Appendix D: Geotechnical Investigation Logs

- Borehole Logs: BH1 and BH2
- Hand Auger Logs: HA1 and HA2
- Scalar Logs: SC01 SC09

Engineering log terminology General

Soil and rock descriptions follow the "Guidelines for the field classification and description of soil and rock for engineering purposes" by the New Zealand Geotechnical Society (2005). Refer to this document for methods of field determination.

Wate	r	Graphic lo	gs			Tests							
Water date s	level on hown	log indicate of defects o	c log shows soil a es the location, ori of all types. aterial symbols:		 N=22:SPT uncorrected blow cour for 300 mm 75/12:Undrained shear strength /residual as measured by field values 								
Water	inflow		Janic	V _V V Ignee	ous	PMT	tory test(s) carried out:						
		mat	terial	V V rock		LT	Pressuremeter test Lugeon test						
Water	outflow					LV	Laboratory						
		Clay	Ý		stone	AL	Atterburg lin						
	1 1					UU	Undrained t						
Coror	20501051	× × Silt		XXXX XXXX Siltsl	one	PSD	Particle size	distribution					
	ecovery	× × ^		<u> </u>		c' Ø'	Effective str	ess					
	ssed as percentage of the of the core run recovered.					CONS	Consolidatio	n					
length	of the core full recovered.	San	id	Sand	stone	DS	Direct shear						
Deillin	a method (cacing					COMP	Compaction						
	ig method/casing	0.00	velor	Meta	morphic	UCS	Unconfined	compression					
	on types:	Con Con	nglomerate	Rock		15 ₅₀	Point load						
OB	Open barrel												
w	Wash	Installatio	on type			Sample t	vpe						
HQ3	HQ triple tube			7			·· _						
PQ3	PQ triple tube	Star	ndpipe	Slotted		SP	т	Core					
HSA	Hollow Stem Auger			screen									
WS	Window Sampler			Bentonite		Т	in-wall						
HA	Hand Auger	VW	Р	seal		tut		Other					
HFS	High Frequency Sonic Drilling			Sedi				Core or					
LFS Low Frequency Sonic Drilling		Filte	er pack			Bulk sample Sample loss							

Soil description

- Moisture content
- **D** Dry, looks and feels dry
- M Moist, no free water on hand when remoulding
- W Wet, free water on hand when remoulding
- S Saturated, free water present on sample

Consistency/undrained shear strength								
		S _u (kPa)						
VS	Very soft	< 12						
S	Soft	12 to 25						
F	Firm	25 to 50						
St	Stiff	50 to 100						
VSt	Very stiff	100 to 200						
н	Hard	> 200						

Dens	sity index	
	SPT(N) -	uncorrected
VL	Very loose	0 to 4
L	Loose	4 to 10
MD	Medium dense	10 to 30
D	Dense	30 to 50
VD	Very dense	> 50

Proportional terms definition (Coarse soils)										
Fraction	Term	% of soil mass	Example							
Major	(UPPER CASE)	Major constituent	GRAVEL							
Subordinate	(lower case)	> 20	Sandy							
Minor	with some with minor	12 - 20 5 - 12	with some sand with minor sand							
	with trace of (or slightly)	< 5	with trace of sand (slightly sandy)							

Grain siz	e criteria									
Туре	Coarse								Fine	
	Boulders	Cobbles	Gr	ave	I	Sa	nd		Silt	Clay
			Coarse	Medium	Fine	Coarse	Medium	Fine		
Size range (mm)	20	0 6	2 0	0 (5	0.1 2	50.	.2 0.0)6 0.(002

57	22
Tonkin	

BOREHOLE LOG

BOREHOLE No .:

BH1

	Texter								.0					SHEET: 1 OF	2				
	Fonkin+Taylor													DRILLED BY		otech	ו Dr	illing	Ltd
PI	ROJECT: USP Towers, Fiji	CO	-ORDI	ΝΔ٦	TES	· 178	442	286	RI	GR		. 2	29.97m	LOGGED BY: RLXB					
	DB No.: 1002886.00		(WGS					7331			LLAR:		-0.07111	CHECKED:			04-	7	
LOCATION: Site 1, USP Laucala, Suva, Fiji			DIRECTION:						DATUM:					START DATE: 27/07/2017 FINISH DATE: 27/07/2017					
			GLE F	RO	и н	ORIZ.:		-90°	SUF	SVE,	Y: Han	dhe	eld GPS	CONTRACTOR: Geotech Drillin					
F	DESCRIPTION OF CORE	Ð	_									R	ROCK DEFEC						Ť
GEOLOGICAL UNIT		Rock Weathering	Rock Strength	Sampling Method	Core Recovery (%)	_		Ê	bo.		Ê				(%)	le		Б	٩
GICA	SOIL: Classification, colour, consistency / density, moisture, plasticity	k Wea	ock Sti	ing M	ecove	Testing	RL (m)	Depth (m)	Graphic Log	Defect Log	Fracture Spacing (mm)	(%)	De	scription	Fluid Loss (%)	Water Level	Casing	Installation	Core Box No
EOLO	ROCK: Weathering, colour, fabric, name, strength, cementation	Roc	N N	Sampl	ore R	F	1	å	Gra	Defec	Spac	RQD (%)	& Addition	al Observations	Fluic	Wa		lns	Cor
G		MMSMM	SS SS SS SS								2000 2000 2000 2000				25 50 75				
Topsoil	0.0 m - Organic SILT with some clay and trace gravel; dark brown. Stiff, moist, moderate plasticity.						-		<u>⊴</u> ∿ ⊵ TS									Str.	253
Ĕ	Organics: silt and rootlets. Gravel: fine light brown, angular siltstone gravel.			Нат	100		Ē												
	0.3 m - Highly to completely weathered, light brown,			1 P	10		-											287 287	285
	massive SILTSTONE. Very weak.					_	- 5	1 -										932	202
				SPT	100	7/11 14 N>=50	-											SE.	
					Ì	N>-50	Ļ	-										983	-102
				HQT	100		-											20°	No.
	2.00m: Grades; extremely weak.			Ľ		2/4	28	2 -		1				J, 80° dip, St, R,				93. 1	100
				SPT	100	4/5 5/6	-						dark brown st	ained surface					
				натт	100	N=20	-	-											100
	2.75 m - Moderately to highly weathered, light brown,				5	7/11	-												225
	massive SILTSTONE. Very weak.			SPT	100	11/15 14/10	27	3 -											.0-3.5n
				НΩН	100	N>=50				\sim		0	3.25 - 3.30m:	J, 50° dip, St, R,					Box 1, 0.0-3.5m
						17/12	-	-		1			dark brown su 3.30m: J, 10°	Irface with Fe st. dip, St, R				部	32.20
				SPT	100	13/13 18/6 for	-						Fe. St.	J, 60° dip, Pl, Sm,					Ž
				HQT	100	40mm N>=50	26	4 -				48	3.92 - 4.00m: GRAVEL - dril	Recovered as I induced.				部	22.20
					0	2/3 7/16	-						-						S.
				SPT	100	13/14 N>=50	F	-										32	2172
Ē				Нат	100			_				33							E.
Suva Marl	5.15 m - Moderately to highly weathered, light brown,			SPT	100	5/8 10/10	- 55	5 -					4.95m: J, 40°	dip, Un, R, Fe. St.				38) 38)	200
Su	massive MUDSTONE. Extremely weak to very weak.					9/12 N=41	-											<u>de</u>	
	wear.			НОТТ	100	_	Ē			1		0	5.50 - 5.60m: Fe. St.	J, 80° dip, PI, Sm,				3秒	Circle in the second
				SPT	100	6/7 7/6 8/7	- 42	6 -										<u>ð</u> F	
	6.2 - 6.3 m - CORE LOSS.					N=28	-		\ge			-	_					<u>1</u>	257
	6.3 m - Moderately to highly weathered, light brown,			HQTT	99	7/11	È	-				99	_					Č.S.	
	massive MUDSTONE. Extremely weak to very weak.			SPT	100	8/5 5/6	-											<u>3</u> 77	-7.3m
				Натт	100	N=24	53	7 -				86	_						Box 2, 3.5-7.3m
						14/12	-					8	-					287 287	Bo Bo
				SPT	100	7/5 5/5	-	-										933	
				Натт	100	N=22	-			\sim		43	7.75m: J, 10°	dip, St, R, Fe. St.				SE.	
						4/3	22	8 -					_					937	
				SPT	100	4/5 7/7 N=23	-											2 C	225
				Нат	100	_ 11 _ 20	-	-		\sim		73	8.55m: J, 10°	dip, St, Sm					
						4/4 4/5	÷			\sim			-	ip, PI, R, Fe. St.					
	9.1 m - Highly weathered, light brown, massive			SPT	100	6/6 N=21	- 12	9 -		l			8.85 - 9.20m: within SPT.	J, 80° dip, Fe. St					1.20
	SILTSTONE. Extremely weak. (SILT with minor sand; light brown. Very stiff, moist, non plastic).			Натт	100		È			~~		83	9.30m: DD, 5°	dip					
	9.55 m - Moderately weathered, dark greenish grey,			SPT	100	3/3 4/5	ŀ	-					1						1.20
	massive SILTSTONE. Extremely weak to very weak.			ō	É	6/8 N=23	-						_						

COMMENTS: Target depth reached. Static water level measured on 8/8/2017 at 13.77 m bgl within open hole.

20m Scale 1:50

General Log - 22/08/2017 7:40:58 a.m. - Produced with Core-GS by GeRoc

BOREHOLE LOG

BOREHOLE No .:

BH1

PROJECT: USP Towers, Fiji JOB No.: 1002886.00 LOCATION: Site 1, USP Laucala, Suva, Fiji			CO-ORDINATES: 178.442286 (^{WGS84)} 178.442286 -18.147331 R.L. GROUND: 29.97m R.L. COLLAR: DIRECTION: ANGLE FROM HORIZ.: -90° URVEY: Handheld GPS						ld GPS	LOGGED BY: RLXB CHECKED: CWM START DATE: 27/07/2017 FINISH DATE: 27/07/2017 CONTRACTOR: Geotech Drilling									
	SOIL: Classification, colour, consistency / density, moisture, plasticity ROCK: Weathering, colour, fabric, name, strength, cementation	Rock Weathering	Rock Strength	Sampling Method	Core Recovery (%)	Testing	RL (m)	Depth (m)	Graphic Log	Defect Log	Fracture Spacing (mm)	R (%) RQB		Cription	Fluid Loss (%)	Water Level	Casing	Installation	
	10.0 m - Moderately weathered, dark greenish grey, massive SILTSTONE. Extremely weak to very weak.		<u>88</u> 2∞ <u>8</u> 2≥ <u>8</u>	нотт SPT нотт spт нотт	100 100 100 100 100	5/6 5/6 7/7 N=25 4/3 4/6 7/10 N=27	19					100 83 100			25 - 50				いたが生まれたのが生まれたのが生まれたの
-	11.75 m - Moderately weathered, dark greenish grey, massive SILTSTONE. Very weak.			HATT SPT HATT SPT H	100 100 100 100	6/10 11/11 22/6 for 20mm N>=50 6/8 10/11 14/14 N=49	17 18 18	12 - - - - - - - - - - - - - - - - - - -		~		0 71	12.30m: J, 10° broken gravel St.	dip, PI, R, some around joint. Fe.		open hole.			
				г ЧАТТ	- 100	= 50 for 50mm N>=50	16	- - - - - - - - - - - - - - - - - - -		\rightarrow /		100	R, clean. 13.90m: DD, 5 14.20m: J, 10° and white disc	dip, St, R, Fe. St.		08/08/2017; Static water level in o			したとうないとなどのないとなって
SUV3 MIAN				SPT HQTT	100 100	7/9 11/11 14/14 N>=50	14 15 15	15 - - - - - - - - - - - - - - - - - - -				88							
				НДТТ	06		13					6							いたが、自己のための中午
	17.0 m - Slightly to moderately weathered, dark greenish grey massive SILTSTONE. Extremely weak to very weak. Widely spaced joints.			TT SPT	0 100	5/9 11/11 12/15 N=49	-	17		N			17.45 - 17.55n Sm	n: J, 60° dip, Pl,					などのないというないのか。
				SPT HQTT	100 100	5/5 6/7 8/10 N=31	11 12 12 12 12 12 12 12 12 12 12 12 12 1	18 - - - - - - - - - - - - - - - - - - -		<u> </u>		21	18.30m: J, 5° c	lip, St, R, Fe. St.					ALTERATION DESCRIPTION
	<i>19.90m:</i> Grades; light orangey brown. 20m: END OF BOREHOLE			НДТТ	100		-	; ; ;				100							おいった生まれたのだ生

BOREHOLE No .:

-	Fonkin+Taylor		BC	DF	RE	НО	LE	EL	.0	G				SHEET: 1 OF DRILLED BY	/: Geo	otech	Dr	illing	Ltd
PF	ROJECT: USP Towers, Fiji	со	-ORDII		ES								23.10m	LOGGED B					
	DB No.: 1002886.00		(100	,04)		-18	.147	032	R.L. DA1		LLAR			START DAT			017	,	
LC)CATION: Site 2, USP Laucala, Suva, Fiji				лн	ORIZ.:		-90°				ndh	eld GPS	FINISH DAT					
	DESCRIPTION OF CORE												ROCK DEFEC	CONTRACT		Jeote	ech	Drillir	ig
GEOLOGICAL UNIT	SOIL: Classification, colour, consistency / density, moisture, plasticity ROCK: Weathering, colour, fabric, name, strength, cementation	Rock Weathering	KS MS Rock Strength	Sampling Method	Core Recovery (%)	Testing	RL (m)	Depth (m)	Graphic Log	Defect Log	E000 E000 E000 E00 E00 E00 E00 E00 E00		2 De & Addition	scription al Observations	25 50 Fluid Loss (%) 75	Water Level	Casing	Installation	Core Box No
soil	0.0 m - Organic SILT; dark brown. Very stiff, moist,	505±0	w>°≥≥≶ŵ				23		an n TS						2			SHR	
Topsoil	low plasticity. Organics: silt, rootlets and decomposing wood fragments. 0.45 m - SILT with minor sand; light yellowish brown. Hard, moist, non plastic. Sand: medium.			Натт	100		-	-	<u>46</u> 2. 37 * * * * * * *										
				SPT	100	2/3 4/4 5/6	22	1 -	× × × × × × × × × × × × × × × × × × ×								50 N 10 10 10		
				натт	100	N=19	-	-	× × × × × × × ×										10000
				SPT F	100	2/2 3/4	21	2 -	* * * * * * * *										Second Second
				натт	100	5/7 N=19	-	-	* *	~			2.55m: J, 5° d	ip, Un, R, white				018 543	
	2.75 m - Highly weathered, dark grey, massive SILTSTONE. Extremely weak.			SPT	100	8/8 9/10 12/11 N=42	- 2	3 -					discolouration 2.65m: J, 5° d discolouration	ip, Un, R, white					Box 1, 0.0-3.3m
	3.3 m - Moderately weathered, dark grey, massive			нат	100		F			ł				J, 85° dip, Un,					B
	SILTSTONE. Very weak.			SPT	100	4/6 11/17 21	-						Sm, clean.				A 31 Fail 44		
				НДТТ	100	for 55mm N>=50	19	4 -		\sim		76	4.05m: J, 5° d	ip, St, R, white					
	4.15 m - Highly weathered, dark brown streaked light brown, massive SILTSTONE. Extremely weak.			SPT	100	9/10 8/5 8/9 N=30	- - -	-						ip, St, R, Fe. St.					
	4.7 - 4.9 m - CORE LOSS.4.9 m - Slightly to moderately weathered, dark grey,			Нат	33		-					33	3						
Suva Marl	massive SILTSTONE. Very weak. 5.15 m - Slightly to moderately weathered, dark greenish grey, interbedded SILTSTONE and MUDSTONE. Very weak. Thinly interbedded at 0.1			HQTT SPT	100 100	8/42 for 75mm N>=50	18	5 -					5.40m: BF, 5°	dip dip					
	m intervals with beds subhorizontal. 5.75 - 5.85 m - CORE LOSS.			SPT	100	4/4 8/12	-	6 -		~			5.45m: BF, 5° 5.60m: J, 10° 5.70m: J, 10°	dip, St, R					5m
	5.75 m - Slightly to moderately weathered, dark greenish grey, massive MUDSTONE. Very weak.			натт s	100	14 ■ N>=50	11					33	3				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Box 2, 3.3-6.5m
				SPT	100	3/4 7/11 11/21 N>=50		-											
				Нат	100		16	7 -				73	2						
	7.2 m - Moderately weathered, dark greenish grey, massive SILTSTONE. Extremely weak.			SPT	100	3/4 4/4 4/4 N=16	-	-											
	7.7 - 7.8 m - CORE LOSS.			Нат	100		F					99	3						
	7.8 m - Moderately weathered, dark greenish grey, massive MUDSTONE. Extremely weak.			SPT	100	4/5 5/4 4/4	15	8 -											
				Нат	100	N=17	-	-				100	3						1.12
				SPT	100	3/3 2/4 5/7	14	9 -											111 Lan
				Натт	100	N=18							2				100		

5/7 10/8 6/6

N=30

A-6-29

SPT 100

General Log - 22/08/2017 7:40:58 a.m. - Produced with Core-GS by GeRoc

Scale 1:50

Rev.: A

Tonkin+Taylo	1

BOREHOLE LOG

BOREHOLE No .:

BH2	В	Н	2
-----	---	---	---

			B	OF	RE	EHO	LE	ΞL	0	G						. ~			
٦	íonkin+Taylor													SHEET: 2 OF		otoo		illing	
	-													DRILLED BY			ט n	iiing l	∟ťď
	OJECT: USP Towers, Fiji	CO-ORDINATES: 178.443636 (WGS84) 178.147032 R.L. GROUND: 23.10m -18.147032 R.L. COLLAR:									23.10m	CHECKED: CWM							
	B No.: 1002886.00					-10		052		. COI FUM:				START DAT	E: 28	3/07/2	2017	7	
LC	CATION: Site 2, USP Laucala, Suva, Fiji	DIRECTION:										dhe	eld GPS	FINISH DATE: 28/07/2017					
		ANG		ROI	мн	ORIZ.: -90°								CONTRACTOR:			Geotech Drilli		
Ĭ	DESCRIPTION OF CORE	ering	gth	l p	(%)							R	OCK DEFEC	15					
GEOLOGICAL UNIT		Rock Weathering	Rock Strength	Sampling Method	Core Recovery (%)	gui	Ê	(E)	Graphic Log	bo	Fracture Spacing (mm)				Fluid Loss (%)	Level	ing	Installation	Core Box No
000	SOIL: Classification, colour, consistency / density, moisture, plasticity	ock v	Rock	pling	Reco	Testing	RL (m)	Depth (m)	sraphi	Defect Log	Fractu acing	RQD (%)	De	scription	uid Lo	Water Level	Casing	nstall	ore B
GEO	ROCK: Weathering, colour, fabric, name, strength, cementation			San	Core				0	Det	g	۲ ۳	& Additiona	al Observations	Ē			_	0
_		SSER	SSoSS S								- 2000 - 600 - 200 200 200	-			- 25 - 50 - 75				
	10.0 m - Moderately weathered, dark greenish grey, massive MUDSTONE. Extremely weak.			Нат	100	2/3	13	-				100	_			▼		202	CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-C
				-	100	4/4 5/7	ł	2								level in open hole.			1
	10.7 - 10.8 m - CORE LOSS.		11111	T SPT	-	N=20	Ē	-	\times			-	_			do ul		202	
	10.8 m - Moderately weathered, dark grey, massive			Нат	99	5/6	-	11-				40	-			er leve			
	SILTSTONE. Extremely weak to very weak.			SPT	100	9/11 10/15	12	-								tic wat		202	2
					0	N=45	F	-				-	-			8/08/2017: Static water			1
				Нат	100	5/7	Ē	-				0	11.45 - 11.75r multiple bedd	n: BF, 5° dip, ing fractures with		08/20			2
				SPT	100	7/8	F	- 12 -					core spin in p			8			
					0	N=34	= =	-				0	_					209	20
				Нат	100	6/8	F	-				100	-					93 E	1171
				SPT	100	8/10 11/9	Ē	-										209	
				_	+	N=38	-	13-		١		-	10.05 10.10					937	
							- 6	-		Ì			Sm, clean.	m: J, 70° dip, Un,				209	
				НЙН	100		F	-				76	13.35m: J, 5° discolouratior	dip, St, R, white 1.				937	3-14.0n
							Ē	-										20,	Box 4, 10.3-14.0m
						6/6	F	14 -					_					937	Box
				SPT	100	6/7 6/10	6	-										20,	
	14.45 - 14.6 m - CORE LOSS.				+	N=29	ŧ	-				-	-					937	1111
F	14.6 m - Moderately weathered, dark greenish grey,						E	-										20,	
Suva Mai	massive SILTSTONE. Extremely weak to very weak.			НŎĦ	100		Ē	15-				85						987	111
Su							8	-										20,	
-	15.5 m - Slightly weathered, dark grey, massive				-	5/7	Ē	-		~		_	45.55					93E	1172
	SILTSTONE. Very weak.			SPT	100	12/13 17/8	-	-						° dip, Un, R, light ey discolouration.				20,	
					1	for 35mm		16-					-					95°	112
						N>=50	-	-										200	
				HQTT	100		Ē	-				100						982	111
							ł											20;	
					-	9/7	Ē	17-				-	_					98.	111
				SPT	100	12/16 14/8	9	-										283	Box 5, 14.0-17.8m
					+	for 40mm		-										Q.S.	5, 14.0
						N>=50	E	-										283	Box (
				НÅТ	100		Ē	18-				64						ğţ:	í.
							5	-										20.	
	18.50m: Grades; extremely weak.			_	-	6/7	Ē	-		~			18.40m: J, 5° discolouratior	dip, St, R, white				ð:	(
				SPT	100	5/5 6/8	-	-					alocolouration					S. A.	
	18.95 - 19.15 m - CORE LOSS.				-	N=24	Ē	19-				-	1					Q.S.	
	19.15 m - Slightly to moderately weathered, dark						4	-					19.15m: J, 75	° dip, Un, Sm				<u>Š</u> Ř2	F
	greenish grey, massive SILTSTONE. Extremely weak to very weak.			НЙТ	100		Ē	-				57						ðS.	8-20.0i
							ŀ	-										<u>S</u> 82	Box 6, 17.8-20.0m
	20m: END OF BOREHOLE			2017		0.0 m h a	1	-										700	ĝ

General Log - 22/08/2017 7:40:58 a.m. - Produced with Core-GS by GeRoc

COMMENTS: Target depth reached. Static water level measured on 8/8/2017 at 10.2 m bgl.

Hole Depth 20m Scale 1:50

HAND AUGER LOG

HOLE Id: HA1

Hole Location: Site 1, USP Laucala, Suva, Fiji

SHEET: 1 OF 1

PROJECT: USP 1	Fowers	s, F	iji		LOCATION: The University of the South Pacific, SL JOB No.: 1002886.00								Pacific, St JOB No.: 1002886.00				
CO-ORDINATES: WGS84	178.44 -18.14	422 732	77 2		DRILL TYPE: MLO							HOLE STARTED: 27/06/2017 HOLE FINISHED: 27/06/2017					
R.L.:		DRILL METHOD: HA						DRILLED BY: T+T									
DATUM: GEOLOGICAL													GGED BY: MLO CHECKED: RLXB GINEERING DESCRIPTION				
GEOLOGICAL UNIT,			Т														
GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.	WATER	CORE RECOVERY (%)	METHOD	SCALA PENETROMETER (Bows0mm) 2 4 6 8 10 12 14 16 18	TESTS	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	25 SHEAR STRENGTH 50 (kPa) 200 (kPa)	Description and Additional Observations				
Topsoil							-	-	24 3 2 TS 24 34 24 3	Μ	VSt		0.0 m - SILT with some clay; dark brown. Ve stiff, moist, moderate plasticity.				
Suva Marl		00			• UTP • >202 kPa		-	0.5-		D	H		0.2 m - SILT with trace clay; light brown. Hard, dry, non-plastic.				
							59 -		<u>• × · · · · · · · · · · · · · · · · · · </u>				0.87m: END OF BOREHOLE				
COMMENTS: End of	hole on	ref	usa	in hard ground. Borehole dry o	n completion.	Shea	ar stre	ngth r	neasure	ed usir	ng SV#	:1739 v	vith a correction factor of 1.54.				
0.87m																	

HAND AUGER LOG

HOLE Id: HA2

Hole Location: Site 1, USP Laucala, Suva, Fiji

SHEET: 1 OF 1

	170 44								Univer	Sity 0			Pacific, St JOB No.: 1002886.00		
	18.14	236			DRII		HOLE STARTED: 27/06/2017 HOLE FINISHED: 27/06/2017								
	29.41m				DRI	LL M	ETH	DD: H	ΗA	A DRILLED BY: T+T					
DATUM:													GGED BY: MLO CHECKED: RLXB		
			1									ENG			
elogial unit, Berrio Name, Srign, Alteral Composition.	WATER	CORE RECOVERY (%)	МЕТНОD	SCALA PENETROMETER (Blows00mm) 2, 4, 6, 8, 10, 12, 14, 16, 18	TESTS	SMIPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 26 50 100 200 (kPa) 200	Description and Additional Observations		
Topsoil		100	HA				-		24 TS 24 TS 24 34 34 24 34 34 24 34 34 34 24 34 34 34 24 34 34 24 34 34 24 34 34 3	Μ	VSt		0.0 m - SILT with some clay; dark brown. Very stiff, moist, moderate plasticity.		
Suva Marl							-	-	* × × × × × × × × × × × × × × × × × × ×	D-M	Н		0.2 m - SILT with trace clay; dark brown grading to light brown. Hard, dry to moist, low plasticity.		
								0.5 -					0.3m: END OF BOREHOLE		
	ole on	refu	sal	n hard ground. Borehole dry o	on completion.	Shea	ir stre	ngth r	measur	ed usir	ng SV#	1739 v	with a correction factor of 1.54.		
0.3m						6-									

USP Tower, Fiji - Geotechnical Investigations

BH1 3.45 ** 7.25 冗行 Tonkin+Taylor 27 7 2017 5P 3:5-72 4.25 13,18,6 N=50 ,3,7, 16,13,11 N=50 5,8,10, 10,9,12 N=41 5.0 M 5.756,7,7, M -6,8,7 N=28 GEOTECH DRILLING 0.1 M C/L 6.5 50765 -6.95r 7,11,8,1 5,5,6 7.25 ECH DRILLING 1=24 R 450/450 11/315/516 #23 H. 1.9 0

BH1_Box 2_3.45-7.25m.jpg

Page 1 of 6

USP Tower, Fiji - Geotechnical Investigations

BH1_Box 3_7.25-11.0m.jpg

BH1_Box 4_11.0-14.4m.jpg

Page 2 of 6

USP Tower, Fiji - Geotechnical Investigations

BH1_Box 6_17.75-20.0m.jpg

Page 3 of 6

USP Tower, Fiji - Geotechnical Investigations

BH2_Box 2_3.3-6.5m.jpg

Page 4 of 6

USP Tower, Fiji - Geotechnical Investigations

BH2_Box 3_6.5-10.25m.jpg

BH2_Box 4_10.25-14.0m.jpg

Page 5 of 6

BH2_Box 6_17.8-20.0m.jpg

Page 6 of 6

BH1_SPT_3.5-3.92m.jpg

Page 1 of 19

USP Tower, Fiji - Geotechnical Investigations

BH1_SPT_4.25-4.5m.jpg

BH1_SPT_5.0-5.45m.jpg

Page 2 of 19

BH1_SPT_6.5-6.95m.jpg

Page 3 of 19

USP Tower, Fiji - Geotechnical Investigations

BH1_SPT_7.25-7.7m.jpg

BH1_SPT_8.0-8.45m.jpg

Page 4 of 19

USP Tower, Fiji - Geotechnical Investigations

BH1_SPT_8.75-9.2m.jpg

BH1_SPT_9.5-9.95m.jpg

Page 5 of 19

USP Tower, Fiji - Geotechnical Investigations

BH1_SPT_10.25-10.7m.jpg

BH1_SPT_11.0-11.45m.jpg

Page 6 of 19

USP Tower, Fiji - Geotechnical Investigations

BH1_SPT_11.75-12.15m.jpg

BH1_SPT_12.5-12.95m.jpg

Page 7 of 19

USP Tower, Fiji - Geotechnical Investigations

BH1_SPT_15.5-15.95m.jpg

Page 8 of 19

USP Tower, Fiji - Geotechnical Investigations

BH1_SPT_17.0-17.45m.jpg

BH1_SPT_18.5-18.95m.jpg

Page 9 of 19

BH2_SPT_2.0-2.45m.jpg

Page 10 of 19

BH2_SPT_2.75-3.2m.jpg

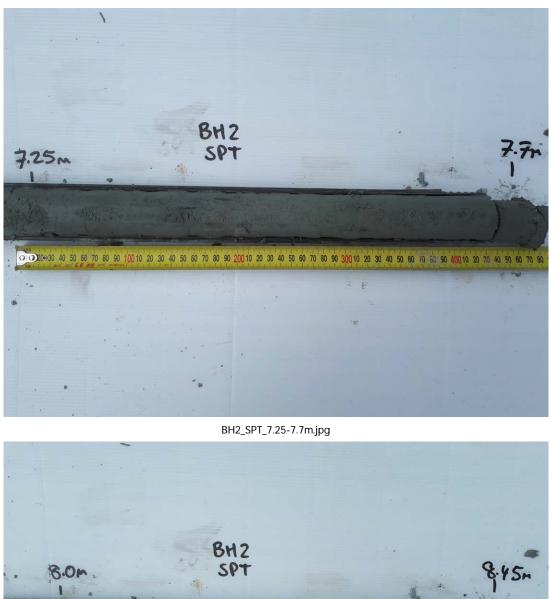
BH2_SPT_3.5-3.86m.jpg

Page 11 of 19

BH2_SPT_4.25-4.7m.jpg

BH2_SPT_5.0-5.15m.jpg

Page 12 of 19



BH2_SPT_5.75-6.2m.jpg

BH2_SPT_6.5-6.95m.jpg

Page 13 of 19



BH2_SPT_8.0-8.45m.jpg

Page 14 of 19

BH2_SPT_8.75-9.2m.jpg

BH2_SPT_9.5-9.95m.jpg

Page 15 of 19

USP Tower, Fiji - Geotechnical Investigations

BH2_SPT_10.25-10.7m.jpg

BH2_SPT_11.0-11.45m.jpg

Page 16 of 19

BH2_SPT_12.5-12.95m.jpg

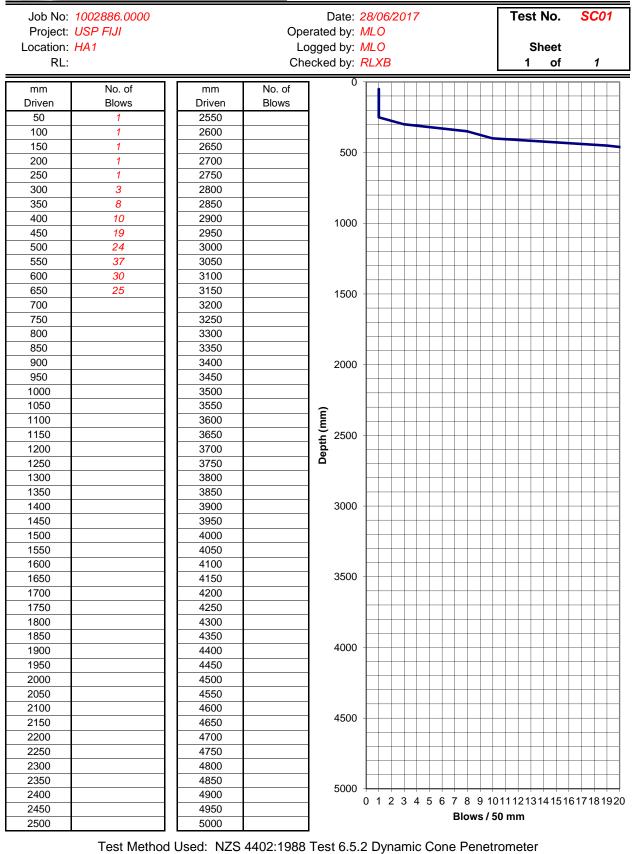
Page 17 of 19

BH2_SPT_15.5-15.91m.jpg

● 210-30 40 50 60 70 80 90 10010 20 30 40 50 60 70 80 90 20010 20 30 40 50 60 70 80 90

Page 18 of 19

BH2_SPT_17.0-17.42m.jpg

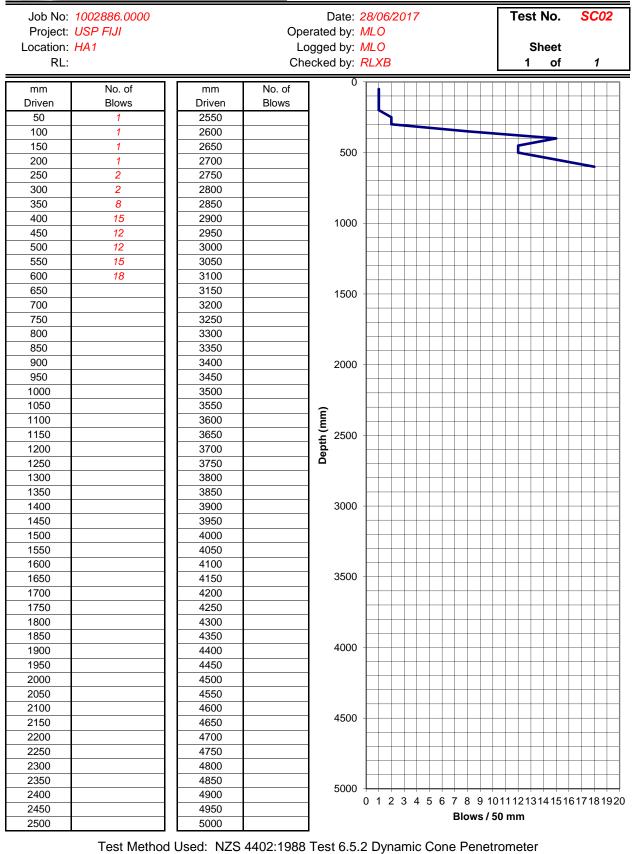

BH2_SPT_18.5-18.95m.jpg

Page 19 of 19

TONKIN & TAYLOR

SCALA PENETROMETER LOG

CLIENT TITLE REFERENCE No.

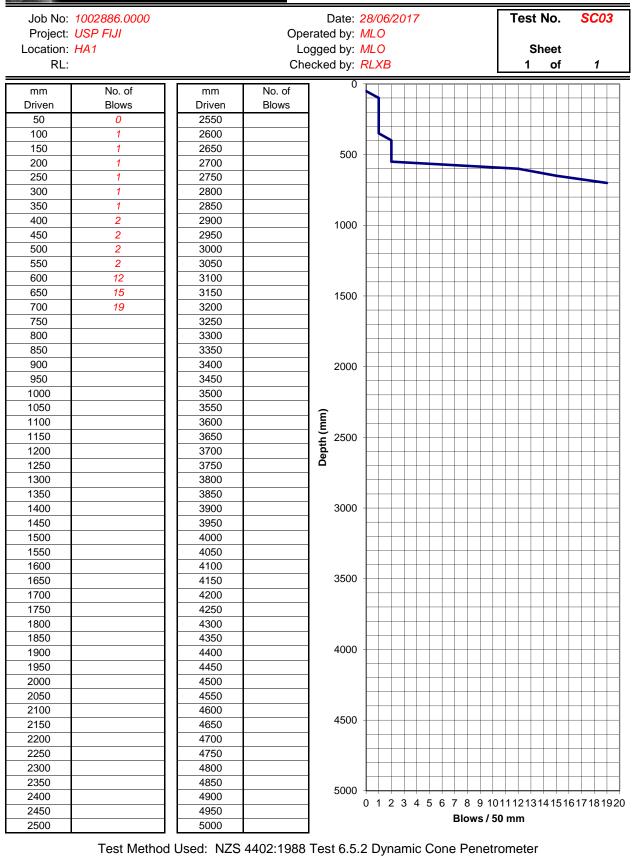

YEC Scala Penetrometer 1002886.0000

June 2017

TONKIN & TAYLOR

SCALA PENETROMETER LOG

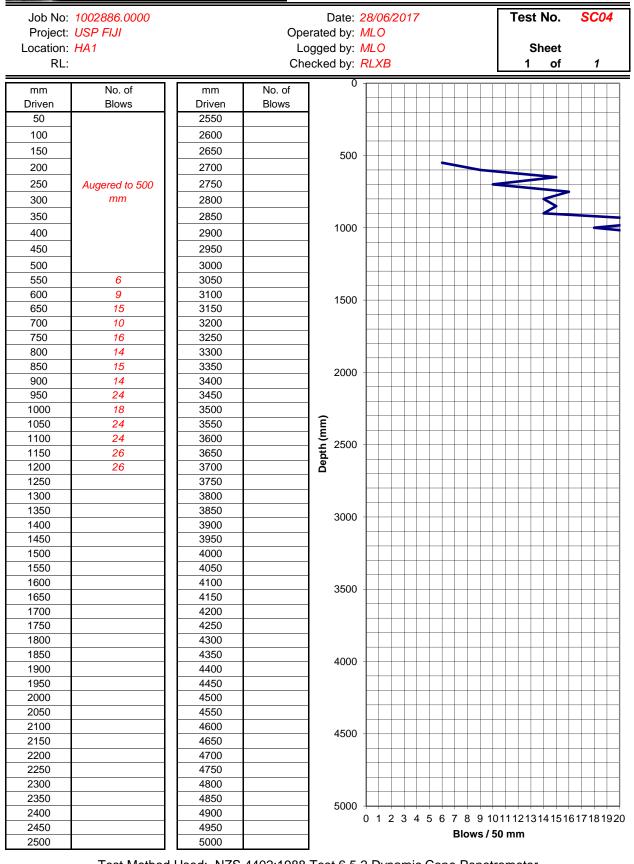
CLIENT TITLE REFERENCE No.


YEC Scala Penetrometer 1002886.0000

June 2017

TONKIN & TAYLOR

SCALA PENETROMETER LOG



CLIENT TITLE REFERENCE No.

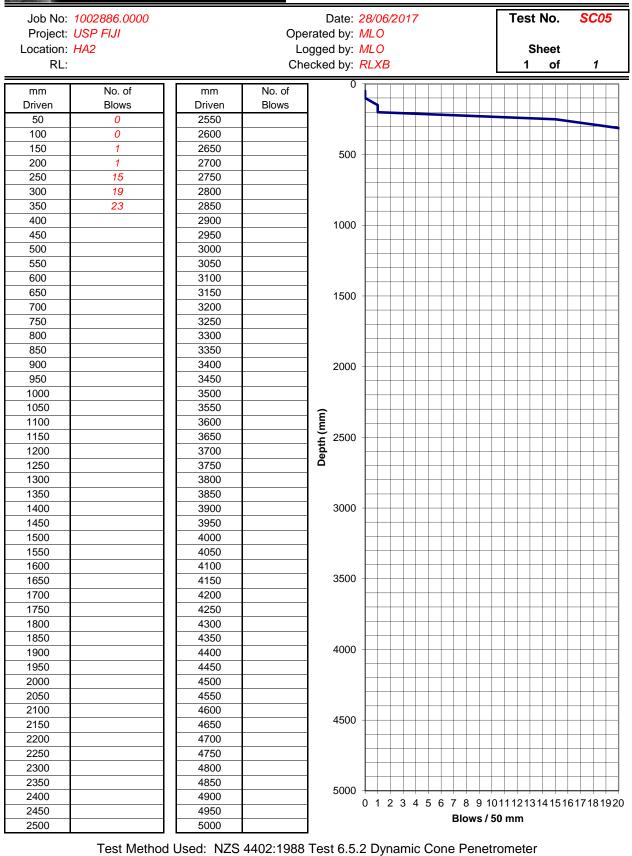
YEC Scala Penetrometer 1002886.0000

June 2017

SCALA PENETROMETER LOG

Test Method Used: NZS 4402:1988 Test 6.5.2 Dynamic Cone Penetrometer

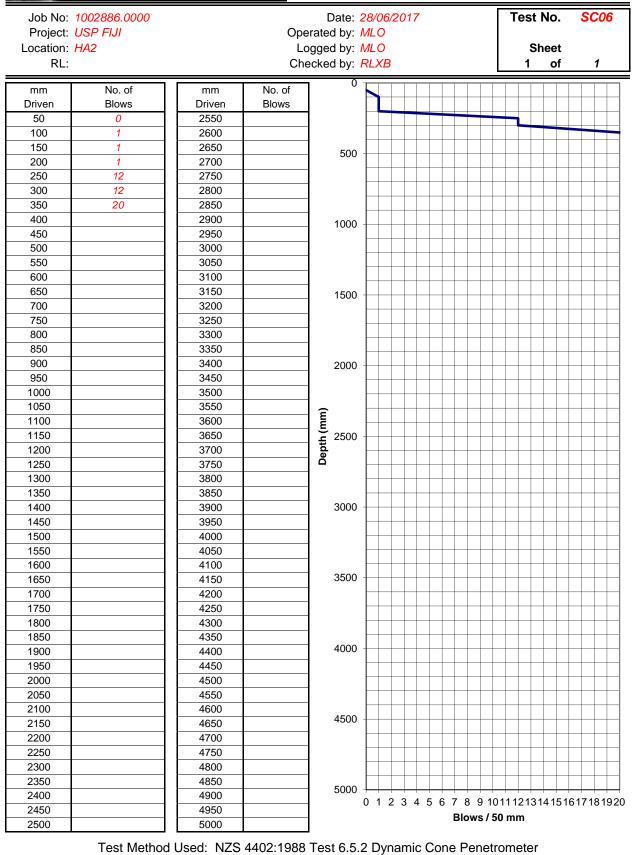
CLIENT


TITLE

YEC REFERENCE No.

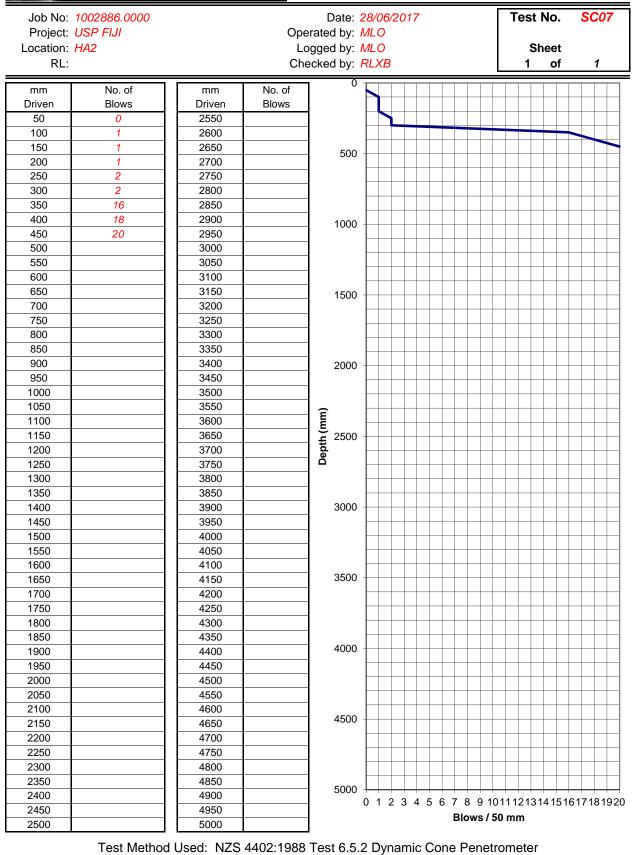
Scala Penetrometer 1002886.0000

SCALA PENETROMETER LOG



YEC Scala Penetrometer 1002886.0000

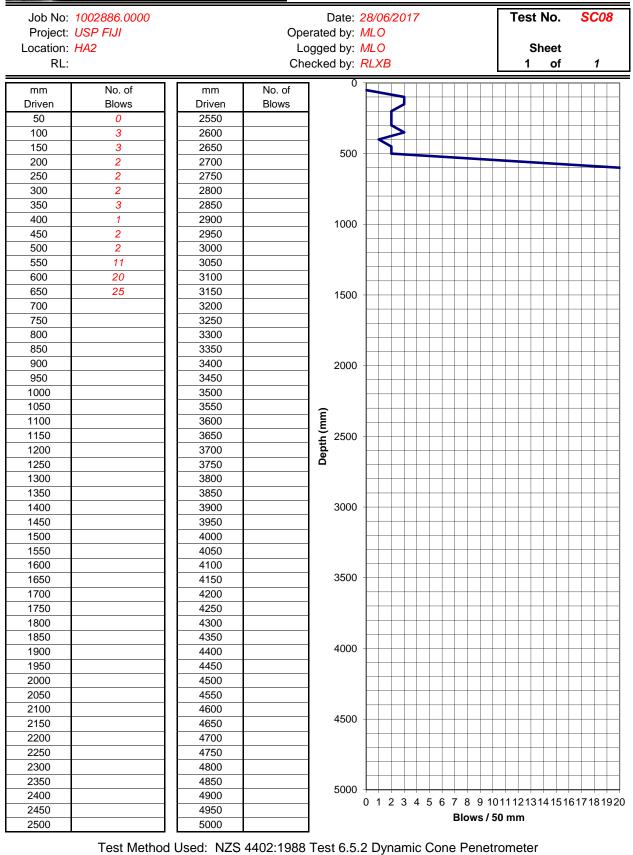
SCALA PENETROMETER LOG



CLIENT TITLE REFERENCE No.

YEC Scala Penetrometer 1002886.0000

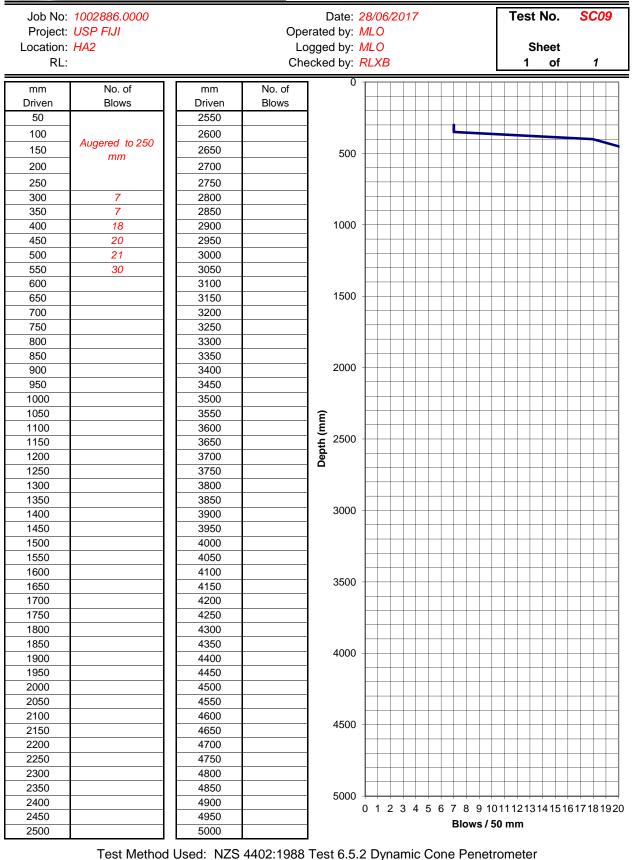
SCALA PENETROMETER LOG



CLIENT TITLE REFERENCE No.

YEC Scala Penetrometer 1002886.0000

SCALA PENETROMETER LOG


CLIENT TITLE REFERENCE No.

YEC Scala Penetrometer 1002886.0000

TONKIN & TAYLOR

SCALA PENETROMETER LOG

YEC Scala Penetrometer o. 1002886.0000

Appendix E: Laboratory Test Results

- Water Content Test Results: BH1 and BH2 (13 Tests)
- Atterberg Limits Test Results: BH1 and BH2 (10 Tests)
- Solid Density Test Results: BH1 and BH2 (16 Tests)
- PSD and Hydrometer Test Results: BH1 and BH2 (14 Tests)
- Unconfined Compressive Strength Test Results: BH1 and BH2 (18 Test

Our Ref: 1004230.0000.0.0/Rep 1 Customer Ref: 1002886.0000 22 September 2017

Tonkin & Taylor PO Box 5271, Wellesley Street, Auckland 1141

Attention: Mr Andy Pomfret

Dear Andy

USP Tower, Suva, Fiji

Laboratory Test Report

Samples from the above mentioned site have been tested as received and according to your instructions. Test results are included in this report.

Samples were destroyed during testing.

Please reproduce this report in full when transmitting to others or including in internal reports.

If we can be of any further assistance, feel free to get in touch. Contact details are provided at the bottom of this page.

GEOTECHNICS LTD

Report prepared by:

Sim Tirunahari I am the author of this document 2017.09.22 09:39:59 +12'00'

Sim Tirunahari Soils Laboratory Manager

Report checked by:

Vic O'Connor I have reviewed this document 2017.09.22 10:32:43 +12'00'

Vic O'Connor Managing Director Approved Signatory

This document consists of 36 pages

22-Sep-17

t:\geotechnicsgroup\projects\1004230\issueddocuments\20170922.usp tower_suva_fiji.st.final.rep1.docx

GEOTECHNICS LTD 23 Morgan Street, Newmarket, Auckland 1023 P O Box 9360, Newmarket, Auckland 1149, New Zealand **p.** +64 9 356 3510 **f.** +64 9 356 3511

enquiries@geotechnics.co.nz www.geotechnics.co.nz

Authorised for Geotechnics by:

Vic O'Connor I am approving this document 2017.09.22 10:32:03 +12'00'

Vic O'Connor Project Director Approved Signatory

23 Morgan Street, Newmarket Auckland 1023, New Zealand
p. +64 9 356 3510 w. www.geotechnics.co.nz

Site : USP Tower, Suva, Fiji

Your Job No.: 1002886

Our Job No.: 1004230.0000.0.0

Test Method Used: NZS 4402:1986

1986 Test 2.1 Determination of the Water Content

TEST RESULTS

Water Content Test Results Summary:

Table 1:

BH No.:		1	1	1	1	1	1	1	1
Sample No.:		SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
Depth	(m)	2.75-3.20	5.0-5.45	7.25-7.70	8.75-9.20	10.25-10.70	11.0-11.45	14.0-14.05	17.0-17.45
Water Content	%	63.3	70.9	75.7	85.1	75.6	75.1	58.1	67.8

Table 2:

BH No.:		2	2	2	2	2
Sample No.:		SPT	SPT	SPT	SPT	SPT
Depth	(m)	2.75-3.20	6.5-6.95	7.25-7.70	11.0-11.45	14.0-14.45
Water Content	%	66.1	74.1	73.8	66.9	68.9

Remarks :

The material used for testing was natural.

Entered by: JK

Date: 22/09/2017

Checked by: ST

	Test 2.3 Determ Test 2.4 Determ	ination of the Li ination of the Pl ination of the Pl TRESULTS 1 7.25-7.70 125	quid Limit astic Limit	Pre 1 Guerdania Gregolfregenti (SCC 2000 order y Marcal Alender 1002886 1004230.00000.0.0 1004230.100000.0.0
Site : USP Tower, Suva, Fiji Test Method Used: NZS 4402:1986 Atterberg Limits Test Results Summary Table 1: BH No.: 1 Depth (m) 2.75-3.20 Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Table 2:	Test 2.3 Determ Test 2.4 Determ TEST 1 5.0-5.45 121	ination of the Pl ination of the Pl RESULTS 1 7.25-7.70	Our Job No.: quid Limit astic Limit asticity Index	1002886 1004230.0000.0.0
Test Method Used: NZS 4402:1986 Atterberg Limits Test Results Summary Table 1: BH No.: 1 Depth (m) 2.75-3.20 Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Table 2: 1	Test 2.3 Determ Test 2.4 Determ TEST 1 5.0-5.45 121	ination of the Pl ination of the Pl RESULTS 1 7.25-7.70	Our Job No.: quid Limit astic Limit asticity Index	1004230.0000.0.0
Test Method Used: NZS 4402:1986 Atterberg Limits Test Results Summary Table 1: BH No.: 1 Depth (m) 2.75-3.20 Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Table 2: 1	Test 2.3 Determ Test 2.4 Determ TEST 1 5.0-5.45 121	ination of the Pl ination of the Pl RESULTS 1 7.25-7.70	quid Limit astic Limit asticity Index	1
Atterberg Limits Test Results Summary Table 1: BH No.: 1 Depth (m) 2.75-3.20 Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Table 2: 1	Test 2.3 Determ Test 2.4 Determ TEST 1 5.0-5.45 121	ination of the Pl ination of the Pl RESULTS 1 7.25-7.70	astic Limit asticity Index	
Atterberg Limits Test Results Summary Fable 1: 3H No.: 1 Depth (m) 2.75-3.20 Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Fable 2: 1	Test 2.4 Determ TEST 1 5.0-5.45 121	ination of the PI RESULTS 1 7.25-7.70	asticity Index	
Atterberg Limits Test Results Summary Fable 1: 3H No.: 1 Depth (m) 2.75-3.20 Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Fable 2: 1	TES1 1 5.0-5.45 121	1 7.25-7.70	1	
Table 1: BH No.: 1 Depth (m) 2.75-3.20 Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Table 2: 1	1 5.0-5.45 121	1 7.25-7.70		
Table 1: BH No.: 1 Depth (m) 2.75-3.20 Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Table 2: 1	5.0-5.45 121	7.25-7.70		
BH No.: 1 Depth (m) Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Table 2: 1	5.0-5.45 121	7.25-7.70		
BH No.: 1 Depth (m) Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Table 2: 1	5.0-5.45 121	7.25-7.70		
Depth (m) 2.75-3.20 Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Table 2: 1	5.0-5.45 121	7.25-7.70		
Liquid Limit 111 Plastic Limit 62 Plasticity Index 49 Table 2:	121		11.0-11.45	15.50-15.95
Plastic Limit 62 Plasticity Index 49 Table 2:		125		
Plasticity Index 49 Table 2:	69		118	110
Table 2:		64	58	54
	52	61	60	56
BH No.: 2				
	2	2	2	2
Depth (m) 2.75-3.20	6.5-6.95	7.25-7.70	11.0-11.45	14.0-14.45
Liquid Limit 107	114	149	112	107
Plastic Limit 63	56	60	63	53
Plasticity Index 44	58	89	49	54
Remarks : The material used for tes The test results are IANZ		fraction passing a	a 0.425mm test s	ieve.
Entered by: 丁K Date: 22/	/09/2017	Checked by:	ST	Date: 22/09/2

Your Ref No.: 1002886

Site : USP Tower, Suva, Fiji

Our Job No.: 1004230.0000.0.0

Test Method Used:NZS 4402:1986 Test 2.7.2 Determination of Solid Density of Soil Particles - Vacuum Method

SOLID DENSITY TEST RESULTS

Table 1: Solid Density

Borehole No.:		1	1	1	1	1	1	1	1
Sample ID.:		SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
Depth	(m)	1.0-1.45	3.5-3.92	6.5-6.95	8.0-8.45	9.5-9.95	11.75-12.15	15.5-15.95	18.5-18.95
*Solid Density	(t/m ³)	2.85	2.74	2.80	2.82	2.80	2.79	2.78	2.80

Table 2: Solid Density

Borehole No.:		2	2	2	2	2	2	2	2
Sample ID.:		SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
Depth	(m)	1.0-1.45	3.5-3.86	6.5-6.95	8.0-8.45	9.5-9.95	11.75-12.2	15.5-15.91	18.5-18.95
*Solid Density	(t/m ³)	2.83	2.65	2.66	2.80	2.79	2.80	2.80	2.84

Remarks :

The material used for testing was natural, whole soil.

*As per the standard, two specimens are required to perform a solid density, but due to insufficient SPT sample mass

obtained, it was performed on a single specimen as directed by the engineer. Therefore the test results are not IANZ accredited.

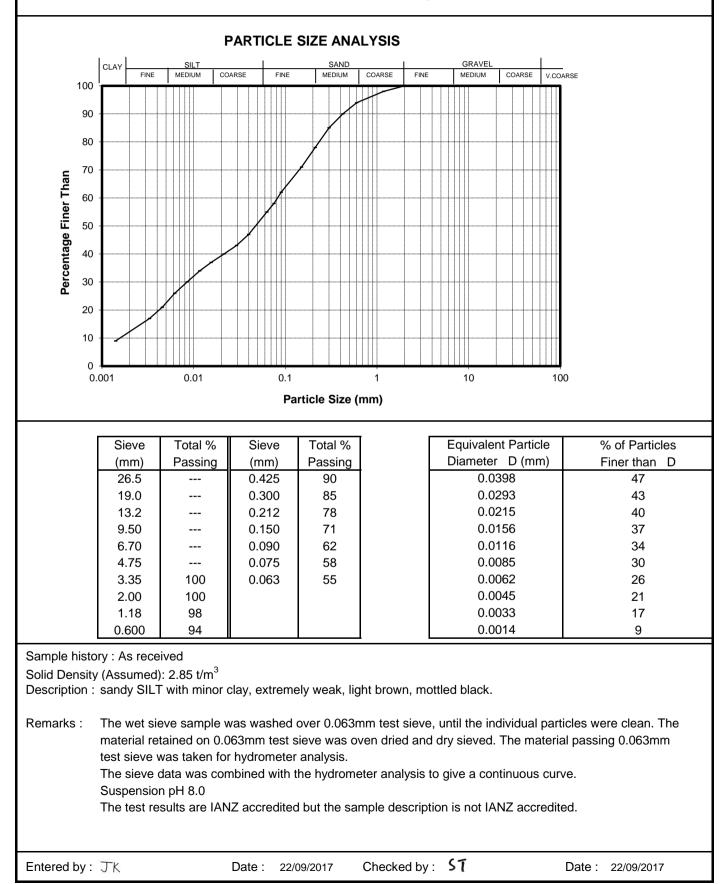
Entered by: JK

Date: 22/09/2017

Checked by: ST

Date: 22/09/2017

Page


of

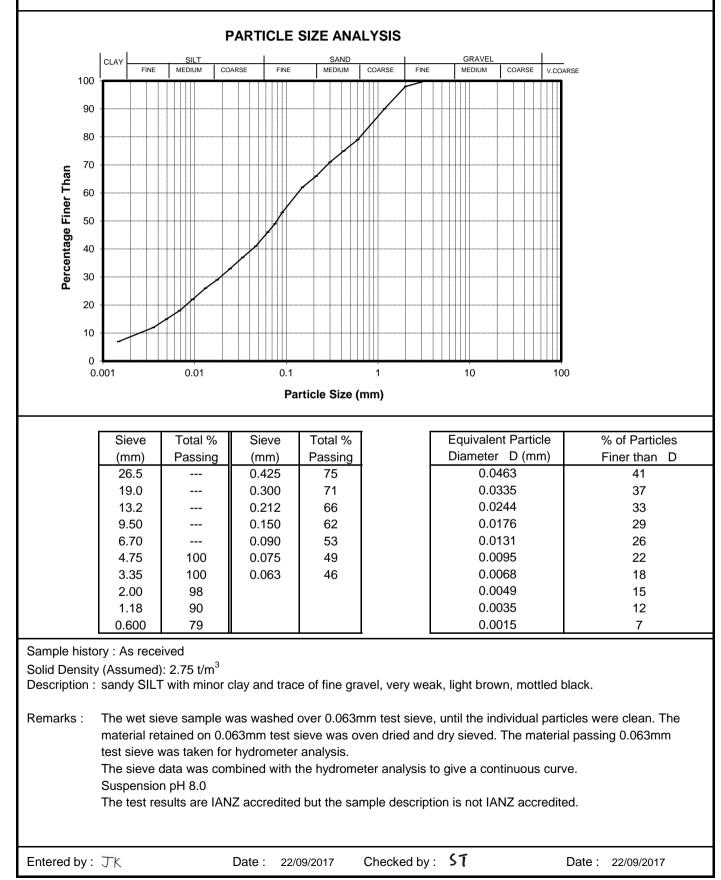
Your Job No.: 1002886 Our Job No.: 1004230.0000.0.0 Depth (m): 2.0-2.45

Site : USP Tower, Suva, Fiji BH No.:

Sample No.: SPT

1 Test Method Used : NZS 4402:1986 Test 2.8.1 Wet Sieve Test 2.8.4 Hydrometer

Page

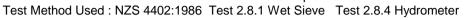

of

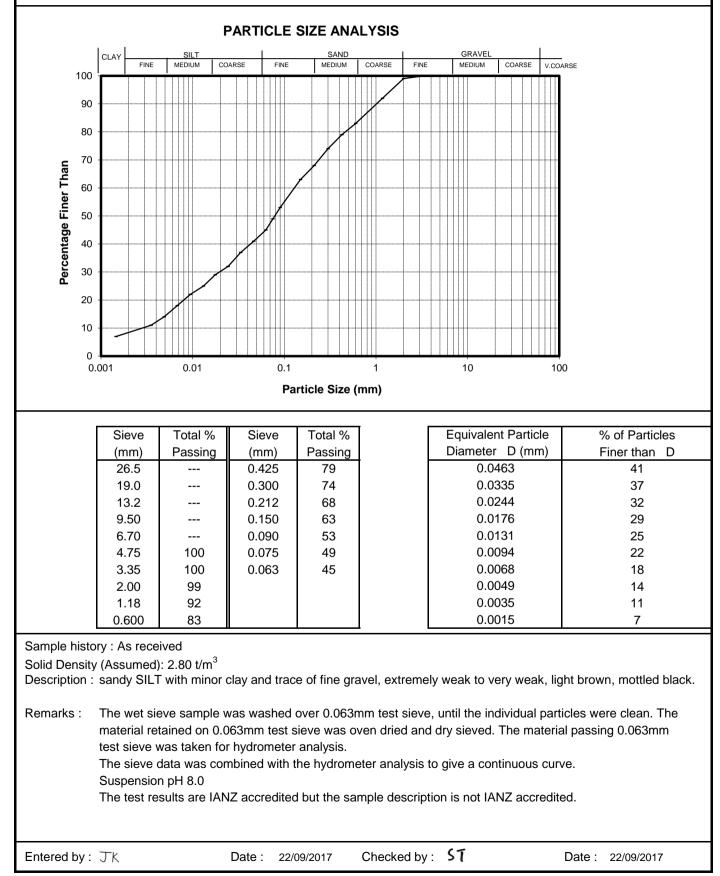
Your Job No.: 1002886 Our Job No.: 1004230.0000.0.0 Depth (m): 4.25-4.70

Site : USP Tower, Suva, Fiji BH No.:

Sample No.: SPT

1 Test Method Used : NZS 4402:1986 Test 2.8.1 Wet Sieve Test 2.8.4 Hydrometer


Page

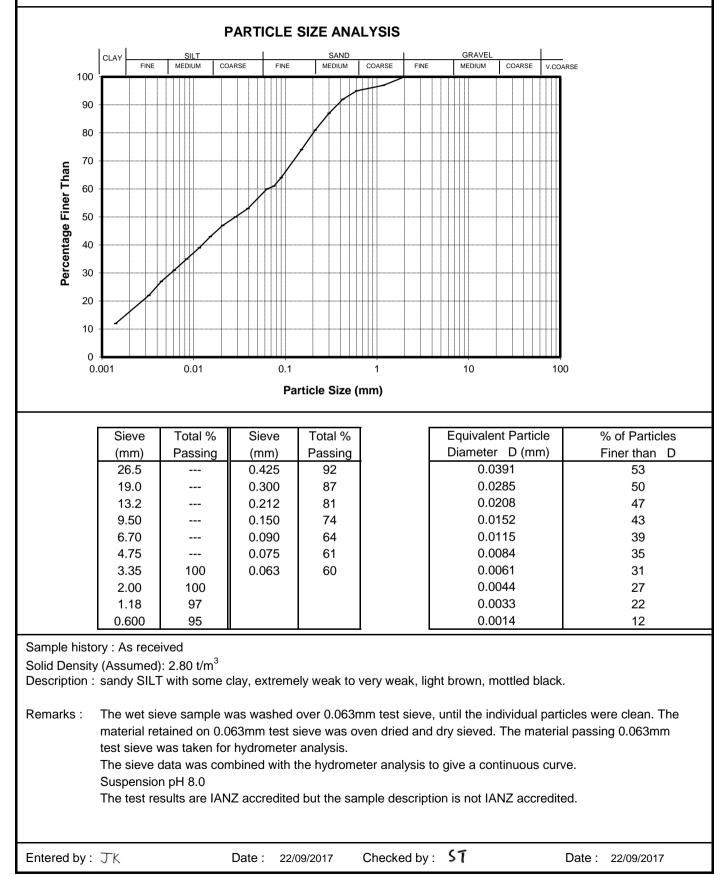

of

Your Job No.: **1002886** Our Job No.: **1004230.0000.0.0** Depth (m): **5.75-6.20**

Site : USP Tower, Suva, Fiji BH No.: 1

Sample No.: SPT

Page

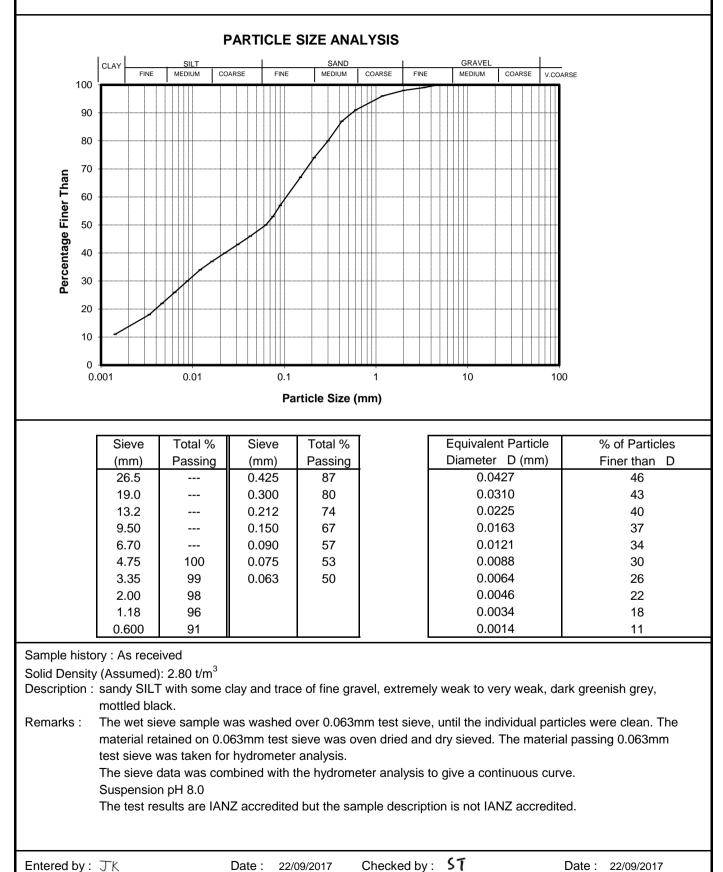

of

Your Job No.: **1002886** Our Job No.: **1004230.0000.0.0** Depth (m): **8.75-9.20**

Site : USP Tower, Suva, Fiji BH No.: 1

1 Sample No.: SPT

Page


of

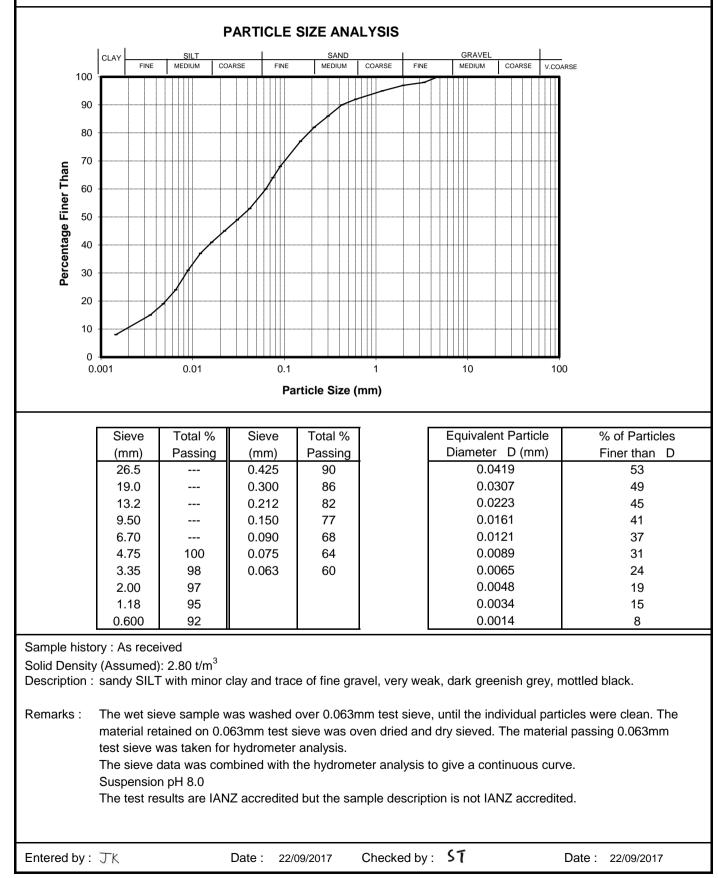
Your Job No.: 1002886 Our Job No.: 1004230.0000.0.0 Depth (m): 10.25-10.70

Site : USP Tower, Suva, Fiji

Sample No.: SPT

BH No.: 1 Test Method Used : NZS 4402:1986 Test 2.8.1 Wet Sieve Test 2.8.4 Hydrometer

Page

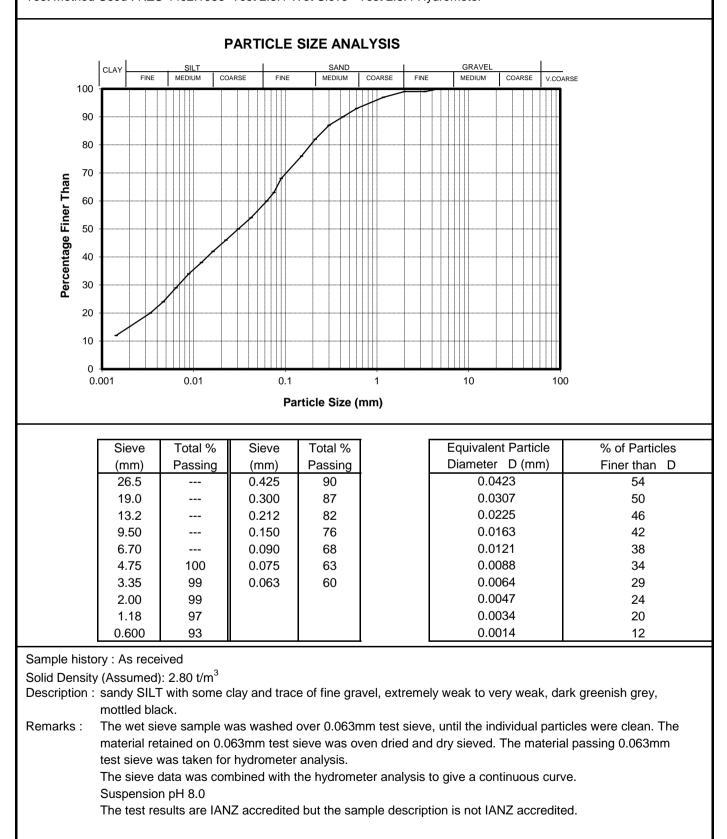

of

Your Job No.: 1002886 Our Job No.: 1004230.0000.0.0 Depth (m): 12.50-12.95

Site : USP Tower, Suva, Fiji BH No.:

Sample No.: SPT

1 Test Method Used : NZS 4402:1986 Test 2.8.1 Wet Sieve Test 2.8.4 Hydrometer


Page

of

Your Job No.: **1002886** Our Job No.: **1004230.0000.0.0** Depth (m): **17.00-17.45**

Site : USP Tower, Suva, Fiji

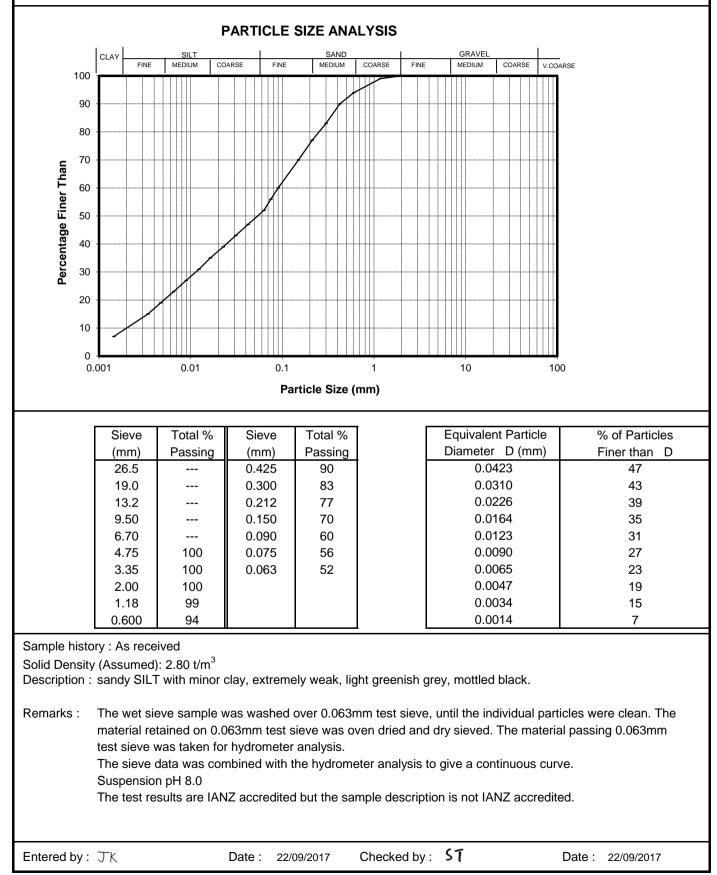
BH No.: 1 Sample No.: SPT Test Method Used : NZS 4402:1986 Test 2.8.1 Wet Sieve Test 2.8.4 Hydrometer

Date : 22/09/2017 Ch

17 Checked by : **ST**

Date : 22/09/2017

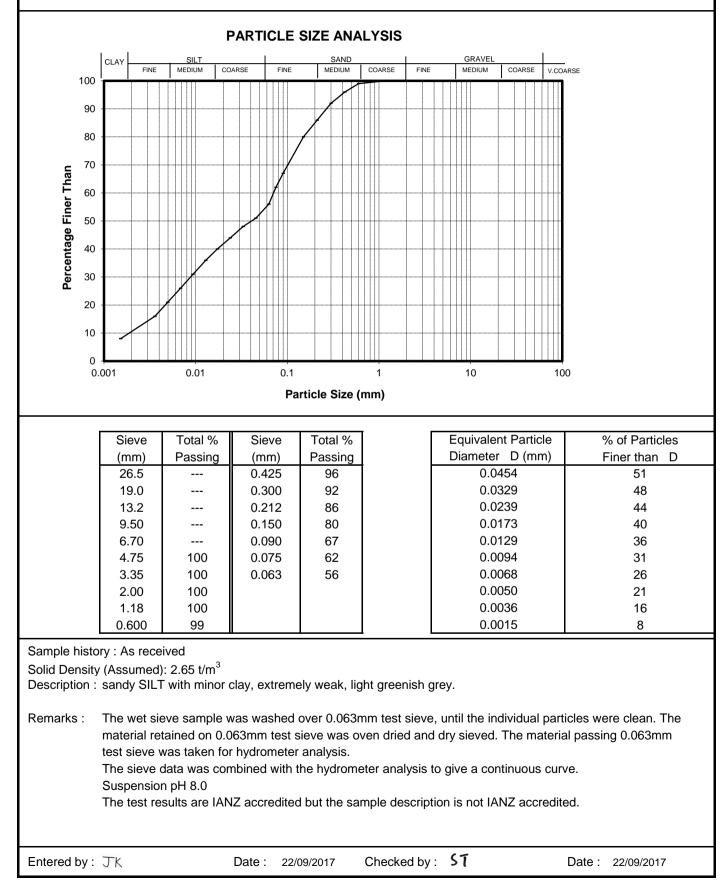
Page


of

Your Job No.: **1002886** Our Job No.: **1004230.0000.0.0** Depth (m): **2.0-2.45**

Site : USP Tower, Suva, Fiji BH No.: 2

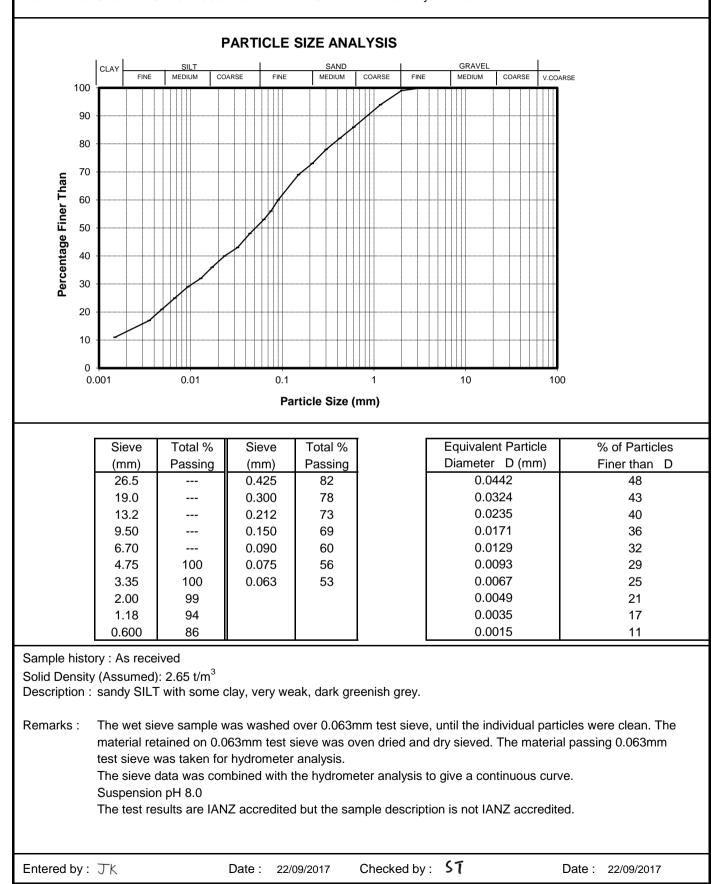
2 Sample No.: SPT


Page

of

Your Job No.: **1002886** Our Job No.: **1004230.0000.0.0** Depth (m): **4.25-4.70**

BH No.: 2 Sample No.: SPT Test Method Used : NZS 4402:1986 Test 2.8.1 Wet Sieve Test 2.8.4 Hydrometer


Page

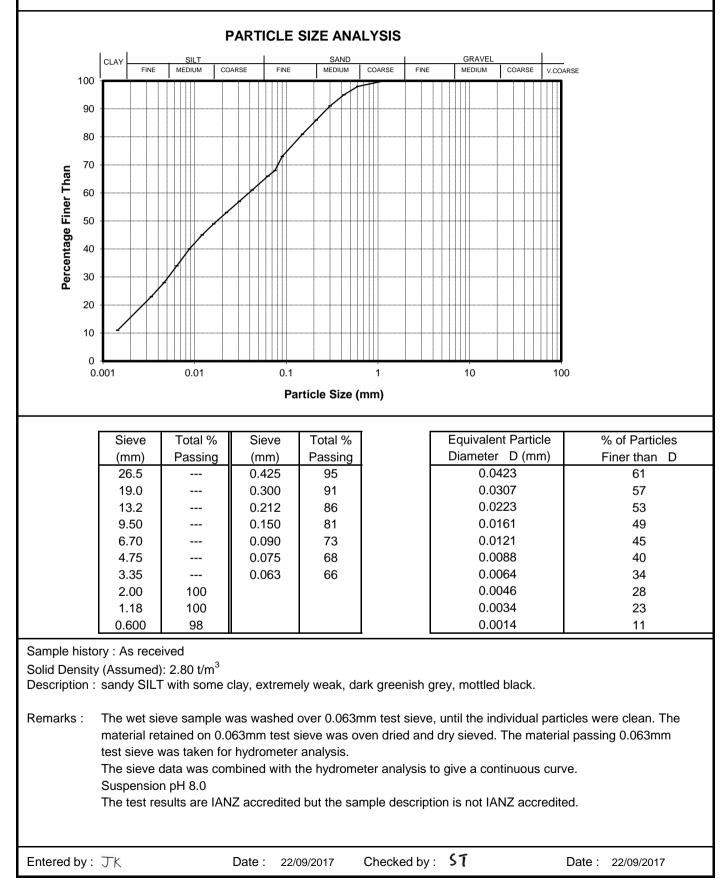
of

Your Job No.: **1002886** Our Job No.: **1004230.0000.0.0** Depth (m): **5.75-6.20**

Site : USP Tower, Suva, Fiji

BH No.: 2 Sample No.: SPT Test Method Used : NZS 4402:1986 Test 2.8.1 Wet Sieve Test 2.8.4 Hydrometer

Page

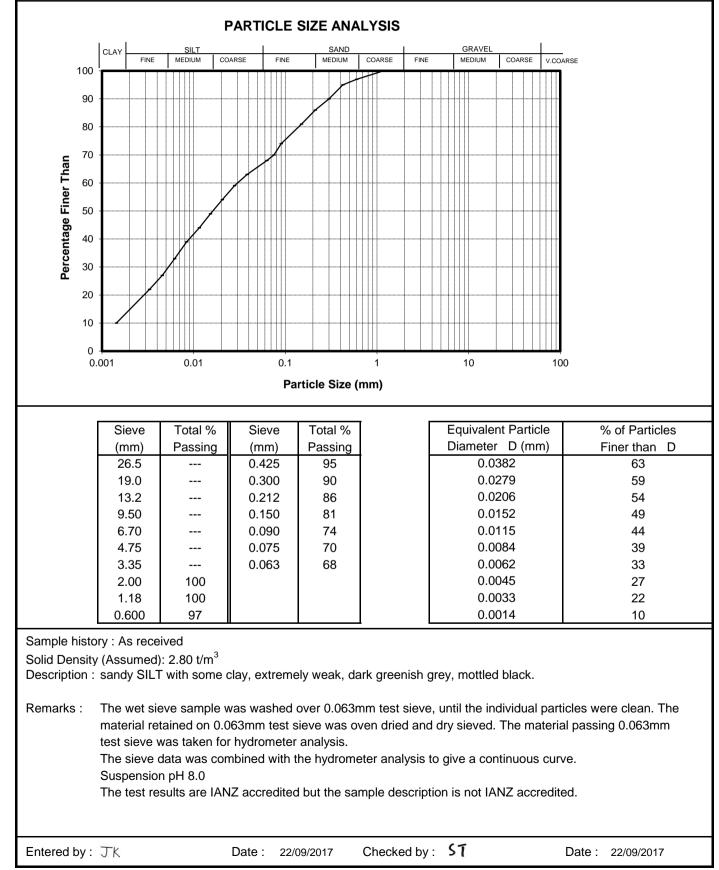

of

Your Job No.: **1002886** Our Job No.: **1004230.0000.0.0** Depth (m): **8.75-9.20**

Site : USP Tower, Suva, Fiji BH No.: 2

Sample No.: SPT

Test Method Used : NZS 4402:1986 Test 2.8.1 Wet Sieve Test 2.8.4 Hydrometer


Page

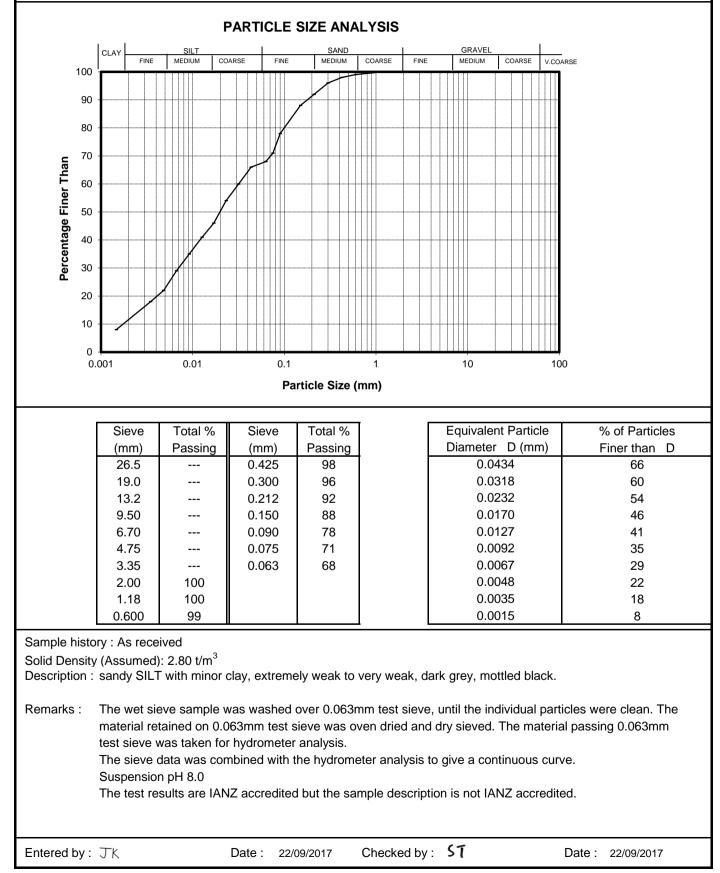
of

Your Job No.: **1002886** Our Job No.: **1004230.0000.0.0** Depth (m): **10.25-10.70**

Site : USP Tower, Suva, Fiji

BH No.: 2 Sample No.: SPT Test Method Used : NZS 4402:1986 Test 2.8.1 Wet Sieve Test 2.8.4 Hydrometer

Page


of

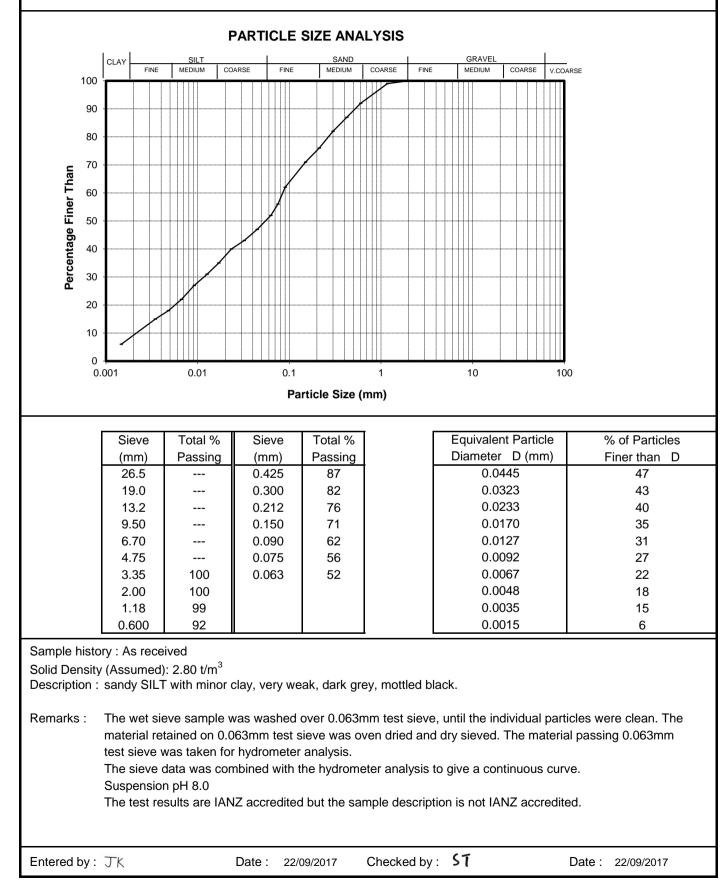
Your Job No.: 1002886 Our Job No.: 1004230.0000.0.0 Depth (m): 12.50-12.95

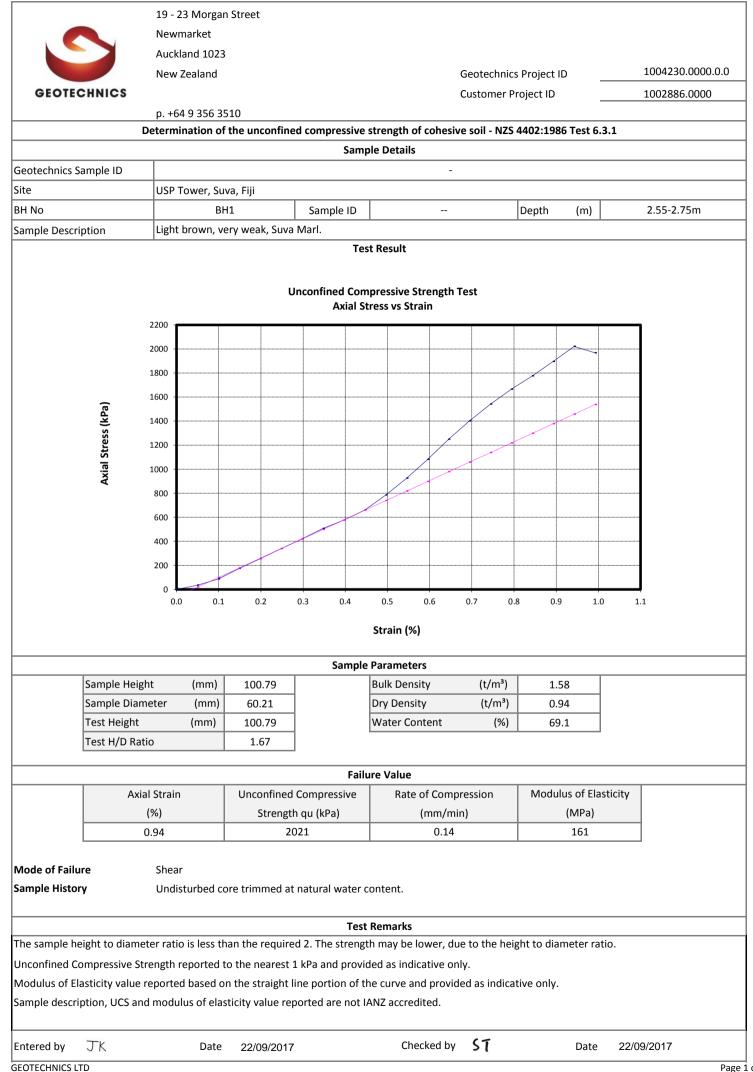
Site : USP Tower, Suva, Fiji 2

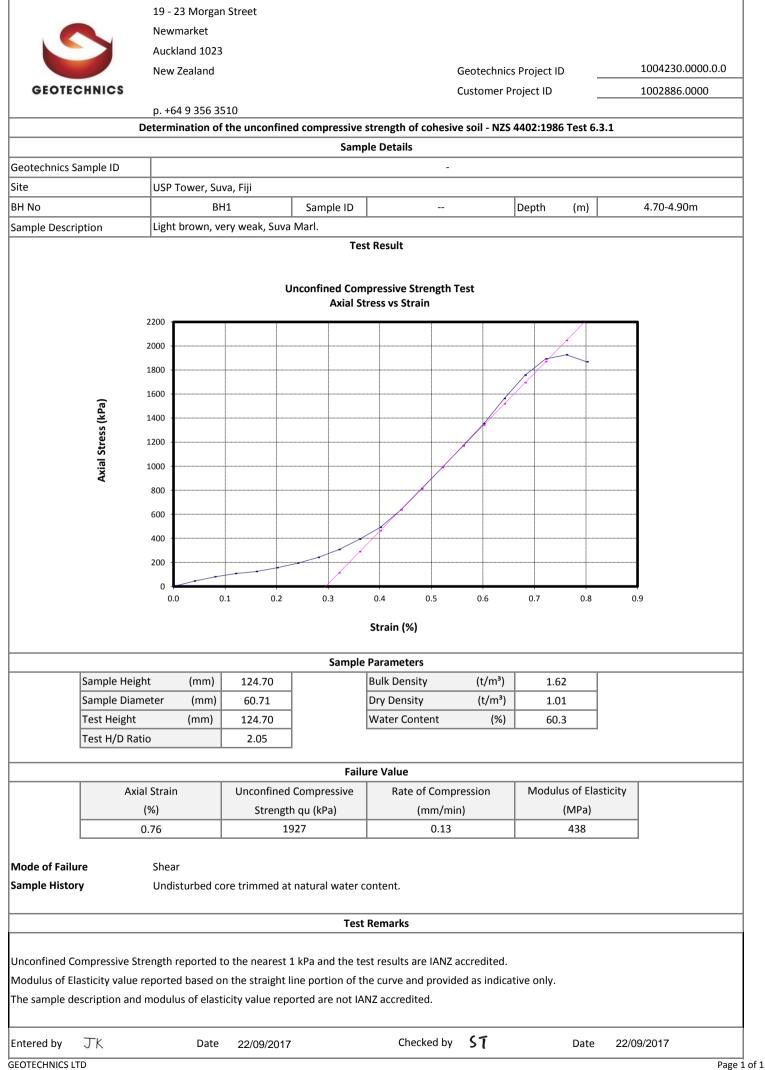
Sample No.: SPT

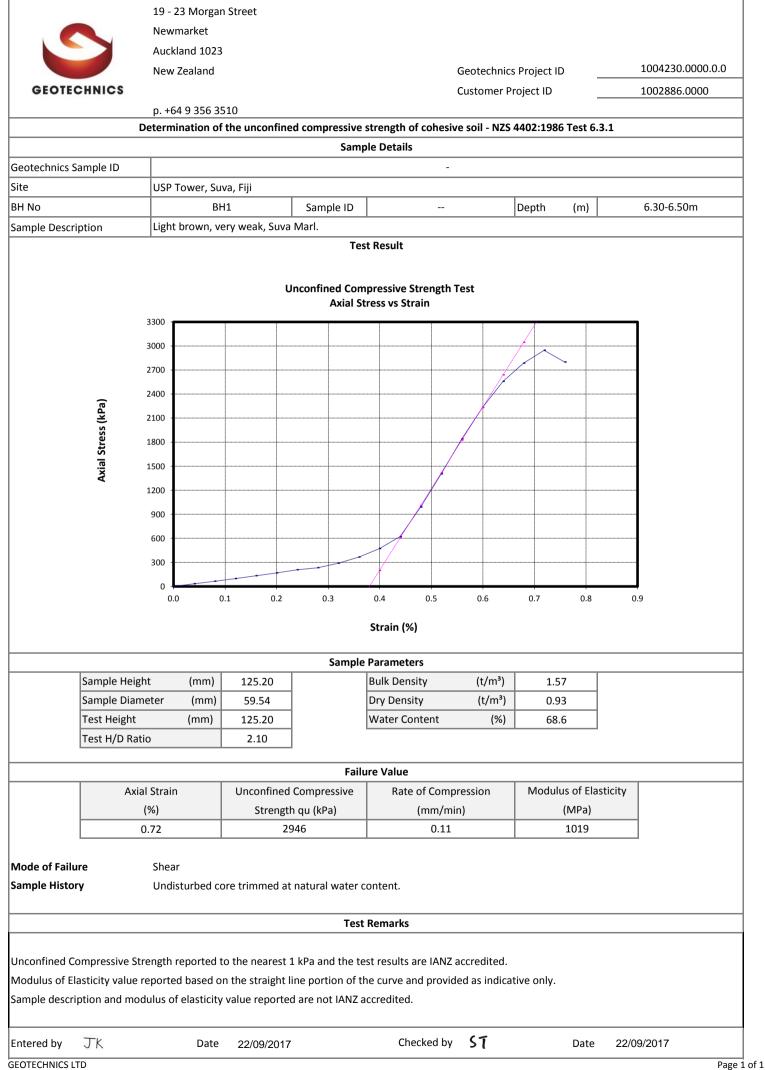
BH No.: Test Method Used : NZS 4402:1986 Test 2.8.1 Wet Sieve Test 2.8.4 Hydrometer

Page

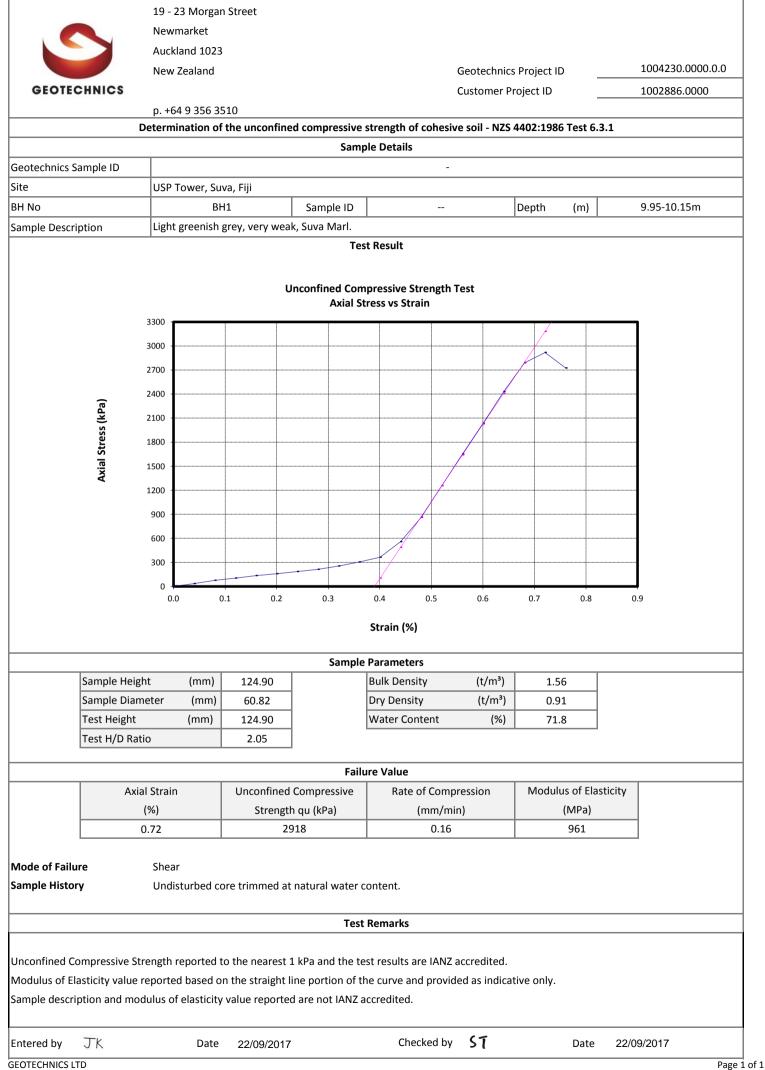

of

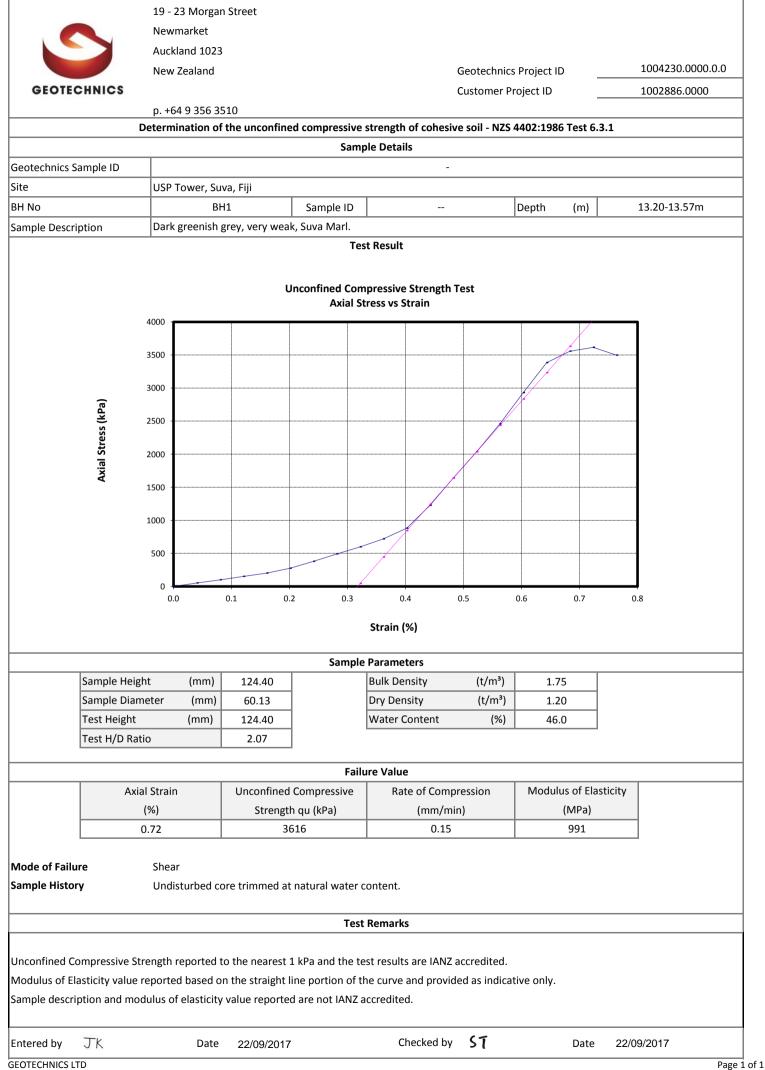

Your Job No.: **1002886** Our Job No.: **1004230.0000.0.0** Depth (m): **17.00-17.42**

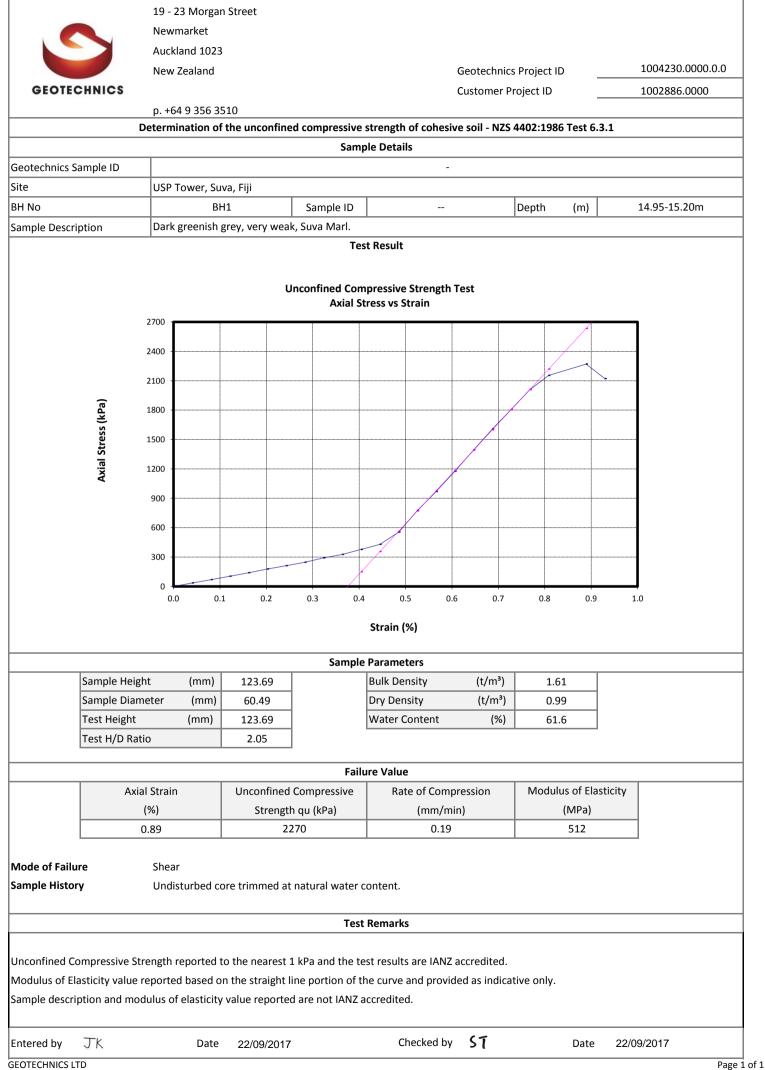

Site : USP Tower, Suva, Fiji BH No.: 2

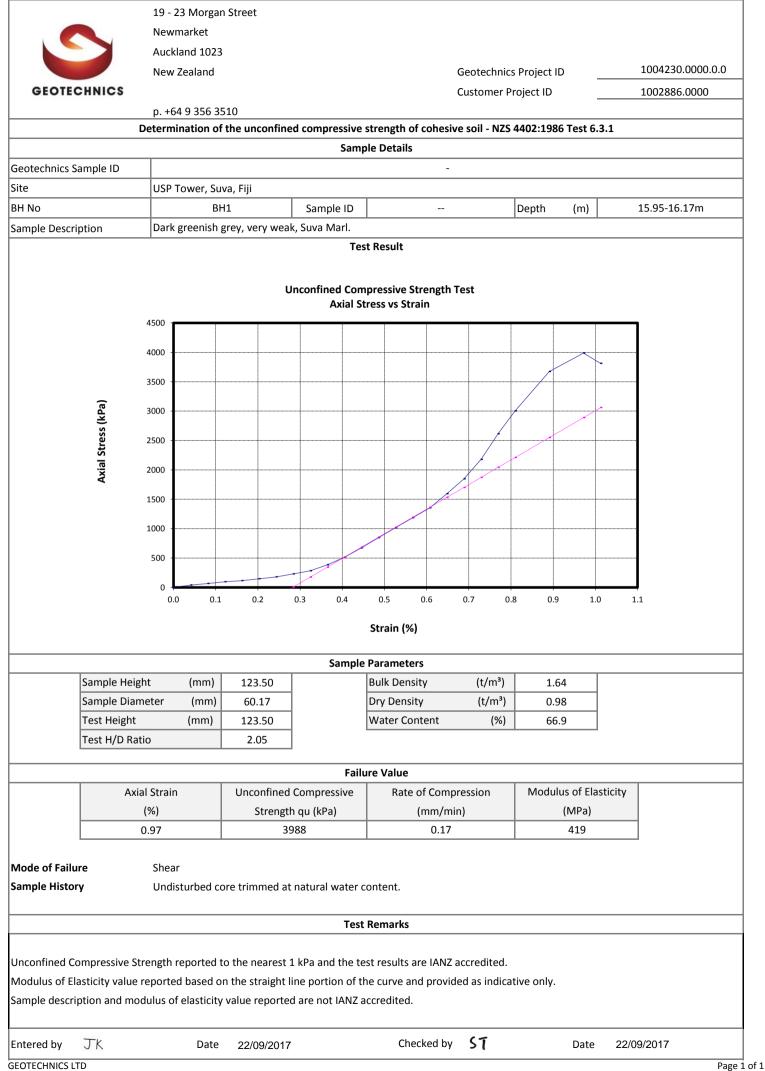

Sample No.: SPT

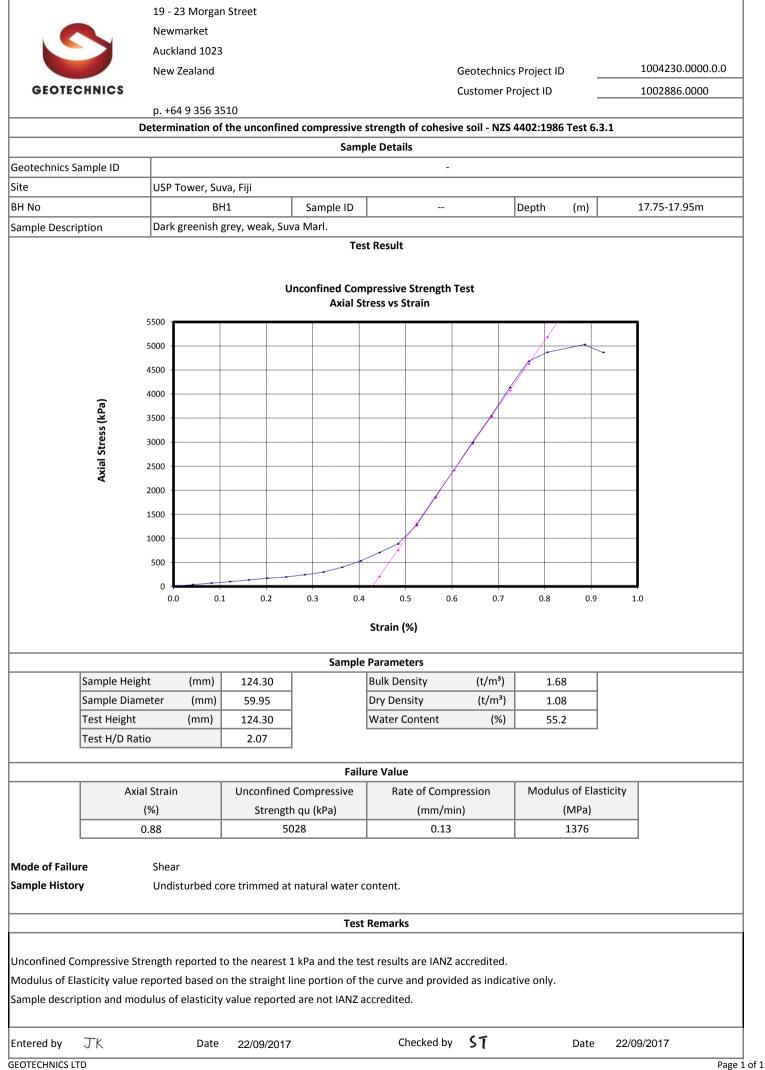
Test Method Used : NZS 4402:1986 Test 2.8.1 Wet Sieve Test 2.8.4 Hydrometer

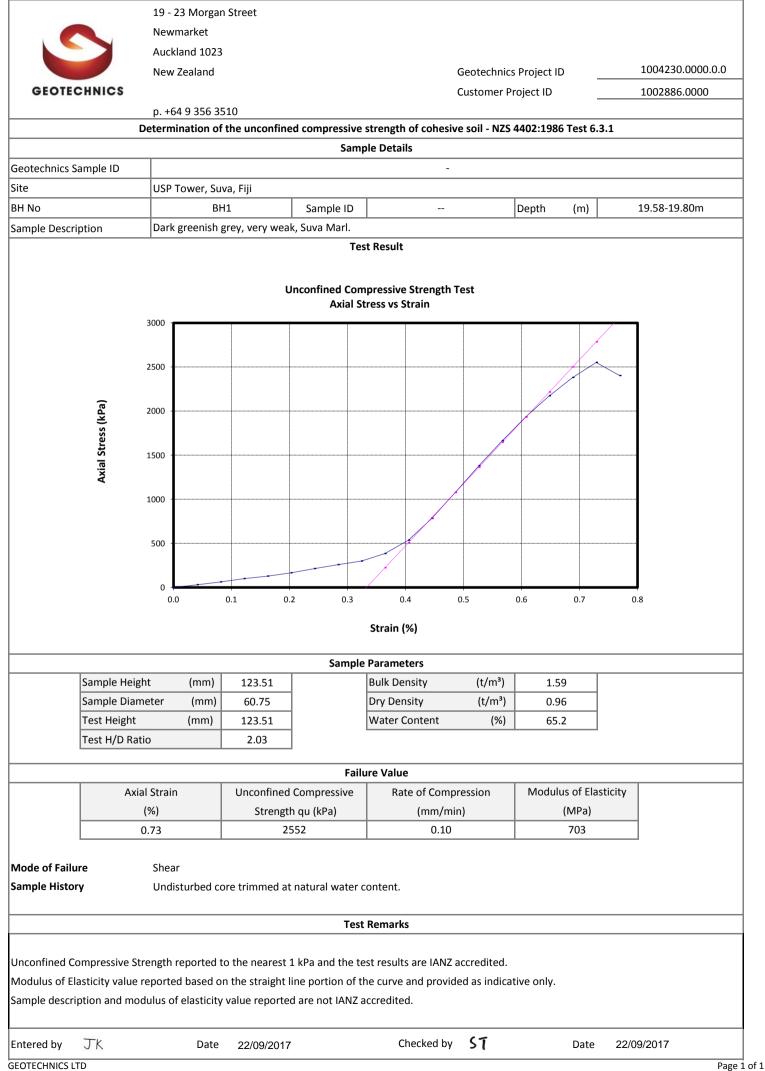


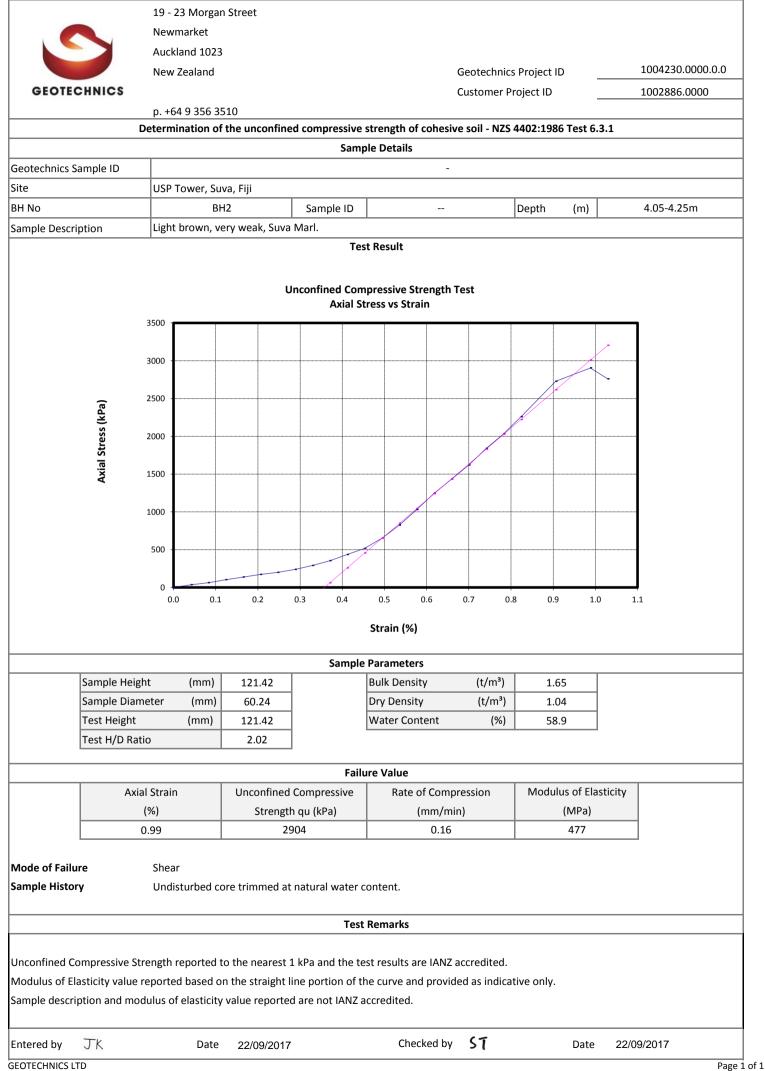


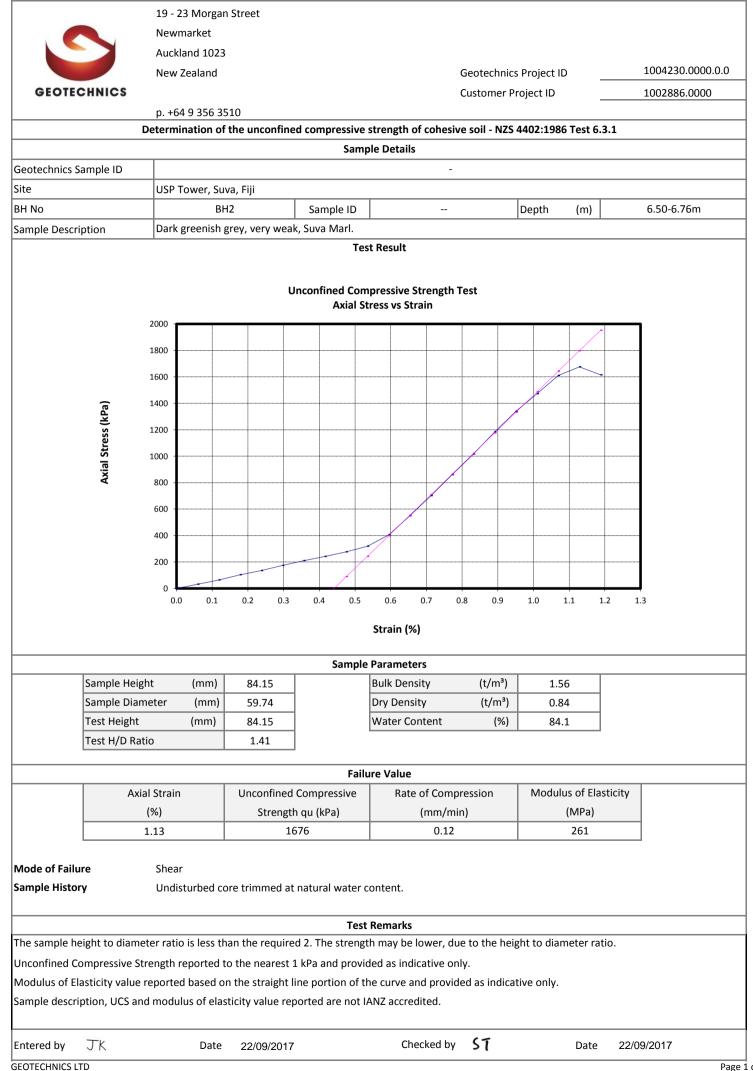


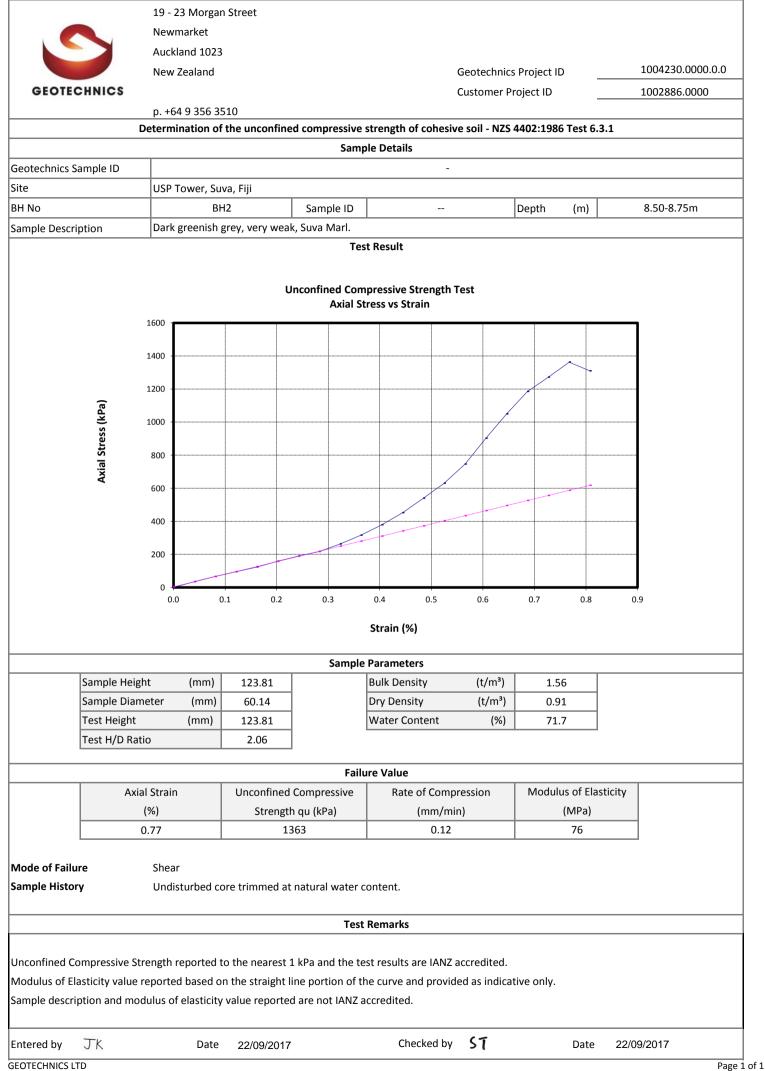

Version 1.1: 25 November 2015

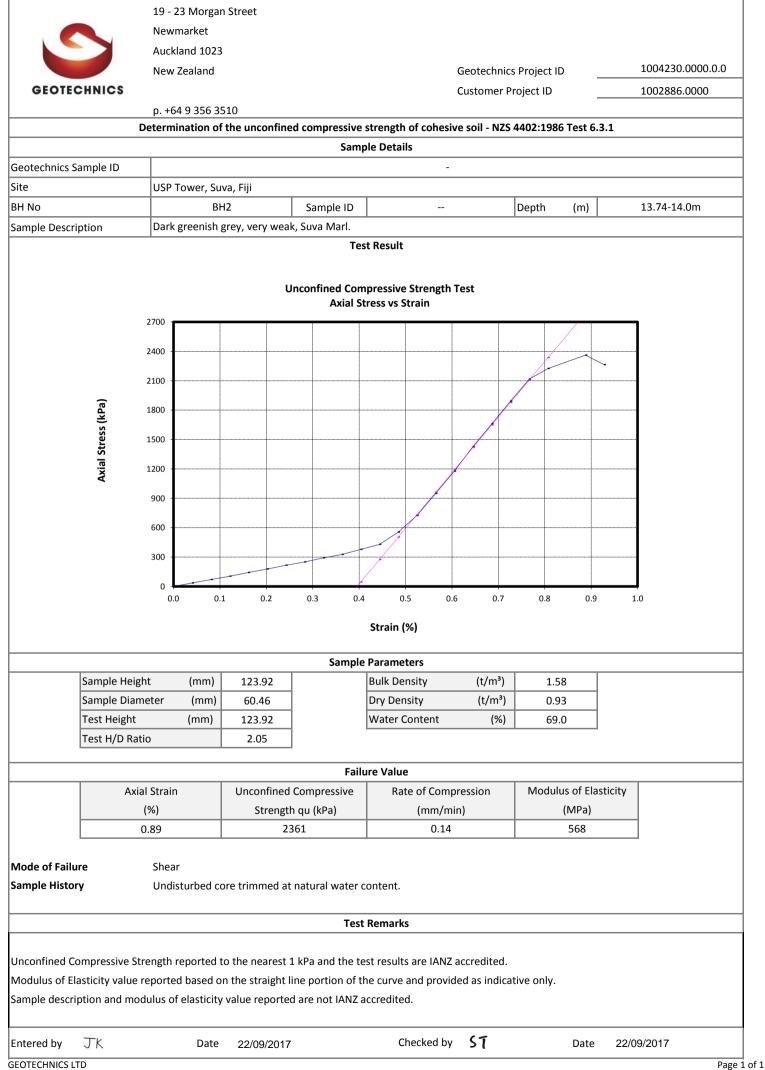


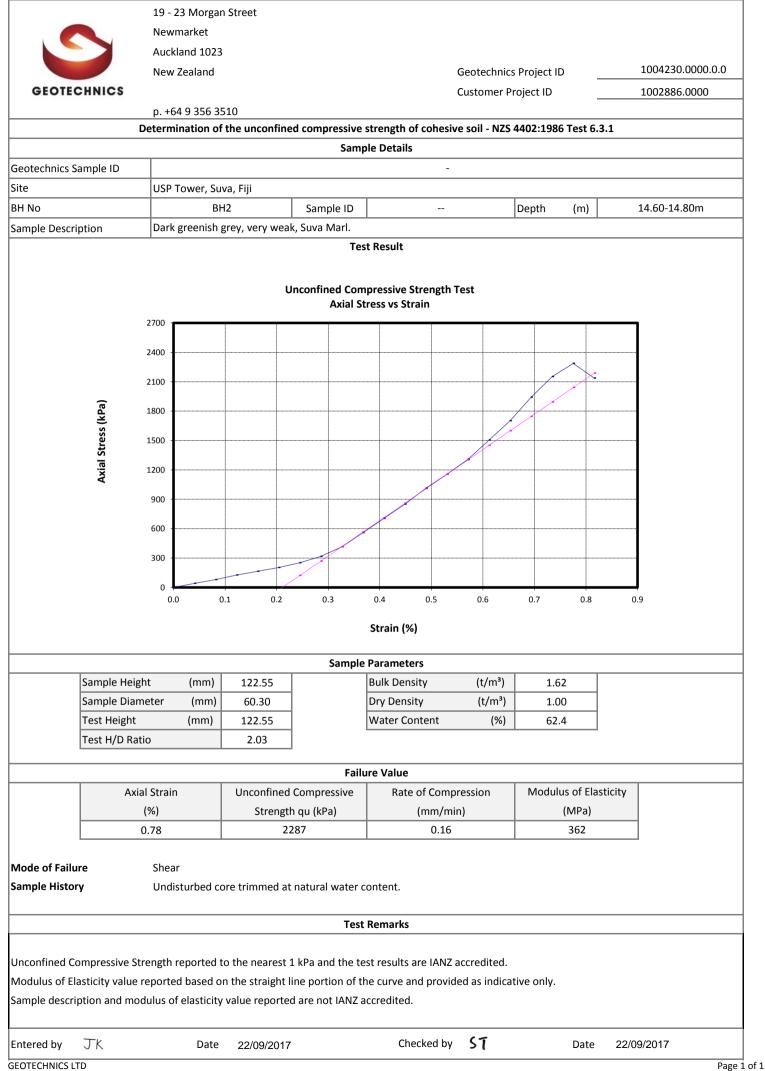

Version 1.1: 25 November 2015

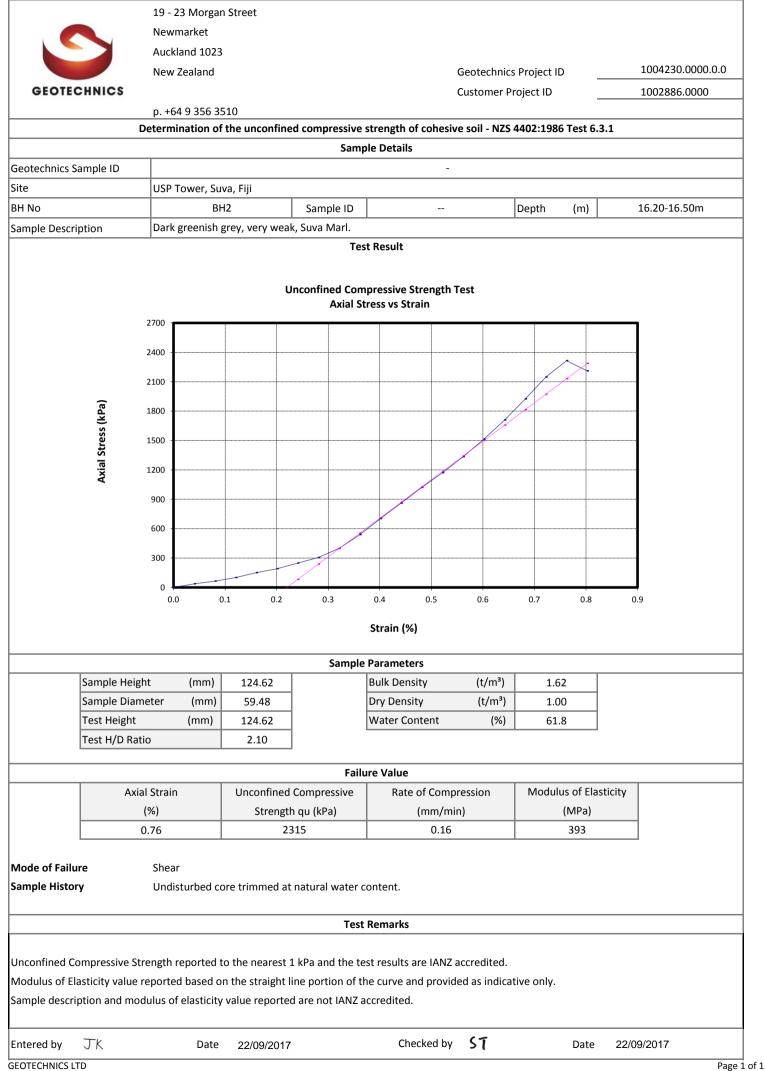


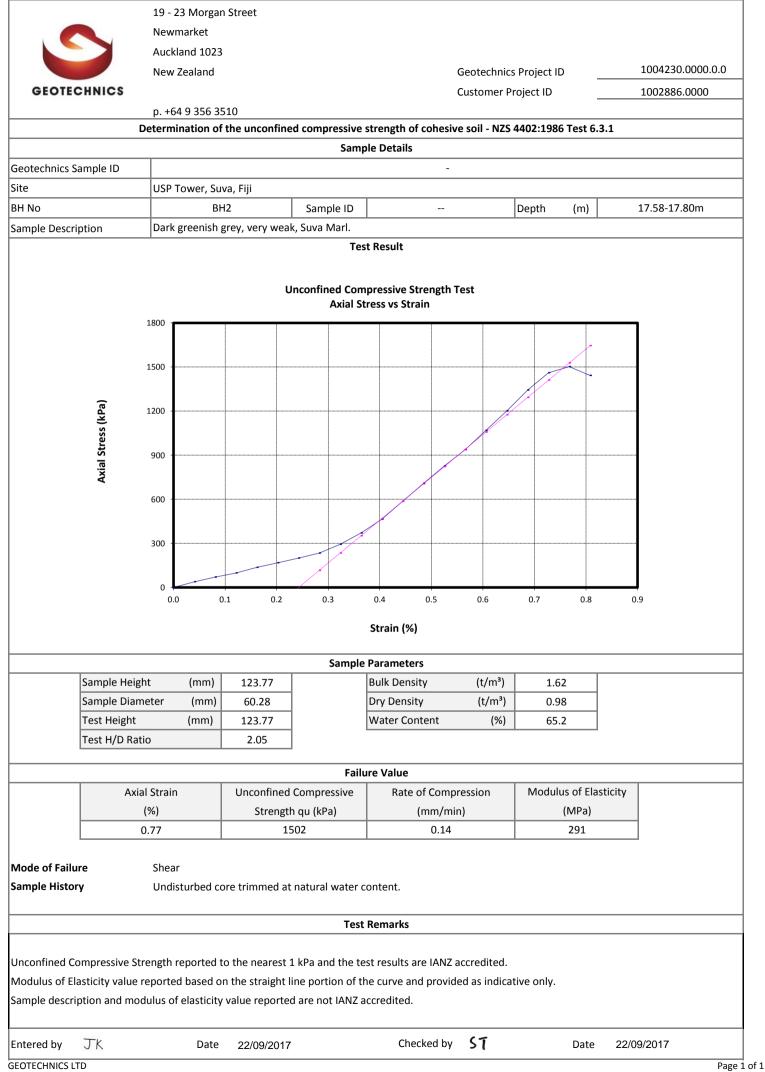


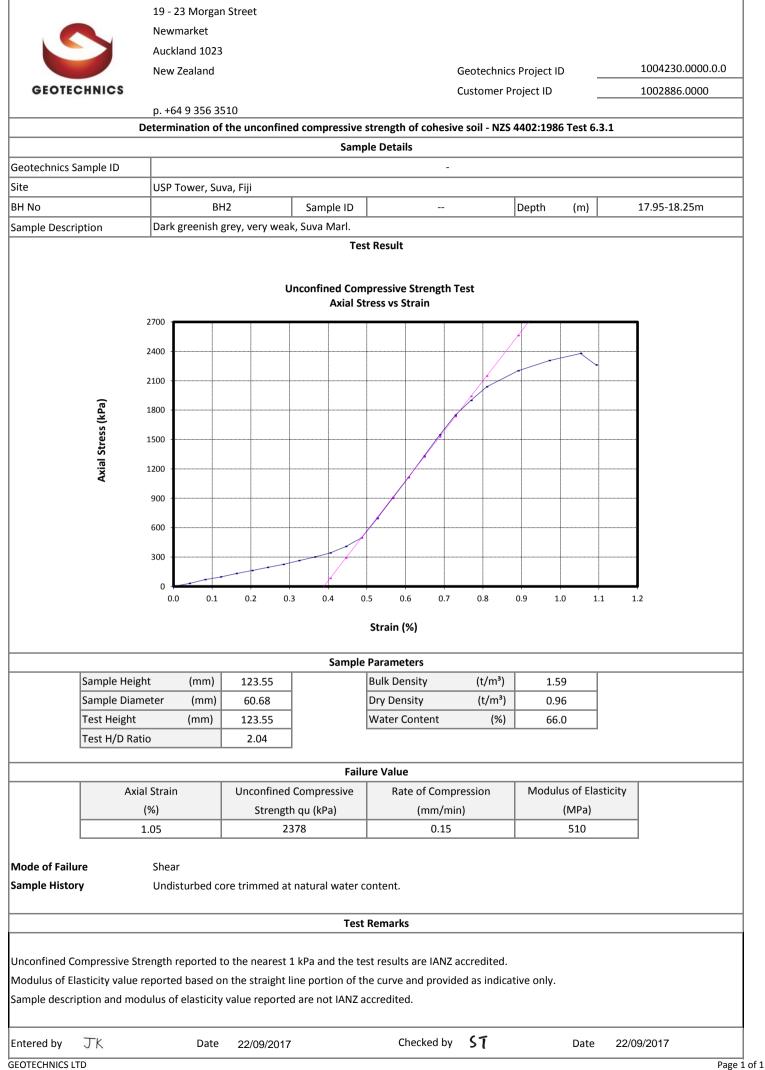


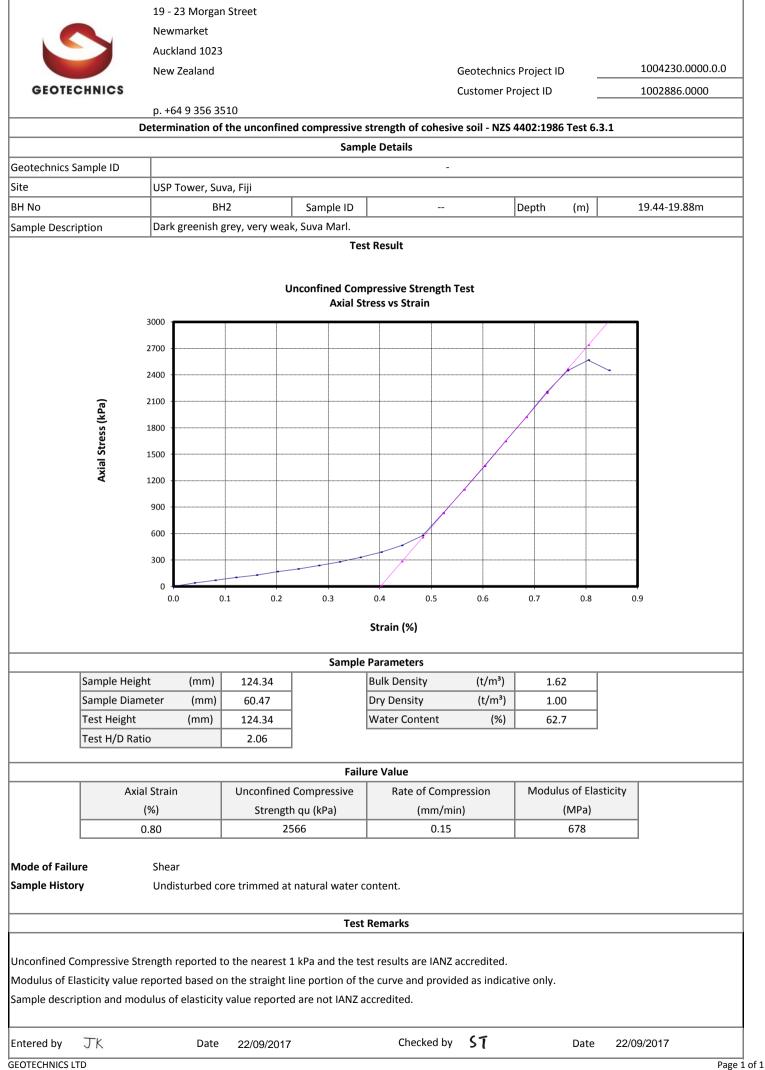

Version 1.1: 25 November 2015










Version 1.1: 25 November 2015

	+ +	+	+ +	+	+	
	+ +	+	+ +	- +	+	
				- +		
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+			+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +		+ +	- +	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +		+ +	. +	<u>ь</u>	
					1	
	+ +	+	+ +	- +	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	- +	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	÷ .		+ +	- +	+	
	+ +	Ŧ	T 1	- +	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	- +	+	
		+				
	+ +	+	+ +	- +	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
		+	+ +	+		
	+ +	+	+ 1	- +	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ 1	• +	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	- +	+	
	+ +	+	+ 1	- +	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	- +	+	
	+ +	+	T 1	+	Ŧ	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	1	±			±	
	τ +	+	- 1	+	т	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	- +	+	
	1997 - 1997 1997 -					
	+ +	+	+ +	· +	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ -		+	
	· *			10		
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ +	+	+	
	+ +	+	+ -		+	
	. –		. 1	1		
	+ +	+	+ +	+	+	
www.conkinterder.co.nt	+ +	+	+ +	+	+	
www.tonkintaylor.co.nz	+ +	+	+ +	+	+	
	+ +	+	+ +	· +	+	
	1	-	1			
	- +	Τ.	- 1	+		
	+ +	+	+ +	+	+	

Appendix 7 Soft Component (Technical Assistance) Plan

Preparatory Study for The Project for Enhancement of USPNet Communication System in The Republic of Fiji

Draft of Soft Component (Technical Assistance) Plan

August 2017

Yachiyo Engineering Co., Ltd.

1. Background of Planning Soft Components

The University of the South Pacific ("USP") was established in 1968 using funds from the governments of various nations in the Pacific region. The main campus is located in Suva, the capital of Fiji. As of 2017, the University is jointly operated by 12 member nations and regions: (1) Cook Islands, (2) Fiji, (3) Kiribati, (4) Nauru, (5) Niue, (6) Samoa, (7) Solomon Islands, (8) Tokelau, (9) Tonga, (10) Tuvalu, (11) Vanuatu, and (12) Marshall Islands. One foundation of education at USP is Distance Learning provided through a satellite communication network known as "USPNet." Distance Learning is held at campuses and centers in each of the 12 member nations and regions. Support from Japan, New Zealand ("NZ") and Australia was used to establish USPNet in 2000, and presently the Information Technology Services ("ITS") operates and maintains the network. When USPNet was launched in 2000, it comprised only a C Band satellite communication network and an optical fiber communication network as well as a C Band satellite communication network, each of which branch off and connect to the respective campuses and centers ("Remote Stations").

The C Band network connects 15 remote stations ("Remotes") including the hub station ("HUB") installed at the USP main campus in Fiji; the Ku Band network connects 10 Remotes including HUB (Figure 1).

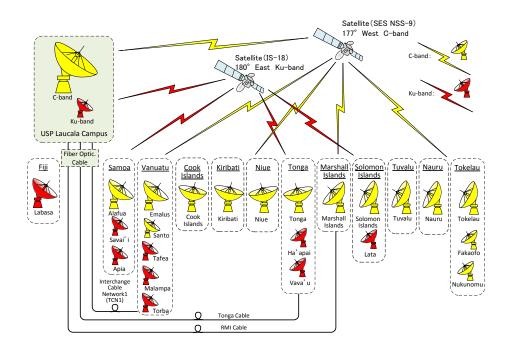


Figure 1: Existing USPNet

The C Band network operates on a frequency bandwidth of 15 MHz and primarily connects campuses; the Ku Band operates on a frequency bandwidth of 5 MHz and primarily connects centers.

Under this plan, HUB of USPNet, which went into operation in 2000 and have deteriorated significantly, will be updated (replaced). In the course of implementing this plan, efforts will be made to improve communication stability and streamline communication traffic by consolidating the existing C and Ku Band networks into a single Ku Band satellite communication network. Specifically, new HUB facilities for a Ku Band that uses a new communication satellite (JCSAT-2B) will be installed at the USP main campus to create a separate satellite communication network from the present network that operates from both the C and Ku Band networks. Each Remote will be connected to the new HUB of this JCSAT-2B Ku Band in succession as Remote equipment is

updated (repaired) using funds from NZ, a project scheduled for implementation over the same period.

Finally, once all Remote equipment within USPNet is updated (repaired) and connected to the new HUB, the functions of the presently operating C and Ku Band satellite communication networks will be suspended (Figure 2).

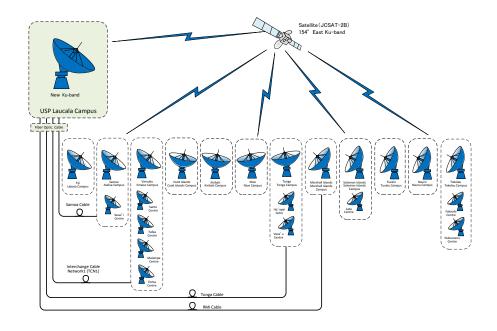


Figure 2: New USPNet Structure (Ku Band)

The primary objectives of this plan for soft components are the acquisition of <u>Transition/Daily</u> <u>Operation Technology</u>, which includes technology for connecting (transitioning) to the new HUB as well as daily inspections, data gathering, operation and problem analysis and other daily operation technology for new station systems; and <u>Satellite Communication Link Use/Application</u> <u>Technology</u>, which is technology for using and applying the new Ku Band Satellite Communication System in operation at all 23 stations.

<u>Transition/Daily Operation Technology</u> comprises transition technology, which is technology for transitioning from the presently operating C and Ku Band satellite networks to the new Ku Band satellite network, and daily operation technology, which includes technology for detecting signs of problems in everyday operation, and technology for providing instruction to Remote Station operations staff members and beginners.

"Transition technology" refers to technology that HUB requires to obtain approval from a satellite operator to transmit regular radio waves to Remotes, as well as the technology required to connect to the new HUB in the Remotes after obtaining that approval. Specifically, transition technology includes the emission of test radio waves (radio waves with smaller transmission power than regular radio waves) from HUB and instructions to adjust radio waves during satellite operator confirmation, and confirmation tests of present services (contents, etc.) for Remotes provided by HUB, suspension of services from old systems and the like during connection to the new HUB of the Remotes.

"Daily operation technology" refers to technology that uses daily inspections, data gathering, and operation and problem analysis to detect signs of problems with new HUB whose new communication equipment comprises an overlapping (redundant) structure of active and backup systems; technology for providing instruction to Remotes operations staff members and beginners; and the like. Note that the present system is insufficient for preventing problems through daily inspections and data gathering due to the insufficient antenna tracking functions, which have malfunctioned.

<u>Satellite Communication Link Use/Application Technology</u> includes technology for optimal traffic control in response to the access conditions of campuses and centers with regard to the consolidated 20-MHz satellite link of the C and Ku Band system (optimal control technology for inbound circuit traffic) and the like.

Acquiring these technologies should enable the establishment of a system capable of providing highly consistent and reliable operation and maintenance.

Note that the technology for operating and maintaining equipment to be procured under this plan will be imparted through a technology transfer that consists of initial operation instruction provided by the suppliers of the equipment, and operating instructions regarding maintenance inspections and the like.

2. Soft Component Objectives

USP has assigned roughly 30 employees to the ITS at Laucala Campus to operate and maintain USPNet. Instruction regarding <u>Transition/Daily Operation Technology</u> and <u>Satellite</u> <u>Communication Link Use/Application Technology</u> will be systematically provided to the six ITS employees responsible for satellite communication work, and the objective is to improve their capacity to operate and maintain the satellite communication facilities of the new USPNet so that the upgraded equipment operates in a highly consistent, reliable manner over a long period of time.

Note that imparting <u>Transition/Daily Operation Technology</u> to the operations staff members assigned to Remotes should enhance their capacity to operate and maintain the satellite communication facilities throughout the new USPNet. In addition, imparting <u>Transition/Daily</u> <u>Operation Technology</u> to employees assigned to the ITS should improve their understanding of the new USPNet. These efforts work toward another objective, which is to create the capacity to train Remotes operations staff members and ITS employees other than the employees responsible for satellite communication work.

3. Soft Component Outcomes

The implementation of these soft components will produce the following outcomes with regard to <u>Transition/Daily Operation Technology</u> and <u>Satellite Communication Link Use/Application</u> <u>Technology</u>.

Transition/Daily Operation Technology

USP (ITS) will use the technology acquired through classroom study and practical training to create the following written procedures and manuals regarding Transition/Daily Operation Technology.

For Transition Operation Technology:

- Manual for HUB/Remotes satellite transition
- Written procedures for tests for HUB/Remotes satellite transition

For Daily Operation Technology:

- Written procedures for daily inspections and periodic inspections for satellite communication systems
- · Operation and maintenance manual for satellite communication systems

- Optimal operation manual for active and backup systems *Operation manual for active equipment/backup equipment, which are the structural elements of the new HUB
- · Manual for restoring operations when there are problems with equipment
- Manual for preventing disasters/restoring operations
- · Instruction manual for Remotes operations staff members and beginners

Satellite Communication Link Use/Application Technology

USP (ITS) will use the technology acquired through classroom study to create the following written standards and manuals regarding Satellite **Communication Link** Use/Application Technology.

- Written standards for traffic control on satellite link
- Manual for traffic control on satellite link
- Optimal operation manual for inbound in frequency band
- Optimal operation manual for outbound
- Instruction manual for Remotes operations staff members and beginners

4. Methods for Confirming the Level of Outcome Achievement

Field	Outcome	Outcome Confirmation Method
Transition/Daily Operation Technology	Manual for HUB/Remotes satellite transition	Confirm the completeness of the manual by performing work according to the manual, and confirm the straightforwardness of the manual by implementing a questionnaire (ask the trainees to evaluate on a scale of 1-5). The outcomes are confirmed when trainee scores average 4 or higher; if the trainees identify points for improvement (revision), give them the experience of using the PDCA cycle to revise and improve the points on their own.
	Written procedures for tests for HUB/Remotes satellite transition	Follow the written procedures and perform a simulation of tests regarding the configured satellite transition situations. Use evaluation sheets to confirm proper transitions. The outcomes are confirmed when the score is a perfect 100%; if the trainees identify points for improvement (revision), give them the experience of using the PDCA cycle to revise and improve the points on their own.
	Written procedures for daily inspections and periodic inspections for satellite communication systems Operation and maintenance manual for satellite communication systems	Confirm the accuracy of the written procedures by following them to conduct practical training for daily inspections and periodic inspections. Confirm the accuracy of the procedures by following the manual to conduct practical training for operation
	Optimal operation manual for active and backup systems	and maintenance. Confirm the accuracy of the procedures by following the manual to conduct practical training for optimal operation.
	Manual for restoring operations when there are problems with equipment	Confirm the accuracy of the procedures by following the manual to conduct practical training for responding to problems with equipment.
	Manual for preventing disasters/restoring operations	Confirm the accuracy of the procedures by following the manual to conduct practical training for preventing

		disasters and restoring operations.
	Instruction manual for Remotes operations staff members and beginners	Follow the manual and provide instruction to ITS employees other than the employees responsible for satellite communication, and implement a questionnaire (ask the employees to evaluate on a scale of 1-5) to check their understanding. The outcomes are confirmed when trainee scores average 4 or higher; if the trainees identify points for improvement (revision), give them the experience of using the PDCA cycle to revise and improve the points on their own.
Satellite Communication Link Use/Application Technology	Standards for traffic control on satellite link	Follow the control procedures and conduct a simulation of issues regarding traffic control standards, and use an evaluation sheet to confirm proper control. The outcomes are confirmed when the score is a perfect 100%; if the trainees identify points for improvement (revision), give them the experience of using the PDCA cycle to revise and improve the points on their own.
	Manual for traffic control on satellite link	Follow the manual and conduct a simulation of issues regarding traffic control on satellite link, and use an evaluation sheet to confirm proper control. The outcomes are confirmed when the score is a perfect 100%; if the trainees identify points for improvement (revision), give them the experience of using the PDCA cycle to revise and improve the points on their own.
	Optimal operation manual for inbound in frequency band	Follow the manual and conduct a simulation of issues regarding inbound control in frequency band, and use an evaluation sheet to confirm proper operation. The outcomes are confirmed when the score is a perfect 100%; if the trainees identify points for improvement (revision), give them the experience of using the PDCA cycle to revise and improve the points on their own.
	Optimal operation manual for outbound	Follow the manual and conduct a simulation of issues regarding outbound control, and use an evaluation sheet to confirm proper operation. The outcomes are confirmed when the score is a perfect 100%; if the trainees identify points for improvement (revision), give them the experience of using the PDCA cycle to revise and improve the points on their own.
	Instruction manual for Remotes operations staff members and beginners	Follow the manual and provide instruction to ITS employees other than the employees responsible for satellite communication, and implement a questionnaire (ask the employees to evaluate on a scale of 1-5) to check their understanding. The outcomes are confirmed when trainee scores average 4 or higher; if the trainees identify points for improvement (revision), give them the experience of using the PDCA cycle to revise and improve the points on their own.

5. Target Trainees

Target trainees under this plan for soft components are the six members of the ITS responsible for satellite communication. Three of the six trainees should come from a group of mid-level employees with ample experience with satellite communication work, and the other three should come from a group of beginners with little experience with satellite communication work.

The three trainees from the beginner's group are the target for training in the <u>Transition/Daily</u> <u>Operation Technology</u> field described previously, and the three trainees from the mid-level employee's group are the target for the training in the <u>Satellite Communication Link</u> <u>Use/Application Technology</u> field.

The soft component input plan described later calls for both groups to progress through the training simultaneously and in parallel. The reasoning behind this lies in the establishment of several opportunities throughout the training for the groups to come together to discuss the training in the hope of promoting mutual cooperation during daily operations as well as when responding to emergencies. Another aim of the simultaneous training is to encourage employees to help themselves, as beginners improve their skills and aim for mid-level positions, and mid-level employees improve their skills and aim for top-level positions.

Field/Target	Training Content/Preparation in Japan	Output	Implementation Resources (Numbers of Employees/M/M)
Step 1	Preparation in Japan (Create educational m	naterials/questionnaire)	
Transition/Daily	Create the educational materials to be used		■Japanese
Operation	in Step 2:	Instructional	instructor:
Technology	 Educational materials for HUB/Remotes satellite transition Educational materials for tests for HUB/Remotes satellite transition Educational materials for daily/periodic inspections for satellite communication systems 	materials/questionnaire	0.5 M/M x 1 instructor (0.5 M/M)
	 (4) Educational materials for operation and maintenance of satellite communication systems (5) Educational materials for optimal operation of active and backup 		
	 systems (6) Educational materials for restoring operations when there are problems with equipment (7) Educational materials for preventing disasters/restoring operations 		
Q - 4 - 1124 -	(8) Questionnaire for trainees		
Satellite Communication	Create the educational materials to be used in Step 2:		■Japanese instructor:
Link	(1) Educational materials for standards	 Instructional 	$0.5 \text{ M/M} \times 1$
Use/Application Technology	 (1) Educational materials for standards for traffic control on satellite link (2) Educational materials for traffic control on satellite link 	materials/questionnaire	instructor (0.5 M/M)
	 (3) Educational materials for optimal operation of inbound in frequency band (4) Educational materials for optimal operation of outbound 		
	(5) Questionnaire for trainees		

6. Soft Component Activities (Input Plan)

Step 2-1	First	t On-Site Instruction (Orientation, inter	views, lectures about tran	sition technology)
Both		Discuss technical training content and	• Draft of written	∎Japanese
Target trainees:		implementation schedule	training plan	instructors:
-		Interview each trainee		0.17 M/M x 2
USP ITS		Prepare to create educational		instructors
Beginners/mid-level		materials		(0.34 M/M)
employees		Provide instruction on satellite		
		transition procedures and points to		
		remember, etc.	• ``	
Step 2-2		t On-Site Instruction (Lectures, evaluat	lions)	-
Transition/Daily	(1)	-		■Japanese
Operation		transition		instructor:
Technology	•	Satellite communication system		0.77 M/M x 1
Target trainees:		configuration	• Manual for	instructor
-	•	Communication/modulation methods	HUB/Remotes	(0.77 M/M)
USP ITS	•	Satellite communication system	satellite transition	
Beginners		performance	succince transition	
C	•	Design of Link Budget and system		
		evaluation		
		Satellite transition procedure Satellite transition plans		
	(2)			-
	(2)	Procedures for tests for HUB/Remotes satellite transition	• Written procedures	
		Testing procedures for Satellite	for tests for	
	_	Access Tests	HUB/Remotes	
		Service level function test	satellite transition	
		Entry into Network		
	(3)	Procedures for daily/periodic	• Written procedures	-
	(3)	inspections for satellite	for daily/periodic	
		communication systems	inspections for	
		(HUB/Remotes)	satellite	
		Inspection data gathering	communication	
		Data and problem analysis		
			systems	
	(4)	Operation and maintenance of		
		satellite communication systems	• Operation and	
	•	Satellite communication network	maintenance manual	
		launch/shutdown procedures	for satellite	
	•	Satellite communication network	communication	
		operation records	systems	
	•	Satellite communication network		
		operation statistics		
	(5)			
		systems in HUB	• Optimal operation	
	•	Interchangeable operation of active	manual for	
		and backup systems	redundant systems in	
	•	Periodic performance tests of testbed	HUB	
		systems and backup systems		
	·	Test data evaluation/analysis		
	(6)		. Monual far martaning	
		problems with equipment	Manual for restoring	
	•	Malfunctioning equipment	operations when	
		switchover to backup equipment	there are problems	
	•	Test procedures	with equipment	
	•	Restoration procedures		
	(7)		- Manual C	
		operations	Manual for	
	•	Prevention mode standards	preventing	
	•	Operation mode transition procedures	disasters/restoring	
	•	Operation mode restoration	operations	
		procedures		

Satellite Communication Link Use/Application Technology	 (1) Standards for traffic control on satellite link Traffic load factors Traffic control factors Establish traffic control philosophy 	Standards for traffic control on satellite link	■Japanese instructor: 0.77 M/M x 1 instructor
Target trainees: USP ITS Mid-level employees	 (2) Traffic control on satellite link Traffic measurement Traffic analysis Traffic monitoring IP platform traffic measurement IP platform traffic analysis Outbound control Outbound monitoring Inbound traffic control Inbound traffic monitoring 	 Manual for traffic control on satellite link 	(0.77 M/M)
	 (3) Optimal operation of inbound in frequency band Optimal allocation of inbound links Inbound links rain attenuation control Network connectivity Network efficiency VLAN and service streamlining 	 Optimal operation manual for inbound in frequency band 	
	 (4) Optimal operation of outbound QoS ACM control Outbound rain attenuation Outbound transmission power control Link Availability Link Availability by decreasing antenna diameters Total bit rate variation factors Total bit rate/frequency band streamlining 	 Optimal operation manual for outbound 	
Step 3	Second On-Site Instruction (Lectures, practic	cal training, evaluations)	
Both Target trainees: USP ITS Beginners/mid-level employees	 (1) Improving the capacity to instruct and train Remotes operations staff members and beginners Plan classes (Content/instructor responsibilities/schedule) Create educational materials for classes (Basics of satellite communication, overviews of 	 Instruction manual for Remotes operations staff members and beginners 	Japanese instructors: 0.77 M/M x 2 instructors (1.5 M/M)
	Next-Generation USPNet, Transition/Daily Operation Technology, Satellite Communication Link Use/Application Technology)		

Details of activity schedules are as follows:

Step 1 Preparation in Japan (Create educational materials/questionnaire)

Date	Day	Transition/Daily Operation Technology	Satellite Communication Link Use/Application Technology
1	Mon	Prepare educational materials for HUB/Remotes satellite transition	Prepare educational materials for standards for traffic control on satellite link
2	Tue	Prepare educational materials for tests for HUB/Remotes satellite transition	Same as above

3	Wed	Prepare educational materials for daily/periodic inspections for satellite communication systems	Prepare educational materials for traffic control on satellite link
4	Thu	Prepare educational materials for operation and maintenance of satellite communication systems	Same as above
5	Fri	Prepare educational materials for optimal operation of redundant systems in HUB	Same as above
6	Mon	Prepare educational materials for restoring operations when there are problems with equipment	Prenare educational materials for ontimal
7	Tue	Prepare educational materials for preventing disasters/restoring operations	Same as above
8	Wed	Prepare questions/questionnaire	Prepare questions/questionnaire
9	Thu	Translate into English	Translate into English
10	Fri	Check/revise content, etc.	Check/revise content, etc.

Step 2-1 First On-Site Instruction (Orientation, interviews, lectures about transition technology)

Date	Day	Day Orientation, interviews, general lectures about transition technology (Target: Beginners/mid-lev employees)	
1	Sat	Depart from Japan	
2	Sun	Arrive in Suva	
3	Mon	Workshop orientation, participant interviews, discuss technical training content/schedules/questionnaire, etc.	
4	Tue	Provide instruction on satellite transition procedures and points to remember, etc.	
5	Wed	Wed (General lectures to beginners/mid-level employees)	

Step 2-2 First On-Site Instruction (Lectures, evaluations)

Date	Day	Transition/Daily Operation Technology (Target: Beginners)	Satellite Communication Link Circuit Use/Application Technology		
6	Thu	 (1) HUB/Remotes satellite transition technology Satellite communication system configuration, communication/modulation methods 	 (1) Standards for traffic control on satellite link Traffic load factors 		
7	Fri	 Satellite communication system performance Design of Link Budget and system evaluation 	 Traffic control factors Traffic control philosophy 		
8	Sat		torganization		
9	Sun	Same	as above		
10	Mon	 Devising satellite transition procedure Devising Satellite transition plans 	(2) Traffic control on satellite linkTraffic measurement/analysis/monitoring		
11	Tue	 (2) Procedures for tests for HUB/Remotes satellite transition Testing procedures for Satellite Access Tests 	 IP platform traffic measurement/analysis Outbound control/monitoring 		
12	Wed	Service level function testEntry into Network	 Inbound traffic control Inbound traffic monitoring 		
13	Thu	 (3) Procedures for daily/periodic inspections for satellite communication systems Inspection data gathering, data and problem analysis 	 (3) Optimal operation of inbound in frequency band Optimal allocation of inbound links circuits 		
14	Fri	 (4) Operation and maintenance of satellite communication systems Satellite communication network launch/shutdown procedures 	 Inbound links rain attenuation control Network connectivity 		
15	Sat		t organization		
16	Sun	Same as above			
17	Mon	 Satellite communication network operation records Satellite communication network operation statistics 	 Network efficiency VLAN and service streamlining 		
18	Tue	(5) Optimal operation of redundant systems in HUB	(4) Optimal operation of outbound• QoS, ACM control		

Date	Day	Transition/Daily Operation Technology (Target: Beginners)	Satellite Communication Link Circuit Use/Application Technology			
		 Interchangeable operation of active and backup systems 				
19	Wed	 Periodic performance tests of testbed systems and backup systems Test data evaluation/analysis 	 Outbound rain attenuation Outbound transmission power control 			
20	Thu	 (6) Restoring operations when there are problems with equipment Malfunctioning equipment switchover to backup equipment, test/restoration procedures 	 Link Availability Link Availability by decreasing antenna diameters 			
21	Fri	(7) Preventing disasters/restoring operationsPrevention mode standards, operation mode transition/restoration procedures	 Total bit rate variation factors Total bit rate/ frequency band streamlining 			
22	Sat	Document	organization			
23	Sun	Same	as above			
24	Mon	Evaluation of various manuals/written procedures, review of training, Q&A/discussion				
25	Tue	Write reports				
26	Wed	Report the results of training to USP ITS Director /JICA Fiji Office				
27	Thu	Depart from Suva				
28	Fri	Arrive in Japan				

Step 3 Second On-Site Instruction (Lectures, practical training, evaluations)

Step 5	Dear Transition/Daily Operation Technology Satellite Communication Link Use/Applicat					
Date	Day	(Target: Beginners)	Technology (Target: Mid-level employees)			
1	Sat	Depart from Japan				
2	Sun	1	e in Suva			
3	Mon	Consider/discuss class content/instructor	or responsibilities/schedules/questionnaire			
4	Tue	Provide instruction for creating educational	Provide instruction for creating educational			
5	Wed	materials for Remotes operations staff	materials for Remotes operations staff members			
6	Thu	 members and beginners HUB/Remotes satellite transition General satellite communication technology Overviews of Next-Generation USPNet Satellite transition technology 	and beginners Satellite Communication Link Use/Application Technology • Overviews of standards for Traffic control on satellite link • Overviews of traffic control philosophy • Overviews of Traffic control on satellite link			
7	Fri	 Procedures for tests for hub station/Remote Station satellite transition Procedures for tests to be conducted after transition 	• Overviews of inbound traffic control			
8	Sat	Document	organization			
9	Sun		as above			
10	Mon	 Procedures for tests for HUB/Remotes satellite transition Procedures for tests to be conducted after transition 	Satellite Communication Link Use/Application Technology • Overviews of optimal operation of inbound in frequency band			
11	Tue	 Procedures for daily/periodic inspections for all equipment introduced 	Overviews of Remotes access traffic			
12	Wed	 Operation and maintenance for all equipment introduced 	 Overviews of inbound links rain attenuation control 			
13	Thu	 Restoring operations when there are problems with equipment 	• Overviews of optimal operation of outbound			
14	Fri	 Preventing disasters/restoring operations 	 Outbound rain attenuation control 			
15	Sat		organization			
16	Sun		as above			
17	Mon	*Trial Training (ITS employees: For beginners), questionnaire aggregation/analysis				
18	Tue	Review training content and hold discussions with trainees				

Date	Day	Transition/Daily Operation Technology (Target: Beginners)	Satellite Communication Link Use/Application Technology (Target: Mid-level employees)							
19	Wed	White	reporta							
20	Thu	Write reports								
21	Fri		Report the results of training to USP ITS Director, organize issues and offer recommendations, report to the JICA Fiji Office							
22	Sat	1	Depart from Suva							
23	Sun	Arrive in Japan								

Note: In Trial Training, trainees will use the educational materials prepared in the lecture in Step 3 (educational materials for Remotes operations staff members and beginners) to provide actual instruction (training) to beginners.

7. Methods for Procuring Implementation Resources for Soft Components

As explained in the first section on background, efforts will be made to improve the communication stability of USPNet and streamline its communication links by consolidating the existing C and Ku Band satellite communication systems into a single Ku Band system. This plan only calls for the installation of HUB, but USP (ITS) must lead transition efforts (changing from C Band to Ku Band) at Remotes in line with the progress of upgrades to Remote equipment funded by NZ, an undertaking scheduled over the same period.

To enable the long-term and consistent use of the upgraded equipment, it is vital to acquire daily system inspections, data gathering and analysis methods that lead to the prevention of problems (detecting signs the problems will occur), and to ensure the efficient use of the new system comprised of an overlapping (redundant) structure of active and backup systems, thereby preventing the interruption of lecture streaming and other services caused by problems that cause system shutdowns.

In addition, Satellite Communication Link Use/Application Technology and other technology for optimal traffic control in response to the access conditions of campuses and centers is vital toward ensuring the effective use of the consolidated satellite links of the C and Ku Band system with frequency band of 20 MHz.

As for implementation resources, we believe a direct support model comprised of consultants who are deeply familiar with satellite communication systems, the use of equipment, and communication satellites, and who fully understand the USPNet operation method and upgrade plans for Remotes, is appropriate.

Japan has a wealth of experience in the use of communication satellites, and is a world leader in the operation of large-scale systems as well as satellite communication network transition and operation technology.

In pursuit of the acquisition of <u>Transition/Daily Operation Technology</u> and <u>Satellite</u> <u>Communication Link Use/Application Technology</u>, which are the objectives of these soft components, we believe it is appropriate to appoint to the position of instructor Japanese consultants who are familiar with satellite communication system maintenance technology, large-scale system operation technology, transition and operation technology and the like, and who have intimate knowledge of the status of USPNet operation and the network structure as well as experience providing operations support and planning maintenance for Japanese manufacturers and the like.

In the course of providing direct support, the appointed Japanese consultants (instructors) will not use local resources. However, the cooperation of USP (ITS) is vital toward promoting the smooth implementation of soft components; therefore, we will have USP (ITS) appoint a manager responsible for gathering trainees.

8. Soft Component Implementation Process

The table below shows the implementation process of the soft components under this plan. Once preparation work in Japan (Step 1) is complete, the first on-site instruction (Step 2) will be

implemented during the period in which the equipment is installed on-site, and once the equipment is put into operation, instruction as to how to create the required manuals and written procedures will be provided. In addition, the second on-site instruction (Step 3) will be implemented after the installation of equipment is complete.

The target trainees of <u>Transition/Daily Operation Technology</u> are beginners on the USP/ITS staff, and the target trainees of <u>Satellite Communication Link Use/Application Technology</u> are mid-level employees of the USP/ITS staff. Opportunities for the mid-level employee's group and the beginner's group to come together for discussions during the training will be provided in the hope of promoting mutual cooperation during daily operations as well as when responding to emergencies, and encouraging employees to help themselves as beginners improve their skills and aim for mid-level positions and mid-level employees improve their skills and aim for top-level positions. Therefore, the soft component input plan describes the implementation of training such that both groups progress through it simultaneously and in parallel as both possible and imperative.

Year		<u>-r</u>			2019	011 0 0					2020	
Month	4	5	6	7	8	9	10	11	12	1	2	3
Equipment installation work (Including initial operation instruction and operating instructions)												
		1	1	1	1	1	1	1	1	1	1	
Transition/Daily Operation Technology												
Satellite Communication Link Use/Application Technology												
: Work in Japan (Step 1) : First On-Site Instruction (Step 2) : Second On-Site Instruction (Step 3)												

Soft Component Implementation Schedule

9. Soft Component Output

As explained in the third section on soft component outcomes.

10. Soft Component Initial Cost Estimation

The table below shows the initial cost estimation of the soft components under this plan. (There are no costs of local sub-contracting.)

	Expense Item	Total (x 1,000 JPY)
1.	Direct labor cost	4,004
2.	Direct costs	3,124
3.	Indirect costs	8,328
	Total:	15,456

6. Partner Country Obligations

The partner country is required to implement the following items in regard to the implementation of soft components.

(1) Cooperate toward soft component implementation

- Appoint people in charge of the soft component implementation described previously, and select participants.
- Provide educational materials and venues for the soft component implementation described previously.
- (2) Establish a management system
 - Ensure that USP (ITS)-namely, the employees who implement the soft components described previously-appropriately manages and analyzes data. In addition, establish a system that facilitates the long-term succession of acquired content.
- (3) Conduct periodic and daily inspections
 - In an effort to improve operation technology, use and pass down the manuals, written procedures and other materials created as outputs.

Strive to review manuals and written procedures at appropriate times, and to revise them when necessary. Specifically, employ the PDCA cycle to ensure that manuals and written procedures are constantly kept in an appropriate state.

(4) Secure a budget

Make efforts to secure a budget sufficient for continuously bearing the expenses described previously.

End of document

Appendix 8 Field Report

PREPARATORY SURVEY (FOR BASIC DESIGN) ON THE PROJECT FOR ENHANCEMENT OF USPNet COMMUNICATION SYSTEM IN THE REPUBLIC OF FIJI

FIELD REPORT

July 3, 2017

Prepared and Submitted by:

Yosuke IKEDA Sub-Chief Consultant JICA Project Tearn (Yachiyo Engineering Co., Ltd.)

Acknowledged by:

Kisione Wesley Finau Director Information Technology Services The University of the South Pacific

JICA PROJECT TEAM (Yachiyo Engineering Co., Ltd.)

Table of Contents

1.]	Introduction1	
2.]	Present Situation of the Project2	
2-	1 Present situation of USPNet (Earth Station)	
2-2		
2-2	3 Site condition	
24	4 Others (Rehabilitation of existing C-Band antenna)	
3. 1	Basic Design Concept	
3-3	Climatic Conditions (Source: Fiji Meteorological Service)	
3-2	2 Applicable Design Standards	
3-2	3 Other Issue for Design	
3-4	4 Satellite	
4.]	Equipment Plan	
4-3	List of the Planned Equipment Component	
4-2	2 Key Specifications of the Equipment	
4-2	New HUB Station Building	
5. I	Results of the Skyline Measurements16	
6.]	2-1 Present situation of USPNet (Earth Station) 2 2-2 Present situation of USPNet (Space segment) 4 2-3 Site condition 4 2-4 Others (Rehabilitation of existing C-Band antenna) 4 Basic Design Concept 6 3-1 Climatic Conditions (Source: Fiji Meteorological Service) 6 3-2 Applicable Design Standards 7 3-3 Other Issue for Design 8 3-4 Satellite 8 Equipment Plan 10 4-1 List of the Planned Equipment Component 13 4-2 Key Specifications of the Equipment 13	
7. 7	The Work and Cost Demarcation of the Project	
7-]	Principle	
7-2	-	
8. I	Budget Estimation of the Undertakings by the Fijian side (USP)	
9. I	mplementation Schedule of the Project (Tentative)	
10. (Operation and Maintenance, Soft Component and Financial Plans for USP25	
10	-1 Budget Estimation of Operation and Maintenance	
10-	-2 Soft Component	
10	-3 Financial Plan for USP	
11. I	Benefit of the Project	
12. I	Drawings for Basic Design	

Attachment -1: Comparison of Satellite OverviewA-1-1	
Attachment -2: Comparison of Link AvailabilityA-2-1	P
Attachment -2: Comparison of Link AvailabilityA-2-1 Attachment -3: Tax Exemption ProcedureA-3-1	KI
0	M
A 9.1	ر •

1. Introduction

This Field Report is to establish mutual understandings among JICA Project Team (hereinafter referred to as "the Team") for the project for the Enhancement of USPNet Communication System in the Republic of Fiji (hereinafter referred to as "the Project") and the Fijian side such as The University of the South Pacific (hereinafter referred as "USP") and relevant organizations of the Government of Fiji on the technical and engineering aspects for the Project. This has been also prepared by the Team based on the results of the field survey and discussions with the Fijian side.

Through the filed survey, the Team confirmed the present condition of the existing satellite communication system in USPNet. Though some of the equipment for satellite communication system had been replaced to new one by USP's own efforts, most of the main equipment are currently well over its life span period of 10 years.

The Project aims to enhance the function of distance learning network in updating the aging satellite communication system (Antenna, Radio Frequency Systems, iDirect Baseband System, New Hub Station Building and etc.) in USPNet, thereby contribute to provide stable network communication to USP's member countries. Both the Fijian and the Japanese sides have recognized to proceed the plan of the equipment component, specifications and undertakings by the both sides under the Project as described in this report.

It is also noted that all the information as described in this report will be decided after further studies in Japan with JICA, the Team and relevant organizations of the Government of Japan. JICA will submit the draft final report, which describes the final component of the Project, to the Fijian side in February 2018 as stated in the Minutes of Discussions (M/D) signed by both parties on June 23, 2017.

2. Present Situation of the Project

2-1 Present situation of USPNet (Earth Station)

The USPNet that was established in 2000 with the support of Government of Japan, New Zealand and Austrailia is a dedicated satellite communication network equipment that uses VSATs (Very Small Aperture Terminal) to connect USP Centres in member countries to USP Laucala Campus. Though USPNet had offered satellite based flexible distance learning system through C-Band systems as of 2000, C-Band, Ku-Band system and Optical Fiber Cable have been combined to USPNet as of 2017.

During the field survey, the Team had confirmed USP about the present situation of the Earth Station of USPNet as shown in Figure 2-1-1.

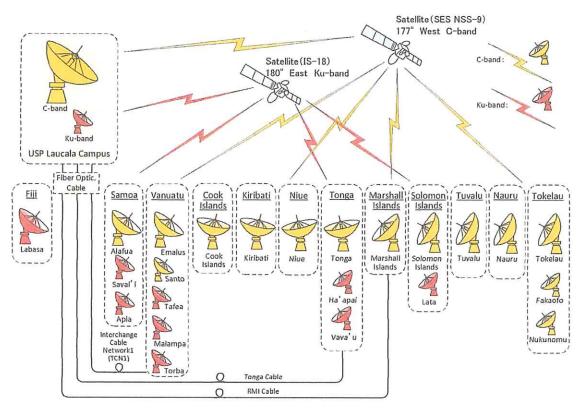


Figure 2-1-1 Outline of the USPNet

Table 2-1-1 indicates the latest connection for campuses and centres in USP and the commencement year of operation at each site. As shown in Table 2-1-1, more than 15 years have passed since the commencement of operation in some stations including C-Band HUB station in Laucala Campus and most of the equipment in those stations are currently well over its life span period of 10 years.

KP

Field Report

	Table 2-1-1	Earth	Station	of	USPNet
--	-------------	-------	---------	----	--------

No.	Campus	Centre	Country	City	Earth Station Type	Band	Tx Earth Station ID	High Power Amplitier (Optical Cable)	Commence ment of Operation (Year)	Antenna Diameter		
1	Laucala		Fiji	Suva	HUB	С	FJI-SUV-004	80W	2000	7.6 m		
2						Ku	SVA+16G5	40W	2011	4.5 m		
3				1		Optical Fibe	r Cable to Vanuatu	(TCN1)	2016			
4						Optical Fibe	r Cable to Tonga	(Tonga Cable)	2014			
5						Optical Fiber	Cable to Marshall Is.	(RMI Cable)	2016			
6						Optical Fibe	r Cable to Samoa	(Samoa Cable)	2017.12			
7	Labasa			Labasa	Remote	Ku	FJLAB+1.8	3W	2011	1.8 m		
							Three	ugh Local ISP				
8		Savusavu		Savusavu	Remote		Three	ugh Local ISP				
9	Lautoka			Lautoka	Remote		Thre	ough Local ISP				
10	Alafua		Samoa	Apia	Remote	с	SMO-API-004	5 W	2000	6.3 m		
						Ku	API+1.8	3 W	2013	1.8 m		
11						Optical Fiber	r Cable to Fiji	(Samoa Cable)	2017.12			
12		Savai'i		Savai'i	Remote	Ku SAV+1.8		3 W	2011	1.8 m		
13	Emalus		Vanuatu	Port Vila	Remote	С	VUT-PTV-002	5 W	2000	4.5 m		
14						Optical Fiber	r Cable to Fiji	(TCN1)	2016			
15		Santo		Santo	Remote	с	VUT-PTV-009	5 W	2006	3.8 m		
16		Tafea		Tafea	Remote	Ku	TAN+1.8	3 W	2011	1.8 m		
17		Malampa		Malampa	Remote	Ku	MAL+1.8	3 W	2011	1.8 m		
18		Torba		Torba	Remote	Ku	TOR+1.8	3 W	2011	1.8 m		
19	Cook Is.		Cook Is.	Rarotonga	Remote	с	CKH-RAR-001	5 W	2000	4.5 m		
20	Kiribati		Kiribati	Tarawa	Remote	с	KIR-TAR-002	5 W	2000	4.5 m		
21	Niue		Niue	Alofi	Remote	с	NIU-ALO-002	5 W	2000	4.5 m		
22	Tonga		Tonga	Nuku'alofa	Remote	с	TON-NUK-002	5 W	2000	4.5 m		
23						Optical Fiber	r Cable to Fiji	(Tonga Cable)	2014			
24		Ha'apai		Ha'apai	Remote	Ки	HAP+1.8	3 W	2011	1.8 m		
25		Vava'u		Vava'u	Remote	Ки	VAV+1.8	3 W	2011	1.8 m		
26	Marshall Is.		Marshall Is.	Maluro	Remote	С	MHL-MJO-003	5 W	2000	4.5 m		
27						Optical Fibe	r Cable to Fiji	(RMI Cable)	2016			
28	Solomon Is.		Solomon Is.	Honiara	Remote	С	SLM-HON-003	5 W	2000	4.5 m		
29		Gizo		Gizo	Remote		Thre	ough Local ISP	• • • • • • • • • • • • • • • • • • •			
30		Lata		Lata	Remote	Ku	LAT+1.8	3 W	2011	1.8m		
31	Tuvalu		Tuvalu	Funafuti	Remote	С	TUV-FUN-002	5 W	2000	4.5 m		
32	Nauru		Nauru	Yaren	Remote	С	NRU-YAR-002	5 W	2000	4.5 m		
33	Tokelau		Tokelau	Atafu	Remote	С	TKL-ATA-001	5 W	2000	4.5 m		
34		Fakaofo		Fakaofo	Remote	с	TKL-Fakaofo	5 W	2015	4.5 m		
35		Nukunonu		Nukunonu	Remote	С	TKL-Nukunonu	5 W	2015	4.5 m		

et et

A-8-4

2-2 Present situation of USPNet (Space segment)

Two (2) satellites have been utilized in space segment for USPNet till now. NSS-9 is for C-Band communication and IS-18 for Ku-Band communication as shown in Table 2-2-1.

NSS-9 (177-W) as C-Band which was launched on February 12th, 2009 and Intelsat-18 (180-E) as Ku-Band which was launched on October 6th, 2011 have been used as the satellite for USPNet.

No. Satellite		Operation Campany	Band	Position	Year of Operation
1	SES NSS-9	SES AMERICOM-NEW SKIES	С	177° West	2009
2 IS-18	SATBEAMS	Ku	180° East	2009	

Table 2-2-1	Satellite for	USPNet
-------------	---------------	--------

2-3 Site condition

There is the USP Laucala Campus in Suva approximately 2.4km to the east of the center of the city, and the total area is 175 acres (0.708km²). The New HUB Station for USPNet will be located in about 200m away from ICT centre. The antenna diameter will be 7.6m and the building size will be 5m x 10m.

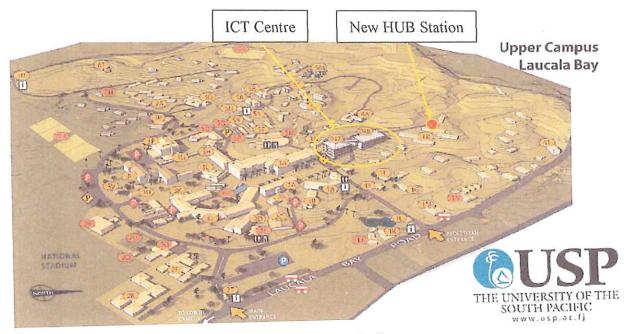


Figure 2-3-1 Map of USP Laucala Campus

2-4 Others (Rehabilitation of existing C-Band antenna)

As mentioned in the Minutes of Discussions on the Preparatory Survey for the Project for the Enhancement of USPNet Communication System concluded on June 23, 2017, the rehabilitation of existing C-Band antenna will be taken care by the New Zealand's grant contribution recently officially committed to USP.

Through the technical discussion with USP, the Team have carefully studied the present situation as shown in 3-4. Ku-Band system is proposed for the Project component as new antenna and Radio Frequency (RF) System.

ncf Øt

3. Basic Design Concept

- 3-1 Climatic Conditions (Source: Fiji Meteorological Service)
- Altitude of the Site
 HUB Station Building and Parabolic Antenna: 32 meters (above sea level)
- (2) Temperature

140le 3-	Table 3-1-1 Maximum and Minimum Temperature in 2016 at Suva												
	Jan.	Feb.	Mar.	Арг.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	
Max. Temperature (°C)	33.7	35.0	34.3	30.6	30.5	30.2		29.4	32.5	30.3	33.9	32.8	
Min. Temperature (°C)	23.4	22.1	23.7	21.6	19.0	19.7	18.1	18.0	19.4	19.1	21.9	22.3	

35.0 °C (Feb. 14)

18.0 °C (Aug. 20)

Table 3-1-1 Maximum and Minimum Temperature in 2016 at Suva

- Min. Temperature of the year 2016:

- Max. Temperature of the year 2016:

(3) Humidity:

Table 3-1-2 Maximum and Minimum Humidity in 2016 at Suva

	Jan.	Feb.	Mar.	Apr,	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Max. Humidity (%)	100,0	100,0	99.0	100.0	100.0	98.0	98.0	100.0	99.0	100.0	100.0	100,0
Min. Humidity (%)	57.0	54.0	52.0	62.0	58.0	55.0	49.0	52.0	39.0	56.0	54.0	53.0

- Max. Humidity of the year 2016: 100 %

- Min. Humidity of the year 2016: 39 % (Sep. 26)

(4) Wind speed:

Table 3-1-3 Maximum Wind Speed in 2016 at Suva

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Max. Wind speed (m/s)	17.0	31.4	11.3	15.4	13.4	12.9	12.9	10.8	11.3	18.5	11.8	22.1

- Max. Wind speed of the year 2016: 31.4 m/s (Feb. 20)

(5) Seasons

- Cyclone season: November to April

(6) Precipitation

			•									
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Total Precipitation	143.5	332.5	85.0	345.5	157.0	40.0	76.5	414.5	52.5	311.5	110.5	774.5
(mm) Day Max. precipitation	31.5	176.5	21.5	81.5	57.5	17.5	16.5	106.0	33.5	105.5	47.0	214.0
(mm) 10min. Max.	8.5	16.0	5.0	9.0	10.0	2.0	2.5	7.5	4.5	7.5	12.5	19.5
Precipitation (mm)	L.0	10.0	1.0	1			<u> </u>	<u> </u>	<u></u>	·	<u>}</u>	

Table 3-1-4 Precipitation in 2016 at Suva

A-8-7

- Max. Precipitation per month of the year 2016: 414.5 mm (Aug.)
- Min. Precipitation per month of the year 2016: 40.0 mm (Jun.)
- (7) Number of Rainy Days
 - Average of Number of Rainy Days per month:
 - Average of Max. Number of Rainy Days per month: 23 days (Jan. & Mar.)1961-1990
- (8) Thunderbolt (Suva area)

Table 3-1 5 Number of Thunderbolt in 2016 at Suva area

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Thunderbolt-Near (time)	420	3,780		0	0	0	0	0	0	0		18,372
Thunderbolt-Far (time)	756	9,456	2,442	498	0	0	0	162	0	846	15,798	24,054

- Number of Thunderbolt in 2016:

80,622 times

19.9 days 1961-1990

0 time (May-Jul. & Sep.)

- Max. number of Thunderbolt per month in 2016: 42,426 times (Dec.)

- Min. number of Thunderbolt per month in 2016:

3-2 Applicable Design Standards

No.	Name of Standards	Application					
(a)	International Electrotechnical Commission (IEC)	Main functions of electrical goods in gener					
(b)	International Standardization Organization (ISO)	Performance of industrial products in general					
(c)	Japanese Industrial Standards (JIS)	Industrial products in general					
(d)	Japanese Electrotechnical Commission (JEC)	Electrical goods in general					
(e)	The Standard of Japan Electrical Manufacturer's Association (JEM)	Same as above					
(f)	Japan Electric Association Code (JEAC)	Same as above					
(g)	Japan Cable Maker's Association Standard (JCS)	Electrical wires and cable					
(h)	Electrical Industrial Association of Japan (EIAJ)	Electrical goods in general					
(i)	International Telecommunication Union (ITU)	Electrical goods in general					
(j)	Society of Motion Picture and Television Engineers (SMPTE)	Broadcasting equipment in general					
(k)	Other related Japanese and International standards such as AES/EBU (Audio Engineering Society/ European Broadcast Union)	Industrial products in general					
(1)	International Civil Aviation Organization (ICAO)	Antenna Mast					
(m)	Electronic Industries Alliance of the U.S.A (EIA)	Same as above					
(n)	Japanese building code and standards	Building design					

rf

-7-

No.	Name of Standards	Application					
(0)	National Building Code FIJI	Building design					
(P)	Standards Document Aerodromes Civil Aviation Authority of Fiji	Tower design					
(Q)	The European Telecommunications Standards Institute (ETSI)	Globally-applicable standards for Information and Communications Technologies (ICT), including fixed, mobile, radio, converged, broadcast and Internet technologies.					
(R)	Digital Video Broadcasting (DVB)	Global standards for Digital Video Broadcasting					

3-3 Other Issue for Design

AC Power Supply: 3 phase -3 wire 240 V, 50 Hz

3-4 Satellite

(1) NSS-9 and Intelsat-18 which are used as the satellites for USPNet currently

As for the user's Campus and Centre of USPNet, 12 Campuses and 3 Centre are connected to NSS-9 for C-Band. 3 Campuses and 9 Centres are connected to Intelsat-18 for Ku. In generally, the service life of the satellites are 15 years or more. Therefore, NSS-9 will be used till 2024 or longer and Intelsat-18 will be used till 2026 or longer.

(2) JCSAT-2B

JCSAT-2B (154-E) has been launched on May 6, 2016 as the latest satellite which covers the south pacific region using Pacific Beam of it. The life time of JCSAT-2B is 15 years or more and remaining life will be 14 years. The life time is the longest among three satellites which covers south pacific region.

As the characteristics, JCSAT-2B has the 57MHz x 16 transponders which have 150 W output power. Because of this higher transponder output and wide bandwidth, it is expected that high link availability and expandability of applied bandwidth as shown in Attachment-1: Comparison of Satellite Overview.

(3) Comparison of link availability among the 3 satellites

The same size of an antenna for HUB Station is selected to compare with the current C-Band Antenna for HUB Station, then the comparison of link availability among satellites was carried out. Ku-Band of JSAT-2B realizes over 99.9 for both inbound (from Remotes to HUB) and outbound (from HUB to Remotes) as shown in Attachment-2: Comparison of Link Availability.

(4) Proposed satellite and frequency band

Through the above consideration, the Team proposed the latest JCSAT-2B Ku-Band as a candidate satellite for USPNet.

By selecting JCSAT-2B Ku-Band, USPNet can use the integrated into one satellite from the current dual satellites of NSS-9 for C-Band and Intelsat-18 for Ku-Band. As a result, the operation cost of the satellite for USPNet will be reduced.

And for the future possibility, USPNet will be able to extend its user from campuses, centers, sub-centers and households level. Students who live in small islands can study in their home by using small dishes to connect USPNet. It can't be use small dish for C-Band antenna but it can be used the antenna which diameter of dish is smaller than 1.8m for Ku-Band under the appropriate link availability. It will be the future challenge of the "Next Generation USPNet".

4. **Equipment Plan**

The Team proposed the Ku-Band Network System and the System Block Diagram plan of the New HUB Station in Laucala Campus based on Ku-Band. Figure 4-1-1 indicates the USPNet Ku-Band Network System and Figure 4-1-2 indicates Ku-Band HUB Station System Block Diagram (Plan). As the suitable satellite for the new USPNet, JCSAT-2B is proposed as mentioned in 3-4 (4). It was launched in 2016, and is covered the south pacific region widely.

The tentative equipment plan (hereinafter referred to as "the Equipment") is shown in Table 4-1-1. The preparations of the detailed equipment specification will be done by the Team in Japan with a draft schedule and project cost estimation. And they will be reported by the draft final report.

ICF

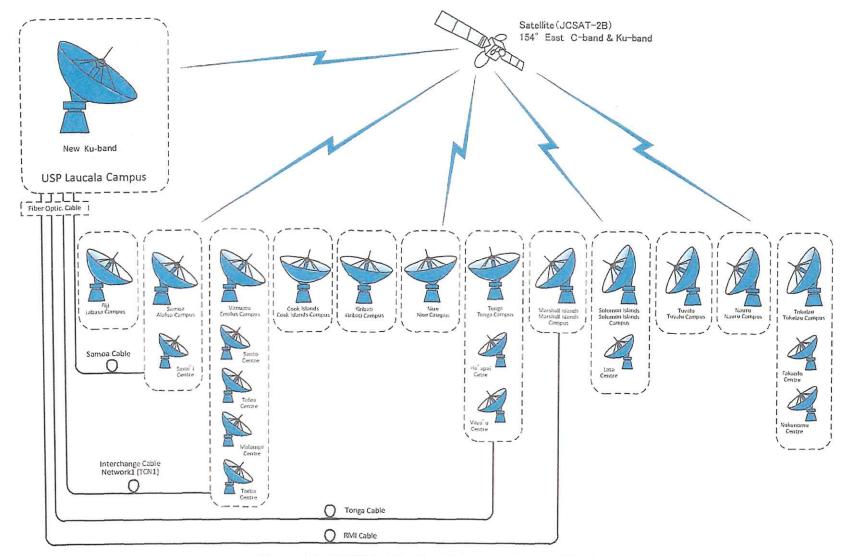


Figure 4-1-1 USPNet Ku-Band Network System (Plan)

- 11 -A-8-12

A in

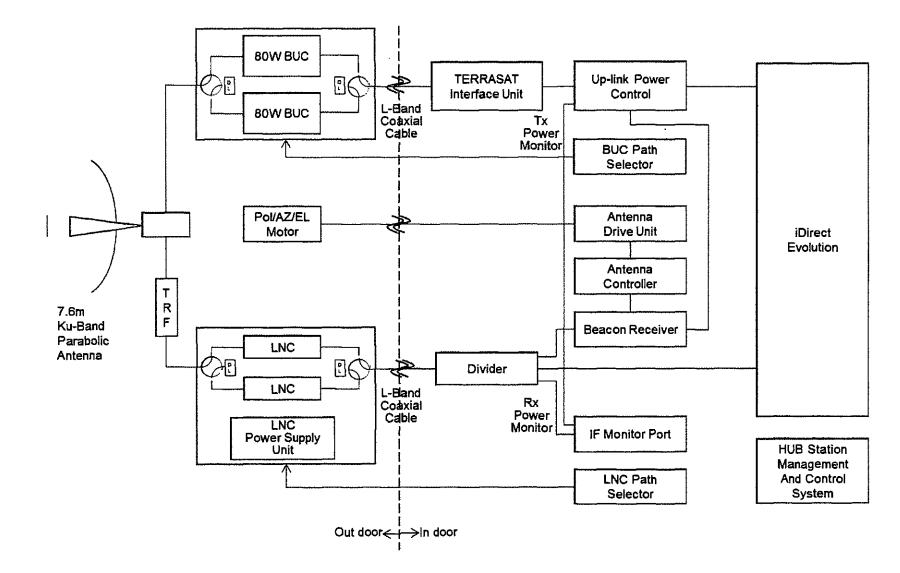


Figure 4-1-2 Ku-Band HUB Station System Block Diagram (Plan)

- 12 -A-8-13

Fig

	Table 4-1-1 Equipment List		
No.	Description)'ty
1.	7.6m Ku-Band Auto Tracking Parabolic Antenna System	1	lot
1.1	7.6m Ku-Band Parabolic Antenna with motorized POL, AZ and EL	1	set
1.2	Antenna Control System	1	set
1.2.1	Beacon Receiver	1	set
1.2.2	Antenna Controller	1	set
1.2.3	Antenna Drive Unit	1	set
2.	1:1 Redundant LNC System with Power Supply Unit	1	lot
2.1	1:1 Redundant LNC System	1	set
2.2	LNC Cold Standby	1	set
2.3	Power Supply Unit	1	set
3.	1:1 Redundant BUC System	1	lot
3.1	1:1 Redundant BUC System	1	set
3.2	Interface Unit	1	set
3.3	BUC Path Selector	1	set
3.4	Uplink Power Control	1	set
4.	iDirect Evolution	1	lot
4.1	Series 15100 Universal Satellite Hub	1	set
4.2	XLC-11 Line Cards	4	set
4,3	XLC-M Line Cards	6	set
5.	HUB Station Management And Control System	1	lot
6.	UPS	1	set
7.	Lightning Protection Unit	1	lot
8.	Maintenance Equipment and Tools	1	lot
9.	Spare Parts	1	lot

4-1 List of the Planned Equipment Component

4-2 Key Specifications of the Equipment

4-2-1 7.6 m Ku-Band Auto Tracking Parabolic Antenna System

- Frequency Tx: 14.000 14.500 GHz
- Frequency Rx: 12.250 12.750 GHz
- Mount: Az/El
- Polarization: Linear (Horizontal and Vertical)

4-2-2 1:1 Redundant LNC System with power supply unit

- (1) LNC
 - Input Frequency: 12.250 ~ 12.750 GHz
 - Output Frequency: 0.950 ~ 1.450 GHz

Field Report

- Gain: 55 dB
- Noise Temperature: 100 K (Typical)

(2) Redundancy

- Structure: 1:1 Redundancy
- 4-2-3 1:1 Redundant BUC System

(1) **BUC**

- Input Frequency: 0.950 ~ 1.450 GHz
- Output Frequency: 14.000 ~ 14.500 GHz
- Input VSWR: 1.5:1 max (50 ohm)
- Input Connector: Type N female (50 ohm)
- Output VSWR: 1.5:1 max
- Output Wave Guide: WR-75

(2) Redundancy

- Structure: 1:1 Redundancy

4-2-4 iDirect Evolution

- To be determined
- 4-2-5 HUB Station Management and Control System
 - To be determined

4-2-6 UPS

- To be determined
- 4-2-7 Lightning Protection Unit
 - To be determined
- 4-2-8 Maintenance Equipment and Tools
 - To be determined

4-2-9 Spare Parts

- (1) LNC
 - Cold Standby Unit: 1 unit

ici^F

- (2) BUC
 - Cold Standby Unit : 1 unit
- 4-3 New HUB Station Building
- (1) Story
 - One (1) story building
- (2) Floor area

Telecommunication Equipment Room	30 m ²
Maintenance Room	20 m ²
Total	50 m ²

(3) Building service

.

- Indoor Lighting and Outlet for all Rooms
- Air Conditioning System

N.

5. Results of the Skyline Measurements

The Team have measured a Skyline at 2 points where are the candidate locations of "7.6m Ku-Band Auto Tracking Parabolic Antenna" of the Project in USP Laucala Campus. The detail of the Skyline Measurements are shown as follows:

(1) Measurement Points: See Figure 5-1-1

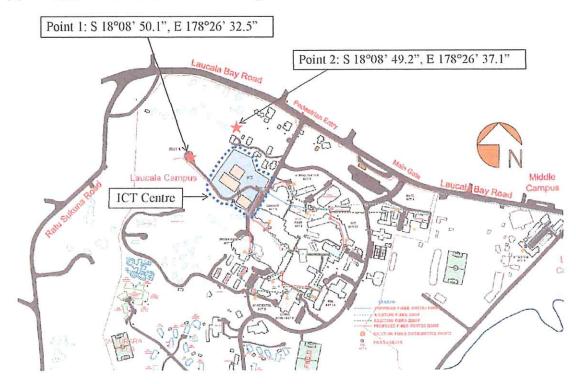
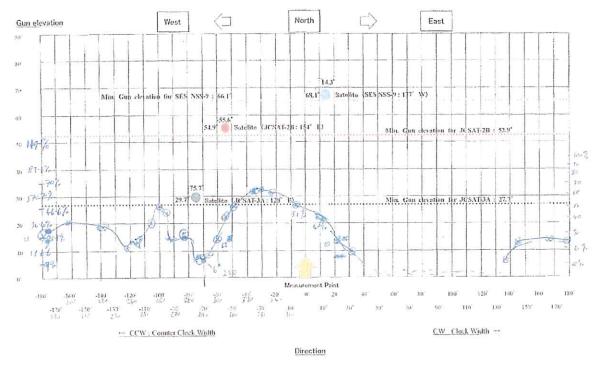
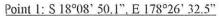
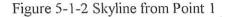


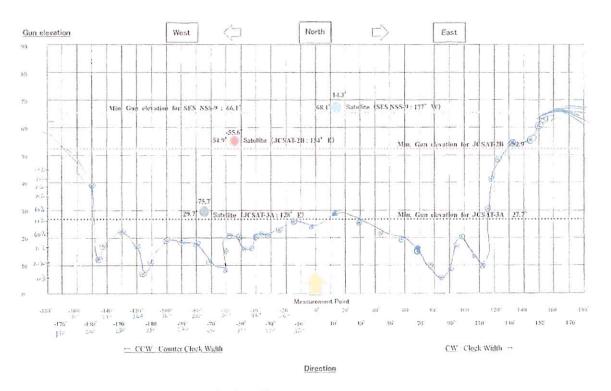
Figure 5-1-1 Measurement Points of the Skyline

(2) Measurement date: June 27, 2017


(3) Target satellite: SES NSS-9 (177° West), JCSAT-2B (154° East) and JCSAT-3A (128° East)


(4) Result:


As a shown in Figure 5-1-2 and Figure 5-1-3, there are no obstacle on the line between the satellites (SES NSS-9 and JCSAT-2B) and both locations (Point 1 and Point 2). Regarding to JCSAT-3A, since the gun elevation is smaller than the other satellites, it is expected that the growth of some trees will be obstacle for the line between the satellite and Point 2. The situation between JCSAT-3A and Point 1 seems to be better than Point 1.


As the consideration above, the Team proposed the Point 1 (S 18°08' 50.1", E 178°26' 32.5") as a location for the New Parabolic Antenna.

Field Report

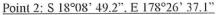


Figure 5-1-3 Skyline from Point 2

icf NL

6. Topographic Survey and Soil Exploration

The Team measured Topographic Survey and Soil Exploration under the following conditions at Point 1 as mentioned in Chapter 5.

1) Topographic Survey Point and Soil Exploration point

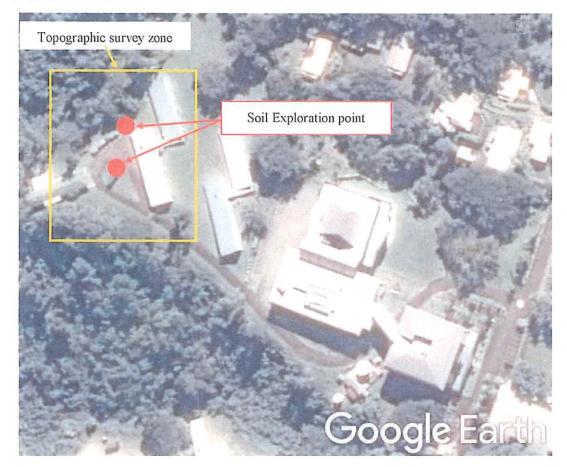


Figure 6-1-1 Site Location

2) Topographical Survey

Existing ground levels profile survey at 5m interval for each direction (longitudinal and transversal). The Representative depends on site situation. Existing ground levels profile survey will be carried out for the contour line. The contour line will be shown each 0.2m height in the survey drawing.

The site locations as shown in Figure 6-1-1

3) Soil Exploration

The Soil Exploration will be executed with specific quantities as shown in Table 6-1-1.

14

Items	Quantity	Remarks
The Standard Penetration Test	2 places	20 m depth (from GL)
Soil Investigation		
Density of soil particles		
Water content of soils		10 samples/place
Particle size distribution of soils	20 samples/	(2m span from GL)
Liquid limit and Plastic limit of soils	each items	
Bulk density of soils		Total 20 samples
Unconfined compression test		
Triaxial compression test		

Table 6-1-1 Soil Exploration Items

GL: Ground level

*If can't penetrate till 20m, test is finished.

, c.F M

7. The Work and Cost Demarcation of the Project

7-1 Principle

The work demarcation between the Japanese side and the Fijian side (USP and relevant organizations of the Government of the Republic of Fiji) shall be as shown below.

No.	TT-d	To be co	overed by	
140,	Undertakings	Japan	Fiji (USP)	Notes
1	To open Bank Account (Banking Arrangement (B/A))		•	To complete within 1 month after G/A
2	To bear the following commissions to a bank in Japan for the banking services based upon the Banking Arrangement (B/A) for the Consultant			
	 Advising commission of Authorization to Pay (A/P) for the Consulting Service Agreement 		•	
	(2) Payment commission		•	
3	To approve EIA and secure the budget for implementation, if necessary.		•	To complete within 1 month after the signing of the G/A
4	To obtain the confirmation letter of permissions from the owners of the Project site(s) of the Equipment		•	To complete before the implementation of the Project.
5	To obtain the permission to use frequencies for the New HUB Station, if necessary.		•	To complete before the implementation of the Project.
6	Securing of lands for installation of equipment (hereinafter referred to as "the Project site(s)"), bush clearing and removal of obstacles in the Project site(s) (ground/underground)		•	To complete before the Tender Notice.
7	Construction of Access road to the Project site(s), if necessary		•	
8	To submit Project Monitoring Report (with the result of Detail Design)		•	

Table 7-1-1	Work demarcation	between t	the both governments
-------------	------------------	-----------	----------------------

(1) Before the Tender

Remark: • denote the side responsible for the work

(2) During the Project Implementation

		To be co	wered by	
No.	Undertakings	Japan	Fiji (USP)	Notes
A	Common			
1	To accord Japanese nationals and/or physical persons of third countries whose services may be required in connection with the supply of the products and the services under the verified contract such facilities as may be necessary for their entry into the recipient country and stay therein for the performance of their work		•	
2	To bear the following commissions to a bank in Japan for the banking services based upon the Banking Arrangement (B/A)			
	 Advising commission of Authorization to Pay (A/P) for the contract between the Supplier and the Buyer Payment commission 		•	
3	To assure the security for personnel in the Project site(s), when necessary		•	

ief N.

Field Report

No.	Undertakings	To be c	overed by	Notes			
	Chickings	Japan	Fiji (USP)	Notes			
4	Procurement of the Equipment	•		"The Equipment" is defined a the equipment and materials to be provided by the Japanese side under the Project.			
5	 To secure the following storages, facilities, sites, yard, etc.; (1) Storages for the Equipment in USP (2) Temporary offices for the Consultant and the Supplier (3) Material storing yard (4) Temporary construction yard (5) Waste disposal around the Project site(s) 		•				
б	To ensure that custom duties, internal laxes and other fiscal levies which may be imposed in the country of the Recipient with respect to the purchase of the Products and/or the Services be exempted, such as, (1) Import Duties, (2) Value Added Tax (VAT), (3) Others, if any		•	The detail of the oustom duties, the internal taxes and the other fiscal levies are under confirmation by Ministry of Economy and Ministry of Education.			
7	 (c) onicity, it any Transportation of the Equipment, customs procedures and tax procedures (1) Marine/air transportation to a port of disembarkation in Suva 	•					
	 Secure the storage for the Equipment in Suva Procedures for tax exemption and customs clearance at the port of disembarkation and to assist the Supplier(s) with internal transportation therein Internal transportation from the port of disembarkation 	*****	•				
8	to the storage of Suva To obtain the confirmation letter for (1) Permission of the Installation Work at the Project site(s)	•	•				
	(2) Permission to enter the Project site(s)						
9 10	To ensure the required power supply for the equipment Relocation of the existing power distribution lines (overhead/underground) in the Project site(s), if necessary	<u></u>	•				
11	Installation of the Equipment, Adjustment and Testing	•	[
12	Providing facilities for the distribution of electricity, water supply, drainage and incidental facilities to the New HUB Station Building (1) Electricity 1) The distributing line for AC 240V (3phase, 3wire) to						
	the New HUB Station Building 2) The drop wiring and internal wiring within the	•	•				
	Project Sites 3) The main circuit breaker and transformer 4) Standby Generator (Outdoor Type) for New HUB	٠	•				
	Station Building (2) Water Supply The city water distribution main to the New HUB Station Building		•				
	 (3) Drainage The drainage system (for toilet sewer, ordinary waste, storm drainage and others) within the New HUB Station Building 		•				
	(4) General furniture		•				
13	Provision of security to the Equipment during the implementation of the Installation Work	•					

1cf

A-8-22

		To be c	overed by	
No.	Undertakings	Japan F		Notes
14	Construction of the gate(s) and fence(s) in and around the Project site(s)		•	
15	Provision of trainings for Initial operation and maintenance of the Equipment	•		
16	To bear all the expenses, other than those covered by the Grant, necessary for the implementation of the Project		•	
17	To submit Project Monitoring Report			
	 After each work under the contract(s) such as shipping, hand over, installation and operational training 		•	Within one month after completion of each work
	2) After completion of the works		•	Within one month after signing of Certificate of Completion for the works under contract(s)
18	To submit a report concerning completion of the Project		•	Within six month after completion of Project

Remark: • denote the side responsible for the work

(3) After the Project

No.	TT_1	To be co	overed by	Notes
INO.	Undertakings	Japan	Fiji (USP)	INGles
1	To provide security to the Equipment after the handing over of the Equipment		•	
2	To establish proper operation and maintenance structure including routine check/periodic inspection and cleaning.		•	
3	Allocation of necessary staff and budget for the operation and maintenance of the Equipment, including the periodical maintenance work after the completion of the Project		•	

Remark: • denote the side responsible for the work

7-2 Tax Exemption Procedure

To confirm the Tax Exemption Procedure, the flow chart regarding the procedure (Attachment-3) had been submitted by the Team to Ministry of Economy and Ministry of Education. It has been under confirmation by both Ministries. The Fijian side shall undertake arrangement necessary for the exemption of the Equipment without delaying.

, cf

A-8-23

8. Budget Estimation of the Undertakings by the Fijian side (USP)

For the undertakings to be done by the Fijian side (USP and relevant organizations of the Republic of Fiji) as shown in Chapter 7 above, The Team estimated the budget necessary for the undertakings to be secured by the Fijian side as follows:

Item	Estimated Cost (FJD)	Remarks
(1) Miscellaneous Fee		Refer to 6-1 (2) B2
	100,000	Connection for Electrical Distribution Line, Water Supply and Drainage pipe etc. of Existing system in USP.
(2) Stand by Generator (Outdoor type) for New HUB		Refer to 6-1 (2) B2
Station Building	200,000	For Satellite Telecommunication Equipment
(3) Construction of the gate and fence(s) around the		Refer to 6-1 (2) B3
Project site		For the new Antenna
		(Number of Gate: 1,
		Length of Fence: Aprox. 40m
	20,000	Number of Pillar: 16pillars)
Total amount:	320,000	

Table 8-1-1 Budget Estimation of the Undertakings by the Fijian side

* Bank commission 0.1% of the Project Budget on Fiji bank account shall be needed.

1 of

A-8-24

Year					2018					2019											20	20	
Month	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	. 7	8	9	10	11	12	1	7
]jeni								-:0]7.13	73333111	EICZI.	imm	111111	10)))(> ;										
Approval by Cabinet, Exchange of Notes (E/N) and Grant Agreement (G/A)	Appro by Cab	val inct¶	en W	& G/A						Cyclon	e season												
The Consulting Services Agreement between UPS and 2. the Consultant and Preparation of the Bidding Documents			٦	/					·														
3. Bid Notice					۲																		
4. Bid Opening and Evaluation								7					;										
5. The Contract between USF and Japanese Supplier		: : :						▼															
6. # Handing-over (the end of November 2019)																				Handing	÷		
(1) Construction of New HUB Station Building		:														1							
(2) Group-1: Materials for Asternia Foundation		-						4	Man	uterturing	and inspec	ction	Transort	tion Fá	milation								
(3) Group-2: (3) Ku-band Antenna and Transmitter & Receiver System										Marph	licturing an	d inspecti	04) 	Trs	sportation		lastollutior						
(4) Testing and Operation and Maintenance Training Work (OJT)		1 - -																	e Teoing :	i da esta			
7. Undertakings by the Fijlun side								1												t I			
Scoure sites for the installation of the equipment, (1) nuterial storing yard, temporary construction yard and waste disposal									To be	compl	eteråat th	e Suppli	er's site :	aarvey						1 1 1			
(2) Bush clearing and Removal of designated equipment and obstacles from the Project site												· ·									-		
 Provide the incilities for the distribution of electricity to the Project sites 							-)												-		
 (4) The gate and fence around the site (excluding the safety gate and fence around the Parabolic Autenna) 							:																

9. Implementation Schedule of the Project (Tentative)

M

E.

10. Operation and Maintenance, Soft Component and Financial Plans for USP

10-1 Budget Estimation of Operation and Maintenance

In order to operate USPNet properly by USP, it is necessary to carry out proper operation and maintenance for the Equipment. USP has operated USPNet since 2000 and it will continue ahead. It seems that the operation cost will not change significantly between before the Project and after the Project. Therefore, the Team had considered the specific maintenance cost of the Project. The Team estimated budget to be secured by the Fijian side necessary for proper maintenance of the facilities after the completion of the Project as shown in Table 10-1-1 Maintenance Cost of the Equipment.

Item	Unit Price(FJD)	Q'ty	Amount(FJD)			
Spare Parts (Unit)						
LNC	18,000	1	18,000			
BUC	85,000	1	85,000			
Consumable Material (Lot)		•	· · · · · · · · · · · · · · · · · · ·			
Paint for maintenance work (per year)	2,000	1	2,000			
Grease for maintenance work (per year)	2,000	1	2,000			

Table 10-1-1 Maintenance Cost of the Equipment

Painting for Antenna (pole, dish, etc.) and greasing up the mechanical part of the Antenna will be necessary as periodical maintenance work every year. Then it will cost 4,000 FJD per year.

Spare Parts as LNC and BUC will replace when it will be broken. The cost for LNC is 18,000 FJD and for BUC is 85,000 FJD per unit, however it won't cost USP every year.

1 PTD

Table 10-1-2 ITS Recurrent Financial Report									
2012	2013	2014	2015	2016					
6,834	7,041	8,862	11,349	10,152					
	2,972	3,409	3,449	3,681					
4,108	4,069	5,453	7,900	6,471					
221	783	779	1,211	1,414					
1,741	1,817	1,849		2,427					
14	267	281	750	637					
233	239	273		219					
1,899	963	2,271	2,173	1,774					
	2012 6,834 2,726 4,108 221 1,741 14 233	2012 2013 6,834 7,041 2,726 2,972 4,108 4,069 221 783 1,741 1,817 14 267 233 239	2012 2013 2014 6,834 7,041 8,862 2,726 2,972 3,409 4,108 4,069 5,453 221 783 779 1,741 1,817 1,849 14 267 281 233 239 273	2012 2013 2014 2015 6,834 7,041 8,862 11,349 2,726 2,972 3,409 3,449 4,108 4,069 5,453 7,900 221 783 779 1,211 1,741 1,817 1,849 3,520 14 267 281 750 233 239 273 246					

Source: USP

The ITS Recurrent Financial Report 2012 to 2016 is shown in Table 10-1-2. In accordance with the report, the average of Total Operating Expense for ITS (Department incharge of USPNet) is Approx. 9 million FJD. This amount is including Personnel Charge and Non personnel charge (Internet Lease Line change, Satellite Least charge, etc.). Maintenance cost is included category "Other" of Non Personnel Charge and the average of "Other" cost is Approx. 1.8 million FJD in last five years (2012 to 2016).

A-8-26

The total maintenance cost for Spare Parts and Consumable material for the Equipment will be Maximum 107,000 FJD and it will be less than 6 % of the average of the "Other" cost per year.

10-2 Soft Component

When the commencement of operation of USPNet in 2000, two dedicated staffs were assigned to look after the operation and maintenance for the satellite HUB Station in Laucala Campus and necessary soft component was conducted. However, two of them had left USP in 2005. The current one dedicated staff responsible for the HUB Station had received the operation and maintenance training from them for a half year.

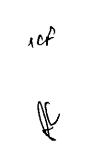
At this moment three staffs within ITS will be called upon to assist the current staff for satellite HUB Station when an emergency occurs. It is, therefore, in high relevance to carefully plan the soft component for the Project considering redundancy of the equipment/network and emergency response like cyclones and to execute this plan accordingly.

Additionally, it is confirmed that for the next ten-fifteen years of new USPNet operation at USP, a long standing, robust and resilient structure of operation and maintenance in ITS is widely required among all the users of USPNet inUSP.

This Soft Component will be conducted to ITS HUB Station staffs right after the installation of the HUB Station by the Consultant members aiming at the following two outcomes:

- Reviewing the current routine maintenance schedule, to renew this through the technical transfer of hands-on and knowledge with regards to resilient and emergency responsive operation and management of USPNet.
- Reviewing the current technical operator maintenance training program, to renew this program based on above mentioned technical transfer and to make the training materials. This training materials will be utilized at the time of the Technical Operator Maintenance Work Shop which will be conducted by those recipients of the Soft Component with necessary guidance by the Consultant. Timing-wise it will be held on the last week of this Soft Component.

лСР N


A-8-27

10-3 Financial Plan for USP

Table 10-3-1 shows the statement of income and expenditure for USP in this five years. Based on the table below, the total amount of Government Contributions and Student Tuition Fees have accounted for more than 50 % of total income in each year. Since the number of students has been on increase recent years, the Student Tuition Fees is expected increasing as well.

As mentioned in 10-1, the maintenance cost for the Equipment will be maximum 107,000 FJD and the amount is less than 0.1 % of the total income in each year from 2012 to 2017.

Accordingly, it is expected that USP will ensure the budget for maintenance of the Project equipment in future as well.

item	2011	2012	2013	2014	2015	2016	2017 (Plan)
Income							
Government Contributions	47,946,462	47,946,462	47,946,462	49,564,724	49,515,848	38,420,176	38,420,000
Student Tuition Fees	35,438,939	37,378,606	39,265,387	43,915,290	53,977,487	66,079,842	73,253,000
Development Assistance	30,875,771	45,846,831	51,082,889	51,335,296	50,392,932	52,575,183	46,687,000
Trading Activities	14,413,270	16,703,776	18,454,145	18,935,422	17,753,015	17,208,354	17,206,000
Consultancy Income	2,913,492	2,185,499	1,534,327	1,661,700	3,134,101	2,422,647	1,559,000
Other Incomes	5,556,190	6,464,092	8,993,349	9,811,425	7,547,211	8,370,665	13,130,000
Release of Deferred Revenue	5,318,040	7,225,441	4,633,316	4,833,963	5,065,946	5,146,007	5,210,000
Interest Income	1,263,842	683,627	759,819	759,948	661,172	709,091	700,000
Write Up in Value of Inventories	-	-	-	415,317	215,104	-	-
Realized Exchange Gain	-	-	670,570	-	485,424	8,830	-
Unrealized Exchange Gain	432,008	97,319	-	-	11,848	812,968	-
Total Income	144,158,014	164,531,653	173,340,264	181,233,085	188,760,088	191,753,763	196,16 5,00 0
Expenditure (Aminus)				<u></u>			
Staff Costs	62,399,251	67,431,614	78,511,110	82,195,130	82,634,439	82,489,804	83,540,000
Operating Costs	62,016,571	80,014,069	84,393,953	79,102,507	81,652,162	85,182,150	91,707,000
Depreciation & Amortization	6,679,938	9,275,121	9,436,990	11,277,418	11,617,441	12,466,640	13,317,000
Movement in Impairment Provision	3,955,320	▲ 1 ,180,149	1,134,304	1,929,042	4,380,285	1,646,103	1,497,000
Write Down in Value of Inventories	110,893	119,069	479,420			82,157	-
Realized Exchange Loss	1,429,254	858,660		424,902	-		-
Unrealized Exchange Loss	-	-	420,738	480,621	-	-	
Loss on Disposal of Assets	-	2,154	8,355	13,116	-	#	-
Write Off of Project Debts	······································			630,290	41,490	-	
Total Expenditure	136,591,227	156,520,538	174,384,870	176,053,026	180,110,713	181,866,854	190,255,000
Surplus for the year	7,566,787	8,011,115	▲1,044,606	5,180,059	8,434,271	9,886,909	

Table 10-3-1Statement of Comprehensive Income and Expenditure in 2011 to 2017(Plan)

Ą

(cP

.

.

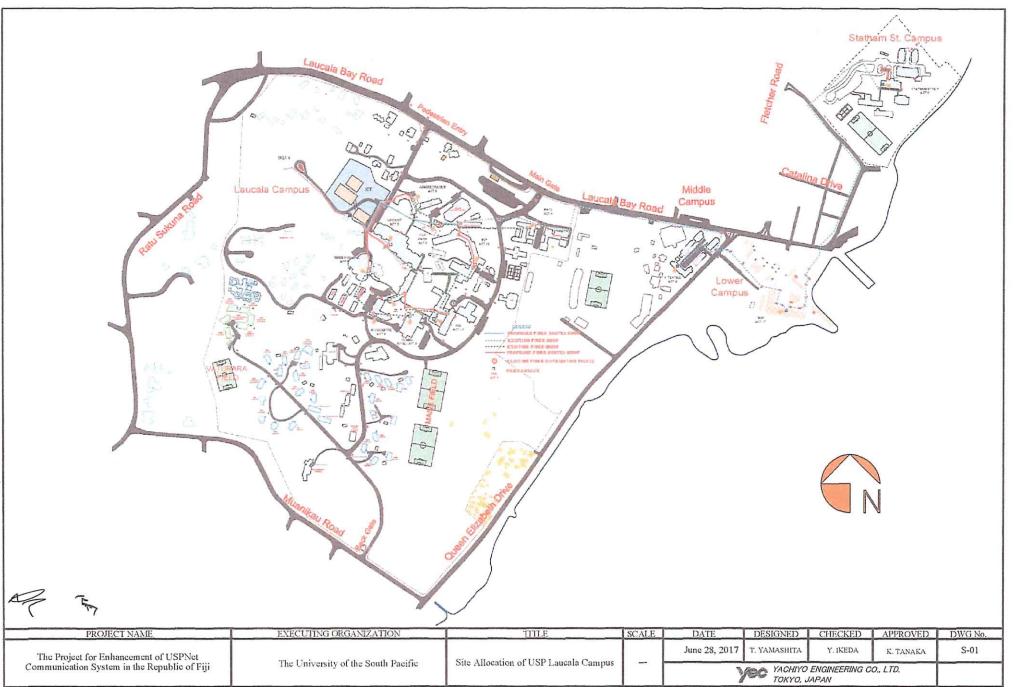
11. Benefit of the Project

The Team and USP confirmed the benefit of the Project which is to be achieved after two (2) years from the completion of the Project in 2019, as follows.

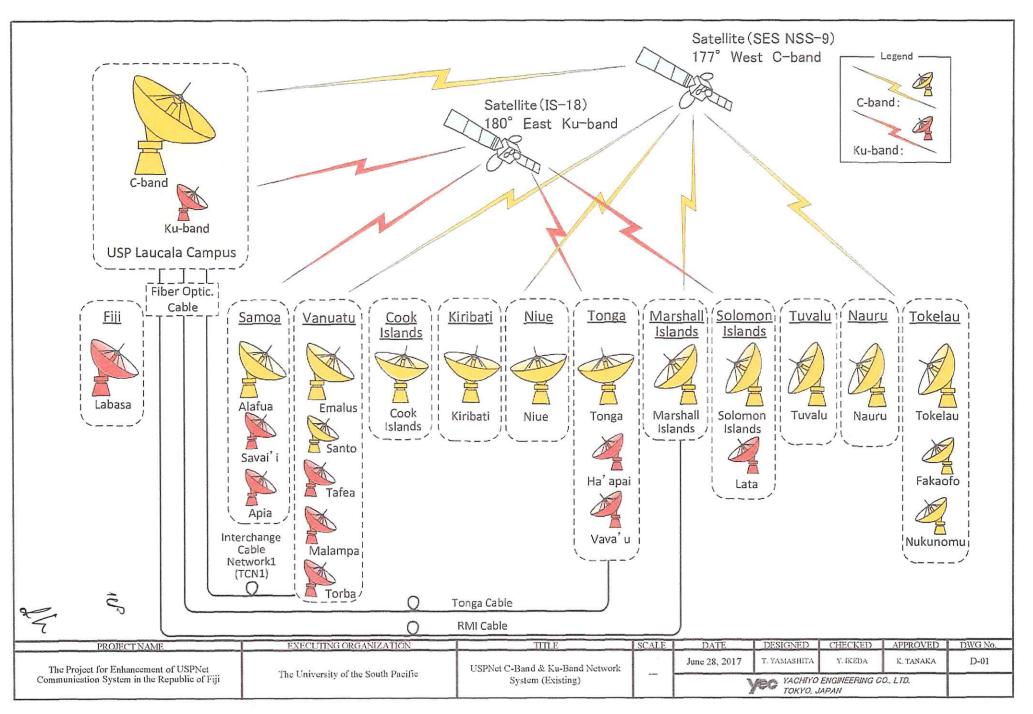
For all earth station, not only the HUB Station in Laucala Campus but also all remote stations;

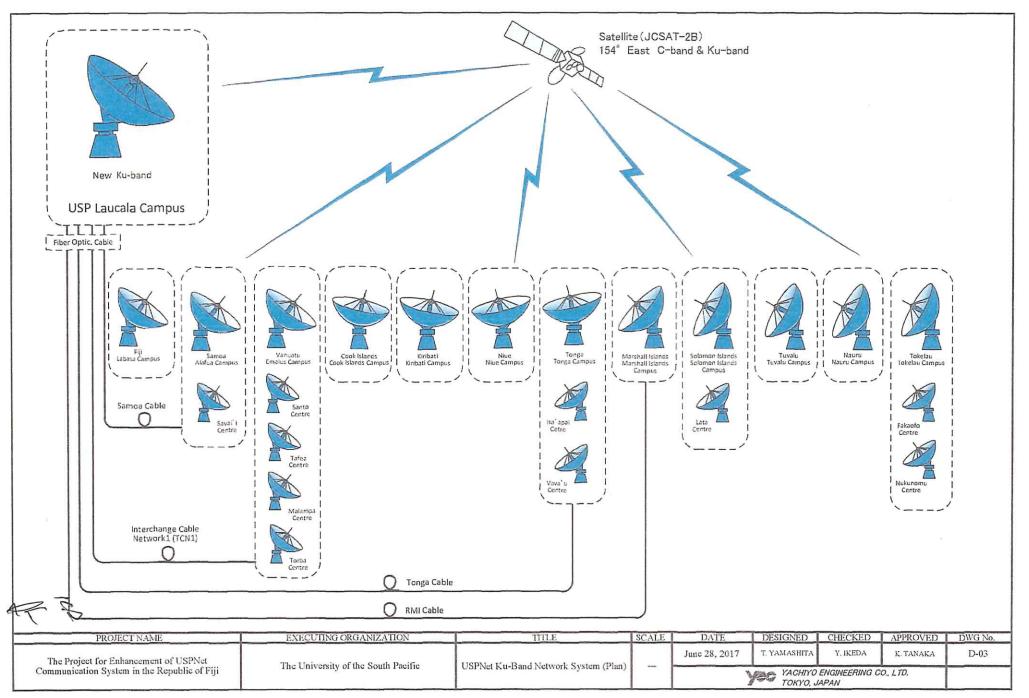
- To increase the Signal Receiving Level and Transmitting Level and make them stable at high signal level,
- > To increase Link Availability

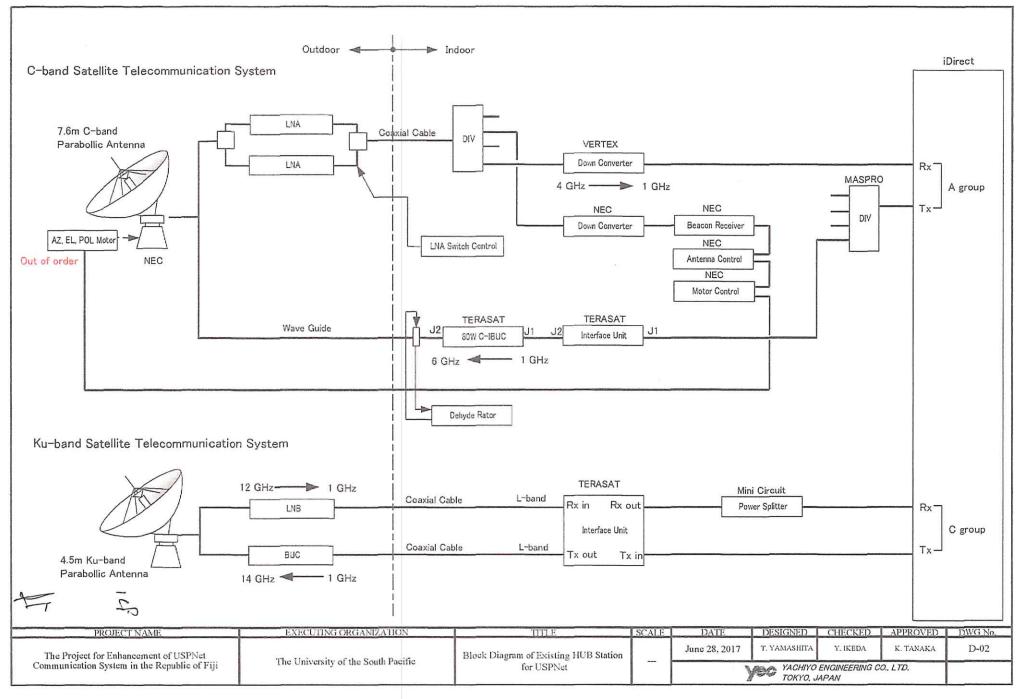
As a result of those improvements, USPNet will be able to provide more stable communication to users.


12. Drawings for Basic Design

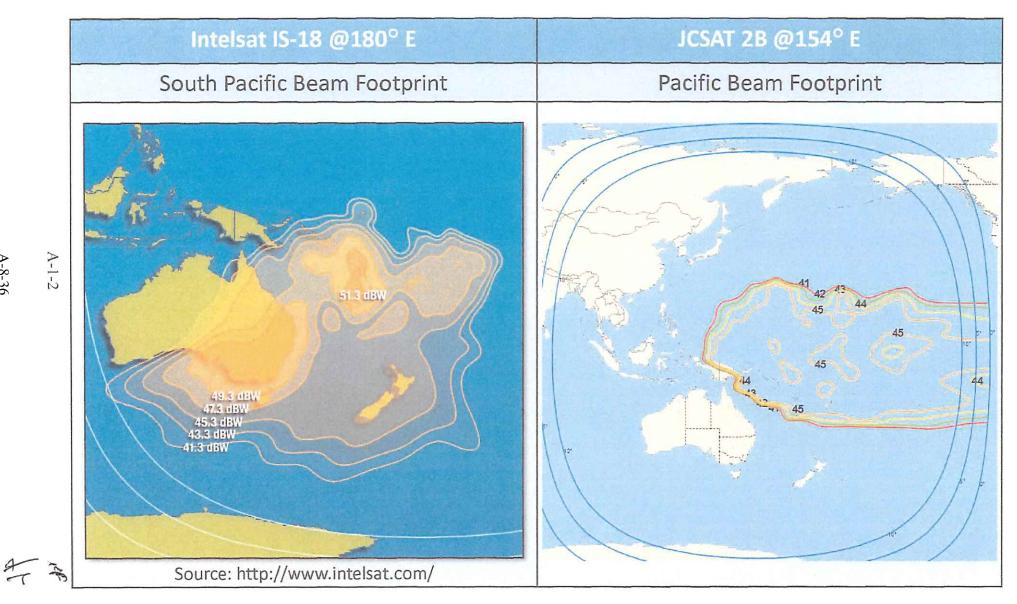
Dwg, No.


<u>Title</u>


- S-01 Site Allocation of USP Laucala Campus
 D-01 C-Band & Ku-Band Network System of USPNet (Existing)
 D-02 Block Diagram of Existing HUB Station for USPNet
- D-03 Ku-Band Network System of USPNet (Plan)

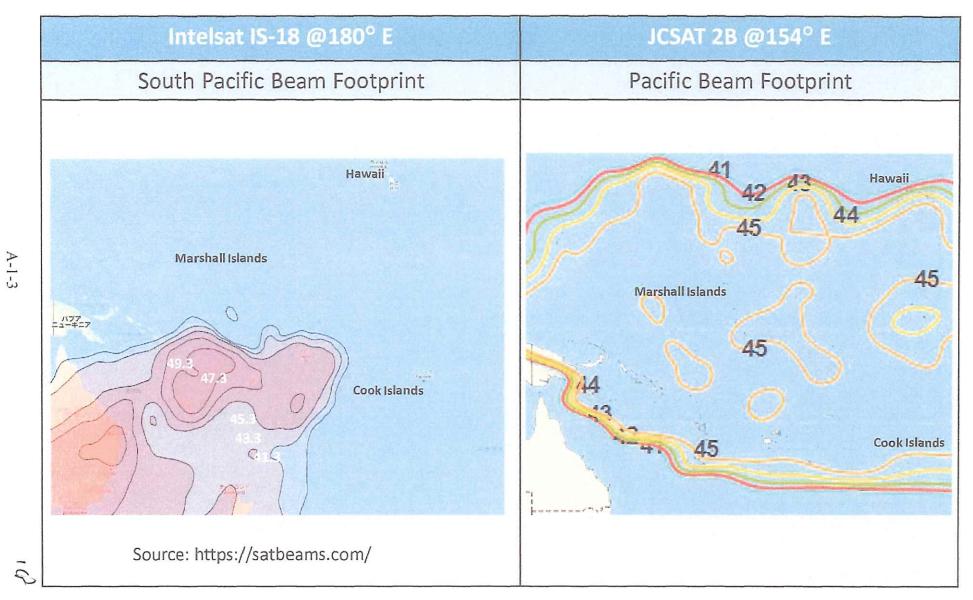

(End)

A-8-31

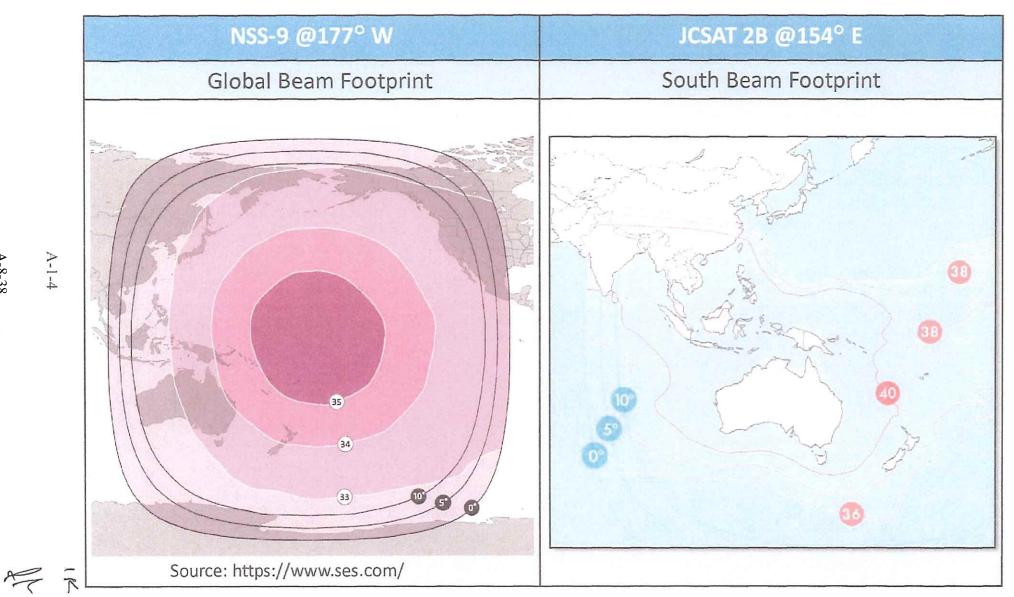

Comparison of Satellite Overview

	Intelsat IS-18	SES NSS-9	JSAT JC	SAT-2B
Launch Date	October 6, 2011	February 12, 2009	May 6	5, 2016
Orbital Location	180° E	177° W	154	РЕ
Launch Vehicle	Zenit 3SL	Ariane 5 ECA	Falcon 9	(SpaceX)
Satellite Bus	GEOStar-2 (OSC)	GEOStar-2 (OSC)	SSL1300 (Space	e Systems Loral)
Coverage Area	Eastern Asia, The Pacific, Western US, Eastern Australia	Australia, Indonesia, the Philippines, Japan, China, Korea, Pacific Region	Japan, Asia, Oceania,	Russia, Pacific Region
Service Life	15 years + (until 2026 or longer)	15 years + (until 2024 or longer)	15 ye (until 2031	ears + or longer)
n en selateres	Ku-Band	C-Band	Ku-Band	C-Band
Frequency Bands	Uplink 14.00 – 14.50 GHz Downlink 10.95 – 11.70 GHz 12.25 – 12.75 GHz	Uplink 5.850-6.425GHz Downlink 3.625-4.200GHz	Uplink 14.000 - 14.500 GHz Downlink 12.250 - 12.750 GHz 11.450 - 11.700 GHz	Uplink 5.850 - 6.425 GHz Downlink 3.625 - 4.200 GHz
HPA Output	-	-	150W	100W
Transponders	36MHz x 12	44 transponders	57MHz x 16	108MHz x 6 72MHz x 4 56MHz x 15 51MHz x 1
Frequency Translation	-	-	1748 MHz 2557MHz	2225 MHz
Polarization	Linear	Circular	Linear (Horizon	tal and Vertical)

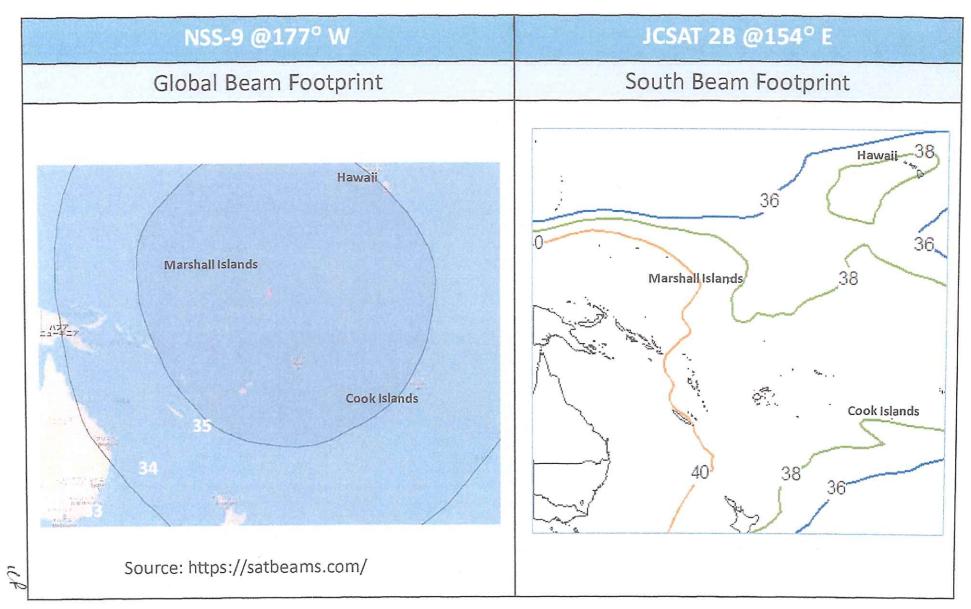
A-1-1 A-8-35


R

Ku-Band Coverage Comparison


A-8-36

Ku-Band Coverage Comparison


V

C-Band Coverage Comparison

A-8-38

C-Band Coverage Comparison

A-8-39 A-1-5

R

Satellites over The Pacific

Company	Satellite	Orbital Location	Frequency Band	Polarization	Launch Date	
SKY Perfect JSAT	JCSAT-2B	154° E	C-Band, Ku-Band	Linear	May 2016	
	IS-18	180° E	C-Band	Circular	Ostata 2014	
Intelsat	15-10	100° E	Ku-Band	Linear	October 2011	
	IS-19	166° E	C-Band	Linear	June 2012	
SES	NSS-9	177° W	C-Band	Circular	February 2009	
ABS	ABS-6	159° E	C-Band, Ku-Band	Linear	September 1999	
Eutelsat	Eutelsat-172B/172A	172° E	C-Band, Ku-Band	Linear	June 2017	
APT Satellite	Apstar-9	142° E	C-Band, Ku-Band	Linear	October 2015	

A-1-6

A is

Comparison of Link Availability

Outbound						Site which is lou	unding points of Sub	marine cable		: Maximum Link Av	ailability		Minimum Link Av	ailability	
Jplink Site		Distance in the						Suva						und office y	
Antenna Diameter								7.60	1						
		Rarotonga	Tarawa	Majuro	Alofi	Yaren	Honiara	Apia	Atafu	Nuku Alofa	Funafuti	Port Vila	Santo	Fakaofo	Mulaurauru
Downlink Site		Cook Islands	Kiribati	Marshall Islands	Niue	Nauru	Solomon Islands	Samoa	Tokelau	Tonga	Tuvalu	Vanuatu	Vanuatu	Tokelau	Nukunonu
Intenna Diameter		4.5	4.5	4.5	4.5	4.5	4.5	6.3	4.5	4.5	4.5	4.5	3.8	4.5	Tokelau 4.5
ink Availability	[%]														
NSS-9	C-Band	99.986	99.996		99.989	99,995		99,998	99.992	99.995	99.996	99.994	99.978	99.993	99.99
JCSAT-2B	Ku-Band	99.930	99.940		99.960	99,960		99.970	99.930	99.950	99.940	99.960	99,950	99.940	99.93
JCSAT-2B	C-Band	99.980	99.995	99,993	99.985	99.997	99.998	99,998	99.994	99.995	99,995	99.996	99,994	99.995	99.99
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10912911111		and a second second										and a contraction	CIEVE AND	10 13 1 1 V 1
Inbound				T Material T	AL-E	Yaren	Honiara	Apia	Atafu	Nuku'Alofa	Cuestial 1	Data			
Jplink Site		Rarotonga	Tarawa	Majuro	Alofi			Samoa	Tokelau		Funafuti	Port Vila	Santo	Fakaofo	Nukunonu
		Cook Islands	Kiribati	Marshall Islands	Niue	Nauru	Solomon Islands			Tonga	Tuvalu	Vanuatu	Vanuatu	Tokelau	Tokelau
Antenna Diameter		4.5	4.5	4.5	4.5	4.0	4.5	6.3	4.5	4.5	4.5	4.5	3.8	4.5	4.5
Downlink Site								Suva Fiji							
Antenna Diameter								7.6m	1						
Link Availability	[%]				00.070	00.070	00.070	00.070	00.070	00.070	00.070				
NSS-9	C-Band	99,979	99.979		99.979	99,979		99.979	99.979	99.979	99.979	99,979	99.979	99.979	99.979
JCSAT-2B	Ku-Band	99.910	99.910		99.930 99.988	99,900 99,992		99.930 99.988	99.920 99.988	99.950 99.993	99.910 99.988	99.950 99.993	99.940	99.910	99.910
		99.986	99.990										99,992		

A er.

<u>JCSAT-28</u> Link Budget Result Ku-band Pacific Beam, Outroute (after optimazation)

rth Station Information		E.e.e	S	Suva	Suva	Śuva	Suva		oute	1 Days					
Jplink Site		Suva	Suva	7.6	50Va 7.6	7.6	7.6	Suva 7.6	Suva	Suva	Suva	Suva	Suva	Suva	Suva
Antenna Diameter		7.6	7.8	7,6 Maturo	7.6 Alofi	7.5 Yaren	7.6 HONIARA	7.6 Apia	7.6 Ateru	7.6	7.6	7.6	7.6	7.6	7.8
Downlink Ste		RAROTONGA	Tarawa				4.5			NUKU ALOFA	Funziuti	PORT VILA	Santo	Fakaofo	Nakunon
Antenna Diameter	1	4.5	4.5	4.5	4.5	4.5	10	6.3	4.5	4.5	4.5	4.5	3.8	4.5	4.5
TPC	dB	10	10	10	10	10	<u> </u>	10	10	10	10	10	10	10	10
mer Information				17,190	(7.400	17,190	17,190	47.400	12 10 1						
Information Rate	Mops	17.190	17,190		17.190 OPSK		QPSK	17,190	17,190	17.190	17.190	17.190	17,190	17,190	17.190
Modulation	_	QPSK	QPSK	QP8K		QPSK	LDPC	QPSK	QPSK	QPSK	<u>apsk</u>	QPSK	QPSK	OPSK	QPSK
FEC Type		LDPC	LDPC	LOPC	LDPC 3/4	LDPC		LDPC	LDPC	LDPC	LDPC	LDPC	LDPC	LOPC	LDPC
FEC Rate		3/4	3/4	3/4		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Symbol Rate	Msps	12.367	12,367	12.387	12.367	12,367	12.367	12.367	12.367	12.367	12.367	12.367	12,387	12.387	12.387
Allocated BW	MHz	14.850	14.650	14.850	14,850	14.850	14.850	14.850	14.850	14.850	14.850	14.850	14,850	14.850	14.850
Power Equivalent BW	MHz	14.840	14.840	14.840	14.840	14.840	14.840	14,840	14.840	14.840	14.840	14.840	14,840	14.840	14.840
nk Budget															
Uplink															· · · · ·
Required EIRP	dBW	68.3	68.3	68,3	68.3	68.3	68.3	68.3	68.3	68.3	68,3	68,3	68.3	68.3	68.3
- Transmit power	dBW	12.5	12.5	12.5	12.5	12.5	12.5	12,5	12,5	12,5	12.5	12.5	12.5	12.5	12.5
	W	17.6	17.6	17,6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17,6	17,6
- Feeder loss "	dB	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3,0	-3.0	-3.0	-3.0	-3.0	-3.0
- Ant. Gain "	ସଥ	58,8	58,8	58.8	58.8	58.8	58.8	58.8	58.8	58.8	58,8	58.8	58.8	58.8	58.8
Uplink path loss	dB	-206.9	-208.9	-206.9	-206.9	-206.9	-206.9	-206.9	-206.9	-206.9	-208.9	-208.9	-206.9	-206.9	-206.9
Satellite G/T	dB/K	0.1	0.1	0.1	0.1	0.1	0.1	0,1	0.1	0,1	0.1	0,1	0.1	0.1	0.1
Bandwidth	dBHz	(-) 70,9	(-) 70.8	(-) 70.9	(-) 70.9	(-) 70.9	(-) 70.9	(-) 70.9	(-) 70.9	(-) 70.9	(-) 70.8	(-) 70.9	(-) 70.9	(-)70.9	(-) 70,9
Boltzmann Const.	dBW/Hz K	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228,6	-228.6	-228.6	-228.6	228.6
C/Nup (thermal)	dB	19.1	19.1	19.1	19,1	19.1	19.1	19.1	19.1	19.1	19.1	19.1	19.1	19.1	19,1
Downlink				1						1					
Satellite EIRP	dBW	44,6	45.4	46,1	47.1	46.9	46.8	47.2	44.9	45.2	45.4	46.2	47.2	45.3	45.2
Output backoff	dB	(-) 8.8	(-) 8.8	(-) 8.8	(-) 8.8	(-) 8.8	(-) 8.8	(-) 8.8	(-) 8.8	(-) 8.8	(-) 8,8	(-) 8.8	(-) 8.8	(-) 8.8	(•) 8.6
Downlink path loss	dB	-205.5	-205.0	-205.0	-205.3	-204,9	-204.9	-205.2	-205,2	-205.3	-205.1	-205.0	-205.0	-205.2	-205.2
Rov. Ant. G/T	dB/K	29.2	29.2	29.2	29.2	29.2	29.2	32,2	29.2	29.2	29.2	29.2	27.8	29.2	29.2
Bandwidth	dBHz	(-) 70.9	(-) 70.9	(-) 70.9	(-) 70.9	(-) 70.9	(-) 70.9	(-) 70.9	(-) 70.9	(-) 70,9	(-) 70.9	{-) 70,9	(-) 70.9	(-) 70.9	(-) 70,9
Boltzmann Const.	dBWAtz K	-228.6	-228.6	-228,6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6
C/Ndown (thermal)	dB	17.0	18.4	19.1	19.7	20.0	19.8	22.9	17.6	17.5	18.2	18.2	18.7	18.1	17.9
Total			1	1						1 1					
C/Ntotal (thermal)	dB	14.9	15.7	16.1	15.4	16.5	15.4	17.6	15.3	15.5	15.6	16,1	15.9	15.5	15.5
CA	dB	14.3	14.3	14.3	14.3	14.3	14.3	14.4	14.3	14.3	14.3	14.3	14.3	14.3	14.3
Total C/(N+I)	dB	11.6	12.0	12.1	12.2	12,3	12.2	12.7	11.8	11.8	11.9	12.1	12.0	11.9	11.8
Required C(N+I) 2		4.3	4.3	4.3	4.3	4,3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Total C/(N+I) Margin	dB	7.3	7.6	7.8	7.9	7.9	7.8	8.4	7.4	7.5	7.6	7.8	7.7	7.5	7.5
Link Availability'3	56	89.93	99.94	99.95	99,98	99.86	99.96	99.97	99.93	99.95	99.94	99,96	99.95	99.94	
CITEN AVAILATION AV		1		In the second		A	have a second						20.00	00.34	30.20

A-2-2 A-8-42

JCSAT-28 Link Budget Result

C-band South Beam, Outroute (after optimization)

with Station Information			Outroute												
Uplink Site		Suva	Suva	Suva	Suva	Suva	Suva	Suva	Suva	Suva	Suva	Suva	Şuya	Suva	Suva
Antenna Diameter	m	7.6	7.5	7.6	7.6	7.6	7.6	7.6	7.8	7.6	7.6	7.6	7.8	7.6	7.6
Downlink Site	1	RAROTONGA	Tarawa	outsM	Alofi	Yaron	HONIARA	Apla	Atafu	NUKU' ALOFA	Funatul	PORT VILA	Santo	Fakaofo	Nakupor
Antenna Diameter	m	4.5	4.5	4.5	4.5	4,5	4.5	6.3	4,5	4.5	4.5	4.5	3.8	4.5	4.5
unier Information							1			1					
Information Rate	Mbps	17.190	17,190	17.190	17,190	17.190	17.190	17.190	17,190	17,190	17,190	17.190	17,190	17,190	17,190
Modulation		8PSK	8PSK	8PSK	8 2 8K	8PSK	8PSK	8PSK	8PSK	BPSK	8PSK	8PSK	EPSK	8PSK	8PSK
FEC Type		LDPC	LDPC	LDPC	LOPC	LOPC	LDPC	LDPC	LDPC	LOPC	LDPC	LDPC	LDPC	LDPC	LDPC
FEC Rate		3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Symbol Rate	Msps	8.304	8,304	8.304	8.304	8.304	8.304	8.304	8.304	8.304	8.304	8,304	8.304	8.304	8.304
Allocated BW	MHz	9,140	9,140	9.140	9.140	9.140	9.140	9,140	9,140	9,140	9,140	9,140	9,140	9.140	9,140
Power Equivalent BW	MHz	10.249	10.249	10.249	10.249	10.249	10.249	10.249	10.249	10.249	10.249	10.249	10.249	10,249	10.249
nk Budget												•			1
Uplink								·····						1	
Required EIRP	dBW	65.2	65.2	65.2	65.2	65.2	65,2	65.2	65.2	65.2	65.2	65.2	65.2	55.2	65.2
Transmit power	dBW	16.6	18.6	15.6	16.6	16.6	16.6	16.6	16,6	16.6	16.6	16.6	16.6	16.6	16.6
	w	46.0	46.0	45.0	46.0	46.0	45,0	46.0	46.0	46.0	46.0	46.0	46.0	45.0	46,0
- Feeder loss "	dB	-3.0	-3.0	-3.0	-3.0	-3,0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0
- Ant. Gain "	dBi	51.6	51.6	51.6	51.6	51.6	51,6	51.6	51.6	51.6	51.6	51.6	51.6	51,6	51,6
Uplink path loss	dB	-199.6	-199,6	-199.6	~199.6	-199.6	-199.6	-199.6	-199.6	-199.6	-199.6	-199.6	-199.6	-199.6	-199.6
Satellite G/T	dB/K	-8.2	-8,2	-6.2	-6.2	-6.2	-6.2	-6,2	-6.2	-6.2	-6,2	-6.2	-6.2	-6.2	-6.2
Bandwidth	dBHz	(•) 69.2	(-) 69.2	(-) 69.2	(-) 69,2	(-) 69.2	(-) 69.2	(-) 69.2	(-) 69.2	(-) 69.2	(-) 69.2	(~) 69,2	(-) 59,2	(-) 69.2	(-) 59.2
Boltzmann Const.	dBW/Hz-K	-228.6	-226,6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.8	-228,6	-228.6	-228.6	-228.6
C/Nup (thermal)	dB	16.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18,7	18.7	18.7	18.7	18.7	18.7
Downlink															
Salelite EiRP	dBW	37.8	38.6	38.8	38.2	40,2	41.4	39.2	39.5	38.8	38.6	39.4	39.6	39.7	39.7
Output backoff	dB	(-) 10.9	(-) 10.9	(-) 10.9	(-) 10,9	(-) 10.9	(-) 10,9	(-) 10.9	(-) 10.9	(-) 10.9	(-) 10.9	(-) 10,9	(-) 10.9	(-) 10,9	(-) 10.9
Downlink path loss	dB	-198.0	-195,5	-195.5	-195.8	-195.4	-195.4	-195.8	-195.7	-195.8	-195.6	-195.5	-195.5	-195.7	-195.7
Rev. Ant. G/T "	dB/K	23.2	24.7	23.6	23.2	24.7	24.7	27.1	23.2	24.7	24.7	24.7	23.3	23.6	23.6
Bandwicth	dBHz	(~) 69.2	(-) 69.2	(-) 69.2	(-) 69.2	(-) 69.2	(-) 69.2	(+) 69.2	(-) 69.2	(-) 69.2	(-) 69.2	(-) 69.2	(-) 69.2	(-) 69.2	(~) 69.2
Bolizmenn Const.	dBW/Hz-K	-228.6	-228,6	-228.6	-228.6	-228,6	-228.6	-228,6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228,6
C/Ndown (thermal)	dB	13.4	16.2	15.4	14.0	17.9	19.1	19,0	15.4	16.2	15.1	16,9	15.8	16,0	16.0
Total							1			1					
C/Niotel (thermal)	dB	12.3	14.3	13.7	12.8	15.3	15.9	15,8	13.7	14.3	14.2	14.7	14.0	14.1	14.1
СЛ	dB	14.0	14.0	13.9	13.8	14.1	14.1	14.1	14,1	14.0	14.1	14.0	13.9	14,1	14.1
Totel C/(N+I)	dB	10,1	11.1	10.8	10.2	11.6	11.9	11.9	10,9	11.1	11.1	11.4	10.9	11.1	11,1
Required C/(N+I)	dB	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
Total C/(N+I) Margin	dB	1,6	2.7	2,3	1.8	3.2	3.4	3,4	2.4	2.7	2.7	2.9	2.5	2.6	2.6
Link Availability"		99,980	99.995	99.993	99,985	99.997	99,998	99,998	99,994	99,995	99.995	99,996	99,994	99,995	99,995

Link Aveilability² % 99,980 99.9 (NOTE: # Solidoperanness are subject to barge 1 The base (action in back on the Early stands subchedon with our assumptive parameters 2 The's permitted to # Sand on Guardined Early of Drived statistics models 3 The's permitted to # Sand on TULR # PEIL's of its related ouronnes 5 The's permitted to # Sand on TULR # PEIL's of its related ouronnes

A-2-3 A-8-43

JCSAT-2B Link Budget Result Ku-band Pacific Beam, Inroute (after optimization)

Earth Station Information								Inco	oute						······
Uplink Site	1	RAROTONGA	Tarawa	Majuro	Alofi	Yaren	HONIARA	Apla	Atafu	NUKU' ALOFA	Funatuli	PORT VILA	Santo	Faxaglo	Numerons
Antenna Diameter	m	4.5	4.5	4,5	4,5	4.5	4.5	6.3	4.5	4.5	4.5	4.5	3.8	4.5	4,5
Downlink Site		Suva	Suva	Suva	Suva	Suva	Suva	Suva	Suva	Suva	Suva	Suva	Suva	Suva	Suva
Antenna Diametor	m	7.6	7.6	7.6	7.5	7.6	7.6	7.6	7.8	7.6	7.6	7,6	7.6	7.6	7.6
TPC	dB	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Certier Information					· · · · · · · · · · · · · · · · · · ·					1					
Information Rate	Mbos	2.250	2,250	2,250	2.250	2,250	2.250	2,250	2.250	2.250	2,250	2.250	2,250	2,250	2.250
Modulation		QPSK	OPSK	QPSK	QPSK	QPSK	QPSK	OPSK	QP8K	QPSK	QPSK	QPSK	OPSK	QPSK	QPSK
FEC Type		2D16S-1708	2D165-1708	2D165-1708	2D16S-170B	2D16S-1708	2D16S-1708	2016S-170B	2016S-170B	2D16S 170B	2D16S-170B	2D16S-1708	2D165-1708	2016S-170B	2016S-170B
FEC Rete		1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Symbol Rate	Msps	2.500	2.500	2.500	2.500	2.500	2.500	2.500	2.500	2,500	2.500	2.500	2,500	2.500	2.500
Allocated BW	MHz	3,000	3.000	3.000	3,000	3.000	3,000	3,000	3,000	3.000	3,000	3.000	3,000	3.000	3.000
Power Equivalent SW	MHz	2.242	3,000	3.000	3.000	3.000	3.000	3,000	3,000	2.796	3.000	3.000	2.963	3.000	3.000
Link Budget	<u>مەر تىنىن بىلىر</u>														
Uplink													·····		
Required EIRP	dBW	63.0	61.7	60.8	61,9	60.7	61.9	62.3	61.9	63.0	61.9	61.5	61.5	62.2	62.2
- Transmit power	dBW	9,5	8.2	7.3	8.4	7,2	8.5	5.9	6.4	9.5	8.5	8,0	9.5	8.7	8,7
	w	8.9	6.6	5.4	6.9	5.3	7.0	3,9	7.0	8.9	7.0	6,4	8.9	7.4	7.4
- Feeder loss "	dB	-0.8	-0.8	-0.8	-0.8	-0,8	-0.8	-0.8	-0.8	-0.6	-0.8	-0.8	-0.8	-0.8	-0.8
- Ant. Gain "	dBi	54.3	54.3	54,3	54.3	54.3	54.3	57.2	54.3	54,3	54.3	54.3	52.8	54.3	54,3
Uplink path joss	dB	-207.3	-206.7	-206,7	-207.1	-208.7	-206.7	-207.0	-207.0	-207.0	-206.8	-206.8	-205.7	-207.0	-207.0
Satelite G/T	dB/K	-2.3	-0.4	0,6	-0.2	0.6	-0.7	-0.7	-0.4	-1.7	-0.5	-0.1	-0.2	-0.6	-0.6
Bandwidth	dBHz	(-) 64,0	(-) 64.0	(-) 64.0	(-) 64.0	(-) 84,0	(-) 64.0	(-) 64.0	(-) 64.0	(-) 64.0	(-) 64.0	(-) 64.0	(-) 64.0	(-) 64.0	(-) 64,0
Bolizmann Const.	dBW/Hz K	-228.6	-228.6	-228,6	-225.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228,6	-228,6
C/Nup (thermal)	dB	\$7,9	19.1	19,1	19,1	19.1	19.1	19,1	19.1	18.8	19.1	19,1	19.1	19.1	19.1
Downlink															
Satellite EIRP	dBW	45.7	45,7	45.7	45.7	45.7	45.7	45,7	45,7	45.7	45.7	45.7	45.7	45.7	45.7
Output backoff	dB	(·) 17.1	(-) 15.8	(-) 15.8	(-) 15.8	(-) 15.8	(-) 15.8	(-) 15.8	(-) 15.8	(-) 16.1	(-) 15.8	(~) 15.6	(-) 15.8	(-) 15.8	(-) 15.8
Downlink path loss	dB	-205.1	-205.1	-205.1	-205.1	-205.1	-205.1	-205.1	-205.1	-205.1	-205.1	-205.1	-205.1	-205.1	-205.1
Rev. Ant. G/T	dB/K	33.8	33,8	33.8	33.8	33.8	33.8	33.8	33.6	33,8	33.8	33,8	33.8	33.8	33.8
Bandwidth	dBHz	(-) 54.0	(-) 64.0	(-) 64.0	(-) 64.0	(-) 64,0	(-) 64.0	(+) 64.0	(-) 64.0	(-) 64.0	(-) 64.0	(-) 64,0	(-) 64.0	(-) 64.0	(~) 64.0
Boltzmann Const.	dBW/Hz-K	-228.6	-228.6	-228.6	-228.6	-228.8	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228,6
C/Ndown (thermal)	dB	21.8	23.0	23.0	23.0	23.0	23.0	23.0	23,0	22.7	23,0	23.0	23.0	23.0	23.0
Total															
C/Nicial (lhermal)	68	18.4	17.6	17.6	17.6	17.6	17.6	17.8	17.6	17.3	17.6	17.6	17.6	17.6	17.6
C/I	dB	13,7	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.3	14.4	14.4	14.4	14.4	14.4
Total C/(N+I)	dB	11.9	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.5	12.7	12.7	12.7	12.7	12.7
Regulared C/(N+1) *2	dB	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Total C/(N+I) Margin	dB	9.7	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.3	10.5	10,5	10.5	10.5	10.5
Link Availability ³	%	99.91	99.91	99.91	99.93	99,90	99.91	99,93	99.92	99.95	99,91	99.95	99,94	99,91	99.91

N/

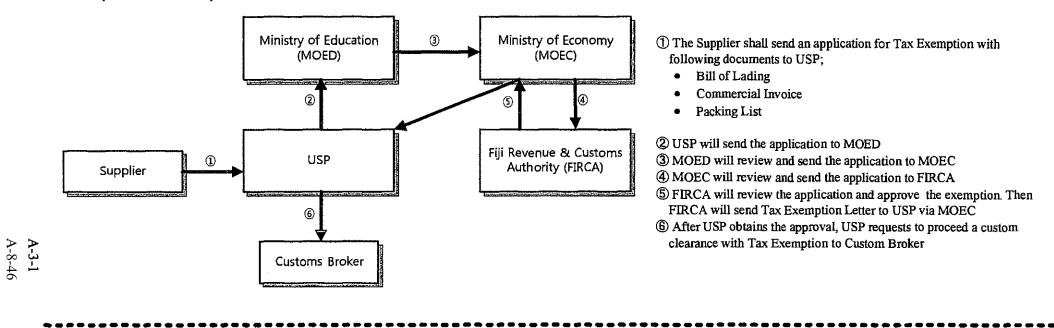
JCSAT-28 Link Budget Result C-band South Beam, Inroute (after optimization)

.

Earth Station Information								nal	oute						
Uplink Site		RAROTONGA	Tarawa	Majuro	Alofi	Yaren	HONIARA	Apla	Atalu	NUKU' ALOFA	Funatuti	PORT VILA	Santo	Fakaofo	Nukuponu
Antenna Diameter	m	4,5	4,5	4.5	4.5	4.5	4.5	6.3	4.5	4.5	4.5	4.5	3,8	4.5	4.5
Downlink Site		Suva	Suya	Suva	Suva	Suva	Suva	Suva	Suva						
Antenna Diameter	m	7.6	7.6	7.6	7.6	7.6	7.5	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7,6
Carrier Information													i		
Information Rate	Mbps	2.250	2.250	2,250	2.250	2.250	2.250	2,250	2.250	2.250	2.250	2.250	2.250	2.250	2.250
Modulation		8PSK	8PSK	8PSK	8PSK	BPSK	8PSK	8PSK	8P8K	8PSK	8PSK	8PSK	apsk	8PSK	8PSK
FEC Type		2D16S-170B	2D165-170B	2D16S-170B	2D16S-170B	2D16S-170B	2D16S-1709	2D16S-170B	2D16S-170B	2D16S-1708	2D16S-170B	2D16S-170B	2D165-170B	20165-1708	2D16S-170B
FEC Role		2/3	2/3	2/3	2/3	2/3	2/3	2/3	2/3	2/3	2/3	2/3	2/3	2/3	2/3
Symbol Rate	Msps	1.302	1.302	1.302	1.302	1.302	1.302	1.302	1.302	1,302	1.302	1.302	1.302	1,302	1.302
Allocated BW	MHz	1.570	1.570	1.570	1.570	1,570	1.570	1.570	1.570	1.570	1.570	1.570	1,570	1.570	1.570
Power Equivalent BW	MHz	0.948	0.945	0.948	0,948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0,948
Unk Budget															
Uplink															1
Regulard EIRP	dBW	54.5	54.8	55.2	53.8	54.B	52.3	54,3	54.4	55.2	52.0	54.1	53.2	54.4	54.4
- Transmit power	dBW	6.3	8,6	9.0	7.6	8,4	6.1	5.2	8.2	9,0	5.8	7.9	8,5	8,2	8.2
	W	6.8	7.3	8.0	5.8	6.9	4.1	3.3	6.6	7.9	3.8	6.2	7.1	6,6	5.6
- Feeder loss "	dB	-0.8	-0.8	-0.8	-0.8	-0,8	-0,8	-0.8	+0.8	-0,8	-0,8	-0.8	-0.6	-0.8	-0.8
Ant. Gain "	dBI	47.0	47.0	47.0	47.0	47.0	47.0	49.9	47.0	47.0	47.0	47.0	45.5	47.0	47,0
Uplink path loss	dB	-200.0	-199.4	-199.4	-199.8	-199.4	-199.4	-199.7	-199.6	-199.7	-199.5	-199.5	-199.4	-199.7	-199.7
Satellito G/T	dB/K	-5.5	-6.3	-6,8	-5.0	-6.2	-3.9	+5.6	-5.7	-6.4	-3.4	-5.6	-4.8	-5.7	-5.7
Beadwidth	dBHz	(-) 61.1	(-) 61.1	(-) 61.1	(-) 61,1	(-) 61.1	(•) 61.1	(-) 61.1	(-) 61.1	(~) 61.1	(-) 61.1	(-) 61.1	(-) 51.1	(-) 61.1	(-) 61.1
Bolizmann Const.	dBW/Hz-K	-228.6	-228.5	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228.6	-228,6	-228.6	-228.6	-228,6	-228.6
C/Nup (thermal)	dB	16,4	16.4	16.4	15.4	16.4	16,4	16.4	15.4	16.4	16.4	16.4	16.4	16.4	16.4
Downlink	1 -														
Satellite EIRP	dBW	36,9	38.9	38.9	38.9	38,9	38.9	38.9	38.9	38.9	38.9	38,9	38.9	38.9	38.9
Output backotf	dB	(-) 21.2	(-) 21.2	(-) 21.2	(-) 21.2	(-) 21.2	(-)21.2	(-) 21.2	(-) 21.2	(-) 21.2	(-) 21.2	(-) 21.2	(+) 21.2	(-) 21,2	(-) 21.2
Downlink path loss	dB	-195,7	-195.7	-195.7	-195.7	-195,7	-195.7	-195.7	-195.7	-195.7	-195.7	-185.7	-195.7	-195.7	-195.7
Rev. Ant. G/T	dB/X	29,6	29.6	29.6	29.6	29,6	29.6	29.6	29,6	29.6	29.6	29.6	29.6	29.6	29.6
Bandwidth	dBHz	(~) 61.1	(-) 61.1	(-) 61,1	(-) 61.1	(-) 61.1	(-) 61.1	(-) 61.1	(-) 81.1	(-) 61.1	(-) 81.1	(-) 61.1	(~) 61.1	(-) 61.1	(~) 61,1
Boltzmann Const.	dBW/Hz-K	-228.6	-228,6	-228,6	-228.6	-228,5	-228.6	-228.6	-228,6	-228.6	-228,6	-228.6	-228.6	-228.6	-228.6
C/Ndown (thermal)	dB	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18,9	18.9	18,9
Total															{
C/Ntotal (thermai)	d8	14.5	14.5	14.5	14.5	14,5	14.5	14.5	14.5	14,5	14.5	14.5	14,5	14.5	14.5
C/	dB	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13,0	13.0	13.0	13.0	13.0
Total C/(N+I)	dB	10.6	10.6	10.6	10.6	10,8	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6	19,6
Required C/(N+!) 7	dB	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
Total C/(N+I) Margin	dB	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Link Availability'3	%	99.986	89.990	99.986	99.988	99.992	99,991	99,988	99.988	99.993	99.988	99.993	99.992	99.988	99,986

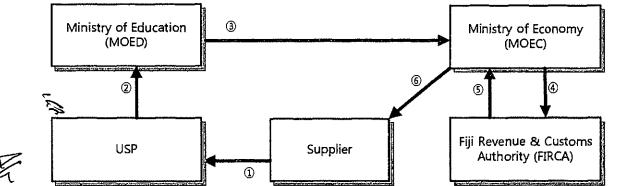
 Link Availability³
 %
 99,988
 89.9

 HOTS Switz portomatics are subject to change.
 *
 The portomatics are bad on the Errs station specification with our assumptive parameters.
 *
 The portomatics are bad on Guestine 6 Guestine


.

Attachment-3

Tax Exemption Procedures


<Import Duties>

<Consumption Tax for Import Materials>

VAT Refunding Procedures

<VAT for the Equipment and construction materials procured in Fiji>

(1) The Supplier shall send the Invoice of the Equipment/construction materials which has been described VAT amount to USP

② USP will send the document to MOED

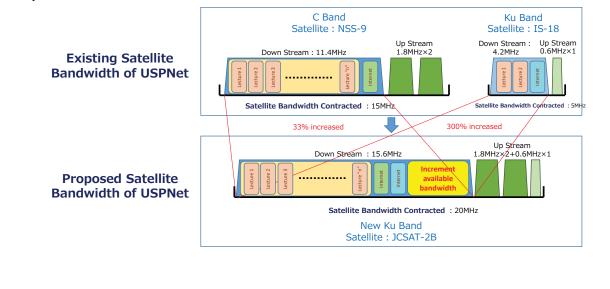
- (3) MOED will review and send the document to MOEC
- (4) MOEC will review and send the document to FIRCA
- (5) FIRCA will review the document and approve to refund the VAT. and inform MOEC of it.
- (6) After MOEC obtains the approval, MOEC will refund the VAT to the Supplier

Appendix 9 Comparison between Existing C-band / Ku-band Antenna System and New Ku-band Antenna System

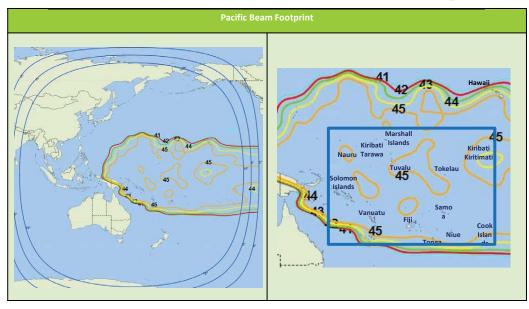
Comparison between Existing C-band/Ku-band Antenna System and New Ku-band Antenna System

Preparatory Survey Team for the Outline Design of the Project for the Enhancement of USPNet Communication System

No.	Item	Existing C-band	and Ku-band system	New Ku-band system
		C-band: This part is closed		
1	Running Cost (Satellite Fee)	Ku-band:	due to confidentiality.	1,512,000 FJD (- 213,800 FJD)
		Total	1,725,800 FJD	
2	Bandwidth	C-band:	15 MHz	20 MHz
2	Dandwiddin	Ku-band:	5 MHz	20 19112
3	Doliability/Dain Fada	C-band:	○ 99.98 ~ 99.99 % (NSS-9)	○ 99.72 ~ 99.97 %*
3	Reliability/Rain Fade	Ku-band:	△ 73.39 ~ 99.74 % (IS-18)	(JCSAT-2B)
4	Antenna Diameter in Remote Station	C-band:	4.5 m (Campus) ~	4.5 m (Campus)
	Antenna Diameter in Kemote Station	Ku-band:	1.8 m (Center)	~ 1.0 m (Home)
5	Flowibility (Coloctable Catellite	C-band:	NSS-9 JCSAT-2B (C)	JCSAT-2B (Ku)
5	Flexibility/Selectable Satellite	Ku-band:	IS-18 JCSAT-2B (Ku)	IS-18
6	System Design	Dual Sat	tellite System	Single Satellite System

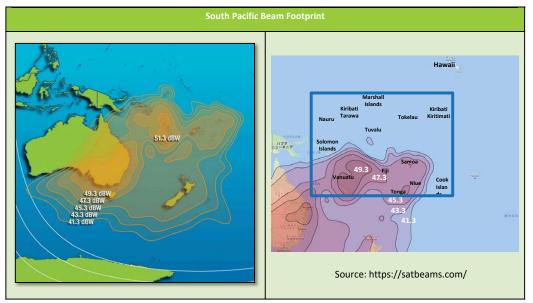

* In case 1.8 m (Center) of Antenna Diameter in Remote Station

1. Reduction of maintenance and operation cost


Currently USP has TWO contracts with different satellite operaters. If the system will be unified into ONE contract (Ku-band), the cost will be decreased. Cost for maintenance parts and satellite fee of HUB station are also reduction.

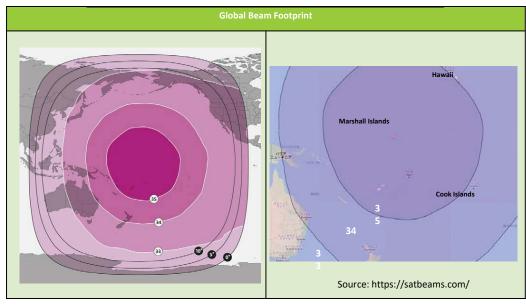
2. Expanded distance learning contents

Bandwidth of the C-band is 15MHz in USPNet. By expanding it to 20MHz, USPNet will be possible to increase available bandwidth.



JCSAT 2B @154 E New Ku-Band Coverage

Source: http://www.jsat.net/


Intelsat IS-18 @180 E Existing Ku-Band Coverage

Source: http://www.intelsat.com/

*IS-18 (Ku-band) is not able to cover some member countries of USP. Therefore, link availability of some Center is low.

NSS-9 @177 W C-Band Coverage

A-9-3

Source: https://www.ses.com/