III－4 National Development Plan and Travel Demand Forecasting

Questionnaire

III－4 National Development Plan and Travel Demand Forecasting

Example of estimation results

Estimation of modal split model（tourist，business trip）

Estimation result of route assignment model（tourist，business trip）

				钼光他私事目的		曗務目的	
				バラメータ	titilit	バラスータ	t値
乗車•乗換時間		（分）	全機関	－0．0560	－12．9	－0．0785	－14．6
発着地から駅までの所要時間		（分）	全機関	－0．0588	－5．23	－0．156	－11．3
所要費用		（円）	全機関	－0．00110	－1．88	－0．00126	－1．78
全体乗換回数		（回）	鉄道	－	－	－0．895	－7．07
乗換回数	高蔵者	（回）	鉄道	－0．818	－214	－	－
	非高鮞者	（回）	鉄道	－0．679	－5．81	－	－
時間価値（正／分）				51		62	
的中事				81\％		82\％	
尤度比				0.221		0.341	
サンブル数				1，691		1，721	

III－4 National Development Plan and Travel Demand Forecasting

From model to project feasibility study

－The study on the promotion of railway airport access（MLIT，2004－2005）
As for railway access to Haneda Airport
－Consideration of current problems and issues
－Consideration of service level improvement policy（Usability，Transferability，In－train amenity improvement，accessibility improvement，etc．）
－Future plan of railway access
In this study，travel demand estimation and benefit estimation analyses are conducted on the planned route shown below

III－4 National Development Plan and Travel Demand Forecasting

The result of each evaluation on the planned lines

＂\＃	4	${ }^{\text {14酪 }}$		 								
©		 		（132）	（29）	（5，5）			 䚺の低誠が凅られる。		164	
（3）				－	－	${ }_{\text {（6is）}}{ }^{\text {a }}$			受化は体いことから，果は発生したい	－＂	－	$\begin{gathered} - \\ - \\ \text { 明 } \end{gathered}$
（1）	（			（157）	－	（8．1）			 		${ }^{27}$	$\begin{gathered} - \\ \text { - } \\ \text { 则 } \end{gathered}$
（6）				$\begin{aligned} & 0 \\ & (106) \\ & (106) \end{aligned}$	（111）	（121）	$\underset{\substack{15 * * 1538 \\ 119 * * 1208}}{\Delta}$		ふ。違違性向上が圆られ ，		${ }^{49}$	羽田至㵔～東京（1）3 品川～東京間 $40 \mathrm{~km} / \mathrm{h}$ 敋管䢖算
©			 						 图られる。		${ }^{154}$	 （速）4本 京建運買
©		men mizia	算． ．	（407）	（8）	（8．3）			多房地城，川淔市北謨 からの速速徃間上加保 った．		${ }^{118}$	

	$\frac{\sin }{\text { sitat }}$		畋䞩
－	－	－	－
－	－	－	－
－	25	－	
${ }^{1} 1.6$	${ }_{\text {con }}^{\substack{7200}}$		
4.	${ }^{3000}$	122	
${ }^{168}$	6200	2.5	

III-5 Concerning about Population Forecasting

Population Data - Population Estimation from IPSS

In TMA, data of nighttime population by age group (in the scale of large zone) are obtained from the estimation from IPSS*. The estimation of total population aged 5 years old and above was conducted in March, 2013. From this estimation, projection until 2030 is utilized in projected until year 2030 which is the target year in The Transport Policy Plan No. 198

*IPSS: National Institute of Population and Social Security Research

IV-1
 Population Forecast Modelling

TMA population forecasting model

- Based on following Railway Master Plan
- Council of Transport Policy Plan (CTPP) No. 18 (2000)
- Council of Transport Policy Plan No. 198 (2016)
- Population Forecast in CTPP No. 18
- Population Forecast in CTPP No. 198
- TMA railway working group

IV-1 Population Forecast in CTPP No. 18 - Definition

Model Structure Population Forecast Initial Conditions Urban Transport Forecast Airport/HSR Forecast

Definition of types of population
Classification based on 1995 National Census

- Nighttime population (home-based population)
- Residence based worker (home-based working-commuter)
- Workplace based worker (workplace-based working-commuter)
- Residence based student (home-based schooling-commuter)
- School based student (workplace-based schooling-commuter)
- Daytime population $=$ nighttime population $-($ residence based worker + student) + (workplace based worker + school based student)

IV-1 Population Forecast in CTPP No. 18 - Flows

- Flows of population forecasting model

From 6 types, first, "nighttime population" is estimated. From nighttime population, "residence based worker" and "residence based student" are estimated. Similarly, from residence based, "workplace based worker" and "school based student" are estimated. Finally, "daytime population" will be estimated by using all of the 5 types of population.

nighttime population	residence based worker	workplace based worker
	residence based student	school based student
Forecasted number of residence	Residence who live here but work anywhere Residence who live here but study anywhere	Worker who work here

- Distribution of population in each zone size

Number of population will be initially distributed from the largest zone. From such large zone, number of population will be further distributed into smaller zones

(Reference) Prefecture Level and Municipality Level

(Reference) Block Level

IV-1 Population Forecast in CTPP No. 18 - Nighttime Pop.

Whole TMA population

Based on the forecasted value from "TMA Master Plan No. 5" (National Land Agency, 1999)
TMA Master Plan No. 5 = General land development plan in TMA

- To cope with the problem related to overcrowded population and monocentric development in Tokyo
- To improve the quality of living in TMA

City/Prefecture level population

Based on the natural population growth and migration

- Natural population growth rate (birth, death):
based on the forecasted value from The National Institute of Population and Security Research (IPSS) in 1997
- Migration rate (moving in, out):
based on the migration rate between 1993-98 from the Handbook of National Registration (Ministry of Internal Affairs and Communications)

IV-1 Population Forecast in CTPP No. 18 - Nighttime Pop.

Block level population

- Based on the natural population growth and migration
- Consideration of land development
- Natural population growth rate (birth, death): distribution across each block is fixed, growth rate is based on City/Pref. level data
- Migration rate (moving in, out):
based on the migration rate between 1993-98 from the Handbook of National Registration (Ministry of Internal Affairs and Communications(MIC))

IV-1 Population Forecast in CTPP No. 18 - Residence Based Pop.

Residence based worker

- Estimated by Nighttime population multiply by employment rate by gender and age group

Residence Based Worker=

Nighttime Population * Employment Rate (by Gender and Age Group)

Employment Rate (by Gender and Age Group)

- Based on National Census data (Statistics Bureau, MIC) between 1975-1990

IV－1 Population Forecast in CTPP No． 18 －Workplace Based Pop．

Workplace based worker

－Whole TMA＝Residence based worker＊α
$\alpha=$ past value of ratio between＂workplace based／residence based＂
：average value from 1975－1995＝1．004（based on National Census）
－City／Prefecture level
Growth rate is fixed based on the value between 1975－1995
－Block level
Use the actual growth value between 1975－1995 as a control value step1：Use the growth rate between 1975－1995 to set the growth in each year step2：Forecasted value can be calculated by adding the growth rate to the 1995 value Note：In block level，we focus on the analysis in Tokyo 23 wards area and Tokyo Tama area as these two areas are rapidly developed

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan（M－MAP2）

IV－1 Population Forecast in CTPP No． 18
 －Additional population from land development project

1．Land development plan and modelling
Based on the data from the local government，the model will include the project with the expected resident over 10，000 person，or the business development with the expected worker over 5，000 person

2．Progress curve（build－up curve）setting

$$
y=\frac{1}{1+\exp (a t+b)}
$$

$$
\begin{aligned}
& y \text { : progress } \quad \alpha, b: \text { parameter } \quad t: \text { years after construction } \\
& \text { rate }
\end{aligned}
$$

Large－scale housing development （ $>500 \mathrm{ha}$ ）

Progress rate
進㢈率 Business related generation

IV-1 Population Forecast in CTPP No. 18 - Additional population from land development project

	Night time population (1,000 person)						Workplace based worker increase (1,000 person)					Share Growth rate	
		1980	1985	1990	1995	2015	$\begin{aligned} & 1975- \\ & 1980 \end{aligned}$	$\begin{gathered} 1980- \\ 1985 \end{gathered}$	$\begin{aligned} & 1985- \\ & 1990 \end{aligned}$	$\begin{aligned} & 1990- \\ & 1995 \end{aligned}$	$\begin{gathered} \text { 1995- } \\ 2015 \\ \text { (5y ave) } \end{gathered}$	$\begin{gathered} 2015 / \\ 1995 \end{gathered}$	
TMA	28,072	29,878	31,570	33,193	34,068	35,345	1,806	1,691	1,623	875	1,277)	
Tokyo pref.	11,640	11,585	11,795	11,824	11,742	11,258	-55	210	29	-82	-484		
23 Wards	8,647	8,352	8,354	8,164	7,968	7,316	-295	2	-190	-196	-652	92	Decreasing
Tama Area	2,993	3,233	3,441	3,660	3,774	3,942	240	208	219	114	168	1.04	
Kanagawa pref.	6,398	6,924	7,432	7,980	8,246	8,677	526	508	548	266	431	1.05	
Yokohama	2,622	2,774	2,993	3,220	3,307	3,441	152	219	227	87	134	1.04	
Kawasaki	1,015	1,041	1,089	1,174	1,203	1,263	26	48	85	29	60	1.05	
Others	2,761	3,109	3,350	3,586	3,736	3,973	348	241	236	150	237	1.06	
Saitama pref.	4,821	5,420	5,864	6,405	6,760	7,552	599	444	541	355	792	1.12	
South	3,292	3,703	3,999	4,371	4,595	5,195	411	296	372	224	600	1.13	
North	1,529	1,717	1,865	2,034	2,165	2,357	188	148	169	131	192	1.09	
Chiba pref.	4,148	4,735	5,148	5,555	5,798	6,181	587	412	407	243	383	1.07	
Chiba city	659	746	789	829	857	892	87	43	40	28	35	1.04	
Northwest	2,161	2,600	2,904	3,220	3,372	3,681	439	304	316	152	309	1.09	
Southwest	455	499	545	578	606	619	44	46	33	28	13	1.02	
East	873	890	909	928	963	989	17	19	18	36	26	1.03	
Ibaraki pref. South	1,065	1,214	1,331	1,429	1,522	1,677	149	117	98	93	155	1.10	

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-1 Population Forecast in CTPP No. 18 - Additional population from land development project

	Workplace based worker (1,000 person)						Workplace based worker increase (1,000 person)					Share Growth rate	
	1975	1980	1985	1990	1995	2015	$\begin{aligned} & 1975- \\ & 1980 \end{aligned}$	$\begin{aligned} & 1980- \\ & 1985 \end{aligned}$	$\begin{aligned} & 1985- \\ & 1990 \end{aligned}$	$\begin{gathered} 1990- \\ 1995 \end{gathered}$	$\begin{gathered} \text { 1995- } \\ 2015 \\ \text { (5y ave) } \end{gathered}$	$\begin{gathered} 2015 / \\ 1995 \end{gathered}$	
TMA	13,121	14,044	15,432	17,082	17,900	18,075	924	1,388	1,649	819	174	1.01	
Tokyo pref.	7,049	7,300	7,886	8,611	8,752	8,806	251	586	725	141	54	1.01	
23 Wards	6,118	6,234	6,681	7,249	7,268	7,301	116	447	568	19	33		No change in CBD
Tama Area	931	1,066	1,205	1,362	1,484	1,505	135	139	157	122	21	1.01	
Kanagawa pref.	2,449	2,639	2,973	3,316	3,524	3,564	190	334	343	208	40	1.01	
Yokohama	966	1,031	1,151	1,292	1,393	1,408	65	120	141	101	15	1.01	
Kawasaki	461	465	495	538	548	551	4	30	43	10	3	1.00	
Others	1,022	1,143	1,327	1,486	1,583	1,605	121	184	159	97	22	1.01	
Saitama pref.	1,647	1,887	2,135	2,417	2,627	2,667	240	248	282	210	40	1.02	
South	1,057	1,241	1,428	1,633	1,781	1,812	184	187	205	148	31	1.02	
North	590	646	707	784	846	855	56	61	77	62	9	1.01	
Chiba pref.	1,476	1,670	1,843	2,081	2,282	2,314	195	173	237	202	32	1.01	
Chiba city	252	284	314	361	414	420	32	30	47	53	6	1.01	
Northwest	615	756	879	1,040	1,158	1,181	141	123	161	118	23	1.02	
Southwest	214	226	243	263	283	285	11	17	20	20	2	1.01	
East	394	405	407	417	428	429	11	3	10	11	1	1.00	
Ibaraki pref. South	500	548	595	657	715	723	48	47	62	58	8	1.01	

IV-1 Population Forecast in CTPP No. 198 - Improvements from CTPP No. 18

Improvements
By comparing the result of the forecasted value from 4 step model with the actual value, some error has been found. Population forecast, which is the zero step in 4 step model, could be one of the main cause of error.

- Prefecture, block level nighttime population Based on the migration rate from 5 years (before) average
- 23 ward area, Tama area, Yokohama, Kawasaki, Chiba, etc. are underestimated
- Saitama north block is overestimated

IV-1 Population Forecast in CTPP No. 198 - Improvements from CTPP

No. 18

Improvements

- Prefecture, block level home based worker
- Female employment rate is increasing.
- CTPP no. 18 estimation is based on the trend from National Census between 1975-1990

IV-1 Population Forecast in CTPP No. 198 - Nighttime Pop.

nighttime population	residence based worker	workplace based worker
	residence based student	school based student

- Utilize the forecasted data from IPSS

From the whole TMA level to L zone level, nighttime population data by gender and age group is based on the data published by The National Institute of Population and Security Research (IPSS). Data until 2030 is used (target year of CTPP No. 198)

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-1 Population Forecast in CTPP No. 198 - Nighttime Pop. (Migration rate)

| nighttime population | residence based worker | workplace based worker |
| :--- | :---: | :---: | :---: |
| | residence based student | school based student |

daytime population

- Change of migration rate by distance to CBD (Tokyo Sta.) and by age group

In S zone level, distance to city center, distance to the nearest train station, and land development are considered in the process to estimate nighttime population by gender and age group

IV-1 Population Forecast in CTPP No. 198 - Residence based worker and scenario setting

nighttime population

residence based worker	workplace based worker
residence based student	school based student

daytime population
■ Multiple scenario setting
Recent employment trend, especially participant rate of women and elderly, as well as government policies are taken into account in scenario development

Scenario overview and employment rate						
Scenario	Hypothesis	Male, Female (<25)	Male (25-59)	Female (25-59)	Male, Female (60-64)	Male, Female (>65)
Base Scenario	Continue of the current employment trend	same	Declining trend stop	Increase as current rate	Increase as current rate	same
Growth Scenario 1	Original scenario	same	Increase until the past peak	Increase more than current rate	Increase more than current rate	same

Employment rate by age group in Male and Female
Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-1 Population Forecast in CTPP No. 198 - Residence based pop. and industrial sector

```
nighttime population
```

residence based worker	workplace based worker
residence based student	school based student

- Estimation of workplace based worker: industrial sector classification based on worker's movement Estimation is based on daytime population and the coefficient. Coefficient estimation is based on the type of industry. Two types of industry are classified; first, interaction type, second, non-interaction type.

Workplace based worker	Whole TMA	= forecasted nighttime population * employment rate	Employment rate is based on the 2010 data
	Smaller zone	Interaction type** workplace based worker	= forecasted nighttime population * share of interaction type workplace based worker
		Non-interaction type** workplace based worker	= Current non-interaction type workplace based worker * change rate in the past

[^0]
IV-1 Population Forecast in CTPP No. 198 - Population growth based on land development

nighttime population	residence based worker	workplace based worker
	residence based student	school based student

- Land development

Under these criteria, additional estimation of land development is conducted. Land development data is given by the local government

[reference] Build-up curve
After the opening of the project, it might take some time for the people to move in. In CTPP no.198, we tried to explain the relationship between the progress (actual/target) and years taken by a build-up curve from logistic function

$$
y=\frac{1}{1+\exp (a t+b)}
$$

y : progress rate α, b : parameter $\quad t$: Years from construction

Comparison between curve used in CTPP No. 198 and actual growth from Koshigaya Lake Town development

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-1 Population Forecast in CTPP No. 198 - Improvements from CTPP No. 18

- Comparison of population forecast method between CTPP no. 18 and no. 198

IV-1 TMA railway working group

o For the future railway development, railway companies in TMA are actively participate in the working group. Following issues are usually discussed;

- Development of an original demand forecasting model for TMA
- Relationship between resident along the line and railway demand
- Attractiveness improvement
- International competitiveness
- Organization structure
- Chairman: Prof. Morichi Shigeru
- Railway Company: Tokyo Metro, JR East, Tokyu Corp., Odakyu Group, Tobu Railway, Seibu Holdings
- Secretariat: Japan Transport Research Institute
- Consultant: CRP (staff in charge: Mr. Sakashita, Mr. Tsuchiya, Mr. Ikeda)

In order to check the statistics published by the government, It is also important for private agencies to conduct their own estimation

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-1 TMA railway working group: Original demand forecasting model for TMA

Comparison between forecasted population from IPSS and actual population

TMA

[^1] 2018) in TMA is already over the forecasted population in 2020 by IPSS (2018 estimation version)

IV-1 TMA railway working group: Original demand forecasting model for TMA

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-1 TMA railway working group: Original demand forecasting model for TMA

Population in TMA is decreasing in overall, but along the railway lines, population is increasing!

Night pop. change (2030-2010)

$2,000-$	
1,000	$\sim 2,000$
500	$\sim 1,000$
50	~ 500
-50	~ 50
-500	~-50
$-1,000$	~-500
$-2,000$	$\sim-1,000$
$-5,000$	$\sim-2,000$
$--5,000$	

2030 value is based on IPSS forecasted value

IV-2
 Demand Forecast Modelling

TMA urban transportation demand forecasting model

- Based on following Railway Master Plan
- Council of Transport Policy Plan (CTPP) No. 18 (2000)
- Council of Transport Policy Plan No. 198 (2016)

1. Initial conditions
2. Urban transportation demand forecasting CTPP No. 18
3. Airport/HSR station access demand forecasting
4. Improvements in CTPP No. 198

IV-2 (1) Initial Conditions

Model Structure Population Forecast Initial Conditions Urban Transport Forecast Airport/HSR Forecast

1. Urban network structure

- Railway network structure
\checkmark Initial conditions for network structure
> Current railway network
> Future railway network
$\checkmark \quad$ Network setting
> Node setting
> Railway link setting
> Railway transfer station setting
> Railway station access-egress setting

IV-2 (1) Initial Conditions

Model Structure
Railway station access-egress setting

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (1) Initial Conditions

Model Structure

1. Urban network structure

- Highway network structure
\checkmark Initial conditions for network structure
> Current railway network
> Future railway network
> Access-controlled highway network (expressway)
> Local highway/road network
\checkmark Network setting
> Node setting
> Highway link setting
> Expressway entry/exit link setting

IV-2 (1) Initial Conditions

Model Structure
Population Forecast
Initial Conditions
Urban Transport Forecast
TMA Future Expressway network

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (1) Initial Conditions

Model Structure Population Forecast Initial Conditions Urban Transport Forecast Airport/HSR Forecast

Highway link setting

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (1) Initial Conditions

Model Structure Population Forecast Initial Conditions Urban Transport Forecast Airport/HSR Forecast

2. Transport service condition

- Railway service condition
- Highway service condition
\checkmark Time-related service data setting
> Q - V Model
$\checkmark \quad$ Cost-related service data setting
> Toll
> Vehicle Operating Cost (VOC)
- Bus service condition

IV-2 (1) Initial Conditions

Model Structure Population Forecast

- Q-V Model

Vmax: maximum velocity
Vmin: minimum velocity
Vc : velocity at traffic congestion

- VOC for by each trip purpose

Trip purpose	VOC/veh (yen/veh-km)	Average passenger (pas/veh)	VOC/pas (yen/pas-km)	Equivalent of trip purpose from the Highway Census
	27.3	1.13	24	Go to work
Commuting (school)	27.3	1.60	17	Go to school
Private/ Leisure	27.3	1.56	18	Family related • shopping social • recreation (within TMA)
Business related	27.3	1.26	22	Business-A (not hauling work, go back to office is excluded)

IV-2 (1) Initial Conditions

Model Structure Population Forecast Initial Conditions Urban Transport Forecast Airport/HSR Forecast

3. Other conditions

- Estimation of modal split parameter
- Forecasted modal split
\checkmark Actual vehicle ownership in municipality level
$\checkmark \quad$ Vehicle ownership growth rate
- CBD data setting
$\checkmark \quad$ Parking lot
\checkmark Traffic congestion

IV-2 (1) Initial Conditions

Model Structure
Population Forecast
Initial Conditions
Urban Transport Forecast
Airport/HSR Forecast

- Vehicle ownership growth rate estimation: Regression Analysis

$$
\begin{aligned}
& R_{i}(t)=\alpha_{i}^{*} \ln (t-1969)+\beta_{i} \\
& \text { Where, } \\
& \quad \text { T: year } \\
& \quad \alpha, \beta: \text { parameter of prefecture } i \\
& \\
& R_{i}(t) \text { : vehicle ownership per household in prefecture } i \text {, year } t
\end{aligned}
$$

- Vehicle ownership growth rate estimation result

prefecture	Parameter		Growth ratio $\alpha^{(2015 / 1995)}$

IV-2 (2) Urban transportation demand forecasting

Model Structure	Population Forecast	Initial Conditions			Urban Transport Forecast
1) Generation \& Attraction	2) Distribution	Airport/HSR Forecast			
\begin{tabular}{\|lllll}					
\hline
\end{tabular} | 3) Modal Split | 4) Railway Route Assignment | | | |

4-step model

1) Generation \& Attraction

2) Distribution
3) Modal Split
4) (Railway Lines) Route Assignment

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

 1) Generation \& Attraction| Model Structure | Population Forecast | Initial Conditions | Urban Tr | | Airport/HSR Forecast | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction |) 2) Distribution | \rangle | 3) Modal Split \quad 4) Railway Route Assignment | | | |

- Two methods in Generation and Attraction

Trip Rate
First, calculate trip (generation, attraction) per person, or per $1 \mathrm{~m}^{2}$ floor area. Then apply this ratio to the forecasted population in the future to calculate the forecasted trip
(Trip rate)

$$
\alpha=\frac{G_{\text {current }}}{X_{\text {current }}}
$$

(Future generation (or attraction) volume)

$$
G_{\text {future }}=X_{\text {future }} \times \alpha
$$

α : Trip rate (trip/person) $\quad G$: volume (trip)
X : population in each zone (person)

- Calculation based on the current trip rate, so it is easy to resemble the current rate situation.
- Trip rate based on 2008 person-trip survey.
- Regression Analysis

Generation and Attraction volume will be estimated by various explanatory variables. Parameter will be estimated based on least square method.
(Future generation (or attraction) volume)

$$
G_{f u t u r e}=\alpha+\beta \times X_{\text {current }}
$$

α, β : parameter $\quad G$: volume (trip)
X : population in each zone (person)

- By this method, it is possible to incorporate various indices in the model. However, it is difficult to resemble the result with the current situation.
- When analyze with regression model, if model r square is low, model capability to simulate the current situation will be reduce too.

IV-2 (2) Urban transportation demand forecasting

1) Generation \& Attraction

- Methodology (trip rate)
- Generation (or attraction) volume
$=$ Number of forecasted population (by each population categorization)*Trip rate
- Trip purpose
- Commuting (work)
- Commuting (school)
- Private
- Business related
- Back home

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

1) Generation \& Attraction

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

1) Generation \& Attraction

Model Structure	Population Forecast	Initial Conditions	3) Modal Split \rangle 4) Railway Route Assignment		
1) Generation \& Attraction) 2) Distribution	\rangle			

- Commuting (work) trip
- Methodology

Generated Volume $=$ Home based worker - People who work and stay in the same zone
Attracted Volume = Workplace based worker - People who work and stay in the same zone

- People who work and stay in the same zone
- First, set the total number of people who work and stay in the same zone in whole TMA as a control total value
- Then, conduct an iteration with until the equilibrium is reached

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

 1) Generation \& Attraction| Model Structure | Population Forecast | Initial Conditions | Urban | | Airport/HSR Forecast |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction | \rangle 2) Distribution | \rangle | 3) Modal Split | 4) Railway Route Assignment | |

- Transition of share of self-employed/home office worker

[^2] Agency(MCA))

- Transition of share of employment in each sector

IV-2 (2) Urban transportation demand forecasting

 1) Generation \& Attraction| Model Structure | Population Forecast | Initial Conditions | Urban Tr | Airport/HSR Forecast |
| :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction | \rangle 2) Distribution | \rangle | 3) Modal Split | 4) Railway Route Assignment |

- Commuting (school) trip
- Methodology

Generated Volume $=$ Home based student
Attracted Volume $=$ Workplace based student

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

 1) Generation \& Attraction| Model Structure | Population Forecast | Initial Conditions | λ Urban T | | Airport/HSR Forecast |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction | \rangle 2) Distribution | \rangle | 3) Modal Split | 4) Railway Route Assignment | |

- Private trip
- Methodology

TMA level, by gender and age range
Volume $=$ Daytime population*Generation (or attraction) trip rate

Prefecture Level
Iteration with TMA level volume as a control total value

Block Level
Iteration with prefecture level volume as a control total value

IV-2 (2) Urban transportation demand forecasting

1) Generation \& Attraction

Model Structure	Population Forecast			Initial Conditions		Urban Transport Forecast
1) Generation \& Attraction	2) Distribution	3) Modal Split	4) Railway Route Assignment			

- Generation and Attraction trip rate in TMA by gender and age group

Gender \& Age group			Dayt ime pop in 1993 (1000 person)	Generated volume* (1000 person)	Attracted volume* (1000 person)	Generation trip rate	Attraction trip rate
			A	B	C	B/A	C/A
Male	Children	<15	2, 704	882	1,055	0.326	0.325
	Workforce	15~64	12,895	4, 043	4, 010	0.314	0.312
	Elderly	>65	1,533	759	626	0.495	0.493
Fe male	Children	<15	2, 575	840	1,003	0.326	0.325
	Workforce	15~64	12, 079	10,641	10,587	0.881	0.877
	Elderly	>65	2, 131	1,214	1,022	0.570	0.567

*Note: Generated and Attracted volume is based on the result from Person-Trip Survey

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting 1) Generation \& Attraction

Model Structure	Population Forecast	Initial Conditions	Urban Tr		Airport/HSR Forecast
1) Generation \& Attraction) 2) Distribution	\rangle	3) Modal Split	4) Railway Route Assignment	

- Generation and Attraction trip rate in prefecture and block level by gender and age group

	Daytime pop in 1993 (1000 person)	Generated volume* (1000 person)	Attracted volume* (1000 person)	Generation trip rate	Attraction trip rate
Block	A	B	C	B/A	C/A
Tokyo	14,586	7,462	7,517	0.512	0.515
23 wards	11, 290	5,473	5,545	0.485	0.491
Tama area	3, 296	1,989	1,972	0.603	0.598
Kanagawa	7,309	4, 167	4,115	0.570	0.563
Yokohama	2,938	1,670	1,663	0.568	0.566
Kawasaki	1,070	589	564	0.550	0.527
Others	3,301	1,909	1,888	0.578	0.572
Saitama	5,639	3, 265	3, 187	0.579	0.565
South	3,796	2, 227	2,185	0.587	0.576
North	1,843	1,038	1,003	0.564	0.544
Chiba	4,936	2,782	2, 792	0.564	0.566
Chiba city	812	418	424	0.514	0.522
Northwest	2,680	1,597	1,607	0.596	0.600
Southwest	563	270	266	0.479	0.473
East	881	498	495	0.565	0.562
Ibaraki south	1,447	704	691	0. 486	0.477

*Note: Generated and Attracted volume is based on the result from Person-Trip Survey

IV-2 (2) Urban transportation demand forecasting

1) Generation \& Attraction

Model Structure	Population Forecast	Initial Conditions	Urban T		Airport/HSR Forecast
1) Generation \& Attraction	\rangle 2) Distribution	\rangle	3) Modal Split	4) Railway Route Assignment	

- Business related trip

- Methodology

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

 1) Generation \& Attraction| Model Structure | Population Forecast | Initial Conditions | Urban | | Airport/HSR Forecast |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction |) 2) Distribution | \rangle | 3) Modal Split | 4) Railway Route Assignment | |

- Generation and Attraction trip rate in TMA, prefecture and block level by gender and age

	Daytime pop in 1993 (1000 person)	Generated volume* (1000 person)	Attracted volume* (1000 person)	Generation trip rate	Attraction trip rate
	A	B	C	B/A	C/A
Tokyo Metro. Area	17, 638	8,740	8,655	0.496	0.491
Tokyo	8,709	4,092	4,153	0.470	0.477
23 wards	7,272	3,399	3,491	0.467	0.480
Tama area	1,437	692	662	0.482	0.460
Kanagawa	3,456	1,613	1,571	0.467	0.455
Yokohama	1,359	671	654	0.494	0.481
Kawasaki	548	251	249	0.459	0.454
Others	1,548	690	669	0.446	0.432
Saitama	2, 551	1,460	1,389	0.572	0.544
South	1,726	957	898	0.554	0.521
North	825	503	491	0.610	0.595
Chiba	2, 212	1,145	1,117	0.518	0.505
Chiba city	394	166	169	0.422	0.429
Northwest	1,117	521	499	0.466	0.447
Southwest	276	126	125	0.458	0.454
East	424	331	324	0.781	0.763
Ibaraki South	710	430	424	0.606	0.597

IV-2 (2) Urban transportation demand forecasting
 1) Generation \& Attraction

- Back home trip
- Methodology

- Total trip
- Methodology

Total generated volume $=$ Generated volume from
Commuting (Work + School) + Private + Business + Back Home
Total attracted volume $=$ Attracted volume from
Commuting (Work + School) + Private + Business + Back Home

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

 1) Generation \& AttractionGeneration \& Attraction volume by prefecture
Commuting (work) trip
42\% of workers agglomerated in Tokyo CBD

	1995		Forecasted 2015		1,000person/day			
			2015	99				
	Gen. Volume	Att. Volume			Gen. Volume	Att. Volume	Gen.	Att.
TMA	15,885	15,937	16,552	(16,616)	1.042	1.043		
Tokyo pref.	5,572	8,032	5,438	8,285	0.976	1.031		
23 Wards	3,815	6,711	3,583	6,909	0.939	1.029		
Tama Area	1,756	1,320	1,854	1,376	1.056	1.042		
Kanagawa pref.	3,933	3,184	4,068	3,304	1.034	1.038		
Yokohama	1,582	1,274	1,612	1,317	1.019	1.034		
Kawasaki	601	498	620	512	1.032	1.028		
Others	1,751	1,413	1,836	1,475	1.049	1.044		
Saitama pref.	3,107	2,220	3,484	2,355	1.122	1.061		
South	2,176	1,540	2,453	1,622	1.127	1.053		
North	930	680	1,031	734	1.109	1.079		
Chiba pref.	2,637	1,927	2,833	2,052	1.074	1.065		
Chiba city	410	384	422	398	1.030	1.037		
Northwest	1,593	1,002	1,735	1,063	1.089	1.061		
Southwest	273	246	282	259	1.032	1.052		
East	361	296	395	333	1.093	1.124		
Ibaraki pref. South	637	575	729	620	1.144	1.079		

IV-2 (2) Urban transportation demand forecasting 1) Generation \& Attraction

Generation \& Attraction volume by prefecture
Commuting (school) trip

	1995		Forecasted 2015		2015/1995	
	Gen. Volume	Att. Volume	Gen. Volume	Att. Volume	Gen.	Att.
TMA	5,601	5,614	4,446	4,454	0.794	0.793
Tokyo pref.	1,802	2,179	1,297	1,549	0.719	0.711
23 Wards	1,142	1,501	770	1,016	0.674	0.677
Tama Area	660	678	527	533	0.798	0.786
Kanagawa pref.	1,349	1,224	1,104	1,023	0.818	0.836
Yokohama	532	499	427	409	0.802	0.820
Kawasaki	183	151	149	126	0.813	0.831
Others	634	574	528	489	0.833	0.851
Saitama pref.	1,170	1,035	1,015	919	0.867	0.888
South	767	676	671	601	0.875	0.889
North	403	359	343	318	0.852	0.886
Chiba pref.	1,004	918	796	746	0.793	0.812
Chiba city	147	147	113	113	0.771	0.766
Northwest	602	534	490	442	0.814	0.828
Southwest	104	96	80	77	0.770	0.804
East	151	141	112	114	0.742	0.807
Ibaraki pref. South	276	258	235	217	0.852	0.841

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting 1) Generation \& Attraction

Generation \& Attraction volume by prefecture

Private trip

	1995		Forecasted 2015		2015/1995	
	Gen. Volume	Att. Volume	Gen. Volume	Att. Volume	Gen.	Att.
TMA	18,559	18,480	19,206	19,124	1.035	1.035
Tokyo pref.	7,480	7,536	7,331	7,389	0.980	0.981
23 Wards	5,451	5,524	5,249	5,323	0.963	0.964
Tama Area	2,029	2,012	2,082	2,066	1.026	1.027
Kanagawa pref.	4,216	4,163	4,457	4,404	1.057	1.058
Yokohama	1,691	1,684	1,775	1,768	1.050	1.050
Kawasaki	589	565	621	596	1.054	1.054
Others	1,936	1,915	2,061	2,040	1.065	1.065
Saitama pref.	3,332	3,253	3,657	3,571	1.097	1.098
South	2,275	2,232	2,513	2,467	1.104	1.105
North	1,057	1,021	1,144	1,105	1.082	1.082
Chiba pref.	2,828	2,838	3,009	3,021	1.064	1.065
Chiba city	428	435	444	451	1.037	1.037
Northwest	1,622	1,632	1,759	1,770	1.084	1.085
Southwest	274	270	283	280	1.034	1.034
East	504	501	523	520	1.038	1.038
Ibaraki pref. South	703	690	752		739	1.071

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting 1) Generation \& Attraction

Generation \& Attraction volume by prefecture

Business related trip

Business	d		1,000person/day							
	1995		Forecasted 2015		2015/1995					
	Gen. Volume	Att. Volume	Gen. Volume	Att. Volume	Gen.	Att.	54\% of workers in			
TMA	8,870	8,784	8,956	8,870	1.010	1.010	TMA have a trip			
Tokyo pref.	4,109	4,172	4,134	4,198	1.006	1.006				
23 Wards	3,395	3,489	3,409	3,505	1.004	1.004	outside office			
Tama Area	715	683	725	693	1.014	1.014				
Kanagawa pref.	1,644	1,602	1,662	1,620	1.011	1.011	Commuting (work) trip volume (1,000 per/day)			
Yokohama	688	670	695	677	1.011	1.011				
Kawasaki	251	249	253	50	005	1.005	Forecasted 2015		2015 / 1995	
	251			50	.005	. 005	Gen. Volume	Att. Volume	Gen.	Att.
Others	705	683	715	693	1.014	1.014	16,552	16,616	1.042	1.043
Saitama pref.	1,503	1,430	1,525	1,452	1.015	1.015	5,438	8,285	0.976	1.031
South	987	927	1,004	943	1.017	1.017	3,583	6,909	0.939	1.029
North	516	503	521	509	1.011	1.011	1,854	1,376	1.056	1.042
Chiba pref.	1,181	1,153	1,197	1,169	1.014	1.014	1,612	1,317	1.019	1.038
Chiba city	175	178	178	181	1.016	1.016	620	512	1.032	1.028
Northwest	541	519	553	530	1.022	1.022	1,836	1,475	1.049	1.044
Southwest	130	129	131	130	1.007	1.007	3,484	2,355	1.122	1.061
East	335	327	336	328	1.003	1.003	1,031	734	1.109	1.079
Ibaraki pref. South	433	427	438	432	1.011	1.011	2,833	2,052	1.074	1.065
							422	398	1.030	1.037
				ivurumest	1,ככ	1,uve	1,735	1,063	1.089	1.061
				Southwest	273	246	282	259	1.032	1.052
				East	361	296	395	333	1.093	1.124
				raki pref. South	637	575	729	620	1.144	1.079

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting 1) Generation \& Attraction

Generation \& Attraction volume by prefecture
Total trip
1,000person/day

	1995		Forecasted 2015		2015/1995	
	Gen. Volume	Att. Volume	Gen. Volume	Att. Volume	Gen.	Att.
TMA	88,946	88,860	89,355	89,268	1.005	1.005
Tokyo pref.	36,709	36,772	35,421	35,485	0.965	0.965
23 Wards	27,539	27,634	26,259	26,354	0.954	0.954
Tama Area	9,170	9,139	9,163	9,131	0.999	0.999
Kanagawa pref.	19,713	19,671	20,022	19,980	1.016	1.016
Yokohama	7,949	7,931	8,003	7,984	1.007	1.007
Kawasaki	2,838	2,835	2,875	2,873	1.013	1.013
Others	8,927	8,905	9,145	9,123	1.024	1.024
Saitama pref.	15,620	15,547	16,527	16,453	1.058	1.058
South	10,654	10,594	11,330	11,270	1.064	1.064
North	4,965	4,952	5,196	5,183	1.047	1.047
Chiba pref.	13,332	13,304	13,654	13,626	1.024	1.024
Chiba city	2,126	2,129	2,119	2,122	0.997	0.997
Northwest	7,526	7,503	7,812	7,789	1.038	1.038
Southwest	1,393	1,392	1,392	1,391	0.999	0.999
East	2,288	2,281	2,332	2,324	1.019	1.019
Ibaraki pref. South	3,571	3,565	3,730	3,724	1.044	1.044

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

 2) Distribution| Model Structure | Population Forecast | Initial Conditions | Urban Tr | | Airport/HSR Forecast |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction | 2) Distribution | \rangle | 3) Modal Split | 4) Railway Route Assignment | |

- Three methods in Distribution
- Current Pattern Method

Incorporate the growth rate and distribute each O-D by Frater Method
$T_{i j}=t_{i} \cdot \frac{G_{i}}{g_{i}} \frac{A_{j}}{a_{j}} \frac{1}{2}\left(\frac{g_{i}}{\sum_{j} t_{i} \cdot A_{j} / a_{j}}+\frac{a_{j}}{\sum_{i} t_{i} \cdot G_{i} / g_{i}}\right)$

- Suitable for the area with less development, or with a few expected change in the future
- Not recommended for the area with a large change in the future
- Function Model Method
- Gravity Model

Utilizing the Newton's law of gravity into the demand forecasting model by considering attraction-distribution as a mass, and the zone travel time as a decay parameter.

$$
T_{i i}=\kappa \cdot G_{i}^{\alpha} \cdot A_{i}^{\beta} \cdot d_{i j}^{-\gamma}
$$

G_{i} :Forecasted generated volume in zone j
$d_{i j}$:Travel time between zone i, j
$T_{i j}$:Forecasted volume between zone i, j
A_{j} :Forecasted attracted volume in zone j
$\alpha, \beta, \gamma, \kappa \quad$:Parameter

- Suitable for the area with a large redevelopment plan

- Similar Pattern Method

 In the area with the large development is expected, the transport pattern will be completely changed. Therefore, this method consider this change based on the value from the nearby development.
Consider the travel pattern from

 the nearby developments> Match the similar development and apply the flow data. Then do iteration based on such flow data.

- Suitable for the area with a large scale land development.
- Because the pattern from nearby development is emulated, so there might a some distortion in trip between those area and area nearby

IV-2 (2) Urban transportation demand forecasting 2) Distribution

Model Structure	Population Forecast	Initial Conditions	Urban		Airport/HSR Forecast
1) Generation \& Attraction	2) Distribution	\rangle	3) Modal Split	4)	vay Route Assignment

1. Current Pattern Method

\rightarrow Based Method

- In TMA, most of the urban areas are already developed
- Fix the number of commuters between suburban and CBD
- Assuming no large scale development

2. Similar Pattern Method

Based on the assumption that there is a land development along the new railway line

- Assuming more people with long commuting distance to CBD
- Imitate the travel pattern in the nearby development

3. Gravity Model

- Area with expected land development, but no past development nearby to mimic
- New travel pattern is assumed

IV-2 (2) Urban transportation demand forecasting

 2) Distribution

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting 2) Distribution

Model Structure	Population Forecast	Initial Conditions	Urban T	Airport/HSR Forecast
1) Generation \& Attraction	2) Distribution	\rangle	3) Modal Split	ay Route Assignment

- Methodology

- Analyze at M zone level (TMA = 641zones)
- Intrazone forecast volume \rightarrow Use the current share of the intrazone trip
- Interzone forecast volume \rightarrow Gravity Model

- Analysis Flow

- Estimate the current O-D table
- Structure the gravity model and apply
- Forecast the future O-D table

IV-2 (2) Urban transportation demand forecasting

 2) Distribution| Model Structure | Population Forecast | | | Initial Conditions | Urban Transport Forecast |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 1) Generation \& Attraction | 2) Distribution | 3) Modal Split | 4) Railway Route Assignment | | |

- Distribution Analysis: Flowchart

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting 2) Distribution

Model Structure	Population Forecast	Initial Conditions	Urban Transport Forecast		Airport/HSR Forecast
1) Generation \& Attraction	2) Distribution	\rangle	3) Modal Split		ay Route Assignment

- Current O-D table estimation: Flowchart

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

 2) Distribution| Model Structure | Population Forecast | | Initial Conditions | Urban Transport Forecast |
| :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction | 2) Distribution | 3) Modal Split | 4) Railway Route Assignment | |

- Gravity Model

$$
T_{i j}=G_{i} \frac{\left(1+\alpha \delta_{j}\right) A_{j}^{\beta} / D_{i j}^{\gamma}}{\sum_{j}\left(1+\alpha \delta_{j}\right) A_{j}^{\beta} / D_{i j}^{\gamma}}
$$

Where, $\quad T_{i j}$: Distributed volume between zone i, j (person/day)
G_{i} : Outflow volume from i
(person/day, Outflow volume $=$ Generated volume - Intrazone volume)
A_{j} : Inflow volume to j
(person/day, Inflow volume = Attracted volume - Intrazone volume)
$D_{i j}$: Travel time between zone i, j (minutes)
$\delta_{j}:$ CBD dummy (CBD $=1$, other area $=0$)
$\kappa, \alpha, \beta, \gamma, \varepsilon$: Model parameter

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting 2) Distribution

Model Structure	Population Forecast	Initial Conditions	Urban T		Airport/HSR Forecast
1) Generation \& Attraction	2) Distribution	\rangle	3) Modal Split	4) Railway Route Assignment	

- Estimated parameter from Gravity Model

	Purpose	α	β	γ	ε	κ	r	F-stat
dis tri but ion	work	0.6408	0.551	2. 109			0.75	130.7
	school	-	0. 238	2. 309			0.87	99.6
	private	-	0.513	1. 390			0.73	722. 8
	business	-	0.734	1. 176			0.77	1, 074.6
Att rac tio n	work	-	0.417	2. 132			0.83	124.5
	school	-	0.667	2. 709			0.86	70.0
	private	-	0.463	1. 476			0.76	1,267. 1
	business	-	0.357	1. 288			0.78	1,544. 7

IV-2 (2) Urban transportation demand forecasting 2) Distribution

Model Structure	Population Forecast	Initial Conditions	Urban Transport Forecast		Airport/HSR Forecast
1) Generation \& Attraction	2) Distribution	\rangle	3) Modal Split		ay Route Assignment

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting 2) Distribution

(upper: 1995, lower: 2015)

IV-2 (2) Urban transportation demand forecasting

 2) Distribution
(upper: 1995, lower: 2015)
Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting 3) Modal Split

Model Structure	Population Forecast	Initial Conditions	Urban Transport Forecast		Airport/HSR Forecast
1) Generation \& Attraction	2) Distribution	\rangle	3) Modal Split		ay Route Assignment

- Methodology
- Estimate two separate model: "Walking \& Two Wheeler Model" and "Vehicle Split Model"

- Analysis Flow

- Interzone
- O-D table from distribution -> divide into "Walking \& Two Wheeler O-D table" and "Vehicle Split O-D table"
- From "Vehicle Split O-D table" -> divide into "Railway O-D table", "Bus O-D table" and "Car O-D table"
- Intrazone
- Based on the current modal split

IV-2 (2) Urban transportation demand forecasting 3) Modal Split

Model Structure	Population Forecast			Initial Conditions	Urban Transport Forecast
1) Generation \& Attraction	2) Distribution	3) Modal Split	4) Railway Route Assignment		

Two step in Modal Split estimation process
STEP1: Forecast "Walking \& Two Wheeler volume" and "Vehicle Split volume" STEP2: From "Vehicle Split volume", forecast the volume by "Rail", "Bus" and "Car"

IV-2 (2) Urban transportation demand forecasting 3) Modal Split

IV-2 (2) Urban transportation demand forecasting 3) Modal Split

Model Structure	Population Forecast		Initial Conditions	Urban Transport Forecast
1) Generation \& Attraction	2) Distribution	3) Modal Split	4) Railway Route Assignment	

- Walking \& Two Wheeler Model

$$
P^{\text {walk }}=p^{\text {walk }} i j+\left(P_{0}^{\text {walk }}{ }_{I J}-p_{0}^{\text {walk }}{ }_{I J}\right)
$$

Where,
$P^{\text {walk }}{ }_{i j}$: Corrected share of walk \& 2wheel between zone i, j in S zone level
$p^{\text {walk }}{ }_{i j}$: Estimated share of walk \& 2 wheel between zone i, j in S zone level
$P_{0}{ }^{\text {walk }}{ }_{I J}$: Expected share of walk \& 2 wheel between zone I, J in L zone level ($i \in I, j \in J$)
$p_{0}{ }_{I J}^{\text {walk }}$: Current share of walk \& 2 wheel between zone I, J in L zone level ($i \in I, j \in J$)

Where,

$$
p_{0}{ }^{\text {walk }}{ }_{I J}=\frac{\sum_{i \in I} \sum_{j \in J}\left(p_{0}{ }^{\text {walk }}{ }_{i j} \times Q_{i j}\right)}{Q_{I J}}
$$

$p_{0}{ }^{\text {walk }}{ }_{i j}$: Current share of walk \& 2 wheel between zone i, j in S zone level
$Q_{i j}$: Current all mode volume between zone i, j in S zone level
$Q_{I J}$: Current all mode volume between zone l, J in L zone level ($i \in I, j \in J$)

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

 3) Modal Split| Model Structure | Population Forecast | Initial Conditions | Urban Tr | | Airport/HSR Forecast |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction | 2) Distribution | \rangle | 3) Modal Split | | ay Route Assignment |

- Walking \& Two Wheeler Model curve

IV-2 (2) Urban transportation demand forecasting 3) Modal Split

Model Structure	Population Forecast	Initial Conditions	Urban Tr	Airport/HSR Forecast
1) Generation \& Attraction	2) Distribution	\rangle	3) Modal Split	4) Railway Route Assignment

- Vehicle Split Model

Where,

$$
P_{i j, m}=\frac{\exp \left(V_{i j, m}\right)}{\sum_{m^{\prime}} \exp \left(V_{i j, m^{\prime}}\right)}
$$

$P_{i j, m}$: Probability of selecting mode m when travel between zone i, j
$V_{i j, m}$: Utility when mode m is used when travel between zone i, j

Where,

$$
V_{i j, m}=\theta_{1} X_{i j, m, 1}+\theta_{2} X_{i j, m, 2}+\cdots+\theta_{n} X_{i j, m, n} \cdots
$$

θ_{n} : Utility estimation parameter
$X_{i j, m, n}$: explanatory variable of utility when mode m is used when travel between zone i, j

IV-2 (2) Urban transportation demand forecasting 3) Modal Split

Model Structure	Population Forecast	Initial Conditions	Urban Transport Forecast		Airport/HSR Forecast
1) Generation \& Attraction	2) Distribution	\rangle	3) Modal Split		ay Route Assignment

- Vehicle Split Model parameter

IV-2 (2) Urban transportation demand forecasting
 4) Railway Route Assignment

- Methodology
- Railway route assignment modelling
- Parameter estimation and demand forecasting
- Railway route assignment
- Consideration of in-train congestion relieve

Link congestion index $=$ Link travel time*Link congestion rate ${ }^{2}$

- Consideration of the route similarly
- Disaggregate Probit Model

(Reference) Congesting Rate from Bangkok

Current Issues

> Serious congestion inside train car and station in the peak hour, on the existing mass transit lines.

Saphan Taksin St. 1. $22 / 12 / 17,07: 28$ 8:31 2. 3-6 minutes 3. 0-1 train 4. $180-200 \%$
*1. Survey date, time, 2. Head between trains (min), 3. Number of trains passengers miss due to congestion 4. Congestion Ratio (Japanese standard, see above)

IV-2 (2) Urban transportation demand forecasting 4) Railway Route Assignment

Model Structure	Population Forecast	Initial Conditions	Urban T		Airport/HSR Forecast
1) Generation \& Attraction	\rangle 2) Distribution	\rangle	3) Modal Split	4) Railway Route Assignment	

As for modal split model, two models namely, aggregate model and disaggregate model are usually applied
Comparison between aggregate model and disaggregate model

Characteristics	Aggregate Model	Disaggregate Model
Explanatory Variable	Zone-aggregate selection probability	Individual selection probability
Theoretical Background	(Mostly) Empirical Based	Random Utility
Pros \& Cons	Simplicity in model construction	Clear explanation in terms of theory
	1 zone = 1 sample, therefore, huge amount of survey is needed	Simple to test many policy variables

Disaggregate model is based on the Random Utility Theory, where individual selection is based on their utility maximization. Distribution of utility varies on the function assumption. General model is shown below.

- Probit Model

In this model, utility probability distribution is based on Normal Distribution.

In CTPP no.18, we try to maintain the IIA assumption by avoiding logit model and applying probit model

- With more route choice, more multiple integral is needed. So it is quite difficult to clearly explain the meaning of parameters.
- Railway line independency is not assumed (No. IIA)
- Based on the theoretical background, Disaggregate model is used
- In order to deal with railway route selection problem, Probit model is used

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

 4) Railway Route Assignment| Model Structure | Population Forecast | Initial Conditions | Urban Tr | | Airport/HSR Forecast |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction |) 2) Distribution | \rangle | 3) Modal Split | 4) Railway Route Assignment | |

- Railway Route Assignment parameter estimation result

Variables		Unit	Parameter				
		Work	School	Private	Bus iness		
me	On-board time		Min	$\begin{aligned} & -0.0943 \\ & (-8.09) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.0597 \\ & (-5.77) \\ & \hline \end{aligned}$	$\begin{gathered} -0.0494 \\ (-2.86) \\ \hline \end{gathered}$	$\begin{gathered} -0.0499 \\ (-3.29) \\ \hline \end{gathered}$
	Access/egress	Min	$\begin{array}{r} -0.127 \\ (-11.7) \\ \hline \end{array}$		$\begin{aligned} & -0.0583 \\ & (-4.30) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.0599 \\ & (-5.82) \\ & \hline \end{aligned}$	
	Access	Min		$\begin{gathered} -0.0691 \\ (-6.20) \end{gathered}$			
	Egress	Min		$\begin{aligned} & -0.0603 \\ & (-5.69) \\ & \hline \end{aligned}$			
	Transfer + wai ting time	Min	$\begin{array}{r} -0.112 \\ (-10.7) \\ \hline \end{array}$	$\begin{gathered} -0.0793 \\ (-8.71) \end{gathered}$	$\begin{aligned} & -0.0722 \\ & (-4.15) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.0687 \\ & (-4.52) \end{aligned}$	
$\begin{array}{\|l} \hline \text { Co } \\ \text { st } \end{array}$	Total user cost	Yen	$\begin{array}{r} -0.00200 \\ (-3.98) \\ \hline \end{array}$	$\begin{array}{r} -0.00388 \\ (-7.14) \\ \hline \end{array}$	$\begin{gathered} -0.00233 \\ (-3.00) \\ \hline \end{gathered}$	$\begin{gathered} -0.00103 \\ (-1.57) \\ \hline \end{gathered}$	
Congestion index			$\begin{gathered} \hline-0.00869 \\ (-3.34) \\ \hline \end{gathered}$	$\begin{array}{r} -0.00177 \\ (-0.80) \\ \hline \end{array}$			
Route simitarity parameter			$\begin{aligned} & 0.426 \\ & (2.71) \end{aligned}$	$\begin{aligned} & 0.101 \\ & (1.40) \\ & \hline \end{aligned}$	$\begin{array}{r} 0.513 \\ (1.20) \\ \hline \end{array}$	$\begin{gathered} 0.214 \\ (1.06) \\ \hline \end{gathered}$	
ρ^{2}			0.390	0.331	0.172	0.156	
Sample Size			1,218	811	436	357	

IV-2 (2) Urban transportation demand forecasting 4) Railway Route Assignment

- Railway Route Assignment volume forecasting result

From disaggregate probit model

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting 4) Railway Route Assignment

Model Structure	Population Forecast	Initial Conditions	Urban Transport Forecast		Airport/HSR Forecast
1) Generation \& Attraction	\ 2) Distribution	\rangle	3) Modal Split		ay Route Assignment

- Congestion index cost setting

IV-2 (2) Urban transportation demand forecasting 4) Railway Route Assignment

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting 4) Railway Route Assignment

Model Structure	Population Forecast	Initial Conditions	Urban Tr		Airport/HSR Forecast
1) Generation \& Attraction	\rangle 2) Distribution	\rangle	3) Modal Split	4) Railway Route Assignment	

Problem in logit model

Assuming 10,000 people travel from Zone $A \rightarrow$ Zone B and there are two options, Blue line and Red line

IV-2 (2) Urban transportation demand forecasting 4) Railway Route Assignment

Model Structure	Population Forecast	Initial Conditions	Urban		Airport/HSR Forecast
1) Generation \& Attraction	\rangle 2) Distribution	\rangle	3) Modal Split	4) Railway Route Assignment	

Problem in logit model

Estimation result from Logit model

Variable	Parameter	t-value
On-board time (min)	-0.164	-9.80
Fare cost (yen)	-0.00323	-3.69
Access distance (km)	-1.746	-17.6
Egress distance (km)	-1.238	-14.6
Same level transfer time (min)	-0.193	-5.65
Different level transfer time (min)	-0.299	-4.56
Waiting time (min)	-0.188	-5.48
ρ^{2}	0.302	
Accuracy rate	80.0%	
Sample size	900	

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

 4) Railway Route Assignment| Model Structure | Population Forecast | Initial Conditions | Urban Tra | | Airport/HSR Forecast |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction | \rangle 2) Distribution | \rangle | 3) Modal Split | 4) Railway Route Assignment | |

Problem in logit model

Blue Line: (1 -> J) on-board time 20min, fare cost 300 yen, waiting time 5 min
Transfer time from blue line to green line at α ($1->\alpha$) on-board time 10 min , fare cost 150 yen, waiting time 5 min station: same level $=2 \mathrm{~min}+$ different level $=$

Assuming 10,000 people travel from Zone $A \rightarrow$ Zone B and there are three options, Blue line, Red line and Green line

IV-2 (2) Urban transportation demand forecasting

4) Railway Route Assignment

Problem in logit model

before			after	
Route	Passenger	Introduction of	Route	Passenger
BLUE	3,662		BLUE only	3,125
RED	6,338		RED	5,409
			BLUE -> GREEN	1,466

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting
 4) Railway Route Assignment

Model Structure	Population Forecast	Initial Conditions	Urban Tr		Airport/HSR Forecast
1) Generation \& Attraction) 2) Distribution	\rangle	3) Modal Split	4) Railway Route Assignment	

Problem in logit model
The assumption when the utility of from each choices are not affecting the selection probability of each others

With this assumption, probability of selecting choices with high similarity could be overestimated, while other choices could be underestimated

IIA
Independence from irrelevant alternatives
Especially in TMA where various routes can be selected within one O-D
This is the main limitation of Logit Model when applying to TMA demand forecasting

IV-2 (2) Urban transportation demand forecasting

 4) Railway Route Assignment| Model Structure | Population Forecast | Initial Conditions | Urban | | Airport/HSR Forecast |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction | > 2) Distribution | \rangle | 3) Modal Split | 4) Railway Route Assignment | |

Probit Model

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (2) Urban transportation demand forecasting

 4) Railway Route Assignment| Model Structure | Population Forecast | Initial Conditions | Urban Tr | Airport/HSR Forecast |
| :---: | :---: | :---: | :---: | :---: |
| 1) Generation \& Attraction |) 2) Distribution | \rangle | 3) Modal Split | 4) Railway Route Assignment |

Probit Model
Actual Example: from Omiya -> to Kanda
a. Omiya (via Tohoku-Takasaki line) - Ueno - (via Yamanote line) - Kanda
b. Omiya (via Tohoku-Takasaki line) - Ueno - (via Keihin-Tohoku line) - Kanda
c. Omiya (via Keihin-Tohoku line) - Kanda

	1995 Metropolitan Transport Census (actual)	Without route similarity parameter	With route similarity parameter
a. Tohoku-Takasaki -> Yamanote	33\%	28\%	27\%
b. Tohoku-Takasaki -> Keihin-Tohoku	15\%	24\% Ј 52\%	20\% 57%
c. Keihin-Tohoku only	53\%	47\%	52\%
sum	100\%	100\%	100\%

IV-2 (3) Airport/HSR station access demand forecasting

Model Structure

4-step model

1) Generation \& Attraction

2) Distribution
3) Modal Split
4) (Railway Lines) Route Assignment

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (3) Airport/HSR station access demand forecasting

- Parameter estimation (modal split airport access)

(): t-value

IV-2 (3) Airport/HSR station access demand forecasting

Model Structure

Population Forecast

- Parameter estimation (Haneda airport access route assignment)

Variable		Unit	Parameter		
		Private	Business		
Time	On-board time		Min	-0.0494	-0.0499
	Access/Egress time	Min	-0.0583	-0.0599	
	Transfer + Waiting time	Min	-0.0722	-0.0687	
Cost	Total cost	Yen	-0.00233	-0.00103	

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (3) Airport/HSR station access demand forecasting

- Parameter estimation (Narita airport access route assignment)

Variable	Unit	Estimates	
Total travel time	Min	-0.0943	(-8.1)
Total travel cost	$¥$	-0.00200	(-4.0)
No. of Transfers	time	-0.00869	(-3.3)
Express dummy		0.436	(2.7)
ρ^{2}	0.568		
Accuracy rate		88.0%	
Sample size		1,033	

Note 1) () t-value
Note 2) Express dummy = 1 if Narita Express or Skyliner is used, 0 otherwise

IV-2 (3) Airport/HSR station access demand forecasting

- Parameter estimation (HSR station access modal split)

		Bus iness		Leisure	
Time	Total time (min)	-0. 0313	(-3.9)	-0.0323	(-7.3)
Cost	Total cost (\ddagger)	-0.000374	(-3.9)	-0.000580	(-5.3)
Constan	Car	-0. 437	(-3.5)	-0. 432	(-2.6)
	Bus	-3. 48	(-10.5)	-0. 348	(-2.3)
Accuracy Rate		82.9 \%		76.6 \%	
ρ^{2}		0. 164		0.142	
Sample size		2,577		1,580	
(ref.) Value of Time		$84(¥ / \mathrm{min})$		$56 \quad(\neq \mathrm{min})$	

(): t-value

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (4) Improvements in CTPP No. 198

1) Problems in CTPP No. 18
2) Expected changes in the future
3) Improvements in demand forecasting model

IV－2（4）Improvements in CTPP No． 198
1）Problems in CTPP No． 18

Estimation accuracy in CTPP No． 18

In CTPP No．18，targeting estimation accuracy is expected within $\pm 10 \%$

However，when compare the actual value with the estimated value from CTPP No．18，in year 2005 value，several estimations outside the accuracy range of 10% have been found

Comparison of actual and estimated volume（2005）

Day volume（person／day							
direction	Name of lines		ction	actual	forecasted	fore－act	for／act
多摩方面	中央緩行線	新宿	大久保	267，994	300．035	32.041	1.12
	中央快速線	新宿	中野	750，927	610，988	－139，940	0.81
	東西綵	落合	高田馬場	126．741	125，740	－1．001	0.99
	京王線	新宿	初台	704，725	692，545	－12，180	0.98
	西武新佰線	西武新宿	高田馬場	195.709	186.090	－9，620	0.95
	計			2，046，096	1，915．397	－130．699	0.94
神奈川方面	京浜東北線	品川	大井町	593，914	457．424	－136，490	0.77
	東海道本線	品川	小崎	419，186	378．451	－40．736	0.90
	横須賀線	品川	西大井	279，681	206，949	－72．733	0.74
	京急本線	品川	北品川	353.818	331.607	－22．212	0.94
	小田急小田原線	新宿	南新宿	486，120	490．551	4.431	1.01
	東急東鞖	渋谷	代官山	433，310	316．741	－116．579	0.73
	東急田園都市線	渋谷	池尻大橋	632，841	580，290	－52，551	0.92
	計			3，198，870	2，762，011	－436．859	0.86
埼玉方面	東北本線	上野	尾久	355，834	392，584	36，750	1.10
	京矤東北線	端	上中里	420，830	307.196	－113．635	0.73
	培京線	池装	板橋	683，351	674.927	－8，425	0.99
	都営三田線	巣鴨	西戰鳥	193．869	197，322	3.453	1.02
	日比谷線	入谷	上野	374，656	402，911	28，255	1.08
	有楽町線	要町	池隻	318，124	253．807	－64，317	0.80
	西武池袋線	池袋	椎名町	507，656	591，641	83，985	1.17
	東武東上線	池䧶	北也边袋	517，174	608，998	91，824	1.18
	計			3，371，494	3，429，383	57，889	1.02
于葉方面	総武緩行線	秋薬原	浅草橋	699，881	597．707	－102，174	0.85
	紛武诫倳線	東京	新日本橋	360，552	390，413	29，861	1.08
	京莱線	東京	八丁堀	178，493	128.734	－49，759	0.72
	都営浅草線	新橋	東銀坐	238，269	206．618	－31．652	0.87
	都営新信線	岩本町	小川町	224，629	188，215	－36．414	0.84
	京成本線	日墓里	新三河島	130，977	149，024	18，047	1.14
	東西線	大手町	日本橋	482，102	462，297	－19．805	0.96
	計			2，314，903	2，123．007	－191，897	0.92
常警方面	常箸扰速線	日暮里	三河島	497，787	395，316	－102，471	0.79
	千代傫線	町屋	西日暮里	432,744	401.866	－30，878	0.97
	計			930，531	797，182	$-133,349$	0

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan（M－MAP2）

IV－2（4）Improvements in CTPP No． 198
2）Expected changes in the future

Increasing in Tourism
－Foreign tourist \rightarrow Setting the new target

出筫：日木放用樶光局（UNTO）

Large－scale disaster and aging infra．

IV－2（4）Improvements in CTPP No． 198
3）Improvements in demand forecasting model

Sample categorization	1）Generation \＆Attraction				2）Distribution				3）Modal Split				4）Railway Route Selection			
		urpose	Gender	Age group		的区分	性別	年閝区分		的区分	性別	年钢区分		的区分	性洜	年旡区分
	Commuting（work）		Male	5y．range	通勤		男女		通勤		男女		通勤		異女 通	金年㷏
			Female	5y．range			共通									
No． 18	Commuting（school）		Male	2 groups	通学		$\begin{array}{\|l\|l\|} \hline \text { 異通 } \end{array}$		通学		$\begin{aligned} & \text { 異通 } \end{aligned}$		通学		男女	
			Female									－IIP				
	Private		$\frac{\text { Male }}{\text { Female }}$	3 groups			異通		私事		異通		私事		異通	
	Business Related		Male	N／A	業務		男女㛚		業務		異女		業務		異女	
			Female													
	Back home		Male Female	N／A	雨宅		$\begin{aligned} & \text { 異女通 } \end{aligned}$		無宅		$\begin{aligned} & \text { 異通 } \end{aligned}$		霄宅		$\begin{aligned} & \text { 異女 } ⿺ 辶 ⿱ 龴 ⿵ ⺆ ⿻ 二 丨 力 刂 ~ \end{aligned}$	
No． 198		urpose	Gender	Age group		的区分	性敖	年钢区分		的区分	性別	年楐区分		的区分	性別	年魿区分
	Commuting（work）		Male	Sy．range	通勤		男性	陑分	通勤		男女	2区分	通勤		男女	2区分
			Female	5y．range			女性	4区分			共通				共通	
	Commuting（school）		Male	5y．range	通学		男性	2区分	通学		異女		通学		$\begin{array}{\|l\|} \hline \text { 男女 } \\ \text { Hi } \end{array}$	
			Female	5v．range			女性	2区分			共通				共通	
	Private	From home	Male	4 groups	私事	自宅発	$\xrightarrow{\text { 男性 }}$	4区分	私事	自宅発	異女通	3区分	私事	自宅発	$\begin{aligned} & \text { 異女 } ⿺ 辶 ⿱ 龴 ⿵ ⺆ ⿻ 二 丨 力 刂 ~ \end{aligned}$	2 区分
			Female	5 groups			女性	5区分								
		others	Male	$4{ }^{4}$ groups		その他	男性	先区分		その他	異女	3区分		その他	異女	2区分
			Female	5 groups			女性	5 区分								
	$\begin{aligned} & \text { Busines F } \\ & \text { Filated } \\ & \text { Re } \end{aligned}$	From home	Male	3 groups	業務	自宅発	男性	3区分	業務	自宅発	異女通	2区分	業務	自宅発	男女	2 区分
			Female	3 groups			女性	3区分								
		From	Male	3 groups			$\xrightarrow{\text { 男性 }}$	$\frac{3 区}{3 \text { 分 }}$ 3分		勤務先発	$\begin{aligned} & \text { 異通 } \end{aligned}$	2区分		勤奦先発	$\begin{aligned} & \text { 男女 } \\ & \text { 共通 } \end{aligned}$	2区分
		workplace	Female	3 groups			女性	3区分								
	Back home 	From workplace	Male	3 groups	际宅	䂀務先	$\xrightarrow{\text { 男性 }}$	3区分	曒宅	勤弱先	$\begin{aligned} & \text { 異女通 } \end{aligned}$	2区分	㣁宅	勤務先	$\begin{aligned} & \text { 異通 } \end{aligned}$	2区分
			Female	$4{ }^{4}$ groups			女珄	4区分								
		From	Male	2 groups		通学先	$\underset{\text { 男性 }}{\text { 女性 }}$	2区分		通学先	異女			通学先	$\begin{aligned} & \text { 男女 } \\ & \text { 共通 } \end{aligned}$	
			Female	2 groups			女性	2区分								
		$\begin{array}{\|c\|c\|} \hline \text { From } \\ \text { private } \end{array}$	Male	4 groups		私事先	$\xrightarrow{\text { 男性 }}$	4区分		私事先	$\begin{aligned} & \text { 異女通 } \end{aligned}$	3区分		私事先	$\begin{aligned} & \text { 男女通 } \\ & \hline \end{aligned}$	2区分
			Female	5 groups			女性	5 5分		業務先				業務先		2区分
		$\begin{aligned} & \text { From } \\ & \text { business } \end{aligned}$	Male	3 groups		業務先	$\xrightarrow{\text { 男性 }}$ 女性	3区分		穼務先	異女通	2区分		嗉務先	共通	2区分
			Female	3 groups			4	3区分								
a Collection Survey o	the Dev	velopment	t of Bluep	print for the	cond N	Mass Rapid	Transit	Master Plan	MAP2）					栬：18号答輷が的の改良点		

IV－2（4）Improvements in CTPP No． 198
3）Improvements in demand forecasting model

Implementing the station accessibility into the model

IV-2 (4) Improvements in CTPP No. 198
3) Improvements in demand forecasting model

Station Access Model in M-MAP2
A) To Develop Inter-modal Facilities
B) To Provide Safe and Comfort Feeder Transport Services

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (4) Improvements in CTPP No. 198
3) Improvements in demand forecasting model

Station Access Model in M-MAP2
A) To Develop Inter-modal Facilities
B) To Provide Safe and Comfort Feeder Transport Services
at terminal stations/sub-urban stations

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (4) Improvements in CTPP No. 198
3) Improvements in demand forecasting model

Railway Station Access Modal Split parameter estimation (commuting)
evaluate the station accessibility improvement policy

- access point closer to station
- less cost to access
- different level \rightarrow effect to elderly

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

IV-2 (4) Improvements in CTPP No. 198

3) Improvements in demand forecasting model

Modal Split parameter estimation (commuting)

Railway Route assignment parameter estimation (commuting)
-

IV-2 (4) Improvements in CTPP No. 198

3) Improvements in demand forecasting model

IV-2 (4) Improvements in CTPP No. 198

3) Improvements in demand forecasting model

- Utilizing the actual data from Metropolitan Transportation Census (MTC)
- Visualizing the result with GIS data for better understanding

	CTPP No.7, No. 18	CTPP No. 198
Parameter Estimation	[Zone centroid] - based on estimator's judgment [Zone-nearest station setting] - based on the bus route, multiple station could be set [Route setting] a) based on shortest travel time b) based on estimator's judgment **parameter estimation is conducted from randomly selected routes	[Zone centroid] - Weighted calculate from population in mesh level [Station and route setting based on MTC] a) Station List: based on the access-egress data from MTC b) Route List: based on the route O-D list from MTC c) Candidate route selection: extracted from access-egress data, station list, route list d) Top 4 candidate route: from all candidate routes, rank the route based on no.of passenger then select the candidate by considering the route overlap rate and types of train
Simulate the current condition \& future forecast		a) In each O-D, select the shortest travel time route b) Select the shortest travel time route for access and egress to station c) Select the minimum cost route for access and egress to station d) Select the railway route to connect each access stations. There is also the case were station and railway route are combined as a set e) Add the railway route based on MTC in the model

IV-2 (4) Improvements in CTPP No. 198

3) Improvements in demand forecasting model

Result from the model will be calibrated with the passenger result from MTC. 10\% difference is targeted.

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

SUMMARY

Issue to be considered in BMA demand forecasting
What we want to express:

- To answer the given policy, including

1. Modal shift from car

- What will be the modal share in the future?

2. Train station access

- Changing in station access pattern (Bus, Van \rightarrow Walk?, Bike?)

3. Railway investment priority selection

- Railway route selection modelling

SUMMARY (2)

Issue to be considered in BMA demand forecasting
What we want to express:

- To answer the given policy, including (continue)

4. The effect of new railway development

- Congestion relieve
- Reduction in number of transfer

5. Consideration of Airport, HSR and tourist demand
6. Check the LOS setting (how it is set in the model)
7. Check the parameter estimation

- Negative? Positive?

Please consider these policies along with demand forecast model

Thank you for your attention ご清聴ありがとうございました

Appendix 5

Traffic Survey

Appendix 5: Traffic Survey

Table of Contents

1. Railway Congestion Survey A5-1
1.1 Background A5-1
1.2 Objectives (Survey Items) A5-1
1.3 Survey Method. A5-1
1.4 Survey Results A5-5
1.5 Discussions A5-10
2. Transfer Time Survey A5-13
2.1 Background A5-13
2.2 Objectives (Survey Items) A5-13
2.3 Survey Method A5-13
2.4 Survey Results A5-15
2.5 Discussions A5-17
3. Train Waiting Time Survey A5-36
3.1 Background A5-36
3.2 Objectives (Survey Items) A5-36
3.3 Survey Method A5-36
3.4 Survey Results A5-38
3.5 Discussions A5-39
4. People's Perception Survey A5-40
4.1 Background A5-40
4.2 Objectives (Survey Items) A5-40
4.3 Survey Method. A5-40
4.4 Survey Results A5-42
4.5 Discussions A5-45

1. Railway Congestion Survey

1.1 Background

The most serious transport issue in the BMR is the heavy traffic congestion in the city center where BTS, MRT and ARL run across. Congestion inside of mass rapid transit train car in BMR is also serious, especially in morning and evening peak hours. Passengers may miss trains and have to wait for the next train, or even passengers can take a train, the inside will be very crowded. Seen from the results of 4 People's Perception Survey, congestion inside a train car seems crucial for BMR citizen to decide whether they take mass transit for committing or not.

Though every section in peak hours is not very congested, some of them have serious congestion. Stations on the same line have different peak hours and congested situation, which becomes worse to the city center. However, the information of congestion ratio regarding the BMR mass transit does not exist or is not open for public by the operators.

Railway Congestion Survey aimed to identify present operating situation in BMR, and raw data regarding how congested inside of a train car is and which sections have serious problems of congestion in peak hours are measured.

1.2 Objectives (Survey Items)

Following items were observed at each designated survey station:

- Congestion ratio of every train set in peak morning hours (7am to 9am)
*1 At one station from each line, the survey was conducted from 7am to 9pm.
*2 The standard is prepared based on the Japanese one, which is explained in detail later.
- Arrival time of each train

1.3 Survey Method

1) Preparation of the Survey

In order to implement the survey, JICA Study Team and PSK Consults Co., Ltd, hereafter called the Consultant, got permission from the mass transit operators with cooperation from OTP.

Prior to implementation of the survey, the Consultant visited each station and survey location including location of train car and door was considered and decided. The Consultant also translated the survey form from English into Thai according to necessity.

Then, the Consultant trained the surveyors to let them understand the standard of congestion ratio since the standard is not very clear. The surveyors were to measure the average congestion ration of 3 designated doors. After the trail measurement, JICA Study Team and the Consultant confirmed that the surveyors became able to measure the congestion ratio almost uniformly.

2) Field Survey

Trained surveyors measured the congestion ratio for all trains during the survey hours just before a train has departed. The surveyors also measured the arrival time of train in order to measure head of each train.
3) Definition of Congestion Ratio

Definition of congestion ratio in a train, which is used in Japan, is shown in Table 1.1. The congestion ratio has been measured by each railway operator in Japan and reported to Ministry of Land, Infrastructure, Transport and Tourism (MLIT).

Table 1.1 Definition of Congestion Ratio

Congestion Ratio	35\%	70\%	100\%	150\%	180\%	200\%
Description	All the seat are occupied and no standing passengers	All the seat are occupied and standing passengers	Capacity of a train car (All seats are occupied and standing passengers with holding a bar in front of a seat).	Passengers' shoulders are hit together but they can read newspaper without problems.	Passengers' bodies are hit but they can read newspaper.	Passengers' bodies are hit with pressure but they can read a magazine somehow.
Image	No Image	No Image				

Source: Japan Private Railway Association

In Tokyo Metropolitan Area, target average congestion ratio during peak hours at 32 sections is set at 150%, and congestion ratio of each line during peak hours is aimed to be lower than 180\%. However, according to article by MLIT on 17 th July 2018, 11 lines have sections whose congestion ratio is more than 180%.
4) Survey Area

JICA Study Team selected survey stations and duration of the survey based on the site visit before the actual survey. Survey locations are shown as follows.

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)
Final Report
Appendix 5: Traffic Survey

Prepared by JICA Study Team
Figure 1.1 Route Map of each Line in BMR

5) Survey Schedule

The survey was conducted from $18^{\text {th }}$ to $22^{\text {nd }}$ December 2017 at 64 stations. The survey was conducted for peak hours and peak direction of each line on normal week days. For Sukhumvit station and Siam station of Si Lom line and Sukhumvit line, the survey was conducted for 14 hours from 7:30 to 21:30 in order to grasp congested situation by time.

Table 1.2 Survey Schedule

No.	Date	Station Name	Line Name	Duration	Bound to
1	18/12/2017	Tao Poon	Blue Line	7:30-9:30	Hua Lamphong
2		Bang Sue			
3		Kamphaeng Phet			
4		Chatuchak Park			
5		Phanon Yothin			
6		Lat Phrao			
7		Rachadaphisek			
8		Sutthisan			
9		Huai Khwang			
10		Thailand Cultural Center			
11		Phra Ram 9			
12		Phetchaburi			
13		Sukhumvit		7:30-21:30	
14	19/12/2017	Hua Mak	ARL	7:30-9:30	Phaya Thai
15		Ramkhamhaeng			
16		Makkasan			
17		Ratchaprarop			
18		Nonthaburi Civic Center	Purple Line	7:30-9:30	Tao Poon
19		Ministry of Public Health			

No.	Date	Station Name	Line Name	Duration	Bound to
20		Yeak Tiwanon			
21		Wong Sawang			
22		Bang Son			
23	20/12/2017	Mo Chit	Sukhumvit Line	7:30-9:30	Samrong
24		Saphan Khwai			
25		Ari			
26		Sanam Pao			
27		Victory Monument			
28		Phaya Thai			
29		Ratchathewi			
30		Siam		7:30-21:30	
31		Chit Lom		7:30-9:30	
32		Phloen Chit			
33		Nana			
34		Asok			
35	21/12/17	Bang Na	Sukhumvit Line	7:30-9:30	Mo Chit
36		Udom Suk			
37		Punnawithi			
38		Bang Chak			
39		On Nut			
40		Phra Khanong			
41		Ekkamai			
42		Thong Lo			
43		Phrom Phong			
44		Asok			
45		Nana			
46		Phloen Chit			
47		Chit Lom			
48		Siam		7:30-21:30	
49		Ratchathewi		7:30-21:30	
50		Phaya Thai			
51		Victory Monument			
52	22/12/2017	Siam	Silom Line	7:30-21:30	Bang Wa
53		Ratchadamuri		7:30-9:30	
54		Sala Deang			
55		Chong Nonsi			
56		Talat Phlu		7:30-9:30	National Stadium
57		Pho Nimit			
58		Wongwain Yai			
59		Krung Thonburi			
60		Saphan Taksin			
61		Surasak			
62		Ching Nonsi			
63		Sala Deang			

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

Final Report

Appendix 5: Traffic Survey

No.	Date	Station Name	Line Name	Duration	Bound to
64		Ratchadamuri			

1.4 Survey Results

1) Sukhumvit Line to North Bound (Bang Na Station to Victory Monument Station)

Average congestion ratio between Bang Na station and Victory Monument station during the most congested hour, 7:44-8:43 at Victory Monument station, is shown in Figure 1.2. As seen here, most congestion sections were from Punnawithi station to Thong Lo station. At Bang Chak station, the congestion ratio is lower than other surrounding stations because additional trains departed from the station.

Congestion ratio at On Nut Station, Phra Khanong Station and Ekkamai Station was more than 180% in the peak hour, which are above the red line and all stations between Udom Suk station and Asok station had more than 150% congestion ratio.

The number of train sets during 7:44-8:43 at Victory Monument Station was 21, which means average interval between trains is 2 minutes 51 seconds.

Note: Survey time was 7:44-8:43 at Victory Monument station
Source: JICA Study Team
Figure 1.2 Average Congestion Ratio from Bang Na to Victory Monument

2) Suhkumvit Line to South Bound (Mo Chit station to Asok station)

Average congestion ratio between Mo Chit station and Asok station during the most congested hour, 7:59-8:58 at Asok station, is shown in Figure 1.3. As seen here, the section from Saphan Kwai station to Siam station was congested and more than 150% congestion ratio without 2 stations. At Ari station, the congestion ratio is lower than other surrounding
stations since there are a lot of office buildings and ministry buildings around the station so many passengers take off a train. Then, there is a huge bus terminal near Victory Monument station and there are many commuters who transfer from train to bus or from bus to train.

No station exceeds congestion ratio, 180 \% during the peak hour at this section.
The number of trains from 7:59 to 8:58 at Asok station was 19 trains, which means the trains interval is 3 minutes 9 seconds during this time.

Note: Survey time was 7:59-8:58 at Asok station
Source JICA Study Team

Figure 1.3 Average Congestion Ratio from Mo Chit to Asok station

3) Silom Line to North Bound (Talat Phlu station to Ratchadamri station)

Average congestion ratio between Talat Phlu station and Ratchadamri station during the most congested hour, 7:45-8:44 at Ratchadamri station, is shown in Figure 1.4. As seen here, the section from Krung Thonburi to Surasak was congested. At Wongwain Yai station, the congestion ratio is lower than other the former station because a lot of students took off there according to the surveyors.

Congestion ratio at Khrung Thon Buri Station and Saphan Taksin Station exceeds 180\% during the peak hour.

The number of trains from 7:45 to 8:44 at Ratchadamri Station was 16 trains, which means the train interval between trains was 3 minutes 45 seconds.

Note: Survey time was 7:45-8:44 at Ratchadamri station
Source: JICA Study Team
Figure 1.4 Average Congestion Ratio from Talat Phlu to Ratchamuri station

4) Silom Line to South Bound (Siam station to Chong Nonsi station)

Average congestion ratio between Siam station and Chong Nonsi station during the most congested hour, 7:58-8:57 at Chong Nonsi station, is shown in Figure 1.5. As seen here, this section is not very crowded since the direction from Siam to Chong Nosi is from the BMR center to BMR sub urban area. There are lots of office buildings around Chong Nonsi station so the congestion ratio dropped off rapidly there.

The number of trains from 7:58 to 8;57 at Chong Nonsi Station was 16 trains, which means the time interval between trains is 3 minutes 45 seconds.

Note: Survey Time was 7:58-8:57 at Chong Nonsi station
Source: JICA Study Team

Figure 1.5 Average Congestion Ratio from Siam to Chong Nonsi station

5) Blue Line to Hua Lum Phong Station (Tao Poon to Sukhumvit station)

Average congestion ratio between Tao Poon station and Sukhumvit station during the most congested hour, 7:37-8:36 at Sukhumvit station, is shown in Figure 1.6.

Without Phahon Yothin station, the congestion ratio is more than 150% and congestion ratio at Bang Sue Station, Chatuchak Park Station, Suthisan Station, Huai Khwang Station, Thailand Cultural Station, Phra Ram 9 Station, Phetchaburi Station and Sukhumvit Station, total 9 stations, exceeds 180 \%.

The number of trains from 7:34 to 8:33 at Sukhumvit station was 18 trains, which mean the time interval between trains during a peak hour is 3 minutes 20 seconds.

Note: Survey Time was 7:37-8:36 at Sukhumvit station.
Source: JICA Study Team

Figure 1.6 Average Cngestion Ration form Tao Poon to Sukhumvit Station

6) Purple Line to Tao Poon Station

Average congestion ratio between Nontaburi station and Bang Son station during the most congested hour, 7:31-8:30 at Bang Son station, is shown in Figure 1.7. As seen here, this section is not very crowded since Purple line is a new and the most congested hour seems earlier than 7:30 am based on the result of congestion ratio at Tao Poon station of Blue line. No station exceeds 140% congestion ration during the peak hour.

The number of trains from 7:31 to 8:30 at Bang Son Station is 11, which means the time interval between trains is 5 minutes 27 seconds.

Note: Survey Time was 7:31-8:30 at Bang Son station
Source: JICA Study Team
Figure 1.7 Average Congestion Ratio from Nonthaburi to Bang Son station

7) Airport Rail Link to Phaya Thai (Hua Mak to Rachaprarop)

Average congestion ratio between Hua Mak station and Rachaprarop station during the most congested hour, 8:00-8:59 at Rachaprarop station, is shown in Figure 1.8. The time table on the survey day was disordered and the train did not come with the same interval. Therefore, the congestion can be more serious than usual.

Congestion ratio at Hua Mak Station and Ram Khamhaeng Station exceeds 180\% during the peak hour.

The number of trains from 7:57 to 8:56 at Ratchaprarop Station was 5 trains, which means the time interval between trains was 12 minutes.

Note: Survey Time was 8:00-8:59 at Ratchaprarop station
Source: JICA Study Team

Figure 1.8 Average Congestion Ratio from Hua Mak to Ratchaprarop station

1.5 Discussions

As seen from the results, lines connected toward the city center directory were very crowded during the commuting hours. Though the survey was planned to be conducted from 7:00 to 9:00 originally to catch the situation exactly at peak hours, operators did not allow surveyors to enter inside of stations before 7:00. Then, the peak hour of blue line and purple line seems earlier than 7:30 so this survey may not be able to get the exact peak hour information.

Though this survey was conducted based on the Japanese standard of congestion ratio, the concept of congestion ratio itself is not common in Thailand. From this aspect, the congestion ratio can be a little different from the Japanese one. Seen from the actual situation, Thai people do not go inside of a train very much and they gather tend to stay near the entrance. As a result, congestion ratio inside a train seems not homogenous and the congestion ratio near the door is relatively high.

Then, from the results, Blue line had the most serious congestion in BMR and there are some possible causes of this congestion; 1) the ridership has increased after the connection with Blue line at Tao Poon station on August 11 ${ }^{\text {th }} 2017$, 2) one train set of Blue line consists of 3 cars while that of BTS trains consists of 4 cars, 3) there are a lot of connecting points with buses for commuting from north and 4) at some stations, parking space is adjacent to the station in order to promote park and ride method.

Some countermeasures should be taken for the sections whose congestion ratio is more than 180%. Discussed in the main report, one of the solutions is to increase the number of cars for each train set. Each line was designed to accommodate 6 cars per train set while currently one train set is consisted of 3 or 4 cars. The reason why the number of cars cannot be increased seems not only because of the cost, but also because of the condition of the original contract with the maker.

Table 1.3 Capacity Expansion of Existing Mass Transit Lines

	Exiting operation		Estimated Peak Transport capacity (pphpd) (A)	Improved operation		Increased capacity (pphpd) (B)	Ratio$(\mathrm{B}) /(\mathrm{A})$
	No. of rolling stocks	Peak Frequency		No. of Rolling stocks	Peak Frequency		
Airport Rail Link	3	6	4,200	4	10	9,300	2.2
Sukhumvit Line	4	20	22,300	4	24	26,800	1.2
Silom Line	4	20	22,300	4	24	26,800	1.2
Purple Line	3	12	10,000	4	15	16,700	1.7
Blue Line	3	12	10,000	4	15	16,700	1.7
pphpd: passengers per hour per direction							

Prepared by JICA Study Team

The sections whose congestion ratio is more than 150% should be considered and continued effort should be made. In particular, Blue Line and Silom line has many sections
whose congestion ratio is between 150% and 180%. If the number of passengers near the starting station increases, the congestion ratio after the station is also correlatively increased.

These results have been reflected on M-MAP2 and some solutions such as to increase of the number of train set or to shorten the head of trains are discussed in M-MAP2. The congestion ratio is directly connected with the comfortableness of trains. Less congestion ratio can lead car captive users to use Mass Transit, so that discussion with the operators regarding this matter is crucial. At the same time, since these results are not open for public, this can be a pilot survey and hopefully will be conducted continuously by Thai government

Survey Form for Train Congestion Ratio Survey

Survey Station:
Date: \qquad
Start Time: \qquad
Weather: \qquad
Location at the Platform: \qquad

4	3	2	1

Remark: Congestion Ratio shall be measured by 10% ($10 \%, 20 \%, 30 \%, \ldots, 180 \%, 190 \%, 200 \%$).

No.	Train Number	Train Arrival time Hr : Min : Sec	Congestion Ratio Departure (\%)	
1		$:$	$:$	
2		\vdots	\vdots	
3		$:$	$:$	
4		$:$	$:$	
5		$:$	\vdots	
6		$:$	$:$	
7		$:$	$:$	
8		$:$	$:$	
9		$:$	$:$	
10		$:$	$:$	

Table Definition of Congestion Ratio

40\%	70\%	100\%	150\%	180\%	200\%
All the seat are occupied and no standing passengers (Less than 2 persons standing)	All the seat are occupied and standing passengers (About 4 persons standing)	Baby car can be on a train without problems (About 8 standing persons)	Passengers can use smart phone without problems. (About 15 standing persons)	Passengers can use smart phone somehow (About 18 standing persons)	Passengers cannot use smart phone and standing passengers outside. (More than 20 standing persons)
Door					

2. Transfer Time Survey

2.1 Background

There are 5 existing MRT lines in BMR; Sukhumvit Line, Si Lom Line, Blue Line, Purple Line and Airport Rail Link. Owner and Operator of MRT lines are different; Sukhumvit Line and Si Lom Line are owned by BMR and operated by BTSC, Blue Line and Purple Line are owned by MRTA and operated by BEM, and Airport Rail Line are owned by SRT and operated by SRTET. Hence, when the line was planned and designed, the connecting point of lines seems not to be considered very well since the owner and the operator is different and they may focus only on their own benefit. As a result, stations for transfer are located far and passengers have to walk for long distance.

When you go to a mass transit station in rush hours, a long que in front of ticketing machine can be seen especially in rash hours. Though there is a smart card for mass transit lines which can be issued by an operator, the cards were different by operator by operator (now, the Manmoon card, stored value card, was issued in June 2018 but the card is not still compatible with Airport Rail Link).
In order to shorten commuting time in BMR, current commuting time from their home to office should be acknowledged and considered. Therefore, this transferring time survey was planned and conducted by JICA Study Team.

2.2 Objectives (Survey Items)

Following items were observed at target stations:

- Distance between one platform to another platform measured by the number of steps
- Drawing between platform and platform
- Transfer time between one plat form to another

2.3 Survey Method

1) Preparation of the Survey

In order to implement the survey, JICA Study Team and PSK Consults Co., Ltd, hereafter called the Consultant, JICA Study Team and the Consultant confirmed the route between platform and platform at 8 stations.

Prior to implementation of the survey, the Consultant visited a station with surveyors in order to explain how to measure. The number of steps, time and drawing between platform and platform was recorded by a surveyor. The Consultant also translated the survey form from English according to necessity.
2) Field Survey

Trained surveyors conducted survey 5 times for 1 station; 1 time for measuring distance from one platform to another platform, 2 times for measuring with a smart card during 7 am and 2 times for measuring without a smart card and dropping by ticket machine during

7 am to 9 am . The image of survey is shown in Figure 2.1.

Figure 2.1 Image of Transfer Time Survey
Seen from the time sheet below, flat way and steps are distinguished when time and distance were measured separately. Then, longest way which includes ticket machine or ticket counter was measured for this survey.

3) Survey Area

There are 8 transferring points of trains and the locations are seen below. Stations No. 1, and No. 2, there is no ticketing gate since the operators for both lines are same.

Table 2.1 List of Transferring Stations

No.	Transferring Stations		
1	Siam	\Leftrightarrow	Siam
2	Tao Poon	\Leftrightarrow	Tao Poon
3	Asok	\Leftrightarrow	Sukhumvit
4	Phaya Thai	\Leftrightarrow	Phaya Thai
5	Chatuchak Park	\Leftrightarrow	Mo Chit
6	Phetchaburi	\Leftrightarrow	Makkasan
7	Chong Nonsi	\Leftrightarrow	Sathorn
8	Si Lom	\Leftrightarrow	Sala Deang

Note:

1) In the cases of No. 1 and No.3, there are no gates' transfer for passengers because both lines are operated by the same company (Tao Poon Station: both are operated by BEM, Siam Station: both are operated by BTSC).

Figure 2.2 Location of Transfer Time Survey (8 Stations)
4) Survey Schedule

The survey was conducted from 7 am to 9 am on $28^{\text {th }}, 29^{\text {th }}$ and $30^{\text {th }}$ November 2017 at 8 stations on normal weekdays.

2.4 Survey Results

1) Distance between Platform

Results regarding distance between platform and platform are measured and recorded on the survey sheet and the results are shown after the discussion part. Seen from the results, the measurement was conducted for round ways between platforms. When there are short flat floors between stairs and stairs, the number of steps was recorded at the cell which is above the number of steps of stairs.

The results of how to measure distance between platform and platform is shown later with the survey sheets and the distance circulated by number of steps is summarized as follows.

Table 2.2 Distance between Platforms at 8 Transfer Points

No.	Transferring Stations			Distance between Platforms (m)
1.1	Siam (Upper)	\Rightarrow	Siam (Lower)	115
1.2	Siam (Lower)	\Rightarrow	Siam (Upper)	114
2.1	Tao Poon (Blue)	\Rightarrow	Tao Poon (Purple)	112
2.2	Tao Poon (Purple)	\Rightarrow	Tao Poon (Blue)	114
3.1	Asok	\Rightarrow	Sukhumvit	208
3.2	Sukhumvit	\Rightarrow	Asok	197

No.	Transferring Stations			Distance between Platforms (m)
4.1	Phaya Thai (BTS)	\Rightarrow	Phaya Thai (ARL)	259
4.2	Phaya Thai (ARL)	\Rightarrow	Phaya Thai (BTS)	249
5.1	Chatuchak Park	\Rightarrow	Mo Chit	225
5.2	Mo Chit	\Rightarrow	Chatuchak Park	249
6.1	Phetchaburi	\Rightarrow	Makkasan	414
6.2	Makkasan	\Rightarrow	Phetchaburi	382
7.1	Chong Nonsi	\Rightarrow	Sathorn	329
7.2	Sathorn	\Rightarrow	Chong Nonsi	329
8.1	Si Lom	\Rightarrow	Sala Deang	419
8.2	Sala Deang	\Rightarrow	Si Lom	417

Note: 1. These distances does not include distances of stairs.
2.Numbers below decimal point are cleared.

Source: JICA Study Team

2) Transfer Time between Platforms

The results of transfer time between platforms are shown later with the sheets and the summery is shown in Table 2.3. The time was measure in two cases; one is the situation that a passenger buys a ticket at ticket machine and another is that a passenger has a smart card so he/she can transfer directly.

Table 2.3 Transfer Time between Platforms (average of $\mathbf{2}$ times9

No.	Transferring Stations			Ticket	Transfer time between platforms (min)	Differences between with and without a ticket (min)
1.1	Siam (Upper)	\Rightarrow	Siam (Lower)	-	1:46	-
				\bigcirc	-	
1.2	Siam (Lower)	\Rightarrow	Siam (Upper)	-	1:42	-
				\bigcirc	-	
2.1	Tao Poon (Blue)	\Rightarrow	Tao Poon (Purple)	-	3:12	-
				\bigcirc	-	
2.2	Tao Poon (Purple)	\Rightarrow	Tao Poon (Blue)	-	3:02	-
				\bigcirc	-	
3.1	Asok	\Rightarrow	Sukhumvit	-	7:17	0:59
				\bigcirc	6:18	
3.2	Sukhumvit	\Rightarrow	Asok	-	5:13	0:46
				\bigcirc	4:27	
4.1	Phaya Thai (BTS)	\Rightarrow	Phaya Thai (ARL)	-	6:50	2:29
				\bigcirc	4:21	
4.2	Phaya Thai (ARL)	\Rightarrow	Phaya Thai (BTS)	-	6:12	0:43
				\bigcirc	5:29	
5.1	Chatuchak Park	\Rightarrow	Mo Chit	-	7:15	0:48
				\bigcirc	6:27	

Appendix 5: Traffic Survey

No.	Transferring Stations			Ticket	Transfer time between platforms (min)	Differences between with and without a ticket (min)
5.2	Mo Chit	\Rightarrow	Chatuchak	-	6:27	0:38
			Park	\bigcirc	5:49	
6.1	Phetchaburi	\Rightarrow	Makkasan	-	10:18	1:36
				\bigcirc	8:42	
6.2	Makkasan	\Rightarrow	Phetchaburi	-	9:46	0:40
				\bigcirc	9:06	
7.1	Chong Nonsi	\Rightarrow	Sathorn	-	5:39	0:20
				\bigcirc	5:19	
7.2	Sathorn	\Rightarrow	Chong Nonsi	-	4:37	0:22
				\bigcirc	4:15	
8.1	Si Lom	\Rightarrow	Sala Deang	-	10:34	1:01
				\bigcirc	9:33	
8.2	Sala Deang	\Rightarrow	Si Lom	-	12:17	1:37
				\bigcirc	10:40	

*The Survey was conducted twice for the same route from 7:00 to 9:00. The information is written in time sheets. Source: JICA Study Team

2.5 Discussions

There are several findings through this survey. One is that transfer points which are owned by the same owner have closer distance and shorter transfer time than the ones which are owned by the different owners. In particular, the distance between Makkasan station and Phetchaburi station and between Sala Deang station and Si Lom station is quite long because of this reason. In the MMAP2, discussion on connectivity between stations is crucial because this directly affects transfer time of passengers and willingness of taking mass transit. From these aspects, when new lines are planned and designed, the transfer points to other lines or other modes should be considered very well. If so, it is more convenient for passengers to use the line for commuting and the value of the line itself will be higher.

Another thing is that the time difference with ticket or without ticket is from 30 seconds to 60 seconds basically. When the surveyor transferred from one line to ARL, the difference was larger than other cases (more than 1:30 differences in both of cases). The possible reason is that the number of ticket machine and ticket counter of ARL is fewer than other lines' ones. Therefore, congestion for buying a ticket during peak hours was more serious than other lines.

Seen from the results, transfer from one line to another line takes more than 5 minutes when operators of the lines are different. Though this situation can be seen in Japan also, we usually consider this transfer time by the application or web site which searches the time including the transfer time. In the future, when the mass transit network in BMR is more developed, the transfer time can be crucial to be selected by a passenger as their first choice.

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Start	Line Name		BTS Sukhumvit Line			Station Name		Siam			Direction to		Mo Chit										
End	Line Name		BTS Silom Line			Station Name		Siam			Direction to		Bang Wa										
Surveyor Name			Pat			Length of Step			58.5		YY/MM/DD		2017/11/28										
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Length		Number of Steps on Foot		84	4	114																	
		Number of Steps at Stais			43																		

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the distance, stairs will be selected

Figure 2.3 Number of Steps from Siam (Sukhumvit) to Siam (Silom)

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Figure 2.4 Number of Steps from Siam (Silom) to Siam (Sukhumvit)

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

Final Report

Appendix 5: Traffic Survey

Annex B: Transfer Time Survey between Platforms (Time Survey)

Start	Line Name	BTS Sukhumvit Line			Station		Siam			Direction to		Mo Chit			Transfer within station platforms No need to buy ficket							
End	Line Name	BTS Silom Line			Station		Siam			Direction to		Bang Wa										
Surveyor Name		PSK			YY/MM/DD		2017/11/30			Time		7:00-9:00			13	14	15	16	17	18	19 20	
			1	2	3	4	5	6	7	8	9	10	11	12								
Use of Escalator (O)				\bigcirc																		
Time (S) 7:00 No ticket			0:28	1:08	1:51																	
Time (S) 8:00 No ticket			$0: 27$	1:04	1:42																	

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the distance, stairs will be selected.

Figure 2.5 Transfer Time from Siam (Sukhumvit) to Siam (Silom)

Annex B: Transfer Time Survey between Platforms (Time Survey)

Figure 2.6 Transfer Time from Siam (Silom) to Siam (Sukhumvit)

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Start	Line	Name	MRT Blue Line			Station Name		Tao Poon			Direction to		Tao Poon										
End	Line Name		MRT Purple Line			Station Name		Tao Poon			Direction to		Klong Bang Pai										
Surveyor Name			Nunnapas			Length of Step			58.5		YY/MM/DD		2017/11/28										
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Length		Number of Steps on Foot		123	21	70																	
		Number of Steps at Stiais			52																		

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the distance, stairs will be selected.

Figure 2.7 Number of Steps from Tao Poon (Blue Line) to Tao Poon (Purple Line)

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the
distance, stairs will be selected.

Figure 2.8 Number of Steps from Tao Poon (Purple Line) to Tao Poon (Blue Line)

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)
Final Report
Appendix 5: Traffic Survey

Annex B: Transfer Time Survey between Platforms (Time Survey)

Figure 2.9 Transfer Time from Tao Poon (Blue) to Tao Poon (Purple)

Annex B: Transfer Time Survey between Platforms (Time Survey)

Start	Line Name		ple Lin		Stat			Po		Direc	n to		${ }^{\text {Po }}$		Transfer within station platforms No need to buy ficket							
End	Line Name	MRT Blue Line			Station		Tao Poon			Direction to		Hua Lamphong										
Surveyor Name		PSK			YY/MM/DD		2017/11/30			Time		7:00-9:00										
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Use of	of Escalator			\bigcirc																		
Time	(S) 7:30 No		1:45	1:35	2:20																	
Time	(S) 8:30 No		1:58	2.55	3:45																	

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the time. To measure the distance, stairs will be selected.

Figure 2.10 Transfer Time from Tao Poon (Purple) to Tao Poon (Blue)

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Figure 2.11 Number of Steps from Asok to Sukhumvit

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)
Final Report
Appendix 5: Traffic Survey

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Start	Line	Name	MRT Blu	Line		Station	Name		khum		Direction	on to	Hua	Lamph									
End	Line N	Name	BTS Sukhu	vit Li		Station	Name		Asok		Directio	on to		Mo Chit									
Surveyor Name			Pat			Length of Step			58.5		YY/MM/DD		2017/11/28										
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Length		Number of Steps on Foot		38	2	62	25	3	62	5	511		9	4	26	15	45	6	24				
		Number	Steps at Stiais		32			31		32		4		36				33					

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the distance, stairs will be selected.

	Up (Stairs/Es	ators)		Down (S	Stairs/Es			Path:	Overall	of Route	te】	Ticket M	chine					
Start Platform																		
(Sukhumvit) Platform																		
© Hua Lamphong) \rightarrow																		
\bullet																		
Finish Platform																		
(Asok) Pattorm																		
														-				
0 Mo Chit $\quad \rightarrow$						4		A		7								
				-														
	\cdots																	

Figure 2.12 Number of Steps from Sukhumvit to Asok

Annex B: Transfer Time Survey between Platforms (Time Survey)

Start	Line Name	BTS Sukhumvit Line			Station		Asok			Direction to		Mo Chit										
End	Line Name	MRT Blue Line			Station		Sukhumvit			Direction to		Hua Lamphong										
Surveyor Name		PSK			YY/MMDD		2017/11/30			Time		7:00-9:00										
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Use of	of Escalator								\bigcirc		O		O				0					
Time	(S) 7:00 With	icket	0:08	0:27	1:00	1:39	1:43	1:57	2:23	2:37	2.59	3:11	3:37	4:08	5:21	5:48	6:10	6:23				
Time	(S) $7: 00 \mathrm{No}$		0:08	0:27	1:00	1:39	1:43	1.57	2:23	$2: 37$	2.59	3:11	3:37	4:08	6.49	7:21	7:41	7.54				
Time	(S) 8:00 With	icket	0:12	0:32	1:03	1:43	1.51	1:59	2:22	$2 \cdot 32$	2.59	3.25	3.45	4:08	5:07	5:40	6:01	6:14				
Time	(S) 8:00 No	ket	0:12	0:32	1:03	1:43	1.51	1:59	2:22	$2: 32$	2.59	325	3.45	4:08	5:47	6:08	6:30	6:50				

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the time. To measure the distance, stairs will be selected.

Figure 2.13 Transfer Time from Asok to Sukhumvit

Annex B: Transfer Time Survey between Platforms (Time Survey)

Figure 2.14 Transfer Time from Sukhumvit to Asok

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Start	Line Name	BTS Sukhumvit Line	Station Name	Phaya Thai	Direction to	Sam Rong
End	Line Name	Airport Rail Link	Station Name	Phaya Thai	Direction to	Suvarnabhumi
Surveyor Name	Pat	Pame Platform bacause it is Terminal stai				

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Length	Number of Steps on Foot	30	6	40	160	7	45	20	40	12	80										
	Number of Steps at Stairs		42			39				46											

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the distance, stairs will be selected.

Figure 2.15 Number of Steps from Phaya Thai (Sukhumvit) to Phaya Thai (ARL)

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)
Final Report
Appendix 5: Traffic Survey

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Start	Line Name		Airport Rail Link			Station Name		Phaya Thai			Direction to		Phaya Thai			(Same Platform bacause it is Terminal stal							
End	Line Name		BTS Sukhumvit Line			Station Name		Phaya Thai			Direction to		Sam rong										
Surveyor Name			Pat			Length of Step			58.5		YY/MM/DD		2017/11/29										
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Length		Number of Steps on Foot		80	12	40	31	7	150	30	40	6	30										
		Number of Steps at Stairs			46			39				42											

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the time. To measure the distance, stairs will be selected.

Figure 2.16 Number of Steps from Phaya Thai (ARL) to Phaya Thai (Sukhumvit)

Annex B: Transfer Time Survey between Platforms (Time Survey)

Start	Line Name	BTS Sukhumvit Line			Station		Phaya Thai			Direction to		Sam Rong			Same	Platform due to Terminal station						
End	Line Name	Airport Rail Link			Station		Phaya Thai			Direction to		Suvamabhumi										
Surveyor Name		PSK			YY/MM/DD		2017/11/30			Time		7:00-9:00				14	15	16	17			
			1	2	3	4	5	6	7	8	9	10	11	12	13					18	19	20
Use of Escalator (O)							0				0											
Time (S) 7:00 With Ticket			0:27	0.51	1:20	$2 \cdot 34$	$3: 01$	3:16	3:26	3:38	4:08	4.25										
Time (S) 7:00 No Ticket			0:27	0.51	1:20	2:34	3.01	3:16	7:45	7:57	8.27	8.44										
Time (S) 8:00 With Ticket			0:24	0:48	1:10	2:30	2.58	3:10	3:23	3:35	4:05	4.17										
Time (S) 8:00 No Ticket			0:24	0:48	1:10	2:30	$2 \cdot 58$	3:10	4:02	4:14	4.44	4.56										

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the time. To measure the distance, stairs will be selected.

Figure 2.17 Transfer Time from Phaya Thai (Sukhumvit) to Phaya Thai (ARL)

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)

Final Report

Appendix 5: Traffic Survey

Annex B: Transfer Time Survey between Platforms (Time Survey)

Figure 2.18 Transfer Time from Phaya Thai (ARL) to Phaya Thai (Sukhumvit)
Annex A: Transfer Time Survey between Platforms (Distance Survey)

Figure 2.19 Number of Steps from Mo Chit to Chatuchak

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Start	Line	Name	MRT Blue Line			Station Name		Chatuchak			Direction to		Hua Lamphong										
End	Line Name		BTS Sukhumvit Line			Station Name		Mo Chit			Direction to		Samrong										
Surveyor Name			Nunnapas			Length of Step			58.5		YY/MM/DD		2017/11/29										
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Length		Number of Steps on Foot		14	4	88	32	2	54	6	10		32	4	56	18	16	4	46				
		Number	teps at Stairs		30			31		52		7		45				42					

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the distance, stairs will be selected.

Figure 2.20 Number of Steps from Chatuchak to Mo Chit
Annex B: Transfer Time Survey between Platforms (Time Survey)

Figure 2.21 Transfer Time from Mo Chit to Chatuchak

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2) Final Report
Appendix 5: Traffic Survey

Annex B: Transfer Time Survey between Platforms (Time Survey)

Start	Line Name	MRT Blue Line			Station		Chatuchak			Direction to		Hua Lamphong										
End	Line Name	BTS Sukhumvit Line			Station		Mo Chit			Direction to		Samrong										
Surveyor Name		PSK			YY/MMDD		2017/11/30			Time		7:00-9:00										
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Use of Escalator (O)				0			\bigcirc		\bigcirc													
Time (S) 7:30 With Ticket			0:35	0.53	3:07	$3 \cdot 25$	3:42	4:06	4:34	4:42	4:46	5.09	5.43	6.23	6:27	6:35	7.00	7:18				
Time (S) 7:30 No Ticket			0:35	0.53	3:07	3:25	3:42	4:06	4:34	4:42	4:46	5.09	5.43	6.23	7:16	7:24	7:49	8:07				
Time (S) 8:30 With Ticket			0:34	0.52	1:21	1:38	1.57	2:25	2.52	3:00	3:05	3.21	3.54	4:34	4:37	4:48	5:14	5:37				
Time (S) 8:30 No Ticket			0:34	0.52	1:21	1:38	1.57	2:25	2.52	3:00	3:05	3.21	3.54	4:34	5:23	5:34	6:00	6.23				

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the time. To measure the distance, stairs will be selected.

Figure 2.22 Transfer Time from Chatuchak to Mo Chit
Annex A: Transfer Time Survey between Platforms (Distance Survey)

Start	Line Name		Airport Rail Link			Station Name		Makkasan			Direction to		Phayathai										
End	Line Name		MRT Blue Line			Station Name		Phetchaburi			Direction to		Hua Lamphong										
Surveyor Name			Nunnapas			Length of Step			58.5		YY/MM/DD		2017/11/28										
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Length		Number of Steps on Foot		58	5	28	328	5	58		7	6	42	3	25	20	45	2	22				
		Number	S at 5 tairs		44			33		6		56		32				32					

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the distance, stairs will be selected.

Figure 2.23 Number of Steps from Makkasan to Phetchaburi
Annex A: Transfer Time Survey between Platforms (Distance Survey)

Start	Line Name		MRT Blue Line			Station Name		Phetchaburi			Direction to		Hua Lamphong										
End	Line Name		Airport Rail Link			Station Name		Makkasan			Direction to		Phayathai										
Surveyor Name			Nunnapas			Length of Step			58.5		YY/MM/DD		2017/11/28										
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Length		Number of Steps on Foot		25	2	93	23	3	30	6	7		54	5	359	15	57	5	25				
		Number of Steps at Stairs			32			32		56		6		33				44					

Time and distance shall be recorded separately in the survey. When there are escalator and stars, escalator will be selected to record the time. To measure the distance, stairs will be selected.

	Up (5	Es	,		Down (S	airs/Es			I0	Overall \qquad	of Route Latch:	te】	Ticket Ma	Machine						
Start Platform																				
(Phetchaburi) Platform																				
(To Hua Lamphong) \rightarrow															\cdots					
-							\square		A		7									
					-															
		,																		
Finish Platform																				
(Makkasan) Platform																				
(To Phayathai) \rightarrow																				
\bullet																				

Figure 2.24 Number of Steps from Phetchaburi to Makkasan
Annex B: Transfer Time Survey between Platforms (Time Survey)

Figure 2.25 Transfer Time from Makkasan to Phetchaburi

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)
Final Report
Appendix 5: Traffic Survey

Annex B: Transfer Time Survey between Platforms (Time Survey)

Figure 2.26 Transfer Time from Phetchaburi to Makkasan
Annex A: Transfer Time Survey between Platforms (Distance Survey)

Starf	Line Name	BTS Silom Line	Station Name	Chong Nonsi	Direction to	National Stadium
End	Line Name	BRT	Station Name	Sathom	Direction to	Ratchaphruek
Surveyor Name	Pat	Length of Step	58.5	YY/MM/DD	2017/11/28	

Surveyor Name				Length of Step			58.5		YYMM/DD		201711/28										
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Length	Number of Steps on Foot	33	6	45	296		68		20	39	26	6	25								
	Number of Steps at Stairs		42			11		10				30									

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the distance, stairs will be selected.

Figure 2.27 Number of Steps from Chong Nonsi to Sathorn

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Start Line	Line Name	BRT			Station Name		Sathom			Direction to		Terminal Station										
End Line	Line Name	BTS Silom Line			Station Name		Chong Nonsi			Direction to		National Stadium										
Surveyor Name		Pat			Length of Step			58.5		YY/MM/DD		2017/11/28										
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Length	Number of Steps on Foot		25	6	55	25		69		280	57	18	6	23								
	Number of Steps at Stiais			30			10		11				42									

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the distance, stairs will be selected.

Figure 2.28 Number of Steps from Sathorn to Chong Nonsi

Annex B: Transfer Time Survey between Platforms (Time Survey)

Figure 2.29 Transfer Time from Chong Nonsi to Sathorn

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)
Final Report
Appendix 5: Traffic Survey

Annex B: Transfer Time Survey between Platforms (Time Survey)

Start	Line Name	BRT			Station		Sathom			Direction to		Terminal Station										
End	Line Name	BTS Silom Line			Station		Chong Nonsi			Direction to		National Stadium										
Surveyor Name		PSK			YY/MMDD		2017/11/30			Time		7:00-9:00										
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Use of Escalator (O)				0									O									
Time (S) 7:30 With Ticket			0:06	0:17	0-27	0:35	0:45	1:05	1:16	3:31	3:41	3:51	$4: 03$	4.09								
Time (S) 7:30 No Ticket			0:06	0:17	0.27	0:35	0.45	1:05	1:16	3:31	4:01	4:11	4:23	4:29								
Time (S) 8:30 With Ticket			0:07	0.22	0:37	0.47	0.57	1:27	1:37	3:37	3.52	4:02	4:15	4:21								
Time (S) 8:30 No Ticket			0:07	0.22	0:37	0.47	0.57	1:27	1:37	3:37	4:17	4:27	4:40	4:46								

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the time. To measure the distance,
stairs will be selected.

Figure 2.30 Transfer Time from Sathorn to Chong Nonsi

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Start	Line	Name	BTS Silom Line			Station Name		Saladaeng			Direction to		National Stadium										
End	Line Name		MRT Blue Line			Station Name		Silom			Direction to		Hua Lamphong										
Surveyor Name			Nunnapas			Length of Step			58.5		YY/MM/DD		2017/11/28										
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		Number	eps on Foot	14	6	47	328	6	61		17	36	80	33	86								
	,	Number	eps at Stiars		42			36						107									

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the distance, stairs will be selected.

Start Finigh Shairs Esosetior Elevaty Point	Up (Sta	Esc	tors):		Down (S	(Stairs/	calat)	$\boxed{\mathrm{I} v}$ Path:	verall of	of Route Latch:	$\overline{\mathrm{te} 】}$	Ticket Ma	lachine:						
Start Platform																				
(Saladaeng) Platform																				
(To National Stadiur) \rightarrow																				
-																				
					A															
							-													
Finish Platform											A									
(Silom) Platform																				
(To Hua Lamphong) \rightarrow																				

Figure 2.31 Number of Steps from Saladeang to Silom

Annex A: Transfer Time Survey between Platforms (Distance Survey)

Start	Line Name		MRT Blue Line			Station Name		Silom			Direction to		Hua Lamphong										
End	Line N	Name	BTS Silom Line			Station Name		Saladaeng			Direction to		National Stadium										
Surveyor Name			Nunnapas			Length of Step			58.5		YY/MM/DD		2017/11/28										
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Length		Number of Steps on Foot		82	33	64	36		54	6	336	17	23	6	60								
		Number of Steps at Stiris			107					36				42									

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the fime. To measure the distance, stairs will be selected.

Figure 2.32 Number of Steps from Silom to Saladeang

Annex B: Transfer Time Survey between Platforms (Time Survey)

Start	Line Name	BTS Silom Line			Station		Saladaeng			Direction to		National Stadium										
End	Line Name	MRT Blue Line			Station		Silom			Direction to		Hua Lamphong										
Surveyor Name		PSK			YY/MMDD		2017/11/30			Time		7:00-9:00										
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Use	f Escalator								0				\bigcirc									
Time	(S) 7:00 With		0:25	0.56	1:43	$5: 01$	5:27	6:01	6:39	7:30	8:18	9.16	10:10	11:03								
Time	(S) $7: 00 \mathrm{No}$		0:25	0.56	1:43	$5: 01$	5:27	6:01	6:39	7:30	10-23	11:01	11:59	13:53								
Time	(S) 8:00 Wit		0:33	0.58	1:46	4.58	5:21	5:57	6:29	7:01	7:48	8:32	9.24	10:17								
Time	(S) 8:00 No		0:33	0:58	1:46	4:58	5:21	5:57	6:29	7:01	9:13	10:57	11:49	12:42								

Time and distance shall be recorded separately in the survey. When there are escalator and stairs, escalator will be selected to record the time. To measure the distance, stairs will be selected.

Figure 2.33 Transfer Time from Sala Daeng to Silom

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)
Final Report
Appendix 5: Traffic Survey

Annex B: Transfer Time Survey between Platforms (Time Survey)

Figure 2.34 Transfer Time from Silom to Sala Daeng

3. Train Waiting Time Survey

3.1 Background

The most serious transport issue in the BMR is the heavy traffic congestion in the city center where BST, MRT and ARL run across. Congestion inside of mass rapid transit train car in BMR is also serious, especially in morning peak hours. Congestion at platform has been also serious, and a lot of passengers have to miss trains in order to get inside a train which has been already full when the train arrives at the station.

In destination based survey, time from home to office was measured in order to know how people in BMR commute to their office at the city center and how long it takes for their commuting. If the waiting time will be shorter, total commuting time will be also shorter and satisfaction of passengers to mass transit can be higher (this can be seen from the results of People's Perception Survey).

Through this waiting time survey, actual waiting time and number of missed trains was measured at major 10 congested stations in BMR.

3.2 Objectives (Survey Items)

Following items were observed at each designated survey station:

- Actual waiting time at platform (start time and end time),
- Number of missed train before getting on a train because of congestion.

3.3 Survey Method

1) Preparation of the Survey

In order to implement the survey, JICA Study Team and PSK Consults Co., Ltd, hereafter called the Consultant, got permission from the mass transit operators with cooperation from OTP.

Prior to implementation of the survey, the Consultant visited each station and survey location including location of train car and door was considered and decided. This information was recorded by a surveyor. The Consultant also translated the survey form from English into Thai according to necessity.

Then, the Consultant trained the surveyors in order to let them understand how to measure waiting time with the figure as follows.

Source: JICA Study Team
Figure 3.1 Image of the Train Waiting Time Survey at Platform
2) Field Survey

Trained surveyors measured waiting time for target passengers during the survey hours. The surveyors also measure number of missed trains since interval of trains is not same and the information is useful to grasp how serious the congestion is.
3) Survey Area

JICA Study Team selected survey stations and duration of the survey based on the site visit before the actual survey. Survey locations are show

4) Survey Schedule

The survey was conducted from 7:00 to 9:00, $18^{\text {th }}$ to $22^{\text {nd }}$ December 2017 at 10 major congested stations selected by JICA Study Team and the Consultant. The survey was conducted for peak hours and peak direction of each line on normal week days.

Table 3.1 Survey Schedule

No.	Date	Station Name	Line Name	Duration	Bound to
1	18/12/2017	Lat Phrao	Blue Line	7:30-9:30	Hua Lam Phong
2		Huai Khwang			
3		Phra Ram 9			
4	19/12/2017	Ramkhamhaeng	Airport Rail Link		Phaya Thai
5	20/12/2017	Victory Monument	Sukhumvit Line		Samrong
6	21/12/2017	On Nut			Mo Chit
7		Udom Suk			Mo Chit
8	22/12/2017	Saphan Taksin	Si Lom Line		Siam
9		Krung Thonburi			
10		Wongwian Yai			

3.4 Survey Results

The survey results are summarized and shown in Table 3.2. As seen in the table, surveyors basically count waiting time for trains by 3 surveyors during 7:30 to 9:30 on weekdays, on the same day with Railway Congestion Survey. There are 3 surveyors at each station and they were allocated at 3 spots differently.

Table 3.2 Results of Waiting Time at 10 Stations

No.	Station Name	Platform Location	Average Waiting Time	Average No. of missed trains	Measured Time
1	Saphan Taksin (To Siam)	1	0:17	0.14	7:43-8:42
2		2,3	0:16	0.14	7:35-8:34
3		4	0:37	0.33	7:50-8:49
4	Krung Thonburi (To Siam)	1	1:58	0.7	7:41-8:40
5		3	3:27	1.25	7:14-8:13
6		4	2:03	0.7	7:32-8:31
7	Wangwian Yai (To Siam)	1	2:10	1	7:30-8:29
8		2,3	1:58	0.78	7:38-8:37
9		4	0:34	0.23	7:37-8:36
10	Lat Phrao (To Hua Lumphong)	1	2:52	0.73	7:30-8:29
11		2,3	1:23	0.38	7:44-8:43
12		4	2:45	0.8	7:41-8:40
13	Huai Kwang (To Hua Lumphong)	1	5:30	1.18	7:33-8:32
14		3	7:11	2	7:33-8:32
15		4	2:03	0.6	7:36-8:35
16	Phra Ram 9 (To Hua Lumphong)	1	2:02	0.5	7:37-8:36
17		2,3	4:30	1.11	7:30-8:29
18		4	3:18	0.9	7:30-8:29
19	Victory Monument (To Samrong)	1	0:49	0.25	7:51-8:50
20		2,3	1:59	0.61	7:46-8:45
21		4	1:37	0.357	7:46-8:45
22	Ramkhamhaeng To Phaya Thai	1	22:57	1.5	7:48-8:47
23		2,3	15:32	1.5	7:48-8:47
24		4	36:54	2	7:48:8:47
25	On Nut (To Mo Chit)	1	4:03	1.33	7:21-8:20
26		2,3	0:51	0.29	7:28-8:27
27		4	2:07	0.69	7:28-8:27
28	Udom Suk (To Mo Chit)	1	0:58	0.31	7:30-8:29
29		2,3	0:32	0.235	7:30-8:29
30		4	0:10	0.053	7:30-8:29

3.5 Discussions

The survey results show several findings to be discussed. One is that without Airport Rail Link line, the que for waiting trains seems not very serious so the waiting time and average number of missed trains is also not serious. Regarding the Airport Rail Link line, trains did not come on time because of disorder of time table so the result is a little irregular. However, a surveyor who uses ARL line for commuting said that she has to wait for 20 or 30 minutes to take a train in morning peak hours since the frequency of trains are not very often, and the inside of a train is already congested since the train has accommodated passengers at former stations.

As seen from the results, waiting time and number of trains are different depending on the location of platform. The congested locations are generally close to an elevator. In Japan, station staff guides train passengers to less busy platforms in peak hours. These types of attempts can be helpful to reduce the length of waiting lines and equalize the number of passengers at each platform for the same line.
Another thing is that serious traffic congestion can be seen especially at Blue Line and ARL line since the train set is consisted of 3 cars and on the other hand, that of Si Lom and Sukhumvit Line is consisted of 4 cars. Seen from results of the Train Congestion Survey, the interval of trains of blue line in a peak hour is 3 minutes 20 seconds so this can be shorter somehow (interval between trains of Marunouchi Line in Tokyo during the peak hour is 1 minutes 50 seconds according to the Nikkei article on 21 December 2018). This means that it is technically possible to increase the number of train sets. On the other hand, it can be a solution for mitigating the congestion to increase the number of cars for 1 car set from 3 cars to 4 or 6 cars in the future.
Also, regarding the Silom Line, the train interval cannot be shorter anymore because of technical reason; the section between Krung Thon Buri station and Saphan Taksin station is only one-way operation. Hence, a train at one side has to wait for a train of another side. As a result, train interval cannot be shorter anymore and this cause congestion inside of a train around this section in peak hours.

In conclusion, through the survey, not only we could grasp current situation, but also could figure out several issues caused by long waiting time. If the waiting time is shorter, total travel time will be shorter and congestion at a platform will be improved. Furthermore, satisfaction with the mass transit will be improved.

4. People's Perception Survey

4.1 Background

Traffic congestion is one of the most serious problems in BMR and tremendous economic loss is caused by the congestion. Thailand is categorized into middle developed countries and therefore, a lot of people in Bangkok can afford a car so the number of cars in Bangkok has increased year by year.

Willingness to use public transportation is crucial when passengers decide the transportation mode. Through the discussions with OTP, they concerned very much on car captive users, who may not change their mode choice from by their own car to by mass transit. If so, even though there is enough population along the line and new lines are constructed in the future, the number of passengers cannot be expanded.

One of the goals of M-MAP2 is that how to increase the ridership of public transportation and how to shift the car users to public transport. This survey seeks people's perception to the current mass transit and future mass transit in BMR. The survey also seeks what types of factors are important for passengers to decide their mode or which points should be improved in the current public transportation.

4.2 Objectives (Survey Items)

Items as follows were surveyed through this survey. The target is visitors and tourists at 10 touristic spots and 20 commercial facilities in BMR.

- Transportation mode
- Satisfaction with the current mass transit
- Commuting situation from home to office (time, fare and etc.)
- Negative points of mass transit
- Recognition on future development plan of mass transit systems in BMR

4.3 Survey Method

1) Preparation of the Survey

In order to implement the survey, JICA Study Team and PSK Consults Co., Ltd, hereafter called the Consultant, got permission from BMA by way of OTP in order to conduct survey at 30 survey spots.
2) Field Survey

Prior to implementing the survey, the Consultant visited the survey spots. At each survey spot, 30 persons were interviewed randomly.

The survey sheet was prepared by JICA Study Team at first in English and the survey sheet was translated into Thai by the Consultant. The survey sheet was confirmed as understandable by several Thai staff.

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan (M-MAP2)
Final Report
Appendix 5: Traffic Survey
3) Survey Area and Survey Schedule

The 30 spots, 20 commercial spots and 10 touristic places, are listed as follows. These locations are widely selected in BMR in order to get variety of samples. The variety can be helpful to see the difference area by area but we could not analyze to that extent in this survey.

Table 4.1 List of Locations of Tourism Spot

Location	Duration	Target Period	Authority
Taling Chan Floating Market	9-17	$25^{\text {th }}-31^{\text {st }}$ Nov.	BMA
Khao San Road			
Wat Pho			
Asiatique			
Central World			
Baiyoke Tower 2			
Chatchak Market			
Jim Thompson House			
Ferry Station of Saphan Taksin			
China Town			

Table 4.2 List of Locations of Commercial Facility

Location	Duration	Target Period	Authority
Future Park Rangsit	9-17	$25^{\text {th }}-31^{\text {st }}$ Nov.	BMA
Mega Bang Na			
Centralplaza Bang Na			
Central Latphrao			
Rama II			
CentralPlaza Pinklao			
The Old Siam			
Central Plaza Rama III			
Seacon Square			
The mall Tha Phra			
The Street Ratchada			
Central Plaza Grand Rama 9			
Terminal 21			
The EmQuartier			
Platinam Fashion Mall			
MBK Center			
Victory Mall			
Silom Complex			
CentralPlaza Rattanathibet			
Central Plaza			

4.4 Survey Results

1) Basic Information of Samples

Total number of the samples was 954; 277 samples at tourism site, 585 samples at commercial site and 92 samples at office. Attribute of the samples are shown below. Age of interviewees are widely spread seen from the figure below and 646 samples, 72% of the total, do not own their own car.

1. Age

2. Worker / Student

3. Car Ownershipe

Figure 4.1 Attribute of Samples $(\mathbf{n}=954)$
Then, information on average on-board travel time, access time to railway station and egress time from railway station is shown below. About 75% of the samples took less than 20 minutes for their access and egress time from railway station. Then, seen here, more than half of samples took less than 20 minutes on board time.

Figure 4.2 Figures regarding Travel Time

2) Satisfaction to the Current Mass Transit Services

12 items are inquired based on the interview sheet. According to the results below, the
interviewees are basically satisfied with the mass transit since most of them answered "satisfied" or "so so" for questions. On the other hand, there seems 3 points that the satisfaction of samples is relatively lower than other topics; 1) fare for Mass Transit, 2) congestion of inside of a car, and 3) coverage area of mass transit network in BMR. In particular, more than half of samples are unsatisfied with the coverage area of mass transit network in BMR.

Source: JICA Study Team
Figure 4.3 Satisfaction to the Current MRT in BMR ($n=469$)

3) Reason why the Users Not Use Mass Transit

There are several reasons why people do not use mass transit as follows. The reasons why they do not use are same as the lower satisfactions on the current mass transit. According to the result, the coverage of the mass transit network is one of the main reasons why the people in BMR will not take the current mass transit. Current coverage area (800 m from a station) by mass transit as of 2017 is shown in Figure 4.5 and the coverage area is much less than the one planned in M-MAP.

Seen from the results, fare of the mass transit is also a bottleneck for some users when they consider taking the mass transit. Then, when a mass transit user takes two lines of mass transit, they have to pay fare twice if operators of two lines are different such as the transfer from Chatchak station of Blue line to Mo Chit station of Sukhumvit line.

Source: JICA Study Team
Figure 4.4 Reasons Not to Use the MRT in BMR ($\mathrm{n}=561$)

Source: JICA Study Team
Figure 4.5 Station Coverage (800 m) in the central area (2017, Left) and Future Station Coverage (800 m , M-MAP Plan, Right)
4) Important Actions for Future Mass Transit Development

The results of important actions for future mass transit development are shown in Figure 4.6. More than half of participants agreed "to strengthen mass transit network in central area" and "to extend mass transit network to sub-centers". Both of answers include the necessity of improvement of mass transit network in BMR and this opinion can be seen in the former questions. In addition, improvement of accessibility at a station or to other
transportation mode seems important for the interviewees.

Source: JICA Study Team
Figure 4.6 Important Actions for Future Development of MRT in Bangkok ($\mathbf{n = 9 5 3 \text {) }}$

4.5 Discussions

From the results of this people's perception survey, 3 main desires by the interviewees to the current and future mass transit in BMR can be recognized.

One is that the current mass transit network in BMR is very weak and this situation can be seen in Figure 4.5. The current network covers only limited area in BMR so limited people can commute to office or go to the city center merely by the mass transit. This is directly connected with one of five major policy directions in M-MAP2 shown in Figure 4.7. At the same time, connectivity between line and line should be considered and strengthened. This connectivity has 2 meaning; one is the distance between station should be shorter and another is the fare since under the current situation, passengers have to pay double for some transfer.

Second is that accessibility to a station has some problems when the people in BMR take the mass transit. One of the problems is that there is poor access from their home to the station. At mass transit station near city center, the station can be easily accessed by buses or by other lines. Whereas, some of mass transit station has difficulty to access the station such as Ban Thap Chang station of ARL, which is usually accessed by a motor bike or by a private car since the bus stop is little far from the station. When a new mass transit station is considered, connectivity with other transportation modes should be carefully assessed. Some stations of Purple line and Blue line accommodate parking area adjacent to the station and this promotes park and ride system for the commuters.

Third is that the fare price is high or the total cost for commuting by mass transit is high.

Basically, the fare of mass transit is 2 or 3 times more than that of air con bus along the same route. Thai staff in office said that they may take a bus longer distance even though transfer point from bus and mass transit since taking mass transit for a long time is more costly. Then, another point is already explained that if the operator of mass transit is different line by line, a passenger has to pay for both of rides. This seems very large barrier for the local people since the fare for the mass transit is not very cheap for them. In the future, the network will be expanded so a passenger may have to pay 3 times or 4 times to commute to their workplace under the current system. Manmoon card has been recently introduced in Bangkok and this card is compatible between Blue line, Purple line and BTS lines so far. This approach will be connected to the basic fare sharing between operators in the future.

Figure 4.7 Five Major Policy Directions of Urban Railway Development in M-MAP2

Also, many of participants of the survey cared about the congested situation inside of a train. As seen from the results of railway congestion survey and train waiting time survey, a train and the platform during peak hours are very congested and this is unsatisfied by large portion of passengers. High demand for the mass transit itself is good news but on the other hand, capacity of mass transit should be considered and improved at that time.

This People's Perception Survey is a trial to grasp what is required by people for the mass transit in BMR. The survey was conducted at variety of areas in BMR but the size is still not enough. However, several trends mentioned above were acknowledged through this pilot survey. The results of this survey hopefully lead the future policy direction on the mass transit in BMR or connects to the improvement of the service in the future.

Data Collection Survey on the Development of Blueprint for the Second Mass Rapid Transit Master Plan（M－MAP2）
Final Report
Appendix 5：Traffic Survey

You are invited to join thls survey to gather information about your perceptions of public transport in Bangkok．Thank you in advance for your participation．

สำหรับรถไฟฟ้า คุณพอใจในประเด็นต่าง ๆดังต่อไปนี้หรือไม่
Are you satisfied with the following things？Are you dissatisfied？

lime？
（）\triangle 喚

ความสามารเในกาเเง้าถึง จากมาขนลกสุ่ตัวสตานี Accessibility to the station．	（－）\triangle 盛
ตารเตินเซื่อมต่อกับระบบการขนส่งปขะเภทยื่นๆ Connection with other modes（bus，tuktuk，motorcycle）．	（－）\triangle 囫
ความสามารถในการเข้าถึง ภายในสถานี Accessibility within the station．	（－）\triangle 豚閏
ราคาค่าโดยสาร Fare price	
ค่าใดยสารสองต่อ（จ่าขสองครัง）เมื่อเปลียนสาทรดใฟฟำข้ามระบบ Double fores（pay twice）when traveling across twolines（e． 6 ．BTS and MRT）．	（－）\triangle 國
ระยะเวลาที่ใช้ในการเดินทางบนซบวนรถ ระหว่างสถานีอยกเดินทางและ สถานีที่ไปลีง Train riding time．	（－）\triangle 㓌覂
ระยะเวลาทีใช้ในการเตินเปลี่ยนถ่าย ไ้ามระบบไปยังระไฟฟ้าสายอื่น （ะาหิมปบ รเห่าง BTS และ MRT） Time to transfer to other lines（e．g BTS and MRT）．	（－）\triangle 㗐
ความถี่ของการเดินรก Frequency of train operation．	（－）\triangle 嗄令
ความตรงต่อเวลา ตามตารางการเดินรถ Accuracy of operation schedule．	（－）\triangle 㘬閏
$10 \begin{aligned} & \text { ความแออ้ดภายในขบวนรกโฟและที่บิิเวณสตถานี } \\ & \text { Congestion inside train and at the station．}\end{aligned}$	
	（－）\triangle 匈思
	（－）\triangle 荷

Which of the following is more in your workplace？
＂Railway Use and Automobile Use＂

Whnum：ר1Titio miviv（To the back please go to the Question V．）

 Phra Nangektao Bndge P1 wiventrol Bang Krasor
P11 eulannumi． P11 eutronnump p P12 Nonthabururiciciv Ministry of Public Health
P13 und．wor Y Yeek Twanon

 P16 undw Tas Poon

 CHA muxymer Chatuchak Pak AT Mumi）Lat Phrao
RAT RAT Forilian Ratchadap
SUT vent Suthisan Hul Henm Stuai Khware
CUL CUL ethemuminimazes．
 PAN mind Phecthaburi
SUK win SUK wim Sukhumvit
 CHO rosunte Khlong To
UMM wis Lumphini SUM ．n．Si Lomp Sani
SAM puenu Sam Yan
HUA
andiana Hua Lamphong

III－1 สถานีได ที่ใกล้น้านของคุณที่สุด

โปรดทำเดรืองหมายวงกลมบนแผนที่
Where is the nearest station from your home？
$\mathrm{III}-2$ สถานีใด ที่ใกล้ปลายทางของคุณที่สุต

－โปรดทำเครื่องหมายสี่เหลี่ยมบนแผนที่

Where is the nearest station to your destination？ Please mark with square on the map．

6.7 โดยปกติ คุณเดินทางจากบ้าน ไปยังถึงสถานีที่เริ่มออกเดินทาง กี่นาที ด้วยยานพาหนะใด？

How many minutes

Figure 4．8 Interview Sheet of People＇s Perception Survey 1

IV ทำไมลุณถึงไม่เลือกเดินทางโดยรถไฟฟ้า ?มีความลำบากในกางเดินทางเข้ากึงสดานีมีความต่าบากในการเคินใปผังรานชาสากายในหถานีราคาก่าโดยสตาวมูงเกินไป
 และMRT)โะยะดจาถี่ไช้บนชจไพฟ้นานกิินไป
 MRT)

มีความแออัดมากเกินไป่ายในขบวนรดและนีิเวนสกานี้สาาพจากาคไนชบวนรกใพพ้าและปิิวกนงถานึเม่เหมาะสม

V คน
ตุมูข้อมูณเกี่ยวกับแผนการพัพนาระบบขนส่งมวลฮนทางรางในกรุงเทพมหานคร นจนาคตหรือไม่
Do you know about future development plan of mass transit systems in Bangkok? (2ช่ (Yes)

-2 โครงข่ายระบบขนส่งมวลชนทางรางเป็นสิ่งที่จำเป็นอย่างยิ่งสำหรับ กรุงเทพมหานคร เพราะว่า?

ถ้าระบบชนส่งมวลชนทางรางได้รับการปรับปรุงไห้ดีขึ้น
คุณคิตว่าคุณงะใช้บริการให้บ่อขขี้นกว่านี้หรือไม่?is

คุณคิตว่ากิจกรรมใดบัาที่ส่าคัญในการพัฒนาระบบชนส่งมว่ลชนทางราง

 ในอนาคต เมืองมากิ่งข้้น

 ปรงจำทาง, กุกตุ๊ก чลฯ)

ตริงราคาค่าโดยสาร

สานี

เปลี่ยนัทัศนคติของประฯาชนกี่ยวกับระบบรนส่งหารารนะ
ปรับปะงความสามารกในาวเเ้าถึงะะหว่งงสนามบินและตัวเมือง

IV Why you do NOT use mass transit ? (MA)

It is difficult to access to the station.
世田It is hard to walk to the platform within the station.Fare price is too high.It is required to pay twice to use across two or more lines (e.g. BTS and MRT)It takes too much time onboard.It takes long to transfer to other lines (e.g. BTS to MRT) .Operation is not frequent/ waiting time for the next train is too long.Operation schedule is not accurate.Train and station is too congested.Air conditioning in the train and at the station is not comfortable.There is no mass transit line on my traveling route.

Why mass transit network is inevitable for Bangkok? (MA)To be economic hub in AEC (Asian Economic Community). To be livable city for all citizens, including aged people, To be attractive city for tourists.
To be green and healthy city.
To be a center for national and international administration.
If mass transit system is improved, do you think you will use more frequently?
$\bigcirc \mathrm{Yes}$
No
Please select the important actions for future mass transit development. (MA)

To strengthen mass transit network in central area.
To extend mass transit network to sub-centers.
To improve accessibility to the station.
To ensure easy transfer from/to other modes (bus, tuktuk, etc). To ensure easy transfer from/to other mass transit lines. To maintain fare price.
To locate residential/ commercial / business facilities at station area. To provide information for more people to use mass transit.
To change people's awareness on public transport.
To improve accessibility between the airport and the city.

Figure 4.9 Interview Sheet of People's Perception Survey 2

Appendix 6

Workshop on Safety for Railway Operation

Appendix 6

Pursuit of safety in Japan

2019. 2. 08

The history of railroad evolved by "learning from accidents".
Establishment of regulations and installation of security equipment.

Stop train if you think it is dangerous!

1962

Evolution of train signals.

Circuit display formula (Route signal)

Speed indication formula (Speed signal)

In-car signal

1968

Accidents burning

"trains that should not burn" occur

1978 A train that is running is caught in a tornado, The rear three of the 10 car train are derailed, 2 of them rolled over

1993
The heavy rain caused by the typhoon floods the station premises and is canceled

Pursuing the cause of "accident" by the Transportation Safety Commission and "Safety management regulations"

JTOA (Japan Train Operation Association)

Safety management provision．

Code of conduct of executives and employees related to safety of transportation？（Article 3，paragraph 2 of the Safety Management Regulations）
（1）Secure safety shall be given top priority and efforts will be made to achieve the mission of transport by cooperating cooperatively．
（2）We understand the laws concerning the safety of transportation and regulations related thereto （hereinafter referred to as＂related laws and regulations，etc．＂）well，and comply with it and carry out duties strictly and faithfully．
（3）We always try to understand the situation on transport safety．
（4）As we perform our duties，we strive to enforce confirmation regardless of speculation，and if there is doubt，we will treat it as safest．
（5）In the event of a situation where there is a risk of accidents，accidents，disasters or other situations that may interfere with securing the safety of transportation（hereinafter referred to as ＂accidents，disasters，etc．＂），Cooperate mutually to promptly take safe and appropriate measures．
（6）Transfer information related to safety quickly and accurately to relevant places and try to share them．
（7）Always act with problem consciousness and actively deal with when it is necessary to review work．

Evaluation by MLIT

Received periodic transport safety management evaluation by the Ministry of Land，Infrastructure and Transport，and reflected in reviewing the safety management system．
Transport safety management evaluation contents
【Implementation period】
October 31， 2017 －November 1
【Evaluated efforts（excerpt）】
© The top management should grasp the problems accompanying the change in the environment surrounding the company，aim to respond by combining improvements in the competence of the teaching side and the system to arrange，transfer and transfer the technology to be handed over．
© The fact that collecting information is also collected from group companies in addition to our own company，and furthermore，the collection promotion efforts show that the collection number is increasing．
© With regard to＂cross－division training＂where individual employees think and act actively，they are implementing measures that can link safety awareness to practice and can expect to contribute to preventive maintenance of accidents．
（O）We are trying to make efforts to revitalize internal audits．
【Items to expect further efforts】
© Advance measures to prevent further penetration and dissemination about precautionary preservation thinking．

Tokyo Metro operate 9 subway lines with 195 km of track．Minimum operation interval is 2 minutes．Tokyo Metro is responsible for a core part of the railway network in Tokyo．

km	14．3	27.4	20．3	30.8	24.0	28．3	11.9	16．8	21.3	195． 1
stations	19	28	21	23	20	24	11	14	19	179
No of car ／train	6	6	7\＆8	10	10	10	8 \＆ 10	10	6	
No of car	240	336	296	520	408			250	138	2728
No trip／day	374	300	284	290	255	249	246	289	187	

Train									
operator	O	O	O	O	0	0	0	0	0
Conductor	O	\times	O	O	O	Δ	0	\times	0

Policies and Initiatives of Tokyo Metro Comprehensive Learning and Training Center

1. Tokyo Metro's Policy

2. Tokyo metro's Training Program

Key points of railway Operation

The key points of railway management are "Operation framework", "Securing budget" and "Training". "Training" is the theme of today.

- 2 -

Tokyo Metro's Policy ~Important ideal in subway operation~
\square Our key concept is "ANSHIN"
\square We believe that the key to providing customers with ANSHIN is the combination of safety and quality service.

ANSHIN = Safety + Service

Unremitting Pursuit of Safety

Provision of High-Quality, Customer-Oriented Services
Quality Service

GENBARYOKU is important to realize "ANSHIN"

- 4 -

What's GENBARYOKU?

Tokyo Metro's Training Policy ~Developing Personnel to Provide ANSHIN~
Through the Comprehensive Learning and Training center, we ensure these ideals to put into practice.

Overview of Comprehensive Learning and Training Center

OEstablishment: April 2016
OOverall Site Area: Approximately 27,000 m² (Approx. size of 4 soccer fields)
OBuilding: 5-stories, Total Floor Area: Approximately 19,000 m²
OTraining Lines: Total Track Length Approximately 700m

1. Tokyo Metro's Policy

2. Tokyo metro's Training Program

Type of Staffs Trained at the Center

The center trains staffs from various departments and occupations involved in railway business.

Type of Staff

Operation
- Involved directly in train
operation

Technical

- Involved in development \& maintenance of facility and structures for safety and stable operation

Corporate

- Supervise field operation of train service
- Planning \& implementation of business operation

Main work content

- Train operation control
- Driving of trains
- Guidance within trains and door operation
- Passenger guidance and platform organization
- Station point operation
- Disassembly, cleaning, repair and improvement of train cars - Inspection and maintenance of train cars
- Inspection, maintenance and replacement of railway track
- Tunnel inspection and repair
- Building, station inspection and repair
- Inspection and repair of power supply - Inspection and repair of overhead wiring and air conditioning
- Inspection and repair of optical and wireless communications

Renovation
 \& Construction Dept.

- Installation of barrier-free facilities

Rolling Stock Dept.

Infrastructure Maintenance Dept.

Electrical

 Facilities Dept.

With a variety of facilities and training programs that enable comprehensive learning, the Center plays an important role in enhancing staff's service quality.

Training Programs

For Managerial Staffs
\checkmark Provides opportunity to experience and learn comprehensively across all functions

■ For Operation \& Technical Staffs

\checkmark Provides practical training to enhance individual capabilities required in respective duties

Cross-Departmental

\checkmark Provides training to strengthen coordination across departments and enhance ability to respond rapidly and effectively under emergency situation

Facilities

- Under Realistic Environment

\checkmark Allow trainees to learn practically with real models of facilities used in service line, along with classroom lectures

■ Without Time Constraint

\checkmark Allow training to be conducted without restriction of service hour, construction \& design schedule etc.

- Risk-free

\checkmark Allow trainees to learn without fear of failure

【Safety Training】Cross-departmental Training Program

This program allows staffs from different departments work together using their own expertise.
\checkmark Conducting a simulation training to recover an accident or trouble that has occurred in the past
\checkmark Each department collaborate to minimize recovery time

Cross-department Collaboration

Training is conducted with staffs from different departments

Overview

- Objective
- Reinforcement of collaboration roles in different departments
- Experience necessity for speedy response measures
- Mutual discussions among participants
- Training Contents
- Service disruption due to signal failure
- Rail failure
- Signal failure near a point
- Point failure
- Damage or smoke spotted from a pantograph
- Smoke spotted from under a train car
- Management of injury accident

Training in cooperation with the administration etc.

Accident assumption training

Countermeasure Headquarters Establishment and Operation Training

Accident assumption training

Training Program for Driver

Presently, we are educating total of 1,344 drivers and 914 conductors (At June 2017). We have program to educate 100 new drivers and conductors every year.

Education Program (Driver)

In addition to initial training, program offers follow-up training, emergency training, accreditation system to enhance driver's capability

Initial Training	Registration Examinatio	Academic Compl On Cxami	udies n on	Skills Completion xaminatio	
		Academic Studies 3.5 month	4.5		
		1.5months for Conductor	2mon Cond		
Conti	Follow-up Training (Year 1, 3)Emergency TrainingDriving Skill Accreditation System etc.				
nuous					
Training					

Facilities of Comprehensive Learning and Training Center

For Train Crew

Train Simulator Room

For Traffic Control
Signaling Training Room

Training Programs Using Mock-up Structures

Using mock-up structures in the Center allows trainees to experience and learn practically, applying what they learned in academic studies.

- 16 -

[^0]: ** Classified based on the correlation between nighttime population and workplace based worker in each sector

[^1]: Based on the forecasted population from National Census and Resident Registration, current population (June

[^2]: Source: Labor force survey (Management and Coordination

