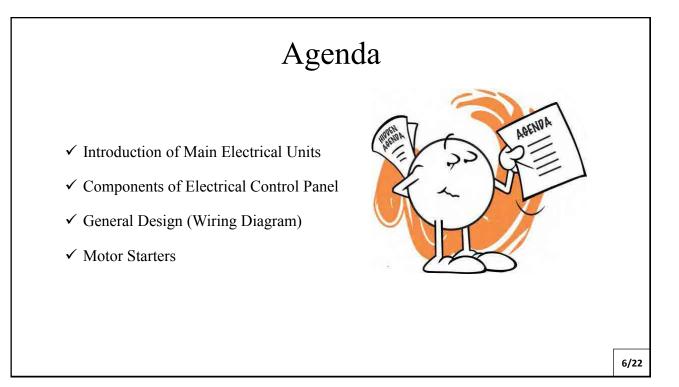

Annex 4.16 Training Material for O&M of Electrical Equipment in Fall 2017

Modules	Dates	Themes
Module 1	December 11 th to December 12 th 2017	Electrical Control Panels
Module 2	December 13 th to December 14 th 2017	Generators & 5S
	December 15 th 2017	Action Plan



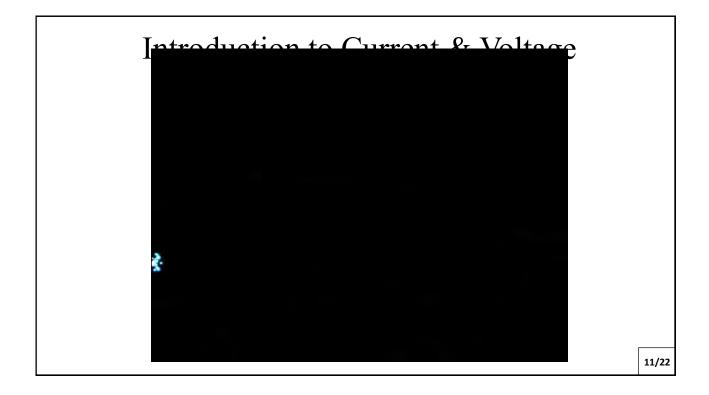
Class Introduction

Your turn...

- ✓ How many of participants are from Electrical Engineering background?
- How many of you have experience in operating and maintaining electrical panels?
- ✓ Why interested in this module?
- ✓ What best skills do you bring to the team?

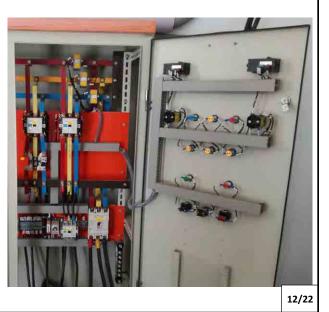
Agenda

- ✓ Introduction to Motor
- ✓ Power factor correction
- ✓ Record Keeping
- ✓ Standard Operation Procedure (SOP)
- ✓ Device Testing
- ✓ Preventive Maintenance

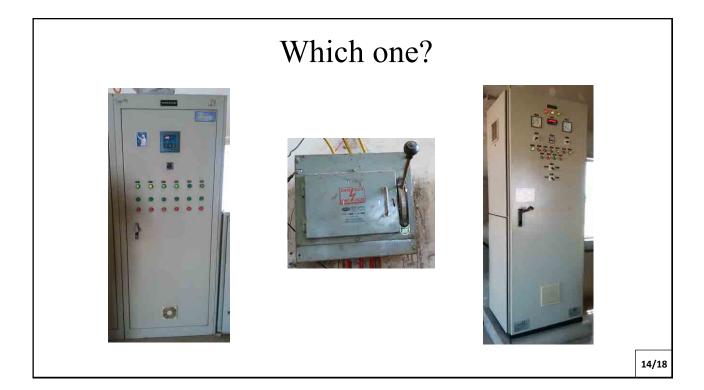

Clas	s Evaluation Struc	eture	
	Attendance	30 %	
	Exercise 1	10%	
	Exercise 2	10%	
	Exercise 3	10%	
	Exercise 4	15%	
	Action Plan	25%	
			8/22

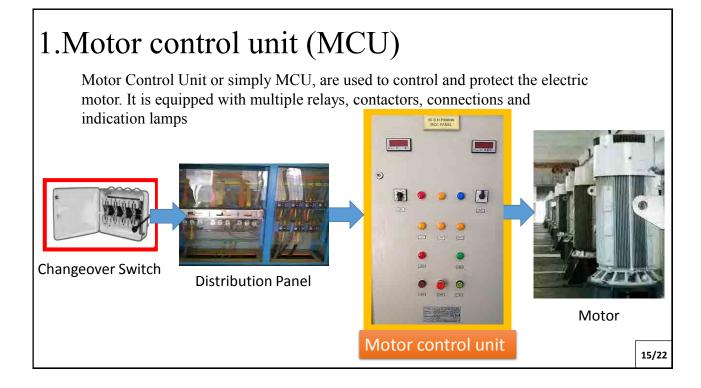
Lecture Goals

- Distinguish types of panels in electrical systems of WASAs
- Understanding of basic sequence of the panel
- Testing and configuration of equipment


Electrical Control Panel

10/22


Electric Control Panel


- ✓ Provides electrical energy with all necessary protections equipped within it.
- ✓ Used to ensure the controlled, protected and smooth transfer of electrical energy from one system to another.

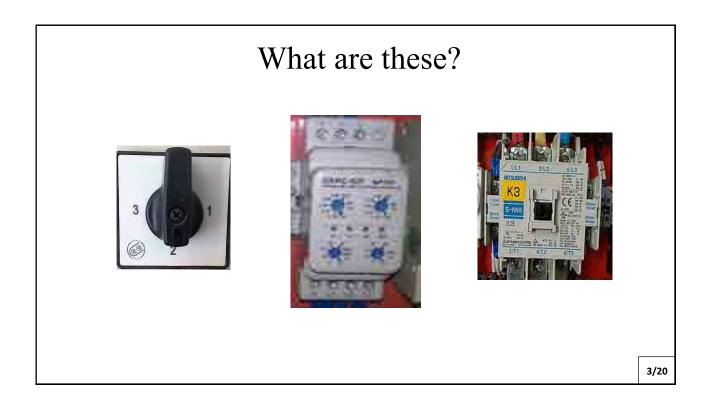
Major types of electrical control panel used in WASAs

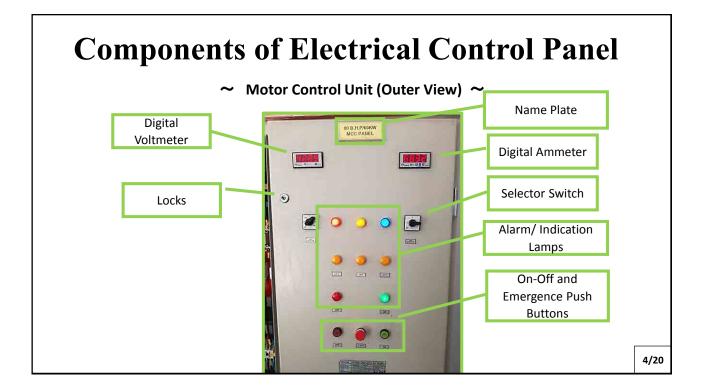
- 1. Motor control unit (MCU)
- 2. Changeover switch
- 3. Power factor improvement (PFI) panel
- 4. Electrical distribution panel

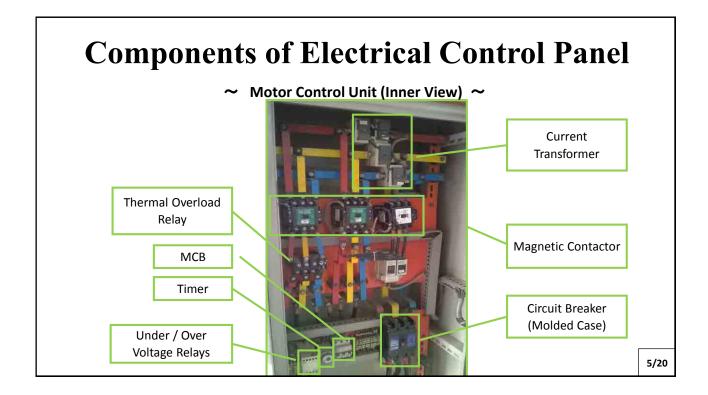
3. Power factor improvement panel

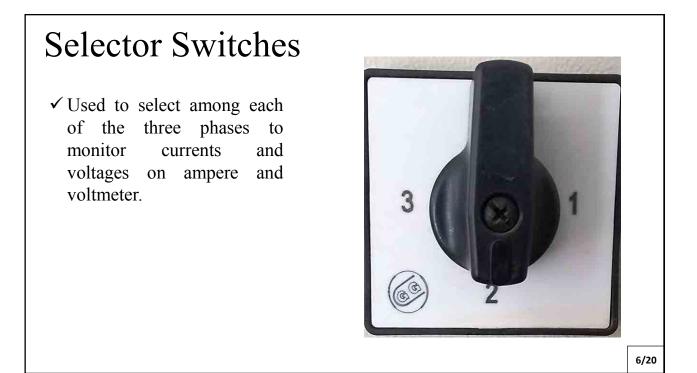
✓ Power factor improvement panel is used to maintain the power factor to optimum value. It consists of a bank of capacitors connected together.

4. Electrical distribution panel

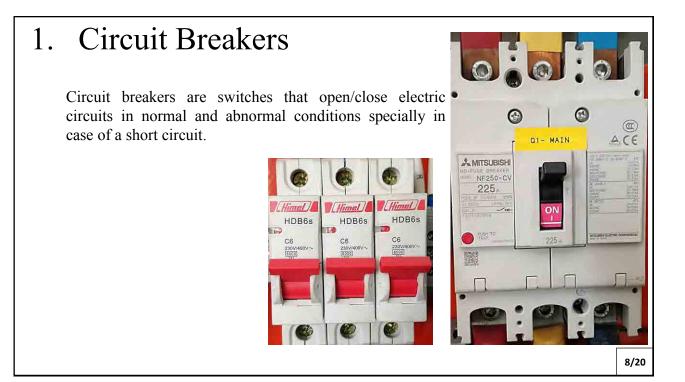

✓ It is basically a panel box, which receives electric supply from one or more sources and distributes it over the system through protections






Goal

- Understanding function of each component/ device in MCU
- Orientation to basic wiring connection along with wiring diagram



Ampere & Voltmeter meter

- ✓ Monitoring gauges for currents and voltages
- Digital and analog type Ampere and Volt meters are used by WASAs

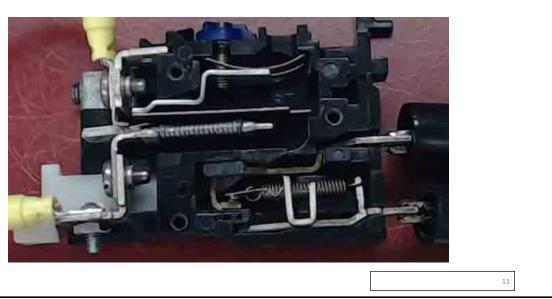
2. Contactor

✓ A power contactor is typically used for "on / off" control of motors. A relay can be installed on the circuit for overload protection. Electromagnetic force works to "open /close" the contacts.

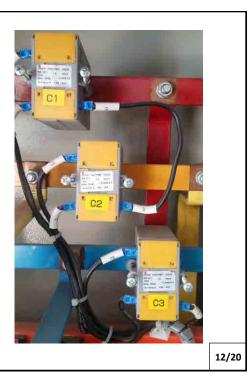
Protective Relays

✓ Protective relays detect electrical faults, isolate the faults from system and activate alarms is a faulty condition sensed

Thermal Relay

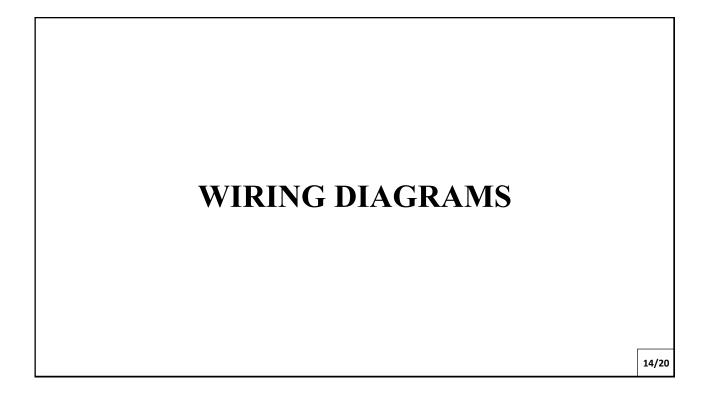


Under/Over Voltage Relay


Phase Failure Relay

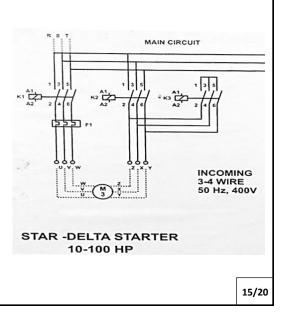
Operation of thermal relay

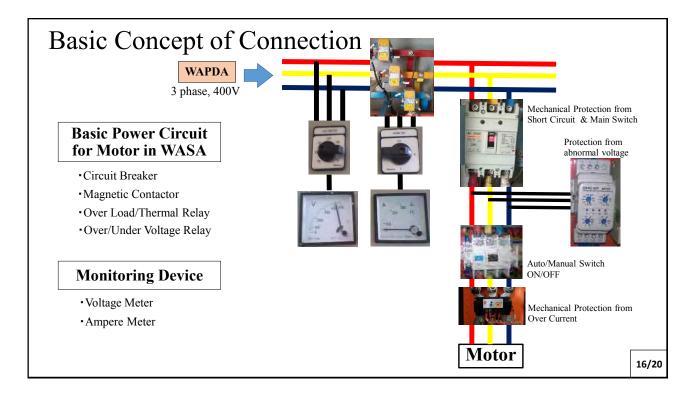

5. Current transformers (CT)

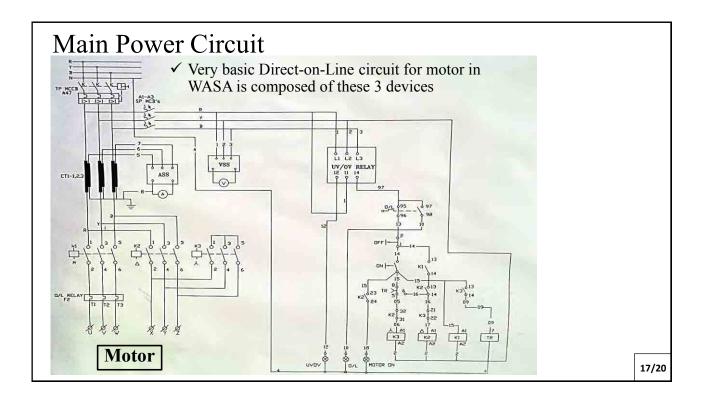

✓ CT's are used for stepping down current to be measured safely. It is also applied to protective relays

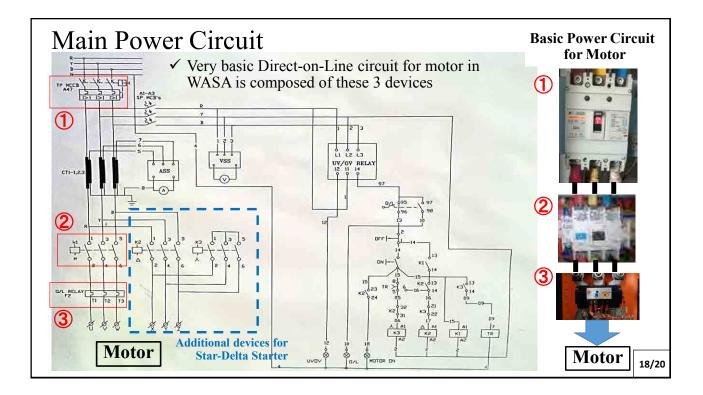
6. Timer

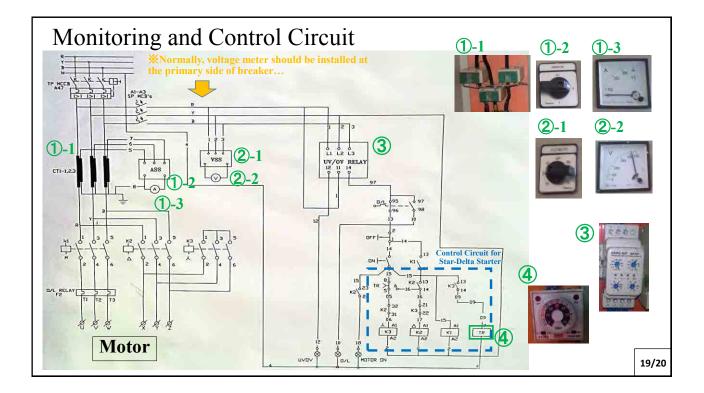
✓ Use to convert the motor connections from Star to Delta after specific time

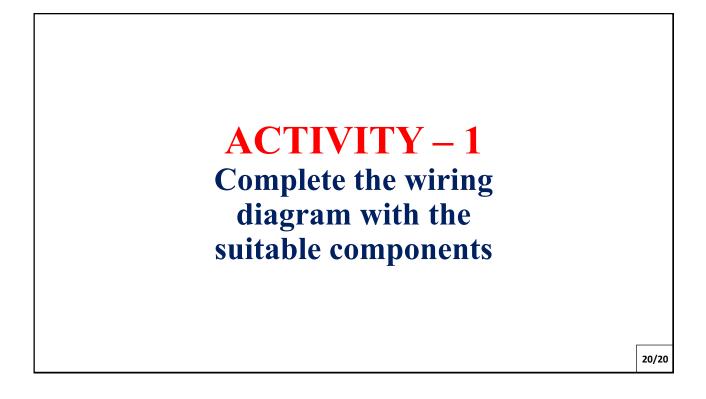


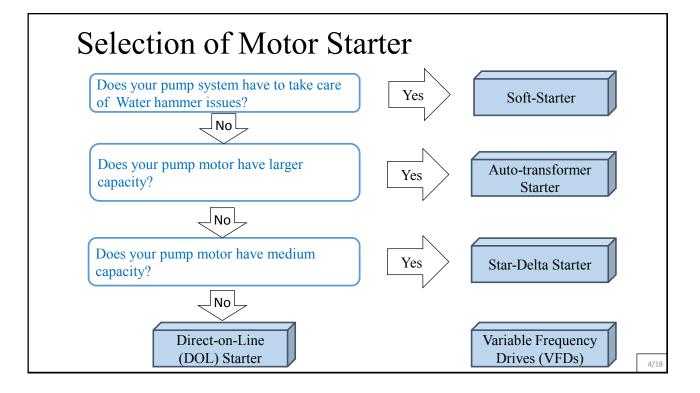





 \checkmark Shows how the components are connected


 \checkmark It should be always available at the site





Goal of this Lecture

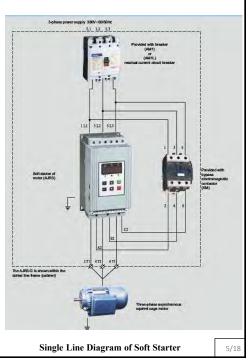
- Gain common concept of motor, motor starter and its variety
- Understand the effect of Power Factor Improvement

Motor Starters

- ✓ An extremely large current of about (5) five to (8) eight times the rated current flows at startup
- \checkmark The power factor is extremely low at 0.2 at the start.
- ✓ Motor winding coil is subjected to thermal stress load. Voltage fluctuation occurs in the power system and its effect becomes more pronounced.
- ✓ The starting method of three-phase induction motor includes a method of restricting current at start as mentioned above, and other methods described below.

Soft Starter

Function:


Automatically starts/ stops the pump gradually slowly to avoid water hammer

Advantage:

Possible to make the stop slow as well as start operation

Disadvantage:

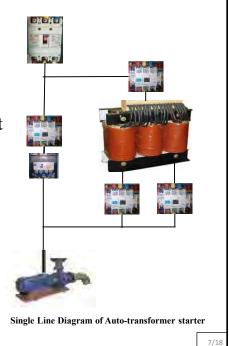
Electronic device shall be installed in a good environment so extra care is required

Auto-transformer Starter

Function:

Automatically controls voltages by changing transformer taps to reduce the starting current

Transformer


Auto-transformer Starter

Advantage:

Less stress to the circuit due to flexible adjustment of voltage in the starting process

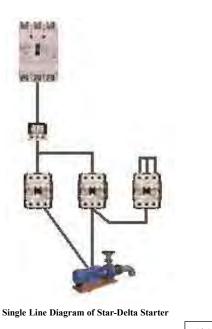
Disadvantage:

Expensive and wider space for installation is required

Star-Delta Starter

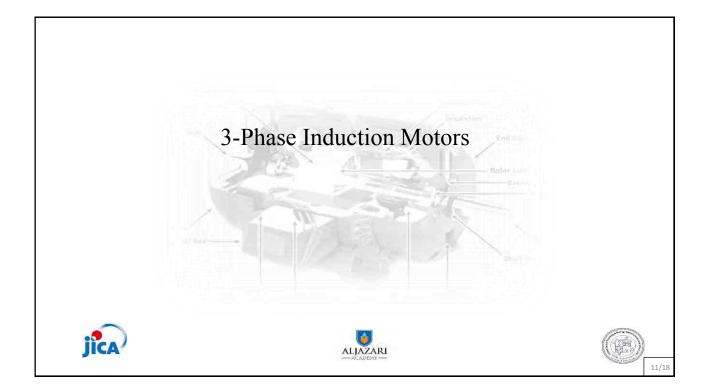
Function:

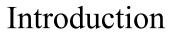
Arrangements of relays are so done that motor starts using star type connection and transferred to the delta type connection after few seconds

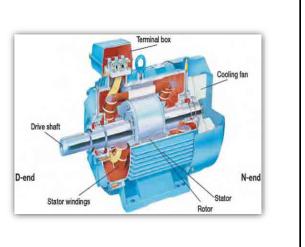


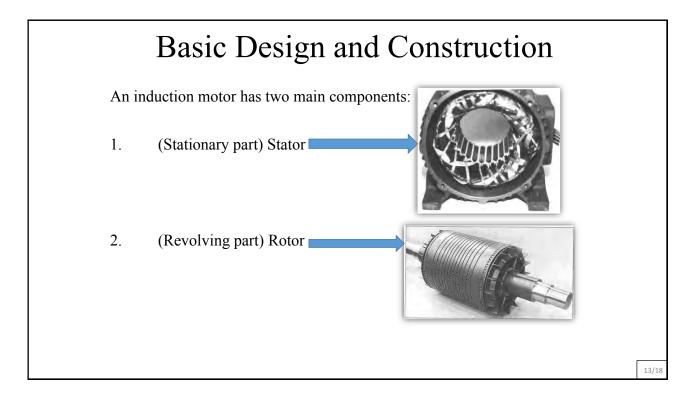
Star-Delta Starter

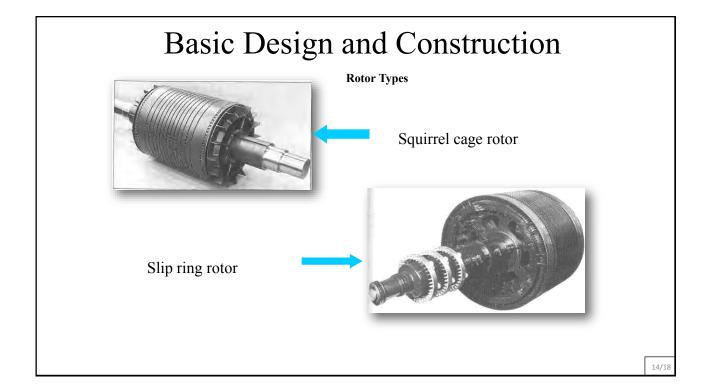
Advantage:

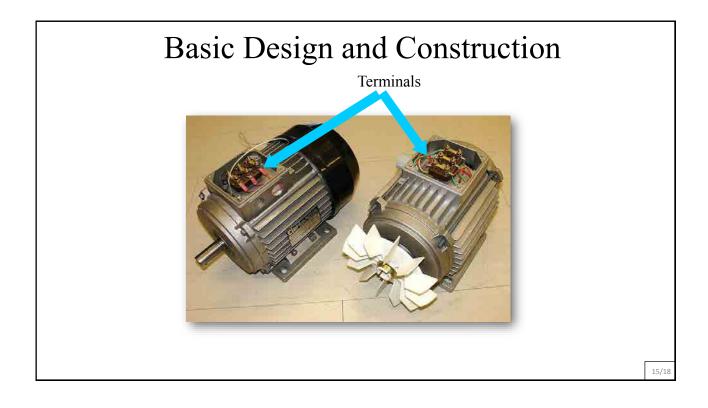

Easy, economical and common system to reduce starting current


Disadvantage: Inrush current occurs in a moment of changing Star to delta Six leads of the motor are required

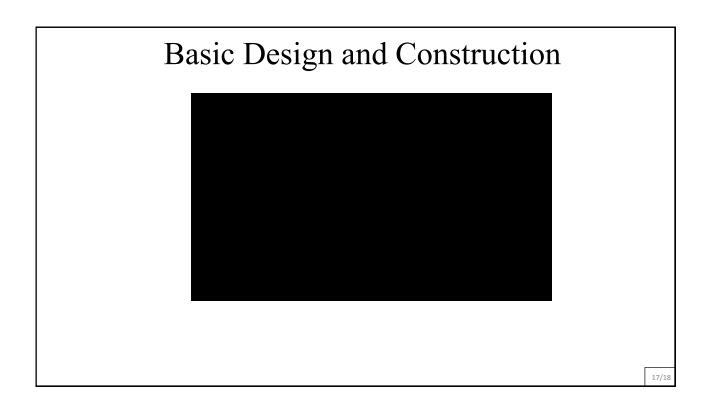

1	


Starting method	Type of equipment	Current input (mains load)	Run-up time	Heat build- up in motor during starr-up		Hydraulic Ioading	Cost relation	Recommended motor designs	Comments
D. o. l.	Contactor (mecha- nical)	4-8 - IN	Approx. 0.5-5 s	High	Very high	Very high	1	АЦ	Mostly limited to ≤4 kW by energy supply companies
Star- delta	Contactor combi- nation (mecha- nical)	4/3 of d. o. i. values	Approx. 3-10 s	High	Very high	Very high	1,5-3	All; canned mo- tors and sub- mersible motors subject to a major drop in speed during switchover	lated for motors
Reduced voltage	Autotrans- former, mostly 70% cap- ping	0.49 times the d. o. l. values	Approx. 3–10 s	High	High	High	5-15	All	No currentless phase during switchover (gradually re- placed by soft starters)
Soft start	Soft starter (power electro- nics)	Continuous- ly variable; typically 3 · I _N	Approx. 10-20 s	High	Low	Low	5-15	АЛ	Run-up and run- down continu- ously variable via ramps for each individual load application; no hydraulic surges
Fre- quency inverter	Frequency inverter (power electro- nics)	I · I _N	0-60 x	Low	Low	Low	Approx. 30	All	Too expensive to use solely for run- up and run-down purposes; better suited for open- or closed-loop control






- Electrical motor is an electromechanical device, which converts electrical energy to mechanical energy.
- Three-phase induction motors are the most common electrical motors used in the industry.



Motor Burnout and Rewinding

Causes...

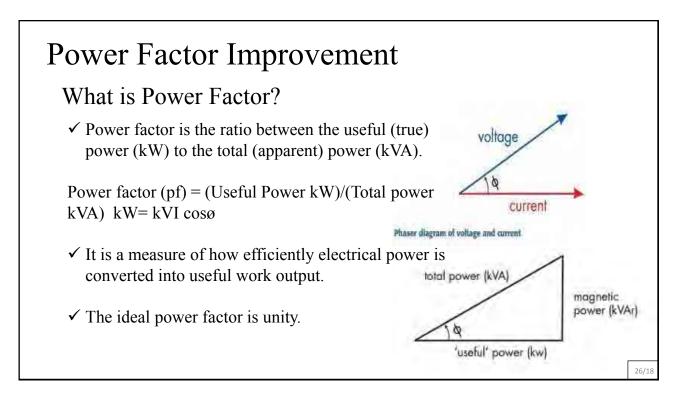
- 1. Fluctuation in phase voltages
- 2. Malfunctioning of protective relays
- 3. Manufacturing defects
- 4. Damage before or during installation
- 5. Improper installation
- 6. Misapplication (overload)

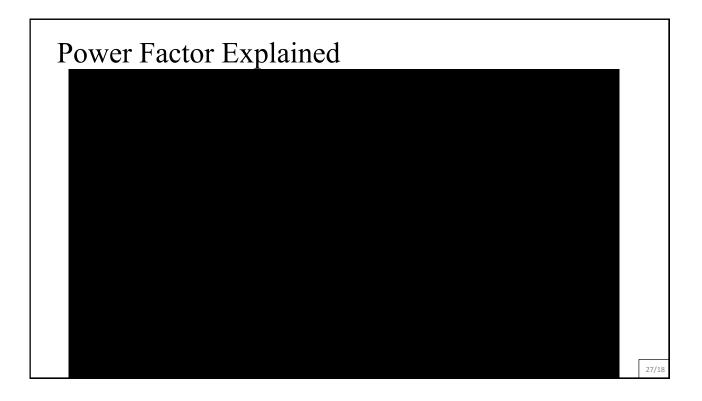
Motor Burnout and Rewinding

- Copper or aluminum wire should be used for rewinding the motor
- Preferably inside of the winding wire should be enameled copper wire (magnet wire)

Motor Burnout and Rewinding

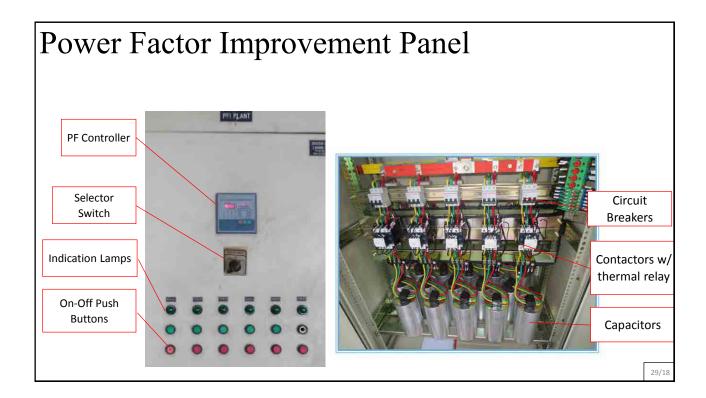

- After re-winding the assembly should be coated with risen and baked.
- Special care should be taken when inserting the rotor into the stator assembly.


		Troublesh	nooting
-	Sr. No.	Fault Indication	Causes
2 FC	1.	Motor fails to start	Blown fuse or open circuit breaker
			Motor overload relay on starter tripped
			Low voltage or no voltage applied to the motor
			Defective motor windings
			Motor burnout
			Mechanical overload
	2.	Excessive motor noise and vibration	Insufficient cooling/lubrication
			Overload
			Low phase voltage


		Troublesho	oting	
	Sr. No.	Fault Indication	Causes	
27FC	3.	Motor overload protector continually trips	Excessive load	
	4.	Heated up bearings	Bent or sprung shaft Electrical Damage (Fluting)	
	5.	Worn bearings	Life span completed	
			Foreign Matter (Dust and dirt)	
			Electrical Damage (Fluting)	
			Improper Bearing Lubrication	
			Bearing Fatigue	
			High Temperatures	
		·		

	Troublesh	nooting					
Sr. No. Fault Indication Causes							
6.	Mechanical locking in	Decreased air gap, jammed bearings or any foreign matter stuck					
7.	Wrong rotation	Wrong sequence of phases					
8.	Motor overheat	Overload					
9.	Starter or circuit breaker not operating	Non availability of power or faulty relay					
10.	Overheating of cable	Cable size inadequate					
	6. 7. 8. 9.	Sr. No.Fault Indication6.Mechanical locking in6.Wrong rotation7.Wrong rotation8.Motor overheat9.Starter or circuit breaker not operating9.Starter or circuit breaker not operating	6. Mechanical locking in Decreased air gap, jammed bearings or any foreign matter stuck 6. Mechanical locking in Decreased air gap, jammed bearings or any foreign matter stuck 7. Wrong rotation Wrong sequence of phases 7. Wrong rotation Overload 8. Motor overheat Overload 9. Starter or circuit breaker not operating Non availability of power or faulty relay				

POWER FACTOR IMPROVEMENT



Power Factor Improvement

- ✓ In case of Low Power factor, Improvement/ correction is required.
- ✓ Correction is achieved by the addition of capacitors in parallel with the connected motor at the origin of the installation.

Auto Power Factor Controller

- ✓ Capacitors are selectively used to make the power factor of the system close to 1.00
- ✓ Actual power factor needs to be monitored by operators regularly
- ✓ Check the power factor mentioned on the electricity bill and do necessary action if required

Fuse

- ✓ Fuses avoid the flow of over currents by melting down itself
- ✓ They have to be replaced every time after use since they are not reusable like circuit breakers
- ✓ Regular inspection of its availability and maintaining enough quantity of spare parts in store is very important

			alt	J J						
ALCONO.		LAHORE	ELECTRIC	SUPPLY CO	OMPANY - EL	ECTRICITY C	ONSUME	R BILL(MD))	
(A)	CUSTOMER I/			H EDE	ttp://www.lesco.g. BILL MON		and in	SUEDATE	DUEDATE	
	1001380	0,	_	1.03		-		1 JUL 16	22 07 2016	
REFERENCE N		TARIFF	LOAD	OLD AR		5 30 30 1	10 1	TJOE 10	22 07 2018	
24 11351 90		B3 (14)T	696.6	24135190		WE		RATED B 9000901U	ILL	
NAME & ADDR	E\$\$				-	_	GST # 030	5271500291		
XEN WASA SEWRAGE F	PUMPING STA	TION KHOKI	HAR ROAD S	SHAD BAGH L		BDO : 0423728	8866/03470	0011351		
Low	ower fa	actor L	oce th	an 0 0	-	UB-DIVISION K	7.5150 1.850			
LOW p		actor r		an 0.5		IVISION B	GHBANPL	JRA		
0		0	85		.64 8	EEDER W	ASA			
KWH	81	H METER REA		K	VARIANCIAR			ER READING	Luning and a	
METER NO.	PREVIOUS	PRESENT	MF	PREVIOUS			PRESENT		METER STATUS	
100329 100329	8976.18 2074.9	9135.87 2106.09		10742.3 2467,34			48	2000 2000		
UNIT'S CONSUMED		319380 (P)6		and the second second	(O)385920 (P)	6420	CHARGED	-	960	
ENERGY/ FIXED CHARGES	METER / SERVIECE RENT	LPE PENA SEA SOI CHARGE	AMOI	RRED ADJU	BILL EX	RA TAX SAI	ESTAX	ADJ PTV FEE	E-DUTY TR-SUR	
3842058.00 364800		18969	6 Lo	w pow		or pena	ity -	2470411.24	26967.78 1177218.00	
N.J.S.	G.9.7 H	NCOME TAX	LTAX SURC	HARGE	FURTHER TAX	CURRENT BILL			6911781	
	85335 *	T 2000 000		TREAM	92392 PAYMENT	ARREARSAGE			2724756/1	
JUN15	MGI 96	632 0 4632		MOUNT 0105463	PAYMENT 8228707	XXXXXX PM REL		TRY	-1145280	
JUL15	108			1658711		XXXXXX NET FPA	Le ro moora		-1325131.24	
AUG15 SEP15	116			9172438 7418497	8503979 7418497	PAYABLE WITHIN	DUE DATE		9636537	
OCT15	120			5671270	5671270	L.P. SURCHARGE	6		463082	
NOV15	92	0 4188	380	5829203	7263435					

Benefits of power factor correction

- ✓ Reduction of power consumption due to improved energy efficiency.
- ✓ Reduction of electricity bills.
- ✓ Extra kVA available from the existing supply.
- ✓ Reduction of I²R losses in transformers and distribution equipment.
- ✓ Reduction of voltage drop in long cables.
- ✓ Extended equipment life.
- ✓ Reduced electrical burden on cables and electrical components.

Record keeping

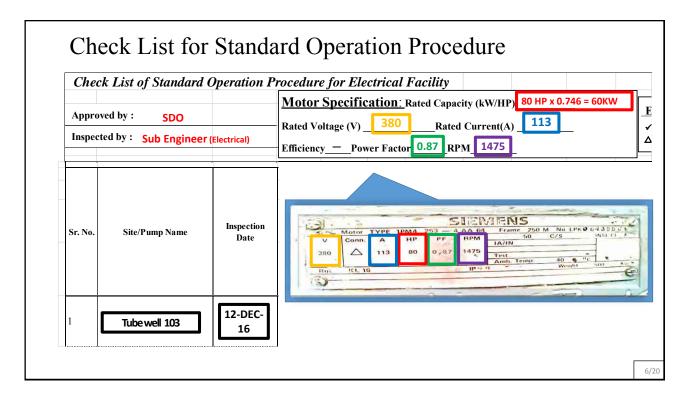
- Make balance of operation time of each load
- Predict & Prepare for future maintenance/procurement plan e.g. lubrication oil ,bearing, fuel, filters for generator
- Detect unsatisfied design, installation or repairing work by contractor

-			100	ATION		_	
	Ister Product	Tumo Walls in	Within Deprin Ia		Transmission		Conthergy
Elafe:	Tortan.	Operation No	Bo Erge . 1	Station Personal	And and Processo	See Cigercalifices	Persture
100			100.14	1964au	Lorge		1.4.47
1	2			.5	1		
Sec. 24	1 2100	20-3	428				14
	Sec.	21-1	4 10				
	-30-	21-2	5 11				
	is former	27-2	5.52				
	Astrat	121-2-	5 83	\$ 100	2-4-5		
in si	spice	21-2	5 30	3V	32925		
1385	Alast	21-2	4.00	1100	2+1/15		
	es'a-	21-2	S.L.	dist.			
	Alper	20: 0	5.55				
	11.00	2. 2	5.90	14:3e	3-21	1	3.0
	1100-00	2.0 11	5.30	mer	3114	.U.	3.0
	12.no	2- 2	Set	12'30	Jack.	4	30
	13000	30 2	13.96	a.	1		
· 4. 20%	14000	20-2	5.32	-	1.22	-	
	Visine	20-2	5.70			-	~
	16000	20-2	6.00	1600	3,4,5		310
-	17	20-2	528	110	a los	-	310
	18000	2ff	4.43	1800	3.405	-	The second second
	19000		4:22	LOW LC.	Concer		3-0
	2000	~	4.03	New!	-		1.1.1
12642	21000	-51.30	3.75	12	-		
	State State	- Carlos	3.51		1	-	-
	27 mar					_	
6836	23met						
6836	13me 2400		3.89	-	12.2		

How to make daily operation record

Factors to note down during record keeping (Pumps):

- ✓ Pump operating time (Hrs.)
- ✓ Flow
- ✓ Pressure
- ✓ Power factor
- ✓ Voltage
- ✓ Ampere



Standard Operating Procedure (SOP)

✓ Before turning on the motor, values of all protective relays must be checked once a day

✓ Following format and slides are showing some of the general ideas for O&M and errors in operation in WASA's Motor Control Unit:

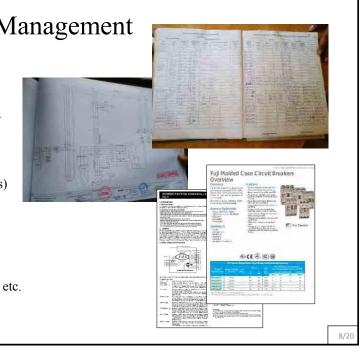
	ved by : ted by :		Rated Vo	-		Rated Capac Rated orRP	Current(A		_	-	Good :	ion Criteri: × : be improved	 No care at a		to be newly ble to be che		
				Document				Inspection It Visual (Outs		ctrical I	Panel Co	ondition	Visual (I	nside)		Opera	tion
Sr. No.	Site/Pump Name	Inspection Date	Operation Record	Drawings	Vender Manual	Identification of Lamp/Switch	Status/ Fault Indication Lamps	Ampere Meter	Voltage Meter	Status S		Cleanliness	Intrusion Path	Bypass- Circuit	Neatness of cabling	How to operate changeover switch	Frequenc of Start/Sto
			Compare with the sample	Pump installation , electrical line diagram	Pump/ Panel devices	all lamps /switches have name tag	all lamps are visibly bright enough		Proper functioning and zero adjustment	Ampere	Voltage	No dust, sand, spider's nest, insect, small animals	No hole/ crack to let foreign matters come in	No bypass / burnt mark		Turn off by breaker or switch first.	Maximur 2-3 times hour

Check List for Standard Operation Procedure

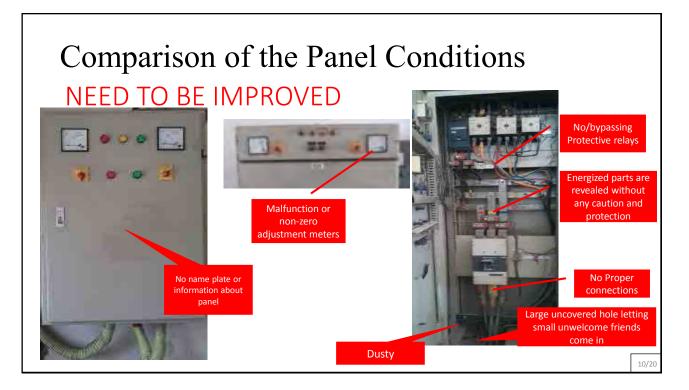
	ved by : ted by :		Rated Vo			Rated Capac Rated PrRP	Current(A				: Good	ion Criteri: × : be improved	- No care at a		to be newly ble to be che		
				Document				Inspection It Visual (Outs		ectrical F	anel Co	ndition	Visual (In	nside)	•	Opera	tion
r. No.	Site/Pump Name	Inspection Date	Operation Record	Drawings	Vender Manual	Identification of Lamp/Switch	Status/ Fault	Ampere Meter	Voltage Meter	Status S Swi		Cleanliness	Intrusion Path	Bypass- Circuit	Neatness of cabling	How to operate changeover switch	Frequency of Start/Stop
			Compare with the sample	Pump installation , electrical line diagram	Pump/ Panel devices	all lamps /switches have name tag	all lamps are visibly bright enough	Proper functioning and zero adjustment	Proper functioning and zero adjustment	Ampere	Voltage	No dust, sand, spider's nest, insect, small animals	No hole/ crack to let foreign matters come in	No bypass / burnt mark		Turn off by breaker or switch first.	Maximum 2-3 times/ hour

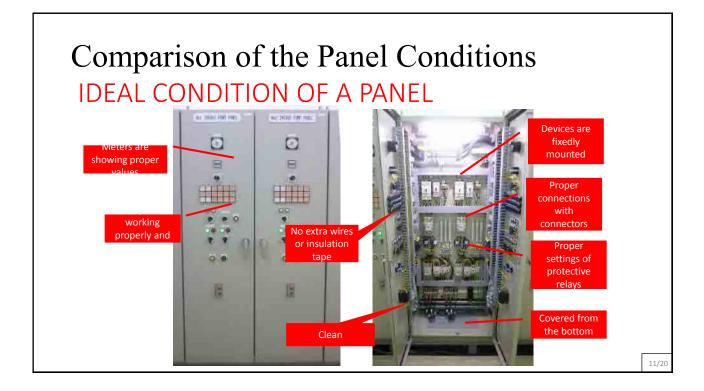
Basic Documentation Management

✓ Operation Record


- Time of Start/Stop, Total Operation
- Maintenance/Replacement Record
- Trouble Record, Any Remarks etc.

✓ Drawings


- Shop-Drawings, As-Built Drawings (Equipment and Installation Drawings)
- Electrical Wiring Diagram etc.


✓ Vender Manuals

- Installation Manuals
- Operation & Maintenance Manuals
- Device Catalogs & Manuals
 et

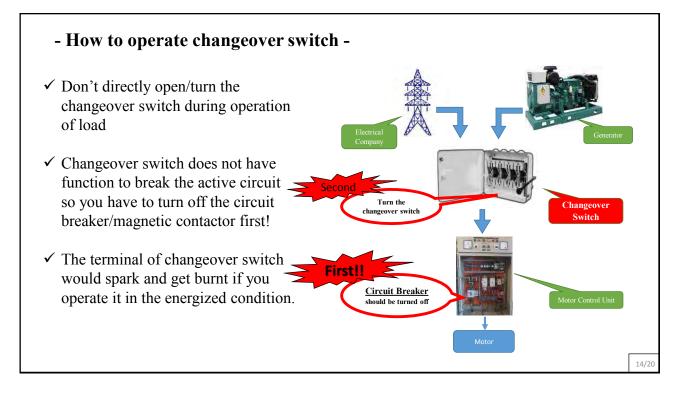
	ved by :					Rated Capac Rated					C valuat Cood	ion Criteria × :	a No care at a	ll or need	to be newly	installed	
Inspec	ted by :		Efficienc	yPov	ver Facto	orRP	м	_			:Need to	be improved	-: ì	Not availa	ble to be ch	ecked	
]	Document				Inspection It Visual (Outs		ctrical I	Panel Co	ondition	Visual (I	nside)		Opera	ition
ir. No.	Site/Pump Name	Inspection Date	Operation Record	Drawings		Identification of Lamp/Switch	Status/ Fault Indication Lamps	Ampere Meter	Voltage Meter	Status S Swi		Cleanliness	Intrusion Path	Bypass- Circuit	Neatness of cabling	How to operate changeover switch	Frequency of Start/Stop
			Compare with the sample	Pump installation , electrical line diagram	Pump/ Panel devices	all lamps /switches have name tag	all lamps are visibly bright enough	Proper functioning and zero adjustment	Proper functioning and zero adjustment	Ampere	Voltage	No dust, sand, spider's nest, insect, small animals	No hole/ crack to let foreign matters come in	No bypass / burnt mark		Turn off by breaker or switch first.	Maximun 2-3 times hour

Che	ck List of Standard (Operation P	rocedur	e for Ele	ctrical	Facility											
			Motor	Specific	ation:	Rated Capac	ity (kW/HP	')	_		Zvoluot	ion Criteri:					
••	oved by :		Rated Vo	oltage (V)		Rated	Current(A)	_		Good		a No care at a	ll or need	to be newly	installed	
nspec	cted by :		Efficienc	v Pov	ver Facto	or RP	м			4	Need to	be improved	—: N	Not availat	ole to be ch	ecked	
								Inspection It	ems for Ele	ctrical l	Panel Co	ndition					
			1	Document				Visual (Outs	de)				Visual (In	nside)		Opera	ition
r. No.	Site/Pump Name	Inspection Date	Operation Record	Drawings	Vender Manual	Identification of Lamp/Switch	Status/ Fault Indication Lamps	Ampere Meter	Voltage Meter		Selector itch	Cleanliness	Intrusion Path	Bypass- Circuit	Neatness of cabling	How to operate changeover switch	Frequence of Start/Sto
			Compare with the sample	Pump installation , electrical line diagram	Pump/ Panel devices	all lamps /switches have name tag	all lamps are visibly bright enough	Proper functioning and zero adjustment	Proper functioning and zero adjustment	Ampere	Voltage	No dust, sand, spider's nest, insect, small animals	No hole/ crack to let foreign matters come in	No bypass / burnt mark		Turn off by breaker or switch first.	Maximu 2-3 time hour

Difference between...

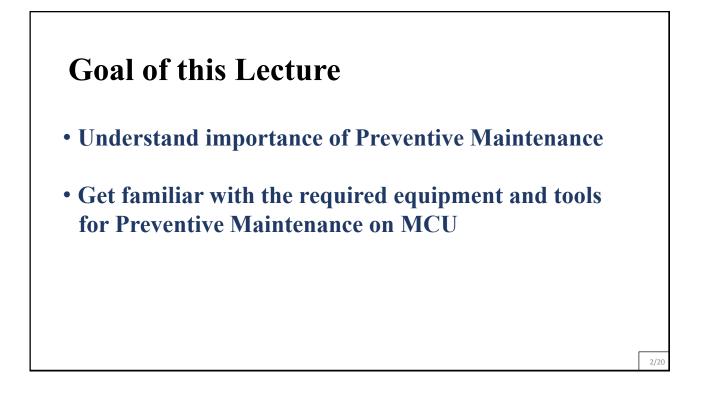
Disconnection Switch

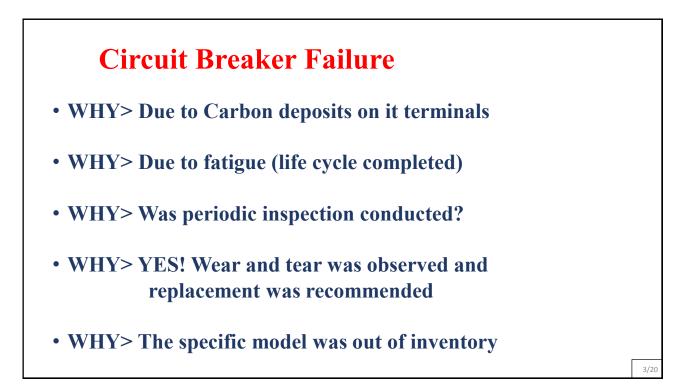
- ✓ **Offline** operation
- ✓ Isolate system
- \checkmark Disconnecting system for safety purpose



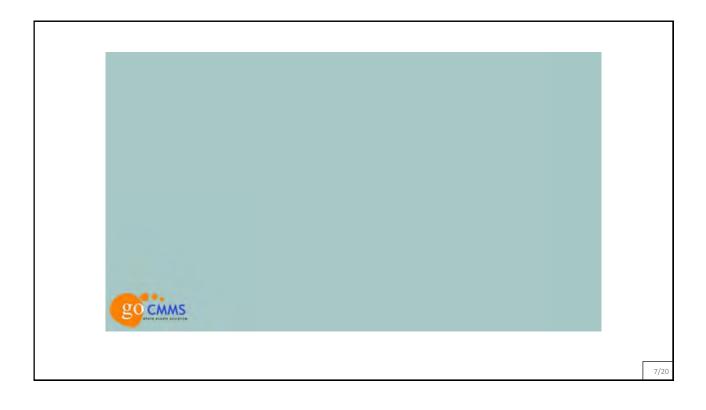
Circuit breakers

- ✓ Online operation
- ✓ Capable of making, carrying and breaking currents under normal conditions
- ✓ Short-circuit switching




- Frequency of Motors' Start/Stop -

- ✓ Each motor has a condition of number of start to prevent burnout and damage to insulation material
- ✓ There are two types of conditions to be confirmed with manufacturer, "Hot-start" and "Cold-start". Number of Hot-start should be more limited.
- ✓ Frequent and immediate ON/OFF operation (equivalent to Hot-start) could cause stress to the motor and shorten its life time.



Preventative maintenance

- What is definition of electrical preventative maintenance?
- The scheduled inspection, testing and maintenance of critical electrical components to prevent failure and enhance equipment life cycle.

<section-header>Preventative maintenance The cost of ignoring maintenance A well administrated preventative maintenance program : • Reduces accidents • Saves lives • Minimizes costly breakdowns and unplanned outages The provide the second problems requiring more expensive, time consuming solutions.

Inspection Tools

1. Voltage Tester

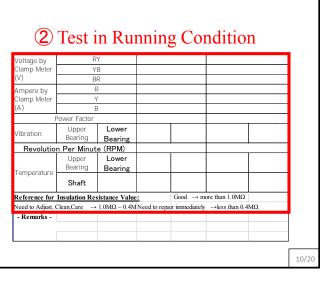
4. Adjustable Wench

2. Screw Drivers Set

5.Ratchet Screwdriver

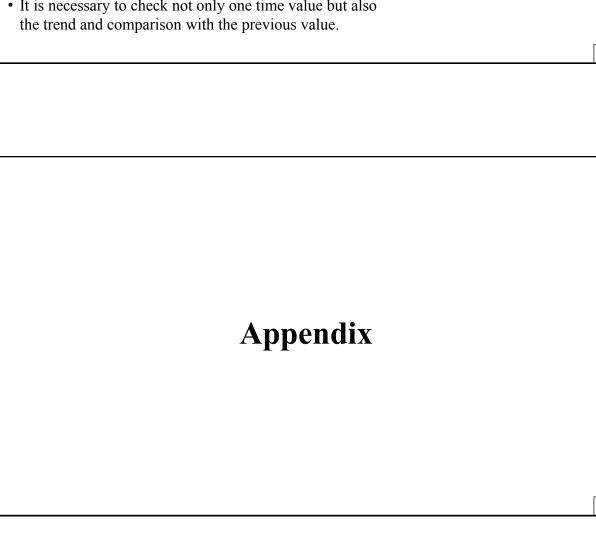
3.Pliers

6. Ratchet Socket Wrench Set



Sample Format for Preventive Maintenance

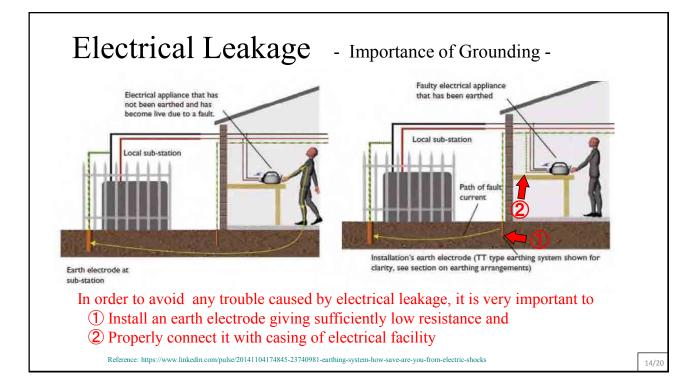
Prev	entive M	aintenan	ce Shee	t for Ele	ctrical Fac	ility
Sub Division :		Moto	r Specif	ication	Rated Capacity (kW/HP)	
Site Name:		Rated Voltage	Rated Ampere	Efficiency	Power Factor	RPM
Equipment Name:		(V)	(A)	-	-	
Date						
Inspected By						
Weather						
Bol	It Tightening					
	U1-E	U2-E				
Insulation	V1-E	V2-E				
Resistance	W1-E	W2-E				
(MΩ)	U1-V1	U2-V2				
	V1-W1	V2-W2				
	W1-U1	W2-U2		1	1	


(1) Test in OFF Condition

What is "Insulation Resistance"?

Insulation Resistance Tester

- Insulation resistance is the value showing if there is electrical leakage or not with the measured equipment.
- Insulation resistance tester is a tool to check how properly the system/equipment is insulated.
- If the value show less than 1 M Ω , need to be cared. If less than 0.4 M Ω (i.e. for 400V), detect the faulty parts and replace them immediately.
- It is necessary to check not only one time value but also the trend and comparison with the previous value.



12/20

Electrical Leakage

- Electrical leakage is dangerous for not only machinery but also humans
- Any electrical leakage has to be found in the early stage and remedied properly for the system safety and efficiency

Current	Effect to Human
1mA	Feeling
5mA	Feeling keenly
10mA	Unbearable feeling of pain
20mA	The contraction of muscles and The victim cannot let go of the circuit.
50mA	Danger, Extreme pain
100mA	Fatal injury

ELECTRICITY DIRECTROTE

DIRECTOR ELECTRICITY

Muhammad Rafiq Ch.

HOW TO MINIMIZE THE ELECTRICITY EXPENDITURES.

WASA electricity expenditure can be controlled if each and every officer/official knows the essential information and its implementation to electricity billing, consumption, load compatibility, losses &

payment.

ELECTRIC LOADS

There are three kinds of electric load and has major role in billing.

i- Sanctioned Load:-

The load applied by Consumer/WASA and approved / sanctioned by WAPDA (LESCO) is known as sanctioned load and its unit is KW.

ii- Installed Load.

The load installed at site is known as the installed load e.g 150 BHP

1HP=0.746 KW

150 BHP=150x0.746=111.9KW=112KW

At disposal/lift station installed load is mostly more than the sanctioned load due to the reason that extra load is installed as a backup.

At tube well installed load should not more than the sanctioned load.

iii- Running Load.

The load actually runs the system is called the running load/ Shaft Load.

Maximum Demand Indicator (MDI):

MDI stands for maximum demand indicator and it should not be more than the sanction load. MDI Meter noted that load which runs half an hour continuously of that month.

Multiplying Factor (MF):

In electricity bills, there is a column of MF (Multiplying Factor) MF is depend upon the current transformer ratio these Current transformers are installed in the meter security box.

Power Factor (P.F):

There is a limit of power factor and that limit is 0.90 to 1.00. Power factor should not deviate this limit. In case of deviation power company imposes the low power factor penalty.

In order to get rid of low power factor penalty custodian office must install low power factor improvement plant at its installations

Power Factor (P.F):

Power factor is the ratio of real power and apparent power

OR

the percentage of the kilowatt hours to the kilovolt amprs hours consumed during the month.

P.F= <u>Real Power</u>

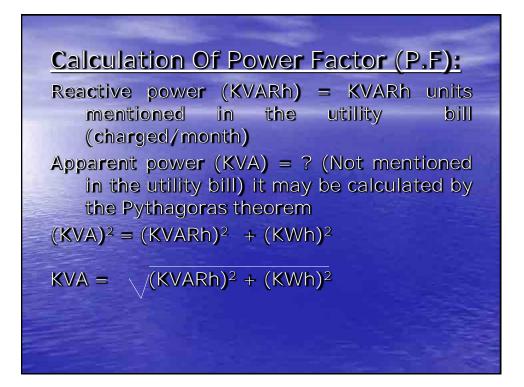
Apparent power

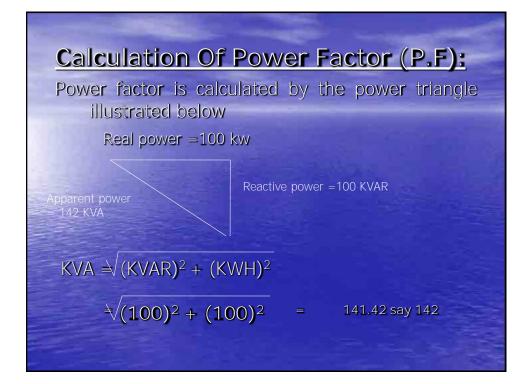
= <u>KWh</u> KVAh

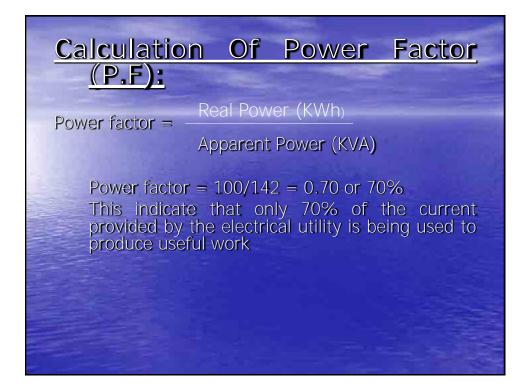
<u>Real Power (P):</u>

Real power is the working power measured in kilowatt.

Power = $\sqrt{3}$ VI cos ϕ


where v is volt, I is current and $\cos \phi$ is power factor


Apparent Power:


In the AC circuit, the product of the voltage and the current is called apparent power. Measured in kilovolt amps (KVA)

Reactive Power:

Reactive power is the non working power caused by the magnetizing current measured in kilovars (KVAR)

L.P.F Penalty:

Average power factor of a consumer in a month shall not be less than 90%, in case of below 90%, consumer shall pay a penalty and that penalty will be 2% increased in the fixed charges of that month corresponding to 1% decreased in the power factor below 90%

L.P.F penalty is as:

=2xMDI Charged in that month x Rate of MDIx(0.9 - Charged P.F)

L.P.F Penalty:

For Example: In the billing month Jun-17 against Reference No. 24-11245-9001400 LESCO power factor was 0.78 and MDI 109.68

L.P.F Penalty = 2x109.68x200x(0.90-0.78) L.P.F Penalty (Rs.) = 5280

* Keep in mind for 0.9 power factor Kvarh should be less than half of kwh value. In case of increasing Kvarh half of the Kwh power factor penalty will be increased.

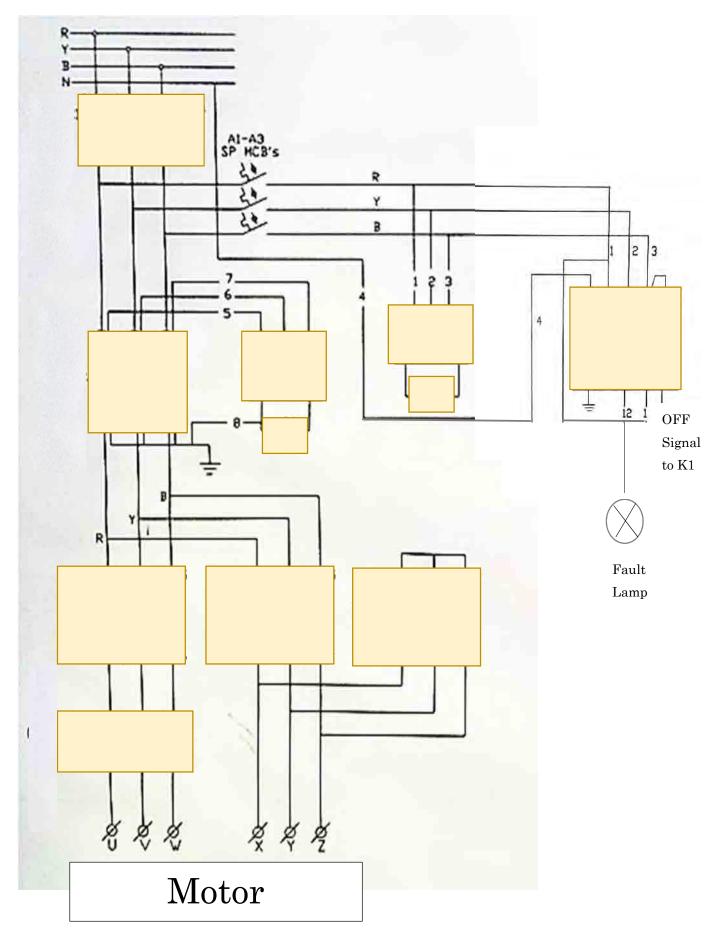
Advantages and disadvantages of leading and lagging power factor:

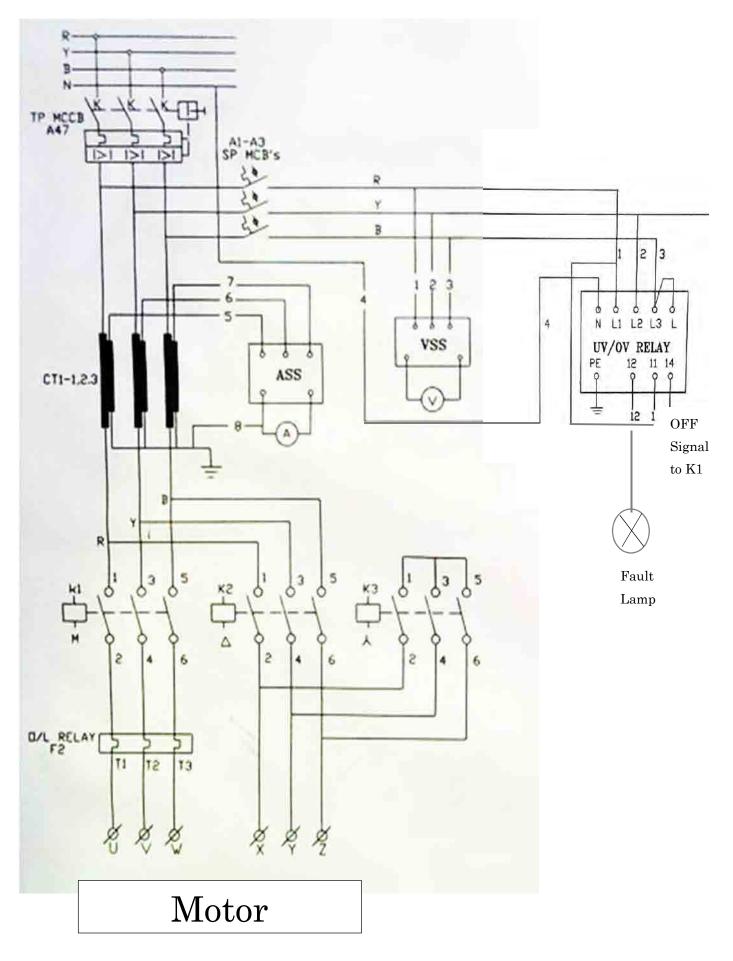
there are two types of power factor leading and lagging power factor. The symbol of power factor = $\cos \phi$

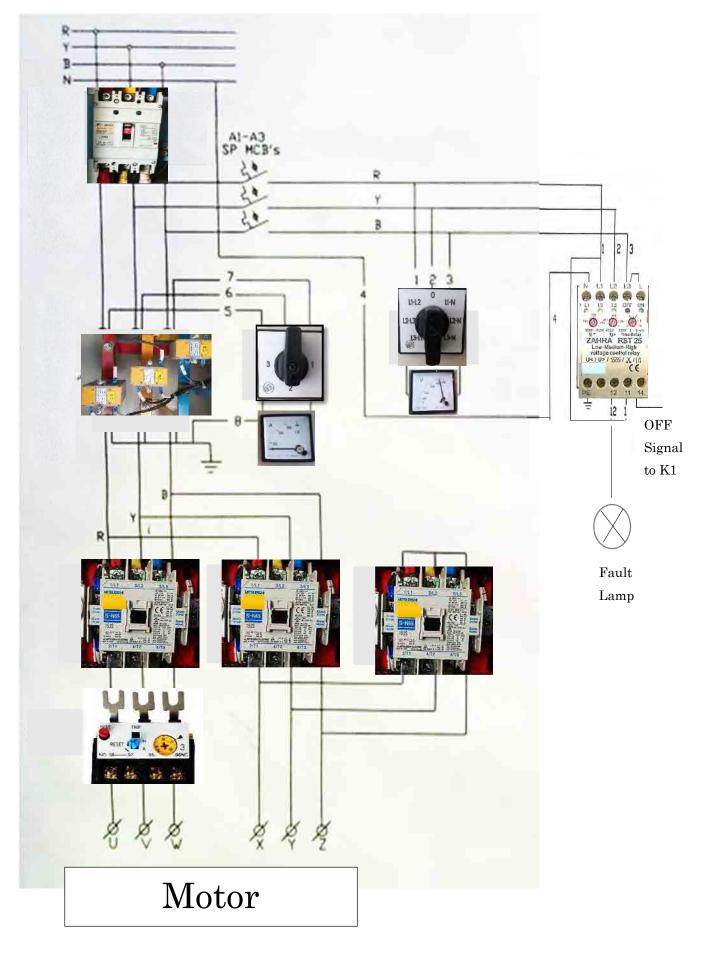
Leading power factor:

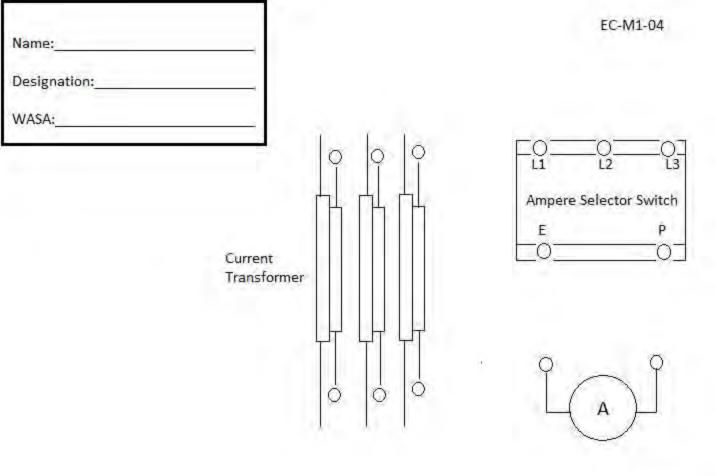
In case, leading power factor the kVAh and Kvarh is going to be more and kWh less. In this way current will be increased which will damage the electrical equipment/motor.

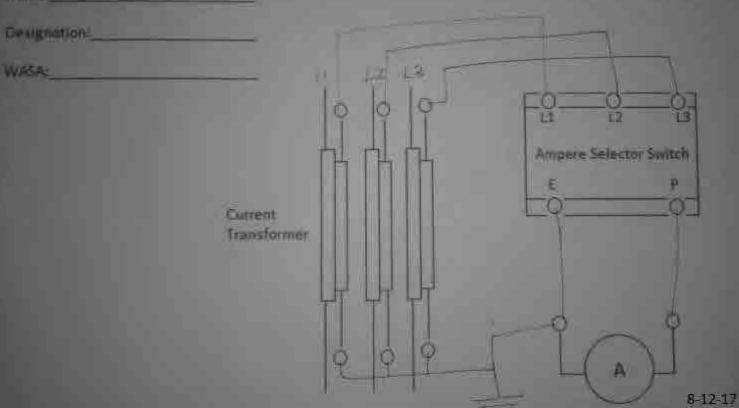
Lagging power factor:

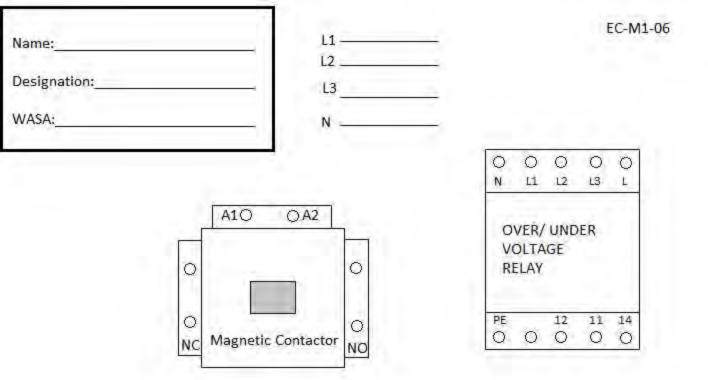

Lagging power factor is beneficial up to a limit and i.e 0.9 to 1.00 (lagging). In case of lagging less than 0.9, LPF Penalty will be imposed, Kvarh and current will also increased. This increased will damage the system.


*Leading power factor is more harmful than lagging power factor and its amount of penalty is also high as compared to lagging power factor.

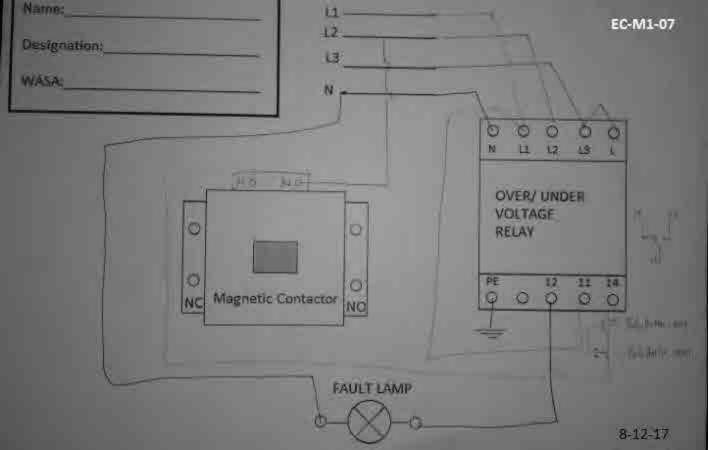

How to improve power factor:


For avoiding the deviation of power factor from its define limit, automatic PFI plants may be installed. PFI plants contains static capacitors bank, they are economical and easy to maintain.





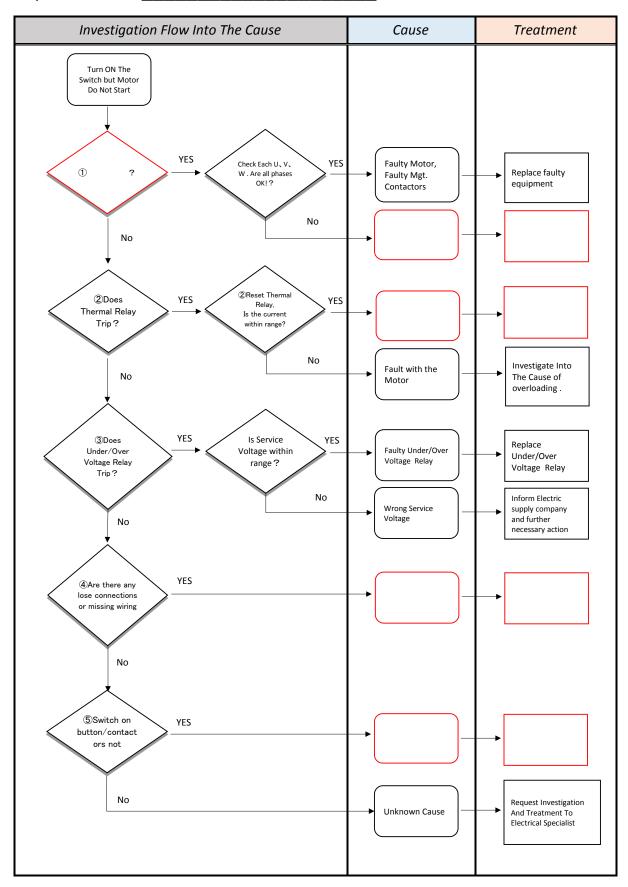
Name

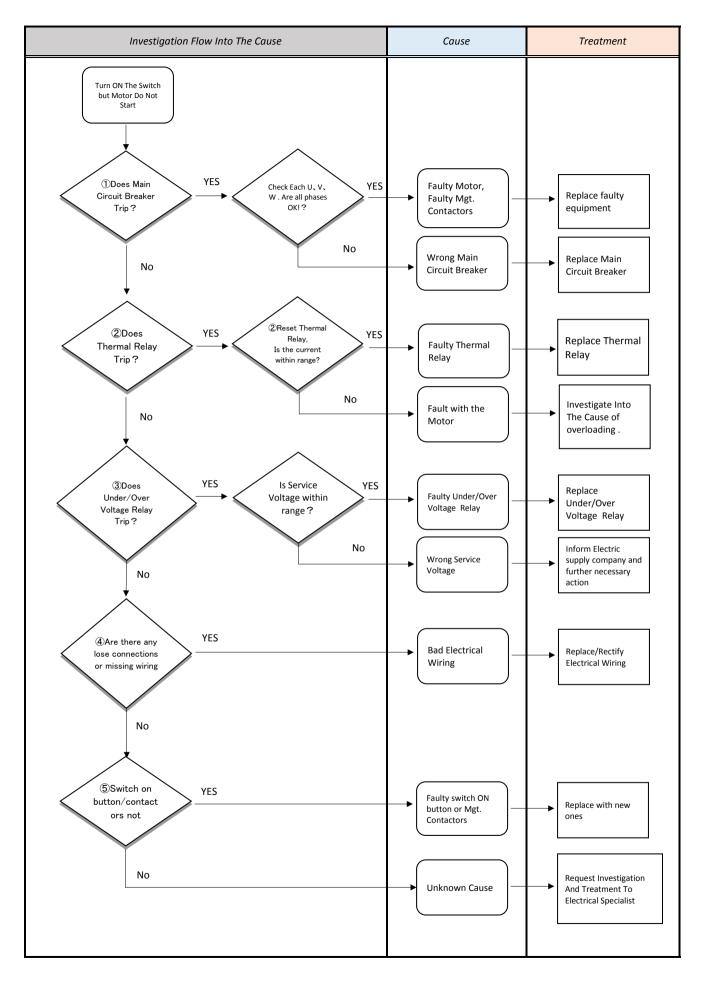


FAULT LAMP

03

8-12-17


Participants Name: _____


		Motor Na	ame Plate		
Voltage	Connection	Ampere	HP	PF	RPM
380	Delta	115	80	0.85	1480

An 80HP induction motor with Phase-to-Phase service voltages, V_1 =460V, V_2 =440V and V_3 =470V is having issue of overheating windings. Kindly refer to the owners O&M manual and identify the fault and suggest remedy.

Over/Under voltage relay is set to V_{min} =390V and V_{max} =470V and timer is set at 7 seconds

Participant Name:_

Operation Time Record (Pump)

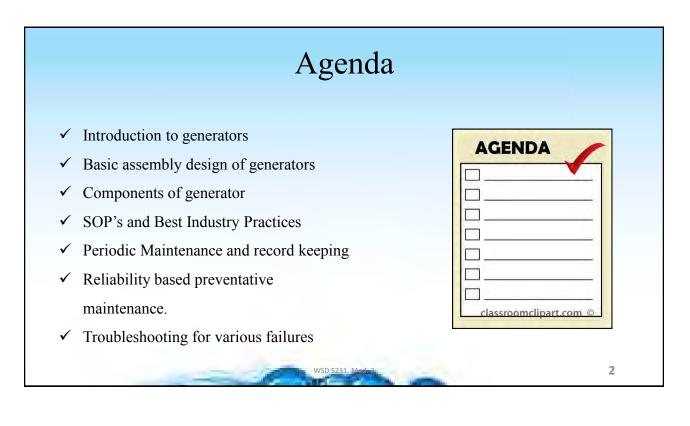
EC-M1-10

Mo	nth/Year	:		/	-					Approv (Engir	neer)						
	Date	:	,	\sim						Prepare (Opera							
Sr. No.	Date	Shift #	Operat	ing Time	Operating Hours	Chlorine Dosing	Flow Reading (Start)	Flow Reading (Stop)	Flow Amount	Pressure	Power Factor	V	oltag	e	A	mpere	è
			Turn On	Turn Off	hrs.	Y/N	m3	m3	m3	MPa	%	RY (V)	YB (V)	BR (V)	R (A)	Y (A)	B (A)
1																	
2																	
3																	
4																	
5																	
6																	
7																	
8																	
9																	
10																	
	Total/ Su	m															
Ren	narks:															10/02	/2017
I																12/08	/

Che	ck List of Standar	d Operation	n Proced	lure for	Electr	rical Facil	ity									EC-M	[1-11
Annro	oved by :		Motor	· Specifi	cation	l <u>:</u> Rated Cap	acity (kW	/HP)			Evalua	tion Criter	<u>'ia</u>				
	cted by :		- Rated V	oltage (V)		Rat	ted Curren	t(A)			✓:Good	×	: No care a			ewly installed	
mspec	licea ny t		Efficien	cyPo	wer Fac	ctorF	RPM					to be improve	d –	-: Not ava	ailable to be	e checked	
								nspection It		ectrica	l Panel C	ondition					
				Document				Visual (Outs	side)				Visual (I	nside)	1	Opera	ation
Sr.	Site/Pump Name	Inspection	Operation Record	Drawings	Vender Manual	Identification of Lamp/Switch	Status/ Fault Indication Lamps	Ampere Meter	Voltage Meter		s Selector witch	Cleanliness	Intrusion Path	Bypass- Circuit		How to operate changeover switch	Frequency of Start/Stop
No.		Date	Compare with the sample	Pump installation , electrical line diagram	Pump/ Panel devices	all lamps /switches have name tag	all lamps are visibly bright enough	Proper functioning and zero adjustment	Proper functioning and zero adjustment	Amper	e Voltage	No dust, sand, spider's nest, insect, small animals	No hole/ crack to let foreign matters come in	No bypass / burnt mark	Neatness of cabling	Turn off by breaker or switch first.	Maximum 2-3 times/ hour
1																	
2																	
3																	
- Rei	marks -			L	L	•	l		L					L			

EC-M1-12
talled ecked
Y- A Timer
Not less than 5 seconds

Preventive Maintenance Sheet for Electrical Facility


EC-M1-13

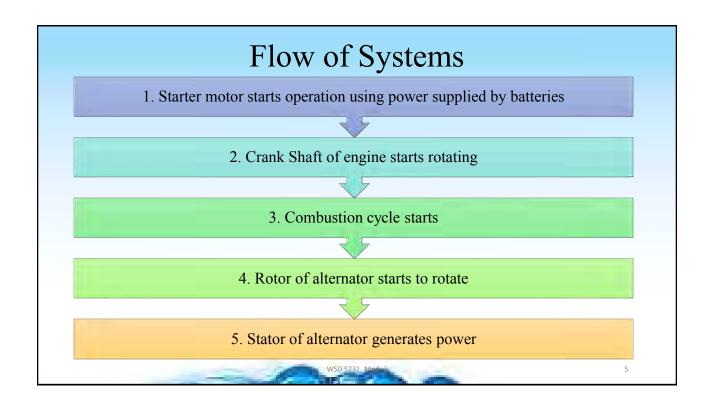
Sub Division:	Motor	Specifica	tion	Power (kW/HP)	
Site Name:	Rated Voltage (V)	Rated Ampere (A)	Efficiency (%)	Power Factor	RPM
Equipment Name:					
	Date				
	Inspected By				
	Weather				

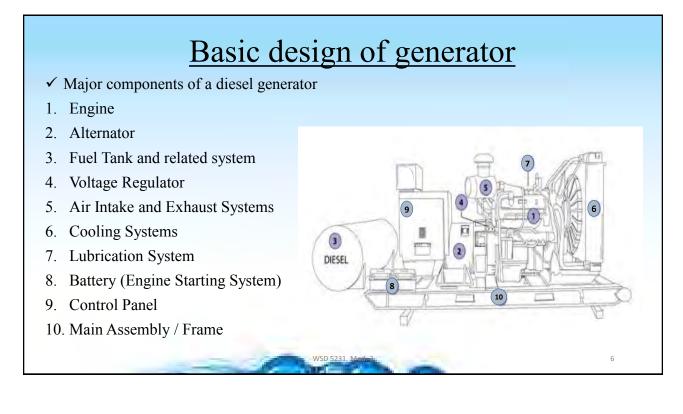
Activity			Reference Value	Data of Site	Data of Site
H	Bolt Tightening	5	No loose point		
	U1-E	U2-E			
Insulation	V1-E	V2- Е			
Resistance	W1-E	W2-Е	$\geq 1 \text{ M} \Omega = \text{Good}$		
$(M\Omega)$	U1-V1	U2-V2			
()	V1-W1	V2-W2			
	W1-U1	W2-U2			
Earth	Earthir	ng Pit/ Bar	< 50		
Resistance Test	Electric Motor	Electric Panel	< 5Ω		
Voltage by		RY			
Clamp Meter		YB	Rated ± 10%		
(V)		BR			
Ampere by		R			
Clamp Meter		Y	Rated ± 5%		
(A)		В			
	Power Factor	•	≥ 0.9		
Vibration	Upper Bearing	Lower Bearing			
Revolu	tion Per Minut	e (RPM)	1450 (4 Pole)		
Temperature	Upper Bearing	Lower Bearing	< 90°C		
remperature	Shaft		< 70 C		
- Remarks -					

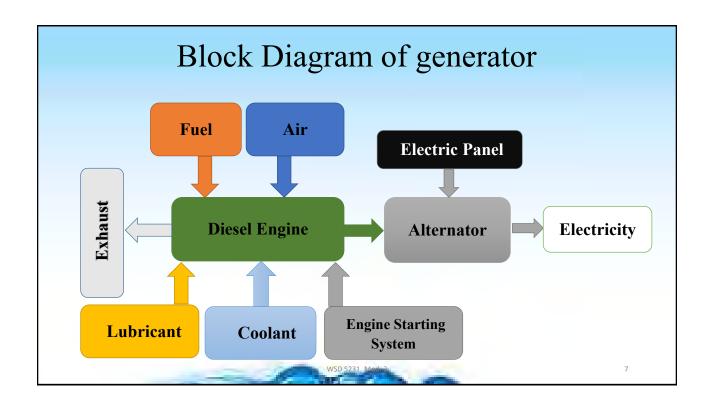
Reference for Insulation Resistance Value: Need to Adjust, Clean,Care $\rightarrow 1.0M\Omega \sim 0.4M\Omega$

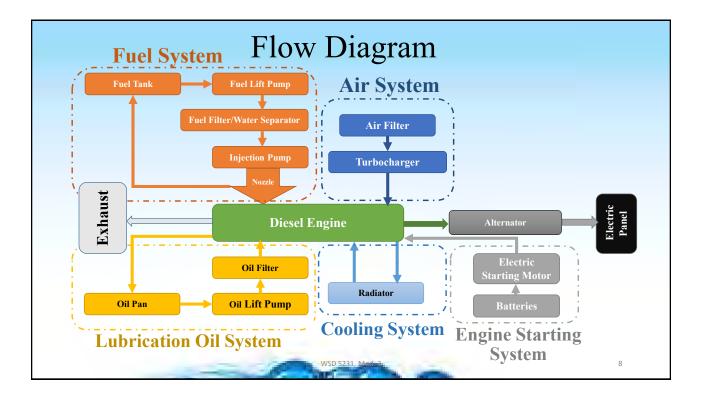
Class Introduction

- ✓ Importance of Generators in WASA operations
- ✓ What do we cover in this module?
- ✓ What to expect in this module?
- ✓ Goal and objectives of this module?


3


Introduction to Generators


A generator is machinery that converts mechanical energy to electrical energy by electromagnetic action to generate electrical power

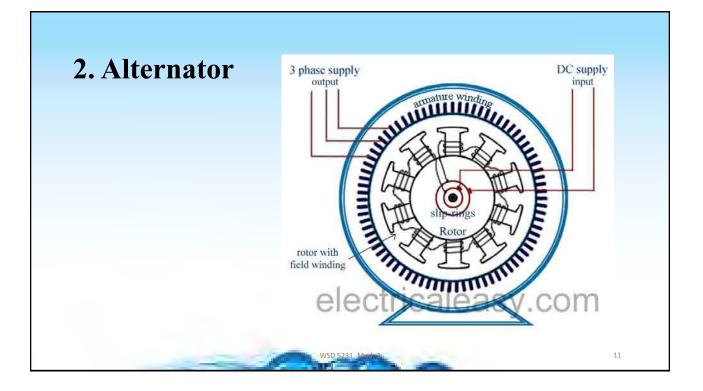

- ✓ Principle of Generator
- ✓ Frequency of the synchronous generator is determined according to the rate of rotation
- ✓ Basic components of Generator:
- 1. Diesel Engine
- 2. Alternator
- 3. Control Panel

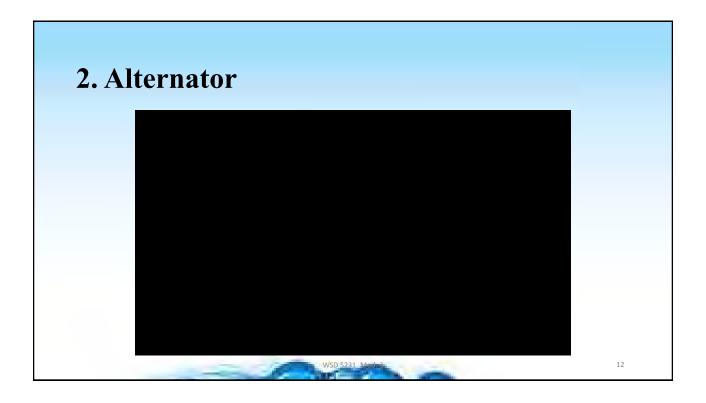
4

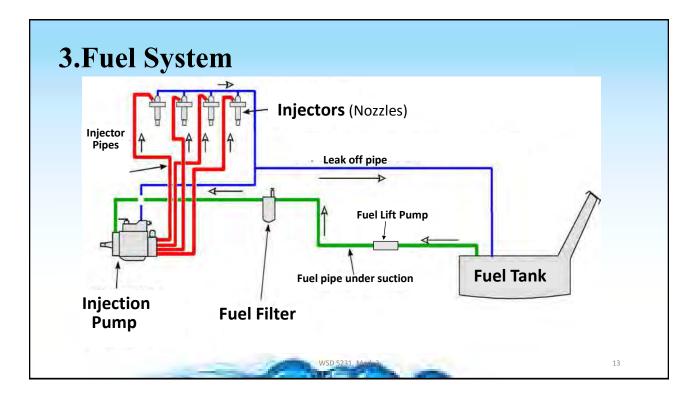
1.Engine

- ✓ The engine is the source of the input mechanical energy to the generator.
- ✓ The size of the engine is directly proportional to the maximum power output the generator can supply.
- ✓ Source of energy for the operation of Generator

2. Alternator

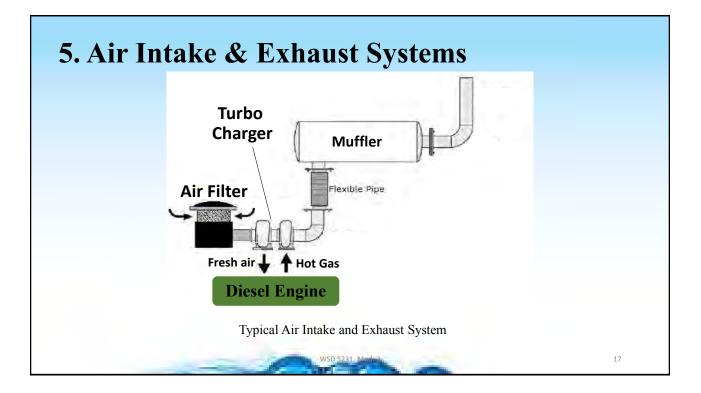

- The alternator is the mechanical equipment that produces electrical output from the mechanical input supplied by the engine.
- ✓ It is coupled to the diesel engine through a drive shaft.




Engine

Alternator

10

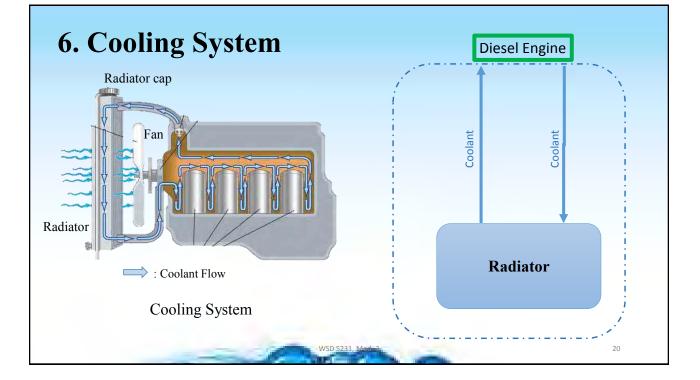

Compo	nents of Fuel	System
Fuel Tank	Fuel Lift Pump	Fuel Filter
Store enough fuel for combustion.	Lift the fuel from the fuel tank	Remove any solid particle in fuel

Components of Fuel System						
Fuel Water Separator	Injection Pump	Nozzle				
Separate and remove water from the fuel	Inject fuel through nozzles at certain pressure	Throw fuel into the cylinders in small particle form				

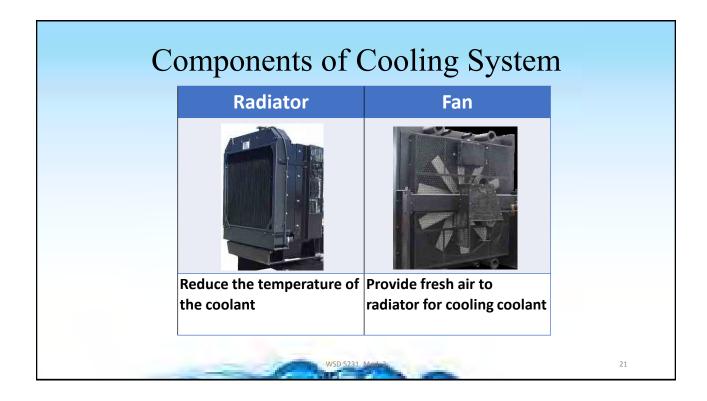
4. Automatic Voltage Regulator (AVR)

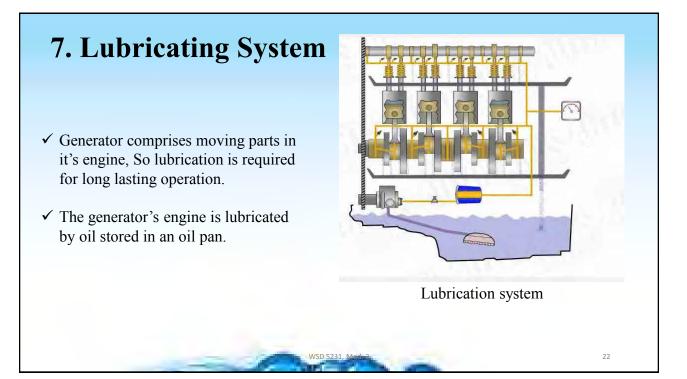
AVR function is to control the magnetic field of the generator such that the output voltage will be constant.

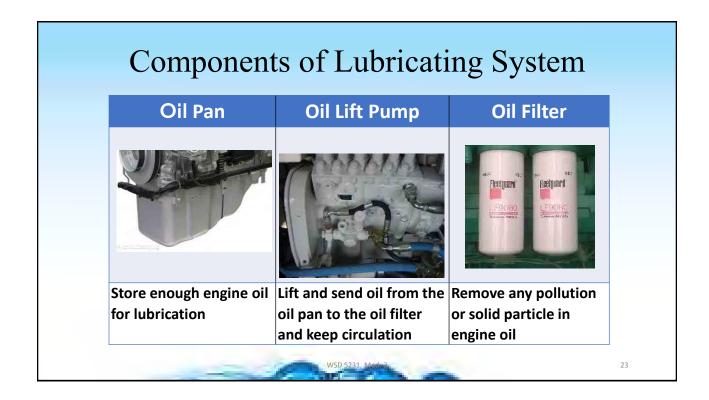
Compor	nents of Air Int	ake & Exhaust S	System
	Air Filter	Turbocharger	
	Clean air from dust	Compress air before	
	particles	intake for better combustion	
	WSD 523:	Manha	18

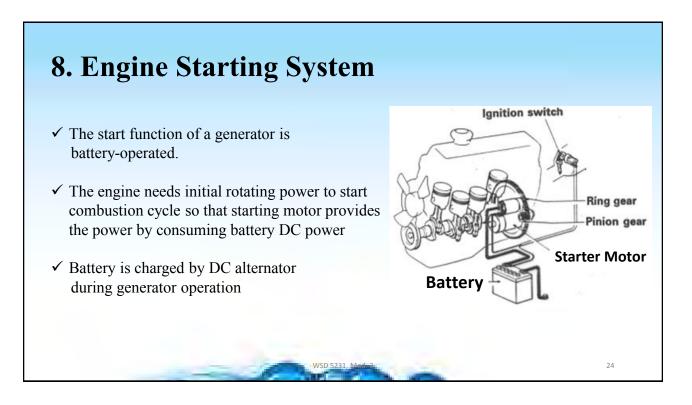

6. Cooling System

Function:


This system maintains the temperature of the engine assembly by introducing coolant into cooling channels. After completing the cycle coolant temperature increases which is then passed through radiator to radiate heat.


Components:


- 1. Radiator/ Charge air cooler
- 2. Thermostat



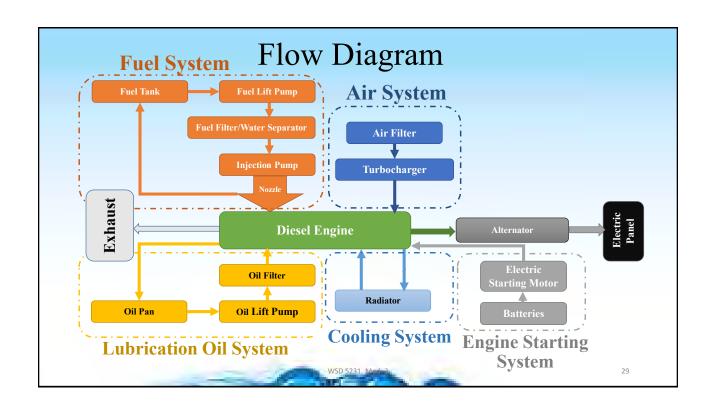
19

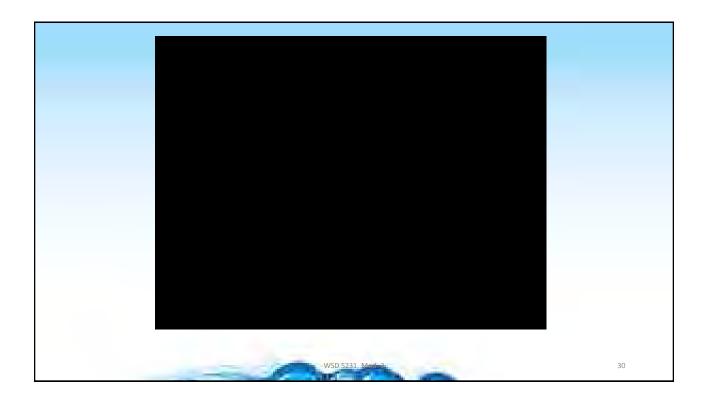
Compo	onents of Fuel S	System		
Battery	Starter Motor	Alternator For Battery Charge		
FUJIK				
Provide starting current to the starter motor	Start rotation of engine from the rest position	Generate power and charge the battery by utilizing engine rotation		

9. Control Panel

- ✓ This is the user interface of the generator and contains provisions for electrical outlets and controls.
- ✓ Electric start and shut-down
- ✓ Engine gauges
- ✓ Generator gauges
- ✓ Alarm monitoring
- ✓ Data logging
- \checkmark Other controls

Electrical Control panel

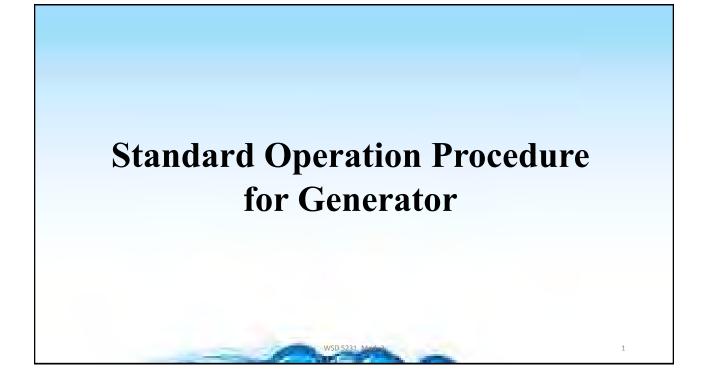

Components of Electrical System							
Alternator (Main)	Electrical Panel	Cables					
Provide main alternative power supply	Monitor and control the system through sensors and provide electrical energy with protection	Provide electrical connectivity between the alternator and other electrical component					

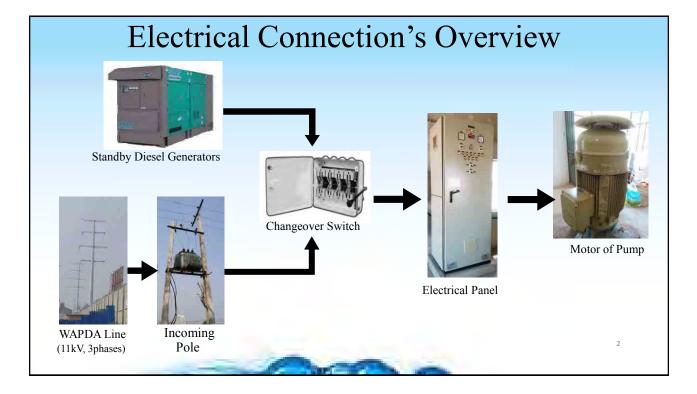

10.Main Assembly / Frame

- ✓ All generators, portable or stationary, have customized housings that provide a structural base support.
- ✓ The frame also allows for the generated to be earthed for safety.

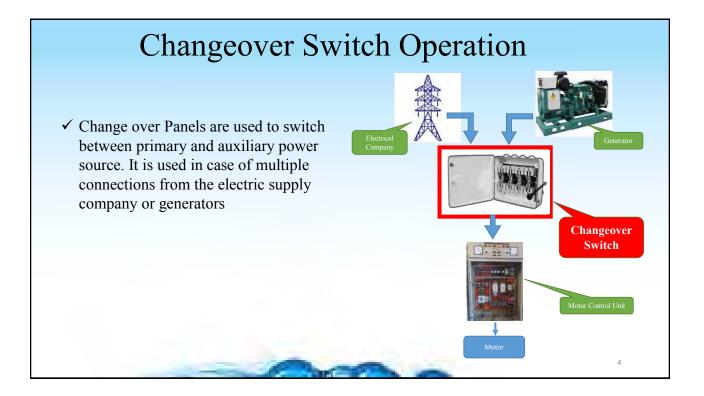
Main frame of Diesel Generator

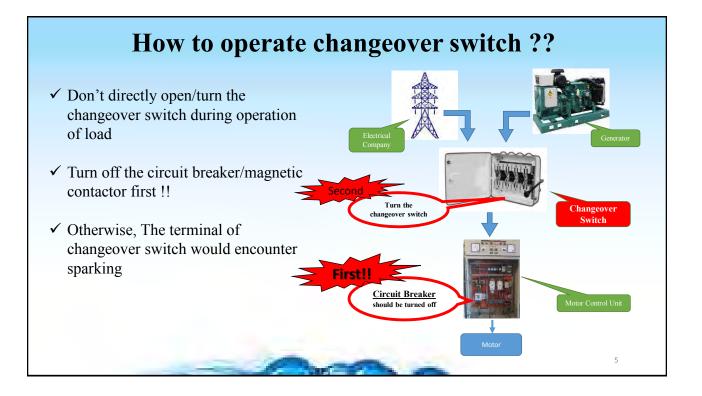
Capacity Calculations

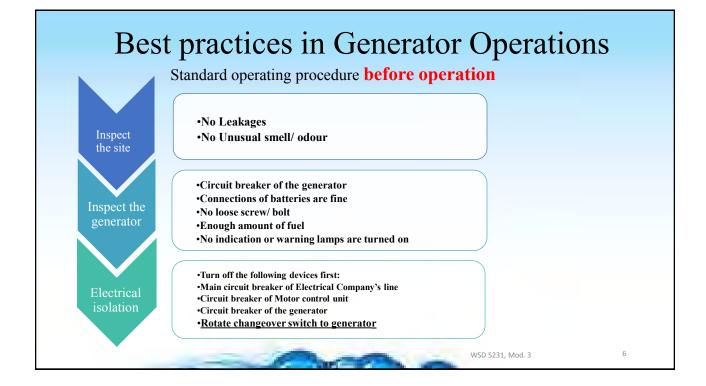

- No specific or standard sizing solution is available.
- Highly depends upon the site conditions and running loads.
- Some manufacturers provide guide to estimate the required generator sizes.

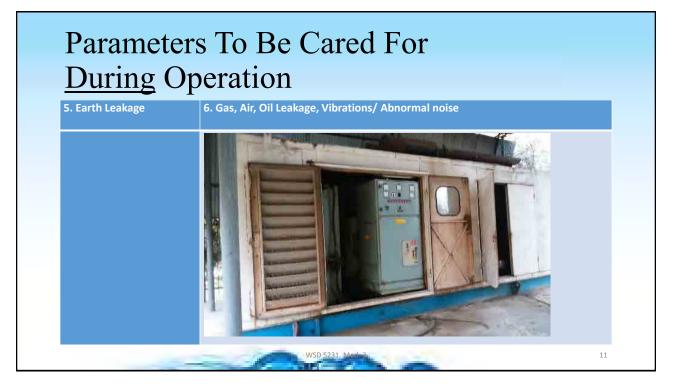

Capacity Calculations

Following steps are required to calculate required size of the generator:


- Step 1: Calculate the power of all non-motor loads
- Step 2: Calculate starting power of the largest motor and running power of all other motors.
- Step 3: Add all motor's running load and starting load of the largest motor
- Step 4: Add non motor loads into the value of step 3
- Step 5: Select Generator's rating of at least 125% of the final answer of step 4

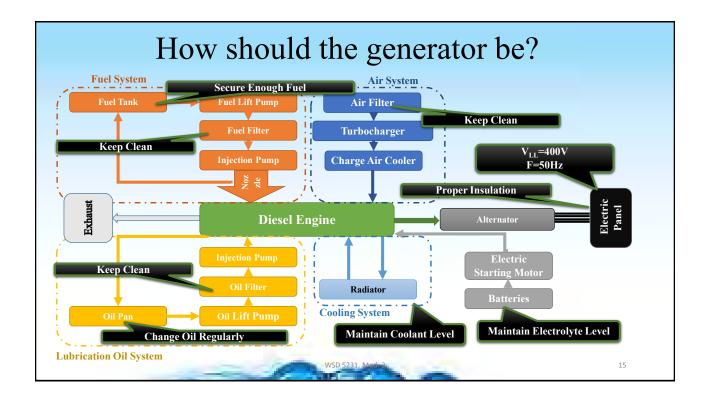

32

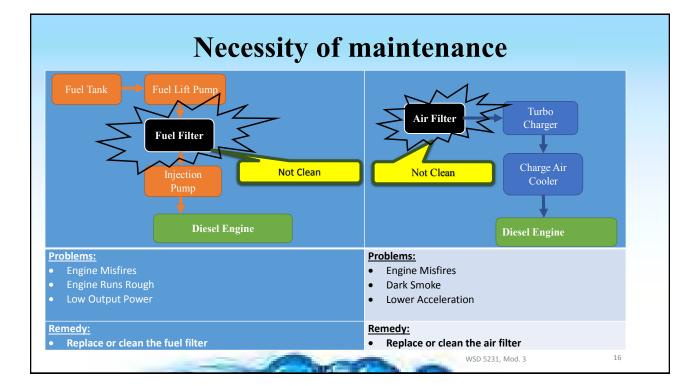




Parameters To Be Cared For <u>Before</u> Operation

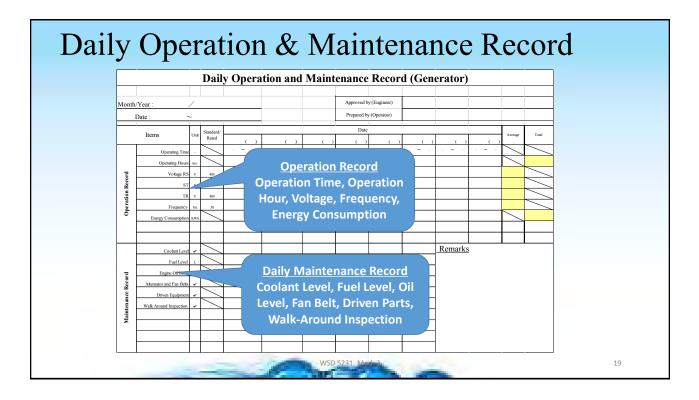
Preventive Maintenance


- ✓ Reduce uncomfortable operation for main components and increase the lifetime of facility
- ✓ Tracking data indicates latent failures in the early stage before it leads to a breakdown
- ✓ Fault detection in the early stage contributes to sustainable water supply service


Necessity of Maintenance

An early warning is generated by the generator before the occurrence of many failure. One should keep special intension to the device during operation, maintenance and regular inspection to avoid major problems. Some of the problem which can be observed during the operation of the device are:

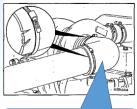
- a. Engine misfire
- b. Vibration
- c. Unusual engine noise
- d. Sudden changes in engine operating temperatures
- e. Excessive smoke
- f. Increase in oil consumption
- g. Increase in fuel consumption


14

Sr. No.	Activities		Serv	Last Activity	Year Month						
0.11101		Daily	Weekly	Monthly	6 Months	Date	1	2	3	4 5	
1	Visual Inspection	•						\square			
2	Check Coolant Level	•						\square			
3	Check Oil Level	•									
4	Check Fuel Level	•									
5	Check Charge Air Piping	•									
6	Check and Clean Air Cleaner		•								
7	Check Battery Charger		•								
8	Drain Fuel Filter		•								
9	Drain Water From Fuel Tank		•								
10	Check Coolant Concentration			•							
11	Check Drive Belt Tension			•							
12	Drain Exhaust Condensate			•							
13	Check Starting Batteries			•							
14	Change Oil and Filter				•						
15	Change Coolant Filter				•						
16	Clean Crankcase Breather				•						
17	Change Air Cleaner Element				•						
18	Check Radiator Hoses				•						
19	Change Fuel Filters				•				T		
	Clean Cooling System				•			\square			

ITEM	Daily	50 Hrs	300 Hrs	1000 Hrs	2000 Hrs
Inspect, adjust or replace alternator or fan					
belt					
Check cooling system coolant level					
Check driven equipment					
Inspect engine air cleaner service indicator					
Check engine oil level					
Drain fuel system primary filter/water separator					
Walk around inspection					
Drain tank water and sediment					
Check battery electrolyte level					
Clean/replace engine air cleaner element					
Inspect/clean engine ground					
Change engine oil and filter					
Replace water separator element					
Replace fuel system secondary filter					
Inspect/replace hoses and clamps					
Inspect/adjust engine valve lash					
Inspect aftercooler core					
Inspect alternator					
Inspect engine mounts					
Inspect starting motor					
Inspect turbocharger					
Inspect water pump					
WSD 523	1, Med. 3	-		•	

Electric panel


Electric and control panel must be inspect before operation. There must be no spark or smell etc. In case of spark or smell, check the connections of the devices and rectify the problem immediately.

• Air intake piping

Visual inspect:

- Intake piping wear points
- Damages to piping
- Loose clamps or punctures that can damage the engine

Replace damaged pipe and tighten loose clamps, as necessary, to prevent the air system from leaking.

Walk-around inspection

To look for any...

- Leaks
- Damaged Parts
- Worn of Damaged belts
- Any change in engine appearance
- Odor of fuel

Daily Maintenance Checks

• Maintenance check

Visually inspect piping points for wear points and damage, loose clamps or punctures.

Replace damage piping and replace loose clamps.

Cooling fan

- ✓ A visual inspection is required daily. Check for cracks, loose rivets, bent or loose blades. Check the fan if it is securely mounted.
- ✓ Do not rotate the engine by pulling or prying on the fan. Use the accessory driveshaft or the crankshaft barring tool to rotate the crank shaft.

✓ The charge-air cooler piping and hoses should be inspected regularly for leaks, holes, cracks, or loose connections. Tighten the hose clamps as necessary. In addition, inspect the charge-air cooler for dirt and debris that may be blocking the fins. Check for cracks, holes, or other damage.

Cooling System

• Inspect for Reuse

Visually inspection is required to check for cracks, loose rivets and bent or loose blades.

Do not rotate the engine by pulling or prying on the fan. Fan blades can be damaged causing the fan to fail and cause personal injury.

Daily Maintenance Checks

- ✓ External coolant leaks
- ✓ Belt condition-cracked or loose
- ✓ Block heater on constantly or leaking
- ✓ Hoses leaking, soft, brittle, bulging
- ✓ Radiator Leaking, plugged, broken fan shroud

Engine coolant level

- ✓ Do not remove the pressure cap from the hot generator. Wait until the coolant temperature is below 50 °C before removing the pressure cap.
- ✓ To add coolant, the ratio of coolant and anti-freeze must be according to the recommended weather conditions.

Daily Maintenance Checks

Drive belts

Inspect the belt daily. Check the belt for intersecting cracks. Replace the belt if it is frayed or has pieces of material missing.

Belt damage can be caused by:

- •Incorrect tension, size or length
- •Pulley misalignment
- •Severe operating environment
- •Oil or grease on the side of the belt
- •Aging degradation

28

15200022

Checking the belt tension

- Use a ruler to find the midway point on the belt's longest run between pulleys. Hold the belt between finger and thumb at this point and move it from side to side.
- See how much it deflects at the center of the run.
- If it moves more than 1/2 in. (13 mm) it is too slack any less movement and it is too tight. Check the exact deflection recommended in the car handbook.

Fuel System Check

- ✓ With the generator set operating, inspect the fuel supply lines, return lines, filters, and fittings for cracks or abrasions.
- ✓ Make sure the lines are not rubbing against anything that could cause an eventual failure.
- Repair any leaks or alter line routing to eliminate wear immediately.

Fuel System

30

Engine lubrication oil level

- ✓ The engine must be level to check the lubrication oil level.
- ✓ Shut off the engine for an accurate reading. Wait at least 15 minutes after shutting off the engine to check the oil level. This allows oil the time to drain into the oil pan.


DC Electrical- Areas of concern

DC electrical system: Check the terminals on the starting batteries to make sure the connections are clean and tight. Loose or corroded connections create resistance, which can hinder starting.

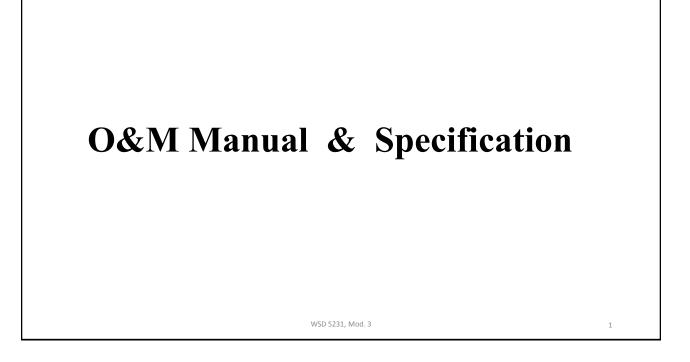
- 1. Battery Charger voltage and amperage
- 2. Condition of batteries-Change every 24-36mths
- 3. Wiring connections
- 4. D/C Alternator Belts, connections

32

Fuel water separator/ filter

Drain the water and sediments from the separator daily. But before draining, shut off the engine. Use hand to open the drain valve. Drain the filter sump until the clear fuel is visible.

After that close the valve and turn it until it is hand-tight. Do not over tighten the valve. It can cause the damage of the threads.

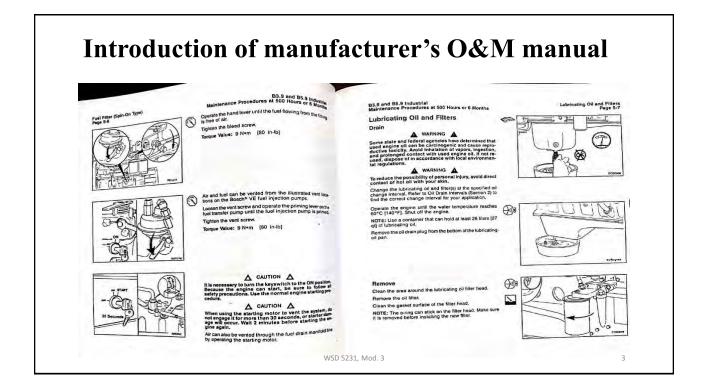

Engine Operation Report

Report any of the following issues:

- Low lubrication oil pressure
- Low Power
- Power increases or Engine surge
- Erratic or no accelerator response or control
- Warning lights
- Unusual Engine noise
- Excessive Smoke

<section-header><complex-block><complex-block><complex-block>

Introduction of manufacturer's O&M manual


Depending upon the power rating, design and manufacturer, different generators may have different flow of maintenance. So O&M manual of each device must always be available at the site.

> You have to keep O&M Manual of YOUR Generator

> > with you

WSD 5231, Mod. 3

Specifications

Example: Generator at Aljazari Academy

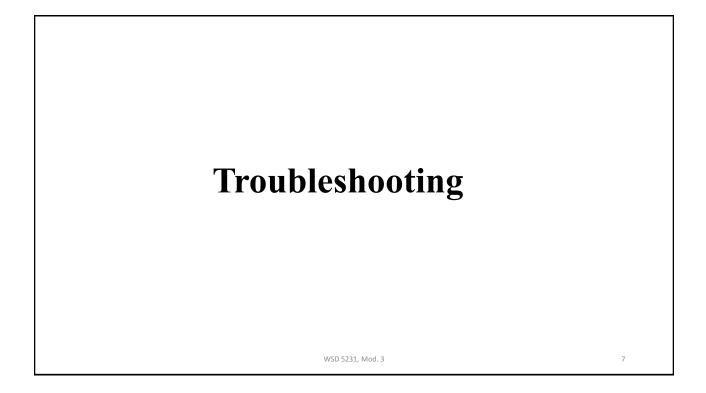
Output Ratings	Prime	Standby
380-415 V, 3 ph, 50 Hz, 1500 rpm	60 KVA	66 KVA
	48 KW	53 KW

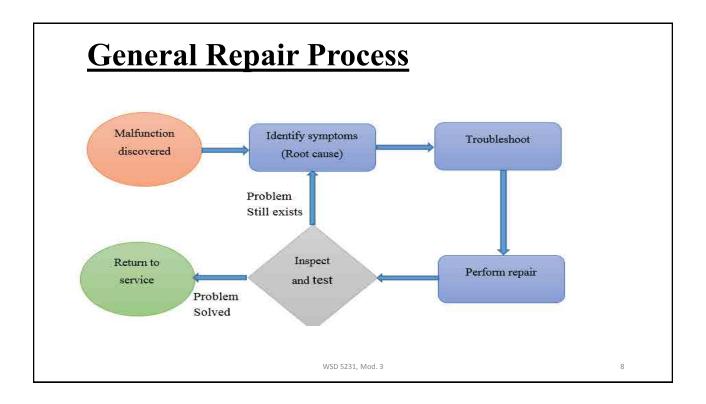
S	pe	cif	ica	tio	ns
-					

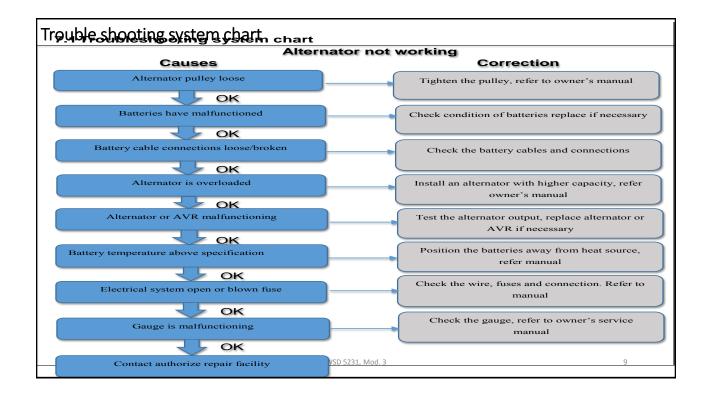
Make	Stamford
Model	UC224E
No. of bearings	1
Insulation class	Н
Total Harmonic Content	at no load <3% - on load <2%
Wires	12
Ingress Protection	IP23
Excitation System	SHUNT
Winding Pitch	2/3 (wdg 6)
AVR Model	R220
Overspeed	2250 mn ⁻¹
Voltage Regulation (steady)	± 0.5%
Short Circuit Capacity	₩ 3

CONTROL PANELMakeDeep SeaModel7120

The **DSE7120** is an Auto Start Control Module for single genset applications. It includes a backlit LCD display which clearly shows the status of the engine all the times. This module can either be programmed using the front panel or by using the DSE configuration suite PC software.


Metering and Alarm indications:


- Generator frequency
- Underspeed, Overspeed
- Generator volts (L-L, L-N)
- Generator current
- Engine oil pressure
- Engine coolant temperature
- Fuel level (Warning or shutdown) Optional
- Hours run counter
- Battery volts
- Fail to start/stop
- Emergency stop
- · Failed to reach loading voltage/frequency
- Charge fail
- Loss of magnetic pick-up signal Optional
- Low DC voltage
- · CAN diagnostics and CAN fail/error


WSD 5231, Mod. 3

Spe	ecifications
ENG	INE / TECHNICAL DATA

			Ratin	gs at 0.8 Power Facts							
Engine Make		Per	kins								
Engine Model		1103A	-33TG2								
Governing Type	Mechanical										
Number of Cylinders		1	3								
Cylinder Arrangement		Vertica	l in line								
Bore and Stroke mm		105.	(127								
Displacement / Cubic Capacity litres		3	.3								
Induction System		harged									
Cycle		4 st	roke								
Combustion System		Direct I	njection								
Compression Ratio	17.25:1										
Rotation	Anti-clockwise, viewed from flywheel										
Cooling System	Water - cooled										
ooling System requency and Engine Speed	50Hz &	1500rpm	60Hz &	Hz & 1800rpm							
	Prime	Standby	Prime	Standby							
Gross Engine Power kW (hp)	55 (73.8)	60.5 (81.1)	63.3 (84.9)	69.6 (93.3)							
Fuel Consumption @ 50% load L/hr	7.2	-	8.8	-							
@ 75% load L/hr	10.4	-	12.5								
@ 100% load L/hr	13.9	15.4	16.6	18.2							
Total Lubrication System Capacity litres	7.9	7.9	7.9	7.9							
Total Coolant Capacity (inc. radiator) litres	10.2	10.2	10.2	10.2							
Exhaust Temperature: °C	557	571	534	564							
Radiator Cooling Air Flow (Min): m ³ /sec	1.48	1.48	1.85	1.85							
Combustion Air Flow: m3/min	3.8	3.9	4.7	4.9							
Exhaust Gas Flow: m3/min	10.1	10.4	11.8	12.5							
Fuel Tank Capacity: litres	87	87	87	87							

Possible Fault Situation

Many faults can be occurred due to over use of generators, in addition to the user manual, troubleshooting charts are also provided by the manufacturer i.e. M/S Siemens for guidance in possible fault situation.

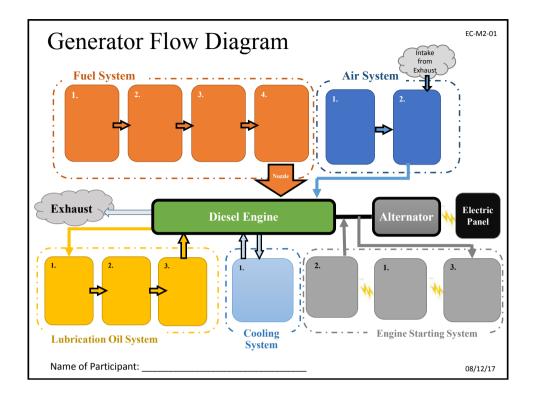
DIE	ME	A2					
	G	ENERATING	the way seen doe to earlier remedies that may accur to t which is not per	e control film for control (10 yr) clowedd (10 yr)	- facility mercine (for citie andly percine (for citie ar (cen Set	OTING CHAP	RT Juany
	Prosterio	Potential Cause	Engine Re	nate "	Problemi	Potential Cante	Restarbeit

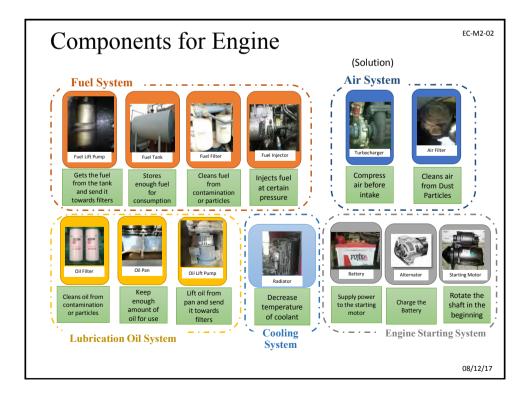
Possible Fault Situation

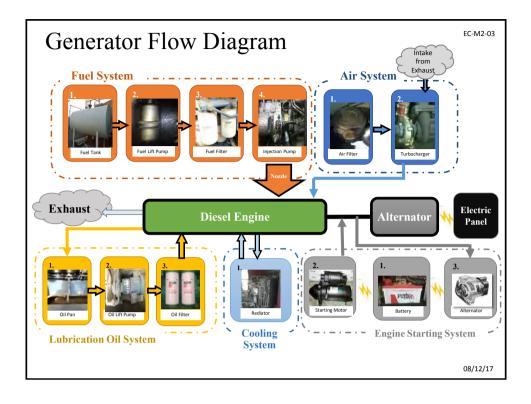
Engine Relate Faults Sr. # Problem Potential Cause Remedies Fill it Lack of fuel., Fuel tank empty Air in fuel injection system Bleed the air Check Battery with Multi-meter Replace or Charge battery Water contaminants in the fuel Change it Fault in the fuel lift pump, cold stat system Repair and adjust it Wrong type of grade fuel used Change & use proper 1 Engine does not start Fault in fuel injection pump Check & repair Timing of fuel injection pump is incorrect Correct is as required Inspect rings & pistons and adjust Bad compression, Shut-off valve closed valve clearances Fuel connections are loose on suction side of the fuel pump Check & tight the connections Lack of fuel., Fuel tank empty Fill it Air in fuel injection system Bleed the air Water contaminants in the fuel Change it Repair or replace it Starter motor defective 2 Engine difficult to start Restriction in filter/ cleaner or in air induction system clean or replace it Restriction in fuel vent Remove & clean Restriction in exhaust pipe Remove & clean exhaust system

Possible Fault Situation

Sr. #	Problem	Potential Cause	Remedies					
1 1	If Generator voltage below 400V & not adjustable via potentiometer	Drive speed too low	Check speed control of drive engine					
		Voltage regulator defective	Replace voltage					
_	C	Interuption of excitor circuit	Tighten connections according to connection diagram					
2	Generator voltage too low (say less than 100V)	Surge supressor faulty	Replace the supressor					
		Rotating rectifier faulty	Repair the diaodes of the rectifier					
3	If Generator voltage above 450 V & not	Drive spped too high	Check engine speed and adjust it t 1500 rpm					
J	adjustable via potentiometer	Interruption of reference valve of AVR	Check AVR Connections					
		Voltange regulator defective	Replace voltage regulator					


WSD 5231, Mod. 3


Wrap-up


- Things to take home...
- Generators drive your Operation.
- Always do a root cause analysis
- Repair is not preventive maintenance
- Keep records, always !!!

WSD 5231, Mod. 3

Maintenance Interval Schedule (Sample for Practice)

Daily

- Alternator and Fan Belts Inspect/Adjust/Replace
- Cooling System Coolant Level Check
- Driven Equipment Check
- Engine Oil Level Check
- Fuel System Primary Filter/Water Separator Drain
- Walk Around Inspection

Every 50 Service Hours or Weekly

• Fuel Tank Water and Sediment – Drain

Every 500 Service Hours or 1 Year

- Battery Electrolyte Condition & Level Check
- Engine Air Cleaner Element Clean/Replace
- Engine Oil and Filter Change
- Fuel System Filter Element Replace
- Hoses and Clamps Inspect/Replace

Every 1000 Service Hours or 1 Year

• Engine Valve Lash – Inspect/Adjust

Every 2000 Service Hours or 1 Year

- $\boldsymbol{\cdot} \operatorname{Alternator} \operatorname{Inspect}$
- $\bullet \ Engine \ Mounts-Inspect$
- $\bullet \ Starting \ Motor-Inspect$

Every 2 Year

Cooling System Coolant – Change

Generaotr Annual Maintenace Plan (Sample) -Year 2017-

Legend: Plan "∙", Done "√"

First Setting for Trial Activity

Average Operation Time per day	5	hours/day
Average Operation Time per month (<u>%30days</u>)	150	hours/month

*Days for each month are considered as 30days for ease.

	2017						2018					
Item	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
Operation Hours of the Month	150	150	150	150	150	150	150	150	150	150	150	150
Total Operation Hours	150	300	450	600	750	900	1050	1200	1350	1500	1650	1800

llerer	Required maintenance	Desident to be as a first	D	EC	J	AN		FEE	В	M	AR	AI	PR	N	IAY	J	UN		UL		AL	IG	S	EP	0	СТ	NO	V
ltem	cycle	Product to be required		Don	e Plar	n Dor	ne Pl	an D	Done	Plan	Done	Plan	Done	Plan	Done	Plar	Don	e Plai	n Do	ne P	lan	Done	Plan	Done	Plan	Done	Plan [Done
Fuel Tank Water and Sediment Drain	Every <u>50</u> hours	None	•		•		•	•		•		•		•		•		•			•		•		•		•	
Battery Electrolyte Level – Check	Every <u>500</u> hours	Electrolyte								•																		
Engine Air Cleaner Element – Clean/Replace	Every <u>500</u> hours	Air Cleaner Element								•																		
Engine Oil and Filter – Change	Every <u>500</u> hours	Engine Oil Filter								•																		
Fuel System Filter Element - Replace	Every <u>500</u> hours	Fuel Filter								•																		
Hoses and Clamps – Inspect/Replace	Every <u>500</u> hours	Hoses, Clamps								•																		
Engine Valve Lash – Inspect/Adjust	Every <u>1000</u> hours															•												
Alternator – Inspect	Every <u>2000 hours</u>																											
Engine Mounts – Inspect	Every <u>2000 hours</u>																											
Starting Motor – Inspect	Every <u>2000</u> hours																											
Cooling System Coolant – Change	Every <u>2 Years</u>																											

12/08/2017

EC-M2-08

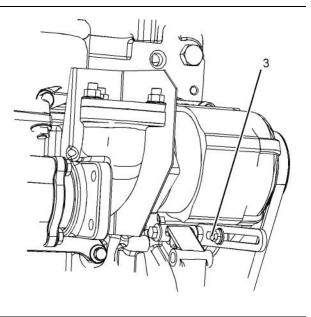


Illustration 31

g03716558

 loosen the link bolt (3). Move the alternator in order to increase or decrease the belt tension. Tighten the alternator pivot bolt and the link bolt to 22 N⋅m (16 lb ft).(1).

Replacement

Refer to the Disassembly and Assembly Manual for the installation procedure and the removal procedure for the belt.

i02322315

Battery - Replace

Batteries give off combustible gases which can explode. A spark can cause the combustible gases to ignite. This can result in severe personal injury or death.

Ensure proper ventilation for batteries that are in an enclosure. Follow the proper procedures in order to help prevent electrical arcs and/or sparks near batteries. Do not smoke when batteries are serviced.

🔒 WARNING

The battery cables or the batteries should not be removed with the battery cover in place. The battery cover should be removed before any servicing is attempted.

Removing the battery cables or the batteries with the cover in place may cause a battery explosion resulting in personal injury.

- **1.** Switch the engine to the OFF position. Remove all electrical loads.
- **2.** Turn off any battery chargers. Disconnect any battery chargers.
- **3.** The NEGATIVE "-" cable connects the NEGATIVE "-" battery terminal to the NEGATIVE "-" terminal on the starting motor. Disconnect the cable from the NEGATIVE "-" battery terminal.
- **4.** The POSITIVE "+" cable connects the POSITIVE "+" battery terminal to the POSITIVE "+" terminal on the starting motor. Disconnect the cable from the POSITIVE "+" battery terminal.

Note: Always recycle a battery. Never discard a battery. Dispose of used batteries to an appropriate recycling facility.

- 5. Remove the used battery.
- 6. Install the new battery.

Note: Before the cables are connected, ensure that the engine start switch is OFF.

- 7. Connect the cable from the starting motor to the POSITIVE "+" battery terminal.
- 8. Connect the NEGATIVE "-" cable to the NEGATIVE "-" battery terminal.

i02747977

Battery Electrolyte Level -Check

When the engine is not run for long periods of time or when the engine is run for short periods, the batteries may not fully recharge. Ensure a full charge in order to help prevent the battery from freezing. If batteries are correctly charged, the ammeter reading should be very near zero, when the engine is in operation.

All lead-acid batteries contain sulfuric acid which can burn the skin and clothing. Always wear a face shield and protective clothing when working on or near batteries.

1. Remove the filler caps. Maintain the electrolyte level to the "FULL" mark on the battery.

If the addition of water is necessary, use distilled water. If distilled water is not available use clean water that is low in minerals. Do not use artificially softened water.

- **2.** Check the condition of the electrolyte with a suitable battery tester.
- 3. Install the caps.
- 4. Keep the batteries clean.

Clean the battery case with one of the following cleaning solutions:

- Use a solution of 0.1 kg (0.2 lb) baking soda and 1 L (1 qt) of clean water.
- Use a solution of ammonium hydroxide.

Thoroughly rinse the battery case with clean water.

i02323088

Battery or Battery Cable -Disconnect

A WARNING

The battery cables or the batteries should not be removed with the battery cover in place. The battery cover should be removed before any servicing is attempted.

Removing the battery cables or the batteries with the cover in place may cause a battery explosion resulting in personal injury.

- 1. Turn the start switch to the OFF position. Turn the ignition switch (if equipped) to the OFF position and remove the key and all electrical loads.
- 2. Disconnect the negative battery terminal. Ensure that the cable cannot contact the terminal. When four 12 volt batteries are involved, two negative connection must be disconnected.
- **3.** Remove the positive connection.

- **4.** Clean all disconnected connection and battery terminals.
- 5. Use a fine grade of sandpaper to clean the terminals and the cable clamps. Clean the items until the surfaces are bright or shiny. DO NOT remove material excessively. Excessive removal of material can cause the clamps to not fit correctly. Coat the clamps and the terminals with a suitable silicone lubricant or petroleum jelly.
- **6.** Tape the cable connections in order to help prevent accidental starting.
- 7. Proceed with necessary system repairs.
- **8.** In order to connect the battery, connect the positive connection before the negative connector.

i05901701

Cooling System Coolant (Commercial Heavy-Duty) -Change

NOTICE

Care must be taken to ensure that fluids are contained during performance of inspection, maintenance, testing, adjusting and repair of the product. Be prepared to collect the fluid with suitable containers before opening any compartment or disassembling any component containing fluids.

Dispose of all fluids according to Local regulations and mandates.

NOTICE

Keep all parts clean from contaminants.

Contaminants may cause rapid wear and shortened component life.

Clean the cooling system and flush the cooling system before the recommended maintenance interval if the following conditions exist:

- The engine overheats frequently.
- Foaming is observed.
- The oil has entered the cooling system and the coolant is contaminated.
- The fuel has entered the cooling system and the coolant is contaminated.

Cleaning the Primary Air Cleaner Elements

NOTICE

Observe the following guidelines if you attempt to clean the filter element:

Do not tap or strike the filter element in order to remove dust.

Do not wash the filter element.

Use low pressure compressed air in order to remove the dust from the filter element. Air pressure must not exceed 207 kPa (30 psi). Direct the air flow up the pleats and down the pleats from the inside of the filter element. Take extreme care in order to avoid damage to the pleats.

Do not use air filters with damaged pleats, gaskets, or seals. Dirt entering the engine will cause damage to engine components.

Refer to the OEM information in order to determine the number of times that the primary filter element can be cleaned. When the primary air cleaner element is cleaned, check for rips or tears in the filter material. The primary air cleaner element should be replaced at least one time per year. This replacement should be performed regardless of the number of cleanings.

NOTICE

Do not clean the air cleaner elements by bumping or tapping. This could damage the seals. Do not use elements with damaged pleats, gaskets or seals. Damaged elements will allow dirt to pass through. Engine damage could result.

Visually inspect the primary air cleaner elements before cleaning. Inspect the air cleaner elements for damage to the seal, the gaskets, and the outer cover. Discard any damaged air cleaner elements.

There are two common methods that are used to clean primary air cleaner elements:

- Pressurized air
- Vacuum cleaning

Pressurized Air

Pressurized air can be used to clean primary air cleaner elements that have not been cleaned more than two times. Pressurized air will not remove deposits of carbon and oil. Use filtered, dry air with a maximum pressure of 207 kPa (30 psi).

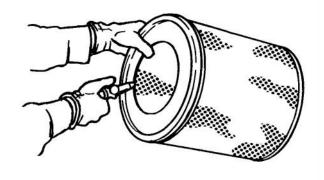


Illustration 38

g00281692

Note: When the primary air cleaner elements are cleaned, always begin with the clean side (inside) in order to force dirt particles toward the dirty side (outside).

Aim the hose so that the air flows inside the element along the length of the filter in order to help prevent damage to the paper pleats. Do not aim the stream of air directly at the primary air cleaner element. Dirt could be forced further into the pleats.

Note: Refer to "Inspecting the Primary Air Cleaner Elements".

Vacuum Cleaning

Vacuum cleaning is a good method for cleaning primary air cleaner elements which require daily cleaning because of a dry, dusty environment. Cleaning with pressurized air is recommended prior to vacuum cleaning. Vacuum cleaning will not remove deposits of carbon and oil.

Note: Refer to "Inspecting the Primary Air Cleaner Elements".

Inspecting the Primary Air Cleaner Elements

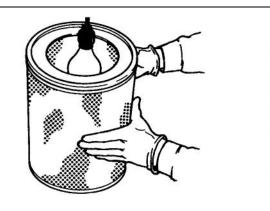


Illustration 39

g00281693

Inspect the clean, dry primary air cleaner element. Use a 60 watt blue light in a dark room or in a similar facility. Place the blue light in the primary air cleaner element. Rotate the primary air cleaner element. Inspect the primary air cleaner element for tears and/ or holes. Inspect the primary air cleaner element for light that may show through the filter material. If it is necessary in order to confirm the result, compare the primary air cleaner element to a new primary air cleaner element that has the same part number.

Do not use a primary air cleaner element that has any tears and/or holes in the filter material. Do not use a primary air cleaner element with damaged pleats, gaskets or seals. Discard damaged primary air cleaner elements.

i02152042

Engine Air Cleaner Element (Single Element) - Inspect/ Replace

Refer to Operation and Maintenance Manual, "Engine Air Cleaner Service Indicator-Inspect".

NOTICE

Never run the engine without an air cleaner element installed. Never run the engine with a damaged air cleaner element. Do not use air cleaner elements with damaged pleats, gaskets or seals. Dirt entering the engine causes premature wear and damage to engine components. Air cleaner elements help to prevent airborne debris from entering the air inlet. NOTICE

Never service the air cleaner element with the engine running since this will allow dirt to enter the engine.

A wide variety of air cleaners may be installed for use with this engine. Consult the OEM information for the correct procedure to replace the air cleaner.

i01909507

Engine Air Cleaner Service Indicator - Inspect

Some engines may be equipped with a different service indicator.

Some engines are equipped with a differential gauge for inlet air pressure. The differential gauge for inlet air pressure displays the difference in the pressure that is measured before the air cleaner element and the pressure that is measured after the air cleaner element. As the air cleaner element becomes dirty, the pressure differential rises. If your engine is equipped with a different type of service indicator, follow the OEM recommendations in order to service the air cleaner service indicator.

The service indicator may be mounted on the air cleaner element or in a remote location.

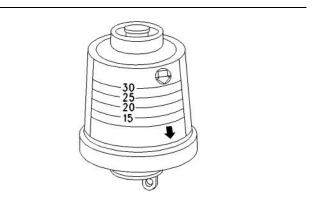


Illustration 40

g00103777

Typical service indicator

Observe the service indicator. The air cleaner element should be cleaned or the air cleaner element should be replaced when one of the following conditions occur:

- The yellow diaphragm enters the red zone.
- The red piston locks in the visible position.

Test the Service Indicator

Service indicators are important instruments.

- Check for ease of resetting. The service indicator should reset in less than three pushes.
- Check the movement of the yellow core when the engine is accelerated to the engine rated speed. The yellow core should latch approximately at the greatest vacuum that is attained.

If the service indicator does not reset easily, or if the yellow core does not latch at the greatest vacuum, the service indicator should be replaced. If the new service indicator will not reset, the hole for the service indicator may be restricted.

The service indicator may need to be replaced frequently in environments that are severely dusty.

i01941505

Engine Ground - Inspect/Clean

Inspect the wiring harness for good connections.

Perkins use the starter motor in order to ground the engine. Check the connection on the starter motor at every oil change. Ground wires and straps should be combined at engine grounds. All grounds should be tight and free of corrosion.

- Clean the grounding stud on the starter motor and the terminals with a clean cloth.
- If the connections are corroded, clean the connections with a solution of baking soda and water.
- Keep the grounding stud and the strap clean and coated with suitable grease or petroleum jelly.

i02323089

Engine Mounts - Inspect

Note: The engine mounts may not have been supplied by Perkins. Refer to the OEM information for further information on the engine mounts and the correct bolt torque.

Inspect the engine mounts for deterioration and for correct bolt torque. Engine vibration can be caused by the following conditions:

- Incorrect mounting of the engine
- Deterioration of the engine mounts
- Loose engine mounts

Any engine mount that shows deterioration should be replaced. Refer to the OEM information for the recommended torques. i05909059

g02173847

Engine Oil Level - Check

Hot oil and hot components can cause personal injury. Do not allow hot oil or hot components to contact the skin.

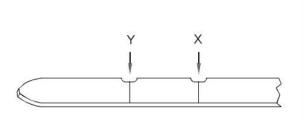


Illustration 41 g01165836 (Y) "Min" mark. (X) "Max" mark.

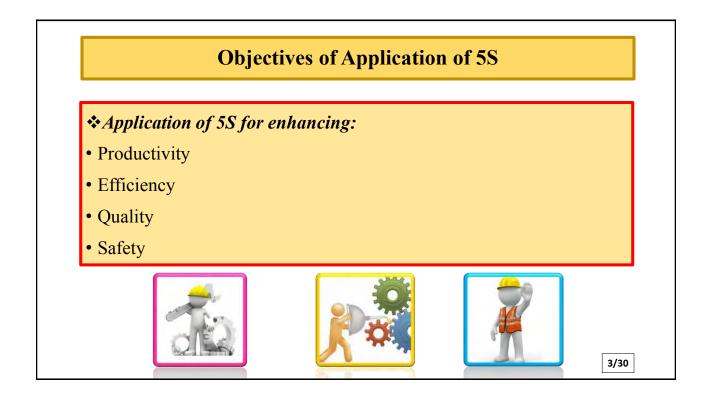
Illustration 42

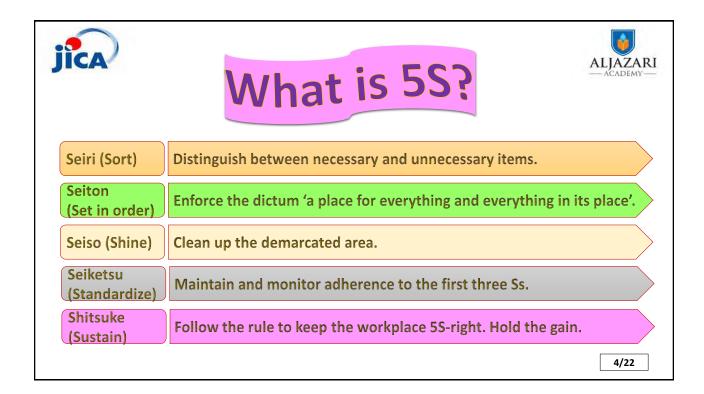
(L) "Min" mark. (H) "Max" mark.

NOTICE Perform this maintenance with the engine stopped.

Note: Ensure that the engine is either level or that the engine is in the normal operating position in order to obtain a true level indication.

Note: After the engine has been switched OFF, wait for 10 minutes in order to allow the engine oil to drain to the oil pan. Then, check the oil level.


Name of Participant: _____


Q1: Write down the procedure of cleaning air cleaner element in your own words

Q2: Write down the procedure of checking electrolyte level and condition of battery in your own words

5S – A Quality, Productivity, Efficiency and Safety Tool

- 5S is an approach to eliminate waste, organize work place to save time and effort to achieve operational efficiency.
- Implementation of 5S improves operational quality and efficiency.
- It enhances safety by reducing hazards, which may occur due to an unorganized work place.

5/22

1. Sort (Seiri)

For wavering items

7/22

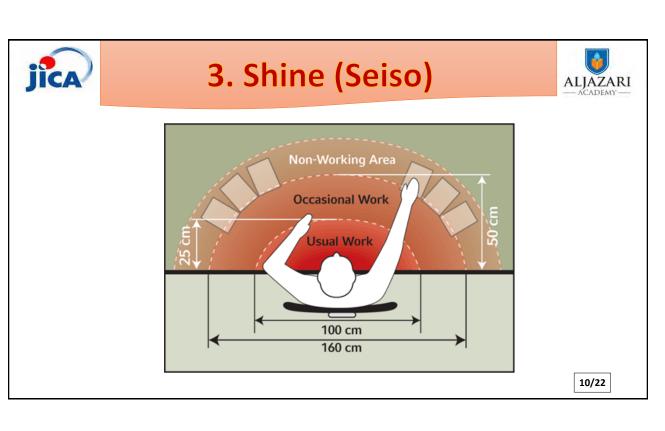
- Place un-necessary items in the red tag area
- Allow course participants to re-evaluate the needed items
- At the end of evaluation, required items should be returned to proper area

PRIORITY	FREQUENCY OF USE	HOW TO USE
Low	Less than once per year Once per year	Discard Store away from the workplace
Average	Once per month Once per week	Store together
High	Once per day	Locate at the workplace

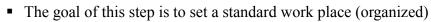
2. Set-in-order (Seiton)

- It involves setting of necessary items, which are always located in logically predetermined locations.
- Based on the inventory classification of the red tag campaign, items are placed in locations based on frequency of use.
- Frequently used items are placed at or near the work place.
- Infrequently used items are stored in store.
- Items in store would help employees save time, otherwise wasted in trying to locate scattered items.

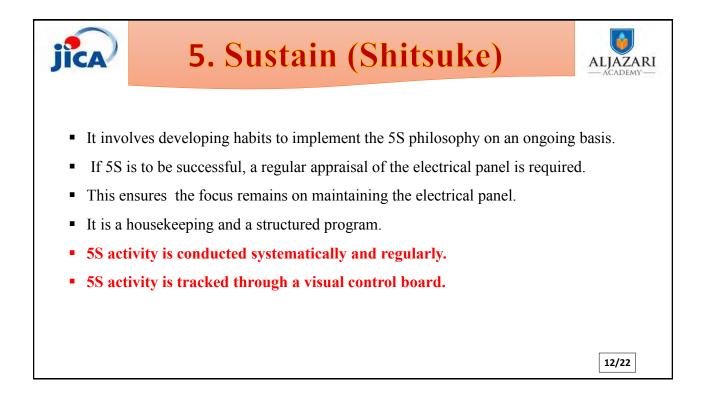
8/22



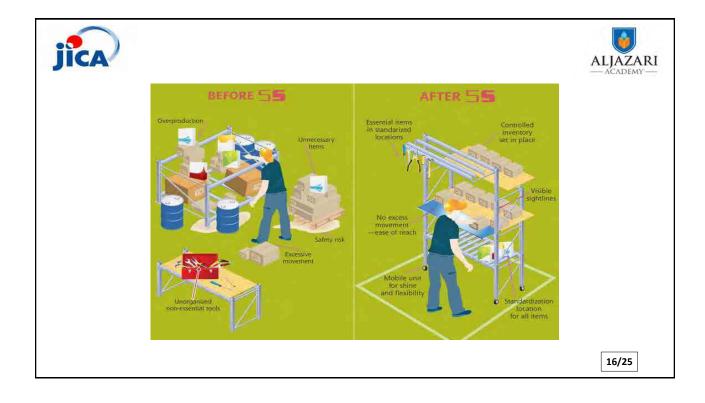
3. Shine (Seiso)

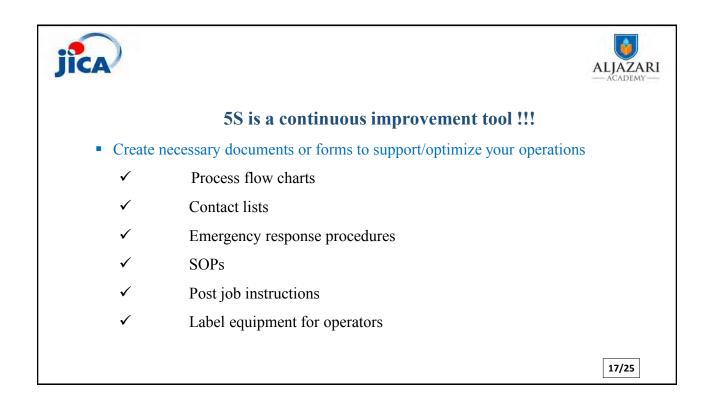

9/22

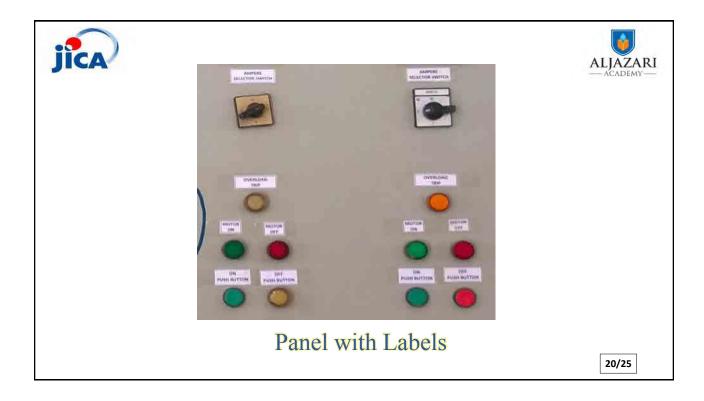
- It is a regular cleaning activity at and near the work area.
- Removing unnecessary stickers, posters, pictures and other items.
- During operations and maintenance ergonomically establishing the positions for tools and equipment.
- Continuously achieve better level of organized and efficient work place through brainstorming.

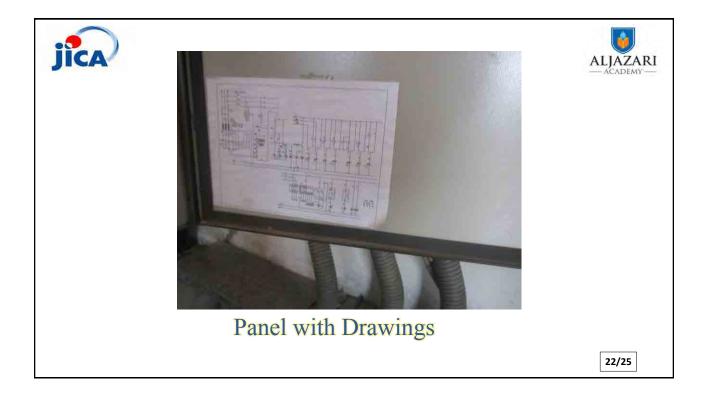

4. Standardize (Seiketsu)

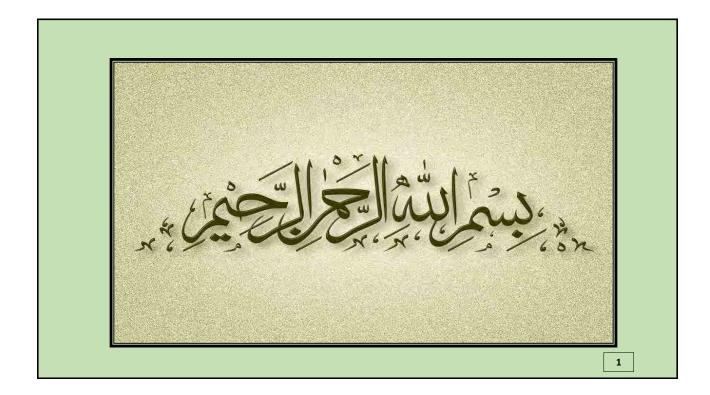
- This is achieved by providing visual labels and signs
- Work place is marked and labeled so that organization is made simple and easy
- Organized and marked tool boards etc.

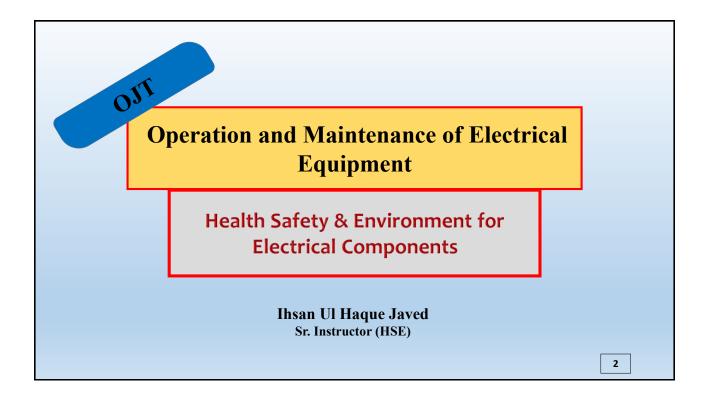

AZARI

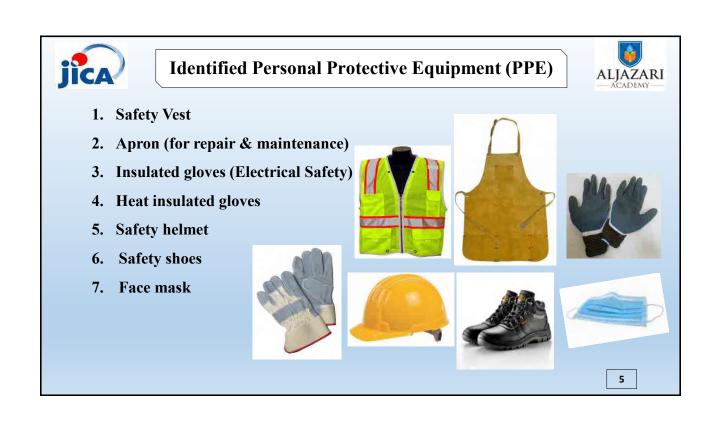


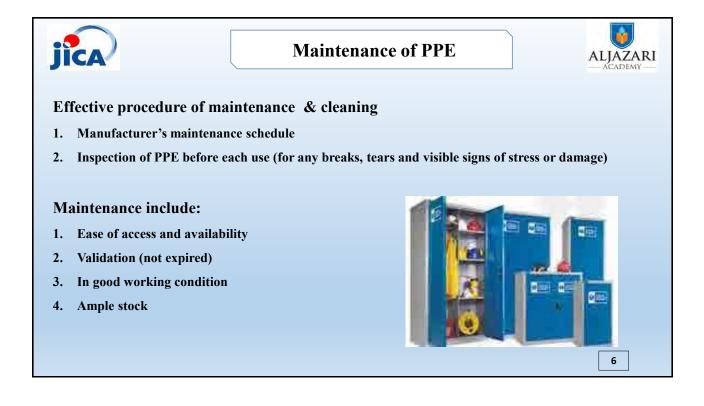


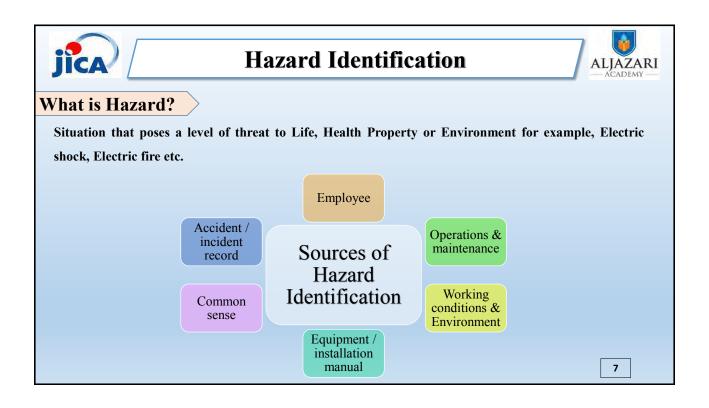


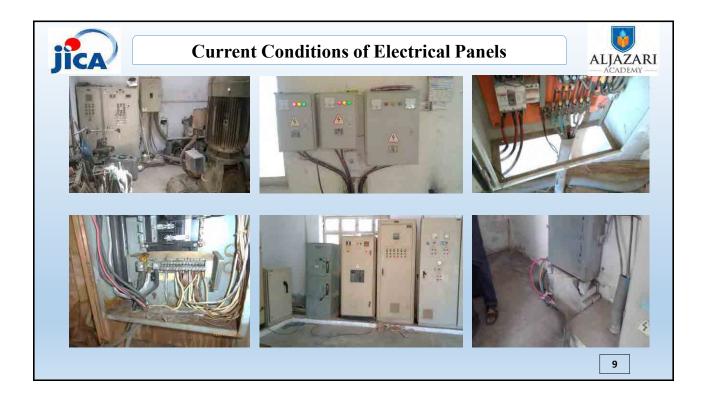


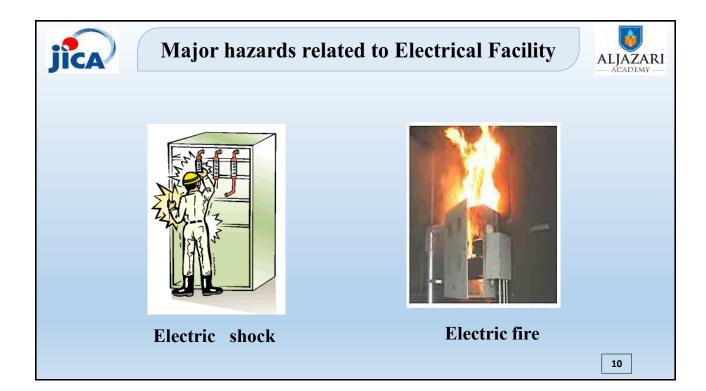


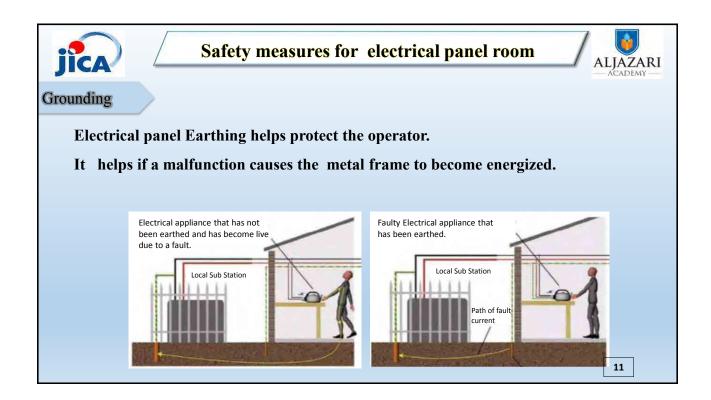


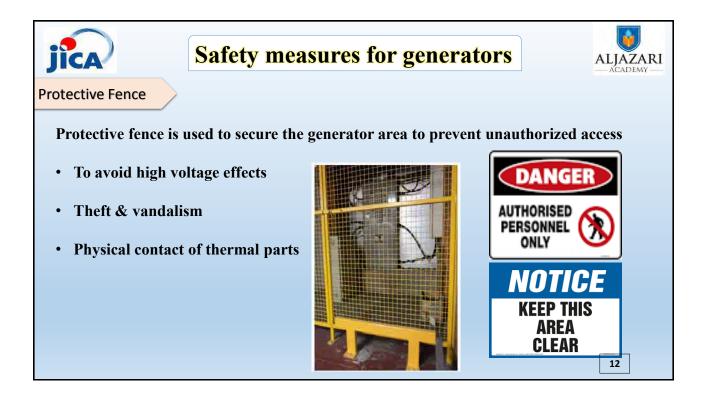












Probability

Extent to which a hazard may cause harm.

Probability Rating

Probability	Rating	Comments			
Frequent	5	Workers are frequently at risk			
Probable	4	The hazard is likely to cause harm			
Occasional	3	Workers are occasionally at risk			
Possible/remote	2	The hazard could cause harm, but is unlikely to do so.			
Improbable	1	The hazard is unlikely to cause harm.			
		13			

jîca		
Severity		
Seriousness of	the harm	that could result from contact with a hazard.
Severity	Rating	Comments
Catastrophic	5	Death and/ or severe destruction
Critical	4	Serious illness, injury, disability and significant property damage
Serious	3	Lost time injury and property damage
Marginal	2	Minor injury and property damage
Negligible	1	No injury and/or property damages
		14

Priority level of Hazard is obtained from multiplication of the Probability and Severity ratings

15

ALIAZARI

16

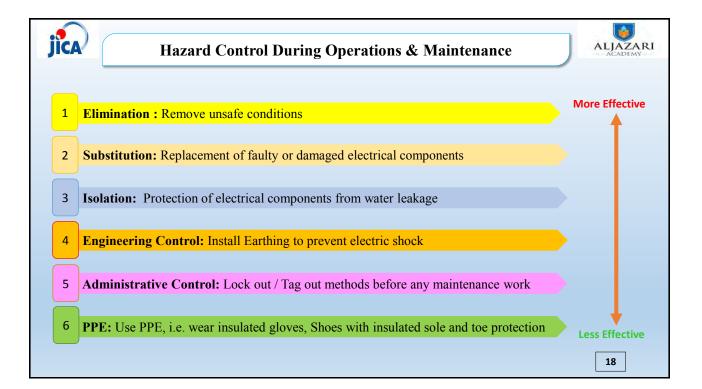
Priority Level of Hazard = Probability x Severity

Probability	Severity	Priority level
2	3	6
2	2	4
3	1	3

Hazard Coding

Obtained from product of probability and severity.

Priority rating	Hazard Level	Hazard Code
11 – 25	High	Н
5 - 10	Medium	Μ
1 – 4	Low	L

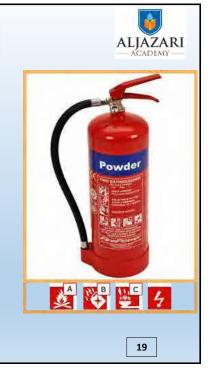

Job Safety Analysis (JSA)

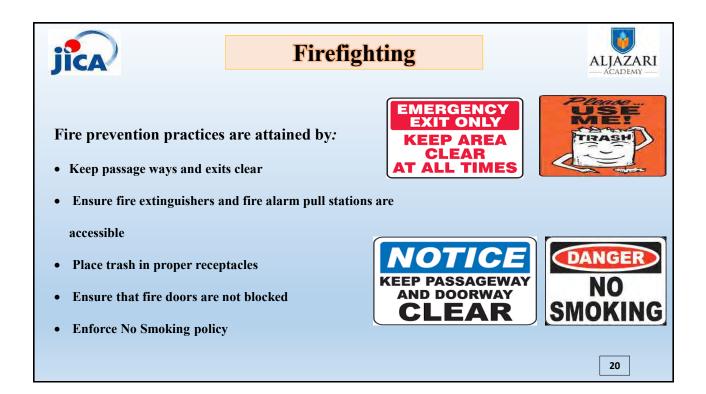
It helps integrate accepted HSE principles and practices into a particular job.

Evaluating probability of occurrence of hazard during in terms of priority rating and the hazard coding

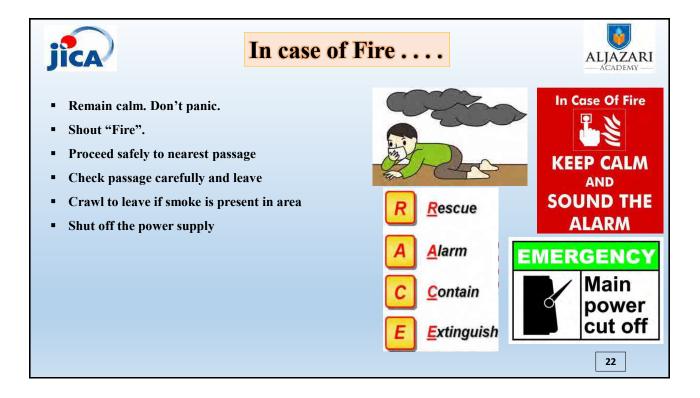
- Potential hazards are identified & evaluated
- Control measures are recommended

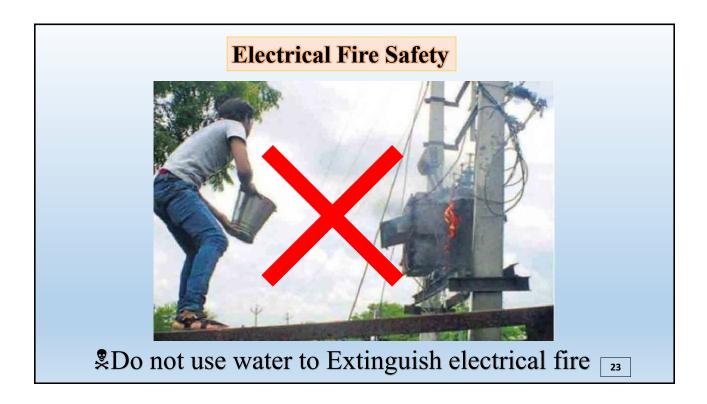
Locat	ion:	Tube well 4-D1, Green Town Sub Division December 9th, 2016 By: Sub Engineer, Electrician and Tube well Operator								
Date:										
Cond	ucted By:									
Sr. No.	Hazards Identified	Hazards Type	Probability Ratings	Severity Ratings	Priority Rating	Action Needed	Assigned to	Due Date/ Time	Date Completed	Comments
1	Thermal Relay Bypass	Motor winding damage	3	4	12	Replace relay and adjust values as per design	Electrician	8-12-16	9-12-16	New relay purchased and installed
2										
3										
4										
5										
(range	e is between 1	-25, 1 being	the lowest an	d 25 is hig	hest priori	 ind Severity ratings ty) major tasks involv		•	•	

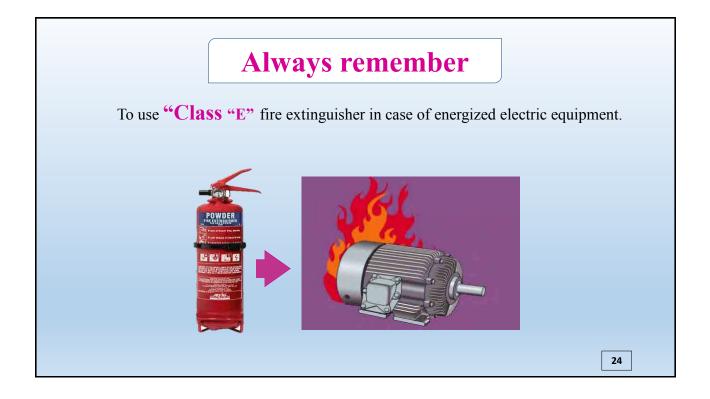

CLASSES OF FIRE

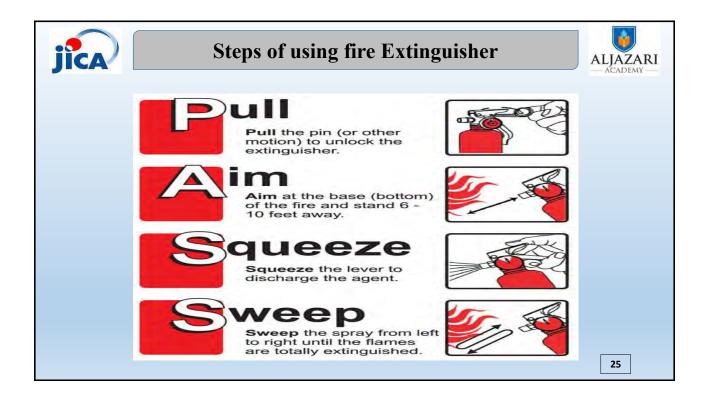


- Class B For Flammable liquids such as gasoline, xylene, and alcohol
- Class C For Burning gases such as propane, methane, butane

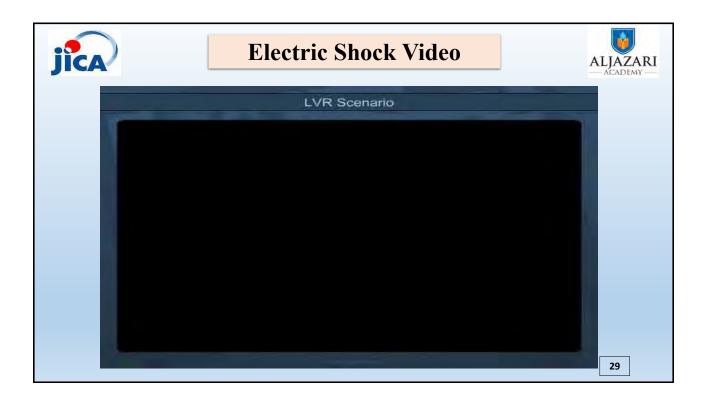

Class D - For Metals such as Aluminum, Magnesium, Titanium

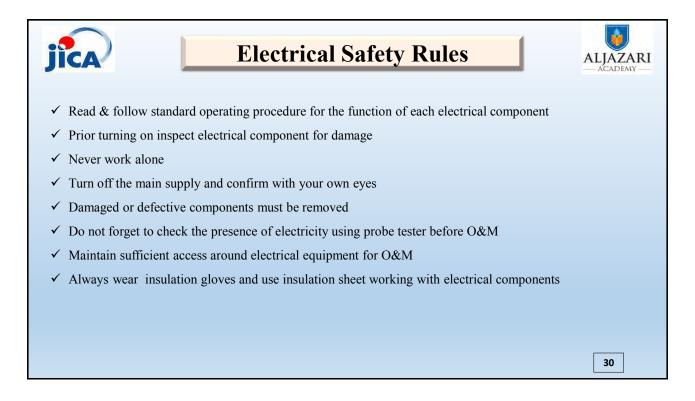

- Class E Fire involving potentially energized electrical equipment
- Class F For Cooking Oil

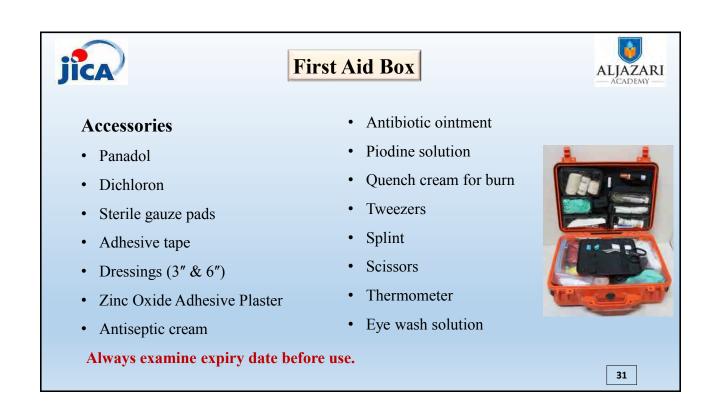


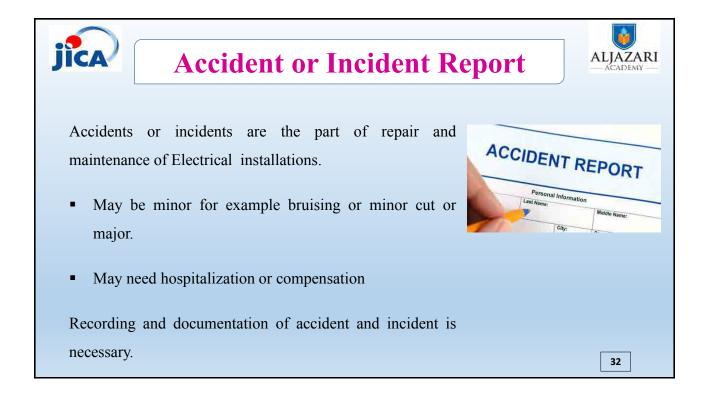


Electric Shock


- Human body is a good conductor of Electricity
- Direct contact with electric current can kill
- Electric current destroys muscles, nerves & tissues
- Cause burns or even affect the functioning of heart
- Ensure isolation by switching off the mains
- If current can not be turned-off, use low voltage crook or a non-conducting objects such as broom, rug or rubber mat to push the victim away from source of current
- Once the victim is free from source of electricity, check victim if in smoldering state then put fire blanket starting from the skull and moving towards the legs
- Check victim's breathing & pulse
- Apply CPR
- If the victim has a burn, remove any clothing that comes off easily & apply burn cream or trauma dressing upon burnt area
- Call RESUE 1122


Effects of Ele	ctrical Current On the Human Body		
Current in mAmp	<u>Effects</u>		
1 or less	No sensation; probably not noticed		
1 to 3	Mild sensation not painful		
3 to 10	Painful shock.		
10 to 30	Muscular control could be lost or muscle		
clamping			
30 to 75	Respiratory paralysis		
75mA to 4 Amps	Ventricular Fibrillation		
Over 4 Amps	Tissue begins to burns. Heart muscles clamp and		
	heart stops beating 28		


Do not use a wet object or metal object for detachment of Electric shock victim



Accident / Incident Report

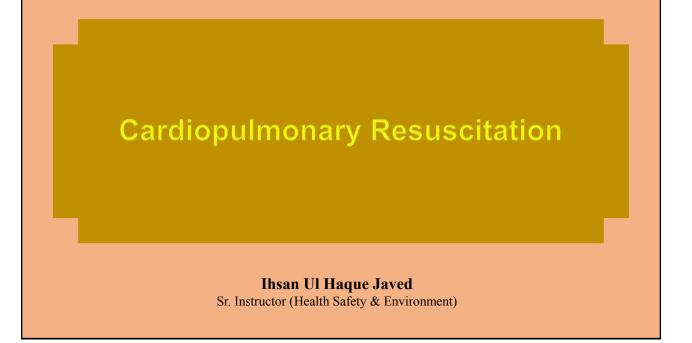
Reported to XEN (Operations)

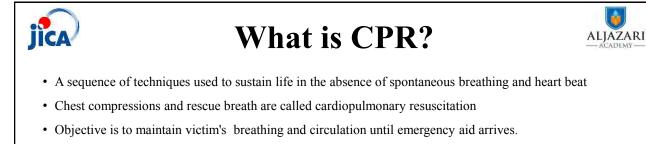
Reported Date 5th Dec 2017

Reported by Ihsan Ul Haque Javed

1. Status of Accident / Trouble

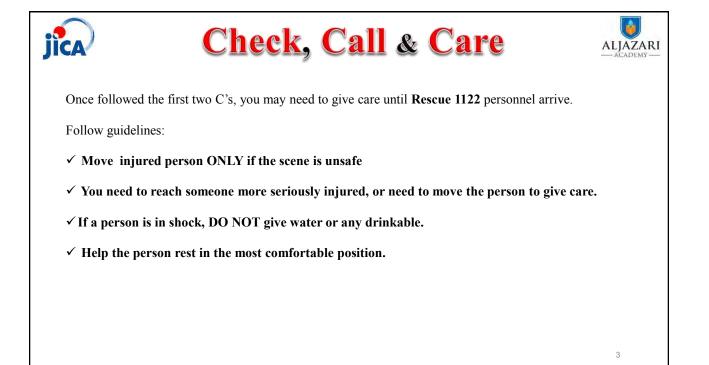
Date of Accident	4 th Dec 2017			
Place	Lift pump room, Academy Disposal Station			
Person involved	Operator: Fahad Qureshi			
Equipment involved	Electrical Panel for No.3 Lifting Pump			
Current Condition	•No persons injured			
(Person/Equipment)	•1 magnetic contactor of the starter circuit is burnt out even though No.3 pump is operational somehow.			
Incident in detail	Several minutes after the operator starts the pump as usual in the afternoon, he found some smoke and burnt smell around the panel. He immediately stopped the pump by emergency stop button.			
Possible Causes	Setting value of the thermal relay was set at maximum. Loosen terminals Continuous low voltage from WAPDA			
	33			

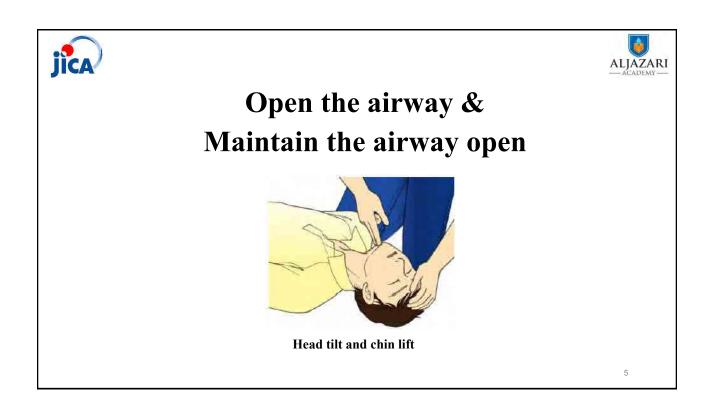

Action to be taken	 Replace the burnt magnetic contactor with new one. Check the availability of the other 2 contactors and cables, then replace them 		
	if necessaryChange the setting value of thermal relay from maximum value to 160A,		
which is the rated current of motor.			
	•Check the setting value of U/O voltage relay and adjust it if necessary		
	•After the work above, confirm retightening of all bolts in the panel		
Resources required	•Electrician for the panel arrangement		
	•1 magnetic contactors		
	If necessary: 2 more magnetic contactors, thermal relay		
Due Date	15/12/2017		
Person in charge	Jawad Shahid		

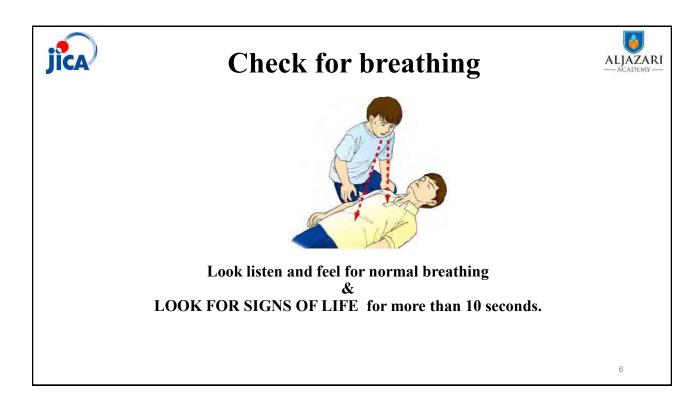

3. Remarks

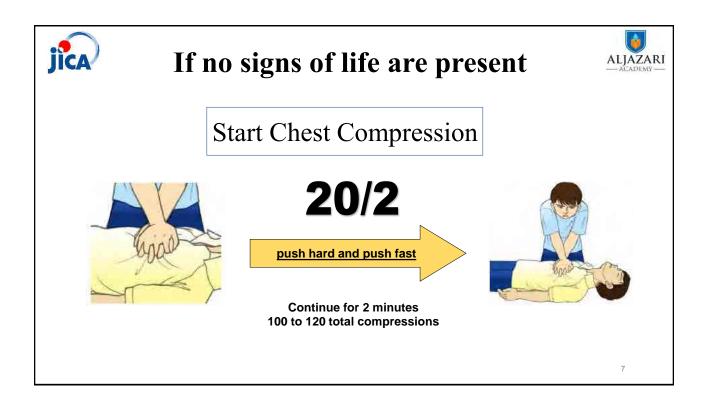
Already arranged the repair working day with the electrician. We will confirm the availability of the devices mentioned above on 13th Dec. I will finalize and report the required item list to you by 15th Dec 2017.

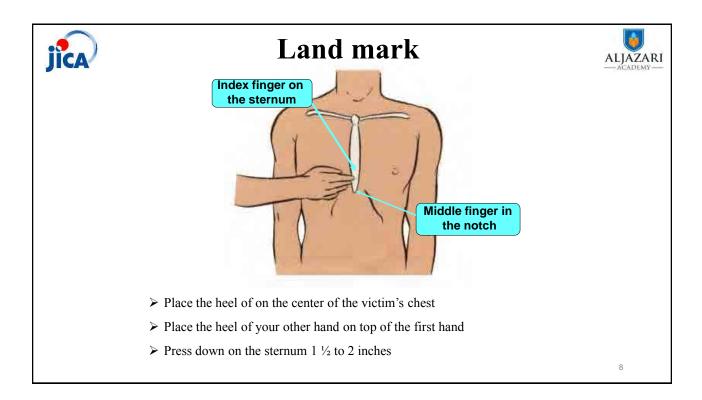
34

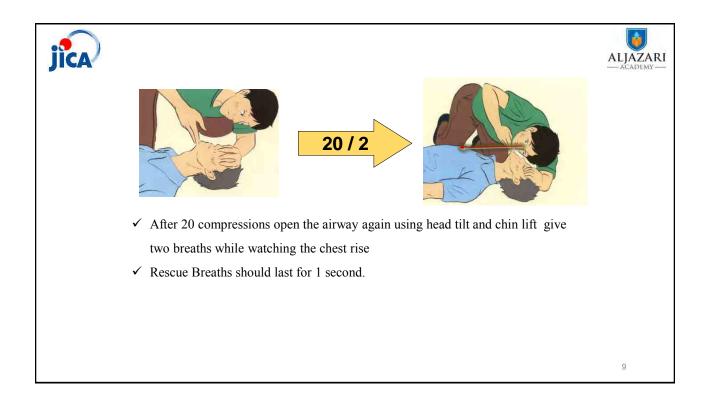

Contact Information			
Faculty Names	Contact Information		
JICA Expert Takeo Maruyama (Electrical)			
Course Leader Mubasher Ahmad Cheema			
Sr. Instructor (HSE) Ihsan-ul-haque Javed			
Sr. Instructor (Electrical) Jawad Shahid			
Young Professional Tanveer Shahzad			
	35		

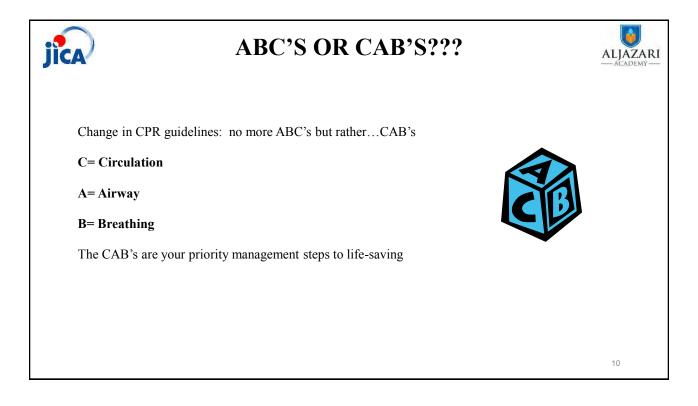


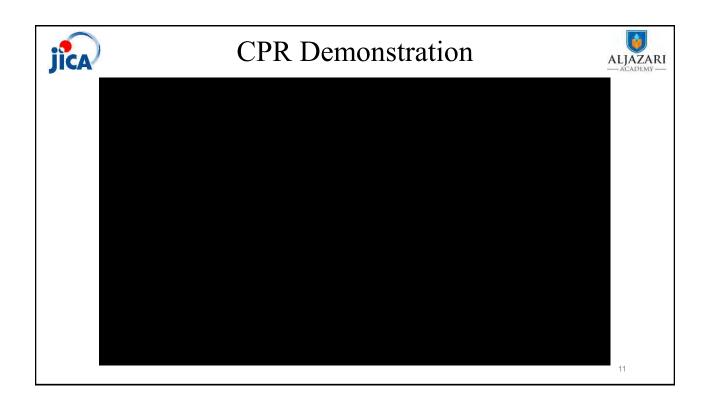

Important steps for CPR











Handling of Manikin

- For handling and demonstration purpose wear rubber gloves
- For demonstration at site use spare nylon sheet as underlay
- In case of more number of trainees separate mouth protector be provided.

Cleaning of Manikin

- Use Soap and water for dirty materials swiping gently
- Cleaners containing wax, oil or citrus are not recommended
- The face skin may also be sanitized with alcohol wipes or soaked in a solution of ¹/₄ cup bleach mixed with one gallon of water for 10 minutes

Storage of Manikin

- Always store and transport the manikin in nylon carry bag
- Store the manikin in a cool dry area at temperature between 50-70 °F and 50% relative humidity
- For storage longer than one month, the batteries should be removed from the CPR rate monitor
- The manikin head should be removed for the protection of the facial features, specifically the nose

ALJAZARI

Job Safety Analysis (JSA)

Loc	ation:									
Date	2 •									
Con	ducted By:									
Sr.#	Hazards Identified	Hazards Type	Probability Ratings	Severity Ratings	Priority Rating	Action Needed	Assigned to	Due Date/Time	Date Completed	Comments
(rang	rity rating is ob ge is between 1 - s are done for a	-25, 1 being	the lowest and	25 is highest p	oriority)			-	Severity)	<u> </u>

Firefighting Preparedness Questionnaire

Small Fire Involving Motors			
What facilities you need for firefighting?			
In case You are the First Finder, What You Can do or should not do to extinguish fire?			
To Whom You may contact in case of a fire emergency?			
Propose firefighting preparedness actions for Your work site?			
Suggest PPE and Equipment for firefighting?			

Accident or Incident Report

Reported to	Reported Date
Reported by	

1. Status of Accident / Trouble

Date of Accident	
Place	
Person involved	
Equipment involved	
Current Condition (Person/Equipment)	
Incident in detail	
Possible Causes	

2. Countermeasure

Action to be taken	
Resources required	
Due Date	
Person in charge	

3. Remarks

Permit to Work

Valid only for work described on the permit

Permit valid for: Dat	te		Time	
Permit expires: Dat	te		Time	
Number of Workers				
Work Description				
Work Location				
Shift supervisor's signatur				
Hazards Identified/Preca Pre-work requirements Equipment locked out?	autions Do	one (initials)	Comments	
Atmospheric conditions te safety? Guarding for moving part				
Safety guidelines reviewe Work requirements Area barricaded, roped of posted? Personal protective equipt adequate? First aid readily available?	f, signs			
Post-work requirements Tools and equipment removers area? Where atmospheric tests	oved from			
Oxygen%	Comr	nents		
CO ₂ %	Comr	nents		
H_2S				

Signature of tester	Date	Time
Permit approved by		
Signature (Sub Engr)	Date	Time
Signature (SDO)	Date	Time
Worker		
I have read the permit and understand safety precautions.	d the nature and extent of the wor	k. I agree to comply with
Name	Signature	
	Date	
Name	Signature	
	Date	
Completion		
Work completed? Yes/No (Commen	ts)
All safeguards returned to normal? Y	/es/No (Comments)
Requirements after work complied w	vith? Yes/No (Comments)
Verified by Supervisor		
Signature	Date	Time

Emergency Information for WASA Sites

WASA Tu Disposal S	be Well / tation Address				
First Aide	r				
Name			Contact		
Rescuer					
Name			Contact		
Helper	Helper				
Name			Contact		
SDO					
Name			Contact		
Rescue 1122 Contact No.					
Fire Brigade Contact No.					
	Nearest Hospital and Contact No.				
Nearest Police Station and Contact No.					

Name	of	Partic	cipant:
			1

Date of Training:

Name of Organization:

1. Please focus on and list up the any actions you can actually apply at your sites. It should NOT be like just saying "SOP" "Preventive Maintenance", Please write down the possible actions as detail as possible such as including device name.

Electrical Panel

Generator

➡ Please choose some prioritized actions from the list above and put them into the attached format "OJT Implementation Procedure".

2.	Please share	e the problen	is or issues yo	u are facing	with in you	r sites and	organizations

3. Other Comments or Notes:

Output Challenge 1: Wiring Diagram of Pump Control Panel

Name of Participant: Name of Organization:

Date:

1. Please draw the general wiring diagram of the pump control panel.

2. Please add anything you learnt through this training.

Output Challenge 2: General Flow Diagram of Diesel Generator

Name of Participant:

Date:

Name of Organization:

Please draw the general flow diagram of the diesel generator.
 Please add anything you learnt through this training.

WASA:	Division:
-------	-----------

_____ Sub Division: _____

Approved by: _____

Prepared by: _____

OJT Implementation Plan for Record Keeping, SOP & Device Inspection Activity of Electrical Panel

Administrative Information							6			
Site	Site Name	Name of the Persons in Charge				Contents of Activity	Planning	Completed	Planning	Completed
No.		XEN	SDO	Sub Engineer	Operator		Date		Date	
						Daily Operation Record				
1.						SOP Check List				
						Device Inspection Sheet				
						Daily Operation Record				
2.						SOP Check List				
						Device Inspection Sheet				
-Rem	arks-									

OJT Implementation Procedure for O&M Manual, Record Keeping and Preventive Maintenance Activity of Diesel Generator

Administrative Information							Dianaina		Dianning	
Site	Site Name	Name of the Persons in Charge				Contents of Activity	Planning	Completed	Planning	Completed
No.		XEN	SDO	Sub Engineer	Operator		Date		Date	
						1. O&M Manual				
1						2. Basic Specifications				
••						3. Daily O&M Record				
						4. Preventive Maintenance Plan				
-Remarks-										