Case Study of Energy Audits (2)

Examined EE&C Technologies

	Examined technologies	Examination / Evaluation	Financial Analysis
	Efficient motors	Proposed	Investment cost
	PV system	Proposed	Cash-flow Day back period
	PV system with financial incentives	Proposed	Pay back periodIRRNPV
	Inverter to motors	Already included	-
	Improvement of power factor of receiving ends	Analyzed high enough	-
	Inverter to compressors	Recommended	-
	Efficient transformers	Recommended	-
	Efficient lighting	Recommended	-
	Electrically-driven dump trucks for a mine	Recommended	-
	Trolley dump trucks for a mine	Recommended	-
NIPPO	N KOEI PADECO	Japan Inter	national Cooperation Agency 43

Case Study of Energy Audits (2)

Source Energy Conservation Centre of Japan Electrically-driven dump trucks for a mine

Source Energy Conservation Centre of Japan Electrically-driven dump trucks for a mine

NIPPON KOEI PADECO

Japan International Cooperation Agency | 44

Case Study of Energy Audits (2)

jica)

Structure of EMS for 17 Power Distribution Panels

Estimates for the introduction of EMS

Item	Cost (USD)
The cost of the hardware and software	XXXXX
The cost of design, installation and construction	XXXXX
The total cost of introduction of EMS	XXXXX

Case Study of Energy Audits (2)

Representative Monitoring Items and Functions with the EMS

Monitoring items and functions	Comments
Peak demand of electric power	Alarm function included. (in case of exceeding threshold value)
Demand history of electric power	Displaying the power demand history.
Power consumption history by the distribution panel	Displaying the power demand history by the equipment groups.
Analysis by the output level (e.g. in manufacturing) and energy management (targets/actual results)	Analysis by the output level and equipment groups. The following targets and actual results to be displayed in the tables and the graphs on monthly basis. a. Electric power consumption b. Primary energy consumption c. CO ₂ emissions d. Costs
Creation of the reports	Creation of the reports on daily, monthly and yearly basis regarding energy consumption.
Creation of the reports required by the government	Creation of the reports to be submitted to the government.

Outline of the Aquarium & Amusement Park

- ✓ The company was Established in 1990.
 ✓ The amusement park was opened in 1993.
 - ✓ Annual number of visitors; 4 to 5 million (Top 5 in Japan).
 - ✓ The park is <u>type-1 designated energy management factory</u> under "the law concerning the Rational Use of Energy".
 - Three-story aquarium with thousands of fish which is one of the largest in Japan.
 - ⇒ A lot of cold energy & heat (chilled & hot water) are necessary to maintain water temperature in water tanks constant all year around as well as space heating & cooling for visitors.

Other attractions

- > Vertical fall amusement (BLUE FALL) with 107 meters high.
- > Japan's first roller coaster that swings out over the ocean.
- > World famous Merry-Go-Round with thousands of lights glittering.

NIPPON KOEI PADECO

Japan International Cooperation Agency | 48

4 WANTS in the Company

- 1. Cut energy cost
- 2. Improve the efficiency of maintenance and operation of facilities
- 3. Promote further energy savings and environmental measures
- 4. Asset-light business operation by reducing investments

- Two major backgrounds in Japan

- ✓ Increasing interests in energy savings by the law concerning the Rational Use of Energy.
- ✓ Increasing interests in CO₂ emissions reduction.

Outline of the Aquarium & Amusement Park

- Several companies proposed new system.
- Amusement park company itself analyzed and examined each proposal for more than a year.
- In the process of examination, the responsible person was appointed by the company played an important role on;
 - > Providing suggestion to management from technical angle.
 - Verification of various figures indicated in proposals such as consumption of electric power, city gas, water.

```
NIPPON KOEI PADECO
```

Japan International Cooperation Agency | 51

Key Point 2 for Realization of 4 WANTS

jica

Adoption of high efficiency heat pumps

- > The industry's first large-scale heat pumps with high efficiency.
- This heat pump won the Minister of Economy, Trade and Industry Prize at the Energy Conservation Awards.

- 1. Reduction of maintenance fee for co-generation
- 2. High efficiency system which contributes to energy savings and CO₂ reductions
- 3. Simple system toward the realization of efficient operation

Stop operation of co-gen (2 units) and introduction of high efficiency air-source heat pumps instead.

In case of air-source HPs, cooling water necessary in the existing system will not become necessary by air-source HPs.

NIPPON KOEI PADECO

Japan International Cooperation Agency | 52

System Comparison – existing system -

System Comparison – renewed system -

Air-source heat pumps

Air-source heat pumps

Air-source heat pumps

200

150

100

50

In house

Chilled water

&

hot water

(space heating)

hot water

supply

Japan International Cooperation Agency | 55

Construction Cost

81

NIPPON KOEI PADECO

Comparison of Life Cycle Cost

Boiler

New system is more simple.

 \Rightarrow Needs no water and less space.

NIPPON KOEI

Electric power

City gas

NIPPON KOEI

Air-source heat pumps

Renewed

system

	JICA	JICA
 Operational cost reduction Approx. 70 million JPY (0.5 million USD) was reduced annually. Construction cost was already recovered within 2 years. 		
CO2 emissions reductions		Thank you very much for your kind attention !
 > Obligated amounts of reductions by MOE = Approx. 600 t-CO₂/year Approx. 1,800 t-CO₂ was reduced within 2 years. 		
CO2 emissions clears the designated level by MOE.		
NIPPON KOEI PADECO	gency 59	NIPPON KOEI PADECO Japan International Cooperation Agency 60
The Technical Cooperation Project to Promote Energy Efficiency in Caribbean Countries	Jica	Today's Agenda
Market Study of EV		 Market analysis of EVs Market analysis of storage batteries
November 2022		 Introduction of new technologies
Nippon Koei Co., Ltd. PADECO Co., Ltd.		

Jica							Agency 4		Vehicle vehicle)		LIC V	guilling	ABASE, ENEOS
			s red vehicle id vehicle	sle (hydrogen vehicle)	Ref. UZABASE		Japan International Cooperation		ICV: Internal Combustion Engine BEV: Batteny-powered vehicle PHEV: Plug-in hybrid vehicle FCV: Fuel-cell vehicle (hydrogen	Cons	 More expensive to buy (becather there are 2 driving systems or and BEV) Limited cabin space 	 Limited number of hydrogen f stations Limited car models 	Ref. UZ Japan International Cooperation
s of EVs		Automobile	BEV: Battery-powe PHEV: Plug-in hybri	FCV: Fuel-cell vehic Solar car Trolley bus		s Vehicle		s of EVs			ing range t emission inning cost than ICV structure (many gas ling time	harged at home ing range nission n space time (takes 5 mins)	
Different Type	 Different types of EVs 		With battery for drive	No battery for drive		ICV: Internal Combustion Engin	N KOEI PADECO	Different Type	Pros & Cons of EV	Pros	 HEV Longer driv Lower CO2 Lower CO2 Cheaper ru Cheaper ru Good infrasterions) stations) 	 Can be rec Longer driv No CO2 er Wider cabi Short filling 	N KOEI PADECO
							3 NIPPO		•			μ	E NIPPO
jich)							Japan International Cooperation Agency		ICV: Internal Combustion Engine Vehicle BEV: Battery-powered vehicle PHEV: Plug-in hybrid vehicle FCV: Fuet-cell vehicle (hydrogen vehicle)	Cons	 Higher CO2 emission Higher running cost 	 More expensive than ICV Shorter driving range Limited cabin space Limited number of charging stations Longer charging time (rapid charge takes 30 mins) 	Ref. UZABAS Japan International Cooperation Agency
			ferent Types of EVs				LO ST	it Types of EVs	of EVs	Pros	 Cheaper to buy Longer driving range Wider cabin space Good infrastructure (many gas stations) Short refueling time 	 No CO2 emission Cheap running cost Can be charged at home 	Q
			1. Diff				NIPPON KOEI PADE	Differer	Pros & Cons c		ICV	BEV	NIPPON KOEI

Market Analysis of EVs

Market size of EVs

The EV market is rapidly growing, and sales of EVs were 6.6 million units in the world in 2021. There were over 16.5 million EVs on the road. EVs are 10% of all vehicles.

2. Market Analysis of EVs & Storage Batteries

Japan International Cooperation Agency | 7

Market Analysis of EVs

China and Europe are the top $\overline{2}$ growing markets of EV sales. Market size by countries/regions

Increase of EV models

Japan International Cooperation Agency | 9

Ref. Global EV Outlook 2022, IEA

iented by ACEA; CAAM; EAFO; EV Volumes; Marklines.

Ref. Global EV Outlook 2022, IEA

Notes: BEV = battery electric vehicle; PHEV = hug-in hybrid vehicle. Small cars include A and B segments. Medium cars include C and D segments. Crossovers are a type of sports utility vehicle (SUV) built on a passenger car platform. Large cars include E and F segments and multi-purpose vehicles. Vehicle models do not include the various tim levels.

based on EV Volumes and Marklines.

Sources: IEA analysis

Market Analysis of EVs

Market Analysis of EVs

Japan International Cooperation Agency | 12 ica Zero emissions vehicle announcements by automakers are more ambitious than policy targets IEA. All rights reserved millions in 2030. ICV will be 13% of new car sales in 2025, and over 20% in 2030. EV will be the United States 30 mil units The total sales of EVs is expected to be 18 million units in 2025 and over 30 Medium- and heavy-duty trucks OEM targets and registrations in the Stated Policies and Announced Pledges scenarios, 2030 Stated Policies Scenario (2030) 2035 Ref. Global EV Outlook 2022, IEA Ref. Global EV Outlook 2022, IEA China Europe (EU+EFTA) 16.5 mil units 18 mil units • 2021 2025 Japan Market Analysis of EVs Range of OEM declarations (estimate) Announced Pledges Scenario (2030) China Light-duty vehicles 2021 main passenger car in the world. United States Future EV market size Policy and Regulation Europe NIPPON KOEI PADECO <u>></u>Ш 20% 10% %0 20% 40% 30% 80% 20% 60% %06 Sales share Japan International Cooperation Agency | 11 10yrs preferential treatment of car tax (5yrs no tax and 5yrs 50% tax reduction) No tax for purchasing BEV Preferential treatment of car tax by regional government IEA. All rights reserved 300 CHN O Mitigation measure of issuing number plate of BEV 20162021 Number of available EV models ncrease number of NEV sales to 20% by 2025 Penalty in case CO2 emission is over 120g/km 280 Ref. Global EV Outlook 2022, IEA Number of available EV models relative to EV sales share in selected countries, 2016 and 2021 180 No tax for purchasing BEV, PHEV O DEU Automobile regulation of each country, subsidy and policy for EVs 160 Subsidy for BEV, PHEV O O FRA EV Subsidy & Policy O NLD ESP O NOR BEL SWE 140 ITA O Germany CHE 0 GBR France • O FIN O DNK PRT O 120 Market Analysis of EVs Introduce NEV regulation to produce and import 10% of NEV (EV, PHEV, FCV) out of 30,000 new generation vehicle to reduce CO2 emission The "Green Deal Policy" launched by the European Union in 2019 aims to reduce carbon emissions by at least 50% by 2030 and achieve 100 Introduced ZEV regulation to promote sales of Stop selling ICV (Internal Combustion Engine Stop selling ICV (Internal Combustion Engine units of yearly production and import vehicle. Set goal of fuel consumption of new car to Notes: EVs = BEVs and PHEVs. Vehicle models do not include the various trim levels Sources: IEA analysis based on <u>EV Volumes</u>. 80 25.4km/l by 2030 (19.2km/l in 2016). O USA O CHN carbon neutrality targets by 2050. Reach 30% of EV sales by 2030 Increase of EV models and sales 8 - CHE -USA FRA BEL DEU GBR Policy and Regulation /ehicle) by 2030. Vehicle) by 2040. NOR NLD C NIPPON KOEI ORDECO Germany Regulation France - ATI ESP PRT DNK-FIN 20% -10% -- %0 %06 100% 40% 30% Country China Japan Ē SU Share of EVs in car sales

Japan International Cooperation Agency | 14

NIPPON KOEI PADECO

Japan International Cooperation Agency | 13

NIPPON KOEI ORDECO

Market Analysis of EVs

Market Analysis of EV Batteries

ICA

Chinese and European governments spent more money on EVs. Sales price of EVs remain cheaper in China. Subsidies

Market Analysis of EV Batteries

- Market size of EV batteries
- The EV battery market is expected to be worth 218.47 billion USD by 2027, from 34.08 billion USD in 2020 (CAGR of 31.56%).
- The lithium-ion battery segment is expected to dominate the market. There are technological advancements of the lithium-ion battery market and reduced the
 - overall cost of lithium-ion battery production.
- Asia Pacific is expected significant growth in the EV battery market due to increasing demand from China, India, Japan, and other countries.
 - The increasing share of EVs and rising sales volumes are also driving demand for lithium-ion battery in the U.S. and Europe("Green Deal Policy").

Increase market demand of EV batteries

NIPPON KOEI PADECO

Japan International Cooperation Agency | 16

jica

Market Analysis of EV Batteries

Increase market demand of EV batteries

Demand side measures such as limiting the growth of battery size can help bridge the gap

ed Pledges Sce Notes: NZE = Net Zero Emissions by 2050 Scenario; STEPS = Stated Policies Scen Sources: IEA analysis based on <u>Benchmark Mineral Intelligence</u> for supply capacity

Japan International Cooperation Agency | 17

Charging Infrastructure

Jica

Increase number of EV charging stations China and Europe boast the largest EV charging networks in the world. Governments provide subsidies for installation of charging stations.

3. Analysis of EV Markers

Analysis of EV Markers

EV auto makers

Japan International Cooperation Agency | 19

NIPPON KOEI PADECO

Analysis of EV Markers

Japan International Cooperation Agency | 20

Companies included in the EV, battery and top-ten automaker indices

EV auto makers

Top-ten automakei index	 Toyota Motor Volkswagen Kia 	General motors Ford Motor Nissan Motor Stellantis Renault Hyundai Motor Mercedes-Benz Group
Battery index	 LG Energy Solution BYD Contemporant 	Amperexponent Amperex Technology Ltd Samsung SDI Gotion High-Tech Eve Energy Co Farasis Energy Gan Zhou
EV index	Tesla Lucid Group Rivian Automotive NICO	NIC Li Auto XPeng Fisker Nikola Arrival Proterra Lion Electric Hyzon Motors Canoo Hyllion Holdings Corp
		battery Battery Parasonic (1) 105HIBA With there Jupan 0.10 Chem Mattery Matte
	■ ►	
automobile & parts	G BOSCH Autom APTIV M	

Japan International Cooperation Agency | 22

NIPPON KOEI PADECO

Japan International Cooperation Agency | 21

NIPPON KOEI PADECO

Nider () BOSCH United Amonu

HITACHI Implie the head

Ontinenta

FUKUTA S!

motor DENSO

Analysis of EV Maker

Jica

Main players of EV makers

NIPPON KOEI ORDECO

Japan International Cooperation Agency | 23

Case Study (Japan)

NIPPON KOEI PADECO

Japan International Cooperation Agency | 24

4. Case Study

Cost analysis of each vehicles in Japan
 BEV is the lowest cost, but shorter driving range and longer charging time are challenges.

	Car Type	Sales Price	Pay on a spot	Driving range	Distance that can be traveled for 1,000 yen
BEV	Tesla Model S	12,000,000 yen	600 yen	650 km	923km
PHEV	Toyota SIENTA (PHEV)	2,910,000 yen	6,720 yen	1,142 km	169 km
ICV	Toyota SIENTA (ICV)	2,560,000 yen	6,560 yen	850 km	129 km
FCV	Toyota MIRAI	7,100,000 yen	6,720 yen	850 km	126 km
			Ref. Tesla Japa https://car.rakut	n, Toyota, en.co.jp/magazine/;	articles/2022/carlife05/

NIPPON KOEI ORDECO

Case Study (Japan)

) ICA

Case Study (Japan)

ICA

Comparison of infrastructure in Japan

Fuel stations:

Internal Combustion Engine Vehicle Battery-powered vehicle Fuel-cell vehicle (hydrogen vehicle)

28,500 21,000

(as of Nov. 2022)

Increase no. of EV charging stations

161

EV charging stations: FCV hydrogen filling stations:

Limited no. of hydrogen filling stations

Car Sales by Fuel Type in Japan (January to October 2022)

1824224 Total 100.00% Others 0.00% 68 0.04% FCV 810 22861 1.25% BEV 29738 1.63% PHV **VH**A/VH 48.43% 883432 N S 887315 48.64%

• ______ T §

Ref: Japan Automobile Dealer Association

Japan International Cooperation Agency | 27

NIPPON KOEI ORDECO

Case Study (Japan)

Increase no. of EV charging stations in Japan

Highway stations Roadside stations

Hotels

161 FCV hydrogen filling stations in Japan

Kinki: 22

Kanto: 59

R

Limited no. of hydrogen filling stations in Japan

Case Study (Japan)

ICA

Ref. GoGoEV, NeV, ENEOS, Toyota Mirai Japan International Cooperation Agency | 28

-ocation of FCV hydrogen stations in central Tokyo

(5 stations only)

Location of EV charging stations in central Tokyo

NIPPON KOEI PADECO

- Cost of installation of charging station in Japan
- Rapid charging station: 21,500-36,000USD Normal charging station: 1,500 -2,900USD
- Plan of EV stations for general customers in Japan

Plan to use EV charging station	Rapid charge plan	Normal Charge plan	Combine plan
Charging machine	Rapid charger	Normal charger	Both
Monthly plan	28.5 USD/mo	10 USD/mo	31.5 USD/mo
Pay on a spot	0.1 USD/min	0.02 USD/min	0.1 USD/min 0.02 USD/min
Registration charge		10 USD	

Japan International Cooperation Agency | 30

NIPPON KOEI PADECO

Japan International Cooperation Agency | 29

Ref. GoGoEV, NeV, ENEOS, Toyota Mirai

Kyushu: 14

NIPPON KOEI ORDECO

Chubu: 49

Ref. Guliver, GoGoEV, NeV, ENEOS

Case Study (Japan)

Household EV charger

Installation of household charging plugs: JPY 40,000-120,000 (USD 270-820)

Running cost: EV < ICV ٠

and ICV (Toyota Prius), running cost of Nissan Leaf is JPY 30,000 (USD 200) cheaper than Toyota When you drive 10,000km with EV (Nissan Leaf) Prius.

Subsidy in Japan Details can be access from

Example of subsidies for household EV charger

NIPPON KOEI PADECO

Japan International Cooperation Agency | 31 Ref. ENECHANGE

NIPPON KOEI PADECO

Case Study (Japan)

Japanese EV makers analysis

Name	Area	Analysis
Toyota	Automobile	 Focused on PHEV, FCV & BEV. By 2025, Toyota will introduce EV (PHEV, BEV, FCV) in all models. BEV for personal mobility (car for 1-2 passenger use), connected EV & MaaS (Mobility as a Service). Creating EV platform called 'e-TNGA' with Subaru for efficiency of EV development.
Nissan	Automobile	 Nissan set goal of EV & e-POWER sales ratio as 30% by 2022. Nissan developed a simple Hybrid system called 'e-POWER', which uses engine only for power creation. E-POWER can realize shorter charging time and cheap selling price. Nissan also develops small EVs.
Panasonic	Electronics	 Operating EV battery factory 'GIGA factory' with Tesla. In April 2022, Panasonic established 'Prime Planet Energy & Solutions' with Toyota to produce EV battery. Panasonic launched EV with self-driving system called Spacy.
Prime Earth EV energy	Battery	 Toyota and Panasonic established together in 1996 to produce EV battery. Increasing production capacity based on Toyota's plan. A factory for HEV battery (nickel metal hydride battery) was established in 2021.
PPON KOEI	ADECO	Japan International Cooperation Agency

)ic

Different types of FCV hydrogen filling stations

@Hydrogen filling station

@ Convenience store

Company and the second

@ Compressed Natural gas station

@ Liquefied petroleum gas station

Cost of installation of hydrogen filling station in Japan Subsidy of govt : Initial cost: Installation :

Ref. 500 million yen (3.6 million USD) 350 million yen (2.5 million USD) 150 million yen (1.1 million USD)

https://www.jhym.co.jp/station/ https://www.etic.co.jp/feature/hydrogen-station1118//

Japan International Cooperation Agency | 32

ICA

Case Study (Japan)

Each Japanese makers analysis

Name	Area	Analysis
Prime Planet Energy & Solutions	Battery	 EV battery maker for Lithium-ion battery funded by Toyota (51%) and Panasonic (49%). Developed EV battery for all-solid battery and started operation in April 2020. Provide batteries not only for Toyota but also for other makers.
Denso	Electronic parts for automobile	 Toyota was agreed to business transfer and Denso of main electronic parts business (such as inverter, motor, semiconductor) to increase competitive advantage. To develop auto driving car, Denso strength cooperation with Toyota.
Aishin Seiki	Powertrain	 For development of auto driving car, management integration with subsidiary named Aishin AW in April 2021, and changed company name to Aishin. Mass production of EV motor parts started in 2020 and supply the parts to Toyota EV production in China.
Hitachi Automotive Systems	Electronic parts for automobile	 Provide EV motor to GM (General Motors), Inverter to GM, Ford Motors, Mercedes, BMW etc. In October 2019, management integration with Honda suppliers (Kehin, Nisshin Kogyo, and Showa) in purpose to become a maga player in the field of auto powertrain, chassis, self-drive, and ADAS (Advanced driver-assistance systems).
	2	Japan International Cooperation Agency 34

Consumer price: 8-8.7 USD/Litter

@ Gas station

Case Study (Japan)

S
S)
Ē
č
ສ
Ś
ē
¥
č
ő
ő
Ö
a
5
ă
_

Name	Area	Analysis
Meidensha	Heavy power (Power equipment)	 Provide EV motor and inverter to Misubishi auto factory. Invested 7 billion yen to equipment facility at 3 factories in 2018. Invested to subsidiary Meidensha for EV production in China in 2019. Established new factory development for motor and invertor with investment of 5 billion yen in Feb 2020.
NiDec	Motor	 Produce EV motor, and parts of together with motor and inverter. Order of EV motor was rapidly increased by 2023, decided to expand production lines in Poland and Mexico in addition to a current factory in China.
Mitsubishi Electric	Electronics	 Provide inverter to Honda, Suzuki and Daimler. Develop V2H (Vehicle to Home) system, that utilize EV battery for household power supply.
TDK Automotive	Inverter	EV inverter maker funded by TDK (75%) and Toshiba (25%). Drovide inverter to Volkewaren and Ford Motors etc.

Ref. SPEEDA

NIPPON KOEI PADECO

Japan International Cooperation Agency | 35

Case Study (Barbados)

- Cost of charging station
- 0.15 kWh/km to 0.2 kWh/km About 2,200 to 2,900 kWh of electricity
- per year About \$1,300 to \$1,700 per year in electricity based on our residential tariff

Top-up charger (Garo)\$1.5/kWhMedium & fast chargers (DBT)\$1.75/kWhAll you can charge\$600/monthAll you can charge (non- megapower Evs)\$1,000/month	 Megapower rate 	
Medium & fast chargers (DBT)\$1.75/kWhAll you can charge\$600/monthAll you can charge (non- megapower Evs)\$1,000/month	Top-up charger (Garo)	\$1.5/kWh
All you can charge\$600/monthAll you can charge (non- megapower Evs)\$1,000/month	Medium & fast chargers (DBT)	\$1.75/kWh
All you can charge (non- megapower Evs)	All you can charge	\$600/month
	All you can charge (non- megapower Evs)	\$1,000/month

Ultra charger 100kW: 30-45 mins Rapid charger 25kW: 2-3 hours Fast charger 7.2kW 10-16 hours Charging speed

tourist areas.

Ref) The Barbados Light & Power Company Limited, NIPPON KOEI ORDECO Megapower

Case Study (Barbados)

ICA

- EV Dealers in Barbados
- https://www.megapower365.com/ Megapower Barbados

https://www.courtesygarage.com/showroom/

Private vehicles Hyundai (EV and HV)

Courtesy Garage Barbados

- Private vehicles NISSAN Ъ
- BYD (bus, van, trucks etc.) Commercial vehicles

JAGUAR

NISSAN ARIYA (BEV) @Megapower 150,000 BBD NIPPON KOEI PADECO

NISSAN X-TRAIL (ICV) @COURTESY 117,995 BBD

NISSAN JUKE 2015 (ICV) @qv motors 55,900 BBD Japan International Cooperation Agency | 36

Jica

- New Incentives of the Barbados Government
- Government workers who can borrow up to \$100,000 interest-free for purchase an electric or hybrid vehicle (it was $\$50\ 000$ for vehicle purchase)
- Tax and VAT holiday on electric vehicles for 24 from April 1, 2022. Also, 10% import duty for the next two years on the purchase of electric vehicles".

Ref) Electric cars tax breaks, but new alternate levy https://barbadostoday.bb/2022/03/15/electric-cars-tax-breaks-but-new-alternate-levy/

NIPPON KOEI PADECO

Japan International Cooperation Agency | 37

Introduction of New Technology

 $(\boldsymbol{\Theta})$

([

8

 \mathcal{C}

5. Introduction of New Technology

https://www.youtube.com/watch?v=ng3X39lenvg YouTube Video:

Toyota's Woven City: a Prototype City of the Future

Toyota has revealed plans to build a prototype "city" of the future on a 175-acre site at the base of Mt. Fuji in Japan.

88

a "living laboratory," the Woven City will serve as a home to ecosystem powered by hydrogen fuel cells. Envisioned as telligence robotics, Called the Woven City, it will be a full connected full-time residents and researchers who will be and develop technologies such as autonomy, personal mobility, smart homes and artificial in a real-world environment.

Read more about Toyota's Woven C https://blog.toyota.co.uk/toyota-wove...

Japan International Cooperation Agency | 40

Introduction of New Technology

NIPPON KOEI ORDECO

Smart Grid is the integration of our existing Electrical Grid with 2-way communication and digital sensing technology in order to enhance the capabilities of the current grid and make it more secure, reliable, efficient, and self-sufficient.

Smart Grid : The Electrical Grid of the Future

Jica

Wireless Transmission

Power supply base Underground unit 給電基地 地中ユニット Japan International Cooperation Agency | 42

NIPPON KOEI PADECO

Japan International Cooperation Agency | 41

Ref) https://www.toyota.co.jp/jpn/tech/partner_robot/news/202112_01.html

mage of wireless charging of EV

NIPPON KOEI ORDECO

Introduction of New Technology

Wireless Transmission

Experiment of PV and wireless charging system

https://media.dglab.com/2022/05/02-dwpt-01/

NIPPON KOEI PADECO

Japan International Cooperation Agency | 43

Introduction of New Technology

Electric carrier ship

transports it. Power X Inc. manufactures and operates large storage batteries and deliver clean power Power X is an electric carrier ship that stores electricity generated from the ocean in batteries and

generated by offshore wind power stations to around the world. Conventional power transmission systems using submarine cables are problematic in terms of installation costs (e.g., drilling of the seabed) and environmental impact, but Power X does not require large-scale construction work and has minimal environmental impact.

Ref. Power X, PowerX, Inc. (power-x.jp)

JICA Expert of Human Resources Development/Monitoring Project Consultant @PADECO amiyaura@padeco.co.jp

Anna Miyaura (Ms.)

Thank you!

Image of wireless transmission to remote islands

Image of wireless transmission to a large flying object for use in a communication network *There is a plan to build a PV generation facility in space for wireless transmission.

Ref. https://www.ieice.org/~cs-edit/magazine/ieice/spsec/Bplus57_sp.pdf

NIPPON KOEI PADECO

Japan International Cooperation Agency | 44

Appendix 4-1-2 Attendant list of the 1st Energy Efficiency Workshop (Barbados)

Attendant List

Project: Technical Cooperation to Promote Energy Efficiency in Caribbean Countries

Meeting Title: Energy Efficiency Workshop for Barbados

Venue: Dover Beach Hotel, Bridge town

Date: 11/23/2022

Time: 10AM - 3PM

No	Name	Organization	Title	E-mail	Signature
1	FABIAN SCOTT	BNSI	Mr		Athe
2	DAMIEN PRESCOP	BNS/	Metrologist		6 DR
3	CHARMAINE GILLENT	NS 34PC	Engineer		
4	ALEY HAREWOOD	JET	Technical Asst.		AUTA
5	Natersha Carbu	Mar	Opriet		redy on
6	Davelle Eranon	UWI	Researcher		ilu D
7		· · ·			
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

Appendix 4-2-1 Material for the 2nd Energy Efficiency Workshop (Barbados) (1)

Energy Efficiency & Conservation (EEC) Materiel Technical Cooperation to Promote Energy Efficiency in Caribbean Countries

- Energy Consumption Analysis & EEC Roadmap -

Barbados, January 2023

Nippon Koei Co., Ltd. PADECO Co., Ltd.

NIPPON KOEI

Japan International Cooperation Agency | 1

1. Energy Consumption Analysis from **Energy Balance Table**

Commercial Sector 4. Promising Energy Efficient Technologies in nonindustrial sectors

Residential Sector

5. References

NIPPON KOEI PADECO

Energy Consumption Analysis from Energy Balance Table

Current situation : Energy consumption outlook by sector and energy source

1. Energy Consumption Analysis from Energy Balance Table

2. Energy Efficiency & Conservation (EEC) Roadmap in

3. Energy Efficiency & Conservation (EEC) Roadmap in

- Transportation is the largest energy consuming sector (33%) followed by Commercial & public service sector (28%) and residential sector (19%).
- Electricity is the largest energy source (52%) followed by oil (43%).

Commercial

& public

Industry

Energy consumption by sector and energy source on primary energy basis (2019, ktoe)

Other

Residentia

Transportation

Bio/waste	7	0	0	1	0	8	2%
Charcoal	0.0	0.0	0.2	0.0	0.0	0.2	0%
Electricity (Primary energy basis)	28	97	72	26	0	223	52%
T . 4 . 1	55	122	83	27	141	428	100%
Iotai	13%	28%	19%	6%	33%	100%	100%

consumption at demand side.

Note 2: To calculate primary energy consumption of electricity, energy efficiency at end use (36.3%) was used based on the material by Government of Barbados.

Source: JET with reference to energy balances (2019) by United Nations Statistics Division for overall energy balance and the material above mentioned (Note 2) for primary energy conversion factor calculation of electricity.

https://unstats.un.org/unsd/energystats/dataPortal/

NIPPON KOEI

Natural da

Japan International Cooperation Agency | 2

Total

185

12

43% 3%

İİCA Contents

Energy Consumption Analysis from Energy Balance Table

• Energy consumption should be evaluated on primary energy basis.

• Commercial & residential sectors share about half of the primary energy consumption.

NIPPON KOEI PADECO Japan International Cooperation Agency

Energy Consumption Analysis from Energy Balance Table

Commercial & Agriculture, forestry an fishing Industry Residential Other Transportation Total public Oil 8,147 42% 820 723 487 25 6,045 47 240 80 345 2% Natural gas 25 0 1,146 11 29 1.186 6% Bio/waste 0 Charcoal 0 0 0% 0 Electricity 623 5,036 3,077 785 9,521 50% (Primary energy basis) 2,614 5,999 3,655 839 6,045 47 19,199 100% Total 14% 31% 19% 4% 31% 0% 100%

Energy Consumption by Fuel and by Sector on Primary Energy Consumption Basis (2010)

Energy Consumption by Fuel and by Sector on Primary Energy Consumption Basis (2019)

	Industry	Commercial & public	Residential	Other	Transportation	Tota	d -
Oil	821	616	351	36	5,937	7,761	43%
Natural gas	22	402	94	0	0	518	3%
Bio/waste	312	0	0	27	0	339	2%
Charcoal	0	0	9	0	0	9	0%
Electricity (Primary energy basis)	1,163	4,091	3,019	1,085	0	9,358	52%
Tatal	2,318	5,109	3,473	1,148	5,937	17,985	1000/
lotal	13%	28%	19%	6%	33%	100%	100%

Energy Consumption Analysis from Energy Balance Table

Energy Consumption Analysis from Energy Balance Table

- Electric power consumption was reduced by 2% between 2010 and
 - 2019, some changes have been observed by sector:
 - Industry: Increased by 87%
 - Commercial: Decreased by 19%
 - Residential: Decreased by 2%

Changes in Electric Power Consumption by Sector from 2010 to 2019

Energy Consumption Analysis from Energy Balance Table İÌCA

- Biofuel & waste consumption has decreased significantly.
- As total, final consumption was reduced by 1.0 % during 2010 2019.

(LT)	Final Consum	ption by Fuel	T	Frend of Final	Consu	nption	by Fue	el (2010) — 2019 (ТЈ)
15k —					2010	Share	2019	Share	AAGR
				Electricity	3456	26%	3398	28%	-0.2%
10k				Biofuels & Waste	1186	9%	348	3%	-12.7%
_				Natural Gas	346	3%	518	4%	4.6%
5k -	\sim			Oil	8148	62%	7761	65%	-0.5%
				Total	13136	100%	12025	100%	-1.0%
				Note: AAGR = Ann	ual Average	Growth Rat	te		
0 1990	1995 2000	2005 2010 2015							
	OilBiofuels & Waste	 Natural Gas Electricity & Heat 							
IPPON		·			lanan l	nternatio	onal Cool	oeration	Δσρηςν Ι

Communities Inc. Even

					(LL)	
	2010	Share	2019	Share	AAGR	
Electricity	3456	26%	3398	28%	-0.2%	
Biofuels & Waste	1186	9%	348	3%	-12.7%	
Natural Gas	346	3%	518	4%	4.6%	
Oil	8148	62%	7761	65%	-0.5%	
Total	13136	100%	12025	100%	-1.0%	
Note: AAGR = Annual Average Growth Rate						

Japan International Cooperation Agency

- **Energy Consumption Analysis from Energy Balance Table**
 - Most of major sectors reduced final energy consumption and the industry sector is the largest among all (AAGR = -3.9%) during 2010 -2019.

Trend of Final Consumption by Sector (2010 – 2019)

	2010	Share	2019	Share	AAGR
Transport	6045	46%	5937	49%	-0.2%
Commerce	2791	21%	2503	21%	-1.2%
Households	1695	13%	1550	13%	-1.0%
Industry	2217	17%	1557	13%	-3.9%
Agriculture	47	0%	0	0%	-100.0%
Other consumers	340	3%	457	4%	3.3%
Total	13135	100%	12004	100%	-1.0%

NIPPON KOEI

Japan International Cooperation Agency | 10

Energy Efficiency & Conservation (EEC) Roadmap

2. Energy Efficiency & Conservation Roadmap - Residential Sector-

Energy Efficiency & Conservation (EEC) Roadmap

- Electric power consumption of refrigerator has been estimated to be reduced by 68% with EE Scenario compared with BAU Scenario.
- Energy efficiency of refrigerator in use at households will be 3.1 times more efficient compared with that of currently used in 2036 in EE Scenario with Introduction of MEPS.

Energy Efficiency & Conservation (EEC) Roadmap

- Electric power consumption of lighting equipment has been estimated to be reduced by 78% with EE Scenario compared with BAU Scenario.
- Energy efficiency of lighting equipment in use at households will be 4.7 times more efficient compared with that of currently used in 2036 in EE Scenario with Introduction of MEPS.

Electric Power Consumption by Lighting Equipment (GWh) up to 2036 (BAU and EE Scenario)

Assumed MEPS (EE Index) introduction for lighting equipment in EE Scenario

Japan International Cooperation Agency | 15

Energy Efficiency & Conservation (EEC) Roadmap

- Electric power consumption of air conditioner has been estimated to be reduced by 61% with EE Scenario compared with BAU Scenario.
- Energy efficiency of air conditioner in use at households will be 2.6 times more efficient compared with that of currently used in 2036 in EE Scenario with Introduction of MEPS.

Energy Efficiency & Conservation(EEC) Roadmap

 With MEPS introduction targeting refrigerator, lighting equipment and air conditioner, it has been estimated power consumption will be reduced by 51% in 2036.

jica

3. Energy Efficiency & Conservation Roadmap -Commercial Sector-

NIPPON KOEI PADECO

(GWh)

Japan International Cooperation Agency | 17

Energy Efficiency & Conservation Roadmap -Commercial-

- Electric power consumption of lighting equipment has been estimated to be reduced by 66% with EE Scenario compared with BAU Scenario.
- Energy efficiency of lighting equipment in use at households will be 2.9 times more efficient compared with that of currently used in 2036 in EE Scenario with Introduction of MEPS.

Assumed MEPS (EE Index) introduction for lighting equipment in EE Scenario

Energy Efficiency & Conservation Roadmap -Commercial-

- Electric power consumption of air conditioner has been estimated to be reduced by 61% with EE Scenario compared with BAU Scenario.
- Energy efficiency of air conditioner in use at households will be 2.6 times more efficient compared with that of currently used in 2036 in EE Scenario with Introduction of MEPS.

Energy Efficiency & Conservation Roadmap -Commercial-

- Electric power consumption of refrigerator has been estimated to be reduced by 59% with EE Scenario compared with BAU Scenario.
- Energy efficiency of refrigerator in use at commercial field will be 2.5 times more efficient compared with that of currently used in 2036 in EE Scenario with Introduction of MEPS.

Energy Efficiency & Conservation Roadmap -Commercial-

- With MEPS introduction targeting refrigerator, lighting equipment and air conditioner, it has been estimated power consumption will be reduced by 57% in 2036.
- Energy Saving Potential in Commercial Sector up to 2036 (BAU and EE Scenario)

Energy Saving Share by

Equipment in 2036 (EE Scenario)

Japan International Cooperation Agency | 21

Energy Efficiency & Conservation(EEC) Roadmap

• Current situation: Electricity consumption by sector and end-use

Electricity sales by demand group (last 10 years) and end-use

Source: JET with reference to Barbados NATIONAL ENEGY POLICY (2019-2030) and material by the Government of Barbados

NIPPON KOEI PADECO

EE&C Roadmap -Residential + Commercial Sectors-

 With MEPS introduction targeting refrigerator, lighting equipment and air conditioner, it has been estimated power consumption will be reduced by 55% in residential and commercial sectors in 2036.

4. Promising Energy Efficient Technologies in non-industrial sectors Trends in Annual Energy Consumption of Refrigerator (401 –450ℓ, 2003 - 2013)

EE Improvement of Refrigerator (Commercial), Japan

Comparison of Annual Energy Consumption of Refrigerator (Commercial)

Trends of EE Improvement of various ACs, Japan

Japan International Cooperation Agency | 27

Results of Comparison Experiment, INV vs Non-INV AC

200 - 300 lm/W

2010

White LED

2050

2007

2005

2002

2000

Trends of Luminous Efficiency

Linear Fluorescent

Compact Fluorescent

Mercury Lamp

1900

Incandescent LED lamp Lamp (810 lm, 54W) (810 lm, 9W) 30 minutes after lighting 26 °C 80 ℃ 559

> Contributes less AC demand

> > İCA

JÌCA

Daytime view

Road width	4.8 m
Installation	Approx.
interval	35 m
Installation	Approx.
height	4.5 m

Horizontal	2.75 Lu	
Vertical	Road center	0.41 Lu
plane (Min.)	Both sides of the road	0.39 Lu

Before refurbishment:

Mercury lamp 80W

After refurbishment: **LED 33W**

Horizontal	7.09 Lux	
Vertical plane (Min.)	Road center	
	Both sides of the road	1.49 Lux

PADECO NIPPON KOEI

Incandescent

(Im/W)

150

125

100

75

50

25

0 1850

Japan International Cooperation Agency | 29

NIPPON KOEI

Source: Japan security systems association

Japan International Cooperation Agency | 30

Introduction Examples of LED streetlamps (2)

Halogen

Source: Ministry of Economy and Trade and Industry, METI

1950

(Year)

			1
		-	
	_		

Road width	5.1 m
Installation interval	Approx. 30 m
Installation height	Approx. 5.0 m

PADECO

NIPPON KOEI

CFL 20W

Horizontal	1.76 Lux	
Vertical	Road center	0.17 Lux
plane (Min.)	Both sides of the road	0.12 Lux

After refurbishment: **LED 17W**

	Horizontal	5.56 Lux	
	Vertical plane (Min.)	Road center	0.78 Lux
		Both sides of the road	0.64 Lux

Introduction Examples of LED on Highways

Introduction Examples of LED streetlamps (1)

Source: IWASAKI ELECTRIC CO., LTD.

NIPPON KOEI PADECO

Source: The Consultant based on the material by the Tokyo metropolitan government (Jul.2017)

- ADECO

NIPPON KOEI

Japan International Cooperation Agency | 35

Japan International Cooperation Agency | 36

EEC Implementation Best Practice - Commercial Sector -

Evaluation of Energy Consumption Reductions on Primary Energy Basis

	Bef	Before		ter	Primary energy
Energy	2009	2013	2015	2016	consumption reductions
Electric power consumption	275 MWh x 12 = 3,300 MWh/year			171 MWh x 12 = 2,052 MWh/year	
Primary energy consumption	3,300 x 9.97 = 32,901 GJ/year			2,052 x 9.97 = 20,458 GJ/year	32,901 – 20,458 = 12,443 GJ/year
Cooling& heating demand		445 GJ x 12 = 5,340 GJ/year	325 GJ x 12 = 3,900 GJ/year		
Primary energy consumption		5,340 GJ x 1.36 = 7,262 GJ/year	3,900 GJ x 1.36 = 5,304 GJ/year		7,262 – 5,304 = 1,958 GJ/year
Total	32,901 + 7,262 = 40,163 GJ/year		20,458 + 5,304 = 25,762 GJ/year		14,401 GJ/year (36%)

Note1: Calculation was made by JET

Note2: Conversion factors for electric power and DHC were based on the guide for completing periodical report regarding EE law . (METI, Aug.2017) Note3: Changes of both heating and cooling demands by the introduction of LED are taken into account. Source: LET based on the material by the Tokyo Metropolitan government (Jul.2017)

NIPPON KOEI PADECO

Japan International Cooperation Agency | 37

Energy Efficiency & Conservation (EEC) Materiel Technical Cooperation to Promote Energy Efficiency in Caribbean Countries

- Energy Efficiency Building Code -

Barbados, January 2023

Nippon Koei Co., Ltd. PADECO Co., Ltd. Thank you very much for your kind attention !

NIPPON KOEI PADECO

Japan International Cooperation Agency | 38

Contents

1. Outline of EE Regulations in Residential Building

- 2. Examples of Simplified Calculation in Residential Building (Region-6)
- 3. Examples of Simplified Calculation in Residential Building (Region-8)
- 4. EEC Unique Approaches in Residential Building, Okinawa

1. Outline of EE Regulations in Residential Building Overview of the Energy Efficiency Standards for Residential Buildings

The evaluation of energy efficiency (EE) performance for residential buildings uses the following two standards:

- Standards to evaluate envelope performance (e.g. windows, exterior walls of residential buildings
- Standards to evaluate the primary energy consumption amount of equipment and appliances etc.

NIPPON KOEI PADECO

Japan International Cooperation Agency | 3

1. Outline of EE Regulations in Residential Building

• Envelope performance

> Average outer shell heat transmission coefficient (U_A)

U_A = (W/m²·K) Amount of total heat loss per unit of temperature difference Total surface area of exterior

- ≻ U_A
 - ✓ An indicator of the ease of heat transfer between indoor and outdoor air.
 - ✓ When the temperature difference between the inside and outside of the building is 1 °C, the amount of heat released per unit time from the inside of the building to the outside of building is divided by the total surface area of exterior.
 - ✓ The smaller the value, the more difficult it is for heat to enter and exit, and the higher the insulation performance.

1. Outline of EE Regulations in Residential Building

- Envelope performance
- $\succ\,$ Average solar heat gain coefficient during cooling period ($\eta_{AC})$

$$\eta_{AC} = \frac{\text{Amount of total solar heat gain per unit of solar radiation intensity}}{\text{Total surface area of exterior}} \times 100$$

≻ η_{AC}

 \checkmark An indicator of how easily solar radiation enters the room.

- ✓ Amount of heat acquired inside the building from solar radiation per unit of solar radiation intensity averaged by the cooling season and divided by the total surface area of exterior.
- The smaller the value, the less sunlight enters and the higher the shielding performance.

Japan International Cooperation Agency | 5

1. Outline of EE Regulations in Residential Building

by region by region. (regions are classified in 8 regions in Japan)

Envelope performance

		5	1	
1.	in the second second		1	
193	P	¢.	24	
3				
2				1
	·	1. 4 1.	1	

 \checkmark Standard values of U_A and η_{AC} are defined

 U_A Design Value \leq Standard Value

 η_{AC} Design Value \leq Standard Value

Region	1&2	3	4	5	6	7	8	
Standard Value of U_A	0.46	0.56	0.75	0.87	0.87	0.87	-	
Standard Value of η_{AC}	-	-	-	3.0	2.8	2.7	6.7	Revised in Apr.2020 as previous value was too strict (3.2)
NIPPON KOEI	<u> </u>						Japai	International Cooperation Agency

Japan International Cooperation Agency | 7

1. Outline of EE Regulations in Residential Building

- □ Promulgated on June 17, 2022 (Ministry of Land, Infrastructure, Transport and Tourism Housing Bureau
 - > Mandate that all new residential and nonresidential buildings comply with EEC standards
 - Conducted as part of the building permit process, integrated with the structural safety regulation conformity assessment.
 - Enforcement will be made by FY2025, while ensuring a sufficient preparation period in consideration of small and medium-sized construction firms and the development of the screening system.

1. Outline of EE Regulations in Residential Building

• Primary energy consumption amount

- + heating/cooling system primary energy consumption amount
- + ventilation system primary energy consumption amount
- + lighting system primary energy consumption amount
- + hot water supply primary energy consumption amount
- + other (household appliances) primary energy consumption amount
- reduction amount of primary energy consumption through PV, etc
- = primary energy consumption amount

U Evaluation of primary energy consumption amount

Design value (excludes home appliances etc.) ≦ 1.0 Standard value (excludes home appliances etc.)

NIPPON KOEI PADECO

Japan International Cooperation Agency | 8

2. Examples of Simplified Calculation in Residential Building (6 Region)

Average heat transmission coefficient U_A

Please fill in the values in the bold frame below.

Please enter the values in the bold boxes below.

In the case where a single part has <u>several</u> different specifications, the heat transfer coefficient shall be that of the specification with the largest heat transfer coefficient. If the area of a window is less than or equal to the total floor area of the unit dwelling multiplied by 0.02, the window specification concerned may be excluded.

				_	Heat transmission coefficier	t U	Result	_
Roof or ceil	Roof or ceiling		0.194	×	0.258	=	0.051	(1)
Outenwall	general sectio	n	0.489	×	0.430	=	0.211	(2)
Outer wall	Foundation w	all (Entrance)	0.004	×	4.11	=	0.017	(3)
Floor	Bathroom		0.009	×	3.34	=	0.031	(4)
FIOOI	Other Floors		0.121	×	0.492	=	0.060	(5)
Window			0.107	×	2.91	=	0.312	(6)
Door	Door		0.014	×	3.49	=	0.049	(7)
							1 Rounded up to the fourth	1 decimal place
				Linea	r thermal transmittanc	e∦ ∎	Result	-
Periphery o	f dirt floor, <u>etc.</u>	Entrance etc.	0.021	×	0.99	=	0.021	(8)
							↑Rounded up to the four	th decimal place
werage heat transmission coefficient of envelope: $U_A [W/(m^2 \cdot K)]$ Sum of (1)-(8) = 0.76 *Rounded up to the third decimal place (Conforming if the standard value is 0.87 [W/(m ² \cdot K)] or less)								
NIPPON KOE	PADECO				Japan Interr	ation	al Cooperation Age	ency 12

2. Examples of Simplified Calculation in Residential Building (6 Region)

Average solar heat gain during the heating season η_{AH}

If a site has <u>several</u> different specifications, the thermal transmittance of the specification with the largest thermal transmittance should be used. If a window has <u>several</u> different specifications, the vertical surface solar heat gain shall be that of the specification with the lowest vertical surface solar heat gain. If the area of the window is less than or equal to the total floor area of the unit dwelling multiplied by 0.04, the window specification concerned may be excluded.

			_ +	leat transmission coefficient	U	Result	
Roof or ceiling	0.658	×	0.258] =	0.169	(14)	
Outenwall	general section	0.882	×	0.430	1 =	0.379	(15)
Outer wall	Foundation Wall (Entrance)	0.002	×	4.11	1 =	0.008	(16)
door (<u>Western-style</u>)		0.014	×	3.49	1 =	0.048	(17)
					-	↑Rounded down to t place	he fourth decimal
			Coeff	icient of Vertical Surface	Solar		
			Н	eat Gain Coefficient η_d		Results	
window		4.786	×	0.32	=	1,531	(18)
					_	↑Rounded down to t place	he fourth decimal
Average sola	r heat gain during the heat	ing season η	ан [-]	Sum of (14)-(18	3) =	2.1	
					*	Rounded down to the place (Reference valu	second decimal e: None)
NIPPON KOEI	Padeco			Japan Intern	ation	al Cooperation A	gency 14

Simplified Calculation								
Envelope performance								
Region	Legend of sheet number							
6 Region	6 - 1 - 1 1: Floor-insulated dwelling (Bathroom floor insulation)							
wooden	Category 2: Floor-insulated dwelling 1: Wooden 3: Floor-insulated dwelling 2: Reinforced Steel, 3: Floor-insulated dwelling Steel, etc., 4: Foundation-insulated dwelling							

NIPPON KOEI PADECO

Japan International Cooperation Agency | 11

2. Examples of Simplified Calculation in Residential Building (6 Region)

Average solar heat gain during cooling season η_{AC} Please fill in the values in the bold frame below If a site has <u>several</u> different specifications, the thermal transmittance of the specification with the largest thermal transmittance should be used. If a window has <u>several</u> different specifications, the vertical solar heat gain shall be the vertical solar heat gain of the specification with the largest

vertical solar heat gain. If the area of a window is less than or equal to the total floor area of the unit dwelling multiplied by 0.04, the window specification concerned may be excluded. Heat transmission coefficient U Result (9) 0.659 .258 0.171 Roof or ceiling Х =).430 0.328 0.762 Х = (10)Outer wall General section 0.004 4.11 0.017 (11)Х = Foundation Wall (Entrance) 3.49 0.070 0.020 (12)Х = Door ↑Rounded up to the fourth decimal place Coefficient of Vertical Surface Solar Heat Gain Coefficient nd Results Window 4.356 × 0.32 1.394 (13)↑Rounded up to the fourth decimal place Average solar heat gain during cooling season η_{AC} [-] Sum of (9)-(13) =2.0

*Rounds up to the second decimal place (Conforming if the standard value is 2.8 [-] or less)

 Principal living space

Hot water floor heating

(Oil latent heat recovery hot water heater)

Hot water floor heating

(Gas latent heat recovery hot water heater)

2. Examples of Simplified Calculation in Residential Building (6 Region)

Simplified Calculation Primary energy consumption performance

Not installed

Room air conditioner

Other living space

Room air conditioner

Room air conditioner

Japan International Cooperation Agency | 15

İCA

Please fill in the envelope performance.

		Please fill in the figures in the bold frame below.
Average heat transmission coeff	icient U _A [W/(m ^² · K)]	0.76
Average solar heat gain during cool	ing season ŋ _{AC} [-]	2.0
Average solar heat gain during the	heating season _{Лан} [-]	2.1

From the Point Listing page, post the points you selected in (1) through (5) in the bolded box below and calculate the total.

2. Examples of Simplified Calculation in Residential Building (6 Region)

(1) Envelope performance and heating system

6

Region

Sheet No.

6-ENE-1

6-ENE-2

6-ENE-3

6-EN-4

PADECO

NIPPON KOEI

*Confirm the average heat transmission coefficient and the average solar heat gain during the heating season for the house in question, and check the points of the heating equipment with 🗹 the relevant envelope performance value. (However, only if the average solar heat gain during the heating season is 1.8 or higher.

Average heat tra coefficient U_A [W	nsmission //(㎡・K)]	Aver seas	age solar h on _{Лан} [-]	eat gain during the heating	point
 Greater than 0.69	0.78 or less	*	1.8 or higher	Less than 2.3	29
			2.3 or higher	Less than 2.8	28
			2.8 or higher	Less than 3.3	26
			3.3 or higher	Less than 3.8	25
			3.8 or higher	Less than 4.3	24
			4.3 or higher		21

(2) Envelope performance and cooling system

*Confirm the average heat transfer coefficient of the external envelope of the house in question and the average solar heat gain during the cooling season, and check the points of the cooling system with 🗹 the relevant external envelope performance value. (However, only if the average solar heat gain during the cooling the season is 4.3 or less.

	Average ł coefficier	neat transmission It U _A [W/(㎡・K)]	Aver	rage solar heat gain on _{7/AC} [-]	during the cooling	point
₹	0.69 or more	Less than 0.78			1.8 or less	9
			2	1.8 Larger	2.3 or less	10
				2.3 Larger	2.8 or less	11
				2.8 Larger	3.3 or less	13
				3.3 Larger	3.8 or less	14
				3.8 Larger	4.3 or less	16

(3) Ventilation equipment

*Please check the points by ticking the appropriate ones.

	type	point
	Ducted Type 1 Ventilation System	13
	Ducted Type 2 ventilation equipment or ducted Type 3 ventilation equipment	10
	Wall-mounted Type 1 ventilation equipment	10
V	Wall-mounted Type 2 ventilation equipment or Wall-mounted Type 3 ventilation	8
	equipment	

(4) Hot-water supply system

*Please check the points by ticking the appropriate ones.

type		Hot water-saving faucet*.1	point
Not installed		-	43
Conventional gas water heater		No	47
		Yes	44
Gas latent heat recovery water heater		No	40
		Yes	38
Conventional oil water heaters		No	42
		Yes	39
Oil latent heat recovery water heater		No	40
		Yes	38
Electric heat pump water heater (CO2 refrigerant)	<u> </u>	No	36
		Yes	34

*1: "Yes" can be selected for hot water-saving faucets when faucets with the following functions are installed in all "kitchen", "bathroom shower", and "washbasin" areas.

Kitchen": water shut-off function or priority water dispensing function

Bathroom shower: Hand-held shut-off function or low-flow discharge function

Washbasin": Priority water dispensing function

NIPPON KOEI PADECO

Japan International Cooperation Agency | 19

2. Examples of Simplified Calculation in Residential Building (6 Region)

Primary energy consumption calculation results (residential version)

1. Design primary energy consumption etc.

(1) Name of housing type	0000 residence (de	etached house)		
(2) Floor area.	Principal living space	Other living space	Non- living space	Total
	29.81 m2	51.34 m2	38.93 m2	120.08 m2
(3) Regional classification	6 Re	gion	******	***
(4) Primary energy consumption (per dwelling)			Design primary [MJ].	Standard Primary [MJ].
	heating facilities		17236	15382
	air-conditioning facili	ties	5390	5611
	ventilation equipment	t	4583	4542
	hot-water supply syst	tem	20940	25091
	lighting equipment		5964	10763
	Other equipment.		21241	21241
	On-site consumption generated by power s *1	of electricity generation facilities		
	Deductions related to the amount of electricity sold from cogeneration facilitie *2			
	total amount		75353	82629
(5) BEI	Primary energy consur others) [GJ/(unit/yea	nption (excluding ar)].	54.2	61.4
	BEI		0.89	9

electricity sold by the cogeneration facility.

(5) Lighting equipment

*Check the points for all fixtures in the main living room and all other living rooms by ☑ in the appropriate combination. However, lighting fixtures in non-occupied rooms must be non-incandescent.

tyr	зе		
Lighting fixtures in principal living rooms*. ²	Light	ing fixtures in other living rooms *.2	point
 Not installed 		Not installed	9
		LED	9
		Other than incandescent lamps	10
		Incandescent lamp	13
🛃 LED		Not installed	9
		LED	9
	M	Other than Incandescent lamps	10
		Incandescent lamp	13
 Other than incandescent lamps 		Not installed	11
		LED	11
		Other than incandescent lamps	11
		Incandescent lamp	14
 Incandescent lamp 		Not installed	15
		LED	15
		Other than incandescent lamps	16
		Incandescent lamp	18

2: "LED": LEDs are used in all devices.

"Non-incandescent": All equipment uses non-incandescent lamps.

"Incandescent": Incandescent lamps are used in any of the devices.

NIPPON KOEI MADECO -

Japan International Cooperation Agency | 20

3. Examples of Simplified Calculation in Residential Building (8 Region)

İÌCA

Simplified Calculation

Envelope performance

Region	Legend of sheet number
8 Region	8 - 1 - 1 (Bathroom floor insulation) 2: Floor-insulated dwelling
wooden	Category 1: Wooden 2: Reinforced Steel, Steel, etc. (Bathroom foundation insulation) 3: Floor-insulated dwelling (no bathroom floor in contact with outside air, etc.) 4: Foundation-insulated dwelling

NIPPON KOEI PADECO

Japan International Cooperation Agency | 23

3. Examples of Simplified Calculation in Residential Building (8 Region)

Average solar heat gain during cooling season η_{AC}

Please fill in the values in the bold frame below.

İÌCA

If a site has several different specifications, the thermal transmittance of the specification with the largest thermal transmittance should be used. If a window has several different specifications, the vertical solar heat gain shall be the vertical solar heat gain of the specification with the largest vertical solar heat gain. If the area of a window is less than or equal to the total floor area of the unit dwelling multiplied by 0.04, the window specification concerned may be excluded.

			ł	Heat transmission coefficient	tU	Result	
Roof or ceiling	5	0.959	×	0.99	=	0.949	(9)
Outer wall	General section	0.762	×	0.430	=	0.330	(10)
	Foundation Wall (Entrance)	0.004	×	4.11	=	0.016	(11)
Door		0.019	×	3.49	=	0.066	(12)
		•		•	,	TRounded up to the four	th decimal pla
			Coeffi	cient of Vertical Surface S	olar		
				Heat Gain Coefficient /	8	Results	
Window		4.55	×	0.63		2.867	(13)
		1				↑Rounded up to the four	th decimal pla
Average	e solar heat gain during cool	ing season η	7 _{АС} [-]	Sum of (9)-(13) =	4.2 *Rounds up to the secon {Conforming if the stands [-] or less)	d decimal plac ard value is 6.7

Note : For window, adopted coefficient of vertical surface solar heat gain of single-layer glass.

transfer coeffi specification of	cient. If the area of a concerned may be ex	window is less than or e cluded.	qual to the total f	loor area	a of the unit dwelli	ng multiplied	by 0.02, the wir	idow
					Heat transmission co	efficient U	Result	
Roof or ceil	ing		0.194	\times	0.99	=	0.192	(1
Outerwall	general section	n	0.489	×	0.430	=	0.211	(2
Outer wall	Foundation w	all (Entrance)	0.004	×	4.11	=	0.017	(3
Floor	Bathroom		0.009	×	3.34	=	0.031	(4
FIOOI	Other Floors		0.121	×	0.492	=	0.060	(5
Window		0.107	×	6.0	=	0.642	(6	
Door	Door		0.014	×	3.49	=	0.049	()
							Rounded uptothef	ourth decir
				Line	ar thermal transmi	ittance ψ	Result	
Periphery o	f dirt floor, etc.	Entrance etc.	0.021	\times	0.99	=	0.021	(8
							↑Rounded up to the	fourth de

Note 1: U_A of roof /ceiling was adopted the standard value in region 8 while other values are set at same value as region 6 (there is no standard values for them). Note 2: For window, adopted coefficient of vertical surface solar heat gain of single-layer glass.

NIPPON KOEI PADECO ____

Japan International Cooperation Agency | 24

3. Examples of Simplified Calculation in Residential Building (8 Region)

Region

Sheet No.	Principal living space	Other living space			
8-ENE-1	Not in	stalled			
8-ENE-2	Room air conditioner				

3. Examples of Simplified Calculation in Residential Building (8 Region)

Please fill in the envelope performance.

Please fill in the figures in th	ne bold frame below
Average heat transmission coefficient $U_A[W/(m^3 \cdot K)]$	1.22
Average solar heat gain during cooling season η_{AC} [-]	4.2

From the Point Listing page, post the points you selected in (1) through (4) in the bolded box below and calculate the total.

3. Examples of Simplified Calculation in Residential Building (8 Region)

(2) Ventilation equipment

*Please check the points by ticking the appropriate ones.

	type	point
	Ducted Type 1 Ventilation System	16
	Ducted Type 2 ventilation equipment or ducted Type 3 ventilation equipment	13
	Wall-mounted Type 1 ventilation equipment	13
M	Wall-mounted Type 2 ventilation equipment or Wall-mounted Type 3 ventilation	10
	equipment	

(3) Hot-water supply system

*Please check the points by ticking the appropriate ones.

type		Hot water-saving faucet*. ¹	point
Not installed		-	38
Conventional gas water heater		No	42
		Yes	39
Gas latent heat recovery water heater		No	36
		Yes	33
Conventional oil water heaters		No	38
		Yes	35
Oil latent heat recovery water heater		No	36
		Yes	33
Electric heat pump water heater (CO2 refrigerant)	1	No	26
		Yes	25

IICA

(1) Envelope performance and cooling system

*Confirm the average heat transfer coefficient of the external envelope of the house in question and the average solar heat gain during the cooling season, and check the points of the cooling system with 🗹 the relevant external envelope performance value. (However, only if the average solar heat gain during the cooling season is 8.7 or less.

	Average heat transmission coefficient U _A [W/(㎡・К)]	Average solar heat gain during the cooling season _{17AC} [-]	point
	✓ 1.05 or more Less than 1.50	1.7 or less	19
		□ 1.7 Larger 2.7 or less	25
		2.7 Larger 3.7 or less	30
		✓ 3.7 Larger 4.7 or less	35
		4.7 Larger 5.7 or less	40
		5.7 Larger 6.7 or less	45
		6.7 Larger 7.7 or less	50
		7.7 Larger 8.7 or less	55
	1.50 or more Less than 1.95	□ 1.7 or less	17
		□ 1.7 Larger 2.7 or less	22
		2.7 Larger 3.7 or less	26
		3.7 Larger 4.7 or less	30
		4.7 Larger 5.7 or less	35
		□ 5.7 Larger 6.7 or less	40
		6.7 Larger 7.7 or less	45
		7.7 Larger 8.7 or less	49
PPON KOEI	Padeco	Japan Internati	onal Cooperatio

3. Examples of Simplified Calculation in Residential Building (8 Region)

(4) Lighting equipment

*Check the points for all fixtures in the main living room and all other living rooms by 🗹 in the appropriate combination. However, lighting fixtures in non-occupied rooms must be non-incandescent.

	tyr	be		noint
ighti	ng fixtures in principal living rooms*. ²	Light	ing fixtures in other living rooms *.2	point
	Not installed		Not installed	11
			LED	11
			Other than incandescent lamps	12
			Incandescent lamp	16
4	LED		Not installed	11
			LED	11
		1	Other than Incandescent lamps	12
			Incandescent lamp	16
	Other than incandescent lamps		Not installed	13
			LED	13
			Other than incandescent lamps	14
			Incandescent lamp	17
	Incandescent lamp		Not installed	19
			LED	19
			Other than incandescent lamps	20
			Incandescent lamp	23

2: "LED": LEDs are used in all devices.

MADECO

NIPPON KOEI

"Non-incandescent": All equipment uses non-incandescent lamps.

"Incandescent": Incandescent lamps are used in any of the devices.

1. Design primary energy consumption etc.

(1) Name of housing type	0000 residence (de	etached house)				
(2) Floor area.	Principal living space	Other living space	Non- living space	Total		
	29.81 m2	51.34 m2	38.93 m2	120.08 m2		
(3) Regional classification	8 Re	gion	*****	****		
(4) Primary energy consumption (per dwelling)			Design primary [MJ].	Standard Primary [MJ].		
	heating facilities		0	0		
	air-conditioning facili	ties	15483	21289		
	ventilation equipment	t	4583	4542		
	hot-water supply syst	tem	12338	17922		
	lighting equipment		5964	10763		
	Other equipment.		21241	21241		
	total amount		59609	75756		
(5) BEI	Primary energy consun others) [GJ/(unit/yea	nption (excluding ar)].	38.4	54.6		
	BEI		0.7	0.71		

*1: Power generation facilities include cogeneration facilities and photovoltaic facilities. *2: This is the amount of primary energy consumption required to generate the electricity sold by the cogeneration facility.

NIPPON KOEI PADECO

Japan International Cooperation Agency | 31

NIPPON KOEI PADECO

4. EEC Unique Approaches in Residential Building, Okinawa jica

Energy Reduction Effects by Applying Efficient Technologies in Okinawa

Use	Energy consumption		Efficient technology	Energy consumption rate (standard value is set at 1.0) more efficient					
	standard value (GJ)			Level 1	Level 2	Level 3	Level 4		
		Use and c	ontrol of natural wind	0.96	0.91	0.88			
Cooling	10.3 <mark>(15%)</mark>	Solar radia	ation shielding method	0.9	0.8	0.75	0.		
		Cooling sy	r <mark>stem</mark> plan (efficient AC, etc.)	0.9	0.8	0.75	0.6		
	3.1 (5%)	Ventilation	ducted	0.7	0.5				
Ventilation	2.8	equipment	wall-mounted	0.8					
Hot water	42.0 (040()	Solar hot v	vater supply	0.9	0.7	0.5	0.		
supply	13.8 (21%)	Hot water	supply system	0.9	0.8	-	0.6		
	10.0 (000)	Daylight u	se	0.97~0.98	0.95	0.9			
Lighting	13.6 (20%)	Lighting E	quipment planning	0.85	0.8	0.7			
Appliances	21.4 <mark>(32%)</mark>	Introductio	on of high-efficiency appliances	0.8	0.6				
Other (Cooking)	4.4 (7%)								
Total amount	66.6]							
i otai allioulit	66.3								

4. EEC Unique Approaches in Residential Building, Okinawa, Japan

NIPPON KOEI PADECO

4. EEC Unique Approaches in Residential Building, Okinawa jica

Adopted EE Methods and Estimation of Energy Saving Effects - Example of the Model House - (1)

Use	Efficient technologies	Evaluation level	Energy consumption rate	Adopted EE methods
Cooling	Use of natural wind	3	0.88	 Openings on ventilation paths Openings with consideration of the prevailing wind direction Use of high windows
Cooling	Solar radiation shielding method	4	0.7	 Thermal barrier paint Thermal barrier block
	Cooling system planning	3	0.75	High-efficiency air conditioner (COP 4 or higher) + fan
Hot water supply	Hot water supply system planning	4	0.6	CO2 heat pump water heater
Ventilation	Ventilation system planning	1	0.8	Simplified ventilation system
Lighting	Daylight use	2	0.95	LD and individual rooms
	Lighting Equipment Planning	3	0.7	 High efficiency, control, and design ingenuity
Appliances		2	0.6	 Efficient products + reduced standby power

4. EEC Unique Approaches in Residential Building, Okinawa jica

Adopted EE Methods and Estimation of Energy Saving Effects - Example of the Model House - (2)

	Use	Standard value (GJ)	A	в	с	Design value (GJ)	Energy saving rate (%)	Note
	Cooling	10.3	0.88	0.7	0.75	4.76	53.7	4.76 = 10.3 X 0.88 X 0.7 X 0.75
	Hot water supply	13.8	0.6			8.28	40.0	8.28 = 13.8 X 0.6
	Ventilation	3.1	0.8			2.48	20.0	2.48 = 3.1 x 0.8
	Lighting	13.6	0.95	0.7		9.04	33.5	9.04 = 13.6 x 0.95 x 0.7
	Appliances	21.4	0.6			12.84	40.0	12.84 = 21.4 x 0.6
	Other	4.4				4.4	0	
	Total	66.6				41.8	37.2	
E	Energy saving rate							
e\	Points 1: Sur	nshine Shie	eld					
_	> Green roof							
		001						

NI

NIPPON KOEI

ation Agency | 36

4. EEC Unique Approaches in Residential Building, Okinawa jica

Key Points 1: Sunshine Shield

NIPPON KOEI PADECO

Methods to shield sunshine

- ✓ It is basic to keep the building skeleton close to the ambient temperature, not to heat it.
- ✓ The strong sunshine of Okinawa should be blocked outside.

Sunshine Shield in Urban Area

PADECO NIPPON KOEI

Sunshine Shield in Suburban Area

Japan International Cooperation Agency | 35

4.

Ke

> Solar Heat Shielding Paint

PADECO

4. EEC Unique Approaches in Residential Building, Okinawa jica

Key Points 1: Sunshine Shield

Solar Heat Shielding Block

4. EEC Unique Approaches in Residential Building, Okinawa jica

Key Points 1: Sunshine Shield

> Wall-surface Greening

Key Points 1: Sunshine Shield

> HANA Block

NIPPON KOEI PADECO

Japan International Cooperation Agency | 40

Key Points 1: Sunshine Shield

> AMAHAJI

AMAHAJI is Okinawa's traditional eaves where customers are welcomed as there is not entrance in Okinawa's unique houses.

NIPPON KOEI

4. EEC Unique Approaches in Residential Building, Okinawa jica

Key Points 1: Sunshine Shield

> Eaves

NIPPON KOEI PADECO

Japan International Cooperation Agency | 43

4. EEC Unique Approaches in Residential Building, Okinawa

4. EEC Unique Approaches in Residential Building, Okinawa jica

Key Points 1: Sunshine Shield

Louver

NIPPON KOEI PADECO

Japan International Cooperation Agency | 44

4. EEC Unique Approaches in Residential Building, Okinawa jica

Key Points 2: Create Cool Breeze, Bring Cool Breeze

Methods to Create Cool Breeze, Bring Cool Breeze

- ✓ It is basic to bring cool breeze in rooms
- ✓ Ingenuity in building layout and window positions

 \succ In summer, cool breezes are drawn into the building from the south. >In winter, the wind from the north should be blocked.

4. EEC Unique Approaches in Residential Building, Okinawa jica

Key Points 2: Create Cool Breeze, Bring Cool Breeze

> Windows at high position

Windows at high position (from outside)

Windows at high position (from inside)

NIPPON KOEI PADECO

Japan International Cooperation Agency | 47

4. EEC Unique Approaches in Residential Building, Okinawa jica

Key Points 3: Make good use of daylight

Methods to Make good use of daylight

- ✓ It is basic to allow light to enter a room while blocking direct sunshine.
- ✓ Utilization of inner court, high sidelight (windows on high position) and louver, etc.
- High Sidelight

High Sidelight

High Sidelight (sunshine enters indirectly)

4. EEC Unique Approaches in Residential Building, Okinawa jica

Key Points 2: Create Cool Breeze, Bring Cool Breeze

Security-friendly small window

NIPPON KOEI PADECO

Japan International Cooperation Agency | 48

4. EEC Unique Approaches in Residential Building, Okinawa jic

Key Points 3: Make good use of daylight

Introduction of light shelf concept

- If the eaves on the south side of the building are made two-tiered, the eaves blocks direct sunshine from entering the window.
- The light reflected on the upper part of the eaves is diffusely reflected on the ceiling of the room and light up the back of the room.

PADECO

NIPPON KOEI

- Energy Audit including Walk Through Survey -

4. EEC Unique Approaches in Residential Building, Okinawa

Key Points 3: Make good use of daylight

> HANA Block

Barbados, January 2023

Nippon Koei Co. PADECO Co.

NIPPON KOEI

Thank you very much for your kind attention !

1. Overview of MEB Building (energy division) in Bridgetown

3. Comparison with Other Buildings in Tropical Weather

2. Current Situation on Power Consumption

4. Examination of Energy Savings Opportunities

Japan International Cooperation Agency | 5

Overview of MEB (energy division) Building in Bridgetown, Barbados (entrance)

tem	Basic Data
Number of floors	2
Floor area	966 m2
Building use	Government
Annual power consumption	167,635 kWh
Annual power consumption per floor area	174 kWh/m2

1. Overview of MEB Building (energy division) in Bridgetown, Barbados

1. Overview of MEB Building (energy division) in Bridgetown, Barbados

Bird 'eye view of MEB (energy division) Building

PADECO

NIPPON KOEI

Appendix 4-2-1 Material for the 2nd Energy Efficiency Workshop (Barbados) (2)

1. Overview of MEB Building (energy division) in Bridgetown, Barbados

22.2 m

Pane

GROUND

NIPPON KOEI

PADECO

Bird 'eye view of MEB (energy division) Building

Floor area of ground floor

= 346 m2

1. Overview of MEB Building (energy division) in Bridgetown, Barbados

Bird 'eye view of MEB (energy division) Building

(kWh)

18,000

16,000

14,000

12,000

10.000

8,000

6,000

4,000 2,000 0

PADECO

NIPPON KOEI

Maximum month

Japan International Cooperation Agency | 11

Annual Power Consumption Share by Each Office (actual data, Sep.2021 - Aug.2022)

Office #8 is the largest power consumer and Office #8 and #7 share more than half of the total power consumption.

Japan International Cooperation Agency | 12

2. Current Situation on Power Consumption

8 9 10 11

Annual Power Consumption Share by Month (actual data, Sep.2021 - Aug.2022)

Monthly Power Consumption Trends at MEB

Office Building (actual data, Aug.2021 - Aug.2022)

Minimum month

12

1 2 3 4 5 6 7 8

(Month)

Power consumption in August is the largest month through a year. However, there is no significant difference by months.

2. Current Situation on Power Consumption

Power Consumption Trends at the Building (actual data, Sep.2021 - Aug.2022)

	9	10	11	12	1	2	3	4	5	6	7	8	TOTAL	AVE	MAX	MIN
Office #2	540	1,070	943	1,082	846	840	680	596	1,055	977	911	1,068	10,608	884	1,082	540
Office #3	695	1,055	978	1,136	929	1,275	1,209	1,186	1,455	1,342	1,166	1,442	13,868	1,156	1,455	695
Office #4	987	839	620	1,060	756	1,243	1,355	1,409	1,383	1,239	1,135	1,277	13,303	1,109	1,409	620
Office #5	650	692	677	928	676	958	851	758	707	661	767	927	9,252	771	958	650
Office #6	1,854	1,402	1,186	1,233	1,091	1,236	1,169	1,215	1,335	1,384	1,453	1,310	15,868	1,322	1,854	1,091
Office #7	3,506	2,993	2,655	2,662	2,268	2,302	2,615	2,611	2,819	2,725	3,090	3,008	33,254	2,771	3,506	2,268
Office #8	4,562	4,760	4,600	4,862	3,986	3,523	4,026	3,984	4,311	4,188	4,468	4,575	51,845	4,320	4,862	3,523
Office #9	1,820	1,905	1,456	1,490	1,252	1,290	1,463	1,410	1,560	1,973	1,998	2,020	19,637	1,636	2,020	1,252
Total	14,614	14,716	13,115	14,453	11,804	12,667	13,368	13,169	14,625	14,489	14,988	15,627	167,635	13,970	15,627	11,804

NIPPON KOEI PADECO

Summary Table of Annual Power Consumption per Floor Area

Location	Building use	Data number of buildings	Floor area (m2)	Annual power consumption (kWh)	Annual power consumption per floor area (kWh/m2)
Okinawa	Office	5	7,807 (average)	7,678,185	197
	State gvrnt office 1	1	15,989	1,641,600	103
	State gvrnt office 2	1	5,442	618,920	114
Hawaii	State gvrnt office 3	1	6,140	942,400	153
	State gvrnt office 4	1	22,146	3,184,800	144
	State gvrnt office 5	1	20,688	1,828,400	88
Barbados	MEB office	1	966	167,635	174

PADECO NIPPON KOEI

Japan International Cooperation Agency | 16

2. Comparison with Other Buildings in Tropical Weather

Monthly Power Consumption

• A bit larger difference has been observed in MEB building by season than those in Okinawa and Hawaii.

Japan International Cooperation Agency | 18

(GWh) 25 Office School Hotel 20 Public facility Plant Commercial facility Hospital Hotel (Hawaii) 15 Public facility (Hawaii) . 1 10 5 40 20 60 80 Floor area (x1000m2) PADECO NIPPON KOEI Japan International Cooperation Agency | 15

Annual Power Consumption Data (Okinawa & Hawaii)

2. Comparison with Other Buildings in Tropical Weather

Graph of Annual Power Consumption per Floor Area

NIPPON KOEI

Temperature - Naha, Japan

32

30

28

26

24

22

18

14

12 Jan

PADECO

NIPPON KOEI

289.5°C 19.8

194.6°C 14.

Feb Mar Ap

- Low Temp. (°C) - High Temp. (°C)

24.1%

21.7°

16

26.7

21.8

May Jun

Source: Weather Atlas

Average Temperature Bridgetown, Barbados

2. Comparison with Other Buildings in Tropical Weather

Average Temperature Honolulu (Hawaii), USA

- 3. Examination of Energy Savings Opportunities
 - Examination of energy savings by adopting efficient air conditioning technologies and approaches

Average Temperature Naha (Okinawa), Japan

26.8°C 26.6°C

Jul Aug Sep

29.4°

24

30.4°C

7.9°C

Oct Nov Dec

4.6°C

9.9°C

1.2°C

16.3°C

Japan International Cooperation Agency | 20

(i-a) Adoption of Inverter mini split air conditioners Reduction of 50% power consumption

Ref: Results of power consumption measurement of Inverter vs Non-Inverter AC Power Consumption kW 2.50 2.00 50% reduction 1.50 1.00 0.50 INV Non-INV INV Non-INV INV Non-IN\ PADECO

NIPPON KOEI

NIPPON KOEI

(i-b) Adoption of Variable Refrigerant Flow (VRF, Inverter always equipped) as an alternative of roof top air conditioners (Non-Inverter)

Ref: Measured power consumption data in 2 office rooms on Jun.12.2022 (24 hours, highest temp: 32.2 °C, lowest temp: 26.1 °C)

3. Examination of Energy Savings Opportunities

> 10 % power reduction was observed by heat shielding

	Room A inv	Room B inv	Effect of EE&C
	[kWh]	[kWh]	[%]
Jan.14	150	164	-9%
Jan.16	207	202	3%
Jan.20	93	86	8%
Jan.22	115	84	27%
Jan.28	146	122	16%
Jan.30	129	116	10%
Feb.3	148	141	4%
Feb.5	119	107	10%
Feb.9	152	132	13%
Feb.11	129	100	22%
Feb.13	126	103	18%
Feb.17	108	108	
ave.	135	122	10%

Source: "Data collection survey on energy efficiency in the D.R. final report" (Jan. 2016, JICA)

Ref: Energy Consumption Data in Office Building, Japan

00: Energy/total floor area

3. Examination of Energy Savings Opportunities

3. Examination of Energy Savings Opportunities

- (iii) Lower temperature setting of air conditioner
 - > 10 % power reduction by setting 1 °C higher temperature

Note: 13 % of power reduction with setting 1 °C higher temperature (by Ministry of Environment)

3. Examination of Energy Savings Opportunities

NIPPON KOEI

PADECO

Results of Examination (2) : Investment in INVERTER ACs

	Item	Unit	Value
Estimation of cooling	Total power capacity of building	kVA	85
	Power factor	%	90
	Total power demand of building	kW	76.5
capacity of existing	Power demand of ACs	kW	38.3
Non-INV ACs	Power demand of INV ACs	kW	12.8
	Power demand of Non-INV ACs	kW	25.5
	Cooling capacity of Non-INV ACs	kW	63.8

Item	Unit	Value
INV AC cost (5.27 kW in cooling capacity)	\$	1,700
Necessary number of AC	Unit	13
Total investment cost of INV AC	\$	22,100

Note: AC market survey conducted in Barbados by JET in 2019

Simple payback year = 22,100 / 17,881 = 1.2 year

Japan International Cooperation Agency | 29

3. Examination of Energy Savings Opportunities

Results of Examination (1) : power & cost savings

	Pre				
Annual power consumption for cooling		83,818			
Power consumption by INV AC	kWh		27,939		
Power consumption by Non-INV AC	kWh		55,879		Assun • 50%
Cooling loads by INV AC	kWh		139,697		• Effic
Cooling loads by Non-INV AC	kWh	139,697			
Total cooling loads	kWh	h 279,393			
		EE measure (i)	EE measure (i)+(ii)	EE measure (i)+(ii)+(iii)	
Power consumption after EE measures	kWh	55,879	50,291	45,262	
Power savings per year	kWh	27,939	33,527	38,556	
Power saving ratio	%	33	40	46	
Cost savings per year	\$	17,881	21,457	24,676	
Annual power consumption per floor area	kWh/ m2	145	139	134	
Note: Unit rate of power (customer charge + demand ch					

nption:

- of ACs are INVERTER at present
- ciency of INV AC = 5 in kW/kW

ciency of Non-INV AC = 2.5 in kW/kW

	\circ	Note: Unit rate of power (customer charge + demand charge + energy charge + fuel charge) = \$0.64/kW
NIPPON KOEI	ADECO	lapan International Cooperation Agency 28

Japan International Cooperation Agency | 28

3. Examination of Energy Savings Opportunities

Graph of Annual Power Consumption per Floor Area with EE Measures

4. References: Power Consumption Data of Refrigerator

Ref: Measured Power Consumption Data of Refrigerator in MEB Office (Sep.12 – 16, 2022)

4. References: Illuminance standards for offices

Illuminance (lux)		Place		Work	
- 750 -	: :	: : :	: : :	: :	
		Office (b), boardroom, conference	ce room, printing room,		
- 500 -	reception room, waiting room, dining room,	 computer room, control room, cl switchboards and instrumen machine rooms, etc. reception (desk) 	inic room t panels in electrical and		
_ 300 _	ecooking room, recreation room, guard room, entrance hall (at night), elevator hall	warehouse, electrical room, auditorium, machine room, miscellaneous workroom,	-		
200			washing area,		
- 150 -			hot water heating area, bathrooms, corridors, stairs, lavatories		
100	coffee room, rest room, changing rooms, storage	odging room, e, entrance (porch)			
- 75 -					
50	indoor emergency stairc	ase			
	Source:	JET based on EEC guidebook f	or building, 2022 (Energy E	fficiency and Conservatio	

Illuminance standards for offices in Japan (JIS Z 9110)

(Note)

(*) In the event that the office is used for detailed visual work or where daylight makes the room feel dark inside and bright outside the window, (a) should be selected.

(**) In the entrance hall, the illuminance should be high because the interior of the hall appears dark when the eye is applying the tens of thousands of lux from outdoor natural light during the day. The entrance hall (nighttime) and (daytime) may be adjusted with staged flashing.

NIPPON KOEI PADECO

Japan International Cooperation Agency | 32

4. References: EEC Check Items

EEC Promotion System

- ✓ Do you have a mechanism for continuous EEC (e.g. EEC committee, etc.)?
- ✓ Are PDCA cycles for EEC activities being implemented with management participation?
- ✓ Have you designated a person or leader responsible for promoting EEC?
- ✓ Have you set EEC targets?
- ✓ Are energy consumption statuses posted for employees to see?
- ✓ Have you established a policy and implementation plan for EEC measures?
- ✓ Do you conduct personnel training and EEC awareness activities?
- ✓ Do you have the time and budget for EEC efforts?

Source: JET based on EEC guidebook for building, 2022 (Energy Conservation Center of Japan)

NIPPON KOEI PADECO

Energy Management

- ✓ Do you tabulate (graphs, etc.) and visualize energy consumption by month/year?
- ✓ Is energy consumption measured and recorded by type and use, and constantly monitored?
- ✓ Do you measure hourly power usage and manage peak power?
- ✓ Do you analyze energy consumption taking into account outside temperatures and other factors?

Management of Energy Intensity, etc.

- ✓ Have you calculated a common energy unit cost for the office (e.g. \$/kWh, \$/litre, \$/m3)?
- ✓ Do you manage intensity ("energy use/floor area", "energy cost/floor area", etc.)?
- ✓ Do you manage energy intensity / expenses by each department?

Management Cycle -PDCA-

- ✓ Are you reviewing your EEC targets?
- ✓ Are you verifying the effectiveness of improvement measures implemented to date?
- ✓ Are you reviewing your plans for implementing future facility improvements and measures?

NIPPON KOEI OADECO Source: JET based on EEC guidebook for building, 2022 (Energy Efficiency and Conservation Center of Japan) Japan International Cooperation Agency | 36

4. References: EEC Check Items

- Is the illuminance standard for each room determined and controlled?
- ✓ Are window lights turned off (using daylight)?
- ✓ Are lights turned off when not needed, such as in unoccupied rooms or during lunch breaks?
- ✓ Do you adjust the lighting hours and number of exterior lights according to the hours of daylight?
- ✓ Have you cleaned the lamps and replaced old lamps?
- ✓ Are motion sensors used in restrooms, warehouses, etc.?
- ✓ Is the installation position (height and placement) of the lighting fixture appropriate for the required brightness?
- \checkmark Are lighting circuits subdivided so that lights can be turned off in unoccupied areas, etc.?
- ✓ Are lights dimmed or turned off by automatic control?
- ✓ Are you updating to LED lighting?
- ✓ Have you considered task ambient lighting (all room lighting => overall + hand lighting)?

Measurement, Recording and Maintenance

- ✓ Do you maintain equipment ledger, drawings and other documents?
- ✓ Have you identified equipment that should be intensively managed for EEC?
- ✓ Do you have operation records (daily, monthly, etc.) for major facilities?
- ✓ Have you set values to be managed and their ranges to check operating conditions?
- ✓ Do you perform daily inspection and maintenance of equipment?
- Are there management standards for major facilities (air conditioning, ventilation, lighting, production facilities, etc.)?
- ✓ Do you perform periodic calibration and inspection of measuring instruments?
- ✓ Are filters, strainers, etc. cleaned and replaced regularly?
- ✓ Do you conduct periodic repairs and leak inspections (water, steam, compressed air, etc.) of piping, etc.?

NIPPON KOEI PADECO

Japan International Cooperation Agency | 35

4. References: EEC Check Items

Improvements of Air Conditioning Efficiency

- ✓ Are outdoor units shaded and watered during the summer months?
- ✓ Are window blinds utilized to reduce heat gain through windows?
- ✓ Are filters cleaned regularly?
- ✓ Are shading films attached to window glass, and has plantings near windows implemented?
- \checkmark Is air introduced into the room at night when the outside temperature is cooler (night purge)?
- ✓ Can we reduce the size of the air-conditioned area (partitions, high ceiling linings, etc.)
- ✓ Are spot coolers used when the air-conditioned area is large and the number of people is small?
- ✓ Are air-conditioned areas blocking drafts?
- ✓ Are you updating to high-efficiency air conditioners?

Information Sharing Material - Energy Efficiency Policy in Japan -

Barbados, January 2023

Nippon Koei Co., Ltd. PADECO Co., Ltd.

Japan International Cooperation Agency | 1

NIPPON KOEI PADECO

Japan International Cooperation Agency | 39

Energy Efficiency - Energy Policy incl. EE&C in Japan -

Thank you very much for your kind attention !

Energy Efficiency - EE&C Targets in Energy Mix -

PADECO

NIPPON KOEI

jica

Year Policv 2002 **Basic Act on Energy Policy** 2003-2014 Released Basic Energy Policies 4 times in 2003, 2007, 2010, 2014 Long-term outlook for energy demand and supply 2015 Energy Mix in 2030 (ratio of power sources): RE: 22-24%, Nuclear: 20-22% 5th Basic Energy Policy 2018 • 2030: To achieve Energy Mix surely • 2050: Challenge to energy conversion and decarbonization **Prime Minister's speech** Greenhouse gas emissions to zero by 2050 Oct.2020 Establishment of a stable energy supply by thorough EE as well as introducing RE to the maximum extent.

EE&C Target for 2030 in Long-term Outlook for Energy Demand and Supply (energy mix)

NIPPON KOEI PADECO

NIPPON KOEI PADECO

Source: JET based on the Ministry of Economy, Trade and Industry's (METI) material. Mar.2021

• EE&C 2030 targets were developed sector by sector as well as technology by technology (bottom-up approach)

EE&C 2030 Targets by Sector (in Energy Mix)

NIPPON KOEI

Japan International Cooperation Agency | 4

Japan International Cooperation Agency | 6

Energy Efficiency - Progress of Energy Mix -

	FY 2018 results	Targets in FY 2030	Progress
1. Energy-originated CO ₂ emissions (total GHG emissions)	1.06 billion Ton (GHG:1.24 billion Ton)	0.93 billion Ton (GHG:1.04 billion Ton)	15 10 FY 2018 FY 2018 FY 2010
2. Electricity cost (fuel cost + FIT purchase cost)	8.5 Tera Yen • Fuel cost: 5.7 Tera Yen (Crude oil cost: 63\$/bbl) • FIT cost: 2.8 Tera Yen	9.2~9.5 Tera Yen • Fuel cost: 5.3 Tera Yen (Crude oil cost: 128\$/bbl) • FIT cost: 3.7~4.0 Tera Yen	15 10 5 FY 2010 0
3. Energy self- sufficiency rate (whole primary energy)	12%	24%	30% FY 2010 15% FY 2010 0%
4. Zero emission power supply ratio	23% • RE: 17% • Nuclear: 6%	44% • RE: 22-24% • Nuclear: 22-20%	50% PY 2010 25% PY 2018 0%
5. EE&C (final energy consumption in crude oil equivalent)	339 mil ke • Commercial/industry:210 • Residential:50 • Transport:80	326 mil kę Commercial/industry:230 Residential:40 Transport:60	4 PY 2010 Economy grandit 7%/1% PY 2013 PY 2018 (Energy Mix formulation) Economy

 Various EE&C technologies / approaches could be applied across the sectors, and these exceeded 40% of the energysaving target amount.

Cross Sectorial EE&C Approaches (in Energy Mix targets)

				(%)
	Industrial	Commercial	Residential	Total
Improvement of energy performance in new buildings/homes		6.6	6.2	12.8
High efficiency lighting	2.1	4.5	4	10.6
Energy management by utilizing BEMS / HEMS		4.7	3.5	8.2
Improvement of energy performance of specified equipment (Top runner program)		5.5	2.7	8.2
Energy saving (retrofit) of buildings/homes		0.8	0.8	1.6
Total	2.1	22.1	17.2	41.4

PADECO NIPPON KOEI

NIPPON KOEI

PADECO

Japan International Cooperation Agency | 5

■ Energy savings achieved in FY 2018 = ▲13.4 mil ke Progress rate = 26.6% # Average progress rate = 33.3% (2013-2030)

Progress of Energy Savings by Sector

	FY 2018 results						
Sector	Energy savings	Progress rate	Progress rate by EE&C measure				
Residential	▲2.9 mil kℓ	24.9%	 Introduction of LED, etc. 72% EE improvements of appliances 24% EE improvements of house 10% 				
Commercial	▲ 3.3 mil kł	27.1%	 Introduction of LED, etc. Energy management by BEMS, etc. Introduction of efficient refrigerator -freezer and router / server, etc. 63% 25% 18% 				
Industrial	▲2.8 mil k{	26.3%	Introduction of LED, etc. 66% Energy management by FEMS, etc. 18% Introduction of efficient motor 9% Introduction of industrial heat pump 8%				
Transport	▲4.4 mil kł	27.6%	Other measures in transport sector Diffusion of next generation vehicle 47%				

Source: JET based on METI's material, Mar.2021

Energy Efficiency - Energy Efficiency & Conservation Policy in Japan -

Energy Efficiency - Energy Efficiency & Conservation Policy in Japan

- Top runner program started in 1998 which was defined in EE law (establishment: 1979)
 - Standards for performance of appliances, etc. are set at the top runner performance in that year.
 - Other products (runner-up, etc.) are required to catch up and qualify the top runner level in designated duration.

Current Target Products of Top Runner Program (32 products)

Passenger Vehicles	enger Vehicles Video Tape Recorders Vending Machines		Printers	
Freight Vehicles	Electric Refrigerators	Transformers	Heat Pump Water Heaters	
Air Conditioners	Electric Freezers	Electric Freezers Electric Rice Cookers		
TV Sets	Space Heaters (Gas/Oil) Microwave Ovens		Bulbs	
Copying Machines	Gas Cooking Appliances	Gas Cooking Appliances DVD Recorders		
Computers	Gas Water Heater Routers		Insulation Materials	
Magnetic Disk Units	Oil Water Heaters	Switches	Sashs	
Lighting equipment	Electric Toilet Seats	Multi-function Printers	Double Glazing	
	Source: JET based on METI	s homepage Japan Inte	rnational Cooperation Agen	

Major Issues and EE&C Regulations by Sector

Thank you very much for your kind attention !

Energy Efficiency & Conservation (EEC) Materiel Technical Cooperation to Promote Energy Efficiency in Caribbean Countries

Information Sharing Material - Energy Audit Best Practice at Aquarium & Amusement Park in Japan -

Barbados, January 2023

Nippon Koei Co., Ltd. PADECO Co., Ltd.

Japan International Cooperation Agency | 1

NIPPON KOEI PADECO

Outline of the Aquarium & Amusement Park

Outline of the Aquarium & Amusement Park

- ✓ The company was Established in 1990.
- ✓ The amusement park was opened in 1993.
- ✓ Annual number of visitors; 4 to 5 million (Top 5 in Japan).
- ✓ The park is <u>type-1 designated energy management factory</u> under "the law concerning the Rational Use of Energy".
- Three-story aquarium with thousands of fish which is one of the largest in Japan.
 - ⇒ A lot of cold energy & heat (chilled & hot water) are necessary to maintain water temperature in water tanks constant all year around as well as space heating & cooling for visitors.

Other attractions

- > Vertical fall amusement (BLUE FALL) with 107 meters high.
- > Japan's first roller coaster that swings out over the ocean.
- > World famous Merry-Go-Round with thousands of lights glittering.

NIPPON KOEI PADECO

Japan International Cooperation Agency | 2

4 WANTS in the Company

- 1. Cut energy cost
- 2. Improve the efficiency of maintenance and operation of facilities
- 3. Promote further energy savings and environmental measures
- 4. Asset-light business operation by reducing investments

Two major backgrounds in Japan

- ✓ Increasing interests in energy savings by the law concerning the Rational Use of Energy.
- \checkmark Increasing interests in CO2 emissions reduction.

- Several companies proposed new system.
- Amusement park company itself analyzed and examined each proposal for more than a year.
- In the process of examination, the responsible person was appointed by the company played an important role on;
 - Providing suggestion to management from technical angle.
 - Verification of various figures indicated in proposals such as consumption of electric power, city gas, water.

```
NIPPON KOEI PADECO
```

Japan International Cooperation Agency | 5

Key Point 2 for Realization of 4 WANTS

Adoption of high efficiency heat pumps

- > The industry's first large-scale heat pumps with high efficiency.
- This heat pump won the Minister of Economy, Trade and Industry Prize at the Energy Conservation Awards.

- 1. Reduction of maintenance fee for co-generation
- 2. High efficiency system which contributes to energy savings and CO₂ reductions
- 3. Simple system toward the realization of efficient operation

Stop operation of co-gen (2 units) and introduction of high efficiency air-source heat pumps instead.

In case of air-source HPs, cooling water necessary in the existing system will not become necessary by air-source HPs.

Japan International Cooperation Agency | 6

System Comparison – existing system -

System Comparison – renewed system -

200

150

100

50

n

Construction Cost

81

Comparison of Life Cycle Cost

Primary Energy & CO₂ Emissions Reduction

fired absorption water heater-

chiller + centrifugal chiller

Air-source heat pumps

Existing

Renewed

Existing

system

Renewed

system

system

 19_{9}

reduction

By Chester I. Barnard

- 1. Common purpose
- 2. Willingness to cooperate*Incentive and Persuasion
- **3. Communication***to share common purpose/make organizational activities effective and efficient.

Review of JICA project & baseline survey

Stakeholders of JICA project

Barbados: MEB, BNSI, BLPC, BREA, UWI St. Kitts & Nevis: MPI, SKELEC, NIA, NEVLEC Jamaica: MSET, JPS

Red: policy makers Blue: electric power related companies Black: non-governmental institutes

NIPPON KOEI PADECO

Japan International Cooperation Agency | 7

St. Kitts & Nevis: Energy sector

Barbados: Energy sector

NIPPON KOEI PADECO

Japan International Cooperation Agency | 12

Common challenges from the perspective of organizational analysis

- Limited human resources & qualified staffs (1 staff covered wide area)
- Limited human resource development of plan and training opportunities
- Communication gaps between organizations (including data & information sharing)

Organizational management can improve these challenges

Organizational structure

-How to improve organization-

NIPPON KOEI PADECO

Japan International Cooperation Agency | 11

Different types of organizational structure

- ✓ To destroy tangible and intangible organizational barriers
- \checkmark To collect and share information
- ✓ To realize speedy / right decision making
- Committee organization
- Matrix organization
- Project organization
- Network organization internal network - IT, different hierarchy external network
- Flat organization
- Small organization
- Optimization and

Strengthen horizontal networking

- Optimization and diversification of information route
- Communication of hierarchical relationship

Barbados: MEB organizational chart

PADECO

NIPPON KOEI

Japan International Cooperation Agency | 13

Source: Masatake Ushiro (2002)

İÌCA

Matrix organization - Strengthen horizontal networking

Project organization - Strengthen horizontal networking

Project based organization

- Short time/small people
- **Gathering expert** of each division (better to recruit those who are interested in the project)
- Clear purpose/direct linkage with top management
- Top priority
- Close communication within members
- Visualization of result/feedback

Source: Masatake Ushiro (2002)

Network organization

- Optimization and diversification of information route
- Between members
 - departments organizations
- Functional relationship, but no hierarchy
- Independence
- Variety of information networks
- Variety of learning opportunities

NIPPON KOEI OADECO

Flat organization

PADECO

NIPPON KOEI

Excellent company

Informal organizations are developed, and their activities support formal organization to achieve common purpose

Non-excellent company: Informal organizations work against common purpose

place others on a pedestal

3. Recognise differences but Minimise their Importance

- trivialize
- fail to notice uniqueness « We are all the same »

Source: Philippe Rosinski (2022)

Bennett: « Towards Ethnorelativism: A Developmental Model of Intercultural Sensitivity. » 1993 Rosinski: « Beyond Intercultural Sensitivity: Leveraging Cultural Differences . » 1999

- Communication of hierarchical relationship

- Quick decision making
 - \checkmark simplification of information route and decision-making process
- **Reduce administrative cost**

NIPPON KOEI	Padeco
-------------	--------

4. Recognise and Accept differences acknowledge, appreciate, understand acceptance agreement, surrender • acceptance needs to be instinctual and emotional as much as intellectual 5. Adapt to differences move outside one's comfort zone • empathy (temporary shift in perspective) adaptation adoption, assimilation 6. Integrate differences hold different frames of reference in mind • analyse and evaluate situations from various cultural perspectives remain grounded in reality essential to avoid becoming dazzled by too many possibilities 7. Leverage differences make the most of differences, strive for synergy proactively look for gems in different cultures • achieve unity through diversity PADECO NIPPON KOEI Japan International Cooperation Agency | 23

Mindset for differences

NIPPON KOEI

Differences in response due to high homogeneity and high heterogeneity

communication Responsion	onsibility of steners Responsibility of speakers
relationship Stagi	
	ing vertical ationships Staging horizontal relationships
thinking Seekin	ng for a right Seeking for optimized

It is important to develop positive mindset for differences

Intercultural communication – Being able to rely on various forms of communication: explicit and implicit, direct

and indirect, affective and neutral, formal and informal

Source: Philippe Rosinski (2022)

NIPPON KOEI PADECO

Japan International Cooperation Agency | 24

Effective negotiation

Distributive negotiation

- Only one party "wins"
- Focus on outcomes; not the relationship
- Outcomes seen as fixed
- Goals mutually exclusive
- Emphasize differences
- Emphasize positions
- Short-term perspective
- Key: preparation & tactics
- Guarded communication

Distrust

NIPPON KOEI

How to keep good relationship?

Integrative negotiation

- Both parties "win"
- Concerned with mutual outcomes and relationship
- Outcomes can be maximized
- Goals not mutually exclusive
- Emphasize similarities & differences
- Emphasize interests
- Long-term perspective
- Key: cooperation & creativity
- Open communication
- Trust

Source: Shinji Kawakami (2017)

Information sharing

 \checkmark

Information technology & DX

Place of activity

Shift from real to online with information technology and digital transformation (DX)

- There are different negotiation styles and what do you select?
- There are many communication tools. How do you maximize use of information technology and DX?

NIPPON KOEI ADECO

Thank you!

Anna Miyaura (Ms.) JICA Expert of Human Resources Development/Monitoring Project Consultant @PADECO

NIPPON KOEI PADECO

Japan International Cooperation Agency | 31

2nd EE Workshop: Attendant Day-1 (23 Jan 2023) т					otal 9
No.	Name	Position	Org.	How to participate	Count
1	Horace Archer	Senior Technical Officer	MEB	Physical	OK
2	Frank Branch	Technical Officer	MEB	Physical	OK
3	Fabian Scott	Chief Technical Officer	BNSI	Physical	OK
4	Renate Lynn Sealy	Technical Officer	BNSI	Physical	OK
5	Jonathan Platt	Technical Officer	BNSI	Physical	OK
6	Damien Prescott	Technical Officer	BNSI	Physical	OK
7	Robert Goodridge	President	BREA	Physical	OK
8	Felicia Whyte	Project Development Officer	CCREEE	Physical	OK
9	Ayanna Evelyn	Knowledge Management Associate	CCREEE	Physical	OK
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

	2110 22	workshop. Allendant Day-2 (24 Jah	2023)	Tota	
No.	Name	Position	Org.	How to participate	Count
1	Horace Archer	Senior Technical Officer	MEB	Physical	OK
2	Frank Branch	Technical Officer	MEB	Physical	OK
3	Fabian Scott	Chief Technical Officer	BNSI	Physical	OK
4	Jonathan Platt	Technical Officer	BNSI	Physical	OK
5	Damien Prescott	Technical Officer	BNSI	Physical	OK
6	Robert Goodridge	President	BREA	Online	OK
7	Felicia Whyte	Project Development Officer	CCREEE	Physical	OK
8	Ayanna Evelyn	Knowledge Management Associate	CCREEE	Physical	OK
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

2nd EE Workshop: Attendant Day-2 (24 Jan 2023)

Total 8

EE Workshop on 23 Jan: Q&A

N	o Item	Content	Name	Answer
	Question	Why is there an increase in the industry sector?	R. Goodridge	The increase is related to more companies working or factory working hours
:	Comment	The industry increase when compared to the overall energy use is quite small. The commercial decrease can be attributed to decrease in economic activity in that sector.	H. Archer	We agree.
;	Comment	It takes about 3 joules of fossil fuel produces only 1 joule of electricity.	W. Hinds	Thank you for this comment.
4	Question	In terms of industry, are standard a/c units still being made as inverter technology is more efficient? Is it being phased out?	H. Archer	Small scale, inverter tech is popular in mini splits. But VRF, and large chillers have no MEPS. These medium and large scale chillers are used in 10,000-30,000 m ² buildings and have water piping. They intake fresh air and expel heated air from building via an air handler. VRF and mini-split a/c just control temperature of the room.
ł	Comment	There are examples of inefficient LED installations in Barbados that needs to suit the Street lighting application.	W. Hinds	The correct reflective materials are needed as LED shine at 120 degrees where conventional mercury/CFL bulbs are 360 degrees.
6	Question	What are the costs for adding in the LED lighting initiatives for commercial industry? So a proper Cost Benefit Analysis can be conducted.	R. Goodridge	The details are not available, but the reduction of the energy use correlated to the amount of chilled water the case study was billed each month. LED payback periods are usually 2-3 years.
-	Comment	In 2009, India's Govt started something similar for lighting, where they dimmable lighting on streets and highways and it saved them money. Something like this can be done in commercial spaces.	F.Hinds	This happens in commercial buildings since the 1990's where timing and proximity sensors were used to decrease energy demand and control lighting. Now with the advent of LED lighting, the energy savings can be enhanced significantly. The LED lighting we have installed have the capacity to be dimmable, but those modules wasn't installed.
ł	Question	The total value for the box and the windows are added for our building requirement calculations?	W. Hinds	Yes we add them in the calculations.
ę	Question	Would we have similar values for our windows to calculate our heat gain?	W. Hinds	These values were given by the Japanese Gov't, but some of the values are provided from the window manufacturers catalogue.
1) Question	Can a Household Energy Efficiency calculation sheet be developed for Barbados? And can the solar water heater be added to our special revision?	W. Hinds	Yes it can be developed, and the solar water heating is the most efficient method- for heating in this region.
1	1 Question	Have you discovered the law is now accelerating EE measures, i.e. an increase of EE installations in Japan?	F.Hinds	EE measures an installations have increased due to the tightening EE laws in Japan as most regulations are mandatory.
1	2 Comment	The CREEBEC is quite similar to this simplified calculation method.	J.Platt	Yes we have this standard in our possession and we reviewed it.
1	3 Comment	The CREEBEC is very complex and this approach is simple and easy to use	J.Platt	Thank you for this comment.

EE Workshop on 23 Jan: Q&A

No	Item	Content	Name	Answer
14 (Comment	Passive Cooling is something we as Barbadians should look into, primarily insulation of roofs	W. Hinds	This is something we can see as very beneficial to Barbadian homes, especially in decreasing the cooling requirement.
15 (Comment	Large eaves can't work in Barbados as we are in the Hurricane Belt, so we can use paints etc.	J.Platt	Thank you for this comment.
16 (Comment	Need to introduce an Energy Efficiency Standard for houses in Barbados. Might have to be like European Standards and not like the Japanese approach that does a calculation.	W. Hinds	The simplified version can work for Barbados.
17 (Comment	There is still a need to ensure the EE measures are done correctly in Barbados, despite the lack of resources.	J.Platt	Agreed, even in Japan planning for verification is still ongoing and checking will start in 2025.
18 (Question	What energy reduction can we see in the residential and commercial sector?	W. Hinds	Half of the demand for a/c, refrigerator and lighting will be achieved by 2050

EE Workshop on 24 Jan: Q&A

I	No	Item	Content	Name	Answer
	1 Q	uestion	Shading of the a/c units are beneficial, but what can we do to minimize the impact of salt mist in the air as it corrodes the outdoor unit	J. Platt	Shielding can assist with that, but salt spray is very corrosive.
	2 Q	uestion	We have a mall here in Barbados and the installers placed PV panels over the units and quoted 20%, is it true?	H. Archer	Yes, as some manufactures say 20% reduction , so our 10% reduction is conservative.
	3 Ca	omment	For companies renting buildings, there is no incentives to invest in energy savings as this doesn't benefit the landlord. If there is a mechanism where the tenant and landlord both benefit.	W. Hinds	This has been identified as a barrier to improve the EE measures in tenanted buildings, even in Japan. For reference, there are cases in US that tenants bring in the AC equipment and monthly power bill is also paid by tenants. This is one of the models for tenant buildings to raise incentive to introduce efficient equipment.
	4 Co	omment	LEED and other energy efficient building certifications can be used to incentivize energy efficiency measures.	H. Archer	We thank you for this comment.
	5 Ca	omment	There are about 4 buildings that are focused on energy efficiency in Barbados and use this as a selling point for their tenanted buildings.	J. Platt	Thank you for this comment
	6 C4	omment	The office of the MEB can have a reduction in lighting requirements as the light levels are about 900 Lux.	H. Archer	The retrofit from fluorescent to LED caused an increase of Lux in the office, and due to the lighting layout, it might be best to decrease the amount of lights installed .
	7 Ce	omment	The temperature variation is the highest from late night till midday. If we utilize the variations in temperature during the night and weather variations, we can boost energy efficiency in cooling in Barbados. (night parge)	W. Hinds	Thank you for this comment
	8 Q	uestion	The CREEBC recommends motion sensors to further improve efficacy, what is JICA's take on sensors?	J. Platt	Sensors can be utilize to advance the progress of building control management to a greater efficiency.
	9 Q	uestion	With reference to your presentation, what category would you place JICA in? The structure of BNSI is old and needs revamping. BNSI has changed into a project based company and would like to see examples of how to make government agencies more flexible to meet the energy goals of Barbados.	F.Scott	We are part of JICA's approach as we are executing a Joint-Venture project here with the project. We cannot speak directly about JICA's organization directly.
	10 Ce	omment	The avoidance of being dazzled by several possibilities is one key measure BNSI takes to progress the national standards.	J. Platt	We thank you for this comment.
	11 Q	uestion	What is the purpose of communication?	H. Archer	The purpose of communication in this aspect is to boost relations between Government and Non-Governmental Organizations, and to promote energy efficiency and climate change mitigation.

EE Workshop on 24 Jan: Q&A

N	o Item	Content	Name	Answer
1	2 Comment	The advent of COVID-19 globally has transformed the way in which we communicate in order to be more effective.	J. Platt	This is true, as it provides a myriad of ways to communicate.
1	3 Comment	There isn't a framework for communication as all of this tools that are available. Having a protocol for effective communication in organizations.	F.Scott	Having a framework for communication via a set suite of platforms would ensure efficacy.
1	4 Comment	There is a need for high level protocols for meetings to streamline lengthy meetings.	W. Hinds	Thank you for this comment
1	5 Comment	What is the structure for EV infrastructure in Japan? We at the BNSI would like to see what we can glean from JICA. BNSI was like to get information on battery standards and performance, along with information for a secondary battery market.	J. Platt	Thank you for this comment
1	6 Question	What information is available for SWAC for district level cooling in government buildings.	F.Scott	SWAC is not used in Japan, but has been demonstrated for district cooling in places like Hawaii. We do not have detailed information.
1	7 Comment	Energy Storage standards to ensure safety.	H. Archer	We thank you for this comment.
1	B Question	What are the industry standards for module replacement as this is important for safety standards. We need to establish V2G tech standards as well.	F.Scott	The standards are highly dependent on the type of battery and can vary.

Tentative Overall Schedule

NIPPON KOEI ADECO

^{1.} Project Outline Challenges

Fuel increase for spinning reserve

base load and 6 units for peak load

Most of capacity building is done by OJT

There is no systematic HR development.

Installed Capacity: Total 255.5MW

Energy Unit: 3 employees

Thermal power plant: total 16 units (10 units for

Predictive Maintenance: Conducted twice a year
 MEWE's Energy Conservation and Renewable

NIPPON KOEI ADECO

4. O&M of Thermal Power

5. Human Resources and

Capacity Building

Generation

Japan International Cooperation Agency | 7

Micro-grid concept study

JET experts select topics

and develop the most

suitable curriculum for

technology transfer period

	Barba Grid a	ad an	os d	PS	jîca
	Location	MW/u	Qy	MW	Remark
		E	xisti	ng	
	Total thermal pow	rer		232	
	Spring Field	12	3	36	LSD Engine
	Spring Field	12.5	1	12.5	LSD Engine
	Spring Field	30	2	60	LSD Engine
	Spring Field	20	2	40	Steam Turbine
	Spring Field	17.5	1	17.5	Gas Tubine
	Spring Field 1	Fotal	9	166	
	Garrison	13	1	13	Gas Tubine
	Seawell	13	1	13	Gas Tubine
	Seawell	20	2	40	Gas Tubine
	Total PV			70	
	Trents	10	1	10	PV
	Distributed P	V	LS	60	PV
5	Total Battery			5	
	Trents	1	LS	5	BESS
		P	lann	ed	

Trents 33 St Lucy 10 Wind Planned 10 30 Vaucluse Biomass St Tomas 30

jica

Tentative. Please let us confirm the status and update if any.

Total Planned RE

Japan International Cooperation Agency | 9

EV demand increase Firstiential Hotels and Restaurants Commercial Installed capacity and capacity addition in IRRP (Base Case) Industry. Dependency on VRE - Basic inco idettery. increases Clarke Balar Roeffin Solar The 40 33 CEB MSD Planned

NIPPON KOEI PADECO

3. RE Challenges and Activity for Solution

Japan International Cooperation Agency 10

Challenges indicated in IRRP

#	ltem	Challenges	Solution/mitigation				
1	Technical, reliability, operation	 Insufficient system reserve, diversification of generation, distribution generation& Storage, resilience and islanding Lack of mid-term storage, smart EV system, future asynchronous generation 	Biomass, BESS, Incentive for distributed generation & storage, CAES, smart system				
2	Land	Balancing competing users for land given for RE	Integrated town/land use planning				
3	Fiscal	Large outflow of forex for oil	Diversify RE and BESS, storage				
4	Environme ntal	Decarbonization of energy systemEnvironmental impact of RE, cruise liners	Ditto, low-grad land utilization, RE to electrify cruise liners				
5	Socio- economic	- Balancing socio-economic benefit, education and marketing benefits of customer RE	Tariff & financial incentives, market policy				
6	Market/ regulatory	- Lack of market design, regulatory framework for fair RE industry, data access	GIS and data gathering				
7	Capacity & resource	Capacity of IRRP transmission studies, skill in large bioenergy, on/off-shore wind,	Generation and transmission studies, university and experts				
8	Cost	High cost of electricity	Diversify generation, increase energy storage				
NIPP	ON KOEI	DECO Japan	International Cooperation Agency 11				

JICA T/C Items for RE and Grid Stability

Barbados Demand&Installed capacity in IRRP Source: IRRP Draft 2021, MottMacDonald

Demand Scenario in IRRP (Base scenario)

IRRP #	Item	Details	Solution
1, 6, 7	Recommendation for Grid Stability with large RE penetration	Insufficient system reserve, spinning reserve and inertia, grid instability	 Planning with grid simulation, renewable synchronous generator/BESS, and new technology such as gird forming inverter System stability cost sharing
1, 2, 4, 6, 7	Policy Recommendation for RE and grid stability, grid code	 Distributed RE Investment plan, IPP, private Grid code 	 Smoothing effect by installation distributed PV at various places Incentive for energy storage SCR, inverter, etc.
1, 2, 5, 6	Recommendation for Demand side management	Demand increase especially due to EV and battery charging	- Incentive for demand side management for EV, efficient charging system
1, 4, 6, 8	Recommendation for Resilience and micro- grids	Damage to power system due to hurricane	Micro-grid, utilization of EV for V2H, asset management
NIPPON	KOEI PADECO		lapan International Cooperation Agency

With Large RE Penetration

- VRE causes frequency and voltage fluctuation
- Load shedding due to fluctuation:
- Efficiency reduction
 - 10% DG efficiency reduction offsets 30% RE output in micro-grid without grid stabilization method
 - Increasing fuel consumption

PADECO

NIPPON KOEI

A. Recommendations Recommendation for BESS cost reduction

1) Output smoothing by overlaying different PV/wind locations

2) Battery at each site \rightarrow Centralized battery storage system

- Speedy communication system advanced EMS control is necessary

Battery & control cost should be considered in Tariff

NIPPON KOEI PADECO

Japan International Cooperation Agency | 15

Way Forward for Large RE Penetration

Paradigm Shift

- VRE generation is low cost, promoted by market but cost is without stabilization
- Grid stabilization is necessary for large scale
- Inertia needs to be considered
 - Biomass, Biofuel, Biogas, CS
 - Grid-forming inverter
- Large cost for energy storage

→ Who owns the stabilization cost?

Necessary consideration in project activity

- 1) Grid Stabilization
- 2) Cost reduction of energy storage
 - Resiliency
- 4) Microgrid

3)

Source: Mitsubishi Electrics, IRENA RE cost database

Emerging technology for large RE with Grid stabilization : Promotion recommended

Type of Tech	nology	Advantage	Develop stage
Source: taiyo-electric	Motor generator (MG)	 Energy in battery provides synchronization and inertia Small scale supply, for micro grid 	 Used as frequency conversion Commercial operation
energyvault.com/gravity	Gravity Storage Battery	 Gravity of recycled Concrete block 35ton/nos Provides inertia Half cost of Li-ion battery 	Pre-commercial, 35 MWh, 4MW per tower = 85% 52.5GW planned in USA
/www.nedo.go.jp/news/pre	CAES (Compressed air energy storage)	 Compressed high pressure air (Liquid air may be developed) Provides inertia 	-demonstration by NEDO - 900 MW in California - = 70-80%
electrek.co/	CSP (concentrating solar power) Solar thermal	 With turbine, provides inertia and synchronization Cost decrease expected, higher efficiency than PV, = 50% 	- Commercial operation at Ivanpah392MW 22 bil USD - Heat storage (molten solt, etc) under development
Source: CIGRE	Grid- forming inverter	 Dynamic active/reactive power, FRT, frequency control, inertia Applicable to existing PV (Smart: FRT, VRT, voltage support) 	 Under development (Smart inverter by IEEE1547, Mandatory in Hawai)

Diversification of Technology : CSP

NIPPON KOEI PADECO

- Inertial power can be supplied
- Combination with molten-salt heat storage
- Inertial power can be supplied
- Combination with molten-salt heat storage

Diversification of Technology: Battery Motor Generator set (MG Set)

power with inertia \rightarrow possible method to achieve 100% RE with inertia

NIPPON KOEI PADECO

https://www.okiden.co.jp/shared/pdf/news release/2017/180328.pdf Japan International Cooperation Agency | 18

Recommendation for EV

- (1) TOU or Unit charge rate according to load curve and weather and PV output with EMS
 - (Ex.) Range-1 : Daytime, sunny, lowest Range-2 : Davtime, sunnv/cloudy / off-peak, middle Range-4: Rain and evening, peak-time highest
- (2) Promotion of EV with Vehicle-to-Home (V2H), Vehicle- to-Grid (V2G)
- V2H is applicable for specific existing model of EV - Emergency power supply to home

- 60 kWh, 400→725km , >47,600ASD (33,320 USD)
- Load to grid is mitigated
- NIPPON KOEI PADECO

Japan International Cooperation Agency 20

Resilience of RE

- Fast recovery with GIS and Asset management
- ✓ Micro-grid

NIPPON KOEI PADECO

26 Jul 2019 Himeii, Japan https://www.dailyshincho.jp/article/2018/0726 0800/?photo=1 Landslide by a heavy rain

Recommendation for Micro-grid Concept

Concept of Micro-grid

- ✓ Respective Micro-grid is connected each other, and each Micro-grid can work independently
- ✓ Local energy production for local consumption
 - ✓ Generation: PV, wind, biomass, DG, GT, battery, etc.
 - ✓ Demand: industry. commercial. home, EV, etc.

Japan International Cooperation Agency 22

- \checkmark No transmission \rightarrow loss saving
- ✓ With IoT, control system, EMS,
 - demand response, smart meters
- ✓ Enhance resiliency

Japan International Cooperation Agency | 21

Microgrid for Resilient System : Autonomous Micro Grid Residence Thermal Generation Plant Clustered Microgrid Nuclear Generation Plant Clustered Microgrid ICT/EMS Building Smart Houses **Clustered Microgrid** with PV and EV Power Exchange between Clusters ower Grid Line Clustered Microgrid Smart Railway Transformer Solar Generation ICT/EMS **Clustered Microgrid** Residences **Energy Management of** Batter Electrical Facilities in A Cluster Shops Shop **Buildings Charging Station** NIPPON KOEI PADECO Smart Houses with PV and EV Japan International Cooperation Agency | 23

RE: Large RE Example in Islands

Source: Smart City Development and Recent trend in Electric Power Network. Waseda Univ.

40% RE: Hawaii

NIPPON KOEI PADECO

Hawaiian Electric Company: Expansion of distributed power sources Nos of customers: 462.225. total 1.795 MW. **VRE 673 MW**

- Energy storage
- Output suppression of wind and solar
- 15% peak load reduction

100% RE: Samoa (USA)

Source: JICA NIPPON KOEI PADECO

3 villages, 203 household, population 790 Peak 229kW, Demand1300 MWh/yr, 3.6 MWh/day)

RE: 1.4 MW PV (6.1 times than peak)

Battery: 750kW/6 MWh LIB, Tesla 20yrs guarantee DG: 320kW × 3, 150kW × 1

Mon	Jan	Feb	Mar	Apr	Мау	Jun	
RE%	98.4	97	99	91.2	89.9	99.6	

Small demand, but huge RE and Battery → Micro-grid, Back-up DG is necessary

Japan International Cooperation Agency | 24

Microgrid for Resilience: Mutsuzawa Road Side Station **IICA**

Mutsuzawa Road Side Station

- Gas co-generation (80kWx2), PV system (20kW), Solar heating (37 kW) EV charger,
- Independent power supply for residence zone
- Thermal supply for hot spring by co-gen
- Microgrid area connected with grid
- Continuous supply during Typhoon (large scale regional power cut approx. 1 week) in Sep 2019
 - 1000 utilized power supply, shower, toilet for emergency
 - Regional Disaster-prevention facility
 - All power lines are underground

Japan International Cooperation Agency | 25

Micro-grid Concept: Coverley Village

Microgrid/Smart Grid Demonstration: Model study for 100% RE

- 3 kW rooftop PV 5-7 MW additional PV
- (Grantley Adams AP?) BESS and EMS
- Data for load curve. transformer. distribution line information requested
- Single line diagram distribution line 11 kV (feeder length, size, type (ACRS or cable), impedance, resistance, capacitance, RLC
- Transformer location, kVA

NIPPON KOEI PADECO

Nos of houses	1026	nos
Roof area for PV	30	m2/house
Commercial/official roof	300	m2 (6 facilities)
Total roof area	31,080	m2
PV Capacity	3108	kWp
Specific PV generation	4.917	kWh/kW/day
PV generation energy	15,282	kWh/day
Peak demand	4,104	kW
Electric energy demand	41,329	kWh/day
External PV	6,622	kWp
BESS capacity	80	MWh
BESS output	4	MWh

Japan International Cooperation Agency | 27

Micro-grid Concept: Coverley Village Microgrid/Smart Grid Demonstration: Model study for 100% RE

Resiliency Enhancement System infrastructure: GIS and Digitalized Data Model Zoom in Electricity LV lines

LV Switch connection status

Value

closed

Constation Internals 268910066

Primary Connection

🕂 Secondary Connec... 🗸

LV Switch 2

Electricity] Switch

Field name

🖉 Known As

📼 Switch State

A Annotation

== Voltage

Service wire status and photo/drawing Field name Value

🗶 Id 🖉 Known As 🖽 Voltage LV 📼 Status In service 🏂 Length 16.77 m / Centreline

The System judges if the feeder line is connected and power can be supplied with LV switch status insubstation

Grid Simulation: for Optimization of Power Flow Analysis

Microgrid Designer consists of tools of Economic Load Dispatch (ELD) and power flow analysis modules, developed by Energy & Environment Technology Research Institute, Japan (Venture company of Waseda Univ).

Module	Function						
Single Stage Economic Load Dispatch Module	The determination of the optimal output of a number of electricity generation facilities, to meet the system load at the lowest possible cost subject to transmission and operational constraints						
Multi Stage Economic Load Dispatch and LFC Module	Chronological determination of the optimal output of a number of electricity generation facilities, to meet time varying system loads at the lowest possible cost and load frequency control commands to maintain the system frequency within the permissible range.						
Single Stage Power Flow Analysis Module	Steady-state analysis tool whose target is to determine the voltages, currents, and real and reactive power flows in a system under a given load conditions and planning ahead for various hypothetical situations						
Multi Stage Power Flow Analysis Module	Chronological power flow analysis for time varying loads to determine the transitions of voltages, currents, and real and reactive power flows in a system over time horizon.						

O&M of Thermal Power Generation(Barbados)

<List of Thermal Power Unit>

Country	Plant	Unit	Туре	Fuel	Manufacture	Year Installed	Load	Rating Capacity(MW)
		D10(Unit A)	LSD	HFO	MAN	1982	Base	12.0
		D11(Unit A)	LSD	HFO	MAN	1982	Base	12.0
		D12(Unit A)	LSD	HFO	MAN	1987	'Base	12.0
		D13(Unit A)	LSD	HFO	MAN	1990	Base	12.5
		CG01	ST	heat from unit A	Peter Brotherhood	1985	Base	1.5
	On since One share	D14(Unit B)	LSD	HFO	MAN	2005	Base	30.0
	Spring Garden	D15(Unit B)	LSD	HFO	MAN	2005	Base	30.0
Barbados		CG02	ST	heat from unit B	SHINKO	2005	Base	2.0
		Unit S1	ST	HFO	GEC	1976	Base	20.0
		Unit S2	ST	HFO	GEC	1976	Base	20.0
			Olympos GT	Jet Fuel/ Diesel	CURTISS WRIGHT	1969-1970	Peak	17.5
	Garrison	G02	GT	Diesel	ABB	1990	Peak	13.0
		G03	GT	Diesel	ABB	1996	Peak	13.0
	Coowell	G04	GT	Jet Fuel	ABB	1999	Peak	20.0
	Seawell	G05	GT	Jet Fuel	ABB	2001	Peak	20.0
		G06	GT	Jet Fuel	ABB	2002	Peak	20.0

Total: 255.5MW

efficiency

単位:ps (1000MVAベース)

range

Load %

Example of Impedance Map

NIPPON KOEI PADECO

Japan International Cooperation Agency | 35

RE: Instability Caused by VRE

Source: Jamaica Sustainable Energy Roadmap 2013 **Spinning reserve is necessary for**

RE fluctuation.		\rightarrow It	might ne	ed to optimi
PV output on 26 Jun 2017	Partially A	VRE %	< 20%	20-60 %
	cloud Sudden	Issue	Response by thermal poser	Voltage and frequer fluctuation, power increase
PV output on 5 Aug 2017 Gloudy	PV output on 17 May 2017 Rainy	Equipment needed for grid stabilization	Output restrain by PCS, EMS	EMS and high-speed charge-discharge ba or capacitor, quick- response thermal p
huctuation		Cost	Low	High (battery replaci is necessary)
NIPPUN KUEL MHUCO				Japan Internatio

Grid instability

- Voltage and frequency fluctuation
- Shortage of Inertial power
- High cost for countermeasure
- Fuel L/kW increase in diesel generator
- Low load operation
- Acceleration and deceleration
- Spinning reserve
- \rightarrow EMS and Battery Storage are necessary for grid stability and economic operation (expensive)
- ize RE%

VRE %	< 20%	20-60 %	> 60 %
Issue	Response by thermal poser	Voltage and frequency fluctuation, power failure increase	(in addition to left) harmonic wave, phase balance, synchronization, supplement of reactive power
Equipment needed for grid stabilization	Output restrain by PCS, EMS	EMS and high-speed charge-discharge battery or capacitor, quick- response thermal power	Power factor control PCS is needed. Special arrangement according to site is necessary.
Cost	Low	High (battery replacement is necessary)	Very high. Specific technical arrangement is necessary

jica

Generators (DE,GT,ST,GE)

- Max. and min. output Ramp rate Load – cost curve or
- Load efficiency curve
- 80% 25% 20% 15% 15% degrease 10% vith VP 5% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10% 120%

40%

35%

30%

Transmission Line, Substation

- [Common] Power flow limitation
 - Voltage Magnitude

- [Option 1]
- Impedance Map [Option 2]
- Shunt Capacitor
- Cable length
- Cable capacitance [µF/km]

Load-hour

1 2 4 4 5 6 7 4 4 M 10 17 11 M M M 19 19 19 19 19 19 19

Load Power Factor

and Weekend)

Load – hour curve (Weekday

ほ:送来株式賞は2日間トータルの9

Input Data

EDC example with IEEE Microgrid Model

Grid Analysis Model of Microgrid in St. Kitts

Grid analysis result (generator output, voltage, frequency)

Analysis result is viewed in geographical information system Smallworld is applied to visualization for investment plan and design

Japan International Cooperation Agency

SCR(Short Circuit Ratio)

- SCR is the factor to be considered for grid stability.
- SCR=AC System Capacity/Rated IBR Capacity
 - SCR>3 ------ High SCR, Stable
 - 3>SCR>2 ----- Low SCR
 - 2>SCR ----- Very Low SCR
- Discussed in IEEE Std 1204-1997(R2003)
 - IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities
 - Recognized by ANSI(American National Standards Institute

Control Algorithm for Virtual Inertia

The control method of Synchronization Inverter is expressed by the swing equation. This equation is added damping term and synchronizing power term.

 $\frac{M}{\omega_n}\frac{d^2\delta_m}{dt^2} + \frac{D}{\omega_n}\frac{d\delta_m}{dt} + K\delta_m = P_m - P_e$

This swing equation of the Synchronization Inverter is solved for virtual phase angle δ .

Source: M. Kawai, Y. Sakai, H. Sugiyama, H. Taoka "Frequency Improvement of a Power System with a Distributed Generator using Synchronization Inverter," 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST), CIGRE SC C6 Colloquium, Sep. 2015. NIPPON KOEL HOECO Japan International Cooperation Agency

Sources for High SCR Grid

- V2G(Vehicle to Grid) of EV(Electric Vehicle)
- BESS(Battery Energy Source System)
 - Battery with control circuits
- Biofuel Generator
- Solar Thermal Generator
 and
- Renewable Energy Resources (PV, WP) with Grid Forming Inverter
- These resources can supply inertia to grid.

ATC(Available Transmission Capacity)

- Transmission capacity needs to be calculated to see whether RE can be transmitted from source location to demand place.
- Swing Equation

•
$$P = \frac{V_i V_j}{X} sin \delta$$

• Synchronizing Force

$$\frac{dP}{d\delta} = \frac{V_i V_j}{X} \cos\delta$$

• Maximum Transmission Capacity

$$P = \frac{V_i V_j}{X}$$

or $P_{loss} = R * (\frac{V_i}{X})^2 < P_{lossmax}$ ----- from heat capacity limit

Japan International Cooperation Agency

Spinning Reserve

Generation Power of PV (Example)

- The range of PV output is 0 to max.
- Total power of renewable energy may be limited not to be over the spinning reserve of network.
- Battery and smoothing effect by PV in various place may cover short time fluctuation.

Frequency and Voltage Control

- Frequency Control
 - Frequency Ride Through
 - Governor Control in Generation Side(PV, WP)
 - Load Frequency Control through Control Center/EMS
- Voltage Control
 - Voltage Ride Through
 - DVS(Dynamic Voltage Support) by Reactive Power in Generation Side (PV)

Recommendation for Grid Code

- The following items will be required from Grid Stability:
 - Virtual Inertia for IBR(Inverter Based Resources)
 - High SCR of Grid
 - Spinning Reserve from EV, Battery, etc.
- RE with these functions is key technology for grid stability.

NIPPON KOEI PADECO

Japan International Cooperation Agency

NIPPON KOEI PADECO

Japan International Cooperation Agency

Operating State of Power System

- Total Generation Power is to be normally 60 ~ 70%.
- The fluctuation of load is 10 ~ 20%, if load prediction is operated well.
- The fluctuation of renewable energy has to be about 10%, but already over 30% in Barbados.
- If total demand of grid becomes to 90% over of rated capacity of grid,
 - Spinning reserve will be decreased.
 - Synchronizing power will be very small not to be returned to stable state.
- Spinning reserve should be more than mixed fluctuation of load and renewable energy.
- →RE, EV and Battery with inertia is required for large RE penetration.
- →Energy mix of several resources will be helpful for improving grid stability.

NIPPON KOEI PADECO

Japan International Cooperation Agency

iicA

Tools for Grid Stability

- Monitoring of Grid
 - Microgrid/VPP Designer (Software)
 - DC Flow Method (Manual calculation)
- Evaluation of Grid Stability
 - Equal Area Criterion (Manual calculation)
- Demand and Supply Control
 - Microgrid/VPP Designer (Software)
 - Plan of LFC and ELD
- Asset Management
 - Smallworld (Software)

VPP: Virtual Power Plant

Japan International Cooperation Agency

NIPPON KOEI PADECO

Grid Stability: Future Grid in Barbados Brought by RE -Tools for Grid Stability-(Session-2 Special)

Hisao Taoka

NIPPON KOEI PADECO

Japan International Gooperation Agency

Load Flow Analysis

- DC Flow Method (manual calculation)
 - Simplified Load(Power) Flow Calculation of Transmission Line
- Microgrid/VPP Designer (Software)
 - Newton Raphson Method
 - Load Flow Calculation to monitor current status of grid
 - Planning Tools for Demand and Supply Control
 - LFC(Load Frequency Control)
 - ELD(Economic Load Dispatching)

Stability Analysis

- Equivalent Area Criterion (Manual calculation)
 - Simplified Stability Calculation
- Transient Stability Program (Simulation Software)

Node Admittance Matrix

to Describe Grid

node 2

Calculation example of power flow in 3 nodes network

- Electro-Mechanical Transient Stability
 - Root Mean Square Value Calculation
 - PSS/E, ETAP, CYME, DigSILENT,,,
- Electro-Magnetic Transient Stability
 - Instantaneous Value Calculation
 - EMTP, EMTDC, PSCAD,,,

NIPPON KOEI PADECO

÷0.0€

10.06

node 3

NIPPON KOEI PADECO

$$\begin{split} \dot{Y}_{12} &= \dot{Y}_{21} = -\frac{1}{j0.8} = j1.25 \\ \dot{Y}_{13} &= \dot{Y}_{31} = -\frac{1}{j0.5} = j2.0 \\ \dot{Y}_{23} &= \dot{Y}_{32} = -\frac{1}{j1.0} = j1.0 \end{split}$$

$$\begin{split} \dot{Y}_{11} &= j0.05 + j0.06 + \frac{1}{j0.8} + \frac{1}{j0.5} = -j3.14 \\ \dot{Y}_{22} &= j0.05 + j0.04 + \frac{1}{j0.8} + \frac{1}{j1.0} = -j2.16 \\ \dot{Y}_{33} &= j0.04 + j0.06 + \frac{1}{j1.0} + \frac{1}{j0.5} = -j2.9 \end{split}$$

Load Flow(Power Flow) Analysis ᇌ

Necessary items to consider Load flow Analysis Buses are categorized to the following 3 types.

- Slack (Swing) Bus
 - The magnitude and phase angle of the voltage are specified.
 - This bus makes up the difference between the scheduled loads and generated power that are caused by the losses in the network.
- P-V Buses (Generator Buses)
 - The real power and voltage magnitude are specified.
 - The phase angles of the voltages and the reactive power are to be determined.
- P-Q Buses (Load Buses)
 - The active and reactive powers are specified.
 - The magnitude and the phase angle of the bus voltages are unknown.

NIPPON KOEI PADECO

Japan International Cooperation Agency

Power Flow Equation & Solution Method

Power Flow Equation of each node

$$P_k + jQ_k = \dot{I}_k^* \dot{V}_k = \sum_{m=1}^N \dot{Y}_{km}^* \dot{V}_m^* \dot{V}_k$$

$$P_{ks} = \operatorname{Re}\left\{\sum_{m=1}^{N} \dot{Y}_{km}^{*}(e_m + jf_m)^{*}(e_k + jf_k)\right\}$$
$$Q_{ks} = \operatorname{Im}\left\{\sum_{m=1}^{N} \dot{Y}_{km}^{*}(e_m + jf_m)^{*}(e_k + jf_k)\right\}$$
$$V_{ks}^{2} = e_k^{2} + f_k^{2}$$

Solution Methods:

- Gauss-Seidel Method
- Newton-Raphson Method
- Fast Decoupled Method
- DC Flow Method

• • •

Japan International Cooperation Agency

Japan International Cooperation Agency

 $\begin{bmatrix} \dot{I}_1 \\ \dot{I}_2 \\ \vdots \\ \dot{I}_N \end{bmatrix} = \begin{bmatrix} \dot{Y}_{11} & \dot{Y}_{12} & \cdots & \dot{Y}_{1N} \\ \dot{Y}_{21} & \dot{Y}_{22} & \cdots & \dot{Y}_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \dot{Y}_{N1} & \dot{Y}_{N2} & \cdots & \dot{Y}_{NN} \end{bmatrix} \begin{bmatrix} \dot{V}_1 \\ \dot{V}_2 \\ \vdots \\ \dot{V}_N \end{bmatrix}$

 $oldsymbol{Y} = \left[egin{array}{ccc} -j3.14 & j1.25 & j2.0 \ j1.25 & -j2.16 & j1.0 \ j2.0 & j1.0 & -j2.9 \end{array}
ight]$

Microgrid/VPP Designer

iica

- Calculate large scale power grid including microgrid
- From power flow solution till demand and supply control
- Based on Microsoft Excel Macro
 - Easy to install into PC

<Functions>

- Load Flow solution
- LFC(Load Frequency Control)
- ELD(Economic Load Dispatching)

NIPPON KOEI PADECO

Japan International Cooperation Agency

VPP: Virtual Power Plant

Node Data

		Amolitud	a of	Dheea	engle of		ages on							
Node	ID Node ty	pe V	2 01	of Phase angle V		Node	Admittant	:e	Pg		Q	g	P1	Q1
(Up to charact	ers) PQ=0, PV Slack=	-1, 2 (p.u.)		(De	(Degree) (p.u.)		(p.u.)		(p.u.)		(p.	u.)	(p.u.)	(p.u.)
	•	1 1	\sim			1								
				-	Nade data	Separ Form	for Single Hage	Forest Flor	e Raubych					
		Contrast	740	D Yok	and the state of t	Citizes angle of	Side Selections	198	- Gar		4			
			104			Owned	(B. 11)	and it	in al	8.63				
		-	det	1	10					1	10	Anna bat	ward and your	
				1				Same.		0.044	1000	-		
			-	1	-			520411		1000	843/4			
			1	-1	-	-				- 2244	- adarti			
				6				6.0047		0.0116	0.0004			
			-	_	-					38.00	-1078			
			-		-					200	104	Terrer reserves	and the to other sectors.	
			-	10	-			0.000		6.01	6/811			
				12		-		Differ.		0040	11274	which have the	Figurate, for loss has	
				. 11	-	-				. 9	- 0	1 - 1 - 1 -	Fo doolle ; Tot genacemo	r Boat
			-	12				2011		1 1100	10000	1		
			-	10				10.00		1 1000	6.61	foods address	alue increased a de	are case (hor 1
				18				800071		10214	-00071	2		
		-	-	1	-					- 37.11	500.1	To and Id. arts	tool press	
			-	-11	-			-		10.40	1000			
			-	10	-			6000er		4170	BIONT	Twick in North	hele nems the end	rit in pille.
				2	-					0,000	90/11			
			-	- 22	-	-		000047		2,007	8071			
			-	11	-	-		0000			1000			
			1	2	-			1000	_	1 00M	1000			
				14	-					1	6			
			-	10	-			CIX00**		98.91				
			+	-0	-				-		- 100			
				10				000000	-	0.004	100			
				.2				5.00720		5100	107.01			
			-	12	1 1.000	-								
			1	-0	-	-		22204		0.000	1000			
		1	-	iA .		-		0.001		130	0.08-81			
				18		-		\$10,72		1000	10407			
			-		-	-		-		1.00				
I HOFI	Donco		-		-	-		600.007		0001	0.000			

Starting Window of Load Flow

Power I	Flow Calculation		
Step			
	Set node data and branch data		
	Click "Calculation" button		
	Node max 200, Branch max 40	0	Jump to NodeData input sheet
Specific	ation		
	Maximum iteration	20	Jump to BranchData input sheet
	Convergence criterion (pu)	0.0001	
	Acceleration factor	1	
			Calculation
Explana	tion		
1) Capa	city base is not shown here, it is ass	umed by user.	
2) New	ton-Raphson method is applied as th	e solver.	
 Conv 	ergence criterion is applied to the a	nplitude of node voltage.	
4) Line	addmittance is Y/2 in branch data, r	ot Y.	
5) Maxi	mum branch number connected a n	ode must be less than 39.	

NIPPON KOEI PADECO

Japan International Cooperation Agency

Branch Data

jica

	Branch	data Input Form fo	or Single	Stage Power	Flow Analys	is	
Branch ID	Sending node	Receiving node	No. of circuits	Resistance R	Reactance X	Admittance Y/2	Tap ratio
(Up to 5 integers)	(Up to 4 chracters)	(Up to 4 chracters)	default =1	(p.u.)	(p.u.)	(p.u.)	default = 1.0

	li.	Beanth	data begant Forms I	or Ningle	Inege Faster	Fire Assist			
-	Seek 2	Debgish	Samp set.	39.8	Determine R.	farmed 2	Advance T2	78.00	-
	Sig to 3 kingers	Spin Colorest	(i) y root a description of	(0004)(-1	(24)	(B.4.)	- 10.01	84840+10	
-		. 1	1		0.08514	0.00104			
	1		1		08018	504.47			
				-	0.0047	0.0011			
-					00000	000044			
				-	0.040				Conception of the local division of the loca
-				-	200.00	100 100			
-					0.0499	21,4014		0	and the second se
			10		241316	01000		0	Branch nummer-must be integer-arm 5-legts-
	10			1	100073	BORROW .			
	. 11				00414	00414	- 3		SChul means double circuit configuration
	41				DODATE:	048408	. 9	0	
				· · · · ·	P	2009			The summary while of a
	10					100			A new of tandher write and have not taken to be the
					- 8	0.000			maging and of pravich data
-				-		-0.00			-
						-2009			
-					10000	000004			
-	30		1	-	0.00 1844	0.0 90			1
	2	1	2	-	DOPTHE	511946			
	71	1	1		03.44	108.008			
	31				0.0478	011-000	2.0		
	. 94		8	-	603478	DON-KI			
	. 7	- 10			0.0018	822139			
					501404	S(R)(t)			
		12			51243	010007			
		- 13		-	- 0.004	668940			
		11			03969	100011			
		- 6			000 900	21.8700			
				-	1000	004100			
	34		1	-	017015	01/746			
					04000	01904			
	- 18	14	1		001404	010000			
	31	- 34			0.08469	63.0481		0	
			2		0.75-61	211746		0	
		11			31,9944	101-0			
	40				-0- 0 00	. E79636			
					otors1	023488		_	
				_		States.			on Ag
	4				 0.07118 	11740			

Calculation Results of Branch

Calculation Results of Node

Japan International Cooperation Agency

ATC(Available Transmission Capacity)

- Transmission capacity needs to be calculated to see whether RE can be transmitted from source location to demand place.
- Swing Equation

•
$$P = \frac{V_i V_j}{X} sin\delta$$

• Synchronizing Force

$$\frac{dP}{d\delta} = \frac{V_i V_j}{X} \cos \delta$$

• Maximum Transmission Capacity

•
$$P = \frac{v_i v_j}{x}$$

or $P_{loss} = R * (\frac{v_i}{x})^2 < P_{lossmax}$ ----- from heat capacity limit

NIPPON KOEI PADECO

Japan International Cooperation Agency

Operating State of Power System

- Total Generation Power is to be normally 60 ~ 70%.
- The fluctuation of load is 10 ~ 20%, if load prediction is operated well.
- The fluctuation of renewable energy has to be about 10%, but already over 30% in Barbados.
- If total demand of grid becomes to 90% over of rated capacity of grid,
 - Spinning reserve will be decreased.
 - Synchronizing power will be very small not to be returned to stable state.
- Spinning reserve should be more than mixed fluctuation of load and renewable energy.
- → RE, EV and Battery with inertia is required for large RE penetration.
- →Energy mix of several resources will be helpful for improving grid stability.

	Name	Organisation	Position
1	Destine Gay	MEBD	Project Manager
2	Horace Archer	MEBD	Senior Technical Officer
3	William Hinds	MEBD	Senior Technical Officer
4	Robert Harewood	BLPC	
5	Rohan Seale	BLPC	
6	Johann Greaves	BLPC	
7	Stephen Worme	BREA	
8	Dr. Gary Jackson	CCREEE	Director
9	Jean-Michel Parle	CCREEE	
10	Danielle Evanson	CERMES, UWI	Researcher
11	Heather Sealy	GEED	
12	Baidy Diallo	HDF	Business Developer
13	Jeffrey Kiyoshi Chen	Massy	
14	Dwight Grannum	Willams Renewable Energy	
15	Gleeson Roach	Williams Solar	
16	Natasha Davis	Williams Solar	
17	Nida R	WREL	
18	Aria Goodridge		
19	D. Coombs		
20	Jamal J		
21	Lawson Benard		
22	Owen Reader		
23	Tyrone White		
24	Dudley Williams		
25	Ron Farley		
26	Prof. Hisao Taoka	JET	Energy Model Expert
27	Yuka Nakagawa	JET	
28	Alex Harewood	JET	Technical Assistant

Workshop for RE and Grid Stability on 27 Jul 2022: List of Participants

Workshop for RE and Grid Stabili	y on 27 Jul 2022:	Question and Answers
----------------------------------	-------------------	-----------------------------

	Question	Placed by	Response
1	Is this a project being done on behalf of the Ministry of Energy?	Stephen Worme	We are JICA (Japan International Cooperation Agency) team providing technical assistance to MEBD in this project. MEBD is our counterpart for this project.
2	Does the grid model presented incorporate RE production and energy consumption?	Rohan Seale	The model will incorporate RE production and demand. This is an introductory workshop and if we receive data from BLPC, we will produce accurate models based on BLPC data for the selected microgrid area.
3	Are these presentations going to be available to participants after this presentation.	Stephen Worme	We will provide the slides via chat.
4	Is Grid Forming Inverter technology at a point where it can be applied to a Grid the size of Barbados? Or are these only available at the Distributed Micro Grid Scale?	Jeffrey Kiyoshi Chen	The size of Grid Forming Inverter is from home size to utility size. But the cost will be high. So utility size including microgrid will be better.
5	This is very technical and even as an engineer, a lot of it is over my head. However, I gather these are all of the things you are going to be examining and will be advising on. A lot of PV has already installed. What is going to happen between now and when they come back with their final report?	Stephen Worme	Today is an introductory session. The detailed session for input and analysis with the simulator will be held in the next session in Sep 2022. Final Report will be submitted in Mar 2023.
6	Could you further discuss the fluctuation of renewable energy?	Horace Archer	Generally, acceptable fluctuation level is less than 10% of grid capacity, but in Barbados, it is already significantly beyond that figure as 30MW in demand swings are seen routinely while demand was 130 MW. According to IRRP, utility will need to install Synchronous Condensers, in addition to battery, to mitigate this problem.
7	My concern is that already our grid is unstable and we continue to add more PV and the expectation of PV owners is that their systems will be installed in a reasonable time frame. Is this going to be possible to continue installing systems and if we do what is going to be the impact on the grid?	Stephen Worme	According to increase of PV, the output fluctuation will be increased, while demand is kept same. Then, voltage and frequency goes up and down. In case of frequency drops due to sudden output decrease without any stabilization measurement, under frequency relay (UFR) operates at the source of feeder, and the feeder is tripped to cut the load, and power cut will happen for the feeder. At the worst case, it will bring black out of the country. Battery installation is needed as soon as possible. Large PV installations can work, but energy management system with weather prediction AI will be necessary. Some ideas to solve this problem are as follows. (1)Install Batteries to substations. It can control all PV at substations. (2)Utility controls output of PV's using smart meters or other metering and control equipments. (3)Install PV with Grid Forming Inverter (future application)
8	It is my understanding that the Utility will not be able to get batteries for many months. What do we do in the interim?	Stephen Worme	Black-outs is an significant issue as risk increases with a greater influx of variable PV. Significant PV curtailment can be a tentative solution. Utility should use some of current diesel generators as LFC generator to control and keep frequency in stable state.
9	The use of concentrated solar heat power	Horace Archer	IRRP suggests to introduce concentrated solar heat generation (CSP) after 2028 as base case. It can be used to mitigate issues with intermittency since it can provide inertia. A study indicates irradiation level more than 2000 DNI will result in cost range of 6-8 c/kWh. It is still not sure if it is economic as it has not been deployed in places like Barbados.