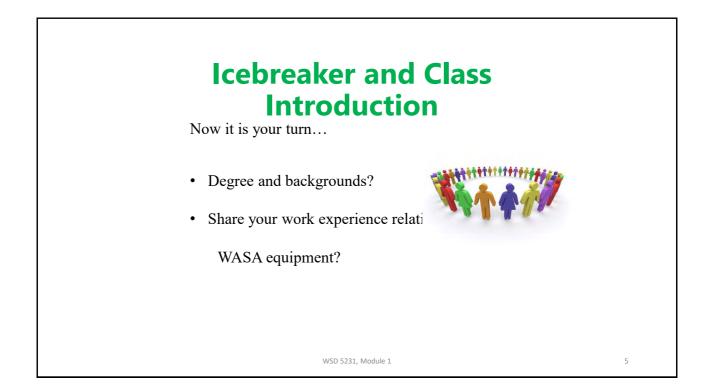
Trouble shooting Submersible Pump

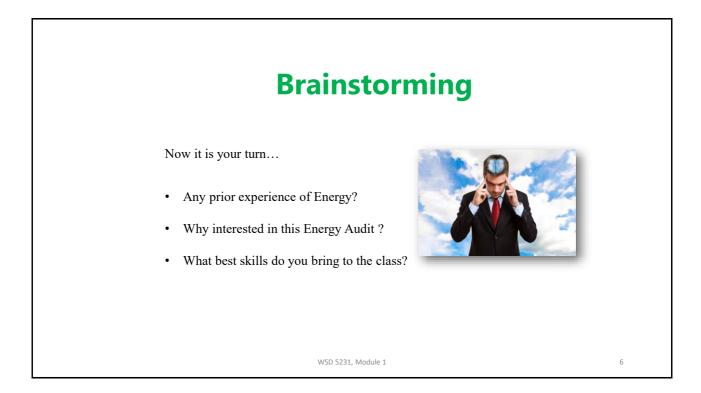

Possible problem	Solution
the bore and not flushing out the	Look at the pump controls. Install storage or a variable speed drive (not always appropriate).

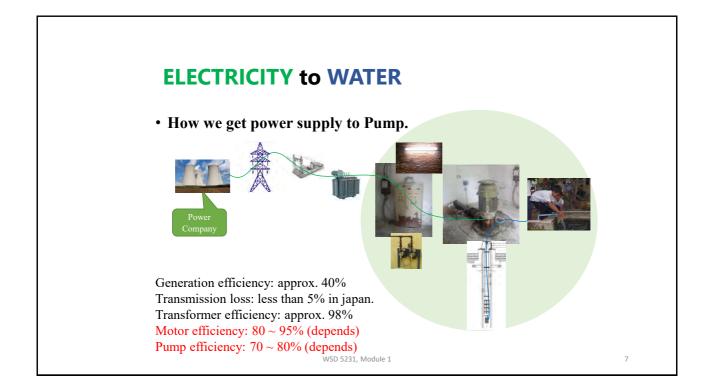
Imersed Tubewell Pump

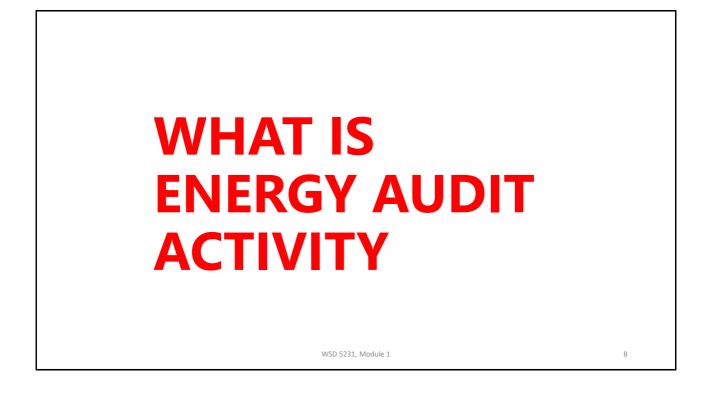


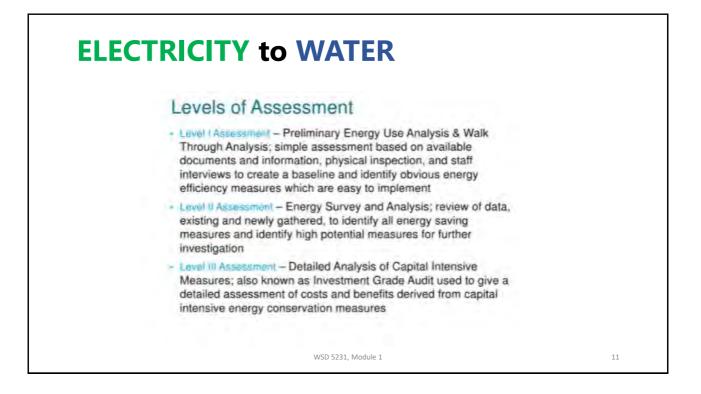


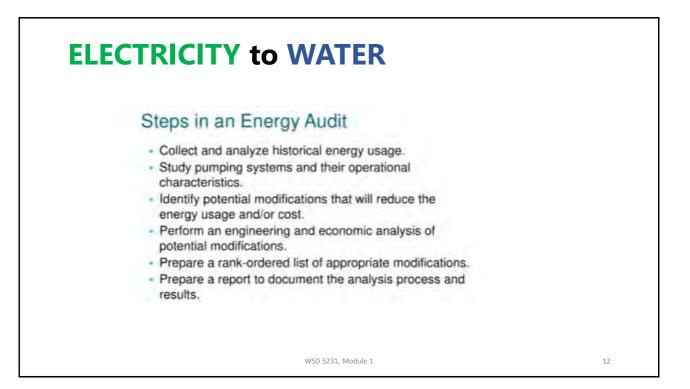

Importance of Tube Well Pumps

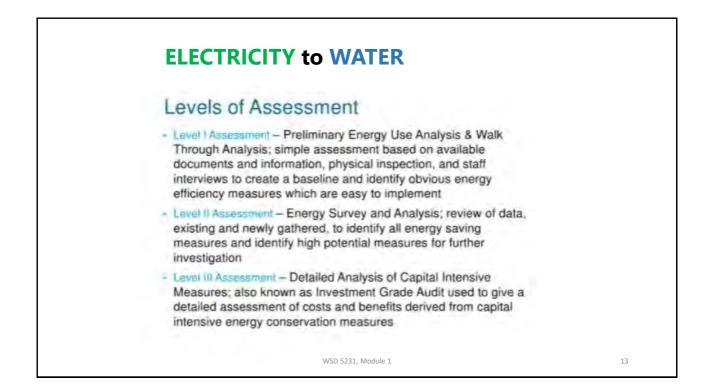


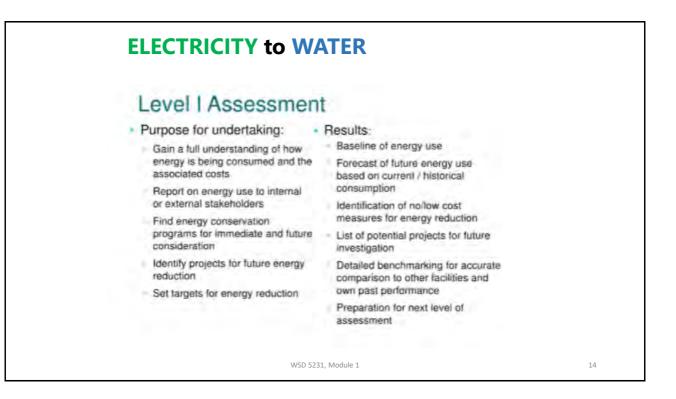

WSD 5231, Module 1

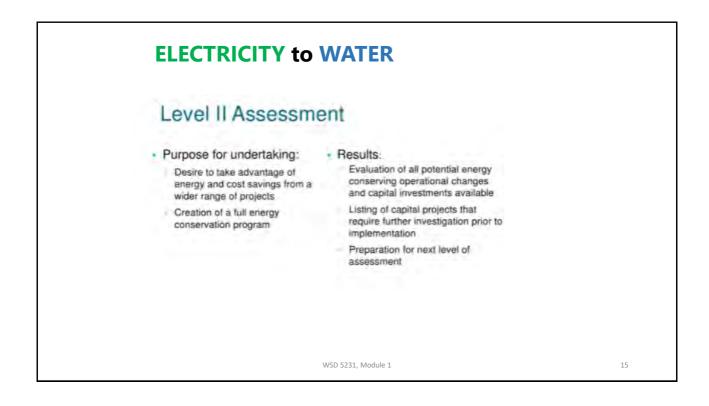


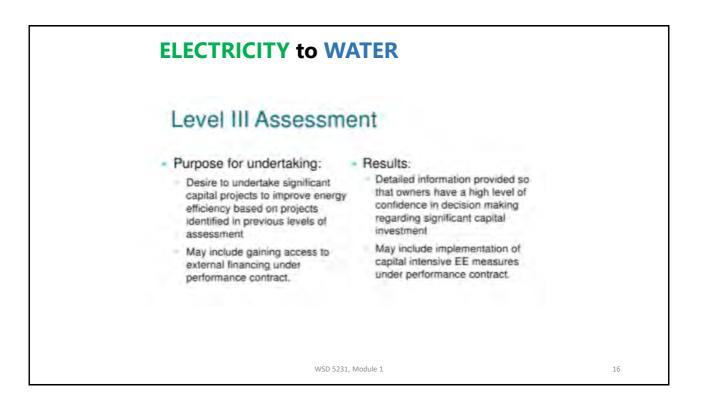


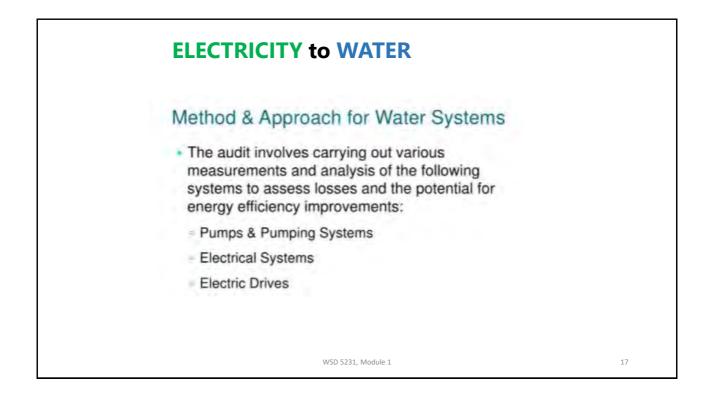


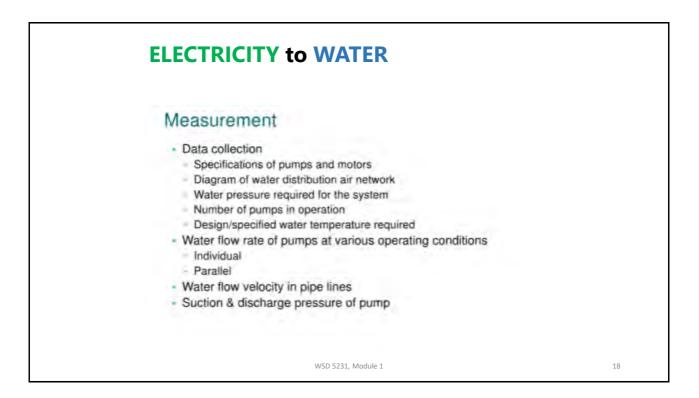


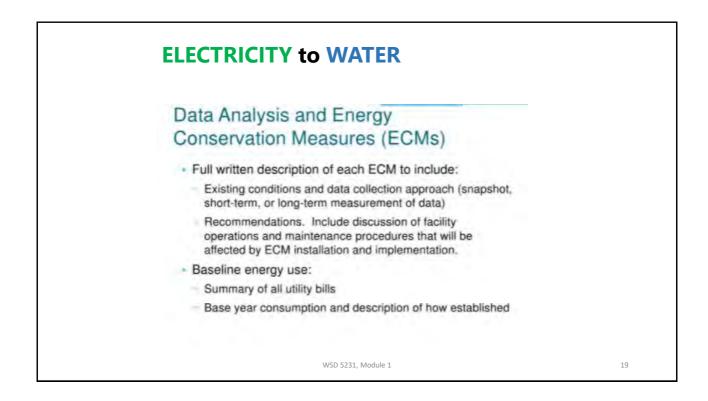

ELECTRICITY to WATER	
Energy Audit: An Energy Audit is an assessment and analysis of Energy Flows in a process, aimed at reducing the amount of energy input into the system without negatively affecting the outputs.	
Objective Audit: The main objective of an energy audit is to explore various possibilities for energy conversation.	
Approach: An Energy Audit requires a through and detailed study of a system, through the performance of various tests and measurements.	
WSD 5231, Module 1	9

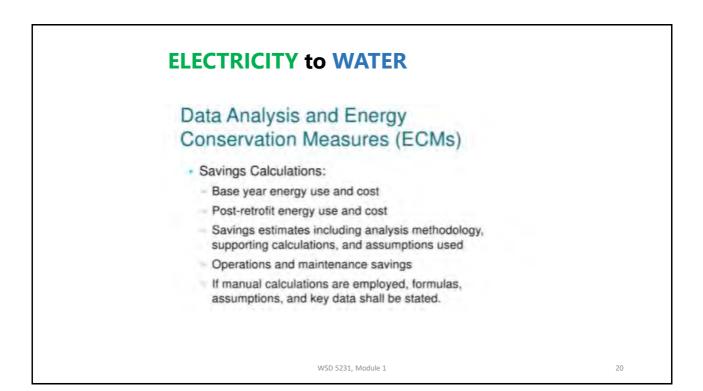

<section-header><section-header>**DESECTIONALEDGE for ENERGY AUDITConcept of**• Electrical Capacity (kW)• Pump Efficiency• Principle of measurement• Evaluation for Pump station

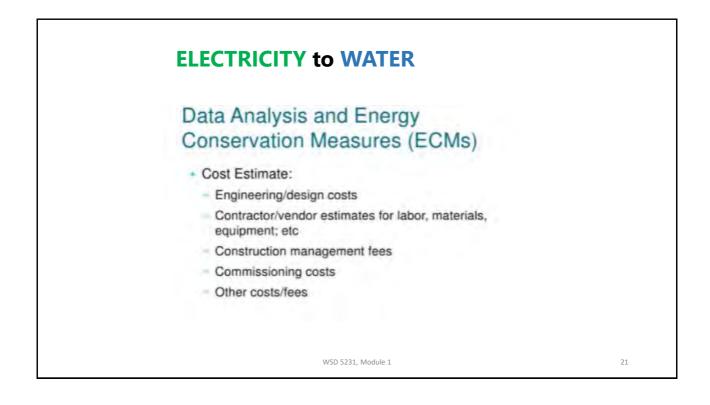


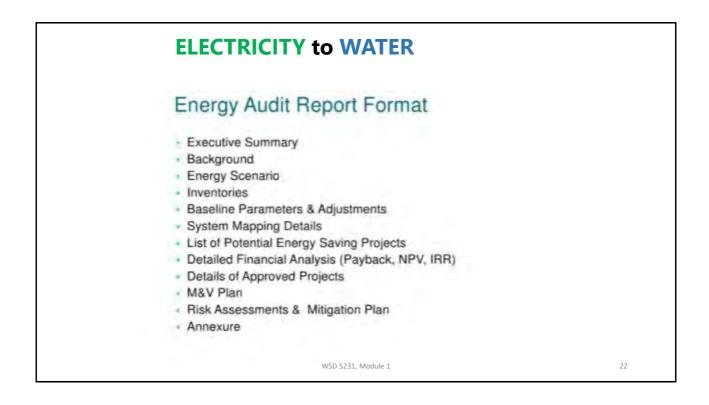


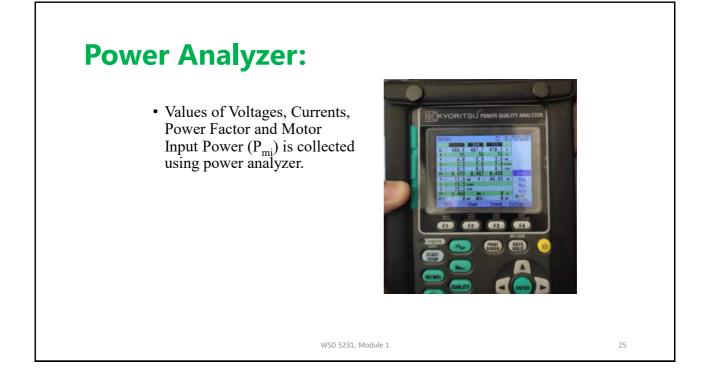


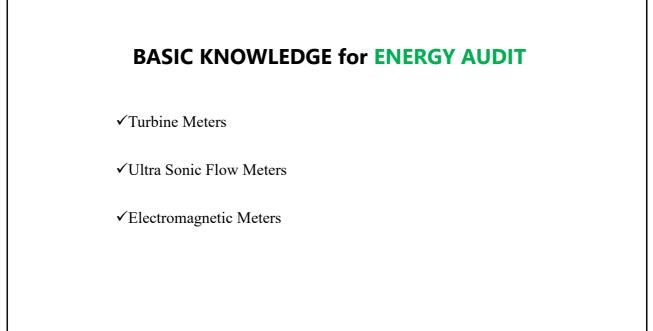


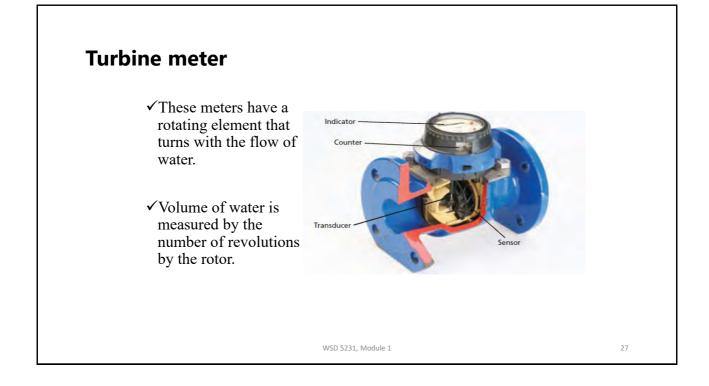


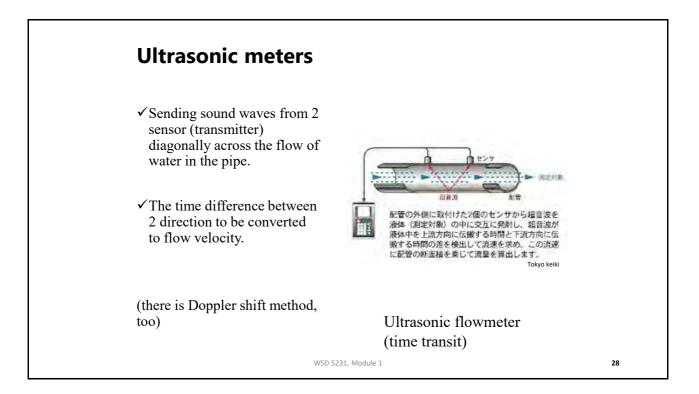


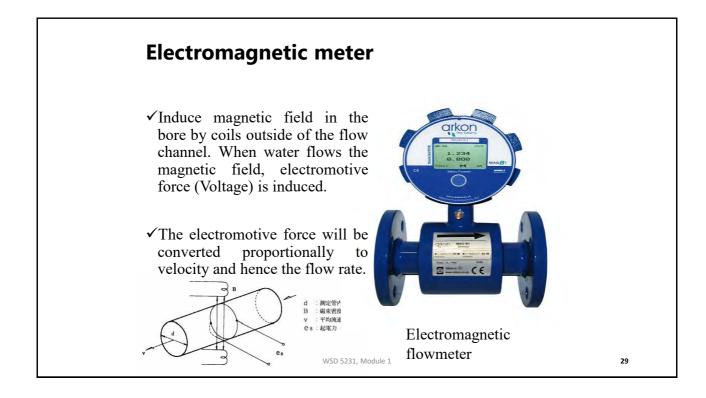


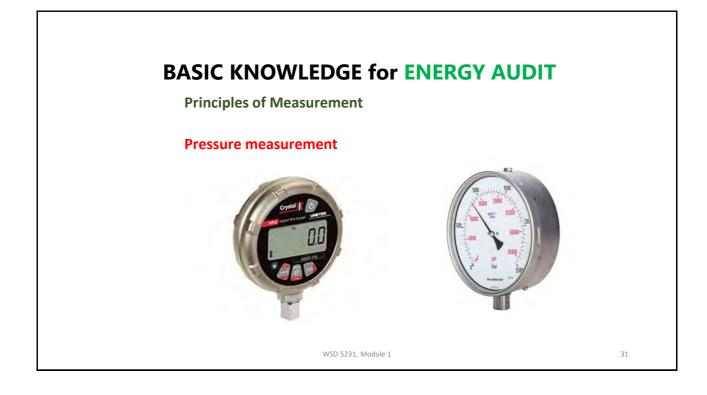


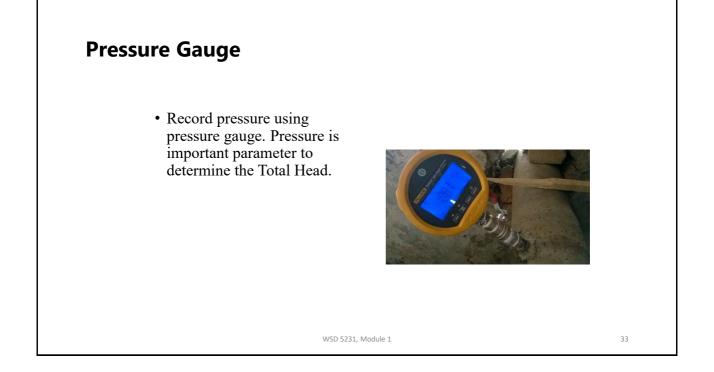



	Director	
		Approve and Present
2. F	Executive Engineer	Verify and Prepare Recommendations for Improvement
3. 5	Sub-Divisional Officer	Supervise Energy Audit
4. 5	Sub-Engineer / Supervisor	Perform Energy Audit


Equipment Required for Energy Audit

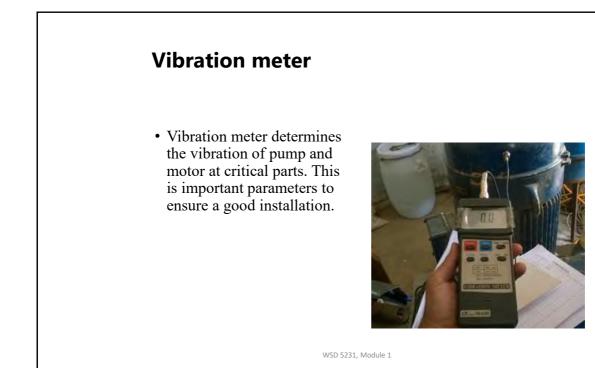

- Power analyser
- Ultrasonic Flowmeter
- Pressure Gauge
- Water level meter
- Tachometer
- Thermometer
- Vibration meter



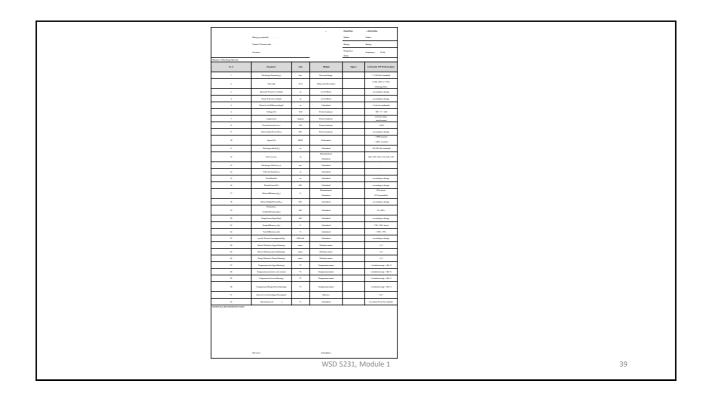

BASIC KNOWLEDGE for ENERGY AUDIT								
	Ultra Sonic	Electromagnetic	Turbine					
Appearance								
Accuracy	lower than Electromagnetic in small flow rate	High	lower than others in small flow rate					
Installation condition (D:pipe dia)	Before meter:10D After meter:5D	Before meter:5D After meter:2D	Before meter:10D After meter:5D					
Pressure loss	No pressure loss	Almost no pressure loss	Pressure loss due to around Impeller					
Telecommunications	Available	Available	Available					
Initial Cost	Expensive	Expensive	Inexpensive					
Others	Proper installation skill is required	Susceptible to electrical noise	There is lifetime of rotation parts					

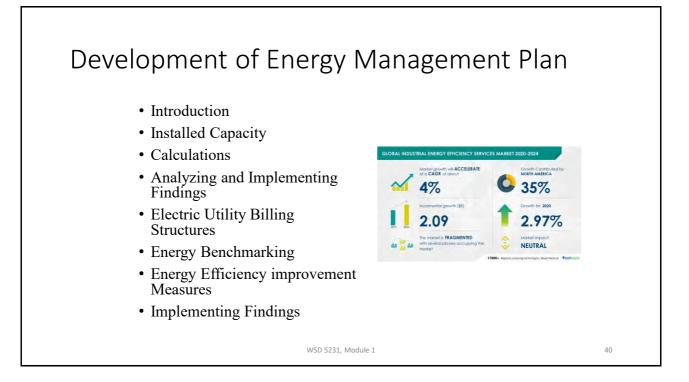
Ultrasonic Flow meter:

• Measure the flow (Q) using ultrasonic flow meter. Flow is important parameter to measure the water power, discharge velocity and other required parameters.

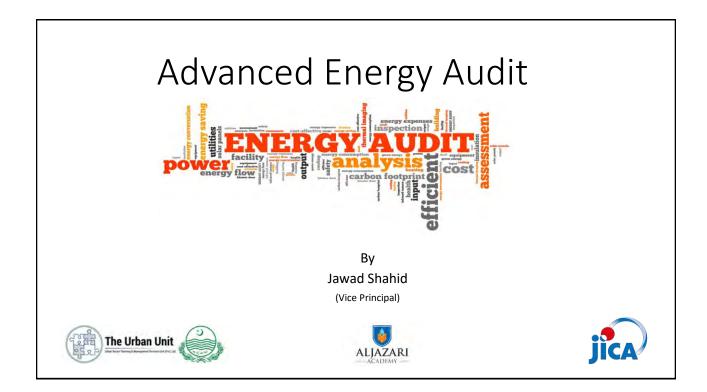

Water level meter

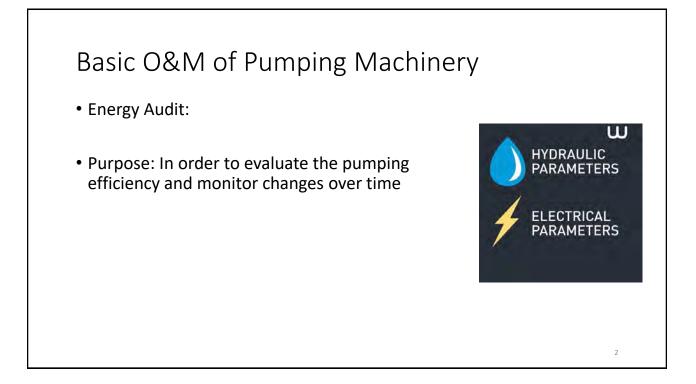
• This equipment is used to determine the static and dynamic water level. An important parameter to calculate the Total Head.

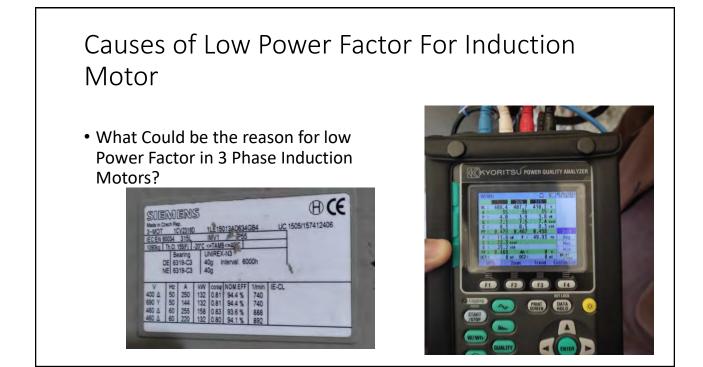




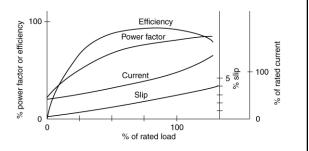
<text>

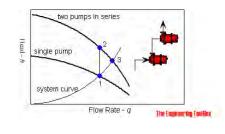

Year Matana Index Index <t< th=""><th>Sr. #</th><th>Parameter</th><th>Unit</th><th>lst</th><th>2nd</th><th>3ed</th><th>4th</th></t<>	Sr. #	Parameter	Unit	lst	2nd	3ed	4th
1 Laction Tag . Image Image <thi< td=""><td>1</td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td></thi<>	1				<u> </u>		
4 Party Matri Enting Type) . Image: Constraint of the sector of the	2	Time	hhemm				
5 Mone (Mater Rating) Intermediate Intermediat Intermediate Inter	3	Location/ Tag	-				
θ Dudarge Preser(p) her International state of the state of	4	Pump (Maker/ Rating/ Type)	-				
Ν Ν Ν Ν Ν Ν Ν 8 Fue (t) ω ⁴ h I I I I 9 Dymix War Lod (pl) m I <td< td=""><td>5</td><td>Motor (Maker/Rating)</td><td>-</td><td>T</td><td></td><td></td><td></td></td<>	5	Motor (Maker/Rating)	-	T			
α α α α α α α 9 βρωπ, Yar Led (μ) m 1	6	Discharge Pressure (p _d)	bur				
9 μοκά Varia Led (φ) n 10 δκα Varia Led (φ) n <	7	Discharge Pipe Dia (d)	mm				
10 Max Wardershylp m Image: marger shylp m	8	Flow (Q)	m³/h	+			
10 Max Wardershylp m Image: marger shylp m	9	Dynamic Water Level (hpl)	m	+			
Velage (Y) 3 Y Y Bal Value Image (Y) 3 Y Y Bal Value Image (Y) 3 Y Bal Value Image (Y) 3 Anger	10			+			
12 Ampure (A) Programs Ampur				+			
11 Propriate (space) Interpret (space)				+	+		
O (Care) - (Care) - (Care) (Care) <t< td=""><td></td><td></td><td>Ampere</td><td>+</td><td></td><td></td><td> </td></t<>			Ampere	+			
Matrix Matrix Matrix Matrix Matrix 16 Marcy Yuncin Uyer Hunig maix I. I. I. 17 Marcy Yuncin Uyer Hunig maix I. I. I. I. 17 Marcy Yuncin Uyer Hunig maix I. I. I. I. 18 Pay Yuncin Uhan Hunig maix I. I. I. I. 19 Targentar (Lhur Hunig) maix I. I. I. I. 10 Targentar (Lhur Hunig) maix I. I. I. I. 10 Targentar (Lhur Hunig) maix I. I. I. I. 11 Targentar (Lhur Hunig) C. I.	13	Power Factor (Cox #)	-	<u> </u>	<u> </u>		
Mater Variant Open Haning mater Inc. Inc. Inc. 17 Mater Variant Open Haning mater Inc.	14	Motor Input Power (Pm)	kW				
17 Marcy Varianti Annu Randing maxis Inc. Inc. Inc. 18 Pargy Varianti Randi Randi Randi maxis Inc. Inc. Inc. 19 Tampentare (Lawar Randi Randi) maxis Inc. Inc. Inc. 20 Tampentare (Lawar Randi) ¹ C Inc. Inc. Inc. 21 Tampentare (Lawar Randi) ¹ C Inc. Inc. Inc. 22 Tampentare (Lawar Randi) ¹ C Inc. Inc. Inc. 23 Tampentare (Lawar Randi) ¹ C Inc. Inc. Inc. Inc. 24 Tampentare (Lawar Randi) ¹ C Inc. Inc. Inc. Inc. 25 Tampentare (Lawar Randi) ¹ C Inc. Inc. Inc. Inc. 26 Tampentare Karkoffsmin gala ¹ C Inc. Inc. Inc. Inc.	15	Speed (N)	RPM				
B Persylvation (Ihred Rhonid) smith Internation (Ihred Rhonid) smith 10 Tomportant (Ihred Rhonid) ¹ C Internation (Ihred Rhonid) Inter	16	Motor Vibration (Upper Bearing)	mm/s				
10 Tompostare (a types hamong) °C Image and types hamong) °C Image and types hamong) °C Image and types hamong °C Image and types	17	Motor Vibration (Lower Bearing)	mm/s				
20 Temperature (a mode walk, seated) %C Image: Constraint of a mode walk, seated of a mode walk of a mode walk, seated of a mode walk of a mode walk, seated of a mode walk,	18	Pump Vibration (Thrast Bearing)	mm/s				
21 Temperature (Learer Bound) ⁴ C Image: Constant of Cons	19	Temperature (at Upper Bearing)	°C				
22 Temperature (Famp Dent Record) 23 Enventor were backape fam gala 24 . yn / un 25 yn / un 26 AE (ECCOMPNAUTENE	20	Temperature (at motor coil; center)	°c				
23 Escenire scare folgar from . yes / as	21	Temperature (Lower Bearing)	°c	+	<u> </u>		
23 Escenire scare folgar from . yes / as		Temperature (Pump Toront		+	1		
22 gland - yw'r au yw'r IDNGS & RECOMMENDATIONS	22		°c				
	23	gland	-	yes / no	yes / no	yes / no	yes / no
	FINDINGS	S& RECOMMENDATIONS		Attondance			
				WSD .	5231, Modu	ule 1	

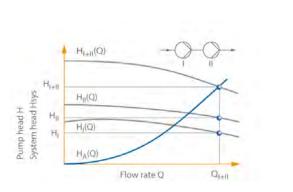


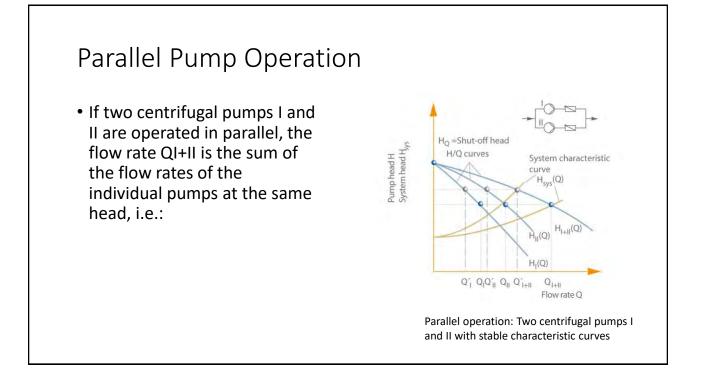


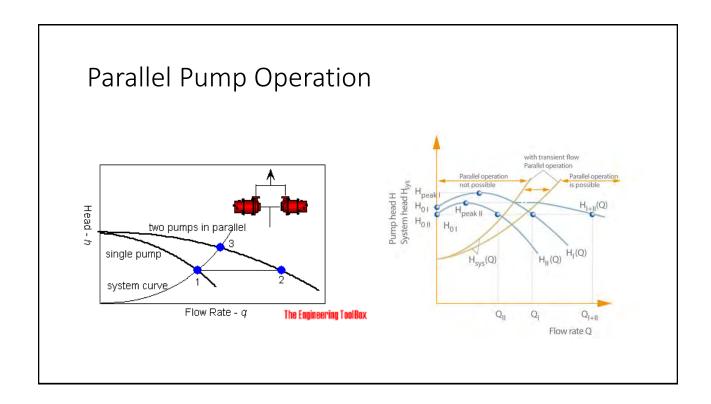
	CTR	RICAL ENERGY	INVENTORY									-	-
System Type		Epoperioni Type	Description	Alashan Sizon (Nip)	Motor Efficiency (%)	Histor Fall Lond Ampirrace (FLA)	Averaige Motor Operating Current	Operating Nonr6 (Inc/Yr)	Average Cost Enclor (%)	Average Electric Erited (kW)	Entroyation Annual Enterpy Unit ROWING(F)	Extension Annual Operating Costle (977)	Entrance of S Electric Line Cost (%)
Lighting	-		All Site Lighting	NA	NIA	N/A	N/A	8,760	100.00%	12.77	111,865	\$11,321	4.98
Non Process HVAC	-		All Sde HVAC	NIA	N/A	N/A			100 00%	7.36	64,474	\$6,525	2.87
Indust Pumping Primary Treatment	-		Infl Pump Station	25		20			85.00%	18.01	84,667	\$0,568	3.7
Primary Treatment	-		Get Blowers	7.5		8			68.75%	4.32	37,061	\$3,831	
Secondary Treatment	-			10		10.5			64 76%	5.49	48,093	\$4,867	
Secondary Treatment	-		Secondy Blowers	200		225		8,760	02.22%	124.61	1,180,921	\$119,509	
Secondary Treatment	-		WAS Pumps	200		225			82.22%	134.81	60.664	\$6,139	
Fixed Film Treatment	-1		R Tower Pumps	75		8	4	1 460	50.00%	3.25	4,749 238,639	\$481	
Anaerobic Digestion	-1		Sludge Recir Pump	5		6		8,760	83.33%	3.66	32,034	53.242	
Anaerobic Digestion	-1		Gas Mixer	10		12		8,760	75.00%	6.36	55,696	\$5.636	
Anaerobic Digestion	-1	Other kW Load -	Moser Heater	IVA		N/A	N/A	2.500	100.00%	7.20	18.000	\$1.872	
Effluent Pumping/Stors	10-1	Pump						1.110					

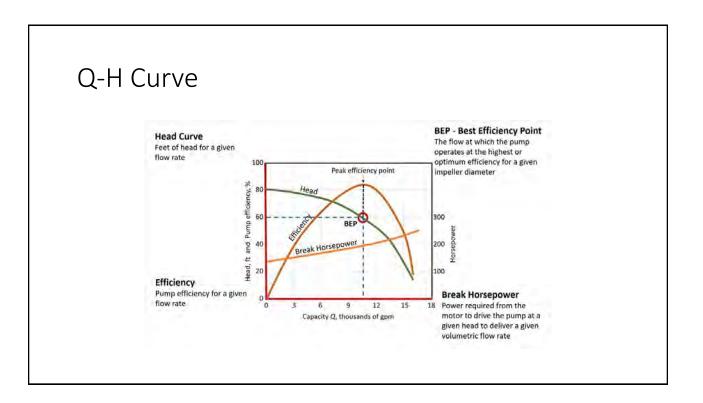


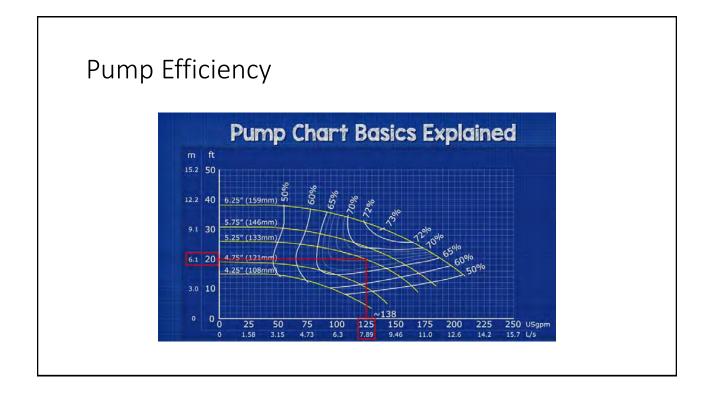

Causes of Low Power Factor For Induction Motor


- For Induction motors, the pf is usually extremely low (0.2 - 0.3) at light loading conditions and it is 0.8 to 0.9 at full load.
- In some cases, due to improper wiring or electrical accidents, a condition known as 3-φ power imbalance occurs. This results in low power factor too.


Series Pump operation


 When two centrifugal pumps (I and II) are operating in series, the head (HI+II) is the sum of the individual pumps' heads and the flow rate remains the same.





Series operation: Series operation of two centrifugal pumps I and II with any type of characteristic curves

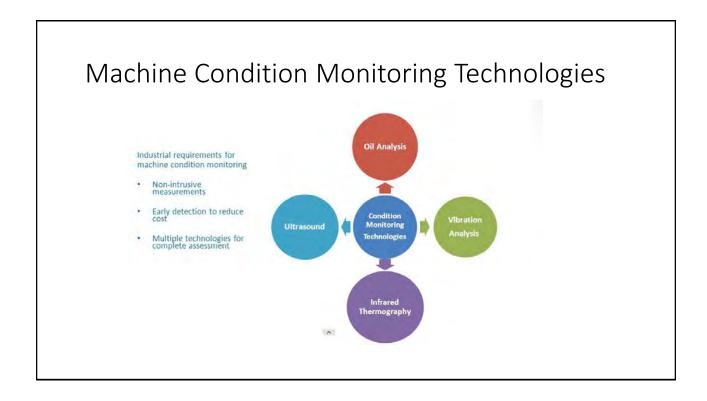
Flow and current relationship

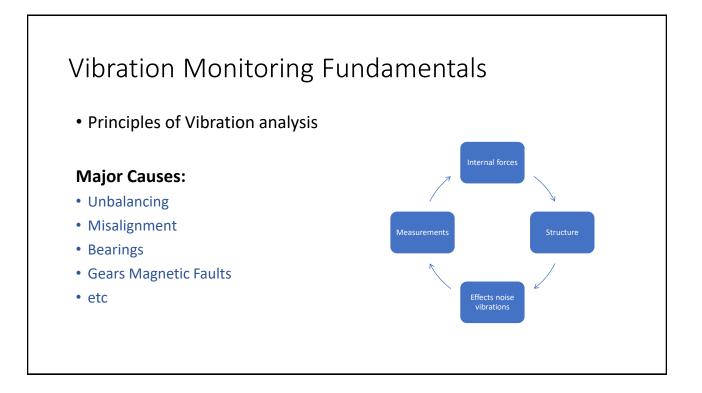
- With Increase in flow, pressure will decrease and power consumption will increase
- With Decrease in flow, pressure will increase and power consumption decreases.

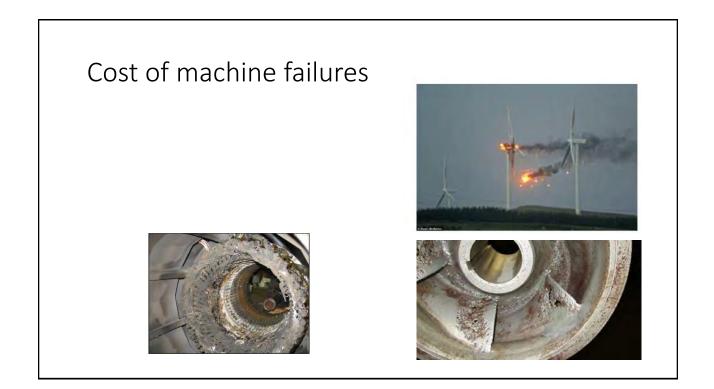
Effect of over sizing and under sizing the motor on power consumption

- Undersize:
 - Overload
 - Lower Flow
 - Higher Power Consumption
- Oversize:
 - Underutilization
 - V. Low Power Factor
 - Energy Wastage

Selecting the wrong size motor


- What are the power demands of the pump?
- What will typical operation look like for this pump?
- Will the pump be operated on a variable frequency drive (VFD)?





Vibration

- Vibration is a back and forth movement of a structure, It can also be referred to as cyclical movement
- Vibration Monitoring:
 - The Vibrations that are felt generally come for the forces inside the machine

What Does vibration Indicate?

- The Vibrations produced in a machine are a best indication of Machine health
- Indication of Machine failures

Common Problems that Generate Vibration

- 1. Misalignment
- 2. Unbalance
- 3. Worn belts & pulleys
- 4. Bearing Defects
- 5. Hydraulic Forces
- 6. Aerodynamic Forces
- 7. Reaction Forces
- 8. Reciprocating Forces
- 9. Bent Shafts
- 10.Rubbing
- 11.Gear Problems 12.Housing Distortion
- 13.Certain Electrical Problems
- 14.Frictional Forces

Vibration Monitoring

- Permanent Vibration Sensors
 - Permanent Sensors installed
- Periodic Vibration Measurement
 - Handheld Vibration measurement device

Vibration Monitoring

- Whenever possible, make measurements in the horizontal (H), vertical (V), and axial (A) directions of each bearing.
- Monitoring points should be marked, and data on the same locations are always taken
- In case of Multiple Pumps installed the same scenario be created for all measurements

Vibration Limits

- For Motors less than 200kW8.5 mm/s
- For Motors above 200 kW 9.5 mm/s

The permissible vibration limits for electric motors can be found in the ISO 10816-3 standard. The NEMA and IEC standards also establish some acceptance criteria.

WASA field Issues

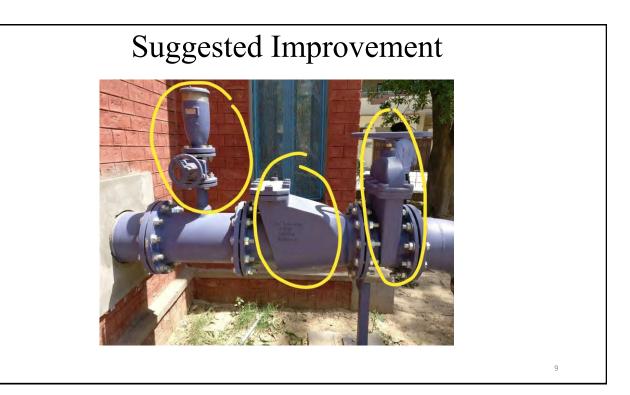
Suggested Improvement

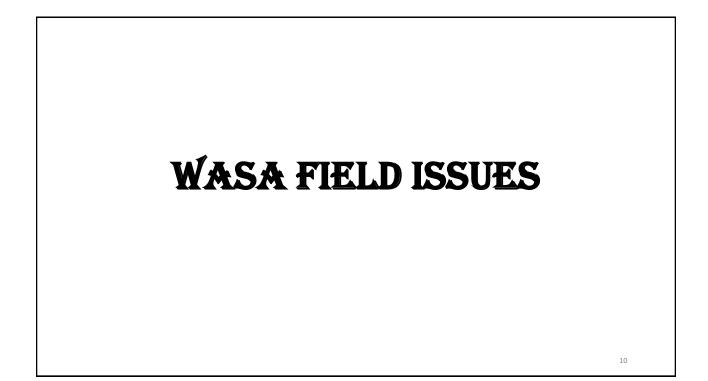
Suggested Improvement

Suggested Improvements

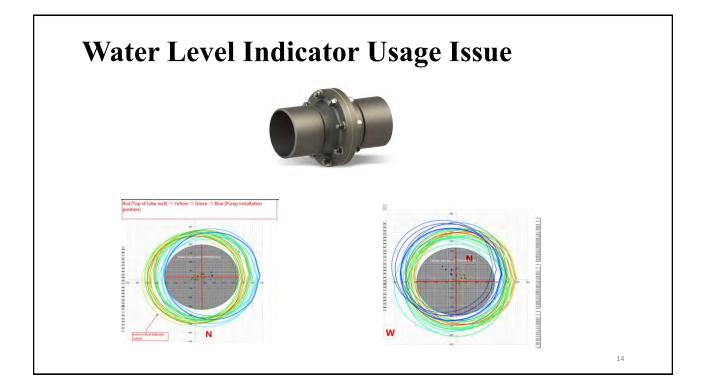
Suggested Improvements

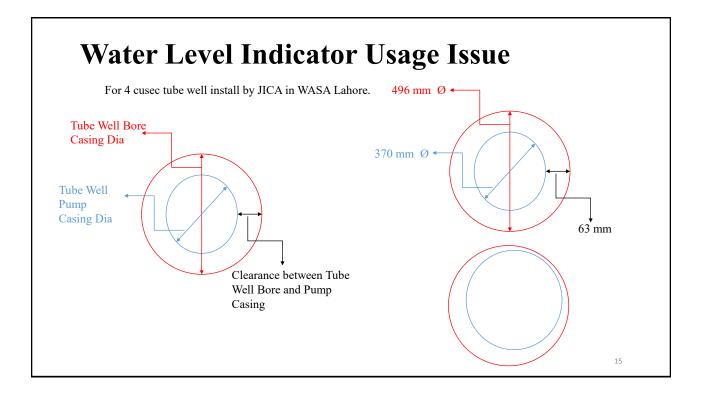
Suggested Improvements


5


Current Conditions

Suggested Improvement




Water Level Indicator Usage Issue

Valves maintenance issue in WASAs

• Cracked gasket

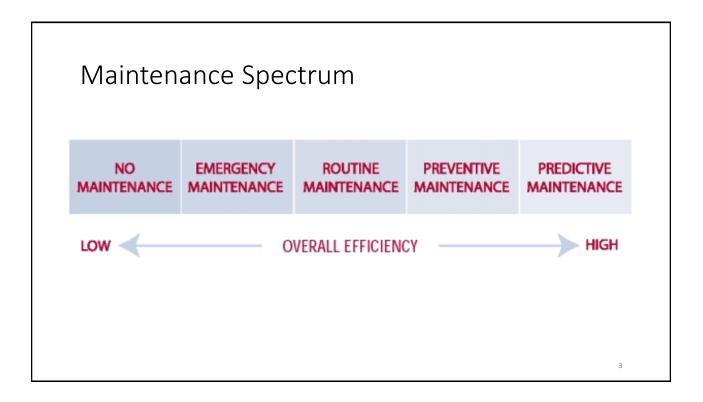
Valves maintenance issue in WASAs

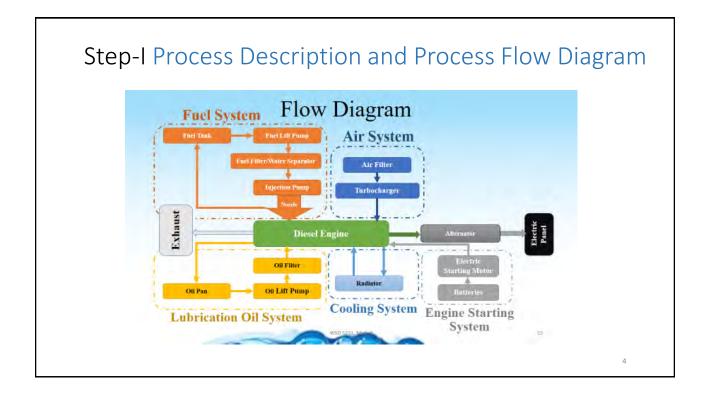
• Absence of balls in air release valves

17

Lubricating box issue in WASAs




<section-header><section-header>


Thank you

Engr. Jawad Shahid

Step-III Operating Procedure

- Submersible Pump Startup & Operation
 - Check water level in bore hole.
 - Check valves (open).
 - Check voltage range for 3-Phase motor.
 - Start up the motor
 - Check that ammeter reading is less than rated motor current.
 - After startup check pressure for operating point.
 - Check for undue vibration and noise.
 - Voltage should be checked every hour.

Step-III Operating Procedure

• Maintaining procedure log

S.No.	Procedure Description	Procedure No.
1.	Operation of Tubewell	WASA/LAH/44
2.	Gland Packing Replacement	KSB/WASA/LAH/77
3.	MCU Thermal and Insulation Test	PEMPAK/WASA/LHR/22
4.	Energy Audit For Tubewell 4 cfs, JICA	WASA/ELEC/LAH/11

Step-IV Preventative Maintenance Program

S.No.	Equipment	Maintenance	Frequency
1.	Fan Belt of Generator	Visual Inspection	Monthly
2.	Pump Motor Temperature Check	Motor Thermal Check	Quarterly
3.			

Step-IV Evaluation of Facility

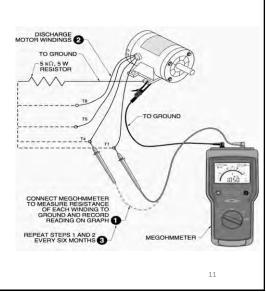
• Evaluation of Pumping Facility, Tubewell

S.No.	Procedure Description	Procedure Title
1.	Evaluation of Motor	Insulation Test for winding
		Thermal Test for overheating
		RPM Test
		Vibration Test
2.	Evaluation of Pump	Flow / Head
		Leakage
		Unusual noise/ vibration

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

S.No.	Procedure Description	Procedure Title
3.	Evaluation of Motor Control Unit	Insulation Test for Wiring and components
		Earth Resistance Test
		Thermal Test for overheating
		Lamp test for warning signs
4.	Evaluation of Valves	Check operation of Air Release Valve
		Check operation of Non return Valve
		Check Operation of Gate Valve
5.	Tubewell Chamber Evaluation	Visual Inspection


9


Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

Overloaded contacts show different temperature profiles indicating one contact seeing much greater load, a potentially unsafe situation.

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

Ultrasonic Flow meter

13

Step-IV Report Writing **Daily and Periodic Maintenance Sheet** Year Service Type Last Activity Annual Month Sr. No. Activities Daily Weekly Monthly 6 Months Date 1 2 3 4 5 Maintenance 1 Visual Inspection . 2 Check Coolant Level . Plan 3 Check Oil Level . 4 Check Fuel Level . 5 Check Charge Air Piping . Check and Clean Air Cleaner 6 . Check Battery Charger 7 . 8 Drain Fuel Filter . Drain Water From Fuel Tank 9 . 10 Check Coolant Concentration . 11 **Check Drive Belt Tension** . Drain Exhaust Condensate 12 . Check Starting Batteries 13 14 Change Oil and Filter . 15 Change Coolant Filter ٠ 16 Clean Crankcase Breather . 17 Change Air Cleaner Element ٠ **Check Radiator Hoses** 18 . Change Fuel Filters 19 ٠ 20 Clean Cooling System .

Annual Maintenance plan

- Step-I Process Description and Process Flow Diagram
- Step-II Equipment Description
- Step-III Operating Procedure
- Step-IV Preventative Maintenance Program (Evaluation of Facility)

15

• Maintenance plan

Contact:

Engr. Jawad Shahid

ENERGY AUDIT INPUT FORM (For Site)

Sr. #	Parameter	Unit	Criteria	1st
1	Date	dd/mm/yy		
2	Time	hh:mm		
3	Location/ Tag	-		
4	Pump (Maker/ Rating/ Type)	-		KSB/ () / Mixed.
5	Motor (Maker/ Rating)	kw		ABB ()
6	Discharge Pressure (p _d)	bar	> 2 (WASA standard)	
7	Flow (Q)	m³/h	To Be -20% to +10% of Design Flow	
8	Dynamic Water Level (hpl)	m	according to design	
9	Static Water Level (hpl)	m	according to design	
10	Voltage (V)	Volt	±10% of rating	
11	Ampere (A)	Ampere	to be less than rated current	
12	Power Factor (Cos ø)	Nil	> 0.90	
13	Motor Input Power (P _{mi})	kW	according to design	
14	Speed (N)	RPM	> 1450~ (4 pole)	
15	Motor Vibration (Upper Bearing)	mm/s	< 5.1	
16	Motor Vibration (Lower Bearing)	mm/s	< 5.1	
17	Pump Vibration (Thrast Bearing)	mm/s	< 5.1	
18	Temperature (at Upper Bearing)	٥C	< (Ambient temp. +40) °C	
19	Temperature (at motor coil; center)	٥C	< (Ambient temp. +40) °C	
20	Temperature (Lower Bearing)	٥C	< (Ambient temp. +40) °C	
21	Temperature (Pump Thrust Bearing)	٥C	< (Ambient temp. +40) °C	
22	Excessive water leakage from gland	-	No	

I	reven	tive M	aintenanc	e Sheet fo	r El	ectrie	cal F	acil	lity														
Site	Name :									Motor S	pecificatio					Eval	nation Cr	iteria					
.785					-	Rated C	apacity	Rated	Voltage		Ampero		licery	Tower	Factor	1:0	bod		o be newly i				
Sub	Division :					(k)	N)	(V)	1	(A)					A:N	leed to be	improved		Intrace			
																-: N	ot availab	le to be cho	deed				
								1						1									
											Pi		Mainte										
No.	Date	Weather	Approved by	Inspected by			al Cenditi		inces		R-b	Voltage I	by Clamp !	Meter (V)	Amperel	by Clamp	Meter (A)		ion Resistan		Vibration Upper Bearing	Temperature	Industry
	Date		Approved by	inspected by	Cleanlin ess	of Cabline	Nations of Cable View Proper Termina 1 Tightening R Cables Cable Label Scaling Cover						18	IR	R	v		$\frac{U1}{U2}$	$\frac{V1}{V2}$	$\frac{W1}{W2}$	Lower Bearing		
1																						-	
																					-	-	
																					1		
																					1		

Sub Division		Mo	otor Specifica	ntion	Rated Capacity (kW/HP)	
Site Name:		Rated Voltage	Rated Ampere	Efficiency	Power Factor	RPM
Equipment Name:		(V)	(A)	-	-	
Date						
Inspected By						
Weather						
	Bolt Tighteni	ng				
	U1-E	U2-E				
	V1-E	V2-E				
Insulation	W1-E	W2-E				
Resistance (MΩ)	U1-V1	U2-V2				
(1132)	V1-W1	V2-W2				
	W1-U1	W2-U2				
Voltage by		RY				
Clamp Meter		YB				
(V)		BR				
Ampere by		R				
Clamp Meter		Y				
(A)		В				
	Power Fac	tor		•		1
Vibration	Upper Bearing	Lower Bearing				
Revolut	tion Per Mi	nute (RPM)				
Tomporaturo	Upper Bearing	Lower Bearing				
remperature	Temperature Shaft					
Reference for I	nsulation Re	sistance Value:	•	Good \rightarrow more	than 1.0MΩ	
Need to Adjust, C	lean,Care \rightarrow	$1.0M\Omega \sim 0.4M\Omega$	Need to repair imme	ediately \rightarrow less than	0.4MΩ	

Preventive Maintenance Sheet for Electrical Facility

- Remarks -

Ch	eck List of Standard	l Operation	Proced	lure for	Electr	ical Facil	lity										
			Motor	· Specifi	cation	<u>:</u> Rated Cap	acity (kW/	(HP)			Fyalua	tion Crite	io				
	roved by :		Rated V	oltage (V)		Rat	ed Curren	t(A)			✓:Good			at all or ne	eed to be ne	wly installed	
Insp	ected by :		Efficien		wer Fac		RPM					to be improve	d –		ailable to be		
	<u> </u>		Efficient	<u> </u>	wei Fac	.toiF		nspection It	oms for Fle	etrics	l Panel (ondition					
			Ι	Document				Visual (Outs		<u>, un</u>			Visual (I	nside)		Opera	ition
Sr. No.	Site/Pump Name	Inspection Date	Operation Record	Drawings	Vender Manual	Identification of Lamp/Switch	Status/ Fault Indication Lamps	Ampere Meter	Voltage Meter		s Selector witch	Cleanliness	Intrusion Path	Bypass- Circuit	Neatness of cabling	How to operate changeover switch	Frequency of Start/Stop
NO.		Date	Compare with the sample	Pump installation , electrical line diagram	Pump/ Panel devices	all lamps /switches have name tag	all lamps are visibly bright enough	Proper functioning and zero adjustment	Proper functioning and zero adjustment	Amper	e Voltage	No dust, sand, spider's nest, insect, small animals	No hole/ crack to let foreign matters come in	No bypass / burnt mark		Turn off by breaker or switch first.	Maximum 2-3 times/ hour
1																	
2																	
3																	
- Re	emarks -																

Check List of Standard Operation Procedure for Electrical Facility

Evaluation Criteria

 \checkmark : Good \times : No care at all or need to be newly installed

 Δ : Need to be improved -: Not available to be checked

			1	Document				Visual (Outside)				Visual	(Inside)		Oper	ration
			Operation Record	Drawings	Vender Manual	Identification s of Lamp/Switch	Status/Fault Indication Lamps	Ampere Meter	Voltage Meter	Status Sele	ctor Switch	Cleanliness	Intrusion Path	Bypass- Circuit	Neatness of cabling	How to operate changeover switch	Frequency of Start/Stop
			Compare with the sample	Pump installation , electrical line diagram	Pump/ Panel devices	all lamps /switches have name tag	all lamps are visibly bright enough	Proper functioning and zero adjustment	Proper functioning and zero adjustment	Ampere	Voltage	No dust, sand, spider's nest, insect, small animals	No hole/crack to let foreign matters come in	No bypass / burnt mark		Turn off by breaker or switch first.	Maximum 2 3 times/hour
1	Disposal Station, Chungi # 9, Panel # 2	28/03/2017	~	Δ	×	~	~	*	-	~	-		Δ	*	~	*	~
2	Disposal Station, Chungi # 9, Panel # 4	28/03/2017	~	۵	×	~	~	~	-	A	-		Δ	^	Δ	~	~
3	Disposal Station, Chungi # 9, Panel # 7	28/03/2017	~	Δ	×	~	~	Δ	-	Δ	-		Δ	~	Δ	~	~
4	Disposal Station, Chungi # 9, Panel # 8	28/03/2017	~	Δ	×	1	~	Δ	~	Δ	-	~	Δ	~	✓	~	~
5	Disposal Station, Chungi # 9, Panel # 11	28/03/2017	~	Δ	×	~	Off lamp is not working	Δ	-	Δ	-		Δ	~	~	~	~
Tota	al Numbers of items req replaced*	uired to be					1			4							
1. No 2. Co	e marks - lamp test was available so nfirm that Current Transfor inctioning CT, please chang	mers (CTs) ar	e working	fine before	replacem		R R R E P	Aotor Spa ated Capaci ated Voltag ated Curren fficiency: ower Factor PM:	ity: e (V) : nt(A) :	<u>n:</u>	F F F F	Motor Sp Rated Capac Rated Voltaş Rated Curre Efficiency: Power Facto RPM:	ity: ge (V) : nt(A) :	<u>DN:</u>			

* All components should be purchased as per required specification of each panel according to the installed motor

	ce Inspection Sheet		Motor S	Specifica	tion:	Rate	d Capaci	ity (k	KW/I	HP) _] [Evaluation	Criteria				
	roved by : ected by :		-		V) RP		urrent(A	.)		Effic	ciency_			-	:Good		are at all or n d —: No	eed to be ne t available t		
Sr.		Inspection	Con		Test of co cuit Brea		ts (Using	M	mp N agne ntac	etic	r)		Currer			Over/Unde /oltage Rel	er ay	ljustments Over Cu (Thermal)		Y-∆ Timer
Sr. No.	Site /Pump Name	Date	мссв	MCB 1	MCB 2	MCB 3	MCB 4	K1	К2		Fuse	CT1	CT2	СТ3	Under Voltage Tripping Function	Over Voltage Tripping Function	±10% of rated voltage of motor	Tripping Function	Value Set	Not less than 5 seconds
1																				
2																				
3																				
4																				
5																				
- Rei	marks -		•					<u> </u>		<u> </u>	<u>.</u>			1	1			•		

Device Inspection Sheet

Evaluation Criteria

✓: Good \times : No care at all or need to be newly installed Δ : Need to be improved -: Not available to be checked

				Conti	nuity Te	st of con	ponents	(Using	Clamp	Meter)			I	Relays Adju	istments		
				Circ	uit Brea	kers		Magn	etic Coi	ntactor			Over/Unde		Over Cu		Υ-Δ
Sr.		Inspection										V	oltage Rela		(Thermal)	Relay	Timer
No.	Site /Pump Name	Date	мссв	MCB 1	MCB 2	MCB 3	MCB 4	K1	K2	К3	Fuse	Under Voltage Tripping Function			Tripping Function	Value Set	Not less than 5 seconds
1	Disposal Station, Chungi # 9, Panel # 2	28/03/2017	1	~	~	~	✓	✓	1	~	-	×	×	-	×	-	~
2	Disposal Station, Chungi # 9, Panel # 4	28/03/2017	-	×	~	~	~	✓	~	×	-	×	×	-	×	-	~
3	Disposal Station, Chungi # 9, Panel # 7	28/03/2017	~	×	Δ	~	~	✓	~	~	-	×	×	-	×	-	✓
4	Disposal Station, Chungi # 9, Panel # 8	28/03/2017	~	√	~	✓	~	✓	~	~	-	×	×	-	~	-	✓
5	Disposal Station, Chungi # 9, Panel # 11	28/03/2017	~	Δ	Δ	Δ	~	✓	~	✓	-	×	×	-	×	-	✓
T	otal Numbers of items required technology in the second second second second second second second second second	uired to be	0	3	2	1	0	0	0	1	-		5		4	·	0
- Remarks - MCB 4 of panel number 2 was malfunctioned and already replaced																	

* All components should be purchased as per required specification of each panel according to the installed motor

					(J	per	at	io	n '	Ti	m	e F	Rea	co	ord	(P	u	np)							
Month	/Year :		/										Ap	prove	d b <u>r</u>	y (Engi	neer)										
	Date :	~	\sim				_						Pr	epared	d by	(Operation)	ator)										
			Standard/												Da	ate											
Facility	Items	Unit	Rated	(-)	(-)	(-)	(-)	(-)) (-)	(-)	(-)	Average	Total
Pump 1	Operating Time	-	\backslash	:	~	:		~	:	:	~	:		~	:	:	~ :		: ~	:	:	~	:	:	~ :		\square
	Operating Hours	hrs.																									
	Chlorine Dosing	Y/N																								\sum	
	Flow Reading (Start)	m3																								\square	
	Flow Reading (Stop)	m3																									
	Flow Amount	m3																									
	Pressure	MPa																									\sim
	Power Factor	%																									\sim
	Voltage RY	v																									\sim
	YB	v																									\sim
	BR	V																									\sim
	Ampere R	А																									\sim
	Y	А																									\sim
	В	А																									\square

Operation Time Record (Generator)

									-						
Month/Year :									Approved b	y (Engineer)					
Date : \sim									Prepared by	y (Operator)					
	Items	Unit	Standard/			Date									
Facility			Rated	()	()		()	()	()	()	()	()	Average	Total
Generator	Operating Time	-	\sum	: ~	: :	~ :	:	~ :				: ~ :	: ~ :	\sum	
	Operating Hours	hrs.													
	Fuel Level (Start)	L												\sum	
	Fuel Level (Stop)	L												\sum	
	Fuel Consumption	L	\searrow												
	Voltage RS	v	400												
	ST	v	400												
	TR	v	400												
	Frequency	Hz	50												
	Energy Reading (Start)	KWh												\sum	
	Energy Reading (Stop)	KWh												\sum	
	Energy Consumption	KWh	\searrow												

Operation Time Record (Pump)

Month/Year :				/			Approv (Engir										
Date : ~				_					Prepared by (Operator)								
Sr. No.	Date	Shift #	Operating Time		Operating Hours	Chlorine Dosing	Flow Reading (Start)	Flow Reading (Stop)	Flow Amount	Pressure	Power Factor	Voltage			Ampere		
			Turn On	Turn Off	hrs.	Y/N	m3	m3	m3	MPa	%	RY (V)	YB (V)	BR (V)	R (A)	Y (A)	B (A)
1																	
2																	
3																	
4																	
5																	
6																	
7																	
8																	
9																	
10																	
11																	
12																	
Rem	Remarks:																

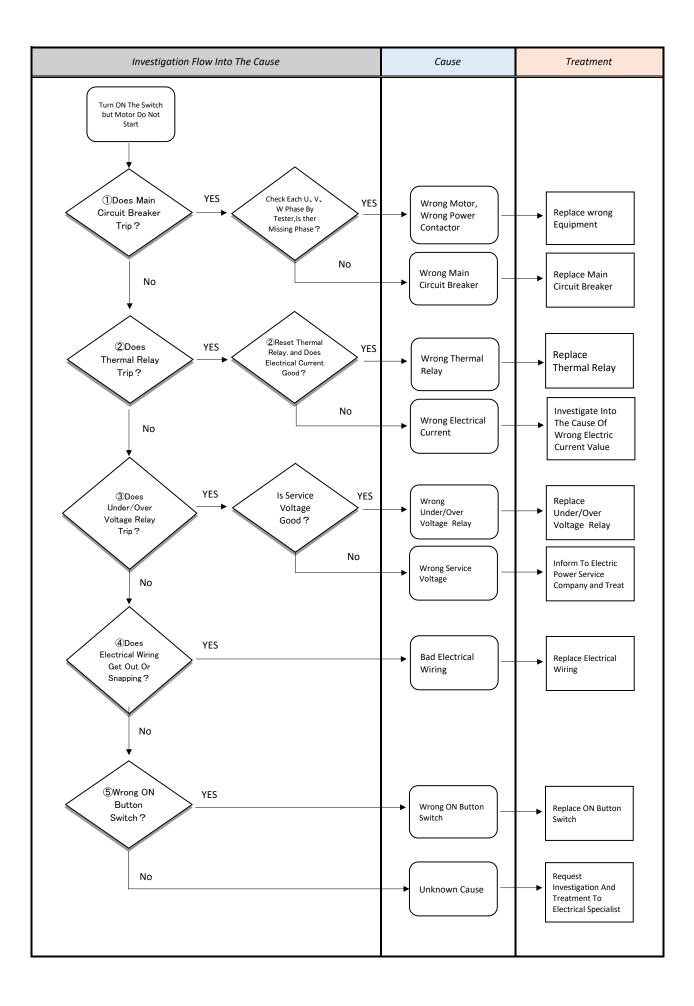
Motor Movement Explanation

[Pre Movement Condition]

- 1 Main Circuit Breaker (TP MCCB A47) : ON
- 2 Circuit Breaker MCB (A1-A3 SP MCB's) : ON
- 3 Under/Over Voltage Relay (UV/OV RELEY) : OFF
- 4 Thermal Relay (O/L RELEY) : OFF

[Movement Explanation]

```
    Push Button → ON
    Power Contactor K3 → ON → Power Souce Voltage Impress To Motor U V W
    Power Contactor K1 → ON → Motor Connection Is Y Wiring.
(Only 1/V3 Power Voltge Will Impress To Each Phase And Starting Current Will Be Small)
    Timer (TR) → Condition
    Timer → ON
    Power Contactor K2 → ON → Motor Connection Will Change to ΔWiring,
Turn to Normal Operation, Motor Will Run Normally.
    MOTOR ON Light → ON
    Push Button → OFF
    Power Contactor K1 K2 K3 → OFF
```

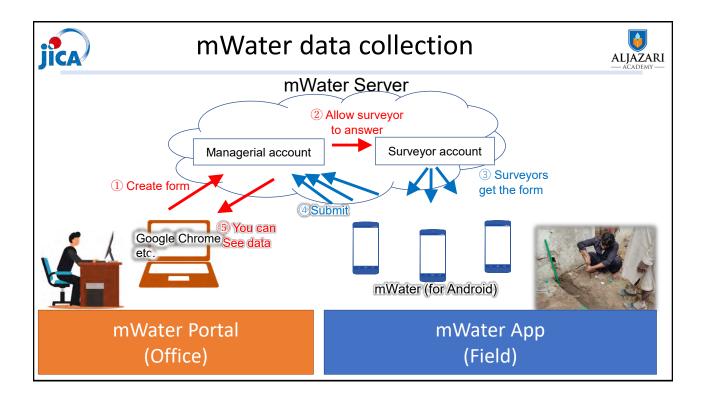

3 Motor \rightarrow Stop

[Check Items While Motor Running]

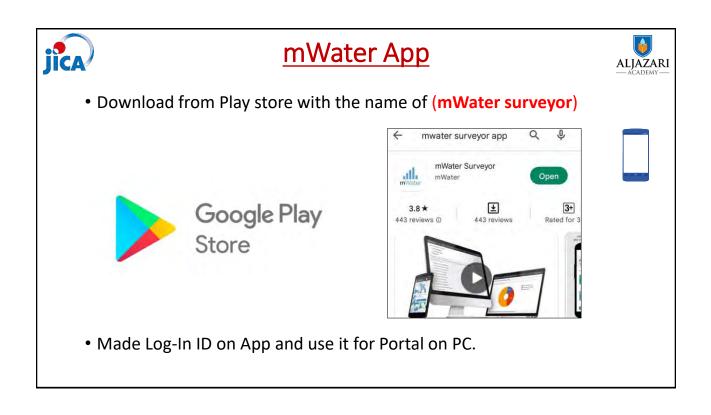
- 1 By ASS (Ammeter Change Over Switch) Check Each Phase Electric Current (U V W), Confirm It Shows Under Rated Current.
- 2 By VSS (Voltage Change Over Switch), Check The Voltage Of U-V V-W U-W, Confirm It is Normal Value.
- 3 Chaeck The Water Level Of Motor Drawing Well.

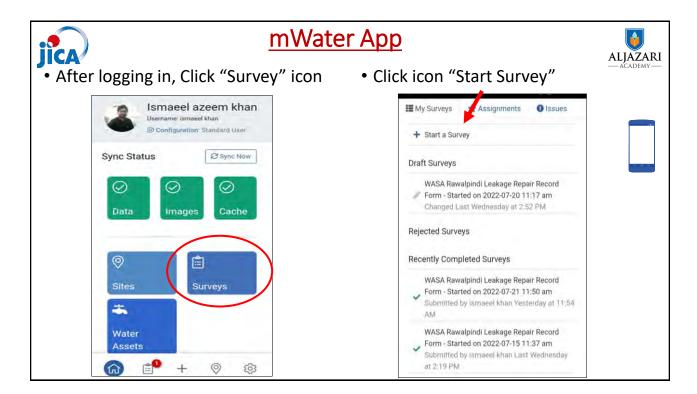
[Other Check Items]

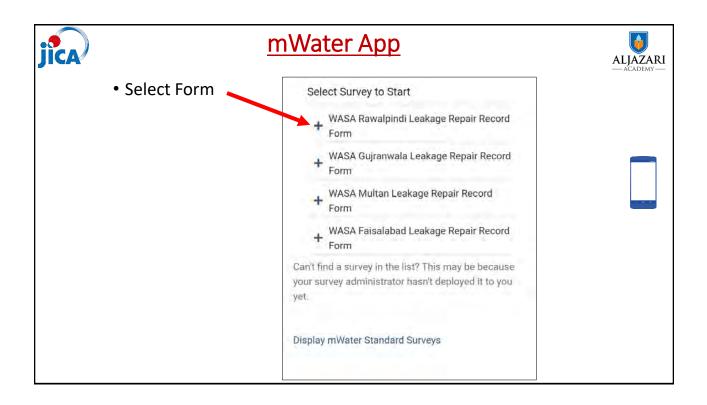
- 1 Using Insulation Resister Tester, Check the Motor Insulation Resiatant Value.
- 2 Regular Management Should Be Treated For Motor (for example Oil, Lubricating Water).

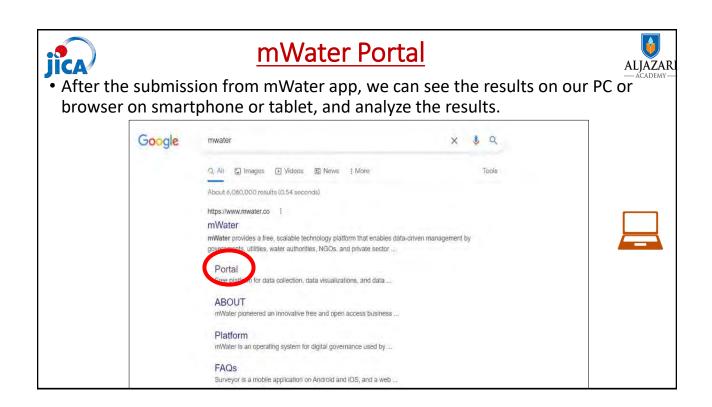


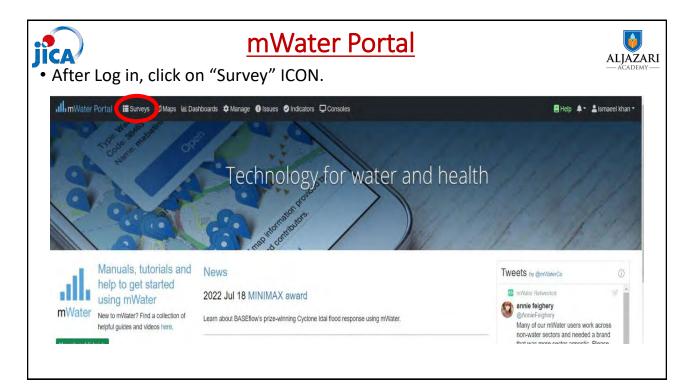
Annex 5.1.48 Training Material for "Leakage Control, Plumbing and Pipe Replacement Plan" in Fall 2022




ALJAZARI

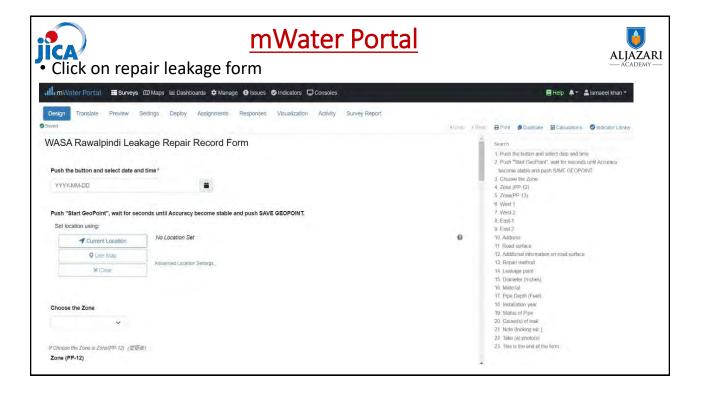




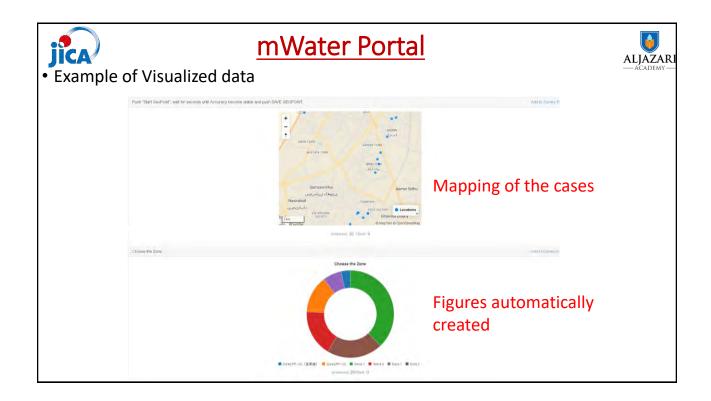


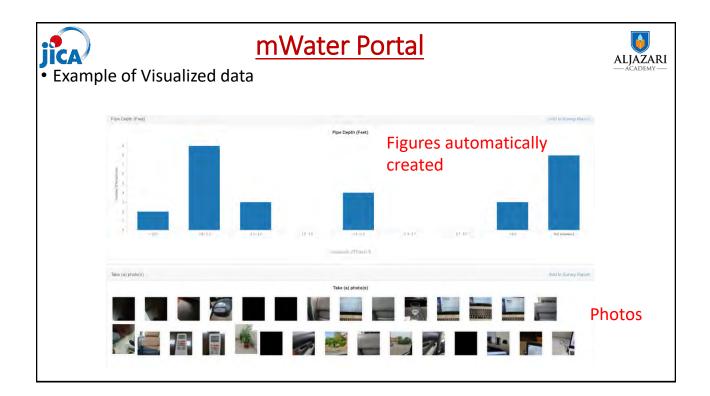
jîca <u>m</u>	Water App	
Put the information on the	WASA Rawalpindi Leakage Repair Record Form Push the button and select date and time*	— ÁCADEMY
site, the repair situation etc.	2022-07-20	
	Push "Start GeoPoint", wait for seconds until Accuracy become stable and push SAVE GEOPOINT. Set location using:	
	Current Location No Location Set	
	Advanced Location Settings_	
	Choose the Zone	
	East-2	
	Muslim Town (UC-28) 🗸	
	Address	

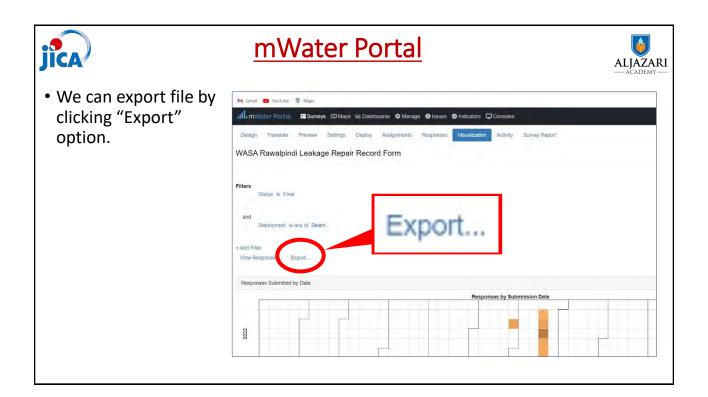
mWater ap	<u>p</u>	
	Cause(s) of leak Bronken in other construction	ACADEMI —
・Take photo	Note (looking etc.) Add any other comments if necessary,	
and	Take (a) photo(s)	
• Click "Submit".		
	This is the end of the form.	
 When Internet is not available, Click "Save for Later" 	Submit Save for Later Discard	

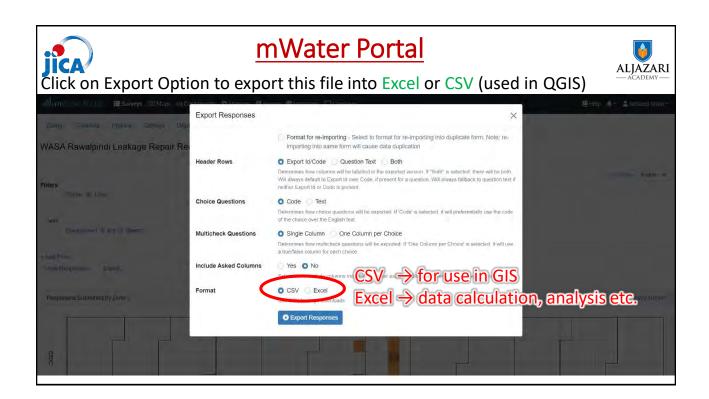


mWater Portal

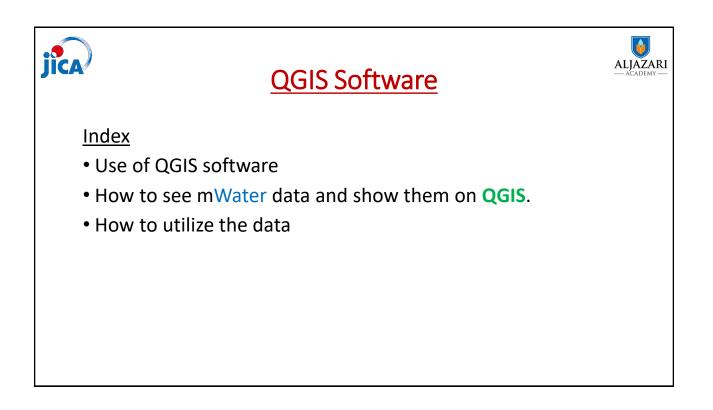



• We can either use prepared form or create new survey


Surveys				
+ Create New Survey				Search
1 A	Name	Created	Modified	Operations
Survey Design Import	WASA Rawalpindi Leakage Repair Record Form	06/27/2022	Yesterday at 2:52 PM	
Viewable By Me	Untitled Survey	Last Wednesday at 9:22 AM	Last Wednesday at 9:26 AM	
Created By Me	WASA Gujranwala Leakage Repair Record Form	07/06/2022	Last Tuesday at 2:31 PM	
📝 Editable By Me	WASA Multan Leakage Repair Record Form	07/06/2022	Last Tuesday at 2:30 PM	
🗭 Deployable By Me	WASA Faisalabad Leakage Repair Record Form	07/06/2022	Last Tuesday at 2:30 PM	
A Shared With Me	The second s	GHOOLDEE	Lus rucius a Lourin	
# Public				
Trash				
+ New Folder				

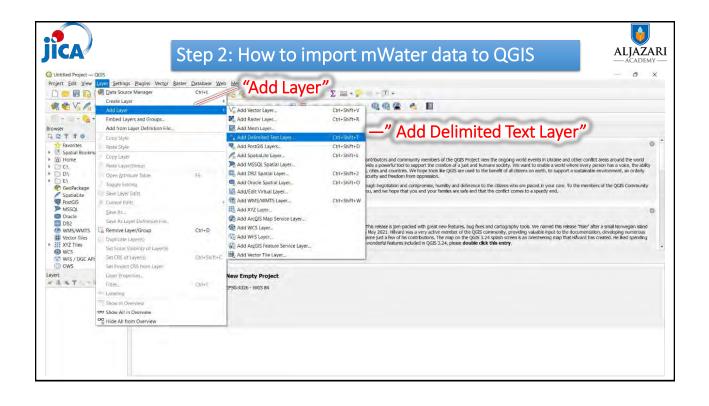


jica							er l	Por	ta	_					
 To see th 	e fo	rm c	lick	on vi	sualiz	atior	ו								— ACADEMY —
	Survey	rs @Maps	🔟 Dashb	oards 🏟 Man	age 🕕 Issue:	s 🥝 Indicato	rs 🖵 Consol	ðŞ					(3)	Help 🌲 •	🛓 ismaeel khan 🔹
Design Translate	Preview	Settings	Deploy	Assignments	Response	Visualiza	ation Activi	ty Surve	y Report						
WASA Rawalpind	Leaka	ge Repai	r Recor	d Form											
Filters Status is Final and Deployment is a + Add Filter View Responses Ex	port	zł													English V
Responses Submitted by	/ Date													Ad	ld to Survey Report
	-			1		Re	esponses by	Submission	Date	1	1		 1	1	
2022															



jic,					ed Excel s or .csv)	sneet			ALJAZA — ACADEMY
File Ho	mie Unsert Page La	yout Formul	as Data Review	View Developer DocuW	orks - 🛈 Tall me what you want to	de	and the second		金野俊太郎 🔉 Sha
· X Cut	MS PTO	A Lin	- A' A' = =	No. Dimension			Σ.Α.	atoSum - A	- 0
1 Bo Coby		22 112	- A A - = =		General 👘 📝	13 13 1	1 🕂 🔛 🖬	1- Z	T P
iste	at Painter B I U	- 17 <u>0</u> 7,	A ** =	📧 🐘 Merge & Center	- \$ - % 9 00 00 Condition		isert Delete Format 🖉 Cl		L & Find & ar * Select *
Clipitaterd		Ener		Alignmen	r. Austher T.	Styles	Cells	Editions	N . Delect .
				- all more at		and and	-Series	Control	
16	 1 (20) (40) 	∬ s.kinn	o-AJFYGX						
AA	AB AC	AD	AE A	F AG AH	AI AJ AK	AL AN	AN AO	AP	AC AR
Address	1.00		(* 1988) (* 1997)	ir me Leakage p Leakage p			of Cause(s) (Cause(
	-CAsphalt.pz	Test	Rubber Tu	Joint	12	1 B	Insufficien	37 (14000 (10	https://api.mwa
Test2	Concrete	Test	Wooden C	Other (ple Test	4 SP (Steel	1.5 C	Aging		https://api.mwat
Test	Concrete	Test	Other (ple	Straight pi	6 PE or HDF		Other (ple Test		https://api.mwat
Test	Asphalt pa		Clamp	Bent pipe	4				
Test	Concrete		Replace th	Saddle	3 SP (Steel	4 D	Unbalance		https://api.mwat
Test	Earth	Test	Wooden C	Saddle	2 CI (Cast Ir	2 G	Insufficien	1	https://api.mwat
Test	Asphalt pa	Test	Rubber Tu	Straight pi	3 SP (Steel	3 D	Other (ple Test	Test	https://api.mwat
Test	Concrete		Replace th	Saddle	4 Lead	2 B	Insufficien		https://api.mwat
Test	Pipe is exp		Clamp	Joint	2 Asbestos	2 D	Vandalized		https://api.mwa
Test	Earth	Test	Rubber TL	Straight pi	10 DIP (Duct	2.5 G	Unbalance	Test	https://api.mwat
	Concrete		Wooden C	Straight pi	3 PVC	2 C	High press		https://api.mwat
	Asphalt pa		Clamp	Joint	2 Asbestos	2 A	Insufficien		https://api.mwat
	Asphalt pa		Replace t/	Joint	2 Asbestos	2 C	Aging		https://api.mwat
1	A		Rubber TL	Joint	5 PVC	2.5 B	Unbalance		https://api.mwat
	Asphalt pa		Glamp	Welding pa	4 SP (Steel	2.5 D	Bronken ir		https://api.mwa
	Asphalt pa		Replace th	Bent pipe	6 DIP (Duct	3 B	Insufficien		https://api.mvat
	All tho	2004	iors aro	shown in tł	no tablo	0	pen the ima	age or	

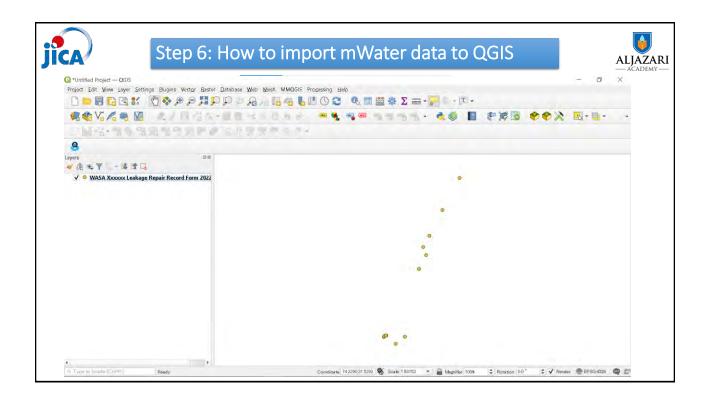
Geographic Information System GIS

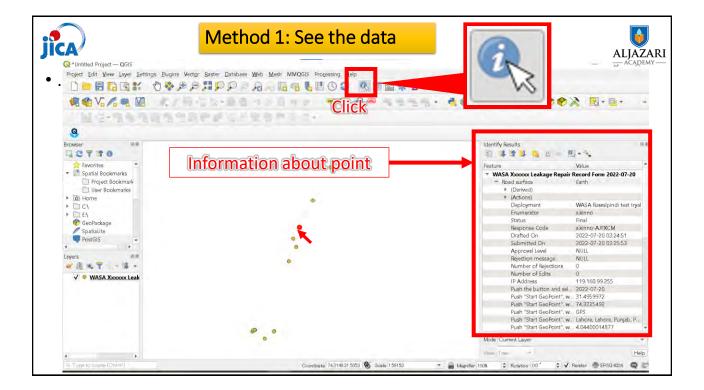

A geographic information system (GIS) is a system that creates, manages, analyzes, and maps all types of data. GIS connects data to a map, integrating location data (where things are) with all types of descriptive information (what things are like there).

Types of Data Inputs in GIS

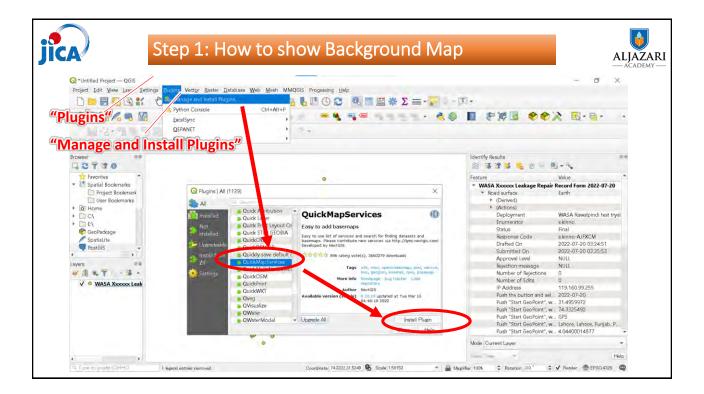
- 1. Vector Data
- 2. Raster data
- 3. Excel Data

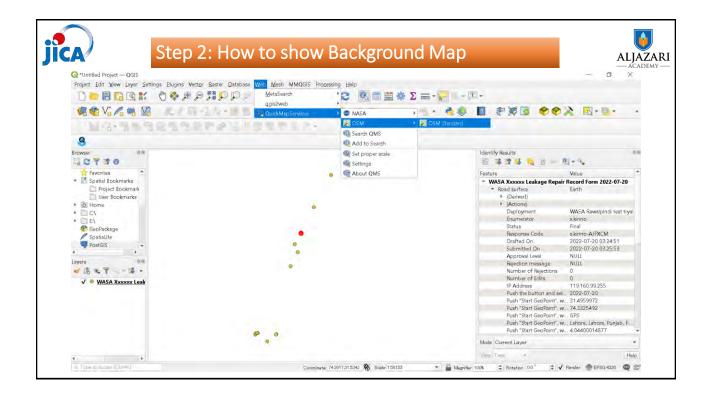
jica	Step 2: How to install	QGIS	ALJAZARI — ACADEMY —
< ⇒ ⊂ @	https://www.qgis.org/wn/site/forusers/download.html	E 90% C	⊚ ⊻ ≡
G 回覧板の作成 O Firefox 3.26.1 3.22.9 LTR	を使いこなそう G https://www.google.c. G ECHAFAUDASE - Goe [■ 中 単語・表現20 DISCOVER GGIS FOR USERS GET INVOLVED DOCUMENTATION	2005 - 御 Jai 日本テクノ株式会社	□ 他のブックマーク English
	CAUTION: Upgrades of old setups from OSGeo4W v1 using this repository are different directory. CAUTION: 32 bit binaries are not produced anymore. Also Windows 7 no longe support for it. Standalone installers (MSI) from OSGeo4W packages (recommended for ne Latest release (nchest on features):	r works as we are now using Python 3.9, which dropped	
	A GIS Standalone Installer Version 3.28	и и	
	Long term release-(most stable):	Save the file and Run Installer	
	sha256 Note that the MSI installers are much bigger than the previous installers. This is PROJ 8). The main reason for the switch to MSI were the size limits previously dependencies.	ute because they include significant larger packages (eg.	

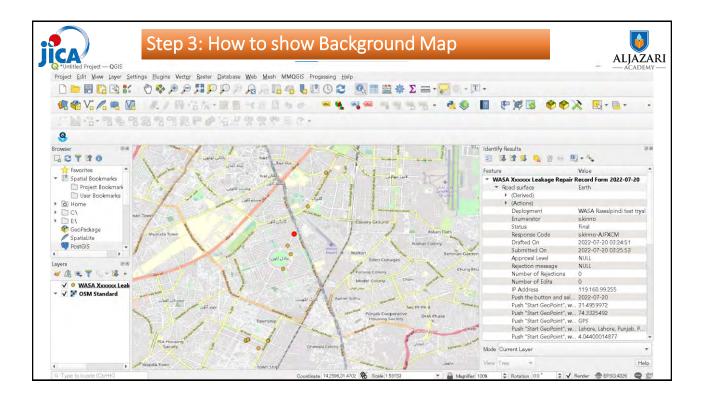

Project Edit View Layer Settings Plugins Vecto	
Browser Die News	
an may occurry requires	Construction C
© 0VS → Loren 38 ◆ 急 ≪ 平 本 在 三	New Empty Project EPSG-4326 - WoS 94



Favorites Spanial Bockmarks Spanial Bockmar	D = = = ि © ≋ ≤ (0 ♦ ≠ ≪	A Herger Database Web Menh Berge A Log Control Source Manager Delimited Text	Click
WCCSV WCCVV WCCVV AcCOSS Preserve setled an input file AccOSS Clove AccOSS Clove Action Help	Provinte Spatial Bockmarks Spatial Bockmarks Spatial Bockmarks Spatial Bockmarks Spatial Bockmarks Spatial Bockmarks Provide Pa Spatial te Provide Spatial te Provide Provide Vorside Provide Vorside Vorside Provide Vorside Provide Vorside Provide Vorside Provide Vorside Provide Vorside Vorside Provide Vorside Provide Vorside Vorside	Vector Vector Vector File format Vector Vector Vector Vector Vector File format Vector Vector Vector File format Vector Vector Vector File format Vector File format	y vents in Urane and other conflict areas around the world make a most ware every perion has a voce, the abity last and the world meth, and other he members of the QdIS Community


Project Edit View Layer Sentions Busins Vector Ba		0, □ Ξ Σ Ξ • 🖓 Q + II •	ACA
		🖷 R R R R R Q Q R 🔹 🔳	
Browser Ste Nour	Q Data Source Manager Delimited Text	*	
Browser D News	Choose a Delimited Text File to Open		×
	← → ~ ↑ ↓ → This PC → Du Organize + New folder ↓ Downloads ≠ ~ Earlier this we	Select the exported CSV file	ion ery nat
Spanialize Spanialize Pordids MASSAL Oracle Date Date WASYMATS WAS	Documents * Cictures * Minitature pur# JICA Phase 2nd y Periodic Inspecti Video	WASA Rawapindi testage Repair	em er', atu a h
	 → Downloads > Music > Prictures > Prictures	2 Jindi Leakage Repair Record Form 2022-07-19 (1)	pen"


			- 0 ×
	Q Data Source Manager Delimited Text	×	
er Sile News	Browser File name C:(Users)Lenovo/Downloads)/VASA Rawalpindi Leakage Repar Record Form 2022-07-19 (1).cov	a	
Favorites Spatial Bookmarks Di Home CA	Vector Layer name (WASA Rawalond Laskage Repar Record Farm 2022-07-15 (1) Encoding UTF-8 Rester Rester Record and Fields Options	le want to enable a world where	her conflict areas around the world e every person has a voice, the ability
DA DA EA SecPackage Spatialite PostGIS	Delimited Decometry Definition V Genetry Definition Construction Text if Point coordinates X field Push "Start Genetion", wast for secon * Z field Verify Push "Start Genetion", wast for secon * M field Well known text (WKT) Coordinates		ustainable environment, an orderly
MSSQL Oracle DB2 WMSyMMTS Vector files Vector files	Statistics The generative (statistics) The features The second state The second	26 - WGS84 tretese	Tisler ¹ after a smal Norwegan Island umentation, developing numerous ward has created. He iked spending
WCS WFS / OGC API - Features OWS s ONS	Deployment Enumerator Stutu Response Code Diralted On Summitted D WaSA Rawaipindi test tryal skinno Final skinno-AGN87N 2022-06-28.02:2040 2022-06-28.02:204 WASA Rawaipindi test tryal skinno Final skinno-AGN87N 2022-06-28.02:2435 2022-06-28.02 WASA Rawaipindi test tryal skinno Final skinno-AGN87N 2022-06-28.02:2435 2022-06-28.02	1:11	
6 * T - + 6 1 3	WMSy 4 WMSA Rewalpindi tett trjal skinno Final skinno-AGNCCR 2022-06-28.03.11.03.2022-06-28.03.1 WMTS 5 WASA Rawalpindi tett trjal skinno Final skinno-AJNVFP 2022-07-18.0612-53.2022-07-18.062 WES CCC API- 1 skinno-AJNVFP 2022-07-18.0612-53.2022-07-18.062		
	Features	Add	



CA		Nethod	2: Se	e the data				I	ALJAZ
	Layer Settings Plugins Vector	Baster Database Web Me			¥Σ =	Q • [T] •		- (— ÁCADE/ II ×
	Zoom to Layer		R to at	···· ··· ··· ··· ··· ··· ··· ··· ··· ·	pice and				
The start	Zoom to Selection	Q 15 18 09 0		kage Repair Record Form 2022-07-20				- C	I X
	Show in Overview			SECTESP					
	Show Feature Count		Welding part	(Other (please spc Diameter (Inche	 Material 6 DIP (Ductile Iron. 	ther (please specify Pipe Dept	4 D 4 D		e (Other () -
nen Attri	ibute Table	bad plugin 'gepanet' du							and the second se
Favorites (Duplicate Laver	and a	Joint		12 NUL	NUL	1 B.	Insufficient bolt	-
🔻 🛄 Spatial Bookr	Remove Laver	alles 3	Other (please sp.		4 SP (Steel Pipe)	NULL	1.5 C	Aging	NULL
Di Project Bo		4	Straight pipe bo.		6 PE or HDPE	NULL	NULL NULL	Other (please sp.	
	📓 Open Attribute Table	5	Bent pipe body	NULL	4 NULL	NEUL	NULL NULL	NULL	MULL
 Home C:\ 	<u>E</u> ilter	6	Saddle	NOLL	3 SP (Steel Pipe)	NERL	4 D	Unbalanced or t	MULL
+ 🗋 EV	Change Data Source	7	Saddle	NULL	2 CI (Cast Iron)	86/12	2 C	Insufficient Inser	THUEL
😵 GeoPackage 🖉 SpatiaLite	Set Layer Scale Visibility Layer CRS		Straight pipe bo.	. NOLL	3 SP (Steel Fipe)	NERL	3 D	Other (please sp.	Test
4	Export		Saddle	NULL	4 Lead	SHILL	2 B	Insufficient bolt	NULL
Layers	Styles	10	Joint	NOLI	2 Asbestos	NULL	2 D	Vandalized	MILL
	Properties	Suit 11	Straight pipe bo.	. NULL	0 DIP (Ductile Iron.	. MULL	2.5 C	Unbalanced or t	NUL
V WASA Xx		dicat 12	Straight pipe bo.	. NOLL	3 PVC	NERL	2 C	High pressure	MILL
		Mariling da	Joint	NULL	2 Asbestos	NULL	2 A	Insufficient inser	NULL
	une de la la	DHA EME Sector 14	Joint	NOLL	2 Asbestos	NEIL	2 C	Aging	MILL
	iter all	Agrics Town	Joint	NULL	5 PVC	NUCL	2.5 8	Unbalanced or t	NUL
	10000	اللي المالية المراني الذي الموالية الموالية الموالية الموالية الموالية الموالية الموالية الموالية الموالية الم			1.2				т. F
	1.2002		Show All Features						

Take full advantage of the data

Visualization in mWater Portal

<u>Quick check</u> of the data

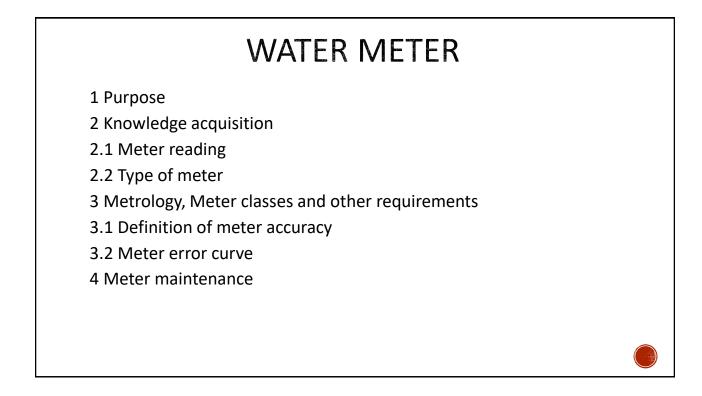
Excel

jica

• Integrate and conserve all the data, <u>calculate and analyze</u> etc..

<u>QGIS</u>

- Visualize data on map and express the parameter as you like
- <u>Prioritize the area for budget</u> allocation of pipe replacement etc.


→ Exhibit the leakage situation effectively

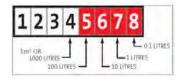
- Request budget from the Government
- Attract international fund

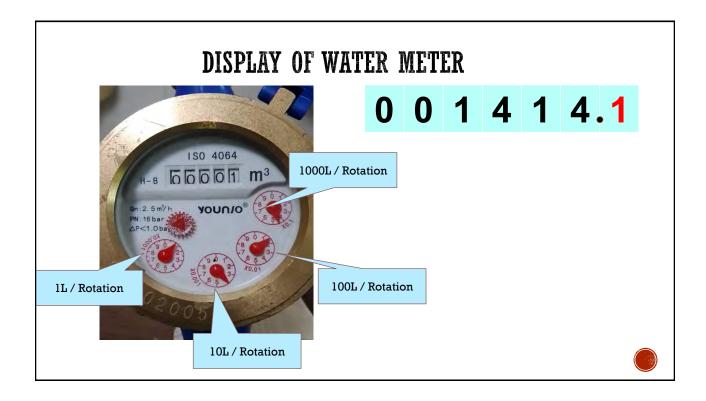
CA	ALJAZARI — ACADEMY —	The Urban Unit
Cours	e Team	
Ms. Rebia Suhail	Course Lead	
Mr. Syed Fahad Hussain	Module Lead	
Mr. Wajih	JICA Coordinator	
Mr. K Kayanoma	JICA Expert	

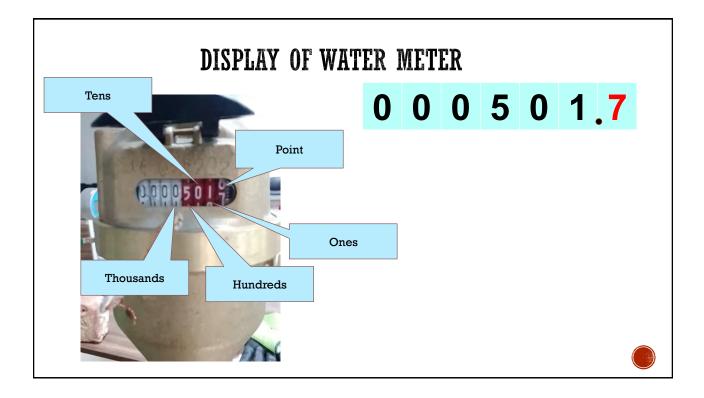
PURPOSE

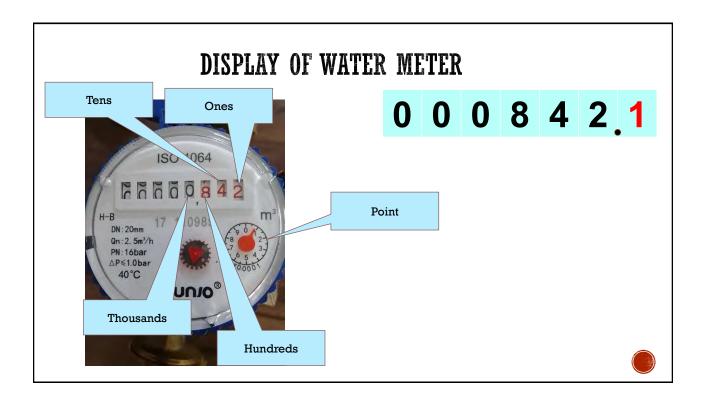
Purpose of training

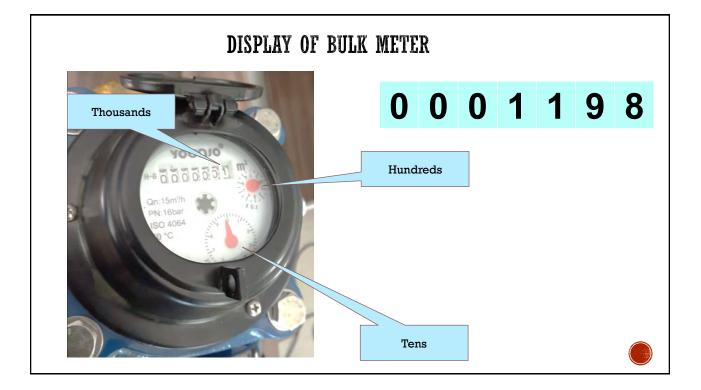
Understand meter reading, Type of meters, meter accuracy & class, maintenance.

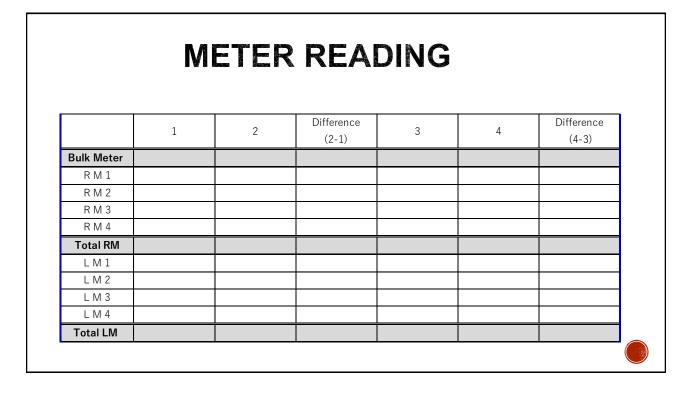

METER READING

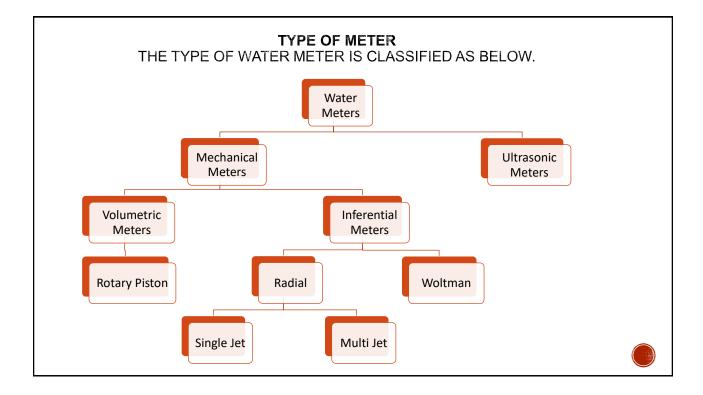

The water meter shows several digits as shown in the figure. This digit means 1234 m3 and 567.8 liter, or 1234.5678 m3. When the counter of 0.1 liters is moving between two numbers, it is counted as lower number.


m3 is shown in the upper black digits and liter is shown in the lower red pointer. When the pointer is between two numbers, it is counted as lower number.


When the digit of counter reached maximum (e.g. 9999.999), it back to all zero (e.g. 0000.000), and sometimes it makes mistakes of calculation of consumption. As shown below, it is necessary to calculate on the assumption that it has one digit in the left side which is not shown on the display.


JIS : Japanese Industrial Standards (JIS B 8570-1:2013)



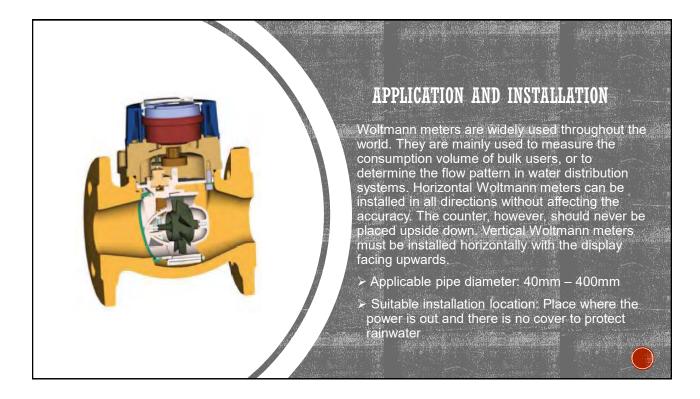


WOLTMAN METERS

<Mechanism>

The Woltman meters are an inferential meter that uses an impeller with helical vanes. As water flows over the helical vanes, it rotates the impeller. Then, the rotation is transmitted to the dial via reduction gearing.

There are two main types of Woltmann meters called Horizontal (WP) and Vertical (WS) Woltmann meters. Horizontal Woltmann meters have their inlets and outlets directly along the pipeline. The axle of the helical vane is parallel to the flow.


Water flows directly through the meter with small loss caused by the meter body.

The flow direction is changed 90 degrees after entering a vertical Woltmann meter, pass through the impeller and then turn back to the original direction as shown in the cross section of left Figure.

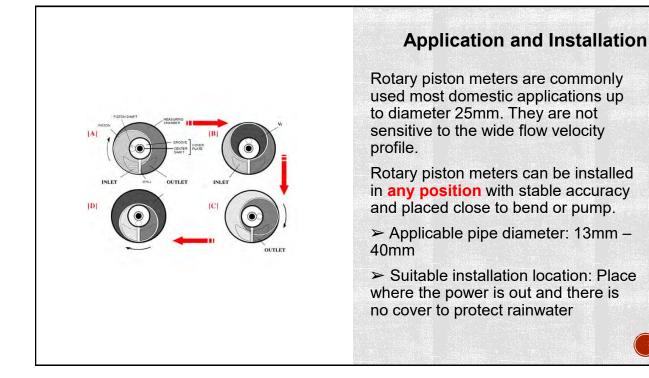
Woltmann meters have dry and sealed dials.

> Advantages: No power required, Highly accurate

> Disadvantages: If a foreign substance gets in, accuracy falls, or the impeller will be damaged. Piping friction loss occurs. Not applicable to large diameter pipes.

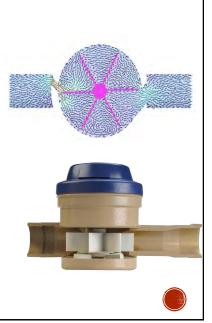
ROTARY PISTON METERS

Rotary piston meters are popular for their combination of accuracy, long life and moderate cost so they are widely used. Rotary piston meters come in many different shapes and sizes as shown. Wet or dry dials are used. Sand or other suspended solids easily get stuck between the piston and chamber wall. Thus, it is important to be installed in the system with very good water quality and to install built-in strainer.



<MECHANISM>

The piston and cylinder are alternately filled and emptied by the fluid passing through the meter. A slot in the sidewall of the piston is removed so that a partition extending inward from the bore of the working chamber can be inserted. This has the effect of restricting the movement of the piston to a sliding motion along the partition. The rotary movement of the piston is transmitted via a permanent-magnet coupling from the drive shaft to a mechanical register.


- 1. Easy to read register
- 2. "O" ring seal
- 3. Stainer
- 4. Non-Return valve
- 5. Piston and cylinder

SINGLE JET METERS

- Single-jet meters are a low-cost option because there's a direct impact to the impeller by the water flow
- The water is channeled through a single jet over a impeller placed inside the body of the meter. Impeller circulating the flowrate.
- Resistant to suspended solids.
- Small and can be installed in tight spaces.
- Most single jet meters have to be installed perfectly horizontally and upright to ensure accurate measurements

MULTIPLE JET METERS

<Mechanism>

The multi jet meters are an inferential water meter. Their operation is similar to that of single jet meter, except that they use several jets to drive the impeller at multiple points.

This means that the forces on the impeller are better balanced than in single jet meters, which reduces wear on the moving parts and provides greater durability. A cutaway view of a multi jet meter is shown in the left photo.

Multi jet meters normally use an internal bypass with a regulating screw to adjust the flow passing through the impeller. This allows the manufacturer to adjust the meter's error curve for achieving the best accuracy before sealing it for the prevention of meter tampering. A strainer is installed on the inlet side, which can be removed for cleaning.

> Advantages: No power required, Accurate at low flow rate

➤ Disadvantages: If a foreign substance gets in, accuracy falls, or the impeller will be damaged. Piping friction loss occurs. Not applicable to large diameter pipes.

COMPARISON OF WATER METERS			
	Single jet (dry)	Multi jet (wet)	Rotary piston (wet)
Appearance			
Measuring method	Velocity	Velocity	Positive displacement
Structure	Simple structure	Complicated than Single jet	Complicated than others
Cost	Inexpensive	Inexpensive	More expensive than others
Others	Highly reliable operation	Small amount of water can be measured accurately	High accuracy than others
			20

METER TAMPERING

Unauthorized manipulation of the water meter for the purpose of stealing water. The offense also includes placing magnets, placing foreign objects inside the meter inverting the position of the meter, breaking water meters: all for the purpose of slowing down the meter registry eventually lessen water consumption

3 METROLOGY, METER CLASSES AND OTHER REQUIREMENTS

3.1 DEFINITION OF METER ACCURACY

The volume of water that passes through a water meter is called the actual volume, or Va. However, since no meter is 100% accurate, the meter will not register all the water passing through it but show a indicated volume (Vi), which is slightly lower or higher than the actual volume. The difference between the indicated volume and actual volume (Vi - Va) is called the meter error. When the error is expressed as a fraction (percentage) of the actual volume, it is called as the relative error.

[Relative error]: (Vi - Va) / Va x 100 (%)

Where: Vi is the indicated volume. Va is the actual volume.

3.1 DEFINITION OF METER ACCURACY

CALCULATION OF THE ERROR (%)

METER ERROR CURVE

➤ Q1 – Minimum flow rate:

The lowest flow rate at which the meter is required to give indications within the maximum permissible error tolerance (\pm 5% error).

➤ Q2- Transitional flow rate:

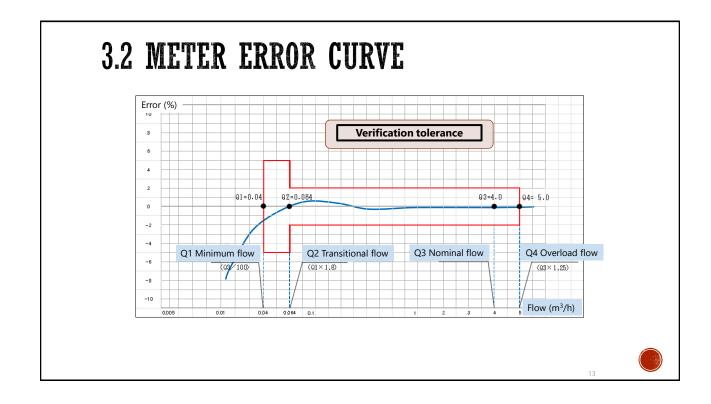
The flow rate at which the maximum permissible error of the water changes in value from \pm

5% error to ± 2% error.

➤ Q3 – Permanent flow rate:

Permissible continuous load. Half the maximum flow rate (± 2% error).

> Q4 – Maximum flow rate (Overload Flow Rate):


The highest flow rate at which the meter is required to operate in a satisfactory manner for a short period without deteriorating (\pm 2% error)

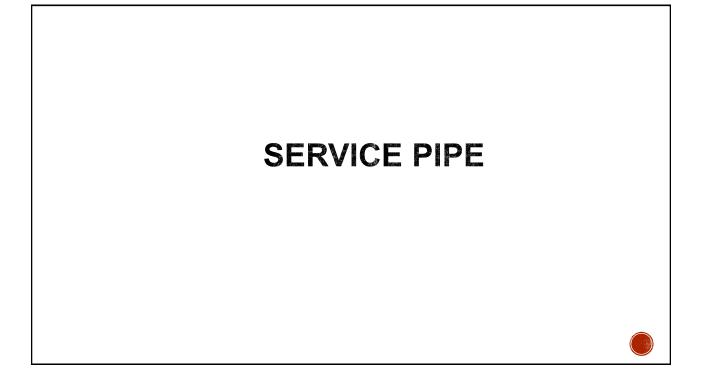
METER ERROR CURVE

Water meters are designed for a specific flow rate, which is called as the permanent flow rate or Q3. The meter should be able to work at the permanent flow rate (or a lower flow rate) continuously for its design life without exceeding the permissible error.

Although a meter is designed for the permanent flow rate, the actual flow through a meter is not constant. Thus, water meters should not only be accurate at the permanent flow rate, but also be accurate over a wide range of flow rates.

It is useful to draw a graph of a meter's relative error. This curve is called the meter's error curve.

MAINTENANCE


The proper maintenance of any metering device is essential to ensure the accuracy. Most meter manufacturers have a recommended maintenance and testing method in the operation manual.

The most common problems experienced with water meters in the field are as below:

➤ Suspended solids in the water cause stuck or damage of meter and meter strainer. These solids enter the system most often due to:

- · Large pipe bursts.
- · Inadequate flushing of pipes after installations or repairs.
- · High velocities in the network stir up sediments that was accumulated on the bottom of pipes.
- · Inadequate water treatment or malfunction of treatment plants.

A strainer should be installed upstream of the meter to protect the rotor from objects such as stones and pebbles. As for maintenance, the strainer needs to be cleaned regularly.

SERVICE PIPE

- 1 Purpose of training
- 2 Knowledge acquisition
- 2.1 Outline of PPR pipe
- 3 Jointing method
- 3.1 Socket fusion joint
- 3.2 Thread joint
- 4 Practice

1 PURPOSE OF TRAINING

The purpose of this training is to provide a practical training on installation of PPR service pipes. Also, it is important to share the knowledge of this training with not only the staff of WASA but also contractors.

2 KNOWLEDGE ACQUISITION

2.1 Outline of PPR

- ➤ Standard of PPR pipes
- □ ISO 15874 standard green PPR pipe, DIN 8077-8078 hot water PPR pipe.

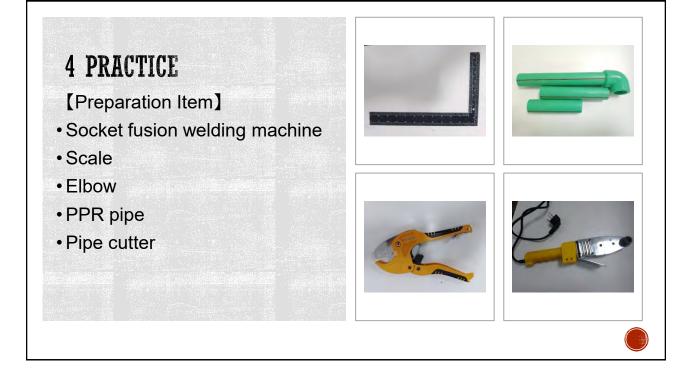
PPR pipes & fittings Characteristics:

- 1. Well heart resistance ability The pipes can be used for a long time while the working temperature of water is 70°C
- 2. Well insulation ability
- Long lifetime span Under normal conditions of temperature and pressure PPR pipe can be over 50 years.
- Little resistance for water flow The inner walls of PPR pipes are smooth and limescale will not be formed there
- 5. Economical
- 6. Light weight
- 7. Well corrosion resistance

3 JOINTING METHOD

There are mainly two jointing method for PPR distribution pipes: Socket fusion joint and Thread joint.

3.1 Socket fusion joint


Socket fusion joint Details

Socket fusion joint connect PPR pipe and socket by heat of socket fusion welding machine. This method is very common way to joint PPR service pipe and the durability of this joint part is high.

3.2 Thread joint

Thread joint Details

Male thread and female thread are used for thread joint. The thread has shape of screw and male thread and female thread can be connected very easily and swiftly.

STEPS PROCEDURES

- 1. Check the pipe and socket whether they are damaged or not.
- 2. Measure the depth of socket and mark the insertion length on the pipe surface.
- 3. Cut the pipe at right angles by using a pipe cutter.
- 4. Always ensure that the welding machine corresponds to the required jointing size.
- 5. Required operating temperature of the welding machine is 250°C-270°C
- 6. Push the end of the pipe and socket into socket fusion welding machine up to the marked insertion length. Be careful not to turn the pipe and socket while heating.
- 7. Pull out the pipe and socket from the socket fusion welding machine after proper heating time, insert the pipe into socket evenly and swiftly and wait until they cool down.

STEPS PROCEDURES

Outside Diameter	Average Heating Time*	Average Working Time (max.)	Average Cooling Time (min.)	
mm	sec	sec	min	
20	5	4	2	
25	7	4	2	
32	8	6	4	
40	12	6	4	
50 18		6	4	
63) 24		8	6	
75 30		8	6	
90 40		8	6	
110	50	10	8	

Name:	Dept:	Designation:
-------	-------	--------------

1. HDPE Pipe

High density polyethylene (HDPE) piping systems have been used for municipal and industrial water applications. HDPE water pipes are made of high-density polyethylene, which is a thermoplastic polymer. Polyethylene has a number of significant advantages over traditional materials such as steel or ductile iron including lower weight, freedom from corrosion and the ability to coil long lengths of pipe.

a. Salient Features of HDPE Pipes

- Safe for drinking water with no toxic or chemical contamination.
- High flexibility. Can be bent as much as 25-40 times of the pipe diameters. Thus, reducing unnecessary pipe joint.
- Light weight with only 0.95 grams/cm2. It weighs only 1/5 of steel pipes of the same size.
- Rust proof and high resistance to damaged chemicals, making the product last up to 50 years.
- Super smooth internal surface, reducing the chance of pipe cloggage.

b. PE80 vs PE100 Comparison

Comparison of PE 100 and PE 80 HDPE Pipes

- Before international standards were adopted polyethylene (PE) materials were commonly named by their density - low density, medium density and high density. ISO standards were further developed to designate materials as PE80 or PE100 to easier differentiate the benefits of the materials.
- PE80 pipes are often rated SDR11 PN12 and have a minimum required strength (MRS) of 8 MPa (Megapascal) whereas PE100 pipes are rated SDR11 PN16 and have a MRS of 10 Mpa.
- PE100 offers additional long-term strength and performance over PE80 while allowing for thinner pipe walls for the same operating pressure.

c. HDPE pipes color code guide:

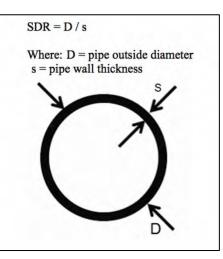
Red	Electric power lines, cable, conduit and lighting cables					
Orange	Telecommunication, alarm or signal lines, cables or conduit					
Yellow	Fuel gas (methane or propane), oil, petroleum, steam or gaseous materials					
Green	Sewers and drain lines					
Blue	Potable water					
Violet (Purple)	Reclaimed water, irrigation and slurry lines					

Name:	Dept:	Designation:

2. HDPE Pipe Parameters

a. Standard Dimension Ratio (SDR)

Standard dimension ratio (SDR) is a method of rating a pipe's durability against pressure.


SDR= D/s

Where;

D= Outside diameter of pipe

S= Thickness of pipe

It's an inverse relationship. The higher the SDR, the lower the pressure rating.

b. In HDPE Pipe terms, MRS stands for "Minimum Required Strength" (MRS).

The MRS is determined by performing regression analysis in accordance with ISO 9080 on the test data from the results of long-term pressure testing.

Material Designation	Minimum Required Strength (MRS)MPa	
PE100	10,0	
PE80	8.0	

Another parameter is defined as the 'Maximum Operating Pressure' MOP, or the pressure rating of the pipe.

MOP = 2 x MRS / C (SDR - 1) ---- Where MRS and MOP are in MPa

MOP = 20 x MRS / C (SDR - 1) ----- Where MRS is in MPa and MOP is in bar.

Where C is the 'overall service (design) coefficient, or Safety Factor.

For water applications the minimum value of C is 1.25

Name:	Dept:	Designation:
-------	-------	--------------

c. Pressure Reduction Factor

Table 1 - Pressure reduction factors for temperatures between 20 °C and 50 °C

Material			Pressui	e reduction	factorsab		
classification	20 °C	25 °C	30 °C	35 °C	40 °C	45 °C	50 °C
PE 100 PE 80	1,00	0,92	0,85	0,79	0,73	0,67	0,63
PE 63	1,00	0,92	0,85	0,79	0,73		
PE 40	1,00	0,92	0,85	0,77	0,70		

b The ISO 9080:2012 extrapolation factors are 50 for 40 °C, 30 for 45 °C and 18 for 50 °C when the material is tested at a maximum temperature of 80 °C. If the material is tested at a higher temperature than 80 °C then other extrapolation factors may apply.

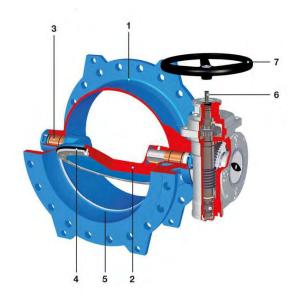
3. Available Sizes of PE 100 pipes

Dimension Ratio	SDR21	SDR17	SDR 13.6	SDR11
	PN8	PN10	PN 12.5	PN16
OUTSIDE DIAMETER	Wall	Wall	Wall	Wall
(mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)
20	-	-		2.0
25	-	-	2.0	2.3
32	-	2.0	2.4	3.0
40	2.0	2.4	3.0	3.7
50	2.4	3.0	3.7	4.6
63	3.0	3.8	4.7	5.8
75	3.6	4.5	5.6	6.8
90	4.3	5.4	6.7	8.2
110	5.3	6.6	8.1	10.0
125	6.0	7.4	9.2	11.4
140	6.7	8.3	10.3	12.7
160	7.7	9.5	11.8	14.6
180	8.6	10.7	13.3	16.4
200	9.6	11.9	14.7	18.2
225	10.8	13.4	16.6	20.5
250	11.9	14.8	18.1	22.7
280	13.4	16.6	20.6	25.4
315	15.0	18.7	23.2	28.6
355	16.9	21.1	26.1	32.2
400	19.1	23.7	29.4	36.3
450	21.5	26.7	33.1	40.9

HDPE Pipe Parameters – Class Activity 1

Diameter (mm)	Thickness (mm)	SDR	MOP (bar)	Avg. Temperature in your area	Temperature Factor (From table 1)	Effective MOP (bar)

	Unit	Labour	Composite	Unit	Labour	Composite
c) PN-10 (SDR-17)	the second se			-		
i) 90 mm	P.Rft	4.60	240.85	PM	12.55	790.25
ii) 110 mm	P.Rft	12.85	364.65	PM	35.10	1,196.45
iii) 125 mm	P.Rft	14.20	463.00	PM	38.80	1,519.05
iv) 160 mm	P.Rft	15.60	752.25	PM	42.65	2,468.20
v) 180 mm	P.Rft	20.00	951.85	PM	54.70	3,122.95
vi) 200 mm	P.Rft	22.35	1,172.85	PM	61.10	3,848.15
vii) 225 mm	P.Rft	25.50	1,486.00	PM	69.70	4,875.65
viii) 250 mm	P.Rft	35.20	1,824.55	PM	96.30	5,986.40
ix) 315 mm	P.Rft	62.45	2,904.80	PM	170.70	9,530.70
x) 355 mm	P.Rft	69.45	3,688,60	PM	189.85	12,102.25
xi) 400 mm	P.Rft	78.60	4,654.90	PM	214.95	15,272.70
xii) 450 mm	P.Rft	79.85	5,888.40	PM	218.40	19,319.85
xiii) 500 mm	P.Rft	94.05	7,281.95	PM	257.10	23,892.05
xiv) 560 mm	P.Rft	104.40	9,138.50	PM	285.40	29,983.35
xv) 630 mm	P.Rft	117.10	11,537.95	PM	320.15	37,856.00
xvi) 710 mm	P.Rft	132.65	14,684.75	PM	362.65	48,180.60
xvii) 800 mm	P.Rft	150.45	18,566,10	PM	411.30	60,915.35
xviii) 900 mm	P.Rft	189.25	23,593.55	PM	517.45	77,410.35
xix) 1000 mm	P.Rft	219.70	29,119.95	FM	600.70	95,542.55


PN Rating	Diameter	Length	Unit Cost (Composite-Labour)	Total Cost
PN 10		100 ft		

Name:	Dept:	Designation:
-------	-------	--------------

Valves – Class Activity 2

i. Label the picture displayed below according to the numbers:

No.	Labelling
1	
2	
3	
4	
5	
6	

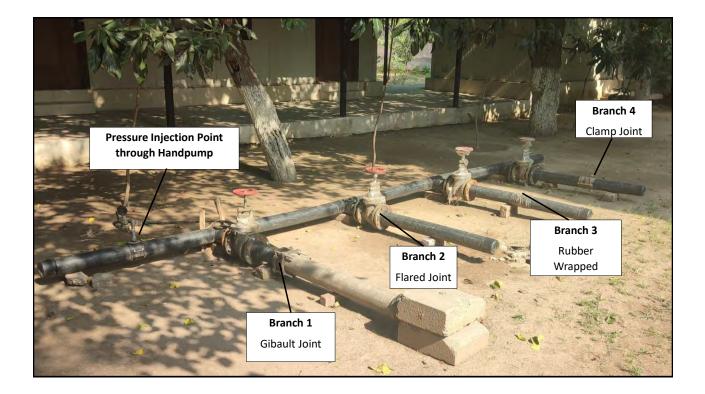
ii. Choose the correct answers.

a) Non-return value or check value is used for? () To reverse the flow () To prevent reverse flow () To stop the flow b) Which type of value is recommended to use for isolation? () Sluice/gate value () Butterfly value () Air release value c) Air release value are used for? () To release entrapped air () To pump air () Both

Name:	Dept:	Designation:
-------	-------	--------------

4. Hydrostatic Pressure Test Activity for HDPE Pipe

Instructions:


- Setting the Optimum Pressure for Test: Working pressure of Pipe x 1.5
- Time Duration: 10 mins (2 hours as recommended in the standard)
- Hazard Awareness: Participants are advised to keep a distance from potential leakage joint or valve
- Fill the pipe with water by connecting to the nearby source until water come out on the other end. For the releasing air, we can use air valve.
- Pressurizing: Inject the water with the help of hand pump to build a pressure inside pipes up to desired pressure rating.
- Observe the joints and valves for leakages. If any leakage appears, note the reading on pressure gauge.
- Keep pressuring branch wise until setting pressure and close valve, Start counting time.
- If no leakage appears after holding the optimum pressure for specified time, the joint is considered valid.

Name:	Dept:	Designation:

Hydrostatic Pressure Testing – Class Activity 3

Participants to perform the pressure test activity and observe the leakages and corresponding pressure ratings.

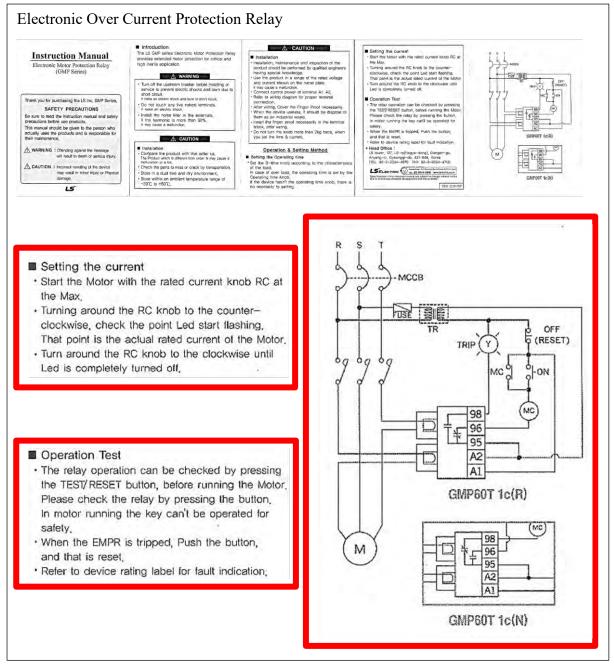
Leakage Point	Pressure	Reliability (Low, Medium, High)
Branch 1 – Gibault Joint		
Branch 2 – Flared Joint		
Branch 3 – Rubber Tube		
Branch 4 – Clamp Joint		

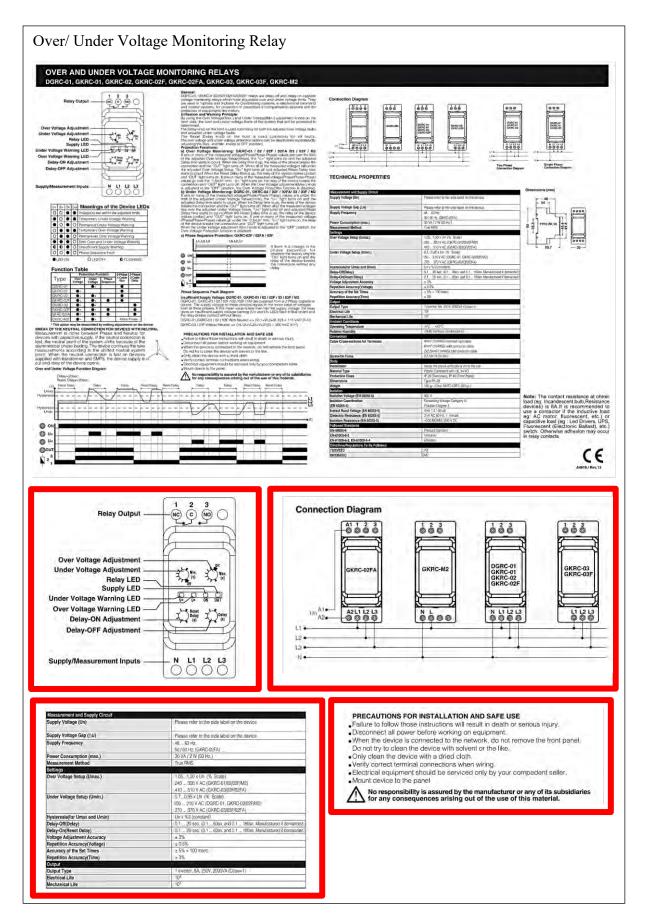
Annex 5.1.49 Training Material for "O&M of Mechanical and Electrical Equipment" in Fall (November) 2022

1. Introduction to Motor Control Unit:

(Demo Motor Control Unit)

(DOL panel for miniature Pump Station)


2. Tools required for the activities:



Sr. No.	Name of Component	Quantity
1	Clamp meter	01
2	Voltage Detector	01
3	MCB	03
4	MCCB	01
5	Magnetic Contactor	03
6	Current Transformers	03
7	Ammeter	01
8	Selector Switch for Ammeter	01
9	Voltmeter	01
10	Selector Switch for Voltmeter	01
11	Push Button (ON)	01
12	Push Button (OFF)	01
13	Emergency Push Button	01
14	Lamps for status ON, OFF and Fault	03
15	Timer	01
16	Over/ Under Voltage Monitoring Relay	01
17	Electronic Over Current Protection Relay	01
18	Liquid Level Controller	01
19	Fuse	01
20	Connectors and Thimbles	-
21	Gloves	01

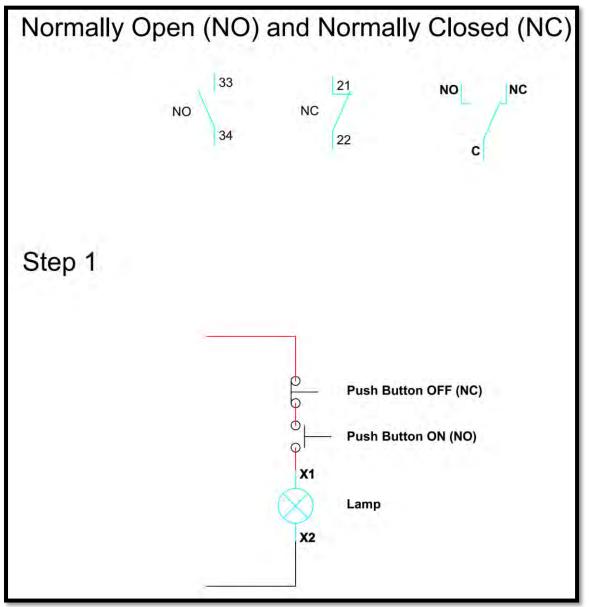
3. Operation of each component of MCU:

Liquid Level Controller	
LIQUID LEVEL CONTROLLERS SSRC-04	
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	$\label{eq:second} \begin{array}{llllllllllllllllllllllllllllllllllll$
<text><text><text><section-header><section-header><section-header><section-header><text><text><text><text><list-item><list-item><list-item></list-item></list-item></list-item></text></text></text></text></section-header></section-header></section-header></section-header></text></text></text>	
 Precautions For Installation And Safe Use Failure to follow those instructions will result in death or serior Disconnect all power before working on equipment. When the device is connected to the network, do not remove Do not try to clean the device with solvent or the like. Only c Verify correct terminal connections when wiring. Electrical equipment should be serviced only by your compe Mount device to the panel. 	e the front panel. lean the device with a dried cloth.
Connection D	Hiagram Type PK-28 Connection Diagram Type PK-25

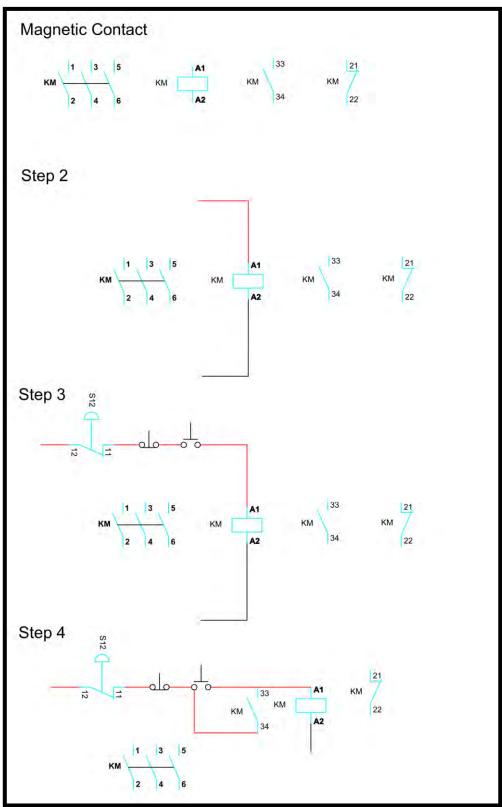
4. Equipment for Energy Audit, Preventive and Breakdown maintenance:

Sr. No.	Name of Equipment
1	Power Analyzer
2	Power and Harmonics Clamp meter
3	Clamp meter
4	Insulation Resistance and Continuity Tester
5	Earth Tester
6	AC Voltage Detector
7	Ultrasonic Flow meter
8	Water Level meter
9	Pressure Gauge
10	Thickness probe

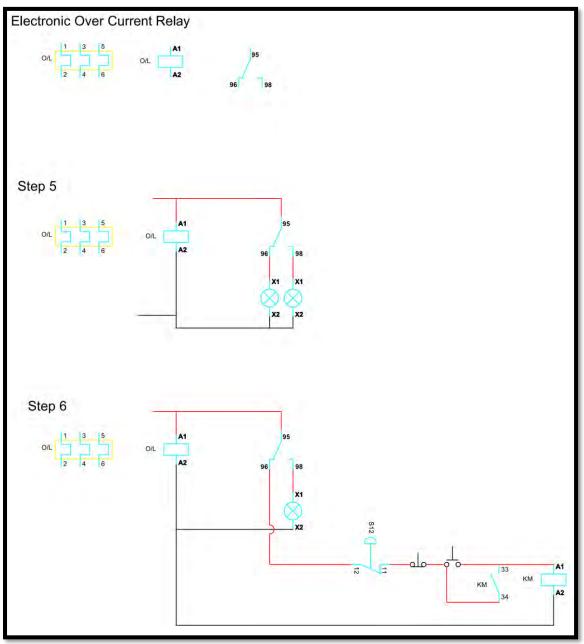
5. Activity on miniature Pumping Station:

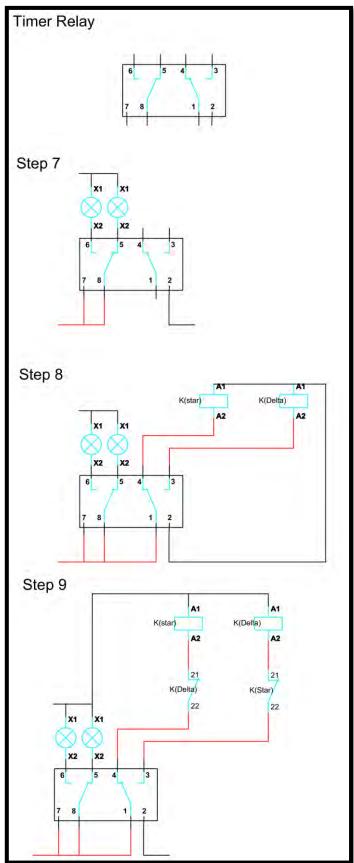

Electrical:

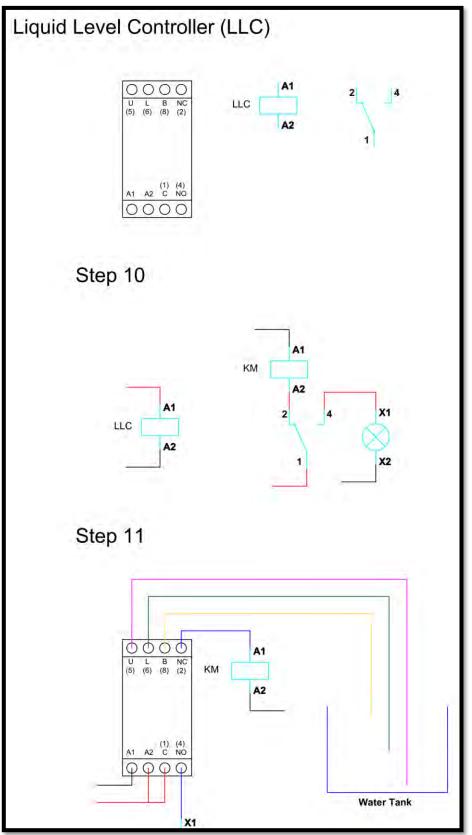
- 1. Energy Audit
- 2. Flow Rate and Current Relation
- 3. Operation of Over Current Relay
- 4. Operation of Liquid Level Controller
- 5. Understanding of Normally Open and Normally closed-circuit operations
- 6. Understanding Power and Control Circuit Drawings
- 7. Insulation Resistance Test

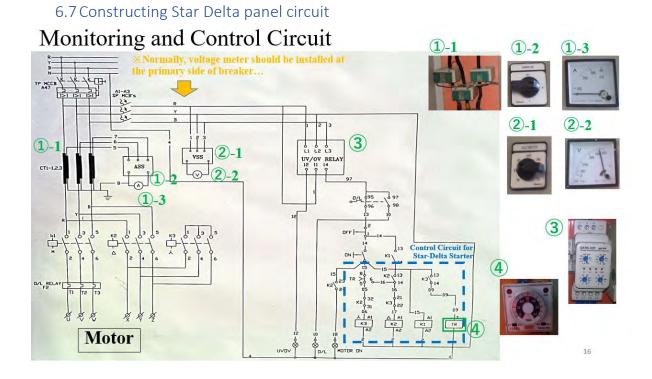

Mechanical:

- 1. Series pump operation (Head/ Flow/ Pressure)
- 2. Parallel pump operation (Head/ Flow/ Pressure)
- 3. Operation and Maintenance of water meter
- 4. Advantages of strainer or screen
- 5. Installation of Ultrasonic flow meter
- 6. Discharge pressure and unit conversion
- 7. Pump Performance Curve/ Q-H curve
- 8. Operation and Maintenance of Chlorinator
- 9. Calibration of Chlorinator


- 6. Reading a simple circuit diagram and making circuit:
- 6.1 Normally open (NO) and normally closed (NC) circuit


6.2 Connection of Magnetic Contactor

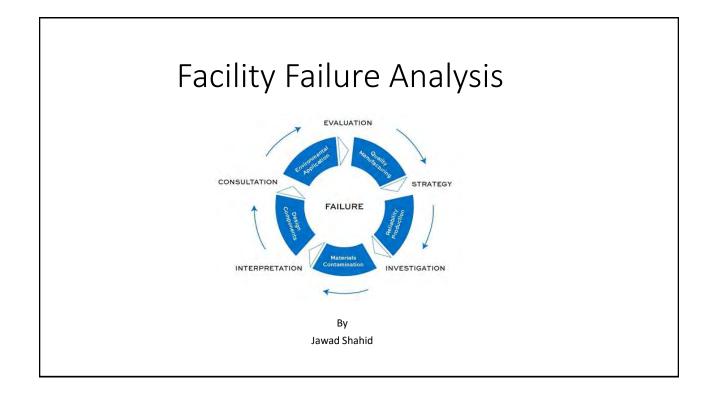

6.3 Connection of Electronic Over Current Relay


6.4 Connection of Timer Relay

6.5 Connection of Liquid Level Controller

6.6 Adding monitoring devices and protection relays to the circuit

List of Components

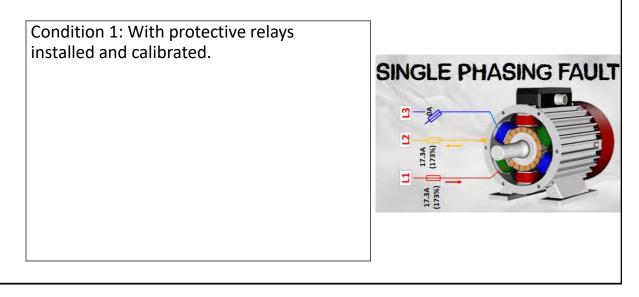


Motor Control Unit

MCC 80BHP/60KW for Motor 2-CFS Capacity Vertical Turbine Pump

Sr. No.	Components	Quantity	Purpose of each component	
Α.	Incoming			
01	MCCB TP 250A 18KA	01 No.	For Switching and Short Circuit Protection	
02	MCB SP 6A 6KA	03 Nos.	For Control Circuit & Instrument Protection	
03	Digital Ampere Meter 200A	01 No.	For Motor Running Load Monitoring	
04	Ampere Selector Switch 4-Position	01 No.	For Selection of Phase to see Running load one by one	
05	Digital Volt Meter 500 V	01 No.	For Line Voltage Confirmation	
06	Voltage Selector Switch 4-Position	01 No.	For Selection of Phase to see Line Voltage one by one	
07	Current Transformer 200/5A	03 Nos.	For Feeding the Secondary Current to Digital Ampere Meter	
08	LED Type Indication Light	03 Nos.	For Phase in attendance (R-Y-B)	
В.	80 BHP/60KW Auto Star Delta Switch			
01	Magnetic Contractor TP operational 85A	01 No.	For Main (Auto Star Delta)	
02	Magnetic Contractor TP operational 85A	01 No.	For Delta (Auto Star Delta)	
03	Magnetic Contractor TP operational 50A	01 No.	For Star (Auto Star Delta)	
04	Over-Load relay Range 65A-100A	01 No.	For Thermal Over Load, Short circuit & Phase loss protection	
05	Under/Over Voltage relay	01 No.	For Voltage Monitoring i.e. Under Voltage, Phase Failure & Phase Sequence Protection	
06	Motor Thermistor Relay	01 No.	For Motor Winding Temperature Protection	
07	LED Type Indication Light	02 Nos.	For ON/OFF Position Auto Star Delta Switch (Green & Red)	
08	LED Type Indication Light	02 Nos.	For over load, under-over, thermistor protection Indication (Yellow)	
09	Push Button 10A 1 NC / 1 NO (Green/Red)	02 Nos.	For ON/OFF Position Auto Star Delta Switch	
10	Emergency Push Button	01 No.	For Emergency Stop of System	
11	MCB SP 6A 6KA	01 No.	For Control Circuit Protection	
12	Control Terminal	01 Set	For the Control Circuit Connectivity	

С.	25 KVAR Power Factor Improvement Plant		
01	Analogue Power Factor Meter	01 No.	For Displaying of Power Factor (it may lead or lag)
02	Power Capacitor 25KVAR	01 No.	For Low Power Factor Compensation
03	Magnetic Contractor TP operational 40A	01 No.	For 25KVAR Capacitor Switching
04	63A HRC Fuses with Base	02 Nos.	For Capacitor 25KVAR Over Load and Short Circuit Protection
05	LED Type Indication Light	01 No.	For ON/OFF Position of 25KVAR Power Capacitor (Green)
06	Push Button 10A 1 NC/1NO	02 Nos.	For ON/OFF Position of 25KVAR Power Capacitor (Green/Red)
07	Auto Manual Selector Switch	01 No.	For the Selection Mode of Automatic and Manual Switching
08	Surge Suppressor	01 Set	Protect from Voltage Spikes



1. What happens if shaft of a pump breaks during operation for a vertical turbine pump for Disposal Station

Explanation:		

2. What happens if one phase of power supply fails during operation of Pump and Motor, explain in a step-wise approach.

2. What happens if one phase of power supply fails during operation of Pump and Motor, explain in a step-wise approach.

Condition 2: All protective relays by- passed.	One-Phase Lost ↓ Induction Motor ↓ ↓ ↓ ↓ ↓ ↓

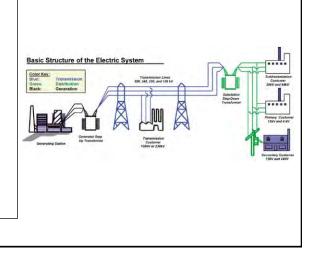
3. What happens if during operation of a tube-well two windings of a motor short circuit (Motor Burnout).

3. What happens if during operation of a tube-well two windings of a motor short circuit (Motor Burnout).

Condition 2: Protective relays bypassed

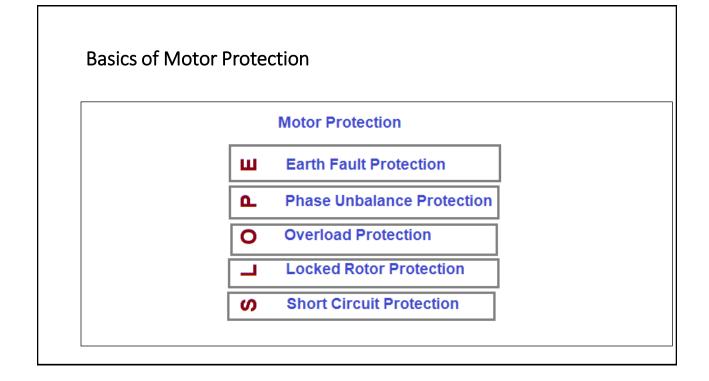
4. Shaft of a vertical turbine tube-well breaks during operation.

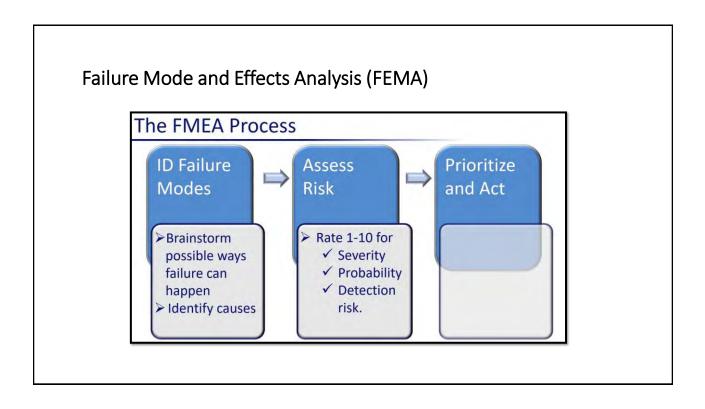
Condition 1: With all relays installed and calibrated.

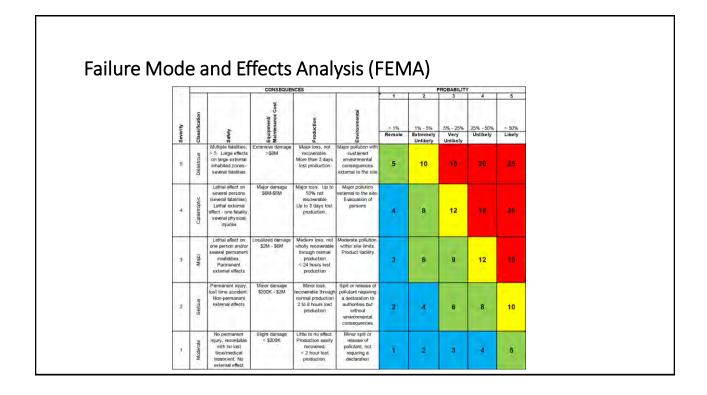

4. Shaft of a vertical turbine tube-well breaks during operation.

Explanation:

5. During operation of Pump and Motor two phases are interchanged from distribution end (DISCO)


Condition 1: With use of protective relays.




5. During operation of Pump and Motor two phases are interchanged from distribution end (DISCO)

Condition 2: With all protective relays by-passed.

k Asse	ssment	Matri	Х			
🚺 Risk Matrix						
A	В	С	D	E	F	
Initial			Initial Severity			۸
Occurrence	1 - Insignificant	2 - Minor	3 - Significant	4 - Serious	5 - Major	
5 - High			1	2		
4 - Moderate			3	5		
3 - Low			1	2		
2 - Very Low						
1 - Remote						•
•					Þ	

Initial Occurrence					
	1 Insignificant	2 Minor	3 Significant	4 Serious	5 Major
5 High					
4 Moderate			Chlorine dosing pump failure		Burnout of MCCB for MCU
3 Low					
2 Very Low		Power Factor Capacitor Failure	Chlorine dosing pump failure		
1 Remote					

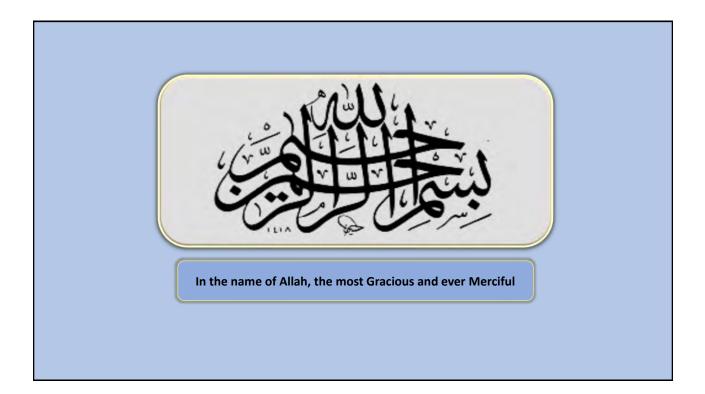
Preventative Mainteniance Schedule of Switchgear / Controlgear

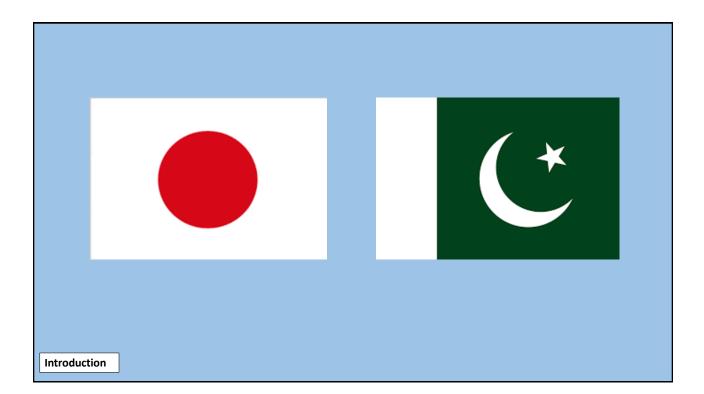
Date:																		proved										
Facility	:																Pr	epared	by									
S.No.	Mainteniance Objective	Due Time											Tin	ne S	chee	dule	(W	eek)										
		Weeks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	Dusting and Cleaning of complete equipment with blower, etc	4 Weeks																										
	Checking of tripping and ON / OFF operation of all breakers contactors and relays	4 Weeks																										
	externally while switching the main switch OFF	12 Weeks																										
	thimbles for proper connection and heat signature wit Infra-red sensor	12 Weeks																										
5	Tightening of all terminations	12 Weeks																										
	Infrared imaging of control panel to observe unusual heat signature	12 Weeks																										
	Insulation test to ensure proper insulation of Cables	16 Weeks																										
	Checking of Intrusion path for proper vermin protection	12 Weeks																										
	Cleaning of Open Contact with contact spray cleaner	24 Weeks																										
	Calibration of measuring devices and instrument relays	52 Weeks																										
	Checking of Voltage for all Three Phases V(RY), V(RB), V(YB)	12 Weeks																										
12	Checking of Current of all Three Phases	12 Weeks																										
13	Checking of Power Factor Value	12 Weeks																										

14	Earth Resistance test of MCU and Motor	26 Weeks														
15	Any other task as per manufacturer's recommendation or Engineer incharge															
Rem	arks and Observations		•				•					•	•	•		

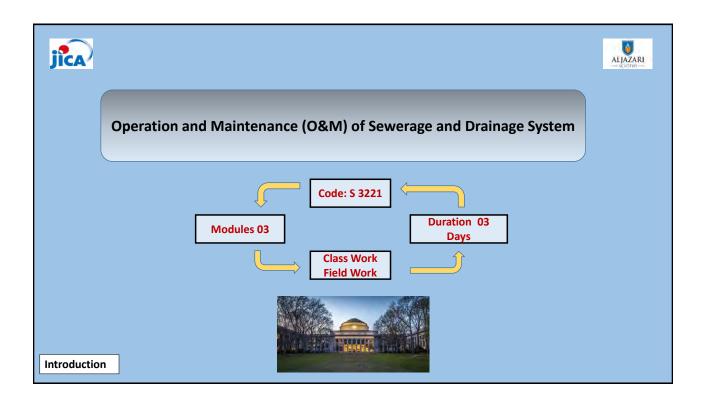
Developed in Technical Assistance of

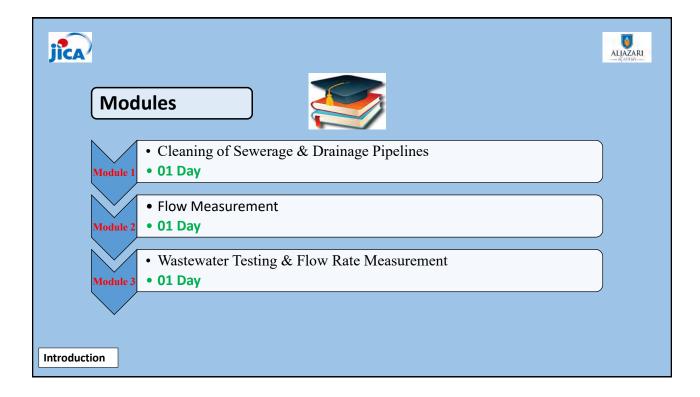
Preventative Mainteniance Schedule of Motor

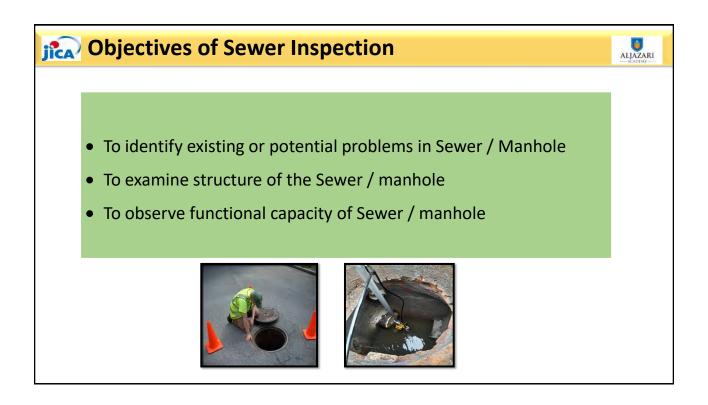

Date:																		prove Engine										
Facility	:																Pr	eparec	l by									
S.No.	Mainteniance Objective	Due Time											Ti	me S	Sche	dule	(W	eek)										
		Weeks	4	8	12	16	20	24	30	34	40	44	48	52	56	60	64	68	72	76	80	84	88	92	96	100	104	108
1	Visual inspection including cleaning, dusting and greasing	4																										
2	Examination and reporting of vibration, bearings sound, termination and coupling arrangement / allignment	4																										
3	Thermographic Survery, temperature monitoring and recording	12																										
4	Load verification w.r.t to manufacturer's data and	12																										
5	Insulation Test	52																										
6	Inspection of Bearing	52																										
7	P.F verification of Motor and P.F.I Equipment	52																										
8	Earth Resistance Test	24																										
9	Any other task assigned by Engineer incharge																											
Rema	arks and Observations																											

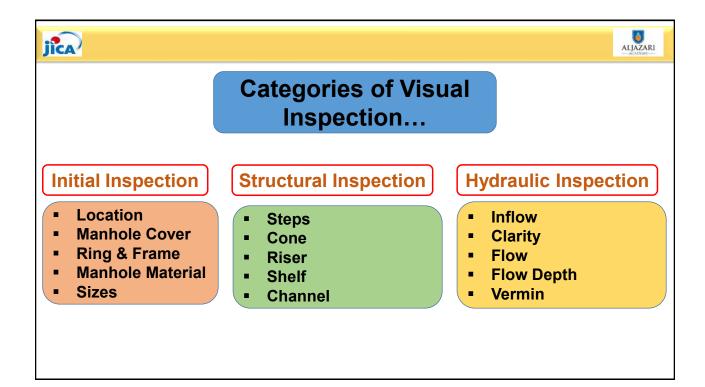

Developed in Technical Assistance of

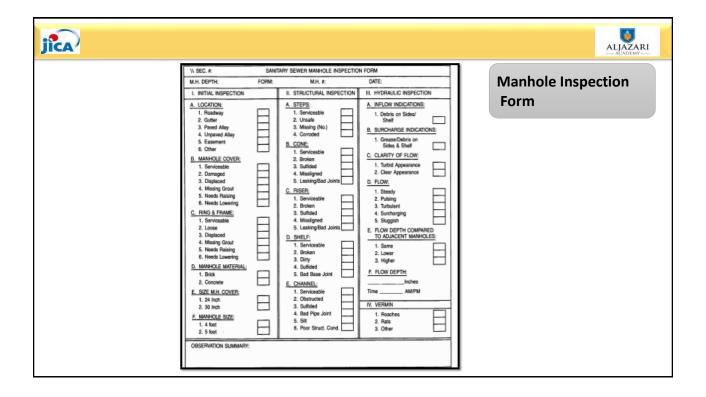
PEMPAK

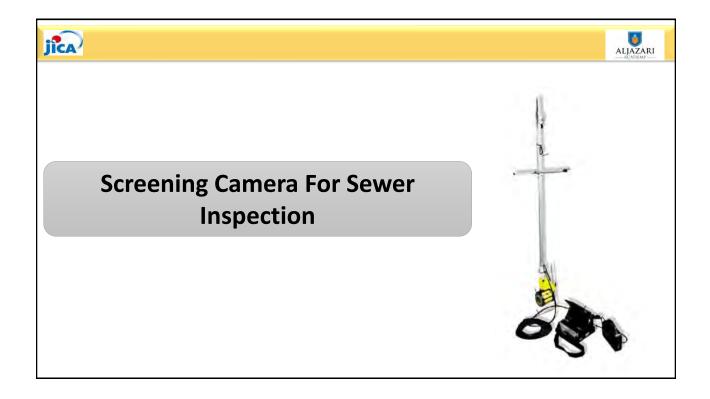

Annex 5.1.50 Training Material for "O&M of Sewerage and Drainage" in Fall 2022

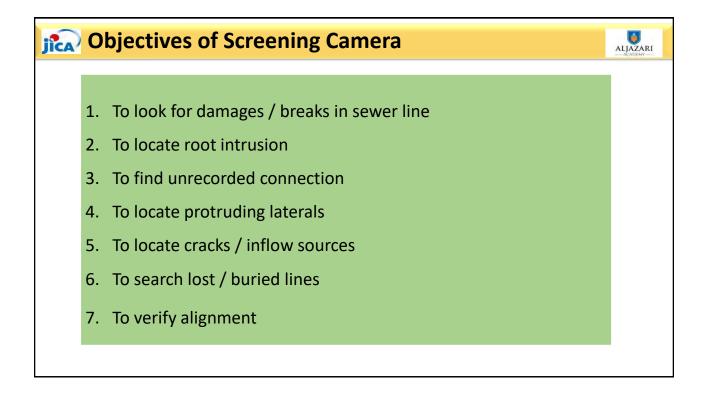



jîca				
	Cou	rse Te	eam	
(Mr. Tomidokoro)	JICA Expert)
(Mr. Syed Fahad Hussain)	Course Leader Sewerage & Drainage System)
(Mr. Muhammad Irfan)	Specialist Infrastructure)
Introductio	on			

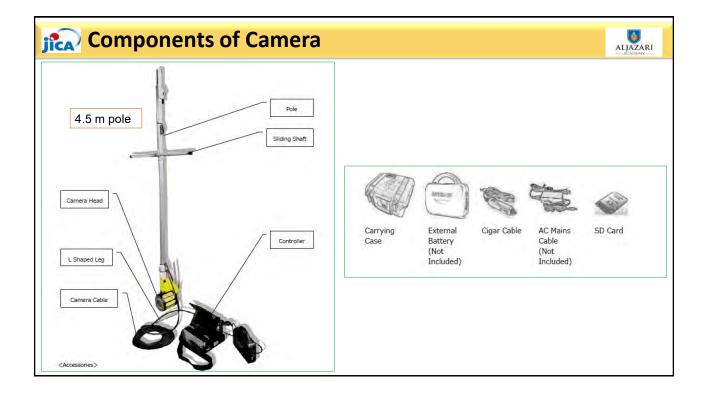


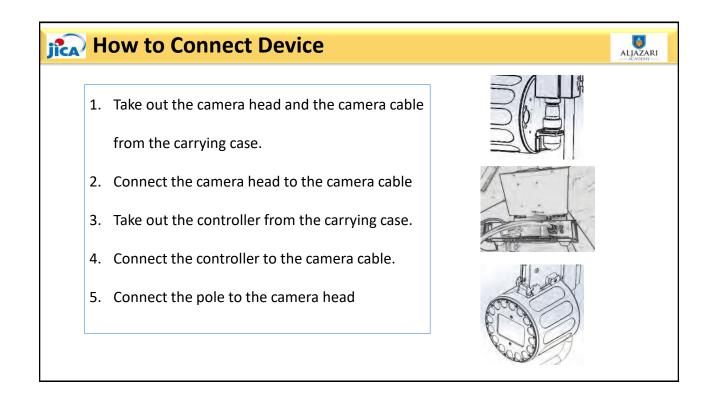


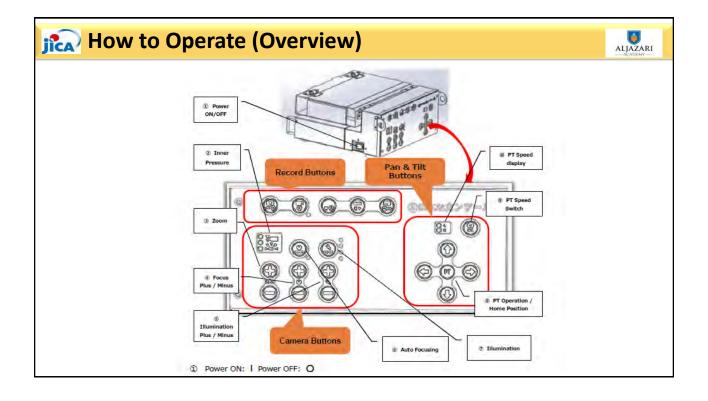


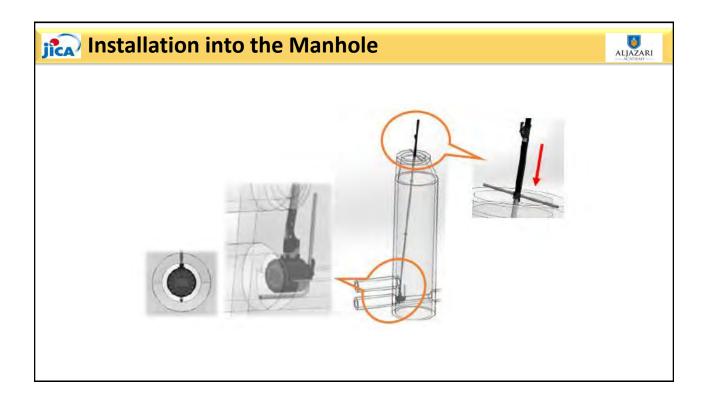

jica		ALJAZARI
	INSPECTION METHODS	
	 Visual Camera]

Visual Inspection			
Arrangements before In	spection:		0
Map of the Collection System	• Scrapers and Wire Brushes for Cleaning the Manhole Ring		
Metal Detector	Powerful Flashlight		, 1997
Warning Devices, Safety Cones and Traffic Safety Devices	Gas Detection Devices	IJ	
Manhole Lid Removal Device	Blower and Hose for Ventilating Manhole		1
Leather Gloves			



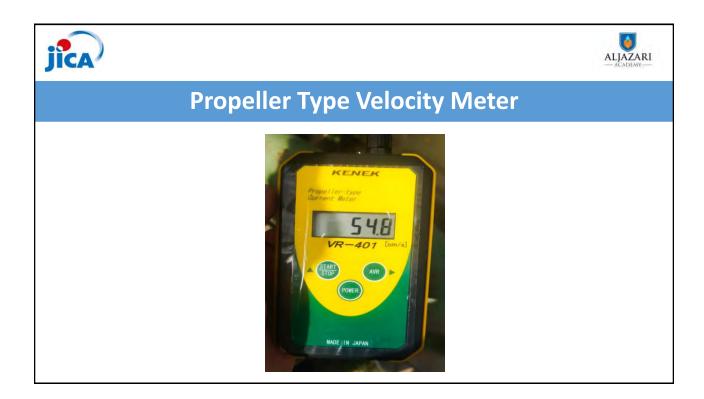


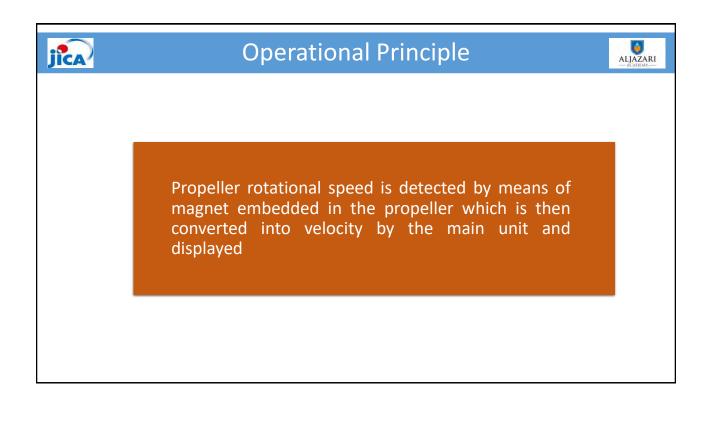


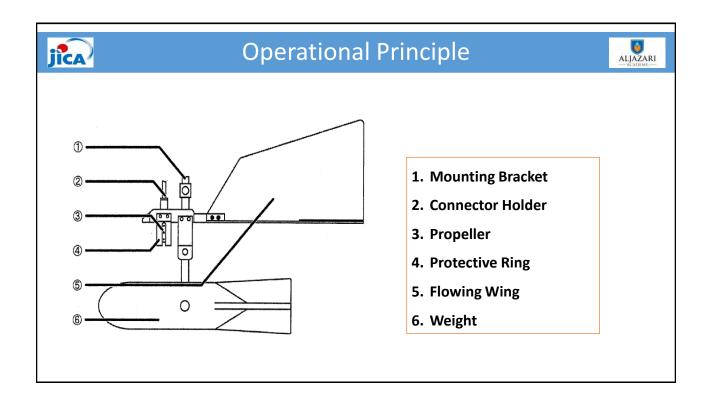


jîca C	Components of	Camera		
	System			
	1)	Camera Head	 1 pc	
	2)	Camera Cable (10m)	 1 pc	
	3)	Controller	 1 pc	
	4)	Pole (4.5m : 3-stage telescopic)	 1 pc	
	Accessories			
	1)	Carrying Case	 1 pc	
	2)	SD Card	 1 pc	
	3)	Cigar Cable	 1 pc	
	4)	AC Mains Cable	 1 pc	
	5)	Instruction Manual (this document)	 1 pc	

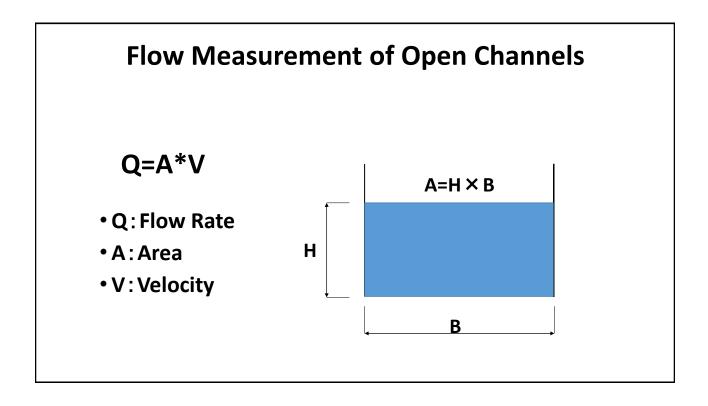
Recording (Video/Still Image)

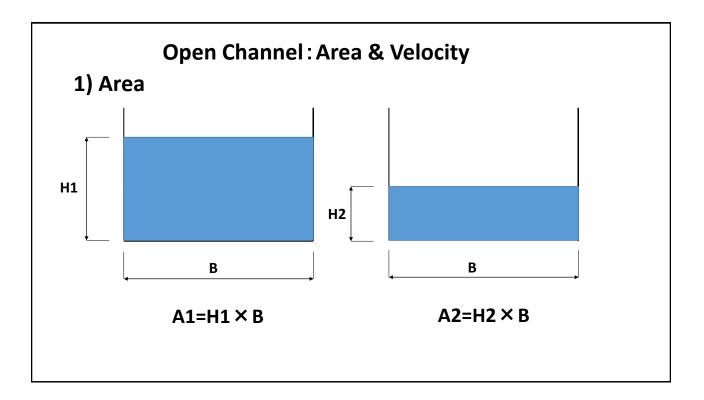

Video recording time (estimate)

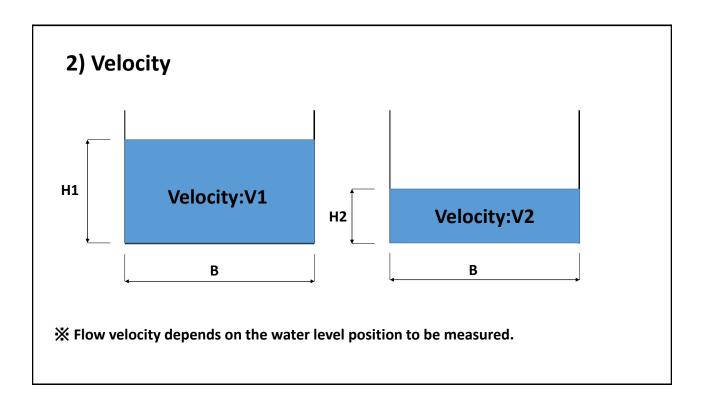

Picture quality	4GB	8GB	16GB	32GB
Highest	About 48 min	About 96 min	About 190	About 380
riigneat	About 40 min	About 50 min	min	min
High	About 60 min	About 120	About 240	About 480
riigii	About ou min	min	min	min
Normal	About 80 min	About 160	About 320	About 640
Normai	About ou min	min	min	min

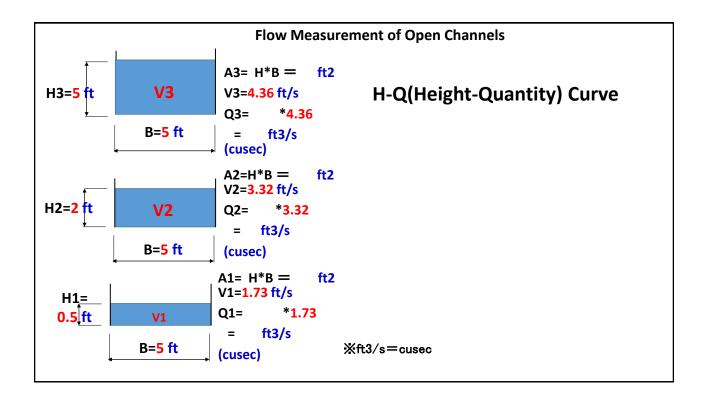

ALJAZARI

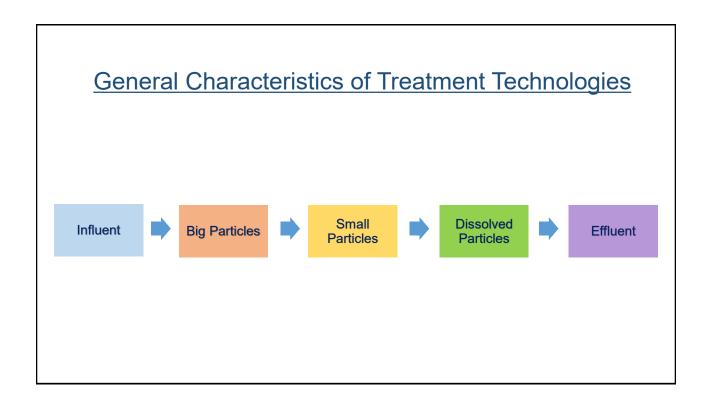

Ji WASA Rawalpindi (Pictures)





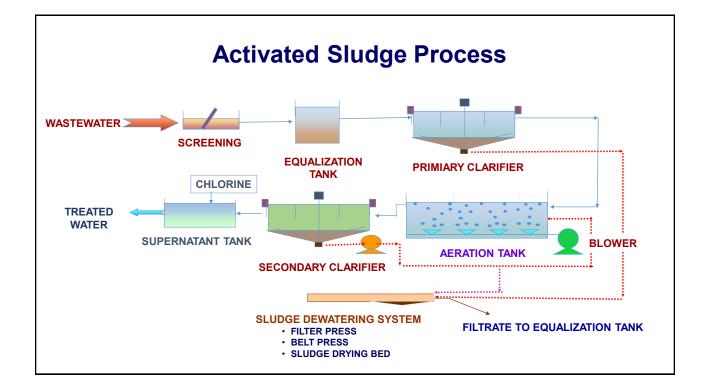




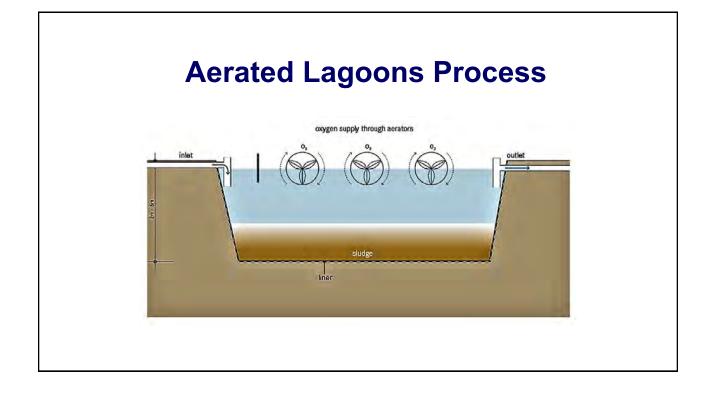


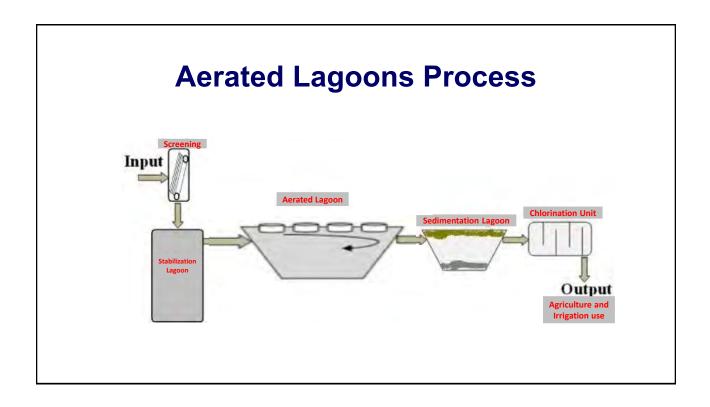
Selection of Best Wastewater Treatment Technologies

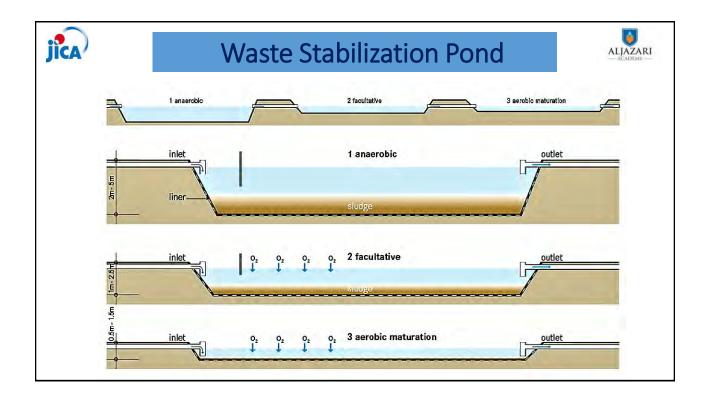
General Characteristics of Wastewater

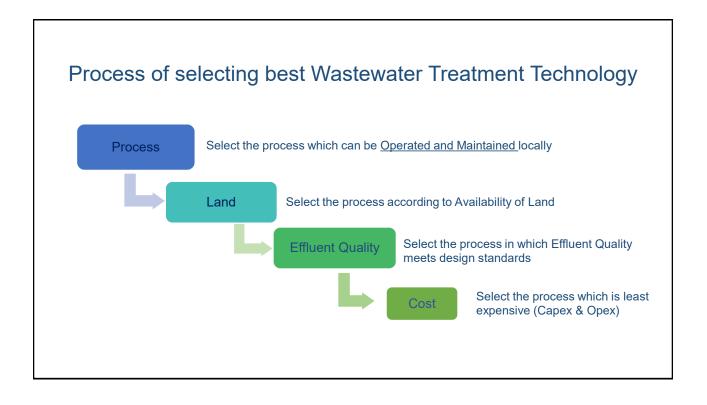

Parameters	Low	High
BOD	Clean	Polluted
COD	Clean	Polluted
рН	Acidic	Alkaline
DO	Polluted	Clean

General Characteristics of Treatment Technologies


Treatment Technologies	Big Particles	Small Particles	Dissolved Particles
Conventional Activated Sludge (more mechanical + Biological)	Screen	Grit Chamber	Aeration Tank & Secondary Clarifier
Aerated Lagoon (less mechanical + Biological)	Screen	None	Aerated Lagoons
Waste Stabilization Pond (Biological)	Screen/None	None	Ponds




Aerated Lagoons



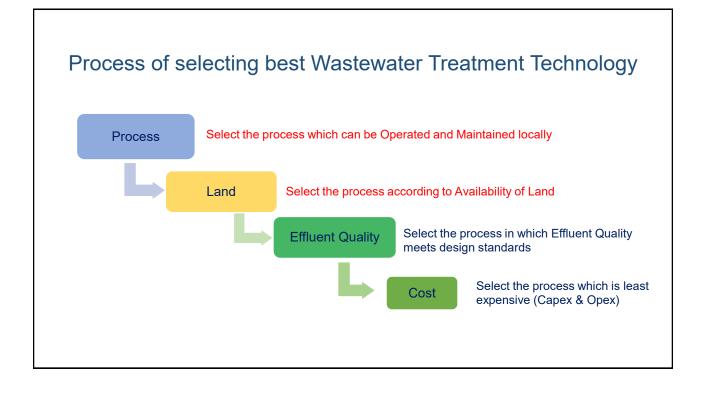
General Characteristics of Treatment Technologies

Treatment Technologies	Effluent (BOD)	Removal Efficiency	Area Req.	Capital Cost without land cost	Operational Cost
Conventional Activated Sludge	Very good	Very good	Small	High	High
Aerated Lagoon	Good	Good	Medium	Medium	Medium
Waste Stabilization Pond	Fair	Fair	Large	Low	Low

Example No. 1: Step 1: Select the process which can be <u>Operated and</u> <u>Maintained</u> locally.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4		
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation	
Conventional Activated Sludge			10	20	100		
Aerated Lagoon	15	15 100	100	20	50	50	
Waste Stabilization Pond			30	70	30		

Example No. 1: Step 1: Select the process which can be Operated and Maintained locally.


Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	Selected
Aerated Lagoon	15	100	20	50	50	Selected
Waste Stabilization Pond			30	70	30	Selected

Example No. 1: Step 2: Select the process according to <u>Availability of Land</u>.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4			
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation		
Conventional Activated Sludge			10	20	100			
Aerated Lagoon	15	15	15	100	20	50	50	
Waste Stabilization Pond			30	70	30			

Example No. 1: Step 2: Select the process according to Availability of Land.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimate d Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	Selected
Aerated Lagoon	15	100	20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 2: Step 1: Select the process which can be <u>Operated and</u> <u>Maintained</u> locally.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	50	30	20	50	50	
Waste Stabilization Pond			30	70	30	

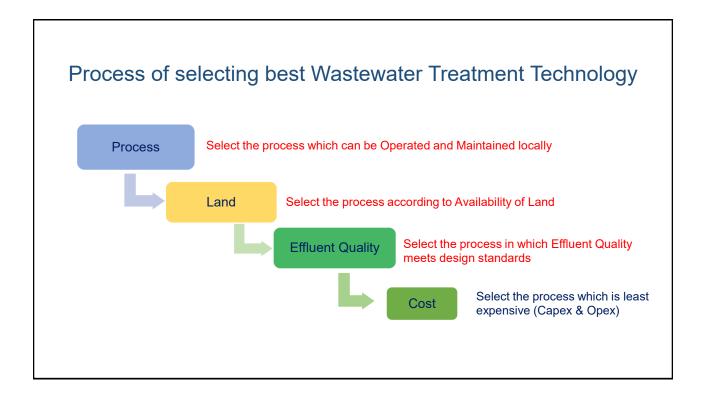
Example No. 2: Step 1: Select the process which can be <u>Operated and</u> <u>Maintained</u> locally.

	Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Tre	eatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
А	Conventional Activated Sludge		30	10	20	100	Selected
A	Aerated Lagoon	50		20	50	50	Selected
VV	aste Stabilization Pond			30	70	30	Selected

Example No. 2: Step 2: Select the process according to <u>Availability of</u> <u>Land.</u>

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	50	30	20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 2: Step 2: Select the process according to <u>Availability of</u> <u>Land.</u>


Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	Selected
Aerated Lagoon	50	30	20	50	50	Selected
Waste Stabilization Pond			30	70	30	Selected

Example No. 2: Step 3: Select the process in which <u>Effluent Quality</u> meets design standards.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	50	30	20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 2: Step 3: Select the process in which Effluent Quality meets design standards.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	Selected
Aerated Lagoon	50	30	20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 3: Step 1: Select the process which can be <u>Operated and</u> <u>Maintained</u> locally.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	25	60	20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 3: Step 1: Select the process which can be Operated and Maintained locally.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	Selected
Aerated Lagoon	25	60	20	50	50	Selected
Waste Stabilization Pond			30	70	30	Selected

Example No. 3: Step 2: Select the process according to Availability of Land.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimate d Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	25	60	20	50	50	
Waste Stabilization Pond			30	70	30	

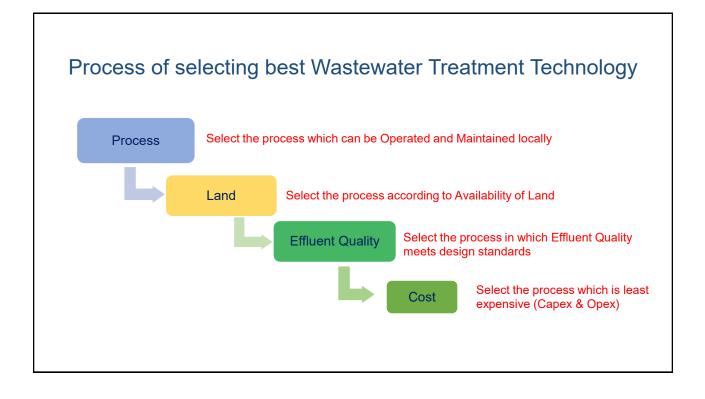
Example No. 3: Step 2: Select the process according to Availability of Land.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	Selected
Aerated Lagoon	25	60	20	50	50	Selected
Waste Stabilization Pond			30	70	30	Not Selected

Example No. 3: Step 3: Select the process in which <u>Effluent Qua</u>lity meets design standards.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	25	60	20	50	50	
Waste Stabilization Pond			30	70	30	Out of comparison

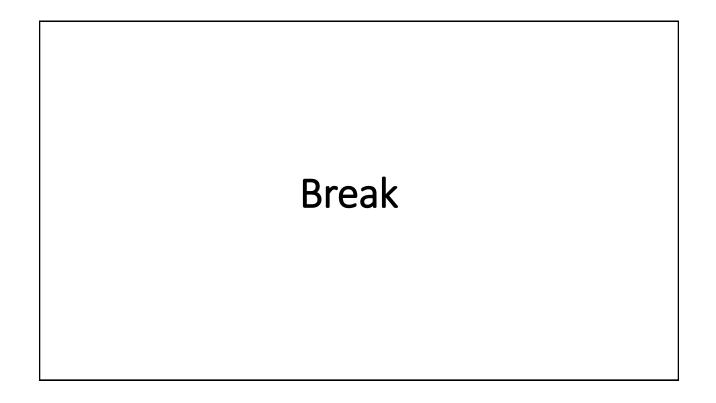
Example No. 3: Step 3: Select the process in which Effluent Quality meets design standards.

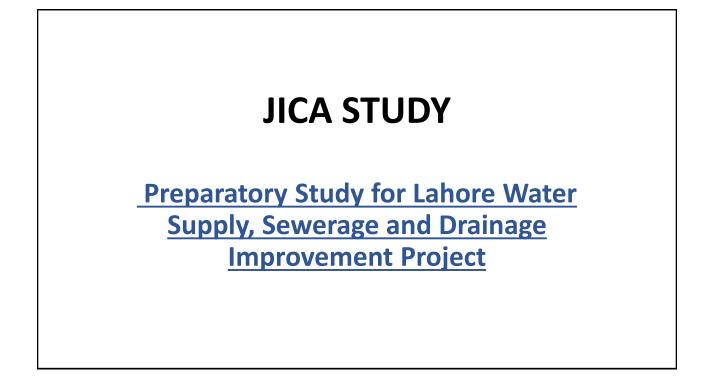

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	Selected
Aerated Lagoon	25	60	20	50	50	Selected
Waste Stabilization Pond			30	70	30	Out of comparison

Example No. 3: Step 4: Select the process which is least expensive (Capex & Opex).

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	25	60	20	50	50	
Waste Stabilization Pond			30	70	30	Out of comparison

Example No. 3: Step 4: Select the process which is least expensive (Capex & Opex).


Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	25	60	20	50	50	Selected
Waste Stabilization Pond			30	70	30	Out of comparison



Exercise No. 1						
Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	25	30	20	50	50	
Stabilization Pond			30	70	30	

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	25	60	20	50	50	
Stabilization Pond			30	70	30	

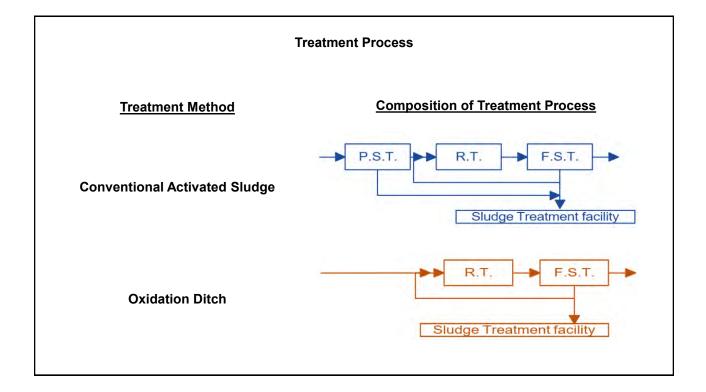
Exercise No. 3						
Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	40	80	20	50	50	
Stabilization Pond			30	70	30	

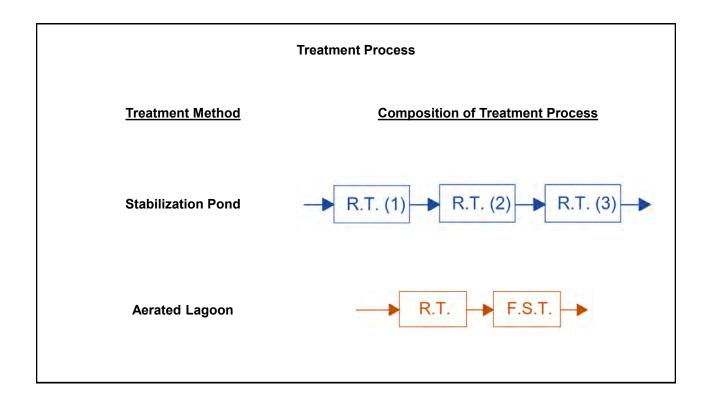
Case Study

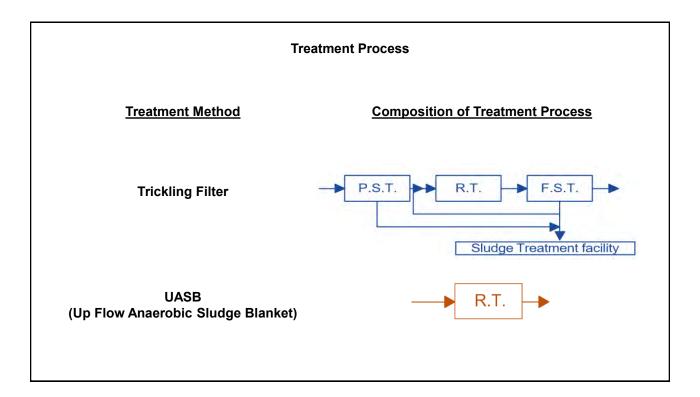
South West Treatment Plant

Comparison of Wastewater Treatment Systems

Criteria	Trickling Filter	Activated Sludge	Oxidation Ditch	Aerated Lagoon	Stabilization Pond	UASB
BOD ₅	++	++	+++	+++	+++	+
Effluent Reuse Possibilities	+1	+1	++	+++	+++	+
Land Requirement	+++	+++	+++	++	++	+++
Maintenance Cost/ Energy Demand	++	+	+	+	+++	+++
Minimization of Sludge for Removal	++2	++2	+	++	+++	++

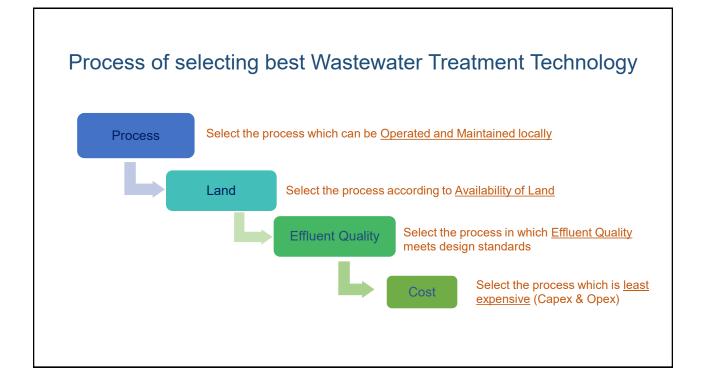

+++ (Good)


++ (Fair)


+ (Poor)

1. The effluents from activated sludge, trickling filter frequently have high ammonia levels (>5mg/L) and faecal bacterial concentrations, and are usually not suitable for irrigation or fish farming without tertiary treatment.

2. Assumes provision of sludge digesters

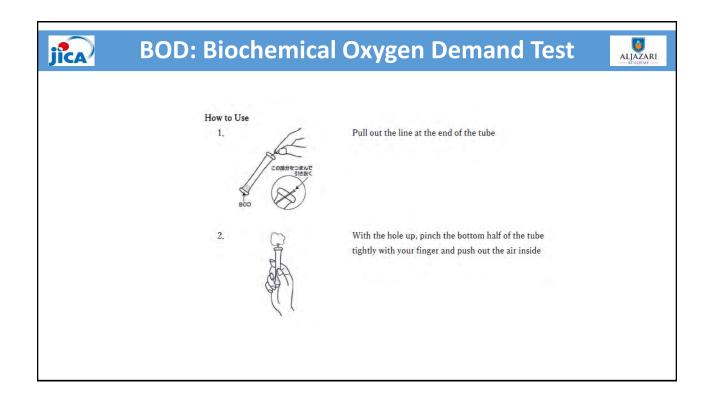


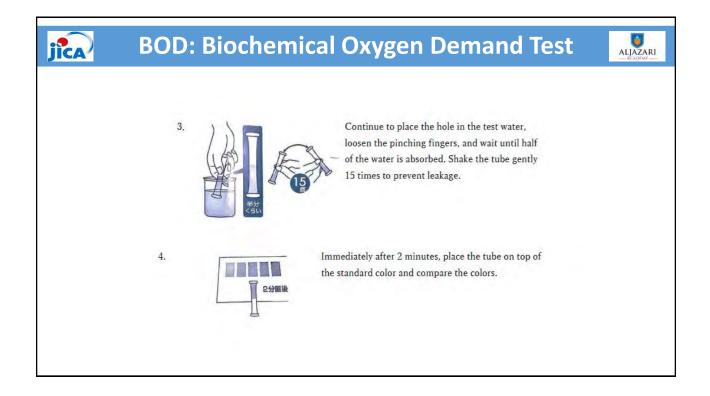
Summary of Basic Conditions in South West Wastewater Treatment Plant

Items	Conditions
Target Year	2035
Service Area	Central Area (100.26 km ²)
Design Population	3,894,300 (Approx. 3.9 Million)
Design Flow (Daily Average)	■ 790,000 m³/d ■ 323 ft³/s
Effluent Sewage Quality (BOD₅)	50 mg/L (NEQS: Less than 80 mg/L)
Site Area	7,300 Kanal (304.3 ha) Land already acquired
Discharge of Treated Wastewater	Ravi River

Process of Selecting Best Wastewater Treatment Technology (Step 1 ~ Step 3)								
Description	Activated Sludge	Oxidation Ditch	Aerated Lagoon	Trickling Filter	Waste Stabilization Pond	UASB		
Step 1 : Processes	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable		
Step 2: Land Availability	Already Available	Already Available	Already Available	Already Available	Need to Acquire	Already Available		
Step 3: Effluent Quality	Meet the Standards	Meet the Standards						

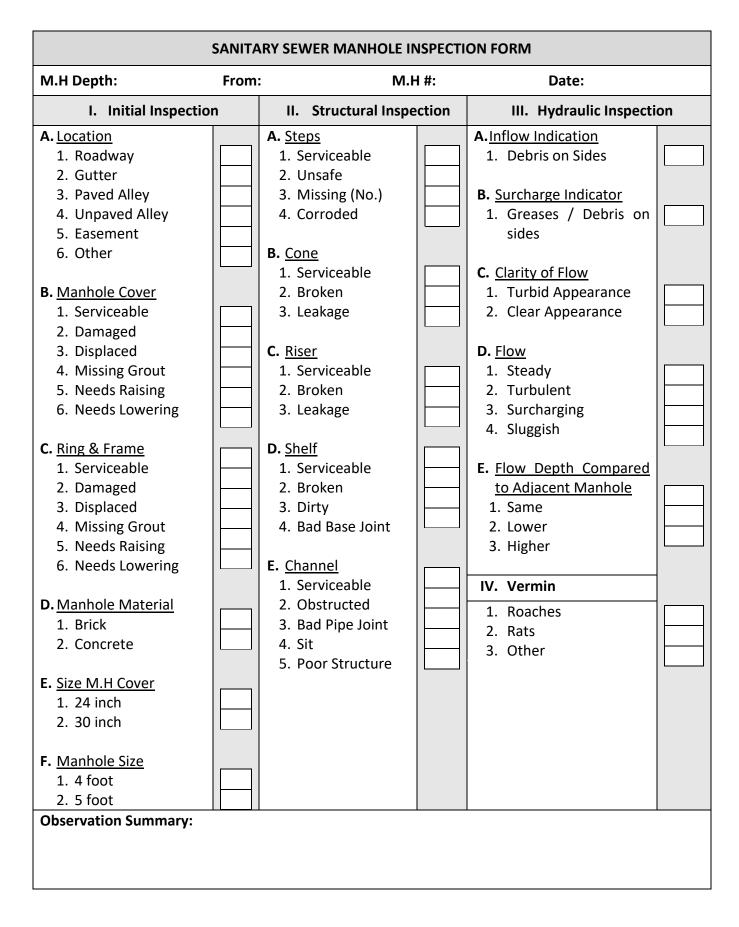
Process of selecting best Wastewater Treatment Technology Step 4: Cost (Capex & Opex)									
Description	Activated Sludge	Oxidation Ditch	Aerated Lagoon	Trickling Filter	Waste Stabilization UASB Pond				
Construction Cost (Capex)	16,998	12,239	8,499	11,389	14,397	15,128			
Land Acquisition (Capex)	-	-	-	-	1,139	-			
O&M Cost - Electricity (for 30 years) (Opex)	32,635	41,783	24,482	9,148	0	7,513			
O&M Cost (Sludge Disposal) (for 30 years) (Opex)	2,487	1,872	3,010	2,654	2,180	1,351			
Total Cost (Capex & Opex)	52,120 (100%)	55,894 (107%)	35,991 (69%)	23,191 (44%)	17,716 (34%)	23,992 (46%)			


CONCLUSION

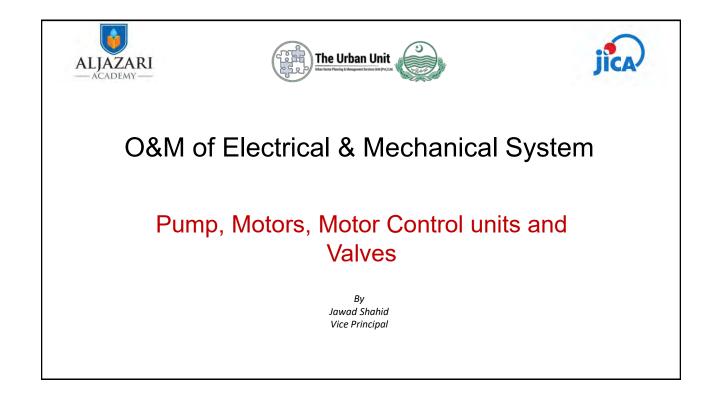

- <u>Waste Stabilization Ponds</u> is selected as best Wastewater Treatment Technology if Land is acquired.
- If Land is not acquired then <u>Trickling Filter</u> is selected as best Wastewater Treatment Technology

Note:

- This comparison is for inflow of 790,000m³/d with BOD of 250mg/l. Conclusion might be changed with different values of inflow & BOD.
- This comparison is conducted in Year 2010. Therefore conclusion might be changed now.


Quiz

Operation and Maintenance (O&M) of Sewerage System


Name	e of Trainee			Organization		
Total	Marks	10		Obtained Marks		
				_		
Shor	rt Answer Que	estions				
1.	What are the r	reasons for c	leaning sewer & n	nanhole?		
2.	Enlist various t	tools and eq	uipment, required	for sewer cleaning?	2	
Fill in	the Blanks					
1.	Hydrogen sulfi	de (H₂S) may	/ attack	manholes (C	oncrete/ Plastic	:)
2.	Pole mounted	sewer cam	era is used to find	d	_ connection.	(cable /
	illegal)					
3.	Preventive mai	intenance ca	in save the	(time & n	noney / nothing	;)
True	/False					
Sr. No.			Statement		Yes	No
1.	First stage of in	spection is (CCTV?			
2.	The maximum	range of pol	e mounted sewer o	camera is 20 feet?		
3.	Is it necessary t	to ventilate t	he manhole before	e its cleaning?		

jica		N	leasuren	nent of	Dischar	ge in Drains			ALJAZARI
	Left	cm/s	Center	cm/s	Right	cm/s		m	ft
	V1		V4		V7		Width		
	V2		V5		V8		Depth		
	V3		V6		V9				
	Avg.		Avg.		Avg.				
Avg (cm/s)									
Avg (m/s)									
Avg Velocity (ft/s)									
						Nome			т
- · · · · ·						Name			4
Q=A*V						Designation			
						Organization			1
						Total Marks			Ī

Annex 5.1.51 Training Material for "O&M of Mechanical and Electrical Equipment" in Fall (December) 2022

Importance of Tube Well Pumps

This could be my home !

Importance of Disposal Station Pumps

This could be our children !

Topics to cover..

- ✓ Types of Pumps
- ✓ Pump operations
- ✓ Preventive maintenance of pumps
- ✓ Induction Motors
- ✓ Motor Control Units
- \checkmark Valves and their Operation
- ✓ Asset Lifecycle Assessment
- ✓ Vibration Analysis
- \checkmark Pump series and parallel op.
- ✓ Motor Starters,Pump Performance curve
- ✓ Preparation of Operational Plan
- ✓ Introduction to E-Learning Platform

Icebreaker and Class Introduction

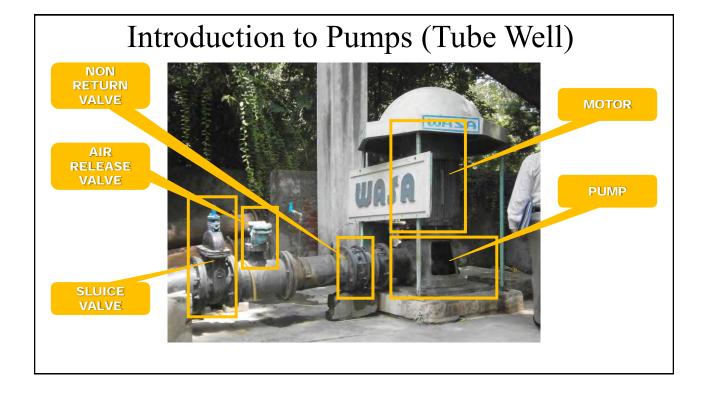
Now it is your turn...

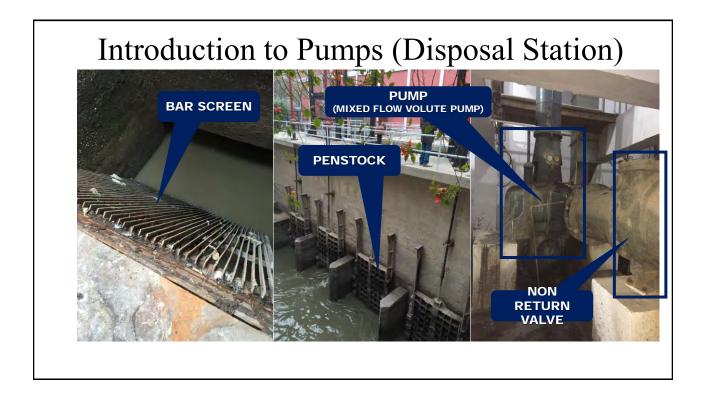
- Degree and backgrounds?
- Share your work experience relative to

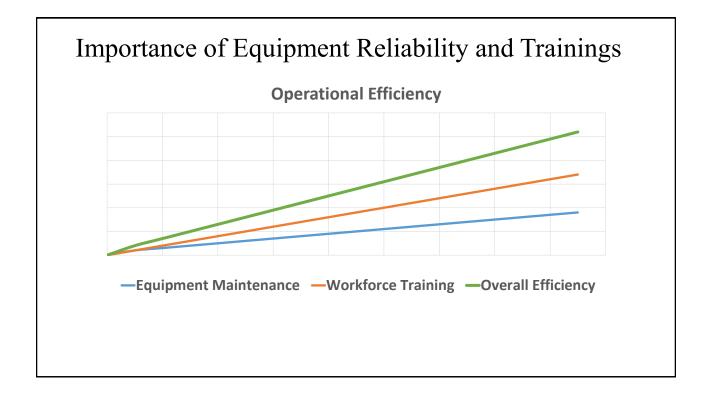
WASA equipment?

Brainstorming

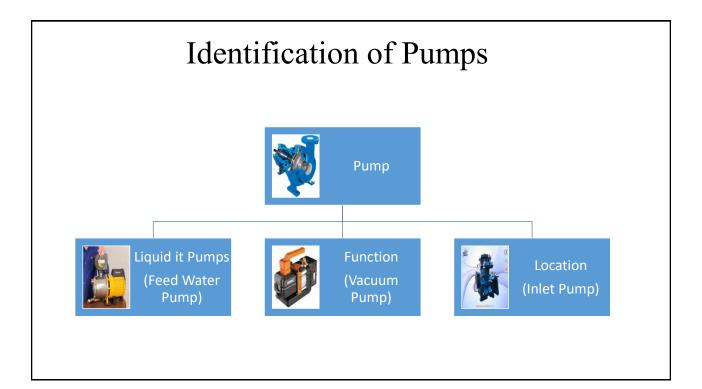
Now it is your turn...


- Any prior experience on Pumps?
- Why interested in this Module?
- What best skills do you bring to the class?



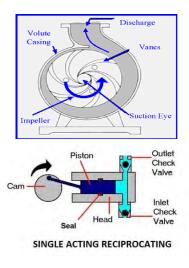

Resources and Handouts

- Owner's Manual, KSB Pumps
- Pumps and Pumping (Arasmith, S. 2006)
 ACR Publications, London
- Participant lecture notes, Module 1
- Class presentations, Module 1



<section-header><section-header><section-header><section-header><text><text>

Introduction to Pumps


Two major categories:

i) Centrifugal Pumps

The Pump in which energy is continuously added to increase the fluid velocities within the machine. This type is most commonly used in water and sanitation industry.

ii) Positive Displacement Pumps

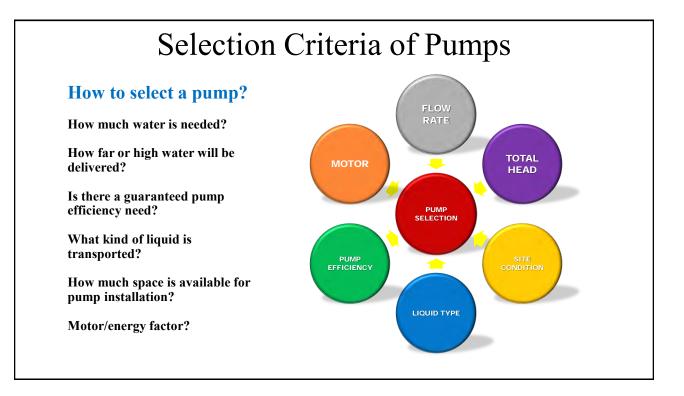
The pump in which the energy is periodically added by application of force.

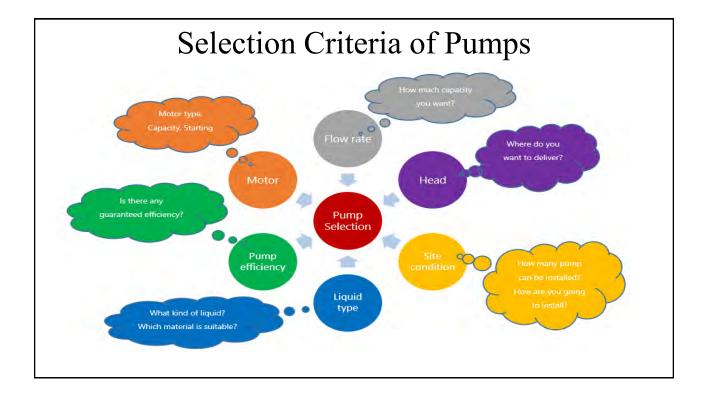
Introduction to Pumps

Centrifugal Pumps

Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid flow. The rotational energy typically comes from an engine or electric motor.

Video Centrifugal Pumps


Introduction to Pumps


General Design and Parameters...

All equipment should be selected properly. Wrong selection will cause...

✓ Short lifecycle

- ✓ Operational downtime
- ✓ Energy loss
- ✓ Major capital loss

Selection Criteria of Pumps

Parameters

✓ Flow Rate [cusec, m3/h, l/s]

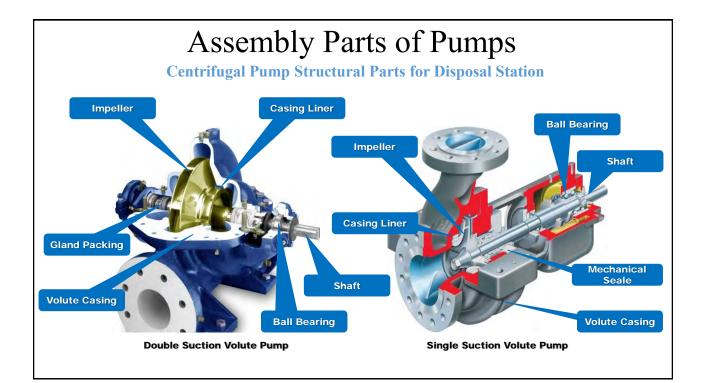
✓ Total Head [m, ft.]

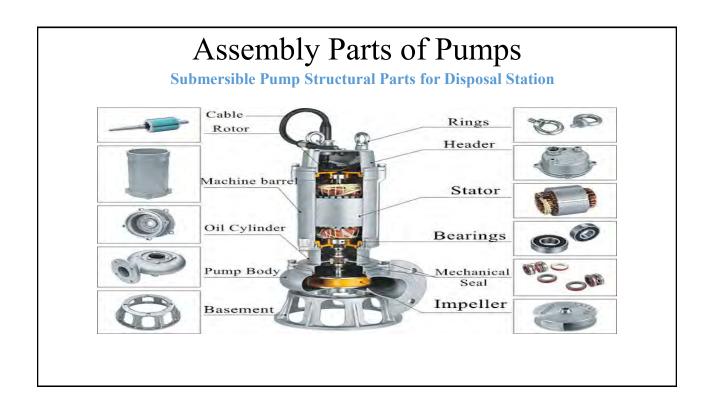
✓ Motor Output [kW, HP]

✓ Pump Type [water supply, wastewater)

Selection Criteria for Pumps

Other Parameters


✓ Materials [cast iron, steel, food grade]


✓Liquid Type [clean water, waste water]


✓ Paint [anti corrosion]

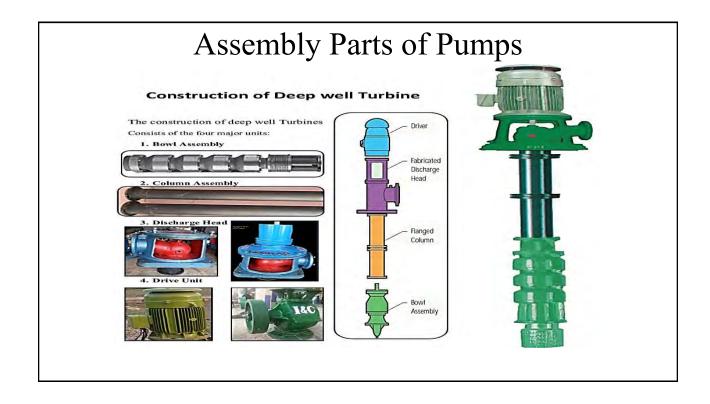
✓ Available Installation Space [m2, ft2]

Introduction to Pump	Design	Basics	8
Centrifugal Pump Nameplate and Designation Specification:			
Discharge Diameter: 40500mm(1.620inc	h)		
Flow Capacity: 106000m ³ /h			
Head: 680m Name Plate and Designation	о кsb b.	KSB BOMBAS HIDRA VARZEA PAULISTA-S PHONE 55-11-459685 MADE IN BRAZIL	P
KWP K 100 - 250	KSB		
	OP	YEAR	
Types series	Q m	³/h H	m
Impeller form	<u>n r</u>	om	
Discharge nozzle DN	0		0
Nominal impeller dia. in mm	581	168	BRN 37



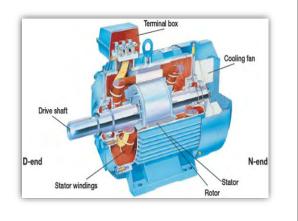
Introduction to Pumps

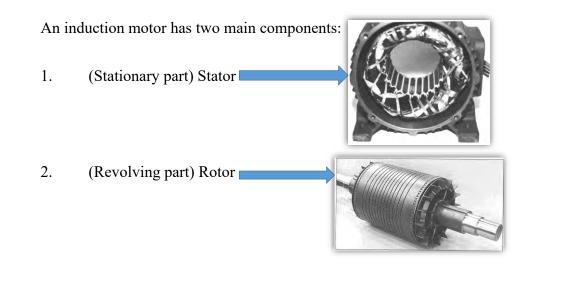
Vertical Turbine Pump

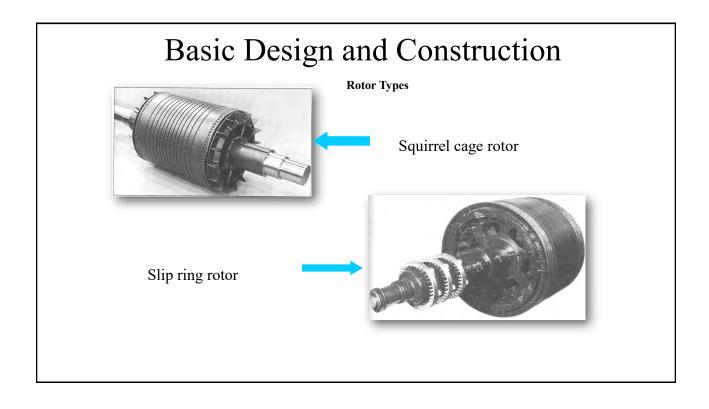

These pumps are commonly used in groundwater wells. These pumps are driven by a shaft rotated by a motor on the surface

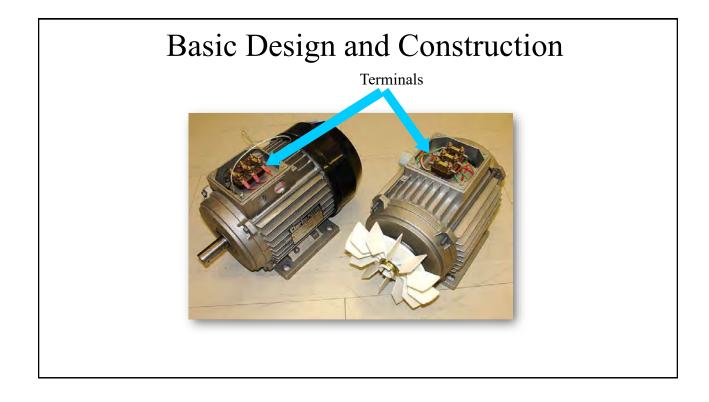
Submersible Pump

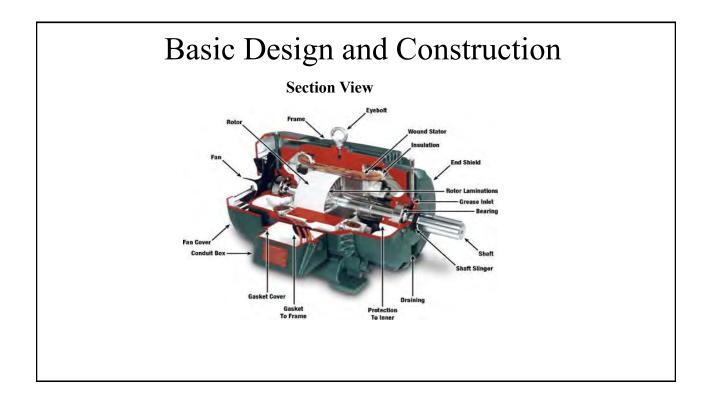
A type of pump in which the motor and pump both are in the ground water reservoir. Motor is water proof and electricity is provided to the motor by a water proof cable.

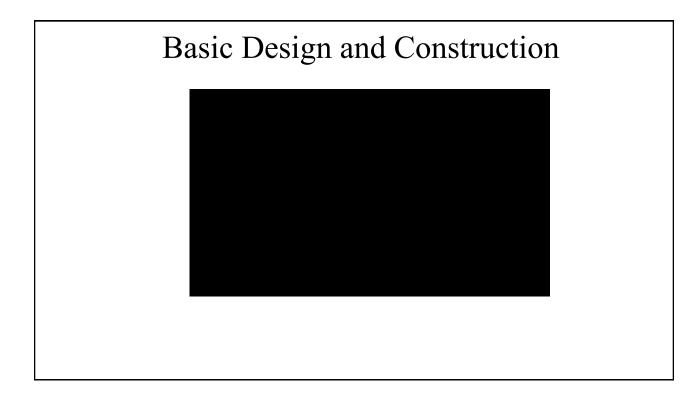


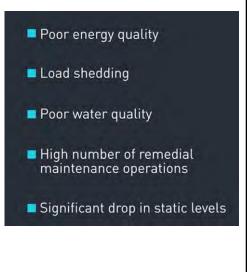

Comparison of Vertical pump and Submersible pump					
	Vertical shaft centrifugal pump (Tube well)	Submersible motor pump (tube well)			
Picture					
Bore size	Cover a wide range	Max bore: approx. 200 mm			
Flow capacity	Cover a wide range	Small			
Head	Cover a wide range	Cover a wide range			
Efficiency	Small bore: almost equal with submersible motor pump Big bore: Max eff. approx.90%	Maximum: approx. 80%			
Installation	complex	Easy			
Maintenance	complex	Easy			
Cost	Expensive than Submersible motor pump	Cheaper than Vertical shaft pump			
Vibration/Noise	Need attention	No need to pay attention compare to Vertical pump			
Leakage	Need attention	No need to pay attention compare to Vertical pump			


Introduction to 3 phase Induction Motors


- Electrical motor is an electromechanical device, which converts electrical energy to mechanical energy.
- Three-phase induction motors are the most common electrical motors used in the industry.




Basic Design and Construction



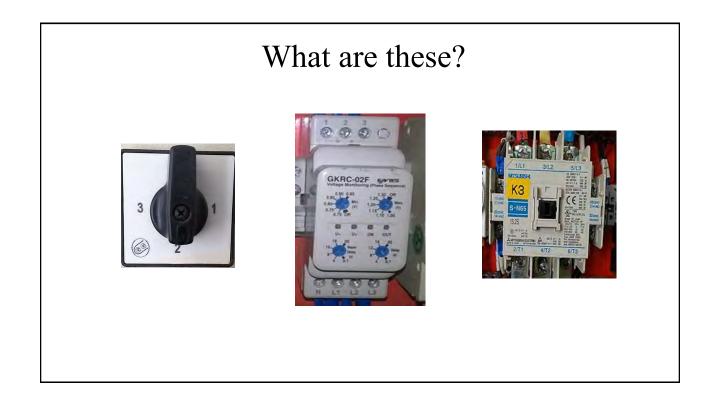
Motor Burnout and Rewinding

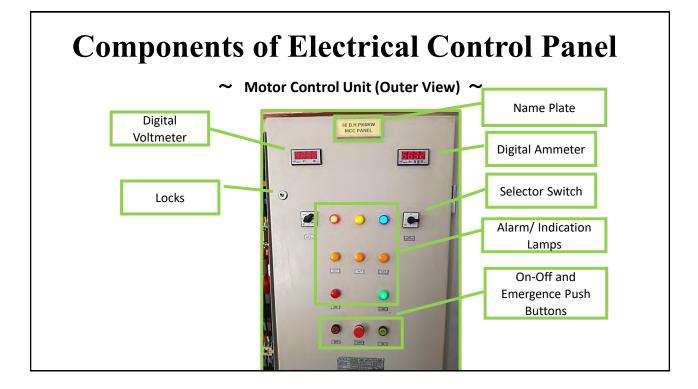
Causes...

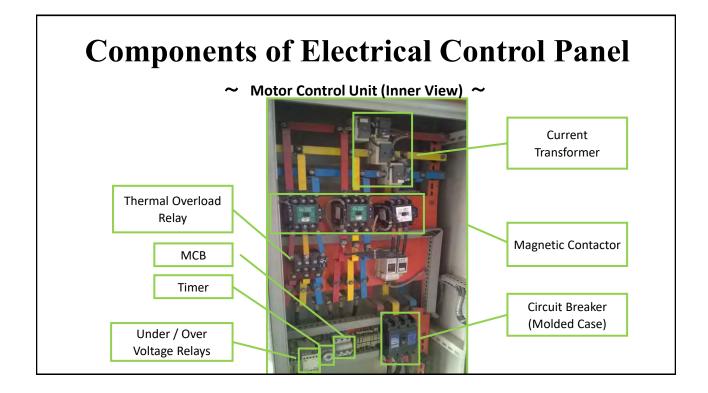
- 1. Fluctuation in phase voltages
- 2. Malfunctioning of protective relays
- 3. Manufacturing defects
- 4. Damage before or during installation
- 5. Improper installation
- 6. Misapplication (overload)

Motor Burnout and Rewinding

- Copper or aluminum wire should be used for rewinding the motor
- Preferably inside of the winding wire should be enameled copper wire (magnet wire)


Motor Burnout and Rewinding


- After re-winding the assembly should be coated with risen and baked.
- Special care should be taken when inserting the rotor into the stator assembly.



Introduction to Panel Components

Selector Switches

 ✓ Used to select among each of the three phases to monitor currents and voltages on ampere and voltmeter.

Ampere & Voltmeter meter

- ✓ Monitoring gauges for currents and voltages
- ✓ Digital and analog type Ampere and Volt meters are used by WASAs

1. Circuit Breakers

Circuit breakers are switches that open/close electric • circuits in normal and abnormal conditions specially in case of a short circuit.

2. Contactor

✓ A power contactor is typically used for "on / off" control of motors. A relay can be installed on the circuit for overload protection. Electromagnetic force works to "open /close" the contacts.

Protective Relays

✓ Protective relays detect electrical faults, isolate the faults from system and activate alarms is a faulty condition sensed

Thermal Relay

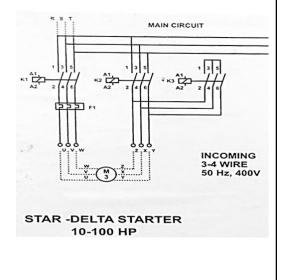
Under/Over Voltage Relay

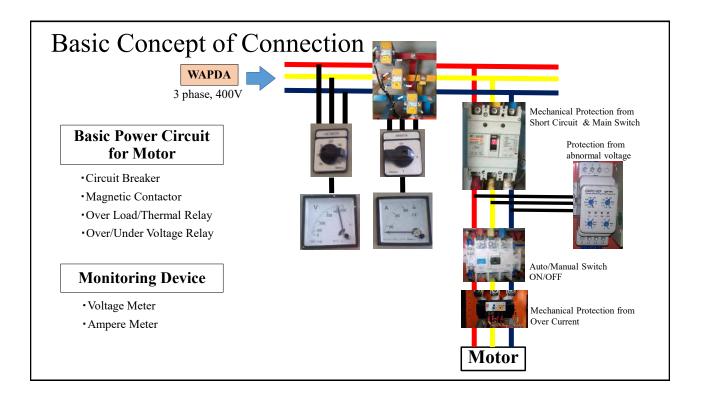
Phase Failure Relay

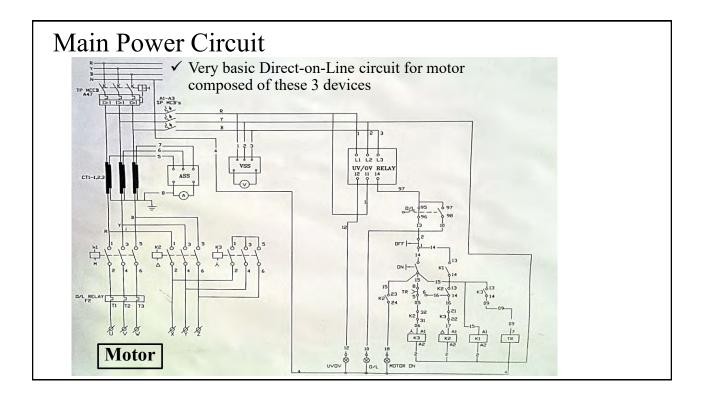
5. Current transformers (CT)

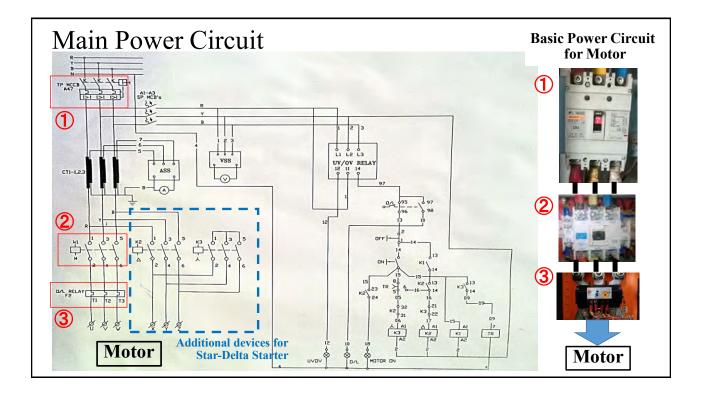
✓ CT's are used for stepping down current to be measured safely. It is also applied to protective relays

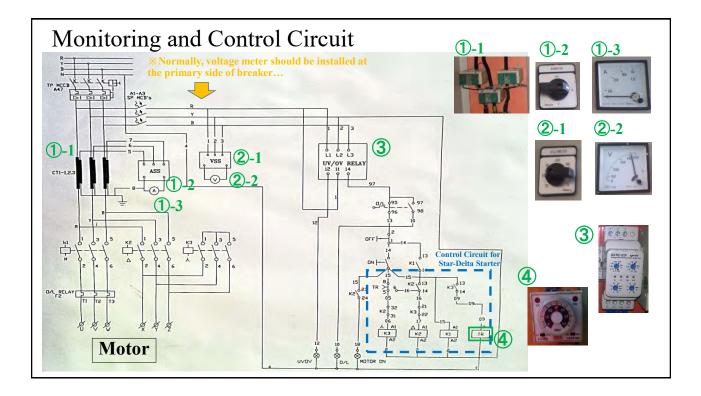
6. Timer


✓ Use to convert the motor connections from Star to Delta after specific time




WIRING DIAGRAMS


Wiring Diagram


- \checkmark Shows how the components are connected
- \checkmark It should be always available at the site

Introduction and selection of valves

Valve

A valve is a device that regulates, directs or controls the flow of a fluid

by opening, closing, or partially obstructing various passageways.

Valve Functions

- ✓ Stopping and starting fluid flow.
- ✓ Varying (throttling) the amount of fluid flow.
- ✓ Controlling the direction of fluid flow.
- ✓ Regulating process pressure.
- ✓ Relieving component or piping pressure.

Introduction and selection of valves

Classification of Valves

The following are some of the commonly used valve classifications, based on mechanical motion:

Linear Motion Valves.

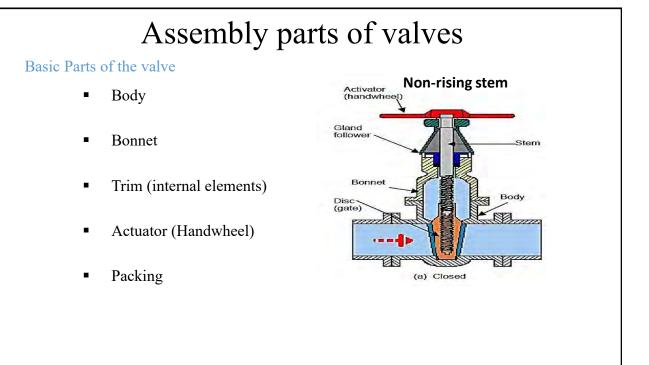
The valves in which the closure member, as in gate or sluice, moves in a straight line to allow, stop, or throttle the flow.

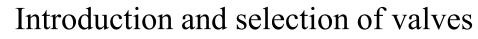
Introduction and selection of valves

Classification of Valves

Rotary Motion Valves.

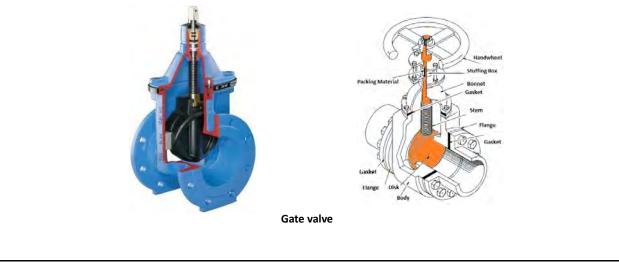
When the valve-closure member travels along an angular or circular path, as in butterfly valves.

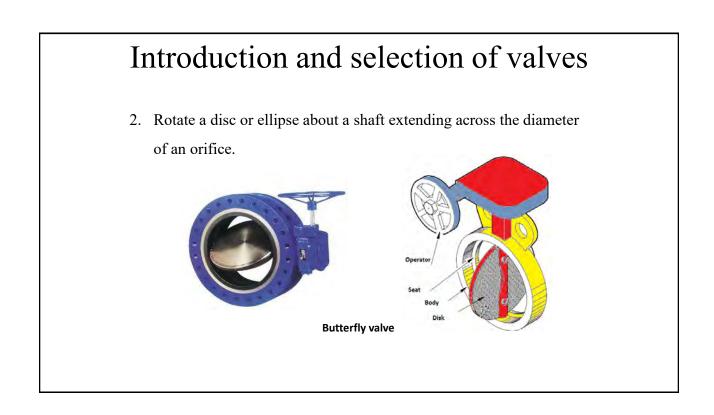

Quarter Turn Valves.

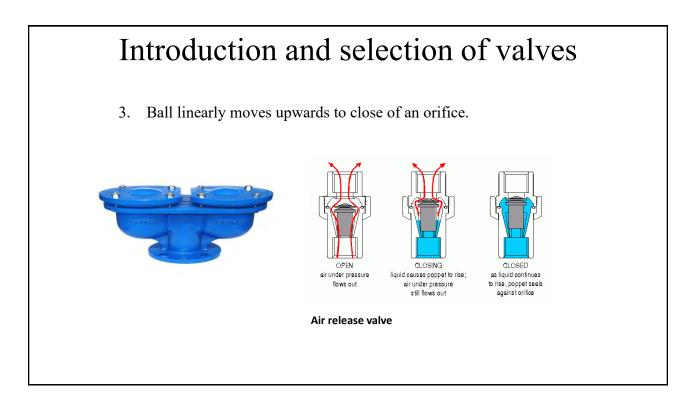

Some rotary motion valves require approximately a quarter turn, 0 through 90° , motion of the stem to go to fully open from a fully closed position or vice versa.

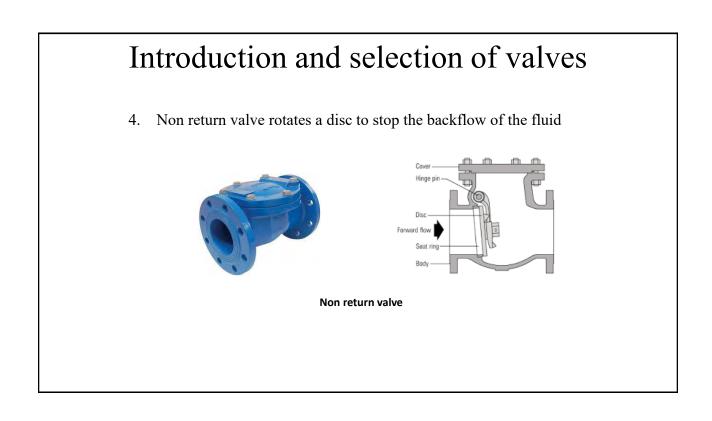
Introduction and selection of valves

Classification of valves based on motion

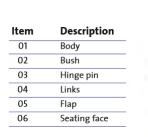

Valve types	Linear motion	Rotary motion	Quarter turn
Gate Valve	Х		
Air release valve	X		
Butterfly valve		Х	х
Non-return valve		X	Х
Flap valve		Х	

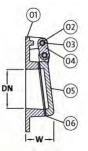





Methods of controlling flow through a valve.

1. Slide a flat, cylindrical, or spherical surface across the orifice.





Introduction and selection of valves

5. **Flap valve** rotates a cover disc to hinder air suction and backflow of the fluid. Installed at the open end of discharge pipe.

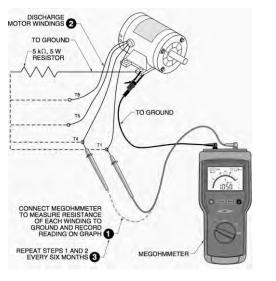
Flap valve

Insulation Testing for 3-Phase Motor

What is "Insulation Resistance"?

- Insulation resistance is the value showing if there is electrical leakage or not with the measured equipment.
- Insulation resistance tester is a tool to check how properly the system/equipment is insulated.
- If the value show less than 1 M Ω , need to be cared. If less than 0.4 M Ω (i.e. for 400V), detect the faulty parts and replace them immediately.
- It is necessary to check not only one time value but also the trend and comparison with the previous value.

Insulation Resistance Tester


Step By Step Procedure for Insulation Testing

- 1. Connect the terminals of insulation tester black with earth and red with $U_{1,}$ V_1 and W_1 one by one with energize insulation tester and note values.
- 2. Cross winding insulation test

Connect the terminals in the pattern

$$U_1 - V_1$$
, $U_1 - W_1$, $V_1 - W_1$ and
 $U_2 - V_2$, $U_2 - W_2$, $V_2 - W_2$

Energize the system and note down values. Minimum insulation resistance value should be more the $1 \text{ M}\Omega$.

Sample Format for Preventive Maintenance

Sub Division :		Motor		Specification		
Site Name:		Rated Voltage	Rated Ampere	Efficiency	Power Factor	RPM
Equipment Name:		(V)	(A)	-	-	
Date						
Inspected By						
Weather						
Bo	It Tightening		1			
	U1-E	U2-E				
Insulation	V1-E	V2-E				
Resistance	W1-E	W2-E				
(MΩ)	U1-V1	U2-V2				
. ,	V1-W1	V2-W2				
	W1-U1	W2-U2	1			

(2) Test in Running Condition

Voltage by	R	Y				
Clamp Meter	Y	В				
(∨)	BI	R				
Ampere by	F	2				
Clamp Meter	Y	·				
(A)	E	3				
F	Power Factor					
Vibration	Upper Bearing	Lower Bearing				
Revolutio	n Per Minut					
Temperature	Upper Bearing	Lower Bearing				
	Shaft	-				
Reference for	Insulation Res	sistance Value	:	$Good \rightarrow m$	ore than 1.0MΩ	
Need to Adjust, 0	⊂lean,Care →	$1.0M\Omega \sim 0.4M$	Need to repa	ir immediately	\rightarrow less than 0.4	MΩ
- Remarks -						

Issues in Pumps

Trouble shooting Pumps

- 1. Corrosion
- 2. Cavitation
- 3. Change in Flow and Pressure

Issues in Pumps

Trouble shooting Pumps

- 1. Corrosion
- 2. Cavitation
- 3. Change in Flow and Pressure

Troubleshooting

Trouble shooting Pumps

- 1. Troubles are of 3 types: mechanical, hydraulic and motor related
 - ✓ Mechanical troubles: Breakage of coupling or shaft
 - ✓ Hydraulic troubles: Failure to deliver water, reduction in discharge and over loading.
 - ✓ Motor troubles: If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- Flow rate increases check if system head decreased, is motor tripping on overloading?

Trouble shooting Pump

- Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.
- Vibrations check obstruction in suction, cavitation, impeller with solid particle logged in vane, system alignment (shaft, coupling etc.), tightening of installation bolts
- Seal leakage while running or at shut down? check suction conditions, wear in parts, pump speed, changes in system.

Troubleshooting

Trouble shooting Centrifugal Pump

No liquid delivered

- Lack of prime
- Speed of electric motor or engine too low
- Discharge head too high
- Suction lift too high
- Impeller plugged
- Vapor lock in suction line

Trouble shooting Centrifugal Pump

Not enough water discharge

- Air leaks
- Worn wearing rings
- Damaged impeller
- Defective foot valve
- Worn gaskets

Troubleshooting

Trouble shooting Centrifugal Pump

Overloading of Motor / Engine

- Low discharge head
- Packing too tight
- Bent shaft
- Distorted casing
- Pump speed too high

Trouble shooting Vertical Turbine Pump

- 1. If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- Flow rate increases check if system head decreased, is motor tripping on overload?
- 3. Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.

Troubleshooting

Trouble shooting Vertical Turbine Pump

- 4. Vibrations check obstruction in suction, impeller with solid particle logged in vane.
- There is excessive leakage from the stuffing box The packing is defective. Replace any packing that is worn or damaged

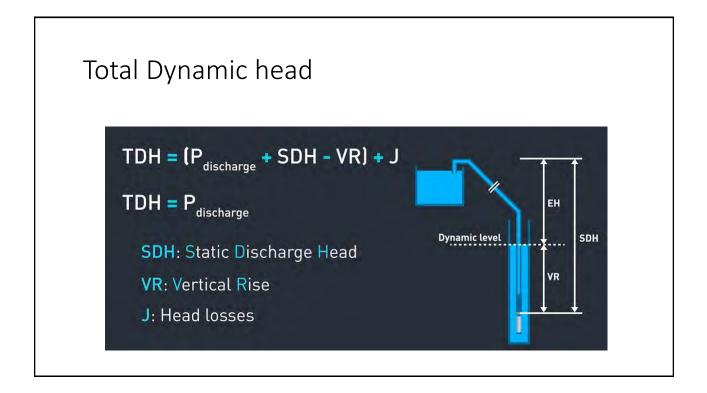
Trouble shooting Submersible Pump

- 1. If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- 2. Flow rate increases check if system head decreased, is motor tripping on overload?
- 3. Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.

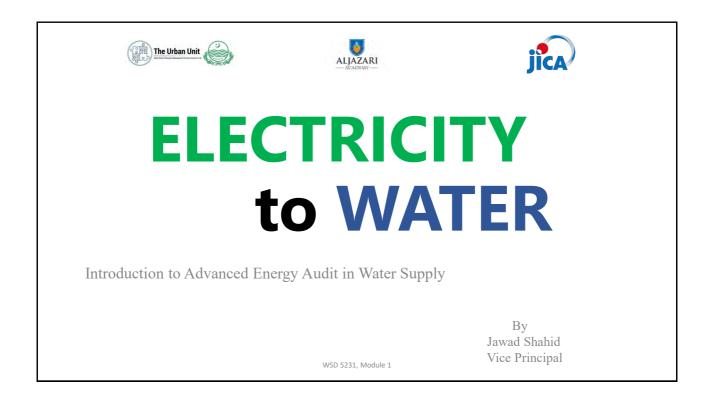
Troubleshooting

Trouble shooting Submersible Pump

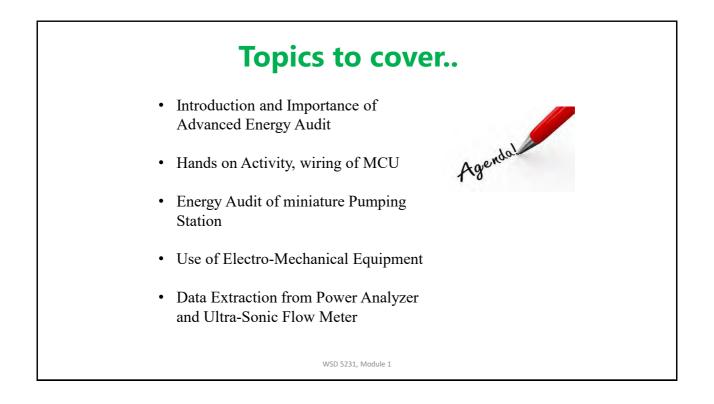
- 4. Vibrations check obstruction in suction, impeller with solid particle clogged in vane.
- 5. Sand in well discharge and/or excessive pump impeller wear

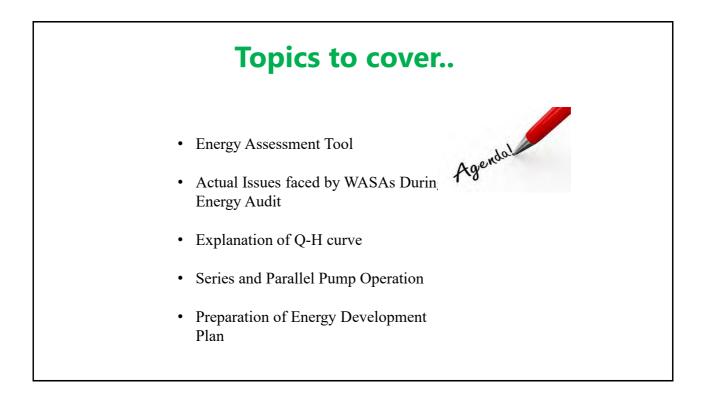

Possible problem	Solution
Damaged well screen or gravel envelope	In some cases a drilling contractor may be able to replace or repair the screen or gravel envelope.
Flow is drawing sand into the well	Throttle back the flow rate to reduce the problem. A drilling contractor may also need to redevelop the bore to flush out the sand around the bore screen (or take other measures as appropriate).

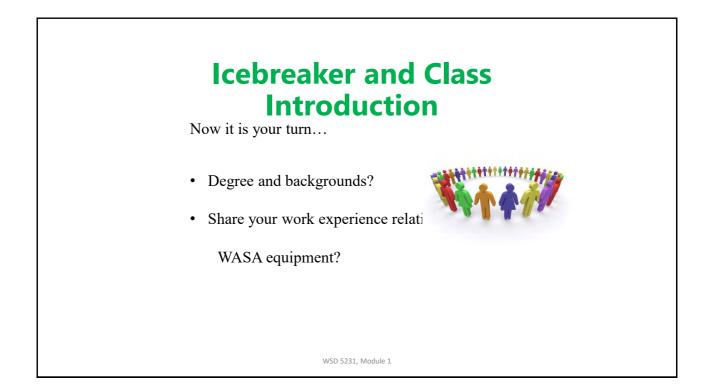
Trouble shooting Submersible Pump

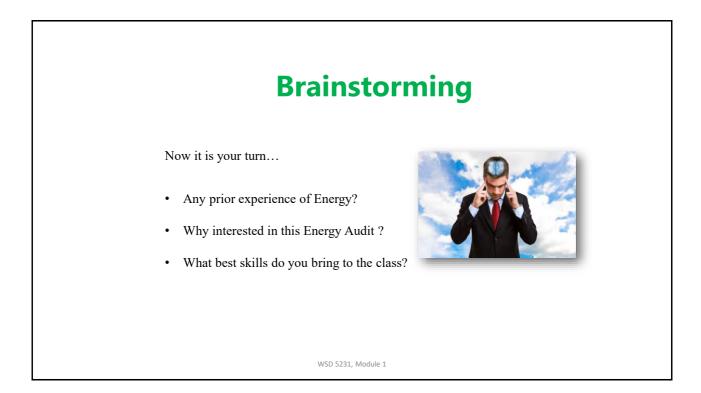

Possible problem	Solution
	Look at the pump controls. Install storage or a variable speed drive (not always appropriate).

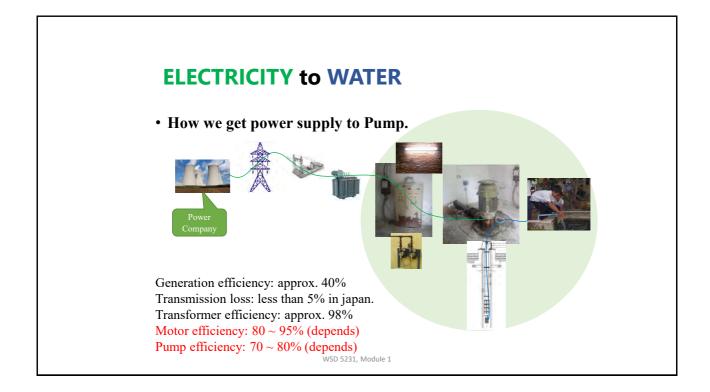
Imersed Tubewell Pump

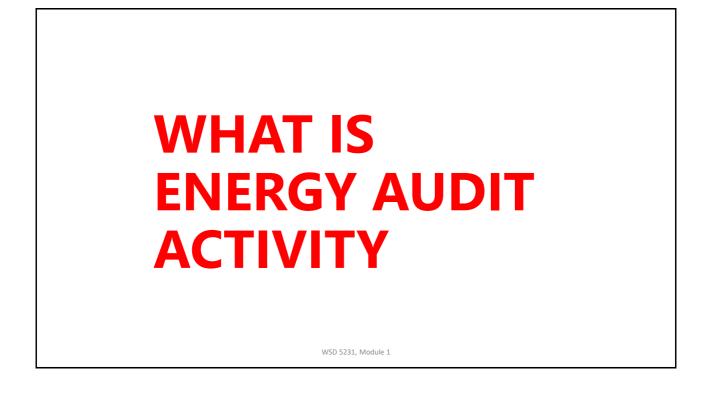


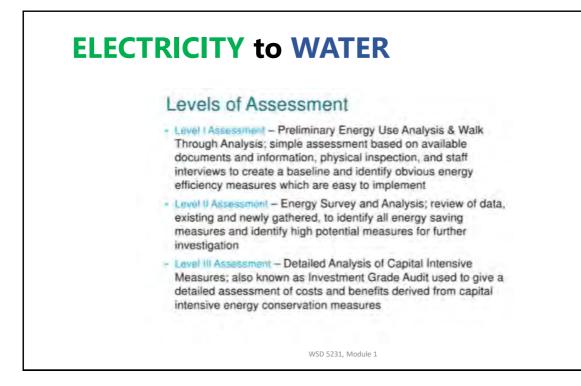


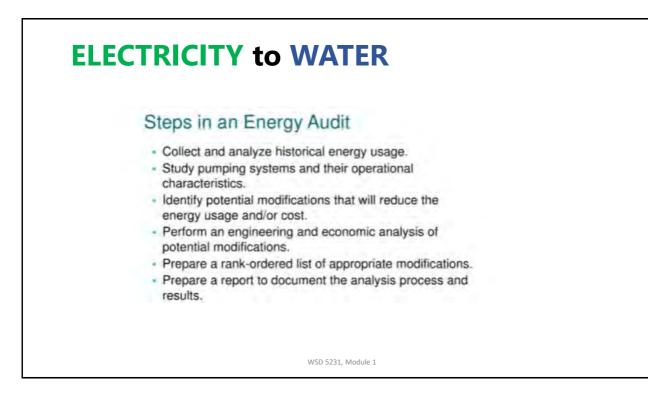

Importance of Tube Well Pumps

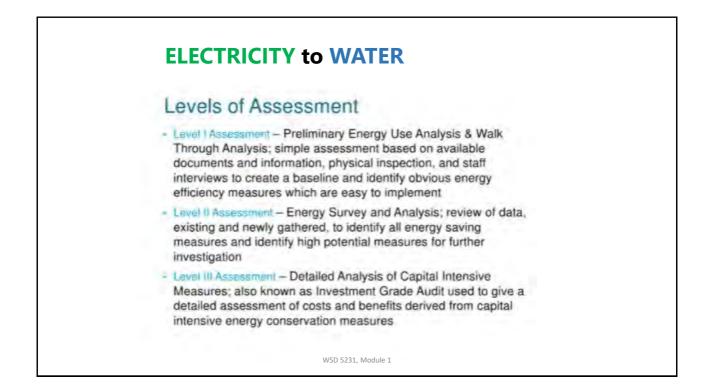


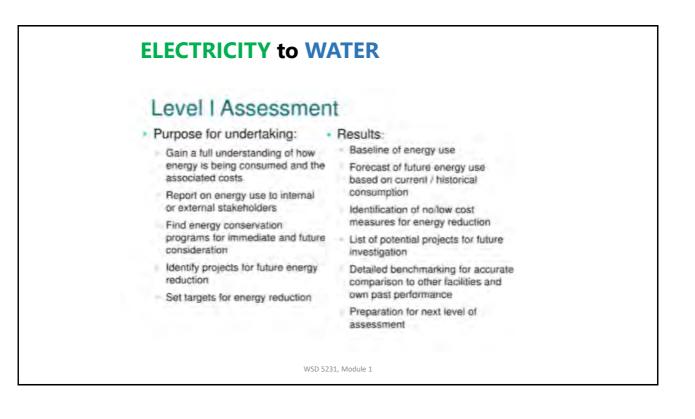

WSD 5231, Module 1

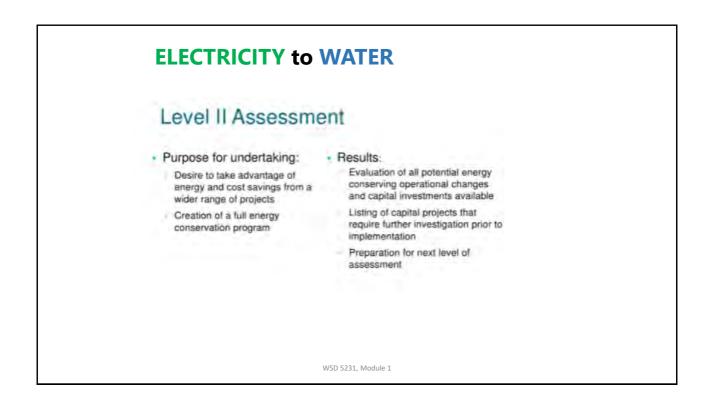


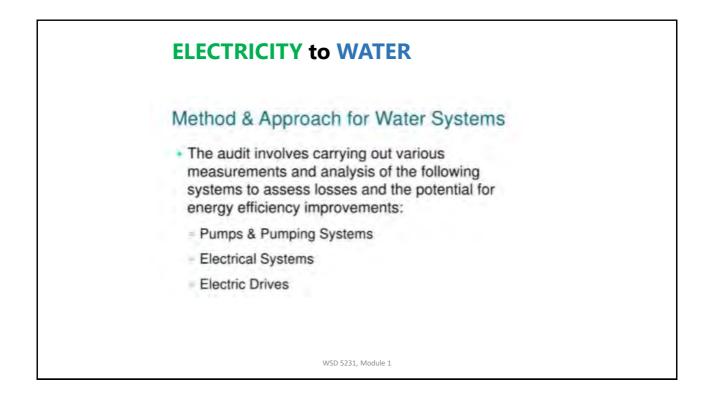

ELECTRICITY to WATER	
Energy Audit: An Energy Audit is an assessment and analysis of Energy Flows in a process, aimed at reducing the amount of energy input into the system without negatively affecting the outputs.	
Objective Audit: The main objective of an energy audit is to explore various possibilities for energy conversation.	
Approach: An Energy Audit requires a through and detailed study of a system, through the performance of various tests and measurements.	
WSD 5231, Module 1	

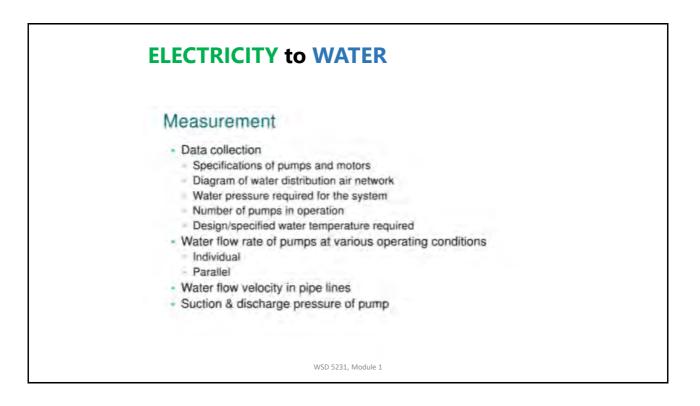

BASIC KNOWLEDGE for ENERGY AUDIT

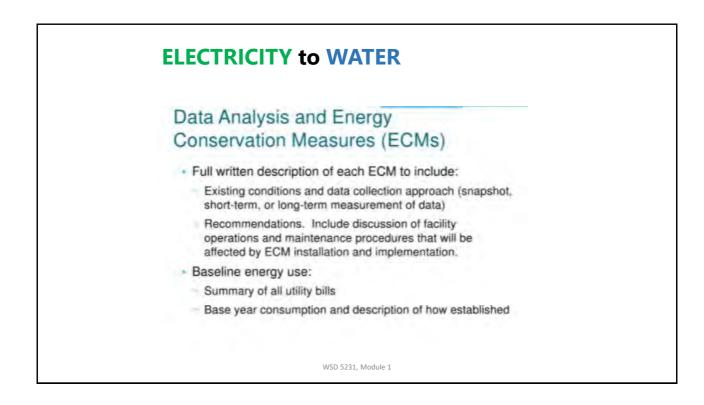

Concept of

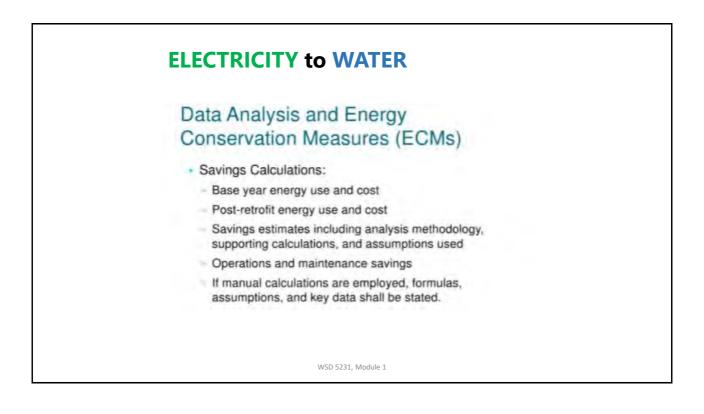

- Electrical Capacity (kW)
- Pump Efficiency
- Principle of measurement
- Evaluation for Pump station

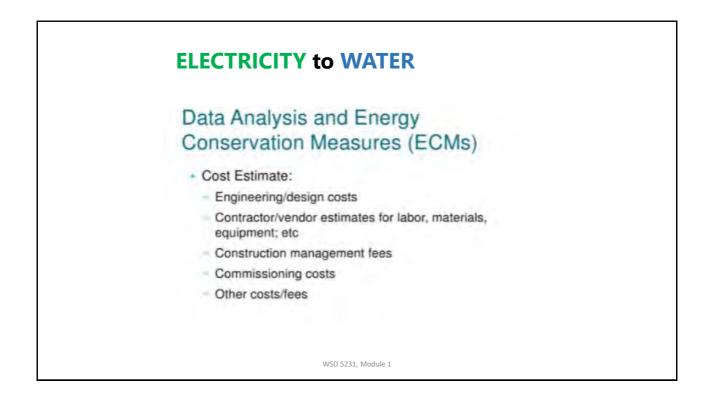

WSD 5231, Module 1

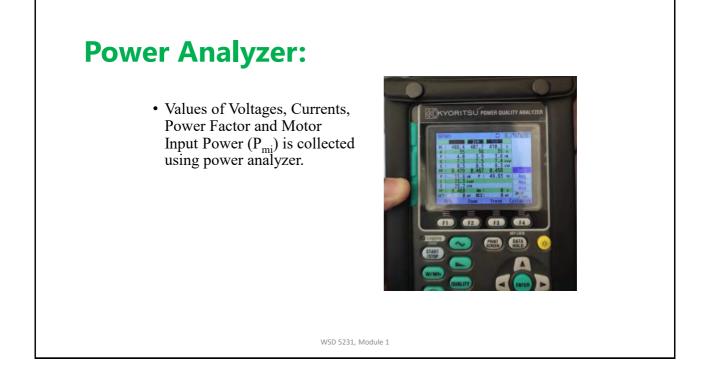


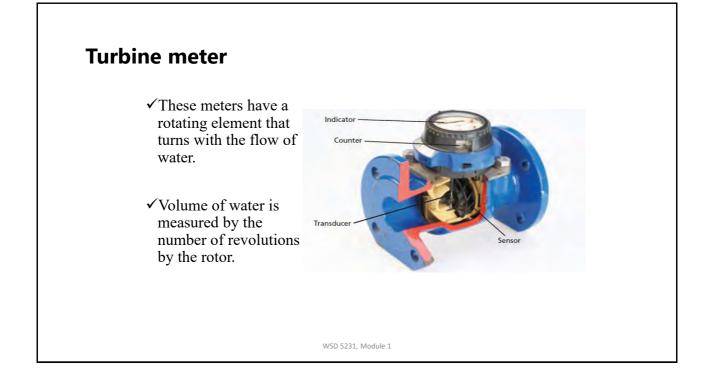


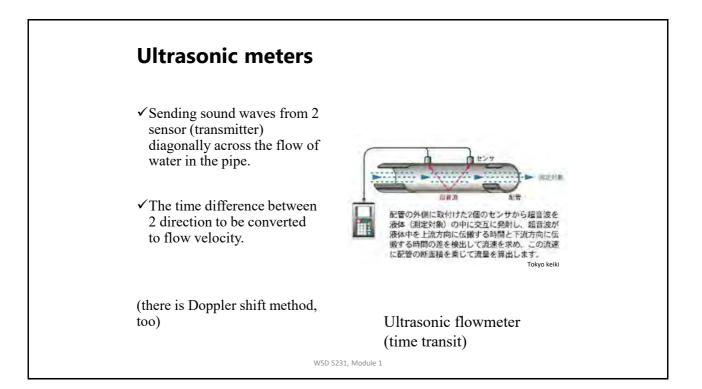


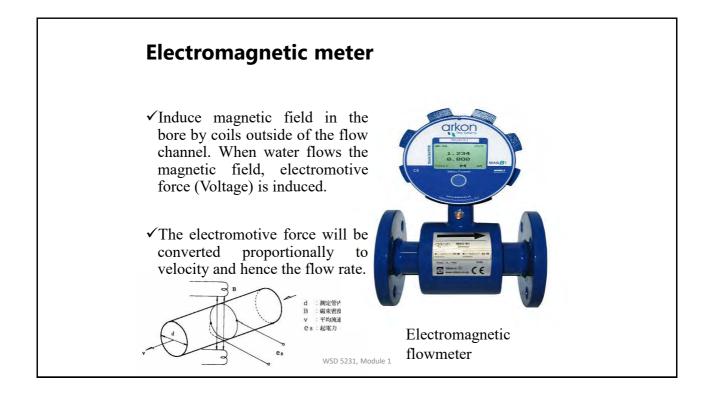


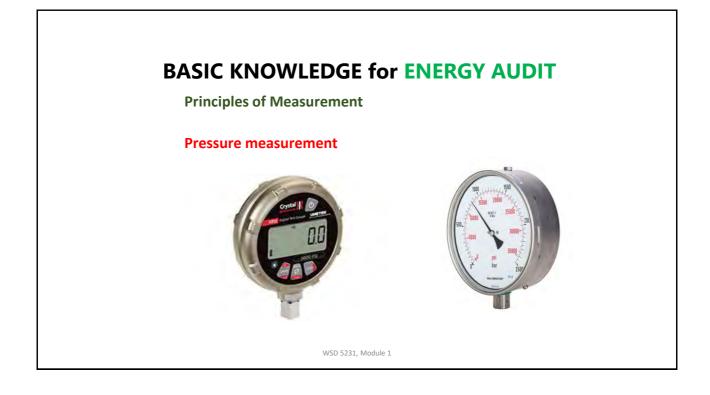


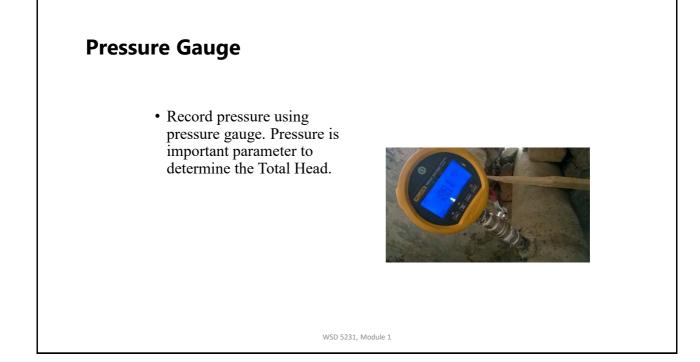



S.No.	Designation	Responsibility
1.	Director	Approve and Present
2.	Executive Engineer	Verify and Prepare Recommendations for Improvement
3.	Sub-Divisional Officer	Supervise Energy Audi
4.	Sub-Engineer / Supervisor	Perform Energy Audit


Equipment Required for Energy Audit

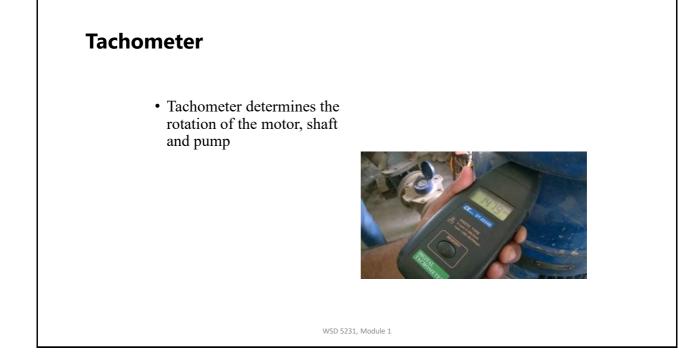

- Power analyser
- Ultrasonic Flowmeter
- Pressure Gauge
- Water level meter
- Tachometer
- Thermometer
- Vibration meter


▶ BASIC KNOWLEDGE for ENERGY AUDIT ▶ Turbine Meters ▶ Ultra Sonic Flow Meters ▶ Electromagnetic Meters


BASIC	KNOWLED	GE for ENER	GY AUDIT
	Ultra Sonic	Electromagnetic	Turbine
Appearance			
Accuracy	lower than Electromagnetic in small flow rate	High	lower than others in small flow rate
Installation condition (D:pipe dia)	Before meter:10D After meter:5D	Before meter:5D After meter:2D	Before meter:10D After meter:5D
Pressure loss	No pressure loss	Almost no pressure loss	Pressure loss due to around Impeller
Telecommunications	Available	Available	Available
Initial Cost	Expensive	Expensive	Inexpensive
Others	Proper installation skill is required	Susceptible to electrical noise	There is lifetime of rotation parts

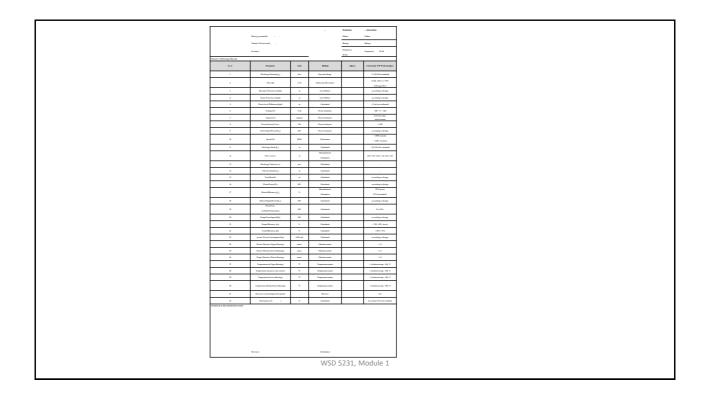
Ultrasonic Flow meter:

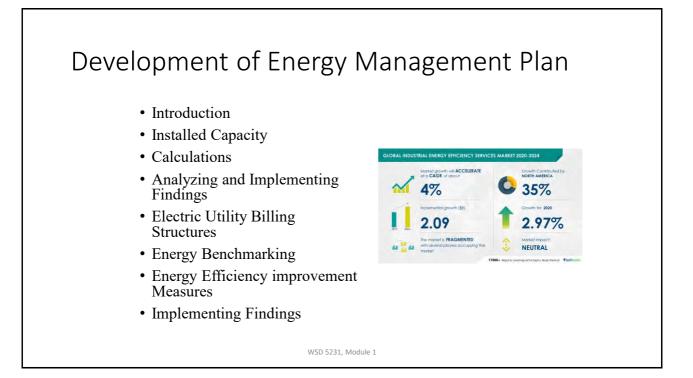
• Measure the flow (Q) using ultrasonic flow meter. Flow is important parameter to measure the water power, discharge velocity and other required parameters.



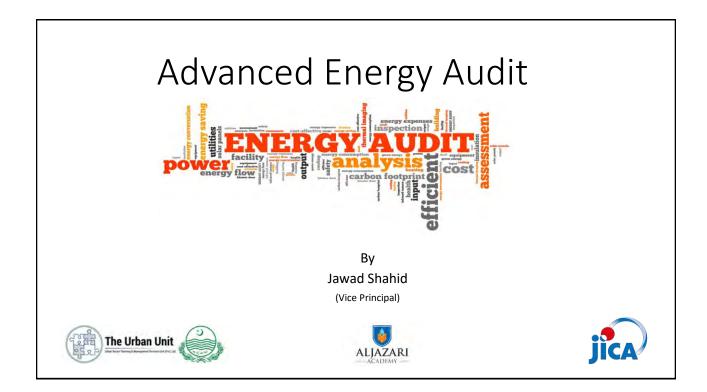
Water level meter

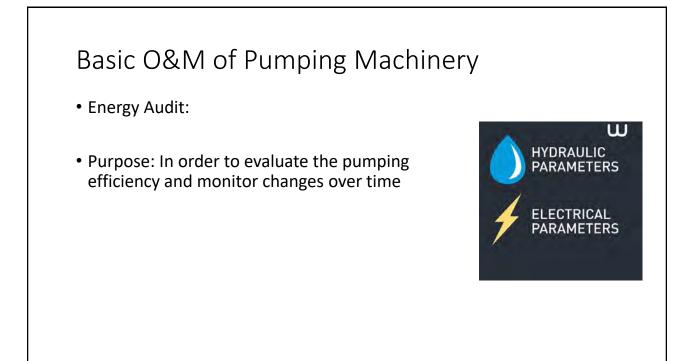
• This equipment is used to determine the static and dynamic water level. An important parameter to calculate the Total Head.

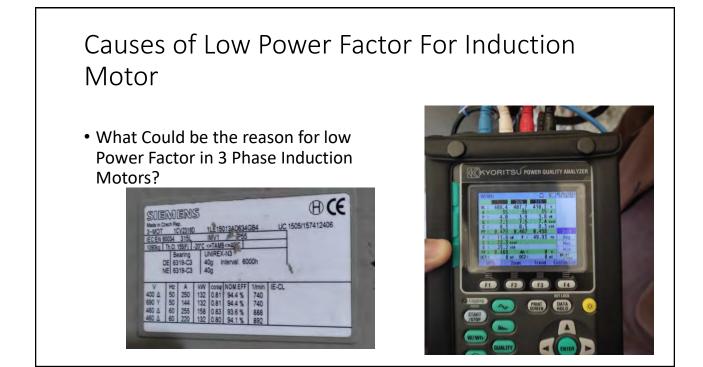

Digital Thermometer


• This device used to get temperature of critical parts of motor and pump.

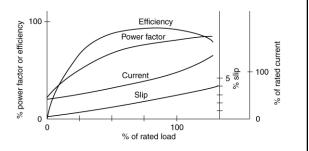
<section-header><section-header><section-header><text>

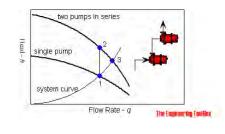

Sr. #	Parameter	Unit	lat	2nd	3ed	4th
1	Date	yyyy/mm/dd				
2	Time	hlemm				
3	Location/ Tag	-				
4	Pump (Maker/ Rating/ Type)	-				
5	Motor (Maker/ Rating)	-				
6	Discharge Pressure (p _d)	bur				
7	Discharge Pipe Dia (d)	mm				
8	Flow(Q)	m³/h				
9	Dynamic Water Level (hpl)	m				
10	Static Water Level (hpl)	m				
11	Voltage (V) RY-YB-BR	Volt				
12	Ampere (A) R-Y-B	Ampere				
13	Power Factor (Cox ø)	-				
14	Motor lapat Power (Pm)	kW				
15	Speed (N)	RPM				
16	Motor Vibration (Upper Bearing)	mm/s				
17	Motor Vibration (Lower Bearing)	mmós				
18	Pump Vibration (Thrast Bearing)	mmós				
19	Temperature (at Upper Bearing)	°C				
20	Temperature (at motor coil; center)	°C				
21	Temperature (Lower Bearing)	°C				
		-		1		
22	Temperature (Pump Thrust Bearing)	°C				
23	Excessive water leakage from gland & RECOMMENDATIONS		yes / no	yes / no	yes / no	yes / no
ENDINGS						

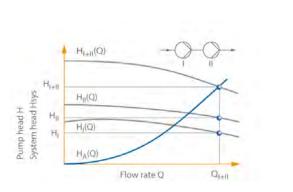


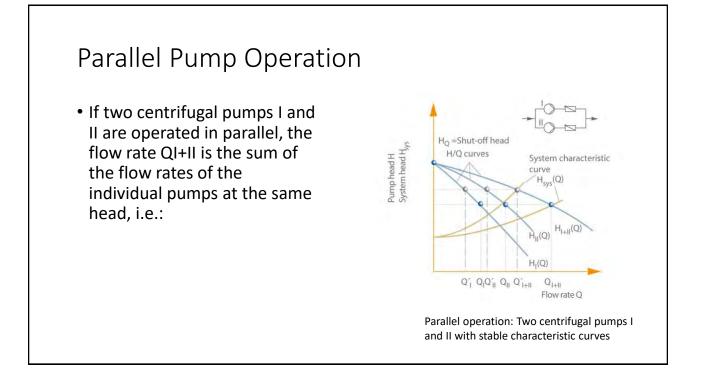


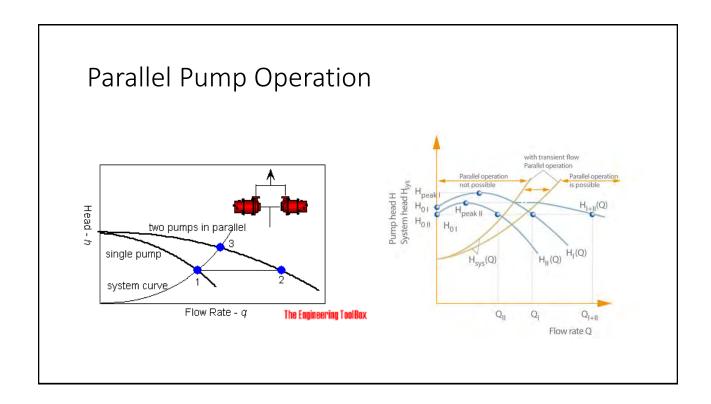
EQUIPMENTELE	CTR	RICAL ENERG	VINVENTORY	-		Method Fall	Aniersige	-			Thursday	I Marrieland	Laborat
System Type		K Bergertuntt Type	Description	Motor Gro (Rp)	Motor Increacy (%)	Lund Amperage (FLA)	Motor Operating Current	Hiterre (Hrs/Yr)	Average Louis Factor (%)	Electric Erind (kW)	Ammual Emergy Une (KVVIr(yr)	Annual Operating Contin (SVV)	Person of Lincing Un Coll (%
Liphting	-	Other NW Load	All Site Lighting	N/A	NIA	NA	N/A	8,760	100.00%	12.77	111,055	\$11.321	45
Non Process HVAC	-	Other KW Load	All Side HVAC	NIA	N/A		N/A	8,760	100 00%	7.36	64,474		
Influent Pumping	-1	Pump	Inft Pump Station	25	89.0 %	20	17	4,700	85.00%	18.01	84,667	\$0,560	3.7
Primary Treatment	-	Blower	- Get Blowers	7.5	89 0 %	8	5.5	8,760	68.75%	4.32	37,061	\$3,831	10
Primary Treatment	-	Blower	Channel Blower	10	88 0 %	10.5	6.8	8,760	64,75%	5.49	48,093	\$4,867	21
Secondary Treatment	-1	Blower	- Secondy Blowers	200	91.0 %	225	185	8,760	02.22%	124.01	1,180,921	\$119,509	52.5
Secondary Treatment	-	Blower	Secondy Blowers	200	91.0 %	225	185	450	82.22%	134.81	60,664	\$6,139	27
Secondary Treatment	-1	Pump	- WAS Pumps	75	85 0 %	8	4	1.460	50.00%	3.25	4,749	5481	0.5
Fixed Film Treatment	-1	Pump	R. Tower Pumps	60	91.0 %	65	36	8,760	85.38%	27.24	238,639	824,150	10.6
Anaerobic Digestion	-	Pump	Sludge Recir Pump	5	85.0 %	6	5	8,760	83.33%	3.66	32.034	53,242	14
Anaerobic Digestion	-	Mixer	Gas Mixer	10	\$8.0.%	12	9	8,760	75.00%	6.36	55,696	\$5,636	24
Anaerobic Digestion	-	Other kW Load	Mixer Heater	144	NA	1VA	N/A	2,500	100 00%	7.20	18,000	\$1,822	0.5
Ethuent Pumping/Stors	10-1	Pump										and a second	

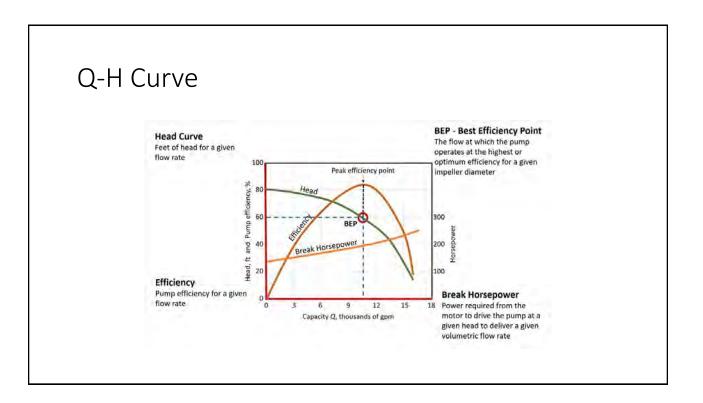


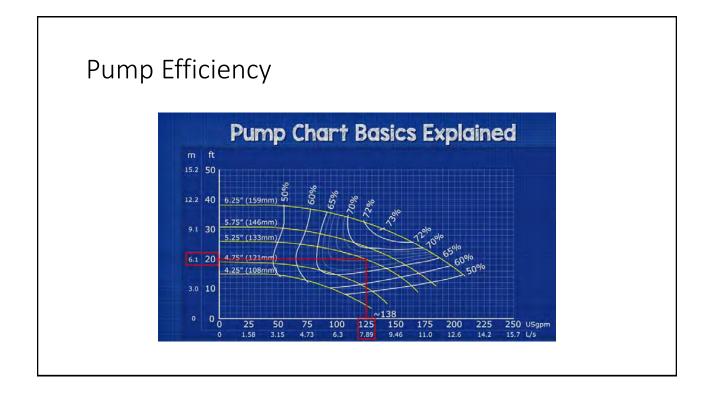

Causes of Low Power Factor For Induction Motor


- For Induction motors, the pf is usually extremely low (0.2 - 0.3) at light loading conditions and it is 0.8 to 0.9 at full load.
- In some cases, due to improper wiring or electrical accidents, a condition known as 3-φ power imbalance occurs. This results in low power factor too.


Series Pump operation


 When two centrifugal pumps (I and II) are operating in series, the head (HI+II) is the sum of the individual pumps' heads and the flow rate remains the same.

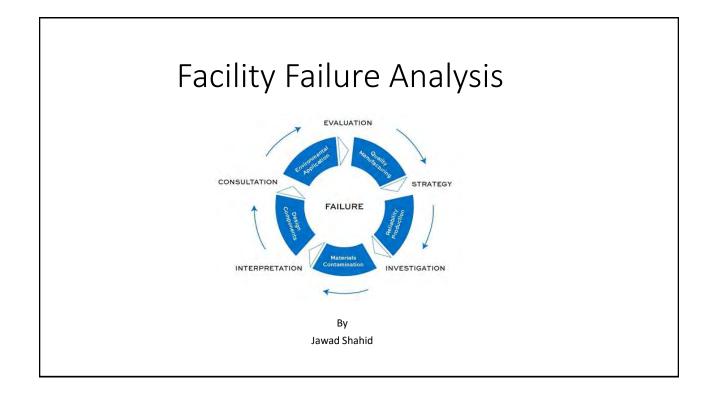




Series operation: Series operation of two centrifugal pumps I and II with any type of characteristic curves

Flow and current relationship

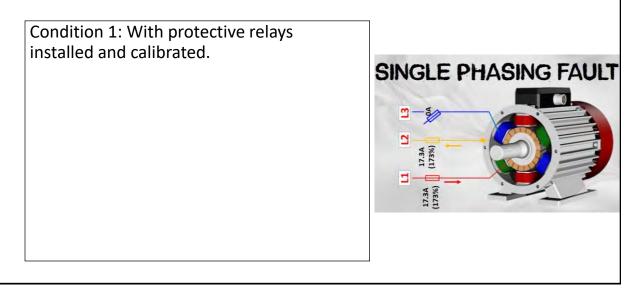
- With Increase in flow, pressure will decrease and power consumption will increase
- With Decrease in flow, pressure will increase and power consumption decreases.


Effect of over sizing and under sizing the motor on power consumption

- Undersize:
 - Overload
 - Lower Flow
 - Higher Power Consumption
- Oversize:
 - Underutilization
 - V. Low Power Factor
 - Energy Wastage

Selecting the wrong size motor

- What are the power demands of the pump?
- What will typical operation look like for this pump?
- Will the pump be operated on a variable frequency drive (VFD)?



1. What happens if shaft of a pump breaks during operation for a vertical turbine pump for Disposal Station

Explanation:		

2. What happens if one phase of power supply fails during operation of Pump and Motor, explain in a step-wise approach.

2. What happens if one phase of power supply fails during operation of Pump and Motor, explain in a step-wise approach.

Condition 2: All protective relays by- passed.	One-Phase Lost Induction Motor 0000 - 5 3 5 5 9 6 7 9 7 9 6 7 9

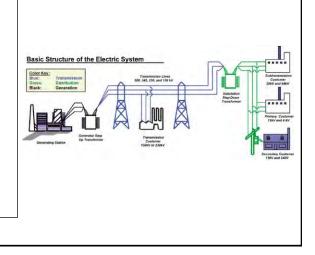
3. What happens if during operation of a tube-well two windings of a motor short circuit (Motor Burnout). Condition 1: Protective relays installed and calibrated. $\int \frac{V}{\int \int \frac{V}{\int \int \frac{V}{\int \frac{V}{V}}}}}}}}}}}}}}}}}}}}}$

3. What happens if during operation of a tube-well two windings of a motor short circuit (Motor Burnout).

Condition 2: Protective relays bypassed

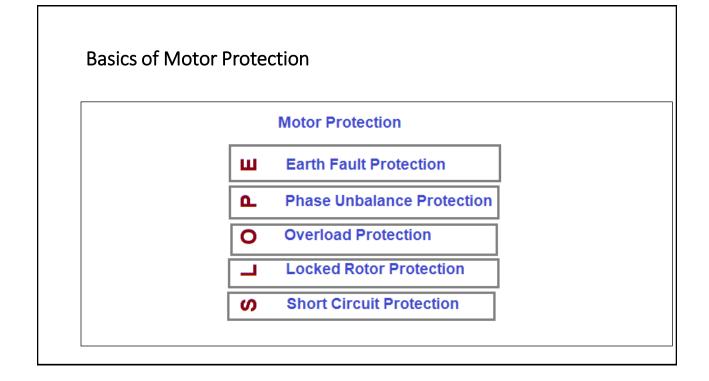
4. Shaft of a vertical turbine tube-well breaks during operation.

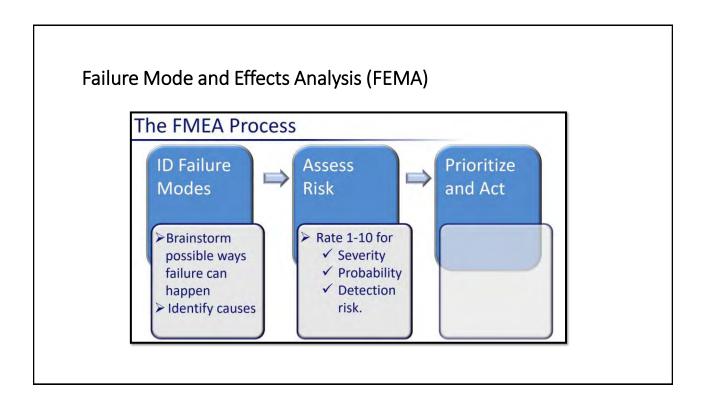
Condition 1: With all relays installed and calibrated.

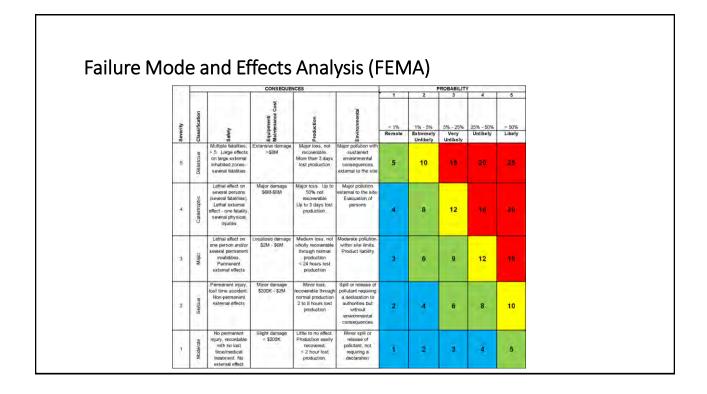

4. Shaft of a vertical turbine tube-well breaks during operation.

Explanation:

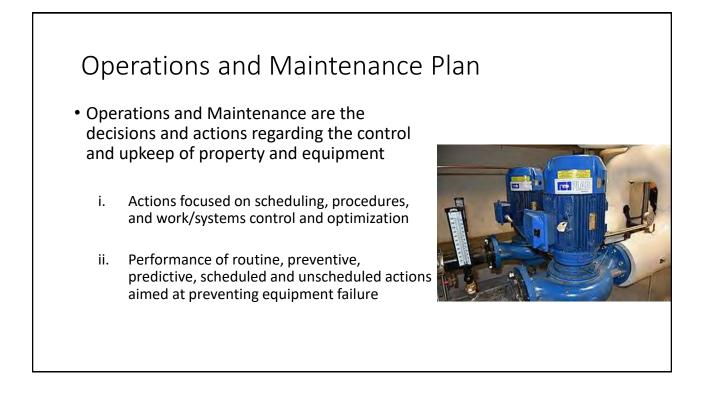
5. During operation of Pump and Motor two phases are interchanged from distribution end (DISCO)

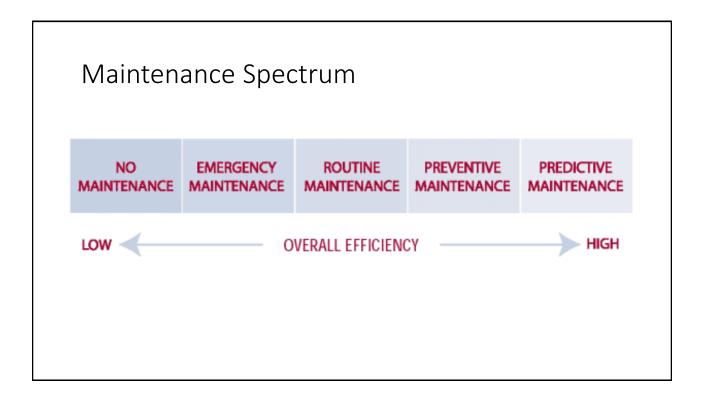

Condition 1: With use of protective relays.

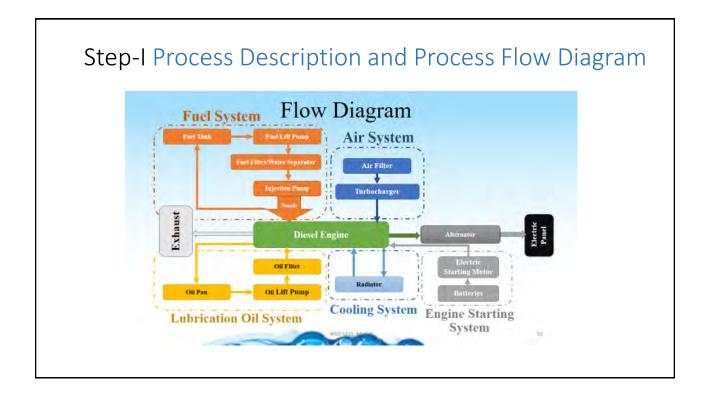



5. During operation of Pump and Motor two phases are interchanged from distribution end (DISCO)

Condition 2: With all protective relays by-passed.






k Asse	Assessment Matrix						
🚺 Risk Matrix							
A	В	С	D	E	F		
Initial			Initial Severity			٠	
Occurrence	1 - Insignificant	2 - Minor	3 - Significant	4 - Serious	5 - Major		
5 - High			1	2			
4 - Moderate			3	5			
3 - Low			1	2			
2 - Very Low							
1 - Remote						•	
•					+		

Initial Occurrence					
	1 Insignificant	2 Minor	3 Significant	4 Serious	5 Major
5 High					
4 Moderate			Chlorine dosing pump failure		Burnout of MCCB for MCU
3 Low					
2 Very Low		Power Factor Capacitor Failure	Chlorine dosing pump failure		
1 Remote					

Step-III Operating Procedure

- Submersible Pump Startup & Operation
 - Check water level in bore hole.
 - Check valves (open).
 - Check voltage range for 3-Phase motor.
 - Start up the motor
 - Check that ammeter reading is less than rated motor current.
 - After startup check pressure for operating point.
 - Check for undue vibration and noise.
 - Voltage should be checked every hour.

Step-III Operating Procedure

• Maintaining procedure log

S.No.	Procedure Description	Procedure No.
1.	Operation of Tubewell	WASA/LAH/44
2.	Gland Packing Replacement	KSB/WASA/LAH/77
3.	MCU Thermal and Insulation Test	PEMPAK/WASA/LHR/22
4.	Energy Audit For Tubewell 4 cfs, JICA	WASA/ELEC/LAH/11

Step-IV Preventative Maintenance Program

S.No.	Equipment	Maintenance	Frequency
1.	Fan Belt of Generator	Visual Inspection	Monthly
2.	Pump Motor Temperature Check	Motor Thermal Check	Quarterly
3.			

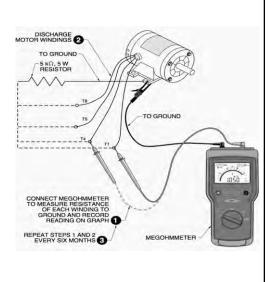
Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

S.No.	Procedure Description	Procedure Title
1.	Evaluation of Motor	Insulation Test for winding
		Thermal Test for overheating
		RPM Test
		Vibration Test
2.	Evaluation of Pump	Flow / Head
		Leakage
		Unusual noise/ vibration

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell


S.No.	Procedure Description	Procedure Title
3.	Evaluation of Motor Control Unit	Insulation Test for Wiring and components
		Earth Resistance Test
		Thermal Test for overheating
		Lamp test for warning signs
4.	Evaluation of Valves	Check operation of Air Release Valve
		Check operation of Non return Valve
		Check Operation of Gate Valve
5.	Tubewell Chamber Evaluation	Visual Inspection

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

Overloaded contacts show different temperature profiles indicating one contact seeing much greater load, a potentially unsafe situation.

Step-IV Evaluation of Facility • Evaluation of Pumping Facility, Tubewell S(P) Yellow Red ES Black Green 10m 0m Auxiliary Earthed Electrode under Test earth spikes Contact and Non Contact type Vibro-meter Earth Resistance Test Tachometer

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

Ultrasonic Flow meter

Step-IV Report Writing

				and Periodic Maintenance Sheet Service Type			Last Activity	Year		
 Annual 	Sr. No.	Activities				Month				
			Daily	Weekly	Monthly	6 Months	Date	1 :	2 3	4 5
Maintenance	1	Visual Inspection	•							
Plan	2	Check Coolant Level								
	3	Check Oil Level								
	4	Check Fuel Level	•							
	5	Check Charge Air Piping								
	6	Check and Clean Air Cleaner		•						
	7	Check Battery Charger		•						
		Drain Fuel Filter				1				
	9	Drain Water From Fuel Tank		•						
	10	Check Coolant Concentration			•					
	11	Check Drive Belt Tension								
	12	Drain Exhaust Condensate			•					
	13	Check Starting Batteries			•					
	14	Change Oil and Filter				•				
		Change Coolant Filter			12		12-			
	16	Clean Crankcase Breather		1		•				
	17	Change Air Cleaner Element				•				
	18	Check Radiator Hoses				•				
	19	Change Fuel Filters				•				
	20	Clean Cooling System								

Annual Maintenance plan

- Step-I Process Description and Process Flow Diagram
- Step-II Equipment Description
- Step-III Operating Procedure
- Step-IV Preventative Maintenance Program (Evaluation of Facility)
- Maintenance plan

Contact:

Engr. Jawad Shahid

WASA field Issues

Suggested Improvement

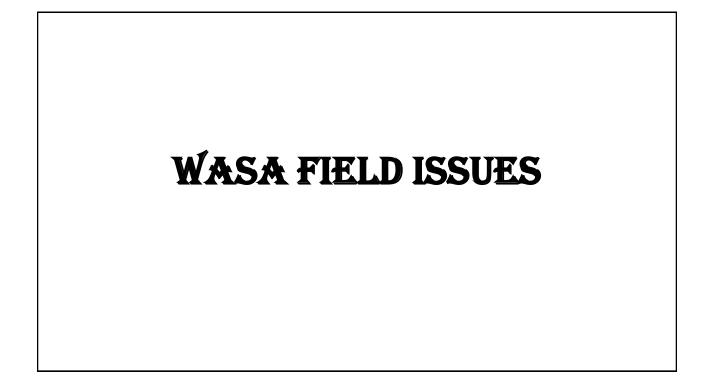
Suggested Improvement

Suggested Improvements

Suggested Improvements

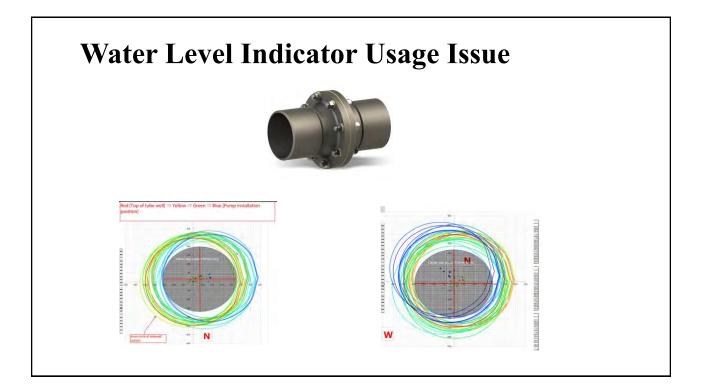
Suggested Improvements

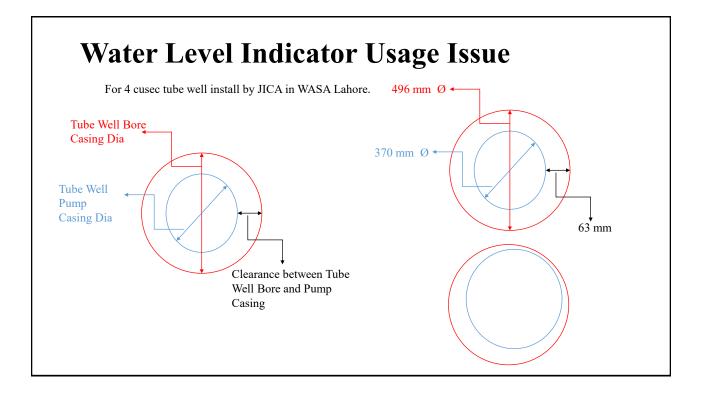
Current Conditions



Suggested Improvement

Suggested Improvement




Water Level Indicator Usage Issue

Valves maintenance issue in WASAs

• Cracked gasket

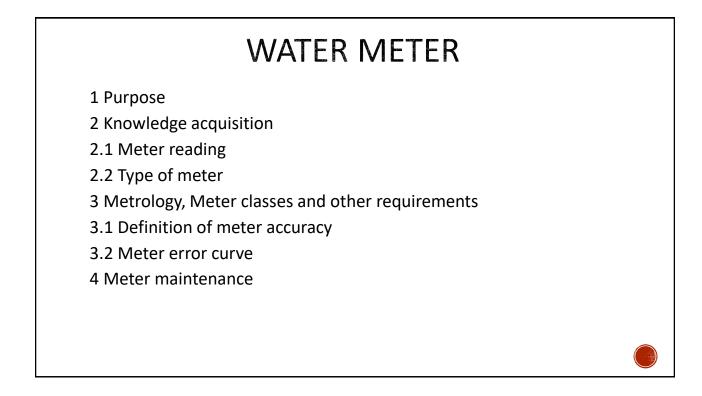
Valves maintenance issue in WASAs

• Absence of balls in air release valves

Lubricating box issue in WASAs

Lubricating box issue in WASAs

Thank you


Engr. Jawad Shahid

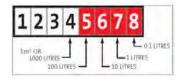
Annex 5.1.52 Training Material for "Leakage Control, Plumbing and Pipe Replacement Plan" in Spring 2023

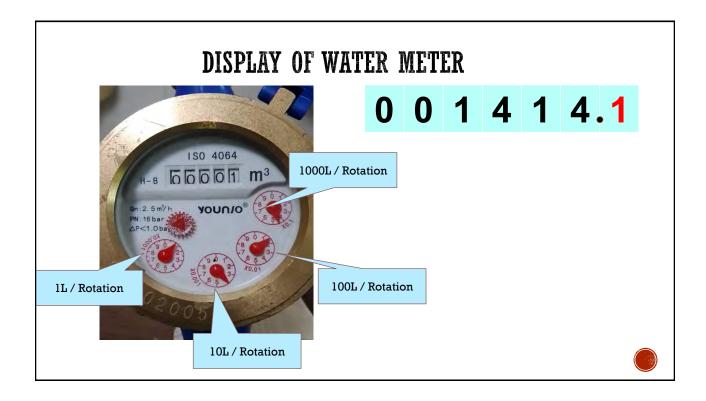
CA	ALJAZARI — ACADEMY —	The Urban Unit
Cours	e Team	
Ms. Rebia Suhail	Course Lead	
Mr. Syed Fahad Hussain	Module Lead	
Mr. Wajih	JICA Coordinator	
Mr. K Kayanoma	JICA Expert	

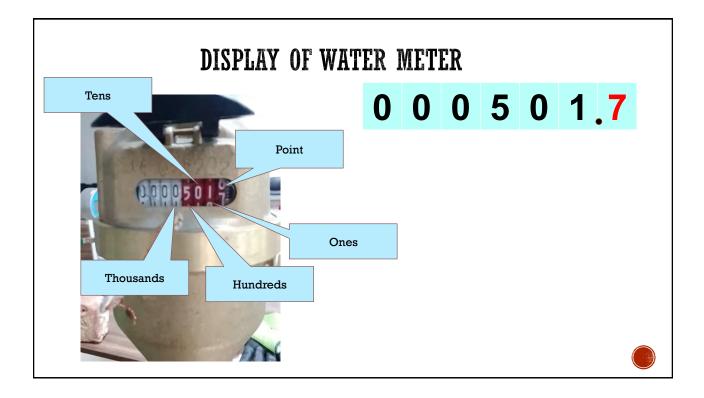
PURPOSE

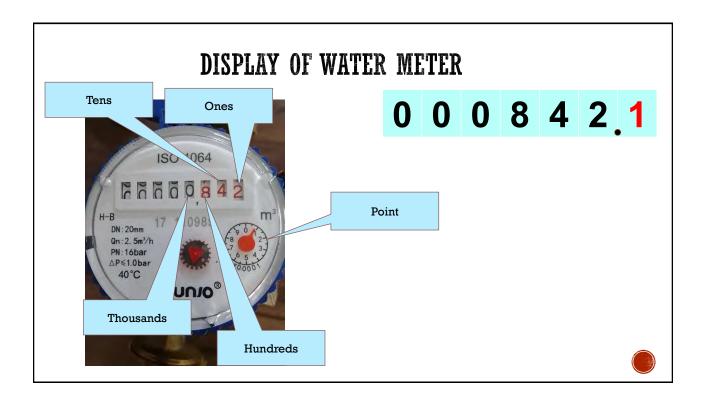
Purpose of training

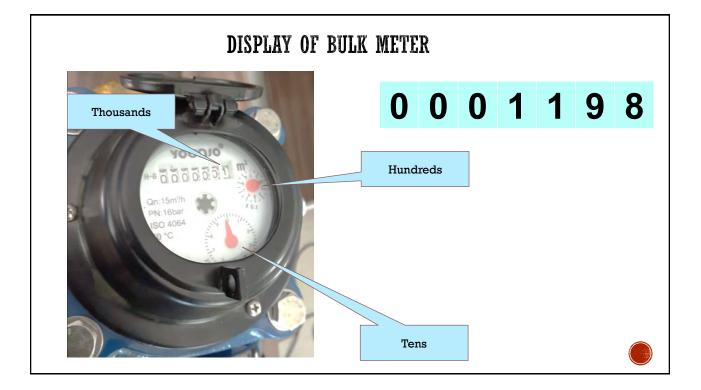
Understand meter reading, Type of meters, meter accuracy & class, maintenance.

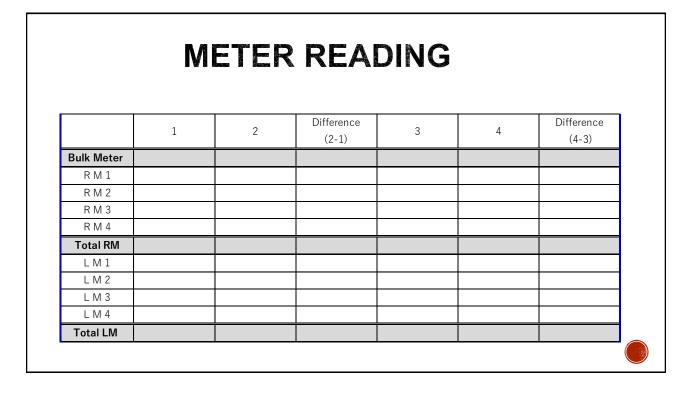

METER READING

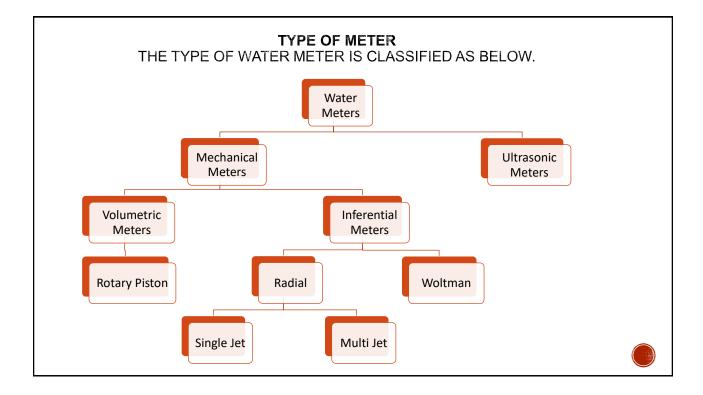

The water meter shows several digits as shown in the figure. This digit means 1234 m3 and 567.8 liter, or 1234.5678 m3. When the counter of 0.1 liters is moving between two numbers, it is counted as lower number.


m3 is shown in the upper black digits and liter is shown in the lower red pointer. When the pointer is between two numbers, it is counted as lower number.


When the digit of counter reached maximum (e.g. 9999.999), it back to all zero (e.g. 0000.000), and sometimes it makes mistakes of calculation of consumption. As shown below, it is necessary to calculate on the assumption that it has one digit in the left side which is not shown on the display.


JIS : Japanese Industrial Standards (JIS B 8570-1:2013)



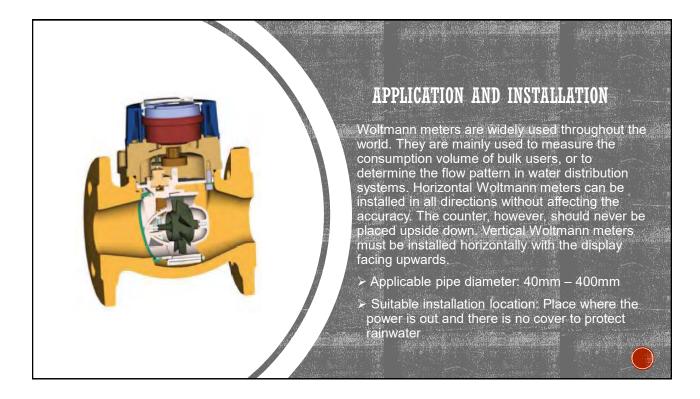


WOLTMAN METERS

<Mechanism>

The Woltman meters are an inferential meter that uses an impeller with helical vanes. As water flows over the helical vanes, it rotates the impeller. Then, the rotation is transmitted to the dial via reduction gearing.

There are two main types of Woltmann meters called Horizontal (WP) and Vertical (WS) Woltmann meters. Horizontal Woltmann meters have their inlets and outlets directly along the pipeline. The axle of the helical vane is parallel to the flow.


Water flows directly through the meter with small loss caused by the meter body.

The flow direction is changed 90 degrees after entering a vertical Woltmann meter, pass through the impeller and then turn back to the original direction as shown in the cross section of left Figure.

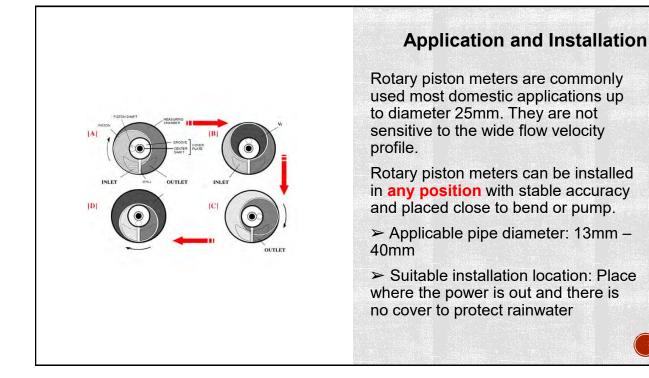
Woltmann meters have dry and sealed dials.

> Advantages: No power required, Highly accurate

> Disadvantages: If a foreign substance gets in, accuracy falls, or the impeller will be damaged. Piping friction loss occurs. Not applicable to large diameter pipes.

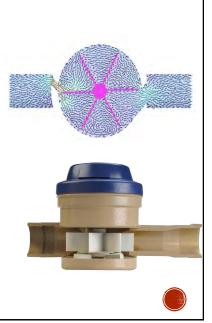
ROTARY PISTON METERS

Rotary piston meters are popular for their combination of accuracy, long life and moderate cost so they are widely used. Rotary piston meters come in many different shapes and sizes as shown. Wet or dry dials are used. Sand or other suspended solids easily get stuck between the piston and chamber wall. Thus, it is important to be installed in the system with very good water quality and to install built-in strainer.



<MECHANISM>

The piston and cylinder are alternately filled and emptied by the fluid passing through the meter. A slot in the sidewall of the piston is removed so that a partition extending inward from the bore of the working chamber can be inserted. This has the effect of restricting the movement of the piston to a sliding motion along the partition. The rotary movement of the piston is transmitted via a permanent-magnet coupling from the drive shaft to a mechanical register.


- 1. Easy to read register
- 2. "O" ring seal
- 3. Stainer
- 4. Non-Return valve
- 5. Piston and cylinder

SINGLE JET METERS

- Single-jet meters are a low-cost option because there's a direct impact to the impeller by the water flow
- The water is channeled through a single jet over a impeller placed inside the body of the meter. Impeller circulating the flowrate.
- Resistant to suspended solids.
- Small and can be installed in tight spaces.
- Most single jet meters have to be installed perfectly horizontally and upright to ensure accurate measurements

MULTIPLE JET METERS

<Mechanism>

The multi jet meters are an inferential water meter. Their operation is similar to that of single jet meter, except that they use several jets to drive the impeller at multiple points.

This means that the forces on the impeller are better balanced than in single jet meters, which reduces wear on the moving parts and provides greater durability. A cutaway view of a multi jet meter is shown in the left photo.

Multi jet meters normally use an internal bypass with a regulating screw to adjust the flow passing through the impeller. This allows the manufacturer to adjust the meter's error curve for achieving the best accuracy before sealing it for the prevention of meter tampering. A strainer is installed on the inlet side, which can be removed for cleaning.

> Advantages: No power required, Accurate at low flow rate

➤ Disadvantages: If a foreign substance gets in, accuracy falls, or the impeller will be damaged. Piping friction loss occurs. Not applicable to large diameter pipes.

COMPARISON OF WATER METERS				
	Single jet (dry)	Multi jet (wet)	Rotary piston (wet)	
Appearance				
Measuring method	Velocity	Velocity	Positive displacement	
Structure	Simple structure	Complicated than Single jet	Complicated than others	
Cost	Inexpensive	Inexpensive	More expensive than others	
Others	Highly reliable operation	Small amount of water can be measured accurately	High accuracy than others	
			20	

METER TAMPERING

Unauthorized manipulation of the water meter for the purpose of stealing water. The offense also includes placing magnets, placing foreign objects inside the meter inverting the position of the meter, breaking water meters: all for the purpose of slowing down the meter registry eventually lessen water consumption

3 METROLOGY, METER CLASSES AND OTHER REQUIREMENTS

3.1 DEFINITION OF METER ACCURACY

The volume of water that passes through a water meter is called the actual volume, or Va. However, since no meter is 100% accurate, the meter will not register all the water passing through it but show a indicated volume (Vi), which is slightly lower or higher than the actual volume. The difference between the indicated volume and actual volume (Vi - Va) is called the meter error. When the error is expressed as a fraction (percentage) of the actual volume, it is called as the relative error.

[Relative error]: (Vi - Va) / Va x 100 (%)

Where: Vi is the indicated volume. Va is the actual volume.

3.1 DEFINITION OF METER ACCURACY

CALCULATION OF THE ERROR (%)

METER ERROR CURVE

➤ Q1 – Minimum flow rate:

The lowest flow rate at which the meter is required to give indications within the maximum permissible error tolerance (\pm 5% error).

➤ Q2- Transitional flow rate:

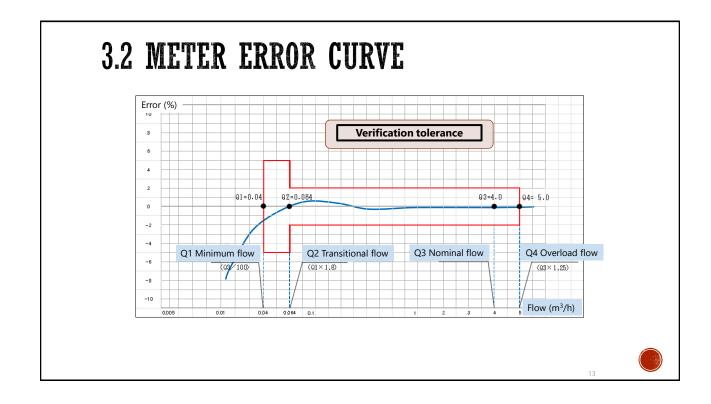
The flow rate at which the maximum permissible error of the water changes in value from \pm

5% error to ± 2% error.

➤ Q3 – Permanent flow rate:

Permissible continuous load. Half the maximum flow rate (± 2% error).

> Q4 – Maximum flow rate (Overload Flow Rate):


The highest flow rate at which the meter is required to operate in a satisfactory manner for a short period without deteriorating (\pm 2% error)

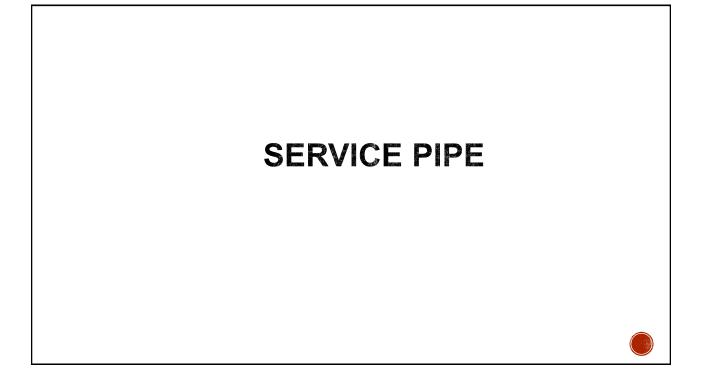
METER ERROR CURVE

Water meters are designed for a specific flow rate, which is called as the permanent flow rate or Q3. The meter should be able to work at the permanent flow rate (or a lower flow rate) continuously for its design life without exceeding the permissible error.

Although a meter is designed for the permanent flow rate, the actual flow through a meter is not constant. Thus, water meters should not only be accurate at the permanent flow rate, but also be accurate over a wide range of flow rates.

It is useful to draw a graph of a meter's relative error. This curve is called the meter's error curve.

MAINTENANCE


The proper maintenance of any metering device is essential to ensure the accuracy. Most meter manufacturers have a recommended maintenance and testing method in the operation manual.

The most common problems experienced with water meters in the field are as below:

➤ Suspended solids in the water cause stuck or damage of meter and meter strainer. These solids enter the system most often due to:

- · Large pipe bursts.
- · Inadequate flushing of pipes after installations or repairs.
- · High velocities in the network stir up sediments that was accumulated on the bottom of pipes.
- · Inadequate water treatment or malfunction of treatment plants.

A strainer should be installed upstream of the meter to protect the rotor from objects such as stones and pebbles. As for maintenance, the strainer needs to be cleaned regularly.

SERVICE PIPE

- 1 Purpose of training
- 2 Knowledge acquisition
- 2.1 Outline of PPR pipe
- 3 Jointing method
- 3.1 Socket fusion joint
- 3.2 Thread joint
- 4 Practice

1 PURPOSE OF TRAINING

The purpose of this training is to provide a practical training on installation of PPR service pipes. Also, it is important to share the knowledge of this training with not only the staff of WASA but also contractors.

2 KNOWLEDGE ACQUISITION

2.1 Outline of PPR

- ➤ Standard of PPR pipes
- □ ISO 15874 standard green PPR pipe, DIN 8077-8078 hot water PPR pipe.

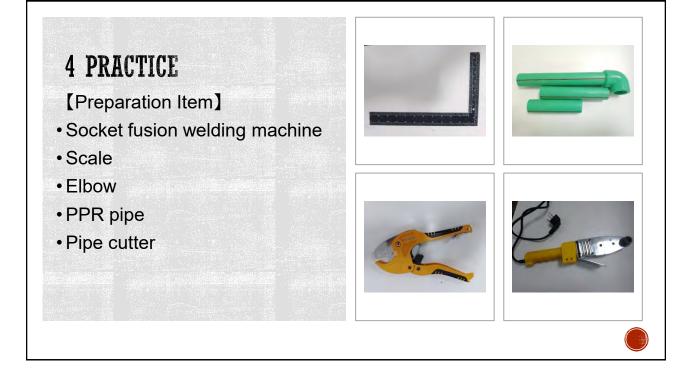
PPR pipes & fittings Characteristics:

- 1. Well heart resistance ability The pipes can be used for a long time while the working temperature of water is 70°C
- 2. Well insulation ability
- Long lifetime span Under normal conditions of temperature and pressure PPR pipe can be over 50 years.
- Little resistance for water flow The inner walls of PPR pipes are smooth and limescale will not be formed there
- 5. Economical
- 6. Light weight
- 7. Well corrosion resistance

3 JOINTING METHOD

There are mainly two jointing method for PPR distribution pipes: Socket fusion joint and Thread joint.

3.1 Socket fusion joint


Socket fusion joint Details

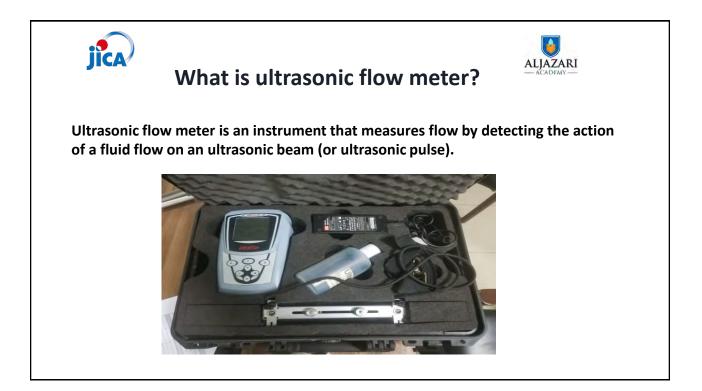
Socket fusion joint connect PPR pipe and socket by heat of socket fusion welding machine. This method is very common way to joint PPR service pipe and the durability of this joint part is high.

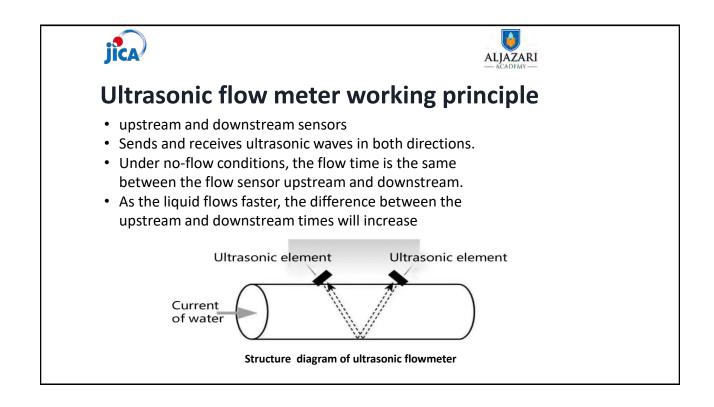
3.2 Thread joint

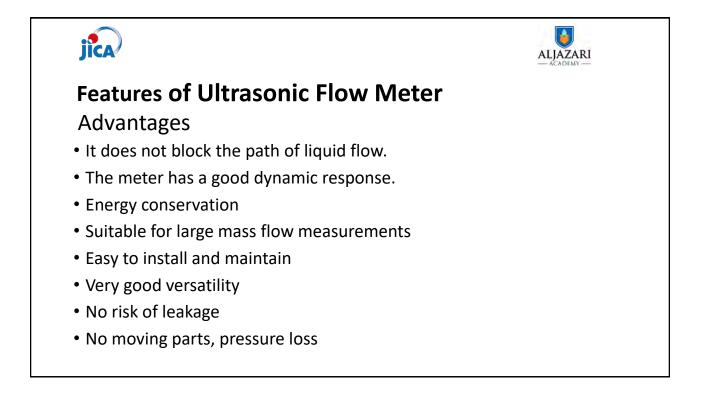
Thread joint Details

Male thread and female thread are used for thread joint. The thread has shape of screw and male thread and female thread can be connected very easily and swiftly.




STEPS PROCEDURES


- 1. Check the pipe and socket whether they are damaged or not.
- 2. Measure the depth of socket and mark the insertion length on the pipe surface.
- 3. Cut the pipe at right angles by using a pipe cutter.
- 4. Always ensure that the welding machine corresponds to the required jointing size.
- 5. Required operating temperature of the welding machine is 250°C-270°C
- 6. Push the end of the pipe and socket into socket fusion welding machine up to the marked insertion length. Be careful not to turn the pipe and socket while heating.
- 7. Pull out the pipe and socket from the socket fusion welding machine after proper heating time, insert the pipe into socket evenly and swiftly and wait until they cool down.


STEPS PROCEDURES

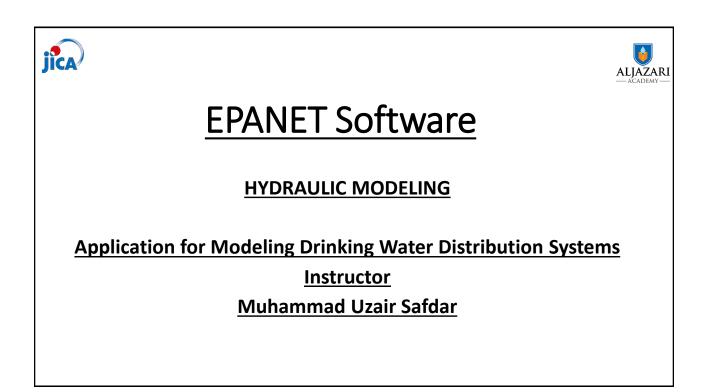
Outside Diameter	Average Heating Time*	Average Working Time (max.)	Average Cooling Time (min.)	
mm	sec	sec	min	
20	5	4	2	
25	7	4	2	
32	8	6	4	
40	12	6)[4	
50	18	6	4	
63	24	8	6	
75	75 30 8		6	
90	90 40 8		6	
110	50	10	8	

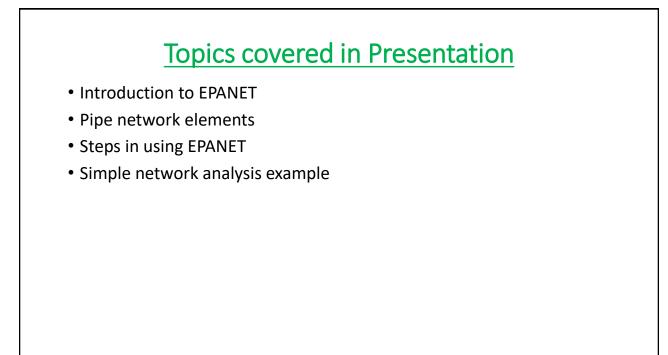
Disadvantages

- It is expensive compared to other mechanical flow meters.
- The meter's design is complex
- The audible parts of this meter are expensive.
- These meters are complex compared to other meters and therefore require professionals to maintain and repair these meters
- It cannot measure rusty cement or concrete pipes.
- It does not work once there are holes or air bubbles in the pipe
- It cannot measure cement/concrete pipes or pipes lined with this material

Ultrasonic Flow Meter Installation Guidelines

- The straight pipe should be long enough to eliminate the irregularflow-induced error.
- Make sure that the pipe is completely full of liquid.
- Make sure that the temperature on the location does not exceed the range for the transducers.
- Tightly fix the probes on the pipe.





Ultrasonic Thickness Gauge

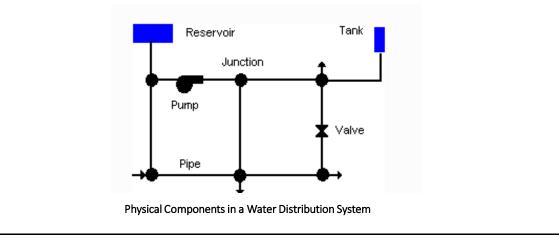
It is used to measure the wall thickness of materials such as steel, plastic, and more.

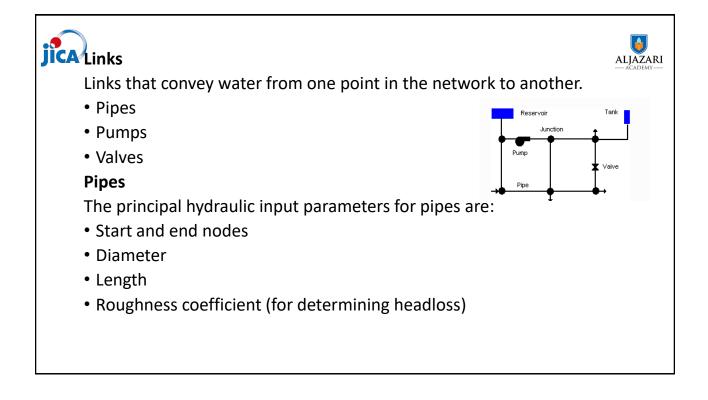
Introduction To EPANET

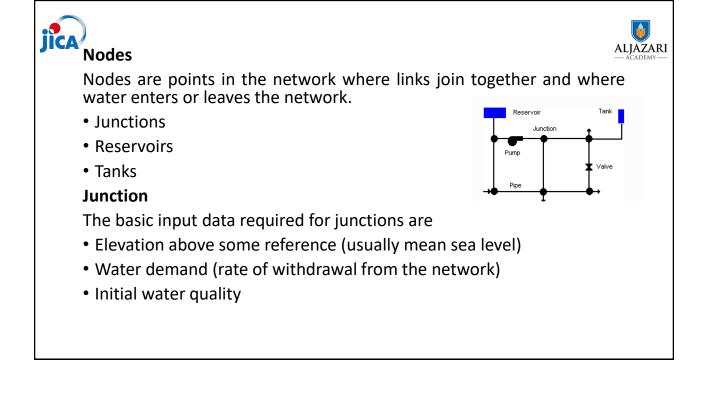
- A network analysis computer program developed by the U.S. Environmental Protection Agency that analyzes Water Distribution Network
- A tool to determine pressure, velocity and flow in different pipes in a Network
- EPANET to design and size new water infrastructure, retrofit existing aging infrastructure, optimize operations of tanks and pumps, reduce energy usage, investigate water quality problems, and prepare for emergencies. It can also be used to model contamination threats and evaluate resilience to security threats or natural disasters.

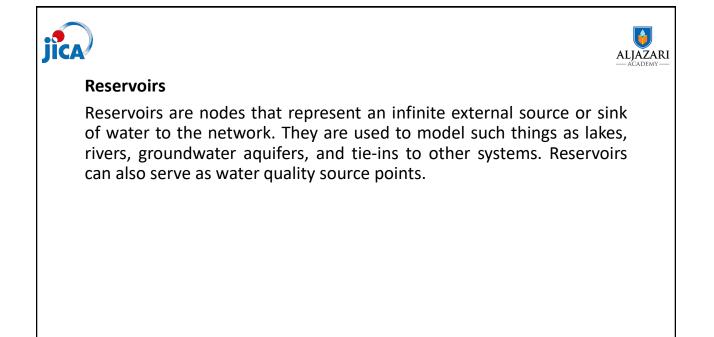
What is EPANET

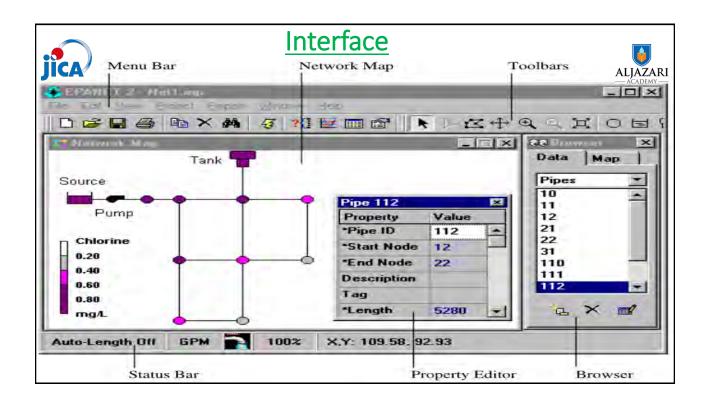
- EPANET performs extended period simulation of hydraulic and water quality behavior within pressurized pipe networks.
- Pipe network consists of pipes, nodes (pipe junctions), pumps, valves, storage tanks and reservoirs.
- EPANET tracks the flow of water in each pipe, the pressure at each node, the height of water in each tank.
- EPANET use for editing network input data, running hydraulic and water quality simulations, and viewing the results in a variety of formats. These include color-coded network maps, data tables, time series graphs, and contour plots.

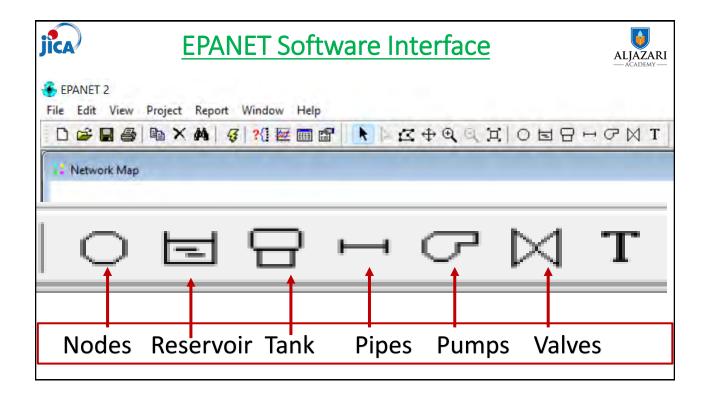

How to Down	
https://www.epa.gov > water-research > epanet : EPANET US EPA 01-Feb-2022 — EPANET is a software application used throughout the world to model water distribution systems. It was developed as a tool for understanding	
Software, Compatibility, and · Capabilities · Applications People also search for × is epanet free epanet logo epanet tutorial epanet uses epanet examples epanet pdf	EPANET More mage EPANET < System software
People also ask : What is EPANET software used for?	EPANET is a public domain, water distribution system modeling software package developed by the United States Environmental Protection Agency's Water Supply and Water Resources Division. Wikipedia

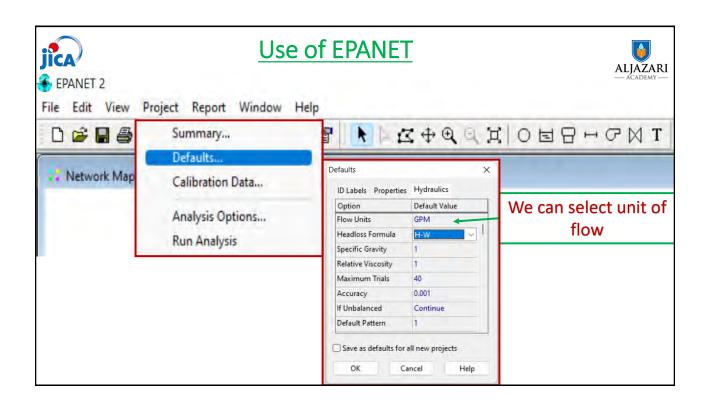

 <u>Download Software</u> <u>EPA's GitHub site for EPANET 2.2 open source project</u> 								
oftware								
Date	Description							
07/23/2020	Self-Extracting Installation Program for EPANET 2.2 (EXE) [2] (3.5 MB)							
07/23/2020	Non-Installing Software for EPANET 2.2 (ZIP) [2] (2.84 MB)							
10/01/2018	Self-Extracting Installation Program for EPANET 2.00.12 (EXE (exe)							

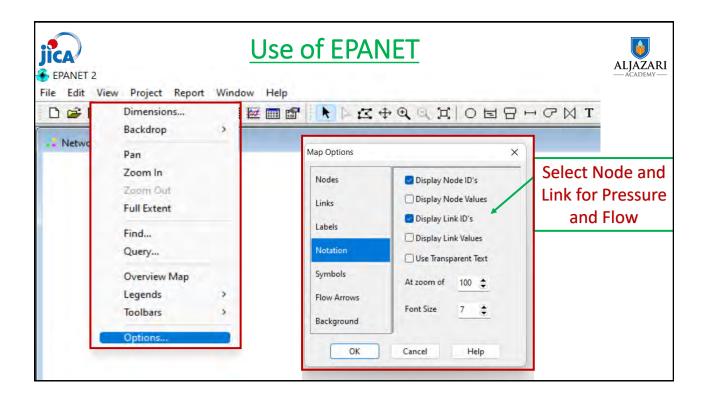

JR Pipe Network Elements




EPANET uses various types of objects to model a distribution system. These objects can be accessed either directly on the network map or from the Data page of the Browser window.

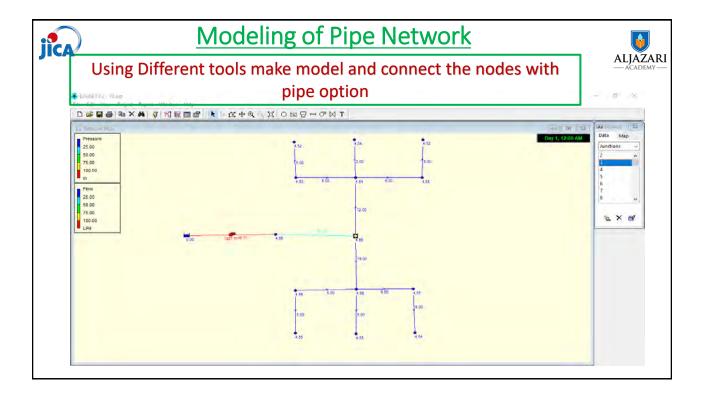






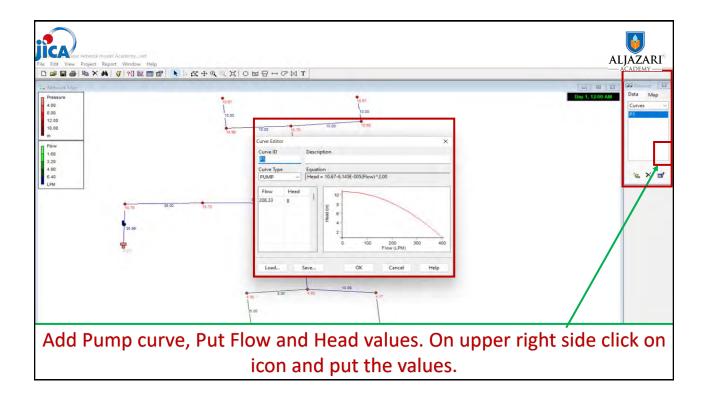
ANET 2	EPANET	2	EPANET 2		AZAR
Edit View Project Report Window Help New Open Save Save As Import Export Page Setup Print Preview Print Preferences 1 pipe netwrok model Academynet 2 204.net 3 123343.net 4 wajih discuss.net Exit	File Edit	View Project Repo Copy To Select Object Select Vertex Select Region Select All Group Edit		Project Report Dimensions Backdrop Pan Zoom In Zoom Out Full Extent Find Query Overview Map Legends Toolbars	Winc >

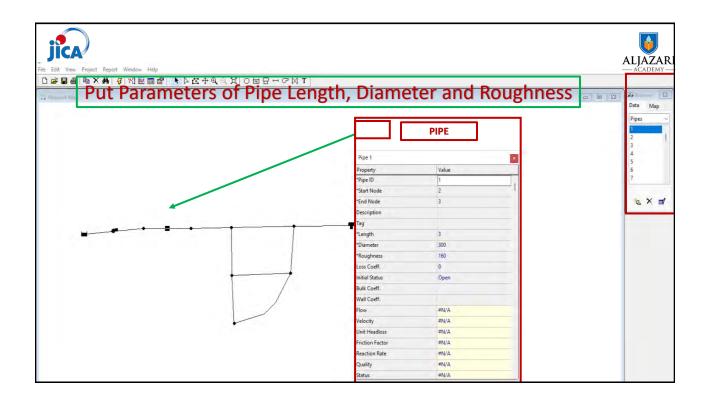
Analysis Options Run Analysis Graph Table Options Options File Edit View Project Report Window Help File Edit View Project Report Window Help Window Help Help Topics Units Tutorial	🗅 🚅 🖬 🎒	Summary Defaults Calibration Data	D 📽 🖬 🎒 🐚 🗙	Status Energy Calibration Reaction Full
File Edit View Project Report Window Help				
Units				Options
A Description of the second seco			ort Window Help	Options
		File Edit View Project Repo	G ?{ Help Topics	

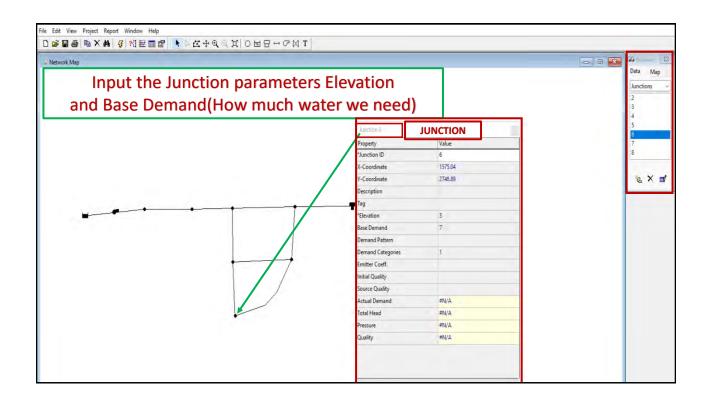


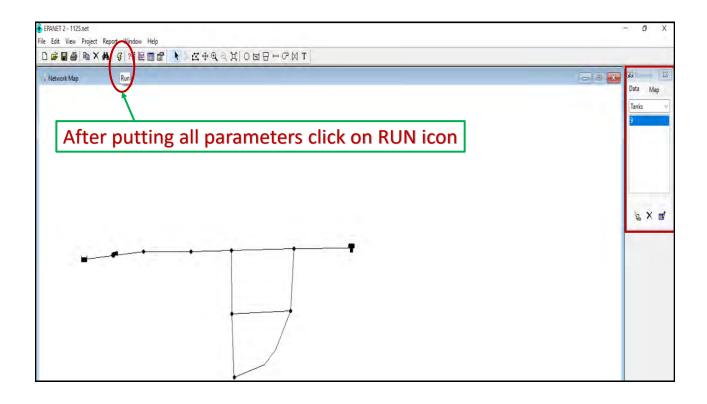
Modeling of Pipe Network

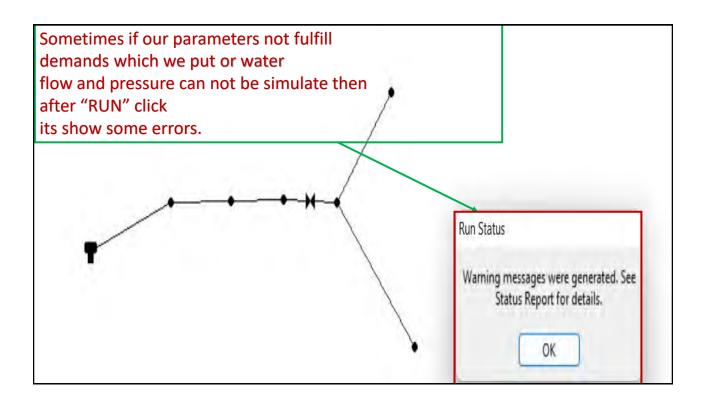
Following steps are carried out when using EPANET to model a water distribution system:

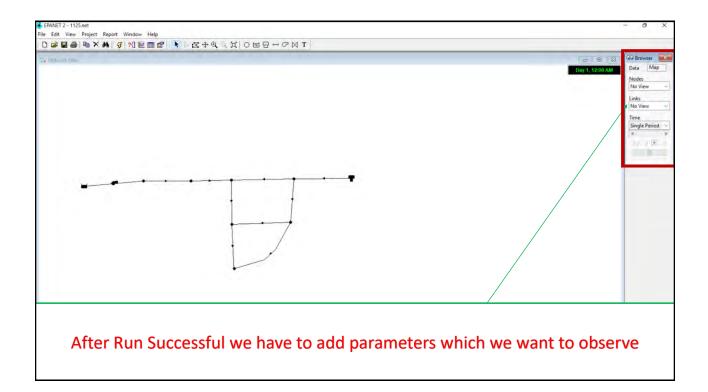

- Draw a network representation of your distribution system
- Edit the properties of the objects that make up the system
- Describe how the system is operated
- Select a set of analysis options
- Run a hydraulic/water quality analysis
- View the results of the analysis

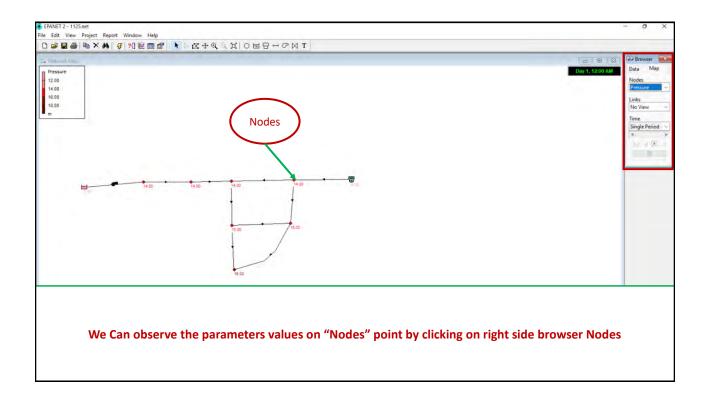


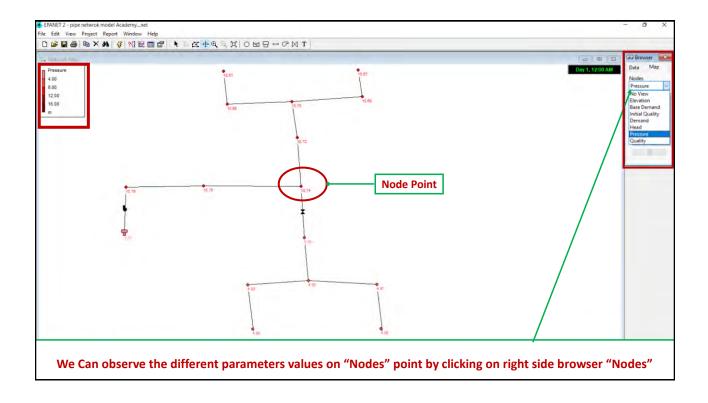

(Mag			
			Data M
		RESERVOIR	Reservoirs
	Reservoir 1 Property	Value	
	*Reservoir ID	1	
	X-Coordinate	-3789.00	
	Y-Coordinate	5676.08	
	Description		
	Tag		1000
	*Total Head	10	د ×
	Head Pattern		
	Initial Quality		
	Source Quality		
	Net Inflow	#N/A	
	Elevation	#N/A	
	Pressure	#N/A	
	Quality	#N/A	

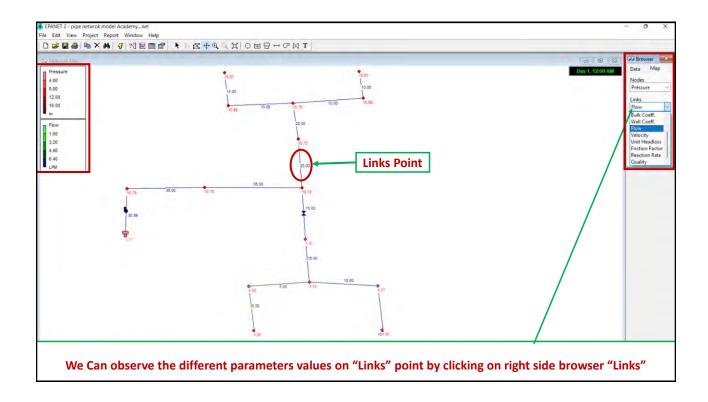

To Pu	t parameters o	pump click on pump	GG Erme Data Map
	Pump 9	PUMP	Pumps 9
	Property	Value	
	*Pump ID	9	
	*Start Node	1	
	*End Node	2	
	Description		
	Tag		1 ×
	Pump Curve	11	e X
	Power		
	Speed		
	Pattern		
	Initial Status	Open	
	Effic. Curve		
	Energy Price		
	Price Pattern		
	Flow	#N/A	
	Headloss	≠N/A	
	Quality	#N/A	
	Status	≠N/A	

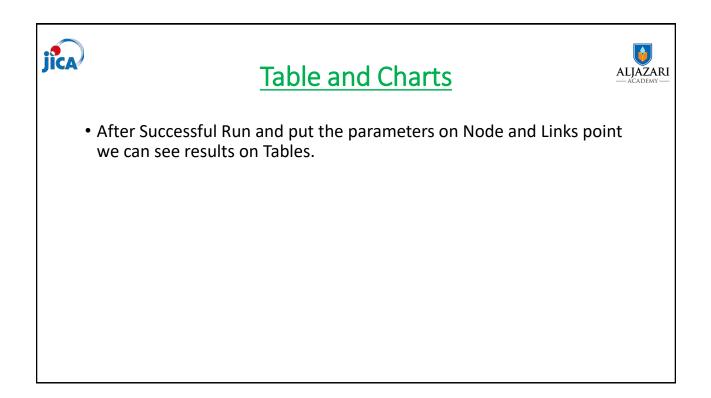

12 Otherst Date						GG Browser
Pressure 4 00	10.01		10.67		Day 1, 12:00 AM	Pumps
8.00	10.00	Pump 1	1			Junctions
12.00	1000	Property	Value			Reservoirs Tanks
16.00	10.68	10.00 "Pump ID	Value			Pipes
m		"Start Node				Pumps Valves
Flow		"End Node	2			Labels
1.60		Description	-			Patterns Curves
4.80		Tag				Controls
6.40 I.PM		Tump Curve	P1			Options
LPM		Power	*1	PUMP CURVE		
		and a second				
100	35.00 10.75	00 Pattern				
		Initial Status	Open		/	
		Effic, Curve				
38.99		Energy Price				
$\mathbf{\nabla}$		Price Pattern				
		Flow	35.99			
		Headloss	-10.59			
		Quality	0.00			
		Status	Open			
			- Contract			
	A 101					
		-				
	lao	2				
			_			
	values can a			ower or Speed. C	In uppor	right

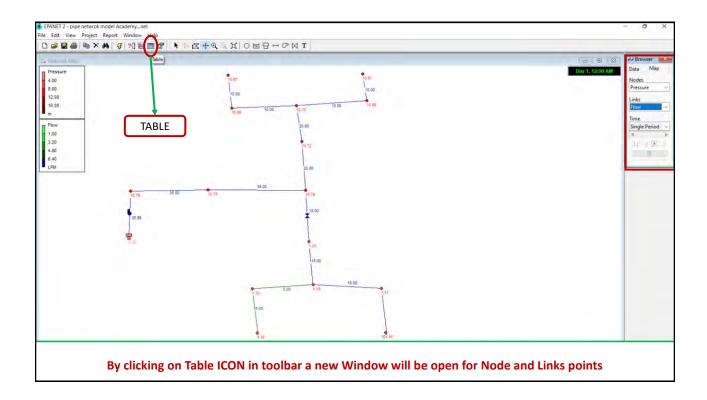


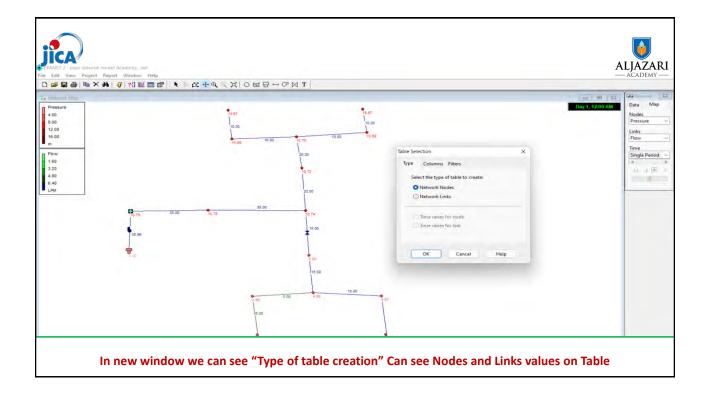


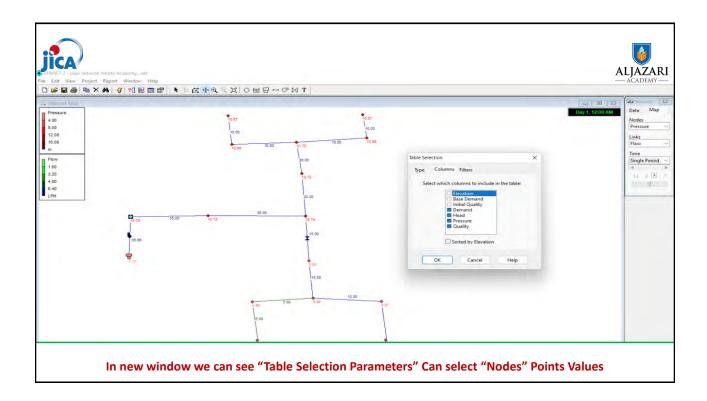

Status Report		
Page 1	Thu Dec 22 12:22:03 2	22
*********	******	
*	EPANET	
	Hydraulic and Water Quality	
*	Analysis for Pipe Networks	
	Version 2.00.12	
********	****************	**
Analysis beç	un Thu Dec 22 12:22:03 2022	
WARNING - DST	4 open but cannot deliver pressure at 0:00:00 hrs.	
Analysis end	ed Thu Dec 22 12:22:03 2022	
		rors here then we will change or
che		rors here then we will change or neters as our errors will be removed
che		<u> </u>

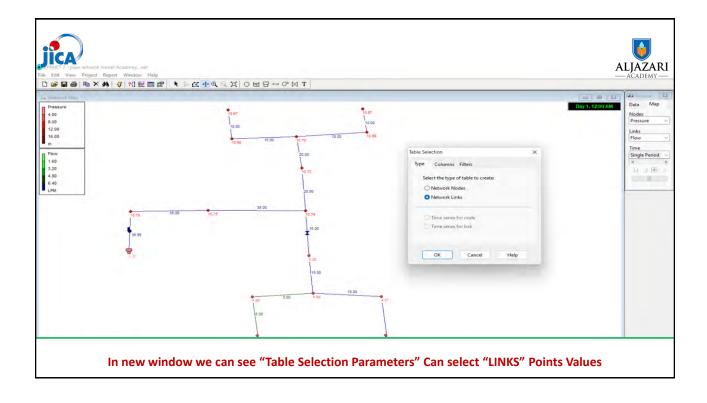

Deeleeneex al endered to de opposition of the second to the second to the second to the second the second to the second the second to the seco	GG Li Data Map Tanks 9
Pun Status Run was successful. OK	(c. × #
After checking input parameters and then again click on RUN Ico then status will be successful	on

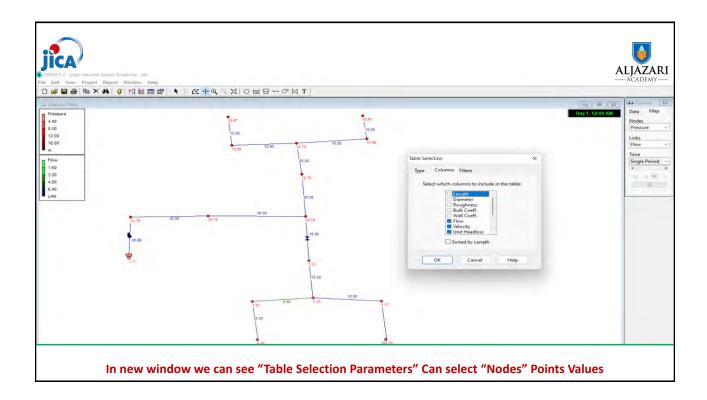



GG Browser	
Data Map	
Nodes	
No View 🗠	
Links	Select the Parameters of Nodes and Links and see t
No View 🖌	values
Time	
Single Period 🗠	
4 10	
NJES	









	10.07				10.67			Day 1, 12:00 AM
III Network Table - Nodes	10.07							
Node ID	Elevation	Base Demand	Initial Quality	Demand LPM	Head	Pressure	Quality	
Junc 2		0	0	0.99	10.79	10.79	0.00	
June 3	0			0.00	10.75	10.75	0.00	
Junc 4	0	0		0.00	10.74	10.74	0.00	
Junc 6	0	Ó	0	0.00	10.72	10.72	0.00	
June 7	0	0	0	0.00	5.00	5.00	0.00	
Junc 8	0	0	0	0.00	4.98	4.98	0.00	
Junc 9	0	0	0	0.00	4.97	4.97	0.00	
Junc 10	0	0	0	0.00	4.98	4.98	0.00	
June 11	0	10	0	10.00	4.96	4.96	0.00	
Junc 12	0	5	0	5.00	4.98	4.98	0.00	
June 13	0	0	0	0.00	10.68	10.68	0.00	
June 14	0	0	0	0.00	10.68	10,68	0.00	
June 15	0	0	0	0.00	10.70	10.70	0.00	
June 16	0	10			10.67	10.67	0.00	
June 17	0				10.67	10.67	0.00	
Tank 1	0	#N/A	0	-35.99	0.20	0.20	0.00	

		10.07				10.87							12:00 AM
III Network Table - Links													*
Link ID	Length m	Diameter	Roughness	Bulk Coeff.	Wall Coeff.	Flow LPM	Velocity m/s	Unit Headloss m/km	Friction Factor	Reaction Rate mg/L/d	Quality	Status	
Pipe 2	.15	50	140	0	0	35.00	0.30	2.52	0.028	0.00	0.00	Open	
Pipe 3	2	50	140	0	0	35.00	0.30	2.52	0.028	0.00	0.00	Open	
Pipe 6	1	25	140	0	0	15.00	0.51	15.35	0.029	0.00	0.00	Open	
Pipe 7	0.5	20	120	0	0	5.00	0.27	7.91	0.044	0.00	0.00	Open	
Pipe 8	0.5	20	120	0	0	10.00	0.53	28.57	0.040	0.00	0.00	Open	
Pipe 9	0.5	20	140	0	0	5.00	0.27	5,95	0.033	0.00	0.00	Open	
Pipe 10	0.5	20	120	0	0	10.00	0.53	28.57	0.040	0.00	0.00	Open	
Pipe 11	3	25	140	0	0	20.00	0.68	26.15	0.028	0.00	0.00	Open	
Pipe 12	0.5	20	120	0	0	10.00	0.53	28.57	0.040	0.00	0.00	Open	
Pipe 13	0.5	20	120	0	0	10.00	0.53	28.57	0.040	0.00	0.00	Open	
Pipe 14	0.5	20	120	0	0	10.00	0.53	28.57	0.040	0.00	0.00	Open	
Pipe 15	0.5	20	120	0	0	10.00	0.53	28,57	0.040	0.00	0.00	Open	
Pipe 4	1	25	160	0	0	20.00	0.68	20.42	0.022	0.00	0.00	Open	
Pump 1	≭N/A	#N/A	#N/A	#N/A	#N/A	35.99	0.00	-10.59	0.000	0.00	0.00	Open	
Valve 5	#N/A	25	#N/A	#N/A	#N/A	15.00	0,51	5,74	0.000	0.00	0.00	Active	

Name:	Dept:	Designation:
-------	-------	--------------

1. HDPE Pipe

High density polyethylene (HDPE) piping systems have been used for municipal and industrial water applications. HDPE water pipes are made of high-density polyethylene, which is a thermoplastic polymer. Polyethylene has a number of significant advantages over traditional materials such as steel or ductile iron including lower weight, freedom from corrosion and the ability to coil long lengths of pipe.

a. Salient Features of HDPE Pipes

- Safe for drinking water with no toxic or chemical contamination.
- High flexibility. Can be bent as much as 25-40 times of the pipe diameters. Thus, reducing unnecessary pipe joint.
- Light weight with only 0.95 grams/cm2. It weighs only 1/5 of steel pipes of the same size.
- Rust proof and high resistance to damaged chemicals, making the product last up to 50 years.
- Super smooth internal surface, reducing the chance of pipe cloggage.

b. PE80 vs PE100 Comparison

Comparison of PE 100 and PE 80 HDPE Pipes

- Before international standards were adopted polyethylene (PE) materials were commonly named by their density - low density, medium density and high density. ISO standards were further developed to designate materials as PE80 or PE100 to easier differentiate the benefits of the materials.
- PE80 pipes are often rated SDR11 PN12 and have a minimum required strength (MRS) of 8 MPa (Megapascal) whereas PE100 pipes are rated SDR11 PN16 and have a MRS of 10 Mpa.
- PE100 offers additional long-term strength and performance over PE80 while allowing for thinner pipe walls for the same operating pressure.

c. HDPE pipes color code guide:

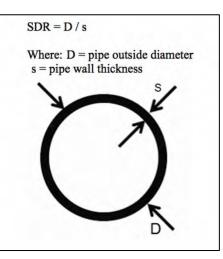
Red	Electric power lines, cable, conduit and lighting cables		
Orange	Telecommunication, alarm or signal lines, cables or condui		
Yellow	Fuel gas (methane or propane), oil, petroleum, steam or gaseous materials		
Green	Sewers and drain lines		
Blue	Potable water		
Violet (Purple)	Reclaimed water, irrigation and slurry lines		

Name:	Dept:	Designation:

2. HDPE Pipe Parameters

a. Standard Dimension Ratio (SDR)

Standard dimension ratio (SDR) is a method of rating a pipe's durability against pressure.


SDR= D/s

Where;

D= Outside diameter of pipe

S= Thickness of pipe

It's an inverse relationship. The higher the SDR, the lower the pressure rating.

b. In HDPE Pipe terms, MRS stands for "Minimum Required Strength" (MRS).

The MRS is determined by performing regression analysis in accordance with ISO 9080 on the test data from the results of long-term pressure testing.

Material Designation	Minimum Required Strength (MRS)MPa	
PE100	10,0	
PE80	8.0	

Another parameter is defined as the 'Maximum Operating Pressure' MOP, or the pressure rating of the pipe.

MOP = 2 x MRS / C (SDR - 1) ---- Where MRS and MOP are in MPa

MOP = 20 x MRS / C (SDR - 1) ----- Where MRS is in MPa and MOP is in bar.

Where C is the 'overall service (design) coefficient, or Safety Factor.

For water applications the minimum value of C is 1.25

Name:	Dept:	Designation:
-------	-------	--------------

c. Pressure Reduction Factor

Table 1 — Pressure reduction factors for temperatures between 20 °C and 50 °C

Material	Pressure reduction factors ^{a b}						
classification	20 °C	25 °C	30 °C	35 °C	40 °C	45 °C	50 °C
PE 100 PE 80	1,00	0,92	0,85	0,79	0,73	0,67	0,63
PE 63	1,00	0,92	0,85	0,79	0,73		
PE 40	1,00	0,92	0,85	0,77	0,70		

b The ISO 9080:2012 extrapolation factors are 50 for 40 °C, 30 for 45 °C and 18 for 50 °C when the material is tested at a maximum temperature of 80 °C. If the material is tested at a higher temperature than 80 °C then other extrapolation factors may apply.

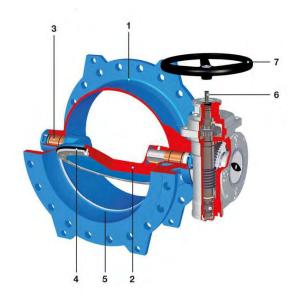
3. Available Sizes of PE 100 pipes

Dimension Ratio	SDR21	SDR17	SDR 13.6	SDR11
	PN8	PN10	PN 12.5	PN16
OUTSIDE DIAMETER	Wall	Wall	Wall	Wall
(mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)
20	-	-		2.0
25	-	-	2.0	2.3
32	-	2.0	2.4	3.0
40	2.0	2.4	3.0	3.7
50	2.4	3.0	3.7	4.6
63	3.0	3.8	4.7	5.8
75	3.6	4.5	5.6	6.8
90	4.3	5.4	6.7	8.2
110	5.3	6.6	8.1	10.0
125	6.0	7.4	9.2	11.4
140	6.7	8.3	10.3	12.7
160	7.7	9.5	11.8	14.6
180	8.6	10.7	13.3	16.4
200	9.6	11.9	14.7	18.2
225	10.8	13.4	16.6	20.5
250	11.9	14.8	18.1	22.7
280	13.4	16.6	20.6	25.4
315	15.0	18.7	23.2	28.6
355	16.9	21.1	26.1	32.2
400	19.1	23.7	29.4	36.3
450	21.5	26.7	33.1	40.9

HDPE Pipe Parameters – Class Activity 1

Diameter (mm)	Thickness (mm)	SDR	MOP (bar)	Avg. Temperature in your area	Temperature Factor (From table 1)	Effective MOP (bar)

	Unit	Labour	Composite	Unit	Labour	Composite
c) PN-10 (SDR-17)	the second se			-		
i) 90 mm	P.Rft	4.60	240.85	PM	12.55	790.25
ii) 110 mm	P.Rft	12.85	364.65	PM	35.10	1,196.45
iii) 125 mm	P.Rft	14.20	463.00	PM	38.80	1,519.05
iv) 160 mm	P.Rft	15.60	752.25	PM	42.65	2,468.20
v) 180 mm	P.Rft	20.00	951.85	PM	54.70	3,122.95
vi) 200 mm	P.Rft	22.35	1,172.85	PM	61.10	3,848.15
vii) 225 mm	P.Rft	25.50	1,486.00	PM	69.70	4,875.65
viii) 250 mm	P.Rft	35.20	1,824.55	PM	96.30	5,986.40
ix) 315 mm	P.Rft	62.45	2,904.80	PM	170.70	9,530.70
x) 355 mm	P.Rft	69.45	3,688,60	PM	189.85	12,102.25
xi) 400 mm	P.Rft	78.60	4,654.90	PM	214.95	15,272.70
xii) 450 mm	P.Rft	79.85	5,888.40	PM	218.40	19,319.85
xiii) 500 mm	P.Rft	94.05	7,281.95	PM	257.10	23,892.05
xiv) 560 mm	P.Rft	104.40	9,138.50	PM	285.40	29,983.35
xv) 630 mm	P.Rft	117.10	11,537.95	PM	320.15	37,856.00
xvi) 710 mm	P.Rft	132.65	14,684.75	PM	362.65	48,180.60
xvii) 800 mm	P.Rft	150.45	18,566,10	PM	411.30	60,915.35
xviii) 900 mm	P.Rft	189.25	23,593.55	PM	517.45	77,410.35
xix) 1000 mm	P.Rft	219.70	29,119.95	FM	600.70	95,542.55


PN Rating	Diameter	Length	Unit Cost (Composite-Labour)	Total Cost
PN 10		100 ft		

Name:	Dept:	Designation:
-------	-------	--------------

Valves – Class Activity 2

i. Label the picture displayed below according to the numbers:

No.	Labelling
1	
2	
3	
4	
5	
6	

ii. Choose the correct answers.

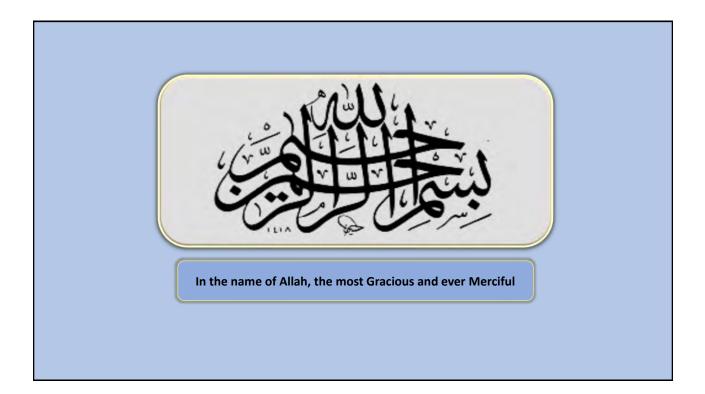
a) Non-return value or check value is used for? () To reverse the flow () To prevent reverse flow () To stop the flow b) Which type of value is recommended to use for isolation? () Sluice/gate value () Butterfly value () Air release value c) Air release value are used for? () To release entrapped air () To pump air () Both

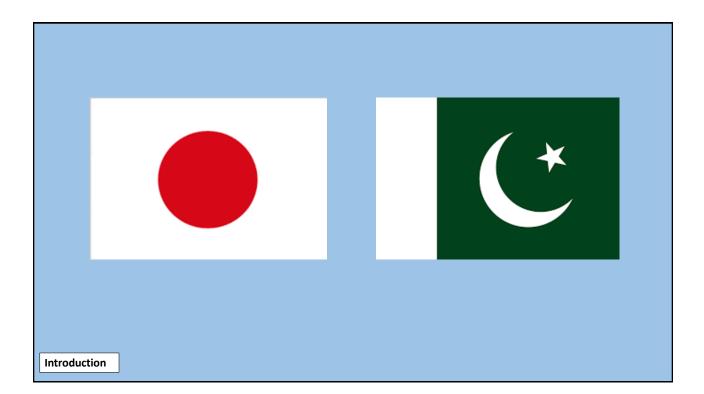
Name:	Dept:	Designation:
-------	-------	--------------

4. Hydrostatic Pressure Test Activity for HDPE Pipe

Instructions:

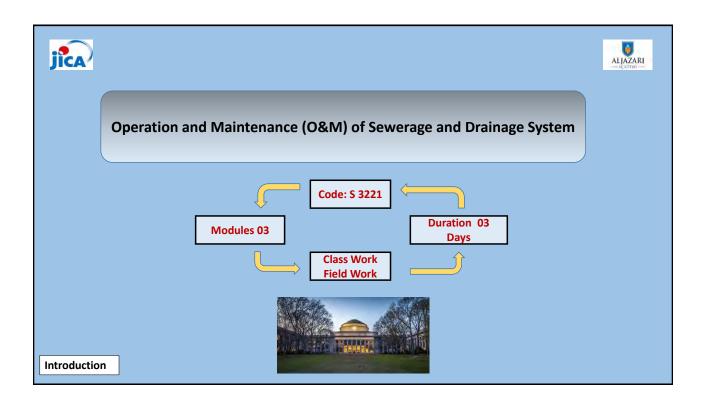
- Setting the Optimum Pressure for Test: Working pressure of Pipe x 1.5
- Time Duration: 10 mins (2 hours as recommended in the standard)
- Hazard Awareness: Participants are advised to keep a distance from potential leakage joint or valve
- Fill the pipe with water by connecting to the nearby source until water come out on the other end. For the releasing air, we can use air valve.
- Pressurizing: Inject the water with the help of hand pump to build a pressure inside pipes up to desired pressure rating.
- Observe the joints and valves for leakages. If any leakage appears, note the reading on pressure gauge.
- Keep pressuring branch wise until setting pressure and close valve, Start counting time.
- If no leakage appears after holding the optimum pressure for specified time, the joint is considered valid.

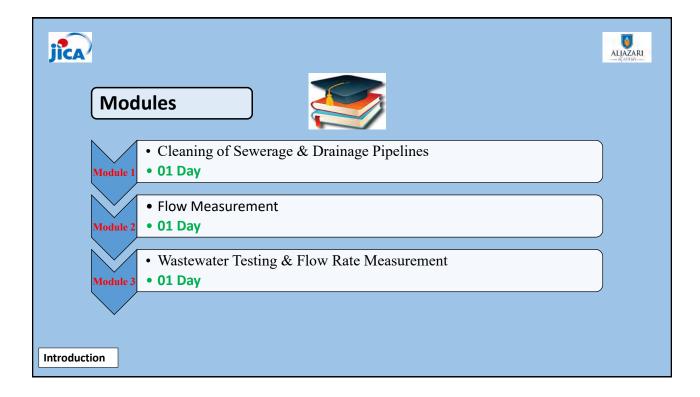

Name:	Dept:	Designation:

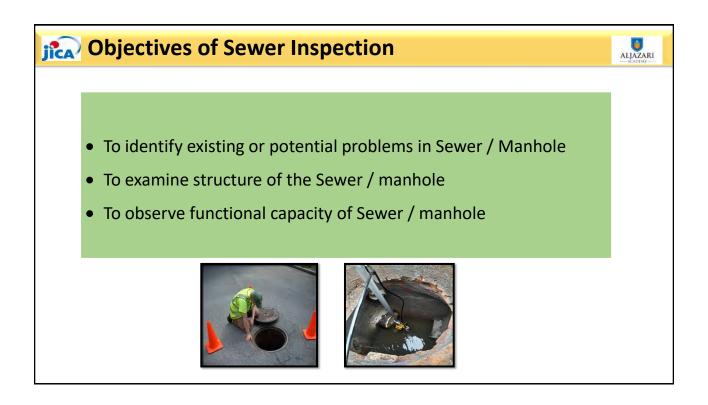

Hydrostatic Pressure Testing – Class Activity 3

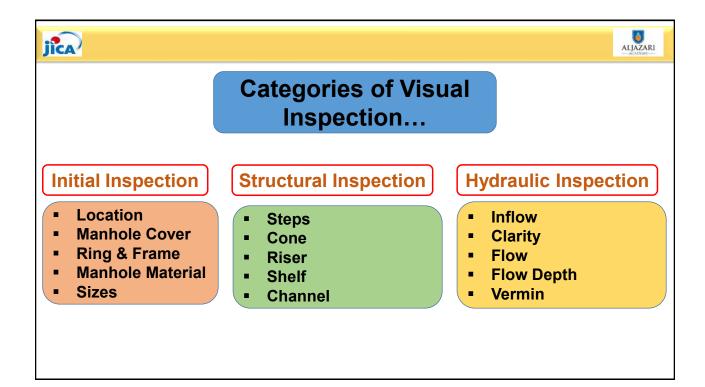
Participants to perform the pressure test activity and observe the leakages and corresponding pressure ratings.

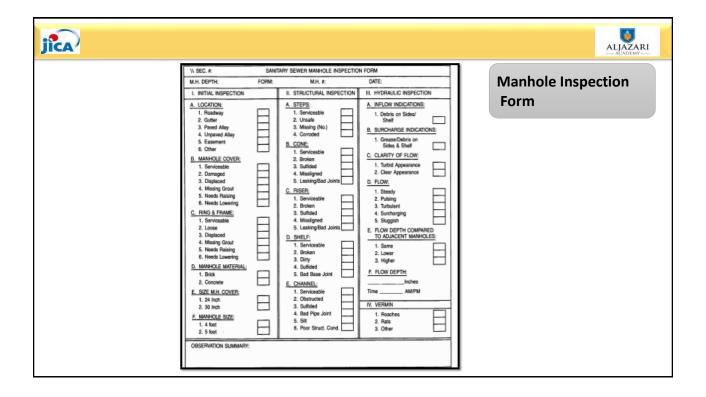
Leakage Point	Pressure	Reliability (Low, Medium, High)
Branch 1 – Gibault Joint		
Branch 2 – Flared Joint		
Branch 3 – Rubber Tube		
Branch 4 – Clamp Joint		

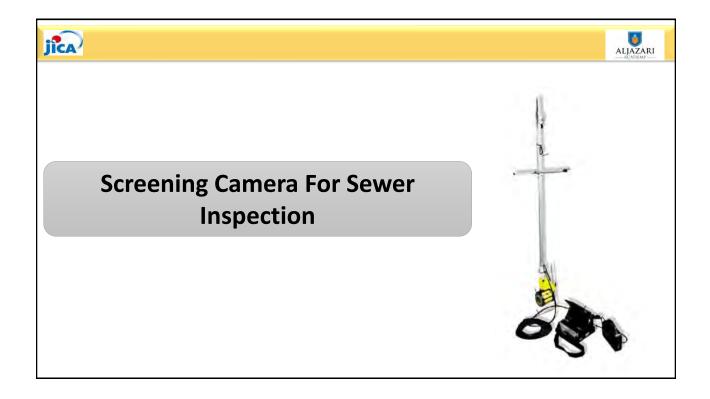

Annex 5.1.53 Training Material for "O&M of Sewerage and Drainage" in Spring 2023

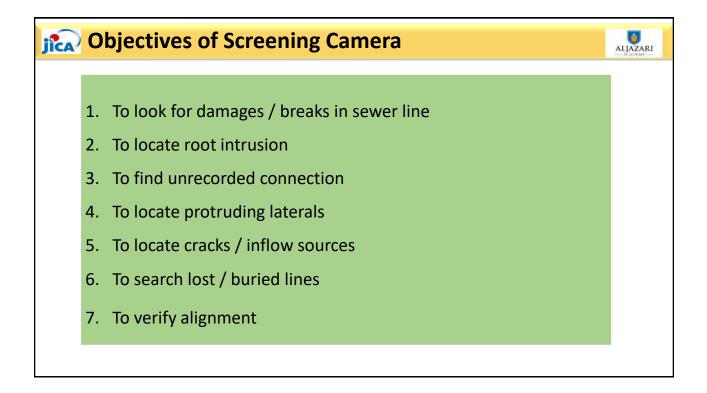



jîca	Course Team				
	Mr. Tomidokoro)	JICA Expert		
C	Mr. Syed Fahad Hussain)	Course Leader Sewerage & Drainage System		
	Mr. Muhammad Irfan)	Specialist Infrastructure		
ſ	Mr. Uzair Safdar]	Instructor		
Introduction	1				

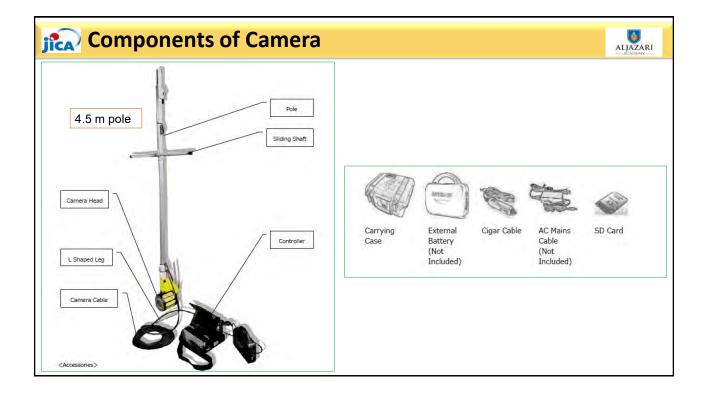


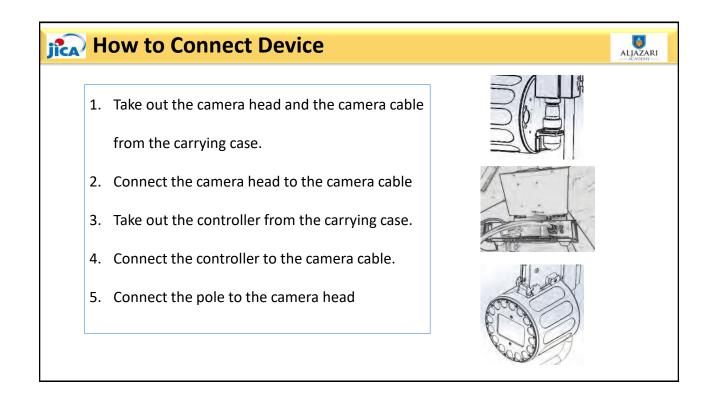


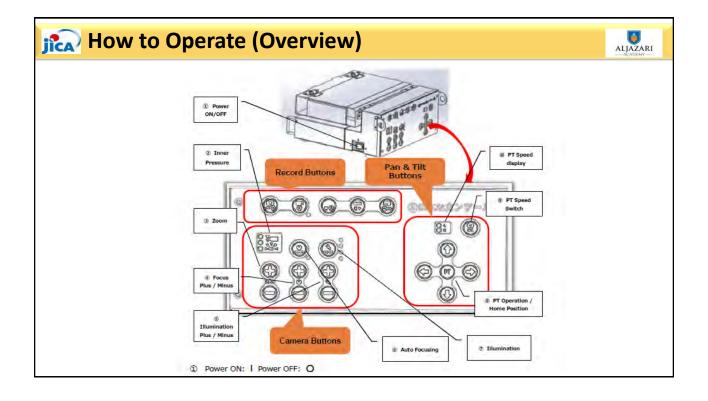


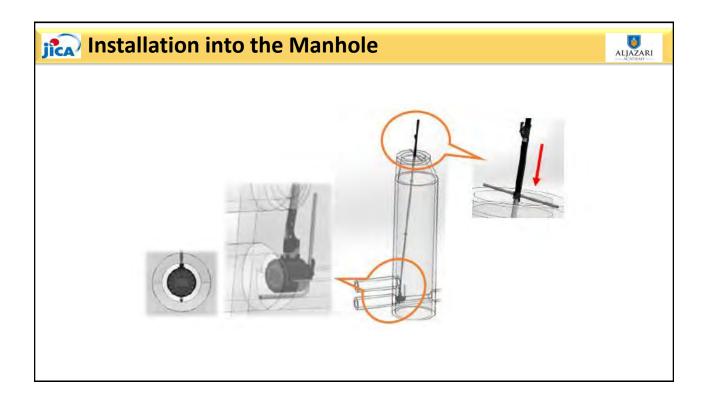

jica		ALJAZARI
	INSPECTION METHODS	
	 Visual Camera]

Visual Inspection			
Arrangements before In	spection:		0
Map of the Collection System	• Scrapers and Wire Brushes for Cleaning the Manhole Ring		
Metal Detector	Powerful Flashlight		, 1997
Warning Devices, Safety Cones and Traffic Safety Devices	Gas Detection Devices	IJ	
Manhole Lid Removal Device	Blower and Hose for Ventilating Manhole		1
Leather Gloves			





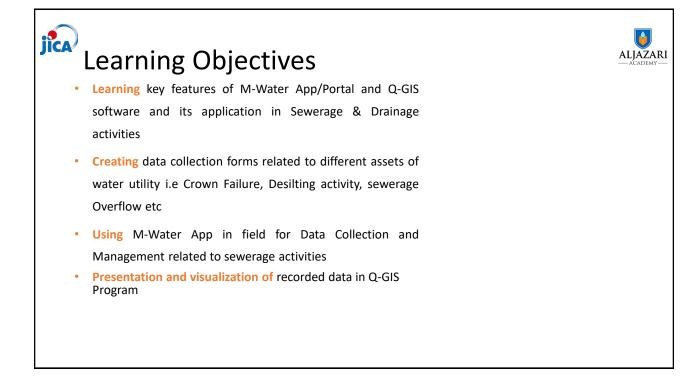




jîca C	Components of	Camera		
	System			
	1)	Camera Head	 1 pc	
	2)	Camera Cable (10m)	 1 pc	
	3)	Controller	 1 pc	
	4)	Pole (4.5m : 3-stage telescopic)	 1 pc	
	Accessories			
	1)	Carrying Case	 1 pc	
	2)	SD Card	 1 pc	
	3)	Cigar Cable	 1 pc	
	4)	AC Mains Cable	 1 pc	
	5)	Instruction Manual (this document)	 1 pc	

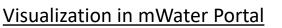
Recording (Video/Still Image)

Video recording time (estimate)


Picture quality	4GB	8GB	16GB	32GB
Highest	About 48 min	About 96 min	About 190	About 380
riigneat	About 40 min	About 50 min	min	min
High	About 60 min	About 120	About 240	About 480
riigii	About ou min	min	min	min
Normal	About 80 min	About 160	About 320	About 640
Normai	About ou min	min	min	min

ALJAZARI

Ji WASA Rawalpindi (Pictures)



Learning Outcomes

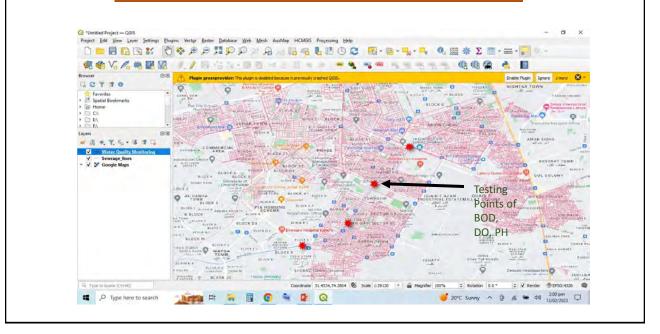
ALJAZARI

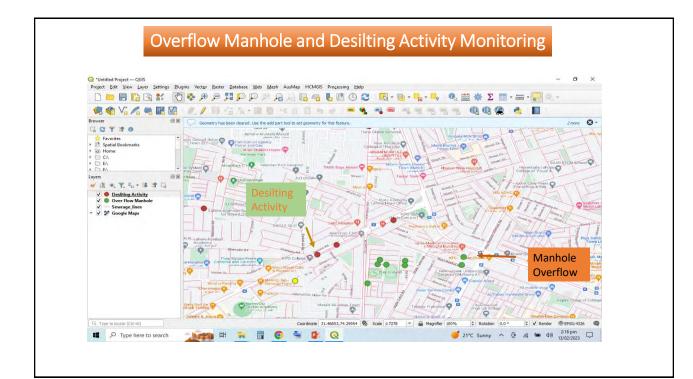
• Quick check of the data

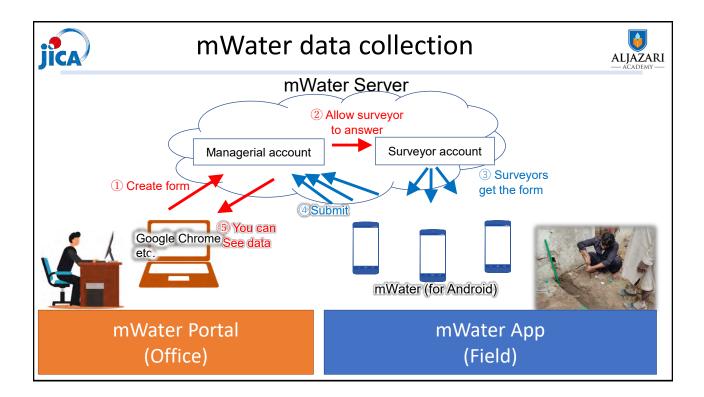
Excel

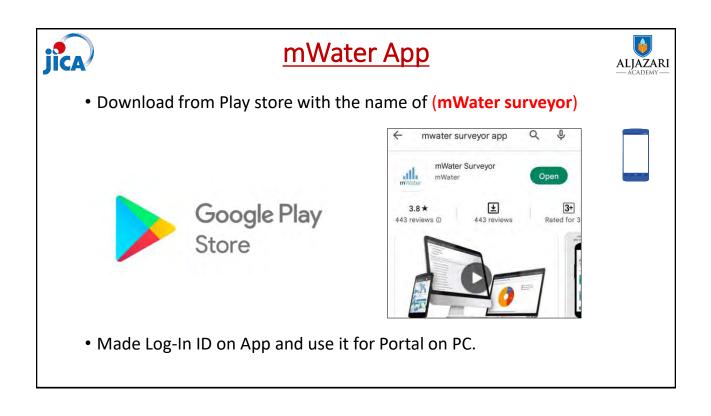
• Integrate and conserve all the data, <u>calculate and analyze</u>etc..

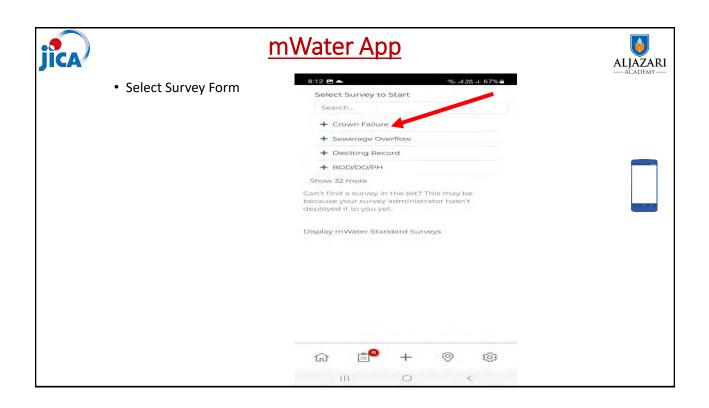
<u>QGIS</u>

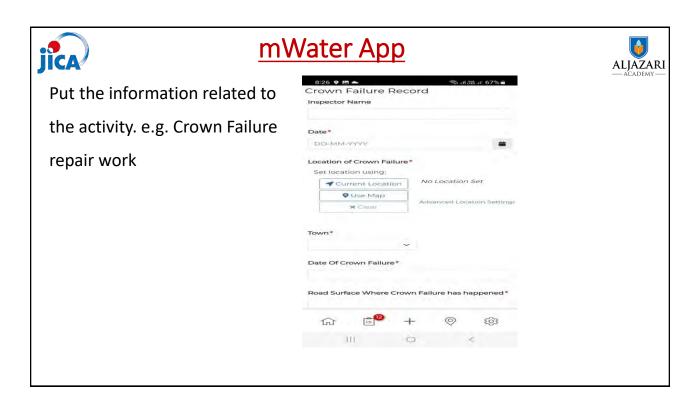

- <u>Visualize</u> data on map and express the parameter as you like
- **<u>Prioritize</u>** the area for budget allocation for replacement etc.

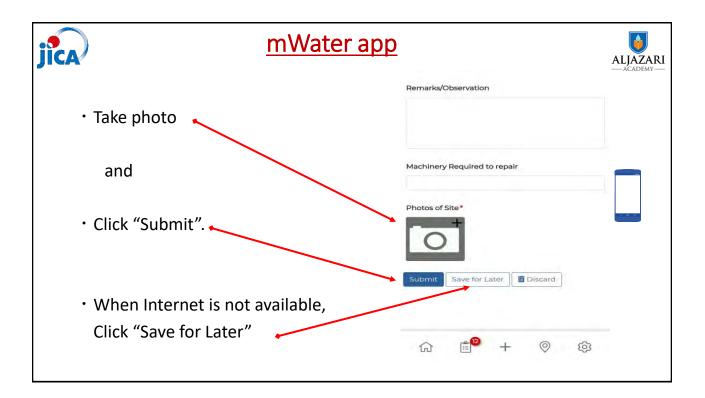

→ Exhibit the crown failure situation effectively

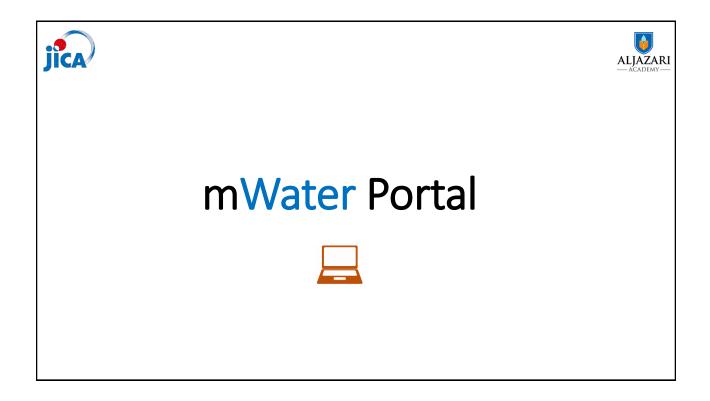

- Request budget from the Government
- Attract international fund

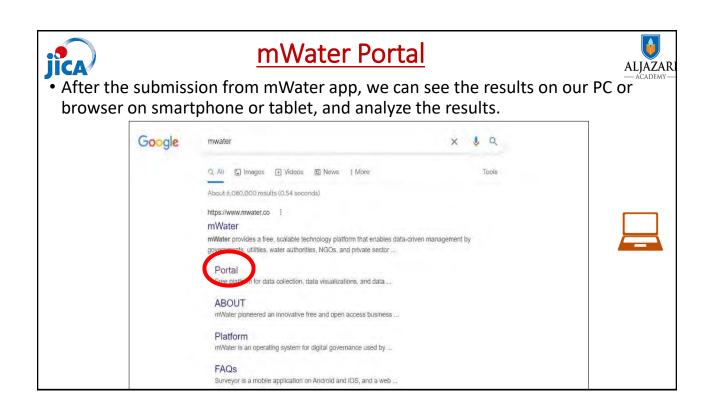


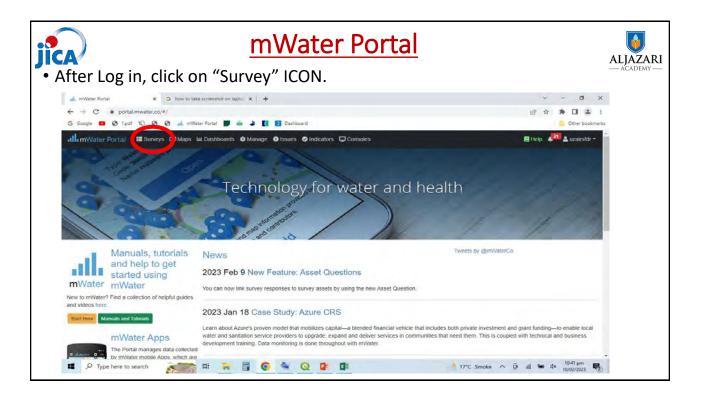


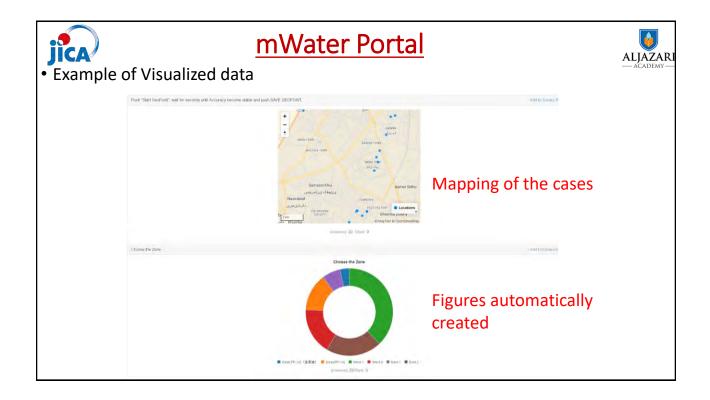


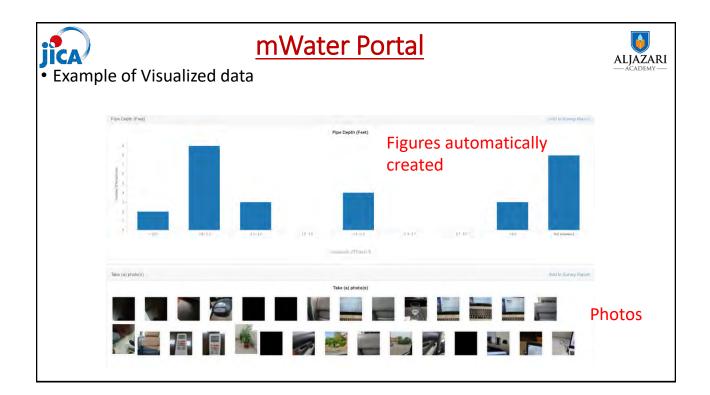




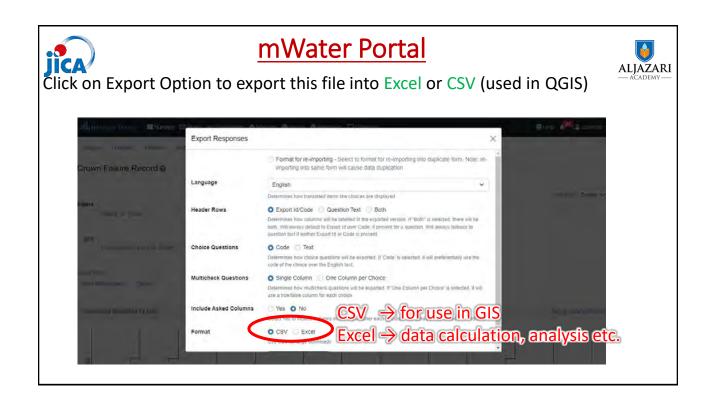

<u>mWat</u>	er App	
• After logging in, Click "Survey" icon	 Click icon "Start Survey" 	— ACADEMY —
806 © \$100 mWater	8:18 C A Survey Survey	
Uzair safdar Username: uzairstdr © Configuration: Standard User	Draft Surveys BOD/DO/PH - BOD/DO/PH Changed Teday at 8d5 PM	
Sync Status	Severage Overflow - Overflow survey Changed Today at 815 PM Desilting Record - Desilting survey Changed Today at 815 PM	ta da di
Data Images Cache	Crown Failure - Crown Failure Changed Today at 815 PM Show 7 more	
	Rejected Surveys Recently Completed Surveys Severage Overflow - Started on 2023-02-10	
Sites Surveys	B/7 pm Submitted by usains67 Today at 506 PM Crown Failure - Statted on 2023-02-10 8:15 om	
🚓 Water Assets	Submitted by uzanster Teday at B17 PM Solar Panels Verification Survey - Started on 2025-02-03 4/49 pm Submitted by uzansfor 02/03/2025	
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	



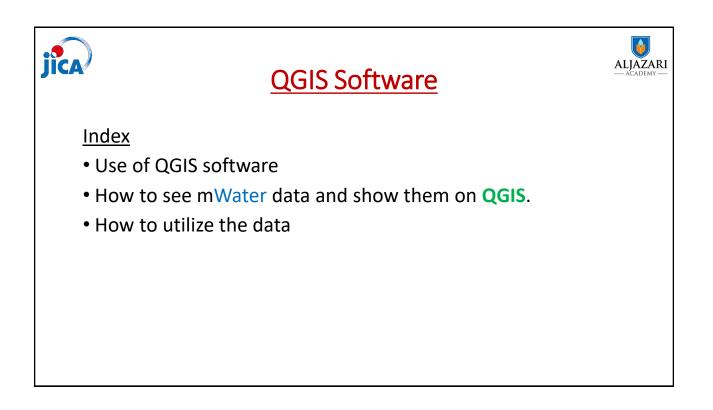




either use prer	bared form or crea	ate new surve	ν
	ishboards 🌣 Manage 😗 Issues 🥥 Indicators 🖵		E Help 42
Surveys			
+ Create New Survey	1		Sourch
Survey Design Import	Crown Failure Record	Today at	Modified - Operations Today at
Viewable By Me		7:59 PM	8:24 PM
Created By Me	Sewerage Overflow		Today at
C Editable By Me		0.00 PM	8.08 PM
Charled With Me	Desitting Record	Today at 8.01 PM	Today at 8.07 PM
 Public Trash 			
🐿 S&D 🛛 🕸	BOD/DO/PH	Today at 8:01 PM	Today at 8:07 PM
➡ Test 0 +			

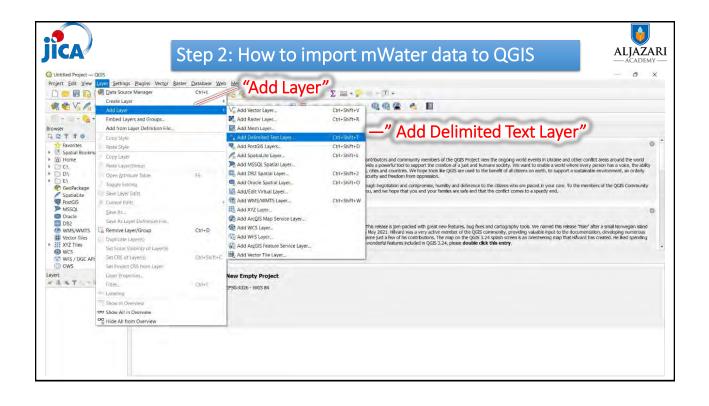

k on Crown fa	ilure Record Form	er Portal	Al
mWater Portal	WMaps Let Dashböards \$Manage €Issues	🛿 Indicators 🖵 Consoles	🖪 Help 🛛 🛃 🛓 uzairst
Design Translate Preview Se aved	ttings Deploy Assignments Responses	Visualization Activity Survey Report Undo	• Tinne 🖨 Print - 🔮 Duplicate, 🗟 Calculations 🤡 Indicator L
Crown Failure Record @			Search 1. Complaint Nof Ref No. of Crown Failure 2. Date Of Crown Failure 3. Locetion of Crown Failure 4. Town 5. Subdivision 6. Subdivision
Date Of Crown Failure*			n Subohisan 7 Subohisan 8 Subohisan 9 Subohisan 10 Subohisan
Location of Crown Failure* Set location using:			 Subdivision Year of Installation of Stevenage Line Road Surface Where Crown Failure has happened Condition of Pipe
T Current Location	No Location Set		 15 Diameter of Sewerage Line (inches) 16: Outfall of sewerage line
♥ Use Map			 Requirement of Pump to bypass Method to Repair the Crown Failure
×Clear	Advanced Localinn Settings.		19. Depth of Sewerage (Inc (II)) 20. Machiney Required to repair

	mWater Portal	AL
see the form click on		— A
	ds 🕸 Manage 🛛 Issues 🔮 Indicators 🖵 Consoles ssignments Responser (Visualization Resp. y Survey Report	E Hop 🔺 🛣 uzanski -
Filters Status is Final and Deptoyment is any of Selecct + Add Filter View Responses _ Expont		Spid View Engen 🛩
Responses Submitted by Date		Add to Survey Report
	Responses by Submission Date	

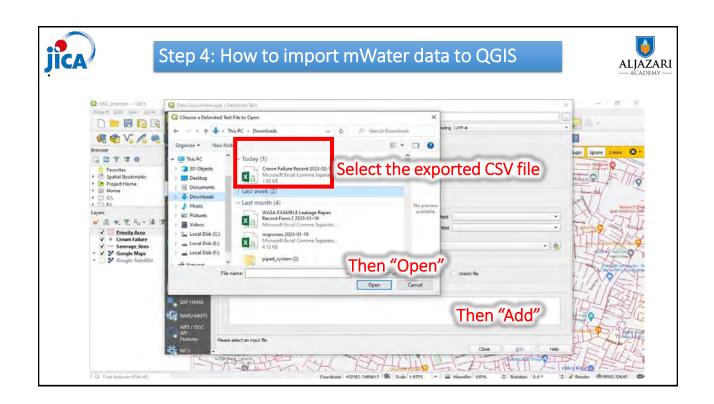


AD AE AF AG AH AI AX AK AI AN AO AP AO AR AS AT AU AV AV 1 Subdivises Su					(.xls>	(or .	.csv)			ALJ.
ALL Copy Callos III A A IIII A A IIII A A IIIIII	-		= Page Lawout Fo	rmulas Data Broom						
ALB Image: Copy - B / L / - B - A - B - B - B - B - B - B - B - B				transfer of the second			-			A CONTRACTOR OF
Cityboard is Part Adgement is Namber Spire Cells Long AL3 - </th <th>Bede</th> <th></th> <th>I U + E + 4</th> <th>-A- == = -</th> <th>🗄 🚈 🛅 Merge & Cente</th> <th></th> <th></th> <th>Conditional Format a</th> <th>Cell Insert Delete Format</th> <th>Sort & Find &</th>	Bede		I U + E + 4	-A- == = -	🗄 🚈 🛅 Merge & Cente			Conditional Format a	Cell Insert Delete Format	Sort & Find &
AD AE AF AG AH AI AX AE AM AN AO AP AQ AR AS AT AU AV AV 1 Subdivisas Su			Font	Ta .	Alignment	rs Ni			peyies -	Eliber - Select -
1 Subdivisits Subdivisits Subdivisits Year of In Tread Suff Condition Diameter Outfail of Requirem Method to Depth of SMachiner Cause(s) of Pailu Cause(s) See The Method Sector Se	A/13	a 18	× 10)							
2 yr vy 0 (Partially satisfacts: 42 66 No Replacem 6 Electric P, Traffic load, Aging Contracto https://api.mwater. 1.952 Asphate 0 (Partially satisfacts: 42 66 No Replacem 6 Electric P, Traffic load, Aging Contracto https://api.mwater. 1.952 Asphate 0 (Partially satisfacts: 42 66 No Replacem 6 Electric P, Traffic load, Aging Contracto https://api.mwater. 1.953 Asphate 0 (Partially satisfacts) 42 66 No Replacem 6 Electric P, Traffic load, Aging Contracto https://api.mwater. 2.000 Asphat 0 (Partially satisfacts) 42 66 No Replacem 6 Electric P, Traffic load, Aging Contracto https://api.mwater. 1.950 Asphat 0 (Partially satisfacts) 42 66 No Replacem 6 Electric P, Traffic load, Aging Contracto https://api.mwater. 1.950 Asphat 0 (Partially satisfacts) 42 66 No Replacem 6 Electric P, Traffic load, Aging Contracto https://api.mwater. 1.950 Asphat 0 (Partially satisfacts) 42 66 No Replacem 6 Electric P, Traffic load, Aging Contracto https://api.mwater. 1.950 Asphat 0 (Partially satisfact	AD	AE A	AG AG	AH AI AI	AK AL	AM	AN AO	AP AC	AR AS AT	AU AV AW
 1,985 Asphalt D (Partially satisfacts: 42 66 No 1,982 Asphalt F (Not satisfactory) 42 66 No Replacem 6 Electric P, Traffic load, Aging Contracto https://api.mwoter. Contracto https://api.mwoter. Contracto https://api.mwoter. Contracto https://api.mwoter. Section P, Aging L980 Asphalt F (Not satisfactory) 42 66 No Replacem 6 Electric P, Traffic load, Aging Contracto https://api.mwoter. 		visic Subdivisic Subc	divisic Subdivisic Sub		urf. Condition Condition	Diameter Oi	utfall of Require	em Method to Depth	of : Machiner Cause(s) of Failu Cause	
4 1.992 Asphalt 0 (Partially satisfact 42 66 No Replacem 6 Electric PL Aging Contracto https://api.mwafr. 6 1.982 Asphalt f (Not satisfactory) 42 66 No Replacem 6 Electric PL Aging Contracto https://api.mwafr. 7 1.983 Asphalt f (Not satisfactory) 42 66 No Replacem 6 Electric PL Aging Contracto https://api.mwafr. 8 1.980 Asphalt f (Not satisfactory) 42 66 No Replacem 6 Electric PL Aging Contracto https://api.mwafr. 9 1.980 Asphalt f (Not satisfactory) 42 66 No Replacem 6 Electric PL Toffic Load Contracto https://api.mwafr. 1.980 Asphalt f (Not satisfactory) 42 66 No Replacem 6 Electric PL Toffic Load Contracto https://api.mwafr. 1 1.980 Asphalt f (Not satisfactory) 42 66 No Replacem 6 Electric PL Toffic Load, Aging Contracto https://api.mwafr. 1 1.980 Asphalt f (Not satisfactory) 42 66 No Replacem 6 Electric PL Toffic Load, Aging Contracto https://api.mwafr. 1 1.985 Asphalt f								-		
5 1,987 Asphalt F (Not satisfactory) 42 66 No Replacem 6 Electric PL Traffic Load, Aging Contracto https://api.mwatr. 6 1,985 Asphalt F (Not satisfactory) 42 66 No Replacem 6 Electric PL Traffic Load, Aging Contracto https://api.mwatr. 8 1,980 Asphalt F (Not satisfactory) 42 66 No Replacem 6 Electric PL Traffic Load, Aging Contracto https://api.mwatr. 1 1,980 Asphalt D (Partially satisfactory) 42 66 No Replacem 6 Electric PL Traffic Load, Aging Contracto https://api.mwatr. 10 1,980 Asphalt D (Partially satisfactory) 42 66 No Replacem 6 Electric PL Traffic Load, Aging Contracto https://api.mwatr. 10 1,980 Asphalt D (Partially satisfactory) 42 66 No Replacem 6 Electric PL Traffic Load, Aging Contracto https://api.mwatr. 10 1,983 Asphalt D (Partially satisfactory) 42 66 No Replacem 6 Electric PL Traffic Load, Aging Contracto https://api.mwatr. 10 1,983 Asphalt D (Partially satisfactory) 42 66 No Replacem 6 Electric PL Traffic Load, Aging <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3									
6 1,285 Asphalt r/Not satisfactory) 42 66 No Replacem 6 Electric PAging Contracto https://api.mwafr. 7 2,000 Asphalt r/Not satisfactory) 42 66 No Replacem 6 Electric PAging Contracto https://api.mwafr. 8 1,980 Asphalt r/Not satisfactory) 42 66 No Replacem 6 Electric PAging Contracto https://api.mwafr. 10 1,980 Asphalt r/Not satisfactory) 42 66 No Replacem 6 Electric PAging Contracto https://api.mwafr. 10 1,980 Asphalt r/Not satisfactory) 42 66 No Replacem 6 Electric PAging Contracto https://api.mwafr. 10 1,985 Asphalt r/Not satisfactory) 42 66 No Replacem 6 Electric PAging Contracto https://api.mwafr. 10 1,985 Asphalt r/Not satisfactory) 42 66 No Replacem 6 Electric PAging Contracto https://api.mwafr. 12 19 0 Partially satisfactory 42 66 No Replacem 6 Electric PAging Contracto https://api.mwafr. 12 19 0 Partially satisfactory	5									
7 2.000 Asphalt 0 (Partially satisfact: 42 66 No Replacem 6 Electric PL aging Contracto https://api.mwathr. 9 1.980 Asphalt P (Not satisfact: 42 66 No Replacem 6 Electric PL Traffic load Contracto https://api.mwathr. 10 1.980 Asphalt D (Partially satisfact: 42 66 No Replacem 6 Electric PL Traffic load Contracto https://api.mwathr. 10 1.985 Asphalt D (Partially satisfact: 42 66 No Replacem 6 Electric PL Traffic load Contracto https://api.mwathr. 10 1.985 Asphalt D (Partially satisfact: 42 66 No Replacem 6 Electric PL Traffic load Contracto https://api.mwathr. 11 14 All the answers are shown in the table Open the image on Web browser 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 12 10 10 10	6									
9 9 1,985 Asphalt D(Partially satisfact: 42 66 No Replacem 6 Electric Pt Traffic load, Aging Contracto https://api.mwate.	7						66 No			
All the answers are shown in the table Open the image on web browser	8			1,980 Aspha	t F (Not satisfactory)	42	66 No	Replacem	6 Electric PuTraffic load	Contracto https://api.mwater.4
All the answers are shown in the table Open the image on web browser	9			1,985 Aspha	t D (Partially satisfact	× 42	66 No	Replacem	6 Electric Pt Traffic load, Aging	Contracto https://api.mwater.e
All the answers are shown in the table Open the image on web browser	10									
All the answers are shown in the table Open the image on web browser	11									
Open the image on web browser					- · ·					
Open the image on web browser	14	All the	answe	ers are st	nown in	the t	able			
web browser	15									
web browser	16							On	on the image of	
web browser	17							Opt	en the image of	
	20							wei	o browser	
22	21									
	22									
23	1000									

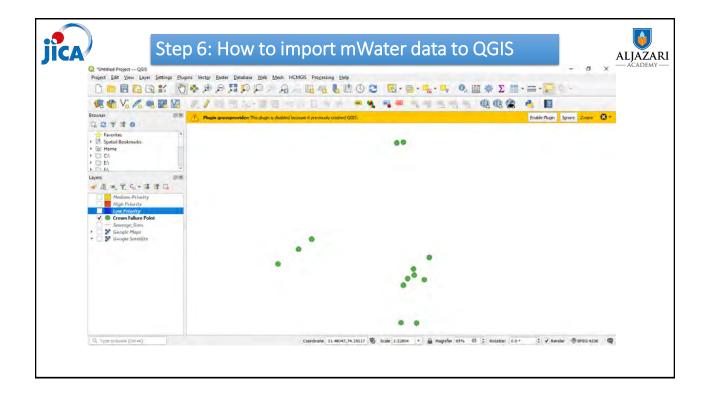
Geographic Information System GIS

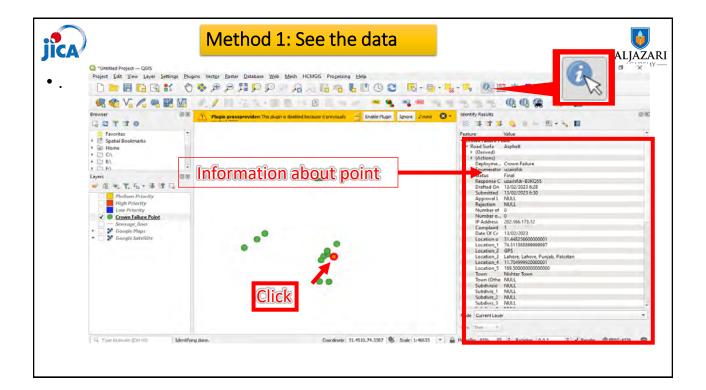

A geographic information system (GIS) is a system that creates, manages, analyzes, and maps all types of data. GIS connects data to a map, integrating location data (where things are) with all types of descriptive information (what things are like there).

Types of Data Inputs in GIS

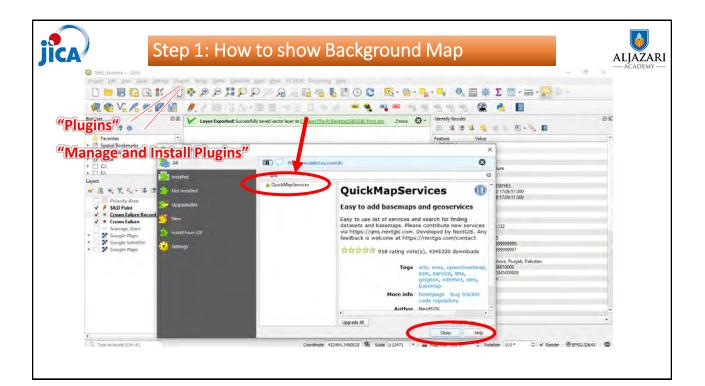

- 1. Vector Data
- 2. Raster data
- 3. Excel Data

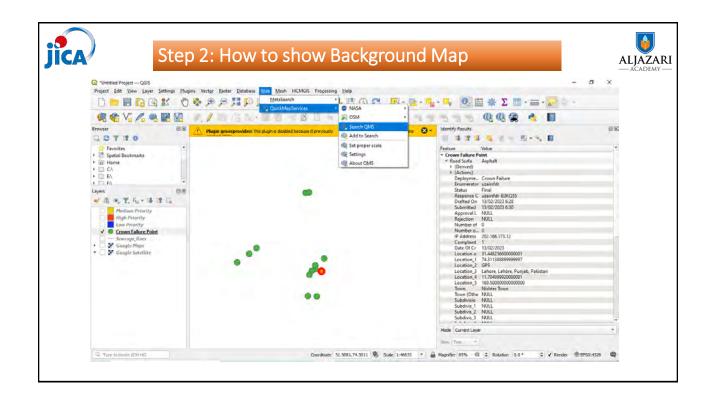
jica	Step 2: How to install	QGIS	ALJAZARI — ACADEMY —
< ⇒ ⊂ @	https://www.qgis.org/wn/site/forusers/download.html	E 90% C	⊚ ⊻ ≡
G 回覧板の作成 O Firefox 3.26.1 3.22.9 LTR	を使いこなそう G https://www.google.c. G ECHAFAUDASE - Goe [■ 中 単語・表現20 DISCOVER GGIS FOR USERS GET INVOLVED DOCUMENTATION	● m日本テクノ販式会社	□ 他のブックマーク English
	CAUTION: Upgrades of old setups from OSGeo4W v1 using this repository are different directory. CAUTION: 32 bit binaries are not produced anymore. Also Windows 7 no longe support for it. Standalone installers (MSI) from OSGeo4W packages (recommended for ne Latest release (nchest on features):	r works as we are now using Python 3.9, which dropped	
	A GIS Standalone Installer Version 3.28	и и	
	Long term release-(most stable):	Save the file and Run Installer	
	sha256 Note that the MSI installers are much bigger than the previous installers. This is PROJ 8). The main reason for the switch to MSI were the size limits previously dependencies.	ute because they include significant larger packages (eg.	

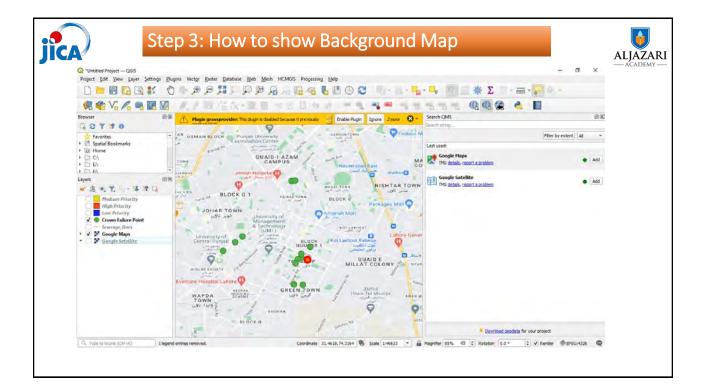

Project Edit View Layer Settings Plugins Vecto	
Browser Cite News	
an may occurry requires	Construction C
© 0VS → Loren 38 ◆ 急 ≪ 平 本 在 三	New Empty Project EPSG-4326 - WoS 94

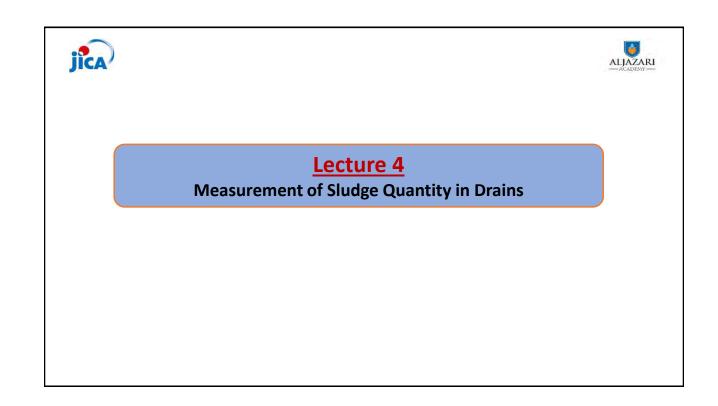


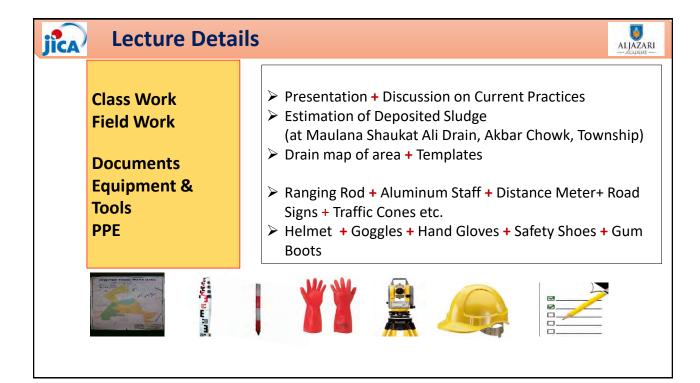
Favorites Spanial Bockmarks Spanial Bockmar	D = = = ि © ≋ ≤ (0 ♦ ≠ ≪	A Herger Database Web Men Berg A Log Control Source Manager Delimited Text	Click
WCCSV WCCVV WCCVV AcCOSS Preserve setled an input file AccOSS Clove AccOSS Clove Action Help	Provintes Spatial Bockmarks Provide Bockmarks Spatial Bockmarks Spa	Vector Vector Vector File format Vector Vector Vector Vector Vector File format Vector Vector Vector File format Vector Vector Vector File format Vector File format	y vents in Urane and other conflict areas around the world make a most ware every perion has a voce, the abity last and the world meth, and other he members of the QdIS Community

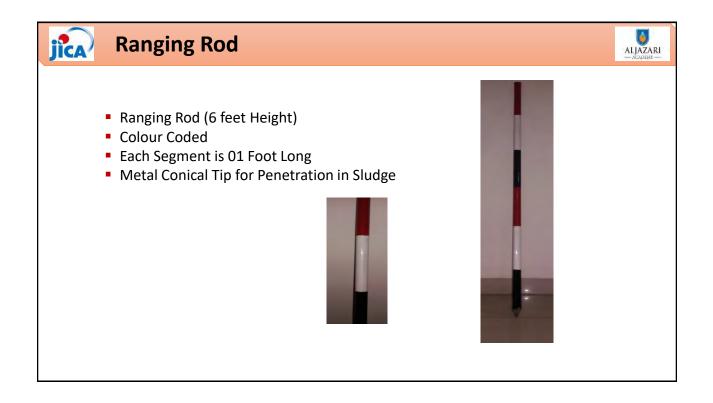


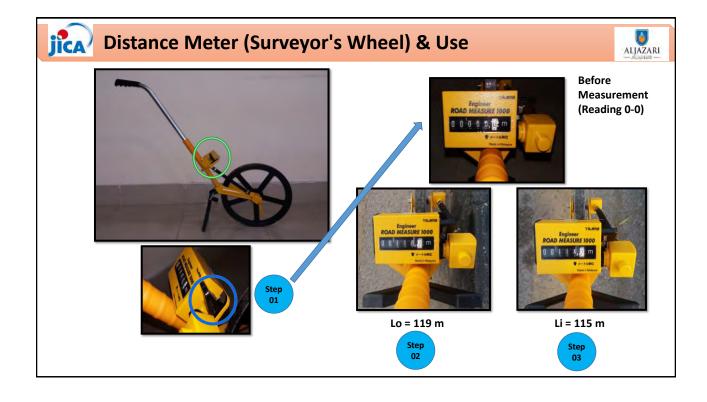

Q SSID Extrone - 1005	under Manager (Delimited Text X	- a ×
Project Tell Vie Layer S	The name C: Weers (The Pc/Downloads)Crown Failure Record 2023-02-10 (1).cov	
D D R R R	Layer name Crown Falure Record 2023-02-10 (1) Encoding UTT-8 -	0.1
🔍 📢 Va 🌈 🔜 Lation	- File Format	
Browser	CSY (comma separated values)	i Ignore Imore 🚷 -
- Country	Regular expression delimiter	
 Spatial Bookmarks 	Custom delimiters	
+ G Home 70 Text	Record and Fields Options	
P. [] GN P. [] FA	v Geometry Definition	
Layers	Point coordinates X field Location of Crown R are (ongsude) T 2 field	
Priority Area	Well known text (WRT) Y field (Location of Crown Are (latitude) * M field *	
V • Crown Failure	CMC working and a construction of the construct	
* 🔄 🎽 Gungle Maps 🛛 🗤 Ms S		
• 🗌 🖉 Google Satetlite	EPS(3:7376 - M(3S87))	
Crist		
Vietus	Layer Sample Data	
SAP +		
K wms		
WES		
API - Featu		

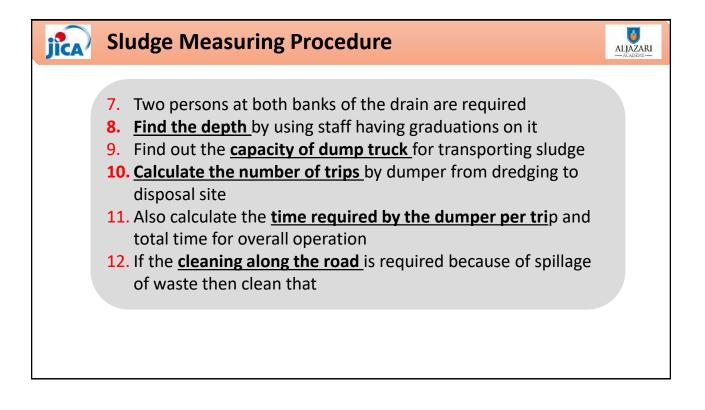


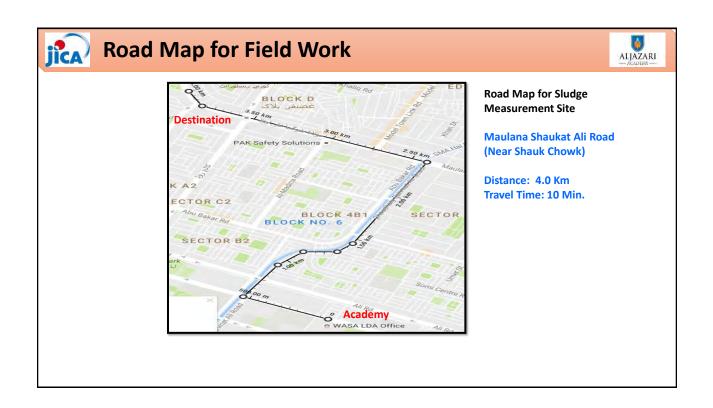


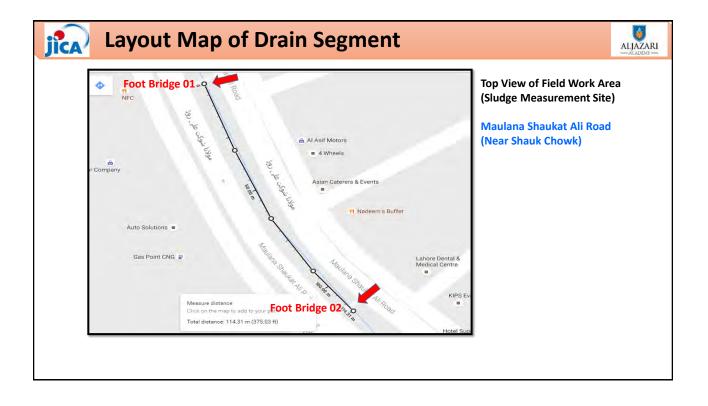

ICA/	Method 2: See the data		
-	ässter Database Web Mesh MMQGIS Processing Help Σφι 💬 💬 🙈 🖓 🛺 🌆 🐻 🦉 💺 🛄 🕓 😂 🔍 🔚 🚟 🌞 Σ 🚃 τ 🌄 🔍 - ፲፲ -		- 0 ×
R C Vo Doom to Layer		• × • • • ×	.
Zoom to Selection	Crown Failure Record 2023-02-10 (1) — Features Total: 2, Filtered: 2, Selected: 0		- 🗆 x
Show in Overview	/ FR SESTION SERVE		
Show reactive count	Deployment Enumerator Status Response Code Dirafted On Submitted On Approval Le	evel Rejection message umber of Rejection	ior Number of Edits IP /
pen Attribute Table	Joint Program State of the local state of the loc	NULL false	false 139.131
Work to Bettom Work to Bettom Work to Bettom Oren Attribute Table Den Attribute	and a construction a		They and a second secon

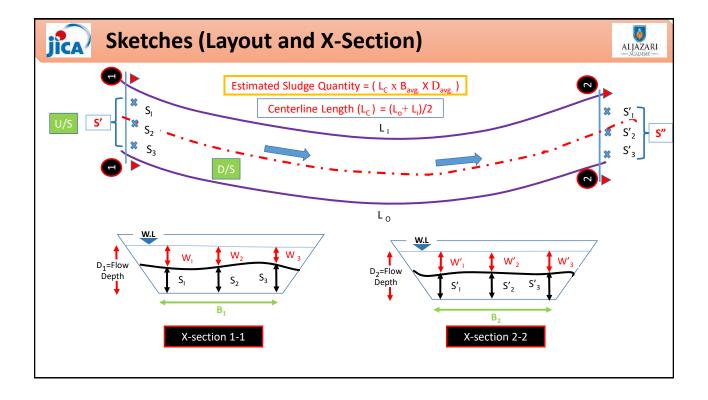


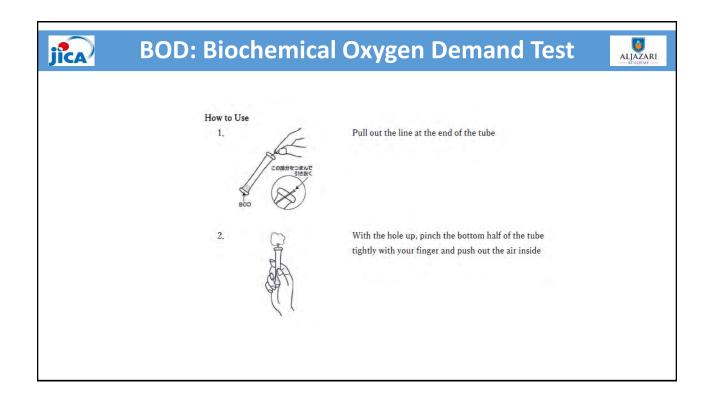


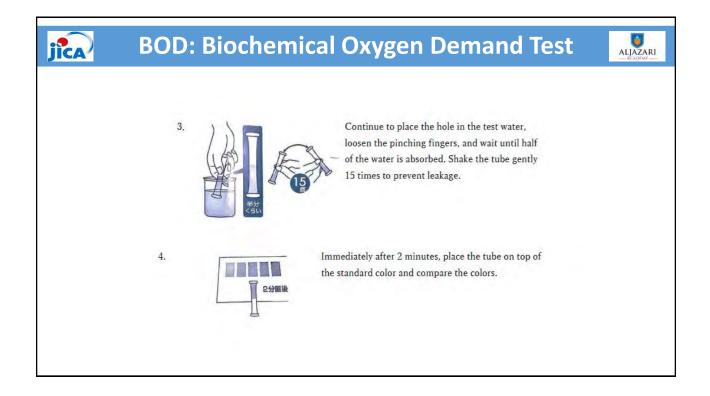






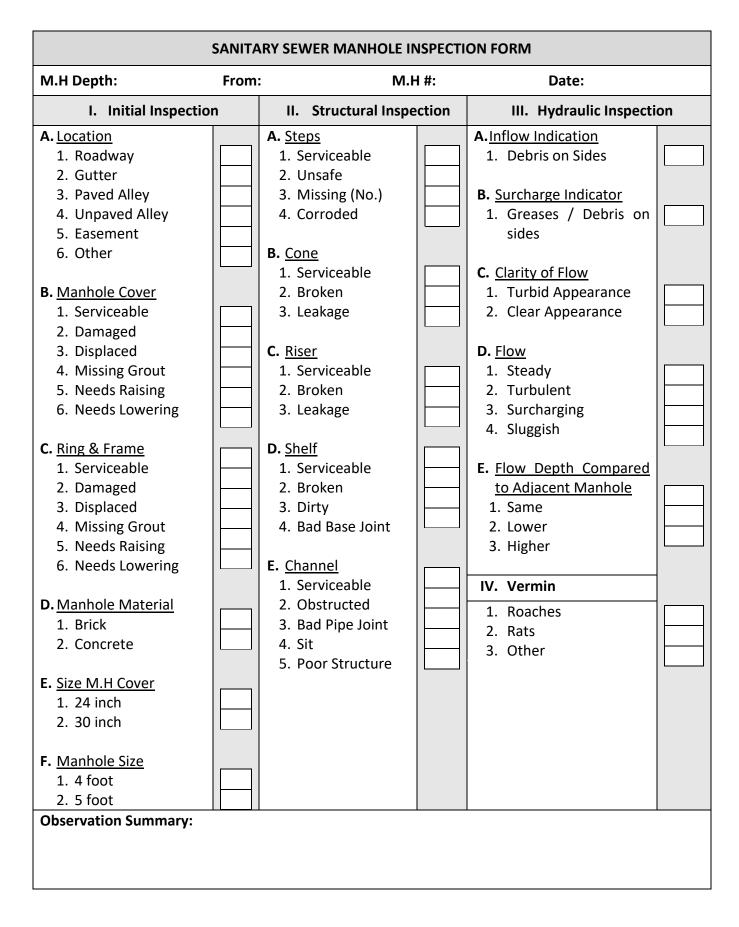






Depth at Foot 1 s _n = (D- W _n)	Avg. Depth at Foot 1 S _{avg}	Depth at Foot 2 s _n = (D- w _n)	Avg. Depth at Foot 2 S' _{avg}	Overall Avg. Depth D _{avg}	Width at Foot 1 B ₁	Width at Foot 2 B ₂	Avg. Width B _{avg}	Length Inner L _i	Length Outer L _o	L _c	Sludge Volume V
S ₁		S'1									
S ₂		S' 2									
S ₃		S' ₃									
D ₁ = D ₂ =		CUM or CFT				$(L_0 + L_1)$ $(S_1 + S_2 + S_3)$ $(S'_1 + S'_2 + S_3)$ $(S' + S'' + S_3)$	₃ +) / 1 S′ ₃ +) /	n / n	etch is cu	rved)	
	Estim		dge Quanti XX)			$B_1 + B_2 + I$					

ALJAZARI — ACADEMY —



Quiz

Operation and Maintenance (O&M) of Sewerage System

Name	e of Trainee			Organization		
Total	Marks	10		Obtained Marks		
				_		
Shor	rt Answer Que	estions				
1.	What are the r	reasons for c	leaning sewer & n	nanhole?		
2.	Enlist various t	tools and eq	uipment, required	for sewer cleaning?	2	
Fill in	the Blanks					
1.	Hydrogen sulfi	de (H₂S) may	/ attack	manholes (C	oncrete/ Plastic	:)
2.	Pole mounted	sewer cam	era is used to find	d	_ connection.	(cable /
	illegal)					
3.	Preventive mai	intenance ca	in save the	(time & n	noney / nothing	;)
True	/False					
Sr. No.			Statement		Yes	No
1.	First stage of in	spection is (CCTV?			
2.	The maximum	range of pol	e mounted sewer o	camera is 20 feet?		
3.	Is it necessary t	to ventilate t	he manhole before	e its cleaning?		

