Japan International Cooperation Agency

Data Collection Survey for Energy Transition and Carbon Neutral Society Final Report

August 2022

Pacific Consultants Co., Ltd.

IM
JR
22-114

Contents

Chapter 1. Business Overview	1
1.1 Business Background	1
1.2 Purpose of the Work	2
Chapter 2. Method of Conducting the Work	3
2.1 Survey implementation policy	3
2.2. Survey implementation structure	6
2 3 Survey schedule	6
2.4 Onsite survey schedule and survey structure	6
Chapter 3. Current Status on Energy Transition and Carbon Neutrality	7
3 1 Energy Transition Carbon Neutral Overview	7
3.1.1 Energy Transition and Carbon Neutrality	7
3.1.2 Overview of technologies related to energy transition and cat	, bon
neutrality	8
3.2 International Trends Towards Energy Transition and Car	0 hon
Neutrality	21
3.2.1 International trend	
3.2.2 Japan	
3.2.3 United States	
3.2.4 United Kingdom	32
3.2.5 Germany	
3.2.6 France	
3.2.7 China	
3.2.8 (South) Korea	40
3.2.9 Singapore	41
3.2.10 Thailand	42
3.2.11 Cambodia	45
3.3 Current Status of Energy Transition and Carbon Neutrality in	the
Countries under Assessment	48
3.3.1 Vietnam	48
3.3.2 Laos	68
3.3.3 Nepal	92
3.3.4 Uzbekistan	115
Chapter 4. Issue Analysis in Surveyed Countries	138
4.1 Vietnam	138
4.1.1 Organizing existing ET-CN related JICA projects	138
4.1.2 Energy Balance in Vietnam	141
4.1.3 Analysis of issues related to LNG and consideration of coopera	tion
possibilities	144
4.1.4 Analysis of Priority Issues Related to Energy Conservation	145
4.1.5 Analysis of Issues Related to Energy Transition and Car	bon
Neutrality	149
4.2 Lao PDR	153
4.2.1 Organizing existing ET-CN related JICA Projects	153
4.2.2 Analysis of issues related to energy transition and carbon neutra	ality

(especially promotion of electrification)1	58
4.2.3 Domestic and regional zero-emission energy potential a	nd
utilization methods 1	61
4.3 Nepal	67
4.3.1 Organizing existing ET-CN related JICA Projects	67
4.3.2 Analysis of issues related to energy transition and carbon neutral	ity
(especially promotion of electrification and energy conservation) 1	08
4.5.5 Domestic and regional energy potential	77
4 4 1 Organizing existing ET-CN related IICA Projects	77
4.4.2 Analysis of issues related to energy transition and carbon neutral	itv
(especially hydrogen utilization in power generation and other sector	rs)
	78
Chapter 5. Proposed Development Scenarios for Energy Transition a	nd
Carbon Neutrality1	86
5.1 Proposed vision and development scenarios for each country studi	ied
	86
5.1.1 Vietnam	86
5.1.2 Lao PDR	91
5.1.3 Nepal	96
5.1.4 Uzbekistan	.00
Chapter 6. Recommendations for a Proposed Cooperative Program 2	.03
6. 1 Vietnam	.03
6.1.1 Priority Project Recommendations	.03
6.2 Lao PDK	14
6 3 Nepal 222	.14
6.3.1 Priority Project Recommendations	2.2
6.4 Uzbekistan	30
6.4.1 Priority Project Recommendations2	30
Appendix	38
Appendix 1: Field Survey Schedule	39
Appendix 2 List of collected materials	47

List of Tables

Table 2.1 Survey implementation structure
Table 2-1 Survey implementation structure
Table 2-2 Onsite survey schedule and survey structure 6
Table 3-1 List of main technologies contributing to ET and CN
Table 3-2 List of main technologies contributing to ET and CN in agriculture and
forestry19
Table 3-3 Summary of Support in AETI 22
Table 3-4 Examples of Action Plans in the Long-Term Strategy as a Growth
Strategy under the Paris Agreement
Table 3-5 Examples of Action Plans in the 2050 Net Zero Long-Term Strategy 31
Table 3-6 Examples of Action Plans in the Net Zero Strategy in UK33
Table 3-7 Examples of Action Plans in the German Net Zero Strategy
Table 3-8 Examples of Action Plans in France's Net Zero Strategy
Table 3-9 Examples of Action Plans in China's Low Carbon Growth Strategy 38
Table 3-10 Examples of Action Plans in Korea's Carbon Neutral Strategy40
Table 3-11 Examples of Action Plans in Singapore's Carbon Neutral Strategy41
Table 3-12 Examples of Action Plans in Thailand's Low Carbon Growth Strategy
Table 3-13 Example of Action Plan in LTS4CN in Cambodia 45
Table 3-14 GHG Emissions by Sub-sector in Vietnam
Table 3-15 Targets for Mitigation Measures in Vietnam's NDCs by 203052
Table 3-16 Challenges and Measures to Achieve the Targets in Vietnam NDC53
Table 3-17 Policy framework and institutions contributing to ET and CN in
Vietnam
Table 3-18 Power Supply Capacity Composition Ratio from 2025 to 204557
Table 3-19 Numerical Targets in the National Green Growth Strategy57
Table 3-20 Specific targets in the National Energy Development Strategy58
Table 3-21 Main numerical targets in VNEEP3
Table 3-22 Numerical targets in the Renewable Energy Development Strategy.62
Table 3-23 Projects contributing to ET-CN of international donors in Vietnam.64
Table 3-24 GHG Emissions by Sub-sector in Lao PDR
Table 3-25 Policy Frameworks and Institutions Contributing to ET and CN in Lao
PDR (in chronological order) 73
Table 3-26 ET- and CN-related targets in the 9th NSEDP of Lao PDR 76
Table 3-27 Goals in Lao PDR Energy Policy
Table 3-28 Energy Saving Measures in Lao PDR Factories 70
Table 2-20 Energy Concernation Measures in Duildings in Lee DD
Table 5-29 Energy Conservation Measures in Buildings in Lao PDK80

Table 3-30 Energy Saving Measures in Transportation and Traffic in Lao PDR 81
Table 3-31 Energy Efficiency and Conservation Measures in Power and Electric
Power facilities in Lao PDR82
Table 3-32 Climate Change Action Plan for Lao PDR85
Table 3-33 International Donors' Cooperation Projects Contributing to ET-CN in
Lao PDR
Table 3-34 GHG Emissions by Sub-sector in Nepal
Table 3-35 GHG Emission Reduction Measures in Nepal's NDC295
Table 3-36 Mitigation measures in Nepal's LTS
Table 3-37 Policy Framework and Institutions Contributing to ET and CN in Nepal
(in chronological order)101
Table 3-38 International donors' cooperative projects contributing to ET-CN in
Nepal
Table 3-39 GHG Emissions by Sub-sector in Uzbekistan116
Table 3-40 GHG Emission Reduction Measures in NDC2 in Uzbekistan 118
Table 3-41 Sectoral Emissions in the GHG Emission Pathway Projection for
Uzbekistan119
Table 3-42 Energy Sector Measures in the Ambitious Scenario in Uzbekistan's BR
Table 3-43 EBRD Recommendations for Achieving Carbon Neutrality in
Uzbekistan's Electricity Sector by 2050120
Table 3-44 Policy Framework and Institutions Contributing to ET-CN in
Uzbekistan124
Table 3-45Projects contributing to international donors' ET-CN in Uzbekistan
Table 4-1 JICA projects contributing to ET/CN in Vietnam (about the past 10
years)138
Table 4-2 Summary of main issues related to ET and CN140
Table 4-3 Analysis of LNG-related issues in Vietnam145
Table 4-4 Analysis of energy conservation-related issues in Vietnam148
Table 4-5 Analysis of issues related to energy transition and decarbonization in
Vietnam152
Table 4-6 JICA projects contributing to ET and CN in Lao PDR (about the past 10
years)153
Table 4-7Summary of major issues related to ET and CN as indicated by existing
JICA projects155
Table 4-8 Main challenges for ET and CN in Lao PDR158

Table 4-9 Estimated energy consumption by industry in Laos164
Table 4-10 JICA projects contributing to ET/CN in Nepal (past 10 years approx.)
Table 4-11 Summary of major issues related to ET and CN as indicated by existing
JICA projects in Nepal
Table 4-12 Main challenges for ET-CN in Nepal 168
Table 4-13 JICA projects contributing to ET/CN in Uzbekistan (about the last 10
years)177
Table 4-14 Summary of main issues related to ET and CN as indicated by existing
JICA projects in Uzbekistan178
Table 4-15Analysis of issues related to ET-CN in Uzbekistan
Table 4-16 Analysis of issues related to hydrogen utilization
Table 5-1 Draft vision and development scenario for Vietnam: Building a green
energy society centered on the use of LNG, green electricity, and hydrogen
to support the transition from coal-fired power generation to ET-CN 187
Table 5-2 Draft vision and development scenario for Vietnam: Promoting
decarbonization through energy conservation, electrification, and renewable
energy utilization in the industrial sector, etc
Table 5-3 Draft Vision and Development Scenario for Lao PDR: Strengthening of
the power grid linking northern Laos with domestic and international power
demand areas191
Table 5-4 Draft vision and development scenario for Lao PDR: Electrification and
conversion to green fuels such as green hydrogen in the domestic industrial
and transport sectors
Table 5-5 Draft vision and development scenario for Lao PDR: Promoting the
establishment of a carbon neutral society through modernization of the
agriculture, forestry and livestock industries
Table 5-6 Proposed vision/development scenario for Nepal: Promoting
electrification policies by strengthening and improving the reliability of
rural electricity grids
Table 5-7 Proposed vision and development scenario for Nepal: Electrification
and conversion to green fuels such as green hydrogen in the domestic
industrial and transport sectors 197
Table 5-8 Draft Vision and Development Scenario for Nepal: Promoting a carbon-
neutral society through modernization of the agriculture, forestry, and
livestock industries
Table 5-9 Draft Vision and Development Scenario for Uzbekistan: Promote low-

carbon gas-fired power generation and decarbonization through green power
and energy storage200
Table 6-1 Business Development Plan for the Socialist Republic of Viet Nam
(2017)
Table 6-2 Proposed Cooperation Program on ET-CN in Vietnam204
Table 6-3 Summary of proposed priority cooperation projects in Vietnam (1) 206
Table 6-4 Summary of proposed priority cooperation projects in Vietnam (2) 208
Table 6-5 Overview of proposed priority cooperation projects in Vietnam (3) 210
Table 6-6 Business Development Plan for the Socialist Republic of Lao PDR
(2019)
Table 6-7 Proposed Cooperation Program Recommendations for ET-CN in Lao
PDR
Table 6-8 Summary of proposed priority cooperation projects in Lao PDR (1)218
Table 6-9 Summary of proposed priority cooperation projects in Lao PDR (1)219
Table 6-10 Business Development Plan for Nepal (2021)
Table 6-11 Recommendations for the proposed cooperation program on ET-CN in
Nepal
Table 6-12 Summary of proposed priority cooperation projects in Nepal (1)225
Table 6-13 Summary of proposed priority cooperation projects in Nepal (2) 226
Table 6-14 Business Development Plan for the Republic of Uzbekistan (2019)
Table 6-15 Recommendations for the proposed cooperation program on ET-CN in
Uzbekistan

List of Figures

Figure 2-1 Image of the overall work implementation flow 5
Figure 3-1 Global net anthropogenic GHG emissions (1990-2019)7
Figure 3-2 Global GHG by sector (2016) 8
Figure 3-3 Image of reaching a decarbonized society from energy transition 9
Figure 3-4 Image of CO2 emission reduction
Figure 3-5 ADB's Energy Transition Mechanism Model25
Figure 3-6 United States Historic Emissions and Projected Emissions Under the
2050 Goal for Net-Zero
Figure 3-7 Indicative Emissions Reductions to Meet UK Carbon Budgets and NDC
Figure 3-8 Evolution of GHG Emissions and Sinks on French Territory
Figure 3-9 Thailand's GHG emissions and sequestration pathway to 210043
Figure 3-10 Thailand's CO2 emissions and sequestration pathway43
Figure 3-11 Sectoral GHG emission projections for Cambodia under the LTS4CN
scenario45
Figure 3-12 Vietnam's GHG inventory (2016)
Figure 3-13 Change in GHG Emissions in Vietnam Over Time (2010-2018)50
Figure 3-14 Vietnam's GHG Emissions by Sector
Figure 3-15 Projected GHG Emissions in Vietnam's NDCs to 203052
Figure 3-16 Lao PDR GHG Inventory (2014)
Figure 3-17 Change in GHG Emissions in Lao PDR Over Time (2000-2018)70
Figure 3-18 Lao PDR GHG Emissions by Sector70
Figure 3-19 Projected GHG emissions in NDCs in Lao PDR71
Figure 3-20 GHG emission reduction measures in NDCs in Lao PDR72
Figure 3-21 GHG Inventory of Nepal (2011)92
Figure 3-22 Change in GHG Emissions in Nepal Over Time (2010-2018)94
Figure 3-23 GHG emissions by sector in Nepal94
Figure 3-24 Projected CO2 Emissions in Nepal's NLTS to 205097
Figure 3-25 CO2 Emission pathways for WEM (upper) /98
Figure 3-26 GHG Inventory of Uzbekistan (2017)115
Figure 3-27 Change in GHG emissions in Uzbekistan Over Time (2000-2018)117
Figure 3-28 GHG emissions in Uzbekistan by sector117
Figure 3-29 Projected GHG Emission Pathways in Uzbekistan119
Figure 3-30 Change in Generation Mix and CO2 Emissions under the Carbon
Neutral Scenario123
Figure 4-1 Vietnam's energy production (left figure)142

Figure 4-2 Vietnam's demand for petroleum products over time14
Figure 4-3 Changes in the composition of power generation sources in Vietna
Figure 4-4 Vietnam's energy balance (2019)14
Figure 4-5 Vietnam final energy consumption by sector (2019)14
Figure 4-6 Lao PDR energy production (left panel) and primary energy supp
(right panel) over time16
Figure 4-7 Demand for petroleum products in Laos over time
Figure 4-8 Energy balance of Lao PDR (2019)16
Figure 4-9 Final energy consumption by sector in Lao PDR (2017)16
Figure 4-10 Nepal's energy production (left panel) and primary energy supp
(right panel) over time17
Figure 4-11 Change in demand for petroleum products in Nepal over time17
Figure 4-12 Energy balance of Nepal (2019)17
Figure 4-13 Final energy consumption by sector in Nepal (2019)17
Figure 4-14 Projected balance of installed generation capacity in Nepal (2020
2030)
Figure 4-15 Energy production (left figure) and energy supply (right figure)
Uzbekistan over time17
Figure 4-16 Change in demand for petroleum products in Uzbekistan over tim
Figure 4-17 Energy balance of Uzbekistan (2019)17
Figure 4-18 Uzbekistan Final Energy consumption by Sector (2019)18

Abbreviation	Formal Name
3E+S	Energy security, Economic efficiency, Environment, and Safety
3R	Reduce, Reuse, Recycle
ADB	Asian Development Bank
AEM	Advanced Energy Metering
AEPC	Alternative Energy Promotion Centre (Nepal)
AETI	Asia Energy Transition Initiative
AF	Asia Foundation
AFD	Agence Française de Développement
AGT	Automated Guideway Transit
AI	Artificial Intelligence
AoS	Academy of Science of Uzbekistan
ASEAN	Association of South East Asian Nations
ASEI	Asian solar energy initiative
BAU	Business as Usual
BBIN	The Bangladesh, Bhutan, India, Nepal
BECCS	Bioenergy with Carbon Capture and Storage
BR	Biennial Report
BRT	Bus Rapid Transit
C/P	Counterpart
CCGT	Combined Cycle Gas Turbine
CCS	Carbon dioxide Capture and Storage
CCU	Carbon dioxide Capture, Utilization
CCUS	Carbon dioxide Capture, Utilization and Storage
CDM	Clean Development Mechanism
СНР	Combined Heat & Power
CN	Carbon Neutral
CNG	Compressed Natural Gas
CORSIA	Carbon Offsetting and Reduction Scheme for International
	Aviation
COP26	The 26th session of the Conference of the Parties to the United
	Nations Framework Convention on Climate Change
CRTN	Centre for Rural Technology Nepal

List of Abbreviations

CSR	Corporate Social Responsibility
CTCN	Climate Technology Centre & Network
DEEP	Department of Energy Efficiency Promotion (Laos)
DEESD	Department of Energy Efficiency and Sustainable Development
	(Vietnam)
DEPP	Department of Energy Policy and Planning (Laos)
DHUP	Department of Housing and Urban Planning (Laos)
DOT	Department of Transportation (Nepal)
EBRD	European Bank for Reconstruction and Development
EDL	Electric Du Laos
EDL-Gen	EDL-Generation Public Company
EE	Energy Efficiency
EMR	Electricity Market Regulator (Uzbekistan)
EMS	Energy Management Systems
EPC	Engineering, Procurement and Construction
ERC	Nepal Electricity Regulatory Commission
ERIA	Economic Research Institute for ASEAN and East Asia
ESCO	Energy Service Company
ET	Energy Transition
ETM	Energy Transition Mechanism
EU	European Union
EV	Electric Vehicle
EVN	Vietnam Electricity
FCDO	Foreign, Commonwealth and Development Office
FOLU	Forestry and Other Land Use
F-REDD	Sustainable Forest Management and REDD+ Support Project
FS	Feasibility Study
GACMO	The Greenhouse Gas Abatement Cost Model
GB/T	Guo jia Biao zhun
GC	Grid Code
GCF	Green Climate Fund
GDP	Gross Domestic Product
GGGI	Global Green Growth Institute
GHG	Greenhouse Gas
GIZ	Deutsche Gesellschaft für Internationale Zusammenarbeit

GL	Guideline
GoN	Government of Nepal
GoV	Government of Vietnam
GRID	Green, Resilient, Inclusive Development
GTCC	Gas Turbine Combined Cycle
НРР	Hydro Power Plant
ICT	Information and Communication Technology
IoT	Internet of Things
IPCC	Intergovernmental Panel on Climate Change
IPP	Independent Power Producer
IPPU	Industrial Processes and Production Use
ISEI	International Solar Energy Institute, Uzbekistan
ITMOs	Internationally Transferred Mitigation Outcomes
JCM	Joint Crediting Mechanism
JETRO	Japan External Trade Organization
JICA	Japan International Cooperation Agency
KOICA	The Korea International Cooperation Agency
LEAP	Low Emission Analysis Platform
LED	light-emitting diode
LNG	Liquefied Natural Gas
LPG	Liquefied Petroleum Gas
LPP	Laos Pilot Program
LRT	Light Rail Transit
LTS4CN	Long-term Strategy for Carbon Neutrality (Cambodia)
LULUCF	Land Use, Land Use Change and Forestry
MAF	Ministry of Agriculture and Forestry (Laos)
MDM	Meter Data Management
MEM	Ministry of Energy and Mines (Laos)
MHCS	Ministry of Housing and Communal Services (Uzbekistan)
MIFT	Ministry of Investments and Foreign Trade of Uzbekistan
МОА	Ministry of Agriculture (Uzbekistan)
MOAL	Ministry of Agriculture and Livestock Development
MOE	Ministry of Energy (Uzbekistan)
MOEDPR	Ministry of Economy Development and Poverty Reduction
	(Uzbekistan)

MOEF	Ministry of Forest and Environment (Nepal)			
MOEWRI	Ministry of Energy, Water Resources and Irrigation (Nepal)			
MOF	Ministry of Finance			
MOFAGA	Ministry of Federal Affairs and General Administration (Nepal)			
MOIC	Ministry of Industry and Commerce (Laos)			
MOICS	Ministry of Industry, Commerce and Supplies (Nepal)			
MOID	Ministry of Innovative Development (Uzbekistan)			
MOIT	Ministry of Industry and Trade (Vietnam)			
MONRE	Ministry of Natural Resources and Environment			
MOPE	Ministry of Population and Environment (Nepal)			
MOPIT	Ministry of Physical Infrastructure and Transport (Nepal)			
MOPWT	Ministry of Public Works and Transport (Laos)			
МОТ	Ministry of Transport (Uzbekistan)			
MoU	Memorandum of Understanding			
MOUD	Ministry of Urban Development (Nepal)			
MOWS	Ministry of Water Supply and Sewage (Nepal)			
MPH	Ministry of Public Health (Laos)			
MPI	Ministry of Promotion and Investment (Laos)			
MRV	Measurement, Reporting and Verification			
MST	Ministry of Science and Technology (Laos)			
NAFRI	National Agriculture and Forest Research Institute (Laos)			
NAMA	Nationally Appropriate Mitigation Actions			
NC	National communication			
NDC	Nationally Determined Contribution			
NEA	Nepal Electricity Authority			
NEGU	National Electricity Grid of Uzbekistan			
NGO	Non-Governmental Organizations			
NIRES	National Scientific Research Institute of Renewable Energy			
	Sources (Uzbekistan)			
NLTS	Nepal's Long-Term Strategy for Net-zero Emissions			
NOC	Nepal Oil Corporation			
NPC	National Planning Commission (Nepal)			
NPT	National Power Transmission Corporation (Vietnam)			
NSEDP	9th National Socio-economic Development Plan (Laos)			

NSP	New Suspension Pre-heater			
NZ	New Zealand			
NZL REF	New Zealand Laos Renewable Energy Facility			
O&M	Operation & Maintenance			
PDP8	The National Power Development Plan VIII (Vietnam)			
РМО	Prime Minister Office			
PPA	Power Purchase Agreement			
РРР	Public Private Partnership			
PtG	Power to Gas			
PV	Photovoltaic			
RDF	Refuse Derived Fuel			
REDD+	Reducing Emissions from Deforestation and Forest Degradation,			
	and the Role of Conservation, Sustainable Management of Forests			
	and Enhancement of Forest Carbon Stocks in Developing			
	Countries			
REDS	Renewable Energy Development Strategy (Vietnam)			
REPN	Regional Electric Power Networks			
RHC	Rural Health Clinic (Uzbekistan)			
RIEM	Research Institute Energy and Mines (Laos)			
RPF	Refuse Paper & Plastic Fuel			
R&D	Research & Development			
SAF	Sustainable aviation fuel			
SATREPS	Science and Technology Research Partnership for Sustainable			
	Development			
SCADA	Supervisory Control And Data Acquisition			
SCEEP	State Committee for Ecology and Environmental Protection			
SDGs	Sustainable Development Goals			
TCFD	Task Force on Climate-related Financial Disclosures			
ТРР	Thermal Power Plant			
UE	Uzbekenergo Joint Stock Company			
UJICY	Uzbek-Japan Innovation Centre of Youth			
UNEP	United Nations Environment Programme			
UNESCAP	United Nations Economic and Social Commission for Asia and the			
	Pacific			
UNFCCC	United Nations Framework Convention on Climate Change			

UNIDO	United Nations Industrial Development Organization
UNPN	Uzbekistan National Power Networks
USAID	United States Agency for International Development
USTDA	United State Trade Development Agency
V2H	Vehicle to Home
VLEEP	Vietnam Low Emission Energy Program
VNEEP	National Energy Efficiency Programme (Vietnam)
WAM	With Additional Measures
WB	World Bank
WECS	Water and Energy Commission Secretariat (Nepal)
WEM	With Existing Measures
WS	Workshop
WtE	Waste to Energy
ZEB	Net Zero Energy Building
ZEH	Net Zero Energy House
ZEV	Zero Emission Vehicle

Chapter 1. Business Overview 1.1 Business Background

Following the Paris Agreement in December 2015, efforts to achieve a low-carbon, decarbonized society are in full swing worldwide. At the 26th Conference of the Parties (COP26) to the United Nations Framework Convention on Climate Change (November 2021), to accelerate climate change action, discussions were held on significantly revising the Nationally Determined Contribution (NDC) targets and establishing a carbon value trading system. Ratifying countries, including developing countries, in order to fulfill their common but differentiated responsibilities for greenhouse gas reduction, should make maximum efforts toward Carbon Neutral (CN).

In addition, in the context of discussions on achieving CN, the importance of Energy Transition (ET) is recognized worldwide. In particular, in Asia where energy demand growth is significant along with economic growth, ET is essential to achieving CN. Regarding Japan, at the "ASEAN-Japan Business Week" in May 2021, the Ministry of Economy, Trade and Industry (METI) announced the "Asia Energy Transition Initiative" to support ET in the Asian region, and in October of the same year the status of support for roadmap formulation, etc., was shared at the "First Asia Green Growth Partnership Ministerial Meeting." In addition, in Europe, the EU-ASEAN Business Advisory Committee in August 2021 has published a report on ET in the region, "Powering ASEAN's Energy Transition." As during COP26, the Energy Transition Council, attended by twenty-one countries and international organizations including Japan, Vietnam, and Laos, agreed on international cooperation toward ET, and as well the Asian Development Bank (ADB), together with Indonesia and the Philippines, launched a partnership to establish an Energy Transition Mechanism and so forth, there is a growing movement toward ET on a global scale.

The Japan International Cooperation Agency (JICA) has been working on CN in developing countries, and to promote ET toward this end, the program is supporting the formulation of policy systems and development plans, such as the promotion of "renewable energy" and energy use efficiency (Energy Conservation) improvements, to contribute to this goal. In the future, the support needs of developing countries for ET and CN are expected to increase. In order to formulate and implement effective projects to meet these needs in a timely manner, it is necessary to accurately grasp the current situation and issues in the target countries, which have various characteristics, in terms of country size, stage of development, energy supply and demand structure, demand outlook, etc., and to build close relationships with relevant government agencies to provide support for the promotion of ET to the achievement of CN. Particularly, in achieving ET and CN, while ensuring stable energy supply and economic efficiency in the target countries, it is important to work on developing feasible scenarios.

Also, to support sustainable development, JICA developed the "Global Agenda", which is an issue specific business strategy consistent with the SDGs, and a "Cluster Business Strategy" that allocates focused resources under each agenda. In climate change, one item of the Global

Agenda, two fields were set up, "Promotion of implementation of the Paris Agreement" as well as "Co-benefit-oriented climate change measures," and JICA has set forth priority issues to be addressed including:

(1) Promoting low-carbon, decarbonized, climate resilient urban development and infrastructure investment

- (2) Improving climate change policy and institutions in developing countries,
- (3) Strengthening climate risk assessment and countermeasures,
- (4) Strengthening conservation and management of forests and natural ecosystems.

1.2 Purpose of the Work

Based on the above understanding, this project was carried out in Vietnam, Laos, Nepal, and Uzbekistan (the "Surveyed Countries") for the purpose of considering the optimal cooperation programs and so forth, and as well to gather basic information necessary to identify issues and discussion points for the realization of ET and CN socio-economics, while also taking into account the effectiveness of existing projects by the organization and trends of other donors, etc., regarding the current status and outlook of low-carbonization and decarbonized energy as part of the JICA's global agenda for business management.

Chapter 2. Method of Conducting the Work

2.1 Survey implementation policy

The survey was summarized by conducting a desktop review and on-site interviews under the following policies.

✓ Gathering information and identifying issues needed to propose the cooperation program plan

To propose a concrete and realistic cooperation program proposal that can contribute to achieving CN from ETs in the surveyed countries, it is necessary to collect and analyze information in advance, interview local officials, identify issues through field surveys, and provide concrete back data to support the proposal. To this end, in this survey, the following steps were taken, the proposed cooperation program was examined by collecting and analyzing sufficient information in advance, formulating a hypothesis using this information, verifying this hypothesis through field surveys, and revising and reinforcing this hypothesis using information obtained in the field.

✓ Accurate understanding of local needs

After developing hypothetical plans for proposed development scenarios and cooperation programs, these hypothetical plans were reinforced by examining the results of existing projects of JICA in the surveyed countries, the latest climate change policies and measures in each country, trends in cooperation projects by other donors, energy statistics in the surveyed countries, papers and reports on ET and CN in each country, and conducting a survey of energy use potential for ET and CN in the surveyed countries. Then, interviews were conducted in the surveyed countries to verify the hypothetical plan and to identify priority issues, support and technical needs, and potential for cooperative projects.

✓ Synergistic effects with ET and CN support policies of the Japanese government and private sector trends

Proposed development scenarios and cooperation programs were examined that are consistent with the foreign cooperation policy of Japan in the energy and environment sector and contribute to deploying technologies possessed by Japanese companies that contribute to ET and CN. Consideration was given in particular to policies and technologies (hydrogen, storage batteries, carbon recycling, etc.) in the energy and environment sector of the Overseas Infrastructure Export Strategy and international deployment and cooperation policies of the Paris Agreement Long-Term Growth Strategy, while also paying attention to trends of the Asian Energy Transition Initiative, and to achieving synergistic effects of these policies. In addition, consideration was also given to proposed development scenarios and cooperation program proposals that would contribute to the business development of private companies engaged in activities that contribute to climate change mitigation in the surveyed countries through the projects of JICA and others.

✓ Considering development scenarios for ETs and CNs with an awareness of the global agenda To realize ET and CN, it is not only necessary to develop technical aspects but also soft aspects such as policies and systems to promote realization of ET and CN and finance at the same time, and to build the response capacity of concerned organizations and parties in the surveyed countries. In addition, in developing countries with many development issues, it is effective and efficient to implement "co-benefit-oriented climate change measures" that contribute to solving development issues by implementing measures for ET and CN. Therefore, in addition to examining proposed development scenarios for ET and CN in terms of both hardware and software, a development scenario was designed to maximize the co-benefit effects.

✓ Considering a proposed cooperation program that maximizes effectiveness of the existing cooperation of Japan

In studying the proposed cooperation program, while making maximum use of the results of past development assistance of JICA in the surveyed countries, it was attempted to harmonize the program with the foreign cooperation policy of Japan in the energy and environment field, the country-specific policies of the Ministry of Foreign Affairs, and the country-specific support policies of JICA. In addition, in examining the proposed cooperation program, the vision of the proposed cooperation program for ET and CN was clarified, the project groups that constitute the program were examined, and the outputs and outcomes to be achieved through implementing the proposed cooperation program were considered.

✓ Quantitative evaluation of project effectiveness in ET and CN development scenarios

In studying the proposed development scenarios for ET and CN, assumptions were clarified based on the economic conditions of the surveyed countries, including 3E+S (environment, stable energy supply, economic efficiency, and safety in short and long term), international trends after COP26 including carbon trading, etc., and trends in transition finance in the surveyed countries, including ASEAN.

When considering multiple options for the assumptions, a proposed development scenario was examined for each of them. In addition, in the study of the proposed development scenario, a comprehensive evaluation was made from various aspects such as cost and environmental impact. Furthermore, in examining the proposed cooperation program based on the proposed development scenarios, using publicly available materials and field surveys, etc., based on the local situation to the extent possible, the cost-effectiveness was estimated based on the assumed amount of CO2 reduction and the amount of renewable energy introduced, the amount of energy saving potential, and the projected cost of technology and products, etc., and as much as possible the results were examined together with quantitative evaluations.

Figure 2-1 Image of the overall work implementation flow ¹

¹ Since the work content differs from country to country, this is shown as an image of the overall work implementation flow.

2.2 Survey implementation structure

The survey was conducted by Pacific Consultants Co., Ltd. under the following structure.

No.	Name	Responsibility
1	Daiki NOSE	Leader / Strategy for energy transition to carbon neutral - 1
2	Akifumi NISHIHATA	Sub-leader / Strategy for energy transition to carbon neutral - 2
3	Yoshihiro MIZUNO	Climate change framework, Carbon trading, Economic assessment
4	Noriko ISHIBASHI	Renewable energy, electrification, hydrogen
5	Yasuko ARAKAWA	Policy, institution
6	Ayu HORIUCHI	Energy saving

Table 2-1 Survey implementation structure

2.3 Survey schedule

The survey was conducted between February 2022 and September 2022.

2.4 Onsite survey schedule and survey structure

The field survey was conducted under the following structure and schedule.

Country	Schedule	Members
Lao PDR	May 18, 2022 - June 12	Daiki NOSE, Yasuko ARAKAWA, Ayu
		HORIUCHI
Uzbekistan	June 15, 2022 – 30 June	Akifumi NISHIHATA, Noriko ISHIBASHI,
		Yasuko ARAKAWA
Nepal	June 18, 2022 – 30 June	Daiki NOSE, Yoshihiro MIZUNO, Ayu
		HORIUCHI
Vietnam	July 31, 2022 – August 6	Yoshihiro MIZUNO, Noriko ISHIBASHI

Table 2-2 Onsite survey schedule and survey structure

Chapter 3.Current Status on Energy Transition and Carbon Neutrality

3.1 Energy Transition Carbon Neutral Overview

3.1.1 Energy Transition and Carbon Neutrality

Climate change is already affecting the entire world, and measures to mitigate its impacts, including to reduce anthropogenic greenhouse gas ("GHG") emissions to reach the global peak as soon as possible, decarbonization efforts in all parts of society and the economy to date need to begin reducing GHG emissions as soon as possible. The IPCC Sixth Assessment Report WG3 Report, Mitigation of Climate Change, published in April 2022, states that net GHG emissions continue to increase (WG3 Report, Climate Change Mitigation, April 2022) (Figure 3-1), with CO2 emissions from both energy sources and the land use, land-use change and forestry (LULUCF) sector accounting for approximately 75% of GHGs. In the breakdown of global GHG emissions by sector (Figure 3-2), about 70% of GHG emissions are from the combustion of fossil fuels consumed in the power generation, industrial, commercial, transport, and consumer sectors. In other words, there is a need to promptly reduce or decarbonize the energy sources consumed in the social economy globally.

Figure 3-1 Global net anthropogenic GHG emissions (1990-2019)²

² IPCC, 2022: Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.001.

Figure 3-2 Global GHG by sector (2016)³

On the other hand, since it is difficult to completely eliminate GHG emissions, it will become increasingly important to achieve a balance between GHG emissions from GHG emission sources and GHG absorption or fixation by GHG sinks to achieve net zero GHG emissions. The term "carbon neutral" used in this study means "zero net GHG emissions".⁴ In this study, ET and CN in the surveyed countries are covered.

3.1.2 Overview of technologies related to energy transition and carbon neutrality

Achieving energy transition and carbon neutrality depends primarily on shifting energy sources from fossil fuels to renewable energy and promoting reductions in energy consumption (energy efficiency). As shown in Figure 3-3, to reach a decarbonized society, it is necessary to promote discontinuous innovation and introduce technologies that contribute to energy transition towards a decarbonized society to maximize GHG emissions reductions, as not all industries can jump from a fossil fuel-consuming economy to a decarbonized society.

³ Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO₂ and Greenhouse Gas Emissions". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions' [Online Resource]

⁴ Strictly speaking, "carbon neutral" refers to zero net emissions of CO2, a GHG, while "net zero" refers to zero net GHG emissions (IPCC, 2018: Annex I: Glossary [Matthews, J.B.R. (ed.)]. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 541-562, doi:10.1017/9781009157940.008.). In practice, however, it is often used in a similar sense.

Also, as shown in Figure 3-4, there are two types of energy use: electric power and nonelectric power (e.g., heat use), and it is necessary to promote energy conservation and decarbonization of power sources for electric power, and energy conservation and fuel switching for non-electric power to reduce CO2 emissions, while also examining the possibilities for developing negative emission technologies to capture and store CO2. In FY2021, the Ministry of Economy, Trade and Industry (METI) held the "Study Session on Establishing a Roadmap for Promoting Transition Finance in the Economic and Industrial Sector" ⁵ and formulated a roadmap for transitions in the electricity, gas, oil, steel, chemical, pulp and paper, and cement sectors. The technologies listed in these roadmaps are summarized by sector in Table 3-1..

Figure 3-3 Image of reaching a decarbonized society from energy transition ⁶

Figure 3-4 Image of CO2 emission reduction ⁷

⁵ Study Group to Develop a Roadmap for Promoting Transition Finance in the Economy and Industry Sector https: //www.meti.go.jp/shingikai/energy_environment/transition_finance_suishin/index.html Accessed July 6, 2022 6 Transition Finance (Ministry of Economy, Trade and Industry) https://www.meti.go.jp/english/policy/energy_enviro nment/transition_finance/index.html July 1, 2022, Access

⁷ What is "carbon neutrality" all about? (Part 2) - Why does Japan aim to realize it? (March 16, 2021, Agency f or Natural Resources and Energy, Ministry of Economy, Trade and Industry) https://www.enecho.meti.go.jp/en/categ ory/special/article/detail_167.html Accessed July 1, 2022

Field	Technology	Outline	Implementation
			year
Electric power	Ammonia mono	Ammonia mono firing in boilorg	2020
nower supply	fuel	and gas turbines	20308
power suppry	Hudrogen mono	Mono firing by hydrogon turbing	20205
	fuel	Mono-ming by hydrogen turbine	20308
	CCUS	Promotion of technological	2030s
	0005	development, demonstration.	20505
		introduction, and	
		commercialization of CO2	
		capture and storage technologies	
	Re-energy and	Introduction of renewable and	Already in
	nuclear power	nuclear energy	place
	Suspension and	Suspension and decommissioning	Already in
	discontinuation of	of existing thermal power sources	place
	thermal power		
	supply		
Transition power	Ammonia co-	Co-firing of ammonia with coal	Late 2020s
supply	firing		
	Hydrogen mixing	Hydrogen co-firing with gas fired	Late 2020s
	and burning	power plants	
	Biomass co-firing	Biomass co-firing with coal fired	Already in
		power plants	place
Other	Strengthening and	Reinforcement of power	Already in
	upgrading of	transmission and distribution	place
	power	networks, etc. to expand the	
	transmission and	introduction of renewable	
	networks	energies	
	Promotion of	Demand side decarbonization	Already in
	demand response	initiatives electrification etc	nlace
	electrification		prace
	etc.		
	Storage batteries.	Introduction of storage batteries	Already in
	pumped water.	and distributed energy resources	place
	distributed energy	that contribute to grid	1
		stabilization, etc.	
Gas			
Natural gas	Energy	Energy saving by cooling/heating	Already in
	conservation in	equipment, etc.	place
	the city gas		
	production		
	process		
	Development of	Strengthening supply	Already in
	natural gas supply	infrastructure to expand use of	place
	network	natural gas	
	Fuel conversion	(Installation, etc. of facilities,	Already in
		etc. necessary for demand-side	place
		iuel conversion)	

Table 3-1 List of main technologies contributing to ET and CN⁸

⁸ Based on roadmaps for each sector from the Study Group on Roadmap Development for Promoting Transition Fi nance in the Economy and Industry Sector https://www.meti.go.jp/shingikai/energy_environment/ transition_finance_s uishin/index.html Accessed July 6, 2022

Field	Technology	Outline	Implementation
	Advanced utilization of natural gas	Energy conservation through energy measurement, high- efficiency boilers, etc.	Already in place
	Distributed energy system	Energy conservation through the spread and expansion of smart energy networks (energy use in all areas), cogeneration, fuel cells, etc.	Already in place
	Conversion of city gas feedstock from natural gas to synthetic methane	Converting city gas feedstock to synthetic methane to reduce CO2 emissions from city gas use to zero	2030s
Synthetic methane	Methanation (Sabatier reaction)	Methane synthesis from hydrogen and CO2	2030s
	Methanation (Innovative technology)	Innovative technologies to synthesize methane more efficiently than methanation by the Sabatier reaction (e.g., co- electrolysis)	2040s
	Establishment of domestic and overseas supply chain	Combined use of synthetic methane in existing infrastructure such as liquefaction terminals, LNG carriers, receiving terminals, pipelines, etc.	2030s
LP gas	Promotion of energy conservation and fuel conversion	Spread of high-efficiency gas hot-water supply equipment and household fuel cells, energy conservation at LP gas import terminals, etc., and LP gas boilers and LP gas-fueled ships	Already in place
	Rationalization of transmission and distribution	Spread of smart meters and centralized monitoring equipment	Already in place
Green LP gas	Synthetic LP gas	Methanol from hydrogen and CO2, LP gas production by indirect synthesis method via Di- Methyl Ether	2030s
Hydrogen	Water electrolysis (manufactured overseas and in Japan)	Hydrogen produced by electrolyzing water	Late 2020s
	Transportation from overseas (liquefied hydrogen carriers and liquid hydrocarbons as carriers)	Transported by liquefied hydrogen carriers or by using methylcyclohexane and other substances as carriers	Late 2020s
	Local hydrogen network	Development of domestic hydrogen supply network	2030s
	Hydrogen combustion equipment, etc.	Use of hydrogen in industrial furnaces, cogeneration, fuel cells, etc.	Before 2030

Field	Technology	Outline	Implementation year
	Hydrogen station	Social implementation of hydrogen production from city gas at low cost	Already in place
Biogas	Biogas	Utilization of biomass	Already in
· · ·		fermentation-derived gas	place
Ammonia	Ammonia	On-site utilization of ammonia	Late 2020s
CCUS	separation and recovery of CO2 from exhaust gas, etc.	captures and utilizes CO2 emitted from city gas appliances. Collection, utilization and storage	Early 2020s
		power plants, chemical plants, etc. is turned around.	20308
	DAC	Direct capture of CO2 from the atmosphere	2040s
Crude oil	Strengthening	Effective use of heat	Already in
processing	energy-saving measures	introduction of advanced control and high-efficiency equipment, improvement of power system efficiency, large-scale improvement and upgrading of processes, etc.	place
	Promotion of fuel	Conversion from petroleum-based	Already in
	Transition to decarbonized fuels	Conversion from fossil fuels to CO2-free hydrogen and other decarbonized fuels	2030s
	Promote the use and development of renewable energy and zero- emission power sources	Greening electricity in the petroleum refining process	Already in place
	Refining process transformation	Decarbonization of refining processes by utilizing CO2-free hydrogen	2030s
	CCS/CCU	CO2 recovery from refining processes, etc. Production of fuels, materials (carbonates), etc. from recovered CO2 Introduction of CCS	2030s
Improvement and more efficient use of existing fuels	Chemical recycling of waste plastics	Waste plastics are converted into oil and then chemically recycled using oil refining equipment to produce fuels and chemical raw materials.	2030s
	New fuels that contribute to improved fuel efficiency of internal combustion engines	Emission reductions through optimization of future innovative engine combustion methods and fuel combinations, etc.	Late 2020s

Field	Technology	Outline	Implementation
TT 1			year
Ammonia	CO2 free	and transportation technology	20308
Ammonia	hydrogen and	Dehydrogenation and storage	
	ammonia supply	using refinery facilities	
	chain	Domestic supply and in-house use	
		(for power generation,	
		automobile fuel, raw materials,	
		etc.)	
	Development of	Hydrogen supply for fuel cell	Already in
	hydrogen stations,	vehicles, etc.	place
Disfuels sta	etc.	Due du stien of linuid fuels and	Dentieller
Biolueis, etc.	(bioethanol	chemical raw materials from	already
	biodiesel SAF	plants and waste materials	implemented
	chemical raw	plants and waste materials	(SAF
	materials, etc.)		manufacturing
			technology
			implemented
			around 2030)
Synthetic fuels,	Synthetic fuels,	Production of liquid fuels and	2030s
etc.	etc. (automotive	chemical feedstock from	
	iuels, SAF,	nydrogen and CO2	
	materials etc.)		
Iron and Steel	materials, etc.)		
Blast furnace	Energy saving	[Upstream process]	Already in
related	and high	Utilization of next-generation	place
	efficiency	coke	_
		Exhaust heat and byproduct gas	
		recovery	
		ntroduction of high-efficiency	
		Plastic recycling in coke ovens	
		etc.	
		Scrap utilization	
		Highly efficient production	
		through the introduction of AI,	
		ICT, etc.	
		Improvement of heat transfer	
		coke oven refurbishment to	
		improve efficiency	
		[Downstream process]	
		Process consolidation and	
		improvement	
		waste heat recovery	
		Burner improvement, introduction	
	Fallow sale	of high-efficiency equipment	2020-
	(carbon fuel)	offectively utilizing low grade	20208
		iron ore and coal that cannot be	
		utilized in the conventional	
		ironmaking process (fellow coke)	

Field	Technology	Outline	Implementation vear
	CO2 Separation and recovery	Utilization of CO2 capture technology using unused waste heat in steel works	Late 2020s
	Utilization of hydrogen in the plant	Reduction technology of iron ore by utilizing hydrogen in the plant	Late 2020s
	Utilization of reduced iron	Reduced iron utilization to reduce coke	2020s
	Biomass utilization	Biomass utilization as a substitute for coke	2040s
	Use of recovered CO2	Utilization technology for reductant (synthetic methane), CO2 recycling ironmaking system, CO2 reduction technology, etc.	2040s
	Utilization of external hydrogen	Hydrogen reduction technology in blast furnaces utilizing external hydrogen	2040s
Continuous casting and rolling	Improved heat transfer efficiency and power saving	Reducing costs during manufacturing by promoting energy conservation through improvements in heat transfer efficiency in melting and rolling processes, etc.	Late 2020s
	Heating electrification	Electrification of heating reduces CO2 emissions in the reheating process during rolling	Late 2020s
Electric furnace related	Energy saving and high efficiency in electric furnaces	Introduction of high-efficiency arc furnace Waste heat recovery	Already in place
	Impurity removal and scaling technology in electric furnaces	Impurity removal required for high-grade steel production and larger scale production of pig iron for mass production of pig iron	2030s
Direct reduction relation	Partial hydrogen direct reduction	Hydrogen reduction technology using a direct reduction furnace (technology in which hydrogen is used as part of the reductant)	Year 2030
Chemistry	100% direct hydrogen reduction	Hydrogen reduction technology using a direct reduction furnace (technology in which 100% of the reduction material is hydrogen)	2040s
End product	Highly efficient production technology	In the production of functional chemicals, the flow method is used for continuous production instead of the conventional batch method.	2020s

Field	Technology	Outline	Implementation year
	Lightweight reinforced materials (cellulose nanofibers, etc.)	Manufacture of lightweight reinforced materials for automobiles and other applications using versatile cellulose nanofibers composite technology. Technology that contributes to the reduction of petroleum-derived materials, etc.	2020s
	technology	as/semiconductor gas treatment, wastewater/sludge/waste/biomass, treatment, agriculture, etc.	20358
Recycle	Material recycling Chemical recycling (waste plastic)	Production of plastic products from waste plastic, etc. Producing olefin from waste plastic by gasification, oilification, pyrolysis, etc.	Some already in place 2030s
	Chemical recycling (waste rubber)	Producing olefin from waste rubber by gasification, oilification, pyrolysis, etc.	2040s
Gas industry	Best practice	Energy-saving and high- efficiency technologies: Introduction of high-efficiency deep-cooling separators, etc., use of inverters for pumps, compressors, etc., review of delivery bases, etc.	Already in place
Soda electrolysis	Best practice	Energy-saving and high- efficiency technologies: Advanced control / Renewal and high-efficiency of facilities / Introduction of zero-cap electrolyzer / Introduction of double-station electrolyzer / Heat recovery of concentration facilities, etc.	Already in place
Steam for captive use, Electricity for captive use, etc.	Best practice	Downsizing of boilers, operation management, energy-saving distillation technology, expansion of the scope of application of energy-saving steam traps, cogeneration, heat pumps, etc.	Already in place
	Fuel conversion to natural gas	Conversion from coal and heavy oil to natural gas for private power and steam	Already in place
	Fuel conversion to biomass	Biomass co-firing, dedicated burning, etc.	Already in place
	Fuel conversion to hydrogen, ammonia, etc.	Hydrogen power generation, ammonia co-firing, and ammonia mono-firing technology in gas turbines, etc.	2020s and beyond

Field	Technology	Outline	Implementation
			year
	Electrification	Producing steam by electric heating Introduction of renewable energy (solar cells, hydroelectric power, etc.)	-
	Separation and recovery of CO2 from exhaust gas, etc.	CO2 capture from natural gas fired power plants, chemical processes, incineration, etc. Chemical absorption, chemisorption, physical absorption, membrane separation, etc. Introduction of CCS	2030s
Manufacturing process	Energy saving and high efficiency	Review of manufacturing processes (integration, shortening, etc.) Thorough energy management (introduction of energy management systems, review of management methods, etc.) Renewal of aging facilities for energy conservation and higher efficiency, adoption of LED lighting	Already in place
	Highly efficient pulp manufacturing, etc.	Chemical pulp produced by steaming is washed with steam instead of water, etc.	2020s
	Decarbonizing the kiln	Electrification of lime burning process in pulp production New kiln-free chemical recovery technology	2030s
	Dry sheet forming	Reduces energy consumption in the drying process by using air instead of water. Wastewater reduction is also possible.	2030s
	Highly efficient press technology	Energy-saving technologies such as reducing heat demand during drying by pressing using heat and combining mechanical and pneumatic pressure	2030s
	High density papermaking	This technology increases the concentration of raw material at the inlet of the paper machine from the conventional 0.5-1% to around 3%, which contributes to improved forming speed and energy saving in the pressing process.	2030s
	Electrification of paper machine dryer	Electrification of drying facilities using fossil fuels in the papermaking process (assuming CN power supply)	2030s

Field	Technology	Outline	Implementation
			year
	Highly efficient	Efficiency-enhancing	2030s
	drving technology	technologies such as mechanical	
	, 6 8,	dehydration using heat and	
		pressure and drying under high-	
		pressure conditions Some of	
		these technologies contribute to	
		improved product quality and	
		productivity	
	Gas drying	Gas produced by gas combustion	2030s
	ous urying	is used instead of steam to	20505
		improve energy efficiency. In	
		some cases this can contribute to	
		improved productivity	
Dow fuel	Lignin isolation	Lignin is senarated from wood	2020
nroduction	Lighth Isolation	ate and used as biofuel (con also	20208
production		be used for chamicals)	
	Dlash linnan		
	Black liquor	Efficient energy recovery by	-
	gasification	gasifying black liquor, a	
		byproduct of the pulping process	0 1 1
	Smart forestry	Development of IC1 production	Some already
		management systems and other	in place
		systems that are consistent with	
		automated machinery and forest	
		cloud computing, and the use of	
		sensing technology to reduce the	
		cost and labor of afforestation	
		work	
Private power	Energy saving	Introduction of high-efficiency	Already in
generation and steam	and high efficiency	power generation equipment and CHP	place
		Introduction of energy	
		management systems, etc.	
	Fuel conversion	Conversion of fuel to natural gas	Already in
	to natural gas	(co-firing and dedicated burning)	place
	Fuel conversion	Conversion of fuels to biomass	Already in
	to biomass	(co-firing and dedicated burning)	place
	Energy use of	Utilization of waste energy from	Already in
	waste	plastics, tires, RPF, RDF, etc.	place
	Conversion to	Switching to solar nower for	Already in
	solar power	private power generation	place
	Fuel conversion	Hydrogen nower generation	2020s and
	to hydrogen	ammonia co-firing and dedicated	beyond
	ammonia etc	ammonia firing in coal boilers	ooyona
		and gas turbines	
	Direct electric	Generates heat from an electric	2030s
	heating	boiler	
	Exhaust heat	Recovers waste heat from the	20308
	recovery in heat	process and converts it to	
	numns	medium temperature (around	
	Pamba	160°C)	
Recovery and	Separation and	CO2 recovery from natural gas	2020s
absorption	recovery of CO2	and biomass combustion, etc.	
	from exhaust gas,	Introduction of CCS/CCUS, etc.	
	etc.	(including BECCS, etc.)	

Field	Technology	Outline	Implementation year
Comont	CO2 absorption from the atmosphere (fast- growing trees and elite trees)	Development of superior tree species that are highly adaptable, grow quickly, and absorb more CO2 (1.5 times or more), and afforestation of these trees Direct absorption of CO2 from the atmosphere	Already introduced in some areas
Manufacturing	Energy serving	Waste heat nower generation	Already in
process	and high efficiency	High efficiency clinker cooler Introduction of vertical coal mill Vertical type blast furnace slag mill NSP kiln Introduction of IoT and automated operations	place
	Lower combustion temperature	Contribute to a reduction of about 2.6% in energy intensity by lowering the calcination temperature through the use of mineralizing agents	2020s
Raw materials	Reduction of clinker ratio	Reduce the ratio of clinker in cement and reduce emissions by ✓ Increased use of mixed materials by increasing the amount of tricalcium aluminate ✓ Increase in the amount of blast furnace slag added to blast furnace cement Class B	Some already in place
	Substitution of raw materials by waste	Contributing to the reduction of process-derived CO2 emissions by using waste as part of the raw materials	Already in place
	Recycling of concrete fines	Utilization of fine powder from concrete production as raw material for clinker	2030s
	Development of new low-carbon materials	Contribute to the reduction of non-energy emissions by developing materials with new compositions (e.g., materials with low CO2 emissions during production, new binding agents similar to limestone, etc.) to replace existing binding materials	2040s
Fuel conversion	Energy use of waste	Utilization of waste plastics, sludge, wood waste, etc. from various industries, as a substitute for heat energy	Already in place
	Use of biomass, etc.	Reducing the use of fossil fuels by using biomass for combustion, thereby contributing to the reduction of energy-derived CO2 emissions.	Already in place

Field	Technology	Outline	Implementation
			year
	Use of hydrogen, ammonia, etc.	Contributing to the reduction of energy-derived CO2 emissions by using hydrogen and ammonia, which do not emit CO2 during combustion	2030s
CCUS	Separation and recovery of CO2 from exhaust gas, etc.	Separation and recovery of CO2 from exhaust gas emitted outside the plant using existing technologies such as chemical absorption methods	2020s
	CO2 Capture manufacturing process	Recovery of process-derived CO2 from inside the pre-heater by utilizing the existing cement manufacturing process	2030s
	Carbonate formation	CO2 is captured and fixed in a calcium source, which is stored and utilized as carbonate and contributes to the reduction of CO2 emissions.	2030s
	Generation of carbon recycled cement	Technology to produce cement from CO2-fixed carbonate contributes to CO2 emissions reduction	2030s
	Generation and utilization of synthetic methane	Contributing to the reduction of CO2 emissions in cement production by capturing CO2 in exhaust gas and generating and utilizing synthetic methane	2030s

In addition, as shown in Figure 3-2, the agriculture, forestry and land use sectors account for about 18% of global GHG emissions, and it is important to reduce GHG emissions and enhance GHG absorption in the agriculture and forestry sectors to achieve CN. Examples of major technologies that contribute to ET and CN in the agriculture and forestry sectors are shown below.

Table 3-2 List of main technologies contributing to ET and CN in agriculture and

forestry ⁹

10102019				
Field	Technology	Outline		
Agriculture and Forestry				
Reduction of greenhouse	Increased soil carbon	Increase the amount of organic		
gas emissions from	content in agricultural	inputs such as compost, crop		
agriculture and livestock	land	residues, and green manure.		
production		Slow decomposition of soil organic		
		matter through no-till and reduced		
		tillage cultivation.		
		Application of biochar increases		
		carbon sequestration into the soil.		
	Methane reduction from	Reduce methane emissions by		

⁹ Prepared by Pacific Consultants with referring to Kenji YAMAJI ed. (2022) "Carbon Neutral 2050 Outlook", Nihon Denki Kyokai Shinbunbu.

Field	Technology	Outline
	rice paddies	shortening the duration of
		waterlogging (promoting the
		ancient Japanese practice of
		Nakaboshi). 10
		Plowing rice fields in autumn after
		summer harvesting promotes
		aerobic decomposition of rice straw.
	N2O reduction from	Use of fertilizers containing
	fertilizer	nitrification inhibitors to improve
		the efficiency of nitrogen fertilizer
		absorption by crops and reduce the
		number of fertilizer applications.
	Reduction of N2O and	Reduced emissions per output by
	methane by fermentation	improving milk and meat
	in livestock digestive	production.
	tract and livestock waste	Inhibits fermentation by
	management	microorganisms in the stomach of
	_	ruminants.
		Reduce N2O by reducing total
		nitrogen excretion with amino acid-
		added low protein feed.
		N2O is reduced by attaching
		microorganisms to carbon fiber
		carriers to reduce nitrite and nitrate
		ions in sewage.

¹⁰ Temporary suspension of waterlogging about one month after rice planting.
3.2 International Trends Towards Energy Transition and Carbon Neutrality

3.2.1 International trend

3.2.1.1 Sinks and Carbon Trading in the Paris Agreement

The Paris Agreement, adopted at COP21 in Paris in December 2015, sets a long-term goal of "keeping the global average temperature increase well below 2°C above pre-industrial levels and striving to limit it to 1.5°C," and all 196 countries of the United Nations Framework Convention on Climate Change (UNFCCC) agreed to participate with targets and actions for reduction and absorption. emission reduction and absorption targets and actions. As one of the measures to promote the GHG emission reduction and absorption actions, the utilization of sinks and market mechanisms are stipulated in Articles 5 and 6, respectively.

Article 5 provides, in paragraph 1, for the conservation and enhancement of forests and other sinks and, in paragraph 2, for encouraging actions to implement and support REDD+, which is a results-based payment framework for measures undertaken by developing countries. Paragraph 2 also mentions encouraging benefits other than GHG emission reductions from REDD+ activities, but is not clear on how to do so.

Article 6.1 states its objective as "Parties recognize that some Parties may choose to cooperate on a voluntary basis to enable more ambitious action on mitigation and adaptation, and to promote sustainable development and the conservation of the environment, in the implementation of nationally determined contributions. Article 6 of the Kyoto Protocol provides that "the Parties shall choose to cooperate on a voluntary basis to promote sustainable development and uses the phrase "make ambitious" to indicate that emission reduction targets should be deepened. Article 6 contains three concepts, as follows

- ✓ Article 6.2 and 6.3 (hereafter 6.2): market mechanisms involving the transfer of international allowances or credits implemented under a cooperative approach between countries (e.g. JCM, CORSIA, etc.)
- ✓ Article 6.4-7 ("6.4"): UN-administered market mechanism (successor to the CDM)
- ✓ Article 6.8-9 ("6.8"): support through non-market approaches such as mitigation, adaptation, finance and capacity building

In particular, it is the mitigation outcomes called Internationally Transferred Mitigation Outcomes (ITMOs) generated under the cooperative approach in Section 6.2 that are expected to play a role in helping countries achieve their CNs, as the ITMOs will be In order to participate in Section 6.2, countries are required to prepare and maintain NDCs, establish recordkeeping and management systems for the use and reporting of ITMOs, apply equivalent adjustments, and submit updated GHG inventory reports. In order to meet these requirements, countries need to promote the necessary infrastructure development and capacity building. On the other hand, paragraph 6.4 stipulates reductions generated by the Clean Development Mechanism (CDM) or its successor mechanisms, which are market mechanisms managed by the United Nations, as mechanisms that contribute to sustainable development. Under the Paris Agreement, it is clarified that emission reductions generated from this mechanism cannot be used to achieve a host country's national target if they are used to achieve another party's national target. However, many countries are opposed to the transfer of CDM credits generated by the CDM so far, and it depends on the future course of negotiations. If the transfer of pre-2020 credits is allowed, some estimates suggest that the amount of CDM credits supplied by CDM projects registered after 2013 will amount to about 340 million tons.

At COP26 held in Glasgow, UK, in November 2021, agreement was reached on important agenda items such as this Paris Agreement Article 6 Implementation Guidelines, and the Paris Rulebook was completed. It is expected that various initiatives related to Article 6.2, including JCM, will be promoted in the future.

3.2.1.2 Asian Energy Transition Initiative (AETI)

The Asia Energy Transition Initiative (AETI) was announced at the ASEAN-Japan Business Week held from 24 to 28 May 2021. AETI will propose concrete support measures in the following five areas.

- ✓ Support for the development of an energy transition roadmap toward carbon neutrality
- ✓ Presentation and dissemination of the Asian version of the transition finance concept
- ✓ 10 billion in financing support for renewable energy, energy conservation, CCUS, and other projects
- ✓ Support for technology development and demonstration using the results of the Green Innovation Fund
- ✓ Human resource development, knowledge sharing, and rule making on decarbonization technologies

Approximately one year after the announcement, the following support efforts are currently underway.

Item	Embodiment
Support for Energy	The Economic Research Institute for ASEAN and East Asia (ERIA)
Transition	and the Institute of Energy Economics, Japan (IEEJ) have developed
Roadmap	country-specific roadmaps (model analyses) that utilize all energy
Development	sources and technologies based on cost minimization models, while
	assuming the carbon neutrality target years for ASEAN countries. The
	roadmap (model analysis) was developed for each country that
	utilizes all energy sources and technologies based on the cost
	minimization model, while assuming the carbon neutrality target
	years for each ASEAN country. Implemented in Thailand, Vietnam,
	and Indonesia. Individual meetings are being held with other ASEAN
	countries.

Table 3-3 Summary of Support in AETI

Presentation and dissemination of the Asian version of the transition finance concept 10 billion dollar financing support for renewable energy, energy	 The Asia Transition Finance (ATF) Study Group, led by Mitsubishi UFJ Financial Group and led by financial institutions in Japan, Asia, Europe and the United States, was established to conduct discussions on finance for energy transitions in Asia. The study group will formulate guidelines and make recommendations to Asian governments in order to financially support transitions in Asia, with an interim report to be released in April 2022 and deliverables in September. The Ministry of Economy, Trade and Industry (METI) and industry (Global Energy Conservation Promotion Council) have established five business groups ((1) Distributed Power Generation Using Renewable Energy, (2) Decarbonized Electricity System, (3)
conservation, LNG and other projects	Electricity and Heat Management, (4) ZEB, (5) Geothermal) to promote public-private cooperation, including standardization for the introduction of Japanese technologies. As the Renewable Energy and Energy Management Deployment Project (tentative name), the project will identify issues in each country, establish and review systems, conduct joint public-private sector missions, and provide verification and financial support.
Support for technology development and demonstration using the results of the Green Innovation Fund	 <utilization ammonia="" as="" fuel="" of=""></utilization> Malaysia: FS study for ammonia co-firing is underway (techno- economic evaluation of the entire supply chain including blue/green ammonia production, verification of application of ammonia co-firing technology to coal-fired power plants in Southeast Asia, etc.) Indonesia: FS study on ammonia co-firing at a coal-fired power plant is scheduled to start. < Zero Emission Thermal Power Deployment Project in Asia> Developing projects such as the Asia Green Growth Project, the introduction of hydrogen and fuel ammonia and the establishment of a system for securing suitable sites for CCUS, and international demonstration projects for Japanese technologies that contribute to more efficient energy consumption, etc.
Human resource development, knowledge sharing, and rule making on decarbonization technologies	Through the Asia CCUS Network, we contribute to knowledge sharing, human resource development, and business environment improvement for CCUS utilization in Asia. Currently, a total of 14 countries from the ASEAN 10 countries are participating as members, in addition to Japan, the United States, Australia, and India.

3.2.1.3 ADB Energy Transition Mechanism Partnership

At the 26th Conference of the Parties (COP26) to the United Nations Framework Convention on Climate Change (UNFCCC) in November 2021, the ADB announced the launch of a new partnership with Indonesia and the Philippines to create the Energy Transition Mechanism (ETM).

The ETM is a blended financing approach aimed at accelerating the shutdown of existing coal-fired power plants and replacing them with clean generation facilities. The mechanism includes a Carbon Reduction Facility to accelerate the shutdown or conversion of coal-fired power plants and a Clean Energy Facility to promote investment in new clean and renewable energy sources such as power generation, storage, and transmission and distribution system upgrades. Both public and private sources of funding are envisaged for these funds, including international financial institutions, private institutional investors, philanthropic organizations, and long-term investors. In fact, the Japanese government has announced an initial seed money grant of \$25 million for the mechanism to coincide with the launch of the partnership between Indonesia and the Philippines. The ETM is considering a variety of investment approaches to achieve a quick shutdown of thermal power plants. For example, the owner of a coal-fired power plant will sell the plant to the Fund, and the Fund will take measures to promote the introduction of renewable energy while implementing the shutdown of the plant ahead of schedule.¹¹

¹¹ Japan Announces \$25 Million for ADB-Led Energy Transition Mechanism in Southeast Asia (ADB, Nov 2021) https://www.adb.org/ja/news/japan-announces-25-million-adb-led-energy-transition-mechanismsoutheast-asia Accessed 16 Aug.

Figure 3-5 ADB's Energy Transition Mechanism Model¹²

In July 2022, Indonesia also announced the launch of a country platform as part of its ETM initiative. ADB's ETM is expected to be implemented in Indonesia, the Philippines and Vietnam, and then expanded to other regions and countries The ADB ETM will be implemented in Indonesia, the Philippines, and Vietnam. Currently, the study of the ETM financing structure has been completed, the shortlist of coal-fired power plants for the pilot program has been narrowed down and feasibility studies have been completed, and a full-scale feasibility study for implementation is underway.

¹² Dr. Pradeep Tharakan, Unit Head, Sovereign Energy Operations, Greater Mekong Subregion, Southe ast Asia Energy Division, Energy Transformation Mechanism (ETM) of the Asian Development Bank (Fe bruary 2022) Available at: https://www.iges.or.jp/sites/default/files/inline-files/2_Tharakan_ETM%20Introd uctory%20Presentation%20External%20Feb%202022_IGES_Tharakan.pdf Accessed August 3, 2022

3.2.2 Japan

In 2021, Japan revised the Act on Promotion of Global Warming Countermeasures ¹³ with the aim of achieving a decarbonized society by 2050. Subsequently, in the "The Long-term Strategy under the Paris Agreement" (October 2021) ¹⁴, Japan formulated strategies for GHG emission reductions in the energy, industry, transportation, and community and lifestyle sectors, and set a milestone for 2050 of reducing GHG emissions by 46% from the 2013 level by 2030.

To achieve CN in 2030, existing technologies will be utilized to the maximum extent to achieve the 2030 reduction target, and to achieve CN in 2050, efforts toward the 2030 target will be further expanded and deepened while developing and disseminating decarbonization technologies that have not been implemented in society at the moment. On the other hand, it is difficult to accurately predict the success or failure of various technological developments and innovations for 2050 at this point, and therefore, while setting the target of CN for 2050, the priority of measures and technological developments will be determined based on the latest information. The main action plans are shown in the table.

Sector	Item	Outline
Energy	Renewable energy	 Maximum introduction will be pursued under the principle of giving the highest priority as the main power source in 2050. Promote the development of innovative technologies such as next-generation solar cells and floating offshore wind turbines.
	Nuclear power	• Reduce dependence on nuclear power as much as possible.
	Hydrogen, Ammonia, CCS, CCU/Carbon Recycling	 Decarbonization of thermal power generation will be achieved by converting the fuel itself to hydrogen and ammonia, and by capturing, storing and reusing the carbon dioxide emitted. Development and demonstration of technologies for the construction of an international hydrogen supply chain and establishment of hydrogen power generation technologies. For CCS, establish technology, reduce costs, develop suitable sites and improve the environment

Table 3-4 Examples of Action Plans in the Long-Term Strategy as a Growth Strategy under the Paris Agreement

¹³ Act on Promotion of Global Warming Countermeasures https://elaws.e-gov.go.jp/document?lawid=410AC00000001 17 Accessed July 6, 2022

¹⁴ The Long-Term Strategy under the Paris Agreement (Cabinet Decision of October 22, 2021) https://www.env.go. jp/earth/ondanka/keikaku/chokisenryaku.html Accessed on July 6, 2022

		for commercialization
		 For CCU, promote technology development and social implementation for cost reduction and application development, as well as international deployment.
Industry	CO2 reduction measures	• Pursue policy measures that combine regulation and support.
	Measures to	• Expand the use of green refrigerant equipment
	reduce CFC	prevent leakage of CFCs when refrigeration and
	substitutes	air-conditioning equipment is used, recover and
		properly dispose of CFCs from refrigeration and air-conditioning equipment, and promote international cooperation.
	Decarbonization	• Continue to promote industry-based initiatives to
	management	set voluntary reduction targets and promote measures.
Transportation	Promotion of	• To improve fuel efficiency of new vehicles and
	transportation and	promote the spread of next-generation vehicles in
	logistics services	buses, trucks, taxis, etc. for commercial use.
	using electric	• Promote the introduction of new transportation
	vehicles, etc.	systems through automation, including the social
		implementation of automated driving technology,
		including the use of electric vehicles.
	Promotion of	• Promote the development of charging facility
	social	information signs and conduct social experiments
	implementation of	on the installation of EV chargers on public roads.
	urban and road	
	infrastructure	
	compatible with	
	the electrification	
	of automobiles	
	Reinforcing the	• Promote the spread of V2H (a system that supplies
	power supply	electricity from EVs, etc. to residences).
	function during	
	uisasiers, etc.,	
	using electrically	
	using electrically	

	countermeasures		congestion countermeasures including toll
	from both soft		measures for traffic demand adjustment utilizing
	and hard aspects		ICT, AI, etc.
	Promote the use	•	Promote the use of public transportation by
	of public		improving its convenience through reorganization
	transportation and		of regional transportation networks and promotion
	bicycles		of barrier-free access, etc., and introduce LRT,
			BRT, etc.
	Promoting green	•	Promote more efficient truck transportation by
	logistics		making the entire supply chain more efficient and
			energy-efficient, building a joint transport and
			delivery system, and reducing redelivery of parcel
			deliveries.
		•	The project will work to make logistics facilities
			low-carbon, put drone logistics into practical use,
			and further promote modal shifts, etc.
	Decarbonizing	•	In railways, promote energy-efficient rolling stock
	rail, shipping and		and advanced energy-saving equipment. Promote
	aviation		the development of fuel cell railcars fueled by
			hydrogen.
		•	In terms of ships, promote the technical
			development, demonstration, and introduction
			promotion of ships utilizing innovative energy-
			saving technologies, digital technologies, etc.,
			including LNG-fueled ships, hydrogen fuel cell
			ships, and EV ships.
		•	In aviation, promote the introduction of sustainable
			aviation fuel (SAF).
	Promote the	•	Promote the formation of carbon neutral ports,
	formation of		including the introduction of power supply to ships
	carbon neutral		at anchor to stop idling ships and the introduction
	ports (CNPs)		of stand-alone hydrogen and other power sources.
Consumer	Life	•	Promote the use of ICT in homes and buildings and
			the spread of ZEH/ZEB, etc.
	Community	•	Promote the creation of an independent and
			decentralized society through smart mobility and
			decentralized grids, CN town planning in urban
			areas, and CN farming, forestry and fishing
			villages through energy-saving equipment and ICT.

		• Reduce energy demand through optimization of production volume and timing, etc. using AI. Reduce food waste throughout the supply chain and promote 3R initiatives.
Sink	Forest	• Secure and enhance forest absorption through appropriate thinning of planted forests, etc.
	Agricultural land	• Promote carbon sequestration in agricultural soil through the development of new biochar and other resources.
	City	• Comprehensive promotion of urban greening, including rooftop and wall greening of public and private facilities, through public-private partnerships.
	Nature	• Enhance the ability of healthy ecosystems to absorb CO2 by promoting the conservation and regeneration of forests, grasslands, peat bogs and other wetlands, soils, coastal areas and other ecosystems.
	Direct CO2 capture from the atmosphere	• The project aims to develop technologies for highly efficient CO2 capture from the atmosphere, to achieve cost reduction, and to put them into practical use by 2050.

3.2.3 United States

In the United States, "The Long-term Strategy of the United States Pathways to Net-Zero Greenhouse Gas Emissions by 2050"¹⁵ was published by the Executive Office of the President in November 2021. This strategy is based on the Net Zero Greenhouse Gas Emissions by 2050. This strategy aims to achieve Net Zero emissions by 2050, with a target of 26-28% reduction in 2025 and 50-52% reduction in 2030 compared to GHG emissions in 2005.

¹⁵ THE LONG-TERM STRATEGY OF THE UNITED STATES Pathways to Net-Zero Greenhouse Gas Emissions by 2050 (The United States Department of State & the United States Executive Office of the President, 2021) https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf Accessed July 6, 2022

Figure 3-6 United States Historic Emissions and Projected Emissions Under the 2050 Goal for Net-Zero ¹⁶

The strategy pays particular attention to the electricity sector, with a target of 100% zero carbon emissions electricity supply by 2035. A key element of all net zero scenarios is the rapid decarbonization of electricity and the expansion of the use of this decarbonized electricity to as many applications as possible. This section presents measures, initiatives and action plans to achieve the goals of the strategy.

¹⁶ Same as footnote15.

Table 3-5 Examples of Action Plans in the 2050 Net Zero Long-Term Strategy

Sector	Outline
Energy	 Supply 100% zero carbon emission electricity by 2035. Develop incentives and standards to reduce GHG emissions from power plants; invest in technologies that increase the flexibility of the electricity system, including transmission, energy efficiency, energy storage, smart buildings, and green fuels; and leverage carbon capture and storage (CCS) and nuclear power. Facilitate the transition to an affordable electricity system with no carbon emissions through research, development, demonstration, and deployment.
Transportation	 The transportation sector is the largest source of GHG emissions in the United States, so promote electric vehicles and transition to low-carbon or carbon-free biofuels and hydrogen for applications such as long-haul and air transportation. Half of all light-duty vehicles sold in 2030 will be zero-emission vehicles, and 3 billion gallons of Sustainable Aviation Fuel will be produced by 2030.
Building	• Improve energy efficiency and increase the sales share of clean and efficient electric appliances such as heat pumps for air conditioning, heat pump water heaters, induction stoves, and electric clothes dryers.
Industry	 Promote energy efficiency improvements, industrial electrification, use of low carbon fuels and industrial CCS. Low- and medium-temperature process heat facilitates the use of industrial heat pumps, electric boilers, or electromagnetic heating processes. Technology development and process innovation to address emissions from the industrial sector, including hot heat and process emissions from steel, petrochemical and cement production. To address methane emissions, set strict standards for oil and gas production and prevent leaks from coal, oil and gas mines and wells.
Agriculture, Forestry and Land Use	 Promote continuous expansion of forest area, extension of crop rotation periods, protection of forest area, expansion of climate-friendly agricultural practices, and rotational grazing on agricultural lands. Reduce methane and N2O emissions through improved livestock manure management and improved farmland nutrient management. Increase investment in forest protection and management to reduce the extent and intensity of wildfires and work to restore fire-damaged forest lands.

3.2.4 United Kingdom

In the UK, the government has set out a "Net Zero Strategy: Build Back Greener" ¹⁷ for 2021. This strategy aims to achieve carbon neutrality by 2050, with targets to reduce GHG emissions by 55% by 2025, 68% by 2030 and 78% by 2035 compared to 1990 levels.

Figure 3-7 Indicative Emissions Reductions to Meet UK Carbon Budgets and NDC ¹⁸

The strategy aims to reduce GHG emissions in the power sector by 80-85% from 1990 levels by 2035, and in the fuel switching sector by 53-60% from 1990 levels by 2035 through the replacement of oil and gas with electricity. In the industrial sector, the project aims to reduce GHG emissions by 63-76% from 1990 levels by 2035 through energy conservation, fuel switching, and the use of CCUS. In the heat and building sectors, the goal is to reduce GHG emissions by 47-62% from 1990 levels by 2035 through the use of low-carbon heating systems and more efficient energy use. In the transportation sector, the government aims to reduce GHG emissions by 47-59% by 2035 through measures such as expanding the use of zero-emission vehicles (ZEVs) and stopping the sale of new gasoline and diesel vehicles. In the area of natural resources, the strategy aims to reduce GHG emissions by 39-51% by 2035 through afforestation and other measures. The measures, efforts, and action plans to achieve the targets of the Strategy are shown below.

¹⁷ Net Zero Strategy: Build Back Greener (UK Government, 2021) https://unfccc.int/sites/default/files/resource/UK% 20Net%20Zero%20Strategy%20-%20Build%20Back%20Greener.pdf Accessed 6 July 2022

¹⁸ Same as footnote17.

Table	3-6	Fxamr	les	of Action	Plans	in	the	Net	Zero	Strategy	in	IJΚ
Table	3-0	плашр	168	OI ACTION	rians	111	the .	INCL	Leio	Strategy	111	UΚ

Sector	Outline
Energy	 Fully decarbonize energy by 2035. Launch of the Nuclear Power Realization Fund. Develop 40 GW of offshore wind and other renewable energy by 2030; promote 1 GW of floating offshore wind power generation by 2030. Establish Industrial Decarbonization and Hydrogen Revenue Support. It will also secure 250MW of hydrogen production capacity. Introduce new climate compatibility checkpoints for licensing in the oil and gas sector and regulate the oil and gas sector to curb GHGs.
Industry	 Contribute £315 million through the Industrial Energy Transition Fund to create jobs through this. Grow new industries such as CCUS and hydrogen.
Building	 End the sale of new gas boilers by 2035. Provide subsidies for low carbon heating systems to bring their cost burden in line with that of current gas boilers. Funding for pioneering heat pump technology, with a target of 600,000 installations per year by 2028.
Transportation	 Promote subsidies for zero-emission vehicles and EV infrastructure development. Sales of new gasoline and diesel vehicles will end by 2030. Introduce 4,000 zero-emission buses, and phase out diesel locomotives by 2050. Support the development of SAF plants with the goal of providing 10% SAF by 2030.
Natural resources	• Restore peat and enhance forestation and management.
GHG removal	• Increased investment in GHG removal technologies will facilitate private sector investment and transfer from engineering technology in the UK oil and gas sector.
Other	 Supporting over £40 billion of investment through the UK Infrastructure Bank to mature and scale up the low carbon technology sector. Develop a Net Zero Research & Innovation Framework to present key research and innovation issues for the next 5-10 years.

3.2.5 Germany

In Germany, the "Climate Action Plan 2050"¹⁹ was presented in 2016 by the then Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety). This strategy aims to achieve net zero emissions in 2050 with a target of 55% reduction by 2030, based on the EU target of 80-95% reduction in GHG emissions by 2050 compared to 1990 levels. No specific sector-by-sector description for 2050 was found.

The strategy includes the following reduction targets for each sector:

- energy sector from 358 MtCO2e to 175-183 MtCO2e (61-62% reduction),
- building sector from 119 MtCO2e to 70-72 MtCO2e (66-67% reduction)
- transportation sector from 160 MtCO2e to 95-98 MtCO2e (40-42% reduction),
- industrial sector from 181 MtCO2e to 40-143 MtCO2e (49-51% reduction),
- agriculture sector from 72 MtCO2e to 58-61 MtCO2e (31-34% reduction),
- in other areas the figure was reduced from 12 MtCO2e to 5 MtCO2e (87% reduction).

Measures, initiatives, and action plans to achieve the targets of the strategy are presented as follows.

Sector	Outline
Energy	• Expand renewable energy in line with The 2017 Renewable Energy Sources Act.
	• Increasing interactions between energy and other sectors (sectoral coupling) to allow flexibility in dealing with the instability of solar and wind power.
Industry	• Lengthen the consumption cycle of products by extending their useful life.
	• Innovative research and development in the field of CO2 utilization (CCU) by the Federal Ministry of Education and Research (BMBF).
	• Develop a circular economy.
Building	• The zero-energy building standard will be in operation from 2021 to promote energy conservation and the use of renewable energy in new buildings.
	• Provide incentives to install new heating systems.
	• Sector coupling will link up with the transport and industrial sectors. For example, electricity from buildings will be used to charge electric vehicles, and waste heat from the industrial sector will be used to heat buildings.
Transportation	• Regularly review funding measures for electric mobility.

Table 3-7 Examples of Action Plans in the German Net Zero Strategy

¹⁹ Climate Action Plan 2050 (then Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety, 2016) https://www.bmuv.de/en/publication/climate-action-plan-2050-en Accessed 3 August 2020

	• Enhance rail transport by coordinating connections between mainline and regional rail passenger transport.
	• Continue to update the National Rideway Plan (NRVP) after 2020, and continue to build bikeways.
	• Promote the electrification of power sources and the use of biofuels in air and sea transport.
Agriculture	• Further reduction of nitrogen fertilizers to achieve the German Sustainable Development Strategy target of 70 kg N/ha between 2028 and 2032.
	• Promote the expansion of organic farming acreage.
	• As a significant proportion of greenhouse gas emissions from agriculture come from animal-based food production, research efforts
	will be undertaken to develop more climate-smart livestock production
	in areas such as feed, breeding and farm management.
Land Use and Forests	• Promote forest conservation and sustainable management at home and abroad, including negotiating bilateral agreements by 2040 to import timber only from forests managed in a legal and sustainable manner.
	• Increase the rigor of land acquisition and reduce the increase in land development for settlement and transport infrastructure (land acquisition) to 30 hectares per day in accordance with the Sustainable Development Strategy.
Other	• Work to end subsidies that harm the environment and expand climate- friendly investments and markets.

3.2.6 France

In France, the "National low carbon strategy" ²⁰ was presented by the Ministère de la Transition écologique et solidaire (Ministry of the Environment and Solidarity) in 2020. This strategy sets a target of 40% reduction in GHG emissions in 2030 and 11.5MtCO2e reduction every year after 2031, compared to 1990 GHG emissions, and aims to achieve net zero emissions by 2050 by reducing national GHG emissions to 80MtCO2e and absorbing the same amount of GHGs.

²⁰ National low carbon strategy (Ministry of Environment, Solidarity and Transition, 2020)

https://unfccc.int/sites/default/files/resource/en_SNBC-2_complete.pdf https://unfccc.int/sites/default/files/resource/en_SNBC-2_summary_compl.pdf

https://unfccc.int/sites/default/files/resource/en_SNBC-2_summary_compi.pdf Accessed July 6, 2022

Figure 3-8 Evolution of GHG Emissions and Sinks on French Territory between 1990 and 2050 ²¹

The strategy aims to fully decarbonize energy production by 2050 and to use biomass, geothermal, heat pumps and other renewable energy sources as energy sources. It also aims to significantly reduce energy consumption in all sectors by significantly improving energy efficiency and promoting electricity conservation through lifestyle changes. In terms of GHGs from non-energy sources, the target is to reduce GHG emissions from the agricultural sector by 38% from 2015 levels by 2050, and by 60% in the industrial sector. On the other hand, regarding GHG sinks, the strategy aims to double the carbon sinks by 2050 compared to the time when the strategy was formulated. The measures, efforts, and action plans to achieve the targets of the Strategy are shown below.

Sector	Outline
Energy	 Managing energy demand through energy efficiency and conservation. Decarbonize and diversify the energy mix through the promotion of renewable energy and the phase-out of coal use in power generation and heat production (from 2022).
Industry	 Support the transition to low-carbon production systems (e.g., development of decarbonization roadmaps, financing instruments). Strengthen research and development of low-carbon manufacturing

Table 3-8 Examples of Action Plans in France's Net Zero Strategy

²¹ National low carbon strategy (Ministry of Environment, Solidarity and Transition, 2020)

https://unfccc.int/sites/default/files/resource/en_SNBC-2_summary_4-pages.pdf Accessed July 6, 2022

	processes.
	• Significantly improve energy efficiency and the use of carbon-free
	energy sources.
	• Develop a circular economy.
Building	• Use the best carbon-free energy source for the type of building.
	• The introduction of new environmental regulations for new buildings
	and renovations in 2020 on the energy efficiency of buildings, with
	the goal of implementing 500,000 renovations per year.
	• More moderate energy consumption behavior of people.
	• Promote products and equipment for construction and renovation that
	have a low carbon footprint (circular economy or bio) and high energy
	and environmental performance throughout their life cycle.
Transportation	• Improve the energy performance of light-duty and heavy-duty vehicles
1	to achieve the target of 25 km/liter of fuel efficiency for internal
	combustion engine vehicles for private use by 2030.
	• Decarbonize the energy consumed by cars, develop infrastructure, and
	increase the number of new passenger cars sold that run on electricity
	or hydrogen to 35% by 2030 and 100% by 2040.
	• Promote telecommuting, car sharing, short-distance travel, and
	optimizing car use to curb the growth in transportation demand.
	• Encourage a shift to passenger and freight transport modes (public
	transport, rail) with lower GHG emissions and support the use of
	bicycles and other means of transport.
Waste	• Prevent waste generation from the product design stage.
	• Promote circular economy, product reuse and repair on the consumer
	side.
	• Improve waste collection and management and facilitate recovery.
	• Improve the efficiency of wastewater and organic and non-hazardous
	waste treatment systems.
Agriculture	• Develop agroecology, agroforestry and precision agriculture,
	especially for minimizing nitrogen fertilizer surpluses.
	• Develop a bioeconomy to provide energy and materials with low GHG
	emissions.
	• Reduce food waste by directing demand towards quality and organic
	foods.
Forest	• Increase carbon sequestration in agricultural soils by changing
	agricultural practices.
	• Promote sustainable forest management that enables the conservation

	of carbon stocks in forest ecosystems.
•	Expand afforestation and reduce deforestation through land clearing.
•	Maximize carbon sequestration in wood products and use wood
	products in long-life applications such as construction.
•	Reduce artificial cover of soil (soil artificialization).

3.2.7 China

"China's Mid-Century Long-Term Low Greenhouse Gas Emission Development Strategy" in 2021" ²² was presented by the Chinese government in 2021. This strategy is based on the Chinese government's stated goal in 2020 to peak out CO2 emissions by 2030 and strive to achieve carbon neutrality by 2060, and to reduce CO2 per GDP by at least 65% from 2005 levels by 2030. It also indicates that by 2030, China will increase the share of non-fossil fuels in primary energy consumption to about 25%, increase forest cover by 6 billion m³ from 2005 levels, and increase the combined installed capacity of wind and solar power generation to at least 1.2 billion kW.

The measures, initiatives and action plans in the ten areas addressed in the Strategy are shown below.

Sector	Outline
Fostering a green,	• The economic structure will be adjusted, to change the
low-carbon,	development mode, promote the development of new low-carbon
circular economic	technologies, new products, new industries, new models, new
system	business forms and the creation of a new economy, foster a green,
	low-carbon and circular economic system, and strive to
	continuously improve the quality and efficiency of development.
Building a clean,	• To promote the energy production and consumption revolution,
low-carbon, safe	improve energy use efficiency, accelerate the transformation of the
and efficient	energy structure towards a clean and low-carbon direction, ensure
energy system	energy security of supply, and meet the domestic demand for the
	sustainable development of the national economy and the
	continuous improvement of people's living standards.
Building an	• Focusing on improving the efficiency of resource and energy use
industrial system	and the level of green production, promoting energy conservation,
with low	clean production and green technology innovation, adjusting the
greenhouse gas	energy structure and form of industry, deepening the

Table 3-9 Examples of Action Plans in China's Low Carbon Growth Strategy

²² China's Mid-Century Long-Term Low Greenhouse Gas Emission Development Strategy (Government of China, 2021) https://unfccc.int/documents/307765 Accessed August 3, 2022

• • •		
emissions		implementation of green manufacturing projects, building a
		comprehensive green manufacturing system and promoting the
		green and low-carbon development of key industries.
Promotion of green	•	Accelerate the establishment of a green and low-carbon innovation
and low-carbon		system in the building sector. Optimize the energy structure of end-
buildings in urban		uses, curb the total energy consumption of the building sector and
and rural areas		improve the energy efficiency of buildings at the same time, while
		meeting the growing energy demand of the building sector in line
		with economic development.
Establishment of a	•	Focusing on the optimization of supply and demand, accelerate the
low-carbon		construction of a green and low-carbon comprehensive
integrated		transportation system by demonstrating the comparative
transportation		advantages and efficiency of various means of transportation.
system		
Achieve significant	•	Coordinate the management and control of GHG emissions other
reductions in		than CO2 in sectors such as energy, industrial production
greenhouse gas		processes, agriculture, and waste management; strengthen the
emissions other		coordinated management of GHG emissions and air pollutant
than carbon dioxide		emissions; subject GHG emissions other than CO2 to stepwise
		quantitative management and control; and establish a statistical
		system.
Implementing	•	Adhere to the harmonious coexistence of humans and nature strive
nature-based		to harness the potential of "nature-based solutions" in reducing
solutions		GHG emissions and increasing carbon sinks, and enhance the
		resilience of terrestrial and marine ecosystems to climate change
Inspiring low		To strongthan research and development and international
emission		cooperation and accelerate technological innovation Develop and
imposation		record and accelerate technological innovation. Develop and
linovation		energy conservation and energy efficiency
Creating new		
nottorna of notional	•	Position the development of green and low-carbon infestyles as a
participation		key indicator for faising the standard of social civilization.
Promote	•	Promote institutional transformation and accelerate the
modernization of		establishment of a climate governance system. Strive to establish
climate governance		and build legal, policy, market and support systems for climate
systems and		governance. At the same time, promote the establishment of
governance		science-based mechanisms to reduce GHG emissions from
capacity		international shipping and international aviation.

3.2.8 (South) Korea

In Korea, "2050 Carbon Neutral Strategy of The Republic of Korea" ²³ is presented by the Korean government in 2020. In this strategy, the target for 2030 is based on the NDC, which is to reduce GHG by 24.4% by 2030 compared to 2017, and the goal is to achieve carbon neutrality by 2050. In the energy sector, the strategy calls for reducing coal-fired power generation and promoting renewable energy, with plans to cover 20% of total electricity supply by 2030 and 30-35% by 2040 from renewable energy.

The Strategy also includes the reduction of fossil fuel use, especially in the power generation sector, the promotion of energy saving in industry, buildings and transport, the promotion of digital transformation, hydrogen production/supply/utilization, and the introduction of CCUS as steps towards achieving carbon neutrality. The measures, initiatives and action plans to achieve the goals of the Strategy are presented as follows.

Sector	Outline
Energy	• Promote expansion of renewable energy, development of electricity supply-demand forecasting systems, support for the introduction of energy storage systems and hydrogen fuel cells for auxiliary power sources, and the phasing out of coal-fired power generation.
Industry	• Promote the transition to low-carbon processes in the steel and cement industries, etc.
Transportation	• Promote the use of public transport, expand shared mobility, build traffic demand management and advanced road transport systems, encourage the commercial use of automated vehicles to reduce energy consumption, and promote a modal shift from road to rail.
Building	• Promote all public buildings constructed after 2020 to be zero-energy buildings, subsidize renovation to clean homes, etc.
Waste	• Promote recycling throughout the lifecycle and phase-out of plastics, etc.
Agriculture	• Smart Farming using ICT to promote reduction of energy, fertilizer, and water consumption, etc.
Carbon sink	• Promote the improvement of aging forests and afforestation on underutilized land.

Table 3-10 Examples of Action Plans in Korea's Carbon	Neutral	Strategy
---	---------	----------

^{23 2050} Carbon Neutral Strategy of The Republic of Korea (Government of Korea, 2020) https://unfccc.i nt/documents/267683 accessed 3 August 2022

3.2.9 Singapore

In Singapore, "Charting Singapore's Low-Carbon and Climate Resilient Future" ²⁴ was presented by the Prime Minister's Office in 2020. The Strategy sets a target of peaking out at 65 MtCO2e around 2030, reaching 33 MtCO2e by 2050 and net zero by the late 2050s. The strategy lays out six main sectors for mitigation, based on the pillars of transforming industry, economy and society, strengthening adaptation measures, and promoting international cooperation. The following section presents measures, initiatives and action plans to achieve the goals of the Strategy.

Sector	Outline
Energy	• Utilize natural gas, solar, local power grids, and non-carbon-emitting
(Electricity)	alternative energy sources.
	• Expand the introduction of solar power generation, including floating, offshore, and building-integrated solar power generation methods. The target for PV deployment is 2 GWp by 2030. Work on energy storage
	systems and solar power forecasting to resolve the intermittent nature
	of solar power generation.
	• Research will be conducted into low and zero-carbon alternative energy sources, including the use of regional power grids and the production and supply of hydrogen from solar power generation.
Industry	• Reduce GHG emissions by decarbonizing electricity. Work with
	industry to ensure that industry is world class in energy and carbon
	efficiency.
	• Strengthen grant schemes to help businesses improve energy efficiency and achieve sector-wide efficiency gains.
	• Research and development of new technologies such as CCUS and hydrogen that promote the decarbonization of industrial processes
Transportation	 Capping the increase in private cars and motorcycles to zero from 2018 onwards. Major investment in public transport infrastructure, with the aim of completing the majority of peak journeys by walking, cycling or electric scooters by 2040.
	• Eliminate internal combustion engine vehicles by 2040.
	• All new public buses to be purchased shall be electric or hybrid vehicles.
	• Provide rebates on new EV purchases for three years beginning in January 2021 to encourage the adoption of cleaner vehicles.

Table 3-11 Examples of Action Plans in Singapore's Carbon Neutral Strategy

²⁴ Charting Singapore's Low-Carbon and Climate Resilient Future (Prime Minister's Office, 2020) https://unfccc.int/ documents/212914 accessed 3 August 2022

	Significantly expand public EV charging infrastructure.
	• Tuas Port, to be completed in the 2040s, will consolidate Singapore's container operations and implement more efficient cargo handling and transportation. Changi Airport will continue its efforts to improve energy efficiency and electrification, and the new Terminal 5 will be designed and built according to strict energy efficiency standards.
Building	 The goal is to green 80% of buildings on a gross floor area basis by 2030; as of March 2020, more than 40% of buildings have been greened. Increase minimum energy performance standards for all new and existing buildings undergoing major retrofits to support energy efficient building efforts. Publish building energy performance data annually to encourage retrofits to improve building energy efficiency.
Civil (Home)	 Minimum Energy Performance Standards and Mandatory Energy Labelling Scheme for common household appliances have been introduced to reduce energy consumption in the household sector. These standards will be reviewed periodically to promote the adoption of more energy efficient appliances. In addition, a campaign will be launched to encourage the switch to energy efficient appliances and to raise public awareness of energy efficiency and conservation.
Waste	• Launch of the Zero Waste Master Plan, developed in 2019 to promote a circular economy in which waste is a resource. Resource Sustainability Act Goals: 30% reduction in the amount of daily waste sent to landfill by 2030.

3.2.10 Thailand

In Thailand, "Mid-century, Long-term Low Greenhouse Gas Emission Development Strategy"²⁵ was presented by the Thai government in 2021. This strategy sets a scenario to peak out at 370 MtCO2e in 2030 and to achieve net zero in 2090, and also sets a target to achieve net zero CO2 in 2065.

²⁵ Mid-century, Long-term Low Greenhouse Gas Emission Development Strategy (Government of Thailand, 2021) https://unfccc.int/documents/307950 Accessed August 3, 2020

Figure 3-9 Thailand's GHG emissions and sequestration pathway to 2100 26

The measures, initiatives, and action plans to achieve the goals of the Strategy are presented as follows.

²⁶ Same as footnote 25

 $^{27\ {\}rm Same}\ {\rm as}\ {\rm footnote} 25$

sector	outline
Energy (power generation)	• The introduction of natural gas-fired and coal-fired power plants with CCS will increase energy efficiency to 43% in 2050 compared to current technology.
	• Increase the share of renewable energy in electricity generation to 33% by 2050; consider biomass power plants with CCS.
Industry (including industrial processes)	 Increase the energy efficiency of electrical equipment up to 77%. Heating systems will increase the share of renewable energy to about 46% of final energy consumption in 2030 and 50% in 2050. The introduction of CCS in the industrial sector will play an important role in the chemical and non-metallic industries, with an estimated 18 MtCO2e of CO2 to be captured in 2050.
	 Industrial process changes, including clinker replacement and refrigerant substitution, and increased biogas production from industrial wastewater through methane recycling.
Transportation	 The goal is to improve energy efficiency by changing behavior, improving road surfaces, and improving engine performance. Improve energy efficient vehicles in the transport sector to 68% of final energy consumption by 2050.
	• Increase the share of biofuels from 8% in 2030 to 34% of final energy consumption in 2050.
Building (commercial building)	 By 2050, energy efficiency of energy equipment in commercial buildings will be increased to 33% of final energy consumption. Solar water heaters will be widely used in hotels, condominiums, hospitals, etc., and increase to 5% of final energy consumption in 2050.
Consumer	 Improve energy efficiency of household appliances to 29% of final energy consumption by 2050. Increase the share of renewable energy use in households to 49% of final energy econometrics by 2050.
Waste	 Promote waste reduction, landfill gas, WtE, semi-aerobic landfill, composting, anaerobic digestion and mechanical biological treatment.
Agriculture	• Promote measures with mitigation effects in livestock enteric fermentation measures and manure management, which are part of the adaptation measures. Likewise, promote adaptation measures with mitigation effects in rice cultivation and agricultural soil management.
Land Use,	• Increase carbon sequestration by increasing and conserving the area

Table 3-12 Examples of Action Plans in Thailand's Low Carbon Growth Strategy

Land Use	of primary and regenerating natural forests, increasing the area of
Change and	economic forests, increasing and conserving the area of agricultural
Forests	land, and reducing biomass burning.

3.2.11 Cambodia

In Cambodia, the "Long-term Strategy for Carbon Neutrality (LTS4CN)" ²⁸ was developed by the Ministry of Environment in 2021 with the support of international organizations such as UNEP. The CN scenario to 2050 assumes that CN will be achieved by the absorption of 50MtCO2e by the agriculture, forestry and other land use (FOLU) sector. In 2050, the energy sector will be the largest GHG emitter with 28 MtCO2e, followed by the agriculture sector with 19 MtCO2e. The waste sector and IPPU (industrial processes and product use) sectors are projected at 1.6 MtCO2e and 1.2 MtCO2e, respectively.

Figure 3-11 Sectoral GHG emission projections for Cambodia under the LTS4CN scenario ²⁹

The measures, initiatives and action plans to achieve the goals of the strategy are shown as follows.

Sector	Outline
Energy	• Stop the development of new coal-fired power generation except for projects already underway.

|--|

28 Long-term Strategy for Carbon Neutrality (LTS4CN) (Ministry of Environment et al, 2021) https://ncsd.moe.gov.kh/resources/document/cambodia-LTS4CN-En accessed 6 July 2022

²⁹ Same as footnote28

	• Use natural gas for ET.
	• Promote investment in liquefied natural gas imports, storage and infrastructure.
	• Increase renewable energy to 35% of the installed power generation mix by 2050, of which 12% will be solar power.
	• Invest in power grid modernization, increased flexibility, and energy storage facilities.
	• Promote energy efficiency measures in buildings and industry.
	• Promote the switch to electricity for cooking fuel.
	• Promote the use of alternative energy sources to coal in the industrial sector.
Industrial	• Facilitate clinker substitution in cement production.
Processes and	• Promote CCS in cement kilns.
Product Use	Promote recycled aggregate concrete.
(IPPU)	• Promote the use of refrigerants with low global warming potential.
	 Promote periodic inspections of refrigeration and air conditioning
	equipment and recovery of used refrigerant.
Transportation	• 30% modal share of public transport in urban areas by 2050.
L.	• By 2050, 70% of motorcycles and 40% of cars and urban buses will be
	electric vehicles.
	• By 2050, 80% of interregional buses and 80% of trucks will be CNG-
	fueled vehicles.
	• Improve fuel efficiency of internal combustion engine vehicles.
	Promote the use of railways.
Waste	• Increase garbage collection rate to 85% by 2050 and reduce wildland fires.
	• Implement the 3R (reduce, reuse, recycle) strategy.
	Promote proper management of landfill gas.
	Promote composting of organic waste.
	• Promote anaerobic treatment and proper wastewater treatment.
Agriculture	• Develop rice varieties with low methane load.
	• Direct seeding will be implemented.
	• Implement the alternate wetting and drying method.
	• Promote organic fertilizers and deep fertilization techniques.
	Promote improved feed additives for cattle.
	Promote improved feed management.
	Introduce composting technology.
Forestry and	Reduce deforestation rate to 50% by 2030.
other land uses	• Halt deforestation by 2045.

•	Promote	afforestation,	improved	forest	management	and	forest
	restoratio	on.					
• Promote agroforestry and commercial afforestation.							
• Aim to fully implement the REDD+ investment plan by 2050.							

3.3 Current Status of Energy Transition and Carbon Neutrality in the Countries under Assessment

3.3.1 Vietnam

3.3.1.1 Summary of Greenhouse Gas Emissions and NDC

The latest official GHG inventory by the Vietnamese government is the 2016 GHG inventory as shown in the third Biennial Report (BUR3) ³⁰published in 2020. It shows that total GHG emissions were 354.2 million tCO2e in 2016, with the energy sector accounting for 58%, IPPU 13%, agriculture, forestry and other land use 23% and waste 6% (Figure 3-12), net GHG emissions are 299.5 million tCO2e when GHG absorption by forests and other sectors is subtracted from the GHG emissions. The GHGs covered in the inventory are CO2, CH4, N2O and HFCs, which are among the seven GHGs specified by IPCC. ³¹ BUR3 also summarizes the GHG emissions of each subsector, with the top five largest GHG emitters amounting to 219.2 million tCO2e (about 62% of total GHG emissions) (Table 3-14). Therefore, in order to achieve ET/CN in Vietnam, GHG emission reduction measures are mainly important in energy manufacturing in the energy sector, industry and construction, transport and transportation, cement manufacturing in the IPPU sector, and rice farming in the agricultural sector (Figure 3-13 Figure 3-14).

Figure 3-12 Vietnam's GHG inventory (2016) ³²

³⁰ Viet Nam Third Biennial Undated Report (Ministry of Natural Resources and Environment, 2020) https://unfccc. int/sites/default/files/resource/Viet%20Nam_BUR3.pdf Accessed 16 July 2022

³¹ Developing countries that are non-Annex I countries are required to report CO2, CH4, and N2O, but other GHGs are to be reported to the extent possible. (Reference: Greenhouse Gas Inventory Office, National Institute for Environmental Studies, https://www.nies.go.jp/gio/faq/faq1.html#Q1-1 accessed July 16, 2022)

³² Prepared by Pacific Consultants based on BUR3

Sector	Sub-sector		ktCO2e
Energy	Fuel Combustion Fugitive Emissions	- <mark>Energy Industries</mark> - <mark>Manufacturing and Construction</mark> - <mark>Transport</mark> -Others -Solid Fuel -Oil and Natural Gas	91,005 38,248 35,845 18,153 3,007 19,574
Industrial Processes and Product Use	Mineral Industries Chemical Industries Metal Industries Product uses as substitutes for ODS	- <mark>Cement Production</mark> -Lime Production -Grass Production -Ammonia Production -Nitric Acid Production -Iron and Steel Production -Fire Protection	36,773 3,824 319 1,272 24 3,858 23
Agriculture, Forestry, and Other Land Use (AFOLU)	Livestock Land Aggregate sources and non-CO2 emissions sources on land	-Enteric Fermentation -Manure Management -Forest Land -Cropland -Grassland -Wetland -Settlements -Other Land -Biomass Burning -N2O from managed soils and manure management -Rice Cultivation -Others	12,422 6,092 -54,658 3,638 1,384 1,047 1,919 7,179 1,624 11,729 49,693 2,002
Waste	Solid Waste Disposal Biological Treatment of So Incineration and open bur Wastewater Treatment an	lid Waste ning of Waste d Discharge	10,439 109 1,241 8,949

*The main types of GHG emissions in GHG emissions are shown in black: CO2, red: CH4, blue: N2O, and green: HFCs.

*Negative (-) in GHG emissions indicates GHG absorption.

*Yellow highlights indicate the top five GHG emitters.

5 Major Emission category

Sector	Key emission category	ktCO2e
Energy	Fuel combustion for electricity generation	88,483 CO2
AFOLU	Rice Cultivation	49,693 CH4
IPPU	Cement Production	36,773 CO2
Energy	Road Transportation	29,861 CO2
Energy	Non-Metallic Minerals	14,403 CO2

³³ Prepared by Pacific Consultants based on BUR3. In the GHG inventory submitted to the UN, GHG emissions are organized by sub-sector (Table 3-14 Upper row), GHG emissions are further broken down by each subsector(Table 3-14 lower) The GHG inventories for Lao PDR, Nepal, and Vietnam, which are the same that apply to Laos, Nepal, and Uzbekistan, which are discussed below.

Figure 3-13 Change in GHG Emissions in Vietnam Over Time (2010-2018)³⁴

Source: CAIT Climate Data Explorer via Climate Watch OurWorldInData.org/co2-and-other-greenhouse-gas-emissions • CC BY Note: Greenhouse gases are weighted by their global warming potential value (GWP100). GWP100 measures the relative warming impact of one molecule of a greenhouse gas, relative to carbon dioxide, over 100 years.

Figure 3-14 Vietnam's GHG Emissions by Sector ³⁵

³⁴ Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO₂ and Greenhouse Gas Emissions". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions' [Online Resource].

³⁵ Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO₂ and Greenhouse Gas Emissions". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions' [Online Resource]

Vietnam presented its revised NDC ³⁶ in 2021, which projects baseline GHG emissions of 927.9 million tCO2e by 2030 under a moderate economic development scenario. In contrast, the GHG reduction target is 9% by 2030 through own efforts (Unconditional) and 27% under international support (Conditional) (Figure 3-15). The revised NDC shows GHG reduction measures for each sector under national efforts and international support, and the reduction target by international support in the energy sector (104.3 million tCO2e reduction) is particularly large, while the GHG reduction target by international support in the energy sector (104.3 million tCO2e reduction) is challenges and measures to achieve the target from the perspectives of "energy security," "finance," "MRV," "SMEs," and "waste," and mainly cites the lack of policies and institutions, technology, and financial mechanisms as challenges (Table 3-16). In addition, given the Vietnamese government's goals at COP26 of "achieving net zero emissions by 2050" ³⁷ and "reducing coal-fired power generation to 30% by 2030 and phasing it out in the 2040s" ³⁸, the development of high-efficiency coal-fired power generation, which is cited as an energy security measure, will be reviewed.

³⁶ Updated Nationally Determined Contribution (NDC) (The Socialist Republic of Viet Nam, 2020) https://unfccc.int/sites/default/files/NDC/2022-06/Viet%20Nam_NDC_2020_Eng.pdf Accessed 16 July 2022 37 Viet Nam - High-level Segment Statement COP 26 https://unfccc.int/documents/308938 accessed 2 August 2022

³⁸ Vietnam Coal Pledge at COP26 - A New PDP8 and Net-Zero by 2050 https://energytracker.asia/vietnamcoal-cop26 / accessed 2 August 2022

Baseline Scenario (Medium Economic Development Scenario)

Figure 3-15 Projected GHG Emissions in Vietnam's NDCs to 2030³⁹

Table 3-15 T	argets for	Mitigation	Measures	in	Vietnam's	NDCs	by	2030	40
	<u> </u>	<u> </u>					~		

Sector	Unconditional Mitigation Target (2020-2030)	Target (MtC Uncond 9%	02e/y) /Cond 27%	
Energy	Energy savings and energy efficiency	▼51.5	▼104.3	
	Renewable energy			
	Transportation: energy efficiency, modal shift in freight, public transportation and fuel shift			
	Improving construction materials			
	Reducing clinker in cement production			
Agricult ure	Agricult Management of cultivation and husbandry, ure improving diet for animals, shifting crop production structures, changing land-use method		₹25.8	
LULUCF	Sustainable use of forest, reforestation, agroforestry	▼9.3	▼11.9	
Waste	Management of solid waste, industrial solid waste	▼9.1	▼24	
IP	Improving cement production process using by- products	▼7.2	▼0.8	
	Reducing HFCs			

³⁹ Additions made by Pacific Consultants to the revised NDC for Vietnam.

⁴⁰ Prepared by Pacific Consultants for Vietnam's revised NDC.

Problem		-	Co	untermeasure
Energy Security	•	Insufficient domestic	•	Diversification of primary energy
		supply of energy	•	Developing sustainable power
	•	Low energy use efficiency		sources
	•	Lack of technical	•	Maximize hydropower generation
		standards in the energy	•	Ensuring system safety while
		industry		prioritizing wind and solar power
	•	Delays in building		development
		competitive energy	•	Maximize biomass and gas power
		markets		generation and establish a support
				system
			•	Development of high-efficiency
				coal-fired power generation
			•	Improve the financial sector and
				promote investment in power
				development
			•	Introduction of a competitive
				electricity market
Finance	•	The high cost of	•	Formulate mechanisms and policies
		mitigation measures is an		to attract domestic and foreign
		upfront investment		investment
	•	Limited energy efficiency	•	Cooperation with development
		markets and renewable		partners
		energy technologies	•	Coordination for the development
	•	Insufficient financial		of the Mekong Delta
		support for firms to take	•	Improving the policy framework for
		mitigation measures		energy development
				Identification of public and private
				investment needs and gaps
				Development and application of
				financial instruments such as green
				bonds and green funds
MRV	•	Lack of MRV system	•	Establishment of MRV systems at
	•	Lack of strict regulations		national and sectoral levels
		on technical standards and		National Committee on Climate
		labeling		Change coordinates among relevant

Table 3-16 Challenges and Measures to Achieve the Targets in Vietnam NDC 41

⁴¹ Prepared by Pacific Consultants for Vietnam's revised NDC.

	• Lack of awareness of energy efficiency.	ministries and agencies
	renewable energy and mitigation	
Measures for Small and	 Lack of specific policies and mechanisms for 	• Develop a list of high-potential mitigation measures and green
Medium Enterprises	mitigation	growth projects to mobilize private and international funding
Waste management	 Insufficient or overlapping policies, systems and support Discrepancies between central and local responses underinvestment 	 Revision of the taxation system, including the natural resources tax and the environmental protection tax Promoting the 3Rs, efficient use of natural resources, and application of environmentally friendly waste treatment technologies

3.3.1.2 Policy Framework and Institutions

Vietnam is considered one of the countries most affected by climate change in the world and has taken many measures to cope with climate change, starting with the National Climate Change Strategy in 2011 and through the formulation and implementation of Prime Minister's Decision No. 1670/QĐ-TTg issued in 2017 and the Green Growth Strategy. At the same time, the country is one of the largest energy consumers in ASEAN and according to the Ministry of Natural Resources and Environment, Vietnam will be the second largest GHG emitter ⁴² in ASEAN in 2021 after Indonesia. Therefore, at COP26 in 2021, the Vietnamese government has set an ambitious target to achieve carbon neutrality by 2050, and accordingly, the relevant policy framework is currently under review. The following is a summary of key policies related to energy transition and carbon neutral.

 $^{42\,}$ Status of Vietnam's efforts to become carbon neutral (JETRO, 2022)

https://www.jetro.go.jp/world/reports/2022/01/2cdcfeb62193c5a8.html Accessed May 6 2022

Table 3-17 Policy framework and institutions contributing to ET and CN in Vietnam ⁴³

(in chronological order)

No.	Policy/Regulation	Year of	Issuing	Relevance to ET/CN
		issue	Authority	
1	Master Plan on National Energy	Pending	MOIT	Direction of the
	Development for the Period of	approval		future energy mix
	2021 - 2030, with a Vision to			
	2050			
2	The Draft of Power Development	Pending	Government	Long-term power
	Master Plan for Period 2021-	approval		supply development
	2030, with a Vision to 2045			plans, including
	(PDP8)			renewable energy
				and LNG
				development plans
3	The National Green Growth	2021	Government	Reducing fossil fuels
	Strategy for the 2021-2030			and promoting
	Period, with a Vision to 2050			renewable energy
	(Decision No. 1658/QD-TTg)			
4	Orientation of Vietnam's	2020	Central	Renewable Energy
	National Energy Development		Committee	Development Strategies
	Strategy by 2030, with a Vision		of the	
	to 2045 (The Resolution 55		Communist	
	NQ/TW)		Party of	
			Vietnam	
5	Promulgation of the	2020	Government	Action Plan to
	Government's Action Program			implement Resolution
	for Implementing the Resolution			55 Program
	No. 55-NQ/TW dated 1/02/2020			
	of Politburo Regarding			
	Orientations of the Vietnamese			
	National Energy Development			
	Strategy until 2030, with a			
	Vision to 2045 (Resolution No.			
	140/ NQ-CP)			
6	National Energy Efficiency	2019	Government	Targets are set to reduce
	Program (VNEEP) for the Period			final energy
	2019-2030 (Prime Minister's			consumption compared

⁴³ Prepared by Pacific Consultants based on the websites of Vietnamese ministries and interviews.

	Decision 280/QD-TTg)			to the business-as-usual
				baseline.
7	Gas Industry Development Plan	2017	Government	Direction of efforts to
	up to 2025 in Vietnam and			develop natural gas,
	Prospects up to 2035 (Prime			LNG and other gas
	Minister No. 60 / QD-TTg)			industry development
8	Viet Nam's Renewable Energy	2015	Government	Setting Renewable
	Development Strategy up to			Energy targets in the
	2030, with a Vision to 2050			energy and power
	(Prime Minister's Decision			sector. Support systems
	2068/QD-TTg)			for Renewable Energy
				development

An outline of each measure is as follows.

 Master plan on national energy development for the period of 2021 - 2030, vision of 2050 (Pending approval at Aug 2022)

This Master Plan is a master plan that sets out an energy development plan to meet energy demand and supply in a manner consistent with national socio-economic development objectives, in light of the growing demand for energy and the increasing trend from energy exports to imports. This Master Plan has been developed with the following objectives

- Exploit and efficiently use domestic energy resources and implement rational energy import and export
- ✓ Actively produce key equipment in the energy sub-sector and develop and build an advanced and modern power transmission and distribution network
- ✓ Promote activities related to energy efficiency and encourage the development of renewable energy sources
- ✓ Develop a plan for the current and projected socio-economic development, energy demand assessment for 2011-2018, and projected energy demand based on fuel types and economic subsectors for 2021-2030 and 2031-2050
- The Draft of Power Development Master Plan for Period 2021-2030 with vision to 2045 (PDP8)) (Pending approval at Aug 2022)

The Eighth National Electricity Master Plan (PDP8), Vietnam's domestic power development plan, was drafted by the Ministry of Industry and Trade in September 2021, but following the commitment to carbon neutrality by 2050 announced at COP26, PDP8 has had to be revised and has not been approved as of July 2022. The new PDP8, submitted to the government in April 2022, aims to minimize the development of coal-fired power sources to achieve carbon neutrality by 2050, and to reduce dependence on fuel imports. It therefore plans to increase the share of renewable energy even further than in the draft, reaching more than 50% of total
generation capacity. The following table shows the percentage of power generation capacity by 2045.

			Units: %
Target/Year	2025	2035	2045
Coal power/biomass/ammonia	29.3	17.7	9.6
LNG, switching to LNG/hydrogen	11.1	7.0	3.8
Gas turbine using LNG, new hydrogen	3.6	14.8	8.0
Hydrogen-powered thermal power	0.0	3.0	7.2
Coal power, oil-fired gas turbine	0.6	0.0	0.0
Hydropower (including small hydropower)	27.2	15.9	9.0
Wind power on shore, near shore	13.8	12.6	14.3
Offshore wind power	0	8.5	17.0
Large-scale solar power	8.9	11.8	19.4
Biomass electricity, other renewable energy	1.0	1.5	1.3
Stored hydropower, storage battery	0.0	3.6	7.5
Import	4.5	3.7	2.8

Table 3-18 Power Supply Capacity Composition Ratio from 2025 to 2045

3. The National Green Growth Strategy for the 2021-2030 period, vision to 2050 (The Decision No. 1658/QD-TTg) (2021)

This strategy sets out the nation's green growth policy and follows on from the National Green Growth Strategy, which was developed in 2011. The Strategy aims to contribute to the achievement of a green and carbon neutral economy and the prevention of global warming, with the aim of achieving economic prosperity and sustainable environmental and social equality. Specific numerical targets have been set in this Strategy and the key numerical targets are as follows.

Achievement goal	Year 2030	2050
Ratio of renewable energy to total	15-20%.	25-30%.
primary energy supply		
Percentage reduction in greenhouse gas	Reduction of more than	Reduction of more

Table 3-19 Numerical Targets in the National Green Growth Strategy

emissions intensity per unit of GDP	15% compared to 2014	than 30% compared to
		2014
Increase in public transportation usage	Special Cities:	Special Cities:
	20% or more	40% or more
	First Class Cities:	First Class Cities:
	5% or more	15% or more
Increase in clean fuel buses	Special Cities:	Special Cities:
	15% or more	100%
	First Class Cities:	First Class Cities:
	10% or more	40% or more
Municipal solid waste collection rate	95%.	100%.
Forest cover	42-43%.	N/A

4. Orientation of Vietnam's National Energy Development Strategy by 2030, with a vision towards 2045 (The Resolution 55 NQ/TW) (2020)

The Strategy sets out perspectives, targets and measures for the future energy transition in Vietnam to promote energy transition from traditional energy sources and fossil fuels to clean energy and renewable energy for sustainable economic development and adaptation to climate change. As the national energy development strategy, the following specific targets have been set under the overall objectives of:

- (1) National energy security,
- (2) High quality and affordable energy supply,
- (3) Environmental protection,
- (4) Upgrading of advanced infrastructure in the ASEAN region,
- (5) Effective development of energy sources, and
- (6) Transparent and competitive market.

Achievement goal	Year 2030	2050
Primary energy supply	Approx. 175 to 195	Approx. 320 to 350
	million TOE	million TOE
Total power supply output	Approx. 125-130 GW	N/A
Electricity production	Approx. 500 to 600	N/A
	billion kWh	
Share of renewable energy in primary	Approx. 15-20%	Approx. 25-30%
energy supply		
Total final energy consumption	Approx. 105 to 115	Approx. 160 to 190
	million TOE	million TOE
Primary energy intensity	420-460 kgOE /1,000	375-410 kgOE /1,000

Table 3-20 Specific targets in the National Energy Development Strategy

	USD GDP	USD GDP
Reliability of power supply	Joined ASEAN's top 4	N/A
	countries	
Power access index	Joined ASEAN's top 3	N/A
	countries	
Liquefied natural gas (LNG) imports	Approx. 8 billion cubic	Approx. 15 billion
	meters	cubic meters
Ratio of energy savings to total final	Approx. 7%.	Approx. 14%.
energy consumption		
Percentage reduction in greenhouse gas	15%.	20%.
emissions generated by energy		
development		

 Promulgation of the Government's Action Programme for Implementing the Resolution No. 55-NQ/TW dated 1/02/2020 of Politburo regarding orientations of the Vietnamese National Energy Development Strategy until 2030, with a vision till 2045 (Resolution No. 140/ NQ-CP) (2020)

The following is a summary of the responsibilities of the key sectors involved in the ETCN.

- Oil and Gas Exploration and Development Industry
 - Active research and exploration of coal gas, tight gas, shale gas, gas hydrates, etc.
 - Incentivize the development of oil and gas infrastructure and solutions for enhanced oil recovery
 - Promotion of natural gas extraction and transportation projects
 - Promote investment and construction of infrastructure for LNG import ports, storage facilities, and distribution facilities
- Renewable energy
 - Research and development of new laws on renewable energy
 - Research and planning of regions and municipalities with advantages in renewable energy, and study of preferential treatment schemes
 - Development of technologies in line with global trends, establishment of production test projects, and promotion of hydrogen use
- Power sector
 - Proposal for an appropriate bidding and auction mechanism for renewable and new energy investment projects for the period 2020-2022
 - Proposed incentive mechanisms for the development of biogas power generation between 2020 and 2022
 - Study and development of policies and mechanisms for offshore wind power development

- Consideration and development of incentive mechanisms to encourage the development of renewable energy for own consumption (with priority given to rooftop solar PV)
- Study and Development of Incentive Mechanisms for the Development of Floating Photovoltaic Power Generation
- Research and proposal of policies related to the development and production of hydrogen
- Prioritizing the use of domestic gas sources and promoting the development of gas-fired power generation using LNG
- Develop mechanisms and policies to encourage investment in renewable energy storage devices/technologies
- Establishment of a mechanism for direct power purchase agreements between renewable energy developers and major electricity consumers
- Improved energy consumption, energy efficiency
 - Development of mechanisms, policies, etc. to facilitate the development of smart grids
 - Development of standards and regulations to control electricity consumption intensity and solar panel performance
 - Sanctions for energy use in energy-intensive industries; development of mandatory standards and regulations
 - Promote the application of renewable and clean fuels (e.g., CNG, LPG, LNG, biofuels, electric energy and other potential energy sources) to replace conventional fuels in transportation vehicles and equipment and promote new technologies to improve the energy efficiency of transportation vehicles and equipment

Research and development of technical standards and regulations for energy consumption in buildings.

6. National Energy Efficiency Programme (VNEEP) for the period of 2019-2030 (Prime Minister's Decision 280/QD-TTg) (2019)

VNEEP is a national energy conservation program aimed at reducing energy intensity in the industrial and economic sectors towards the goals of green growth and sustainable development, and the VNEEP announced in Prime Ministerial Decision No. 280 is the third phase covering the period 2019-2030 (VNEEP3), which aims to reduce national energy use by 5-7% by 2025 and 8-10% by 2030, with savings of 50-60 million tons of oil equivalent (TOE). The required budget is expected to consist of VND 600 billion each from state and local finances, VND 500 billion from various domestic and foreign organizations, and VND 100 billion from other sources. In addition, numerical targets for the years 2025 and 2030 have been set as shown in the following table.

Iter	ns	2025	Year 2030
Pov	ver loss reduction	6.5%.	6% or less
Ind	ustrial Sector Energy Saving Targets		
(v	s. average energy consumption in 2015-2018)		
	Steel industry	3-10%.	5-16.5%
	Chemical industry	7% or more	10% or more
	Plastics manufacturing	18-22.46%.	21.55-24.81%.
	Cement industry	7.5% or more	10.89% or more
	Textile and Garment Industry	5% or more	6.8% or more
	Alcohol, Beer and Beverage Industry	3-6.88%.	4.6-8.44%.
	Paper (manufacturing) industry	8-15.8%	9.9-18.48%.
Nuı	nber of green certified buildings	80 buildings	150 buildings
Percentage of gasoline savings in the transportation		N/A	5%.
sec	or		
Tra	ining for energy managers/auditors	3,000 people	5,000 people

Table 3-21 Main numerical targets in VNEEP3

7. Gas industry development plan up to 2025 in Vietnam and prospects up to 2035 (Prime Minister's Decision No. 60/QD-TTg, 2017) (2017)

This Master Plan has been developed to develop gas development, gathering, transportation, processing, storage, distribution, import and export lines across the country to achieve natural gas production of 17-21 billion cubic meters per year between 2026 and 2035. The master plan mainly addresses the following.

- ✓ Continued development of gas-fired power plants that use 70-80% of total production (including LNG imports)
- ✓ Developing the petrochemical sector from gas
- ✓ Increased investment in deep processing of natural gas to add value to gas products
- ✓ To produce materials and fuel for domestic industrial production with the aim of increasing exports and reducing the rate of the trade deficit
- ✓ To continue to maintain and expand the gas supply system for industry, transportation and urban households for the purpose of protecting the environment and increasing the value of gas use
- ✓ To develop gas supply systems for transportation and to develop low-pressure and compressed natural gas supply systems.

In addition, the gas industry aims to develop a gas market of 23-31 billion cubic meters between 2026 and 2035, and to achieve this goal, the following development policies have been established nationwide.

✓ North: To enhance gas supply capacity to industrial customers in the region, measures to enhance gas recovery from dispersed small-scale oil fields will be considered. In addition, LNG import infrastructure will be considered and deployed in a phased manner to maintain gas availability to industrial customers in the region. Other measures include the development of LNG-based power plants in accordance with the power plan approved by the Prime Minister.

- ✓ Central: To enhance and develop infrastructure systems to collect, transport and process gas from the Blue Whale field to supply the region's gas-fired power plants, in accordance with the power plan approved by the Prime Minister. The plan also includes the development of a petrochemical industry from the gas from the Shilonagas Whale gas to fully meet the gas demand of the power plants, and the development of a low-pressure gas distribution system and the production of small CNG/LNG to supply industrial consumers in the region.
- ✓ Southeast: To intensify exploration and exploitation activities and oil field development to sustain the region's gas demand, develop storage and port systems for LNG imports to supplement the depletion of domestic gas resources and supply power plants as per the power plan approved by the Prime Minister.
- ✓ Southwest: To develop infrastructure for gas gathering and transportation, develop infrastructure for LNG imports to maintain gas supplies to customers, and develop new power plants using LNG.
- 8. Prime Minister's Decision No.2068/QD-TTg/Viet Nam's Renewable Energy Development Strategy up to 2030 with an outlook to 2050 (2015)

This Strategy aims to develop and use renewable energy development in a way that contributes to the development of a sustainable environment and green economy. The numerical targets set out in this Strategy are as follows.

Achievement goal	Year 2030	2050
Percentage reduction in greenhouse gas	Approximately 25%	Approx. 45%
emissions relative to the BAU scenario		
Reduction in fuel imports for energy	Coal: approx. 40 million	150 million tons of
use	tons, Petroleum	coal and 10.5 million
	products: approx. 3.7	tons of petroleum
	million tons	products
Renewable electricity as a percentage	32%.	43%.
of total national production		
Percentage of households with solar	26%.	50%.
water heaters		
Construction area to expand the	Approximately 60	Approx. 100 million
application of biogas technology	million m ³	m ³

Table 3-22 Numerical targets in the Renewable Energy Development Strategy

Biofuel production volume	3.7 million TOE	10.5 million TOE
	(equivalent to 13% of	(equivalent to 25% of
	transportation sector fuel	transportation sector
	demand)	fuel demand)

3.3.1.3 Review of similar studies by international development cooperation organizations, etc.

Major donors implementing ET~CN related programs in Vietnam include the World Bank (WB), United States Agency for International Development (USAID), Deutsche Gesellschaftfü Internationale Zusammenarbe (GIZ) and Asian Development Bank (ADB).

The WB is mainly focusing on renewable energy development in Vietnam, such as solar and offshore wind power, transparent equipment procurement support, and legal support. The WB is also providing support for bidding for renewable energy, energy efficiency and conservation projects in the industrial sector, market development for ESCO-type projects, and MRV for GHG emissions. In the transport sector, the WB is working with GIZ to support the development of business models for the transport sector. In addition, the WB has been providing long-term support with MOIT as a counterpart, and is planning to implement projects in the energy sector, including decarbonization, renewable energy, circular economy, and recycling using innovative technologies. In addition, the WB plans to support FS studies for the development of LNG power plants and projects to improve power transmission lines and substations.

The USAID is supporting the deployment of rooftop solar power generation, EVs, and waste power generation under the Vietnam Urban Energy Security Project, and is also providing guidance to factories to improve their energy efficiency and conservation knowledge. In addition, the USAID launched the Innovation Challenge Fund to support energy efficiency and conservation, and is currently supporting several energy efficiency and conservation projects in the industrial sector. In addition, the Vietnam Low Emission Energy Program (VLEEP) is setting energy efficiency and conservation standards in industrial parks, supporting monitoring, and strengthening MRV capacity. In addition, support is also being provided for the formulation of a legal system for EVs, support for the introduction of EVs in the public and private sectors, and assistance in studying the introduction of recharging facilities. In the area of electricity market reform, the USAID is reviewing the structure of electricity rates. In the area of renewable energy, in addition to rooftop solar power, policy support and private sector support are being provided for green hydrogen production from offshore wind power generation.

The United State Trade Development Agency (USTDA) is conducting transmission line FS and Smart Grid Roadmap development. The USTDA is interested in clean energy, and is providing support for solar and wind power generation, where U.S. companies have particular strengths. The USTDA has a policy of not providing support for fossil fuels, including LPG, except for existing projects.

The GIZ has been providing support and capacity building on renewable energy such as solar

PV and biomass, smart grid development, technical advice on the introduction of energy efficiency and conservation regulations, and energy audit reviews. Currently, the GIZ is supporting the development of long-term energy transition scenarios and grid development scenarios, as well as strengthening the capacity of clean energy engineers, particularly wind power engineers, and providing support to EVNs on the introduction of rooftop solar power generation.

In addition, the Danish government, with MOIT as a counterpart, is supporting the development of long term energy planning scenarios, capacity building for offshore wind power development, assistance in connecting renewable energy to the power grid, and the development of energy efficiency and conservation regulations in the industrial and industrial sectors.

Agence Française de Développement (AFD) includes supports photovoltaic and hydroelectric power generation, and improvements to the power distribution network and substations. The ADB mainly provides loans for the construction and operation of wind farms. Innovation Norway supports Norwegian companies involved in renewable energy, the circular economy, and fisheries and aquaculture businesses, etc. The EU is supporting rural electrification and the National Energy Efficiency Program for the period of 2019-2030 (VNEEP3), and the Renewable Energy Development Strategy (REDS), etc.

In addition to donor and other activities, Vietnam has implemented two mitigation projects under the Green Climate Fund (GCF) of the UNFCCC: Scaling Up Energy Efficiency for Industrial Enterprises in Vietnam (No. FP071), for which IBRD and IDA is the accredited entity ⁴⁴, and Improving the resilience of vulnerable coastal communities to climate change related impacts in Viet Nam, which is accredited by UNDP (No. FP013) ⁴⁵. The former is the provision of technical assistance and financial tools to expand Vietnam's energy efficiency market, while the latter is a program aimed at planting and rehabilitating mangrove forests in coastal areas and reducing climate risks for the community people.

Table 3-23 summarizes the activities of major international donors.

Donor	СР	Financial			
		Policy/Institution	Capacity building	Pilot	support
World Bank	Ministry of Industry and Trade (MoIT)	• <u>Support for the</u> <u>development of</u> <u>decarbonization</u> <u>roadmaps and</u> <u>pilot</u> <u>implementation</u> <u>plans for</u> <u>energy-intensive</u>	 <u>Establishment of a</u> <u>low-carbon</u> <u>technology database</u> <u>Capacity building on</u> <u>energy audits,</u> <u>evaluation and</u> <u>monitoring of EE/RE</u> <u>projects in the</u> 		• Two-step loans for financing renewable energy projects of 30 MW or less

Table 3-23 Projects contributing to ET-CN of international donors in Vietnam

The u	underlined a	and	italicized	parts	indicate	ongoing	and	future	projec	ts
The u	underlined a	and	italicized	parts	indicate	ongoing	and	future	projec	t

⁴⁴ Scaling Up Energy Efficiency for Industrial Enterprises in Vietnam https://www.greenclimate.fund/project/fp071 accessed 3 August 2022

⁴⁵ Improving the resilience of vulnerable coastal communities to climate change related impacts in Viet Nam https://www.greenclimate.fund/project/fp013 Accessed August 3, 2022

	Vietnam Electricit	industries such as cement, steel, and chemicals • Support for the development of EE strategies and action plans in energy- intensive sectors • Regulatory development support for grid- connected generation of renewable energy of 30 MW or less	 <u>industrial sector,</u> <u>GHG emissions</u> <u>quantification</u> <u>methodologies, etc.</u> (for the industrial <u>sector, ESCOs,</u> <u>banks, etc.)</u> <u>Support for the</u> <u>introduction of a</u> <u>competitive bidding</u> <u>program for solar</u> <u>power generation</u> Knowledge and expertise development support for EE investment incentives and identification and evaluation of EE financing projects for financial institutions Strengthening the capacity of electricity regulators and relevant government agencies for grid-connection of renewable energy 		 Grid Capacity Enhancement for
	5				Renewable Energy Grid Integration
	National Power Trans- mission Corporati on (NPT)	• Sunnaut for the	 NPT Management Improvement, Power Reform Capacity Enhancement Pomemehla Energy 	• Davelar	 Reinforcemen t of 220kV and 500kV transmission lines and substations Modernizatio n of monitoring, control and protection facilities for 220kV and 500kV substations
USAID	Governme nt of Vietnam (GOV)	• <u>Support for the</u> <u>development of</u> <u>legal systems</u> <u>for the</u> <u>introduction of</u> <u>EVs</u>	 <u>Renewable Energy</u> <u>Grid Integration,</u> <u>Power Distribution</u> <u>Women Energy</u> <u>Professional</u> <u>Development</u> <u>Program</u> 	Develop <u>mechanisms</u> <u>for direct</u> <u>PPA</u> , <u>strengthen</u> <u>procurement</u> , monitoring	• <u>2000MW</u> <u>renewable</u> <u>energy,</u> <u>1000MW</u> <u>CCGT</u> <u>construction</u>

		- 0 0		1	
		• <u>Support for</u>		<u>and</u>	
		Improvement of		evaluation	
		Electricity Rate		canacity	
		<u>Erectiventy Rate</u>		<u>cupucny</u>	
		<u>System Design</u>			
	Others		• Establishment and		
	(Da Nang		monitoring of energy		
	and other		efficiency and		
			<u>ejjieieney unu</u>		
	cities)		conservation		
			<u>standards in</u>		
			industrial parks		
GIZ	MoIT	• Develop long	• Danartmant of		
UIZ	WIOTI	• <u>Develop long-</u>	<u>Depuriment of</u>		
		term scenarios	Energy Efficiency		
		<u>for energy</u>	<u>and Sustainable</u>		
		transitions and	Development		
		arid	$\overline{(DEESD)}$ canacity		
		$\frac{g_{III}}{1}$	(DEESD) cupucity		
		<u>development</u>	strengthening (e.g.,		
		<u>scenarios</u>	support for energy		
		• Support for	efficiency and		
		improving laws	conservation		
		and regulations	<u>database</u>		
		related to	<u>development)</u>		
		energy	• Creation of energy		
		conservation	audit handbook		
		and renewable	• Support for the		
		energy (biomass	construction of		
		energy, support	energy-saying		
		for establishing	networks for private		
			inetworks for private		
		a solar power	companies		
		generation FIT	• Improvement of		
		system grid	technical and		
		aonnaation	managamant		
		connection	management		
		regulations for	<u>capacity of</u>		
		renewable	electricity supply in		
		energy etc.)	the context of		
		chergy, etc.)	<u>ine context of</u>		
			increasing solar		
			power generation by		
			Electricity of		
			Vietnam (FVN)		
				- Г	
ADB	Moll		• Support for	• Energy	
			formulating energy-	audits for	
			saving building	energy-	
			standards	intensive	
			• Iraining on energy	industries	
			conservation		
			management		
			aton donda for		
			standards for		
			energy-intensive		
			industries		
			• ESCOs capacity		
			anhanaamant		
			ennancement		
	Other				• Construction
	(IPP. etc.)				of 144MW
					Wind Dowor
					<u>n inu rower</u>
					<u>Plant in</u>
					Quang Chi
1	1				Province

					 <u>Construction</u> of 50MW solar power generation and transmission line in Tay Ninh Province <u>47.5MWp</u> water solar power construction Construction Construction fookV/220kV high voltage transmission lines and substations
EU	MoIT		 Strengthening Energy Sector Governance 		
	Danang Province	 Support for policy/regulator y development related to solar energy 		• Solar power generation system pilot model installed	
AFD	Vietnam Electricit y			•	 Sesan 49MWp solar power construction Distribution line and substation reinforcement

3.3.2 Laos

3.3.2.1 Summary of Greenhouse Gas Emissions and NDC

The latest official GHG inventory by the Government of Lao PDR is the 2014 GHG inventory as shown in the Biennial Report (BR)⁴⁶published in 2020. It shows that total GHG emissions were 39.5 million tCO2e in 2014, with the energy sector accounting for 10%, IPPU 3%, agriculture, forestry and other land use 86% and waste 1% (Figure 3-16), net GHG emissions after subtracting GHG absorption by forests and other sectors from GHG emissions are 24.1 million tCO2. The inventory covers CO2, CH4, and N2O, which are among the seven GHGs specified by the IPCC. The BR also summarizes the GHG emissions of each subsector, with the top five largest GHG emitters amounting to 29.66 million tCO2e (about 75% of total GHG emissions) (Table 3-24). One of the characteristics of GHG emissions in Lao PDR is that about four-fifths of the GHG emissions come from agriculture, forestry and other land use sectors. Four out of the top five categories are related to agriculture, forestry and other land use, and the remaining one is emissions from transportation in the energy sector (emissions from gasoline and diesel). However, the official GHG inventory is as of 2014, and given that a 1,876 MW Hongsa coal-fired power plant has been in operation in Lao PDR since 2015, GHG emissions from the energy sector have increased rapidly (Figure 3-17 Figure 3-18), and the share of the energy sector in GHG emissions is also expected to increase. Therefore, GHG emission reduction measures, mainly from energy production in the energy sector and livestock management, land use and biomass use in the transport and transportation and agriculture, forestry and other land use sectors are important to achieve ET and CN in Lao PDR.

Figure 3-16 Lao PDR GHG Inventory (2014) 47

⁴⁶ The First Biennial Updated Report of the Lao PDR (Ministry of Natural Resources and Environmen t, 2020) https://unfccc.int/sites/default/files/resource/The%20First%20Biennial%20Update%20Report-BUR_Lao%20PDR.pdf Accessed 16 July 2022

⁴⁷ Prepared by Pacific Consultants based on BR of Lao PDR.

Sector	Sub-sector		ktCO2e
Energy	Fuel Combustion	-Energy Industries -Manufacturing and Construction - <mark>Transport</mark> -Others	335 27 <mark>2,322</mark> 1,042
	Fugitive Emissions	-Solid Fuel	2
Industrial Processes and Product Use	Mineral Industries	-Cement Production -Lime Production	1,090 3
	Metal Industries	-Iron and Steel Production	62
Agriculture, Forestry, and Other Land Use (AFOLU)	Livestock	- <mark>Enteric Fermentation</mark> -Manure Management	<mark>3,211</mark> 756
	Land	-Forest Land - <mark>Cropland</mark> -Grassland -Settlements - <mark>Other Land</mark>	-12,662 <mark>19,315</mark> 8 92 <mark>2,341</mark>
	Aggregate sources and non-CO2 emissions	-Biomass Burning -N2O from managed soils and manure management	<mark>967</mark> 1,768
	sources of fand	-Rice Cultivation -Others	1,148 26
	Other	- <mark>Harvested Wood Product</mark>	<mark>1,824</mark>
Waste	Solid Waste Disposal Wastewater Treatment and Discharge		55 368
	Other		2

Table 3-24 GHG Emissions by Sub-sector in Lao PDR 48

*Black: CO2, red: CH4, blue: N2O are shown as the main types in GHG emissions.

*Negative (-) in GHG emissions indicates GHG absorption.

*Yellow highlights indicate the top five GHG emitters.

5 Major Emission Source

Sector	Sub-Sector	ktCO2e	
AFOLU	Land converted to cropland	20,057	CO2
AFOLU	Enteric fermentation	3,211	CH4
AFOLU	Land converted to other land	2,341	CO2
Energy	Road transportation	2,229	CO2
AFOLU	Harvested wood product	1,824	CO2

⁴⁸ Prepared by Pacific Consultants based on BR.

Figure 3-17 Change in GHG Emissions in Lao PDR Over Time (2000-2018)⁴⁹

Source: CAIT Climate Data Explorer via Climate Watch OurWorldInData.org/co2-and-other-greenhouse-gas-emissions • CC BY Note: Greenhouse gases are weighted by their global warming potential value (GWP100). GWP100 measures the relative warming impact of one molecule of a greenhouse gas, relative to carbon dioxide, over 100 years.

⁴⁹ Prepared by Pacific Consultants based on Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO₂ and Greenhouse Gas Emissions". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions' [Online Resource].

⁵⁰ Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO₂ and Greenhouse Gas Emissions". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions' [Online Resource] with PCKK additions.

Lao PDR presented its revised NDC ⁵¹ in 2021, which projects baseline GHG emissions of 104 million tCO2e in 2030 and over 120 million tCO2e in 2050. In contrast, the GHG reduction target is 60% reduction by 2030 through own efforts (Unconditional) (Figure 3-19). The revised NDC updates the reduction targets in the 2015 NDC and presents GHG reduction measures under national efforts and international support for each sector. Under the homegrown efforts, the GHG reduction target from hydropower development is significant, especially in the energy sector, while the GHG reduction target from forest cover restoration measures is significant under the international support. Furthermore, under international support, GHG reductions are shown to be achieved through solar, wind and biomass power generation, EV penetration, biofuel penetration, energy conservation, water management in rice cultivation and waste disposal measures (Figure 3-20).

Figure 3-19 Projected GHG emissions in NDCs in Lao PDR 52

⁵¹ Nationally Determined Contribution (NDC) (Lao People's Democratic Republic, 2021) Available at: ht tps://unfccc.int/sites/default/files/NDC/2022-06/NDC%202020%20of%20Lao%20PDR%20%28English%29%2C% 2009%20April%202021%20%281%29.pdf Accessed 16 July 2022

⁵² Based on the revised NDC of Lao PDR with additions by Pacific Consultants.

2015 F	irst NDC Measures	Year	Progress
Increas	Increase forest cover to 70% land area 2020		58% (2015)
30% RE	- 30% RE excluding large hydro 2025		Not on Track
Share o	f biofuels to meet 10% of transport fuels	2025	Not on Track
90% hc	useholds electrified	2020	93.79% (2018)
- Transpo	nt NAMA	2025	Not Started
Expansi	on of large hydro to 5,500 MW (2020)	2020	<4,500MW (2018)
20,000	MW (2030)	2030	On Track
Sector	Unconditional Mitigation Target (2020-2	030)	Target (ktCO2e/y)
LUCF	Reduce Deforestation and Forest Degradatic Forest Carbon Stocks (*1)	on, Enhance	1,100
Energy	13GW Total Hydropower Capacity (Domesti Export) (*2)	c and	2,500
	Introduction of 50,000 Energy Efficient Cool (Vientiane, Savannakhet, Champasack)	< Stove	50
	BRT in Vientiane and Non-Motorized Transp	ort	25
i	Lao-China Railway		300
Sector	Conditional Mitigation Target (2020-203	0)	Target (ktCO2e/y)
LUCF	Increase forest cover to 70%		45,000
Energy	Solar and Wind: 1GW Total Installed Capaci	ty	100
Update	Biomass: 300MW Total Installed Capacity		84
	30% EV for 2-Wheelers, Passengers' Cars		30
	Biofuels to meet 10% of Transport Fuels		29
	10% Reduction of Final Energy Consumption to BAU	n Compared	280
Agricult ure	50,000 hectares adjusted water manageme in lowland rice cultivation	nt practices	128
Waste	Implementation of 500 tons/day sustainable solid waste management project	e municipal	40

Revised edition NDC

Figure 3-20 GHG emission reduction measures in NDCs in Lao PDR 53

In addition, other technical needs to achieve the goals include the following.

- ✓ Support for the design of innovative financial mechanisms that can blend public and private capital
- ✓ Support to ongoing administrative, legal, technical and institutional capacity building for NDC implementation. This includes MRV, refinement of GHG inventories, GHG emission and climate models, and support for the establishment of carbon trading schemes
- ✓ Legal and technical assistance to avoid conversion of forest lands outside of the certified

⁵³ Prepared by Pacific Consultants based on the revised NDC.

forest lands to other land uses

3.3.2.2 Policy Framework and Institutions

While Lao PDR is rich in energy resources such as hydropower and biomass, rapid population growth, economic development, and motorization over the past two decades have increased the country's dependence on fossil fuel imports. Since fossil fuel imports not only put pressure on government finances but also increase GHG emissions, the Lao government is working to develop a policy and regulatory framework to achieve its 2050 net-zero goal through "Energy Transition" and "Carbon Neutral" initiatives. Among the key policies, those related to ET-CN are listed below.

Table 3-25 Policy Frameworks and Institutions Contributing to ET and CN in Lao PDR (in chronological order) ⁵⁴

No.	Policy/regulation	Year of	Issuing	Relevance to ET/CT
		issue	agency	
1	National Strategy on	2022	MONRE	Strategy on Climate, Change of
	Climate Change (draft)			the Lao PDR(2010) update
2	Resolution on Endorsement	2021	MEM,	Promotion of EV Use
	of Policy on Electricity		MPWT	
	Vehicle Use			
3	9 th National Socio-	2021	GoL	Renewable energy development
	economic Development			strategy, electrification of
	Plan			transportation systems, promotion
				of EVs, energy conservation
4	Energy Policy of Lao PDR	2021	MEM	Renewable energy development
				strategy, electrification of
				transportation systems, promotion
				of EVs, energy conservation
5	National Power	2021	MEM	Increase the share of renewable
	Development Plan of Lao			energy (hydro, solar, wind,
	PDR			biomass) in the energy mix
6	National Forestry Strategy	2021	MAF	Strategy to achieve 70% forest
				coverage in 2025
7	Decree on Energy	2020	MEM	Promotion of energy conservation
	Efficiency and			to reduce GHG emissions
	Conservation			
8	Strategy on Promotion of	2020	MEM,	Development of biofuels and EV
	Clean Energy for Transport		MPWT	utilization for decarbonization

⁵⁴ Prepared by Pacific Consultants based on Lao Ministry websites and interviews.

	Sector Blan for 2025			Provention of Class English for
	Sector-Plan for 2025,			Promotion of Clean Energy for
	strategy for 2030, and			Transport Sector-Plan for 2025,
	vision for 2050			strategy for 2030, and vision
9	Decree on Climate Change	2019	MOMRE	Climate Change Response
				Strategy
10	National Green Growth	2018	MONRE	Strategy for the development of
	Strategy of the Lao PDR			renewable and alternative energy
				for sustainable development
11	Decree on Biodiesel	2016	MEM	Promotion of biodiesel production
				to reduce fossil fuel use and
				carbon emissions
12	Regulation for Generic	2015	MEM	Regulation on biomass use and
	Standard on Clean			carbon emission reduction
	Cookstove in Lao PDR			
13	Sustainable Hydropower	2015	MEM	Sustainable Hydropower
	Development			Development
14	Climate Change Action	2013	MONRE	Climate change mitigation and
	Plan			adaptation strategies, including
				renewable energy development,
				energy efficiency, and use of
				alternative energy sources in the
				transportation sector
15	Renewable Energy	2011	MEM	Strategy to promote renewable
	Development Strategy			energy for sustainable
				development
16	Strategy on Climate Change	2010	MONRE	Strategy for applying climate
	of the Lao PDR			change measures to development
				strategies and programs in key
				sectors

A summary of each policy is as follows:

1. National Strategy on Climate Change (draft) (2022)

This Strategy updates the Strategy on Climate Change of the Lao PDR (2010), which is a draft version in Lao as of May 2022. Besides outlining changes in the national policy and regulatory framework and international agenda related to environmental and climate change impacts and future development directions since 2010, the Strategy sets a goal of achieving net zero by 2050 and outlines the following targets:

 \checkmark Integrate the climate change agenda into national policies, strategies, programs, and

projects in sectors that may be exposed to climate change impacts and risks.

- ✓ Increase the resilience of urban and rural communities, infrastructure, production services, and ecosystems to cope with climate change and reduce vulnerabilities and risks associated with climate change and natural disasters.
- ✓ Reduce GHG emissions to 60% BAU level.
- ✓ Reduce the impact on the economy and GDP to less than 0.2%, less than 120,000 people, and per capita GHG emissions to less than 1.2t/capita/year, as well as to increase forest area to cover 70% of the country's land area and 30% of energy consumption to be covered by renewable energy.

2. Resolution on endorsement and promulgation of Policy on EV Use (2021)

This resolution, published in October 2021, sets the goal of increasing the EV rate to at least 1% by 2025 and 30% by 2030 in order to reduce imports of petroleum products and foreign currency outflows, reduce costs for automobile users, and reduce environmental pollution caused by gasoline-powered vehicles. The resolution outlines an action strategy to promote EVs by providing the following incentives and directs the ministries and agencies to take the following measures.

- ✓ Preferential treatment for imports and sales under the Law on Investment Incentives, Customs Law, and Tax Administration Law
- ✓ Incentives for production and assembly, such as incentives for investment in EV parts manufacturing and assembly plants, and reductions in tariffs and tax rates on imports of EV assembly parts.
- Preferential investment in charging stations and preferential electricity prices for charging stations.
- ✓ Preferential treatment for EV users, such as free meters for installation of EDL EV charging systems in residences and offices, preferential road usage fees, and preferential parking.
- ✓ The government will take the lead in the use of EVs, and when government makes a new purchase for a car for official use, it shall be an EV.

It also calls on the ministries and agencies to implement the following coordination

- ✓ Ministry of Energy and Mining: to coordinate policies related to EV use, legislation related to charging stations, and the electricity tariff structure for charging.
- ✓ Ministry of Public Works and Transport: conducts research on technical safety standards and technical standards for import and assembly.
- ✓ Ministry of Finance: coordinate on taxes, duties and fees related to EVs, charging stations and components.
- ✓ Ministry of Natural Resources and Environment: Develop guidelines for the proper disposal of waste related to EVs and storage batteries.

3. 9th National Socio-economic Development Plan (2021)

The 9th National Socio-economic Development Plan (NSEDP) recommends the promotion of EVs using clean energy sources such as hydropower and solar power, and the development of biofuels for the transportation and industrial sectors to reduce fossil fuel imports and GHG emissions. The NSEDP also promotes the development of green infrastructure and technologies related to renewable energy, such as hydro, solar, and wind power, and energy efficiency in homes and public buildings. In addition, the NSEDP addresses the need for the sector to develop energy conservation policies and regulations for factories, buildings, and electrical and energy equipment The main goals for ET and CN as outlined in the NSEDP are listed below.

Table 3-26 ET- and CN-related targets in the 9th NSEDP of Lao PDR

Sectors	Sector Target (2021-2025)		
Electrification	To make national electrification rate 98%. In this 98 %, expand grid systems by 2.26% (28,000 households) and off-grid systems by 0.74% (over 9,000 households).		
	To expand power grid in the three provinces with the lowest electricity consumption rate in the country (North: Phongsaly, Huaphan, and South: Sekong)		
Energy/ Transportation	To promote the development of biofuel plants from palm oil and cassava and methane (CH4) production demonstration projects for the transportation and industrial sectors to reduce fossil fuel imports and use and GHG emissions.		
	To implement strategies to promote the use of clean energy in the transportation sector, aiming for a 14% clean energy utilization rate.		
	To build at least 100 charging stations/biofuel stations throughout the country (20 in the northern region, 50 in the central region, and 30 in the southern region).		
Climate Change	To promote GHG emission reductions in accordance with the NDC.		
Waste	To build/improve at least 5 standardized landfills in major cities.		
Land Use /Forest	To increase forest area to be at least 70% of the national land and elevate forest coverage		
	To reduce GHG emissions from deforestation to about 30 million tCO2e and sell forest carbon credits worth at least US\$95 million.		
	To convert 5 national protected forest areas into national parks by 2025 (Xe Pian, Dong Hua Sao, Phu Khao Kuay, Nam Kan and Nam Kading conservation forests)		

To plant trees on 200,000 ha of land for supplying commercial and industrial
sectors raw materials
To construct at least 9 air quality monitoring stations throughout the country.

4. Energy Policy of Lao PDR (2020)

Developed by MEM in 2020, this policy aims to reduce Lao PDR's dependence on imported oil and gas, reduce GHG emissions from the transportation sector, and promote the use of renewable energy. In the transportation sector, the report outlines strategies to promote electrification of transportation systems and EVs, promote energy conservation, electrify railroads, and promote the use of public transportation. It also encourages the use of biogas for small and large household use. For renewable energy, it sets ambitious targets to achieve a 30% share of renewable energy in the country's total energy mix by 2025. For electricity, the target is set at 65% hydropower, 30% coal-fired power, and 5% non-hydropower renewable energy. This target setting considers the possibility of lower reservoir levels in the dry season at many hydropower plants, which would reduce power generation. The main targets for ET and CN as presented in the policy are listed below.

Hydroelectric	To achieve an installed capacity of 12,000 MW in 2025 and 20,000 MW in			
power	2030.			
generation	To expand reservoir hydropower projects to 70% of total hydropower			
	capacity to ensure stable power generation during peak dry season.			
	To Implement the "Sustainable Hydropower Development Policy of Lao			
	PDR (2015)"			
Coal-fired	To control emitted pollutants according to national environmental			
power	standards.			
generation	To apply clean coal technology in pre-combustion, combustion, and post-			
	combustion processes.			
Renewable	To connect solar and wind power generation to the existing power grid.			
Energy	To increase Biofuels up to 10% of total energy fuel demand.			
	To increase the share of renewable energy in entire energy mix to 30% by			
	2025.			
Electrification	To increase the electrification rate from 95% in 2020 to 98% in 2025 and			
	100% in 2030.			
	To expand the power grid nationwide.			
	To establish a state-owned power transmission company.			
Energy Security	To promote and develop energy efficiency and conservation policies,			

Table 3-27 Goals in Lao PDR Energy Policy

	formulate mechanisms to support the implementation of relevant				
	regulations and policies.				
	To set a reserve ratio as 15% for peak electricity demand.				
	To prepare a 90-day fuel and oil surplus supply for emergencies (natural				
disasters, etc.) for the period of 2020- 2030.					
Energy Export	To export 9,000 MW of electricity to Thailand and 5,000 MW to Vietnam				
	and other countries by 2020.				
Energy Saving	To reduce 10% of total energy consumption by 2030.				
Implementation	To develop guidelines and medium-term action plans (2020-2025) for Lao				
Strategy	energy policy to support cross-sectoral coordination on energy demand				
	and consumption, regional and international energy integration and				
	cooperation, national energy security development, institutional capacity				
	building, and information sharing.				
	To develop medium-term action plans (2025-2030) for energy policy of				
	Lao PDR _o				
	To review existing energy policies and develop a long-term action plan				
	(2030-2050) for continuous improvement of national energy policy.				

5. National Power Development Plan of Lao PDR (2021)

For the power sector, the goal is to achieve energy mix of 65% hydro, 30% coal-fired, and 5% other renewable energy sources. In the transportation sector, the plan includes the promotion of a cross-country high-speed rail system, EVs, and vehicles powered by renewable energy sources. In relation to these goals, the Lao government has set targets to increase hydropower capacity in the power sector to 12,000 MW and 20,000 MW by 2025 and 2030, respectively, and in the transportation sector, to develop technologies to replace 10% of total fuel consumption in the transportation sector with biofuels by 2025. In the area of transportation, the plan calls for the development of technology to replace 10% of total fuel consumption in the transportation sector with biofuels by 2025, and the establishment of EV infrastructure, battery charging fees, and tax incentives. It also aims to achieve a 10% reduction in energy consumption by 2030 by promoting energy efficiency and conservation in an environmentally sustainable manner.

6. National Forestry Strategy (2021)

The quantitative target for forest cover by 2020 is to increase forest cover from 41.5% in 2002 to 58% in 2015 and 62% in 2020. The Strategy aims to improve the quality of forests in the future and to have 70% of the country's land covered by forests by 2025, and has three main programs and implementation plans: "Management of Forest Resource Use," "Conservation of

Forest Resources," and "Forest Development and Related Action Plans.

7. Decree on Energy Efficiency and Conservation (2020)

This resolution was developed by MEM to update the 2016 National Policy on Energy Efficiency and Conservation. This resolution covers factories, public buildings, housing, transportation, and other products.

1) Factories

Factories are classified as designated factories and non-designated factories. While the latter are only required to take general energy conservation actions, they are also required to provide relevant information for external inspections and to conduct monitoring inspections of the energy efficiency and conservation status of their factories and report regularly to MEM. Designated factories are those that meet one or more of the following requirements.

- i. Factories that have installed at least one set of transformers with a cumulative capacity of 1,000 kW or 1,175 kVA or higher
- ii. Factories using more than 20 million MJ of boiler heat or more than 478 tons of oil equivalent energy per year.

Designated factories must implement energy conservation under the requirements in Table 3-28, and new factories must meet MEM's Energy Conservation Standards and receive approval. In addition, they are required to assign energy conservation managers/persons in charge of energy conservation at the direction of MEM, establish a department in charge of energy conservation in the factory, conduct inspections of internal energy use and submit a report to MEM about the results based on such inspections every March, provide relevant information when there is an external inspection, and provide information on social and environmental impacts in relevant sectors. The company is required to bear the costs of monitoring and inspections.

Factories	Improving fuel combustion efficiency for power equipment in		
	manufacturing processes		
	Improving production processes in manufacturing facilities		
	Improving cold/heat production processes, including conversion of heat		
	to mechanical power		
	Reduction of energy loss in power and electrical equipment		
	Reuse of residual energy in manufacturing processes		
	Improving heat to power conversion processes		

Table 3-28 Energy Saving Measures in Lao PDR Factories

Replacing it with more efficient energy
Use of energy-efficient equipment and devices
Use of renewable energy

2) Buildings

Buildings are classified by designated buildings and non-designated buildings. The latter are required to provide energy data and regularly monitor energy use in the building, although they only promote general energy conservation. Designated buildings are those that meet one or more of the following requirements, and any new building must have an energy conservation plan approved by MEM.

- i. Buildings with a cumulative capacity of 1,000 kW or 1,175 kVA or more of installed transformers.
- ii. Buildings that use 20 million MJ of boiler heat or 478 tons of oil equivalent energy per year or more.
- iii. Buildings with a total building floor area of 20,000 square meters or more.

Designated buildings are required to assign an energy conservation manager/person in charge, set up a department in charge of energy conservation in the building, conduct inspections of energy use in the building and submit a report of the results to MEM annually based on the inspections, provide relevant information for external inspections, and provide information on social and environmental impacts of the relevant sectors under the direction of MEM monitoring, and bearing the costs of the inspections. Among the designated buildings, public buildings will be subject to energy conservation under the requirements in Table 3-29.

Buildings	Design lighting systems in accordance with MEM standards,				
	technologies, and regulations				
	Installation and use of high-efficiency lighting fixtures in compliance				
	with national and international standards				
	Installation of automatic control systems in public buildings				
	Regular maintenance of lighting systems in public buildings				
	Use of appropriate renewable energy sources for lighting systems in				
	public buildings				

Table 3-29 Energy Conservation Measures in Buildings in Lao PDR

3) Transportation and traffic

Energy efficiency and conservation measures in the transportation and traffic sector are shown in Table 3-30.

Table 3-30 Energy Saving Measures in Transportation and Traffic in Lao PDR

Transportation	Improvement and promotion of public transportation					
	Improvement of vehicles and management of appropriate traffic routes					
	to increase energy efficiency.					
	Reduce energy consumption by developing and implementing					
	regulations for vehicle maintenance					
	Use of technology and energy management					
	Identifying and implementing energy conservation and efficiency					
	measures					

In addition, the Government of Lao PDR has announced that it will promote the following efforts.

- i. Promote the development of effective transport systems through the improvement of transport infrastructure.
- ii. Promote and develop alternative modes of transportation (fuel cells, hydrogen and EVs) and encourage the use of public transportation.
- iii. Promote the use of environmentally friendly energy sources such as biofuels, fuel cells, hydrogen and electricity.

The following are the measures that should be undertaken by each ministry to implement these policies.

- i. MPWT:
 - ✓ Develop regulations related to effective, low-energy vehicle management.
 - ✓ Apply energy efficiency and energy conservation standards in transportation.
 - ✓ Cooperation with relevant sectors to issue standards and licenses for energy efficiency of vehicles.
 - ✓ Proposing improvements in vehicle energy use to transport operators.
 - ✓ Encouraging further investment in the use of public transport systems, especially rail system.
 - ✓ Regular inspections of vehicle
- ii. MOIC:
 - ✓ Control the production and importation of vehicles to ensure compliance with standards and technologies related to their use.
- iii. MST (at the mentioned time):
 - ✓ Define national standards for energy efficiency and environmental friendliness of vehicles, in cooperation with relevant authorities and sectors.
- 4) Power and power equipment

Energy efficiency and conservation measures in motive power and electric power equipment are shown in Table 3-31Table 3-31. It states that energy performance standards to minimize energy use should be revised every 5 years.

Table 3-31 Energy Efficiency and Conservation Measures in Power and Electric Power facilities in Lao PDR

Power and electric	Establish and implement measures and standards to minimize energy				
power equipment	use.				
	Attach energy efficiency labels to each facility.				
	Disseminate information on energy efficiency of facilities to the				
	public.				

8. Strategy on Promotion of Clean Energy for Transport Sector-Plan for 2025, strategy for 2030, and vision for 2050 (2020)

Through this policy developed under the MEM and MPWT in 2020, the Government of Lao PDR aims to increase the share of EVs in the total vehicle fleet to 14% by 2025 ⁵⁵, 30% by 2030, and 50% by 2050. To promote EVs, including electric motorcycles, 200 battery charging stations will be installed at gas stations, shopping centers, and office buildings, and service centers will be established for EV users. It will also encourage domestic and foreign investors to develop biofuel production capable of producing 400,000 liters of diesel and 200,000 liters of gasoline per day by 2030. In addition, the policy states that the use of public transportation will be promoted to reduce traffic congestion and GHG emissions. The implementation of this policy will reduce fossil fuel imports by the equivalent of \$1 billion per year. The action plan to achieve these goals is as follows.

- ✓ Develop and implement a policy framework for vehicles powered by renewable energy sources available in Laos.
- ✓ Introduce economic incentives for EV businesses, such as lower import taxes and tariffs, lower electricity and road use fees, and an easy payment system for battery charging.
- ✓ Expand the EV market and encourage competition among EV service providers.
- ✓ Conduct educational activities to make EVs more accessible to as many people as possible and to raise their interest.

9. Decree on Climate Change (2019)

This is a ministerial decree that is the top-level climate change measure in each ministry. This Prime Ministerial Decree states the need for climate change-related measures and adaptation strategies to be integrated into development policies, strategies, plans, programs and projects in all sectors, at national and local levels.

 $^{55\,}$ In No. 2 Resolution on endorsement and promulgation of Policy on EV Use (2021), the figure is revised to 1% in 2025.

The main measures to reduce GHG emissions and address climate change issues are:

- ✓ Dissemination of information on climate change
- ✓ Reducing GHG emissions in the agricultural sector by promoting reforestation and reducing slash-and-burn cultivation practices
- ✓ Development of environmentally friendly industrial technologies in the industrial sector and access to climate resilient industrial infrastructure
- ✓ Development and promotion of renewable energy sources
- ✓ Research, development, and promotion of environmentally friendly alternative energy sources such as biofuels
- ✓ Implementation of climate change policies and regulations

10. National Green Growth Strategy of the Lao PDR (2018)

This strategy, developed by MONRE in 2018, presents an action plan for ET and CN measures in each sector, including achieving 70% forest coverage by 2020. In the industrial sector, it includes the promotion of energy-saving, low-carbon, and other environmentally friendly technologies, improvement of public transportation services to increase conversion to public transportation use, and promotion of EVs and other vehicles using renewable energy to reduce fossil fuel imports and GHG emissions. It also sets a goal of achieving 98% electrification of all households in Laos while accelerating the development of renewable energy and reducing the use of biomass energy such as firewood and charcoal for cooking to reduce GHG emissions and promote energy conservation. Examples of specific strategies in these are as follows:

- ✓ Establishment of a National Steering Committee for Green Growth, chaired by the Deputy Prime Minister and with ministers from relevant ministries and agencies as members.
- ✓ Establishment of a Lao National Green Growth Promotion Center, chaired by the Director of the National Economic Research Institute, vice-chaired by the Deputy Minister of Planning and Investment, and with deputy ministers of relevant ministries and agencies as members.
- ✓ Improve the early warning system to be more efficient and effective to reduce loss of life and property due to natural disasters caused by climate change.
- ✓ Establish and expand the Emergency Relief Reserve Fund at the national, provincial, district, and village levels to provide relief to victims of natural disasters in an efficient, effective, and timely manner.
- ✓ Encourage economic growth that reduces GHG emissions by promoting advanced technologies that use efficient, effective, low-waste, energy-efficient, clean, and environmentally friendly energy, and by promoting the protection and expansion of GHG sinks such as forests and soil.
- ✓ Increase forest cover to 70% of the national land area by 2020 through the implementation of laws, regulations and mechanisms for the sustainable protection and use of forests. Develop a number of laws, regulations and mechanisms for the sustainable protection and use of forests, including Law on Forest, Decree No. 95/PM on ceasing the export of timbers,

Policy on the decrease of slash-and-burn cultivation practices, etc.

- ✓ Promote the production, importation, and use of domestically available clean energy transportation vehicles, such as hydropower and solar-powered EVs, in order to reduce import and use of fossil fuels and reduce GHG emissions.
- ✓ Comprehensively expand the power grid (transmission system) to ensure connectivity to all regions of the country and rural electrification of 98% of the country's households.
- ✓ Increase the efficiency of clean energy use and energy conservation by promoting the use of energy-saving materials, production equipment, transportation vehicles, and technologies, and restricting the import of energy-wasting materials, production equipment, transportation vehicles, and technologies.

11. Decree on Biodiesel (2016)

This Decree, enacted by the MEM, defines principles, regulations, and standards for the development, production, import/export, use, and management of biofuels in Lao PDR. Contents include crop plantations for biofuels, development of biofuel production technologies, domestic and international investment, technology and capacity development, marketing and pricing, access to loans, and product quality standards.

12. Regulation for Generic Standard on Clean Cookstove in Lao PDR (2015)

This regulation, established by the MEM in 2015, aims to reduce the consumption of biomass fuels (firewood and charcoal) for cooking in households and promote the use of cookstoves in terms of GHG emissions, energy savings, and health risks. It provides technical guidance and standards for the production of environmentally friendly cookstoves, energy efficiency of the products, and their commercial use.

13. Sustainable Hydropower Development (2015)

The objective of this policy is to promote sustainable hydropower development in Laos. The policy outlines a wide range of management measures for hydropower development, including inter-sectoral coordination, environmental and social impact assessment, social protection for project-affected communities and others, information disclosure, stakeholder coordination, and benefit sharing.

14. Climate Change Action Plan (2013)

This Action Plan was developed to complement the Strategy on Climate Change of the Lao PDR (2010) and outlines priority strategies and measures to be addressed by each relevant agency as shown is Table 3-32 below.

Priorities	Key Ministries
Establish and strengthen technical capacity for planning	MONRE and other relevant
and implementing activities related to climate change	ministries
National management and coordination on climate change	MONRE
Develop a climate change strategy and action plan	MONRE and other relevant
	ministries
Strengthen financial management in response to climate	Ministry of Finance, MONRE
change	and other relevant ministries
Promote climate resilient agriculture	MAF
Promote climate resilient agricultural infrastructure	MAF
Strengthen technical capacity in agriculture	MAF
Promote climate change adaptation technologies	MAF
Promoting Appropriate Agricultural Land Use	MAF
Promote climate resilient forest production and forest	MAF,
ecosystems	MONRE
Promote capacity building in the forest sector	MAF
Strengthen water resources information systems	MONRE
Flood management	MONRE
Climate resilient watershed and wetland management	MONRE
Promote climate resilient water resources infrastructure	MONRE and other relevant
	ministries
Promote climate resilience in the water resources sector	MONRE and other relevant
	ministries
Promote resilience of energy and transportation	MEM and other relevant
infrastructure	ministries
Promote climate resilient industrial sectors	MOIC and other relevant
	ministries
Promote climate resilient urban development	MPWT
Promote climate resilient water supply systems in rural	MPH and other relevant
areas	ministries
Promote climate resilient public health services	MPH and other relevant
	ministries
Management of GHG emissions in agriculture	MAF and other relevant
	ministries
Capacity building in forest management	MONRE, MAF
Promote clean energy to reduce GHG emissions	MEM and other relevant
	ministries
Promote carbon management in urban areas	MPWT,

MONRE and other relevant
ministries

15. Renewable Energy Development Strategy (2011)

The strategy aims to increase the share of renewable energy in the national energy mix to 30% by 2025, and to replace 10% of imported fossil fuels with biofuels. It cites the promotion of the development of renewable energy sources such as biofuels, small hydropower, solar, wind, and biomass heat in the public and private sectors, as well as alternative fuels in the transportation sector. However, the Strategy focuses on the development of renewable energies with a focus on energy self-sufficiency and connection to off-grid areas to achieve rural electrification.

16. Strategy on Climate Change of the Lao PDR (2010)

The Strategy considers the reduction of GHG emissions as one of the government's priorities and outlines measures to accelerate the reduction of GHG emissions, including the eradication of slash-and-burn cultivation practices to achieve a forest cover of 70% of the country's land area. Specifically, it includes reducing the use of firewood for household cooking by strengthening rural electrification, managing forest fires, participating in carbon credit markets, developing renewable energy, raising public awareness of energy conservation, promoting lowcarbon transportation, and strengthening the Clean Development Mechanism (CDM). This Strategy will be revised in Draft No. 1 National Strategy on Climate Change Management (2022).

3.3.2.3 Review of similar studies by international development cooperation organizations, etc.

Major donors implementing ET/CN related programs in Lao PDR include the Global Green Growth Institute (GGGI), the New Zealand (NZ) Government, the WB and USAID.

The GGGI Lao PDR Office has mainly focused on supporting urban areas, and most of the support is related to transportation and energy. MOIC has also conducted simple energy audits at 25 factories in the three main industrial sectors of construction materials, garments, and food processing. In the future, discussions are underway with the Department of Housing and Urban Planning (DHUP) to support energy efficiency and conservation in the private sector. The office also provides education and other training related to ESCOs in the area of energy conservation. In addition, the office has been involved in the development of a strategy for solid waste management in Vientiane in collaboration with the Korea International Cooperation Agency (KOICA) and has supported the provision of municipal solid waste collection vehicles and the establishment of a composting facility in Vientiane. Regarding EVs, MPWT, is used as a counterpart to provide support for the adaptation of existing regulations for conventional vehicles to EVs, including proposals for vehicle inspections, vehicle registration, and other

legal and regulatory aspects, as well as standards for plugs and charging stations. In the future, GGGI plans to implement strategies to raise public awareness of EVs and provide financial support for EV purchases and is in discussions with car dealers and banks.

USAID is considering a project on EV promotion and a project on energy security with MEM's DEEP as a counterpart; and the project on EV promotion will support the review of regulatory standards for charging stations, inspection and certification of charging stations, and tariff design, and is expected to start in 2022. The Energy Security Project is part of the U.S.-Laos Comprehensive Partnership (now part of the U.S.-ASEAN Economic Framework) and will improve energy planning and EDL capacity building with MEM and EDL as counterparts, and the MoU is currently under discussion. The Clean Power Asia program, which ended in March 2021, included energy demand forecasting, etc. The follow-up to Clean Power Asia, Southeast Asia's Smart Power Program ⁵⁶, is a project to improve energy efficiency in the industrial sector, etc.

The NZ Laos Renewable Energy Facility is supporting the revision of the Renewable Energy Development Strategy established in 2011, capacity building on dam safety for EDL staff, and English language training for EDL and MEM. Future projects include technical advice to MEM on dam safety and support to EDL on power system operation, and in the area of energy conservation, the establishment of an energy consumption database and support for the establishment of an energy manager system are being considered.

Although ADB's support to the energy sector has been limited in recent years due to the financial situation of the EDL and the Lao PDR as a whole, it has provided support to the hydropower company at Nam Theun 2 Dam, the Greater Mekong Subregion Northern Power Transmission Project, policy support for EVs and energy efficiency and conservation, a transmission line strengthening project, and support for charging stations under the BRT project.

The Asia Foundation, an international NGO based in the United States, provides advice to MEMs on electricity sales contracts. It is also planning to implement a project to conduct financial analysis of solar power generation, and is considering an assistance program on energy transition in cooperation with the Australian Embassy.⁵⁷

The Climate Technology Centre & Network (CTCN), established under the UNFCCC, was providing support to Lao PDR to develop a Power to Gas (PtG) Master Plan until March 2022. The implementing agency is the Global Environment Centre (GEC), a public interest incorporated foundation in Japan. In Lao PDR, there is almost no use of gas as an energy source, and therefore, there are no gas-related regulations or infrastructure, which makes it impossible to plan for commercial use of hydrogen and synthesis gas. This project proposes a master plan that organizes the items to be developed to solve these issues. ⁵⁸

⁵⁶ USAID Southeast Asia's Smart Power Program https://www.usaid.gov/asia-regional/fact-sheets/usaidsoutheast-asia-smart-power-program Accessed July 16

⁵⁷ Details unknown at the time of this study.

⁵⁸ The text is not available at the time of this study.

In addition to donor and other activities, Lao PDR has implemented two mitigation projects under the Green Climate Fund (GCF) of the UNFCCC: the Green Recovery Program (No. FP156), for which ADB is the accredited entity ⁵⁹, and the Sustainable Forest Management (No. FP117) ⁶⁰, which is accredited by GIZ. The former is a financing program aimed at stimulating low-carbon investments in target countries to support economic recovery after COVID-19, while the latter is a program aimed at creating an enabling environment for REDD+ implementation.

Table 3-33 summarizes the main international donor activities.

Energy

Table 3-33 International Donors' Cooperation Projects Contributing to ET-CN in Lao PDR

87							
Donor	C/P	Policy	Regulation	Tax	Fundraisin	Pilot	Capacity
				syste	g		building
				m	C		C
USAID	MEM	Support for	Support for		1 mUSD	Pre-FS of	Integrated
(Energy	EDL	the	developmen		Grant for	PV hvbrids	Resource and
Security		development	t of power		Private	in	Resilience
Project)		of a work plan	distribution		Sector	hvdropowe	Planning
5 /		for the	grid code			r	Support
		implementatio	<u>. </u>			_	Power System
		n of the EV				Pre-FS of	Planning
		strategy				renewable	Support for
						energy	building
						storage	internal and
						<u>technology</u>	<u>external</u>
						<u>on the grid</u>	<u>coordination</u>
							<u>capacity of</u>
							<u>MEM staff</u>
							<u>Support for</u>
							<u>consultation</u>
							<u>on improving</u>
							the local
							<u>power grid</u>
							<u>Development</u>
							<u>of Rural</u>
							<u>Electrificatio</u>
							<u>n Support</u>
							Tools
							<u>EDL</u>
							<u>lechnical</u>
							<u>Capacity</u>
							<u>Enhancement</u>
GGGI			<u> </u>				<u>Support</u>
GGGI	-	None in particu	ılar.				

*Italicized descriptions with underlines are projects under consideration

⁵⁹ ASEAN Catalytic Green Finance Facility (ACGF): Green Recovery Program https://www.greenclimate.f und/project/fp156 accessed 3 August 2022

⁶⁰ Implementation of the Lao PDR Emission Reductions Programme through improved governance and sustainable forest landscape management https://www.greenclimate.fund/project/fp117 Accessed August 3, 2022

NZL REF	MEM	Support for	Advice on
	EDL-	Revision of	dam safety
	Gen	the Renewable	Improve
		Energy	EDL's power
		Strategy	system
			management
			<u>capabilities</u>
GIZ	-	None in particular.	
Asia	MEM	Proposed	Legal advice
Foundatio		<u>Support</u>	on PPAs, etc.
n,		Program for	
Australia		<u>Energy</u>	
		<u>Transition</u>	
UNESCA	-	None in particular.	
Р			
UNFCCC	MEM	PtG Master	
CTCN		Plan Proposal	

EV Promotion

Donor	C/P	Policy	Regulation	Tax	Fundraisin	Pilot	Capacity
				syste	g		building
				m			
USAID	MEM	<u>Developing a</u>	<u>Charging</u>				Electricity
		<u>strategy for public</u>	<u>Station</u>				rate
		charging stations	<u>Regulatory</u>				design
		Electricity rate	<u>Standards</u>				support
		<u>design for EVs</u>	<u>Review</u>				Support
		Policy/Market/Progr	<u>Charging</u>				for EV-
		<u>am Design</u>	station				related
			<i>inspection</i>				equipment
			and				standards
			<u>certificati</u>				
			on support				
GGGI	MPW	Policy analysis and	Proposals		<u>Preferenti</u>	Motorcycle	Training
	Т	recommendations on	for		<u>al interest</u>	Battery	at the
		imports, vehicle	Technical		rate	Sharing Pre	Vehicle
		registration,	Standards		financing	(BBS) FS	Inspection
		taxation, etc.	for		for EVs	BBS	Center
		<u>Policy</u>	Charging		(200	<u>demonstrati</u>	Improved
		<u>Recommendations</u>	Plugs,		<u>mUSD)</u>	<u>on</u>	EV
		for EV Conversion	Charging				Recogniti
			Stations,				on
			etc.				
			Vehicle				
			inspection,				
			<u>vehicle</u>				
			<u>registratio</u>				
			n and				
			legal				
			maintenan				
			<u>ce</u>				
			Proposal				
			<u>of V</u> ehicle				
			Disposal				
			Scheme				

NZL REF	MEM	Revision of the					
		Renewable Energy					
		Strategy					
GIZ	-	No cooperative program on EVs is currently being implemented.					
		The company intends to hold a WS in the future to understand the needs of					
		Laos.					
Asia	-	None in particular.					
Foundati							
on							
UNESCA	-	Policies and strategies on EVs are being implemented for Laos, Nepal, and					
Р		other countries.					
		No specific activities in Laos at this time.					
		We are considering launching the Electric Mobility Initiative for Asia and					
		the Pacific in the future.					

Energy conservation

Donor	C/P	policy	regulation	tax syste m	fundraisin g	pilot	capacity building
USAID	-	None in partic	cular.				
GGGI UNIDO	MOI C	Establishmen t of a public- private steering committee Support for the Formulation of Green Industrial Policy			Based on a simple energy audit, an investmen t of 20- 30mUSD	Energy efficiency and conservatio n audits at 25 factories	Energy Managemen t System Training Training on ESCO
NZL REF	MEM		<u>Establishmen</u> <u>t of an</u> <u>energy</u> <u>manager</u> <u>system</u>				Support for collection of energy consumptio n data from large-scale energy consumers Support for formulating energy conservatio n indices <u>Developmen</u> <u>t of Energy</u> <u>Consumptio</u> <u>n Database</u>
GIZ	MOI C		Establishmen t of eco- labels for products				
Asia Foundatio n	-	None in partic	cular.	1	1		

UNESCA	-	None in particular.
Р		

3.3.3 Nepal

3.3.3.1 Summary of Greenhouse Gas Emissions and NDC

The latest official GHG inventory by the Government of Nepal is the 2011 GHG inventory as shown in the National Communication 3rd Edition (NC3)⁶¹ published in 2021. It shows that total GHG emissions were 45.2 million tCO2e in 2011, with the energy sector accounting for 33%, IPPU 1%, agriculture, forestry and other land use 64% and waste 2% (Figure 3-21), net GHG emissions are 28.2 million tCO2 after subtracting GHG sequestration by forests and other sectors from GHG emissions. Note that the GHGs covered in the inventory are CO2, CH4, N2O, HFCs, PFCs, and SF6 among the seven GHGs specified by the IPCC. NC3 also summarizes GHG emissions for each subsector, with the top five largest GHG emission categories amounting to 38.2 million tCO2e (about 84% of total GHG emissions) (Table 3-34). One of the characteristics of GHG emissions in Nepal is that about three-fifths of the GHG emissions come from agriculture, forestry and other land use sectors. Three out of the top five categories are related to agriculture, forestry and other land use, while the remaining two are CO2 emissions from biomass use (methane) in the energy sector and from brick manufacturing. However, the official GHG inventory is outdated as of 2011, and CO2 emissions from the transport sector have increased in Nepal in recent years due to the rapid increase in the number of cars and from the construction materials industry during reconstruction after the 2015 earthquake (Figure 3-22 Figure 3-23).

Figure 3-21 GHG Inventory of Nepal (2011)⁶²

⁶¹ National communication (NC3) (Ministry of Forest and Environment, 2021) https://unfccc.int/sites/default/files/re source/TNC%20Nepal_Final_v2.pdf

⁶² Prepared by Pacific Consultants based on NC3 of Nepal.
Sector	Sub-sector		ktCO2e
Energy	Fuel Combustion	-Energy Industries -Manufacturing and Construction -Transport -Others (e.g., non-CO2 from biomass combustion in other sector)	2.38 <mark>2,256.2</mark> 1,739.5 <mark>10,753.5</mark>
Industrial Processes and Product Use	Mineral industries Non-energy products from fuels and solvent use Product uses as	-Cement Production	350.2 5.2
	substitutes for ozon depleting substances		15.0
Agriculture, Forestry, and Other Land Use (AFOLU)	Livestock Land	<mark>-Enteric Fermentation</mark> -Manure Management -Forest Land -Non-forest land	<mark>16,218.5</mark> 1,446.6 -17,077.8 35.4
(/ " 020)	Aggregate sources and non-CO2 emissions sources on land	-Rice cultivations -Other (e.g., indirect N2O from manure management)	3,974.9 7,524.7
Waste	Solid Waste Disposal Biological Treatment of So Open burning of Waste Wastewater Treatment an	261.6 4.5 12.7 644.8	

Table 3-34 GHG Emissions by Sub-sector in Nepal⁶³

*The main types of GHG emissions in GHG emissions are shown in black: CO2, red: CH4, blue: N2O, and green: HFCs. *Negative (-) in GHG emissions indicates GHG absorption.

*Yellow highlights indicate the top five GHG emitters.

5 Major Emission category

Sector	Key emission category	ktCO2e
AFOLU	Enteric Fermentation	16,218.5 CH4
Energy	Non-CO2 from biomass combustion in other sector	10,753.5 CH4
AFOLU	Indirect N2O from manure management	5,760.3 N2O
AFOLU	Rice Cultivation	3,974.6 CH4
Energy	Brick manufacturing	1,493.3 CO2

⁶³ Prepared by Pacific Consultants based on NC3 of Nepal.

Source: CAIT Climate Data Explorer via Climate Watch OurWorldInData.org/co2-and-other-greenhouse-gas-emissions • CC BY Note: Greenhouse gases are weighted by their global warming potential value (GWP100). GWP100 measures the relative warming impact of one molecule of a greenhouse gas, relative to carbon dioxide, over 100 years.

Figure 3-23 GHG emissions by sector in Nepal⁶⁵

⁶⁴ Prepared by Pacific Consultants based on Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO₂ and Greenhouse Gas Emissions". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions' [Online Resource].

⁶⁵ Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO₂ and Greenhouse Gas Emissions". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions' [Online Resource]

Nepal issued its revised NDC (NDC2)⁶⁶ in 2020, which presented mitigation measures and targets in energy, agriculture and forestry and other land use and waste sectors (Table 3-35). According to the NDC, the development of 5,000 MW of renewable energy, such as hydropower, is listed as a mitigation measure through national efforts. On the other hand, under the international support, the development of 8,600 MW of renewable energy, the penetration of EVs, the penetration of electric cookers, the restoration of forest cover, REDD+, and the improvement of waste and wastewater treatment are mentioned.

Sector	Mitigation Target (2021-2030)	Target. Unconditional (left), Conditional (right)			
Energy	By 2030, expand clean energy from 1,400MW to 15,000MW (5-10%: micro-hydro, solar, wind, bioenergy)	5,000 MW	8,600 MW		
	By 2030, 15% of the total energy demand is supplied from clean energy sources	-	-		
	By 2025, 25% of private vehicle, 20% of public vehicle sales are EV	-	▼253 ktCO2 in 2025		
	By 2030, 90% of private vehicle, 60% of public vehicle sales are EV	-	▼1,021 ktCO2 in 2030		
	By 2030, develop 200km electric rail network		200km rail		
	By 2030, 25% households use electric stoves for cooking	-	▼225 ktCO2 in 2025		
	By 2025, install 500,000 improved cookstoves in rural areas	-	▼ 465 ktCO2 in 2030		
	By 2025, install 200,000 household biogas plants and 500 large scale biogas plants (institutional/industrial/municipal/community)	-			
Agriculture,	By 2030, maintain 45% forest cover	-	45%.		
forestry and land use	By 2030, manage 50% of Tarai and Inner Tarai forests*, 25% of middle hills and mountain forests sustainability, including through the use of funding from REDD+ initiative		-		
Waste	By 2030, treat 380 million liters/day of wastewater before being discharged, and manage 60,000 m3/y of fecal sludge.	-	300 million/d of wastewater 60,000 m3/y of fecal sludge ▼ 258 ktCO2		

Table 3-35 GHG	Emission	Reduction	Measures	in	Nepa	1's	NDC2	67
1					- · • p •			

⁶⁶ Second Nationally Determined Contribution (NDC) (Government of Nepal, 2020) https://unfccc.int/sites/default/fi les/NDC/2022-06/Second%20Nationally%20Determined%20Contribution%20%28NDC%29%20-%202020.pdf 2022 Access ed 16 July

⁶⁷ Prepared by Pacific Consultants based on NDC2 of Nepal.

Nepal's "Nepal's Long-Term Strategy for Net-zero Emissions" (NLTS) ⁶⁸, is a net-zero strategy to 2050 in addition to the NDC. The strategy uses GHG emissions in 2019, calculated using the LEAP model ⁶⁹, as a starting point and projects CO2 emissions to 2050. It also projects the CO2 emission pathways for each "With Existing Measures" (WEM: existing mitigation measures) and "With Additional Measures" (WAM: additional mitigation measures) (CH4 and N2O are not considered). According to those projections, CO2 emissions of 23 million tCO2 in 2019 would increase to 42 million tCO2 in 2030 and 79 million tCO2 in 2050 (of which 54% would come from the energy sector) under the reference scenario, but could be reduced to 1.5 million tCO2 in 2030, net zero in 2045, and -6 million tCO2 in 2050 under the WAM scenario, which is net negative. (Figure 3-25). In the WAM scenario, it is possible to achieve the national target of net-zero in 2045, and it is effective to consider active implementation of mitigation measures considered in the WAM scenario to actually achieve net-zero in 2045. The mitigation measures for each sector in the WAM scenario are summarized in the following Table 3-36.

⁶⁸ Nepal's Long-Term Strategy for Net-zero Emissions" (Government of Nepal, 2021) https://unfccc.int/sites/default/ files/resource/NepalLTLEDS.pdf Accessed July 16, 2022

⁶⁹ Low Emission Analysis Platform (formerly Long-range Energy Alternatives Planning System) is a tool for energy and mitigation planning developed by the Stockholm Environment Institute.

				\frown	
Sector	Sub-sector	CH4	N20	CO2	ktCO2e
Energy	Residential Transport Industrial Commercial Agriculture	0.41 0.40 0.02 0.01 0.01	3.57 0.01 0.02 0.13 0.00	2.09 4.73 4.45 0.54 0.78	6.07 5.15 4.49 0.69 0.78
Non- Energy	IPPU Agriculture Waste LULUCF (emissions)	0.00 1.39 0.00 0.00	0.00 26.3 4.73 0.00	1.87 0.17 0.00 21.93	1.87 27.86 4.73 21.93
LULUCF	Removals	0.00	0.00	-13.5	-13.5

Figure 3-24 Projected CO2 Emissions in Nepal's NLTS to 2050 70

⁷⁰ Prepared by Pacific Consultants based on NLTS.

CO2 emission pathways in the WAM scenario

Figure 3-25 CO2 Emission pathways for WEM (upper) / WAM (lower) Scenarios in Nepal's LTS ⁷¹

⁷¹ Nepal's Long-Term Strategy for Net-zero Emissions" (Government of Nepal, 2021) https://unfccc.int/si tes/default/ files/resource/NepalLTLEDS.pdf Accessed July 16, 2022

Sector	Subsector	Mitigation measure	Milestones in the
		6	WAM scenario
Energy	Generation (e.g., power)	 Development of Hydroelectric Power Generation Development of renewable energy and its integration into the power grid Scaling up distributed energy resources Develop policies on regional power sector integration and grid flexibility 	 By 2050, 50 GW hydropower, 2.1 GW grid- connected solar PV, 1.1 GW off- grid renewable energy
	Consumer	 Electrification of end- consumer services in urban areas Promoting Clean Cookstoves in Rural Areas Electrification of cooking, heating, hot water and lighting in rural areas Promoting efficient technology in end-consumer services 	MtCO2e in 2030 and 4.45 MtCO2e in 2050
	Industry	 Expanding efficient and clean production technologies Electrification of process heat, boilers and power in all industries Replacement of brick kilns with improved brick kilns (zigzag kilns, electric tunnel kilns) Introduction of CCUS in the cement industry Introduction of green fuels (electricity, waste, hydrogen) in thermal processes Introduction of electrical technology in process heat in heavy industry (metal, cement, brick) 	• Reduction of 3.3 MtCO2e in 2030 and 19.8 MtCO2e in 2050
	Transportation	 Promotion of electrification of mass passenger transport Conversion to clean fuels (electricity, fuel cells, synthetic fuels, biofuels) Electrification of freight transport Expand installation of charging stations 	Reduction of 2.1 MtCO2e in 2030 and 19.5 MtCO2e in 2050
	Trade	• Achieve full electrification in all commercial sectors	Reduction of 1.2 MtCO2 by 2030
	Agriculture	• Electrification of agricultural and pumping facilities	• Reduction of 0.4 MtCO2e in 2030

Table 3-36 Mitigation measures in Nepal's LTS ⁷²

⁷² Prepared by Pacific Consultants based on NLTS.

		• Promotion of pumps using solar power generation	and 2.8 MtCO2e in 2050
Agriculture	Fermentation	 GHG-aware gene selection and breeding Optimization of feed formulation Use of animal feed additives Use of feed grain processing to improve digestibility Improved animal health monitoring and disease prevention Improvement of livestock production efficiency technology 	• Reduction of 0.4 MtCO2e in 2030 and 2.8 MtCO2e in 2050
	Soil Management	 Promotion of anaerobic manure treatment Effective use of nutrients from livestock Application of nitrification inhibitors to pasture grasses Promotion of technologies to improve livestock production efficiency 	Reduction of 0.12 MtCO2e in 2030 and 0.5 MtCO2e in 2050
	Nutrition/Manure management	 Improvement of water management in paddy fields Widespread use of dry direct sowing in rice cultivation Improvement of rice straw management Promotion of selection of optimum rice varieties Improvement of paddy rice fertilization Expansion of low-tillage and no-tillage cultivation Reduction of excessive nitrogen fertilization Promotion of variable fertilizer application Implementation of nitrogen fixation rotation Use of controlled-release fertilizers and stabilized fertilizers Methane recovery 	 Reduction of 1.5 MtCO2e in 2030 and 6.5 MtCO2e in 2050 Reduction of 1.4
	L1vestock management	 Methane recovery Increase in incineration 	• Reduction of 1.4 MtCO2e in 2030 and 6.4 MtCO2e in 2050
Forestry	Countermeasures against deforestation	 Prevent land cover conversion Promoting afforestation Promotion of private forestry 	 Zero forest degradation by 2030 Double the amount of absorption by afforestation.

	Forest	•	Paduation of degradation due		Paduca
	degradation		to fine illegel logging ate		defense bu
	degradation		Deduction of unsustainable		0.0% and farest
	countermeasures	•	Reduction of unsustainable		90% and forest
			grazing		fires by 75% by
		•	Promoting the use of		2030
			alternative energy sources for		
			cooking and heating		
	Utilization of	•	Promoting the use of	•	Self-sufficient in
	wood		harvested timber		wood products
		•	Promotion of agriculture and		
			forestry producing wood		
			products		
			Improvement of logging		
			techniques		
			Promotion of wood		
			technology (e.g. composite		
			wood)		
	Adamtian of		Delensing development and		Commission
	Adoption of		Balancing development and	•	Complement
	integrated		infrastructure improvement		targets for forest
	systems	•	Compensation for forest land		loss and increase
			reduced by development		
	Sustainable	•	Formulation of directives and	•	75% of forests in
	forest		guidelines		the Terai and 75%
	management	•	Implement systems that		of forests in the
			promote forest growth		mid-hills between
		•	Promoting sustainable forest		2030 and 2050
			management		
	Forest research	•	Capacity building for	•	Compilation of
	and development		information processing such		statistics on
			as forest statistics		annual soil
			Establishment of an		coverage changes
			observation system for GHG	•	Enhancing forest
			emissions		emissions related
			Enhanced forest heading data		information
Wasta	Durantian of		Mathema magazine data		Deduction of 16
waste	Promotion of	•	Methane recovery from	•	Reduction of 1.6
	WTE				MICO2e in 2030
		· ·	Incineration heat utilization		and 5.7 MtCO2e in
			and power generation		2050
		•	Methane utilization from		
			anaerobic treatment of		
			wastewater		

3.3.3.2 Policy Framework and Institutions

While Nepal is rich in energy resources such as hydropower and biomass, over the past two decades rapid population growth, economic development and motorization have increased the country's dependence on fossil fuel imports. Fossil fuel imports are not only putting pressure on government finances but also increasing GHG emissions, and the Nepalese government is working on developing a policy and regulatory framework to achieve the net zero target for 2045 through ET-CN initiatives. Among the key policies, those related to ET-CN are as follows.

Table 3-37 Policy Framework and Institutions Contributing to ET and CN in

No.	Policy/Regulation	Year of Issue	Issuing Authority	Relevance to ET/CT
1	Budget Speech of Fiscal Year 2022/23	2022	MoF	Budget policy on renewable energy, energy-saving initiatives, promotion of EVs, use of hydrogen energy, etc.
2	Environmentally Friendly Local Government Framework	2021	MoFAGA	Framing local government environmental policy, including climate change action measures
3	Industrial Enterprises Act	2020	MoICS	Reduction of GHG emissions in the industrial sector
4	Environment Protection Regulation	2020	MoFE	GHG emission reduction, EV promotion, energy saving
5	National Environment Policy	2019	MoFE	GHG emission reduction, biomass use reduction, EV promotion, electrification, energy saving
6	Environment Protection Act	2019	MoFE	GHG emission reduction
7	National Climate Change Policy	2019	MoFE	GHG emission reduction, electrification, EV promotion, forest management
8	The Fifteenth Plan (Fiscal Year 2019/20 - 2023/24)	2019	NPC	Reduction of GHG emissions, promotion of renewable energy, reduction of biomass use, promotion of EVs, electrification, energy conservation
9	White paper on energy and water	2018	MoEWRI	Renewable energy dissemination, etc.
10	Nepal National REDD + Strategy (2018 -2022)	2018	MoFE	Spread of renewable energy, electrification, biogas, and electric cookers
11	National Energy Efficiency Strategy	2018	MoEWRI	Energy conservation and energy efficiency
12	The Biomass Energy Strategy	2017	MoPE (at the time)	Promotion of sustainable biomass use
13	National Urban Development Strategy	2017	MoUD	Renewable energy dissemination, etc.
14	Renewable Energy Subsidy Policy	2016	MoPE (at the time)	Renewable energy dissemination
15	Constitution of Nepal	2015	Constituent Assembly	Renewable energy dissemination
16	Agriculture Development Strategy (2015-2035)	2015	Ministry of Agricultural Development (at the time)	Rural electrification, promotion of renewable energy, promotion of biogas use

Nepal (in chronological order) 73

⁷³ Prepared by Pacific Consultants based on Nepal's ministry websites and interviews.

17	Nepal Sustainable	2015	NPC	Renewable energy
	Development Goals			dissemination, etc.
	Status and Roadmap:			
	2016 -2030			

An outline of each measure is as follows.

1. Budget Speech of Fiscal Year 2022/23 (2022)

The Ministry of Finance made a speech on the Government Budget for 2023⁷⁴ on May 29, 2022. It listed 10 priorities, which included agrarian reforms, infrastructure development and expansion of power infrastructure.

Notable policies related to ET and CN are described below.

- ✓ Develop an initiative to establish a chemical fertilizer plant using green hydrogen and green ammonia technologies
- ✓ Large-scale infrastructure projects led by the government will use green bonds
- ✓ Conduct FS for Kathmandu Metro
- ✓ Establish an energy consumption plan and set annual electricity consumption per person at 400 kWh.
- ✓ Utilize renewable energy sources such as small-scale hydropower and solar power to supply electricity to 25,000 off-grid households
- ✓ Select reservoir type for more than 50% of hydropower projects
- ✓ NEA operates 50 EV charging stations in Nepal
- ✓ Encourage the installation of charging stations at private fueling stations
- ✓ Replacing energy sources in the brick industry with electricity
- ✓ To reduce LPG consumption, subsidies for LPG will be phased out and subsidies for electricity will be increased
- ✓ Begin the work necessary to make hydrogen energy commercially available.
- ✓ 40% income tax exemption for five years for EV-related industries such as new EV assembly plants
- \checkmark Import duty on electric three-wheeled and two-wheeled parts to be 1%.
- 2. Environment Friendly Local Government Framework (2021)

The Framework developed by MoFAGA is to promote environmental policies in local government and build an environmentally friendly society. The four main objectives are as follows.

- ✓ Mainstreaming and localizing environmental protection, sanitation, waste management, biodiversity protection, climate change adaptation, and disaster management in local planning processes
- ✓ Clarification of responsibilities, roles, etc. at the household level in the areas of climate change adaptation, disaster management, environmental protection and waste management

⁷⁴ The financial year in Nepal is from July 15 to July 14 of the following year.

- ✓ Encouraging environmentally sustainable development in local communities and households through positive feedback
- ✓ Cooperation among stakeholders in environmental protection and sustainable development It sets indicators for the implementation of environmental policies by municipalities, which include the use of clean energy, the use of electric stoves, water source management and waste reduction.

3. Industrial Enterprises Act (2010)

The act stipulates that the industrial sector must conduct initial environmental studies and take action to mitigate environmental impacts.

4. Environment Protection Regulation (2020)

The regulation indicates that priority will be given to clean energy, EVs and energy-saving technologies to reduce GHG emissions. Target sectors are energy, industry, forestry, land use, and waste, and measures to reduce GHG emissions are provided. It also states that government agencies, organizations, and private companies can sell credits for GHG emission reductions in domestic and international carbon markets through the government and other entities.

5. National Environment Policy (2019)

The policy aims to reduce and prevent environmental pollution through waste management in the household, industrial and commercial sectors and by increasing the area of green space. Specifically, the policy aims to reduce GHG emissions from households through the use of biomass energy, solar cookers, electric stoves and improved cook stoves. It also aims to promote energy efficient buildings. The policy also focuses on promoting alternatives to fossil fuel vehicles such as EVs, hybrids and hydrogen-fueled vehicles and consumption of eco-labelled products to promote clean energy in Nepal. In addition, the policy will also focus on promoting the construction of biogas plants at the regional level to promote the use of bioenergy and organic fertilizers, and the use of renewable energy, particularly through the promotion of bicycle lanes and sidewalk infrastructure and the introduction of EVs to reduce GHG emissions from vehicles that consume fossil fuels. This policy will be renewed every five years.

6. Environment Protection Act (2019)

This stipulates, among other things, the submission of environmental reports to be handled by implementers of development projects and commercial activities in general that emit pollutants. It also provides for GHG emission reduction measures for development projects implemented by central and local governments, including the provision of information from the Ministry on periodic GHG emissions calculations and for the government to conduct calculations and determine impacts as necessary. It also states that the government may participate in carbon trading markets established with other governments and the private sector.

7. National Climate Change Policy (2019)

On mitigation, the promotion of technology development to reduce black carbon and GHG emissions is indicated. On the financial side, the report states that funding will be obtained through bilateral and multilateral international financial mechanisms such as REDD+, the Green Climate Fund, the Global Environment Facility, the Adaptation Fund, the Climate Investment Fund (CIF) and carbon trading, with over 80% of the funds used for program implementation at the local level. As for private finance, the MoFE recommends the use of green bonds and carbon trading. The MoFE will also develop a Low Carbon Economic Development Strategy and a National Strategy for Carbon Trade.

The main mitigation-related policies in each sector are as follows.

- ✓ <u>Agriculture</u>: Use of efficient irrigation technologies. Promotion of agroforestry on uncultivated land. Promotion of low carbon and energy saving technologies in the production, collection, processing and storage processes of agricultural products and in livestock production.
- ✓ <u>Forests</u>: Enhancing GHG fixation capacity through the adoption of sustainable forest management. Promoting agroforestry in slopes and low quality forest areas; attracting funding through REDD+ and CDM.
- ✓ <u>Water resources and energy</u>: Ensure water and energy security by promoting cascading use of water resources and renewable energy.
- ✓ <u>Rural and urban development</u>: Incorporate low carbon technologies into development plans.
- ✓ <u>Industry, transport and infrastructure</u>: Develop mitigation standards and identify sources of emissions in the industry and transport sectors. Promote the application of energy-saving technologies and electricity consumption; promote EVs; encourage GHG emission reductions in the private sector through CSR activities; and encourage the use of energy-efficient technologies in the transport sector. Phase-out of vehicles after a certain number of years of use.
- ✓ <u>Tourism</u>: Aim for zero emissions at tourist attractions using renewable energy and energysaving technologies.
- ✓ <u>Waste</u>: Household waste is separated and biodegradable waste is encouraged to be used as alternative energy at the household level.
- 8. The Fifteenth Plan (Fiscal Year 2019/20 2023/24) (2019)

It is a five-year plan for socio-economic development and serves as a high-level plan that forms the basis for the policies of the ministries and agencies. Its vision is to achieve rapid and balanced economic development, prosperity, good governance and well-being of the people. The Plan also aims to move Nepal from a Least Developed Country to a Developing Country by 2022 and to raise it to the level of a middle-income country by 2030 through the achievement of the SDGs.

The specific targets in the energy sector in this plan are as follows.

✓ Increase hydropower capacity to 5,000 MW.

- ✓ Achieve 100% electrification rate.
- \checkmark Increase the share of renewable energy in total energy consumption from 7% to 12%.
- ✓ Extend the total length of 66kV and above transmission lines to 8,000km, 33kV lines to 7,300km and 11kV lines to 43,352km.
- ✓ To earn income from carbon trading, a total of 500 large-scale biogas plants will be installed to reduce LPG imports by 40,000 tons.
- \checkmark Solar power generation from 33 MW in FY 2018-19 to 160 MW by the end of 2024.

The following targets have been set for the transport and transportation sector.

- ✓ Promote the use of environmentally sustainable vehicles.
- ✓ Automotive testing facilities were established to measure vehicle emissions.
- \checkmark Focus on the promotion of EVs.

In the industrial sector, the government will promote the use of clean energy under the green growth concept.

In the consumer sector, the following targets have been identified to increase electricity consumption by making the distribution system more efficient and reliable to improve energy efficiency and to expand access to electricity.

- ✓ Hydroelectric power will replace fossil fuels to realize the "Smokeless Kitchen" concept.
- ✓ Establish an appropriate rate structure for electricity used for cooking.
- ✓ "Every Home, Energy Home" concept to promote energy efficiency programs and rooftop solar PV connection to the grid based on net metering and net payments.
- ✓ Develop and implement energy conservation standards for electric heaters and electronic equipment.

Others include the implementation of GHG emissions monitoring from transport and transportation, industry and commerce, agriculture, forestry and energy sectors; community-based forest management to maximize carbon fixation; human resource capacity building to address climate change; and climate change education in about 90% of schools. It also indicates that access to modern and sustainable energy will be facilitated by promoting carbon trading markets with the help of financial institutions.

9. White paper on energy and water (2018)

This is a white paper on MoEWRI's development policy for the energy and water resources sector, and the policies and objectives are as follows

- ✓ Power projects of 3,000 MW in 3 years, 5,000 MW in 5 years and 15,000 MW in 10 years (including 10,000 MW for domestic supply) will be developed by the Government, NEA and private companies.
- ✓ Under the "One Province, One MW Project" program, at least one hydro and solar power project will be constructed in each province.

- ✓ At least one medium-sized hydropower project will be constructed at the expense of the provincial/local government.
- ✓ Under the slogan "Every House, Energy House", launch a campaign on energy conservation programs for rooftop photovoltaics connected to the grid at home through net metering and net payments.
- ✓ The Electricity Utilities Act and the Electricity Corporation of Nepal Act will be amended and the Renewable Energy Development Act will be enacted. The Electricity Regulatory Commission will be completed in accordance with the Electricity Regulatory Commission Act, 2017.
- ✓ Increase per capita annual electricity consumption to 700 kWh over the next five years and 1,500 kWh over the next 10 years.
- ✓ Improve energy efficiency.
- ✓ Implement the necessary programs to increase the use of energy generated through wasteto-energy conversion.
- ✓ Modernize and consolidate the power distribution infrastructure.
- ✓ Improve the existing power distribution network in major cities including Kathmandu.
- ✓ Expand and strengthen industrial transmission lines and substations to provide reliable power services to industrial zones and special economic zones.
- ✓ To improve the power system, smart meters and smart grid systems will be introduced.
- ✓ Take the necessary legal, technical and administrative measures to reduce and more effectively manage electrical leakage.

10. Nepal National REDD+ Strategy (2018 -2022) (2018)

The Strategy aims to analyze the impacts of climate change on forest ecosystems and integrate them into forest management plans. It also states that the role and importance of forest conservation in mitigating climate change will be incorporated into education. The Strategy also addresses the energy sector, focusing on promoting the use of sustainable energy sources such as biogas, solar and wind power, enhancing rural people's access to sustainable and affordable alternative energy sources, as well as promoting the use of electric stoves and improved biomass stoves. Others include developing measures to facilitate access to alternative energy and energy saving technologies for poor and rural people dependent on forests and biomass use, and implementing programs to promote natural, protected, community, private and agroforestry forests through sustainable forest management.

11. National Energy Efficiency Strategy (2018)

The Strategy promotes the use of energy efficient equipment in the transport and industrial sectors to reduce energy imports and GHG emissions and air pollution by promoting clean energy use and energy conservation. The goal is to double the average rate of improvement in energy efficiency in Nepal from 0.84% per annum in 2000-2015 to 1.68% per annum in 2030. The specific targets are as follows.

- ✓ Establish an organization dedicated to energy efficiency and conservation advocacy, development, and implementation.
- ✓ Strengthen MoEWRI's existing energy efficiency measures and implement various energy efficiency related initiatives.
- ✓ Conduct surveys and research on energy efficiency and the demand side, and develop technologies related to energy efficiency.
- ✓ Formulate a national energy conservation action plan to institutionalize energy conservation.
- ✓ Set minimum energy performance standards for equipment used in different sectors.
- ✓ Conduct energy conservation campaigns targeting the industrial, commercial, and transportation sectors.
- ✓ Encourage the use of energy efficient equipment in the transport and industrial (manufacturing) sectors.
- ✓ Implement initiatives to help farmers learn about energy efficient agricultural equipment and how to use it.
- ✓ Conduct awareness-raising activities in the consumer sector to stimulate energy conservation awareness from consumers to policy makers.

12. The Biomass Energy Strategy (2017)

The Ministry of Population and Environment (then MoFE, now MoFEM) has developed this Strategy to promote the use of biomass as an affordable and sustainable energy source. The strategy aims to enhance the production of sustainable biomass energy from organic wastes in agriculture and forests and to provide financial support for the development of affordable biomass energy technologies (biogas, improved cook stoves (ICS), briquettes, pellets, combined heat and power, waste to energy, etc.), including feasibility, quality control, emission standards and financial support for technology development and to increase the efficiency of biomass energy consumption. Furthermore, it states that all households will have access to clean cookstoves by 2022 and all households using biomass will have access to modern clean energy by 2030. The specific targets are as follows.

- ✓ 3 million improved cook stoves will be made available to households using conventional biomass.
- ✓ About 600,000 household biogas systems using livestock manure will be installed.
- \checkmark 20,000 tons of pellets and briquettes will be produced per year.
- ✓ Provide sufficient financial incentives (such as tariff and VAT exemptions) for the production, processing and distribution of biodiesel and bioethanol, as well as subsidies and credit facilities.

13. National Urban Development Strategy (2017)

The policy of this strategy is to provide sustainable and sufficient energy supply or 100% electricity access for all urban activities, with the goal of providing a stable energy source to

households across the country using alternative energy sources within 15 years.

14. Renewable Energy Subsidy Policy (2016)

It aims to promote cost reduction and use of alternative energy sources in rural Nepal through research on renewable energy technologies. The policy will provide subsidies for a range of renewable energy technologies, including hydro, solar, biogas, biomass and wind. The amount of subsidy will be calculated based on cost per output and will generally be around 40% of the total cost.

15. Constitution of Nepal (2015)

The Constitution provides for the reliable supply and proper use of energy through the development of renewable energy sources.

16. Agriculture Development Strategy (2015-2035) (2015)

The Strategy focuses on rural electrification, enhancement of renewable and alternative energy sources and sustainable agriculture through the promotion of biogas and biomass. The main action plans that will contribute to GHG emission reductions are as follows.

- ✓ Income tax incentives to encourage investment in crops, machinery and irrigation infrastructure
- ✓ Promoting Green Technology
- ✓ Rural electrification and increased use of renewable energy
- ✓ Promotion of good practices integrating soil and plant condition management, pest management and livestock management to promote sustainable agriculture and the use of renewable energy based on biogas and biomass utilization
- ✓ Encouraging local forestry groups to use alternative energy sources and energy conservation measures

17. Nepal Sustainable Development Goals Status and Roadmap: 2016 -2030 (2015)

Target 7.1 of the SGDs aims to ensure access to affordable, reliable, sustainable and modern energy for all. Goal 7.a. states that international cooperation will be strengthened by 2030 to make clean energy research and technologies, including renewable energy, energy efficiency and clean fossil fuel technologies, more accessible and to promote investment in energy infrastructure and clean energy technologies. This roadmap sets out quantitative targets based on these goals as follows.

- ✓ The percentage of the population with access to electricity will be 99% by 2030, up from 74% in 2015.
- ✓ Increase per capita final energy consumption from 16 GJ in 2015 to 24 GJ by 2030.
- ✓ Increase electricity consumption from 80 kWh in 2015 to 1,500 kWh by 2030.
- \checkmark Reduce the number of households dependent on firewood for cooking
- ✓ Reduce energy use per GDP from 3.20 toe/mRs in 2015 to 3.14 toe/mRs by 2030

- ✓ Increase the share of renewable energy in final energy consumption from 11.9% in 2015 to 50% by 2030.
- ✓ Increase hydropower installed capacity from 782 MW in 2015 to 15,000 MW by 2030.

3.3.3.3 Review of similar studies by international development cooperation organizations, etc.

Major donors implementing renewable energy and climate change-related programs in Nepal include the WB, ADB, and GGGI. The following is a summary of trends in related projects and support by other donors for ET and CN.

WB is providing development policy loans under the Green, Resilient, Inclusive Development (GRID) project. It is also preparing a project related to power distribution network upgrading and development.

ADB is focusing on strengthening the stable supply of electricity and energy and energy security. In particular, it is working to strengthen and expand the power supply system, supporting the construction of more than 200 km of transmission lines and substations along the Kaligandaki corridor. In addition, GGGI is implementing projects to promote the efficient use of biomass, developing micro/mini-hydropower and mini-PV in rural areas, developing micro/mini-grids, publicizing EV charging stations, and assisting in the development of strategies to promote EVs.

GGGI has provided various support for the development of Nepal's revised NDC released in 2021 and is considering support for the next revised version. In particular, GGGI has been continuously cooperating with MOEF by providing consultancy services on a regular basis. Currently, GGGI is mainly focusing on e-mobility, and is implementing the NAMA project on e-mobility from 2021.⁷⁵ Furthermore, GGGI is implementing projects in partnership with Kathmandu University and NEA for the production of green hydrogen, green ammonia, and fertilizer using green ammonia.

Through the Urja Nepal program, USAID is implementing energy-related assistance projects, including support for the formulation of policy frameworks, support for energy conservation and EV promotion policies, and technical assistance to NEA regarding purchase agreements for energy developed by the private sector and electricity sharing with India. For the promotion of EVs, the impact of E-bus (Sajha Yatayat) recharging on electricity demand is being analyzed. In the future, they plan to support grid code development.

The UK's Foreign, Commonwealth and Development Office (FCDO) is funding the evaluation and implementation of distributed renewable energy projects for small and medium enterprises, hospitals, schools, etc. It is provided through the Sustainable Energy Challenge Fund established under AEPC's Central Renewable Energy Fund. It aims to mitigate implementation risks through cost-sharing to make PPP energy projects by local governments, renewable energy

⁷⁵ Nepal - Electric Transportation, https://www.nama-facility.org/projects/nepal-electric-transportation/ Accessed Aug 3, 2022.

projects for household and irrigation uses in rural areas, mini-grids, and other projects feasible.

NGOs (Practical Action Nepal, Centre for Rural Technology Nepal) are working with APEC and others to promote electric stoves and improved biomass stoves in households, mainly in rural areas. The project supports the introduction of high-tier stoves to encourage conversion from traditional biomass stoves to more environmentally friendly improved biomass stoves and electric stoves, and also supports negotiations with rural electric stove suppliers, discount campaigns for electric stove cookers, demand stimulation, and the development of an app that allows people to check how they use electric products and their electricity bills.

In addition to the activities of donors, Nepal is implementing three projects using UNFCCC GCF. Clean cooker dissemination (Program No. FP172) is a mitigation project for which AEPC is the certifying agency ⁷⁶. Ecosystem improvement in Gandaki river basin (No. FP131) is a cross-cutting project for which the International Union for Conservation of Nature is the certifying agency ⁷⁷. The Food and Agriculture Organization of the United Nations is the accredited agency for the project of building resilience in the Churia region (No. FP118) ⁷⁸. The clean cooker dissemination includes installation of electric cookers, improved biomass cookers and biogas plants and municipal capacity building in the Terai region of the country. The ecosystem improvement in Gandaki river basin and building resilience in Churia region programs are mainly aimed at restoring and maintaining the natural environment and ecosystems.

Table 3-38summarizes the activities of major international donors.

Table 3-38 International donors' cooperative projects contributing to ET-CN in Nepal

Energy							
Donor	C/P	Policy	Regulation	Tax system	Fundrai sing	Pilot	Capacity building
Global Green Growth Institute (GGGI)	MOFE	Support for NDC formulatio n					
	MoEWRI, NEA, Kathmand u University , etc.						Research on Hydrogen, Ammonia and Fertilizer Production and their Use for Greening

*Italicized descriptions with underlines are projects under consideration

⁷⁶ Mitigating GHG emissions through modern, efficient and climate friendly clean cooking solutions (C CS) https://www.greenclimate.fund/project/fp172 Accessed 3 August 2022

⁷⁷ Improving Climate Resilience of Vulnerable Communities and Ecosystems in the Gandaki River Basin, Nepal https://www.greenclimate.fund/project/fp131 Accessed August 3, 2022

⁷⁸ Building a Resilient Churia Region in Nepal (BRCRN) https://www.greenclimate.fund/project/fp118 Accessed 3 August 2022

						the Socio-
. .	AFDC			T (Economy
Foreign,	AEPC			Investm		
th and				the		
Development				Sustain		
Office				able		
(FCDO)				Energy		
()				Challen		
				ge Fund		
				(SECF)		
				of		
				AEPC's		
				Renewa		
				ble Energy		
				Fund		
ADB Nepal	AEPC			Tunu	Improvem	
nibb nepui	NEA. etc.				ent of	
	,				power	
					transmissi	
					on and	
					distributi	
					on	
					network	
					depergy	
					developm	
					ent in	
					rural	
					areas	
WB Nepal	GoN			Develo		
				pment		
				Policy		
				Financi		
				ng in Groop		
				Resilie		
				nt.		
				Inclusiv		
				e		
				Develo		
				pment		
				(GRID)		
	-				<u>Improvem</u>	
					<u>ent of</u>	
					<u>power</u> transmiss	
					ion and	
					distributi	
					on	
					<u>network</u>	
USAID	NEA				Improvem	Purchasing
					ent of	support for
					power	import and
					transmissi	export of

				distributi	electric
				on	power
				network	Support for
					financial
					analysis and
					demand
					forecasting
					for
					hvdropower
					generation
	ERC	Assistance			C
		in			
		developing			
		regulations			
		and			
		guidelines			
	-	Grid Code			
		Developme			
		nt			
GIZ	MoEWRI			Rural	
				electrifica	
				tion,	
				creation	
				of clean	
				cooker	
				market	

EV Promotion

Donor	C/P	Policy	Regulati	Tax	Fundraisin	Pilo	Capacity
		-	on	syste	g	t	building
				m	-		_
GGGI	MOFE,	EV promotion	policy at t	he NAM	A Facility, su	pport f	for the
*In the NAMA	MOPIT	development of	of EV guide	elines, fu	nding for ele	ctric bu	ises and
Facility (E-	, MOF	charging stati	ons, etc.				
Transportation)							
, GIZ is the							
budget							
management							
body and							
GGGI is one of							
the							
implementing							
entities along							
with NEA,							
DoT and							
others.			I		I	1	I
ADB Nepal	MPIT	Promotion					
		of charging					
		stations and					
		support for					
		formulating					
		EV					
		promotion					
		strategies					
USAID	Sajha						Electricit
	Yatayat						y Demand

				Impact
				Analysis
				of E-Bus
				Charging

Energy Conservation

Donor	C/P	Policy	Regulation	Tax system	Fundrais	Pilot	Capacity building
USAID	NEA						Support for evaluation of electrification promotion measures
GIZ	MoEWRI, AEPC (-2017)	<u>Improve</u> <u>energy</u> <u>efficiency</u> <u>policies</u>					Promote energy efficiency market, energy saving human resource development

3.3.4 Uzbekistan

3.3.4.1 Summary of Greenhouse Gas Emissions and NDC

The latest official GHG inventory by the Government of Uzbekistan is the 2017 GHG inventory as presented in the Biennial Report 1st Edition (BR)⁷⁹ published in 2021. It shows that total GHG emissions were 189.2 million tCO2e in 2017, with the energy sector accounting for 76%, IPPU 5%, agriculture, forestry and other land use 18% and waste 1% (Figure 3-26); net GHG emissions and absorption are only 180.6 million tCO2 and 8.6 million tCO2e, respectively, when GHG absorption by forests and other sectors is subtracted from GHG emissions. The inventory covers CO2, CH4, N2O and HFCs, which are among the seven GHGs specified by IPCC. The BR also summarizes the GHG emissions of each subsector, with the top five largest GHG emission subsectors amounting to 132.5 million tCO2e (about 70% of total GHG emissions) (Table 3-39). A distinctive feature of GHG emissions in Uzbekistan is that about four-fifths of GHG emissions come from the energy sector. Four out of the top five categories are related to energy, especially fugitive emissions from pipelines and CO2 emissions from the energy industry, and the remaining one is CH4 emissions from fermentation of livestock in agriculture, forestry and other land use. The reason for the large emissions from the energy sector is thought to be that Uzbekistan delivers and consumes its own natural gas through aging pipelines, power generation and heat production equipment. In addition, although there is no significant change in GHG emissions in Uzbekistan, there is an increasing trend in emissions from the electricity and heat use, agriculture, and transportation sectors. (Figure 3-27 Figure 3-28)

Figure 3-26 GHG Inventory of Uzbekistan (2017)⁸⁰

⁷⁹ First Biennial Update Report of The Republic of Uzbekistan (Government of Uzbekistan, 2021) https://unfccc.in t/sites/default/files/resource/FBURUZeng.pdf Accessed July 16, 2022

		5	
Sector	Sub-sector		ktCO2e
Energy	Fuel Combustion Fugitive Emissions	-Energy Industries -Manufacturing and Construction -Transport -Commercial <mark>-Residential</mark> -Agriculture	31,900 21,200 16,100 6,100 19,600 50 49,370
Industrial Processes and Product Use	Mineral Industries Chemical Industries Metal Industries Use of HFCs Lubricant use		3,455.5 3,616.7 1,041 269.7 84.2
Agriculture, Forestry, and Other Land Use (AFOLU)	<mark>Livestock</mark> Forestry and other land use	<mark>-Enteric Fermentation</mark> -Manure Management -N2O from managed soils Rice cultivation Forest land Pasture Cropland	19,446.3 3,093.8 10,943.4 168.8 -12,207.7 5,024.2 -1,448.7
Waste	Solid waste landfills Industrial wastewater Domestic wastewater		2,171 95.5 413.1

Table 3-39 GHG Emissions by Sub-sector in Uzbekistan⁸¹

*The main types of GHG emissions in GHG emissions are shown in black: CO2, red: CH4, blue: N2O, and green: HFCs.

*Negative (-) in GHG emissions indicates GHG absorption. *Yellow highlights indicate the top five GHG emitters.

5 Major Emission category

Sector	Key emission category	ktCO2e
Energy	Natural gas	47 185.2 CH4
Energy	Power generation, gaseous fuels	27 557.8 CO2
Energy	Process industry and construction, gaseous fuels	20 838.2 CO2
AFOLU	Internal fermentation	19 446.3 CH4
Energy	Residential sector, gaseous fuels	17 521.8 CO2

⁸¹ Prepared by Pacific Consultants based on NC3.

Figure 3-27 Change in GHG emissions in Uzbekistan Over Time (2000-2018)⁸²

Source: CAIT Climate Data Explorer via Climate Watch OurWorldInData.org/co2-and-other-greenhouse-gas-emissions • CC BY Note: Greenhouse gases are weighted by their global warming potential value (GWP100). GWP100 measures the relative warming impact of one molecule of a greenhouse gas, relative to carbon dioxide, over 100 years.

Figure 3-28 GHG emissions in Uzbekistan by sector ⁸³

⁸² Prepared by Pacific Consultants based on Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO₂ and Greenhouse Gas Emissions". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions' [Online Resource].

⁸³ Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO₂ and Greenhouse Gas Emissions". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions' [Online Resource]

Uzbekistan's revised NDC (NDC2)⁸⁴ in 2021 states a 35% reduction by 2030 compared to 2010 GHG emissions per GDP, with mitigation measures and targets in the energy, agriculture, other land use and forestry, waste and other sectors (Table 3-40).

Table 3-40 GHG	Emission	Reduction	Measures in	n NDC2	in Uzbekistan	8 5

Sector	Mitigation Target (2020-2030)
Energy	Increase the share of renewable energy in power generation to 25%, through solar, wind and small hydro
	Further introduce energy-saving technologies in industry, construction, agriculture and other sectors of the economy
	Introduce alternative fuels in transportation
	Introduce effective incentives for resource mobilization
Agriculture	Improve productivity of agricultural land
	Improve the water management system (improve energy efficiency of pumping system)
LULUCF	Expand forest areas
Waste	Improve the solid waste management system
Other	Other measures and actions reflected in the Strategy for Transition to a Green Economy until 2030 (PP-4477 dated 04.10.2019), which is currently under revision and is to be extended until 2050

Uzbekistan also presented emission projections to 2030in its 2021 Biennial Report ⁸⁶ (Figure 3-29). The forecast uses the GHG Abatement Cost Model (GACMO) ⁸⁷ to project GHG emissions (CO2, CH4 and N2O) to 2030 based on 2019 GHG emissions. It shows that even the most "ambitious scenario" with the most emission reductions in 2030 will result in a 111.5% increase from 2019 levels. The projections also forecast increases in GHG emissions in the energy, IPPU, agriculture and waste sectors, resulting in an increase only in the energy sector (Table 3-41). The measures for the energy sector in the ambitious scenario are shown in Table 3-24.

⁸⁴ Updated Nationally Determined Contribution (NDC) (Government of Uzbekistan, 2020) https://unfccc. int/sites/default/files/NDC/2022-06/Uzbekistan_Updated%20NDC_2021_EN.pdf Accessed 16 July 2022 85 Prepared by Pacific Consultants based on NDC2.

⁸⁶ First Biennial Update Report of The Republic of Uzbekistan (Government of Uzbekistan, 2021) http s://unfccc.int/sites/default/files/resource/ FBURUZeng.pdf Accessed 16 July 2022

⁸⁷ A GHG emission reduction forecasting model developed by UNEP and the Technical University of Denmark. Reference: The Greenhouse Gas Abatement Cost Model (GACMO)

Inertial: Current GHG emission and energy consumption trends will continue.

Realistic: Mitigation measures in progress or scheduled to be implemented for which funding has been committed will reduce the rate of increase in GHG emissions.

Ambitious: Realize the full reduction potential of the energy sector with international support.

Figure 3-29 Projected GHG Emission Pathways in Uzbekistan

Table 3-41 Sectoral Emissions in the GHG Emission Pathway Projection for Uzbekistan⁸⁸

Inertial Scenario	2017	2020	2025	2030
Energy	145.0	159.4	182.7	207.1
IPPU	8.5	8.9	9.6	10.4
Agriculture	33.7	36.6	42	48.4
Waste	2.7	2.7	3.0	3.6
Total	189.8	207.5	237.4	269.6
Realistic Scenario	2017	2020	2025	2030
Energy	145.0	157.4	171.0	185.6
IPPU	8.5	8.9	9.6	10.4
Agriculture	33.7	36.6	42	48.4
Waste	2.7	2.7	3.0	3.6
Total	189.8	205.5	225.7	248.1
Ambitious Scenario	2017	2020	2025	2030
Energy	145.0	155.8	163.9	160.6
IPPU	8.5	8.9	9.6	10.4
Agriculture	33.7	36.6	42.0	48.4
Waste	2.7	2.7	3.0	3.6
Total	189.8	204.0	218.5	223.1

88 Prepared by Pacific Consultants based on BR of Uzbekistan.

Ambitious Scenario	Mitigation measures	Period	Reduction MtCO2e/y
Energy generation	Implementation of new thermal power plants (3,800MW), expanding existing thermal power plants through the construction of CCGT, GTU (additional 4,100MW)	2020- 2030	8.5
	Construction of 35 HPP (1,537MW) and modernization of 27 existing HPP (additional 186MW)		1.9
	Construction of solar PV (5 ,000MW 9.9billion kWh/y)	2020- 2030	5.2
	Construction of wind power plants (3,000MW 8.6billion kWh/y)	2020- 2030	4.6
	Construction of nuclear power plants (2,400MW 18billion kWh/y)	2022- 2028	7.1
	Reducing fugitive emissions in the oil and gas sector	2021- 2030	1.0

Table 3-42 Energy Sector Measures in the Ambitious Scenario in Uzbekistan's

BR 89

Furthermore, in Uzbekistan, the Ministry of Energy, in cooperation with the European Bank for Reconstruction and Development (EBRD), has developed recommendations and a roadmap for achieving carbon neutrality in the electricity sector by 2050 ⁹⁰, with particulars in Table 3-43. The roadmap to 2050 in the EBRD report is shown in Figure 3-30.

Table 3-43 EBRD Recommendations for Achieving Carbon Neutrality in Uzbekistan's Electricity Sector by 2050 91

Priority item	Outline	Contents	Organizations concerned (involved)	1-2 years	3-5 years	>5 years
1. Infrastructure improvement	Continued development of efficient, low-carbon power generation infrastructure and grids	Continue the reform of the grid to make power generation sources more efficient and low-carbon and to accommodate the massive introduction of	Department of Energy			

⁸⁹ Prepared by Pacific Consultants based on BR.

⁹⁰ A carbon neutral electricity sector in Uzbekistan: summary for policymakers (Ministry of Energy of the Republic of Uzbekistan, 2021) https://minenergy.uz/en/lists/view/131 Accessed 16 July 2022

⁹¹ Prepared by Pacific Consultants based on A carbon-neutral electricity sector in Uzbekistan: Summary for policymakers (Ministry of Energy of the Republic of Uzbekistan, 2021).

		renewable energy, as outlined in the Ministry of Energy Concept for 2020-2030. In particular, natural gas-fired power generation is expected to play a role in regulating the variability of renewable energy. National grid interconnections will also play an important role in dispersing and absorbing renewable energy variability.			
2. Establishment of a framework for promoting renewable energy	Implement regulatory and institutional reforms to promote renewable energy development	Implement regulatory and institutional reforms to enable and support the development of renewable energy resources and mobilize domestic and foreign investment in renewable energy, which will also contribute to the creation of green jobs. Decarbonize the energy sector by revising the legal framework for governance of energy-related state-owned enterprises, and also to encourage private sector participation.	MoE, State Commission for Ecology and Environmental Protection (SCEEP), Electricity Market Regulator (EMR), Ministry of Finance (MoF), Ministry of Investment and Trade (MIFT)		

3. Subsidy Reform and Carbon Pricing	Elimination of schemes and subsidies that support highly carbon- intensive energy sources and creation of fair competition through the development of a final carbon pricing system	Phasing out subsidies for carbon intensive energy and introducing compensation for affected businesses. Gas should be fully liberalized to show the true cost to the market. Eventually introduce carbon pricing.	MoE, SCEEP, MoF, MIFT, Ministry of Economic Development and Poverty Reduction (MoDPR)		
4. Awareness raising campaign to create public support	Ensure social acceptability and sustainability of the changes being introduced	Support the social acceptability and sustainability of the transformation through measures to protect consumers vulnerable to energy prices (e.g., compensation for price increases, subsidies for energy efficiency and renewable energy deployment, transparency in electricity prices, and refund of revenues from carbon pricing).	MoE, SCEEP, MoDPR		
5. Environmental protection	Protecting the environment with a view to mitigating climate change and improving resilience and reducing other adverse environmental impacts	Monitor the biodiversity and environmental impacts of the project and improve environmental laws; climate risk assessment and disclosure in line with TCFD recommendations	MoE, SCEEP, MIFT		

is important to understand the impacts of climate change on power generation assets.			
--	--	--	--

Figure 3-30 Change in Generation Mix and CO2 Emissions under the Carbon Neutral Scenario⁹²

3.3.4.2 Policy Framework and Institutions

President Mirziyoyev has been actively engaged in political reforms, including the establishment of a new Ministry of Energy, and structural reforms of state energy companies, and, like the former Karimov administration, has made increasing oil and gas production, increasing natural gas exports, and expanding foreign direct investment the basic policies of his government. Below is a summary of the policies and institutions related to renewable energy and hydrogen utilization.

⁹² Prepared by Pacific Consultants based on A carbon-neutral electricity sector in Uzbekistan: Summary for policymakers (Ministry of Energy of the Republic of Uzbekistan, 2021).

No.	Legal system name	Year of entrv	Issuing authority	Relevance to ET-CN
		into		
		force		
	laws and ordinances			
1	No.539: Use of Renewable Energy	2019	Parliament	Definition of renewable
				energy and provisions for
				preferential treatment, etc.
2	No.412: Rational Use of Energy	2020	Parliament	Implementing rational
				energy use and energy
				conservation
	Presidential decree			
3	PP4422: Development of	2019	Government	Setting targets for the
	renewable energies and			introduction of renewable
	introduction of energy-saving			energy and energy
	technologies and accelerated			conservation
	measures in improving energy			
	efficiency in economic and social			
	sectors			
4	PP4477: Strategy for the transition	2019	Government	Transition Strategy to a
	to a green economy 2019-2030			Green Economy by 2030
5	PP4779: Additional Measures to	2020	Government	Establishment of an energy
	Reduce the Dependence of			conservation fund, energy
	Economic Sectors on Fuels and			conservation targets for
	Energy Products by Increasing the			major energy providers,
	Energy Efficiency of the Economy			roadmaps for energy
	and Leveraging Existing Resources			conservation, etc.
6	PP5063: Measures for renewable	2021	Government	(Promotion of the
	energy and hydrogen energy			Development of Renewable
	development			Energy and Hydrogen
				Energy)
7	No640: Approval of the Regulation	2020	Government	Regulations on the duties,
	on Intersectoral Energy Saving			rights and obligations, use
	Fund (Fund) by the Budget of the			of funds, etc., relating to

Table 3-44 Policy Framework and Institutions Contributing to ET-CN in Uzbekistan 93

⁹³ Prepared by Pacific Consultants based on Uzbekistan's ministry websites and interviews.

	Ministry of Energy of the Republic			the Energy Conservation
	of Uzbekistan			Fund under PP 4779.
	Strategy & Policy			
8	UP-60: Development Strategy of	2022	Government	National Development
	New Uzbekistan 2022-2026			Strategy for 2022-2026
9	A National Low-Carbon Energy	2020	MOE	Transition Strategy to a
	Strategy ⁹⁴			Low Carbon Energy Society
10	The concept note for the supply of	2019	MOE	Sustainable Electricity
	electric power 2020-2030			Supply Plan to 2030
11	A carbon-neutral electricity sector	2021	MOE	Carbon neutral roadmap for
	in Uzbekistan: Summary for			the power generation sector
	policymakers			to 2050

1. No.539 Use of Renewable Energy (2019)

This Decree provides the definition of renewable energy, the powers of the implementing entities for production and use, the rights and obligations of producers and equipment manufacturers, and preferential measures.

As for preferential measures, manufacturers of renewable energy installations will be exempted from all taxes for five years from the registration of the enterprise, and property tax on the installation of renewable energy installations and land tax in the area occupied by such installations (with a rated capacity of 0.1 MW or more) will be exempted for 10 years from the date of commissioning. In addition, for personal land tax, it is stipulated that the use of renewable energy on residential premises completely disconnected from the existing energy network will be exempted from land tax for three years from the month of commencement of such use, among others.

2. No.412 Rational Use of Energy (2020)

The Act provides that the Ministry of Energy is empowered to implement a unified national policy on rational energy use applicable to all economic sectors and social facilities. The Ministry of Energy is required to establish mechanisms to promote the introduction of energy-efficient and energy-saving technologies, including in production processes, and to monitor them as appropriate.

3. PP4422: Accelerated measures in the development of renewable energies and the introduction of energy-saving technologies and the improvement of energy efficiency in economic and social sectors (2019)

This sets energy efficiency and conservation targets up to 2022 and provides for government

⁹⁴ The original text was not available and was reviewed by Pacific Consultants from a variety of sources.

subsidies and clarification of where responsibility lies within the government. The Presidential Decree acknowledges that the existing energy efficiency and conservation laws and regulations, the tax exemption system based on the Presidential Decree and the installation of energy efficiency and conservation equipment in public facilities and residences are not fully functional, and specifies that the heads of government organizations and local governments are to take "personal responsibility" for promoting energy efficiency and conservation. The measures include setting up a "combined program" to be implemented in 2019-2022, and in the area of energy conservation, it states that low-efficiency gas stoves used by individuals and corporations should be replaced with energy-efficient models.

In addition, the following targets have been indicated for renewable energy:

- ✓ Increase the share of renewable energy, which accounts for 10% of total electricity generation, to 25% by 2030
- ✓ Promote the installation of solar panels (average 2kW) and solar water heaters (average capacity 200L) in private homes
- ✓ Replacement of low-efficiency gas stoves used by individuals and corporations with energy-efficient models
- ✓ Installation of solar panels and solar water heaters at designated facilities

From January 2020, the government budget has been allocated to subsidize 30% of the purchase cost of solar panels and solar water heaters, as well as the interest on bank loans.

4. PP4477: Strategy for the transition to a green economy 2019-2030 (2019)

To transition Uzbekistan to a green economy in the period 2019-2030, GHG emissions are to be reduced by 10% from 2010 levels, renewable energy is to account for at least 25% of total electricity generation, and industrial infrastructure is to be modernized and energy efficiency improved by at least 20%. The country is also committed to achieving these goals. To achieve these goals, the report also sets priorities for each sector to address. The following is a list of priorities in key areas.

Power Field

- ✓ Rebuild and modernize the generating capacity of existing power plants by introducing high efficiency technologies to combined cycle and gas turbine units
- Modernization of the electricity grid and implementation of organizational and technical measures
- ✓ Reduced electricity consumption for transport and distribution
- ✓ Installation of power consumption system equipment with automatic control and measurement devices

Thermal Power Generation

- ✓ Introduction of new technologies such as cogeneration in gas boilers and coal steam turbines with supercritical steam
- ✓ Reconstruction and modernization of the heating network

Oil and Gas

- ✓ Modernization of compressor stations and piping network for low and medium pressure gas, introduction of SCADA
- ✓ Introduction of alternative energy sources at oil and gas production facilities
- ✓ Waste heat recovery for power generation

Renewable Energy Sources

- ✓ Establishment of long-term targets for renewable energy development and annual determination of potential sites for renewable energy production
- ✓ Improved policy on tariffs
- ✓ Establishment of a modern and transparent competitive bidding method for selecting potential investors for renewable energy projects
- ✓ Modernization and restructuring of the electricity supply system through the introduction of distributed generation systems based on renewable energy sources
- ✓ Development of a national project on the installation of solar energy systems for the generation of electrical and thermal energy in rural and remote areas

Construction and building operations

- ✓ Implementation of national projects to improve multi-family and individual home energy efficiency
- ✓ Establish a system to review building codes and building standards every five years and to manage and monitor compliance with the standards
- ✓ Establishment of a building energy certification system
- ✓ Revision of insulation standards and application of new standards
- ✓ Developing a tariff structure to create incentives for energy conservation
- ✓ Widespread use of closed systems in central heating
- ✓ Efficient use of local boilers for heating and hot water in individual houses, apartment buildings and public buildings
- ✓ Introduction of air conditioning with heat pump function
- ✓ Installation of solar panels as a source of energy supply
- ✓ Use of high-efficiency lamps

<u>Transportation</u>

- ✓ Production and use of energy-efficient vehicles and electric and hybrid vehicles that meet or exceed Euro-4 emission standards
- ✓ Development of incentives to replace older vehicles with environmentally friendly ones
- \checkmark Phase out fossil fuels and promote electric transportation systems
- 5. PP4779: Additional measures to reduce the dependence of economic sectors on fuels and energy products by increasing the energy efficiency of the economy and using existing resources (2020)

The presidential decree establishes an energy conservation fund, energy conservation targets for major energy providers, a roadmap for energy conservation, and a list of providers that will

be required to conduct energy audits. The energy savings will save 3.3 billion kWh of electricity, 2.6 billion m³ of natural gas, and 16.5 thousand tons of petroleum products.

In addition to the decision to introduce a guaranteed purchase price for electricity from new renewable energy sources (solar, wind and biogas power plants and small hydropower plants with an installed capacity of up to 1 MW) from 1 August 2020, it has also been decided to introduce a system of guaranteed purchase prices for renewable energy projects of 1 MW or more (excluding hydropower), and it has been decided to introduce a system of bidding in auctions to determine potential investors. With regard to energy audits, a mechanism will be introduced to require energy audits for energy intensive companies based on data obtained from the energy system, which the Ministry of Energy plans to put into operation at the end of 2021.

6. PP5063: Measures for renewable energy and hydrogen energy development (2021)

In order to increase the effectiveness of scientific and practical research in the field of renewable energy and hydrogen energy and to introduce innovative technologies in their production, the establishment of the National Research Institute of Renewable Energy Sources ⁹⁵ and the Center for Hydrogen Energy under the Ministry of Energy and the creation of an interdepartmental Commission for the Development of Renewable and Hydrogen Energy, composed of the Ministry of Energy and other relevant ministries is provided for, with a roadmap for the organization of the institute and the center.

The Interdepartmental Committee is also assigned the following main tasks

- ✓ Preparing a draft national strategy and regulatory law on the development of renewable energy and hydrogen energy and ensuring the implementation of promising projects in these sectors
- ✓ Human resource development in the field of renewable energy and hydrogen energy, and support to relevant ministries and agencies to conduct research
- ✓ Creation of the conditions necessary to carry out research and projects, including support for the introduction of research and development projects in the fields of renewable energy and hydrogen energy

In addition, in order to efficiently organize the institutes and centers, the Ministry of Energy is charged to develop a national strategy on renewable energy and hydrogen energy by 2021 together with the Ministry of Innovative Development and the Ministry of Economic Development and Poverty Reduction. Furthermore, the Ministry of Energy, the Ministry of Economic Development and Poverty Reduction, the Ministry of Innovation, and other ministries are required to develop human resources and open courses in higher education institutions related to hydrogen.

7. No640: Approval of the Regulation on Intersectoral Energy Saving Fund (Fund) by the

⁹⁵ International Solar Energy Laboratory modified
Budget of the Ministry of Energy of the Republic of Uzbekistan (2020)

Based on the content of the establishment of the Energy Fund as stipulated in PP 4779, with the aim of attracting investments in energy conservation projects, the rules on the Energy Savings Fund, including its duties, rights and obligations, and the use of the Fund, have been established. An overview of the Fund's uses is summarized below.

- ✓ Preparation of FS studies for energy efficiency improvements, such as the introduction of energy-saving technologies and renewable energy to buildings and housing complexes, and energy audits
- ✓ Establishment of a training center for the development of experts in energy saving and renewable energy
- ✓ Support for start-up companies such as for heat pumps and renewable energy equipment
- ✓ Conducting energy audits of businesses
- ✓ Improving the energy efficiency of urban transport
- 8. No. UP-60: Development Strategy of New Uzbekistan 2022-2026 (2022)

This Strategy is the second development strategy for the period 2022-2026, following the 2017-2021 Development Strategy. In the previous five years of development, about 300 laws and more than 4,000 Presidential Decisions were adopted under the strategy of action in five priority areas:

- 1) State and public construction,
- 2) Rule of law,
- 3) Economic development,
- 4) Social sectors, and
- 5) Security and implementation of mutually beneficial and constructive foreign policy.

The Strategy for 2022-2026 consists of the following seven priority areas:

- 1) To build a people's state by promoting human dignity and a free civil society,
- 2) To establish the principles of justice and the rule of law as the most fundamental and important conditions for the development of the country,
- 3) To develop a strong national economy that enables rapid growth,
- 4) To pursue fair and impartial public policy and development of human resources,
- 5) To develop institutions that manage the spiritual values of the country,
- 6) To tackle global challenges from the perspective of national interests, and
- 7) To strengthen security and defense capabilities and pursue an open, pragmatic and proactive foreign policy.

Among the priorities identified in the Development Strategy for 2022-2026, particular emphasis is placed on areas such as further liberalization of the economy, improving competition, eliminating monopolies, attracting foreign investment, price stability and decentralization, and in the economic area, increasing GDP per capita by 1.6 times over the

next five years and increasing per capita income to USD 4,000 by 2030, as important goals that are prerequisites for entering the category of "upper-middle income countries. Another important goal is to ensure macroeconomic stability and to gradually reduce the annual inflation rate to 5 percent by 2023. In the energy sector, as part of the transformation process, the monopoly of electricity supply will be abolished and market mechanisms will be introduced, as well as the following plans.

- ✓ Attract extensive private investment in the energy sector and introduce social consumption standards to protect vulnerable groups in society.
- ✓ Increase natural gas processing from 8% to 20%, achieving up to \$2 billion in chemical production.
- ✓ Stable supply of electricity, active introduction of green economy technologies in all sectors, and a 20% increase in the energy efficiency of the economy.
- ✓ Increase power generation by 30 billion kWh by 2026, bringing total generation capacity to 100 billion kWh.
- ✓ Increase the share of renewable energy to 25% by 2026 and reduce natural gas by up to 3 BCM.
- ✓ Promote the production and use of electric vehicles and reduce harmful gas emissions to the atmosphere per unit of GDP in economic sectors by 10%.
- 9. A National Low-Carbon Energy Strategy (2020)

The strategy was developed by the Ministry of Energy with EBRD support to support the transition to low-carbon energy production and to meet growing energy demand. It follows the publication of a 10-year plan for electricity supply in Uzbekistan, developed jointly with the Asian Development Bank and the World Bank, which aims to add up to 30 million kW of generating capacity by 2030, of which 5 million kW will come from solar power, 3.8 million kW from hydroelectric power, 2.4 million kW from nuclear power and 3 million kW from wind power. Priority activities to be implemented include:

- ✓ Modernization and reconstruction of existing power plants,
- ✓ Construction of new power generation facilities using energy-efficient power generation technologies,
- ✓ Improvement of the power measurement system,
- ✓ Diversification of fuels and development of renewable energy (especially solar energy), and
- ✓ Improvement of the tariff structure and amend legislation to support the transition to a wholesale market.

Through these measures, the Ministry aims to reduce greenhouse gas emissions by 10% (compared to 2010 levels) by 2030.

10. The Concept Note for the Supply of Electric Power 2020-2030 (2019)

This Concept Note has been developed with the objective of ensuring that the power sector in Uzbekistan is able to supply electricity in an adequate, secure and sustainable manner. The document defines medium- and long-term goals and directions for the development of the power sector in Uzbekistan, including priorities, benchmarks, and arrangements to ensure the achievement of the planned objectives.

The main objectives of this document are:

- 1) Modernization and rehabilitation of existing power plants,
- 2) Construction of new power plants using energy efficient generation technologies,
- 3) Improvement of electricity metering systems,
- 4) Fuel diversification,
- 5) Development of renewable energy sources to meet the increasing demand for electricity at competitive prices, and
- 6) Dynamic development of the power sector. dynamic development of the power sector.

In addition, the following main directions for the development of the power sector in Uzbekistan up to 2030 are presented in this document.

Thermal power generation:

- ✓ Tenders have been issued for the construction of two new power plants in the Shirdaria region in 2020. The power plants will use state-of-the-art CCGTs of 650-750 MW with a total capacity of 2,600-3,000 MW.
- ✓ Expansion of the Navoi TPP.
- ✓ The third 650 MW CCGT is scheduled to come on stream in 2023-2024 and the fourth 650 MW CCGT in 2024-2025.
- ✓ A regulated power plant with a total generation capacity of approximately 1,200 MW is scheduled to come on stream between 2021 and 2023.
- ✓ 150MW coal IPP and modernization of existing coal power plants.
- ✓ CHPP provision over the next two years.

Renewable Energy:

- ✓ Development of 5 GW of solar power and 3 GW of wind power.
- ✓ From 2020 to 2022, competitive bidding will be conducted together with international financial institutions to find investors on a Build-Own-Operate basis and conclude long-term (up to 25 years) power purchase agreements for the supply of solar power.
- ✓ 2020-2030, with a particular focus on solar PV development. Photovoltaic projects are solely financed by IPPs.
- ✓ Solar power plants of 100-500 MW are mainly concentrated in the south-central regions (Jizzakh, Samarkand, Bukhara, Kashkadarya and Surkhandarya regions), while 50-200 MW

solar power plants will be built in other regions. Large-scale solar power plants (with an overall capacity of 300 MW or more) will gradually be equipped with industrial-scale power storage systems to stabilize power generation and regulate peak loads.

✓ Regarding wind power development, priority will be given to large-scale wind power plants of 100-500 MW per site, mainly in the northwest (Republic of Karakalpakstan and Navoi region).

11. A carbon-neutral electricity sector in Uzbekistan: Summary for policymakers (2021)

This roadmap was developed by the Ministry of Energy, with the support of the EBRD and the Government of Japan, and commissioned a consortium of international experts to develop a roadmap exploring the potential for the power generation sector to become carbon neutral by 2050. While the Ministry of Energy's "The Concept Note for the Supply of Electric Power 2020-2030" has already outlined an ambitious renewable energy development program, this roadmap builds on that concept note and extends the analysis and provides insights into the policies, technologies and investments needed to achieve a Carbon Neutral electricity generation sector by 2050. The specific recommendations and scenarios for achieving Carbon Neutral are summarized in Table 3-43 and Figure 3-30 in the previous section, but it is concluded that it is technically and economically feasible to move Uzbekistan's electricity sector to CN by 2050.

3.3.4.3 Review of similar studies by international development cooperation organizations, etc.

The major donors implementing renewable energy and climate change related programs in Uzbekistan are the WB, ADB, EBRD, etc. In the power sector, the WB is mainly supporting the transmission system, while the ADB and EBRD are supporting the distribution system. The trends of projects and support by other donors for ET-CN are summarized below.

The WB's program in Uzbekistan as of 2022 consists of 28 projects supporting economic and social reforms and modernization in various sectors, with total commitment of \$5.26 billion. The program also focuses on private sector development and growth, including providing guarantees for the construction and operation of a 1,500 MW Greenfield Combined Cycle Gas Turbine (CCGT) power plant in the Shirdaria region and the first privately developed and operated 100 MW solar power plant in the Navoi region.

In the power system, the project mainly provides support for the power transmission system, including installation of SCADA/EMS and communication facilities at the National Dispatch Center of the National Electricity Grid of Uzbekistan (NEGU), projects to improve the power system including new 500kV transmission lines and substations for integration of renewable energy, and support for the preparation of Grid Codes.

With regard to energy efficiency and conservation, support is mainly targeted at the industrial sector, with loans provided to six commercial banks as two-step loans to facilitate investment

in energy efficiency and conservation equipment in the industrial sector, with the commercial banks financing the industrial sector. Most recently, a new energy efficiency project was launched in June 2022, which will implement energy efficiency improvements in hospitals, schools and other public buildings.

As for policy support, the WB is supporting the preparation of a master plan for the MoE and CN, which is expected to be finalized around July 2022. The WB study is a master plan for CN for the entire energy-related sectors including transportation and industrial sectors. In the Master Plan, three scenarios were developed to reach CN in 2040, 2050 and 2060, and the projects will be developed according to the scenarios selected by the Government of Uzbekistan.

Regarding cooperation on hydrogen, a research study is being conducted jointly with the MoE to examine the feasibility of developing blue hydrogen starting in 2021, and a roadmap is being prepared for Uzbekistan to become a hydrogen-producing country in the future. The roadmap also examines the feasibility of blue hydrogen production, and also includes consideration of green hydrogen initiatives.

Since Uzbekistan joined the ADB in 1995, the Bank has provided more than \$10 billion in loans, concessions and technical assistance to support the country's development. The ADB's support to the energy sector is the largest, accounting for about 21% of the total amount of assistance provided, or about USD 2.49 billion. The ADB's support for the energy sector is wide-ranging and includes the construction of thermal and renewable energy power plants and the enhancement of power distribution systems, as well as support for the gas sector.

In the area of power supply development, the ADB is constructing two gas turbine combined cycle (GTCC) power plants in Talimarjan through co-financing with JICA and a 100 MW solar power plant in Samarkand. The modernization and enhancement of the power distribution system and the reduction of transmission losses are also underway, including the construction of transmission lines and the construction and rehabilitation of substations.

In 2012, the ADB supported the establishment of the International Solar Energy Institute (ISEI) as a regional research center for research and development of solar energy, accumulation of knowledge, and human resource development. The ADB, in its "Asia Solar Energy Initiative" (ASEI) announced in May 2010, has been supporting the Asian Solar Energy Initiative (ASEI) to increase solar power generation capacity in developing countries in the Asia-Pacific region to 3,000 MW by 2013. The ADB is providing investment and other support, and has indicated that it will actively support the development of renewable energy in Uzbekistan as well.

The EBRD has identified the promotion of green energy and resource solutions across sectors as a priority in Uzbekistan's Country Strategy for 2018-2023. In terms of renewable energy power source development support, the EBRD is financing the construction and operation of a 500 MW wind power pilot project and a pilot project for solar power with an installed capacity of 100 MW to be set up in the Navoi region. In terms of power system support, the project includes financing for the construction of high-voltage and 500 kV transmission lines. In terms of financial support, to promote green technology, a two-step loan is being provided for financing by commercial banks in Uzbekistan to suppliers and vendors of this technology. In addition, as described in the previous section, the government has also provided financial support to the project. In addition, as described in the previous section, at the request of the Ministry of Energy, the EBRD and Japanese funds are supporting the preparation of a roadmap to make the power generation sector carbon neutral by 2050.

In addition to the activities of donors, Nepal is implementing three projects using UNFCCC GCF. " High Impact Programme for the Corporate Sector" (Program No. FP140) is a mitigation project for which EBRD is the accredited entity ⁹⁶. " Sustainable Renewables Risk Mitigation Initiative (SRMI) Facility " (No. FP163) is a mitigation project for which the IBRD and IDA is the accredited entity ⁹⁷. The former is an investment program to promote the adoption of low-carbon technologies in energy-intensive industries, the mining sector, etc., while the latter is a program that provides risk mitigation instruments to encourage private financing to invest in renewable energy.

Table 3-45 summarizes the activities of major international donors.

-		1			1		
			Technical cooperation				
Donor	СР	Policy/Instit	Capacity building	Pilot	Financial support		
		ution					
World Bank	Ministry of Energy (MoE)	• <u>Support</u> <u>for the</u> <u>creation</u> <u>of an</u> <u>energy CN</u> <u>roadmap</u>	• <u>Environmental</u> <u>enhancement</u> <u>and market</u> <u>development</u> <u>support for</u> <u>clean energy</u> <u>investments in</u> <u>the buildings</u> <u>sector</u>	• <u>Revolving</u> <u>financing</u> <u>mechanisms</u> <u>for clean</u> <u>energy</u> <u>investments</u> <u>in the</u> <u>buildings</u> <u>sector</u>			
	JSC "National Electric Grid of Uzbekista n (NEGU)"		• <u>NEGU</u> <u>Organizational</u> <u>Development</u>		 <u>Improve</u> <u>transmission</u> <u>system capacity</u> <u>and reliability</u> <u>Navoi</u> <u>Photovoltaic</u> <u>Power</u> <u>Construction</u> (IPP) <u>Digitalization of</u> <u>power</u> <u>transmission</u> 		

The underlined and italicized parts indicate ongoing and future projects.

⁹⁶ High Impact Programme for the Corporate Sector https://www.greenclimate.fund/project/fp140 Acce ssed 3 August 2022

⁹⁷ Sustainable Renewables Risk Mitigation Initiative (SRMI) Facility https://www.greenclimate.fund/project/fp163 Accessed August 3, 2022

					<u>sector</u> (SCADA/EMS)
	JSC "Uzbekist an National Power Networks (UNPN)"		 Strengthening Corporate Governance of Uzbekenergo Joint Stock Company (UE) 		• Transmission substation upgrades
	Ministry of Economic Developm ent and Poverty Reduction (MoEDPR)				• <u>Industrial Sector</u> <u>Energy Saving 2</u> <u>Step Loan</u>
	Ministry of Housing and Communa l Services (MoHCS)		• <u>Strengthening</u> <u>project</u> <u>operational</u> <u>management</u> <u>capacity for</u> <u>MHCS, district</u> <u>heating and</u> <u>cooling</u> <u>companies, and</u> <u>others</u>		 <u>Gas meter</u> <u>installation</u> <u>District heating</u> <u>and cooling</u> <u>system upgrade</u> <u>Heat meter</u> <u>installation for</u> <u>buildings</u> <u>Repair of aged</u> <u>boiler and heat</u> <u>transport pipe</u>
ADB	JSC "NEGU"	• <u>Support</u> <u>for the</u> <u>developme</u> <u>nt of</u> <u>sector</u> <u>strategies</u> <u>for</u> <u>distribute</u> <u>d solar</u> <u>power</u> <u>generation</u> <u>systems</u>	 <u>Planning</u>, <u>design</u>, <u>implementation</u> <u>and operational</u> <u>capacity</u> <u>enhancement of</u> <u>distributed solar</u> <u>power</u> <u>generation</u> <u>systems</u> 	• <u>Demonstrat</u> <u>ion of the</u> <u>installation</u> <u>of a 20kW</u> <u>distributed</u> <u>solar power</u> <u>generation</u> <u>system</u>	 <u>Construction of</u> <u>220kV</u> <u>transmission line</u> <u>in Horems</u>, <u>Karakalapakstan</u> <u>Karakalapakstan</u> <u>, Horems</u> <u>Substation</u> <u>Reinforcement</u>
	JSC "Regional Electric Power Networks (REPN)"		 Support for Development of PPP Methodology in the Power Distribution Sector Installation of Meter Data Management (MDM) system, capacity enhancement for loss reduction 	• Pilot installation of roof- mounted solar panels at the Rural Health Clinic (RHC)	 Samarkand 100MW solar power construction Advanced Energy Metering (AEM) System Extension

	JSC "Uzbeken ergo".		Strengthening Uzbekenergo's project management capabilities	• SCADA system introductio n F/S	 <u>Distribution</u> <u>System</u> <u>Modernization/U</u> <u>pgrading</u> Namangan 500kV transmission line, substation construction <u>Construction of</u> <u>450 MW CCGT</u> in Tari Marjan
	Uzbekneft egaz		• <u>Uzbekneft Gas</u> <u>O&M Services,</u> <u>Corporate</u> <u>Management</u> <u>Enhancement</u>		• <u>Improvement of</u> <u>gas</u> <u>transportation</u> <u>network</u>
	Uztransga z			 Support for Preparation of SCADA System Installation in Gas Transmissio n Grid 	
	the others (IPPs, research institutes, etc.)	• Support for the developme nt of a solar energy roadmap	 Strengthening solar energy testing and research capabilities 		 <u>Navoi 100MW</u> <u>solar power</u> <u>construction</u> International Solar Energy Research Institute established.
EBRD	MoE	• <u>Support</u> <u>for CN</u> <u>roadmap</u> <u>developme</u> <u>nt in the</u> <u>power</u> <u>sector</u>			
	JSC "NEGU"			<u>Constructio</u> <u>n and</u> <u>operation</u> <u>of the</u> <u>Navoi</u> <u>500MW</u> <u>wind power</u> <u>pilot</u> <u>project</u>	 <u>Support for</u> <u>implementation</u> <u>of 2GW wind</u> <u>power bidding</u> <u>Construction of</u> <u>500kV power</u> <u>transmission line</u> <u>in Blach</u> <u>Navoi high</u> <u>voltage power</u> <u>line construction</u>
	JSC Uzbekene rgo Other				 <u>Construction of</u> <u>Tari Marjan</u> <u>CCGT</u> <u>Construction and</u> operation of
					<u>100MW wind</u>

		<u>power</u> <u>generation</u> • <u>Samarkana</u> <u>100MW sol</u>	<u>l</u> lar
		<u>power</u> <u>constructio</u> <u>operation</u>	on and
		<u>Technolog</u> <u>Facilitatea</u> <u>Step Loan</u>	<u>v</u> 1 2-

Chapter 4. Issue Analysis in Surveyed Countries

4.1 Vietnam

4.1.1 Organizing existing ET-CN related JICA projects

JICA has been implementing development assistance projects in various sectors in Vietnam which would result in ET-CN, as shown in Table 4-1. The issues from these projects are summarized in the following Table 4-2.

Table 4-1 JICA projects contributing to ET/CN in Vietnam (about the past 10 years) 98

No.	Туре	Project	Period
Energy	T		
1	Technical	Project for the Construction of a Local	April 2015 -
	cooperation	Energy Circulation System Integrating Highly	March 2020
		Efficient Fuel Cells and Recycled Biogas	
2	Technical	Preliminary Energy Conservation Promotion	June 2008 -
	cooperation	Master Plan Study	December 2009
3	Loan aid	Taibin Thermal Power Plant and Transmission	November 2009
		Line Construction Project (4)	- April 2020
4	Loan aid	Taibin Thermal Power Plant and Transmission	November 2009
		Line Construction Project (3)	- March 2020
5	Loan aid	Second Power Transmission and Distribution	March 2015 -
		Network Improvement Project	April 2018
6	Loan aid	Taibin Thermal Power Plant and Transmission	November 2009
		Line Construction Project (2)	- April 2020
7	Loan aid	Danim Hydroelectric Power Plant Expansion	February 2014 -
		Project	August 2017
8	Loan aid	Omong Thermal Power Plant Unit 2	March 2004 -
		Construction Project (2)	October 2017
			fixed
9	Loan aid	Guisong Thermal Power Plant Construction	March 2007 -
		Project (3)	February 2016
10	Technical	Detailed planning study for the project to	July 2013 -
	cooperation	support the establishment of an energy	March 2016
		conservation training center	
11	Technical	Project for Strengthening the Operational	November 2013
	cooperation	Structure of the Energy Conservation	- November
		Labeling Standard Certification System	2016

98 Prepared by Pacific Consultants from preliminary evaluation documents and reports posted on the JICA website. Project titles are provisionally translated by Pacific Consultants.

No.	Туре	Project	Period	
12	Loan aid	Energy Conservation and Renewable Energy	November 2009	
		Promotion Project	- January 2015	
Trans	portation			
13	Loan aid	Ho Chi Minh City Urban Railway Project	March 2007-	
		(Ben Thanh - Suoi Tien (Line 1)) (3)	October 2025	
			(fixed)	
14	Loan aid	Hanoi Urban Railway Project (Line 1) (Ngoc	March 2008 -	
		Hoi Train Depot) (1)	August 2021	
15	Loan aid	Ho Chi Minh City Urban Railway Project	March 2007 -	
		(Ben Thanh - Suoi Tien (Line 1)) (2)	February 2024	
16	Technical	Binh Duong Public Transport Management	March 2015 -	
	cooperation	Capacity Enhancement Project	June 2018	
17	Technical	Da Nang Urban Transport Improvement	April 2013 -	
	cooperation	Project	March 2016	
18	Technical	North-South High-Speed Rail Construction	May 2011 -	
	cooperation	Planning Project	March 2014	
Envir	onment & Waste			
19	Technical	Sustainable Natural Resource Management	May 2021 - May	
	cooperation	Enhancement Project Phase 2	2025	
20	Technical	Sustainable Natural Resource Management	August 2015 -	
	cooperation	Project	January 2021	
21	Technical	Project to Support the Implementation of	June 2021 -	
	cooperation	Nationally Determined Contributions (NDC)	June 2024	
		to the Paris Agreement		
22	Technical	Green Growth Promotion Project in Halong	November 2016	
	cooperation	Bay Area, Quang Ninh Province	- November	
			2019	
23	Loan aid	Dong Nai Province Water Infrastructure	March 2015 -	
		Development Project	July 2023	
24	Technical	Project for Capacity Improvement of	March 2014 -	
	cooperation	Integrated Municipal Waste Management	March 2018	
25	Technical	Research Project on Multi-beneficial Climate	October 2011 -	
	cooperation	Change Mitigation Strategies through	September 2016	
		Biomass Energy Development in Vietnam and		
		Indochina Countries		
26	Technical	Project for Establishment of Carbon	April 2011 -	
	cooperation	Recycling System Using Natural Rubber	March 2016	
27	Loan aid	Phase 2 Ho Chi Minh City Water Environment March 2006 -		

No.	Туре	Project	Period
		Improvement Project (4)	June 2024
28	Loan aid	Halong City Sewage Wastewater Treatment	July 2015 - June
		Project	2027
29	Loan aid	Bien Hoa City Sewage and Wastewater	August 2017 -
		Treatment Plant Project (Stage 1)	January 2026
30	Loan aid	Phase II Ho Chi Minh City Water	March 2006 -
		Environment Improvement Project (3)	October 2021
31	Loan aid	Hanoi En Sa Sewerage Improvement Project	March 2013 -
		(1)	December 2021
32	Loan aid	Southern Binh Duong Province Water	March 2012 -
		Environment Improvement Project (Phase 2)	March 2019
33	Grant aid	Haiphong An Duong Water Treatment Plant	April 2015 -
		Improvement Plan	September 2017
Agricu	lture		
34	Grant aid	Project for Improvement of Irrigation System	March 2013 -
		in Northern Gueang Province	December 2019
Forest	and Land Use		
35	Loan aid	Conservation Forest Plantation and	March 2012 -
		Sustainable Management Project	January 2021

Table 4-2 Summary of main issues related to ET and CN

Sector	Problem
Energy	 When local government organizations promote the "National Target Program for Energy Saving" formulated by the central government, it is essential to clarify the respective functions and roles in addition to the way the project is promoted by of central ministries, local governments, and each implementing agency. (No. 2). In the operation of the energy efficiency and conservation labeling standard certification system, in addition to the commitment to energy efficiency and conservation and the willingness to acquire technology of CP organizations and related parties, it is also important to have the political power to spread the system from the top-down, to have a level of reduction in electricity costs that will affect household or company finances and that consumers can understand this, and the existence of environmental conditions is also important, such as whether consumers' purchasing power has reached a certain level (No. 11).

	 Power supply needs to be increased due to power shortages in industrial areas in the south (No. 7) Transmission lines will be prioritized for new construction from new power plants, delaying the enhancement of the existing grid. (No. 5)
Transportation	 Urban transport in Hanoi, Ho Chi Minh City and other cities is challenged by increasing traffic demand and private transport such as private cars, but roads and parking lots lack capacity (No. 14). In cities with low public transport traffic sharing ratio, transport policy should first be changed so that buses become the main form of public transport (No. 17).
Environment & Waste	 Urban areas lag behind in the development of wastewater treatment facilities, waste is dumped into rivers and lakes, and treatment of water entering from waste landfills is delayed (No. 30). Lack of urban development management capacity in the implementing agencies of urban development (No.23)
Agriculture	• In addition to demand for water for agricultural irrigation, demand for industrial water for industrial estates is increasing, but drainage management based on flow data is insufficient (No.34)
Forest and Land Use	 Strengthening the Forest Certification System to Promote Legal Timber Trade (No. 20) Even if forest coverage is recovering, sustainable forest management is needed to improve forest quality, not area (No. 20) Forest cover has improved, but recovery of forest quality to target levels has been delayed (No. 35)

4.1.2 Energy Balance in Vietnam

Looking at the changes in Vietnam's energy production and primary energy supply over time (Figure 4-1), energy production from oil increased rapidly in the 1990s, and energy production from coal and natural gas increased in the 2000s, but has not increased since the beginning of the 2010s. On the other hand, the primary energy supply shows a remarkable increase in coal even after 2010. In terms of demand for petroleum products, demand for middle distillates (mainly kerosene, diesel oil, and heavy oil A) and motor fuels has increased significantly (Figure 4-2). The main applications are considered to be automotive and industrial applications. In terms of the composition of power generation sources, the share of coal-fired power generation increased sharply in the 2010s, with coal and natural gas together accounting for about 50% of power generation (Figure 4-3).

Figure 4-1 Vietnam's energy production (left figure) and primary energy supply (right figure) over time ⁹⁹

Figure 4-2 Vietnam's demand for petroleum products over time ¹⁰⁰

Figure 4-3 Changes in the composition of power generation sources in Vietnam over time ¹⁰¹

⁹⁹ World Energy Balances (IEA, 2019)

¹⁰⁰ World Energy Balances (IEA, 2019)

¹⁰¹ World Energy Balances (IEA, 2019)

Primary energy supply in Vietnam in 2019 shows that about 47% is coal, 30% is petroleum products, 8% is natural gas and biomass, and 6% is electricity, and to achieve ET-CN, it is necessary to reduce the consumption of coal and petroleum products (Figure 4-4). Looking at final energy consumption, the energy consumed by the industrial sector Coal accounts for 48%, electricity for 30%, petroleum products for 98% in the transport and transportation sector, and electricity for 74% in the civilian sector (Figure 4-5). Thus, these The reduction of fossil fuel consumption in the transportation and transport sector and the promotion of low-carbon power sources will be effective for Vietnam to achieve the ET-CN.

Figure 4-4 Vietnam's energy balance (2019)¹⁰²

Figure 4-5 Vietnam final energy consumption by sector (2019)¹⁰³

¹⁰² Prepared by Pacific Consultants based on information from the IEA website.

https://www.iea.org/sankey/#?c=Viet%20Nam&s=Balance Accessed August 16, 2022. 103 Prepared by Pacific Consultants based on information from the IEA website.

https://www.iea.org/sankey/#?c=Viet%20Nam&s=Balance Accessed August 16, 2022.

4.1.3 Analysis of issues related to LNG and consideration of cooperation possibilities

Based on the results of the review of existing documents and interviews with relevant organizations, issues to be addressed in the deployment of LNG are summarized from institutional, technical and social implementation perspectives.

1) Institutional aspects

While the draft of the Eighth Power Development Plan (PDP8) (released in Apr 2022) sets out the LNG capacity to be installed by 2030, very few projects have been approved by the government and are in the implementation phase. However, it is necessary to wait for the government's approval of the PDP8 and it is important to determine how much capacity will be indicated in the PDP8. As for the institutional aspect of the development of laws and guidelines, although there are laws, not all of the guidelines and technical standards for LNG facilities that are required for the implementation of the laws and regulations have been developed, In addition, MOIT staff needs to acquire technical knowledge of the design and operation of LNG facilities in order to develop these technical standards.

2) Technical side

The use of LNG is a proven technology and the use of LNG has already been deployed in the world overseas, where LNG receiving, storage, transportation, and utilization are already being conducted. Since there is no need for technological development or demonstration studies, the technological aspects were excluded from the scope of this study.

3) Social implementation

Except for the aforementioned awaiting government approval of the PDP8 power development plan including the expected installed capacity of LNG, the main challenge is the financing through project financing for the deployment of LNG using private capital. IPP operators have pointed to the contract terms and conditions set out in the EVN-designated Power Purchase Agreement (PPA), particularly bankability challenges, due to the significant costs involved in setting up LNG facilities.

In addition, although it is considered that there is a domestic demand for LNG gas in the industrial sector, no study has been conducted on the specific volume of demand and the technical infrastructure and financial aspects of LNG gas supply projects for industrial parks, etc., such as business feasibility. In the future, if social implementation through the development of LNG projects utilizing private investment is to be promoted, it will be necessary to conduct surveys on demand and business feasibility in the industrial, transportation, and consumer sectors.

The following figure summarizes only the main points of these issues. The areas where JICA can provide assistance in institutional, technical, and social implementation are shown in gray

(two types of gray: issues in implementation and some issues in implementation). Black indicates that there are issues that are very important for social implementation but cannot be solved with the cooperation of JICA.

Large	Institutional	Aspect	Technical	Aspect	Implementation	Aspect
Small Category	National Plans, Policies	Laws & Regulations, Guidelines	R&D	Pre-FS	Feasibility Study	Implement
Color code			-	-	-	
Remarks	 Await PDP8 LNG power generation IPPs await clarification of their position in the long- term energy transition plan 	 Not all the GLs and standards for the operation of the facility are in place. ¹⁰⁵ MOIT needs to develop GLs and standards for implementation, and technical knowledge is required. 	N/A	N/A	N/A	 PPAs have bankability issues and funding is a challenge The amount of domestic demand other than for power generation is not clear

Table 4-3 Analysis of LNG-related issues in Vietnam ¹⁰⁴

Color code	Overwhelming obstacles which hinder implementation Observed	Obstacles in implementation Observed	Obstacles in implementation Partially observed
	Observed		

4.1.4 Analysis of Priority Issues Related to Energy Conservation

Based on the results of the review of existing materials and interviews with relevant organizations, issues to be addressed in the further development of energy conservation are summarized from institutional, technological, and social implementation perspectives.

1) Institutional aspects

As in the case of LNG, it is considered that existing energy efficiency and conservation

¹⁰⁴ Prepared by Pacific Consultants based on stakeholder interviews, etc.

¹⁰⁵ Regarding the guidelines and standards for LNG receiving facilities and utilization, some of the technical staff of the MOIT Oil, Gas, and Coal Department commented that they are almost complete. However, according to the interviews with PetroVietnam, which actually operates LNG-related facilities, various guidelines and standards are being developed, but not all of them are in place, and MOIT needs to deepen its level of technical knowledge and develop guidelines, etc. In addition to technical guidelines, guidelines for efficient procurement of LNG from overseas in the future may be required to ensure that large volumes of LNG are procured efficiently.

policies will be followed basically, although the description of the energy efficiency and conservation sector in PDP8 will be important. Although the Energy Conservation Act (2010) exists, MOIT considers it necessary to revise it based on the latest energy efficiency and conservation methods, and has already started preliminary studies with donor support.

2) Technical side

Since the main actors implementing energy efficiency and conservation are mainly private enterprises, and energy efficiency and conservation activities are mainly developed by utilizing technologies and products owned by domestic and foreign enterprises, it is considered that there are almost no technical issues such as technological development.

3)Social implementation

While there are no technical issues as mentioned above, and although private companies are obliged to report their energy consumption on a regular basis, MOIT recognizes that energy conservation activities have not progressed as much as expected, and considers it necessary to conduct activities at the provincial level, such as energy conservation centers that encourage companies to save energy. In order to further develop energy efficiency and conservation in energy-intensive industries and subsectors such as transport and transportation, and consumer and buildings, incentives for private companies to invest in energy efficiency and conservation are considered necessary. Also, there is a need to focus on continuous outreach to the private sector at the provincial level.

In addition to energy efficiency and conservation, institutional efforts such as the development of a decarbonization roadmap for the industrial sector will be a central issue in the future, based on the National Climate Change Strategy (NCCS) For The Period 2021 To 2050 (MONRE, 2022), a decarbonization strategy for the period up to 2050 published at the end of July 2022. Apart from the aforementioned issues related to the deployment of energy efficiency and conservation activities, issues were also analyzed related to the implementation of decarbonization in the industrial sector as shown in (2) in the table.

Under the strategy, MONRE is responsible for leading the overall decarbonization strategy to 2050 while driving implementation by each ministry, while the relevant ministries are responsible for developing decarbonization roadmaps for the sectors under their jurisdiction and implementing GHG emissions reporting systems. In line with this new national strategy, the MOIT needs to develop a roadmap to achieve 2050 decarbonization in the industrial sector as well as energy conservation in the industrial sector, collect data on energy consumption and other data required for GHG emissions accounting and reporting, and continue to implement MRV of GHG emissions. ¹⁰⁶

Under these circumstances, in terms of the system, it is first necessary to establish a roadmap

 $^{106\,}$ The existing accounting and reporting system in Vietnam covers CO2 emissions and does not cover GHGs other than CO2.

for decarbonization in the industrial sector by 2050, GHG emissions calculation, and guidelines for emission reductions. At the same time, while modifying the database of the existing energy consumption reporting system ¹⁰⁷ as necessary, the number of companies subject to energy consumption reporting, which was limited to major energy consumers, will be expanded, and a system for measuring, reporting and verifying energy consumption will be established to promote the expansion of reporting targets. There are some hearing results ¹⁰⁸ that the energy consumption data input by companies is inaccurate due to many errors caused by input errors, etc. It is highly likely that the improvement of data quality will be an issue in the implementation stage of the calculation and reporting of GHG emissions in the industrial sector. Human resource development in both the public and private sectors is also considered to be necessary.

In terms of technology, since the web-based platform of the existing energy consumption reporting system will be used, some modification of the system will be required, but it is considered that no large-scale technological development, etc. will be necessary.

In terms of implementation, since energy consumption reporting by the private sector will be the basis for calculating GHG emissions, it will be necessary to involve the private sector and consider incentives, especially for the private sector. Efficient checking and correction of input data may be required in the future.

The main points of these issues are summarized in the figure below. The areas where JICA can provide assistance in institutional, technical, and social implementation are shown in gray (two types of gray are shown: issues in implementation and some issues in implementation). Black indicates that there are issues that are very important for social implementation but cannot be solved with JICA's cooperation.

¹⁰⁷ This was established by the Vietnamese Government Protocol No. 06/2022 / ND-CP of January 2022. Prior to this, there was no legal requirement for key energy users to record their greenhouse gas emissions. Private companies report their energy consumption to the government in the form of inputs to a web-based platform. 108 From interviews with the Industrial Promotion and Development Consultancy Center (IDS) Hanoi.

(1) Energy	y saving			ſ		
Large	Institutional	Aspect	Technical	Aspect	Implementation	Aspect
Small Category	National Plans, Policies	Laws & Regulations, Guidelines	R&D	Pre-FS	Involving Stakeholders	Implement
Color code			-	-		
Remarks	 Waiting for PDP8 May follow existing Energy Conservation policies 	 Revision of the Renewable Energy Act. MOIT is considering revision to the law in accordance with the latest situation. Donor support available 	N/A	N/A	 Lack of incentives for the private sector to implement energy conservation The number of energy efficiency and conservation promotion activities such as energy audits by IDSs under local governments is small due to lack of budget, personnel, and other measures. ¹¹⁰ Inaccurate figures in private sector energy consumption reporting ¹¹¹ 	 The private sector's willingness to invest in energy conservation and funding is an issue

Table 4-4 Analysis of energy conservation-related issues in Vietnam 109

¹⁰⁹ Prepared by Pacific Consultants based on stakeholder interviews, etc.

¹¹⁰ From the interview with Industrial Promotion and Development Consultancy Center (IDS) Hanoi. Not only Hanoi, but many IDSs are facing similar issues.

¹¹¹ The IDS is unable to make corrections because the system does not allow for correction except by company personnel; according to the IDS, there is also no guidance for the private sector on inputting the information.

(2) Decarbonizing the industrial sector

Large	Institutional	Aspect	Technical	Aspect	Implementation	Aspect
Small	National Plans,	Laws &	R&D	Pre-FS	Involving	Implement
Category	Policies	Regulations,			Stakeholders	
		Guidelines				
Color			-	-		
code						
Remarks	- Need to	- Inaccurate	N/A	N/A	- Energy	- Data
	develop a decarbonization	reported in			reporting	including
	plan for the	private			systems lack	consistency
	industrial	energy			incentives for	with data
	sector	consumption			the private	from other
	(roadmap to	reporting			sector	sources,
	2050) in line	schemes ¹¹²				can be an
	with the	- Calculation				issue
	national	of GHG				
	strategy for	emissions in				
	decarbonization	the				
		industrial				
		for emission				
		reductions				
		etc not vet				
		formulated				
		(to be				
		formulated				
		in the				
		future)				

Color code Overwhelming obstacles which hinder implementation Observed	Obstacles in implementation Observed	Obstacles in implementation Partially observed
---	--	--

4.1.5 Analysis of Issues Related to Energy Transition and Carbon Neutrality

In Vietnam, the electricity development plan is the national guideline for promoting energy transition and decarbonization. To date, the Vietnamese government has promoted energy transition and decarbonization through the deployment of renewable energy and LNG. Since PDP8 is currently in the process of being approved by the government, we analyze the issues under the assumption that the introduction of renewable energy and the expected introduction of LNG will not change significantly.

The issues are divided into (1) issues related to the stable supply of electricity, (2) issues related to the stabilization of the power system, (3) issues related to the promotion of energy conservation, and (4) other issues related to ET/CN.

¹¹² Institutional and reporting platforms are in place, but no activities on data quality improvement have been undertaken.

(1) Issues related to addressing stable power supply and (2) Issues related to addressing power system stabilization

In the energy sector, which has the highest GHG emissions, PDP8 proposes to reduce carbon intensity by converting coal-fired power generation to LNG, while at the same time promoting the introduction of more clean energy. However, since GHG emissions will not be reduced to zero by converting to LNG, it is necessary to promote the introduction of more clean energy (see above (1) Issues related to addressing stable electricity supply). In this regard, the Vietnamese government is actively promoting the introduction of solar and wind power generation, but the challenge is to ensure the stability of the power grid (issue (2) above, which relates to addressing power grid stability). However, this problem is expected to be addressed by the introduction of SCADA and equipment to adjust the supply-demand balance by the World Bank and by the modernization of the grid power management system. The remaining challenge is on the institutional side and is the delay in the development of an investment environment to promote private investment in the energy sector (see above (1) Issues related to addressing stable electricity supply).

(3) Issues related to energy conservation promotion

In the area of energy efficiency and conservation, the establishment of a system has been completed, but the challenge is to involve the private sector and, in particular, to create incentives for the private sector to promote energy efficiency and conservation efforts. In terms of understanding energy consumption, at present, only major electricity users enter their own consumption data into a web-based platform in accordance with the Energy Consumption Reporting System. However, it has been pointed out that the data entered on is often incorrect. As the energy consumption reporting system is expected to become an important indicator for decarbonizing the industrial sector in the future, it is conceivable that, for the time being, the government should aim to develop a decarbonization roadmap for the industrial sector and establish and operate a GHG emissions accounting and reporting system, and then work on improving data quality.

(4) Other issues related to ET-CN

In order to promote IPP projects through private investment, it is essential to ensure bankability of PPAs. In addition, it is also considered necessary to develop new market institutions that have begun to be considered, such as the establishment of an electricity market and a relative electricity trading system. In addition, it would be effective to give new meaning to private investment in the energy sector by establishing a carbon trading system. In addition, in order to achieve decarbonization of the energy sector, it is necessary to modernize the grid power management system and develop technologies for energy storage functions and hydrogen and ammonia utilization to support the large-scale introduction of renewable energy. Improvement of these issues can also be associated with important elements in the improvement of issues (1) and (2).

The second of the other challenges for ET-CN is the challenge of decarbonizing the nonenergy sector. In the non-energy sector GHG emissions, methane emissions from the agriculture and livestock sector are the main source of emissions. On the other hand, for the forest sector, which is an important CO^2 sink in Vietnam, the area of forest cover has almost reached the level to achieve the planned values. Therefore, the Vietnamese government has made a policy shift to secure CO^2 sinks by improving forest quality, and measures to reduce GHG emissions from non-energy sectors are gaining relative importance in achieving national decarbonization by 2050, and research and development on methods to reduce methane emissions in the agriculture and livestock sectors is underway. ¹¹³ However, continued research and social implementation is needed to bring these production technologies to national deployment.

Even if GHG emissions from energy and non-energy sectors cannot be reduced to zero, a carbon emissions trading system could be used. The Vietnamese government has begun to study carbon pricing initiatives, especially a carbon trading system, from early 2022, and this initiative needs to be put on track.

¹¹³ Of the countries in this study, Vietnam, Nepal, and Uzbekistan are participating in the Global Methane Pledge to reduce global methane emissions by 30% by 2030.

vietnam						
Large	Instit	utional		Aspect	Tec	hnical
Small	National Plans,	Laws &	R&	Pre-FS	Involving	Implement
Catego	Policies	Regulations,	D		Stakeholde	
ry		Guidelines			rs	
Color			-			
code						
Remar ks	 Waiting for PDP8 ¹¹⁵. Stable supply of cheap electricity, promotion of renewable energy (continued) Clarification of role of LNG and renewable energy in long- term ET planning ¹¹⁶ Issue (1), (4) Methods and measures to reduce emissions of methane and air pollutants in the agricultural sector are unknown Forest area of sinks has almost reached its maximum value 	 Strengthening and stabilizing the grid, adjusting the supply-demand balance by region (continued) Issue (2) Continued energy conservation No plan in place to decarbonize industry Issues (3) Delays in creating an environment for private investment in the energy sector Issue (4) No system in place to promote carbon trading schemes 	N/A	- Securing options for supply and demand adjustme nt valves for maximum utilizatio n of renewabl e energy ¹¹⁷	- Lack of attractive ness and incentive s for investme nt in the energy sector by the private sector, etc. Issue (4)	 Insufficient investment environment for private sector investment Stable operation of grid power ¹¹⁸ (continued)

Table 4-5 Analysis of issues related to energy transition and decarbonization in Vietnam 114

Color code	Overwhelming obstacles which hinder implementation	Obstac implem Observ	les in nentation ed	Obstacles in implementation Partially observe	ed
	Observed		_		

¹¹⁴ Prepared by Pacific Consultants based on stakeholder interviews, etc.

¹¹⁵ PDP8 is expected to provide some indication of the power mix, installed capacity, long-term ET and pathway to decarbonization.

¹¹⁶ LNG IPPs are awaiting clarification of their position in the long-term ET plan. Renewable energy is expected to be massively deployed, accounting for about half of total power generation capacity. Existing energy efficiency and conservation policies are expected to continue.

¹¹⁷ In addition to thermal power generation, energy storage facilities and the utilization of hydrogen and ammonia.

¹¹⁸ Electricity interconnections between regions, power source development, energy storage functions, and the development of hydrogen and ammonia utilization technologies, etc.

4.2 Lao PDR

4.2.1 Organizing existing ET-CN related JICA Projects

JICA has been implementing development assistance projects in various sectors in Lao PDR which would result in ET-CN, as shown in Table 4-6. The issues from these projects are summarized in the following Table 4-7.

Table 4-6 JICA projects contributing to ET and CN in Lao PDR (about the past 10 years) 119

[1
No.	Туре	Project	Period
Energ	У		
1	Data collection	Energy Sector Data Collection Survey	January 2012 -
	survey		December
			2012
2	Loan aid	NamNgum No.1 Hydroelectric Power Plant	May 2013 -
		Expansion Project	January 2019
3	Grant aid	Small Hydro Power Plan	April 2013 -
			January 2015
4	Technical	Project on Power System Master Plan	June 2017 -
	cooperation		March 2019
5	Technical	Project for Power Quality Improvement through	February 2021
	cooperation	Upgrading Grid Code and Strengthening its	- January 2024
		Enforcement System	
6	Loan aid	Southern Region Power System Improvement	March 2012 -
		Project	August 2017
7	Preparatory	Preparatory Survey for Sekatam Hydro Power	March 2013 -
	Survey for	Project (PPP Infrastructure Project)	November
	Cooperation		2015
8	Feasibility	Feasibility Study on Running Water Micro Hydro	2012
	Study (SME	Power Project in Non-electrified and Weakly	
	Support Type)	Electrified Areas	
9	Feasibility	Feasibility Study on Advanced Operation and	September
	Study (SME	Maintenance of Hydroelectric Power Plants	2017 -
	Support Type)	Using Remote Monitoring Technology	September
			2018
Trans	portation		
10	Technical	Vientiane Bus Company Capacity Improvement	January 2012 -
	cooperation	Project Phase	March 2015

¹¹⁹ Prepared by Pacific Consultants from preliminary evaluation documents and reports posted on the JICA website. Project titles are provisionally translated by Pacific Consultants.

11	Data collection	Basic Data Collection Study on Low-Emission	2012
	survey	Public Transport System in Lao PDR	
12	-	Lao PDR Pilot Program (LPP) (Support for Low	March 2013 -
		Pollution Transportation System to Promote	February 2014
		Sustainable Urban Development)	
13	Technical	Vientiane Bus Company Capacity Improvement	August 2016 -
	cooperation	Project Phase 2	August 2019
14	Technical	Sustainable Urban Transport System Capacity	December
	cooperation	Improvement Project	2018 -
			December
			2021
15	Dissemination,	Project to promote and demonstrate a low-	October 2014
	Demonstration,	pollution transportation system using three-	- January 2017
	and Business	wheeled electric vehicles	
	Development		
	Project (SME		
	Support Type)		
16	Dissemination,	Dissemination and Demonstration Project of	May 2015 -
	Demonstration,	Location Information and Traffic Observation	October 2016
	and Business	System for Urban Traffic Improvement in	
	Development	Vientiane City	
	Project (SME		
	Support Type)		
17	Feasibility	Feasibility Study on Improvement System for	November
	Study (SME	Bus Business in Vientiane	2014 -
	Support Type)		November
			2015
18	Dissemination,	Bus Business Improvement System	June 2016 -
	Demonstration,	Dissemination and Demonstration Project	February 2019
	and Business		
	Development		
	Project (SME		
	Support Type)		
19	Basic survey	Basic Study on the Introduction and Maintenance	Not found
		Continuity of Bus and Pedestrian Priority Signals	
		in Vientiane City	
Agric	culture		
20	Technical	Clean Agriculture Development Project	November
	cooperation		2017 -

			November
			2022
21	Grant aid	Tagong Irrigated Agriculture Improvement Plan	January 2018 -
			December
			2020
22	Basic survey	Basic Study on Local Fertilizer Production Using	May 2021 -
		Surplus Hydropower	August 2022
Fores	t and Land Use		
23	Technical	Sustainable Forest Management and REDD+	October 2014
	cooperation	Support Project	- September
		(Reducing Emissions from Deforestation and	2021
		forest Degradation)	
Envir	conment & Waste		
24	Grant aid	Waste Management Improvement Plan for	April 2014 -
		Environmentally Sustainable Cities	January 2016
25	Technical	Vientiane Urban Water Environment	October 2014
	cooperation	Improvement Project	- October
			2017
26	Feasibility	Feasibility Study on Improvement of Hazardous	November
	Study (SME	Waste Disposal and Management, especially	2016 -
	Support Type)	Medical Waste, in Vientiane City	October 2017
27	Dissemination,	Dissemination and Demonstration Project for	December
	Demonstration,	Improvement of Hazardous Waste Treatment and	2018 - March
	and Business	Management including Medical Waste in	2023
	Development	Vientiane City	
	Project (SME		
	Support Type)		
Urba	n development		
28	Technical	Urban Development Management Project	September
	cooperation		2013 - March
			2017

Table 4-7Summary of major issues related to ET and CN as indicated by existing JICA projects

Sector	Problem
Energy	• Rural electrification near the border is covered by electricity imports from neighboring countries, but the average unit price of imported electricity often exceeds the average electricity price in Laos, which is one of the factors putting pressure on EDL's finances. (No. 3)

	 In many power systems in rural areas, power is supplied over distances of several hundred kilometers by medium voltage (22kV) distribution lines, and there are few power supply facilities at the end of the system, which makes it difficult to maintain voltage and causes voltage drops and technical problems such as transmission losses and frequency fluctuations. In addition, because power is supplied over long distances by a single line, the reliability of the power supply is also low, as the effects of an accident can be widespread (No. 3). Off-grid power sources lack management capacity because local
	 governments and others operate the power plants (No. 3). The installed capacity of power generation for domestic supply is large compared to the demand, and there is surplus power generation capacity and power surplus in Lao PDR that is not used throughout the year, putting pressure on the finances of EDL, which purchases power from the grid. (No. 4)
	• The current hydropower-centered development cannot solve the shortage of electricity supply capacity in the dry season, and economic dry season measures are needed, taking into consideration imports from Thailand and renewable energy. (No. 14)
	 In order to realize the "System to System Interconnection System", which is a wide area interconnection system to interconnect the Lao PDR domestic grid to the power grids of neighboring countries, the EDL needs to develop an effective Grid Code (GC) that is consistent with the GC of neighboring countries while taking the characteristics of the Lao PDR grid into consideration. In addition, it is necessary to strengthen the independent monitoring and control system of the EDL's central feed-in control center, to enhance the operational capacity of transmission and substation facilities, and to strengthen the regulatory function to monitor these (No. 5). While there are plans to build many hydropower plants, the training of engineers responsible for operation and maintenance has not kept page.
	engineers responsible for operation and maintenance has not kept pace (No. 9).
Transportation	 It is necessary to define EVs as vehicles and safety standards need to be developed. It is also necessary to develop a tax system, infrastructure, and human resource development to promote EVs (No. 12). Improving the reliability and convenience of public transport and expanding the public transport network (No. 13)
	 Insufficient public transport policies to promote modal shift (No. 13) Improvement of the management system of Vientiane Bus Company (No.

	17)
Agriculture	• Need to improve agricultural productivity, create high value-added commodity crops, address surplus electricity, and create industries that consume electricity (No. 22)
Forest and Land Use	 Strengthening forest management capacity at the local level (No. 23) Weak infrastructure for forest conservation through REDD+ due to lack
	of human resources for proper analysis and management of REDD+
	related data (No. 23)
Environment & Waste	• A significant increase in the amount of waste collection is expected in cities, and measures such as increasing the number of collection vehicles are necessary (No. 24).
	• As for Vientiane, the final disposal site is about 32 km away from the city center, so it is necessary to establish a waste transfer station to efficiently transport the increasing amount of collected waste (No.25).
	 Medical waste exceeding the treatment capacity of the incinerator has been brought in, and medical waste is not being treated properly (No. 25).
	• Although guidelines exist, separated medical waste is mixed with general waste due to lack of understanding by cleaners and other reasons (No. 27).
Urban	• The system to restrict and guide development projects based on the land
Development	use plan is not functioning well enough to realize the urban planning master plan (No. 28)
	• Lack of urban development management capacity in the implementing agencies of urban development (No. 28)

In particular, on the energy sector issue, the following suggestions are made in the No. 4 report.

- Regarding the excess capacity of power generation facilities for domestic use, increase in domestic demand for electricity, strengthening of electricity exports, and change of power sources for domestic use to power sources for export
- ✓ Strengthening interconnection line capacity with Thailand to address power supply shortages during the dry season
- ✓ Strengthening Compliance with the Lao PDR Grid Code for the Interconnection of the Greater Mekong Subregion's Power Grid

In response to these issues and proposals, JICA is currently implementing the "Power sector advisory project ", the " Project for Power Quality Improvement through Upgrading Grid Code and Strengthening its Enforcement System " and the " Project for Improvement of Power Utility Management ". In the promotion of EVs, the "Lao Pilot Program (LPP) (Low Emission Transportation System Support for Sustainable Urban Development)" has presented several issues, among which the development of EV promotion policies, the definition of EVs as vehicles, the development of a preferential taxation system for EVs, and the development of EV infrastructure are included in the Resolution on Endorsement of Policy on Electricity Vehicle Use (2021).

4.2.2 Analysis of issues related to energy transition and carbon neutrality (especially promotion of electrification)

Based on the desktop review of existing policies for ET and CN in Lao PDR and field interviews, the challenges, local needs, and donor support for Lao PDR to achieve ET and CN are organized in the following.

Classification	Problem	Requests from	Movement of	Countermeasure	
		the Lao side	other donors	plan	
Energy	 Lack of interagency collaboration on overall energy development, including hydropower, coal, renewable energy, biomass, etc. (MEM, MAF, MONRE, etc.) Solar power has no engineers capable of EPC (AF) No technical standards for Lao PDR in introducing renewable energy such as solar and wind power (MEM) Hydroelectric power generation in the north must be linked to the capital city, which is the largest electricity demand area. 	(MEM DEEP/DEPP/ DEM/RIEM) • Establishment of technical standards and guidelines for renewable energy • Support for policy formulation from potential studies on hydrogen, etc.	 USAID (proposed to MEM and EDL): policy development support, capacity building, EDL improvement Asia Foundation (AF): Providing legal and financial capacity building to MEM Australian Embassy and AF (proposed to MEM): Supporting Energy Transition 	 Establish a forum for cross-agency discussion and information sharing around MEM on energy Support the development of technical guidelines for renewable energy Supporting a detailed study of hydrogen and ammonia potential However, it is necessary to demarcate and coordinate with USAID and Australia 	

Table 4-8 Main challenges for ET and CN in Lao PDR ¹²⁰

¹²⁰ Prepared by Pacific Consultants based on on-site interviews, etc.

	• Extension of the power grid is not cost-effective and realistic for electrification of mountainous areas			
EV Promotion	 No specific direction of action to achieve 30% by 2030 (MEM, etc.) US standard was recommended in a study of charging facilities conducted by the US, but it does not fit the Lao context (MEM RIEM) Charging plugs are expected to be CCS-Type2 only, but must include Chinese standard GB/T to achieve 30% (LOCA) 	 (MPWT DoT) Capacity building on the design of taxation and environmental taxes to promote EVs 	 USAID (in discussion with MEM): Study on charging infrastructure standards and dissemination strategies GGGI (MPWT, completed): Study on business models for EV diffusion, etc. 	 Establish a forum to discuss technical standards, industrial development, electricity rates, taxation, and other issues in an integrated manner, and to compile actions to promote EVs. MEM has requested each ministry to establish a cross-sectoral WG for relevant ministries and agencies under the EV Promotion No. 8, and we believe that this can be appropriated.
Energy Conservation	 There is no system, procedure, or guideline for third-party inspection and certification of energy-saving performance of air conditioners, etc. (MEM) No energy consumption data by industry type (MEM) 	 (MEM) A system for third-party inspection and certification of energy efficiency and conservation performance 	 NZ-Laos REP (MEM and implementation): support energy data collection and energy management capacity building in line with energy conservation legislation GGGI (underway with MOIC): clean industry strategy development, financing 	 Establish procedures and guidelines for third-party certification of energy efficiency and conservation performance. Promote energy data collection systems from industrial, commercial, and consumer sectors, etc.,

				and set up a forum to discuss effective energy efficiency and conservation measures (in cooperation with NZLREF).
Other	 Continuous awareness raising on REDD is needed. Insufficient budget for solar sharing. Lack of capacity to address emissions from agriculture and livestock, and crop modelling. (MAF) Deforestation in mountainous areas is due in part to slash-and- burn agriculture. (MoAF) 	 (MAF) Financial support and staff capacity building for emission reductions from the AFOLU sector 	• none in particular	• Separate support could be provided by SATREPS and JCM funds from the Ministry of the Environment of Japan and other sources.

In particular, the following issues can be identified from the viewpoint of promoting electrification.

- ✓ Lack of interagency collaboration on overall energy development, including hydropower, thermal power, renewable energy, biomass, etc.
- ✓ The challenge of expanding electrification using hydropower is the need to eliminate the bias in electricity supply and demand areas.
 - The electricity demand in the region is low compared to the hydropower electricity supply in northern Laos, but there is not enough transmission network connecting the northern part of the country to the electricity demand areas, resulting in a surplus of electricity.
 - The establishment of data centers for virtual currency mining by multiple companies is being considered, and large-scale electricity demand is expected. However, since the continuity of the business is not certain, it is necessary to consider measures to deal with surplus electricity while selling electricity to mining companies.
 - Hydrogen, ammonia, and synthetic methane production using surplus electricity and the use of ammonia as a raw material for fertilizer are considered, among which the

use of ammonia as a raw material for fertilizer is being studied mainly by private companies ¹²¹, but there is no legal system or regulation for the use of gas as energy, so it is necessary to improve it.

- ✓ The challenges for the spread of renewable energy lie in the development of technical standards and the training of engineers.
 - At present, for renewable energies such as solar power and wind power, products based on the standards of the producing countries have been introduced, and the technical standards are not unified.
 - The number of domestic engineers capable of EPC for rooftop solar power generation has not been developed, and there is a lack of engineers who can handle rooftop solar power generation even if the implementation of rooftop solar power generation is considered.
- ✓ Extension of the power transmission and distribution network is not realistic from a costeffectiveness perspective for electrification of mountainous areas and other areas.
 - Distributed renewable energy is effective for electrification of mountainous areas, but there are many problems in transportation and maintenance management.
- ✓ Although the implementation system for transport electrification is making slow but steady progress, the specific direction to achieve 30% in 2030 is not clear.
 - Infrastructure development, such as recharging facilities, is left to the private sector, but progress has been slow due to insufficient incentives for infrastructure development to enable quick recharging, etc., and it cannot be said that the EV policy reflects the wishes of the private sector.

4.2.3 Domestic and regional zero-emission energy potential and utilization methods

Looking at the changes in energy production and primary energy supply in Laos over time (Figure 4-6, it can be seen that energy production from hydropower and coal increased rapidly in the 2010s, with the share of coal replacing biomass in primary energy supply. This is due to the Hongsa coal-fired power plant being commissioned in 2015. In terms of demand for petroleum products, demand for middle distillates (mainly kerosene, diesel oil and heavy oil A) has grown significantly (Figure 4-7), mainly considered to be for automotive and industrial applications.

The "Project on Power System Master Plan" (JICA, 2020) states that the official electricity demand assumption in Lao PDR will reach 5,892 MW in 2030 from 1,728 MW in 2017 in terms of maximum power, while the actual maximum power demand from 2016 to 2017 will remain

¹²¹ For example, "Basic Study on Local Fertilizer Production Using Surplus Hydroelectric Power in Laos" by Tsubame BHB Corporation using the JICA Small and Medium Enterprises and SDGs Business Support Project, and "Demonstration study of a PEM electrolyzer to realize a green ammonia production and supply project in Laos" using the NEDO 2021 International Demonstration Project for Japanese Technologies Contributing to the Efficiency of Energy Consumption by Hitachi Zosen Corporation. https://tsubame-bhb.co.jp/news/press-release/2020-10-22-1644 Accessed August 3, 2022

https://www.hitachizosen.co.jp/newsroom/news/release/2021/20211018_001426.html Accessed August 3, 2022

around 1,000 MW, which is significantly lower than the assumption. According to the Ministry of Energy and Mines' power development plan until 2030 published in 2017, including existing, under-construction, and export power sources, the total output is about 31.5 GW, which is about 4.3 times the 7.4 GW of power sources that were in operation in 2018. ¹²² On the other hand, The report analyzes the possibility of transmitting power from hydropower plants in northern Laos to the capital area using existing transmission lines, and as a result, the report considers that the existing 230 kV transmission lines are capped at around 300 MW, and the development of grid codes for interconnection between regions, 500 kV with northern Thailand and 1,000 The company is proposing the development of a grid code for interconnection between regions and the enhancement of 500 kV and 1,000 MW interconnection lines with northern Thailand.

Looking at Lao PDR's primary energy supply in 2019, about 45% is coal, 23% is electricity, 20% is biomass, and 12% is petroleum products, and achieving ET-CN will require reducing the use of coal, petroleum products and non-sustainable biomass use that leads to deforestation (Figure 4-8). In terms of final energy consumption, coal accounts for 50% of the energy consumed in the industrial sector, petroleum products account for 100% in the transport and transportation sector, and biomass energy use exceeds 80% in the private, commercial and public service sectors (figure 4-9). Therefore, it is considered that the electrification of these fossil fuel or non-sustainable biomass consuming sectors and processes with hydropower electricity will be effective to achieve ET-CN in Lao PDR.

Figure 4-6 Lao PDR energy production (left panel) and primary energy supply (right panel) over time ¹²³

¹²² Although several coal-fired power plants are planned to be developed in Lao PDR, the development of coal-fired power plants has stagnated due to the Chinese government's announcement to halt the construction of coal-fired power plants overseas and the global trend to refrain from financing coal-fired power generation. The revised NPDP is expected to significantly reduce the share of coal-fired power generation in the energy mix from 30% (from a field hearing by Pacific Consultants). 123 World Energy Balances (IEA, 2019)

Figure 4-7 Demand for petroleum products in Laos over time ¹²⁴

Figure 4-9 Final energy consumption by sector in Lao PDR (2017) 126

¹²⁴ World Energy Balances (IEA, 2019)

¹²⁵ Prepared by Pacific Consultants based on information from the IEA

website.https://www.iea.org/sankey/#?c=Lao%20People's%20Democratic%20Republic&s=Balance Accessed 6 May 2022.

¹²⁶ Prepared by Pacific Consultants based on World Energy Balance (IEA, 2019).

On the other hand, from interviews with the MEM and MOIC in Laos, a detailed statistical database on energy consumption in the industrial sector has not been developed, and it is not possible to accurately grasp the actual situation, such as what energy is consumed in what industries and to what extent. ¹²⁷ Therefore, the Economic Research Institute for ASEAN and East Asia (ERIA) has reported on the energy consumption of the food processing industry and the energy consumption of the industrial sector. The report ERIA indicates that the food processing and other manufacturing industries ¹²⁸ consume a large amount of coal, electricity, and fuel oil (Table 4-9), indicating that electrification and fuel conversion of these coal and fuel oil, and energy conservation in electricity consumption are effective in achieving ET-CN. The Final Energy Efficiency Market Assessment Report - LAO PDR (2022) conducted by ADB also states that the sectors with the largest energy saving potential are industry and transportation.

	Main activity	Estimated energy	Coal	Biomass	Electricity	Oil			
		consumption (ktoe)					LPG	Diesel	Fuel oil
	Food processing, beverage and tobacco	182.77	34.44	1.42	38.08	108.83	1.70	3.99	103.13
	Textile, cloth, shoes and leather	8.97	0.26	8.24	0.46	0.00	0.00	0.00	0.00
	Other manufacturing	240.71	39.34	2.86	184.17	14.35	2.35	11.99	0.00
	total	432.45	74.04	12.52	222.71	123.18	4.05	15.99	103.13
C	GHG reduction measures		↑ Fuel	conversio	n ↑Er	nergy savi	ing	Fuel conv	ersion↑

Table 4-9 Estimated energy consumption by industry in Laos ¹²⁹

In the transport sector, it is important to switch to EVs and promote the use of EVs in public transport such as the planned BRT¹³⁰. In the Resolution on Endorsement of Policy on Electricity Vehicle Use in 2021, the ministries are supposed to provide guidelines for the promotion of EVs within 45 days of the promulgation of the resolution. However, according to the results of the field hearing, the work seems to be delayed. However, the MEM is considering the establishment of a working group with the ministries indicated in the Resolution, and the establishment of a system to promote EVs is steadily progressing. International donors, such as USAID and GGGI, are also supporting the development of EV infrastructure and the study of business models for EV promotion.

In the biomass use in the civilian sector, the main use of forest biomass is for charcoal. In addition, one of the factors contributing to deforestation is the development of farmland through

manufacturing, metal processing, and brick manufacturing.

¹²⁷ When private companies build new factories, they submit information on which energy sources and how much they plan to use to the DoIC, but the database is not yet available, and the actual consumption situation is not understood. 128 Based on interviews with MoIC, the energy intensive industries in Laos are mainly cement

¹²⁹ Prepared by Pacific Consultants based on Lao PDR energy statistics 2018 (ERIA, 2018).

¹³⁰ EV buses for BRT are expected to be procured under the ADB budget around September 2022 (from local interviews by Pacific Consultants).
slash-and-burn agriculture. Lao PDR aims to achieve 70% forest coverage by 2030, and maintaining a certain amount of GHG absorption through forest conservation is essential to achieve CN by offsetting GHG emissions, which are difficult to reduce in the future. Therefore, it is effective to integrate REDD+ with the provision of incentives to reduce charcoal consumption, especially in rural areas, to promote the spread of alternative methods to slash and burn, to electrify nonelectrified areas, and to develop and promote the use of alternative energy sources such as biogas using livestock manure. On the other hand, it is necessary to grasp the number of livestock for the implementation of biogas projects, but since these data have not been developed, it is necessary to grasp various biomass potentials first.

In Laos, there are not many power-consuming industries, and there may be enough cases where surplus electricity is generated by electrification measures such as the spread of EVs, etc. It is desirable to consider the use of surplus electricity for the green hydrogen business that uses electricity for water electrolysis, ammonia production from green hydrogen, and synthetic gas production as an alternative to CNG. It is desirable to consider this as an option. In the country, Japanese companies such as Tsubame BBH Corporation and Hitachi Zosen Corporation are already conducting studies on green ammonia production, and it is necessary to understand the production potential of hydrogen, ammonia, and synthesis gas in conjunction with the estimation of surplus electricity. Hydrogen and ammonia can be used for low-carbon LNG- and coal-fired power generation, so when new coal-fired power plants are planned, the carbon intensity may be lowered by requiring green ammonia co-firing. ¹³¹ Green hydrogen and green ammonia produced in Laos could be transported to coal-fired and LNG-fired power plants in neighboring countries to contribute to low carbon emission, but gas pipelines would be required to transport the necessary amount of gas. In the transportation sector, CNG could be substituted for synthetic gas in large commercial vehicles, which are difficult to convert to EVs because they require more driving power than passenger cars, and hydrogen fuel cell vehicles could be substituted for them.

Given these circumstances, it is believed that Japan's areas of cooperation in the energy sector for the achievement of ET-CN in the country will be effective in supporting "the strengthening of the power grid linking northern Laos with electricity demand areas" ¹³² and "the electrification of the domestic industrial sector and the transport and transportation sectors, and the conversion to green fuels such as green hydrogen".

From the perspective of contribution to Laos' NDC achievement (Figure 3-20), "strengthening the power grid linking northern Laos with domestic and international power demand areas" can contribute to the spread of EVs in urban areas, and "electrification and conversion to green fuels such as green hydrogen in the domestic industrial and transportation sectors" will reduce GHG emissions derived from energy

¹³¹ The applicability of ammonia co-firing to the existing Hongsa coal-fired power plant should be examined by considering the specifications of the existing facilities and the availability of ammonia storage sites. 132 Includes international electricity trade between northern Laos and neighboring countries.

consumption, and thus contribute to reducing GHG emissions from final energy consumption in the broad sense.

4.3 Nepal

4.3.1 Organizing existing ET-CN related JICA Projects

JICA has been implementing development assistance projects in various sectors in Nepal which would result in ET-CN, as shown in Table 4-10. The issues from these projects are summarized in the following Table 4-11.

Table 4-10 JICA projects contributing to ET/CN in Nepal (past 10 years approx.) ¹³³

No.	Туре	Project	Period
Energy			
1	Loan aid	Tanahu Hydroelectric Power Project	March 2013 -
			October 2021
2	Loan aid	Western Region Small Hydro Improvement	April 2014 -
		Plan	March 2016
3	Technical	Data Collection Survey for Regional Grid	September
	cooperation	Integration in BBIN	2020 - March
			2022
4	Technical	Project on Integrated Power System	May 2021 -
	cooperation	Development Plan	April 2023
Traffic			
5	Technical	Kathmandu Basin Urban Transport	July 2014 -
	cooperation	Improvement Project	December
			2015
Agriculture			
6	Technical	Tarai Plains Irrigated Agriculture	March 2019 -
	cooperation	Promotion Project	March 2025
7	Technical	Project for Preparation of a Master Plan for	April 2011 -
	cooperation	the Promotion and Extension of High Value	March 2014
		Agriculture along the Sinzuri Road	
Consumer			
8	Technical	Project for Promoting Compliance with	April 2021 -
	cooperation	Nepalese Building Codes for Safe Building	May 2025
		Construction	

¹³³ Prepared by Pacific Consultants from preliminary evaluation documents and reports posted on the JICA website. Project titles are provisionally translated by Pacific Consultants.

Table 4-11 Summary of major issues related to ET and CN as indicated by existing JICA projects in Nepal

Sector	Problem
Energy	• Most of the existing hydropower plants are biased towards the flow-in type of power generation, and only a limited number of reservoir hydropower plants are capable of adjusting the flow rate used for power generation between seasons (No. 1).
Transportation	 To relieve traffic congestion caused by the increase in the number of vehicles, radial and ring roads should be constructed avoiding high-density urban areas (No. 5) The increase in traffic demand in the capital cannot be met by road improvement alone, so a modal shift is needed through the introduction of a new track transport system (AGT) and a Bus Rapid transit System (BRT) (No. 5).
Agriculture	• Management of water use facilities for irrigation, including inadequate maintenance of core and terminal facilities for agricultural irrigation and collection of water use fees for them (No. 6).

4.3.2 Analysis of issues related to energy transition and carbon neutrality (especially promotion of electrification and energy conservation)

Based on the desktop review of Nepal's existing policies for ET and CN and the field interviews, the main challenges for Nepal to achieve ET and CN are summarized as follows.

Classification	Problem	Nepalese	Movement of	Examples of	
		request	other donors	countermeasures	
Energy	• The relevant	(NEA,	(USAID, ADB,	• Seminars	
	ministries do not	MoEWRI,	WB)	and	
	fully understand	Parliamentary	 Projects are 	workshops	
	each action of the	Committee,	progressing	will be held	
	Long-Term Net	etc.)	in the	to introduce	
	Zero Strategy.	• The	development	Japanese	
	• In power	electrification	of the power	technologies	
	generation,	rate of the	transmission	in each action	
	hydropower	country as a	and	of the Net	
	development is	whole is 95%,	distribution	Zero Long-	
	progressing and if	but the	network.	Term	
	all goes well, the	electrification	(ADB)	Strategy.	
	country will	rate is low in	• We are	• Conduct	
	become a net	some areas.	working on	basic research	
	exporter of	In rural areas	micro/mini-	on hydrogen	
	electricity within	in particular,	hydropower	and ammonia	
	a few years, but	it is necessary	and mini-PV	utilization.	

Table 4-12 Main challenges for ET-CN in Nepal ¹³⁴

134 Prepared by Pacific Consultants based on on-site interviews, etc.

possibility that development will be delayed due to financial and other issues (MoEWRI, NEA, TEPCO, New Jee, cte.).in erral areas and micro/mini- grant assistance on grid development.in erral areas and micro/mini- grant assistance on strengthening development.the area of grant assistance on strengthening to f electricity.•Electrification rate has reached 95% in the country as a whole, but the quality of electrification is an issue electrification is an issue electrification is an issue electrification is an issue tet.).in the reaches the area of grant assistance on strengthen the power only in rural areas but also for the increase in domors and NGOs, etc.).in treas tet.in tread addition to green the socio- country is a network not of electricity and vulneerable to disasters, so there is a need to etcritived demand, and electrification of electricity demand, and electrification of electricity demand, and electrification of full disasters, so there is a need to strengthen rural essible in terms of electricity demand, and electrification of full disasters, so there is a need to strengthen rural essible in terms of electricity ention of the industrial sector.in treal areas industrial sector.in treal areas ad muthetice to green the power grid reaches the area.in the tech industrial sector.in the industrial sector.•Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the eraches the area.in the tech industrial se	there is a large	to strengthen	development	 Expanding
development will be delayed due to financial and other issues other issues (MoEWRI, NEA, TEPCO, New Jec, etc.).distribution network to ensure a stable supply of electricity. (MoEWRI, TEPCO, New Jec, etc.).and micromini- grid development. (GGGI)grant assistance on strengthening development. (GGGI)• Electrification rate has reached 95% in the country as a whole, but the quality of electrification is an issue (MoEWRI, NEA, donors and NGOs, etc.).is is to green the socio- economy is being worked of electricity areas but also of electricity strengthen rural electrification of electricity strengthen rural electricity and nessues to core with peakand micromini- grid were stable and being worked on with measures to cole with peakgrant assistance on stable socio- economy is being worked on with measures to clectricity strengthen rural electricity strengthen rural electricity strengthen rural electricity strengthen rural electricity strengthen rural electricity strengthen rural electricity strengthen rural electricity strengthen rural electricity demand, and electricity demand, and electricity demand, and electricity demand, and electricity strengthen sas all-scele hydropower, mainly serves as a bridge until the power grid reaches the area, there is a large possibility that it will not be used (NGO).distribution distribution of the industrial sector.and micromini- grid reaches the area, there is a large possibility that it will not be used (NGO).distribution micromini- micromini- micr	possibility that	the power	in rural areas	the area of
be delayed due to financial and other issues (MoEWRI, NEA, TEPCO, New Jec, etc.). • Electrification rate has reached guality of electrification is an issue ccountry as a whole, but the quality of electrification is an issue ccc.). • Rural areas are less stable and reliable in terms of electricity strengthen rural electricity strengthen rural electricity demand, and electricity demand, and supporting demand, and supporting demand, and supporting demand de	development will	distribution	and	grant
financial and other issues (MoEWRI, NEA, TEPCO, New Jec, etc.).ensure a stable supply of electricity. (GeGI)grid development. (GGGI)strengthening stable (GGGI)· Electrification rate has reached 95% in the country as a whole, but the quality of electrification is an issue (MoEWRI, NEA, donors and NGOS, etc.).· I is is need to strengthen the prover distribution an issue of electricity and vulnerable to disasters, so there is a need to strengthen rural electrification for the is a need to strengthen rural electrification of samed to strengthen rural electrification distribution networks and resilience (e.g. donors and NGOS).ensure a commute distribution of the strengthen rural electrification of the strengthen rural electrification of the strengthen rural electrification distribution networks and resilience (e.g. donors and NGOS).ensure a the pack electrification of the sector.grid strengthen rural electrification of the sector.strengthening strengthen mainty serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO).ensure a tower strengthen rural electrification of the sector.grid strengthen rural electrification of the sector.supporting suppo	be delayed due to	network to	micro/mini-	assistance on
other issues (MoEWRI, NEA, TEPCO, New Jec, etc.).stable supply of electricity. (MoEWRI, Parliamentary Committee, WECS, etc.)development. (GGGI)stable electricity supply in rural areas. hydrogen, ammonia and synthetic methane using surplus and their use electrification is an issue of electrification is an issue electrification is an issue of electrificity and reliable in terms of electricity electricity distribution relectricity and reliable in terms of electricity electricity distribution network not of electricity and reliable in terms of electricity electricity electricity electricity distribution network not of electricity and vulnerable to distribution distribution networks and increase in distribution distribution networks and indistribution networks and indistribution networks and indistribution networks and indistribution networks and indistribution networks and indistribution indistribution samal-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO).stable supply in trail distribution of the industrial sector.development. (GGGI) intenal anather is a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO).stable supply in the the commutes discretion industrial sector.development. (GGGI) intenal decinition of the power grid trainition of improved of improved of improvedstable supply <b< th=""><th>financial and</th><th>ensure a</th><th>grid</th><th>strengthening</th></b<>	financial and	ensure a	grid	strengthening
(MoEWRI, NEA, TEPCO, New Jec, etc.).of electricity. (MoEWRI, Partiamentary Committee, WECS, etc.)(GGGI)electricity supply in rural areas.• Electrification rate has reached 95% in the country as a whole, but the quality of electrification is an issue (MoEWRI, NEA, donors and NGOs, etc.).• The production of hydrogen, ammonia and synthetic methane using surplus and their use to green the socio- economy is being worked of electricity disasters, so there is a need to strengthen rural electrification distribution networks and resilience (e.g. donors and NGOs).• Gelectricity donors and NGOs).• The production of hydrogen, mainly serves as a bridge until the power grid reaches the area, threr is a large possibility that it will not be used (NGO).• Gelectricity, committee, were state of electricity demand, and electrification of the sector.(GGGI)• The production of methane socio- economy is being worked on with measures to cope with peak electricity deterticity donors and NGOs).• Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO).of electricity, donors and NGOS and sector.(GGGI) methane to the supporting supporting support for the dissemination of improved biomass stoves and electric stoves iselectricity, supporting stoves and electric stoves iselectricity, supporting stoves and electric	other issues	stable supply	development.	stable
TEPCO, New Jec. etc.).(MoEWRI, Parliamentary Committee, Parliamentary Parliamentary Committee, Parliamentary Parliamenta	(MoEWRI, NEA,	of electricity.	(GGGI)	electricity
etc.).Parliamentary Committee, Werkle, kut the quality of electrification is an issue electrification is an issue (MoEWRI, NEA, donors and NGOS, etc.).Parliamentary Committee, Werkle, kut the gower distribution only in rural arcas but also for the increase in domestic demand, electrification of electricity strengthen rural electrification is a need to strengthen rural electrification is a need to strengthen rural electributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area, Comes and NGOS).Parliamentary Committee, werkleits power only in rural and their use to green the socio- economy is being worked on with others, led by cothers, led	TEPCO, New Jec,	(MoEWRI,	• The	supply in
 Electrification rate has reached 95% in the country as a whole, but the quality of electrification is an issue (MoEWRI, NEA, donors and NGOs, etc.). Rural areas are less stable and reliable in terms of electricity and vulnerable to distribution distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area, there is a large possibility that it will not be used (NGO). Committee, WECS, etc.) stores is Committee, WECS, etc.) domors and NGOS). Distributed grid reaches the area, there is a large possibility that it will not be Committee, wECS, etc.) Committee, weck Support for the discomisation of improved biomass Support for the discomisation Support for the discomisation 	etc.).	Parliamentary	production of	rural areas.
rate has reached 95% in the country as a whole, but the quality of electrification is an issue (MoEWRI, NEA, donors and NGOs, etc.).WECS, etc.) It is necessary to strengthen the power only in rural areas but also to motion and their use socio- conomy is donors and NGOs, etc.).financial support to SECF and TDF by FCDO and AEPC.• Rural areas are less stable and reliable in terms of electricity and wulnerable to distribution distribution metworks and resilience (e.g. donors and NGOs).NOC and oothers, led by vulnerable to of the cope with peak electricition demand, and electrification distribution metworks and resilience (e.g. donors and NGOs).Preparing RFPs for India on the sale and sector.• Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not beWECS, etc.) total supporting stoves and electricammonia and synthetic support to socio- conomy is domester total supporting stoves and biomass stoves and large possibility that it will not befinancial support to stoves is• Total the ued (NGO).• Preparing stoves isfinancial supporting stoves is	• Electrification	Committee,	ĥydrogen,	• Provide
95% in the country as a whole, but the quality of electrification is an issue (MoEWRI, NEA, donors and NGOs, etc.).• It is necessary to strengthen the power distribution areas but also of electricity and vulnerable to distribution reliable in terms of electricity and vulnerable to distribution distribution network and networks and resilience (e.g. donors and NGOs).• It is necessary to strengthen rural electricity domasters, so there is a need to strengthen rural electricity distribution distribution networks and resilience (e.g. donors and NGOS).• It is necessary to strengthen rural electricity domasters, so there is a need to strengthen rural electricity donors and NGOS).• Support to SECF and AEPC.• Distributed generation, such as small-scale hydropower, mainly serves as a 	rate has reached	WECS, etc.)	ammonia and	financial
country as a whole, but the quality of electrification is an issue donors and NGOs, etc.).necessary to strengthen the power distribution network not only in rural areas but also for the less stable and reliable in terms of electricity and vulnerable to disasters, so there is a need to strengthen rural electricity distribution distribution of strengthen rural electricity donors and NGOs).methane strengthen the power donestic domestic on with MoEWRI, NOC and others, led by Kathmandu University.SECF and TDF by FCDO and AEPCRural areas are less stable and vulnerable to disasters, so there is a need to strengthen rural electricity domors and NGOs).methane university cope with peak electricity demand, and electricitation of the sector.methane using surplus and their use to green the socio- economy is being worked on with MoEA, AEPC, NCC and others, led by Kathmandu UniversityRural areas out domostic domors and NGOs).SECF and methane to green the sectorDistributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO).methane strengthen trual sector.SECF and mathation to grid reaches the area, there is a large possibility that it will not bestrengthen trual sector.SECF and mathation to green the sectorDistributed generation, such area, here is a large pos	95% in the	• It is	synthetic	support to
whole, but the quality of electrification is an issue (MoEWRI, NEA, donors and NGOs, etc.).strengthen the power distribution network not only in rural areas but also for the omesticusing surplus and their use to green the socio- economy is being worked on with MoEWRI, NEA, AEPC, NOC and others, led by Kathmandu university.TDF by FCDO and AEPC.• Rural areas are less stable and vulnerable to disasters, so there is a need to strengthen rural electricity distribution 	country as a	necessary to	methane	SECF and
quality of electrification is an issuepower distribution network not only in rural areas but also for the increase in less stable and of electricity and vulnerable to disasters, so there is a need to strengthen rural electrification distributed generation, such as small-scale bridge until the power grid reaches the area, Once the power grid reaches the area, there is a large possibility that it will not be will not be w	whole, but the	strengthen the	using surplus	TDF by
electrification is an issue (MoEWRI, NEA, donors and NGOs, etc.).distribution network not network not areas but also for the increase in domestic demand, of electricity and disasters, so there is a need to strengthen rural electricity distribution distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO).to green the socio- economy is bidicing the discomination of improved biomass stoves and electric the discomination of improved biomass stoves and electric the discomination of improved biomass stoves isto green the socio- economy is being worked on with MoEWAL MoEWAL the discomination of improved biomass stoves isto green the action (REPS) the discomination of improved biomass stoves is	quality of	power	and their use	FCDO and
an issue (MoEWRI, NEA, donors and NGOS, etc.).network not only in rural areas but also for the increase in domesticsocio- economy is being worked on with MOEWRI, NEA, AEPC, NOC and others, led by Kathmandu University.• Rural areas are less stable and reliable in terms of electricity and vulnerable to disasters, so there is a need to strengthen rural electricity distribution measures to cope with electricity demand, and electricition distribution metworks and resilience (e.g. donors and NGOS).NOC and on with MEA in the bidding purchase of hydropower, mainly serves as a bridge until the power grid reaches the area, Once the power grid reaches the area, there is a large possibility that it will not be wid NGOS).network not only in rural demand, and electricity demand, and electricition of the industrial sector.socio- econy is being worked on with MOEWRI, NEA in the bidding process.• Distributed generation, such as small-scale bridge until the power grid reaches the area.NOC econy is dissemination of improved biomass stoves and electric stoves is• Distributed grid reaches the area, there is a large possibility that it will not be weight that it will not be weight that it will not besocio- econy is area there is a large possibility• Ket Next that it will not be weight that it will not be weight that it will not benetwork not of improved biomass stoves is	electrification is	distribution	to green the	AEPC.
(MoEWRI, NEA, donors and NGOs, etc.).only in rural areas but also for the increase in domesticeconomy is being worked on with MoEWRI, NEA, AEPC, NEA, AEPC, NCC and others, led by Kathmandu University. electricity demand, and electricity disasters, so there is a need to strengthen rural electricity distribution networks and resilience (e.g. books).only in rural areas but also for the increase in measures to cope with electrification of the industrial sector.economy is being worked on with MoEWRI, NOC and others, led by Kathmandu University. (USAID).Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Ingrid reaches the area, there is a large possibility that it will not beonly in rural areas but also for the cope with electricity demand, and electrification of the industrial sector.economy is being worked on with MoEWRI, NEA in the bidding process. (Practical Action, CRTN).Distributed generation, such as mall-scale bidge until the power grid reaches the area.only in rural demand, and electricity distribution stores and biomass stores and electric the dissemination of improved biomass stores and electric	an issue	network not	socio-	
donors and NGOs, etc.).areas but also for the increase in less stable and reliable in terms of electricity and vulnerable to disasters, so there is a need to strengthen rural electricityareas but also for the increase in demand, peak electricity (USAID)being worked on with MAEA, AEPC, NOC and University.is a need to strengthen rural electricity distribution networks and resilience (e.g. donors and NGOs).others, led by table and, and electricity electrification of the sale and sector.others, led by table and, and electricity (USAID).Preparing RFPs for India on the sale and sector.others table and universityDistributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area, there is a large possibility that it will not be used (NGO).areas but also for the cope with cope with co	(MoEWRI, NEA,	only in rural	economy is	
etc.).for the increase in domesticon with MoEWRI, NEA, AEPC, NCC and others, led by University. is a need to distribution distribution networks and resilience (e.g. donors and NGOs).for the increase in domestic ope with electricition demand, and electricition of the indistribution networks and resilience (e.g. donors and NGOs).on with MoEWRI, NOC and others, led by University. (USAID)• Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area, there is a large possibility that it will not be used (NGO).for the measures to cope with demand, and electrification of the sale and purchase of hydropower and supporting NEA in the bidding process. (Practical Action, CRTN)• Distributed grid reaches the area, there is a large possibility that it will not be used (NGO).for the power is the the towers is towers is	donors and NGOs,	areas but also	being worked	
 Rural areas are less stable and domestic demand, and of electricity and vulnerable to vulnerable to disasters, so there lest is a need to strengthen rural electricity demand, and electricity electrification distribution of the industrial resilience (e.g. donors and NGOS). Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO). Rural areas are increase in domestic domestic domast. AEPK, NOC and others, led by Kathmandu University. (USAID) Televice (e.g. determined and and supporting purchase of hydropower and supporting process. (Practical Action, CRTN) Support for the dissemination of improved biomass stoves and electric stoves is biomass 	etc.).	for the	on with	
less stable and reliable in terms of electricity and vulnerable to disasters, so there is a need to strengthen rural electricitydomestic demand, measures to cope with peak electricity demand, and electricition distribution networks and resilience (e.g. donors and NGOS).NEA, AEPC, NOC and others, led by University. (USAID)• Preparing RFPs for India on the sale and purchase of hydropower and small-scale hydropower, mainly serves as a bridge until the power grid reaches the area.NEA, AEPC, NOC and others, led by VINERSITY (USAID)• Preparing RFPs for India on the sale and purchase of hydropower and supporting process.NEA, AEPC, NOC and others, led by University. (USAID)• Preparing RFPs for India on the sale and supporting process.NEA industrial supporting process.• Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area.NEA inthe bidding process.• Support for treaches the area.• Support for the dissemination of improved biomass stoves and electric stoves is	• Rural areas are	increase in	MoEWRI,	
reliable in terms of electricity and vulnerable to disasters, so there is a need to strengthen rural electricitydemand, measures to cope with peak electricityNOC and others, led by Kathmandu (USAID)strengthen rural electricitygenand, and electrification of the industrial sector.• Preparing Preparing ale and purchase of hydropower and• Distributed generation, such as small-scale bridge until the power grid area, there is a large possibilityNOC and others, led by twithet it will not be used (NGO).• Conce the power grid that it will not be used (NGO).0NOC and others, led by twithet it will not be used (NGO).• Conce the power grid that it will not be used (NGO).00• Conce the power grid that it will not be used (NGO).00• Conce the power grid that it will not be used (NGO).00• Conce the power grid that it will not be used (NGO).00• Conce the power grid that it will not be used (NGO).00• Conce the power grid that it will not be used (NGO).00• Conce the power grid that it will not be used (NGO).00• Conce the power grid that it will not be used (NGO).00• Conce the power grid that it will not be used (NGO).00• Conce the power grid that it will not be used (NGO).00• Conce the power grid that it will not be used (NGO).00• Conce the power grid that it	less stable and	domestic	NEA, AEPC,	
of electricity and vulnerable to disasters, so there is a need to strengthen rural electricitymeasures to cope with peakothers, led by Kathmandu University. (USAID)strengthen rural electricity distribution distribution distribution distribution for tesilience (e.g. donors and NGOS).of the industrial sector.The preparing RFPs for India on the sale and purchase of hydropower and supporting process.• Distributed generation, such as small-scale bridge until the power grid reaches the area.supporting process.• Distributed generation, such as small-scale bridge until the power grid reaches the area.(Practical Action, CRTN) • Support for the dissemination of improved biomass stoves and electric stoves and electric stoves is	reliable in terms	demand,	NOC and	
vulnerable to disasters, so there is a need tocope with peakKathmandu University.strengthen rural electricitypeakUniversity.demand, and electricityelectricity(USAID)distribution networks and resilience (e.g. donors and NGOs).of the industrial sector.Preparing RFPs for India on the sale and purchase of hydropower and• Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area.NGOs).and supporting NEA in the bidding process.• Distributed generation, such as small-scale bridge until the power grid reaches the area.(Practical disemination of improved biomass• Distributed generation, such as small-scale bridge until the power grid reaches the area.Supporting rocess.• Distributed generation, such as small-scale bridge until the power grid reaches the area.Support for the disemination of improved biomass• Distributed generation, such area, there is a large possibility that it will not be used (NGO).Support for the disemination	of electricity and	measures to	others, led by	
disasters, so there is a need topeak electricity electrification of the indistribution networks and resilience (e.g. donors and NGOS).Deak electrification of the industrial sector.University. (USAID)• Preparing RFPs for India on the sale and purchase of hydropower and supporting process.• Preparing RFPs for India on the sale and purchase of hydropower and supporting process.• Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO).Oniversity. (USAID)• Used (NGO).• Oniversity. electrification of the supporting process.• Distributed grid reaches the area, there is a large possibility that it will not be used (NGO).• Oniversity. electrification of improved bidding process.• Support for the dissemination of improved biomass stoves is• Oniversity. Power grid electric stoves is	vulnerable to	cope with	Kathmandu	
is a need toelectricity(USAID)strengthen ruraldemand, and· Preparingelectricitydemand, and· Preparingdistributionof theIndia on thenetworks andindustrialsale andresilience (e.g.sector.purchase ofdonors andsector.hydropowerNGOs).andsupporting• Distributedsupportinggeneration, suchssmall-scalehydropower,process.mainly serves as a(Practicalbridge until the· Support forpower grid· Support forreaches the area.of improvedOnce the powerdisseminationgrid reaches thearea, there is alarge possibilitystoves andelectricstoves is	disasters, so there	peak	University.	
strengthen rural electricitydemand, and electrificationPreparing RFPs for India on the sale and purchase of hydropower andof the networks and resilience (e.g. donors and NGOs).industrial sector.sale and purchase of hydropower and• Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area.NEA in the bidding process.• Once the power grid reaches the area, there is a large possibility that it will not be used (NGO).• Support stoves is	is a need to	electricity	(USAID)	
electricityelectricationKFFS fordistributionof theIndia on thenetworks andindustrialsale andresilience (e.g.sector.purchase ofdonors andhydropowerNGOs).and•Distributedsupportinggeneration, suchsmall-scalehydropower,process.mainly serves as a(Practicalbridge until theAction, CRTN)power grid·reaches the area.of improvedOnce the powerdisseminationgrid reaches theof improvedarea, there is alarge possibilitylarge possibilitystoves andelectricstoves is	strengthen rural	demand, and	• Preparing	
distributionof theindustrialnetworks andindustrialsale andresilience (e.g.sector.purchase ofdonors andhydropowerNGOs).and• Distributedsupportinggeneration, suchNEA in theas small-scalebiddinghydropower,process.mainly serves as a(Practicalbridge until theAction, CRTN)power grid• Support forreaches the area.theOnce the powerdisseminationgrid reaches theof improvedarea, there is abiomasslarge possibilitystoves andthat it will not beelectricused (NGO).stoves is	distribution	electrification	KFPS for India on the	
Industrialsale andresilience (e.g. donors and NGOs).sector.purchase of hydropower 	alstribution	of the	india on the	
Itestifiere (e.g.sector.putchase ofdonors andhydropowerNGOs).and• Distributedsupportinggeneration, suchNEA in theas small-scalebiddinghydropower,process.mainly serves as a(Practicalbridge until theAction, CRTN)power grid• Support forreaches the area.theOnce the powerdisseminationgrid reaches theof improvedarea, there is abiomasslarge possibilitystoves andthat it will not beelectricused (NGO).stoves is	resilience (e.g.	muustiiai	sale allu	
NGOs).and• Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area.NEA in the bidding process. (Practical Action, CRTN)power grid reaches the area.• Support for the dissemination of improved biomass stoves and electric used (NGO).	donors and	sector.	hydronower	
 Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO). Distributed supporting process. (Practical Action, CRTN) Support for dissemination of improved biomass stoves and electric stoves is 	NGOs)		and	
generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO).	• Distributed		supporting	
as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO). bidding process. (Practical Action, CRTN) • Support for the dissemination of improved biomass stoves and electric stoves is	generation, such		NEA in the	
hydropower, mainly serves as a bridge until the power gridprocess. (Practical Action, CRTN)power grid reaches the area.· Support for the dissemination of improved biomass stoves and electric stoves is	as small-scale		hidding	
mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO).	hydronower		process	
bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO). (Action, CRTN) · Support for dissemination of improved biomass stoves and electric stoves is	mainly serves as a		(Practical	
power grid• Support forreaches the area.theOnce the powerdisseminationgrid reaches theof improvedarea, there is abiomasslarge possibilitystoves andthat it will not beelectricused (NGO).stoves is	bridge until the		Action. CRTN)	
reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used (NGO). In the power of improved biomass electric stoves is	power grid		• Support for	
Once the power grid reaches the area, there is a large possibility that it will not be used (NGO).dissemination of improved biomass stoves and electric stoves is	reaches the area.		the	
grid reaches the area, there is a large possibility that it will not be used (NGO).of improved biomass stoves and electric stoves is	Once the power		dissemination	
area, there is a large possibility that it will not be used (NGO).biomass stoves and electric stoves is	grid reaches the		of improved	
large possibility that it will not be used (NGO).stoves and electric stoves is	area, there is a		biomass	
that it will not be used (NGO).electric stoves is	large possibility		stoves and	
used (NGO). stoves is	that it will not be		electric	
	used (NGO).		stoves is	
• If hydroelectric being	 If hydroelectric 		being	
development provided.	development		provided.	
progresses	progresses			
smoothly, there	smoothly, there			
will be a surplus	will be a surplus			
of several	of several			
thousand M w in the future, so it is	the future at it			
the future, so it is	the future, so it is			
the level of	the level of			

	electricity demand			
	(Kathmandu			
	University).			
EV	• Currently, there	(MoFE)	(GGGI)	• Support the
Promotion	are no EV-	• There are	· EV	development
	specific policies	currently no	promotion	of EV-related
	(e.g. MoPIT).	guidelines or	and support	standards
	• There are	regulations on	for the	such as EV
	incentives such as	EV battery	development	battery
	lower EV import	disposal, and	ofEV	disposal
	tariffs but no	these will	guidelines is	guidelines.
	experts in these	need to be	underway at	
	areas (MoPIT).	established in	the NAMA	
		the future.	Facility.	
			(ADB)	
			• The	
			company is	
			engaged in	
			promotional	
			activities for	
			large-scale	
			Ev charging	
			support for	
			the	
			formulation	
			of strategies	
			to promote	
			EVs.	
			• A master	
			plan for new	
			road	
			connectivity	
			is currently	
			being	
			developed.	
Energy	• The need for	(MoICS,	(GIZ)	• A basic
conservation	energy	WECS)	• The	survey on the
	conservation in	• There is no	company had	potential of
	the industrial	energy policy	implemented	hydrogen and
	sector 1s	targeting the	energy	ammonia
	recognized, but	industrial	conservation	utilization in
	efforts are not	sector, but we	programs in	field mustrial
	(MalCS)	defieve that	the past and	neid will be
	(Moles).	efficiency	basic	· Conduct
	guidelines have	improvements	research on	energy
	been developed	and clean	energy	efficiency and
	but companies are	energy use in	consumption	conservation
	only taking	the industrial	in the	audits and
	voluntary actions.	sector need to	industrial	pilot projects
	Energy audits and	be addressed.	sector.	in the
	promotion of			industrial
	energy efficiency			sector (e.g.
	and conservation			kiln
	in the			electrification
	manufacturing			

	 industry will eventually be necessary (WECS, MoPIT). In the water sector, there is information that the leakage rate is around 40%, but there are no specific initiatives for energy conservation (MeWS) 			 in brick factories). Conduct an energy conservation study in Kathmandu by reducing the leakage rate of water supply system.
Other	• No specific mitigation measures have been implemented in the agricultural sector.	-	-	 Cooperate with the newly established Department of Climate Change under the MoA (contents to be discussed).

In particular, the following issues can be identified from the perspective of promoting electrification and energy conservation.

- ✓ The actions in the Long-Term Net Zero Strategy are not fully understood by the Ministry.
- ✓ The challenge of rural electrification lies in the development of the power distribution network rather than in the development of distributed power sources.
 - In power generation, hydropower development is progressing and if all goes well, the country will become a net exporter of electricity within a few years, but there is a large possibility that development will be delayed due to financial and other issues. Projects by the ADB and the US are making progress in the development of the power grid (but not enough to meet the need). The electrification rate has reached 95% for the country as a whole, but the quality of electrification is an issue. Rural areas have low stability and reliability of electricity and are vulnerable to disasters, so it is necessary to strengthen the distribution network and resilience of rural areas.
 - Distributed generation, such as small-scale hydropower, mainly serves as a bridge until the power grid reaches the area. Once the power grid reaches the area, there is a large possibility that it will not be used.
- ✓ Raising the level of domestic electricity demand is necessary.
 - ➢ If hydroelectric development progresses smoothly in line with the power development plan, there will be a surplus of several thousand MW in the future, which will need to be raised to meet domestic electricity demand.

- MoEWRI, NEA, AEPC, NOC and others, led by Kathmandu University, are working on the greening of the socio-economy through fuel switching from fossil fuels, including the production of hydrogen, ammonia and synthetic methane using surplus electricity and the use of ammonia as a fertilizer feedstock ¹³⁵, but there is no government policy on the use of alternative fuels like hydrogen. Experts from MoEWRI, WECS and Kathmandu University established the Green Hydrogen Coordination Committee and submitted a proposal on hydrogen strategy to the Minister of MoEWRI ¹³⁶, but the document was not publicly available at the time of this study and its contents could not be confirmed.
- ✓ Transport electrification has many challenges
 - With regard to EV promotion, there is no pillar law or policy that conforms to the direction of promotion policy, measures, etc., and no technical guidelines (safety, charging, disposal, etc.) are found. Therefore, in the future, there is a possibility that the technical standards of each country for each imported vehicle will be wildly different in the domestic market.
 - There are incentives such as lower EV import tariffs, but there are no experts in these areas.
 - > EV promotion projects are being implemented at the NAMA Facility with GIZ and GGGI. ¹³⁷
- ✓ Energy conservation efforts are in the initial stages.
 - MoICS is aware of the need for energy conservation in the industrial sector, but has not seen much action.
 - WECS has established energy audit guidelines, but companies are only taking voluntary actions. Energy audits and promotion of energy conservation in the manufacturing industry will eventually become necessary.
 - In the water sector, there is information that the leakage rate reaches 40%, but there are no specific initiatives for energy conservation.

4.3.3 Domestic and regional energy potential

Energy production and primary energy supply in Nepal over time (Figure 4-10), it can be seen that the share of coal and petroleum in primary energy supply has increased rapidly in recent years, although the trend of biofuels and waste-derived energy accounting for the majority has not changed. In particular, there has been a significant increase in demand for petroleum products, with demand for middle distillates (mainly kerosene, diesel and heavy oil A), motor fuels (Mogas) and LPG growing significantly since 1990 (Figure 4-11). Looking at

¹³⁵ Nepal Hydrogen Initiative, https://nhi.ku.edu.np/ accessed 3 August 2022

¹³⁶ Urja Khabar, https://www.urjakhabar.com/news/1802591324?fbclid=IwAR1SvciSmYxfWeEpWIMxYc24Eh hUGU1ApkfQtsJl8-9bTJPMdRtJBb7K6O0 August 3, 2022 Accessed on

¹³⁷ Nepal - Electric Transportation, https://www.nama-facility.org/projects/nepal-electric-transportation/ Accessed August 3, 2022

Nepal's primary energy supply in 2019, about 71% is biomass, about 18% petroleum products, 6% coal and 5% electricity (Figure 4-12). All electricity is supplied from domestic hydropower with the exception of imported electricity from India during the dry season. Nepal's energy consumption is characterized by the fact that the largest primary energy sources are biomass and waste-derived, and that the residential sector accounts for about 75% of final energy consumption, with biomass accounting for about 95% of energy consumption in the civilian sector. (Figure 4-13). In other words, to achieve ET-CN in the country, it is first necessary to reduce non-sustainable biomass use that leads to deforestation, as well as effective fuel switching in fossil fuel consuming processes in the industrial sector and transport and transportation sector.

Figure 4-10 Nepal's energy production (left panel) and primary energy supply (right panel) over time ¹³⁸

Figure 4-11 Change in demand for petroleum products in Nepal over time ¹³⁹

¹³⁸ World Energy Balances (IEA, 2019)

¹³⁹ World Energy Balances (IEA, 2019)

Figure 4-12 Energy balance of Nepal (2019) ¹⁴⁰

Figure 4-13 Final energy consumption by sector in Nepal (2019)¹⁴¹

The civilian use of biomass is mainly for cooking and heating purposes, and from the policy review and field interviews, both institutional and technical support has been implemented, such as improved biomass cooking stoves in the civilian sector, and policies to promote electric stoves and capacity building. Therefore, it is considered that there is no additional support needed at the time of this study. On the other hand, many respondents pointed out that the conversion to electric stoves has not progressed smoothly in some cases, especially in rural areas, because some areas are not electrified and electricity is unreliable due to power outages and other factors. It was also pointed out that in some areas it is difficult to maintain biogas

¹⁴⁰ Prepared by Pacific Consultants based on information from the IEA website. https://www.iea.org/san key/#?c=Nepal&s=Balance Accessed 14 June 2022.

¹⁴¹ Prepared by Pacific Consultants based on information from the IEA website. https://www.iea.org/san key/#?c=Nepal&s=Final%20consumption Accessed 14 June 2022

facilities due to the decrease in the number of livestock and the migration of young people to other countries. Therefore, the future development of distributed energy in un-electrified areas is likely to be limited to temporary use until the power grid is extended.

In light of these circumstances, it is believed that Japan's cooperation areas for achieving ET-CN in the country will be effective in supporting "the electrification policy by strengthening and improving the reliability of the local power grid" as well as "electrification and conversion to green fuels such as green hydrogen in the domestic industrial and transportation sectors".

In terms of contribution to Nepal's decarbonization policy, among the energy sector objectives in the NDC (Table 3-35), the development of renewable energy is mainly carried out by NEA and private companies such as IPPs; the promotion of electric vehicles is carried out by MoEWRI, NEA, MoPIT and the NAMA Facility through GIZ and GGGI; and the promotion of high-efficiency cooking equipment and biogas is carried out through GCF projects. On the other hand, with regard to the target of 15% of energy demand to be clean energy, no concrete progress has been made in energy other than electricity at the time of this study, except for the hydrogen project led by Kathmandu University. Under these circumstances, "Electrification and conversion to green fuels such as green hydrogen in the domestic industrial and transport sectors" will contribute to the goal of cleaner energy demand. Furthermore, support for "Promoting electrification policies by strengthening and improving the reliability of rural electricity grids" and "Electrification and conversion to green fuels such as green sectors" will contribute to Nepal's NLTS (Table 3-36) in the energy sector in "power generation", "civilian", "industrial", "transport and transportation" and "commercial" sectors.

Green hydrogen potentials are calculated by Thapa et al. of Kathmandu University $(2021)^{142}$ based on NEA's Annual report $(2018/2019)^{143}$, which points out that there could be a surplus of around 3,000 MW of hydropower capacity by 2030 (Figure 4-14). ¹⁴⁴ If 100% of the surplus electricity is used for hydrogen production, about 310,000 tons/year of hydrogen can be produced in 2030 (at a cost of about 6 USD/kg to 13 USD/kg depending on the time of electricity use), which can replace about 1.2 million kL of gasoline. In addition, by converting hydrogen into ammonia, it can be used as an alternative raw material for chemical fertilizers, which are currently imported from India. ¹⁴⁵

¹⁴² Thapa BS et al, Green hydrogen potentials from surplus hydro energy in Nepal, International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2021.04.096

¹⁴³ Nepal Electricity Authority: A year in review-fiscal year 2018/2019 (NEA, 2019)

¹⁴⁴ We believe that these include electricity exports to neighboring countries, but since the planned export volumes cannot be ascertained from the NEA Annual Report, we consider them all to be surpluses. In addition, since this figure is lower than the NDC target of installing 13.6 GW of hydropower by 2030, there may be a further surplus if the NDC target is achieved.

¹⁴⁵ From the perspective of GHG emission reduction, it is not clear whether replacing imported chemical fertilizers with green ammonia-derived chemical fertilizers produced in Nepal would lead to a reduction in Nepal's GHG emissions. This is because GHG emissions from the manufacturing process of imported chemical fertilizers are accounted for outside Nepal and are not originally considered to be included in Nepal's GHG emissions. Although GHG emissions from imports will be reduced, on the other hand, GHG emissions are likely to arise from the procurement of raw materials for manufacturing in Nepal, so a comparative study is necessary.

Figure 4-14 Projected balance of installed generation capacity in Nepal (2020-2030) ¹⁴⁶

¹⁴⁶ Nepal Electricity Authority: A year in review-fiscal year 2018/2019 (NEA, 2019) in Thapa BS et al, Green hydrogen potentials from surplus hydro energy in Nepal, International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2021.04.096

4.4 Uzbekistan

4.4.1 Organizing existing ET-CN related JICA Projects

JICA has been implementing development assistance projects in various sectors in Uzbekistan as shown in Table 4-13. The issues from these projects are summarized in the following Table 4-14.

Table 4-13 JICA projects contributing to ET/CN in Uzbekistan (about the last 10 years) 147

No.	Туре	Project	Period
Energy			
1	Loan	Navoi Thermal Power Plant	December
		Modernization Project (Phase 2)	2019 - April
			2031
2	Loan	Power Sector Capacity Enhancement	December
		Project (Phase 2)	2019 -
			December
			2026
3	Loan	Tashkent Combined Heat and Power	October 2015 -
		Plant Construction Project	August 2021
4	Loan	Power Sector Capacity Enhancement	January 2015 -
		Project	March 2018
5	Loan	Tulaklugan Thermal Power Plant	August 2014 -
		Construction Project	November
			2019
6	Loan	Navoi Thermal Power Plant	August 2013 -
		Modernization Project	April 2020
Traffic			
7	Loan	Karsi-Termez railway electrification	February 2012
		project	- June 2019
Agriculture			
8	Loan	Amvhara Irrigation Facility	December
		Rehabilitation Project	2014 -
			December
			2020
Education			
9	Technical	Project for Strengthening the Capacity	January 2019 -
	cooperation	of Research Activities of Uzbek-Japan	March 2024
		Innovation Center of Youth	

¹⁴⁷ Prepared by Pacific Consultants from preliminary evaluation documents and reports posted on the JICA website. Project titles are provisionally translated by Pacific Consultants.

Table 4-14 Summary of main issues related to ET and CN as indicated by existing JICA projects in Uzbekistan

Sector	Problem
Energy	 Improvement of power generation efficiency of aging natural gas-fired thermal power plants and construction of new ones to enhance the power supply capacity in the area around the industrial complex (No. 1) The challenge is to improve the power generation efficiency of aging natural gas-fired thermal power plants. It is necessary to improve the efficiency of natural gas-fired thermal power generation by introducing high-efficiency now band cycle gas turbines (No.4), improving the power generation efficiency of thermal power plants, and stabilizing power supply (No. 4, 5, 6).
Transportation	• Rail transport capacity needs to be increased to cope with the growing volume of freight transported (No.7).
Agriculture	• The challenge is improving the efficiency of power from old and aging irrigation pumps (No. 8)

4.4.2 Analysis of issues related to energy transition and carbon neutrality (especially hydrogen utilization in power generation and other sectors)

Looking at Uzbekistan's energy production and primary energy supply over time (Figure 4-15), both of which are almost entirely dominated by natural gas, but primary energy supply itself has been declining since 2010. Demand for almost all petroleum products has been continuously declining since 1990 (Figure 4-16). Natural gas is used in all aspects of society, and from field interviews, consumption is particularly high in the heat supply of the residential sector, partly due to losses caused by aging facilities (Figure 4-17 Figure 4-18)

Figure 4-15 Energy production (left figure) and energy supply (right figure) in Uzbekistan over time ¹⁴⁸

¹⁴⁸ World Energy Balance (IEA, 2019)

Figure 4-16 Change in demand for petroleum products in Uzbekistan over time 149

Figure 4-17 Energy balance of Uzbekistan (2019)¹⁵⁰

¹⁴⁹ World Energy Balance (IEA, 2019)

¹⁵⁰ Compiled by JICA and Pacific Consultants from IEA World Energy Balances and other sources.

Figure 4-18 Uzbekistan Final Energy consumption by Sector (2019)¹⁵¹

Uzbekistan has made a major policy shift from natural gas-fired power generation to the mass introduction of renewable energy, such as solar power and wind power, since 2020, and many new strategies and policies have been approved in the power sector. At the same time, the massive introduction of renewable energy has made the modernization of the power grid a pressing issue. In the power sector, the formulation and implementation of new policies and strategies in the power generation sector and the modernization of the power grid are proceeding simultaneously, and the human resource development of the competent authorities and related organizations is lagging behind. Large-scale renewable energy installations are being promoted through IPPs, and competitive bidding is being conducted by private companies.

The organization in charge of grid management in the region, including domestic and neighboring countries, was also changed around the second quarter of 2022. The Ministry of Energy is now in charge of grid management, and it is necessary to confirm the future grid management policy, etc. as appropriate.

Although several donors are supporting the Government of Uzbekistan in the formulation of the ET-CN strategy, the strategy and direction of the government as a whole is expected to be formulated in the future.

In addition to the energy sector, various new policies are being considered and studied in the industrial, transportation, and residential sectors. In these sectors, the competent authorities are also conducting studies and examinations to establish policies, legal systems and other institutional frameworks, but few policies are at the stage of concrete implementation. In the areas of ET-CN, it is expected that the use of private sector investment and emission trading for net-zero emissions will be on the policy agenda in the future.

Thus, although there is institutional movement toward achieving ET-CN in particular, legislation and guidelines need to be developed before the implementation stage. Furthermore, in order to achieve social implementation of decarbonization technologies, it is necessary to

¹⁵¹ Compiled by JICA and Pacific Consultants from IEA World Energy Balances and other sources.

simultaneously develop human resources in government agencies as well as establish and implement policies and institutions, and the government is required to solve institutional issues with limited human resources for the time being.

Broad category	Institution	Institutional aspects		Technical aspects Mounting		
subclass	Planning/polic	Legal/GL	R&D	FS	Involveme	Social
	У				nt of	implementati
					stakeholde	on
<u> </u>					rs	
Color			-			
Descript	Stable supply	Maggiva	NI/A	Saaurin	No	Emission
ion	of chean	- Massive	1N/A	- Securifi g supply	- INO	- Emission
1011	energy	of renewable		and	for	in non-
	- Policy shift	energy.		demand	import	energy
	to mass	modernizatio		adjustm	and	sectors
	introduction	n of the grid,		ent	export of	toward net-
	of renewable	and intra-		options	clean	zero
	energy	regional		for	energy	emissions;
	- Long-term	supply-		maximu	with	direction of
	ET and	demand		m use of	neighbor	emissions
	decarbonizati	balance		renewab	ing	trading yet
	on strategy	adjustment		le	countries	to be
	not yet	are		energy	– Unclear	determined
	developed ¹⁵⁵	proceeding		18 an	incentive	- Unclear
	- NO dooorbonizati	simultaneous		Issue	lor	now lo
	on plan in	ly, and the		- Flospect	investme	aujust the
	place for	to GL etc		impleme	nt in FT-	supply-
	industry.	- Lack of		ntation	CN for	demand
	transport and	relevant		of FSs	industria	balance for
	residential	human		for	1,	each region
	sector	resource		hydroge	transport	and future
	- Methods and	development		n and	and	energy
	measures to	- Need		ammoni	residenti	storage
	reduce	legislation to		а	al sector	options
	methane	decarbonize		utilizati		
	emissions in	industry,		on in the		
	the	transport and		1ndustri		
	agricultural	life		al,		
	unclear are	- Institutionall		tation		
	- Forest area as	v hvdrogen		and		
	a sink is	is not vet		resident		
	decreasing	recognized		ial		
	0	as an energy		sectors		
				are		

Table 4-15	Analysis	of issues	related to	ET-CN	in Uzbekistan	152
10010 . 10				D I O I ()		

¹⁵² Prepared by Pacific Consultants based on stakeholder interviews, etc.

¹⁵³ Donor support is available for the study of energy transition and decarbonization strategies.

¹⁵⁴ In addition to thermal power generation, it will be necessary to conduct FSs for energy storage facilities and hydrogen and ammonia utilization technologies in the future.

				unknov	V			
				n				
Color code	Overwhelr which	ning obstacles hinder	Obsta imple	cles mentation	in	Obs imp	stacles lementation	in

Observed

Partially observed

In the following, we analyzed the issues regarding the utilization of hydrogen as one of the options for the means of achieving energy ET-CN. As a premise for analyzing the issues, it is necessary to produce hydrogen for use and to transport it to the place of use. However, according to the interview with Ministry of Energy, hydrogen is still in the research stage and is not treated as an energy source. Although the Ministry of Energy is currently formulating a hydrogen strategy, we believe that the method of utilization is also in the study stage. Based on these assumptions, this section analyzes the issues mainly in the institutional and technological development aspects of hydrogen production and the potential for hydrogen use in power generation and other sectors, up to the transportation and social implementation of hydrogen.

1. Hydrogen utilization in power generation and other sectors

implementation

Observed

In the interviews, the use of hydrogen in power generation was mentioned as a method of utilizing hydrogen in order to reduce the carbon intensity of coal-fired power generation, and the use of products such as burners that are capable of hydrogen blending. Although the Uzbek side mentioned plans such as a "hydrogen cluster" to promote the supply and use of hydrogen in transportation and industrial clusters, the hydrogen strategy is still in the formulation stage. In addition, several research institutes for hydrogen research and development were identified.

Under these circumstances, the institutional and organizational aspects are at the stage of investigating and studying the technological development and utilization of hydrogen, and the formulation of a hydrogen strategy is awaited. In addition, if interest in hydrogen production and utilization increases within the country, there is a possibility that the technologies possessed by private companies in the Middle East, Japan and other countries will be introduced. It is assumed that it will eventually become necessary to establish a legal system, guidelines and technical standards for the production and utilization of hydrogen, and the human resource development of ministries and research institutes for the production and utilization technologies of green hydrogen, green ammonia, etc., may become a shared issue.

In terms of technology, the use of hydrogen as energy storage, where electricity is stored as hydrogen through water electrolysis, has not been well understood, and the functions of hydrogen in relation to the use of surplus electricity at the time of mass introduction of renewable energy and the response to seasonal fluctuations in electricity supply and demand through hydrogen power generation have not received attention. On the other hand, some research institutes were interested in the development of hydrogen co-firing technology for thermal power generation and products using hydrogen as an alternative energy source. It should also be noted in the future that the existing energy prices in Uzbekistan, which are kept low by policy, may pose a pricing challenge when hydrogen is utilized in the industrial and transportation sectors.

2. Hydrogen Production

Due to the large amount of water resources required for the commercial scale hydrogen production process, it is considered that there will be competition with water use in the agricultural sector in Uzbekistan. According to the interview survey, the use of water resources such as existing agricultural reservoirs is prioritized for agricultural production, and therefore, securing water resources that do not compete with agricultural water resources is a prerequisite for commercial scale hydrogen production in Uzbekistan.

In terms of institutional and organizational aspects, the use of water resources is under the jurisdiction of the Ministry of Water Resources. In particular, where there is concern about chronic water shortages in the country, it is likely that coordination and cooperation with the Ministry of Energy, Ministry of Water Resources, and other related ministries will be required in the future in order to develop hydrogen production in the country.

In terms of technology, hydrogen production in Uzbekistan is likely to attract attention in the future, but some Middle Eastern companies participating in the EPC and IPP of renewable energy power plants are developing hydrogen-related technology in the Middle East, and there is a possibility that such technology will come from overseas. In addition, if a large amount of water resources is to be extracted from lakes in the country, for example, it will be necessary to confirm the availability of lake water with a high salt content.

Large category	Organization & System	Aspect	Technology	Aspect	Impleme	ntation.
Small	Planning/Policy	Laws &	Technologic	Pre-FS	Demonst	Social
Category		Regulations,	al		ration	impleme
		Guidelines	development			ntation
Color	(1) Hydrogen use (1	power genera	tion)			
coding	(2) Hydrogen use (1	transportatio	n, etc.)			
	(3) Hydrogen production					
Descripti	- Hydrogen is	- Laws and	- Domestic:	N/A	N/A	N/A
on.	positioned at the	regulations	Utilization			
	research stage.	for	technology		Private	
1)	(Hydrogen	hydrogen	has not yet		sector	
Hydrogen	development will	utilization	been		(overseas	
use in	be carried out	and GLs	established) has	
power	depending on the	have not	, but		hydrogen	
generatio	results of studies	yet been	several		utilizatio	
n	on the impact on	formulated	research		n	
2)	the economy and	• •	institutes		technolo	
Applicati		- Human	are		gy and	
ons in	environment.	resources	working			
transporta) Hydrogen	to	011 11.			
tion and	- Ilyulogeli strategy is being	understand				
consumer	developed at the	hydrogen				
fields	time of this study	utilization				
iicius	- The competent	technology				
	authority for	and to				
	hydrogen as an	formulate				
	energy source is	legal				
	unclear.	svstems.				
	- Unclear the	GLs and				
	position of stable	technical				
	operation of the	standards.				
	grid and energy	*Still R & D				
	storage in the	stage				
	renewable energy					
	introduction					
	policy					
	- Energy prices on					
	the user side are					
	kept low by					
	subsidies					
	1					

Table 4-16 Analysis of issues related to hydrogen utilization ¹⁵⁵

¹⁵⁵ Prepared by Pacific Consultants based on stakeholder interviews, etc.

¹⁵⁶ Hydrogen co-firing technology to reduce the carbon intensity of natural gas fired power plants, and the use of hydrogen as a means of storing surplus electricity from renewable energy sources

¹⁵⁷ From an interview with the MoE

¹⁵⁸ Development of products that enable production and use of hydrogen is progressing, mainly by overseas companies including Japanese companies. In terms of production, Japanese companies are making efforts, although the cost is high and there are some issues. In the area of hydrogen co-firing in natural gas-fired thermal power generation, Japanese companies and others have hydrogen co-firing power generation technologies and products. In addition, Japanese companies have technologies and products to use hydrogen in vehicles, such as hydrogen FC.

3)	- Need to	- Laws and	- Domestic:	N/A	N/A	N/A
Hydrogen	coordinate with	regulations	Hydrogen			
productio	water resource	concerning	production	Private	Private	
n	use policies in	hydrogen	method not	sector	sector	
	the agricultural	production	yet	(overseas	(overseas	
	sector	and GLs	established) has) has	
	(*Water use for	have not	, several	hydrogen	hydrogen	
	hydrogen	yet been	laboratorie	productio	utilizatio	
	production will	formulated	s are	n	n	
	be subordinated		researchin	technolog	technolo	
	if there is	- Human	g	У	gy and	
	competition with	resources			products	
	existing	are needed			159	
	agricultural water	to				
	resource use due	understand				
	to the high water	hydrogen				
	demand during	production				
	hydrogen	technology				
	production)	and to				
		develop				
		legal				
		systems,				
		GLs and				
		technical				
		standards.				

Color code Overwhelming obstacles which hinder implementation Observed

Obstacles in implementation Observed Obstacles in implementation Partially observed

¹⁵⁹ Same as footnote 158.

Chapter 5. Proposed Development Scenarios for Energy Transition and Carbon Neutrality

$5.1\ {\rm Proposed}$ vision and development scenarios for each country studied

5.1.1 Vietnam

Based on Chapter 3.3.1, the analysis of the current status of ET-CN in Vietnam, and Chapter 4.1, the challenges to ET-CN, the proposed vision and development scenarios that would contribute to achieving ET-CN in Vietnam are "building a green energy society centered on the use of LNG, green electricity, and hydrogen to encourage the transition from coal-fired power generation to ET-CN" and "promoting decarbonization through energy conservation, electrification, and renewable energy utilization in the industrial sector and other sectors.

Vietnam aims to achieve the net-zero target by 2050. Considering the current dependence on coal-fired power generation, the outlook and direction of the electricity plan toward 2030 will have a significant impact on the roadmap to achieve net-zero emissions by 2050. The power plan under the draft PDP8 is assumed to replace coal-fired power generation with solar and wind power generation and LNG power generation, which in addition is characterized by a larger installed capacity for renewable energy sources than for LNG. Therefore, a development scenario was studied toward carbon neutrality along this direction. It is observed that the description of energy conservation activities in draft PDP8 is not significantly changed from the existing PDP7, and it is assumed there are no special enhancements to renewable energy activities.

The Vietnamese government expects that renewable energy (solar and wind) power generation projects will be implemented by private IPPs. In the area of LNG, many pipeline projects are also operated by IPPs and the establishment of a power market is being considered as well. Under these circumstances, the new measures include the actions to enable even cheaper electricity supply through trading in the electricity market, while utilizing private investment in renewable energy, LNG, and other applicable resources. Although the industrial sector is still required to conserve energy, priorities should be placed on developing green initiatives on the power generation side as a basic approach, since measures or subsidies to encourage energy conservation through the introduction of high-efficiency equipment are not being considered at present. At the same time, the scenario emphasizes the role of storage technology for renewable electricity, hydrogen, and ammonia.

As such, we assume that LNG power generation projects, which are expected to gain momentum some time before 2030, will also be leveraged as a means to stabilizing the grid from power generation after 2050.

Table 5-1 Draft vision and development scenario for Vietnam: Building a green energy society centered on the use of LNG, green electricity, and hydrogen to support the transition from coal-fired power generation to ET-CN

Assur	Assumptions for development scenarios		
Persp	ectives for consideration	Outline	
	Policy Framework for	Transition will maximize the use of green power from	
0	Environment, Stable	renewable energy sources while also utilizing LNG	
	Supply, Economy and	power generation. The transition will promote GHG	
	Safety (3E+S)	emission reductions in the power generation sector while	
		exploring the possibilities of using energy storage,	
		ammonia, and hydrogen for this purpose. By	
		decarbonizing the power generation sector, it can also	
		contribute to the decarbonization of the industrial sector.	
	International Trends in	At COP26, Vietnam signed the "Global Clean Power	
	Climate Change Measures	Transition Statement" to phase out coal-fired power	
		generation.	
		In its Joint Statement for ET Cooperation with MOIT for	
		CN, Japan's Ministry of Economy, Trade and Industry	
		(METI) is promoting investment in clean energy,	
		supporting the development and introduction of	
		hydrogen and other technologies, and supporting the	
		formulation of an ET roadmap in cooperation with	
		ERIA. ¹⁶⁰ ¹⁶¹ In addition, the METI is promoting	
		investment in ET through the Asian Future Investment	
		Initiative. ¹⁶²	
		ASEAN is formulating its own taxonomy, and the	
		handling of natural gas-fired power generation needs to	
		be closely monitored in conjunction with domestic trends	
		in Vietnam. ¹⁶³	
	Energy supply chain	As the amount of renewable electricity generated	
		fluctuates, options for forecasting and balancing	
		electricity supply and demand are essential.	

¹⁶⁰ Minister Hagiuda Attends the Japan-Vietnam Investment Conference and Meets H.E. Mr. Pham Minh Chinh, Prime Minister of the Socialist Republic of Vietnam, and H.E. Mr. Nguyen Hong Dien, Minister of Industry and Trade (METI, 2021) https://www.meti.go.jp/english/press/2021/1125_002.html Accessed 19 Aug, 2022.

¹⁶¹ METI Holds the Fifth Meeting of the Japan-Vietnam Joint Committee on Cooperation in Industry, Trade and Energy (METI, 2022) https://www.meti.go.jp/english/press/2022/0823_001.html Accessed 24 Aug, 2022.
162 ASIA-Japan Investing for the Future Initiative Announced (METI, 2022)

https://www.meti.go.jp/english/press/2022/0110_001.html Accessed 19 Aug, 2022.

¹⁶³ ASEAN Taxonomy for Sustainable Finance (ASEAN, 2021) https://asean.org/book/asean-taxonomy-for-sustainable-finance/ Accessed 23 Aug, 2022.

	Competitive edge	The unit cost of LNG power generation depends on the
0		LNG procurement price.
		Solar power is recognized worldwide as the cheapest way
		to generate electricity. If the private sector can be
		encouraged to invest in IPP projects, solar and wind
		power generation will be able to supply electricity at
		lower cost. However, investment in technologies for
		stabilize grids such as storage batteries is essential to
		absorb fluctuations in power generation.
	National finance	In order to improve the investment environment for
0		renewable energy generation by the private sector, it is
		highly likely that government guarantees and convertible
		guarantees will need to be provided
	Industrial promotion	By using electricity derived from LNG and renewable
0	Industrial promotion	energy generation the export industry can reduce the
		carbon footprint of its products to a lower level than
		before In particular it can contribute to strengthening
		the international compatitiveness of madvate in the
		the international competitiveness of products in the
	0.1	export industry.
- T	Other	
- Impac scena	Other et of the development rio	- Outline
- Impac scena	Other et of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an
- Impao scena	Other et of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal
- Impac scena	Other et of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the
- Impao scena	Other et of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port.
- Impac scena	Other et of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation
- Impao scena	Other et of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation facilities is not considered to be a major problem unless
- Impao scena	Other et of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation facilities is not considered to be a major problem unless there are large-scale deforestation and biodiversity
- Impac scena	Other et of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation facilities is not considered to be a major problem unless there are large-scale deforestation and biodiversity protection issues. Generally, power plants are developed
- Impac scena	Other et of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation facilities is not considered to be a major problem unless there are large-scale deforestation and biodiversity protection issues. Generally, power plants are developed in designated areas, and the system is such that financing
- Impao scena	Other et of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation facilities is not considered to be a major problem unless there are large-scale deforestation and biodiversity protection issues. Generally, power plants are developed in designated areas, and the system is such that financing cannot be obtained from financial institutions without
- Impac scena	Other et of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation facilities is not considered to be a major problem unless there are large-scale deforestation and biodiversity protection issues. Generally, power plants are developed in designated areas, and the system is such that financing cannot be obtained from financial institutions without proper implementation of environmental and social
- Impac scena	Other ct of the development rio Environmental aspect	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation facilities is not considered to be a major problem unless there are large-scale deforestation and biodiversity protection issues. Generally, power plants are developed in designated areas, and the system is such that financing cannot be obtained from financial institutions without proper implementation of environmental and social studies in advance.
- Impac scena	Other ct of the development rio Environmental aspect Economy and Industry	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation facilities is not considered to be a major problem unless there are large-scale deforestation and biodiversity protection issues. Generally, power plants are developed in designated areas, and the system is such that financing cannot be obtained from financial institutions without proper implementation of environmental and social studies in advance. A stable supply of renewable energy at low cost would
- Impac scena	Other ct of the development rio Environmental aspect Economy and Industry	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation facilities is not considered to be a major problem unless there are large-scale deforestation and biodiversity protection issues. Generally, power plants are developed in designated areas, and the system is such that financing cannot be obtained from financial institutions without proper implementation of environmental and social studies in advance. A stable supply of renewable energy at low cost would be beneficial both economically and for industry.
- Impac scena	Other ct of the development rio Environmental aspect Economy and Industry	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation facilities is not considered to be a major problem unless there are large-scale deforestation and biodiversity protection issues. Generally, power plants are developed in designated areas, and the system is such that financing cannot be obtained from financial institutions without proper implementation of environmental and social studies in advance. A stable supply of renewable energy at low cost would be beneficial both economically and for industry. However, stability of the power grid is a prerequisite for
- Impac scena	Other ct of the development rio Environmental aspect Economy and Industry	- Outline For LNG facilities, it is necessary to conduct an environmental impact assessment in terms of terminal installation and high-pressure gas management at the port. The construction of solar and wind power generation facilities is not considered to be a major problem unless there are large-scale deforestation and biodiversity protection issues. Generally, power plants are developed in designated areas, and the system is such that financing cannot be obtained from financial institutions without proper implementation of environmental and social studies in advance. A stable supply of renewable energy at low cost would be beneficial both economically and for industry. However, stability of the power grid is a prerequisite for this, and in the future it is possible that storage and other

		power plants, the amount of electricity generated will
		exceed the grid linkage and demand in the target area,
		and may be subject to temporary supply curbs to stabilize
		the grid.
	Society	Large-scale solar and wind power plants are not expected
0		to employ large numbers of workers or provide other
		benefits compared to other methods of power generation,
		but they may lead to lower electricity prices. Combined
		with LNG power generation, it will contribute to stable
		and inexpensive power supply.

Table 5-2 Draft vision and development scenario for Vietnam: Promoting decarbonization through energy conservation, electrification, and renewable energy utilization in the industrial sector, etc.

Assump	Assumptions for development scenarios		
Perspec	ctives for consideration	outline	
0	Policy Framework for Environment, Stable Supply, Economy and Safety (3E+S)	Promote GHG emission reductions through electrification, use of green power, and energy conservation in the energy consumption of industrial enterprises, which will contribute to building a more sustainable society by achieving decarbonization in the industrial sector by 2050. However, energy saving and electrification require individual capital investment by companies.	
0	International Trends in Climate Change Measures	Same as the Table 5-1.	
-	Energy supply chain	-	
0	Competitive edge	The competitiveness of industrial sectors, especially export industries, requires not only the price of products and services, but also the decarbonization of production and the decarbonization of the value chain from production to sales.	
0	National finance	Measures to promote investment in energy efficiency and decarbonization by the private sector are necessary. Generally, large electricity consumers have access to commercial bank loans, etc.	

0	Industrial promotion	Energy-saving equipment such as high-efficiency
		facilities and electrification for decarbonization will
		increase demand for a variety of high-efficiency products
		and power generation equipment, contributing to
		industrial development.
-	Other	-
Impact	of the development	Outline
scenari	0	
	Environmental aspect	There is equipment and facilities to be installed within
0		each company's facilities, but it will promote higher
		efficiency and cleaner energy consumption. It is
		estimated that environmental issues will not be
		significant.
	Economy and Industry	There will be an effect on the economic side due to the
0		investment effect by the private sector. It will contribute
		to strengthening the competitiveness of industries.
	Society	Stimulate demand for various equipment, thereby
		contributing to increased demand for manufacturers and
		other companies and workers.

5.1.2 Lao PDR

Lao PDR aims to achieve net-zero emissions by 2050, and ET-CN will be achieved by promoting hydropower electrification and fuel switching to green fuels derived from hydropower in sectors and processes consuming fossil fuels or non-sustainable biomass in the country. To this end, it is important to develop a transmission network that adequately connects the hydroelectric power supply areas with the demand areas. Although the development of the power grid will require time and money, it is expected to ensure a stable supply of electricity and the proper operation of hydropower facilities, which will in turn help to raise the level of electricity demand in the country as a whole. In Laos, imports of petroleum products have been delayed due to a shortage of foreign currency reserves, and gasoline supply shortages have become a social problem. A development scenario could be constructed with a vision of "building a green energy society centered on the use of green electricity and hydrogen" that promotes fuel conversion using green electricity and hydrogen in the industrial, transportation, and consumer sectors. In addition, "Promotion of the establishment of a carbon neutral society through modernization of the agriculture, forestry, and livestock industries" is considered to be effective as a scenario proposal to strengthen REDD+ to prevent conversion of forest land, the largest emission source in Laos, to cultivated land, and to promote research and implementation with the MoA and the National University of Laos on measures to reduce methane emissions from the agriculture and livestock industries. This is believed to be an effective scenario.

Table 5-3 Draft V	Vision and Dev	elopment Sce	enario for La	ao PDR: Strengt	hening of
the power grid	l linking northe	ern Laos with	domestic a	nd international	power

Assum	Assumptions for development scenarios		
Perspe	ctives for consideration	Outline	
O	ctives for consideration Policy Framework for Environment, Stable Supply, Economy and Safety (3E+S)	OutlineThe development of the power grid will contribute to the efficient operation of hydropower facilities, increase domestic electricity demand through stable electricity supply, and promote EVs. The promotion of EVs will lead to a reduction in fossil fuel imports in Laos, where foreign currency is scarce, and contribute to improving energy security.The development of international interconnection lines will lead to more efficient operation of hydropower facilities and increased revenues from electricity sales through power exports. In addition, electricity interconnection in the region, including neighboring countries, will lead to improved stability of the regional	
		electricity grid and contribute to improved energy	

demand areas

		security in the region.
		Neighboring countries that are interconnected to the grid
		can reduce their own GHG emissions by importing
		hydroelectric power.
	International Trends in	In its Joint Statement for ET Cooperation with ASEAN
0	Climate Change	for CN. Japan's METI is promoting investment in clean
	Measures	energy support for the development and introduction of
		hydrogen and other energy sources and support for the
		formulation of an ET roadmap. In addition, METI is
		promoting investment in ET through the Asian Future
		Investment Initiative. (refer to the Table 5-1)
		Electrification with renewable energy power is being
		promoted globally.
_	Energy supply chain	The development of the power grid will help raise the
0		level of domestic electricity demand.
		Electricity sharing with neighboring countries is affected
		by the power development plans of each country.
-	Competitive edge	-
	National finance	By connecting the demand areas to the grid, the surplus
0		power from hydropower generation can be sold, which
		will help improve EDL's finances.
-	Industrial promotion	-
-	Other	-
Impact	of the development	outline
scenari	0	
_	Environmental aspect	If forest lands are to be used for the construction of
0		power transmission and distribution networks, an
		environmental impact assessment should be conducted.
		Neighboring countries that will be interconnected with
		grids of Laos will be able to reduce their own GHG
		emissions by importing hydropower from Laos.
	Economy and Industry	The increase in electricity sales in Laos and abroad will
0		lead to an increase in EDL's income from electricity
		sales.
	Society	Interconnecting power grids with neighboring countries
		will lead to improved grid stability and stable energy
		supply in the region.

Table 5-4 Draft vision and development scenario for Lao PDR: Electrification and conversion to green fuels such as green hydrogen in the domestic industrial and transport sectors

Assump	Assumptions for development scenarios			
Perspec	ctives for consideration	Outline		
	Policy Framework for	Replacing import-dependent petroleum products with		
0	Environment, Stable	home-grown green fuels will lead to a stable energy		
	Supply, Economy and	supply and strengthen energy security.		
	Safety (3E+S)	Transitioning from a fossil fuel society to a green fuel		
		society will lead to GHG emission reductions.		
	International Trends in	Electrification with renewable energy power is being		
0	Climate Change	promoted globally.		
	Countermeasures	Transition to green hydrogen-derived fuels.		
	Energy supply chain	Replace import-dependent petroleum products with		
0		home-grown hydrogen-derived green fuels. Furthermore,		
		the country could become an exporter of green fuels.		
		However, a study is needed to understand the potential		
		of green fuel demand and supply in Laos as a whole.		
	Competitive edge	The abundant hydropower endowment can be used to		
0		supply green fuels at relatively low cost compared to the		
		rest of the world.		
	National finance	Electrification will help strengthen EDL's finances.		
		Substituting the consumption of petroleum products,		
		which is mainly dependent on imports, with home-grown		
		green fuels will reduce import costs and revenue from		
		the sale of green fuels in domestic market. Exporting		
		green fuels will also lead to fiscal revenue.		
	Industrial promotion	Electrification of the transportation sector will lead to		
		the promotion of EV-related industries.		
		Promoting green fuel production and sales will lead to		
		the development of industries related to hydrogen,		
		ammonia, and synthetic gas, as well as the chemical		
		fertilizer industry. However, laws and regulations must		
		be in place for the use of gas as an energy source.		
-	Oher	-		
Impact .	of the development	Outline		
scenari				
0	Environmental aspect	Electrification with hydropower electricity and		
0		substitution of tossil tuels with green fuels are expected		

		to reduce GHG emissions and improve air pollution.		
	Economy and Industry	Electrification of the transportation sector will lead to		
0		the promotion of EV-related industries.		
		Promoting green fuel production will lead to the		
		development of industries related to hydrogen, ammonia,		
		and synthetic gas, as well as the chemical fertilizer		
		industry. However, laws and regulations must be in place		
		for the use of gas as an energy source.		
	Society	Replacing fossil fuel consumption with hydroelectricity		
0		or green fuels improves air quality, which in tur		
		improves health.		

Table 5-5 Draft vision and development scenario for Lao PDR: Promoting the establishment of a carbon neutral society through modernization of the agriculture, forestry and livestock industries

Assump	Assumptions for development scenarios		
Perspec	ctives for consideration	Outline	
	Policy Framework for	The spread of methane reduction technologies while	
0	Environment, Stable	maintaining the productivity and quality of agricultural	
	Supply, Economy and	and livestock products will lead to GHG emission	
	Safety (3E+S)	reductions together with food supply.	
	International Trends in	REDD+ is mentioned in Article 5 of the Paris Agreement,	
0	Climate Change	which states that implementation and support for REDD+	
	Measures	will be provided.	
-	Energy supply chain	-	
-	Competitive edge	-	
-	National finance	-	
	Industrial promotion	Modernizing the agriculture, forestry and livestock	
0		industries will lead to higher productivity and ultimately	
		higher incomes.	
-	Other		
Impact	of the development	Outline	
scenari	0		
	Environmental aspect	Reduction of GHG emissions such as methane will lead	
0		to improvement of the atmospheric environment.	
	Economy and Industry	Modernizing the agriculture, forestry and livestock	
		industries will lead to higher productivity and ultimately	
		higher incomes.	

0	Society	Improved productivity in the agriculture, forestry and	
		livestock industries will lead to a stable supply of	
		agricultural, forestry and livestock products.	

5.1.3 Nepal

Based on the current situation regarding ET-CN in Nepal in Chapter 3.3.3, and on the analysis of challenges to ET-CN presented in Chapter 4.3, the proposed future vision and development scenarios that will contribute to the achievement of ET-CN in Nepal "Promotion of electrification policy by strengthening and improving the reliability of rural electricity grid" and "Electrification and conversion to green fuels such as green hydrogen in the domestic industrial sector and transport sector" are effective. In addition, with regard to measures to reduce methane emissions from the agriculture and livestock industry, which is the largest source of emissions in the country, it is believed that the "Promotion of the establishment of a carbon neutral society through modernization of the agriculture, forestry and livestock industry" ¹⁶⁴, which will promote research and social implementation with the newly planned special department for climate change measures under the MoA, will be effective. The jurisdiction of this newly planned department is currently unknown, so it will be necessary to discuss this issue with the MoA again in the future.

Table 5-6 Proposed vision/development scenario for Nepal: Promoting electrification policies by strengthening and improving the reliability of rural

Assumptions for development scenarios		
Perspec	ctives for consideration	Outline
	Policy Framework for	Enhanced rural electrification will reduce non-
0	Environment, Stable	sustainable biomass consumption for cooking, heating,
	Supply, Economy and	etc., which will contribute to enhanced GHG reduction
	Safety (3E+S)	and conserve absorption function. It will also lead to
		improvements in domestic air quality.
		Improving the vulnerability of the local power grid will
		lead to improved energy security in the area.
	International Trends in	Electrification with renewable energy power is being
0	Climate Change	promoted globally.
	Measures	
-	Energy supply chain	-
-	Competitive edge	-
	National finance	NEA, the power utility, will need to invest in
0		infrastructure, but revenues from power sales will
		increase
	Industrial promotion	The electrification of rural areas will expand the market
		for home appliances. In addition, electrification of

electricity grids

¹⁶⁴ The MoA has jurisdiction over agriculture and livestock, while forestry measures are under the jurisdiction of the MoFE.

		agriculture, forestry, livestock, and other industries will		
		lead to higher productivity and, ultimately, higher		
		incomes.		
	Other	In strengthening the electricity grid, climate change		
0		adaptation should be considered to improve the energy		
		resilience of the region.		
Impact	of the development	Outline		
scenari	0			
	Environmental aspect	Enhanced rural electrification will reduce non-		
0		sustainable biomass consumption for cooking, heating,		
		etc., contributing to enhanced GHG reductions and		
		conservation of sinks.		
		If the use of forest lands, etc. is anticipated as a result of		
		the enhancement of the power grid, an environmental		
		impact assessment should be conducted.		
	Economy and Industry	The electrification of rural areas will expand the market		
0		for home appliances. In addition, electrification of		
		agriculture, forestry, livestock, and other industries will		
		lead to higher productivity and ultimately, higher		
		incomes.		
0	Society	Stable supply of electricity in rural areas will reduce the		
		effort of biomass extraction. Replacing biomass		
		combustion with electricity will improve indoor air		
		quality, which in turn will contribute to improved health.		

Table 5-7 Proposed vision and development scenario for Nepal: Electrification		
and conversion to green fuels such as green hydrogen in the domestic industrial		
and transport sectors		

Assumptions for development scenarios		
Perspectives for consideration		Outline
0	Policy Framework for	Replacing fossil fuels (coal and petroleum products) that
	Environment, Stable	depend on imports with home-grown green fuels will lead
	Supply, Economy and	to a stable energy supply and strengthen energy security.
	Safety (3E+S)	Transitioning from a fossil fuel society to a green fuel
		society will lead to GHG emission reductions.
0	International Trends in	Electrification with renewable energy power is being
	Climate Change	promoted globally.
	Measures	Transition to green hydrogen-derived fuels.

0	Energy supply chain	Oil and LPG, which depend mainly on imports from
Ŭ		India, will be replaced by the country's own hydrogen-
		based green fuels. Furthermore, the country could
		become an exporter of green fuels. However, a study is
		needed to understand the demand and supply potential of
		green fuel in Nepal as a whole.
	Competitive edge	The abundant hydropower endowment can be used to
0		supply green fuels at relatively low cost compared to the
		rest of the world.
	National finance	Electrification will strengthen NEA's finances.
0		Substituting the consumption of coal, petroleum and
		LPG, which are mainly dependent on imports, with
		home-grown green fuels will help reduce import costs.
		Exporting green fuels will also lead to fiscal revenue.
	Industrial promotion	Electrification of the transportation sector will lead to
0	L L	the promotion of EV-related industries.
		Promoting green fuel production will lead to the
		development of industries related to hydrogen ammonia
		and synthetic gas as well as the chemical fertilizer
		industry
		This will lood to an encoding of the business some of
		Noc 1: 1
	0.1	NOC, which specializes in fossil fuel-related businesses.
-	Other	-
Impact scenari	of the development o	Outline
	Environmental aspect	Electrification with hydropower electricity and
0		substitution of fossil fuels with green fuels are expected
		to reduce GHG emissions and improve air pollution.
	Economy and Industry	Electrification of the transportation sector will lead to
0		the promotion of EV-related industries.
		Promoting green fuel production will lead to the
		development of industries related to hydrogen, ammonia,
		and synthetic gas, as well as the fertilizer industry.
		This will lead to an expansion of the business scope of
		NOC, which specializes in fossil fuel-related businesses.
	Society	Replacing fossil fuel consumption with hydroelectricity
0		or green fuels improves air quality, which in turn
		improves health.

Table 5-8 Draft Vision and Development Scenario for Nepal: Promoting a carbonneutral society through modernization of the agriculture, forestry, and livestock industries

Assump	Assumptions for development scenarios		
Perspec	ctives for consideration	outline	
	Policy Framework for	The spread of methane reduction technologies while	
0	Environment, Stable	maintaining the productivity and quality of agricultural	
	Supply, Economy and	and livestock products will lead to GHG emission	
	Safety (3E+S)	reductions together with food supply.	
	International Trends in	Nepal is a participating country in the Global Methane	
0	Climate Change	Pledge and has agreed to implement voluntary measures	
	Measures	to reduce global methane emissions by at least 30% by	
		2030.	
		REDD+ is an integral part of Article 5 of the Paris	
		Agreement, which calls for implementation and support.	
-	Energy supply chain	-	
-	Competitive edge	-	
-	National finance	-	
	Industrial promotion	Modernizing the agriculture, forestry and livestock	
0		industries will lead to higher productivity and	
		ultimately higher incomes.	
-	Other		
Impact	of the development	Outline	
scenari	0		
	Environmental aspect	Reduction of GHG emissions such as methane will lead	
0		to improvement of the atmospheric environment.	
	Economy and Industry	Modernizing the agriculture, forestry and livestock	
0		industries will lead to higher productivity and	
		ultimately higher incomes.	
	Society	Improved productivity in the agriculture, forestry and	
		livestock industries will lead to a stable supply of	
		agricultural, forestry and livestock products.	

5.1.4 Uzbekistan

Uzbekistan, in its NDC, has set a GHG emission reduction target of 35% per GHG unit of production by 2030 compared to 2010 levels. The National Low Carbon Energy Development Strategy announced in 2020 calls for the additional 30GW of installed capacity from renewable and other energy sources by 2030, modernization of existing gas-fired power plants, energy source diversification, and development of renewable energy (especially solar power). Other national strategies also include reduction of carbon emissions from gas-fired power generation and the introduction of renewable energy generation.

Against this backdrop, based on the EBRD's recommendation, MOE presented in 2022 a scenario for policymakers to achieve decarbonization by 2050. In this scenario, the percentage of thermal power generation to total installed generation capacity is to be reduced, while using the gas fired thermal power by gas to stabilize the grids, by modernizing the existing gas-fired power plants and introducing renewable energy and eliminating the construction of new gas-fired power plants by 2030, and by providing electricity mainly from scaling up of renewable energy facilities and by storing electricity from renewable energy by 2040. The schedule is to further increase the installed capacity of renewable energy power plants and install large-scale power storage facilities by 2050, while gas-fired power plants will be converted to hydrogen-mixed or hydrogen-power generation.

The scenarios for development towards energy transition and carbon neutrality were examined as follows on the basis of the directions indicated by the various national plans for decarbonization. Modernization of existing gas-fired power generation, introduction of large amounts of renewable electricity, and activities to stabilize the grids will be the main focus until 2050. In addition, as indicated in the MOE scenario, in Uzbekistan, which is rich in renewable energy resources, the installation of equipment such as large-capacity batteries for storing renewable electricity is essential for grid stabilization and achieving carbon neutrality.

Table 5-9 Draft Vision and Development Scenario for Uzbekistan: Promote lowcarbon gas-fired power generation and decarbonization through green power and

Assumptions for development scenarios			
Perspectives for consideration		Outline	
	Policy Framework for	While also utilizing natural gas, maximize the use of	
0	Environment, Stable	green power from renewable energy sources. Promote	
	Supply, Economy and	GHG emission reductions in the power generation sector	
	Safety (3E+S)	while exploring the possibility of using energy storage,	
		ammonia, and hydrogen for this purpose. By	
		decarbonizing the power generation sector, also	
		contribute to the decarbonization of the industrial sector.	

energy	storage	
--------	---------	
	International Trends in	Electrification with renewable energy power is being
---------	-------------------------	--
0	Climate Change	promoted globally.
	Measures	Low-carbon natural gas-fired power generation based on
		energy transition is being promoted globally.
	Energy supply chain	As the amount of electricity generated fluctuates, options
0		for forecasting and balancing electricity supply and
		demand are essential.
	Competitive edge	The unit cost of natural gas power generation depends on
0		the policy of the government.
		Solar power is recognized worldwide as the cheapest way
		to generate electricity. If the private sector can be
		encouraged to invest in IPP projects, solar and wind
		power generation will be able to supply electricity at
		lower cost.
		However, investment in energy storage is essential to
		absorb fluctuations in renewable power generation,
		including R&D for options such as hydrogen and
		ammonia utilization as an energy storage.
	National finance	In order to improve the investment environment for
0		renewable energy generation by the private sector, it is
		highly likely that government guarantees and convertible
		guarantees will need to be provided.
	Industrial promotion	By using electricity derived from natural gas and
0		renewable energy generation, the export industry can
		reduce the carbon footprint of its products to a lower
		level than before. In particular, it can contribute to
		strengthening the international competitiveness of
		products in the export industry.
-	Other	-
Impact	of the development	Outline
scenari	0	
	Environmental aspect	If the construction of solar and wind power generation
0		facilities does not involve large-scale deforestation or
		biodiversity protection issues, there should be no major
		problems. Generally, power plants are developed in
		designated areas, and the system is such that financing
		cannot be obtained from financial institutions without
		proper implementation of environmental and social
		studies in advance.

	Economy and Industry	A stable supply of renewable energy at low cost would
0		be beneficial both economically and for industry.
		However, grid stability is a prerequisite, and in the
		future, storage and other functions may be required. In
		the case of a cluster of power plants, the amount of
		electricity generated will exceed the grid linkage and
		demand in the target area, and may be subject to
		temporary supply curtailment to stabilize the grid.
	Society	Large-scale solar and wind power plants are not expected
0		to employ large numbers of workers or provide other
		benefits compared to other methods of power generation,
		but they may lead to lower electricity prices.
		Combined with natural gas power generation, it will
		contribute to stable and inexpensive power supply.

Chapter 6. Recommendations for a Proposed Cooperative Program 6.1 Vietnam

6.1.1 Priority Project Recommendations

As mentioned in Section 5.1.1, we believe that "building a green energy society centered on the use of LNG, green electricity, and hydrogen to encourage the transition from coal-fired power generation to ET-CN" and "promoting decarbonization through energy conservation, electrification, and renewable energy utilization in the industrial and other sectors" will be effective to achieve ET-CN in Vietnam.

According to the Business Development Plan for Socialist Republic of Vietnam (2017) (Table 6-1) by the Ministry of Foreign Affairs, the energy sector is included in Priority 1, Development Agenda 1-3, "Improvement of Economic Infrastructure and Access Services," which states that support for a stable energy supply and utilizing various financial resources, with a view to diversifying the power source mix (LNG, renewable energy, etc.), and cooperation in the energy conservation sector will be pursued in consideration of the Vietnamese government's climate change-related efforts.

Table 6-1 Business Development Plan for the Socialist Republic of Viet Nam $(2017)^{-165}$

Basic Policy: Based on Vietnam's socio-economic development strategy and plan, the Bank will comprehensively support Vietnam's sustainable growth through strengthening its international competitiveness, overcoming its vulnerable aspects, and building a fair society and country.

Focus Area 1: Growth and competitiveness		
Development	Program to Promote Stable Energy Supply and Energy Conservation	
Agenda 1-3:	Support the stable supply of energy to meet the increasing demand	
Improvement of	for energy to support economic growth.	
Economic		
Infrastructure and		
Access Services		
Focus Area 2: Addressing Vulnerabilities (addressing the negative aspects of growth)		
Priority Area 3: Strengthening Governance		

In the power generation sector, in order to promote energy transition and decarbonization in Vietnam, it is important to establish a system to ensure grid stability and promote private investment to support the introduction of LNG, which will be a key component of energy transition, and a large amount of renewable energy. The use of hydrogen and ammonia will be particularly important in the future for low-carbon coal-fired power generation. Furthermore,

¹⁶⁵ Business Development Plan for the Socialist Republic of Vietnam (Ministry of Foreign Affairs, Nov ember 1, 2017) https://www.mofa.go.jp/mofaj/gaiko/oda/files/000072248.pdf Accessed August 12, 2022

since energy conservation efforts on the energy consumption side will require steady capital investment by the private sector as its foundation, it will be necessary to build incentives to implement energy saving, especially in terms of funding such as subsidies and making it a necessary requirement for exported products. Since the Energy Conservation Law has not been amended since 2010, the law needs to be amended based on the current state of energy conservation technology and the associated guidelines and technical standards should also be revised.

Stable and affordable energy supply is required on the energy supply side. This will require multifaceted reform in the areas of power supply development and power sectors, including the development of a private investment environment in addition to power generation funded by the national budget, and the future revitalization of the energy market as a whole through the establishment of a carbon market.

Considering the above issues, it is proposed that the project priority will include structural reforms to develop both energy supply and energy conservation using private sector dynamism, energy transitions from coal-fired power to LNG, energy transition to decarbonization such as transition to renewable energy, and cooperation to formulate a long-term roadmap for renewable energy to develop sub-sectors such as cleaner industries from a long-term perspective.

Based on the above, JICA's proposed ET-CN cooperation measures include the following proposed cooperation programs for each of the proposed development scenarios. Projects that should be considered as priorities are noted as "Priority Projects". The feasibility of project implementation will be considered on a case-by-case basis in the future.

Cooperative		Project	Implementation	Remarks
Programs			period	
Development Scenario	1:.			
Building a Green Energ	y Se	ociety Focusing on the Use of LN	G, Green Power, a	and Hydrogen
to Support the Shift fro	m C	coal-Fired Power Plants to ET-CN		
PG1 Responding to In	ncre	ased Electricity Demand in Light	of the Energy Tra	insition
Promote energy	1	- Capacity Enhancement for	From 2023	Priority
transition from coal-		LNG Utilization		Projects
fired to LNG-fired				5
power generation	2	- LNG Value Chain Study	From 2024	Priority
		5		Projects*
				Clarification
				of I NG
	3	- Study on LNG Demand and	From 2024	ornansian
		Utilization Promotion in		
		Non-Power Sector		policy in
				PDP8 is a
				prerequisite.
Support for the	1	- Developing a long-term	From 2025	
development of a		decarbonization plan for the		
long-term roadmap		power generation sector		
for decarbonizing	2	- Study and demonstration of	From 2025	
thermal power		low-carbon LNG-fired power		
generation		generation		

Table 6-2 Proposed Cooperation Program on ET-CN in Vietnam

	3	- Study on low-carbon coal- fired power plants, ammonia co-firing, and demonstration of the introduction of mixed- burning burners	From 2025	
PG2 Strengthening th introduction of variab	e ca ole 1	pacity of power system operation enewable energy supporting the e	n in light of the ma energy transition p	assive period
Grid stabilization and management	1	- Grid stabilization (facility expansion and improvement), SCADA/EMS post-implementation operational support	From 2022	Priority projects (with other donor support)
	2	- Grid supply and demand balancing by region	From 2022	
	3	- Enhanced grid power distribution management	From 2022	
PG3 Other energy tran	nsfe	ers / decarbonization		
Hydrogen production and utilization	1	 FS study on hydrogen production using surplus electricity from renewable energy sources Pilot hydrogen production, transportation, and utilization in the transportation and industrial fields 	From 2024	
Carbon trading	1	- Introduction of carbon trading system and business model, promotion of clean energy	From 2024	
to promote		- Establishment of a bidding system for the electricity market	From 2022	
private sector	2	 Establishment of a system of relative transactions with customers such as Direct PPAs that are not based on PPAs for IPP projects 	From 2022	Priority Projects
	3	- Review of PPAs	From 2023	
Development Scenario).			l
Promote decarbonizatio renewable energy in the	n th inc	rough energy conservation, electrony description and the sector of the s	rification, and the	use of
Revision of the Act, GL	1	- Revision of laws, guidelines and technical standards based on the latest energy- saving technologies, etc.	From 2022	(Other donor support available)
	2	- Support for formulating a long-term roadmap for energy conservation (by industry and other sectors)	From 2023	Priority Projects (Components include
industry	1	- Support for the development of a 2050 decarbonization roadmap for the industrial sector, and support for the development and operation of a GHG emissions	From 2023	multiple sub-projects)

	2	accounting and reporting system - Improve incentives for private sector investment in energy conservation, energy conservation implementation	From 2023	
	3	 Conducting energy audits Strengthening the Energy Conservation Center 	From 2023	Priority Projects
	4	- Introduction of energy- saving equipment using JCM scheme (private sector)	being carried out	
Transportation	1	- Improving traffic congestion in urban areas	From 2024	
	2	- Promoting a modal shift to rail and ship	From 2025	
Housing/Urban Development	1	- Promoting decarbonization through mixed-use development of net-zero buildings, zero-emission housing and smart transportation using clean energy	From 2026	

Table 6-3 Summary of proposed priority cooperation projects in Vietnam (1)

Project name	Capacity Enhancement for LNG Utilization	
(draft)		
Assumed C/P	MOIT, PetroVietnam	
Assumed scheme	Technical Cooperation Projects	
Period of	About 2 years	
cooperation		
Issue	The LNG receiving facility will be operational by the end of 2022, and	
	two LNG power plants will also start operation in the future. However,	
	there are many other related facilities in addition to LNG receiving	
	facilities, and not all of the guidelines and standards for facility operation	
	are available, and in some cases they are established at the facility	
	construction planning stage. Although there is experience in the operatio	
	of natural gas related facilities, it is necessary to develop guidelines and	
	standards based on technical considerations specifically for LNG.	
Target	Gain comprehensive knowledge of the entire value chain from LNG	
	receiving to the final consumption stage	
Details of	> Enhance LNG network planning and operational capabilities (from	
implementation	receipt to consumption)	
	> Present a draft legal and regulatory framework for the introduction of	
	third-party access	

	Deepening understanding of the LNG cold energy business using LNG
	receiving terminals for high value-added
Output	Gain knowledge of the various technologies and facility operations
	required from LNG receipt to consumption. Gain a better understanding
	of measures to improve cost-effectiveness for capital investment.
Outcome	The staff in charge will use the information to develop technical standards
	and guidelines and to formulate measures for the effective operation of
	LNG facilities.
Project size	About 300 million yen
Local measures	LNG power generation accounts for about 20% of the total power
	generation capacity in draft PDP8, and capital investment in LNG is
	expected in the future.
	The National Energy Development Strategy (Resolution 55 NQ/TW) and
	its Action Plan (Resolution No. 140/NQ-CP) and the Gas Master Plan of
	Prime Minister Decree No. 60/QD-TTg (2017) promote the development
	and use of LNG-related infrastructure.
Finance	In the case of projects involving the construction of LNG power
	generation facilities, it may be possible to conduct this as part of METI's
	FS study.
	The implementation of LNG power generation in Vietnam is expected to
	be supported by AETI.
GHG reduction	Since this project is assumed to be a technology project for human
potential and	resource development, no direct GHG emission reduction effect is
cost-	expected. Therefore, the GHG reduction potential and cost-effectiveness
effectiveness	of supporting the introduction of LNG-fired power plants were examined.
	Based on the FS by the METI 166 , the operation of 4,800 MW LNG-fired
	power plant (0.4234 tCO2/MWh, 31.536 TWh/year) in Long Son, South
	Vietnam, will reduce CO2 emissions by 12.3 MtCO2/year from the
	baseline (0.8154 tCO2e/MWh). Considering the period until 2030,
	assuming operation of only 1,600 MW of LNG-fired power generation in
	the first phase, the reduction would be about 4.1MtCO2/year. Since
	Vietnam's NDC projected GHG emissions in 2030 are 97.9MtCO2,
	considering that 4.1 MtCO2 will be reduced, about 4.2% will be reduced.
	According to the FS report, the CAPEX from LNG procurement to
	operation is 2,398mUSD (in case of 1,600MW), and the cost effectiveness
	of CO2 reduction by construction and operation of the 1,600MW LNG-

¹⁶⁶ Feasibility Study on Project Implementation for Overseas Development of High-Quality Energy Infrastructure in FY 2018 "Feasibility Study on Integrated LNG Procurement, LNG Receiving Terminal Operation and Gas-fired Combined Cycle Power Plant in Southern Socialist Republic of Viet Nam (Ministry of Economy, Trade and Industry, Japan, 2018) (Japanese only) (Title of the report is provisionally translated by Pacific Consultants) https://www.meti.go.jp/meti_lib/report/H30FY/000208.pdf Accessed August 16, 2022

	fired power plant in Long Son is about 584USD/tCO2. Assuming that the	
	construction work will take 5 years and the plant will start operation in	
	the beginning of 2028, the cost effectiveness of CO2 reduction by 2030	
	will be about 195USD/tCO2.	
Major Japanese	[Transition technology in the power sector].	
transition	· CCUS: Promotion of technological development, demonstration,	
technologies	introduction, and commercialization of CO2 capture and storage	
with potential	technologies	
application in	• Hydrogen co-firing: Hydrogen co-firing to gas-fired power plants	
the future (From	[Transition technology in the gas field]	
Table 3-1	• Energy conservation in the city gas production process (energy conservation through the use of cold heat utilization equipment, etc.)	
	• Strengthening of natural gas supply infrastructure to expand the use of natural gas	
	• Establishment of supply chains in Vietnam and overseas: Liquefaction	
	terminals, LNG carriers, receiving terminals, combined use of	
	synthetic methane in existing infrastructure such as pipelines.	
	• CCUS: Capture and use of CO2 emitted from city gas appliances	

Table 6-4 Summary of proposed priority cooperation projects in Vietnam (2)

Project name	LNG Value Chain Study	Study on LNG Demand and
(draft)		Utilization Promotion in Industry,
		Transportation and Residential
		Sector
Assumed C/P	MOIT	MOIT
Assumed	Technical Cooperation	Technical Cooperation
scheme	(Development Study Type), or	(Development Study Type), or
	METI Quality Infrastructure FS	METI Quality Infrastructure FS
	Study, etc.	Study, etc.
Period of	About 1 year	About 0.5 years
cooperation		
Issue	The private sector, including	Private companies, including
	Japanese companies, is expected to	Japanese companies, are expected
	participate in IPP projects for LNG	to participate in the IPP business of
	power generation, but the	LNG power generation, but a large
	construction of facilities requires a	amount of investment is required to
	large amount of investment.	construct the facilities.
	As an upstream of the LNG	The amount of domestic demand for
	utilization value chain, it is	LNG in industry, transportation,

	necessary to examine LNG business	and residential sector, which are the			
	models and measures to add value to	downstream of the LNG utilization			
	the overall LNG business.	value chain, is not concrete.			
Target	Establish an industrial structure that	Stable supply of low-carbon LNG			
	enables stable and economical LNG	based on demand in the industrial,			
	imports	transportation, and residential			
	-	sectors			
Details of	➢ Organize external factors	> Examine the development of			
implementation	affecting the LNG business	gas demand in the industrial			
_	model	sector			
	> Identify the optimal LNG	> Examine developing gas			
	business model	demand in the transport sector			
	> Provide suggestions for	> Examine the development of			
	improving natural gas policy	gas demand in the residential			
		sector			
Output	Identify LNG business models; ide	ntify measures to add value to the			
	overall LNG business.				
Outcome	Improve the overall business feasibi	lity of the LNG project and promote			
	the use of investment by the private	sector.			
Project size	150 million yen 100 million yen				
Local measures	LNG power generation accounts for about 20% of the total power				
	generation capacity in draft PDP8,	and capital investment in LNG is			
	expected in the future.				
	The National Energy Development S	Strategy (Resolution 55 NQ/TW) and			
	its Action Plan (Resolution No. 140/NQ-CP) and the Gas Master Plan of				
	Prime Minister Decree No. 60/QD-T	Tg (2017) promote the development			
	and use of LNG-related infrastructur	e.			
Finance	In the case of projects involving the c	onstruction of LNG power generation			
	facilities, it may be possible to cond	uct this as part of METI's FS study.			
GHG reduction	Refer to Table 6-3.				
potential and					
cost-					
effectiveness					
Japan's main	[Transition technology in the power	r sector].			
applicable in	• CCUS: Promotion of technolo	ogical development, demonstration,			
the future	introduction, and commercializ	ation of CO2 capture and storage			
Transition	technologies				
technologies	• Hydrogen co-firing: Hydrogen co	o-firing to gas-fired power plants			
(From Table3-1)	[Transition technology in the gas fi	eld]			

•	Energy conservation in the city gas production process (energy conservation through the use of cold heat utilization equipment, etc.)
•	Strengthening of natural gas supply infrastructure to expand the use of natural gas
•	Establishment of supply chains in Vietnam and overseas: Liquefaction terminals, LNG carriers, receiving terminals, combined use of synthetic methane in existing infrastructure such as pipelines.
•	CCUS: Capture and use of CO2 emitted from city gas appliances

For the proposed projects in the Table 6-3 and Table 6-4 in the transition from coal-fired power generation to LNG-fired power generation (including natural gas-fired power generation) will have CO2 reduction benefits relative to the baseline for the period when the baseline electricity CO2 emission factor is higher than the LNG-fired power generation electricity CO2 emission factor, but in the future if the ratio of coal-fired power generation in Vietnam decreases and the electricity CO2 emission factor of the baseline decreases, the relative CO2 reduction effect of LNG-fired power generation and its cost-effectiveness for the amount of reduction will decrease, and LNG-fired power generation will have a CO2 increase effect relative to the baseline when the CO2 emission factor of LNG-fired power generation is above the electricity CO2 emission factor of the baseline. Therefore, while the introduction of LNG-fired power generation should be considered from various aspects such as stable energy supply, from the perspective of achieving carbon neutrality in 2050, support for LNG-fired power generation should be designed for transition to hydrogen-fired power generation.

		1 5
Project name	Establishment of a 2050	Strengthening the Industrial
(draft)	decarbonization roadmap for the	Promotion and Development
	industrial sector and the	Consultancy Center
	establishment of a GHG emissions	
	accounting and reporting system	
Assumed C/P	MOIT	DOIT, Industrial Promotion and
		Development Consultancy Center
Assumed	Technical cooperation	Grant aid (equipment for energy audits, etc.)
scheme		Technical Cooperation or METI-
		MOIT Cooperation Framework ¹⁶⁷

T-11. (5 O	f	1		· · · · · · · · · · · · · · · · · · ·
lable 6-5 Overview	of proposed	1 priority coo	peration pro	jects in vietnam (3

¹⁶⁷ According to the Joint Statement for Energy Transition Cooperation towards Carbon Neutrality between the Ministry of Economy, Trade and Industry of Japan and the Ministry of Industry and Trade of Vietnam, 25 November 2021, METI will support renewable energy, energy efficiency, hydrogen and ammonia, etc. through the Asia Energy Transition Initiative (The Ministry of Economy, Trade and Industry (METI) will provide support for renewable energy, energy efficiency, hydrogen and ammonia through the Asian Energy Transition

Period of	About 3 years	About 1.5 years
cooperation		
Issues	In accordance with the National	Although there is the Renewable
	Decarbonization Strategy to 2050	Energy Act and energy efficiency
	announced in July 2022, it became	and conservation standards, there is
	necessary to develop an industrial	a lack of incentive on the part of
	sector decarbonization roadmap	private companies. Energy
	under the jurisdiction of MOIT,	conservation diagnosis is an
	establish an industrial sector GHG	effective means to appeal the
	emissions accounting and reporting	significance of energy conservation
	system, and develop related	activities.
	guidelines.	
	Major energy consumers	
	(companies) in the industrial sector	
	report their energy consumption in	
	accordance with the energy	
	consumption reporting system, but	
	there are many errors in the data.	
Target	A GHG emissions accounting and	Build an industrial structure that
	reporting system will be established	enables stable and economical LNG
	through the development of a 2050	imports.
	decarbonization roadmap for the	
	industrial sector.	
Details of	Decarbonization roadmaps will	Provide equipment required for
implementation	be developed for two or so	energy efficiency and
	industry subsectors to achieve	conservation audits.
	2050 decarbonization. In the	Conduct training for conducting
	process of developing the	energy efficiency and
	decarbonization roadmaps,	conservation audits and training
	energy efficiency and	on how to use the equipment.
	conservation activities such as	
	development of energy	
	conservation roadmap should be	
	linked.	
	> Establish a framework for a	
	GHG emissions accounting and	
	reporting system based on	

Initiative (AETI). https://www.meti.go.jp/press/2021/11/20211125005/20211125005.htmlAccessed 16 August 2022

	 information from the energy consumption reporting system required of major energy consumers. Introduces the equipment, technology, and financing methods required to upgrade to high-efficiency equipment. 	
Output	A roadmap will be developed for the industrial sub-sector to save energy and achieve decarbonization.	The capacity of the personnel of the Industrial Promotion and Development Consultancy Center will be strengthened and the environment for conducting energy efficiency and conservation audits will be improved.
Outcome	The institutional framework required for CO2 emission accounting and reporting to MONRE will be established. Energy savings will be implemented by the private sector and awareness will be raised towards decarbonization.	Energy conservation awareness by private companies will be improved.
Project Size	150 million ven	100 million ven
Local measures	Consistent with the implementation of the National Climate Change Strategy (NCCS) For The Period 2021 To 2050 in the industrial sector, implementation of the Energy Conservation Act (2010). It meets the needs of MRV in NDC.	It meets the promotion of energy conservation in VNEEP Phase 3.
Finance	METI-MOIT Cooperation Framework through the AETI; "Project for contributing to the rationalization of energy use in emerging countries, etc. (energy conservation human resource development project)", Agency for	METI-MOIT Cooperation Framework through the AETI; "Project for contributing to the rationalization of energy use in emerging countries, etc. (energy conservation human resource development project)", Agency for

	Natural Resources and Energy, Natural Resources and Energy,
	METI METI
GHG reduction	Since this project is assumed to be a technical project for planning and
potential and	human resource development, no direct GHG emission reduction effect is
cost-	expected. Therefore, we examined the GHG reduction potential and cost-
effectiveness	effectiveness of the project, assuming that energy conservation will be
	achieved by raising awareness of energy conservation in the industrial
	sector.
	From IEA (Figure 4-4), the electricity consumption in the industrial
	sector in Vietnam in 2019 is 9.77 Mtoe. Assuming for convenience that
	electricity from coal-fired and natural gas-fired generation is consumed,
	9.77 Mtoe*0.4 (thermal efficiency) \approx 45,450 GWh and assuming the
	baseline electricity CO2 emission factor is as same as 0.8154 tCO2/MWh
	in Table 6-3, the CO2 emission from electricity consumption in the
	industrial sector is about 37 MtCO2/year. Therefore, a 1% reduction in
	electricity consumption in the industrial sector by promoting energy
	conservation leads to a reduction of 0.37 MtCO2/year.
	If assume that the technical cooperation project is 100 million yen, a 1%
	reduction in electricity consumption due to energy conservation would be
	approximately 270 yen/tCO2e.
Major Japanese	Depending on the target industry, all transition technologies in the steel,
transition	chemical, pulp and paper, and cement fields are applicable.
technologies	
applicable in	
the future (from	
Table 3-1)	

6.2 Lao PDR

6.2.1 Priority Project Recommendations

As described in Section5.1.2, it is believed that "strengthening the power grid linking northern Laos with electricity demand areas", "electrification and conversion to green fuels such as green hydrogen in the domestic industrial sector and transportation sector", and "promoting the establishment of a carbon neutral society by modernizing the agriculture, forestry and livestock industries" will be effective to achieve ET-CN in Lao PDR.

According to the Business Development Plan for Lao People's Democratic Republic (2019) of the Ministry of Foreign Affairs, energy is included in Priority 2, Development Agenda 2-2 "Expansion of Stable and Secure Electricity Supply," which focuses on optimizing power operations, supporting the development of industrial infrastructure through improvement of power transmission and distribution networks, and developing institutional arrangements to promote the export of electricity to the Mekong region. Transportation is included in Priority 2, Development Agenda 2-1 "Improvement of Transportation Networks" and in Priority 4, Development Agenda 4-1 "Improvement of Urban Environment", which focuses on strengthening regional connectivity through infrastructure development and improving public transport in urban areas, but does not include support for electrification of transportation modes. Support for modernization of agriculture, forestry and livestock industries and REDD+ is provided under Priority 3 Development Agenda 3-3 "Agricultural Development" and Priority 4, Development Agenda 4-2 "Protecting Forests and Mitigating Climate Change", which includes development of clean agriculture and promotion of REDD+.

Table 6-6 Business Development Plan for the Socialist Republic of Lao PDR $(2019)^{-168}$

Basic Policy: Strengthening Economic and Social Infrastructure to Overcome the						
Challenges of Less De	veloped Countries					
Priority Area 1: Streng	Priority Area 1: Strengthening governance and addressing cross-cutting issues, including					
fiscal stabilization						
Priority Area 2: Strengthening hard and soft connectivity with neighboring countries						
Development	Traffic and Transportation Network Improvement Program					
Agenda 2-1:	In the road sector, cooperation will focus on the maintenance of major					
Improvement of	roads and bridges, including those in rural areas, while keeping in					
transportation	mind the balance between the maintenance of existing roads and the					
network	enhancement of connectivity with ASEAN and other Mekong regions.					
	In addition, the capacity of road and bridge maintenance and					
	management will be strengthened, and policy advisors and others will					
	be utilized to make policy recommendations to secure financial					

¹⁶⁸ Business Development Plan for the Lao People's Democratic Republic (Ministry of Foreign Affairs, April 2019) https://www.mofa.go.jp/mofaj/gaiko/oda/files/000072259.pdf accessed 12 August 2022

	resources. In the aviation sector, cooperation will focus on the				
	expansion of major airports, including Vientiane International Airport				
	in the capital city, and on improving air safety. In addition, we will				
	also work on improving customs clearance procedures as a cross-				
	cutting issue.				
Development	Electricity Maintenance Program				
Agenda 2-2:	The Government will mainly focus on loan aid for the development				
Expansion of stable	of domestic backbone transmission lines, distribution and substation				
and secure power	facilities, and high-voltage transmission lines for electricity				
supply	interconnectivity in the Mekong region. As for power supply				
	development, we will examine measures to be taken, focusing on				
	private-sector partnership projects. In addition, with regard to				
	strengthening the capacity of institutions involved in power projects,				
	we will consider measures, mainly technical cooperation, based on				
	the status of efforts on the Laotian side.				
Priority Area 3: Div	ersification of industry and enhancement of competitiveness, and				
development of industrial human resources for this purpose					
Development	Agricultural Development Program				
Agenda 3-3:	From the viewpoint of building a value chain that also takes into				
Agricultural	account distribution and sales, cooperation in human resource				
Development	development and institutional development will be developed, taking				
1	into consideration the possibility of a mutually complementary				
	relationship with the private sector for the dissemination and				
	productivity improvement of commodity crops in light of domestic				
	and international market trends. The development of infrastructure				
	through financial cooperation will also be considered with a view to				
	effectively combining it with soft support.				
Priority Area 4: Reduc	cing Disparities through Balanced Urban and Rural Development that				
Considers Environmer	ntal and Cultural Preservation				
Development	Urban Environment Improvement Program				
Agenda 4-1: Urban	The Government will systematically work on both soft and hard				
Environmental	cooperation on issues related to urban environmental improvement.				
Improvement	such as public transport, water supply improvement, waste				
	management, and urban drainage, in Vientiane, the capital city, and				
	other regional core cities, including Luang Prabang, Sayannakhet, and				
	Pakseh, according to their respective situations. Cooperation methods				
	such as the formulation of master plans will also be effectively				
	utilized.				
1					

Development	Sustainable Forest Management Program
Agenda 4-2: Forest	The project will focus on technical cooperation for policy formulation
Conservation and	and capacity building of institutions related to forest resources and
Climate Change	carbon information development to enable the Lao government to
	effectively utilize REDD+ and other initiatives.

Based on the above, JICA's proposed ET-CN cooperation measures include the following proposed cooperation programs for each of the proposed development scenarios. Projects that should be considered as priorities are noted as "Priority Projects". The feasibility of project implementation will be considered on a case-by-case basis in the future.

Table 6-7 Proposed Cooperation Program Recommendations for ET-CN in Lao

			PDR		
(Cooperative Programs		project	Implementation period	Remarks
De	velopment Scenario 1:				
Str	rengthening the Transmis	sio	n Network Linking Northern Laos	and Electricity D	emand
Ar	eas				
]	PG1 Strengthening the p	owe	er grid		
Ś	Strengthening the	1	- Preliminary Study for	From 2023	Priority
1	power grid		Strengthening Interregional		Projects
			Grid Capacity and Resilience		-
		2	- Strengthening of inter-	From 2025	
			regional power transmission		
			and distribution networks		
De	velopment Scenario 2:				
Ele	ectrification and convers	ion	to green fuels such as green hydro	ogen in the domest	tic
inc	lustrial sector and transp	ort	ation sector		
]	PG1 Electrification of th	e ir	ndustrial and transport sectors		
1	Promotion of	1	- Research to support	From 2023	
e	electrification in the		electrification of production		
i	industrial sector		processes in the		
			manufacturing industry		
		2	- Pilot projects for	From 2025	
			electrification of production		
			processes (e.g., electrification		
			of processing processes in the		
			food processing and		
			manufacturing industries)		
]	PG2 Promote energy con	ser	vation in the industrial sector, etc.		
S	Strengthen energy	1	- Establishment of procedures	From 2023	
	conservation in		and guidelines for third-party		
i	industrial and		certification of energy		
•	commercial sectors		efficiency and conservation		
			performance		
		2	- Development of energy data	From 2023	
			collection system from		
			industrial, commercial, and		
			residential sectors etc		

חחח

	PG3 Fuel conversion ma sources such as hydroele	inly ctri	vusing green hydrogen derived fro c power generation	m renewable ener	gу
	Basic study for building an energy society centered on green hydrogen using renewable energies such as hydroelectric power generation	1	- Investigation of the potential for the production and utilization of green ammonia, fertilizer, and synthesis gas to replace LPG, with a focus on green hydrogen using hydroelectric power	From 2023	Priority Projects
		2	- Investigating the Green	From 2024	
		3	 Pilot project for fuel conversion of industrial processes using green hydrogen (e.g. heat use in processing industry) 	From 2025	
		4	 Develop human resources for future deployment of hydrogen, ammonia, etc. 	From 2024	
		5	 Synthesis gas production by green hydrogen and CO2 recovery from the cement industry and pilot project for use in commercial vehicles, etc. 	From 2025	
		6	- Study on the feasibility of ammonia co-firing in coal- fired power plants, and support for the development of regulations	From 2023	
		7	- Demonstration of ammonia co-firing in coal-fired power	From 2025	
		8	- Development of technical guidelines for renewable energy	From 2023	
D P a	vevelopment Scenario 3:. romoting the establishmen griculture, forestry, and li	nt o ves	f a carbon neutral society through tock industries	the modernization	n of the
	Continuous forest conservation and expansion/enhancement to other areas	1	- Information development for REDD+ implementation and implementation of REDD+ projects, including linkages with the JCM and GCF	From 2023	
	PG2 Response to Agricul	ltur	e and Livestock	_	
	Cooperation in technological development of low GHG emission rice cultivation	1	- Investigation of methods to reduce methane emissions through appropriate water management in rice cultivation	From 2023	
	Cooperation in technological	2	- Investigation of methane reduction methods from	From 2023	

livestock industry	development of low GHG emission livestock industry	ruminants in livestock production		
--------------------	--	--------------------------------------	--	--

The priority projects are outlined below.

Table 6-8	Summary	of pr	onosed	nriority	cooncration	nrojects	in	Lao	PDR	(1)	
	Summary	or pr	oposeu	priority	cooperation	projects	1 11	Lau	I D K	(1)	

Project name	Strengthening the transmission grid		
(draft)			
Assumed C/P	MEM, EDL		
Assumed scheme	reliminary Survey for Cooperation, Grant Aid		
Period of	Preliminary survey: 1 year		
cooperation	Grant aid: 2 years and up		
Issue	The Lao government is promoting hydropower development, but there is		
	a recurring situation of surplus power, especially in the north.		
Target	Optimizing the operation of hydropower facilities by strengthening the		
	power transmission network		
Details of	Preliminary Survey for Cooperation		
implementation	> Development of an implementation plan for strengthening the power		
	transmission network		
	Grant Aid		
	Reinforcement of the power transmission network, construction and		
	strengthening of international linkage lines		
Output	Preliminary Survey for Cooperation		
	> Identification of implementation sites and development of		
	implementation plans for strengthening the transmission network		
	Grant Aid		
	Reinforcement of the power transmission network, construction and		
	strengthening of international linkage lines		
Outcome	Improvement of the power transmission network will enable proper		
	operation of hydroelectric power in north and avoid surplus power		
	generation.		
Project Size	Preparatory Survey for Cooperation: 0.05 billion yen		
	Grant Aid: (Reference) transmission line 0.61 mUSD/km/2 lines 4		
	conductors, 37.94 mUSD for substation facilities 500/230 kV 500		
	MVA/unit ¹⁶⁹		
Local measures	The Energy Policy (2020) promotes the expansion of the power grid and		
	the export of electricity to Thailand and Vietnam.		

¹⁶⁹ From Table 12.6-1 and Table 12.6-2 of the Final Report of the Project for the Development of a Master Plan for the Electricity System in Lao PDR (JICA, 2020)

Finance	Preliminary Survey for Cooperation, Grant Aid
GHG reduction	If the grid interconnection to Thailand is enhanced as proposed by the Lao
potential and	PDR Power System Master Plan Development Project Final Report (JICA,
cost-	2020), the CO2 emission factor of Thailand's grid electricity is 0.394
effectiveness	kgCO2 / kWh in 2022. ¹⁷⁰ Therefore, it can be considered that for every
	1,000 GWh of hydropower electricity exported from Laos, Thailand's CO2
	emissions will be reduced by 394 ktCO2.
Major Japanese	[Transition technology in the power sector].
transition	• Strengthening and upgrading of power transmission and distribution
technologies	networks: Reinforcing power transmission and distribution networks
applicable in the	to expand the introduction of renewable energy, etc.
future (from	· Promotion of demand response and electrification, etc.: Efforts
Table 3-1)	toward decarbonization on the demand side, electrification, etc.
	• Storage batteries, water pumping, distributed energy: Storage batteries contributing to grid stabilization, introduction of distributed
	energy resources, etc.

Table 6-9 Summary of proposed priority cooperation projects in Lao PDR (1)

Project name	Investigation of the potential for the production and utilization of green
(draft)	ammonia, fertilizer, and synthesis gas to replace LPG, with a focus on
	green hydrogen using hydroelectric power generation electricity.
Assumed C/P	MEM, EDL, MOIC
Assumed scheme	Data collection survey, technical cooperation (development plan study)
Period of	one year
cooperation	
Issue	The Lao government is promoting the development of hydropower
	generation, but there is a situation of surplus power on a recurring basis,
	especially in the northern part of the country, but appropriate measures to
	deal with the surplus power have not been taken. In addition, the country
	has low foreign currency reserves, and in recent years there has been some
	socioeconomic turmoil, including difficulties in importing petroleum
	products.
	There has been no energy use of gas in Lao PDR before the past years and
	there is no legal system and regulation to deal with hydrogen gas and
	synthetic gas properly.
Target	Proposals for Utilization of Surplus Electricity from Hydroelectric Power
	Generation and Related Institutional Improvements

¹⁷⁰ Energy policy and Planning Office, Ministry of Energy, Table 9.1–15: CO2 Emission per kWh http://www.eppo.go.th/index.php/en/en-energystatistics/co2-statistic August 2022 Accessed 17 August 2022

Details of	> Investigation of supply and demand potential of green hydrogen,						
implementation	green ammonia and synthesis gas						
	Identification of relevant schemes for the use of fuel gas						
	Feasibility Study on Green Hydrogen in Industrial Processes						
	> Feasibility Study on CO2 Recovery from Industrial Plants and						
	Demonstration of Synthesis Gas Utilization with Green Hydrogen for						
	Commercial Vehicles						
	Feasibility Study on Green Ammonia for Hongsa Coal Fired Power						
	Plant						
Output	Understanding the potential for supply and demand for green fuels						
	Development of a system for the use of gas fuels						
	Identification of potential demonstration sites for conversion to green						
	fuels						
Outcome	Reducing GHG emissions by switching from fossil fuels to green fuels						
Project Size	0.5 to 0.8 billion yen						
Local measures	At the time of the study, there are no measures to promote green gas fuels						
	such as hydrogen, ammonia or synthetic fuels using surplus electricity in						
	Lao PDR.						
	The 9th NSEDP promotes the demonstration of methane production for						
	transportation and industrial use.						
	The Green Growth Strategy (2018) promotes the use of clean energy						
	vehicles.						
	UNFCCC CTCN has proposed a Power to Gas Master Plan to the MEM.						
Finance	Through the improvement of institutional environment by the METI's FS						
	project budget or JICA's data collection survey and technical cooperation						
	for development plan study, preliminary survey for cooperation and/or						
	NEDO's demonstration project could be utilized.						
GHG reduction	The GHG reduction potential and cost-effectiveness were studied						
potential and	assuming that a part of coal utilization in the manufacturing process						
cost-	(mainly heating process) in the industrial sector is replaced by hydrogen.						
effectiveness	From IEA (Figure 4-8), the direct consumption of coal in the industrial						
	sector in Lao PDR in 2019 is 132 ktoe (\approx 5.53 PJ \approx about 215.1 kt). The						
	CO2 emission factor of coal is 26.8 gC/MJ if it is anthracite coal, and the						
	CO2 emission from coal consumption in the industrial sector is about						
	543.4 ktCO2/year. On the other hand, the hydrogen demand equivalent to						
	215.1 kt of coal is about 45.6 kt (\approx 508 million m3), and according to The						
	Future of Hydrogen (2019) by IEA, it takes 52 MWh of electricity to						
	produce 1 t of hydrogen by water electrolysis. Therefore, it would take						
	2,371.2 GWh to produce about 45.6 kt of hydrogen. In addition, according						

	to the IEA report, about 9 liters of water is required to produce 1 kg of
	hydrogen, which means that 0.41 billion liters (410,000 m3) of water will
	be required to produce 45.6 kt of hydrogen. If 30 yen/Nm3, which is
	Japan's 2030 hydrogen production cost target, is applied and 508 million
	m3 of hydrogen is produced annually, 17.4 billion yen is required, and the
	cost effectiveness of CO2 reduction is about 32,020 yen/tCO2.
Major Japanese	Transition technology in the gas field
transition	• Methanation: Synthesizing methane from hydrogen and CO2
technologies	• Establishment of supply chains in Japan and overseas: Combined use
applicable in the	of synthetic methane in existing infrastructure such as liquefaction
future (from	terminals, LNG carriers, receiving terminals, pipelines, etc.
Table 3-1)	• Hydrogen: Hydrogen is produced by electrolyzing water
	• Local hydrogen network: Development of a domestic hydrogen supply network
	• Hydrogen combustion equipment, etc.: Industrial furnaces, cogeneration, use of hydrogen in fuel cells, etc.
	• CCUS: Capturing and utilizing CO2 emitted from industrial facilities
	In addition, all transition technologies that use hydrogen, ammonia or
	syngas in the steel, chemical, pulp and paper, and cement fields are
	applicable.

6.3 Nepal

6.3.1 Priority Project Recommendations

As mentioned in Chapter 5.1.3, "Promotion of electrification policy by strengthening and improving the reliability of rural electricity grid", "Electrification and conversion to green fuels such as green hydrogen in domestic industrial and transport sectors", and "Promoting the establishment of a carbon neutral society by modernizing agriculture, forestry and livestock industries" are effective to achieve ET-CN in Nepal.

According to the Business Development Plan for the Republic of Nepal (2021) by the Ministry of Foreign Affairs, energy is included in Priority 1, Development Agenda 1-2 "Electricity and Energy," which focuses on supporting the formulation of policies and plans to achieve a stable electricity supply, developing power distribution networks in urban and remote areas and improving energy efficiency through loans. Transportation is included in Priority 1, Development Agenda 1-1, "Transportation Infrastructure and Connectivity," which focuses on improving urban transit and intercity roads, but does not include support for electrification of transportation modes. Agriculture is included in Priority 1 Development Agenda 1-3 "Agriculture", which means improving productivity and maintaining irrigation systems. From the above, it is considered that the strengthening of rural electricity grids and electrification and conversion to green fuels are in line with the Business Development Plan (2021) from the perspective of strengthening energy supply, but there are no priority issues or development issues that correspond to the modernization of the agriculture and livestock industries for the purpose of climate change mitigation, and further study is required.

Basic Policy: Support for sustainable and balanced economic growth aimed at emerging from			
the Least Developed Countries			
Focus Area 1: Econon	Focus Area 1: Economic Growth and Poverty Reduction		
Development	Transportation Infrastructure and Connectivity Program		
Agenda 1-1:	To improve traffic in the Kathmandu Metropolitan Area and enhance		
Transportation	transportation capacity and safety on the existing trunk roads		
Infrastructure and	extending from the metropolitan area to the east and west. With regard		
Connectivity	to aviation, contribute to improving operational safety.		
Development	Power and Energy Programs		
Agenda 1-2:	To increase power generation and transmission/distribution capacity		
Electricity and	to meet growing electricity demand and improve energy efficiency.		
Energy			
Development	Agriculture and Rural Development Program		
Agenda 1-3:	To improve the productivity of agricultural products for the market		

Table 6-10 Business Development Plan for Nepal (2021)	17	1
---	----	---

¹⁷¹ Business Development Plan for the Republic of Nepal (Ministry of Foreign Affairs, September 202 1) https://www.mofa.go.jp/mofaj/gaiko/oda/files/000072267.pdf accessed 12 August 2022

Agriculture	and to maintain and manage irrigation systems in order to improve		
	the livelihood of local people through agriculture and to promote		
	livelihood improvement through stable production and supply of food.		
Development	Urban Environment Improvement Program		
Agenda 1-6:	To improve access to safe water and to enhance the capacity of water		
Improvement of	supply, sewage and other environment-related institutions in terms of		
Urban Environment	management, operation and maintenance, and technical guidance.		
Priority Area 2: Disaster Prevention and Climate Change			
Development	Climate Change Program		
Agenda 2-2: Climate	To promote institutional arrangements to implement climate change		
change measures	countermeasures and support climate change countermeasures,		
	including the sustainable development of forest resources.		

Based on the above, JICA's proposed ET-CN cooperation measures include the following proposed cooperation programs for each of the proposed development scenarios. Projects that should be considered as priorities are noted as "Priority Projects". The feasibility of project implementation will be considered on a case-by-case basis in the future.

		Nepal		
Cooperative Programs		Project	Implementation period	Remarks
Development Scenario 1:.				
Promoting electrification p	olio	cies by strengthening and impro	ving the reliability	y of rural
electricity grids				
PG1 Strengthening the R	lura	l Electricity Grid		
Reinforcement of the	1	- Strengthening the capacity	From 2023	Priority
power transmission and		and resilience of rural		Projects
distribution network		electricity transmission and		
		distribution networks		
Financial support for	2	- Contribute fund to SECF	From 2023	
local renewable energy		established by AEPC and		
projects		FCDO.		
Development Scenario 2:.				
Electrification and convers	sion	to green fuels such as green hy	drogen in domesti	c industrial
and transport sectors				
PG1 Electrification of th	le ir	ndustrial and transport sectors		
Promotion of	1	- Research to support	From 2023	
electrification in the		electrification of		
industrial sector		production processes in the		
		manufacturing industry		
	2	- Pilot projects for	From 2025	
		electrification of		
		production processes (e.g.		
		introduction of electric		
		kilns in the brick industry)		

Table 6-11 Recommendations for the proposed cooperation program on ET-CN in

Financial support for transportation infrastructure for electrification	1	- Contributions to the TDF	From 2023	
Development of relevant guidelines to deal with the promotion of EVs	1	- Support for the establishment of a unified EV promotion coordination meeting involving all ministries and agencies related to EV promotion	From 2023	Check progress of NAMA Facility as appropriate
	2	- Support for the development of EV technical standards and battery disposal guideline, etc.	From 2023	
PG2 Promote energy con	iser	vation in the industrial sector, e	tc.	
Strengthen energy conservation in industrial and	1	 Energy conservation diagnosis of factories and commercial buildings 	From 2023	
commercial sectors	2	- Support for the development of corporate energy conservation personnel	From 2023	
Reinforcing energy conservation in the	1	- Kathmandu Water Supply Leakage Prevention Project	From 2023	
water supply system	2	- Promoting energy conservation and renewable energy in water and sewage systems	From 2023	
	3	- Developing human resources for energy conservation and renewable energy for water supply companies	From 2023	
PG3 Fuel Conversion Fo	ocus	ing on Green Hydrogen from Hy	ydroelectric Powe	r Generation
Basic study for building an energy society centered on green hydrogen using hydroelectric power generation	1	- Investigation of the potential for the production and utilization of green ammonia, fertilizer, and synthesis gas to replace LPG, with a focus on green hydrogen using hydroelectric power generation electricity.	From 2023	Priority Projects
	2	- Investigating the Green Hydrogen Supply Chain	From 2024	
	3	- Pilot project for fuel conversion of industrial processes using green hydrogen (e.g. heat use in processing industry)	From 2025	
	4	 Develop human resources for future deployment of hydrogen, ammonia, etc. 	From 2024	

		5	- Pilot Project for Syngas Production and Utilization by Green Hydrogen and CO2 Recovery from Cement Industry	From 2025	
D	vevelopment Scenario 3:.	-			
Р	romoting establishment o	fa	carbon neutral society through t	he modernization	of the
a	griculture, forestry, and li	ves	tock industries		
l r	PGI REDD+ Enhanceme	nt			
	Continuous forest	I	- Information development	From 2023	Horizontal
	conservation and		for REDD+ implementation		deployment
	expansion/enhancement		and implementation of		of F-REDD
	to other areas		REDD+ projects, including		knowledge
			GCF		in Laos
	PG2 Response to Agricul	tur	e and Livestock		
	Cooperation in	1	- Investigation of methods to	From 2023	
	technological		reduce methane emissions		
	development of low		through appropriate water		
	GHG emission rice		management in rice		
	cultivation		cultivation		
	Cooperation in	2	- Investigation of methane	From 2023	
	technological		reduction methods from		
	development of low		ruminants in livestock		
	GHG emission		production.		
	livestock industry				

The priority projects are outlined below.

Project name	Strengthening the capacity and resilience of rural electricity transmission					
(draft)	and distribution networks					
Assumed C/P	MoEWRI, NEA					
Assumed scheme	Preliminary Survey for Cooperation, Grant Aid					
period of	Preliminary survey for cooperation: 1 year, Grant aid: 2 years \sim					
cooperation						
Issue	The Government of Nepal is promoting the replacement of biomass-based					
	cookers with electric cookers through rural electrification. The country's					
	electrification rate has reached 95%, but the electricity grid, especially in					
	rural areas, is poor in some cases, and the electrification of cookers has					
	not progressed sufficiently due to unreliable electricity supply.					
Target	Promotion of substitution from biomass use to electricity use b					
	strengthening the local power grid					
Details of	> Identify areas for grant assistance for rural electrification through a					
implementation	preliminary survey for cooperation.					

Table 6-12 Summary of proposed priority cooperation projects in Nepal (1)

	> The grant aid will be used to extend and expand the capacity of the				
	rural power grid, and will also consider improving the vulnerability				
	of the power grid to climate change impacts.				
Output	Achieving a stable supply of electricity and improving electricity demand				
1	by strengthening local power grids				
Outcome	Reducing GHG emissions by reducing non-sustainable biomass				
	consumption				
Project Size	Preliminary Survey for Cooperation: 0.05 billion yen				
	Grant aid: 1 billion yen and up (based on the budget for the 133 kV power				
	transmission and distribution network development plan from the NEA				
	Annual Report for 2020/2021)				
Local measures	The 15th Socio-economic Development Plan (2019), the White Paper on				
	Energy and Water (2018) and the SDGs Roadmap (2015) promote				
	hydropower development, strengthening of transmission and distribution				
	infrastructure, rural electrification and reduced biomass fuel use.				
Finance	Grant aid				
GHG reduction	Assuming that 99% of the 10,753.5 ktCO2e/year of "Non-CO2 from				
potential and	biomass combustion in other sector" in NC3 (Table 3-34) comes from the				
cost-	residential sector based on IEA data (Figure 4-12), GHG emissions from				
effectiveness	biomass are 10,646 ktCO2e/year. If electrification with hydropower is				
	assumed to result in 1% reduction of biomass consumption (about 1 Mtoe				
	from Figure 4-13), this leads to a reduction of 106 ktCO2e/year.				
	Assuming that the grant aid is 1 billion yen, a 1% reduction would be				
	9,434 yen/tCO2e and a 5% reduction would be 1,887 yen/tCO2e.				
Major Japanese	[Transition technology in the power sector].				
transition	• Strengthening and upgrading of power transmission and distribution				
technologies	networks: Reinforcing power transmission and distribution networks				
applicable in the	to expand the introduction of renewable energy, etc.				
future (from	• Promotion of demand response and electrification, etc.: Efforts				
Table 3-1)	toward decarbonization on the demand side, electrification, etc.				
	• Storage batteries, water pumping, distributed energy: Storage				
	batteries contributing to grid stabilization, introduction of distributed				
	energy resources, etc.				

Table 6-13 Summary of proposed priority cooperation projects in Nepal (2)

Project name	Investigation of the potential for the production and utilization of green
(draft)	ammonia, fertilizer, and synthesis gas to replace LPG, with a focus on
	green hydrogen using hydroelectric power generation electricity.
Assumed C/P	MoEWRI, NEA, Kathmandu University

Assumed scheme	(1) "Feasibility Study on Overseas Development of High-Quality Energy			
	Infrastructure" by the Ministry of Economy, Trade and Industry (METI)			
	or data collection survey or preliminary survey for cooperation by JICA			
Period of	one year			
cooperation				
Issue	The Nepalese government is promoting the development of hydropower			
	generation, but there is a possibility that surplus power will be generated			
	on a recurring basis in the future, and it is necessary to consider measures			
	to deal with surplus power as soon as possible. In addition, the recent			
	sharp rise in the price of petroleum products has resulted in huge import			
	costs.			
	Although there have been studies on hydrogen-based energy utilization			
	using surplus electricity mainly by Kathmandu University, MoEWRI,			
	NEA, etc., there has been no detailed study of the supply and demand			
	potential in the country.			
Target	Proposal of measures to utilize surplus electricity from hydroelectric			
	power generation, focusing on hydrogen			
Details of	> Investigation of supply and demand potential of green hydrogen,			
implementation	green ammonia and synthesis gas			
	Identification of relevant schemes for the use of fuel gas			
	> Feasibility study of green hydrogen application in industrial			
	processes (in Japanese)			
	> Feasibility Study of CO2 Recovery from Industrial Plants and			
	Demonstration of Synthesis Gas Utilization with Green Hydrogen for			
	Commercial Vehicles			
	> Feasibility study on the application of green ammonia for fertilizer			
	production (Revision of "Study on Urea Fertilizer Plant Project in			
	Kingdom of Nepal" by JICA in 1984)			
Output	Understanding the potential for supply and demand for green fuels			
	Development of a system for the use of gas fuels			
	 Identification of potential demonstration sites for conversion to green 			
	fuels			
Outcome	Reducing GHG emissions by switching from fossil fuels to green fuels			
Project size	0.5 to 0.8 billion yen			
Local measures	In its budget for 2022-2023, the Nepalese government has set out to			
	promote the use of hydrogen as an energy source and the production of			
	fertilizers using green ammonia.			
	MOEWRI has established a Green Hydrogen Coordination Committee and			
	has submitted recommendations on a hydrogen strategy to the MOEWRI			

	Minister.			
Finance	Based on METI's FS project budget or JICA's Data collection survey and			
	prepliminary survey for cooperation, the institutional environment could			
	be improved through technical cooperation, or NEDO's demonstration			
	project could be utilized.			
GHG reduction	Since this project is assumed to be a research project, no direct GHG			
potential and	emission reduction effect is expected. Therefore, the GHG reduction			
cost-	potential and cost-effectiveness of the project were examined assuming			
effectiveness	that a part of coal utilization in the manufacturing process (mainly heating			
	process) in the industrial sector is replaced by hydrogen.			
	From IEA (Figure 4-12), the direct consumption of coal in Nepal's			
	industrial sector in 2019 is 0.79 Mtoe (\approx 33.077 PJ \approx about 1,287 kt).			
	However, for example, GlobalEconomy.com ¹⁷² for example, Nepal's coal			
	consumption in 2019 is 677.2 kt, which is much lower than the IEA's data.			
	Therefore, in this study, we assume that 677.2 kt (\approx 17.4 PJ) of coal			
	consumption in 2019 will be replaced.			
	The CO2 emission factor of coal is 24.7 gC/MJ, and the CO2 emissions			
	from coal consumption in the industrial sector is about 1.58 MtCO2/year.			
	On the other hand, the hydrogen demand equivalent to 677.2 kt of coal			
	and calorific value is about 143.6 kt (\approx 1.6 billion m3) According to The			
	Future of Hydrogen (2019) by IEA, 52 MWh of electricity is required to			
	produce 1 t of hydrogen by water electrolysis. Thus, it would take 7,467			
	GWh to produce about 143.6 kt of hydrogen (which corresponds to about			
	84% of the total electricity production of 8,878 GWh in 2021). In			
	addition, the IEA report states that approximately 9 liters of water is			
	required to produce 1 kg of hydrogen, which means that producing 143.6			
	kt of hydrogen will generate a water demand of 1.29 billion liters			
	(1,290,000 m3). If Japan's 2030 hydrogen production cost target of 30			
	yen/Nm3 is applied and 1.60 billion m3 of hydrogen is produced annually,			
	48.0 billion yen is required, and the cost effectiveness of CO2 reduction			
	is about 30,380 yen/tCO2.			
Major Japanese	Transition technology in the gas field			
transition	• Methanation: Synthesizing methane from hydrogen and CO2			
technologies	• Establishment of supply chains in Japan and overseas: Combined use			
applicable in the	of synthetic methane in existing infrastructure such as liquefaction			
future (from	terminals, LNG carriers, receiving terminals, pipelines, etc.			
Table 3-1)	• Hydrogen: Hydrogen is produced by electrolyzing water			

¹⁷² The GlobalEconomy.com, "Nepal: Coal consumption," https://www.theglobaleconomy.com/Nepal/coal_consumption/ 8, 2022 Accessed August 16, 2022

• Local hydrogen network: Development of a domestic hydrogen supply network
• Hydrogen combustion equipment, etc.: Industrial furnaces, cogeneration, use of hydrogen in fuel cells, etc.
• CCUS: Capturing and utilizing CO2 emitted from industrial facilities In addition, all transition technologies that use hydrogen, ammonia or
syngas in the steel, chemical, pulp and paper, and cement fields are
applicable.

6.4 Uzbekistan

6.4.1 Priority Project Recommendations

As discussed in Section 5.1.4, we believe that "low-carbonization of gas-fired power generation and promotion of decarbonization through green power and energy storage" will be effective in achieving ET-CN in Uzbekistan.

According to the Business Development Plan for the Republic of Uzbekistan (2019) by the Ministry of Foreign Affairs, the energy sector is included in Priority 1, Development Agenda 1-1 "Improve business management and promote efficient use of public utilities," which focuses on creating a foundation for economic development through the development of high-quality infrastructure that will contribute to sustainable economic growth.

Table 6-14 Business Development Plan for the Republic of Uzbekistan (2019) ¹⁷³

Basic Policy: Providing Support to Promote Economic Growth and Reduce Disparities		
Priority Area 1: Renewal and improvement of economic infrastructure (transport and		
energy)		
Development Issue	Energy and Infrastructure Improvement Program	
1-1: Improvement of	The project aims to renew aging power plants and other energy	
Public Works	facilities and meet increasing energy demand by introducing state-of-	
Management and	the-art technology to thermal power plants and other facilities. The	
Promotion of	Promotion of project will also provide support through training programs for th	
efficient use of	improvement of power distribution facilities and financial and tariff	
Infrastructure	systems.	
Facilities		
Priority Area 2: Support for Human Resource Development and Institution Building for the		
Promotion of a Market Economy and Economic and Industrial Development		
Priority Area 3: Support for Rebuilding the Social Sector		

In the power generation sector, the development of large amounts of solar and wind power sources is progressing to promote energy transition and decarbonization in Uzbekistan. Existing gas-fired power plants have been modernized and combined cycle power generation has been introduced and expanded.

Currently, plans to implement a large number of renewable energy power plants are underway with donor support, and it is important to ensure the stability of the grid to support the large amount of power received from renewable energy sources. While the system for promoting private investment is driven mainly by donor-led IPP projects for renewable energy generation, it appears that discussions on the stable operation of the grid and how to achieve this have not

¹⁷³ Business Development Plan for the Republic of Uzbekistan (Ministry of Foreign Affairs, April 201 9) https://www.mofa.go.jp/mofaj/gaiko/oda/files/000072280.pdf accessed 12 August 2022

progressed as much as expected, as plans for implementation of large-scale renewable energy projects continue to be developed.

In the future, the use of hydrogen and ammonia will be particularly important as a mechanism for storing surplus electricity from large-scale renewable power generation, while continuing to lower carbon emissions from gas-fired power generation. However, since the target year for decarbonization in the energy sector is 2050, there is a need for hydrogen as a storage for renewable energy generation and its utilization from the implementation of hydrogen production in society should be prepared. In addition, technologies and means for stable operation of the grid will be particularly important.

Furthermore, lower energy payments on the consumer side may have a negative impact on the economic efficiency of the power sector in the future, requiring an adjustment in energy prices.

Based on the above, JICA's proposed ET-CN cooperation measures include the following proposed cooperation programs for each of the proposed development scenarios. Projects that should be considered as priorities are noted as "Priority Projects". The feasibility of project implementation will be considered on a case-by-case basis in the future.

	Cooperation Prog		Priority Projects	Impleme	Remarks
	rams/Sub-Sectors			ntation	
				period	
Deve	elopment Scenario 1:				
Pron	oting low-carbon ga	s-fir	ed power generation and decarboniza	tion throug	h green power
and	energy storage				
	Responding to Incre	easec	l Electricity Demand in Light of the l	PG1 Energy	^r Transition
	Value Chain Study	1	- Development of technical	From	Priority
	on Hydrogen		personnel for future hydrogen	2023	Projects
	Utilization		deployment		
		2	- Hydrogen production using	From	
			surplus electricity from	2023	
			renewable energy sources		
			- Research and development for		
			local manufacturing and		
			transportation of energy storage		
			facilities utilizing water		
			electrolysis facilities and fuel		
			cells		
	Hvdrogen Mixed	1	- Introduction of hydrogen fuel to	From	
	Combustion of	_	new and existing thermal power	2025	
	Natural Gas Fired		plants and introduction of		
	Power Plants		mixed-burning burners		
	Research and	1	Research and development of blue	From	
	development of	1	hydrogen production technology	2023	
	hlue hydrogen		using staam reforming reaction in	2023	
	one inverogen		deploted ail and and fields		
	production		depicted off and gas fields		
	tecnnology			<u> </u>	

Table 6-15 Recommendations for the proposed cooperation program on ET-CN in Uzbekistan

PG2 Renewable ener	rgy deployment to support the transition	from energy	y transition to
Ensure output adjustment function of hydroelectric power generation	 Confirmation of feasibility of introducing pumped storage power generation system, installation of upper adjustment pond and power plant Ensure output adjustment function 	From 2024	
Research and development of hydrogen production and utilization	 Feasibility study on securing water resources as a prerequisite for hydrogen production Securing water resources that do not compete with agricultural water 	From 2024	
	- Pilot hydrogen production, transportation, and utilization in the transportation and industrial fields	From 2025	
Grid stabilization and management	 Power System Design Support for Grid Stabilization Operational improvement after SCADA/EMS introduction 	From 2025	Priority Projects ¹⁷⁴
	 Grid's domestic and intra- regional supply and demand balancing within the Central Asian region Enhanced grid power 	From 2025 From	
PG3 Improving the	distribution management electricity market and investment environ	2025 nment to su	pport energy
decarbonization		J	
Improving the management of	- Appropriate fuel subsidies	From 2025	
the electric power business centered on existing thermal power plants	- Investigate business models that support improved management on power company and energy transition	From 2024	

¹⁷⁴ The implementation of SCADA and EMS is supported by the World Bank.

The priority projects are outlined below.

Project name (draft)	Development of technical personnel for future hydrogen deployment
Assumed C/P	Ministries and agencies related to the energy sector, electric power utilities, research institutes
Assumed scheme	Combination of training in Japan and training in a third country
Period of	About 0.5 to 1 month
cooperation	
Issue	Hydrogen has the potential to play an important role in Uzbekistan, which is working on the massive introduction of renewable energy and the low- carbonization of natural gas-fired power generation. However, Uzbekistan is currently formulating its hydrogen strategy, and although interest in the various functions of hydrogen is increasing among relevant organizations in the energy sector, the value of hydrogen has not yet been recognized, and specific research is still in its early stages. On the other hand, Japanese private companies are conducting FS on hydrogen utilization in various parts of the world, and it is possible to show the series of processes from hydrogen in building a carbon-neutral society. Under these circumstances, it is necessary to start training technical personnel with a view to hydrogen deployment after 2030. ¹⁷⁵
Target	Acquire basic knowledge of hydrogen production, storage and utilization
Details of implementation	 Learn about the technology and equipment required for the production, storage and continuous supply of hydrogen Understand the technology of energy storage, power generation, and heat supply systems utilizing hydrogen production by water electrolysis and hydrogen fuel cells To understand the points to be considered in the operation and maintenance of hydrogen supply facilities
Output	The number of personnel with basic knowledge of hydrogen technology
	in energy-related ministries and research institutes will increase.
Outcome	Raise awareness among government officials and organizations related to the energy sector that will lead to the consideration of policies and measures for hydrogen production and utilization.

Table 6-1 Summary of proposed priority cooperation projects in Uzbekistan (1)

¹⁷⁵ It would also be beneficial to learn about the production and utilization of ammonia at the same time. Some of the countries in Uzbekistan and neighboring countries have long relied on coal- and gas-fired power generation for their power supply structure, and there is a possibility that joint training could be conducted by several countries in Russian language.

Project size	Training in Japan and training in third countries: 0.05 billion yen
	*Depends on the number of participants.
Local measures	Consistency with the hydrogen strategy currently being developed is key.
	PP 5063 (2021) on renewable energy and hydrogen energy development
	promotes research and development of hydrogen energy.
Finance	Technologies that have completed demonstration studies and are in the
	implementation stage may be implemented as part of the Ministry of
	Economy, Trade and Industry's feasibility study on high-quality
	infrastructure exports.
GHG reduction	Since this project is a human resource development project, no direct
potential	GHG emission reduction effect is expected. Therefore, green hydrogen
	production using solar-generated electricity and 30% co-firing with
	natural gas-fired power generation were considered as a case study.
	According to a press release by Mitsubishi Heavy Industries, Ltd. ¹⁷⁶
	states that co-firing natural gas-fired power generation with hydrogen at
	30% by volume has resulted in a 10% reduction in CO2 emissions. From
	Uzbekistan's BR (Biennial Report), CO2 emissions from natural gas-fired
	power generation in 2017 were 27.5578 MtCO2e.
	From IEA World Energy Balance (2019), the electricity generated from
	natural gas power generation in 2017 was 27,433 GWh, and the if the
	efficiency of natural gas-fired power generation is assumed to be 40% of
	the IEA constant, 246.9 PJ of natural gas is required. If calorific value is
	equivalent to 44.8 MJ/m3 of city gas in Japan, it is about 5.5 billion m3.
	If all natural gas-fired power plants were to burn 30% hydrogen by
	volume, the annual demand for hydrogen would be 1.65 billion m3 (about
	148.17 kt if hydrogen density is 0.0898 g/10 ⁻³ m3).
	According to the IEA's The Future of Hydrogen (2019), it takes 52 MWh
	of electricity to produce 1 t of hydrogen by water electrolysis. Therefore,
	producing about 148.17 kt of hydrogen requires 7,705 GWh (which
	corresponds to about 28% of natural gas-fired power generation in 2017),
	and the CO2 reduction at this time is 2.755 MtCO2e, which is considered
	10% of 27.5578 MtCO2e.
	If PV power generation is used to supply electricity (assuming
	PV1MW≈1,000MWh/year), 7,705MW=7.7GW of PV power generation is
	required. In addition, according to the IEA report, about 9 liters of water
	is required to produce 1 kg of hydrogen, which means that 1.33 billion
	liters (1.33 million m3) of water is required to produce 148.17 kt of

¹⁷⁶ Successful test of large high-efficiency gas turbine with 30% hydrogen co-firing contributes to CO2 emissions reduction during power generation (Mitsubishi Heavy Industries, January 2019) https://power.mhi.com/jp/news/20180119.html Accessed 17 August 2022.

	hydrogen. If Japan's 2030 hydrogen production cost target of 30 yen/Nm3				
	is applied and 1.65 billion m3 of hydrogen is produced annually, 49.5				
	billion yen is required, and the cost effectiveness of CO2 reduction is				
	17,967 yen/tCO2.				
Major Japanese	Transition technology in the gas field				
transition	• Methanation: Synthesizing methane from hydrogen and CO2				
technologies	• Hydrogen: Hydrogen is produced by electrolyzing water				
applicable in the	• Local hydrogen network: Development of a domestic hydrogen supply				
future (from	network				
Table 3-1)	• Hydrogen combustion equipment, etc.: Industrial furnaces, cogeneration, use of hydrogen in fuel cells, etc.				
	• CCUS: Capturing and utilizing CO2 emitted from industrial facilities				
	In addition, all transition technologies that use hydrogen, ammonia or				
	syngas in the steel, chemical, pulp and paper, and cement fields are				
	applicable.				

Table 6-2 Summary of proposed priority cooperation projects in Uzbekistan (2)

Project name	Training on grid stabilization and management
(draft)	
Assumed C/P	Ministries and agencies related to the energy sector, electric power
	utilities, research institutes
Assumed scheme	Technical cooperation (combination of training in Japan and training in a
	third country)
Period of	About 2 years
cooperation	
Issue	In Uzbekistan, which is working on the massive introduction of renewable
	energy, the stable operation of the power grid is becoming increasingly
	important. The National Dispatch Center, which had been in charge of
	grid management and operation, is now under the Ministry of Energy. In
	addition, the management and operation of the grid is undergoing rapid
	change, with donors supporting the development of a 500kV backbone
	grid, SCADA systems, and EMS for stable grid operation. On the other
	hand, since the grid system is coordinated within the Central-Asia and
	Russia region and it is necessary to take measures in cooperation with
	neighboring countries when problems occur, it is necessary to train human
	resources who are familiar with the management and technical aspects of
	stable operation of the grid system.
	Furthermore, it is necessary to improve the ability to formulate national
	power development plans and other plans based on medium- to long-term,

	big-picture perspectives, such as appropriate power supply based on
	future growth in power demand and the massive introduction of renewable
	energy.
Target	Gain knowledge of stable domestic and intra-Central Asian power system
	operations
Details of	 Understand the current status and identify issues of grid management
implementation	in Uzbekistan and neighboring countries. Learn about grid
1	stabilization efforts by neighboring countries that are promoting the
	large-scale introduction of renewable energy
	 Understand the basics of normal operation of power supply command
	and power demand/supply management after SCADA/EMS
	installation, and also learn countermeasures in case of problems in
	Uzbekistan and neighboring countries (prevention of widespread
	blackouts in Central Asia).
	\succ To consider issues, measures and design for stable operation in grid
	management in the whole region and in domestic grid management by
	comparing and examining the methods of adjusting the supply-
	demand balance within the EU, Russia and Central Asia region.
Output	The number of personnel with knowledge of the technical and
1	management aspects of stable operation of the grid in light of the massive
	introduction of renewable energy will increase.
Outcome	Establish a system to be able to respond to normal and problematic
	situations based on knowledge and technology related to stable operation
	of the grid within the region and in Uzbekistan.
	To improve the awareness and capabilities of staff for studying and
	planning measures for domestic grid operation from a medium- to long-
	term perspective in light of the massive introduction of renewable energy.
Project Size	Technical cooperation (training in Japan and training in third countries):
	0.2 billion yen.
Local measures	The stable operation and management of the power system is under the
	jurisdiction of the Ministry of Energy.
	The Transition to a Green Economy Strategy (PP 4477) promotes the
	modernization of the electricity grid and the enhancement of
	technological capacity.
	The MOE's Low Carbon Roadmap for the Electricity Sector (2021), based
	on the EBRD's proposal, points to the importance of improving the
	electricity grid and regional grid interconnection.
Finance	-
GHG reduction	Although no direct GHG emission reduction effects are expected as this
-------------------	---
potential	is mainly a human resource development project, the training is expected
	to contribute to the achievement of CN by strengthening the capacity of
	staff for the mass introduction of renewable energy.
Major Japanese	[Transition technology in the power sector].
transition	• Strengthening and upgrading of power transmission and distribution
technologies	networks: Reinforcing power transmission and distribution networks
applicable in the	to expand the introduction of renewable energy, etc.
future (from	· Promotion of demand response and electrification, etc.: Efforts
Table 3-1)	toward decarbonization on the demand side, electrification, etc.
	• Storage batteries, water pumping, distributed energy: Storage
	batteries contributing to grid stabilization, introduction of distributed
	energy resources, etc.

Appendix

Appendix 1: Field Survey Schedule Appendix 2: Collected Materials

Appendix 1: Field Survey Schedule

- 1. Vietnam
- (1) Itinerary

Sunday, July 31 - Saturday, August 6, 2022

(2) Travelling Team Member

Name	In charge of	period of business trip
Yoshihiro	Climate Change Framework, Carbon	July 31 - August 6, 2022
Mizuno	Trading, Economic Valuation	
Noriko	Renewable energy, electrification,	July 31 - August 6, 2022
Ishibashi	hydrogen	

(3) Visiting Institutions and Schedule

No.	Date of visitation	Visiting organization
\square	Sunday, July 31	Departure from Japan, entry into Vietnam (Hanoi)
1	Monday, August 1	JICA Project Expert, Forestry Sector, JICA Vietnam Office
2	Tuesday,	Meeting of the group
2	August 2	
3	Wadnasday	Centre for Energy and Green Growth Research
4	August 2	JICA project expert in the field of climate change
5	August 5	Industrial Promotion & Development Consultancy Center (Hanoi)
6		Vietnam Electricity (EVN)
7	Thursday,	Energy Efficiency and Sustainable Development Department,
/	August 4	Ministry of Industry and Trade (MOIT)
8		MOIT Oil, Gas, and Coal Department, MOIT
0		Energy Efficiency and Sustainable Development Department,
9	Eriday Ayayat 5	MOIT (2nd)
10	Friday, August 5	JICA Vietnam Office
11		Departure from Vietnam
\square	Saturday,	Paturning to Jonan
	August 6	Keturning to Japan

2. Laos

(1) Itinerary

Wednesday, May 18 - Sunday, June 12, 2022

(2) Travelling Team Member

6		
Name	In charge of	Period of business trip
Daiki Nose	Chief Operations Officer/ET to CN	May 18 - June 12, 2022
	Strategy 1	
Yasuko Arakawa	Policies and Institutions	May 18 - June 9, 2022
Ayu Horiuchi	Energy conservation	May 18 - June 12, 2022

(3) Visiting Institutions and Schedule

No.	Date of visitation	Visiting organization
\backslash	Wednesday,	Departure from Japan, Entry into Laos
	May 18	
	Thursday, May 19	Meeting in the survey team
1		Department Energy Efficiency Promotion, Ministry of Energy and
1	Friday, May 20	Mines (MEM)
2		Department of Energy Policy and Planning, MEM
2		Department of Climate Change, Ministry of Natural Resources
3	³ Tuesday, May 24	and Environment (MoNRE)
4		Global Green Growth Institute (GGGI)
5		Department of Transport, Ministry of Public Works and Transport
5	Wednesday,	(MoPWT)
	May 25	Department of Forestry, Ministry of Agriculture and Forestry
		(MoAF)

7		Department of Industry and Handicraft / Department of Import
/		and Export, Ministry of Industry and Commerce (MoIC)
8		Asia Foundation
9	Thursday, May 26	USAID
1.0		National Agriculture and Forest Research Institute (NAFRI),
10		MoAF
11	Friday, May 27	Forest & Livestock Research Center, MoAF
12		NZ Laos Renewable energy facility
13		JICA Vientiane Transport Project
14	Monday, May 30	F-REDD Project
15	Tuesday, May 31	Loca Laos
16	Wednesday, June 1	ADB
17		Department Energy Efficiency, Department of Energy Policy and
1/	Thursday, June 2	Planning, MEM
18		Research Institute Energy and Mines
19		EDL
20	Friday Juna 2	Participation in EV Forum
21	Friday, June 5	Department of Energy Management, MEM
22		MARUHAN Japan Bank
		(Accompanying JICA officials to the consultation)
23		Department of Energy Policy and Planning, MEM
	Mandan Inna (Department of Energy Efficiency Promotion, MEM
24	Monday, June o	Department of Energy and Mines, Vientiane Capital
25		Investment Promotion Department, Ministry of Promotion and
23		Investment (MPI)
		(Accompanying JICA officials to the consultation)
		Investment Promotion Department, MPI
26		Department of Transport, MoPWT
	Tuesday June 7	Department of Industry and Handicraft / Department of Import
	Tuesuay, June 7	and Export, MoIC
27		Department of Public Works and Transport, Vientiane Capital
28		Customs Department, International Cooperation Division,
20		Ministry of Finance (MoF)
29	Wednesday	(Accompanying JICA officials to the consultation)
	June 8	MEM
30		Department of Industry and Commerce, Vientiane Capital
31	Thursday June 9	(Accompanying JICA officials to the consultation)
31	rnursuay, june 9	Department of Climate Change, MoNRE

32	Friday, June 10	JETRO Laos
\backslash	Saturday, June 11	Departure from Laos
	Sunday, June 12	Returning to Japan

- 3. Nepal
- (1) Itinerary

Saturday, June 18 - Thursday, June 30, 2022

(2) Travelling Team Member

Name	In charge of	Period of business trip
Daiki Nose	Chief Operations Officer/ET to CN	June 18 - June 30, 2022
	Strategy 1	
Yoshihiro	Climate Change Framework, Carbon	June 18 - June 30, 2022
Mizuno	Trading, Economic Valuation	
Ayu Horiuchi	Energy conservation	June 18 - June 30, 2022

No.	Date and time of	Visiting organization
	visit	
	Saturday, June 18	Departure from Japan, Entry into Nepal
1	Sunday June 19	Nepal Electricity Authority (NEA)
2	Sunday, June 17	Ministry of Energy, Water Resources and Irrigation (MoEWRI)
3		Alternative Energy Promotion Centre (AEPC), MoEWRI
4	Monday, June 20	Ministry of Forest and Environment (MoFE)
5		Ministry of Physical Infrastructure and Transport (MoPIT)
6		Department of Transport Management, MoPIT
7		Department of Road, MoPIT
	Tuesday, June 21	Department of Industry, Ministry of Industry, Commerce and
8		Supplies
9		Tokyo Electric Power Company
		Ministry of Federal Affairs and General Administration
10		(MoFAGA)
		Ministry of Urban Development Urban Development Division
11	Wednesday,	(MoUD)
12	June 22	Department of Urban Development and Building Construction
13		Ministry of Agriculture and Livestock (MoAL)
14		New Jeck et al.
15		Department of Agriculture, MoAL
16	Thursday, June 22	Ministry of Finance (MoF)
17	Thursday, June 23	Parliamentary Committee on Agriculture, Cooperatives and
1/		Natural Resources
18		Practical Action
18	Enilar Land 24	Global Green Growth Institute (GGGI)
20	Friday, June 24	Foreign, Commonwealth & Development Office (FCDO), UK
20		Embassy
21		Climate Change Division, MoFE
22	Sunday, June 26	National Planning Commission
23		Town Development Fund, MoUD
24		ADB Nepal
25		Department of Water Supply and Sewage, MoWS
26	Monday, June 27	WB Nepal
27		Centre for Rural Technology Nepal (CRTN)
28	Tuesday, June 28	U.S. Agency for International Development

(3) Visiting Institutions and Schedule

29		Water and Energy Commission (WECS)
30	Wednesday,	Kathmandu Univ
\backslash	June 29	Departure from Nepal
	Thursday, June 30	Returning to Japan

4. Uzbekistan

(1) Itinerary

Wednesday, June 15 - Thursday, June 30, 2022

(2) Travelling Team Member

Name	In charge of	Period of business trip
Akifumi Nishihata	Deputy Operations Manager/ET -	June 15 - June 30, 2022
	CN Strategy 2	
Noriko Ishibashi	Renewable energy, electrification,	June 15 - June 30, 2022
	hydrogen	
Yasuko Arakawa	Policies and Institutions	June 15 - June 30, 2022

No.	Date and time of visit	Visiting organization
	Wednesday, June 15	Departure from Japan, Entry into Uzbekistan
1		Department for the Development of Renewable Sources of Energy, Ministry of Energy (MoE)
2	Thursday, June 16	Department for Fuel, Energy and Chemical Development Department for coordinating the implementation of the strategy and programs for the development of the green economy, Ministry of Economic Development and Poverty Reduction (MoEDPR)
3	Friday June 17	Department for Development of R&D Structures in Sectoral Enterprises, Ministry of Innovative Development (MoID)
4	rinuay, June 17	National Scientific Research Institute of Renewable Energy Sources under the Ministry of Energy (NIRES)
5	Monday, June 20	Public Transport Development Department; International Relations Department; Airports Development Department; Ministry of Transport (MoT)
6 7	Tuesday, June 21	Uzbek-Japan Innovation Centre of Youth (UJICY) Department of complex development of heating systems, Ministry
8	Wednesday, June 22	Institute of Materials Science, Institute of Energy Problems, Thermal Systems Laboratory, Foreign Relations Department, Academy of Science (AoS)
9	9	Intergovernmental commission for sustainable management, Consolidated information-analytics department, State Committee for Ecology and Environmental Protection (SCEEP)
10	Thursday, June 23	Department of Strategic Development, Relay Protection, Automation Department, IPP Department, NDC Department Joint-Stock Company National Electrical Networks of Uzbekistan (NEGU)

(3) Visiting Institutions and Schedule

		Development and International Cooperation;
		Department of Grants and Intl Finance Institution;
		Department of Plant Protection and Agrochemistry;
11		Department of Metrology to determine the demand for water in
11		agricultural crops;
		Department of Organic Production and Development of Optimal
		Agricultural Practices;
		Ministry of Agriculture (MoA)
12	Monday, June 27	ADB
13	Tuesday, June 29	WB
14	Tuesday, June 28	Department of the Renewable energy source development, MoE
15	Wednesday,	EBRD
	June 29	Departure from Uzbekistan
	Thursday, June 30	Returning to Japan

Appendix 2 List of collected materials

Material Classification

- 1-1 Vietnam Collection Materials
- 1-2 Vietnam interview transcripts (Japanese)
- 1-3 Vietnam interview materials

2-1 Laos Collection Materials

- 2-2 Laos interview transcripts (Japanese)
- 2-3 Laos interview materials
- 3-1 Nepal Collection Materials
- 3-2 Nepal interview transcripts (Japanese)
- 3-3 Nepal interview materials
- 4-1 Uzbekistan Collection Materials
- 4-2 Uzbekistan interview transcripts (Japanese)
- 4-3 Uzbekistan interview materials

1-1 Vietnam Collection Materials

No.		Material	Year	Lang	Issue	URL/paper
1-1-	1	The Draft National Power Development Plan VIII (PDP VIII)	Pending approval	En	Prime Minister	http://vepg.vn/wp-content/upload s/2021/09/5.9.2021-Draft-PDP8_ En.pdf
1-1-	2	Government Decree No. 06/2022/ND-CP on mitigation of GHG emission and protection of Ozone layer	2022	Vn	Prime Minister	https://thuvienphapluat.vn/van- ban/Tai-nguyen-Moi-truong/Nghi -dinh-06-2022-ND-CP-giam-nhe- phat-thai-khi-nha-kinh-va-bao-v e-tang-o-don-500104.aspx
1-1-	3	Notice No 30/TB-VPCP on Prime Minister's conclusion in the 1st meeting of the National Steering Committee to deploy Vietnam's commitments at COP26	2022	En	Government Office	https://thuvienphapluat.vn/van- ban/tai-nguyen-moi-truong/notifi cation-30-tb-vpcp-2022-the-fulfil lment-of-vietnam-s-commitments -on-climate-change-507657.aspx
1-1-	4	The National Green Growth Strategy for 2021-2030 period, vision to 2050 (The Decision No. 1658/QD-TTg)	2021	En	Prime Minister	https://en.baochinhphu.vn/natio nal-green-growth-strategy-for-20 21-2030-vision-towards-2050-111 42515.htm
1-1-	5	Orientation of Vetnam's National Energy Development Strategy by 2030, with a vision towards 2045 (The Resolution 55 NQ/TW)	2020	Vn	Central Committee of Vietnamese Communist Party	https://tulieuvankien.dangcongs an.vn/Uploads/2020/2/7/27/55-N Q-phat-trien-nang-luong-quoc-gi a.pdf

		Т				
1-1-	6	Resolution No. 140/ NQ-CP regarding	2020	En	Government of	http://gizenergy.org.vn/media/ap
		Promulgation of the Government' s			Vietnam	p/media/140-NQ-CP-Chuong-trin
		Action Programme for Implementing the				<u>h-hanh-dong-cua-CP_kem-theo-V</u>
		Resolution No. 55-NQ/TW dated				<u>B-7062-giai-trinh-VPCP_EN.pdf</u>
		1/02/2020 of Politburo regarding				
		orientations of the Vietnamese National				
		Energy Development Strategy until				
		2030, with a vision till 2045				
1-1-	7	Viet Nam Third Biennial Undated	2020	En	Ministry of	https://unfccc.int/sites/default/fil
		Report			Natural	es/resource/Viet%20Nam_BUR3.
					Resources and	pdf
					Environment	
1-1-	8	Updated Nationally Determined	2020	En	The Socialist	https://unfccc.int/sites/default/fil
		Contribution (NDC)			Republic of	<u>es/NDC/2022-06/Viet%20Nam_N</u>
					Viet Nam	DC 2020 Eng.pdf
1-1-	9	National Energy Efficiency Programme	2019	En	Prime Minister	https://aseanenergy.sharepoint.c
		(VNEEP) for the period of 2019-2030				om/:b:/g/AEDS/EZ5li8 XlnRLilGf
		(Prime Minister' s Decision 280/QD-				<u>V0cT0gMBxryxxIvfVlup57tIlu4r</u>
		TTg)				<u>Uw?e=OKrM7n</u>
1-1-	10	Gas industry development plan up to	2017	En	Prime Minister	https://vanbanphapluat.co/decisi
		2025 in Vietnam and prospects up to				<u>on-60-qd-ttg-approving-plan-dev</u>
		2035 (Prime Minister No. 60 / QD-TTg)				elopment-gas-industry-of-vietna
						<u>m-by-2025-with-vision-to-2035</u>
1-1-	11	Prime Minister Decision No. 428/QD-CP	2016	Vn	Prime Minister	https://policy.asiapacificenergy.o
		on the approval of the revised National				rg/sites/default/files/428.signed.
		Power Development Master Plan for the				<u>pdf</u>
		2011-2020 period with the vision 2030				

1-1-	12	Viet	Nam's	Renewable	Energy	2015	En	Prime Minister	https://policy.asiapacificenergy.o
		Develo	pment St	rategy up to 2	030 with				rg/node/3447
		an outlook to 2050 (Prime Minister' s							
		Decisi	on 2068/Q	(D-TTg)					
1-1-	13	LAW	ON	ECONOMICAL	AND	2010	En	National	https://moj.gov.vn/vbpq/en/lists/v
		EFFICIENT USE OF ENERGY					Assembly	n%20bn%20php%20lut/view_det	
									ail.aspx?itemid=10481#

No.		Materials	Institution	Dates
1-2-	1	20220601_JICA ETCN ベトナム_USTDA	USTDA	1 June 2022
1-2-	2	20220609_JICA ETCN ベトナム	PetroVietnam	9 June 2022
		_PetroVietnam ガス		
1-2-	3	20220613_JICA ETCN ベトナム_USAID	USAID	13 June 2022
1-2-	4	20220621_JICA ETCN ベトナム_GIZ	GIZ	21 June 2022
1-2-	5	20220623_JICA ETCN ベトナム_Ministry	Department of Energy Efficiency and	23 June 2022
		of Industry of Energy	Sustainable Development,	
			Ministry of Industry and Trade	
1-2-	6	20220628_JICA ETCN ベトナム_Ministry	Institute of Energy	28 June 2022
		of Industry of Energy	Energy Economic Department,	
			Ministry of Industry and Trade	
1-2-	7	20220628_JICA ETCN ベトナム_ベトナム	Mitsubishi Corporation Vietnam	28 June 2022
		三菱商事		
1-2-	8	20220701_JICA ETCN ベトナム_一般財	The Energy Conservation Center, Japan	1 July 2022
		団法人省エネルギーセンター		
1-2-	9	20220711_JICA ETCN ベトナム_Ministry	Department of Environment,	11 July 2022
		of Transport	Ministry of Transport	
1-2-	10	20220713_JICA ETCN ベトナム	Department of Oil, Gas, and Coal,	13 July 2022
		_Department of Oil, Gas, and Coal (MOIT)	Ministry of Industry and Trade	
1-2-	11	20220801_JICA ETCN ベトナム_JICA 森	JICA Expert (Natural resource management)	1 August 2022
		林プロジェクト専門家		
1-2-	12	20220802_JICA ETCN ベトナム_Center	Center for Energy and Green Growth	2 August 2022
		for Energy and Green Growth Research	Research	

1-2 Vietnam interview transcripts (Japanese)

1-2-	13	20220802_JICA ETCN ベトナム	Industrial Promotion and Development	2 August 2022
		_Industrial Promotion and Development	Consultancy Center Hanoi	
		Consultancy Center Hanoi		
1-2-	14	20220803_JICA ETCN ベトナム_JICA 専	JICA Expert (NAMA)	3 August 2022
		門家		
1-2-	15	20220804_JICA ETCN ベトナム	Department of Oil, Gas, and Coal,	4 August 2022
		_Department of Oil, Gas, and Coal(MOIT)	Ministry of Industry and Trade	
1-2-	16	20220804_JICA ETCN ベトナム_Energy	Department of Energy Efficiency and	4 August 2022
		Efficiency and Sustainable Development	Sustainable Development,	
		Department(MOIT)	Ministry of Industry and Trade	
1-2-	17	20220804_JICA ETCN ベトナム_Vietnam	Vietnam Electricity	4 August 2022
		Electricity		
1-2-	18	20220805_JICA ETCN ベトナム_Energy	Department of Energy Efficiency and	5 August 2022
		Efficiency and Sustainable Development	Sustainable Development,	
		Department(MOIT)	Ministry of Industry and Trade	
1-2-	19	20220810_JICA ETCN ベトナム_東京ガス	Tokyo Gas Co., Ltd	10 August 2022

2-1 Laos Collection Materials

No.		Material	Year	Lang	Issue	URL/paper
2-1-	1	National Strategy on Climate Change	2022	Lao	Ministry of Natural Resources and Environment	paper
2-1-	2	Energy Policy of Lao PDR	2021	En/Lao	Ministry of Energy and Mines	paper
2-1-	3	National Power Development Plan of Lao PDR	2021	Lao	Ministry of Energy and Mines	paper
2-1-	4	Nationally Determined Contribution (NDC)	2021	En/Lao	Government of Laos	https://unfccc.int/sites/default/fil es/NDC/2022-06/NDC%202020%2 0of%20Lao%20PDR%20%28Englis h%29%2C%2009%20April%20202 1%20%281%29.pdf
2-1-	5	Resolution on Endorsement of Policy on Electricity Vehicle Use	2021	Lao	Ministry of Energy and Mines, Ministry of Public Work and Transport	paper
2-1-	6	9th National Socio-economic Development Plan	2021	En	Government of Laos	https://data.opendevelopmentmek ong.net/library_record/9th-five-ye ar-national-socio-economic-develo

						pment-plan-2021-2025
2-1-	7	National Forestry Strategy	2021	Lao	Ministry of	paper
					Agriculture and	
					Forestry	
2-1-	8	Decree on Energy efficiency and	2020	En/Lao	Ministry of	paper
		Conservation			Energy and	
					Mines	
2-1-	9	Strategy on Promotion of Clean	2020	Lao	Ministry of	paper
		Energy for Transport Sector-Plan for			Energy and	
		2025, strategy for 2030, and vision for			Mines,	
		2050			Ministry of	
					Public Work	
					and Transport	
2-1-	10	The First Biennial Updated Report of	2020	En/Lao	Ministry of	https://unfccc.int/sites/default/fil
		the Lao PDR			Natural	es/resource/The%20First%20Bien
					Resources and	nial%20Update%20Report-BUR_
					Environment	Lao%20PDR.pdf
2-1-	11	Decree on Climate change	2019	Lao	Ministry of	https://data.laos.opendevelopmen
					Natural	tmekong.net/dataset/decree-on-cl
					Resources and	imate-change-lao-pdr-2019#:~:tex
					Environment	t=The%20decree%20determines%
						20the%20principles,properties%2
						C%20environment%2C%20biodive
						rsity%2C%20and

2-1-	12	National Green Growth Strategy of	2018	En/Lao	Ministry	of	https://www.greengrowthknowled
		the Lao PDR			Natural		<u>ge.org/sites/default/files/downloa</u>
					Resources	and	ds/policy-database//national_gree
					Environme	nt	<u>n growth strategy of%20the Lao</u>
							<u>PDR_till_2030_government_of_L</u>
							<u>ao.pdf</u>
2-1-	13	Lao National Environmental	2017	Lao	Ministry	of	paper
		Standards			Natural		
					Resources	and	
					Environme	nt	
2-1-	14	Decree on Biodiesel	2016	Lao	Ministry	of	paper
					Energy	and	
					Mines		
2-1-	15	Ministerial Directive for Generic	2015	Lao	Ministry	of	paper
		Standard on Clean Cookstove in Lao			Energy	and	
		PDR			Mines		
2-1-	16	Policy on Sustainable Hydropower	2015	En/Lao	Ministry	of	https://policy.asiapacificenergy.or
		Development			Energy	and	g/sites/default/files/Decree%200
					Mines		<u>n%20the%20Approval%20and%20</u>
							Promulgation%20of%20the%20Po
							<u>licy%20on%20Sustainable%20Hy</u>
							dropower%20Development%20i
							<u>n%20Lao%20PDR.pdf</u>
2-1-	17	Climate Change Action Plan of Lao	2013	En/Lo	Ministry	of	paper
		PDR for 2013-2020			Natural		
					Resources	and	
					Environme	nt	

2-1-	18	Renewable	Energy	Development	2011	En/Lao	Ministry	of	https://policy.asiapacificenergy.or
		Strategy					Natural		g/sites/default/files/LIRE-Renewa
							Resources	and	ble_Energy_Development_Strateg
							Environme	nt	<u>y in Lao PDR.pdf</u>
2-1-	19	Strategy on	Climate	Change of the	2010	En/Lo	Ministry	of	paper
		Lao PDR					Natural		
							Resources	and	
							Environme	nt	

2-2 Laos interview transcripts (Japanese)

No.		Materials	Institution	Dates
2-2-	1	20220520_JICA ETCN_MEM DEE	Department Energy Efficiency Promotion,	20 May 2022
			Ministry of Energy and Mines (MEM)	
2-2-	2	20220520_JICA ETCN_MEM DEPP	Department of Energy Policy and Planning,	20 May 2022
			MEM	
2-2-	3	20220524_JICA ETCN_GGGI	Global Green Growth Institute (GGGI)	24 May 2022
2-2-	4	20220524_JICA ETCN_MONRE DoCC	Department of Climate Change, Ministry of	24 May 2022
			Natural Resources and Environment	
			(MoNRE)	
2-2-	5	20220525_JICA ETCN_AF	Asia Foundation	25 May 2022
2-2-	6	20220525_JICA ETCN_MoAF DoF	Department of Forestry, Ministry of	25 May 2022
			Agriculture and Forestry (MoAF)	
2-2-	7	20220525_JICA ETCN_MOIC DoI 他	Department of Industry and Handicraft /	25 May 2022
			Department of Import and Export, Ministry	
			of Industry and Commerce (MoIC)	
2-2-	8	20220525_JICA ETCN_MPWT DoT 他	Department of Transport, Ministry of Public	25 May 2022
			Works and Transport (MoPWT)	
2-2-	9	20220526_JICA ETCN_USAID	USAID	26 May 2022
2-2-	10	20220527_JICA ETCN_Forest and Livestock	Forest & Livestock Research Center, MoAF	27 May 2022
		research Center		
2-2-	11	20220527_JICA ETCN_NAFRI	National Agriculture and Forest Research	27 May 2022
			Institute (NAFRI), MoAF	
2-2-	12	20220527_JICA ETCN_NZ	NZ Laos Renewable energy facility	27 May 2022
2-2-	13	20220530_JICA ETCN_F-REDD プロジェクト	JICA Expert (F-REDD)	30 May 2022
		江頭様		

2-2-	14	20220530_JICA ETCN_TEPCO,TEPSCO	TEPCO, TEPSCO	30 May 2022
2-2-	15	20220530_JICA ETCN_ビエンチャン都市交通	JICA Expert (Transportation)	30 May 2022
		プロジェクト武田様		
2-2-	16	20220531_JICA ETCN_Loca	Loca Laos	31 May 2022
2-2-	17	20220601_JICA ETCN_ADB	ADB	1 June 2022
2-2-	18	20220602_JICA ETCN_DEEP, DEPP 2nd	Department Energy Efficiency, Department	2 June 2022
		meeting	of Energy Policy and Planning, MEM	
2-2-	19	20220602_JICA ETCN_MEM Research	Research Institute Energy and Mines	2 June 2022
		Institute Energy and Mine		
2-2-	20	20220603_EV Forum ラオス	EV Forum	3 June 2022
2-2-	21	20220603_JICA ETCN_EDL	EDL	3 June 2022
2-2-	22	20220603_JICA ETCN_MEM DEM	Department of Energy Management, MEM	3 June 2022
2-2-	23	20220603_JICA ETCN_マルハンジャパン銀行	Maruhan Japan Bank	3 June 2022
2-2-	24	20220606_JICA ETCN_MP IPD	Investment Promotion Department, Ministry	3 June 2022
			of Promotion and Investment (MPI)	
2-2-	25	20220606_JICA ETCN_Vientian Capital DEM	Department of Energy and Mines, Vientiane	6 June 2022
			Capital	
2-2-	26	20220607_JICA ETCN_MOF DOC	Customs Department, International	7 June 2022
			Cooperation Division, Ministry of Finance	
			(MoF)	
2-2-	27	20220607_JICA ETCN_Vientiane	Department of Public Works and Transport,	7 June 2022
		Capital_DPWT	Vientiane Capital	
2-2-	28	20220608_JICA ETCN_Vientian Capital DoIC	Department of Industry and Commerce,	8 June 2022
			Vientiane Capital	
2-2-	29	20220610_JICA ETCN_JETRO	JETRO Laos	10 June 2022

3-1 Nepal Collection Materials

No.		Material	Year	Lang	Issue	URL/paper
3-1-	1	Budget Speech of Fiscal Year 2022/2023	2022	En/Ne	Ministry of Finance	https://www.mof.gov.np/site/publi cation-detail/3185
3-1-	2	ThirdNationalCommunicationToTheUnited NationsUnited NationsFrameworkConventionOnChange (2021)	2021	En	Ministry of Forest and Environment	https://unfccc.int/sites/default/fil es/resource/TNC%20Nepal_Final_ v2.pdf
3-1-	3	Environment Friendly Local Government Framework	2021	Ne	Ministry of Federal Affairs & General Administration	https://www.dpnet.org.np/resourc e-detail/506
3-1-	4	Nepal's Long-Term Strategy for Net-zero Emissions	2021	En/Ne	Government of Nepal	https://unfccc.int/sites/default/fil es/resource/NepalLTLEDS.pdf
3-1-	5	Environment Protection Regulation	2020	Ne	Ministry of Forest and Environment	https://doind.gov.np/detail/58
3-1-	6	Industrial Enterprises Act 2020/Industrial Policy 2010	2020	En/Ne	Ministry of Industry, Commerce and Supplies	https://moics.gov.np/uploads/shar es/laws/Industrial%20Enterprise s%20Act%20%202020.pdf
3-1-	7	Second Nationally Determined Contribution (NDC)	2020	En/Ne	Government of Nepal	https://climate.mohp.gov.np/attac hments/article/167/Second%20Na tionally%20Determined%20Contri bution%20(NDC)%20-%202020.pd f

3-1-	8	National Environment Policy	2019	Ne	Ministry of Forest and Environment	https://climate.mohp.gov.np/down loads/National_Environment_Poli cy_2076.pdf
3-1-	9	Environment Protection Act	2019	En/Ne	Ministry of Forest and Environment,	https://www.lawcommission.gov.n p/en/wp-content/uploads/2021/03/ The-Environment-Protection-Act- 2019-2076.pdf
3-1-	10	National Climate Change Policy 2076	2019	En/Ne	Ministry of Forest and Environment	http://extwprlegs1.fao.org/docs/pd f/nep199367.pdf
3-1-	11	The Fifteenth Plan (Fiscal Year 2019/20 - 2023/24)	2019	En/Ne	National Planning Commission	https://npc.gov.np/images/categor y/15th_plan_English_Version.pdf
3-1-	12	Present Situation and Future Roadmap of Energy, Water Resources and Irrigation Sector (White Paper)	2018	Ne	Ministry of Energy, Water Resources and Irrigation	https://moewri.gov.np/storage/list ies/May2020/white-paper-2075-wi th-annex02.pdf
3-1-	13	Nepal National REDD + Strategy, (2018 - 2022)	2018	En/Ne	Ministry of Forests and Environment	http://www.redd.gov.np/upload/e6 6443e81e8cc9c4fa5c099a1fb1bb87 /files/REDD Strategy Nepal 201 8.pdf
3-1-	14	National Energy Efficiency Strategy 2018	2018	En	Ministry of Energy, Water Resources and Irrigation	https://www.moewri.gov.np/storag e/listies/May2020/national-energy -efficiency-strategy-2075-en.pdf

3-1-	15	The Biomass Energy	2017	En	Ministry of Population	https://www.aepc.gov.np/uploads/
		Strategy 2017			and Environment	docs/2018-07-29_Biomass%20Ene
						<u>rgy%20Strategy%202073%20BS%</u>
						20(2017)%20English.pdf
3-1-	16	National Urban	2017	En/Ne	Ministry of Urban	https://www.moud.gov.np/storage/
		Development Strategy			Development	listies/July2019/NUDS_PART_A.p
						df
3-1-	17	Renewable Energy Subsidy	2016	En	Ministry of Population	https://www.aepc.gov.np/uploads/
		Policy, 2073 BS			and Environment	docs/2018-06-19 RE%20Subsidy%
						20Policy,%202073%20(English).pd
						f
3-1-	18	Constitution of Nepal	2015	En/Ne	Government of Nepal	https://www.constituteproject.org/
						<u>constitution/Nepal_2015.pdf</u>
3-1-	19	Agriculture Development	2015	En/Ne	Ministry of Agriculture	https://www.climate-laws.org/geo
		Strategy (2015-2035)			and Livestock	graphies/nepal/policies/agricultur
					Development	e-development-strategy-2015-203
						<u>5#:~:text=The%20Agriculture%20</u>
						Development%20Strategy%20(AD
						S,logistics%2Cfinance%2C%20ma
						<u>rketing).</u>
3-1-	20	Nepal Sustainable	2015	En	National Planning	https://policy.asiapacificenergy.or
		Development Goals Status			Commission	g/sites/default/files/Sustainable%
		and Roadmap: 2016 -2030				20Development%20Goals%20Stat
						us%20and%20Roadmap%202016-2
						030%20%28EN%29.pdf

3-2 Nepal interview transcripts (Japanese)

No.		Materials	Institution	Dates
3-2-	1	20220617_JICA ETCN ネパール_水力発電計画アドバイザー菊川	JICA Expert (Hydro	17 June 2022
		様	power)	
3-2-	2	20220619_JICA ETCN ネパール_Ministry of Energy Water	Ministry of Energy Water	19 June 2022
		Resource and Irrigation	Resource and Irrigation	
3-2-	3	20220619_JICAETCN ネパール_Nepal Energy Authority	Nepal Energy Authority	19 June 2022
3-2-	4	20220620_JICA ETCN $\dot{\pi}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ Ministry of Forest and	Ministry of Forest and	20 June 2022
		Environment	Environment	
3-2-	5	20220620_JICA ETCN ネ パ ー ル _Ministry of Physical	Ministry of Physical	20 June 2022
		Infrastructure and Transport	Infrastructure and	
			Transport	
3-2-	6	20220620_JICAETCN ネパール_Alternative Energy Promotion	Alternative Energy	20 June 2022
		Centre	Promotion Centre	
3-2-	7	20220621_JICA ETCN ネパール_Department of Industry	Department of Industry	21 June 2022
3-2-	8	20220621_JICA ETCN ネパール_Department of Road	Department of Road	21 June 2022
3-2-	9	20220621_JICA ETCN ネパール Department of Transport	Department of Transport	21 June 2022
		Management	Management	
3-2-	10	20220622_JICA ETCN ネパール_Department of Urban	Department of Urban	22 June 2022
		Development and Building Construction	Development and	
			Building Construction	
3-2-	11	20220622_JICA ETCN ネパール_Ministry of Agriculture and	Ministry of Agriculture	22 June 2022
		Livestock Development	and Livestock	

			Development	
3-2-	12	20220622_JICA ETCN ネパール_Ministry of Federal Affairs and	Ministry of Federal	22 June 2022
		General Administration	Affairs and General	
			Administration	
3-2-	13	20220622_JICA ETCN ネパール_Ministry of Urban Development	Ministry of Urban	22 June 2022
			Development	
3-2-	14	20220622_JICA ETCN ネパール_ニュージェック	Nerjec	22 June 2022
3-2-	15	20220622_JICA ETCN ネパール_東京電力	TEPCO	22 June 2022
3-2-	16	20220623_JICA ETCN ネパール_Department of Agriculture	Department of	23 June 2022
			Agriculture	
3-2-	17	20220623_JICA ETCN ネパール_Mimistry of Finance	Mimistry of Finance	23 June 2022
3-2-	18	20220623_JICA ETCN ネパール_Parliamentary Committee	Parliamentary Committee	23 June 2022
3-2-	19	20220624_JICA ETCN ネパール_GGGI	GGGI	24 June 2022
3-2-	20	20220624_JICA ETCN ネパール_Pracrical Action Nepal	Pracrical Action Nepal	24 June 2022
3-2-	21	20220626_JICA ETCN ネパール Climate Change Division	Climate Change Division	26 June 2022
		MOFE	MOFE	
3-2-	22	20220626_JICA ETCN ネパール_National Planning Commission	National Planning	26 June 2022
			Commission	
3-2-	23	20220626_JICA ETCN ネパール_TDF	TDF	26 June 2022

3-2-	24	20220627_JICA ETCN ネパール_ADB	ADB	27 June 2022
3-2-	25	20220627_JICA ETCN ネパール_Centre for Rural Technology	Centre for Rural	27 June 2022
		Nepal	Technology Nepal	
3-2-	26	20220627_JICA ETCN ネパール_Department of Water Supply	Department of Water	27 June 2022
		and Sewege	Supply and Sewege	
3-2-	27	20220627_JICAETCN ネパール_WB	WB	27 June 2022
3-2-	28	20220628_JICA ETCN ネパール_FCDO UK	FCDO UK	28 June 2022
3-2-	29	20220628_JICA ETCN ネパール_USAID	USAID	28 June 2022
3-2-	30	20220628_JICA ETCN ネパール_Water and Energy Commission	Water and Energy	28 June 2022
		Secretariat	Commission Secretariat	
3-2-	31	20220629_JICA ETCN ネパール_Kathmandu University	Kathmandu University	29 June 2022

4-1 Uzbekistan Collection Materials

No.		Material	Year	Lang	Issue	URL/paper
4-1-	1	President Decree #60 (dated 28.01.2022)ON	2022	Ru/Uz	President	https://lex.uz/en/do
		THE NEW UZBEKISTAN DEVELOPMENT			Administration	cs/5841063
		STRATEGY FOR 2022-2026				
4-1-	2	President Decree #5063 (dated 09.04.2021)ON	2021	Ru/Uz	Office of the	https://lex.uz/ru/do
		MEASURES TO DEVELOP RENEWABLE AND			President of	<u>cs/5362035</u>
		HYDROGEN ENERGY IN THE REPUBLIC OF			Uzbekistan	
		UZBEKISTAN				
4-1-	3	A carbon-neutral electricity sector in	2021	En	Ministry of Energy of	https://minenergy.
		Uzbekistan: Summary for policymakers			the Republic of	<u>uz/en/lists/view/13</u>
					Uzbekistan	<u>1</u>
4-1-	4	First Biennial Update Report of The Republic of	2021	En	Government of	https://unfccc.int/s
		Uzbekistan			Uzbekistan	<u>ites/default/files/re</u>
						<u>source/FBURUZen</u>
						<u>g.pdf</u>
4-1-	5	THE LAW OF THE REPUBLIC OF	2020	Ru/Uz	The Legislative	https://lex.uz/docs/
		UZBEKISTAN ON THE RATIONAL USE OF			Chamber	4895655
		ENERGY (as amended and supplemented in				
		accordance with the Law of the RUz No. 628 of				
		14.07.2020 "ON IMPLEMENTATION OF				
		AMENDMENTS AND ADDITIONS TO THE				
		LAW OF THE REPUBLIC OF UZBEKISTAN				
		«ON RATIONAL USE OF ENERGY»")				

4-1-	6	President Decree #4479 (dated 10.07.2020)ON ADDITIONAL MEASURES TO REDUCE THE DEPENDENCE OF ECONOMIC SECTORS ON	2020	Ru/Uz	President Administration	https://lex.uz/docs/ 4890075
		FUEL AND ENERGY PRODUCTS BY IMPROVING THE ENERGY EFFICIENCY OF THE ECONOMY AND THE USE OF				
4-1-	7	AVAILABLE RESOURCESResolution of the Cabinet of Ministers of the Republic of Uzbekistan, No. 640 (dated 09.10.2020) APPROVAL OF THE REGULATION ON EXTRA-BUDGETARY INTERSECTORAL ENERGY SAVING FUND UNDER THE MINISTRY OF ENERGY OF THE REPUBLIC OF UZBEKISTAN	2020	Ru/Uz	THE CABINET OF MINISTERS OF THE REPUBLIC OF UZBEKISTAN	https://lex.uz/en/do cs/5038208
4-1-	8	Updated Nationally Determined Contribution (NDC)	2020	En	Government of Uzbekistan	https://unfccc.int/s ites/default/files/N DC/2022-06/Uzbeki stan Updated%20 NDC 2021 EN.pdf
4-1-	9	President Decree #4422 (dated 22.08.2019) ON ACCELERATED MEASURES TO IMPROVE ENERGY EFFICIENCY OF ECONOMIC SECTORS AND THE SOCIAL SPHERE, THE INTRODUCTION OF ENERGY-SAVING TECHNOLOGIES, AND THE DEVELOPMENT OF RENEWABLE ENERGY SOURCES	2019	Ru/Uz	President Administration	https://lex.uz/ru/do cs/4486127

4-1-	10	President Decree #4477 (dated 04.10.2019) ON	2019	Ru/Uz	President	https://lex.uz/docs/
		APPROVAL OF THE STRATEGY FOR THE			Administration	4539506
		TRANSITION OF UZBEKISTAN TO A GREEN				
		ECONOMY				
4-1-	11	The concept note for the supply of electric power	2019	En	Ministry of Energy of	https://minenergy.
		2020-2030			the Republic of	uz/en/lists/view/77
					Uzbekistan	
4-1-	12	THE LAW OF THE REPUBLIC OF	2019	Ru/Uz	the Legislative	https://lex.uz/docs/
		UZBEKISTAN ON THE USE OF RENEWABLE			Chamber of	4346835
		ENERGY SOURCES			Uzbekistan	

4-2 Uzbekistan interview transcripts (Japanese)

No.		Materials	Institution	Dates
4-2-	1	20220616_JICA ETCN ウズベキスタン_Ministry of	Ministry of Economic	16 June 2022
		Economic Development and Poverty Reduction	Development and Poverty	
			Reduction	
4-2-	2	20220616_JICA ETCN ウズベキスタン_Ministry of	Ministry of Energy	16 June 2022
		Energy		
4-2-	3	20220617_JICA ETCN ウズベキスタン_Ministry of	Ministry of Innovative	17 June 2022
		Innovative Development	Development	
4-2-	4	20220617_JICA ETCN ウズベキスタン_National	National Scientific Research	17 June 2022
		Scientific Research Institute of Renewable Energy	Institute of Renewable Energy	
		Sources under the Ministry of Energy	Sources under the Ministry of	
			Energy	
4-2-	5	20220620_JICA ETCN ウズベキスタン_Ministry of	Ministry of Transport	20 June 2022
		Transport		
4-2-	6	20220621_JICA ETCN ウズベキスタン_Ministry of	Ministry of Housing and	21 June 2022
		Housing and Communal Services	Communal Services	
4-2-	7	20220621_JICA ETCN ウズベキスタン_UJICY	UZBEK-JAPAN INNOVATION	21 June 2022
			CENTRE OF YOUTH	
4-2-	8	20220622_JICA ETCN ウズベキスタン_Uzbekistan	Uzbekistan Academy of Sciences	22 June 2022
		Academy of Sciences		
4-2-	9	20220622_JICA ETCN ウズベキスタン_State	State Committee for Ecology and	22 June 2022
		Committee for Ecology and Environmental Protection	Environmental Protection	
4-2-	10	20220623_JICA ETCN ウズベキスタン_Joint-Stock	Joint-Stock Company National	23 June 2022
		Company National Electrical Networks of Uzbekistan	Electrical Networks of	
			Uzbekistan	

4-2-	11	20220623_JICA ETCN ウズベキスタン_Ministry of	Ministry of Agriculture	23 June 2022
		Agriculture		
4-2-	12	20220627_JICA ETCN ウズベキスタン _Asian	Asian Development Bank	27 June 2022
		Development Bank		
4-2-	13	20220628_JICA ETCN ウズベキスタン_Ministry of	Ministry of Energy	28 June 2022
		Energy		
4-2-	14	20220628_JICA ETCN ウズベキスタン_World Bank	World Bank	28 June 2022
4-2-	15	20220629_JICA ETCN ウズベキスタン_EBRD	EBRD	29 June 2022