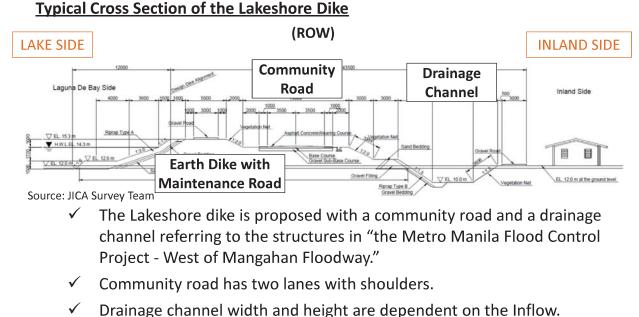


4.5 Study on Lakeshore Dike

3) Concept of Lakeshore Diking System



Lakeshore Dike at the Metro Manila Flood Control Project - West of Mangahan Floodway (after the additional Improvement)

4.5 Study on Lakeshore Dike

4) Construction of Lakeshore Dike (with drainage channel)

- Proposing dike alignment at EL. 12m to EL. 12.5m to avoid residential
- 57

4.5 Study on Lakeshore Dike

areas

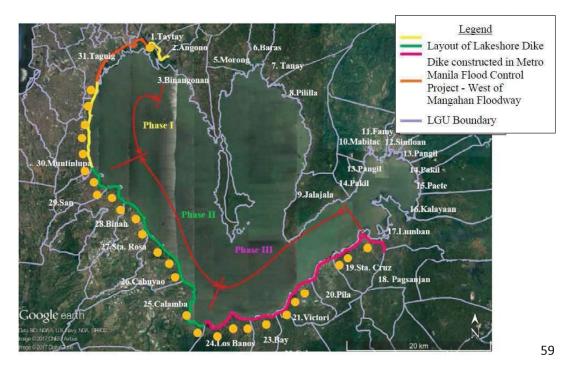
iicA

IICA

5) Construction of Discharge Facility for Inland Flood

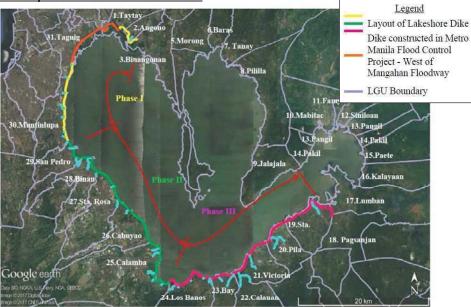
Pumping Station and Floodgate

Source: the Metro Manila Flood Control Project - West of Mangahan Floodway


- Water from the creeks crossed by the Lakeshore dike is collected by the drainage channel along the dike and discharged into Laguna de Bay at the pumping station with flood gates.
- Discharge capacity of single pump and type of the pumps are referred to the ones of the existing pumps considering the maintenance.

4.5 Study on Lakeshore Dike

5) Construction of Discharge Facility for Inland Flood


Pumping Station and Floodgate

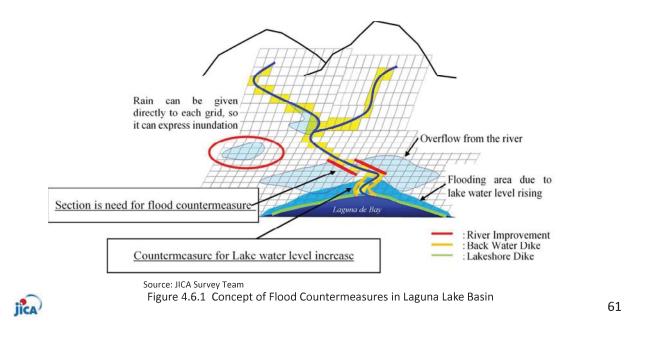
jica

4.5 Study on Lakeshore Dike

6) Construction of Backwater Levee <u>Plan Map of the Backwater Levee</u>

Source: JICA Survey Team

 \checkmark


jica

Rivers are improved at the area affected by the surge of the water level at Laguna de Bay.

4.6 Study on Flood Countermeasure in Laguna Lake Basin

1) Study on Flood Countermeasure

- From the result of Runoff-Inundation Analysis for lakeshore area which is modelling in previous section (3.4.2), to organize the inundation area and assumed flood countermeasure (draft) in each watershed.
- The external forces targeted for flood control are "Overflow Inundation".

4.6 Study on Flood Countermeasure in Laguna Lake Basin

2) River Basin Requiring Priority Flood Countermeasure for Overflow Flooding

- Basins are selected for priority flood countermeasure based on the result of RRI (Rainfall-Runoff-Inundation) analysis.
- Regarding the selection of the priority basin, it calculated the inundation area by the probability scale within basin, and affected population by flooding, and set river basin where affected population is more than 100,000 as the priority basin.

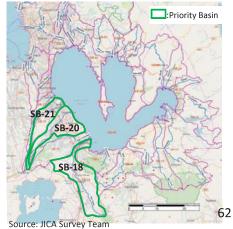


Table 4.6.1 Inundation Area and Affected Population in Each Probability

		Sub-Basin		50-year Re	turn Period	25-year Re	turn Period	15-year Re	turn Period
Sub- Basin ID	Sub-Basin Name	Area km ²	Population in Sub-Basin	Inundation Area km ²	Population in flooding area	Inundation Area km ²	Population in flooding area	Inundation Area km ²	Population in flooding area
SB-03	Angono	86.60	427,916	9.61	56,420	6.53	34,595	4.56	25,101
SB-04	Morong	95.90	276,289	23.34	69,464	19.69	57,307	17.44	48,160
SB-05	Baras	21.70	30,710	3.18	12,084	2.41	10,050	1.95	8,668
SB-06	Tanay	52.20	45,091	7.92	15,867	6.11	10,323	5.36	8,203
SB-07	Pililla	40.40	50,411	5.66	15,822	4.86	14,891	4.22	13,820
SB-08	Jala-jala	70.60	60,941	5.36	5,513	3.26	3,938	2.14	2,801
SB-09	Sta. Maria	202.20	69,120	35.93	25,639	30.31	21,600	26.40	17,219
SB-10	Siniloan	71.70	55,274	17.19	36,973	15.06	35,003	13.39	33,501
SB-11	Pangil	50.10	36,740	10.52	24,629	8.73	19,174	7.27	15,467
SB-12	Caliraya	128.80	-	-	-	-	-	-	-
SB-13	Pagsanjan	301.20	166,744	48.88	47,931	39.62	41,554	33.54	37,684
SB-14	Sta. Cruz	146.70	206,362	18.56	49,731	14.03	40,322	11.28	36,199
SB-15	Pila	89.30	123,308	27.37	39,269	20.50	30,600	17.63	26,988
SB-16	Calauan	154.50	150,901	46.46	64,561	41.31	58,426	36.81	52,851
SB-17	Los Banos	102.10	223,840	19.00	47,166	14.92	39,007	12.46	32,009
SB-18	San Juan	191.70	438,646	44.56	108,670	34.10	78,360	27.36	57,842
SB-19	San Cristobal	140.60	390,420	15.27	49,535	10.77	36,468	7.98	27,510
SB-20	Sta. Rosa	119.80	659,121	41.04	259,047	34.54	216,869	29.77	186,10
SB-21	Binan	84.80	599,468	8.35	113,852	6.86	100,924	5.95	92,660
SB-22	San Pedro	46.00	386,193	5.15	64,614	3.58	45,854	2.53	33,005
SB-23	Muntinlupa	44.10	761.017	4.45	68,529	3.69	55,266	2.10	29,431

Table 4.6.2 Affected Population in Flooding Area

4.6 Study on Flood Countermeasure in Laguna Lake Basin

3) SB-18 San Juan Basin

• Total area of San Juan Basin is 191.7km² and some rivers are including in the basin. The result of inundation analysis of San Juan River, which is major river and design scale is 50years.

River ID	River Name	Basin Area Km ²	River length Km	Design Scale	Design Discharge m ³ /s	Assumed river improvement extension (km)
SB-18-1	San Juan	175.3	43.0	50	2,400	2.7
	Sub-total	175.3				
Total Basin	(Remaining Basin)	191.7				
		(16.4)				

4.6 Study on Flood Countermeasure in Laguna Lake Basin

3) SB-20 Sta.Rosa

Total area of San Juan Basin is 191.7km² and some rivers are including in the basin. The • result of inundation analysis of San Juan River.

River ID	River Name	Basin Area Km ²	River length Km	Design Scale	Design Discharge m ³ /s	Assumed river improvement extension (km)
SB-20-1	Sta.Rosa	44.1	30.2	50	520	6.0
SB-20-2	Cabuyao	19.2	9.7	25	200	2.0
SB-20-3	Niugan	16.0	9.1	25	170	2.0
SB-20-4	Unknow	15.6	11.0	25	160	—
	Sub-total	94.9			50-year p	robability BMR : 280
Total Basin (Remaining Basin)		119.8			50 year p	Bille 200

(24.9)

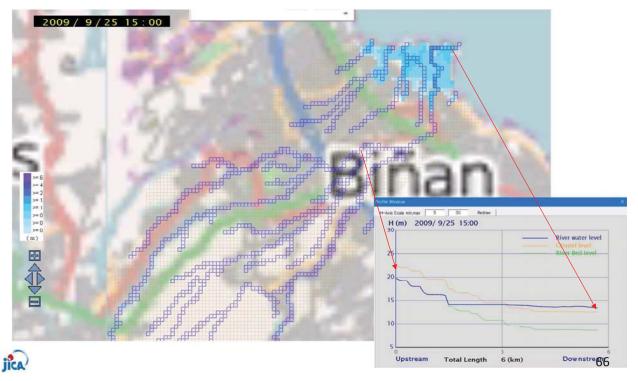
<Assumed Flood Countermeasure> **Backwater Levee** This area is proposed lakeshore dike and backwater levee will be constructed. Flood Countermeasures Residential areas are widely distributed, and flooded due to the influence of the lake level at lowland area. Also, overflow countermeasure is necessary for middle section where flooding and houses are dense. **River Improvement** (River widening, Excavation) Source: Survey Team Dike created based on Google Earth flood control measures are required

.

4.6 Study on Flood Countermeasure in Laguna Lake Basin

3) SB-21 Binan

• Total area of Binan Basin is 84.8km2 and some rivers are including in the basin. The result of inundation analysis of Binan River, which is major river and design scale is 50-years.


River ID	River Name	Basin Area Km ²	River length Km	Design Scale	Design Discharge m ³ /s	Assumed river improvement extension (km)	
SB-21-1	Binan	67.7	36.0	50	700	2.5	
	Sub-total	67.7			A		
Total Basin	(Remaining Basin)	84.8 (17.1)			\$ · @		Learned (L.103-10) (Linution
Backwater This area i be constru- Flood Cour In the mid measures • River I	s proposed lakes	measure> hore dike an -1, due to flo flooding are	water level. It is necessary or to rising lake lev control such as of the river d backwater boding from t e necessary. Source : Su	levee will	55921-8	flod control measure	The set of

4.6 Study on Flood Countermeasure in Laguna Lake Basin

3) SB-21 Binan

JICA

• Animation of SB-21 50-year return period RRI analysis result

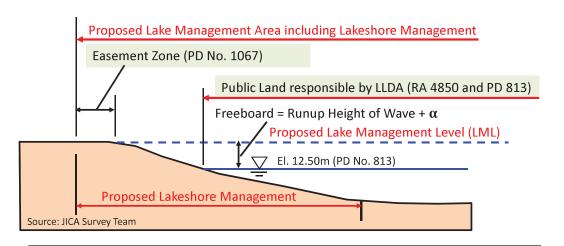
4.7 Non-structural Measures

1) Lakeshore Management

i) Insufficient Lakeshore Management

- RA No. 4850 (1966) and PD No. 813 state that Laguna Lake below El. 12.50m is public land for management by LLDA.
- El. 12.50m is the average of annual maximum lake water level and not the real lakeshore elevation.
- Lakeshore management below the real lakeshore elevation is insufficient.

ii) Proposal of Establishing Lakeshore Management System


> Set the lakeshore bank elevation : El. 12.50m + Wave runup height + α

(Example: Wave runup height + α = 0.70m (half of freeboard 1.20m of the West Manggahan Dike). Then, Lakeshore bank elevation = El. 13.20m (about 10-year return period of lake water level)

- Set easement zones from the Lakeshore bank (3m for urban area, 20m for agricultural area etc.).
- Manage between the easement zone to the other side of the Lake.
- Lakeshore management is to be conducted by LLDA under cooperation by LGUs and the related agencies (DPWH, DENR, DA etc.).

iicA

4.7 Non-structural Measures

Notes:

- Lake water level of El. 12.50m is average annual maximum lake level (based on the RA No. 4850 and PD No. 813)
- Easement zone: 3 m for urban area and 20 m for agricultural area (based on the PD No. 1067: Water Code)
- Freeboard example: 0.7m

Figure 4.7.1 Proposed Lakeshore Management Area for the Laguna de Bay

4.7 Non-structural Measures

2) DRRM Coordination Issue

i) Needs of Comprehensive Coordination of DRRM for the Entire Laguna Lake Basin

- The LGUs covering the Laguna Lake Basin belong to Region IV-A and NCR.
- Coordination between Region IV-A and NCR is rather difficult.
- Each related agency and LGU has different targets and plans related to DRRM.
- It is necessary to establish coordination system for DRRM for the entire Laguna Lake Basin for facing same direction of strengthening DRRM.

ii) Proposal of Comprehensive Coordination by NDRRMC for the Entire Laguna Lake Basin

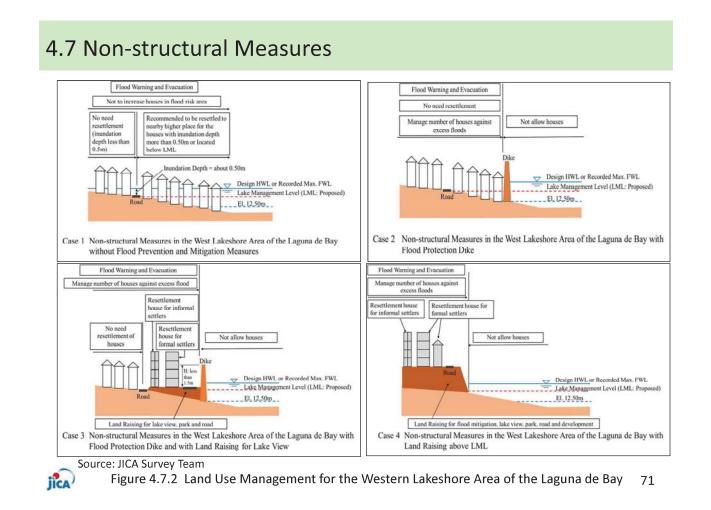
- Coordination and monitoring progress of DRRM by NDRRMC is proposed (same as the proposal of the WB Master Plan in 2012).
- Based on the Master Plan for DRRM, DRRM is to be implemented for the entire Laguna Lake Basin with well-balanced manner.
- Propose to establish a Sub-committee under NDRRMC for the Laguna Lake Basin (better for Sub-committee for the Pasig-Marikina and Laguna Lake Basin).

iica)

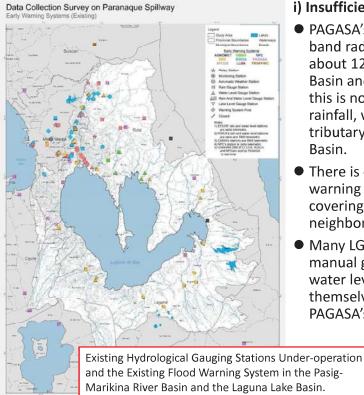
4.7 Non-structural Measures

3) Land Use Management

i) Importance of Land Use Management along the Laguna Lakeshore

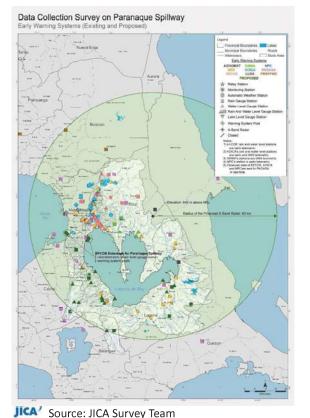

- Many houses exist in the low-lying areas with flood depth of more than 0.5m and with flood duration of 4 months by the 2009 and 2012 Floods.
- It is necessary not to allow houses in the above low-lying areas. However, it takes long time for resettle people in the low-lying areas to nearby higher safer places.

ii) Proposal of Land Use Management in the Low-lying Lakeshore Area in Combination with Flood Warning and Evacuation System


- Land Use Management in the low-lying lakeshore areas in combination of flood warning and evacuation for various cases are proposed.
- LGUs have desire to improve and develop the lakeshore area by considering the precious values of the Laguna de Bay such as beautiful scenery, natural environment and livelihood of fishermen^{*)}.

*) Based on the interview by the Survey Team to OCD Region IV-A and LGUs including cities and municipality around the Lake. It is also necessary to consider the view points of LGUs for formulating flood control plan for the Lakeshore area.

4.7 Non-structural Measures4) Present Flood Warning System



i) Insufficient Flood Warning System

- PAGASA's radar rain gauge at Tagaytay (Cband radar with observation radius of about 120km) covers the Laguna Lake Basin and surrounding areas. However, this is not sufficient to catch local storm rainfall, which will cause flash floods in the tributary river basins in the Laguna Lake Basin.
- There is only pilot community-based flood warning system of GMMA Ready Project covering the Tanay River Basin and neighboring areas.
- Many LGUs have installed telemetric or manual gauging stations (rainfall and water level) for flood warning by themselves, but they are not connected to PAGASA's forecasting and warning systems.

JICA Source: JICA Survey Team

4.7 Non-structural Measures5) Proposed Flood Warning System

ii) Proposed Flood Warning System

PAGASA's Flood Warning System:

- X-band radar rain station (1 set) will be installed to catch flash floods in the tributary river basins of the Laguna Lake Basin.
- To install radio telemetric rain gauges (8 sets), float type water level gauges (8 sets) and float type water level gauges (15 sets) in the tributary river basins.

EFCOS Expansion for Operating the Parañaque Spillway

- Telemetric rain gauges (2 places)
- Telemetric water level gauges (2 places: 1 place in the Laguna de Bay inlet side and 1 place in the Manila de Bay outlet side of Parañaque Spillway.
- Warning posts to warn people (one each at inlet and outlet sides)

5. Comprehensive Flood Management Plan

- 5.1 Study on Combination of Flood Management Measures
- 5.2 Implementation Schedule
- 5.3 Preliminary Cost Estimation
- 5.4 Study on Project Effectiveness
- 5.5 Proposed Organization for Project Implementation/Operation, Maintenance and Management

5.1 Study on Combination of Flood Management Measures

	Selected Flood Management	Measures
Water Level Rise Control	Inundation Damage Reduction	Non-Structural Measures
 Construction of Parañaque Spillway 	 Construction of the Lakeshore Diking System (includes the installation of drainage channel, Pumping Station, Backwater Levee, etc.) 	 Implementation of the lakeshore management Establishment of the committee for the Laguna de Bay Basin Land use regulation Implementation of warning system Inundation hazard map

Study on Combination of Flood Management Measures

	0100		
Case	Objectives	Structural Measures	Non-Structural Measures
А	Prevention of Flood Damage	 Construction of Lakeshore Diking System at the Priority Area 	 Implementation of the lakeshore management
В	Mitigation of Flood Damage	Construction of Parañaque Spillway	 Establishment of the committee for the Laguna de Bay Basin
с	Prevention of Flood Damage	 Construction of Lakeshore Diking System at the Priority Area Construction of Parañaque Spillway 	 Land use regulation Implementation of warning system Inundation hazard map
Case A	-	protected by the Lakeshore Diking System to also protected with a warning system.	the 100-year probable lake water level. The
Case B	0 1	ection to the flood caused by 100-year probab eduction of the inundation depth and period c	• •
0.000	The height of the le	In the second state of the second second state at the second second second second second second second second s	water a law of a law of a construction of the second second second second second second second second second se

Case C: The height of the lakeshore dike can be lowered considering the water level drawdown by the **Parañaque Spillway**. With combined operation of the Parañaque Spillway, Priority Area will be protected by the **Lakeshore Diking System** to the 100-year probable lake water level. The residual area will be also protected
with a warning system. 75

5.1 Study on Combination of Flood Management Measures

Results of Study on Combination of Flood Management Measures

Criteria	Index	Case A	Case B	Case C
Structural Measures		• Construction of Lakeshore Diking System at Priority Area	• Construction of Parañaque Spillway	 Construction of Parañaque Spillway Construction of Lakeshore Diking System at Priority Area
Design Return Period		• 100-year Return Period	• 100-year Return Period	• 100-year Return Period
Design Lake Water Level		• 14.3m	· 14.0m (Effect of PSW)	• 14.0m (Effect of PSW)
1. Management of Disaster Risk	(1) Drawdown of Water Level	• No effect	• By 0.3m from 14.3m (100-year return period) to 14.0m	• Same as Case B
	(2) Reduction of Inundation Area	 Phase 1 : 570 ha Phase 2 : 1,490 ha Phase 3 : 2,580 ha Total : 4,640 ha 	 Although the spillway cannot prevent the flood damage at 100%, following flood damage mitigation can be achieved at the entire lakeshore areas. Area : 7,720 ha 	 Same as Case B after completion of Spillway and before completion of lakeshore dike. No inundation after completion of lakeshore dike at the phase 1, 2 and 3 areas.
	(3) Reduction of affected People	 Phase 1 : 145,000 Phase 2 : 257,000 Phase 3 : 91,000 Total : 493,000 	 Although the spillway cannot prevent the flood damage at 100%, flood damage mitigation is expected for the following people at the entire lakeshore areas. Total : 624,000 	 Same as Case B after completion of Spillway and before completion of lakeshore dike. No inundation after completion of lakeshore dike at the phase 1, 2 and 3 areas.
	(4) Reduction of Inundation Period	• No inundation after completion of lakeshore dike at the phase 1, 2 and 3 areas.	• In case of 100-year probable flood, inundated days with the lake water level of EL 12.5 m or above can be shortened from 124 days to 79 days (64%) at the entire lakeshore areas.	• Same as above

添付-98

JICA

5.1 Study on Combination of Flood Management Measures

Criteria	Index	Case A	Case B	Case C
2. Technical Issue	(1) Design	 No difficulty on designing since it is mainly composed of earth dike. 	 Although it is a large scaled tunnel and an underground structure at 50 m or deeper with technical difficulties, it is feasible with know-how and experiences in Japan. 	• Same as the evaluation in Case A and B
	(2) Necessary Steps of Administration Process before Construction	 This case results in constructing the wall with a little less than 3 m high and it will limit the access to the lake from the land side. It is expected that it takes time for negotiation and consensus building with fishermen and residents. Land acquisition and relocation will be required. 	 Less social impact such as relocation and consensus building since it is designed deep underground at 50 m Relocation and consensus building will be required at the inlet and outlet of the spillway. 	• It is realistic that the spillway which has relatively less difficulty on administration processes is commenced first, then the lakeshore dike which requires more time for those is commenced later.
	(3) Year of Completion	 Phase 1 : yr 2029 Phase 2 : yr 2039 Phase 3 : yr 2049 	· yr 2030	• Same as the evaluation in Case of A and B
	(4) Influence to Existing Structures	 Design high lake water level is EL. 14.3 m, crown elevation of the lakeshore dike is EL 15.3 m, crown elevation of the dikes of Mangahan Floodway at the lake side is EL. 15.0 m. Dike at Mangahan Floodway need to be elevated by 30 cm. The crest elevation of the West Mangahan Lakeshore Dike is also EL 15.0 m and need to be elevated by 30 cm. 	 Design high lake water level is EL. 14.0 m, crown elevation of the lakeshore dike is EL 15.0 m. No influence on the existing structure and plan 	 Design high lake water level is EL. 14.0 m, crown elevation of the lakeshore dike is EL 15.0 m. No influence on the existing structure and plan

Results of Study on Combination of Flood Management Measures

5.1 Study on Combination of Flood Management Measures

Results of Study on Combination of Flood Management Measures

Criteria	Index	Case A	Case B	Case C
3. Flood Exceeding Design Level, Climate Change Adaptation	(1) Adaptation to Extreme Flood	• The free board of the lakeshore dike is utilized for the lake water level rise.	 The spillway shows the effect to extreme flood. The spillway lowers the water level of 14.7m in 200-year return period by 0.4m and reduces the inundation period with water level at EL. 12.5 and above from 141 days to 93 days (66%). 	 Sufficient effect can be expected with the lake water level lowering effect by the spillway and the free board of the lakeshore dike.
	(2) Adaptation to Climate Change	• The free board of the lakeshore dike is utilized for the lake water level rise.	 It is estimated that the water level rises to 14.6m from 14.3m with heavier rainfall by climate change. The spillway can lower the water level under this environment by 0.3m. 	 Sufficient effect can be expected with the lake water level lowering effect by the spillway and the free board of the lakeshore dike.
4. Natural Environment	(1) Lakeshore landscape preservation	 This case results in constructing the wall with a little less than 3 m high and it will limit the access to the lake from the land side. Some disturbance on the landscape can be expected. 	 No significant impact due to the construction of inlet of the spillway at the lake side. 	• Same as the evaluation in Cas A and B
5. Social Environment	(1) Resettlement	 Although the lakeshore dike will be constructed at the lower area than EL 12.5 m, there are some relocation. Lakeshore dike : 7,200 Backwater levee: 4,400 	• Some resettlement will be required at the inlet and the outlet of the spillway.	• Same as the evaluation in Cas A and B
iča [/]	(2) Land Acquisition	 Although the lakeshore dike will be constructed at the lower area than EL 12.5 m, there are some relocation. Lake shore dike : 1,100 ha Backwater levee: 120 ha 	• Some resettlement will be required at the inlet and the outlet of the spillway.	• Same as the evaluation in Case A and B

JICA

5.1 Study on Combination of Flood Management Measures

Criteria	Index	Case A	Case B	Case C
6. Operation and Maintenance	(1) Difficulty of Operation and Maintenance, O/M Cost	 General structure. No special concern on maintenance. O/M Cost: PHP 280.0 mil. 	 Although it is a large scaled tunnel and an underground structure at 50 m or deeper with technical difficulties, it is feasible with know-how and experiences in Japan. O/M Cost: PHP 210.7 to 278.3 mil. 	 Same as the evaluation in Case A and B O/M Cost for lakeshore dike: PHP 265.4 mil. O/M Cost for Spillway: PHP 210.7 to 278.3 mil. Total: PHP 476.1 to 543.7 mil.
7. Financial Feasibility	(1) Construction Cost	• PHP 45.7 bln.	• PHP 36.2 to 49.1 bln	 Lakeshore dike: PHP 42.1 bln. Spillway: PHP 36.2 to 49.1 bln. Total: PHP 78.2 to 91.2 bln.
	(2) Project Cost including Compensation Cost	• PHP 94.2 bln.	• PHP 55.4 to 74.6 bln	 Lakeshore dike: PHP 87.5 bln. Spillway: PHP 55.4 to 74.6 bln. Total: 142.9 to 162.1 bln.
8. Economic Analysis	(1) Annual Average Flood Damage Reduction	 Phase 1 : PHP 1.48 bln. Phase 2 : PHP 1.79 bln. Phase 3 : PHP 1.06 bln. Total : PHP 4.33 bln. 	• at the entire lakeshore areas • Total : PHP 3.23 bln.	 Same as Case B after completion of Spillway and before completion of dike. No inundation after completion of lakeshore dike at the phase 1, 2 and 3 areas.
	(2) Benefit of Improvement of Transportation	Phase 1: PHP 0.30 bln. Phase 2: PHP 0.58 bln. Phase 3: PHP 0.27 bln. Total : PHP 1.15 bln.	•-	Same as Case A after completion of dike.
	(3) EIRR (B/C)	 Flood: 13.5% (1.36) Flood + Road: 15.9 %(1.65) 	· 8.2 (0.78) to 10.3% (1.04)	· 8.8 (0.86) to 10.7% (1.08)
				79

Results of Study on Combination of Flood Management Measures

jica

iica)

5.1 Study on Combination of Flood Management Measures

Results of Study on Combination of Flood Management Measures

The Lakeshore diking system requires

- 1) a large number of relocation of local people including ISFs,
- 2) land acquisition with the influence on the fishery at Laguna de Bay, and
- 3) a long period of construction such as 20 years to 30 years.

On the other hand, the Parañaque Spillway

- 1) has a feature to provide the flood mitigation effect to the entire lakeshore area evenly.
- 2) needs the construction period of about 10 years, so that the early mitigation effect can be expected.
- 3) mitigates extreme flood and flood damage from climate change.

Hence, it is presently considered to be appropriate to construct the **Parañaque Spillway** as the **priority project** and then to implement the **Lakeshore diking system** as the long-term project.

Based on the evaluation result, "Case C: Construction of the Lakeshore Diking System at the Priority Area and Construction of the Parañaque Spillway" was selected as a composition of "Comprehensive Flood Management Plan of Laguna de Bay Lakeshore Area."

In addition, among these structural components of the flood management plan, "Construction of the Parañaque Spillway" was selected as priority project.

5.2 Implementation Schedule

1) Planning Condition

Implementation Schedule is considered in three Phases.

[Phase1] Jan. 2020 to Dec. 2029

a. Parañaque Spillway (Route A L=7.8km,Route D L=9.6km)

Option1: Route A, Shield Tunneling Method

Option2: Route A, NATM

Option3: Route D, Shield Tunneling Method

Option4: Route D, NATM

- b. Lakeshore Diking Systems (L=17.02km)
- c. Expansion of EFCOS

[Phase2] Jan.2030 to Dec.2039

d. Lakeshore Diking Systems (L=32.83km)

[Phase3] Jan.2040 to Dec.2049

jica

e. Lakeshore Diking Systems (L=32.90km)

5.2 Implementation Schedule

2) Implementation Schedule (Parañaque Spillway : Route A)

Construction Method for	Works	Years				Sho	ort-Ter	m Pro	gra	m for	1st	Phase Pr	rojeo	cts		Mi	id-Te	erm I	Progr	ram f	or 2n	d Pha	ase P	oject	6		Long	g-Teri	n Pro	gram	for 3	rd Ph	ase F	roje	:ts
Paranaque Spillway	WORKS	Detailed Items	2018	2019	202	202	21 202	2 2023	3 20	24 202	25 2	026 2027	202	8 202	9 20	30 20	31	2032	2033	2034	1 203	5 203	5 203	2038	2039	2040	204	1 204	2 204	3 204	4 204	5 204	6 204	7 204	8 20
	FS、E/N、L/A、 Others	Plan Formulation and Fund Arrangement		Fu		\rran	gemer	nt	Ш		Arra	ngement								Fu		rrang	emen	t											
	Detailed Design、 Tender	Contract of Contractor			D/D	D, Tei	nder				D, T	ender									D/D	, Ten	der												
		Paranaque Spillway(7.8km) (by Shield Tunnel Method)					Cor	nstruct	tion	Work	s																								
Shield Tunneling Method	Short-Term Program for 1st Phase Projects	Lakeshore Dike (17.02km) (Embankment, Pumping Stations, Bridges)																																	
		Expansion of EFCOS																																	
	Mid-Term Program for 2nd Phase Projects	Lakeshore Dike (32.83km) (Embankment, Pumping Stations, Bridges)																																	Ī
	Long-Term Program for 3rd Phase Projects	Lakeshore Dike(32.90km)																																	
	FS、E/N、L/A、 Others	Plan Formulation and Fund Arrangement		Fu		\rran	gemer	nt	ш		Arra	ngement								Fu		rrang	emen	t											
	Detailed Design、 Tender	Contract of Contractor			D/D	D, Tei	nder			D/1	D, T	ender									D/D	, Ten	der												
		Paranaque Spillway(7.8km) (by NATM)					Cor	nstruct	tion	Work	s					-																			T
NATM(New Austrian Tunneling Method)	Short-Term Program for 1st Phase Projects	Lakeshore Dike (17.02km) (Embankment, Pumping Stations, Bridges)																																	
		Expansion of EFCOS																																	
	Mid-Term Program for 2nd Phase Projects	Lakeshore Dike (32.83km) (Embankment, Pumping Stations, Bridges)																																	
)	Long-Term Program for 3rd Phase Projects	Lakeshore Dike(32.90km)																																	-

5.2 Implementation Schedule

Construction Method for Paranaque Spillway Mid-Term Program for 2nd Phase Projects Short-Term Program for 1st Phase Projects Long-Term Program for 3rd Phase Proje Years Works ed Items 0 2021 2022 2023 2024 2025 2026 2027 2028 3 2034 2035 2036 2037 2038 lan Formulation and Fund FS、E/N、L/A、 Others 1111 m _____ Detailed Design. Tender Contract of Contractor Paranaque Spillway(9.6km) by Shield Tunnel Method Short-Term Program for 1st Phase Projects akeshore Dike (17.02km) Shield Tunneling Method (Embankment, Pumping Stations, Bridges) xpansion of EFCOS Mid-Term Lakeshore Dike (32.83km) Program for 2nd (Embankment, Pumping Phase Projects Stations, Bridges) Long-Term Program for 3rd Phase Projects akeshore Dike(32.90km) FS、E/N、L/A、 Others Plan Formulation and Fund Arrangement IIII ш /D. T Detailed Design, Tender Paranaque Spillway(9.6km) (by NATM) NATM(New Short-Term Program for 1st Phase Projects Lakeshore Dike (17.02km) (Embankment, Pumping Stations, Bridges) Austrian Tunneling Method) Expansion of EFCOS Mid-Term Lakeshore Dike (32.83km) Program for 2nd (Embankment, Pumping Phase Projects Stations, Bridges) Long-Term Program for 3rd Phase Projects akeshore Dike(32.90km) JICA

3) Implementation Schedule (Parañaque Spillway : Route D)

5.3 Preliminary Cost Estimate

1) Items on Project Cost

- a. Construction Cost
- b. Engineering Cost (the cost for consulting service) ; 10% of Construction Cost
- c. Price Escalation; FC 0.8% , LC 1.8%
- d. Contingency; 10% of total amount for Construction Cost , Engineering Cost and Price Escalation
- e. Land Acquisition and Compensation
- f. Project Administration Cost; 2% of total amount for Construction Cost, Engineering Cost and the cost for Land Acquisition and Compensation
- g. VAT; 12%

5.3 Preliminary Cost Estimate

2) Project Cost

Cost Itoms		F	Project Cost (million Peso)	
Cost Items	Work Items	Option 1	Option 2	Option 3	Option 4
	Parañaque Spillway				
	Option 1: Route A, Shield				
	Option 2: Route A, NATM	45,876	36,148	49,121	37,653
Construction Cost	Option 3: Route D, Shield				
construction cost	Option 4: Route D, NATM				
	Lakeshore Diking Systems	42,073	42,073	42,073	42,073
	Expansion of EFCOS	114	114	114	114
	Sub-Total	88,063	78,335	91,308	79,840
Engineering Cost		8,806	7,833	9,131	7,984
Price Escalation		11,732	10,611	12,140	10,826
Contingency		20,449	19,944	20,964	20,435
Land Acquisition,		8,786	0 706	8,786	8,786
Compensation		0,700	8,786	0,/00	0,700
Administration Cost		2,757	2,510	2,847	2,557
VAT (12%)		16,540	15,061	17,080	15,345
Total (million Peso)		157,133	143,082	162,255	145,773

5.4 Study on Project Effectiveness

Outline of Economic Analysis

Quantified Economic Cost and Economic Benefits

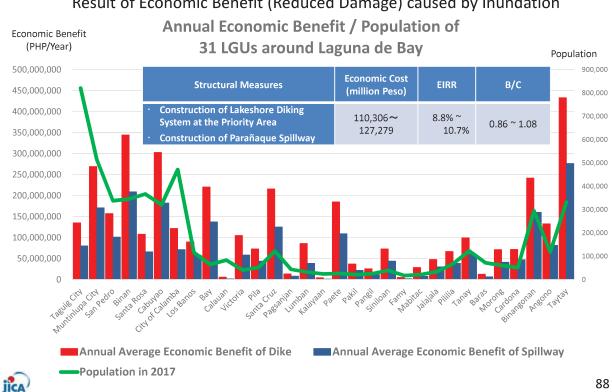
Project Cost	Economic Benefits
(1) Initial Construction Cost	(1) Reduced Economic Damage caused by
(2) O&M Cost	Inundation (household assets,
(3) Major Rehabilitation	commercial/industrial assets, infrastructure,
Cost	agriculture crops, suspension of economic activities)
	(2) Improvement of Transportation
	(3) Increase of Land Price

Annual average value of "(1)Reduced economic damage induced by inundation" is calculated by multiplying the "avoided damage of assets/human life under different return period cases (2, 3, 5, 10, 20, 30, 50, 100, 200 years)" and "occurrence rate of each cases per year".

5.4 Study on Project Effectiveness

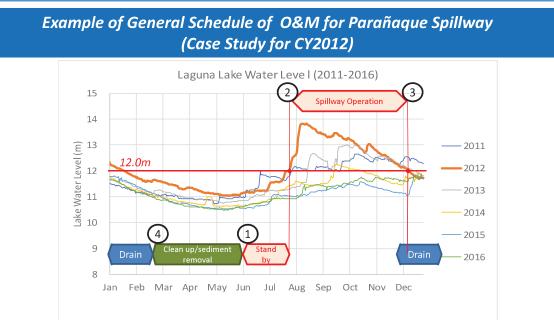
Methodology of Calculation of Economic Damage caused by Inundation

	Economic Damage	Formula
•	Damage of Household	"Number of Affected Household (affected population / average
	Assets	household size)" x "Value of Household Assets" x "Damage
		Rate" x 1.3 (including indirect damage)
•	Damage of Commercial	"Number of Affected Enterprises" x "Value of Commercial
	and Industrial Assets	Assets" x "Damage Rate" x 1.3 (including indirect damage)
•	Damage of Agricultural	"Affected Area of Crops" x "Economic Value of Agricultural
	Crops (Paddy, Maize,	Crops per hectare" x "Damage Rate"
	commercial crops)	
•	Avoided Economic Cost of	"Number of Affected Enterprises" x "Reduced Period of
	Suspended Business	Suspension" x "Average Daily Added Value per Enterprise"
	Activities	


Methodology of Calculation of Other Economic Benefits

	Economic Benefit	Formula
•	Benefit of Improvement	"Unit cost of VOC per vehicle category (PHP/km)" x "Total
	of Transportation	Distance per vehicle category (km)"
		"Total Saved Time" x "Value of Saved Time"
•	Benefit of Increase of	"Influenced Area" x "Current Market Value of Land" x "Increase
	Land Price	Rate of Land Value"

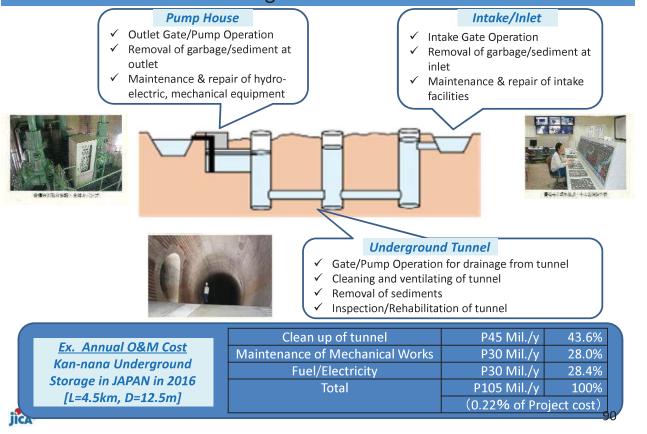
87



5.4 Study on Project Effectiveness

Result of Economic Benefit (Reduced Damage) caused by Inundation

5.5 Proposed Organization for Project Implementation/Operation, Maintenance and Management


- ① Stand-by
- ② Start spillway operation (when Lake WL >12.0m)
- ③ Finish spillway operation (when Lake WL <12.0m), and start drain from tunnel

89

- ④ Start clean up of underground tunnel after completion of drainage
- 5 Stand by

iica

5.5 Proposed Organization for Project Implementation/Operation, Maintenance and Management

5.5 Proposed Organization for Project Implementation/Operation, Maintenance and Management

Proposal for Organization for Comprehensive Flood Control Works in Laguna de Bay

	•		<u> </u>	
Flood Control Works	Outline	Implementation	Operation and Maintenance	
Spillway	Underground tunnel spillway (L7.8-9.8km, drainage pump facilities)	DPWH-UPMO	• DPWH-UPMO/MMDA	
Lake Dike	Crest EL.14.0m, total length 83km	DPWH-UPMO	 MMDA-FCSMO (in Metro Manila) DPWH-RO/DEOs or LGUs (other areas) Land management for 	
Pump Station	28 pump stations in the low lying area of lake dike	DPWH-UPMO		
River Improvements	Major tributaries in the consruction areaof lake dike	DPWH-UPMO	relating structures by LLDA/LGUs	

 The responsibility of O&M is going to be shared among several organizations in the regular case, however it is not effective to manage

✓ Since the measures to be proposed are the large-scale structures, it is appropriate to establish the project implementation/operation and maintenance system by positioning DPWH in center.

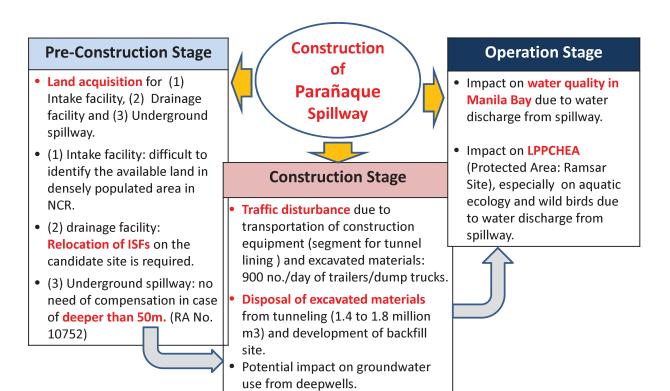
91

6. Preliminary Environmental and Social Analysis

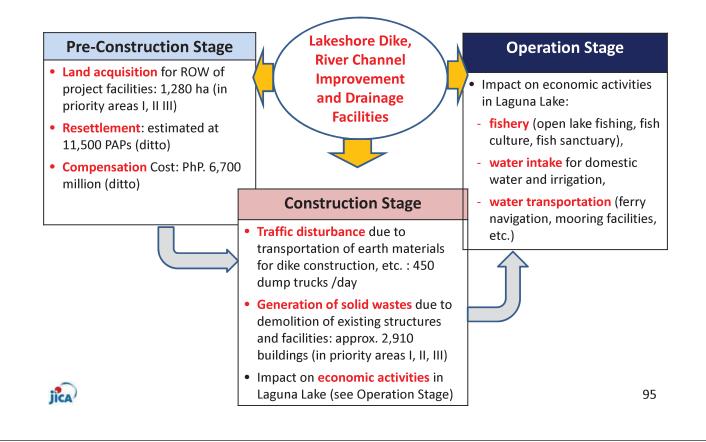
- 6.1 Existing Conditions of Target Areas
- 6.2 Potential Impacts of Parañaque spillway
- 6.3 Potential Impacts of (1) Lakeshore Dike, (2)Backwater Levee and (3)Drainage Facility (Pumping Station)
- 6.4 Considerations necessary for Major Potential Impacts
- 6.5 Impact on Manila Bay Environment

jica)

6.1 Existing Conditions of Target Areas


Salient Features on Environmental and Social Baseline

Category	Elements	Current Status / Features	
	Terrestrial Ecology	 Vegetation and wildlife habitats are affected by human activities around Laguna Lake. There is no primary forests, or wildlife sanctuary. 	
Natural Environment	Ecology of Laguna Lake	 Lake is featured with diminishing biodiversity, and algal bloom. Even though, the lake still has rich natural resources. (e.g., 31 fish species: data of LLDA). 	
	Protected Area	 LPPCHEA (Las Piñas-Parañaque Critical Habitat and Ecotourism Area) in Manila Bay Fish sanctuaries in Laguna Lake designated by LLDA 	
	Informal Settle Families (ISFs)	 Large number of ISFs in lakeshore of Laguna Lake and dangerous area (along rivers) and delayed progress of relocation. 	
Social Environment	Economic Activity in Laguna Lake	 Wide range of economic activities in Laguna Lake: Fishery (open lake fishing and fish culture), water intake for irrigation, domestic water supply, hydropower generation, water transportation, etc. 	
	Groundwater use	Deepwells along candidate location of Parañaque Spillway	
	Air Quality / Noise	 TSP (Total Suspended Particles), PM10: Beyond DNER standard in NCR, Noise level: Beyond standard value in both NCR and Laguna Province 	
Public Pollution	Water Quality	 Laguna Lake: Within DENR standard in the lake but beyond for inflow rivers in urban areas, Manila Bay: Beyond DENR standard with huge coliform counts due to untreated waste water 	


93

jica

6.2 Potential Impacts of Parañaque spillway

6.3 Potential Impacts of (1) Lakeshore Dike, (2)Backwater Levee and (3)Drainage Facility (Pumping Station)

6.4 Considerations necessary for Major Potential Impacts

Potential Impacts	Measures for Mitigation and Compensation		
Land acquisition and resettlement	 Just compensation for affected lands and structures based on RA No. 10752 and other relevant laws and regulations. IEC (information, education and communication) with PAPs and coordination with GAs (Government Agencies) and LGUs for proper resettlement. 		
Traffic disturbance by project-related traffic	 Development of Traffic Management Plan based on the detailed traffic survey. The Plan should include: Consideration in the transportation route and time of construction materials, Deployment of traffic control person, Public relation by means of mass media on schedule of construction works, etc. 		
Generation of excavated materials	• Development of disposal/reclamation site and/or utilization of existing disposal/reclamation site through coordination with relevant GA (including PRA) and LGUs.		
Generation of solid wastes	 Treatment and disposal based on RA No. 9003 (<i>Ecological Solid Waste Management Act</i>) and RA. 6969 (<i>Toxic Substances and Hazardous and Nuclear Wastes Control Act</i>). Reuse and recycle of the demolished utilizing Material Recovery Facilities (MRFs) through segregation of the wastes. 		
Impacts on economic activities in Laguna Lake	 Conduct of detailed investigation on existing economic activities in Laguna Lake, Formulation of impact mitigation measures including: coordination with local fisher folks, establishment of alternative and/or temporary facilities for existing inland, water intake, water transportation, navigation, mooring, etc. 		

6.5 Impact on Manila Bay Environment

Based on the survey thus far, it looks like that the environmental impact of Parañaque Spillway on Mnila Bay is small. There are three reasons.

1. Amount of fresh water

Pampanga River contributes approximately 50% of all fresh water that enters Manila Bay. Compared to the water from Pampanga River, the increase in flow rate by the Parañaque Spillway is smaller, and the total amount of fresh water doesn't change. Therefore, it is not likely to decrease the density of chloride of Manila Bay.

2. Water Quality

Owning to the control by LLDA, the water quality of Laguna de Bay is better than that of Manila Bay.

3. Sediment

Sediment concentration of the water discharged through the spillway is expected to be small because Laguna de Bay works as a settling basin. In addition, the tributaries which are main sediment source enter the central and eastern part of the lake and the intake of the spillway will be constructed in western part of the lake. Considering the low current velocity in the lake, sediment is not likely to transported to the intake.

As

Republic of the Philippines Department of Public Works and Highways Manila

Title/Description: THIRD STEERING COMMITTEE MEETING FOR THE DATA COLLECTION SURVEY ON PARAÑAQUE SPILLWAY IN METRO MANILA Minutes of Meeting

Date:	Started	Adjourned Venue	
January 23, 2018	1:40 P.M.	4:30 P.M.	Operations Room, 2nd floor, DPWH Central Office, Port Area, Manila
Attendees:		Topics:	
Please see attached "ANNEX 1 "	d marked	Topics: 1. Schedule 2. Findings 3. Design Scale and Hydrological/Runoff Inundation Analysis 4. Full Menu of Comprehensive Flood Management Plan for Laguna de Bay Lakeshore Area 5. Comprehensive Flood Management Plan 6. Preliminary Environmental and Social Analysis	

Topic	Session Highlights and Discussion	Person Responsible
	The Meeting was chaired by Undersecretary Emil K. Sadain, CESO I, for UPMO Operations and Technical Services, Department of Public Works and Highways (DPWH). The results of the study were explained by Mr. Takahiro Mishina, Leader of the JICA Survey Team and discussions were made. The highlights of the meeting are summarized below:	
1. Call to Order	 Usec. Sadain called the meeting into order at 1:45 P.M. Project Manager Leonila R. Mercado of the UPMO – Flood Control Management Cluster (FCMC) acknowledged the presence of the members/representatives of the Steering Committee. After the acknowledgement, Usec. Sadain requested the JICA Survey Team to present the updates/status of the Survey. 	

•		
;	 Mr. Mishina presented the results of the survey for the Parañaque Spillway together with the Comprehensive Flood Management Plan. 	
2. Findings	 Usec. Sadain noted that the EIRR of Case B, Parañaque Spillway being the priority project for the Comprehensive Flood Management Project is estimated at 8.2 to 10.3%. He asked if in the computation of EIRR, the impact of the dam and retarding basin projects in the Pasig-Marikina River Improvement Project (PMRCIP, Phase 3 and 4) was included already. 	JICA Survey Team
	Mr. Mishina replied that the two mentioned projects must be considered separately from the Parañaque Spillway Study. He also explained that to increase the EIRR, further study must be undertaken on the particular methodology to be used as there are two (2) methods being considered (Shield Tunneling and NATM Technology).	
	 Usec. Sadain inquired on the possibility of reducing the diameter of the tunnel from 12 meters to 10 meters in order to increase the EIRR. 	
	Mr. Mishina explained that reducing the diameter of the tunnel is not effective as it will also lessen the outflow of flood waters. Instead, he suggested to reduce the return period from 100 year to 50 year.	
	 Usec. Sadain inquired if the CBK hydro power plant utilization of water was considered in the study. 	
	Mr. Mishina responded that it was already considered as the amount of water used by CBK is minimal and has no effect in the study.	
	 In addition, Usec. Sadain informed that the DPWH has an on-going Feasibility Study (FS) and Detailed Engineering Design (DED) on Marikina Dam and proposed Road Network Projects for Laguna de Bay which is scheduled 	
	to commence in February 2018, wherein, some common references must be looked into for evaluation/assessment/analysis. There can be some economic impact that might increase the EIRR to make the Parañaque project more feasible.	
	 Usec. Sadain also mentioned about the concern on the budget for Road Right-of-Way (RROW) and relocation of affected Informal Settler 	· ·

•	Families (ISF). He emphasized that there should be more specific and definite numbers of ISF in order to realize the impact on the computed EIRR to increase its viability for approval.	
	 Laguna Lake Development Authority (LLDA) Assistant General Manager Generoso M. Dungo asked if the proposed reclamation area of the LLDA with the Philippine Reclamation Authority (PRA) for a total area of 13,000 hectares has been included in the evaluation of the Study Team. 	
	The Consultant informed that it will visit the LLDA to clarify the information.	
	 Parañaque City Environment and Natural Resources Office (CENRO) asked the particular benefits the LGU will receive from the Parañaque Spillway Project predominantly on their drainage system as they are experiencing flooding. 	
÷!	Mr. Mishina replied that the Parañaque River was considered in the Pre-FS.	
3. Study on Parañaque Spillway	 Usec. Sadain asked how the calculations of Parañaque Spillway project can be adjusted to improve the EIRR of 7.3 -9.1% as the National Economic Development Authority (NEDA) requires an EIRR of 10% to approve any proposed project. 	JICA Study Team
	 Dr. Glen Q. Tabios of the UP-National Hydraulic Research Center (UP-NHRC) recommended that the "return period" may not be the basis for the approval of the project as mentioned in the 2nd SC meeting. He clarified and stressed to the probability of including the scenario of Marikina Dam in the study using the Agos River towards the Pacific Ocean. 	
	PM Hipolito clarified that the Study is specific for the Parañaque area. However, it depends on the Study team if they have still time to include the scenario.	
0	The Study Team requested Dr. Tabios for the calculations he made for the said situation, and agreed to share his data.	
4. Study on Combination of Flood Management Measures	 PM Hipolito has three (3) clarifications: The term "residual area" used in the presentation. 	a.

Ad

 8	Mr. Mishina replied that they will modify the terms used in the sentence to make it clear.	
0	Clarifications if in the modelling, the Study Team used the two (2) software (MIKE11 and RRI), and the viability of the results.	
	Mr. Mishina explained that the MIKE11 needs the cross section data of the lake wherein no data is available. He said that if there is cross sectional data then RRI model can be used to provide short term scenario results.	1
0	The potential impact of a bill or law that requires any effluent or flood water to be treated prior to discharging. As this will have impact on the Operation and Maintenance cost and the design of the spillway.	•
	The Project Team answered that this matter will be studied/considered.	

Review and Confirmation:				
Prepared by:	Approved by:	Noted: /		
三品孝译	PATRICK B GATAN, CESO III	EMIL K. SADAIN, CESO I		
Project Team Leader JICA Survey Team	Project Director UPMO – FCMC	for UPMØ Operations and Technical Services		
Position	Position	Position		

.

.

١.

ANNEX 1 ATTENDANCE SHEET

	1	1	1		
Date:	Started:	Adjourned:	Venue:		
January 23,2018	1:30 PM	4:30 PM	2 nd Floor Operations Room, Office of the Secretary, DPWH Head Office, Bonifacio Drive, Port Area Manila		
	ATTEND	DANCE SH	EET		
Name	Office		Contact Number	Signature	
1. Usec. Emil K. Sadain	DPWH-UPMO Operations		· .	· ·	
2.Glen Q. Tabios		UP- National Hydraulic Research Center			
3.Michael Auguilar	LGU-Las Piñas	LGU-Las Piñas			
4.Shellowin de Leon	LGU-Parañaque				
5.Ma. Teresa R. Quigue	LGU-Parañaque				
6.Justin de Ramos	DENR- NCR	DENR- NCR			
7.Renz Mario Gamido	DENR - NCR	DENR - NCR			
8.Dethermina Basillio	DILG-NCR	DILG-NCR		ż	
9.George T. Gomez	MMDA	MMDA			
10.Jonathan T. Gomez	MMDA	MMDA			
11.Emiterio C. Hernandez	LLDA	LLDA			
12. Generoso M. Dungo	LĹDA	LĹDA			
13.Ruel S. Casimiro	DPWH-IV-A	DPWH-IV-A		· .	
14.Leonardo Lingan	DPWH - BOD				
15.E.C Matangihan	DPWH- BOD				
16.Ricchelieu Felipe I. Lim	DPWH- BOD				
17.Constante A. Llanes Jr.	DPWH – Plan	ning Service			
18.Leonila R. Mercado	DPWH - UPM	DPWH - UPMO-FCMC			
19.Michael Alpasan	DPWH - UPM	O-FCMC		* . •	
20.Mark Zaplan	DPWH – UPM	O-FCMC		·.	

4

	ATTENDANCE SH	IEET	2	
Name	Office	Contact Number	Signature	
21.Dolores M. Hipolito	DPWH - UPMO-FCMC			
22.Jesse C. Felizardo	DPWH-UPMO - FCMC			
23.Ayume Oshima	JICA -PP	JICA -PP		
24.Kimiko Hayashi	JICA -PP	JICA -PP		
25.Cathy Palanca	JICA PP	JICA PP		
26.Junji Miwa	JICA Expert	JICA Expert		
27.Takafumi Nakui	JICA Expert			
28.Satoshi Takata	JICA Survey Team			
29.Takahiro Mishina	JICA Survey Team			
30.Geraldine Santos	JICA Survey Team	·		
31.Riza S. Nanas	JICA Survey Team	1	•	
32.Eleazar Rupido	JICA Survey Team		•	
33.				
34.	÷			
35.				
36.				
37				
38				
39.				
40.				