添付資料 5.1.29 ポンプの維持管理: WASA Rawalpindi における教材(ToT)

Operation and Maintenance of Pump

WASA Tube well/Disposal Station

Operation and Maintenance of Pump

- Operation of system
- Ensuring effective routine running of system timely and daily.
- Stability
- Efficient
- Safely
- Maintenance
- Keep of structures/system including planned
- Preventive or Corrective maintenance
- Repair

Operation and Maintenance plan

Operation Record and Manual

- Keep a operational record continuously.
- Prepare a O&M Manual (SOP).

Improvement of Operational Control

- Understand / follow the O&M Manual (SOP).
- Detect any abnormalities and take measures.

Control of Water Amount and Pressure

- Establish a proper control method of equipment.
- Prevent from water leakage.

3

Operation and Maintenance Plan

- Preparation of O&M Plan
- Preparation of a plan involves list of routine tasks, specific tasks at regular intervals including inspection of system (Daily, Weekly, Quarterly, Annually etc.)
- Plan also involves a checklist for operation, supervision and maintenance.

Standard Operating Procedure for Pump

- 1.Check on the panel door the 3 indicator lights are illuminated. If the indicator lights are off check the position of Main breaker. Turning the main breaker On will illuminate the indicator lights. But if the situation remains the same then there will be shut off from Wapda's side.
- 2.Check the indicator light status of (Over Load Trip).

- 3. Check the indicator light status of(Dry Running trip).
- الکے اشراے کی روشنی کوچ ک کوی ۔ Dry Running trip)

Standard operating procedure

• 4. Check the indicator light status of (Earth leakage trip).

- 5. You can only start the pump if all the above four indicator lights are in off state. In case anyone of above light is in on state do inform the respective operation supervisor.
- آپپمپکوصرف اسصورتمیں شروع سیکت میمی جبوپر دیگئی چاروں اشار کے الی انسیان دموں۔ اگر واپرکی کوئی وشنی چاردی دوتوجت نے میشن پوائزرک و ملی محدود دوتوجت نے میشن پوائزرک و ملی محدود دو
- 6. Before Pump start check main braker on or not?

• 7. The (Duty selector switch) is in ON position.

Standard operating procedure

• 8. Power Factor switch should be on Auto position.

 9.Before Starting the pump open valve of water lubrication tank and close it after it goes empty.

• 10.Press ON(Green) button pump will start.

7

Standard operating procedure

• 11. After starting the pump, ON the Chlorine dosing pump to start the dosing of Chlorine.

 12.After starting the main pump make sure the complete absence of abnormal noise or vibration in motor and pump. In occurrence of any such behavior immediately inform the respective site supervisor.

Daily operation Record

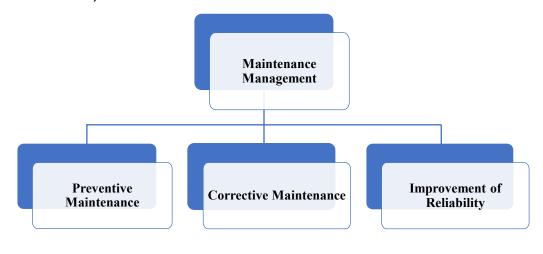
- Daily operation record Parameters
- Pump capacity
- Total Head
- Discharge pressure
- Chlorinator setting
- Motor heating, Noise
- Voltage(V),Ampere(A),Motor Output(KW)
- Leakage

9

Daily Operation Record Sheet (Tube Well Pumping Station)

	Pump Capacity:	cusec		Rated Ampere:		А	Lo	ocation / Code:			
	Total Head:	m		otation Speed:		rpm		bmission Date:		/ /	,
Rate	ed Motor Output:	kW		nator Capacity:		L/hr	Approved b	oy (Engineer)		, ,	
	Rated Voltage:	v	Chlor	rinator Setting:		%	Prepared b	y (Operator)			
S-No.	Items	Unit				Resi	ults				Total
1	Date	-									
2	Start Time	-	:	:	:	:	:	:	:	:	
3	Stop Time	-	:	:	:	:	:	:	:	:	
4	Operating Hours	hour									<u> </u>
5	Flow Meter Reading (Start) m ³									
6	Flow Meter Reading (Stop) m ³									
7	Flow Amount (No.6 - I	No.5) m ³									
8	Pressure Gauge Read	ding Bar / MPa									
9	Voltage	V									
10	Ampere	A									
11	Operation of Chlorin	ator Done / Not									
12	Motor Heating	Normal / High									
13	Abnormal Sound/No	oise Yes / No									
14	Leakage	Yes / No									
15	Remarks										

Daily Operation Record Sheet (Disposal Pumping Station)


11

	Pump Capacity:	cusec	R	ated Ampere:		А	Loc	cation / Code:			
	Total Head:	m	Rated Ro	tation Speed:		rpm	Sub	mission Date:		/	/
	Rated Motor Output:	kW					Approved b	oy (Engineer)			
	Rated Voltage:	V					Prepared b	y (Operator)			
S- No.	Items	Unit				Res	ults				Total
1	Date	-									
2	Start Time	-	:	:	:	:	:	:	:	:	
3	Stop Time	-	:	:	:	:	:	:	:	:	
4	Operating Hours	hour									
5	Suction Pressure	Bar / MPa									
6	Discharge Pressure	Bar / MPa									
7	Voltage	V									
8	Ampere	Α									
9	Motor Heating	Normal / High									
10	Abnormal Sound/Nois	Yes / No									
11	Leakage (except pump	Yes / No									
12	Cleaning of Screen	Done / Not									
13	Remarks										

Maintenance Management of Pump

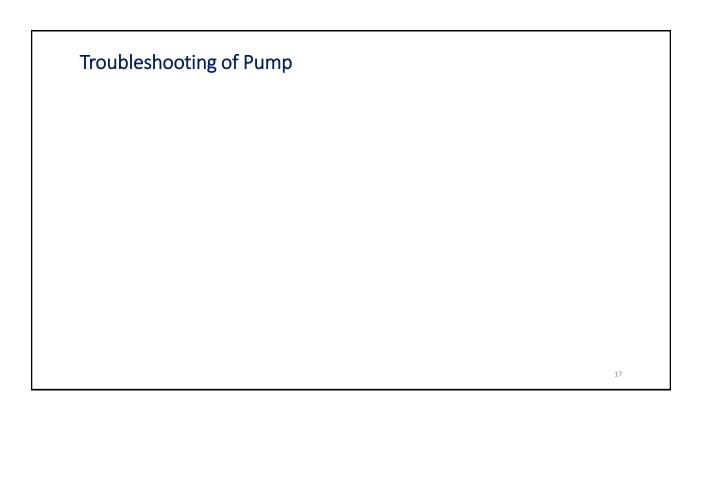
12

Maintenance Management is categorized into the following items;

Parameters for Monthly/Yearly inspection(Preventive maintenance)

- Pump capacity
- Total Head
- Chlorinator capacity/setting
- Gland packing leakage
- Voltage(V),Ampere(A),Motor Output(KW)
- Oil Level/Grease
- Operation of discharge valve
- Vibration
- Insulation
- Connections
- Overhaul

Monthly Inspection Record Sheet (Vertical Pump)


	Pump Capacity:	cusec	Rate	d Ampere:		Α	Location / Code:	
	Total Head:	m	Rated Rotati	on Speed:		rpm	Inspection Date:	, ,
	Rated Motor Output:	kW	Chlorinator (only for	Capacity:		L/hr	Approved by (signature)	
	Rated Voltage:	V		or Setting: Tube Well)		%	Prepared by (signature)	
S- No.		nent Items	Unit	Res	ult	,	Standard	Remarks
1	Leakage Amount	at Grand Packing	mL/min	Proper	/ Not	q = 0.5×d (mm, shaft dia.)		
2	Dosing Amount of	Chlorine Solution	L/hr	Proper	/ Not	According to the caluculation sheet		Only for Tube Well
3	Oil L	_evel	-	Proper	/ Not	According to the level gauge		
S- No.	Check / Maint	tenance Items	Unit	Res	ult		Remar	ks
4	Retightening of	Grand Packing	-	Done /	Not	In case tha	s excess.	
5	Adjusting the setting	value of Chlorinator	-	Done /	Not	In case that	at the measured valu	ue does't meet the
6	Refilli	ng Oil	-	Done /	Not	In case that oil level is low.		
7	Operation of D	ischarge Valve	-	Functionin	ng / Not			
< Con	nments / Findings>			I .		1		

Yearly Inspection Record Sheet (Vertical Pump)

	Pump Capacity:	cused	Rat	ted Ampere:		A	Loca	ition / Code:		
	Total Head:	m	Rated Rota	ation Speed:		rpm	Inspection Date		/	/
	Rated Motor Output:	kW			or Capacity: or Tube Well)		Approved by r (signature)			
	Rated Voltage:	, ,		ator Setting: r Tube Well)		%	Prepared by	(signature)		
S-No.	Measurement Items	Unit	Measurement Lo	ocation/Dire	ction*	Measure	ed Value	Standard	d Value*	Remarks
			1	Axia	I (A)					
	1 Vibration		(Drive Mounting Surface/Lower Motor	Orthogo	onal (X)		8.5 (less the		Upper Limit: 8.5 (less than 200kW), 9.5 (above 200kW)	
1			Bearing)		onal (Y)		3.5 (above 2		(00kW)	
-	VISIGUOTI	11111/3	2	Axia	I (A)			Upper Limit		
			(Pump Bearing/Lower	Orthogo	onal (X)			8.5 (less tha	n 200kW),	
			Motor Bearing)	Orthogonal (Y)			9.5 (above 2		(UUKW)	
2	Insulation	МΩ	** Accordi	ing to the ele	ectrical insp	ection sheet			_ ^ _1	— (b)
S-No.	Maintenance Items		Result		Ren	narks		-		2 A
3	Retightening of Anchor Bo	lts I	Done / Not				×	Y	× P	
4	Replace of Grand Packing	g I	Done / Not	every 1 to 4 years (depending on the condition)		condition)		$T_{\mathcal{A}}$		
5	Replace of Oil/Grease	ı	Done / Not	every 1 to 4	years (dep	ending on the	condition)			
6	Overhaul	1	Done / Not	every 1 to 4 years (depending on the condition)] }				
nments / Findings>				, 2 00 1	, (ucp			}	\Rightarrow	

Instruments use for Inspection

- Vibration meter
- Clamp meter
- Insulation meter

添付資料 5.1.30 ポンプの維持管理: WASA Rawalpindi における教材 (パイロット内部研修、 内部研修)

Operation and Maintenance (O&M) OF PUMP

Professional Training / O&M of Pump

Table of Contents

- 1. Purpose and Outline of O&M Activity
- 2. Importance of Preventive Maintenance
- 3. Standard Operation Procedure (SOP) of Pump
- 4. How to Conduct Daily Inspection
- 5. How to Conduct Periodic Inspection
- 6. Planning of Periodic Inspection & Maintenance

Professional Training / O&M of Pump

Purpose and Outline of O&M Activity

1. Purpose of O&M Activity

- To provide satisfactory and sustainable services of water supply and sewerage for consumers.
- To continue efficient and safe operational management of pump facilities.
- To conduct necessary inspection and maintenance.

Professional Training / O&M of Pump

3

Purpose and Outline of O&M Activity

2. Outline of O&M Activity

O&M of Water Supply and Sewerage Facilities/Equipment consists of the following two elements.

- Operation Management
- Maintenance Management

Professional Training / O&M of Pump

Purpose and Outline of O&M Activity

2. Outline of O&M Activity

Operation Management is

- ✓ To operate and control each facility/equipment.
- ✓ To operate and control related facility/equipment as an integrated system effectively.
- ✓ To fulfill its function sufficiently.

Professional Training / O&M of Pump

5

Purpose and Outline of O&M Activity

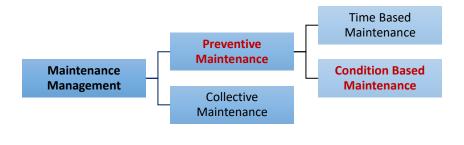
2. Outline of O&M Activity

Maintenance Management is

- ✓ To complement function degradation of equipment and maintain its original function.
- ✓ To decrease Life Cycle Cost (LCC) of equipment by prolongation of its lifetime etc.

LCC means the total cost which includes;

- Initial Cost (Construction Cost)
- Running Cost (Total O&M Cost during the Life Time)
- Disposal / Demolition Cost


Professional Training / O&M of Pump

-

Purpose and Outline of O&M Activity

2. Outline of O&M Activity

Maintenance Management is categorized into the following items;

Professional Training / O&M of Pump

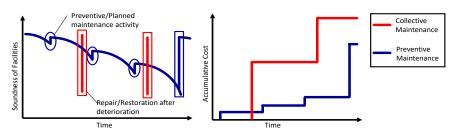
7

Purpose and Outline of O&M Activity

2. Outline of O&M Activity

- Preventive Maintenance is preliminary maintenance activities to prevent from malfunction of equipment. It can be categorized into the followings.
 - √ Time Based Maintenance (TBM):

Maintenance activities are performed based on the planned period.


✓ Condition Based Maintenance (CBM):

Maintenance activities are performed through the <u>planned inspection</u> to check deterioration/operation condition.

 Collective Maintenance is repair / restoration work after malfunction.

Professional Training / O&M of Pump

Importance of Preventive Maintenance

Source: Japan's Experiences on Water Supply Development (JICA)

Merits of Preventive Maintenance are

- To minimize the LCC of equipment
- To **prolong the lifetime** of equipment

Professional Training / O&M of Pump

Standard Operation Procedure (SOP) of Pump

1. Typical System of Pump Equipment

Volute Pump (Vertical Turbine)

(Electro Magnetic Type)

Professional Training / O&M of Pump

1. Typical System of Pump Equipment

Mixed Flow Pump

Inlet Gate

Screet

Professional Training / O&M of Pump

Standard Operation Procedure (SOP) of Pump

2. SOP of Volute Pump / Before Operation

- i. Check a leakage or other abnormality at the pump area.
- ii. Select the pump to be operated.
- iii. Check the related valves are at the proper position.
- iv. Check the lubricate water tank is filled with water.
- v. Check the pressure gauge indicates the original/zero value.
- vi. Check/record the Voltage, Ampere of power incoming on the electrical panel.
- vii. Check/record the flow meter reading and water level of the related tanks (if necessary).

Professional Training / O&M of Pump

2. SOP of Volute Pump / Start Operation

- i. Push the start button at the electrical panel.
- ii. Open the discharge valve slowly.
- iii. Check/adjust the flow rate and discharge pressure to the design value (indicated in the specification).
- iv. Check/record the start time, discharge pressure, Voltage and Ampere etc. in accordance with the Record Sheet.

Note) In case the pump is operated frequently, keep open the discharge valve and skip the above procedure of ii.

Professional Training / O&M of Pump

13

Standard Operation Procedure (SOP) of Pump

2. SOP of Volute Pump / Stop Operation

- i. Push the stop button on the electrical panel.
- ii. Check/record the flow meter reading and stop time.
- iii. Close the discharge valve.

(In case the pump is stopped for a long time.)

Professional Training / O&M of Pump

3. SOP of Mixed Flow Pump / Before Operation

- Check a leakage or other abnormality at the pump area.
- ii. Select the pump to be operated.
- iii. Check the related valves are at the proper position.
- iv. Check the pressure gauge indicates the original/zero value.
- v. Check/record the Voltage, Ampere of power incoming on the electrical panel.
- vi. Check / record the flow meter reading and water level of the related tanks (if necessary).

Professional Training / O&M of Pump

1

Standard Operation Procedure (SOP) of Pump

3. SOP of Mixed Flow Pump / Start Operation

- i. Push the start button at the electrical panel.
- Open the discharge valve slowly.
- iii. Check/adjust the flow rate and discharge pressure to the design value (indicated in the specification).
- iv. Check/record the start time, suction/discharge pressure, Voltage and Ampere etc. in accordance with the Record Sheet.

Note) In case the pump is operated frequently, keep open the discharge valve and skip the above procedure of ii.

Professional Training / O&M of Pump

3. SOP of Mixed Flow Pump / Stop Operation

- i. Push the stop button on the electrical panel.
- ii. Check/record the stop time.
- iii. Close the discharge valve.

(In case the pump is stopped for a long time.)

Professional Training / O&M of Pump

17

How to Conduct Daily Inspection

1. Daily Inspection Points of Volute Pump

- ✓ Abnormal noise and vibration (by hearing/touching)
- ✓ Heat generation of motor (by touching)
- Discharge pressure, flow rate/amount (by checking pressure gauge, flow meter etc.)
- ✓ Leakage

Professional Training / O&M of Pump

How to Conduct Daily Inspection

1. Daily Inspection Points of Volute Pump

Excessive heat generation of motor can be checked by sense of touch.

Surface Temperature	Sense of Touch	Remarks
40 °C	Somewhat warm	Feel slightly warm. Normal
45 ℃	Warm	Feel comfortably warm. condition
50 °C	Somewhat hot	Your palm turns red if you touch it for a few minutes.
60 °C	Hot	Can hold your hand for a few seconds.
70 °C	Extremely hot	Can hold one finger for a few seconds.
80 °C	Extremely hot	Can hold one finger for only one second.

Professional Training / O&M of Pump

19

How to Conduct Daily Inspection

1. Daily Inspection Points of Volute Pump

✓ Voltage and current (by checking voltage/ampere meter on the electrical panel)

Professional Training / O&M of Pump

How to Conduct Daily Inspection

2. Daily Inspection Points of Mixed Flow Pump

- ✓ Same points as Volute Pump
- ✓ Suction pressure (if suction pressure gauge is installed.)

Professional Training / O&M of Pump

21

How to Conduct Daily Inspection

3. Record Keeping

Daily inspection results and other operation records shall be noted down in the Record Sheet surely and properly.

	Pump Capacity:	cusec	Rati	ed Ampere:		A	Locat	ion / Code:			
	Total Head:	m	Rated Ro	tation Speed:		rpm	Submi	ssion Date:		1	1
Rate	ed Motor Output:	kW	Chlorinato	or Capacity:				y (Engineer)			
	Rated Voltage:	V	Chlorina	tor Setting:				y (Operator)			
S-No.	Items	Unit				Res	ults				Total
1	Date	-									
2	Start Time	-	:	:	:	:	:	:	1	:	
3	Stop Time	-	:	:	1	:	:	1		:	u
4	Operating Hours	hour									
5	Flow Meter Reading (Star) m ³									
6	Flow Meter Reading (Sto) m ³									
7	Flow Amount (No.6 - No	5) m ³									T
8	Pressure Gauge Readin	Bar / MPa									\Box
9	Voltage	V									u
10	Ampere	A									
11	Operation of Chlorinato	Done / Not									
12	Motor Heating	Normal / High									u
13	Abnormal Sound/Vibrati	n Yes / No									
14	Leakage	Yes / No									
15	Remarks										

Professional Training / O&M of Pump

1. Monthly Inspection Points of Volute/Mixed Flow Pump

- ✓ Leakage amount at Grand Packing
 - \triangleright Criterion: q [mL/min] = 0.5 \times d (mm, shaft dia.)
 - In case leakage amount is excess, retightening shall be done
- ✓ Dosing amount of chlorine solution
 - ➤ In case the measured value doesn't meet the target value, it is necessary to adjust the setting value of Chlorinator.
- ✓ Oil level
 - In case oil level is low, refilling shall be done.
- ✓ Operation of Discharge Valve

Professional Training / O&M of Pump

2

How to Conduct Periodic Inspection

2. Yearly Inspection Points of Volute/Mixed Flow Pump

- ✓ Vibration measurement
- ✓ Insulation measurement
- ✓ Retightening of Anchor Bolts
- ✓ Replace of Grand Packing
 - every 1 to 4 years (depending on the condition)
- ✓ Replace of Oil/Grease
 - > every 1 to 4 years (depending on the condition)
- ✓ Overhaul
 - > every 4 to 7 years (depending on the condition)

Professional Training / O&M of Pump

2. Yearly Inspection Points of Volute/Mixed Flow Pump

< Vibration Measurement >

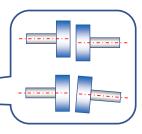
Purpose

To check/evaluate whether a pump is functioning in desirable condition.

- Standard/Regulation ISO 10816-7 (2009)
- Feature

Vibration measurement is used for fault diagnosis of pump. <u>Unbalance</u> and <u>misalignment</u> can be detected by measuring <u>vibration velocity</u>, and <u>abnormality of bearing</u> can be detected by measuring <u>vibration acceleration</u>.

Professional Training / O&M of Pump


25

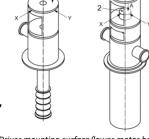
How to Conduct Periodic Inspection

2. Yearly Inspection Points of Volute/Mixed Flow Pump

- Major Causes of Vibration
- ✓ Unbalance
- ✓ Misalignment -
- √ Abnormality of Bearing
- ✓ Cavitation
- ✓ Loosening of Anchor (Foundation) Bolt

Source: Website of NTN Corporation, Japan

Professional Training / O&M of Pump


2. Yearly Inspection Points of Volute/Mixed Flow Pump

< Vibration Measurement >

Procedure

i. Prepare/set up a vibration meter. (Basically magnet type sensor shall be used.)

- ii. Select/decide the measurement locations based on the right figure.
- iii. Measure/record vibration velocity value [mm/s] at the selected locations with three directions (axial, vertical, horizontal).

Location 1: Driver mounting surface/lower motor bearing Location 2: Pump bearing housing

Professional Training / O&M of Pump

2

How to Conduct Periodic Inspection

2. Yearly Inspection Points of Volute/Mixed Flow Pump

< Vibration Measurement >

Evaluation

The results shall be evaluated according to the below table.

7000	Description	Vibration Velocity Limit*				
Zone	Description	≤ 200 kW**	> 200kW**			
Α	Newly commissioned machine	3.2	4.2			
В	Unrestricted long-term operation	5.1	6.1			
С	Limited operation	8.5	9.5			
D	Risk of damage	> 8.5	> 9.5			

Notes)

Professional Training / O&M of Pump

^{*} The root-mean-square (r.m.s) value in mm/s

^{**} The applicable motor capacity of industrial pump, which is categorized into Category II (pumps for general or less critical application), is above 1 kW.

3. Record Keeping

Monthly and yearly inspection results shall be noted down in the Record Sheet surely and properly.

		Yea	rly Ins	pection R	ecord	Sheet	(Verti	cal Pu	mp)		
	Pump Capacity:		cusec	Rate	d Ampere:		А	Local	tion / Code:		
	Total Head:		m Rated Rotation		ion Speed:	l: rpm		Inspection Date:		1	1
	Rated Motor Output:		kW	(or	r Capacity: ny for Tube Well)		L/hr	/hr Approved by (signatur			
	Rated Voltage:		V		tor Setting: nly for Tube Well)		%	Prepared b	y (signature)		
S-No.	Measurement II	tems	Unit	Measurement	Location/E	Direction*	Measure	ed Value	Standar	d Value*	Remarks
				1	Axia	I (A)			Upper Limit		
				(Drive Mounting Orthogonal (X)			8.5 (less than 200kW),				
			Motor Bearin		Orthog	onal (Y)	(Y)		9.5 (above 2	200kW)	
1	Vibration		mm/s	nm/s	Axia	I (A)			Upper Limit		
				(Pump Bearing/Lower	Orthog	onal (X)			8.5 (less tha	an 200kW),	
				Motor Bearing)	Orthog	onal (Y)			9.5 (above 200kW)		
2	Insulation		ΜΩ	** Accord	ding to the	electrical in	spection sh	neet	* Figure	(Reference	: ISO10816-7)
S-No.	Maintenance It	ems	F	Result		Rem	narks			^1	-(0)
3	Retightening of And	hor Bolts	Do	ne / Not						\$7	2-200
4	Replace of Grand	Packing	Do	ne / Not	every 1 to 4 years (depending on the condition)		T.] '			
5	Replace of Oil/G	rease	Do	ne / Not	every 1 to 4 years (depending on the condition)		d	15	0 90		
6	Overhaul		Do	ne / Not	every 4 to	7 years (dep	ending on th	e condition)		III	
< Cor	mments / Findings>				ļ.						

Professional Training / O&M of Pump

20

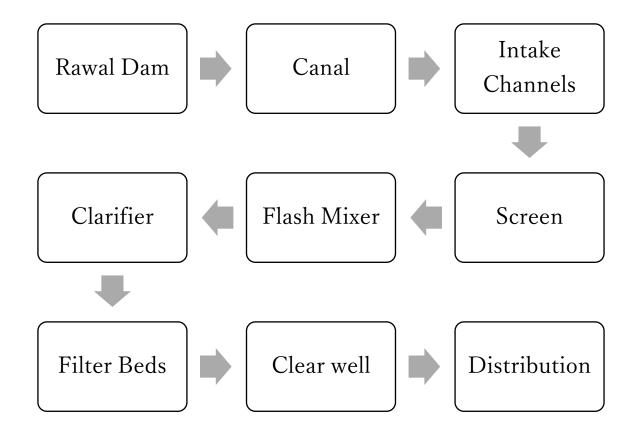
Planning of Periodic Inspection & Maintenance

- Periodic inspection and maintenance shall be conducted for all pumps surely and properly.
- Plan of periodic inspection and maintenance shall be made in the previous year considering the following points.
 - ✓ Installation year (Aged pump shall be checked carefully.)
 - ✓ Importance/Priority (Pumps have big impacts in case of malfunction/shutdown.)
 - ✓ Location (Moving time shall be minimized.)
 - ✓ Time required (Monthly inspection: within one hour, Yearly inspection: depending on the condition)
 - ✓ Cost (In case of overhaul, replace of major parts etc.)

Professional Training / O&M of Pump

Major Points of
Operation and
Maintenance (O&M)
for Water Treatment
Plant WASA,
Rawalpindi (RLWTP)

THIS DOCUMENT IS PREPARED FOR TRAINING PURPOSES. IT CONTAINS A SAMPLE PREVENTIVE MAINTENANCE PLAN FOR THE WATER TREATMENT PLANT. IT IS HIGHLY RECOMMENDED TO USE MANUFACTURER'S MANUALS FOR PREVENTIVE MAINTENANCE.


JICA Expert Team

Contents

Flow 1	Diagram	1
Design	ned Parameters	2
Cor	mponents:	2
Major	r Points of O&M for RLWTP	4
1.	Primary Screen	4
2.	Flash Mixer	4
3.	Clarifier	5
4.	Rapid Sand Filter (RSF)	8
5.	Air Blower	10
6.	Electrical Panels	16
7.	Wiring and cables	17
8.	Conduit and Raceways	18
9.	Grounding systems	19
10.	Electrical motors	20
11.	Electrical monitoring and control systems	21
12.	Backup power supply (Generator) testing	22
13.	Inspect Lighting System	23
Sched	lule of electrical activities	24
Sheet	# 1: Preventive Maintenance Record	25
Sheet	# 2: Device Inspection Sheet	26

Flow Diagram

1

Designed Parameters

Capacity: 28 MGD (existing 23 MGD)

Intake: Rawal Dam

Treated Water Quality:

Turbidity < 1 FTU (24 hr Average)

Color < 5H

pH = $7.5 \sim 9.5$

Residual Chlorine = $0.3 \sim 1 \text{ mg/L}$

Components:

Raw Water Intake Channels

Screens (Coarse Hand Rake Bar) x 3

Flow measurement and control chambers

Butterfly Valves (Electric Actuated)

Flow Measures (Venturi and Magnetic)

Raw water Aeration

Blower (Air Flow = $6 \text{ m}^3 / \text{min}$) x 2

Flash mixer/ Distribution chamber

Geared Drives x 2

Mixer (Shaft Mounted)

Clarifier (Round Shape)

Flocculator x 2

Sludge Scrapper

Clarifier Area $= 475 \text{ m}^2$ Up flow velocity = 2.55 m/hrFlow = 336 L/s

Clarification Rate = 6.39 MGD/ Clarifier

Clarifier (Rectangular Shape)

Clarifier Area $= 4 \times 190 = 760 \text{ m}^2$

Up flow velocity = 2.2 m/hrFlow = 475 L/s

Hydraulic Flocculator

Sludge concentrators

Clarification Rate = 9.03 MGD

Filters

Rapid Sand Gravity (Constant Head)

Media (Silica Sand 0.95mm, Effective Size, 1.4 m thick layer)

Filtration Rate MAX: 6.5 m/h, AVE: 5.4 m/h

Outflow turbidity < 1 NTU

Output Flow = 7.9 ML/d/ filter

Rate of filtration = 110 G/ft2/h

Backwash system

Combined air and water washing

Air scour rate = 30 m/hWater Wash rate = 22 m/h

=40 m/h

Nozzles opening = 0.2 mm

Backwash time = 13 - 20 min/ filter

Coagulation

15 % Aluminum Sulphate Solution

Disinfection

Chlorine injection by means of chlorinators with range 2-20 kg/ hr

Chlorine supply: 1 ton drums liquid chlorine

Chlorine dosing

Gas

Major Points of O&M for RLWTP

1. Primary Screen

The function of primary screen is to stop large floating objects to get inside the intake channel. However, screen must be monitored regularly to see whether any foreign objects are stuck with the vertical bars and if so, remove promptly.

2. Flash Mixer

- 1) Operation of Flash Mixer
- ✓ Check whether the blades of Flash Mixer are submerged.
- ✓ Push the start button to start the flash mixer.
- ✓ Check and confirm for smooth operation of Flash Mixer.
- ✓ Push the stop button to stop the Flash Mixer.

Notes) In case Alum is not injected during low turbidity season, the mixer can be stopped for energy saving purpose.

- 2) Inspection/Maintenance of Flash Mixer
- ✓ Daily and periodic inspection shall be performed according to the below table, and the results shall be recorded in logbook/mWater form.

Table: Inspection Points of Flash Mixer

Points of inspection & maintenance	Frequency
Oil level and its leakage	
Current and Voltage	
Excessive heat generation of motor	Daily
Abnormal noise, vibration	
Operating condition	

Check/retightening of anchor bolts	Monthly
Complete change of lubricant and grease	In accordance with the instruction
	manual

3. Clarifier

- 1) Start-up & Operation Procedures
- ✓ Perform a jar test on the influent raw water to determine the appropriate chemical dosages. Since this test is essential for good treatment, the plant operator should enter the test results in the proper logs and records to ensure the appropriate information is available to all stakeholders.
- ✓ Complete a general inspection of the clarifier systems. Note and report any equipment in need of maintenance or repair.
- ✓ Check and confirm that each inlet gate of each flocculator to be used is open.
- ✓ Check and confirm that each de-sludge valves of each clarifier to be used is closed.
- ✓ Based on the jar test results, prepare the necessary chemical feed systems for startup.
- ✓ Inform the concerned operation staffs to take necessary steps of valve operation to fed raw water to receiving wells from raw water conveyance.
- ✓ Alum shall be injected on regular basis. Lime and Chlorine shall be dosed depending on the jar test results and growth of algae at flocculator and clarifier walls.
- ✓ From the mixing chamber, raw water with mixed chemicals shall be fed to the clarifier where the flocculated solids settle down as sludge.

Observation, Monitoring and Sludge Removal

- ✓ There should not be any floating objects in the clarifier. If any, it should be removed promptly.
- ✓ Coagulation, flocculation, and sedimentation condition of suspended solids shall be checked. If the results are found not satisfactory, dosage rate of alum & lime shall be adjusted. It is recommended for operation to control the pH at flocculation around 7.0. Chemical dosing rate have to be determined by jar test.
- ✓ Sludge shall be withdrawn from each tank, through de-sludge valves.
- ✓ Each of the clarifiers shall be cleaned and washed out at least twice a year. However, the schedule of cleaning may be determined based on process requirements. In general, one after another so plant operation can continue at full capacity.

Table: Inspection and Maintenance Schedule

Facility	Contents of inspection & maintenance	Frequency
Receiving Well	Check and confirm flow rate of raw water	
	Check and confirm quality (turbidity, pH, alkalinity)	
	of raw water	
	Perform jar test on raw water samples when	Daily
	significant raw water quality changes are	
	experienced. Adjust coagulant dosages.	
	Check and confirm condition of mixing	
	Calibrate chemical feeders	Monthly
	Check for cracks, deterioration of concrete, existence	
	of leaks	Vacely
	Operation status of respective types of valves, gates,	Yearly
	& mixer etc.	

	Cleaning and maintenance of receiving well &	
	mixing chamber	
Clarifier	Check and confirm proper growth of flocs	
	Check settling condition of flocs	Daily
	Check and confirm settled water quality (turbidity)	Daily
	Check for existence of trash, algae etc.	
	Check for cracks, deterioration of concrete, existence	
	of leaks	
	Operation status of respective types of valves, mixers	Yearly
	and sludge collectors.	Tearry
	Touch-up paint of valves and other machinery	
	Cleaning and maintenance of Clarifier	

- 2) Start-up & Operation Procedures of the mixer and sludge collector (For the Circular Clarifiers)
- ✓ Ensure all relevant main switches for mixers and sludge collectors are energized.
- ✓ Turn on applicable control power. Except for maintenance, mixers and sludge collectors should always be running.
- ✓ Visually check the operating condition of mixers and sludge collector.

Table: Checklist for Mixers and Sludge Collectors

Timing	Points to be checked	
Before starting operation	Power supply, voltage and capacity are suitable.	
	Wiring is connected properly.	
	Bearing's oil and grease are enough.	
During operation	Drive-current is normal.	
	Is there any strange sound and vibration during	
	operation?	
	Is there any strange sound from bearing and oil	
	seal?	
	Is there any strange smell and smoke?	
	Surface temperature of driving units are normal.	

4. Rapid Sand Filter (RSF)

- 1) Operation Procedures of Filtration
- ✓ During the filtration process, the inlet and outlet valves shall be opened.
- ✓ The following points shall be checked/performed properly.

Table: Daily O&M of RSF

Points to be checked	Notes
Observe the water level in the RSF	When the water level in the filter reaches
	the pre-set level for the start of the
	backwashing of filters, the backwashing
	process shall be started.
Remove any floating materials	Use net or any other suitable tools
Measure turbidity, pH, EC, TDS and	Note down the results in a logbook/mWater
residual chlorine etc. of treated water	form. If the value of any parameter is found
collected at the entrance of the clear	more than the standard value, investigate
water tank (effluent of the filters)	the cause of such value and take necessary
	countermeasure.
Check and confirm filtration rate (ave: Same height of water above influe	
5.4m/hr., max:6.5m/hr.), and filter run	installed at inlet of each filter shall be
time. Same filtration rate from the	confirmed by adjustment (if necessary) of
clarifier to all filters shall be	inflow valve or influent weir.
maintained.	

2) Operation Procedures of Backwash

There are two conditions for filter backwash. The first condition is the design high water level. The need for filter backwashing is determined by closely monitoring the individual

water level of each filter. When the level in filter reaches the highest design level, the filter is ready to be backwashed. The second condition is time. An RSF should be backwashed at least once every 24-hour. Nevertheless, the filters are to be backwashed only one at a time.

- ✓ Close the inlet valve of the target RSF and wait until the inside water level goes down to the designed level (below the effluent trough). When the water level reaches to the designed value, the outlet valve shall be closed.
- ✓ Air scouring is performed by operating the related valves and air blower for at least 5 minutes. However, this value shall be adjusted depend on the effectiveness of air scouring. The design velocity is 30 m/hr.
- ✓ Only backwash is performed by operating the related valves and backwash pump for approx. 10 min in order to wash out the suspended matters removed from the filter sand by air scouring. The design velocity is 22 or 40m/hr., and the backwash period shall be adjusted depend on the effectiveness of backwash (The appearance of surface water shall be clean enough.).
- ✓ After the backwash pump is stopped, the Air Vent Valve shall be opened to exhaust the remaining air. After that, the Air Vent Valve shall be closed, and the Inlet valve shall be opened to fill the water.
- 3) Operation of Air Blowers
- ✓ Visually check the condition of air blower for any defects or damage.
- ✓ Set/confirm the selector switch position to select the air blower to be operated on the blower LOP.
- ✓ Set/confirm the selector switch position to select "LOCAL" or "REMOTE" on the blower LOP.
- ✓ Push the lamp test button to ensure all lamps are working.
- ✓ Ensure all the related valves are opened and the Air Scouring Valve (motorized valve) of target RSF is opened.
- ✓ Push the "ON" button start the blower.
- ✓ Check the discharge pressure, current and voltage.
- ✓ Push "OFF" button to stop the blower after operating the set period.
- ✓ Close the Air Scouring Valve.
- ✓ The start and stop time and the above measured values shall be recorded in logbook/mWater form.

5. Air Blower

✓ Daily and periodic inspection shall be performed according to the below table, and the results shall be recorded in logbook/mWater form.

Table: Inspection Points of Air Blower

Points of inspection & maintenance	Frequency
Oil level and its leakage	
Casing/Bearing temperature	
Discharge pressure and current	Daily
Condition of belt (wear etc.)	
Abnormal noise, vibration	
Measurement and correction of belt tension	
Cleanness of lubricant	Monthly
Check the condition of suction filter	
Complete change of lubricant and grease (in accordance with the	
instruction manual)	Yearly
Check the condition (degree of wear) of oil seal, belt and bearing.	

Table: Troubleshooting of Air Blower

Symptom	Cause	Countermeasure	
Abnormal	Power or motor problem	olem Repair faulty component of	
rotation of blower		power line or motor	
	Foreign materials inside blower	Disassemble blower and	
		remove foreign materials	
	No oil inside bearing and dust or	Clean and refill oil	
	rust present		
	Bearing damaged and rotor in	Replace bearing and repair	
	contact with side frame or casing	contacted part	
	Fuse blowing during running due	Replace with specified fuse	
	to too low fuse rating		
	Tar attached to rotor	Disassemble and clean	
Generation of	Foreign materials inside blower	Disassemble to remove	
abnormal sounds			
Generation of	Loose bolts	Retighten bolts	
abnormal sounds	Bearing wear	Replace bearing	

Symptom	Cause	Countermeasure	
	Air leakage	Inspect pipeline system	
	Inferior contact or breakage of	Adjust or repair gear	
	gear		
	Rotor in contact with casing or	Disassemble and repair	
	another rotor		
Severe vibration	Looseness of foundation bolt	Retighten bolts	
	Poor installation	Correct installation	
	Poor pipe support	Correct pipe support	
	Insufficient belt tension	Adjust tension	
	Incorrect alignment of centre	Align shaft center	
	High discharge pressure	Set to regulated discharge	
		pressure by adjusting	
		discharge valve	
High discharge	Discharge valve closed	Open valve and adjust to	
pressure with		regulated pressure	
deficient capacity	Pipeline system at discharge side	Clean pipes at discharge side	
	clogged		
	Faulty safety valve	Repair or replace safety	
		valve	
	Abnormality in pressure gauge	Repair or replace	
Low discharge	Filter at suction side clogged	Clean or replace filter	
pressure with	Air leakage from discharge tube	Repair leaking part and	
deficient capacity	system	replace packing	
	Suction tube clogged	Repair leaking part and	
		replace packing	
	Incorrect clearance of blower	Correct clearance	
	Deficient rotation speed	Adjust belt tension	
	Faulty safety valve	Repair or replace safety	
		valve	
	Incorrect selection of capacity	Re-select and replace blower	
Overload of	Discharge pressure higher than	Set/adjust discharge pressure	
electric motor and	specification	to specification	
excessive rise of	Excessive or insufficient lubricant	Maintain appropriate level	
temperature		of lubricant	

Symptom	Cause	Countermeasure
	Excessive or deficient viscosity of	Use recommended oil
	oil due to incorrect selection	
	Faulty ampere meter	Repair or replace
	Bearing wear	Replace bearing
	Motor worn out	Repair or replace
Oil leakage	Inferior fastening of bolt at oil	Fasten by binding with
	level gauge	Teflon tape
	Wear on oil seal or o-ring	Replace oil seal and O-ring
	Wear on gear case packing	Replace packing
	Oil cock loosened due to vibration	Re-fasten oil injection bore
		and drain cock
	Excessive oil	Maintain appropriate level in
		oil level gauge

- 4) Operation of Backwash Pump
- ✓ Visually check the condition of pumps for any defects or damage.
- ✓ Set/confirm the selector switch position to select the pump to be operated on the LOP.
- ✓ Set/confirm the selector switch position to select "LOCAL" or "REMOTE" on the LOP.
- ✓ Push the lamp test button to ensure all lamps are working.
- ✓ Ensure all the related valves are opened and the Backwash Valve and Backwash Waste Valve (motorized valve) of target RSF are opened.
- ✓ Push the "ON" button start the pump.
- ✓ Check the discharge pressure, current and voltage.
- ✓ Close the Backwash Valve after passing the pre-set period.
- ✓ After the Backwash Valve is fully closed, push "OFF" button to stop the pump.
- ✓ Close the Backwash Waste Valve.
- ✓ The start and stop time and the above measured values shall be recorded in logbook/mWater form.

5) Daily Inspection of Backwash Pump

The following points shall be checked in daily inspection. Inspection results including the measured values shall be recorded in record sheet/mWater form.

✓ Abnormal noise and vibration (by hearing/touching)

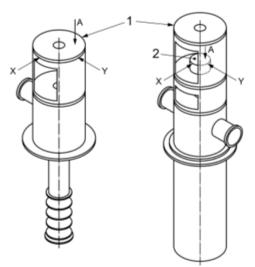
- ✓ Heat generation of motor (by touching)
- ✓ Discharge pressure, flow rate/amount (by checking pressure gauge, flow meter etc.)
- ✓ Leakage
- ✓ Voltage and current (by checking voltage/ampere meter on the electrical panel)

6) Monthly Inspection of Backwash Pump

The following points shall be checked in monthly inspection. Inspection results including the measured values shall be recorded in record sheet/mWater form.

- ✓ Leakage amount at Grand Packing

 Criterion: q [mL/min] = 0.5×d (mm, shaft dia.)


 In case leakage amount is excess, retightening shall be done.
- ✓ Operation of Discharge Valve

7) Yearly Inspection of Backwash Pump

The following points shall be checked/performed in yearly inspection. Inspection results including the measured values shall be recorded in record sheet/mWater form.

- ✓ Vibration measurement (See the detail procedure as shown below)
- ✓ Insulation measurement
- ✓ Retightening of Anchor Bolts
- ✓ Replace of Grand Packing every 1 to 4 years (depending on the condition)
- ✓ Replace of Oil/Grease every 1 to 4 years (depending on the condition)
- ✓ Overhaul every 4 to 7 years (depending on the condition)

- < Procedure of Vibration Measurement >
- ✓ Prepare/set up a vibration meter. (Basically, magnet type sensor shall be used.)
- ✓ Select/decide the measurement locations based on the right figure.
- ✓ Measure/record vibration velocity value [mm/s] at the selected locations with three directions (axial, vertical, horizontal).
- ✓ The results shall be evaluated according to the below table.

Notes)

Location 1: Driver mounting surface/lower motor bearing Location 2: Pump bearing housing

7	Bernstein	Vibration Ve	locity Limit*
Zone	Description	≤ 200 kW**	> 200kW**
Α	Newly commissioned machine	3.2	4.2
В	Unrestricted long-term operation	5.1	6.1
C	Limited operation	8.5	9.5
D	Risk of damage	> 8.5	> 9.5

Notes)

- * The root-mean-square (r.m.s) value in mm/s
- ** The applicable motor capacity of industrial pump, which is categorized into Category II (pumps for general or less critical application), is above 1 kW.

8) Inspection and Maintenance of RSF

The following points shall be checked/performed in periodic inspection and maintenance. Inspection results including the measured values shall be recorded in record sheet/mWater form.

Table: Inspection and Maintenance of RSF

-		
Frequency	Points to be checked/performed	Notes
Monthly	Check and confirm time needed	Carry out backwashing of the filter and
	for complete cleaning.	record the values as found. Compare it
		with the value of previous records

Frequency	Points to be checked/performed	Notes
	Check and confirm the cleaning	Make sure that the backwash water is
	condition of the filter after	evenly distributed during
	backwash.	backwashing. Check at the end of the
		backwash period whether the water is
		entirely clean or not and that the top of
		filter can be seen or not.
	Take a sample of the backwash	If turbidity exceeds 10 NTU
	waste at the end of the	adjust/increase the backwash and air
	backwashing and measure the	scouring time.
	turbidity of the waste.	
	Check and confirm current, oil	Check during operation and
	level, vibration, water leak and	backwashing of the filters
	oil leak of motorized valves.	
	Check the flow rate of air blower	Compare it with the design flow rate
	and backwash pump during	and also with the previous values.
	backwashing.	Adjust the flow by the related valve if
		required.
Yearly	Drain out the filter and inspect	Open the related drain valves for an
	the filter bed condition (mud	inspection of the filter bed. When mud
	balls etc.), cracks on walls etc.	balls are noticed in an early stage,
		these shall be removed by scraping the
		top layer of the bed.
	Cleaning of walls, back wash	Take necessary steps as required.
	troughs etc.	
	Measure the depth of the filter	If a decrease of depth is found, try to
	bed and compare it with the	identify the cause:
	previous result. Check whether	✓ Check on the loss of sand during
	filter sand exists in the backwash	backwashing.
	gutter.	Refill the bed with specified filter sand.
Every 5	Check the condition of strainers,	Repair if any damage is identified.
years	bottom/structure of the filter.	
	Study on filter sand	Conduct a required analysis such as
	(contamination of filter media,	sieve analysis of the filter sand. Fill
	occurrence of mud balls,	with new filter sand if analysis of the

Frequency	Points to be checked/performed	Notes						
	effective diameter, uniformity	filter bed revealed that filter bed does						
	coefficient, filter layer thickness	not meet the specifications any more.						
	etc.)							

6. Electrical Panels

Equipment Required:

- 1. Digital Insulation / Continuity Testers (KEW 3005A)
- 2. Power analyzer (KEW 6315)
- 3. Earth tester (KEW 4105A)
- 4. AC/DC Digital Clamp Meters (KEW 2046R)
- 5. Temperature gun (Smart Sensor AT 380)

Safety Measures:

- 1. Ensure all power sources are de-energized before beginning work
- 2. Wear personal protective equipment (PPE), including electrical gloves, safety glasses, and a hard hat
- 3. Follow all manufacturer instructions and safety guidelines when using equipment

Step-by-Step Guide:

1. <u>Visual Inspection:</u>

- Inspect the electrical panels for any visible signs of damage, including cracks, corrosion, and loose or missing parts.
- Ensure all labels and identification markers are legible and in good condition.

2. Tightening of Connections:

- Using a torque screwdriver, tighten all electrical connections in the panels to the manufacturer's recommended specifications.
- Check for any loose or overheated connections and replace as necessary.

3. Insulation Continuity Test:

- Using an insulation continuity tester, check the insulation resistance of each circuit within the panel.
- Record the readings and compare them to previous results to identify any trends or potential issues.

4. Power Quality Analysis:

- Using a power analyzer, monitor the electrical characteristics of the panel and connected equipment.
- Analyze the data to identify any abnormalities or areas for improvement.

5. <u>Temperature Measurement:</u>

- Using a temperature gun, measure the temperature of the electrical components in the panel, including breakers, fuses, and bus bars.
- Compare the readings to previous results and manufacturer specifications to identify any potential issues.

6. Cleaning and Lubrication:

- Clean the interior of the electrical panels using a soft, dry cloth.
- Apply lubricant to any moving parts, such as hinges and latches, to ensure proper operation.

7. Documentation:

- Use the forms in mWater Portal and mWater Surveyor to ease the record-keeping
- Record all maintenance activities and readings
- Schedule any necessary repairs or replacements based on inspection and testing results.

Schedule: Quarterly

7. Wiring and cables

Equipment required:

- 1. Digital Insulation / Continuity Testers (KEW 3005A)
- 2. AC/DC Digital Clamp Meters (KEW 2046R)
- 3. Non-contact voltage tester (UNI-T UT 12D ROW)
- 4. Cable ties
- 5. Cable supports
- 6. Replacement cables as needed

Safety measures:

- 1. Ensure power is turned off before any maintenance is performed
- 2. Use proper personal protective equipment, including gloves and eye protection
- 3. Follow all manufacturer instructions and safety guidelines when using equipment

Step-by-Step Guide:

- 1. Visually inspect all wiring and cables for signs of wear, damage, or corrosion. Replace any damaged cables.
- 2. Check all cable ties and supports for tightness and security. Replace any damaged or missing cable ties or supports.
- 3. Use the insulation resistance tester to measure the insulation resistance of each cable. Record the readings.
- 4. Use the digital multimeter to check each cable's voltage and current levels. Record the readings.
- 5. Verify that all cables are properly grounded.
- 6. Document any issues found during the inspection and testing and schedule any necessary repairs or replacements.

8. Conduit and Raceways

Equipment Required:

- 1. Non-contact voltage tester (UNI-T UT 12D ROW)
- 2. Digital Insulation / Continuity Testers (KEW 3005A)
- 3. Conduit reamer and cutter
- 4. Fish tape
- 5. Wire brush
- 6. Lubricant for conduits and raceways
- 7. Replacement conduits and raceways as needed

Safety Measures:

- 1. Before starting any work, ensure that the power supply to the conduits and raceways is turned off and locked out to prevent accidental start-up.
- 2. Wear appropriate personal protective equipment (PPE) such as insulated gloves and safety glasses to prevent electric shocks and eye injuries.
- 3. Use only insulated tools to work on the conduits and raceways.
- 4. Make sure that the work area is well-lit and free from any hazards such as water or other liquids.

Step-by-Step Guide:

- 1. Inspect the conduits and raceways for any signs of damage or wear, such as cracks, dents, or rust. Replace any damaged conduits or raceways as needed.
- 2. Use a non-contact voltage tester to ensure no electrical current flows through the conduits or raceways.

- 3. Use a conduit reamer and cutter to clean the conduit ends and remove any burrs or sharp edges.
- 4. Use a wire brush to clean the inside of the conduits and raceways. Make sure to remove any debris or dirt that may cause clogging or damage to the wires.
- 5. Apply a lubricant to the inside of the conduits and raceways to reduce friction and wear on the wires.
- 6. Use fish tape to pull new wires through the conduits and raceways as needed.
- 7. Inspect the raceway supports and hangers for any signs of damage or wear. Replace any damaged or worn-out supports or hangers as needed.
- 8. Test the continuity of the wires using an insulation continuity tester.
- 9. Use a temperature gun to check for any hot spots that may indicate loose connections or overloaded circuits.
- 10. Record all inspections and maintenance activities in a logbook for future reference.

Schedule: Semi-Annually

9. Grounding systems

Equipment:

- 1. Digital Insulation / Continuity Testers (KEW 3005A)
- 2. Non-contact voltage tester (UNI-T UT 12D ROW)
- 3. Earth tester (KEW 4105A)
- 4. AC/DC Digital Clamp Meters (KEW 2046R)

Safety measures:

- Follow all lockout/tagout procedures to ensure that the grounding system is not energized during maintenance.
- Wear appropriate personal protective equipment (PPE), including gloves and safety glasses, when performing maintenance.
- Do not touch any electrical connections or equipment with bare hands.
- Ensure that the area around the grounding system is clear of debris and other hazards.

Step-by-Step Guide:

1. Inspect the grounding system for any visible damage or signs of wear, such as corroded connections or broken wires.

- Use the ground resistance tester to measure the resistance of the grounding system.
 Record the results and compare them to previous measurements to identify any trends or changes.
- 3. Use the clamp-on ammeter to measure the current flowing through the grounding system. Compare the results to previous measurements to identify any changes.
- 4. Use the megohimmeter to perform an insulation resistance test on the grounding system. Record the results and compare them to previous measurements to identify any trends or changes.
- 5. Replace any damaged or worn components as needed.
- 6. Turn the power back on to the grounding system and verify that it is functioning properly.

Schedule:

- Visual inspection: quarterly
- Testing: annually

10. Electrical motors

Equipment:

- 1. Power analyzer (KEW 6315)
- 2. Digital Insulation / Continuity Testers (KEW 3005A)
- 3. Earth tester (KEW 4105A)
- 4. AC/DC Digital Clamp Meters (KEW 2046R)
- 5. Temperature gun (Smart Sensor AT 380)
- 6. Grease gun
- 7. Lubricant

Safety Measures:

- Ensure that the motor is disconnected from the power source before conducting any maintenance work.
- Wear appropriate personal protective equipment (PPE), such as gloves and safety glasses.
- Use proper lifting techniques and equipment when handling heavy motor components.

Step-by-Step Guide:

- 1. Inspect the motor for any signs of wear or damage, such as frayed wires or broken parts.
- 2. Check the motor's insulation resistance using a Megohmmeter or insulation tester, following the manufacturer's instructions.
- 3. Use a power analyzer to test the motor's voltage, current, and power consumption, and compare the results to the manufacturer's specifications.
- 4. Inspect the motor's bearings and lubricate as needed using a grease gun and the appropriate lubricant.
- 5. Use a multimeter to check the motor's connections and measure the resistance, and repair or replace any damaged or faulty components as needed.
- 6. Use an infrared thermometer or temperature gun to measure the motor's temperature and ensure it is within the acceptable range.
- 7. Conduct a visual inspection of the motor's grounding system and use an earth tester to measure the system's resistance to ground.
- 8. Clean the motor's exterior and surrounding area as needed.
- 9. Use the forms in mWater Portal and mWater Surveyor to ease the record-keeping
- 10. Record all maintenance activities and readings
- 11. Schedule any necessary repairs or replacements based on inspection and testing results.

Schedule:

- Inspect and test the motor quarterly
- Lubricate the motor's bearings quarterly or as recommended by the manufacturer.
- Conduct a full maintenance and inspection of the motor annually.

11. Electrical monitoring and control systems

Equipment Required:

1. Earth tester (KEW 4105A)

Safety Measures:

- Turn off power to the system before starting any maintenance or testing procedures
- Use appropriate personal protective equipment, such as gloves and safety glasses
- Follow lockout/tagout procedures to prevent unexpected power sources from energizing the system
- Use caution when working with live electrical components

Step-by-Step Guide:

- 1. Inspect all electrical monitoring and control system components for damage or wear, such as frayed wiring or cracked HMI screens, PLCs, HMIs, Sensors, transmitters, Data loggers, Signal conditioners, Network switches and routers
- 2. Clean any dirty or dusty components using a soft, dry cloth or compressed air.
- 3. Test sensors and transmitters for accuracy using a signal conditioner and a data logger.
- 4. Test PLCs and HMIs for proper function using test software or built-in diagnostic tools.
- 5. Test network switches and routers for proper communication between devices.
- 6. Test power quality using a power analyzer, checking for voltage drops or other anomalies.
- 7. Test grounding systems using an earth tester.
- 8. Replace any worn or damaged components as needed.

Schedule:

- Inspect and clean components monthly
- Testing Annually
- Replace worn or damaged components as needed

12. Backup power supply (Generator) testing

Tools/ equipment required:

- 1. AC/DC Digital Clamp Meters (KEW 2046R)
- 2. Oil
- 3. Coolant
- 4. Battery tester

Safety measures:

- 1. Wear personal protective equipment (PPE), including gloves and safety glasses, to protect against electrical shock and flying debris.
- 2. Make sure the generator is completely shut off before starting the maintenance.
- 3. Ensure that the testing area is well-ventilated to avoid the buildup of exhaust fumes.

Step-by-Step Guide:

1. Inspect the emergency generator for any signs of damage.

- 2. Clean the generator to remove any dirt or debris.
- 3. Check the oil level and add oil if needed.
- 4. Check the coolant level and add coolant if needed.
- 5. Check the battery for any signs of corrosion.
- 6. Turn on the generator and test its electrical output using a multimeter.
- 7. Check for leaks or unusual noises coming from the generator.
- 8. Turn off the generator.

Schedule: Annually

13. Inspect Lighting System

Equipment Required: LED light bulbs, cleaning materials, safety gloves, safety goggles

<u>Safety Measures:</u> Wear appropriate PPE including gloves and goggles when working with lighting systems.

Step-by-Step Guide:

- 1. Turn off power to the lighting system.
- 2. Inspect the lighting system and replace any burnt-out bulbs.
- 3. Clean the light fixtures.
- 4. Turn the power back on.

Schedule: Monthly

Schedule of electrical activities

Sr.	Maintenance Activity	Monthly	Quarterly	Semi-	Annually
#				annually	
1	Electrical panels (Inspect)	√			
2	Electrical panels (Test)		✓		
3	Wiring and Cables testing			✓	
4	Conduct and Raceways				
	inspection				
5	Grounding System testing				
6	Electrical Motor (Inspect and		✓		
	test)				
7	Electrical monitoring and control				✓
	system				
8	Backup power supply				✓
	(Generator) testing				
9	Replacement of worn or	as	as needed	as	as needed
	damaged parts	needed		needed	

Sheet # 1: Preventive Maintenance Record

					1	Coru			_				1
nstalled	Test		MCU						O/L Relay				
newly ii	Earth Resistance Test	<5 Ω	Motor					0 min	K3				
eed to be ed e checke	Earth		Earthing Pit					OFF duration > 30 min	K2				
Evaluation Criteria ✓: Good X: No care at all or need to be newly installed △: Needto be improved —: Not available to be checked			V2 - W2					OFF d	K1				
Evaluation Criteria ✓: Good X: No care at all or r Δ: Needto be impro -: Not available to b			U2 - W2				re (°C)	,	MCB				
Eva C × C Eva I : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :			U2 - V2 L				Temperature (°C)		O/L Relay				
			V1 - W1 U					pto 70°C	K3				
kW/HP)rent(A)RPM			U1 - W1 V					ON duration > 30 min, Upto 70°C	K2				
Capacity (kW/HP) Rated Current(A) ctorRPP	tance Test	D C	V1				_	N duration	K1				
n: Rated Cap Rate	Insulation Resistance Test	≥1 MΩ	W2 - E U					0	MCB				
Motor Specification: Rated Capacity (kW/HP) Rated Voltage (V)Rated Current(A) EfficiencyPower FactorRPN	nsul		V2 - E W						В				
Motor Specificatio Rated Voltage (V) Efficiency			- E				Current (A)	± 5%	Y				
			W1 - E U2]]		R				
cord			- E						YB				
nce Re			U1-E V1				Voltage (V)	± 10%	RB				
Preventive Maintenance Record Approved by: Inspected by: Site Pump Name:		Bolt	ng n				Volt	#	RY				
Preventive M. Approved by: Inspected by:		Inspection						Inspection	Date				- 3
Preventive Approved by: Inspected by: Site /Pump Nar			No.	1	7	8		Sr. Inspe		-	2	2	- Remarks -

Sheet # 2: Device Inspection Sheet

					<u>.</u>	T					
	nstalled	hecked		Y-A Timer	Value Not less than Set 5 seconds						
	newly i	e to be c		rrent Relay	Value Set						
	need to he i	-: Not available to be checked	Relays Adjustments	Over Current (Thermal) Relay							
	riteria X : No care at all or need to be newly installed	N:- p	Relays Ad	r Iy	rated oltage of motor						
	Criteria X · No c	Δ: Need to be improved		Over/Under Voltage Relay	Over Voltage Tripping Function						
	Evaluation Criteria	. Need to) A	Under Voltage Tripping Function						
		7	_	ner	CT3						
	-		Current	Transformer	СТІ СТ2 СТ3						
	<u>, </u>			Tra	CT1						
	Efficiency.		(Fuse						
//HP)	Eff		Jeter	tic tor							
(k)			Imp N	Magnetic Contactor	3						
acity	f(A)		Ig Cl	Σŏ	<u>4</u> <u>X</u>						
Rated Capacity (kW/HP)	Curren		s (Usin		MCB						
Rat	_Rated Current(A)	RPM	mponent	kers	MCB 3						
tion:	\(\)	~	st of co	Circuit Breakers	MCB 2						
Motor Specification:	Rated Voltage (V)	Power Factor	Continuity Test of components (Using Clamp Meter)	Circu	MCCB MCB 1 MCB 2 MCB 3 MCB 4 K1 K2 K3						
Motor	Rated	Power	Con		MCCB						
Sheet				;	Inspection Date						
tion 5					ame						
peci					N dun						
Device Inspection Sheet	Approved by:	Inspected by:			Site /Pump Name						- Remarks -
Dev	Appr	Inspe		Ç	No.	-	7	ε	4	v	- Rei

添付資料 5.1.32 補助教材: WASA Rawalpindi における井戸ポンプ運転

- 井戸ポンプ(水中ポンプ)運転のチェックリスト
- 井戸ポンプのトラブルシューティング
- ポンプの選定

الان مے المن میں المان المان میں المان میں المان میں المان میں المان میں المان میں المان المان المان میں المان الما

Tube well Number:		Month									,Year)											Shift								
Parameters	1	2	3	4	5	6	7 8	3 9																		2 8				
	ال المستقدة										آر																			
پین لیاربنی ان (lights)کا کی رمیمی	•																													
کوئ می کارچوالای) ای کلیہ اسرین ہیں ہے	2																													
تاركينكش ن زدر ستى	3															1														
ووڭ چ فى كەرے اور حد (limit)ك ــــ ئىدىر م <u>ـــــىئىن</u> ى 360-440V																														
		<u> </u>			<u> </u>			- 1	-							Į.	<u> </u>	ı	Du	ring	ξC	pe	ati	ion/	ران/	ےدو	ے	ىش	آر	
والو/ valve ﴿ هَالَ مِي-)												\																		
پرل علی ک(leakage)نی صرور ۱۸										1																		1		
ووڭ چ ^ى ھى كەرے اور حد (limit) <u>گ</u> ے لىدر م <u>ىنىجىنى 36</u> 0-440V																						/	4					1		
ـــــــــــــــــــــــــــــــــــــ																`			\bigwedge		\<									
بعلی کا میار (electric meter) کا کرر دارے																1				7										
پوش (pressure) عجمولکی حد مجاں رے																														
- لوونقار (chlorinator) ایجرر مارے	•																													
موٹارک و (rest time) فیارے																														
ں <u>ف</u> عل کے کے کام																												+		
,				ļ							[1	1			1]	Re	cor	ı K	еер	ing	الله اهق1/	ڒۣػ	ـــــ کار	_ی	
یقٹاالگسبک (log book) ہیں اپ ٹی گائی گائی اے	7																											$ \top $		

TROUBLESHOOTING AT TUBE WELL

O&M (operation and maintenance) manuals are supplied with all control panels, pumps, motors etc., and should be used as a guide for all troubleshooting. Those manuals are specifically made for individual equipment and are generally sufficient for any or all problems which may be encountered.

This document is for training purposes only and shall provide some general information about the O&M of a Motor Control Panel at the Tube well station. You are strongly recommended to use the O&M manual of that particular facility to do some troubleshooting.

PRECAUTIONS!!!

- Anyone testing electrical systems should take precautions to ensure the safety of themselves, others and equipment under test.
- Always assume that all wiring and parts are energized.
- Even though connections to the panel have been broken, it is possible that other circuits are still "hot/ energized".
- All work on the panel should be done by a qualified technician.

Symptoms	Cause	Countermeasures						
Pump does not start	Check for the incoming power	If there is no or improper incoming						
1		power then contact the relevant						
		Distribution Company (DISCO) for						
		the power to resume.						
	Check for the fault lamps	Find the cause and do the						
		countermeasure as recommended						
		below as per the relevant issue.						
Lights on the Panel	Power supply issue	Wait for the power supply to						
are not working	Tower suppry issue	resume.						
are not working	Light is burnt out	Replace the light.						
	Loose connections	Tight the connection.						
	Wire is damaged	Repair or replace the damaged wire.						
Lights flickering or	Poor connections							
dim	Foor connections	Check and tighten all electrical connections.						
aiii	V-14 G4:							
	Voltage fluctuations	Use a multimeter to measure the						
	D.C. (1. 1. 1. 1. 1.	voltage and address fluctuations.						
	Defective light bulbs or	Replace any faulty light bulbs or						
Ct. t. P. 1	indicators	indicators.						
Circuit Breaker is	Short circuit	Look for burn mark, loose						
tripping		connection or damaged						
		components. Replace the damaged						
		component.						
	Operating current is slightly	Check the section "Motor is						
	high	overheating".						
	Abnormal voltage	Check for unstable voltage						
		conditions and address any issues						
		with the power supply.						
	Circuit breaker is undersized or	Replace the circuit breaker.						
	damaged							
	Ground faults	Perform insulation resistance tests						
		to identify and address ground						
		faults.						
Overload Relay is	Mechanical issues with the	Check for any mechanical problems						
tripping	motor	with the motor, such as						
		misalignment, bearing issues,						
		impeller being clogged, shaft being						
		stuck or coupling problems.						
		Address any mechanical issues						
		found.						
	Abnormal voltage	Check for voltage fluctuations or						
	8	imbalances in the electrical supply.						
		Address any issues with the power						
		supply company.						
	Motor windings are short	Rewind the motor and do the in-						
	initial windings are short	house testing including (IR Test,						
		Resistance test, No-load test and						
		On-load test).						
	l	On-road testy.						

	T	If non-ining decay's words then								
		If repairing doesn't work then replace the motor.								
	Relay is malfunction	Swap the relay with the								
		recommended type and								
		specifications.								
	Poor ventilation or cooling of									
	the motor	ventilated and cooled. Ensure that								
		cooling fans are working correctly								
		and that the motor is not								
		overheating.								
Over/ Under	Voltage is more than 440V or	Transformer rating or tapping issue,								
Voltage relay is	less than 360	since it is at the power supply end								
tripping		so contact IESCO								
	Relay is malfunction	Swap the relay with the								
		recommended type and								
		specifications.								
	Wiring or connection issues	Inspect and tighten loose								
		connections. Perform a visual								
		inspection of wiring and								
		connections. Repair or replace								
		damaged wiring and conduct								
	Motor is overload or damaged	continuity tests on relevant wiring.								
	Wiotor is overload or damaged	Inspect motor insulation for faults. Verify that the motor insulation is in								
		good condition.								
Smoke, smell or	Overheating in the panel	Look for the cause of overheating								
discoloring of wire	overneating in the paner	which may be resolved by:								
		tightening the loose connections,								
		replacing the undersized wires,								
		changing the damaged contactor,								
		relay, breaker or other components								
	Short-circuit	Replace damaged components and								
		ensure proper insulation.								
	Insufficient ventilation or	Ensure proper ventilation around								
	cooling	the panel. Install additional cooling								
		fans or ventilation as needed. Also,								
		verify the ambient temperature of								
		the area.								
Water-Level-	Water level is too low	Deep dig the issue and use a								
Switch is tripping		suitable countermeasure, for								
		example, lower the pump or use a								
	T / 1 1	smaller pump etc.								
	Loose connection/ damaged wire	Repair or replace the cables/ wires.								
	Water-Level-Switch is	Test the water level switch and if it								
	malfunction	isn't operating properly, replace it.								
Voltage is unstable	Voltage fluctuations or	Check the main wire and any								
	imbalances when the motor is	abnormality in the transformer and								
	switched OFF	energy meter. Address any issues								
		with the power supply company.								
	<u>.</u>									

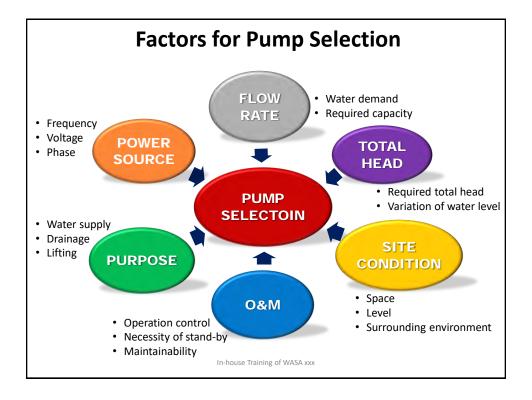
	Voltage fluctuations or imbalances when the motor is switched ON	Check the electrical connections at the terminals of equipment, cable insulation and insulation of the motor.
Motor is overheating	Check for adequate water flow and cooling around the motor	Do the cooling arrangements as per the recommendation of the manufacturer.
	Ensure proper voltage and current levels	Check for the imbalance voltages and currents and resolve the issue.
	Blockage in the mechanical section	Check for any mechanical problems with the motor, such as misalignment, bearing issues, impeller being clogged, shaft being stuck or coupling problems. Address any mechanical issues found.
	Rewound motor is installed	Rewinding normally causes the change in the drawing current so check the drawing current and contact the CONTRACTOR if the value is more than the rated value
Too much noise	Check for loose or misaligned	
and/or vibration	parts within the pump assembly	
	Inspect the impeller and casing	
	for debris or damage.	
Leakage in pipe		
Valves not working	Valve deteriorated	
Leakage in valve	Gland packing issue	
	Gas kit issue	
Leakage in joints	Gas kit issue	
Leakage from pump	Gland packing issue	
Pressure is too low	Check for clogs or debris in the pump intake or impeller	Remove debris and clean components.
	Check for leaks in the system	
Pressure is too high	Check the valve	
Water flowrate is	Impeller is stuck	
too low		
	Check the valve	
	Water level is too low	
Water flow rate is too high	Check the valve	
_	Water level is too high	
Chlorinator is not	Check the voltages in the switch	
working	board and connections of shoe	

SELECTION OF PUMP

In-house Training of WASA xxx

Table of Contents

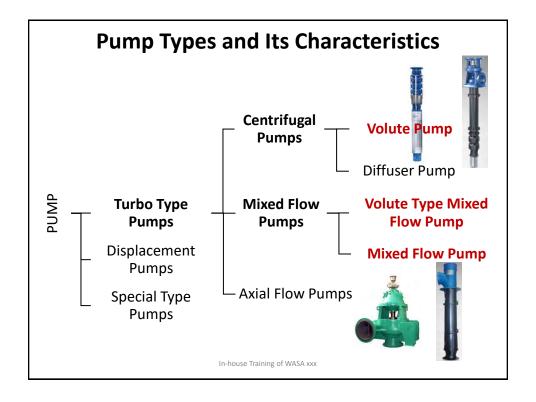
- 1. Importance of Pump Selection
- 2. Factors for Pump Selection
- 3. Parameters for Pump Selection
- 4. Pump Types and Its Characteristics
- 5. Understanding of Pump Performance Curve
- 6. How to Decide/Calculate Important Parameters
- 7. Protection of Pump
- 8. Major Issues and Troubles
- 9. Exercise


In-house Training of WASA xxx

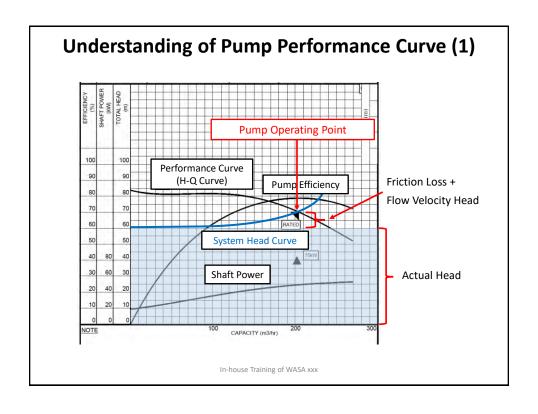
Importance of Pump Selection

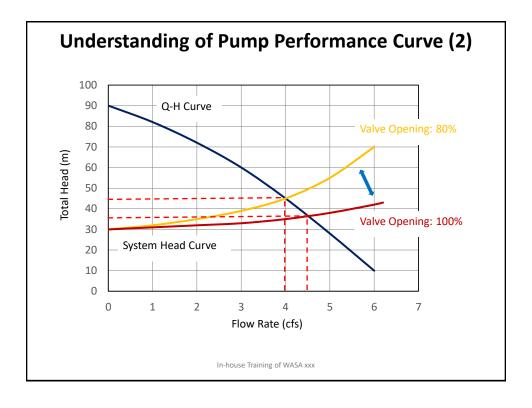
Pump should be selected properly considering the purpose and condition. Wrong selection will cause...

- **✓ Short Lifecycle**
- **✓ Energy Loss**
- √ Operational Downtime
- √ High O&M Cost

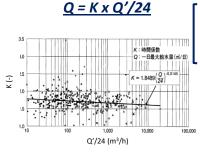

In-house Training of WASA xxx

Parameters for Pump Selection


- ✓ Pump Type [Centrifugal, Mixed-flow, Axial-flow, Submersible, Horizontal/Vertical]
- √ Flow Rate Q [cusec, m³/h]
- √ Total Head H [m, ft]
- ✓ Discharge Diameter [mm]
- ✓ Motor Output [kW, HP]
- ✓ Pump Efficiency [%]
- ✓ Others: Quantity, Liquid Type, Material, Paint, Installation/Maintenance Space etc.


In-house Training of WASA xxx

Pump Types and Its Characteristics


	Volute Pump	Volute Type Mixed Flow Pump	Mixed Flow Pump
Outline	 Total Head (m): 10 to 800 Dia. (mm): 40 to 2,000 Mainly for Intake, Transmission & Distribution of Water Supply 	 Total Head (m): 2.5 to 30 Dia. (mm): 150 to 5,000 Mainly for Storm Drainage & Disposal of Sewerage 	 Total Head (m): 2.5 to 60 Dia. (mm): 150 to 5,000 Mainly for Intake of Water Supply, Storm Drainage & Disposal of Sewerage
Merits	 Good Suction Performance High Pump Efficiency in a wide range of discharge 	Lighter Weight than Volute PumpLess Installation Area	
Demerits	Heavy Weight Large Installation Area	Less Pump Efficiency than Volute PumpLess Suction Performance than Volute Pump	

1. Flow Rate for Water Supply (Distribution)

Required Flow Rate (Q) of pump shall meet the **Design** Maximum Hourly Supply in the target service area. Q can be calculated/decided by the following formula.

Reference: Design Criteria for Water Supply Facilities (JWWA)

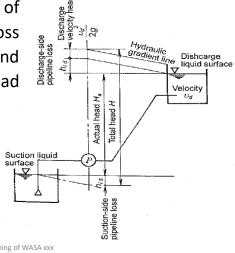
- Q = Flow Rate/Design Maximum Hourly Supply (m³/hour)
- K = Time Factor (-)
- Q' = Design Maximum Daily Supply (m³/day)
- Q' is the maximum water demand in the target service area. Basically, this value is calculated/set in a master plan or preliminary/basic design.
- K is determined considering the peak hour of water consumption.

2. Flow Rate for Disposal Station

Required Flow Rate (Q) of pump shall be meet the Peak Wet Weather Flow (PWWF) in the target area.

PWWF is the highest observed hourly flow* in a rainy/storm day.

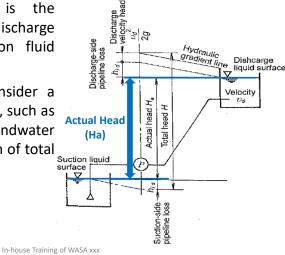
* WASAs have to consider both sewage and storm (rain) water.


In-house Training of WASA xxx

How to Decide/Calculate Important Parameters

3. Total Head for Vertical Pump

Total Head (H) is sum of actual head (Ha), head loss of discharge pipe (hdp) and discharge flow velocity head $(vd^2/2g)$.


$$H = Ha + hdp + vd^2/2g$$

3. Total Head for Vertical Pump

Actual Head (Ha) is the difference between discharge fluid level and suction fluid level.

It is necessary to consider a variation of water level, such as a decreasing groundwater level, for determination of total head.

How to Decide/Calculate Important Parameters

3. Total Head for Vertical Pump

Head Loss of Discharge Pipe (hdp) can be generally calculated by Hazen-Williams formula.

This formula is applicable for relatively long pipeline such as distribution pipeline of water supply.

$$hdp = \frac{10.666 \times Q^{1.85} \times L}{C^{1.85} \times D^{4.87}}$$

Q = Discharge Quantity (m³/sec)

C = Flow Coefficient (-)

C=110 is applied for mortar lining iron pipe, coated steel pipe and vinyl chloride pipe including bends.

D = Pipe Diameter (m)

L = Total length of pipeline (m)

3. Total Head for Vertical Pump

Discharge Flow Velocity Head (vd²/2g) depends on the flow velocity at the end of discharge pipe (vd).

vd can be calculated by the following formula.

$$vd [m/s] = Q / A$$

= $Q / (3.14 \times D^2/4)$

Q = Discharge Quantity (m³/sec)

A = Sectional Area of Discharge Pipe (m²) D = Pipe Diameter (m)

g = Gravity Acceleration (m/s^2) : 9.8

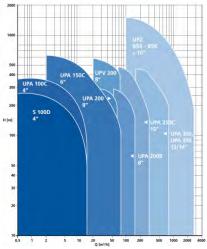
In-house Training of WASA xxx

How to Decide/Calculate Important Parameters

4. Discharge Diameter of Pump

Discharge Diameter of Pump (D) depends on the discharge quantity (Q).

D can be calculated by the following formula.


$$D [mm] = 146 \times V(Q/V)$$

Q = Discharge Quantity (m³/min) V = Flow Velocity (m/s)

Generally, 1.5 to 3.0 m/s is applied.

4. Discharge Diameter of Pump

After getting the calculated value, proper value shall be confirmed/determined based on manufacturer's catalog.

Reference: Selection Chart of Well Pump (KSB)

In-house Training of WASA xxx

How to Decide/Calculate Important Parameters

5. Motor Output

Motor Output (P) can be calculated by the following formula.

$$P[kW] = \frac{\rho \times g \times Q \times H}{60,000 \times \eta p \times \eta g} \times (1 + \alpha)$$

 ρ = Liquid Density (kg/m³): 1,000

g = Gravity Acceleration (m/s²): 9.8

Q = Discharge Quantity (m³/min)

H = Total Head (m)

ηp = Pump Efficiency (-) : Explained later

ng = Transfer Efficiency (-): Explained later

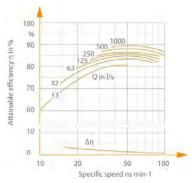
 α = Allowance (-): Generally, 0.1 to 0.2

5. Motor Output

Pump Efficiency (np) is the ratio of Liquid Power (Lw) to Shaft Power (L).

➤ Liquid Power (Lw) is the available energy of pump which is given to liquid per unit time.

$$Lw [kW] = \frac{\rho \times g \times Q \times H}{60,000}$$


➤ Shaft Power (L) is the power which is transmitted to pump shaft by electrical motor.

In-house Training of WASA xxx

How to Decide/Calculate Important Parameters

5. Motor Output

Typical **Pump Efficiency (np)** is shown in the below figures.

< Single-stage Volute Pump >

100

Security Supplies the second of the sec

< Multistage Volute Pump > Reference: KSB Website

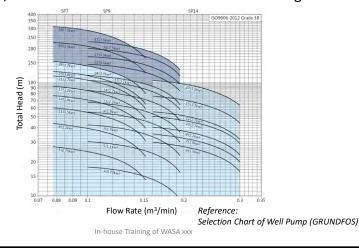
5. Motor Output

The following values of **Pump Efficiency** and **Transfer Efficiency** are applied for motor output calculation.

> Pump Efficiency (ηp):

Generally, 0.7 to 0.9 (70 to 90 %)

> Transfer Efficiency (ηg):


Generally, 1.0 (in case of direct coupling)

In-house Training of WASA xxx

How to Decide/Calculate Important Parameters

5. Motor Output

After getting the calculated value, proper value shall be confirmed/determined based on manufacturer's catalog.

Protection of Pump

Screen shall be selected and installed properly to avoid entering foreign materials into pumps.

	Coarse Screen	Fine Screen
Outline	To remove large foreign materials	To remove small foreign materials
Scale Spacing	50 to 150 mm	25 to 50 mm (1/10 to 1/30 of pump discharge diameter)
Operation	Manual	Manual or Automatic

In-house Training of WASA xxx

Protection of Pump

The following fine screens are used by WASAs.

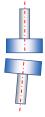
Bar Screen (Manual)

Bar Screen with Rake & Backet (Automatic)

(Automatic)

Major Issues and Troubles

Case-1. Clogging, Abrasion or Damage due to Sucking Foreign Materials

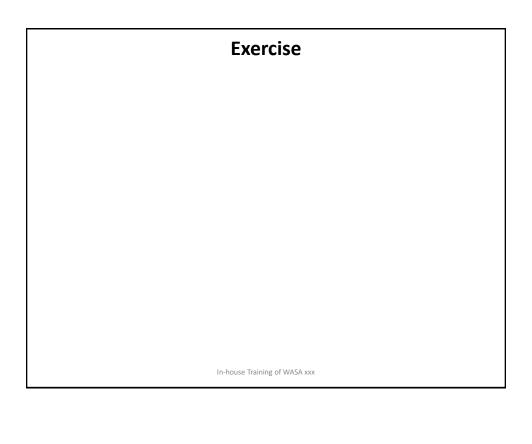

A piece of cloth
Too much garbage is
flowing into Disposal
Station!!

Plastic Bags

In-house Training of WASA xxx

Major Issues and Troubles

Case-2. Vibration due to Misalignment


Major Issues and Troubles

Case-3. Vibration due to Insufficient Strength of Pump Base

In-house Training of WASA xxx

Major Issues and Troubles

Case-4. Decreasing of Pump Flow due to Groundwater Level Lowering

添付資料 5.1.33 第 2 回 TAC の議事録(開催日:2022 年 6 月 10 日)

MINUTES OF MEETING

2nd Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, June 10th, 2022.

Mr. M. Ghufran,

Managing Director

WASA Lahore

06/22

Dr. Nobuyuki Sato,

Chief Technical Advisor,

JICA Expert Team,

	2 nd Technical Advisory Committee Meet	ting for the Project Titled "The Project for	
Subject:	Improving the Capacity of WASAs in Punj	ab Province Phase 2"	
Date:	Friday, 10 th June, 2022	Time: 10:00 am	
Venue:	Head office, WASA Lahore.		
Participants:	 Mr. Muhammad Irfan, Water and S Mr. M. Nadeem, DD WASA Multa Mr. Khurram Nabeel Butt, DD (Online) Mr. Roohan Javaid, DD WASA Fat 	g, WASA Lahore (Secretary TAC) /ASA Lahore ASA Lahore E&M Specialist, Al-Jazari Academy sewerage Specialist, Al-Jazari Academy an/ WASA Coordinator (Online) WASA Gujranwala/ WASA Coordinator isalabad/ WASA Coordinators (Online) A Rawalpindi/ WASA Trainer (Online) JICA Experts Team Team (Online) perts Team ts Team sperts Team (Online)	
Summary	Technical Advisory Committee for the project has approved the training schedules and contents for "O&M on Sewerage and Drainage" and "O&M on Mechanical and Electrical Equipment", which will be implemented from 13 th to 17 th June, 2022.		
	N AND DECISIONS		
The Meeting	started with opening remarks from Mr. M	Ghufran, MD WASA Lahore.	
	/		

- Dr Sato, Chief Advisor, JICA Experts Team, explained that the schedule and content of the trainings will be flexibly adjusted due to high temperature and load shedding.
- Mr. Muhammad Irfan, Water and Sewerage Specialist, Al-Jazari Academy, explained the schedule and contents of the training "O&M on Sewerage and Drainage" (see Attachment 1).
- Mr. Jawad Shahid, Vice Principal, E&M Specialist, Al-Jazari Academy, explained the schedule and contents of the training "O&M on Mechanical and Electrical Equipment" (see Attachment 2).

After that explanation, there was a question from WASA Gujranwala. The question was whether a topic of a motor for pump is included or not. Mr. Jawad Shahid answered that it is included.

Decisions:

The training schedules and contents for "O&M on Sewerage and Drainage" and "O&M on Mechanical and Electrical Equipment" were approved.

The meeting ended with note of thanks from the Chair.

Attachment 1

Training schedules for "O&M on Sewerage and Drainage"

Operation & Maintenance of Sewerage and Drainage System Training Schedule (JICA Phase-II) 2022

	6th Lecture	3:30 pm-4:00 pm	s s s fon on tivities	/in sis forn on ctivities	ons Victure Ites
~	7 49	3:30 bu	Quick Win Measures (QvvMs) Conclusion on Day's Activities	Quick Win Measures (QvvMs) Conclusion on Day's Activities	Reflections Group Picture Certificates
Session-3	5 ^h Lecture	2:00 pm-3:30 pm	FIELD WORK • Manhole & Sewer & Inspection with Camera (Evalution of Manhole & Sewer)	FIELD WORK • Measuring Flow Velocity in Open Chanel • Calculation of Flow Rate	Most Suitable Technology
	Lunch 1:15 pm-2:00 pm			Lunch & Prayer Break (As per Site Visit Situation	
	4th Lecture	12:15 am-1:15 pm	king) amera	cing)	inology
Session-2	ture	11:00 am-11:45 am 11:45 am-12:15 pm 12:15 FIELD WORK (Unpack-Assemble-Install-Use-Packing) • Manhole & Sewer & Inspection with Camera		TELD WORK (Unpack-Assemble-Install-Use-Packing) Velocity Meter	son of Various Techi PEX
	3rd Lec			FIELD WORK (Unpack-Assemble	• Fianacial Comparison of Various Technology w.r.t. CAPEX & OPEX
	Tea 10:45 am-11:00 am			Tea Break (As per Site Visit Situation	
	2 nd Lecture	10:00 am-10:45 am	Sewer Camera Sewer Camera (Parts + Working) (Demonstration) Repair & Maintenance of Sewerage & Drainage	Pipelines FIELD WORK (Unpack-Assemble-Install-Use-Packing) • Velocity Meter	How to Clean & Maintain Ponds of WWTP
Session-1	1st Lecture	9:15 am-10:00 am	Removal of Blockages in Sewer Lines Latest Cleaning Techniques of Techniques of Sewerage & Drainage System	Objectives Types of Drains Methods & Formulae	Rapid Testing of Wastewater Samples with Kits (BOD, pH, DO)
	1"Le	09:00 am-9:15 am	Welcoming Remarks Participant Introduction Course Overview Training Expectations	Recap of Previous Day Activities	• Basics of WWT • WWT Technologies
	Module		Module 01 Cleaning of Sewerage & Drainage Pipelines	Module 02 Flow Measurement of Open Channels	Module 3 & 4 Wastewater Treatment (MWT)
	Day and		Monday June 13, 2022	Tuesday Jun 14, 2022	Wednesday Jun 15, 2022
	S. S.		-	7	6

Academy Team: Engr. Muhammad Irfan, Engr. Syed Parad Aussain, Engr. Haris Bin Khawar

Attachment 2

Training schedules for "O&M on Mechanical and Electrical Equipment"

竹

Time Schedule of O&M of Mechanical Equipment Training (Draft)

	1st Day: 16th June (Thu)		
Time	Activity	Notes	
0.20 0.45	Introduction		
9:30 - 9:45	Orientation		
	Basics of Pump	Exercise by using the pump model	
	•Typical components of pump facility.		
9:45 - 11:00	•Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head) •Electrical parameters (Voltage, Ampere)	Trainees will check/measure each parameter by themselves.	
	Parallel & series pump operation		
	•Pump performance curve (Relationship between flow and discharge pressure)	Trainees will demonstrate each items by using the pump model.	
	•Relationship between flow and current		
	Understanding of Ultrasonic Flow Meter	Exercise by using the pump model	
	•What will happen if we don't follow 10d recommendation?		
11:00 - 12:00	• What will happen if the setting value of pipe thickness is wrong?	Trainees will demonstrate each items by	
11100 12100	• What will happen if the setting value of pipe diameter is wrong?	using a ultrasonic flow meter on the pump model.	
	•What will happen if the setting of pipe material is wrong?		
	• What will happen if the installation distance of sensor is not proper?		
12:00 - 13:00	Basics of Asset Lifecycle Analysis with Examples	Lecture with showing good practices in France	
13:00 - 14:00	Lunch & Prayer Break		
14:00 - 15:00	Data Analysis • Making a pump performance curve by Excel.	Exercise by using Excel	

	2nd Day: 17th June (Fri)			
Time	Activity	Notes		
	Vibration Analysis and its importance Understanding of Vibration Meter			
09:00-10:00	Use of Vibration Meter • Installation of Vibration Meters on Machinery	Vibration Analysis field activity on Disposal Station		
10:00 - 12:30	Site Visit to WASA-L Disposal Station • Understanding of actual O&M activities • Understanding of vibration meter • Vibration measurement and filling the record sheet	Practical Training at the site		
12:30 - 14:00	Move to AJWA, Lunch & Prayer Break			
	Preparation of Maintenance Plan for Pump Facilities	M		
14:00 - 15:00	Q&A	1111.		
15:00 - 15:15	Closing	(1100		

九

添付資料 5.1.34 第 3 回 TAC の議事録(開催日:2022 年 10 月 14 日)

MINUTES OF MEETING

3rd Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, October 14th, 2022.

Mr. Abdul Latif

Deputy Managing Director (O&M) WASA Lahore

Dr. Nobuyuki Sato, Chief Technical Advisor,

JICA Expert Team,

MINUTES O	F MEETING	
Subject:	3 rd Technical Advisory Committee I Improving the Capacity of WASAs in I	Meeting for the Project Titled "The Project for Punjab Province Phase 2"
Date:	Friday, October 14, 2022	Time: 03:00 pm
Venue:	Head office, WASA Lahore.	
Participants:	 Mr. Riaz Mujtaba, Director Trainin Mr. Hisham Pervaiz Vasser, Direct Mr. Jawad Shahid, Vice Principal, I Ms. Rebia Suhail, Sr. Instructor, Al Mr. Muhammad Hafeez, JICA Coo Mr. Zain Hassan, JICA Coordinato Mr. M. Nadeem, DD WASA Multa Mr. Khurram Nabeel Butt, DD WA Mr. Roohan Javaid, Director WASA Mr. Aziz Ullah Khan, DD WASA I Japanese side Dr. Nobuyuki Sato, Chief Advisor, Mr. Tatsuo Tomidokoro, JICA Expert Mr. Hiroyuki Tabusa, JICA Expert Mr. Kazuhiro Kayanoma, JICA Ex 	or, WASA Lahore E&M Specialist, Al-Jazari Academy I-Jazari Academy ordinator r an/ WASA Coordinator (Online) ASA Gujranwala/ WASA Coordinator (Online) A Faisalabad/ WASA Coordinator (Online) Rawalpindi/ WASA Coordinator (Online) JICA Experts Team perts Team perts Team
Decisions	 Technical Advisory Committee approved the schedule of professional train "Leakage Control, Plumbing and Pipe Replacement Plan" from 25th to 2 October, 2022 along with the recommended improvements in the content. Technical Advisory Committee approved the schedule and content of profe training for "O&M of Mechanical and Electrical Equipment" from 8th to November, 2022. Committee also accepted: Practical activity approach for "Professional Training" on above ap two courses. 	

Wat 12

- ii. The role of "WASA coordinators meetings" includes a part of PCC from upcoming PCC
- iii. The discussion for collaboration work between WASA and AJWA starts from the upcoming TAC

DISCUSSIONS

The Meeting started with opening remarks from the chair.

- The Chief Advisor, JICA Experts Team, explained the agenda. The main items presented by him included:
 - 1. Approval of professional training for "Leakage Control, Plumbing and Pipe Replacement Plan" from 25th to 27th of October, 2022.
 - Approval of professional training for "O&M of Mechanical and Electrical Equipment" from 8th to 10th of November, 2022
 - 3. Proposal of WASA Coordinators Meeting
 - 4. Proposal for collaboration work between WASA Lahore and AJWA
- For the training at AJWA, Chief Advisor emphasized on an importance of activities in the training.
 He explained that the lectures and videos put the trainees in the passive learning mode. The approach
 by JET is to maximize the outcome of the training by the trainings in the constructive and interactive
 learning mode.
- Ms. Rebia explained the time plan and activity-outcomes of the training course, "Leakage Control,
 Plumbing and Pipe Replacement Plan". Comments from the participants included:
 - i. Mr. Hisham told that nomenclature and terminologies in the course should be revised as per understanding of WASA staff. He requested a few modifications in the models and to update the content as per the daily work of WASA staff. The content should reflect daily work of Assistant Directors and Sub Engineers. He further requested to explain the role of models for the training.
 - ii. Mr. Roohan requested to make the content more descriptive. He was of the view that the pictures only were not enough for the understanding.
 - iii. Mr. Khurram informed that they wanted to learn the specifications of water meters, useful in WASA system in this course.
 - iv. Dr. Sato explained the activity by NRW model. The details are as follows.
 - i) The flow between a) a bulk meter and consumer meters, and b) a ultrasonic flow meter and a water meter could be compared.
 - ii) The terminologies would be updated as per understanding of WASAs.

Will 12

- iii) The supporting documents can be shared to the participants during training.
- iv) Water meters are explained with disassembled actual material for the type of single jet, multi jet, and rotary piston type.
- Mr. Jawad explained the time plan and activity-outcomes of the training course, "O&M of Mechanical and Electrical Equipment". Comments from the participants included:
 - Mr. Hisham told that the course content was fine but the main role of the officers to supervise and ensure proper implementation of the maintenance plan should be included.
 - ii. Mr. Roohan suggested to add the design of the motor control panel. In addition, he suggested to add the sizing of the cables, circuit breaker, magnetic contactor, protection relays and other component.
 - iii. Mr. Khurram requested to add the maintenance of transformer.
 - Mr. Jawad agreed to add the preventive maintenance plan and electrical panel design as recommended.
 - v. Dr. Sato explained that in TNA the course topics were prioritized. Transformer was not concluded as the high priority among the requested topics as per discussion with WASAs and an evaluation be JET. So, it would be difficult to include the transformers at this stage.
- Mr. Jawad recommended to have a working group for each course so the development of course content would be improved. He was of the view that meetings among JICA Expert, counterpart from AJWA and master trainer of WASAs should be organized to prepare the content for every course.
- Chair approved the both professional trainings along with the recommended changes by the forum and recommended further discussions on the other agenda items by Chief Advisor.

Wey 12

添付資料 5.1.35 第 4 回 TAC の議事録(開催日:2022 年 11 月 2 日)

MINUTES OF MEETING

4th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, November 2nd, 2022.

Mr. Abdul Latif

Deputy Managing Director

WASA Lahore

Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team,

估陈个

	4th Technical Advisory Committee Meetin	ng for the Project Titled "The Project for	
Subject:	Improving the Capacity of WASAs in Punjab Province Phase 2"		
Date:	Wednesday, November 2 nd , 2022	Time: 03:00 pm	
Venue:	Head office, WASA Lahore.		
Participants:	 Pakistani side Mr. Abdul Latif, Deputy Managing Diemonder of Mr. Souman Khalid, Deputy Secretory. Mr. Riaz Mujtaba, Director Training, Mr. Hisham Pervaiz Vasser, Project Diemonder of Mr. Hisham Pervaiz Vasser, Project Diemonder of Mr. Jawad Shahid, Vice Principal, E& Mr. Fahad Hussain, Instructor, Al-Jaza Mr. Fahad Hussain, Instructor, Al-Jaza Mr. Muhammad Hafeez, JICA Coordin Mr. Muhammad Hafeez, JICA Coordin Mr. Wajih-Ud-Din, JICA Coordinator Mr. M. Nadeem, DD WASA Multan/Mr. Khurram Nabeel Butt, DD WASA Mr. Roohan Javaid, Director WASA Finstructor WASA Finstructor	WASA Lahore (Secretary TAC) irector Planning (LWWMP) / Focal Person Training, WASA Lahore M Specialist, Al-Jazari Academy ari Academy zari Academy mator WASA Coordinator (Online) Gujranwala/ WASA Coordinator (Online) aisalabad/ WASA Coordinator (Online) valpindi/ WASA Coordinator (Online) CA Experts Team as Team	
Decisions		proved the schedule and content of professionand Drainage" from 22nd to 24th of November,	

12 Mag

- i) practical activity approach for "Professional Training" on above approved course.
- ii) an improvement of professional training, "Leakage Control, Plumbing and Pipe Replacement Plan" conducted from 25th to 27th October, 2022.
- iii) guest lecturers by experience staff from WASAs for "Professional Training"

DISCUSSIONS

The Meeting started with opening remarks from the chair.

- The Chief Advisor, JICA Experts Team, explained the agenda and practical activity approach for "O&M on Sewerage and Drainage".
- Mr. Fahad explained the time plan and learning-outcomes of the training course, "O&M on Sewerage and Drainage". Comments from the participants included:
 - Ms. Zaeema asked about water quality test. She was of the view that it takes 5 days to obtain a value of BOD normally. Dr. Sato explained that those kits can give an instant value in a short time, and give tentative values of water quality.
 - ii. Mr. Souman and Mr. Rohan requested to know the experience of the trainers. He is of the view that AJWA should invite the retired staff from WASAs having relevant experiences to enhance the quality of their trainings by using their knowledge and experience.
 - iii. Mr. Sanwal (WASA Faisalabad) and Mr. Abdul Moeed (WASA Multan) requested to add software training such as sewer-cad, mWater, and GIS in sewerage sector. Mr. Rohan requested for remodelling, hydraulic modelling, separate and combined system of sewerage and drains. Mr. Hisham highlighted mWater is capable to develop database of sewerage related complaints. Dr. Sato explained that the training topics were decided according to the training needs assessment in the first year. But we can discuss it accordingly.
 - iv. Mr. Hisham asked the details of public awareness included in "O&M on Sewerage and Drainage". He was of the view that sewer camera can be very useful to monitor pipe condition and locating buried manholes and branches. Mr. Fahad explained that
 - a) school children would be invited,
 - b) sewer camera would be used to observe inside sewer pipe,
 - c) children can watch inside sewer pipe through big screens,
 - d) it is explained for generation of overflow by garbage, etc.

- Miss Rebia explained the feedback of professional training "Leakage Control, Plumbing and Pipe Replacement Plan" from 25th to 27th October, 2022. She informed how the model was improved and the positive feedback from the trainees. In addition, her recommendation was to involve the senior staff of WASAs from the course development stage. There was no participation from WASA Multan. WASA Multan will find out the reason of it.
- Mr. Jawad requested the chair to know the status issuance of the funds in this fiscal year and involvement of the experienced staff from WASAs to the professional trainings.

52 Dag

添付資料 5.1.36 第 5 回 TAC の議事録(開催日:2022 年 12 月 21 日)

5th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, December 21st, 2022.

Mr. Mian Muhammad Munir, Deputy Managing Director (F, A&R) WASA Lahore

Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team,

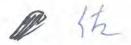
	5th Technical Advisory Committee Meeting for the Project Titled "The Project fo
Subject:	Improving the Capacity of WASAs in Punjab Province Phase 2"
Date:	Wednesday, December 21, 2022 Time: 02:00 pm
Venue:	Head office, WASA Lahore.
Participants:	 Pakistani side Mr. Hisham Pervaiz Vasser, Project Director (LWWMP) / Focal Person (Foreig Trainings), WASA Lahore (Chairperson on behalf on DMD(F., 1&R), WASA Lahore) Mr. Souman Khalid, Deputy Secretory (UD), HUD&PHBD Mr. Riaz Mujtaba, Director Training, WASA Lahore (Secretary TAC) Ms. Zaeema Amman, Deputy Director Training, WASA Lahore Mr. Jawad Shahid, Vice Principal, E&M Specialist, Al-Jazari Academy Ms. Rebia Suhail, Sr. Instructor, Al-Jazari Academy Mr. Fahad, Instructor, Al-Jazari Academy Mr. Muhammad Hafeez, JICA Coordinator Mr. Ismacel Azeem Khan, JICA Coordinator Mr. Adnan Nisar Khan, Deputy Managing Director WASA Faisalabad (Online) Mr. M. Nadeem, DD WASA Multan/ WASA Coordinator (Online) Mr. Ali Hasnain, AD WASA Gujranwala (Online) Mr. M. Haseeb, AD WASA Rawalpindi (Online) Japanese side Dr. Nobuyuki Sato, Chief Advisor, JICA Experts Team Mr. Tatsuo Tomidokoro, JICA Experts Team Mr. Tatsuo Tomidokoro, JICA Experts Team Mr. Kazuhiro Kayanoma, JICA Experts Team (Online) Technical Advisory Committee approved the proposed schedule and contents of the proposed schedule and contents o
Decisions	professional training for "O&M of Mechanical and Electrical Equipment" from 26 to 28th of December, 2022. 2. Technical Advisory Committee approved the proposed schedule and contents with fe changes of professional training for "Leakage Control, Plumbing and Pip Replacement Plan" from 17th to 19th January, 2023. 3. Committee also endorsed the following:

- i. Practical activity approach using applicable Softwares for "Professional Training"
- ii. Site visiting tour at WASA Faisalabad and other WASAs
- iii. The discussion for the improvement of professional and in-house trainings among HUD, WASAs and AJWA

DISCUSSION

The meeting started with opening remarks from the chair.

- The Chief Advisor, JICA Experts Team, explained the agenda and brief regarding following:
 - 1. Approval of professional training of "O&M on Mechanical and Electrical Equipment" from 26th to 28th December, 2022.
 - Approval of professional training of "Leakage control, Plumbing and Pipe Replacement Plan" from 17th to 19th January, 2023
 - 3. Training program in Japan on May June 2023.
 - 4. Progress of In-house training at each WASA.


For the training at AJWA, Chief Advisor emphasized on an importance of constructive and interactive learning in the training. He explained the benefits of mWater application for database development.

Training course "O&M on Mechanical and Electrical Equipment":

Mr. Jawad explained the time schedule and activity-outcomes of the training course, "O&M of Mechanical and Electrical Equipment". He further explained i) the feedback of trainees in the course of "O&M on Sewerage and Drainage" conducted from 22nd to 24th of November, 2022, and ii) improvements in the upcoming cycle based on that feedback by the trainees form the previous training of "O&M of Mechanical and Electrical Equipment". He proposed the following improvements in the existing training contents:

- i) use of mWater Application
- ii) use of QGIS
- iii) introduction, installation, and uses in the field

The proposal was approved by the committee.

Training course, "Leakage Control, Plumbing and Pipe Replacement Plan":

Ms. Rebia explained the time schedule, contents and activity-outcomes of the training course, "Leakage Control, Plumbing and Pipe Replacement Plan". She proposed following changes in the existing course:

- i) Pipe network model to install OHR to compare the difference between gravity and pressurized flow
- ii) How to use ultrasonic flow meter
- iii) HDPE pipes butt fusion joint
- iv) mWater and QGIS in the field

The committee approved with following changes in the proposed course:

Mr. Hisham recommended to exclude component of making connection with OHR during training session as it has no practical implication. Instead proposed to include Pros & cons of existing Supply methodologies in different WASAs with the use of examples such as direct supply or supply through OHR. Site visits of respective WASAs to witness the aforestated methodologies may also be included.

Mr. Adnan endorsed the proposal and recommended site visit to WASA Faisalabad for visit of water supply scheme where Water supply is being maintained through OHR.

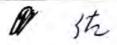
General Recommendations by the Committee:

- Mr. Souman recommended that the faculty of AJWA and the master trainers of WASA Lahore should work together to prepare the course outline. The faculty of AJWA may participate the inhouse trainings at all WASAs to enhance their learning. As a result, both sides can learn from each other to improve the quality of trainings. He also informed that the department received the request of procuring equipment for the professional and inhouse trainings from AJWA. He requested all WASAs to go through the list and review the need of equipment for the in-house trainings. He insisted WASA Lahore for participation in all AJWA Trainings irrespective of same course being conducted in-house. He also recommended to add training on water meter of all types being used in all WASAs
- Mr. Hisham proposed that in case AJWA Faculty has to participate in in-house trainings, they may send written request to respective WASA.

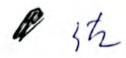
- Mr. Ali requested the training of mWater application for further extended contents. He explained
 the benefits of visiting sites of WASA Lahore during trainings, and requested to have trainings at
 the sites of other WASAs especially at WASA Faisalabad.
- Mr. Adnan concurred with the proposal to invite trainees & respective AJWA Faculty members.
- Ms. Zaeema explained the progress of the in-house trainings of WASA Lahore.
- Mr. Adnan explained the progress of the in-house trainings of WASA Faisalabad.
- Mr. Nadeem explained the progress of the in-house trainings of WASA Multan. He informed that
 WASA Multan has been using m-water application to record crown failure of sewer pipes. In
 addition, he requested to have the velocity meter once in a month for maintaining the flow rate
 data of Waste Water Treatment Plant.
- Mr. Ali explained the progress of the in-house trainings of WASA Gujranwala. He explained that
 the number of complaints by customers in sewerage sector have reduced as low as 70% by the
 application of preventive maintenance through in-house trainings.
- Mr. Haseeb explained the progress of the in-house training of WASA Rawalpindi.
- Mr. Jawad informed that AJWA staff accompanies JICA experts to WASAs for the development of in-house trainings. He agreed on the recommendation of AJWA's involvement for the in-house trainings. He furthers agreed with the idea of taking trainees to other WASA as well.
- Dr. Sato appreciated the open discussion by the forum to improve quality of professional and inhouse trainings. He requested the continuation of similar discussions which are very important for the sustainability.
- Chair thanked JICA experts for their support, and approved both professional trainings. He also recommended further discussions on the other agenda items by Chief Advisor, AJWA and WASAs.


添付資料 5.1.37 第 6 回 TAC の議事録(開催日:2023 年 3 月 3 日)

6th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"


Lahore, March 3rd, 2023.

Mr. Mian Muhammad Munir, Deputy Managing Director (F, A&R), WASA Lahore. Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team.


Subject:	6th Technical Advisory Committee Me Improving the Capacity of WASAs in Pu	eting for the Project Titled "The Project for njab Province Phase 2"			
Date:	Friday, March 3, 2023	Time: 11:30 am			
Venue:	Head office, WASA Lahore.				
Participants:	 Pakistani side Mian Muhammad Munir, Deputy Ma Mr. Souman Khalid, Deputy Secretary Mr. Hisham Pervaiz Vasser, Project (Foreign Trainings), WASA Lahore Mr. Riaz Mujtaba, Director Training, Mr. Saleem Ashraf, DMD WASA Ra Mr. Roohan Javaid, Director WASA Mr. M. Nadeem, DD WASA Multan/ Mr. Ali Hasnain, AD WASA Gujranv Mr. Jawad Shahid, Vice Principal, E& Mr. Salman Hashmi, Al-Jazari Acade Mr. Mujtaba Bashir, Al-Jazari Acade Mr. Muhammad Hafeez, JICA Coord Japanese side Dr. Nobuyuki Sato, Chief Advisor, JI Mr. Hiroyuki Tabusa, JICA Expert Tea Ms. Mikiko Azuma, JICA Expert Tea 	Director Planning (LWWMP) / Focal Person WASA Lahore (Secretary TAC) walpindi (Online) Faisalabad/ WASA Coordinator (Online) WASA Coordinator (Online) vala (Online) M Specialist, Al-Jazari Academy my my inator CA Expert Team eam (Online) m (Online)			
Decisions	Technical Advisory Committee approved the proposed schedule and contents of professional training for "O&M of Mechanical and Electrical Equipment" from 7 th to 9 th March 2023.				
DISCUSSION					

- Dr. Sato informed the agenda of the meeting to discuss and approve the schedule and contents of professional training for "O&M of Mechanical and Electrical Equipment" from 7th to 9th March 2023.
- Mr. Jawad explained the schedule and contents for the training course. He further explained the learning outcomes of each component of the training.
- Mr. Hisham recommended that the solar energy section should include working out the requirements and maintenance of the system by the participants. He further recommended that a well developed scenario-wise action plan should be prepared by the trainers and presented in TAC meeting for approval on which the trainees could be trained to practice in field. He reminded that the training content must be the one which is duly approved by TAC. He further added that trainings should be related to daily on-job work by WASA. He recommended that the requests by other participants to include detailed design of components may be taken into consideration subject to need-based assessment in next phase (Phase 3) of the project.
- Mr. Roohan requested to include the content for detailed design sizing of the panel, cables and its
 components, updating drawings after completion of troubleshooting and also include trouble
 shooting at installations required on daily basis at field. He further told that there should be no
 lecture, only hands-on activities should be included.
- Mr. Souman added that a smart blend of both lectures and hands-on activity should be used but lectures should be for the introduction only. AJWA should develop custom build models related to scenario of each WASA to provide hands-on trainings to the trainers.
- Mr. Ali requested to add the detailed design courses in the civil, mechanical and electrical sections
 particularly related to disposal station.
- Dr. Sato explained that some components of design is included in the training individually. A
 complete design course will be too long and may not be feasible to cover in this project.
- Mr. Jawad agreed to the suggestion to add the customized action plan and sizing of control panel as discussed. Two activities are already added which include making of basic MCU circuit and plotting Q-H curve on miniature pumping station. More can be added on a later stage. He further informed to the forum that as per mandate of TAC mentioned in the record of discussion, curriculum of three courses under supported by JICA experts is discussed and approved in this forum whereas Al-Jazari Academy is conducting a total number of 21 courses yearly. In addition, he requested WASAs to send the nominations for the approved training. He apprised the forum that custom made models have been developed by the academy.

 Chair thanked JICA experts for their support, and approved the professional training for "O&M of Mechanical and Electrical Equipment" from 7th to 9th March 2023.

添付資料 5.1.38 第 7 回 TAC の議事録(開催日:2023 年 4 月 5 日)

7th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, April 5th, 2023.

Mr. Mian Muhammad Munir,

Deputy Managing Director (F, A&R),

WASA Lahore

Dr. Nobuyuki Sato, Chief Technical Advisor,

JICA Expert Team,

MINUTES O	F MEETING
Subject:	7 th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"
Date:	Wednesday, 5 April, 2023 Time: 11:30 AM
Venue:	Head office, WASA Lahore.
Participants:	 Pakistani side Mr. Souman Khalid, Deputy Secretary, HUD&PHED Mr. Riaz Mujtaba, Director Training, WASA Lahore (Secretary TAC) Mr. Hisham Pervaiz Vasser, Project Director Planning (LWWMP) / Focal Person (Foreign Trainings), WASA Lahore Ms. Zaeema Aman, Deputy Director, Training Center Mr. Roohan Javed, Director Works/WASA Coordinator, WASA Faisalabad Mr. Saleem Ashraf, DMD, WASA Rawalpindi (Online) Mr. M. Nadeem, Deputy Director, WASA Multan/ WASA Coordinator (Online) Ms. Rebia Suhail, Sr. Instructor, Al-Jazari Academy Mr. Salman Hashmi, Instructor, Al-Jazari Academy Mr. Muhammad Hafeez, JICA Coordinator Japanese side Dr. Nobuyuki Sato, Chief Advisor, JICA Experts Team Mr. Tatsuo Tomidokoro, JICA Experts Team
Decisions	 Technical Advisory Committee approved the proposed changes in schedule and contents of professional training for "O&M of Mechanical and Electrical Equipment" from 2nd to 4th of May, 2023. Technical Advisory Committee approved the proposed changes in schedule and contents of professional training for "Leakage Control, Plumbing and Pipe Replacement Plan" from 29th to 31st May, 2023.

DISCUSSION

The Meeting started with opening remarks from the chair.

• Ms. Rebia Suhail, Sr Instructor Al-Jazari Academy, explained the agenda. The main items presented by her included:

- Approval of professional training of "O&M on Mechanical and Electrical Equipment" from 2nd to 4th May, 2023.
- Approval of professional training of "Leakage control, Plumbing and Pipe Replacement Plan" from 29th to 31st May, 2023.

For the training in AJWA, Ms. Rebia Suhail and Mr. Salman explained the previous trainings and newly added activities.

- Mr. Salman explained the schedule and activity-outcomes of the training course, "O&M of Mechanical and Electrical Equipment", and Ms. Rebia explained "Leakage Control, Plumbing and Pipe Replacement" She further explained the feedback of trainees and improvements in the upcoming training based on that feedback by the trainees from the previous trainings. It is also informed that its dashboard creation and analysis of the data by "mWater" application will be used in the training. And as new addition, design software "EPANET" will be introduced and used in the training on how to develop pipe network with necessary parameters. For mechanical component, "mWATER" application will be used on site for analyzing hydraulic parameters for energy audit. In this time, visiting lecturer from WASA Lahore will be invited for the more exposure and interaction of knowledge sharing between WASAs.
- Mr. Salman Hashmi explained that asset risk management, mWATER and hydraulic parameters are newly added in the training "Operation and maintenance of mechanical and electrical equipment".
- Mr. Hisham asked about the responsible person from AJWA for energy audit, and a visiting lecturer from WASA Lahore.
- Ms. Rebia answered that it will be coordinated with Mr. Waqas Liaqat. He can give some briefing
 on operation and maintenance. Mr. Salman told that he is the trainer for energy audit. Then for site
 activity of energy audit, it could be jointly carried out.
- Mr. Hisham told that mWATER and QGIS analysis need more data from multiple sites. In addition, the time allocation should be 1 day for mWATER and QGIS, and 2 days for design software "EPANET".
- Mr. Souman Khalid asked i) difference between previous and in this content for leakage control, plumbing and pipe replacement course, and ii) any possibility to conduct training for 4 days as participants can learn more about design software.
- Ms. Rebia answered that i) mWATER dashboard creation for leakage repair site and analysis is newly added, and ii) EPANET for designing water supply system is newly added. For leakage

- repair site, we will coordinate with WASA Lahore.
- Dr Sato told that Mr Kinno will attend the training. His assignment is very limited. Therefore, "Leakage control, Plumbing and Pipe Replacement Plan" in this time is focused on more to software. The training could be done for 4 days. However, it might be difficult for WASA staff to attend due to the daily work.
- Mr. Roohan asked how to analyze the data. The water supply network is different in Lahore and Faisalabad. Water source in Lahore is ground water. On the other hand, surface water but from very far canal is used in Faisalabad.
- Mr. Salman Hashmi answered the activity of form creation on mWATER as per WASA's needs.
- Ms. Rebia told that mWATER portal (in-built features) will be prepared based on WASA's needs.
- Ms. Zaeema asked the trainer for the training of EPANET. If the participants do not have the background, it may be difficult to learn.
- Mr. Hafeez told that WASA Lahore is interested in design software. If the training on EPANET
 design software includes from basics, it is easier for the participants to understand.
- Ms. Rebia explained that the training on EPANET software includes basic features, creation of a
 pipe network model, and designing of water supply system.
- Mr. Hisham suggested the submission of formal request to MD WASA Lahore for the visiting lecturer from WASA Lahore, which was endorsed by the rest of the participants.
- Mr. Nadeem told the course content is fine. The activity and design-based software will be helpful. In addition, visiting lecturer from WASA Lahore will be valuable because WASA Lahore has multiple type of data on GIS and hands on experience of field.
- Closing remarks: Both course contents and activities were approved.

1 th

添付資料 5.1.39 第 8 回 TAC の議事録(開催日: 2023 年 10 月 5 日)

8th Technical Advisory Committee Meeting for the Project Titled "The Project for Improving the Capacity of WASAs in Punjab Province Phase 2"

Lahore, October 5th, 2023.

Mr. Mian Munir
Deputy Managing Director(F,A&R)

WASA Lahore

Dr. Nobuyuki Sato, Chief Technical Advisor, JICA Expert Team,

Subject:	8 th Technical Advisory Committee Meeti Improving the Capacity of WASAs in Pu	ng for the Project Titled "The Project for njab Province Phase 2"
Date:	Thursday, October 5th, 2023	Time: 11:00 am
Venue:	Head Office, WASA Lahore.	
Participants:	 Mr. Riaz Mujtaba, Director Training, Mr. Abid Hussainy, Principal Al-Jaza Mr. Hisham Pervaiz Vasser, Project I (Foreign Trainings), WASA Lahore Mr. Roohan Javaid, Director Sewerag Mr. Jawad Shahid, Vice Principal, Ed 	Director Planning (LWWMP) / Focal Person ge, WASA Faisalabad &M Specialist, Al-Jazari Academy ficer (Tech), HUD & PHED (Online) Training, WASA Lahore ASA Multan (Online) ASA Gujranwala (Online) Director WASA Rawalpindi (Online) Al-Jazari Academy Jazari Academy Jazari Academy Jazari Academy Jacari Academy

Decisions

- Technical Advisory Committee approved the proposed schedule and content of professional training for "Leakage Control, Plumbing and Pipe Replacement Plan" from 18th to 20th October, 2023. (attached as Annex-A))
- Technical Advisory Committee approved the proposed schedule and content of professional training for "O&M of Electrical and Mechanical course" from 21st November to 23rd November, 2023. (attached as Annex-B)

DISCUSSIONS

The Meeting started with opening remarks and welcome from the Chairperson.

- Engr. Rebia Suhail explained the plan of professional training "Leakage Control, Plumbing and Pipe Replacement Plan", which includes new topics of training regarding reduction of physical losses.
- Mr. Hisham highlighted that practical activity on 3rd day for leakage detection complements the overall purpose of instant training. However, the use of leak detection equipment is not feasible in water supply system of WASA Lahore owing to limited access & insufficient number of known valves locations, and low pressure in distribution lines due to intermittent water supply. However, he explained that it might be feasible to use equipment in Johar Town Pilot area/training center Gulshan-e-Ravi. He further apprised that WASA Lahore is developing Pilot DMAs where leakage detection activity can be carried out on routine basis.
- Mr. Jawad Shahid shared his experience in Phase 1 on the difficulty of identifying leakage from water pipe deeply installed from the surface of ground even through use of equipment.
- Engr. Rebia Suhail said if site was not arranged then leakage detection yard may be used for practical activity, which was established in Phase-1 at AJWA.
- Mr. Hafeez explained that the training would be for beginners' level and related to patrol along pipelines. The activity regarding leakage training was proposed at a site near the academy.
- Mr. Rohan explained that WASA Faisalabad has only 3 isolated areas with sufficient pressure for leak detection activity. Sometimes acoustic leak detector & helium method is not suitable under service condition of WASA Faisalabad. We should obtain knowledge and skills on some other ways and easier methods to identify leakages.
- Mr. Hisham explained that leakage detection in water supply lines is carried out mostly for resolving complaints of water shortage, low pressure or contaminated water without use of equipment. However, focus should also be diverted towards using leakage detection equipment for water conservation.

32

- Ms. Zaeema asked whether the nomination for the training topic on EPAnet software is separately selected or not.
- Engr. Rebia Suhail explained that the same or new trainees may participate in the course of "Leakage Control, Plumbing and Pipe Replacement Plan". However, WASA can decide who to nominate either the same as before or new. The training will include i) an inspection of theoretical data by EPAnet and actual values from water distribution model, and ii) analysis by comparison of both data.
- Mr. Salman Hashmi explained the plan of professional training "O&M of Electrical and Mechanical course".
- Mr. Hisham highlighted the comparison of feedback options in "Leakage Control, Plumbing and Pipe Replacement Plan" and "O&M of Electrical and Mechanical course". He suggested to use indicator of "not satisfactory" etc. in place of "Satisfactory" or "Good" as minimum level of grading.
- Engr. Rebia Suhail explained that we attended the international training, which recommended not to use such words due to discouragement of the trainer.
- Mr. Salman Hashmi informed that the feedback is now being used as shown in his course.
- Mr. Hafeez appreciated the Energy Audit activity, however he expressed that importance shall be given for recommendation of remedy (e.g.to use bigger impeller instead of replacing new pump and motor to improve discharge)
- Mr. Roohan suggested to include training on setting of critical temperature of motor thermistors.
 relays, their configurations, and pump sizing.
- Mr. Salman Hashmi explained that these are considered as "design component", which are not required to be added in this time.
- Mr. Hisham elaborated that recommended setting of breakers for motor protection or preventive
 action in case of some emergency situations/ trouble shooting may be added. He further
 recommended that input of KSB/Progressive may be sought on the remedies in practice during dayto-day trouble shooting activities as they are involved as outsourced-contractor for O&M of
 Tubewells of WASA Lahore.
- Mr. Abid Hussainy raised that due to Audio issue at last session of meeting, the committee could
 not get comments or reviews of WASA Gujranwala, Faisalabad and Multan on professional training.
 It was proposed to share the PPTs with WASA's comments and suggestion to be incorporated as
 appropriated for the upcoming training.

花

添付資料 5.1.40 第 9 回 TAC の議事録(開催日: 2023 年 12 月 1 日)

9TH TECHNICAL ADVISORY COMMITTEE MEETING FOR THE PROJECT TITLED "THE PROJECT FOR IMPROVING THE CAPACITY OF WASAS IN PUNJAB PROVINCE PHASE 2"

Lahore, December 1st, 2023.

Mr. Mian Munir

Deputy Managing Director(F,A&R)

WASA Lahore

3左京(中華 Dr. Nobuyuki Sato, Chief Technical Advisor,

JICA Expert Team

Subject:		ting for the Project Titled "The Project for
	Improving the Capacity of WASAs in P	unjab Province Phase 2"
Date:	Friday, December 1st, 2023	Time: 11:00 am
Venue:	Head Office, WASA Lahore.	
Participants:	Pakistani side: Mr. Mian Munir, Deputy Managing Mr. Hisham Pervaiz Vasser, Project (Foreign Trainings), WASA Lahore Mr. Riaz Mujtaba, Director Training Mr. Abdul Latif, Director Planning a Ms. Zaeema Aman, Deputy Director Mr. Asad Ali, Deputy Director Design Mr. Hassaan Ullah Khan, Section Officeror Mr. M. Nadeem, Deputy Director, W. Mr. Abdul Wahab, Deputy Director (Online) Mr. Muhammad Haseeb, AD M&E, Mr. Muhammad Irfan, Water & Sew Mr. Syed Fahad Hussain, Instructor Mr. Muhammad Uzair Safdar, Instructor Mr. Muhammad Uzair Safdar, Instructor Mr. Tatsuo Tomidokoro, JICA Experts Mr. Yusaku Numajiri, JICA Experts Mr. Muhammad Hafeez, JICA Coord	and Evaluation, WASA Lahore Training, WASA Lahore gn, WASA Faisalabad fficer (Technical), HUD & PHED (Online) WASA Multan (Online) Operation and Maintenance. WASA Gujranwala WASA Rawalpindi (Online) Verage Specialist (AJWA) Sewerage (AJWA) Inctor Water Quality (AJWA) IICA Experts Team Interest Team (Online) Team (Online) Team (Online) dinator
Decisions		ewerage and Drainage" from 12 th to 14 th December

DISCUSSIONS

The Meeting started with opening remarks and welcome from the Chairperson.

- Syed Fahad Hussain explained the agenda of the meeting and started his presentation on Professional Training of "O&M of Sewerage & Drainage" from 12th to 14th December 2023.
- His explanation included the revised contents, which are i) Analysis of Crown Failure Data on mWater Portal, ii) Visiting Faculty from WASA Multan to share their knowledge regarding crown failures, iii) Use of Metal Locator to find out the lost / buried manholes (previous training feedback), iv) Estimation of drain sludge volume using mWater (previous training feedback).
- Mr. Hassaan commented that foreign countries having same issues such as crown failure etc. should also be included in the training.
- Mr. Irfan explained that example of WASA Multan is included in the training. The international
 examples will also be considered for future trainings.
- Mr. Hisham said that WASA Lahore also faces crown failure issues and have more experienced
 officers regarding the issue on crown failure. The experience on WASA Lahore could also be added
 into the trainings.
- Mr. Irfan acknowledged it.
- Mr. Irfan explained real time calculation of sludge which includes i) sludge measuring rod, ii) cross section, iii) length of the drain etc.
- Mr. Hisham mentioned that sections of drains are not uniform and varies width and depth at place
 to place. In case of the calculation by WASA, bucket size, excavator type, capacity of dump truck,
 number of buckets are used. Therefore, this method shall be more useful and included in the
 training.
- Mr. Irfan acknowledged to add WASA's calculation methodology.
- Dr. Sato emphasized that the coordination between WASA expert and academy shall be made before training.
- Mr. Hafeez emphasized that calculation should be made on intermediate / secondary drain around 20 feet wide instead of a small width drain at Moulana Shoukat Ali Road, which is usually chosen by the AJWA for this purpose.
- Mr. Hisham mentioned that crown failure are few in a year. Therefore, the data registration on mWater would not be so beneficial. On the other hand, the leakage issue occurs daily basis repaired by the lower staff. These are not much known to the management. Therefore, the leakage data may be beneficial to be saved on mWater for the information to the management.

- Mr. Nadeem highlighted that the issue of crown failure is very critical as they have been facing
 multiple crown failure complaints all around Multan. A map showing the location of crown failure
 in Multan was also shown in the meeting and emphasized the importance of analysis.
- Ms. Zaeema mentioned regarding a proposal of Mr. Tomidokoro that the field staff shall be included for the training since the staff have less theoretical knowledge of crown failure.
- Mr. Hafeez mentioned that material of manhole cover has been shifted from metallic to nonmetallic. Therefore, metal locators will not be used for finding manhole covers.
- Mr. Hisham mentioned that WASA should be careful and more vigilant when there is road
 construction work because it is very difficult to find non-metallic manhole covers once covered by
 under asphalt. Therefore staff need to mark manholes on m-water or GIS.
- Mr. Hassaan mentioned according to his experience in attending the training that in many cases, guest speakers explained more to field work with a wide variety of experiences but less academic concept and less skill as lecturers. AJWA and WASA Training Center need to be considered.
- Mr. Irfan acknowledged it.
- Ms. Zaima suggested a meeting with the guest speaker before the training.
- Mr. Irfan thanked JICA and Japanese experts. He mentioned that he learned a lot from JICA projects since 2016.
- Mr. Hisham thanked everyone and closed the meeting.

3/2

添付資料 5.1.41 2022 年夏季研修コースのスケジュール

Operation & Maintenance of Sewerage and Drainage System Training Schedule (JICA Phase-II) 2022

			Session-1			Session-2			Session-3	3		
r. lo.	Day and Date	Module Name	1 st L	1 st Lecture 2 nd Lecture		Tea 10:45 am-11:00 am	3 rd Le	3 rd Lecture 4 th Lecture		Lunch 1:15 pm-2:00 pm	5 th Lecture	6 th Lecture
			09:00 am-9:15 am	9:15 am-10:00 am	10:00 am-10:45 am		11:00 am-11:45 am	11:45 am-12:15 pm	12:15 am-1:15 pm		2:00 pm-3:30 pm	3:30 pm-4:00 pm
	Monday June 13, 2022	Module 01 Cleaning of Sewerage & Drainage Pipelines	Welcoming Remarks Participant Introduction Course Overview Training Expectations	Removal of Blockages in Sewer Lines Latest Cleaning Techniques of Sewerage & Drainage System	Introduction to Sewer Camera (Parts + Working) (Demonstration) Repair & Maintenance of Sewerage & Drainage Pipelines	ion)	FIELD WORK (Unpack-Assemble-Install-Use-Packing) • Manhole & Sewer & Inspection with Camera		FIELD WORK • Manhole & Sewer & Inspection with Camera (Evalution of Manhole & Sewer)	Quick Win Measures (QWMs) Conclusion on Day's Activities		
	Tuesday Jun 14, 2022	Flow Measurement of Open Channels	Recap of Previous Day Activities	Objectives Types of Drains Methods & Formulae	FIELD WORK (Unpack- Assemble- Install-Use- Packing) • Velocity Meter	Tea Break (As per Site Visit Situation)	FIELD WORI (Unpack-Assemb • Velocity Meter	K lle-Install-Use-Packi	ing)	Lunch & Prayer Break (As per Site Visit Situation)	FIELD WORK • Measuring Flow Velocity in Open Chanel • Calculation of Flow Rate	Quick Win Measures (QWMs) Conclusion on Day's Activities
	Wednesday Jun 15, 2022	Module 3 & 4 Wastewater Treatment (WWT)	Basics of WWT WWT Technologies	Rapid Testing of Wastewater Samples with Kits (BOD, pH, DO)	How to Clean & Maintain Ponds of WWTP		Fianacial Compari w.r.t. CAPEX & OF	son of Various Techr PEX	nology		Most Suitable Technology	Reflections Group Picture Certificates

Academy Team: Engr. Muhammad Irfan, Engr. Syed Fahad Hussain, Engr. Haris Bin Khawar

Time Schedule of O&M of Mechanical Equipment Training (Draft)

1st Day: 16th June (Thu)						
Time	Activity	Notes				
9:30 to 9:45	Introduction					
	Orientation					
	Basics of Pump	Exercise by using the pump model				
9:45 to 11:00	Typical components of pump facility. Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head) Electrical parameters (Voltage, Ampere)	Trainees will check/measure each parameter by themselves.				
	• Parallel & series pump operation					
	Pump performance curve (Relationship between flow and discharge pressure) Relationship between flow and current	Trainees will demonstrate each iems by using the pump model.				
	Understanding of Ultrasonic Flow Meter	Exercise by using the pump model				
11:00 to 12:00	*What will happen if we don't follow 10d recommendatio *What will happen if the setting value of pipe thickness is wrong? *What will happen if the setting value of pipe diameter is wrong? *What will happen if the setting of pipe material is wrong *What will happen if the installation distance of sensor is not proper?	Trainees will demonstrate each iems by using a ultrasonic flow meter on the pump model.				
12:00 -13:00	Basics of Asset lifecycle analysis with examples.	Concept of Asset Life cycle analysis				
13:00 to 14:00	Lunch & Prayer Break					
14:00 to 15:00	Data Analysis Making a pump performance curve by Excel.	Exercise by using Excel. (PCs shall be prepared.)				

2nd Day: 17th June (Fri)						
Time	Activity	Notes				
9:30 to 10:30	Vibration Analysis and its importance Understanding of Vibration Meter *Use of Vibration Meter * Installation of Vibration Meters on Machinery					
10:30 to 11:00	Move to the Site					
11:00 to 13:00	Site Visit to WASA Disposal Station Prepration of Mainteniance Plan for Facility Vibration Measurement	Practical Training at the site				
13:00 to 14:00	Vibration measurement					
14:00 to 14:45	•Filling the record sheet					
14:45 to 15:00	Lunch & Prayer Break					
	Preparation of Report, Q&A					
	Closing					

添付資料 5.1.42 2022 年秋季研修コースのスケジュール

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

Tuesday October,2022

The state of the s		
Time	Topics/Description	Resource Person
08:30 am - 09:00 am	Attendance and Seating	Muhammad Mujahid
09:00 am - 09:10 am	Recitation of Holy Quran	
Opening Session		
09:10 am - 9:20 am	Opening and Welcome Remarks	Principal AJWA
09:20 am - 09:30 am	Introduction - Participants and Trainers Expectations from the Training	All
09:30 am - 09:40 am	Contents and Objectives of the Course	Engr. Rebia Suhail
Ice-Breaking Session		
09:40 am - 10:00 am	Ice-Breaking:	Ms. Najam-ul-Sahar
10:00 am - 10: 15 am	Program Agenda of Training	Engr. Rebia Suhail
Introductory Sessions		
10:15 am - 10:30 am	Introduction to m-Water App	Engr. Rebia Suhail
10:30 am - 11:00 am	Downloading and Installation of M-Water App/Portal	Engr. Haris-Bin-Khawar
11:00 am – 11:15	Tea Break	
11:15 am - 11:30 am	Activity Form (Form Filling)	Engr. Haris-Bin-Khawar
11:30 am - 12:30 pm	Form Creation Activity	All
12:30 am - 01:00 pm	Worksheet (Assignment)	All
01:00 pm – 02:00 pm	Lunch and Prayer Break	
02:00 pm – 02: 30 pm	Introduction to Q-GIS	Engr. Uzair Safdar and Muhammad Mujahid
02:30 pm – 03: 00 pm	M-Water Data Input in Q-GIS	All
03:00 pm – 03:30 pm	Visualization and Presentation of Leakage Repair Data in Q-GIS	All
03:30 pm – 03:45 pm	Presentation of Activity	Participants
03:45 pm – 04:00 pm	Implementation Plan in all WASAs/Departments	Participants

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

Wednesday October,2022

	,	
Time	Topics/Description	Resource Person
09:00 am - 09:15 am	Attendance and Seating	Course Team
09:15 am - 09:30 am	Pre-Evaluation Form	Rabbia Naimat
Opening Session		
09:30 am - 9:40 am	Module Overview	Mr. Kayanoma
09:40 am - 09:50 am	Course Objectives	Engr. Fahad Hussain
09:50 am - 10:00 am	Program Agenda & Learning Outcomes	Engr. Rebia Suhail
Interactive Sessions		
10:00 am - 10:30 am	Demonstration of Water Pipe Network Model	Engr. Fahad Hussain
10:30 am - 11:00 am	Identification of components (Activity)	Engr. Rebia Suhail
11:00 am - 11:15	Tea Break	
11:15 am -11:45 am	Assembling and Dissembling of Different Type of Meters	Engr Fahad Hussain and Mr. Kayanoma
11:45 am - 12:15 pm	How to Read the water meters (Activity)	Course Team and Participants
12:15pm – 12:45 pm	Comparison of Bulk Meter with Consumer Meters (Activity)	Course Team and Participants
12:45 am – 01:15 pm	Measure NRW by Creating Leakage	Engr Fahad Hussain
01:15 pm – 02:00 pm	Lunch and Prayer Break	
02:00 pm – 02:30 pm	Water Meter Accuracy by using Bucket of 5 Liter (Activity)	Course Team and Participants
02:30 pm – 03:00 pm	Pressure and Flow Measurements by using Gate Valve	Mr. Wajih (JICA Team)
03:00 pm – 03:40 pm	Cutting and Jointing of PPRC Pipe (Activity and Competition)	Participants & Course Team
03:40 pm – 03:50 pm	Post Evaluation Forms	Najam-ul-Saher
03:50 pm – 04:00 pm	Conclusion on day's Activities	Engr. Rebia Suhail

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

Thursday
October,2022

Time	Topics/Description	Resource Person
09:00 am - 09:30 am	Attendance and Seating	Muhammad Mujahid
09:30 am - 09:40 am	Pre-Evaluation Form	Rabbia Naimat
Opening Session		
09:40 am - 09:50 am	Module Overview	Dr. Satu
09:50 am - 10:00 am	Program Agenda and Learning Outcomes	Engr. Rebia Suhail
10:00 am - 10:05 am	Course Objectives	Engr. Farhan Riaz
Interactive Sessions		_
10:15 am - 10:30 am	Parameters of HDPE Pipes	Engr. Farhan Riaz
10:30 am - 11:00 am	Exercise on Calculation of SDR & MOP	All Participants
11:00 am - 11:15	Tea Break	
11:15 am - 11:30 am	Assembling and Dissembling of Valves	Engr. Farhan Riaz
11:30 am – 12:00 pm	Components of Valves (Activity)	All Participants
12:00 pm – 12:15 pm	Demonstration of Pressure Test Activity	Engr. Farhan Riaz
12:15 pm – 01:15 pm	Activity on Pressure Testing Model	All Participants
01:15 pm – 02:00 pm	Lunch and Prayer Break	
02:00 pm – 02: 15 pm	Post Evaluation Form	Najm-ul-Saher
02:15 pm – 02: 30 pm	Reflections and Submission	All Paricipants
02:30 pm – 02:45 pm	Closing Remarks	Principal/VP
02:45 pm – 03:00 pm	Certificate Distribution and Group Photo	

O&M of Electrical and Mechanical Equipment 8th to 10th November 2022

Training Schedule

Sr. No.	Day & Date	Session I 09:00 AM - 10:00 AM	Session II 10:00 AM - 11:00 PM		Session III 11:15 AM - 12:00 PM	Session IV 12:00 PM - 01:00 PM		Session V 02:00 PM - 03:00 PM
1	Tuseday 8th Nov 2022	- Introduction and Icebreaking - Expectations from Training -Introduction to Motor Control Unit -Operation of each component of MCU	Connection and use of following items in Circuit MCU Switch ON / OFF MCCB / MCB Magnetic Contactor Electronic OV / UV Relay Curcuit Switch ON / UV Relay Use of following items in circuit -Timer Relay -Voltmeter and ammeter -Water level switch for submersible pumps Circuit 2. Star Delta Circuit		Sizing of electrical Circuits Cable Sizing MCCB Magnetic Contactor			
2	Wednesday 9th Nov 2022	Previous Day's Wrap-up -Insulation testing of Control Panel -Earth resistance Testing -Power Factor improvement	Pratical Acticity on Energy Audit using miniature pumping station -Electrical Parameters of Energy Audit - Mechanical Parameters of Energy Audit - Pump Performance Curve - Specific Energy	Tea Break	Hands on Activity on Miniature Pumping Station Typical components of pump facility. Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head) Parallel & series pump operation QH Curve- Flow and Current Correlation Pump performance curve(Relationship between flow and discharge pressure) Comparison of Ultrasonic Flow meter with Velocity type Water meter	Facility Failure analysis -Pump Failure -Motor Failure -Control Panel Failure	Lunch and Prayer Break	Causes of Failure for -Vertical turbine Pump -Submersible Pump
3	Thursday 10th Nov 2022	Previous Day's Wrap-up -How to Prepare Energy Audit Report -Energy Assesment Tool -Data Collection and Analysis using Excel -Energy benchmarking	Actual Issues faced during Energy Audit by WASAs -How to Prepare Energy Development Plan		Industrial Visit to Control Panel Manufacturer or Field Visit to WASA Tubewell, Disposal Station Prepration and implementation of Mainteniance plan for Facility - Energy Audit at WASA Tubewell -Hands on Use of Power Analyzer, Ultrasonic flow meter, power meter, Water Level Detector, Vibration Meter, Earth Resistance Tester. etc			Prepration of Mainteniance Schedule by Participants Process Improvement Operations Optimization Efficiency Planning Feedback on topics for upcoming training Evaluation of training Closing ceremony

Course Lead:	Mr. Jawad Shahid, Mr. Tabusa
Course Team	Mr. Farhan Riaz, Mr. Mujtaba Bashir, Mr. Talha Rashid

Operation & Maintenance of Sewerage and Drainage System Training Schedule (JICA Phase-II) 2022

				Session-1				Session-2		Session-3						
S		Day and Date	Module Name	1 st Lo	ecture	2 nd Lecture	Tea 11:00 am-11:20 am	3 rd Lecture	Lunch 1:15 pm-2:15 pm	4 th Lecture	6 th Lecture					
				09:00 am-9:15 am	9:15 am-10:00 am	10:00 am-11:00 am		11:20 am-01:15 pm		2:15 pm-3:15 pm	3:15 pm-3:30 pm					
	1	Tuesday 22 November 2022	Module 01 Cleaning of Sewerage & Drainage Pipelines	Welcoming Remarks Recitation of Holy Quran & National Anthem Participant Introduction Course Overview	Activity • Sewer / Manhole Camera (Public Awareness Regarding Overfle	s to Children		tion)	tion)	FIELD WORK Demonstration Introduction to Sewer Camera (Parts + Working) (Unpack-Assemble-Install-Use-Packing) Manhole & Sewer Inspection with Camera		tion)	ion)	ition)	FIELD WORK • Manhole & Sewer Inspection with Camera	Quick Win Measures (QWMs) Conclusion on Day's Activities
	2	Wednesday 23 November 2022	Module 02 Flow Measurement of Open Channels	Recap of Previous Day Activities	Class Room Activ (Unpack - Assem Use - Packing) • Velocity Meter	•	Tea Break (As per Site Visit Situation)	FIELD WORK (Unpack-Assemble-Install-Use-Packing) • Velocity Meter • Measuring Flow Velocity in Open Chanel	Lunch & Prayer Break (As per Site Visit Situation)	Class Room Excercise Calculation of Flow Rate	Quick Win Measures (QWMs) Conclusion on Day's Activities					
:	3	Thursday 24 November 2022	Module 03 Wastewater Treatment (WWT)	Recap of Previous Day Activities	Rapid Testing of N Samples with Kits (BOD, pH, DO)			Basics of WWT Procedure for Selecting Best Wastewater Treatment Technologies (Comparison of Process, Land Requirement, Required Effluent Quality, CAPEX&OPEX)		Cost Estimation of Sludge Removal including Volume Calculation and Work Plan Methodology	Reflections Group Picture Certificates					

JICA Team: Mr. Tomidokoro, Engr. Wajih Course Lead: Engr. Syed Fahad Hussain, Course Team: Engr. Muhammad Irfan

O&M of Electrical and Mechanical Equipment 26th to 28th December 2022

Training Schedule

Sr. No.	Day & Date	09:00 AM - 10:00 AM	10:00 AM - 11:00 PM		11:15 AM - 12:00 PM	12:00 PM - 01:00 PM		02:00 PM - 03:00 PM
1	Monday 26th December 2022	Orientation Session - Introduction and Icebreaking - Expectations from Training - Introduction to Pumps Introduction to Motors Operation and Maintenance of Pump Operation Data Tube well and Disposal Station and link and for record keeping Use of mWater application Introduction, Installation and Uses in Field Basic O&M of 3-Phase induction motor Reliability based preventative maintenance of Record the data for maintenance of motors using m-water application Energy Audit Parameters link with M-water application - How to create form on m-water application of electrical and mechanical components - How can use the data and link with QGIS			Operation and maintenance of valves on Tube well ,Disposal and on pipe netwrok and record its data on m-water Application			
2	Tuesday 27th December 2022	- Electrical Parame - Mechanical Param - Pump Perfo	miniature pumping station ters of Energy Audit eters of Energy Audit rmance Curve ic Energy	Tea	Hands on Activity on miniature pumping station - Typical components of pump facility - Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head) - Parallel & series pump operation - Flow and Current Correlation - Pump performance curve (Relationship between flow and discharge pressure) - Comparison of Ultrasonic Flow Meter with Velocity type Water Meter - mWater exercise	mp facility ow Rate, 1 Head) peration elation telationship pressure) Flow Meter Meter Making pump performance curves in case of single, parallel and series pump operation Data collection and Analysis using Microsoft Excel - mWater exercise		Scnario Based Learing Activity - Pump Failure - Motor Failure - Control Panel Failure Causes of Failure for - Vertical turbine Pump - Submersible Pump - Protection measures for Pumps
3	Wednesday 28th December 2022	Last Day's Wrap-up - How to prepare Energy Audit Report - Energy Assesment Tool - Data Collection and Analysis using Excel - Energy benchmarking	- Hands on use of Power Analyzer, U		Prepration of Mainteniance Plan for Facility (Process Improvement, Operations Optimization, Efficiency Planning) Feedback on topics for upcoming training & Closing Ceremony			

添付資料 5.1.43 2023 年春季研修コースのスケジュール

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

Tuesday Januaru,2023

Time	Topics/Description	Resource Person
09:15 am - 09:30 am	Attendance and Seating	Muhammad Mujahid
09:30 am - 09:35 am	Recitation of Holy Quran	Muhammad Mujahid
09:35 am - 09:40 am	National Anthem	Waqas
Opening Session		
09:40 am - 9:45 am	Opening and Welcome Remarks	Principal/VPAJWA
09:45 am - 09:55 am	Introduction - Participants and Trainers Expectations from the Training	All
09:55 am - 10:05 am	Module Overview	Mr. Kayanoma
10:05 am - 10:15 am	Program Agenda & Learning Outcomes	Engr. Rebia Suhail
Interactive Sessions		
10:15 am - 10:40 am	Demonstration of Water Pipe Network Model	Engr. Fahad Hussain
10:40 am - 11:00 am	Identification of components (Activity)	All Participants
10:40 am - 11:00 am 11:00 am - 11:15	Identification of components (Activity) Tea Break	All Participants
		All Participants Engr. Fahad Hussain
11:00 am – 11:15	Tea Break	
11:00 am – 11:15 11:15 am –12:00 am	Tea Break Hands on Activity on Model	Engr. Fahad Hussain Engr. Fahad and
11:00 am - 11:15 11:15 am -12:00 am 12:00 am - 12:45 pm	Tea Break Hands on Activity on Model How to Read the water meters (Activity) Assembling and Dissembling of Different	Engr. Fahad Hussain Engr. Fahad and Participants Engr Fahad Hussain
11:00 am - 11:15 11:15 am -12:00 am 12:00 am - 12:45 pm 12:45pm - 01:15 pm	Tea Break Hands on Activity on Model How to Read the water meters (Activity) Assembling and Dissembling of Different Type of Meters	Engr. Fahad Hussain Engr. Fahad and Participants Engr Fahad Hussain and Mr. Uzair
11:00 am - 11:15 11:15 am -12:00 am 12:00 am - 12:45 pm 12:45 pm - 01:15 pm 12:45 am - 01:15 pm	Tea Break Hands on Activity on Model How to Read the water meters (Activity) Assembling and Dissembling of Different Type of Meters Ultra-Sonic Flow meter	Engr. Fahad Hussain Engr. Fahad and Participants Engr Fahad Hussain and Mr. Uzair Uzair and Mujtaba Engr. Uzair Safdar
11:00 am - 11:15 11:15 am -12:00 am 12:00 am - 12:45 pm 12:45 pm - 01:15 pm 12:45 am - 01:15 pm 01:15 pm - 02:00 pm	Tea Break Hands on Activity on Model How to Read the water meters (Activity) Assembling and Dissembling of Different Type of Meters Ultra-Sonic Flow meter Lunch and Prayer Break	Engr. Fahad Hussain Engr. Fahad and Participants Engr Fahad Hussain and Mr. Uzair Uzair and Mujtaba
11:00 am - 11:15 11:15 am -12:00 am 12:00 am - 12:45 pm 12:45 pm - 01:15 pm 12:45 am - 01:15 pm 01:15 pm - 02:00 pm 02:00 pm - 02:30 pm	Tea Break Hands on Activity on Model How to Read the water meters (Activity) Assembling and Dissembling of Different Type of Meters Ultra-Sonic Flow meter Lunch and Prayer Break Introduction to EPA.NET	Engr. Fahad Hussain Engr. Fahad and Participants Engr Fahad Hussain and Mr. Uzair Uzair and Mujtaba Engr. Uzair Safdar Participants &

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

2nd Day

Wednesday
January,2023

Time	Topics/Description	Resource Person
09:15 am - 09:30 am	Attendance and Seating	Muhammad Mujahid
09:30 am - 09:40 am	Pre-Evaluation Form	Rabbia Naimat
Opening Session		
09:40 am - 09:50 am	Program Agenda and Learning Outcomes	Engr. Rebia Suhail
09:50 am - 10:00 am	Course Contents and Objectives	Engr. Farhan Riaz
Interactive Sessions		
10:00 am - 10:30 am	Demonstration for Procedure of Butt Fusion Welding	Engr. Farhan Riaz
10:30 am - 11:00 am	HDPE Pipes Parameters	Engr. Farhan Riaz
11:00 am - 11:15	Tea Break	
11:15 am – 11:30 am	Exercise on Calculation of SDR & MOP	All Participants
11:30 am – 12:30 pm	Hands-On Activity on Butt Fusion	All Participants
12:30 pm – 01:15 pm	Assembling and Disassembling of Valves and Threads (Activity Group1 & Group 2)	Engr. Farhan Riaz & Engr. Uzair Safdar
01:15 pm – 02:15 pm	Lunch and Prayer Break	
02:15 pm – 02: 30 pm	Post Evaluation Form	Pedagogy Team
02:30 pm – 02: 45 pm	Downloading and Installation of M-Water App/Portal	Engr. Uzair & Muhammad Mujahid
02:45 pm – 03:00 pm	Conclusion on day's Activities	Engr. Rebia Suhail

3-Days Training on "Leakage Control, Plumbing and Pipe Replacement Plan"

3rd Day

Thursday
January,2023

Time	Topics/Description	Resource Person
09:15 am - 09:30 am	Attendance and Seating	Muhammad Mujahid
09:30 am - 09:40 am	Pre-Evaluation Form	Ms. Rabbya Naimat
Opening Session		
09:40 am - 10:00 am	Program Agenda and Learning Outcomes	Engr. Rebia Suhail
10:00 am - 10:15 am	Course Contents and Objectives	Engr. Uzair Safdar
Interactive Sessions		
10:15 am - 11:15 am	Form Creation Activity	Engr. Uzair Safdar
11:00 am - 11:15	Tea Break	
11:15 am -12:30 pm	On Site Form Filling Activity	Participants & Course Team
12:30 pm – 01:15 pm	Introduction to Q-GIS	Engr. Uzair Safdar
01:15 pm – 02:15 pm	Lunch and Prayer Break	
02:15 pm – 02: 30 pm	M-Water Data Input in Q-GIS	Muhammad Mujahid
02:30 pm – 03: 00 pm	Visualization and Presentation of Leakage Repair Data in Q-GIS	Muhammad Uzair
03:00 pm – 03:15 pm	Presentation of Activity	All Participants
03:15 pm – 03:30 pm	Quiz	All Participants
03:30 pm – 03:40 pm	Post Evaluation Forms	Pedagogy
03:40 pm – 03:50 pm	Conclusion on day's Activities and Reflections	Participants
03:50 pm – 04:00 pm	Certificate Distribution and Group Photo	All Participants

Operation & Maintenance of Sewerage and Drainage System Training Schedule (JICA Phase-II) February 2023

			Session-1				Session-2		Session-3		
ir. Io.	Day and Date	Module Name	1 st L	ecture	2 nd Lecture	Tea 11:00 am-11:20 am	3 rd Lecture	Lunch 1:00 pm-2:00 pm	4 th Lecture	6 th Lecture	
			09:00 am-9:15 am	9:30 am-10:00 am	10:00 am-11:00 am		11:20 am-01:00 pm		2:00 pm-3:15 pm	3:15 pm-3:30 pm	
1	Tuesday 14 February 2023	Module 01 Cleaning of Sewerage & Drainage Pipelines	Recitation of Holy Quran Participant Introduction Course Overview	Demonstrat • Introduction to Se (Parts + Working) (Unpack-Assembl Packing) (Mr. Fahad)	wer Camera		ACTIVITY • Sewer / Manhole Inspection with Camera (Public Awareness to Children Regarding Overflow from Sewer) (Mr. Irfan & Mr. Fahad)		FIELD WORK • Manhole & Sewer Inspection with Sewer Camera (Mr. Fahad)	Quick Win Measures (QWMs) Conclusion on Day's Activities	
2	Wednesday 15 February 2023	Module 02 mWater	Recap of Previous Day Activities (Mr. Fahad)	Introduction to mV Downloading and mWater App/Porta (Mr. Uzair)	Installation of	Tea Break	Hands-On Exercise • Creation and Customization of Data Collection Form in mWater Portal (Mr. Uzair)	Lunch & Prayer Break	How to Visualize Overflow & Crown Failure Data in QGIS Analysis of Data in QGIS (Mr. Uzair)	Quick Win Measures (QWMs) Conclusion on Day's Activities	
3	Thursday 16 February 2023	Module 03 Flow Measurement & Wastewater Treatment	Recap of Previous Day Activities (Mr. Fahad)	• Flow Rate Calcula	·		Rapid Testing of Wastewater Samples with Kits (BOD, pH, DO) Sludge Estimation of Drain (Add on Demand) (Mr. Fahad)		Reflections Group Picture Certificates		

JICA Team: Mr. Tomidokoro Course Lead: Engr. Syed Fahad Hussain Course Team: Engr. Muhammad Irfan, Engr. Uzair Safdar

O&M of Electrical and Mechanical Equipment 7th to 9th March 2023

Training Schedule

Sr No	Day & Date	09:00 AM - 10:00 AM	10:00 AM - 11:00 PM		11:15 AM - 12:00 PM	12:00 PM - 01:00 PM		02:00 PM - 03:00 PM
1	Tuesday 7th March 2023	Orientation Session - Introduction and Icebreaking - Expectations from Training -Introduction to MCU -Types of Control Panels	Introduction to Different components of MCU -MCB, MCCB -Magnetic Contactors - Use of Protective relays -PFI Capacitors	Break	Identification and r Working and configuration Introduction to 1. DOL (Direct 2. Star Do Importance of Power Fe Single Line Diagram for Electrical Circuit Reliability based prev Cable sizing and equipment (M	elta Circuit actor Improvement Panel s, Causes and Effects of low Power Factor ventative maintenance		Hands on Activity Commissioning of a basic MCU Connection and use of following items in MCU Switch ON / OFF MCCB / MCB Magnetic Contactor
2	Wednesday 8th March 2023	Last Day's Wrap-up - Components of MCU -Types of Panels - Parameters of Pumps and Motors	Energy Audit Activity on miniature pumping station - Electrical Parameters of Energy Audit - Mechanical Parameters of Energy Audit - Pump Performance Curve - Scenario Based Learing Activity - Pump Failure - Motor Failure - Control Panel Failure Causes of Failure for - Vertical turbine Pump - Submersible Pump - Protection measures for Pumps	Tea	Hands on Activity on miniature pumping station - Typical components of pump facility - Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head) - Parallel & series pump operation - Flow and Current Correlation - Pump performance curve (Relationship between flow and discharge pressure) - Comparison of Ultrasonic Flow Meter with Velocity type Water Meter Exercise - Making pump performance curves in case of single, parallel and series pump	Use of mWater application - Creation of forms using mWater Application - Data Analysis using mWater Data collection and Analysis using Microsoft Excel	Lunch Break	Use of mWater applicaton - Data input and creation of forms Data collection and Analysis using Microsoft Excel
3	Thursday 9th March 2023	Last Day's Wrap-up - How to prepare Energy Audit Report - Energy Assessment Tool - Data Collection and Analysis using Excel - Energy benchmarking	Case Study Solarization of Disposal Station 0.75 MW Field Visit to WASA Disposal Station - Identification for capacity for generation of Solar Energy - Types of Panels and Inverters Installed - Use of Motor Starters - Substation for Net-Metering	Industrial visit to Largest control panel manufacturer of Pakistan PEMPAK Industries -Different techonologies on Control Panel Manufacturing -Variable Frequency Drive -Sync Panels -Multi-Feeder Panels -Preventative Maintenance Protocols - Preventative Maintenance Schedule			Prepration of Maintenance Plan for Facility / Action Plan according to Each WASA (Process Improvement, Operations Optimization, Efficiency Planning) Feedback on topics for upcoming training & Closing Ceremony	

添付資料 5.1.44 2023 年夏季研修コースのスケジュール

O&M of Electrical and Mechanical Equipment May-23

Training Schedule

Sr. No.	Day & Date	09:00 AM - 10:00 AM	10:00 AM - 11:00 PM		11:15 AM - 12:00 PM	12:00 PM - 01:00 PM		02:00 PM - 03:00 PM
1	First Day	 Introduction and Icebreaking Expectations from Training 	Operation and Maintenance of Pump Operation Data Tube well and Disposal Station and link and for record keeping use of mWater application Introduction, Installation and Uses in Field	ı Break	Asset Risk and Condition Assessment - Predictive Maintenance Techniques - Asset Risk and Condition Assessment of electromechanical components	- Introduction to mWater application dictive Maintenance Techniques et Risk and Condition Assessment of - How to collect and record data - Deployment of data collection forms for		Hands-on activity on assembly and disassembly of valves with basic operation and maintenance techniques
2	Second Day	Orientation Session - Introduction to performance measuring tools (Flow meter, Vibrometer, etc) - Parameters of Hands-on Activity	Hands-on Activity on Miniature Pumping Station - Typical components of pump facility - Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head) - Parallel & series pump operation - Flow and Current Correlation - Pump performance curve (Relationship between flow and discharge pressure) - Comparison of Ultrasonic Flow Meter with Velocity type Water Meter	Tea	Energy Audit Activity on miniature pumping station - Electrical Parameters of Energy Audit - Mechanical Parameters of Energy Audit - Exercise of Vibration & Ultrasonic Flow Meter - Pump Performance Curve Hands on Activity on miniature pumping station and data recording using mWater application.			Exercise - Demostration of Data Visualisation on mWater Portal - Introduction of pump performance curves in case of single, parallel and series pump operation
3	Third Day	Last Day's Wrap-up - How to prepare Energy Audit Report - Energy Assesment Tool - Data collection and Analysis using Excel - Energy benchmarking	Field Visit to WASA Tube Well Station - Understanding of actual O&M activities - Exercise of Vibration & Ultrasonic Flow Meter - Filling the daily and monthly inspection sheet - Measurement of Electrical Parameters - Measurement of Hydraulic Parameters - Measurement of Tube well pump Station - Flow measurement through different techniques - Hands on use of Power Analyzer, Ultrasonic Flow Meter, Water Level Detector, Vibration Meter, Earth Resistance Tester. etc - mWater exercise					Prepration of Mainteniance Plan for Facility (Process Improvement, Operations Optimization, Efficiency Planning) Feedback on topics for upcoming training & Closing Ceremony

LEAKAGE CONTROL, PLUMBING & PIPE REPLACEMENT PLAN

Tentative Training Schedule (JICA Phase-II) 2023

Sr. No.	Day & Date	Module Name	Introductory Session	Session-1 9:15 am-11:00 am		Session-2		Session-3 2:15 pm-3:30 pm	Closing Session
	29th May, 2023	Module 1 mWater App/Portal	Welcoming Remarks Participant Introduction Module Overview Expectations from Module	Introduction to M-Water App Downloading and Installation of M-Water App Practical Activity Data collection using mWater App in field related to Leakage repair work		Hands-On Exercise Case study regardiing various mWater forms alresdy in use in different WASAs Creation and customization of Data Collection Form in M-Water Portal		Hands on Exercise Introduction to DashBoard Feature in mWater Portal Creation of Dashboard in mWater Portal Use of filter in Excel to analyze data for pipe repalcement	Formative Quiz Conclusion on Day's Activities
2	30th May, 2023	Module 2 QGIS	Recap of previous Day Activities Contents & objectives of the course Expectations from Module	Knowledge Sharing Q-GIS by WASA Lahore (Visiting Faculty) Hands on Exercise Introduction to QGIS Using different features of QGIS Types of Data input in QGIS	Tea Break 11:00am-11:15 am	Hands on Exercise • Extracting data from mWater portal in excel Format • Importing mWater data in QGIS • How to Visualize Leakage Repair Data in QGIS • Analysis of Data in QGIS	Lunch & Prayer Break 1:15 pm-2:15 pm	How to create shapfile in QGIS and its utiliziation in Pipe Repalcement Planning	• Formative Quiz • Conclusion on Day's Activities
3	31st May, 2023	Module 3 EPANET	Recap of previous Day Activities Contents & objectives of the course Expectations from Module	Hands on Exercise Introduction to EPANET software Importance of EPANET Steps in using EPANET software Understanding the layout and different features of EPANET		Knowledge Sharing of Pipe Replacement Planning by WASA Lahore (Visiting Faculty) Hands on exercise		Hands on exercise	Certificate Distribution Group Photo

Chief Advisor: Dr. Sato

Japanese Expert: Mr. Kinno, Mr. Kayanoma

Course Lead :Engr. Rebia Suhail

Course Team: Engr. Muhammad Uzair Safdar, Muhammad Mujahid

添付資料 5.1.45 2023 年秋季研修コースのスケジュール

LEAKAGE CONTROL, PLUMBING & PIPE REPLACEMENT PLAN Training Schedule (JICA Phase-II) 2023

Sr. No.	Day & Date	Module Name	Introductory Session	Session-1	Session-2			Session-3	Closing Session	
1	Wednesday 18th OCT, 2023	Module 1 MWater	• Welcoming Remarks • Participant Introduction • Module Overview • Expectations from Module	9:45 am-10:45 am Hands-On Exercise Introduction to M-Water App Downloading and Installation of M-Water App/Portal Application of the Data Collection Form in Actual Repair Works al Activity on M-Water			12:00 am - 1:00 pm ata Collection Form in M-Water Portal nwater for effctive pipe repalcement		2:00 pm-3:30 pm Case study Guest lecturer Mr. Nadeem from WASA- Multan Share the experience and knowledge of mWatre. · Water leakage record · Costumer survey Based on the collected data how to analyse and use for futter pipe network plan.	Questionaries Conclusion on Day's Activities
2	Thursday 19th OCT, 2023	Module 2 Pip Replacement Planning	Module Overview Expectations from Module	Pipe network Model • Demonstration of Pipe Network Model • Name of each component and its role on pipe network model	Tea Break 10:45 am-11:00 am	Practical Activity EPANET Introduction to EPANET software –Interface		Lunch & Prayer Break 1:00 pm-2:00 pm	How to use EPANET for the calculation of water pressure and volume properly as pe water demand. Compare the acttual values with EPA NET Software values.	Questionaries Conclusion on Day's Activities
3	Friday 20th OCT, 2023	Module 3 Leakage Control	Module Overview Expectations from Module	Hands-On Exercise Introduction to NRW and its causes How to prevent and reduce Water Leakage The procedure of water leakage detection		Practical Activity Leakage survey at site The introduction of leakage detection equipment How to use leakage equipment Try to find actual leakage To record the data by mWater of site	Certificate Distribution Group Photo			

Chief Advisor: Dr. Sato

Japanese Expert: Mr. KAYANOMA

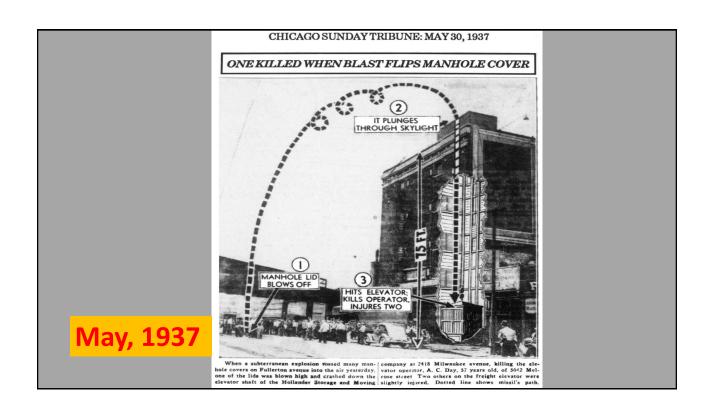
Course Lead :Engr. Rebia Suhail

Course Team: Engr. Syed Fahad Hussain, Engr. Farhan Riaz Engr. Uzair Safdar, Muhammad Mujahid

O&M of Electrical and Mechanical Equipment 21-23/NOV/2023

Training Schedule

Sr. No.	Day & Date	09:00 AM - 10:00 AM	10:00 AM - 11:00 PM		11:15 AM - 12:00 PM	12:00 PM - 01:00 PM		02:00 PM - 03:00 PM
1	21-Nov-23	Orientation Session - Introduction and Icebreaking - Expectations from Training -Introduction to MCU -Types of Control Panels	Introduction to Different components of MCU -Introduction to Motor Starters -Single Line Diagram for Electrical Circuits -Causes and Effects of low Power Factor	Break	Hands on Activity on Commissioning of a basic MCU -Connections of Magnetic Contactor, Push Buttons and Protective Relay -Connections of a DOL Starter			-Cable sizing and equipment (MCCB, MCB, Contactors Sizing)
2	22-Nov-23	Orientation Session - Introduction to performance measuring tools (Flow meter, Vibrometer, etc) - Parameters of Hands-on Activity	Operation and Maintenance of Pump and induction motor -Operation Data Tube well and Disposal Station -Link for record keeping by use of mWater application		Hands-on Activity on Miniature Pumping Station - Typical components of pump facility - Hydraulic parameters (Flow Rate, Discharge Pressure, Total Head) - Parallel & series pump operation - Flow and Current Correlation - Pump performance curve (Relationship between flow and discharge pressure) - Comparison of Ultrasonic Flow Meter with Velocity type Water Meter		Lunch Break	Energy Audit Activity on miniature pumping station - Electrical Parameters of Energy Audit & fill the form on mWater app - Mechanical Parameters of Energy Audit & fill the form on mWater app - Exercise of Vibration - Draw QH Curve on Excel
3	23-Nov-23	Last Day's Wrap-up - How to prepare Energy Audit Report - Energy Assesment Tool - Data collection and Analysis using Excel - Energy benchmarking	Energy Audit by KSB Team Introduction to Reverse Engineering Method					Prepration of Mainteniance Plan for Facility (Process Improvement, Operations Optimization, Efficiency Planning) Feedback on topics for upcoming training & Closing Ceremony


Operation & Maintenance of Sewerage and Drainage System Training Schedule (JICA Phase-II) December 2023


Sr. lo.	Day and Date	Module Name		Session-1		Tea 11:00 am-11:20 am	Session-2	Lunch 1:00 pm-2:00 pm	Session-3		
			09:30 am-9:45 am	9:45 am-10:15 am	10:15 am-11:00 am		11:20 am-01:00 pm		2:00 pm-3:00 pm	3:00 pm-3:30 pm	
1	Tuesday 12 December 2023	Module 01 Cleaning of Sewerage & Drainage Pipelines	Welcoming Remarks Participant Introduction Pre Evaluation Course Overview (JICA Expert)	Inspection of Sewe Introduction to Sev (Parts + Working) (Mr. Fahad)			FIELD WORK • Sewer / Manhole Inspection with Camera (Public Awareness to Children Regarding Overflow from Sewer) (Mr. Fahad)		Introduction to mWater App Installation of mWater App / Portal (Mr. Uzair)	Quick Win Measures (QWMs) Conclusion on Day's Activities	
2	Wednesday 13 December 2023	Module 02 Data Analysis mWater	Recap of Previous Day Activities	Creation & Custor Crown Failure Da Form in mWater (Mr. Uzair)	ata Collection	Tea Break	Analysis of Crown Failure Data on mWater Portal Analysis of Data in QGIS (Mr. Uzair)	Lunch & Prayer Break	Guest Lecturer (Mr. Nadeem - WASA Multan) Share the Experience of Crown Failures in Multan Identification of Root Causes Based on Historical mWater Data Remedial Measures & Future Planning		
3	Thursday 14 December 2023	Module 03 Field Activities	Recap of Previous Day Activities	FIELD WORI Use of Metal Local Premises) Mr. Irfan / Mr. Faha	itor (Academy		Guest Lecturer (Mr. Mehdi - WASA Lahore) Sludge Estimation of Drain Calculation using mWater (Current Practice in WASA Lahore)		Post Evaluation Reflections Group Picture Certificates		

JICA Experts : Dr. Noboyuki Sato, Mr. Tomidokoro Course Team: Engr. Syed Fahad Hussain, Engr. Muhammad Irfan, Engr. Uzair Safdar

添付資料 5.1.46	研修コース	「下水・排水	施設維持管理」	の教材	(2022 年夏季研	f修)

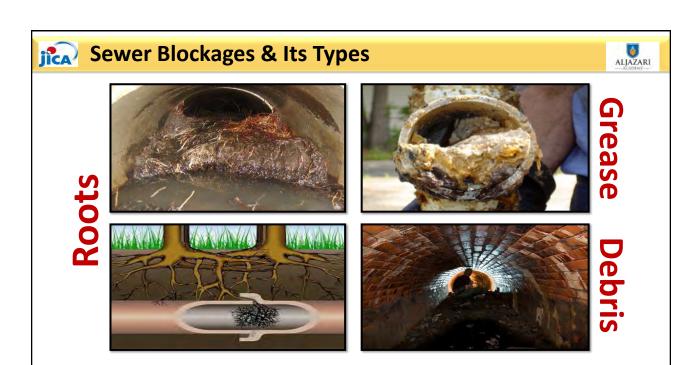
Candy Color Ideas

Blue: A boss you respected and why?

Green: A reason why you are proud to belong to your organization.?

Orange: An embarrassing moment at work.


Red: Your biggest working success.


Yellow: The funniest moment at work.

Purple: A time at organization where you have failed and, what you

learnt from it.

Reasons for Cleaning Sewer & Manhole

- 1. To remove the obstruction
- 2. To <u>reduce</u> the complaints regarding the bad odor
- 3. To minimize the overflow and ponding of sewage

Methods for Sewer & Manhole Cleaning

- 1) Manual
- 2) Mechanical
- 3) Hydraulic

4

Manual Method

Hand Rodding

Long strips from bamboo stem are taken and tailored to use as sewer cleaning rod between two consecutive manholes

Hand Rodding (Set Up and Procedure)

- 1. Ventilate the manhole and test for toxic gases, explosive gases, and oxygen level
- 2. Determine the depth of the manhole
- 3. Assemble sufficient rod

Mechanical Methods

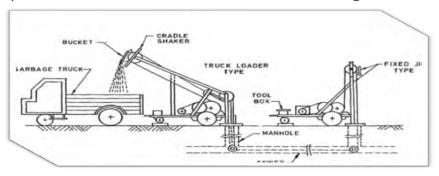
Power Rodding

- ☐ Power rodding machines use a steel rod to push or pull various clearing tools through sewers.
- ☐ These machines are of various designs and are equipped with a rod in a reel having lengths up to approximately 1,000 feet.
- ☐ This reel can be rotated to give turning action as the rod is pushed in or removed.

Bucket Machine (Winch Machine)

Equipment Set up

- 1) Position the two machines over the respective manholes
- 2) Place the pads under the stabilizer feet of the machine and jack them down. The lower manhole roller is lowered into the manhole.



Bucket Machine (Winch Machine)

Equipment Set up

- 4) To thread the sewer, a synthetic rope can be used
- 5) To this rope attach a nylon parachute designed for such use and allow this parachute to float downstream to the working manhole

Module-3 Lecture-6 Cleaning Techniques

12 / 19

Bucket Machine (Winch Machine)

Equipment Set up

- 6) The clearing bucket is now ready to be attached to the cable
- 7) As the bucket is pulled upstream into the material deposited in the sewer, a definite resistance can be noticed when the bucket is full
- 8) When the bucket is full, pull the loaded bucket back out of the sewer
- 9) Final cleanup is performed with special care given to washing down and completely cleaning the entire area

Module-3 Lecture-6 Cleaning Techniques

13 / 19

Hydraulic Methods

1 - Flushing

- 1. Start operation at the upstream end
- 2. Place the water line over the manhole
- 3. Clean the manhole first
- 4. Dumped some of the water
- 5. Observe any evidence of water backing up
- 6. Look for signs of grease & roots etc.
- 7. Close the manhole and go to downstream manhole
- 8. Repeat from manhole to manhole

2- Jetting and Sucking

The use of hydraulic pressure to de-silt sewers dates back to the early 1900s; however, this method has been developed with the passage of time by using high velocity cleaning machines

- ☐ High velocity cleaning machines are confidently used to:
 - **Open Stoppages**
 - Remove Grease
 - **Clean lines of Debris**
 - Wash Manholes and Wet Wells

Equipment Set up and Operation

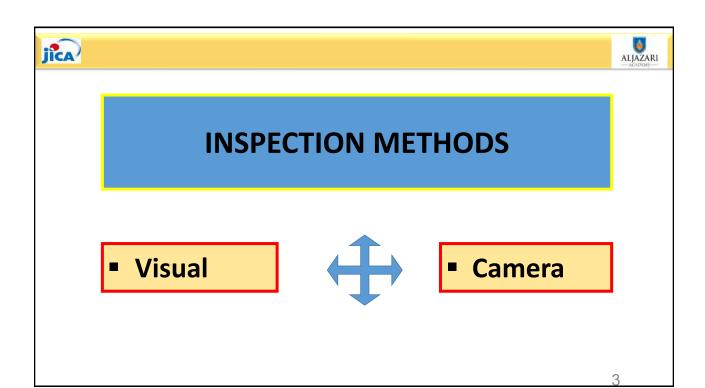
Sr. No.	Set up and working
1	Fill the water tank from a fire hydrant close to the area where you will do the cleaning
2	Start at the top or highest point in the collection system
3	Select the appropriate nozzle for the size of pipe to be cleaned
4	Install the proper size sand or debris trap in the downstream manhole
5	Turn the reel directional control to "Out" and lower the hose and cleaning nozzle into the manhole
6	Turn the water valve on and start the high pressure pump

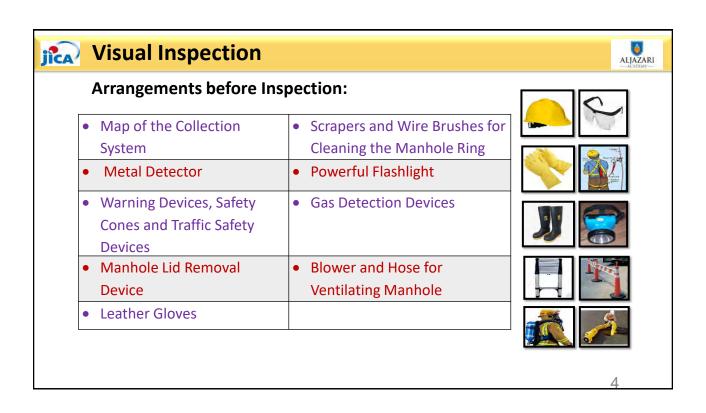
Equipment Set up and Operation

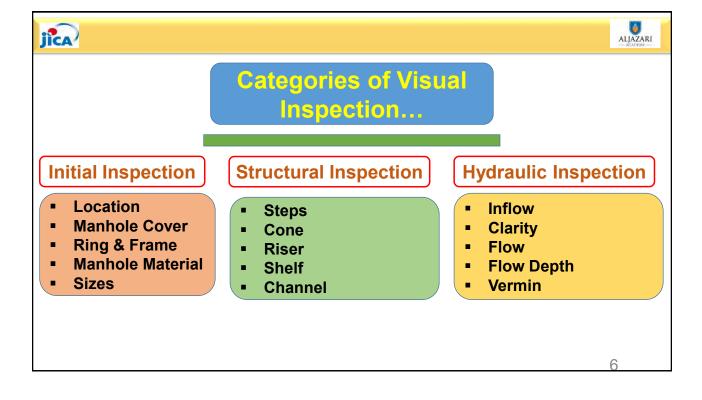
Sr. No.	Set up and working
7	First try 50 feet to check the situation in the sewer
8	By increasing pressure you may be able to go farther
9	Retest the manhole atmosphere for sewer gases to be sure the ventilation procedures are effective
10	Allow an operator properly equipped with a safety harness to enter the manhole and shovel the debris into a bucket which in turn is pulled to the surface with a hand line
11	During all this jetting operation sucking machine will suck all the dislodged silt and debris from the same manhole by a 4 inch hose
12	Sucker will be emptied at drain or some other purpose built area

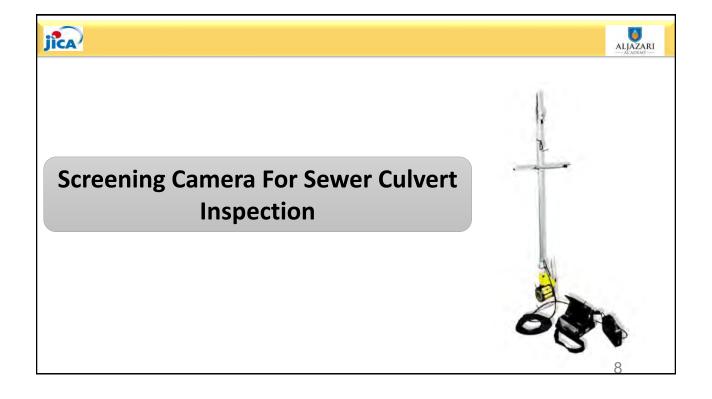
INSPECTION OF SEWER / MANHOLE

Objectives of Sewer Inspection

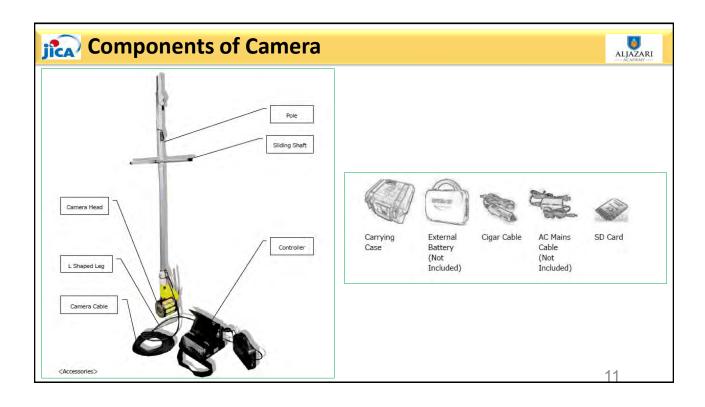


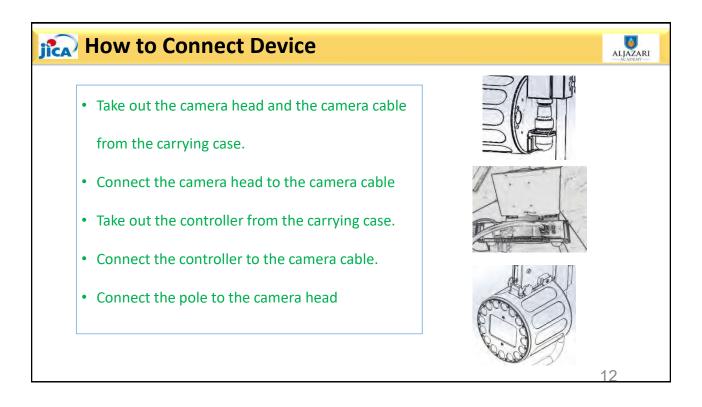

- To identify existing or potential <u>problems</u> in Sewer / Manhole
- To examine structural integrity of the Sewer / manhole
- To observe <u>functional capacity</u> of Sewer / manhole
- To generate concise and meaningful <u>reports</u>

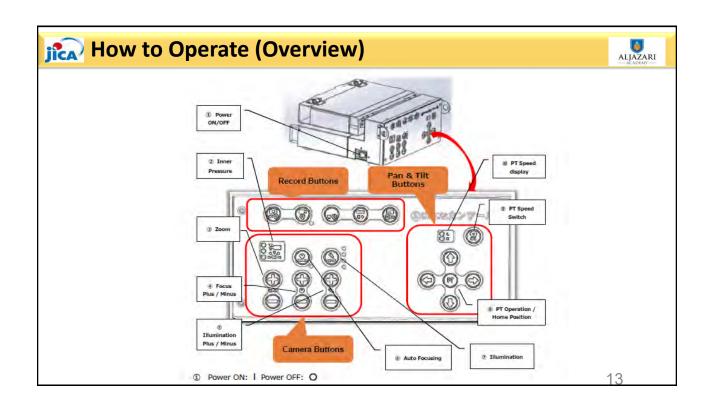




V. SEC. #: SANITARY SEWER MANHOLE INSPECTION FORM M.H. DEPTH: FORM: M.H. #: DATE: I. INITIAL INSPECTION II. STRUCTURAL INSPECTION III. HYDRAULIC INSPECTION TO STRUCTURAL I	jica				ALJAZARI —ACADEMY
A. SEPS 1. Roodway 2. Outher 3. Peror Alary 4. Unpared Alary 4. Unpared Alary 5. Easternet 6. Other 8. MANHACE COVER 1. Serviceable 2. Damaged 3. Displaced 3. Displaced 4. Missing Grout 5. Needs Robard 6. Needs Robard 6. Needs Robard 7. Serviceable 2. Description 6. Needs Robard 7. Serviceable 2. Description 7. Serviceable 2. Description 7. Serviceable 2. Description 7. Serviceable 3. Suitable 4. Missing Grout 5. Needs Robard 6. Needs Lowering 6. Needs Lowering 7. Serviceable 2. Description 7. Serviceable 3. Suitable 4. Missing Grout 6. Serviceable 2. Description 7. Serviceable 7. Ser		M.H. DEPTH: FORM: I. INITIAL INSPECTION A. LOCATION: 1. Roadway 2. Guther 3. Pared Alley 4. Unpaved Alley 5. Eastment 6. Other 1. Serviceable 2. Damaged 3. Displaced 4. Missing Grout 5. Needs Ruising 6. Needs Lowering 6. Needs Lowering 7. RING & FRAME: 1. Serviceable 2. Loose 3. Displaced 4. Missing Grout 5. Needs Ruising 6. Needs Lowering 7. RING & FRAME: 1. Serviceable 2. Loose 3. Displaced 4. Missing Grout 5. Needs Ruising 6. Needs Lowering 7. RING & FRAME: 1. Serviceable 2. Loose 3. Displaced 4. Missing Grout 5. Needs Ruising 6. Needs Lowering 7. Needs Lowering 7. Needs Lowering 8. Needs Lowering 8. Needs Lowering 9. MANHOLE MATERIAL 1. Brick 2. Concrete 6. SEE MH COVER 1. 24 Inch 1. 25 Inch 1. 25 Inch 1. 25 Inch 1. 26 Inch 1. 27 Inch 1. 27 Inch 1. 27 Inch 1. 28 I	M.H. E: II. STRUCTURAL INSPECTION A. STEP'S 1. Sen-iceable 2. Unsale 3. Missing (No.) 4. Corroded B. COME 1. Serviceable 2. Broken 3. Sulfided 4. Missigned 5. LeakingBad Joints C. RISER 1. Serviceable 2. Broken 3. Sulfided 5. LeakingBad Joints C. RISER 1. Serviceable 2. Broken 3. Sulfided 5. LeakingBad Joints C. SHEEP 1. Serviceable 2. Broken 3. Dirty 4. Sulfided 5. Bad Base Joint C. CHANNEL: C. CHANNEL: C. CHANNEL: C. CHANNEL: C. Sulfided 4. Bad Spe Joint C. Sulfided 4. Sulfided 4. Sulfided 4. Sulfided 5. Sulfided 6. Sulfid	DATE: III. HYDRAULIC INSPECTION A. INFLOW INDICATIONS: 1. Debris on Sides! B. SURCHARDE INDICATIONS: 1. GresserDebris on Sides & Shell C. CLARITY OF FLOW: 1. Tubul Appearance D. FLOW: 1. Sheety 2. Pulsing 3. Tubuleret 4. Surchasping 5. Suggish F. R.OW DEPTH COMPRIRED TO ADJACENT MANHOLES: 1. Same 2. Lower 3. Higher F. FLOW DEPTH: Inches Time AMPM IV. VERMIN 1. Roaches 1. Rats Inches Time AMPM IV. VERMIN 1. Roaches 2. Rats	Form




Objectives of Screening Camera



- To look for damages / breaks in sewer line
- To locate root intrusion
- To find unrecorded connection
- To locate protruding laterals
- To locate cracks / inflow sources
- To search lost / buried lines
- To verify alignment

Components of Camera System ----- 1 pc 1) Camera Head ----- 1 pc 2) Camera Cable (10m) ----- 1 pc 3) Controller ----- 1 pc 4) Pole (4.5m : 3-stage telescopic) Accessories 1) Carrying Case 2) SD Card ----- 1 pc 3) Cigar Cable ----- 1 pc ----- 1 pc 4) AC Mains Cable 5) Instruction Manual (this document) ----- 1 pc

Name	Designation	Contact No.	E-Mail
Mr. Tomidokoro	JICA Expert		
Mr. Muhammad Irfan	Course Leader	+92-(0)321-4890151	cemis2010@gmail.com
Mr. Wajih	JICA Coordinator		
Mr. Syed Fahad Hussain	Project Officer	+92-(0)332-4461657	fahadshah407@gmail.com

Cleaning Techniques of Sewerage & Drainage System

Sewer Cleaning Equipment

- 1. Split Bamboo Cane
- 2. Steel Rod
- 3. Power Rodder
- 4. Sewer Ball or Tire
- **5.** High Pressure Water Jetting Machine
- 6. Sucker Machine
- 7. Bucket Machine (Winch Machine)

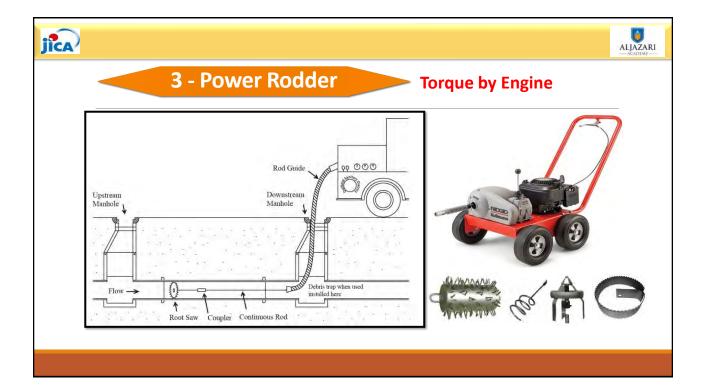
Sewer Cleaning Equipment

ALJAZARI

1 - Split Bamboo Cane

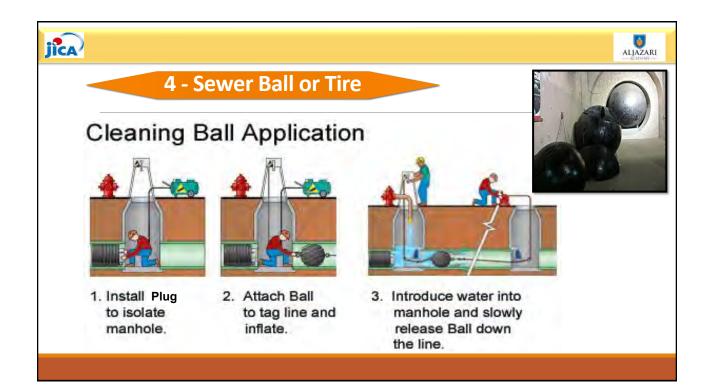
Hand Rodding

- Oldest Method
- Torque by Hand


2 - Steel Rod

Hand Rodding

Torque by Hand


3 - Power Rodder

Advantages

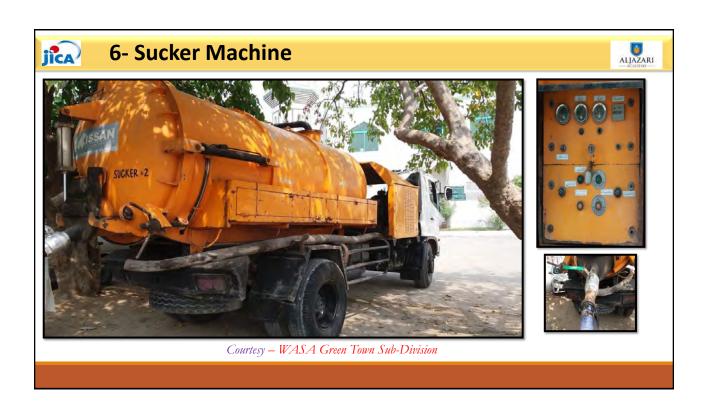
- To cut roots
- Scrape, dislocate and remove certain material
- Effective in removing emergency stoppages

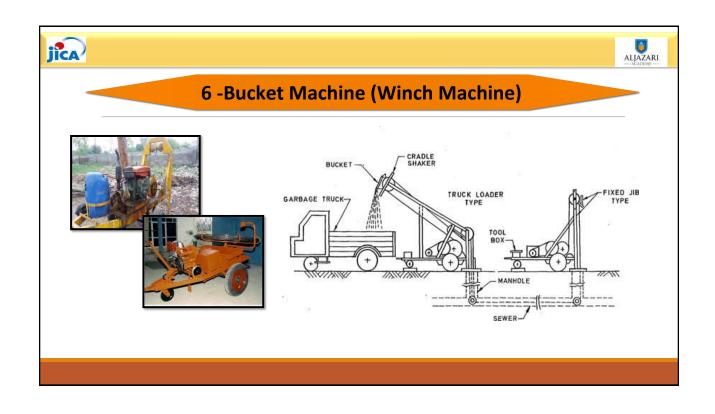
Limitations

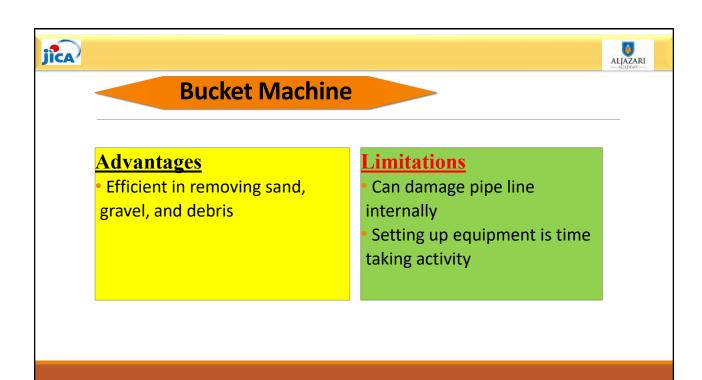
- Ineffective for removing sand and grit, but may loosen material
- Rods have a tendency to coil and <u>bend</u>

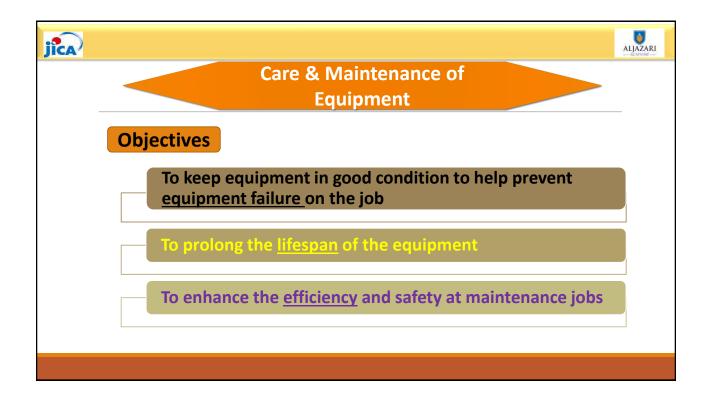
5- High Pressure Water Jetting Machine

Jetting Machine Nozzles ...


High Pressure Water Jetting Machine


Advantages


- Very effective in cleaning flat, slow flowing sewers
- Efficient in removing grease, sand, gravel and debris
- Can be used to remove emergency stoppages


Limitations

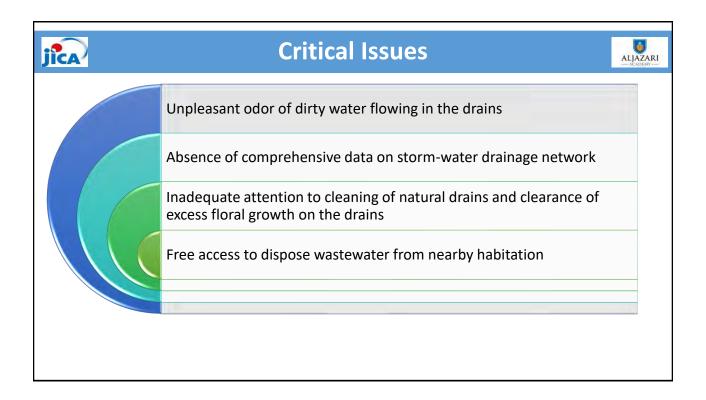
Effectiveness in take out debris from larger diameter lines decrease as the crosssectional area of the pipe is increased

General Maintenance of Equipment Engines

- 1. Always be sure oil and water levels are in proper range.
- 2. Use a fresh supply of the proper grade of clean diesel.
- 3. Change oil and air filters according to manufacturer's recommendations.
- 4. Exercise (operate) equipment weekly.
- 5. Use **proper type of oil** in engines, transmission and for lubrication.
- Keep <u>battery terminals</u> clean and battery charged, especially during winter.

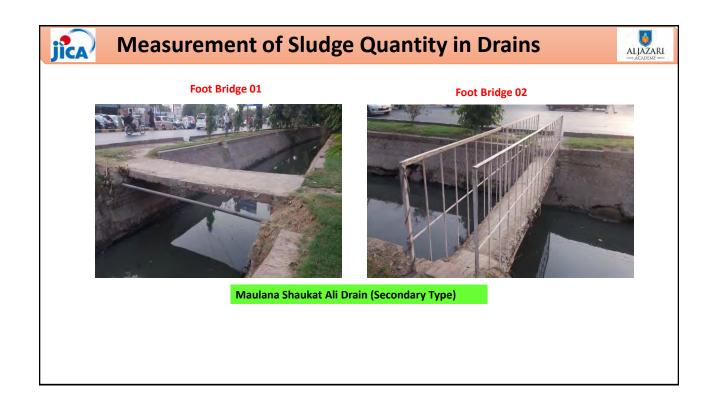
Basics of Drainage System

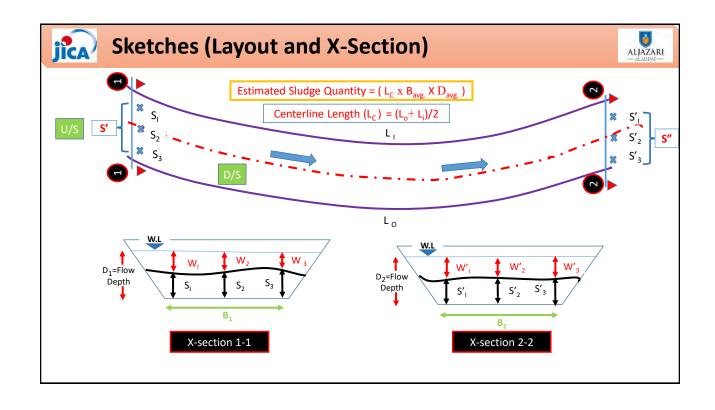
Critical Issues


Encroachment of drains

Silting of drains due to constant blockages

Stability of drainage cross-sections dislocated and damaged old lining of the drains


O&M of Drainage System



Departments should devise maintenance procedures including:

- Frequency of inspection
- Programme for dredging
- Necessary repair works
- Documentation for maintenance records

Sludge Volume Calculation

Depth at Foot 1	Avg. Depth at Foot 1	Depth at Foo	Depth at Foot 2	Overall Avg. Depth	Width at Foot 1	Width at Foot 2	Avg. Width	Length Inner L _i	Length Outer L _o	L _c	Sludge Volume
S _n = (D- W _n)	S _{avg}	S _n = (D- W _n	S' _{avg}	D _{avg}	B ₁	B ₂	B _{avg}				V
S ₁		S' ₁									
S ₂		S' ₂									
S ₃		S' ₃									

 $D_1=$

D₂=

Estimated Sludge Quantity (Vol.) = (L_{C} X $B_{\text{avg.}}$ X $D_{\text{avg.}}$)

CUM or CFT

Estimated Sludge Quantity (Vol)

CUM or CFT

 $L_C = (L_O + L_I) / 2$ (if drain stretch is curved)

$$S' = (S_1 + S_2 + S_3 + ...) / n$$

$$S'' = (S'_1 + S'_2 + S'_3 + ...) / n$$

 $D = (S' + S'' + S''' + ...) / n$

$$D_{avg.} = (S' + S'' + S''' + ...) / n$$

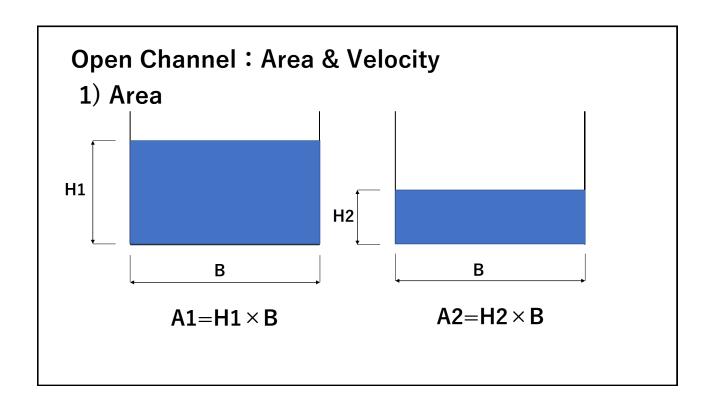
 $B_{avg.} = (B_1 + B_2 + B_3 + ...) / n$

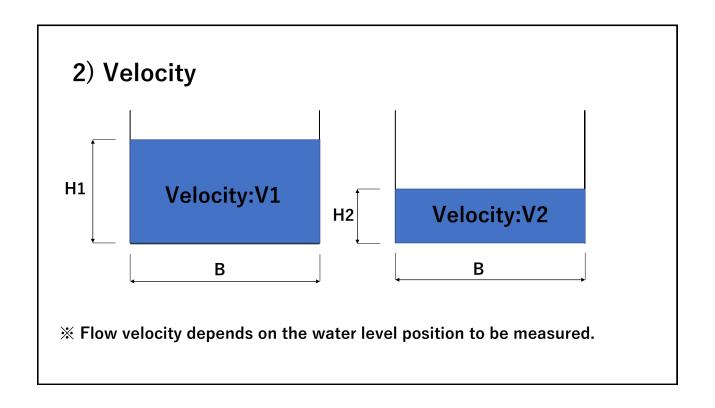
$$B_{avg.} = (B_1 + B_2 + B_3 + ...) /$$

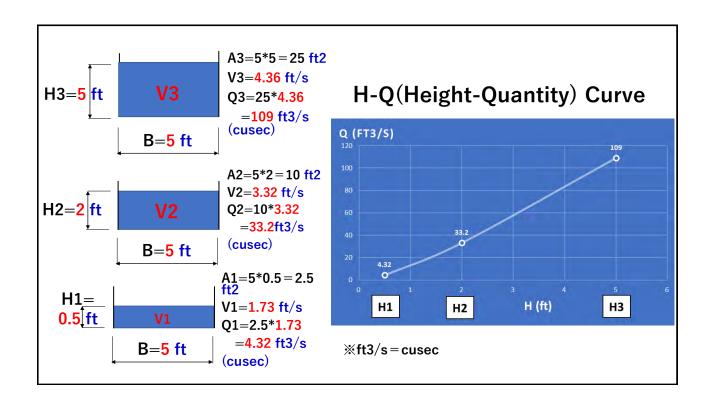
Flow measurement of Open Channels

Q=A*V

•Q: flow rate


•A: Area


V: Velocity


A=H×B

H

B

IICA		Measurement of Discharge in Channel / Drain							
	Left	cm/s	Center	cm/s	Right	cm/s	Marks	25	
	V1		V4		V7			m	ft
	V2		V5		V8		Width		
	V3		V6		V9		Depth		
	Avg.		Avg.		Avg.				
Avg of 9 Points (cm/s)									
Avg of 9 Points (m/s)									
Avg of 9 Points (ft/s)									
						Name			
Q = A X V						Designation			
						Organization			
						Obtained Marks			

Wastewater Treatment Module 3 & 4

Contents

This module is comprise of five lectures:

- Basics of Wastewater
- Wastewater Treatment Technologies
- Maintenance of Ponds
- Financial Comparison Technology
- Selection of Treatment Technology

Instructional goals

- Basics characteristics of wastewater
- Compare different wastewater treatment technologies
- Choose correct treatment Technologies
- How to remove sludge from ponds?

2

Instructional Method

- Power point presentation
- Videos
- Quiz
- Lab Test

Pre Evaluation Activity

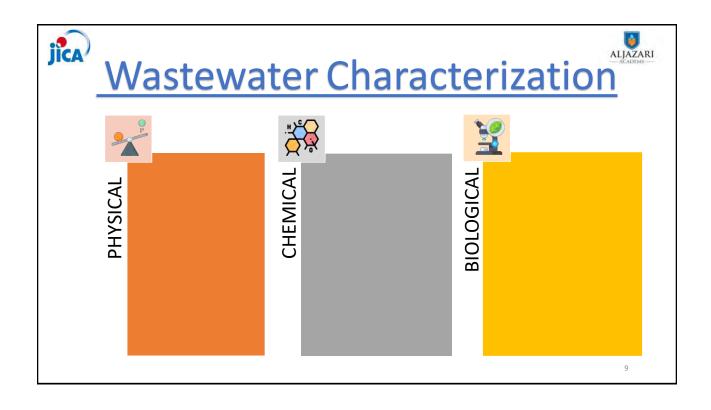
• https://jamboard.google.com/d/19YQrEkkieKRQmkVH7ywNnndWdLv8wEM0c8g6qEcmu0E/viewer?f=0

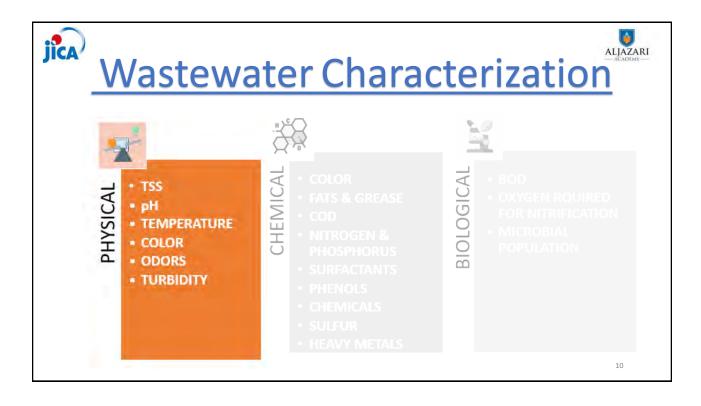
5

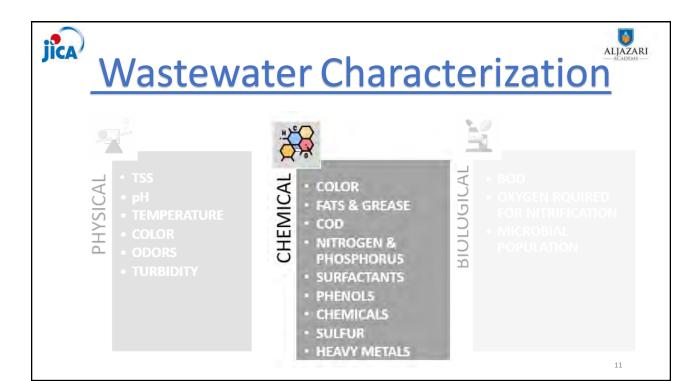
Learning Outcomes

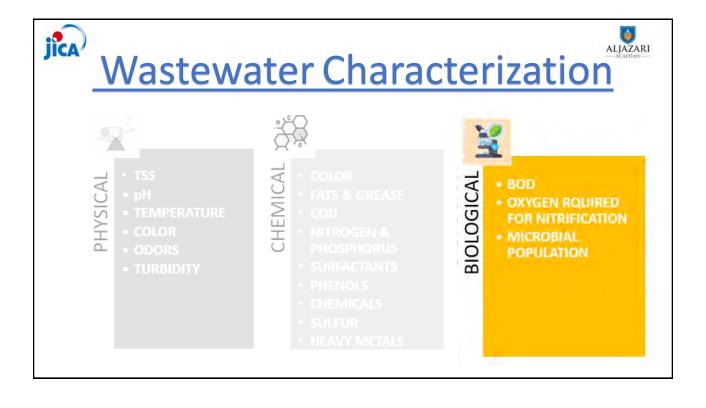
- Compare different wastewater treatment technologies
- <u>Understand</u> the procedure of **selecting** suitable technology
- <u>Estimate</u> Initial Cost (Capex) & Operational Cost (Opex) of different wastewater treatment technologies
- <u>Understand</u> the procedure of **sludge removal** from Ponds

Basics of Wastewater






Wastewater


Source of Wastewater

Domestic Agriculture Industrial

Biochemical Oxygen Demand

BOD represents the amount of oxygen consumed by bacteria and other microorganisms while they decompose organic matter under aerobic (oxygen is present) conditions at a specified temperature

PACK Test Procedure

Pull out the line at the end of the tube

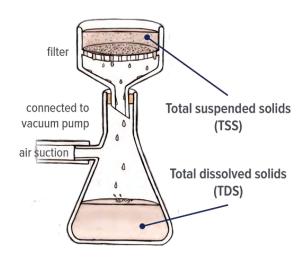
With the hole up, pinch the bottom half of the tube tightly with your finger and push out the air inside

PACK Test Procedure

Continue to place the hole in the test water, loosen the pinching fingers, and wait until half of the water is absorbed. Shake the tube gently 15 times to prevent leakage

Immediately after 2 minutes, place the tube on top of the standard color and compare the colors.

Chemical Oxygen Demand


The chemical oxygen demand is an indicative measure of the amount of oxygen that can be consumed by reactions in a measured solution.

It is commonly expressed in mass of oxygen consumed over volume of solution which in SI units is milligrams per liter.

Total Suspended Solids

Total Suspended Solids (TSS) are solids in water that can be trapped by a filter. TSS can include a wide variety of material, such as silt, decaying plant and animal matter, industrial wastes, and sewage.

Wastewater NEQs

S.No	Parameter	Existing Standards	Revised Standards				
			Into Inland Water	Into Sewage Treatment⁵	Into Sea®		
1.	Temperature or Temperature increase	40°C	=<3 °C	=< 3 ° C	=<3 °C		
2.	pH value	6-10 pH	6 - 9	6 - 9	6 - 9		
3.	5-days Biochemical Oxygen Demand (BOD ₁) at 20°C ¹	80 mg/l.	80	250	80**		
4.	Chemical Oxygen Demand (COD) ¹	150 mg/l.	150	400	400		
5.	Total suspended solids	150 mg/l.	200	400	200		
6.	Total dissolved solids	3500 mg/l.	3500	3500	3500		
7.	Grease and oil	10 mg/l.	10	10	10		
8.	Phenolic compounds (as phenol)	0.1 mg/l.	0.1	0.3	0.3		
9.	Chloride (as CI)	1000 mg/l.	1000	1000	SC		
10.	Fluoride (as F)	20 mg/l.	10	10	10		
11.	Cyanide (as CN) total	2 mg/l.	1.0	1.0	1.0		
12.	An-ionic detergents ² (as MBAS)	20 mg/l.	20	20	20		
13.	Sulphate (SO ₄)	600 mg/l.	600	1000	SC		
14.	Sulphide (S)	1.0 mg/l.	1.0	1.0	1.0		
15.	Ammonia (NH ₃)	40 mg/l.	40	40	40		
16.	Pesticides, herbicides, fungicides and insecticides ³	0.15 mg/l.	0.15	0.15	0.15		

THANK YOU

Case Studies

Technology	Volume	Unit	Capital Cost	Unit	Land Requirement	Unit	Annual Operation & maintenance Cost (US \$/P.E)	Country
Activated Sludge Process	20,000– 400,000	(m3/d)	50.0-60.8	(US \$/m3/d)	0.73–1.01	(m2/m3/d)		India
Waste Stabilization Ponds	20,000– 400,000	(m3/d)	12.4–18.0	(US \$/m3/d)	12.5–14.0	(m2/m3/d)		India
Waste Stabilization Ponds	50,000	P.E	35.6	(US \$ /PE)	1.7	(m2/P.E)	0.53	Egypt
UASB + Trickling filters	50,000	P.E	31.5	(US \$ /PE)	0.22	(m2/P.E)	0.71	Egypt

Technology Comparison – Capex & Opex

DESCRIPTION	ASP-EA	MBR	UF	RO
рН	7.0-8.5	7.0-8.5	7.0-8.5	5.8-6.2
BOD, mg/l	<30	<5	<5	<5
COD, mg/l	<100	<15	<15	<5
TSS, mg/l	<30	BDL	BDL	BDL
Area, m ² / m ³ of Wastewater	25	13		
Civil Cost , Rs. in Million / m³	0.8-1.0	0.4-0.5		
Equipment/ Plant Cost , Rs. in Million / m³	0.7-0.9	1.5 – 1.6	0.4 - 0.5	0.30 - 0.35
Power Cost , Rs. / m³ @ Rs. 14.0 / kW - HR	23.2	45.2	7.7	12.97
Chemical Cost , Rs. / m³	10.8	9.1	0.6	7.6
Membrane Replacement Rs. / m³ (Average Life 3 Years)		15.3	4.0-8.0	5.6
Membrane Replacement Rs. / m³ (Average Life 5 Years)		9.2	2.2-4.8	3.4

Above Case Study is based on wastewater influent characteristics,

pH: 8, BOD: 1400 mg/l, COD: 3500 mg/l, TSS: 700 mg/l and Flow: 50 m³/ hr.

Selection of Treatment Technology

1

FACTORS OF CHOICE IN WASTE TREATMENT METHODS

Affordability

Depends on the financial ability of the community Requirement of the process in term of power and land

FACTORS OF CHOICE IN WASTE TREATMENT METHODS

Acceptability

Depends upon performance of the treatment system
Pollution control authority (EPAs or DAs)
Riparian public

3

FACTORS OF CHOICE IN WASTE TREATMENT METHODS

Manageability

Refers to routine operation of the plant and its maintenance and repair

Will it be possible to repair the machinery locally

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex, expensive ongoing energy & operations costs	Low initial cost and lower ongoing energy & operations costs	Low initial cost and low ongoing energy & operations costs, but several common problems
Shock & Peak Loads Can Upset Process	Easily Accepts Shock & Peak Loads	Problems With Shock & Peak Loads
Prescreening Equipment Generally Required	No Prescreening Equipment Required	No Prescreening Equipment Required
Aeration Required for Both Oxygen & Mixing	Aeration Required only for Oxygen Demand	No Aeration used for Oxygen Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation Required	Possible Future Sludge Removal Required	Possible Future Sludge Removal Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex, expensive ongoing energy & operations costs	Low initial cost and lower ongoing energy & operations costs	Low initial cost and low ongoing energy & operations costs, but several common problems
Shock & Peak Loads Can Upset Process	Easily Accepts Shock & Peak Loads	Problems With Shock & Peak Loads
Prescreening Equipment Generally Required	No Prescreening Equipment Required	No Prescreening Equipment Required
Aeration Required for Both Oxygen & Mixing	Aeration Required only for Oxygen Demand	No Aeration used for Oxygen Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation Required	Possible Future Sludge Removal Required	Possible Future Sludge Removal Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex, expensive ongoing energy & operations costs	Low initial cost and lower ongoing energy & operations costs	Low initial cost and low ongoing energy & operations costs, but several common problems
Shock & Peak Loads Can Upset Process	Easily Accepts Shock & Peak Loads	Problems With Shock & Peak Loads
Prescreening Equipment Generally Required	No Prescreening Equipment Required	No Prescreening Equipment Required
Aeration Required for Both Oxygen & Mixing	Aeration Required only for Oxygen Demand	No Aeration used for Oxygen Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation Required	Possible Future Sludge Removal Required	Possible Future Sludge Removal Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex, expensive ongoing energy & operations costs	Low initial cost and lower ongoing energy & operations costs	Low initial cost and low ongoing energy & operations costs, but several common problems
Shock & Peak Loads Can Upset Process	Easily Accepts Shock & Peak Loads	Problems With Shock & Peak Loads
Prescreening Equipment Generally Required	No Prescreening Equipment Required	No Prescreening Equipment Required
Aeration Required for Both Oxygen & Mixing	Aeration Required only for Oxygen Demand	No Aeration used for Oxygen Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation Required	Possible Future Sludge Removal Required	Possible Future Sludge Removal Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex, expensive ongoing energy & operations costs	Low initial cost and lower ongoing energy & operations costs	Low initial cost and low ongoing energy & operations costs, but several common problems
Shock & Peak Loads Can Upset Process	Easily Accepts Shock & Peak Loads	Problems With Shock & Peak Loads
Prescreening Equipment Generally Required	No Prescreening Equipment Required	No Prescreening Equipment Required
Aeration Required for Both Oxygen & Mixing	Aeration Required only for Oxygen Demand	No Aeration used for Oxygen Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation Required	Possible Future Sludge Removal Required	Possible Future Sludge Removal Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex, expensive ongoing energy & operations costs	Low initial cost and lower ongoing energy & operations costs	Low initial cost and low ongoing energy & operations costs, but several common problems
Shock & Peak Loads Can Upset Process	Easily Accepts Shock & Peak Loads	Problems With Shock & Peak Loads
Prescreening Equipment Generally Required	No Prescreening Equipment Required	No Prescreening Equipment Required
Aeration Required for Both Oxygen & Mixing	Aeration Required only for Oxygen Demand	No Aeration used for Oxygen Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation Required	Possible Future Sludge Removal Required	Possible Future Sludge Removal Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds		
High CAPEX	Low CAPEX	Lowest CAPEX		
High initial cost and complex, expensive ongoing energy & operations costs	Low initial cost and lower ongoing energy & operations costs Low initial cost and low of energy & operations cost several common problem			
Shock & Peak Loads Can Upset Process	Easily Accepts Shock & Peak Loads	Problems With Shock & Peak Loads		
Prescreening Equipment Generally Required	No Prescreening Equipment Required	No Prescreening Equipment Required		
Aeration Required for Both Oxygen & Mixing	Aeration Required only for Oxygen Demand	No Aeration used for Oxygen Demand		
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems		
Sludge Handling & Regulation Required	Possible Future Sludge Removal Required	Possible Future Sludge Removal Required		
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals		
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise		

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex, expensive ongoing energy & operations costs	Low initial cost and lower ongoing energy & operations costs	Low initial cost and low ongoing energy & operations costs, but several common problems
Shock & Peak Loads Can Upset Process	Easily Accepts Shock & Peak Loads	Problems With Shock & Peak Loads
Prescreening Equipment Generally Required	No Prescreening Equipment Required	No Prescreening Equipment Required
Aeration Required for Both Oxygen & Mixing	Aeration Required only for Oxygen Demand	No Aeration used for Oxygen Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation Required	Possible Future Sludge Removal Required	Possible Future Sludge Removal Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds
High CAPEX	Low CAPEX	Lowest CAPEX
High initial cost and complex, expensive ongoing energy & operations costs	Low initial cost and lower ongoing energy & operations costs	Low initial cost and low ongoing energy & operations costs, but several common problems
Shock & Peak Loads Can Upset Process	Easily Accepts Shock & Peak Loads	Problems With Shock & Peak Loads
Prescreening Equipment Generally Required	No Prescreening Equipment Required	No Prescreening Equipment Required
Aeration Required for Both Oxygen & Mixing	Aeration Required only for Oxygen Demand	No Aeration used for Oxygen Demand
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems
Sludge Handling & Regulation Required	Possible Future Sludge Removal Required	Possible Future Sludge Removal Required
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise

Activated Sludge	Aerated Lagoons	Waste Stabilization Ponds		
High CAPEX	Low CAPEX	Lowest CAPEX		
High initial cost and complex, expensive ongoing energy & operations costs	Low initial cost and lower ongoing energy & operations costs	Low initial cost and low ongoin energy & operations costs, but several common problems		
Shock & Peak Loads Can Upset Process	Easily Accepts Shock & Peak Loads	Problems With Shock & Peak Loads		
Prescreening Equipment Generally Required	No Prescreening Equipment Required	No Prescreening Equipment Required		
Aeration Required for Both Oxygen & Mixing	Aeration Required only for Oxygen Demand	No Aeration used for Oxygen Demand		
Can Have Odor Issues	Odor-Free WWTP	Can Have Odor Problems		
Sludge Handling & Regulation Required	Possible Future Sludge Removal Required	Possible Future Sludge Removal Required		
High Consumables/Chemicals	Few Consumables/Chemicals	No Consumables/Chemicals		
High Level of Operator	Very Low Operator Attention/Expertise	Very Low Operator Attention/Expertise		

An example of comparison:

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge			BOD <20	10	100	
Aerated Lagoon	100	50	BOD<50	20	50	
Stabilization Pond			50 <bod<70< td=""><td>30</td><td>30</td><td>Selected 16</td></bod<70<>	30	30	Selected 16

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 100 hectors and required effluent quality of BOD should be less than 80mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge			BOD <40	20	100	
Aerated Lagoon	80	100	BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 50 hectors and required effluent quality of BOD should be less than 80mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge			BOD <20	20	100	
Aerated Lagoon	80	50	BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 20 hectors and required effluent quality of BOD should be less than 80mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge			BOD <40	20	100	
Aerated Lagoon	80	20	BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 80 hectors and required effluent quality of BOD should be less than 80mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge			BOD <40	20	100	
Aerated Lagoon	80	80	BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 80 hectors and required effluent quality of BOD should be less than 50mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge			BOD <40	20	100	
Aerated Lagoon	50	80	BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 80 hectors and required effluent quality of BOD should be less than 25mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge			BOD <40	20	100	
Aerated Lagoon	25	80	BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. As the total area available is 100 hectors and required effluent quality of BOD should be less than 70mg/l?

Treatment Technologies	Required BOD	Available Area	Water Quality Effluent	Area	Cost	Evaluation
Conventional Activated Sludge			BOD <40	20	100	
Aerated Lagoon	70	100	BOD<60	75	50	
Stabilization Pond			BOD<80	95	30	

Kindly choose the most suitable method for treatment of wastewater. BOD of influent is 250mg/l. As the total area available is 80 hectors and required effluent quality of BOD should be less than 70mg/l?

Treatment Technologies	Required BOD	Available Area	Removal rate of BOD	Area	Cost	Evaluation
Conventional Activated Sludge			<90%	20	100	
Aerated Lagoon	70	80	<60%	75	50	
Stabilization Pond			<40%	95	45	

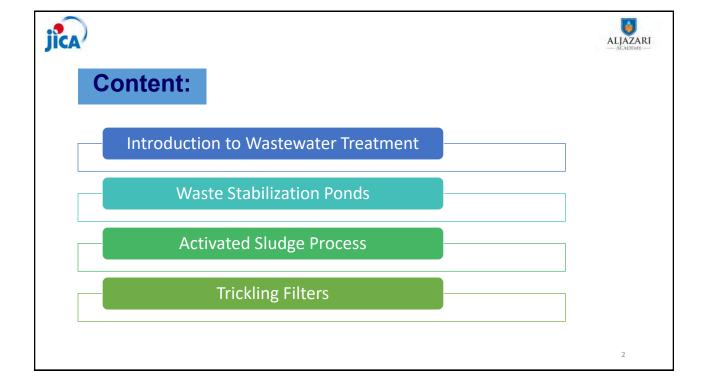
Kindly choose the most suitable method for treatment of wastewater. BOD of influent is 200mg/l. As the total area available is 80 hectors and required effluent quality of BOD should be less than 100mg/l?

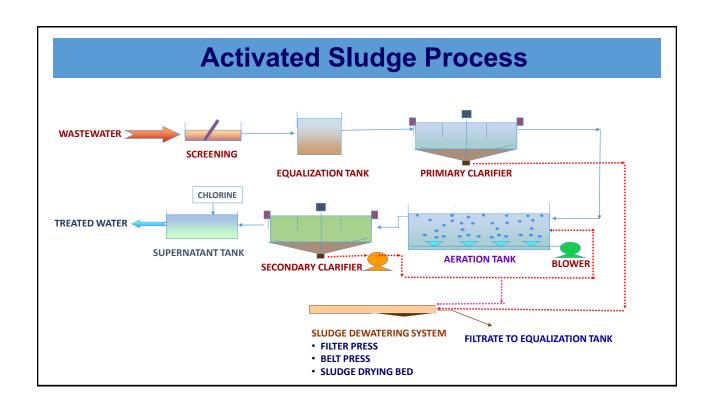
Treatment Technologies	Required BOD	Available Area	Removal rate of BOD	Area	Cost	Evaluation
Conventional Activated Sludge			80%	20	100	
Aerated Lagoon	100	80	60%	60	50	
Stabilization Pond			50%	75	45	

Kindly choose the most suitable method for treatment of wastewater. BOD of influent is 240mg/l. As the total area available is 80 hectors and required effluent quality of BOD should be less than 100mg/l?

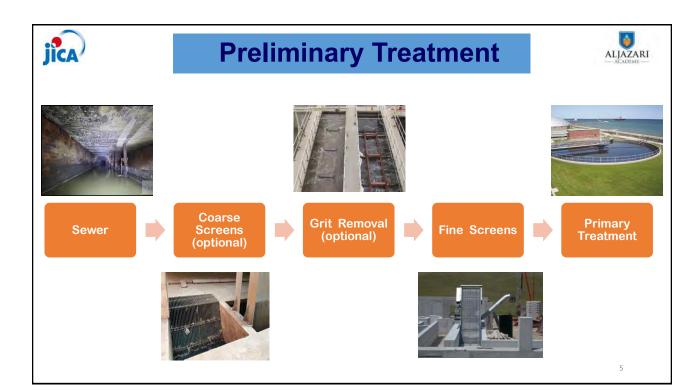
Treatment Technologies	Required BOD	Available Area	Removal rate of BOD	Area	Cost	Evaluation
Conventional Activated Sludge			80%	20	100	
Aerated Lagoon	100	80	60%	50	50	
Stabilization Pond			50%	75	45	

Sewerage generation of Lahore City is 200 liters per capita per day. papulation of city is As the of the 90% 1.25million and sewer papulation facility. have Kindly calculate the sewerage generation in m3 per hour?



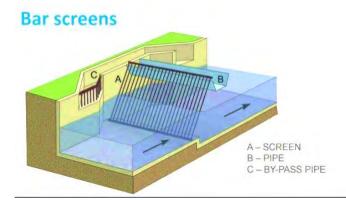


Wastewater Treatment Technologies



What comes down the sewer?

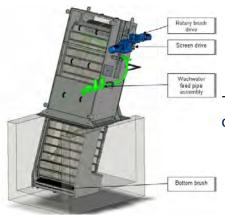
6



Getting the big stuff out

Coarse Screen

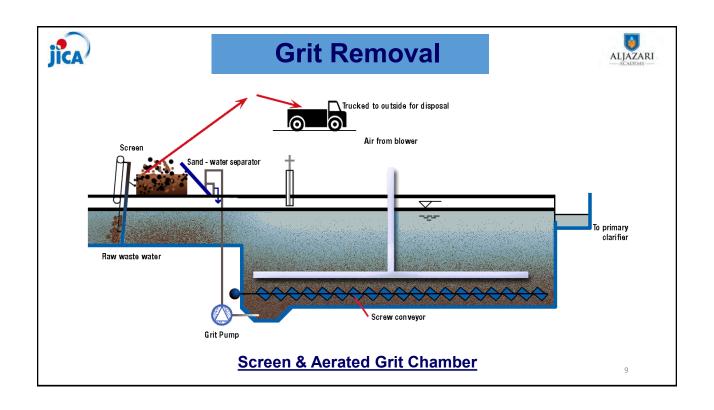
Usually around 25mm bars to take the big stuff out



7

jica

Taking out the fine stuff



Fine screens

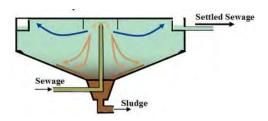
Typically a function of the consent and are normally specified as 6mm in 2 dimensions

8

And What goes right

1:

Primary Treatment

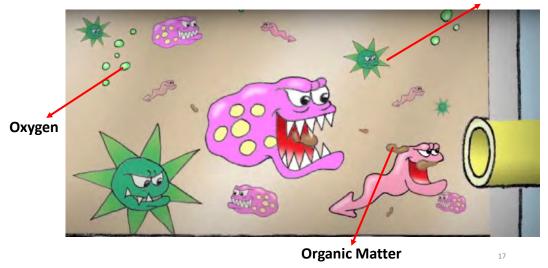

- Rely on gravity to settle out lighter SS material Circular or Rectangular constructions
- Minimum 2 hours retention at peak flow
- 30-40% removal of organic load and 60% of solids
- High calorific value removed and goes off to digesters to produce energy

Primary Settlement

- Fluid retention time of at least 2 hours
- Scraper bridge scrapes it into the Hopper
- Sludge collects in the bottom
- Sludge removed by pump periodically either manually, by timer, solids mode or level control

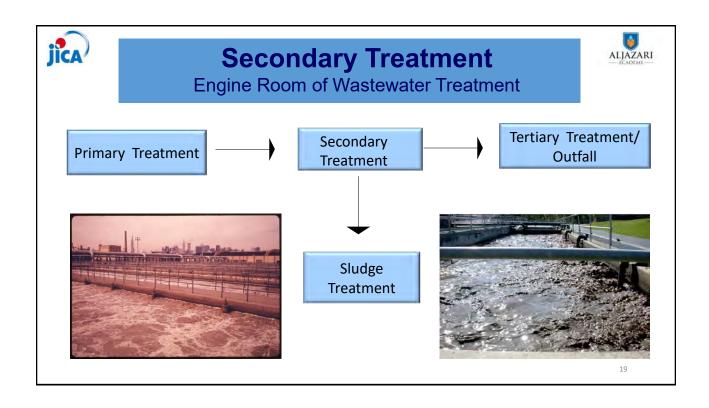
15

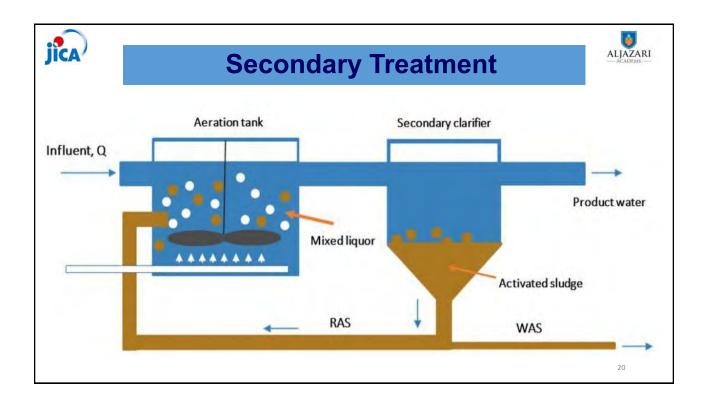
Secondary Treatment



Science of Secondary Treatment

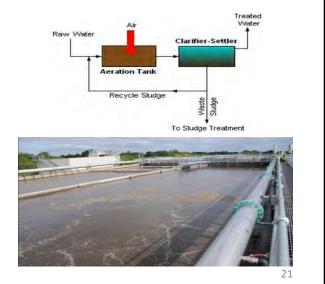
Microorganisms (bacteria, protozoa etc.)




Secondary Treatment

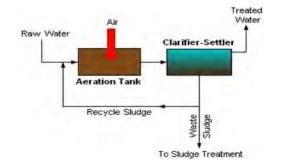
- Degrade biological content (dissolved organic matter) of the sewage
- Ex: human waste, food waste, soaps, detergent
- Added bacteria and protozoa into sewage
- 3 different approaches
- Activated Sludge Process
- Trickling Filters
- Lagoon system

18



Activated Sludge Process (ASP)

Activated sludge consists of a mass of micro-organisms which feed on pollutants in the sewage. The bacteria is suspended in liquid and is called "mixed liquor", it is mixed with sewage and aerated in aeration basins before passing to final settlement tanks where it is settled and the sludge returned. The effluent produced is of a high quality.



Activated Sludge Process (ASP)

- Sewage enters the aeration tank and mixes with mixed liquor
- Bacteria eat the sewage and need to be fed with air
- More bacteria are bred and old sludge needs to be wasted to maintain a balance
- Sludge recycled around to ensure the mass of bacteria is maintained.

Activated Sludge Process (ASP)

23

5 Component of Activated Sludge Process

- Aeration Tank
- Aeration Source
- Secondary Clarifiers
- Activated sludge outflow line (RAS and WAS)
- Effluent outflow line

5 Component of Activated Sludge Process

Aeration Tank

Oxygen is introduced into the system

25

Activated Sludge Process

Aeration Source

Ensure that adequate oxygen is fed into the tank provided pure oxygen or compressed air

Activated Sludge Process

Secondary Clarifiers

Activated-sludge solids separate from the surrounding wastewater

Activated Sludge Process

Activated sludge outflow line

Pump activated sludge back to the aeration tank

Effluent outflow line

discharged effluent into bay or tertiary treatment plant

Activated Sludge Process (ASP)

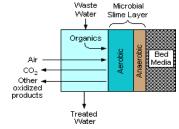
Advantages

- Very efficient producing a high quality effluent
- Common technique with a lot of industry knowledge
- · Very adaptable to increasing loads
- Can be adapted for Nutrient Removal

Disadvantages

- Energy intensive
- More complicated to operate than fixed film processes
- · Produces more sludge than fixed film

Samples for different treatment units



Trickling Filters

- Fixed film process meaning the bacteria grows on the rocks and settled sewage is applied to it
- Settled sewage is dosed onto the filters using mechanical distributors.
- Parts of the slime regularly break away from the media surface and final settlement in humus tanks is required to produce a high quality final effluent.

3

Trickling Filters

Filter Media

- The filter media provides a surface for the biomass to grow upon and is generally made of slag, stone or plastic.
- The biomass requires air to survive and this is achieved through natural ventilation within the filter. This relies on fresh air having a direct path to the base of the filter which is achieved through vent pipes, holes or open center wells. It is important that these are kept clear.

Recirculation

 To maintain good wetting of filters most sites recirculate a flow of final effluent. This improves performance by a mixture of dilution and better distribution of flow throughout the filter

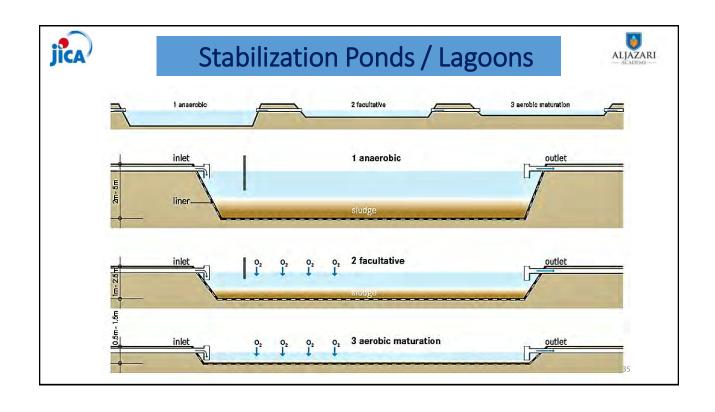
Trickling Filters

Advantages

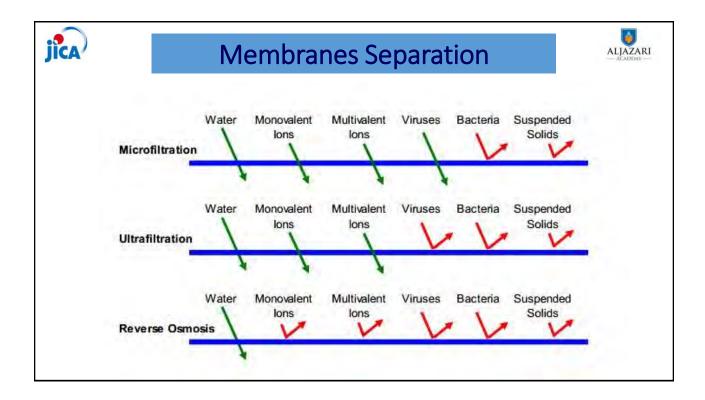
- Simple and easy to operate
- Low or no power
- · Relatively cheap to build
- Resilient and robust to change and toxic shock
- Adaptable

Disadvantages

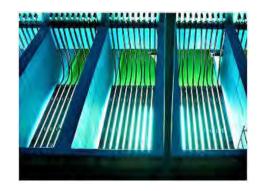
- Large land take
- Not as efficient a removal process as suspended growth
- Not resistant to the cold
- Overgrowth and clogging

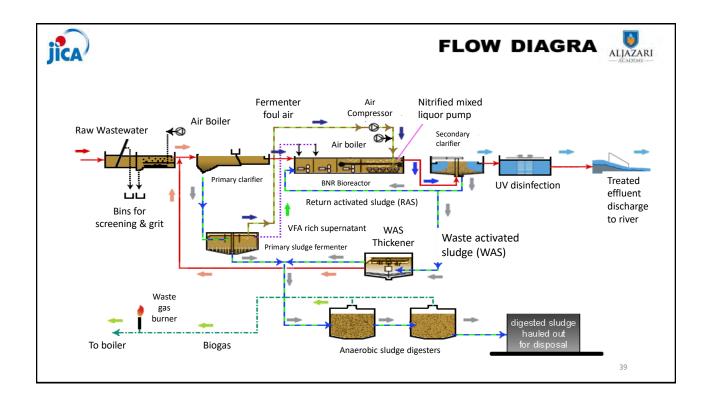


Lagoon Systems


Hold the waste-water for several days to months Natural degradation of sewage Usually Phyto-remediation is preferred

UV Light Radiation


• Damage the genetic structure of bacteria, viruses and other pathogens.


Advantages

- No chemicals are used
- No harmful byproducts

Disadvantages

• High maintenance of the UV- lamp

添付資料 5.1.47	研修コース	「機械・電気	設備維持管理」	の教材	(2022 年夏季研修	÷)

O&M of Electrical & Mechanical System

Pump, Motors, Motor Control units and Valves

By Jawad Shahid Vice Principal

1

Importance of Tube Well Pumps

This could be my home!

Importance of Disposal Station Pumps

This could be our children!

Topics to cover..

- ✓ Types of Pumps
- ✓ Pump operations
- ✓ Preventive maintenance of pumps
- ✓ Induction Motors
- ✓ Motor Control Units
- ✓ Valves and their Operation
- ✓ Asset Lifecycle Assessment
- ✓ Vibration Analysis
- ✓ Pump series and parallel op.
- ✓ Motor Starters, Pump Performance curve
- ✓ Preparation of Operational Plan
- ✓ Introduction to E-Learning Platform

Icebreaker and Class Introduction

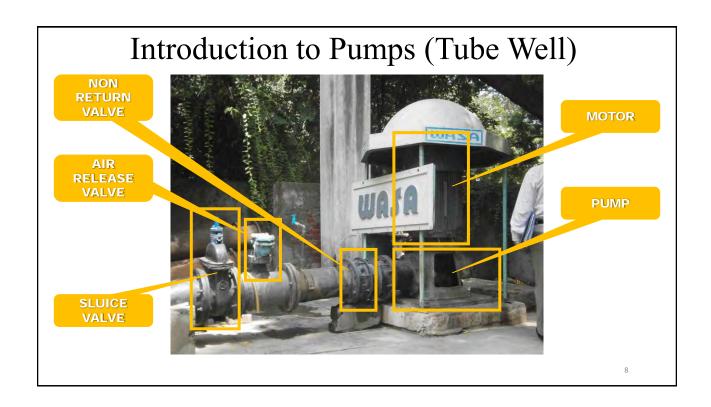
Now it is your turn...

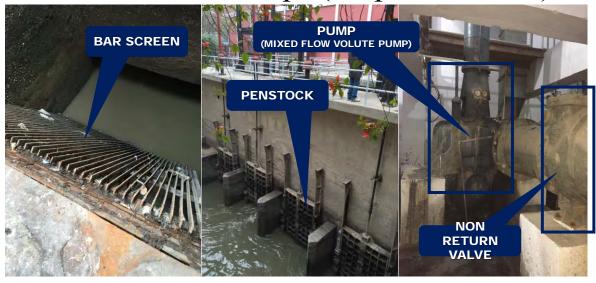
- Degree and backgrounds?
- Share your work experience relative to WASA equipment?

5

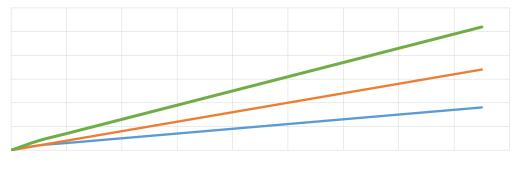
Brainstorming

Now it is your turn...


- Any prior experience on Pumps?
- Why interested in this Module?
- What best skills do you bring to the class?


Resources and Handouts

- Owner's Manual, KSB Pumps
- Pumps and Pumping (Arasmith, S. 2006)
 ACR Publications, London
- Participant lecture notes, Module 1
- Class presentations, Module 1



Introduction to Pumps (Disposal Station)

Importance of Equipment Reliability and Trainings

Operational Efficiency

- Equipment Maintenance - Workforce Training - Overall Efficiency

Introduction to Pumps

Pump

It is a mechanical device to transport liquids. It coverts kinetic energy into velocity/pressure.

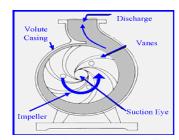
11

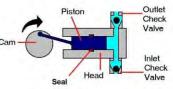
Identification of Pumps

Function (Vacuum Pump)

Location (Inlet Pump)

Introduction to Pumps


Two major categories:


i) Centrifugal Pumps

The Pump in which energy is continuously added to increase the fluid velocities within the machine. This type is most commonly used in water and sanitation industry.

ii) Positive Displacement Pumps

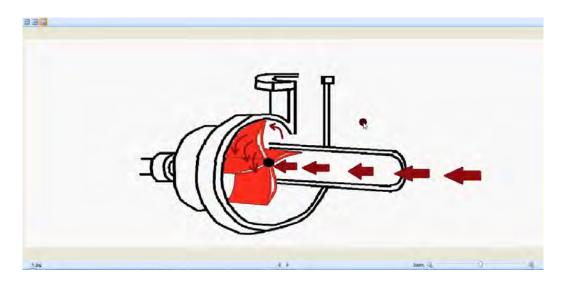
The pump in which the energy is periodically added by application of force.

SINGLE ACTING RECIPROCATING

13

Introduction to Pumps

Centrifugal Pumps


Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid flow.

The rotational energy typically comes from an engine or electric motor.

Centrifugal Pump

Video Centrifugal Pumps

1

Introduction to Pumps

General Design and Parameters...

All equipment should be selected properly. Wrong selection will cause...

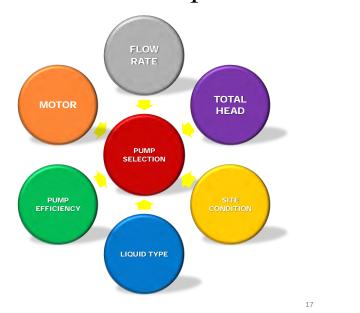
- **✓**Short lifecycle
- **✓** Operational downtime
- **✓**Energy loss
- ✓ Major capital loss

Selection Criteria of Pumps

How to select a pump?

How much water is needed?

How far or high water will be delivered?


Is there a guaranteed pump efficiency need?

What kind of liquid is transported?

How much space is available for pump installation?

What kind of liquid? Which material is suitable?

Motor/energy factor?

Selection Criteria of Pumps

Motor type,
Capacity, Starting

How much capacity
you want?

Where do you
want to deliver?

Head

Pump
guaranteed efficiency?

Pump
efficiency

Plump
efficiency

Flow many pump

Liquid type

Selection Criteria of Pumps

Parameters

- ✓ Flow Rate [cusec, m3/h, l/s]
- ✓ Total Head [m, ft.]
- ✓ Motor Output [kW, HP]
- **✓ Pump Type [water supply, wastewater)**

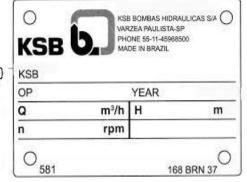
19

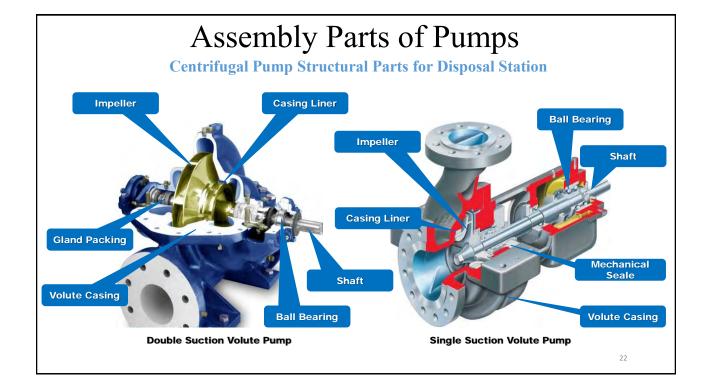
Selection Criteria for Pumps

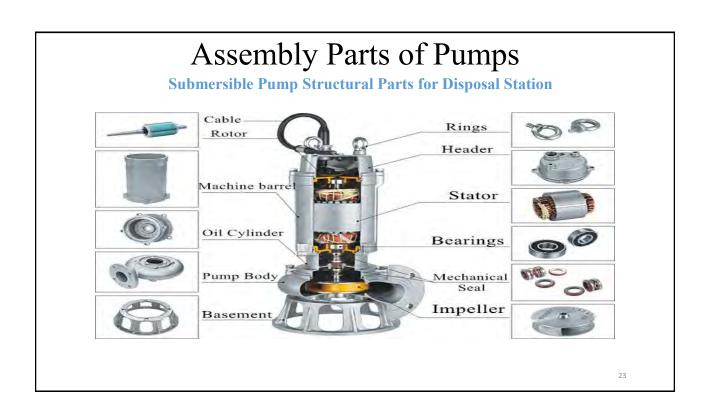
Other Parameters

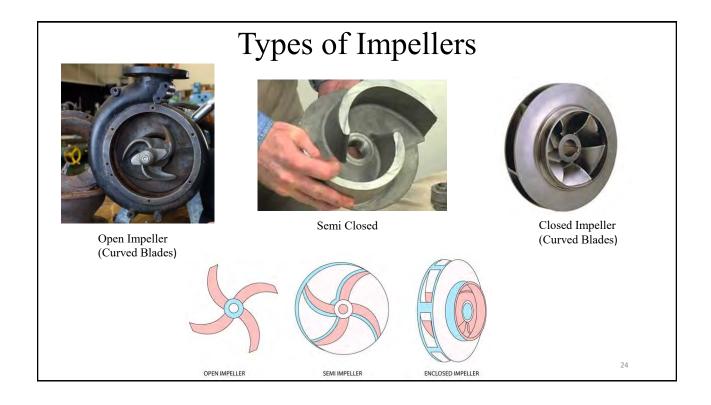
- ✓ Materials [cast iron, steel, food grade]
- ✓ Liquid Type [clean water, waste water]
- **✓Paint** [anti corrosion]
- ✓ Available Installation Space [m2, ft2]

Introduction to Pump Design Basics


Centrifugal Pump Nameplate and Designation Specification:


Discharge Diameter: 40--500mm(1.6--20inch)


Flow Capacity: 10--6000m³/h


Head: 6--80m

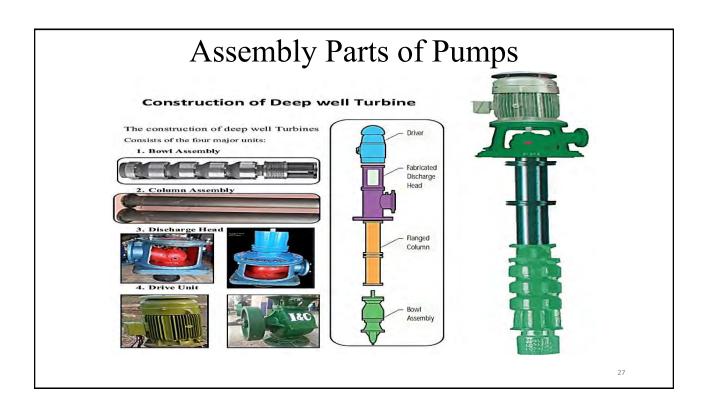
Name Plate and Designation

Introduction to Pumps

Vertical Turbine Pump

These pumps are commonly used in groundwater wells.

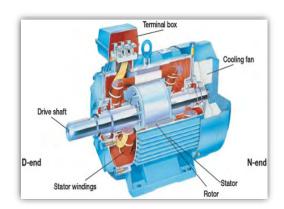
These pumps are driven by a shaft rotated by a motor on the surface


25

Introduction to Pumps Types

Submersible Pump

A type of pump in which the motor and pump both are in the ground water reservoir. Motor is water proof and electricity is provided to the motor by a water proof cable.

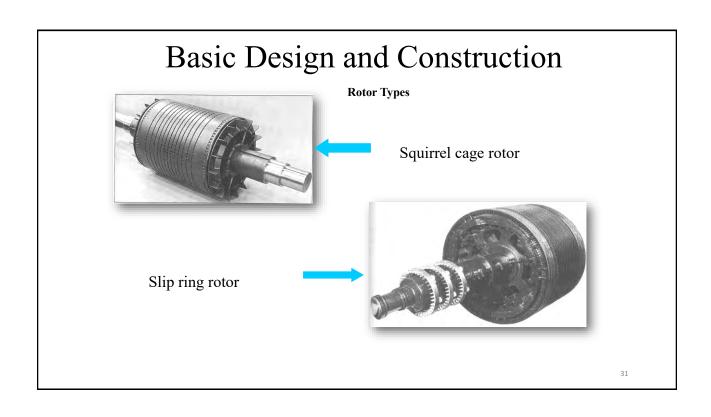


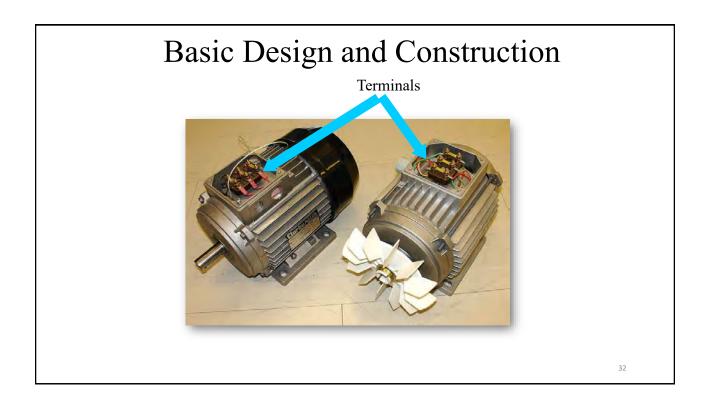
Comparison of Vertical pump and Submersible pump				
	Vertical shaft centrifugal pump (Tube well)	Submersible motor pump (tube well)		
Picture				
Bore size	Cover a wide range	Max bore: approx. 200 mm		
Flow capacity	Cover a wide range	Small		
Head	Cover a wide range	Cover a wide range		
Efficiency	Small bore: almost equal with submersible motor pump Big bore: Max eff. approx.90%	Maximum: approx. 80%		
Installation	complex	Easy		
Maintenance	complex	Easy		
Cost	Expensive than Submersible motor pump	Cheaper than Vertical shaft pump		
/ibration/Noise	Need attention	No need to pay attention compare to Vertical pump		
Leakage	Need attention	No need to pay attention compare to Vertical pump,		

Introduction to 3 phase Induction Motors

- Electrical motor is an electromechanical device, which converts electrical energy to mechanical energy.
- Three-phase induction motors are the most common electrical motors used in the industry.

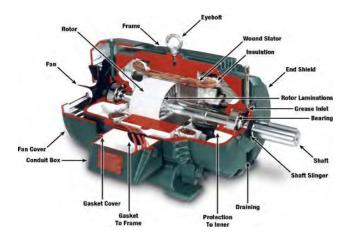
29




1. (Stationary part) Stator

An induction motor has two main components:

2. (Revolving part) Rotor



Basic Design and Construction

Section View

33

Basic Design and Construction

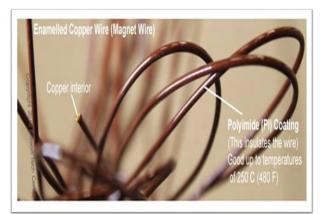
Motor Burnout and Rewinding

Causes...

- 1. Fluctuation in phase voltages
- 2. Malfunctioning of protective relays
- 3. Manufacturing defects
- 4. Damage before or during installation
- 5. Improper installation
- 6. Misapplication (overload)

- Poor energy quality
- Load shedding
- Poor water quality
- High number of remedial maintenance operations
- Significant drop in static levels

31


Motor Burnout and Rewinding

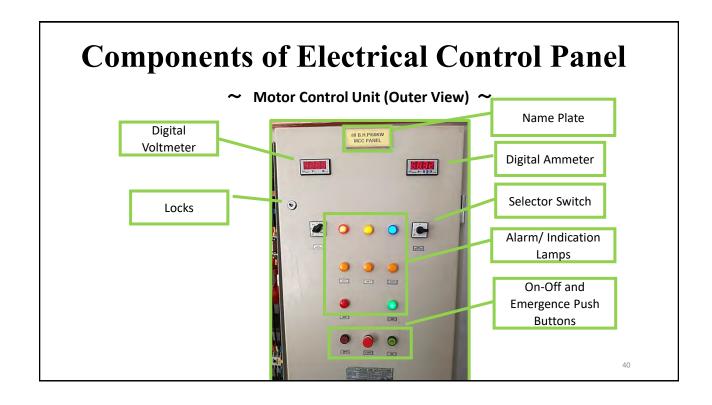
- Copper or aluminum wire should be used for rewinding the motor
- Preferably inside of the winding wire should be enameled copper wire (magnet wire)

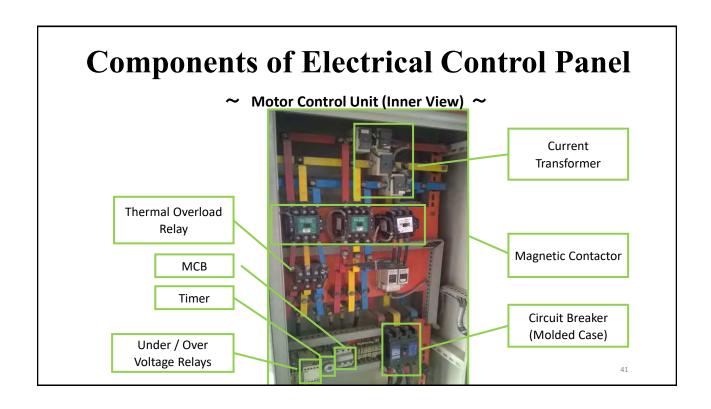
Motor Burnout and Rewinding

- After re-winding the assembly should be coated with risen and baked.
- Special care should be taken when inserting the rotor into the stator assembly.

37

Introduction to Panel Components




What are these?

Selector Switches

✓ Used to select among each of the three phases to monitor currents and voltages on ampere and voltmeter.

Ampere & Voltmeter meter

- ✓ Monitoring gauges for currents and voltages
- ✓ Digital and analog type Ampere and Volt meters are used by WASAs

Zero Adjustment

43

1. Circuit Breakers

Circuit breakers are switches that open/close electric circuits in normal and abnormal conditions specially in case of a short circuit.

2. Contactor

✓ A power contactor is typically used for "on / off" control of motors. A relay can be installed on the circuit for overload protection. Electromagnetic force works to "open /close" the contacts.

45

Protective Relays

✓ Protective relays detect electrical faults, isolate the faults from system and activate alarms is a faulty condition sensed

Thermal Relay

Under/Over Voltage Relay

Phase Failure Relay

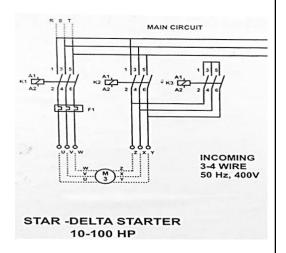
5. Current transformers (CT)

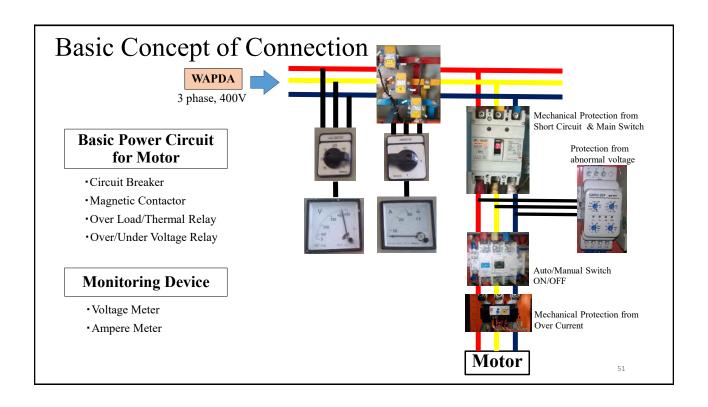
✓ CT's are used for stepping down current to be measured safely. It is also applied to protective relays

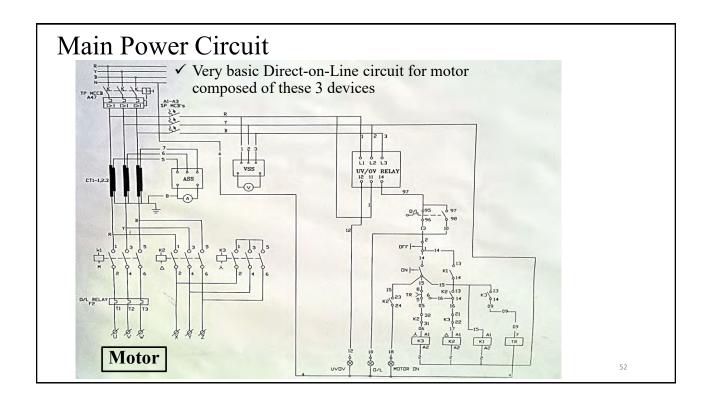
47

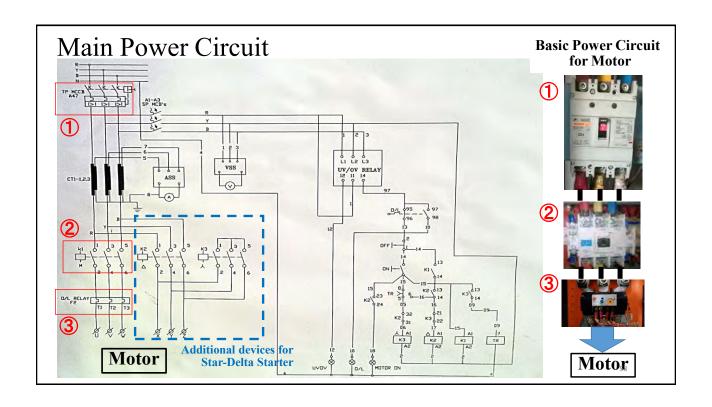
6. Timer

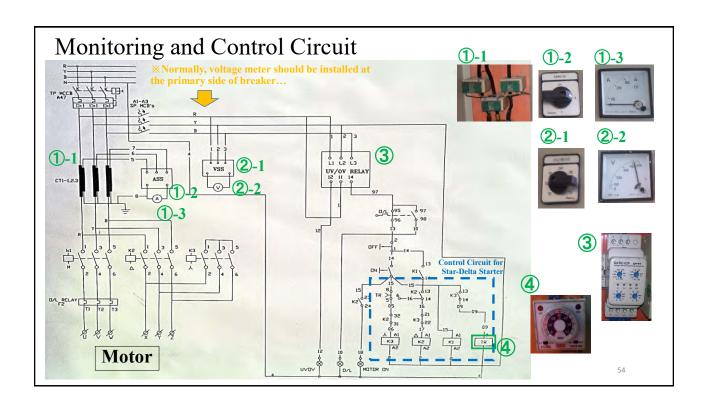
✓ Use to convert the motor connections from Star to Delta after specific time




WIRING DIAGRAMS


49


Wiring Diagram


- ✓ Shows how the components are connected
- ✓ It should be always available at the site

Introduction and selection of valves

Valve

A valve is a device that regulates, directs or controls the flow of a fluid by opening, closing, or partially obstructing various passageways.

Valve Functions

- ✓ Stopping and starting fluid flow.
- ✓ Varying (throttling) the amount of fluid flow.
- ✓ Controlling the direction of fluid flow.
- ✓ Regulating process pressure.
- ✓ Relieving component or piping pressure.

55

Introduction and selection of valves

Classification of Valves

The following are some of the commonly used valve classifications, based on mechanical motion:

Linear Motion Valves.

The valves in which the closure member, as in gate or sluice, moves in a straight line to allow, stop, or throttle the flow.

Introduction and selection of valves

Classification of Valves

Rotary Motion Valves.

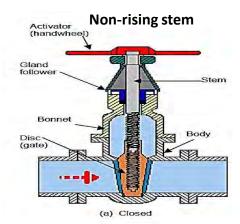
When the valve-closure member travels along an angular or circular path, as in butterfly valves.

Quarter Turn Valves.

Some rotary motion valves require approximately a quarter turn, 0 through 90°, motion of the stem to go to fully open from a fully closed position or vice versa.

5

Introduction and selection of valves

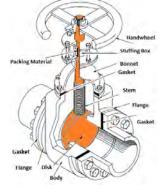

Classification of valves based on motion

Valve types	Linear motion	Rotary motion	Quarter turn
Gate Valve	X		
Air release valve	X		
Butterfly valve		X	X
Non-return valve		X	X
Flap valve		X	

Assembly parts of valves

Basic Parts of the valve

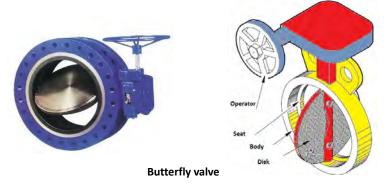
- Body
- Bonnet
- Trim (internal elements)
- Actuator (Handwheel)
- Packing


59

Introduction and selection of valves

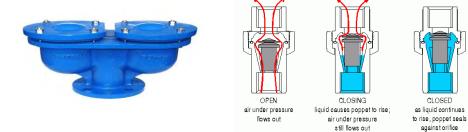
Methods of controlling flow through a valve.

1. Slide a flat, cylindrical, or spherical surface across the orifice.



Gate valve

Introduction and selection of valves


2. Rotate a disc or ellipse about a shaft extending across the diameter of an orifice.

61

Introduction and selection of valves

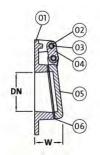

3. Ball linearly moves upwards to close of an orifice.

Air release valve

Introduction and selection of valves

4. Non return valve rotates a disc to stop the backflow of the fluid

Non return valve


63

Introduction and selection of valves

5. **Flap valve** rotates a cover disc to hinder air suction and backflow of the fluid. Installed at the open end of discharge pipe.

Item	Description
01	Body
02	Bush
03	Hinge pin
04	Links
05	Flap
06	Seating face

Flap valve

Insulation Testing for 3- Phase Motor

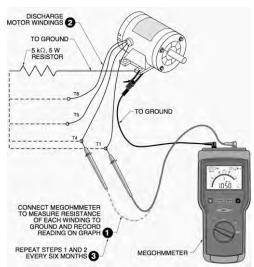
65

What is "Insulation Resistance"?

- Insulation resistance is the value showing if there is electrical leakage or not with the measured equipment.
- Insulation resistance tester is a tool to check how properly the system/equipment is insulated.
- If the value show less than 1 $M\Omega$, need to be cared. If less than 0.4 $M\Omega$ (i.e. for 400V), detect the faulty parts and replace them immediately.

• It is necessary to check not only one time value but also the trend and comparison with the previous value.

66/20


Step By Step Procedure for Insulation Testing

- Connect the terminals of insulation tester black with earth and red with U₁, V₁ and W₁ one by one with energize insulation tester and note values.
- 2. Cross winding insulation test

Connect the terminals in the pattern

$$\begin{aligned} &U_1 - V_1 \;,\, U_1 - W_1 \;,\, V_1 - W_1 \;\;\text{and} \\ &U_2 - V_2 \;,\, U_2 - W_2 \;,\, V_2 - W_2 \end{aligned}$$

Energize the system and note down values. Minimum insulation resistance value should be more the 1 M Ω .

Sample Format for Preventive Maintenance

Preventive Maintenance Sheet for Electrical Facility								
Sub Division :		Motor Specification			Rated Capacity (kW/HP)			
Site Name:		Rated Voltage	Rated Ampere	Efficiency	Power Factor	RPM		
Equipment Name:		(V)	(A)	-	-			
Date								
Inspected By								
Weather								
Во	It Tightening							
Insulation Resistance (ΜΩ)	U1-E	U2-E						
	V1-E	V2-E						
	W1-E	W2-E						
	U1-V1	U2-V2						
	V1-W1	V2-W2						
	W1-U1	W2-U2						

1 Test in OFF Condition

2 Test in Running Condition

Voltage by	R'	Υ				
Clamp Meter	Y	В				
(V)	BI	R				
Ampere by	F	2				
Clamp Meter	Y	′				
(A)	Е	3				
F	ower Factor					
Vibration	Upper Bearing	Lower Bearing				
Revolution	n Per Minut	e (RPM)				
Temperature	Upper Bearing	Lower Bearing				
remperature	Shaft					
Reference for	Insulation Res	istance Value	2:	Good → m	ore than 1.0MΩ	
Need to Adjust, (Clean,Care →	$1.0M\Omega \sim 0.4M$	Need to repa	ir immediately	→less than 0.4	ΜΩ
- Remarks -						

69/20

Issues in Pumps

Trouble shooting Pumps

- 1. Corrosion
- 2. Cavitation
- 3. Change in Flow and Pressure

Issues in Pumps

Trouble shooting Pumps

- 1. Corrosion
- 2. Cavitation
- 3. Change in Flow and Pressure

71

Troubleshooting

Trouble shooting Pumps

- 1. Troubles are of 3 types: mechanical, hydraulic and motor related
 - ✓ Mechanical troubles: Breakage of coupling or shaft
 - ✓ Hydraulic troubles: Failure to deliver water, reduction in discharge and over loading.
 - ✓ Motor troubles: If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- 2. Flow rate increases check if system head decreased, is motor tripping on overloading?

.

Trouble shooting Pump

- 3. Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.
- 4. Vibrations check obstruction in suction, cavitation, impeller with solid particle logged in vane, system alignment (shaft, coupling etc.), tightening of installation bolts
- 5. Seal leakage while running or at shut down? check suction conditions, wear in parts, pump speed, changes in system.

73

Troubleshooting

Trouble shooting Centrifugal Pump

No liquid delivered

- Lack of prime
- Speed of electric motor or engine too low
- Discharge head too high
- Suction lift too high
- Impeller plugged
- Vapor lock in suction line

Trouble shooting Centrifugal Pump

Not enough water discharge

- Air leaks
- Worn wearing rings
- Damaged impeller
- Defective foot valve
- Worn gaskets

75

Troubleshooting

Trouble shooting Centrifugal Pump

Overloading of Motor / Engine

- Low discharge head
- Packing too tight
- Bent shaft
- Distorted casing
- Pump speed too high

Trouble shooting Vertical Turbine Pump

- 1. If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- 2. Flow rate increases check if system head decreased, is motor tripping on overload?
- 3. Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.

77

Troubleshooting

Trouble shooting Vertical Turbine Pump

- 4. Vibrations check obstruction in suction, impeller with solid particle logged in vane.
- There is excessive leakage from the stuffing box The packing is defective.
 Replace any packing that is worn or damaged

Trouble shooting Submersible Pump

- 1. If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- 2. Flow rate increases check if system head decreased, is motor tripping on overload?
- 3. Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.

79

Troubleshooting

Trouble shooting Submersible Pump

- 4. Vibrations check obstruction in suction, impeller with solid particle clogged in vane.
- 5. Sand in well discharge and/or excessive pump impeller wear

Possible problem	Solution
Damaged well screen or gravel envelope	In some cases a drilling contractor may be able to replace or repair the screen or gravel envelope.
Flow is drawing sand into the well	Throttle back the flow rate to reduce the problem. A drilling contractor may also need to redevelop the bore to flush out the sand around the bore screen (or take other measures as appropriate).

Trouble shooting Submersible Pump

Possible problem	Solution		
Rapid stop/start pumping agitating the bore and not flushing out the	Look at the pump controls. Install storage or a variable speed drive (not always		
sand	appropriate).		


21

Imersed Tubewell Pump

Total Dynamic head

83

Thank you

Engr. Jawad Shahid

Introduction to Advanced Energy Audit in Water Supply

By Jawad Shahid Vice Principal

WSD 5231, Module 1

Importance of Tube Well Pumps

This could be my home!

Topics to cover..

- Introduction and Importance of Advanced Energy Audit
- Hands on Activity, wiring of MCU
- Energy Audit of miniature Pumping Station
- Use of Electro-Mechanical Equipment
- Data Extraction from Power Analyzer and Ultra-Sonic Flow Meter

WSD 5231, Module 1

dule 1

Topics to cover...

- Energy Assessment Tool
- Actual Issues faced by WASAs During Energy Audit
- Explanation of Q-H curve
- Series and Parallel Pump Operation
- Preparation of Energy Development Plan

Icebreaker and Class Introduction

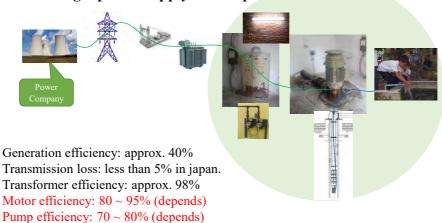
Now it is your turn...

• Degree and backgrounds?

• Share your work experience relati

WASA equipment?

WSD 5231, Module 1


Brainstorming

Now it is your turn...

- Any prior experience of Energy?
- Why interested in this Energy Audit?
- What best skills do you bring to the class?

WSD 5231, Module 1

WHAT IS ENERGY AUDIT ACTIVITY

WSD 5231, Module 1

Energy Audit: An Energy Audit is an assessment and analysis of Energy Flows in a process, aimed at reducing the amount of energy input into the system without negatively affecting the outputs.

Objective Audit: The main objective of an energy audit is to explore various possibilities for energy conversation.

Approach: An Energy Audit requires a through and detailed study of a system, through the performance of various tests and measurements.

WSD 5231, Module 1

BASIC KNOWLEDGE for ENERGY AUDIT

Concept of

- Electrical Capacity (kW)
- Pump Efficiency
- Principle of measurement
- Evaluation for Pump station

Levels of Assessment

- Level I Assessment Preliminary Energy Use Analysis & Walk Through Analysis; simple assessment based on available documents and information, physical inspection, and staff interviews to create a baseline and identify obvious energy efficiency measures which are easy to implement
- Level II Assessment Energy Survey and Analysis; review of data, existing and newly gathered, to identify all energy saving measures and identify high potential measures for further investigation
- Lovel III Assessment Detailed Analysis of Capital Intensive Measures; also known as Investment Grade Audit used to give a detailed assessment of costs and benefits derived from capital intensive energy conservation measures

WSD 5231, Module 1

ELECTRICITY to WATER

Steps in an Energy Audit

- Collect and analyze historical energy usage.
- Study pumping systems and their operational characteristics.
- Identify potential modifications that will reduce the energy usage and/or cost.
- Perform an engineering and economic analysis of potential modifications.
- Prepare a rank-ordered list of appropriate modifications.
- Prepare a report to document the analysis process and results.

Levels of Assessment

- Level | Assessment Preliminary Energy Use Analysis & Walk Through Analysis; simple assessment based on available documents and information, physical inspection, and staff interviews to create a baseline and identify obvious energy efficiency measures which are easy to implement
- Level II Assessment Energy Survey and Analysis; review of data, existing and newly gathered, to identify all energy saving measures and identify high potential measures for further investigation
- Level III Assessment Detailed Analysis of Capital Intensive Measures; also known as Investment Grade Audit used to give a detailed assessment of costs and benefits derived from capital intensive energy conservation measures

WSD 5231, Module 1 13

ELECTRICITY to WATER

Level | Assessment

- Purpose for undertaking:
 - Gain a full understanding of how energy is being consumed and the associated costs
 - Report on energy use to internal or external stakeholders
 - Find energy conservation programs for immediate and future consideration
 - Identify projects for future energy reduction
 - Set targets for energy reduction

- Results:
 - Baseline of energy use
 - Forecast of future energy use based on current / historical consumption
 - Identification of no/low cost measures for energy reduction
 - List of potential projects for future investigation
 - Detailed benchmarking for accurate comparison to other lacilities and own past performance
 - Preparation for next level of assessment

Level II Assessment

- Purpose for undertaking:
 - Desire to take advantage of energy and cost savings from a wider range of projects
 - Creation of a full energy conservation program
- · Results:
 - Evaluation of all potential energy conserving operational changes and capital investments available
 - Listing of capital projects that require further investigation prior to implementation
 - Preparation for next level of assessment

WSD 5231, Module 1

ELECTRICITY to WATER

Level III Assessment

- Purpose for undertaking:
 - Desire to undertake significant capital projects to improve energy efficiency based on projects identified in previous levels of assessment
 - May include gaining access to external linancing under performance contract.
- Results:
 - Detailed information provided so that owners have a high level of confidence in decision making regarding significant capital investment
 - May include implementation of capital intensive EE measures under performance contract.

Method & Approach for Water Systems

- The audit involves carrying out various measurements and analysis of the following systems to assess losses and the potential for energy efficiency improvements:
 - Pumps & Pumping Systems
 - Electrical Systems
 - Electric Drives

WSD 5231, Module 1

ELECTRICITY to WATER

Measurement

- Data collection
 - Specifications of pumps and motors
 - Diagram of water distribution air network
 - Water pressure required for the system
 - Number of pumps in operation
 - Design/specified water temperature required
- · Water flow rate of pumps at various operating conditions
 - Individual
 - Parallel
- · Water flow velocity in pipe lines
- Suction & discharge pressure of pump

Data Analysis and Energy Conservation Measures (ECMs)

- · Full written description of each ECM to include:
 - Existing conditions and data collection approach (snapshot, short-term, or long-term measurement of data)
 - Recommendations. Include discussion of facility operations and maintenance procedures that will be affected by ECM installation and implementation.
- Baseline energy use:
 - Summary of all utility bills
 - Base year consumption and description of how established

WSD 5231, Module 1 19

ELECTRICITY to WATER

Data Analysis and Energy Conservation Measures (ECMs)

- Savings Calculations:
 - Base year energy use and cost
 - Post-retrofit energy use and cost
 - Savings estimates including analysis methodology, supporting calculations, and assumptions used
 - Operations and maintenance savings
 - If manual calculations are employed, formulas, assumptions, and key data shall be stated.

Data Analysis and Energy Conservation Measures (ECMs)

- Cost Estimate:
 - Engineering/design costs
 - Contractor/vendor estimates for labor, materials, equipment; etc
 - Construction management fees
 - Commissioning costs
 - Other costs/fees

WSD 5231, Module 1 21

ELECTRICITY to WATER

Energy Audit Report Format

- Executive Summary
- Background
- Energy Scenario
- Inventories
- Baseline Parameters & Adjustments
- System Mapping Details
- List of Potential Energy Saving Projects
- Detailed Financial Analysis (Payback, NPV, IRR)
- Details of Approved Projects
- M&V Plan
- Risk Assessments & Mitigation Plan
- Annexure

Responsibility Matrix

	T	
S.No.	Designation	Responsibility
1.	Director	Approve and Present
2.	Executive Engineer	Verify and Prepare Recommendations for Improvement
3.	Sub-Divisional Officer	Supervise Energy Audit
4.	Sub-Engineer / Supervisor	Perform Energy Audit

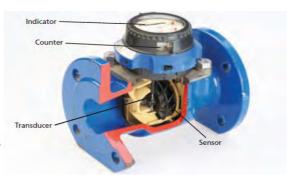
WSD 5231, Module 1 23

Equipment Required for Energy Audit

- Power analyser
- Ultrasonic Flowmeter
- Pressure Gauge
- Water level meter
- Tachometer
- Thermometer
- Vibration meter

Power Analyzer:

 Values of Voltages, Currents, Power Factor and Motor Input Power (P_{mi}) is collected using power analyzer.

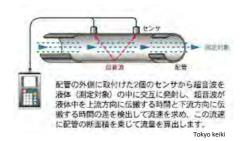

WSD 5231, Module 1 25

BASIC KNOWLEDGE for ENERGY AUDIT

- ✓ Turbine Meters
- ✓Ultra Sonic Flow Meters
- ✓Electromagnetic Meters

Turbine meter

- ✓ These meters have a rotating element that turns with the flow of water.
- ✓ Volume of water is measured by the number of revolutions by the rotor.

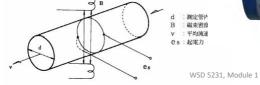


WSD 5231, Module 1 27

Ultrasonic meters

- ✓ Sending sound waves from 2 sensor (transmitter) diagonally across the flow of water in the pipe.
- ✓ The time difference between 2 direction to be converted to flow velocity.

(there is Doppler shift method, too)



Ultrasonic flowmeter (time transit)

Electromagnetic meter

✓Induce magnetic field in the bore by coils outside of the flow channel. When water flows the magnetic field, electromotive force (Voltage) is induced.

✓ The electromotive force will be converted proportionally to velocity and hence the flow rate.

Electromagnetic flowmeter

29

BASIC KNOWLEDGE for ENERGY AUDIT

	Ultra Sonic	Electromagnetic	Turbine	
Appearance				
Accuracy	lower than Electromagnetic in small flow rate	High	lower than others in small flow rate	
Installation condition (D:pipe dia)	Before meter:10D After meter:5D	Before meter:5D After meter:2D	Before meter:10D After meter:5D	
Pressure loss	No pressure loss	Almost no pressure loss	Pressure loss due to around Impeller	
Telecommunications	Available	Available	Available	
Initial Cost	Expensive	Expensive	Inexpensive	
Others	Proper installation skill is required	Susceptible to electrical noise	There is lifetime of rotation parts	

BASIC KNOWLEDGE for ENERGY AUDIT

Principles of Measurement

Pressure measurement

WSD 5231, Module 1 31

Ultrasonic Flow meter:

• Measure the flow (Q) using ultrasonic flow meter. Flow is important parameter to measure the water power, discharge velocity and other required parameters.

Pressure Gauge

• Record pressure using pressure gauge. Pressure is important parameter to determine the Total Head.

WSD 5231, Module 1 33

Water level meter

• This equipment is used to determine the static and dynamic water level. An important parameter to calculate the Total Head.

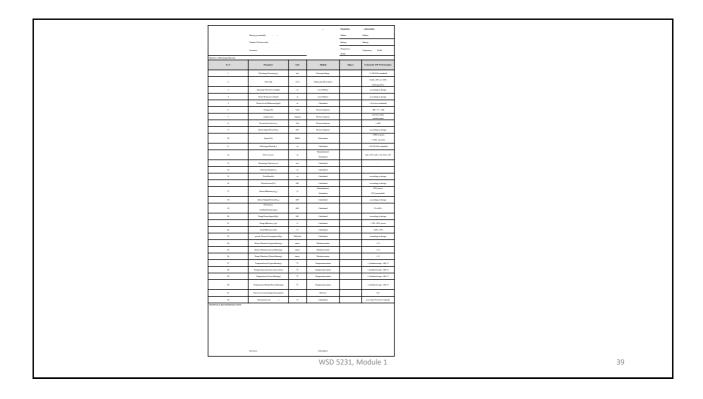
Tachometer

• Tachometer determines the rotation of the motor, shaft and pump

WSD 5231, Module 1 35

Digital Thermometer

• This device used to get temperature of critical parts of motor and pump.


Vibration meter

• Vibration meter determines the vibration of pump and motor at critical parts. This is important parameters to ensure a good installation.

WSD 5231, Module 1 37

Sr. #	Parameter	Unit	lst	2nd	3ed	4th	
36. #	Date	yyy/mm/dd	116	280	300	415	
2	Time	bhrm					
- 4	time	nemm					
3	Location/ Tag	-					
4	Pump (Maker/ Rating/ Type)	-					
5	Motor (Maker/ Rating)	-					
6	Discharge Pressure (p _d)	bur					
7	Discharge Pipe Dia (d)	men					
8	Flow (Q)	m ³ /h					
9	Dynamic Water Level (hpl)	m					
10	Static Water Level (hpl)	m					
11	Voltage (V) RY-YB-BR	Volt					
12	Ampere (A) R-Y-B	Ampere					
13	Power Factor (Cox or)	=					
14	Motor laput Power (P _m)	kW					
15	Speed (N)	RPM					
16	Motor Vibration (Upper Bearing)	mm/s					
17	Motor Vibration (Lower Bearing)	mm/s					
18	Pump Vibration (Thrast Bearing)	mm/s					
19	Temperature (at Upper Bearing)	°c					
20	Temperature (at motor coil; center)	°c					
21	Temperature (Lower Bearing)	°C					
22	Temperature (Pump Threat Bearing)	°c					
23	Excessive water leakage from gland	÷	yes / no	yes / no	уел / по	yes / no	
FINDINGS	FINDINGS & RECOMMENDATIONS						
	Surveyor:		Attendance				

Development of Energy Management Plan

- Introduction
- Installed Capacity
- Calculations
- Analyzing and Implementing Findings
- Electric Utility Billing Structures
- Energy Benchmarking
- Energy Efficiency improvement Measures
- Implementing Findings

Energy Assessment Tool

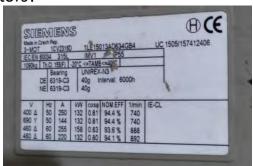
WSD 5231, Module 1 41

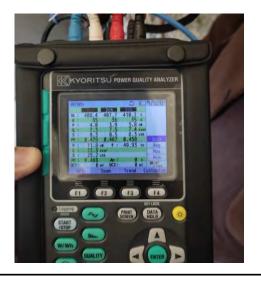
Contact:

Engr. Jawad Shahid

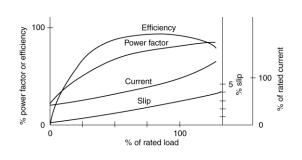
Advanced Energy Audit

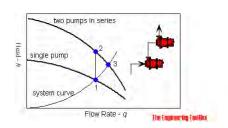
By
Jawad Shahid
(Vice Principal)

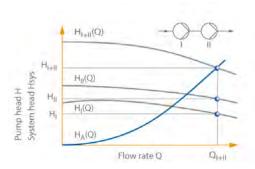

Basic O&M of Pumping Machinery


- Energy Audit:
- Purpose: In order to evaluate the pumping efficiency and monitor changes over time

Causes of Low Power Factor For Induction Motor

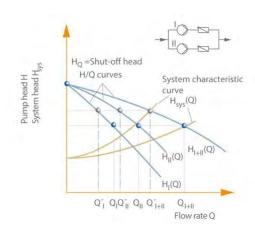

 What Could be the reason for low Power Factor in 3 Phase Induction Motors?


Causes of Low Power Factor For Induction Motor

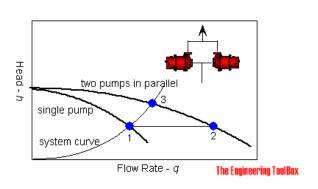

- For Induction motors, the pf is usually extremely low (0.2 - 0.3) at light loading conditions and it is 0.8 to 0.9 at full load.
- In some cases, due to improper wiring or electrical accidents, a condition known as 3-φ power imbalance occurs. This results in low power factor too.

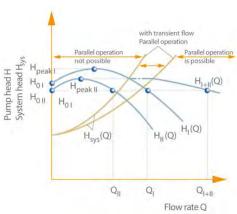
Series Pump operation

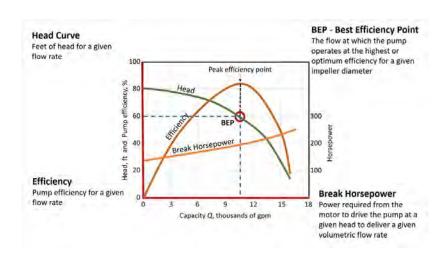
 When two centrifugal pumps (I and II) are operating in series, the head (HI+II) is the sum of the individual pumps' heads and the flow rate remains the same.



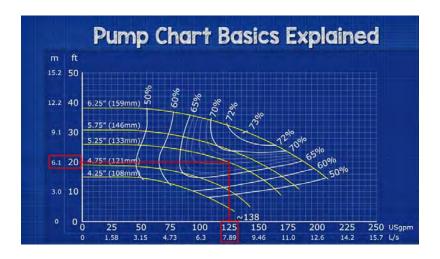
Series operation: Series operation of two centrifugal pumps I and II with any type of characteristic curves


Parallel Pump Operation


 If two centrifugal pumps I and II are operated in parallel, the flow rate QI+II is the sum of the flow rates of the individual pumps at the same head, i.e.:


Parallel operation: Two centrifugal pumps I and II with stable characteristic curves

Parallel Pump Operation



Q-H Curve

Pump Efficiency

Flow and current relationship

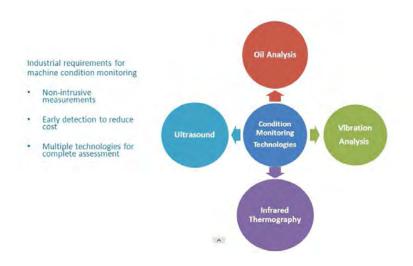
- With Increase in flow, pressure will decrease and power consumption will increase
- With Decrease in flow, pressure will increase and power consumption decreases.

Effect of over sizing and under sizing the motor on power consumption

- Undersize:
 - Overload
 - Lower Flow
 - Higher Power Consumption
- Oversize:
 - Underutilization
 - V. Low Power Factor
 - · Energy Wastage

Selecting the wrong size motor

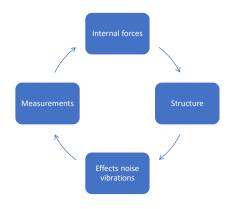
- What are the power demands of the pump?
- What will typical operation look like for this pump?
- Will the pump be operated on a variable frequency drive (VFD)?


Vibration Analysis

Vibration

- Vibration is a back and forth movement of a structure, It can also be referred to as cyclical movement
- Vibration Monitoring:
 - The Vibrations that are felt generally come for the forces inside the machine

Machine Condition Monitoring Technologies



Vibration Monitoring Fundamentals

• Principles of Vibration analysis

Major Causes:

- Unbalancing
- Misalignment
- Bearings
- Gears Magnetic Faults
- etc

Cost of machine failures

What Does vibration Indicate?

- The Vibrations produced in a machine are a best indication of Machine health
- Indication of Machine failures

Common Problems that Generate Vibration

- 1. Misalignment
- 2. Unbalance
- 3. Worn belts & pulleys
- 4. Bearing Defects
- 5. Hydraulic Forces
- 6. Aerodynamic Forces
- 7. Reaction Forces
- 8. Reciprocating Forces
- 9. Bent Shafts
- 10.Rubbing
- 11.Gear Problems
- 12. Housing Distortion
- 13.Certain Electrical Problems
- 14.Frictional Forces

Vibration Monitoring

- Permanent Vibration Sensors
 - · Permanent Sensors installed
- · Periodic Vibration Measurement
 - Handheld Vibration measurement device

Vibration Monitoring

- Whenever possible, make measurements in the horizontal (H), vertical (V), and axial (A) directions of each bearing.
- Monitoring points should be marked, and data on the same locations are always taken
- In case of Multiple Pumps installed the same scenario be created for all measurements

Vibration Limits

- For Motors less than 200kW8.5 mm/s
- For Motors above 200 kW 9.5 mm/s

The permissible vibration limits for electric motors can be found in the ISO 10816-3 standard. The NEMA and IEC standards also establish some acceptance criteria.

WASA field Issues

Suggested Improvement

Suggested Improvement

3

Suggested Improvements

Suggested Improvements

5

Suggested Improvements

Current Conditions

7

Suggested Improvement

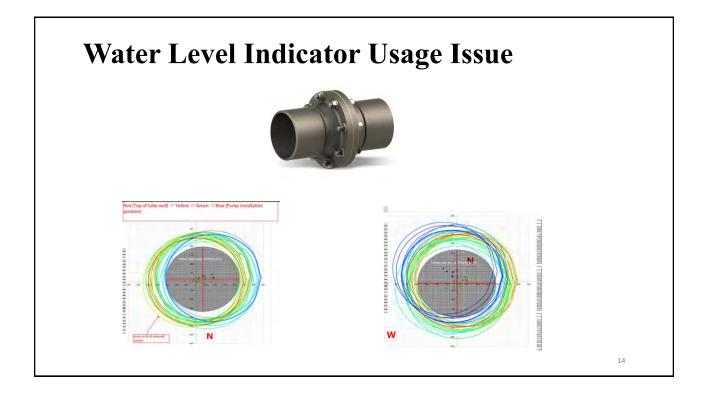
Suggested Improvement

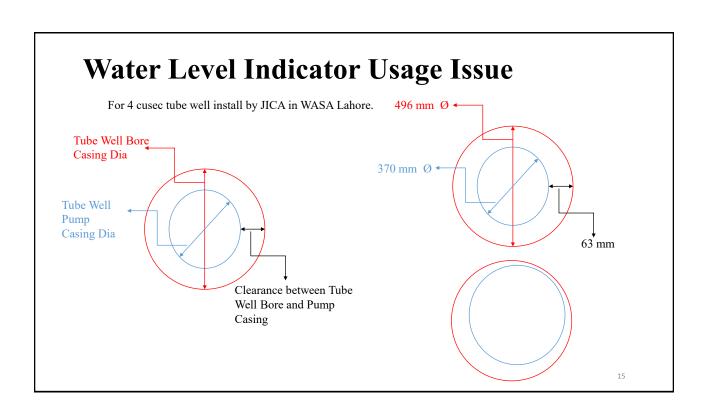
9

WASA FIELD ISSUES

Water Level Indicator Usage Issue




1:


Water Level Indicator Usage Issue

Water Level Indicator Usage Issue

Valves maintenance issue in WASAs

• Cracked gasket

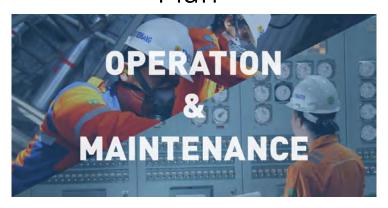
17

Valves maintenance issue in WASAs

• Absence of balls in air release valves

Lubricating box issue in WASAs

19


Lubricating box issue in WASAs

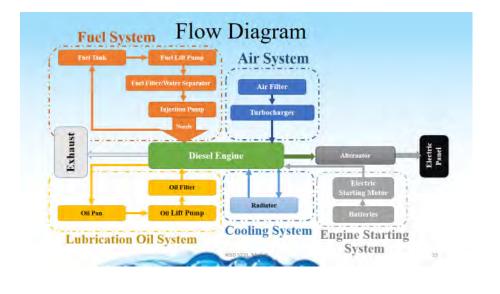
Thank you

Engr. Jawad Shahid

Operations and Maintenance Plan

Operations and Maintenance Plan

- Operations and Maintenance are the decisions and actions regarding the control and upkeep of property and equipment
 - i. Actions focused on scheduling, procedures, and work/systems control and optimization
 - Performance of routine, preventive,
 predictive, scheduled and unscheduled actions
 aimed at preventing equipment failure



Maintenance Spectrum

3

Step-I Process Description and Process Flow Diagram

Step-II Equipment Description

• In Case of Tube well

5

Step-III Operating Procedure

- Submersible Pump Startup & Operation
 - Check water level in bore hole.
 - Check valves (open).
 - Check voltage range for 3-Phase motor.
 - Start up the motor
 - Check that ammeter reading is less than rated motor current.
 - After startup check pressure for operating point.
 - Check for undue vibration and noise.
 - Voltage should be checked every hour.

Step-III Operating Procedure

• Maintaining procedure log

S.No.	Procedure Description	Procedure No.
1.	Operation of Tubewell	WASA/LAH/44
2.	Gland Packing Replacement	KSB/WASA/LAH/77
3.	MCU Thermal and Insulation Test	PEMPAK/WASA/LHR/22
4.	Energy Audit For Tubewell 4 cfs, JICA	WASA/ELEC/LAH/11

7

Step-IV Preventative Maintenance Program

S.No.	Equipment	Maintenance	Frequency
1.	Fan Belt of Generator	Visual Inspection	Monthly
2.	Pump Motor Temperature Check	Motor Thermal Check	Quarterly
3.			

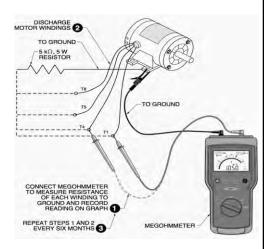
Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

S.No.	Procedure Description	Procedure Title
1.	Evaluation of Motor	Insulation Test for winding
		Thermal Test for overheating
		RPM Test
		Vibration Test
2.	Evaluation of Pump	Flow / Head
		Leakage
		Unusual noise/ vibration

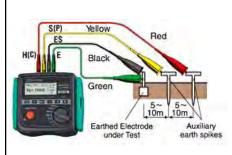
Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell


S.No.	Procedure Description	Procedure Title
3.	Evaluation of Motor Control Unit	Insulation Test for Wiring and components
		Earth Resistance Test
		Thermal Test for overheating
		Lamp test for warning signs
4.	Evaluation of Valves	Check operation of Air Release Valve
		Check operation of Non return Valve
		Check Operation of Gate Valve
5.	Tubewell Chamber Evaluation	Visual Inspection

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell


Overloaded contacts show different temperature profiles indicating one contact seeing much greater load, a potentially unsafe situation.

1:

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

Earth Resistance Test

Vibro-meter

Contact and Non Contact type Tachometer

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

Ultrasonic Flow meter

Step-IV Report Writing

Annual Maintenance Plan

	Daily	and Perio	odic Mai	ntenance	Sheet					
	1000000		Serv	ice Type		Last Activity		ar_	. L	
Sr. No.	Activities	Daily	Weekly	Monthly	6 Months	Date	1000	-	-	4 5
1	Visual Inspection									
2	Check Coolant Level									
3	Check Oil Level	•								
4	Check Fuel Level								T	
5	Check Charge Air Piping								\mathbf{I}	
6	Check and Clean Air Cleaner									
7	Check Battery Charger								\Box	
8	Drain Fuel Filter		•							
9	Drain Water From Fuel Tank									
10	Check Coolant Concentration									
11	Check Drive Belt Tension									
12	Drain Exhaust Condensate			•						
13	Check Starting Batteries									
14	Change Oil and Filter									
15	Change Coolant Filter			1						
16	Clean Crankcase Breather									
17	Change Air Cleaner Element									
18	Check Radiator Hoses									
19	Change Fuel Filters									
20	Clean Cooling System								T	

Annual Maintenance plan

- Step-I Process Description and Process Flow Diagram
- Step-II Equipment Description
- Step-III Operating Procedure
- Step-IV Preventative Maintenance Program (Evaluation of Facility)
- Maintenance plan

15

Contact:

Engr. Jawad Shahid

ENERGY AUDIT INPUT FORM (For Site)

Sr. #	Parameter	Unit	Criteria	1st
1	Date	dd/mm/yy		
2	Time	hh:mm		
3	Location/ Tag	-		
4	Pump (Maker/ Rating/ Type)	-		KSB/ () / Mixed.
5	Motor (Maker/ Rating)	kw		ABB ()
6	Discharge Pressure (p _d)	bar	> 2 (WASA standard)	
7	Flow (Q)	m³/h	To Be -20% to +10% of Design Flow	
8	Dynamic Water Level (hpl)	m	according to design	
9	Static Water Level (hpl)	m	according to design	
10	Voltage (V)	Volt	±10% of rating	
11	Ampere (A)	Ampere	to be less than rated current	
12	Power Factor (Cos ø)	Nil	> 0.90	
13	Motor Input Power (P _{mi})	kW	according to design	
14	Speed (N)	RPM	> 1450~ (4 pole)	
15	Motor Vibration (Upper Bearing)	mm/s	< 5.1	
16	Motor Vibration (Lower Bearing)	mm/s	< 5.1	
17	Pump Vibration (Thrast Bearing)	mm/s	< 5.1	
18	Temperature (at Upper Bearing)	°C	< (Ambient temp. +40) °C	
19	Temperature (at motor coil; center)	°C	< (Ambient temp. +40) °C	
20	Temperature (Lower Bearing)	°C	< (Ambient temp. +40) °C	
21	Temperature (Pump Thrust Bearing)	°C	< (Ambient temp. +40) °C	
22	Excessive water leakage from gland	-	No	

							_		_														
												eventive											
						Visa	al Conditio	an/Cleanl'	iness			Voltage l	y Clamp	Meter (V)	Amprec 1	by Clamp	Meter (A)	Invalar	ion Resistan	ce (Mili)		Temperature	
No.	Date	Weather	Approved by	Inspected by	Cleanlin	Neatness of Cabline	Cable Celor	Cable/ wire Label	Proper Scaling	Termina 1 Cover	Bult Tightening	RY	128	IR	R	Y		$\frac{U1}{U2}$	V1 V2	$\frac{W1}{W2}$	Upper Bearing Lower Bearing		Evaluation
,																							

Preventive Maintenance Sheet for Electrical Facility

Sub Division :		Mo	otor Specifica	ation	Rated Capacity (kW/HP)	
Site Name:		Rated Voltage	Rated Ampere	Efficiency	Power Factor	RPM
Equipment Name:		(V)	(A)	-	-	
Date				•		
Inspected By						
Weather						
	Bolt Tighten	ing				
	U1-E	U2-E				
	V1-E	V2-E				
Insulation	W1-E	W2-E				
Resistance (MΩ)	U1-V1	U2-V2				
(1132)	V1-W1	V2-W2				
	W1-U1	W2-U2				
Voltage by		RY				
Clamp Meter		YB				
(V)		BR				
Ampere by		R				
Clamp Meter		Y				
(A)		В				
	Power Fac	ctor				
Vibration	Upper Bearing	Lower Bearing				
Revolu		inute (RPM)				
Temperature	Upper Bearing	Lower Bearing				
· o.nporataro	Shaft					
Reference for 1	nsulation R	esistance Value:		Good → more	than 1.0MΩ	<u> </u>
		→ 1.0MΩ ~ 0.4MΩ	Need to repair imme	ediately →less than	n 0.4MΩ	

- Remarks -

Che	eck List of Standard	d Operation	Proced	dure for	Electr	ical Facil	lity										
			Motor	· Specifi		Evalua	tion Crite	-ia									
	roved by :		Rated V	oltage (V)		Rat	ted Curren	t(A)			✓ :Good	×	: No care a			ewly installed	l.
inspe	ected by :		Efficien	cyPo	wer Fac	ctorI	RPM				▲:Need	to be improve	d -	-: Not av	ailable to b	e checked	
						ı		nspection It		ectrica	Panel (Condition				ı	
			I	Document			,	Visual (Outs	side)				Visual (I	nside)		Opera	ation
Sr. No.	Site/Pump Name	Inspection Date	Operation Record	Drawings	Vender Manual	Identification of Lamp/Switch	Status/ Fault Indication Lamps	Ampere Meter	Voltage Meter		Selector vitch	Cleanliness	Intrusion Path	Bypass- Circuit	Neatness of cabling	How to operate changeover switch	Frequency of Start/Stop
No.		Date	Compare with the sample	Pump installation , electrical line diagram	Pump/ Panel devices	all lamps /switches have name tag	all lamps are visibly bright enough	Proper functioning and zero adjustment	Proper functioning and zero adjustment	Ampero	Voltage	No dust, sand, spider's nest, insect, small animals	No hole/ crack to let foreign matters come in	No bypass / burnt mark		Turn off by breaker or switch first.	Maximum 2-3 times/ hour
1																	
2																	
3																	
- Re	emarks -																

Check List of Standard Operation Procedure for Electrical Facility

Evaluation Criteria

✓: Good ×: No care at all or need to be newly installed

△: Need to be improved —: Not available to be checked

Document Visual (Outside) Visual (Inside)																	
				Document				Visual (Outside)				Visual	(Inside)		Ope	ration
			Operation Record	Drawings	Vender Manual	Identification s of Lamp/Switch	Status/Fault Indication Lamps	Ampere Meter	Voltage Meter	Status Sele	ctor Switch	Cleanliness	Intrusion Path	Bypass- Circuit	Neatness of cabling	How to operate changeover switch	Frequency of Start/Stop
			Compare with the sample	Pump installation , electrical line diagram	Pump/ Panel devices	all lamps /switches have name tag	all lamps are visibly bright enough	Proper functioning and zero adjustment	Proper functioning and zero adjustment	Ampere	Voltage	No dust, sand, spider's nest, insect, small animals	No hole/crack to let foreign matters come in	No bypass / burnt mark		Turn off by breaker or switch first.	Maximum 2- 3 times/hour
1	Disposal Station, Chungi # 9, Panel # 2	<u> </u>						✓	-	✓	-	Δ	Δ	✓	✓	✓	✓
2	Disposal Station, Chungi # 9, Panel # 4	28/03/2017	✓	Δ	×	✓	✓	✓	-	Δ	-	Δ	Δ	Δ	Δ	✓	✓
3	Disposal Station, Chungi # 9, Panel # 7	28/03/2017	✓	Δ	×	~	✓	Δ	-	Δ	-	Δ	Δ	✓	Δ	✓	✓
4	Disposal Station, Chungi # 9, Panel # 8	28/03/2017	✓	Δ	×	✓	✓	Δ	✓	Δ	-	✓	Δ	✓	✓	✓	✓
5	Disposal Station, Chungi # 9, Panel # 11					~	Off lamp is not working	Δ	-	Δ	-	Δ	Δ	✓	✓	✓	✓
Tot	al Numbers of items req replaced*	uired to be					1			4							

- Remarks -

Motor Specification: Rated Capacity: Rated Voltage (V): Rated Current(A): Efficiency: Power Factor: RPM:

Motor Specification: Rated Capacity: Rated Voltage (V): Rated Current(A): Efficiency: Power Factor: RPM:

^{1.} No lamp test was available so status of O/L Lamp can not be checked

^{2.} Confirm that Current Transformers (CTs) are working fine before replacement of Ampere meter. In case of malfunctioning CT, please change CT first and if Ampere meter still not giving correct value then replace it.

^{*} All components should be purchased as per required specification of each panel according to the installed motor

App	ce Inspection Sheet roved by : ected by :		Rated V		tion:_ V)RP	Rated C	d Capaci urrent(A							₹	Evaluation Good Need to	×: No ca	are at all or n	eed to be not available	
	Continuity Test of components (Using Clamp Meter) Circuit Breakers Magnetic Contactor Transforme															Over/Unde	Relays Ac	ljustments Over Cu	
	Site /Pump Name Inspection Inspection Inspection													mer		over/Ond		(Thermal	Y-∆ Timer
Sr. No.	Site /Pump Name	Date Date	мссв	MCB 1	MCB 2	MCB 3	K1	K2	К3	Fuse	CT1	СТ2	СТ3	Under Voltage Tripping Function	Over Voltage Tripping Function	±10% of rated voltage of motor	Tripping Function	Not less than 5 seconds	
1																			
2																			
3																			
4																			
5																			
- Re	marks -																		

Device Inspection Sheet

Evaluation Criteria

✓: Good X: No care at all or need to be newly installed Δ: Need to be improved —: Not available to be checked

				Conti	nuity Te	st of com	ponents	(Using	Clamp	Meter)			I	Relays Adju	istments		
				Circ	uit Brea	kers		Magn	etic Coi	itactor			Over/Unde		Over Cu		Y- A
Sr.		Inspection			1		ı					V	oltage Rela	T	(Thermal)	Relay	Timer
No.	Site /Pump Name	Date	мссв	МСВ 1	МСВ 2	мсв 3	MCB 4	K1	K2	К3	Fuse	Under Voltage Tripping Function		±10% of rated voltage of motor	Tripping	Value Set	Not less than 5 seconds
1	I# 9. Panel # 2	28/03/2017	✓	✓	✓	1	✓	✓	1	✓	-	×	×	-	×	-	✓
	Disposal Station, Chungi # 9, Panel # 4		-	×	✓	1	✓	1	✓	×	-	×	×	-	×	-	✓
	Disposal Station, Chungi # 9, Panel # 7		✓	×	Δ	✓	✓	✓	✓	✓	-	×	×	-	×	-	✓
4	Disposal Station, Chungi # 9, Panel # 8	28/03/2017	✓	✓	✓	✓	✓	✓	✓	✓	-	×	×	-	✓	-	✓
5	Disposal Station, Chungi # 9, Panel # 11	28/03/2017	✓	Δ	Δ	Δ	✓	✓	✓	✓	-	×	×	-	×	-	✓
To	otal Numbers of items req replaced*	uired to be	0	3	2	1	0	0	0	1	-		5		4		0

- Remarks -

MCB 4 of panel number 2 was malfunctioned and already replaced

^{*} All components should be purchased as per required specification of each panel according to the installed motor

					O	pe	ra	tio	n	Tir	n	e Reco	ord	(Pu	un	ıp)						
											Г		(T.		1							
Month	Month/Year:										Approved b	y (Eng	ineer)									
Date : \sim				Prepared by (Operator)																		
Facility) (Date									Average	Total							
Pump 1	Operating Time	-		:	~	: :	~	:	:	~	:	: ~ :	:	~ :	:	~	:	: ~	:	: ~ :		
	Operating Hours	hrs.																				
	Chlorine Dosing	Y/N																				
	Flow Reading (Start)	m3																				
	Flow Reading (Stop)	m3																				
	Flow Amount	m3									\perp											
	Pressure	MPa									\perp											
	Power Factor	%									\perp											
	Voltage RY	V									\downarrow											
	YB	V									\perp											
	BR	V									\perp											
	Ampere R	A									\bot											
	Y	A									\perp											
	В	A																				

				Op	er	ation	Time 1	Record	l (Gen	erator)			
Month	/Year : Date :		,						y (Engineer)					
Facility	Items	Unit	Standard/ Rated	()	()	()	Da ()	ate ()	()	()	()	Average	Total
Generator	Operating Time	-		: ~	:	: ~ :	: ~ :				: ~ :	: ~ :		
	Operating Hours	hrs.												
	Fuel Level (Start)													
	Fuel Level (Stop)													
	Fuel Consumption Voltage RS	L V	400											
	ST	V	400											
	TR	V	400											
	Frequency	Hz	50											
	Energy Reading (Start)	KWh												
	Energy Reading (Stop)													
	Energy Consumption	KWh												

Operation Time Record (Pump)

		, , , , , , , , , , , , , , , , , , , 	ı	Ī	1	1			
Date:	~	_				(Operator)		
		_				Prepared b	у		
Month/Year:						(Engineer	•)		
						Approved	oy		

		Shift #	Operati	ng Time	Operating Hours	Chlorine Dosing	Flow Reading (Start)	Flow Reading (Stop)	Flow Amount	Precente	Power Factor				A	mpere	
			Turn On	Turn Off	hrs.	Y/N	m3	m3	m3	MPa	%	RY (V)	YB (V)	BR (V)	R (A)	Y (A)	B (A)
1																	
2																	
3																	
4																	
5																	
6																	
7																	
8																	
9																	
10																	
11																	
12																	

Remarks:

Motor Movement Explanation

[Pre Movement Condition]

- 1 Main Circuit Breaker (TP MCCB A47) : ON
- 2 Circuit Breaker MCB (A1-A3 SP MCB's) : ON
- 3 Under/Over Voltage Relay (UV/OV RELEY) : OFF
- 4 Thermal Relay (O/L RELEY) : OFF

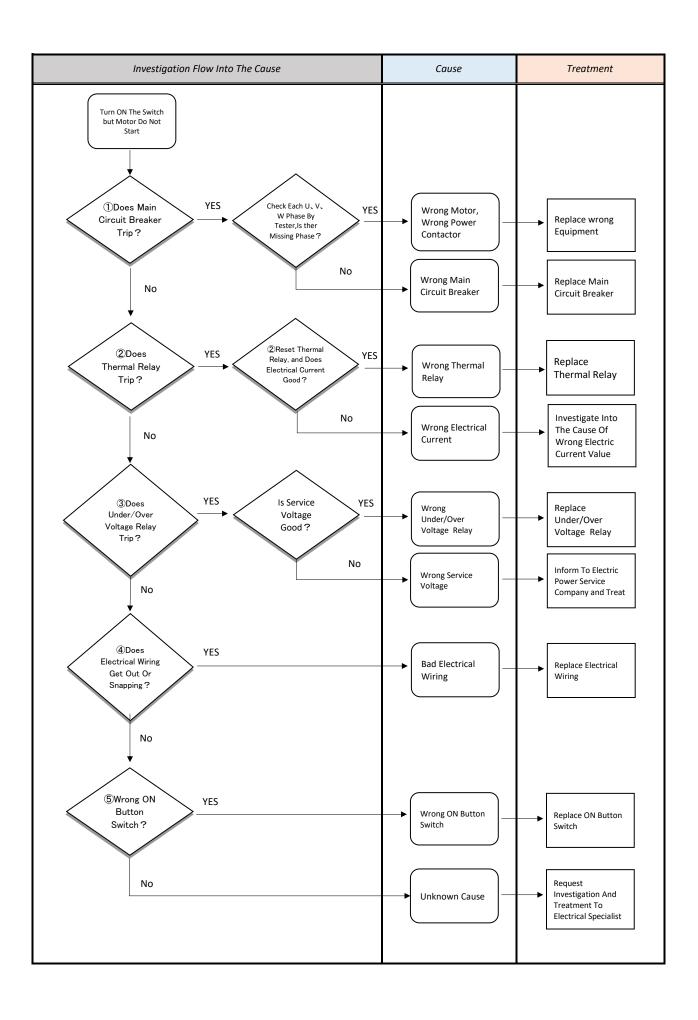
[Movement Explanation]

- 1 Push Button → ON
- 2 Power Contactor K3 \rightarrow ON \rightarrow Power Souce Voltage Impress To Motor U V W
- 3 Power Contactor K1 $\,\, o\,\,$ ON $\,\, o\,\,$ Motor Connection Is Y Wiring.

(Only 1/V3 Power Voltge Will Impress To Each Phase And Starting Current Will Be Small)

- 4 Timer (TR) \rightarrow Condition
- 5 Timer → ON
- 6 Power Contactor K2 \rightarrow ON \rightarrow Motor Connection Will Change to Δ Wiring,

Turn to Normal Operation, Motor Will Run Normally.


- 7 MOTOR ON Light → ON
- 1 Push Button → OFF
- 2 Power Contactor K1 K2 K3 \rightarrow OFF
- 3 Motor → Stop

[Check Items While Motor Running]

- 1 By ASS (Ammeter Change Over Switch) Check Each Phase Electric Current (U V W) , Confirm It Shows Under Rated Current.
- ${\small 2~~By~VSS~~(Voltage~Change~Over~Switch)~~, Check~The~Voltage~Of~U-V~V-W~U-W,~Confirm~It~is~Normal~Value.}\\$
- 3 Chaeck The Water Level Of Motor Drawing Well.

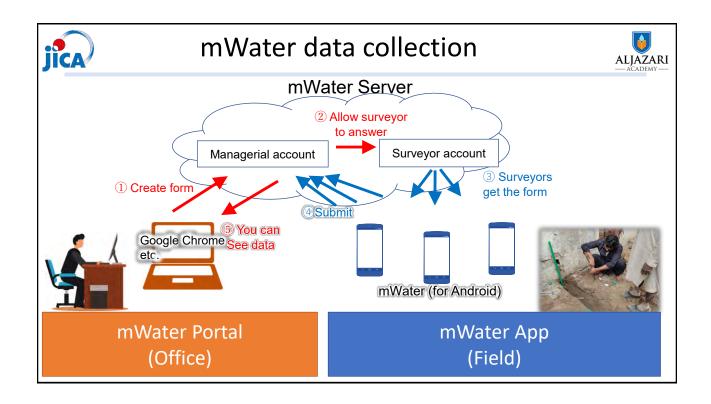
[Other Check Items]

- 1 Using Insulation Resister Tester, Check the Motor Insulation Resistant Value.
- 2 Regular Management Should Be Treated For Motor (for example Oil, Lubricating Water).

添付資料 5.1.48	研修コース	「漏水管理・	· 配管 • ′	管更新計画」	の教材	(2022 年秋	季研修)

mWater App & QGIS Software

Instructor

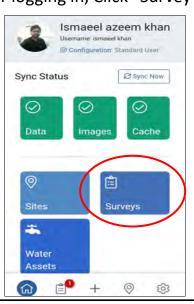

Engr. Muhammad Uzair Safdar

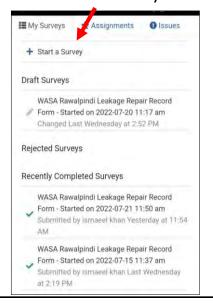
Learning Outcomes

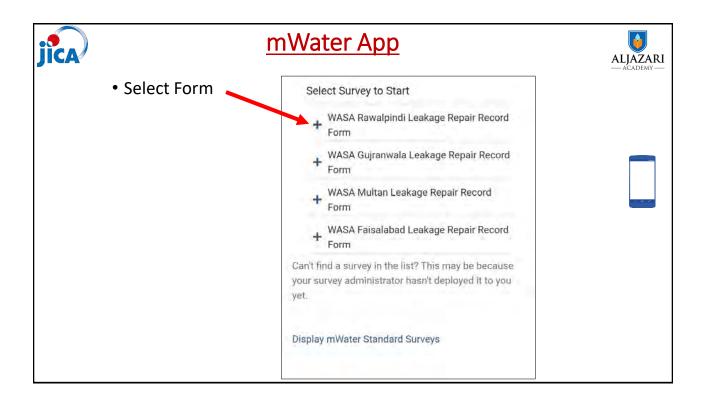
- Understand key features of M-Water App and Q-GIS software
- Create data collection forms related to different assets of water utility
- Use of M-Water App for Data Collection and Management
- Able to keep record of Data (Leakage/Assets)
- Know importance of using Data Collection and Monitoring Tools
- Present recorded data in Q-GIS Program

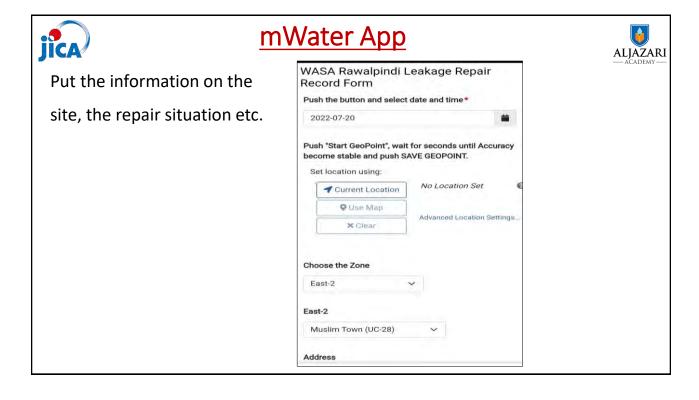
mWater App

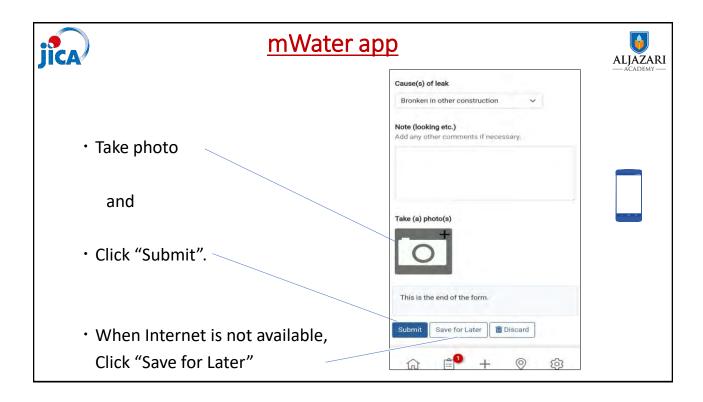
Download from Play store with the name of (mWater surveyor)

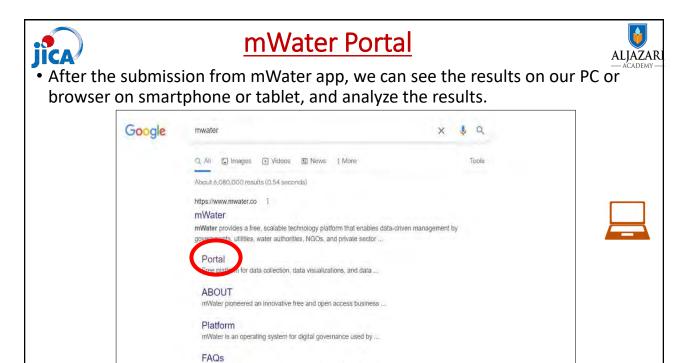

• Made Log-In ID on App and use it for Portal on PC.

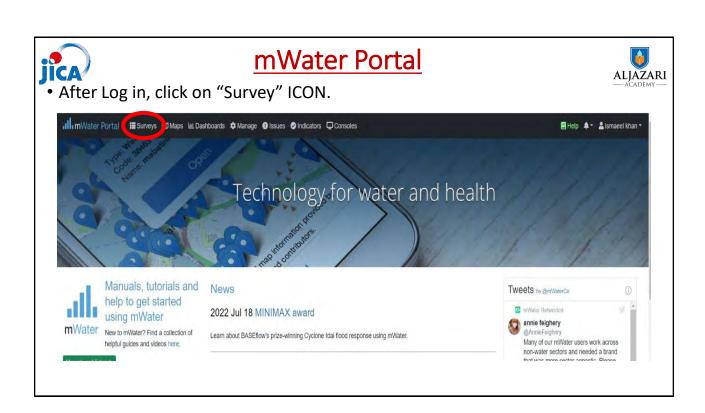

mWater App

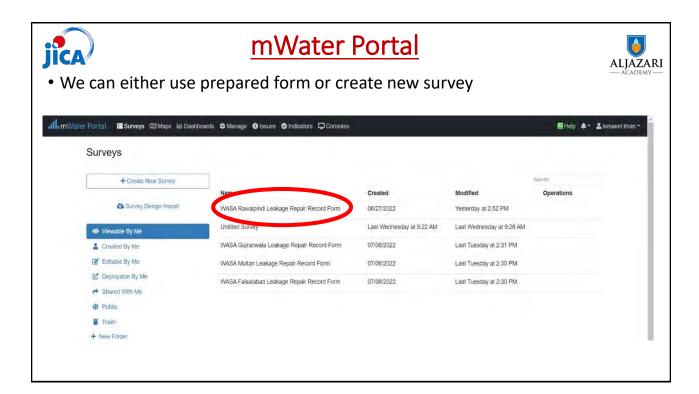

After logging in, Click "Survey" icon

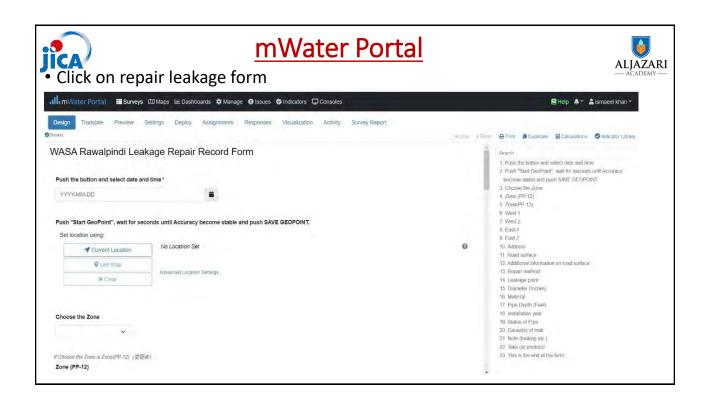


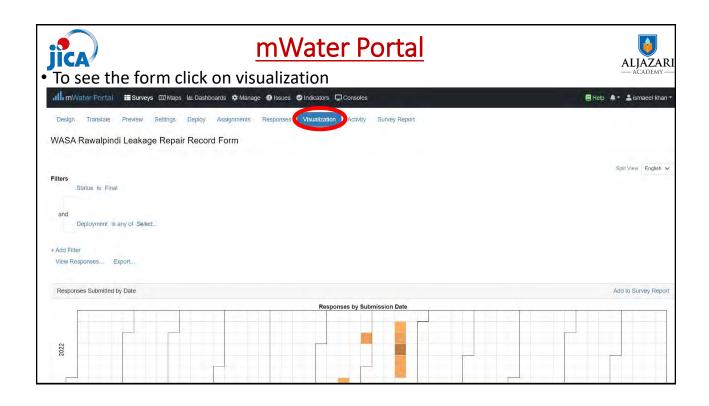

• Click icon "Start Survey"

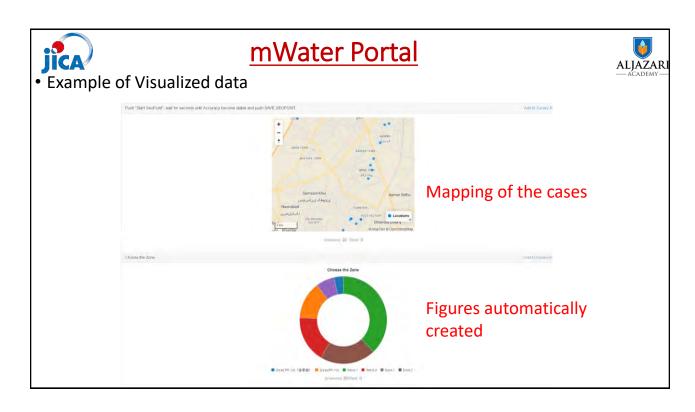


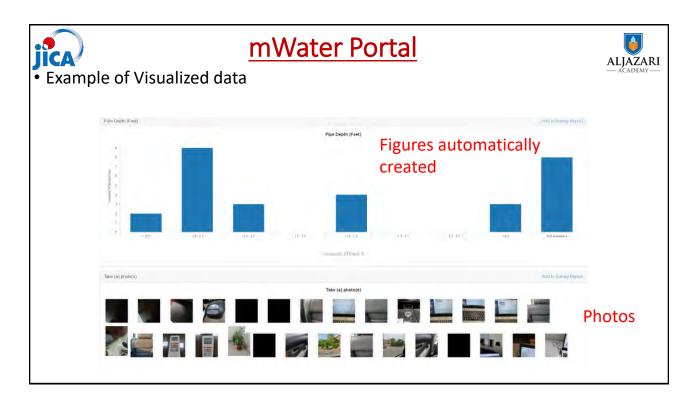


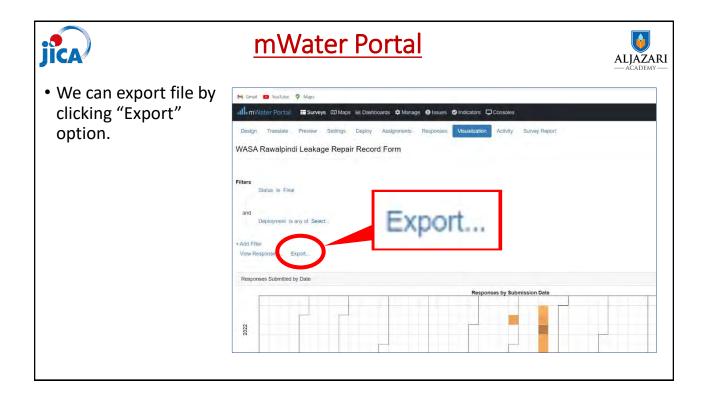







Surveyor is a mobile application on Android and iOS, and a web ...

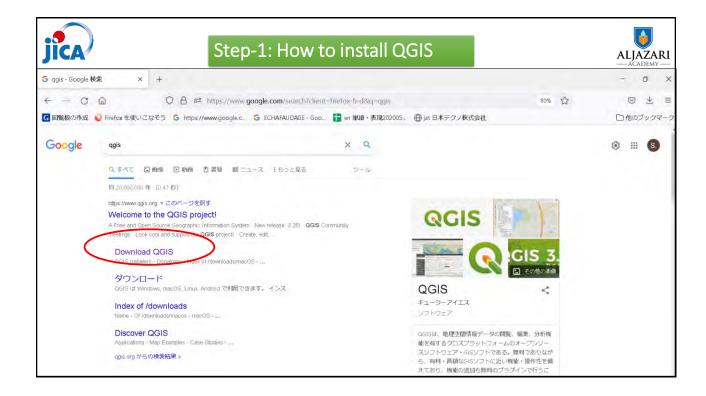






mWater Portal ALJAZARI Click on Export Option to export this file into Excel or CSV (used in QGIS) Export Responses Format for re-importing - Select to format for re-importing into duplicate form. Note: reimporting into same form will cause data duplication Export Id/Code Question Text Both ermines how columns will be labelled in the exported version. If "Both" is selected, there will be both Will always default to Export Id over Code, if present for a question. Will always fallback to question text if neither Export Id or Gode is present Choice Questions O Code Text Determines how choice questions will be exported. If 'Gode' is selected, it will preferentially use the co of the choice over the English text Single Column One Column per Choice Multicheck Questions ill be exported. If 'One Column per Choice' is selected, it will use a true/false column for each choice Include Asked Columns Yes O No inns ind GSV er ea in GIS Format Excel → data calculation, analysis etc.

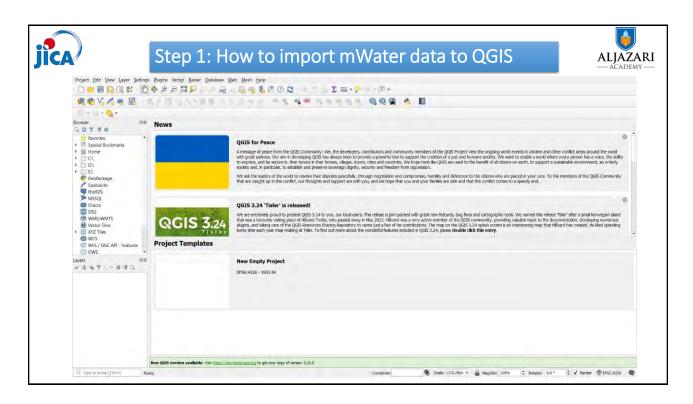
(PC Software)

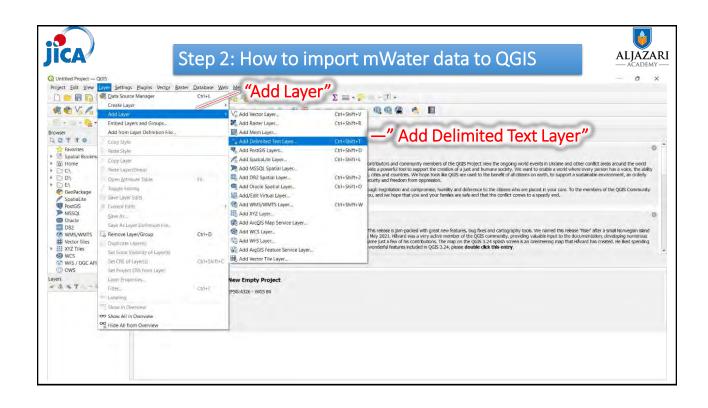


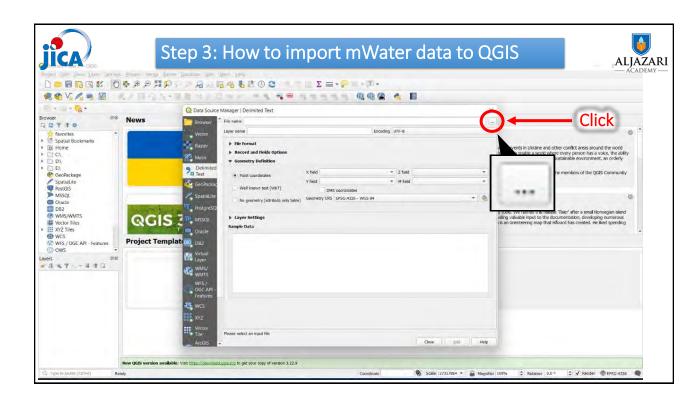
QGIS Software

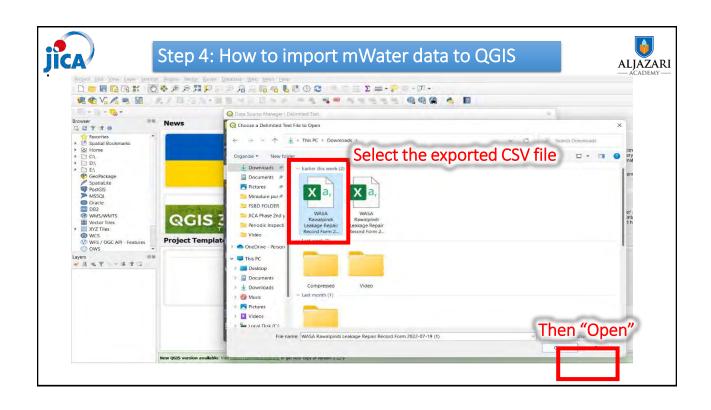
<u>Index</u>

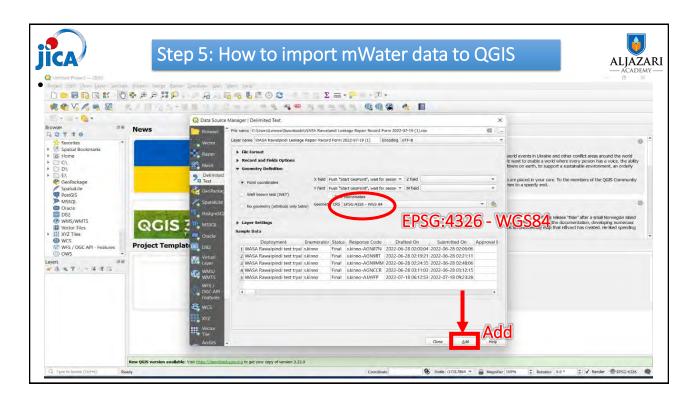
- Use of QGIS software
- How to see mWater data and show them on QGIS.
- How to utilize the data

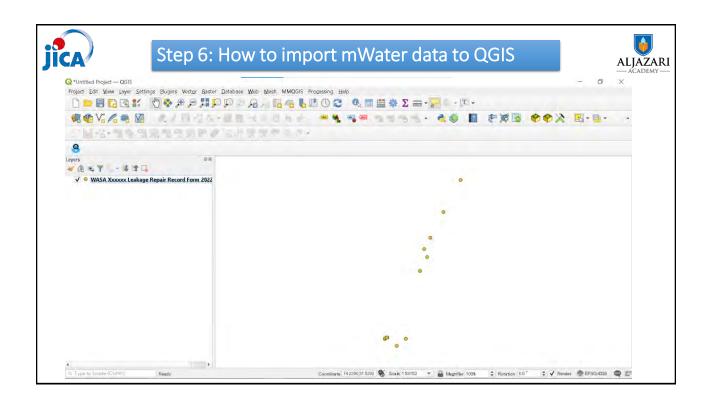

Geographic Information System GIS

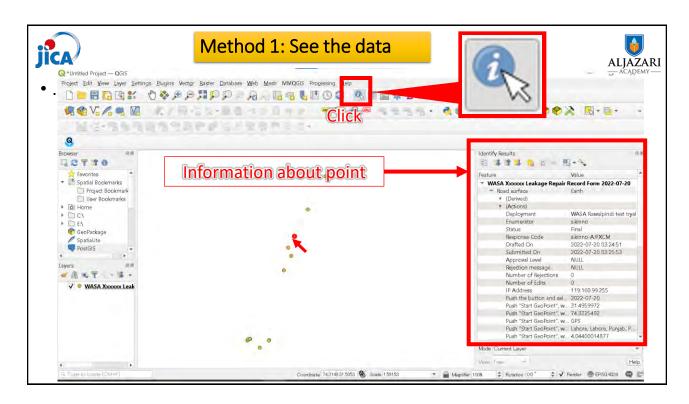

A geographic information system (GIS) is a system that creates, manages, analyzes, and maps all types of data. GIS connects data to a map, integrating location data (where things are) with all types of descriptive information (what things are like there).

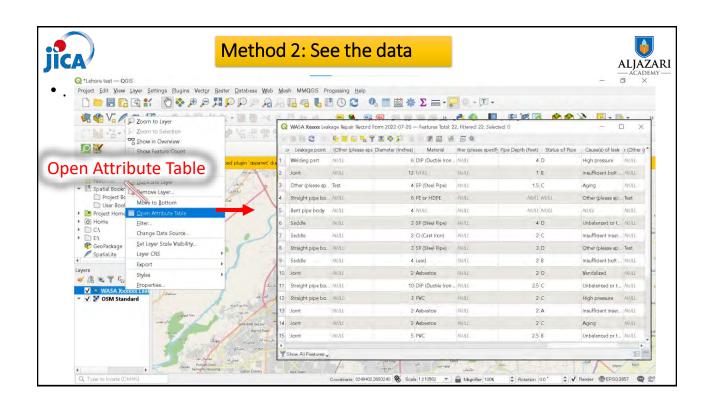

Types of Data Inputs in GIS

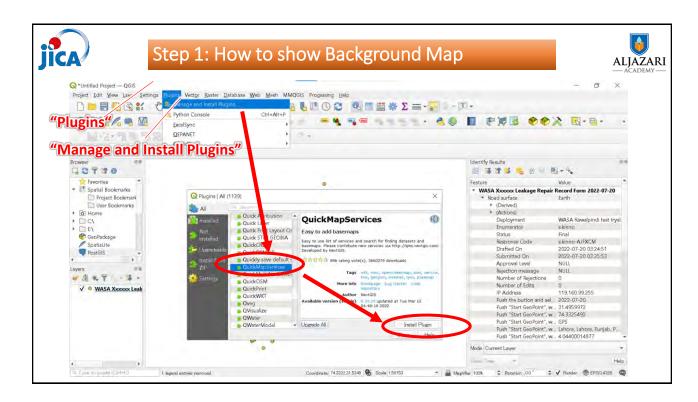

- Vector Data
- Raster data
- 3. Excel Data

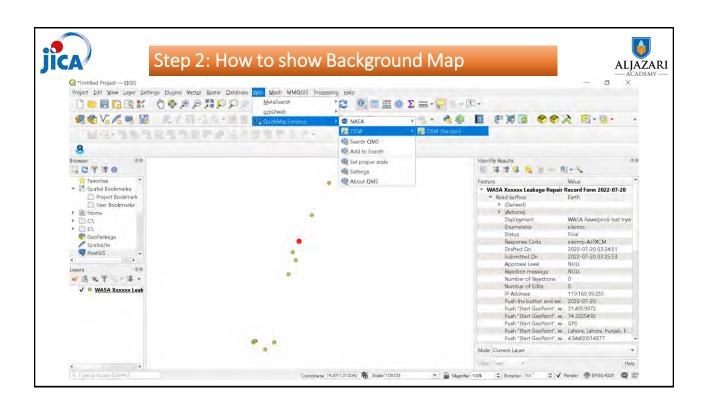


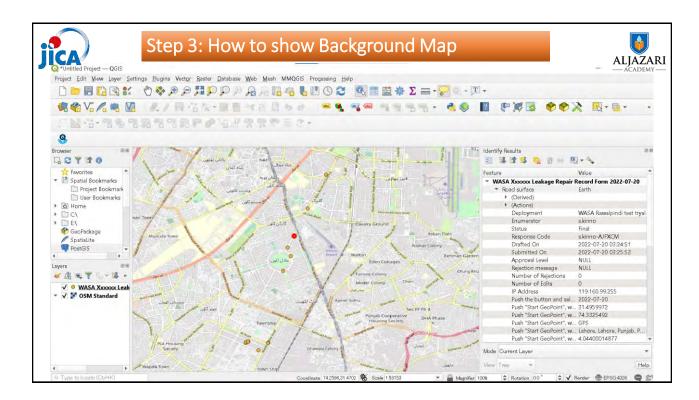












Take full advantage of the data

Visualization in mWater Portal

• Quick check of the data

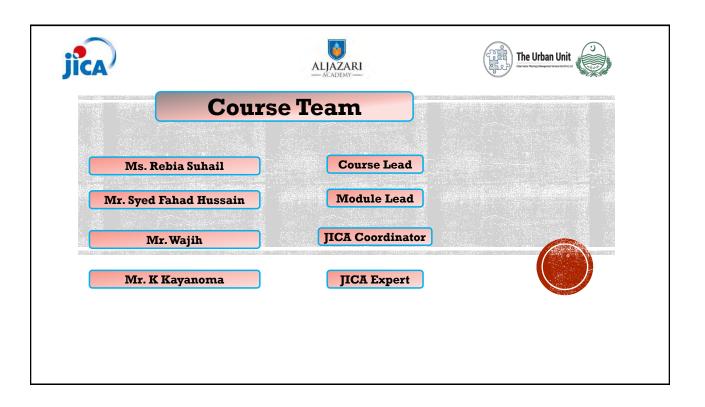
Excel

• Integrate and conserve all the data, <u>calculate and analyze</u> etc..

QGIS

- Visualize data on map and express the parameter as you like
- Prioritize the area for budget allocation of pipe replacement etc.

→ Exhibit the leakage situation effectively


- Request budget from the Government
- Attract international fund

In the name of Allah, the most Gracious and ever Merciful

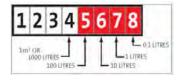
WATER METER

- 1 Purpose
- 2 Knowledge acquisition
- 2.1 Meter reading
- 2.2 Type of meter
- 3 Metrology, Meter classes and other requirements
- 3.1 Definition of meter accuracy
- 3.2 Meter error curve
- 4 Meter maintenance

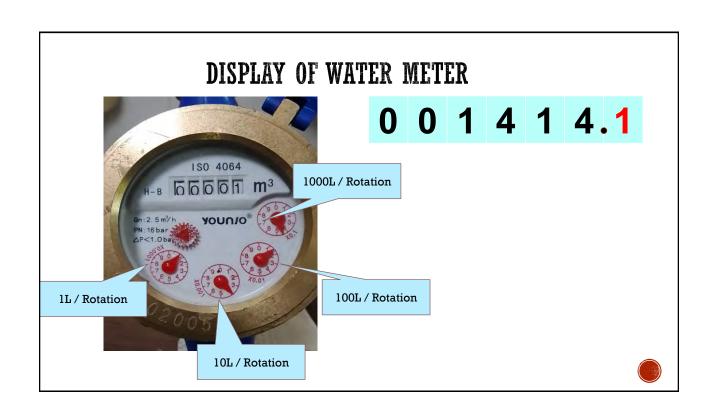
PURPOSE

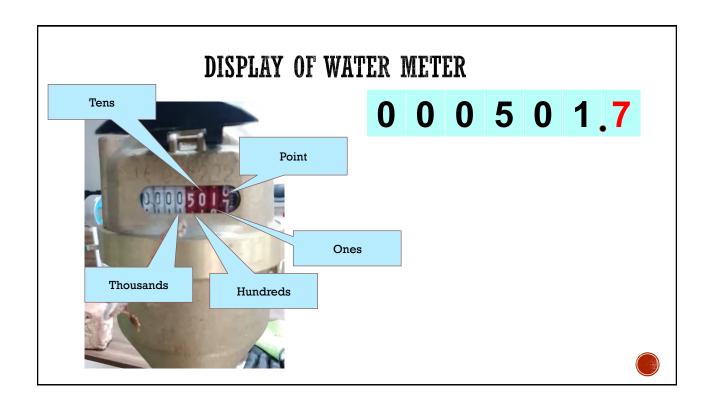
Purpose of training

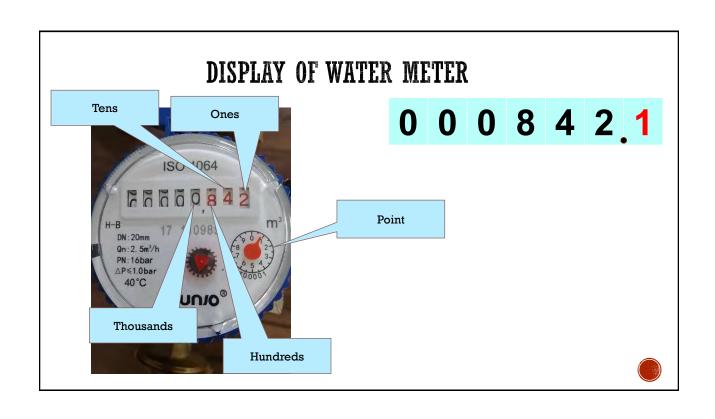
Understand meter reading, Type of meters, meter accuracy & class, maintenance.

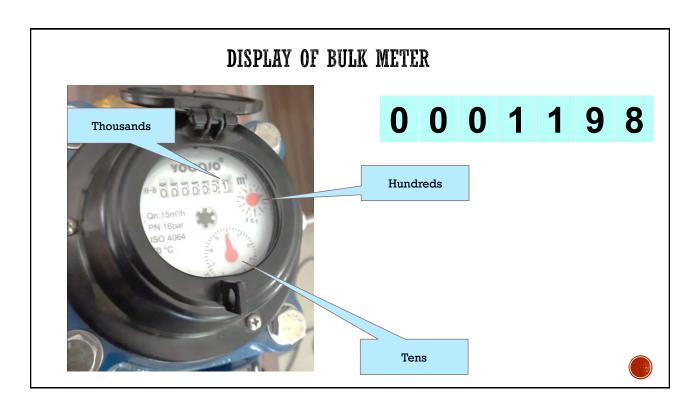

METER READING

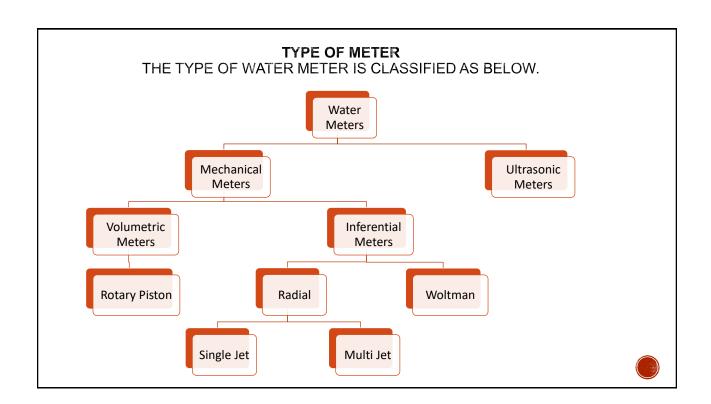
The water meter shows several digits as shown in the figure. This digit means 1234 m3 and 567.8 liter, or 1234.5678 m3. When the counter of 0.1 liters is moving between two numbers, it is counted as lower number.


m3 is shown in the upper black digits and liter is shown in the lower red pointer. When the pointer is between two numbers, it is counted as lower number.


When the digit of counter reached maximum (e.g. 9999.999), it back to all zero (e.g. 0000.000), and sometimes it makes mistakes of calculation of consumption. As shown below, it is necessary to calculate on the assumption that it has one digit in the left side which is not shown on the display.


JIS: Japanese Industrial Standards (JIS B 8570-1:2013)





METER READING

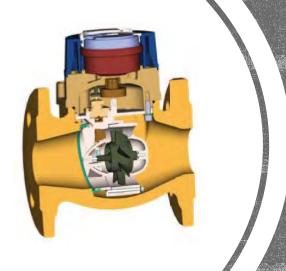
	1	2	Difference (2-1)	3	4	Difference (4-3)
Bulk Meter						
R M 1						
R M 2						
R M 3						
R M 4						
Total RM						
L M 1						
L M 2						
L M 3						
L M 4						
Total LM						

WOLTMAN METERS

<Mechanism>

The Woltman meters are an inferential meter that uses an impeller with helical vanes. As water flows over the helical vanes, it rotates the impeller. Then, the rotation is transmitted to the dial via reduction gearing.

There are two main types of Woltmann meters called Horizontal (WP) and Vertical (WS) Woltmann meters. Horizontal Woltmann meters have their inlets and outlets directly along the pipeline. The axle of the helical vane is parallel to the flow.


Water flows directly through the meter with small loss caused by the meter body.

The flow direction is changed 90 degrees after entering a vertical Woltmann meter, pass through the impeller and then turn back to the original direction as shown in the cross section of left Figure.

Woltmann meters have dry and sealed dials.

- > Advantages: No power required, Highly accurate
- ➤ Disadvantages: If a foreign substance gets in, accuracy falls, or the impeller will be damaged. Piping friction loss occurs. Not applicable to large diameter pipes.

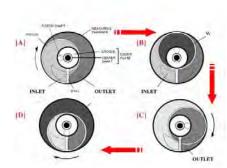
APPLICATION AND INSTALLATION

Wolfmann meters are widely used throughout the world. They are mainly used to measure the consumption volume of bulk users, or to determine the flow pattern in water distribution systems. Horizontal Wolfmann meters can be installed in all directions without affecting the accuracy. The counter, however, should never be placed upside down. Vertical Wolfmann meters must be installed horizontally with the display facing upwards.

- ➤ Applicable pipe diameter: 40mm 400mm
- Suitable installation location: Place where the power is out and there is no cover to protect rainwater

ROTARY PISTON METERS

Rotary piston meters are popular for their combination of accuracy, long life and moderate cost so they are widely used. Rotary piston meters come in many different shapes and sizes as shown. Wet or dry dials are used. Sand or other suspended solids easily get stuck between the piston and chamber wall. Thus, it is important to be installed in the system with very good water quality and to install built-in strainer.



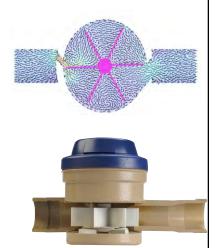
<MECHANISM>

The piston and cylinder are alternately filled and emptied by the fluid passing through the meter. A slot in the sidewall of the piston is removed so that a partition extending inward from the bore of the working chamber can be inserted. This has the effect of restricting the movement of the piston to a sliding motion along the partition. The rotary movement of the piston is transmitted via a permanent-magnet coupling from the drive shaft to a mechanical register.

- 1. Easy to read register
- 2. "O" ring seal
- 3. Stainer
- 4. Non-Return valve
- 5. Piston and cylinder

Application and Installation

Rotary piston meters are commonly used most domestic applications up to diameter 25mm. They are not sensitive to the wide flow velocity profile.


Rotary piston meters can be installed in **any position** with stable accuracy and placed close to bend or pump.

- ➤ Applicable pipe diameter: 13mm 40mm
- > Suitable installation location: Place where the power is out and there is no cover to protect rainwater

SINGLE JET METERS

- Single-jet meters are a low-cost option because there's a direct impact to the impeller by the water flow
- The water is channeled through a single jet over a impeller placed inside the body of the meter. Impeller circulating the flowrate.
- Resistant to suspended solids.
- Small and can be installed in tight spaces.
- Most single jet meters have to be installed perfectly horizontally and upright to ensure accurate measurements

MULTIPLE JET METERS

<Mechanism>

The multi jet meters are an inferential water meter. Their operation is similar to that of single jet meter, except that they use several jets to drive the impeller at multiple points.

This means that the forces on the impeller are better balanced than in single jet meters, which reduces wear on the moving parts and provides greater durability. A cutaway view of a multi jet meter is shown in the left photo.

Multi jet meters normally use an internal bypass with a regulating screw to adjust the flow passing through the impeller. This allows the manufacturer to adjust the meter's error curve for achieving the best accuracy before sealing it for the prevention of meter tampering. A strainer is installed on the inlet side, which can be removed for cleaning.

- > Advantages: No power required, Accurate at low flow rate
- ➤ Disadvantages: If a foreign substance gets in, accuracy falls, or the impeller will be damaged. Piping friction loss occurs. Not applicable to large diameter pipes.

COMPARISON OF WATER METERS

	Single jet (dry)	Multi jet (wet)	Rotary piston (wet)
Appearance	GRANTY Y		
Measuring method	Velocity	Velocity	Positive displacement
Structure	Simple structure	Complicated than Single jet	Complicated than others
Cost	Inexpensive	Inexpensive	More expensive than others
Others	Highly reliable operation	Small amount of water can be measured accurately	High accuracy than others

METER TAMPERING

Unauthorized manipulation of the water meter for the purpose of stealing water. The offense also includes placing magnets, placing foreign objects inside the meter inverting the position of the meter, breaking water meters: all for the purpose of slowing down the meter registry eventually lessen water consumption

3.1 DEFINITION OF METER ACCURACY

The volume of water that passes through a water meter is called the actual volume, or Va. However, since no meter is 100% accurate, the meter will not register all the water passing through it but show a indicated volume (Vi), which is slightly lower or higher than the actual volume. The difference between the indicated volume and actual volume (Vi - Va) is called the meter error. When the error is expressed as a fraction (percentage) of the actual volume, it is called as the relative error.

[Relative error]: (Vi - Va) / Va x 100 (%)

Where: Vi is the indicated volume. Va is the actual volume.

3.1 DEFINITION OF METER ACCURACY

CALCULATION OF THE ERROR (%)

METER ERROR CURVE

➤ Q1 – Minimum flow rate:

The lowest flow rate at which the meter is required to give indications within the maximum permissible error tolerance (± 5% error).

➤ Q2- Transitional flow rate:

The flow rate at which the maximum permissible error of the water changes in value from \pm 5% error to \pm 2% error.

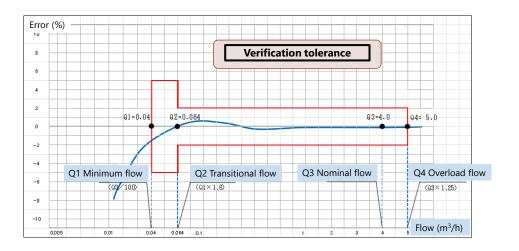
➤ Q3 – Permanent flow rate:

Permissible continuous load. Half the maximum flow rate (± 2% error).

➤ Q4 – Maximum flow rate (Overload Flow Rate):

The highest flow rate at which the meter is required to operate in a satisfactory manner for a short period without deteriorating (± 2% error)

METER ERROR CURVE


Water meters are designed for a specific flow rate, which is called as the permanent flow rate or Q3. The meter should be able to work at the permanent flow rate (or a lower flow rate) continuously for its design life without exceeding the permissible error.

Although a meter is designed for the permanent flow rate, the actual flow through a meter is not constant. Thus, water meters should not only be accurate at the permanent flow rate, but also be accurate over a wide range of flow rates.

It is useful to draw a graph of a meter's relative error. This curve is called the meter's error curve.

3.2 METER ERROR CURVE

MAINTENANCE

The proper maintenance of any metering device is essential to ensure the accuracy. Most meter manufacturers have a recommended maintenance and testing method in the operation manual.

The most common problems experienced with water meters in the field are as below:

- ➤ Suspended solids in the water cause stuck or damage of meter and meter strainer. These solids enter the system most often due to:
- Large pipe bursts.
- · Inadequate flushing of pipes after installations or repairs.
- High velocities in the network stir up sediments that was accumulated on the bottom of pipes.
- Inadequate water treatment or malfunction of treatment plants.

A strainer should be installed upstream of the meter to protect the rotor from objects such as stones and pebbles. As for maintenance, the strainer needs to be cleaned regularly.

SERVICE PIPE

SERVICE PIPE

- 1 Purpose of training
- 2 Knowledge acquisition
- 2.1 Outline of PPR pipe
- 3 Jointing method
- 3.1 Socket fusion joint
- 3.2 Thread joint
- 4 Practice

1 PURPOSE OF TRAINING

The purpose of this training is to provide a practical training on installation of PPR service pipes. Also, it is important to share the knowledge of this training with not only the staff of WASA but also contractors

2 KNOWLEDGE ACQUISITION

2.1 Outline of PPR

- > Standard of PPR pipes
- ☐ ISO 15874 standard green PPR pipe, DIN 8077-8078 hot water PPR pipe.

PPR pipes & fittings Characteristics:

- Well heart resistance ability
 The pipes can be used for a long time while the working temperature of water is 70°C
- 2. Well insulation ability
- 3. Long lifetime span

Under normal conditions of temperature and pressure PPR pipe can be over 50 years.

- Little resistance for water flow
 The inner walls of PPR pipes are smooth and limescale will not be formed there
- 5. Economical
- 6. Light weight
- 7. Well corrosion resistance

3 JOINTING METHOD

There are mainly two jointing method for PPR distribution pipes: Socket fusion joint and Thread joint.

3.1 Socket fusion joint

Socket fusion joint Details

Socket fusion joint connect PPR pipe and socket by heat of socket fusion welding machine. This method is very common way to joint PPR service pipe and the durability of this joint part is high.

3.2 Thread joint

Thread joint Details

Male thread and female thread are used for thread joint. The thread has shape of screw and male thread and female thread can be connected very easily and swiftly.

4 PRACTICE

[Preparation Item]

- Socket fusion welding machine
- Scale
- Elbow
- PPR pipe
- Pipe cutter

STEPS PROCEDURES

- 1. Check the pipe and socket whether they are damaged or not.
- 2. Measure the depth of socket and mark the insertion length on the pipe surface.
- 3. Cut the pipe at right angles by using a pipe cutter.
- 4. Always ensure that the welding machine corresponds to the required jointing size.
- 5. Required operating temperature of the welding machine is 250°C-270°C
- 6. Push the end of the pipe and socket into socket fusion welding machine up to the marked insertion length. Be careful not to turn the pipe and socket while heating.
- 7. Pull out the pipe and socket from the socket fusion welding machine after proper heating time, insert the pipe into socket evenly and swiftly and wait until they cool down.

STEPS PROCEDURES

Outside Diameter	Average Heating Time*	Average Working Time (max.)	Average Cooling Time (min.)	
mm	sec	sec	min	
20	5	4	2	
25	7	4	2	
32 8		6	4	
40 12		6	4	
50 18		6	4	
63 24		8	6	
75 30		8	6	
90 40		8	6	
110	50	10	8	

Name: Dept: Designation:

1. HDPE Pipe

High density polyethylene (HDPE) piping systems have been used for municipal and industrial water applications. HDPE water pipes are made of high-density polyethylene, which is a thermoplastic polymer. Polyethylene has a number of significant advantages over traditional materials such as steel or ductile iron including lower weight, freedom from corrosion and the ability to coil long lengths of pipe.

a. Salient Features of HDPE Pipes

- Safe for drinking water with no toxic or chemical contamination.
- High flexibility. Can be bent as much as 25-40 times of the pipe diameters. Thus, reducing unnecessary pipe joint.
- Light weight with only 0.95 grams/cm2. It weighs only 1/5 of steel pipes of the same size.
- Rust proof and high resistance to damaged chemicals, making the product last up to 50 years.
- Super smooth internal surface, reducing the chance of pipe cloggage.

b. PE80 vs PE100 Comparison

Comparison of PE 100 and PE 80 HDPE Pipes

- Before international standards were adopted polyethylene (PE) materials were commonly named by their density - low density, medium density and high density. ISO standards were further developed to designate materials as PE80 or PE100 to easier differentiate the benefits of the materials.
- PE80 pipes are often rated SDR11 PN12 and have a minimum required strength (MRS) of 8
 MPa (Megapascal) whereas PE100 pipes are rated SDR11 PN16 and have a MRS of 10 Mpa.
- PE100 offers additional long-term strength and performance over PE80 while allowing for thinner pipe walls for the same operating pressure.

c. HDPE pipes color code guide:

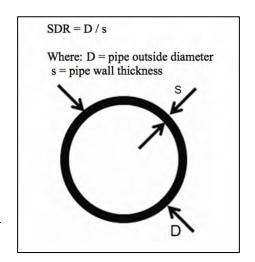
Red	Electric power lines, cable, conduit and lighting cables					
Orange	Telecommunication, alarm or signal lines, cables or conduit					
Yellow	Fuel gas (methane or propane), oil, petroleum, steam or gaseous materials					
Green	Sewers and drain lines					
Blue	Potable water					
Violet (Purple)	Reclaimed water, irrigation and slurry lines					

Name: Dept: Designation:

2. HDPE Pipe Parameters

a. Standard Dimension Ratio (SDR)

Standard dimension ratio (SDR) is a method of rating a pipe's durability against pressure.


SDR= D/s

Where;

D= Outside diameter of pipe

S= Thickness of pipe

It's an inverse relationship. The higher the SDR, the lower the pressure rating.

b. In HDPE Pipe terms, MRS stands for "Minimum Required Strength" (MRS).

The MRS is determined by performing regression analysis in accordance with ISO 9080 on the test data from the results of long-term pressure testing.

Material Designation	Minimum Required Strength (MRS)MPa			
PE100	10.0			
PE80	8.0			

Another parameter is defined as the 'Maximum Operating Pressure' MOP, or the pressure rating of the pipe.

MOP = 2 x MRS / C (SDR - 1) ---- Where MRS and MOP are in MPa

MOP = 20 x MRS / C (SDR - 1) ----- Where MRS is in MPa and MOP is in bar.

Where C is the 'overall service (design) coefficient, or Safety Factor.

For water applications the minimum value of C is 1.25

c. Pressure Reduction Factor

Table 1 - Pressure reduction factors for temperatures between 20 °C and 50 °C

Material	Pressure reduction factors ^{a b}							
classification	20 °C	25 °C	30 °C	35 °C	40 °C	45 °C	50 °C	
PE 100 PE 80	1,00	0,92	0,85	0,79	0,73	0,67	0,63	
PE 63	1,00	0,92	0,85	0,79	0,73			
PE 40	1,00	0,92	0,85	0,77	0,70			

a Reference to ISO 9080:2012 shall be made for extrapolation time limits, see 5.3.

3. Available Sizes of PE 100 pipes

Dimension Ratio	SDR21	SDR17	SDR 13.6	SDR11
	PN8	PN10	PN 12.5	PN16
OUTSIDE DIAMETER	Wall	Wall	Wall	Wall
(mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)
20	-	-		2.0
25	-	-	2.0	2.3
32	-	2.0	2.4	3.0
40	2.0	2.4	3.0	3.7
50	2.4	3.0	3.7	4.6
63	3.0	3.8	4.7	5.8
75	3.6	4.5	5.6	6.8
90	4.3	5.4	6.7	8.2
110	5.3	6.6	8.1	10.0
125	6.0	7.4	9.2	11.4
140	6.7	8.3	10.3	12.7
160	7.7	9.5	11.8	14.6
180	8.6	10.7	13.3	16.4
200	9.6	11.9	14.7	18.2
225	10.8	13.4	16.6	20.5
250	11.9	14.8	18.1	22.7
280	13.4	16.6	20.6	25.4
315	15.0	18.7	23.2	28.6
355	16.9	21.1	26.1	32.2
400	19.1	23.7	29.4	36.3
450	21.5	26.7	33.1	40.9

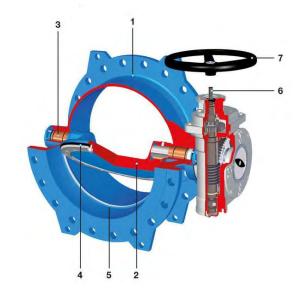
b The ISO 9080:2012 extrapolation factors are 50 for 40 °C, 30 for 45 °C and 18 for 50 °C when the material is tested at a maximum temperature of 80 °C. If the material is tested at a higher temperature than 80 °C then other extrapolation factors may apply.

Plumbing Module (Day 3: 27 October, 2022)

HDPE Pipe Parameters – Class Activity 1

Diameter (mm)	Thickness (mm)	SDR	MOP (bar)	Avg. Temperature in your area	Temperature Factor (From table 1)	Effective MOP (bar)

	Unit	Labour	Composite	Unit	Labour	Composite
c) PN-10 (SDR-17)	10.00			-		
i) 90 mm	P.Rft	4.60	240.85	PM	12.55	790.25
ii) 110 mm	P.Rft	12.85	364.65	PM	35.10	1,196.45
iii) 125 mm	P.Rft	14.20	463.00	PM	38.80	1,519.05
iv) 160 mm	P.Rft	15.60	752.25	PM	42.65	2,468.20
v) 180 mm	P.Rft	20.00	951.85	PM	54.70	3,122.95
vi) 200 mm	P.Rft	22.35	1,172.85	PM	61.10	3,848.15
vii) 225 mm	P.Rft	25.50	1,486.00	PM	69.70	4,875.65
viii) 250 mm	P.Rft	35.20	1,824.55	PM	96.30	5,986.40
ix) 315 mm	P.Rft	62.45	2,904.80	PM	170.70	9,530.70
x) 355 mm	P.Rft	69.45	3,688.60	PM	189.85	12,102.25
xi) 400 mm	P.Rft	78.60	4,654.90	PM	214.95	15,272.70
xii) 450 mm	P.Rft	79.85	5,888.40	PM	218.40	19,319.85
xiii) 500 mm	P.Rft	94.05	7,281.95	PM	257.10	23,892.05
xiv) 560 mm	P.Rft	104.40	9,138.50	PM	285.40	29,983.35
xv) 630 mm	P.Rft	117.10	11,537.95	PM	320.15	37,856.00
xvi) 710 mm	P.Rft	132.65	14,684.75	PM	362.65	48,180.60
xvii) 800 mm	P.Rft	150.45	18,566.10	PM	411.30	60,915.35
xviii) 900 mm	P.Rft	189.25	23,593.55	PM	517.45	77,410.35
xix) 1000 mm	P.Rft	219.70	29,119.95	PM	600.70	95,542.55


PN Rating	Diameter	Length	Unit Cost (Composite-Labour)	Total Cost
PN 10		100 ft		

Name: Dept: Designation:	
--------------------------	--

Valves – Class Activity 2

i. Label the picture displayed below according to the numbers:

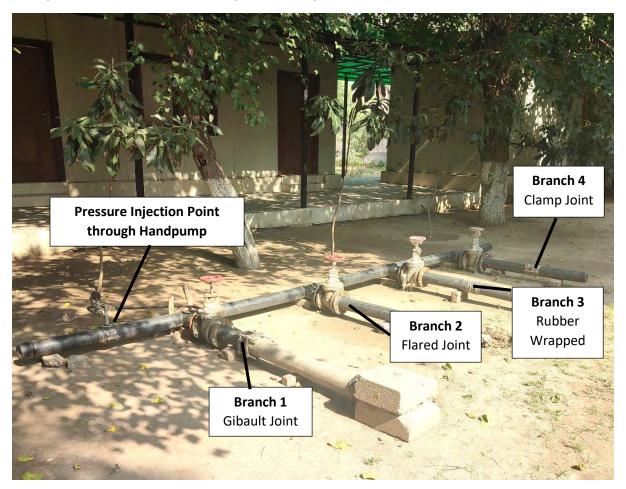
No.	Labelling
1	
2	
3	
4	
5	
6	

ii. Choose the correct answers.

۱د	Non-return	valve or	chack va	ا عا میدا	hazıı	for?
aı	Non-return	valve or	cneck va	iive is i	usea	or:

() To reverse the flow () To prevent reverse flow () To stop the flow

b) Which type of valve is recommended to use for isolation?


() Sluice/gate valve () Butterfly valve () Air release valve

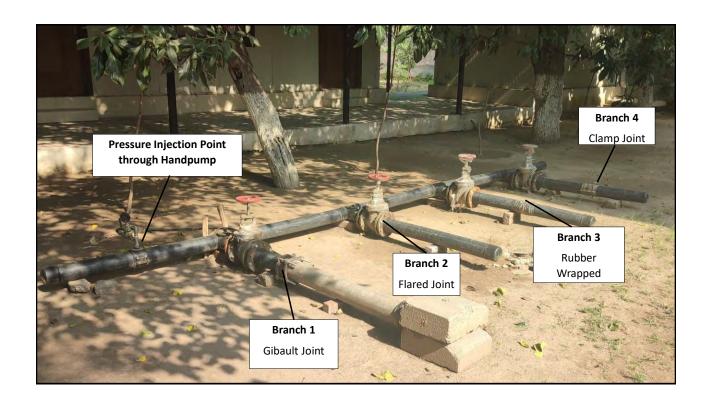
c) Air release valve are used for?

() To release entrapped air () To pump air () Both

Name: Dept: Designation:

4. Hydrostatic Pressure Test Activity for HDPE Pipe

Instructions:


- Setting the Optimum Pressure for Test: Working pressure of Pipe x 1.5
- Time Duration: 10 mins (2 hours as recommended in the standard)
- Hazard Awareness: Participants are advised to keep a distance from potential leakage joint or valve
- Fill the pipe with water by connecting to the nearby source until water come out on the other end. For the releasing air, we can use air valve.
- Pressurizing: Inject the water with the help of hand pump to build a pressure inside pipes up to desired pressure rating.
- Observe the joints and valves for leakages. If any leakage appears, note the reading on pressure gauge.
- Keep pressuring branch wise until setting pressure and close valve, Start counting time.
- If no leakage appears after holding the optimum pressure for specified time, the joint is considered valid.

Plumbing Module (Day 3: 27 October, 2022)

Hydrostatic Pressure Testing – Class Activity 3

Participants to perform the pressure test activity and observe the leakages and corresponding pressure ratings.

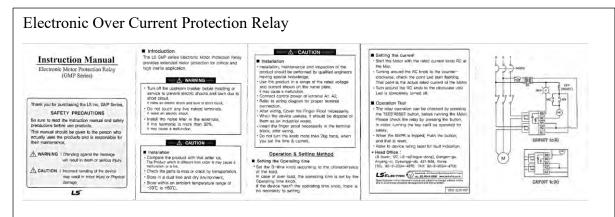
Leakage Point	Pressure	Reliability (Low, Medium, High)
Branch 1 – Gibault Joint		
Branch 2 – Flared Joint		
Branch 3 – Rubber Tube		
Branch 4 – Clamp Joint		

添付資料 5.1.49 研修コース「機械・電気設備維持管理」の教材(2022 年秋季(11 月)研 修)

1. Introduction to Motor Control Unit:

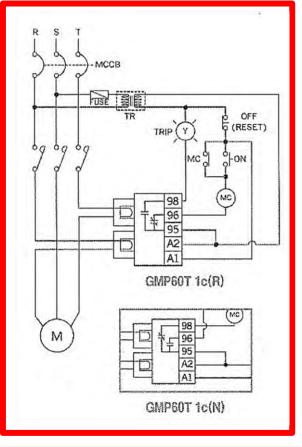
(Demo Motor Control Unit)

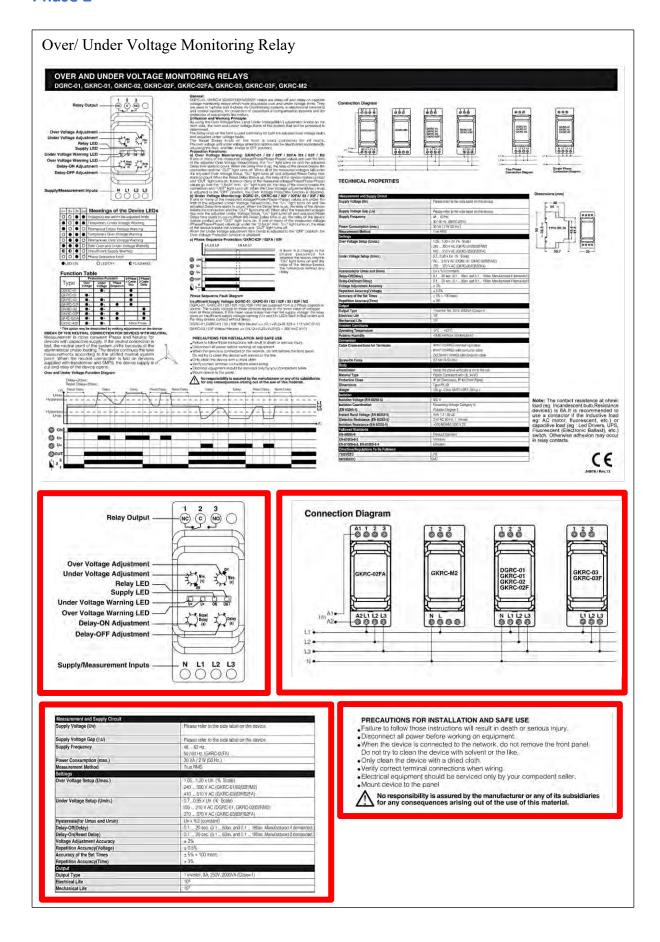
(DOL panel for miniature Pump Station)

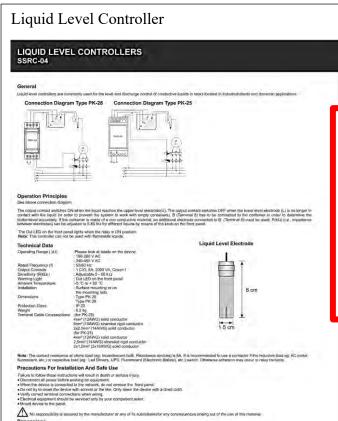

2. Tools required for the activities:

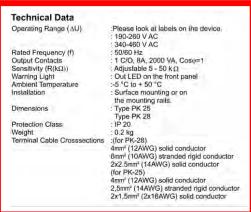
3. Operation of each component of MCU:

Sr. No.	Name of Component	Quantity
1	Clamp meter	01
2	Voltage Detector	01
3	MCB	03
4	MCCB	01
5	Magnetic Contactor	03
6	Current Transformers	03
7	Ammeter	01
8	Selector Switch for Ammeter	01
9	Voltmeter	01
10	Selector Switch for Voltmeter	01
11	Push Button (ON)	01
12	Push Button (OFF)	01
13	Emergency Push Button	01
14	Lamps for status ON, OFF and Fault	03
15	Timer	01
16	Over/ Under Voltage Monitoring Relay	01
17	Electronic Over Current Protection Relay	01
18	Liquid Level Controller	01
19	Fuse	01
20	Connectors and Thimbles	-
21	Gloves	01

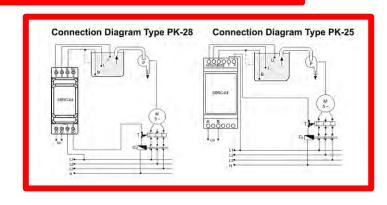



■ Setting the current


- Start the Motor with the rated current knob RC at the Max,
- Turning around the RC knob to the counter clockwise, check the point Led start flashing.
 That point is the actual rated current of the Motor.
- Turn around the RC knob to the clockwise until Led is completely turned off.


Operation Test

- The relay operation can be checked by pressing the TEST/RESET button, before running the Motor.
 Please check the relay by pressing the button.
 In motor running the key can't be operated for safety.
- When the EMPR is tripped, Push the button, and that is reset,
- · Refer to device rating label for fault indication.


Precautions For Installation And Safe Use

Failure to follow those instructions will result in death or serious injury.

- · Disconnect all power before working on equipment.
- When the device is connected to the network, do not remove the front panel.
- Do not try to clean the device with solvent or the like. Only clean the device with a dried cloth.

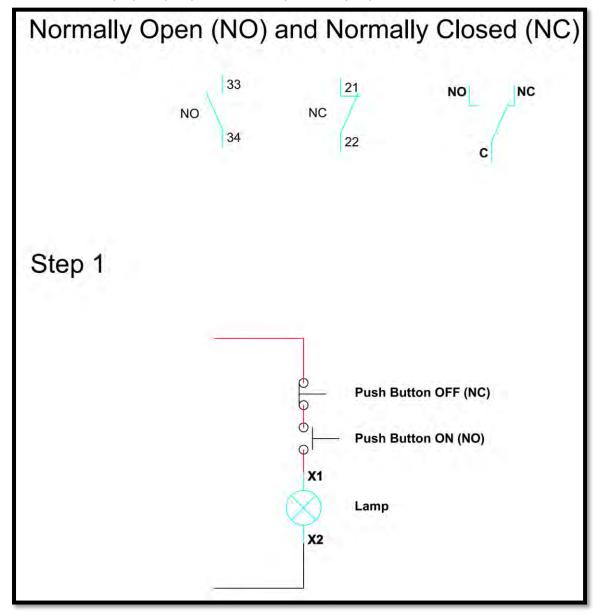
CE

- · Verify correct terminal connections when wiring.
- Electrical equipment should be serviced only by your compedent seller.
- · Mount device to the panel.

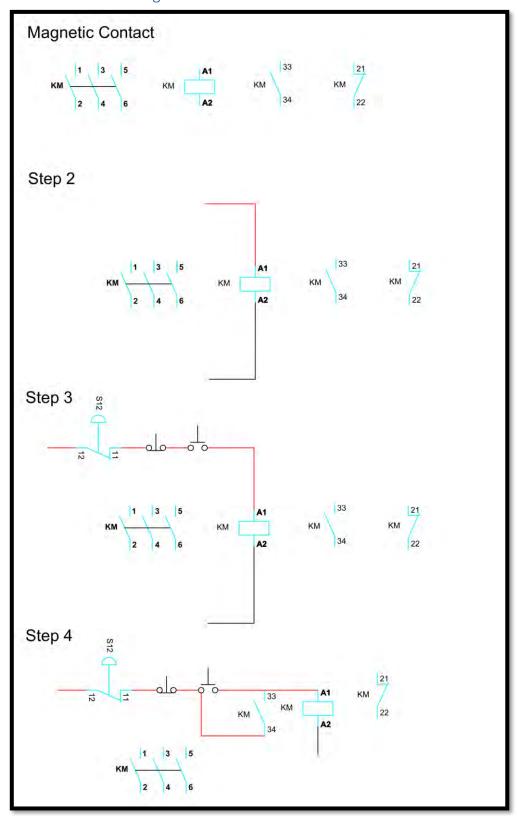
4. Equipment for Energy Audit, Preventive and Breakdown maintenance:

Sr. No.	Name of Equipment
1	Power Analyzer
2	Power and Harmonics Clamp meter
3	Clamp meter
4	Insulation Resistance and Continuity Tester
5	Earth Tester
6	AC Voltage Detector
7	Ultrasonic Flow meter
8	Water Level meter
9	Pressure Gauge
10	Thickness probe

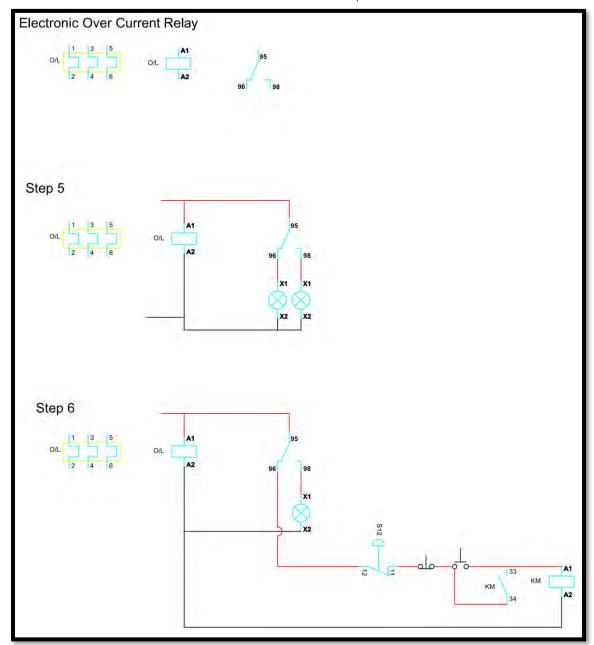
5. Activity on miniature Pumping Station:

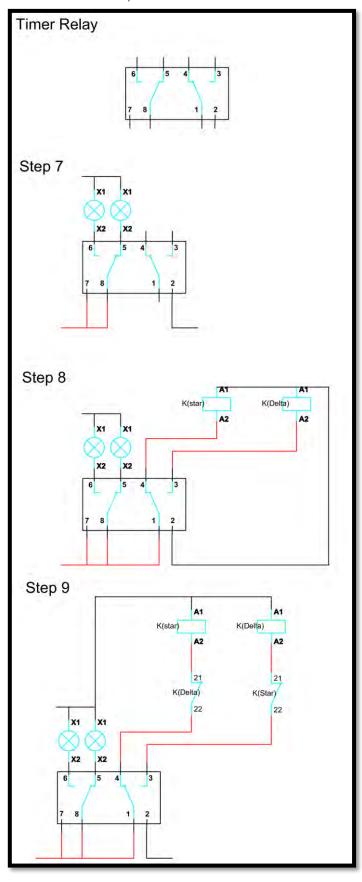

Electrical:

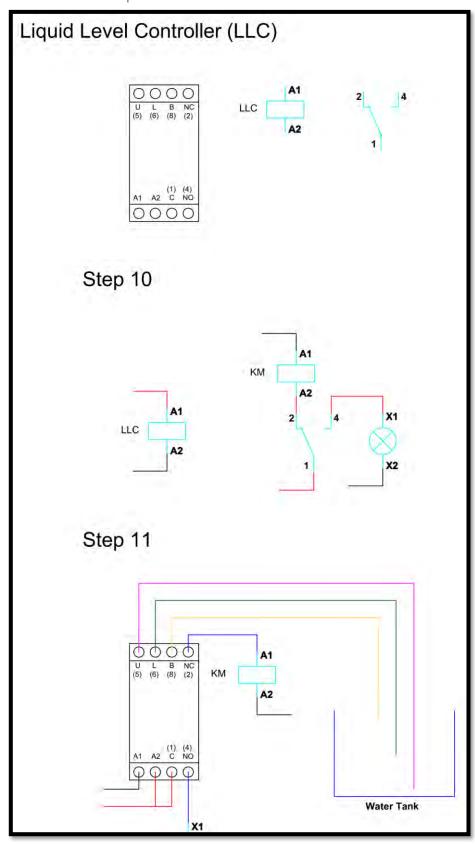
- 1. Energy Audit
- 2. Flow Rate and Current Relation
- 3. Operation of Over Current Relay
- 4. Operation of Liquid Level Controller
- 5. Understanding of Normally Open and Normally closed-circuit operations
- 6. Understanding Power and Control Circuit Drawings
- 7. Insulation Resistance Test


Mechanical:

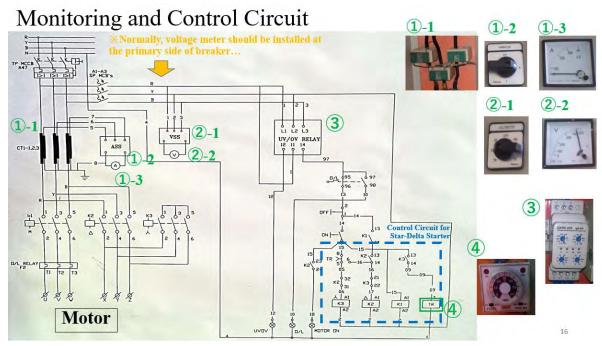
- 1. Series pump operation (Head/ Flow/ Pressure)
- 2. Parallel pump operation (Head/ Flow/ Pressure)
- 3. Operation and Maintenance of water meter
- 4. Advantages of strainer or screen
- 5. Installation of Ultrasonic flow meter
- 6. Discharge pressure and unit conversion
- 7. Pump Performance Curve/ Q-H curve
- 8. Operation and Maintenance of Chlorinator
- 9. Calibration of Chlorinator


- 6. Reading a simple circuit diagram and making circuit:
- 6.1 Normally open (NO) and normally closed (NC) circuit


6.2 Connection of Magnetic Contactor


6.3 Connection of Electronic Over Current Relay

6.4 Connection of Timer Relay



6.5 Connection of Liquid Level Controller

6.6 Adding monitoring devices and protection relays to the circuit

6.7 Constructing Star Delta panel circuit

List of Components

Motor Control Unit

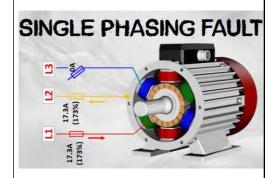
MCC 80BHP/60KW for Motor 2-CFS Capacity Vertical Turbine Pump

Sr. No.	Components	Quantity	Purpose of each component
A.	Incoming		
01	MCCB TP 250A 18KA	01 No.	For Switching and Short Circuit Protection
02	MCB SP 6A 6KA	03 Nos.	For Control Circuit & Instrument Protection
03	Digital Ampere Meter 200A	01 No.	For Motor Running Load Monitoring
04	Ampere Selector Switch 4-Position	01 No.	For Selection of Phase to see Running load one by one
05	Digital Volt Meter 500 V	01 No.	For Line Voltage Confirmation
06	Voltage Selector Switch 4-Position	01 No.	For Selection of Phase to see Line Voltage one by one
07	Current Transformer 200/5A	03 Nos.	For Feeding the Secondary Current to Digital Ampere Meter
08	LED Type Indication Light	03 Nos.	For Phase in attendance (R-Y-B)
B.	80 BHP/60KW Auto Star Delta Switch	•	
01	Magnetic Contractor TP operational 85A	01 No.	For Main (Auto Star Delta)
02	Magnetic Contractor TP operational 85A	01 No.	For Delta (Auto Star Delta)
03	Magnetic Contractor TP operational 50A	01 No.	For Star (Auto Star Delta)
04	Over-Load relay Range 65A-100A	01 No.	For Thermal Over Load, Short circuit & Phase loss protection
05	Under/Over Voltage relay	01 No.	For Voltage Monitoring i.e. Under Voltage, Phase Failure & Phase Sequence Protection
06	Motor Thermistor Relay	01 No.	For Motor Winding Temperature Protection
07	LED Type Indication Light	02 Nos.	For ON/OFF Position Auto Star Delta Switch (Green & Red)
08	LED Type Indication Light	02 Nos.	For over load, under-over, thermistor protection Indication (Yellow)
09	Push Button 10A 1 NC / 1 NO (Green/Red)	02 Nos.	For ON/OFF Position Auto Star Delta Switch
10	Emergency Push Button	01 No.	For Emergency Stop of System
11	MCB SP 6A 6KA	01 No.	For Control Circuit Protection
12	Control Terminal	01 Set	For the Control Circuit Connectivity

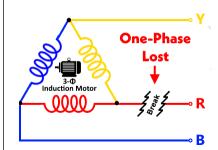
C.	25 KVAR Power Factor Improvement Plant				
01	Analogue Power Factor Meter	01 No.	For Displaying of Power Factor (it may lead or lag)		
02	Power Capacitor 25KVAR	01 No.	For Low Power Factor Compensation		
03	Magnetic Contractor TP operational 40A	01 No.	For 25KVAR Capacitor Switching		
04	63A HRC Fuses with Base	02 Nos.	For Capacitor 25KVAR Over Load and Short Circuit Protection		
05	LED Type Indication Light	01 No.	For ON/OFF Position of 25KVAR Power Capacitor (Green)		
06	Push Button 10A 1 NC/1NO	02 Nos.	For ON/OFF Position of 25KVAR Power Capacitor (Green/Red)		
07	Auto Manual Selector Switch	01 No.	For the Selection Mode of Automatic and Manual Switching		
08	Surge Suppressor	01 Set	Protect from Voltage Spikes		

Facility Failure Analysis

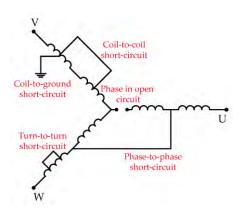
Jawad Shahid


1. What happens if shaft of a pump breaks during operation for a vertical turbine pump for Disposal Station

Explanation:


2. What happens if one phase of power supply fails during operation of Pump and Motor, explain in a step-wise approach.

Condition 1: With protective relays installed and calibrated.


2. What happens if one phase of power supply fails during operation of Pump and Motor, explain in a step-wise approach.

Condition 2: All protective relays bypassed.

3. What happens if during operation of a tube-well two windings of a motor short circuit (Motor Burnout).

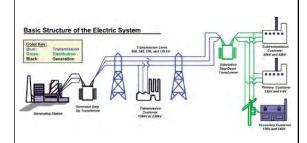
Condition 1: Protective relays installed and calibrated.

3. What happens if during operation of a tube-well two windings of a motor short circuit (Motor Burnout).

Condition 2: Protective relays bypassed

4. Shaft of a vertical turbine tube-well breaks during operation.

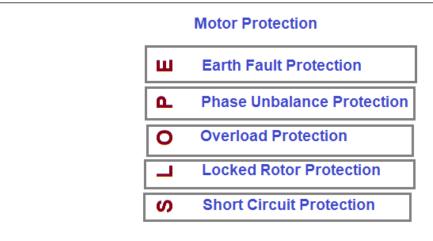
Condition 1: With all relays installed and calibrated.


4. Shaft of a vertical turbine tube-well breaks during operation.

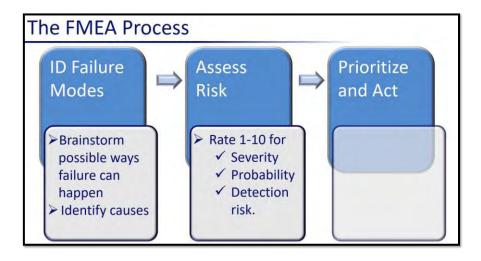
Explanation:

5. During operation of Pump and Motor two phases are interchanged from distribution end (DISCO)

Condition 1: With use of protective relays.



5. During operation of Pump and Motor two phases are interchanged from distribution end (DISCO)


Condition 2: With all protective relays by-passed.

Basics of Motor Protection

Failure Mode and Effects Analysis (FEMA)

Failure Mode and Effects Analysis (FEMA)

	1		CONSEQUE	NCES				ROBABILIT	Y	
						1	2	3	4	- 5
Severity	Classification	Safety	Equipment Maintenance Cost	Production	Environmental	< 1% Remote	1% - 5% Extremely Unlikely	5% - 25% Very Unlikely	25% - 50% Unlikely	> 50% Likely
5	Disastrous	Multiple fatalities, > 5 Large effects on large external inhabited zones- several fatalities	Extensive damage >S8M	Major loss, not recoverable. More than 3 days lost production	Major pollution with sustained environmental consequences external to the site	5	10	16	20	25
4	Catastrophic	Lethial effect on several persons (several fatalities). Lethal external effect - one fatality, several physical injunes	Major damage 36M-58M	Major loss. Up to 50% not recoverable .Up to 3 days lost production.	Major poliution external to the site. Evacuation of persons	4	8	12	16	-20
3	Major	Lethal effect on one person and/or several permanent invalidities. Permanent external effects	Localized demage \$2M - \$6M	Medium loss not wholly recoverable through normal production < 24 hours lost production	Moderate pollution, within site limits. Product liability	3	6	9	12	15
2	Serious	Permanent injury, lost time accident. Non-permanent external effects	Minor damage \$200K - \$2M	Minor loss, recoverable through normal production 2 to 8 hours lost production	Spill or release of pollutant requiring a declaration to authorities but without environmental consequences.	2	4	6	8	10
1	Moderate	No permanent injury, recordable with no lost time/medical treatment. No external effect	Slight damage < \$200K	Little to no effect. Production easily recovered. < 2 hour lost production.	Minor spill or release of pollutant, not requiring a declaration	i	2	ā	4	5

Risk Assessment Matrix

Risk Matrix						
Α	В	С	D	E	F	
Initial			Initial Severity			*
	1 - Insignificant	2 - Minor	3 - Significant	4 - Serious	5 - Major	
5 - High			1	2		
4 - Moderate			3	5		
3 - Low			1	2		
2 - Very Low						
1 - Remote						Ţ
4					•	

Risk Assessment Matrix (Example)

Initial Occurrence					
	1 Insignificant	2 Minor	3 Significant	4 Serious	5 Major
5 High					
4 Moderate			Chlorine dosing pump failure		Burnout of MCCB for MCU
3 Low					
2 Very Low		Power Factor Capacitor Failure	Chlorine dosing pump failure		
1 Remote					

The Urban Unit Day Strong & Strong of Strong o	
--	--

Preventative Mainteniance Schedule of Switchgear / Controlgear

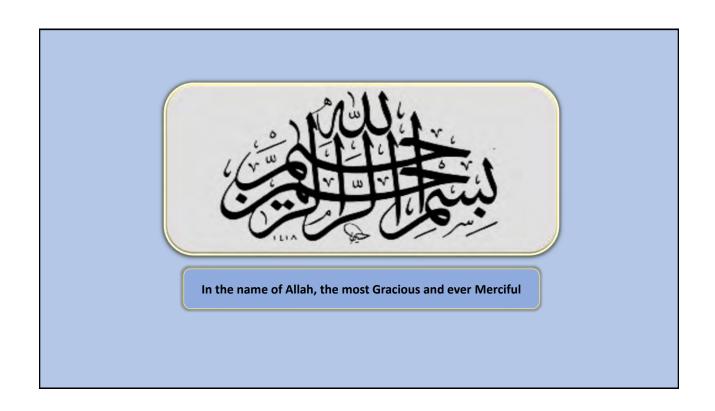
• 🐬
IICΑ

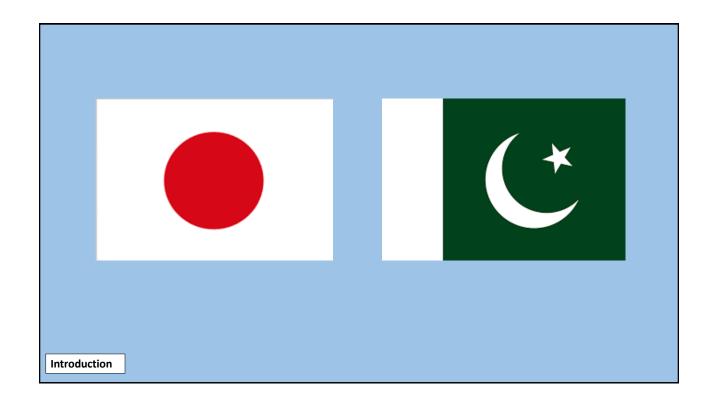
Date:	1 1																	proved ingine										
Facility:																	Pro	epared	by									
S.No.	Mainteniance Objective	Due Time											Tin	ne S	ched	lule	(We	eek)										
		Wooks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

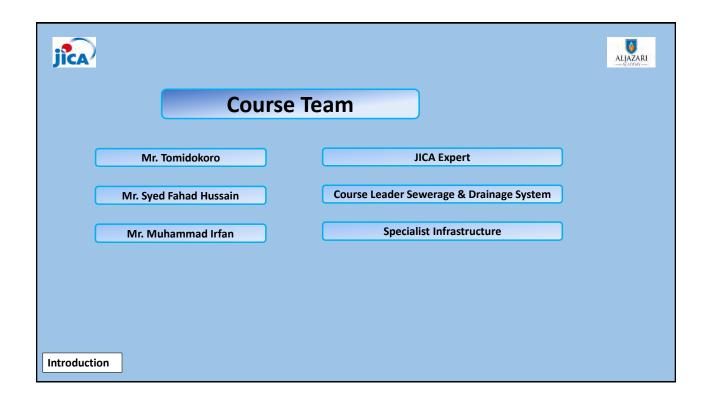
S.No.	Mainteniance Objective	Due Time	me Time Schedule (Week)																									
		Weeks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1	Dusting and Cleaning of complete equipment with blower, etc	4 Weeks																										
2	Checking of tripping and ON / OFF operation of all breakers contactors and relays	4 Weeks																										
3	externally while switching the main switch OFF	12 Weeks																										
4	thimbles for proper connection and heat signature wit Infra-red sensor	12 Weeks																										
5	Tightening of all terminations	12 Weeks																										
6	Infrared imaging of control panel to observe unusual heat signature	12 Weeks																										
7	Insulation test to ensure proper insulation of Cables	16 Weeks																										
8	Checking of Intrusion path for proper vermin protection	12 Weeks																										
9	Cleaning of Open Contact with contact spray cleaner	24 Weeks																										
10	Calibration of measuring devices and instrument relays	52 Weeks																										
11	Checking of Voltage for all Three Phases V(RY), V(RB), V(YB)	12 Weeks																										
12	Checking of Current of all Three Phases	12 Weeks																										
13	Checking of Power Factor Value	12 Weeks																										

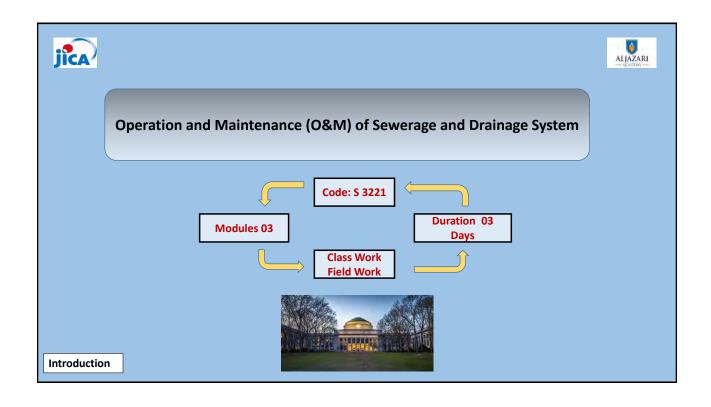
14	Earth Resistance test of MCU and Motor	26 Weeks														
15	Any other task as per manufacturer's recommendation or Engineer incharge															
Rema	arks and Observations		•	•	•		•				•		•			•

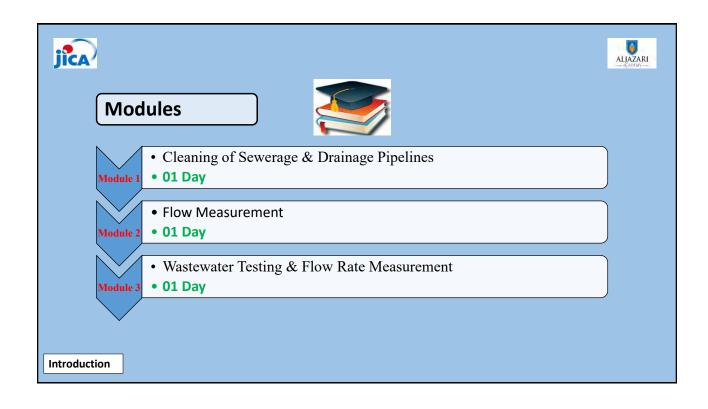
Developed in Technical Assistance of



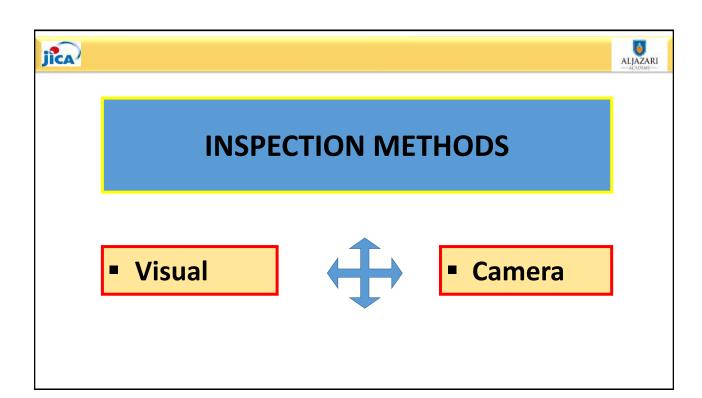

Preventative Mainteniance Schedule of Motor

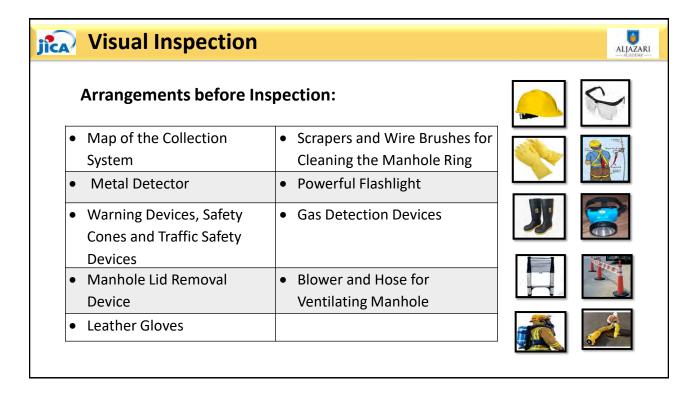

Date:	1 1																	proved Engine										
Facility	:																Pro	epared	by									
S.No.	Mainteniance Objective	Due Time											Tir	ne S	che	lule	(We	eek)										
		Weeks	4	8	12	16	20	24	30	34	40	44	48	52	56	60	64	68	72	76	80	84	88	92	96	100	104	108
1	Visual inspection including cleaning, dusting and greasing	4																										
2	Examination and reporting of vibration, bearings sound, termination and coupling arrangement / allignment	4																										
3	Thermographic Survery, temperature monitoring and recording	12																										
4	Load verification w.r.t to manufacturer's data and	12																										
5	Insulation Test	52																										
6	Inspection of Bearing	52																										
7	P.F verification of Motor and P.F.I Equipment	52																										
8	Earth Resistance Test	24																										
9	Any other task assigned by Engineer incharge																											
Rema	nrks and Observations																											


添付資料 5.1.50	研修コース「下水・	排水施設維持管理」	の教材(2022	2 年秋季研修)



INSPECTION OF SEWER / MANHOLE

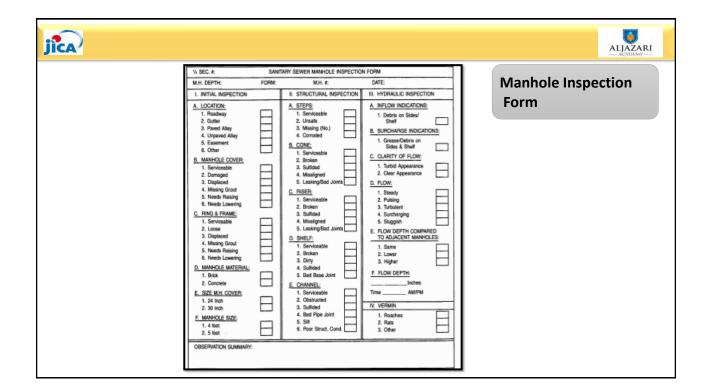

Objectives of Sewer Inspection

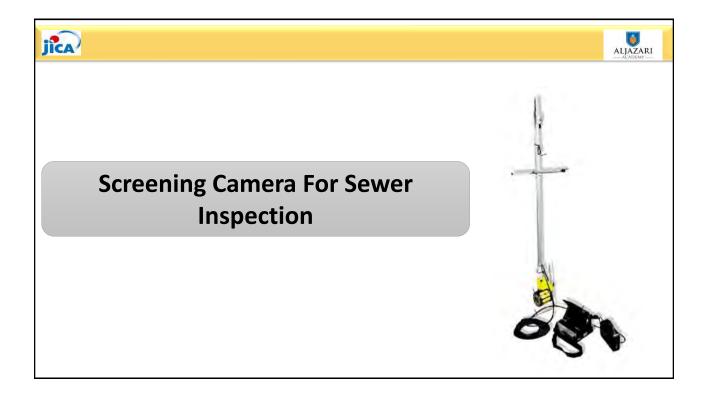


- To identify existing or potential problems in Sewer / Manhole
- To examine structure of the Sewer / manhole
- To observe functional capacity of Sewer / manhole

Categories of Visual Inspection...

Initial Inspection

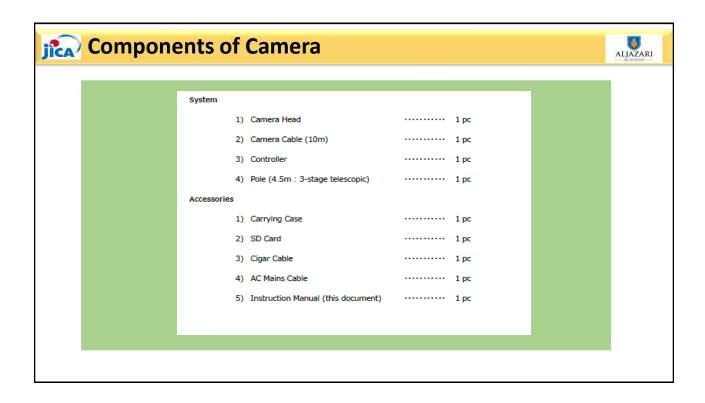

- Location
- Manhole Cover
- Ring & Frame
- Manhole Material
- Sizes

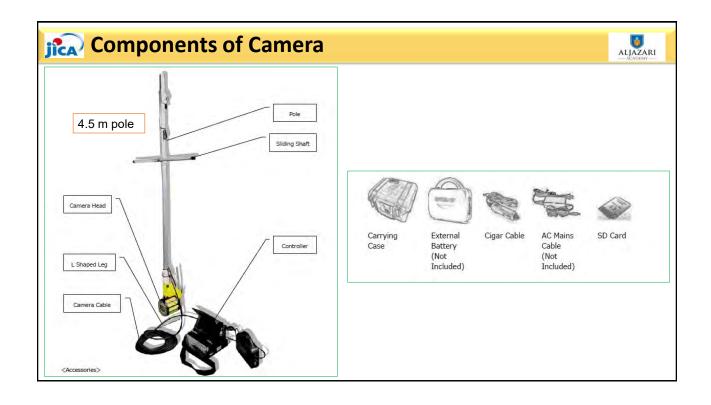

Structural Inspection

- Steps
- Cone
- Riser
- Shelf
- Channel

Hydraulic Inspection

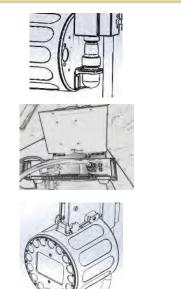
- Inflow
- Clarity
- Flow
- Flow Depth
- Vermin

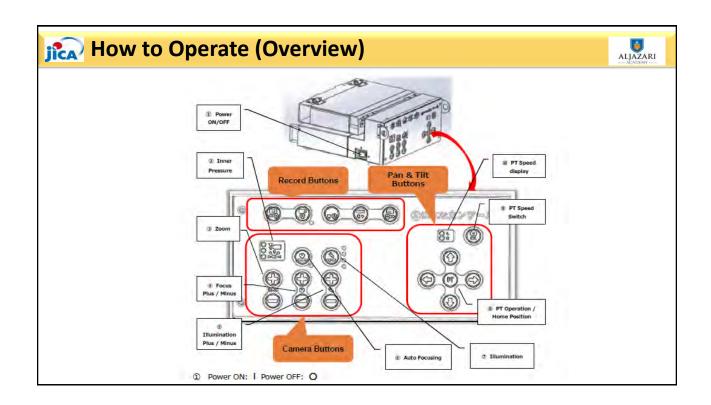


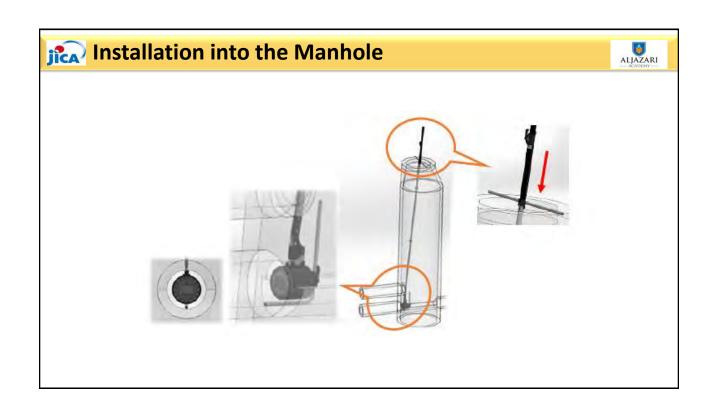


Objectives of Screening Camera

- 1. To look for damages / breaks in sewer line
- 2. To locate root intrusion
- 3. To find unrecorded connection
- 4. To locate protruding laterals
- 5. To locate cracks / inflow sources
- 6. To search lost / buried lines
- 7. To verify alignment






How to Connect Device

- 1. Take out the camera head and the camera cable from the carrying case.
- 2. Connect the camera head to the camera cable
- 3. Take out the controller from the carrying case.
- Connect the controller to the camera cable.
- 5. Connect the pole to the camera head

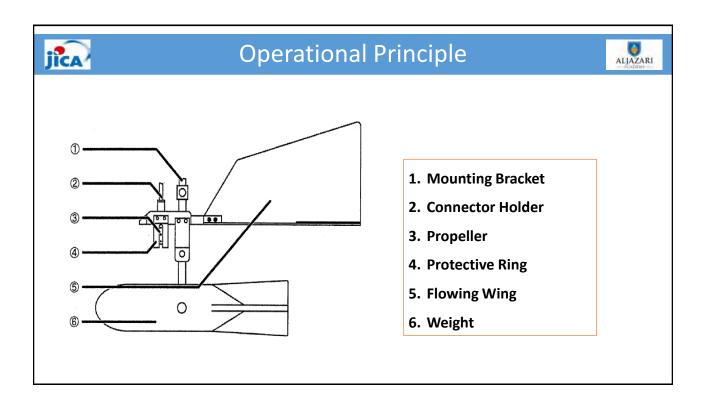
Recording (Video/Still Image)

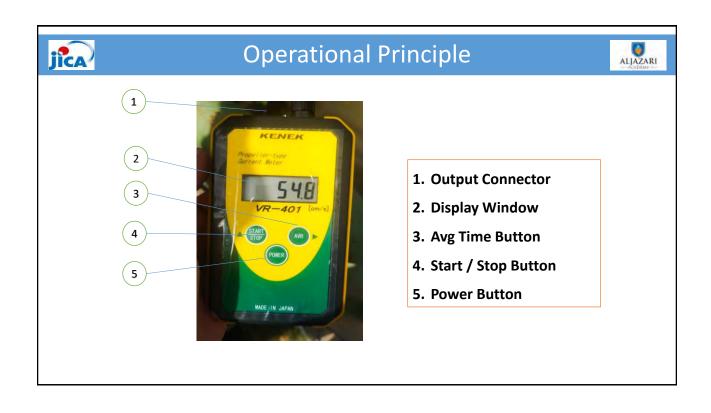
Video recording time (estimate)

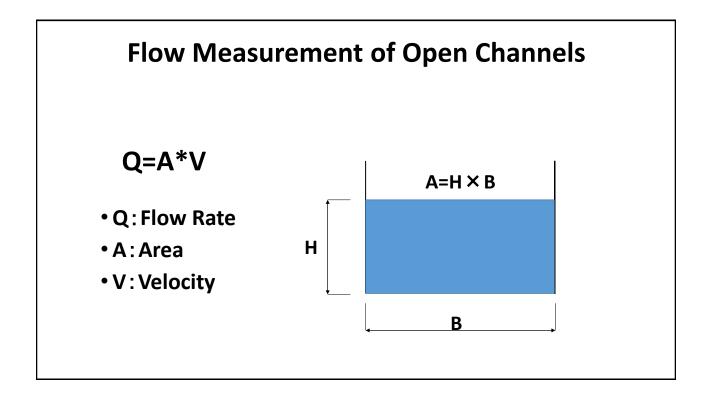
Picture quality	4GB	8GB	16GB	32GB
Highest	About 48 min	About 96 min	About 190	About 380
riigiiest	About 40 IIIII	About 50 min	min	min
High	About 60 min	About 120	About 240	About 480
riigii	About 60 IIIII	min	min	min
Normal	About 80 min	About 160	About 320	About 640
Nomia	About 60 IIIII	min	min	min

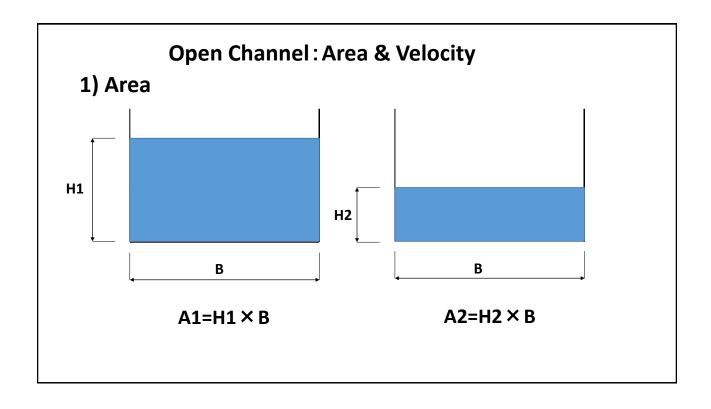
WASA Rawalpindi (Pictures)

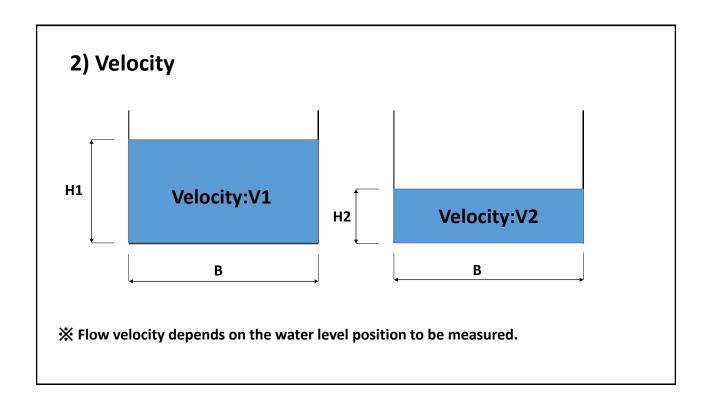
Propeller Type Velocity Meter




jica


Operational Principle

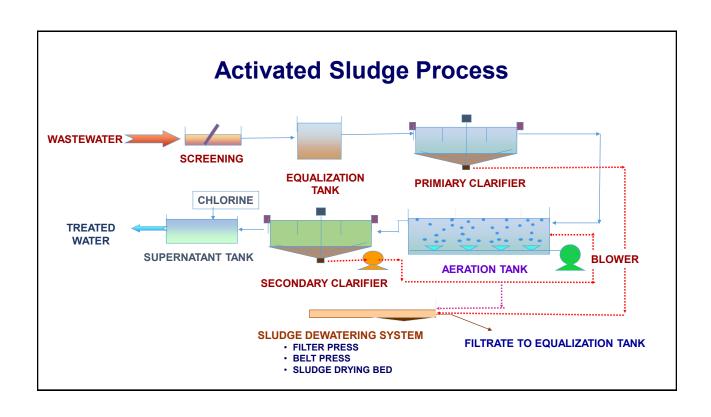



Propeller rotational speed is detected by means of magnet embedded in the propeller which is then converted into velocity by the main unit and displayed

Selection of Best Wastewater Treatment Technologies

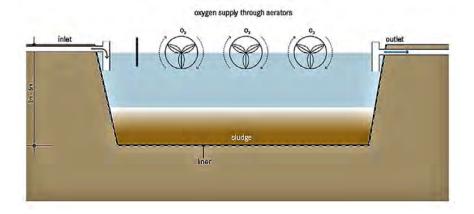
General Characteristics of Wastewater

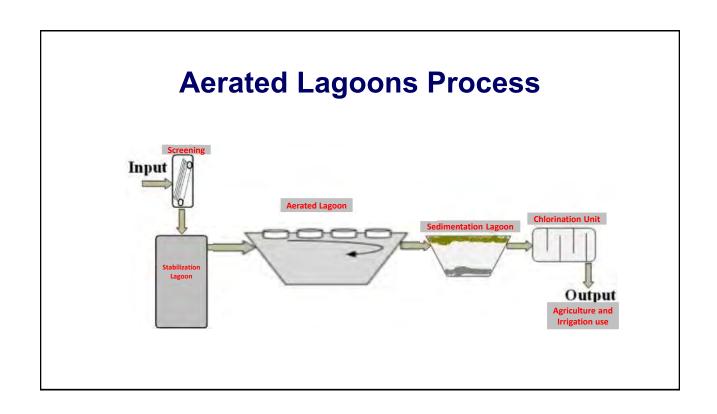
Parameters	Low	High
BOD	Clean	Polluted
COD	Clean	Polluted
рН	Acidic	Alkaline
DO	Polluted	Clean


General Characteristics of Treatment Technologies

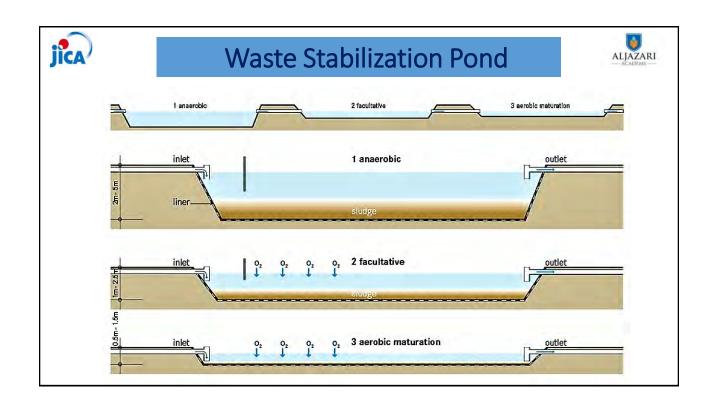
General Characteristics of Treatment Technologies

Treatment Technologies	Big Particles	Small Particles	Dissolved Particles
Conventional Activated Sludge (more mechanical + Biological)	Screen	Grit Chamber	Aeration Tank & Secondary Clarifier
Aerated Lagoon (less mechanical + Biological)	Screen	None	Aerated Lagoons
Waste Stabilization Pond (Biological)	Screen/None	None	Ponds

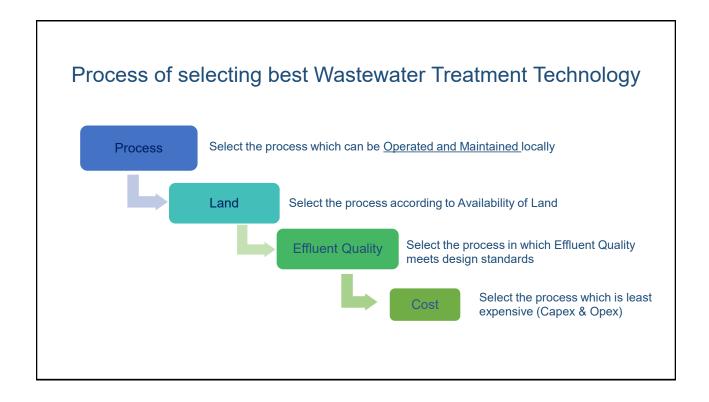

Activated Sludge Process (Aeration Tank)



Aerated Lagoons



Aerated Lagoons Process



General Characteristics of Treatment Technologies

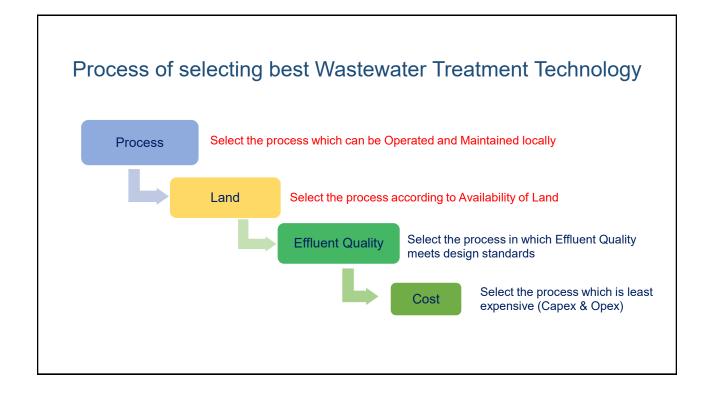
Treatment Technologies	Effluent (BOD)	Removal Efficiency	Area Req.	Capital Cost without land cost	Operational Cost
Conventional Activated Sludge	Very good	Very good	Small	High	High
Aerated Lagoon	Good	Good	Medium	Medium	Medium
Waste Stabilization Pond	Fair	Fair	Large	Low	Low

Example No. 1: Step 1: Select the process which can be <u>Operated and Maintained</u> locally.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	15	100	20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 1: Step 1: Select the process which can be Operated and Maintained locally.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	Selected
Aerated Lagoon	15	100	20	50	50	Selected
Waste Stabilization Pond			30	70	30	Selected


Example No. 1:

Step 2: Select the process according to Availability of Land.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	15	100	20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 1: Step 2: Select the process according to Availability of Land.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimate d Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	Selected
Aerated Lagoon	15	100	20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 2: Step 1: Select the process which can be <u>Operated and Maintained</u> locally.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	50	30	20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 2:

Step 1: Select the process which can be <u>Operated and Maintained</u> locally.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	Selected
Aerated Lagoon	50	30	20	50	50	Selected
Waste Stabilization Pond			30	70	30	Selected

Example No. 2: Step 2: Select the process according to <u>Availability of Land.</u>

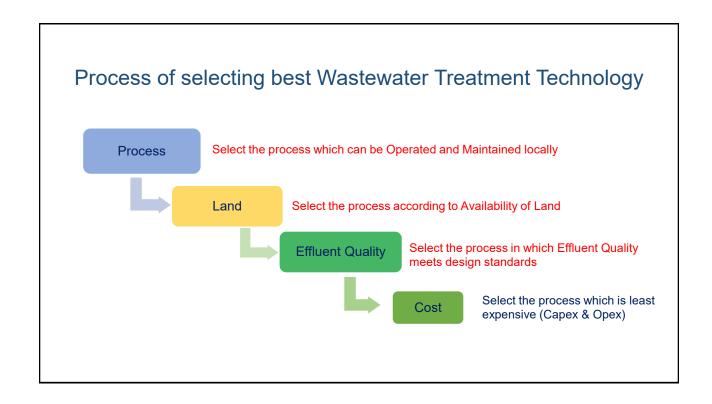
Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	50	30	20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 2:

Step 2: Select the process according to <u>Availability of Land.</u>

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge	50	30	10	20	100	Selected
Aerated Lagoon			20	50	50	Selected
Waste Stabilization Pond			30	70	30	Selected

Example No. 2:


Step 3: Select the process in which <u>Effluent Quality</u> meets design standards.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge	50	30	10	20	100	
Aerated Lagoon			20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 2:

Step 3: Select the process in which Effluent Quality meets design standards.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge	50	30	10	20	100	Selected
Aerated Lagoon			20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 3: Step 1: Select the process which can be <u>Operated and Maintained</u> locally.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge		60	10	20	100	
Aerated Lagoon	25		20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 3: Step 1: Select the process which can be Operated and Maintained locally.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge		60	10	20	100	Selected
Aerated Lagoon	25		20	50	50	Selected
Waste Stabilization Pond			30	70	30	Selected

Example No. 3:

Step 2: Select the process according to Availability of Land.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimate d Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge			10	20	100	
Aerated Lagoon	25	60	20	50	50	
Waste Stabilization Pond			30	70	30	

Example No. 3:

Step 2: Select the process according to Availability of Land.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge		60	10	20	100	Selected
Aerated Lagoon	25		20	50	50	Selected
Waste Stabilization Pond			30	70	30	Not Selected

Example No. 3:

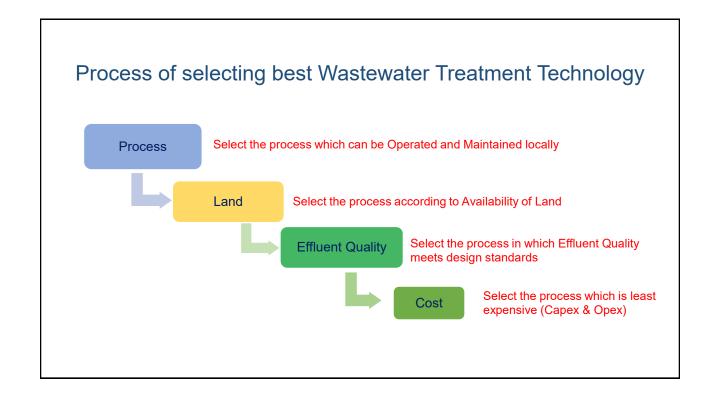
Step 3: Select the process in which <u>Effluent Quality</u> meets design standards.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge		60	10	20	100	
Aerated Lagoon	25		20	50	50	
Waste Stabilization Pond			30	70	30	Out of comparison

Example No. 3:

Step 3: Select the process in which Effluent Quality meets design standards.

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge		60	10	20	100	Selected
Aerated Lagoon	25		20	50	50	Selected
Waste Stabilization Pond			30	70	30	Out of comparison


Example No. 3:

Step 4: Select the process which is least expensive (Capex & Opex).

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge		60	10	20	100	
Aerated Lagoon	25		20	50	50	
Waste Stabilization Pond			30	70	30	Out of comparison

Example No. 3: Step 4: Select the process which is least expensive (Capex & Opex).

Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge		60	10	20	100	
Aerated Lagoon	25		20	50	50	Selected
Waste Stabilization Pond			30	70	30	Out of comparison

Exercise No. 1	Exercise No. 1										
Step 1	Step 2	Step 3	Step 2	Step 3	Step 4						
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation					
Conventional Activated Sludge		30	10	20	100						
Aerated Lagoon	25		20	50	50						
Stabilization Pond			30	70	30						

Exercise No. 2										
Step 2	Step 3	Step 2	Step 3	Step 4						
Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation					
		10	20	100						
25	60	20	50	50						
		30	70	30						
	Available Area	Available Area Design Standards: Effluent BOD	Available Area Design Standards: Effluent BOD Minimum Required Area 10	Available Area Standards: Effluent BOD Minimum Required Area Effluent BOD 10 20 20 50	Available Area Design Standards: Effluent BOD Required Area Achievable Water Quality Effluent BOD Cost (Capex & Opex) 10 20 100 25 60 20 50 50					

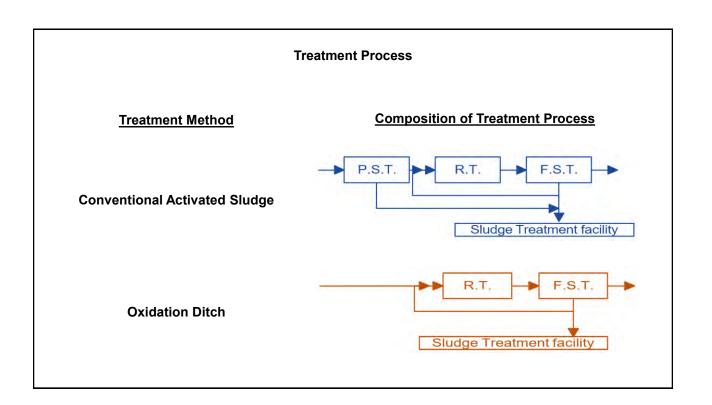
							_
Fx	\circ r		0	\circ	NΙ		٠,٠
	-1	ı,	.5	┌.	ıv	u	

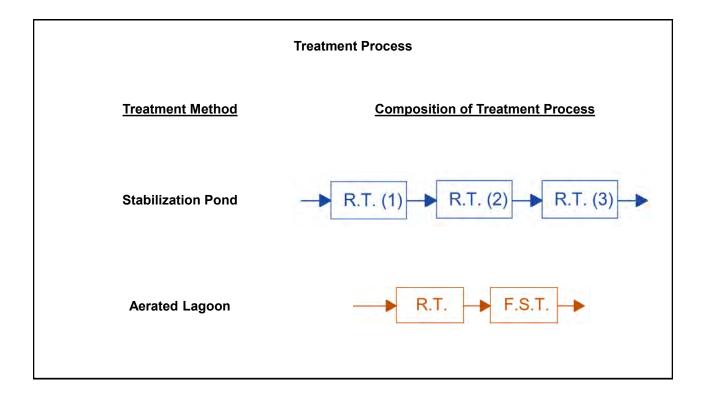
Step 1	Step 2	Step 3	Step 2	Step 3	Step 4	
Treatment Technologies	Available Area	Design Standards: Effluent BOD	Minimum Required Area	Achievable Water Quality Effluent BOD	Estimated Cost (Capex & Opex)	Evaluation
Conventional Activated Sludge		80	10	20	100	
Aerated Lagoon	40		20	50	50	
Stabilization Pond			30	70	30	

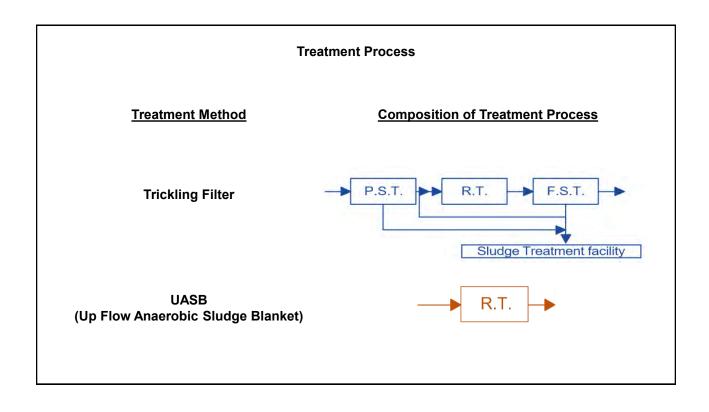
Break

JICA STUDY

Preparatory Study for Lahore Water
Supply, Sewerage and Drainage
Improvement Project

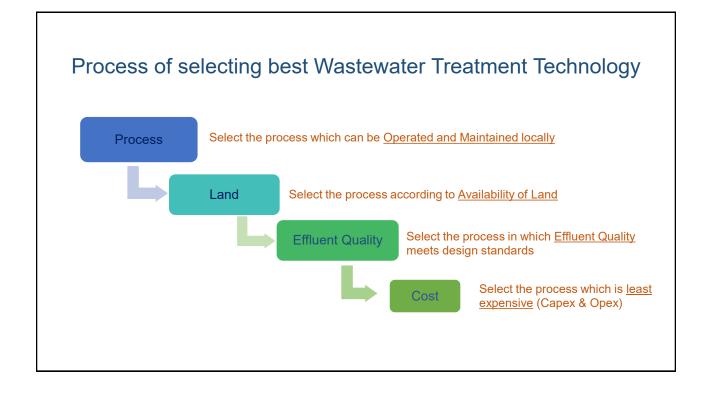

Case Study


South West Treatment Plant


Comparison of Wastewater Treatment Systems

Criteria	Trickling Filter	Activated Sludge	Oxidation Ditch	Aerated Lagoon	Stabilization Pond	UASB
BOD₅	++	++	+++	+++	+++	+
Effluent Reuse Possibilities	+1	+1	++	+++	+++	+
Land Requirement	+++	+++	+++	++	++	+++
Maintenance Cost/ Energy Demand	++	+	+	+	+++	+++
Minimization of Sludge for Removal	++2	++2	+	++	+++	++

- +++ (Good)
- ++ (Fair)
- + (Poor)
- 1. The effluents from activated sludge, trickling filter frequently have high ammonia levels (>5mg/L) and faecal bacterial concentrations, and are usually not suitable for irrigation or fish farming without tertiary treatment.
- 2. Assumes provision of sludge digesters



Summary of Basic Conditions in South West Wastewater Treatment Plant

Items	Conditions
Target Year	2035
Service Area	Central Area (100.26 km²)
Design Population	3,894,300 (Approx. 3.9 Million)
Design Flow (Daily Average)	■ 790,000 m³/d ■ 323 ft³/s
Effluent Sewage Quality (BOD ₅)	50 mg/L (NEQS: Less than 80 mg/L)
Site Area	7,300 Kanal (304.3 ha) Land already acquired
Discharge of Treated Wastewater	Ravi River

Process of Selecting Best Wastewater Treatment Technology (Step 1 ~ Step 3)

Description	Activated Sludge	Oxidation Ditch	Aerated Lagoon	Trickling Filter	Waste Stabilization Pond	UASB
Step 1 : Processes	Applicable	Applicable	Applicable	Applicable	Applicable	Applicable
Step 2: Land Availability	Already	Already	Already	Already	Need to	Already
	Available	Available	Available	Available	Acquire	Available
Step 3: Effluent Quality	Meet the	Meet the	Meet the	Meet the	Meet the	Meet the
	Standards	Standards	Standards	Standards	Standards	Standards

Process of selecting best Wastewater Treatment Technology Step 4: Cost (Capex & Opex)

Unit: Million PKR

Description	Activated Sludge	Oxidation Ditch	Aerated Lagoon	Trickling Filter	Waste Stabilization Pond	UASB
Construction Cost (Capex)	16,998	12,239	8,499	11,389	14,397	15,128
Land Acquisition (Capex)	-	-	-	-	1,139	-
O&M Cost - Electricity (for 30 years) (Opex)	32,635	41,783	24,482	9,148	0	7,513
O&M Cost (Sludge Disposal) (for 30 years) (Opex)	2,487	1,872	3,010	2,654	2,180	1,351
Total Cost (Capex & Opex)	52,120 (100%)	55,894 (107%)	35,991 (69%)	23,191 (44%)	17,716 (34%)	23,992 (46%)

CONCLUSION

- Waste Stabilization Ponds is selected as best Wastewater Treatment Technology if Land is acquired.
- If Land is not acquired then <u>Trickling Filter</u> is selected as best Wastewater Treatment Technology

Note:

- This comparison is for inflow of 790,000m³/d with BOD of 250mg/l. Conclusion might be changed with different values of inflow & BOD.
- This comparison is conducted in Year 2010. Therefore conclusion might be changed now.

BOD: Biochemical Oxygen Demand Test

How to Use

1.

Pull out the line at the end of the tube

2

With the hole up, pinch the bottom half of the tube tightly with your finger and push out the air inside

BOD: Biochemical Oxygen Demand Test

3.

Continue to place the hole in the test water, loosen the pinching fingers, and wait until half of the water is absorbed. Shake the tube gently 15 times to prevent leakage.

4.

Immediately after 2 minutes, place the tube on top of the standard color and compare the colors.

Quiz

Operation and Maintenance (O&M) of Sewerage System

Name of Trainee		Organization	
Total Marks	10	Obtained Marks	

Short Answer Questions 1. What are the reasons for cleaning sewer & manhole? 2. Enlist various tools and equipment, required for sewer cleaning? Fill in the Blanks 1. Hydrogen sulfide (H₂S) may attack _____manholes (Concrete/ Plastic) 2. Pole mounted sewer camera is used to find ______ connection. (cable / illegal) 3. Preventive maintenance can save the ______. (time & money / nothing) True/False

Sr. No. Statement Yes No 1. First stage of inspection is CCTV? 2. The maximum range of pole mounted sewer camera is 20 feet? ... 3. Is it necessary to ventilate the manhole before its cleaning? ...

jica		IV	leasuren	nent of	Dischar	ge in Drains		· ·	ALJAZARI
	Left	cm/s	Center	cm/s	Right	cm/s		m	ft
	V1		V4		V7		Width		
	V2		V5		V8		Depth		
	V3		V6		V9				
	Avg.		Avg.		Avg.				
Avg (cm/s)									
Avg (m/s)									
Avg Velocity (ft/s)									
									_
						Name			
Q=A*V						Designation			
						Organization			1
						Total Marks			1

添付資料 5.1.51 研修コース「機械・電気設備維持管理」の教材(2022 年秋季(12 月)研 修)

O&M of Electrical & Mechanical System

Pump, Motors, Motor Control units and Valves

By Jawad Shahid Vice Principal

Importance of Tube Well Pumps

This could be my home!

Importance of Disposal Station Pumps

This could be our children!

Topics to cover...

- ✓ Types of Pumps
- ✓ Pump operations
- ✓ Preventive maintenance of pumps
- ✓ Induction Motors
- ✓ Motor Control Units
- ✓ Valves and their Operation
- ✓ Asset Lifecycle Assessment
- ✓ Vibration Analysis
- ✓ Pump series and parallel op.
- ✓ Motor Starters, Pump Performance curve
- ✓ Preparation of Operational Plan
- ✓ Introduction to E-Learning Platform

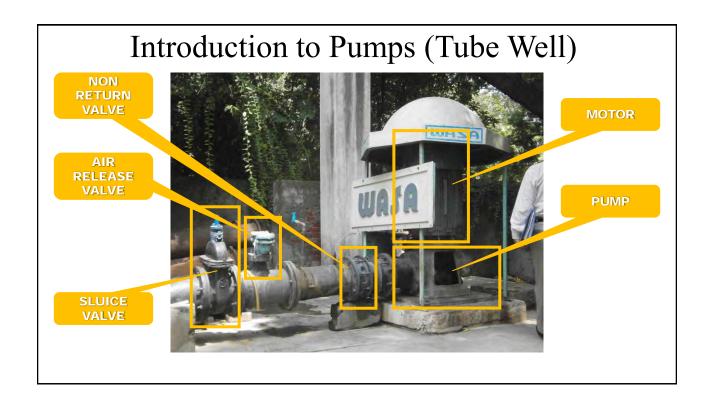
Icebreaker and Class Introduction

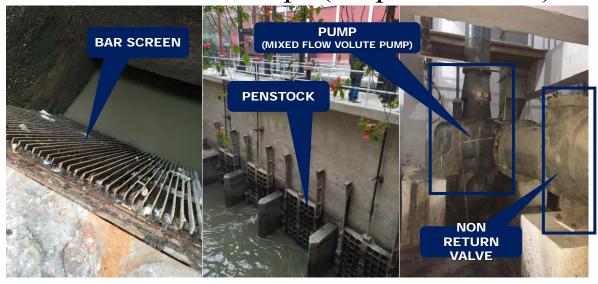
Now it is your turn...

- Degree and backgrounds?
- Share your work experience relative to WASA equipment?

Brainstorming

Now it is your turn...


- Any prior experience on Pumps?
- Why interested in this Module?
- What best skills do you bring to the class?


Resources and Handouts

- Owner's Manual, KSB Pumps
- Pumps and Pumping (Arasmith, S. 2006)
 ACR Publications, London
- Participant lecture notes, Module 1
- Class presentations, Module 1

Introduction to Pumps (Disposal Station)

Importance of Equipment Reliability and Trainings

Operational Efficiency

- Equipment Maintenance - Workforce Training - Overall Efficiency

Introduction to Pumps

Pump

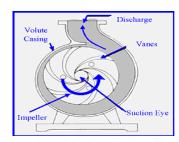
It is a mechanical device to transport liquids. It coverts kinetic energy into velocity/pressure.

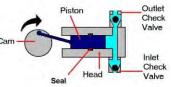
Identification of Pumps

Function (Vacuum Pump)

Location (Inlet Pump)

Introduction to Pumps


Two major categories:


i) Centrifugal Pumps

The Pump in which energy is continuously added to increase the fluid velocities within the machine. This type is most commonly used in water and sanitation industry.

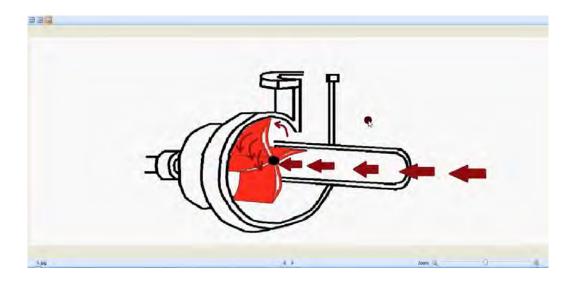
ii) Positive Displacement Pumps

The pump in which the energy is periodically added by application of force.

SINGLE ACTING RECIPROCATING

Introduction to Pumps

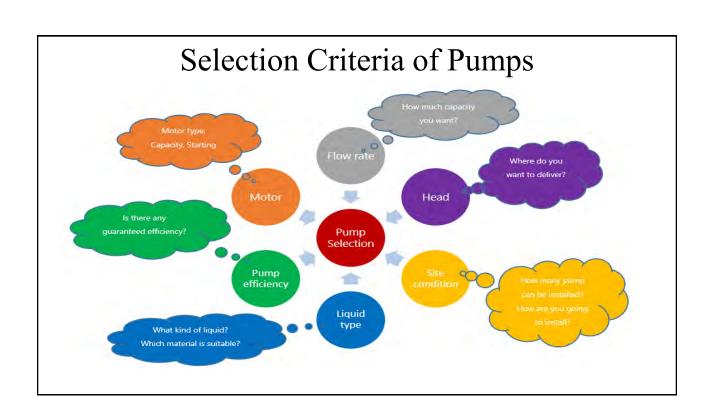
Centrifugal Pumps


Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid flow.

The rotational energy typically comes from an engine or electric motor.

Centrifugal Pump

Video Centrifugal Pumps


Introduction to Pumps

General Design and Parameters...

All equipment should be selected properly. Wrong selection will cause...

- **✓**Short lifecycle
- **✓** Operational downtime
- **✓**Energy loss
- ✓ Major capital loss

Selection Criteria of Pumps How to select a pump? FLOW How much water is needed? How far or high water will be TOTAL MOTOR delivered? HEAD Is there a guaranteed pump efficiency need? PUMP SELECTION What kind of liquid is transported? How much space is available for pump installation? LIQUID TYPE Motor/energy factor?

Selection Criteria of Pumps

Parameters

```
✓ Flow Rate [cusec, m3/h, l/s]
```

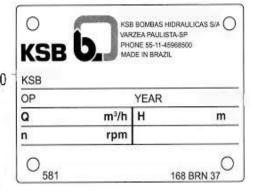
- ✓ Total Head [m, ft.]
- ✓ Motor Output [kW, HP]
- **✓ Pump Type [water supply, wastewater)**

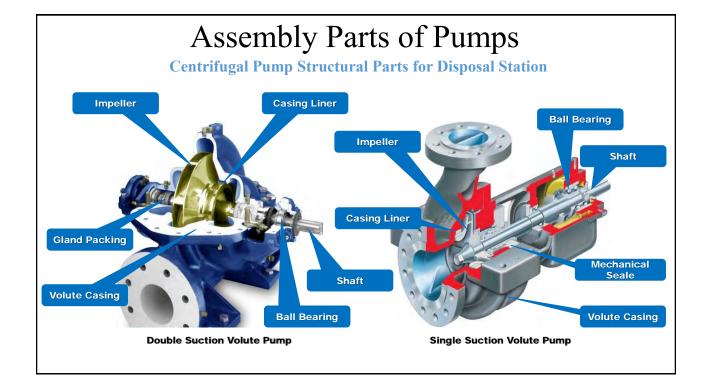
Selection Criteria for Pumps

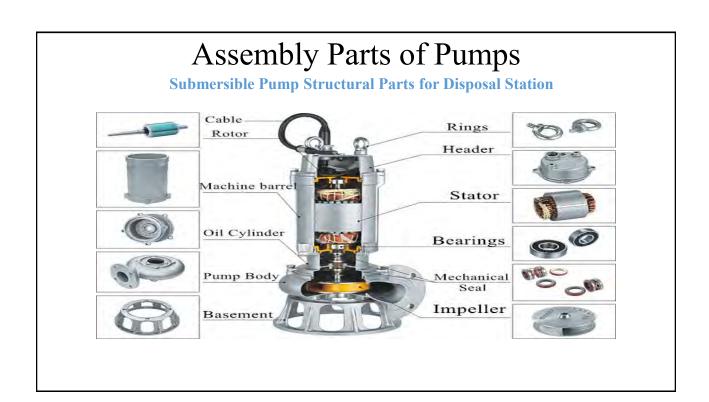
Other Parameters

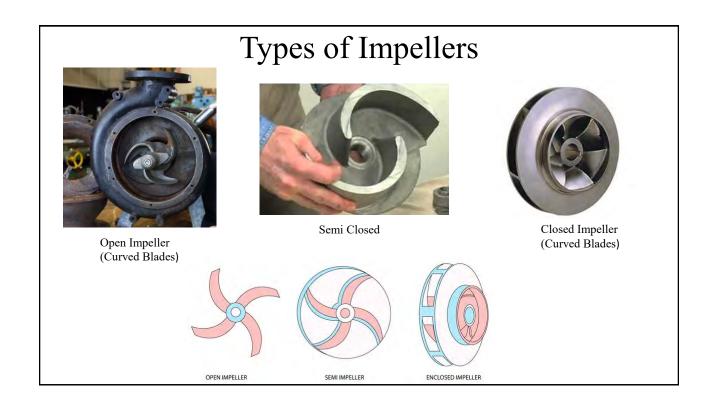
- ✓ Materials [cast iron, steel, food grade]
- ✓ Liquid Type [clean water, waste water]
- **✓**Paint [anti corrosion]
- ✓ Available Installation Space [m2, ft2]

Introduction to Pump Design Basics


Centrifugal Pump Nameplate and Designation Specification:


Discharge Diameter: 40--500mm(1.6--20inch)


Flow Capacity: 10--6000m³/h


Head: 6--80m

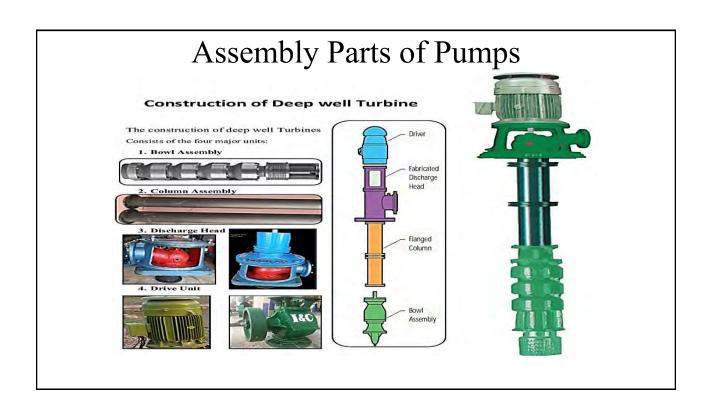
Name Plate and Designation

Introduction to Pumps

Vertical Turbine Pump

These pumps are commonly used in groundwater wells.

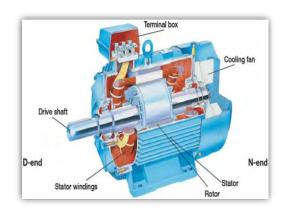
These pumps are driven by a shaft rotated by a motor on the surface

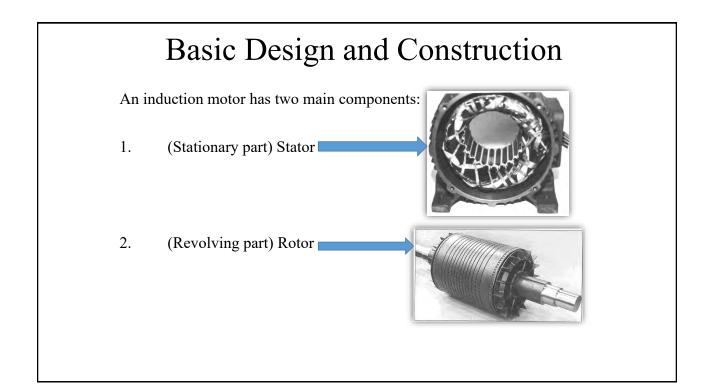


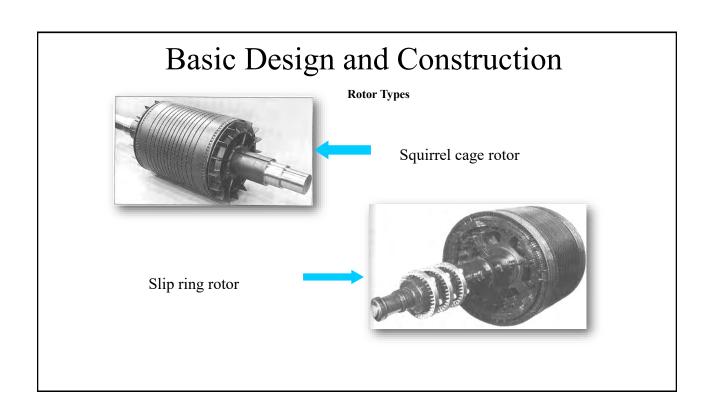
Introduction to Pumps Types

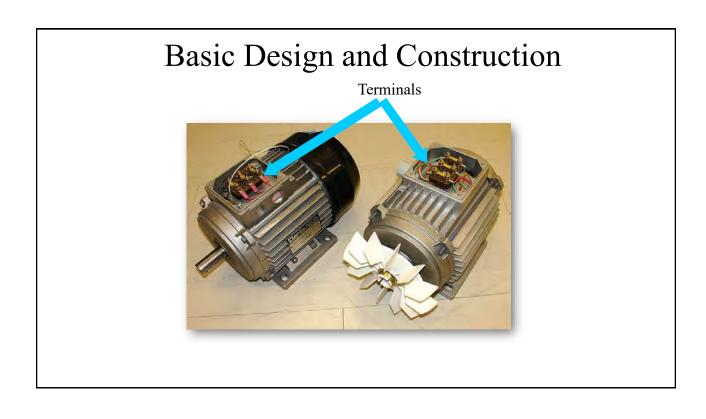
Submersible Pump

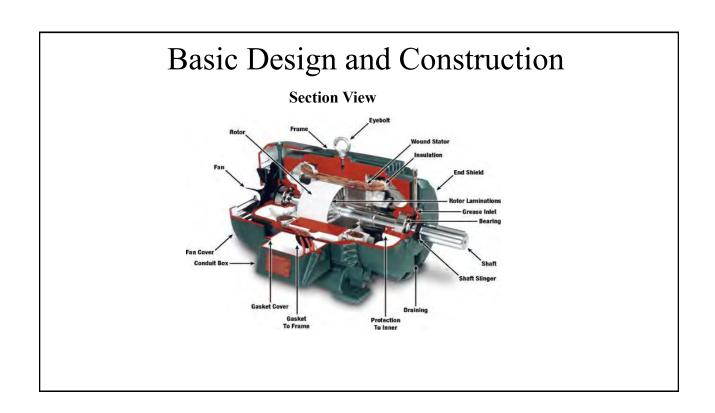
A type of pump in which the motor and pump both are in the ground water reservoir. Motor is water proof and electricity is provided to the motor by a water proof cable.






Comparison of Vertical pump and Submersible pump			
	Vertical shaft centrifugal pump (Tube well)	Submersible motor pump (tube well)	
Picture			
Bore size	Cover a wide range	Max bore: approx. 200 mm	
Flow capacity	Cover a wide range	Small	
Head	Cover a wide range	Cover a wide range	
Efficiency	Small bore: almost equal with submersible motor pump Big bore: Max eff. approx.90%	Maximum: approx. 80%	
Installation	complex	Easy	
Maintenance	complex	Easy	
Cost	Expensive than Submersible motor pump	Cheaper than Vertical shaft pump	
Vibration/Noise	Need attention	No need to pay attention compare to Vertical pump	
Leakage	Need attention	No need to pay attention compare to Vertical pump	


Introduction to 3 phase Induction Motors


- Electrical motor is an electromechanical device, which converts electrical energy to mechanical energy.
- Three-phase induction motors are the most common electrical motors used in the industry.

Basic Design and Construction

Motor Burnout and Rewinding

Causes...

- 1. Fluctuation in phase voltages
- 2. Malfunctioning of protective relays
- 3. Manufacturing defects
- 4. Damage before or during installation
- 5. Improper installation
- 6. Misapplication (overload)

- Poor energy quality
- Load shedding
- Poor water quality
- High number of remedial maintenance operations
- Significant drop in static levels

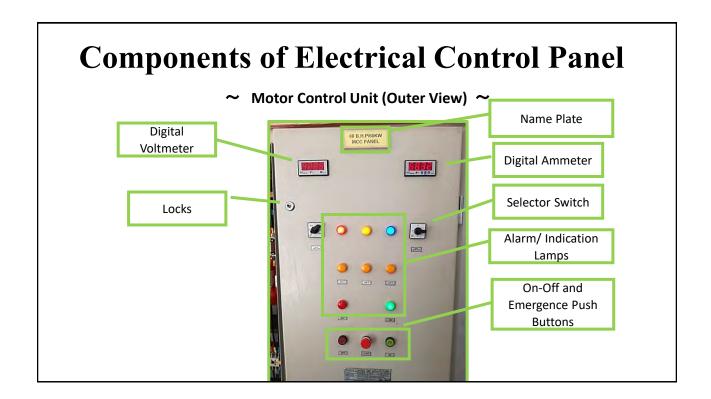

Motor Burnout and Rewinding

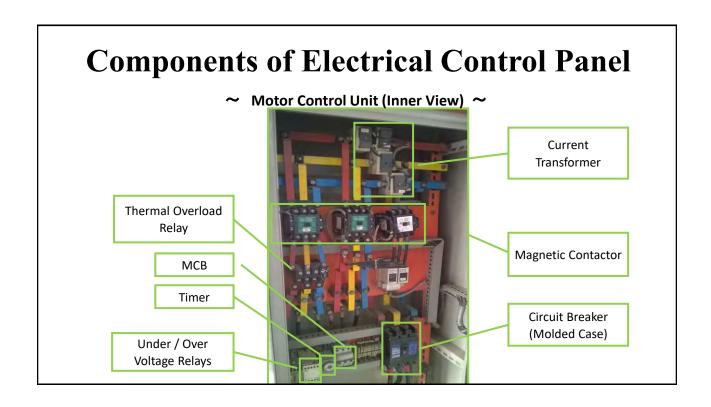
- Copper or aluminum wire should be used for rewinding the motor
- Preferably inside of the winding wire should be enameled copper wire (magnet wire)

Motor Burnout and Rewinding

- After re-winding the assembly should be coated with risen and baked.
- Special care should be taken when inserting the rotor into the stator assembly.

Introduction to Panel Components




What are these?

Selector Switches

✓ Used to select among each of the three phases to monitor currents and voltages on ampere and voltmeter.

Ampere & Voltmeter meter

- ✓ Monitoring gauges for currents and voltages
- ✓ Digital and analog type Ampere and Volt meters are used by WASAs

Zero Adjustment

1. Circuit Breakers

Circuit breakers are switches that open/close electric circuits in normal and abnormal conditions specially in case of a short circuit.

2. Contactor

✓ A power contactor is typically used for "on / off" control of motors. A relay can be installed on the circuit for overload protection. Electromagnetic force works to "open /close" the contacts.

Protective Relays

✓ Protective relays detect electrical faults, isolate the faults from system and activate alarms is a faulty condition sensed

Thermal Relay

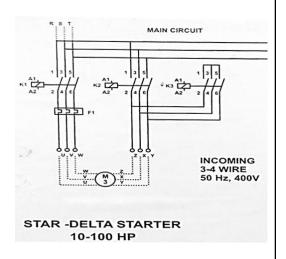
Under/Over Voltage Relay

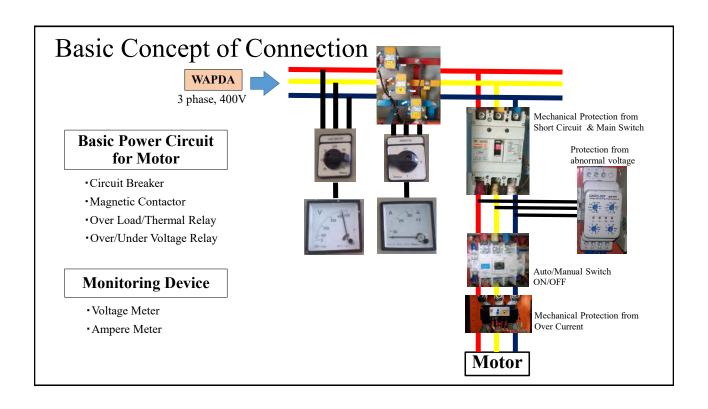
Phase Failure Relay

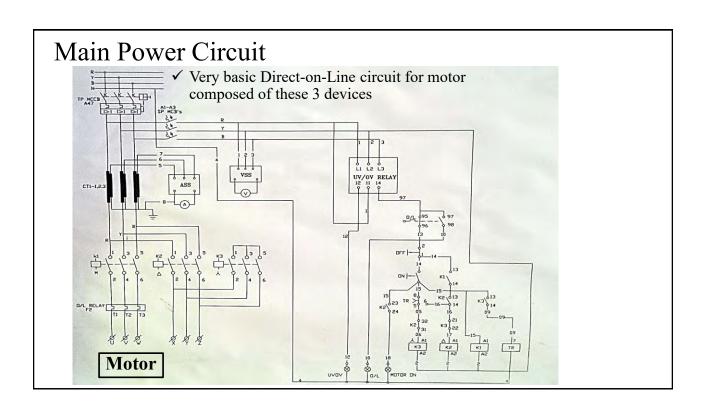
5. Current transformers (CT)

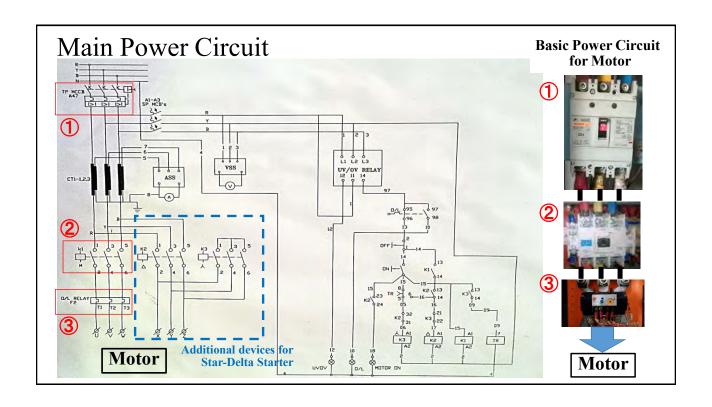
✓ CT's are used for stepping down current to be measured safely. It is also applied to protective relays

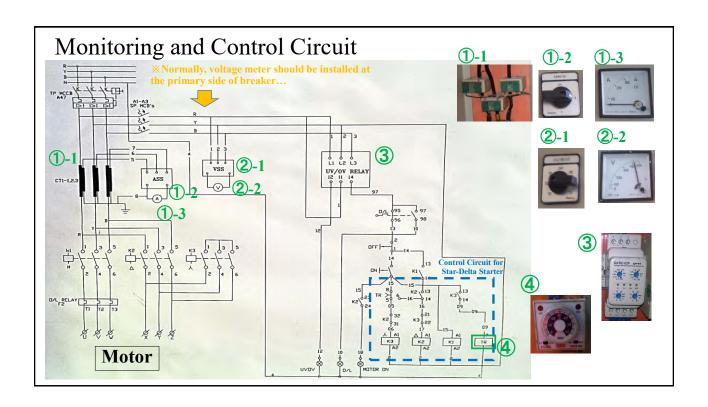
6. Timer


✓ Use to convert the motor connections from Star to Delta after specific time




WIRING DIAGRAMS


Wiring Diagram


- ✓ Shows how the components are connected
- ✓ It should be always available at the site

Introduction and selection of valves

Valve

A valve is a device that regulates, directs or controls the flow of a fluid by opening, closing, or partially obstructing various passageways.

Valve Functions

- ✓ Stopping and starting fluid flow.
- ✓ Varying (throttling) the amount of fluid flow.
- ✓ Controlling the direction of fluid flow.
- ✓ Regulating process pressure.
- ✓ Relieving component or piping pressure.

Introduction and selection of valves

Classification of Valves

The following are some of the commonly used valve classifications, based on mechanical motion:

Linear Motion Valves.

The valves in which the closure member, as in gate or sluice, moves in a straight line to allow, stop, or throttle the flow.

Introduction and selection of valves

Classification of Valves

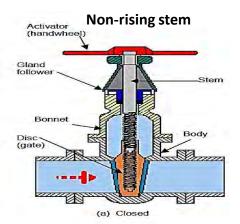
Rotary Motion Valves.

When the valve-closure member travels along an angular or circular path, as in butterfly valves.

Quarter Turn Valves.

Some rotary motion valves require approximately a quarter turn, 0 through 90°, motion of the stem to go to fully open from a fully closed position or vice versa.

Introduction and selection of valves

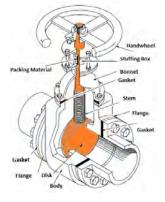

Classification of valves based on motion

Valve types	Linear motion	Rotary motion	Quarter turn
Gate Valve	X		
Air release valve	X		
Butterfly valve		X	X
Non-return valve		X	X
Flap valve		X	

Assembly parts of valves

Basic Parts of the valve

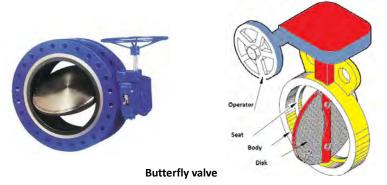
- Body
- Bonnet
- Trim (internal elements)
- Actuator (Handwheel)
- Packing



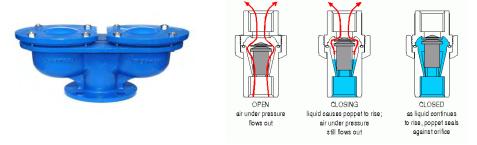
Introduction and selection of valves

Methods of controlling flow through a valve.

1. Slide a flat, cylindrical, or spherical surface across the orifice.

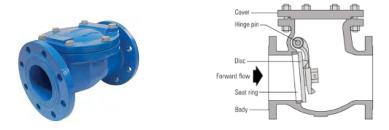


Gate valve


Introduction and selection of valves

2. Rotate a disc or ellipse about a shaft extending across the diameter of an orifice.

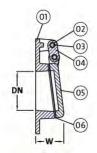
Introduction and selection of valves


3. Ball linearly moves upwards to close of an orifice.

Air release valve

Introduction and selection of valves

4. Non return valve rotates a disc to stop the backflow of the fluid


Non return valve

Introduction and selection of valves

5. **Flap valve** rotates a cover disc to hinder air suction and backflow of the fluid. Installed at the open end of discharge pipe.

Item	Description
01	Body
02	Bush
03	Hinge pin
04	Links
05	Flap
06	Seating face

Flap valve

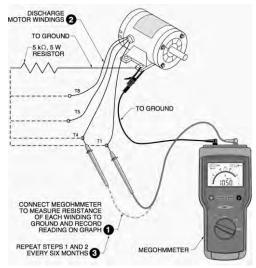
Insulation Testing for 3- Phase Motor

What is "Insulation Resistance"?

- Insulation resistance is the value showing if there is electrical leakage or not with the measured equipment.
- Insulation resistance tester is a tool to check how properly the system/equipment is insulated.
- If the value show less than 1 $M\Omega$, need to be cared. If less than 0.4 $M\Omega$ (i.e. for 400V), detect the faulty parts and replace them immediately.

• It is necessary to check not only one time value but also the trend and comparison with the previous value.

Step By Step Procedure for Insulation Testing


Testing

- Connect the terminals of insulation tester black with earth and red with U₁, V₁ and W₁ one by one with energize insulation tester and note values.
- 2. Cross winding insulation test

Connect the terminals in the pattern

$$\begin{aligned} &U_1 - V_1 \;,\, U_1 - W_1 \;,\, V_1 - W_1 \;\;\text{and} \\ &U_2 - V_2 \;,\, U_2 - W_2 \;,\, V_2 - W_2 \end{aligned}$$

Energize the system and note down values. Minimum insulation resistance value should be more the 1 M Ω .

Sample Format for Preventive Maintenance

Preventive Maintenance Sheet for Electrical Facility						
Sub Division :		Motor Specification			Rated Capacity (kW/HP)	
Site Name: Rated Voltage		Rated Ampere	Efficiency	Power Factor	RPM	
Equipment Name:		(V)	(A)	-	-	
Date						
Inspected By						
Weather						
Во	It Tightening					
Insulation Resistance (MΩ)	U1-E	U2-E				
	V1-E	V2-E				
	W1-E	W2-E				
	U1-V1	U2-V2				
	V1-W1	V2-W2				
	W1-U1	W2-U2		1		

1 Test in OFF Condition

2 Test in Running Condition

	R	V	Ì		ı	
Voltage by						
Clamp Meter	Y	В				
(V)	BR					
Ampere by	F	?				
Clamp Meter	Υ	′				
(A)	Е	3				
F	ower Factor					
Vibration	Upper	Lower				
VIDIALION	Bearing	Bearing				
Revolution	n Per Minut	e (RPM)				
	Upper	Lower				
Temperature	Bearing	Bearing				
remperature	Shaft					
Reference for Insulation Resistance Value: Good → more than 1.0MΩ						
Need to Adjust, C	Clean,Care →	$1.0M\Omega\sim0.4M$	Need to repa	ir immediately	→less than 0.4	ΜΩ
- Remarks -	·					
· ·						
[

Issues in Pumps

Trouble shooting Pumps

- 1. Corrosion
- 2. Cavitation
- 3. Change in Flow and Pressure

Issues in Pumps

Trouble shooting Pumps

- 1. Corrosion
- 2. Cavitation
- 3. Change in Flow and Pressure

Troubleshooting

Trouble shooting Pumps

- 1. Troubles are of 3 types: mechanical, hydraulic and motor related
 - ✓ Mechanical troubles: Breakage of coupling or shaft
 - ✓ Hydraulic troubles: Failure to deliver water, reduction in discharge and over loading.
 - ✓ Motor troubles: If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- 2. Flow rate increases check if system head decreased, is motor tripping on overloading?

.

Trouble shooting Pump

- 3. Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.
- 4. Vibrations check obstruction in suction, cavitation, impeller with solid particle logged in vane, system alignment (shaft, coupling etc.), tightening of installation bolts
- 5. Seal leakage while running or at shut down? check suction conditions, wear in parts, pump speed, changes in system.

Troubleshooting

Trouble shooting Centrifugal Pump

No liquid delivered

- Lack of prime
- Speed of electric motor or engine too low
- Discharge head too high
- Suction lift too high
- Impeller plugged
- Vapor lock in suction line

Trouble shooting Centrifugal Pump

Not enough water discharge

- Air leaks
- Worn wearing rings
- Damaged impeller
- Defective foot valve
- Worn gaskets

Troubleshooting

Trouble shooting Centrifugal Pump

Overloading of Motor / Engine

- Low discharge head
- Packing too tight
- Bent shaft
- Distorted casing
- Pump speed too high

Trouble shooting Vertical Turbine Pump

- 1. If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- 2. Flow rate increases check if system head decreased, is motor tripping on overload?
- 3. Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.

Troubleshooting

Trouble shooting Vertical Turbine Pump

- 4. Vibrations check obstruction in suction, impeller with solid particle logged in vane.
- There is excessive leakage from the stuffing box The packing is defective.
 Replace any packing that is worn or damaged

Trouble shooting Submersible Pump

- 1. If conditions change, adjustments in pump speed and/or impeller diameters may require changes.
- 2. Flow rate increases check if system head decreased, is motor tripping on overload?
- 3. Flow rate decreased check if system head is increased, obstruction in pipe, worn impeller, check pump speed is as specified.

Troubleshooting

Trouble shooting Submersible Pump

- 4. Vibrations check obstruction in suction, impeller with solid particle clogged in vane.
- 5. Sand in well discharge and/or excessive pump impeller wear

Possible problem	Solution
Damaged well screen or gravel envelope	In some cases a drilling contractor may be able to replace or repair the screen or gravel envelope.
Flow is drawing sand into the well	Throttle back the flow rate to reduce the problem. A drilling contractor may also need to redevelop the bore to flush out the sand around the bore screen (or take other measures as appropriate).

Trouble shooting Submersible Pump

Possible problem	Solution
Rapid stop/start pumping agitating the bore and not flushing out the	Look at the pump controls. Install storage or a variable speed drive (not always
sand	appropriate).

Imersed Tubewell Pump

Total Dynamic head

Thank you

Engr. Jawad Shahid

ELECTRICITY to WATER

Introduction to Advanced Energy Audit in Water Supply

By Jawad Shahid Vice Principal

WSD 5231, Module 1

Importance of Tube Well Pumps

This could be my home!

Topics to cover...

- Introduction and Importance of Advanced Energy Audit
- Hands on Activity, wiring of MCU
- Energy Audit of miniature Pumping Station
- Use of Electro-Mechanical Equipment
- Data Extraction from Power Analyzer and Ultra-Sonic Flow Meter

WSD 5231, Module 1

Topics to cover..

- Energy Assessment Tool
- Actual Issues faced by WASAs During Energy Audit
- Explanation of Q-H curve
- Series and Parallel Pump Operation
- Preparation of Energy Development Plan

Icebreaker and Class Introduction

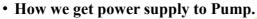
Now it is your turn...

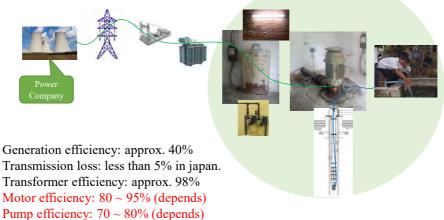
• Degree and backgrounds?

• Share your work experience relati

WASA equipment?

WSD 5231, Module 1


Brainstorming


Now it is your turn...

- Any prior experience of Energy?
- Why interested in this Energy Audit?
- What best skills do you bring to the class?

ELECTRICITY to WATER

WHAT IS ENERGY AUDIT ACTIVITY

ELECTRICITY to WATER

Energy Audit: An Energy Audit is an assessment and analysis of Energy Flows in a process, aimed at reducing the amount of energy input into the system without negatively affecting the outputs.

Objective Audit: The main objective of an energy audit is to explore various possibilities for energy conversation.

Approach: An Energy Audit requires a through and detailed study of a system, through the performance of various tests and measurements.

WSD 5231, Module 1

BASIC KNOWLEDGE for ENERGY AUDIT

Concept of

- Electrical Capacity (kW)
- Pump Efficiency
- Principle of measurement
- Evaluation for Pump station

ELECTRICITY to WATER

Levels of Assessment

- Level I Assessment Preliminary Energy Use Analysis & Walk Through Analysis; simple assessment based on available documents and information, physical inspection, and staff interviews to create a baseline and identify obvious energy efficiency measures which are easy to implement
- Level II Assessment Energy Survey and Analysis; review of data, existing and newly gathered, to identify all energy saving measures and identify high potential measures for further investigation
- Lovel III Assessment Detailed Analysis of Capital Intensive Measures; also known as Investment Grade Audit used to give a detailed assessment of costs and benefits derived from capital intensive energy conservation measures

WSD 5231, Module 1

ELECTRICITY to WATER

Steps in an Energy Audit

- Collect and analyze historical energy usage.
- Study pumping systems and their operational characteristics.
- Identify potential modifications that will reduce the energy usage and/or cost.
- Perform an engineering and economic analysis of potential modifications.
- Prepare a rank-ordered list of appropriate modifications.
- Prepare a report to document the analysis process and results.

Levels of Assessment

- Level I Assessment Preliminary Energy Use Analysis & Walk Through Analysis; simple assessment based on available documents and information, physical inspection, and staff interviews to create a baseline and identify obvious energy efficiency measures which are easy to implement
- Level II Assessment Energy Survey and Analysis; review of data, existing and newly gathered, to identify all energy saving measures and identify high potential measures for further investigation
- Level III Assessment Detailed Analysis of Capital Intensive Measures; also known as Investment Grade Audit used to give a detailed assessment of costs and benefits derived from capital intensive energy conservation measures

WSD 5231, Module 1

ELECTRICITY to WATER

Level | Assessment

- Purpose for undertaking:
 - Gain a full understanding of how energy is being consumed and the associated costs
 - Report on energy use to internal or external stakeholders
 - Find energy conservation programs for immediate and future consideration
 - Identify projects for future energy reduction
 - Set targets for energy reduction

- Results:
 - Baseline of energy use
 - Forecast of future energy use based on current / historical consumption
 - Identification of no/low cost measures for energy reduction
 - List of potential projects for future investigation
 - Detailed benchmarking for accurate comparison to other lacilities and own past performance
 - Preparation for next level of assessment

Level II Assessment

- Purpose for undertaking:
 - Desire to take advantage of energy and cost savings from a wider range of projects
 - Creation of a full energy conservation program
- · Results:
 - Evaluation of all potential energy conserving operational changes and capital investments available
 - Listing of capital projects that require further investigation prior to implementation
 - Preparation for next level of assessment

WSD 5231, Module 1

ELECTRICITY to WATER

Level III Assessment

- Purpose for undertaking:
 - Desire to undertake significant capital projects to improve energy efficiency based on projects identified in previous levels of assessment
 - May include gaining access to external linancing under performance contract.
- Results:
 - Detailed information provided so that owners have a high level of confidence in decision making regarding significant capital investment
 - May include implementation of capital intensive EE measures under performance contract.

Method & Approach for Water Systems

- The audit involves carrying out various measurements and analysis of the following systems to assess losses and the potential for energy efficiency improvements:
 - Pumps & Pumping Systems
 - Electrical Systems
 - Electric Drives

WSD 5231, Module 1

ELECTRICITY to WATER

Measurement

- Data collection
 - Specifications of pumps and motors
 - Diagram of water distribution air network
 - Water pressure required for the system
 - Number of pumps in operation
 - Design/specified water temperature required
- · Water flow rate of pumps at various operating conditions
 - Individual
 - Parallel
- · Water flow velocity in pipe lines
- Suction & discharge pressure of pump

Data Analysis and Energy Conservation Measures (ECMs)

- · Full written description of each ECM to include:
 - Existing conditions and data collection approach (snapshot, short-term, or long-term measurement of data)
 - Recommendations. Include discussion of facility operations and maintenance procedures that will be affected by ECM installation and implementation.
- Baseline energy use:
 - Summary of all utility bills
 - Base year consumption and description of how established

WSD 5231, Module 1

ELECTRICITY to WATER

Data Analysis and Energy Conservation Measures (ECMs)

- Savings Calculations:
 - Base year energy use and cost
 - Post-retrofit energy use and cost
 - Savings estimates including analysis methodology, supporting calculations, and assumptions used
 - Operations and maintenance savings
 - If manual calculations are employed, formulas, assumptions, and key data shall be stated.

Data Analysis and Energy Conservation Measures (ECMs)

- Cost Estimate:
 - Engineering/design costs
 - Contractor/vendor estimates for labor, materials, equipment; etc
 - Construction management fees
 - Commissioning costs
 - Other costs/fees

WSD 5231, Module 1

ELECTRICITY to WATER

Energy Audit Report Format

- Executive Summary
- Background
- Energy Scenario
- Inventories
- Baseline Parameters & Adjustments
- System Mapping Details
- List of Potential Energy Saving Projects
- Detailed Financial Analysis (Payback, NPV, IRR)
- Details of Approved Projects
- M&V Plan
- Risk Assessments & Mitigation Plan
- Annexure

Responsibility Matrix

S.No.	Designation	Responsibility
1.	Director	Approve and Present
2.	Executive Engineer	Verify and Prepare Recommendations for Improvement
3.	Sub-Divisional Officer	Supervise Energy Audit
4.	Sub-Engineer / Supervisor	Perform Energy Audit

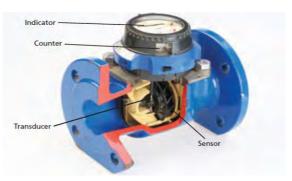
WSD 5231, Module 1

Equipment Required for Energy Audit

- Power analyser
- Ultrasonic Flowmeter
- Pressure Gauge
- Water level meter
- Tachometer
- Thermometer
- Vibration meter

Power Analyzer:

 Values of Voltages, Currents, Power Factor and Motor Input Power (P_{mi}) is collected using power analyzer.

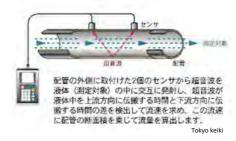

WSD 5231, Module 1

BASIC KNOWLEDGE for ENERGY AUDIT

- ✓ Turbine Meters
- ✓Ultra Sonic Flow Meters
- ✓Electromagnetic Meters

Turbine meter

- ✓ These meters have a rotating element that turns with the flow of water.
- ✓ Volume of water is measured by the number of revolutions by the rotor.

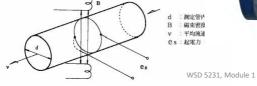


WSD 5231, Module 1

Ultrasonic meters

- ✓ Sending sound waves from 2 sensor (transmitter) diagonally across the flow of water in the pipe.
- ✓ The time difference between
 2 direction to be converted
 to flow velocity.

(there is Doppler shift method, too)



Ultrasonic flowmeter (time transit)

Electromagnetic meter

✓Induce magnetic field in the bore by coils outside of the flow channel. When water flows the magnetic field, electromotive force (Voltage) is induced.

✓ The electromotive force will be converted proportionally to velocity and hence the flow rate.

Electromagnetic flowmeter

BASIC KNOWLEDGE for ENERGY AUDIT

	Ultra Sonic	Electromagnetic	Turbine
Appearance			
Accuracy	lower than Electromagnetic in small flow rate	High	lower than others in small flow rate
Installation condition (D:pipe dia)	Before meter:10D After meter:5D	Before meter:5D After meter:2D	Before meter:10D After meter:5D
Pressure loss	No pressure loss	Almost no pressure loss	Pressure loss due to around Impeller
Telecommunications	Available	Available	Available
Initial Cost	Expensive	Expensive	Inexpensive
Others	Proper installation skill is required	Susceptible to electrical noise	There is lifetime of rotation parts

BASIC KNOWLEDGE for ENERGY AUDIT

Principles of Measurement

Pressure measurement

WSD 5231, Module 1

Ultrasonic Flow meter:

• Measure the flow (Q) using ultrasonic flow meter. Flow is important parameter to measure the water power, discharge velocity and other required parameters.

Pressure Gauge

• Record pressure using pressure gauge. Pressure is important parameter to determine the Total Head.

WSD 5231, Module 1

Water level meter

• This equipment is used to determine the static and dynamic water level. An important parameter to calculate the Total Head.

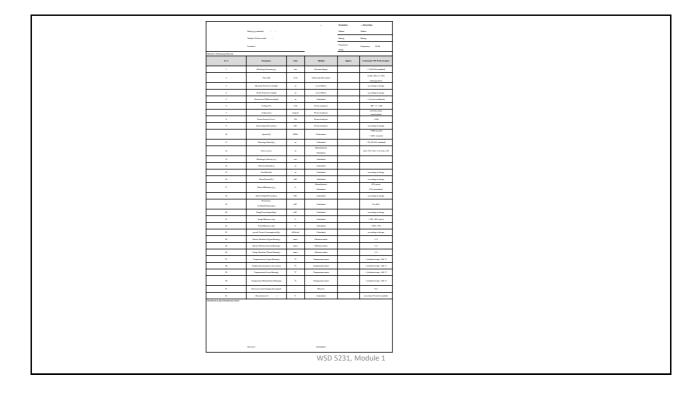
Tachometer

• Tachometer determines the rotation of the motor, shaft and pump

WSD 5231, Module 1

Digital Thermometer

• This device used to get temperature of critical parts of motor and pump.


Vibration meter

• Vibration meter determines the vibration of pump and motor at critical parts. This is important parameters to ensure a good installation.

WSD 5231, Module 1

Sr. #	Parameter	Unit	lst	2nd	3ed	4th
- 1	Date	yyy/mm/dd				
2	Time	like men				
3	Location/ Tag	-				
4	Pump (Maker/ Rating/ Type)	-				
5	Motor (Maker/ Rating)	1				
6	Discharge Pressure (p _d)	bur				
7	Discharge Pipe Dia (d)	mm				
8	Flow(Q)	m ³ /b				
9	Dynamic Water Level (hpl)	н				
10	Static Water Level (hpl)	m				
- 11	Voltage (V) RY-YB-BR	Volt				
12	Ampere (A) R-Y-B	Ampere				
13	Power Factor (Cox ø)	-				
14	Motor leput Power (P _m)	kW				
15	Speed (N)	RPM				
16	Motor Vibration (Upper Bearing)	mm/s				
17	Motor Vibration (Lower Bearing)	mm/s				
18	Pump Vibration (Throat Bearing)	mm/s				
19	Temperature (at Upper Bearing)	°C				
20	Temperature (at motor coil; center)	°c				
21	Temperature (Lower Bearing)	°c				
22	Temperature (Pump Thrust Bearing)	°c				
23	Excessive water leakage from gland	-	yes / no	yes / no	yes / no	yes / no
FINDINGS	& RECOMMENDATIONS					
	Serveyer:		Attendance:			

Development of Energy Management Plan

- Introduction
- Installed Capacity
- Calculations
- Analyzing and Implementing Findings
- Electric Utility Billing Structures
- Energy Benchmarking
- Energy Efficiency improvement Measures
- Implementing Findings

Energy Assessment Tool

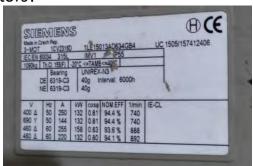
WSD 5231, Module 1

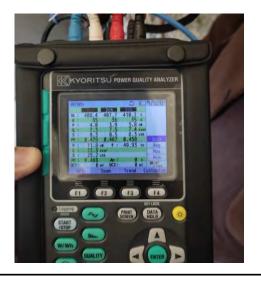
Contact:

Engr. Jawad Shahid

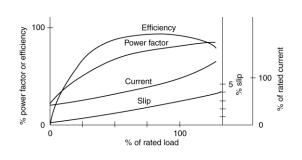
Advanced Energy Audit

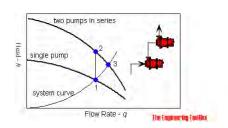
By
Jawad Shahid
(Vice Principal)

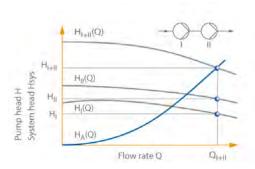

Basic O&M of Pumping Machinery


- Energy Audit:
- Purpose: In order to evaluate the pumping efficiency and monitor changes over time

Causes of Low Power Factor For Induction Motor

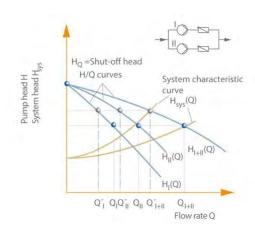

 What Could be the reason for low Power Factor in 3 Phase Induction Motors?


Causes of Low Power Factor For Induction Motor

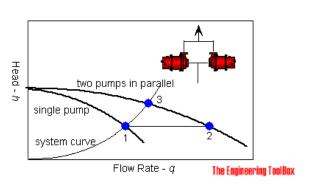

- For Induction motors, the pf is usually extremely low (0.2 - 0.3) at light loading conditions and it is 0.8 to 0.9 at full load.
- In some cases, due to improper wiring or electrical accidents, a condition known as 3-φ power imbalance occurs. This results in low power factor too.

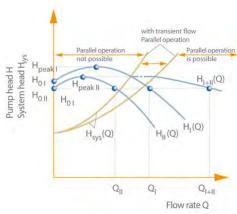
Series Pump operation

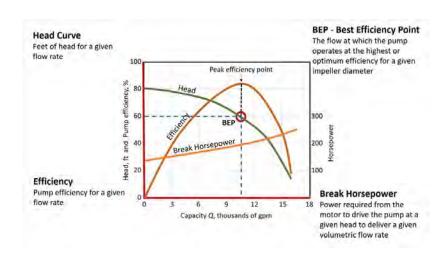
 When two centrifugal pumps (I and II) are operating in series, the head (HI+II) is the sum of the individual pumps' heads and the flow rate remains the same.



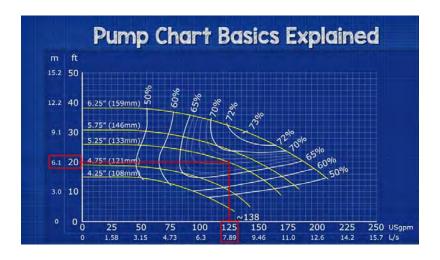
Series operation: Series operation of two centrifugal pumps I and II with any type of characteristic curves


Parallel Pump Operation


 If two centrifugal pumps I and II are operated in parallel, the flow rate QI+II is the sum of the flow rates of the individual pumps at the same head, i.e.:


Parallel operation: Two centrifugal pumps I and II with stable characteristic curves

Parallel Pump Operation



Q-H Curve

Pump Efficiency

Flow and current relationship

- With Increase in flow, pressure will decrease and power consumption will increase
- With Decrease in flow, pressure will increase and power consumption decreases.

Effect of over sizing and under sizing the motor on power consumption

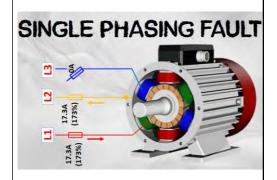
- Undersize:
 - Overload
 - Lower Flow
 - Higher Power Consumption
- Oversize:
 - Underutilization
 - V. Low Power Factor
 - · Energy Wastage

Selecting the wrong size motor

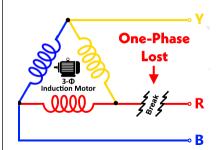
- What are the power demands of the pump?
- What will typical operation look like for this pump?
- Will the pump be operated on a variable frequency drive (VFD)?

Facility Failure Analysis

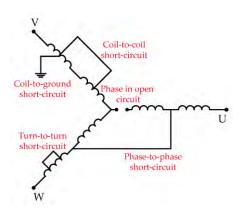
By Jawad Shahid


1. What happens if shaft of a pump breaks during operation for a vertical turbine pump for Disposal Station

Explanation:


2. What happens if one phase of power supply fails during operation of Pump and Motor, explain in a step-wise approach.

Condition 1: With protective relays installed and calibrated.


2. What happens if one phase of power supply fails during operation of Pump and Motor, explain in a step-wise approach.

Condition 2: All protective relays bypassed.

3. What happens if during operation of a tube-well two windings of a motor short circuit (Motor Burnout).

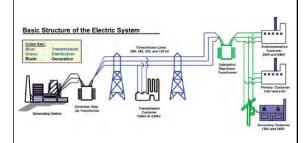
Condition 1: Protective relays installed and calibrated.

3. What happens if during operation of a tube-well two windings of a motor short circuit (Motor Burnout).

Condition 2: Protective relays bypassed

4. Shaft of a vertical turbine tube-well breaks during operation.

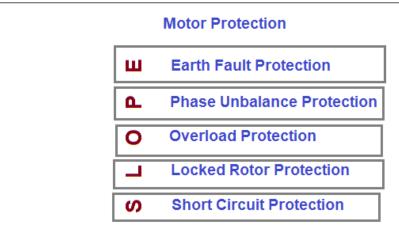
Condition 1: With all relays installed and calibrated.


4. Shaft of a vertical turbine tube-well breaks during operation.

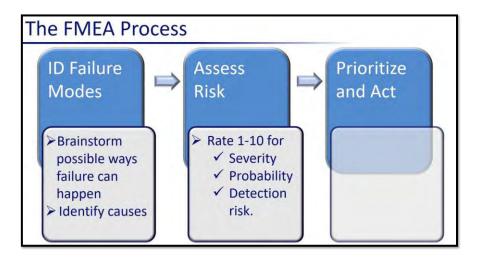
Explanation:

5. During operation of Pump and Motor two phases are interchanged from distribution end (DISCO)

Condition 1: With use of protective relays.



5. During operation of Pump and Motor two phases are interchanged from distribution end (DISCO)

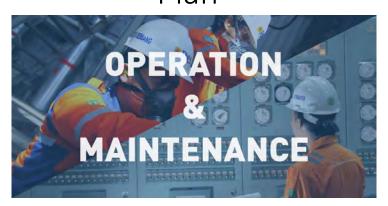

Condition 2: With all protective relays by-passed.

Basics of Motor Protection

Failure Mode and Effects Analysis (FEMA)

Failure Mode and Effects Analysis (FEMA)

			CONSEQUE	NCES			- 1	ROBABILIT	4	
						1	2	3	4	- 5
Severity	Classification	Safety	Equipment Maintenance Cost	Production	Environmental	< 1% Remote	1% - 5% Extremely Unlikely	5% - 25% Very Unlikely	25% - 50% Unlikely	> 50% Likely
5	Disastrous	Multiple fatalities, > 5 Large effects on large external inhabited zones- several fatalities	Extensive damage >\$8M	Major loss, not recoverable. More than 3 days lost production	Major pollution with sustained environmental consequences external to the site	5	10	16	20	25
4	Catastrophic	Lethial effect on several persons (several fatalities). Lethal external effect - one fatality, several physical injuries	Major damage \$6M-\$8M	Major loss. Up to 50% not recoverable Up to 3 days lost production.	Major poliution external to the site. Evacuation of persons	Á	8	12	16	-20
3	Major	Lethal effect on one person und/or several permanent invalidates Permanent external effects	Localized damage \$2M - \$6M	Medium loss not wholly recoverable through normal production < 24 hours lost production	Moderate pollution, within site limits. Product liability	3	6	9	12	15
2	Serious	Permanent injury, lost time accident. Non-permanent external effects	Minor damage \$200K - \$2M	Minor loss, recoverable through normal production 2 to 8 hours lost production	Spill or release of pollutant requiring a declaration to authorities but without environmental consequences.	2	4	6	8	10
i	Moderate	No permanent injury, recordable with no lost time/medical treatment. No external effect	Slight damage < \$200K	Little to no effect. Production easily recovered. < 2 hour lost production.	Minor spill or release of pollutant, not requiring a declaration	ī	2	3	4	5

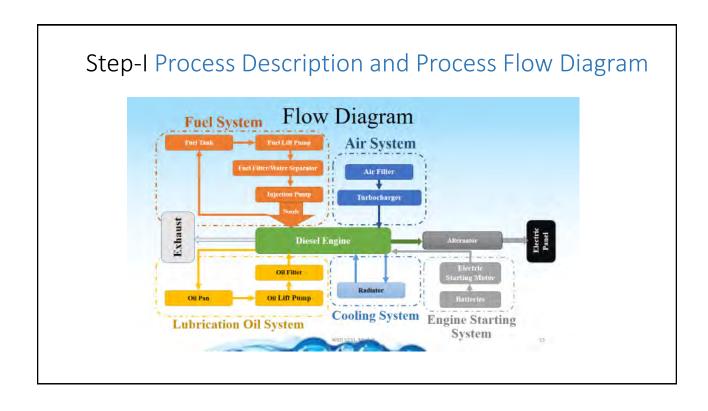

Risk Assessment Matrix

(i) Risk Matrix						
Α	В	С	D	Е	F	
Initial			Initial Severity			•
	1 - Insignificant	2 - Minor	3 - Significant	4 - Serious	5 - Major	
5 - High			1	2		
4 - Moderate			3	5		
3 - Low			1	2		
2 - Very Low						
1 - Remote						¥
4					+	

Risk Assessment Matrix (Example)

Initial Occurrence					
	1 Insignificant	2 Minor	3 Significant	4 Serious	5 Major
5 High					
4 Moderate			Chlorine dosing pump failure		Burnout of MCCB for MCU
3 Low					
2 Very Low		Power Factor Capacitor Failure	Chlorine dosing pump failure		
1 Remote					

Operations and Maintenance Plan



Operations and Maintenance Plan

- Operations and Maintenance are the decisions and actions regarding the control and upkeep of property and equipment
 - Actions focused on scheduling, procedures, and work/systems control and optimization
 - ii. Performance of routine, preventive, predictive, scheduled and unscheduled actions aimed at preventing equipment failure

Maintenance Spectrum NO NO EMERGENCY ROUTINE PREVENTIVE PREDICTIVE MAINTENANCE MAINTENANCE MAINTENANCE LOW OVERALL EFFICIENCY HIGH

Step-II Equipment Description

• In Case of Tube well

Step-III Operating Procedure

- Submersible Pump Startup & Operation
 - Check water level in bore hole.
 - Check valves (open).
 - Check voltage range for 3-Phase motor.
 - Start up the motor
 - Check that ammeter reading is less than rated motor current.
 - After startup check pressure for operating point.
 - Check for undue vibration and noise.
 - Voltage should be checked every hour.

Step-III Operating Procedure

• Maintaining procedure log

S.No.	Procedure Description	Procedure No.
1.	Operation of Tubewell	WASA/LAH/44
2.	Gland Packing Replacement	KSB/WASA/LAH/77
3.	MCU Thermal and Insulation Test	PEMPAK/WASA/LHR/22
4.	Energy Audit For Tubewell 4 cfs, JICA	WASA/ELEC/LAH/11

Step-IV Preventative Maintenance Program

S.No.	Equipment	Maintenance	Frequency
1.	Fan Belt of Generator	Visual Inspection	Monthly
2.	Pump Motor Temperature Check	Motor Thermal Check	Quarterly
3.			

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

S.No.	Procedure Description	Procedure Title
1.	Evaluation of Motor	Insulation Test for winding
		Thermal Test for overheating
		RPM Test
		Vibration Test
2.	Evaluation of Pump	Flow / Head
		Leakage
		Unusual noise/ vibration

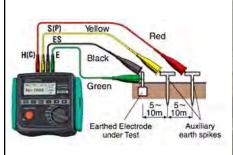
Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

S.No.	Procedure Description	Procedure Title
3.	Evaluation of Motor Control Unit	Insulation Test for Wiring and components
		Earth Resistance Test
		Thermal Test for overheating
		Lamp test for warning signs
4.	Evaluation of Valves	Check operation of Air Release Valve
		Check operation of Non return Valve
		Check Operation of Gate Valve
5.	Tubewell Chamber Evaluation	Visual Inspection

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell



Overloaded contacts show different temperature profiles indicating one contact seeing much greater load, a potentially unsafe situation.

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

Earth Resistance Test

Vibro-meter

Contact and Non Contact type Tachometer

Step-IV Evaluation of Facility

• Evaluation of Pumping Facility, Tubewell

Ultrasonic Flow meter

Step-IV Report Writing

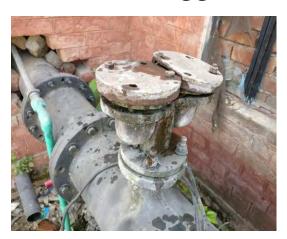
Annual Maintenance Plan

	Daily	and Perio	odic Mair	ntenance	Sheet						
	Service Type L		Last Activity	Year Month							
Sr. No.	. Activities	Daily	Weekly	Monthly	6 Months	Date	1	-	-	4	5
1	Visual Inspection						T				Ī
2	Check Coolant Level										Ī
3	Check Oil Level										Ī
4	Check Fuel Level	•									
5	Check Charge Air Piping										
6	Check and Clean Air Cleaner						П				Ī
7	Check Battery Charger						П				
8	Drain Fuel Filter										
9	Drain Water From Fuel Tank										
10	Check Coolant Concentration										
11	Check Drive Belt Tension										
12	Drain Exhaust Condensate			•							
13	Check Starting Batteries										
14	Change Oil and Filter										
15	Change Coolant Filter			10000			Г				
16	Clean Crankcase Breather										
17	Change Air Cleaner Element						0				
18	Check Radiator Hoses										
19	Change Fuel Filters										
20	Clean Cooling System										

Annual Maintenance plan

- Step-I Process Description and Process Flow Diagram
- Step-II Equipment Description
- Step-III Operating Procedure
- Step-IV Preventative Maintenance Program (Evaluation of Facility)
- Maintenance plan

Contact:


Engr. Jawad Shahid

WASA field Issues

Suggested Improvement

Suggested Improvement

Suggested Improvements

Suggested Improvements

Suggested Improvements

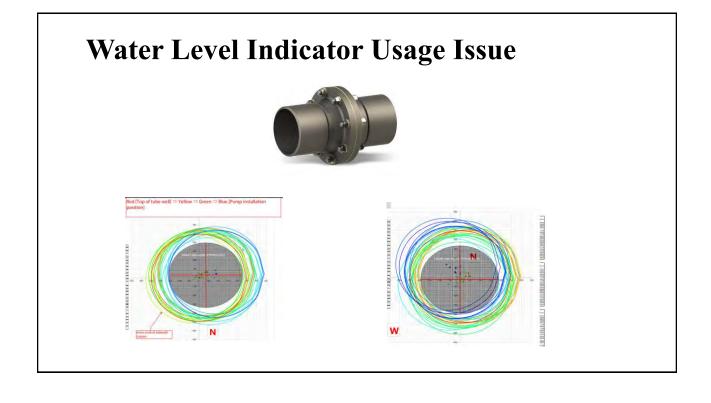
Current Conditions

Suggested Improvement

Suggested Improvement

WASA FIELD ISSUES

Water Level Indicator Usage Issue



Water Level Indicator Usage Issue

Valves maintenance issue in WASAs

• Cracked gasket

Valves maintenance issue in WASAs

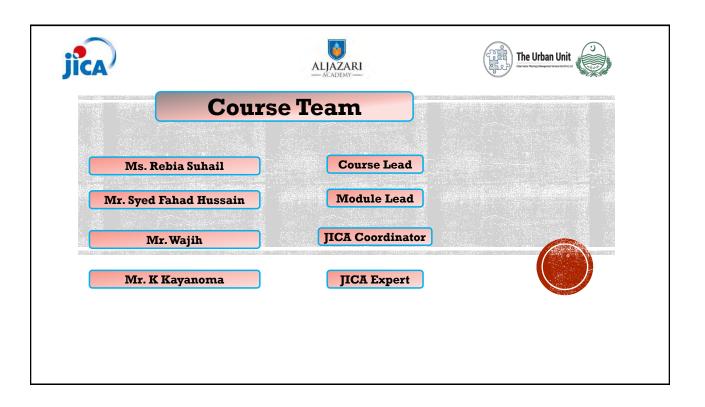
• Absence of balls in air release valves

Lubricating box issue in WASAs

Lubricating box issue in WASAs

Thank you

Engr. Jawad Shahid


添付資料 5.1.52	研修コース	「漏水管理・i	配管・管更新記	計画」の教材	(2023 年春季研	千修)

In the name of Allah, the most Gracious and ever Merciful

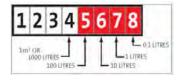
WATER METER

- 1 Purpose
- 2 Knowledge acquisition
- 2.1 Meter reading
- 2.2 Type of meter
- 3 Metrology, Meter classes and other requirements
- 3.1 Definition of meter accuracy
- 3.2 Meter error curve
- 4 Meter maintenance

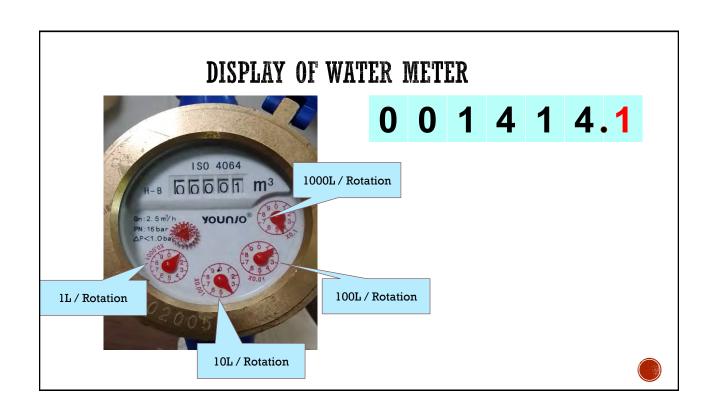
PURPOSE

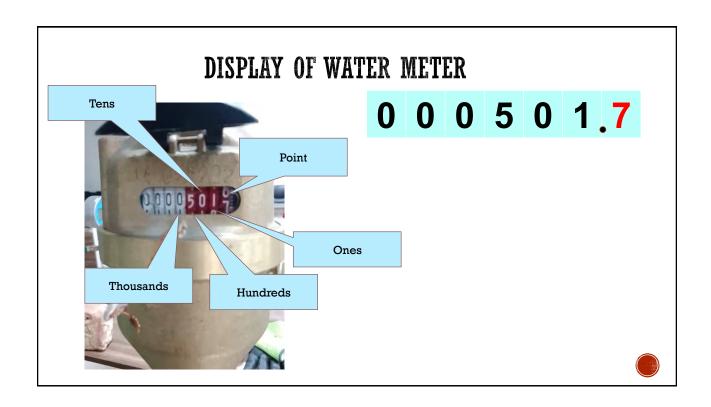
Purpose of training

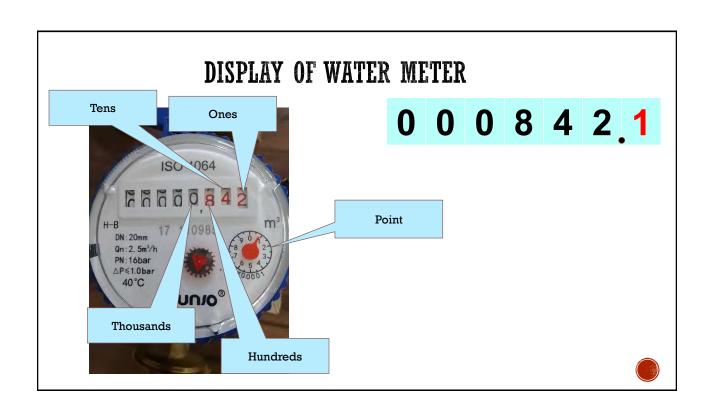
Understand meter reading, Type of meters, meter accuracy & class, maintenance.

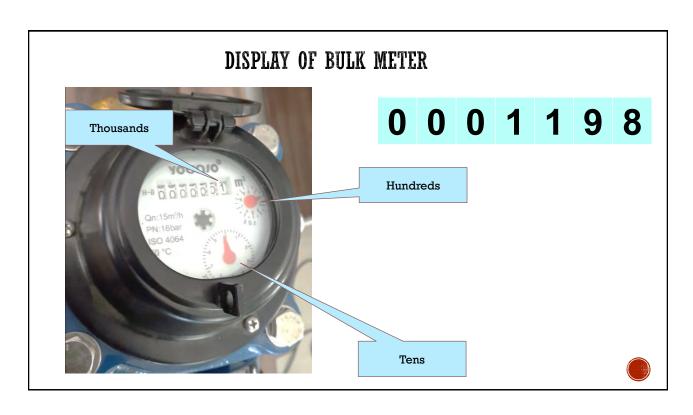

METER READING

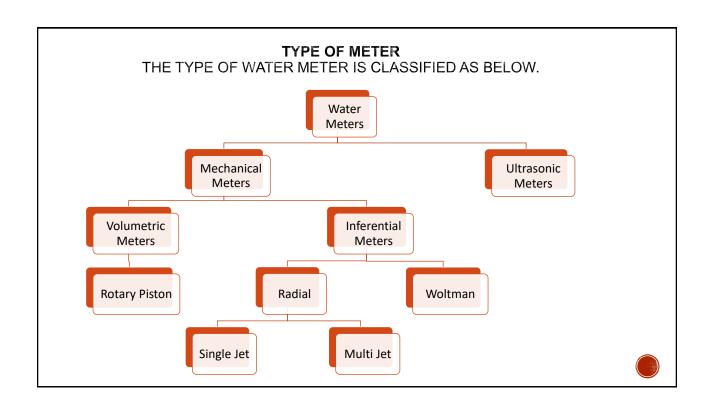
The water meter shows several digits as shown in the figure. This digit means 1234 m3 and 567.8 liter, or 1234.5678 m3. When the counter of 0.1 liters is moving between two numbers, it is counted as lower number.


m3 is shown in the upper black digits and liter is shown in the lower red pointer. When the pointer is between two numbers, it is counted as lower number.


When the digit of counter reached maximum (e.g. 9999.999), it back to all zero (e.g. 0000.000), and sometimes it makes mistakes of calculation of consumption. As shown below, it is necessary to calculate on the assumption that it has one digit in the left side which is not shown on the display.


JIS: Japanese Industrial Standards (JIS B 8570-1:2013)





METER READING

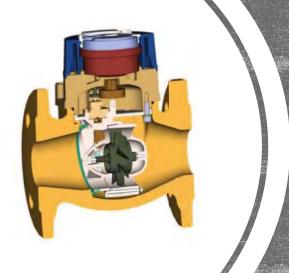
	1	2	Difference (2-1)	3	4	Difference (4-3)
Bulk Meter						
R M 1						
R M 2						
R M 3						
R M 4						
Total RM						
L M 1						
L M 2						
L M 3						
L M 4						
Total LM						

WOLTMAN METERS

<Mechanism>

The Woltman meters are an inferential meter that uses an impeller with helical vanes. As water flows over the helical vanes, it rotates the impeller. Then, the rotation is transmitted to the dial via reduction gearing.

There are two main types of Woltmann meters called Horizontal (WP) and Vertical (WS) Woltmann meters. Horizontal Woltmann meters have their inlets and outlets directly along the pipeline. The axle of the helical vane is parallel to the flow.


Water flows directly through the meter with small loss caused by the meter body.

The flow direction is changed 90 degrees after entering a vertical Woltmann meter, pass through the impeller and then turn back to the original direction as shown in the cross section of left Figure.

Woltmann meters have dry and sealed dials.

- > Advantages: No power required, Highly accurate
- ➤ Disadvantages: If a foreign substance gets in, accuracy falls, or the impeller will be damaged. Piping friction loss occurs. Not applicable to large diameter pipes.

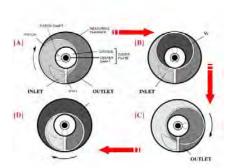
APPLICATION AND INSTALLATION

Wolfmann meters are widely used throughout the world. They are mainly used to measure the consumption volume of bulk users, or to determine the flow pattern in water distribution systems. Horizontal Wolfmann meters can be installed in all directions without affecting the accuracy. The counter, however, should never be placed upside down. Vertical Wolfmann meters must be installed horizontally with the display facing upwards.

- ➤ Applicable pipe diameter: 40mm 400mm
- Suitable installation location: Place where the power is out and there is no cover to protect rainwater

ROTARY PISTON METERS

Rotary piston meters are popular for their combination of accuracy, long life and moderate cost so they are widely used. Rotary piston meters come in many different shapes and sizes as shown. Wet or dry dials are used. Sand or other suspended solids easily get stuck between the piston and chamber wall. Thus, it is important to be installed in the system with very good water quality and to install built-in strainer.



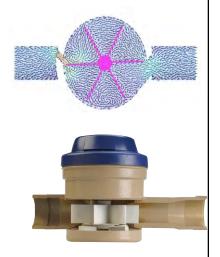
<MECHANISM>

The piston and cylinder are alternately filled and emptied by the fluid passing through the meter. A slot in the sidewall of the piston is removed so that a partition extending inward from the bore of the working chamber can be inserted. This has the effect of restricting the movement of the piston to a sliding motion along the partition. The rotary movement of the piston is transmitted via a permanent-magnet coupling from the drive shaft to a mechanical register.

- 1. Easy to read register
- 2. "O" ring seal
- 3. Stainer
- 4. Non-Return valve
- 5. Piston and cylinder

Application and Installation

Rotary piston meters are commonly used most domestic applications up to diameter 25mm. They are not sensitive to the wide flow velocity profile.


Rotary piston meters can be installed in **any position** with stable accuracy and placed close to bend or pump.

- ➤ Applicable pipe diameter: 13mm 40mm
- > Suitable installation location: Place where the power is out and there is no cover to protect rainwater

SINGLE JET METERS

- Single-jet meters are a low-cost option because there's a direct impact to the impeller by the water flow
- The water is channeled through a single jet over a impeller placed inside the body of the meter. Impeller circulating the flowrate.
- Resistant to suspended solids.
- Small and can be installed in tight spaces.
- Most single jet meters have to be installed perfectly horizontally and upright to ensure accurate measurements

MULTIPLE JET METERS

<Mechanism>

The multi jet meters are an inferential water meter. Their operation is similar to that of single jet meter, except that they use several jets to drive the impeller at multiple points.

This means that the forces on the impeller are better balanced than in single jet meters, which reduces wear on the moving parts and provides greater durability. A cutaway view of a multi jet meter is shown in the left photo.

Multi jet meters normally use an internal bypass with a regulating screw to adjust the flow passing through the impeller. This allows the manufacturer to adjust the meter's error curve for achieving the best accuracy before sealing it for the prevention of meter tampering. A strainer is installed on the inlet side, which can be removed for cleaning.

- > Advantages: No power required, Accurate at low flow rate
- ➤ Disadvantages: If a foreign substance gets in, accuracy falls, or the impeller will be damaged. Piping friction loss occurs. Not applicable to large diameter pipes.

COMPARISON OF WATER METERS

	Single jet (dry)	Multi jet (wet)	Rotary piston (wet)	
Appearance	GRANTY Y			
Measuring method	Velocity	Velocity	Positive displacement	
Structure	Simple structure	Complicated than Single jet	Complicated than others	
Cost	Inexpensive	Inexpensive	More expensive than others	
Others	Highly reliable operation	Small amount of water can be measured accurately	High accuracy than others	

METER TAMPERING

Unauthorized manipulation of the water meter for the purpose of stealing water. The offense also includes placing magnets, placing foreign objects inside the meter inverting the position of the meter, breaking water meters: all for the purpose of slowing down the meter registry eventually lessen water consumption

3.1 DEFINITION OF METER ACCURACY

The volume of water that passes through a water meter is called the actual volume, or Va. However, since no meter is 100% accurate, the meter will not register all the water passing through it but show a indicated volume (Vi), which is slightly lower or higher than the actual volume. The difference between the indicated volume and actual volume (Vi - Va) is called the meter error. When the error is expressed as a fraction (percentage) of the actual volume, it is called as the relative error.

[Relative error]: (Vi - Va) / Va x 100 (%)

Where: Vi is the indicated volume. Va is the actual volume.

3.1 DEFINITION OF METER ACCURACY

CALCULATION OF THE ERROR (%)

METER ERROR CURVE

➤ Q1 – Minimum flow rate:

The lowest flow rate at which the meter is required to give indications within the maximum permissible error tolerance (± 5% error).

➤ Q2- Transitional flow rate:

The flow rate at which the maximum permissible error of the water changes in value from \pm 5% error to \pm 2% error.

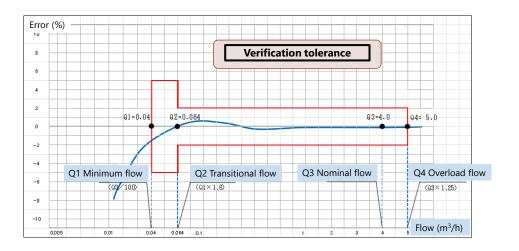
➤ Q3 – Permanent flow rate:

Permissible continuous load. Half the maximum flow rate (± 2% error).

➤ Q4 – Maximum flow rate (Overload Flow Rate):

The highest flow rate at which the meter is required to operate in a satisfactory manner for a short period without deteriorating (± 2% error)

METER ERROR CURVE


Water meters are designed for a specific flow rate, which is called as the permanent flow rate or Q3. The meter should be able to work at the permanent flow rate (or a lower flow rate) continuously for its design life without exceeding the permissible error.

Although a meter is designed for the permanent flow rate, the actual flow through a meter is not constant. Thus, water meters should not only be accurate at the permanent flow rate, but also be accurate over a wide range of flow rates.

It is useful to draw a graph of a meter's relative error. This curve is called the meter's error curve.

3.2 METER ERROR CURVE

MAINTENANCE

The proper maintenance of any metering device is essential to ensure the accuracy. Most meter manufacturers have a recommended maintenance and testing method in the operation manual.

The most common problems experienced with water meters in the field are as below:

- ➤ Suspended solids in the water cause stuck or damage of meter and meter strainer. These solids enter the system most often due to:
- Large pipe bursts.
- · Inadequate flushing of pipes after installations or repairs.
- High velocities in the network stir up sediments that was accumulated on the bottom of pipes.
- Inadequate water treatment or malfunction of treatment plants.

A strainer should be installed upstream of the meter to protect the rotor from objects such as stones and pebbles. As for maintenance, the strainer needs to be cleaned regularly.

SERVICE PIPE

SERVICE PIPE

- 1 Purpose of training
- 2 Knowledge acquisition
- 2.1 Outline of PPR pipe
- 3 Jointing method
- 3.1 Socket fusion joint
- 3.2 Thread joint
- 4 Practice

1 PURPOSE OF TRAINING

The purpose of this training is to provide a practical training on installation of PPR service pipes. Also, it is important to share the knowledge of this training with not only the staff of WASA but also contractors

2 KNOWLEDGE ACQUISITION

2.1 Outline of PPR

- > Standard of PPR pipes
- ☐ ISO 15874 standard green PPR pipe, DIN 8077-8078 hot water PPR pipe.

PPR pipes & fittings Characteristics:

- Well heart resistance ability
 The pipes can be used for a long time while the working temperature of water is 70°C
- 2. Well insulation ability
- 3. Long lifetime span

Under normal conditions of temperature and pressure PPR pipe can be over 50 years.

- Little resistance for water flow
 The inner walls of PPR pipes are smooth and limescale will not be formed there
- 5. Economical
- 6. Light weight
- 7. Well corrosion resistance

3 JOINTING METHOD

There are mainly two jointing method for PPR distribution pipes: Socket fusion joint and Thread joint.

3.1 Socket fusion joint

Socket fusion joint Details

Socket fusion joint connect PPR pipe and socket by heat of socket fusion welding machine. This method is very common way to joint PPR service pipe and the durability of this joint part is high.

3.2 Thread joint

Thread joint Details

Male thread and female thread are used for thread joint. The thread has shape of screw and male thread and female thread can be connected very easily and swiftly.

4 PRACTICE

[Preparation Item]

- Socket fusion welding machine
- Scale
- Elbow
- PPR pipe
- Pipe cutter

STEPS PROCEDURES

- 1. Check the pipe and socket whether they are damaged or not.
- 2. Measure the depth of socket and mark the insertion length on the pipe surface.
- 3. Cut the pipe at right angles by using a pipe cutter.
- 4. Always ensure that the welding machine corresponds to the required jointing size.
- 5. Required operating temperature of the welding machine is 250°C-270°C
- 6. Push the end of the pipe and socket into socket fusion welding machine up to the marked insertion length. Be careful not to turn the pipe and socket while heating.
- 7. Pull out the pipe and socket from the socket fusion welding machine after proper heating time, insert the pipe into socket evenly and swiftly and wait until they cool down.

STEPS PROCEDURES

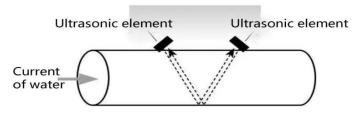
Outside Diameter	Average Heating Time*	Average Working Time (max.)	Average Cooling Time (min.)
mm	sec	sec	min
20	5	4	2
25	7	4	2
32	8	6	4
40	12	6	4
50	18	6	4
63	24	8	6
75	30	8	6
90	40	8	6
110	50	10	8

Ultrasonic Flow Water Meter

Mujtaba Bashir Project Officer (E&M)Equipment

What is ultrasonic flow meter?

Ultrasonic flow meter is an instrument that measures flow by detecting the action of a fluid flow on an ultrasonic beam (or ultrasonic pulse).



Ultrasonic flow meter working principle

- upstream and downstream sensors
- Sends and receives ultrasonic waves in both directions.
- Under no-flow conditions, the flow time is the same between the flow sensor upstream and downstream.
- As the liquid flows faster, the difference between the upstream and downstream times will increase

Structure diagram of ultrasonic flowmeter

Features of Ultrasonic Flow Meter

Advantages

- It does not block the path of liquid flow.
- The meter has a good dynamic response.
- Energy conservation
- Suitable for large mass flow measurements
- Easy to install and maintain
- Very good versatility
- No risk of leakage
- No moving parts, pressure loss

Disadvantages

- It is expensive compared to other mechanical flow meters.
- The meter's design is complex
- The audible parts of this meter are expensive.
- These meters are complex compared to other meters and therefore require professionals to maintain and repair these meters
- It cannot measure rusty cement or concrete pipes.
- It does not work once there are holes or air bubbles in the pipe
- It cannot measure cement/concrete pipes or pipes lined with this material

Ultrasonic Flow Meter Installation Guidelines

- The straight pipe should be long enough to eliminate the irregularflow-induced error.
- Make sure that the pipe is completely full of liquid.
- Make sure that the temperature on the location does not exceed the range for the transducers.
- Tightly fix the probes on the pipe.

Ultrasonic Thickness Gauge

It is used to measure the wall thickness of materials such as steel, plastic, and more.

EPANET Software

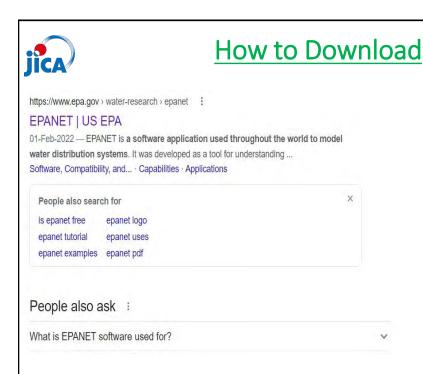
HYDRAULIC MODELING

Application for Modeling Drinking Water Distribution Systems Instructor Muhammad Uzair Safdar

Topics covered in Presentation

- Introduction to EPANET
- Pipe network elements
- Steps in using EPANET
- Simple network analysis example

Introduction To EPANET

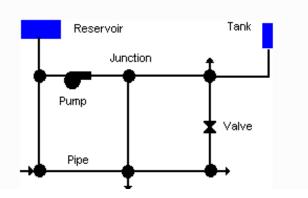

- A network analysis computer program developed by the U.S. Environmental Protection Agency that analyzes Water Distribution Network
- A tool to determine pressure, velocity and flow in different pipes in a Network
- EPANET to design and size new water infrastructure, retrofit existing aging infrastructure, optimize operations of tanks and pumps, reduce energy usage, investigate water quality problems, and prepare for emergencies. It can also be used to model contamination threats and evaluate resilience to security threats or natural disasters.

What is EPANET

- EPANET performs extended period simulation of hydraulic and water quality behavior within pressurized pipe networks.
- Pipe network consists of pipes, nodes (pipe junctions), pumps, valves, storage tanks and reservoirs.
- EPANET tracks the flow of water in each pipe, the pressure at each node, the height of water in each tank.
- EPANET use for editing network input data, running hydraulic and water quality simulations, and viewing the results in a variety of formats. These include color-coded network maps, data tables, time series graphs, and contour plots.

Download Software

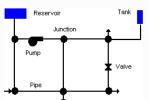
EPA's GitHub site for EPANET 2.2 open source project ☑


Software

Date	Description
07/23/2020	Self-Extracting Installation Program for EPANET 2.2 (EXE) [☑ (3.5 MB)
07/23/2020	Non-Installing Software for EPANET 2.2 (ZIP) ☑ (2.84 MB)
10/01/2018	Self-Extracting Installation Program for EPANET 2.00.12 (EXE) (exe)

EPANET uses various types of objects to model a distribution system. These objects can be accessed either directly on the network map or from the Data page of the Browser window.

Physical Components in a Water Distribution System


Links that convey water from one point in the network to another.

- Pipes
- Pumps
- Valves

Pipes

The principal hydraulic input parameters for pipes are:

- Start and end nodes
- Diameter
- Length
- Roughness coefficient (for determining headloss)

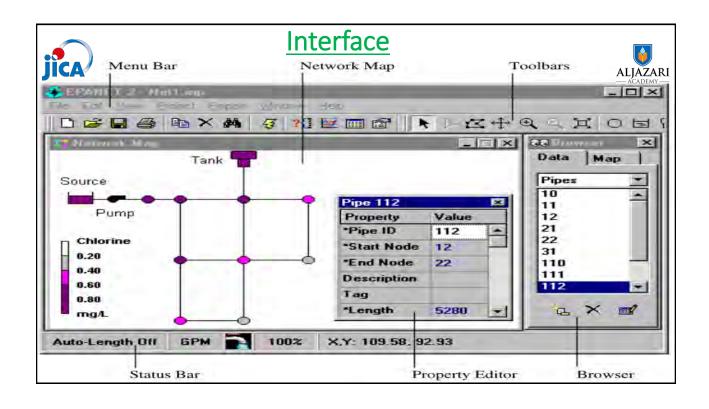
Pump

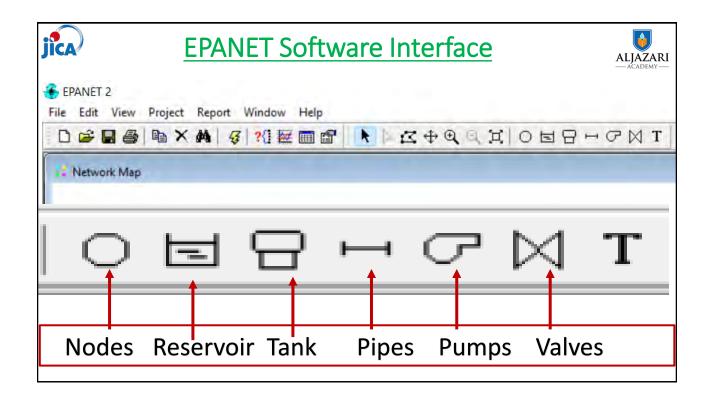
Nodes are points in the network where links join together and where water enters or leaves the network.

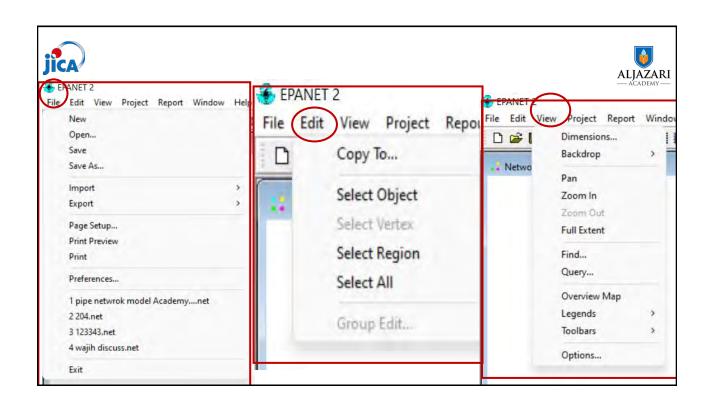
- Junctions
- Reservoirs
- Tanks

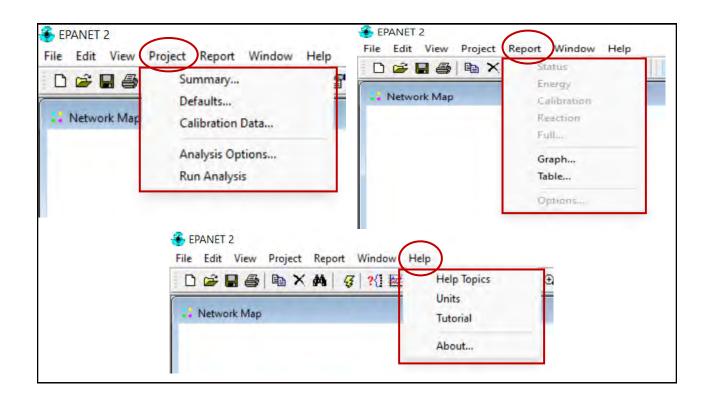
Junction

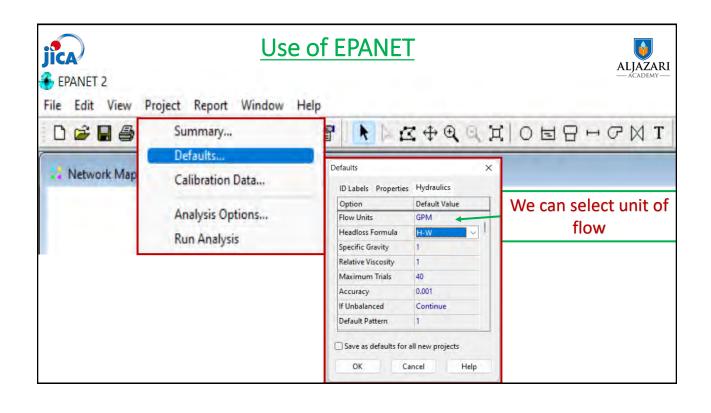
The basic input data required for junctions are

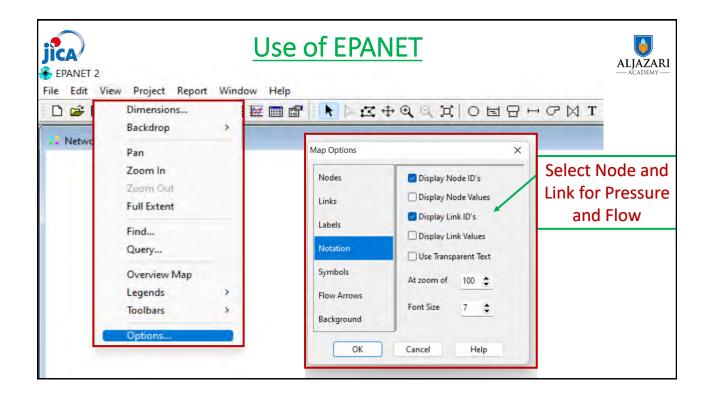

- Elevation above some reference (usually mean sea level)
- Water demand (rate of withdrawal from the network)
- Initial water quality

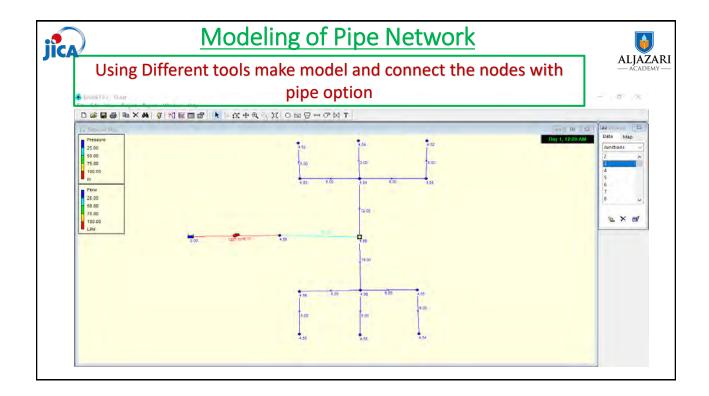


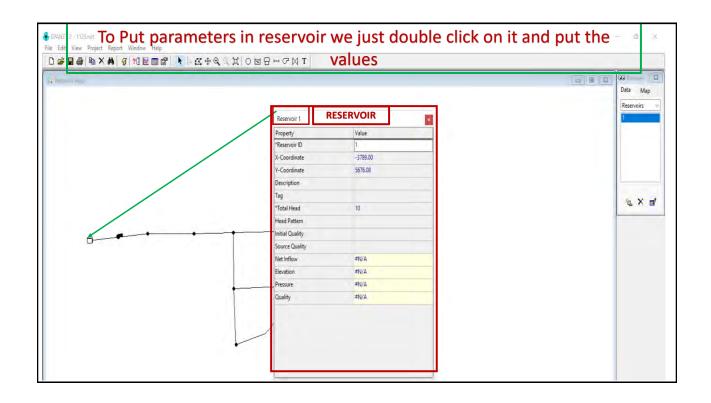


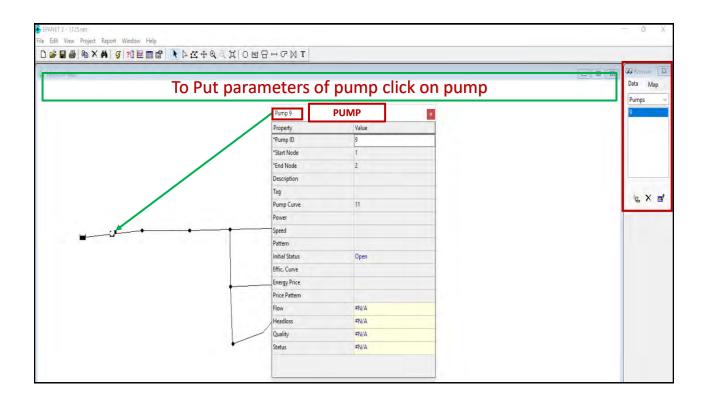

Reservoirs

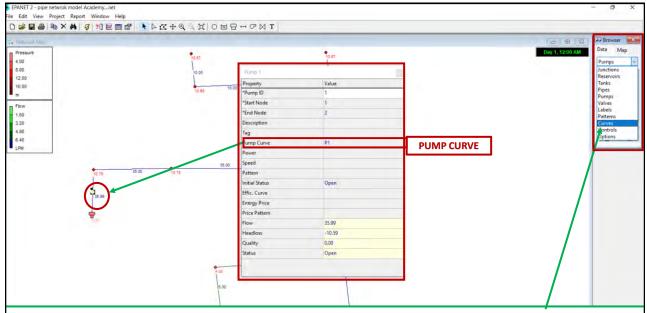

Reservoirs are nodes that represent an infinite external source or sink of water to the network. They are used to model such things as lakes, rivers, groundwater aquifers, and tie-ins to other systems. Reservoirs can also serve as water quality source points.



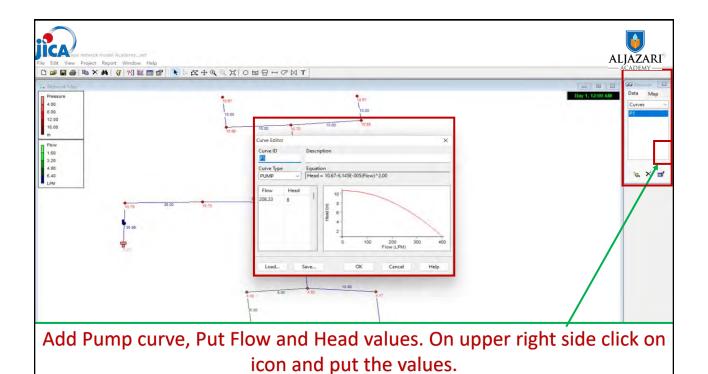


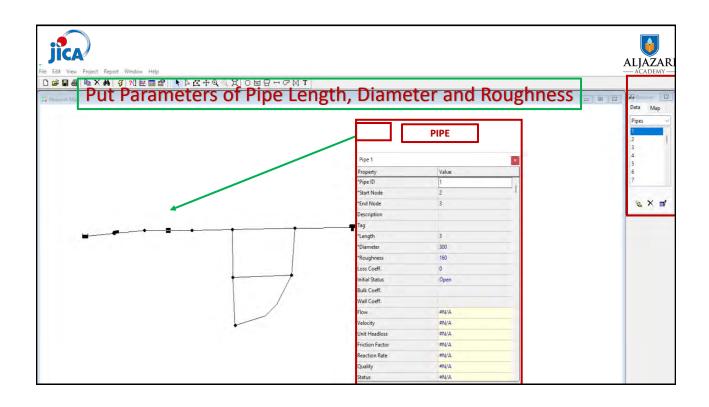

Modeling of Pipe Network

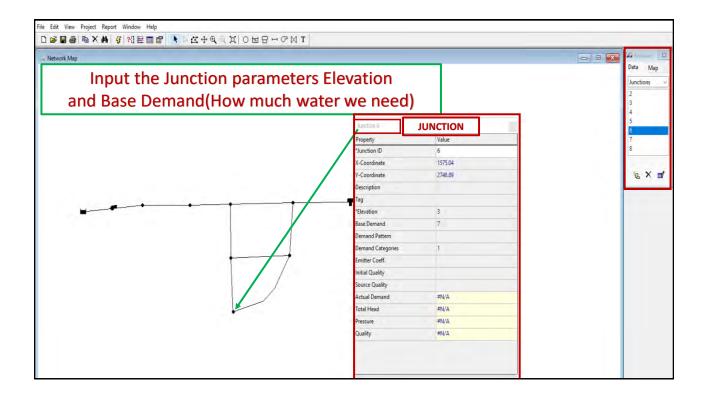


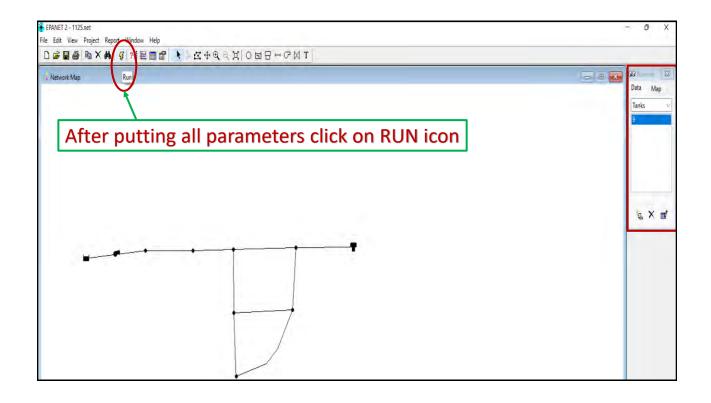

Following steps are carried out when using EPANET to model a water distribution system:

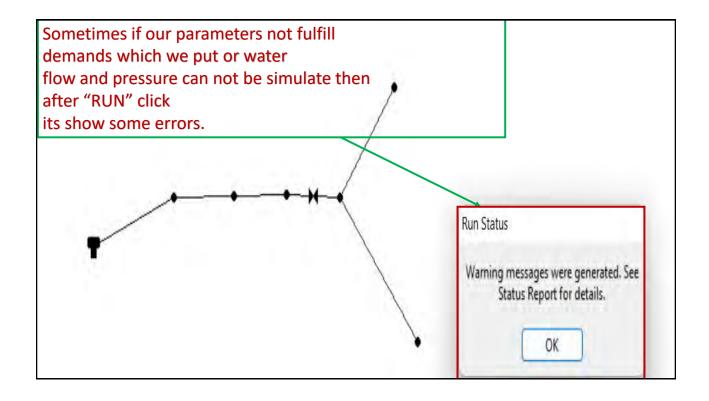
- Draw a network representation of your distribution system
- Edit the properties of the objects that make up the system
- Describe how the system is operated
- Select a set of analysis options
- Run a hydraulic/water quality analysis
- View the results of the analysis

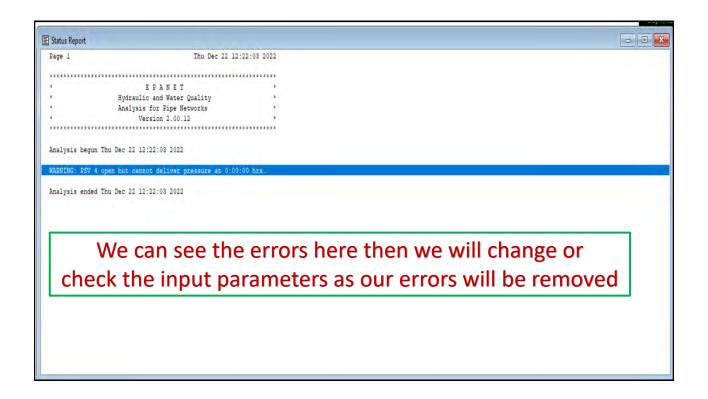


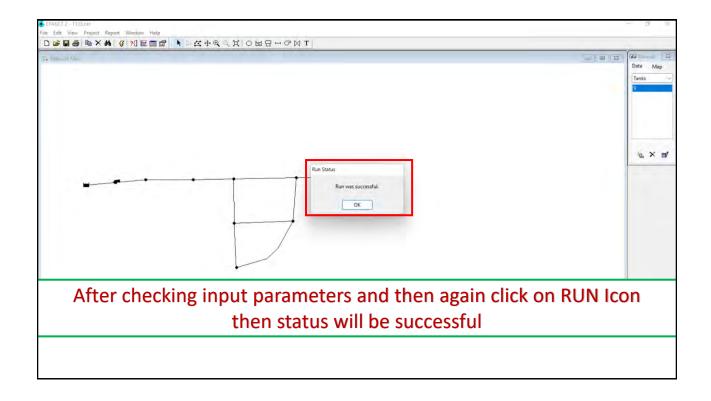


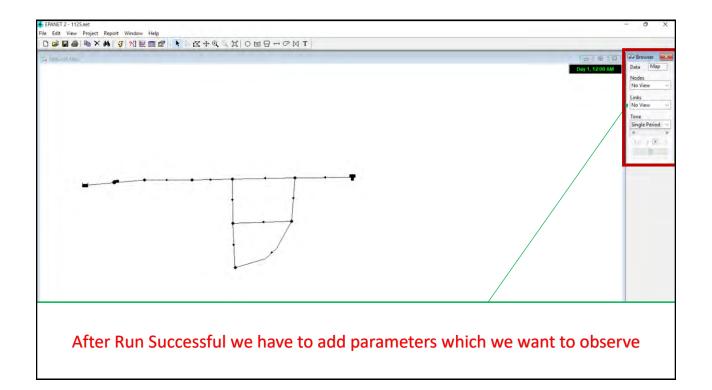


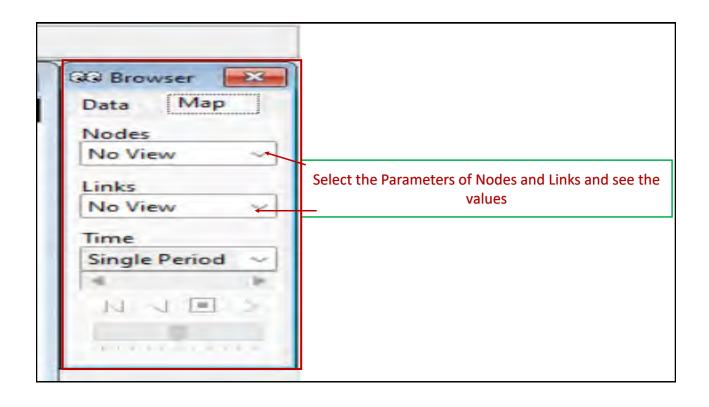


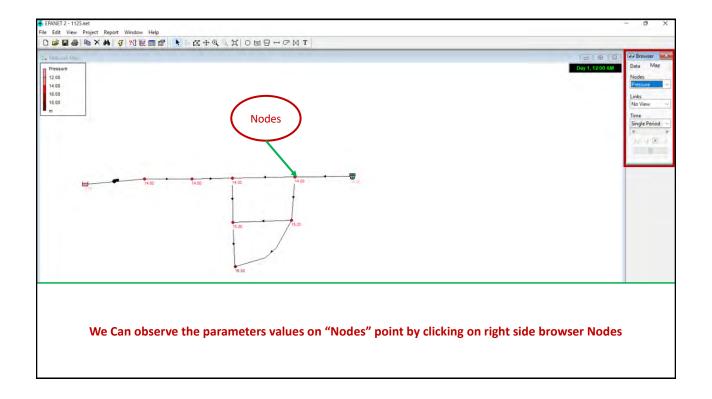

Add pump values, can add Pump curve, Power or Speed. On upper right side the different parameters we can put.

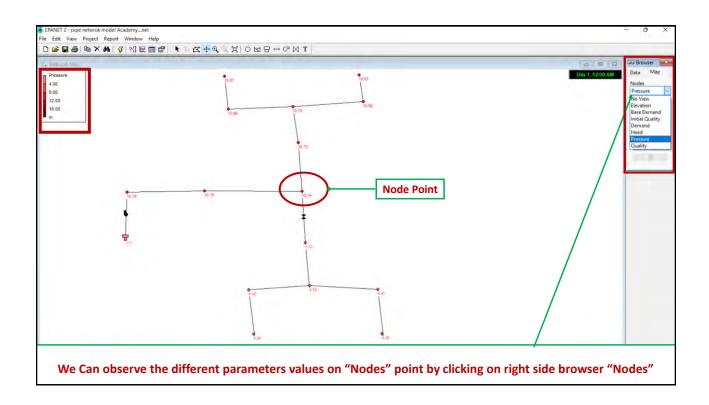


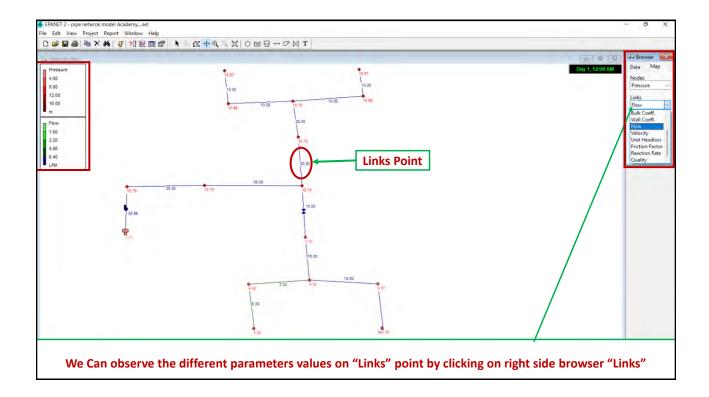


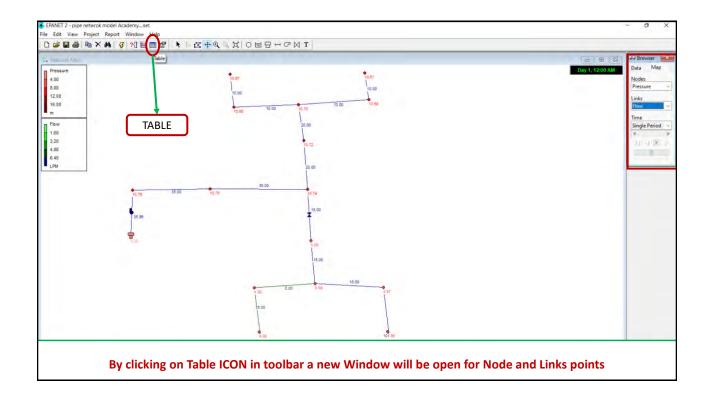


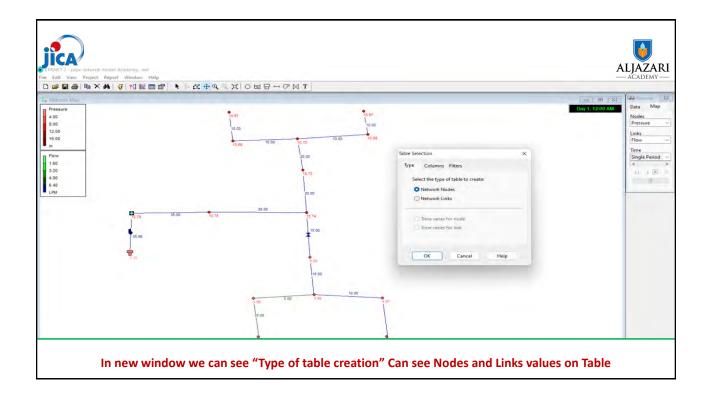


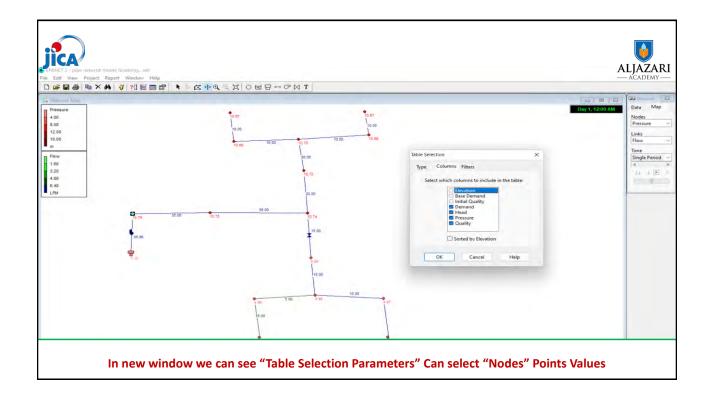


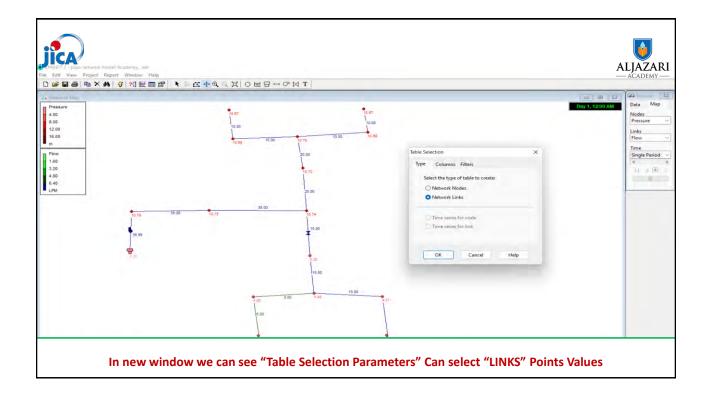


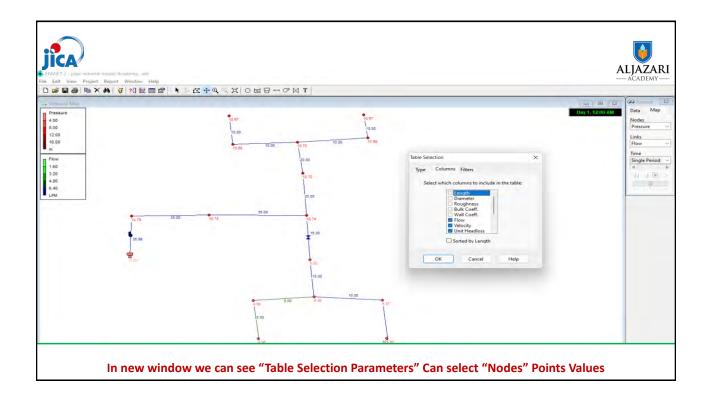


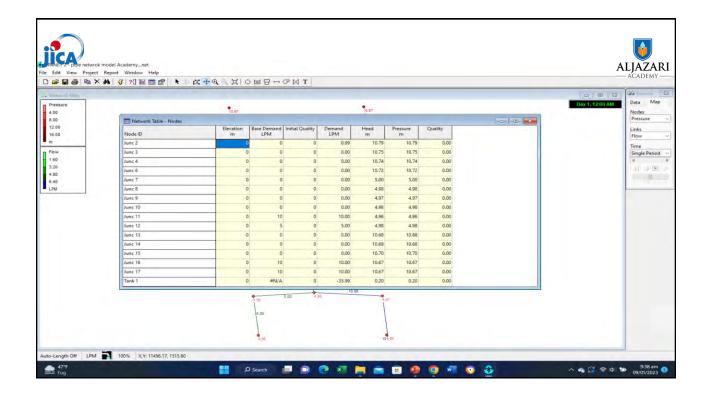


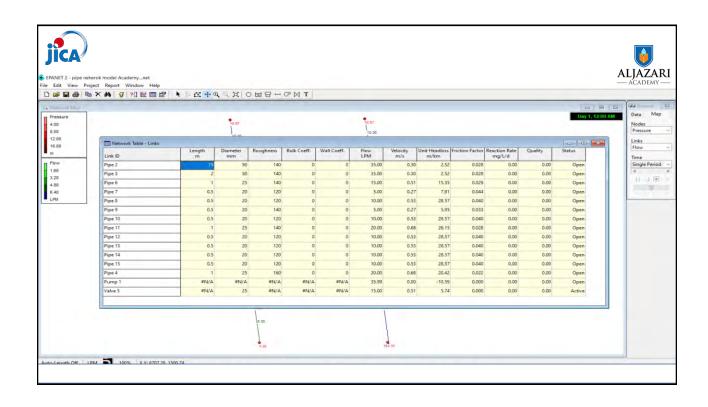





Table and Charts


• After Successful Run and put the parameters on Node and Links point we can see results on Tables.





Name: Dept: Designation:

1. HDPE Pipe

High density polyethylene (HDPE) piping systems have been used for municipal and industrial water applications. HDPE water pipes are made of high-density polyethylene, which is a thermoplastic polymer. Polyethylene has a number of significant advantages over traditional materials such as steel or ductile iron including lower weight, freedom from corrosion and the ability to coil long lengths of pipe.

a. Salient Features of HDPE Pipes

- Safe for drinking water with no toxic or chemical contamination.
- High flexibility. Can be bent as much as 25-40 times of the pipe diameters. Thus, reducing unnecessary pipe joint.
- Light weight with only 0.95 grams/cm2. It weighs only 1/5 of steel pipes of the same size.
- Rust proof and high resistance to damaged chemicals, making the product last up to 50 years.
- Super smooth internal surface, reducing the chance of pipe cloggage.

b. PE80 vs PE100 Comparison

Comparison of PE 100 and PE 80 HDPE Pipes

- Before international standards were adopted polyethylene (PE) materials were commonly named by their density - low density, medium density and high density. ISO standards were further developed to designate materials as PE80 or PE100 to easier differentiate the benefits of the materials.
- PE80 pipes are often rated SDR11 PN12 and have a minimum required strength (MRS) of 8
 MPa (Megapascal) whereas PE100 pipes are rated SDR11 PN16 and have a MRS of 10 Mpa.
- PE100 offers additional long-term strength and performance over PE80 while allowing for thinner pipe walls for the same operating pressure.

c. HDPE pipes color code guide:

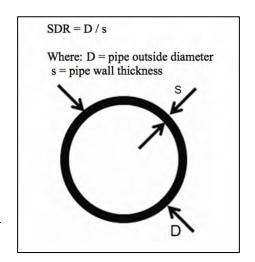
Red	Electric power lines, cable, conduit and lighting cables					
Orange	Telecommunication, alarm or signal lines, cables or conduit					
Yellow	Fuel gas (methane or propane), oil, petroleum, steam or gaseous materials					
Green	Sewers and drain lines					
Blue	Potable water					
Violet (Purple)	Reclaimed water, irrigation and slurry lines					

Name: Dept: Designation:

2. HDPE Pipe Parameters

a. Standard Dimension Ratio (SDR)

Standard dimension ratio (SDR) is a method of rating a pipe's durability against pressure.


SDR= D/s

Where;

D= Outside diameter of pipe

S= Thickness of pipe

It's an inverse relationship. The higher the SDR, the lower the pressure rating.

b. In HDPE Pipe terms, MRS stands for "Minimum Required Strength" (MRS).

The MRS is determined by performing regression analysis in accordance with ISO 9080 on the test data from the results of long-term pressure testing.

Material Designation	Minimum Required Strength (MRS)MPa	
PE100	10.0	
PE80	8.0	

Another parameter is defined as the 'Maximum Operating Pressure' MOP, or the pressure rating of the pipe.

MOP = 2 x MRS / C (SDR - 1) ---- Where MRS and MOP are in MPa

MOP = 20 x MRS / C (SDR - 1) ----- Where MRS is in MPa and MOP is in bar.

Where C is the 'overall service (design) coefficient, or Safety Factor.

For water applications the minimum value of C is 1.25

c. Pressure Reduction Factor

Table 1 - Pressure reduction factors for temperatures between 20 °C and 50 °C

Material classification			Pressu	re reduction	factors ^{a b}		
	20 °C	25 °C	30 °C	35 °C	40 °C	45 °C	50 °C
PE 100 PE 80	1,00	0,92	0,85	0,79	0,73	0,67	0,63
PE 63	1,00	0,92	0,85	0,79	0,73		
PE 40	1,00	0,92	0,85	0,77	0,70		

a Reference to ISO 9080:2012 shall be made for extrapolation time limits, see 5.3.

3. Available Sizes of PE 100 pipes

Dimension Ratio	SDR21	SDR17	SDR 13.6	SDR11
	PN8	PN10	PN 12.5	PN16
OUTSIDE DIAMETER	Wall	Wall	Wall	Wall
(mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)	Thickness (mm)
20	-	-		2.0
25	-	-	2.0	2.3
32	-	2.0	2.4	3.0
40	2.0	2.4	3.0	3.7
50	2.4	3.0	3.7	4.6
63	3.0	3.8	4.7	5.8
75	3.6	4.5	5.6	6.8
90	4.3	5.4	6.7	8.2
110	5.3	6.6	8.1	10.0
125	6.0	7.4	9.2	11.4
140	6.7	8.3	10.3	12.7
160	7.7	9.5	11.8	14.6
180	8.6	10.7	13.3	16.4
200	9.6	11.9	14.7	18.2
225	10.8	13.4	16.6	20.5
250	11.9	14.8	18.1	22.7
280	13.4	16.6	20.6	25.4
315	15.0	18.7	23.2	28.6
355	16.9	21.1	26.1	32.2
400	19.1	23.7	29.4	36.3
450	21.5	26.7	33.1	40.9

b The ISO 9080:2012 extrapolation factors are 50 for 40 °C, 30 for 45 °C and 18 for 50 °C when the material is tested at a maximum temperature of 80 °C. If the material is tested at a higher temperature than 80 °C then other extrapolation factors may apply.

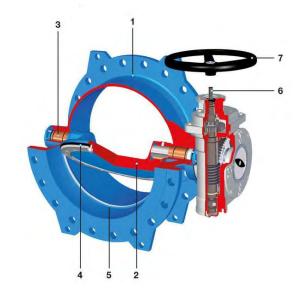
Plumbing Module (Day 3: 27 October, 2022)

HDPE Pipe Parameters – Class Activity 1

Diameter (mm)	Thickness (mm)	SDR	MOP (bar)	Avg. Temperature in your area	Temperature Factor (From table 1)	Effective MOP (bar)

	Unit	Labour	Composite	Unit	Labour	Composite
c) PN-10 (SDR-17)	10.00			-		
i) 90 mm	P.Rft	4.60	240.85	PM	12.55	790.25
ii) 110 mm	P.Rft	12.85	364.65	PM	35.10	1,196.45
iii) 125 mm	P.Rft	14.20	463.00	PM	38.80	1,519.05
iv) 160 mm	P.Rft	15.60	752.25	PM	42.65	2,468.20
v) 180 mm	P.Rft	20.00	951.85	PM	54.70	3,122.95
vi) 200 mm	P.Rft	22.35	1,172.85	PM	61.10	3,848.15
vii) 225 mm	P.Rft	25.50	1,486.00	PM	69.70	4,875.65
viii) 250 mm	P.Rft	35.20	1,824.55	PM	96.30	5,986.40
ix) 315 mm	P.Rft	62.45	2,904.80	PM	170.70	9,530.70
x) 355 mm	P.Rft	69.45	3,688.60	PM	189.85	12,102.25
xi) 400 mm	P.Rft	78.60	4,654.90	PM	214.95	15,272.70
xii) 450 mm	P.Rft	79.85	5,888.40	PM	218.40	19,319.85
xiii) 500 mm	P.Rft	94.05	7,281.95	PM	257.10	23,892.05
xiv) 560 mm	P.Rft	104.40	9,138.50	PM	285.40	29,983.35
xv) 630 mm	P.Rft	117.10	11,537.95	PM	320.15	37,856.00
xvi) 710 mm	P.Rft	132.65	14,684.75	PM	362.65	48,180.60
xvii) 800 mm	P.Rft	150.45	18,566.10	PM	411.30	60,915.35
xviii) 900 mm	P.Rft	189.25	23,593.55	PM	517.45	77,410.35
xix) 1000 mm	P.Rft	219.70	29,119.95	PM	600.70	95,542.55

PN Rating	Diameter	Length	Unit Cost (Composite-Labour)	Total Cost
PN 10		100 ft		


Plumbing Module	(Day 3: 27	October,	2022)
-----------------	------------	----------	-------

ame:	Dept:	Designation:
------	-------	--------------

Valves – Class Activity 2

i. Label the picture displayed below according to the numbers:

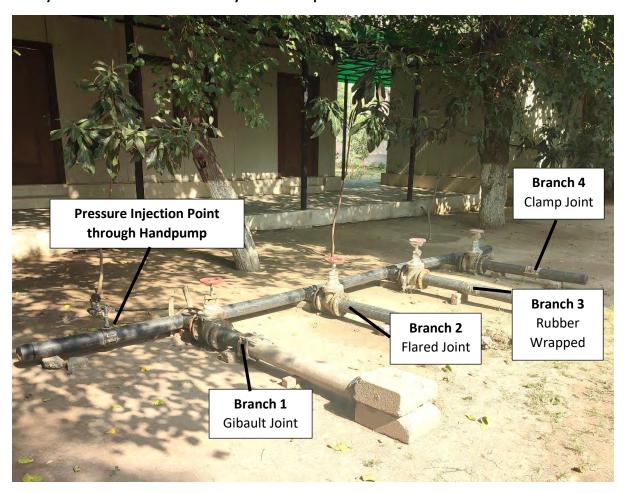
No.	Labelling
1	
2	
3	
4	
5	
6	

ii. Choose the correct answers.

٦١	Non-return valve	or chack	valva ic	used for?
aı	Non-return valve	or cneck	vaive is	usea tor?

() To reverse the flow () To prevent reverse flow () To stop the flow

b) Which type of valve is recommended to use for isolation?


() Sluice/gate valve () Butterfly valve () Air release valve

c) Air release valve are used for?

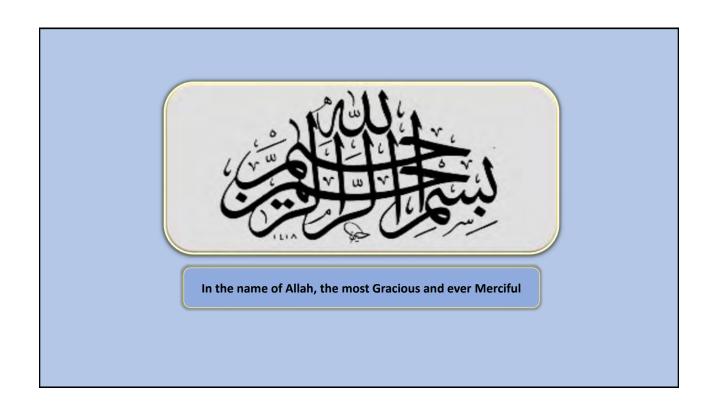
() To release entrapped air () To pump air () Both

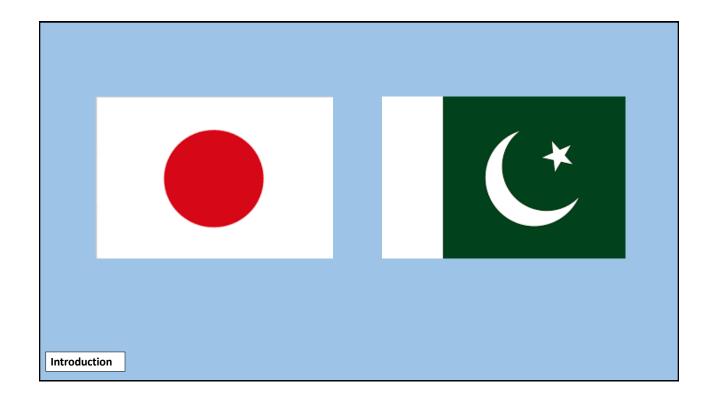
Name: Dept: Designation:

4. Hydrostatic Pressure Test Activity for HDPE Pipe

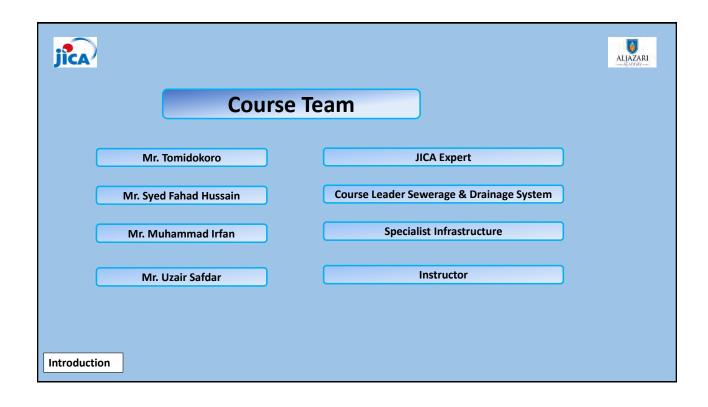
Instructions:

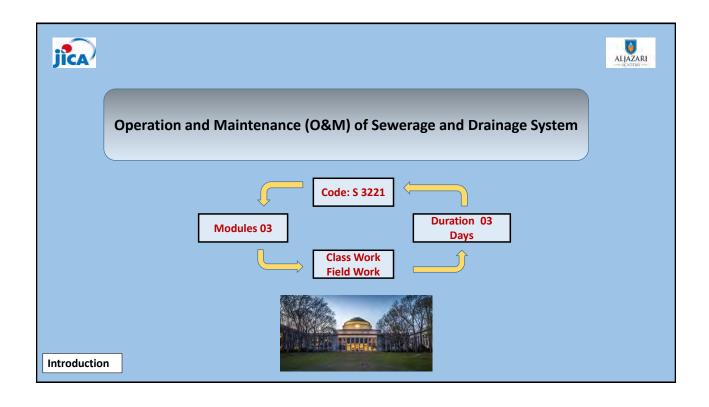
- Setting the Optimum Pressure for Test: Working pressure of Pipe x 1.5
- Time Duration: 10 mins (2 hours as recommended in the standard)
- Hazard Awareness: Participants are advised to keep a distance from potential leakage joint or valve
- Fill the pipe with water by connecting to the nearby source until water come out on the other end. For the releasing air, we can use air valve.
- Pressurizing: Inject the water with the help of hand pump to build a pressure inside pipes up to desired pressure rating.
- Observe the joints and valves for leakages. If any leakage appears, note the reading on pressure gauge.
- Keep pressuring branch wise until setting pressure and close valve, Start counting time.
- If no leakage appears after holding the optimum pressure for specified time, the joint is considered valid.

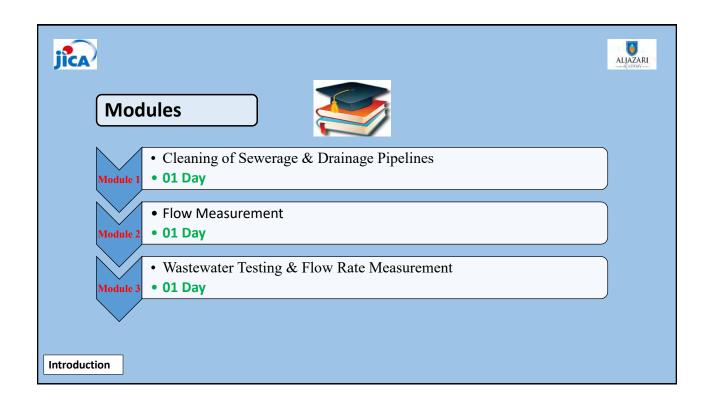

Plumbing Module (Day 3: 27 October, 2022)


Hydrostatic Pressure Testing – Class Activity 3

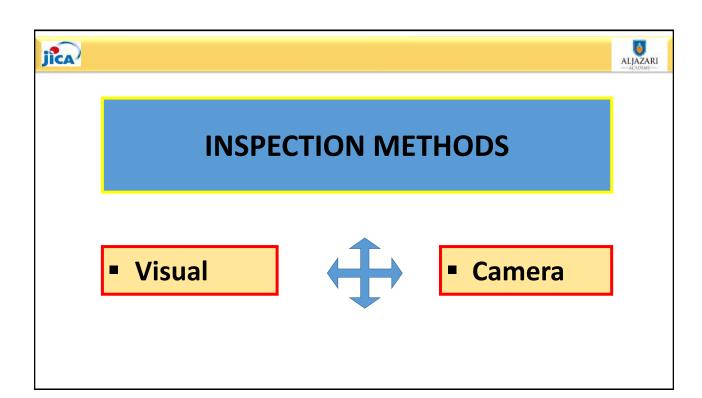
Participants to perform the pressure test activity and observe the leakages and corresponding pressure ratings.

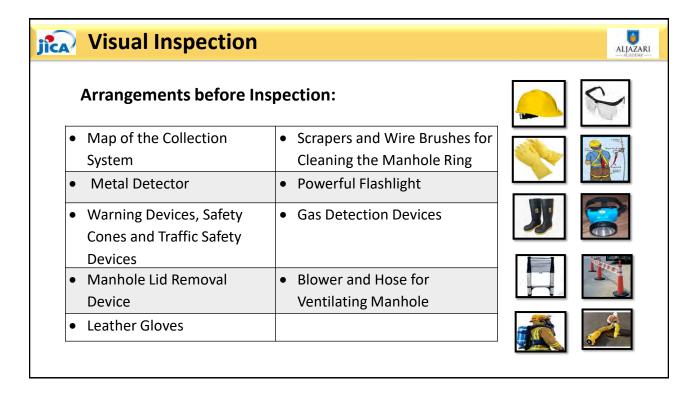

Leakage Point	Pressure	Reliability (Low, Medium, High)
Branch 1 – Gibault Joint		
Branch 2 – Flared Joint		
Branch 3 – Rubber Tube		
Branch 4 – Clamp Joint		


添付資料 5.1.53	研修コース「下水・排	水施設維持管理」(ウ教材(2023 年春≥	季研修)



INSPECTION OF SEWER / MANHOLE

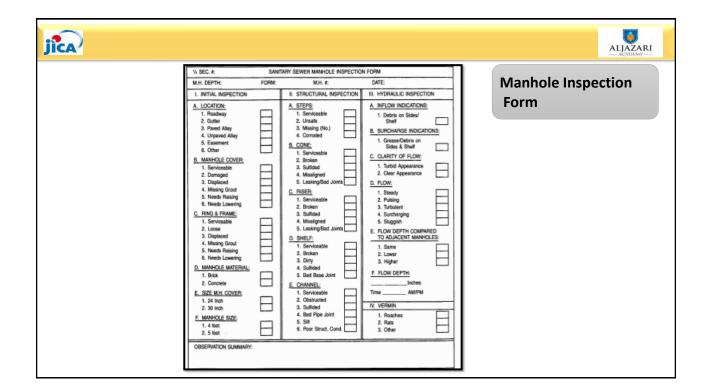

Objectives of Sewer Inspection

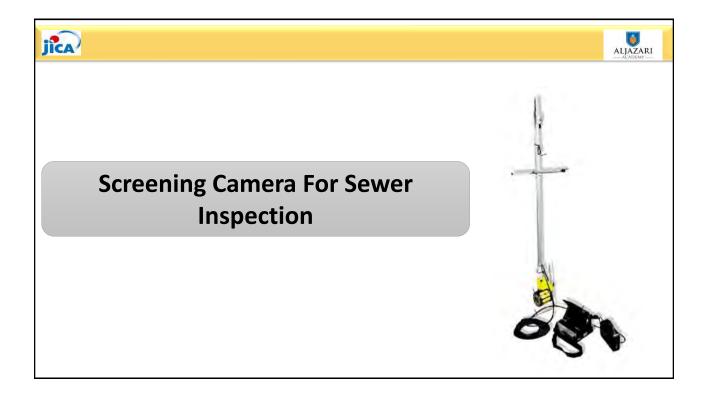


- To identify existing or potential problems in Sewer / Manhole
- To examine structure of the Sewer / manhole
- To observe functional capacity of Sewer / manhole

Categories of Visual Inspection...

Initial Inspection

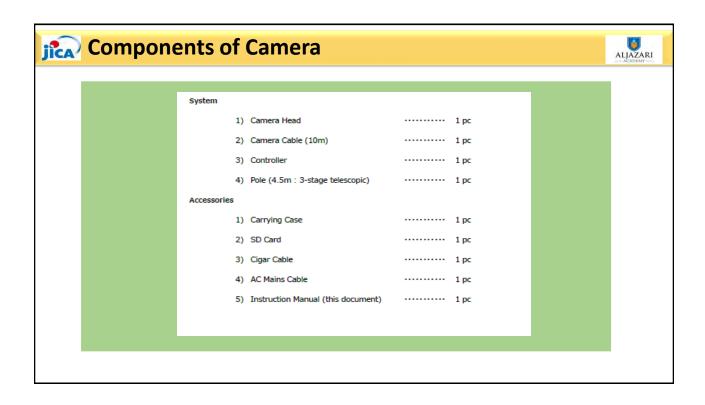

- Location
- Manhole Cover
- Ring & Frame
- Manhole Material
- Sizes

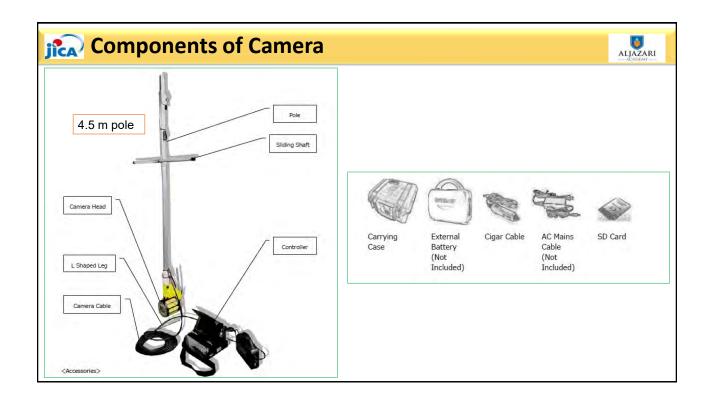

Structural Inspection

- Steps
- Cone
- Riser
- Shelf
- Channel

Hydraulic Inspection

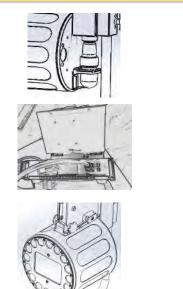
- Inflow
- Clarity
- Flow
- Flow Depth
- Vermin

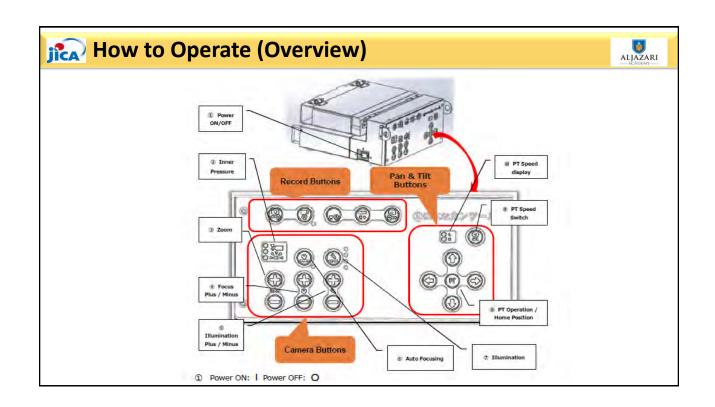


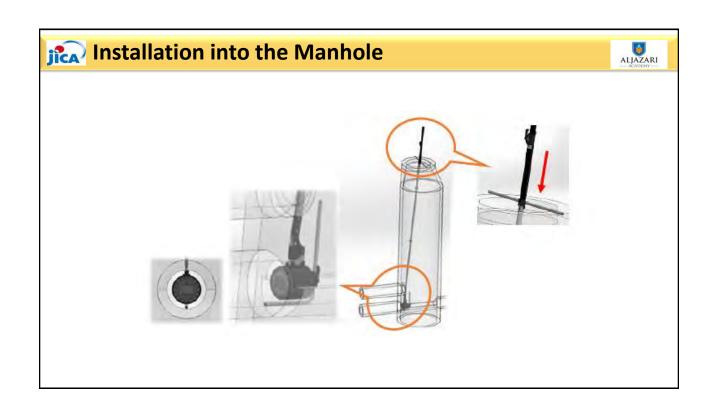


Objectives of Screening Camera

- 1. To look for damages / breaks in sewer line
- 2. To locate root intrusion
- 3. To find unrecorded connection
- 4. To locate protruding laterals
- 5. To locate cracks / inflow sources
- 6. To search lost / buried lines
- 7. To verify alignment






How to Connect Device

- 1. Take out the camera head and the camera cable from the carrying case.
- 2. Connect the camera head to the camera cable
- 3. Take out the controller from the carrying case.
- Connect the controller to the camera cable.
- 5. Connect the pole to the camera head

Recording (Video/Still Image)

Video recording time (estimate)

Picture quality	4GB	8GB	16GB	32GB	
Highest	About 48 min	About 96 min	About 190	About 380	
riigiiest	About 40 IIIII	About 50 IIIII	min	min	
High	About 60 min	About 120	About 240	About 480	
riigii	About 60 IIIII	min	min	min	
Normal	About 80 min	About 160	About 320	About 640	
Normal		min	min	min	

WASA Rawalpindi (Pictures)

Instructor

Engr. Muhammad Uzair Safdar

Learning Objectives

- Learning key features of M-Water App/Portal and Q-GIS software and its application in Sewerage & Drainage activities
- Creating data collection forms related to different assets of water utility i.e Crown Failure, Desilting activity, sewerage Overflow etc
- Using M-Water App in field for Data Collection and Management related to sewerage activities
- Presentation and visualization of recorded data in Q-GIS Program

Learning Outcomes

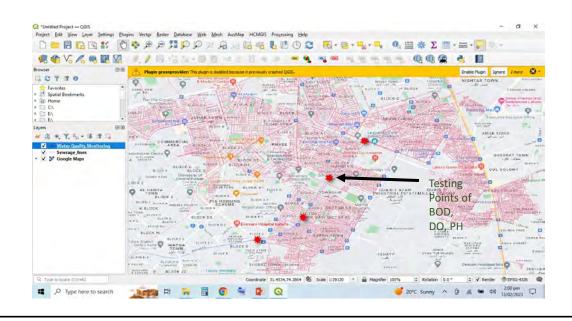
Visualization in mWater Portal

• Quick check of the data

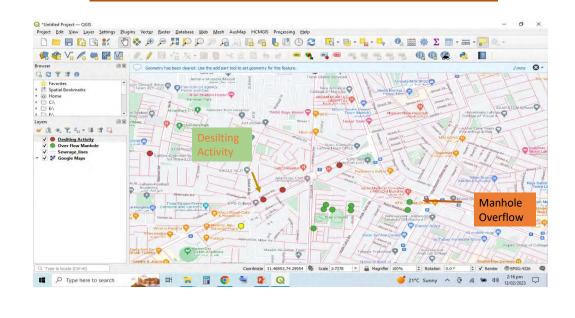
Excel

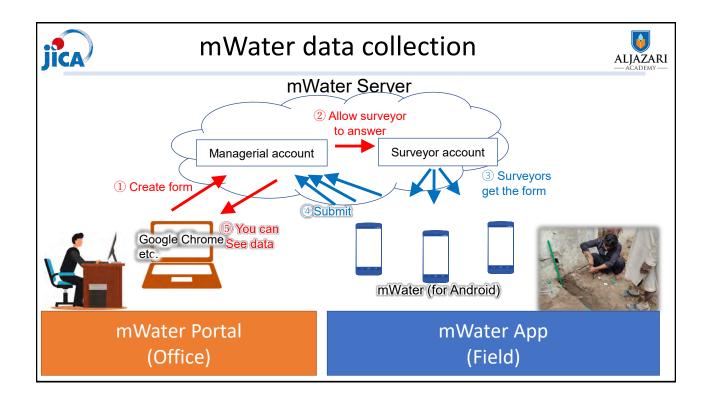
• Integrate and conserve all the data, <u>calculate and analyze</u> etc..

QGIS


- Visualize data on map and express the parameter as you like
- Prioritize the area for budget allocation for replacement etc.

→ Exhibit the crown failure situation effectively


- Request budget from the Government
- Attract international fund

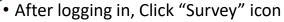


Water Quality Monitoring(BOD, DO, PH)

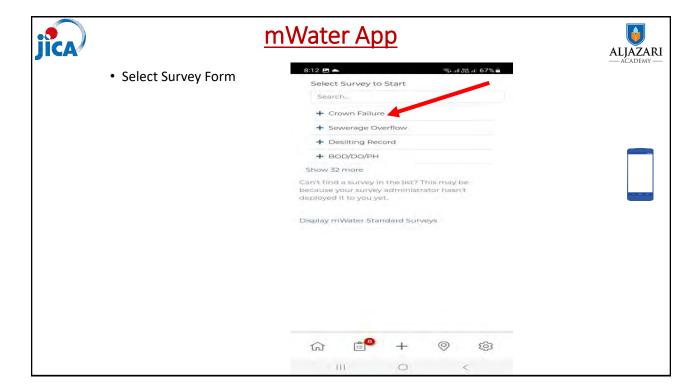
Overflow Manhole and Desilting Activity Monitoring

mWater App

• Download from Play store with the name of (mWater surveyor)

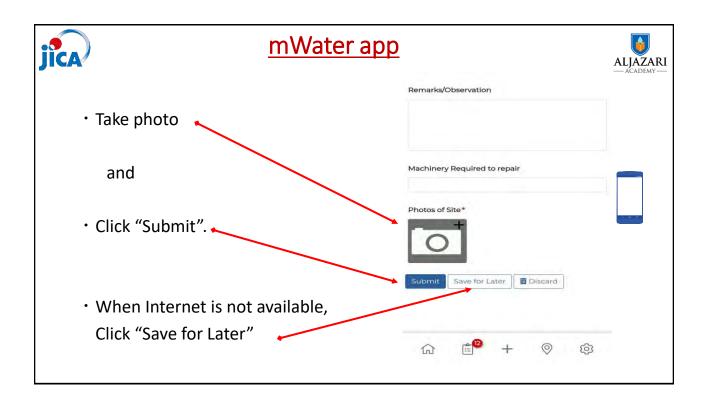


• Made Log-In ID on App and use it for Portal on PC.

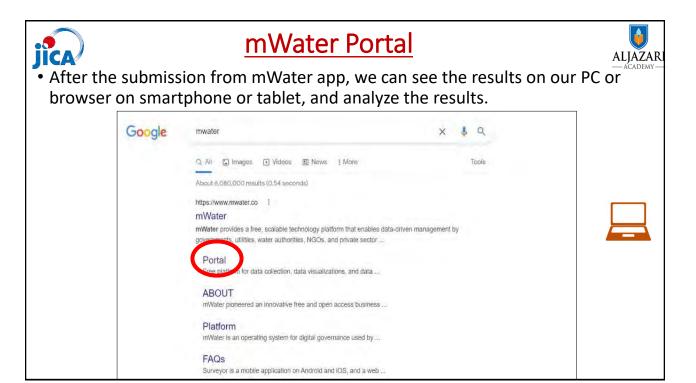


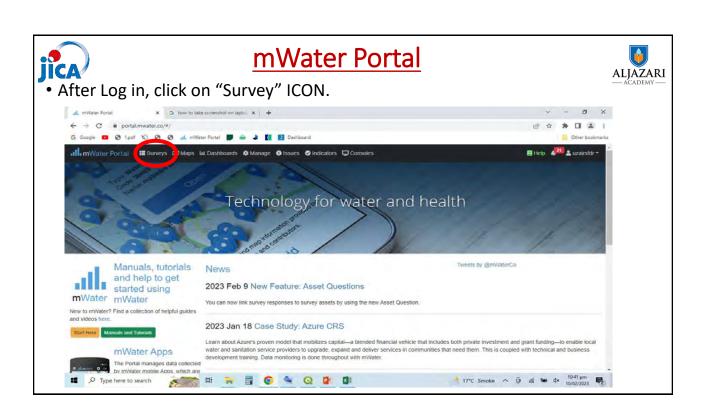
Click icon "Start Survey"

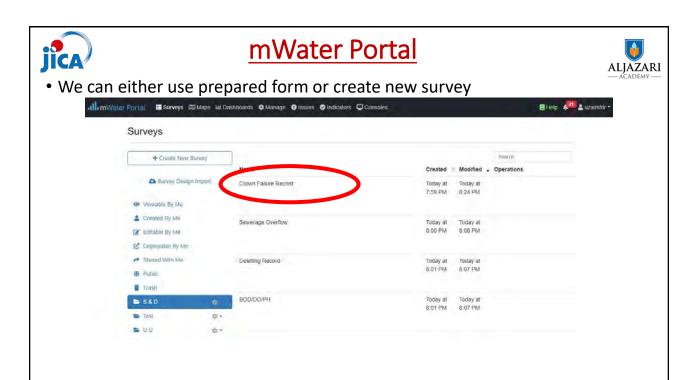
ALJAZARI

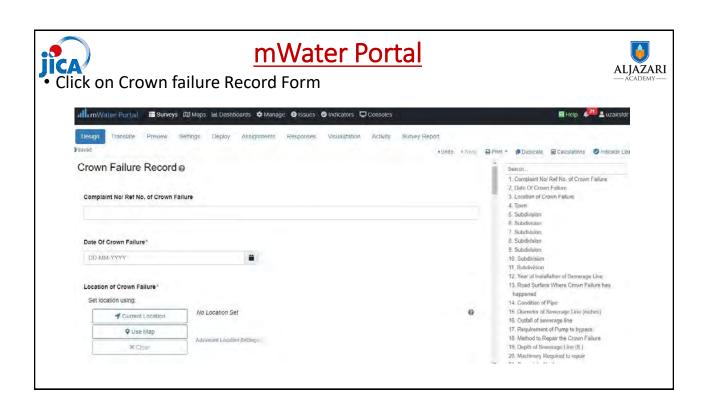


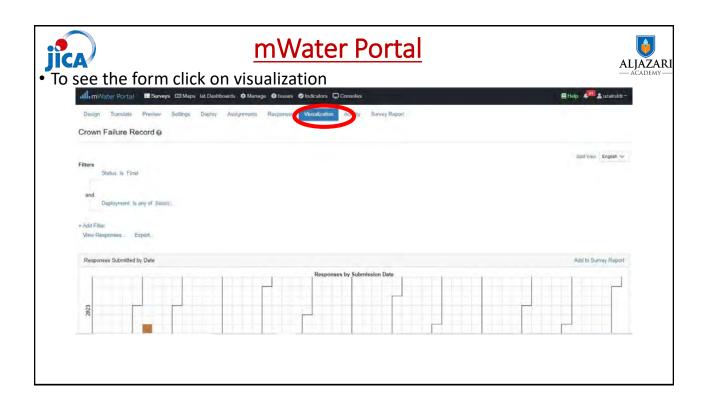
mWater App

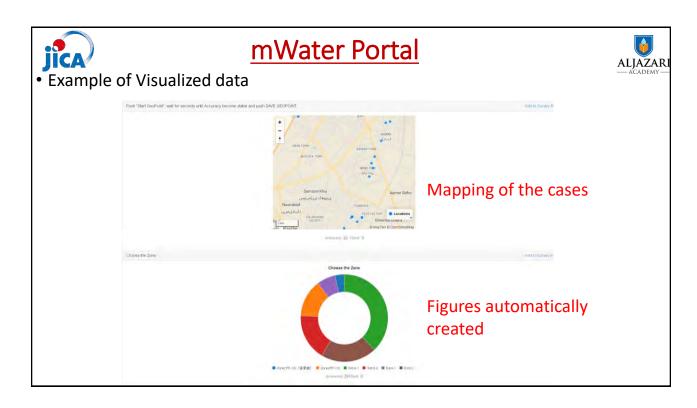


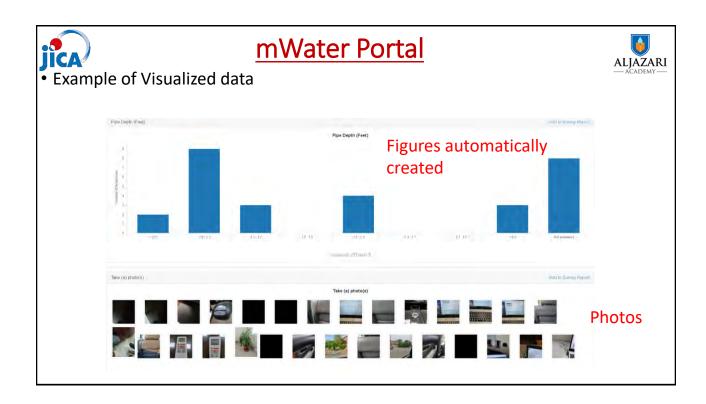

Put the information related to the activity. e.g. Crown Failure repair work

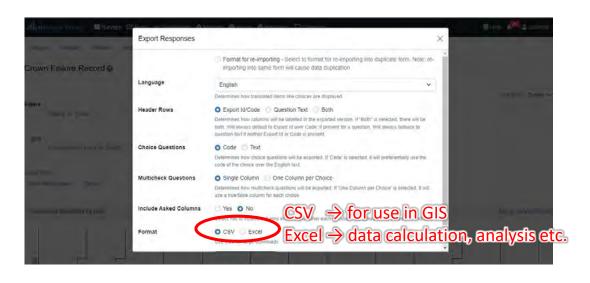

8:26 • 🗷 📤 Crown Failure Rec	क माळ मा ord	67% ■
Inspector Name		
Date*		
DD-MM-YYYY		-
Location of Crown Failure Set location using:	* No Location Set	
→ Current Location	No Location Set	
O Use Map		
× Clear	Advanced Location	Sett)ng
X Clear Town* Date Of Crown Fallure*	Advanced Location	Setting
Town*		
Town* V Date Of Crown Fallure*		

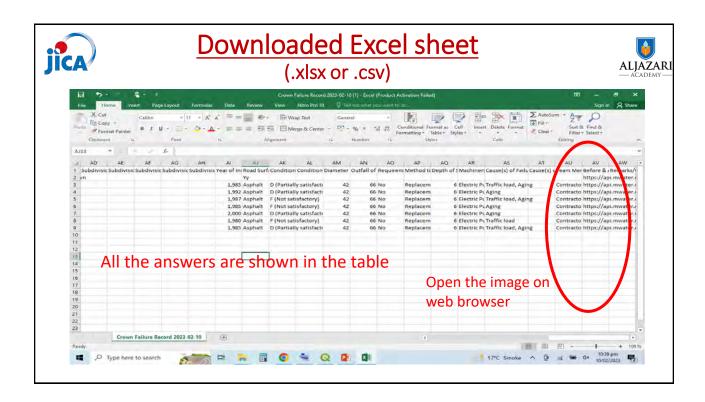








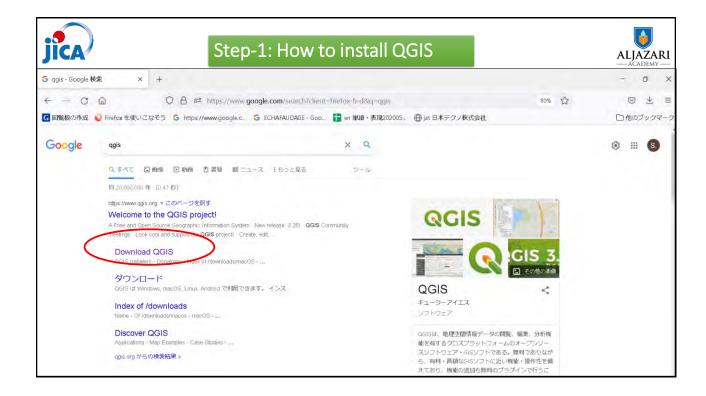




mWater Portal

Click on Export Option to export this file into Excel or CSV (used in QGIS)

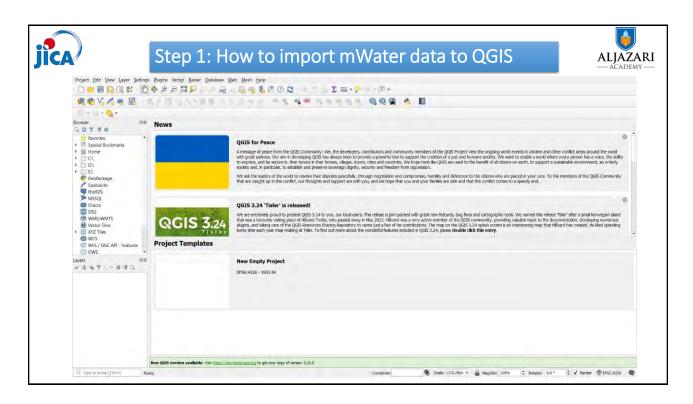
(PC Software)

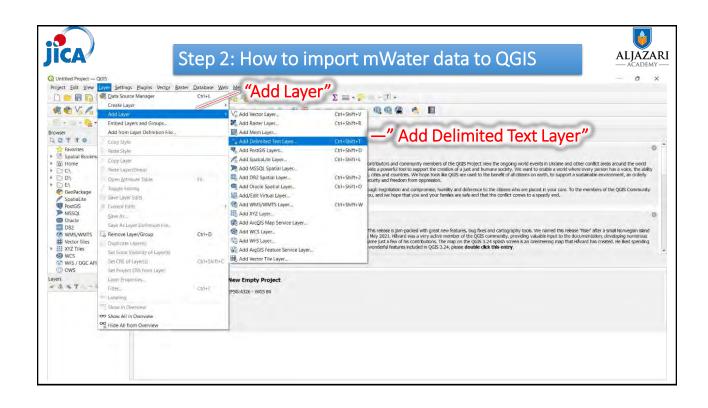


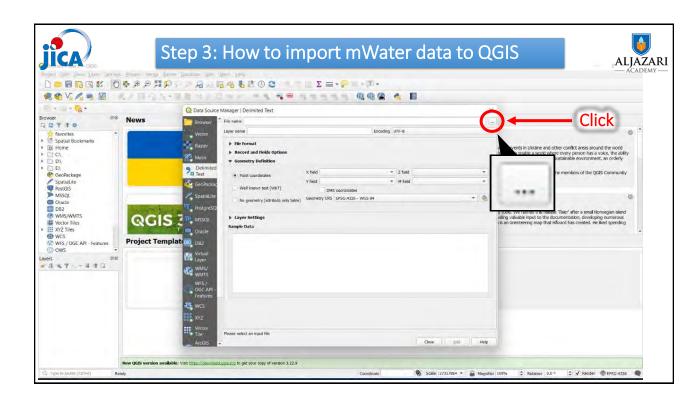
QGIS Software

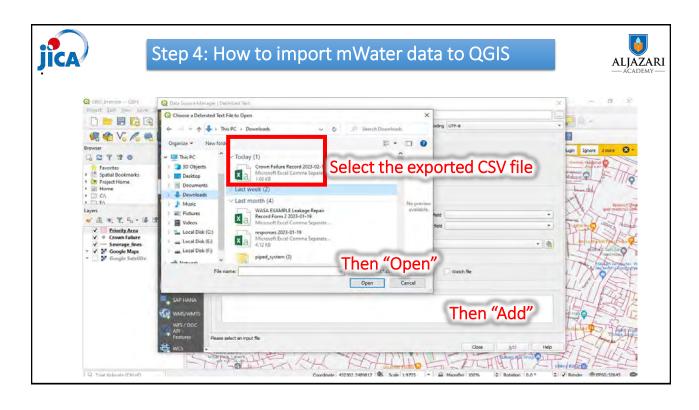
<u>Index</u>

- Use of QGIS software
- How to see mWater data and show them on QGIS.
- How to utilize the data

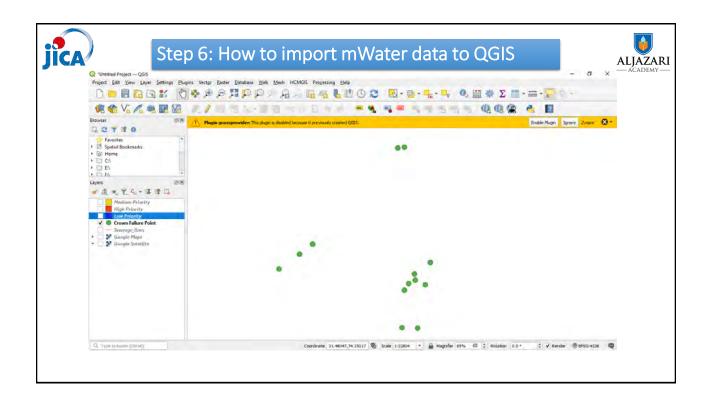

Geographic Information System GIS

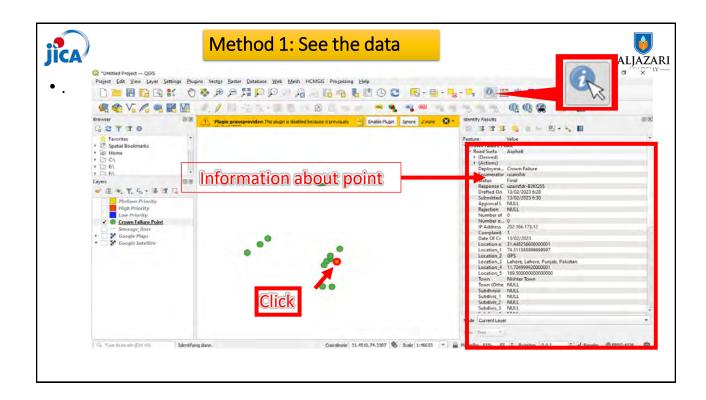

A geographic information system (GIS) is a system that creates, manages, analyzes, and maps all types of data. GIS connects data to a map, integrating location data (where things are) with all types of descriptive information (what things are like there).

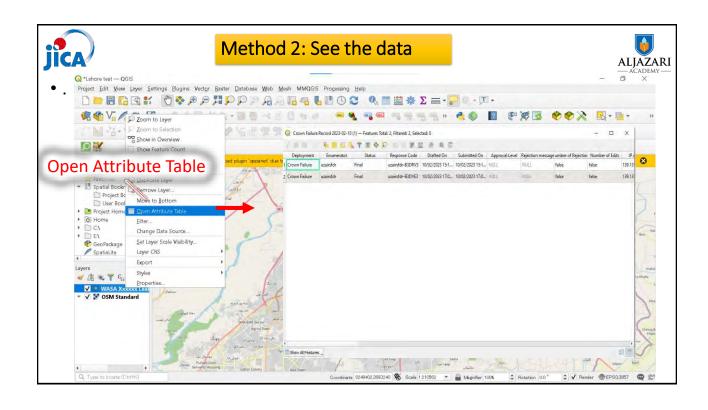

Types of Data Inputs in GIS

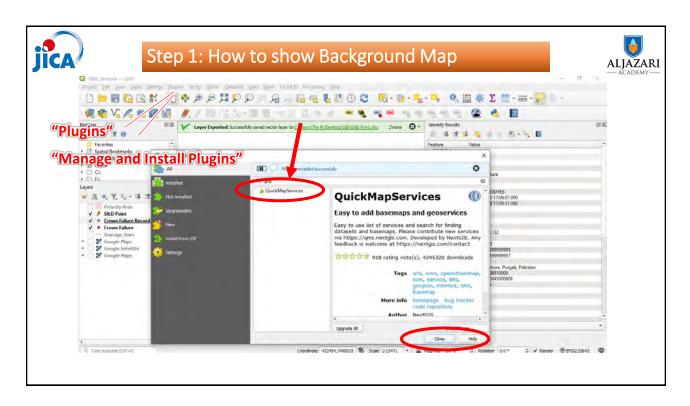

- Vector Data
- Raster data
- 3. Excel Data

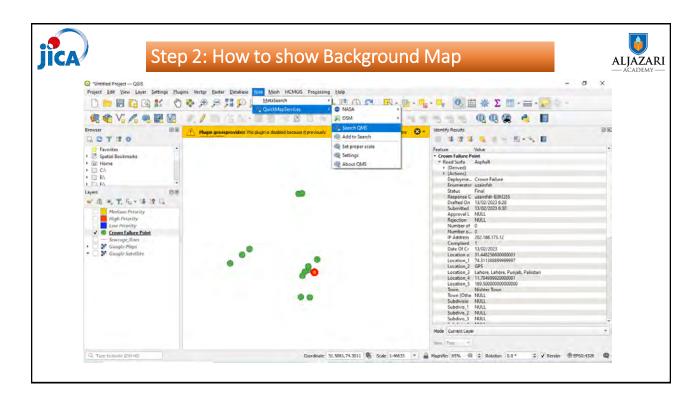


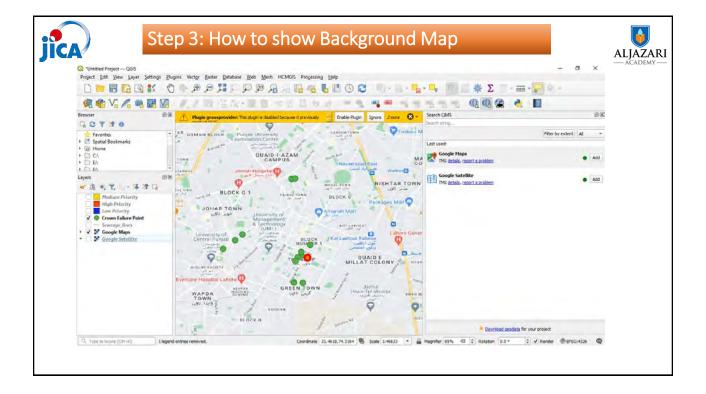












Lecture 4

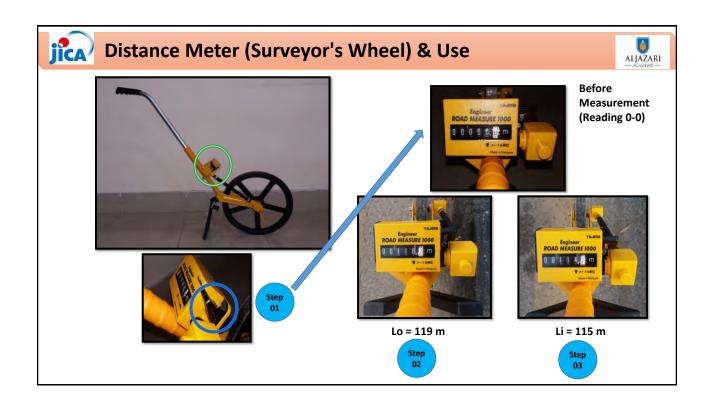
Measurement of Sludge Quantity in Drains

Lecture Details

Class Work Field Work

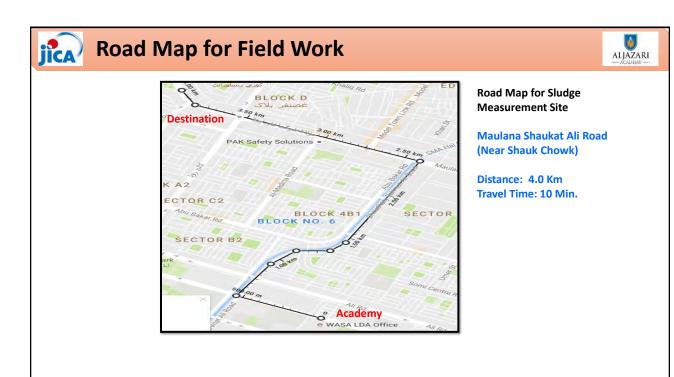
Documents
Equipment &
Tools
PPE

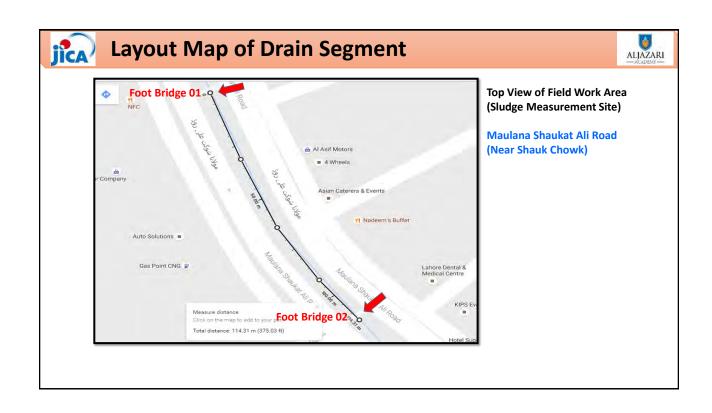
- > Presentation + Discussion on Current Practices
- ➤ Estimation of Deposited Sludge (at Maulana Shaukat Ali Drain, Akbar Chowk, Township)
- > Drain map of area + Templates
- Ranging Rod + Aluminum Staff + Distance Meter+ Road Signs + Traffic Cones etc.
- ➤ Helmet + Goggles + Hand Gloves + Safety Shoes + Gum Boots

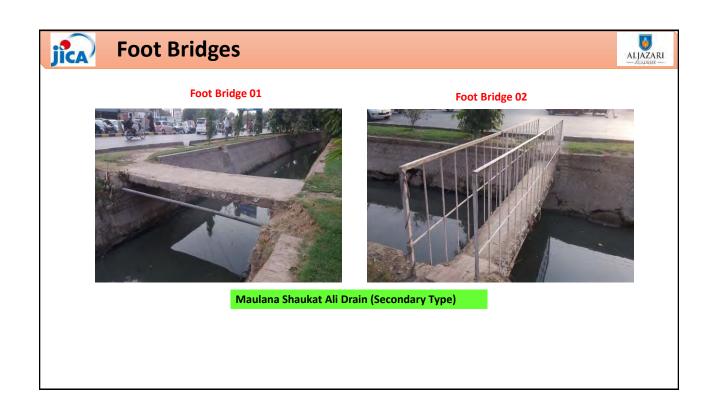

Ranging Rod

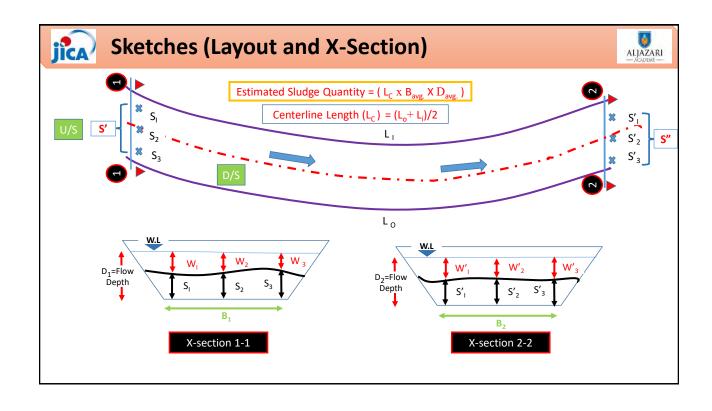
- Ranging Rod (6 feet Height)
- Colour Coded
- Each Segment is 01 Foot Long
- Metal Conical Tip for Penetration in Sludge

Sludge Measuring Procedure


- 1. First select the venue where you have to do dredging or sediment thickness measurement
- 2. Select some culvert or bridge
- 3. Properly apply traffic control plan
- 4. Ensure that each worker has worn the proper safety gadgets
- 5. Find out the dimensions of the drain i.e. Length Width and Depth
- 6. Mark the stations on the drain




Sludge Measuring Procedure



- 7. Two persons at both banks of the drain are required
- 8. Find the depth by using staff having graduations on it
- 9. Find out the capacity of dump truck for transporting sludge
- **10.** Calculate the number of trips by dumper from dredging to disposal site
- 11. Also calculate the time required by the dumper per trip and total time for overall operation
- 12. If the cleaning along the road is required because of spillage of waste then clean that

Sludge Volume Calculation

Depth at Foot 1 S _n = (D- W _n)	Avg. Depth at Foot 1 S _{avg}	Depth at Foot 2 S _n = (D- W _n)	Avg. Depth at Foot 2 S' _{avg}	Overall Avg. Depth D _{avg}	Width at Foot 1 B ₁	Width at Foot 2	Avg. Width B _{avg}	Length Inner L _i	Length Outer L _o	L _c	Sludge Volume V
S ₁ S ₂ S ₃		S' ₁ S' ₂ S' ₃			1	-					

D₁= D₂= Estimated Sludge Quantity (Vol.)

= (
$$L_C$$
 X $B_{avg.}$ X $D_{avg.}$) CUM or CFT

Estimated Sludge Quantity (Vol)

 $L_C = (L_O + L_I) / 2$ (if drain stretch is curved)

$$S' = (S_1 + S_2 + S_3 + ...) / n$$

$$S'' = (S'_1 + S'_2 + S'_3 + ...) / r$$

$$D_{avg.} = (S' + S'' + S''' + ...) / n$$

$$S' = (S_1 + S_2 + S_3 + ...) / n$$

$$S'' = (S'_1 + S'_2 + S'_3 + ...) / n$$

$$D_{avg.} = (S' + S'' + S''' + ...) / n$$

$$B_{avg.} = (B_1 + B_2 + B_3 + ...) / n$$

BOD: Biochemical Oxygen Demand Test

How to Use

1.

Pull out the line at the end of the tube

2

With the hole up, pinch the bottom half of the tube tightly with your finger and push out the air inside

BOD: Biochemical Oxygen Demand Test

3.

Continue to place the hole in the test water, loosen the pinching fingers, and wait until half of the water is absorbed. Shake the tube gently 15 times to prevent leakage.

4.

Immediately after 2 minutes, place the tube on top of the standard color and compare the colors.

Quiz

Operation and Maintenance (O&M) of Sewerage System

Name of Trainee		Organization	
Total Marks	10	Obtained Marks	

Short Answer Questions 1. What are the reasons for cleaning sewer & manhole? 2. Enlist various tools and equipment, required for sewer cleaning? Fill in the Blanks 1. Hydrogen sulfide (H₂S) may attack _____manholes (Concrete/ Plastic) 2. Pole mounted sewer camera is used to find ______ connection. (cable / illegal) 3. Preventive maintenance can save the ______. (time & money / nothing) True/False

Sr. No. Statement Yes No 1. First stage of inspection is CCTV? 2. The maximum range of pole mounted sewer camera is 20 feet? ... 3. Is it necessary to ventilate the manhole before its cleaning? ...

