THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA MINISTRY OF CITY PLANNING AND WATER SUPPLY MINISTRY OF POLICY PLANNING AND ECONOMIC AFFAIRS NATIONAL WATER SUPPLY AND DRAINAGE BOARD

THE PROJECT FOR THE STRATEGIC MASTER PLAN UNDER THE SEWERAGE SECTOR IN THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA (PHASE 1)

SECTION II STRATEGIC SEWERAGE MASTER PLAN (2)ANURADHAPURA MAY 2017

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

NIHON SUIDO CONSULTANTS CO., LTD.

EXCHANGE RATE (As of May 2017)

= 0.74041 JPY
= 150.340 LKR
= 111.313 JPY

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	iv
LIST OF FIGURES	v
ABBREVIATIONS AND TERMINOLOGY	vi
EXECUTIVE SUMMARY	viii
CHAPTER 1 BACKGROUND AND OBJECTIVES	1-1
1.1 Background	
1.2 OBJECTIVES AND SCOPE	
CHAPTER 2 EXISTING CONDITIONS	2-1
2.1 ENVIRONMENTAL AND NATURAL CONDITIONS	
2.1.1 Climate	
2.1.2 Topography	
2.1.3 Geology	2-3
2.1.4 Hydrology	
2.1.5 Surface Water Quality and Quantity	
2.1.6 Environmental Quality	
2.1.7 Protected Areas	2-7
2.1.8 Fauna and Flora	
2.2 EXISTING SOCIAL CONDITIONS	
2.2.1 Administration	
2.2.2 Population and Demography	
2.2.5 Health & Diseases	
2.2.4 Religion/Edimicity	
2.2.5 Foverty Rate	
2.2.0 Firstory and Culture (Tremage)	2-13
2.2.8 Land Use	
2.2.9 Water Supply and Sanitation	
2.2.10 Solid Waste Collection and Disposal	2-21
2.3 NEED FOR THE PROJECT	2-21
CHAPTER 3 PLANNING BASIS FOR SEWERAGE SYSTEM	
3.1 SANITATION PROVISION	
3.1.1 Target Year	
3.1.2 Planning and Design Criteria	
3.1.3 Service Area	
3.1.4 Sewage Flow	
3.1.5 Influent Sewage Quality	
CHAPTER 4 PRELIMINARY PLAN AND DESIGN OF THE SEWARAGE SYSTEM	М4-1
4.1 General Layout	4-1
4.2 SEWAGE COLLECTION FACILITIES	4-1
4.2.1 Sewer Network	4-1
4.2.2 Sewage Pumping Stations	
4.2.3 Service /House Connections	
4.3 SEWAGE TREATMENT FACILITY	4-3
4.3.1 Treatment Method	
4.3.2 STP Site and General Layout of Unit Processes	
4.3.3 Odour Control	

4.3.4 Sewage Treatment Process	4-6
4.3.5 Sludge Treatment and Disposal	4-7
4.4 ON-SITE FACILITIES AND SEPTAGE MANAGEMENT	4-10
4.4.1 On-site Facilities	
4.4.2 Septic Tanks	
4.4.3 Septic Tank Operation & Maintenance	4-10
CHAPTER 5 INSTITUTIONAL ARRANGEMENTS FOR IMPLEMENTATION	5-1
5.1 PROJECT IMPLEMENTATION AND MANAGEMENT	5-1
5.1.1 Examples of Project Implementation Structures in Sri Lanka	
5.1.2 Public Works in Anuradhapura MC	
5.1.3 Organizational Options for Implementing Sewerage Works	
5.1.4 Preferred Implementation Structure for Sewerage Works	
5.2 ORGANIZATION FOR IMPLEMENTATION	
5.2.1 Organization of the NwSDB Sewerage Department	
5.2.2 Organization of Anuradhanura MC	
5.2.5 Organization of Andrautapura MC	
5.3 Securing Human Resources	
5.3.1 Development of Human Resources	5-8
5.3.2 Sewer Maintenance Equipment and Vehicles	5-8
5.3.4 Customer Service	5-9
5.4 CONSTRUCTION MANAGEMENT FOR THE PROJECT	
5.4.1 PMU	
5.4.2 Project Office	5-9
CHAPTER 6 COST ESTIMATE AND PROCUREMENT	6-1
6.1 PROJECT COST	6-1
6.1.1 Construction and Project Costs	
6.1.2 Operation and Maintenance (O&M) Cost	
6.2 MULTI-PHASED CONSTRUCTION	6-2
CHAPTER 7 FINANCIAL PLAN	7-1
7.1 EINANCIAL CONDITION OF ANUDADUDA MUNICIDAL COUNCIL	7.1
7.1 FINANCIAL CONDITION OF ANUKADHAPUKA MUNICIPAL COUNCIL	
7.2 FINANCING SEWERAGE FACILITY CONSTRUCTION AND OWN	
7.2.1 Construction, Ocewi, and Replacement Costs	
7.2.2 Sewage ranns.	
7.2.4 Sewage Tariff Calculation	
7.2.5 Affordability and Ability to Pay	
7.2.6 Sewage Tariff Tables (Type 2 NWSDB)	7-6
7.3 FINANCIAL PLAN CONCLUSIONS	7-7
CHAPTER 8 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS	8-1
8.1 EXISTING CONDITIONS	
8.2 REGULATIONS AND ORGANIZATIONS RELATED TO ESC	
8.3 COMPARISON WITH JICA GUIDELINES	
8.4 INTERNATIONAL COMMITMENTS	
8.5 Environmental Scoping	
8.6 TOR FOR ENVIRONMENTAL AND SOCIAL CONSIDERATIONS	
8.6.1 Purpose	
8.6.2 Items to be Targeted in the Study and Evaluation	
8.6.3 Target Areas	
8.6.4 Target Periods	
8.6.5 Contents and Methods for ESC Study	
8.6.6 Prediction and Evaluation of Potential Impacts	

8.6 8.6 8.7 8.8	 Consideration for the EMP and EMoP Stakeholder Consultation DRAFT EMP AND EMOP SCHEDULE OF ESC ACTIVITIES 	
СНАРТ	TER 9 CONCLUSION AND RECOMMENDATION	9-1
9.1	F/S IMPLEMENTATION	9-1
9.2	RISK AND MITIGATION MEASURES	9-1
9.3	CONCLUSION AND RECOMMENDATIONS	9-1
APPEN	DICES	A-1
AP	PENDIX 1: Anuradhapura Waste Water Flow Forecast	A-1
AP	PENDIX 2: Inflow Sewage Quality	A-2
AP	PENDIX 3: Layout Plan, Sewer Design Calculations and Longitudinal Cross Section	A-4
AP	PENDIX 4: Draft Amendment of Tolerance Discharge Limits	A-23
AP	PENDIX 5: Land Confirmation for STP	A-26
AP	PENDIX 6: General Layout of Septic Tank	A-28
AP	PENDIX 7: Detail of Project Costs and Annual Fund Requirement	A-30
AP	PENDIX 8: Detail of Annual Fund Requirement	A-31
AP	PENDIX 9: Breakdown of Operating Expenditure	A-32
AP	PENDIX 10: Regulations and Organizations Related to ESC	A-33
AP	PENDIX 11: Comparison with JICA Guidelines	A-37
AP	PENDIX 12: International Commitments related to ESC	A-39
AP	PENDIX 13: Record of Consultation with Public and Authorities	A-40
AP	PENDIX 14: Draft EMP and EMoP	A-43

LIST OF TABLES

Table 1 Estimated Project Cost	X
Table 2.1-1 Surface Water Quality (Anuradhapura)	2-5
Table 2.1-2 Water Quantity (Anuradhapura)	2-7
Table 2.1-3 Survey of Fauna in the Project Area	2-9
Table 2.1-4 Survey of Flora in the Project area	2-10
Table 2.2-1 Population by DSD and Gender	2-12
Table 2.2-2 Chronic Illnesses by Age Group	2-12
Table 2.2-3 Diabetes and Hypertension	
The majority of the population is Buddhist (Table 2.2-4) Table 2.2-4 Population by Religion	2-12
Table 2.2-5 Population by Ethnic Group	2-12
Table 2.2.5 Population by Edine Group	2-13
Table 2.2-7 GDP by Sector for North Central Province (Current Prices)	2-13
Table 2.2-7 GDF by Sector for North Central Province (Current Prices)	2-13 2_14
Table 2.2.0 Proskdown of Monthly Household Income for Anurodhenure District (2012/2012)	2-14
Table 2.2.49 Dieakdown of Monthly Household Income for Anuradiapura District (2012/2013)	2-15
Table 2.2-10 Land Use in Anuradhapura MC	2-10
Table 2.2-11 Land Use In Anuradnapura MC	2-10
Table 2.2-12 Access to Drinking water Sources in Anuradnapura MC	2-18
Table 2.2-13 Water Supply Schemes in and around Anuradhapura MC	2-18
Table 2.2-14 Water Consumption by Consumer Class.	2-19
Table 2.2-15 Access to Sanitary Facilities in Anuradhapura MC	2-19
Table 3.1-1 Design Basis for Estimating Sewage Flow	3-1
Table 3.1-2 Coefficients for Sewer Design	3-2
Table 3.1-3 Pipe Materials	3-2
Table 3.1-4 Types of Pumping Stations	3-2
Table 3.1-5 DSDs and GNDs included in the M/P Area	3-4
Table 3.1-6 Estimated Sewage Flow	3-4
Table 3.1-7 Design Influent Sewage Quality	3-5
Table 4.2-1 Major Sewer Mains	4-2
Table 4.2-2 Main Pumping Stations	4-2
Table 4.3-1 Assumed Quality of Sewage Influent and Effluent	4-6
Table 5.1-1 Organization of Water and Sewerage Works in 6 Municipalities	5-1
Table 5.1-2 Public Works in Anuradhapura MC	5-2
Table 5.1-3 Organizational Options for Implementing Sewerage Works	5-3
Table 5.2-1 Role of NWSDB and MC at Various Implementation Stages	5-4
Table 5.3-1 Faculties at National Universities and Technical Colleges/High Schools	5-7
Table 5.3-2 Comparison of Salaries and Benefits between NWSDB and Private Sector	
Table 5 3-3 Required Training Programs for Sewerage Systems	5-8
Table 5.3-4 Sewer Maintenance Equipment & Vehicles at Existing Sewerage Works	<i>5</i> 0 5-9
Table 6.1-1 Estimated Project Cost	6-1
Table 6.1-2 Estimated O&M Cost	0 1 6-2
Table 7.1-1 Summary of Income & Expenditure of Anuradhanura MC	0 2 7_1
Table 7.2-1 Calculation of Type 1 Sewage Tariff - Anuradhapura MC	
Table 7.2.2 Calculation of Type 2 Sawage Tariff (3rd Increment) Anuradhapura MC	
Table 7.2.2 Example of Domestic Service Tariff (for 2024)	7-5 7-6
Table 7.2.4 Example of Non Domestic Sowage Tariff: (in 2024)	
Table 9.5.1 Environmental Scoping	/-/
Table 9.6.1 ESC Study Accessized with the Draiget	0-1
Table 0.0-1 ESU Study Associated with the Project	8-3
Table 9.2-1 KISKS and Mitigation Measures	9-1

LIST OF FIGURES

Figure 1 Sewer System Plan for Anuradhapura	ix
Figure 2.1-1 Average Monthly Maximum and Minimum Temperatures	2-1
Figure 2.1-2 Average Monthly Precipitation	2-2
Figure 2.1-3 Elevation Map of the Anuradhapura MC Area	2-2
Figure 2.1-4 Regional Geology	2-3
Figure 2.1-5 Drainage Network and Surface Water Bodies in the Project Area	2-4
Figure 2.1-6 Water Sampling Locations	2-5
Figure 2.1-7 Water Pollution in Anuradhapura	2-6
Figure 2.2-1 Administrative Areas of Anuradhapura MC	.2-11
Figure 2.2-2 Anuradhapura Tourist Arrivals	2-14
Figure 2.2-3 Anuradhapura Tourism Revenue from Ticket Sales	2-14
Figure 2.2-4 Comparison of Monthly Household Income	2-15
Figure 2.2-5 Land Use in Anuradhapura MC	2-17
Figure 2.2-6 Wastewater Treatment Facility for Commercial Stores	2-20
Figure 2.2-7 Drainage Canal	2-20
Figure 2.2-8 Waste Disposal Site (left) and Compost Facility (right)	2-21
Figure 3.1-1 Proposed Sewage Collection Area for Anuradhapura	3-3
Figure 4.1-1 Sewerage Development Plan for Anuradhapura MC	4-1
Figure 4.3-1Figure 4.3-1: Nitrogen Cycle	4-3
Figure 4.3-2 Kandy Sewage Treatment Plant	4-4
Figure 4.3-3 Schematic of Oxidation Ditch Process	4-4
Figure 4.3-4 Candidate site	4-5
Figure 4.3-5: Treatment Plant Layout	4-5
Figure 4.3-6 Schematic for Sludge Treatment	4-8
Figure 4.3-7 Pressurized Screw Press	4-8
Figure 4.3-8 Sludge Disposal Options	4-8
Figure 4.3-9Figure 4.3-9: Pile Composting	4-9
Figure 4.3-10 Solid Waste Composting Facility (Left) and Compost Product (Right, LKR 400/50 kg).	4-9
Figure 5.2-1 Organization of the NWSDB Sewerage Department	5-5
Figure 5.2-2 Proposed Re-organization of the NWSDB Sewerage Department	5-5
Figure 5.2-3 NWSDB Sewerage Department Responsibilities for Project Implementation	5-6
Figure 7.1-1 Trend of Total Surplus (deficits)	7-2
Figure 7.1-2 Trend of Staff Salaries	7-2
Figure 7.1-3 Trend of Total Revenue	7-2
Figure 7.1-4 Trend of Capital Expenditure	7-2
Figure 7.2-1 Difference Between Type 1 and Type 2 Sewage Tariff	7-3
Figure 7.2-2 Implementation Schedule for Tariffs	7-4
Figure 7.2-3 Comparison of Type 1Tariff and Ability to Pay	7-6
Figure 7.2-4 Comparison of Type 2 Tariff and Ability to Pay	7-6
Figure 8.8-1 Schedule for ESC Surveys	8-6

ABBREVIATIONS AND TERMINOLOGY

ADB	Asian Development Bank
ADWF	Average Dry Weather Flow
AFD	Agence Française de Development
Addl. GM	Additional General Manager
ASRT	Aerobic Solids Retention Time
AGM	Assistant General Manager
ATP	Ability to Pay
BOD	Biochemical Oxygen Demand
BOI	Board of Investment
СВО	Community Based Organization
СР	Counterpart
CEA	Central Environmental Authority
CMC	Colombo Municipal Council
CODCr	Chemical Oxygen Demand
DCS	Department of Census and Statistics
DGM	Deputy General Manager
DMMC	Dehiwala – Mt. Lavinia Municipal Council
DNB	Department of National Budget
DNP	Department of National Planning
DO	Dissolved Oxygen
DS	Divisional Secretariats
EC	Electric Conductivity
EIA	Environmental Impact Assessment
EMP	Environmental Management Plan
EMoP	Environmental Monitoring Plan
EPL	Environmental Protection License
EPZ	Export Processing Zone
ERD	Department of External Resource
ETWWA	En Feasibility Study ergy, Transport, and Water department of the World Bank
F/S	Feasibility Study
FY	Financial Year
GC	Greater Colombo
GOSL	Government of Sri Lanka
GCS	Greater Colombo Sewerage
IBRD	International Bank for Reconstruction and Development
IEE	Initial Environmental Examination
IFRS	International Financial Reporting Standard
IRR	Internal Rate of Return
JBIC	Japan Bank for International Cooperation
JCC	Joint Coordinating Committee
JICA	Japan International Cooperation Agency
JECES	Japan Education Centre of Environmental Sanitation
JPY	Japanese Yen
JSWA	Japan Sewage Works Agency
LKR	Sri Lanka Rupee
MASL	Mahaweli Authority in Sri Lanka

M&E	Mechanical and Electrical
MC	Municipal Council
M/M	Minutes of Meeting
MOPPEA	Ministry of Policy Planning and Economic Affairs
MOCPWS	Ministry of City Planning and Water Supply
MOPCLG	Ministry of Provincial Councils & Local Government
MRT	Minimum Rate Test
MTPS	Manhole Type Pumping Station
NH3-N	Ammonia Nitrogen
NWSDB	National Water Supply & Drainage Board
O&M	Operation and Maintenance
OD	Oxidation Ditch
PDWF	Peak Dry Weather Flow
PMU	Project Management Units
РО	Plan of Operations
PPIAF	Public-Private Infrastructure Advisory Facility
PS	Pradeshiya Sabha
ROA	Return on Asset
ROE	Return on Equity
RSC	Regional Support Centre
R/D	Record of Discussion
SIDA	Swedish International Development Cooperation Agency
SJKMC	Sri Jayawardenapura Kotte Municipal Council
SLS	Sri Lanka Standard
SRT	Solids Retention Time
STP	Sewage Treatment Plant
PPTA	Project Preparatory Technical Assistance
T-N	Total Nitrogen
TOR	Terms of Reference
T-P	Total Phosphorus
TKN	Total Kjeldahl Nitrogen
TSS	Total Suspended Solids
UC	Urban Council
UDA	Urban Development Authority
UNDP	The United Nations Development Programme
WACC	Weighted Average Cost of Capital
WAST	Weighted Average Sewage Tariff
WB	World Bank
WDF	Wastewater Discharge Fee
WHO	World Health Organization
WQI	Water Quality Index
WTP	Water Treatment Plant

EXECUTIVE SUMMARY

Chapter 1 describes the background and objectives of the Project and as well as the Strategic Sewerage Master Plan for the entire country. The Strategic Sewerage Master Plan identifies 15 priority cities and explains the process used to select the following five cities to be covered by the City Sewerage Master Plan.

- Sri Jayawardenapura Kotte Municipal Council (SJKMC)
- Anuradhapura MC
- Badulla MC
- Nuwara Eliya MC
- Dehiwala-Mount Lavinia MC

Chapter 2 examines the environmental and socio-economic conditions of Anuradhapura MC and the need for a sewerage system. Increasing levels of ammonia and coliform bacteria originating from sewage are detected in the Malwathu Oya River, indicating the deterioration of water quality due to human activities. The average household income in Anuradhapura District is 23% below the national average This means that the service area of the sewerage system needs to be limited to locations where sewage can be collected and treated more cost effectively than other options.

Chapter 3 sets out the basic conditions for the preparation of the sewerage plan. The plan is to be achieved by 2046 to serve an area of 1,618 ha. The collection area will cover the new urban district on the east side of Anuradhapura MC and the adjacent area. The served population is estimated to be 54,900 and the maximum daily wastewater flow will be $13,600 \text{ m}^3$.

Chapter 4 describes the sewerage facility plan and design. The sewer route and the locations of pumping stations and the sewage treatment facilities are shown in **Figure 1** Treatment will be achieved by the oxidation ditch (OD) process similar to the one in Kandy MC, with low maintenance requirements and high capability to perform advanced treatment such as nitrogen removal. Sludge generated will be dewatered with a screw press machines and then composted.

Source: JET

Figure 1 Sewer System Plan for Anuradhapura

Chapter 5 proposes that the sewerage system should be operated and maintained by NWSDB. because it is already providing water supply services thereby enabling cost reductions on bill collection. Another advantage is that NWSDB staff can be utilized to manage the planning and construction. Personnel development and OJT can be provided through improved training programs at NWSDB Training Centres.

Chapter 6 estimates the project costs required at approximately 13.8 billion Japanese Yen (JPY) (excluding tax), and the annual maintenance cost at 0.15 billion JPY, as shown in **Table 1**.

	Amount		Total Amount	Total Amount
	L.C. (LKR)	F.C. (JPY)	LKR	JPY
1 Construction Cost				
A Anuradhapura STP (Q=13,600m3/day)	1,899,054,545	2,193,408,000	4,747,636,364	3,655,680,000
B Trunk Sewer & Pump Station	500,994,000	665,224,000	1,364,919,000	1,050,992,000
C Branch Sewer & Pump Station	3,295,595,000	1,116,360,000	4,745,413,000	3,653,969,000
D House Connection	1,372,500,000	0	1,372,500,000	1,056,825,000
Sub-total of 1(A-D)	7,068,143,545	3,974,992,000	12,230,468,364	9,417,466,000
2 Administration cost	847,000,000	0	847,000,000	652,190,000
3 Consulting cost	465,000,000	1,022,000,000	1,792,273,000	1,380,050,000
4 Physical contingency for construction cost	438,000,000	218,000,000	721,117,000	555,260,000
5 Price escalation for construction cost	1,697,000,000	380,000,000	2,190,506,000	1,686,690,000
6 Land acquisition and compensation	-	-	-	-
7 Interest during construction	0	114,000,000	148,052,000	114,000,000
8 Front-end Fee	0	26,000,000	33,766,000	26,000,000
9 Tax and duty	3,049,000,000	0	3,049,000,000	2,347,730,000
Sub-total of (2-9)	6,496,000,000	1,760,000,000	8,781,714,000	6,761,920,000
Total including Tax and Duty	13,564,143,545	5,734,992,000	21,012,185,000	16,179,383,000
Total excluding Tax and Duty	10,515,143,545	5,734,992,000	17,963,185,000	13,831,653,000
Eligible Portion (1, 3, 4, 5 and 7)	9,668,143,545	5,708,992,000	17,082,419,000	13,153,463,000
Non-Eligible Portion (2, 6, 8 and 9)	3,896,000,000	26,000,000	3,929,766,000	3,025,920,000

Table 1 Estimated Project Cost

Source: JET

Chapter 7 proposes two sewage tariff schemes to recover the maintenance cost. Type 1 tariff is calculated to cover the maintenance cost for the sewerage system in Nuwara Eliya, while Type 2 is calculated based on the sewerage systems operated by NWSDB. Type 1 is calculated to be 46.39 LKR/m³, and Type 2, 40.53 LKR/m³, both are within the affordability estimated by the World Bank (WB). The construction cost will be borne by the central government.

Chapter 8 describes the factors that are likely to affect the local natural or social environment and proposes the parameters to be appraised in an Environmental and Social Considerations Study in the F/S phase.

Chapter 9 concludes that the Anuradhapura sewerage project will make a significant positive impact on the preservation and improvement of Malwathu Oya, which flows through the World Heritage Site area and thus has a very high priority.

Since this Project will be implemented as part of Agence Française de Development (AFD)'s Strategic City Development Project of Anuradhapura City, it will not be subject to financial assistance from JICA. Nevertheless, it is necessary to obtain EIA approval and incorporating other socio-environmental considerations by confirming the location of the proposed sewerage facilities in relation to the ruins of the nearby World Heritage Site. The F/S should include geotechnical and other basic investigations so that construction cost can be estimated accurately and to avoid cost over-run.

CHAPTER 1 BACKGROUND AND OBJECTIVES

1.1 BACKGROUND

The Democratic Socialist Republic of Sri Lanka had a per capita income of 3,162 US dollars in 2013, and an economic growth rate of 7.3% (source: JETRO website, Basic economic indicators of Sri Lanka). Steady economic growth increased the per capita income to 4,000 USD by 2016, and most Sri Lankans are approaching upper-middle income. The robust economic growth has spurred urbanization and increased water usage, and the volume of domestic and industrial wastewater has increased sharply.

In 2014, only 2.4% of the country had urban sewerage infrastructure coverage. A considerable amount of untreated wastewater is discharged into the ocean, rivers, and streams, causing problems related to hygiene and environmental degradation.

The national policy formulated in 2010 (Source: Department of National Planning (DNP), Mahinda Chintana Vision for the Future), highlights the importance of potable water supply and sewerage services as an integral element of sustainable development. The Government announced its intention to achieve 100% sanitation coverage by 2025 through the provision of on and off-site sanitation facilities. NWSDB sets forth the objective to achieve 7.0% sewerage coverage by 2020.

The Government committed to developing the Strategic Master Plan for the sewerage sector in the effort to achieve the 2025 target as well as meet the stringent environmental standards introduced by the Central Environmental Authority (CEA) to mitigate pollution of water environment. The Government sought assistance from Japan. The Japanese government accepted the request and subsequently JICA signed the Record of Discussions (R/Ds)on this project with the Sri Lankan side in August 2015 and was assigned to carry-out a study and formulate the Strategic Master Plan.

As agreed upon with the Sri Lankan side, the outline of the project is as follows:

(1) **Purpose**

To develop the Strategic Master Plan (M/P) to address sewerage issues in the major cities of Sri Lanka, to mitigate to some extent the pollution of rivers and ocean.

(2) **Outputs**

- 1) Strategic Sewerage M/P for Sri Lanka
- 2) City Sewerage M/P for priority cities
- 3) Feasibility Studies (F/S) for selected cities
- 4) Enhanced capacity at the National Water Supply and Drainage Board (NWSDB) and cities selected for F/S

The Strategic Sewerage M/P was formulated in 2016 (from January to June) and can be found in Section I of this Report. The M/P aims to improve the overall water environment through the development of sewerage systems and improvement of on-site sanitation facilities. 79 major cities in the country were evaluated using the following six criteria. An approach to the sewerage system development was proposed.

- Urbanization
- Sanitation
- Urban development
- Sustainability of sewerage service

- Water environment
- Maturity of sewerage project plan

15 cities are designated as priorities for the implementation of sewerage systems to achieve the target of 7.0% coverage by 2035. These are: Colombo MC, Kandy MC, Sri Jayawardenapura Kotte MC, Anuradhapura MC, Badulla MC, Kelaniya PS, Nuwara Eliya MC, Galle MC, Dehiwala-Mount Lavinia MC, Negombo MC, Koticawatta-Mulleriyawa PS, Ratnapura MC, Hambantota MC, Trincomalee UC, and Maharagam UC.

Septic tanks are commonly used for domestic wastewater treatment. It is important to de-sludge and treat septage to maintain proper operation. The M/P outlines the approach to improve on-site sanitation with septage treatment facility. 11 cities are identified as urgently requiring septage treatment facilities, and another 13 cities will be targeted in the next phase.

Five of the 15 priority cities are selected for the development of sewerage master plans based on the following criteria.

- Colombo MC and cities that have sewerage projects with funding assistance from other countries and international donors.
- Cities that are targeted for local development but have no sewerage services.

The five cities selected are:

- Sri Jayawardenapura Kotte MC
- Anuradhapura MC
- Badulla MC
- Nuwara Eliya MC
- Dehiwala-Mount Lavinia MC

The Report (Section II-(2)) presents a part of Output (2) regarding the City Sewerage M/P.

1.2 OBJECTIVES AND SCOPE

This Report describes the sewerage development plan to improve the water environment in Anuradhapura MC. The sewerage service area and the conditions for implementing the project are identified.

CHAPTER 2 EXISTING CONDITIONS

2.1 Environmental and Natural Conditions

2.1.1 Climate

(1) General

Situated in the North Central part of Sri Lanka, Anuradhapura is located in the DL1b agro-ecological zone which is in the low-country dry zone, characterized by an annual rainfall of >900 mm. The District has both wet and dry seasons, and is usually hot and humid throughout the year, with average temperatures between 20° C and 30° C.

(2) Temperature

May is the warmest month, with temperatures rising to 34°C. The coldest month is January when the average temperature is 25°C, and lows can drop to 21°C. The average monthly maximum and minimum temperatures are shown in **Figure 2.1-1**.

Source: JET, using Department of Meteorology data

Figure 2.1-1 Average Monthly Maximum and Minimum Temperatures

(3) **Precipitation**

The rain in the district comes in three forms: monsoonal convectional and cyclonic. The northeast monsoon brings rain in September to March, making a major contribution to the district's rainfall. Southwestern monsoons reach the district as dry wind only, bringing little rain in May through June. Average monthly precipitation is shown in **Figure 2.1-2**.

2.1.2 Topography

Figure 2.1-3 shows the topography of the Anuradhapura MC and surrounding area. Anuradhapura lies 205 km north of Colombo in Sri Lanka's North Central Province, on the banks of the Malwathu Oya River. The topography of the area is generally flat, with gently rolling plains and some isolated hills. To the east of Anuradhapura, the Malwathu Oya River flows in a northerly direction.

Figure 2.1-3 Elevation Map of the Anuradhapura MC Area

2.1.3 Geology

The Anuradhapura area belongs to the litho tectonic Wanni Complex. The dominant rock types in the Wanni Complex are Hornblende baring gneisses and Pink Gneisses. The geology of the area is dominated by granitic, migmatitic, and chanockitic gneisses of the Precambrian age. **Figure 2.1-4** shows the major geologic characteristics of the area.

2.1.4 Hydrology

Drainage networks and surface water bodies in the area are shown in Figure 2.1-5 All the storm water canals in the city are discharged to the Malwathu Oya River. The Malwathu Oya River is the second longest river in Sri Lanka, and it flows through the Anuradhapura MC area in a south-north direction, connecting to the sea at Mannar. The Kumbichchankulama, Nuwara Wewa, and Pulyankuluma Tanks, are located on the right bank of the river. The Alankuluma, Thissa Wewa, and Basawakkuluma Tanks are located on the left.

apu

dankula

Source: Survey Department of Sri Lanka Figure 2.1-5 Drainage Network and Surface Water Bodies in the Project Area

2.1.5 Surface Water Quality and Quantity

(1) Surface Water Quality

8°20'0"N

8°18'0'N

Water quality at sampling stations (1-6) in Anuradhapura is shown in the **Table 2.1-1** The locations of sampling stations are shown in the **Figure 2.1-6**.

			()					
Anuradhapura		1	Surface	2 Middle	Bottom	3	4	5	6	Criteria
pН	-	7.8	8	7.9	8.1	7.7	7.7	7.4	8.2	-
Temperature	°C	31.4	32.4	31.8	32.4	29.3	28.9	29.4	33.7	-
Odour	-		A	cceptable			Ot	jectionabl	le	ND
Colour	mg Pt/L	<15	<15	<15	52	17	36	<15	44	100
EC	uS/cm	841	875	879	850	50	27	79	1013	700
Turbidity	NTU	6	5	6	6	8	12	18	9	-
Total Suspended Solids (TSS)	mg/l	139	270	167	113	108	162	76	138	40
TDS	mg/l	590	570	590	590	560	570	410	720	-
DO	mg/l	7.8	5.4	6.5	5.5	5.7	2.1	3.9	5.1	5
Biochemical Oxygen Demand (BOD)	mg/l	<4	<4	<4	<4	<4	<4	<4	<4	4
COD	mg/l	74	48	63	63	44	55	22	74	15
Nitrate	mg/l	0.95	0.79	0.83	0.61	0.84	0.47	0.22	0.48	10
Ammonia	mg/l	0.16	0.52	0.08	0.25	0.26	1.54	0.31	3.2	0.59
Total Phosphorus (T-P)	mg/l	0.27	0.13	0.12	0.22	0.1	0.5	0.27	0.79	-
PO ₄ ³⁻ - P	mg/l	0.15	0.07	0.07	0.14	0.05	0.3	0.16	0.43	0.4
Cl	mg/l	138.7	127.5	122.5	124.9	111.2	118.7	92.5	128.7	600
Total Nitrogen (T-N)	mg/l	1.15	1.66	1.55	1.05	1.17	2.07	0.56	3.88	-
Faecal Coliform	/100ml	72	214	428	6x10 ²	200	1400	$72x10^4$	$11x10^{2}$	1×10^{3}
Total Coliform	/100ml	$11x10^{4}$	$20x10^{2}$	$16x10^{2}$	$12x10^{2}$	700	208×10^2	76×10^4	18×10^2	$1x10^{4}$

Table 2.1-1	Surface	Water	Ouality	(Anuradhapur	a)
	Juliuce	· · acci	Zuanty	(I mul aunapul	u,

*) Over the criteria

Source: JET

The criteria for evaluating water quality are based on parameters identified in "National Environmental Regulations, No.1 of 2014" and "Draft Revised Ambient Water Quality Standards (2016)". The values are chosen from Category C (Fish and Aquatic Life Water) for normal environmental standards. When values are not available from Category C, the lowest values from Categories D, E and F are used.

EC, TSS, DO, COD, ammonia, phosphate, faecal coliform and total coliform exceed the standard values at most locations. All sampling locations show some level of pollution (Figure 2.1-7).

Water pollution is widespread as indicated by high levels of TSS and COD at all sampling locations. High levels of faecal coliform and ammonia were measured at sampling stations 4, 5 and 6 (town drains). These values are higher than those measured in the main stream indicating contamination by wastewater discharged in the town centre.

*) Red indicators shows the values are over the criteria Source: JET

Figure 2.1-7 Water Pollution in Anuradhapura

(2) **Potential Impact of a Sewerage System**

As shown in the above Figures, high levels of TSS, COD, ammonia and faecal coliform are observed in Anuradhapura, indicating pollution by wastewater. The TSS values are much higher than 40 mg/L set in the standards. The target effluent discharge for the proposed STP is set at 35 mg/L, therefore it is expected that TSS in the receiving water body will be reduced significantly by sewage treatment.

The proposed treatment process will improve DO values by providing aeration in the reactor tank at the sewage treatment plant (STP) and significantly reducing the oxygen demand caused by organic pollutants (BOD and COD). The aerobic treatment process can be operated to convert ammonia to nitrates (nitrification).

Total coliform will be reduced by disinfecting with chlorine. Thus, the introduction of a sewerage system will improve the water environment in Anuradhapura.

(3) Water Quantity

The flow rates at sampling stations 1, 2 and 3, measured on 17th August 2016, are shown below.

Station	Flow Rate (m ³ /s)	Incremental Flow (%)	Date
1	0.524	-	
2	0.517	-1.43	17-08-2016
3	0.571	10.59	
Source: JET			

 Table 2.1-2 Water Quantity (Anuradhapura)

2.1.6 Environmental Quality

(1) Air Quality

No recent records on air quality measurements in Anuradhapura area are available.

Heavy traffic along A12 highway and side roads, and train movements contribute to high levels of air pollutants, such as dust, particulates, smoke, CO, CO2, NOX, SOX, especially during peak hours. Sewage and solid wastes thrown in the canals produce foul odours, especially during dry weather when water level is low.

(2) Noise and Vibration

No records on noise level/vibration measurements in Anuradhapura area are available.

Ambient noise and vibration levels are as expected for urban areas with light industries, businesses, hotels, and restaurants. There is also traffic noise from A12 highway, which carries heavy traffic during peak hours, as well as at night. The city is a major railway hub. Intermittent high noise and vibration levels are observed due to railway traffic. All these urban activities contribute to high noise levels in the project area.

2.1.7 Protected Areas

The Wildlife Department has declared Anuradhapura a Natural Sanctuary (Natural Sanctuary 05.27.1938) under the Flora & Fauna Protection ordinance. The protected lands are located outside of

the MC area.

2.1.8 Fauna and Flora

Fauna and flora of the general area as documented in literature and site surveys are summarized in Table 2.1-3 and Table 2.1-4 Further investigation is necessary to determine the fauna and flora specific to the project site.

				J	a i
Class	Туре	Family	Species	Significant Species (common name)	Status (IUCN 3.1)
Insects	Butterflies	Pieridae	5 species	Catonsila Pomona (Common emigrant)	
mseets	Butterines	Tieridae	5 species	Appias galana (Lessor albatros)	
		Papiliondae	15 species	Papilio polymnastor (Blue mormon)	
		1 aprilondae	15 species	Troides darsisus (Sri Lankan birdwing)	
		Lycaanidaa	Mony	Toldes dursisus (Sh Lankan birdwing)	
Gastropods	Spails/slugs	Lycaelliuae	8 species		
Amphibians	From From	Phacophoridae	18 species	Psaudonhilautus raquis	Def
Ampinotans	riogs	Riacopiloridae	18 species	Hylanana anailia (Grayanhorata frog)	
		Railiuae		Hytarana gractus (Gravennoists frog)	
Pontilas	Crossdilas	eic		Crossedulus nalustris (Marsh grossedila)	VII
Reputes	Tortoisos		2	<i>Crocodylus palustris</i> (Marsh crocodne)	<u>v</u> U 222
	Lizarda		7 species	Chamadaa - danigus (Indian shamalaan)	
	Callage		/ species	<i>Chamaeleo zelanicus</i> (Indian chameleon)	
	Geckos		10 species	Geckoella yakhuna (Northern sri Lanka gecko)	VU
				gecko)	VU
	G1 : 1		0 .		\$77.7
	Skinks	X7 1	8 species	Eutropis madaraszi (Spotted skink)	VU
	Monitor	Varanadae	2 species	Varanus bengalensis (Bengal monitor)	LC
	Lizards			Varanus salvator (Asian water monitor)	LC
	Snakes		40 species		???
Birds				Pavo cristatus (Indian peacock)	LC
				Gallus lafayettii (Sri Lankan Jungle fowl)	LC
				Galloperdix bicalcarata (Sri Lanka spurfowl)	LC
	Horn bills				
	Woodpeckers				
	Kingfishers				
	Bee eaters				
	Fly catchers				
	Pigeons				
				Pelecanus philippensis (Spot-billed pelican)	NT
				Anhinga melanogaster (Oriental dater)	NT
				Phalacrocorax fuscicollis (Indian cormorant)	LC
				Haliaeetus leucogaster	LC
				(White-bellied sea eagle)	
Mammals	Primates	Cercopithecidae		Macaca sinica (Toque macaque)	EN
				Semnopithecus vetulus (Purple-faced langur)	EN
				Paradoxurus zeylonensis (Golden palm civet)	VU
				Lutra lutra (Eurasian otter)	NT
				<i>Herpestes vitticollis</i> (Stripe-necked mongoose)	LC
				Prionailurus viverrinus (Fishing cat)	VU
		Tragulidae		Moschiola kathygre	LC
				(Yellow-striped chevrotain)	
Fish				Oreochromis mossambicus	NT
				(Mozambique tilapia)	
				Oreochromis niloticus (Nile tilapia)	NA
				Labeo rohita (Rohu)	LC
				Carassius auratus (Goldfish)	Dom
				Hypothalmichthys molitrix (Silver carp)	NT
				Cirrhinus mrigala (Mrigal carp)	VU
				Catla catla (Indian carp)	LC
				Arishichthys nobilis (Bighead carp)	Def.
				Clarias brachysoma (Walking catfish)	NT
				Channa striata (Snakehead murrel)	LC
		Puntius		Puntius singhala	NA

Table 2.1-3 Survey of Fauna in the Project Area

		Rasbora				
				Garra ceylonensis (Ceyl	on longsucker)	NA
Sources:		:	Legend:	IUCN 3.1	scale	
Manamendraar IUCN Redlist JET	achchi and Adikari (2014)		Threatened Concern	Dom: Domesticated Def: Data deficient NA: Data not available	

Taxa			Conservation Status		
Family	Species	Significant Species (common name)	(IUCN 3.1)		
Moraceae		Ficus religiosa (Bodhi tree)	LC		
Putranjivaceae		Drypete sepiaria (Weera)	LC		
Sapotacceae		Manilkara hexandra (Palu)	LC		
Rutaceae		Chloroxylon swietenia (Ceylon stainwood)	VU		
Malvaceae		Berrya cordifolia (Trinomalee wood)	VU		
Meliaceae		Azadirachta indica (Neem wood)	LC		
Moraceae		Artocarpus heterophyllus (Jackfruit)	LC		
Anacardiaceae		Mangifera indica (Mango)	LC		
Anacardiaceae		Anchardium occidentale (Cashew)	LC		
Anacardiaceae		Mangifera zeylanica (Eth amba)	VU		
Arecaceae		Cocus nucefera (Coconut)	LC		
Lamiaceae		Tectona grandis (Teak)	LC		
Fabaceae		Gliricidia sepium	LC		
Fabaceae		Leucaena leucocephala (White leadtree)	LC		
Ebenaceae		Diospyros ebenum (Ceylon ebony)	LC		
		Felicium leucocephala			
Lamiaceae		Vitex altissima	LC		
Rubiaceae		Canthium dicoccum			
Ochnaceae		Ochna obtusata	LC		
Alangiaceae		Alangium salviifolium	LC		
		Mixeomwlum minurum			
		Drypetes lanceolate			
Celastra		Gymnosporia emarginata			
Salviniaceae		Salvinia molesta (Kariba weed)	LC		
Pontederiaceae		Eichhrnia crassipes (Water hyacinth)	LC		
Typhaceae		Typha anguistifolia (Narrowleaf cattail)	LC		
Araceae		Pistia stratiotes	LC		
Anisophyleaceae		Anisophyllea cinnamomoides (Weli piyanna)	VU		
Asteraceae	LC				
Apocynaceae		Willughbeia cirrhifera	VU		
Source:		Legend: IUCN 3.1 scale			
Egodawatta and Warnas	sooriya (2014)	Extinct Threatened Concern	Dom: Domesticated		

Table 2.1-4 Survey of Flora in the Project area

Egodawatta and Warnasooriya (2014) Manamendraarachchi and Adikari (2014) Munashingha et al., (2009) Dharmasena, (1993) Wijerathna and Baladurage IUCN Redlist JET Dom: Domesticated Def: Data deficient NA: Data not available

2.2 EXISTING SOCIAL CONDITIONS

2.2.1 Administration

Anuradhapura City is the capital city of North Central Province, and the capital of Anuradhapura District. The MC covers parts of 3 Divisional Secretariat Divisions (DSD): Nuwaragampalatha Central (NPC), Nuwaragampalatha East (NPE), and Mihinthale. The total area is covered by 29 Grama Niladhari Divisions (GNDs). The administrative areas covered by the Anuradhapura MC are shown in **Figure 2.2-1**.

Figure 2.2-1 Administrative Areas of Anuradhapura MC

2.2.2 Population and Demography

Anuradhapura MC is a combination of Nuwaragampalatha Central (20,888 people), Nuwaragampalatha East (45,428 people), and Mihinthale (3,594 people) DSDs, with a total population of 69,910. According to the Census and Statistics Figures of 2012, this is about 8% of the total Anuradhapura District population of 856,200. The population density is 131 persons/km² at the provincial level and 130 persons/km² at the district level.

Table 2.2-1 shows the population distribution by DSD and gender.

DS Division	Male	Female	Total
Nuwaragampalatha Central	10,304	10,584	20,888
Mihinthale	1,707	1,887	3,594
Nuwaragampalatha East	22,135	23,293	45,428
Total for Anuradhapura Municipality Council	34,146	35,764	69,910

Table 2.2-1 Population by DSD and Gender

Source: Census of Population and Housing 2012, Department of Census and Statistics (DCS)

2.2.3 Health & Diseases

The prevalence of chronic illnesses in the Anuradhapura District is slightly higher than the national average as shown in **Table 2.2-2** and **Table 2.2-3**.

Table 2.2-2	Chronic	Illnesses	by	Age	Group
--------------------	---------	-----------	----	-----	-------

	Less than 15 years	15-24 years	25-59 years	60 and above
Anuradhapura District	2.9%	4.6%	18.6%	58.3%
Sri Lanka	2.8%	3.3%	18.5%	55.2%
Comment Mating 1 Comments on Calf	and and a differential for Carl I and a O	014 D CC		

Source: National Survey on Self-reported Health in Sri Lanka 2014, D CS

Table 2.2-3 Diabetes and Hypertension

	Diabetes	Hypertension
Anuradhapura District	4.8%	7.1%
Sri Lanka	7.2%	9.2%

Source: National Survey on Self-reported Health in Sri Lanka 2014, D C S

2.2.4 Religion/Ethnicity

The majority of the population is Buddhist (Table 2.2-4). Table 2.2-4 Population by Religion

Religion	Population	% of Total Population		
Buddhist	772,292	90.20%		
Hindu	3,425	0.40%		
Islam	71,065	8.30%		
Roman Catholic	5,993	0.70%		
Other Christian	3,425	0.40%		
Other	-	-		
Total District	856,200			

Source: Economic and Social Statistics of Sri Lanka -2014, Central Bank of Sri Lanka, April 2014

Sinhala is the dominant ethnic group (Table 2.2-5).

Table 2.2-5 Population by Ethnic Group

Ethnicity	Population	% of Total Population
Sinhala	778,286	90.90%
Sri Lanka Tamil	5,137	0.60%
Indian Tamil	856	0.10%
Sri Lanka Moor	70,209	8.20%
Other	1,712	0.20%
Total District	856,200	

Source: Economic and Social Statistics of Sri Lanka -2014, Central Bank of Sri Lanka, April 2014

2.2.5 Poverty Rate

The household income and expenditure survey (HIES) was carried out by the Census and Statistics Department of Sri Lanka. Poverty rates at the district, province, and national levels are shown in **Table 2.2-6** The data indicates that poverty levels in the district are about the same as the provincial and national averages.

	Poor HH %					
2006/07 2009/10 2012/13						
National	12.6	7.0	5.3			
North Central Province	11.8	4.6	6.1			
Anuradhapura District	12.7	4.6	6.3			
Source: Conque and Statistics Danes	tmont					

Table	2 2-6	Poverty	Rates
Table	2.2-U	IUVELLV	Nates

Source: Census and Statistics Department

2.2.6 History and Culture (Heritage)

Anuradhapura's "Sacred City" area is a UNESCO World Heritage City. Anuradhapura is regarded as Sri Lanka's first kingdom and was the capital of the island for many centuries. Pagodas, water tanks, art, and architecture attract many national and international visitors because of their cultural, religious, and architectural importance. The area under UNESCO protection is limited to the Sacred City (Old City) area. The Project will take place outside of the protected area.

2.2.7 Economy

(1) General

Anuradhapura City is in the flat and easy-to-access northern centre of the country. It is the focal point for the north, west, south and east regions. Agriculture is the main source of income. The main produce is rice, grown by irrigation networks and harvested twice a year. **Table 2.2-7** shows GDP of North Central Province which includes Anuradhapura City.

	Unit: Million Sri Lanka Rupee (LKR)								
No	Sector	2010		2011		2012		201	3
1	Agriculture	77,301	29.0%	70,248	23.0%	74,009	19.5%	85,589	19.5%
2	Industry	54,924	20.6%	74,013	24.2%	98,046	25.9%	118,149	26.9%
3	Services	134,729	50.5%	161,714	52.9%	207,188	54.6%	238,157	54.3%
	GDP	266,954	100.0%	305,975	100.0%	379,243	100.0%	438,896	100.0%
	GDP Share Percentage	4.8		4.7		5.0		5.1	1

	app.	a , a		a	
Table 2.2-7	GDP by	Sector for	[•] North	Central Province (Current Prices)

Source: CBSL Annual Report 2014

North Central Province contributes to around 5% of the national GDP. Service sector, the largest sector, contributes 50-55% (national average: 56.8%) of the total provincial GDP. The agricultural sector contributes around 20 to 30% (national average: 10.8%).

(2) Tourism

Anuradhapura is the ancient capital city of Sri Lanka and has a lot of historical monuments and temples, such as the Brazen Palace, Maha Bodhi Tree, Ruwanweli Seya Dagoba, Samadhi Buddha Statue. It is one of the major tourist destinations in Sri Lanka. **Table 2.2-8 Figure 2.2-2** and 2.2-3 show the tourist arrival numbers and tourism revenue from admission fees for the past 4 years.

Year	2011	2012	2013	2014
No. of Foreign Visitors	3,706	61,392	69,705	79,685
No. of Local Visitors	38,149	33,138	37,894	32,016
Total No. of Visitors	41,855	94,530	107,599	111,701
Revenue: Foreign Visitors (LKR)	107,813,363	158,814,806	223,573,474	251,708,838
Revenue: Local Visitors (LKR)	668,020	593,680	680,320	550,120
Total Revenue (LKR)	108,481,383	159,408,486	224,253,794	252,258,958

T-LL-110 A	TT	1 D	. T! . I 4 C . I 41
Table 7. 7.** Appleanan	aira Tourist Arriva	i and Kevenne from	1 LICKET NAIES* I
Iable Bill Officialitap	ala loulischillea	and iterenue iron	I IIIIII Dailo I

Note: *1; Ticket sales is the revenue from selling ticket to visit the historical place.

Source: Annual Statistical Reports- Sri Lanka Tourism Development Authority (Annual Reports of 2011,2012,2013,2014)

Tourist numbers and revenue have been increasing steadily. Most visitors are local however revenues from foreign tourists are 100 to 500 times higher because foreigners pay a much higher entry fee. Apart from admission fees, tourists also contribute to revenues of hotels, restaurants, transportations, souvenir shops, and related businesses. Tourism revenues are rapidly increasing and can be quite substantial.

The establishment of a sewerage system will preserve the water environment of the lake and river and contribute to the sustainable growth of the tourism industry and the economy.

Figure 2.2-2 Anuradhapura Tourist Arrivals

Figure 2.2-3 Anuradhapura Tourism Revenue from Ticket Sales

(3) Household Income

Average household income data is available from "Household Income and Expenditure Survey 2012/2013", some of which are presented in **Table 2.2-9** and **Figure 2.2-4**. The average monthly household income in Anuradhapura District was LKR 35,460 in 2012/13. Most of the household income came from "wage/salaries" (28.5%), "agricultural activities" and "other cash income" are the next large income sources (16% each). Household income in Anuradhapura District is 23% lower than the national average) and slightly lower than that in North Central Province. In Anuradhapura, the design of a sewage tariff should carefully consider the residents' ability to pay (ATP).

Table 2.2-9 Breakdown of Monthly Household Income for Anuradhapura District (2012/2013)

No.	Sector	Anuradhapura District	%
1	Average Household	35,460	
2	Per capita	9673	
3	Ave. No. of Income Receivers	1.6	
4	Wage/Salaries	10,801	28.5%
5	Agricultural Activities	5,856	15.5%
6	Non-Agricultural Activities	3,520	9.3%
7	Other Cash Income	6,008	15.9%
8	Income by Adhoc Gain	4,081	10.8%
9	Non-Monetary Income	5,194	13.7%
10	Income in Kind	2,421	6.4%

Source: Household Income and Expenditure Survey 2012/2013, DCS, Ministry of Policy Planning Economic Affairs

Source: Household Income and Expenditure Survey 2012/2013, DCS, Ministry of Policy Planning Economic Affairs

Figure 2.2-4 Comparison of Monthly Household Income

2.2.8 Land Use

Land use in Anuradhapura District and the MC are shown in Table 2.2-10 and

Table 2.2-11 and Figure 2.2-5.

The ancient holy city, Anuradhapura, a UNESCO World Heritage Site, is situated on the west side of the river whereas the new urban district is located on the east side. Residential neighbourhoods are occupying 35% of the area. Irrigation ponds, rice paddies and other croplands, and the World Heritage Site occupy 24%, 22%, and 1.5%, of the area.

ඉඩම ස්වභාවය Nature of land	භුමි පුමාණය (හෙක්ටයාර) Area (Hec)	පුතිශතය Percentage (%)
01.අස්වද්දන ලද කුඹුරු` - Asweddumized paddy land		
1. චාරිමාර්ග - Irrigated	113841.0	15.86
11.අහස්දියෙන් - Rainfed	17381.0	2.42
02.තේ - Tea		0.00
03. රබර් - Rubber		0.00
04. පොල් - Coconut	1865.0	0.26
05. කුරුදු- Cinnamon		0.00
06. වෙනත් වගාවන් - Other crops	8577.0	1.19
07.වනාන්තර- Forests		
1. සන වනාන්තර - Dense forests	199428.0	27.78
11. විවෘත වනාන්තර - Open forests	15922.0	2.22
111. වගා කරන ලද වනාන්තර - Planted forests	5477.0	0.76
08.ලඳු කැළැ හා හේන - Grass lands/Chena	191365.0	26.66
09. වගුරු හා කඩොලාන කැළැ - Marshes and Mangroves	2542.0	0.35
10.ගෙවතු - Home gardens	96424.0	13.43
11.ජලාශ - Reservoirs	55241.0	7.69
12.ගොඩනැගිලි- Building	1320.0	0.18
13වැලි හා ගල් පර - Sand and Mountain	2949.0	0.41
14. මුඩු බිම හා අත්හරින ලද ඉඩම - Abandoned land	82.0	0.01
15.වෙනත් (පුජා භූමි, මාර්ග,සුසාන භූමි ආදිය)	5486.0	0.76
Other (sacred places, roads, cemetery etc)		
එකතුව - Total	717900.0	100.00

Table 2.2-10	Land	Use in	Anuradha	oura District
		U N U I II		

මුලාශුය - දිස්තුික් ඉඩම පරිහරන සැලසුම් කාර්යාලය Source - District Land use Planning Office

Table 2.2-11 Land	Use in Anuradhapu	a MC
-------------------	-------------------	------

Land use Type	Area (Ha)
Agricultural Farm	15.40
Archaeological Area	46.96
Built-up Area	76.94
Barren Land	4.18
Car Park	1.09
Coconut	9.80
Cemetery	12.60
Homesteads	1122.63
Mixed Crop	104.99
Marshy	1.16
Other Cultivation	16.49
Park	3.64
Paddy	532.77
Playground	35.81
Palmyrah (Palms)	0.33
Railway	3.47
Road	100.59
Rock	1.38
Scrubs	320.98
Waterbody	758.78

Source: Survey Department of Sri Lanka

Figure 2.2-5 Land Use in Anuradhapura MC

2.2.9 Water Supply and Sanitation

(1) Water Supply

 Table 2.2-12 shows 94% of the households have access to piped water supply in Anuradhapura MC.

No.	Name of GND	GN Code	Total	Protected Well Within Premises	Protected Well Out Side Premises	Un Protected Well	Tap Within Unit (Main Line)	Tap Within Premises (Out Side Main Line)	Tap Outside Premises (Main Line)	Rural Water Project	Tube Well	Bourses	River, Tank, Stream	Rain Water	Bottle Water	Other
1	Devanampiyatissapura	295 A	1507	23	2	0	1025	333	25	56	1	0	0	0	42	0
2	Abayawewa	294	511	8	1	0	261	174	47	0	2	1	0	0	5	12
3	Pathispura	298	508	36	20	0	186	132	117	0	0	0	0	0	17	0
4	Bandara Puliyankulama	319	396	140	31	0	184	8	29	0	0	0	0	0	4	0
5	Jayanthi Gramaya	315	555	21	4	2	273	186	64	0	1	0	0	0	3	1
6	Thannayam Kulama	317	292	19	11	1	104	119	38	0	0	0	0	0	0	0
7	Saliya Mawatha	318	522	63	10	8	259	148	23	1	1	0	2	1	5	1
8	Shudda Nagaraya	299	177	14	14	0	46	34	62	0	3	0	0	0	0	4
9	Tissawewa	295	25	2	0	1	17	0	3	0	0	0	0	0	2	0
10	Wessagiriya	297	291	23	9	0	87	109	44	0	2	0	3	0	14	0
11	Isurumuniya	296	385	54	24	1	227	48	16	0	0	0	0	0	12	3
12	Henawatta	572	559	32	6	0	404	102	11	0	0	0	0	0	3	1
13	Nuwarawewa 571	571	395	42	4	4	258	67	16	0	1	0	0	0	3	0
14	Nuwarawewa 250	250	483	36	9	0	326	56	38	0	0	0	0	0	18	0
15	Step I Part I	248	463	4	9	2	384	29	0	2	0	0	0	0	33	0
16	Wanni Thmmannawa	239	447	10	1	1	226	187	16	0	0	0	0	6	0	0
17	Thammanna Kulama	240	1152	37	3	0	1005	61	21	/	1	0	0	0	15	2
18	Step 1 Part 2	249	481	12	6	0	297	70	1	5	1	0	0	0	88	1
19	Step 2 Part 3	253	642	10	0	0	517	26	1	1	0	0	0	0	8/	0
20	Step 2 Part 2	252	827	10	11	0	510	18	50	1	0	0	0	0	39	0
21	Step 3 Part 3	251	1075	19	11	2	048	155	39	5	0	0	1	0	102	1
22	Step 2 Part 4	254	821	15	0	0	940 687	14	0	1	0	0	1	0	103	1
23	Wanniyakulama	234	437	-+	0	0	3/1	78	5	0	0	0	0	0	114	0
24	Kotasa 4	245	437	1	0	0	541	78	5	0	0	0	0	0	12	0
25	Wanniyakulama Kotasa 5	246	533	3	0	0	417	90	3	0	0	0	0	0	19	1
26	Wanniyakulama Kotasa 6	247	471	1	0	0	353	74	1	1	0	0	1	0	40	0
27	Step 3 Part 1	255	821	6	1	0	671	107	13	0	0	0	0	0	23	0
28	Step 3 Part 2	256	833	1	0	0	701	17	1	0	0	0	0	0	113	0
29	Wanniyakulama Kotasa 3	244	350	1	0	0	262	84	3	0	0	0	0	0	0	0
	Total		16721	647	176	22	11705	2528	687	81	13	1	7	7	817	30

Table 2.2-12 Access to Drinking Water Sources in Anuradhapura MC

Source: Census of Population and Housing 2012, DCS

The city's water system consists of three water supply schemes (Table 2.2-13), operated by NWSDB.

1abit 2.2-1	5 water Supply Sen	cines in and arou	inu Anui aunap	
Water Supply Scheme	Water Source	Capacity	Estimated Supply	Coverage Area
		(m^3/day)	to MC (m ³ /day)	
New Town WSS	Nuwara Wewa	13,500	8,000	Stage I
Anuradhapura East WSS	Thuruwila irrigation tank	21,000	8,500	Stage II & III, Wijaya Pura
Thisa Wewa WSS	Thisa Wewa	45,00	2,100	Sacred City

Table 2.2-13 Water Supply Schemes in and around Anuradhapura MC

Source: NWSDB, date??

Water consumption by customer category is shown in Table 2.2-14 for the New Town WSS and the Anuradhapura East WSS. These systems serve mainly customers within the city. Household (domestic)

consumption accounts for 60–70% of the total consumption, while commercial/industrial and institutional customers each accounts for about 20% with slight variance depending on the service area.

Tuble 22 11 Water Consumption by Consumer Cluss										
ľ	New Town WSS	;	Anuradhapura East WSS;							
	m ³ /year			m ³ /year						
2013	2014	2015	2013	2014	1015					
1,925,011	2,005,896	2,078,426	1,114,922	1,111,720	1,100,493					
488,244	543,488	630,272	78,374	24,498	31,763					
597,119	668,023	669,213	356,999	359,720	363,904					
223,848	224,463	181, 487	18,705	28,6151	33,048					
3,234,222	3,441,871	3,559,398	1,569,000	1,524,553	1,529,208					
	2013 1,925,011 488,244 597,119 223,848 3,234,222	New Town WSS m³/year 2013 2014 1,925,011 2,005,896 488,244 543,488 597,119 668,023 223,848 224,463 3,234,222 3,441,871	New Town WSS; m³/year 2013 2014 2015 1,925,011 2,005,896 2,078,426 488,244 543,488 630,272 597,119 668,023 669,213 223,848 224,463 181,487 3,234,222 3,441,871 3,559,398	New Town WSS; $m^3/yearAnu20132014201520131,925,0112,005,8962,078,4261,114,922488,244543,488630,27278,374597,119668,023669,213356,999223,848224,463181,48718,7053,234,2223,441,8713,559,3981,569,000$	New Town WSS; m³/year Anuradhapura East m³/year 2013 2014 2015 2013 2014 1,925,011 2,005,896 2,078,426 1,114,922 1,111,720 488,244 543,488 630,272 78,374 24,498 597,119 668,023 669,213 356,999 359,720 223,848 224,463 181,487 18,705 28,6151 3,234,222 3,441,871 3,559,398 1,569,000 1,524,553					

Table 2.2-14 Water Consumption by Consumer Class

Source: National water Supply & Drainage Board (NWSDB)

(2) Sanitation

Table 2.2-15 shows the distribution of sanitation facilities in Anuradhapura MC. About 93% of households (16,883) have water sealed toilets (i.e. with traps to block odour) connected to septic tanks.

		Jameal,	, i aciii		maraan	apara me	
No.	Name of GND	Total	Water Seal Toilet	Pour Flush Toilet (Not Water Trap)	Direct Pit	Other	Not Using Toilet
1	Devanampiyatissapura	1,507	1,412	10	82	0	3
2	Abayawewa	511	472	5	11	0	2 3
3	Pathispura	508	487	10	8	0	3
4	Bandara Puliyankulama	396	393	1	1	0	1
5	Jayanthi Gramaya	555	530	6	19	0	0
6	Thannayam Kulama	292	288	0	3	0	1
7	Saliya Mawatha	522	517	1	2	0	2
8	Shudda Nagaraya	177	160	2	12	0	3
9	Tissawewa	25	23	0	1	0	1
10	Wessagiriya	291	277	0	10	0	4
11	Isurumuniya	385	380	0	0	0	5
12	Henawatta	559	557	0	2	0	0
13	Nuwarawewa 571	395	379	5	10	0	1
14	Nuwarawewa 250	483	480	1	2	0	0
15	Step 1 Part 1	463	460	0	3	0	0
16	Wanni Thmmannawa	447	441	2	4	0	0
17	Thammanna Kulama	1,152	1,147	3	2	0	0
18	Step 1 Part 2	481	469	3	9	0	0
19	Step 2 Part 3	642	638	0	4	0	0
20	Step 2 Part 2	827	827	0	0	0	0
21	Step 3 Part 3	762	1,217	6	5	0	2
22	Step 2 Part 1	1,222	1,074	4	1	0	0
23	Step 2 Part 4	1,075	820	0	0	0	0
24	Wanniyakulama Kotasa 4	821	433	0	1	0	0

 Table 2.2-15 Access to Sanitary Facilities in Anuradhapura MC

25	Wanniyakulama Kotasa 5	437	530	3	1	0	0
26	Wanniyakulama Kotasa 6	533	471	1	0	0	2
27	Step 3 Part 1	821	819	2	0	0	0
28	Step 3 Part 2	833	833	0	0	0	0
29	Wanniyakulama Kotasa 3	350	349	0	0	0	1
	Total	17,472	16,883	65	193	0	5 2

Source : Census of Population and Housing 2012, Department of Census, and Statistics

Anuradhapura MC has no sewerage system. There is one small facility that partially treats wastewater from about 200 commercial stores. The facility consists of inlet pipes, two septic tanks, and an infiltration tank (**Figure 2.2-6**).

This facility has a daily capacity of 25 m^3 . A vacuum truck collects sludge from the septic tanks at the request of the owner/users. However, overload and poor maintenance is causing pollution in the surrounding areas. Water from the septic tanks is discharged into a nearby canal leading to Malwathu Oya. Water flowing into the drainage canal had a black colour at the time of the field survey (Figure 2.2-7).

Source: JET Figure 2.2-6 Wastewater Treatment Facility for Commercial Stores

Figure 2.2-7 Drainage Canal

Sludge from household septic tanks is transported to Anuradhapura MC's solid waste disposal area. Greywater from kitchens and bathrooms of regular households are discharged untreated into public sewer lines and then to public water areas.

Wastewater overflows from the septic and infiltration tanks during the rainy reason polluting the surrounding areas. There is an increasing concern that it could also pollute Malwathu Oya and nearby water reservoirs.

According to the Pre-Feasibility Report for the Anuradhapura Wastewater Treatment and Disposal System, prepared in 2015 by NWSDB at its own expense, the following institutions are equipped with their own sewage treatment systems.

Anuradhapura Teaching Hospital (1,972 beds)
 The hospital uses the OD process to treat wastewater, as well as a rotating biological contactor process for the newly constructed ward. Treated water from both systems is discharged into Ponnarankulama wewa nearby, and greywater is discharged directly to a canal.

2) Anuradhapura Army Camp

The service population is about 1,350 which is approximately 25% of the camp's population. Wastewater is treated primarily by a stabilization pond and discharged to Nuwara wewa. The Camp plans to construct another pond to increase the treatment capacity in the future.

3) Anuradhapura Air Force Camp The service population is about 1,500 which is approximately 25% of the camp's population. Wastewater is treated by the OD process, and treated water is used to irrigate rice paddies and container plants within the Camp.

2.2.10 Solid Waste Collection and Disposal

In Anuradhapura MC, garbage is separated before collection and disposal. Organic waste is composted at the disposal site built in 2009 in Nuwaragampalatha East Pradesiya Sabah (PS). The daily collection volume in Anuradhapura MC and the PS is estimated at 40 tons. Pictures of the disposal site and compost facility are shown in **Figure 2.2-8**.

UDA is faced with a heavy daily garbage load and the problem of open dumping in the sacred site (especially during the crowded Poson Poya season in June). Construction of an additional disposal site is being planned under the "Pilisaru" (recycling resources) Project and the Integrated Sustainable Waste Management Programme (ISWMP) with the assistance of KOICA.

Sauce: JET

Figure 2.2-8 Waste Disposal Site (left) and Compost Facility (right)

2.3 NEED FOR THE PROJECT

In its national policy enacted in 2010, Sri Lanka aims to achieve 100% access to sanitation through on and off-site sanitary facilities by 2025. NWSDB plans to achieve 7.0% piped sewer coverage by 2020.

The United Nations sets Sustainable Development Goals (SDGs) as the next development agenda for the Millennium Development Goals (MDGs). The goal related to sanitation and hygiene is to ensure universal access to safely and sustainably managed water and sanitation by 2030, and some of the specific targets include:

- By 2030, achieve access to adequate sanitation and hygiene facilities for all
- By 2030, improve water quality by halving the proportion of untreated wastewater

As of 2012, sewerage system coverage is only at 2.4% in Sri Lanka. Anuradhapura has no STP, and relies on septic tanks and other on-site facilities, which do not function adequately. Increasing levels of ammonia and coliform bacteria are being detected in Malwathu Oya that flows through the World Heritage Site area (See 2.1.5).

AFD, under its Strategic City Development Project for Anuradhapura City, plans to construct and improve roads and other transportation infrastructure. The project will include improved drainage facilities for mitigating flood damage caused by urban development and the lack of drainage capacity (source: website of the French Embassy in Sri Lanka

https://lk.ambafrance.org/FrenchAgencyforDevelopmentSupportsitsFirstIntegratedUrbanDevelopment). Construction of roads and drainage facilities will increase the movement of people and the number of drainage spots, which could lead to increase and concentration of wastewater volume and load.

To improve water quality, it is necessary to construct a sewerage system that can collect and treat increasing volumes of wastewater.
CHAPTER 3 PLANNING BASIS FOR SEWERAGE SYSTEM

3.1 SANITATION PROVISION

In September 2015, NWSDB prepared the Pre-Feasibility Report for the Anuradhapura Wastewater Treatment and Disposal System at its own expense. Targeting populations for 2048, the plan identifies 70 km of gravity sewers, 7.5 km of force mains and a 7,100 m^3 /day activated sludge treatment plant. The population projections are based on the 2012 Census data.

The City M/P will be based on this study and considers the population for a larger collection area.

3.1.1 Target Year

According to "NWSDB Design Manual D7 Wastewater Collection, Treatment, Disposal & Re-Use 2012", design period for collection network, pumping stations, STP, and effluent disposal and utilization is 30 years. Therefore, 2046 is selected as the target year for this Master Plan.

3.1.2 Planning and Design Criteria

(1) Sewage Flow Estimate

Item	Value	Remarks
Per capita water consumption	120 lpcd	
Domestic flow	80%	of water consumption
Non-domestic flow	75%	of Domestic Flow
Average dry weather flow (ADWF)	Domestic + Non-domestic flow	
Daily maximum dry weather flow	1.1 times	of ADWF
Hourly maximum dry weather Flow	1.6 times	of ADWF
Peak dry weather flow (PDWF)	3 times	of ADWF
Infiltration	20%	of ADWF

 Table 3.1-1 Design Basis for Estimating Sewage Flow

Planning of Sewer Pipe System: Peak Dry Weather Flow (PDWF) + Infiltration Planning of Pumping Station: Hourly Maximum Dry Weather Flow + Infiltration Source: JET

(2) Trunk Sewers

a. Hydraulic Calculations of Trunk Sewers

Manning formula is used for hydraulic calculation of gravity sewers, and Hazen William formula is used for force mains (pressure flow) as follows:

Manning Formula

 $\overline{\mathbf{Q} = \mathbf{A} \times \mathbf{V}}, \quad \mathbf{V} = 1/n \times R2/3 \times S1/2$ where, Q: Flow (m³/sec), V: Velocity of Flow (m/sec), n: Roughness Coefficient, R: Hydraulic Radius (m), S: Hydraulic Gradient, A: Cross Section Area (m²) **Hazen William Formula** $\mathbf{Q} = \mathbf{A} \times \mathbf{V}, \quad \mathbf{V} = 0.84935 \times C \times R0.63 \times S0.54$ where, Q: Flow (m³/sec), V: Velocity of Flow (m/sec), C: Flow Velocity Coefficient, R: Hydraulic Radius (m), S: Hydraulic Gradient, A: Cross Section Area (m²)

	n	С			
Type of Pipe	(Roughness	(Flow Velocity			
	Coefficient)	Coefficient)			
PVC Pipe	0.013	120			
HDPE Pipe	0.013	120			
GRP Pipe	0.013	120			
DI Pipe (Ductile Cast Iron Pipe)	0.013	120			

Table 3.1-2 Coefficients for Sewer Design

The design slopes of gravity sewers are checked based on tractive force required to flush the sand particles expected in sewage flow. Source: JET

b. Flow Velocities

Minimum velocity: 0.65 m/s Maximum velocity: 3.0 m/s

c. Sewer Capacities

Diameter of 600 mm or less: capacity exceeds the estimated flow by at least 200% Diameter greater than 600 mm: capacity exceeds the estimated flow by at least 150%

d. Minimum Earth Cover

1.0 m

e. Minimum Sewer Diameters

Trunk sewer: 225 mm, rider sewer & branch sewer: 160 mm, lateral sewer: 110 mm

f. Pipe Materials

Table 3.1-3 r the Materials						
Diameter	Purpose	Pipe Material				
200 mm or less	Gravity	PVC Pipe				
225 to 355 mm	Gravity	HDPE Pipe				
400 mm or above	Gravity	GRP				
100 to 400 mm	Force Main	HDEP				
Above 400 mm	Force Main	DI Pipe				
Source: IFT						

Table 3 1-3 Pine Materials

Source: JET

(3) **Pumping Stations**

Table 3.1-4 shows the types of pumping station: manhole type pumping station (MTPS) or major pumping station (MPS). The Ceylon Electricity Board (CEB) requires the electrical demand of a pumping facility to be 42 kVA or less, where a transformer is not provided. Where the electrical demand exceeds 42 kVA, a transformer will be necessary in which case an MPS is more suitable. It should be noted that MTPS entails site acquisition, depending on the surrounding environment and location.

Table 3.1-4 Types of Pumping Stations

	1 0	
Type of Pumping Station	Site	Electricity
MTPS: Manhole Type Pumping Station	Under Road	Less than 42 kVA
MPS: Major Pumping Station	Property Required	42 kVA and above
Source: IFT		

Source: JET

(4) **Treatment Facilities**

The sewage treatment process is selected by considering the following factors:

- influent sewage quality and effluent discharge standards
- land availability
- construction and O&M cost
- ease of operation and maintenance (O&M)

3.1.3 Service Area

The sewage collection service area selected for the Master Plan is shown in Figure 3.1-1 and includes:

- developed and populated areas that will be almost saturated by the target year of 2046.
- city centre including large-scale commercial areas and facilities, such as schools, hotels, housing estate, religious and institutional buildings.
- high density residential areas
- areas suitable for applying centralized sewerage system.
- areas adjacent to the city where it is cost effective.

Source: JET based on data of Survey Department of Sri Lanka Figure 3.1-1 Proposed Sewage Collection Area for Anuradhapura

Table 3.1-5 shows Divisional Secretary Divisions (DSDs) and Grama Niladhari Divisions (GNDs) included in the target area.

S/No.	GND No. GND			
Anuradhapura DSD				
1.1	250	Nuwarawewa		
1.2	248	Stage 1 Part 1		
1.3	239	Wannithammennawa		
1.4	240	Thammennakulama		
1.5	249	Stage 1 Part 2		
1.6	253	Stage 2 Part 3		
1.7	252	Stage 2 Part 2		
1.8	257	Stage 3 Part 3		
1.9	251	Stage 2 Part 1		
2.0	254	Stage 2 Part 4		
2.1	245	Wanniyakulama Kotasa 4		
2.2	246	Wanniyakulama Kotasa 5		
2.3	247	Wanniyakulama Kotasa 6		
2.4	255	Stage 3 Part 1		
2.5	256	Stage 3 Part 2		
2.6	244	Wanniyakulama Kotasa 3		

 Table 3.1-5 DSDs and GNDs included in the M/P Area

Source: JET based on data of DCS

3.1.4 Sewage Flow

Rate of population increase in the project area and planned population is calculated as shown in Section 1 **APPENDIX 12**. Sewage flow to be treated is calculated as shown in Table 3.1-6 Detailed calculations can be found in **APPENDIX 1**.

M/P Area (ha)	Item	2046	Remarks		
	a Population	54,900			
	b Water Consumption (l/d/cap)	120			
	c Return Factor (%)	80			
	d Domestic Flow (m ³ /d)	5,270	$d = a \ge b \ge c$		
	e Non-Domestic Flow (m ³ /d)	3,953	e = d x 75%		
1618	f Point Source (m^3/d)	1,169	(Army camp: 1,200 per.+ Ai x b x c + Visitor: 26,000 per	r force camp: 1,500 per.) sons x 35L/d	
	g Infiltration (m ³ /d)	2,078	$g = (d + e + f) \ge 20\%$		
	h Daily Average Flow (m ³ /d)	12,470	h = d + e + f + g		
	i Daily Maximum Flow (m ³ /d)	13,509	i = (d + e + f) x 1.1 + g	For STP design	
	j Hourly Maximum Flow (m ³ /d)	18,705	$j = (d + e + f) \ge 1.6 + g$	For PS design	
	k Peak Flow (m ³ /d)	33,254	k = (d + e + f) x 3.0 + g	For Sewer design	

 Table 3.1-6 Estimated Sewage Flow

Source: JET

3.1.5 Influent Sewage Quality

The design influent wastewater quality, based on sampling and analysis, and in consultation with NWSDB, is shown in Table 3.1-7. Details of the design influent wastewater quality are shown in **APPENDIX 2**.

	Influent Sewage
	Design
BOD ₅	240
COD	600
TSS	160
T-N	45
T-P	6
Unit: mg/L	•

Table 3.1-7 Design Influent Sewage Quality

Source: JET

CHAPTER 4 PRELIMINARY PLAN AND DESIGN OF THE SEWARAGE SYSTEM

4.1 GENERAL LAYOUT

The proposed sewerage development plan for Anuradhapura MC is shown in Figure 4.1-1 An enlarged map, flow calculations, and a longitudinal sectional view are attached in **APPENDIX 3**.

Source: JET

Figure 4.1-1 Sewerage Development Plan for Anuradhapura MC

4.2 SEWAGE COLLECTION FACILITIES

The design of the STP and location of major pumping stations depends on the layout of the trunk sewers. The length of branch sewers will be like those in other similar projects. The length of lateral sewers to the houses and buildings is estimated based on the projected population.

4.2.1 Sewer Network

The trunk sewer mains are listed in Table 4.2-1.

Item	Diameter	Material	Length	Remarks
Branch Sewer	225mm	HDPE Pipe	242,700m	Including Force Main
	Sub-Total (Br	anch Sewer)	242,700m	
Trunk Sewer	225mm	HDPE Pipe	2,047m	
	280mm	HDPE Pipe	213m	
	315mm	HDPE Pipe	24m	
	355mm	HDPE Pipe	579m	
	400mm	GRP Pipe	1,034m	
	450mm	GRP Pipe	986m	
	500mm	GRP Pipe	1,429m	
	600mm	GRP Pipe	1,758m	Pipe Jacking (301m)
	700mm		4,453m	Pipe Jacking (348m)
	900mm	GRP Pipe	861m	
	1000mm	GRP Pipe	40m	
	110mm	HDPE Pipe	1,822m	Force Main
	125mm	HDPE Pipe	793m	Force Main
	140mm	HDPE Pipe	597m	Force Main
	200mm	HDPE Pipe	1,252m	Force Main
	225mm	HDPE Pipe	150m	Force Main
	250mm	HDPE Pipe	375m	Force Main
	Sub-Total (Trunk Sewer)		18,413m	Sub-Total (Pipe Jacking) 649m
Total	Branch Sewer + Trunk Sewer		261,113m	
	Cros	sing: Railway (Crossing (4 locati	ons), River Crossing (1 location)

Table 4.2-1 Major Sewer Mains

*Pipe Jacking of HDPE Pipe & GRP Pipe is installed by the slip lining method. Source: JET

4.2.2 Sewage Pumping Stations

The main pumping stations are shown in Table 4.2-2.

Item No.	Design Flow	Total Pump Head	Unit	Remarks
MTPS-01	Approximately 3.3 m ³ /min	15 m	1+(1)	
MTPS-02	Approximately 2.3 m ³ /min	10 m	1+(1)	
MTPS-03	Approximately 0.6 m ³ /min	30 m	1+(1)	
MTPS-04	Approximately 0.7 m ³ /min	35 m	1+(1)	
MTPS-05	Approximately 1.0 m ³ /min	25 m	1+(1)	
MTPS-06	Approximately 0.8 m ³ /min	30 m	1+(1)	
MTPS-07	Approximately 0.4 m ³ /min	15 m	1+(1)	
MTPS-08	Approximately 2.0 m ³ /min	30 m	1+(1)	

Table 4.2-2 Main Pumping Stations

Notes: MPS: Major Pumping Station MTPS: Manhole Type Pumping Station (1): One pump unit for stand-by Source: JET

4.2.3 Service /House Connections

Based on the projected population of 54,900 people and an average family size of four people, in 2046, there will be approximately 4,800 households (Household Income and Expenditure Survey 2012/13 issued by the DCS).

4.3 SEWAGE TREATMENT FACILITY

4.3.1 Treatment Method

(1) Compliance with the Allowable Discharge Limits

The allowable discharge limits (shown in **APPENDIX 4**) are being amended and a draft is available to the public, although it has not yet been gazetted. The effluent quality from the proposed treatment plant will comply with the amended discharge limits. The allowable limits for organic substances in the amended version are not expected to change much. Limits for heavy metals will be stricter. The amendment introduces an allowable discharge limit for nitrates, set at 10 mg/l as NO3-N. This new requirement will have a significant impact on the selection of treatment method.

Source:http://www.zeolite-anammox.com/#!faq/c12z9 Figure 4.3-1Figure 4.3-1: Nitrogen Cycle

Figure 4.3-1 shows the reaction cycle of nitrogen during biological wastewater treatment. Ammonia nitrogen (NH3-N) and a portion of organic nitrogen is converted to nitrite and nitrate through nitrification carried out by ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Nitrate produced by the nitrification process should be reduced through denitrification to less than 10 mg/L to meet the amended allowable discharge limit. Nitrification occurs naturally in small scale STP which are usually operated with long solids retention time (SRT). High wastewater temperature promotes nitrification. Suppression of nitrification in any biological process is therefore not easy and is not a realistic option. Therefore, the treatment process must have the ability to denitrify. Denitrification is relatively easy to achieve with activated sludge processes but is more difficult for biofilm processes and stabilization ponds.

(2) Selection of Treatment Process for Estimating Land Requirements

The projected daily maximum sewage inflow for Anuradhapura is 13,600 m³/d. The most commonly used process for small-scale treatment plant is OD process. The process can be slightly modified to conduct denitrification. Kandy STP, (Figure 4.3-2) under construction, is adopting the OD process with nitrogen removal ability. The capacity of Kandy STP is 14,000 m³/d, almost the same as Anuradhapura STP. The reactor is equipped with air diffusers and mixers which can be modulated to create anoxic or aerobic conditions by switching the aeration system on and off. The duration of anoxic and aerobic conditions is designed to be 1 to 1.

Source: JFE

Figure 4.3-2 Kandy Sewage Treatment Plant (14,000 m³/day, OD Process with Nitrogen removal)

It is assumed that the treatment process for Anuradhapura STP would be OD process with nitrogen removal.

More information on the site condition is necessary for the final determination of the treatment process. Specific treatment technology cannot be discussed until a treatment plant site is determined. The discussion on treatment process at this point would be in general terms only.

(3) Characteristics of the Oxidation Ditch Process

The OD process is shown in Figure 4.3-3.

Source: JET

Figure 4.3-3 Schematic of Oxidation Ditch Process

OD process, used mainly in small-scale STPs have the following characteristics:

- simple configuration, limited number of equipment and easy operation
- bioreactor is oval or horseshoe shape
- no primary settling tank
- large reactor can adapt to inflow load fluctuation and assure long HRT
- tolerance to minor problems due to redundancy of the process
- nitrogen is removed by introducing anoxic condition in the reactor
- low excess sludge production

The OD process is not suitable for large scale STPs because of the large area requirement.

4.3.2 STP Site and General Layout of Unit Processes

(1) STP Site

The candidate STP site is owned by the city and is located along the Maruwatu River. The City has confirmed in writing that the site can be used for STP (**APPENDIX 5**). The flow of Maruwatu river decreases during the dry season but the City's irrigation department has confirmed that the minimum 8 times dilution ratio can be met.

Source: JET

Figure 4.3-4 Candidate site

(2) General Layout

The land required for the OD process with nitrogen removal is calculated to be 2.4 ha including a composting facility. Figure 4.3-5 shows the layout arranged on a rectangular site.

(2.1ha)

Notes: Figure in the bracket denotes land area excluding composting facility Source: JET

Figure 4.3-5: Treatment Plant Layout

4.3.3 Odour Control

Possible odour emission points of OD process are:

- septage receiving facility
- grit chamber
- OD
- sludge treatment

The septage receiving, grit chamber and sludge treatment processes are the main odour emission points. Odour from the OD is usually not very offensive.

The necessity for odour control depends on the environmental condition near the STP.

Odour control options are as follows:

- activated carbon adsorption
- biological deodorization in combination with above
- supply of odour containing air to reactor
- soil bio-filter

Soil bio-filter is a simple method but periodical soil turnover is required for more efficient odour reduction. Activated carbon is necessary if intensive odour control is required.

4.3.4 Sewage Treatment Process

The treatment plant will accept septage from the areas that will not be connected to the sewage collection network in the foreseeable future. Since there is no primary settling tank, the maximum amount of septage that can be accepted should be 0.5% of inflow wastewater volume.

(1) **Required Treatment Level**

The assumed quality of sewage influent and effluent treated by OD are shown in

Table 4.3-1. The assumed quality of sewage was determined in consultation with MWSDB taking into consideration the wastewater quality of Moratuwa/Ratmalana STP, Ja-Ela/Ekala STP and other STPs that are in the neighbourhood of Colombo City. The target effluent quality is set to meet the allowable discharge limits. The dilution ratio of the effluent will vary depending on the flow rate in the stream at the discharge point.

Table 4.3-1 Assumed Quality of Sewage Influent and Effluent

	Inflow	Effluent
Unit: mg/L	Design Raw Water Quality	Tolerance limit
BOD5	240	30
COD	600	250
TSS	160	50
T-N	45	-
TKN	-	150
NH4-N	-	50
NO3-N	-	10
T-P	6	-
Soluble-P	-	5

Source: JET

(2) Main Unit Processes

1) Screen and Grit Chamber

Wastewater first flows through the screens and grit chamber where grit and solid wastes are removed to prevent damage to machines and equipment.

2) Oxidation Ditch

After the grit chamber, wastewater flows into the OD, the bioreactor of the process. Wastewater is mixed with activated sludge and retained in the tank for about 24 hours. The mixed liquor is continuously agitated either by rotor or propeller. Rotor movement supplies oxygen. When propellers are used, a diffuser supplies oxygen. Organic substances are biologically decomposed and ammoniac nitrogen is converted to nitrate. By introducing anoxic condition in the OD, denitrification occurs and nitrate is reduced to nitrogen gas. Anoxic condition can be introduced in some sections of the tank either by intermittent aeration or by adjusting aeration intensity.

3) Settling Tank

The mixed liquor flows into the circular settling tanks and is retained for about 6 hours while solid-liquid separation takes place. The clarified supernatant flows over the effluent weir of the settling tank. The activated sludge in the tank is collected in the sludge hopper. Some of the activated sludge is returned to the OD to keep the process going and the excess is sent to thickening and dewatering.

4) Disinfection Tank

Treated wastewater is disinfected before discharge to minimize the health risks associated with pathogens. Disinfection will be with chlorine in the form of sodium hypochlorite (NaOCl), added to the effluent after the final settling tank. If the receiving water is found to be sensitive to chlorine by-products (e.g. fish), UV radiation will be considered as an alternative.

4.3.5 Sludge Treatment and Disposal

(1) Characteristics of Produced Sludge

Since the OD process has no primary settling tank, only waste activated sludge (WAS) is produced.

WAS contains mostly protein which is the main constituent of the biomass. WAS from the OD process is aerobically stabilized because of the long solids retention time (SRT). Odour emission therefore is generally much less than primary sludge.

(2) Sludge Treatment

A typical sludge treatment process is shown in Figure 4.3-6 Excess sludge is thickened then dewatered. Thickening is carried out by gravity. Depending on the type of dewatering machine, thickening is sometimes omitted and excess sludge is dewatered directly. Anaerobic digestion is usually not used since WAS is not easily decomposed anaerobically.

Source: JET

Figure 4.3-6 Schematic for Sludge Treatment

Filter belt press or screw press type dewatering machines are commonly used. Both types of machine require sludge conditioning by polymer coagulant prior to dewatering. Screw press type dewatering machines are becoming popular for the following reasons: 1) compact size supplied as a unit containing dewatering and coagulation equipment, and control panel; 2) easy to operate, unmanned operation is possible; 3) direct dewatering of excess sludge without thickening is possible.

Figure 4.3-7 Pressurized Screw Press

(3) Sludge Disposal

The quantity of waste sludge can be calculated by multiplying the amount of suspended solids removed by 0.75. In general, SS removal efficiency of the OD process is 95%. Therefore, in the case of Anuradhapura, sludge produced at the daily maximum flow rate is 1.6 DSt/d (13,600 × (160-8) × 0.75 × 10-6). Assuming the moisture content of dewatered sludge is 80%, the amount of the dewatered sludge will be 7.8 tons/day.

(4) The options for the disposal of dewatered sludge are listed in Figure 4.3-8.

Nitrogen and phosphorus in sewage sludge are essential nutrients for plant growth. The composting process breaks down the organic substances and matured compost has no offensive odour. During composting, fermentation temperature will rise to 80-90°C, destroying pathogenic bacteria in the process. Composting is preferable to drying and dumping because it recycles the nutrients and is also hygienic. Composted sludge can be used as fertilizer for tea plantations, since it has high nitrogen content. However, strict quality control and education of users are essential.

There are various sludge composting processes. The simplest is pile composting, shown in Figure 4.3-9 Sludge is dewatered to a moisture content of around 60% by adding organic materials such as sawdust, rice hull, straw, bark, or composted sludge. The dewatered sludge is piled on a flat concrete bed. Air is supplied through a pipe or by periodic turnover using a shovel or tractor. It usually takes 10-14 days for the first stage fermentation. The second stage will take 1 to 3 months to produce matured compost.

Figure 4.3-9Figure 4.3-9: Pile Composting

Sludge compost contains nitrogen and phosphorus but only a small amount of potassium. Composting with other organic wastes such as cow dung can increase the potassium content and thus the value of compost products.

If there are no agricultural activities in the area to use the composted sludge, dumping may be the only option. Some dump sites do not accept materials with more than 60% moisture content. Dewatered sludge usually at around 80% moisture content must be dried before dumping.

Figure 4.3-10 shows Anuradhapura's solid waste the pile composting facility and the resulting product.

Source: JET

Figure 4.3-10 Solid Waste Composting Facility (Left) and Compost Product (Right, LKR 400/50 kg)

4.4 ON-SITE FACILITIES AND SEPTAGE MANAGEMENT

4.4.1 On-site Facilities

The west side of Anuradhapura MC is sparsely populated therefore on-site septic tanks can provide effective wastewater treatment. Design, construction, and maintenance of septic tanks should comply with the national standard (Sri Lanka Standard (SLS) 745 Part 2: 2009) so that their proper functioning can be maintained.

4.4.2 Septic Tanks

Septic tanks retain wastewater, allowing the solids to separate from the suspension and facilitate partial decomposition to reduce pollution load. A septic tank must be adequately sized to perform these functions properly.

The schematic of a typical septic tank is shown in **APPENDIX 6**. The tank should be waterproof and durable enough to withstand external soil load as well as internal water pressure. When the tank is placed under a driveway or parking area, the specifications must ensure the ability to withstand reasonable vehicle loads.

4.4.3 Septic Tank Operation & Maintenance

Periodic maintenance is important for the facility to function sustainably. Therefore, users and owners should be aware of the following precautions:

(i) Sludge Removal

A septic tank requires removal of sludge at regular intervals. In general, when filled with sludge and scum, the tank should be cleaned, leaving about one-third to half of the sludge as a 100 to 150 mm layer of "seed sludge" to restart the treatment process. The sludge pumped from the tank is disposed of at a STP to be constructed.

(ii) Access Cover

An access cover is kept shut tightly to prevent other waste from entering the tank. When damaged, it should be repaired or replaced immediately.

(iii) Mosquitoes

To prevent mosquito breeding, make sure that the septic tank is kept tightly closed. Vents must be provided with mosquito mesh and checked periodically. The mesh must be replaced, as required.

(iv) Blockage

Blockage is typically caused by solids clogging the inlet of the septic tank. Preventive measures should be taken. Solid matter should be cleared from the access cover, using a long and flexible stick.

CHAPTER 5 INSTITUTIONAL ARRANGEMENTS FOR IMPLEMENTATION

The implementation of sewerage systems requires planning, design, construction, and eventually operation and maintenance. Capacity development of staff from NWSDB, relevant regional support centres (RSCs), and MCs is needed to ensure required tasks are satisfactorily conducted at each level.

5.1 PROJECT IMPLEMENTATION AND MANAGEMENT

5.1.1 Examples of Project Implementation Structures in Sri Lanka

Table 5.1-1 shows the implementation structure of water and sewerage works in 6 municipalities. Some sewerage works are under implementation or at the planning stage.

		Water works		Sewerage works				
Area	Ourorship	Managamant	091	Ourorship	Managamant	08	O&M	
	Ownership	Management O&M		Ownership	Wanagement	STP	Pipe	
CMC	N	N	N	MC	MC		MC	
Kandy	МС	MC	МС	MC	MC (unfixed)	N (unfixed)	MC (unfixed)	
Ratmalana- Moratuwa	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Ja-ela/Ekala	N	N	N	N	N	Ν	N	
Hikkaduwa	Ν	N	N	N	N	Ν	N	
Kataragama	N	N	N	N	N	Ν	N	
(N: NWSDR)								

Table 5.1-1 Organization of Water and Sewerage Works in 6 Municipalities

(N: NWSDB)

Source:

Colombo MC (CMC) owns the sewerage works and operates and maintains the pumping stations and sewer networks, while the water works is owned and managed by NWSDB.

Kandy MC owns the water and sewerage works, but the O&M of STP will be out-sourced to NWSDB, while the MC will conduct sewer pipe maintenance

The water and sewerage works in Ratmalana-Moratuwa, Ja-ela/Ekala, Hikkaduwa, and Kataragama, are owned and managed by NWSDB.

The ownership and the implementation structure of the sewerage works is determined by each municipality.

5.1.2 Public Works in Anuradhapura MC

Table 5.1-2 shows the water supply, solid waste collection and disposal, on-site sanitation, road construction/maintenance, and storm-water management in the MC.

	Responsible org	anization	NWSDB, RSC North Central
	Water supply schemes		30
	Blanch offices		33
	Planning & Designing		Engineer 6, Technical 6, Others 6
	WTP	Full scale	12
		Partial scale	7
Water works		Out-sourcing	Cleaning, Security, Labor
	Laboratories		2
		Out-sourcing	Heavy metal, algae TOC analysis
	Transmission and Distribution		Engineer 0, Technical 1, Others 22
	Meter reading		70
	Charge Collection	n .	13
	Out-sourcing		·
	Responsible org	anization	
	W OIKS	Diamina & Davianina	Collection, Transportation to dump site
	Type of tasks	Planning & Designing	Implementing
		Construction	Implementing
	Ein on ain a saura	O&M	MC hudget
	Sorvice charge	es	no
Solid waste	Dumping gito	Logation	IIO Kirikkulama (14 aaraa, awnad by MC)
mon o comont	Dumping site	Conacity	280 000 m2
management	Collection	Method	280,000 HD
	concetion	Vehicles	Compactor 1 Tractor 14 Truck 1 Cart 24
	Staff	PHI	1
	Stan	Supervisor	4
		Driver	18
		Labors	186
	Out-sourcing	Labors	100
	Responsible org	anization	MC
	responsible org		Provide instruction on construction of facilities de-sludging of senite tanks taking
	Works		has a stick of the structure of the structure of the structure of section of the structure
	T	Diamina & Davianina	legal action against rules violation .
	Type of tasks	Construction	
		Construction	no Luci la construir a
	NY C II	O&M	Implementing 42,000
1 <u>t</u> <u>1</u>	No. of septic	At present	42,000
	Financing sources		70000 (2020)
	Sorvices	Installation	Dravida contractors for Dranarty /land owner or House helder
a	Services	Approval	MC (PHI)
On-site sanitation		Supervisor	MC (PHI)
	Sludge removal	Frequency	A times/year
	Sludge tellio val	Procedure	
		Sludge disposal site	At New Bustand 0.5 Acre
	Service charge	Installation	By Property /land owner or House holder
	Service enange	Sludge disposal	3.000 Rs + VAT
	Staff	Supervisor	1
		PHI	3
		Driver	2
		Labors	8
	Out-sourcing	•	no
	Responsible org	anization	MC
	Works		Type C and D
	Type of tasks	Planning & Designing	Implementing
		Construction	Implementing
Road construction		O&M	Implementing
and maintenance	Financing sourc	es	MC budget, Government subsidy
works	Staff	Engineer	1
		Technical officer	4
		Others	109
	Out-sourcing	Details	Construction / Rehabilitation
	-	Type of contract	Short term contract period by
	Responsible org	anization	MC
	Works		Deearin of drains, clearing of blockages, cleaning of drains
	Type of tasks	Planning & Designing	Implementing
		Construction	Implementing
Storm water		O&M	Implementing
management	Existing drainage system Open rrain system (2'g		Open rrain system (2'ø=20km, 20'ø=5km)
management	Financing sourc	es .	MC budget, Government subsidy
	Staff	Engineer	1
		Technical officer	4
		Others	114
	Out-sourcing		no

Table 5.1-2 Public Works in Anuradhapura MC

Source: MC

Anuradhapura water supply is one of the 30 water supply schemes operated by NWSDB, North Central RSC. The MC carries out all the other public works services from planning to O&M without outsourcing.

Construction of on-site sanitation is managed by house or land owners. The MC is responsible for collection and disposal of septic tank sludge and charges owners for the service.

The MC budget and government subsidies are used to cover the costs of providing the service.

5.1.3 Organizational Options for Implementing Sewerage Works

5 options are prepared for the implementation of sewerage works as shown in Table 5.1-3.

Tuble cit o organizational options for implementing betterage works								
Activity	Option 1	Option 2	Option 3	Option 4	Option 5			
Request of sewerage works	NWSDB	NWSDB	LA	LA	LA			
Approval of sewerage works	MWSD	MWSD	MWSD ⇒ MLGPC	MWSD ⇒ MLGPC	MWSD ⇒ MLGPC			
Budget Preparation	MWSD ⇔ NWSDB	MWSD ⇒ NWSDB	MLGPC ⇒ LA	MLGPC ⇒ LA	MLGPC ⇒ LA			
Project Planning	NWSDB assisted by LA							
Planning & Designing	NWSDB & C/C							
Construction	P/C	P/C	P/C	P/C	P/C			
Construction Supervision	NWSDB & C/C							
Ownership of facilities	NWSDB	NWSDB	LA	LA	LA			
O&M Sewer Networks	NWSDB	P/O supervised	LA	P/O supervised	LA			
O&M STP		by NWSDB	NWSDB	by LA				
Loan	MWSD ⇒	MWSD ⇒	MLGPC ⇒	MLGPC ⇒	MLGPC ⇒			
Settlement	NWSDB	NWSDB	LA	LA	LA			

 Table 5.1-3 Organizational Options for Implementing Sewerage Works

Notations : 1. LA- Local Authority (MC, Urban Council (UC), Pradeshiya Sabha (PS)

2. NWSDB- National Water Supply & Drainage Board

3. MWSD- Ministry of Water Supply & Drainage

4. MLGPC- Ministry of Local Government & Provincial Councils

5. C/C- Appointed Consultants/Contractor

6. P/C- Private Contractor

7. P/O- Private Operator

Source: JET

In Options 1 and 2, the sewerage system is owned and managed by NWSDB, in one case the O&M is outsourced to the private sector.

In Options 3 and 4, the MC owns the system but O&M of the STP is outsourced either to NWSDB (Option 3), or to the private sector (Option 4),

In Option 5 the system is owned, operated, and maintained by MC.

In all five options, the planning, design, and construction is carried out by NWSDB because they are experienced with these tasks.

5.1.4 Preferred Implementation Structure for Sewerage Works

Water works in the MC area are managed by NWSDB, therefore it makes sense that the sewerage works should also be managed by NWSDB for the following advantages:

A) Service charge can be set lower

The integration of water and sewerage services will reduce the duplication of functions such as accounting, personnel management, customer service, and billing. The savings in administrative overhead can help reduce the sewerage service charge.

B) Experience and knowledge

NWSDB has many experienced engineers and skilled labourers that are working in RSC North Central and managing the MC's water works. The Greater Colombo Sewerage (GCS) Office, organized under Assistant General Manager (AGM) (O&M-GC), is responsible for managing several existing sewerage works. Some NWSDB staff can be transferred to the sewerage works in Sri Jayawardenapura Kotte MC to ensure a smooth start-up and operation.

Therefore, Options 1 or 2 are preferred for implementing the sewerage works in Anuradhapura MC.

5.2 ORGANIZATION FOR IMPLEMENTATION

To organize the implementation of the sewerage system in Anuradhapura MC, the detailed roles of NWSDB, relevant RSC and MC must be defined. **Table 5.2-1** shows the roles for each party from planning to O&M for Options 1 and 2.

Omtion 1			Stage of sewerage works			
Option-1		Planning	Designing	Construction	O&M	
	Tasks	Supervision Decision of STP site and others	Supervision	Supervision	O&M of sewerage works Consideration of out-sourcing	
NWSDB	Staff	* Technical Team	* PD under DGM * Staff in Project Management Units (PMU)	\Rightarrow	* Staff in STP * Staff for sewer networks	
RSC	Tasks		Supporting project activities	\Rightarrow	Supporting O&M of sewerage system Public awareness Promotion of house connection	
	Staff		* Manager in sewerage works	\Rightarrow	\Rightarrow	
МС	Tasks	Cooperation for planning works	Cooperation for land acquisition	Cooperation for STP and sewer networks construction	Monitoring of effluent Public awareness Promotion of house connection	
	Staff	* Staff for tasks above	\Rightarrow	\Rightarrow	\Rightarrow	

Table 5.2-1 Role of NWSDB and MC at Various Implementation Stages

Ontion 2		Stage of sewerage works					
Option-2		Planning	Designing	Construction	O&M		
NWSDB	Tasks	Supervision Decision of STP site and others	Supervision	Supervision	Supervision		
	Staff	* Technical Team	* PD under DGM * Staff in PMU	\Rightarrow	* Supervisor of O&M of sewerage system		
RSC	Tasks		Supporting project activities	\Rightarrow	Supporting O&M of sewerage system		

					Public awareness Promotion of house connection
	Staff		* Manager in sewerage works	\Rightarrow	\Rightarrow
МС	Tasks	Cooperation for planning works	Cooperation for land acquisition	Cooperation for STP and sewer networks construction	Monitoring of effluent Public awareness Promotion of house connection
	Staff	*Staff for tasks above	\Rightarrow	\Rightarrow	\Rightarrow

Source: JET

5.2.1 Organization of the NWSDB Sewerage Department

The organization of the NWSDB sewerage department is as shown in Figure 5.2-1 When the sewerage project is implemented, the engineering tasks in planning, design, construction, and O&M will increase.

Figure 5.2-1 Organization of the NWSDB Sewerage Department

Some re-organization of the sewerage department must be made to cope with the increased tasks as shown in Figure 5.2-2.

The responsibilities of the Deputy General Manager (DGM) can be split into DGM/Specialist (Engineering) and DGM (O&M). AGM for planning and design (P&D) can be split into AGM (Plan & Tech.) and AGM (Design). AGM (O&M-Regionals) can be added to AGM (O&M-GC) to cope with the increased work load.

Figure 5.2-2 Proposed Re-organization of the NWSDB Sewerage Department

At the planning and design stage, NWSDB will establish a Technical Team, as shown in **Figure 5.2-3** to work with the consultants. At the construction stage, a Project Director (PD) will be added under the Additional General Manager (Addl. GM) and a PMU for supervising the construction works will be

established under the PD.

A Manager under the AGM (O&M-Regionals) will work with the RSC project to coordinate the O&M of STP and sewer networks.

Source: JET

Figure 5.2-3 NWSDB Sewerage Department Responsibilities for Project Implementation

5.2.2 Organization of RSC North Central

A Manager in charge of the project will be recruited from RSC North Central and will report to DGM (RSC North Central). Because the RSC has little experience in sewerage works, technical support will be provided by AGM (O&M-Regionals). RSC North Central will be responsible for operations and customer services.

5.2.3 Organization of Anuradhapura MC

Anuradhapura MC will support the implementation of the sewerage works by securing the STP site and providing input and assistance to NWSDB during the planning, design, and construction stages.

At the O&M stage, the MC will monitor STP effluent quality and the nearby environment to ensure compliance. The MC will assist NWSDB with building public awareness and the promotion of house connections.

5.3 CAPACITY DEVELOPMENT

5.3.1 Securing Human Resources

(1) NWSDB

A PD and a PMU are required at the construction stage. A Manager reporting to the AGM (O&M-Regionals) and engineers, technical staff, drivers, and labourers are needed to operate and maintain the facilities. Some staff can be transferred from existing sewerage and water supply operations to facilitate the start up. New staff will have to be hired to fill the vacancies left by the transfers.

As shown in Table 5.3-1, besides 13 national universities (most with faculties of civil, mechanical, electrical engineering, chemistry, and environmental sciences), there are 8 technical colleges/high-schools. There will be many graduates who will have the required knowledge to join the work force in the sewerage sector.

University	Civil Works	Electrical	Mechanical	Chemistry	Environment
Colombo				1	
Peradeniya	1	1	1	1	
Sri Jayewardenepura				1	
Kelaniya				1	
Moratuwa	✓	1	✓	1	
Jaffna	1	1	✓ <i>✓</i>	✓	
Ruhuna	1	1	✓	1	1
Open University	1	1	✓ <i>✓</i>	✓	1
Eastern				1	
South Eastern	✓	1	✓		
Rajarata				1	1
Sabaragamuwa					
Wayamba		1			
Uva Wellassa					
Visual & Performing Arts					
College/High school	Civil Works	Electrical	Mechanical	Chemistry	Environment
Construction Industry Development Authority	1	1	1		
Ceylon-German Technical Training Institute		1	1		
National Apprentice & Industrial Training Authority	1	1	1		
National Vocational Training Authority	~	1	✓		
Industrial Technical Institute				1	✓
National Building Research Organization	 Image: A start of the start of				1
Institute of Chemistry				1	1
Source: IET		•	-	•	•

F-LL F 7 1 F1 4 ⁹	- 4 NT - 4º 1	TT	T	$(1)_{1} = \frac{1}{2} = \frac{1}$	7 - L L -
гаріе 5. эн насшінес.	at National	Universities and	Technical	Coneges/High s	Schools.
iubic die i i ucultics	at 1 automai	omit of bitles and	recument	Concees/ men	JUNIOUIS

Satisfactory working conditions and compensation are important to keep staff motivated. As shown in Table 5.3-2, NWSDB salaries are higher than those of similar positions in the private sector. NWSDB has a decent promotion system and staff is motivated to perform well.

Grade		Staff of I	NWSDB	Staff of a private sector						
		Salary (LKR)	Benefits (in LKR)	Salary (LKR)	Benefits in (LKR)					
1	Engineer	125,000	39,500	105,000	21,000					
2	Supervisor	75,000	30,500	37,500	6,000					
3	Skilled Labourer	50,000	28,500	27,500	8,000					
4	Un-skilled Labourer	40,000	28,000	19,000	5,000					

Table 5.3-2 Comparison of Salaries and Benefits between NWSDB and Private Sector

Source: JET

(2) MC

Additional staff will be required for coordination with NWSDB in the acquisition of STP and pumping station sites and in the construction of sewer networks.

At the O&M stage the MC's health department would likely be given extra responsibilities such as monitoring the STP effluent and surrounding areas, conducting public awareness campaigns and promotion of house connections. Therefore additional human resources and training will be required.

5.3.2 Development of Human Resources

A lot of technical knowledge and experience is required from planning to O&M. Capacity development is very important especially when many new staff with almost no experience will be hired. Training seminars and OJT are necessary.

(1) **NWSDB Training Centre**

The Training Centre currently is not offering many technical programs on sewerage systems. As many staff will need training, this aspect of the Centre's curriculum will have to be enhanced. Table 5.3-3 shows the programs that should be added.

Table 3.3-3	Table 5.5-5 Required framing roograms for bewerage bystems					
Category	No.	Title of the Program				
Dlanging	1	Planning of Sewage Works				
Planning	2	Principle of Asset Management				
	1	Designing of Sewer System				
	2	Jacking Method				
Designing	3	Rehabilitation of Pipe Networks				
Designing	4	Designing of STP				
	5	Mechanical System Design in STP				
	6	Electrical System Design in STP				
	1	Maintenance of Sewer System				
	2	Operation of STP				
$\Omega * M$	3	Maintenance of Mechanical System in STP				
Oam	4	Maintenance of Electrical System in STP				
	5	Water Quality Management				
	6	Commercial and Industrial Wastewater Management				
Safety Management	1	On-site Safety management				
Risk Management	1	On-site Risk Management				

 Table 5.3-3 Required Training Programs for Sewerage Systems

Source: JET

NWSDB staff, as well as those from relevant MCs and private sector companies (if out-sourcing is used), should participate in the training programs.

(2) On-the-Job Training (OJT)

OJT in the STP, at pumping stations, and sewer networks is necessary. Generally, the contractor will conduct OJT for staff of STP at commissioning. Staff should also be dispatched to other STPs for 6 months to a year to gain experience in maintenance and trouble-shooting.

5.3.3 Sewer Maintenance Equipment and Vehicles

Scheduled sewer cleaning is carried out regularly and at emergency situations. There should be adequate number of specialized machines and vehicles for the work. The operation can start with the number of machines and vehicles other systems are using, as shown in Table 5.3-4 More can be added as the service area expands and as more maintenance is required.

	Dehiwala – Mount Lavinia	Jayawadanagama - Kolonnawa	Ja-ela/Ekala				
Gully/ Jetting Combined Machine	-	1	-				
Gully Bowser	2	1 (with frequent breakdown)	1				
Portable Jetting Machine	1	1 (with frequent breakdown)	-				
Crane Truck	-	1 (with frequent breakdown)	-				
High Pressure Jet Machine	1	1	1				
High Pressure Water Spraying Machine	-	1	-				
Learner IET							

	• • • • • • • • •	
Table 5.3-4 Sewer Maintenance Ed	quipment & venicles at	Existing Sewerage Works

Source: JET

5.3.4 Customer Service

RSC North Central is already managing customer service for water supply. When sewerage is added to their responsibilities, they will have to deal with and track customer complaints such as foul odour and clogged pipes. They can learn from other locations where sewerage systems are already in operation.

5.4 CONSTRUCTION MANAGEMENT FOR THE PROJECT

The PMU established under the PD will oversee the activities during construction.

5.4.1 PMU

There will be 40 staff in the PMU, including engineers and labourers.

5.4.2 Project Office

It would be ideal to have the PMU office in the RSC. However, if this arrangement cannot be accommodated, the office can be set up near the project site. The office should be big enough to house the contractors as well. Another matter to bear in mind is the need to have enough parking for people who have to come to the project site.

COST ESTIMATE AND PROCUREMENT CHAPTER 6

6.1 PROJECT COST

6.1.1 Construction and Project Costs

Construction cost is estimated based on NWSDB's "RATES 2016". The rates not contained in this schedule are calculated based on previous JICA projects and Pre-F/S reports in Sri Lanka. Construction costs are presented in APPENDIX 7.

1.4.

Project cost is estimated based on the follow	ing con	ditions.
Construction Cost	:	Estimated with price level at January, 2017
Consulting cost	:	Estimated with price level at January, 2017
Consulting period	:	2019~2024
Construction period	:	$2021 \sim 2024$
Administration cost	:	5%
Physical contingency	:	5%
Interest during construction	:	Construction : 0.3% Consulting : 0.01%
Front end fee	:	0.2%
Tax and duty	:	15%
Price escalation	:	Local currency : 3.8%, Foreign currency : 1.6%
Exchange rate	:	LKR 1 = JPY 0.77

41 C 11

Project cost is estimated at approximately 18.0 billion LKR (13.8 billion JPY), excluding tax and duty, as shown in Table 6.1-1 Details of the project cost estimate are presented in APPENDIX 8.

	Amo	unt	Total Amount	Total Amount
	L.C. (LKR)	F.C. (JPY)	LKR	JPY
1 Construction Cost				
A Anuradhapura STP (Q=13,600m3/day)	1,899,054,545	2,193,408,000	4,747,636,364	3,655,680,000
B Trunk Sewer & Pump Station	500,994,000	665,224,000	1,364,919,000	1,050,992,000
C Branch Sewer & Pump Station	3,295,595,000	1,116,360,000	4,745,413,000	3,653,969,000
D House Connection	1,372,500,000	0	1,372,500,000	1,056,825,000
Sub-total of 1(A-D)	7,068,143,545	3,974,992,000	12,230,468,364	9,417,466,000
2 Administration cost	847,000,000	0	847,000,000	652,190,000
3 Consulting cost	465,000,000	1,022,000,000	1,792,273,000	1,380,050,000
4 Physical contingency for construction cost	438,000,000	218,000,000	721,117,000	555,260,000
5 Price escalation for construction cost	1,697,000,000	380,000,000	2,190,506,000	1,686,690,000
6 Land acquisition and compensation	-	-	-	-
7 Interest during construction	0	114,000,000	148,052,000	114,000,000
8 Front-end Fee	0	26,000,000	33,766,000	26,000,000
9 Tax and duty	3,049,000,000	0	3,049,000,000	2,347,730,000
Sub-total of (2-9)	6,496,000,000	1,760,000,000	8,781,714,000	6,761,920,000
Total including Tax and Duty	13,564,143,545	5,734,992,000	21,012,185,000	16,179,383,000
Total excluding Tax and Duty	10,515,143,545	5,734,992,000	17,963,185,000	13,831,653,000
Eligible Portion (1, 3, 4, 5 and 7)	9,668,143,545	5,708,992,000	17,082,419,000	13,153,463,000
Non-Eligible Portion (2, 6, 8 and 9)	3,896,000,000	26,000,000	3,929,766,000	3,025,920,000

Table 6.1-1 Estimated Project Cost

Source: JET

6.1.2 Operation and Maintenance (O&M) Cost

O&M cost is estimated based on the Ratmalana/Moratuwa sewerage system as shown in Table 6.1-2 It includes staff cost, utilities, chemical cost, repair expenses, installation cost, security expenses, and other expenses. The detailed estimate is presented in APPENDIX 9

Table 6.1-2 Estimated O&M Cost								
	Total Amount (LKR/year)	Total Amount (JPY/year)						
Anuradhapura	199,951,000	154,445,000						
Source: JET								

And OPM Cost Table (1) Fat

6.2 MULTI-PHASED CONSTRUCTION

Construction should be conducted in phases because of the size of the project - service area of 1,618 ha and cost of 18.0 billion LKR (13.8 billion JPY).

The total project cost for phased construction would be higher than the estimate shown above. The extra cost will depend on the number of phases and timing.

CHAPTER 7 FINANCIAL PLAN

7.1 FINANCIAL CONDITION OF ANURADHAPURA MUNICIPAL COUNCIL

Table 7.1-1 shows a summary of the Income & Expenditure Statement for the Anuradhapura MC. Revenue should cover total expenditures. Any surplus or deficit is rolled over to the next year. Like other MCs, Anuradhapura MC pays the monthly salaries of central government employees working at the MC and gets reimbursed annually through a central to provincial government budgetary transfer. This is included in the "Revenue, Grant & Reimbursement" account.

			Un	it: million LKR
Year	2012	2013	2014	2015
Actual Revenue				
Assessment Rates	31.91	49.71	50.44	53.27
Rent	33.14	27.03	34.12	68.66
License Fees	22.79	29.53	30.29	18.55
Charges for Service	10.63	8.19	10.19	11.86
Warrant Cost/Fine	2.56	4.37	2.88	1.38
Stamp duty	2.50	4.76	12.00	48.83
Court Fines	0.77	0.00	0.21	1.86
Other Revenue	7.01	5.28	10.39	9.56
Total	111.33	128.87	150.51	213.99
Recurrent Expenditure				
Personal Emoluments	118.55	128.23	201.27	235.62
Travelling Expenses	0.87	1.14	1.31	0.97
Supplies & Equipment	31.06	24.58	67.63	45.49
Repairs to Capital Assets	18.43	57.51	20.23	32.46
Transport	8.42	6.64	13.77	13.82
Interest & Dividends	6.50	7.22	7.85	12.48
Grants	9.85	12.76	19.12	35.25
Pension Gratuity	2.26	3.68	3.08	1.15
Total	195.93	241.78	334.26	377.24
Actual revenue less Recurrent Expenditure	-84.60	-112.91	-183.75	-163.25
Revenue, Grant & Reimbursement	90.75	98.45	130.03	204.80
Capital Receipts & Grants	39.56	32.66	39.74	13.74
Capital Expenditure	38.58	35.72	66.21	121.10
Total Surplus (deficits)	7.13	-17.53	-80.20	-65.80

Table 711 Commencement	f Transman O	Ermonditure of	A mumo dhamuma MC
Table 7.1-1 Summary (n income a	Expendintre of	Апигаопарига ми.
		Linpentate of	maraanapara

Source: Anuradhapura MC

Anuradhapura MC has recorded an annual deficit since 2013, even after including salary reimbursement and capital receipts and grants. The annual deficit peaked in 2014 and decreased slightly in 2015 (Figure 7.1-1). The deficit as a percentage of "Revenue, Grants & Reimbursement" was 7.7%, 28.6%, and 15.7% in 2013, 2014, and 2015. The deficit corresponds to a 99% increase (added 117.07 million LKR) in "Personal Emoluments" (staff salary) from 2012 to 2015 (Figure 7.1-2Compared to staff salaries, total revenue has increased steadily from 2012 to 2015 but at the slightly lower rate of 92% (added 102.66 million LKR) (Figure 7.1-3). One of the other reasons for the annual deficits is the massive 214% increase in capital expenditure from 2012 to 2015 (added 82.51 million LKR) (Figure 7.1-4).

Anuradhapura MC's financial condition is weak. It is recommended that sewerage facilities be implemented and operated by NWSDB with the cost burden for construction shifted to the central government (in the event of an ODA loan, repayment should be borne by the central government). The sewage tariff should be set to fully recover the O&M costs.

Source: JET, based on Anuradhapura MC data Figure 7.1-1 Trend of Total Surplus (deficits) - Anuradhapura MC

Source: JET, based on Anuradhapura MC data Figure 7.1-2 Trend of Staff Salaries - Anuradhapura MC

- Anuradhapura MC

Source: JET, based on Anuradhapura MC data Figure 7.1-4 Trend of Capital Expenditure - Anuradhapura MC

7.2 FINANCING SEWERAGE FACILITY CONSTRUCTION AND O&M

7.2.1 Construction, O&M, and Replacement Costs

The Cabinet Memorandum "Regularizing Foreign Financing Mechanism in Relation to Water Supply and Sewerage Project", dated 26 January 2016, stipulates that the Treasury will bear 100% of the debt service (capital & interest) for sewerage projects.

In many countries including Japan, the sewage tariff does not cover the full cost of construction, O&M, and future replacement. In many developing countries such as Malaysia, Thailand, and Vietnam, it is usually difficult for the sewage tariff to cover even just the O&M costs because of the low willingness to pay.

The following cost burden principle for sewerage service should be used in Sri Lanka:

- 100% of the construction cost to be covered by the central government, i.e. 100% grant to NWSDB or MC.
- O&M costs shall be covered by the sewage tariff which will be implemented gradually.
- small-scale replacements should be covered by NWSDB's or the MC's own budget, but large-scale ones will be conducted as projects funded by the central government.

Therefore, the sewage tariff is structured to cover the only the O&M costs of the sewerage facilities.

7.2.2 Sewage Tariffs

(1) **Two Types of Tariffs**

Two types of sewage tariffs are proposed to recover the full costs of O&M for sewerage systems:

Type 1 recovers the O&M costs of the sewerage facilities that serve customers in the MC's sewer service area. MCs would use this type of tariff when they own, operate, and maintain the sewerage system or if NWSDB applies a project specific tariff to the MC instead of the Type 2 tariff.

Type 2 is a uniform, nationwide tariff, that would recover O&M costs of all sewerage facilities owned, operated, and maintained by the NWSDB, including those identified in the City M/P. (refer to **Figure 7.2-1**).

Source: JET

Figure 7.2-1 Difference Between Type 1 and Type 2 Sewage Tariff

(2) Calculation Methodology

The sewage tariff is calculated by dividing the estimated annual O&M costs (excluding depreciation and replacement) by total water consumption of the sewerage customers.

A profit margin is provided to set aside funds for small-scale replacements and contingencies such as unexpected disasters or sudden price hike of cost items. It is set at 10% of the O&M costs for Type 1 and 5% for Type 2 tariff. The higher rate reflects the much smaller budget for MCs compare to that of NWSDB.

Sewage charges will be added to the water bill. The sewage charge is calculated by dividing the total O&M costs by the water consumption volume. Therefore, the sewage charge to each customer is proportional to the amount of water they consume.

(3) Sewage Tariff Proposed by the Strategic M/P

The sewage tariff proposed by the Strategic M/P is calculated for NWSDB to recover all the O&M costs under current conditions. The tariff would be incrementally implemented with increases in 2019 and 2022 (Strategic M/P, Section 7.3.1). The sewage tariff to cover the O&M costs is calculated by considering that it can take up to ten years to reach full operational capacity.

When NWSDB is responsible for the O&M and billing on behalf of the MC, the sewage tariff proposed by the Strategic M/P should be implemented as planned. A tariff increase for each City M/P would be implemented after the STP is operating at full capacity (Figure 7.2-2).

Year	2017	2018	2019	2020	2021	2022	2023	2024	2025
1st Tariff Raise of Strategic M/P			\bigtriangleup						
2nd Tariff Raise of Strategic M/P						\bigtriangleup			
3rd Tariff Raise of City M/P (if necessary)								7	

Source: JET

Figure 7.2-2 Implementation Schedule for Tariffs

When the MC is responsible for sewerage services, the sewage tariff can be implemented in one step. The timing can be at the discretion of the MC but it should be done before the facilities start to operate.

7.2.3 Assumptions for Calculating Proposed Tariffs

The following assumptions are used to calculate the sewage tariff in the City M/P:

- total volume of water consumption by customers is based on the Design Criteria.
- price inflation is not reflected in the calculation. Inflation adjustment would be included in the calculation of the actual sewage tariff.
- customers are charged for connecting to the sewage collection system (as is the present practice).

7.2.4 Sewage Tariff Calculation

The following Tables show the Types 1 and 2 sewage tariff to cover the O&M cost of the proposed City M/P project. The calculated tariffs are a weighted average that is based on the total water consumption of domestic, commercial, and industrial customers.

(1) Type 1: the MC does the O&M and the billing or NWSDB sets a special tariff for the MC

No.	Items	Unit	Description	Amount
1	Annual O&M costs	LKR/year	Total	199,950,582
2	Expected profit (10%) (=1x10%)	LKR/year	Total	19,995,058
3	O&M costs with profit (=1+2)	LKR/year	Total	219,945,640
4	Sewage Flow	m ³ /day	Domestic Flow	5,270
		m ³ /day	Non-Domestic Flow	3,953
		m ³ /day	Point Source	1,169
		m ³ /year	Total	3,793,080
5	Sewage Return Factor	%		80.0
6	Water Consumption Volume ^{*1}	m ³ /year	Total	4,741,350
7	Sewage tariff (=3/6)	LKR/m ³		46.39

Table 7.2-1 Calculation of Type 1 Sewage Tariff - Anuradhapura MC

Note: *1; Water consumption volume is calculated by dividing the estimated sewage flow by (Sewage return factor/100). Source: JET

(2) Type 2: NWSDB Sewage Tariff

Table 7.2-2 Calculation of Type 2 Sewage Tariff (3rd Increment)- Anuradhapura MC

Items	Unit	Description	Amount
		Existing (2015) ^{*1}	410,282,866
Operating Expense	LKR/year	New facilities (City M/P) ^{*2}	199,950,582
		Total	610,233,448
		Connection Charge	25,531,614
Income to be subtracted from Expense	LKR/year	P&D/Bowser ^{*3}	160,854,906
		Total	186,386,520
O&M costs after subtraction	LKR/year	Total	423,846,928
Expected Profit (5%)	LKR/year	Total	21,192,346
O/M costs after subtraction plus profit	LKR/year	Total	445,039,274
Water Consumption Volume of		Existing (2015)	6,240,008
Sources Customers	m ³ /year	New facilities (City M/P)	4,741,350
Sewerage Customers		Total	10,981,358
Sewage tariff	LKR/m ³	_	40.53

Note: *1; As O&M costs of the existing sewerage facilities with operational costs of head office, actual costs data in 2015 was utilized.

*2; As O&M costs of the City M/P, maximum O&M costs by full capacity was utilized.

*3; Average value of 3 years data was utilized, including contract service fee, planning and design service, and gully bowser (desludging septic tanks) revenue.

Source: prepared by JET, based on the data from NWSDB

If the City M/P is implemented, the NWSDB sewage tariff would be increased to 40.53 LKR/m³. (third increase) when the STP operation reaches full capacity.

7.2.5 Affordability and Ability to Pay

The following 3 assumptions are made in the analysis of household ATP sewage charges:

- third tariff increase for City M/P is set for 2024
- trend of household income increase shall continue
- increase in sewage tariff for domestic, commercial, and industrial customers should be the same. If the increase for commercial and industrial customers is higher than that of domestic customers, monthly charge for households should be set lower.

Figure 7.2-3 shows the monthly charge based on Type 1 sewage tariff and the ATP based on household income data for Anuradhapura District. **Figure 7.2-4** shows the monthly charge based on Type 2 sewage tariff for NWSDB and the ATP based on national average household income data. ATP is estimated to be 1% of the average household income (International Bank for Reconstruction and Development (IBRD), WB).

Ability to Pay

As shown in the Figure 7.2-3, the monthly household sewage charge (Type 1) is 86% to 89% of the ATP, close to the limit of affordability. It will be necessary to check the income levels again when the actual tariffs are prepared and carefully consider the issue of affordability.

As shown in Figure 7.2-4, the monthly household sewage charge (Type 2) is 42% to 64% of the of ATP and is affordable.

7.2.6 Sewage Tariff Tables (Type 2 NWSDB)

The previous tariff calculation was based on a weighted average applied to all consumer categories. Table 7.2-3 and Table 7.2-4 are examples of how the sewage tariff (Type 2) can be calculated from the NWSDB water tariff Tables. This method makes it easier to calculate and to avoid charging a customer more for sewage than for water consumption. In this example, the domestic sewage tariff would be 50% of the water tariff and would be added to the water bill.

issue se wage rann – 50% of the following water suppry tanns										
	Domestic - Samurdhi		Domestic -	Non Samurdhi	Other than for Samurdhi					
	Recipient		Teneme	ent Garden	Recipient and Tenement Garden					
No. of units	Usage charge (LKR/Unit)	Monthly Service Charge (LKR)	Usage charge (LKR/Unit)	Monthly Service Charge (LKR)	Usage charge (LKR/Unit)	Monthly Service Charge (LKR)				
00 - 05	5	50	8	50	12	50				
06 - 10	10	50	11	65	16	65				
11 - 15	15	50	20	70	20	70				
16 - 20	40	80	40	80	40	80				
21 - 25	58	100	58	100	58	100				
26 - 30	88	200	88	200	88	200				
31 - 40	105	400	105	400	105	400				
41 - 50	120	650	120	650	120	650				
51 - 75	130	1,000	130	1,000	130	1,000				
Over 75	140	1,600	140	1,600	140	1,600				
C IEE										

Table 7.2-3 Example of Domestic Sewage Tariff (for 2024) Domestic Sewage Tariff = 50% of the following water supply tariffs

Source: JET

Table 7.2-4 Example of Non-Domestic Sewage Tariff: (in 2024)

Non-domestic Sewage Tariff as a % of the following water supply tariffs:

- Commercial; 70%
- Government hospital; 70%

Industries (SME); 150%Industries (non-SME & Govt. Institution) 150%

	Commercial		Government Hospital		Industries under SME*		Industries other than SME & Government Institution	
No. of units	Usage	Monthly	Usage	Monthly	Usage	Monthly	Usage	Monthly
	charge	Service	charge	Service	charge	Service	charge	Service
	(LKR/	Charge	(LKR/	Charge	(LKR/	Charge	(LKR/	Charge
	Unit)	(LKR)	Unit)	(LKR)	Unit)	(LKR)	Unit)	(LKR)
00 - 25	75	290	53	250	56	265	58	275
26 - 50	75	575	53	500	56	525	58	550
51 - 75	75	1,150	53	1,000	56	1,050	58	1,100
76 - 100	75	1,150	53	1,000	56	1,050	58	1,100
101 - 200	75	1,840	53	1,600	56	1,680	58	1,760
201 - 500	75	2,875	53	2,500	56	2,625	58	2,750
501-1,000	75	4,600	53	4,000	56	4,200	58	4,400
1,001-2,000	75	8,625	53	7,500	56	7,875	58	8,250
2,001-4,000	75	14,375	53	12,500	56	13,125	58	13,750
4,001-10,000	75	28,750	53	25,000	56	26,250	58	27,500
10,001-20,000	75	57,500	53	50,000	56	52,500	58	55,000
Over 20,000	75	115,000	53	100,000	56	105,000	58	110,000

Note: *; Small and Medium Enterprises Source: JET

Any future increase in water tariffs would result in a corresponding increase in the sewage tariff. The planning for water and sewage tariff increases must be well-coordinated.

The third tariff increment should be implemented by 2024. By then the water supply tariff will have almost certainly been increased. In such a case, the percentages applied to the water tariff (50% of domestic water tariff in Table 7.2-3) would be lower.

7.3 FINANCIAL PLAN CONCLUSIONS

- A) The financial condition of Anuradhapura MC is weak. Therefore, the sewerage services should be implemented and operated by NWSDB with the cost burden for construction shifted to the central government (in the event of an ODA loan, repayment should be borne by the central government)
- B) The following cost burden principle for sewerage service should be used in Sri Lanka:
 - Central government should cover 100% of the construction cost, i.e.100% grant for NWSDB or MC.
 - Sewage tariff should be calculated to cover O&M costs, implemented incrementally.
 - small-scale replacements should be covered by NWSDB's or the MC's own budget, but large-scale ones should be funded as projects by the central government.
- C) Type 1 sewage tariff is calculated to recover O&M costs from revenue collected from the customers in the MC area; Type 2 recovers the total O&M costs of the sewerage business of NWSDB including the O&M costs of City M/P, from revenue NWSDB collects from all its sewerage customers.
- D) Type 1 sewage tariff for MC is estimated at LKR 46.39/m³.

- E) Type 2 sewage tariff for NWSDB is estimated at LKR 40.53/m³.
- F) Both sewage charges based on Type 1 and Type 2 tariffs are within the ATP of households (1% of average household income). This indicates that the average household can afford the sewage charge.
- G) The latest average household income data should be used for tariff calculation.
ENVIRONMENTAL AND SOCIAL CONSIDERATIONS **CHAPTER 8**

8.1 EXISTING CONDITIONS

Environmental and Social conditions in the Project area are outlined in CHAPTER 2.

8.2 REGULATIONS AND ORGANIZATIONS RELATED TO ESC

Laws and regulations related to ESC at the national level, and organizations responsible for implementation, were studied in the Strategic Sewerage Master Plan (Refer to Section 1 Progress Report). No regulations specific to or published by Anuradhapura MC relevant to the Project were identified. National regulations described in the Strategic Sewerage Master Plan can be found in **APPENDIX 10.**

8.3 COMPARISON WITH JICA GUIDELINES

Comparison of national regulations with those of JICA is given in APPENDIX 11.

8.4 INTERNATIONAL COMMITMENTS

The Government of Sri Lanka (GOSL) is party to several international agreements related to environment and human rights. Agreements specific to Anuradhapura MC could not be found. The national agreements are given in APPENDIX 12.

8.5 Environmental Scoping

Scoping is defined as the process of identifying the content and extent of the environmental information to be submitted to the competent authority under the EIA procedure. Scoping of the project components and the reasons for the evaluation are shown in Table 8.5-1.

			Table 8.5-1 Environmental Scoping
Item	Eva	luation	Reason
1 A	P/C	B-	Dust and exhaust gases are generated during construction.
1 Air pollution	0	D	No impacts are expected during operation.
2 Water rollution	P/C	B-	Excavation and runoff will cause turbidity during construction.
2 water pollution	0	B+	Treatment of sewage and greywater will reduce water pollution.
2 Soil pollution	P/C	B-	Construction equipment and transfer of construction materials contribute to soil pollution.
5 Son ponution	0	D	No impacts are expected during operation.
4 Weste	P/C	B-	Construction waste will be generated.
4 waste	0	B-	Sludge will be generated during operation of treatment facilities.
5 Noise and vibrations	P/C	B-	Noise and vibrations will be generated during construction.
5 Noise and vibrations	0	B-	Noise and vibrations will be generated during operation.
6 Ground subsidence	P/C	C-	Impacts are unknown and require investigation.
0. Ground subsidence	0	C-	Impacts are unknown and require investigation.
	P/C	D	No impacts are expected during construction.
7 Offensive adours	0	B-/B+	B-: Odour will be generated at the STP during operation.
7. Offensive odours			B+: Improved sewerage collection and environmental conditions will reduce offensive odours in
			the Project area.
8 Geographical features	P/C	C-	Impacts are unknown and require investigation.

Table	8.5-1	Environment	tal	Scoping
-------	-------	-------------	-----	---------

Item	Eval	uation	Reason
	0	D	No impacts are expected during operation.
	P/C	D	No impacts are expected during construction.
9 Bottom sediments	0	B+	Collection and treatment of waste water will improve benthic conditions of water bodies.
	P/C	C-	Impacts are unknown and require investigation. (Included in EIA)
10 Biota and ecosystems	0	C+/C-	C+: Ecosystems will benefit from improved water quality.
5			C-: Negative impacts of STP are unknown and need investigation.
101 D 4 4 11 1	P/C	D	There are no protected natural lands in the Project area.
10b Protected lands	0	D	
	P/C	C-	Impacts are unknown and require investigation.
11 Water usage	0	C-	Water usage downstream of Project has not been investigated. Thus, impacts are unknown and
_			require investigation.
12 Appidents	P/C	B-	Construction activities and disruption to traffic will increase risk of accidents.
12 Accidents	0	B-	Accidents may occur in treatment facilities during operation.
12 Clabel memory	P/C	D	No impacts are expected during construction.
13 Global warming	0	D	No impacts are expected during operation.
147 1 ***	P/C	B-	Land for treatment plant, pumping stations, and sewerage lines will be required.
14 Land acquisition	0	D	No impacts are expected during operation.
	P/C	C+/C-	C+: Construction activities may increase in local employment and economic activities.
15 Local economies			C-: Construction activities may inconvenience local businesses.
	0	C+	Improved water environment will positively impact aquaculture and businesses (tourism etc)
161 1	P/C	C-	Land use patterns may be impacted by acquisition, resettlement, and construction of facilities.
16 Land use	0	D	No additional impact caused by operation is expected.
17.0 11	P/C	D	No impacts are expected during construction.
1 / Social institutions	0	D	No impacts are expected during operation.
18 Existing social	P/C	B-	Traffic disturbance will be caused by construction activities.
infrastructures and	0	B+	Infrastructure for sewerage collection and treatment will be created.
services			
19 Poor (low income	P/C	C-	Low income people may be impacted by construction activities.
households)	0	C-	Impacts are unknown and require investigation.
19a Indigenous and	P/C	C-	Socially vulnerable populations may be impacted by construction activities.
ethnic populations	0	C-	Impacts are unknown and require investigation.
20 Misdistribution of	P/C	C-	Impacts are unknown and require investigation.
benefits and damages	0	C-	Impacts are unknown and require investigation.
21 Local conflicts of	P/C	C-	Impacts are unknown and require investigation.
interest	0	C-	Impacts are unknown and require investigation.
	P/C	C-	Women may receive unequal economic opportunities during construction.
22 Gender	0	C+	Women, who suffer disproportionately from water borne diseases, are expected to benefit from
			improved water environment.
	P/C	C-	Child labour may occur during construction.
23 Children's rights	0	C+	Children, who suffer disproportionately from water borne diseases, are expected to benefit from
_			improved water environment.
	P/C	C-	Construction activities may impact heritage sites.
24 Cultural heritage	0	C+	Improved water environment and sanitation facilities are expected to reduce negative impacts on
-			heritage sites (especially during pilgrimage and festival periods).
24a Landsoones	P/C	B-	Construction activities will impact landscape in the Project area.
24a Lanuscapes	0	B-	Newly constructed facilities will impact landscape in the Project area.
25 Infantions direct	P/C	B-	Influx of construction workers will increase risk of infectious diseases.
2.5 Infectious diseases	0	B+	Improved sanitation services will decrease incidence of infectious diseases (especially during
such as HIV/AIDS			and following peak pilgrimage periods).

[Evaluation]

A: Significant impact is expected,

B : Some impact is expected,

C: Extent of impact is unknown,

D : No impact is expected +/- : Impact is Positive/Negative Source: JET

8.6 TOR FOR ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

8.6.1 Purpose

The purpose of the survey at this preparatory stage is to predict and assess the type and scale of possible project impacts on the natural and social environment.

8.6.2 Items to be Targeted in the Study and Evaluation

Items that received A, B, or C ranking (Table 8.5-1) should be reviewed and evaluated. Other items identified as the survey proceeds should also be included.

8.6.3 Target Areas

The target areas are the proposed construction sites, and areas immediately surrounding the Project facilities.

8.6.4 Target Periods

Target periods are the stages of planning, execution, and operation of the constructed facilities.

8.6.5 Contents and Methods for ESC Study

The information to be collected and the typical counter-measures to be reviewed are presented in.

	Item			Study/Countermoscure	Status
No.	Title	Eva	luation	Study/Countermeasure	Status
01	Air Pollution	P/C	B-	Study: Air pollution standards, construction vehicles and methods.	In progress
				Method: Site survey, literature survey of regulations and standards.	(M/P, F/S stage)
		0	D	N/A	N/A
02	Water Pollution	P/C	B-	Study: Water pollution standards, construction methods.	In progress
				Method: Site survey, literature survey of regulations and standards.	(M/P, F/S stage)
		0	B+	Study: Water pollution standards, treatment methods, water quality,	Complete
				flow rates, pollution loads.	(M/P stage)
03	Soil Pollution	P/C	B-	Study: Soil pollution standards, prevention measures/construction	In progress
				methods, construction equipment	(M/P, F/S stage)
				Method: Site survey, literature survey of regulations and standards.	
		0	D	N/A	N/A
04	Waste	P/C	B-	Study: Waste management regulations/procedures, Collection and	Complete
				disposal methods, disposal site conditions.	(M/P stage)
				Method: Site surveys, hearing surveys of concerned parties.	
		0	B-	Study: Sludge generation.	F/S stage
				Method: Treatment method.	
05	Noise and	P/C	B-	Study: Noise regulations, current condition, construction methods.	Complete
	Vibrations			Method: Site surveys, hearing surveys of concerned parties, noise	(M/P stage)
				measurement surveys.	
		0	B-	Study: Treatment method and possible noise generation.	F/S stage
06	Ground	P/C	C-	Study: Geographic conditions.	F/S stage
	Subsidence	0	C-	Method: Geographic survey.	
07	Offensive	P/C	D	N/A	N/A
	Odours	0	B-/B+	Study: Current odour conditions, treatment method.	In progress
				Method: Site surveys, hearing surveys of concerned parties.	(M/P, F/S stage)
08	Geographical	P/C	C-	Study: Geographic conditions.	F/S stage
	Features			Method: Geographical survey.	
		0	D	N/A	N/A

Fable 8.6-1	ESC Stud	v Associated	with	the Project
	LOC Diuu	y mosociatea	** 1011	the r roject

09	Bottom	P/C	D	N/A	N/A
	Sediments	0	B+	Study: Sediment conditions of water bodies.	F/S, EIA stage
				Method: Site surveys, literature surveys, water quality surveys.	
10	Biota and	P/C	C-	Study: Inventory of flora and fauna in the construction area.	F/S, EIA stage
	Ecosystems	0	C+/C-	Method: Site survey, hearing survey of concerned parties	
10a	Protected lands	P/C	D	N/A	N/A
		0	D	N/A	N/A
11	Water Usage	P/C	C-	Study: Water use practices of local communities, impacts of	In progress
		0	C-	sewerage treatment on water usage.	(M/P, F/S stage)
				Method: Site surveys, hearing surveys of concerned parties.	
12	Accidents	P/C	B-	Study: Construction/industrial safety regulations, traffic	In progress
				safety/accident prevention methods.	(M/P, F/S stage)
				Method: Site surveys, literature survey, hearing surveys of	
		-		concerned parties.	-
		0	В-	Study: Industrial safety regulations.	In progress
10		D/C	D	Method: Literature surveys.	(M/P, F/S stage)
13	Global Warming	P/C	D	N/A N/A	N/A
1.4	T 1 A	0	D	N/A	N/A
14	Land Acquisition	P/C	В-	Study: Land requirements, acquisition procedures, compliance to	In progress
				JICA guidelines.	(M/P, F/S stage)
				Method: Site surveys, literature surveys, nearing surveys of	
		0	D	N/A	NT/A
15	Local Economica			N/A Study Local commis environment industries merilete Delevent	IN/A
15	Local Economies	P/C	C+/C-	Study: Local economic environment, industries, markets. Relevant	In progress $(M/P, E/S, stage)$
		0	C+	laws and regulations.	(M/P, F/S stage)
				concerned parties	
16	Land Usa	D/C	C	Study: Land use prectices of local communities	E/S
10	Lanu Use	r/C	D	Method: Site surveys, hearing surveys of concerned parties	Г/ З
17	Social	D/C	D	N/A	N/A
17	Institutions	0	D		N/A N/A
18	Existing Social	D/C	B	Study: Traffic patterns location of important social infrastructure	In progress
10	Existing Social	r/C	D-	(schools hospitals religious institutions etc.)	(M/P E/S stage)
	and Services	0	D+	Method: Site survey inventory survey public consultation	(W/1, 1/5 stage)
19	Poor	P/C	C-	Study: Census/demographic data_economic_status_and_land_use	In progress
17	(low income	0	C-	natterns of affected peoples	(M/P F/S EIA stage)
	households)	Ŭ	C	Method: Interview survey of concerned parties, relevant laws, and	(101/1, 175, 211150000)
	110 45 6110146)			regulations.	
19a	Indigenous and	P/C	C-	Study: Census/demographic data, economic status, and land use	In progress
	ethnic	0	C-	patterns of affected peoples.	(M/P, F/S, EIA stage)
	populations	-	-	Method: Interview survey of concerned parties, relevant laws, and	
				regulations.	
20	Misdistribution	P/C	C-	Study: Social and economic conditions.	In progress
	of benefits and	0	C-	Method: Interview surveys of concerned parties, public	(M/P, F/S stage)
	damages			consultation.	
21	Local Conflicts	P/C	C-	Study: Risks and prevalence of conflicts of interest.	In progress
	of interest	0	C-	Method: Interview surveys of concerned parties, public	(M/P, F/S stage)
	~ .			consultation.	-
22	Gender	P/C	С-	Study: Working conditions/statistics of women, gender equality	In progress
				policies.	(M/P, F/S stage)
				Method: Interview survey of concerned parties, relevant laws, and	
			C	regulations.	In our out
		0	C+	Study: Health and working conditions of women.	In progress $(M/D, E/S, stars)$
22	Childron's	D/C	C	Study: Child labour laws	(IVI/F, F/S stage)
23	Dights	r/C	<u> </u>	Suuy. Cillu labour laws. Method: Interview survey of concerned parties relevant laws and	In progress $(M/P E/S EIA stage)$
	Rights			regulations	(191/1, 175, EIA stage)
		0	C^+	Study: Water horne diseases and children	In progress
			CT	Method: Interview survey of concerned parties, data collection	(M/P F/S stage)
24	Cultural Heritage	P/C	C-	Study: Location of cultural heritage sites	In progress
	Summa mennage	1/0	<u> </u>	Method: Site survey location of registered heritage/historical sites	(M/P F/S FIA stage)
				Interview survey of concerned parties.	(, 1, 1, 5, DI 1 50050)
		1	1		1

		0	C+	Study: Impacts of pollution on heritage sites. Method: Interview survey of concerned parties.	
24a	Landscapes	P/C O	B- B-	Study: Location of significant cultural, religious, and tourism sites, construction locations and methods. Method: Site survey, Interview survey of concerned parties.	In progress (M/P, F/S, EIA, D/D stage)
25	Infectious Diseases such as HIV/AIDS	P/C	В-	Study: Prevalence of AIDS/HIV and other infectious diseases, current prevention programs. Method: Data collection, Interview surveys of concerned parties.	In progress (M/P, F/S stage)
		0	B+	Study: Prevalence of water borne and other environmental diseases. Method: Data collection, Interview surveys of concerned parties	

Source: JET

8.6.6 Prediction and Evaluation of Potential Impacts

Prediction and evaluation of potential impacts should be conducted for items ranked A, B, or C in Section 8.5: Scoping.

Each item should be re-evaluated as the survey proceeds, and the scoping Table updated accordingly. Subsequently, items with A or B ranking should be evaluated in terms of the extent of the impact.

8.6.7 Consideration for the EMP and EMoP

When the Project causes foreseeable but unavoidable environmental impacts, EMP will determine how to mitigate the impacts, and EMoP will identify steps to be taken by relevant authorities to ensure that mitigation measures are effectively implemented. Execution plans, frequency of measures, lead organization, support for the organization, and budget should be provided for EMP and EMoP.

8.6.8 Stakeholder Consultation

Consultations with UNI and NGO were conducted at the start of the study to gain information about the needs and attitudes in the area, and the relevance of the Project. Details of the meeting minutes are given in **APPENDIX 13**.

The results of the ESC studies should be presented at stakeholder consultations, and the stakeholder feedback should be collected.

8.7 DRAFT EMPAND EMOP

Environmental and social considerations will be managed through EMP. EMP will be implemented through EMoP. EMP development is not appropriate at this stage. Draft versions of EMP and EMoP are presented in **APPENDIX 14**. They will be further developed as the Project proceeds and as more information becomes available.

8.8 SCHEDULE OF ESC ACTIVITIES

Surveys related to ESC will be conducted according to the schedule shown in Figure 8.8-1.

Store	Dat	ind	ESC	EIA	Tar	get	Environmenta	Domoult
Stage	Per	100	Expert	Study	Original	Selected	l Study	Remark
		Jan			335 local	(Approx.)	Primary study	Environmental
		Feb			authorities (79)	5 local authorities		policies, plans and programs
Strategic MP		Mar						➢ National level research
		Apr						
	2016	May			5 local authorities	2 local authorities	Preparation study for	 Literature search
		Jun			uuunonneo	uuunonnes	IEE/EIA	Site survey
5 Cities M P (Pre-F/S)		Jul						
		Aug						
		Sep						
		May			Anuradhapur (If selected for	a MC or F/S)	EIA Study	EMP(draft)Monitoring
		Jun			(· · · · · ·		Plan(draft)
		Jul						 Resettlement
Feasibility	2017	Aug						Action Plan Stakeholder
Study (F/S)	2017	Sep						Meeting
		Oct						
		Nov						
		Dec						

Source: JET

Figure 8.8-1 Schedule for ESC Surveys

CHAPTER 9 CONCLUSION AND RECOMMENDATION

9.1 F/S IMPLEMENTATION

A treatment plant site has been identified and it is confirmed that the land is owned by the City. The final disposal site for sludge has a composting facility and is being operated properly.

The most important aspect in implementing a sewerage project is the acquisition of land for the STP and the final disposal site. The former is not a problem in Anuradhapura, and the final disposal site will be expanded under KOICA's Pilisaru' (recycling resources) Project and Integrated Sustainable Waste Management Programme (ISWMP).

Therefore, a sewerage project in Anuradhapura could be started right after the completion of a F/S.

The Joint Coordinating Committee (JCC) has informed that the F/S will not be conducted for this City M/P because AFD has announced its intention to develop a sewerage system as part of the Strategic City Development Project for Anuradhapura City that is currently underway.

9.2 **RISK AND MITIGATION MEASURES**

Table 9.2-1 lists the risks and mitigation measures associated with the implementation of the Project. In designing sewer pipes and other sewerage facilities, special attention should be paid to the locations of ruins, even though the UNESCO World Heritage Site is outside the project area and will not be directly affected by the sewerage system. Inadvertent excavation of archaeological artefacts would cause a delay in construction.

Risks	Mitigation Measures
<u>Delay</u> : due to the start of pipe, pumping stations and STP, if necessary approval for the EIA is not granted before the commencement of project	MC, UDA, NWSDB and other relevant agencies must take appropriate action in a timely manner to obtain the necessary approval before the construction
<u>Delay</u> : due to the start of Pumping Stations, if the identified lands are not acquired before the commencement of the project	MC, UDA, NWSDB and other relevant agencies must take appropriate actions in a timely manner for clearing project sites before the construction.
<u>Cost Increase</u> : if there are variances in cost for building foundations and pipe trenching and bedding.	Soil test must be carried out to identify the soil conditions.
<u>Low Inflow</u> : of sewage at the treatment plant, if the development of the city is delayed.	NWSDB must make the appropriate stage wise sewerage development plan based on city development plan by AFD and the local authority.

 Table 9.2-1 Risks and Mitigation Measures

Source: JET

9.3 CONCLUSION AND RECOMMENDATIONS

Anuradhapura MC is one of Sri Lanka's National Growth Centres and an important gateway to the northern region. It is also an internationally-renowned tourist destination. For these reasons, implementing a sewerage system to improve the water quality of Malwathu Oya flowing through the World Heritage Site is a very high priority. Although the STP will be constructed on a plot of land

owned by the city, it will be necessary to conduct an EIA and obtain approval. It will also be important to confirm the location of the sewerage facilities in relation to the structures and monuments of the nearby World Heritage Site. The F/S should include geotechnical and other basic site investigations to obtain data to accurately estimate the construction cost, avoid budget over-run and reduce the risks of encountering problems during construction.

APPENDICES

APPENDICES

APPENDIX 1: Anuradhapura Waste Water Flow Forecast

_	_						_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
h = d+e+f+g			Total Waste	Water Flow	(cum/d)	382	375	169	1380	205	222	616	1422	1001	929	541	378	285	1024	6001	410	1403	12471
g=(d+e+f)x20%		Infiltration		(culling)		64	62	28	230	85	68	153	237	167	113	06	63	56	171	168	68	234	2078
d+e+f	Domestic + Non-	Domestic+ Point	source Waste	Nater Flow	cum/d)	318	312	141	1150	423	446	766	1185	836	563	451	315	281	853	841	342	1169	10392
Ŧ	Point	Source	waste	water	flow																	1169	1169
e = d x 75%			Non-	Domestic	Flow(cum/d)	136	134	61	493	181	191	328	508	358	241	193	135	120	366	360	146		3953
d=axbxc			Domestic	Waste Water	Flow (cum)	182	178	81	657	242	255	438	677	478	322	258	180	161	488	480	195		5271
axb		Domestic	Water	consumption(c	l (p/un	227	223	101	821	302	318	547	846	597	402	322	225	201	610	600	244		6588
a			Population	2046 in	covered area	1894	1859	841	6843	2517	2653	4560	7053	4978	3352	2686	1876	1673	5080	5003	2033		54901
			% covered			100	100	50	100	100	100	100	100	100	100	100	60	60	100	100	100		
				Population	2046	1894	1859	1681	6843	2517	2653	4560	7053	4978	3352	2686	3127	2789	5080	5003	2033		58108
				Population	2012	1894	1859	1681	4379	2517	2653	4560	4814	4726	3082	1719	2001	1785	3255	3202	1301		45428
				Population	2001	2,162	3,228	2,331	3,358	6,000	2,797	4,717	4,259	4,648	3,000	1,231	1,513	1,289	2,822	2,683	1,070		47,108
			pura DSD			Nuwarawewa	Stage 1 Part 1	Wannitham mennawa	Thammennakulama	Stage 1 Part 2	Stage 2 Part 3	Stage 2 Part 2	Stage 3 Part 3	Stage 2 Part 1	Stage 2 Part 4	Wanniyakulama Kotasa 4	Wanniyakulama Kotasa 5	Wanniyakulama Kotasa 6	Stage 3 Part 1	Stage 3 Part 2	Wanniyakulama Kotasa 3	Point Source	Total
			Anuradha			250	248	239	240	249	253	252	257	251	254	245	246	247	255	256	244		
						1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6		

ANURADHAPURA WASTE WATER FLOW FORECAST-

120 lpcd 80% 75% 20%

b Water consumption c Domestic Waste Water /Mater Non-Domestic ww/Domestic Infiltration

The planned inflow wat	ter quality va	lues of Moratuwa/R	Rathmalana STP are	considerably higher	than the actual data.					
		Raddolugama ¹⁾	Ma ththe god $a^{1)}$	Hikkadu wa ¹⁾	Mora tuwa/ Rathma la na **	Ja-Ela/ Ekara ***	Average	Design raw water quality	Moratuwa/Rathmalana (First stage planned values)	
pH at 26 ⁰ C		6.7	6.4	7.0	6.6-8.5	-	6.7			рН аt 26 ⁰ С
Total Suspended	mg/l									Total Suspended
Solids at 104 ⁰ C		163	06	139	232	-	156	160	458	Solids at 104 ⁰ C
Chemical Oxygen	mg/l									Chemical Oxygen
Demand Total		609	473	446	274	628	486	600	1057	Demand Total
Chemical Oxygen	mg/l									Chemical Oxygen
Demand Soluble		241	241	206		,	229	ı		Demand Soluble
Biochemical Oxygen	mg/l									Biochemical Oxygen
Demand- 5Total		383	247	240	87	187	229	240	355	Demand- 5Total
Biochemical Oxygen	mg/l									Biochemical Oxygen
Demand- 5 Soluble		159	116	149			141	-	-	Demand- 5 Soluble
Nitrate- Nitrogen and	mg/l									Nitrate- Nitrogen and
Nitrite Nitrogen		2.3	2.5	5.7	1.0	ı	2.9	I		Nitrite Nitrogen
Ammoniacal Nitrogen	mg/l									Ammoniacal Nitrogen
		26	28	24	14	-	23	-	-	
Total Nitrogen	mg/l									Total Nitrogen
		39	34	33	42	-	37	45	55	
Total Phosphorous	mg/l									Total Phosphorous
		5.9	3.3	2.9	2.8	-	3.7	6	12	
	-									

APPENDIX 2: Inflow Sewage Quality

Inflow sewage quality - Measured data of inflow sewage -

A-2

1) Average values of the three measurements which were conducted from December 2016 to January 2017 (Annex 1)

**Data taken between October 2013 and February 2016

***Average of 1-year measurement

The Project for the Strategic Master Plan Under Sewerage Sector in Democratic Socialist Republic of Sri Lanka (Phase 1)Final Report Section II Strategic Sewerage Master PlanAnuradhapura

The Result of Sewage A	nalysis									
			Raddolugama			Maththegoda			Hikkaduwa	
		23,24 Nov.2016	29,30 Nov.2016	5,6 Dec 2016	25,26 Nov.2016	1,2 Dec 2016	7,8 Dec 2016	27,28 Dec 2016	3,4 Dec 2016	9,10 Dec 2016
pH at 26 ⁰ C		6.6	6.93	6.7	6.2	6.9	6.2	7.3	6.42	7.4
Total Suspended Solids at	l/gm									
104 ⁰ C		814*	115	211	54	115	100	59	165	194
Chemical Oxygen Demand	mg/l									
Total		752*	650	567	510	670	239	344	406	587
Chemical Oxygen Demand	mg/l									
Soluble		184*	261	220	312	330	80	206	201	212
Biochemical Oxygen	mg/l									
Demand- 5Total		e69*	402	363	189	390	162	186	213	321
Biochemical Oxygen	mg/l									
Demand- 5 Soluble		99.8*	136	181	120	181	48	109	167	172
Nitrate- Nitrogen and	mg/l									
Nitrite Nitrogen		2.2	28*	2.4	2.5	1.4	3.5	1.2	13.7	2.2
Ammoniacal Nitrogen	mg/l	10	30	38	19	42	24	18	19	35
Total Nitrogen	mg/l	13	61	42	25	46	32	21	35	42
Total Phosphorous	mg/l	4	8.8	4.8	0.4	5.8	3.8	0.6	4.1	4.1
*JET considered values	in gray a	as outliers and no	it used for the de	sign.						

APPENDIX 3: Layout Plan, Sewer Design Calculations and Longitudinal Cross Section

								Master F	'lan Area			Unit Sewer	Nater (m³/s/	ha)	Legend	Р
SE	ÈŴ	′ER	DESIC	GN CA	ALCUL.	ATION	S	Anuradha	apura MC			0.0	000213		©:Main Sewer	P_ 1
					De	esign Outflow				Desi	ign Sewer I	Line				
Line No		Catchi	ment Area	Length	Sewer Wat	er Outflow	Total	Dia	Slope	v	Cap	Existing Ground Level	Sewer Invert Elevation	Earth Covering	Note	
Line No.		Area	Accumulated Area	Accumulated Length	Area Input	Point Input	Outflow	(Internal Diameter)				Upper	Upper	Upper		
		(ha)	(ha)	(m)	(m ³ /s)	(m ³ /s)	(m^3/s)	(mm)	(‰)	(m/s)	(m ³ /s)	(m)	(m)	(m)	1	
				994				HDPE				101.73	100.517	1.00		
AT01-1	0	24.60	24.60	994	0.005		0.005	225 (201)	3.90	0.65	0.021	99.60	96.382	3.01		
AT01-2	0		24.60	1082	0.005		0.005	 225 (201) 	3.90	0.65	0.021	99.25	96.021	3.03	To AT03	
				375		0.041		HDPE		Free Main		93.25	92.013	1.00	From MTPS-01	-
AT02	٢	59.35	59.35	375	0.013	0.041	0.054	250 (223.6)		Force Main		99.25	98.012	1.00		
AT03	0	25.92	109.87	590 1672	0.023	0.041	0.064	GRP 500 (500)	1.50	0.74	0.146	99.25 97.66	95.722	3.02	From AT01-2 and	AT02
				840				GRP				97.66	93.980	3.17		
AT04	0	36.86	146.73	2511	0.031	0.041	0.072	 500 (500) 	1.50	0.74	0.146	90.34	86.867	2.97	To AT06	
																-
ATOF	0	170.00	170.00	150	0.020		0.020	HDPE		Force Main		88.53	87.315	1.00	From MTPS-02	
ATU5	0	179.90	179.90	1026	0.038		0.038	GRP 225 (201)				90.34	86.667	2.96		
AT06	٥	132.79	459.42	3536	0.098	0.041	0.139	700 (700) 700 700 700	1.00	0.76	0.293	87.85	85.180	1.96	To AT08	
												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	******	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
				748				HDPE		Force Main		82.45	81.344	1.00	From MTPS-03	
AT07-1	0	42.48	42.48	748	0.009		0.009	<ul> <li>110 (98)</li> <li>HDDE</li> </ul>			1	88.88	87.774	1.00		
AT07-2	0	1.07	43.55	856	0.009		0.009	<ul> <li>225 (201)</li> </ul>	3.90	0.65	0.021	87.85	86.637	1.00		
4700	0	00.17	590.14	1484	0.195	0.041	0.100	GRP	1.00	0.70	0.000	87.85	85.150	1.99	T. ATLC	
ATU8	U	86.17	589.14	5020	0.125	0.041	0.166	0 700 (700)	1.00	0.76	0.293	78.08	74.166	3.21	10 A116	
AT09	Ø	52.56	52,56	607 607	0.011		0.011	HDPE 110 (98)		Force Main		84.32 91.45	83.214 90.344	1.00	From MTPS-04	
	-			987				GRP				91.45	89.984	1.06		
AT10	٢	93.06	145.62	1594	0.031		0.031	400 (400)     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400     400	1.80	0.70	0.088	87.16	85.754	1.00	To AT12-1	
																-
AT11-1	0	72.50	72.50	597	0.016		0.016	HDPE		Force Main		82.40	81.264	1.00	From MTPS-05	
ATTI-T		13.30	13.00	213	0.010		0.010	HDPE				88.74	87.457	1.00		
AT11-2	0	1.36	74.86	810	0.016		0.016	280 (250.2)	3.10	0.67	0.033	87.16	85.894	1.00	E 1510 115	
AT12-1	0	5.01	225.49	102	0.048		0.048	GRP	1.70	0.74	0.118	87.16 86.36	85.051 84.859	1.65 1.04	From A110 and A1	11-2
				24				HDPE	I	nverted Siph	on	86.36	83.000	3.06		
AT12-2	0		225.49	1719 286	0.048		0.048	GRP 315 (281.8)			1	85.99	83.000 84.659	2.69		
AT12-3	0	153.33	378.82	2005	0.081		0.081	600 (600)	1.20	0.75	0.213	85.49	83.678	1.20		
AT12-4	0		378.82	29	0.081		0.081	GRP • 400 (400)	I	nverted Siph	on	85.49 85.36	82.000	3.08		
7.112			010.02	832	0.001		0.001	GRP				85.36	83.520	1.23		
AT12-5	0	31.28	410.10	2865	0.087		0.087	600 (600)     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600     600	1.20	0.75	0.213	85.99	82.262	3.12	To AT14	
AT13	0	62.38	62.38	792	0.013		0.013	<ul> <li>125 (111.6)</li> </ul>		Force Main		85.99	79.585 84.870	1.01	Prom MIPS=06	
				572				GRP				85.99	82.162	3.12	From AT12-5 and a	AT13
ATT4	U	38.63	511.11	3437 837	0.109		0.109	GRP 700 (700)	1.00	0.76	0.293	80.25	77.090	2.43		
AT15-1	0	58.36	569.47	4273	0.121		0.121	700 (700)	1.00	0.76	0.293	78.65	75.152	2.79		
AT15-2	Ø		569.47	19 4292	0.121		0.121	GRP • 400 (400)	I	nverted Siphe	on	78.65 78.70	74.000 74.000	4.24		
				534				GRP				78.70	74.920	3.07		
AT15-3	Ó	93.41	662.88	4826 698	0.141		0.141		1.00	0.76	0.293	78.08 78.08	74.207	3.16		
AT16	0	24.14	1276.16	5717	0.272	0.041	0.313	900 (900)	0.80	0.80	0.512	76.28	72.358	3.01	To AT19	
				467				HDPE		Eoreo Main	1	89.75	88.640	1.00	From MTPS-07	-
AT17-1	0	13.94	13.94	467	0.003		0.003	110 (98)		. or ce width		92.80	91.694	1.00		
AT17-2	0	13.18	27.12	1325	0.006		0.006	<ul> <li>225 (201)</li> </ul>	3.90	0.65	0.021	92.80 82.71	90.740 81.497	1.85 1.00		
		70.15	100.07	579	0.007		0.007	HDPE	0.45	0.75	0.055	82.71	81.373	1.00		
AT18	U	76.17	103.29	1903	0.022		0.022	GRP 355 (317.6)	2.40	0.70	0.055	76.28	72.328	1.00	From AT16 and AT	18
AT19	0	1.18	1380.63	5881	0.294	0.041	0.335	900 (900)	0.80	0.80	0.512	76.53	72.136	3.48	To AT22	
				1252				HDPE		Force Main		75.72	74.528	1.00	From MTPS-08	
AT20	0	150.95	150.95	1252	0.032		0.032	<ul> <li>200 (178.6)</li> <li>GRP</li> </ul>			1	81.17	79.978	1.00		
AT21	0	86.14	237.09	2136	0.051		0.051	<ul> <li>450 (450)</li> </ul>	1.70	0.74	0.118	76.53	71.878	4.20		
AT22	0		1617 79	40	0.345	0.041	0.386	GRP	0.70	0.81	0.634	76.53	71.328	4.19	From AT19 and AT To STP	21
MIZZ	$\vee$		1017.72	09/21	0.345	0.041	0.560	C 1000 (1000)	0.70	0.81	0.034	10.55	11.300	4.22	10.311	











THE PROJECT FOR THE STRATEGIC MASTER PLAN UNDER THE STREPAGE SECTOR THE DEMOKATIC SOCIALIST REPUBLIC SOCIALIST REPUBLIC OF SRI LUNKA DRAWING TITLE: LONGITUDINAL SECTION OF ANURADHAPURA MC DRAWING NUMBER: A-6 AT08 1/5000 (A3) SEMER NUMBER: 72. 605 PROJECT: SCALE 1/520 AT16 14.17 3.21 82 86 9018 18 80 .87 ----14' 55 5' 19 14' 54 5' 14 69 '*LL* 42. 93 4963. 82 AT15 Tell 74, 31 2, 70 31.72 86 .7164 40.88 
 14' 36
 5' 12

 10' 11
 1' 00

 10' 11
 1' 00

 10' 12
 1' 00

 10' 13
 1' 00

 10' 14
 1' 00

 10' 15
 1' 00

 10' 14
 1' 00
 77. 82 *862' 88 60 '8*1* 60 '81 8, 89 48 48 4808, 23 78.24 76. 43 1. 1. 13 76. 43 1. 13 4738.76 11. 21 16. 50 2. 32 78. 52 2. 30 29.67 87. 39 4667. 54 Parilian 76.60 2.94 76.66 2.98 76.66 2.98 7.00 80' 52 33' 88 - 4280' 18 90' 36 85' 08 4949' 20 79.32 1.03 79.32 1.03 91.05 13 .8944 25 82 1.67 37 1.67 79.39 1.67 11.18 97 '1177 07 .78 80.0 1. 06 79. 50 79. 50 81.24 4354.06 89 .88 1483. 79.66 2.23 79.66 2.29 79.66 2.29 85:28 \$\$ 8937 - 81 So AT 81. 53 79.68 1.14 79.68 1.00 4180' 66 98 . 85 79, 91 2, 10 79, 91 2, 10 17.58 18 .860 42 - 25 .83 81.36 1.00 81.36 1.00 83. 06 37. 83 4026. 39 81' 38 | 1' 03 | 81' 45 | 1' 00 EL 'EB 99 . 38 - 36 88. 28 81. 49 T. 00 24.1 84 .18 15.40 - 3924.21 83.61 81' 88 85' 18 85' 50 85' 50 - 00 - 03 - 03 - 03 83'83 89. 33 8 485 80 .7 7. 03 8 485 80 .7 85' 58 J' 66 80. 32 - 3782. 45 2.08 1.00 83° 00 84° 08 10.1 62.79 8722. 13 09 .68 AT07-2 4 84' 14 5' 08 87' 14 5' 08 86.93 28. 03 - 3662. 53 T 0 6 90 '98 09 'L 89 'L 15.78 10. 52 - 3606. 50 91 .38 86 '9298 00 '0 87. 85 - 66 'L 0.0 m 00 00 00 00 00 00 00 00 DL=50. Existing Ground Level Invert Elevation Accumulated Length 90. 85. 80. 75. 70. 65. 60. 55. Earth Covering Length /5000 Serer 1/520









THE PROJECT FOR THE STRATEBIC MASTER PLAN UNDER THE SEMERAGE SECTOR THE DEMOGRATIC SOCIALIST REPUBLIC OF SRI LAWKA A-11 DRAWING TITLE: LONGITUDINAL SECTION OF ANURADHAPURA MC DRAWING NUMBER: AT13, AT14 1/5000 (A3) SEMER NUMBER: PROJECT: SCALE 1/520 ----AT15-1 80. 25 5. 43 11.11 1364. 05 13. 24 Culter 1. 02 91 '22 89 '82 08 01 350.81 28 85 1.02 18.63 90.36 88 '\$93L 98 '04 80. 82 78. 84 1. 39 78. 72 1. 39 1183' 84 85 19 80.62 78.81 1.00 78.89 1.02 96 .1411 97 .48 0.1 96 1' 33 1' 00 18. 97 00 .18 19 .7801 99 84 AT14 1. 84 1. 00 19. 37 18.18 98 .5101 25' 38 80' SS 96 'L 90 'L Hai I tak 82, 92 19 196 82 '0* 1 
 0
 1
 1
 1
 1

 0
 1
 1
 1
 1
 1

 0
 1
 1
 1
 1
 1
 1

 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 82.92 921. 33 98 '69 2-5 16 .48 14 198 20 .88 AT 1 802' 42 185' 40 196' 40 112' 58 13' 36 2' 69 11' 15 33' 30 82' 38 82' 38 82' 38 82' 38 88 '78 00 'L 83, 76 86 .757 60 '99 81.28 82.95 82.28 92.28 92.28 00 1 00 1 00 1 88 1 00 1 84' 30 68 .589 28 .75 655, 07 631, 67 83, 88 84, 09 53' 40 21' 11 83.41 83.41 83.26 83.26 83.26 83.26 83.26 83' 83 09 '989 52' 88 84. 38 260. 54 19 18 84' 23 259' 03 99 '89 00 'L 84' 00 84' 00 83' 88 83' 88 85' 68 81.38 410 31 35 65 8~21.2 792.09 8 2' 00 91 '184 28 '12 82.78 \$03' 83 10 .85 80' 83 80' 83 80' 83 5 381.82 82.05 81 81 3 00 'L 10.08 81.18 933 04 25 31 91 '64 91 '64 95 '84 96 '84 81 '64 81 '64 97 '64 17 '64 17 '64 80. 28 280. 73 36. 06 80.08 244.67 13 .83 80' 30 80' 28 179.07 198.96 215.46 05 '91 18' 88 44' 33 79. 68 79. 68 79. 68 79. 89 79. 89 79. 89 79. 89 79. 89 79. 89 79. 89 79. 89 79. 89 79. 89 79. 89 79. 89 79. 89 79. 89 79. 89 79. 89 70. 89 70. 89 70. 89 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70. 80 70 80.34 134.74 58.35 81' 28 - 89 '18 80' 82 33' 85 33' 85 90 .18 91 .74 28' 32 80, 71 59, 92 15.39 15: 39 0.0 m 00 00 00 00 00 00 00 00 Existing Ground Level Invert Elevation DL=48. Accumulated Length 85. 80. 75. 70. 65. 60. 55. 50. Earth Covering Length /5000 Semer 1/520

THE PROJECT FOR THE STRATEGIC MASTER PLAN UNDER THE STREAME SECTOR IN THE DEMORATIC SOCIALIST REPUBLIC SOCIALIST REPUBLIC STLLAWKA A-12 DRAWING TITLE: LONGITUDINAL SECTION OF ANURADHAPURA MC AT15-1, AT15-2, AT15-3 DRAWING NUMBER: SEWER NUMBER: 1/5000 (A3) PROJECT: SCALE: 1/520 AT16 .... No. 11 AT08 80 .87 3. 16 14. 21 92 .928 08 .59 
 14: 51
 3: 53

 14: 53
 3: 51
 78.21 4762.95 38' 38 09 .87 71. 28 4727. 59 74.42 3.45 74.42 3.43 85' 58 4020' 31 18 81 @700 1.0 --533.98 14' 25 3' 38 14' 24 3' 38 18.61 62. 29 4874. 03 5-3 14' 28 3' 35 14' 21 3' 30 28.82 *4 'LZS* - LO 'LS AT 3'31 3'50 3'68 3'68 74, 67 74, 69 74, 72 74, 72 69 .87 81 .4844 30. 21 11.67 ta' es + tat' es 3' 38 3' 38 84 '¥L 88 .87 4384.84 82 .78 
 14*
 81
 3'11

 14*
 82
 3'12

 14*
 85
 3'12

 14*
 85
 3'12

 14*
 90
 4'58

 14*
 90
 4'58

 12*
 18
 5'4

 12*
 18
 5'4

 12*
 18
 5'4

 12*
 18
 5'4

 12*
 18
 5'4

 12*
 50
 5'83

 12*
 50
 5'40

 12*
 52
 3'06
 91 91 52. 79 4817. 56 1802 32, 23 - 4250, 03 -22, 87 - 4272, 80 -18, 87 - 4291, 77 -78, 70 78, 70 -87.87 39. 38 4217. 80 19. 02 12:58 31 18 12:58 3:18 27 8114 18.02 81 61 12:38 5:84 12:38 5:84 89 .7514 86 .18 18.91 12' 43 5' 80 12' 48 5' 80 78.94 44. 48 - 4076. 20 12' 48 5' 11 22' 24 5' 20 12' 26 5' 20 12' 20 12' 20 5' 11 5' 20 5' 21 5' 21 5' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 12' 20 1 18 81 4031.72 30. 85 Tient 78.84 36. 46 4000, 87 75.60 2.53 76.40 1.73 11 1988 41 12 18 84 e700 L8 'L 8+ '94 84 'L 09 '94 00 .01 *9 'L886 28 'S* ī 76.55 2.13 76.55 2.13 1. .... 48. 16 3835. 82 Ξ 19.62 2.64 76.64 2.64 12. 23 - 3790. 66 88 .67 76. 71 2. 46 76. 71 2. 46 86. 52 - 3715. 43 88 .67 
 Jer
 95
 5'
 32

 Jer
 95
 5'
 32

 Jer
 84
 5'
 32

 Jer
 84
 5'
 32

 Jer
 88
 5'
 33
 88 .67 3628. 91 88 .08 19. 93 43. 61 3598. 03 19' 83 5' 44 19' 82 5' 45 80 .08 29 3224 45 10 .77 5' 42 5' 42 85' 38 3488' 83 81 .08 4 80' 58 5. 46 50 'LL 0. 00 - 3436. 27 0.0 m 00 00 00 00 00 00 00 00 Existing Ground Level Invert Elevation DL=43. Accumulated Length 80. 75. 70. 65. 60. 55. 50. 45. Earth Covering Length /5000 Semer 1/520

A-17



PRAJECT: THE PROJECT FOR THE STATTEIC MASTER PLAN HUDER THE DEPREAKE SCTOR THE DEPOSATIO SOCIALIST REPUBLIC SOCIALIST REPUBLIC STAT LAWKA (PHASE 1) A-14 DRAWING TITLE: LONGITUDINAL SECTION OF ANURADHAPURA MC DRAWING NUMBER: AT17-2, AT18 1/5000 (A3) SEWER NUMBER: SCALE 1/520 -AT19 19 .2061 - 19 .83 00 1 +8 74 76. 28 1 1. 62 75, 10 75, 62 96 '94 98 '9281 60 '29 AT16 75. 77 1. 48 78. 26 1. 00 69 'LL 28 45 1114 81 47.1 01.87 81.1 17.87 18. 20 97 '91/1 01 18 @355 2.4 43 84 'L L6 '94 24 'L 83 94 10 .04 1634. 35 67 '84 AT18 77.12 2.40 98 .67 98 . 93 1 1554. 86 77. 28 2. 76 77. 28 2. 77 96.36 1 202' 83 ** '9* Initiat 91 'E 88 'LL 49. 03 4 1460. 38 18.08 
 18
 2
 5
 18

 1
 1
 1
 18
 1
 18
 1
 18
 1
 18
 1
 18
 1
 18
 1
 18
 1
 18
 1
 18
 1
 18
 1
 18
 1
 18
 1
 18
 1
 10
 1
 18
 1
 10
 1
 18
 1
 10
 1
 18
 1
 10
 1
 10
 1
 10
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t 82.76 96 .1141 18 08 17.28 56. 93 - 1380. 66 82.69 59. 48 1353. 62 1324. 14 L\$ '99 17.28 81' 16 1' 19 85' 65 1' 00 83. 73 12. 69 1258. 67 83.69 1.00 83.69 1.00 80 .5811 09 .88 05 .48 08 'L 00 'L 83' 88 84' 18 26 98 87 7111 83.28 96 98 1' 1¢ 82' 00 82' 14 1051.20 09 91 87, 76 97, 03 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 1, 57 89. 02 002' 60 1 . 72 \$6.74 BL '8/6 58. 66 e225 3.9 2.0 99 .08 18.88 79 676 Talles 857 87,40 87,40 88,14 89,15 1,44 89,15 1,44 89,14 1,44 89,14 1,44 89,14 1,44 89,14 1,44 89,14 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1, 96 '68 89 '888 68 . . . ŕ 843'88 08 '06 98 '06 e' 03 16 06 808.40 96 .48 96' 24 J' 19 86' 26 J' 16 91.52 123' 42 97 '69 89.80 2.31 78 .28 85. 32 66 '269 ..... 80' 14 5' 01 80' 16 5' 02 90 119 85. 45 05 88 AT17-1 80' 23 J' 00 951' 88 \$2 16 19 .43 \$2 '06 08 '26 98 'L **** 0. 00 T 0.0 m 00 00 00 00 00 00 00 00 DL=55. Existing Ground Level Invert Elevation Accumulated Length 95. 90. 85. 80. 75. 70. 65. 60. Earth Covering Length /5000 Semer 1/520







# **APPENDIX 4: Draft Amendment of Tolerance Discharge Limits**

# Schedule III

Tolerance limit values for the discharge of wastewaters or effluents (industrial / domestic) from a prescribed activity into the inland surface waters

No.	Parameter	Unit, type of limit	Tolerance limit values for Inland surface waters
			50
1.	Total suspended solids	тg/1, тах.	
2.	Total dissolved solids	тg/1, тах.	1000
3.	pH at ambient temperature	-	6.0 - 8.5
4.	Biochemical oxygen demand (BOD ₅ in 5 days at 20° C)	mg/1,max.	30
5.	Temperature at the point of discharge	°C, max_	Ambient water temperature ± 5 or 40 whichever is lesser
6.	Oils and greases	mg/1,max.	10
7.	Phenols (as C ₆ H ₅ OH)	mg/l,max.	1.0
8.	Chemical oxygen demand (COD)	mg/1,max.	250
9.			
	Colour	Wave length range	
	(Maximum spectral	436 nm, (Yellow range)	7m-1
	absorption coefficient)	525 nm, (Red range)	5m ⁻¹
		620 nm, (blue range)	.3m ⁻¹
10.	Dissolved phosphates (as P)	mg/1,max.	5

11.	Total Kjeldhal nitrogen (as N)	mg/1,max.	150
12.	Ammoniacal nitrogen (as N)	mg/1,max.	50
13.	Nitrate (as N)	mg/1,max.	10
14.	Cyanide (as CN)	mg/l,max.	0.05
15.	Total residual chlorine (as Cl2)	mg/1.max.	0.5
16.	Chlorides (as Cl)	mg/1,max.	400
17.	Fluorides (as F)	mg/1,max.	2.0
18.	Sulphides (as S)	mg/l,max.	0.5
19.	Arsenic, total (as As)	mg/l,max.	0.05
20.	Cadmium, total (as Cd)	mg/1,max.	0.03
21.	Chromium, total (as Cr)	mg/1,max.	0.05
22.	Chromium, hexavalent (as Cr ⁶⁺ )	mg/l,max.	0.01
23.	Copper, total (as Cu)	mg/1,max.	0.05
24.	Iron, total (as Fe)	mg/l,max.	3.0
25.	Lead, total (as Pb)	mg/1,max.	0.05
26.	Mercury, total (as Hg)	mg/1,max.	0.001
27.	Nickel, total (as Ni)	mg/1,max.	0.2
28.	Selenium, total(as Se)	mg/1,max.	0.05
29.	Zinc, total (as Zn)	mg/1,max.	2.0
30.	Silver, total (as Ag)	mg/1,max.	0.035
31.	Pesticides (Total)	mg/1,max.	0.005
32.	Surfactants (Total)	mg/l, max	5.0
33.	Faecal coliform	MPN/100ml max	150

		mg/l_max	250
34.	Sulphates (as S)	· · · · · · · · · · · · · · · · · · ·	
35.	Radio Active Material: (a) Alpha emitters (b) Beta emitters	micro curie/ml, max micro curie/ml, max	10-8 10-7

Note 1: All efforts should be made to remove unpleasant odour as practicable as possible.

**Note 2**: These limit values are based on the premise that for inland surface water the dilution factor may be at least 1:8. In an event where the dilution factor is found to be less, the limit values in the Schedule should be adjusted on a proportional basis so as to give rise to more stringent limit values.

**Note 3**: The above mentioned general standards and criteria should cease to apply with regard to a particular industry when industry specific standards and criteria are stipulated for that industry.

# **APPENDIX 5: Land Confirmation for STP**





<u>Regarding to obtain the necessary information for Sewerage Planning Project operating in aid of</u> <u>Institute of International Japanese cooperation</u>

Reference to your letter dated 01.09.2016 for the above fact .

02. According to that I am kindly herewith giving my authorization to use the land belongs to Walisinghe Harischandra Sports Complex under the Municipal Council Anuradhapura to the above proposed project.

Sgd. Illegibly

Ajantha Gunawardena

Municipal Commissioner

Municipal Council

Anuradhapura

Seal of : Municipal Commissioner Municipal Council Anuradhapura

Translated By me

(Mrs.) M.I.S. PERERA (Sworn Translator - District Court of Colombo - Sri Lanka) Date: 19 - 9. 2016 **අනුරාධපුර මහා නගර සභාව** அனுராதபுரம் மாநகர சபை MUNICIPAL COUNCIL ANURADHAPURA



මගේ අංකය : )	ඔබේ අංකය :	දිනය :
My Ref : 0/4/9/11/11/12/2016	Your Ref :	Date: 2016.09 07

මළාපවහන සැලසුම් ඉංජිනේරු,

ජපන් ජාතාঃන්තර සහයෝගීතා ආධාර මත කියාත්මක

උපාය මාර්ගික මළාපවහන සැලසුම් වහාපෘතිය,

නො - 25,

බොරුපන පාර,

රත්මලාන.

<u>ජපත් ජාතාාන්තර සහයෝගීතා ආයතනයේ ආධාර මත කියාත්මක කරනු ලබන මළාපවහන සැලසුම් කාර්යය</u> සඳහා අවශාය තොරතුරු ලබා ගැනීම සම්බන්ධව.

උක්ත කරුණ සම්බන්ධයෙන් ඔබ විසින් එවන ලද 2016.09.01 දිනැති ලිපිය හා බැදේ.

02.ඒ අනුව අනුරාධපුර මහා නගර සභාව යටතේ ඇති වළිසිංහ හරිස්වන්දු කීඩාංගනයට අයත් භූමිය යෝජිත වාාපෘතිය සඳහා යොදා ගත හැකි අතර, ඒ සඳහා මාගේ එකහතාවය ලබා දෙන බව මෙයින් කාරුණිකව දන්වා සිටිමි.

නාශ්රික කොමසාරිස් අජන්ත ගුණුර් ර්ධන, මහා සුධර සභාව අනුරාධපුර නාගරික කොමසාරිස්,

මහා නගර සභාව,

අනුරාධපුරය.




# **APPENDIX 6: General Layout of Septic Tank**



# **APPENDIX 7: Detail of Project Costs and Annual Fund Requirement**

	Anuradhapura	Master Plan Area = 1618 ha					IUSD= IUSD= ILKR	145 112 0.770		LKR YEN YEN
	Item Description	Spec	Unit	Quantity	Unit	Price	Amo	ount	Total Amount	Total Amount
					L.C.	F.C.	L.C.	F.C. IPV	IKR	IPV
1	Construction Cost				Litte		Litte		Link	
A A1	STP									
<u> </u>	Anuradhapura STP (Q=13,600m3/day)	About 2400 USD/m3	Ls	1			1,899,054,545	2,193,408,000	4,747,636,364	3,655,680,000
	Sub-total of A						1,899,054,545	2,193,408,000	4,747,636,364	3,655,680,000
В										
B1	Trunk Sewer Supply and install of HDPE OD225	Depth : not exceeding 1.5m	m	344	2,800	3,800	963,000	1,307,000	2,660,000	2,049,000
	Supply and install of HDPE OD225 Supply and install of HDPE OD225	Depth : not exceeding 2.0m Depth : not exceeding 2.5m	m	625 541	3,900	4,200	2,438,000	2,625,000	5,847,000	4,502,000
	Supply and install of HDPE OD225	Depth : not exceeding 2.0m	m	406	5,400	4,500	2,194,000	1,828,000	4,568,000	3,517,000
	Supply and install of HDPE OD225 Supply and install of HDPE OD280	Depth : not exceeding 3.5m Depth : not exceeding 1.5m	m	130	2,900	4,500	417,000	586,000 820,000	1,477,000	1,137,000
	Supply and install of HDPE OD280 Supply and install of HDPE OD315	Depth : not exceeding 2.0m Depth : not exceeding 3.5m	m	69 24	4,100	6,000 7,600	282,000	413,000	818,000	630,000 277,000
	Supply and install of HDPE OD355	Depth : not exceeding 1.5m	m	209	3,100	8,700	647,000	1,816,000	3,005,000	2,314,000
	Supply and install of HDPE OD355 Supply and install of HDPE OD355	Depth : not exceeding 2.0m Depth : not exceeding 2.5m	m	14/	4,200 4,400	9,000	616,000 350,000	715,000	2,330,000 1,279,000	1,794,000 985,000
	Supply and install of HDPE OD355 Supply and install of HDPE OD355	Depth : not exceeding 3.0m Depth : not exceeding 3.5m	m m	98 45	5,400 5,400	9,300 9,300	530,000 245.000	912,000 423,000	1,714,000 794,000	1,320,000 612.000
	Supply and install of GRP/FRP ND400	Depth : not exceeding 1.5m	m	583	3,800	22,700	2,217,000	13,243,000	19,416,000	14,950,000
	Supply and install of GRP/FRP ND400	Depth : not exceeding 2.5m	m	51	4,900	23,000	373,000	1,174,000	1,898,000	1,461,000
<u> </u>	Supply and install of GRP/FRP ND400 Supply and install of GRP/FRP ND400	Depth : not exceeding 3.5m Depth : not exceeding 4.5m	m m	28 19	8,700 10,100	23,400 23,700	247,000 191,000	664,000 447,000	1,109,000 772,000	854,000 594,000
	Supply and install of GRP/FRP ND450 Supply and install of GRP/FRP ND450	Depth : not exceeding 1.5m	m	166	5,000	28,300	829,000	4,692,000	6,923,000	5,330,000
	Supply and install of GRP/FRP ND450	Depth : not exceeding 2.5m	m	30	9,300	28,800	281,000	870,000	1,411,000	1,086,000
	Supply and install of GRP/FRP ND450 Supply and install of GRP/FRP ND450	Depth : not exceeding 3.0m Depth : not exceeding 3.5m	m m	313 166	10,900	29,200 29,200	3,415,000 1,843,000	9,149,000 4,848,000	15,297,000 8,139,000	11,779,000 6,267,000
	Supply and install of GRP/FRP ND450 Supply and install of GRP/FRP ND450	Depth : not exceeding 4.0m	m	38	12,700	29,600	489,000	1,139,000	1,968,000	1,516,000
	Supply and install of GRP/FRP ND500	Depth : not exceeding 4.5m	m	220	5,800	29,000	1,276,000	6,228,000	9,364,000	7,211,000
	Supply and install of GRP/FRP ND500 Supply and install of GRP/FRP ND500	Depth : not exceeding 2.0m Depth : not exceeding 2.5m	m m	127 348	7,400 8,000	28,800 28,800	940,000 2,782,000	3,657,000	5,689,000	4,381,000 12,158,000
	Supply and install of GRP/FRP ND500	Depth : not exceeding 3.0m	m	396	12,800	29,200	5,068,000	11,561,000	20,082,000	15,463,000
	Supply and install of GRP/FRP ND500	Depth : not exceeding 5.5m Depth : not exceeding 4.0m	m	190	14,700	29,600	2,492,000	4,377,000	7,858,000	6,051,000
	Supply and install of GRP/FRP ND600 Supply and install of GRP/FRP ND600	Depth : not exceeding 1.5m Depth : not exceeding 2.0m	m m	425	6,400 7,800	34,000 34,500	2,720,000 513,000	14,452,000 2,267,000	21,489,000 3,457,000	16,546,000 2,662,000
	Supply and install of GRP/FRP ND600	Depth : not exceeding 2.5m	m	34	12,000	34,500	402,000	1,157,000	1,905,000	1,467,000
	Supply and install of GRP/FRP ND600	Depth : not exceeding 3.5m Depth : not exceeding 4.0m	m	67	15,700	35,300	1,051,000	2,369,000	4,130,000	3,180,000
	Supply and install of GRP/FRP ND600 Supply and install of GRP/FRP ND700	Depth : not exceeding 4.5m Depth : not exceeding 1.5m	m	152 720	16,200 8,200	35,300 42,400	2,462,000 5,907,000	5,365,000 30,545,000	9,430,000 45,576,000	7,261,000 35,093,000
	Supply and install of GRP/FRP ND700 Supply and install of GRP/FRP ND700	Depth : not exceeding 2.0m	m	617	10,100	43,000	6,232,000	26,531,000	40,688,000	31,330,000
	Supply and install of GRP/FRP ND700	Depth : not exceeding 2.0m	m	860	19,000	44,200	16,346,000	38,025,000	65,729,000	50,611,000
	Supply and install of GRP/FRP ND700 Supply and install of GRP/FRP ND700	Depth : not exceeding 3.5m Depth : not exceeding 4.0m	m	734 256	21,300 19,700	44,800 44,200	15,644,000 5,036,000	32,903,000 11,300,000	58,375,000	44,949,000
	Supply and install of GRP/FRP ND700 Supply and install of GRP/FRP ND900	Depth : not exceeding 4.5m Depth : not exceeding 2.5m	m	146	20,200	44,200	2,945,000	6,445,000	11,315,000	8,713,000
	Supply and install of GRP/FRP ND900	Depth : not exceeding 2.0m	m	107	19,800	62,600	2,128,000	6,727,000	10,864,000	8,366,000
	Supply and install of GRP/FRP ND900 Supply and install of GRP/FRP ND900	Depth : not exceeding 3.5m Depth : not exceeding 4.0m	m	457	20,300 22,600	62,600 63,200	9,278,000	28,612,000 4,269,000	46,436,000 7,071,000	35,756,000 5,445,000
	Supply and install of GRP/FRP ND900 Supply and install of GRP/FRP ND1000	Depth : not exceeding 4.5m Depth : not exceeding 4.5m	m	163	23,200	63,200 102,400	3,789,000	10,322,000	17,194,000	13,240,000 4,813,000
						1000	1001000	1 -55 000	0,22 1,000	4.152.000
	Supply and install of HDPE OD110 Supply and install of HDPE OD110	Depth : not exceeding 1.5m Depth : not exceeding 4.5m	m	1,677	2,000	1,000	288,000	1,677,000 144,000	3,184,000 475,000	2,452,000 366,000
	Supply and install of HDPE OD125 Supply and install of HDPE OD140	Depth : not exceeding 1.5m Depth : not exceeding 1.5m	m	792 545	600 600	1,200	475,000	951,000 818,000	1,710,000	1,317,000
	Supply and install of HDPE OD140	Depth : not exceeding 2.0m	m	30	700	1,500	21,000	45,000	79,000	61,000
	Supply and install of HDPE OD140 Supply and install of HDPE OD200	Depth : not exceeding 2.5m Depth : not exceeding 1.5m	m	1,071	1,700	3,300	857,000	3,536,000	5,449,000	4,196,000
	Supply and install of HDPE OD200 Supply and install of HDPE OD225	Depth : not exceeding 2.5m Depth : not exceeding 1.5m	m m	181 149	1,600	3,300 3,700	289,000 134,000	596,000 552,000	1,063,000 851,000	819,000
	Supply and install of HDPE OD250	Depth : not exceeding 1.5m	m	375	900	4,800	337,000	1,800,000	2,675,000	2,059,000
	Supply and install of GRP/FRP ND600(PJ)	Depth : not exceeding 10m	m	300	38,500	379,302	11,565,000	113,935,000	159,533,000	122,840,000
	Supply and install of GRP/FRP ND700(PJ)	Depth : not exceeding 10m	m	347	40,600	479,710	14,102,000	166,627,000	230,501,000	177,486,000
	Temporary road reinstatementAsphalt concete	Add 10% of pipeline(W=1.2)	m2	23,450	2,000	0	46,901,000	0	46,901,000	36,114,000
	Permanent road reinstatementAsphait concete	Add 10% or pipeline(w=1.2)	m2	23,450	4,910	0	115,142,000	0	115,142,000	88,059,000
B2	Pump Station Manhole Type Pumping Station		nc	8	22,000,000	0	176.000.000	0	176 000 000	135 520 000
	Major Pumping Station		pc	0	570,000,000	0	0	0	0	0
	Sub-total of B						500,994,000	665,224,000	1,364,919,000	1,050,992,000
с	Branch Sewer									
Č1		D. J. J. F. A.C.		242,700	1.400	1.200	10/7000 000	1.010.240.000	2 201 200 000	1.0.41 (200.000)
	Supply and install of HDPE OD225	Deptn : not exceeding 2.5m	m	242,700	4,400	4,200	1,067,880,000	1,019,340,000	2,391,098,000	1,841,008,000
	Temporary road reinstatementAsphalt concete Permanent road reinstatementAsphalt concete	Add 10% of pipeline(W=1.2) Add 10% of pipeline(W=1.2)	m2 m2	320,364 320,364	2,000 4,910	0	640,728,000 1,572,987,000	0	640,728,000 1.572,987,000	493,361,000 1,211,200,000
	Manhole Type Pump		pc	14	1,000,000	6,930,000	14,000,000	97,020,000	140,000,000	107,800,000
	Sub-total of C						3,295,595,000	1,116,360,000	4,745,413,000	3,653,969,000
D	House Connection									
D1	House Connection		uu	12 725	100.000	0	1 272 500 000	0	1 272 500 000	1.056.825.000
	House Connection		пп	13,723	100,000	0	1,572,500,000	0	1,372,300,000	1,030,823,000
	Sub-total of D						1,372,500,000	0	1,372,500,000	1,056,825,000
	Sub-total of 1						7 068 143 545	3 974 992 000	12 230 468 364	9 417 466 000
	our will UI I						7,000,140,045	3,774,792,000	14,400,400,304	2,417,400,000
2	Administration cost Consulting cost						847,000,000 465,000,000	0 1,022,000,000	847,000,000 1,792,273,000	652,190,000 1,380,050,000
4	Physical contingency for construction cost						438,000,000	218,000,000	721,117,000	555,260,000
6	Land acquisition and compensation						1,001,000,000		2,170,000,000	1,000,090,000
7	Interest during construction Front-end Fee						0	114,000,000 26,000,000	148,052,000 33,766,000	114,000,000 26,000,000
9	Tax and duty Sub-total of (2,9)						3,049,000,000	1 760 000 000	3,049,000,000	2,347,730,000
	Total including Tax and Duty						13,564,143,545	5,734,992,000	21,012,185,000	16,179,383,000
	Total excluding Tax and Duty Eligible Portion (1, 3, 4, 5 and 7)						10,515,143,545 9,668,143,545	5,734,992,000 5,708,992,000	17,963,185,000 17,082,419,000	13,831,653,000 13,153,463,000
	Non-Eligible Portion (2, 6, 8 and 9)						3,896,000,000	26,000,000	3,929,766,000	3,025,920,000





Type of Expenditure	Moratuwa Ratmalana WWTP	Moratuwa Ratmalana	Moratuwa	Total
		Distribution Network	(Soysapura)	
Salary			21,586,000.00	21,586,000.00
Utility Cost	9,460,008.00	3,300,000.00	103,000.00	12,863,008.00
Chemical Cost	383,000.00	-		383,000.00
Repair and Maintanance Cost	810,050.00	142,950.00	1,271,000.00	2,224,000.00
Establishment Cost	862,000.00	-	1,115,000.00	1,977,000.00
Security and Rent Cost	1,162,000.00	2,324,000.00	1,121,000.00	4,607,000.00
Total	12,677,058.00	5,766,950.00	25,196,000.00	43,640,008.00

Moratuwa Ratmalana - 8119

Treatment Plant and Network 39.13 LKR/m3/day

499,876,455 199,950,582 57,128,738 285,643,689 67,126,267 Total Amount (LKR) 20000 × 39.13 × 365 = 35000 × 39.13 × 365 = 4700 × 39.13 × 365 = 1400 x 39.13 x 365 = 4000 × 39.13 × 365 = m3/d -> m3/d -> m3/d -> m3/d -> m3/d -> 35000 14000 20000 4000 4700 Sri Jayawardanapura Kotte MC Dehiwala-Mt Lavinia MC Anuradhapura MC Nuwara Eliya MC Badulla MC

# **APPENDIX 9: Breakdown of Operating Expenditure**

# **APPENDIX 10: Regulations and Organizations Related to ESC**

In Sri Lanka, various environmental legislations and standards are in force pertaining to wastewater collection, treatment, and disposal practices in order to safeguard the environment. It should be noted that many number of statutes exist which deal with this subject directly or indirectly. The most important legislations and standards are;

- National Environmental Act No. 47 of 1980 and No. 56 of 1988 and its amendments
- Tolerance limits for the discharge of industrial waste in to inland surface waters
- Tolerance limits for industrial effluents discharged on land for irrigation purpose
- Tolerance limits for industrial and domestic effluents discharged into marine coastal areas
- Tolerance limits for discharge of effluents into public sewers with central treatment plants
- Hazardous Waste Disposal
- Air Quality and Offensive Odor
- Noise and Vibration
- Marine Pollution Prevention Act no 59 of 1981
- Coast Conservation Act No. 57 of 1981 amended by Act No 64 of 1988 and its amendments
- Flood Protection Ordinance No 4 of 1924
- Land development Ordinance of 1935
- Nuisance Ordinance No. 15 of 1862 as amended by act No 57 of 1946
- State Land Ordinance No 8 of 1947
- Soil Conservation Act No 25 of 1951
- Urban Development Authority Law No 41 of 1978
- Mahaweli Authority of Sri Lanka Act No 23 of 1979
- Municipal Councils Ordinance No 29 of 1947 amended by act no 61 of 1981
- Fauna and Flora Protection Ordinance No 2 of 1987
- Agrarian Services Act No 58 of 1979 amended by Act No. 4 of 1991
- Irrigation Ordinance No 32 of 1946, amended by No 48 of 1968 and by No 13 of 1994
- Forest Ordinance No 16 of 1907 as amended by Act No 23 of 1995

## **1.2 Approvals Required for a Sewerage Project**

The proposed Project and each of its subprojects will be in full concurrence with legal requirements of the relevant Government Ministries and agencies.

## Central Environmental Authority (CEA)

Approval of CEA under EIA regulations is required for the implementation of any "Prescribed Project" and valid Environmental Protection License (EPL) is required to discharge effluents in to the environment.

# Coast Conservation and Coastal Resources Management Department (CC&CRMD - Commonly known as CCD)

Approval of the Director General of CC&CRMD is required for any development activity to be carried out within the Coastal Zone as defined under Coast Conservation Act.

## Local Authority (LA) (Municipal Councils, Urban Councils or Pradeshiya Sabha)

To carryout construction activities of the project, the approval of relevant Local Authority must be obtained.

## Mahaweli Authority of Sri Lanka (MASL)

As the responsible agency for Mahaweli River, the MASL has been vested with the authority of granting permission for development works in the Mahaweli River and its reservation. Moreover, MASL is also a Project Approving Agency Gazette under the NEA.

## Road Development Authority (RDA), Provincial Road Development Authority (PRDA)

If the project activities require to lay pipelines along provincial or national roads, the approval of PRDA or RDA is required.

## **Department of Archaeology**

It is the state agency responsible for conservation of archaeological artefacts and structures of historical interest whether lying or hidden beneath the surface of the ground or in any water/lake. Any development project on such land will have to be permitted by the Director General of Archaeology.

#### **The Forest Department**

The Forest Department in its role as statutory custodian of state forests and lands and the plantation of new forests, has been vested with powers so as to not granting permission for any development activity within any land declared, proposed or defined under the Forest Ordinance.

#### The Department of Wild Life Conservation

The Department of Wild Life Conservation has been vested with the powers as to not grant permission for development projects which are proposed to be located within, or within a 1 mile radius of National Reserves declared under the Fauna and Flora Protection Ordinance without carrying out EIA.

## **Department of Agrarian Development**

Filling of any paddy cultivation land is envisaged for the construction of sewerage treatment plants, laying of pipelines or related structures, approval of the Department, of Agrarian Development is required.

## Urban Development Authority (UDA)

If the development activities of the proposed project are within an area declared under UDA law, approval of UDA is required.

## **1.3 EIA Procedure Under NEA**

Environmental Impact Assessment (EIA) is the general process of finding the impacts on natural and social environments and proposing preventive or minimising measures to enhance positive impacts. The broader legal framework for the EIA process in Sri Lanka was laid down by the amendments made to NEA in 1988 through the National Environmental (Amendment) Act No. 56 of 1988. The provision relating to EIA is contained in Part IV C of the National Environmental Act. Regulations pertaining to this process are published in Government Gazette Extraordinary No.772/72 dated 24th June 1993 and in several subsequent amendments. The procedure stipulated in the Act for the approval of projects provides for the submission of two types of reports: Initial Environmental Examination (IEE) report or EIA report. Such reports are required in respect of "prescribed projects" included in EIA regulations.

The EIA process is implemented through designated Project Approving Agencies (PAAs). A list of line ministries and agencies that are designated as PAAs is depicted in Government Gazette (Extra Ordinary) No. 859/14 dated February 13, 1995. The PAA's are basically responsible for the administration of the EIA process under NEA, which includes but not limited to:

- Subject all prescribed projects to IEE/EIA requirements
- Ensure and guide proper scoping process for IEEs/EIAs
- Draft Term of Reference (ToR) for IEEs/EIAs
- Establish, conduct and participate in Technical Evaluation and reviews during and after IEE/EIA report preparation
- Ensure public notification of availability of EIA for public review
- Evaluate the comments received from the public and other agencies
- Establish appropriate mitigatory measures and ensure that they are incorporated in the approval conditions
- Ensure implementation of the conditions through effective monitoring
- Obtain concurrence of the CEA prior to taking decision on the EIA report.

In order to obtain environmental approval for a prescribed project, the project proponent should submit either an IEE report or an EIA report as required by the PAA. Determination of whether an IEE or EIA is required for a proposed prescribed project is based on an assessment of the likely significance of the impacts of the proposed project on the environment. EIAs, rather than IEEs, are required for prescribed projects that are likely to have significant impacts. Determination of Significance is based on the consideration of both context and intensity of the potential impacts.

In the event that an EIA is required, the PAA in consultation with CEA is responsible for subjecting the preliminary information submitted by the project proponent to environmental scoping, in order to set the Terms of Reference (TOR) for the EIA within 30 days from the date of acknowledging receipt of the preliminary information. The TOR is prepared by a scoping committee comprising experts in the relevant field, appointed by the PAA. In developing the TOR, the EIA regulations provide for the PAA to consider the views of state agencies and the public.

Upon submission of the EIA report by the project proponent, the PAA is required to determine whether issues referred to in the TOR have been addressed and notify the proponent of any inadequacies within 14 days. In the event any inadequacies are identified, the project proponent is required to make necessary amendments and resubmit the report. Once accepted, in addition to the EIA being forwarded to the CEA by the PAA, notice is also placed in a national newspaper published daily in Sinhala, Tamil and English languages inviting the public to make written comments, if any, to the PAA within 30 days from the date of first appearance of the notice. According to the legislation, public consultation is mandatory is only at this stage of the EIA process. Informal consultation with Non-Governmental Organisations (NGOs), interested groups and civil society may occur during early stages of environmental studies depending on the type of project and public interest in the project. The notification would specify the times and places at which the EIA would be available to the public. As a minimum the report would be available at the CEA, PAA and in appropriate government agencies in the project area. The environmental regulations have provisions for public hearings on the project although it is not mandatory. The PAA can use its discretion and hold a public hearing if it would be in the interest of the public. The PAA is required to forward all comments, either written or raised during any public hearing, to the project proponent for review and response within 6 days of completion of the public comment period. The project proponent is required to respond to all such comments in writing to the PAA.

The Technical Evaluation Committee (TEC) appointed by the PAA would then evaluate the EIA and require the project proponent to respond to any queries raised by the TEC. The TEC would also evaluate the adequacy of the project proponent's response to any comments raised during the public comments period. Upon completion of the evaluation of the TEC, the PAA with the concurrence of the CEA would either grant approval for the implementation of the proposed project subject to specified conditions or refuse approval for implementation of the project, with reasons for doing so. This decision must be made within 30 days of the receipt of responses from the project proponent. The PAA is required to specify a period within which the approved project should be completed. In the event the proponent is unable to complete the project within the specified period, written permission for an extension has to be obtained from the PAA, 30 days prior to the expiration date.

Upon review of the preliminary information provided by the project proponent (PP), if the PAA determines that the project would have no long-term adverse environmental impacts, an IEE would be considered adequate. Under such circumstances, the proponent will be required to submit a detailed IEE for review and approval by the PAA. The IEE will identify potential environmental and social issues and the complexity of possible remedial actions. Upon reviewing the IEE, if the TEC identifies any substantial environmental issues that may arise as a result of the proposed project, the proponent will be required to undertake a detailed EIA. The IEE review process is similar to the EIA review process, except for the level of detail and analysis involved, which is proportionate to the anticipated environmental and social impacts. The IEE is not required by law to be opened for the public for comments and does not go through the public consultation process.

## **Projects Subject to EIA**

According to the EIA regulations, "Sewerage Treatment" is not a prescribed activity requiring an IEE/EIA. However, "Laying of gas and liquid (excluding water) transfer pipelines of length exceeding 1 kilometre" is a prescriber activity. However, any project or undertaking irrespective of their magnitude, if located partly or wholly within an environmental sensitive area, will become a prescribed project requiring approval under the EIA regulations. Environmental sensitive areas are defined as;

- Any erodible area declared under the Soil Conservation Act (1951, 1953);
- Any Flood Area declared under the Flood Protection Ordinance (1924, 1955) and any Flood Protection Area declared under the Sri Lanka Land Reclamation and Development Corporation Act (1968, 1982);
- Any reservation beyond the Full Supply Level of a reservoir;
- Any archaeological reserve, ancient or protected monument as defined or declared under the Antiquities Ordinance (1965);
- Any area declared under the Botanic Gardens Ordinance (1928, 1973);
- Areas within, or less than 100m from the boundaries of any area declared under the National Heritage and Wilderness Act (1988): the Forest Ordinance;
- Areas within, or less than 100m from the boundaries of any area declared as a Sanctuary under the Fauna and Flora Protection Ordinance (1937);
- Areas within, or less than 100m from the high flood level contour of a public lake as defined by the Crown Lands Ordinance (1947, 1949, 1956) including those declared under Section 71 of the Ordinance;
- Areas 60m or less from the bank of a public stream as defined in the Crown Lands Ordinance, with a width of more than 25m at any point.



Source: Central Environmental Authority

Figure A8-1: Procedure for obtaining Environmental Clearance

# **APPENDIX 11: Comparison with JICA Guidelines**

There are some gaps between the current Sri Lankan Regulations and JICA Guideline, but they are rather insignificant. The governmental laws pay less attention to the social impacts than JICA Guidelines. Thus, the preparing of the Resettlement Action Plan (RAP) is not mandatory. The 30 day term for public comment that the government stipulates differs greatly from the recommended 120-day JICA policy. Although JICA's guidelines suggest that the project proponents should disclose information related to it, under the Sri Lanka's legislation, the responsibility of information disclosure is incurred not by the project proponent but by the PAA.

<u>-</u>		
Item	JICA Guidelines	Sri Lankan Policies and Regulations
EIA/ IEE Process	At the scoping stage and EIA draft report stage, the project proponent has to hold stakeholder meetings in the area to explain the contents. The comments should be reflected in the plan. EIA reports / RAP will be disclosed 120 days prior to concluding the agreement documents.	Stakeholders are provided an opportunity to comment in the scoping stage. The stakeholders are usually related governmental organizations (not local community/general public). The stakeholders and public can submit queries and comments on the EIA draft report. The comments should be addressed in the final report. EIA reports will be opened for 30 days for public comments.
Environmental Checklist	A check list is provided for each sector. These items should be included in the EIA report.	The PAA shall prepare terms of reference for an EIA. No specific checklist is provided.
Involuntary Resettlement Process	The project proponent is obliged to prepare a RAP. If number of resettled household is small (e.g. one household), the RAP can be simplified one. The RAP is prepared as part of the EIA Report.	In case that the number of resettled households is 20 or more, the NIRP requires a RAP.
Compensation for land resettlement	Full replacement cost must be applied as much as possible.	The Land Acquisition Act (LAA) provides for the payment of compensation on the basis of "market value" which is defined as the "amount which the land might be expected to have realized if sold by a willing seller in the open market as a separate entity". The National Involuntary Resettlement Policy (NIRP) recommends that compensation for loss of land, structures, other assets and income should be based on full replacement cost and should be paid promptly together with transaction costs.
Compensation for non-registered residents	All residents before the cut-off-date are eligible.	The LAA does not have any provisions on this issue. The NIRP recommends that affected persons who do not have documented title to land should receive fair and just treatment.
Grievance redress mechanism	The project proponent is obliged to have a grievance redness mechanism.	The LAA provides a limited grievance redress mechanism whereby certain grievances of the affected persons relating to compensation can be referred to the Board of Review established under the LAA. The NIRP recommends the establishment of an internal monitoring system by project executing agencies to monitor the implementation of RAPs and handling of grievances. Grievances redress mechanism formally instituted by the

#### **Comparison of JICA and Sri Lankan Policies and Guidelines**

Item	JICA Guidelines	Sri Lankan Policies and Regulations
		project authorities with the support of the
		Divisional Secretaries of the project area.

# **APPENDIX 12: International Commitments related to ESC**

# **International Commitments**

A list of Environment-related International Conventions, Protocols, and Treaties is given in Table.

## Table: List of Environment-related International Conventions, Protocols, and Treaties

71)
1973)
ous Drought and/or
1

# **APPENDIX 13: Record of Consultation with Public and Authorities**

# **Record of Meeting/Discussion**

Date:	e: 02/05/2016 Time: from 10:30 to		to	12:00					
Venue:	CEA Di	rector of El	IA office						
Attenda	ants								
Name			F	Position		Dep	Department/Organization		
Name									
Kanthi I	De Silva		Director of EIA CEA						
JICA Experts (Name)									
Koji KIMURA			Deputy Team I	Leader		JET			
Yudai TADAKI Raniith Warusamana			Environmental	and Social	JET				
Ranjith Warusamana		Deputy Team I	Leater (Loc	al expert)	JET (Local expert)				
Ms. KPP Dharmasena		Chief Engineer	rg (P&D - S	Sewerage)	NWSDB				
Main Su 1. Verify 2. Acqu	Main Subject: 1. Verify CEA requirments for environmental and social studies at each stage of the project 2. Acquire documentation/guidelines related to requirements								
Topic			Contents	of Discuss	ion			Conclusion	
1	By JET: General introduction of current project (Prese JET understanding is environmental studies a 1) National M/P: SEA required 2) Priority Cities M/P: IEE required 3) F/S for final two cities: EIA or IEE required				IC/R presen uired at eac	ntation). h stage, as follov	vs		
2	CEA response: SEA is not required for any stage. SEA is performed generally to determine the type of project to select. Since the current project is already defined as a sewerage project, no study is required. Furthermore, any environmental evaluation undertaken at this stage will not be considered or accepted as an SEA by CEA. There is no law or procedure for SEA.								
3	Requirements for IEE/EIA:         IEE/EIA will NOT be required at the Cities M/P stage.         EIA will be required for approval of the F/S for each of the selected cities.         The TOR for the EIA can be issued based on the Project Proposal submitted to CEA at the the Cities M/P stage for preparation of coming EIA for the F/S.								
4	Minitry of Land is responsible for the Resettlement Action Plan.								
Documents: SEA for water reources and irrigation development in Sri Lanka, TOR									
		Actions	to be taken			by Whon	n	until When	

# **Record of Meeting/Discussion**

Date:	02/11/2016	<u> </u>	Time:	from	15:30	to	16:30	
Venue:	CEJ office							
Attenda	ants							
	Name		Position		Depa	rtment/O	rganization	
Name								
Mr. Her	nantha Withanage	Executive of	lirector		CEJ			
JICA	Experts (Name)							
Koji KI	MURA	Deputy Tea	ım Leader		JET			
Yudai T	ADAKI	Environme	ntal and Socia	l Consid.	JET			
WADD	Wijesooriya	Director			EMAC			
Buddhil	ka De Silva	Director			EMAC			
<ol> <li>To make known the JET's intention to perform M/P for the Project, and its contents.</li> <li>To collect thoughts and opinions regarding the Project and apply them for its implementation</li> </ol>								
Topic		Conte	ents of Discuss	sion			Conclusion	
1	By JET: General introduction of current project (Presented: IC/R presentation).							
2	CEJ: Kaduwela may be an interesting location for sewerage project. a) High domestic sewerage needs: direct dumping of domestic sewerage to Kelani River, complaints of itchiness and reactions to bathing in river, etc b) Highly industrialized: industrial effluent and solid waste in Kelani river c) Water treatment plant located downstream is affected by pollution at Kaduwela. Many other water and land pollution issues were discussed							
3	CEJ and JET will further consult each other as the Project progresses.							
4								
	Documents:         Kelani River Edatabase.pdf         Content-Kelani River industrial pollution 2015         Kelani River industrial pollution							
	Action	ns to be taken			by Whom		until When	

# **Record of Meeting/Discussion**

Date:	02/11/2016		Time:	from	14:00	to	15:00		
Venue: Office of Professor Jayathunge, Fact			ulty of Scie	nce, Unive	ersity of Colombo				
Attendants									
Name P			osition		Department/Organization				
Name									
Prof. Amaran	nalee Jayathunge	Prof. Zoology			Faculty of Science, University of Colombo				
JICA Exp	JICA Experts (Name)								
Koji KIMUR	2A	Deputy Team L	.eader		JET				
Yudai TADAKI		Environmental and Social Consid.		JET					
WADD Wijesooriya Director		Director	irector		EMAC				
Buddhika De Silva Director					EMAC				
Main Subject	et:								

To make known the JET's intention to perform M/P for the Project, and its contents.
 To collect thoughts and opinions regarding the Project and apply them for its implementation

Topic	Contents of Discussion		Conclusion			
1	By JET: General introduction of current project (Presented: IC/R preser	ntation).				
2	Prof. Jayathunge's response: Odor issues should be controlled. The extent of industrial and medical waste water included in the waste water treatment plant should be discussed.	the study, or treated at				
3	Prof. Jayathunge will be leaving the department due to retire She will appoint others to participate in the consultations, from backgrounds.	ment. a chemistry and biology				
4						
	Actions to be taken by Whom					

# **APPENDIX 14: Draft EMP and EMoP**

# **Mitigation Measures**

Mitigation measures proposed with respect to the stages of: (i) planning and design (ii) construction and (iii) operation is given in Table 1.

Tuble 1. Environmental impact - Mutgation Matrix										
Environmental Impact / Issue	Mitigation Measure	Implementing Organization	Responsible Organization							
	Planning and Design Phase	organization	organization							
Site Selection	<ul> <li>Site selection process shall avoid land acquisition and involuntary resettlement where possible, including impacts on vulnerable persons.</li> <li>Locate sewage pipelines within the right of ways of roads to eliminate acquisition of new land.</li> <li>Avoid locating sewage pumping stations and wet wells within close proximity of any inhabited areas, sensitive sites such as hospitals, schools, temples, etc. to minimize nuisance impacts from odor, rodents, etc. as much as possible</li> </ul>	Consultant/ NWSDB	NWSDB							
Overall Environmental Management	An Environmental Management Plan shall be prepared and implemented.	Consultant/ NWSDB	NWSDB							
Discharge standards	• The design will specify the guidelines for the proper handling and disposal of waste to predetermined authorized disposal sites;	Consultant/ NWSDB	NWSDB							
Archaeological resources	<ul> <li>Consult the relevant records of national and/or local archaeological agencies regarding the archaeological potential of proposed sites of STP, pumping stations, and main sewers, to ensure that these are located in areas where there is a low risk of chance finds.</li> </ul>	Consultant/ NWSDB	NWSDB							
Public utilities	• Telephone lines, electric poles and wires, and water pipes (old) existing within right-of-way (ROW) require shifting without disruption to services.	Consultant/ NWSDB	NWSDB							
Traffic	<ul> <li>In order to limit the disruption to the neighborhood and traffic flow, coordinate with NWSDB to provide guidance to the organization of construction works.</li> <li>The design will specify the handling and transportation of construction materials and equipment.</li> </ul>	Consultant/ NWSDB	NWSDB							
Safety	<ul> <li>The design will include guidelines for site safety which will include specific requirements for physical division (fence), where necessary, of the construction site from passing pedestrians, children at play, vehicles, and any other people at risk.</li> <li>The design will include guidelines for workers' safety on site and the safety of visitors. Bills of quantities and technical description of works will include needed safety equipment.</li> </ul>	Consultant/ NWSDB	NWSDB							
	Construction Phase									
Soil erosion and sedimentation	<ul> <li>Careful planning of construction activities that lead to heavy erosion, to avoid heavy rainy seasons</li> <li>Remove waste soil as soon as it is excavated, by loading directly onto trucks;</li> <li>The work, permanent or temporary shall consist of measures to control soil erosion, sedimentation and water pollution. Typical measures include the use of berms, dikes, sediment basins, fiber mats, mulches, grasses, slope drains and other devices.</li> <li>Adequate compaction of filled surfaces on completion and progressive re-vegetation of all disturbed areas as quickly as possible</li> <li>Protection of drainage channels with berms (i.e. ridge or embankment bordering channel) to prevent overspill</li> <li>Sedimentation traps will be constructed to reduce suspended solids before water is discharged to water bodies where applicable.</li> <li>All debris and residual spoil material including any excess earth will be disposed only at designated locations.</li> <li>The debris and spoil material will be disposed in such a manner that (i) watercourses and drainage paths are not blocked; (ii) the disposed material will not be washed away by floods and (iii) will not be a nuisance to the public.</li> </ul>	Contractor	Consultant/ NWSDB							
Transport of earth material	<ul> <li>Vehicles will be properly maintained to ensure the good running conditions and those which are not in suitable condition will be replaced.</li> <li>Provide covers during transportation</li> </ul>	Contractor	Consultant/ NWSDB							

#### **Table 1: Environmental Impact – Mitigation Matrix**

Environmental Impact / Issue	Mitigation Measure	Implementing Organization	Responsible Organization
Dust Control	<ul> <li>Enclosing or covering the construction site in order to control the dust dispersion.</li> <li>Protecting stockpiles from water and wind erosion;</li> <li>Using a water truck for dust suppression on all exposed areas</li> <li>Establishing and enforcing vehicle speed limits to minimize dust generation;</li> <li>Use tarpaulins to cover loose material when transported to and from the site.</li> <li>Locating stockpiles away from sensitive receptors;</li> <li>Loaded haul trucks travelling to and from the site having loads leveled to avoid spillage;</li> <li>Carrying out progressive rehabilitation of cleared land;</li> </ul>	Contractor	Consultant/ NWSDB
Burrow pits	<ul> <li>Eligible contractor/s who are operating burrow pits with necessary approvals / permits, will only be selected.</li> <li>Noise, dust and related safety issues during loading, transportation and unloading will be controlled to meet` the standards and norms</li> </ul>	Contractor	Consultant/ NWSDB
Construction Waste Disposal	<ul> <li>System to collect waste cement slurry will be provided to avoid contamination of drainage paths.</li> <li>Wastewater from washing of equipment used for concrete mixing and transporting of concrete will be disposed safely.</li> <li>All discarded and used oil and grease will be collected, stored and disposed (reuse / sell).</li> <li>All potentially water polluting chemicals and oils will be stored (a) at locations sufficiently away from watercourses and storm water drainage paths and (b) in a manner that would minimize chances of spillage.</li> <li>Minimize the oil and chemical spillages during operation and properly maintain the equipment and machinery.</li> <li>Debris and spoil will be disposed of only to designated places in such a manner that (i) waterways and drainage paths are not blocked, and (ii) the disposed material will not be washed away by heavy storm water flows.</li> </ul>	Contractor	Consultant/ NWSDB
Drainage issues	<ul> <li>STP site should be located on the high ground to avoid water ingress</li> <li>Natural drain paths should not be disturbed during any construction activity</li> </ul>	Contractor	Consultant/ NWSDB
Noise and vibration	<ul> <li>Temporary noise barriers / screens will be placed.</li> <li>All construction work will be carried out during day time as much as possible and work will be stopped after 6 pm.</li> <li>Workers involved in high noise generating activities (such as compacting, concrete/cement mixing operations using the mixers) and handling high noise generating machinery and equipment will be provided with ear plugs or mufflers.</li> <li>To the extent possible, attempts will be made to use equipment and machinery that produce low noise levels</li> <li>Proper and regular maintenance and/or servicing of equipment and machinery will be carried out.</li> </ul>	Contractor	Consultant/ NWS&DB
Impacts on Water Resources	<ul> <li>Prevent seepage of polluted water to the ground by applying suitable lining for the ponds, raise the levels of the site and the tanks etc as applicable.</li> <li>Establish the STP on a sufficient high ground to avoid the flood impact.</li> <li>Avoid spillages of septage during operation – specially during unloading - and take precautionary measures to prevent mixing septage with storm water drainage system.</li> <li>As a precautionary step, it is proposed to monitor the ground water quality in the area.</li> <li>Ensure the disposal of treated effluent to a reed bed (artificial wet-land) with species which suit the climatic and coastal conditions of the area.</li> <li>Ensure the necessary effluent quality for disposal to inland waters</li> </ul>	NWS&DB / MC	NWS&DB / MC / Consultant
Odor from STP	<ul> <li>Shielding of the unloading bay to an extend to prevent odorous gases being blown away by the wind</li> <li>Hydraulic arrangements that would minimize agitation of sewage during the release to the treatment system</li> <li>Keeping much of the screen channel close to prevent release of gases to air</li> <li>Establish and properly maintain a thick green belt along the STP site and pumping station where applicable.</li> </ul>	NWS&DB / MMC	MMC / NWSDB

The Project for the Strategic Master Plan Under Sewerage Sector in Democratic Socialist Republic of Sri Lanka (Phase 1) Final Report Section II Strategic Sewerage Master Plan Anuradhapura

Environmental Impact / Issue	Mitigation Measure	Implementing Organization	Responsible Organization
Sludge disposal	<ul> <li>Use dewatered sludge as fertilizer.</li> <li>It is recommended that the sludge be disposed at suitable site such as coconut land or suitable plantation land or through burial in to due pits.</li> </ul>	NWS&DB / MMC	MMC / NWSDB

## DRAFT ENVIRONMENTAL MONITORING PLAN

## **Objective Of Environmental Monitoring Plan**

In order to fulfil the following objectives an appropriate Environmental Monitoring Programme (EMoP) will be carried out.

- Check the implementation of mitigatory measures to ensure whether they are in conformity with the requirements
- Ensure that the impact does not exceed legal standards
- Provide timely warnings of potential environmental damages

The EMoP characterizes the proposed mitigation and monitoring actions as a set of tasks. In the EMoP the specific responsibilities on task implementation on the project proponent, the contractor(s), and the regulatory agency (agencies) are assigned. These tasks should be implemented within a specified time/period by the agency responsible and as per the specifications set out in the EMoP.

#### **Environmental monitoring committee**

The monitoring programme will be undertaken by a committee and all relevant line agencies, local government bodies and interested parties shall take part in the monitoring activities. An Environmental Monitoring Committee (EMC) consisting of the members from the following agencies shall be set up by CEA.

- Central Environmental Authority
- Municipal Council
- National Water Supply and Drainage Board
- Divisional Secretariat
- RDHS and Anuradhapura General Hospital
- Irrigation Department
- Archaeological Department
- Road Development Authority
- Provincial Road Development Authority
- Sri Lanka Railway
- Department of Forest Conservation
- Department of Wildlife Conservation
- Any other agency deemed necessary by the EMC

## Outline of environmental monitoring plan

Environmental Monitoring activities shall take place during Design, Construction and Operation stages of the project. Regular site inspections are required to assess whether the various mitigatory measures suggested are properly implemented and they are effective in achieving the objectives of environmental protection. Outline of the Environmental Monitoring Plan is presented in Table 2.

One important aspect of monitoring should be to assess the effectiveness of the mitigation measures suggested, where they are found lacking, appropriate new actions to mitigate any adverse effects should be undertaken. This requires measurements of selected environmental parameters at identified locations and a summary of the measurement schedule proposed is given in Table 3.

Activity	Expected Negative Impact	Mitigation measures	Responsible for Mitigation	Responsible for Monitoring	Parameters to be monitored	Location	Frequency
Pre-construction stage	Cutting of trees	Permits to be obtained for cutting trees. Cut down of branches wherever possible, rather than cutting the whole tree	Contractor	MC / NWSDB	Number of trees in the project area	Project sites	Before commencing
	Burrowing of earth	Approvals to be obtained	Contractor	MC / NWSDB	Field reports and observations	Project sites	Before commencing
Construction stage	Damages to existing roads	Excavation should be done after studying the design drawings	Contractor	MC / NWSDB	Field reports and observations	Project sites	Once every two months
	Traffic congestion	Implement a proper traffic management plan. Use sign boards and barricaes	Contractor	MC / NWSDB	Field reports and observations	Project sites	Weekly
	Generation of dust	Systemic watering on excavated soil	Contractor	MC / NWSDB	Field reports and observations	Project sites	Once every two weeks
		Using a tarpaulin cover while transporting the materials such as sand, cement and excavated soil	Suppliers	MC / NWSDB	Field report and complaints if any	Off the project site	Weekly
		Taking measures to minimize the dust when loading and unloading the materials	Contractor	MC / NWSDB	Field report and complaints if any	Project site	Weekly
	Increased noise level	Machinery should not produce a noise level above 75db. Relevant equipment should be used to monitor the noise levels	Contractor	MC / NWSDB	Noise reports and complaints if any	Project site	Daily
	Waste generation and camping on the location	Solid waste generated should be disposed properly and removed to appropriate disposal yards	Contractor	MC / NWSDB	Field reports	Project site	Once every three months
	Impacts on existing habitats	No endemic or endangered species are damaged. Cutting of tree should be compensated by planting of more trees around the area	Contractor	MC / NWSDB	Field reports	Project site	Once every six months
Operation and maintenance stage	Sludge generation	Collecting sludge in an underground chamber and proper disposal of it	MC / NWSDB	MC / NWSDB	Maintenance report	Project area	Daily
	Possible negative impacts on water quality and quantity	Water quality and quantity tests to be carried out regularly	MC / NWSDB	MC / NWSDB	Field reports	Project site	Once every month

Aspect	Parameter	Method	Stage	Frequency	Responsibility	Location
Noise level	Day and Night time Noise level	Portable noise meter (range 0-120 dB(A))	Pre-construction	Once (Baseline measurement)	Contractor / NWSDB / EMC	At STP site boundary; Sensitive locations along the
	(dB)		Construction	Once a year	Contractor / NWSDB / EMC	sewer network; Selected pumping stations;
			Operation	Yearly; On complaints	NWSDB / EMC	
Air quality / Odour	SO ₂ , NO ₂ , CO, PM ₁₀ , SPM	Spectrometric method; High volume sampling and Gravimetric analysis	Pre-construction	Once (Baseline measurement)	Contractor / NWSDB / EMC	At STP site; Sensitive locations along the
			Construction	Two times	Contractor / NWSDB / EMC	sewer network; Selected pumping stations;
			Operation	Yearly; On complaints	NWSDB / EMC	
Water Quality	EC, TSS, DO, BOD, COD, pH,	Portable water quality meter, Spectrometric method	Pre-construction	Once (Baseline measurement)	Contractor / NWSDB / EMC	Malwathu Oya near STP site - (i) upstream and (ii)
	Oil and grease, E-coli		Construction	Two times	Contractor / NWSDB / EMC	downstream; Streams at sensitive locations
			Operation	Yearly; On complaints	NWSDB / EMC	along the sewer network; Streams at selected pumping stations;

Table 3: Environmental	Monitoring Schedule
------------------------	---------------------

Aspect	Parameter	Method	Stage	Frequency	Responsibility	Location
Noise level	Day and Night	Portable noise meter	Pre-construction	Once (Baseline	Contractor /	At STP site boundary;
	time Noise level	(range 0-120 dB(A))		measurement)	NWSDB / EMC	Sensitive locations along
	(dB)		Construction	Once a year	Contractor /	the sewer network;
					NWSDB / EMC	Selected pumping stations;
			Operation	Yearly;	NWSDB / EMC	
				On complaints		
Air quality /	$SO_2$ , $NO_2$ , $CO$ ,	Spectrometric method;	Pre-construction	Once (Baseline	Contractor /	At STP site;
Odour	PM10, S	High volume sampling and		measurement)	NWSDB / EMC	Sensitive locations along
	PM	Gravimetric analysis	Construction	Two times	Contractor /	the sewer network;
					NWSDB / EMC	Selected pumping stations;
			Operation	Yearly;	NWSDB / EMC	
				On complaints		
Water Quality	EC, TSS, DO,	Portable water quality	Pre-construction	Once (Baseline	Contractor /	Malwathu Oya near STP
	BOD, COD, pH,	meter, Spectrometric		measurement)	NWSDB / EMC	site - (i) upstream and (ii)
	Oil and grease,	method	Construction	Two times	Contractor /	downstream;
	E-coli				NWSDB / EMC	Streams at sensitive
			Operation	Yearly;	NWSDB / EMC	locations along the sewer
				On complaints		network;
						Streams at selected
						pumping stations:

 Table 3: Environmental Monitoring Schedule