3. Hydraulic Profile

3.1 Plant Capacity

Production Flow Treatment Flow	Production FlowTreatment FlowLoss in preatment process5 %				
3.2 Raw Water Intal	ke			0.554 m3/s	
1) Water Level of F	RBC				
HWL				+	184.71
LWL				+	184.26
Bed EL				+	183.92
2) Head Loss of Int	ake				
Intake Mouth			LWL	HWL	
Number of mouth			1	1	
width	1.600		1.6	1.6	
water depth (LWL)	(intake level + 184.26, bed level + 183.92)		0.34	0.79	
Inlet loss: hi	$= (1 + fe) x v^2/2g =$		0.063	0.012	
	where, $fe = coefficient$		0.2	0.2	
	v =		1.018	0.438	
	a = opening area (w1.0 x)	h0.50 x 2 nos)	0.544	1.264	
		WL +	184.20	184.70	
Paw Wator Main ar	d Pranch Pine (Paur Water Main to PW Storage	Tonk)			
Dimensions of Pour V	Water Main				
Dimensions of Raw diameter	tor both main and branch pipes	ND	800 m		
lanath	langth Main 21 Branch 21				
Hand loss: Park Way	tor Main		52 II т WЛ		
neau loss. Kaw wa	Diamatar (mm)		200	RWL	
	L anoth (m)		21	21	
	Velocity (m/c)		1 102	1 102	
	$\frac{1}{2} \frac{1}{2} \frac{1}$		1.105	1.105	
	Friction Loss (hf)		0.027	0.027	
	Minor loss (III)		0.027	0.027	
	Total hand lass		0.095	0.093	
	1 otar nead ross	₩Л +	184.08	194 59	
Caorse S	creen:	WL +	104.00	104.50	
hser:	= $C \times v^2/2g =$		0.0003	0.0002	
wget	re. $C = c x (s/b)^{4/3} x \sin \theta =$		0.23	0.23	
	c: shape factor (rectangu	lar)	2.42	2.42	
	s: thickness of screen bar (flat bar)	mm	9	9	
	b: net clearance between screen bar	s mm	51	51	
	v: approach velocity	m/s	0.148	0.117	
	θ: slope to horizontal	deg.	70	70	
	a: opening area (w2.00 x $h1.87$)	m2	3.740	4.740	
	w: width	m	2.00	2.00	
	h: water depth (0.50-0.005)	m	1.87	2.37	
	a: opening ratio due clogging by deb	oris %	20%	20%	
	head loss of coarse screen is set at	m	0.006	0.004	
		assumed	0.02	0.02	
		WL +	184.06	184.56	

	Raw Wate	r Branch					
	(one only t	ank used)					
		Diameter (mm)			800	800	
		Length (m)			31	31	
		Velocity (m/s)			1.103	1.103	
		Hydraulic Gradient ((i) $C = 130$		1.30	1.30	
		Friction Loss (hf)			0.040	0.040	
		Minor loss	(fraction bend fb =	fr = 0.99, valve fv =0.2, = 0.3, outlet fo = 1.0)	0.154	0.154	
		Total head loss			0.195	0.195	
				WL +	183.86	184.36	
				FGL +	185.00	185.00	
				Free board	1.14	0.64	
	Summary	RW Main			0.120 m		
		Coarse Screen			0.020 m		
		RW Branch			0.195 m		
		1 otal loss			0.335 m		
3) Water L	evel of Ra	aw Water Storage	e Tank				
	HWL	water depth:	3	.5 m		+	184.36
	LWL		3	.0 m		+	180.86
		note: when ca	nal becomes	LWL, effective water depth	of tank becom	es 3.0m	
	Raw Wate	r Outflow pipe (RW P	S Inlet)				
	Diameter ((mm)			800		
	Length (m))			36		
	Velocity (1	n/s) Cuadiant (i)			1.103		
	Hydraulic Enjotion L	Gradient (1)			1.30		
	Minor loss	DSS (III)	0)		0.047		
	Total head	s (11 0.5, BV 0.24, 10 1	.0)		0.108		
	i otai nead	1035			0.155		
Interconne	cting Pipe (I	RW Tank - RW PS Inle	et)				
	Flow rate			Q =	0.554 m3	3/s	
	Size				800 mr	n	
	Length				36 m		
	Velocity			v =	1.103 m/	s	
	Hydraulic	Gradient (C = 130	i =	1.30 ‰)	
	Friction lo	SS		hf =	0.047 m		
	Monor los	s Σ	f = 1.5	hm =	0.093 m		
	Valve loss	f f	v = 0.24	hvm =	0.015 m		
4) Raw Wa	tor Pumn	Station		Hrwm =	0.155 m		
Pump Suct	ion Well	HWI		loss of fine screen	0.1	+	184 11
T unp Suct		LWL		1055 Of file Sereen	0.1	+	180.61
Raw Wate	r Pump Head	d LWL of	Suction Well			+	180.61
Head loss of			s of Raw Wa	ater Main	0.66		
		Inlet gate	e loss of Rec	eiving tank	0.08		100.00
		WL of R	eceiving Tan	K	0.07	+	188.86
		Static he	ead		8.26		
		Loss of I	KW main and	miet gate of Receiving Tank	0.74		
		Loss of	piping aroun	a pumps	1.00		
		Flow co	ontroller	included in KWM	-		
		Pump H	eau		10.00		

3.3 Water Treatment Plant

1) Receiving / Distribution Tank

Flow Rate				47,900 m3/d		
				0.554 m3/s		
Head Loss						
Loss of piping around p	pump		Hp =	1.500 m		
Raw Water Main	Size			700 mm		
	Length			55 m		
	Fittings 90 bend: 3					
	Valve BV: 1	Controler: 1				
	Velocity	C = 130	v =	1 440 m/s		
	Hydraulic Gradient	C 150	i =	2 50 %		
	Friction loss		hf =	0.137 m		
	Minor loss	$\Sigma f = 1.9$	hm =	0.201 m		
	Valhe loss (maintenance	$f_{\rm v} = 0.24$	hym =	0.004 m		
	(controller)	$f_{c} = 3.0$	hc =	0.318 m		
	(controller)	$\mathbf{R} = 5.0$	Hrum =	0.510 m		
			III WIII –	0.000 m		
Receiving Tank	Number of Compartments			2 nos.		
	Flow per Unit			0.277 m3/s		
	Inlet Gate Loss	size:	6	00 x 600 mm		
			$\mathbf{v} =$	0.769 m/s		
		fg = 2.78	hg =	0.084 m		
		Water le	vel of Receiv	ving Tank W	/L +	188.86
	Quartlanumain	I = 2 m	h —	0.122 m		
	Erec fall	L = 3 m W = 2.5 m	nw –	0.125 m		
	Flee lall	w – 5.5m	Hw =	0.007 m 0.190 m		
	Interconnecting gate loss	size of gate	6	00 x 600 mm		
2) Flash Mixing Ta	nk		ng =	0.084 m		
Number of Tanks Head Loss				2 tanks		
Interconnection Pipe	Flow rate			0.277 m3/s		
-	Size of pipe			500 mm		
	Length			10 m		
	Fittings 90 bend: 1					
	Valve BV: 1					
	Velocity		$\mathbf{v} =$	1.411 m/s		
	Hydraulic gradient		i =	3.56 ‰		
	Friction loss	C = 120	hf-	0.026 m		
	Minor loss	C = 130		0.030 m		
	Willior loss	21 - 1.8	1111 — 1	0.185 m		
	valve loss	1v = 0.24	Hv =	0.243 m		
		Water leve	el of Flash M	ixing Tank	WL +	188.35
Flash Mixing tank	Overflow Weir Loss	L = 3m	hw =	0.136 m		
-		free fall	hd =	0.464 m		
		total loss	Ht =	0.600 m		

3) Flocculation Tank

Loss of Filtration

	Number of Tanks						4 tan	ks	
	Head Loss	Flow rate					0.139 m3	/s	
	Inlet gate of Flocc. Tan	k							
		Size of inle	et gate			4	50 x 450 mm	1	
		Velocity				v =	0.684 m/s	5	
		Gate loss		C = 2	2.78	hg =	0.066 m		
			V	Water level of	Flocculation	n Tank Tank (f	irst raw)	WL +	187.68
	Flocculation	Slow Mixin	ng	(refer to pro	cess design	hmix =	0.358 m		
		Perforated	wall	v = (0.2 m/s	hor =	0.005 m		
Δ									
4)	Settling Tank								
	Number of Tanks						4 tan	ks	
					Water leve	l of Settling T	ank Tank	WI.+	187 32
	Head Loss	Flow rate				i or setting 1	0.139 m3	/s	107.02
	Crified water collection	n	(refer to pr	ocess design)				PCL +	187.20
		Collector		0,		hs =	0.306 m		
		Effluent lau	ınder			hl =	0.110 m		
		Total loss				Hc =	0.415 m		
5)	Rapid Sand Filter								
	Number of Filter						8 filt	ers	
	Flow rate					Q =	46,870 m3	/d	
						q =	0.068 m3	/s	
	Head Loss				Water 1	evel of header	r channel	WL +	186.90
	Inlet Loss	Inlet gate	gate size:	300 x 300	velocity:		0.753 m/s	;	
						hg =	0.080 m		
		Inlet weir	width (m):	0.9		hw=	0.119 m		
					free fall	hd:	0.097 m		
		Inlet pipe	(ND 300 m	m x L 1.8m)			0.076 m		
		Inlet loss					0.372 m		

for clean filter sand, gravel and underdrain

clogging loss

Water level of Filter

0.328 m

1.300 m 1.628 m WL +

186.53

Filtration Loss							
Number of filters							8 units
Flow rate	loss:	3%					46,900 m3/d
	per filter						5,900 m3/d
							0.068287 m3/s
Filter Area	width						5.2 m
	length						8.1 m
	area						42.12 m2
Sand Layer							
hs =	= 0.178 * Cd	/g * v^2/p^4	* h				0.326 m
	where,	Cd :	Drag coeff	icient			2012
		g :	Accelerati	on of gravity			980 cm/s^2
		v :	Filtration 1	rate (cm/s)			0.162 cm/s
		p :	Void ration	n of sand layer			0.4
		A :	Surface are	ea of sand particle			
		V :	Volume of	sand particle			
		h:	Thickness	of sand layer			100 cm
	A/V =	6/od =	6/(0.81*0.	09) =	82.3		
		where,	σ:	Spericity of sand	particle		0.81
			d :	Effective size of	filter sand		0.09 cm
	Cd =	24/Re + 3/	$\sqrt{\text{Re}+0.34}$	1			17.5
		where,	Re :	Reynol's number	(= v*d/	n)	1.620
			n :	Kinematic viscou	ursity (at 2	.5°℃)	0.009
	=	58.4	Cd * v^2				
Gravel Layer							0.001 m
Underdrain (Nozzle Ty Nozzle Dimensions Area of st	ype) rainer:	1.35	5 m2			F	
Area of pl	unk pipe :	0.736	5 m2	3		< St 1	rainer * 30 *30nos.
					1 L		
1	5 5.2	nl)	ЧР		
	L 8.1	. n2	50	<u> </u>			-
		N	1500) /		DI	
			False Slab		-	φ	25* ¹ 200mm
Layout of Nozzle							
Spacing				150 mm			
number of	nozzle per fi	lter		1500 nos	(30*	50)	
1.0000000000000000000000000000000000000					(/	
Filtration Loss (contin	ued)						
hu = (fi + f*d/1)	+ fo) *vp^2/2	$2g + 1/c^2 *$	vs/2g				
where,	fi :	inlet loss c	oeefficient				0.5
i destas enti-	f*1/d :	friction los	s coefficien	t (124.5*0.01^2/0.	025^1/3 * 0	.2/0.02	0.43
	fo:	outlet loss	coefficient				1.0
	vp:	velocity of	plunk				0.0928 m/s
	c :	orifice coe	eficient				0.6
	vs :	velocity of	strainer				0.0506
= 1.9) *	0.094	q^2	+	2.78	*	0.028 q^2
= 0.25	9 q^2						0.001 m
	Filtration l	oss total (cle	ean sand)				0.328 m
Loss of filtered water	pipe and mai	n (refer to be	elow analys	is)		0.643 m	

WL + 184.26

Loss of Confl	uence				,					
	H_{β} , β'									
				11	1					
			r	111	ζ _β					
		Ha		17	Hy					
		α	VO,	~ -	γ					
			\rightarrow		\rightarrow					
		_	Qa	1	Q _y					
$H_{\beta}-H\gamma = f_{\beta}$	$x V_{y}^{2}/2g$									
$f_{a} = -0$	$^{2} x \{1, 2x\}$	(1/0 - 1) + ($8(1-1/m^2)$ -	(1-0-) x {($92 + q_{2}(2.9)$	2-0)}				
	μ 2/2	(μφ μ) - τ		(I YB) A (C	4β(2.)	- 4/J				
$H_{\alpha}-H\gamma = I_{\alpha}$	$x v_{\gamma} / 2g$									
$f\alpha = -q$	lβ ² x {2.59	-1.62) - 0.62	2ϕ - $q_{\beta}(1.94)$	-φ) + 0.03						
	where,	H _a :	Pressure of n	nain pipe be	efore conflue	ence				
		H _β :	Pressure of b	ranch pipe						
		H _v :	Pressure of n	nain pipe af	ter confluence	ce				
		q ₆ :	- Q ₆ /Qy							
		θ:	Angle of bran	nch to main	pipe (90 de	g)				
		φ:	Section area	of Main/Se	ction area of	Branch				
		ρ:	r/D (0)							
		r:	Radius of pip	e connectio	on between r	nain and bran	nch pipes (0)			
Loss of Confl	uence	Main pipe:	800 n	nm ;	ranch pipe:	250 1	nm			
Loss of Bran	ch Pipe:	$H_{\beta}-H\gamma =$	$f_{\beta} \propto V_{\gamma}^2/2g$							
node	Qα	Qβ	Qγ	qβ	φ	fβ	vγ	hβ		
1	0	0.0683	0.0683	1.00	0.097656	-72	0.136	-0.068		
2	0.0683	0.0683	0.1366	0.50	0.097656	-19.2	0.272	-0.072		
3	0.1366	0.0683	0.2049	0.33	0.097656	-9.2	0.408	-0.078		
4	0.2049	0.0683	0.2732	0.25	0.097656	-5.7	0.544	-0.086		
5	0.2732	0.0683	0.3415	0.20	0.097656	-4.07	0.680	-0.096		
6	0.3415	0.0683	0.4098	0.17	0.097656	-3.16	0.816	-0.107		
7	0.4098	0.0683	0.4781	0.14	0.097656	-2.60	0.952	-0.120		
8	0.4781	0.0683	0.5464	0.13	0.09/656	-2.24	1.088	-0.135		
Loss of Main	ripe:	Η _α -Ηγ	$t_{\alpha} x V_{\gamma}^{2}/2g$							
node	Qα	Qβ	Qγ	qβ	φ	fγ	νγ	hα		
	0	0.0683	0.0683	1.00	0.097656	-	- 272	0.000		
2	0.0683	0.0683	0.1366	0.50	0.097656	-0.66	0.272	-0.003		
3	0.1306	0.0683	0.2049	0.33	0.097656	-0.48	0.408	-0.004		
4	0.2049	0.0683	0.2752	0.23	0.097656	-0.37	0.544	-0.000		
6	0.2732	0.0003	0.3413	0.20	0.097656	-0.30	0.816	-0.007		
7	0.4098	0.0683	0.4781	0.14	0.097656	-0.21	0.952	-0.010		
8	0.4781	0.0683	0.5464	0.13	0.097656	-0.19	1.088	-0.011		
	0.1701	0.0000	0.0404	0.15	0.027000	0.17	1.000	0.011		
Loss of Outlet	Weir	Weir length				1 =	8.1 m			
		overflow he	eight	C =	1.84	hw=	0.110 m			
		Weir crest	_					EL +	184.15	
		Free fall				hd =	0.190 m			
		Weir loss					0.300 m			
					Wate	r level of Fil	ter effluent	WL +	183.960	

6) Clear Water reservoir

Head Loss

Interconnection Pipe								
Main Pipe	Flow rate					0.542	m3/s	
	Size of pipe					800 1	mm	
	Length					20 1	m	
	Fittings	90 bend: 2						
	Velocity				$\mathbf{v} =$	1.080	m/s	
	Hydraulic gra	adient	C = 130		i =	1.25	‰	
	Friction loss				hf=	0.025	m	
	Minor loss		$\Sigma f = 0.6$		hm =	0.036	m	
					Hp1 =	0.061	m	
Branch	Flow rate					0.271	m3/s	
	Size of pipe					600 t	mm	
	length					30 1	m	
	Fittings	90 bend: 1	Div	ersion:	1			
	Valve	BV: 1						
	Velocity				$\mathbf{v} =$	0.960	m/s	
	Hydraulic gra	adient	C = 130		i =	1.41	‰	
	Friction loss				hf =	0.042	m	
	Minor loss		$\Sigma f = 1.64$		hm =	0.077	m	
					Hp2 =	0.119	m	
Total loss					Hp =	0.180	m	
				I.	Water level of	reservoir	HWL +	183.78
							LWL +	179.28

-	Facilities	H	Head Loss (m)	K	ey Elevation	Flow (m ³ /s)	W	ater Level
1	Receiving/Distribution Tank 1		loss in treatment	nt process 5%		0.554		
	Receiving Level						+	188.86
	Weir	hw	0.123	+	188.74			
		hd	0.067					
	Effluent	hg	0.084					
	Interconencting Pipe		0.243					
2.	Flash Mixing Tank					0.554		
	Water Level						+	188.35
	Weir	hw	0.136	+	188.21			
		hd	0.464					
3.	Flocculation Tank					0.554		
	Influent Gate	hg	0.066					
	Water Level						+	187.68
	Baffle Plate	hor1	0.358					
	Perforated Wall	hor2	0.005					
4.	Settling Tank					0.554		
	Water Level						+	187.32
	Clarified Water Collect	or (pipe cen	ter)	+	187.20			
	Loss of Collector	hcor+d+hd	0.306					
	Effluent Launder	ho-hc	0.110					
	Total Loss	hf	0.415					
5.	Filter		loss in treatment	process	3%	0.544		
	Water Level (header ch	annel)					+	186.90
	Inlet loss	hi	0.372					
	Water level (filter)							186.53
	Filter Loss	h	1.628 inclu	ding sand	cloggong loss			
	Filtered pipe and main	hp	0.643		man and a second se			
	Effluent Weir (Crest)	hw	0.110	+	184.15			
	Effluent Chamber						+	184.26
		hd	0.190					
6.	Clear Water Reservoi	r				0.544		
	Interconencting Pipe		0.180					
	Water Level	HWL					+	183.78
		LWL	4.50				+	179.28

Summary of Hydraulic Analysis – Profile of Water Treatment Plant

AB7.1.2 Transmission and Distribution System

1. Service Area

Service area under the Priority Project includes three distribution zones (DZs). These service areas are supplied by the Water Treatment Plant to be constructed at the Existing Jhak Khanuane Water Treatment Plant through three Distribution Centers. General plan of the project area is shown on the following figure.

The distribution center is composed of a ground reservoir (GR) and a Overhead Reservoir (OHR). They are planned to be constructed at the existing OHR sites, namely Abudur Pur (DZ I), Madina Town No.2 (DZ II) and Peoples Colony No.3 (DZ III).

Finished water of Jhal Khanuana WTP (rated capacity of 45,500 m3/d or 10 mgd) is transmitted by pumps to the above three DZs, where recived water in each GR is pumped up to OHR for gravity distribution to respective service area. Flow meters are provided for control of inflow into GR and distribution flow from OHR to monitor distribution flow.

DZ is further divided into multiple district meter areas (DMAs). At the inflow point of DMA, district meter is provided to monitor distribution flow. Pressure gauge is also provided there for monitor of pressure conditions of DMA. The flow monitoring facilitateto grasp the tendency of demand and status of physical loss to compare consumption in respective DMA for loss abatement actions required. The electro-magnetic flow meter is planned taking the necessity of accurate flow measureing.

The size of DMA is set at approximately 2000 service connection. The number of DMAs from the said connection numbers, is presented in the below table.

		20	23	20	28	2033		2038		
Zone	DMA	Connection	Demand	Connection	Demand	Connection	Demand	Connection	Demand	
		unit	m ³ /d							
DZ I	I-1	970	2,460	1,300	3,100	1,670	3,710	2,010	4,190	
(DC22)	I-2	890	2,270	1,200	2,860	1,540	3,430	1,850	3,860	
	subtotal	1,860	4,730	2,500	5,960	3,210	7,140	3,860	8,050	
	II-1	1,200	3,050	1,590	3,770	2,010	4,460	2,350	4,910	
DZ II	II-2	700	1,770	920	2,180	1,170	2,590	1,370	2,820	
(DC21)	II-3	740	1,860	980	2,360	1,240	2,770	1,450	3,050	
	II-4	1,140	2,910	1,510	3,590	1,910	4,230	2,230	4,680	
	subtotal	3,780	9,590	5,000	11,900	6,330	14,050	7,400	15,460	
	III-1	820	2,080	1,090	2,610	1,380	3,070	1,610	3,360	
	III-2	970	2,470	1,280	3,030	1,620	3,630	1,900	3,960	
DZ III	III-3	790	2,000	1,040	2,460	1,320	2,940	1,540	3,230	
(DC18)	III-4	790	2,000	1,040	2,500	1,320	2,910	1,550	3,230	
	III-5	1,170	2,960	1,550	3,680	1,960	4,360	2,290	4,770	
	III-6	1,060	2,730	1,400	3,360	1,780	3,960	2,080	4,320	
	subtotal	5,600	14,240	7,400	17,640	9,380	20,870	10,970	22,870	
	Total	11,240	28,560	14,900	35,500	18,920	42,060	22,230	46,380	

Service Connections and Water Demand (Day Maximum) in Distribution Zone (DZ) and Distribution Meter Area (DMA)

note *1: above figures are based on the demand projection in respective DZs

*2: number of service connection is for domestic users estimated using househole size of

7.15, 7.10, 7.0 in year 2023, 2028 and 2038 respectively

GENERAL PLAN OF PRIORITY PROJECT AREA

2. Design Criteria

2.1 Definitions

The system is composed of treated water transmission main and distribution main which is further divided into three categories of primary, secondary and tertiary mains.

The difinitions of above categories of pipelines are as follows:

Transmission main: The transmission main is pipeline only to transmit finished water from WTP to above mentioned three distribution centers. Therefore, no tapping water from the transmission main is allowed.

Distribution main:

Primary main: The primary main covers entire area of respective DZ. Secondary main: The secondary main covers entire area of respective DMA. tertiary main: In general, tapping to consumer's connection is allowed from the tertiary main.

2.2 Hydraulic Criteria

1) Design Flow

The flow of transmission main is based on the day maximum demand, on the other hand the distribution flow is based on the peak hourly demand.

Regarding peak hourly or peak flow is defined for categories of distribution mains as follows:

Primary main:	1.5 times of day maximum demand
Secondary main:	1.7 times of day maximum demand
Tertiary main:	Simultaneous tapping rate by tapping of connections as 80%, where unit flow is set at
	18 1/min.

2) Head Loss Analysis

Head loss of pipelines is calculated based on Hazen-William formula, where the following loss co-efficient factor (C-value) is used.

Transmission Main:	130
Distribution Mains:	120

3) Minimum Pressure of Distribution System

The pressure of distribution system is determined so as to supply directly up to three stories buildings and houses in consideration that three stories houses and apartments are prevailing in Faisalabad-MC. The minimum pressure of each category of distribution main is presented as follows:

Tapping at Tertiary main:	12 m	
Secondary main:	14 m	(head loss of tertiary main as approx. 2m)
Primary main:	18 m	(head loss of secondary network as $4{\sim}5m$)

4)

2.3 Transmission and Distribution Pipeline

For design bases of transmission and distribution pipelines, the following criteria are set-up:

1) Pipe Materials

The type of pipe materials is determined taking characteristice of pipe materials, cost and importance of pipelines as follows:

Transmission main:	DCIP	(considering importance to maintain transmission flow, size of pipeline will be in the range of 250mm to 600mm)
Distribution main:	HDPE	(taking advantage of low friction loss, high efficiency of pipe installation works and less cost comparing to DCIP for smaller size of pipeline, size of pipe line will be in the range 80mm to 500mm)

2) Type of Valves

Following types of valve is preferable to be used by size of pipelines.	
Size of pipeline	Type of valve
ND 80 \sim 250 mm (Tertiary and Secondary mains)	Gate valve (non-rising stem)
ND 300mm or larger (Primary and Transmission mains)	Butterfly valve (short body)

3) Earth Cover

The earth cover by size and category of pipeline is determined as follows:	
Transmission main (generally 500mm and smaller)	1.2 m
Distribution primary main (generally 300 ~ 500mm)	1.2 m
Distribution secondary main (generally 150 ~ 250mm)	0.9 m
Distribution tertiary main (generally 80 ~ 100mm)	0.6 m

4) Ground Reservoir and Overhead Reservoir

The structure, detension time and effective depth of reservoir is as follows:

Ground Reservoir (GR)	Structure:	RC
	Detention time:	4 hrs
	Effective Water depth:	$4\sim 6\ m$
Overhead Reservoir (OHR)	Structure:	RC
	Detention time:	1.5 hrs
	Effective Water depth:	max. 6 m
1		

note 1: Detention time of reservoir of 4 hours is determined based on the peak hour factor of 1.5 of day max. demand2: Detention time of OHR as 1.5 hours is determined based on capacity of lift pump from GR as peak hourly demand with power suply failure of one hour.

3. Transmission Facilities

3.1 Transmission Main

1) Pipeline Routes

Transmission main starts from WTP boundary. The pipeline crosses firstly trunk road with fly over named, where space is availabe under the fly over to cross it. The night work will be required to cross this trunk road.

After crossing the above Fly over, the pipeline enter into local road where only limited traffic is observed. The road (road name is not shown on Google earth) is unpaved one with enough width to install pipeline at it road shoulder. after 900m along from starting point, the branch is provoded toward fo the Canal Road along Rakh Branch Canal (RBC).

The pipline continues run along the local raod for about 200m, then turns to the left toward rail way along the local road. Ater turn to the right the pipeline continued to Jhamura Road for about 440 m long. The branch pipe is provided at Jhamura Road along its south-west up to the Distribution Center 1 for about 70m.

At the Jhamura Road, the pipeline turns to the left toward railway for about 30m then runs toward North-east direction along Jhamura Road for about 200m, where the pipeline turns to the right toward the Canal Road. The pipeline runs along the service road of the Canal Road for abou 900m long toward the north-east, then turns to the right toward the Distribution Center 2.

The pipeline crosses RBC and Canal Roads at its both sides, then reached to trunk road of madina town area named Suzan Road for about 600m. From the suzan road for about 230m the pipeline arrives at the Distribution Center 2 located along Green Belt Road.

Branch pipeline to the Distribution Center 3 crosses RBC and Canal Road at its both sides, then runs to the Distribution Center for about 1800m along Shalah-e-Faisal Link Road.

2) Hydraulic Analysis and Sizing of Transmission Main

Finished water in Jhal Khanuana Water Treatment Plant (JK WTP) is transferred to three distribution centers (DCs). Design parameters of each DC is summarized as follows:

	DZ	DZ DZ I DZ II			DZ III		
Parameter		Abudullah I	Pur	Madina To	wn No.2	Peoples Co	lony No.2
JK WTP:	Water level	of CW Res	ervoir	HWL	-	- 183.78	
				LWL	-	- 179.28	
	Designed D	elivery Hea	d	Pump head	-	- 35	m
			Ι	loss in WTP		2.5	m
			D	elivery head	-	- 211.78	m
Distributio	on Center						
Levels	Ground Level (FGL)	186.10	m	188.20	m	186.20	m
	Water Level of GR						
	HWL +	187.60	m	189.70	m	187.70	m
	LWL +	181.60	m	185.20	m	182.20	m
Distribution Capacity (Day max.)		8,050	m ³ /d	15,460	m ³ /d	22,870	m ³ /d
(demand for year 2038)		0.093	m ³ /s	0.179	m ³ /s	0.265	m ³ /s
Peak Flow	(hourly max.)	503	m ³ /hr	966	m ³ /hr	1,429	m³/hr
(for prima	ry network)	0.140	m ³ /s	0.268	m ³ /s	0.397	m ³ /s

Pipeline route and approximate length of transmission main with elevations of Distribution Centers are as shown in the following figures:

District Zone		DZ I	DZ II	DZ III
Flow (m3/s)		0.093	0.179	0.265
Sevice Area	GL +	187~189	186~188	184~187
GR (m)	GL +	186.10	188.20	186.20
	HWL +	187.60	189.70	187.70
	LWL +	181.60	185.20	182.20
OHR (m)	HWL +	216.60	218.70	216.70
	LWL +	211.10	213.20	211.20

Configulation of Transmission Main

Diameter of each section of transmission main is calculated as shown in the following table, where friction loss coefficient (C-value) of 130 is used.

Section	GL ^{*3}	WL ^{*1}	ND	L	q	v	‰	hf	Dinamic H ^{*2}	Res. Head
		m	mm	m	m3/s	m/s		m	m	m
0	185.0	181.53							214.03	29.0
1	184.2	179.28	600	1,030	0.537	1.90	4.99	5.14	208.89	24.7
2	185.8		450	650	0.272	1.71	5.76	3.74	205.15	19.3
GR1	185.5	187.00	250	120	0.093	1.90	13.83	1.66	203.49	16.5
GR2	185.4	186.90	400	2,390	0.179	1.43	4.71	11.26	193.89	7.0
2'	185.0		450	790	0.265	1.67	5.48	4.33	204.56	19.6
GR3	184.8	186.30	400	1,180	0.265	2.11	9.73	11.48	193.07	6.8

note 1: Design water level of Clear Water Reservoir of WTP is taken as mid water level (+183.78-4.5/2) Design water level of Ground Reservoir is set at 1.5 m higher than FGL

GL is Formation Ground Level (FGL)

2: Pump head is designed as 35m, Piping loss around pumps is set at 1.6m, Pipeline loss in WTP is set at 0.8m

3: GL of DC is Planned GL (FGL) which is about 1 m higher from GL of the Road

3.2 Special Construction

Special construction required is only pipe bridge construction to cross RBC. The pipe beam method for pipe bridge construction is desiged using mild steel pipe with diameter of 500mm from span length at about 20m.

Tentative Analysis of Pipe Bridge at RBC

Upper Str	ucture							
1	Upper Structure					e	xpansion	
							Δt	60 °C
		w =	371 kg/m	L				10 °C
								50 °C
					Δ		$\Delta 1$	8.4 mm
			20 m					
	Pipe: Dia	meter OD					508 mm	
		t					6 mm	
		Α					94.58 cm2	
		Z					374 cm3	
		Ι					9,489 cm4	
	Loading	pipe: ND					500 mm	
		w: pipe		OD:	508 mm		74.3 kg/m	
		water					196.3 kg/m	
		11					100 kg/m	
						total	371 kg/m	
	Moment						1.85 t-m	
		σs:					496 kg/cm	2
							C	33750
	Shear						3,706 kg	23.4375
		τ:					39.2 kg/cm	2
	Defection						< 1/200	
		y:					4.8 cm	
		S:				1/	415 ok	

2) Stability Analysis a. Loading P = Wc1 = Concrete Wc2 = Concrete

Wc1 = Concrete	3.83 t
Wc2 = Concrete	10.95 t
Wc3 = Concrete	0.29 t
Ws1 = Soil	3.81 t
Ws2 = Soil	1.14 t
Ws3 = Soil	4.86 t
q1 = surcharge	1.20 t
q2 = Earth Pressure + Surcharge	3.26 t
R = Reaction of Pipes	3.71 t

6.87 t

b. Stability Analysis

	V. Loads	H	I. Loads		Arm L.		Moment
	ton		ton		m		t-m
Wc1	3.83				2.90		11.11
Wc2	10.95				1.70		18.62
Wc3	0.29				1.60		0.46
Ws1	3.81				3.60		13.72
Ws2	1.14				0.47		0.53
Ws3	4.86				1.70		
q1			1.20		1.20		1.44
q2			2.06		0.80		1.65
R	3.71				3.80		14.08
Р			6.87		2.60		-17.86
Σ	28.59		3.26				43.74
$\Sigma W =$	28.59	ΣM =	43.74	X =	1.53	e =	-0.17
Rotation:	due to pressure	e of pipeline					17.86 t
	due to weight	of abutment					61.60 t
:	safety factor						3.4 ok
Sliding: 1		3.26 t					
1	Friction (5	0% of weigł	nt)				14.29 t
:	Safety factor						4.4 ok
Reaction:	R1 =						4.91 t/m2
	R2 =						9.11 t/m2
	allowable bea	ring capacity	y of soil				15.0 t/m2

due to weight of abutment		60.03 t		
	safety factor	ok		
Sliding:	Horizontal Force	3.26 t		
	Friction (50% of weight)	14.29 t		
	Safety factor	4.4 ok		
Reaction:	R1 =	11.95 t/m2		
	R2 =	2.06 t/m2		
	allowable bearing capacity of soil	15.0 t/m2		

4. Distribution Facilities

4.1 Distribution Zone I 1) Water Demand

	- Water demand		Day maximum demand			8,050	m^3/d
			Peak hourly demand	for Primary Network		503	m ³ /hr
				for Secondary Network		570	m ³ /hr
				for Secondary Retwork		570	ш/ш
	- Service connection		Unit consumption			2.1	m3/d/conn
			Number			3,800	units
2)	Distribution Cemt	er					
	- Name of DC:				Abdullah P	ur OHR No.	1
	- Area and Size of DC	site.	Area			768	m2
	- Area and Size of DC	site.	Size	width .		16	m
			5120	length :		48	m
				Tengui .		40	
	- Facilities:	Civil Cons	truction:				
			Ground Reservoir (GR) detention time :		4	hrs
				volume :		1,350	m3
			Number			2	units
			Dimension	s width :	@4.0*2	7.5	m
				length :	@4.0*4	15.5	m
				w. depth :		6	m
				volume :		1,395	m3
			Overhead Reservoir (C	(HR) detention time :		1.5	hrs
			(volume :		503	m3
			Number			1	unit
			Dimension	s Dia. :		10.8	m
				w. depth :		5.5	m
				volume :		504	m3
				height:	(LWL)	25	m
		Machanica	1 Equipment				
		wiechanica	Lift Pump	total canacity .		503	m3/hr
			Dirti unp	type of pump :	Double	suction volu	te pump
				number :	duty	3	units
					standby	1	unit
				Dimensios :	Q2.8m3/mi	n x H32m x 2	22kW, 400V
			Dining	Ground Reservoir	inlat	250	
			Fiping	Ground Reservon.	overflow	250	mm
					drain	200	mm
					float valve	200	mm
				Overhead Reservoir:	inlet	350	mm
				S Terneus resser tont.	outlet	350	mm
					overflow	200	mm
					drain	150	mm
				lift nump.	Suction	250	mm
				int pamp.	delivery	200	mm
					Check Valve	high tornout	e spring type
					delivery Valve	Butterfly V.	(short body)
					-		

Distribution Center -1 (continued)					
	Crane	(pump room)	type:	traveling gi	rder w/electric chain hoist
			capacity:		2 ton
	Flow mete	r (inflow and ou	tflow) type:	El	ectro-magnetic
			diameter:	inflow	200 mm
				outflow	300 mm
	Flow contr	rol valve (inflow	/) type:	Teeth	vane Butterfly valve
			diameter:		200 mm
	Chlorine D	Dosage	chemical:	Hypochlor	ite or Breaching powder
			type:		Drip type
			dosage rate:	max.	1 mg/l
			capacity:		0.3 1/hr
Electrical	Equipment				
	Power Rec	ceiving	source:		FESCO
			number of incoming:		1
			incoming voltage:		400 V
			transformer:	FESCO	
				type	Oil Immersed Type
				capacity	150 kVA
			prin	nary voltage	11,000 V
			second	lary voltage	400 V
	Emergency	Generator	type:		Diesel
			capacity:		150 kVA
			voltage:		400 V
			main fuel tank;	(45 hrs op.)	2,000 1
			service fuel tank:		400 1
	Instrumenta	ation			
	field inst	trumentation:	GR water level:	ultrasonic	2 units
			PHR water level:	ultrasonic	1 unit
	instrumer	ntation panel:			1 lot
		UPS:	no. of unit:		1 unit
			backup time :		30 min

3) Distribution Network

- Primary Network	Distribution Flow	(peak hourly flow)	503 m ³ /hr
	Number of DMAs		2 nos.
	Primary mains	materials:	HDPE
	si	ze: (mm)	300~350
	leng	th: (m)	2,600
- Secondary network	Distribution Flow	(peak hourly fow)	570 m ³ /hr
	District Meter	pipe size:	250 mm
	(for each)	flow meter: type	electro magnetic
		size	200 mm
	Secondary Main	materials:	HDPE
		size:	150~250 mm
		length:	3,320 m

note: Detailes of network analysis is refered to Annex 1 for Primary network and 2 for Secondary Network

4.2 Distribution Zone II 1) Water demand

- Water demand		Day maximum demand Peak hourly demand	for Primary Network for Secondary Network	15,460 m ³ /d 966 m ³ /hr 1,095 m ³ /hr
- Service connection		Unit consumption Number		2.1 m3/d/conm 7,400 units
2) Distribution Cer	nter			
- Name of DC:				Madina Town No.2
- Area and Size of D	C site:	Area Size	width : length :	2,560 m2 40 m 64 m
- Facilities:	Civil C	onstruction:		
		Ground Reservoir (GF	detention time :	4 hrs
			volume :	2,580 m3
		Number		2 units
		Dimension	ns width : @	04.5*3 13.1 m
			length : @	04.3*5 21.1 m
			w. depth :	4.8 m
			volume :	2,654 m3
		Overhead Reservoir (OHR) detention time :	1.5 hrs
			volume :	970 m3
		Number		1 unit
		Dimension	ns Dia. :	14.7 m
			w. depth :	5.5 m
			volume :	933 m3
			height: (I	LWL) 25 m

Distribution Center II (continued)					
Mechanica	l Equipment				
	Lift Pump		total capacity :		966 m3/hr
			type of pump :	Double	suction volute pump
			number :	duty	3 units
				standby	1 unit
			Dimensios :	^Q 5.1m3/min	n x ^H 30m x 45kW, 400V
	Piping		Ground Reservoir:	inlet	300 mm
				overflow	300 mm
				drain	200 mm
			Overhead Reservoir:	inlet	450 mm
				outlet	450 mm
				overflow	300 mm
				drain	150 mm
			lift pump:	Suction	300 mm
				delivery	250 mm
				Check Valve	high toruque spring type
				delivery Valve	Butterfly V. (short body)
	Crane	(pump room)	type:	traveling	g girder w/chain hoist
		u i /	capacity:		2 ton
	Flow meter	(inflow and o	utflow) type:	FI	actro-magnetic
	riow meter		diameter:	inflow	350 mm
			traineter.	outflow	400 mm
				outiow	400 1111
	Flow control	ol valve (inflov	w) type:	Teeth	vane Butterfly valve
			diameter:		350 mm
	Chlorine D	osage	chemical:	Hypochlor	ite or Breaching powder
		-	type:		Drip type
			dosage rate:	max.	1 mg/l
			capacity:		0.17 l/hr
Flectrical 1	Equipment				
Licenten	Power Rec	eiving	source:		FESCO
			number of incoming:		1
			incoming voltage:		400 V
			transformer:	FESCO	
				type	Oil Immersed Type
				capacity	300 kVA
			prin	nary voltage	11,000 V
			second	lary voltage	400 V
	Emergency	Generator	type:		Diesel
			capacity:		300 kVA
			voltage:		400 V
			main fuel tank;	(45 hrs op.)	4,000 1
			service fuel tank:		400 1
	Instrumente	tion			
	field inst	rumentation.	GR water level.	ultrasonic	2 units
	neiu mst	i unicitation.	PHR water level.	ultrasonic	2 unit
	instrumen	tation panel	THE WAICH ICVCI.	andasonic	1 lot
	mou unien	IIPS.	no of unit.		1 unit
		01.01	backup time :		30 min

3) Distribution Network

- Primary Network	Distribution Capacity	(peak hourly flow)	966 m ³ /hr
	Number of DMAs		4 nos.
	Primary mains	materials: size: length:	HDPE 300~450 mm 8,000 m
- Secondary	Distribution Capacity	(peak hourly flow)	1,095 m ³ /hr
	Secondary mains	materials: size: length:	HDPE 150~250 mm 16,840 m

note: Detailes of network analysis is refered to Annex 1 for Primary network and 2 for Secondary Network

4.3 Distribution Zone III 1) Water Demand

- Water demand		Day maximum demand		22,890	m^{3}/d
		Peak hourly demand	for Primary Network	1,431	l m ³ /hr
			for Secondary Network	1,621	l m ³ /hr
- Service connection		Unit consumption Number		2.1 10,900	l m3/d/conn) units
2) Distribution Cent	er				
- Name of DC:				Peoples Colony No.2	
- Area and Size of DC	site:	Area		2,501	l m2
		Size	width	: 41	l m
			length	: 61	l m
- Facilities:	Civil Cons	struction:			
		Ground Reservoir (GR	.) detention time	: 4	4 hrs
			volume	: 3,820) m3
		Number		2	2 units
		Dimension	s width	: @3.9*4 15.1	l m
			length	: @4.0*6 23.5	5 m
			w. depth	: 5.5	5 m
			volume	: 3,903	3 m3
		Overhead Reservoir (O	OHR) detention time	: 1.:	5 hrs
			volume	: 1,430) m3
		Number		1	l unit
		Dimension	s Dia.	: 18.2	2 m
			w. depth	: 5.5	5 m
			volume	: 1,430) m3
			height	: (LWL) 25	5 m

Distribution Center III (continued)				
Mechanic	al Equipment			
	Lift Pump	total capacity :		1,431 m3/hr
		type of pump :	Double	suction volute pump
		number :	duty	3 units
			standby	1 unit
		Dimensios :	Q7.9m3/mi	in x H31m x 75kW, 400V
	Piping	Ground Reservoir:	inlet	350 mm
			overflow	350 mm
			drain	200 mm
		Overhead Reservoir:	inlet	500 mm
			outlet	500 mm
			overflow	350 mm
			drain	150 mm
		lift pump:	Suction	350 mm
			delivery	300 mm
			Check Valve	high toruque spring type
			delivery Valve	Butterfly V. (short body)
	Crane pump room	type:	travelin	g girder w/chain hoist
		capacity:		2 ton
	Flow meter (inflow and c	outflow) type:	El	ectro-magnetic
		diameter:	inflow	350 mm
			outflow	400 mm
	Flow control valve (inflo	w) type:	Teeth	vane Butterfly valve
		diameter:		350 mm
	Chlorine Dosage	chemical:	Hypochlor	ite or Breaching powder
		type:		Drip type
		dosage rate:	max	. 1 mg/l
		capacity:		0.24 1/hr
Electrical	Equipment			
	Power Receiving	source:		FESCO
		number of incoming:		1
		incoming voltage:		400 V
		transformer:	FESCO	
			type	Oil Immersed Type
			capacity	500 kVA
		prin	nary voltage	e 11,000 V
		second	lary voltage	400 V
	Emergency Generator	type:		Diesel
		capacity:		500 kVA
		voltage:		400 V
		main fuel tank;	(45 hrs op.)	6,000 1
		service fuel tank:		400 1
	Instrumentation			
	field instrumentation:	GR water level:	ultrasonic	2 units
		PHR water level:	ultrasonic	1 unit
	instrumentation panel:			1 lot
	UPS:	no. of unit:		1 unit
		backup time :		30 min
		-		

3) Distribution Network

- Primary Network	Distribution Capacity	(peak hourly flow)	1,431 m ³ /hr
	Number of DMAs		6 nos.
	Primary mains	materials: size: length:	HDPE 300~500 mm 12,080 m
- Secondary	Distribution Capacity	(peak hourly flow)	1,621 m ³ /hr
	Secondary mains	materials: size: length:	HDPE 150~250 mm 28,780 m

note: Detailes of network analysis is refered to Annex 1 for Primary network and 2 for Secondary Network

Annex 1 to Appendix 7.1.2 Power Receiving and Emergency Power Supply

1. Distribution Center I (Abudullar Pur)

1.1 Power Demand

The maximum demand of the Distribution Center I is estimated as 115kW. Load list is shown below.

Name of Equipment	kW	Q'ty	Total kW
Lift Pump No.1 to 4	30	4 (3)	90
Lift Pump Discharge Valve No.1 to 4	0.2	4 (3)	0.6
Distribution Inlet Flow Control Valve	0.4	1	0.4
Overhead crane (Traveling Girder w/Chain hoist)	5.5	1	5.5
Monorail Hoist	4.5	1	4.5
Floor drain pump No.1	1.5	2 (1)	1.5
Chlorine injector	2.2	1	2.2
Building Lighting and other miscellaneous load	10%	1	10.5
Total [kW]			115

1.2 Power Receiving

Electric power will be supplied from FESCO by one circuit of low voltage line. General features of the supplied power are as follows:

-	Power Source:	FESCO
-	Tariff Category:	B2

- Voltage System: 400V AC, 50Hz, 3 phase 3wire

The required capacity of main transformer is calculated using following formula.

	ΣP = 0 = Γ [1.3/4.1
Capacity of transformer =	η χ φ Χ β Χ α [ΚνΑ]

Where,

φ	: total power factor	0.85
η	: total load efficiency	0.85
β	: demand factor	1.0
α	: allowance rate	1.1
ΣΡ	: sum of the load [kW]	115

Required capacity of transformer

$$\frac{115}{0.85 \ge 0.85} \ge 1.0 \ge 1.1 = 175 [kVA]$$

Therefore, 200 [kVA] x 1 is selected.

1.3 Emergency Power Supply

The same criteria as French project will also be applied to DC I. That is, the target load for generator

= 100% of total load. The capacity of generator is determined using following formulas.

a) PG₁ is the capacity necessary for all load operation

$PG_1 = -$	$\frac{\Sigma P_0}{\eta_L x \phi_L} x \alpha x S_f [kVA]$	
Where,		
ΣP_0	: sum of the load	115 [kW]
$\eta_{\rm L}$: total load efficiency	0.85
ϕ_L	: total power factor	0.8
α	: demand factor	1.0
$\mathbf{S}_{\mathbf{f}}$: the increase coefficient of electric cu	urrent by unbalanced load
= -	$\frac{115}{0.85 \ge 0.8} \ge 1.0 \ge 1.0 = 169 $ [kVA]

1.0

b) PG₂ is the capacity necessary against voltage drop

$PG_2 =$	$P_m x \beta x$	$x C x X_d' x \frac{1 - \Delta E}{\Delta E} [kVA]$	
Where,			
	P_m	: maximum motor capacity	30 [kW]
	β	: starting kVA per 1kW of maximum motor capacity	1.2
	С	: coefficient by starter	1
	X _d '	: generator's constant	0.25
	ΔE	: allowable voltage drop rate	0.25
	= 30 x 1	$.2 \ge 1 \ge 0.25 \ge \frac{1 - 0.25}{0.25} = 27 $ [kVA]	

c) PG₃ is the capacity necessary for starting maximum motor

$PG_3 =$	$\frac{f_{v1}}{\gamma_G}$	$\{(\Sigma P_0 \text{ - } P_m)x$	$\frac{\alpha}{\eta_L x \phi_L}$	$+P_mx\betaxC\}$	[kVA]

Where,

\mathbf{f}_{v1}	: decrease coefficient of loading	1.0
ΣP_0	: sum of the load	115 [kW]
$\eta_{\rm L}$: total load efficiency	0.85
α	: demand factor	1.0
P_m	: maximum motor capacity	30 [kW]
β	: starting kVA per 1kW of max.motor capacity	1.2
С	: coefficient by starter	1
$\gamma_{ m G}$: generator strength against momentary overloa	ad1.5

$$= \frac{1}{1.5} \{ (115 - 30) \times \frac{1.0}{0.85 \times 0.8} + 30 \times 1.2 \times 1 \} = 107 \text{ [kVA]}$$

d) Generator Capacity

 $PG_1 = 169$ $PG_2 = 27$

 $PG_3 = 107 (MAXIMUM)$

Therefore, 200 [kVA] is selected.

2. Distribution Center II (Madina Town No.2)

2,1 Power Demand

The maximum demand of the Distribution Center II is estimated as 165kW. Load list is shown below.

Name of Equipment	kW	Q'ty	Total kW
Lift Pump No.1 to 4	45	4 (3)	135
Lift Pump Discharge Valve No.1 to 4	0.2	4 (3)	0.6
Distribution Flow Control Valve	0.4	1	0.4
Overhead crane (Traveling Girder w/Chain hoist)	5.5	1	5.5
Monorail Hoist	4.5	1	4.5
Floor drain pump No.1	1.5	1	1.5
Chlorine injector	2.2	1	2.2
Building Lighting and other miscellaneous load	10%	1	15.0
Total [kW]			165

2.2 Power Receiving

Electric power will be supplied from FESCO by one circuit of low voltage line. General features of the supplied power are as follows:

-	Power Source:	FESCO
-	Tariff Category:	B2
-	Voltage System:	400V AC, 50Hz, 3 phase 3wire

The required capacity of main transformer is calculated using following formula.

Capacity of transformer = $\frac{\Sigma P}{\eta x \phi} x \beta x \alpha [kVA]$				
Where,				
	φ	: total power factor	0.85	
	η	: total load efficiency	0.85	
	β	: demand factor	1.0	
	α	: allowance rate	1.1	
	ΣΡ	: sum of the load [kW]	165	

Required capacity of transformer

$$\frac{165}{0.85 \ge 0.85} \ge 1.0 \ge 1.1 = 251 [kVA]$$

2.3 Emergency Power Supply

The same criteria as French project will also be applied to DC II. That is, the target load for generator = 100% of total load. The capacity of generator is determined using following formulas.

a) PG₁ is the capacity necessary for all load operation

$$PG_1 = \frac{\sum P_0}{\eta_L \ x \ \phi_L} \quad x \ \alpha \ x \ S_f \quad [kVA]$$

$\Sigma \; P_0$: sum of the load	165 [kW]
$\eta_{\rm L}$: total load efficiency	0.85
ϕ_{L}	: total power factor	0.8
α	: demand factor	1.0
\mathbf{S}_{f}	: the increase coefficient of electric c	urrent by unbalanced load
= -	$\frac{165}{0.85 \ge 0.8} \ge 1.0 \ge 1.0 = 242 \text{ [kVA]}$	A]

b) PG_2 is the capacity necessary against voltage drop

$$PG_2 = P_m x \beta x C x X_d' x \frac{1 - \Delta E}{\Delta E} [kVA]$$

Where,

$\mathbf{P}_{\mathbf{m}}$: maximum motor capacity	45 [kW]
β	: starting kVA per 1kW of maximum motor capacity	1.2
С	: coefficient by starter	1
X _d '	: generator's constant	0.25
ΔΕ	: allowable voltage drop rate	0.25
= 45 x	$1.2 \ge 1 \ge 0.25 \ge \frac{1 - 0.25}{0.25} = 40 $ [kVA]	

1.0

c) PG_3 is the capacity necessary for starting maximum motor

[

PG ₃ =	$\frac{f_{v1}}{\gamma_G}$	$\left\{ \left(\Sigma P_0 - P_m \right) x \begin{array}{c} \alpha \\ \hline \eta_L x \phi_L \end{array} + P_m x \beta x C \right\} [kVA]$	
Where,			
	$f_{v1} \\$: decrease coefficient of loading	1.0
	ΣP_0	: sum of the load	165 [kW]
	$\eta_{\rm L}$: total load efficiency	0.85
	α	: demand factor	1.0
	$\mathbf{P}_{\mathbf{m}}$: maximum motor capacity	45 [kW]
	β	: starting kVA per 1kW of maxi.motor capacity	1.2
	~		

$$\begin{array}{c} C & : \text{ coefficient by starter} & 1 \\ \gamma_G & : \text{ generator strength against momentary overload1.5} \\ 1 & 1.0 \end{array}$$

$$= \frac{1}{1.5} \left\{ (165 - 45) \times \frac{1.0}{0.85 \times 0.8} + 45 \times 1.2 \times 1 \right\} = 153 \text{ [kVA]}$$

d) Generator capacity

 $PG_1 = 242 \text{ (MAXIMUM)}$ $PG_2 = 40$

 $PG_3 = 153$

Therefore, 250 [kVA] is selected.

3 Distribution Center III (Peiples Colony No.2)

3.1 Power Demand

The maximum demand of Distribution Center III is estimated as 264kW. Load list is shown below.

Name of Equipment	kW	Q'ty	Total kW
Lift Pump No.1 to 4	75	4 (3)	225
Lift Pump Discharge Valve No.1 to 4	0.2	4 (3)	0.6
Distribution Flow Control Valve	0.4	1	0.4
Overhead crane (Traveling Girder w/Chain hoist)	5.5	1	5.5
Monorail Hoist	4.5	1	4.5
Chlorine injector	1.5	1	1.5
Floor drain pump No.1	2.2	1	2.2
Building Lighting and other miscellaneous load	10%	1	24.0
Total [kW]			264

3.2 Power Receiving

Electric power will be supplied from FESCO by one circuit of low voltage line. General features of the supplied power are as follows:

-	Power Source:	FESCO
-	Tariff Category:	B2
_	Voltage System:	400V AC

Voltage System: 400V AC, 50Hz, 3 phase 3wire

The required capacity of main transformer is calculated using following formula.

Capaci	ty of t	ransformer = -1	$\frac{\Sigma P}{\eta x \phi} x \beta x \alpha [kVA]$	
Where,				-
	φ	: total power	factor 0.8	5
		1 1 1 . 6	m . :	~

	η	: total load efficiency	0.85
	β	: demand factor	1.0
	α	: allowance rate	1.1
	ΣΡ	: sum of the load [kW]	165
$\frac{264}{0.85 \times 0.}$	85	x 1.0 x 1.1 = 401[kVA]	

Therefore, 500 [kVA] x 1 is selected.

3.3 Emergency Power Supply

The same criteria as French project will also be applied to Distribution Center III. That is, the target load for generator = 100% of total load. The capacity of generator is determined using following formulas.

a) PG₁ is the capacity necessary for all load operation

$PG_1 =$	$\label{eq:product} \frac{\Sigma \ P_0}{\eta_L \ x \ \phi_L} x \ \alpha \ x \ S_f \ \ [kVA]$		
Where,			
ΣP_0	: sum of the load	264 [kW]	
$\eta_{\rm L}$: total load efficiency	0.85	
ϕ_L	: total power factor	0.8	
α	: demand factor	1.0	
${ m S_f}$: the increase coefficient of electric	c current by unbalanced load	1.0
= -	$\frac{264}{0.85 \ge 0.8} \ge 1.0 \ge 1.0 = 388 \text{ [kVa}$	A]	
b) PG ₂ is the capa	city necessary against voltage drop	2	
	Ι-ΛΕ		

$PG_2 =$	$P_m x \beta x$	$\mathbf{x} \mathbf{C} \mathbf{x} \mathbf{X}_{d}^{T} \mathbf{x} \frac{1 - \Delta \mathbf{E}}{\Delta \mathbf{E}} [kVA]$	
Where,			
I	P _m	: maximum motor capacity	75 [kW]
ĥ	3	: starting kVA per 1kW of maximum motor capacity	1.2
(С	: coefficient by starter	1
2	X _d '	: generator's constant	0.25
L	ΔE	: allowable voltage drop rate	0.25
=	= 75 x 1.2	$2 \ge 1 \ge 0.25 \ge \frac{1 - 0.25}{0.25} = 68 $ [kVA]	

$\gamma_{\rm G}$ ($\gamma_{\rm L}$ $\gamma_{\rm L}$ $\gamma_{\rm L}$ $\gamma_{\rm L}$ $\gamma_{\rm L}$

Where,

\mathbf{f}_{v1}	: decrease coefficient of loading	1.0
ΣP_0	: sum of the load	264 [kW]
$\eta_{\rm L}$: total load efficiency	0.85
α	: demand factor	1.0
$\mathbf{P}_{\mathbf{m}}$: maximum motor capacity	75 [kW]
β	: starting kVA per 1kW of max. motor capacity	1.2
С	: coefficient by starter	1
γ _G	: generator strength against momentary overloa	d1.5

$$= \frac{1}{1.5} \{ (264 - 75) \times \frac{1.0}{0.85 \times 0.8} + 75 \times 1.2 \times 1 \} = 245 \text{ [kVA]}$$

d) Generator capacity

 $PG_1 = 388$ (MAXIMUM)

 $PG_2 = 68$

 $PG_3 = 245$

Therefore, 500 [kVA] is selected.

Annex 2 to Appendix B7.1.2 Network Analysis of Primary Main

1. Distribution Zone I

2

3

3

1

2

1

300

300

300

250

1310

1090

120

120

120

1.60

0.47

-2.06

92.05

19.31

-47.70

1.30

0.27

-0.68

6.39

0.36

-1.89

Design Flov	w:	Day maxi Peak Hou	imum Demand 1rly Demand	unit m ³ /d m ³ /hr 1/s	Zone I 8,050 503 139.76	DMA I-1 4,190 262 72.74	DMA I-2 3,860 241 67.01	
Skelton								
		DN 300	DM-1					
		L 250	2		DN 300			
(ND 350 L 90	1	72.74		L 1,310	\rightarrow		
	-	V						V
				\rightarrow	DN 300		,	67.01
					L 1,090			3
							DN	/ 1-2
Node Dat						_		
Node No.	Туре	Flow	WL	GL	Eff. Head			
		1/s	ec m	m	m	1		
0		139.'	75 211.10	186.1	25.00			
1			0 210.51	188.0	22.51			
2		72.′	74 208.91	188.0	20.91			
3		67.0	01 208.45	190.0	18.45	_		
Pipeline Da	ta							
Node N	Number	Dia.	Length	Friction	Head Loss	Flow	Velocity	H. gradient
Up-stream	Dn-stream		m m	Co-efficient	m	l/sec	m/sec	‰
0	1	3:	50 90	120	0.59	139.75	1.45	6.54

2. Distribution II

Node Data

Node No. Type		Flow	WL	GL	Eff. Head	Note
		l/sec	m	m	m	
0		-268.40	213.20	188.2	25.0	
1		0.00	212.88	186.0	26.9	
2		48.96	221.39	196.0	25.4	DM 2
3		81.25	204.28	186.0	18.3	DM 3
4		52.95	204.78	186.0	18.8	DM 4
5		85.24	210.61	188.0	22.6	DM 1

Pipeline Data

Node N	Jumber	Dia.	Length	Friction	Head Loss	Flow	Velocity	H. gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	450	50	120	0.32	268.40	1.69	6.44
1	2	450	600	120	1.50	160.88	1.01	2.50
2	3	300	2310	120	7.10	62.00	0.88	3.07
3	4	300	1420	120	-0.50	-19.26	-0.27	-3.54
4	5	300	1430	120	-5.83	-72.21	-1.02	-4.08
5	1	400	1080	120	-2.27	-107.53	-0.86	-2.10
2	5	400	1520	120	0.77	49.92	0.40	0.51

3. Distribution Zone III

13 Pipeline Data

11

12

0.00

0.00

56.08

208.03

208.27

207.28

r iperine is e								
Node N	Number	Dia.	Length	Friction	Head Loss	Flow	Velocity	H. gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	500	0	120	0	0.00	0	0.00
1	2	450	230	120	0.00	0.00	0	0.00
2	3	400	570	120	0.00	0.00	0	0.00
3	4	400	140	120	0.00	0.00	0	0.00
4	5	400	830	120	0.00	0.00	0	0.00
5	6	400	550	120	0.00	0.00	0	0.00
6	7	450	460	120	0.00	0.00	0	0.00
7	8	400	690	120	0.00	0.00	0	0.00
8	9	300	720	120	0.00	0.00	0	0.00
9	10	300	750	120	0.00	0.00	0	0.00
10	2	400	910	120	0.00	0.00	0	0.00
5	11	300	660	120	0.00	0.00	0	0.00
11	12	300	420	120	0.00	0.00	0	0.00
12	13	300	670	120	0.00	0.00	0	0.00
13	7	300	740	120	0.00	0.00	0	0.00
5	14	300	390	120	1.01	56.08	0.794	2.59

187.0

186.0

186.0

21.03

22.27

21.28

DM 4

1. Distribution Zone I

1.1 District Meter Area I-1

Node No.	Flow	WL	GL	Eff. Head	Node No.	Flow	WL	GL	Eff. Head
	1/sec	m	m	m		1/sec	m	m	m
0	82.44	208.91	188.0	20.91	3	23.27	204.12	187.0	17.12
1	16.37	208.15	188.0	20.15	4	18.55	204.50	188.0	16.50
2	16.20	206.49	187.0	19.49	5	8.05	206.89	188	18.89

Pipeline Data

Node Number		Dia.	Length	Friction	Head Loss	Flow	Velocity	H.Gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	250	60	120	0.76	82.44	1.68	12.67
1	2	200	330	120	1.66	27.87	0.89	5.04
2	3	150	580	120	2.37	11.67	0.66	4.08
3	4	200	380	120	-0.38	-11.60	-0.37	-0.99
4	5	200	410	120	-2.39	-30.15	-0.96	-5.83
5	1	200	140	120	-1.26	-38.20	-1.22	-9.03

1.2 District Meter Area I-2

Node Data

Node No.	Flow	WL	GL	Eff. Head	Node No.	Flow	WL	GL
	1/sec	m	m	m		1/sec	m	m
0	75.95	208.45	190.0	18.45	3	18.93	203.37	187.0
1	18.97	207.80	188.0	19.80	4	11.91	203.84	187.0
2	21.46	205.37	187.0	18.37	5	4.68	207.34	188.0

Eff. Head

m

16.37

16.84

19.34

Pipeline Data

Node Number		Dia.	Length	Friction	Head Loss	Flow	Velocity	H.Gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	250	60	120	0.65	75.95	1.55	10.89
1	2	200	330	120	2.43	34.17	1.09	7.35
2	3	150	420	120	2.01	12.71	0.72	4.78
3	4	150	370	120	-0.47	-6.22	-0.35	-1.27
1	5	150	380	120	-3.51	-18.13	-1.03	-9.23
5	4	200	130	120	-0.45	-0.73	-0.02	-3.48
2. Distribution Zone II

2.1 District Meter Area II-1

Node Data									
Node No.	Flow	WL	GL	Eff. Head	Node No.	Flow	WL	GL	Eff. Head
	1/sec	m	m	m		l/sec	m	m	m
0	-96.61	210.61	187.0	23.61	5	13.91	205.49	188.0	17.49
1	14.22	209.59	187.0	22.59	6	6.94	205.42	187.0	18.42
2	13.24	205.66	186.0	19.66	7	6.93	205.81	188.0	17.81
3	13.24	205.24	187.0	18.24	8	13.91	207.00	187.0	20.00
4	14.22	206.12	186.0	20.12					

Node N	Number	Dia.	Length	Friction	Head Loss	Flow	Velocity	H.Gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	250	60	120	1.002	96.61	1.969	17.00
1	2	150	430	120	3.93	18.04	1.021	9.14
2	3	150	530	120	0.42	4.80	0.272	0.79
3	4	150	390	120	-0.87	-8.44	-0.48	-2.24
4	5	150	360	120	0.63	7.37	0.42	1.74
5	6	150	240	120	0.07	2.78	0.16	0.29
6	7	150	640	120	-0.39	-4.16	-0.24	-0.61
7	8	150	320	120	-1.19	-11.09	-0.63	-3.72
8	1	200	350	120	-2.59	-34.32	-1.09	-7.41
8	5	150	560	120	1.51	9.32	0.53	2.69
1	4	200	600	120	3.47	30.03	0.96	5.79

2.2 District Meter Area II-2

Node Data

Node No.	Flow	WL	GL	Eff. Head	Node No.	Flow	WL
	1/sec	m	m	m		1/sec	m
0	-55.49	211.38	180.0	31.38	4	14.58	209.46
1	14.51	211.02	186.0	25.02	5	7.88	208.63
2	3.86	210.00	186.0	24.00	6	9.48	208.65
3	5.18	209.50	184.0	25.50			

Node No.	Flow	WL	GL	Eff. Head	
	1/sec	m	m	m	
4	14.58	209.46	184.0	25.46	
5	7.88	208.63	186.0	22.63	
6	9.48	208.65	188.0	20.65	

Node N	Jumber	Dia.	Length	Friction	Head Loss	Flow	Velocity	H.Gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	250	60	120	0.37	55.49	1.13	6.09
1	2	150	310	120	1.01	10.34	0.59	3.26
2	3	150	370	120	0.51	6.48	0.37	1.37
3	4	150	470	120	0.03	1.30	0.07	0.07
4	5	150	540	120	0.83	6.90	0.39	1.54
5	6	150	500	120	-0.02	-0.98	-0.06	-0.04
6	1	150	710	120	-2.37	-10.46	-0.59	-3.33
1	4	200	560	120	1.55	20.18	0.64	2.77

Node Data

Node No.	Flow	WL	GL	Eff. Head	No
	l/sec	m	m	m	
0	-60.00	204.28	186.0	18.28	
1	15.00	203.86	186.0	17.86	
2	4.95	202.75	187.0	15.75	
3	202.20	202.20	187.0	15.20	

Node No.	Flow	WL	GL	Eff. Head	
	1/sec	m	m	m	
4	15.00	202.19	186.0	16.19	
5	10.05	201.83	184.0	17.83	
6	10.05	202.68	184.0	18.68	

Node N	Number	Dia.	Length	Friction	Head Loss	Flow	Velocity	H.Gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	250	60	120	0.42	60.00	1.22	7.04
1	2	150	350	120	1.11	10.18	0.58	3.17
2	3	150	600	120	0.55	4.23	0.24	0.92
3	4	150	310	120	0.00	0.28	0.02	0.00
4	5	150	570	120	0.37	4.30	0.24	0.64
5	6	150	770	120	-0.85	-5.75	-0.33	-1.10
6	1	200	670	120	-1.18	-15.80	-0.50	-1.76
1	4	200	670	120	1.66	19.02	0.61	2.48

2.4 District Meter Area II-4

3. Distribution Zone III

3.1 District Meter Area III-1

Node Data

Node No.	Flow	WL	GL	Eff. Head	Node No.	Flow	WL	GL	Eff. Head
	1/sec	m	m	m		1/sec	m	m	m
0	-66.10	208.6	186.0	22.60	5	5.19	204.42	186.0	18.42
1	0.00	208.1	184.0	24.10	6	8.90	204.54	186.0	18.54
2	9.66	206.2	186.0	20.21	7	9.66	205.00	186.0	19.00
3	8.02	205.11	186.0	19.11	8	9.78	204.92	189.0	15.92
4	5.11	204.53	187.0	17.53	9	9.78	206.04	186.0	20.04

Node N	Jumber	Dia.	Length	Friction	Head Loss	Flow	Velocity	H.Gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	250	60	120	0.51	66.10	1.35	8.42
1	2	250	400	120	1.88	48.30	0.98	4.71
2	3	200	370	120	1.10	20.94	0.67	2.97
3	4	150	340	120	0.59	7.34	0.42	1.73
4	5	150	540	120	0.10	2.23	0.13	0.19
5	6	150	370	120	-0.12	-2.96	-0.17	-0.32
6	3	150	550	120	-0.57	-5.58	-0.32	-1.04
6	7	150	350	120	-0.45	-6.28	-0.36	-1.30
7	2	200	560	120	-1.22	-17.70	-0.56	-2.17
7	8	150	620	120	0.08	1.76	0.10	0.12
8	9	150	550	120	-1.12	-8.03	-0.454	-2.04
9	1	150	230	120	-2.05	-17.81	-1.01	-8.93

3.2 District Meter Area III-2

Node Data

Node No.	Flow	WL	GL	Eff. Head	
	l/sec	m	m	m	
0	-77.92	207.96	186.0	21.96	
1	10.70	207.28	186.0	21.28	
2	16.34	203.39	186.0	17.39	
3	11.20	202.9	186.0	16.94	

Node No.	Flow	WL	GL	Eff. Head	
	l/sec	m	m	m	
4	8.82	202.31	187.0	15.31	
5	19.93	202.54	187.0	15.54	
6	10.93	204.59	185.0	19.59	

Node N	Number	Dia.	Length	Friction	Head Loss	Flow	Velocity	H.Gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	250	60	120	0.68	77.92	1.59	11.41
1	2	200	330	120	3.88	44.05	1.40	11.77
2	3	200	260	120	0.46	15.80	0.50	1.75
3	4	150	870	120	0.62	4.56	0.26	0.72
4	5	150	360	120	-0.23	-4.26	-0.24	-0.63
5	6	150	460	120	-2.05	-12.24	-0.69	-4.46
5	2	200	810	120	-0.85	-11.95	-0.38	-1.05
6	1	200	750	120	-2.69	-23.17	-0.74	-3.58

3.3 District meter Area III-3

NT _o		~ 1	-	***
INC	61	-	 и	12

Houe Data									
Node No.	Flow	WL	GL	Eff. Head	Node No.	Flow	WL	GL	Eff. Head
	1/sec	m	m	m		1/sec	m	m	m
0	-63.55	207.05	185.0	22.05	5	9.11	202.50	186.0	16.50
1	3.39	206.58	185.0	21.58	6	6.78	203.20	186.0	17.20
2	6.78	204.35	187.0	17.35	7	6.78	204.74	186.0	18.74
3	5.72	203.01	186.0	17.01	8	13.56	203.83	186.0	17.83
4	11.43	202.68	186.0	16.68					

Pipe	line	Data
1 100		Data

Node N	Number	Dia.	Length	Friction	Head Loss	Flow	Velocity	H.Gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	250	60	120	1.00	63.55	1.30	7.83
1	2	200	350	120	2.23	31.64	1.01	6.38
2	3	150	360	120	1.34	11.08	0.63	3.71
3	4	150	350	120	0.34	5.36	0.30	0.97
4	5	150	360	120	0.18	3.75	2.62	0.50
5	6	150	730	120	-0.71	-5.36	-0.30	-0.97
6	7	150	350	120	-1.54	-12.14	-0.69	-4.39
7	1	200	350	120	-1.84	-28.52	-0.91	-5.26
7	8	150	320	120	0.91	9.60	0.54	2.84
8	2	200	380	120	-0.52	-13.78	-0.44	-1.37
8	4	150	390	120	1.15	9.81	0.56	2.96

3.3 District Meter Area III-4

Node No.	Flow	WL	GL	Eff. Head	Node No.	Flow	WL	GL	Eff. Head
	l/sec	m	m	m		1/sec	m	m	m
0	-63.55	207.28	186.0	21.28	5	10.19	203.50	184.0	19.50
1	11.92	206.81	187.0	19.81	6	3.60	203.46	186.0	17.46
2	7.95	204.91	184.0	20.91	7	2.50	203.48	186.0	17.48
3	6.63	204.12	184.0	20.12	8	6.76	203.74	185.0	18.74
4	14.00	204.18	184.0	20.18					

Node 1	Number	Dia.	Length	Friction	Head Loss	Flow	Velocity	H.Gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	250	60	120	1.00	63.55	1.30	7.83
1	2	150	400	120	1.90	12.66	0.72	4.74
2	3	150	1050	120	0.80	4.71	0.27	0.76
3	4	150	460	120	-0.07	-1.93	-0.11	-0.15
4	5	150	350	120	0.68	7.84	0.00	1.95
5	6	150	340	120	0.04	1.73	0.10	0.12
6	7	150	150	120	-0.02	-1.87	-0.11	-0.14
7	8	150	400	120	-0.26	-4.37	-0.25	-0.66
8	5	150	420	120	0.24	4.08	0.23	0.58
8	1	150	460	120	-3.07	-15.21	-0.86	-6.67
1	4	200	700	120	2.63	23.77	0.76	3.75

3.5 District Meter Area III-5

Node No.	Flow	WL	GL	Eff. Head	Node No.	Flow	WL	GL
	1/sec	m	m	m		l/sec	m	m
0	-93.86	207.89	187.0	20.89	7	6.22	205.00	184.0
1	15.02	206.92	187.0	19.92	8	4.71	205.76	187.0
2	13.04	205.11	187.0	18.11	9	13.91	205.11	187.0
3	7.69	204.72	184.0	20.72	10	2.90	205.24	187.0
4	3.84	204.63	186.0	18.63	11	8.27	204.61	185.0
5	6.95	204.66	186.0	18.66	12	8.20	204.65	186.0
6	3.11	204.7	185.0	19.71				

18.76 18.11 18.24 19.61 18.65

m '	••	T
Pine	1110	Data
I IDC	me	Data

Node N	Number	Dia.	Length	Friction	Head Loss	Flow	Velocity	H.Gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	%0
0	1	250	60	120	0.97	93.86	1.91	16.11
1	2	200	360	120	1.82	27.91	0.89	5.05
2	3	150	430	120	0.38	5.12	0.29	0.89
3	4	150	350	120	0.09	2.61	0.15	0.26
4	5	150	420	120	-0.03	-1.23	1.07	-0.06
5	6	150	380	120	-0.06	-1.92	-0.11	-0.15
6	7	150	330	120	-0.28	-5.03	-0.29	-0.86
7	8	150	350	120	-0.76	-8.30	-0.47	-2.17
8	1	200	340	120	-1.17	-22.64	-0.72	-3.43
1	9	200	350	120	1.81	28.29	0.90	5.18
9	5	150	350	120	0.45	6.26	0.35	1.29
9	7	150	350	120	0.11	2.95	0.17	0.32
9	3	150	430	120	0.39	5.17	0.29	0.90
8	10	150	180	120	0.51	9.63	0.55	2.86
10	11	150	430	120	0.63	6.73	0.38	1.47
11	12	150	440	120	-0.04	-1.54	-0.09	-0.10
2	12	200	630	120	-0.45	-9.74	-0.31	-0.72

3.6 District Meter Area III-6

Node Data

Node No.	Flow	WL	GL	Eff. Head	
	1/sec	m	m	m	
0	-85.00	207.37	186.0	21.37	
1	3.63	206.57	186.0	20.57	
2	7.27	202.70	185.0	17.70	
3	5.59	202.15	185.0	17.15	
4	10.63	201.06	185.0	16.06	
5	13.98	201.35	184.0	17.35	

Node No.	Flow	WL	GL	Eff. Head	
	1/sec	m	m	m	
6	11.18	201.94	184.0	17.94	
7	10.63	204.15	186.0	18.15	
8	6.99	201.46	188.0	13.46	
9	10.07	200.99	184.0	16.99	
10	5.03	200.94	186.0	14.94	

Tipeline Data								
Node N	Number	Dia.	Length	Friction	Head Loss	Flow	Velocity	H.Gradient
Up-stream	Dn-stream	m	m	Co-efficient	m	1/sec	m/sec	‰
0	1	250	60	120	0.80	85.00	1.73	13.41
1	2	200	350	120	3.87	42.57	1.36	11.04
2	3	200	370	120	0.55	14.48	0.46	1.50
2	6	200	260	120	0.76	20.82	0.66	2.94
3	4	150	440	120	1.08	8.89	0.50	2.47
4	5	150	350	120	-0.28	-4.88	0.00	-0.81
5	6	200	150	120	-0.59	-24.41	-0.78	-3.94
6	7	150	350	120	-2.21	-14.77	-0.84	-6.32
7	1	200	260	120	-2.42	-38.80	-1.24	-9.30
7	8	150	510	120	2.69	13.40	0.76	5.28
8	9	150	350	120	0.47	6.41	0.36	1.35
9	5	150	350	120	-0.36	-5.55	-0.31	-1.03
4	10	150	350	120	0.13	3.14	0.18	0.36
10	9	150	350	120	-0.05	-1.89	-0.11	-0.14

AB7.2 Cost Estimation for Priority Project

1. Unit cost used for cost estimation

Pipe		
Pipe	Unit Pr	rice
HDPE100	3,081	Rs./m
HDPE150	5,726	Rs./m
HDPE200	8,586	Rs./m
HDPE250	19,638	Rs./m
HDPE300	23,565	Rs./m
HDPE350	27,492	Rs./m
HDPE400	33,956	Rs./m
HDPE450	37,904	Rs./m
HDPE500	42,045	Rs./m

Note: Multiplied unit costs for M/P by 1.5

District Meter

Unit C	Cost
3,000,000	Rs./unit

Tertiary Branch

Item	Unit	Cost
Valve	60,500	Rs./unit
Valve Box	57,400	Rs./unit
Pipe (HDPE 100)	19,300	Rs./unit
Fitting	19,300	Rs./unit
Total	156,500	Rs./unit

Note: Other unit costs related to Priority Project are equivalent to that of M/P

APPENDIX FOR CHAPTER B8 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

AB8.1 Photos of Surroundings of Proposed Water Supply Facilities

TR1 candidate site Private agricultural land.

Water distribution center-7 candidate site The land belongs to WASA-F.

Water distribution center-5 candidate site Private agricultural land. Sewerage pipe is installed on the route of planned arterial main.

TR1 candidate site

Water distribution center-7 candidate site

Water distribution center-5 candidate site

Water distribution center-6 candidate site Vacant private land. Due to the lower ground level, rain and sewage flow in during rainy season.

Water distribution center-6 candidate site

Arterial main route The pipe will be installed in the center of road, therefore no effect to the housing structures.

Arterial main route

TR3, WTP1, WTP2, WTP3 candidate site Belongs to the Public health department. In the north, there is water supply system for school and health facility.

TR3, WTP1, WTP2, WTP3 candidate site WTP1 will be implemented by French project.

Transmission main candidate site Pipe will be installed along the irrigation canal.

Water distribution center-36 candidate site The agricultural land over the canal and road is proposed. Around 2m lower than surrounding area.

Transmission main candidate site

Water distribution center-36 candidate site

Water distribution center-36 candidate site Football/cricket ground.

Water distribution center-36 candidate site

TR2 candidate site

Both sides along the road are candidate. Both lands are

New Abdullah Pur

private agriculture lands.

Existing OHR site. Limited land area shall be considered in the design and layout of new reservoirs.

Peoples Colony OHR Existing OHR500,000G and GR250,000G.

New Abdullah Pur

Peoples Colony OHR

Water Distribution Center-44 candidate site Private land adjacent to a mosque. It becomes a puddle pond and waste disposal area.

Waris Pura OHR

Existing OHR site, currently utilized under the Pilot Project. Water cut is anticipated during construction.

Water Distribution Center-48 candidate site Private land with large area. Currently it becomes an illegal waste disposal site.

Water Distribution Center-44 candidate site

Waris Pura OHR

Water Distribution Center-48 candidate site

Madina Town OHR No.1 Belongs to local authority. There are houses of WASA-F and FDA staff on the premises.

Mdina Town OHR No.1

Water Distribution Center-37 candidate site Private land. Both sides of the road are vacant.

Water Distribution Center-37 candidate site

Water Distribution Center-32 candidate site Private vacant land. There are some vacant lands in the neighbors.

Water Distribution Center-32 candidate site

AB8.2 Environmental Standards in Pakistan

(1) Water Quality

1) National Environmental Quality Standards (NEQS) for Municipal and Liquid Industrial Effluents^{1, 2}

			(mg/L	, unless otherwise defined)
	Dagageratag		Standards	
	Parameter	Into Inland Waters	Into Sewage Treatment ³	Into Sea ⁴
1	Temperature increase ⁵	=<3°C	=<3°C	=<3°C
2	pH	6-9	6-9	6-9
3	Biochemical-Oxygen Demand (BOD) ⁶	80	250	80 ⁷
4	Chemical oxygen demand (COD)	150	400	400
5	Total suspended solids (TSS)	200	400	200
6	Total dissolved solids (TDS)	3,500	3,500	3,500
7	Grease and oil	10	10	10
8	Phenolic compounds (as phenol)	0.1	0.3	0.3
9	Chlorides (as Cl ⁻)	1,000	1,000	SC ⁸
10	Fluorides (as F ⁻)	10	10	10
11	Cyanide total (as CN ⁻)	1.0	1.0	1.0
12	Anionic detergents (as MBAS) ⁹	20	20	20
13	Sulfates (SO_4)	600	1,000	SC ⁸
14	Sulfides (S ⁻)	1.0	1.0	1.0
15	Ammonia (NH ₃)	40	40	40
16	Pesticides ¹⁰	0.15	0.15	0.15
17	Cadmium (Cd) ¹¹	0.1	0.1	0.1
18	Chromium (trivalent and hexavalent, Cr)	1.0	1.0	1.0
19	Copper (Cu) ⁴	1.0	1.0	1.0
20	Lead (Pb) ⁴	0.5	0.5	0.5
21	Mercury (Hg) ⁴	0.01	0.01	0.01
22	Selenium (Se) ⁴	0.5	0.5	0.5
23	Nickel (Ni) ⁴	1.0	1.0	1.0
24	Silver $(Ag)^4$	1.0	1.0	1.0
25	Total toxic metals	2.0	2.0	2.0
26	Zinc (Zn)	5.0	5.0	5.0
27	Arsenic $(As)^4$	1.0	1.0	1.0
28	Barium (Ba) ⁴	1.5	1.5	1.5
29	Iron (Fe)	8.0	8.0	8.0
30	Manganese (Mn)	1.5	1.5	1.5
31	Boron (B) ⁴	6.0	6.0	6.0
32	Chlorine	1.0	1.0	1.0

1. The dilution of liquid effluents with fresh water to adjust them to within the NEQS limits is not permissible before discharge into the environment.

2. The concentrations of pollutants in water used will be subtracted from the effluent in the calculations of the NEQS limits.

3. Applicable only when and where sewage treatment is operational and BOD = 80 mg/L is achieved by the sewage treatment system.

4. Provided the discharge is not at shore and not within 10 miles of mangrove or other important estuaries.

5. The effluent should not result in a temperature increase of more than 3°C at the edge of the zone where the initial mixing and dilution take place in the receiving body. If no zone is defined, use 100 m from the point of discharge.

6. Assuming a minimum discharge dilution of 1:10, a lower ratio would invite the determination of progressively more stringent standards by the Federal Environmental Protection Agency. A 1:10 dilution means, for example, that a water body receiving 1 cubic meter of treated effluent would have to contain at least 10 cubic meter of water for dilution of the effluent.

7. The value for industry is 200 mg/L.

8. Discharge concentration at or below sea concentration (SC).

9. Methylene Blue Active Substances: assuming the surfactant is biodegradable.

10. Pesticides include herbicides, fungicides, and insecticides.

11. Provided that the total toxic metals discharge does not exceed the level given at No. 25.

SOURCE: National Environmental Quality Standards (NEQS), 2000

2) National Standard for Drinking Water Quality (NSDWQ)^{1,2}

			~	(mg/L, unless otherwise defined)
	Parameter	Standard Values for Pakistan	WHO Guidelines (2011)	Remarks
Bact	terial		-	
	E. Coli (Drinking water)	ND/100 ml sample	ND/100 ml sample	Most Asian countries also follow WHO
1	E. Coli (Treated water entering	ND/100 ml asmula	ND/100 ml commla	Guidelines
1	the distribution system)	ND/100 ml sample	ND/100 ml sample	
	E. Coli (Distribution system)	ND/100 ml sample	ND/100 ml sample	
Phys	sical			
2	Color	\leq 15 TCU	\leq 15 TCU	
2	Tosta	Non objectionable/	Non objectionable/	
5	Taste	Acceptable	Acceptable	
4	Odor	Non objectionable/	Non objectionable/	
т		Acceptable	Acceptable	
5	Turbidity	< 5 NTU	< 5 NTU	
6	Total hardness as CaCO ₃	< 500 mg/L	—	
7	Total Dissolved Solids (TDS)	< 1,000 mg/L	_	<1,000 mg/L (WHO guideline value in the year 1984)
8	рН	6.5-8.5	_	6.5-8.5 (the range recommended by WHO for the purpose of corrosion control in pipelines)
Che	mical			
	Essential Inorganic	mg/L	mg/L	
9	Aluminum (Al)	≤ 0.2	0.2	
10	Antimony (Sb)	$\leq 0.005(P)$	0.02	
11	Arsenic (As)	< 0.05(P)	0.01	
12	Barium (Ba)	0.7	0.7	
13	Boron (B)	0.3	2.4	0.5 mg/L (WHO guideline value in the year 2004)
14	Cadmium (Cd)	0.01	0.003	Standard for Pakistan; similar to most Asian developing countries
15	Chloride (Cl)	< 250	—	250 mg/L (the value recommended by WHO for the purpose of taste)
16	Chromium (Cr)	≤ 0.05	0.05	
17	Copper (Cu)	2	2	
	Toxic Inorganic	mg/L	mg/L	
18	Cyanide (CN)	≤ 0.05	- (0.07, 2004)	Standard for Pakistan; similar to most Asian developing countries
19	Fluoride $(F)^1$	≤1.5	1.5	
20	Lead (Pb)	≤ 0.05	0.01	Standard for Pakistan; similar to most Asian developing countries
21	Manganese (Mn)	≤ 0.5	- (0.4, 2004)	
22	Mercury (Hg)	≤ 0.001	0.006	0.001 mg/L (WHO guideline value in the year 2004)
23	Nickel (Ni)	≤ 0.02	0.07	0.02 mg/L (WHO guideline value in the year 2004)
24	Nitrate $(NO_3)^1$	≤ 50	50	
25	Nitrite (NO ₂) ¹	$\leq \overline{3(P)}$	3	
26	Selenium (Se)	0.01(P)	0.01	
27	Residual chlorine	0.2-0.5 at consumer end 0.5-1.5 at source	_	
28	Zinc (Zn)	5.0	- (levels above 3 mg/L may not be acceptable to consumers)	Standard for Pakistan; similar to most Asian developing countries

	Parameter	Standard Values for Pakistan	WHO Guidelines (2011)	Remarks
	Organic			
29	Pesticides mg/L	PSQCA No. 4639- 2004, Page No. 4 Table No. 3 Serial No. 20- 58 may be consulted. ²		Pakistan Standard Specification for Bottled Drinking Water
30	Phenolic compounds (as Phenols) mg/L		≤ 0.002	
31	Poly-nuclear aromatic hydrocarbons (as PAH) g/L		0.01 (by the GC/MS method)	
	Radioactive	Bq/L	Bq/L	
32	Alpha emitters	0.1	0.5	
33	Beta emitters	1	1	

1. Indicates priority health-related inorganic constituents that require regular monitoring.

2. PSQCA: Pakistan Standards Quality Control Authority.

3. ND: Not Detected

SOURCE: Pakistan Environmental Protection Agency (EPA)

(2) Air Quality

1) National Environmental Quality Standards (NEQS) for Ambient Air

,					$(\mu g/m^3)$
	Pollutants	Time-weighted Average	Concentration Effective from 1st July 2010	in Ambient Air Effective from 1st January 2013	Method of Measurement
1	Sulphur Dioxide (SO)	Annual Average ¹	80	80	Ultraviolet Fluorescence
1	Sulphur Dioxide (SO ₂)	24 hours ²	120	120	Method
2	Oxides of Nitrogen as	Annual Average ¹	40	40	Gas Phase
2	(NO)	24 hours ²	40	40	Chemiluminescence
2	Oxides of Nitrogen as	Annual Average ¹	40	40	Gas Phase
3	(NO ₂)	24 hours ²	80	80	Chemiluminescence
4	Ozone (O ₃)	1 hour	180	130	Non Dispersive UV Absorption Method
_	Suspended Particle Matter (SPM)	Annual Average ¹	400	360	High Volume Sampling
5		24 hours ²	550	500	(Average flow rate not less than 1.1m ³ /min)
6	Respirable Particle	Annual Average ¹	200	120	β Ray Absorption Method
0	Matter (PM ₁₀)	24 hours ²	250	150	
	Degninghle Doutiele	Annual Average ¹	15	15	β Ray Absorption Method
7	Kespirable Particle	24 hours ²	40	35	
	11111111 (11112.3)	1 hour	25	15	
0		Annual Average ¹	1.5	1	ASS Method after sampling
8	Lead (Pb)	24 hours ²	2.0	1.5	Filter pater
9	Carbon Monoxide (CO)	8 hours ²	5	5	Non Dispersive Infra Red
9	Carbon Monoxide (CO)	1 hour	10	10	(NDIR) Method

1. Annual arithmetic mean of minimum 104 measurements in a year taken twice a week hourly at uniform interval.

2. 24 hourly or 8 hourly values should be met 98% of the standard value in a year, 2% of the time. It may exceed but not on two consecutive days.

SOURCE: National Environmental Quality Standards (NEQS) for Ambient Quality, 2010

	(mg/Nm ⁻ , unless otherwise defined)					
	Parameter	Source of Emission	Standards in 1993	Revised Standards in 2000		
	Smoke	Smoke opacity not exceed:	40% or	40% or		
1			2 (Renglemann Scale)	2 (Renglemann Scale) or		
				equivalent smoke number		
	Particulate Matter ¹	(a) Boilers and fumaces:				
		(i) Oil fired	300	300		
		(ii) Coal fired	500	500		
2		(iii) Cement Kilns	200	300		
		(b) Grinding, crushing, coolers and				
		related processes, metallurgical processes,	500	500		
		convertors, blast fumaces and cupolas.				
3	Hydrogen Chloride ²	Any	400	400		
4	Chlorine ²	Any	150	150		
5	Hydrogen Fluoride ²	Any	150	150		
6	Hydrogen Sulphide ²	Any	10	10		
7	Sulphur Oxides	Sulfuric Acid / Sulfuric Acid plants.	400	5000		
/		Other plants ³ .	400	1700		
8	Carbon Monoxide ⁴	Any	800	800		
9	Lead ²	Any	50	50		
10	Mercury ²	Any	10	10		
11	Cadmium ²	Any	20	20		
12	Arsenic ²	Any	20	20		
13	Copper ²	Any	50	50		
14	Antimony ²	Any	20	20		
15	Zinc ²	Any	200	200		
	Antimony Zinc	(i) Nitric Acid manufacturing unit	400	400		
10	Oxides of Nitrogen	(ii) Gas fired	400	400		
16	$(NOx)^4$	(iii) Oil fired		600		
		(iv) Coal fired	_	1200		

1 0

2) National Environmental Quality Standards (NEQS) for Industrial Gaseous Emission

1. Based on the assumption that the size of the particles is 10 microns or more.

2. Any source.

3. Based on 1% sulphure content in fuel oil. Higher content of sulphure will cause standards to be pro-rated.

4. In respect of emissions of sulphure dioxide and nitrogen oxides, the power plants operating on oil or coal as fuel shall, in addition to National Environmental Quality Standards (NEQS) specified above, comply with the following standards.

SOURCE: National Environmental Quality Standards (NEQS) for Industrial Gaseous Emission, 2000

(3) Noise

1) National Environmental Quality Standards (NEQS) for Noise

-)	· · · · · · · · · · · · · · · · · · ·		-)		(Limit in dB (A) Leq ⁴)	
Category of Area/Zone		Effective from	Effective from 1st July 2010		Effective from 1st July 2012	
		Day time ¹	Night time ²	Day time ¹	Night time ²	
1	Residential Area (A)	65	50	55	45	
2	Commercial Area (B)	70	60	65	55	
3	Industrial Area (C)	80	75	75	65	
4	Silence Zone ³ (D)	55	45	50	45	

1. Day time hours: 6.00 am to 10.00 pm

2. Night time hours: 10.00 pm to 6.00 am

3. Silence zone: Zones which are declared as such competent authority. An area comprising mot less than 100 meters around hospitals, edictional institutions and courts.

4. dB (A) Leq: Time weighted average of the level of sound in decibels on scale A which is relatable to human hearing. Source: National Environmental Quality Standards (NEQS) for Noise, 2010

AB8.3 Stakeholder Meeting Report

(1) Proceedings of 1st Stakeholder Meeting (SHM-1)

Initial Environmental Examination (IEE) process forms a part of the JICA-WASA M/P Project. Under this component, the first stakeholder meeting (SHM) was organized by JICA Mission Team (JMT). The date, venue, objectives the meeting are as under:

Date: 28th September, 2017Venue: Conference Room, WASA Faisalabad.List of participants: Attached as Annex-1.

The objectives of the SHM are:

- To provide key stakeholders with information regarding the findings of the study and proposed longterm plan of water supply and sewerage in Faisalabad under the project.
- To provide an overview of the environmental and social assessment and Public Participation Process (PPP) being followed for the proposed project.
- To provide an opportunity for key stakeholders to seek clarity and provide input into the project.
- To record comments raised and include them in the Interim Report of the project.

Agenda of the meeting including presentations made are as under:

- Overview/ Scope of M/P
- Environmental and Social Considerations
- Discussion
- way forward

1) Summary of Presentation in SHM-1

An overview of M/P for formulating a strategy for the development/improvement of water supply services and sewerage/drainage system in Faisalabad was presented in the meeting. The information provided is summarized as under:

Water Supply

Water supply sources comprise of ground water and surface water in Faisalabad. The sources of ground water are government owned tube wells/ private wells and river water (Chenab River/RBC, JBC and GBC). WASA-F is responsible for delivery, maintenance and management of water supply system. The current water supply situation is highlighted below:

- Actual Water Supply in 2017 : 247000 m3 /day
- Total Water Demand in 2015 : 287000 m3 /day
- Current Water supply service: 6 hours or less from
- Insufficient water quantity with low pressure

Issues

- Over/illegal pumping from tube wells causes groundwater depletion
- Mostly pipes do not have water meters
- Water containing high salinity content
- Low operation rate of water treatment plants (JKWTP-empty filters)
- Intermittent low operation of pumps (6hr/day) at terminal reservoir & pumping station along with Inability of manage water distribution

Targets Proposed in M/P

- Total Water Demand estimated in 2038: 1252000 m3/day
- Water supply service/operation : 24/7
- Sufficient water pressure : 12m
- Sufficient water quantity: 145litres/capita/day
- Safe water quality: WHO guidelines by establishing water quality system in WASA
- Step-wise development (groundwater + surface water) based on the future demand

Considering the above planning, two scenarios were studied for the development of water sources to achieve the future demand & other targets in the M/P. Scenario-1 mostly provides for short and medium terms proposals which mainly aims at development of well fields and canals (JBC, RBC, GBC), whilst Scenario-2 apart from taking intake from canal water on short term basis, primarily focuses on development of well field, of Chenab River. In financial terms Scenario-1 is cost effective, whereas Scenario-2 involves huge investment.

Environmental & Social Considerations

- Environmental Impacts
 - Water usage or water right
 - Depletion of groundwater
 - Generation of sludge & wastewater from WTPs
- Social Impacts
 - Land acquisition for the TR & OHR/GR sites
 - Evacuation & demolition during construction stage
- Other considerations
 - o Traffic congestion during construction stage
 - o Noise & vibration
 - Air pollution

Sewerage & Drainage

The vast majority of industrial effluent is discharged "raw" without any treatment into two main drains that are Paharang drain to the North West and Madhuana drain to the South East. Paharang Drain eventually discharges to the Chenab River and Madhuana Drain to the Ravi River; both drains are managed by the Irrigation Department.

In order to assess the quality of water being discharged into Main Drains and to estimate the results of planned sewerage system on reduction of pollution loads, a survey along Main Drains within target area of the project and that of Chenab & Ravi Rivers is conducted. Sampling method and flow rate measurement to estimate the pollution loads is summarized as under:

- Water Quality Analysis on Main Drains
 - Sampling points: Madhuana Drain 4, Paharang Drain 10
 - Parameters: Temp, pH, SS, BOD, COD, SS, NO2-, NO3-, NH4+, T-N, T-P, Oil, SO4-, CN-, Phenol, Cu, Zn, As, Cr, Pb, Cr, Hg, Ni, Coliform (total 24)
 - Water Quality Analysis on Main Rivers
 - Sampling points: Chenab River 2, Ravi River 2
 - o Parameters: Temp, pH, EC, SS, DO, BOD, COD, SS, NH4+, Coliform (total 8)
 - Flow rate Measuring (to estimate the pollution loads)
 - Velocity & Section area at drains and rivers
 - Pumping operation at pump stations

Major Conclusions of the survey:

- Water quality of Main drains as well as that of rivers exceeds NEQS/WHO guidelines.
- Drain and river water is heavily polluted with domestic & industrial waste water.

Planning Proposed for Domestic Waste Water in M/P

- Basic Planning
 - Expansion of sanitary sewer network
 - On-site sanitation facilities for the low populated areas
- Sewers & Pumping Stations
 - Increase of the capacity of sewers
 - Installation of sewer pipes collecting WW instead of open drainage channels
 - Wastewater Treatment Plants (WWTP)
 - Renovation of Chokera WWTP
 - Preparation of appropriate sites for new WWTPs
 - Treated WW shall be used for agricultural purposes

Planning Proposed for Industrial Waste Water in M/P

- Main issues
 - o Acceptance of industrial WW to sewerage system of WASA-F
 - Installation/operation of pre-treatment facilities in factories
- Regulation to control the IWW quality
 - Strengthening regulations & observing compliance
 - o COD, TDS & toxics shall be reduced by pre-treatment
 - o Dedicating penalty for violation
- Monitoring of IWW
 - Data collection for enhanced registration & inspection system
 - o Improvement of WASA-F lab to analyze key parameters
 - Establishment of sustainable monitoring system

Environmental & Social Considerations

- Environmental Impacts
 - Hydrological situation/water quality (to be improved)
 - o Generation of sludge from WWTPs
- Social Impacts
 - Land acquisition for the WWTP sites
 - Evacuation & demolition during construction stage
- Other considerations
 - o Traffic congestion during construction stage
 - Noise & vibration
 - Air pollution

2) Discussion/ Minutes of SHM-1

Questions & Answer including observations/clarifications made in the meeting are summarized as under:

Mr. Rohan Javed (DDT), WASA

Mr. Rohan shared his opinion on the two scenarios discussed in the presentation. According to him, for Scenario-1 (JBC, RBC, GB), the proposal has to be first discussed with the Irrigation department because the rights of canal water belongs to them. Also, Scenario-1 will solve the problem of water supply for only 20

years. Whereas, the cost of Scenario-2 is much higher than the Scenario-1 as it provides one-time investment and long-term solution catching the need of the Faisalabad for 50 years. Also, the water from the Chenab River can be supplied in accordance to the demand and volume can be increased with the increase in requirement. So, in the light of explanation provided by him, he supported the Scenario-2 to be opted. MD, WASA, responded that the Scenario-2 is very costly as the investment required for long term to solve the water issue. However, the final decision will depend upon the availability of finances for this project. He also mentioned that east zone of the Faisalabad city possesses more pollution as compared to the west zone and there is more need to establish waste water treatment plant in east zone as compared to west zone. He requested JICA Study Team to verify their results in east and west zone.

JICA Study Team Member, Ms. Takamizawa, however informed that Scenario-1 is better because of low cost as compared to Scenario-2. Also, the feasibility of Scenario-2 depends upon the construction of Chiniot dam. She said that the JICA Study Team will further examine the Scenario-2 in detail after verifying the feasibility of Chiniot dam.

Rana Kashif Ali, S.D.O, Irrigation Department

Irrigation department highlighted their concerns about the installation of Water Pumping Radar (WPR) on the canals as proposal would require the redesigning of that part of the canal where WPR are to be installed. He was of the view that installation of WPR equipment should be undertaken under a separate project. MD, WASA, said that in order to resolve this issue, detailed discussion would need to be held with Irrigation department.

Gul Hafeez, SIDS, The Urban Unit, Govt. of Punjab

Mr. Gul highlighted the issue regarding the institutional capacity building of WASA and suggested that the JICA Study Team should consider it while finalizing their proposal/ recommendation in the report. JICA Study Team ensured that the strengthening of WASA is included in the scope of work of M/P. Mr. Hafeez further states that the capacity of water supply system is proposed to be raised from 63 MGD in 2015 to 275 MGD in 2038. WASA would not be able to handle this capacity. JICA Study Team clarified that the water supply system of Faisalabad would be upgraded/ developed to cope with the augmentation of the capacity.

For the industrial waste disposal and the environmental issues, WASA should setup their Non-Environmental Cell.

Mr. Shahid Iqbal from FINITE highlighted that firstly priority projects under Master Plan would be identified, then the requirement to mitigate the environmental issues would be incorporated in the IEE/ EIA reports to be submitted for the approval of EPA which supervises/ oversees every environmental issue.

When the Master Plan will be completed, then EIA and IEE reports will be prepared and will be submitted to EPA for their approval.

Asif Kiyani (EPA)

Mr. Asif Kiyani supports the Scenario-2 and appreciates Mr. Rohan observations on both scenarios. He raised a question about how to control pollution including solid waste.

JICA Study Team states that existing solid waste management is not included in their scope of work. But they will give comments and provide guidance to manage it. They also emphasize to educate the citizens about solid waste management.

Ms. Takamizawa (JICA Study Team)

Ms. Takamizawa mentioned the stakeholders to whom she wants to discuss the details of the Master Plan Project. MD, WASA assisted her on that question.

Closing Remarks from Mr. Irfan (Vice Chairman, WASA)

Mr. Irfan pays his tribute to JICA, Government of Japan for conducting this Master Plan Project and for looking after the needs of Faisalabad city and regards their spirit. He emphasized on the importance of the Faisalabad city as one of the major Industrial city of Pakistan. He also mentioned another Tender for up gradation of Terminal Reservoir in Faisalabad City, worth 1.6 billion Pak Rupees. He discussed the installation of new public stations and lines in the city. After the construction of 2nd Treatment Plant, WASA will be able to provide 100% potable water to the local people of the city. Mr. Irfan also emphasize on the installation of waste water treatment plant on both east and west side of the city.

Way Forward

- Finalization of Interim Report
- Planning & design of priority project
- Cost estimation of M/P & priority project
- Financial evaluation
- IEE level survey of priority project
- Stakeholder & public consultation
- Completion of Draft Final Report

(2) Proceedings of Workshop/ 2nd Stakeholder Meeting (WS/SHM-2)

JICA Mission Team (JMT) in consultation with all the concerned departments and stakeholders involved in the formulation of Master Plan has prepared an Interim Report in November 2017. The Interim Report provided an overall overview of M/P and divulged upon priority projects for planned development and improvement of water supply, sewerage and drainage facilities in the city.

In order to update all the concerned departments, one day workshop together with second SHM was organized by WASA-F/JMT.

Date	: 20th December, 2017
Venue	: Serena Hotel Faisalabad
List of participa	ants: Attached as Annex-2.

The objectives of the Workshop/ SHM are:

- To provide information regarding findings of M/P & proposed long term plan of water supply, sewerage and drainage in Faisalabad.
- To provide an overview of the environmental and social assessment and public participation process for proposed projects.
- To provide clarification to queries of participants & seek their contribution for the improvement of Master Plan.
- To record comments raised & incorporate them in the draft Final Report of M/P project.

Agenda of the meeting including presentations made are as under:

- Overview/Scope of M/P relating to
 - o Water Supply
 - Sewerage & drainage
- Environmental and Social Considerations
- Discussion

(1) Summary of Presentation in the WS/SHM-2

Master Plan including ensuing strategy for the development/improvement of water supply services and sewerage/drainage system in Faisalabad presented in the first SHM already was also discussed in the workshop/second SHM (herein after called as second meeting). Besides the information regarding existing situation, planned proposals in M/P etc.as provided above in para 6.1, following additional details have been divulged in the second meeting.

Direction of Water Supply planning

- Securing Water Resources
 - o Step-wise development (ground & water) considering the future demand
- Improvement of Water Supply Services
 - o Supply zones, transmission & distribution network, distribution centers
 - Method for improvement of service level, from vicious to virtuous cycle
- Proposed Priority Project to be initiated in three areas; Sitara Sapna city, Sarfaraz colony and Medina Town. This includes:
 - Old Jhal Khaluana WTP Renewal (10 MGD) with New DCs Construction
 - o New Transmission and Distribution Network with Water Meter Procurement
 - Stepwise Development: Phase 1 (5 MGD) and Phase 2 (5 MGD)

Planned Water Supply Service (2038)

Current (2015) Target (2038)

- Served Population (domestic): 4,146,000
- Connection (domestic): 572,000
 Water Demand: 275 MGD
 Production Capacity: 277 MGD
 Coverage Area: 2 360 km2
- Use of Groundwater: 16%

Key Features:

- Step-wised development of new water sources based on short term plan for 2023, midterm plan for 2023-2028/2033 & long term plan for 2028/33-2038
- Service area divided into seven (7) supply zones with respect to water source. This includes :
 - 4 Zones from Terminal Reservoirs (TRs):
 - 1 existing TR & 3 new TRs
 - o 1 Zone from RBC
 - o 1 Zone from New JK WTP
 - o 1 Zone from Old JK WTP
- 56 water distribution centers (WDC) are proposed to be established serving respective Administrative Zones (including 20 on private land) with OHR of 25m height & capacity=2000m³
- Utilization of ground water would be substantially reduced from present 85% to 16% in 2038
- Components of priority projects proposed in above three areas include WDC, Water Treatment Plant, Distribution & Transmission Main Lines, & Meters

Direction of Sewerage/Drainage planning

Domestic WW Management

Basic Planning Policy

- o Domestic wastewater to be collected by sewer pipes and conveyed to
- WWTP not discharged to the open drainage channels.
- o Installation of interceptor sewers to maximize the capacity of sewerage network

Improvement of Sewer Network & Pumping Stations

- o Increase of the capacity of sewer network
- o Minimizing the number of pumping stations by deeper pipe installations
- Use of existing disposal pumps as storm-water pumps where possible

Wastewater Treatment Plants (WWTP)

- Renovation of Chokera WWTP
- o Preparation of appropriate sites for new WWTPs
- Industrial WW to be treated separately

Planned Sewerage/Drainage Service (2038)

Domestic

Served Population:	4,292,000 (Including FDA City, Sadar & Khurrianwala)
Wastewater Flow:	130 MGD
Pollution Load:	242 ton/d-BOD

Industrial

141	
Wastewater Flow:	646 MGD
Pollution Load:	584 - 659 ton/d-BOD
Design Sewer Flow:	190 MGD
Capacity of WWTP:	190 MGD
Water Quality (BOD):	80 mg/l
Coverage Area:	2 379 km2

Key Features:

- Industrial Wastewater Volume to be accepted by the WASA-F Sewerage System:
- o About 20% of Total Design Ave. Daily Flow in 2038

Industrial WW Management

Acceptance of Industrial WW to WASA-F Sewerage System

- Current ratio of Total volume of Industrial WW to non-industrial WW is 1:3 in WASA area.
- o Installation/operation of pre-treatment facilities in factories

Regulations to Control Industrial WW Quality

- Strengthening regulations & observing compliance
- o COD, TDS & toxics shall be reduced by pre-treatment
- o Enforcement of penalty for violation

Monitoring of Industrial WW

- o Data collection for enhanced registration & inspection system
- o Improvement of WASA-F lab to analyze key parameters
- Establishment of sustainable monitoring system

Recommendations for Industrial WW management

- Industrial WW is harmful to biological WW treatment process. It is very difficult for WASA-F Sewerage System to accept all amount of industrial WW. It is therefore recommended:
- Separate Industrial WWTP for Khurrianwala
- Shifting of major Industrial Estates to M3 in future
- Large sized factories should treat their own Industrial WW in compliance with NEQS
- WASA-f may accept industrial WW once their effluent quality is complied with quality agreed to by the WASA-F.
- To establish the Industrial Wastewater Management Unit in WASA-F- responsible for application, monitoring and inspection of industrial units served by WASA-F sewerage under the Sewerage and Drainage Faisalabad Regulation (2015).

Environmental & Social Considerations

In addition to the impacts described in the above section (first SHM proceedings), it is worthwhile to state that land would be required for Construction of:

- OHRs proposed on public/private land with area of one Centre amounts to 1500m²
- TR near Narwala Road Bypass Satiana Road with area of one reservoir of 10000m²
- Gugera WTP &TR & Jhang WTP with area for one WTP of 10acre
- Chokera WWTP with 550 acres & Mew West WWTP with 710 acres
- Eastern WWTP with required area of 1100 acres

It is also imperative to carry out effective coordination with stakeholders for

- Identification of Project Affected Persons (PAPs)
- Public consultation and compensation where necessary
- Permissions regarding road & transport, canal, environment
- Arrangement of construction waste & sludge disposal
- Technical assistance from universities
- Scarcity of water resources in Faisalabad
- Importance of water saving
- Proper disposal of waste no to sewerage or drainage
- o Enforcement of regulations and observation of compliance

Discussion/ Minutes of Work-Shop & SHM-2

A gist of discussions in the form of Questions & Answers including observations/clarifications made as well as input provided by the participants in the workshop is presented below:

Q.1

Whether or not any study has been undertaken to assess/examine the extent of contamination both in surface water (S/W), & underground water (U/G) because of presence of lot of Silt, toxic industrial effluent, particularly Arsenic particles. If not, it would be more appropriate to carry out a detailed study before the installation of Water Treatment Plant (WTP).

Answer

Mostly the U/G water was found to be contaminated with chemical including Arsenic particles. It is planned to provide WTP for S/W while WTP has not been considered to be installed for U/G water. It is, however, agreed to incorporate the proposal to conduct a detailed study before installation of WTP, in the Master Plan (M/P).

Q.2

Treatment of surface water containing Industrial Waste/toxic material is a major problem which has become very severe in intensity in the city. The presentation made by DD WASA-F does not indicate as to how many treatment plants are required. Is there any plan for a specified number of treatment plants proposed to be installed in M/P for Faisalabad?

Answer

It was informed that M/P has proposed stage-wise development schemes under Scenario-1 including priority projects for the rehabilitation & improvement of existing old WTP and the installation of new WTP. Under Scenario-1, the water Supply Service system is proposed to the developed through integration of canal water while the system under Scenario-II is based on the use of Chenab river water. The Scenario-I, being cost effective, is proposed in the development of water supply service system as under:

Water Source/Development Project	Design Capacity (MGD)	Name of Water Sources	Term	Target Year
Surface Water				
Renewal of Old JKWTP	10	RBC	Short Term	2023
New JKWTP	05	RBC	Short Term	2020/2023
Jhang WTP-1	20	JBC(upper)	Mid Term	2028
Jhang WTP-2	40	JBC (upper)	Long Term	2038
Gugera WTP-1	25	GBC(lower)	Mid Term	2023
Gugera WTP-2	25	GBC(lower)	Mid Term	2028
Gugera WTP-3	25	GBC (Lower)	Long Term	2033
Ground Water				
JBC new well	10	JBC (Upper)	Mid Term	2028
JBC exp-well	10	JBC (Upper)	Mid Term	2033
Gugera-1-well	05	GBC (Lower)	Mid Term	2023
Gugera-2-well	05	GBC(Lower)	Mid Term	2028

Under the priority projects, the existing old JKWTP constructed in 1935 with slow sand filtration plant having original capacity of 3.5 MGD, is proposed to be rehabilitated /renewed through installation of rapid sand filtration system. This would augment the capacity from 3.5 MGDE to 10 MGD, to cater for the consumer demand which has been growing rapidly manifold since then.

Q.3

Water of Gugera Branch Canal (GBC) is highly contaminated. What measures are being proposed to resolve this problem?

Answer

Both surface water and ground water have been proposed to be purified through rapid sand filtration system. A total of three (3) WTP for surface water and two WTP for ground water are proposed to be constructed at GBC (Lower), as evident from the above table.

Q.4

Water supply gets affected or suspended during the closure of canals. How the demand would be met during this period. What proposals are being made to ensure sustainable operations of the water treatment plant during the closing period of canals? Haphazard

Answer

Irrigation Canal is an important source of surface water. Being a direct source of irrigation water, the maintenance of canals is considered imperative. Three (3) branches of canal water, (JBC-upper, RBC & GBC-lower) are affected due to the closure of LCC feeder and lower channel canals respectively. Considering the standard closing period, the effect of canal closure can be minimized through construction of water supply network so as to complement each other for the closure period of few days. To ensure the stability in the flow of surface water and to meet the required demand during the canal closure period, the option is to develop surface water source by constructing new water treatment plants facilities by acquiring direct intake water from an irrigation canal. However, the direct intake solution may involve constraints like incurring high cost and taking long time to negotiate with the Irrigation Department. Furthermore, the duration of standard closing period is at least 18 days which has increased to almost one month in recent years. This period needs to be reduced to minimum of 15-18 days. It was informed that adjustment needs to be made to avoid overlapping of the closing periods of two canals JBC & GBC, which can be made by shifting/staggering the closing period of JBC and GBC.

It may be proposed to Irrigation Department that more water can be withdrawn from canals like JBC during the closing period of other canals such as GBC. The negotiation for procuring direct intake of water of 25 MGD from GBC and 20 MGD from others with the Irrigation Department is in progress. It was further pointed out that reuse of waste water after treatment is also under consideration. An agreement with Government of Denmark has been signed for carrying out a feasibility study in this regard.

Comment

There is no procedure/method that can be followed medically for extracting Arsenic from the human body if water containing Arsenic is used. It would be more appropriate to eliminate Arsenic contents in the drinkable underground or surface water.

Answer

As compared to Lahore, no such problem exists in Faisalabad. The Arsenic contents amount to 10 microgram/liter in the water in Faisalabad city which is below than the WHO standard. Installation of RO plants is under way to overcome this problem in Lahore.

Comment/Question 5

Competition seems to be observed between Agriculture and Water Irrigation sectors in Punjab/Pakistan. With the increase in population this competition also increased while the quality of drinking water is continued deteriorating which is of major concern for the public/water users. The question is to what extent the treatment should be carried out for the improvement of quality of the canal water.

Answer

Regarding the quality of the surface water through canals, it was clarified that water treatment is being carried out following the WHO standards which are being used all over the world and provide robust criteria for checking the quality of water taken from the surface water sources i.e. canals, rivers etc. It was further divulged that treated canal water is being used for both drinking and irrigation purpose. An example of Vietnam was quoted, where treatment is performed for drinking water only. Regarding contamination in water being used for household purposes, efforts are being made to supply clean/treated water on regular basis. The performance of WASA-F in this regard is being improved on sustainable basis and day by day.

Comments

In the use of water resources, preference/priority seems to be given to the surface water sources, which are estimated to be gradually depleting. The sustainability of water supply sources especially that of surface water, is considered to be a real challenge. The Irrigation Department had not been able to supply water for drinking and even for irrigation purposes on sustainable basis. Whether any Risk Analysis has been undertaken in the M/P, to ensure sustainability?

Answer

Team leader of JICA study team responded that there was a scarcity of water resources in Pakistan including Punjab/Faisalabad as compared to the other countries like Thailand, Laos etc. where rivers are large and water is abundantly available. In Pakistan the availability of water on sustainable basis is a critical issue and poses big challenge. The Risk Analysis is a theoretical matter; however, the M/P underscores the need of backup support for the sustainable water supply from the surface water sources especially the canal water. Referring to planned water intake from canals, about 160MGD of treated water has been proposed to be taken from three branches of canals (Jhang BC, Rakh BC & Gugera BC), which amount to 5% of total canal water in 20 years. It was further brought out that an agreement with Irrigating Department was reached to supply 20 MGD waste water after treatment.

Q.6

Weather, WASA-F possesses, their own water distribution centers (WDC) if so, how many are owned by WASA in Faisalabad.

Answer

A water distribution center consists of Overhead Reservoir (OHR) + Ground Reservoir (GR). Currently Seven (7) WDCs are functioning at following sites in the Faisalabad city:

Abdullah pur	:	1
Medina Town	:	2
People's Colony	:	3
Head water works	:	1
Total	:	7

A total 56 WDCs are planned to be established with each OHR is 25 m in height. Of these, 20 WDCs (OHR/GR) are proposed to set up on private land, while the rest would be constructed on public land. Explaining the water supply facilities, WASA-F apprised the participants, with the aim of producing portable water to each and every home situated within its operational area. WASA-F has been suffering from the budgetary constraints for implementing the water source development projects for drinking purpose. The network has been developed whose O& M cost is on high side but the revenue fell short of the cost because of low/poor recovery of outstanding dues. At present, the water requirement of Faisalabad City stands at 130 gallons per person per day and WASA-F has not been able to meet this demand. Nor is WASA-F now maintaining 24/7 water supply in the city. This can only be accomplished with the cooperation of water users who would be willingly paying water charges on regular basis.

Q.7

Is the saline/waste water acceptable after treatment for drinking?

Answer

It was explained that after proper treatment through water treatment plant as well as following RO method for eliminating Chemical/toxic elements, the water can be used for drinking, other household activities and irrigation purposes.

Q.8

Water contamination issue exists due to mixing of water supply and drainage/ sewerage pipe lines. The reason among others is that two pipelines are laid very close to each other and that too on one side of the streets. This issue needs to be resolved on priority basis.

Answer

It was responded that both water supply lines and sewerage pipes are very old and laid very close to each other. Due to lack of maintenance and wear & tear, the condition of pipe lines has deteriorated with the passage of time, consequently the contents of the pipes got intermingled with each other. WASA-F is striving hard to get rid of this problem and it is expected to resolve this issue in a period of six months.

Comments/Question 9

It appeared from the presentation that M/P has emphasized to follow projects with proper engineering design/techniques for the provision of clean water to the city. No mention regarding Water Quality Index seems to be made in the M/P. Water Quality Index, being an important issue especially in view of the fact that quality of water is changed on hourly basis, needs to be addressed in the M/P.

Answer

It was clarified that water Quality Index depends upon a number of items. WASA-F has already been affiliated with American Association regarding clean water supply system. In this regard WASA-F is following the parameters presented by the American Association and shares information with them. However, considering the importance attached to assessment of water quality, it was agreed to incorporate the Water Quality index in the final report of M/P.

Q.10

There are many industries situated in and around Faisalabad. How many industries have installed the treatment plants for processing the industrial effluent/waste water?

Answer

It was elaborated that the issue regarding availability of treatment plant and its operation in the industries has been studied in detail and included in the Interim Report of M/P. Majority of the industries (about 70%) have been shifted to Industrial Estate and few (i.e. 30%) are still working in and around city.

Most of the Industries have their own treatment plants, which are not operating most of the time. No proper monitoring system has been established so far to judge the performance of treatment plants owned by the industries.

It was informed that WASA-F (Government of Punjab) have signed an agreement with Government of Denmark to undertake a Feasibility study of processing / treatment of industrial waste water and its disposal through drainage. The study is estimated to cost Rs 15 billion, of which 35% would be provided as a grant and remaining 65% loan by the Danish Government.

Comment

In order to derive the desired benefits from the project for providing water supply, sewerage & drainage system in Faisalabad as identified in M/P, it is imperative to ensure implementation of projects & recommendations as planned both for long term and short-term solutions.

Answer

WASA-F Authorities ensured that with the support of government, other organizations, public representatives and academic institutions, every effort would be made to arrange and provide finances required for the implementation of projects recommended in the M/P.

Moreover, WASA-F invited the participants of workshop particularly the professionals from the Agricultural University, WWF, etc., to share information regarding studies (to be carried out or already completed). The case in point is the provision of comprehensive treatment plant for Kurianwala city, for which concept paper is required to be shared with the WASA-F for review/examination.

It was also revealed that the Geo-Tag study regarding sewerage system for Faisalabad has been prepared by the Agricultural University of Faisalabad. WASA-F while appreciating the technical input being made for the sewerage/drainage development in the city, requested the concerned organization to share a copy of this study with JICA study team as the very objective of this meeting is to share views and, disseminate knowledge for the improvement and development of water supply, sewerage in Faisalabad.

Regarding the participation of public Representation in the workshop, it was explained that Vice Chairman WASA-F is a public representative and attending the workshop. In this regard it was informed that design of Dhoriwala Nula has been remodeled to overcome the problem of choking of sewerage system in the area during monsoon. Similarly, the sewerage system of Khannawala which becomes choked during monsoon has been planned to be improved on priority basis to overcome the problem.

FINDINGS OF SHM'S/ WORKSHOPS

- The most important stakeholders are mainly governmental Departments, such as WASA-F, Irrigation Department, CDGF/District Offices, FDA, EPD, Concerned Provincial Departments/Punjab EPA etc. Many have been deeply involved in the planning process and contributed towards the formulation of M/P. The stakeholders include the sectors that would influence the implementation of M/P. For example, EPD/Punjab EPA would evaluate the environmental management of the projects although it did not participate in the planning process, and FDA would review the management of land use of the M/P project. In nutshell, it is preempted that all of these stakeholders would be able to greatly gain from the meetings/ workshop.
- Feedback received from the stakeholders/ participants would largely contribute towards the better improvement and development of M/P in the planning process/stage. The suggestions/proposals

made by the stakeholders especially professionals/ professors from WASA-F, Irrigation Department and Faisalabad Agricultural university would not only help formulating the practical approach for implementation of M/P recommendations but also provide short/medium term plans to meet the ever-growing water demand.

 In conclusion, the SHM/ workshop has provided good opportunity to integrate the opinions of the stakeholders into decision making.

Water Sources Development Plan, two alternative scenarios of water source development plan were examined: Scenario-1) development of well field and canals (JBC, RBC, GBC), and Scenario-2) development of well field, canal and Chenab River.

ANNEX-1 List of Participants SHM-1

Stakeholder Meeting on Master Plan of WASA Faisalabad JICA Master Plan Study Team 28 September 2017 Conference Room, WASA - F

Sr. No	Name	Designation & Department	
1	Faqir Muhammad Ch.	MD - WASA	
2	Khalid Javed	Municipal Officer (Infrastructures)	
3	Dr. Haroon Rashid	Lecturer Dept of Struct & Env. Engg Uni of Agri. Fsd.	
4	M. Naeem	MSE Specialist (The Urban Unit)	
5	Gul Hafeez	SIDS The Urban Unit	
6	Rana Kashif Ali	S.D.O Irrigation Dept	
7	Asif Gillani	Environment Specialist (The Urban Unit, FSD)	
8	Shaukat Hayat	DD EPA FSD	
9	Waseem Ahmad Hashmi	DMD (S) WASA	
10	Muhmmad Khalid	DMD € Wasa	
11	Adnan Nisar	Director P&D Wasa	
12	Shoaib Rashid	Director RMO 1	
13	Zahid Pervez	Director (Admin.)	
14	Ejaz Latif	Dir (ODM) W	
15	Ryunan Matsue	JICA Mission Team	
16	Harutoshi UCHIDA	JICA Mission Team	
17	Kiyoko Takamizawa	JICA Mission Team	
18	Naoto Takatoi	JICA Mission Team	
19	Kaora Suzuki	JICA Mission Team	
20	Itsuro Matsubara	JICA Mission Team	
21	Yasuhiro Matsuoka	JICA Mission Team	
22	Akira Kohara	JICA Mission Team	
23	Dr. Shahid Nasir	Finite Engineering	
24	Hafiz M. Awais	Asst. Director	
25	Roohan	DD (Tech)/ W. R	
26	Asad Ali	Deputy Director (FFP)	
27	Sultan Azam	JMT	
28	Kamran Raza	(O&M) E	
29	Syed Shujja Haider	Project Coordinator JMT	
30	Shahid Iqbal	Finite Engineering	
31	Irfan Mannan	V. Chairman WASA	
32	Ishtiaq Ahmad Khan	IRC Specialist (The Urban Unit)	

ANNEX-2 List of Participants WS/SHM-2

2nd Workshop/ Stakeholder Meeting on Master Plan of WASA JICA Master Plan Study Team 12/20/2017 Conference Hall, Serena Hotel Faisalabad

Sr. No.	Name	Designation & Department
1	Muhammad Shabbir Afzal	Deputy Director Agriculture (Ext) Faisalabad
2	Prof Dr. M Arshad	Chairman Department of Irrigation & Drainage University of Agriculture FSD (UAF)
3	Dr. R Naiz Ahmed	Director, Water Management UAF
4	Dr. Lubna Anjum	Lecturer, Dept. of Irrigation & Drainage Agri. Engg. UAF
5	Engr. Wajeeha Qamer	Assistant Professor, Civil Engineering Dept. NFC IEFR FSD
6	Engr. Abubaker Ijaz	Duty Director (Tech), Energy Management Cell Water Resources, WASA FSD
7	Abul Ghaffar Naveed	Deputy Director, WASA, FSD
8	Aamer Aziz	Additional DG FDA
9	Dr. Muhammad Asif Shazad	District Health Officer, Preventive Services, FSD
10	Muhammad Saleem Bhathi	SE LCC East Irrigation, FSD
11	Dr. Shaid Nasir	Director Finite Engineering, (Pvt) ltd.
12	Ms Kiyoko Akamizawa	JICA M/P Mission Team
13	Shujjaa Haider	Project Coordinator, JICA Mission Team
14	Sultan Azam	JICA M/P Team
15	Ghulam Murtaze	SELCC West Irrigation, FSD
16	Syed Faisal Hassan	Engr. Operation & Maintenance SNGPL
17	Kamran Raza	WASA (O&M), FSD
18	M Farhan Akram	DD WASA, FSD
19	M Abdullah	Project Coordinator, WWF
20	Ali Shan Arif Makhdum	Environmental Officer, WWF
21	Mubasher Ahmad Cheema	Technical Skills Training Specialist (check department/ Address)
22	Zia Mustafa	Water Specialist, Aljagdi Academy, Urban Unit (Check Aljagdi)
23	Ejaz Latif	Director (O&M) WASA, FSD
24	Muhammad Ali	Deputy Director (Tech), P&D Department
25	G. Mustafa	Psychologist (Check designation & department)
26	Faqir Hussain Babar	Director, PHS, WASA FSD
27	Shahbaz latif	DDR (I&C), WASA FSD
28	Zahid Pervaiz	Director Rev (IDL), WASA FSD
29	Burira Anam (check name)	AD (GIS), WASA, FSD
30	Samreen Ashraf	AD (GIS), WASA, FSD
31	Farhat Adibbia (check name)	SRO, WASA, FSD
32	Shahida Rehman	AD, WASA, FSD
33	Muhammad Shaukat Ali	Ex DMD, WASA, FSD
34	Shoaib Rashid	Director Rev (Domestic), WASA FSD
Sr. No.	Name	Designation & Department
------------	----------------------	---
35	Haroon Rasheed	Director Admin, WASA FSD
36	Muhammad Khalid	DMD, WASA, FSD
37	Waseem Ahmed Hashmi	DMD.D.(S) WASA, FSD
38	Adnan Nisar Khan	Director, WASA, FSD
39	Rana Asif Muhmood	Chief Engineer, Irrigation Dept. FSD ZONE
40	Faqir Muhammad CH	MD-WASA, FSD
41	Irfan Mannan	Vice Chairman - WASA, FSD
42	Hoshino Takashi	Team Leader, JICA Mission Team
43	M.Riaz Kamoka	U-C Chairman
44	Gul Hafeez	SIDS - Urban Unit
45	Hafiz M.Awais Jamal	Asst. Director (Project), WASA, FSD
46	Saqib Raza	WASA, FSD
47	Usman Latif	WASA, FSD
48	M.Maqsood Ahmed	WASA, FSD
49	Atiq-ur-Rehman	WASA, FSD
50	Abdul Raouf Butt	WASA, FSD
51	Muhammad Ashraf	Resident Engineer
52	Muhammad Nouman Noor	Assistant Director (Tech), water Resources Directorate, WASA FSD
53	M.Farhan ali	Deputy Director, I.T, WASA, FSD
54	M.Fasial Mirza	Research Associate
55	Azhar Azeez	PRO, WASA, FSD
56	Laiba Tanveer	Survey-Assistant, JICA Mission team
57	Asad Ali	Deputy director, (FFP), WASA Faisalabad
58	Ghulam Shabbir	Deputy Director (P&D)
59	Umar Iftikhar Khan	DD (Admin) WASA, FSD
60	Shahid Iqbal	Consultant, Finite Engg. (pvt.) Ltd, Islamabad