THE PREPARATORY SURVEY REPORT

ON

THE PROJECT

FOR

RECONSTRUCTION OF URMARAL RIVER BRIDGE ON TALAS-TARAZ ROAD

IN

THE KYRGYZ REPUBLIC

AUGUST 2018

JAPAN INTERNATIONAL COOPERATION AGENCY KATAHIRA & ENGINEERS INTERNATIONAL INGÉROSEC CORPORATION

PREFACE

Japan International Cooperation Agency (JICA) decided to conduct the preparatory survey and entrust the survey to the joint venture consisting of Katahira & Engineers International and Ingérosec Corporation.

The survey team held a series of discussions with the officials concerned of the Government of the Republic of Kyrgyz, and conducted a field investigations. As a result of further studies in Japan, the present report was finalized.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relations between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Government of the Republic of Kyrgyz for their close cooperation extended to the survey team.

August, 2018

Itsu Adachi Director General, Infrastructure and Peacebuilding Department Japan International Cooperation Agency

Summary

1. Outline of the Country

The Kyrgyz Republic is located in Central Asia and it is a landlocked country surrounded by the People's Republic of China, Kazakhstan, Uzbekistan and Tajikistan. Kyrgyz Republic is a republic democratic country which was previously part of the former Soviet Union, and 40% of the land of this country is mountainous terrain with an altitude of over 3,000m. The population of the Kyrgyz Republic is 639 million (2018: IMF), the land area is 19.85 million km2. Gross Domestic Product (GDP) is US \$ 6,500 million (IMF estimate), the GDP per capita is US \$ 1,072 (IMF estimate). The main industries of the Kyrgyz Republic are agriculture, livestock industry (about 30% of GDP) and mining (gold mining). In terms of

GDP, agriculture account for 14.9%, industry 29.2%, service 55.9% (2016: World Bank).

2. Background of the Project

The Kyrgyz Republic is a landlocked country bordered by Kazakhstan, China, Tajikistan and Uzbekistan, and 95% of the transportation of people and goods relies on its roads. The roads of the area have a vital role for the people's life, as well as, representing important transportation means within Central Asia and South-West Asia. Most of the roads and bridges in the Kyrgyz Republic were constructed during the former Soviet Union era. After the full independence in 1991, the deterioration of the roads and bridges progressed due to the lack of maintenance due to the economic downturn. Currently about 200km of the roads are necessary for large-scale maintenance, and the deterioration of roads and bridges hinders the transportation of goods necessary for the people's lives and foreign trade between the neighboring countries, and became the obstacles for the economic growth.

Under such circumstances, the Government of the Kyrgyz Republic positioned "Development of Strategic Industries of the Economy" as one of the priority areas in the "National Sustainable Development Strategy 2013-2017" (hereinafter referred to as "NSDS"). In the NSDS the transportation and road sector, especially the rehabilitation of international transportation corridor and domestic road network is a priority issue. "The Project for Reconstruction of Urmaral River Bridge on Talas- Taraz Road" (hereinafter referred to as "the Project") is the most prioritized project in the NSDS. The project consists of reconstruction of Urmaral River Bridge which is located 82km from Talas-Taraz Road (From Taraz side) and is the only asphalt paved road which connects Kazakhstan and the north-west part of the country.

The target bridge suffers from the severe damage. In the inspection carried out by the technical cooperation project "The Project for Capacity Development for Maintenance Management of Bridges and Tunnels" the reconstruction of the target bridge was judged as high priority in terms of transport network among the bridges of high urgency for reconstruction. In June 15, 2016 due to an increase of river flow, steel pile pier flowed out and inclined, thus the bridge was closed temporally and causing traffic disturbances. After this incident, the Ministry of

Transportation and Roads in Kyrgyz Republic repaired this bridge, and now the traffic regulation of the bridge has been lifted.

3. Outline design of the study and contents of the project

JICA dispatched the preparatory survey team to the Kyrgyz Republic for the execution of outline design for Urmaral River Bridge of Talas Taraz Road. The 1st field survey is from 11 June to 2 July 2017 and the 2nd field survey is from 10 September to 12 October 2017. During the field surveys, the team conducted the discussions with the respective Kyrgyz Republic officials and the site survey of the project. The team carried out the outline design for the appropriate contents of the Project based on the results of the field surveys and prepared the draft report of the survey.

JICA dispatched the team to the Kyrgyz Republic from 18 to 29 April 2018 for the explanation of the draft report and the team had discussions, confirmation and agreement regarding the contents of the draft report.

The finally agreed contents of the Project are shown below.

- Reconstruction of the Urmaral River Bridge on Talas- Taraz Road
- Construction of Revetment Adjacent to the Urmaral River Bridge
- Approach road improvement of around 1.1km from 82k700 to 81k300 including improvement of two small radius curves and excluding the bridge crossed irrigation channel
- Traffic safety countermeasures such as the installation of the large reflectors shaped arrow, road signs, road markings and street lights

Road design requirements are as follows.

Section	Improved	Improved Item	
	Components	I	
- 1	Components		
Talas	Existing Road	Reconstruction existing bridge.	
Taraz	Improvement	Improvement alinement for access road	
Road	Revetment	Installation of revetment.	
1.2km	Improvement		
	Drainage	Installation of end-slop U- drainage facilities	
	Facilities	Installation of RC pipe (\u03c6450mm) facilities	
	Road Facilities	Street light	
	Curb Stones	Installation of curb stone for both sides	
	Side walk	Installation of sidewalk	
	Pavement		
	Safety Facilities	Installation of road sign and warning sign	
	-	Guard rail and fence	

Table-1: Overview of Facilities (Improved Components)

Typical cross sections of subject road are as below.

Figure-1: Typical Cross Section

Contents of the facilities under outline design scheme are as below.

inter 2 contents of the rate of the bosign benefit				
Facilities	Specifications	Quantity		
Bridge Length	3-spans continuous PC T-shape Girder Bridge	90.5 m		
Revetment Length	Stacking gabion	300 m		
Road Length	W=12.5-14.0m	1.1 km		
~ .	Asphalt pavement (Hot asphalt concrete)	12,570 sq.m		
Carriage way	Upper subbase course (Mechanical stabilized aggregate)	13,241 sq.m		
Pavement	Lower subbase course (Crusher run)	13,241 sq.m		
Sidewalk	Asphalt pavement (Hot asphalt concrete)	1,750 sq.m		
Pavement	Subbase course (Mechanical stabilized aggregate)	1,750 sq.m		
Desires	U-shape concrete gutter (Bottom Width = 300mm-1200mm)	755 m		
Drainage	RC pipe culvert (Inner diameter = 450mm)	109 m		
Curk Stone	Curb stone	1,637 m		
Curo Stone	Verge block	2,209 m		
T. (** c.	Road signs and warning signs	9 places		
Iraffic Sign	Large-scale electrical display board	2 places		

Table-2 Contents of the Facilities under Outline Design Scheme

Road Marking	Center line, outer line, broken line, cross walk, dot line.	5,106 m
Street	Street light H=10m	29 units
	Guard rail with reflecting-plate	229 m
Protection Fence	Guard fence	642 m
	Guard post	72 units

4. Implementation Schedule and Project Cost

The Project is implemented by Japan's Grant Aid, and the total implementation period of the project is 36.0 months including 6.0 months for a detailed design. The cost borne by Kyrgyz Republic side is estimated at 73,700USD.

5. Project Evaluation

(1) Validity

- ✓ Talas Taraz Road is one of the international roads in Kyrgyz and it is necessary for residents' life. Reconstruction of Urmaral River Bridge which was in danger of collapsing, and improvement of the approach road are planned in this project. The improvement of a safe and stable bridge and road contribute to the goal 9 of the SDGs.
- ✓ The project corresponds to the principal development goals of National Sustainable Development Strategy which includes rehabilitation of international arterial roads.
- ✓ Installation of sidewalk and traffic safety facilities is planned, as well as, sufficient traffic safety measures.
- ✓ Operation and maintenance of this project bridge and road will be conducted by the Kyrgyzstan budget, manpower, equipment and engineering skill without special equipment and technology.
- ✓ It is expected that this project will be implemented without difficulties by the Japanese Grant Aid scheme.

(2) Effectiveness

1) Quantitative Effect

Expected effect	Basic Value (Present, 2017)	Target Value (3 years after implementation, 2024)
Transport Volume (vehicles/day)	3,600	4,600
Number of Passengers (persons/year)	3,434,000	4,387,000
Freight volume (tons/year)	696,000	907,000

2) Qualitative Effect

- ✓ Secure traffic safety of Non-Motorized Transportation
- ✓ Facilitate traffic smoothness and traffic safety by improving road linearity

Contents

Preface Summary Contents Location Map / Perspective List of Figures & Tables Abbreviations

Page

CHAPTE	ER 1 BACKGROUND OF THE PROJECT	
1-1	Background of the Project	1-1
1-1-	-1 Background	
1-2	Natural Condition of Around the Project Site	
1-3	Environmental and Social Considerations	1-4
1-3-	-1 Outline of the Project Component Affecting Environment and Society	1-4
1-3-	-2 Environmental and Social Condition	
1-3-	-3 System and Organization of Environmental and Social Consideration in Ky	rgyz 1-10
1-3-	-4 Comparative Study of Alternatives	
1-3-	-5 Scoping	
1-3-	-6 Terms of Reference	
1-3-	-7 Baseline Survey	
1-3-	-8 Result of Environmental and Social Survey	
1-3-	-9 Impact Assessment	
1-3-	-10 Mitigation Measures and Cost for Mitigation Measures	
1-3-	-11 Monitoring Plan	
1-3-	-12 Implementation System of EMP and EmoP	1-41
1-3-	-13 Public Hearing	
1-3-	-14 Land Acquisition and Resettlement	
1-3-	-15 Others	
CHAPTE	ER 2 CONTENTS OF THE PROJECT	
2-1	Basic Concept of the Project	
2-2	Outline Design of the Japanese Assistance	
2-2-	-1 Design policy	
2-2-	-2 Basic Plan	
2-2-	-3 Outline Design Drawings	
2-2-	-4 Implementation Plan	
2.	2-2-4-1 Implementation Policy	
2-	2-2-4-2 Implementation Conditions	

	2-2-4-	3 Scope of Works	
	2-2-4-	4 Consultant Supervision	
	2-2-4-	5 Quality Control Plan	
	2-2-4-	6 Procurement Plan	
	2-2-4-	7 Operational Guidance Plan	
	2-2-4-	8 Soft Component (Technical Assistance) Plan	
	2-2-4-	9 Implementation Schedule	
2.2		Charles Constant	2 105
2-3	Obli	gations of Recipient Country	
2-4	Proj	ect Operation Plan	
2-5	Proj	ect Cost Estimation	
2-	-5-1	Initial Cost Estimation	
2-	-5-2	Operation and Maintenance Cost	
CHAP	TER 3	PROJECT EVALUTION	
3-1	Prec	onditions	
3-2	Nece	essary Inputs by Recipient Country	
3-3	Imp	ortant Assumptions	
3-4	Proj	ect Evaluation	
3-	-4-1	Relevance	
3-	-4-2	Effectiveness	

Appen

Location Map

Perspective (Urmaral River Bridge)

List of Figures & Tables

Figure

	e	
Figure 1-2-1	Monthly Rainfall (mm / month) in Taras City, Daily Average Temperature (°C)	1-2
Figure 1-2-2	Water Shed and Gradient of River Bed of Urmaral River	1-2
Figure 1-3-1	Location of Protected Areas in Talas Region	1-5
Figure 1-3-2	Location of Flora Survey	1-7
Figure 1-3-3	Public Facilities around the Project Site	1-8
Figure 1-3-4	Trend of Poverty Rates of Country Average, Talas Region and Bishkek City	. 1-10
Figure 1-3-5	Organization Structure of SAEPF Central Office	. 1-21
Figure 1-3-6	Alternative Routes	. 1-22
Figure 1-3-7	Baseline Survey Points	. 1-28
Figure 1-3-8	Implementation Structure of EMP and EMoP	. 1-41
Figure 1-3-9	Cadastral Map of Project Site	. 1-44
Figure 1-3-10	Grievance Redress Mechanism	. 1-46
Figure 2-2-1	5 Major International Transportation Corridors	2-2
Figure 2-2-2	Outline of Traffic Survey (24h)	2-2
Figure 2-2-3	River Channel Transition	2-3
Figure 2-2-4	The Issues on the Project Area	2-5
Figure 2-2-5	Alternative Routes	2-9
Figure 2-2-6	River Channel Transition	2-9
Figure 2-2-7	Urmaral River Channel (Google Earth May 2016)	. 2-10
Figure 2-2-8	Setting Bridge Length of Each Route	. 2-10
Figure 2-2-9	Selected Alternative Routes	. 2-12
Figure 2-2-10	Final Selected Route	. 2-13
Figure 2-2-11	Cross Section for Varied Flow Calculation	. 2-14
Figure 2-2-12	Cross Sections for Varied Flow Calculation	. 2-15
Figure 2-2-13	Planned Water Depth	. 2-17
Figure 2-2-14	Project Area of Revetment	. 2-17
Figure 2-2-15	Cross Section of Revetment	. 2-18
Figure 2-2-16	Typical Cross Section	. 2-20
Figure 2-2-17	Location Map of Sidewalk	. 2-21
Figure 2-2-18	Profile	. 2-21
Figure 2-2-19	Result of CBR Test for Existing Road Bed	. 2-22
Figure 2-2-20	Location Map for Traffic Accident	. 2-25
Figure 2-2-21	Existing Condition of the Curve	. 2-25
Figure 2-2-22	Existing Road Condition near the 83 km Post	. 2-25
Figure 2-2-23	Caution Information Board	. 2-27
Figure 2-2-24	Road Dot Marking	. 2-27
Figure 2-2-25	Rumble Strips	. 2-28

Figure 2-2-26	Visual Guidance and Prevention of Lane Departure for Curve Section	2-28
Figure 2-2-27	Other Traffic Safety Facilities	2-28
Figure 2-2-28	Layout of Traffic Safety Facilities	2-29
Figure 2-2-29	Allocation of Guardrails at the Bridge Section	2-30
Figure 2-2-30	Drainage System	2-31
Figure 2-2-31	Cross Section of the Bridge	2-33
Figure 2-2-32	Design Water Level	2-34
Figure 2-2-33	Geological Longitudinal Profile	2-34
Figure 2-2-34	Design Live Load Diagrams	2-35
Figure 2-2-35	Improvement Plan of Dike	2-36
Figure 2-2-36	Location of Abutments and Bridge Length	2-36
Figure 2-2-37	Span Length in Oblique Bridge	2-37
Figure 2-2-38	Span Length of Bridge	2-37
Figure 2-2-39	Embedding Depth of Substructures	2-41
Figure 2-2-40	Applicable Height of Substructures	2-41
Figure 2-2-41	Structure Type of Girder Support Beam	2-42
Figure 2-2-42	Transportation Routes Map	2-97
Figure 2-2-43	Land Transportation Route	2-98
Figure 2-2-44	Plan of Detour Road	2-98
Figure 2-2-45	Cross-sectional View of a Detour Road	2-99

Table

Table 1-3-1	Administrative District, Area, Population of Talas Region	1-4
Table 1-3-2	Classification of Protected Area	1-5
Table 1-3-3	Protected Areas in Talas Region	1-5
Table 1-3-4	Number of Rare and Endangered Species in Kyrgyz	1-6
Table 1-3-5	Wildlife Diversity	1-6
Table 1-3-6	Result of Flora Survey	1-7
Table 1-3-7	School Attendance Status of Bakai-Ata District	1-9
Table 1-3-8	Employment Situation of Bakai-Ata District.	1-9
Table 1-3-9	Poverty Rate of Kyrgyz (%)1	-10
Table 1-3-10	Environmental Related Laws and Regulations 1	-11
Table 1-3-11	Type of Economic Activities Subject to Mandatory EIA 1	-12
Table 1-3-12	Gap Analysis regarding EIA 1	-13
Table 1-3-13	International Environmental Treaty ratified by Kyrgyz1	-16
Table 1-3-14	Maximum Permissible Concentration (MPC) of Pollutants in the Atmospheric	Air
	(abstract)1	-17
Table 1-3-15	Maximum Permissible Concentrations of Chemicals in Water (abstract) 1	-17
Table 1-3-16	Maximum Permissible Noise Level (abstract)1	-17

Table 1-3-17	Maximum Allowable Vibration Level at Workplaces Category 2	
Table 1-3-18	Participants in the EIA Process and Their Responsibility	1-20
Table 1-3-19	Result of Comparative Study of Alternatives	1-23
Table 1-3-20	Scoping for the Project	1-24
Table 1-3-21	TOR of Environmental and Social Considerations Survey	
Table 1-3-22	Outline of Baseline Survey	1-28
Table 1-3-23	Result of Environmental and Social Survey	
Table 1-3-24	Result of Air Quality Survey	1-29
Table 1-3-25	Result of Water Quality Survey	1-29
Table 1-3-26	Result of Noise & Vibration Survey	
Table 1-3-27	The Number and Ratio of HIV/AIDS infected by Region (2011-2015)	
Table 1-3-28	Impact Assessment based on the Result of Survey	
Table 1-3-29	Environmental Management Preliminary Plan (EMP)	1-36
Table 1-3-30	Environmental Monitoring Plan (EMoP)	
Table 1-3-31	First Public Hearing	
Table 1-3-32	Second Public Hearing	
Table 1-3-33	Major Legislations for the Land Acquisition and Resettlement	
Table 1-3-34	Implementation Schedule	1-47
Table 2-1-1	6 Major Development Goals of NSDS	
Table 2-2-1	Result of Traffic Survey	
Table 2-2-2	Future Traffic Volume (Veh/day)	
Table 2-2-3	Outline of Alternative Routes	2-11
Table 2-2-4	Problem of Plan D to E	2-12
Table 2-2-5	Comparison Table of Alternative Routes	2-13
Table 2-2-6	(Reference) Manning Roughness Coefficient of Natural Rivers	
Table 2-2-7	Varied Flow Calculation Result	
Table 2-2-8	Comparison of Revetment	
Table 2-2-9	Planned River Water Discharge and Crest Width	
Table 2-2-10	Geometry Standard	
Table 2-2-11	Axle Load Equivalent Factor	
Table 2-2-12	Equivalent Single Axle Load (ESAL)	
Table 2-2-13	Condition of Pavement Design	
Table 2-2-14	Asphalt Pavement Composition	
Table 2-2-15	Comparison of Pavement Composition (IsDB Section and TA Method)	
Table 2-2-16	Fatal Traffic Accidents	
Table 2-2-17	Common Traffic Safety Facility on General Section	
Table 2-2-18	Traffic Safety Measures and Applicability for the Project	
Table 2-2-19	Examples of Indication	
Table 2-2-20	Comparison of Street Lights	
Table 2-2-21	Result of Drainage Calculation	

Table 2-2-22	Relations of Minimum Freeboard and Design Discharge	2-33
Table 2-2-23	Summary of Geological Survey	
Table 2-2-24	Other Loads	
Table 2-2-25	Specification of Concrete	
Table 2-2-26	Specification of Reinforcing Steel Bar	
Table 2-2-27	Minimum Span Length of Low Flood Impact Rivers	
Table 2-2-28	First Comparative Study of Superstructure Types	
Table 2-2-29	Comparison of Bridge Types (Secondary Selection)	
Table 2-2-30	Study of Diameter of Pier Column	
Table 2-2-31	Cost of Pile Foundation	2-43
Table 2-2-32	List of Accessories of Bridge	2-43
Table 2-2- 33	Contents of the Outline Design Drawings	
Table 2-2-34	Transportation Routes Description	
Table 2-2- 35	Undertakings of the Both Governments	2-99
Table 2-2-36	Quality Control Plan for Concrete Works	2-101
Table 2-2-37	Quality Control Plan for Earth & Pavement Works	2-101
Table 2-2-38	Procurement Plan for Major Materials	2-103
Table 2-2-39	Procurement Plan for Major Equipments	2-104
Table 2-2-40	Implementation Schedule	2-104
Table 2-5-1	Main Maintenance Items and Year Costs	2-108

Abbreviations

Abbreviation	Complete Expression
AASHTO	American Association of State Highway and Transportation Officials
AC	Asphalt Concrete
ACG	The Arab Coordination Group
ADB	Asian Development Bank
AE	Air Entrained (Concrete)
АН	Asian Highway
AIDS	Acquired Immunodeficiency Syndrome
ALEF	Axle Load Equivalent Factor
ARAP	Abbreviated Resettlement Action Plan
BM	Bench Mark
CBD	Convention on Biological Diversity
CBR	California Bearing Ratio
CITES	Convention on International Trade in Endangered Species of Wild Fauna and Flora
CMS	The Convention on The Conservation of Migratory Species of Wild Animals
СО	Carbon Monoxide
D/D	Detailed Design
dB	Decibel
DEU	Local Level Roads Management Unit
DO	Dissolved Oxygen
EAEU	Eurasian Economic Union
EBRD	European Bank for Reconstruction and Development
EIA	Environmental Impact Assessment
E/N	Exchange Note
EMoP	Environmental Monitoring Plan
EMP	Environmental Management Plan
ESAL	Equivalent Single Axle Load
EU	European Union
F/A	Filler/Asphalt
FS	Feasibility Study
GDP	Gross Domestic Product
GNI	Gross National Income
GOJ	The Government of Japan
GOK	The Government of Kyrgyz Republic
HID	High-Intensity Discharge Lamp
HIV	Human Immunodeficiency Virus

Abbreviation	Complete Expression
HWL	High Water Level
IEE	Initial Environmental Examination
IMF	International Monetary Fund
IRI	International Roughness Index
IsDB	Islamic Development Bank
ITS	Intelligent Transport System
IUCN	International Union for Conservation of Nature and Natural Resources
JICA	Japan International Cooperation Agency
JIS	Japanese Industrial Standards
JRA	Japan Road Association
LED	Light Emitting Diode
LRTAP	Long-Range Transboundary Air Pollution
M/D	Minutes of Discussion
M/P	Master Plan
MES	Ministry of Emergency Situations
ML	Missing Link
MLIT	Ministry of Land, Infrastructure, Transport and Tourism, Japan
MOTC	Ministry of Transport and Communication
MOTR	Ministry of Transport and Roads
MR	Resilient Modulus
MWL	Middle Water Level
NEMA	National Environment Management Authority
NO2	Nitrogen Dioxide
NSDS	National Sustainable Development Strategy
ODA	Official Development Assistance
PAPs	Project Affected Persons
Pb	Plumbum
PC	Prestressed Concrete
pН	Potential of Hydrogen
PLUAD	Oblast Level Roads Management Unit
PVC	Polyvinyl-Chloride Pipe
RAMS	Road Asset Management Section
RAP	Resettlement Action Plan
RC	Reinforced-Concrete
RMD	Road Maintenance Department
ROW	Right of Way
RPM	Respirable Particulate Matter

Abbreviation	Complete Expression
SAEPF	State Agency for Environmental Protection and Forestry
SD	Steel Deformed Bar
SDGs	Sustainable Development Goals
SN	Structural Number
SNiP	Stroitelnye Normy I Pravila (Russian Construction Codes and Regulations)
SO2	Sulfur Dioxide
SOX	Sulfur Oxide
SPM	Suspended Particulate Matter
SS	Suspended Solids
Sta.	Station
TOR	Terms of Reference
TSP	Total Suspended Particular
UNCCD	United Nations Convention to Combat Desertification
UNFCCC	United Nations Framework Convention on Climate Change
VAT	Value Added Tax
W18KIP	Weight 18 Kilo Pound
WB	World Bank
WHO	World Health Organization

CHAPTER 1 BACKGROUND OF THE PROJECT

1-1 Background of the Project

1-1-1 Background

The Kyrgyz Republic is a landlocked country bordered by Kazakhstan, China, Tajikistan and Uzbekistan, and 95% of the transportation of people and goods relies on its roads. The roads of the area have a vital role for the people's life, as well as, representing important transportation means within Central Asia and South-West Asia. Most of the roads and bridges in the Kyrgyz Republic were constructed during the former Soviet Union era. After the full independence in 1991, the deterioration of the roads progressed due to the lack of maintenance of roads and bridges due to the economic downturn. Currently about 200km of the roads are necessary for large-scale maintenance, and the deterioration of roads and bridges hinders the transportation of goods necessary for the people's lives and foreign trade between the neighboring countries, and have become obstacles for the economic growth.

Under such circumstances, the Government of the Kyrgyz Republic positioned "Development of Strategic Industries of the Economy" as one of the priority areas in the "National Sustainable Development Strategy 2013-2017" (hereinafter referred to as "NSDS"). In the NSDS the transportation and road sector, especially the rehabilitation of international transportation corridor and domestic road network is a priority issue. "The Project for Reconstruction of Urmaral River Bridge on Talas-Taraz Road" (hereinafter referred to as "the Project") is the most prioritized project in the NSDS. The project consists of reconstruction of Urmaral River Bridge which is located 82km from Talas-Taraz Road (From Taraz side) and is the only asphalt paved road which connects Kazakhstan and the north-west part of the country.

1-2 Natural Condition of Around the Project Site

(1) River

The Urmaral River originates from the Tenshan Mountain range (Top of the mountain is altitude around 4,000m) and rapidly flows down up to the confluence of the Talas River (altitude around 1,000m). The total river length is around 70km, and the difference of elevations is around 3,000m. The gradient of the river bed is steep, with the gradient at the confluence of Talas being around 1/100.

Figure 1-2-1 Water Shed and Gradient of River Bed of Urmaral River

Especially, a steep river tends to increase its velocity and then go straight in times of floods. Urmaral River normally meanders to the right bank side at the upstream of the bridge, however, the river tends to go straight in times of floods. In the flood of June 2016, the flood flow broke down the concrete revetment

on the left bank side and went straight and hit the left bank side approach road of the bridge.

The concrete revetment on the left bank side is considered to have been constructed to control that the river flows on the right bank side, but the river flow in the flood of June 2016 reached the concrete revetment on the left bank side, and then reflected to the right bank side and scoured behind the right bank abutment.

Generally, a steep river channel formed by small and medium-sized flood may be different from the river channel formed by large flood, therefore, there are many similar cases to plan to protect both river banks by setting wider river channel whose capacity has more than the planned flow rate considering adequate range of the river channel transition in the future.

The maximum flow rate of a year in the Ulmaral River is caused by snowmelt flooding, but the flood flow rate is not large. However, the river bed gradient is steep as 1/100, the flow velocity in the flood is very fast. Therefore, it is necessary for the project to consider not only river erosion but also impact force from driftwood, stones and gravel flowing down.

Figure 1-2-2 Damage of Urmaral River Bridge on June 16, 2016

1-3 Environmental and Social Considerations

1-3-1 Outline of the Project Component Affecting Environment and Society

According to the JICA Guidelines for Environmental and Social Considerations, 2010 (JICA Guidelines), the Project is classified into Category "B" based on the reasons the Project is not large-scale road and bridge project, their potential adverse impacts on the environment and society are not serious, and doesn't correspond to sensitive characteristics and areas listed in JICA Guidelines.

The outline of the Project components affecting the environment and society around the Project site is as follows.

- Reconstruction of Urmaral River Bridge: 90.5m
- Improvement of approach road: 1,106.5m
- Improvement of sidewalk: Both sides 690m, one side 510m
- Protection dike: Right side 180m. left side 120m

1-3-2 Environmental and Social Condition

(1) Administrative District, Area, Population and Ethnicity

Talas region is divided into Talas city and 4 districts, and the Project site is located in Ak-Dobo and Kyzyl-Sai village, Ak-Dobo ayil okmotu (village administration), Bakai-Ata District. Area and population of each city and districts of Talas region are shown in Table 1-3-1. More than 30 ethnic groups inhabit in Talas region, and Kyrgyz represents 92% of population in Talas region and 99% of Bakai-Ata district.

			2017		
District	Area $(1cm^2)$	Domulation	Mala	Famala	Population
District	(КШ-)	Population	Male	Female	(Estimate)
Talas Region	13,406	226,779	113,519	113,260	255,200
Talas City	13	32,886	15,697	17,189	36,700
Bakai-Ata District	2,928	44,057	22,255	21,802	50,300
		(Kyrgyz 43,679)	(Kyrgyz 22,092)	(Kyrgyz 21,587)	
		(Russian 148)	(Russian 75)	(Russian 73)	
		(Others 230)	(Others 88)	(Others 142)	
Kara-Buura District	4,216	58,056	29,396	28,660	64,700
Manas District	1,198	32,913	16,522	16,391	36,100
Talas District	5,051	58,867	29,649	29,218	67,400

 Table 1-3-1
 Administrative District, Area, Population of Talas Region

Source: 2009 population census of the Kyrgyz Republic Talas Region, National Statistical Committee of the Kyrgyz Republic

(2) Land Use

Project site is rural communities, with private houses lining along the road, fruit trees and vegetables etc. are grown behind the private houses. A part of the river bed is used as a feeding place for livestock of private use.

(3) Natural Environment

1) Protected Area

Protected areas of Kyrgyz cover 1,476,121.6 hectares and account for 7.38% of the country's total area. Protected areas are classified into 4 categories as shown in Table 1-3-2.

Classification	No.	IUCN Category	Objective
State Nature Reserves	10	Ι	Protected areas managed mainly for academic research or
			protection of native wilderness
State Natural Parks	13	II	Regions managed for the purpose of protecting
			ecosystems and recreation
Natural Monuments	19	III	Regions managed with the primary objective of
			protecting special natural phenomena
Habitats/Species	49	IV	Regions managed for mainly purpose of maintenance by
Management Areas			adding management

 Table 1-3-2
 Classification of Protected Area

Source: State Agency on Environment Protection and Forestry

Protected areas in Talas region are shown in Table 1-3-3 and Figure 1-3-1.

		<u> </u>	
Name	IUCN Category	Established year	Area (ha)
Karabuura State Natural Park	II	2013	61543.9
Besh-Tash State Natural Park	II	1996	13731.5
Talas Complex Nature Reserve	IV	1986	2,511

 Table 1-3-3
 Protected Areas in Talas Region

Source: State Agency on Environment Protection and Forestry

Source: State Agency on Environment Protection and Forestry Figure 1-3-1 Location of Protected Areas in Talas Region

As shown in Figure 1-3-1, Karabuura State Natural Park and Besh-Tash State Natural Park are 40~50km away from the project site, thus this project will not affect to these natural parks. Talas Complex Nature Reserve is a floodplain forest in the Talas River basin across Bakai-Ata district and Talas district. It is located about 10 km upstream of the confluence of Urmaral River and Talas River, therefore, it is not affected by the project.

2) Rare and Endangered Species (Flora and Fauna)

Table 1-3-4 shows the number of rare and endangered species designated by GOK.

Tune of		Number of species													
Ecosystem	Plants and Mushrooms	Arthropods	Fishes	Amphibians and reptiles	Birds	Mammals	Total								
Forest	20	10	0	0	9	3	42								
Shrubby	14	0	0	2	2	4	22								
Meadow	14	4	0	1	6	5	30								
Steppe	13	10	0	7	14	7	51								
Savannoides	22	0	0	0	2	5	29								
Deserted	30	6	6	6	0	8	6	5	55						
Near-water	0	2	6	1	23	2	34								
Total	113	32	6	19	62	31	263								

Table 1-3-4	Number of Rare and	Endangered	Species in	Kyrgyz
--------------------	--------------------	------------	------------	--------

Source: State Agency on Environment Protection and Forestry

According to the hearing from Head of Talas Territorial Environment Protection Department Mr. Bolot Kadyrbekov and Engineer Maksat Bazarbaev, Head of Ak-Dobo village administration Mr. Djamal Orozbaev and 5 local residents, flora and fauna designated as rare and endangered species are not confirmed around project site. Table 1-3-5 shows the Wildlife diversity according to interviews and visual survey on the project site. Village inhabitants informed, that brown trout (*Salmo trutta*) and Issyk Kul marinka (*Schizothorax*) are more common in the gorges upstream the Urmaral river, but no fish observed around project site.

Species	Common Name	Scientific Name	IUCN Red List Category		
Mammals	Field mouse	Microtus arvalis	Least concern		
Mammala	Long-eared Hedgehog	Hemiechinus auritus	Least concern		
Mammais	Corsac Fox	Vulpes corsac	Least Concern		
	Coyote	Canis latrans	Least Concern		
Birds	Rook	Corvus frugilegus	Least Concern		
	Raven	Corvus corax	Least Concern		
	Sparrow	Passer domesticus	Least Concern		
	Pigeon	Columba livia	Least Concern		
Amphibians	Frog	Rana temporaria Linnaeus	Least Concern		
Herptiles (snakes)	Water snake	Nerodia sipedon	Least Concern		
Fish	N/A	-	-		
Crustacean	N/A	-	-		

Table 1-3-5Wildlife Diversity

Source: JICA Study Team

According to the results of visual observation, plant diversity is poor which is typical for small scale forests. Tree species observed along the project site is as follows. The trees and bushes count is approximate.

Source: JICA Study Team

Figure 1-3-2 Location of Flora Survey

Location	Common Name	Scientific Name	IUCN Red List Category	Number				
A: River Bank in	Chinese elm	Ulmus parvifolia	N/A	1				
the Area of	Brere	Rosa canina	Least Concern	15				
Drilling works	Sea buckthorn	Hippohae	N/A	6				
	Osier	Salix gen.	Least Concern	2				
		Total number of tree	S	24				
B: Along the Axis	Chinese elm	Ulmus parvifolia	N/A	3				
in the Urmaral	Osier	Salix gen.	Least Concern	10				
River Bed	Brere	Rosa canina	Least Concern	20				
	Poplar	Populus gen.	N/A	12				
	Sea buckthorn	Hippohae	N/A	10				
	Total number of trees							
C: In the River	Sea buckthorn	Hippohae	N/A	1				
Floodplain	Brere	Rosa canina	Least Concern	10				
	Total number of trees							
D: Along the Road	Chinese elm	Ulmus parvifolia	N/A	50				
at the Western	Apricot	Prunus armeniaca	Data Deficient	20				
Dobo Village	Caragana	Caragana franchetiana	Least Concern	90				
2000 mage	Osier Salix gen. Least Concern		Least Concern	2				
	Oleaster	Eleagnus agnustifolla	Least Concern	20				
		Total number of trees						
	Grand Tota		272					

Table 1-3-6	Result of Flora	Survey
-------------	------------------------	--------

Source: JICA Study Team

A: River Bank in the Area of Drilling Works

B: Urmaral River Bed

C: River Floodplain Source: JICA Study Team

D: Along the road at the western skirts of Ak Dobo village

(4) Socio Economic Condition

1) Public facilities

There are no public facilities along the project road. In the vicinity of the project site, there are public facilities such as schools, village administration office, museum, mosque, clinic. The cross point of the irrigation canal intakes water from the Talas River with the project road is the starting points of the project. Figure 1-3-3 shows the public facilities around the project site.

Figure 1-3-3 Public Facilities around the Project Site

2) Education

Table 1-3-7 shows the school attendance status of Bakai-Ata district. About 80% of the students have completed high school or a lower level, and approximately 20% of those receiving vocational and higher education at vocational schools and above, the number of women is slightly larger than that of men. The illiteracy rate is 1%, and the literacy rate is very high.

	Population aged 10 years or above	University graduate	%	University drop out	%	College	%	Vocational school	%	High school	%	Junior high school	%	Primary school	%	Primary school not complete	%	Illiterate	%
Total	33,586	2,749	8%	655	2%	1,984	6%	1,422	4%	16,165	48%	2,882	9%	5,800	17%	1,929	6%	350	1%
Male	16,973	1,192	7%	311	2%	620	4%	786	5%	8,761	52%	1,506	9%	2,947	17%	850	5%	118	1%
Female	16,613	1,557	9%	344	2%	1,364	8%	636	4%	7,404	45%	1,376	8%	2,853	17%	1,079	6%	232	1%

 Table 1-3-7
 School Attendance Status of Bakai-Ata District

Source: 2009 population census of the Kyrgyz Republic, Talas Region

Note: Total of each item and the population aged 10 years or above do not match, but the number of source is quoted as it is.

3) Employment

Table 1-3-8 shows the employment situation of Bakai-Ata district. Overwhelmingly more workers are engaged in agriculture, forestry and fisheries. 90.8% of men work in agriculture, forestry and fisheries (only one in the fishery industry), then civil servants, education is about 2%. 77.3% of women also work in agriculture and forestry, then education 10.8%, health services 4.5%. The number of women engaged in education is 3.7 times more than men, and 2.3 times more than men in medical and health service. The number of women engaged in commerce is more than twice than men. On the other hand, there are only a few women engaged in the construction industry.

Industry	Total		Ma	ale	Female	
Agriculture, forestry and fisheries	14,560	85.3%	9,209	90.8%	5,351	77.3%
Mining	19	0.1%	16	0.2%	3	0.0%
Processing	115	0.7%	58	0.6%	57	0.8%
Electricity, gas, water supply	87	0.5%	73	0.7%	14	0.2%
Construction	51	0.3%	47	0.5%	4	0.1%
Commerce	187	1.1%	55	0.5%	132	1.9%
Hotel, restaurant	33	0.2%	2	0.0%	31	0.4%
Traffic, communication	71	0.4%	36	0.4%	35	0.5%
Finance	36	0.2%	20	0.2%	16	0.2%
Real estate	42	0.2%	21	0.2%	21	0.3%
Civil servant	362	2.1%	211	2.1%	151	2.2%
Education	955	5.6%	205	2.0%	750	10.8%
Medical and health service	447	2.6%	137	1.4%	310	4.5%
Public utilities	94	0.6%	49	0.5%	45	0.6%
Others	10	0.1%	4	0.0%	6	0.1%
Total	17,069	100.0%	10,143	100.0%	6,926	100.0%

 Table 1-3-8
 Employment Situation of Bakai-Ata District.

Source: 2009 population census of the Kyrgyz Republic, Talas Region

4) Poverty Rate

Table 1-3-9 shows the poverty rate of Kyrgyz, Figure 1-3-4 shows the trends of poverty rates of country average, Talas region and Bishkek city from 2010 to 2016. Talas region exceeded the country average until 2012, but it has declined rapidly since 2013, and in 2016 the poverty rate is lower following Bishkek City. However, the data obtained from the Bakai Ata district Social Development Office (January 2017) shows an average poverty rate of 28% in Bakai-Ata district and 29.8% in Ak-Dobo ayil-okmotu (village administration), exceeding the national average.

Items	2010	2011	2012	2013	2014	2015	2016
Kyrgyz Republic	33.7	36.8	38.0	37.0	30.6	32.1	25.4
Batken oblast	33.6	35.6	34.2	53.9	40.7	41.2	37.0
Jalal-Abat oblast	44.7	45.3	55.7	46.4	46.4	45.1	32.2
Yssyk-Kul oblast	38.0	29.5	28.1	39.5	26.0	28.9	24.7
Naryn oblast	53.5	49.9	39.9	43.8	30.6	38.0	37.8
Osh oblast (until 2012 y. including Osh city)	41.9	44.7	51.4	43.4	31.7	28.9	22.0
Talas oblast	42.3	50.2	39.6	23.1	19.0	21.5	18.1
Chui oblast	21.9	28.6	16.6	23.6	21.6	24.8	30.3
Bishkek city	7.9	18.4	21.4	20.4	17.6	23.5	9.8
Osh city	-	-	-	40.9	33.4	38.3	24.6

Table 1-3-9Poverty Rate of Kyrgyz (%)

Source: National Statistical Committee of the Kyrgyz Republic

Figure 1-3-4 Trend of Poverty Rates of Country Average, Talas Region and Bishkek City

5) Cultural Heritage

The hero Manas which is the hero of the Kyrgyz traditional epic poem of "Manas" is said to have been born near Talas city, and the historic park is located in a place that is regarded as a burial place of Manas around 22 km northeast from Talas city. On the banks of the Talas river, the "Battle of Talas River" that broke out over the hegemony of Central Asia took place between the Chinese Tang dynasty and the Arab Abbasid Caliphate in 751. However, there is no cultural heritage near the project site.

1-3-3 System and Organization of Environmental and Social Consideration in Kyrgyz

(1) Laws and Regulation related to Environmental and Social Considerations

1) National Environmental Policy and Plan

"The Concept of Ecological Safety of the Kyrgyz Republic" (Decree of the President No. 506, 23 November 2007) summarizes the key environmental problems which are divided into global, regional and national. This Concept is the basis for carrying out state policy in the field of environmental protection and environmental management in order to achieve sustainable development of Kyrgyz.

2) Outline of the Environmental Laws and Regulations

Environmental laws and regulations of Kyrgyz are shown in Table 1-3-10. The laws and regulations related to the Environmental Impact Assessment (EIA) are shown in bold letter.

Laws and Regulations	No.	Year Enacted
Constitution of Kyrgyz Republic	-	2010
Law on Biosphere Reserves in the Kyrgyz Republic	48	1999
Law on Environmental Protection	53	1999
Law on Specially Protected Natural Territories	18	2011
Law on Production and Consumption of Wastes	89	2001
Law on the Protection of Atmospheric Air	51	1999
Law on the Protection of Ozone Layer	206	2006
Law on Protection and Use of Flora	53	2001
Law and General Technical Regulation on Ensuring Environmental Safety	151	2009
Law on Environmental Expertise	54	1999
Law on Water	1422-XII	1994
Law on Mountain Territories	151	2002
The Law on State Regulation and Policy in the Field of Emission and Absorption of	71	2007
Greenhouse Gases		
The law on access to information administered by state bodies and local self-	213	2006
government bodies of the Kyrgyz Republic		
Law on Fauna	59	1999
Law on the Prohibition of Cutting, Transporting, Acquiring and Marketing,	15	2007
Harvesting and Use, Export of Especially Valuable (walnut and juniper) Tree Species		
Law on Subsoil	160	2012
Law on Pastures	30	2009
Law on Radiation Safety of the Population	58	1999
Law on Fisheries	39	1997
The Law on the Transfer (Transformation) of Land	145	2013
Water Code	8	2005
Land Code	45	1999
Forest Code	66	1999
Regulations on the Procedure for Conducting State Ecological Expertise	248	2014
Regulation on the Procedure for Conducting Environmental Impact Assessment	60	2015
Resolution of Methodology of Determining Payment for Environmental Pollution	559	2011

 Table 1-3-10
 Environmental Related Laws and Regulations

Source: Final Report of Data Collection Survey on Osh City Road Transportation in the Kyrgyz Republic

Outlines of the law and regulations related to EIA are as follow;

i) Law on Environmental Protection

This law is the most basic law on environmental protection in Kyrgyz. This Law determines the policy and regulates legal relations in the field of nature management and environmental protection in Kyrgyz. Article16 of Section IV describes that EIA is conducted to prevent possible adverse impact of planned economic and other activities on the environment.

ii) Law on Environmental Expertise

This law provides whole matters on EIA of Kyrgyz Republic. Section I describes objectives and principles of EIA and Section II stipulates the power, rights and duties of the specially authorized state body on EIA. Section V stipulates that initiators and developers of projects are required to submit documentation for state environmental review and carry out the planned activities in accordance with the documentation, which received a positive conclusion of the state environmental review. iii) Law and General Technical Regulation on Ensuring Environmental Safety

Appendix 1 of the Law lists 25 economic activities subject to mandatory EIA. According to the lists, construction of roads and railways is a subject of EIA. Appendix 2 of the Law stipulates that the hazard category of economic and other activities is categorized into I~III depending on the amount of pollution of the natural environment, the amount and species composition of harmful substances as well as the waste placed. Depending on the hazard category, the scope and content of environmental management of the projects, the frequency of inspections over compliance with environmental legislation and standards, is established.

Table 1-3-11	Type of Economic	Activities Sub	niect to Mand	atory EIA
Table 1-3-11	Type of Economic	Activities Sub	ject to Manu	atory LIA

1.	Energy facilities	14.	Facilities for wastewater treatment, flue gases
2.	Reservoirs	15.	Underground water intakes
3.	Enterprises for extraction and processing of oil, oil	16.	Water supply systems in populated areas, irrigation
	products, gas		and drainage systems
4.	Manufacture of building materials (cement,	17.	Construction of roads and railways
	asphalt, slate, asbestos-cement pipes and others)	18.	Airports, aerodromes, testing grounds, ports of
5.	Agriculture and forestry		inland navigation, motor racing tracks
6.	Mining industry	19.	Construction of recreational and tourist facilities
7.	Metalworking industry	20.	Organization of industrial units
8.	Manufacture of glass	21.	Sewer networks
9.	Manufacture of pharmaceutical, biological,	22.	Mountain lifts and cable cars
	protein preparations	23.	Recycling, processing and disposal of industrial
10.	Chemical production		and domestic waste
11.	Food industry	24.	Petrol stations
12.	Textile, leather, paper industry	25.	Stations of maintenance and pre-sale preparation
13.	Warehouses of toxic, dangerous, radioactive		of vehicles
	substances		

iv) Regulations on the Procedure for Conducting State Ecological Expertise

This Regulation establishes the procedure for the organization and conduct of the state environmental review. Section 4 indicates the list of materials submitted for state environmental review and Section 5 stipulates the organization and the procedure of the state environmental review. Section 7 stipulates that the beginning of the period for carrying out the state environmental review is established from the moment of transfer of all necessary documentation and the period of which should not exceed two weeks. The period for carrying out state ecological expertise should not exceed three months.

v) Regulation on the Procedure for Conducting Environmental Impact Assessment

This regulation establishes the procedure for conducting and EIA of the proposed activity. Article 3 describes participants in the EIA process and their roles, article 4 stipulates stages of the EIA and article 6 concretely provides the EIA documentation. Appendix 1 is same as iii, the list of 25 types of economic activities subject to EIA, Appendix 2 is the form of the statement on environmental impact, Appendix 3 is the form of the statement on environmental consequences, and Appendix 4 is the list of objects with a low level of environmental impact.

3) Gap Analysis Regarding EIA

The requirements of JICA guidelines and the system of Kyrgyz were compared, confirming gaps between them. Finally, the project policy was determined.

Subject	JICA Guidelines	System of Kyrgyz	Gap and Project Policy
Underlying Principles	- Environmental impacts that may be caused by projects must be assessed and examined in the earliest possible planning stage. Alternatives or mitigation measures to avoid or minimize adverse impacts must be examined and incorporated into the project plan. (JICA Guidelines, Appendix 1.1)	 Act No. 54 "Law on Environmental Expertise", Article 2 stipulates that the objectives of EIA are to prevent the possible negative impact of the planned activities on public health and the environment, and an assessment of the planned activities shall be conducted at the stages preceding the decision on their implementation. Act No. 60 "Procedure for Conducting Environmental Impact Assessment", Item 1.3 stipulates the main principles of EIA and preventive and alternativeness including the option of abandoning the proposed activity are required in these principles. In addition, Item 1.4 requires that the results of EIA include main conclusions about the nature and extent of the environmental impact of alternative options and description of measures to prevent, minimize or compensate for possible significant adverse effects. 	None/Same as JICA GL
Information Disclosure	 EIA reports (which may be referred to differently in different systems) must be written in the official language or in a language widely used in the country in which the project is to be implemented. When explaining projects to local residents, written materials must be provided in a language and form understandable to them. EIA reports are required to be made available to the local residents of the country in which the project is to be implemented. The EIA reports are required to be made available at all times for perusal by project stakeholders such as local residents and copying must be permitted. (JICA Guidelines, Appendix 2) 	 Act No. 213 "Law on access to information held by state bodies and local self-management bodies of the Kyrgyz Republic" Article 3 guarantees everyone the right of access to information held by state bodies and local self-government bodies. Act No. 60 "Procedure for Conducting Environmental Impact Assessment" Item 3.7 stipulates the participants in the EIA process and the public (public organizations, population) are included in it. Item 3.13 stipulates that the public receive information on any proposals concerning activities with possible adverse effects on the environment and public health in cases where the EIA procedure is necessary. 	Language is not clearly stated. / EIA will be prepared in Russian for local residents and examination of SAEPF. English version will be submitted for JICA review.
Consultations with Local Stakeholders	 For projects with a potentially large environmental impact, sufficient consultations with local stakeholders, such as local residents, must be conducted via disclosure of information at an early stage, 	 Act No. 60 "Procedure for Conducting Environmental Impact Assessment" stipulates as follows; 3.13 The public participate in the consultations held within the framework of the EIA at all stages of its implementation, and receive information on any proposals concerning activities with possible adverse 	In case of category A of JICA GL, it is desirable that the stakeholder meetings are conducted at the time when the scoping of the

 Table 1-3-12
 Gap Analysis regarding EIA

Subject	JICA Guidelines	System of Kyrgyz	Gap and Project Policy
Scope of Impacts to Be Assessed	 at which time alternatives for project plans may be examined. The outcome of such consultations must be incorporated into the contents of project plans. (JICA Guidelines, Appendix 1.5 Social Acceptability 1) In preparing EIA reports, consultations with stakeholders, such as local residents, must take place after sufficient information has been disclosed. Records of such consultations must be prepared. Consultations with relevant stakeholders, such as local residents, should take place if necessary throughout the preparation and implementation stages of a project. Holding consultations is highly desirable, especially when the items to be considered in the EIA are being selected, and when the draft report is being prepared. (JICA Guidelines, Appendix 2. EIA Reports for Category A Projects) The impacts to be assessed with regard to environmental and social considerations include impacts on human 	effects on the environment and public health in cases where the EIA procedure is necessary. 3.14. Objectives of consultations with the public are to inform the public about issues related to environmental protection, to participate in the discussion, to take into account the comments and proposals of the public, and to search for mutually acceptable solutions in the issues of preventing or minimizing the harmful impact on the environment when implementing the planned activity. 3.15 Consultations with the public are carried out to familiarize the public with the EIA documentation. In case of public interest, a meeting to discuss the EIA documentation will be held. 3.16 stipulates the procedure for conducting public discussions and it requires ensuring public access to the EIA documentation from the project initiator and / or other accessible locations, and collecting and analyzing comments and suggestions, preparing a summary of feedback on the results of public discussions of the EIA documentation. 3.17 stipulates the details of notification of public discussions such as information about the initiator of the project, description of the proposed activity, information of public discussions and comments on the EIA documentation, information on where you can get acquainted with the EIA documentation and where to send comments and suggestions on it. - Act No. 60 "Procedure for Conducting Environmental Impact Assessment" Item 4.28-4.30 stipulates as follows; 4.28 Conducting an EIA in full is	environment assessment items takes place and preparation the draft of the EIA report occurs. According to the law of Kyrgyz, public participation in all stages of EIA implementation and explanation of EIA report to the stakeholders are required but the number of consultations is not stipulated. Though this project is classified as category B, it is desirable that the consultations with stakeholders are hold at the time before and after the EIA survey. Therefore, they are set to be hold 2 times. Also, it is desirable to have stakeholder meetings before construction to explain the construction work. There is partially a gap in the scope of impacts to be assessed / Follow
	include impacts on human health and safety, as well as on the natural environment, that are transmitted through air, water, soil, waste, accidents, water usage, climate change, ecosystems, fauna and flora, including trans-boundary or global scale impacts. These also include social impacts, including migration of population and involuntary resettlement, local economy such as employment and livelihood, utilization of land	 4.28 Conducting an EIA in full is mandatory for activities related to hazard category I, as well as facilities with possible significant harmful transboundary impact. 4.29 Conducting an EIA in a reduced scope is carried out for activities related to the II and III categories of danger. 4.30 For objects with a low level of environmental impact, the list of which is given in Appendix 4 to this Regulation, for obtaining state environmental expertise, a sufficiently completed form of statement for ecological expertise. Annex 5 of Act No. 60 "Procedure for 	assessed / Follow JICA GL

Subject	JICA Guidelines	System of Kyrgyz	Gap and Project Policy
	 institutions such as social capital and local decision-making institutions, existing social infrastructures and services, vulnerable social groups such as poor and indigenous peoples, equality of benefits and losses and equality in the development process, gender, children's rights, cultural heritage, local conflicts of interest, infectious diseases such as HIV/AIDS, and working conditions including occupational safety. (JICA Guidelines, Appendix1.3 Scope of Impacts to Be Assessed 1) In addition to the direct and immediate impacts of projects that are indivisible from the project are also to be examined and assessed to a reasonable extent. It is also desirable that the impacts that can occur at any time throughout the life cycle of the project. (JICA Guidelines, Appendix1.3 Scope of Impacts that can occur at any time throughout the life cycle of the project. (JICA Guidelines, Appendix1.3 Scope of the project. (JICA Guideli	 Conducting Environmental Impact Assessment" shows the requirements for assessing the existing state of the environment as follows; Environmental and other restrictions in the use of a land plot (specially protected natural areas, protected areas of historical and cultural heritage sites, etc.) Climate and meteorological conditions The existing level of atmospheric air pollution The existing state of surface water bodies Geological, hydrogeological and engineering-geological conditions Land resources and the soil cover Soil contamination, flora, animal world, radioactive contamination The existing socio-economic conditions (economic conditions, public health, Historical and cultural value of the territory) Act No. 60 "Procedure for Conducting Environmental Impact Assessment" Item 2.6 defines the basic concepts applied in this regulation. In this item, zone of possible significant impact is defined as the territory within which, as a result of the EIA, direct or indirect significant changes in the environment and / or its individual components may result from the implementation of the planned activity. In addition, Item 4.31 stipulates that EIA contains forecast and assessment of changes in the state of the environment during the construction. 	
Manitanina	Project proponents etc.	operation and decommissioning of the planned activities.	No con recording
Monitoring, Grievance Mechanism	 Project proponents etc. should make efforts to make the results of the monitoring process available to local project stakeholders. (JICA Guidelines, Appendix1.8 Monitoring 3) When third parties point out, in concrete terms, that environmental and social considerations are not being fully undertaken, forums for discussion and examination of countermeasures are established based on sufficient information disclosure, including stakeholders' participation in relevant projects. Project 	- Act No. 60 "Procedure for Conducting Environmental Impact Assessment" Item 3.9 stipulates that the executor of works on EIA develops a resource-based monitoring program for the component state of the environment in the process of construction, operation and liquidation of the enterprise. At the project implementation stage, environmental monitoring of the facility is carried out. Item 4.33 stipulates post-project analysis of EIA and it defines that the organization of post-project analysis and monitoring of the project. The report on the results of the post-project analysis is submitted to the initiator of the project for taking the necessary measures to reduce the negative impact. The report	No gap regarding monitoring. Grievance mechanism will be established according to JICA GL
Subject	JICA Guidelines	System of Kyrgyz	Gap and Project Policy
------------------------	---	--	--
	proponents etc. should make efforts to reach an agreement on procedures to be adopted with a view to resolving problems. (JICA Guidelines, Appendix 1.8 Monitoring 4)	 should be accessible to the public too. Grievance mechanism regarding EIA is not clearly specified, but "Law on Grievances" guarantees that every citizen has the right to apply personally or through his representative to state authorities, local self-government bodies and to their officials who are obliged to provide a reasoned response. 	
Ecosystem and Biota	Projects must not involve significant conversion or significant degradation of critical natural habitats and critical forests. (JICA Guidelines, Appendix 1.6)	Not clearly specified, but Act No.54 "Law on Environmental Expertise" Article 13 defines that the legal consequence of the negative conclusion of the state environmental review is the prohibition of the sale of the object of examination.	Although there is a gap between JICA GL and system of Kyrgyz, the project does not involve significant conversion or significant degradation of critical natural habitats and critical forests.
Indigenous Peoples	Any adverse impacts that a project may have on indigenous peoples are to be avoided when feasible by exploring all viable alternatives. When, after such an examination, avoidance is proved unfeasible, effective measures must be taken to minimize impacts and to compensate indigenous peoples for their losses. (JICA Guidelines, Appendix 1.8)	Not specified.	Although there is a gap between JICA GL and system of Kyrgyz, impact to indigenous peoples is not assumed by the project.

Source: JICA Study Team

4) International Environmental Treaty

International Environmental Treaty ratified by Kyrgyz are shown in Table 1-3-13.

Table 1-3-13 International Environmental Treaty rati	tified by Kyrgyz
--	------------------

Treaty	Ratification
Convention on Access to Information, Public Participation in Decision-making and Access to	2001
Justice in Environmental Matters (Aarhus Convention)	
Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their	1996
Disposal	
Cartagena Protocol on Biosafety to the Convention on Biological Diversity	2005
Convention on Biological Diversity (CBD),	1996
Convention on International Trade in Endangered Species of Wild Fauna and Flora (Washington	2007
Convention, CITES)	
Convention on the Conservation of Migratory Species of Wild Animals (CMS)	
Convention on Environmental Impact Assessment in a Transboundary Context (Espoo	2001
Convention)	
Kyoto Protocol to the United Nations Framework Convention on Climate Change	2003
Convention on Long-Range Transboundary Air Pollution (LRTAP)	2000
Montreal Protocol on Substances that Deplete the Ozone Layer	2000
Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits	2015
Arising from their Utilization to the Convention on Biological Diversity	

Treaty	Ratification
Paris Agreement on climate change	2016
	(Signatory)
Ramsar Convention on Wetlands of International Importance especially as Waterfowl Habitat	2002
Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals	2000
and Pesticides in International Trade	
Stockholm Convention on Persistent Organic Pollutants	2006
The United Nations Convention to Combat Desertification in Those Countries Experiencing	1997
Serious Drought and/or Desertification, Particularly in Africa (UNCCD)	
The United Nations Framework Convention on Climate Change (UNFCCC)	2000

Source: UN Law & Environment Ontology

5) Environmental Standards

i) Ambient Air Quality

Hygienic standards of air quality in Kyrgyz is shown in Table 1-3-14.

Table 1-3-14Maximum Permissible Concentration (MPC) of Pollutants in the Atmospheric Air
(abstract)

	× /	
Pollutants	Maximum single MPC (20 - 30 minutes) (mg/m ³)	Daily Average MPC (mg/m ³)
SPM	0.5	0.15
SO_2	0.5	0.05
NO ₂	0.085	0.04
СО	5	3
Lead	0.001	0.0003

Source: Hygienic Standards "Maximum Permissible Concentrations of Pollutants in the Atmospheric Air of Populated Areas" of April 11, 2016 NO. 201

ii) Water Quality

Hygienic standards of water quality in Kyrgyz is shown in Table 1-3-15.

Tuble 1 5 15 Muximum 1 et missible Con	centrations of Chemicals in Water (abstract
Parameter	Standard (mg/l)
Arsenic	0.01
Mercury	0.0005

Table 1-3-15 Maximum Permissible Concentrations of Chemicals in Water (abstract)

Source: Hygienic Standards the Maximum Permissible Concentrations of Chemicals in Water in Water Bodies of Domestic, Drinking and Cultural and Domestic Water Use as of April 11, 2016 NO. 201

iii) Noise and Vibration

Lead

Cadmium

Sanitary rules and regulations on noise level in Kyrgyz is shown in Table 1-3-16. Maximum permissible noise level at workplaces of road construction and similar machineries is 80 dB(A).

0.01

Kyrgyz doesn't have own vibration standards and Russian standards are utilized. Category 2 of Russian vibration standards applied to construction site is shown in Table 1-3-17.

	····· · · · · · · · · · · · · · · · ·)
Appointment of premises or territories	Equivalent Levels	Maximum Permissible Level
	L_{eq} (dB)	L_{max} (dB)
Hospitals, Sanatoriums	35	50
Territories directly adjacent to the buildings of hospitals and	7~23 hours: 45	7~23 hours: 60
sanatoria	23~7 hours: 35	23~7 hours: 50

 Table 1-3-16
 Maximum Permissible Noise Level (abstract)

Appointment of premises or territories	Equivalent Levels	Maximum Permissible Level
	$L_{eq}(dB)$	L_{max} (dB)
Schools and other educational institutions, conference halls,	40	55
library reading rooms		
Territories directly adjacent to residential buildings, the	7~23 hours: 55	$7 \sim 23$ hours: 70
buildings of polyclinics, schools and other educational	23~7 hours: 45	23~7 hours: 60
institutions, libraries, social stationary institutions for the		
elderly		
Territories directly adjacent to the buildings of hotels and	7~23 hours: 60	7~23 hours: 75
hostels	23~7 hours: 50	23~7 hours: 65

Source: Sanitary Rules and Regulations "Noise in the Workplaces, in the Premises of Residential, Public Buildings and on the Territory of Residential Buildings" on April 11, 2016 No. 201

 Table 1-3-17
 Maximum Allowable Vibration Level at Workplaces Category 2

	Maximum Allowable Vibration Level at Workplaces Category 2: Transportation - Technological Type							
	Maximum Limit Values: Xo, Yo, Zo							
Geometric Mean	Vibro Acceleration				Vibro Speed			
Hz	m/s ²		dB		m/s ²		dB	
112	1/3 octave	1/1 octave	1/3 octave	1/1 octave	1/3 octave	1/1 octave	1/3 octave	1/1 octave
1.6	0.25		108		2.50		114	
2.0	0.22	0.40	107	112	1.80	3.50	111	117
2.5	0.20		106		1.30		108	
3.15	0.18		105		0.98		105	
4.0	0.16	0.28	104	109	0.63	1.30	102	108
5.0	0.16		104		0.50		100	
6.3	0.16		104		0.40		98	
8.0	0.16	0.28	104	109	0.32	0.63	96	102
10.0	0.20		106		0.32		96	
12.5	0.25		108		0.32		96	
16.0	0.32	0.56	110	115	0.32	0.56	96	101
20.0	0.40		112		0.32		96	
25.0	0.50		114		0.32		96	
31.5	0.63	1.10	116	121	0.32	0.56	96	101
40.0	0.79		118		0.32		96	
50.0	1.00		120		0.32		96	
63.0	1.30	2.20	122	127	0.32	0.56	96	101
80.0	1.60		124		0.32		96	
Corrected and equivalent corrected levels and their values		0.28		109		0.56		101

Source: Sanitary Norms "Industrial vibration, vibration in residential and public buildings", CH 2.2.4/2.1.8.556-96

6) Acquisition of Environmental Approval

Regulation on the Procedure for Environmental Impact Assessment indicates following the implementation procedure. The cost of state environmental review is free.

This Project is categorized as a road project which corresponds to the economic activities subject to mandatory EIA. Preliminary EIA report (Draft) was compiled and submitted to MOTR in the middle of March 2018. MOTR submitted Preliminary EIA report to SAEPF and received a positive conclusion at the beginning of April. EIA report has been unconditionally approved.

First Stage: Decision on the need for an EIA

The need for an EIA is determined whether it is necessary to evaluate the planned activity in terms of the environmental impact. The decision is made by the initiator of the project on the basis of the

list of activities subject to the EIA specified in Annex 1 to this Regulation. Conducting an EIA in full is mandatory for activities related to hazard category I, and EIA in a reduced scope is carried out for activities related to the II and III categories of danger.

Second Stage: Preliminary EIA (Pre-EIA)

The second stage of the EIA is the preliminary EIA accompanying the feasibility study of the project, which is carried out for the purpose of comprehensive analysis of the possible consequences of project implementation, evaluation of alternatives, development of an environmental management plan, and containing following items. The results of the preliminary impact assessment are documented in the form of an EIA report (Statement on Environmental Impact: EIS).

- 1) A brief description of the proposed activity;
- 2) An assessment of the existing state of the environment of the territory within the potential zone of potential impact of the proposed activity;
- 3) Assessment of possible types of impact of the proposed activity on the environment;
- 4) Assessment of the impact of alternative options on the proposed activity on the environment;
- 5) Forecast and assessment of changes in the state of the environment during the construction, operation and decommissioning of the planned activities;
- 6) Development of measures for the prevention, minimization and / or compensation of significant adverse environmental impact during the construction, operation and decommissioning of the planned activities;
- 7) Conclusions on the results of the EIA;
- 8) EIS.

➤ <u>Third Stage: EIA</u>

The third stage of the EIA is the assessment of the environmental impact of the planned activity, which accompanies the project documentation, containing a more detailed integrated assessment of the impact, specified technical solutions and a set of measures to prevent, mitigate and minimize the impact of planned activities, monitoring of the environment, design standards for emissions, discharges of pollutants, generation and disposal of waste, and statement on environmental consequences. The results of the impact assessment are documented in a section of "Environmental Protection" of the project document.

Fourth Stage: Post-Project Analysis

The fourth stage of the EIA is a post-project analysis carried out one year after the start of the activity to confirm the environmental safety and adjust the environmental measures.

(2) Participants in the EIA Process and Their Roles

Participants in the EIA process is the initiator of the project, the executor of EIA, local administrations and self-government bodies, the authorized state body in the field of environmental protection, and the public (public organizations, population). Participants and their responsibilities are shown in Table 1-3-18.

Participants	Responsibilities
Initiator of the project	 To organize an EIA during the design process
	· To provide information and data concerning the planned activities, and consult
	with the public
	· To submit EIA documentation for state environmental review and provide
	access to EIA documentation for the public concerned
	To provides funding for the EIA
Executor of EIA (EIA	• To collect and analyze information on the state of the environment and the socio-
consultant)	economic conditions in the territory where the activities is planned
	 To determine the scope and degree of detail of the EIA work
	· To conduct EIA work including analysis of alternative options, forecast of the
	impact, development of prevention/ mitigation measures and monitoring plan
	To prepare EIS and EIA documentation
Local administrations and	To inform the public about the planned activity
self-government bodies	To assist in organizing and conducting public consultation
Authorized state body	To provide consulting assistance to all participants in the EIA process
	· To conduct state environmental review of EIA documentation and provide
	information on the results of the review
	• To carry out environmental monitoring at the project implementation stage
The public	• To participates in the consultations held within the framework of the EIA at all
	stages of its implementation
	 To receive information on any proposals concerning activities

 Table 1-3-18
 Participants in the EIA Process and Their Responsibility

Source: Regulation on the Procedure for Conducting Environmental Impact Assessment

The state executive authority in the field of environmental protection is the State Agency for Environmental Protection and Forestry (SAEPF). The task of SAEPF are as follows;

- implementation of policy and regulation in the field of environmental protection and use of natural resources, as well as, accounting, assessment of the state of natural components and resources, including forestry;
- prevention of the impact of possible negative consequences of the implementation of the planned management, economic and other activities on the environment by conducting state ecological expertise;
- establishment and development of international cooperation in the field of environmental protection, environmental safety and nature management.

Organization structure of SAEPF central office is shown in Figure 1-3-5

Source: Prepared by study team based on website of SAEPF

Figure 1-3-5 Organization Structure of SAEPF Central Office

Department of State Environmental Expertise is responsible for the EIA review. SAEPF has regional office in each province, and EIA review for the activities classified in hazard category I is conducted at central office and those in hazard category II and III is conducted at regional office. SAEPF regional office is authorized to approve tree cutting in that region.

1-3-4 Comparative Study of Alternatives

Figure 1-3-6 and Table 1-3-19 show the results of comparative study of alternatives of this project including no project case (zero option). Three routes other than the zero option, route A (bridge position is downstream of the existing bridge), route B (rehabilitation of the existing bridge), route C (bridge position is upstream of the existing bridge), are considered from the point of stream condition, road alignment, workability, environmental and social impact, construction cost, etc. As a result, route C was selected by the reason that stream condition is relatively stable in the future, the sharp curve can be improved sufficiently, and high accident prevention effect can be expected although cutting trees is necessary, and workability and construction cost are also good.

Figure 1-3-6 Alternative Routes

		•	
Zero Option (No project)	Route A (Downstream of the existing bridge)	Route B (Rehabilitation of the existing bridge)	Route C (Upstream of the existing bri
is a high possibility of the river channel ion in the future	There is a high possibility of the river channel transition in the future	There is a possibility of the river channel transition in the future	There is a possibility of the river cha transition slightly in the future
Fair A	Fair A	Good	Very Good
ng pipe is installed under the approach n Taraz side, but capacity might be cient	Install a crossing pipe under the approach road on Taraz side	l Install a crossing pipe under the approach road on Taraz side	Install a crossing pipe under the appron
Fair	Good O	Good	Good

f Alternatives
0
e Study
parative
Com
Ĕ
Result c
3-19
<u> </u>
Table 1

Stream T1 conditions at tr river clossing point Measures ro				
Measures Measures no no no no no no no	here is a high possibility of the river channel ransition in the future $$ \ensuremath{Fair} $$	There is a high possibility of the river channel transition in the future $$\Delta$$ Fair	There is a possibility of the river channel transition in the future Good	There is a possibility of the river channel transition slightly in the future Very Good
	rrossing vipe is installed under the approach oad on Taraz side, but capacity might be isufficient	Install a crossing pipe under the approach road on Taraz side	Install a crossing pipe under the approach road on Taraz side	Install a crossing pipe under the approach road on Taraz side
	Fair	Good O	Good	Good O
Road Alignment	Number of vurves 4 (R=100,500,1000,60) It is existing alignment, the curve radius is mall and not suitable for GOK's request Poor	 Number of curves , 5 (R=200,150,210,1000,150) It is not suitable for other requests because the number of curves is the largest and the curve radius is small Fair 	- Number of curves . 4 (R=150.500, 1000, 150) It is existing alignment, and the first curve is modified, but it is not enough for other requests because the number of curves is large Good O	 Number of curves . 3 (R=1000.650,150) It is suitable for other requests because the number of curves is the small and the curve radius is large Very Good
	100.1	101	0	
Length)	•Bridge 125m •Road 1115m •Total 1,240m Fair ∆	•Bridge 105m •Read 1115m Total 1.220m Good O	•Bridge 90.5m •Road 1.112m Total 1.203m Very Good
Workability	Ŷ	 Existing bridge can be used during construction Bridge length is long at 125 m, it takes time to construct 	 Detour route (temporary bridge) is necessary to replace existing bridge 	• Existing bridge can be used during construction
		Fair A	Fair A	Very Good
Additional TI measures to be of taken by GOK	here is no burden by GOK, but maintenance f existing bridges is necessary continuously	Relocation of telephone poles are necessary	There is no burden on GOK since existing ROW is used	Relocation of telephone poles are necessary
	Poor	C Good C	Very Good @	Good
-1 Environmental -1 and social -1 impact -1 gg	Land acquisition and tree cutting are not ecessary Since road Alignment doer not change, cidents may occur frequently in the future There is a risk of falling bridge, which has a reat influence on residents lives and conomic activities	 Private land acquisition is necessary Pond on right side of road is affected Tree cutting along the road and left bank is necessary The risk of falling bridge disappear and the safety of raffic increases, but the effect of safety of reaffic increases, but the effect of is low. 	 Land acquisition is not necessary Tree cutting along the road is necessary, but the number of tree to be cut is smallest The risk of falling bridges disappear and the safety of traffic increases, but the effect of accident prevention by alignment improvement is low 	 It is necessary to change the public land to land a not necessary Tress cutting along the road and right bank is necessary The risk of falling bridges disappear and the safety of traffic increases, in addition the effect of accident prevention by alignment improvement is high
	Poor	K Fair A	Good O	Very Good O
Construction Cost	n	12 Fair Δ	[.] Good	1,0 Very Good
Evaluation St	tecause there is a risk of falling bridge, the tudy team will not recommend it	Construction cost is the highest compared to other routes, stream condition is also unstable in the future, and anvironmental and social impact is bigger than other routes. So study team dose not recommend route A	Construction cost is high compared to other routes, stream condition is also unstable in the turure, and accident prevention effect can not be obtained. So study team dose not recommend route B	Stream condition is relatively stable in the future. Alignment is suitable for the request of GOK, and accident prevention effect is high despite the impact on the natural environment. So study team recommend route C

1-3-5 Scoping

The scoping of the Project is shown in Table 1-3-20.

Cata		Environment-1 1	Assess	ment	
gory	#	Social Item	Before/Under Construction	Operation	Reason of Assessment
	1	Air Quality	B-	B±	Construction Stage : Tentatively air quality is expected to deteriorate because of the emission gas arising from construction machinery and vehicles. Operation Stage : Due to the increase of traffic volume, emission gas arising from vehicles is expected to affect air quality. On the other hand, impact of dust will be mitigated because of the improvement of road surface.
	2	Water Quality	B-	B-	Construction Stage : Water quality of Urmaral river is expected to deteriorate due to muddy water during earth work. Also, discharged water from construction machinery and worker's camp might contaminate water. Operation Stage : When raining, oil spilled on the road and dust are concerned to flow into the rivers.
sures	3	Wastes	B-	D	Construction Stage : Abandoned soil and wastes arising from construction works are expected to generate. Operation Stage : Waste generation affecting circumstances are not expected because this project is reconstruction of existing bridge and road.
Pollution Mea	4	Soil Contamination	B-	D	Construction Stage : Oil and concrete mortor spill from the construction machinery and vehicles might affect soil. Operation Stage : Soil Contamination affecting circumstances are not expected because this project is reconstruction of existing bridge and road.
	5	Noise & Vibration	B-	B-	Construction Stage : Noise and vibration arising from the operation of construction machinery and vehicles is expected. Operation Stage : There are houses along the Project road. Due to the increase of traffic volume, noise level is assumed to deteriorate.
	6	Subsidence	D	D	No work triggering subsidence is expected because this project is reconstruction of existing bridge and road.
	7	Offensive Odor	B-	D	Construction Stage : Offensive odor generated from emission gas of construction machinery and vehicles, and daily waste is expected. Operation Stage : Offensive odor generation affecting circumstances are not expected because this project is reconstruction of existing bridge and road.
	8	Sediment	D	D	Impact to the sediment is not expected because this project is reconstruction of existing bridge and road.
	9	Protected Areas	D	D	No national park and protected area exist in and around the project site.
ironment	10	Ecosystem	B-	D	Construction Stage : Impact to the surrounding ecosystem is assumed and tree cutting is expected. Operation Stage : No impact to ecosystem is expected at the operation stage because this project is reconstruction of existing bridge and road.
ural Env	11	Hydrology	С	С	Construction/ Operation Stage : Hydrological impact is expected due to the construction of piers of new bridge in the river and demolition of existing bridge
Nat	12	Topography & Geology	D	D	Construction Stage : Impact to topography and geology is not expected because large scale earth cut and earth fill are not expected to be implemented.

Table 1-3-20Scoping for the Project

Cata		Environmental and	Assessi	ment	
gory	#	Social Item	Before/Under Construction	Operation	Reason of Assessment
	13	Resettlement	С	D	Construction Stage : Land acquisition and involuntary resettlement are not considered necessary because this project involves the reconstruction of the existing bridge and road, and the project site is owned by government. However, impact might occur depending on the road alignment. Operation Stage : Additional land acquisition and resettlement is not necessary at operation stage.
	14	The Poor	С	B+	Construction Stage : The poor might be included in the Project Affected Persons (PAPs) in case resettlement happen. On the other hand, positive impact to the poor is also expected by the increase of employment opportunity arising from the construction works. Operation Stage : Positive impacts to the poor such as the improvement of access to social service, market and working place are expected because of the improvement of the Project road and bridge.
	15	Ethnic Minority & Indigenous Minority	D	D	Kyrgyz is multiethnic country and ethnic minority exist in project site. But impact to the ethnic minority and indigenous minority is not assumed because this project involves the reconstruction of the existing road and bridge.
	16	Local Economy such as Employment and Livelihood etc.	B+	B+	Construction Stage : The number of tentative employees engaging in the construction works is expected to increase. Operation Stage : Improvement of convenience of road will vitalize economic activities in project area and positive impact to employment opportunity and local economy is expected.
Environment	17	Land Use and Utilization of Local Resources	B-	D	Construction Stage : Land use as construction work office, worker's camp, plant facility and quarries are expected and it might affect to the land use and local resources. Operation Stage : No impact to land use is expected at operation stage because this project is reconstruction of existing road and bridge.
Social	18	Water Usage	С	С	Construction Stage : Muddy water during construction might affect to environment in case water usage of rivers is observed. Impact to the residents who use river water for irrigation and daily life water is concerned if river water is used for construction work. Operation Stage : When raining, impact due to influx of oil spilled and dust on the road is concerned in case water usage of rivers is observed.
	19	Existing Social Infrastructures and Services	В-	B+	Construction Stage : Negative impact to the traffic condition is expected by moving of construction machinery near the Project site. Relocation of power pole and pylon might be necessary. Operation Stage : Due to the traffic safety measures, safety of the project road is expected to improve. The improvement of traveling performance of project road causes the decrease of traffic volume in community road and convenience of surrounding roads and access to social service is expected to increase.
	20	Social Institutions such as Social Infrastructure and Local Decision- making Institutions	D	D	No impact to social institutions and local decision-making institutions is expected since this project involves the reconstruction of the existing bridge and road.
	21	Misdistribution of Benefit and Damage	D	D	This project will not give unfair damage and benefit to surrounding area because it's the reconstruction of the existing bridge road.
	22	Local Conflict of Interests	D	D	This project will not cause local conflict of interests because it's the reconstruction of the existing bridge and road.
	23	Cultural Heritage	D	D	No cultural heritage does exist around the Project site.

Cate		Environmental and	Assessi	ment		
gory	#	Social Item	Before/Under Construction	Operation	Reason of Assessment	
	24	Landscape	B-	B±	Construction Stage: Construction work and tree felling will impair surrounding landscape. Operation Stage: Landscape of project area might be improved because of new bridge, however negative impact caused by tree felling is also expected.	
	25	Gender	B-	D	Construction Stage: Wage discrimination between men andwomen might be observed.Operation Stage: No impact to gender is expected atoperation stage because this project involves thereconstruction of the existing road and bridge.	
	26	Right of Children	D	D	Passport is necessary for labor contract in Kyrgyz and 16 years or above can work, therefore no negative impact to right of children is expected.	
	27	Infectious Diseases such as HIV/AIDS	B-	D	Construction Stage: Infectious diseases such as HIV/AIDSare expected to spread due to the inflow of constructionworkers into the Project site.Operation Stage: No impact to infectious diseases isexpected at operation stage because this project involves thereconstruction of the existing road and bridge.	
	28	Working Condition including Occupational Safety	B-	D	Construction Stage <th:>Working condition includingoccupational safety for construction workers shall beconsidered to avoid occupational accident.Operation Stage: Negative impact to worker's is notexpected at operation stage because this project involves thereconstruction of the existing road and bridge.</th:>	
lers	29	Accident	В-	B±	Construction Stage <th:>Accidents during construction woksand accidents involving a third person are expected tohappen.Operation Sage: The number of accidents is expected to bedecreased due to the improvement of the road alignment andintroducing safety measures. On the other hand, increase ofthe number of accident is expected because of the increase oftraffic volume and travel speed.</th:>	
Oth	30	Global Warming	В-	B±	Construction Stage : CO ₂ emission from construction machinery is expected to increase, however the impact is expected to be limited. Operation Stage : CO ₂ emission is expected to increase due to the increase of traffic volume. On the other hand, CO ₂ emission per vehicle is likely to reduce since CO ₂ emission goes down due to the proper travel speed, and in the long run, the volume of CO ₂ emission is expected to decrease.	
Assessi	nent	Level A+/- : B+/- :	Significant pos Some positive/	sitive/negativ negative imp	e impact is expected. act is expected.	
			E i ci		1	

C+/- : Extent of impact is unknown.

D : No impact is expected.

1-3-6 Terms of Reference

The Terms of Reference (TOR) for the environmental and social consideration of the Project is shown in Table 1-3-21 based on the scoping of the Project (Table 1-3-20).

	ĩ
Investigation Item	Investigation Method
i. Confirmation of air quality standard in	i. Investigation into existing documents
Kyrgyz, Russia and WHO	ii. Implementation of baseline survey along
ii. Understanding of current air quality	the Project road
iii. Understanding of the future traffic	iii. Forecast of impact based on the traffic
volume based on future traffic demand	demand analysis
	Investigation Itemi.Confirmation of air quality standard in Kyrgyz, Russia and WHOii.Understanding of current air quality iii.understanding of the future traffic volume based on future traffic demand

 Table 1-3-21
 TOR of Environmental and Social Considerations Survey

Survey Item	Investi	gation Item		Investigation Method
	v. Confirmation o	f the location of school	iv.	Site investigation and investigation into
	and clinic whic	h are affected easily by		existing documents
	air pollution	5 5	v.	Investigation into construction details
	v. Impact during o	construction		C
Water Ouality	. Understanding	of current water quality	i.	Implementation of baseline survey at
	of Urmaral rive	r		Urmaral River
	i. Confirmation o	f the water usage of	ii.	Site investigation and hearing survey.
	river water	6	iii.	Investigation into construction details
	ii. Impact during o	construction		
Wastes	Disposal metho	d of construction	i	Investigation into existing documents
(dblob	wastes			and hearing survey to related
	i Status of waste	collection around the		organizations
	Project road	concerton around the	ii	Site investigation and hearing survey
Soil Contamination	Provision for of	l spill during	ii.	Investigation into construction details
Son Containination	construction	n spin during	1.	investigation into construction details
Noise & Vibration	Confirmation o	f noise and vibration	i	Investigation into existing documents
	standard in Kyr	gyz and Russia	ii.	Implementation of baseline survey along
	i. Understanding	of current noise and		the Project road
	vibration level		iii.	Site investigation and investigation into
	ii. Distance from t	he source origins of		existing documents
	noise and vibra	tion to residential area,	iv.	Investigation into construction details
	clinic and scho	01		
Offensive Oden	IV. Impact during o		:	Investigation into construction datails
Easewater	Endergened and		1. :	Investigation into construction details
Ecosystem	Lendangered spe	and farma	1.	and beging survey to MOTD and least
	1. Impact on flora	and launa		and hearing survey to WOTK and local
				residents
TT 1 1	TT 1 . 1	C (1 1 1	11. ·	Site investigation
Hydrology	. Understanding	of current hydrology	1.	Site investigation and investigation into
	condition	0.1		existing documents
	1. Confirmation o	t the extent of impact	11.	Investigation into construction details
	during construc	tion and operation stage		and river channel
Resettlement	. Consideration of	of minimizing	1.	Comparative study of alternatives
	i Confirmation o	f the extent of land	п.	related to resettlement site survey to
	acquisition and	resettlement		investigate the number and kind of
	ii. Assistance for A	ARAP preparation if		project affected structures, confirmation
	necessary	1 1		of land use
	v. Confirmation o	f RAP/ARAP prepared	iii.	Assistance of ARAP preparation based
	for IsDB projec	:t		on the Kyrgyz laws and regulations,
				JICA Guidelines and WP OP4.12
			1v.	and hearing survey to related
				organizations
The Poor	. Understanding	of the distribution of	i.	Site investigation and investigation into
	the poor			existing documents
	. Understanding	of the status of land use	i.	Investigation into existing documents.
Land Use and	and the usage o	f local resources		hearing survey and site investigation
Utilization of Local	i. Confirmation o	f land necessary for	ii.	Discussion with MOTR and
Resources	construction (C	onstruction work office,		confirmation of plan
	plant facility. or	uarry etc.)		1
N 7 / T 7	. Understanding	of the status of water	i.	Hearing survey and site investigation
Water Usage	usage			
Existing Social	. Understanding	of existing	i.	Hearing survey and site investigation,
Infrastructures and	infrastructure a	nd social services		investigation into existing documents
Services				6 6
т 1	. Understanding	of the present condition	i.	Site investigation
Landscape	of the flora	1		C
	. Understanding	of the status of gender	i.	Investigation into existing documents,
Gender	U	e		hearing survey to related organizations
				and contractors

Survey Item	Investigation Item	Investigation Method
Infectious Diseases such as HIV/AIDS	i. Understanding of the status of HIV/AIDS	i. Investigation into existing documents and hearing survey to related organizations
Working Condition including Occupational Safety	i. Understanding of labor safety measures	i. Investigation into existing documents, hearing survey to related organizations, Investigation into construction details
Accident	 i. Understanding of the number of accidents ii. Confirmation of safety measures during construction iii. Confirmation of traffic safety measures 	 i. Investigation into existing documents, hearing survey to related organizations ii. Investigation into the safety measures during construction iii. Investigation into traffic safety measures
Global Warming and Climate Change	 i. Confirmation of construction plan ii. Understanding of the volume of future CO₂ emission based on future traffic demand 	 i. Investigation into construction details ii. Forecast of the impact based on the traffic demand analysis and design speed

1-3-7 Baseline Survey

As a baseline survey of this project, surveys of air quality, water quality, noise and vibration, flora and fauna were conducted. Table 1-3-22 shows the outline of the baseline survey. The survey points of each survey are shown in Figure 1-3-7. The results are described in Table 1-3-23.

			J
Item	Parameters	Survey Point	Date
Air Quality	TSP, CO, SO ₂ , NO ₂ , Pb, Wind	2 points at Project site	24-25 November 2017
	Direction, Wind Speed		
Water Quality	pH, SS, DO, Cadmium, Lead,	Urmaral river	24 November 2017
	Arsenic, Mercury, etc		
Noise & Vibration	Equivalent noise, maximum	2 points at Project site	24-25 November 2017
	noise, vibration acceleration		
Flora & Fauna	-	Project site	November 2017

Fable 1-3-22	Outline of Baseline Survey
---------------------	-----------------------------------

Source: JICA Study Team

Figure 1-3-7 Baseline Survey Points

1-3-8 Result of Environmental and Social Survey

The result of the environmental and social survey is shown in Table 1-3-23 based on the TOR shown in Table 1-3-21.

Survey Item	Survey results					
Air	As a res	As a result of the baseline survey at two points of project sites, both sites show below				
Contamination	environm	ental standards (av	erage 24 hours). Th	e outline of the su	rvey result is shown	below.
	Table 1-3-24 Result of Air Quality Survey					
		Parameters	MPC*(mg/m ³)	Ak Dobo (0+400)	Kyzyl-Sai (1+160)	
		SO_2	0.05	0.001±0.0003	0.001±0.0003	
		NO ₂	0.04	0.04±0.015	0.04±0.01	
		СО	3.0	1.1±0.22	1.6±0.32	
		TSP	0.15	< 0.1	< 0.1	
		Pb	0.0003	< 0.0001	< 0.0001	
	* MPC: Maximum Permissible Concentrations Source: JICA Study Team					
	There are	no schools, medic	al facilities, etc. wł	nere the influence	of air pollution is pa	urticularly
	concerned	d along the project r	oad, but considerin	g the influence on	residents' lives, a con	nstruction
	plan and	construction method	od to minimize the	e influence on the	e air quality is cons	idered. In
	addition,	it was confirmed the	at exhaust emission	control type of co	nstruction vehicle wi	ll be used
NV 4	and avoid	unnecessary idling	5. 	· 1 · 1 · 1		14 '
Contamination	A baselin	low Except for suc	need near Urmaral	river bridge. The	outline of the surve	y result is
Contamination	The reaso	on is considered the	t the water flow o	f Urmaral river is	s very fast and the o	eology of
	mountain	ous area in upstreat	n of the river is bri	ttle. At the time of	f the survey, the wate	er volume
	was low,	but during the floo	d period in June to	August, the sedir	nent collapse seems	to cause a
	considera	considerable increase in the amount of sediment transported.				
	Table 1.2.25 Desult of Water Oracle Sciences					
	I able 1-3-25 Kesult of Water Quality Survey Demonstern MDC*					
		r arainete	15 1	5-8 5		
		Suspended Solids	(mg/l)	< 0.75	1.0	
		Dissolved Oxygen	(mg/l)	>4	11.0	
		Mineral Oil (mg/d	m^3	$\frac{2}{<0.3}$	<0.02	
		Cadmium (mg/dm	3)	< 0.001	<0.02	
		L and (mg/dm ³))	< 0.001	<0.0002	
		Leau (Ing/ulli)		< 0.01	<0.002	
		Arsenic (ing/diff)		< 0.01	<0.002	
		* Maximum Damaian) <	0.0005	< 0.003	
		· Maximum Permissi	ible Concentrations fo	or drinking and nou	senord water	
	As a resu	lt of interview surv	yey on the residents	s around the proje	ect road, it was confi	rmed that
	livestock	may drink water of	Urmaral river, but	it is not used oth	er than that. Constru	ction plan
	/ construc	will be considered a	event water pollution	on and sediment	discharge at the time	of water
Wastes	Abandon	ad soil and wastes a	rising from constru	ction works (such	as construction wast	and soil)
wastes	are expect	ted to be generated	Daily waste genera	ation is expected f	rom the contractor's	office and
	labor carr	np. It was confirme	d that construction	waste materials	(constructed soil and	l concrete
	shells) etc	generated in this	project will be reuse	ed as much as pos	sible in this project. I	t was also
	confirmed	d that waste materia	ls and waste oil ger	nerated from cons	truction machinery th	nat cannot
	be reused	will be properly di	sposed at approved	l disposal sites. In	the target area of the	is project,
	household	d waste is regularly	collected by local g	governments and t	ransported to the fina	l disposal
G 1	site.		1.6 4		1 1 1 1	<u> </u>
Soll	O_{11} and c	oncrete mortar spil	I from the constru	ction machinery a	and vehicles might a	ttect soil.
Contamination	Leakage i	usually occurs due t	o inadequate maint	enance of constru	ction machinery. Stri	ct control

Table 1-3-23 Result of Environmental and Social Survey

Survey Item	Survey results							
	for technical maintenance will be performed in order to prevent any spill and as a result							
	contamination of the soil around the project area.							
Noise and Vibration	Noise measurement results showed some excess of noise maximum permissible level on Ak Dobo (PK 0+400), on 25 November 2017 at 3:00 (78 dB) and 6:00 (92 dB), and Kyzyl Sai (PK 1+160), on 25 November at 2:00 (89 dB) and 8:00 (94 dB). The recorded excess of MPL of noise can be regarded as temporary and short-term. This can be explained by the cargo traffic specifically when truckers prefer to cross the Kyrgyz-Kazakh border at night time, or early in							
	Measuring of vibration indicated that there is no meaningful excess of permissible vibrations levels. The outline of the survey result is shown below.							
	Table 1-3-26 Result of Noise & Vibration Survey							
	MPL Ak Dobo (0+400) Kyzyl-Sai (1+160)							
	Noise Level (dB) 75 Day (8-22) 52-68 Day (8-22) 45-72 Night (22-8) 76-92 Night (22-8) 74-94							
	Vibration Level (dB) 108 Day (8-22) 71-98 Day (8-22) 75-101 Night (22-8) 72-79 Night (22-8) 74-94							
0.00	Note: The numerical value is the minimum and maximum value of the measurement date.							
odors	Daily wastes management is to be organized in such a manner to prevent offensive odors occurrence. Contractor has to establish agreement with Bakai-Ata village administration for waste management.							
Ecosystem	 waste management. 1. Fauna: According to the Survey results, there is no endangered live species in the Project area. Animals observed during survey are as following: 							
Hydrology	 Mammals: mouse, nedgenog, coyotes, toxes Birds: pigeons, sparrows, Rooks. Reptiles and amphibians: water snake, frogs. Fish species are represented only with brown trout and Issyk Kul marinkas, several kilometers upstream the Urmaral river, but no fish were observed around project site. Flora: Valuable and highly valuable wood species (walnut and juniper) are not detected in the project area. Around 300 trees and shrubs along the road and river bank are necessary to be cut or replant, but serious impact to ecosystem is not expected since these trees are widespread species all over the country. These trees are close to busy roads and between the settlements, so they do not serve as habitat for birds. Impact by new bridge construction: Concrete casting of bridge piles is planned in river bed. It is necessary to prepare temporary islands in the river during construction, thus narrowing the cross section of the river is expected. Round shape pile will be applied to correspond to the provide section. 							
	change of river flow.2. Impact by demolition of existing bridge: Accumulation of driftwood will be avoided by reducing the number of piers in the river. There is a possibility of a river channel transition at the time of flooding.							
Resettlement	Four alternatives including the zero option were compared and the optimum plan was adopted. There are many residential and several commercial facilities along the project road, but the road alignment was examined with a policy to avoid the influence on these structures as much as possible. As a result, the land required for the implementation of this project is only the public land and land acquisition does not occur. There are no residents living in the site, so there is no involuntary resettlement. It also does not affect other private property.							
The Poor	impact is expected by the increase of employment opportunity arising from the construction works.							
Land Use and Utilization of Local Resources	 For construction needs it is recommended to utilize Open pit #1 which is located in south-western direction, 8.5 km from the bridge with approximate capacity of 300.000m³ and Open pit #2 located in eastern direction approximately 3.5 km from the bridge (volume about 324.000m³). Local authorities have permission of use OP#1; it is necessary to obtain permission of use OP#2. It is planned that bonded warehousing of construction materials to be performed in DEU#47 (under jurisdiction of MOTR), Kyzyl Sai village, approximately 1 km away from project site. Nowadays, secured area of DEU#47 is utilized as a parking for road construction machineries. Total area of DEU#47 is about 1ha Plants construction sites. Concrete plant might be installed a short distance away from 							

Survey Item	Survey results					
	DEU#47 (distance is about 0.5km) at a place used to be utilized for bitumen storage. Total area is about 1ha.					
Water Usage	According to the interview data, local inhabitants never utilize Urmaral river water for their needs. Sometimes cattle might use it for drinking.					
Existing Social Infrastructures and Services	needs. Sometimes cattle might use it for drinking. Taraz-Talas motor road is important transport route for the local people from the point of economic and social life views. Sharp curves before bridge and bridge imminent condition causes a high risk of accidents. As a result, traffic jams and road capacity decrease. The Project will ensure cargo transportation safety, allow for easier and safer traffic in general, stimulate cross-border economic activity and will make this transport corridor more attractive. Improved road infrastructure and the road section will be conductive to safer traffic both for drivers and local people who use this bridge in their daily needs It is planned that existing (old) bridge will be utilized during the construction period of the project. Once the new bridge is constructed, the existing bridge will be demounted to construct the protection dike. Speed limit around construction site will be lowered for the period of construction work implementation. Moving of construction machinery near the Project site will also affect to the traffic condition during construction.					
	Removal and relocation of sign	boards installed along the ro	badside such as traffic signs and			
Landscape	Construction work will temporary river bank is necessary and it will bridge might be a new landmark of	impair surrounding landscap also affect to the landscape of this area.	be. Tree felling along the road and of the site. On the other hand, new			
Gender	According to the statistical data there is no gender issue in Kyrgyz Republic for the is no court proceedings recorded; there is no inequality in between males and female either. However, in the country, especially in suburban areas where there is a lack of labor, stealing the girls for wedding is still pending. There is a huge difference in between wage of male and female (women get less than 70% of men's salary). Construction works give the opportunity for finding job					
Infectious Diseases such as HIV/AIDS	According to the Ministry of Healthcare, the number of HIV infected increases annually. Officially registered number of HIV-infected in 2011-2015 is 3,222. Table 1-3-27 The Number and Ratio of HIV/AIDS infected by Region (2011- 2015)					
	Region/City Number (person) Ratio					
	Osh	797	24.7%			
	City of Osh	274	8.5%			
	Jalal-Abad	373	11.6%			
	Batken	106	3.3%			
	Naryn	86	2.7%			
	Chui	925	28.7%			
	Yssyk-Kul	111	3.4%			
	Talas	63	2.0%			
	Bishkek	487	15.1%			
	Total	3,222 Ministry of Healtheans 201	100%			
	At this stage of the Project it is	planned to hire 100% of wo	b orkers of local population which,			
	means low risk of disease dissemination. To prevent this, Contractor will be responsible for workers' awareness rising by conducting regular instruction on safe behavior.					
Working Condition including Occupational Safety	Contractor is fully responsible to according to the legislation of K Project site, the Contractor's Safe oversee that every worker is provi boots) while on the shift. There is a labor law "Road No construction safety procedures in and sub-contractors and issues m on the consultant service side, th	ensuring proper working co yrgyz. With installation of a ty Engineer will ensure daily ided and is using safety gear (orms and Rules" related to Kyrgyz Republic, MOTR h inutes of the meeting with the e consultant will review the the plan from the project or	onditions and occupational safety dequate safety equipment on the safety briefings for workers, will hard hats, gloves, goggles, safety construction. Regarding to the olds a meeting with a contractor eir signatures. On the other hand, safety control plan made by the ner MOTR			

Survey Item	Survey results
Accidents	For the last 10 months of 2017, 695 people died in car accidents in Kyrgyz, and 771 people died
	in 2016. Total number of recorded car accidents from January to November 2017 is 5,197 and
	7,839 people got injured. 33.8% of the accidents occurred due to over speeding; entering an
	oncoming lane and overdriving violation - 14.4%. 20% of fatal accidents occurred due to
	maneuvering rules violation; 8.6% - due to alcohol intoxication. According to the interviews
	with the traffic police and DEU 47, 5 fatal accidents occurred in the past two years near the
	Urmaral River bridge, and 15 other accidents occurred over the past three years.
	There are no records on car and industrial accidents occurred during the construction process in
	Kyrgyz. In order to provide safety during Project implementation, all of the workers to follow
	construction safety regulations, wear personal Protective item (PPI). Flagman on both sides of
	the bridge during construction work is obligatory.
Global	Currently it is impossible to evaluate the volume of greenhouse gas emissions (CO ₂) for the
Warming	Project documentation is not prepared yet. All necessary calculations will be performed during
	Project Detail design.
Public	First and second public hearings were conducted on 3 October 2017 and 21 April 2018 in Kyzyl
Hearings	Sai and Ak Dobo villages, Ak Dobo village administration of Bakai-Ata district, Talas region.
	There were no negative comments from the participants. Local inhabitants positively accepted
	idea of Reconstruction Project preparation and expressed their hope for its early implementation.

1-3-9 Impact Assessment

The impact assessment based on the survey result in Table 1-3-21 is shown in Table 1-3-28.

Cate- gory	#	Environmental and Social Item Assessment at the Scoping Assessment base of the Result of Survey Before/Under Survey		t base on ult of ey	Reason of Assessment		
			Construction	Operation	Construction	Operation	
	1	Air Quality	B-	B±	B-	B±	<u>Construction Stage</u> : Tentatively air quality is expected to deteriorate because of the emission gas arising from construction machinery and vehicles. <u>Operation Stage</u> : Due to the increase of traffic volume, emission gas arising from vehicles is expected to affect air quality. On the other hand, impact of dust will be mitigated because of the improvement of road surface
Pollution Measures	2	Water Quality	B-	B-	B-	B-	Construction Stage : Water quality of Urmaral river is expected to deteriorate due to muddy water during earth work. Also, discharged water from construction machinery and worker's camp might contaminate water. Operation Stage : When raining, there is the concern that oil spilled on the road and dust will flow into the rivers.
	3	Wastes	B-	D	B-	D	Construction Stage : Abandoned soil and wastes arising from construction works are expected to be generated. Operation Stage : Waste generation affecting circumstances are not expected because this project involves the reconstruction of the existing bridge and road.
	4	Soil Contamination	B-	D	B-	D	Construction Stage : Oil and concrete mortor spill from the construction machinery and vehicles might affect soil. Operation Stage : Soil Contamination

 Table 1-3-28
 Impact Assessment based on the Result of Survey

			Assessment at the		Assessment base on		
Cate-	#	Environmental	Scopi	ng	the Res	ult of	Passon of Assassment
gory	#	and Social Item	Before/Under		Surv Before/Under	ey	Reason of Assessment
			Construction	Operation	Construction	Operation	
							affecting circumstances are not expected
							because this project involves the
							reconstruction of the existing bridge and road.
							Construction Stage : Noise and vibration
							arising from the operation of construction
	5	Vibration &	B-	B-	B-	B-	machinery and vehicles is expected.
							Operation Stage : There are houses along the
							Project road. Due to the increase of traffic
							No work triggering subsidence is expected
	6	Subsidence	D	D	N/A	N/A	because this project involves the
	0	Subsidence	D	D	1 1/2 1	1 1/2 1	reconstruction of the existing bridge and road.
							Construction Stage : Offensive odor
							generated from emission gas of construction
							machinery and vehicles, and daily waste is
	-		D	D	р	D	expected.
	/	Offensive Odor	В-	D	В-	D	Operation Stage : Offensive odor generation
							affecting circumstances are not expected
							because this project involves the
							reconstruction of the existing bridge and road.
							Impact to the sediment is not expected because
	8	Sediment	D	D	N/A	N/A	this project involves the reconstruction of the
							existing bridge and road
	9	Protected Areas	D	D	N/A	N/A	No national park and protected area exist in
					1011	1.011	and around the project site.
							Construction Stage : Serious impact to the
							surrounding ecosystem is not expected since
		Ecosystem				D	no endangered species and valuable species
					B-		observed at project site. But around 300 trees
	10		В-	D			along the road and river bank are necessary to
							Operation Stage : No impact to ecosystem is
4							expected at the operation stage because this
Jen							project involves the reconstruction of the
nno							existing bridge and road.
virc							Construction Stage : Temporary islands for
En							construction of bridge piles will narrow the
ral							cross section of the river.
atu							Operation Stage : River channel transition is
Z	11	Underslow	C	C	D	р	expected due to the demolition of existing
	11	пушоюду	C	C	D-	D-	bridge at the time of flooding, but serious
							impact is not expected since river channel
							transition is already assumed in the project
							plan. New bridge will not conduce debris and
							driftwood accumulation.
							Construction Stage : Impact to topography
	12	Topography &	D	D	N/A	N/A	and geology is not expected because large
		Geology					scale earth cut and earth fill are not expected
<u> </u>							to be implemented.
nt							Construction Stage : Private land acquisition
me	10		~		_		and involuntary resettlement are not necessary.
ron	13	Resettlement	C	ע	ע	ע	Operation Stage : Additional land acquisition
ivi							and resettlement is not necessary at operation
1 Eı							stage.
cia	14	The Deer	C	Di	Di	D	Construction Stage : No resettlement is
So	14	The FOOT	U	D+	\mathbf{P}_{\pm}	\mathbf{P}_{+}	expected, inerefore negative impact to the poor
		1		1	1	1	is not expected. Positive impact to the poor is

			Assessmer	nt at the	Assessment	t base on	
Cate-	#	Environmental	Scopi	ng	Surv	ey	Reason of Assessment
gory		and Social Item	Before/Under	Operation	Before/Under	Operation	
			Construction		Construction		expected by the increase of employment
							opportunity arising from the construction
							Works.
							such as the improvement of access to social
							service, market and working place are
							expected because of the improvement of the
							Project road and bridge. K vrgyz is multiethnic country and ethnic
		Ethnic Minority					minority exist in project site. But impact to the
	15	& Indigenous	D	D	N/A	N/A	ethnic minority and indigenous minority is not
		Minority					assumed because this project involves the
							Construction Stage : The number of tentative
							employees engaging in the construction works
		Local Economy					is expected to increase.
	16	such as Employment and	B+	B+	B+	B+	Operation Stage : Improvement of
		Livelihood etc.					activities in project area and positive impact to
							employment opportunity and local economy is
							expected.
		Land Use and Utilization of Local Resources					Construction Stage : Land use as construction
							quarries are expected and it might affect to the
	17		B-	р	B-	р	land use and local resources.
	17		Б	D	Б	D	Operation Stage : No impact to land use is
							expected at operation stage because this project involves the reconstruction of the
							existing bridge and road.
	10	Water Usage	С	С	D	D	No impact to water usage is expected since
	18						local inhabitants never utilize Urmaral river
							Construction Stage : Negative impact to the
							traffic condition is expected by moving of
		Evisting Secial					construction machinery and speed limit near
	19	Existing Social	B-	B+	B-	B+	necessary.
	17	and Services	D	2	D	2	Operation Stage : Due to the improvement of
							road alignment and traffic safety measures,
							safety of the project road is expected to
		Social					No impact to social institutions and local
		Institutions such					decision-making institutions is expected since
	20	as Social	D	D			this project involves the reconstruction of the
	20	Infrastructure and	D	D	N/A	N/A	existing bridge and road.
		making					
		Institutions					
		Misdistribution					This project will not give unfair damage and
	21	of Benefit and	D	D	N/A	N/A	benefit to surrounding area because it's the
		Damage					reconstruction of the existing bridge road.
		Local Conflict of	5	F	3.7.1.	3.7/ -	This project will not cause local conflict of
	22	Interests	D	D	N/A	N/A	interests because it's the reconstruction of the
							existing bridge and road.
	23	Cultural Heritage	D	D	N/A	N/A	site.

Cate-		Environmental and Social Item	Assessmer	nt at the	Assessment the Res	t base on ult of	on Reason of Assessment
gory	#		Pafara/Under Pafara/Under		ey	Reason of Assessment	
			Construction	Operation	Construction	Operation	
	24	Landscape	B-	B±	B-	B±	Construction Stage : Construction work and tree felling will impair surrounding landscape. Operation Stage : Landscape of project area might be improved because of new bridge, however negative impact caused by tree felling is also expected
	25	Gender	B-	D	B-	D	Construction Stage : Wage discrimination between men and women might be observed. Operation Stage : No impact to gender is expected at operation stage because this project involves the reconstruction of the existing bridge and road.
	26	Right of Children	D	D	N/A	N/A	Passport is necessary for labor contract in Kyrgyz and 16 years or above can work, therefore no negative impact to right of children is expected.
	27	Infectious Diseases such as HIV/AIDS	B-	D	B-	D	Construction Stage : Infectious diseases such as HIV/AIDS might spread due to the inflow of construction workers into the Project site. Operation Stage : No impact to infectious diseases is expected at operation stage because this project involves the reconstruction of the existing bridge and road.
	28	Working Condition including Occupational Safety	B-	D	B-	D	Construction Stage : Working condition including occupational safety for construction workers shall be considered to avoid occupational accident. Operation Stage : Negative impact to workers is not expected at operation stage because this project involves the reconstruction of the existing bridge and road.
	29	Accident	B-	B±	B-	B+	Construction Stage : Accidents during construction woks and accidents involving a third person are expected to happen. Operation Stage : The number of accidents is expected to be decreased due to the improvement of the road alignment and introducing safety measures.
Others	30	Global Warming	B-	B±	B-	B+	$\frac{\text{Construction Stage}}{\text{Construction machinery is expected to}}: CO_2 emission from construction machinery is expected to increase, however the impact is expected to be limited. \frac{\text{Operation Stage}}{\text{Operation Stage}}: CO_2 emission is expected to increase due to the increase of traffic volume. On the other hand, CO_2 emission per vehicle is likely to reduce since CO_2 emission goes down due to the proper travel speed, and in the long run, the volume of CO_2 emission is expected to decrease. \\$
Assess	men	t Level A+/- :	Significa	nt positiv	e/negative ir	npact is e	xpected.

A+/- : Significant positive/negative impact is expected.

B+/- : Some positive/negative impact is expected.

C+/- : Extent of impact is unknown.

D : No impact is expected.

N/A: No assessment conducted since assessed as D at scoping

1-3-10 Mitigation Measures and Cost for Mitigation Measures

As a result of the impact assessment, a significant negative impact is not expected. The expected mitigation measures necessary for the implementation of the Project are shown in Table 1-3-29 Environmental Management Preliminary Plan (EMP), based on the environmental and social items assessed at B- in Table 1-3-28. MOTR, supervising Consultant and Contractor are responsible for EMP implementation. Before starting Project implementation EMP to be revised by Consultant and Contractor. Thereupon approval of MOTR and Talas TREPD shall be obtained.

Supervising Consultant and Contractor will control all of the activities, disclose issues and give recommendations on how to improve situation, prepare monthly, quarterly and annual environmental reports. MOTR will review the reports and instruct additional measures if necessary. These activities on environmental protection are common for the construction works, therefore all the related expenses except sampling are included into the construction cost.

	Item	Impact	Measure	Implementing Agency	Responsible	Monitoring
Co	nstruction	Stage		rigency	rigency	and Thing
1	Air Quality	Air pollution by dust and exhaust gases from operating equipment	 Appropriate construction machinery is used and maintained regularly. Unnecessary idling is avoided. Water spraying is done regularly to avoid raising sand dust. In case backfilling materials and construction materials are stocked temporally in the stock yards or the construction site, these materials are covered by sheets to avoid scattering. Regular monitoring is carried out. In case the values get worse extremely compared to baseline survey's values and environmental standard, the reason shall be found out and necessary measures shall be taken. Line ministries and organizations are recommended to strengthen restrictions on ill-serviced vehicles. 	Contractor Consultant MOTR	MOTR	Sampling / Quarterly. Dust control / daily.
2	Water Quality	Water contaminatio n due to construction work	 Appropriate construction machinery is used and maintained regularly. Waste water arising from construction works is discharged after treatment in sand basin and not discharged into the river directly. Construction machinery is not washed in the rivers. Regular monitoring surveys are carried out. In case the values get worse extremely compared to baseline survey's values and environmental standard, the reason shall be found out and necessary measures shall be taken. 	Contractor Consultant MOTR	MOTR	Sampling /Quarterly Discharge control/ daily
3	Wastes	Construction waste and human wastes	 Wastes are recycled and reused as much as possible. Wastes unable to be recycled and reused are disposed to authorized facilities. Prohibition to spoil and to dump wastes into the river. 	Contractor Consultant	MOTR	Waste control/ daily

 Table 1-3-29
 Environmental Management Preliminary Plan (EMP)

	Item	Imnact	Measure	Implementing	Responsible	Monitoring
-	num	Impact	i i i i i i i i i i i i i i i i i i i	Agency	Agency	and Timing
	Soil	Oil and	Adequate technical maintenance of the	Contractor	MOTR	Leakage
	Contamin	concrete	machinery. Emergency Plan of Action	Consultant		control/ daily
1	ation	nortar	preparation.			
4		during				
		construction				
		work				
	Noise & Vibration	Noise and vibration during	 Appropriate construction machinery is used and maintained regularly. Low-noise construction machinery is 	Contractor Consultant MOTR	MOTR	Noise and vibration monitoring /
		construction machinery	utilized. • Construction works are done within			Quarterly
		exploitation	designated working hours.In case of night work, the permission of			Working hour control/
			is obtained and the notice of the work is notified to local residents in advance.			daily
5			Anti-noise screens are utilized if needed.Regular monitoring surveys are carried			
			out. In case the values get worse			
			extremely compared to baseline survey's			
			values and environmental standard, the reason shall be found out and necessary			
			measures shall be taken.Line ministries and organizations are			
			recommended to strengthen restrictions on ill-serviced vehicles.			
	Offensive	Offensive	• Appropriate construction machinery is	Contractor	MOTR	Waste
	Odor	odors due to	used and maintained regularly.	Consultant		contorl/ daily
		and human	Unnecessary idling is avoided.			
_		wastes.	• Line ministries and organizations are			
7			on ill-serviced vehicles			
			• Daily wastes management is to be			
			organized appropriately with village administration.			
	Ecosyste	Cutting of	• Trees which are not affecting	Local	MOTR	Review of
	m	trees	construction work are not cut to the extent possible.	Administration Contractor		tree cutting plan/ Before
10			• Existing trees are replanted as much as possible	Consultant		construction
			 Trees cutting plan development demands 			Tree
			Talas TREPD and Bakai-Ata village			monthly
	Hydrolog	Construction	• River bed construction works plan is	Contractor	MOTR	Visual
	y	works in	developed.	Consultant		observation/
		river bed:	• Construction management shall be			daily
		excavation,	performed considering water flow, such			
11		bridge piles	as installation plan for temporary objects			
11		concrete casting river	not hindering the water flow as much as			
		bed	possible.			
		alignment.	• After Project detailed plan of works			
		-	developed additional measures for impact			
<u> </u>		T 10	reduction might be needed.	<u> </u>	1.000	T 1
	Land Use	Land for	Contractor will develop gravel pit	Contractor	MOTR	Land
17	Utilization	will be	utilization plan including quarry schedule	Consultant		control /
L '	of Local	utilized.	and quantity according to construction plan			monthly
	Resources		for the period of project implementation.			

	Itom	Impost	Maasura	Implementing	Responsible	Monitoring
	Item	Impact	Ivicasui e	Agency	Agency	and Timing
	Existing	Temporary	• Approval with Traffic police is obtained.	Contractor	MOTR	Claims and
	Social Infractruct	detour	 Road signs and information boards is 	Consultant		complains on
	ures and	section of	installed properly.			operating
19	Services	existing road.				conditions
		0				registration
						and timely
						response / as
	Londoono	Cutting of	• Trace which are not offecting	Local	MOTE	needed Viguel
	Lanuscape	trees	construction work are not cut to the	Administration	MOTK	observation/
		uccs	extent possible	Contractor		monthly
24			• Existing trees are replanted as much as	Consultant		
			possible.			
			• Greening plan is considered for river			
			dike.			
	Gender	Wage	• The contract with the contractor prohibits	Contractor	MOTR	According to
25	issues	difference of	the wage difference by gender.	Consultant		the payment
		males and	• Contractor's employees account book is	MOTR		/ 1 or 2 times
	Infectious	Possible	• Stringent prohibition of drug	Contractor	MOTP	a monun Implementati
	Diseases	contact with	consumption	Consultant	MOTI	on schedule
	such as	HIV positive	 Advocacy work implementation 			advocacy
27	HIV/AID	person	• Establish communication with medical			work, daily
	S	_	personnel of local hospital to implement			schedule /
			measures for HIV/AIDS prevention and			monthly
	*** 1 *	T 1	control	a	1.075	
	Working	Labors	 Construction safety regulations provision 	Contractor	MOTR	Briefing /
•	Condition	incidents and	• Installation of adequate safety equipment	Consultant		weekiy
28	Occupatio	injuies	• Utilization of uniform, safety boots,			
	nal Safety		helmets, protective glasses, gloves.			
		T 11	• First aid provision system is established.	Q , , ,	MOTE	G (1
	Accidents	Incidents	Construction safety regulations provision Sefety educations are provided to	Contractor	MOTR	Constantly
		construction	• Safety educations are provided to	Consultant		
		works	with the contractor stipulates the			
			implementation of the safety educations.			
			• Construction workers put on safety			
20			equipment such as helmet and safety			
29			shoes.			
			• Sidewalks separated from carriage ways			
			are installed.			
			• Sign boards and road markings with a high regard for safety are placed			
			 Information such as construction plans 			
			are disclosed to the public.			
	Global	CO_2	• Appropriate construction machinery is	Contractor	MOTR	Constantly
30	Warming	emission	used and maintained regularly	Consultant		
20			Unnessessery idling is evolded			
		Oneration	Stage			
	Air	Air pollution	• Regular monitoring is carried out. In case	MOTR	MOTR	Sampling
	Quality	by exhaust	the values get worse extremely compared		1/10/11	Everv six
		gases from	to baseline survey's values and			months
		traffic	environmental standard the reason shall			
1			be found out and necessary measures			
1			shall be taken			
			• Line ministries and organizations are			
			recommended to strengthen restrictions			
			on ill-serviced vehicles.			

	Item	Impact	Measure		Implementing Agency	Responsible	Monitoring
2	Water Quality	Water contaminatio n due to spilled oil and dust on the road when raining	 Regulation Regulation	lar monitoring is carried out. In case alues get worse extremely compared baseline survey's values and onmental standard, the reason shall bund out and necessary measures be taken.	MOTR	MOTR	Sampling / Every six months
5	Noise & Vibration	Noise and vibration from traffic	 Regu the va to l enviro be fo shall Line recon on ill In ca Proje imme 	lar monitoring is carried out. In case alues get worse extremely compared baseline survey's values and onmental standard, the reason shall bund out and necessary measures be taken. ministries and organizations are mended to strengthen restrictions -serviced vehicles. se pot holes and damages on the ct road are found, they are repaired ediately.	MOTR	MOTR	Sampling / Every six months
11	Hydrolog y	River channel transition	 Regulary Regulary reaso measo If driver removies 	lar monitoring is carried out. In case serious problem is observed, the n shall be found out and necessary ures shall be taken. ftwood is accumulated, it should be ved immediately.	MOTR	MOTR	Constantly
24	Landscape	Condition of trees and greening plan	 Cond plan regula 	ition of replanted trees and greening of river dike are monitored arly.	Local Administration MOTR	MOTR	Constantly

1-3-11 Monitoring Plan

The monitoring plan of the Project in construction stage and first two years of operation stage is as follows. It will be reviewed and modified at the time of Detailed Design (D/D) if necessary. MOTR shall compile the results of monitoring survey and report to SAEPF / JICA every quarter during construction and every half year in operation stage.

Item	Parameter	Survey Point (same as each baseline survey)	Frequency (Upper: Construction Stage/ 2.5 years) (Lower: Operation Stage/ 2 years)	Implementing/ Responsible agency	Cost (Upper: Construction Stage/ 2.5 years) (Lower: Operation Stage/ 2 years)
Air Quality	NO ₂ , SO ₂ , CO, TSP, Pb	Ak Dobo (0+400) Kyzyl-Sai (1+160)	Construction stage: Quarterly Operation stage: Biannually	MOTR	1,000\$x10 =10,000\$ 1,000\$x 4 = 4,000\$
	Dust	In and around construction site	Construction stage: Daily (Visual observation)	Consultant/ MOTR	Included in construction cost
Water Quality	pH, SS, DO, Mineral Oil, Cadmium, Pb, Arsenic, Mercury	Urmaral River	Construction stage: Quarterly Operation stage: Biannually	MOTR	1,250\$ x10=12,500\$ 1,250\$ x 4 = 5,000\$
	Discharge control	In and around construction site	Construction stage: Daily (Visual observation)	Consultant/ MOTR	Included in construction cost
Wastes	Construction waste	In and around construction site	Construction stage: Daily (Visual observation and meeting with contractor)	Consultant/ MOTR	Included in construction cost

Table 1-3-30Environmental Monitoring Plan (EMoP)

Item	Parameter	Survey Point (same as each baseline survey)	Frequency (Upper: Construction Stage/ 2.5 years) (Lower: Operation Stage/ 2 years)	Implementing/ Responsible agency	Cost (Upper: Construction Stage/ 2.5 years) (Lower: Operation Stage/ 2 years)
Soil Contamination	Oil and concrete mortar leakage	In and around construction site	Construction stage: Daily (Visual observation and review of inspection record)	Consultant/ MOTR	Included in construction cost
Noise & Vibration	Noise & Vibration Level	Ak Dobo (0+400) Kyzyl-Sai (1+160)	Construction stage: Quarterly Operation stage: Biannually	MOTR	1,000\$ x10=10,000\$ 1,000\$ x 4 = 4,000\$
	Working hour	In and around construction site	Construction stage: Daily (Review of working record)	Consultant/ MOTR	Included in construction cost
Offensive Odor	Daily wastes	In and around construction site, worker's camp	Construction stage: Daily (Visual observation)	Consultant/ MOTR	Included in construction cost
Ecosystem	Tree cutting plan Tree condition	- In and around construction site	Before construction: Once or as needed Construction stage: Monthly (Visual observation and meeting with local administration)	Consultant/ MOTR	Included in construction cost
Hydrology	Water flow	Urmaral River	Construction stage: Daily (Visual observation and review of work plan)	Consultant/ MOTR	Included in construction cost
	River channel transition		Operation stage: Monthly (Visual observation)	MOTR	Included in maintenance cost
Land Use and Utilization of Local Resources	Land utilization	Gravel pit and quarry	Construction stage: Monthly (Visual observation and review of working record)	Consultant/ MOTR	Included in construction cost
Existing Social Infrastructures and Services	Impact to existing road by temporary detour (Complaints handling)	In and around construction site	Construction stage: As needed	Consultant/ MOTR	Included in construction cost
	Tree cutting plan	-	Before construction: Once or as needed		
Landscape	Condition of	In and around	Construction stage: Monthly (Visual observation and meeting with local administration)	Consultant/ MOTR	Included in construction cost
	greening plan	site	Operation stage: Monthly (Visual observation and meeting with local administration)	MOTR	Included in maintenance cost
Gender issues	Monitoring of employees account book	-	Construction stage: According to the payment (1 or 2 times a month)	Consultant/ MOTR	Included in construction cost
Infectious Diseases such as HIV/AIDS	Advocacy work implementation	-	Construction stage: Monthly (Review of schedule and implementation record)	Consultant/ MOTR	Included in construction cost
Working Condition including	Briefing (safety education) implementation	-	Construction stage: Weekly (Review of implementation record)	Consultant/	Included in
Occupational Safety	Accident report (industrial accident)	In and around construction site	Construction stage: As needed	MOTR	construction cost

Item	Parameter	Survey Point (same as each baseline survey)	Frequency (Upper: Construction Stage/ 2.5 years) (Lower: Operation Stage/ 2 years)	Implementing/ Responsible agency	Cost (Upper: Construction Stage/ 2.5 years) (Lower: Operation Stage/ 2 years)
Accidents	Accident report (traffic and third party accident)	In and around construction site	Construction stage: As needed	Consultant/ MOTR	Included in construction cost
Global Warming	Regular maintenance of construction machinery and idling stop	In and around construction site	Construction stage: Daily (Visual observation and review of inspection record)	Consultant/ MOTR	Included in construction cost
	32,500\$ 13,000\$				

1-3-12 Implementation System of EMP and EmoP

The implementation structure of EMP and EMoP during construction and operation stage are shown in Figure 1-3-8.

Figure 1-3-8 Implementation Structure of EMP and EMoP

1-3-13 Public Hearing

Prior to the start of the survey on environmental and social considerations, the first public hearing was held in October 2017 at Ak-Dobo and Kizil-Sai Village in order to explain the outline of the Project and the survey on environmental and social considerations. There is no opposition from residents and support for the Project is confirmed since sidewalk of existing bridge is narrow and dangerous, bridge itself is dilapidated, and many accidents happen due to sharp curve. The second public hearing was hold in April 2018 after the approval of the EIA report in order to explain the details of the Project and the EIA survey results.

Item	Details												
Date and	11:30-13:00, 3 October 2017 Kyzyl-Say village, Ak Dobo village administration, Bakai Ata district												
Venue	17:00-18:00, 3 October 2017 Ak Dobo village, Ak Dobo village administration, Bakai Ata district												
	1. Explanation on outline of the pro	ject											
Agenda	2. Explanation on survey of enviror	mental and social considerations											
	3. Question and answer session	3. Question and answer session											
	Head of Ak Dobo village administration, Chief engineer of Regional Department №3 in Talas region												
Participants	(MOTR), Head of DEU №47 (MOTR), Regional Environmental Conservation, Local resid												
	ICA study team, Local consultants												
Number of	Kyzyl-Say village: Male 29, Female	e 7,Total 36											
Participants	Ak Dobo village: Male 7, Female 4	7, Total 54											
Question		Answer											
When does l	oridge construction begin?	Project design and survey works have been already started.											
		Sanitary regulations and standards of environmental											
		management are to be studied. Environment related											
		recommendations will be submitted. Construction process will											
		begin in 2019.											
What kind o	of bridge do Japanese plan to build?	Bridge construction will be implemented under Grant Aid from											
Is it grant or	loan project?	the Government of Japan. Bridge structure corresponds to											
		every construction standards and requirements with provided											
		lights on sidewalks. Bridge details: 3 spans, total length 90m,											
		1km including approach road, width of carriageway 14 m.											
What will be	e with the pond near the bridge?	According to the results of hydro geologist's exams it will be											
		reported whether water is usable or not. So far there are no											
		results.											
Who is goin	g to evaluate scale of trees cutting?	Survey work has just started. It is necessary to determine who											
Cost estim	ation? Is compensation will be	owns project site land. Boundaries are to be confirmed with											
addressed to	the local administration budget?	State Land Agency.											
What is desi	gned lifetime of the bridge?	The bridge is designed assuming 40-50 years lifetime.											
Are flora an	id fauna endangered species to be	Flora and fauna condition will be surveyed. If there are any											
surveyed in	the bridge reconstruction project	species out of Red data book, corresponding protective											
area?		measures to be taken.											
Is road close	sure will take in effect during the	New bridge construction will be implemented next to existing											
bridge const	ruction?	bridge. Ineretore, road users will be able to cross the river											
In imigation	abampal to be reconstructed?	There will be no reconstruction of imigation channel for											
is inigation	channel to be reconstructed?	increasing the not reconstruction of infigation channel, for											
In it possik	ale to cave existing bridge offer	Existing bridge to remove or to leave as it is will be decided											
is it possi	of now bridge construction?	Existing bridge to remove of to reave as it is – will be decided											
There is a l	high number of traffic accidents at	by WOTK.											
sharp curve	of the road. Is any improvement of	flow and to make it safe. Carriageway will be widened at curve											
road alignme	of the road. Is any improvement of	section New traffic signs lights and speed limit signs will be											
Project?	ent included in the scope work of the	installed											
Is it planned	to involve local qualified specialists	If it's nossible											
and labors for	or construction process?	11 It 5 P0001010.											
Current roa	d repair work affects on bridge	There will be no problems as for the bridge construction work											
construction	or not?	confirmed with relative state agencies											

Source: JICA Study Team

Photo 1-3-2 First Public Hearing at Kyzyl-Say Village

Photo 1-3-3 First Public Hearing at Ak Dobo Village

Table 1-3-32	Second Public Hearing
--------------	-----------------------

Item		Details									
Date and	14:00-14:50, 21 April 2018 Kyzyl-Say village, Ak Dobo village administration, Bakai Ata district										
Venue	15:00-15:55, 21 April 2018 Ak Dobo village, Ak Dobo village administration, Bakai Ata district										
	1. Explanation on bridge detai	ls information									
Agenda	2. Explanation on the approva	2. Explanation on the approval of preliminary EIA report by SAEPF									
	3. Question and answer session	n									
	Head of Ak Dobo village adm	ninistration, Head of the administration of Bakai Ata district, Chief									
Participants	engineer of Regional Departm	engineer of Regional Department №3 in Talas region (MOTR), Head of DEU №47 (MOTR), Local									
	residents, JICA study team, Local consultants										
Number of	Kyzyl-Say village: Male 21, F	Kyzyl-Say village: Male 21, Female 4, Total 25									
Participants	Ak Dobo village: Male 8, Fem	nale 11, Total 19									
Question		Answer									
When Bridge	e construction will start?	Construction will start in May 2019 and will be finished in									
_		November 2021.									
Is it possible	to involve the local population	The contractor will hire local residents, and residents should have									
in the constr	uction of a bridge?	appropriate experience.									
What is the	length and width of the new	The length of the new bridge is around 90 meters and the length of									
bridge?		approach roads is 1,100 meters. The width of the new bridge is 14.8									
_		meters; 1.5 meters are allotted to the sidewalks on both sides of t									
		bridge.									
How Japane	ese government provides the	The Japanese Government provides gratuitous assistance on a grant									
assistance fo	r bridge reconstruction?	basis.									
What height	of the new bridge in relation	The new bridge will be 2.5-3 meters higher than the old one, this									
to the old bri	idge?	will improve visibility of the road from the bridge side. The sidewall									
		will provide safety for pedestrians crossing the bridge.									

Source: JICA Study Team

Photo 1-3-4 Second Public Hearing at Kyzyl-Say Village

Photo 1-3-5 Second Public Hearing at Ak Dobo Village

1-3-14 Land Acquisition and Resettlement

(1) Necessity of Land Acquisition and Resettlement

ROW width is 32 m by the Law on Road because the Project road is classified as category II. However, in order to avoid and minimize land acquisition and/ resettlement, it is confirmed that it will be a policy to secure only the necessary land width for reconstruction of the bridge and improvement of road alignment.

1) Land Acquisition and Involuntary Resettlement

There are many residential and several commercial facilities along the project road, but the road alignment was examined with a policy to avoid the influence on these structures as much as possible. As a result, the land required for the implementation of this project is only the public land and land acquisition does not occur. There are no residents living in the site, so involuntary resettlement is also not required. Since the site necessary for this Project is the property of the Ak-Dobo village administration, it will be necessary to transform the registration from the public land to the state-owned land to use as road ROW.

Source: State Registration Service, Bakai Ata District Figure 1-3-9 Cadastral Map of Project Site

2) Other Impacts and Considerations for Residents

The use of riverbed and irrigation canal are confirmed as items that might affect the lives of residents, and measures shall be considered to avoid or mitigate the impact according to the degree of influence.

i) Use of riverbed

Nearby residents sometimes use riverbed of Urmaral river, which is public land, as feeding and drinking place for their livestock for private use. However, the pasture of livestock for animal husbandry locates in the mountains about 4~5 km away from the Project site and Suusamyr Valley, which is around 100 km southeast from Talas city, is used as pasture land in the summer. Thus, serious impact for their livelihood is not expected.

ii) Irrigation Canal

Irrigation canal which collects natural drainage and spring water flows through the riverbed and crosses under the road, then becomes an irrigation pond. It seems to be used as reservoir since there are water gates, but proper maintenance is not conducted and not specially utilized. Approximately 10 households around 500m away from the project site use leaked water from the pond as irrigation water for trees and vegetable garden. Village administration manages this irrigation canal and cleaning work are sometimes conducted, however there are no future maintenance or usage plan. Leaked water from irrigation canal forms a pond beside the bridge but this pond is also not utilized.

Photo 1-3-6 Feeding Place of Riverbed

Photo 1-3-7 Irrigation Canal

(2) Legal Framework on Land Acquisition and Resettlement

Laws and legislations concerning to the land acquisition and involuntary resettlement and the outlines of those are shown in Table 1-3-33.

Legislation	No.	Year Passed	Outlines
Constitution of Kyrgyz Republic	-	2010	The Article 12 provides that: diversity of ownership forms and equal legal protection to ownerships; various types of ownership; and acquisition of property for public purposes with fair and prior payment of the compensation.
Land Code	45	1999	The code provides that land can be acquired for state and purposes based on an agreement between the authorized body and landowner or land user, and compensation should reflect the market value of the right to the land and losses; land owners/users can be allocated replacement land with the same value.
Civil Code	15	1996	The code provides types and costs of losses that must be compensated in the case of land acquisition and involuntary resettlement.

Tabla 1 2 22	Major I agislations for the I and A aquisition and Desottlemon
Table 1-3-33	Major Legislations for the Land Acquisition and Resettlemen

Legislation	No.	Year Passed	Outlines					
Law on Grievances	67	2007	The law provides that the grievance from the Kyrgyz Republic					
			in an equitable, timely and accountable manner.					
Law on Roads	72	1998	The law provides that roads of common use can be only in state ownership and cannot be sold or held in private ownership. The following activities are prohibited on the right-of-way of common use roads: organizing trading outlets along the roads; and buildings, kiosks, pavilions and similar structures.					
Temporary rules for the valuators and valuation companies	537	2003	The valuation of the assets is carried out on the basis of these government resolutions and other provisions of national legislation					
Valuation standards for the valuators	217	2006	government resolutions and other provisions of national registration.					

Source: Final Report of Data Collection Survey on Osh City Road Transportation in the Kyrgyz Republic, Land Acquisition and Resettlement Plan for Kyrgyz Republic Power Sector Improvement Project Prepared by JSC "National Electric Grid of Kyrgyzstan" for the Asian Development Bank

(3) Necessity of Land Acquisition and Resettlement

As mentioned above, land acquisition and resettlement will not occur.

(4) Measures for Compensation and Assistance

Village administration will explain the use of riverbed to residents who are using it as feeding and drinking place for livestock before construction and plan to provide alternative sites. The irrigation canal flowing in riverbed is planned to ensure by installing culvert at the bottom of the embankment of approach road so as not to block water flow.

(5) Grievance Redress Mechanism

For the period of Project implementation MOTR shall establish the Grievance Redress Group (GRG) to deal with various Project-related issues. The role and responsibility of GRG is to receive complains, assess their validity, probable consequences and timely resolution of problems.

Complain statements shall be first submitted to local authorities and provided this complain remains without motion for three days, then this complain shall be submitted to the GRG at the local level. At this level the submitted complain shall be discussed with the account of opinion of Road Maintenance Unit (RMU) and affected local population. Provided this complain is not resolved within 15 days then it shall be submitted to the GRG at central level (MOTR), which has to come up with its final decision.

Figure 1-3-10 Grievance Redress Mechanism

(6) Implementation Structure

MOTR and local administrations are responsible for land transformation procedure, tree cutting and replanting, removal and relocation of affected facilities, and provision of alternative feeding and drinking place for livestock

(7) Implementing Schedule

After finalization of required land and affected trees, necessary procedures will be implemented before tender of contractor.

rr																						
		2017				2018										2019						
	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7
Preliminary EIA																						
Submission of EIA Report to SAEPF						4																
EIA Review and Approval by SAEPF																						
Public Hearing																						
Land Transformation Procedure									1									I				
Tree Cutting and Replanting,																						
Removal and Relocation of Affected																						
Facilities																						
Provision of Alternative Feeding and																						
Drinking Place for Livestock																						
Tender																						
Commencement of Construction																						
												•										**

 Table 1-3-34
 Implementation Schedule

Source: JICA Study Team

(8) Budget and Source

GOK and local administrations will bear the cost for land transformation procedure, tree cutting and replanting, removal and relocation of affected facilities

1-3-15 Others

(1) Draft Monitoring Form

Draft monitoring form is attached in Appendices.

(2) Environmental Check List

Environmental check list is attached in Appendices.

CHAPTER 2 CONTENTS OF THE PROJECT

2-1 Basic Concept of the Project

(1) Overall Goal and Project Objective

The National Development Plan of the Kyrgyz Republic includes "National Sustainable Development Strategy 2013-2017" which listed the "Development of Strategic Industries of the Economy" as one of the priority area. The major development goals of the transportation and road sector are shown in Table 2-1-1. Especially rehabilitation of international transportation corridors (5 roads) is prioritized in the above goals.

Table 2-1-1 6 Major Development Goals of NSDS

- (1) Rehabilitation of five motorways that represent international transport corridors (Road Sector)
- (2) Preservation and improvement of the network of domestic hard-surface roads (Road Sector)
- (3) Construction of bypass roads in the urban area (Road Sector)
- (4) Completion of FS Study for major international crossing railway
- (5) Creation of an air transport hub
- (6) Introduction of e-governance system and transition of digital TV and radio-broadcasting

NSDS places the importance on the transportation and road sector as a prioritized area to develop economy and industry, and to transform the landlocked country which has limitation to access to the ports to the strategic point country of the transportation.

Overall Goal: Landlocked country, Kyrgyz is converted to be a key country of traffic and the economic activities are accelerated due to the stability and smoothness of internal traffic.

Project Objective: Safety and stability of the traffic of Talas-Taraz road which connects between Kyrgyz and Kazakhstan and is the international and arterial road, is put into practice.

Outcome: Urmaral river bridge which is located at the point 82km on the international and arterial road connected between Kyrgyz and Kazakhstan (Talas-Taraz road) is reconstructed and its approach road is improved.

(2) Outline of the Project

This Project consists in the improvement of the Urmaral Bridge on one of International roads (Talas- Taraz Road) and to put safety and stability of the traffic into practice in order to obtain above mentioned overall goal. As the result of this achievement, the economic activities are accelerated with the stability and smoothness of internal traffic. Therefore, this Project consists in the reconstruction of the Urmaral Bridge on Talas- Taraz Road and the improvement of its approach road. Both of which were requested from Republic of Kyrgiz. The Project scope of Japanese assistance are as follows;

- Reconstruction of the Urmaral River Bridge on Talas- Taraz Road.
- > Construction of Revetment Adjacent to the Urmaral River Bridge.
- Approach road improvement of approximatelly 1.1km from 82k700 to 81k300 including the improvement of two small radius curves and excluding the bridge crossed irrigation channel.
- Traffic safety countermeasures such as the installation of the large reflectors shaped arrow, road signs, road markings and street lights.

2-2 Outline Design of the Japanese Assistance

2-2-1 Design policy

(1) Road Traffic Condition

The results of the traffic survey (2011) of the five major roads conducted by ADB M/P survey are shown in the figure below. The traffic volume of the project target area is 2,900 vehicles a day, which is the second highest in Kyrgyz (the highest is 4,700 vehicles a day along Bishkek-Naryn-Torugurt Road). This means that the Project road can be positioned as an important international road of the inter-regional transportation network that connects Kazakhstan and Kyrgyz.

Figure 2-2-1 5 Major International Transportation Corridors

The traffic survey was conducted at related locations along Talas-Taraz road. The outline and results of the survey are shown in Figure 2-2-2 and Table 2-2-1.

Figure 2-2-2 Outline of Traffic Survey (24h)

	Table 2-2-1 Result of Traine Survey														
Date		I:Light v	vehicles	II: Medium	n vehicles			III: Heavy		G.Total					
		Sedan/Wa	Pick-	Van/Mini	Mini truck	Total (A)	Standard &	2 axle truck	3 axle truck	Articulated	Total (B)	(A+B)			
		gon	up/4WD	bus	WITH LIVER		Large bus		J-axie li uck	truck		(,,,,,,,)			
July 2017	Weekday	3,498	8	509	50	4,065	8	77	50	115	250	4,315			
	Weekend	3,091	0	414	70	3,575	17	57	44	120	238	3,813			
Setember 2017	Weekday	3,639	135	287	369	4,430	4	70	46	164	284	4,714			
	Weekend	3,751	18	817	209	4,795	5	99	113	163	380	5,175			

 Table 2-2-1
 Result of Traffic Survey
The daily traffic volume near the target bridge (survey point no. 3) was measured in July and September 2017. In July, the traffic volume was found to range between 3,800 veh/day to 4,300 veh/ day, and the ratio of large vehicles was from 5.8% to 6.2%. Meanwhile, in September, the traffic volume was observed to range from 4,700 veh/day to 5,200 veh/day, and the ratio of large vehicles was from 6.0% to 7.3%. In addition, the daily traffic volume of large vehicles near the border (survey point no. 6) was found to range from 110 veh/day to 180 veh/day in July, and 110 veh/day to 180 veh/day in September.

The target road, Talas-Taraz road, is an important international road, and the traffic volume in 2030 after 10 years' operation is 6,074 veh/day. Road classification is decided considering this traffic volume. Road elements such as lane width, shoulder are integrated with that of IsDB section.

(2) Transition of River Channel of Urmaral River and Scope of the Project

Urmaral River is a tributary of Talas River that instantaneously flows for around 70 km from the top of Tian Shan mountains with an altitude of 4,000 m to an altitude of 1,000 m, and then confluences to Talas River with an average river bed slope of less than 1/100 as a steep stream.

The flow path in the river channel formed by riverbank scouring during small and medium floods meanders and changes its shape as time goes on, but the river formed by a large flood (equivalent to 100-year return period of river discharge) shows a linear shape.

At the time of construction, the existing bridge was planned to cross over the river channel meandering to the right side at a right angle.

A river channel with a steep stream has a strong tendency to have a straighter river flow compared to the usual meandering river channel.

During the flooding in 2016, the concrete revetment, which was installed on the left bank upper side of the existing bridge to divert the floodwaters to right bank, was scored and broken. Consequently, the floodwaters flowed straight and leached onto the approach road behind the bridge on the left bank, causing road embankment collapse.

In planning of the new bridge, the change of the future river flow transition and possible floods should be considered. At the same time, it is important to avoid the flow resistance of the river, which would arise from the natural self-correction of the river flow transition.

Figure 2-2-3 River Channel Transition

For this reason, when flooding occurs in the future, the river is assumed to flow straight with a high velocity in the direction of the blue arrow in Figure 2-2-4. The new bridge will be planned along with a revetment plan to control this flow.

The abutment of the new bridge on the left bank is planned to be installed to prevent the future river line from resisting the planned left revetment. Although the abutment of the new bridge on the right bank is planned to be installed corresponding to the existing right bank, the right revetment should control the transition of the river channel from the existing river channel to the future river channel in the direction of the blue arrow in Figure 2-2-4.

The existing right bank of downstream of the river meanders to the left bank, so scouring outside of the meandering on the left bank is a concern. It is expected that the water colliding front that causes scouring moves as flooding occurs.

In addition, there is a residential area, and the river is close to a road to settlement downstream of the river. From the viewpoint of disaster prevention, it is necessary that a range of revetment improvements is put in place between the planned bridge and the meandering part of the river.

From the above, the plan of the new bridge is made while assuming the transition of the river channel and planning minimum revetment for putting safely into practice. This project is conducted comprehensively without separating any parts.

Furthermore, the left bank side downstream of the river from the bridge was not a usual river channel through which river water flows, and there are many plants that are rooted stably on the land. Although scouring progresses gradually, this area is relatively strong against scouring. Given that it will take a long time to improve the revetment on the left bank downstream of the river, the improvement of downstream revetment is excluded from this grant aid project. The scope of improvement of revetment on both government is discussed and it shows in Figure 2-2-4. The road route in this figure is plan C described in Chapter 2-2-2.

Figure 2-2-4 The Issues on the Project Area

(3) Existing Condition of the Bridge and the Road

The length of the existing bridge is 36.2 m. There is a high risk of bridge collapse and road malfunction due to the increase of snowmelt water caused by recent abnormal climate attributed to climate change, damage from driftwoods, scouring behind the bridge and the dike.

In June 2016, the road was temporarily closed because of damage such as scouring behind the abutment, which affected neighboring residents and caused the road to lose its function as an international road. The damage was caused by pile bent piers of which spans is short and they led to driftwood and an increase river water level, as well as failure to ensure the necessary river width.

The road alignment of the road near the bridge has two curves, with small curve radii of 100 m and

60 m. This is a section prone to traffic accidents – 15 traffic accidents occurred in the past three years, of which two or three of passenger of vehicles per year were fatal. Therefore, it is necessary to improve both the road and the bridge.

(4) Construction Circumstance in the Site

There is a little experience on bridge construction in Kyrgyz and no construction companies in Talas State. A company located around Bishkek is considered as a candidate sub-contract construction company. An asphalt plant with a productivity rate of 35t/hr was provided by JICA project "The Project for Improvement of Workshops for Road Maintenance Equipment" and is now operational. Procurement of asphalt pavement from this plant can be expected.

(5) Operation and Maintenance

As for bridge maintenance, "The Project for Capacity Development for Maintenance Management of Bridges and Tunnels" is currently implementing relevant activities including creating a database and a bridge inspection manual, and conducting bridge inspection training. Knowledge acquisition for bridge maintenance is still ongoing, so a bridge type with less maintenance shall be selected for this project. Aggregates for asphalt concrete and concrete are available, considering the aspects of quantity and quality.

(6) **Obstacle Facilities**

There is a high-voltage electricity line tower at the starting point of the planned road and a house at the end of the planned road. It would take a long time to relocate the high-voltage electricity line tower and the house. Therefore, the project is planning to set these obstacles as control points.

From the above, rather than forcibly controlling the river flow with artificial structures, river planning will be done such that river channels are formed naturally. The bridge plan and road plan will be made considering this river plan. The bridge, the road, and the river are planned to be improved integrally.

(7) Design Standard

The design standard is basically adopted with the SNiP standard (Russian Federation Construction Standard), Japanese Road Structure Ordinance etc. are adopted supplementary. Pavement design is conducted by using AASHTO standard. Bridge design is conducted compering between active load of specifications for highway bridges in Japan and $H\Gamma 80$ of SNiP.

<Road Design Standard>

Geometric DesignDesign of Highways SNiP KP 32-01-2004, 2004Road Structure Ordinance2015, Japan Road AssociationPavement DesignGuide for Design of Pavement Structures 1993, AASHTOGuideline for Pavement Design and Construction 2006, Japan Road AssociationDrainage SystemGuidance of Drainage System on Road Earth Work 1987, Japan Road Association

<Bridge Design Standard>

Design of Bridges and pipes SNiP 2.05.03-84 Specifications for highway bridges 2012, Japan Road Association River management facilities Ordinance 2000, Japan River Association

2-2-2 Basic Plan

(1) Design Condition

1) Road Class

The target year of the project is on 2030, which is 10 years after the start of operation.

Traffic surveys that were conducted during the field survey served as bases for forecasting future traffic demand. Large vehicle ratio is set as same as that of existing. The results of future traffic demand forecast are shown in Table 2-2-2.

Year	Sedan/ Wagon	Pick-up/ 4WD	Van/ Mini bus	Mini truck	Total (A)	Standard & Large bus	2-axle truck	3-axle truck	Articulated	Total (B)	Grand Total (A+B)
2017	2,796	33	406	140	3,375	8	61	52	113	234	3,609
2020	3,146	39	458	159	3,802	11	70	61	128	270	4,072
2025	3,830	49	560	196	4,635	16	88	76	159	339	4,974
2030	4,663	63	685	241	5,652	21	109	96	196	422	6,074

 Table 2-2-2
 Future Traffic Volume (Veh/day)

The future traffic volume of Talas-Taraz Road in the year 2030 is 6,074 veh/day. This road is an international road connecting Talas and Taraz in Kazakhstan, and it is classified as category II. A lane width of 3.5 m is adopted for the project to become integrated with the IsDB section.

The future traffic volume in 2040,20 years after operation is 8,025 Veh/day and it result in over the category II. But the road capacity is enough to accommodate this traffic volume, because the traffic capacity of general two-way road is from 6,000 to 12,000 veh/day.

2) Design Speed

There is limited space for road and bridge construction in the project area because there is a need to avoid the river. Moreover, the restriction of speed for residential areas in Kyrgyz is 60 km/h, so the design speed is adopted as 60km/h.

(2) Examination of Bridge Location and Road Route

Generally, in river planning, the river cross section is designed as a cross section that is adequate for the design river discharge. The grade of this river is steep at 1/100. Given that the flow velocity for steep rivers is quite rapid and the river channel widely moves to the left and right, it is necessary to secure not only the cross-sectional area but also the river width in consideration of river channel movement for the safety of river embankment and the like.

In particular, the river channel greatly changes upstream of the current bridge and tends to change its flow during flooding to the left bank due to its straightness, but because the existing bridge is a control point, the channel is forced to move to the right bank instead. For this reason, the upright concrete revetment, which had been installed on the left bank due to the straightness of the river flow, collapsed during the flooding in June 2016. Moreover, the abutment on the right bank, which was downstream from the reflected flow, also collapsed during that time.

Therefore in this survey, using the disaster situation in 2016, river channel transition and discharge data in the past, and existing riverbed grade, flood damage in 2016 was analyzed, and the bridge location was subsequently examined. The river channel transition was analyzed using Google Earth aerial photos taken in 2001, 2013 and May 2016 before the June 2016 flooding, as well as drone photos taken in this survey after the flooding.

1) Bridge Location

The transition of river channels depend on each characteristic. Therefore, setting out of the transition range of the river is decided considering past river channel location on each part of the river.

Alternative road routes are shown in below. Bridge length of each route is set considering this transition range of the river.

Figure 2-2-5 Alternative Routes

Figure 2-2-6 River Channel Transition

The section of the river between the irrigation channel bridge which is located upstream of the existing bridge and the existing Urmaral river bridge has transited widely.

These are the sections, where the river channel transited compare to other points, marking with red circles shown in above figure for 15 years from year 2001 to 2016.

i) Route A, B, and C

Considering the straightness of river flow of steep rivers during flooding, the river channel is highly likely to flow close to the red line in the figure below after the current bridge is removed. On the other hand, the river channel tends to meander during small or medium flooding, so it is likely that the existing flow line will be kept. The only way to predict how river channel fluctuates in the future is by predicting from the past fluctuations of the river channel. The width indicated in yellow in the figure below represents the predicted range of the river channel in the future.

Reconstruction of the bridge with the shortest bridge length at the crossing points of the red line in the figure below can be considered after improving the river channel upstream of the bridge such that the river channel is moved along the red line. However, because the river channel line during large flooding usually does not coincide with that during small and medium flooding, it is desirable to design the river channel while considering river channel movement not only during large floods but also small and medium floods.

Figure 2-2-7 Urmaral River Channel (Google Earth May 2016)

ii) Plan D, E and F

The river channel line in the interval presented in Plan D, E and F has not fluctuated so much for the past 16 years.

This interval is more suitable for the construction site of the new bridge from the viewpoint of river channel fluctuation than the other intervals.

- 2) Setting Bridge Length of alternative Routes
 - In case that the new bridge based on plan A, B and C is designed, the transition of the river channel must be considered. If the existing bridge is removed after the construction of the new bridge, the river channel will not change in the short-term, but it will change gradually to the left side due to straightness and assumed to approach towards the red line below. Although the river

Figure 2-2-8 Setting Bridge Length of Each Route

width is 32 m at the existing bridge point, the following widths between both abutments are proposed instead to take into consideration the fluctuation of the river channel.

Plan A about 120 m Plan B about 100 m Plan C about 90 m

- ii) Plan D and E are located at the area where the river channel does not change so much. Although the existing river width is about 30-35 m, the distance between both abutments is proposed to secure a width of about 50 m, taking into consideration that the width of the crossing bridge for the irrigation canal is 48.7 m.
- iii) Plan F is located at the area immediately downstream of the crossing bridge for the irrigation canal. The width of river channel fluctuation is about 60 m. The distance between both of abutments is proposed to secure about 70 m by adding an allowance of 10 m to the fluctuation width of 60 m.
- 3) Route Examination

Alternative road routes are examined considering the location of the planned bridge. The access road of the planned route plays the roles of a community road and an international road connecting to Kazakhstan, and thus enough traffic capacity should be provided. The following planning policy were applied to examine the alternative routes.

[Planning Policy]

- > Improvement of Traffic Safety Based on the occurrence of the traffic accident on the existing road, the alignment/plan that can improve in 2 places; a sharp curve (R = 60 m) at the start point and a sharp curve (R = 100 m) near the bridge.
- Optimum utilization of existing facilities Plan to use the existing road as much as possible, and consider economic efficiency.
- > Avoiding interferences to electric towers and poles

The high voltage electricity towers and electricity poles are the control points of the plan and avoid intersection with high-voltage cables as much as possible.

Orientation of river flow direction and bridge axis at the bridge site, consideration to intersect bridge axis with perpendicular to the flow direction of the river.

Based on the above planning policy, 6 routes A to F were selected. The outline of the alternative routes is shown in Table 2-2-3.

Table 2-2-3	Outline of Alternative Routes
--------------------	--------------------------------------

-	
А	Route A crosses over the river at the point of the immediate downstream from the existing bridge.
	This route improves the sharp curve (R= 60) of the start point to R=160 (V=60km/h minimum curve radius
	R=150 or more) and cross to the downstream side avoiding the high voltage pole.
В	Route B is replacement of the existing bridge.
	This route improves the sharp curve (R=60) of the start point to R=160 and improves the sharp curve
	(R=100) near the existing bridge to R=150. The other section is the same plan as the existing road.
С	Route C crosses over the river at the point of the immediate upstream from the existing bridge.
	This route improves the sharp curve(R=60) of the start point to R=160 and improves road plan by keeping
	the separation from the existing bridge as far as possible. (R=500 and R=600)
D	Route D crosses over the river at the point 60m far upstream from the existing bridge.
	In this route, the bridge position of Route C will be shifted to a position where fluctuation of river channel
	was small and planned with S curve of $R=150$.

 E Route E crosses over the river at the point 300m far upstream from the existing bridge. This route proposes to on the left bank side so as to link almost linearly at a position where fluctuation of river channel is small and planned with S curve of R=150.
 F Route D crosses over the river at the point 600m far upstream from the existing bridge. This route improves the sharp curve of the start point to a straight line, and links with a straight line to a

Among these Plans, Plan D, E and F were excluded of reason that shown in the Table 2-2-4. Comparison among plans A, B and C was further considered.

position where fluctuation of river channel is small, and grinds around the existing road on the left bank side.

Plan A, B and C are shown in Figure 2-2-9. Comparison table is shown in Table 2-2-5.

Plan D	Plan E	Plan F
• R=150m of S curve	Curve radius is small	• Affect high voltage line and tower
Curve radius is small	• A lot of curves	
• A lot of curves	 Affect high voltage line 	
\Rightarrow Poor running performance	\Rightarrow Poor running performance and safety	\Rightarrow High cost and Difficult to
and safety	High cost and delay of project	implement the project

Table 2-2-4 Problem of Plan D to E

Figure 2-2-9 Selected Alternative Routes

Items	Route A	Route B	Route C
Stream conditions at river clossing	There is a high possibility of the river channel transition in the future	There is a possibility of the river channel transition in the future	There is a possibility of the river channel transition in the future
point	Fair 🛆	Good O	Very Good O
Measures against flood	Install a crossing pipe under the approach road on Taraz side	Install a crossing pipe under the approach road on Taraz side	Install a crossing pipe under the approach road on Taraz side
	Good O	Good O	Good O
Alignment	•Number of curves : 5 (R=300,150,210,1000,150) It is not suitable for other requests because the number of curves is the largest and the curve radius is small	•Number of curves : 4 (R=150,500,1000,150) It is existing alignment, and the first curve is modified, but it is not enough for other requests because the number of curves is large	•Number of curves : 3 (R=1000,650,150) It is suitable for other requests because the number of curves is the small and the curve radius is large
	Fair Δ	Good O	Very Good O
Length	•Bridge 125m •Road 1115m •Total 1.240m	•Bridge 105m •Road 1115m •Total 1,220m	•Bridge 90.5m •Road 1,112m •Total 1,203m
	Fair Δ	Good O	Very Good Ø
Construction	•Existing bridge can be used during construction •Bridge length is long at 125 m, it takes time to construct	•Detour route (temporary bridge) is necessary to replace existing bridge	•Existing bridge can be used during construction
1	Fair 🛆	Fair 🛆	Very Good O
Additional measures to be taken by GOK	Removal of existing bridges and approach roads is required	There is no burden by Kyrgyzstan to replace existing bridge	Removal of existing bridges and approach roads is required
10020	Good O	Very Good Ø	Good O
Construction	1.2	1.1	1.0
Cost	Fair Δ	Good O	Very Good O
Evaluation	Construction cost is the highest compared to other plan, stream condition is also unstable in the future, so study team dose not recommend route-A	Construction cost is the high compared to other plan, stream condition is also unstable in the future, so study team dose not recommend route-B	Stream condition is relatively stable in the future, Alignment is suitable for other requests, so study team dose recommend route-C

 Table 2-2-5
 Comparison Table of Alternative Routes

Based on the above comparative study, the route C is recommended and shown in Figure 2-2-10.

Figure 2-2-10 Final Selected Route

(3) River Plan

In deciding the extent of the river channel that the bridge has to cross, it is necessary to calculate the 100-year return period of river discharge by using the yearly maximum discharge from 1927 to 2015 on the Urmaral River meteorological station of MES.

The water level at the crossing point with the bridge was calculated with varied flow calculation using the existing river cross section which was obtained from the topological survey.

1) Planned River Water Discharge

Comparing the analysis result of the 100-year occurrence probability flow rate in the past, the discharge used for repaired revetment design of MES, and the largest river discharge in the past, the planned river water discharge is set out to be $110 \text{ m}^3/\text{s}$.

- \blacktriangleright Result of 100-year return period of river discharge: 93 m³/s
- Discharge used for the repaired revetment design of MES (100-year occurrence probability flow rate): 94.6 m³/s
- Largest river discharge in the past: 102 m³/s
- 2) Varied Flow Calculation

The cross sections for varied flow calculation is created based on the river topographical survey results.

Figure 2-2-11 Cross Section for Varied Flow Calculation

Figure 2-2-12 Cross Sections for Varied Flow Calculation

3) Roughness Coefficient of Urmaral River

Reverse analysis was conducted to calculate the roughness coefficient assuming the case wherein maximum discharge flows in the existing cross section. The conditions of the analysis are shown below.

- i) Slope of River Bed: i=0.0135 (= 1/74)
- ii) Water Discharge: $102 \text{ m}^3/\text{s}$ (the largest in the past)

Through reverse analysis, the roughness coefficient is calculated as 0.035, which corresponds to a common value for general rivers.

Roughness Coefficient
0.025-0.033
0.030-0.040
0.33-0.045
0.040-0.055
0.50-0.080

 Table 2-2-6
 (Reference) Manning Roughness Coefficient of Natural Rivers

(Source: Technical Criteria for River Works)

4) Varied Flow Calculation Result

Varied flow calculation is conducted under the following conditions: design discharge= $110m^3/s$, roughness coefficient=0.035, the slope of river bed i=0.0135 ($\pm 1/74$), and setting cross sections. The result of the calculation is as follows. Since the river bed gradient is constant (i = 0.0135), varied flow calculation is conducted, so the varied flow water level is changing.

Station.	Distance	Discharge	Varied Flow V	Varied Flow Water Level	
Station	(m)	Q (m ³ /s)	Flow Type	Water Level (m)	(m/s)
No.1	-70.000	110	Supercritical flow	1.614	3.186
No.2(Existing Bridge)	-40.000	110	Supercritical flow	0.815	4.453
No.3(Planned point)	0.000	110	Supercritical flow	1.430	3.247
No.4	65.000	110	Supercritical flow	1.401	3.121
No.5	80.000	110	Subcritical flow	1.391	2.864
No.6	180.000	110	Subcritical flow	1.086	1.447
No.6	180.000	110	Supercritical flow	0.671	2.619
No.7	300.000	110	Supercritical flow	1.095	2.627
No.8	400.000	110	Supercritical flow	1.296	2.169
No.9	500.000	110	Subcritical flow	1.405	2.311

 Table 2-2-7
 Varied Flow Calculation Result

5) Estimated High Water Level (HWL)

The altitude of the river bed at the planned crossing point of the bridge (No.3) is 1039.50 m, and the high water surface of varied flow is 1040.93 m. Therefore, the water depth at this point is 1.43 m. The planned water depth is set out to be 1.50 m at the crossing point with the planned bridge. The planned high water level (HWL) at the planned cross section is shown below.

Elevation of River Bed: 1039.50 m

Design High Water Level: 1041.00 m

Planning Water Depth: 1.50 m

Figure 2-2-13 Planned Water Depth

6) Revetment

Revetment was planned considering river channel transition shown in chapter 2-2-2.

Left side revetment was planned along the future river way to go straight, because there is a high possibility that a river will goes straight when big flooding.

Right side revetment was planned to current position of water impact, because river will meanders left and right when small and medium flooding.

The river bed of the new left bank is set at the level of existing river bed.

Figure 2-2-14 Project Area of Revetment

Stacking gabion, gabion, and mortal stone pitching were compared as adequate revetment types.

As a result of the comparison, gabion is selected and adopted considering its merits outlined below.

- Well-developed masonry revetment installed by MES
- > No skilled workers or product factories are required
- ➤ Economical

Table 2-2-8 Comparison of Revetment

Construction method	Stacking Gabion	Gabion	Setting up stones method
Characteristic	 The multistage type is a construction method applied to a steep slope section with a gradient of 1:1.0 or less. It is a construction method used to protect riverbanks lower than the landside area. 	 It is a construction method used for temporary revetments and transition areas to existing river banks. It is important to take countermeasures for these transition areas as well. 	 When the slope gradient is lower than 1:1.5 and a rapid-flow river can not be slowed down, a construction method that uses natural stone is used.
Design flow rate	1 m/s ~5 m/s	1 m/s ~5 m/s	More than 4 m/s
Environmental characteristics	 There is no particular problem regarding to aspects such as vegetation on the slope's surface or at the water's edge, the aquatic habitat, and landscape considerations. 	 There is no particular problem regarding to aspects such as vegetation on the slope's surface or at the water's edge, the aquatic habitat, and landscape considerations. 	 Consideration needs to be given to vegetation on the slope's surface and at the water's edge, as well as, the habitat for aquatic life.
Workability	 Materials for revetment works are readily available. No special construction method is required therefore construction is easy. 	 Materials for revetment works are readily available. No special construction method is required therefore construction is easy. 	 Materials for revenuent works are readily available. No special construction method is required therefore construction is easy.
Construction Cost	1.00	1.00	1.88
Response to this case	 Because of the ease of material availability and the low difficulty of construction, it is easy to deal with this case. 	 Because of the ease of material availability and the low difficulty of construction, it is easy to deal with this case. 	 Although its use is possible, this river is below the target design flow velocity.
Evaluation	 The survey team recommends this construction method from the viewpoint of the slope gradient, river design flow velocity, and environment. 	 It is suitable for a section with a moderate gradient and is somewhat unsuitable for the slope gradient of this case. 	 It is difficult to consider this as a construction method to adopt actively from the environmental point of view such as water circulation and restoration of vegetation.

[Height of Revetment and Embedment]

The height of the revetment is set to 2.8 m, corresponding to the installed revetment by MES. Referring to the steep stream technical guideline in Japan, it is necessary for the embedment of the revetment to be 1.0 m as a minimum. However, its minimum is set at 1.5 m considering enough depth for scouring. Therefore, the embedment is set to be 1.5 m from the bottom of the existing river bed, and the embedment depth from planned river bed is 2.2 m.

Figure 2-2-15 Cross Section of Revetment

[Crest Width]

Referring to the relationship between planned river water discharge and crest width in the table below, the crest width of the revetment is set as 3.0 m corresponding to the planned river water discharge of $110 \text{ m}^3/\text{s}$.

		8
Planned river	water discharge	Crest width (m)
	less than 500	3
500 or more	less than 2,000	4
2,000 or more	less than 5,000	5
5,000 or more	less than 1,0000	6
10,000 or more		7

Table 2-2-9 Planned River Water Discharge and Crest Width

[Others]

Expected life spans of gabions are approximately 30 years with corrosion allowance of steel mash cage. A gabion is flexible structure, and will adopt unexpected transition of the river more or less. However, they shall be maintained and updated adequately depending on the situation.

(4) Road and Pavement Design

1) Geometry

i) Geometry Standard

As shown in Table 2-2-10, SNiP standard is basically adopted as the Geometry Standard, with some reference to the values of AASHTO and Road Structure Ordinance.

Items		Standard Value	Adopt
Design Speed (km/h)		60	60
Minimum Horizontal C	urve Radius (m)	150	150
Steepest Slope Gradient	c (%)	7.0	4.5
Minimum Vertical	Crest (m)	2,500	2,800
Curve Radius	Sag (m)	1,500	1,700
Maximum Super-elevat	ion (%)	6.0	6.0
Normal Cross fall (%)		2.0	2.0
Limit Super Elevation F	Rate (%)	10.5	7.16

Table 2-2-10Geometry Standard

ii) Composition of Road Width

The composition of road width is decided considering integration with the values in SNiP and the IsDB project.

Carriageway: The carriageway widths of category II of SNiP are 3.75 m and 3.5 m, while that of the IsDB Project is 3.5 m; therefore, 3.5 m is adopted as carriageway width.

Shoulder: The shoulder width of bridge sections in the IsDB project is 2.0 m, so this value is adopted. On the embankment section, a shoulder protection width of 0.5 m is added to this value, so the total width is 2.5 m.

Sidewalk: A sidewalk width of 1.5 m is adopted based on Japan Road Structure Ordinance considering the standard width for two people passing at the same time in opposite directions.

Figure 2-2-16 Typical Cross Section

iii) Sidewalk

The scope of the sidewalk is outlined below.

Sta.0+0 \sim 0+500 one side

Sta.0+500 \sim 1+200 both sides

The existing bridge has 0.7-m wide sidewalks on both sides. In the project, sidewalk width is

Figure 2-2-17 Location Map of Sidewalk

set to 1.5 m so that two people walking in opposite directions can pass at the same time. Installation of sidewalk on both sides is planned just as in the existing condition.

To have continuity between the bridge section and embankment section, the scope of sidewalk on both sides of the road are from Sta.0+500 at the middle intersection of the project to Sta.1+200 at the intersection of the end point of the project.

There are some houses on the left side of the section from Sta.0+0 to Sta.0+500. Therefore, a sidewalk will be installed only on the left side.

2) Profile

In order to avoid height differences between existing and planned roads, it was recommended to match to the height of the existing road as much as possible, and to raise the profile to keep the clearance for the future river flow (H=H.W.L + margin height + Piers beam + Girder thickness).

Figure 2-2-18 Profile

3) Pavement Design

i) Method of Design

Pavement design is conducted using AASHTO pavement design.

ii) Result of CBR Test

Result of CBR test for existing road bed is shown in Figure2-2-19. All of the CBR of the existing road bed and the road bed material for planned road from expected borrow pits are indicated with more than 20%. This is the reason why the soil of the existing road bed have cobble stone. The CBR of planned road bed is expected to be used 6.0% which is the general value.

To Talas						To Taraz
	Sta.0+00		Sta.0+500		Sta.1+00	Sta.1+200
	Pit1	Pit2	Pit3	Pit4	Pit5	
CBR Test	52 34	49	43 33	56 27	62	

Figure 2-2-19 Result of CBR Test for Existing Road Bed

iii) Design Period and Materials

The design period is set for 10 years from 2021 to 2030 after operation. Pavement materials for roadbed, subbase, base course and surface course available at the site will be used.

Surface course and binder course: asphalt concrete

Base course: crushed stone for mechanical stabilization (CBR>80)

Subbase course: crusher-run (CBR>30)

Roadbed: soil from borrow pit and excavated soil(CBR>6)

iv) Axle Load Equivalent Factor (ALEF)

The axle load equivalent factor (ALEF) is calculated from the data obtained from the nearest weigh station.

Table 2-2-11	AXIC LUAU EQUIVA	icht Factor
Vehicle Type	2 or 3 axles	4 or more axles
ALEF	2.378	4.286

Table 2-2-11 Axle Load Equivalent Factor

v) Equivalent Single Axle Load (ESAL)

The equivalent single axle load (ESAL) is calculated by multiplying traffic volume of each vehicle type and the corresponding ALEF.

-				Future	e traffic vo	lume		-		1.00	1.00
	С	ategory	Growth	Sedan	Pick-up	Mini bus	Mini truck	Truck	Trailer	Total ESAL	Total ESAL
Equivalent single axial load by vehicle type		rate (%)	0.010	0.100	0.100	0.100	2.378	4.286	per day	per year	
2021	1	Year of starts		3,272	41	477	166	149	134	1,030	375,865
2022	2		4.0	3,403	43	497	173	156	140	1,076	392,863
2023	3		4.0	3,540	45	517	180	164	146	1,125	410,752
2024	4		4.0	3,682	47	538	188	172	152	1,175	428,732
2025	5		4.0	3,830	49	560	196	180	159	1,228	448,335
2026	6	1	4.0	3,984	51	583	204	189	166	1,285	468,864
2027	7		4.0	4,144	54	607	213	198	173	1,341	489,524
2028	8		4.0	4,310	57	632	222	207	180	1,398	510,243
2029	9		4.0	4,483	60	658	231	216	188	1,459	532,588
2030	10		4.0	4,663	63	685	241	226	196	1,523	555,900
2dire	ctio	n 2lane ESAL	1	39,311	510	5,754	2,014	1,857	1,634	12,640	4,613,666

 Table 2-2-12
 Equivalent Single Axle Load (ESAL)

Correction factor (ILane , direction rate 50%) 2,306.833 (adopt)

vi) Structural Number (SN)

Structural number (SN) is calculated from ESAL using the equation below to accommodate loads above equivalent single axle load.

$$\begin{split} log10(W_{18}) = & Z_R \times S_0 + 9.36 \times log_{10}(SN+1) - 0.20 + \frac{log_{10} \ [\bigtriangleup PSI/(4.2-1.5)]}{0.40 + 1094/(SN+1)^{5.19}} \\ & + 2.32 \times log_{10}(MR) - 8.07 \end{split}$$

 W_{18} = predicted number of 18-kip (=8.16t) equivalent single axle load applications,

 Z_R = standard normal deviate, (ZR=-1.037)

S_o = combined standard error of the traffic prediction and performance prediction,

MR = resilient modulus (psi) = $CBR \times 1500$

 Δ PSI = difference between the initial design serviceability index, p0, and the design terminal serviceability index, p1 (Δ PSI=1.7)

SN = structural number (SN=3.6)

	8
Design Duration	10years (from year 2020 to year 2030)
ESAL	2.306×10^{6}
CBR of Roadbed	6%
Required SN	3.60

 Table 2-2-13
 Condition of Pavement Design

vii) Pavement Composition

The necessary structural number (SN) is calculated from planned pavement using the equation below.

The minimum thickness of asphalt concrete based on SNiP standards is from 6 to 7 cm for one layer, while that of Japanese standard and AASHTO is 5 cm for one layer. Pavement work and quality control will be conducted by a Japanese contractor. Therefore, the minimum thickness of asphalt concrete is set as 5 cm.

$$SN = a_1 D_1 + a_2 D_2 M_2 + a_3 D_3 M_3$$

 $a_1, a_2, a_3 = i^{\text{th}}$ layer coefficient, $D_1, D_2, D_3 = i^{\text{th}}$ layer thickness (inches), and $M_2, M_3 = i^{\text{th}}$ layer drainage coefficient

	α	М	hickness	SN
Surface course (Dense particle size asphalt concrete)	0.440	-	5 cm	0.87
Binder course (Course particle size asphalt concrete)	0.440	-	5 cm	0.87
Base course (CBR 80%)	0.135	0.9	15 cm	0.72
Subbase course (CBR 30%)	0.108	0.9	30 cm	1.14
Total			55 cm	3.60

 Table 2-2-14
 Asphalt Pavement Composition

Pavement composition from AASHTO equation, IsDB section, and Japanese TA method are compared to check validity.

 Table 2-2-15
 Comparison of Pavement Composition (IsDB Section and TA Method)

	Adopted Value	Reference				
	AASHTO	IsDB	T _A Method			
	ESAL=2.3×10 ⁶	Phase III	Large Vehicle Traffic Volume			
			100-250 veh/day			
			$(T_{A}=21)$			
Surface course (cm)	5	5.0	5.0			
Binder course (cm)	5	7.0	5.0			
Base course (cm)	15	10.0	15.0			
Subbase course (cm)	30	15.0	25.0			

For the sidewalk pavement, a surface course of 5 cm and a base course of 15 cm are used to be consistent with the IsDB project.

[Necessity of Anti-Frost Layer]

There are three elements that cause frost on the pavement: (1) lower temperature, (2) fine grain soil, and (3) existence of high underground water and possibility of high moisture content soil. Frost on the pavement occurs when the three conditions above are met.

viii) Temperature: freezing index is more than 500°C • days

The freezing index is calculated based on meteorological data, which is 513.6 $^{\circ}$ C \cdot days.

ix) Geology: Soil Containing Fine Particles

According to the research paper "Study on Design of Asphalt Pavement in Cold Climate" (1981, Civil Engineering Research Institute for Cold Regions), soil that contains a lot of fine grains (10% or more passing the 0.075-mm sieve and of 3% or more passing the 0.02-mm sieve) is easily affected from frost. Based on the results of the soil survey, it was found that the roadbed soil on the site has a significant amount of anti-frost soil (cobblestone sandy soil) and the 0.07-mm sieve passage amount is only 1.0 to 5.9%.

x) Water Content: the Groundwater Level is High or the Soil Water Content Ratio is High

According to above research paper, the water content of easily-frosted soil is considered to be 20%. Based on the soil survey results, the groundwater level in the area is low, and the water content ratio is from 3 to 11%.

From above, the freezing index is more than 500° C • days, but the roadbed is made up of anti-frost soil, has lower water content and a low groundwater level. Therefore, the possibility of frost on the pavement is considered to be low. Furthermore, the pavement of IsDB project

has no anti-frost layer, and the progress of weakening of roadbed bearing is considered to be slow because of the damage condition of the existing road pavement. Therefore, an anti-frost layer will not be installed.

[Necessity of Antifreeze Pavement]

Dense particle size asphalt concrete was adopted as the surface course in the IsDB project, but the special measurement for antifreeze of pavement was not conducted. This is because the height of the pile of snow is considered to be low, and the season of average temperature, which is below freezing, is around 2 months. Dense particle size asphalt concrete has few voids and less invasion of water, so freezing is unlikely to occur and influence on freezing pavement is considered to be small.

However, in this project, dense grain asphalt is adopted, but by adding more filler than usual, the number of voids in the asphalt is reduced, and freezing of the pavement is prevented. The weight mixing ratio F / A of the filler is about 1.7.

4) Traffic Safety Facility

i) Current Situation of Traffic Accidents

The fatal traffic accident data in the site is shown in Table 2-2-16.

	Table 2-2-16 Fatal Traffic Accidents									
Į	Date	Time	Place	Types of Accident						
「たいとうない」	2017.2.25	19:20	Near 83 km Post	Crash due to changing direction						
	2017.1.9	10:30	Near 83 km Post	Straying onto the opposite lane						
	2016.3.29	20:30	Near 83.2 km Post	Drunk driving						
No.	2016.1.2	15:00	Near 83.7 km Post	Crash due to overtaking						
1	2016 2 27	21.00	Near 82 km Post	Unknown						

Figure 2-2-20 Location Map for Traffic Accident

Based on the police report about traffic accidents, the most frequent location of fatal traffic accidents in the site is the area near the 83 km post on Talas-Taraz Road. The type of traffic accident is a crash caused by straying onto the opposite lane on the curve section. It is considered that the causes of the traffic accidents are difficulty in recognizing the curve, poor visibility of the curve, and over-speeding. As shown in Figure 2-2-21, it is difficult for drivers traveling from Talas to Taraz to recognize the curve.

Shape Curve at the Starting Point (Direction from Talas to Taraz)

Shape Curve at the Starting Point (Direction from Taraz to Talas)

Figure 2-2-21 Existing Condition of the Curve

The profile of the existing road indicated a downhill slope of 2.5%. This is not a steep grade, but vehicles tend to over-speed slightly.

Figure 2-2-22 Existing Road Condition near the 83 km Post

The road alignment near the post 83 km will be improved from curve radius 60 m to 150 m, which is the minimum curve radius on the design speed 60 km/h and the desirable curve radius on the design speed 50 km/h. This curve improves trafficability and traffic safety as compared to the existing road condition. However, this curve section is a black spot, so it is necessary to install the traffic safety facilities to make it easier to recognize the curve from afar and to reduce running speed.

ii) List of Traffic Safety Facilities

Common traffic safety facilities on general sections are shown below.

Road Safety Countermeasures	Description
Speed suppression	Make drivers feel that the road width is narrow and the driving speed faster than
	it actually is, and suppress speed.
	Give drivers information using road signs or information boards that give
	caution and lead to lower driving speeds.
Visual guidance	Driving performance is improved by visual guidance such as lane marking or
	delineator.
Prevention of lane departure	Prevent vehicles from departing outside the lane with the installation of
	guardrail or concrete barrier
Prevention of vehicle entry	Prevent vehicles from entering disruptively with the installation of guard post or
	guardrail
Shock mitigation	Shock mitigation of vehicles that depart their lane to outside the road
Night visibility	Improve visibility at night by installing lighting

Table 2-2-17 Common Traffic Safety Facility on General Section

Table 2-2-18	Traffic Safety Measur	es and Applicability	for the Project

	Items	Visual guidance	Speed suppressi on	Preventio n of lane departure	Preventio n of vehicle entry	Shock mitigatio n	Night visibility	Applicab ility	Remarks
Road	Dot line	\bigcirc	\bigcirc					0	
Marking	Feather		0					0	
Run	nble strips			0				0	Concave Type: Effectiveness of the rumble strips was confirmed in cold areas such as USA and Hokkaido.
	Hump		0					×	Inappropriate for a high-class road
Colo	r pavement	\bigcirc						\triangle	Difficult to be maintained by MOTR
Traffic button		0						\triangle	Obstacle for snow removal work
Tra	affic pole	0						\triangle	Obstacle for grazing animals

	Items	Visual guidance	Speed suppressi on	Preventio n of lane departure	Preventio n of vehicle entry	Shock mitigatio n	Night visibility	Applicab ility	Remarks
Vieual	Delineator	0						0	
guidance	Feather shape reflector	0						0	High visibility from afar compared to a delineator
Warning	Road sign type		\bigcirc					0	
display board	Information board type		0					0	High effectivity with facilitating sensor
G	uardrail			\bigcirc				0	
Railing of prevention an	or Fence of fall on for vehicles d people				0	0		0	
Cus	hion dram					0		0	
Cras	h Cushion					0		0	
St	reetlight						\bigcirc	0	

 \bigcirc :Very Good, \bigcirc :Good, △: Poor

iii) Traffic Safety Facility Plan

From the viewpoint of reducing fatal traffic accidents, traffic safety facility is planned while making speed suppression the first priority. Visual guidance on a curve section is expected to play the same role as speed suppression does. It means that recognition of a curve makes a driver reduce his speed, so effectively it is speed suppression.

[Speed Suppression: Caution Information Board]

As a non-structural measure, drivers will be cautioned by using a road digital information board indicating variable messages such as "caution of curve" or "caution of speed." However, in case the said message needs to be shown every time, the effect of this device is limited and expected to function just like a road sign.

A road digital information board is facilitated by a sensor that catches a vehicle when it comes before the curve section and gives information to the driver timely, so the effect of this device is high. This device will be installed at the section between 50 m before the curve and the curve section itself in each direction.

Figure 2-2-23 Caution Information Board

Japanese	English	Kyrgyz	
スピード落とせ	Slow Down	жайла	
急カーブ	Sharp Curve	резкая кривая	

[Visual Guidance]

As a structural measure, the installation of road dot marking is expected to suppress speed inside the outer line on the section between 20 m before the curve and the curve section itself. It would make drivers feel that the carriageway width has become narrow so they would reduce their driving speed. This road marking will be installed between 20 m before the curve radius is 150 m (where there is a clothoid element section) and curve section itself in each direction.

Figure 2-2-24 Road Dot Marking

[Prevention of Lane Departure: Rumble strips]

As a hard measure, install rumble strips in the shoulder and center line of curve section on road surface. When the vehicle departure from the lane, sound and vibration are generated when the tire passes over the rumble strips. It is expected that the driver will be awakened and paid attention.

The installation range is a curve section of R=150 and R=570, and it will be installed inside the curve of center line and outside the road shoulder edge lines.

Figure 2-2-25 Rumble Strips

[Visual Guidance]

Since the curve section is located on the embankment section, a guardrail is installed to prevent drivers from departing the lane and falling from the road. Moreover, a deflector-indicating arrow is planned to be installed to allow the curve to be recognized from afar and at night. It is also expected to work as a speed suppressor. Moreover, the effectiveness of the road dot marking becomes lower at night, but that of the reflector-indicating arrow does not. The deflectors will be installed on the curve section and the section with guardrails.

Figure 2-2-26 Visual Guidance and Prevention of Lane Departure for Curve Section

[Others]

Near the beginning point of the project site, where the curve starts, the road width becomes narrow due to the interaction with the existing road. There is a bridge for crossing irrigation channel and a shop. The guard rails shall be installed at this point to prevent the vehicles from lane departure. In front of the shop, guard posts will be installed to prevent lane departure and provide visual guidance. Guard posts shall be installed in front of Street light poles, road signs, etc., where sidewalk and installation of guard rail are not planned.

Figure 2-2-27 Other Traffic Safety Facilities

The traffic safety facilities layout is shown on the next page.

Figure 2-2-28 Layout of Traffic Safety Facilities

5) Guardrail

On the section of turning curve without pedestrian way, where the height difference between the planned road and existing land is more than 2 m, guardrails will be installed in order to prevent vehicles from departing from the lane and falling from the road. On the section with pedestrian way, where the height difference between the planned road and existing land is more than 2 m, guardrails will be installed in order to prevent the falling from the road. Also, in the bridge section and its mounting part, the post columns will be set up to prevent vehicles from departing from the lane and fallout prevention.

Figure 2-2-29 Allocation of Guardrails at the Bridge Section

6) Street Light

For traffic safety at night, street lights will be installed on the embankment section and the bridge section.

[Type of Light]

As a result of the comparison of light types in the table below, LED Type is adopted. The cost of a LED lamp has recently become cheaper than before, and its life expectancy is longer than others, so the life cycle cost is the cheapest among all alternatives.

Table 2 2 20 Comparison of Street Eignts								
	LED Lamp (120W)	High Pressure Sodium Lamp (180W)	HID Lamp (400W)					
Photo								
Life of Lamp	60,000 hours	24,000 hours	40,000 hours					
	(15 years)	(0 years)	(10 years)					
Lamp Cost	Higher	Cheaper	Cheaper					
Maintenance No need		Lamp needs to be replaced for around 10 years.	Lamp needs to be replaced for around 5 years.					
Electricity Cost	Cheapest	Cheaper	Expensive					
Life Cycle Cost	Cheapest	Cheaper	Expensive					
Total Evaluation	Very Good	Good	Fair					

Lable 7 7 70 Companison of Street	t lighta
Lable 2-2-20 Comparison of Stree	LIGHTS

[Height of Light]

There are street lights near the site, which are around 10-m high.

The total road width of the target road is 15 m, and the area that needs to be lit is narrow, so the light height is adopted as 15 m.

[Light Arrangement]

The total road width is not wide, so the adequate light arrangement is staggered.

[Power Supply]

The electricity cost is borne by MOTR. Necessary procedure for the introduction of electricity is conducted by MOTR as well.

7) Drainage System

Due to the adoption of a flat-type sidewalk, half of the road surface water is planned to flow into the river directly. The other half is planned to be caught by a ditch installed along the road and opposite to the river. The ditch would gather water in one place, cross under the road, and flow into the river.

Part of existing irrigation channel affected by the planned road is considered to be replaced and connected up to downstream crossing pipe culvert. Moreover, there is spring water coming from the downstream pond at station 0+820, and this water is planned to flow into the river by installing a perforated pipe and crushed stone.

Figure 2-2-30 Drainage System

[Drainage condition]

Rainfall intensity used for the calculation of rainwater discharge is 60 mm/hr, referring to the standard rainfall intensity of Hokkaido (10-minute rainfall intensity of 3-year reoccurrence), where annual rainfall is 1100 m, and have the similar weather climate. The drainage capacity was determined by obtaining the average flow velocity through Manning formula and set a dimension capable of discharging water.

The results of the drainage calculation are shown below.

٨	Rainwater runoff	Drainage	Drainage gradient	Water passage area	Average flow velocity	Displacement	80% depth of water	Judgment
Area	m3/s		%	m2	m/s	m3/s	m3/s	
Sta.0+8~0+150	0.033	U-300	2.5	0.090	2.271	0.204	0.164	OK
Sta.0+150~0+253	0.071	U-300	1.429	0.090	1.717	0.155	0.124	OK
Sta.0+253~0+425	0.094	U-300	1.429	0.090	1.717	0.155	0.124	OK
Sta.0+425~0+550	0.095	U-300	1.429	0.090	1.717	0.155	0.124	OK
Sta.0+550~0+580	0.097	U-300	3.9	0.090	2.836	0.255	0.204	OK
PIPE	0.097	ϕ 450	2.512	0.122	2.513	0.307	0.245	OK
Sta.1+70~1+205	0.004	U-300	0.5	0.090	1.016	0.091	0.073	OK
Sta.1+60~1+130	0.016	U-300	0.5	0.090	1.016	0.091	0.073	OK

Table 2-2-21	Result of Drainage	Calculation
--------------	--------------------	-------------

(5) Bridge Design

1) Design Conditions

i) Road Conditions

The cross section of the bridge is shown in Figure 2-2-31.

Figure 2-2-31 Cross Section of the Bridge

ii) River Conditions

- Freeboard

The freeboard, which is applied from the design discharge, is 0.6 m according to Table 2-2-22. The design discharge is estimated to be $110 \text{ m}^3/\text{s}$.

Item	1	2	3	4	5	6
Design Discharge	Less than	200~less than	500~less than	2000~less	5000~less than	More than or
(m^{3}/s)	200	500	2000	than 5000	10000	equal 10000
Freeboard (m)	0.6	0.8	1.0	1.2	1.5	2.0

 Table 2-2-22
 Relations of Minimum Freeboard and Design Discharge

Source: Government Ordinance for Structural Standards for River Administration Facilities

On the other hand, a lot of sand, stones, and driftwoods have been brought from the upstream side during snowmelt floods due to the approximately 1/100 profile of the river. Moreover, a considerable amount of sand and stones have accumulated around the bridge due to finishing the steep river profile surrounding area of the bridge. Such a situation occurs in "Sabo River," which is defined as a river with a river profile of 1/100 or more river profile river in the Sabo Technical Standards of Japan.

The Sabo Technical Standards of Japan requires a 0.5-m margin from a design freeboard level to secure a freeboard after sand and stone accumulation, as well as to secure a passing clearance of driftwoods under the superstructure.

Therefore, the height from the design water level to under the superstructure is set as 0.5 m + 0.6 m = 1.1 m.

iii) Design Water Level

The design water level for designing the substructure has to comply with Bridge Design Handbook of MILT in Japan as shown in Figure 2-2-32. MWL is applied in seismic conditions, while HWL is applied in the other conditions.

Figure 2-2-32 Design Water Level

iv) Geotechnical Condition

A geotechnical survey was conducted. The items of the geotechnical survey are shown in Table 2-2-23.

iusie = = = = Summury of Geologicul Survey							
Items	Units	Quantities	Note				
Machine Boring	Nos.	5	Planning points of Substructures: 4 Planning area of Embankment: 1				
Standard Penetration Test	Nos.	85					
Physical Test	Set	19	Consolidation, Water Content Ratio, Liquid/Plasticity Limits, Particle Size Distribution				
CBR Test	Nos.	5					

 Table 2-2-23
 Summary of Geological Survey

The pile foundation is selected since the depth of bearing layer is $7 \sim 10$ m as follow considerations.

- The soils distributed in this area are classified by the observation and the laboratory test. This area is structured by 3 layers, from top to bottom: topsoil, silty sand and gravel, and sand with gravel. The geological longitudinal profile is shown in Figure 2-2-33.
- First layer: Topsoil. Silty soil. Depth from the ground surface is approximately 2 m.
- Second layer: Silty soil and gravel. Thickness is approximately 10 m. This layer is not considered as a good bearing layer since almost all N values are over 50 (caused by the existence of gravel), while some N values are under 10.
- Third layer: Sandy soil with gravel. Depth from the ground surface is 7~10m. The bearing layer.

Figure 2-2-33 Geological Longitudinal Profile

v) Seismic Condition

According to SNiP, seismic conditions in Kyrgyz are as follows;

- The Peak Ground Acceleration (PGA) of almost all earthquakes were less than 50 gal; an earthquake with over 100 gal occurred only once (2nd of November 1946, 132 gal) in the past 100 years

- Talas is in an area with a design earthquake scale under magnitude 6.5, and there were no records of over 100 gal in case of magnitude 6 scale.

Therefore, the horizontal acceleration coefficient is adopted 0.1 as 100 gal.

vi) Live Load

Type-B is applied as design live load based on the result of a comparison study between HK-80 of SNiP and Type-B of JRA. The sectional force of girders by Type-B is bigger than by HK-80. Diagrams of live load are shown in Figure 2-2-34.

Source: SNiP and JRA

Figure 2-2-34 Design Live Load Diagrams

vii) Other Loads

Other loads of bridge design are shown in Table 2-2-24.

Table 2-2-24	Other Loads
Effect of Temperature Change	15°C (Range of Temperature Change)
Snow Load	$1.0 \mathrm{kN/m^2}$

viii) Materials Specification

Specification of concrete is shown in Table 2-2-25, Specification of reinforcing steel bar is shown in Table 2-2-26.

Table 2-2-25	Specification of Concrete	
--------------	----------------------------------	--

Classification	Compressive Strength (N/mm ²)
Plain Concrete	18
Reinforced Concrete	24
Column/Beam of Pier, Crossbeam of Superstructure	30
Cast in Placed Concrete Pile	30 *1
Girder	30

*1: Design strength is 24 N/mm²

Source: JRA

Table 2-2-26 Specification of Reinforcing Steel Bar

Classification	Strength (N/mm ²)
SD345	Yield Point=345-440, Tensile Strength=490

Source: JRA

2) Bridge Length

i) Setting of Abutment

The bridge length is controlled by the position of abutments, which is controlled by the improvement plan of the dike as shown in Figure 2-2-35. Abutments are set back 30 cm or more from the shoulder of the planned revetment. Therefore, the position of A1 abutment is STA.883.5, that of A2 abutment is STA.974.0, and the bridge length is 90.5 m as shown in Figure 2-2-36.

Figure 2-2-35 Improvement Plan of Dike

Figure 2-2-36 Location of Abutments and Bridge Length

ii) Minimum Span Length

The minimum span length, which is the distance between substructures, is set based on the "Government Ordinance for Structural Standard for River Administration Facilities" of Japan (hereinafter referred as "Structural Standard for River").

The existing bridge has been damaged by snowmelt floods, but the area along the dike do not have any damages because of the following conditions,

- The flood discharge 110 m³/s is small,
- The river width at the existing bridge is 14.7 m, and
- The flood water level from the river bed is approximately 1.5 m, and the level of the river bed is lower than the level of the area along the dike.
- Therefore, the impact of snowmelt flood on the area along the dike is low, and the minimum span length is considered in Table 2-2-27.

Table 2-2-27	Minimum S	Span Length	of Low Flood	Impact Rivers
--------------	-----------	-------------	--------------	---------------

Design Discharge (m3/s)	Less than 500	Less than 500	500 or more Less than 2000
River Width (m)	Less than 30	30 or more	—
Minimum Span Length (m)	12.5	15	20

Source: Government Ordinance for Structural Standard for River Administration Facilities

On the other hand, the new bridge is planned at a 40 degrees angle with the river, and the minimum span length should be ensured at 90 degrees angle with the river. Therefore, the span length of the bridge should be more than 23.3 m (=15 m / sin 40 degrees) as shown in Figure 2-2-38.

Figure 2-2-37 Span Length in Oblique Bridge

Figure 2-2-38 Span Length of Bridge

3) Superstructure

i) First Comparative Study of Superstructure Types

The first comparative study of superstructure types was carried out based on span arrangements since superstructures have a standard span length for each one.
Alternative plans of span arrangement of the bridge length which is more than 90.5m are as follows;

- 1-Span : 90.5 m,
- 2-Spans : 2 @ 45.25 m = 90.5 m,
- 3-Spans : 3 @ 30.17 m = 90.5 m, and
- 4-Spans : 4 @ 22.63 m = 90.5 m (This arrangement plan is omitted since the span length is less than the minimum span length of bridge 23.3 m).

The first comparative study of superstructure types is shown in Table 2-2-28.

Span Arrange -ment	Type of Superstructure	Constructability	Impact on River Flow	Maintenance Aspect	Cost (Ratio)	Evaluation
1 Span	Steel Arch/Truss	- Crane erection with the installation of a stage/bent in the river is needed.	 No installation of piers in the river. 	 Periodical Re-paint by Kyrgyz is necessary. 	2.78	Negative
2 Spans	Steel Plate Girder	- Crane erection with the installation of stage/bent in the river is needed.	- One pier is installed in the center of the river.	 Periodical Re-paint by Kyrgyz is necessary. 	1.25	Negative
2 Spans	PC Box Girder	 Fixed Support is installed whole of river width. 	- One pier is installed in the center of the river.	 Long life materials are used (PC). 	1.33	Negative
3 Spans	Steel Plate Girder	- Crane erection with the installation of stage/bent in the river is needed.	- Piers are not installed in the center of the river.	 Periodical Re-paint by Kyrgyz is necessary. 	Approximately 1.0	Positive
	PC Component Girder	- Erection girder method without installation of stage/bent in the river is applied.	- Piers are not installed in the center of the river.	 Long life materials are used (PC). 	Approximately 1.0	Positive
	PCT Girder	 Erection girder method without installation of stage/bent in the river is applied. Girder profile is lower than other 3-Span types 	- Piers are not installed in the center of the river.	- Long life materials are used (PC).	Approximately 1.0	Positive

 Table 2-2-28
 First Comparative Study of Superstructure Types

The three superstructure types with 3-span arrangement were selected for the second comparative study of superstructure types due to the following reasons;

- The cost of construction and maintenance 1-Span plan is most expensive,
- The impact on river flow of 2-span plans, which provide one pier in the center of the river, is not good,
- The girder height of the 2-span plans needs longer approach roads than other span plans, and
- The cost of construction and maintenance of 3-Span plans is cheaper than other plans.

Therefore, the second comparative study of superstructure types will consider the following alternatives:

Alternative 1 : 3-Span Continuous Steel Plate Girder Bridge Alternative 2 : 3-Span Continuous PC Component Girder Bridge Alternative 3 : 3-Span Continuous PC T-Shape Girder Bridge ii) Second Comparative Study of Superstructure Types

The second comparative study based on three alternative superstructure types is carried out on Table 2-2-29. The "3-Span Continuous PC T-Shape Girder Bridge" is selected for the following reasons:

- Cheapest superstructure type among all types,
- Maintenance cost is cheap, and
- Girder erection works can be carried out without provision of stage/bent in the river.

	1000 1000	-	Positive	Positive	Positive	Neutral	Positive	Positive	
Alternative-3 3 Spans Continuous PC T-Shape Girder Bridge	ar idee Lemeth 3000 200 Grinder Lemeth 3000 200 Grinde	4401500 14800 110000 3500 3500 1500400	 Girder height is low. Profile of the road can be planned with a gradual slope. Therefore, pedestrians walk easily, and length of the slope become shorter. 	 Profile from bottom of girder to road surface is lowest than other alternatives and the heightening length of the approach will be shortest. 	- The erection girder method without the utilization of the river area is applied.	Approximately 11 Months	 Routin maintenance work is necessary. But the structure is relatively simple and the visual investigation is easy. The utilization of prestressed concrete makes high durability 	1.000	Recommend
	10000 10000		Negative	Negative	Positive	Neutral	Positive	Neutral	
Alternative-2 3 Spans Continuous PC Component Girder Bridge	Bridge Length 3000 Talke So Sam Length 2000 200 Girder Length 2000 200 Girder Length 2000 2 So Sam Length 2200 3(5) Sam Length 2300 3(5) Sam Length 2300 3 Talke So Sam Length 2300 3(5) Sam Length 2300 3(5) Sam Length 2000 3 Talke So Sam Length 2300 3(5) Sam Length 2300 3(5) Sam Length 2000 3 Talke So Sam Length 2300 3(5) Sam Length 2300 3(5) Sam Length 2000 3 Talke So Sam Length 2300 3(5) Sam Length 2300 3(5) Sam Length 2000 3 Talke So Sam Length 2300 3(5) Sam Length 2000 3(5) Sam Length 2300 3(5) Sam Length 2300 3(5) Sam Length 2000 3(5) Sam Length 2300 3(5) Sam Length 230 3(5) Sam Length 23	4001500 14800 15000 1500400 3500 3500 3500 2000	 Girder height is high. Since the profile gradient of the road is steeper than other alternatives, pedestrians do not walk easily. 	 The profile from bottom of girder to road surface is highest than other alternatives and the heightening length of the approach will be longest. 	 The erection girder method without the utilization of the river area is applied. 	Approximately 11 Months	 The utilization of prestressed concrete makes high durability structures. 	1.018	
	-ze-ze-		Positive	Positive	Negative.	Negative	Negative	Negative	
Alternative-1 3 Spans Continuous Steel Plate Girder Bridge	-11.142 50 Sam Langth 2900 Sam Langth 2000 Sam	4001500 14800 1500 400 2000 3500 2000 1500 400	 Girder height is low. Profile of the road can be planned with a gradual slope. Therefore, pedestrians walk casily, and length of the slope become shorter. 	 The structural scale of Substructure/foundation is smaller due to light weight superstructure. 	 The crame creation is applied and this method requires the installation of stage/bent in the river. 	Approximately 13 Months	 Periodical Re-paints by Kyrgyz is necessary. 	1.050	
	Side View	Cross Section	Road and Traffic	Structural Feature	Erection Methodology	Construction Period	Maintenance Aspect	Cost (Ratio)	Evaluation

 Table 2-2-29
 Comparison of Bridge Types (Secondary Selection)

4) Substructure

i) Embedding Depth

The embedding depth of substructures is planned based on "Structural Standard for River" as shown in Figure 2-2-39.

Figure 2-2-39 Embedding Depth of Substructures

ii) Type of Substructure

According to Figure 2-2-40, "Inverted T-Type" was selected as the structural type of abutments, while "Column/Wall Type" was selected as the structural type of piers are selected given that 8~10-m high abutments and approximately 10-m high piers are planned.

Ale and Track	Height (m)									
Abument Type	10	20	30	Remarks						
Gravity Type Abutment	-i			н			He	ight (m)		
				Pier Ty	Pier Type	10		20	30	Remarks
Inverted T-type				H	Column Type Pier Wall Type Pier		_	-		
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	non type tat		_		-	feelading hollow pie
Rigid-frame	15			н	Rigid-frame Pier	3	15			TT
Abutment		-	_		(Single)		-		_	
	15	0.12		н	Rivid-frame Dier		15	25		100
Box Type Abutment	1				(Duble)		-			
Forth message har	5 7			h	True Colones True		15			E B
telieved Abutment H		-	_	H	Pier	-				
	_	_	1.	Contract of Contractors			-	-		In case of RC-PC bages 4

Source: Planning manual, MLIT, JAPAN

Figure 2-2-40 Applicable Height of Substructures

- 5) Examination of Pier Type
 - i) Adoption of Column Pier

The column pier is adopted for the following reasons;

- The skew of longitudinal directions of the bridge and the river flow is approximately 40 degrees,
- The minimum skew angle of typical superstructures is approximately 75 degrees. The column pier, which connects the girder support beam at 75 degrees, can be adopted for typical superstructures,
- There are different directions of river flow from low to high discharge due to the difference in directions of the low water channel and the dike, and
- The utilization of the column pier prepares for the transition to a low water channel.
- ii) Diameter of Pier Column

The diameter of pier column is studied based on the structure analysis. The items of

consideration are as follows;

- The structural stability should be ensured,
- The column pier's reinforcement steel bar and PC cable of the girders support beam can be arranged in the installation area in the girders support beam,
- The inhabitation rate based on "Structural Standard for River" is 7% or less, and
- The procurement of concrete and reinforcement steel bar is feasible.

The results of the study as shown in Table 2-2-30. A diameter of 3.0 m is recommended.

Case	Diameter of Column	Inhibition Rate	Strength of Concrete	Diameter of Reinforcement Steel Bar	Evaluation
1	2.5 m	5.5% <7%	30 N/mm ²	D 51	 D51 reinforcement steel bar will be imported from Japan. 30 N/mm² concrete is not standard for substructures.
2	3.0 m	6.6% < 7%	24 N/mm ²	D32	 Recommended D32 reinforcement steel bar can be procured in Kyrgyz. 24 N/mm² concrete is standard for substructures.

 Table 2-2-30
 Study of Diameter of Pier Column

iii) Structure Type of Girder Support Beam of Pier

A prestressed concrete structure is applied for the girder support beam of the pier because the span of the beam is more than 6 m.

In the case of the reinforced concrete structure shown in Figure 2-2-41, an approximately 14-m high pier is needed, and an increase of construction is expected due to the undesirable influences listed as follows;

- The road profile rises by approximately 2.5 m, and the heightened road is longer,
- All heights of substructures and numbers of piles are increased, and
- The diameter of the pier column is increased.

 Figure 2-2-41
 Structure Type of Girder Support Beam

6) Pile Foundation

The cast in place concrete pile with rotary all casing is selected due to the following reasons;

- There are gravels with diameters of 10 cm or more from the ground surface to the bearing layer,

- Piles are made from local materials (concrete and reinforcing steel bar), and
- The bearing layer is confirmed by visual observation of the discharged soil.

The 1.2-m diameter pile is selected based on cost as shown in Table 2-2-31.

		1 Cost of The Foundation	
	φ1.0m	φ1.2m	φ1.5m
Abutments			
Piers			
Cost (Rate)	1.13	1.00 (Recommended)	1.22

Table 2-2-31Cost of Pile Foundation

7) Methodology of Girder Erection

The erection girder method for girders erection is selected due to the following reasons;

- The girder casting/stockyard is provided on the approach road, which is at the same level of the bridge surface,
- In the case of a crane erection, a temporary girder casting/stockyard is provided outside of the approach road and the installation of a temporary stage on the river is needed, and
- The erection girder method is unaffected by snowmelt flood.
- 8) Other Accessories

Other accessories are listed in Table 2-2-32.

Item	Content						
Railing	Strength: To protect vehicles a falling from the bridge (Type A of Japan standard) Height: To protect pedestrians from falling from the sidewalk (H=1.1 m from surface of the sidewalk)						
Bearing	Rubber type						
Expansion joint	Rubber type						
Approach slab	L=4.8m, W=11.4m						
Pavement	Asphalt; Carriageway t=8cm, Sidewalk t=3cm						
Drainage	Vertical pipe						

Table 2-2-32List of Accessories of Bridge

9) Maintenance

Target life span of superstructure and substructure of bridges are generally 100 years on the assumption of conducting appropriate maintenance. Life span of joints and bearings of the bridge are approximately 25 years and 100 years respectively. Replacement of them shall be conducted adequately.

• Procedure of replacement of bridge joints

Removal of existing joints(cutting AC pavement, chipping, etc.) \Rightarrow Installation of new joints (setting joints, concrete placement. etc.)

• Procedure of replacement of bridge bearing

Jacking up girders \Rightarrow Removal of existing bearing \Rightarrow Anchoring rebars \Rightarrow Installation of new bearing \Rightarrow Jacking down girder

2-2-3 Outline Design Drawings

Outline design drawings are presented from next page, and contents of the drawings are summarized in Table 2-2-33.

Title of the Drawings	Number of the Drawings				
Location Map	LM-01				
Typical Cross Sections	TC-01				
Key Plan	KP-01~02				
Plan	PL-01~10				
Profile	PR-01~06				
Intersection Plan	IS-01~04				
Curb Stone	CU-01~03				
Drainages Structure	DR-01~03				
Bus Stop	BS-01				
Access Way	AC-01~02				
Guard Fence	GF-01				
Road Marking	RM-01				
Road Sign	RS-01~02				
Street Lighting	SL-01				
Traffic Signal Plan	TS-01~05				
Detail of Traffic Signal	TS-01~05				
Hand Hole	HH-01				

 Table 2-2-33
 Contents of the Outline Design Drawings

2-65

AS SHOWN MAR. 2018 GR -02 Drawing No. SCALE DATE VOLUME 2 -2 4 2 ~ ~ S=1/5 091 GUARD RAIL WITH CURB MARKER E BILD Ħ p. BASE PLATE(ALUMINIUM ALLOY) CURB MARKER SIDE VEIW REFLECTION SHEET **BRACKET RING** PLAN BRACKET RING **BOLT/NUT** NAME POST U-BAND CAP T A Contraction of the second se TITLE : $\overline{\bigcirc}$ THE PREPARATORY SURVEY ON THE PROJECT FOR RECONSTRUCTION OF URMARAL RIVER BRIDGE ON TALAS-TARAZ ROAD IN THE KYRGYZ REPUBLIC ő ଚାଡ 9000 540 \bigcirc GUARD RAIL WITH CURB MARKER 6 ٢ (7) d c JAPAN INTERNATIONAL COOPERATATION AGENCY KATAHIRA & ENGINEERS INTERNATIONAL, INGÉROSEC CORPORATION S=1/10 06 l G.L. **CURB MARKER DETAILE** 002 400 ш MINISTRY OF TRANSPORT AND ROADS 220 3 Ø34×t2.3×700 \bigcirc \odot É G.L.

MAR. 2018 AS SHOWN SL-01 Drawing No. SCALE DATE SCHEDULED LIST OF STREET LIGHTING 55 099 STA1+090 R STA1+170 R STA0+480 R STA0+840 R STA0+160 R STA.0+240 R STA0+560 R STA0+640 R STA0+720 R STA0+800 R STA:0+930 R STA0+080 R STA:0+320 R STA0+400 R STA1+010 R 90 09 Location S=1/10 50 STREET LIGHT(1) -\$ ϕ ø 16 20 24 28 28 28 29 Ś 8 12 10 18 350 250 **BASE PLATE** STA0+890 L STA0+970 L STA1+050 L STA1+130 L STA.0+200 L STA.0+280 L STA.0+360 L STA.0+440 L STA.0+520 L STA.0+600 L STA.0+680 L STA.0+040 L STA.0+120 L STA.0+760 L Location ¢ φ 1.Surface Treatment : Hot dip Galvanized 50 2.Design Wind Speed : 50m/sec 11 15 15 15 17 17 19 23 23 23 23 23 TITLE Ľ 4-PL 12t Ŝ 4-Ø30 Hole THE PREPARATORY SURVEY ON THE PROJECT FOR RECONSTRUCTION OF URMARAL RIVER BRIDGE ON TALAS-TARAZ ROAD IN THE KYRGYZ REPUBLIC Specification 1200 S=1/10 001 009 009 <u>ðð</u> 520 % Screw part galvanization ¦⊞¦i STREET LIGHT(1) ANCHOR BOLT 250 - -¢ JAPAN INTERNATIONAL COOPERATATION AGENCY KATAHIRA & ENGINEERS INTERNATIONAL, 4-M24 FB50×t6 INGÉROSEC CORPORATION LUMINAIRE:E7728SA9/40 LAMP:LED 10 ADAPTER Ø60.5×120L ROUND SHAPE STEEL PIPE: Ø76.314.2 ANCHOR BOLTS 4-M24×700L ROUND SHAPE STEEL PIPE APERTURE(130×600) POWER SUPPLY UNIT JOINT UNIT CONCRETE (24N/mm2) CRUSHER-RUN D12×1600@150 MINISTRY OF TRANSPORT AND ROADS 2100 RIB 14.5 ц Ю φ165 t5.0 Ø500 Ø700 POLE CAP D12×2000@200 SECTION S=1/60 EARTH 500 00001 2100

2-2-4 Implementation Plan

2-2-4-1 Implementation Policy

Basic concepts for implementation of the Project are as follows;

- On reaching an agreement and signing the exchange of note by both the Government of Japan and Kyrgyz, the Project will be implemented in accordance with the guideline of Japan's Grant Aid,
- The Ministry of Transport and Road (MoTR) and the Government of Kyrgyz (GoK) are responsible for the Project implementation,
- Assistance in tendering and construction supervision will be undertaken by a Japanese consulting firm in accordance with a contract between the MoTR and the consultant, and
- A Japanese pre-qualified tenderer who has been awarded the contract by the MoTR will undertake the implementation of the Project.

Main concepts for the implementation are as follows;

- Materials and labor for the project are procured in Kyrgyz as much as possible. If required qualities and capacities are not enough, materials and labor can be procured effectively from third countries and/or Japan,
- Implementation method and schedule for the Project shall be planned on the basis of local meteorological, topographic and geological conditions, as well as, any natural conditions affected by the construction works,
- General and easy method without specific equipment and technology shall be planned,
- Appropriate standards and specifications for construction shall be proposed, and site organizations of both the contractor and consultant shall be arranged to comply the abovementioned standards and specifications,
- Facilities to strictly secure safety for construction staff and third parties shall be installed, and

Protection against water pollution and flooding by the implementation and operation of quarry sites and borrow pits shall be done in order to preserve the environment. Construction waste shall be treated and/or dumped in a proper site specified by the Government of Kyrgyz.

2-2-4-2 Implementation Conditions

The construction plan and method shall be prepared in order to secure the safety of the construction staff and the third parties as the first priority, as well as to consider preservation of the environment for the road users and the residents living on the roadside.

(1) Present Bridge/Approach Road Functions

The project bridge and approach road are located in Talas-Taraz Road, which connects to Kazakhstan and crosses Urmaral River. The bridge and approach road are used as international arterial roads particularly by heavy vehicles, and the river crossing road is used by neighboring residents. Therefore, their functions as international arterial and river crossing roads shall be preserved during construction.

(2) Climate and Natural Conditions

Regarding climate and natural conditions, the project area experiences severe winter from December to February and snowmelt flooding of the river from June to August. Therefore, the implementation plan shall consider such climate and natural conditions.

(3) Safety Management for Road Users and Construction Personnel

Although the replacement bridge is planned to be separated from the existing bridge on the upstream side, a part of the new approach road is planned on the section where the existing road connects with the new road. Therefore, a detour road shall be provided next to the existing road to secure the area of the new approach road and separate the construction area from the area where road users pass in order to ensure smooth traffic flow and road safety.

On the other hand, a new pier is planned to be installed within in the cofferdam with sheet piles on the present river waterway, so safety training shall be carried out to ensure safety.

- 1) Safety for Road Users;
 - Construction yards will be clearly separated.
 - The detour road will have a sidewalk that is separated from the carriageway.
 - Security facilities such as barricades, detour routes indication boards, and so on as well as traffic controllers.
 - Prevention measures to the construction machine/vehicles drivers and operators shall be carried out through periodical traffic and construction safety educations.
- 2) Safety Management to Construction Personnel;
 - The engineer of safety management of the pier construction in the river will set during that construction.
 - Prevention measures to the construction shall be carried out through periodical safety educations.
- 3) Consideration for Environment
 - Debris and waste from the removal of the existing pavement and bridges shall be done in a proper manner to mitigate adverse environmental impacts.
 - Selection of borrow pits and quarry sites will be made with consultation of the relevant authorities, and at the location with the least negative impacts on the environment.
 - Dust control measures shall be carried out by spraying water promptly.
 - Provision of information and educative training on labor safety, public health, natural environment preservation measures shall be conducted for the construction workforce.
- 4) Laws related Construction Safety
 - Labour Code of the Republic of Kyrgyzstan of 4 August 2004
 - Law No. 142 of 26 of July 2016 "To Amend the Law "On Labour Protection""

(4) Construction Condition

The important conditions for the construction planning of this project are described below.

1) Routes for transportation of construction materials and equipment

Importing

Pile driving machines, pre-casting machinery and equipment materials, erection equipment, pile cut material, some bridge materials, etc. will be imported from Japan. Sea and rail transport routes are the two routes shown in Figure 2-2-42 and Table 2-2-34.

Figure 2-2-42 Transportation Routes Map

Table 2-2-34	Transportation Routes Description
--------------	--

Route	Features	Transportation contents
	Cross China via Lianyungang and other places in China via the railway,	Equipment materials that can
а	reload to the Kazakhstan railway, because of the difference in rail width	be transported by containers.
hin	and transport to Bishkek city. Because of restrictions on transshipment,	Unit of Transit is even number
0	transportation by containers is the only actual experience in the past. The	of 20' container.
	transportation period is about 60 days for one way.	
ia	Transport from Japan to Bishkek via Siberian Railway via Vladivostok	Equipment to be parc cargo.
ber	Port of Russia.	There is also covered vehicles
S	The transportation period is about 80 days for one way.	available.

Land transportation

Project site is located 320 km from Bishkek city, as shown in Figure 2-2-43. General equipment and materials can be delivered in Talas.

Procurement items from Japan must pass through customs in Bishkek, and imported materials and equipment must be transported to Talas by contractors.

Transportation Route: Bishkek- (westward around 65km) - Kara Balta- (Southward around 65km)- 3 legs Intersection- (westward around 50km)- 3 legs Intersection- (west northward around 30km)- Taldy Bulak- (westward 90km)- Project Site Total Length=320km

Transportation Time: Considering Mountain pass section between Kara Balta and 3 legs intersection

- Vehicles have to run upside and downside with low gear: travel speed is around 10km/h according to the relation table between traffic capacity and travel speed of the Japan Road Structure Ordinance
- The length of mountain pass section is around 85km
- Travel speed without load on the flat terrain is 50km/h, travel speed with load on the flat terrain is 40km/h considering winding road and parts of steep grade and use of gear from 3rd to top, referring the relation of the Japan Road Structure Ordinance.

• Average Travel Speed: (235*40+85*10+235*50+85*10)/320/2=36km/hr

Season Limitation of Transportation: On the severe winter season when is from December to February, inner transportation between Talas and Bishkek is difficult due to snow covering and freezing of mountain pass and no flat detour.

Figure 2-2-43 Land Transportation Route

2) Steel Sheet Pile Coffering

The bridge piers in the river plan to be constructed inside surrounded with the steel sheet pile coffering.

3) Detour Road

It is necessary to detour existing roads in a part of substructure works and integration parts with existing roads.

Figure 2-2-44 Plan of Detour Road

Figure 2-2-45 Cross-sectional View of a Detour Road

2-2-4-3 Scope of Works

Undertakings of both governments of Japan and Kyrgyz are listed in Table 2-2-35.

Iterre	Contents	Undert	aken by	Dementer
Items	Contents	Japan	Kyrgyz	Remarks
Procurement of	Procurement & Transportation	\checkmark		
Materials & Equipment	Procedure of Passing Customs		\checkmark	
D d' W l	Lands & Right of Way Acquisitions		\checkmark	Including Spaces for Site Office, Stock Yard, Work Shop, etc.
Preparation Works	Provision of Borrow Pits, Quarry Sites, Waste Disposal Areas		\checkmark	
	Other Works	\checkmark		
Relocation & Removal of	Relocation & Removal of Obstacles		\checkmark	Including Electric Poles & Wires, Telephone Poles & Cables, Traffic Signboards, etc.
Various Obstacles	Removal of Existing Trees		\checkmark	
Main Works	Bridge & Approach Road Construction	\checkmark		
	Installation & Removal of Detour Road	\checkmark		
Supplemental	Removal of Existing Bridge	\checkmark		
Works	Maintenance of Existing Bridge & Road during Construction		\checkmark	

Table 2-2- 35	Undertakings	of the Both	Governments
---------------	--------------	-------------	-------------

2-2-4-4 Consultant Supervision

A Japanese consultant will carry out detailed design, assistance in tendering and construction supervision in accordance with the consultant contract agreed by the Government of Kyrgyz and the Consultant.

1) Detailed Design Services

The following services shall be carried out as the Detailed Design Services by the Consultant;

- To confirm the contents of the Project with the Implementing Agencies in Kyrgyz through, discussions, detailed designs, and field survey,
- To review the detailed design and drawings, wherever necessary, and
- To review the procurement plan and project cost estimate, wherever necessary.

Period for the Detailed Design Service will be as follows;

- 3.0 months from verification of agreement of detailed design.
- 2) Tender Related Services

The following services shall be carried out as the Tender Related Services in the period from tender notice to construction contract by the Consultant;

- Preparation of Tender Documents (shall be done in line with above-mentioned Detailed Design Services),
- Tender Notice,
- Pre-Qualification,
- Tendering,
- Tender Evaluation, and
- Contract Facilitation.

Period for the Tender Related Services will be as follows;

- 3.0 months from verification of agreement of detailed design.
- 3) Construction Supervision Services

The following services shall be carried out as the Construction Supervision Services of the construction to be executed by the Contractor according to the contract and implementation plan by the Consultant. Major items are as follows;

- Inspections and Approvals of the Site Surveys
- Inspections and Approvals of the Construction Plans
- Quality Control
- Progress Control
- Measurement of the Works
- Inspection of the Safety Aspects
- Final Inspection and Delivery

The Consultant will provide a Resident Management Engineer and an assistant Engineer. During the construction, the Consultant will manage to work in cooperation with the person in charge of safety management of the Contractor to prevent from any accidents at the site.

2-2-4-5 Quality Control Plan

1) Quality Control Plan of Concrete, Earth and Pavement Works

Quality control plans for concrete works and earth & pavement works are shown in Table 2-2-36 and Table 2-2-37, respectively;

		- 0								
Item	Test Item	Test Method (Specification)	Frequency of Tests							
Cement	Physical Property Test	AASHTO M85	Once before trail mix; thence once in every 500m ³ of concrete or when material is changed							
Fine Aggregate	Physical Property Test	AASHTO M6	Once before trail mix; thence once in every 500m ³ or when material source is changed*							
	Sieve Analysis	AASHTO T27	Once a month							
Course Aggregate	Physical Property Test	AASHTO M80	Once before trail mix; thence once in every 500m ³ or when material source is changed*							
	Sieve Analysis	AASHTO T27	Once a month							
Water	Quality Test	AASHTO T26	Once before trail mix							
	Slump Test	AASHTO T119	Twice a day							
	Air Content Test	AASHTO T121	Twice a day							
Concrete	Compressive Strength Test	AASHTO T22	6 specimens in each concreting. In case of large amount in each concreting, 6 specimens in every 75 m ³ (3 for 7-day strength and 3 for 28-day strength)							
	Temperature Test		Twice a day							
	Salinity Test		Twice a day							

 Table 2-2-36
 Quality Control Plan for Concrete Works

Table 2-2-37 Quality Control Plan for Earth & Pavement Works

Item	Test Item	Test Method (Specification)	Frequency of Tests
Embankment	Field Density Test	AASHTO T191	Once every 500 m ³
	Filed Compaction Test	AASHTO T180	Before trial execution, and when material is changed
Subgrade & Base Course	Modified CBR	AASHTO T193	Once before trial execution, and when material is changed
	Field Density Test	AASHTO T191	Twice every 1,000 m ²
	Sieve Analysis of Aggregate	AASHTO T27	Once before trial execution, and when material is changed
Asphalt	Abrasion Test of Aggregate	AASHTO T96	Once before trial execution, and when material is changed
(Surface & Binder Course)	Density Test of Asphalt Mixture	AASHTO T166	Once every 1,000 m ²
	Temperature of Asphalt Mixture	Temperatures while Carrying, Coating and Rolling	Once every 1 Truck

2) Concrete Considering Winter Condition

The temperature in the project target area is below freezing point from November to March, wherein the period from December to February is set as a severe winter season during which concrete works cannot be done. Although it is considered possible to conduct concrete works on

November and March. In case that average temperature is 4°C or less, concrete works shall use winter concrete. Moreover, it is considered that concrete structures in this area are under severe climate condition after construction, so it is necessary for concrete to have enough bearing ability.

The important points for winter concrete and improvement of bearing ability are outlined as follows;

- i) Winter Concrete
- Air-entrained (AE) concrete shall be used as a standard.
- The temperature of concrete shall range between 5°C and 20°C above zero.
- Air-entrained concrete contains billions of microscopic air cells per cubic foot. These air pockets relieve internal pressure on the concrete by providing tiny chambers for water to expand into when it freezes. Air-entrained concrete is produced using air-entraining portland cement, or by the introduction of air-entraining agents, under careful engineering supervision, as the concrete is mixed on the job. The amount of entrained air is usually between four and seven percent of the volume of the concrete, but may be varied as required by special conditions.
- For winter concrete curing, concrete temperature shall be kept at more than 5°C above zero until the moment when its compression strength becomes 12 N/mm² to prevent initial freezing damage. Moreover, it shall be kept at 0°C as a standard for two days after that.
- The two types of concrete curing are insulated curing and heat curing. Insulated curing is done to keep temperature until the moment that concrete has a certain strength by covering the surrounding concrete and using the heat from hydration heat of cement. Heat curing is done to heat concrete in case that the temperature of concrete cannot be kept only by means of insulated curing and concrete might be damaged by freezing damage. The standard indication of concrete curing duration of high early strength Portland cement is 5 days.
- As quality control of winter concrete, the temperature of concrete and air temperature inside and outside the room are observed at the moment when mixing, placing, curing of concrete are taking place. The temperature when mixing and placing concrete shall be observed at each agitator- body truck as a standard. The temperature of concrete under curing and air temperature inside and outside the room shall be observed at an interval, which is set as short as possible.
- ii) Improvement of Bearing Ability of Concrete for Snowy Clod Region

According to the study "Improving the Durability of Concrete in Cold, Snowy Regions (Civil Engineering Research Laboratory)", high early strength Portland cement with blast furnace slag is the effective cement for snowy clod region, but only high early strength Portland cement has the bearing ability to salt and freezing damage. Therefore, considering procurement of the materials and costs, high early strength Portland cement is adopted with using AE water reducing agent and enough quality control, and the concrete structure which is strong against salt and freezing damage shall be constructed.

2-2-4-6 Procurement Plan

1) Construction Materials Procurement Plan

All construction materials necessary for the Project such as asphalt mixtures, sands, aggregates, crushed stones and lumbers are usually available in Kyrgyz's markets either locally or through imports.

The procurement policies for major materials are as follows;

- Procurement in Kyrgyz when materials are available in domestic markets, and
- Procurement by importing from Japan and/or third countries when materials are not available in

Kyrgyz. The exporting countries will be decided by taking quality, price, availability and supply period into consideration.

Procurement plan for major materials is shown in Table 2-2-38.

	Р	rocured from					
Item	V	т	Third	Remarks			
	Kyrgyz	Japan	Country				
Materials for Structures							
Portland Cement	\checkmark						
Reinforcement bar, ~D32	\checkmark						
Aggregate for Concrete	\checkmark						
Prestressed Steel Materials		\checkmark					
Railing (Steel)		\checkmark					
Bearing (Rubber)		\checkmark					
Expansion Device		\checkmark					
Waterproofing Material on Deck Slab		\checkmark					
Hot Asphalt Mixture	\checkmark						
Subgrade Materials							
Admixture for Concrete		\checkmark					
Gabion Basket		\checkmark					
PVC Pipe							
RC Pipe	\checkmark						
Road Marking Material		\checkmark					
Materials for Temporary Works							
Diesel & Gasoline	\checkmark						
Concrete Form							
Sheet pile, H-Beam for Steel Coffer Dam		\checkmark					
Steel Form for PC Girder							

 Table 2-2-38
 Procurement Plan for Major Materials

2) Equipment

Procurement policies for equipment are as follows;

- Equipment required for the Project will be available in Kyrgyz, and
- Equipment owned by local contractors will be hired or leased.
- Procurement plan for major equipment is shown in Table 2-2-39.

		т (Pro	ocured fr	om	-	
Equipment	Size	Lease / Procurement	Kyrgyz	Japan	Third Country	Reason of Procurement	Transport Route
Backhoe	0.28-0.8m ³	Lease	\checkmark				
Dump Truck	4t, 10t	Lease	\checkmark				
Bulldozer	15t, 21t	Lease	\checkmark				
Tire Roller	8-20t	Lease	\checkmark				
Road Roller	10-12t	Lease	\checkmark				
Motor Grader	3.7m	Lease	\checkmark				
Wheel Loader	2.4、3.1m ³	Lease	\checkmark				
Vibration Roller	0.8-5t	Lease					
Truck Crane	4.8-50t	Lease					
Crawler Crane	60-65t	Lease		\checkmark			
Dump Truck with Crane	10t, 2.9t	Lease					
Trailer Truck	20-40t	Lease	\checkmark				
Asphalt Finisher	2.4-6.0m	Lease	\checkmark				
Tampa	60-80kg	Lease	\checkmark				
Line Marker	Hand Guide Type	Procurement					
Sprinkler Truck	6.0kl	Procurement					
Pile Driver	All Casing	Procurement		\checkmark			
Vibrohammer	60kW	Procurement		\checkmark			
Generator	25-250kVA	Lease	\checkmark				
Submersible Pump	100-150mm	Lease	\checkmark				
Giant Breaker	600-800kg	Procurement		\checkmark			
PC Works Equipment	PC Jack, etc.	Procurement		\checkmark			
Girder Erection Works Equipment	Erection Girder, etc.	Procurement		\checkmark			
Concrete Becher Plant	30m ³ /hr	Procurement					

 Table 2-2-39
 Procurement Plan for Major Equipment

2-2-4-7 Operational Guidance Plan

This project has no operational guidance plan

2-2-4-8 Soft Component (Technical Assistance) Plan

This project has no soft component plan.

2-2-4-9 Implementation Schedule

Implementation schedule for detailed design, tender arrangement, and execution of the Project is shown in Table 2-2-40 and Table 2-2-41.

	Items	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Detailed	Detailed Design		Site S	urvey a	nd Det	ailed De	esign			- Ļ																					
Design	Preparation of Tender Documents	-	_	-	Dome	stic Wo	rk								- 2						(Total	6.0Mon	th)								
	Tender Related Services				_			Tender	Relate	d Worl	(\$																			_	

Ta	ıbl	e 2	-2-	-40)	Im	pl	em	en	tat	ioi	n S	ch	ed	ule	e(1	/2)	

	Items	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1.000	Preparatory Work		-		Priipi	aratory)	Work	100	100	11.11							1				1.000	1		1					Total	30 DMor	nth
	Construction Vard Proparation			-	-				-	-		_		Pristur	cmcol.	Detour	r and Ti	cmpere	ry Care	truntie	on Work			Remov	rel al E	esting l	Bridge				
1.1.1	Inspection. Delivery and Removal Work							1																	Cleanie	is and	Delivery	1	-		
Construction	Earth Work					-	-								_			Earth	Work.		1										
Supervision	Basement and Sub Structure Works										-	-		-		Batan	sent and	Sub S	Structur	e Work											
ee, naes	Super Structure Work									110	-		Pjakit	oughd D	the state	Gatter	-	-	-		-		Babbaa	ind Su	Colum Wile W						
	Revetment Work					-			Down	Stream		-									-	Upper	Stream			Existin	g Bridg	9 1		-	
	Pavement Work	1	1										1						Pavern	ent Wo	eka	-		-	_						1.1
11.00	Drainage and Miscellaneous Facility Works		-						1				1.1	Draina	es Worl		-	-	-					-				Street	Light	and Drai	nage

 Table 2-2-41
 Implementation Schedule(2/2)

2-3 Obligations of Recipient Country

The Government of Kyrgyz will undertake the following measures on condition that the Grant Aid by the Government of Japan is extended to the Project;

✓ To provide data and information necessary for the Project

(Including necessary things for incidents happened during the construction)

- ✓ To secure the land necessary for the execution of the Project, such as the land for construction works, stock yards, work shops, field offices, and others
- \checkmark To provide borrow pits, quarry sites and waste disposal areas
- ✓ To bear commissions to the bank in Japan for its banking service in connection with the Project
- ✓ To ensure prompt tax exemption, customs clearance, and effective inland transportations of materials and equipment
- ✓ To exempt Japanese nationals engaged in the Project from any customs duties for the supply of products and services necessary for the project.
- ✓ To accord Japanese nationals necessary legal rights for their entry and stay in Kyrgyz Republic
- ✓ To provide all necessary permission, licenses and certificates in connection with environmental issues and earthwork for the Project (EIA approval, construction permission, traffic control permission, detour permission, construction permission in river, earthwork permission etc.)
- ✓ To relocate all obstruction structures such as electric poles & wires, telephone poles & cables, water pipes, sewer pipes, optical fibre cables, billboards & signboards, etc. in the project road
- \checkmark To provide the land until construction begins.
- ✓ To arrange proper use and effective maintenance of the road after the completion of the project
- ✓ To coordinate and solve any issues related to the Project that may be raised from residents and/or third parties
- ✓ To bear all the expenses, other than covered by the Japanese Grant Aid, agreed and necessary for the Project
- \checkmark To secure safety of the construction site
- \checkmark To conduct the environmental monitoring
- ✓ To set adequate schedule about related above undertaking items of the Government of Kyrgyz, keep and conduct them definitely on schedule.

2-4 Project Operation Plan

2-4-1 Operation and Maintenance Plan

(1) Organization for Road Management and Maintenance

Ministry of Transportation and Roads (MOTR) of No.47-DEU is responsible for the management and maintenance of the Project road. Their structural, technical and financial capabilities have being developed through the past JICA projects "The Project for the capacity building of road maintenance in the Kyrgyz Republic" and "The Project for Capacity Development for Maintenance Management of Bridges and Tunnels". The budget for road maintenance is indicated to being increased.

(2) Road Maintenance Plan

Necessary road maintenance works are as follows;

Periodical Maintenance

Routine inspection and cleaning of side ditches, culverts, supplemental facilities, etc.

Ad-hoc Maintenance

Repair for damaged parts, such as ceiling & patching pavement, repainting pavement marking, and any other damaged parts

(3) Present Road Maintenance Conditions and Recommendations

To take and keep the project effective sufficiently, it is important to manage and maintain road facilities adequately by keeping in good condition of the pavement and other supplemental facilities and extending their life spans, so the following recommendations are proposed;

- To check facilities regularly for controlling their conditions
- To clean facilities up, especially drainage
- To secure necessary budget for maintenance

Table 2-4-1 Examples of Regular Cleaning Frequency of Drainage Facilities

Туре	Frequency
Side Ditch	At least once a year
Catch basin	At least once a year
Drain pipe	At least once 1 or 2 years

Source : Road Earthwork Guideline (2009.6, Japan Road Association)

2-5 Project Cost Estimation

2-5-1 Initial Cost Estimation

(1) Cost borne by the Government of the Republic of Kyrgyz

:	73,700 United States Dollar	
	(Approx. 8.1 M	fillion Yen)
:	20,000 US\$ (Approx.	2.2 M. Yen)
:	45,500 US\$ (Approx.	5.0 M. Yen)
:	8,200 US\$ (Approx.	0.9M. Yen)
	: : :	 73,700 United States Dollar (Approx. 8.1 M) 20,000 US\$ (Approx. 45,500 US\$ (Approx. 8,200 US\$ (Approx.

(2) Conditions in Cost Estimate

Base year and month for Cost Estimate	: October 2017
Exchange Rate	: 1 United States Dollar = 111.99 Yen
Construction Period	: As shown in the Implementation Schedule
Other Conditions	: Cost estimate is implemented in accordance with
	the guideline of Japan's Grant Aid
2-5-2 Operation and Maintenance Cost

Routine inspection, daily maintenance works and repair works on the site of this project are conducted by DEU No.47 under MOTR. Annual maintenance cost is estimated around 3,720 USD (0.42million JPY). The breakdown of this estimation is shown in Table 2-5-1. This annual maintenance cost equals 1.8% of the annual budget of DEU No.47 and DEU No.47 can conduct maintenance work of this project site.

Facility		Inspection Item		Frequ	ency	N S	lo. of Staff	Equip	ment	Quantity	Cost
Bridge Pavement Drainage Road marking Bridge main sth Revetment Bridge facility Approach H Pavement Drainage Road marking	ucture <u>Koad</u>	Crack, deformation, pothole, e Rainwater erosion & collapse, Damage, stain, splitting Damage of girder, abutment, p Damage and obstruction Damage to handrails etc Cracks, unexploded, pot holes Rainwater erosion, partial etc. Damage stain splitting	etc. , etc. pier etc. s, etc. collapse	6 times a 1 day eac	year ch time	2 p	persons	Scoop, hamme sickle, barrica pick-uµ truck	er, de, p	12 man-day/ year 6 veh-day/ year	240
Shoulder& Sloj		Damage, deformation, stain, s	plitting								
Shoulder& Slop		Damage, deformation, stain, s	plitting							Sub-total	420
(2) Dai	ly Ma	Damage, deformation, stain, s	plitting							Sub-total	420
(2) Dai Facility	ly Ma	Damage, deformation, stain, s intenance Works Inspection Item	plitting Freq	uency	No. o Stafi	of f	Equip	oment	(Sub-total	420 Cost
(2) Dai Facility Cleaning Drainage Pavement Shoulder	ly Ma Clear Clear	intenance Works Inspection Item	Freq 4 times	uency a year	No. o Staff 4 perso	of f ms	Equip Scoop, hamme	oment	16 m	Sub-total Quantity han-day/ year	420 Cost 480
(2) Dai Facility Cleaning Drainage Pavement Shoulder Road marking Bridge	ly Mai Clear Clear Cutti Clear Clear	Damage, deformation, stain, s intenance Works Inspection Item ang soil, removal of obstacles ing ing grass, cleaning ing ing soil, removal of obstacles	Plitting Freq 4 times 1 day e	uency a year ach time	No. o Staff 4 perso	of f ms	Equip Scoop, hamme sickle, barrica Pick-up	oment r, de, o truck	16 m 4 veh	Sub-total Quantity han-day/ year	420 Cost 480 120
(2) Dai Facility Cleaning Drainage Pavement Shoulder Road marking Bridge Joint	ly Ma Clear Clear Cuttin Clear Clear Clear	Damage, deformation, stain, s intenance Works Inspection Item and grass, cleaning and gra	Plitting Freq 4 times 1 day e	uency a year ach time	No. o Staff 4 perso	of f ns	Equip Scoop, hamme sickle, barrica Pick-up	oment r, de, o truck	16 m 4 veh	Sub-total Quantity aan-day/ year a-day/ year	420 Cost 480 120

Facility	Inspection Item	Frequency	No. of Staff	Equipment	Quantity	Cost
Bridge Bridge main structure Pavement Drainage Revetment Bridge facility Approach Road	Repair damaged part Seal Crack, patching pot hole Repair damaged parts Repair damaged parts Repair railings, repainting etc.	2 times a year 2 day each time	4 persons	Patching asphalt Pick-up truck Pavement	16 man-day/ year 4 veh-day/ year 10m ² /year	480 300 120
Pavement Road marking	Seal Crack, patching pot hole Repainting			works	10m2/year	300
Shoulder& Slope	Repair damaged parts			Road Marking	20m/year	300
					Sub-total	1,500

(4) Replacement of Bridge Joint 30,000US/25years \Rightarrow 1,200US/year

Total Cost of Routine Inspection, Daily maintenance and Repair works : 3,720US\$

CHAPTER 3 PROJECT EVALUTION

3-1 Preconditions

Undertakings of the Kyrgyz Republic for the project must be carried out on schedule. Undertakings of the Kyrgyz Republic are show in Chapter 2-3.

3-2 Necessary Inputs by Recipient Country

To take and maintain the effect of the project, the tasks which the Kyrgyz Republic have to conduct are shown below.

- ✓ Conduct maintenance work adequately
- ✓ Secure the budget for maintenance with following maintenance plan

3-3 Important Assumptions

When adjacent roads planned by IsDB fund are constructed, Talas-Taraz road will have a function as National Highway Network.

3-4 Project Evaluation

3-4-1 Relevance

- 1) Talas Taraz Road is one of the international road in Kyrgyz and it is necessary for residents' life. Reconstruction of Urmaral River Bridge which was aging in progress, and the improvement of the approach road are planned in this project. The improvement of a safe and stable bridge and road contribute to the goal 8 of the SDGs.
- 2) The project corresponds to the principal development goals of National Sustainable Development Strategy which includes rehabilitation of international arterial roads.
- 3) Installation of sidewalk and traffic safety facilities is planned as sufficient traffic safety measures.
- 4) Operation and maintenance of this project bridge and road will be conducted by Kyrgyzstan budget, manpower, equipment and engineering skill without special equipment and technology.
- 5) It is expected that this project will be implemented without difficulties by the Japanese Grant Aid scheme.

3-4-2 Effectiveness

(1) Quantitative Effect

Expected effect	Basic Value (Present, 2017)	Target Value (3 years after implementation, 2024)
Transport Volume (vehicles/day)	3,600	4,600
Number of Passengers (persons/year)	3,434,000	4,387,000
Freight volume (tons/year)	696,000	907,000

(2) Qualitative Effect

- ✓ Secure traffic safety of Non-Motorized Transportation
- ✓ Facilitate traffic smoothness and traffic safety by improving road linearity