National Irrigation Commission Ministry of Water and Irrigation The United Republic of Tanzania

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania

Final Report

Volume-II

Appendixes

July 2018

Japan International Cooperation Agency (JICA)

Nippon Koei Co., Ltd. International Development Center of Japan Inc.

National Irrigation Commission Ministry of Water and Irrigation The United Republic of Tanzania

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania

Final Report

Volume-II

Appendixes

July 2018

Japan International Cooperation Agency (JICA)

Nippon Koei Co., Ltd. International Development Center of Japan Inc.

The Project on the Revision of National Irrigation Master Plan

in the United Republic of Tanzania

Final Report

Volume-II: Appendixes

List of Appendixes

Appendix A	Hydrology and Water Resources Management
Appendix B	Site Investigation Report
Appendix C	Irrigation Human Resources Development Plan
Appendix D	Atlas

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Appendix A

Hydrology and Water Resources Management

The Project on the Revision of National Irrigation Master Plan

in the United Republic of Tanzania

Final Report

Appendix A: Hydrology and Water Resources Management

Table of Contents

Chapter 1 Introduction	A-1-1
1.1 Objectives of Study on Water Resources	A-1-1
1.2 Outline of the Water Resources Assessment in NIMP2002	A-1-1
1.3 Basin and Sub-basin Boundary	A-1-3
1.4 Discussions with Relevant Organizations	A-1-4
Chapter 2 Present Conditions of Water Resources Sector	A-2-1
2.1 Natural Conditions	A-2-1
2.1.1 Geographical Features	A-2-1
2.1.2 Hydrometeorological Features	A-2-2
2.1.3 Macroscopic Water Balance in the Country	A-2-5
2.2 Relevant Policies and Strategy	A-2-6
2.3 Existing Plans and Studies	A-2-7
2.3.1 IWRMDP	A-2-7
2.3.2 Other Studies related to Water Resources	A-2-11
2.4 Water Resources Structures	A-2-13
2.5 Water Resources Management at Basin Level	A-2-14
2.5.1 Field Survey	A-2-14
2.5.2 Findings from BWOs and Field Survey	A-2-15
2.6 Challenges in Water Sector	A-2-16
Chapter 3 Water Resources Assessment	A-3-1
3.1 Method and Procedure	A-3-1
3.2 Estimation of Water Resources	
3.2.1 Surface Water Resources	A-3-2
3.2.2 Groundwater Resources	A-3-6
3.3 Estimation of Water Demand	A-3-10
3.3.1 Consumptive Water Use	

3.3.2	Environmental Flow Requirement	
3.4 A	Assessment of Water Stress	A-3-16
3.4.1	Summary of Annual Estimates	A-3-16
3.4.2	Assessment based on Water Exploitation Index	A-3-17
3.4.3	Assessment based on Annual Water Balance Calculation	A-3-18
3.5 V	Vater Resources for Irrigation Sector	A-3-19
3.5.1	Allocated Water for Irrigation	A-3-19
3.5.2	Potential Water for Irrigation	A-3-23
3.6 S	upplemental Study on Reliability of Water Utilization	

Chapter	• 4 Recommendations to MoWI A	\-4-1
4.1	Recommendations toward Implementing the NIMP2018	\-4- 1
4.2	Recommendations for Better Water Resources Management A	\-4- 1

List of Tables

		Page
Table 1.2.1	Summary of Water Potential in Major Viewpoints	A-1-2
Table 1.3.1	Basic Information of Nine Basins	A-1-3
Table 1.4.1	Major Discussions with Relevant Organizations	A-1-4
Table 2.1.1	Basic Information of the Selected Gauging Stations	A-2-4
Table 2.1.2	Macroscopic Water Balance by Basin	A-2-5
Table 2.3.1	Status of IWRMDP Formulation in Nine Basins	A-2-8
Table 2.3.2	Status of Available Reports for NIMP2018	A-2-8
Table 2.3.3	Basic Conditions of Water Balance Calculation	A-2-9
Table 2.4.1	Nos. and Reservoir Capacity of Existing Dams	A-2-14
Table 2.5.1	Facilities Surveyed during Field Visit	A-2-14
Table 3.2.1	Consideration of Climate Change in the Re-generated Runoff Data	A-3-3
Table 3.2.2	Mean Monthly Surface Runoff by Basin for 2015	A-3-3
Table 3.2.3	Mean Monthly Surface Runoff by Basin for 2025	A-3-5
Table 3.2.4	Mean Monthly Surface Runoff by Basin for 2035	A-3-5
Table 3.2.5	Calculation Basis for Sustainable Yield	A-3-9
Table 3.2.6	Annual Recharge and Sustainable Yield	A-3-9
Table 3.3.1	Annual Environmental Flow Requirement by Basin for 2015	A-3-16
Table 3.4.1	Summary of Annual Water Resource and Water Demand by Basin for 2015.	A-3-17
Table 3.4.2	Summary of Annual Water Resource and Water Demand by Basin for 2025.	A-3-17
Table 3.4.3	Summary of Annual Water Resource and Water Demand by Basin for 2035.	A-3-18
Table 3.5.1	Annual Water Balance by Sub-basin for Pangani Basin	A-3-20
Table 3.5.2	Annual Water Balance by Sub-basin for Wami/Ruvu Basin	A-3-21
Table 3.5.3	Annual Water Balance by Sub-basin for Lake Victoria Basin	A-3-21

Table 3.5.4	Annual Water Balance by Sub-basin for Lake Nyasa Basin A-	3-22
Table 3.5.5	Annual Irrigation Water by Basin by Target Year A-	3-22
Table 3.5.6	Comparison of Monthly Water Deficit and Reservoir Capacity A-	3-25
Table 3.5.7	Estimated Potential Water for Irrigation by Basin for 2035 A-	3-25

List of Figures

Page

Figure 1.2.1	Distribution of Specific Runoff	A-1-2
Figure 1.2.2	Distribution of Q ₁ (75) in Flow Duration Curves	A-1-2
Figure 1.2.3	Water Resources Potential Estimated in NIMP2002	A-1-3
Figure 1.3.1	Basin and Sub-basin Boundaries	A-1-3
Figure 2.1.1	Topographic Map with Basin Boundaries	A-2-1
Figure 2.1.2	Annual Rainfall Data by Basin (1981-2010)	A-2-2
Figure 2.1.3	Annual and Monthly Rainfall by Sub-basin (1981-2010)	A-2-2
Figure 2.1.4	Annual PET and AET by Sub-basin (1950-2000)	A-2-3
Figure 2.1.5	Annual PET and AET Data by Basin (1950-2000)	A-2-3
Figure 2.1.6	Mean Monthly Discharge at Selected Stations	A-2-4
Figure 2.1.7	Groundwater Productivity Map of Tanzania	A-2-4
Figure 2.1.8	Macroscopic Water Balance by Basin	A-2-5
Figure 2.1.9	Comparison of AET	A-2-5
Figure 2.3.1	Groundwater Productivity Map	A-2-12
Figure 3.1.1	Procedure of Water Resources Assessment	A-3-1
Figure 3.2.1	Image of Estimating Monthly Runoff by Using Graph	A-3-2
Figure 3.2.2	Mean Monthly Surface Runoff by Basin for 2015	A-3-4
Figure 3.2.3	Rating Curves at Selected Stations in Lake Nyasa Basin	A-3-4
Figure 3.2.4	Surface Water Resources for 2015 Compiled by NIMP2018	A-3-5
Figure 3.2.5	Water Resources Potential Compiled by NIMP2002	A-3-5
Figure 3.2.6	Surface Runoff with Climate Change by Basin	A-3-6
Figure 3.2.7	Annual Groundwater Recharge Complied by NIMP2018	A-3-10
Figure 3.2.8	Groundwater Potential Compiled by NIMP2002	A-3-10
Figure 3.3.1	Projected Population by Basin for 2015, 2025 and 2035	A-3-11
Figure 3.3.2	Projected Irrigation Area by Basin for 2015, 2025 and 2035	A-3-11
Figure 3.3.3	Annual Water Demand by Basin for 2015, 2025 and 2035	A-3-13
Figure 3.4.1	Summary of Annual Water Resource and Water Demand by Basin	A-3-17
Figure 3.4.2	Water Exploitation Index by Basin	A-3-18
Figure 3.4.3	Annual Water Balance by Sub-basin	A-3-19
Figure 3.5.1	Allocated Water for Irrigation by Sub-basin	A-3-23
Figure 3.5.2	Estimated Potential Water for Irrigation by Sub-basin for 2035	A-3-26
Figure 3.6.1	Annual Rainfall of Each Probable Drought Year by Basin (CGIAR-CSI)	A-3-27

Figure 3.6.2	Annual Rainfall of Each Probable Drought Year by Basin (CHIRPS-CHG) A-3-27
Figure 3.6.3	Numbers of Years of Available Discharge Data A-3-28
Figure 3.6.4	Result of Long-term Discharge Analysis

List of Attachments

Abbreviations	,

ADCP	Acoustic Doppler Current Profiler		
AET	Actual Evapotranspiration		
ASAL	Arid and Semi-Arid Lands		
ASY	Annual Safe Yield		
BBM	Building Block Methodology		
BOD	Biochemical Oxygen Demand		
BWB	Basin Water Boards		
BWO	Basin Water Office		
CA	Catchment Area		
CD	Compact Disc		
CGIAR	Consultative Group on International Agricultural Research		
CHG	Climate Hazards Group		
CHIRPS	Climate Hazards Group InfraRed Precipitation with Station data		
CMB	Chloride Mass Balance		
CSI	Consortium for Spatial Information		
CWC	Catchment Water Committees		
DEM	Digital Elevation Model		
DJF	December - February		
DRM	Desktop Reserve Model		
DSS	Decision Support System		
DVD	Digital Versatile Disc		
DWRE	Department of Water Resources Engineering		
EF	Environmental Flow		
EFA	Environmental Flow Assessment		
EFR	Environmental Flow Requirement		
EWR	Environmental Water Requirement		
FAO	Food and Agriculture Organization		
FDC	Flow Duration Curve		
GoT	Government of Tanzania		
GRDC	Global Runoff Data Centre		
GRU	Groundwater Resource Unit		
GW	Groundwater		
HPP	Hydropower Plant		
IHA	Indicators of Hydrologic Alteration		
ISBN	International Standard Book Number		
IWMI	International Water Management Institute		
IWRMDP	Integrated Water Resources Management and Development Plan		
JICA	Japan International Cooperation Agency		
LU	Livestock Unit		
LVB	Lake Victoria Basin		
LVBC	Lake Victoria Basin Commission		
MAM	March - May		
MCM	Million Cubic Meter		
MoAFSC	Ministry of Agriculture, Flood Security and Cooperatives		
MoWI	Ministry of Water and Irrigation		

NAM	Nedboer Afstroemning Model		
NAWAPO	National Water Policy		
NBI	Nile Basin Initiative		
NBS	National Bureau of Statistics		
NERC	Natural Environment Research Council		
NIMP2002	National Irrigation Master Plan 2002		
NIMP2018	National Irrigation Master Plan 2018		
NIRC	National Irrigation Commission		
NRW	Non-revenue Water		
NWB	National Water Board		
NWSDS	National Water Sector Development Strategy		
OECD	Organization for Economic Co-operation and Development		
PET	Potential Evapotranspiration		
RSCB	Ruvuma and Southern Coast Basin		
SADCC	Southern African Development Coordination Conference		
SCWC	Sub-catchment Water Committee		
SMS	Short Message Service		
SON	September - November		
SW	Surface Water		
TANESCO	Tanzania Electric Supply Company Limited		
TAWIRI	Tanzania Wildlife Research Institute		
TMA	Tanzania Meteorological Agency		
TOR	Terms of Reference		
TPC	Tanzania Planting Company		
UDSM	University of Dar es Salaam		
UNDP	United Nations Development Programme		
USAID	United States Agency for International Development		
WB	World Bank		
WEI	Water Exploitation Index		
WMO	World Meteorological Organization		
WR	Water Resources		
WRD	Water Resources Division		
WRMA	Water Resources Management Act		
WSDP	Water Sector Development Programme		
WUA	Water User Associations		
WWF	World Wide Fund for Nature		
ZIO	Zonal Irrigation Office		

Chapter 1 Introduction

1.1 Objectives of Study on Water Resources

(1) Overview

With a mean annual rainfall of around 950 mm, Tanzania is rather considered to be dry country. Besides, their uneven spatial and temporal distribution coupled with the ever increasing pressure on the water resources due to population growth and development of various sectors still remains a big challenges to the sustainable management and development of country's water resources. In fact, conflict over water between water users and/or areas have been reported.

Water resources is thought to be one of the possible bottlenecks in irrigation development in the Revision of National Irrigation Master Plan (NIMP2018). In order to appropriately evaluate irrigation potential, it will be essential to understand water resources availability spatially and seasonally.

Tanzania mainland is divided into nine basins and further divided into 71 sub-basins as presented in Figure 1.3.1. Water resources assessment in the NIMP2018 is to be done on a monthly and sub-basin basis. Since the Integrated Water Resources Management and Development Plans (IWRMDP) have been formulated as described later, the NIMP2018 project will fully utilize those information for making water resources assessment required for the NIMP2018.

(2) Objectives of Study on Water Resources

The principal objective of the study on hydrology and water resources management is to quantitatively assess water resources available for irrigation purpose. The major works will be done through the following steps:

- Understanding of present conditions of the water resources sector through reviewing basic information on natural conditions, relevant policies and strategies, the existing plans, and so forth
- Re-generation of internal renewable water resources data including both surface water and groundwater by using the existing reports and publicly available hydrological data
- Confirmation of various sectors' water demands that were projected in the previous relevant studies and their basis for calculation
- Estimation of available water resources for irrigation purpose through monthly water balance calculation by sub-basin

The details of work flow for assessing water resources is described in the section 3.1 "Method and Procedure" of this report.

1.2 Outline of the Water Resources Assessment in NIMP2002

(1) Major Terms of Assessment

The NIMP2002 study assessed water resources potential mainly from the following factors:

- <u>Macroscopic water balance</u>: the result showed sufficient water resources for water use at the time, which shares less than 1% of annual rainfall. However, seasonal fluctuation of water availability is a crucial factor.
- <u>Specific runoff</u>: specific runoff at gauging stations was calculated at annual mean level. The result identified a trend lower in central areas and southern part as presented in Figure 1.2.1.
- <u>Flow regime</u>: the flow duration curves were classified into three groups; (a) perennial river, (c) ephemeral river, and (b) intermittent river between (a) and (c). The regional distribution was formed with attention to the value of Q₁(75) as presented in Figure 1.2.2.
- <u>Groundwater</u>: the general outline of groundwater potential was roughly estimated by using hydro-geological data at a national level.

(2) Assessment Result

In the assessment of water resources potential, three points of view, namely, 1) quantitative potential of water in natural condition, 2) allowable water quantity under the artificial control and 3) seasonal steadiness of water availability, were taken into consideration. The assessment results are summarized in Table 1.2.1.

		Jerri	
Viewpoints	Available Data	Identification of Water Potential	Status
1) Quantitative potential of water in natural condition	Map of Specific Runoff	Areas having the annual averaged specific discharge more than or equal 1.0 m ³ /sec/500km ² could be identified as higher potential area.	To be considered largely
2) Allowable water under the artificial control	No information is available at the moment at the whole country basis.	It should be considered separately for scheme by scheme, by means of confirming individual water right.	To be referred if possible
3) Seasonal steadiness of water availability	Map of Distribution of Q1(75) in Flow Duration Curves	Areas having the value of $Q_1(75)$ more than or equal 10% could be identified as higher potential area for perennial irrigation.	To be considered supplementary
Source: NIMP2002			

 Table 1.2.1
 Summary of Water Potential in Major Viewpoints

The water resources potential estimated in the NIMP2002 is presented in Figure 1.2.3.

Source: Prepared by JICA Project Team based on NIMP2002 Figure 1.2.3 Water Resources Potential Estimated in NIMP2002

1.3 Basin and Sub-basin Boundary

The mainland of Tanzania is divided into nine basins and further divided into 71 sub-basins as presented in Figure 1.3.1. Basic information on the nine basins are summarized in Table 1.3.1. Since water resources management and development are undertaken on the basis of river basins, the study on water resources in the NIMP2018 is also made basin-wise and subbasin-wise. The catchment areas of respective sub-basins to be used in this study are based on the previous study reports, which are described in the sub-section 2.3.1 in more detail.

Source: JICA Project Team based on Information by MoWI Figure 1.3.1 Basin and Sub-basin Boundaries

No.	Basin Name	Basin Code*1	Catchment Area (km ²) ^{*2}	Nos. of Sub-basin	Drainage System
Ι	Pangani	PG	59,102	4	Indian Ocean
II	Wami / Ruvu	WR	66,295	7	Indian Ocean
III	Rufiji	RF	183,791	4	Indian Ocean
IV	Ruvuma and Southern Coast*3	RV	105,582	10	Indian Ocean
V	Lake Nyasa	LN	27,594	10	Indian Ocean
VI	Lake Rukwa	LR	74,965	7	Endorheic basin
VII	Lake Tanganyika	LT	149,500	7	Atlantic Ocean
VIII	Lake Victoria	LV	85,630	13	Mediterranean Sea
IX	Internal Drainage	ID	143,100	9	Endorheic basin
	Total		895,559	71	

Table 1.3.1Basic Information of Nine Basins

Notes: *1. Basin code used in this report is provided by the NIMP2018 study and it is not an official code.

*2. Catchment areas are based on the respective IWRMDPs and LVBC reports described in the sub-section 2.3.1. It is noted that the total of catchment areas is different from the mainland area

*3. The Ruvuma and Southern Coast basin is simply called as "Ruvuma basin" hereafter in this report.

Source: Prepared by JICA Project Team based on Information provided by MoWI

1.4 **Discussions with Relevant Organizations**

In the course of formulating the NIMP2018, the JICA Project Team had a lot of discussions with the relevant organizations so as to avoid any discrepancies in the policies and strategies among different sectors. The major discussions on the water resources sector are summarized in Table 1.4.1 below.

No.	Date	Organization	Main Points of Discussion
1	Oct 17, 2016	WRD, MoWI	 WRD will cooperate and is able to provide available data and information. WRD is willing to be involved in the NIMP2018 from a planning process stage. Water use in some parts is reliant on groundwater. WRD requested JICA Project Team to consider groundwater use even for large-scale irrigation.
2	Oct 20, 2016	WRD, MoWI	 Guideline on environmental flow requirement (EFR) is currently being prepared. Although there is no standard method before the approval of guideline, EFR has been considered 10% to 20% of minimum monthly discharge conventionally.
3	Oct 31, 2016	WRD, MoWI	 There is no large difference in the TORs for IWRMDP studies, while detail methods are different depending on the consultants. Discharge required for hydropower can be considered 100% return in water balance calculation. However, particular attention should be given to the New Pangani Falls HPP, which is located near river mouth.
4	Nov 7, 2016	WRD, MoWI	• The catchment areas (km ²) mentioned in the IWRMDP reports can be regarded as official figures.
5	Nov 18, 2016	DWRE, UDSM	• There is no clear methodology to determine the safe yield of groundwater. It's better to make assumption such as certain percent of groundwater recharge.
6	Mar 10, 2017	WRD, MoWI	• Findings from field visits were reported by JICA Project Team. WRD understood the situation and requested JICA Project Team to propose how to solve the issues related to water resources management at basin level.
7	Mar 28, 2017	All 9 BWOs and WRD, MoWI	 The IWRMDPs were formulated by reflecting opinions and information from irrigation-related offices including zone and district offices. MoWI consider that it is not desirable to present two different figures in terms of irrigation water between IWRMDP and NIMP2018. Therefore, NIMP2018 needs to comply with the water allocation determined in the IWRMDPs.
8	Apr 12, 2017	WRD, MoWI	 Available water resources for irrigation will be calculable by JICA Project Team. However, it would be difficult to change the determined water allocation because water resources should be utilized impartially between sectors. If there are plenty of available water resources in a basin, EFR could be reviewed and modified so as to utilize the water resources for other purposes. However, it is not easy to modify EFR in the NIMP2018 study considering that IWRMDPs made specific study for EFR in more details with enough time. Unless absolutely necessary, it will be better to keep the EFR unchanged.
9	May 17, 2017	NIRC	 NIRC requested JICA Project Team to positively include the effect of water storages into the water balance study. There are almost 120 reservoirs managed by NIRC. NIRC proposed an idea to utilize transboundary lake water for irrigation purpose, while NIRC understands the necessity of agreement among relevant countries.
10	May 18, 2017	WRD, MoWI	• Transboundary water use can be examined from a technical view point. It is not necessary to consider political issue in the NIMP2018 study.
11	Aug 16, 2017	WRD, MoWI	 MoWI understood that JICA Project Team estimated potential water for irrigation as well as allocated water for irrigation. MoWI understood and generally agreed to the recommendations related to water resource, which will be describe in the final chapter of Final Report.

Table 1.4.1 Major Discussions with Relevant Organizations

Notes: WRD = Water Resources Division, DWRE = Department of Water Resources Engineering, UDSM = University of Dar es Salaam, BWO = Basin Water Office

Source: JICA Project Team

Chapter 2 Present Conditions of Water Resources Sector

2.1 Natural Conditions

2.1.1 Geographical Features

Tanzania is located just south of the Equator, lying mostly between latitudes 1° and 12°S, and longitudes 29° and 41°E. The area¹ of mainland Tanzania is 945,100 km². Its land area is 883,600 km² and an area of inland water bodies is 61,500 km². Tanzania shares borders with Kenya and Uganda in the north; Rwanda, Burundi and Democratic Republic of Congo in the west; Zambia and Malawi in the south-west, Mozambique in the South; and Indian Ocean in the East.

Tanzania has complex topographical features extending from a narrow coastal belt of the western Indian Ocean with sandy beaches to an extensive plateau with altitude ranging from 1,000 to 2,000 m above mean sea level. The plateau is fringed by narrow belts of highlands, including Mt. Kilimanjaro (5,895m), the highest mountain in Africa and other mountain ranges. Tanzania has several fresh water bodies, including Lake Victoria, the largest in Africa; Lake Tanganyika, the longest and deepest in Africa; and Lake Nyasa. Figure 2.1.1 below presents topographic map depicting the above features.

Source: JICA Project Team based on the SRTM data Figure 2.1.1 Topographic Map with Basin Boundaries

¹ Tanzania in Figures 2015 (National Bureau of Statistics, January 2016)

2.1.2 Hydrometeorological Features

(1) Rainfall

According to the Tanzania Meteorological Agency $(TMA)^2$, the climate of Tanzania is characterized by two main rain seasons, namely the long rains (*Masika*) that fall from mid-March to end-May and the short rains (*Vuli*) that begin in mid-October and continues to early December.

Figure 2.1.2 presents annual mean rainfall for 30 years from 1981 to 2010 by basin, while Figure 2.1.3 presents annual and monthly mean rainfall for the same period by sub-basin. The highest rainfall is observed in the month of March with the national average of 172 mm/month. In addition to the seasonal distribution, the both Figure 2.1.2 and Figure 2.1.3 show spatial unevenness. The Western Shore Streams sub-basin of Lake Victoria basin and the Kiwira, Rumakali, Lufirio and Mbala sub-basins of Lake Nyasa basin receive relatively high rainfall of more than 1,500 mm/yr, though national average is 950 mm/yr.

Source: Prepared by JICA Project Team based on CHIRPS data provided by CHG Figure 2.1.3 Annual and Monthly Rainfall by Sub-basin (1981-2010)

² Climate Change Projection for Tanzania, ISBN 978-9987-9981-0-5. pp.2 (Tanzania Meteorological Agency)

(2) Evapotranspiration

Figure 2.1.4 presents potential evapotranspiration (PET) and actual evapotranspiration (AET), which were analyzed by CGIAR³-CSI⁴. The national averages of PET and AET are 1,633 mm/yr and 771 mm/yr, respectively as summarized in Figure 2.1.5. Relatively high PET is observed in the Wami/Ruvu, Lake Rukwa and Lake Tanganyika basins, where air temperature is higher. On the other hand, higher AET is observed in the Rufiji, Lake Nyasa and Lake Victoria basins, where rainfall is higher.

Source: Prepared by JICA Project Team based on PET and AET data provided by CGIAR-CSI **Figure 2.1.4** Annual PET and AET by Sub-basin (1950-2000)

Figure 2.1.5 Annual PET and AET Data by Basin (1950-2000)

(3) Hydrology

Figure 2.1.6 presents mean monthly river discharge at some selected stations representing the respective nine basins. Basic information of the selected stations are summarized in Table 2.1.1. Although the data are a bit old and actual hydrological phenomena usually differ depending on the locations even in the same basin, the hydrographs below reasonably represent hydrological features.

In the areas where rainfall is small, rivers dry up over a few months in the dry season as shown in the graphs of Bahi and Gurumeti gauging stations. Although the Lake Rukwa basin receive moderate rainfall, the discharge at the Ilonga station rapidly decline in the dry season due to its small catchment area and steep slope. On the other hand, the Iringa Ndiuka station in Rufiji basin and Mahinga station in Ruvuma basin have rather small differences in river flows between the peak rainy season and dry season due to their gentle slopes of rivers and relatively longer rainy period. Discharge at the Korogwe station seem to be relatively steady throughout the year. This is thought to be due to the Nyumba ya Mungu hydropower plant located upstream, which is a reservoir type with a plant discharge of 42.5 m³/s.

³ Consultative Group on International Agricultural Research (CGIAR)

⁴ Consortium for Spatial Information (CSI)

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Source: Prepared by JICA Project Team based on the discharge data provided by GRDC (Global Runoff Data Centre) Mean Monthly Discharge at Selected Stations **Figure 2.1.6**

	Table 2.1.1 Basic Information of the Selected Gauging Stations													
N	Davia	Sach hasta	Station Norma	Catchment	Mean D	ischarge	Period of							
INO.	Dasin	Sub-basin	Station Name	Area (km ²)	(m ³ /s)	(mm/yr)	Used Data							
Ι	Pangani	Pangani	Korogwe	25,110	27.5	35	1959-1977							
II	Wami / Ruvu	Lower Ruvu	Morogoro Road Bridge	15,916	57.9	115	1958-1989							
III	Rufiji	Great Ruaha	uaha Iringa Ndiuka 3,281		20.5	197	1954-1985							
IV	Ruvuma	Upper Ruvuma	Mahinga	4,903	49.3	317	1971-1985							
V	Lake Nyasa	Ruhuhu	Kikonge	14,161	179.1	399	1971-1978							
VI	Lake Rukwa	Lake Shores	Ilonga	1,119	6.1	172	1956-1989							
VII	Lake Tanganyika	Malagarasi	Taragi Road Bridge	8,525	68.0	252	1971-1979							
VIII	Lake Victoria	Grumeti	Gurumeti	13,233	11.5	27	1970-1979							
IX	Internal Drainage	Bahi Manyoni	Bahi	11,400	5.3	15	1960-1984							
C	CDDC													

able 2.1.1 Basic Information of the Selected Gau	uging Stations
--	----------------

Source: GRDC

Hydrogeology (4)

Figure 2.1.7 presents the hydrogeology map showing a simplified overview of the type and productivity of the main aquifers in Tanzania.

Source: Based upon mapping provided by British Geological Survey © NERC 2012. All rights reserved. **Groundwater Productivity Map of Tanzania Figure 2.1.7**

2.1.3 Macroscopic Water Balance in the Country

Prior to assessment of water resources potential, it is essential to understand a general feature of water balance in the entire Tanzania. In considering a hydrological cycle, inflow is defined as rainfall, while outflow is divided into surface runoff, groundwater recharge and actual evapotranspiration.

As introduced in the section 1.1 above, the IWRMDPs for the respective basins have already estimated surface runoff and groundwater recharge based on rainfall, though the details of estimation are discussed in the section 3.2 later. In this study, actual evapotranspiration was computed by deducting surface runoff and groundwater recharge from rainfall. The result is summarized in Table 2.1.2 and Figure 2.1.8.

	Table 2.1.2 Macroscopic water Balance by Basin											
		Catalana Ameri	Inflow (mm/yr)		Outflow (mm/yr)							
No.	Basin	(km ²)	Rainfall ^{*1}	Surface Runoff ^{*2}	Groundwater Recharge ^{*3}	Actual Evapo- transpiration ^{*4}						
Ι	Pangani	59,102	838	118	25	695						
II	Wami / Ruvu	66,295	961	73	64	823						
III	Rufiji	183,791	1,013	223	123	667						
IV	Ruvuma	105,582	987	111	79	797						
V	Lake Nyasa	27,594	1,394	442	39	913						
VI	Lake Rukwa	74,965	981	173	71	737						
VII	Lake Tanganyika	149,500	1,026	71	37	918						
VIII	Lake Victoria	85,630	1,027	99	52	877						
IX	Internal Drainage	143,100	689	42	31	616						
Total	(km ²) / Ave. (mm/yr)	895,559	955	128	64	763						

*1. Rainfall is provided by the IWRMDP reports and LVBC report (or CHIRPS (CHG) data for No. III, VI and VII). Notes

*2. Surface runoff is 2015 data presented in the IWRMDP reports and LVBC report. Details are described in Sub-section 3.2.1. *3. Groundwater recharge is provided by the IWRMDP reports and LVBC report. Details are described in Sub-section 3.2.2. *4. AET is estimated by deducting surface runoff and groundwater recharge from rainfall.

Source: JICA Project Team based on the above-mentioned data

The actual evapotranspiration estimated above was compared with the re-analysis data provided by different source for validation purpose. As seen in Figure 2.1.9, the differences between two sources are less than 10% except for the Rufiji basin, where the difference is 16%. Given the limitations of accuracy in estimating groundwater recharge and actual evapotranspiration, the result seems to fall within reasonable range.

2.2 Relevant Policies and Strategy

(1) The Tanzania Development Vision 2025

The Tanzania Development Vision 2025 aims at achieving a high quality livelihood for its people, attaining good governance through the rule of law, and developing a strong and competitive economy.

Water is positioned as one of the most important agents to enable the country to achieve the objectives of both social and economic development, such as eradicating poverty, attaining water and food security, sustaining biodiversity and sensitive ecosystems.

(2) National Water Policy

The first National Water Policy was developed in 1991. In response to many changes in circumstances surrounding the water sector thereafter, the Government revised the Policy in 2002 with the main objective of developing a comprehensive framework for sustainable development and management of the Nation's water resources.

The National Water Policy 2002 (NAWAPO 2002) states the following key considerations, which will guide the NIMP2018 study, in terms of water use.

In planning water uses, water for basic human needs in adequate quantity and acceptable quality will receive highest priority. Water for the environment to protect the eco- systems that underpin our water resources, now and in the future will attain second priority and will be reserved. Other uses will be subject to social and economic criteria, which will be reviewed from time to time. Utilization of transboundary water resources will be based on the principle of equity, right and rationality in accordance with agreements among the riparian state, and by respecting the principle of international obligations on trans- boundary water resource.

(3) National Water Sector Development Strategy 2006-2015

The National Water Sector Development Strategy 2006-2015 (NWSDS) sets out how the NAWAPO 2002 will be implemented to achieve targets.

NWSDS has been developed to support re-alignment of the water related aspects of other key sectoral policies (for example, energy, irrigation, industry, mining, and the environment) with NAWAPO, and to provide a focus on specific roles of the various actors through clearly defining roles and responsibilities and hence the removal of duplications and omissions. NWSDS contains 39 strategic statements covering the full range of issues arising from NAWAPO, and other policies and strategies of the Government.

The institutional framework set out by NWSDS provides effective and efficient integrated water resources management and development, and clearly identifies the roles and responsibilities of the relevant organizations and stakeholders at all levels, such as National Water Board (NWB), Basin Water Boards (BWB), Catchment Water Committees (CWC), and Water User Associations (WUA).

Although the NWSDS had expired in 2015, the preparation of NWSDS for the subsequent period has not been commenced as of May 2017, according to the MoWI.

(4) Water Sector Development Programme 2006-2025

The Water Sector Development Programme 2006-2025 (WSDP) follows a Sector Wide Approach to Planning (SWAP) with an overall objective of strengthening sector institutions for integrated water resources management and improve access to water supply and sanitation services.

Because of the long-term nature of the Programme, its implementation is done in phases of five years each. As a result of the component 1 (water resources management) during the phase I, the National Water Board and Basin Water Boards have been established and are operational in accordance to the Water Resources Management Act of 2009. Due to the extension of the phase I period, currently the phase II is being implemented for the period 2014/15-2018/19.

The WSDP phase II has five components, namely: 1) Water Resources Management; 2) Rural Water Supply and Sanitation; 3) Urban Water Supply and Sanitation; 4) Sanitation and Hygiene; and 5) Programme Delivery Support. As part of the component 1, the Integrated Water Resources Management and Development Plans (IWRMDPs) for the respective nine basins are to be formulated.

(5) The Water Resources Management Act, 2009

In order to provide the enabling legislative framework for implementing NAWAPO and NWSDS, the Water Resources Management Act No.11 of 2009 (WRMA) was enacted in 2009. The water sector in the mainland of Tanzania is presently governed by the WRMA and the Water Supply and Sanitation Act No.12 of 2009.

The WRMA provides new legislative framework in order to realize the integrated water resources management and development with the initiative of administratively and financially autonomous BWBs and participation of water users through WUAs and CWCs/SCWCs. The WRMA gives powers to BWB to regulate water use and pollution control, to set the Integrated Water Resources Management and Development Plan, to collect water user fees, to promote establishment of lower level organizations for water resources management at Catchment/ Sub-Catchment and community levels, and to manage conflict resolutions over water use.

2.3 Existing Plans and Studies

2.3.1 IWRMDP

(1) Basic Information on IWRMDP Formulation

As part of the Water Sector Development Programme (WSDP) for the period 2006-2025, the Ministry of Water and Irrigation (MoWI) has been formulating the Integrated Water Resources Management and Development Plans (IWRMDP) for the respective nine basins with a planning horizon of 2035.

Although consultancy services for the IWRMDP formulation are executed separately for the respective basins, the common objective of the services is to develop a basin-wide IWRMDP by:

- i) assessing water resources (both surface and groundwater) with climate change effect and identifying current and future water demands of different sectors,
- ii) identifying gaps between the water resources and future water demands,

- iii) formulating/evaluating alternatives that will meet those demands,
- iv) recommending specific water resources development and management options to meet the specific identified demands,
- v) developing a sound and environmentally sustainable IWRMDP,
- vi) preparing an implementation strategy including financing options, and action plan,
- vii) building capacity of the Basin Water Board in preparing an IWRMDP, and in undertaking periodic reviews and updating of the plan, and
- viii) enabling the stakeholders to participate fully in the planning and management processes.

As seen above, the IWRMDP is considered the latest and comprehensive water resources management and development plan. Therefore, the respective IWRMDPs are expected to provide quantitatively and qualitatively significant inputs to the NIMP2018. Prior to incorporating the IWRMDPs into the NIMP2018, the result of IWRMDP studies will be reviewed and adjusted as needed.

(2) Status of IWRMDP Formulation

As summarized in Table 2.3.1, water resources assessment and/or formulation of IWRMDP for three basins have not yet been completed. Consultancy services for formulating IWRMDP for the Wami/Ruvu basin commenced in July 2017 and is scheduled to be completed in 16 months. In case of the Lake Victoria basin, even assessment study has not commenced yet. However, the Lake Victoria Basin Commission (LVBC) conducted a study for Lake Victoria Basin Water Resources Management Plan - Phase 1 in 2014 (hereinafter called the LVBC study). The study assessed available water resources and projected future water demand by sub-basin for the entire catchment area covering the Lake Victoria basin. The NIMP2018 utilizes the LVBC study instead of IWRMDP for the Lake Victoria basin.

	No.	Ι	II	Ш	IV	V	VI	VII	VIII	IX
Bas	sin Name	Pangani	Wami/ Ruvu	Rufiji	Ruvuma	Lake Nyasa	Lake Rukwa	Lake Tan- ganyika	Lake Victoria	Internal Drainage
(Basin Code)		(PG)	(WR)	(RF)	(RV)	(LN)	(LR)	(LT)	(LV)	(ID)
Status	WR Assessment	Complete (WB)	Complete (JICA)	Complete (WB)	Complete (WB)	Complete (WB)	Complete (WB)	Complete (WB)	Not yet (GoT)	Complete (WB)
(Fund Source [*])	Formulation of IWRMDP	Not yet (TBD)	On-going (WB)	Complete (WB)	Complete (WB)	Complete (WB)	Complete (WB)	Complete (WB)	Not yet (GoT)	Complete (WB)

 Table 2.3.1
 Status of IWRMDP Formulation in Nine Basins

Notes: WR: Water Resources, WB: World Bank, JICA: Japan International Cooperation Agency, GoT: Government of Tanzania, TBD: To be determined

Source: JICA Project Team based on interview with MoWI

The available reports for the NIMP2018 study as of August 2017 are summarized in Table 2.3.2. Although the table presents only the latest stage of reports, the other previous stages including some inception and interim reports are also available.

No.	Basin	Title of Report	Published in
Ι	PG	Interim Report 2 on IWRMDP for Pangani Basin	Dec 2013
II	WR	Final Report on Water Resources Management and Development in Wami/Ruvu Basin*1	Nov 2013
III	RF	Final Report on IWRMDP for Rufiji Basin	Dec 2015
IV	RV	Final Report on IWRMDP for Ruvuma and Southern Coast Basin	Jan 2015
V	LN	Final Report on IWRMDP for Lake Nyasa Basin	Jun 2015

Table 2.3.2Status of Available Reports for NIMP2018

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

No.	Basin	Title of Report	Published in
VI	LR	Final Report on IWRMDP for Lake Rukwa Basin	May 2016
VII	LT	Final Report on IWRMDP for Lake Tanganyika Basin	Jun 2015
VIII	LV	Final Report on Lake Victoria Basin Water Resources Management Plan Phase 1*2	May 2014
IX	ID	Final Report on IWRMDP for Internal Drainage Basin	Mar 2015
Note	*1 Thati	le of report is "Final Peppert" however the MoWI reports it as only an assessment report because the	study did not assas

Note: *1. The tile of report is "Final Report", however the MoWI regards it as only an assessment report because the study did not assess water resources with future climate change.

*2. This report is not IWRMDP to be prepared under WSDP, however included in the list as an available study report. Source: JICA Project Team based on interview with MoWI

(3) Assessment of Climate Change Impact

The impact of climate change on hydrometeorological environment have been assessed in the IWRMDP studies except for the Wami/Ruvu and Lake Victoria basins. Assessment for these two basins will be made in formulating the basin IWRMDPs, which have not yet been prepared. The results of assessment are mentioned in the sub-section 3.2.1 later.

(4) Water Balance Method by Basin

The IWRMDPs for the nine basins have been/ will be prepared by different consultant firms after much discussion with the respective Basin Water Offices (BWO). Although the TORs for their consulting services are similar among the basins, the respective firms adopted different methodologies. There has been no document that compares or summarizes the differences in their methods. It is necessary to look over the study results horizontally in the NIMP2018 considering its target area of entire Tanzania mainland, while due consideration of regional characteristics is also important in water resources planning. The basic conditions in terms of input for water balance calculation are summarized in Table 2.3.3.

		Supply Side								Dar	nand	c:J.				
(No.)	Water Balance Calculation Basis		Surface Runoff					(sectors considered in balance calculation)							n)	
Basin Code		Esti 5015	imatio	2035 2035	Reliability of Water Utilization	Period of Used Hydro Data	Consi- dered in Water Balance	Domestic & Institute	Industry & Mining	Irrigation	Livestock	Wildlife	Tourism	Fisheries & Aquaculture	Hydropower	Environment Flow
(I) PG	Monthly long-term* ²	0	0	0	Mean runoff	1952- 2011	Yes	~	~	~	√	~	~			~
(II) WR	Monthly (selected year)	0	х	х	1/10 drought year runoff	1951- 1980	Yes	~	~	~	√			~		~
(III) RF	Monthly long-term	0	Gr	Gr	Mean runoff	1950- 2011	Yes	>	~	\checkmark	\checkmark				√ * ³	~
(IV) RV	Monthly long-term* ²	0	0	0	Mean runoff / 80% dependable	1959- 1994	Yes	>		\checkmark	\checkmark	~				~
(V) LN	Monthly (mean value)	0	0	0	Mean runoff	1950- 2012	Yes	>	~	\checkmark	\checkmark				√ * ³	~
(VI) LR	Monthly long-term	0	Gr	Gr	Mean runoff	1956- 2013	No	✓	~	\checkmark	✓					~
(VII) LT	Annual	0	0	0	Mean runoff	1974- 2002	Yes	\checkmark	~	\checkmark	\checkmark	~	~		\checkmark	~

 Table 2.3.3
 Basic Conditions of Water Balance Calculation

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

			Supply Side					Demand Side (sectors considered in balance calculation)								
(No.) Basin Code	Water Balance Calculation Basis	Surface Runoff				Ground- water	n)									
		Estimation*1		on*1	Perio		Consi-	c & te	8 8	uc	ck	e	m	s & ture	wer	nent
		2015	2025	2035	Reliability of Water Utilization	Used Hydro Data	dered in Water Balance	Domesti Institut	Industry Minin	Irrigatio	Livesto	Wildlin	Tourisı	Fisherie: Aquacult	Hydropo	Environn Flow
(VIII) LV	Annual	0	Х	х	Mean runoff	1967- 2013	No	~	~	~	~			~		
(IX) ID	Monthly long-term	0	0	0	Mean runoff	1953- 1999	Yes	~	~	√	√	✓	~	✓	√ * ³	✓

Notes: *1. *The symbols "O" / "X" / "Gr" denote "estimated" / "not estimated" / "presented in a form of hydrograph", respectively.* *2. *Although the reports do not clearly mention, it is presumably long-term basis computation.*

*3. Although hydropower water demand is estimated, it is treated as non-consumptive water in water balance calculation. Source: Summarized by JICA Project Team based on the LVBC study and IWRMDPs reports

Besides, methods of water balance calculation by each basin particularly in terms of how to incorporate groundwater use into the entire water use are briefed as below:

i) <u>Pangani Basin</u>:

MIKE BASIN model directly computed surface flow leaving catchment/ sub-basin after all demands have been catered for and after taking into account sustainable groundwater availability as part of supply side factors. Then, the estimated mean monthly surface flow was checked whether or not the flow satisfy the environmental flow requirement (EFR).

ii) <u>Wami/Ruvu Basin</u>:

Although a runoff simulation model was developed in the study, it was concluded that the model doesn't have enough accuracy to formulate the concrete plan. Therefore, the actual observed discharge in a past dry year was used for formulating the plan.

Water source (surface water or groundwater) was classified and assigned to each water use in estimating water demand. When water deficit was found in monthly balance calculation of surface water, additional groundwater development was considered as part of measures.

iii) <u>Rufiji Basin</u>:

The rainfall-runoff simulation was made by a Sacramento type model. The water balance simulation supplied only by surface water indicated that the surface water may be inadequate to meet future demands. Then, more detailed assessments showed that a balanced groundwater - surface water resources management strategy is viable.

iv) <u>Ruvuma Basin</u>:

The RSCB-BWB-DSS (Ruvuma and Southern Coast Basin Water Board decision support system) model comprises of two fundamental components - water resources assessment and water demand assessment. The model produced the output including surface water resources availability, surface water demand, groundwater use and percentage to groundwater availability, hydropower generation, surface water deficit or surplus, and groundwater stress.

v) <u>Lake Nyasa Basin</u>:

The NAM (Nedboer Afstroemning Model) model, which is part of the MIKE BASIN software package, was adopted as the rainfall-runoff model.

The assessment by comparing monthly water demand and 0.2 percentile mean monthly runoff

(80% exceedance) revealed that the monthly demand will exceed the available surface water for the year 2035 particularly in the dry season in three sub-basins. Accordingly, groundwater was supplementally allocated up to a ceiling of ASY (annual safe yield).

vi) Lake Rukwa Basin:

The rainfall-runoff simulation was made by a Sacramento type model. On the other hand, groundwater resources was not considered in the water balance study. According to the study report (Interim Report II, volume II, chapter 4), since there are no information on surface-groundwater interactions, monthly water balance was computed as the difference between the river flow and estimated water demand.

vii) Lake Tanganyika Basin:

MIKE BASIN model was developed for the major four sub-basins. None of the other three sub-basins were modelled due to the limitation of flow data or their small catchment areas. Water balance calculation was made by comparing annual water demand and annual available surface water and groundwater resources. Considering the uncertainties in ground water availability, allocation of groundwater and surface water was simply determined as 20% from groundwater and 80% from surface water.

viii) Lake Victoria Basin:

The rainfall-runoff model used in the study was basically the GR2M model, which is a monthly time step conceptual model. When the results are inaccurate, NAM model was also used.

Groundwater recharge estimates are provided in the study report to a limited extent. Water balance calculation was made by comparing annual water demand and annual surface runoff.

ix) Internal Drainage Basin:

MIKE HYDRO model with 41-year monthly time step runoff data was used. The model also incorporated abstraction from groundwater resources. After a series of scenario evaluation, water allocation was determined as almost 79% demand coverage.

2.3.2 Other Studies related to Water Resources

(1) Groundwater

Aside from the groundwater assessment made by the respective IWRMDP studies, some information on country-wise groundwater assessments were obtained from the previous studies as follows:

(a) Groundwater Productivity Map, Sub-saharan Africa Hydrological Assessment

Figure 2.3.1 shows distribution of productive aquifer in the mainland of Tanzania. Most of northern parts are low to fairly productive formations. On the other hand, highly and moderately productive aquifers are distributed mainly in southern part of the country.

Source: Sub-saharan Africa Hydrological Assessment (SADCC Countries), World Bank and UNDP Note: The original map provided in a Tiff format was digitized and colored by JICA Project Team. Figure 2.3.1 Groundwater Productivity Map

(b) Assessment of Groundwater Availability and Its Current and Potential Use and Impacts IWMI (2010)⁵ assesses groundwater availability, potential use and impacts in Tanzania by reviewing existing reports and data. According to the report, groundwater has not been extensively used for

irrigation largely due to the following reasons:

- Detailed analysis on groundwater irrigation potential nation-wide has not been thoroughly explored. Most of the estimates are based on surface water information.
- Tanzania still has enough areas potential for irrigation using surface water resources.
- There is scant information on the potential of aquifers and yields of individual boreholes.
- · Limited groundwater resources management plans
- The majority of people in the community have an inadequate understanding of groundwater resources and this has led to inappropriate development of groundwater.

(2) Environmental Flow Requirement

(a) Draft Guideline on Environmental Flow Assessment

MoWI is currently preparing a draft guideline on environmental flow assessment (EFA). The draft guideline introduces a general review of methodologies in four major groups: i) hydrology-based methodologies; ii) hydraulic rating methodologies; iii) habitat simulation methodologies; and iv) holistic methodologies. Among the hydrology-based methodologies, the draft guideline states that the Indicators of Hydrologic Alteration (IHA) method is the most recommended followed by the Flow Duration Curve (FDC)-Median Value method. These two methods shall therefore be adopted for hydrology-based environmental water requirement assessment in Tanzania.

(b) Practical Example of Environmental Flow Assessment

Comprehensive EFA are only available in the Ruvu River basin⁶ and the Kilombero River basin⁷ so far done by collaborative body with technical and financial assistance from USAID. The both assessments

⁵ IWMI (International Water Management Institute), 2010, Assessment of Groundwater Availability and Its Current and Potential Use and Impacts in Tanzania

⁶ Environmental Flow Recommendations for the Ruvu River Basin, Tanzania (USAID, 2014)

⁷ Environmental Flows in the Rufiji River basin Assessed from the Perspective of Planned Development in the Kilombero and Lower Rufiji Sub-basins (USAID, 2016)

were made after the completion of IWRMDPs for Wami/Ruvu and Rufiji basins, respectively. In general, a detailed EFA study covers only a particular river basin. For this reason, the said assessments do not cover the entire basin areas of Wami/Ruvu and Rufiji.

In the assessment study for the Ruvu River basin, environmental flow (EF) was set for five sites in the basin on a monthly basis for maintenance year (year of normal rainfall) and dry year (driest year). The approach employed by the Ruvu EFA was a hybrid of holistic methodologies, notably the Savannah Process (Richter et al. 2006) and the Building Block Methodology (BBM; King et al., 2008).

On the other hand, the assessment study for Kilombero and Lower Rufiji sub-basins in the Rufiji basin recommended monthly EF by using BBM for five sites in the Kilombelo River Valley for maintenance year and dry year.

(3) Climate Change

TMA reports⁸ climate change projections for Tanzania. The conclusions are summarized as follows:

- The country is projected to experience consistent and sustained warming from 2025 to 2100, with the warming being more pronounced over the south-western highland and over the western parts, where a warming of up to 3.8°C is projected by 2100.
- Though less confidence can be placed in model output for rainfall changes, most of the models suggest an increase in mean annual rainfall of up to 11% in 2100, particularly over the north-eastern highland.
- For the March May (MAM) rainfall season, rainfall is projected to decrease by up to 12%, particularly over the north-eastern highland. During September November (SON) period rainfall is projected to increase progressively from the year 2025 to 2100 over the central and northern parts of the country. The increase will be more pronounced over the Lake Victoria Basin and some parts of north-eastern highland, where an increase of up 22% is projected. However, areas around south-western highland and southern areas are projected to experience rainfall reduction. The decrease in percentage rainfall during MAM and SON season seem to be compensated by significant increase in December February (DJF) rainfall.

2.4 Water Resources Structures

(1) Existing Dams

A list of both man-made and natural existing reservoirs was collected from MoWI for the purpose of referring in water balance calculation. The list contains 694 dams with their basic information including coordinates, dam height, reservoir capacity and so forth. However, the purposes of dams are not mentioned in the list because the list was prepared with the view of dam safety study. The total capacity excluding hydropower plant (HPP) dams is 425.9 MCM as summarized in Table 2.4.1.

⁸ Climate Change Projection for Tanzania, ISBN 978-9987-9981-0-5. pp.37 (Tanzania Meteorological Agency (TMA), Ministry of Transport, United Republic of Tanzania)

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Tabl	Table 2.4.1 Numbers and Reservoir Capacity of Existing Dams											
	All Dams in the	All Dams in the List										
Basin ^{*1}		(MCM)										
			Dams with Capa	city Data								
				Excluding HPP*3	Excluding HPP							
Pangani	131	120	118	117	49.1							
Wami Ruvu	157	136	134	134	40.9							
Rufiji	67	67	67	65	79.8							
Ruvuma	62	59	58	58	19.1							
Lake Tanganyika	35	34	34	34	50.3							
Lake Victoria	139	129	127	127	78.5							
Internal Drainage	103	87	84	84	108.2							
Total	694	632	622	619	425.9							

Note: *1. Although the Lake Nyasa and Lake Rukwa basins have storage dams, an inventory survey has not been conducted in the basins. *2. The dams with questionable coordinates data that indicate different position from the basin or district mentioned in the list were excluded in the second column and later because the coordinates data are not able to correctly identify sub-basin. *3. There are only three recentric ture hydropeuer plants (HBP) and by many Dams (600 MCM) in Pangani Pacin.

*3. There are only three reservoir type hydropower plants (HPP), namely Nyumba ya Mungu Dam (600 MCM) in Pangani Basin, Mtera Dam (3,200 MCM) and Kidatu Dam (125 MCM) in Rufiji Basin. All of them are single purpose dams for hydropower. Source: 1. List of existing dams (As of Nov 2016, MoWI)

2. Power System Master Plan 2016 Update (Dec 2016, Ministry of Energy and Minerals)

(2) Planned Dams

The IWRMDP studies for the respective basins proposed 69 dams in total except for hydropower single purpose dams. These proposals include new construction and heightening of existing dykes. Among these, the MoWI has completed the construction designs of three major dams, namely Kidunda, Farkwa, and Ndembera (Lugoda) dams.

On the other hand, TANESCO⁹ has the 23 projects for large and medium scale HPP according to the Power System Master Plan 2016 Update. Out of these, 10 to 13 projects will adopt reservoir type power generation. The Kikonge HPP is the only multi-purpose dam for hydropower and irrigation purposes. The project is in collaboration between NIRC and TANESCO.

The total reservoir capacity of the above planned 70 dams is 8,723 MCM, although the allocation for each sector is not mentioned in the reports. The list of planned dams is presented in Attachment 1.

2.5 Water Resources Management at Basin Level

2.5.1 Field Survey

JICA Project Team conducted field visit in the course of study for the principal purpose of data collection from Basin Water Offices (BWOs). Along with the interviews with the BWOs for data collection, field survey was also done for understanding the status of water resources management at basin level.

Since the purpose of visit is collection of data that are hardly obtainable through the existing reports, the visit areas were limited to four out of the nine basins. Table 2.5.1 summarizes the surveyed facilities.

Dagin	Facilities related to Water Resources Management									
Dasin	Gauging Station	Weather Station	Intake for Water Abstraction	Dam						
Pangani	1DD1, 1DC1	Nyumba ya Mungu Dam	TPC (sugarcane), Lower Moshi Irrigation Scheme, Lemkuna Irrigation Scheme	Nyumba ya Mungu Dam						
Wami/Ruvu	1G1		Mlali Irrigation Scheme	Mindu Dam						

Table 2.5.1Facilities Surveyed during Field Visit

⁹ Tanzania Electric Supply Company Limited (TANESCO) is a parastatal organization under the Ministry of Energy and Minerals.

Dagin	Facilities related to Water Resources Management										
Dasili	Gauging Station	Weather Station	Intake for Water Abstraction	Dam							
Rufiji	1KA2A, 1KA31	Rufiji BWO	Mlenge & Itunudu Irrigation Scheme,	Mtera Dam							
			Mgambalenga Irrigation Scheme								
Lake Victoria	5D3, 5E2, 5F3		Grumeti Irrigation Scheme, Mwanza Urban								
			Water Supply and Sewerage Authority								

Source: JICA Project Team

2.5.2 Findings from BWOs and Field Survey

The major findings obtained though the interviews with BWOs and the field survey are listed as below.

(1) Hydrological Monitoring

- Hydrological monitoring is made by manual observation and/or automatic observation with field data logger or direct transmission via SMS.
- It was found in the Pangani, Rufiji and Lake Victoria basins that some malfunctioning devices are left unrepaired.
- Pangani BWO has current meters and Q-liner, which is a type of Acoustic Doppler Current Profiler (ADCP), and conducts discharge measurement regularly. However, rating curves have not been updated since the initial development in 1994.
- Flood flow caused change of riverbed and sediment deposition in the Lake Victoria basin. The BWO intends to shift the gauging station to other section. However, there is no suitable site with good accessibility.

(2) Data Management in BWO

- Each BWO uses either HYDATA¹⁰ or DSS¹¹ as database for hydrological data. The data are stored in different database and format depending on the BWO.
- Groundwater data, such as list of boreholes, are not well prepared and updated by BWOs. Besides, each BWO uses a different format and has so many missing data.
- Basin Water Register is not properly updated by BWOs.
- BWOs are basically supposed to manage hydrological data at basin level. Therefore such data are not always shared with the headquarters of MoWI.
- The output data used for water balance study in the IWRMDPs have not been transferred from consultant firms to BWOs, through the study reports were compiled into CD or DVD.

(3) Water Use Management

- Neither BWO nor water users monitor the actual amounts of water abstraction. In addition, BWO is not able to verify water abstraction applied by water users due to lack of data, such as available amount of water at an intake point, actual water abstraction, etc.
- Although water use permit needs to be granted on a seasonal basis, the Pangani and Lake Victoria BWOs grant the permits throughout the year.
- BWOs recognize many non-approved water users in their basin. Consequently, appropriate water fee is not collected from those users.

¹⁰ HYDATA is a database and analysis system for processing the hydrometeorological data, including river water levels and flows, reservoir, lake and tank levels and storages, rainfall and so forth.

¹¹ Decision Support System (DSS) is a comprehensive information, modeling, and decision support software for basin management.

- Water conflict issues among upstream water users, downstream water users and TANESCO, which is hydropower operator, have been reported in the Pangani River basin.
- Water loss along the unlined canals is one of the issues in the Wami-Ruvu basin. Sediment deposition in the canals is another issue.

2.6 Challenges in Water Sector

The following challenges were identified through reviewing the IWRMDP reports as well as discussing with the MoWI.

(1) Water Demand Management

The biggest challenge in water sector is the localized seasonal water shortages especially during peak irrigation periods. The situation surrounding water resources has become more difficult due to climate change effect as well as increase in water demands for various sectors. It is important to consider managing the water demands to ensure sustainability of water resources. The principal measures for water demand management in terms of irrigation sector may include more efficient irrigation technologies and awareness activities for farmers, etc.

(2) Limited Availability of Long-term Hydrological Data

As summarized in Table 2.3.3, the IWRMDPs for some basins were formulated by using non-latest hydrological data due to the limited availability of long-term data. In the Wami/Ruvu case, water level and discharge data at most of the gauging stations are missing from the late 1980s to the mid-2000s.

This issue could be attributed to the above-mentioned insufficient hydrological monitoring activities as well as non-systematic data management at basin level.

(3) Undefined Reliability of Water Utilization in IWRMDPs

In general, reliability of water utilization is considered in water resources planning. In many cases, the reliabilities of 1/10-yr for domestic & other sectors and 1/5-yr for irrigation sector are adopted. However, in preparing the IWRMDPs, long-term mean runoff was utilized as water resources potential in all the basins except for the Wami/Ruvu basin, which adopted 1/10-yr for all the sectors including irrigation. The reason why the mean runoff was utilized is not clearly mentioned in the reports. Adopting the long-term mean runoff in water resources development plans means that water shortage may happen once in every one to two years.

It is not always necessary to consider the reliability in the form of 1/5-yr or 1/10-yr. However, in the case where the reliability of 1/5-yr is considered in the future, it is desirable to settle this issue before implementation stage.

(4) Careful Consideration on Transboundary Water Use

Tanzania has five transboundary lakes, namely, the Victoria, Tanganyika, Nyasa, Jipe and Chala Lakes. Abstraction of water from those transboundary lakes is not explicitly mentioned in the IWRMDP reports. However, NIRC expect water use particularly in the Victoria Lake.

Considering the fact that the lake water is derived partially from rainfall onto the territory of Tanzania,

the water may be used for irrigation in Tanzania even after the water flow into the lake. In this regard, water use from transboundary lakes may be one of the conceivable measures subject to agreements among the concerned countries.

Chapter 3 Water Resources Assessment

3.1 Method and Procedure

(1) **Principle**

According to the National Water Policy (NAWAPO), water uses other than basic human needs and environment purposes will be subject to social and economic criteria, which will be reviewed from time to time. Water is a finite and vulnerable resource which is under pressure and growing scarce as a result of increasing multi-sectoral demands due to the rapidly growing population. Under such difficult circumstances, water resources shall be utilized based on the principle of equity, right and rationality.

The aforementioned IWRMDPs have been formulated in accordance with NAWAPO including the said principle. From the standpoint of impartial utilization between sectors, even water resources left unused are not freely allocable for a specific sector. Consequently, the balanced IWRMDPs will be fundamentals in preparing the NIMP2018. This means that the NIMP2018 have to basically harmonize with the water allocation determined in the IWRMDPs. On that basis, water resources remained unallocated to any sector is estimated as surplus water for reference in discussing the possibility of further irrigation use.

(2) **Procedure**

Figure 3.1.1 presents the key procedure of water resources assessment. First of all, the IWRMDP reports and the LVBC study report were carefully reviewed for understanding the methodologies applied to the respective basins as well as compiling the study outputs in terms of surface water, groundwater, water demand for each sector and environmental flow, on a monthly and sub-basin basis.

After gathering the study outputs as well as confirming the water allocation to be used for the irrigation development plan of NIMP2018, surplus water resources potential was separately estimated for the purpose of discussing the possibility of further irrigation use. The estimation was made by performing a rough water balance study as listed in the 4th step of Figure 3.1.1.

Figure 3.1.1 Procedure of Water Resources Assessment

3.2 Estimation of Water Resources

3.2.1 Surface Water Resources

(1) Approach for Utilizing the Previous Study Results

Many of the IWRMDP and LVBC study reports do not present numerical data of the estimated monthly surface runoff. Some reports present only annual basis data, but others present monthly basis data in a form of hydrograph, which is hardly referable in the NIMP2018 study. Thus, there was a need to regenerate monthly surface runoff data by using available information clearly mentioned in the reports as well as supplementally applying public hydrological data.

(2) Method of Re-generation of Mean Monthly Surface Runoff

The methods are classified into the following three patterns according to the availability of data.

1) Direct Utilization

Only the IWRMDP report for the Lake Nyasa basin expressly provides numerical monthly runoff data by sub-basin for the years 2015, 2025 and 2035 with climate change effect. Thus, there was no need to re-generate runoff data.

2) Annual Runoff Data and Monthly Runoff Bar Chart

This method was applied for the case that annual runoff data is clearly mentioned and monthly runoff bar chart graph are presented in the report. The bar chart graphs indicated monthly runoff at a specific gauging station in some cases or monthly runoff for sub-basin average in other cases. If a sub-basin does not have such graph, the nearest one was applied from the hydrological viewpoint. Monthly runoff was calculated by multiplying the annual runoff by the monthly proportion estimated based on the graph.

The image of estimation is illustrated in Figure 3.2.1. This is an example of the Malararasi sub-basin of Tanganyika basin. In this case, the annual runoff of 2,818 MCM/yr was clearly provided in the report. On the other hand, monthly runoff graph at the Mberagule station, where is located in the Malararasi sub-basin, was presented in the report.

In this example, the station "Mberagule" was selected for estimating monthly runoff of the Malagarasi subbasin. Source: JICA Project Team

Step 3) Multiplication of proportion

	^			
Month	Reading	Proportion	Annual	Monthly
Jan	119	6%		178
Feb	200	11%		299
Mar	243	13%		364
Apr	325	17%		487
May	362	19%		542
Jun	272	14%	2,818	407
Jul	142	8%		213
Aug	69	4%		103
Sep	34	2%		51
Oct	22	1%		33
Nov	26	1%		39
Dec	68	4%		102
Total	1 882	100%		2 8 18

Figure 3.2.1 Image of Estimating Monthly Runoff by Using Graph

This method was applied for the Pangani, Ruvuma, Tanganyika, Lake Victoria and Internal Drainage basins. The bar chart graphs of Pangani and Ruvuma indicate the monthly runoff estimated for the years 2015, 2025 and 2035 with climate change effect, while the graphs of the other basins indicate the monthly runoff of past records as summarized in Table 3.2.1. Strictly speaking, monthly runoff

proportion will be also affected by climate change. In some cases, runoff increase in the rainy season and decrease in the dry season compared to the current condition. However, considering the uncertainty of climate change as well as data availability, the re-generated monthly runoff for the Tanganyika and Internal Drainage basins could be regarded as runoff with climate change effect.

1 able 5.2.1 C	consideration of Chinate Change in t	ne Ke-generateu Kunon Data
Basin	Annual Runoff Volume	Monthly Runoff Proportion
Pangani	With climate change	With climate change
Ruvuma	With climate change	With climate change
Tanganyika	With climate change	Without climate change
Lake Victoria	Without climate change	Without climate change
Internal Drainage	With climate change	Without climate change

Table 2.2.1 Consideration of Climate Change in the Re-generated Runoff Data

Source: JICA Project Team based on the IWRMDP reports for the above basins

Besides, in case no monthly runoff information is available, mean monthly rainfall data by sub-basin was applied instead of monthly runoff graph. This is limited to some sub-basins surrounding the Victoria Lake because their catchment areas are relatively small and runoff is expected to fluctuate directly according to rainfall.

3) Monthly Runoff at a Specific Station and Catchment Area Ratio

This method was applied for the case that monthly runoff data at a specific gauging station are presented in the report. The Wami/Ruvu basin report provides numerical data at some gauging stations. On the other hand, the Rufiji and Lake Rukwa reports present monthly runoff bar chart graphs at some gauging stations and therefore numerical data for these two basins were generated with the method shown in Figure 3.2.1 by using the graph and mean annual runoff at the station. Finally, monthly runoff for each sub-basin was generated after multiplying the monthly runoff at a specific gauging station by a catchment area ratio of sub-basin and the gauging station.

It must be noted that all the runoff data re-generated as explained above are only mean runoff in the past period, which have no climate change effect. Although the IWRMDP studies for the Rufiji and Lake Rukwa assessed climate change effect with sophisticated models, the results are presented only in a form of hydrograph. The original data of the graphs were obtainable from neither the headquarters of MoWI nor the Basin Water Offices.

(3) **Result of Re-generating Mean Monthly Surface Runoff**

Table 3.2.2 and Figure 3.2.2 present the summary of mean monthly surface runoff by basin for 2015. Monthly data by sub-basin for 2035 is presented in Attachment 2. The data for 2015 is also used for 2035 when data with climate change effect is not obtainable from reports, as stated in the following clause.

	Table .	5.2.2	2.2 Mean Monthly Surface Runoff by Basin for 2015													
Basin	Area	S	Surface Runoff (mm/month for each month and mm/yr for total)											Rain	DC*1	
	(km ²)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	(mm/yr)	KC ·
Pangani	59,102	6.7	6.3	16.0	19.0	13.3	8.3	6.2	5.3	5.4	8.2	12.7	10.4	117.8	809	0.15
Wami / Ruvu	66,295	6.9	4.0	6.5	18.1	15.0	5.3	2.6	1.7	1.3	1.2	4.3	6.5	73.4	878	0.08
Rufiji	183,791	16.8	26.3	36.9	44.5	34.1	19.8	12.1	7.6	5.8	4.7	5.6	9.2	223.3	1,013	0.22
Ruvuma	105,582	15.2	15.7	22.5	16.5	10.2	7.4	5.3	3.9	2.7	2.0	1.9	7.6	110.8	1,062	0.10

. . .

Final Report Surface Runoff (mm/month for each month and mm/yr for total) Area Rain **RC***1 Basin (km^2) Jan Mar Feb Apr May Jun Aug Dec Total (mm/yr) Jul Sep Oct Nov Lake Nyasa 27,594 42.7 42.2 63.7 78.7 55.5 33.5 27.2 21.3 16.5 14.9 16.4 28.9 441.7 1,257 0.35 981 Lake Rukwa 74,965 17.8 27.9 36.2 29.1 24.2 10.8 4.3 3.1 2.3 2.7 3.5 11.1 173.2 0.18 Lake Tanganyika 71.2 1,026 0.07 149,500 6.5 10.6 14.2 14.3 8.9 5.5 3.0 1.6 0.9 0.7 1.2 3.7

4.2

0.0

5.8

4.0

0.0

4.1

4.3

0.0

3.2

5.8

0.0

3.2

8.6

0.5

4.4

9.1

6.6

8.3

98.6

41.8

128.2

986

696

950

0.10

0.06

0.13

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania

16.7 Note *1. Since rainfall data is average for 30 years from 1981 to 2010, the above runoff coefficients (RC) are only reference. Source: Re-generated by JICA Project Team based on the IWRMDP reports and the LVBC study report

1.2

5.7

0.0

9.3

15.8 11.4

14.8

24.8

Lake Victoria

Internal Drainage

Average

85,630

143,100

8.5

6.9

12.0

8.9 12.3

3.8

14.8

8.1

21.6

Mean Monthly Surface Runoff by Basin for 2015 **Figure 3.2.2**

As seen in the table and figure, the runoff in the Lake Nyasa basin is remarkably large compared to the others. The annual runoff coefficient of the entire Nyasa basin is estimated at 0.35, while the national average of coefficient covering the nine basins is only 0.13. After considering that basin is high rainfall area, there is a need to confirm the background.

Fortunately the Lake Nyasa basin IWRMDP report presents various basic hydrological data. Figure 3.2.3 shows rating curves at two gauging stations. Since discharge data plotted on the rating curve is direct result of measurement data, it is quite reliable. The two figures indicate that discharge ranges from 2 to 9 m³/s at the Kiwira station and from 20 to 80 m³/s at the Masigira station. Considering the respective catchment areas (CA) of 187 km² and 1,979 km², the average annual runoff height can be roughly calculated at 928 mm/yr for Kiwira and 797 mm/yr for Masigira. Although the actual timing of each discharge measurement is not clear, even the minimum runoff height that can be estimated from the rating curves exceed 300 mm/yr. From the viewpoint of these raw discharge data as well as the topographic feature that the basin is generally hilly and mountainous up to almost 3,000 m above sea level, the relatively high runoff of 441.7 mm/yr seem reasonable.

The annual surface water for 2015 by sub-basin is presented in Figure 3.2.4. Besides, water resources potential estimated by NIMP2002, which is presented with the unit of $m^3/sec/500 km^2$ in Figure 1.2.3 in the section 1.2, is converted to the unit of mm/yr and presented in Figure 3.2.5 by sub-basin. Since the maximum potential value of NIMP2002 is given as 1.0 m³/sec/500km², which is equivalent to 63 mm/yr, Figure 3.2.5 is able to show only up to 63 mm/yr. Although there is such a difference, the both maps indicate relatively high water potential in the Rufiji, Lake Nyasa, and Lake Tanganyika basins compared to the others from a broader perspective.

(4) **Impact of Climate Change**

As stated in the clause (2) of sub-section 3.2.1, runoff data with climate change effect is not available for the Wami/Ruvu, Rufiji, Lake Rukwa and Lake Victoria basins. The monthly runoff data for the other basins for the year 2025 and 2035 are shown in Table 3.2.3 and Table 3.2.4, respectively.

1 abit 5.2.5						Mean Monthly Surface Runon by Dash for 2025										
mag (l.m ²)	Surface Runoff (mm/month for each month and mm/									mm/yr	yr for annual)					
area (km-)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual			
59,102	5.6	5.4	13.4	16.2	11.3	7.1	5.2	4.6	4.6	6.8	10.5	8.7	99.5			
105,582	15.6	16.1	22.7	16.5	10.1	7.3	5.3	3.8	2.7	2.0	1.8	7.4	111.3			
27,594	42.2	41.7	63.0	77.8	54.9	33.1	26.9	21.0	16.3	14.7	16.2	28.5	436.4			
149,500	6.6	10.7	14.4	14.5	9.0	5.5	3.0	1.6	0.9	0.7	1.2	3.8	71.9			
143,100	6.5	3.6	7.7	14.0	1.1	0.0	0.0	0.0	0.0	0.0	0.5	6.2	39.5			
	rea (km²) 59,102 105,582 27,594 149,500 143,100	Jan 59,102 5.6 105,582 15.6 27,594 42.2 149,500 6.6 143,100 6.5	Su Jan Feb 59,102 5.6 5.4 105,582 15.6 16.1 27,594 42.2 41.7 149,500 6.6 10.7 143,100 6.5 3.6	Jan Feb Mar 59,102 5.6 5.4 13.4 105,582 15.6 16.1 22.7 27,594 42.2 41.7 63.0 149,500 6.6 10.7 14.4	Intermit Problem Surface Runoff Jan Feb Mar Apr 59,102 5.6 5.4 13.4 16.2 105,582 15.6 16.1 22.7 16.5 27,594 42.2 41.7 63.0 77.8 149,500 6.6 10.7 14.4 14.5 143,100 6.5 3.6 7.7 14.0	Trea (km²) Surface Runoff (mm/n Jan Feb Mar Apr May 59,102 5.6 5.4 13.4 16.2 11.3 105,582 15.6 16.1 22.7 16.5 10.1 27,594 42.2 41.7 63.0 77.8 54.9 149,500 6.6 10.7 14.4 14.5 9.0 143,100 6.5 3.6 7.7 14.0 1.1	International problem Surface Runoff (mm/month f Jan Feb Mar Apr May Jun 59,102 5.6 5.4 13.4 16.2 11.3 7.1 105,582 15.6 16.1 22.7 16.5 10.1 7.3 27,594 42.2 41.7 63.0 77.8 54.9 33.1 149,500 6.6 10.7 14.4 14.5 9.0 5.5 143,100 6.5 3.6 7.7 14.0 1.1 0.0	Nictual Noticity Berrace Runoff (mm/month for each sector) surface Runoff (mm/month for each sector) Jan Feb Mar Apr May Jun Jul 59,102 5.6 5.4 13.4 16.2 11.3 7.1 5.2 105,582 15.6 16.1 22.7 16.5 10.1 7.3 5.3 27,594 42.2 41.7 63.0 77.8 54.9 33.1 26.9 149,500 6.6 10.7 14.4 14.5 9.0 5.5 3.0 143,100 6.5 3.6 7.7 14.0 1.1 0.0 0.0	Nature Problem 100 mmg but need 100 mm	Niction introduction of point o	Note of the image of the image. The image of the	Note in the interview of the interview	Inclusion of the problem in			

Moon Monthly Surface Dunoff by Regin for 2025 T-LL 2 2 2

Source: Re-generated by JICA Project Team based on the IWRMDP reports

	1 abic 5.2		11100		muny	Duil	ace n	unon	by D	asini		55			
Basin	Area (km²)		Surface Runoff (mm/month for each month and mm/yr for annual)												
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	
Pangani	59,102	4.7	4.7	11.7	14.0	9.9	6.1	4.6	3.8	4.1	6.0	9.1	7.6	86.3	
Ruvuma	105,582	15.7	16.3	22.8	16.5	10.1	7.3	5.3	3.8	2.7	2.0	1.8	7.4	111.7	

54.5

8.7

0.9

32.9

5.4

0.0

26.7

2.9

0.0

20.9

1.6

0.0

16.2

0.9

0.0

14.7

0.7

0.0

77.3

14.2

12.2

62.5

14.0

6.8

433.4

70.1

34.8

28.3

3.7

5.5

16.1

1.2

0.4

Table 3.2.4 Mean Monthly Surface Runoff by Basin for 2035

Source: Re-generated by JICA Project Team based on the IWRMDP reports

42.0

6.4

5.8

41.4

10.5

3.1

27,594

149,500

143,100

Lake Nyasa

Lake Tanganyika

Internal Drainage

The annual surface runoff for the above five basins are presented in Figure 3.6.1. It was found that the
rates of increase or decrease from 2015 to 2035 in the Ruvuma (RV), Lake Nyasa (LN) and Lake Tanganyika (LT) basins fall within 2%. On the other hand, the decrease rates are relatively large in the Pangani (PG) and Internal Drainage (ID) basins with the rates of 27% and 17%, respectively. In the Lake Tanganyika basin, the runoff for 2025 is higher than 2015 and 2035. This is because rainfall is increasing towards 2030 and thereafter rainfall is more or less similar to the one in the base period, which is assumed to be around 2012.

Source: Prepared by JICA Project Team based on the IWRMDP reports **Figure 3.2.6** Surface Runoff with Climate Change by Basin

In view of uncertainty of climate change phenomena as well as the relatively small change rates obtained from the above five basins, it would be acceptable for the NIMP2018 study to apply the 2015 surface runoff data for the years 2025 and 2035 in the remaining four basins, namely the Wami/Ruvu, Rufiji, Lake Rukwa and Lake Victoria basins.

3.2.2 Groundwater Resources

(1) Assessment of Groundwater Recharge in the Existing Studies

The IWRMDPs studies for the respective basins and the LVBC study have assessed groundwater resources potential. Prior to determining sustainable yield of groundwater resources, firstly annual groundwater recharge was estimated in all the basins with different methods. The basic methods of recharge estimation by each basin are briefed as below:

i) <u>Pangani Basin</u>:

Chloride mass balance (CMB) method was used to estimate groundwater recharge in the basin. The chloride concentration in groundwater within the basin was obtained from the basin water office water quality analysis results, and other reports on borehole completion.

ii) <u>Wami/Ruvu Basin</u>:

The recharge amount to groundwater is calculated as the infiltration in the water balance analysis. The infiltration is the amount subtracting both evapotranspiration and surface runoff from the rainfall. The recharge amount was assessed in accordance with the existing water level monitoring data and rainfall data.

iii) <u>Rufiji Basin</u>:

Mean annual effective recharge from rainfall to the basin aquifers was assessed using the Maxey-Eakin empirical method and the chloride mass balance (CMB) method. However, no values of chloride concentration in rainwater are available for coastal aquifers. Therefore, calculation of recharge using the CMB method was only used for the limited areas.

iv) <u>Ruvuma Basin</u>:

Due to insufficient availability of data, groundwater recharge cannot be calculated by water balance. Instead, recharge rates were calculated by assigning a percentage to each outcrop geology type, representing the proportion of rainfall estimated to become recharge. These factors are based on information from previous hydrogeological studies in Southern Africa.

v) <u>Lake Nyasa Basin</u>:

As there is no long-term groundwater level monitoring data within the basin, groundwater recharge was assumed to be a percentage of the total annual rainfall. Rainfall infiltration rates in the order of 5% to 15% were estimated during the model calibration. Recharge zoning was made based on the geology and rainfall isohyet maps.

vi) Lake Rukwa Basin:

Mean annual effective recharge from rainfall to the basin aquifers was assessed using the Maxey-Eakin empirical method and the chloride mass balance (CMB) method. The CMB technique was used in the study as an independent check on the recharge estimates of the empirical Maxey-Eakin model.

vii) Lake Tanganyika Basin:

Chloride mass balance (CMB) method was used to estimate groundwater recharge in the basin. The chloride concentration in groundwater within the basin was obtained from the basin water office water quality analysis results, and other reports on borehole completion.

viii) Lake Victoria Basin:

Groundwater recharge was estimated for some sub-basins by using the Meyboom baseflow recession method and Smakhtin baseflow separation method. The results of Meyboom method were on average about half of the recharge estimated by the Smakhtin method.

ix) Internal Drainage:

Annual groundwater recharge in fractures and rocks aquifers was estimated assuming an infiltration coefficient to annual rainfall. Besides, recharge in river bed aquifers was estimated as the amount of available storage in river alluvial beds by each single flood. Since the number of flood events per year is not predictable, the recharge is considered the minimum recharge potential for each year.

(2) Re-assessment of Groundwater Recharge in NIMP2018

As mentioned above, various methods were adopted in estimating annual groundwater recharge. As a result, there was considerable difference in recharge by basin. The minimum recharge height is 6 mm/yr in the Internal Drainage basin and the maximum one is 257 mm/yr in the Rufiji basin. After considering the difference in regional characteristics, there seems to be effects caused by the difference in estimate method. Accordingly, groundwater recharge in the following four basins were further reviewed.

(a) Rufiji and Lake Rukwa Basins

In the Rufiji and Lake Rukwa basins, firstly mean annual groundwater recharge is simply computed based on mean annual rainfall by using the Maxey-Eakin method. After that, annual groundwater potential is estimated at approximately three to six times of the annual recharge. Although this numerical

computation process is not explained in the report, it is inferable that aquifer storage volume of groundwater, which have been stored over a long-period of more than several decades, was added to the initial recharge volume.

On the other hand, the above study has made many assumptions due to lack of aquifer survey data and mentioned that potential will require much further work to reduce uncertainties. There are presumably sufficient groundwater resources in the aquifer within the basins. However, it is better to regard the potential in the aquifer as reference information at this moment in order to avoid misunderstanding that this potential is realistically exploitable for irrigation development. Therefore, the NIMP2018 adopted the mean annual recharge directly estimated by the Maxey-Eakin method. Sustainable yield of groundwater was then estimated at 40% of annual recharge, considering the percentages used in the original computation for the two basins.

(b) Lake Victoria Basin

Annual groundwater recharge was estimated in the LVBC study report only for the Biharamulo and Simiyu sub-basins out of 13 sub-basins. Therefore, based on the recharge estimates by the Mayboom method of 50 mm/yr for Biharamulo and 51 mm/yr for Simiyu, the NIMP2018 Project Team computed recharge ratios to annual rainfall at 4.5% and 5.9%, respectively. Then, annual recharge for the other sub-basins were computed by applying the average recharge ratio of 5.2% and annual rainfall of each sub-basin. Sustainable yield of groundwater was then estimated at 30% of annual recharge.

(c) Internal Drainage Basin

The groundwater potential estimated in the IWRMDP for the Internal Drainage basin ranges from 0.5 to 46 mm/yr by sub-basin with a basin average of 6.2 mm/yr. If these figures were annual recharge, these are considerably small compared with the other basins. One of the possible reasons is difference in the recharge estimation method from the other basins. Annual groundwater recharge in the surrounding areas are estimated at 25 mm/yr in Pangani, 64 mm/yr in Wami-Ruvu, 37 mm/yr in Tanganyika, 52 mm/yr in Lake Victoria and reported at 37 mm/yr¹² in the whole of Kenya, where almost 80% of whole area is classified as arid and semi-arid lands (ASAL).

With due consideration of relative comparison with the surrounding areas, the figure of 6.2 mm/yr may be equivalent to sustainable yield of groundwater resources rather than groundwater recharge. Thus, the NIMP2018 Project Team has determined to treat the potential as sustainable yield of groundwater resources.

(3) Sustainable Yield of Groundwater Resources

The estimated annual groundwater recharges are not fully usable. It is quite difficult to estimate the sustainable yield of groundwater. The respective basin IWRMDPs differently adopted 10% to 50% of groundwater recharge as sustainable yield. By respecting the elaborate IWRMDP studies, those percentages were left unchanged except for the above four basins that recharges were re-assessed, as summarized in Table 3.2.5.

¹² Annual groundwater recharge data for the year 2010 (Final Report on the Development of the National Water Master Plan 2030, JICA)

	Table 3.2.5Calculation Basis for	Sustainable Yield
Basin	Original Basis in IWRMDP	Basis Modified by NIMP2018
Pangani	40% of annual recharge	(no change)
Wami / Ruvu	8% to 59% of annual recharge by sub-basin	(no change)
Rufiji	40% to 70% of annual recharge by GRU	40% of annual recharge
Ruvuma	40% of annual recharge	(no change)
Lake Nyasa	10% of annual recharge	(no change)
Lake Rukwa	40% to 70% of annual recharge by GRU	40% of annual recharge
Lake Tanganyika	50% of annual recharge	(no change)
Lake Victoria	No estimation	30% of annual recharge
Internal Drainage	No estimation	20% of annual recharge
Lake Tanganyika Lake Victoria Internal Drainage	50% of annual recharge No estimation No estimation	(no change) 30% of annual recharge 20% of annual recharge

Note: GRU = *Groundwater resource unit Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports*

(4) **Result of Data Processing**

As a result of compiling and re-assessing groundwater (GW) data as above, finally annual groundwater recharge and sustainable yield of groundwater resources are obtained as given in Table 3.2.6. Also, the sustainable yield data by sub-basin is presented in Attachment 2.

	10010 01210				
Dasia	A	Annual GV	V Recharge	Sustainable Yield	of GW Resources
Basin	Area (km ²)	(MCM/yr)	(mm/yr)	(MCM/yr)	(mm/yr)
Pangani	59,102	1,466	25	587	10
Wami / Ruvu	66,295	4,273	64	1,139	17
Rufiji	183,791	22,533	123	9,021	49
Ruvuma	105,582	8,307	79	3,238	31
Lake Nyasa	27,594	1,070	39	107	4
Lake Rukwa	74,965	5,341	71	2,136	28
Lake Tanganyika	149,500	5,511	37	2,755	18
Lake Victoria	85,630	4,424	52	1,327	15
Internal Drainage	143,100	4,421	31	884	6
Total	895,559	84,322	94	21,195	24

 Table 3.2.6
 Annual Recharge and Sustainable Yield

Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports

The annual groundwater recharge by sub-basin is presented in Figure 3.2.7. On the other hand, the NIMP2002 qualitatively assessed groundwater from the viewpoint of hydro-geological features and presents only the general outline of groundwater potential as presented in Figure 3.2.8. Comparing the two maps, almost similar tendency can be seen. The both maps indicate that groundwater potential in the Rufiji, Ruvuma and Lake Rukwa basins is higher than one in the other basins.

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

- **3.3** Estimation of Water Demand
- 3.3.1 Consumptive Water Use

(1) Calculation Basis by Basin

Water demand with different time horizon have been projected in the IWRMDP and LVBC studies. The sectors considered in the respective basins are different depending on the natural and social conditions of the basin. The projected sectors by basin are summarized in Table 2.3.3 of the sub-section 2.3.1.

Since the estimates were made by different consultant firms with due consideration of characteristics of the basin as well as their experiences, in some cases different methods have been adopted. This clause will brief the major differences in calculation basis between basins if any in addition to the key points of general calculation basis for estimating water demand by each sector. The estimated water demand data is presented collectively in the subsequent clause (2) for easy comparison between sectors.

There are seven sectors, namely 1) domestic and institute, 2) industry and mining, 3) irrigation, 4) livestock, 5) wildlife, 6) tourism, and 7) fisheries and aquaculture. Although different sector name is used in some reports, all the sector names are standardized into the said seven sectors. In general, hydropower generation is a non-consumptive use of water and thus normally is it not used in water balance calculation. The following descriptions focus on consumptive water uses.

1) Domestic and Institutional Water Demand

Domestic water demand has been estimated using the population projected based on the National Census 2002 and the unit water requirement by the area and income level classification, which are guided in the design manual¹³ of MoWI. Future population was estimated based on the growth rate projected by National Bureau of Statistics (NBS) or Malthusian growth model that is also used by the NBS depending on the basin. Figure 3.3.1 shows the projected population by basin. NRW (non-revenue water) rates of 20% to 40% of gross demand were adopted depending on basins and target years. Institutional and commercial water demand were integrated with domestic water demand in the NIMP2018 study.

¹³ Tanzania Design Manual for Water Supply and Waste Water Disposal (3rd edition, March 2009)

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Figure 3.3.1 Projected Population by Basin for 2015, 2025 and 2035

2) Industry and Mining Water Demand

There are broadly two types of estimation method. In some basins, industrial and mining water demand was estimated simply using a certain percentage of net domestic water demand. The percentages range from 10% to 15%. In the other basins, water demand was estimated based on the actual industry types that exist in the basins by using production volume (in ton), unit water requirement (in m³/ton) and growth rate (in %). Some growth rates were determined based on the national industrial sector development target.

3) Irrigation Water Demand

Irrigation water demand has been estimated with the participation of Zonal Irrigation Offices (ZIO) and concerned district and regional engineers to the respective basins in the course of studies. Basic information on the current irrigation practices as well as future plans was provided by those offices. The projected irrigation areas for the time horizon are summarized in Figure 3.3.2. The total areas for 2015, 2025 and 2035 are 488,268 ha, 717,054 ha and 1,046,422 ha, respectively.

In most of basins, irrigation water requirement has been estimated based on the methodology¹⁴ of the Ministry of Agriculture, Flood Security and Cooperatives (MoAFSC). In some cases, the FAO method (CROPWAT¹⁵ & CLIMWAT¹⁶) adopted in the previous study conducted in the basin were used. Irrigation efficiency applied to the estimation ranges from 25% to 50% depending on basins and condition of canal lining, though some basins provided no clear information in the reports.

Figure 3.3.2 Projected Irrigation Area by Basin for 2015, 2025 and 2035

¹⁴ Comprehensive Guidelines for formulation of irrigation Schemes under District Agricultural Development Projects

¹⁵ CROPWAT is a decision support tool developed by the Land and Water Development Division of FAO.

¹⁶ CLIMWAT is a climatic database to be used in combination with the computer program CROPWAT.

4) Livestock Water Demand

Estimation of livestock water requirements is basically made based on livestock population and daily per capita water consumption. The design manual ¹⁷ of MoWI provides specific guidelines on recommended per capita livestock water requirements of 25 liters per Livestock Unit (LU) per day. On the other hand, the number of base livestock population was collected from the survey in 2007/08 conducted by MoAFSC or collected from various districts based on social surveys. The design manual also recommends specific annual growth rates for respective species.

5) Wildlife Water Demand

Wildlife water demand was estimated in the four basins. Since the number of wildlife in Tanzania has been surveyed by TAWIRI¹⁸ in particular areas such as national park, game reserve, Ramsar site, etc., the estimation was also made for the surveyed areas. Unit water requirement is estimated as equivalent to 4% of the body weight (Bothma, 2002).

The increase rate of estimated wildlife water demand from 2015 to 2035 is relatively large compared to the other sectors. This is attributed to the considerable increase in two basins, namely the Ruvuma and Lake Tanganyika basins. In the Ruvuma basin, although the number of wildlife is not expected to increase, water demand is assumed to increase at the rate of 25% per decade considering the plan to construct ponds in strategic areas within the game reserves to provide water in drought periods. In the Lake Tanganyika basin, the number of wildlife is expected to increase according to the projection using a basic population growth model.

6) Tourism Water Demand

Tourism water demand was estimated in the three basins. The report for the Internal Drainage basin provided no explanation in terms of calculation basis. In the Pangani and Lake Tanganyika basins, the demand was estimated for the national parks located in the basins. The number of visitors is predicted based on visitor numbers from recent years. The unit water requirement was set at 300 liters per tourist per day based on the information in South Africa.

7) Fisheries and Aquaculture Water Demand

Fisheries and aquaculture water demand was estimated in the three basins. The reports for the Internal Drainage basin provided no explanation in terms of calculation basis. In the Wami/Ruvu and Lake Victoria basins, water demand was estimated as water requirement to compensate water loss due to evaporation and seepage in fish ponds based on the number and assumed area of fish pond.

(2) Summary of Water Demand by Basin

The water demand by sector by basin for the years 2015, 2025 and 2035 are summarized in Figure 3.3.3. The bar chart graphs offer an indication of the differences between basins and between sectors. As seen in the figure, the irrigation sector accounts for more than 80% of the total water demand, while the wildlife, tourism and fisheries & aquaculture sectors account for quite small percentages.

¹⁷ Tanzania Design Manual for Water Supply and Waste Water Disposal (3rd edition, March 2009)

¹⁸ Tanzania Wildlife Research Institute

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Figure 3.3.3 Annual Water Demand by Basin for 2015, 2025 and 2035

The numerical figures for the years 2015, 2025 and 2035 corresponding to Figure 3.3.3 are presented in Table 3.4.1, Table 3.4.2, and Table 3.4.3, respectively, in the sub-section 3.4.2. Besides, the water demand data by sub-basin for 2035 is presented in Attachment 3. However, the irrigation water demands for the Pangani and Lake Nyasa basins were adjusted in the NIMP2018 as explained in the sub-section 3.5.1. Therefore, the data presented in Attachment 3 indicate allocated water for each sector.

3.3.2 Environmental Flow Requirement

(1) Background

Environmental flow requirement (EFR) is non-consumptive requirement of water. However, it should be considered as part of water resources management in order to preserve normal functions of river flow. In formulating the NIMP2002, no regard was given to EFR possibly because the concept of EFR has not become general yet at that time particularly in developing countries.

As stated in the sub-section 2.3.2, currently the Environmental Water Requirements Assessment Guidelines (hereinafter called the EWR Guidelines) is being prepared by the MoWI. Since the existing IWRMDPs have been formulated before the finalization of EWR Guidelines, the EFR studies carried out in the IWRMDPs are not always fully compliant with the EWR Guidelines. In some basins, detailed EFR studies had been conducted before the IWRMDPs and in that cases the results of previous EFR studies were reflected to the IWRMDPs. In the other cases, EFR was assessed with possible methods.

(2) Assessment of EFR by Basin

The basic methods of assessing EFR by each basin are briefed as below:

i) <u>Pangani Basin</u>:

Lack of biodata in the basin forces the adoption of the Texas method which uses percentile of median monthly flow in any given flow regime and time mimicking the natural flows in the river. Using this method a 40-60% of the median monthly flow is recommended for adequate health of the rivers in the basin.

ii) <u>Wami/Ruvu Basin</u>:

Prior to the IWRMDP study, EFR was calculated based on the result of environmental flow assessment. However, as a result of comparison between the EFR and the observed discharge at the representative stations, it was confirmed that the EFR set at some points are considered excessive compared to the actual river flow conditions. Therefore, more reasonable and realistic EFR were alternatively set in the IWRMDP study.

iii) <u>Rufiji Basin</u>:

EFR obtained through the previous assessment, which was carried out partially in the basin by WWF in the late 2000s, were incorporated in the scenario assessments carried out under the IWRMDP study. In addition to those areas, a rapid desktop approach based on the Building Block Methodology (BBM) was used to estimate EFR at three other critical locations.

iv) <u>Ruvuma Basin</u>:

The Desktop Reserve Model incorporating the concepts of the Building Block Methodology was used in the study to estimate EFR. The study classified most catchments into the Category B or B/C and as a result the ratios of EFR to runoff range from 31% to 53%. The study emphasized that the estimated EFR should be reviewed in a detailed manner when any developmental activities are considered in future.

v) Lake Nyasa Basin:

The study recommended that in the absence of adequate biological data, a hydrological method that specifies percentages of the mean annual flow that provide different quality habitats should be used to estimate environmental flows. Although the report provides no clear description, it is assumed that the study adopted the Tenant Method.

vi) Lake Rukwa Basin:

Two methods were employed in the study. The Building Block Methodology (BBM) was applied to two of the most critical sub-basins with respect to water use and water resources management issues. The Desktop Reserve Model (DRM) method was applied to four subbasins, which include the two basins for BBM. The rapid assessment with DRM was intended to supplement the detailed assessment conducted only for the critical two sub-basins.

vii) Lake Tanganyika Basin:

The Texas method was applied for determination of EFR. An environmental flow target of 40% of median monthly flows was finally recommended, as this is a commonly accepted value to maintain river health.

viii) Lake Victoria Basin:

EFR has not been assessed in the basin. The LVBC study estimated sanitation water demand instead of EFR. It is defined in the report as water flow required in order to dilute the pollution loads to a certain level. The study has estimated the sanitation water demand using BOD5¹⁹ by sub-basin under various population and access to sanitation scenarios.

¹⁹ The BOD value is most commonly expressed in milligrams of oxygen consumed per litre of sample during 5 days of incubation at 20 °C.

ix) Internal Drainage Basin:

Most of rivers in the basin are ephemeral or seasonal. EFR of the perennial rivers was estimated using the Texas method. Regarding the seasonal and major ephemeral rivers, the customized Texas method was employed, in which a percentage of the natural water potential (considered as 30% to maintain a good condition in the stream) in each catchment is allocated to the environment.

(3) Re-assessment of EFR in NIMP2018

(a) Rufiji Basin

EFR was estimated in the Rufiji IWRMDP only for three sub-basins. Therefore, EFR for the remaining one sub-basin was additionally estimated based on the EFR for the neighboring sub-basin by multiplying ratios of monthly surface runoff.

(b) Lake Rukwa

BBM was primarily applied to the two sub-basins. The EFR estimated with this method was not for the entire sub-basin but for a particular reference point. After converting the EFR at the point to the entire sub-basin with their catchment area ratios, it was found that the monthly EFR exceed monthly surface runoff in some months particularly in the rainy season. Therefore, the NIMP2018 selected the results of DRM. Since the estimation with this method is limited to four sub-basin, the EFR for the remaining sub-basins was additionally estimated based on the EFR for the neighboring sub-basin by multiplying ratios of monthly surface runoff.

(c) Lake Victoria Basin

In the Lake Victoria basin, sanitation demand for the year 2040^{20} was estimated for the following three scenarios. The NIMP2018 will employ the third one because it would be the most realistic scenario and the sanitation demands estimated with the first and second scenarios are considerably large compared with available water resources.

- in 2040 with constant population growth and constant access to improved sanitation facilities
- in 2040 with linearly decreasing population growth (down to 0% in 2040) and constant access to improved sanitation facilities
- in 2040 with linearly decreasing population growth (down to 0% in 2040) and higher access to improved sanitation facilities (85% everywhere in the LVB)

The selected sanitation demand was still larger than surface runoff on in some months because the adopted BOD5 method does not take into account hydrological condition. Therefore, the monthly sanitation demand was adjusted up to a ceiling of each monthly surface runoff.

(d) Internal Drainage Basin

As with the case of the Lake Victoria basin, the monthly EFR was adjusted up to a ceiling of monthly surface runoff.

²⁰ Time horizon for the LVBC study is 2020 and 2040 and therefore all the estimates are made for the years 2020 and 2040. The estimates are interpolated to 2025 and 2035 in the NIMP2018.

(4) Summary of Estimated EFR by Basin

The respective IWRMDPs have estimated EFR on a monthly basis. On the other hand, the LVBC study has estimated sanitation water demand on an annual basis because the demand is strongly related to human activities and therefore it is almost constant through the year.

In some assessment methods, EFR is estimated based on natural surface runoff. In that case, the future EFR may be changed in accordance with the change of surface runoff due to climate change. However, the EFR for the years 2025 and 2035 was estimated only in the Pangani, Lake Nyasa and Lake Victoria basins. The NIMP2018 will use the 2015 EFR for the years 2025 and 2035 if unobtainable from the reports.

The monthly EFR estimates for 2015 are summarized into annual basis as presented in Table 3.3.1. The ratio of EFR to surface runoff water ranges from 0.23 to 0.53 except for the Wami/Ruvu basin, where the theoretically desirable EFR that was estimated in the previous study was downwardly adjusted in the IWRMDP study from the viewpoint of actual hydrological conditions. The monthly EFR by subbasin for 2035 is presented in Attachment 4.

Iubic	0.0.1 11h	nuur Environ	nentui 1 10 // K	equil ement by		0
Basin	Catchment Area	Surface V	Vater (SW)	Environmo Requirem	ental Flow ent (EFR)	Ratio
	km ²	MCM/yr	mm/yr	MCM/yr	mm/yr	EFK/SW
Pangani	59,102	6,963	118	1,622	27	0.23
Wami / Ruvu	66,295	4,865	73	298	4	0.06
Rufiji	183,791	41,049	223	21,850	119	0.53
Ruvuma	105,582	11,700	111	4,801	45	0.41
Lake Nyasa	27,594	12,188	442	4,161	151	0.34
Lake Rukwa	74,965	12,982	173	4,674	62	0.36
Lake Tanganyika	149,500	10,641	71	4,271	29	0.40
Lake Victoria	85,630	8,439	99	4,400	51	0.52
Internal Drainage	143,100	5,985	42	1,599	11	0.27
Total	895,559	114,812	128	47,676	53	0.42

Table 3.3.1Annual Environmental Flow Requirement by Basin for 2015

Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports

3.4 Assessment of Water Stress

3.4.1 Summary of Annual Estimates

The monthly water resources, the monthly environmental flow requirement, and the monthly water demand estimated in the previous sections 3.2 and 3.3 are summarized on an annual basis in Figure 3.4.1. The numerical figures for the years 2015, 2025 and 2035 corresponding to Figure 3.4.1 are presented in the following Table 3.4.1, Table 3.4.2, and Table 3.4.3, respectively, in the sub-section 3.4.2.

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Groundwater in the graph indicate sustainable yield of groundwater resources. Note: Source:

Prepared by JICA Project Team based on the IWRMDP and LVBC study reports

Figure 3.4.1 Summary of Annual Water Resource and Water Demand by Basin

3.4.2 Assessment based on Water Exploitation Index

For the purpose of understanding the severity of water stress by basin, WEI (water exploitation index) was calculated as percentage of total consumptive water demand to internal renewable water resources, which consist of surface runoff and annual groundwater recharge. The result is presented in the following tables as well as Figure 3.4.2. The figures in the tables are rounded to an integer. Several international organizations including OECD (Organization for Economic Co-operation and Development) define the situation as "under severe water stress" in case the annual WEI exceeds 40%. It was found from the tables and the figure that the Pangani basin is almost under severe water stress even in the current condition and the water stresses of all the basins will progressively increase towards 2035.

Dagin	Water Re	esources (N	MCM/yr)	EFR			Wate	r Dema	nd (M	CM/yr)			Annual
Dasin	SW	GW-S	GW-R	(MCM/yr)	Dom	Ind	Irr	Liv	Wil	Tou	Fis	Total	WEI (%)
PG	6,963	587	1,466	1,622	157	36	2,657	12	0	0	0	2,862	34%
WR	4,865	1,139	4,273	298	345	61	656	15	0	0	0	1,076	12%
RF	41,049	9,021	22,533	21,850	69	131	4,905	19	0	0	0	5,124	8%
RV	11,700	3,238	8,307	4,801	50	0	254	7	25	0	0	335	2%
LN	12,188	107	1,070	4,161	34	11	309	11	0	0	0	365	3%
LR	12,982	2,136	5,341	4,674	54	2	532	13	0	0	0	600	3%
LT	10,641	2,755	5,511	4,271	215	63	273	25	16	1	0	592	4%
LV	8,439	1,327	4,424	4,400	206	15	163	73	0	0	0	456	4%
ID	5,985	884	4,421	1,599	176	89	561	87	4	0	0	917	9%
Total	114,812	21,195	57,345	47,676	1,306	407	10,309	261	45	1	1	12,329	7%

Table 3.4.1 Summary of Annual Water Resource and Water Demand by Basin for 2015

Note-1: SW = Surface Water, GW-S = Groundwater (sustainable yield), GW-R = Groundwater (recharge), EFR = Environmental Flow Requirement, Dom = Domestic & Institute, Ind = Industry & Mining, Irr = Irrigation, Liv = Livestock, Wil = Wildlife, Tou = Tourism, Fis = Fisheries & Aquaculture

Note-2: WEI (water exploitation index) here is calculated as percentage of total water demand to internal renewable water resources, which consist of surface runoff and groundwater recharge.

Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports

Table 3.4.2	Summary of Annual	Water Resource and	l Water Demand b	y Basin for 2025
--------------------	-------------------	--------------------	------------------	------------------

Desin	Water Re	esources (I	MCM/yr)	EFR			Wate	er Dema	and (M	CM/yr)			Annual
Dasin	SW	GW-S	GW-R	(MCM/yr)	Dom	Ind	Irr	Liv	Wil	Tou	Fis	Total	WEI (%)
PG	5,881	587	1,466	1,655	204	56	2,959	14	1	0	0	3,234	44%
WR	4,865	1,139	4,273	298	441	142	993	19	0	0	0	1,595	17%
RF	41,049	9,021	22,533	21,850	110	245	5,504	33	0	0	0	5,891	9%
RV	11,755	3,238	8,307	4,801	61	0	568	8	36	0	0	673	3%
LN	12,041	102	1,070	4,545	39	11	606	11	0	0	0	668	5%
LR	12,982	2,136	5,341	4,674	83	3	832	16	0	0	0	934	5%

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Dagin	Water Re	esources (I	MCM/yr)	EFR			Wate	r Dema	nd (M	CM/yr)			Annual
Dasin	SW	GW-S	GW-R	(MCM/yr)	Dom	Ind	Irr	Liv	Wil	Tou	Fis	Total	WEI (%)
LT	10,750	2,755	5,511	4,271	318	67	578	30	29	13	0	1,037	6%
LV	8,439	1,327	4,424	4,466	322	23	430	84	0	0	6	865	7%
ID	5,654	884	4,421	1,599	206	95	869	107	4	0	0	1,282	13%
Total	113,417	21,189	57,345	48,159	1,784	642	13,338	323	70	13	7	16,179	9%

Note: Same as Table 3.4.1

Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports

Table 3.4.3	Summary of Annual	Water Resource and Water Demand by Basin for	2035

Dasin	Water Re	esources (I	MCM/yr)	EFR			Wate	r Dema	nd (M	CM/yr)			Annual
Dasin	SW	GW-S	GW-R	(MCM/yr)	Dom	Ind	Irr	Liv	Wil	Tou	Fis	Total	WEI (%)
PG	5,099	587	1,466	1,667	294	155	3,110	16	1	0	0	3,577	54%
WR	4,865	1,139	4,273	298	552	355	1,268	25	0	0	0	2,201	24%
RF	41,049	9,021	22,533	21,850	149	363	7,619	58	0	0	0	8,188	13%
RV	11,794	3,238	8,307	4,801	76	0	1,056	12	47	0	0	1,191	6%
LN	11,959	96	1,070	5,019	50	12	938	12	0	0	0	1,012	8%
LR	12,982	2,136	5,341	4,674	110	4	1,164	21	0	0	0	1,298	7%
LT	10,474	2,755	5,511	4,271	520	75	986	37	52	27	0	1,699	11%
LV	8,439	1,327	4,424	3,514	335	24	772	96	0	0	17	1,245	10%
ID	4,981	884	4,421	1,599	229	102	1,177	131	4	0	0	1,644	17%
Total	111,641	21,184	57,345	47,693	2,315	1,090	18,091	408	104	27	18	22,056	13%

Note: Same as Table 3.4.1

Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports

3.4.3 Assessment based on Annual Water Balance Calculation

Prior to monthly water balance calculation to be made in the following section 3.5, annual water balance by sub-basin was preliminarily calculated under the limited assumption. Considering the fact that groundwater use is still supplementary supply side factor, in this section water balance was calculated by deducting EFR and all water demand from surface water by sub-basin. Surface flow from upstream sub-basin to downstream sub-basin was simply considered in the Wami/Ruvu and Rufiji basins, where downstream demand largely depend on upstream surface water. The computation result of annual water balance is summarized by sub-basin as presented in Figure 3.4.3.

The legend of below 0 (zero) in the figure means that the EFR and/or water demand are not satisfied by surface water even in annual calculation. Out of the six sub-basins with the balance below zero, the four sub-basins are not recoverable with groundwater supply. In that case, EFR and/or water demand need to be reviewed and adjusted unless inter-boundary transfer of water is considered.

Figure 3.4.3 Annual Water Balance by Sub-basin

3.5 Water Resources for Irrigation Sector

As illustrated in Figure 3.1.1 above, water resources for irrigation were considered with a two-step process, namely 3rd) allocated water and 4th) potential water, which are explained in the following subsections 3.5.1 and 3.5.2, respectively. The allocated water is basically to be used for the NIMP2018, while the potential water is presented as reference.

3.5.1 Allocated Water for Irrigation

(1) Approach for Determining Water for Irrigation

Water resources allocated for irrigation in the respective IWRMDPs can be basically considered secured and fully available for irrigation use by 2035. Irrigation areas to be proposed in the NIMP2018 will be elaborated within these water allocations, though some improvement of irrigation system may be assumed in terms of cropping pattern, irrigation efficiency, etc.

However, the problem is that the IWRMDPs have not yet been formulated in the three basins, namely Pangani, Wami/Ruvu and Lake Victoria basins. This means that the projected irrigation water demands have neither been officially allocated nor secured. Therefore, it is necessary to review whether or not the water demands projected in the existing studies are realistically manageable for the three basins.

In addition, the annual water balance calculation made in sub-section 3.4.3 indicated that the projected water demands for 2035 are not met in four sub-basins, which are included in the Pangani, Lake Nyasa and Lake Victoria basins. Therefore, irrigation demand for the Lake Nyasa basin need to be additionally reviewed below.

(2) Review of Irrigation Water Demands for Four Basins

(a) Pangani Basin

The result of annual water balance calculation by sub-basin is summarized in Table 3.5.1. As seen in the table, the water demand in the Pangani River sub-basin will not be satisfied in 2025 and 2035 if EFR (environmental flow requirement) is deducted from SW (surface water). Even if GW (groundwater) is fully used, the deficit remains.

The deficit in annual calculation means that any water storage facilities are not able to overcome the water shortage within the sub-basin unless water is supplied from the other sub-basins. However, from the topographic viewpoint, water transfer from the surrounding sub-basins is not realistic.

						Water Dalance Sy Bak					Sub Subili for Funguin Dubin						
			SW			GW		Ľ)eman	d		EFR		SW-	EFR -	Dem	
Sub-basin Name	Area (km ²)	(N	1CM/y	vr)	(N	ICM/y	vr)	(N	1CM/y	vr)	(N	ICM/y	r)	(1	ACM/y	/r)	
ivanic	(KIII)	2015	2025	2035	2015	2025	2035	2015	2025	2035	2015	2025	2035	2015	2025	2035	
Pangani River	43,652	4,832	4,096	3,524	466	466	466	2,685	2,976	3,209	1,511	1,544	1,557	636	-424	-1,242	
Umba	8,205	934	733	611	71	71	71	133	154	190	19	19	19	782	559	401	
Msangazi	5,085	687	601	543	31	31	31	12	54	102	1	1	1	674	546	440	
Zigi-Mkulumuzi	2,159	510	452	422	18	18	18	33	49	76	91	90	90	387	312	256	

Table 3.5.1Annual Water Balance by Sub-basin for Pangani Basin

Source: Prepared by JICA Project Team based on the Pangani IWRMDP study report

On the other hand, the percentage of EFR to SW in the Pangani River sub-basin for 2035 is 44%. This is quite large compared to the other three sub-basins. However, the EFR of Pangani River sub-basin almost correspond to the plant discharge required for hydropower generation at the existing New Pangani Falls HPP. Thus, the EFR is hardly able to be reduced.

It is particularly worth noting that one of the key features in the Pangani basin assessment is largely decreasing surface water by 27% from 2015 to 2035 due to climate change. The surface water might be reviewed at the planning stage, however, this is still unclear factor at present. Even if irrigation area is not further developed, the projected water demand for 2035 will not be satisfied. The envisaged future water deficit need to be managed by more effective utilization of water resources in various sectors and/or alternative power generation means. If the deficit is managed only by the irrigation sector, water resources allocated for irrigation sector in 2035 will be less than 78% of 2015-based irrigation water demand, according to the monthly calculation made in the following sub-section 3.5.2.

Considering the severe situation of the Pangani River sub-basin, irrigation water use in the sub-basin cannot be increased from 2015 to 2025 and need to be reduced by 22% from 2015 to 2035 by improving irrigation system or reducing irrigation area. The NIMP2018 study will adopt the above-adjusted irrigation water in planning irrigation development for 2025 and 2035 for the sub-basin.

(b) Wami/Ruvu Basin

Although the IWRMDP for the Wami/Ruvu basin has not been formulated, a comprehensive water resources management and development plan was prepared in 2013 with technical assistance of JICA. The MoWI has positioned the plan as an assessment part of IWRMDP because climate change impacts have not been taken into account the said plan.

The plan also proposed appropriate water resources development measures including new construction of 16 reservoirs and heightening of the existing 5 dykes, with careful consideration of the reliability of water utilization of 1/10-yr drought.

There is still possibility of monthly water deficit if climate change impacts are considered. However, from the viewpoint of annual water balance presented in Table 3.5.2, water deficit will be manageable²¹

²¹ This is a view by JICA Study Team, not agreed with the MoWI.

within the basin. Therefore, the NIMP2018 study will adopt the projected water demands without changes.

6 I I ·			SW			GW		E)eman	d		EFR		SW-	EFR -	Dem
Sub-basin Namo	Area (km ²)	(N	1CM/y	vr)	(N	1CM/y	/r)	(N	1CM/y	/r)	(N	1CM/y	vr)	(N	/ICM/y	r)
Tvanie	(KIII)	2015	2025	2035	2015	2025	2035	2015	2025	2035	2015	2025	2035	2015	2025	2035
Kinyasungwe	16,509	289	289	289	129	129	129	118	182	279	0	0	0	171	107	9
Mkondoa	12,964	671	671	671	179	179	179	290	422	502	3	3	3	378	246	166
Wami	14,270	1,408	1,408	1,408	169	169	169	141	209	247	91	91	91	1,176	1,108	1,070
Upper Ruvu	7,623	2,252	2,252	2,252	102	102	102	79	108	127	116	93	93			
Ngerengere	2,913	156	156	156	27	27	27	33	50	82	0	0	0	17((1 5 1 1	1 1 2 1
Lower Ruvu	7,253	54	54	54	283	283	283	62	100	119	70	85	85	1,/00	1,511	1,121
Coast	4,763	35	35	35	250	250	250	353	525	845	17	26	26			

 Table 3.5.2
 Annual Water Balance by Sub-basin for Wami/Ruvu Basin

Note: The balance for the Upper Ruvu, Ngerengere, Lower Ruvu and Coast sub-basins are shown together because water demand in the lower sub-basins (Lower Ruvu and Coast) highly depend on the water supply from the upper sub-basins. Source: Prepared by JICA Project Team based on the Wami/Ruvu IWRMDP study report

(c) Lake Victoria Basin

As seen in the result of annual water balance presented in Table 3.5.3, three sub-basins will have annual deficit. However, the situation is considered still manageable within the basin by adjusting EFR and/or by water transfer between sub-basins. Since EFR has not been estimated for the Lake Victoria basin, sanitation water demand using BOD5 is provided instead in the water balance calculation. As a result, the percentages of EFR to SW exceed 90% in some sub-basins. The basin has enough leeway to review the EFR. Therefore, the NIMP2018 study will adopt the projected water demands without changes.

·			SW			GW		E)eman	d		EFR		SW-	EFR -	Dem
Sub-basin Name	Area (km ²)	(N	1CM/y	/r)	(N	1CM/y	vr)	(N	1CM/y	/r)	(N	1CM/y	vr)	(N	ACM/y	r)
ivanic	(KIII)	2015	2025	2035	2015	2025	2035	2015	2025	2035	2015	2025	2035	2015	2025	2035
Biharamulo	1,876	534	534	534	28	28	28	10	18	20	194	190	126	331	326	388
Eastern shore	6,677	587	587	587	107	107	107	49	74	78	300	318	294	238	196	214
Grumeti	12,856	323	323	323	166	166	166	24	58	116	207	212	187	92	53	20
Isanga	7,081	854	854	854	100	100	100	28	73	133	238	248	217	588	533	504
L.V. Islands	1,407	124	124	124	28	28	28	15	23	24	116	119	115	-8	-19	-15
Lower Kagera	19,341	2,436	2,436	2,436	327	327	327	80	157	222	1,830	1,829	1,228	527	450	986
Magogo-Moame	5,401	284	284	284	77	77	77	73	122	136	272	271	235	-61	-109	-87
Mara	5,277	463	463	463	92	92	92	14	35	68	133	139	114	316	289	281
Mbalageti	3,537	136	136	136	46	46	46	8	18	36	95	94	79	33	23	21
Nyashishi	1,689	41	41	41	26	26	26	43	67	68	41	41	41	-43	-67	-68
Simiyu	11,095	1,234	1,234	1,234	170	170	170	38	81	146	453	445	359	743	707	729
Southern shore	8,749	722	722	722	143	143	143	75	135	195	459	500	482	188	87	46
Western shore	644	701	701	701	17	17	17	1	2	3	63	61	37	637	638	661

 Table 3.5.3
 Annual Water Balance by Sub-basin for Lake Victoria Basin

Source: Prepared by JICA Project Team based on the LVBC study report

(d) Lake Nyasa Basin

As seen in the result of annual water balance presented in Table 3.5.4, the Muchuchuma sub-basin will have annual deficit in 2025 and 2035. Although the Lake Nyasa IWRMDP study report also points out this situation, it does not clearly mention any interventions. According to the inventory survey conducted in the NIMP2018 for the purpose of updating the irrigation database, there is no existing scheme in the sub-basin. Irrigation development is less expected even in the future. Therefore, as with the case of the above Pangani River sub-

basin, it is recommended to reduce the irrigation water use for 2025 and 2035 to 96% and 89% of 2015-based irrigation water demand, respectively, based on the monthly calculation in the following sub-section 3.5.2.

Sub-basin			SW			GW		E)eman	d		EFR		SW-	EFR -	Dem
Sub-basin Namo	Area (km ²)	()	1CM/y	vr)	(N	1CM/y	/r)	(N	1CM/y	yr)	(N	1CM/y	/r)	(N	/ICM/y	r)
Traine	(KIII)	2015	2025	2035	2015	2025	2035	2015	2025	2035	2015	2025	2035	2015	2025	2035
Songwe	2,479	975	954	938	10	10	9	51	68	91	430	454	473	494	431	374
Kiwira	1,887	1,659	1,635	1,613	8	7	7	16	21	27	409	463	517	1,234	1,150	1,069
Mbaka	746	909	899	890	3	3	3	75	275	500	271	310	348	563	315	42
Lufilyo	1,012	1,033	1,022	1,010	5	4	4	54	77	102	357	353	395	622	592	513
Rumakali	684	758	752	743	3	3	3	1	1	1	228	261	293	530	490	449
Lumbira	2,153	928	917	909	9	8	8	2	2	3	452	446	442	474	468	464
Nkiwe	1,880	656	651	645	7	7	7	2	2	2	256	254	283	399	395	360
Ruhuhu	14,210	4,516	4,467	4,465	51	48	46	52	101	155	1,512	1,723	1,951	2,952	2,644	2,359
Muchuchuma	670	143	141	141	3	3	3	93	100	107	47	53	59	3	-12	-26
Mbawa	1,873	611	603	605	8	8	7	20	22	24	201	227	257	390	354	325

 Table 3.5.4
 Annual Water Balance by Sub-basin for Lake Nyasa Basin

Source: Prepared by JICA Project Team based on the Lake Nyasa IWRMDP study report

(3) Determined Water Allocation for Irrigation

As a result of the 3rd step process of Figure 3.1.1, monthly water resources for irrigation use by subbasin have been determined. The allocated irrigation water is summarized in Table 3.5.5 by basin and Figure 3.5.1 by sub-basin. The NIMP2018 will utilize these figures for planning irrigation development.

Basin	Original Ir	rigation Wa (MCM/yr)	ter Demand	Determine [To be	ed Water for used for NIM (MCM/yr)	Irrigation IP2018]	Remarks
	2015	2025	2035	2015	2025	2035	
Pangani	2,657	2,959	3,110	2,657	2,724	2,234	Changed from IWRMDP
Wami / Ruvu	656	993	1,268	656	993	1,268	
Rufiji	4,905	5,504	7,619	4,905	5,504	7,619	
Ruvuma	254	568	1,056	254	568	1,056	
Lake Nyasa	309	606	938	309	595	913	Changed from IWRMDP
Lake Rukwa	532	832	1,164	532	832	1,164	
Lake Tanganyika	273	578	986	273	578	986	
Lake Victoria	163	430	772	163	430	772	
Internal Drainage	561	869	1,177	561	869	1,177	
Total	10,309	13,338	18,091	10,309	13,092	17,190	

Table 3.5.5Annual Irrigation Water by Basin by Target Year

Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports

Figure 3.5.1 Allocated Water for Irrigation by Sub-basin

The monthly data by sub-basin is presented in Attachment 3. Monthly allocation of irrigation water for the Ruvuma and Lake Victoria basins are determined based on cropping patterns proposed by the NIMP2018 because only annual irrigation water is presented in the previous study reports for those basins.

3.5.2 Potential Water for Irrigation

(1) Purpose of Estimating Potential Water for Irrigation

The above-mentioned allocated water on a monthly and sub-basin basis for the target year of 2035 is to be used in formulating an irrigation development plan in the NIMP2018. On the other hand, the NIMP2018 Project Team is requested to present the potential of further irrigation development under the assumption that surplus water resources are fully used for irrigation. Thus, the purpose of estimating potential water for irrigation is to grasp the irrigation potential areas from the perspective of limitation of water resources.

(2) Handling of Potential Water for Irrigation

The potential water to be estimated in this sub-section shall be basically treated as reference in the NIMP2018 for understanding the future potential of further irrigation development that will be incorporated into the plan after 2035. The potential water is defined as water resources remained unused in the existing water resources plans by 2035. The potential water comprises two forms, namely i) water exceeding environmental flow requirement among unused surface water flowing into sea or transboundary lakes, and ii) groundwater remained unused. It can be used not only for irrigation but also for the other sectors. Although the potential water is not basically used for irrigation development plan to be proposed in the NIMP2018, it may be partially used if the necessity of additional water use exceeding the allocated water arises.

(3) Approach for Estimating Potential Water for Irrigation

(a) Basic Data to be Used for Calculation

The following data that were compiled and/or estimated based on the IWRMDP and LVBC reports as well as provided by the MoWI are used in water balance calculation. All the data here are 2035 basis.

- Monthly water resources (surface water and groundwater) by sub-basin
- Monthly water demand and monthly environmental flow requirement (EFR) by sub-basin
- · Storage capacities of the existing reservoirs and planned reservoirs proposed by IWRMDPs

(b) Key Considerations in Calculating Water Balance

Basic rules of how to supply water to each demand sector are considered as follows:

- The EFR needs to be secured only by surface water. This means that the potential water is not computed from a simple addition and subtraction method by sub-basin such as "surface water + groundwater – water demand – environmental flow".
- The water demand is divided into "irrigation" demand and "the other" demands in advance. Groundwater is used only for "the other" demands in the calculation. The "irrigation" here indicates the allocated water for irrigation, which was determined in the sub-section 3.5.1.
- Although balance calculation is made basically by sub-basin, the surface water resources generated but unused in upper sub-basins can be used in lower sub-basins. Among all the 71 sub-basins, only 8 sub-basins have flow to downstream sub-basins.

(c) Procedure of Water Balance Calculation

Step-wise procedures of calculation are listed as follows:

- At first, all water demands including EFR are deducted from surface water.
- If the demands are not satisfied only with the surface water, groundwater is added up to a ceiling of "the other" demands or sustainable yield of groundwater, whichever is smaller.
- If monthly water balance in a lower sub-basin is below zero and the deficit is recoverable by the remaining surface water of upper sub-basin, the surface water is properly accommodated.
- If monthly deficits still remain, water resources management and development using appropriate storage facilities must have been proposed in the IWRMDPs. Therefore, the thing to do here is to confirm whether the deficit volume is roughly covered by the existing and planned reservoir capacities.
- If the annual balance in a certain sub-basin is below zero, potential water for further irrigation development in the sub-basin is set at zero through the year. If the monthly balance in a certain sub-basin is below zero, potential water in the sub-basin is set at zero in the month.
- Finally, surplus water resources that are remained as plus in the balance calculation are estimated dividing into surface water and groundwater.

(d) Output to be Yielded from the Calculation

From the above computation, the following water resources are regarded as potential water available for further irrigation development:

- Monthly water exceeding EFR among unused surface water flowing into sea or transboundary lakes
- Monthly groundwater remained unused for "the other" demands

(4) Monthly Water Deficit to be Managed

The water deficits computed on a monthly and sub-basin basis are summarized into an annual and basin basis as presented in Table 3.5.6 together with the reservoir capacity of existing and planned dams.

Obviously, this is a rough computation at both demand and supply sides. The estimated deficit may not include the localized short-term water shortages especially during peak irrigation periods. On the other hand, some of small reservoirs or water pans may not be counted in the reservoir capacity. Although the computation has such accuracy limitation, this clause gives comparison of the both sides for the purpose of confirming whether the monthly water deficit is managed by water supply from the reservoirs.

As seen in the table, the total of monthly water deficit for 2035 is not manageable in the Pangani, Rufiji and Lake Victoria basins. The reasons for the Pangani and Lake Victoria basins are because future storage facilities have not been proposed. The situation of Rufiji basin would be improved if EFR is reviewed and appropriately modified particularly for the Kilombero sub-basin where the percentage of EFR to surface water account for 57% in the current IWRMDP. The MoWI also consider there is room for further review in terms of EFR for the Rufiji basin.

Basin	Total o basin D	f Monthl eficit (M	ly Sub- CM/yr)	Rese	rvoir Cap (MCM)	oacity	Result of Comparison	Remarks
Code	2015	2025	2035	Total	Existing	Planned	for 2035	
PG	357	607	497	49	49	0	Insufficient	IWRMDP has not been formulated.
WR	18	163	398	539	41	498	Sufficient	
RF	25	95	1,113	290	80	210	Insufficient	EFR need to be reviewed.
RV	17	82	226	377	19	358	Sufficient	
LN	19	60	177	6,200	0	6,200	Sufficient	Kikonge dam will be used for HPP as well.
LR	67	87	150	762	0	762	Sufficient	
LT	0	0	5	50	50	0	Sufficient	
LV	81	174	208	78	78	0	Insufficient	IWRMDP has not been formulated.
ID	163	280	477	802	108	694	Sufficient	

 Table 3.5.6
 Comparison of Monthly Water Deficit and Reservoir Capacity

Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports

(5) Estimated Potential Water for Irrigation

The computation was made on a monthly and sub-basin basis. The result of estimating the potential water for irrigation is summarized into annual data and presented in Table 3.5.7 by basin and Figure 3.5.2 by sub-basin. The monthly data by sub-basin is presented in Attachment 5.

Table 3.5.7Estimated Potential Water for Irrigation by Basin for 2035

				0	l l		
Desin	Catchment Area	Potential Su	rface Water	Potential G	roundwater	Potential	SW+GW
Dasin	(km ²)	(MCM/yr)	(mm/yr)	(MCM/yr)	(mm/yr)	(MCM/yr)	(mm/yr)
Pangani	59,102	1,097	19	220	4	1,317	22
Wami / Ruvu	66,295	2,731	41	775	12	3,505	53
Rufiji	183,791	11,485	62	8,548	47	20,032	109
Ruvuma	105,582	5,866	56	3,173	30	9,039	86
Lake Nyasa	27,594	5,957	216	103	4	6,060	220
Lake Rukwa	74,965	7,063	94	2,083	28	9,146	122
Lake Tanganyika	149,500	5,168	35	2,091	14	7,259	49
Lake Victoria	85,630	3,998	47	1,009	12	5,007	58
Internal Drainage	143,100	2,112	15	510	4	2,622	18
Total	895,559	45,477	51	18,511	21	63,988	71

Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports

Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports **Figure 3.5.2 Estimated Potential Water for Irrigation by Sub-basin for 2035**

(6) Consideration for Utilizing the Potential Water

Due to the limitation of computation accuracy as well as extreme calculation conditions, it must be noted that the estimated potential water is not completely utilized for irrigation purpose realistically. Besides, careful attentions should be paid particularly to the following matters in incorporating the potential water into irrigation development plan.

- Assuming that the water storage facilities proposed in the IWRMDPs can cover only the water demand projected for the year 2035, additional irrigation areas shall be examined based on monthly water resources without storage effect. If favorable dam site for additional water storage is found in the future, storage effect will be able to be considered.
- Increase in water demands for the sectors other than irrigation after 2035 have not been considered in estimating the above potential water. If the estimated potential water is used for irrigation water use planning after 2035, it is necessary to take into account the increase in water demands for the other sectors as well.
- When the potential surface water flows from upper sub-basin to lower sub-basin, the surface water resources can be withdrawn at either sub-basin.
- Groundwater was used only for the sectors other than irrigation in the above computation. On the other hand, the estimated potential groundwater could be fully used for irrigation, in theory. It is necessary to study whether the groundwater use for irrigation purpose is feasible or not.

3.6 Supplemental Study on Reliability of Water Utilization

(1) **Purpose and Characterization of the Study**

As mentioned in the section 2.6 above, the water resources plans of most basins were formulated without adequate attention to reliability of water utilization, while not necessarily incorrect. In this regard, the purpose of this supplemental study it to assess how the mean values of long-term runoff data are different from drought runoff data with various return periods. This section will provide an example of quick hydrological assessment from the viewpoints of rainfall and river discharge. In that sense, this supplemental study is characterized only as a reference.

(2) Long-term Rainfall Analysis for Considering Return Periods

In order to assess water resources in probable drought year, long-term rainfall analysis was made by using reanalysis dataset of 30 years. After comparing several dataset of historical rainfall in terms of usability and applicability to Tanzania, the CGIAR-CSI²² dataset²³ was initially analyzed. The results are summarized in Figure 3.6.1 below. It was found that annual rainfall of 1/5-yr drought is almost 83% to 92% of mean annual rainfall (average of 30 years).

Source: JICA Project Team based on CRU-TS v3.10.01 Historic Climate Database (1980-2009) provided by CGIAR-CSI **Figure 3.6.1** Annual Rainfall of Each Probable Drought Year by Basin (CGIAR-CSI)

In addition, the CHIRPS-CHG²⁴ dataset²⁵ was also analyzed in the same way. The results are summarized in Figure 3.6.2 below. It was found that annual rainfall of 1/5-yr drought is almost 84% to 91% of mean annual rainfall (average of 30 years).

Figure 3.6.2 Annual Rainfall of Each Probable Drought Year by Basin (CHIRPS-CHG)

From the both above analyses, it may be said that annual rainfall of 1/5-yr probable drought correspond to almost 80% of long-term mean rainfall even though regional distribution of rainfall height is different depending on the dataset.

(3) Long-term Discharge Analysis for Considering Return Periods

In order to more appropriately assess water resources, long-term discharge analysis is better than rainfall analysis. The problem is that discharge data is less accessible than rainfall data. JICA Project Team decided to utilize well-organized discharge data, which is provided by an international institution in the form of mean monthly discharge.

²⁵ CHIRPS is a 30+ year quasi-global rainfall dataset. CHIRPS incorporates 0.05° resolution satellite imagery with in-situ station data to create gridded rainfall time series for trend analysis and seasonal drought monitoring.

²² Consultative Group on International Agricultural Research (CGIAR) - Consortium for Spatial Information (CSI)

²³ University of East Anglia (UEA)'s CRU-TS is one of the most widely used historical climate database. To help facilitate the use of this database, CGIAR-CSI have converted the raw data into the ESRI ASCII raster format.

²⁴ Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) - Climate Hazards Group (CHG)

The database of GRDC²⁶ provides river discharge data at 97 monitoring stations covering all the nine basins in the mainland of Tanzania. The data of 97 stations cover a little bit old years between 1940 and 1991. The number of years of available data is summarized in Figure 3.6.3. As seen in the figure, 74 stations have relatively long-term data of 10 years or more.

Source: JICA Project Team based on discharge data provided by GRDC **Figure 3.6.3** Numbers of Years of Available Discharge Data

Out of the obtained 97 stations, anomalous or inappropriate data need to be excluded from the analysis. Thus, stations that fail to fulfill the following three conditions were removed.

- i) There are mean annual discharge data for 10 years or more.
- ii) The minimum mean monthly discharge in the past is more than $zero^{27}$.
- iii) Long-term average runoff height does not exceed long-term average rainfall height.

As a result, only 37 stations were used for the analysis. Based on the long-term annual mean discharge at the selected 37 stations, annual mean discharge of 1/5-yr probable drought were computed. The relation between the 1/5-yr drought discharge and long-term average discharge is presented in Figure 3.6.4 (a). Besides, the ratios of the 1/5-yr drought discharge to the long-term average discharge at the respective 37 stations were calculated from Figure 3.6.4 (a) as shown in Figure 3.6.4 (b).

As seen in Figure 3.6.4 (b), the ratios range from 32% to 84% with an average of 67%. In other words, annual mean discharge of 1/5-yr probable drought may correspond to almost 67% of long-term average of annual mean discharge. This result is considered reasonable because decrease ratio of discharge is generally larger than that of rainfall when comparing normal year and drought year.

Source: Prepared by JICA Project Team based on discharge data provided by GRDC Figure 3.6.4 Result of Long-term Discharge Analysis

²⁶ The Global Runoff Data Centre (GRDC) is an international data centre operating under the auspices of the World Meteorological Organization (WMO).

²⁷ In a river that dry up for one month or more, it often happens that river water level and/or discharge is not accurately measured.

However, it must be noted that runoff characteristics, which are generally influenced by topography, hydrometeorology, hydrogeology, land use, etc., are different depending on the river basin, although neighboring basins have a similar trend. For this reason, the ratio of drought discharge to average discharge must be essentially different by river basin. Therefore, the above-calculated ratio is not able to be used simply for multiplication in assessing water resources. It is only a reference value.

Chapter 4 Recommendations to MoWI

4.1 Recommendations toward Implementing the NIMP2018

(1) Steady Implementation of IWRMDPs

The NIMP2018 is formulated on the premise that the IWRMDPs are fully implemented by 2035. Therefore, in order to implement the irrigation development plan proposed by the NIMP2018, the MoWI is supposed to implement the water resources management and development plans as scheduled.

(2) Early Formulation of the Remaining IWRMDPs

In parallel with the implementation of the previously formulated IWRMDPs, early formulation of IWRMDPs for the Pangani, Wami/Ruvu and Lake Victoria basins is required. If water resources to be allocated for irrigation within these basins are largely changed from that of the NIMP2018, the MoWI needs to discuss with NIRC based on technical justification. Furthermore, development plans of water storage facilities need to be appropriately incorporated into the IWRMDPs for the Pangani and Lake Victoria basins in order to ensure irrigation water to be supplied to the irrigation areas proposed by the NIMP2018.

(3) Review of EFR for Rufiji Basin

Although the Rufiji basin has plenty of surface water, monthly water deficit may not be covered by storage facilities in the dry season if the environmental flow requirement (EFR) estimated in the basin's IWRMDP is fully secured particularly for the Kilombero sub-basin.

NAWAPO 2002 provides the second priority in water allocation to EFR followed by basic human needs. However, it is less-than-reasonable to construct water storage facilities for the purpose of securing the EFR from the perspective that practical and feasible water resources development plan need to be formulated. In this regards, it is recommended to allocate appropriate water resources to EFR considering the actual river flow.

(4) Necessary Actions for Transboundary Water Use

The NIMP2018 include some irrigation schemes that may require water use from transboundary lakes. And there is a possibility of implementing these schemes depending on the result of F/S. Accordingly, the MoWI will be required to take necessary actions for coordinating with surrounding countries directly and/or through NBI's²⁸ facilitation.

4.2 Recommendations for Better Water Resources Management

(1) Accumulation of Hydrological Data

Reliable and long-term hydrological data is essential for formulating appropriate water resources management and development plans. It is strongly recommended to accumulate hydrological data for

²⁸ The Nile Basin Initiative (NBI) is an intergovernmental partnership of 10 Nile Basin countries. NBI provides the first and only allinclusive platform for the Basin States to discuss how to collectively take care of and jointly use the shared Nile Basin water and related resources.

conducting more precise studies at subsequent implementation stages as well as updating the IWRMDPs in the future.

Although data management can be practiced at a basin level by the respective BWOs, it is desirable to standardize a monitoring system, a data quality checking method, a database format, etc. among all the nine basins.

(2) Consideration of Reliability of Water Utilization

Understanding the reliability of water utilization is quite important in considering the necessity of newly developing water resources. If an occasion to improve the reliability of water utilization arises, it is recommended to incorporate the concept of reliability of water utilization into the water resources development plans in the course of updating the IWRMDPs in the future.

(3) Collection of Water Fee

There are many non-approved water uses and therefore the water used in that manner is not properly billed. In order for BWOs to secure the funds required for performing their functions, BWOs should collect water fee from those water users as well. It will be important to increase income for enhancing financial autonomy of BWOs by 2025.

No.	Basin Code	Sub-basin Name	Dam Name	Reservoir Capacity (MCM)	Source	Remarks
1			Dabalo	0.91		
2			Hombolo	5.7		Heightening of
3			Buigili	0.15		Existing Dyke
4		Kinyasungwa	Ikowa	0.7		
5		Rinyusungwe	Msagali	6.31		
6			Ngipa	2.03		
7			Ngomai	1.02		
8			Farkwa	34.39		
9			llonga	1.07		
10		Mkondoa	Wami	42	Final Report Summary	
11	WR	Mitoriada	Kisangata	52	Table 4.3	
12			Tami	32		New Construction
13		Wami	Mvomelo	4.46		
14			Dihinda	3.75		
15			Ruvu Kibungo	28		
16			Mvuha	30		
17		Upper Ruvu	Mungazi	23		
18			Mgeta	28		
19			Kidunda	191		
20		Ngerengere	Mindu	4		Heightening
21		ingereingere	Morogoro	8		New Construction
22			Lukosi	-	Final Report Vol I	
23	RF	Great Ruaha	Ndembera / Lugoda	210	Appendix 1	
24			Little Ruaha	-		
25		Lower Middle	Malombe Hills	6.5		
26		Ruvuma	Ruanda	33		
27			Chingulun- gulu	14		
28		Lower Ruvuma	Mahinyo Hills	42		
29			Makanyama	4.5		
30			Sindano	3.8		
31			Mtua	15.2		
32			Nanjirinji	16.7	Final Report, Comp.4.	
33	RV	Mbwemkuru	Mitonono	76.5	Table 6.13	
34			Singira	16		
35			Mbondo	27.5		
36		Mavuji	Mbiliwia	24		
37			Miguruwe	5.4		
38			Muninje	44		
39		Matandu	Mtumbei	6		
40				1.2		
41		Dububu		16	DEMD2010 Table 2.5 (1)	
42	LIN	Rununu	Kikonge Sitelike weterehed	6200	FSIVIP2016, Table 3-5 (1)	
43		Katuraa	Sitalike watershed (site 22, antion 2)	18	FR, VOLI, Section 7.3	
44		Katuma	Usevya watersned (site 23, option 3)	44.3	FR, VOLII(a), Table 4.4	
45			Calula watershed (site 21, antian 5)	25.1	FR, VOLI, Section 7.3	
40			Galua watershed (site 31, option 5)	103	FR, VOLII(D), Table 4.5	
47	LR	Songwe River	Songwo Eastern watershed (eite 2)	30.9	FR, VOLL Section 7.3	
40			Within Momba Sub basin	31.3	FR, Vol.I, Section 7.3	
49		Momba	Out of Momba Sub basin	2.J	EP Vol II(c) Table 4.2	┟────┤
50		Luiche Pivor		404.0	FP Vol II(d) Section 4.2.1	
51			Option 2	38.8 7 0	FR Vol II(a) Section 4.2.1	┟────┤
52		Muze	Earlewa	105	FR, V0I.II(e), Section 4.2.1	For Dodomo
53			Mbwasa	190		FUI DOUOITIA
55		Bahi Swamp	Mianii	7	Final Report, Vol.6, Table	
55		Dani Swamp	Maanda	25	5.4	For Bahi
57			Dame in couth of Rabi Swamp	25		
57			Dudumoro	225.4		Fax Laka
50			Kolo	10	Final Report Val & Table	FUI Lake Manyara Monduli
60		Lake Manyara	Makuvuni	10 25 4		A Monduli R and
61			Small dams in Monduli	20.4	0.0	Masai Stenne
62	ID			1		musu oteppe
62		_ake Natron	Munik	0.0	Final Poport Val & Table	For Loko Notron
64			Namanga	0.0		and Namanda
65		Namanga	Namanga small dame	0.330	0.12	anu Namanya
20			launaa Dame	21		
67			Nzega Dame	7/	1	
10		l aka Evasi	Shinyanga Dame	1.4 20 0	Final Report, Vol.6, Table	For Lake Eyasi
60		Lake Eyasi	Manonga 1 Dam	30.0	5.16	and Olduvai
09		1	Inanonya i Dalli	30	1	1 1

 OS
 Indultinga i Dam
 S0

 70
 Manonga 2 Dam
 50

 Note:
 Proposed dams are not found from the IWRMDP reports for the Pangani, Tanganyika and Lake Nyasa basins.

 Source:
 IWRMDP reports, Power Supply Master Plan (PSMP) 2016

Attachment 1: List of Planned Dams

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Attachn	chment 2: Surface Water (MCM/month) and Sustainable Yield of Groundwater (MCM/yr) by Sub-basin in 2035 sin Sub-basin Name Area SW de Sub-basin Name Implementation of the second state o															
Basin Code	Sub-basin Name	Area (km ²)	Jan	Feb	Mar	Apr	Mav	Jun	<u>SW</u> Jul	Aua	Sep	Oct	Nov	Dec	Total	GW
	Pangani River	43,652	206	175	430	612	462	284	212	176	150	195	311	310	3,524	466
PG	Umba	8,205	19	40	62	48	25	21	19	19	29	93	164	73	611	71
10	Msangazi	5,085	39	47	142	80	37	22	14	10	37	35	36	44	543	31
	Zigi-Mkulumuzi	2,159	15	15	59	89	59	33	26	23	25	32	27	20	422	18
	Kinyasungwe	16,509	37	27	36	49	35	17	14	12	10	10	16	26	289	129
	Wami	12,964	110	48	130	1/5	203	04 74	30	22	22	24	63	101	1 /08	1/9
WR	Upper Ruvu	7 623	156	146	234	525	432	155	92	67	68	62	111	203	2 252	103
vvix	Ngerengere	2.913	13	140	11	35	39	12	5	3	2	2	10	12	156	27
	Lower Ruvu	7,253	50	-36	-28	-8	28	18	-4	-9	-21	-15	47	32	54	283
	Coast	4,763	33	-24	-18	-6	18	12	-3	-6	-13	-10	31	21	35	250
	Great Ruaha	85,554	925	1,361	1,540	1,506	887	392	263	183	160	149	259	494	8,118	1,795
RF	Kilombero	40,330	1,054	1,678	2,401	3,075	2,569	1,586	1,033	658	492	395	391	603	15,935	2,359
	Luwegu	25,288	557	936	1,645	2,151	1,696	1,012	531	304	218	165	202	294	9,711	2,079
	Lower Rufiji	32,619	323	320	1,205	1,452	1,112	045 215	394	247	105	153	184	300	2,285	2,789
	Likonde	8 782	369	320	648	438	200	159	120	95	70	55	50	140	2,070	203
	Upper Middle Ruvuma	9.550	280	307	325	172	100	79	64	49	36	26	28	128	1.594	298
	Lower Middle Ruvuma	15,155	364	395	377	149	53	44	35	26	18	13	18	149	1,640	356
DV	Lower Ruvuma	10,737	91	91	127	86	56	46	30	20	10	7	5	66	635	349
RV	Mambi	5,258	35	39	86	82	46	30	19	11	7	4	3	29	391	273
	Lukuledi	6,848	52	58	99	91	66	41	25	15	8	4	3	20	483	219
	Mbwemkuru	18,636	95	109	173	166	115	75	47	27	14	6	5	48	880	472
	Mavuji	4,928	10	12	27	42	30	18	12	7	4	2	2	12	177	246
	Matandu	17,360	42	57	91	126	97	65	41	24	13	/	6	39	606	4/2
	Songwe	2,479	100	104	130	130	98	110	<u>62</u>	49	43	38	43	12	938	10
	Niwila Mhaka	1,007	56	120	197	205	10/	105	90 57	79	22	20	22	36	1,013	0
	Lufilvo	1 012	86	96	148	190	164	91	61	42	28	20	28	47	1 010	5
	Rumakali	684	90	90	139	145	94	43	28	18	12	12	18	53	743	3
LN	Lumbira	2,153	107	103	109	97	88	72	64	54	44	40	46	84	909	9
	Nkiwe	1,880	71	68	75	68	63	52	46	39	32	30	39	61	645	7
	Ruhuhu	14,210	433	433	742	866	514	298	271	217	162	135	135	257	4,465	51
	Muchuchuma	670	16	15	17	15	14	12	10	9	7	6	8	13	141	3
	Mbawa	1,873	67	62	69	62	56	48	42	37	30	32	42	60	605	8
	Katuma	15,802	137	148	224	339	289	111	23	6	1	3	10	63	1,353	581
	Nomba	11,284	254	219	395	351	130	165	62	20	10	25	11	58 152	1,575	370
IR	Songwe River	10,800	330	605	703	402	418	149	93	43	64	78	47	249	2,300	261
	Luiche River	838	13	15	20	17	10	5	3	2	1	1	1	7	95	201
	Muze	354	8	7	10	42	35	1	1	1	1	0	3	8	116	9
	Rungwa	21,640	424	707	858	635	617	230	109	81	65	80	100	293	4,198	487
	Malagarasi	67,100	171	287	348	466	519	390	204	99	49	32	37	97	2,698	1,717
	Ugalla	54,000	65	109	132	177	197	148	77	38	19	12	14	37	1,026	496
. –	Ruchugi	3,200	32	54	65	87	97	73	38	19	9	6	7	18	506	203
LT	Luiche	2,600	74	77	95	125	86	40	28	23	20	25	48	76	718	88
	Lugutu	4,500	122	150	202	211	121	64	39	28	19	1/	39	93	1,107	98
	Luegele Other Rivers	16 700	40	49 840	1 100	09	240	68	30	9 20	10	10	20	105	4 058	1/1
	Biharamulo	1.876	49	45	76	92	43	3	2	20	22	54	81	58	534	28
	Eastern shore streams	6,677	44	39	84	106	68	18	8	14	25	46	74	62	587	107
	Grumeti	12,856	25	27	33	50	40	23	14	14	15	17	34	29	323	166
	Isanga	7,081	88	105	133	180	114	48	24	15	12	11	43	81	854	100
	Lake Victoria Islands	1,407	9	8	18	22	14	4	2	3	5	10	16	13	124	28
	Lower Kagera	19,341	182	182	213	235	261	240	229	203	176	171	167	176	2,436	327
LV	Magogo-Moame	5,401	29	35	44	60	38	16	8	5	4	4	14	27	284	//
	Malagoti	3,277	30	39	48	12	28	33	19	20	22	24	49	42	403	92
	Nyashishi	1 689	5	4	21	29	10	0	4	2	1	23	6	6	41	26
	Simivu	11.095	127	151	192	259	165	70	35	22	17	16	62	117	1.234	170
	Southern shore streams	8.749	74	63	102	121	49	4	1	12	27	75	103	91	722	143
	Western shore streams	644	49	46	83	117	105	21	15	23	35	62	76	69	701	17
	Lake Eyasi	64,545	308	165	366	792	5	0	0	0	0	1	40	340	2,017	224
	Monduli - A	4,115	14	6	15	28	0	0	0	0	0	0	5	16	85	6
	Monduli - B	1,385	2	4	9	12	4	0	0	0	0	0	0	2	33	1
	Lake Manyara	18,491	135	30	204	417	9	0	0	0	0	0	0	149	944	169
D	Lake Natron	8,658	58	72	109	236	98	0	0	0	0	0	9	27	609	400
	Olduval Rohi Swomn	4,5//	270	122	23	30	4	0	0	0	0	0	0	27	104	23
	Dalii Swallip Masai Stenne	∠0,445 0 312	2/8	132	214	97	0	0	0	0	0	0	3	220	944	35 1.0
	Namanga	5.570	3	0	9 22	59	13	0	0	0	0	0	0	0	96	10
a	Duran and has UCA Durai and T	ann hace	d on th				atu du r			5				5		

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Basin Order Sub-basin Name Are in the interval in the interval in duil Augi Seg Cet I feet interval inter	Attachn	nent 3: Water Allocatio	n for Iri	rigatio	n (MC	CM/mo	onth) a	and th	e Othe	er Sec	tors (N	/ICM/	yr) by	Sub-	basin i	n 2035	
Coop Design River 4.00 Mile Aud Nucl. Aud Nucl. Nucl. <th< td=""><td>Basin</td><td>Sub-basin Name</td><td>Area</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>Irrigati</td><td>on</td><td>0</td><td><u> </u></td><td></td><td></td><td><u> </u></td><td>Other</td></th<>	Basin	Sub-basin Name	Area				•			Irrigati	on	0	<u> </u>			<u> </u>	Other
PG Imba Integrat 5.9.205 3.1 1.6 1.2 1.0 1.2 1.0 1.2 1.0 <	Code	Pangani Piyor	(KM ²)	Jan 51	Feb 72	Mar	Apr	May	Jun	Jul	Aug 54	Sep	<u>200</u>	Nov 220	Dec	1 ofal	Sectors
PG Misangazi 5,085 7 10 13 8 7 7 3 1 4 6 6 4 7 6 28 1 27 65 28 1 27 65 28 1 27 65 1 27 65 28 8 0 0 42 1 27 65 1 1 6 6 6 1 <t< td=""><td></td><td>Umba</td><td>8.205</td><td>14</td><td>18</td><td>27</td><td>18</td><td>17</td><td>17</td><td>7</td><td>2</td><td>8</td><td>14</td><td>13</td><td>10</td><td>1,300</td><td>25</td></t<>		Umba	8.205	14	18	27	18	17	17	7	2	8	14	13	10	1,300	25
Exp-Makutamuz 2,168 3 3 3 1 0 1 2 2 1 7 7 Kingsonge 16,059 20 43 61 62 8 8 0 0 247 25 War Upper Ruvu 7,652 31 27 23 10 16 0 3 4 4 0 0 121 6 Upper Ruvu 7,652 31 27 23 10 16 0 16 10 0	PG	Msangazi	5,085	7	10	13	8	7	7	3	1	4	6	6	4	76	26
Kinyasungwe 16.609 20 43 61 62 73 74 75 74 75 75 74 75		Zigi-Mkulumuzi	2,159	3	4	5	3	3	3	1	0	1	2	2	1	27	50
Wondoa 12,864 128 116 106 27 72 0 3 4 6 6 1 0 227 220 WR Upper Ruor 7,662 31 22 23 10 16 0 33 4 4 0 <td></td> <td>Kinyasungwe</td> <td>16,509</td> <td>20</td> <td>43</td> <td>61</td> <td>52</td> <td>39</td> <td>0</td> <td>4</td> <td>5</td> <td>8</td> <td>8</td> <td>0</td> <td>0</td> <td>240</td> <td>39</td>		Kinyasungwe	16,509	20	43	61	52	39	0	4	5	8	8	0	0	240	39
WR Upper Ruyu 14.2(2) 39 32 28 12 20 16 16 16 17 10 0 10 0 10 0 10 0 10 0 10 0 0 11 10 0 10 0 0 11 10 0 10 0 0 0 11 10 0 0 0 10 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 15 15 15 18 15 15 15 15 15 15 15 15 17 18 15 15 15 17 18 15 15 15 15 15 15 15 15 15 16 17 1 10 10 10 11 11 11 11 11 11		Mkondoa	12,964	126	116	105	47	72	0	3	4	6	6	1	0	487	15
Vint Opbler Roval 2.626 34 24 25 10 15 0 35 3 4 10 121 55 Coast Rouha 4.725 141 13 8 4 5 1 17 6 8 6 1 0		Wami	14,270	36	32	28	12	20	0	14	16	25	25	19	0	227	20
Lower Ruou 7/253 22 17 12 5 9 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 11 10 11 10 10 11 10 10 11 10 10 11 10 10 10 11 10 10 10 11 10 10 10 10 10	WK	Upper Ruvu Ngerengere	2 013	31	21	23	10	2	0	3	3	4	4	0	0	121	67
Ceast 4.763 14 13 8 4 5 1 7 6 8 6 1 0 72 773 RF Kiambero 40,330 7 4 6 6 353 343 354 343 6 2.475 158 Lower Rufii 32,619 81 73 2 109 199 218 221 208 167 11 0.56 6 2 4 2 8 6 7 160 25 Licorde 8.782 9 8 2 5 2 4 2 8 6 7 160 25 2 3 3 5 3 4 45 16 11 1		Lower Ruvu	7.253	22	17	12	5	9	0	11	9	11	10	0	0	105	13
RF Circat Ruaha 85,54 443 3.90 371 356 345 355		Coast	4,763	14	13	8	4	5	1	7	6	8	6	1	0	72	773
RF Kilombero 40,330 7 4 6 5 353 343 354 343 6 2,475 156 Lower Ruliji 32,619 61 73 2 109 199 218 221 207 208 157 11 155 56 6 2 2 2 2 2 2 2 2 2 2 3 3 5 3 8 7 16 6 2 2 3 3 5 3 8 4 4 2 2 3 4 2 2 3 4 2 2 3 4 16 11 16 11 17 16 11 16 11 17 16 11 16 11 12 14 16 11 12 14 16 11 12 14 16 11 12 14 16 11 12 14		Great Ruaha	85,554	443	399	371	356	348	115	162	162	156	168	388	433	3,502	187
Livesgu 22,288 11 9 11 10 11 10 11 0 0 0 0 0 11 155 66 Lower Ruljii 32,619 81 73 2 20 109 192 22 22 24 2 8 6 7 160 25 Licord Mode Ruuma 8,782 9 8 2 5 3 0 1 2 2 3 2 16 6 5 6 6 6 7 9 4 3 5 6 14 14 2 2 3 1	RF	Kilombero	40,330	7	4	6	5	353	343	355	355	343	354	343	6	2,475	196
Lover Hulli 32,019 61 73 22 21 20 20 20 20 20 20 20 20 20 20 20 20 20		Luwegu	25,288	11	9	11	10	11	10	11	0	0	0	0	11	85	96
Lixide Ruuma 9,250 9, 40 40 12 12 14 4 2 2 3 4 4 42 9 1 7 14 14 12 14 44 14 14 14 14 14 14 14 14 14 14 14		Lower Rufiji	32,619	81	/3	2 11	26	109	199	218	221	207	208	157	81	1,558	91
Upper Middle Ruvuma 9:550 6 5 1 4 2 2 3 4 2 6 5 54 14 13 Lower Ruvuma 10:737 35 38 44 46 20 16 15 23 3 5 8 11 409 18 Mambi 5:258 6 7 16 4 3 2 3 5 8 11 4 12 3 5 8 11 2 1 1 1 10 0 1 1 2 3 1 2 1 1 1 0 0 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 3 1		Likonde	8 782	43	40	2	20	2	- 2	- 2	- 4	- 2	9	7	8	63	10
RV Lower Middle Ruuma 15,15 2 2 3 1 0 0 1 2 2 3 2 1 40 9 8 Mambi 5,258 6 6 7 9 4 3 2 3 5 8 1 4 16 12 14 16 14 14 8 74 14 15 14 16 23 3 2 3 2 3 2 14 16 17 11 10 0 1 1 2 1 12 14 1 1 1 0 0 1 1 2 1 12 12 15 15 13 14 16 15 13 16 16 16 16 10 15 13 16 16 10 16 16 0 16 16 0 16 16 0 16 16		Upper Middle Ruvuma	9,550	6	5	1	4	2	2	3	4	2	6	5	5	44	13
RV Lower Ruvuna 10,737 35 38 44 46 20 16 15 23 31 41 61 61 61 77 94 32 23 35 8 11 61 11 77 11 16 61 11 7 11 16 71 14 86 71 44 55 8 8 71 14 86 76 Mavij 4.928 1 1 2 1 1 1 0 0 1 1 2 1 </td <td></td> <td>Lower Middle Ruvuma</td> <td>15,155</td> <td>2</td> <td>2</td> <td>3</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>2</td> <td>2</td> <td>3</td> <td>2</td> <td>19</td> <td>8</td>		Lower Middle Ruvuma	15,155	2	2	3	1	0	0	0	1	2	2	3	2	19	8
Mambi 5,268 6 6 7 9 4 3 2 3 5 8 11 8 7 1 8 7 1 16 12 3 34 3 2 35 11 12 11 1 11 <	RV	Lower Ruvuma	10,737	35	38	44	46	20	16	15	23	31	41	61	41	409	18
Lukuledi 6.848 20 201 17 18 16 11 1 16 12 14 84 16 Movemkuru 18.636 1 1 2 1 1 1 0 0 1 1 2 1 14 88 8 7 1 148 16 Matandu 17.360 1 1 2 2 1		Mambi	5,258	6	6	7	9	4	3	2	3	5	8	11	8	74	15
Indomentation Holossig 1 0 0 2 1 1 0 0 1 1 2 1 1 1 0 0 1 1 2 1 1 1 0 1 1 2 1 1 1 1 1 1 2 1 1 2 1		Lukuledi	6,848	20	20	17	18	16	11	1	11	16	23	34	23	216	12
Matandu 17,360 1 <th1< th=""> <th1< th=""> 1 <th1< td=""><td></td><td>Mowemkuru Mavuji</td><td>18,030</td><td>1</td><td>1</td><td>2</td><td></td><td>1</td><td>5 1</td><td>4</td><td>5 0</td><td>8</td><td><u>8</u></td><td>2</td><td>1</td><td>48</td><td>16</td></th1<></th1<></th1<>		Mowemkuru Mavuji	18,030	1	1	2		1	5 1	4	5 0	8	<u>8</u>	2	1	48	16
Songwe 2,479 6 9 9 9 11 6 1 4 8 7 0 78 13 Kivira 1,887 1 2 2 2 1 0 1 2 2 1 0 15 13 Mbaka 746 36 56 53 59 74 41 6 25 53 49 44 0 494 6 Lumbira 2,153 0		Matandu	17.360	1	1	2	1	1	1	0	0	1	1	2	1	12	15
Kiwira 1.887 1 2 2 2 1 0 1 2 2 1 0 15 13 Mbaka 746 36 56 59 74 41 6 25 53 49 40 494 6 Rumakali 684 0		Songwe	2,479	6	9	9	9	11	6	1	4	8	8	7	0	78	13
Mbaka 746 36 53 59 74 41 6 25 349 44 0 496 6 Rumakali 684 0<		Kiwira	1,887	1	2	2	2	2	1	0	1	2	2	1	0	15	13
Luflyo 1.012 7 12 11 12 14 8 1 5 10 9 0		Mbaka	746	36	56	53	59	74	41	6	25	53	49	44	0	494	6
LN Rumaxan 684 0		Lufilyo	1,012	7	12	11	12	14	8	1	5	10	9	9	0	96	6
Latina 21,23 0	LN	Rumakali	2 153	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Numu 1030 1 1 2 2 2 0 1 1 2 2 0 1 1 2 2 0 1 1 2 2 0 1 1 2 2 0 1 1 2 1 </td <td></td> <td>Nkiwe</td> <td>2,155</td> <td>0</td> <td>2</td>		Nkiwe	2,155	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Muchuchuma 670 8 13 10 11 14 7 0 2 6 5 5 0 81 11 Mbawa 1,873 2 3 2 2 3 1 0 1 2 2 2 0 19 5 Katuma 15,802 88 105 88 53 0 2 2 4 4 0 53 105 504 21 Muchuchuma 11,284 52 62 52 31 0 1 1 2 0 0 31 62 64 0 <t< td=""><td></td><td>Ruhuhu</td><td>14.210</td><td>9</td><td>18</td><td>13</td><td>15</td><td>18</td><td>10</td><td>2</td><td>6</td><td>14</td><td>14</td><td>12</td><td>0</td><td>131</td><td>25</td></t<>		Ruhuhu	14.210	9	18	13	15	18	10	2	6	14	14	12	0	131	25
Mbawa 1.873 2 3 2 2 3 1 0 1 2 2 2 0 19 55 Katuma 15,802 88 105 88 53 0 2 2 4 4 0 53 105 504 22 Momba 11,224 52 62 52 31 0 1 1 2 2 0 26 51 246 133 Lake Shores 14,247 43 51 43 26 0 1 1 2 2 0 36 64 Luiche River 838 6 7 6 4 0		Muchuchuma	670	8	13	10	11	14	7	0	2	6	5	5	0	81	1
Katuma 15,802 88 105 84 53 0 2 2 4 4 0 53 105 504 21 Lake Shores 14,247 43 51 43 26 0 1 1 2 0 26 51 246 13 Songwe River 10,800 2 2 1 0 6 15 15 11 4 1 2 3 63 64 Liche River 838 6 7 6 4 0		Mbawa	1,873	2	3	2	2	3	1	0	1	2	2	2	0	19	5
Momba 11,284 52 62 52 31 0 1 1 2 2 0 31 62 299 18 Lake Shores 11,244 43 51 43 26 0 1 1 2 0 26 51 246 13 Luiche River 838 6 7 6 4 0 0 0 0 0 2 4 17 14 Rungwa 21,640 0 <td< td=""><td></td><td>Katuma</td><td>15,802</td><td>88</td><td>105</td><td>88</td><td>53</td><td>0</td><td>2</td><td>2</td><td>4</td><td>4</td><td>0</td><td>53</td><td>105</td><td>504</td><td>21</td></td<>		Katuma	15,802	88	105	88	53	0	2	2	4	4	0	53	105	504	21
Lake Lake Lake Lake Sin Lake Link		Momba	11,284	52	62	52	31	0	1	1	2	2	0	31	62	299	18
Link Link <thlink< th=""> Link Link <thl< td=""><td>IR</td><td>Songwe River</td><td>14,247</td><td>43</td><td>2</td><td>43</td><td>20</td><td>6</td><td>15</td><td>15</td><td><u> </u></td><td><u>ک</u> 4</td><td>1</td><td>20</td><td>21</td><td>240</td><td>64</td></thl<></thlink<>	IR	Songwe River	14,247	43	2	43	20	6	15	15	<u> </u>	<u>ک</u> 4	1	20	21	240	64
Muze 354 3 4 3 2 0 <td>2.1</td> <td>Luiche River</td> <td>838</td> <td>6</td> <td>7</td> <td>6</td> <td>4</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>7</td> <td>35</td> <td>14</td>	2.1	Luiche River	838	6	7	6	4	0	0	0	0	0	0	4	7	35	14
Rungwa 21.640 0 <th< td=""><td></td><td>Muze</td><td>354</td><td>3</td><td>4</td><td>3</td><td>2</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>2</td><td>4</td><td>17</td><td>1</td></th<>		Muze	354	3	4	3	2	0	0	0	0	0	0	2	4	17	1
Malagarasi 67,100 20 28 39 37 39 39 14 1 4 6 6 4 235 472 Ugala 54,000 14 18 26 27 25 25 10 1 3 4 4 3 159 104 Luchugi 3,200 11 16 17 20 21 21 8 1 2 3 3 2 104 40 Lugele 4,600 9 11 16 17 18 18 6 0 2 3 3 2 104 44 Other Rivers 16,700 14 17 23 28 25 25 8 1 3 4 4 3 153 39 Biharamulo 1,876 1 2 1 1 1 1 0 0 0 0 0 0 1 1 <td></td> <td>Rungwa</td> <td>21,640</td> <td>0</td> <td>3</td>		Rungwa	21,640	0	0	0	0	0	0	0	0	0	0	0	0	0	3
Ugalia 54,000 14 18 26 27 25 25 10 1 3 4 4 3 159 104 Ruchugi 3,200 11 15 21 20 21 21 8 1 2 3 3 2 104 40 Luche 2,600 9 11 16 17 18 18 6 0 2 3 3 2 104 40 Luegele 1,400 9 11 16 19 17 17 6 0 2 3 3 2 104 4 Cher Rivers 16,700 14 17 23 28 25 25 8 1 3 4 4 3 153 39 Biharamulo 1,876 1 2 1 1 1 1 1 10 0 3 5 6 5 141		Malagarasi	67,100	20	28	39	37	39	39	14	1	4	6	6	4	235	472
LT LUcitide 3,200 11 13 21 6 1 2 3 3 2 120 40 Lugufu 4,500 9 11 16 17 18 18 6 0 2 3 3 2 104 40 Lugele 1,400 9 11 16 19 17 17 6 0 2 3 3 2 104 44 Other Rivers 16,700 14 17 23 28 25 8 1 3 4 4 3 153 39 Biharamulo 1,876 1 2 1 1 1 1 0 0 1 1 10		Ugalla	54,000	14	18	26	27	25	25	10	1	3	4	4	3	159	104
Lugufu 4,500 9 11 16 17 18 18 6 0 2 3 3 2 104 8 Lugufu 4,500 9 11 16 17 18 18 6 0 2 3 3 2 104 4 Uuegele 1,400 9 11 16 19 17 17 6 0 2 3 3 2 104 4 Other Rivers 16,700 14 17 23 28 25 25 8 1 3 4 4 3 153 39 Biharamulo 1,876 1 2 1 1 1 1 1 1 10 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 12 11 14 10 2	ιт	Luiche	2,200	9	10	16	20	∠ı 18	<u>∠1</u> 18	0 6	0	2	3	3	2	120	40
Luegele 1,400 9 11 16 19 17 17 6 0 2 3 3 2 104 4 Other Rivers 16,700 14 17 23 28 25 25 8 1 3 4 4 3 153 39 Biharamulo 1,876 1 2 1 1 1 1 0 0 0 1 1 10 10 Eastern shore streams 6,677 4 7 5 3 3 2 0 0 0 3 2 31 47 Grumeti 12,856 9 12 10 8 8 7 3 5 6 8 5 89 28 Isanga 7,081 14 19 14 12 16 1 0 0 7 5 99 36 Magogo-Moame 5,401 15	L.	Luqufu	4.500	9	11	16	17	18	18	6	0	2	3	3	2	104	
Other Rivers 16,700 14 17 23 28 25 25 8 1 3 4 4 3 153 39 Biharamulo 1,876 1 2 1 1 1 1 0 0 0 1 1 10 10 Eastern shore streams 6,677 4 7 5 3 3 2 0 0 0 3 2 3 3 2 0 0 3 2 3 3 2 0 0 3 2 3 3 3 2 0 0 3 2 3 4 4 3 1 0 3 2 3 4 3 2 3 1 10 3 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Luegele	1,400	9	11	16	19	17	17	6	0	2	3	3	2	104	4
Biharamulo 1,876 1 2 1 1 1 1 1 0 0 0 1 1 10 100 Eastern shore streams 6,677 4 7 5 3 3 2 0 0 0 3 2 31 47 Grumeti 12,856 9 12 10 8 8 7 3 5 6 8 5 89 28 Isanga 7,081 14 19 14 12 16 14 5 1 1 0		Other Rivers	16,700	14	17	23	28	25	25	8	1	3	4	4	3	153	39
Lastern shore streams 6,6/7 4 7 5 3 3 2 0 0 0 3 2 31 47 Grumeti 12,856 9 12 10 8 8 8 7 3 5 6 8 5 89 28 Isanga 7,081 14 19 14 12 16 14 5 1 1 0 8 5 100 23 Lake Victoria Islands 1,407 0<		Biharamulo	1,876	1	2	1	1	1	1	1	0	0	0	1	1	10	10
Grumetic 12,000 9 12 100 6 6 6 7 3 5 6 8 5 100 23 Isanga 7,081 14 19 14 12 16 14 5 1 1 0 8 5 110 23 Lake Victoria Islands 1,407 0		Eastern shore streams	6,677	4	10	5	3	3	3	2	0	0	0	3	2	31	47
Low Pictoria Islands 1,007 0 <td></td> <td>Grumen</td> <td>7 081</td> <td>9 14</td> <td>12</td> <td>10</td> <td>8 12</td> <td>8 16</td> <td>8 1/1</td> <td>5</td> <td>3</td> <td>2 1</td> <td>0</td> <td>8</td> <td>5 5</td> <td>110</td> <td>28</td>		Grumen	7 081	9 14	12	10	8 12	8 16	8 1/1	5	3	2 1	0	8	5 5	110	28
Lower Kagera 19,341 10 21 15 10 11 12 6 1 0 0 7 6 98 123 LV Magogo-Moame 5,401 15 19 15 11 14 10 2 1 0 0 7 5 99 36 Mara 5,277 14 3 2 1 1 1 0 4 5 10 8 51 17 Mbalageti 3,537 7 1 1 1 1 1 0 0 0 2 2 30 38 Simiyu 11,095 17 21 17 12 13 10 2 1 0 0 8 6 108 38 Southern shore streams 8,749 17 23 17 12 17 13 6 2 0 0 0 1 2 3 <td< td=""><td></td><td>Lake Victoria Islands</td><td>1,407</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>24</td></td<>		Lake Victoria Islands	1,407	0	0	0	0	0	0	0	0	0	0	0	0	0	24
LV Magogo-Moame 5,401 15 19 15 11 14 10 2 1 0 0 7 5 99 36 Mara 5,277 14 3 2 1 1 1 1 0 4 5 10 8 51 17 Mbalageti 3,537 7 1 1 1 1 1 0 2 3 4 3 23 12 Nyashishi 1,689 5 6 5 4 4 3 1 0 0 0 2 2 30 38 533 Simiyu 11,095 17 21 17 12 13 10 2 1 0 0 3 38 538 53 14 14 10 2 10 0 0 0 0 0 0 0 0 0 0 0 0		Lower Kagera	19,341	10	21	15	10	11	12	6	1	0	0	7	6	98	123
Mara 5,277 14 3 2 1 1 1 0 4 5 10 8 51 17 Mbalageti 3,537 7 1 1 1 1 1 0 2 3 4 3 23 12 Nyashishi 1,689 5 6 5 4 4 3 1 0 0 0 2 2 30 38 Simiyu 11,095 17 21 17 12 13 10 2 1 0 0 8 6 108 38 Southern shore streams 8,749 17 23 17 12 17 13 6 2 0 0 0 1 2 Western shore streams 644 0 0 0 0 0 0 0 0 0 0 0 1 2 Lake Eyasi 64,545 <t< td=""><td>LV</td><td>Magogo-Moame</td><td>5,401</td><td>15</td><td>19</td><td>15</td><td>11</td><td>14</td><td>10</td><td>2</td><td>1</td><td>0</td><td>0</td><td>7</td><td>5</td><td>99</td><td>36</td></t<>	LV	Magogo-Moame	5,401	15	19	15	11	14	10	2	1	0	0	7	5	99	36
Mbalageti 3,537 7 1 0 0 0 2 2 3 3 1 <		Mara	5,277	14	3	2	1	1	1	1	0	4	5	10	8	51	17
Nyasnishi 1,689 5 6 5 4 4 3 1 0 0 0 2 2 30 38 Simiyu 11,095 17 21 17 12 13 10 2 1 0 0 8 6 108 38 Southern shore streams 8,749 17 23 17 12 17 13 6 2 0 0 5 8 121 74 Western shore streams 644 0 1		Mbalageti	3,537	7	1	1	1	1	1	1	0	2	3	4	3	23	12
Simiyu 11,033 17 21 17 12 13 10 2 1 0		Nyashishi	1,689	17	6 21	5 17	4	4	3	1	0	0	0	2	2	30	38
ID ID<		Sinnyu Southern shore streams	8 749	17	21	17	12	13	13	6	2	0	0	5	8	100	74
Lake Eyasi 64,545 127 155 147 115 13 15 16 13 0 0 4 82 686 289 Monduli - A 4,115 0 1<		Western shore streams	644	0	0	0	0	0	0	0	0	0	0	0	0	1	2
Monduli - A 4,115 0		Lake Eyasi	64,545	127	155	147	115	13	15	16	13	0	0	4	82	686	289
Monduli - B 1,385 0 1 1 Lake Manyara 18,491 16 28 16 11 46 73 0 0 0 62 20 271 74 Lake Natron 8,658 2 2 2 2 2 4 0 0 0 4 2 18 10 Olduvai 4,577 0 0 0 0 0 0 0 0 0 0 0 1 7 Bahi Swamp 26,445 13 16 16 18 26 9 8 7 7 6 28 9 164 62 Masai Steppe 9,3		Monduli - A	4,115	0	0	0	0	0	0	0	0	0	0	0	0	1	6
Lake Manyara 18,491 16 28 16 11 46 73 0 0 0 62 20 271 74 ID Lake Natron 8,658 2 2 2 2 2 4 0 0 0 4 2 18 10 Olduvai 4,577 0 0 0 0 0 0 0 0 0 0 0 1 7 Bahi Swamp 26,445 13 16 16 18 26 9 8 7 7 6 28 9 164 62 Masai Steppe 9,313 0 1 0 0 1 2 0 0 0 2 1 8 10 Namanga 5,570 3 2 3 2 3 6 0 0 0 6 3 28 7		Monduli - B	1,385	0	0	0	0	0	0	0	0	0	0	0	0	1	1
ID Lake Nation 8,058 2 2 2 2 2 4 0 0 0 4 2 18 10 Olduvai 4,577 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 Bahi Swamp 26,445 13 16 16 18 26 9 8 7 7 6 28 9 164 62 Masai Steppe 9,313 0 1 0 0 1 2 0 0 0 2 1 8 10 Namanga 5,570 3 2 3 2 3 6 0 0 0 2 1 8 10	15	Lake Manyara	18,491	16	28	16	11	46	73	0	0	0	0	62	20	271	74
Bahi Swamp 26,445 13 16 16 18 26 9 8 7 7 6 28 9 164 62 Masai Steppe 9,313 0 1 0 0 1 2 0 0 0 0 2 1 8 10 Namanga 5,570 3 2 3 2 3 6 0 0 0 6 3 28 7	טי ן	Lake Natron	8,658 ⊿ 577	2	2	2	2	2	4	0	0	0	0	4	2	18	10
Masai Steppe 9,313 0 1 0 0 1 2 0 0 0 2 1 8 10 Namanga 5,570 3 2 3 2 3 6 0 0 0 6 3 28 7		Bahi Swamp	26 445	13	16	16	18	26	9	8	7	7	6	28	9	164	62
Namanga 5,570 3 2 3 2 3 6 0 0 0 6 3 28 7		Masai Steppe	9,313	0	1	0	0	1	2	0	0	, 0	0	2	1	8	10
		Namanga	5,570	3	2	3	2	3	6	0	0	0	0	6	3	28	7

The	Project	on	the	Revision	of	National	Irrigation	Master	Plan	in	the	United	Republic	of	Tanzania
														Fin	al Report

Attachment 4:	Environmental Flow	v Requirement	(MCM/month)	by Sub-basin in 2035
---------------	--------------------	---------------	-------------	----------------------

Basin	Sub basin Nome	Area							EFR						
Code	Sub-basin Name	(km ²)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
	Pangani River	43,652	106	98	142	177	169	147	138	127	114	116	111	113	1,557
50	Umba	8,205	0	0	0	1	0	0	0	0	1	8	6	4	19
PG	Msangazi	5.085	0	0	0	0	0	0	0	0	0	0	0	0	1
	Zigi-Mkulumuzi	2 159	5	4	g	g	7	7	12	g	7	6	8	6	90
		16 509	0	0	0	0	0	,	0	0	0	0	0	0	0
	Mkondoa	12 064	0	0	0	0	0	0	0	0	0	0	0	0	3
	Warei	12,904	0		0		0	0	0	0	0	0		0	01
	wami	14,270	8	/	8	1	8	/	8	8		8	/	8	91
WR	Upper Ruvu	7,623	5	5	6	4	1	1	12	14	11	8	6	5	93
	Ngerengere	2,913	0	0	0	0	0	0	0	0	0	0	0	0	0
	Lower Ruvu	7,253	4	5	6	4	7	7	11	13	10	8	6	5	85
	Coast	4,763	1	1	2	1	2	2	3	4	3	2	2	1	26
	Great Ruaha	85.554	16	21	36	52	47	39	34	28	19	13	8	12	324
	Kilombero	40,330	592	841	1.665	1.473	1.200	904	734	506	355	278	256	328	9.130
RF		25 288	312	470	1 1 4 1	1 031	792	577	377	233	157	116	132	160	5 498
	Lower Pufiji	32 610	516	728	1 105	2 105	1 624	520	011	200	101	0	7	104	6 808
		0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	121	120	1,100	2,195	1,024	529	60		11	25	21	594	1 1 00
		0,320	131	130	100	103	117	90	69	54	44	30	31	50	1,109
	Likonde	8,782	172	150	310	210	110	76	57	45	33	26	24	/1	1,284
	Upper Middle Ruvuma	9,550	117	128	141	75	43	34	28	21	16	11	12	55	681
	Lower Middle Ruvuma	15,155	131	144	137	58	23	19	15	11	8	6	8	64	623
	Lower Ruvuma	10,737	32	32	45	31	20	16	11	7	4	3	2	23	226
ΓV	Mambi	5,258	12	14	30	30	16	11	7	4	2	1	1	11	140
	Lukuledi	6,848	19	20	35	33	23	15	9	5	3	2	1	7	172
	Mbwemkuru	18 636	31	36	58	57	<u></u>	27	17	10	5	2	2	17	303
	Mavuii	1 029	31	1	0	1/	10	6	/	2	1		<u> </u>	1	600
	Matandu	4,920	12	10	30	40	22	22	4	0	-	2		4	205
		17,300	13	19	30	42	33	23	15	9	5	2	2	12	205
	Songwe	2,479	46	48	60	60	45	31	29	34	30	27	30	33	473
	Kiwira	1,887	39	38	58	105	64	35	28	35	29	28	28	29	517
	Mbaka	746	21	16	37	76	72	39	21	17	12	11	12	13	348
	Lufilyo	1,012	32	35	55	70	60	34	23	23	16	15	16	17	395
	Rumakali	684	34	34	53	55	36	16	11	10	7	7	10	20	293
LIN	Lumbira	2.153	47	45	48	43	39	32	28	36	29	27	31	37	442
	Nkiwe	1,880	28	27	30	27	25	21	18	23	19	18	23	24	283
	Pububu	1/ 210	176	176	303	353	200	121	110	132	00	83	83	105	1 051
	Mushushuma	14,210	170	170	303	333	203	121	110	132	33	05	03	105	1,901
	Muchuchuma	670	0	6	6	6	5	5	4	5	4	4	4	5	59
	Mbawa	1,873	25	23	26	23	21	18	16	21	17	18	24	23	257
	Katuma	15,802	28	41	93	102	50	16	5	2	1	1	1	6	347
	Momba	11,284	73	94	178	143	61	30	13	8	4	3	4	21	630
	Lake Shores	14,247	112	141	249	267	108	84	34	16	11	10	14	27	1,071
LR	Songwe River	10,800	145	221	345	269	145	86	50	28	22	22	27	45	1,404
	Luiche River	838	4	5	9	7	4	2	1	0	0	0	0	1	35
	Muze	354	2	2	4	16	14	0	0	0	0	0	1	2	43
	Rungwa	21 640	86	196	355	101	107	3/	24	27	60	26	10	20	1 1/6
	Malagaraai	67 100	62	100	120	170	107	144	75	27	10	10	14	25	1,140
		67,100	03	106	129	172	192	144	75	37	10	12	14	30	997
	Ugalla	54,000	44	/5	91	122	135	102	53	26	13	8	10	25	704
	Ruchugi	3,200	13	21	26	35	39	29	15	1	4	2	3	1	202
LT	Luiche	2,600	23	24	30	39	27	12	9	7	6	8	15	24	224
	Lugufu	4,500	36	44	59	61	35	19	11	8	6	5	11	27	322
	Luegele	1,400	16	20	26	28	16	8	5	4	3	2	5	12	145
	Other Rivers	16.700	188	347	492	405	99	28	12	8	4	4	8	81	1.678
	Biharamulo	1.876	12	12	12	12	12	3	2	8	12	12	12	12	126
	Eastern shore streams	6,677	29	29	29	29	29	18	8	14	25	29	29	29	294
	Grumeti	12 856	16	16	16	16	16	16	1/	1/	15	16	16	16	197
	leanda	7 004	20	20	20	20	20	20	20	14	10	14	20	20	217
	Isaliya	1,001	20	20	20	20	20	20	20	10	12	11	20	20	217
		1,407	9	8	16	16	14	4	2	3	5	10	16	13	115
	Lower Kagera	19,341	102	102	102	102	102	102	102	102	102	102	102	102	1,228
LV	Magogo-Moame	5,401	29	32	32	32	32	16	8	5	4	4	14	27	235
	Mara	5,277	10	10	10	10	10	10	10	10	10	10	10	10	114
	Mbalageti	3,537	9	9	9	9	9	8	4	2	2	2	7	9	79
	Nyashishi	1,689	5	4	6	7	3	0	0	0	1	3	6	6	41
1	Simiyu	11,095	34	.34	34	34	.34	34	34	22	17	16	34		359
	Southern shore streams	8 7/0	55	55	55	55	10	1	1	12	27	55	55	55	182
	Western shore streams	614	33	33			49	4	<u>ا</u>	21	21			33	40Z
	Laka Evasi	64 545	140	3	3	3	3	3	3	3	3	3	3	3	3/
		04,545	113	/4	147	214	2	U	0	0	0	0	19	142	/12
	Monduli - A	4,115	5	2	5	9	0	0	0	0	0	0	2	5	28
	Monduli - B	1,385	1	1	3	4	2	0	0	0	0	0	0	1	12
1	Lake Manyara	18,491	48	14	58	71	4	0	0	0	0	0	0	54	249
ID	Lake Natron	8,658	30	37	57	60	27	0	0	0	0	0	5	14	229
	Olduvai	4,577	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bahi Swamp	26.445	68	56	68	45	0	0	0	0	0	0	1	43	281
	Masai Steppe	9 313	8	12	3	20	0	0	0	0	0	0	0	.0 ⊿	55
	Namanga	5 570	1	13	<u>ح</u>	20	5	0	0	0	0	0	0	+	24
		3,570	1	U	0	20	. 3	U	0	U	0	U	0	U	54

Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports

The	Project	on	the	Revision	of	National	Irrigation	Master	Plan	in	the	United	Republic	of	Tanzania
														Fir	1al Report

Attachn	nent 5: Unused Surface	Water	(MCM	/mont	h) and	Susta	inable	Yield	of Gr	oundw	ater (N	ACM/	yr) by	Sub-b	asin ir	ı 2035
Basin Code	Sub-basin Name	Area (km ²)	Jan	Feb	Mar	Apr	Mav	Jun	SW Jul	Aua	Sep	Oct	Nov	Dec	Total	GW
	Pangani River	43,652	0	0	0	0	0	0	0	0	0	0	0	0	0	99
PG	Umba	8,205	3	19	33	26	7	2	10	15	17	70	143	57	401	71
10	Msangazi	5,085	30	35	127	69	28	13	8	7	31	27	28	37	440	31
	Zigi-Mkulumuzi	2,159	4	3	41	74	45	20	9	9	12	20	13	8	256	18
	Kinyasungwe	16,509	0	0	0	0	0	15	8	6	0	0	13	22	64	90
	Wkondoa Wami	12,964	64	0	01	250	229	54 57	27	15	0	0	21	29	305	164
WR	Upper Ruvu	7 623	104	43	77	300	345	110	0	4	0	0	02	175	1 20/	149
VVIX	Ngerengere	2,913	5	4	4	27	30	7	2	0	0	0	6	7	93	0
	Lower Ruvu	7,253	0	0	0	0	0	0	0	0	0	0	23	2	25	269
	Coast	4,763	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Great Ruaha	85,554	425	858	1,033	1,000	448	217	61	0	0	0	0	44	4,087	1,609
RF	Kilombero	40,330	416	758	665	1,455	926	310	0	0	0	0	0	245	4,775	2,162
	Luwegu	25,288	161	410	443	326	241	305	123	56	30	0	56	105	2,257	2,079
	Lower Rufiji	32,619	145	149	90	200	155	101	161	24	57	0	18	22	366	2,698
	Likonde	8 782	140	140	249	200	117	80	92 50	/0	33	10	18	69	1,300	209
	Upper Middle Ruvuma	9.550	156	173	182	93	54	42	33	23	18	8	10	66	856	298
	Lower Middle Ruvuma	15,155	230	247	237	89	29	24	19	13		5	6	82	990	356
	Lower Ruvuma	10,737	0	0	0	0	0	0	0	0	0	0	0	0	0	331
RV	Mambi	5,258	15	17	45	40	23	15	9	3	0	0	0	10	178	258
	Lukuledi	6,848	8	10	27	22	15	9	6	0	0	0	0	0	96	207
	Mbwemkuru	18,636	62	71	113	106	66	43	26	12	1	0	0	29	528	456
	Mavuji	4,928	6	7	16	27	18	11	7	4	2	0	0	7	105	243
	Natandu	17,360	<u>∠</u> 6	36	58	81	61	40	24	14	6	2	1	24	374	472
	Soligwe Kiwira	2,479	47 Q1	40 87	136	2/18	150	29	66	10	3/	32	33	00 68	1 060	10
	Mhaka	746	0	07	2	16	11	6	7	42	0	0	0	5	45	0
	Lufilvo	1.012	46	49	82	108	89	50	37	14	2	2	4	29	513	5
1.51	Rumakali	684	56	56	86	90	58	27	17	8	5	5	8	33	449	3
LIN	Lumbira	2,153	59	57	60	54	49	40	36	18	15	13	15	47	464	9
	Nkiwe	1,880	43	41	45	41	38	31	28	16	13	12	16	37	360	7
	Ruhuhu	14,210	246	237	425	496	285	164	157	76	47	37	38	150	2,359	51
	Muchuchuma	670	0	0	0	0	0	0	0	0	0	0	0	0	0	2
	Mbawa	1,873	39	35	40	36	201	28	26	15	11	11	16	37	502	8
	Momba	11 284	40	59	153	165	69	124	13	9	4	5	0	0	646	352
	Lake Shores	14.247	99	193	214	105	203	63	27	25	18	24	7	74	1.051	407
LR	Songwe River	10,800	178	376	352	127	262	47	23	32	33	49	59	197	1,734	261
	Luiche River	838	3	2	5	6	5	2	2	1	0	0	0	0	26	7
	Muze	354	2	1	3	24	21	0	0	0	0	0	0	3	55	9
	Rungwa	21,640	338	512	502	444	509	195	84	54	5	54	90	263	3,049	487
	Malagarasi	67,100	87	153	181	257	289	207	114	61	27	14	18	58	1,466	1,245
	Ugalla	54,000	/	16	15	29	37	22	15	11	3	0	0	9	163	392
ιт	Kuchugi Luiche	3,200	0 30	30	10	32 66	30	23	10	12	3 0	11	27	9 //7	350	157
L1		4 500	78	94	126	132	67	27	21	12	11	9	25	63	673	98
	Luegele	1,000	14	17	23	22	7	0	2	5	2	0	5	16	112	8
	Other Rivers	16,700	254	476	675	547	116	15	9	11	3	1	7	111	2,227	102
	Biharamulo	1,876	35	30	62	78	29	0	0	0	10	41	68	45	398	18
	Eastern shore streams	6,677	11	3	50	72	35	0	0	0	0	17	42	31	261	60
	Grumeti	12,856	0	0	5	19	11	0	0	0	0	0	7	5	48	138
	Isanga	7,081	49	60	89	133	70	13	0	0	0	0	13	50	477	77
	Lake Victoria Islands	1,407	0	10	2	112	127	115	111	0	0	0 50	10	0 50	<u>8</u>	5
ιv		5 /01	00	40	00	0	137	115	0	90	04	00	40	00	900	327
LV	Magogo-moarne	5,277	11	26	35	60	46	21	7	9	7	9	28	23	281	92
	Mbalageti	3.537	0	0	8	14	6	0	0	0	0	0	0	1	33	34
	Nyashishi	1,689	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Simiyu	11,095	71	91	134	201	112	24	0	0	0	0	19	73	724	132
	Southern shore streams	8,749	1	0	20	37	0	0	0	0	0	13	29	19	120	69
	Western shore streams	644	45	42	80	114	102	17	12	20	32	59	73	66	661	17
	Lake Eyasi	64,545	49	0	52	358	0	0	0	0	0	0	9	86	554	0
	Monduli - A	4,115	9	4	10	19	0	0	0	0	0	0	3	11	56	0
	Ivionduli - B	1,385	1	3	6	7	2	0	0	0	0	0	0	- 1 	20	0
חו	Lake Nation	8 650	20	33	50	233	0	0	0	0	0	0	1	52 11	424	380
U.	Olduvai	4 577	<u>∠0</u> 1⊿	52	23	30	0	0	0	0	0	0	1	27	103	16
	Bahi Swamp	26.445	159	48	104	26	0	0	0	0	0	0	0	136	473	0
	Masai Steppe	9,313	8	21	5	46	0	0	0	0	0	0	0	6	86	8
	Namanga	5,570	0	0	7	24	3	0	0	0	0	0	0	0	34	1

Source: Prepared by JICA Project Team based on the IWRMDP and LVBC study reports

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Appendix B

Site Investigation Report

The Project on the Revision of National Irrigation Master Plan

in the United Republic of Tanzania

Final Report Appendix B: Site Investigation Report <u>Table of Contents</u>

Page

Chapter 1		Introduction	B-1-1
1.1	Ger	neral	B-1-1
	1.1.1	Purposes of Site Visit	B-1-1
	1.1.2	Itinerary	B-1-1
1.2	Site	e Investigation of SSIDP Schemes	B-1-3
1.3	Rec	cords of Irrigation Schemes	B-1-3
Chap	ter 2	Findings During the Site Visit	B-2-1
2.1	Fine	dings Related to Existing Irrigation Schemes	B-2-1
2.2	Fine	dings Related to Future Irrigation Development	B-2-5
2.3	Oth	er Findings	B-2-6
Chap	ter 3	Use of Lake Water	B-3-1
3.1	Lak	tes in Tanzania	B-3-1
3.2	Use	e of Lake Victoria	B-3-2
3.3	Eleo	ctric Charge for Pump Irrigation	B-3-6
Chapter 4 National Irrigation Research and Training Centre			B-4-1
4.1	Rev	view of Application Form for Grant Aid from Japan	B-4-1
4.2	Cor	nments on the plan of NIRTC	B-4-3
4.3	Ref	erence Material:	B-4-4

List of Tables

Table 1.1.1	Itinerary of Site Visits in 2017	B-1-1
Table 1.2.1	List of SSDIP Schemes Visited by the JICA Project Team	B-1-3
Table 2.1.1	O&M Fee	B-2-3
Table 2.1.2	Registration of IOs	B-2-4
Table 3.1.1	List of Major Lakes in Tanzania	B-3-1
Table 3.2.1	Information on Lake Victoria	B-3-3
Table 3.2.2	Estimated Equipped, Crop Areas, Withdrawal Requirement and Actual	
	Withdrawal	B-3-4
Table 3.2.3	Article 4 of CFA	B-3-5

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Population Living in the Nile River Basin, 2015	.B-3-5
Customer Groups in TANESCO's Tariff	.B-3-6
Monthly Tariff in Japan (in Ratio)	.B-3-7
Site Conditions and Findings	.B-4-1
	Population Living in the Nile River Basin, 2015 Customer Groups in TANESCO's Tariff Monthly Tariff in Japan (in Ratio) Site Conditions and Findings

List of Figures

Figure 1.1.1	Location Map of Irrigation Schemes	.B-1-2
Figure 3.1.1	Location Map of Lakes	.B-3-2
Figure 4.1.1	NIRTC Location Map	.B-4-2
Figure 4.3.1	Site Plan of NIRTC	.B-4-5

Site Investigation Sheet

1.	Highland Estate Ltd	B-Site-1
2.	Igomelo	B-Site-5
3.	Naming'ongo	B-Site-8
4.	Dakawa	B-Site-12
5.	Itete	B-Site-16
6.	Kilombero Plantation Ltd. (KPL)	B-Site-20
7.	Msoga	B-Site-23
8.	Lower Moshi	B-Site-27
9.	Kikafu Chini	B-Site-32
10.	Musa Mwinjanga	B-Site-35
11.	Chinangali	B-Site-38
12.	Buigiri	B-Site-41
13.	Bahi Sokoni	B-Site-45
14.	Simbo	B-Site-48
15.	Inala	B-Site-51
16.	Imalamihayo	B-Site-55
17.	Ulyanyama	B-Site-58
18.	Ussoke Mlimani	B-Site-61
19.	Mahiga	B-Site-65
20.	Irienyi	B-Site-69
21.	Nyatwali	B-Site-72
22.	Serengeti	B-Site-76

Chapter 1 Introduction

1.1 General

This document reports the results of site visits from a technical view point. Site visits were carried out from January 2017 to March 2017.

1.1.1 Purposes of Site Visit

The JICA Project team for the Project on the Revision of National Irrigation Master Plan (hereinafter referred to as NIMP2018) visited 6 out of 7 zonal irrigation offices, several districts, institutions concerned and irrigation schemes for the following purposes.

- To explain the NIMP2018 project and discuss the irrigation development with officials concerned
- To understand the present status of the existing irrigation schemes at site
- To understand the present status of SSIDP schemes
- To understand the activities of irrigators' organizations
- To collect information on existing and potential (plan) irrigation schemes
- To understand the present status of capacity building in irrigation field
- To collect data and information on present agricultural practices

1.1.2 Itinerary

Name of offices and irrigation schemes visited are tabulated as shown below.

Date	Offices and Institutes Visited	Irrigation Scheme Visited	Date	Offices and Institutes Visited	Irrigation Scheme Visited
30 Jan.	Mbeya Zonal Office		16 Feb.	Hai DC	Nsanya, Kikafu chini,
	MATI - Igurusi				Musa Mwinjanga
31 Jan.	Mbarali DC	Highland Estate	17 Feb.	Holili OSBP	
		Igomelo (SSIDP)		Moshi CU	
01 Feb.	Momba DC	Namingo'ngo		ICCE	
	RAS office	(SSIDP)	20 Feb.	Dodoma Zonal Office	Chinangali grape farm
02 Feb.	Tunduma border market			Chamwino DC	Buigiri dam
	PMW construction Ltd.		21 Feb.	Bahi DC	Bahi Sokoni
06 Feb.	Morogoro Zonal Office	Proposed NIRTC site	27 Feb.	Tabora Zonal Office	
	Mvomero DC		28 Feb.	Simbo Ward Office	Simbo Traditional
	Chollima Research Centre		01 Mar.	Tabora MC	Inala (SSIDP)
07 Feb.	UWAWAKUDA IO office	Dakawa Rice Farm			Imalamihayo Charco
08 Feb.	Sokoine University	Experimental Farm	02 Mar.	Sikoge DC	Ulayanyama
09 Feb.	Kilombero DC	Itete	03 Mar.	Urambo DC	Ussoke Mlimani
		KPL			(SSIDP)
10 Feb.		Msoga dam (SSIDP)	06 Mar.	Mwanza Zonal Office	Mahiga
14 Feb.	ATC			Kwimba DC	
15 Feb.	Kilimanjaro Zonal Office	Lower Moshi	07 Mar.	Rorya DC	Irienyi (SSIDP)
	Moshi DC		08 Mar.	Bunda DC	Nyatwali (SSIDP)
	KATC				Serengeti

Table 1.1.1Itinerary of Site Visits in 2017

Sources: JICA Project Team

Locations of irrigation schemes visited are shown on the following map.
1.2 Site Investigation of SSIDP Schemes

Among the 22 irrigation schemes visited by the JICA Project Team, nine schemes are covered with SSIDP. List of these SSIDP schemes with minimal information are tabulated in the following table.

Serial No.	Name of Scheme	Zone	District	Irrigation Area (ha)	Present Status
1.	Igomelo	Mbeya	Mbarali	320	Main canal lining work is on-going. (Site Investigation Sheet: page A-5)
2.	Naming'ongo	Mbeya	Momba	1,600	Main canal lining was completed. (Site Investigation Sheet: page A-8)
3.	Msoga	Morogoro	Chalinze	100	Dam construction is suspended. (Site Investigation Sheet: page A-23)
4.	Kikafu Chini	Kilimanjaro	Hai	640	Rehabilitation work is on-going. (Site Investigation Sheet: page A-32)
5.	Musa Mwinjanga	Kilimanjaro	Hai	656	Secondary lining work is on-going (Site Investigation Sheet: page A-35)
6.	Inala	Tabora	Tabora MC	500	Scheme construction was completed. (Site Investigation Sheet: page A-51)
7.	Ussoke Mlimani	Tabora	Urambo	500	Secondary lining work is on-going. Rehabilitation of dam has not yet finished. (Site Investigation Sheet: page A-61)
8.	Irienyi	Mwanza	Rorya	250	Main canal lining was completed. (Site Investigation Sheet: page A-69)
9.	Nyatwali	Mwanza	Bunda TC	140	Secondary lining work was completed. (Site Investigation Sheet: page A-72)

 Table 1.2.1
 List of SSDIP Schemes Visited by the JICA Project Team

Sources: JICA Project team

1.3 Records of Irrigation Schemes

Records of irrigation schemes are summarized in a "Site Investigation Sheet" together with a Scheme Map and Photos, and the sheets are attached at the end of this report. Since "Scheme Maps" are created on the "Google Earth Pro", electronic files are also available.

Chapter 2 Findings During the Site Visit

JICA Project Team made many findings during the site visits and through discussions with government officials and IO members.

These findings are categorised into the following four items.

- Findings related to Existing irrigation schemes
- · Findings related to Future Potential for Irrigation Development
- Findings related to Irrigation Technology
- others

2.1 Findings Related to Existing Irrigation Schemes

(1) **Project Formulation and Design Stage**

(a) Design Standards and Criteria

There aren't unified design standards and criteria for irrigation scheme design works. Introduction of unified international criteria would be necessary.

(b) Documents and Back up Data Keeping

Documents and data are not properly kept at zonal and district offices. Proper documents and data keeping system would be useful for a future rehabilitation work. Common understanding of terms related to irrigation areas would be important for scheme development and the NIRC database.

(c) Definition of Technical Terms

LGA staff and IO members understand the meaning of "Potential Irrigation Area" is the area where there is a possibility to conduct irrigation.

(d) Inadequate Evaluation of Water Source

Through discussion with a zonal engineer, we found that evaluation of water source is not always properly conducted. In one scheme, design was conducted without data and technical calculation method.

(e) Lack of Drainage Canals

In many schemes, drainage canals are made of little account in design and implementation stages.

The main reason may be farmers refuse to give their land for drainage canals not to reduce cultivation areas. However, drainage canal system is crucial for sustainable irrigation system.

For example, the team observed the water flow from a paddy field to the main farm road because of absence of a drainage canal in the Itete scheme. This water flow could easily give damages to the main farm road.

(f) Sedimentation is a Serious Problem especially in Reservoirs and Canals.

In general, sediment load is decided without actual measurement in a river. Usually, engineers estimate sediment load by applying an empirical equation which is described in a textbook. Or they don't take it

into account. Estimate of sedimentation needs to be conducted carefully to avoid abandonment of an irrigation scheme.

For example, the following Joglekar's empirical equation is applied to estimate of silting rate in the Dodoma Zone.

This equation may be applicable to rather small catchments. However, sediment load usually varies from river to river. Actual measurements of sediment volume in several reservoirs in a river basin would be useful to estimate sediment load in the basin.

(g) Difference between Developed Area and Irrigated Area

This cause of the discrepancy might be insufficient water or uncompleted facilities. As a result, farmers might be discouraged in operation and maintenance activities.

(2) **Project Implementation**

(a) **Poor Performance of Contractors**

Many defects were observed especially in reinforced concrete work and in compaction of embankment. For example, protective covering for reinforcement bars is not enough, and reinforcement bars are exposed from concrete. Several pieces of wooden form are remaining in concrete. Water leakage from the wooden form remains was reported at intake structure under the Inala embankment.

Many gullies were found in some embankments of dams. The cause of the problem would be loose compaction of embankment material.

In relation to the poor performance, supervision by zonal or district office would be a problem. It seems that supervisor was not in place where concrete was placed.

(b) **Project Committee**

According to the roles of the Project Committee described in CGL (See Reference page 1), Project committee needs to take a part of supervision work. However, committee members do not have technical background to supervise the scheme construction. Stationing of skilful engineer from Zonal or District office would be necessary.

(c) Completion of Scheme

In many cases, an irrigation scheme used to be constructed partially. Consequently, irrigation area was reduced from the original plan. This reduction of farm land discourages farmers very much. Each scheme need to be completed.

(3) **Project O&M and Water Management**

(a) High Electricity Charge for Irrigation and Drainage Pumps

Among schemes the team visited, three schemes receive electricity for pump operation form TANESCO.

Two schemes, namely Chinangari and Nyatwali, are in operation. However, pumps were not fully utilized because of high electricity charges. This issue is further discussed in section 3.3 of the Chapter 3

(b) Utilization of Solar Power System

Related to the electric pump, the team observed two solar pump systems. First one is operating in the lower Moshi upland area of Rau ya Kati system. Another scheme is Serengeti in Bunda District. Both solar pumps are working properly without trouble. Solar pump system would be useful for small horticulture schemes.

(c) Lack of O&M Fee

The following table calculates the ratio between the total O&M fee and assumed construction cost.

Table 2.1.1 O&M Fee							
Name of Scheme	Name of IO	No. of Member	Irrigation Area (acre)	O&M Fee (acre/year)	O&M Total (TZS)	O&M ration in Const. cost	
Igomelo	Igomelo Irrigators Org.	382	800	25,000	20 million	0.95 %	
Dakawa	UWAWAKUDA	850	5,000	74,000	370 million	2.80 %	
Kikafu Chini	UWAKICHI	759 (farmer 1500)	1,125	17,470 (average)	19.7 million	0.66 %	
Chinangali	CHABUMA	296	300	360,000	22.2 million	2.80 %	
Irienvi	UWAIRO	170	300	50,000	8.5 million	1.07 %	

Note: In this estimate, construction cost is assumed to be 3,000 US\$/ha. IO data are the result of interview survey. Sources: JICA Project Team based on interview survey

Dakawa and Chinangali schemes use electric pump. Therefore, O&M fee is higher than the other schemes.

It is commonly said that minimum annual O&M cost would be 2-3 % of the total construction cost. If so, O&M fee would not be able to cover the necessary O&M cost.

(d) O&M by IOs

In operation of the modern irrigation system, gate will be closed not to intake a flood flow which contains considerable sand, silt, and clay. However, most of the irrigation systems in Tanzania use flood flow as a water source. Consequently, sedimentation is inevitable.

IOs should remove deposited material from canal sections. As for a canal design, designers should pay attention to a sand trap structures for easy removal of deposited material.

(e) Lack of Water Management Tools and Water Management

In order to save water and to get good product, water management is one of the key technology. For the water management, measuring devices or staves would be necessary. However, no devices and staves were in all the schemes the team visited except Dakawa Scheme (under rehabilitation).

In the case of Buigiri dam scheme, intake water from the reservoir was drained directly from a spillway of the main canal without using it because of absence of water management. Water saving through proper water management is essential especially for the reservoir schemes to secure agricultural production.

(4) Irrigators' Organization (IO)

(a) Registration of IO

There are three forms of farmers' group.

- Groups registered to NIRC
- Groups registered to MoHA as Associations
- · Groups registered as Cooperatives

Under the Irrigation Act 2013 Article 28 (b), "all farmers owning land in an irrigation scheme are members of the irrigators' organization". And, irrigators' organizations shall register to NIRC with necessary fees.

According to the Operation and Support Services division of NIRC, 458 IOs were registered as Associations or as Cooperative Societies by 2015.

Zone	Association	Cooperative	Unknown	Total		
Dodoma	8	4	23	35		
Kilimanjaro	42	25	0	67		
Mbeya	77	50	1	128		
Morogoro	57	14	0	71		
Mtwara	80	6	1	87		
Mwanza	37	0	0	37		
Tabora	21	9	3	33		
Total	322	108	28	458		
C	1	1	NIDC			

Table 2.1.2Registration of IOs

Sources: Operation and Support Services division of NIRC

The number of registration as Irrigators' Organization under Irrigation Act is reported as only eight (8).

The reasons for the small number of registrations might be:

- · Irrigation Act 2013 and its regulations are not yet well known,
- Irrigators' Organization shall go to NIRC Dar es Salaam to submit registration application, and
- · Irrigators' Organization shall pay registration fee, annual fee, and so on.
- In order to increase the number of IOs registered to NIRC, the following measures might be possible solutions.
- Dissemination of Irrigation Act 2013
- · Additional location (Zonal office) for registration
- Review of registration fees for existing registered IOs

(b) Capacity Building of IO

During the site visits, LGA staff pointed out necessity of capacity building of IO management members. Especially financial accounting is poor in IO management.

(c) Strengthening of By-law

In the case that land ownership belongs to farmers, IO management staff encounters difficulty in controlling farmers. For example, in Uyanyama case, three farmers took land issue to court. (Recently,

IO won the case.) Many IOs plan to strengthen their Constitutions and by-laws.

2.2 Findings Related to Future Irrigation Development

(1) **Potential Irrigation Scheme**

Tabora Zonal Office have identified many potential irrigation schemes which have not yet been made public. NIMP2018 needs to include these identified potential schemes into the scheme list.

The Team recognizes that data collection on potential schemes, which have been identified but not made public, would be necessary in other Zonal Offices.

(2) Study by Nile Basin Initiative

Under Nile Basin Initiative programme (NELSAP) have conducted feasibility studies on Mara and Ngono valley basins. Development of large irrigation schemes was studied. Water demand of aforesaid schemes would be necessary to take into account in a future development plan.

(3) Water Harvesting Technology

There are many small earth dams especially in the jurisdiction of Tabora and Mwanza Zonal Offices, where water is scarce. Small earth dams as a water harvesting facility would be a useful tool to secure agricultural production.

By the way, DANIDA defined the type of small earth dam in the report of "Water from Small Dam, 2006" as follows.

- Charco Dam
- Hillside Dam
- Valley Dam

Some of LGA staff consider a small earth dam to be the Charco dam from its purpose of water use. However, dams which the Team observed would be categorised into the Valley Dam if the team follows DANIDA definition.

By the way, the international commission on large dam defines a dam with more than 15m in height as "a Large Dam. Other water storage facilities are not clearly defined.

In this context, JICA Project Team proposes the name of a small earth dam with less than 15 m in height for irrigation purpose as "a Water Harvesting Pond".

(4) Lake Water Use

Lake water use is one of key strategies in Mwanza Zonal Office. Chapter 3 of this paper discusses in detail about the lake water use.

(5) Traditional Irrigation Scheme as a Potential Area

There are many traditional irrigation schemes with vast areas. If water sources could be found, these schemes would become promising potential schemes.

2.3 Other Findings

(1) Definition of Traditional Irrigation Scheme

Traditional irrigation scheme is defined in the National Irrigation Policy 2010 as follows:

"Traditional irrigation scheme is an irrigation scheme with irrigation system comprising of temporary infrastructures and / or facilities that are not technically constructed/installed."

The team visited one of the traditional irrigation system in Simbo village. The system uses rain water which flows down from upstream area by forming so-called a "sheet flow". There is no canal and division structure. Water flows from a farm plot to a farm plot. Judging from the manner of water use, it seems to be a "Rain-fed Scheme".

In this connection, traditional irrigation scheme should not be categorised into irrigation scheme.

(2) Basin Water Board Member

ZIE is not a board member of the Basin Water Board, although the irrigation sector is the major water user. ZIE should be a member of Basin Water Board as a representative of giant water users.

Chapter 3 **Use of Lake Water**

3.1 Lakes in Tanzania

The following table shows major lakes in Tanzania. There are two types of lakes i. The first type of lakes is the transboundary lakes, namely Lake Victoria, Lake Tanganyika, Lake Nyasa (Malawi), Lake Jipe and Lake Chala. Another type is interior lakes.

As shown in Table 3.1.1, many interior lakes seem to have several limitations such as salinity or alkaline problems and existence of protected areas. It is also reported that some interior lakes are reducing their water surface area year by year due to climate change. As for transboundary lakes, Lake Nyasa has a border issue with Malawi. Lake Tanganyika would have environmental issues.

In consideration of the present status of lakes and the sizes of lake as a water Source, Lake Victoria would be a possible water source for irrigation development.

		List of Major Lakes III	Tanzama
Name of Lake	Surface Area (km ²)	Zonal Office Concerned	Remarks
Lake Victoria	66,700	Mwanza, Tabora	Transboundary Lake
Lake Tanganyika	32,900	Katavi	Transboundary Lake
Lake Nyasa	29,700	Mbeya, Mtwara	Transboundary Lake
Lake Rukwa	5,580	Katavi, Mbeya	Alkaline Lake
Lake Eyasi	1,130	Kilimanjaro, Tabora	Seasonal Lake, Salt water
Lake Natron	660	Kilimanjaro	Salt and Soda Lake
Lake Sulunga (Bahi)	360	Dodoma	High saline Lake
Lake Manyara	231	Kilimanjaro, Tabora	Lake Manyara National Park Shallow Alkaline Lake
Lake Kitangiri	160	Tabora, Dodoma	
Lake Sagara	75	Katavi, Tabora	In the protected area
Lake Burigi	70	Mwanza	Burugi game reserve
Lake Burungi	46	Dodoma	Farmland on the south-west shore
Lake Jipe	30	Kilimanjaro	Transboundary Lake
			Protected on the Kenyan side
Lake Balangida	26	Dodoma	Alkaline Lake
Lake Mikuyu	26	Dodoma	
Lake Ambussel	23	Kilimanjaro	Pangani Basin
Lake Babati	17	Dodoma	Large hippo population
Lake Magadi	15	Kilimanjaro	Alkaline Lake (ph 10 over)
Lake Mansi	11	Morogoro	Marshes
Lake Nzerakera	8.2	Morogoro	Slouce Game Reserve
Lake Ndutu	5.3	Kilimanjaro	Ngorongoro National Park
Lake Manze	4.8	Morogoro	Slouce Game Reserve
Lake Chala	4.2	Kilimanjaro	Transboundary Lake
Lake Ngozi	3.3	Mbeya	Crater Lake, Volcano
Lake Tagalala	2.7	Morogoro	Slouce Game Reserve
Lake Siwandu	2.7	Morogoro	Slouce Game Reserve
Lake Masek	1.9	Tabora, Kilimanjaro	Ngorongoro National Park
Lake Mzizima	1.3	Morogoro	Slouce Game Reserve
Big Momela Lake	0.9	Kilimanjaro	Arusha National Park
Small Momela Lake	0.8	Kilimanjaro	Arusha National Park

Table 3.1.1 List of Major Lakes in Tanzania

Note: Surface areas are measured on the Google Earth Pro except the Lake Victoria. Surface area data of the Lake Victoria is abstracted form the NBI, "Nile Basin Water Resources Atlas", July 2016 Sources: Wikipedia "List of Lakes of Tanzania", Google Map and Google Earth Pro.

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania

Final Report

The location Map of these lake are shown in Figure 3.1.1.

3.2 Use of Lake Victoria

Lake Victoria is one of the transboundary lakes. Therefore, international rules of water use should be taking into account in its utilization.

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Table 3.2.1Information on Lake Victoria						
Surface Area (km²)	Countries Concerned	Remarks				
	Tanzania*	Management Institute:				
	Kenya*	Nile Basin Initiative				
	Uganda*					
	Rwanda	Countries' name with the asterisk				
66 700 Ll	Burundi	mark are bordering countries.				
00,700	DRC					
	Egypt					
	Ethiopia					
	Sudan					
	South Sudan					

Note: Surface area data: NBI, "Nile Basin Water Resources Atlas", July 2016 Sources: JICA Project Team

(1) International Agreements

In 1999, Nile Basin Initiative (NBI) was established with 10 Nile riparian countries' participation.

The Nile riparian countries are Burundi, the Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Rwanda, South Sudan, The Sudan, Tanzania, and Uganda. Eritrea participated as an observer.

The objectives of the Initiative are stipulated as follows.

"The initiative seeks to develop the River Nile in a cooperative manner, share the socio-economic benefits arising from utilization of the water resources of the Nile, and promote regional peace and security to achieve its shared vision of: sustainable socio-economic development through the equitable utilization of, and benefit from, the common Nile Basin water resources." (Source: The State of the River Nile Basin 2012)

As for water allocation of the Nile River water including Lake Victoria, the Initiative has not discussed.

In 2003, for the purpose of equitable water sharing of Nile water, negotiation was launched for the "Cooperative Framework Agreement (CFA)". In 2008, CFA was drafted up.

General principals stipulated in Article 3 of CFA are as follows.

- i) Cooperation
- ii) Sustainable Development
- iii) Subsidiarity
- iv) Equitable and reasonable utilization
- v) Prevention of the causing significant harm
- vi) The right of Nile Basin States to use water within their territories
- vii) Protection and conservation
- viii) Information concerning planned measures
- ix) Community interest
- x) Exchange of data and information
- xi) Peaceful resolution of disputes
- xii) Water as a finite and Vulnerable resource
- xiii) Water has social and economic value

xiv) Water security

In 2010, CFA was officially opened for signature. By the end of 2011, six countries of Tanzania, Kenya, Uganda, Rwanda, Burundi and Ethiopia singed. CFA requires six nations to ratify the agreement. Only three countries including Tanzania ratified by the end of 2015. It might take time to ratify the agreement.

After ratifying the agreement, Nile River Basin Commission will be established as a permanent institutional structure under the article 15 of CFA.

The issue of water allocation of the Nile River Basin might be discussed in the institution.

(2) Present Water Use of the Nile River Basin

NBI studied water use in the Nile River Basin. Dominant users of the Nile River are Egypt and Sudan as shown in Table 3.2.2.

According to the study, in 2002, there were 64 irrigation schemes in the lake basin of Tanzania including not only schemes which directly withdrew water from Lake Victoria but also schemes which utilised river water in the basin. Tanzania utilises only 0.1 % of available water source for irrigation. (Data on irrigation would need to be updated.)

This fact shows that Tanzania might have a right to use more water from the Lake Victoria Basin including the lake from the viewpoint of "equitable and reasonable utilization".

	vv unul awai							
Country	Equipped Area		Cropped Area		Withdrawal Requirement		Actual Withdrawal	
	(1,000 ha)	%	(1,000 ha)	%	(MCM)	%	(MCM)	%
Burundi	15.3	0.3%	8.7	0.1%	28.9	0.0%	28.7	0.0%
DR Congo	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.0	0.0%
Egypt	3,447.0	63.8%	5,021.0	79.0%	66,551.5	79.8%	66,054.0	80.4%
Ethiopia	91.0	1.7%	134.0	2.1%	2,018.2	2.4%	1,500.9	1.8%
Kenya	47.8	0.9%	20.0	0.3%	367.4	0.4%	307.5	0.4%
Rwanda	7.0	0.1%	7.0	0.1%	3.4	0.0%	3.2	0.0%
South Sudan	0.5	0%	0.2	0.0%	58.6	0.1%	57.4	0.0%
Sudan	1,764.6	32.7%	1,146.7	18.0%	13,959.8	16.7%	13,921.6	16.9%
Tanzania	19.7	0.4%	6.5	0.1%	102.2	0.1%	63.4	0.1%
Uganda	9.7	0.2%	9.7	0.2%	260.4	0.3%	260.3	0.3%
Total	5,402.6	100.0%	6,353.8	100.0%	83,350.4	100.0%	82,197.0	100.0%

 Table 3.2.2
 Estimated Equipped, Crop Areas, Withdrawal Requirement and Actual Withdrawal

Sources: NBI, "Nile Basin Water Resources Atlas", July 2016

(3) **Proposed Lake Water Use**

As the JICA Project Team reviewed the present status of international agreement, no agreement on water allocation exists. However, as a result of continuous efforts of riparian countries, there is CFA. Therefore, the team decided to follow the basic principle of CFA for the estimation of available water amount.

One of the principle of CFA is the "Equitable and Reasonable Utilization" of the Nile Basin water. In Article 4 -2 of CFA stipulate the "Equitable and Reasonable Utilization". (See Table 3.2.3)

In the Article, the part (d) "population dependent" would be a clear and quantitative indicator to estimate equitable and reasonable amount of water for irrigation. Then, the team used the population data for estimate.

Table 3.2.3 Article 4 of CFA

In ensuring that their utilization of Nile River System water resources is equitable and reasonable, Nile Basin 2 States shall take into account all relevant factors and circumstances, including but not limited to the following:

(a) Geographic, hydrological, climatic, ecological and other factors of a natural character;

(b) The social and economic needs of the Basin States concerned;

(c) The population dependent on the water resources in each Basin State;

(d) The effects of the use or uses of the water resources in one Basin State on other Basin States;

(e) Existing and potential uses of the water resources;

(f) Conservation, protection, development and economy of use of the water resources and the costs of measures taken to that effect;

(g) The availability of alternatives, of comparable value, to a particular planned or existing use;

(h) The contribution of each Basin State to the waters of the Nile River system;

(i) The extent and proportion of the drainage area in the territory of each Basin State.

Sources: Agreement on the Nile River Basin Cooperative Framework

The following table summarises the estimated population and its ratio in the Nile River Basin.

I	Table 5.2.4 Population Living in the Nile River Basin, 2015						
Country	Population	Ratio	Country	Population	Ratio		
	(million)	(%)		(million)	(%)		
Burundi	5.7	2.3 %	Rwanda	8.7	3.5 %		
CR Congo	2.9	1.2 %	South Sudan	11.9	4.8 %		
Egypt	85.8	34.6 %	Sudan	31.4	12.6 %		
Ethiopia	37.6	15.1 %	Tanzania	11.3	4.6 %		
Eritrea	2.2	0.9 %	Uganda	33.6	13.5 %		
Kenya	17.2	6.9 %					
Total				248.3	100.0 %		

2015

Sources: NBI, "Nile Basin Water Resources Atlas", July 2016

Scenario 1: (a)

If the team assumes the total withdrawal requirement shown in the Table 3.2.2 is the maximum amount, Tanzania would receive 4.6% of the total on the basis of population ratio at maximum.

4.6 % of the total withdrawal requirement	=	83,350.4 million m ³ x 4.6 %
	=	3,834.1 million m ³

Available irrigation area would be calculated dividing available water amount by unit water requirement.

Unit water requirement	=	63.4 million m ³ / 6,500 ha	=	9,754 m ³ /ha
Estimated irrigable area	=	3,834.1 million m ³ / 9,754 m ³	=	393,000 ha

(b) Scenario 2:

If the team assumes a basis of calculation is the withdrawal requirement of Egypt, Tanzania would receive 8,764.9 million m³ of withdrawal requirement.

Unit Withdrawal requirement (UWr) =	Withdrawal requirement / Population
-------------------------------------	-------------------------------------

66,551.5 million m³ / 85.8 million

	=	775.7 m ³ /person
Total amount of requiremen t	=	UWr x Tanzanian Population
	=	8,764.9 million m ³

Available irrigation area would be calculated dividing available water amount by unit water requirement.

Estimated irrigable area = 8,764.9 million m³ / 9,754 m³ = 898,600 ha

As a conclusion, Tanzania would not need to consider the limitation of irrigation development in terms of water in the Lake Victoria Basin.

3.3 Electric Charge for Pump Irrigation

As the team learnt during site visit, introduction of solar power generation system would be useful for a small scaled horticulture irrigation system. However, irrigation for paddy with a certain scale would require power supply from TANESCO as more reliable and continuous source of power supply.

Unfortunately, many electric pumps were not in operation because of high electricity charge for irrigation. In Tanzania, farmers need to pay the same electricity charge as an industrial use. The following table shows the customer groups for tariff setting. No customer group for agriculture use is prepared.

	Tuble cloth Gubtomer G	- oups -	
	Existing Customer Group		Proposed Customer Group (2017)
D1:	Domestic Low Usage, for low consumption	D1:	Domestic Low Usage, for low consumption users
	users		
T1:	General Usage, for general use of electricity	T1a:	General Usage, for general use of electricity
	including residential, small industries,		including residential, small commercial and
	commercial and public lighting;		public lighting
T2:	Low Voltage Maximum Demand Usage, for	T1b:	General Usage for light industrial use, Billboards
	general use at 400 Volts with average		and Communication towers
	consumption greater than 7500 kWh per meter		
	reading period		
T3MV:	Medium Voltage Maximum Demand Usage, for	T2:	Low Voltage Maximum Demand Usage, for
	general use where power is metered at 11/33 kV;		general use at 400 Volts with average
			consumption greater than 7500 kWh per meter
			reading period
T3HV:	High Voltage for general use where power is	T3MV:	Medium Voltage Maximum Demand Usage, for
	metered at 132kV and above (including bulk		general use where power is metered at 11/33 kV
	supply to Zanzibar)		
Sources:	TANESCO, "Tariff Adjustment Application for year	T3HV:	High Voltage for general use where power is
	2017		metered at 132kV and above (including bulk
			supply to Zanzibar)

Table 3.3.1Customer Groups in TANESCO's Tariff

As shown in the table above, there is no category of irrigation and agriculture. In Japan, electric power companies supply low price electricity to irrigation and drainage purpose from the view point of food security as shown in the following table.

Table 3.3.2Monthly Tariff in Japan (in Ratio)				
		Demand Charge		
Category of Contract	Basic Charge	Normal	High Season (Summer)	Other Seasons
Residential Use B	25 - 153 %	114 - 176 %	-	-
Residential Use C (Large Family, Shops)	25 %	114 – 176 %	-	-
Low Voltage (Small industry and business)	100 %	100 %	100 %	100 %
High Voltage (Big Industry)	153 %	-	101 %	104 %
Irrigation and Drainage	39 %	-	76 %	76 %

Note: This table is prepared assuming the charge for "Low Voltage" as 100%. Sources: Home page of Tokyo Electric Power Company (TEPCO)

In order to promote lake water as a stable water source, a special consideration of electricity charge for

agricultural purposes would be necessary.

Chapter 4 **National Irrigation Research and Training Centre**

4.1 **Review of Application Form for Grant Aid from Japan**

(1) **Proposed Location**

NIRC plans to establish NIRTC in Dakawa Village, Mvomero district, Morogoro. The following table summarises the location plan of NIRC and the result of site visits by the team.

Table 4.1.1Site Conditions and Findings		
	Explanation by NIRC	Findings by JICA Project Team
Land	Flat land with minimum slope	Small trees exist.
		Land clearing would be necessary
Site condition	Electricity, telephone services are available	Extension would be necessary from existing research centres
	Water supply system is at final stage of construction	Water supply system is constructed for Chollima and Chinese research centres.
		NIRTC requires new water supply system including pump house and Water Permit.
		Water source will be the Wami River.
Access		From Morogoro-Dodoma road: 7.0 km
		Existing road: 5.3 km
		Access road:1.7 km
		New construction of the access road would be
		necessary.

Sources: Application Form for Grant Aid from Japan, 2014

(2) Site Plan: Laboratories

NIRTC has a plan to establish 6 laboratories as shown below.

- Laboratory No.1 Hydrology & Water Resources i)
- ii) Laboratory No.2 Soil Mechanics
- iii) Laboratory No.3 Irrigation & Water Management
- iv) Laboratory No.4 Material Testing (Strength of materials)
- v) Laboratory No.5 Remote Sensing & GIS
- vi) Laboratory No.6 Technology Transfer

NIRTC plans to provide various in-service trainings for both public and private personnel in the irrigation sector.

If the meaning of "in-service" is to get order from outside institution for training purpose, each laboratory would require 3-4 skilful technicians and 1-2 engineers.

(3) **Cost Estimate**

The application includes 135,000 US\$/year for project staff salaries. Assumed that salary of staff is 750 US\$/month, the amount could employ 15 staff in total.

As for budget of international experts is 365,000 US\$ year. With this amount, NIRTC would be able to employ one expert.

4.2 Comments on the plan of NIRTC

(1) NIRTC Construction

Construction of NIRTC would be possible with enough budget including the following facilities.

- New pump house would be necessary.
- New water supply system would be necessary.
- · Access road improvement would be necessary.

If NIRTC would plan to conduct hydraulic model test, considerable amount of water may be required additionally.

(2) Staff Recruitment

If NIRTC will plan to get order from outside, recruitment of skilful technicians and engineers will be indispensable.

Total number of necessary technical staff will be 30.

It will be difficult to cover salary of 30 staff with contract works from outside. Therefore, annual expense might be much higher than the estimate.

The most difficult problem will be employment of skilful technical staff.

(3) Cooperation with Other Institutions

As a solution to find skilful technical staff, it would be necessary to seek cooperation with other technical institutions. In consideration of the location, one of possibilities would be cooperation with the Sokoine University in Morogoro.

The Sokoine University has a department of agricultural engineering including irrigation. In addition, the University has laboratories, and an experimental farm with water harvesting pond.

Experimental Farm

Water Harvesting Pond

4.3 Reference Material:

(1) The Roles of the Project Committee

CGL Volume 2 – Implementation describes the role of the project committee as follows.

The DIDT will brief the roles of the project committee, to be elected from the beneficiaries, to the community, and instruct the community to make arrangements for the meeting to elect project committee members. The roles of the project committee shall be:

- a) Project implementation.
- b) Maintain a bank account under the supervision and the guidance of the Village Council.
- c) Provide information on implementation progress.
- d) Mobilize contributions from the community members.
- e) Handle the procurement of goods and services.
- f) Seek technical support and other services from extension workers, DIDT, ZIO/RIO, private consultants, NGOs and development agencies.
- g) Prepare and submit monthly, quarterly and annually physical and financial reports to the Village Council, following the PO-RALG reporting format.

Source: NIRC, "Guidelines for Irrigation Scheme Development Volume 2 – Implementation", Revised Edition 2016

(2) Site Plan of NIRTC

The site plan of NIRTC originally proposed by NIRC is as shown in Figure 4.3.1.

Sources: JICA Project Team

Figure 4.3.1 Site Plan of NIRTC

Name of Scheme	Highland Estate Ltd. (Head Office: Dar es Salaam)		
Date of Investigation	31/Jan/ 2017		
Name of Site Visitor	NIMP2018 team : Sibuta Leader, Shiga, Amano, Masaki, Majo, Mashafi, Samson, Mbeya Zonal Office: Muendo, Faraia		
Name /Position of	Mbarali DC Irrigation Engineer:		
Guide	Highland Estate Manager: Sadiki Nigira		
Findings			
Location	ZoneMbeyaDistrict :MbaraliIntake Site:Latitude S8.73556Longitude E34.37462Farmland:Latitude S8.65773Longitude E34.28548		
Outline of the Scheme	This scheme was constructed in 1970's with assistance of China. Private farm of Highland Estate Ltd. has taken over the irrigation systems from NAFCO since 2004/5.		
Scheme Area	Potential Area (ha) :unknownDeveloped Area (ha) :3,600Irrigation Area (ha) :300direct management3,300contract to farmers		
Present Status of Scheme	 Estate has two irrigation systems. The system 2 area is located at north of the system 1. (See the Scheme Map) Major crop is paddy with single planting per year. Land preparation: September Transplantation of rice: December - January Harvesting: June - July O&M Cost: 6 million Tzs / year Farming and Post harvesting: 		
Water Source	Mbarali River (Perennial River)		
Irrigation Method	Gravity Irrigation (Headworks, and Open channel)		
Irrigation Facilities	Headworks : Dimensions are unknown. Main canal : System 1 Main 13.5 km * System 2 Main 7.0 km * Irrigation Area of System 1 : Gross 2,270 ha* Irrigation Area of System 2 : Gross 2.110 ha*		
Findings	 Maintenance activities, such as lubricants on gate spindles, coating of gate covers and weeding of canals, are seems to be well conducted. Canal slope collapse of major canals was not observed in the field. The company spend small amount of 6 million Tzs annually for maintenance of facilities. This amount might cover material cost only, and might not include manpower and machinery costs. 		

Photos 1/2		
Location	Photo	Comments
Headworks Weir		A low height concrete wall structure, that is not commonly constructed, can be seen at downstream apron.
Sand Sluiceway		Three gated sand sluiceway is provided in the left bank of the Mbarali River.
Intake Structure		Well maintained irrigation intake structure
Main Canal		Beginning point of the Main Canal paved with concrete (13.5 km).

Location	Photo	Observation
Trunk canal in		Canal problem such as
Scheme 1 Area		collapse of canal slope,
		is not observed.
Gated check structure		Water level control is conducted by gates in the canal. System is old, but it seems operational without problem.

Photos 2/2

Site investigation Sheet (2)

Name of Scheme	Igomelo Scheme (SSIDP Scheme)		
Date of Investigation	31/Jan/ 2017		
Name of Site Visitor	NIMP2018 team : Sibuta Leader, Shiga, Amano, Masaki, Majo, Mashafi, Samson Mbeya Zonal Office: Mwendo, Faraja		
Name /Position of Guide	Mbarali DC Irrigation Engineer: IO : IOs : Chairman, Vice Chairman, Accountant (Attend Interview), Board member 1, Member 1		
Findings			
Location	Zone :MbeyaDistrict :MbaraliIntake Site:Latitude S8.81741Longitude E34.39184Farmland:Latitude S8.81537Longitude E34.39229		
Outline of the Scheme	This site started as a Traditional irrigation scheme in 1950's. Improvement works were carried out with WB assistance in 2001/2002 fiscal year. As a result, irrigation area expanded from 100 ha to 312, and unit yield of crops also increased drastically. At present, canal lining work (1.3km) is going on under SSIDP		
Scheme Area	Potential Area (ha) :312 haDeveloped Area (ha) :312 haIrrigation Area (ha) :312 ha		
Water Source	Mbarali River (Perennial River)		
Irrigation Method	Gravity Irrigation (Headworks, and Open channel)		
Irrigation Facilities	Headworks: Dimensions are unknown.Canal: Main5.0 km *Secondary2.8 km *		
Irrigators Organization	Name of IO:Igomelo irrigators OrganizationRegistration:1998 with 195 members as a cooperativeMembership:303 (Male 202, Female 101), non-member 79Member Fee:75,000/acre/yearNon-member fee 115.000/acre/vear		
Findings	 Canal lining with wet stone masonry is going on under SSIDP. The work manner using finishing rulers, observed in the field, is proper, and good result will be expected. Intake site seems to be stable because of rock foundation. IO seems to be active enough to maintain the scheme. 		

Note ; The asterisk mark "* " means that the data is approximated value measured on the google earth pro.

Location	Photo	Comments
Intake Weir		Rocks are exposed. Foundation of the weir would be steady.
Intake Structure		A gate for sand sluiceway can be seen just downstream part of the intake without guide wall.
Main Canal		 Beginning point of the main canal In the left side of a gate located in front, there is a spillway structure to eliminate excessive water from the main canal, and return it to the river.

Photos

Site investigation Sheet (3)

Name of Scheme	Namingo'ngo (SSIDP scheme)	
Date of Investigation	2/Feb/ 2017	
Name of Site Visitor	NIMP2018 team : Sibuta Leader, Shiga, Amano, Masaki, Majo, Mashafi, Samson Mbeva Zonal Office: Muendo, Faraia	
Name /Position of	Momba DC DAICO:	
Guide	Momba DC Irrigation Technician:	
Findings		
Location	Zone : Mbeya District : Momba	
	Intake Site: Latitude S 8.85397 Longitude E 32.48743	
	Farmland: Latitude S 8.85174 Longitude E 32.47636	
Outline of the Scheme	A headworks was constructed at old river course, however, the headworks were flushed away together with bridge due to flood in 2005. New headworks construction has been implemented in excavated artificial river course utilising NIDF since 2009, and is scheduled to complete in July, 2017.	
Scheme Area	Potential Area (ha) : 5,000 ha	
	Designed Area (ha): 3,000 ha	
	Developed Area (ha): 1,500 ha	
	Irrigation Area (ha) ha	
Water Source	River (Perennial River)	
Irrigation Method	Gravity Irrigation (Headworks, and Open channel)	
Irrigation	Headworks : Dimensions are unknown.	
Facilities	Canal : Main 2.5 km	
	Canal lining under SSIDP 550 m	
Findings	 Serious sedimentation is observed in front of intake facility. According to district technician, the foundation of the headworks is covered with 10 meters' thick layer of deposited sand and clay. Therefore, this foundation, which shows a weak bearing capacity, makes construction work difficult. No measuring devices are found. Consequently, suitable water distribution would be difficult. Poor construction manners can be observed in many sections. Grooves are not straight Vibration at the time of concrete placing might be insufficient. Reinforcement bars are exposed without cut. 	

1 (Photos (1/2)	0
Location	Photo	Comments
Intake Weir	Intake	 An intake facility is constructed in the left bank of the river. A concrete bridge is constructed just downstream reach of the headworks.
Intake Structure	Sand sluice gates	 Serious sedimentation can be seen in the back of gates of sand sluiceway.
Bridge and Debris		 A pier of bridge located in front of sand sluiceway has debris stay. This will cause negative effect to the sand sluiceway.
Sand Sluiceway		 Gate spindle and frame are seemed to be lack of necessary strength. A frame that can be seen in the back has already changed its shape because of lack of strength.

Location	Photo	Comments
Stop log		 Careless supervision of concrete work Grooves should be made straight. Reinforcement bar should be cut to an appropriate length.
Beginning point of Main canal		 No water volume measuring device or facility exists. Unnecessary projections are found.
Intake and		No water volume
Regulator		measuring device or facility exists.
Design of Stop Log		 Unnecessary sudden contraction of a canal section would cause much loss of energy of water.

Site investigation Sheet (4)

Name of Scheme	Dakawa Rice Farm		
Date of Investigation	7/Feb/ 2017		
Name of Site Visitor	NIMP2018 team : Sibuta Leader, Eng. Majo, Mr. Arai, Mr. Shiga, Mr. Amano, Mr. Masaki, Eng. Mashafi, Mr. Samson		
Name /Position of Guide	Morogoro Zonal Office: Eng. Towa, Eng. Mtui		
Findings			
Location	ZoneMorogoroDistrict :MvomeroPump Station:Latitude S6.443639Longitude E37.53640Farmland:Latitude S6.423108Longitude E37.53812		
Outlie of the Scheme	The scheme was constructed by GoT through NAFCO between 1979 and 1982 with technical assistance by North Korea. In 2003, the farm was handed over to farmers group. As a part of IRRIP of USAID, CDM smith prepared the up-dating feasibility study report based on 1996 F/S in 2012. At present, rehabilitation of the scheme is on-going under IRRIP.		
Scheme Area	Potential Area (ha) :5,000 haDesigned Area (ha):3,000 haDeveloped Area (ha):2,000 haIrrigation Area (ha)2,000 ha		
Water Source	Wami River (Perennial River)		
Irrigation Method	Pump Irrigation (Headworks, and Open channel)		
Irrigation Facilities	Pump Station:6 pumps600mm dia.3,600 m³/hr x 4Canal:Main1 no.7.4 kmSecondary 8 nos.26.2 kmDrainage34.3 kmFarm road37.4 km		
Irrigators Organization Findings	Name of IO:UWAWAKUDAYear of Establishment:2006Year of Registration:2006 as CooperativeMembership:840 (male = 516, female = 324)Entrance fee:100,000 Tzs,Irrigation fee:74,000 Tzs• Lining concrete of Main Canal is reinforced by iron bar. This reinforcedlining would resist water pressure caused by high ground water level.• Water measuring facilities such as Parshall measuring flume have beenconstructed at the head of secondary canal.Proper watermanagement using measuring facilities would bring cost saving ofelectricity charge of pumps.		

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Location	Photo	Comments
Pump Station		GoT constructed pump station in 1982.
Pump		Pumps installed were made in Germany.
Concrete Lining		Completed section of
for Main Canal		the Main canal.
Concrete Lining under Construction		Main canals and 500m section of each secondary canals are scheduled to be lined. As for secondary lining, concrete panels are used.

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Photos (2/2)				
Location	Photo	Comments		
Check structure under Construction		Typical type of check gate structure under construction.		
Farmland		For the farm practice machines such as tractor, combine are utilised.		

Site investigation Sheet (5)

Name of Scheme	Itete Irrigation Scheme			
Date of Investigation	9/Feb/ 2017			
Name of Site Visitor	NIMP2018 team : Sibuta Leade, Eng. Majo, Mr. Amano, Mr. Masaki Eng. Mashafi, Mr. Samson			
Name /Position of Guide	Malinyi District:			
Findings				
Location	Zone : Morogoro District: Malinyi			
	Headworks: Latitude S 8.648297 Longitude E 36.39573			
	Left Main Canal: Latitude S 8.648844 Longitude E 36.39216			
	Right Main Canal: Latitude S 8.641767 Longitude E 36.39483			
Outline of the	Itete Scheme was constructed between 2013 and 2015 by support from			
Scheme	SAGOT with an amount of 6.09 billion Tzs.			
Scheme Area	Potential Area (ha) : 8,000 ha			
	Designed Area (ha): 1,000 ha			
	Developed Area (ha): 1,000 ha			
	Irrigation Area (ha) ha			
Water Source	Mchilipa River (Perennial River)			
Irrigation Method	Gravity Irrigation (Headworks, and Open channel)			
Irrigation	Headworks : no data			
Facilities	Canal : Left Main 4.7 km (covers 600 ha)			
	Right Main 2.4 km (covers 400 ha)			
	Secondary 22 canals			
lucia ata na	Farm road : 6.6 km			
Organization	Name of IO: Itete Irrigators Organization			
Organization	Providence 2007			
	Membership: 417 (male = 320 female = 97) non-member = 230			
Findings	Some intake structures are located at just unstream of the drop structure			
T mangs	which does not equipped with water level control facilities. These intakes			
	would face difficulty in receiving water during low-water-demand period			
	(See Photo 3)			
	• Drainage canals were not found at the field. A farmer drained our			
	excess water from paddy field to the edge of the main farm road. (See			
	Photo 8) The road would be easily damaged by water ponded along the			
	road.			
	· Water level control of gated-type check structure would require careful			
	water management. Otherwise, canal would be easily damaged by			
	overflow water from upstream. (See Photo 7)			
	\cdot The right main canal construction was suspended. (See Photo 4)			
	\cdot A drainage system in the scheme and a catch drain network surrounding			
	the scheme area would be necessary.			

The Project on the Revision of National Irrigation Master Plan in the United Republic of Tanzania Final Report

Photos (1/2)				
Location	Photo	Comments		
Photo 1 Headworks		This headworks has both left and right intake structures.		
Photo 2 Beginning point of Right Main Canal		Excess water will return to the river through spillway of the main canal.		
Photo 3 Turnout with drop structure	Small Drop	In addition to this small drop structure, another drop structure is placed a few meters downstream. For the stable intake of water, it is not recommendable to place a drop-structure without a check function at just downstream portion of a turnout.		
Photo 4 Existing end point of the Right Main Canal		The right main canal construction was suspended due to unexpected ponding water and a wadi flow in rainy season.		
Photos (2/2)				
--	-------	---	--	
Location	Photo	Comments		
Photo 5 Damaged Right Main Canal		Drainage water, came from outside of the scheme area, damaged a canal section.		
Photo 6 Left Main Canal		Spillway constructed at the beginning of the Left Main Canal.		
Photo 7 Turnouts with Gated Check Structure		A check structure equipped with only gates would be difficult in control when unexpected water flows into canal. Downstream portion of this Check structure was damaged by overflow.		
Photo 8 Paddy field		Excess water runs beside the farm road because no drainage canal was constructed.		

Site	investio	ation	Sheet	(6)
0.00		<u>jacion</u>	0	\\

Name of Scheme	Kilombero Plantations Limited (KPL)		
Date of Investigation	9/Feb/ 2017		
Name of Site Visitor	NIMP2018 team : Mr. Arai, Eng. Majo, Mr. Siga, Mr. Samson		
Name /Position of Interviewee	Mr. David Arnott (Deputy Managing Director), Mr. Ivan Hayes (Crop Production Manager), Mr. Fredrik Jailos (Smallholder Dept.)		
Findings			
Location	Zone : Morogoro District: Kilombero Field Office: Latitude S 8.358161 Longitude E 35.09121		
Outline of the	· The scheme was initially developed in 1980s with support from North		
Scheme	Korea and then handed over to GoT (RUBADA). During the privatization		
	time, the scheme was transferred to KPL.		
	\cdot KPL started operation in 2009 with an area of 500 ha. The irrigation area		
	has been gradually increased to1,500 ha by 2015 December.		
	\cdot Current irrigation area is 3,030 ha. KPL grows paddy in wet season, and		
	maize in dry season.		
Scheme Area	Potential Area (ha) : - ha		
	Designed Area (ha): 5,500 ha		
	Developed Area (ha): 3,030 ha		
	Irrigation Area (ha) 3,030 ha		
Water Source	River (Perennial River)		
Irrigation Method	Centre-Pivot Irrigation		
Irrigation	Pump system: 3 sets 12 pumps for water supply to Pivot system		
Facilities	Size of Centre-Pivot Main System: 77 ha / system		
	Size of Other Centre-Pivot Systems: 38 ha/system, 17 ha/system		
Findings	Irrigation method is a large-scale centre-pivot which covers 77ha.		
	 Operation and maintenance of centre pivot system is easy. 		
	SRI cultivation is practiced.		
	 KPL has no immediate expansion plan of irrigation area. 		

Photos			
Location	Photo	Comments	
Pump Site at the river		Submersible pumps	
Main canal which connects pumps at the river and the pump house located at the field	017.02.09 18:59	Main canal is line with " Dam Liner".	
Pump House at the Field		Pump house to add pressure for the centre pivot irrigation system	
Centre Pivot System	2012 02 09 19 29	One system covers 77 ha	

Name of Scheme	Msoga Irrigation Scheme (SSIDP Scheme)		
Date of Investigation	10 /Feb/ 2017		
Name of Site Visitor	NIMP2018 team : Sibuta Leader Amano. Mr. M	r, Eng. Majo, Mr. Arai, Mr. Siga, Mr. asaki, Eng. Mashafi, Mr. Samson	
Name /Position of Guide	Chalinze District:		
Findings			
Location	Zone : Morogoro Reg District : Chalinze Vill Coordinates: Centre of Dam Crest Latitude S 6.569	gion : Pwani age : Msoga 928 Longitude E 38.30365	
Outline of the Scheme	 This dam was constructed to irrigation Remaining 100 ha was initially plate After formulation of scheme plan, groundwater. In this connection, irrigation area by reservoir in 2018 The bund was decided to be heiging the limprovement works are on-going 	ate 50 ha of farmland in 2010. anned to be irrigated by deep well. it turned out that there is no source of , the plan was modified to cover entire 5. htened by 2.25m.	
Scheme Area	Potential Area (ha) :200 haDesigned Area (ha):150 haDeveloped Area (ha):150 haIrrigation Area (ha)0 ha		
Water Source	(Seasonal River)		
Irrigation Method	Gravity Irrigation (Headworks, and C	Dpen channel)	
Dimension of Dam	Existing Dam: Homogeneous Earth Fill Dam Dam Height : 12.45 m Crest Length : 289 m Crest Width : 4.5 m Crest Elevation: 219.35 m Full Supply Level : 217.0 m Gross Capacity : 427,600 m ³ Dead Capacity : 0 m ³ Catchment Area: 26 km ² Spillway: Left bank	After Improvement:Homogeneous Earth Fill DamDam Height :14.70 mCrest Length :289 mCrest Width :6.0 mCrest Elevation:221.0 mFull Supply Level :219.0 mHigh Flood Level :220.0 mGross Capacity :970,480 m³Dead Capacity:0 m³Catchment Area:26 km²Spillway:Right bank (W=40m)Emergency Spillway:Use of ExistingSpillwaySpillway	
Findings	 Improvement works are suspend Dead water volume for sediment Protection of Spillway has not yet 	ded due to an administrative reason. tation was not considered in design. et conducted satisfactorily.	

Site investigation Sheet (7)

Photos			
Location	Photo	Comments	
Overview of Dam		Embank materials were dumped on the bund.	
Suspension of Bund Embankment		Embank materials were dumped on the bund. No construction work was carried out.	
Downstream view from Existing Spillway		A portion of spillway left bank was damaged when excess water was drained out through spillway channel.	
Upstream view of new Spillway		For a time being, there is no protection in the new spillway.	

Site investigation Sheet (8)

Name of Scheme	Lower Moshi Scheme		
Date of Investigation	15/Feb/ 2017		
Name of Site Visitor	NIMP2018 team : Sibuta Leader, Amano, Masaki, Majo, Mashafi, Samson		
Name /Position of Guide and Interviewee	Kilimanjaro ZIO: Eng. Tegamaisho LMS Coordinator: Mr. Fredrick S. Mawolle		
Findings			
Location	Zone : Kilimanjaro District : Moshi Rural Mabogini System		
	Intake Site:Latitude S3.384158Longitude E37.35811Farmland:Latitude S3.385911Longitude E37.35873Rau ya Kati System		
	Intake Site: Latitude S 3.413589 Longitude E 37.38042		
	Farmland: Latitude S 3.416472 Longitude E 37.38219		
Outline of the Scheme	Construction works were completed in 1987 applying Japanese Loan. Secondary and tertiary canals were rehabilitated with NIDF under ASDP I three years ago (2013/14?).		
Scheme Area	Potential Area (ha):-haDesigned Area (ha):2,300haDeveloped Area (ha):1,100ha for Paddy1,200ha for Upland CropIrrigation Area (ha)1,100		
Water Source	Rau river for Rau va Kati system & Nioro river for Mabogini system		
Irrigation Method	Gravity Irrigation (Headworks and Open channels)		
Irrigation Facilities	Headworks Mabogini (Intake amount = 840 litre/sec) Rau ya Kati (Intake amount = 1,135 litre/sec) Irrigation Canal : Total 35 km		
	Drainage Canal : Total 49 km		
	Farm Road : Total 70 km		
	Flood Protection Dyke: Total 16 km		
	Land levelling : 1,100 ha		
Irrigators	Name of IO : Lower Moshi Irrigators Association (LOMIA)		
Organization	Registration : 2007 as Association		
	Fees : 38,000 /Tzs /plot/season		
	Others : Sub-LOMIAs were set up at four villages under		
Findingo	Central-LOMIA		
rinuings	Kati		
	• The scheme has been working since 1987		
	Water shortage problem is reported at the upland crop area of Rau va		
	Kati system. To add water, ground water is utilized by solar pump		
	system.		

Location	Photo	Comments
Mabogini Headworks (Mbogini HWs)		Headworks is in good condition.
Mabogini HWs: Sand Trap		
Mabogini HWs: Sluice Gate		Gates are in good condition.
Rau ya Kati Weir and Intake		Headworks is in good condition.

Location	Photo	Co	omments	
Rau ya Kati: Main Canal		Canal condition	is in n.	good
Rau ya Kati: Secondary Canal and Paddy Field				
Rau ya Kati: Division Box on Secondary Canal				
Rau ya Kati: Tertiary Canal		Tertiary rehabilita 2013/14	canals ated	were in

Location	Photo	Comments
Solar Panels		The solar pump system
for Pump	Contra Martin and	was found in the Rau ya
		Kati upland crop area.
Secondary		Water is supplied from
canal in the Rau ya Kati upland crop area		the solar pump system.

Photos (3/3)

Site investigation Sheet (9)

Name of Scheme	Kikafu Chini (SSIDP Scheme)		
Date of Investigation	16/Feb/ 2017		
Name of Site Visitor	NIMP2018 team : Sibuta Leader, Eng. Majo, Mr. Shiga, Mr. Masaki		
Name /Position of Guide and Interviewee	ZIO: Eng. Tegamaisho (ZIO), Hai DC: Mr. Silo IO: Village chairman, Project Committee (5), IO (4), District Councilor, VAEO		
Findings			
Location	Zone:KilimanjaroDistrict:HaiCoordinates:Intake SiteLatitude S3.416869Longitude E37.29269FarmlandLatitude S3.417492Longitude E37.29178		
Outline of the Scheme	Government improved the traditional furrow irrigation area, and expanded the irrigation area from 150 to 450ha in 1999.		
Scheme Area	Potential Area (ha) :641 haDesigned Area (ha):541 haDeveloped Area (ha):541 haIrrigation Area (ha):180 ha (Wet)80 ha (Dry)		
Water Source	Kikafu River		
Irrigation Method	Gravity Irrigation (Headworks and Open channel)		
Irrigation Facilities	Weir: Dimensions are unknownCanal: Total 4 km, Kikafu area = 1 km, Upareni area = 3 km		
Irrigators Organization	Name of IO :UWAKICHI cooperativeRegistration :1999Membership :Cooperative member 187 Land owner 759, beneficiaries = 1,500Fees :Member fee = 15,000/acre/season for paddy = 10,000/acre/season for maize Rental fee of land = 200,000/acre/season for paddy = 100,000/acre/season for maize		
Findings	 IO lends farm land to non-member villagers and farmer from outside of the village. IO hires labors to conduct canal maintenance works. Rehabilitation is going on. 		

Photos			
Location	Photo	Comments	
Diversion Point		Rehabilitation is on- going	
Rehabilitation of Canal			
Paddy Field in the Scheme			
Interview with Irrigators Organization			

Site investigation Sheet (10)

Name of Scheme	Musa Mwinjanga (SSIDP Scheme)		
Date of Investigation	16/Feb/ 2017		
Name of Site Visitor	NIMP2018 team : Sibuta Leader, Eng. Majo, Mr. Shiga, Mr. Masaki		
Name /Position of Guide	ZIO:Eng. Tegamaisho (ZIO),Hai DC:Mr. SiloIO:Village chairperson, VAEO, Village council member, Project committee, IO (4)		
Findings			
Location	Zone:KilimanjaroDistrict:HaiCoordinates:Intake SiteLatitude S3.395358Longitude E37.29513FarmlandLatitude S3.397817Longitude E37.29635		
Outline of the	Main canal was improved in 1990s.		
Scheme	In 2009, the canal was rehabilitated under DADP fund.		
Scheme Area	Potential Area (ha) :676 haDesigned Area (ha):506 haDeveloped Area (ha):506 haIrrigation Area (ha):485 ha (Wet)220 ha (Dry)		
Water Source	Weruweru River (water permit: 320 litre/sec)		
Irrigation Method	Gravity Irrigation (Headworks and Open channel)		
Irrigation	Weir : Dimensions are unknown		
Facilities	Canal : Main Canal 3 km Secondary Lebulu 450 m under improvement Secondary Kondo 300 m under improvement		
Irrigators	Name of IO : UWAMI		
Organization	Registration :2003 as a cooperativeMembership :Cooperative member =770, non-member =20Fees :Member fee =10,000/acre/season member=20,000/acre/season non-member villager=20,000/acre/season non-villager=40,000/acre/season non-villagerO&M budget :2 million Tzs/ year		
Findings	 Irrigation canal system consists of 1main and 2 secondary canals. Concrete block lining work of secondary canal is going on. 		

Photos			
Location	Photo	Comments	
Division structure of existing secondary canal			
Secondary canal		Kondo secondary canal is formed with precast concrete blocks.	
Interview Survey with IO			

Site investigation Sheet (11)

Name of Scheme	Chinangali II Grape Farm		
Date of Investigation	21/Feb/ 2017		
Name of Site Visitor	NIMP2018 team : Sibuta Leader, Eng. Majo, Mr. Masaki,		
Name /Position of Guide	Dodoma Zone: Eng. Lucia Lema (ZIE-Dodoma)		
Findings			
Location	Zone : Dodoma District: Chamwino Coordinates: Well No.1 Latitude S 6.143022 Longitude E 36.11381		
Outline of the Scheme	The grape farm was constructed in 2008 by receiving a loan from the CRDB bank with support from Chamwino DC. The loan amount was 1.5 billion Tzs.		
Scheme Area	Potential Area (ha) :280 haDesigned Area (ha):120 haDeveloped Area (ha):160 haIrrigation Area (ha)120 ha (wet season)120 ha(dry season)		
Water Source	Groundwater		
Irrigation Method	Drip irrigation		
Irrigation	Deep well : 3 locations with submersible electric pump		
Facilities	Farm pond : 1		
Irrigators Organization	Name of IO:CHABUMA - AMCOSRegistration:2008 as a cooperative societyMembership:296 (male = 183, female = 113)Fees:Member fee= 360,000/acre/season+:::*:::*:::<		
Findings	 There are 3 deep wells. Among 3 wells, the well located at near the farm pond has a salinity problem. The other wells supply fresh water. Grape production has dropped year by year because of poor production technic, high electric charge, and damage of trees by white ants. Usually, IO operates one pump to save electricity charge. Farmers receive a loan from a bank to install pipeline system. Low farm gate price of grapes and lack of market are challenges. 		

Photos			
Location	Photo	Comments	
Borehole Pump House No.1 near the pump house for drip irrigation		The No.1 well has a salinity water problem.	
Farm pond		Farm pond is covered with rubber sheets to prevent percolation loss of storage water.	
Grape Farm		Height of grape tree is low.	
Grape Farm		Many trees are damaged by white ants.	

Site investigation Sheet (12)

Name of Scheme	Buigiri Scheme		
Date of Investigation	20/Feb/ 2017		
Name of Site Visitor	NIMP2018 team : Sibuta Leader, Eng. Majo, Mr. Masaki,		
Name /Position of Guide	Dodoma Zone: Eng. Lucia Lema (ZIE-Dodoma)		
Findings			
Location	Zone : DodomaDistrict:ChamwinoCoordinates:Intake SiteLatitude S6.153922Longitude E36.03538FarmlandLatitude S6.152544Longitude E36.03624		
Outline of the Scheme	Bund was constructed between 1957 and 1959 for the purpose of domestic and cattle water supply. Since 2005, farmers group consisting of 24 members has started to use the reservoir for irrigation. Farmers grow vegetables and maize twice a year.		
Scheme Area	Potential Area (ha) :24ha(60 acre)Designed Area (ha):hahaDeveloped Area (ha):18ha(45 acre)Irrigation Area (ha):16ha(40 acre)		
Water Source	Reservoir		
Irrigation Method	Gravity Irrigation (Reservoir and Open channel)		
Irrigation Facilities	Dam: Crest length = 820 m*,Bund height = 8 m**Canal: 900 m*		
Irrigators Organization	Name of IO : UWAMABBU Registration : As an association Membership : 79 non-member 100		
Findings	 Sedimentation in the reservoir area is serious problem. End sill elevation of the intake for watering place is lower than that for irrigation. Watering place has a priority to take water. River flow as a source of water tends to decrease. 		

Note: The asterisk mark " * " means that the data is approximated value measured on the google earth pro. The double asterisk mark " ** " means that the data is approximated value measured by a GPS device.

Leastian	Filotos (1/2)	Commonto
Location Reservoir	Photo	Comments
Bund		The bund has no gully and eroded portion.
Main Canal		
Spillway of Main canal		Lack of water management wastes water through spillway of the main canal.

Location	Photo	Comments
Division		Condition of canal
Structure		facilities is good.
Vegetable Farm		Farmers irrigate vegetables and maize.

Photos (2/2)

Site investigation Sheet (13)

Name of Scheme	Bahi Sokoni Scheme		
Date of Investigation	20/Feb/ 2017		
Name of Site Visitor	NIMP2018 team : Sibuta Leader, Eng. Majo, Mr. Masaki,		
Name /Position of	Zoneal Office: Eng. Lucia Lema (ZIE)		
Guide and Interviewee	IO : Chairman, Secretary, and members		
Findings			
Location	Zone : Dodoma District: Bahi		
	Coordinates:		
	Intake Site Latitude S 5.973017 Longitude E 35.30582		
	Farmland Latitude S 5.983258 Longitude E 35.30601		
Outline of the	• The former weir made of gabion was constructed at 2 km downstream		
Scheme	portion from the existing weir with a support of FAO in 1984 for the		
	Bahi sokoni scheme.		
	\cdot In 1993, the existing weir and main canal were constructed for the		
	Bhai sokoni and the adjacent scheme of Nguvumali.		
Scheme Area	Bahi sokoni Nguyuma		
	Potential Area (ha) : 2,000 ha 500 ha		
	Developed Area (ha): 780 ha 360 ha		
	Irrigation Area (ha): 110 ha 100 ha		
Water Source	Bubu River (Perennial River)		
Irrigation Method	Gravity Irrigation (Headworks, and Open channel)		
Irrigation Facilities	Weir : Length 16.5 m* with 10 gates		
luui a sta us	Main Canal : Headrace 0.85 km		
Irrigators	Name of IO : UVVAMABBU		
Organization	Membershin : Bahi sokoni 2 000		
	Nguyumali 360		
Findings	Because of serious sedimentation in the main canal, the scheme is not able to irrigate the area sufficiently.		
	• Debris at weir site obstruct the river flow. Consequently, the weir		
	creates flood in the upstream area and it is said that flood affects the		
	railway operation		
	For the sustainable water supply farmers have a plan of new intake		
	aito that would be loosted at 100 meters unstream of the swisting site		
	site that would be located at 100 meters upstream of the existing site.		
	Irrigators organization hires day laborers to maintain the canal system.		
	Members don't maintain by themselves.		

Photos			
Location	Photo	Comments	
Weir and Intake gates		Debris close the weir gates.	
Main Canal		Canal bed height is too high to convey irrigation water taken at intake site.	
Submersible Bridge		In the rainy season this bridge would be submersed.	

Site investigation Sheet	(14)
--------------------------	------

Name of Scheme	Simbo Traditional Irrigation Scheme		
Date of Investigation	28/Feb/ 2017		
Name of Site Visitor	NIMP2018 team : TL Sibuta, Eng. Majo, Eng. Mashafi, Mr. Amano, Mr. Masaki		
Name /Position of Guide	Tabora ZIO:Eng. Eliafie W. Mwanga (ZIE)Simbo DC:Ms. Martha TeveliWard Councilor:Mr. Hamis AthmanVillage Chairman: Mr. Yousuf Ifinyongola		
Findings			
Location	Zone : TaboraDistrict:IgungaCoordinates:Proposed Bund:Latitude S4.603683Longitude E33.42039Farmland:Latitude S4.651528Longitude E33.40859		
Outline of the Scheme	This is a traditional scheme which use sheet flow from upstream. Recently, Tabora Zone office identified a possible reservoir site.		
Scheme Area	Potential Area (ha) :1,500haDesigned Area (ha):0haDeveloped Area (ha):0haIrrigation Area (ha)1,500ha		
Water Source	Rain		
Irrigation Method	Traditional Irrigation at present Gravity (plan)		
Irrigation Facilities	No facility exists.		
Findings	Boundary between traditional irrigation scheme and Rain-fed scheme is not clear. ZIO calls a scheme, which utilize "sheet flow" for irrigation without canals, as a traditional irrigation scheme.		

Photos			
Location	Photo	Comments	
Existing paddy field		Sheet flow from the upstream area is the source of this traditional irrigation scheme	
Existing paddy field		Existing paddy field	
Existing paddy field along the road		Existing paddy field	
Proposed Bund Axis		Left bank of the proposed bund	

Name of Scheme	Inala Irrigation Scheme (SSIDP Scheme)		
Date of Investigation	01/Mar/ 2017		
Name of Site Visitor	NIMP2018 team : Sibuta Leader, Eng. Majo, Masaki,		
Name /Position of Guide			
Findings			
Location	Zone : TaboraDistrict:Tabora MunicipalCoordinates:Intake SiteLatitude S5.116722Longitude E32.91800FarmlandLatitude S5.117356Longitude E32.91795		
Outline of the Scheme	New irrigation scheme of Inala was completed in 2016. Scheme operation is scheduled to start in this year 2017 after fixing the problem of the leakage from outlet conduit.		
Scheme Area	Potential Area (ha) :400haDeveloped Area (ha):130haIrrigation Area (ha)-ha		
Water Source	Reservoir		
Irrigation Method	Gravity Irrigation (Reservoir and Open channel)		
Irrigation Facilities	Dam : Crest length 1,340 m*, Bund height 5 m* Canal : Right Main Canal 1.6 km* Left Main Canal 3.2 km*		
Irrigators Organization	Name of IO : Registration : As an association (registered at MoHA)		
Findings	 The team noticed many defects in concrete works. Lack of protective covering of concrete Separation of concrete milk and aggregates Several pieces of wooden formwork in the inlet concrete structure. The scheme has not yet started to store water due to leakage water from the inlet culvert. 		

Note: The asterisk mark " * " means that the data is approximated value measured on the google earth pro.

Photos (1/2)				
Location	Photo	Comments		
Bund		Both bund slopes were covered with grasses.		
Reservoir Area (Upstream slope of the bund)		Rocks were placed on the upstream slope of the bund.		
Spillway		Common type of spillway in Tanzania		
Intake Structure		Some of the wooden floor panels have already lost.		

	Photos (2/2)	
Location	Photo	Comments
Inlet structure		Leakage of water
	~~~~	problem from the inlet
		culvert was reported.
Inlet Structure:		Reinforcement bar was
pier		exposed from the concrete surface.
Irrigation Area		The area newly
		developped


## Site investigation Sheet (16)

Name of Scheme	Imalamihayo Charco Dam		
Date of Investigation	01/Mar/ 2017		
Name of Site Visitor	NIMP2018 team : TL Sibuta, Eng. Majo, Mr. Masaki		
Name /Position of	Mr. Ditrick Mwinuka, Acting MAICO, Tabora MC		
Guide and Interviewee	Mr. Mohamed Mnally, District Agriculture Engineer, Tabora MC		
	Eng. Edward Magembe, Tabora ZIO		
Findings	T		
Location	Zone : Tabora District: Tabora MC		
	Coordinates:		
	Charco Bund: Latitude S 4.934025 Longitude E 32.90396		
	Farmland: Latitude S 4.930653 Longitude E 32.90387		
Outline of the	Old Imalaminayo charco dam for cattle water supply to was renabilitated in		
Scheme	2008.		
	located at downstream area		
Scheme Area	Potential Area (ha):		
Ochemic Area	Designed Area (ha):		
	Developed Area (ha):		
	Irrigation Area (ha)		
Water Source	Not available		
Irrigation Method	Gravity Irrigation (Proposal)		
Irrigation	Bund : Length of Bund 285 m* with Concrete Spillway		
Facilities	Bund height 4 m*		
	Canal : Not yet constructed		
Irrigators	Not available		
Organization			
Findings	Originally, "Charco" is a name given to a construction method.		
	However, local people uses the term for a dam constructed to supply		
	water to cattle.		
	· Judging from the size of the reservoir, water amount would be		
	insufficient to cover the whole potential area		
	Constill accomment of water evaluation in would be reconcerned		
	· Careful assessment of water availability would be necessary to		
	proceed to next step.		

Note: The asterisk mark "*" means that the data is approximated value measured on the google earth pro.

Photos		
Location	Photo	Comments
Charco bund and reservoir area from left bank		Reservoir stores few water in March 1, 2017.
Existing Spillway		There is no protection at downstream portion of the spillway.
Bund		Some portions of the bund are eroded seriously.
Watering place		No sign of use



Name of Scheme	Ulyanyama Irrigation Scheme
Date of Investigation	02/Mar/ 2017
Name of Site Visitor	NIMP2018 team : TL Sibuta, Eng. Majo, Mr. Masaki
Name /Position of Guide	Tabora ZIO :Eng. Edward Magembe,IO:Mr. Dickson Simbila, Chairman, Mr. Simon Kalossa, Secretary, Mr. Marko Bukwimba, Deputy Chairman and other two members
Findings	
Location	Zone : TaboraDistrict:SikongeCoordinates:Bund:Latitude S5.522731Longitude E32.83604Farmland:Latitude S5.523064Longitude E32.83496
Outline of the Scheme	
Scheme Area	Potential Area (ha) :500 haSurveyedDesigned Area (ha):haDeveloped Area (ha):170 haIrrigation Area (ha)122 ha
Water Source	Perennial River
Irrigation Method	Gravity Irrigation (Reservoir and Open channels)
Irrigation Facilities	Bund : Dimensions are unknown. Canal : Main - km
Irrigators Organization	Name of IO:Ulyanyama Association SocietyRegistration:Under registration with NIRCMembership:300
Findings	<ul> <li>Developed area of 52 ha had been under dispute over land allocation with 3 farmers.</li> <li>Recently, IO won the case in court and the land dispute has been settled.</li> </ul>

## Site investigation Sheet (17)

Note: The asterisk mark "* " means that the data is approximated value measured on the google earth pro.

Photos		
Location	Photo	Comments
Reservoir and spillway		Long and well protected spillway
Bund and bund slope		Bund slop is covered with grasses. It is necessary to remove small trees from the bund slope not to create problems such as leakage of water through long roots.
Irrigation area		
Main Canal		Canal lining by Wet- Masonry



## Site investigation Sheet (18)

Name of Scheme	U	lssoko Mlimani	i (SSI	DP scheme)	
Date of Investigation	03/Mar/ 2017				
Name of Site Visitor	NIMP2018 tear	n: TL Sib	uta, Eng. Ma	jo, Mr. Masaki,	
Name /Position of	Tabora Zone:	Eng. Edward Ma	aembe		
Guide and	Urambo DC :	Mr. Absalama A.	Kaiuna, DAI	CO.	
Interviewee		Mr. Frednick Nde	eweso Aarici	Ilture Officer	
		Mr. Kilawe Living	n Agriculture	Officer	
Findings			y, Ayriculture	Onicer	
		hora	District	Uramb	2
Location	Coordinates	DUIA	District.	Uramb	0
	Bund [.]	Latitude S	5 207583	l onaitude F	32 35106
	Farmland [.]	Latitude S	5 206667	Longitude E	32 34938
	i dimidira.		0.200001	Longhado L	02101000
Outline of the	Original dam v	vas constructed in	2011.		
Scheme	The scheme h	as been improved	with SSIDP f	unds since Nov	/. 2016, and is
	scheduled to c	omplete in April 20	017.		
	Total develope	d area would be 1	22 ha.		
Scheme Area	Potential Area	(ha):	554	ha	
	Designed Area	a (ha):		ha	
	Developed Are	ea (ha):	122	ha existing	g 30
	Irrigation Area	(ha)	122	ha	
Water Source	Seasonal Rive	r	<u> </u>		
Irrigation Method	Gravity Irrigatio	on (Reservoir and	Open channe	el)	
	Bund :	Bund length	680 m, I	Bund height	9 m
Facilities	Reservoir :	Gross Storage	volume	846,890 m ³	
		Dead water voit	ume	13,000 m ^s	
Irrigators	Name of IO ·				
Organization	Registration :				
e gerniette	Membership :	239 (male	= 117, female	e =112)	
	·	, ,	,	,	
Findings	Project comr	nittee members ar	nd ZIO engine	er supervises	the scheme at
	the site.				
	• Frosion and	small-scale land s	lide are obse	rved at downst	ream slope of
	the existing	bund The eque	o of this pr		
	empankmen	t materials and la	аск от сотра	action. Renabil	itation of this
	defect is incl	uded in SSIDP co	mponent.		

Photos (1/2)			
Location	Photo	Comments	
Reservoir		Reservoir can't store enough water because of insufficient water source.	
Bund: Downstream Slope		Gullies and small-scale land slide area observed. This defect will be rehabilitated by SSIDP	
Irrigation Area		Between the bund and the main canal, a catch drain channel is constructed not to damage main canal by flood from hilly area.	
Spillway		Spillway with wide space.	

	Photos (2/2)	
Location	Photo	Comments
Secondary Canal: Existing Lining		Quality of mortar plastering work is not good.
Secondary Canal: New lining		Surface of stones are covered with mortar.
Tertiary Canal		Tertiary canals are unlined.



Site	investigation	Sheet (	(19)
One	mesugation	Olicer	137

Name of Scheme	Mahiga Irrigation Scheme	
Date of Investigation	06/Mar/ 2017	
Name of Site Visitor	NIMP2018 team : TL Sibuta, Eng. Majo, Mr. Masaki	
Name /Position of	Eng. Mtemi M. Simeon, District Commissioner	
Guide and	Mr. Andrea I. Ng'hwani. Administrative Secretary	
Interviewee	Mr. Pancras Lugaimukva, Ag DAICO	
	Other District Staff	
Findings		
Location	Zone : Tabora District: Kwinba Coordinates:	
	Bund: Latitude S 3.020761 Longitude E 33.36532	
	Farmland: Latitude S 3.010511 Longitude E 33.36302	
Outline of the	The dam was constructed between 2012 and 2013/2014.	
Scheme		
Scheme Area	Potential Area (ha) : 300 ha	
	Designed Area (ha): ha	
	Developed Area (ha): ha	
	Irrigation Area (ha) 242 ha	
Water Source	Reservoir	
Irrigation Method	Gravity Irrigation (Reservoir and Open channel)	
Irrigation	Bund : Bund length 1,090 m*, Bund height 8 m**	
Facilities	Canal : 2 Main Canals	
Irrigators	Name of IO : UWAMA (Umoja wa Wamwagiliaji Mahiga)	
Organization	Registration : 2012 as Association	
	Membership :	
Findings	The scheme requires lining of secondary canals and construction of	
	tertiary canals.	
	The build seems to be stable by covering with grasses.	

Note: The asterisk mark " * " means that the data is approximated value measured on the google earth pro. The asterisk mark " ** " means that the data is approximated value measured by a GPS device.

	Photos (1/2)	
Location	Photo	Comments
Reservoir area		Last year, reservoir stored water at full capacity level.
Bund		The bund seems to be stable by covering with grasses.
Spillway		Spillway with wide space
Main Canal		Main canal is made of wet-stone-masonry walls and bottom.

Location	Photo	Comments
Intake Structure		Inlet elevation is higher
		than the reservoir
	A	bottom.
		Dead storage volume
		seems to be
		considered.
Outlet Valve		There is no valve box
		to protect.

Photos (2/2)



Site	investigation	Sheet (20)
------	---------------	------------

Date of Investigation Name of Site Visitor	07/Mar/ 2017 NIMP2018 team :				
Name of Site Visitor	NIMP2018 team :		07/Mar/ 2017		
	Ponyo DC · Mr	NIMP2018 team : TL Sibuta, Eng. Majo, Mr. Masaki			
Name /Position of		Rorva DC : Mr. Dominick Ndvetabura. DAICO.			
Guide	Mr. Emmanuel Lutego, ASMS				
Findings					
Location	Zone : Mwanz	а	District	: Rorya	
	Coordinates:				
	Bund:	Latitude S	1.416511	Longitude E	33.95818
	Farmland:	Latitude S	1.415992	Longitude E	33.95848
Outline of the	The scheme was co	onstructed in 2	2005 as a da	am project.	
Scheme	Main crop is paddy.				
Scheme Area	Potential Area (ha)	:		ha	
	Designed Area (ha)	):		320 ha	
	Developed Area (ha	a):		120 ha	
Water Source	Posonyoir			- 11a	
Irrigation Method	Gravity (Reservoir :	and Channels	)		
Irrigation		ind length	460 m*	Bund height	4 m**
Facilities	Canal : Ma	ain	2.5 km	Dana noight	
Irrigators	Name of IO : U	WAIRO	(UMOJA v	wa Wakulima Iru	uenyi Rorya)
Organization	Registration : As an Association				
	Membership : 170 (male=100, female70)				
	Fees : M	ember fee	10,000 Tz	zs/year	
	(1	&IVI TEE bag = 100kg)	50,000 12	zs/person or 1 b	ag of paddy
Findings	Sedimentation in	the reservoir	area is a se	rious problem	Aquatic plants
i indirige	were flourishing u	in to near the	intako		
			d with gree	and and	to have no
	• The bund slopes	s are covere	u with gras	ses, and seen	i to have no
	problem.				

Note: The asterisk mark " * " means that the data is approximated value measured on the google earth pro. The asterisk mark " ** " means that the data is approximated value measured by a GPS device.

Photos				
Location	Photo	Comments		
Bund		Aquatic plants near the intake		
Spillway		There is no structure such as guide walls.		
Irrigation Area and Main canal				
Lining of Main Canal		Main canal is lined with wet-stone-masonry.		



Site	investigation	Sheet	(21)
------	---------------	-------	------

Name of Scheme	Nyatwali Irrigation Scheme (SSIDP scheme)		
Date of Investigation	08/Mar/ 2017		
Name of Site Visitor	NIMP2018 team : TL Sibuta, Eng. Majo, Mr. Masaki		
Name /Position of Guide	Bunda DC: Bunda TC:		
Findings			
Location	Zone : Mwanza District: Bunda TC		
	Coordinates:		
	Bund: Latitude S 2.157664 Longitude E 33.83256		
	Farmland: Latitude S 2.150442 Longitude E 33.83997		
Outline of the	The old pump house was built in 1964, and pumps were deteriorated		
Scheme	seriously and they are not in use.		
	The existing scheme has started cultivation of paddy since 2009/10.		
	In 2013, 600 m of main canal was lined with concrete panels.		
	This scheme was selected by SSDIP.		
Scheme Area	Potential Area (ha): 210 ha		
	Designed Area (ha): ha		
	Developed Area (ha): 160 ha		
	Irrigation Area (ha) 24 ha (Wet)		
	16 ha (Dray)		
Water Source	Lake Victoria		
Irrigation Method	Pump and Surface irrigation		
Irrigation	Pump : Electric Submersible pump 3 sets		
Facilities	Canal : Main 1.3 km		
	Secondary 5 canals 2.1 km		
Irrigators	Name of IO : Umoja wa Wakulina Nyatwali		
Organization	Registration :		
	Membership : 156		
Findings	· For irrigation water supply, farmers need to pay 80,000 Tzs/acre in		
	advance to buy pre-paid electricity from TANESCO.		
	· Unlike other countries, there are no discounts on electricity charges for		
	irrigation and drainage use.		
	<ul> <li>The tariff is the same as that of industrial use.</li> </ul>		

Photos (1/2)			
Location	Photo	Comments	
Submersible 3 pumps installed in the Lake		Three submersible pump were installed in the Lake Victoria. Two of them were not operational at present.	
Control Valve		The pipe line system equip with a control valve and a check valve.	
Old Pump House		This house was built in 1964.	
Switchboard		The switchboard is installed in the old pump house.	

Photos (2/2)			
Location	Photo	Comments	
Secondary Canal		Secondary canals are lined with concrete panels.	
Division Box on the Secondary Canal		A stoplog type of division box is constructed.	



## Site investigation Sheet (22)

Name of Scheme	Serengeti Scheme		
Date of Investigation	08/Mar/ 2017		
Name of Site Visitor	NIMP2018 team : TL Sibuta, Eng. Majo, Mr. Masaki		
Name /Position of Guide	Bunda DC:		
Findings			
Location	Zone : Mwanza Coordinates: Bund: Latitude S Farmland: Latitude S	District: Bunda TC 2.194558 Longitude E 33.84116 2.185197 Longitude E 33.84626	
Outline of the Scheme	This scheme is a solar pump p	roject for horticulture.	
Scheme Area	Potential Area (ha) :	ha	
	Designed Area (ha):	ha	
	Developed Area (ha):	20 ha	
	Irrigation Area (ha)	ha	
Water Source	Lake Victoria		
Irrigation Method	Pump Irrigation (Pump, Pipeline and Open channel)		
Irrigation	Pump : Solar pump	1 set	
Facilities	Solar Panel:	22 panels	
	Farm Storage Tank Capacity:	120 m ³	
Irrigators	Name of IO :		
Organization	Registration :		
Findings	• For power supply to a small-scale scheme, solar panels would be useful.		
	$\cdot$ According to DC staff, the solar pump system can fill a farm tank which		
	has a capacity of 120 m ³ in a	day.	

Photos			
Location	Photo	Comments	
Pump Station		There are 22 panels in total. The scheme uses 20 panels for irrigation. Two panels are used by a private farmer.	
Submersible Pump Set		It seems to be in good condition.	
Farm Storage Tank		According to DC staff, the solar pump system can fill this tank which has a capacity of 120 m3 in a day.	
Irrigation Area		According to IO, farmland has been reducing because of intrusion of the lake water.	

