THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA MINISTRY OF POLICY PLANNING AND ECONOMIC AFFAIRS NATIONAL WATER SUPPLY AND DRAINAGE BOARD

THE PROJECT FOR

THE STRATEGIC MASTER PLAN UNDER THE SEWERAGE SECTOR IN
THE DEMOCRATIC SOCIALIST
REPUBLIC
OF
SRI LANKA
(PHASE 1)

SECTION II
 FIVE CITIES' SEWERAGE
 MASTER PLAN
 (1)SRI JAYAWARDENAPURA KOTTE

MAY 2017

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

NIHON SUIDO CONSULTANTS CO., LTD.

EXCHANGE RATE
(As of May 2017)
1LKR $=0.74041 \mathrm{JPY}$
1USD $=150.340$ LKR
1USD $=111.313 \mathrm{JPY}$

TABLE OF CONTENTS

TABLE OF CONTENTS i
LIST OF TABLES iv
LIST OF FIGURES v
ABBREVIATIONS AND TERMINOLOGY vi
EXECUTIVE SUMMARY viii
CHAPTER 1 BACKGROUND AND OBJECTIVES 1-1
1.1 BACKGROUND 1-1
1.2 Objectives and Scope. 1-2
CHAPTER 2 EXISTING CONDITIONS 2-1
2.1 Existing Environmental Conditions/Natural Conditions 2-1
2.1.1 Climate 2-1
2.1.2 Topography 2-2
2.1.3 Geology 2-3
2.1.4 Hydrology 2-4
2.1.5 Surface Water Quality and Quantity 2-5
2.1.6 Environmental Quality 2-8
2.1.7 Protected Areas 2-9
2.1.8 Fauna and Flora 2-13
2.2 Existing Social Conditions 2-15
2.2.1 Administration 2-15
2.2.2 Population and Demography 2-15
2.2.3 Health/Disease 2-16
2.2.4 Religion/Ethnicity 2-16
2.2.5 Poverty Rate 2-16
2.2.6 History and Culture (Heritage). 2-17
2.2.7 Economy 2-17
2.2.8 Land Use 2-19
2.2.9 Water Supply and Sanitation 2-21
2.2.10 Solid Waste Collection and Disposal 2-23
2.3 NeEd for the Project. 2-24
CHAPTER 3 PLANNING BASIS FOR SEWERAGE SYSTEM 3-1
3.1 SANITATION PROVISION 3-1
3.1.1 Target Year 3-1
3.1.2 Planning and Design Criteria 3-1
3.1.3 Sewage Collection Area 3-3
3.1.4 Sewage Flow 3-4
3.1.5 Influent Sewage Quality 3-5
CHAPTER 4 PRELIMINARY PLAN AND DESIGN OF THE SEWERAGE SYSTEM 4-1
4.1 General Layout 4-1
4.2 Wastewater Collection Facilities. 4-1
4.2.1 Sewer Network 4-1
4.2.2 Wastewater Pumping Stations 4-2
4.2.3 Service /House Connections 4-2
4.3 Sewage Treatment Facility 4-3
4.3.1 Treatment Method 4-3
4.3.2 STP Site 4-4
4.3.3 Sewage Treatment Process 4-6
4.3.4 Sludge Treatment and Disposal 4-11
4.4 On-site Facilities and Septage Management 4-14
4.4.1 On-site Facilities 4-14
4.4.2 Septic Tanks 4-14
4.4.3 Operation \& Maintenance of Septic Tanks 4-14
CHAPTER 5 INSTITUTIONALARRANGEMENTS FOR IMPLEMENTATION 5-1
5.1 Project Implementation and Management 5-1
5.1.1 Examples of Project Implementation Structures in Sri Lanka 5-1
5.1.2 Public Works in Sri Jayawardenapura Kotte MC 5-1
5.1.3 Organizational Options for Implementing Sewerage Works 5-3
5.1.4 Preferred Implementation Structure for Sewerage Works 5-3
5.2 ORGANIZATION FOR IMPLEMENTATION 5-4
5.2.1 Organization of the NWSDB Sewerage Department 5-5
5.2.2 Organization of RSC Western Central 5-6
5.2.3 Organization of Sri Jayawardenapura Kotte MC 5-6
5.3 CAPACITY DEVELOPMENT 5-7
5.3.1 Securing Human Resources 5-7
5.3.2 Development of Human Resources 5-8
5.3.3 Sewer Maintenance Equipment and Vehicles 5-9
5.3.4 Customer Service 5-9
5.4 Construction Management for the Protect 5-9
5.4.1 PMU 5-9
5.4.2 Project Office 5-9
CHAPTER 6 COST ESTIMATE AND PROCUREMENT 6-1
6.1 PROJECT COST 6-1
6.1.1 Construction and Project Costs 6-1
6.1.2 Operation and Maintenance (O\&M) Cost 6-2
6.2 Multi-Phased Construction 6-2
CHAPTER 7 FINANCIAL PLAN 7-1
7.1 Financial Condition of Sri Jayawardenapura Kotte Municipal Council 7-1
7.2 Financing Sewerage Facility Construction and O\&M 7-3
7.2.1 Construction, O\&M and Replacement Costs 7-3
7.2.2 Sewage Tariffs 7-3
7.2.3 Assumptions for Calculating Proposed Tariffs 7-5
7.2.4 Sewage Tariff Calculation 7-5
7.2.5 Affordability and Ability to Pay 7-6
7.2.6 Sewage Tariff Tables (Type 2 NWSDB) 7-6
7.3 Financial Plan Conclusions 7-8
CHAPTER 8 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS 8-1
8.1 Existing Conditions 8-1
8.2 Regulations and Organizations Related to ESC 8-1
8.3 COMPARISON wITH JICA GUidelines 8-1
8.4 InTERNATIONAL COMMITMENTS 8-1
8.5 Environmental Scoping 8-1
8.6 TOR For Environmental and Social Considerations Study 8-3
8.6.1 Purpose 8-3
8.6.2 Items to be Targeted and Evaluated in the Study 8-3
8.6.3 Target Areas 8-3
8.6.4 Target Periods 8-3
8.6.5 Contents and Methodology for ESC Study 8-3
8.6.6 Prediction and Evaluation of Potential Impacts 8-5
8.6.7 EMP and EMoP 8-5
8.6.8 Stakeholder Consultation 8-5
8.7 Draft EMP and EMoP 8-5
8.8 Schedule of ESC Activities 8-5
CHAPTER 9 CONCLUSION AND RECOMMENDATION 9-1
9.1 F/S Implementation 9-1
9.2 Risk and Mitigation Measures 9-1
9.3 CONCLUSION and Recommendations 9-1
APPENDICES A-1
APPENDIX 1: Waste Water Flow Calculation A-1
APPENDIX 2: Inflow Sewage Quality A-2
APPENDIX 3: Layout Plan, Sewer Design Calculations and Longitudinal Cross Section A-4
APPENDIX 4: Draft Amendment of Tolerance Discharge Limits A-35
APPENDIX 5: General Layout of Septic Tank A-38
APPENDIX 6: Detail of Project Costs A-40
APPENDIX 7: Detail of Annual Fund Requirement A-41
APPENDIX 8: Breakdown of Operating Expenditure A-42
APPENDIX 9: Regulations and Organizations Related to ESC A-43
APPENDIX 10: Comparison with JCA Guidelines A-45
APPENDIX 11: International Commitments related to ESC A-47
APPENDIX 12: Record of Consultation with Public and Authorities A-48
APPENDIX 13: Draft EMP and EMoP A-51

LIST OF TABLES

Table 1.1-1 Estimated Project Cost X
Table 2.1-1 Percentage of Marshlands in Sri Jayawardenapura Kotte MC area 2-2
Table 2.1-2 Surface Water Quality (Sri Jayawardenapura Kotte) 2-6
Table 2.1-3 Survey of Fauna in the Project Area 2-13
Table 2.1-4 Survey of Flora in the Project Area. 2-14
Table 2.2-1 Population in Sri Jayawardenapura Kotte MC Area 2-15
Table 2.2-2 Prevalence of Chronic Illness by Age Group 2-16
Table 2.2-3 Prevalence of Diabetes and High Blood Pressure 2-16
Table 2.2-4 Population by Religion 2-16
Table 2.2-5 Population by Ethnic Group. 2-16
Table 2.2-6 Poverty Rates 2-16
Table 2.2-7 Archaeological Protected Monuments in Sri Jayawardenapura Kotte MC 2-17
Table 2.2-8 GDP by Sector for Western Province (Current Prices) 2-17
Table 2.2-9 Breakdown of Monthly Household Income - Colombo District (2012/13) 2-18
Table 2.2-10 Land Use in Sri Jayawardenapura Kotte MC 2-19
Table 2.2-11 Access to Drinking Water Sources in Sri Jayawardenapura Kotte MC 2-21
Table 2.2-12 Access to Sanitation Facilities in Sri Jayawardenapura Kotte MC 2-22
Table 2.2-13 Composition of Solid Waste - Sri Jayawardenapura Kotte MC 2-23
Table 3.1-1 Basis for Estimating Sewage Flow 3-1
Table 3.1-2 Coefficients for Sewer Design 3-2
Table 3.1-3 Sewer Pipe Materials 3-2
Table 3.1-4 Types of Pumping Stations 3-2
Table 3.1-5 DSDs and GNDs included in the M/P Area 3-4
Table 3.1-6 Estimated Sewage Flow 3-5
Table 3.1-7 Design Influent Sewage Quality 3-5
Table 4.2-1 Major Sewer Mains 4-2
Table 4.2-2 Main Pumping Stations 4-2
Table 4.3-1 Assumed Quality of Influent and Effluent 4-7
Table 5.1-1 Organization of Water and Sewerage Works in 6 Municipalities. 5-1
Table 5.1-2 Public Works in Sri Jayawardenapura Kotte MC. 5-2
Table 5.1-3 Organizational Options for Implementing Sewerage Works 5-3
Table 5.2-1 Roles of NWSDB and MC at Various Project Implementation Stages 5-4
Table 5.3-1 Faculties at National Universities and Technical Colleges/High Schools 5-7
Table 5.3-2 Comparison of Salaries and Benefits between NWSDB and the Private Sector 5-8
Table 5.3-3 Required Training Programs for Sewerage Systems 5-8
Table 5.3-4 Sewer Maintenance Equipment \& Vehicles at Existing Sewerage Systems 5-9
Table 6.1-1 Estimated Project Cost 6-1
Table 6.1-2 Estimated O\&M Cost. 6-2
Table 7.1-1 Summary of Income \& Expenditure for Sri Jayawardenapura Kotte MC 7-1
Table 7.2-1 Calculation of Type 1 Sewage Tariff-Sri Jayawardenapura Kotte MC 7-5
Table 7.2-2 Calculation of Type 2 Sewage Tariff (3rd increment) - Sri Jayawardenapura Kotte MC 7-5
Table 7.2-3 Example of Domestic Sewage Tariff (for 2024) 7-7
Table 7.2-4 Example of Non-Domestic Sewage Tariff (in 2024) 7-7
Table 8.5-1 Environmental Scoping 8-1
Table 8.6-1 The ESC Study Associated with the Project 8-3
Table 9.2-1 Risks and Mitigation Measures. 9-1

LIST OF FIGURES

Figure 1 Map of Sewer System Plan in Sri Jayawardenapura Kotte ix
Figure 2 (Three Stage) Step-feed Biological Nutrient Removal Process ix
Figure 2.1-1 Average Monthly Minimum and Maximum Temperatures 2-1
Figure 2.1-2 Average Monthly Precipitation 2-1
Figure 2.1-3 Elevation Map of the Sri Jayawardenapura Kotte MC Area 2-3
Figure 2.1-4 Regional Geology 2-4
Figure 2.1-5 Drainage Network and Surface Water Bodies in the Project Area 2-5
Figure 2.1-6 Water Sampling Locations 2-6
Figure 2.1-7 Water Pollution in Sri Jayawardenapura Kotte. 2-8
Figure 2.1-8 PM10 Levels Observed in the Area 2-9
Figure 2.1-9 Colombo Flood Detention Area 2-11
Figure 2.1-10 Environmentally Sensitive Areas in the Colombo District. 2-12
Figure 2.2-1 Comparison of Monthly Household Income 2-18
Figure 2.2-2 Land Use in Sri Jayawardenapura Kotte MC 2-19
Figure 2.2-3 Land Use Plan for Sri Jayawardenapura Kotte (2008-2020) 2-20
Figure 2.2-4 Institutions Connected to the Sewer System in Colombo city 2-22
Figure 2.2-5 Karadiyana Final Disposal Site (Left) and Composting Facility (Right) 2-24
Figure 3.1-1 Proposed Sewage Collection Area for Sri Jayawardenapura Kotte 3-3
Figure 4.1-1 Sewerage Development Plan for Sri Jayawardenapura Kotte 4-1
Figure 4.3-1 Nitrogen Cycle 4-3
Figure 4.3-2 Examples of BNR Process 4-4
Figure 4.3-3 STP Site Location 4-5
Figure 4.3-4 STP Site Layout Plan. 4-5
Figure 4.3-5 STP site (Left: Western part Right: Eastern part) 4-6
Figure 4.3-6 STP site (Left: Southern part Right: Boat course downstream of the STP site) 4-6
Figure 4.3-7 Three-stage Step-feed BNR Process 4-7
Figure 4.3-8 Preliminary Layout of the Treatment Plant 4-8
Figure 4.3-9 Principle of Simultaneous Precipitation 4-10
Figure 4.3-10 Gravity Belt Thickener 4-12
Figure 4.3-11 Pressurized Screw Press 4-13
Figure 4.3-12 Sludge Disposal Options 4-13
Figure 4.3-13 Pile Composting 4-14
Figure 5.2-1 Organization of the NWSDB Sewerage Department 5-5
Figure 5.2-2 Proposed Re-organization of the NWSDB Sewerage Department. 5-6
Figure 5.2-3 NWSDB Sewerage Department Responsibilities for Project Implementation 5-6
Figure 7.1-1 Trend of Total Surplus (deficits) 7-2
Figure 7.1-2 Trend of Actual Revenue minus Recurrent Expenditure - Sri Jayawardenapura Kotte MC 7-2
Figure 7.1-3 Trend of Capital Receipts minus Capital Expenditure - Sri Jayawardenapura Kotte MC 7-2
Figure 7.2-1 Difference Between Type 1 and Type 2 Sewage Tariff 7-4
Figure 7.2-2 Implementation Schedule for Tariffs 7-4
Figure 7.2-3 Comparison of Type 1 Sewage Tariff and Ability to Pay 7-6
Figure 7.2-4 Comparison of Type 2 Sewage Tariff and Ability to Pay 7-6
Figure 8.8-1 Schedule for ESC Surveys 8-6

ABBREVIATIONS AND TERMINOLOGY

ADB	Asian Development Bank
ADWF	Average Dry Weather Flow
AFD	Agence Française de Development
Addl. GM	Additional General Manager
ASRT	Aerobic Solids Retention Time
AGM	Assistant General Manager
ATP	Ability to Pay
BOD	Biochemical Oxygen Demand
BOI	Board of Investment
CBO	Community Based Organization
CP	Counterpart
CEA	Central Environmental Authority
CMC	Colombo Municipal Council
CODCr	Chemical Oxygen Demand
DCS	Department of Census and Statistics
DGM	Deputy General Manager
DMMC	Dehiwala - Mt. Lavinia Municipal Council
DNB	Department of National Budget
DNP	Department of National Planning
DO	Dissolved Oxygen
DS	Divisional Secretariats
EC	Electric Conductivity
EIA	Environmental Impact Assessment
EMP	Environmental Management Plan
EMoP	Environmental Monitoring Plan
EPL	Environmental Protection License
EPZ	Export Processing Zone
ERD	Department of External Resource
ETWWA	Energy, Transport, and Water department of the World Bank
F/S	Feasibility Study
FY	Financial Year
GC	Greater Colombo
GOSL	Government of Sri Lanka
GCS	Greater Colombo Sewerage
IBRD	International Bank for Reconstruction and Development
IEE	Initial Environmental Examination
IFRS	International Financial Reporting Standard
IRR	Internal Rate of Return
JBIC	Japan Bank for International Cooperation
JCC	Joint Coordinating Committee
JICA	Japan International Cooperation Agency
JECES	Japan Education Centre of Environmental Sanitation
JPY	Japanese Yen
JSWA	Japan Sewage Works Agency
LKR	Sri Lanka Rupee
MASL	Mahaweli Authority in Sri Lanka

M\&E	Mechanical and Electrical
MC	Municipal Council
M/M	Minutes of Meeting
MOPPEA	Ministry of Policy Planning and Economic Affairs
MOCPWS	Ministry of City Planning and Water Supply
MOPCLG	Ministry of Provincial Councils \& Local Government
M/P	Master Plan
MRT	Minimum Rate Test
MTPS	Manhole Type Pumping Station
NH3-N	Ammonia Nitrogen
NWSDB	National Water Supply \& Drainage Board
O\&M	Operation and Maintenance
OD	Oxidation Ditch
PDWF	Peak Dry Weather Flow
PMU	Project Management Units
PO	Plan of Operations
PPIAF	Public-Private Infrastructure Advisory Facility
PS	Pradeshiya Sabha
ROA	Return on Asset
ROE	Return on Equity
RSC	Regional Support Centre
R/D	Record of Discussion
SIDA	Swedish International Development Cooperation Agency
SJKMC	Sri Jayawardenapura Kotte Municipal Council
SLS	Sri Lanka Standard
SRT	Solids Retention Time
STP	Sewage Treatment Plant
PPTA	Project Preparatory Technical Assistance
T-N	Total Nitrogen
TOR	Terms of Reference
T-P	Total Phosphorus
TKN	Total Kjeldahl Nitrogen
TSS	Total Suspended Solids
UC	Urban Council
UDA	Urban Development Authority
UNDP	The United Nations Development Programme
WACC	Weighted Average Cost of Capital
WAST	Weighted Average Sewage tariff
WB	World Bank
WDF	Wastewater Discharge Fee
WHO	Water Quality Index Organization
WQI	Water Quality Index
WTP	Water Treatment Plant

EXECUTIVE SUMMARY

Chapter 1 describes the Project background and objectives and the Strategic Sewerage Master Plan (M/P) for the entire country. The M / P identifies 15 priority cities and explains the process used to select the following five cities to be covered by the City Sewerage M/P.

- Sri Jayawardenapura Kotte MC
- Anuradhapura MC
- Badulla MC
- Nuwara Eliya MC
- Dehiwala-Mount Lavinia MC

Chapter 2 examines the environmental and socio-economic conditions of the target area for sewerage development in Sri Jayawardenapura Kotte MC. It then describes the necessity of the Sewerage Project. 96% of the households have septic tanks. Increasing levels of BOD, ammonia, and coliform bacteria have been detected in the lake surrounding the National Parliament, indicating the deterioration of water quality caused by human activities. A sewerage system would treat wastewater efficiently and would protect and improve water quality. The mean household income in Colombo district where Sri Jayawardenapura Kotte is located is higher than the national average. The sewer charges should be affordable and therefore the sewerage system would be sustainable.

Chapter 3 sets out the basic conditions for the preparation of the sewerage plan for Sri Jayawardenapura Kotte MC. The plan is to serve 198,000 people in Sri Jayawardenapura Kotte MC and adjacent areas ($3,392 \mathrm{ha}$) by, 2046. The maximum daily wastewater flow will be $35,000 \mathrm{~m}^{3}$.

Chapter 4 describes the sewerage facility plan and design. The sewer route and locations of pumping stations and the sewage treatment plant (STP) are shown in Figure 1. Given the limited area available, the wastewater treatment would be a step-feed biological nutrient removal process (Figure 2) developed in Japan, which achieves high nitrogen removal with a relatively small footprint. Sludge generated by the wastewater treatment process will be dewatered with a screw press machines and then composted.

Source: JET
Figure 1 Map of Sewer System Plan in Sri Jayawardenapura Kotte

Source: JET
Figure 2 (Three Stage) Step-feed Biological Nutrient Removal Process

Chapter 5 proposes that the sewerage system should be operated and maintained by the NWSDB because it is already providing water supply services thereby enabling cost savings on bill collection. Another advantage is that NWSDB staff can be utilized to manage the planning and construction. Personnel development and OJT can be provided through improved programs at the NWSDB Training Centre.

Chapter 6 estimates the project costs at approximately 44.1 billion JPY (excluding tax), and the annual maintenance cost, 0.39 billion JPY as shown in Table 1.

Table 1.1-1 Estimated Project Cost

			Amount		Total Amount	Total Amount
			LC. (LKR)	F.C. (JPY)	LKR	JPY
1	Construction Cost					
	A	Sri Jayawardenapura Kotte STP (Q = $35,000 \mathrm{~m} 3 /$ day $)$	4,887,272,727	5,644,800,000	12,218,181,818	9,408,000,000
	B	Trunk Sewer \& Pump Station	3,884,573,000	4,878,220,000	10,219,925,000	7,869,338,000
	C	Branch Sewer \& Pump Station	7,079,587,000	3,522,960,000	11,654,860,000	8,974,242,000
	D	House Connection	4,950,000,000	0	4,950,000,000	3,811,500,000
	Sub-total of 1(A-D)		20,801,432,727	14,045,980,000	39,042,966,818	30,063,080,000
2	Administration cost		2,700,000,000	0	2,700,000,000	2,079,000,000
3	Consulting cost		1,354,000,000	3,129,000,000	5,417,636,000	4,171,580,000
4	Physical contingency for construction cost		1,309,000,000	773,000,000	2,312,896,000	1,780,930,000
5	Price escalation for construction cost		5,381,000,000	1,419,000,000	7,223,857,000	5,562,370,000
6	Land acquisition and compensation		-	-	-	-
7	Interest during construction		0	323,000,000	419,481,000	323,000,000
8	Front-end Fee		0	84,000,000	109,091,000	84,000,000
9	Tax and duty		9,861,000,000	0	9,861,000,000	7,592,970,000
	Sub-total of (2-9)		20,605,000,000	5,728,000,000	28,043,961,000	21,593,850,000
	Total including Tax and Duty		41,406,432,727	19,773,980,000	67,086,926,000	51,656,933,000
	Total excluding Tax and Duty		31,545,432,727	19,773,980,000	57,225,926,000	44,063,963,000
	Eligible Portion (1,3,4, 5 and 7)		28,845,432,727	19,689,980,000	54,416,835,000	41,900,963,000
	Non-Eligible Portion (2, 6,8 and 9)		12,561,000,000	84,000,000	12,670,091,000	9,755,970,000

Source: JET

Chapter 7 proposes two sewage tariff schemes to recover the maintenance cost. Type 1 tariff is calculated to cover the maintenance cost for the sewerage system in Sri Jayawardenapura Kotte, while Type 2 is calculated based on the sewerage systems operated by NWSDB. Type-1 is calculated to be $46.97 \mathrm{LKR} / \mathrm{m}^{3}$, and Type-2, $42.34 \mathrm{LKR} / \mathrm{m}^{3}$, both are lower than the limits of affordability estimated by the World Bank (WB). The construction cost will be borne by the central government.

Chapter 8 describes the factors that are likely to affect the local natural or social environment and proposes the parameters to be appraised in an Environmental and Social Considerations Study in the F/S phase.

Chapter 9 concludes that the need for sewerage services in Sri Jayawardenapura Kotte MC the administrative capital of Sri Lanka, is of very high priority. The population served by the sewer system is projected to be significant. The planned treatment is an advanced process that removes nitrogen and phosphorus, which will have a significant positive impact on water quality. A site for the sewage treatment plant is available and a sludge disposal site is already operating. Therefore, Sri Jayawardenapura Kotte MC is selected for a F/S to prepare the project for Japanese financial assistance.

To implement the proposed project in a timely manner, early acquisition of sites necessary for the sewage treatment plant and pumping stations is recommended, it is proposed that The F/S should include basic site investigations such as a geotechnical survey, to make sure that project cost estimation can be made accurately and to avoid cost over-run.

CHAPTER 1 BACKGROUND AND OBJECTIVES

1.1 BACKGROUND

The Democratic Socialist Republic of Sri Lanka had a per capita income of 3,162 US dollars in 2013, and an economic growth rate of 7.3% (source: JETRO website, Basic economic indicators of Sri Lanka). Steady economic growth increased the per capita income to 4,000 USD by 2016, and most Sri Lankans are approaching upper-middle income. The robust economic growth has spurred urbanization and increased water usage, and the volume of domestic and industrial wastewater has increased sharply.

In 2014 , only 2.4% of the country had urban sewerage coverage. A considerable amount of untreated wastewater is discharged into the ocean, rivers, and streams, causing problems related to hygiene and environmental degradation.

The national policy formulated in 2010 (Source: Department of National Planning, Mahinda Chintana Vision for the Future), highlights the importance of potable water supply and sewerage services as an integral element of sustainable development. The Government announced its intention to achieve 100% sanitation coverage by 2025 , through the provision of on and off-site sanitation facilities. NWSDB sets the objective to achieve 7.0% sewerage coverage by 2020 .

The Government committed to developing the Strategic M/P for the sewerage sector to achieve the 2025 target as well as meet the stringent environmental standards introduced by the Central Environmental Authority (CEA) to mitigate pollution of water environment. The Government sought assistance from Japan. The Japanese government accepted the request and subsequently JICA (JICA) signed the Record of Discussions (R/Ds) on this project with the Sri Lankan side in August 2015 and was assigned to carry out a study and formulate the Strategic M/P.

As agreed upon with the Sri Lankan side, the outline of the project is as follows:

(1) Purpose

To develop the Strategic (M/P) to address sewerage issues in the major cities of Sri Lanka, to mitigate to some extent the pollution of rivers and ocean.

(2) Outputs

- Strategic Sewerage M/P for Sri Lanka
- City Sewerage M/P for priority cities
- Feasibility Studies (F/S) for selected cities
- enhanced capacity at the National Water Supply and Drainage Board (NWSDB) and cities selected for F/S

The Strategic Sewerage M/P was formulated in 2016 (from January to June) and can be found in Section I of this Report. The M/P aims to improve the overall water environment through the development of sewerage systems and improvement of on-site sanitation facilities. 79 major cities in the country were evaluated using the following six criteria. An approach to the sewerage system development was proposed.

- Urbanization
- Sanitation
- Urban development
- Sustainability of sewerage service
- Water environment
- Maturity of sewerage project plan

15 cities are designated as priorities for the implementation of sewerage systems to achieve the target of 7.0% coverage by 2035. These are: Colombo MC, Kandy MC, Sri Jayawardenapura Kotte MC, Anuradhapura MC, Badulla MC, Kelaniya PS, Nuwara Eliya MC, Galle MC, Dehiwala-Mount Lavinia MC, Negombo MC, Koticawatta-Mulleriyawa PS, Ratnapura MC, Hambantota MC, Trincomalee UC, and Maharagam UC.

Septic tanks are commonly used for domestic wastewater treatment. It is important to de-sludge and treat septage to maintain proper operation. The M/P outlines the approach to improve on-site sanitation with septage treatment facility. 11 cities are identified as urgently requiring septage treatment facilities, and another 13 cities will be targeted in the next phase.

Five of the 15 priority cities are selected for the development of sewerage M / Ps based on the following criteria.

- Colombo MC and cities that have sewerage projects with funding assistance from other countries and international donors.
- Cities that are targeted for local development but have no sewerage services.

The five cities selected are:

- Sri Jayawardenapura Kotte MC
- Anuradhapura MC
- Badulla MC
- Nuwara Eliya MC
- Dehiwala-Mount Lavinia MC

The Report (Section II-(4)) presents the Sewerage M/P for Sri Jayawardenapura Kotte MC as part of the Project's Output (2).

1.2 Objectives and Scope

This Report describes the sewerage development plan to improve the water environment in Sri Jayawardenapura Kotte MC. The sewerage service area and the conditions for implementing the project are identified.

CHAPTER 2 EXISTING CONDITIONS

2.1 EXISTING ENVIronmental Conditions/Natural Conditions

2.1.1 Climate

(1) General

The Sri Jayawardenapura Kotte Municipal Council (SJKMC) area and its surroundings are classified as wet low country zone, sub category WL3, according to the agro-ecological classification system. The WL3 agro-ecological region distributed largely in Gampaha and Colombo districts, receives the lowest rainfall in the Western Province. The mean annual rainfall is over $1,700 \mathrm{~mm}$. There is a relative dry period from December to mid-March.

(2) Temperature

There is very little variation in temperature throughout the year. The monthly temperatures are summarized in Figure 2.1-1 The average annual temperature is 300C.

Source: JET, using Department of Meteorology data
Figure 2.1-1 Average Monthly Minimum and Maximum Temperatures

(3) Precipitation

Sri Jayawardenapura Kotte gets a significant amount of rain during the year, receiving the most precipitation in May and October. A maximum of 377 mm can be recorded in May. Monthly precipitation is summarized in Figure 2.1-2.

Source: JET, using Department of Meteorology data
Figure 2.1-2 Average Monthly Precipitation

2.1.2 Topography

The Sri Jayawardenapura Kotte MC area has a mix of land and water bodies. The extent of marshlands is summarized in Table 2.1-1 Sri Jayawardenapura Kotte MC covers $17 \mathrm{~km}^{2}$ and has 10 wards. The area is bordered by Heen Ela to the north, a branch of Diyawanna Oya to the South, Kaduwela MC to the East, and Maharagama UC to the west.

Table 2.1-1 Percentage of Marshlands in Sri Jayawardenapura Kotte MC area

Ward No.	Name	Extent Total (ha)	Extend Marshland (ha)	\%. of Marshland
1	Rajagiriya West	122	32	26.2
2	Rajagiriya East	120	25	20.8
3	Welikada	206	79	38.3
4	Nawala	321	58	18.1
5	Ethul Kotte	165	53	32.1
6	Pita Kotte	270	86	31.8
7	Pagoda	142	21	14.8
8	Nugegoda North	69	7	10.0
9	Nugegoda South	76	0	0
10	Gangodawila	213	0	0
	Total		$\mathbf{2 1 . 2}$	

Source: Survey Department of Sri Lanka
Marsh lands exist in all wards except Nugegoda South and Gangodawila and act as water retention areas during the southwest monsoon from May to August. The area has great biodiversity and provides a good living environment.

Source: Survey Department of Sri Lanka
Figure 2.1-3 Elevation Map of the Sri Jayawardenapura Kotte MC Area

2.1.3 Geology

The area is in the Highland Complex. Therefore, the major rock types are the granulite facies rocks such as gneisses, sillimanite-graphite gneisses, quartzite, marbles, and some charnokites. Granitic gneisses, Garnet biotite gneisses are also present. The bedrock is well covered by a dense layer of lateritic soil of varying thickness and rock out-crops are scarce. A geologic map of the area is shown in Figure 2.1-4.

Figure 2.1-4 Regional Geology

2.1.4 Hydrology

A map of the Colombo canal system is given in Figure 2.1-5 The network of canals and marshes in the region is important for flood discharge. The drainage catchment of $99 \mathrm{~km}^{2}$ slopes from southeast to northwest. Heen Ela marsh (Nawala), Kotte swamp where the Kolonnawa canal starts and the Diyawannawa marsh are the main retention areas connected to the system. The Parliament Lake (Diyawanna Oya) is the headwater boundary of the Colombo canal system. Water flowing north from these retention areas is routed through Kolonnawa Ela and Dematagoda Ela and discharged to the Kelani River via the North Lock. Water flowing south and west is routed through Kotte Ela, Nawala Ela and Kirulapone Ela and discharged to the sea from the Wellawatta canal and the Dehiwala canal outfalls.

Source: Sri Lanka Land Reclamation and Development Corporation
Figure 2.1-5 Drainage Network and Surface Water Bodies in the Project Area

2.1.5 Surface Water Quality and Quantity

(1) Water Quality

The locations of sampling stations (1-5) for establishing water quality in Sri Jayawardenapura Kotte were selected for ease of sampling. The location of sampling stations is shown in Figure 2.1-6.

The criteria for evaluating water quality are based on parameters identified in "National Environmental Regulations, No. 1 of 2014" and "Draft Revised Ambient Water Quality Standards (2016)". The values are chosen from Category C (Fish and Aquatic Life Water) for normal environmental standards. When
values are not available for Category C, the lowest values from Category D, E and F are used.
The result of water quality analysis is shown in Table 2.1-2.

Table 2.1-2 Surface Water Quality (Sri Jayawardenapura Kotte)

Sri Jayawardenapura Kotte		1	2	3	4	5	Criteria
pH	-	7.6	7.4	7.2	7.3	7.6	-
Temperature	${ }^{\circ} \mathrm{C}$	32.6	29.7	30.3	31.2	30.5	-
Odor	-	!	-	!	!	-	ND
Color	$\mathrm{mg} \mathrm{Pt} / \mathrm{L}$	<15	<15	40	23	16	100
EC	uS/cm	317	177	343	298	281	700
Turbidity	NTU	35	6	12	11	136	-
Total Suspended Solids (TSS)	$\mathrm{mg} / 1$	52	23	64	48	43	40
TDS	mg/	220	130	250	210	200	-
DO	$\mathrm{mg} / 1$	7	5.1	8.2	4.1	7.8	5
BOD	mg/l	8	4.8	4	4	7.6	4
COD	$\mathrm{mg} / 1$	26	27	22	18	24	15
Nitrate	mg/	0.51	0.81	0.52	0.56	0.52	10
Ammonia	$\mathrm{mg} / 1$	0.18	4.9	2.2	1.9	1.35	0.59
Total Phosphorus (T-P)	mg / l	0.14	0.28	0.3	0.24	0.25	-
$\mathrm{PO}_{4}{ }^{3-}-\mathrm{P}$	$\mathrm{mg} / 1$	0.08	0.18	0.21	0.17	0.15	0.4
Cl	mg / l	39.9	12.2	30.2	26.2	26.2	600
Total Nitrogen (T-N)	$\mathrm{mg} / 1$	0.74	5.78	2.74	2.5	1.95	-
Fecal Coliform	$/ 100 \mathrm{ml}$	64	800	84	100	304	1×10^{3}
Total Coliform	$/ 100 \mathrm{ml}$	158×10^{2}	18×10^{4}	3×10^{4}	15×10^{4}	6×10^{4}	1×10^{4}

*) !: Objectionable / Over the criteria
Source: JET

Source: JET
Figure 2.1-6 Water Sampling Locations

Results for TSS, DO, Biochemical Oxygen Demand (BOD), COD, ammonia, and total coliform at all sampling locations exceed standard values.

Sampling stations 1 and 2 are in tidal streams, 3 and 4 are inflows into the lake, while 5 is in the static part of the lake. Water quality parameters that indicate pollution are depicted in Figure 2.1-7 The figure indicates two important aspects:

- TSS, BOD, COD, ammonia, and total coliform, indicate pollution from wastewater sources at all sampling locations.
- dissolved oxygen levels are relatively good at all locations despite the pollution load. Only water flowing into the lake (station 4) does not meet the standard value of $5 \mathrm{mg} / \mathrm{L}$.

${ }^{\text {*) }}$) Red indicators show the values are above the criteria Source: JET

Figure 2.1-7 Water Pollution in Sri Jayawardenapura Kotte

(2) Potential Impact of a Sewerage System

As shown in the above figures, high levels of TSS, DO, BOD, COD, ammonia, and total coliform are observed in Sri Jayawardenapura Kotte indicating pollution from wastewater sources. The TSS values are much higher than $40 \mathrm{mg} / \mathrm{L}$ set in the standards. The target effluent discharge for the proposed STP is set at $35 \mathrm{mg} / \mathrm{L}$, therefore it is expected that TSS in the receiving water body will be reduced significantly by the development of a STP.

The proposed biological activated sludge process will improve DO values by providing aeration in the reactor tank and significantly reducing the oxygen demand caused by organic pollutants (BOD and COD). The aerobic treatment process can be operated to convert ammonia to nitrates (nitrification).

Total coliform will be reduced by disinfection with chlorine. Thus, the introduction of a sewerage system will improve the water environment in Sri Jayawardenapura Kotte MC.

(3) Water Quantity

Figure 2.1-6 shows the sampling stations in the Sri Jayawardenapura Kotte drainage system. Sampling stations 1 and 2 are at larger rivers where flow rates are difficult to measure. The direction of flow is not stable because of tidal influence. Station 3 and 4 are upstream of the lake and not influenced by tides but the flow is too small to measure. Station 5 is in a static area of the lake where there is no flow.

2.1.6 Environmental Quality

(1) Air Quality

In Sri Lanka, there is only one station that monitors ambient air quality on a continuous basis. It is located at Colombo Fort and has been in operation since 1997. The annual average of PM10 indicates that the pollution level has been relatively stable within $70-80 \mu \mathrm{~g} / \mathrm{m}^{3}$ from 1998 to 2012 (refer to Figure 2.1-8). This is higher than the limit of $50 \mu \mathrm{~g} / \mathrm{m}^{3}$ identified in WHO guidelines.

Major contributors to air pollution in the Sri Jayawardenapura Kotte MC area are vehicle and industry emissions. Heavy traffic along the main roads (High level road: Kirulapona - Delkanda section, Sri Jayawardenapura Mawatha: Borella-Rajagiriya-Battaramulla section) and other roads, and train movements in the Project area also contribute to elevated levels of pollutant emissions.

Foul odours from the canals, especially during dry weather when water levels are low, come from sewage discharges and rotting solid wastes thrown in the water.

Source: Central Environmental Authority
Figure 2.1-8 PM10 Levels Observed in the Area

(2) Noise/Vibration

Ambient noise and vibration levels are as expected for an area with urban, industrial, commercial, and public institutions. Trains and heavy traffic on most roads day and night all contribute to high noise and vibration levels.

2.1.7 Protected Areas

Wetlands of the Project area are shown in Figure 2.1-9.

(1) Sri Jayawardenapura Sanctuary

Diyawanna Oya has lots of aquatic birds. A part of the Diyawanna Oya is designated as the Sri Jayawardenapura Sanctuary under the Fauna and Flora Protection Ordinance (Gazette Extraordinary No. on 09.01 .1985). The sanctuary of 449.2 ha, is home to many endemic birds, butterflies, dragonflies, and mammals native to Sri Lanka and Asian Wetlands. Some endemic and some threatened floral species, common to an inland wetland, made up niches in the habitat. The newly constructed 18 hectares Beddagana Wetland Park, is in the Sri Jayewardenepura Sanctuary.

(2) Diyawanna Oya Wetland

A large part of the Diyawanna Oya wetland is located in the Sri Jayawardenapura Kotte MC. It is a man-made canal system on the left bank of the lower valley of the Kelani River in the Colombo district, Western province of Sri Lanka ($652^{\prime} 55^{\prime \prime}-655^{\prime} 45^{\prime \prime} \mathrm{N}$ and $7952^{\prime} 35^{\prime \prime}-7955^{\prime} 15^{\prime \prime}$ E). Kolonnawa marsh, Heen-ela marsh and Kotte marshes function as the main catchment of this system. These areas (400 ha) function as the main drainage system and flood detention zones of Colombo city. The importance of the Diyawanna Oya wet lands is threefold: (1) they provide a good recreational environment; (2) a source of income for inhabitants, from fishing, cattle grazing, collecting reeds, rushes, and fuel wood; and (3) provide important hydrological function and serve as refuge for fauna and flora.

(3) Colombo Flood Detention Area Wetlands

The Colombo Flood Detention Area wetlands ($\sim 1200 \mathrm{ha}$) are a large network of freshwater marshes, open waterways, lakes, and paddy fields scattered across metropolitan Colombo. Currently, a portion of the wetland (399 ha) is protected and state owned. The remainder ($\sim 800 \mathrm{ha}$) is privately owned paddy fields.

(4) Thalangama Tank Environmental Protection Area

Thalangama Tank and its surrounding areas are protected under the National Environmental Act by the Gazette Extraordinary No. 1487/10 dated 5th March 2007. This EPA is located about 2 km from the MC boundary.

Figure 2.1-9 Colombo Flood Detention Area

(5) Buffer Zone

A set of sensitive areas has been declared under the CEA regulations. These sensitive zones can be considered as buffer zones for each natural and manmade protected area. Any development activities within these zones are subject to close monitoring by CEA and each of the relevant authorities.

- 100 m from the boundaries of or within any area declared under the National Heritage Wilderness Act No. 4 of 1988
- 100 m from the boundaries of or within any area declared under the Forest Ordinance (Chapter 451)
- any erodible area declared under the Soil Conservation Act (Chapter 450)
- any flood area declared under the Flood Protection Ordinance (Chapter 449)
- any flood protection area declared under the Sri Lanka Land Reclamation and Development Corporation Act 15 of 1968 as amended by Act 52 of 1982
- 60 m from the bank of public stream as defined in the Crown Lands Ordinance (Chapter 454) and having the width of more than 25 m at any point of its course
- any reservation beyond the full supply level of a reservoir
- any archaeological reserve, ancient or protected monument as defined or declared under the Antiquities Ordinance (Chapter 188)
- any area declared under the Botanic Gardens Ordinance (Chapter 446)
- within 100 m from the boundaries of, or within, any area declared as a Sanctuary under the Fauna and Flora Protection Ordinance (Chapter 469)
- within one mile of the boundary of a National Reserve declared under the Fauna \& Flora Protection Ordinance
- within 100 m from the high flood level contour of, or within, a public lake as defined in the Crown Land Ordinance (Chapter 454) including those declared under section 71 of the said Ordinance
These sensitive areas have been mapped by CEA and the map of Colombo District is given in Figure 2.1-10.

Source: Central Environmental Authority
Figure 2.1-10 Environmentally Sensitive Areas in the Colombo District

2.1.8 Fauna and Flora

Fauna and flora of the general Sri Jayawardenapura Kotte area are identified through literature review and site surveys. The findings are summarized in Table 2.1-3 and Table 2.1-4. Further investigation is necessary to determine the fauna and flora specific to the Project site.

Table 2.1-3 Survey of Fauna in the Project Area

Table 2.1-4 Survey of Flora in the Project Area

Taxa		Significant Species (common name)	Conservation Status (IUCN 3.1)
Family	Species		
Moraceae		Ficus religiosa (Bodhi tree)	LC
Anacardiaceae		Mangifera indica (Mango)	None
		Spondias dulcis (Ambarella)	None
		Annona reticulate (Custard apple)	None
		Plumeria rubra (Frangipani)	None
		Phyllanthus myrtifolius (Mousetail plant)	None
		Alstonia macrophylla (Hard milkwood)	1 c
		Leucaena leucocephala (white leadtree)	None
		Muntingia calabura (Capulin)	None
		Musa \times paradisaca (Plantains)	None
		Tecoma stans (Trumpetbush)	None
		Macaranga indica	None
		Swietenia mahogany	
		Ludwigia decurrens (Willow primrose)	LC
		Lygodium spp. (Climbing fern)	
Salviniaceae		Salvinia molesta (Kariba weed)	LC
		Ipomoea aquatic (Kankun)	LC
		Cyclosorus interaptus (Swamp shield-fern)	None
		Eichhornia crassipes (Water hyacinth)	None
		Cerbera odollam (Suicide tree)	None
		Cyperus pilosus	
		Hibiscus tiliaceus (Beach Hibiscus)	LC
		Colocasia esculenta	
		Panicum repens (Torpedograss)	None
		Leersia Hexandra (Southern cutgrass)	LC
		Rhyncospora sp	
		Eleocharis sp	
		Brachiaria sp	
		Bacopa sp	
		Phragmites karka	
		Annona glabra (Swamp apple)	
		Cerbera manghas (Sea mango)	
		Syzygium sp	
		Melastoma sp	
		Lantana camara (Big sage)	
Source: Egodawatta and Warnasooriya (2014) Manamendraarachehi and Adikari (2014) Munashingha et al., (2009) Dharmasena, (1993) Wijerathna and Baladurage IUCN Redlist JET		Legend: IUCN 3.1 scale	
			Dom: Domesticated Def: Data deficient NA: Data not available

2.2 Existing Social Conditions

2.2.1 Administration

SJKMC area is located within Sri Jayawardhanepura-Kotte Divisional Secretariat Division (DSD), Colombo District, in the Western Province of Sri Lanka. In 1985, the national capital was relocated here from Colombo. The national parliament building is located on an island in Lake Diyawanna.

SJKMC was established in 1997 to promote the development of the city and improve public health, welfare and convenience, sanitation, and amenities. Most ministry head offices have already relocated to the city. The SKJMC administrative area covers $17 \mathrm{~km}^{2}$ and consists of 10 wards.

The administrative area of Colombo District is $699 \mathrm{~km}^{2}$ and the Western Province is $3,684 \mathrm{~km}^{2}$. The forested area of the District is $15 \mathrm{~km}^{2}$ compared to $195 \mathrm{~km}^{2}$ for the Province. Colombo District has an inland water area of $23 \mathrm{~km}^{2}$ whereas the Western Province has $91 \mathrm{~km}^{2}$.

2.2.2 Population and Demography

According to the Census and Statistics Department of Sri Lanka, the population density of the SJKMC is 6,300 persons per km^{2} compared to 3,487 persons per km^{2} in Colombo District and 1,652 persons per km^{2} in the Western Province. The population in 2012 for the SJKMC was 107,925 . The population figures and gender distribution based on the Grama Niladari Division are tabulated below.

Table 2.2-1 Population in Sri Jayawardenapura Kotte MC Area

Name of GND	Total	Male		Female	
		No	\%	No	\%
Obsekarapura	11,963	5,925	49.5	6,038	50.5
Welikada West	7,004	3,195	45.6	3,809	54.4
Welikada East	6,749	3,183	47.2	3,566	52.8
Rajagiriya	3,591	1,878	52.3	1,713	47.7
Welikada North	4,834	2,389	49.4	2,445	50.6
Nawala West	4,059	2,032	50.1	2,027	49.9
Koswatta	5,707	2,767	48.5	2,940	51.5
Ethulkotte West	3,371	1,664	49.4	1,707	50.6
Ethulkotte	5,929	2,877	48.5	3,052	51.5
Pitakotte East	3,984	1,912	48.0	2,072	52.0
Pitakotte	3,634	1,753	48.2	1,881	51.8
Pitakotte West	5,301	2,439	46.0	2,862	54.0
Nawala East	5,473	2,573	47.0	2,900	53.0
Nugegoda West	5,627	2,635	46.8	2,992	53.2
Pagoda	5,446	2,537	46.6	2,909	53.4
Nugegoda	3,365	1,678	49.9	1,687	50.1
Pagoda East	5,944	2,902	48.8	3,042	51.2
Gangodavila North	5,352	2,493	46.6	2,859	53.4
Gangodavila South	7,305	3,554	48.7	3,751	51.3
Gangodavila East	3,287	1,606	48.9	1,681	51.1
Total	107,925	51,992	48.2	55,933	51.8

[^0]
2.2.3 Health/Disease

The prevalence of chronic illnesses by age group in Colombo District and Sri Lanka is given in the following table.

Table 2.2-2 Prevalence of Chronic Illness by Age Group

	Less than 15 years	$15-24$ years	$25-59$ years	60 and above
Colombo District	3.3%	2.4%	20.7%	63.4%
Sri Lanka	2.8%	3.3%	18.5%	55.2%

Source: National Survey on Self-Reported Health in Sri Lanka 2014, Department of Census, and Statistics
The prevalence of chronic illnesses in Colombo District is slightly higher than the national average for most age groups.

Table 2.2-3 Prevalence of Diabetes and High Blood Pressure

	Diabetes	High Blood Pressure
Colombo District	11.2%	11.9%
Sri Lanka	7.2%	9.2%

Source: National Survey on Self-Reported Health in Sri Lanka 2014, Department of Census, and Statistics
The prevalence of diabetes and high blood pressure in Colombo District is higher than the national average.

2.2.4 Religion/Ethnicity

The majority of the population in Colombo District is Sinhala Buddhist.
Table 2.2-4 Population by Religion

Buddhist	Hindu	Islam	Roman Catholic	Other Christian	Other	Colombo District Total
$1,631,659$	185,944	274,267	162,701	67,405	2,324	$2,324,300$
70.2%	8.0%	11.8%	7.0%	2.9%	0.1%	100%

Source: Economic and Social Statistics of Sri Lanka -2014, Central Bank of Sri Lanka, April 2014
Table 2.2-5 Population by Ethnic Group

Sinhala	SL Tamil	Indian Tamil	SL Moor	Other	Colombo District Total
$1,778,090$	234,754	23,243	248,700	37,189	$2,324,300$
76.5%	10.1%	1.0%	10.7%	1.6%	100%

Source: Economic and Social Statistics of Sri Lanka -2014, Central Bank of Sri Lanka, April 2014

2.2.5 Poverty Rate

A Household Income and Expenditure Surveys (HIES) was carried out by the Census and Statistics Department of Sri Lanka. Poverty rates at the district, province, and national levels are shown in Table 2.2-6 Poverty levels in the district are less than the provincial and national averages.

Table 2.2-6 Poverty Rates

	Poor HH \%		
	$2006 / 07$	$2009 / 10$	$2012 / 13$
Sri Lanka	12.6	7.0	5.3
Western Province	6.50	3.00	1.50
Colombo District	3.90	2.50	1.10

Source: Census and Statistics Department

2.2.6 History and Culture (Heritage)

Historically Sri Lanka had four capitals. The ancient Kingdom of Kotte was centred in Sri Jayawardenapura during the 15 th century. The Department of Archaeology has declared many Archaeological Protected Monuments in Sri Jayawardenapura Kotte MC as listed in Table 2.2-7.

Table 2.2-7 Archaeological Protected Monuments in Sri Jayawardenapura Kotte MC

Monument	Declared on
Ancient Tunnel at Kotte Ananda Sastralaya	27-Jun-52
Ancient water canal	12 -Aug-71
Obeysekera Walawwa	$13-$ Nov-92
Parakumba Pirivena	$14-$ May-71
Pitakotte Raja Maha Vihara	$17-$ May-13
Ancient Rampart - Ethul Kotte ruins	23-Feb-07

Source: JET

2.2.7 Economy

(1) General

Sri Jayawardenapura Kotte MC is the national capital and as such functions mainly as an administrative centre.

Sri Jayawardenapura Kotte MC, Colombo MC, and Dehiwala-Mount Lavinia MC areas are the most urbanized parts of Colombo District. Nugegoda Town is the major commercial centre. All commercial banks and financial companies have head offices or branches in this area. Table 2.2-8 shows the GDP by industrial sector of Western Province.

Table 2.2-8 GDP by Sector for Western Province (Current Prices)

No	Sector	2010		2011		2012		2013	
1	Agriculture	75,942	3.0\%	92,191	3.2\%	93,187	2.9\%	91,965	2.5\%
2	Industry	802,790	31.9\%	966,704	33.4\%	1,135,586	35.0\%	1,280,355	35.1\%
3	Services	1,634,176	65.0\%	1,835,532	63.4\%	2,015,081	62.1\%	2,270,921	62.3\%
	Provincial GDP	2,512,908	100.0\%	2,894,428	100.0\%	3,243,854	100.0\%	3,643,241	100.0\%
	\% Share of National GDP	44.8		44.2		42.8		42.0	

Source: CBSL Annual Report 2014
The Western Province, including Greater Colombo (GC), is responsible for 42 to 45% of the national GDP.

The service sector is the largest, is responsible for 60 to 65% (national average: 56.8%) of the total GDP of the Province and the industrial sector 30 to 35% (national average: 32.5%).

(2) Household Income

Average household income data is available from "Household Income and Expenditure Survey 2012/2013". Some of the data are presented in Table 2.2-9 and Figure 2.2-1 The average monthly household income in Colombo District is 77,723 LKR (2012/13). The biggest percentage (37.4%) of household income comes from wages and salaries. Household income of Colombo District is higher than the national average (41% higher) and provincial average (17.5% higher).

Table 2.2-9 Breakdown of Monthly Household Income - Colombo District (2012/13)
Unit: LKR/month

No.	Sector	Colombo District	$\%$
1	Average Household Income	77,723	
2	Per capita	19,346	
3	Ave. No. of Income Receivers	1.9	
4	Wage/ Salaries	29,860	37.4%
5	Agricultural Activities	708	0.9%
6	Non-Agric. Activities	19,807	24.8%
7	Other Cash Income	8,811	11.0%
8	Income by Adhoc Gain	6,271	7.9%
9	Non-Monetary Income	12,266	15.4%
10	Income in Kind	2,078	2.6%

Source: Household Income and Expenditure Survey 2012/2013, Department of Census and Statistics, Ministry of Policy Planning Economic Affairs

Source: Household Income and Expenditure Survey 2012/2013, Department of Census and Statistics, Ministry of Policy Planning Economic Affairs

Figure 2.2-1 Comparison of Monthly Household Income

2.2.8 Land Use

Land use status in Sri Jayawardenapura Kotte is shown in Table 2.2-10 and Figure 2.2-2 Roughly 70\% of Sri Jayawardenapura Kotte MC has been developed, and the remaining areas are marshland, lakes, and farmland.

Source: Survey Department of Sri Lanka
Figure 2.2-2 Land Use in Sri Jayawardenapura Kotte MC
Table 2.2-10 Land Use in Sri Jayawardenapura Kotte MC

Land use Type	Area (Ha)
Built up Area	117.83
Other Crops	2.74
Homesteads	1060.21
Marshy	304.53
Paddy	94.48
Rubber	1.45
Waterbody	69.36

Source: Survey Department of Sri Lanka
According to land planning, areas that are not designated as wetland nature protection zones are intended for housing and other developments (Figure 2.2-3).

Source: Urban Development Authority
Figure 2.2-3 Land Use Plan for Sri Jayawardenapura Kotte (2008- 2020)
Note: 2008-2020 Zoning Plan was prepared by the Urban Development Authority, demarcating various zones in accordance with the current land use. The Special Residential Zone exclusively for residential housing, whereas the Primary Residential Zone is for residents allowed to engage in small-scale business. The Mixed Development Zone is for all purposes within specific scopes which vary depending on municipalities.

2.2.9 Water Supply and Sanitation

(1) Water Supply

Table 2.2-11 shows the types of drinking water facilities in Sri Jayawardenapura Kotte MC. Nearly 100% of the households have access to piped water supply. The system can experience a drop in pressure during the peak demand periods because of the increasing number of service connections that have been added. Low-income households which typically cannot afford roof storage tanks, are unable to obtain water during peak periods.

Table 2.2-11 Access to Drinking Water Sources in Sri Jayawardenapura Kotte MC

\dot{z}	$\begin{aligned} & \sum_{3}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & \text { ¿ } \end{aligned}$	$\begin{aligned} & 80 \\ & \sum_{0}^{8} \\ & \hline \end{aligned}$	志	Protected Well Within Premises		$\overline{0}$ 3 u U. 0 0 5 5			Tap Outside Premises (Main Line)		$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \# \end{aligned}$					
1	Obsekarapura	514C	2,858	14	1	-	2,662	105	65	-	3	-	-	-	-	8
2	Welikada West	514A	1,505	28	1	1	1,391	71	10	-	2	-	-	-	1	-
3	Welikada East	514	1,743	36	10	4	1,520	76	92	-	3	-	-	-	1	1
4	Rajagiriya	514B	782	2	-	-	727	18	29	-	1	-	-	-	5	-
5	Welikada North	514D	1,216	7	-	-	1,104	34	63	-	-	-	-	-	-	8
6	Nawala West	520	1,096	33	5	-	981	53	4	-	12	-	-	-	8	-
7	Koswatta	520 A	1,529	43	2	1	1,354	83	43	-	1	-	-	-	2	-
8	Ethulkotte West	521 A	912	20	-	-	858	24	9	-	1	-	-	-	-	-
9	Ethulkotte	521	1,586	38	1	2	1,451	62	28	-	2	-	-	-	2	-
10	Pitakotte East	522 A	1,070	44	2	24	945	35	13	-	1	-	-	-	6	-
11	Pitakotte	522B	961	32	1	-	901	11	5	-	5	-	-	-	2	4
12	Pitakotte West	522	1,430	74	2	-	1,324	17	8	-	1	-	-	-	3	1
13	Nawala East	520B	1,442	61	4	-	1,344	21	8	-	3	-	-	-	1	-
14	Nugegoda West	519B	1,478	37	-	-	1,248	113	56	-	9	-	-	-	9	6
15	Pagoda	519A	1,447	57	2	1	1,355	18	7	-	3	-	-	-	4	-
16	Nugegoda	519	928	24	3	-	889	6	3	-	-	-	-	-	3	-
17	Pagoda East	519C	1,498	48	4	2	1,351	28	59	-	5	-	-	-	1	-
18	Gangodavila North	526	1,324	96	2	2	1,190	18	6	-	6	-	-	-	2	2
19	Gangodavila South	526 A	1,921	132	9	10	1,513	213	40	-	2	-	-	-	2	-
20	Gangodavila East	526C	857	40	1	-	753	17	46	-	-	-	-	-	-	-
	SJKMC Total		27,583	866	50	47	24,861	1,023	594	-	60	-	-	-	52	30

Source: Census of Population and Housing 2012, Department of Census and Statistics
(2) Sanitation

Table 2.2-12 shows the distribution of sanitary facilities in Sri Jayawardenapura Kotte MC. Approximately 96% of the households have water sealed toilets (traps to block odour), connected to septic tanks. Much of the domestic wastewater is treated in septic tanks and soakage pits.

Table 2．2－12 Access to Sanitation Facilities in Sri Jayawardenapura Kotte MC

＜			$\begin{aligned} & \stackrel{\Xi}{6} \\ & \hline \end{aligned}$				$\begin{aligned} & \# \\ & \vdots \\ & \text { \# } \\ & 0 \end{aligned}$	تٍ	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \overline{0} \\ & \text { op } \\ & \stackrel{\rightharpoonup}{5} \\ & \stackrel{\rightharpoonup}{z} \end{aligned}$
1	Obsekarapura	538C	2，858	2，100	627	111	18	2	0
2	Welikada West	537	1，505	1，420	0	3	73	9	0
3	Welikada East	537 A	1，743	1，579	94	17	52	1	0
4	Rajagiriya	537B	782	714	66	2	0	0	0
5	Welikada North	538	1，216	1，032	169	4	4	6	1
6	Nawala West	538B	1，096	1，061	24	9	1	1	0
7	Koswatta	538 A	1，529	1，360	127	29	12	1	0
8	Ethulkotte West	540A	912	882	14	14	2	0	0
9	Ethulkotte	540	1，586	1，407	100	62	17	0	0
10	Pitakotte East	536A	1，070	910	83	60	16	1	0
11	Pitakotte	536	961	923	33	1	2	2	0
12	Pitakotte West	$539 / 42 \mathrm{~A}$	1，430	1，239	154	36	1	0	0
13	Nawala East	540B	1，442	1，421	4	8	9	0	0
14	Nugegoda West	539／42	1，478	1，389	58	29	2	0	0
15	Pagoda	539／42B	1，447	1，361	24	25	35	2	0
16	Nugegoda	541	928	854	69	5	0	0	0
17	Pagoda East	539／42C	1，498	1，330	29	133	6	0	0
18	Gangodavila North	544	1，324	1，293	27	2	2	0	0
19	Gangodavila South	544A	1，921	1，779	59	28	54	1	0
20	Gangodavila East	545A	857	821	14	15	7	0	0
SJKMC Total			27，583	24，875	1，775	593	313	26	1

Source：Census of Population and Housing 2012，Department of Census and Statistics
Wastewater from the government district and other important institutions such as the National Parliament，Sethsiripaya，Isurupaya，and Sri Jayawardenapura Hospital Complex（SJP Hospital）are connected to the piped sewer system in Colombo MC via pumping stations（Figure 2．2－4）．

Figure 2．2－4 Institutions Connected to the Sewer System in Colombo city

Sewage disposal using septic tanks is not effective because the groundwater table is high (elevations in most parts of Colombo MC are low) and there is little to no soil infiltration to provide treatment. In addition, small building lots make it difficult to install adequately sized septic tanks. During the rainy season, rising groundwater levels and low permeability of soil undermine proper absorption mechanisms of soakage pits and septic tanks. Consequently, the surrounding waterways and groundwater are contaminated.

In commercial buildings, on-site sanitation facilities are not properly maintained therefore the treatment capacity deteriorates year after year.

Water quality in Diyawanna Oya, the main water body in Sri Jayewardenepura, is worsening.

2.2.10 Solid Waste Collection and Disposal

Solid waste generation is becoming very high because of rapid urbanization and industrialization. Waste generation is 150 tons/day equivalent to $1.27 \mathrm{~kg} /$ person/day. Households, commercial establishments, public institutions, hospitals and medical centres, and markets produce a large quantity of solid waste. The problem is worsened by the large and medium scale industries located in the city. The Sri Jayawardenapura General Hospital and a few other medical centres also generate significant amounts of waste. The composition of solid waste generated within the municipal area is given in Table 2.2-13.

There are two main waste collection and disposal methods:

- door-to-door waste collection and disposal at dumpsite by the municipal solid waste management personnel
- same service offered by private company

About 100 tons/day of solid waste is collected by the MCs solid waste collection and disposal services.
At present, the MC collects about 50 ton/day of waste from 10 wards under the supervision of PHI. The waste collected is transported to the Karadiyana disposal site. The remainder is handled by a private company appointed by the council.

Table 2.2-13 Composition of Solid Waste - Sri Jayawardenapura Kotte MC

Category	$\%$
Bio-degradable	63.63
Paper \& cardboard	8.22
Glass	1.50
Metal	0.98
Wood	0.83
Rubber \& Cloths	4.75
Polythene+ plastic	8.92
Soil \& Ceramic	3.65
Electronic waste	0.02
Demolition waste	1.41
Other	6.54

Source: Sri Jayawardenapura Kotte MC

Figure 2.2-5 Karadiyana Final Disposal Site (Left) and Composting Facility (Right)

2.3 Need for the Project

As stated in its 2010 national policy, Sri Lanka aims to achieve 100% access to adequate sanitation by 2025, through the development of on and off-site sanitation facilities. NWSDB's service plan sets the objective to achieve 7.0% piped sewer coverage by 2020 .

The United Nations sets Sustainable Development Goals (SDGs) as the next development agenda for the Millennium Development Goals (MDGs). The goal related to sanitation and hygiene is to ensure universal access to safely and sustainably managed water and sanitation by 2030, and some of the specific targets include;

- By 2030, achieve access to adequate sanitation and hygiene facilities for all
- By 2030 , improve water quality by halving the proportion of untreated wastewater

As of 2012, coverage of piped sewerage remains at 2.4\% in Sri Lanka. Elsewhere, wastewater is treated by on-site sanitation facilities which are typically septic tanks. However, septic tanks do not function properly in densely populated urban areas such as Sri Jayawardenapura Kotte. The problem is worsen by high groundwater levels and inadequate soil percolation. Increasing levels of BOD, ammonia, and counts of coliform groups are being detected in local water bodies (See 2.1.5).

Sewage treatment is necessary to deal with the increasing volumes of wastewater and to preserve and protect the water environment.

CHAPTER 3 PLANNING BASIS FOR SEWERAGE SYSTEM

3.1 Sanitation Provision

In October 2010, NWSDB, with the country's financial support, prepared the "Project Proposal for Sri Jayawardenapura Kotte Wastewater Disposal System". The plan identifies approximately 47 km of gravity sewer and 15 km of force main to be developed by 2040 . The estimated maximum daily flow is $21,500 \mathrm{~m}^{3}$. Wastewater would receive primary treatment and be discharged to the sea via a 1.7 km , $1,500 \mathrm{~mm}$ diameter HDPE outfall pipe. The population projection is based on the 2009 population as taken from the census statistics in 2001 and the annual report of the Sri Jayawardenapura Kotte statistics bureau.

The M/P for the sewerage system will draw on the previous project proposal and use the 2012 census data and assumed that an advanced biological treatment process will be adopted.

3.1.1 Target Year

According to the "NWSDB Design Manual D7 Wastewater Collection, Treatment, Disposal \& Re-Use 2012", the design period for the collection network, pumping stations, treatment plant, and effluent disposal and utilization is 30 years. Therefore, 2046 is selected as the target year for this M/P.

3.1.2 Planning and Design Criteria

(1) Sewage Flow Estimate

Table 3.1-1 Basis for Estimating Sewage Flow

Item	Value	Remarks
Per capita water consumption	120 lpcd	
Domestic flow	80%	of water consumption
Non-domestic flow	35%	of Domestic Flow
Average dry weather flow (ADWF)	Domestic + Non-domestic flow	
Daily maximum dry weather flow	1.15 times	of ADWF
Hourly maximum dry weather flow	1.6 times	of ADWF
Peak dry weather flow (PDWF)	3 times	of ADWF
Infiltration	20%	of ADWF

Planning of Sewer Pipe System: Peak Dry Weather Flow (PDWF) + Infiltration
Planning of Pumping Station: Hourly Maximum Dry Weather Flow + Infiltration
Source: JET

(2) Trunk Sewers

a. Hydraulic Calculations for Trunk Sewers

The Manning formula is used for the hydraulic calculation of gravity sewers, and the Hazen William formula is used for force mains (pressure flow):

Manning Formula

$$
\mathrm{Q}=\mathrm{A} \times \mathrm{V}, \quad \mathrm{~V}=1 / \mathrm{n} \times \mathrm{R} 2 / 3 \times \mathrm{S} 1 / 2
$$

$$
\text { where, } \quad \text { Q: Flow }\left(\mathrm{m}^{3} / \mathrm{sec}\right) \text {, V: Velocity of Flow }(\mathrm{m} / \mathrm{sec}) \text {, }
$$

$$
\mathrm{n} \text { : Roughness Coefficient, R: Hydraulic Radius (m), }
$$

S: Hydraulic Gradient, A: Cross Section Area (m^{2})

Hazen William Formula

$\mathrm{Q}=\mathrm{A} \times \mathrm{V}, \quad \mathrm{V}=0.84935 \times \mathrm{C} \times \mathrm{R} 0.63 \times \mathrm{S} 0.54$
where, Q: Flow $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$, V: Velocity of Flow ($\mathrm{m} / \mathrm{sec}$),

[^1]Table 3.1-2 Coefficients for Sewer Design

Type of Pipe	n (Roughness Coefficient)	C (Flow Velocity Coefficient)
PVC Pipe	0.013	120
HDPE Pipe	0.013	120
GRP Pipe	0.013	120
DI Pipe (Ductile Cast Iron Pipe)	0.013	120

The design slopes of gravity sewers are checked based on tractive force required to flush the sand particles expected in sewage flow.
Source: JET
b. Flow Velocities

Minimum velocity: $0.65 \mathrm{~m} / \mathrm{s}$
Maximum velocity: $3.0 \mathrm{~m} / \mathrm{s}$
c. Sewer Capacities

Diameter of 600 mm or less: capacity exceeds the estimated flow by at least 200%
Diameter greater than 600 mm : capacity exceeds the estimated flow by at least 150%
d. Minimum Earth Cover
1.0 m
e. Minimum Sewer Diameters

Trunk sewer: 225 mm , rider sewer \& branch sewer: 160 mm , lateral sewer: 110 mm

f. Pipe Materials

Table 3.1-3 Sewer Pipe Materials

Diameter	Purpose	Pipe Material
200 mm or less	Gravity	PVC Pipe
225 to 355 mm	Gravity	HDPE Pipe
400 mm or above	Gravity	GRP
100 to 400 mm	Force Main	HDEP
Above 400 mm	Force Main	DI Pipe

Source: JET

(3) Pumping Stations

Table 3.1-4 shows the type of pumping stations. They are either manhole type pumping station (MTPS) or major pumping station (MPS). The Ceylon Electricity Board (CEB) requires that the electrical demand at a pumping facility be 42 kVA or less where transformers are not provided. Where the electrical demand exceeds 42 kVA , transformers are necessary, in which case an MPS is more suitable. It should be also noted that MTPS entails site acquisition, depending on the surrounding environment and location.

Table 3.1-4 Types of Pumping Stations

Type of Pumping Station	Site	Electricity
MTPS: Manhole Type Pumping Station	Under Road	Less than 42 kVA
MPS: Major Pumping Station	Property Required	42 kVA and above

(4) Sewage Treatment Facilities

The sewage treatment process is selected by considering the following factors:

- raw water quality \& discharge standard
- land availability
- construction and O\&M cost
- easy to operate and maintain

3.1.3 Sewage Collection Area

The sewage collection area selected for the M/P is shown in Figure 3.1-1 and includes:

- developed and populated areas that will be almost fully saturated by 2046
- city centre including large-scale commercial areas, large-scale facilities, such as schools, hotels, housing estate, religious and institutional buildings
- high population density residential areas
- areas suitable for applying centralized sewerage system
- areas next to the MC boundary that can be cost effectively included

Source: JET based on data of Survey Department of Sri Lanka
Figure 3.1-1 Proposed Sewage Collection Area for Sri Jayawardenapura Kotte
Table 3.1-5 shows the Divisional Secretary Divisions (DSDs) and Grama Niladhari Divisions (GNDs) included in the target area.

Table 3.1-5 DSDs and GNDs included in the M/P Area

S/No.	GND No.	GND	S/No.	GND No.	GND
1	Kaduwela DSD		3	Maharagama DSD	
1.1	492	Subhoothipura	3.1	525A	Udahamulla East
1.2	492 A	Battaramulla South	3.2	524	Madiwella
1.3	492 B	Battaramulla North	3.3	493A	Thalawathugoda West
1.4	492 D	Rajamalwatta	3.4	493B	Thalawathugoda East
1.5	477	Thalangama North A	3.5	526B	Gangodavila South B
1.6	479B	Asiri Uyana	3.6	526D	Jambugasmulla
1.7	479A	Pahalawela	4	Maharagama DSD	
2	Sri Jayawardanapura Kotte DSD		4.1	523	Mirihana North
2.1	514C	Obsekarapura	4.2	523 A	Mirihana South
2.2	514 A	Welikada West	4.3	524 A	Pragathipura
2.3	514	Welikada East	4.4	525	Thalapathpitiya
2.4	514B	Rajagiriya	4.5	525B	Udahamulla West
2.5	514D	Welikada North	5	Kaduwela DSD	
2.6	520	Nawala West	5.1	492C	Udumulla
2.7	520 A	Koswatta	5.2	479 F	Aruppitiya
2.8	521 A	Ethulkotte West	5.3	479E	Batapotha
2.9	521	Ethulkotte	6	Dehiwala DSD	
2.10	522A	Pitakotte East	6.1	537A	Dutugemunu
2.11	522B	Pitakotte	6.2	537B	Kohuwala
2.12	522	Pitakotte West			
2.13	520B	Nawala East			
2.14	519B	Nugegoda West			
2.15	519A	Pagoda			
2.16	519	Nugegoda			
2.17	519C	Pagoda East			
2.18	526	Gangodavila North			
2.19	526A	Gangodavila South			
2.20	526C	Gangodavila East			

Note: S/No $1-3$ are referring to "PROJECT PROPOSAL FOR SRI JAYEWARDENEPURA KOTTE WASTEWATER DISPOSAL SYSTEM"
Source: JET based on data of Department of Census and Statistics

3.1.4 Sewage Flow

Rate of population increase in the project area and planned population is calculated as shown in Sectionl APPENDIX 12. Sewage flow to be treated is calculated as shown in Table 3.1-6. Detailed calculations can be found in APPENDIX 1.

Table 3.1-6 Estimated Sewage Flow

M/P Area (ha)	Item	2046	Remarks	
3392	a Population	198,000		
	b Water Consumption (1/d/cap)	120		
	c Return Factor (\%)	80		
	d Domestic Flow ($\mathrm{m}^{3} / \mathrm{d}$)	19,008	$\mathrm{d}=\mathrm{a} \times \mathrm{b} \times \mathrm{c}$	
	e Non-Domestic Flow (m²/d)	6,653	$\mathrm{e}=\mathrm{dx} \times 30 \%$	
	f Point Source ($\mathrm{m}^{3} / \mathrm{d}$)			
	g Infiltration ($\mathrm{m}^{3} / \mathrm{d}$)	5,132	$\mathrm{g}=(\mathrm{d}+\mathrm{e}+\mathrm{f}) \times 20 \%$	
	h Daily Average Flow ($\mathrm{m}^{3} / \mathrm{d}$)	30,793	$\mathrm{h}=\mathrm{d}+\mathrm{e}+\mathrm{f}+\mathrm{g}$	
	i Daily Maximum Flow ($\mathrm{m}^{3} / \mathrm{d}$)	34,642	$\mathrm{i}=(\mathrm{d}+\mathrm{e}+\mathrm{f}) \times 1.15+\mathrm{g}$	For STP design
	j Hourly Maximum Flow ($\mathrm{m}^{3} / \mathrm{d}$)	46,190	$\mathrm{j}=(\mathrm{d}+\mathrm{e}+\mathrm{f}) \times 1.6+\mathrm{g}$	For PS design
	k Peak Flow ($\mathrm{m}^{3} / \mathrm{d}$)	82,115	$\mathrm{k}=(\mathrm{d}+\mathrm{e}+\mathrm{f}) \times 3.0+\mathrm{g}$	For Sewer design

Source: JET

3.1.5 Influent Sewage Quality

The design influent sewage quality is shown in Table 3.1-7 The assumed influent concentrations were decided through consultation with NWSDB taking into consideration of the data of Moratuwa/Ratmalana STP, Jaela/Ekala STP and the domestic wastewater quality measurement results of several STP near Colombo city. Details of the design influent wastewater quality are shown in APPENDIX 2.

Table 3.1-7 Design Influent Sewage Quality

Parameter	Influent Sewage	
	Design Value	
BOD_{5}	240	
COD	600	
TSS	160	
T-N	45	
T-P	6	

Unit: mg/L
Source: JET

CHAPTER 4 PRELIMINARY PLAN AND DESIGN OF THE SEWERAGE SYSTEM

4.1 General Layout

The proposed sewerage development plan for Sri Jayawardenapura Kotte is shown in Figure 4.1-1 An enlarged map, flow calculations, and a longitudinal sectional view are attached in APPENDIX 3.

Source: JET
Figure 4.1-1 Sewerage Development Plan for Sri Jayawardenapura Kotte

4.2 Wastewater Collection Facilities

The design of the STP and location of major pumping stations depends on the layout of the trunk sewers. The length of branch sewers will be similar to those in other projects. The length of lateral sewers to the houses and buildings is estimated based on the projected population.

4.2.1 Sewer Network

The trunk sewer mains are listed in Table 4.2-1.

Table 4.2-1 Major Sewer Mains

*Pipe Jacking of HDPE Pipe \& GRP Pipe is installed by the slip lining method.
Source: JET

4.2.2 Wastewater Pumping Stations

The main pumping stations are shown in Table 4.2-2.

Table 4.2-2 Main Pumping Stations

Item No.	Design Flow	Total Pump Head	Unit	Remarks
MPS-01	Approximately $2.5 \mathrm{~m}^{3} / \mathrm{min}$	40 m	$2+(1)$	land requirement is about 0.1 ha
MPS-02	Approximately $3.7 \mathrm{~m}^{3} / \mathrm{min}$	45 m	$2+(1)$	land requirement is about 0.1 ha
MPS-03	Approximately $16.7 \mathrm{~m}^{3} / \mathrm{min}$	15 m	$2+(1)$	land requirement is about 0.1 ha
MPS-04	Approximately $1.8 \mathrm{~m}^{3} / \mathrm{min}$	30 m	$2+(1)$	land requirement is about 0.08 ha
MPS-05	Approximately $17.3 \mathrm{~m}^{3} / \mathrm{min}$	15 m	$3+(1)$	land requirement is about 0.1 ha
MTPS-01	Approximately $2.6 \mathrm{~m}^{3} / \mathrm{min}$	30 m	$1+(1)$	
MTPS-02	Approximately $3.2 \mathrm{~m}^{3} / \mathrm{min}$	10 m	$1+(1)$	
MTPS-03	Approximately $0.3 \mathrm{~m}^{3} / \mathrm{min}$	35 m	$1+(1)$	
MTPS-04	Approximately $1.5 \mathrm{~m}^{3} / \mathrm{min}$	25 m	$1+(1)$	

Notes: MPS: Major Pumping Station MTPS: Manhole Type Pumping Station (1): One pump unit for stand-by
Source: JET

4.2.3 Service/House Connections

Based on the projected population of 198,000 people and an average family size of four people, in 2046, there will be approximately 49,500 households (Household Income and Expenditure Survey 2012/13 issued by the Department of Census and Statistics(DCS)).

4.3 Sewage Treatment Facility

4.3.1 Treatment Method

(1) Compliance with the Allowable Discharge Limits

The allowable discharge limits (shown in APPENDIX 4) are being amended and a draft is available to the public, although it has not yet been gazetted. The effluent quality from the proposed treatment plant will comply with the amended discharge limits. The allowable limits for organic substances in the amended version are not expected to change much. Limits for heavy metals will be stricter. The amendment introduces an allowable discharge limit for nitrates, set at $10 \mathrm{mg} / \mathrm{L}$ as $\mathrm{NO}_{3}-\mathrm{N}$. This new requirement will have a significant impact on the selection of treatment methods.

Figure 4.3-1 Nitrogen Cycle
Figure 4.3-1 shows the reaction cycle of nitrogen during biological wastewater treatment. Ammonia nitrogen ($\mathrm{NH} 3-\mathrm{N}$) and a portion of organic nitrogen is converted to nitrite and nitrate through nitrification carried out by ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Nitrate produced by the nitrification process should be reduced through denitrification to less than 10 mg / L to meet the amended allowable discharge limit. Nitrification occurs naturally in small-scale STP which are usually operated with long solids retention time (SRT). High wastewater temperature promotes nitrification. Suppression of nitrification in any biological process is therefore not easy and is not a realistic option. Therefore, the treatment process must have the ability to denitrify. Denitrification is relatively easy to achieve with activated sludge processes but is more difficult for biofilm processes and stabilization ponds.

(2) Preferred treatment process

The projected daily maximum sewage inflow is $35,000 \mathrm{~m}^{3} / \mathrm{d}$ which is considered as a mid-sized operation. The commonly used oxidation ditch (OD) process is for smaller scale plants and is not suitable for the Sri Jayawardenapura Kotte STP. Considering that nitrates and nitrogen removal is required, the treatment process should use a form of biological nutrient removal (BNR). Activated-sludge BNR systems can be designed in many configurations. Common features include anaerobic zones for the release of stored phosphorus, anoxic zones for denitrification, and oxic zones for oxidation of organic material, nitrification, and phosphorus uptake. A pumped recycle is typically included to return nitrified mixed liquor from the oxic zone to the anoxic zones for denitrification. Figure 4.3-2 shows some of the commonly used BNR processes.

Two stage split inflow process : N removal

$\mathrm{A}_{2} \mathrm{O}$ (Anaerobic-Anoxic-Oxic) process: N, P removal

Source: JET
Figure 4.3-2 Examples of BNR Process
There are many variations and proprietary BNR processes. A BNR process with a biofilm carrier in the nitrification (oxic) zone has recently become more popular. Nitrifying biomass in the reactor is increased by the introduction of biofilm carrier, resulting in a shortened hydraulic retention time (HRT) in the nitrification zone, potentially reducing the space required.

4.3.2 STP Site

The STP site is located at Koswatte, Battaramulla in Sri Jayawardenapura Kotte city (Source: JET
Figure 4.3-3). The irregular shaped site is about 5 ha but the overhead power lines limit the area available for the STP to the southwestern are of only 2 ha. In addition, there is a small water channel that flows through the middle of the site. The site function as a flood retention area in case of heavy rainfall therefore the north part of STP site should not be used. A site layout plan is shown in Figure 4.3-4 so staging structure should be adopted.

Photos of the STP site and the boat course downstream of the STP site are shown in Figure 4.3-5 and Figure 4.3-6.

Figure 4.3-5 STP site (Left: Western part Right: Eastern part)

Figure 4.3-6 STP site (Left: Southern part Right: Boat course downstream of the STP site)

4.3.3 Sewage Treatment Process

(1) Required treatment level

The design influent sewage quality and target effluent quality values are shown in Table 4.3-1 Some of the target values are more stringent than the allowable discharge limits. This is to prevent the deterioration of water quality in the water channel and the boat course located downstream of the effluent discharge point. These target values may change depending on results of investigations by CEA.

Table 4.3-1 Assumed Quality of Influent and Effluent

Inflow		Effluent	
	Tolerance limit		Design target value
BOD_{5}	240	30	15
COD	600	250	75
TSS	160	50	15
$\mathrm{~T}-\mathrm{N}$	45	-	-
TKN	-	150	2.5
$\mathrm{NH}_{4}-\mathrm{N}$	-	50	2.5
$\mathrm{NO}_{3}-\mathrm{N}$	-	10	10
$\mathrm{~T}-\mathrm{P}$	6	-	3
Soluble-P	-		2

Source: JET

(2) Treatment process

The selected BNR process must satisfy the following conditions;

1) effluent must meet the design target values
2) treatment facility must be accommodated within the identified site
3) process must minimize maintenance cost

BNR systems used to be configured in a plug-flow regime with the system influent and return activated sludge (RAS) flows directed to the beginning of the tanks. More recently, adaptations have been made to incorporate step-aeration. Step-feed BNR configurations can remove high levels of nutrients in a reduced tank volume as compared to plug flow configurations.

A three-stage step-feed BNR process is determined to be the most appropriate treatment process. Source: JET

Figure 4.3-7 shows the proposed scheme.

Source: JET
Figure 4.3-7 Three-stage Step-feed BNR Process
Influent is introduced to each denitrification tank in equal amount. The capacity of each tank is determined so that each stage may have the same amount of biomass amount.

This process configuration, offers the following advantages:

1) high nitrogen removal efficiency (about 80%) with a much smaller recirculation ratio (0.5 Q)
2) return activated sludge is enough thus internal recirculation in each stage is not required
3) reactor HRT can be reduced to less than 10 hours which is small enough for the process to fit the selected site

(3) General Layout

Figure 4.3-8 shows the preliminary site layout for the three-stage step-feed BNR treatment plant.

Figure 4.3-8 Preliminary Layout of the Treatment Plant
(4) Main Unit Processes

1) Screen and Grit Chamber

Screening is the first operation of the waste STP. Screening removes objects such as rags, paper, plastics, and metals to prevent damage and clogging of downstream equipment, piping, and appurtenances. Grit includes sand, gravel, cinder, or other heavy solid materials that are "heavier" (higher specific gravity) than the organic biodegradable solids in the wastewater. Grit also includes eggshells, bone chips, seeds, and coffee grounds. Removal of grit prevents unnecessary abrasion and wear of mechanical equipment, deposition in pipelines and channels, and accumulation in aeration basins. Grit removal is after screening and before aeration.

The treatment plant will accept septage from areas that will not be covered by the sewerage network for the foreseeable future. Septage should be separately and carefully processed to remove coarse materials and sand before entering the aeration tanks. Since the plant has no primary settling tank to provide dilution, the amount of septage amount that can be accepted should not exceed 0.5% of the influent flow rate.

2) Primary Sedimentation

Typically, the next stage in treatment would be primary sedimentation where the sewage flows through large primary sedimentation tanks or primary clarifiers. The tanks are used to settle organic solids while grease and oils rise to the surface and are skimmed off. Approximately 60% of suspended solids and 35% of BOD removal efficiency can be achieved at this stage.

Primary sedimentation tanks are omitted from the process because there is not enough land available. Sewage will flow directly to the BNR process.

3) BNR Reactors

Wastewater flows into the BNR reactor tanks entering the main part of the process. The total HRT of the reactor is estimated to be 9.5 hours. Influent is divided equally into three portions and step-fed into each anoxic tank. Aerobic decomposition of organic substances and nitrification takes place in the oxic tanks. Return activated sludge which contains nitrate is sent to the first anoxic tank. In each anoxic tank, denitrification takes place and nitrate is converted to nitrogen $\left(\mathrm{N}_{2}\right)$. Organic substances required for denitrification is supplied by influent wastewater.

Biological phosphorous removal is the uptake of phosphorus by phosphorus-accumulating organisms (PAOs). These micro-organisms are settled out in the clarifier as activated sludge. While the actual uptake of phosphorus occurs under aerobic conditions, PAOs must first be conditioned by exposure to volatile fatty acids (VFA) under anaerobic conditions. The anaerobic cell is integrated in the first anoxic tank.

While good aeration is all that is needed for phosphorus uptake to occur, the aerobic uptake of phosphorus is dictated by the amount of volatile fatty acid (VFA) stored and energy/phosphorus released in the anaerobic zone. Therefore, success is primarily determined by influent wastewater quality and the amount of VFA that is present in proportion to the amount of phosphorus to be removed.

Biological phosphorous removal is expected to some extent however, simultaneous chemical precipitation is added to the third stage to ensure that target P concentrations are met. Coagulant is added directly into the mixed liquor at the end of the third stage in the oxic tank. Mixing and coagulation take place in the oxic tank and phosphorous is precipitated with the activated sludge in the final settling tank. The coagulant dosing equipment is minimal (only a coagulant storage tank and a dosing pump are required). Source: JET

Figure 4.3-9 shows the principle of the simultaneous precipitation method.

Source: JET
Figure 4.3-9 Principle of Simultaneous Precipitation

4) Final Settling Tank

The mixed liquor flows into the settling tank and is retained for 3.4 hours at the overflow rate of $25 \mathrm{~m}^{3} / \mathrm{m}^{2} /$ d. Solid-liquid separation takes place there. The clarified supernatant flows over the effluent weir of the settling tank. The activated sludge in the tank is collected in the sludge hopper. Some of the activated sludge is returned to the first stage anoxic tank to keep the process going and the excess is sent to thickening and dewatering.

5) Disinfection

Treated wastewater is disinfected before discharge to minimize the health risks associated with pathogens. Disinfection is with chlorine in the form of sodium hypochlorite (NaOCl), added to the effluent after the final settling tank. If the receiving water is found to be sensitive to chlorine by-products (e.g. fish), then UV radiation will be considered as an alternative.

6) Others

The administration building will be constructed over the wastewater treatment facilities or combined with the sludge treatment building to save space.

(5) Odour Control

Possible odour emission points are:

- septage receiving facility
- grit chamber
- reactor tank
- sludge treatment process

The septage receiving facility, grit chamber and sludge treatment process are the main odour emission points. Odour from the reactor tank is usually not very offensive because it is an aerobic process.

The necessity for odour control depends on the environmental condition near the STP.
Odour control options are:

- activated carbon adsorption
- biological deodorization in combination with above
- supply of odour containing air to reactor
- soil bio-filter

Soil bio-filter is a simple method but periodical soil turnover is required for efficient odour reduction. If intensive odour control is required, activated carbon is necessary.

4.3.4 Sludge Treatment and Disposal

(1) Characteristics of Sludge Produced by the Teatment Process

The three-stage step-feed BNR process will produce waste activated sludge (WAS). The amount of WAS at the design flow of $35,000 \mathrm{~m}^{3} / \mathrm{d}$ is estimated to be $34 \mathrm{t} / \mathrm{d}$ of dewatered sludge with a moisture content 80%, (equivalent to $6.9 \mathrm{t} / \mathrm{d}$ of dry solids). WAS contains mostly protein which is the main constituent of biomass. Waste sludge from the BNR process is aerobically stabilized because of the long SRT. Odour emission therefore is generally much less than primary sludge.

If waste sludge becomes anaerobic in the storage tank, phosphorus will be released to the supernatant which is returned to the BNR reactor and will impose an additional load. Therefore, rapid processing from the storage tank is desirable.

(2) Waste Sludge Treatment

1) Thickening

Sludge thickening normally refers to the process of reducing the free water content. Thickening is an important process because it reduces the volume of sludge sent to the dewatering process. Gravity thickening works best for primary sludge and is not very effective for WAS. Mechanical thickening is more efficient. The commonly used mechanical methods of sludge thickening are: dissolved air floatation (DAF), centrifugation, gravity belt thickener and screw press. Figure 4.3-10 shows the gravity belt thickening machine which has gained popularity because of its simple structure and low energy consumption. This type of thickener can be enclosed to prevent odour emission.

Source: Kubota Corporation.
Figure 4.3-10 Gravity Belt Thickener

2) Anaerobic Digestion

Anaerobic digestion is not considered in the sludge treatment process because it doesn't work well for waste activated sludge alone.

3) Dewatering

Dewatering refers to the reduction of floc-bound and capillary water content. Sludge dewatering is required at the STP prior to disposal. Since dewatering processes differ significantly in their ability to reduce the water content, the sludge disposal method will generally have a major influence on the dewatering method that is most suitable.

The commonly used dewatering machines are, filter belt press, screw press and centrifuge. These machines require sludge conditioning by polymer coagulant prior to dewatering. Screw press type dewatering machines are becoming popular for the following reasons: 1) compact size supplied as a unit containing dewatering equipment, coagulation equipment, and control panel; 2) easy to operate, unmanned operation is possible; 3) direct dewatering of excess sludge without thickening is possible.

A diagram of the pressurized screw press is shown in Figure 4.3-11.

Source: Japan STP Construction Association
Figure 4.3-11 Pressurized Screw Press

(3) Sludge Disposal

There are several options for the final disposal of waste sludge as shown in Figure 4.3-12.

Source: JET
Figure 4.3-12 Sludge Disposal Options

Nitrogen and phosphorus in sewage sludge are essential nutrients for plant growth. Therefore, use of dewatered sludge as compost or dried sludge for agricultural purpose is ideal.

In sludge composting, some pre-conditioning is usually required by adding organic materials to dewatered sludge to adjust moisture content and the C / N ratio. The composting process breaks down the organic substances and matured compost has no offensive odour. During composting, fermentation temperature will rise to over $65^{\circ} \mathrm{C}$, destroying pathogenic bacteria in the process. Matured compost have no offensive odour. Composting is preferable to drying and dumping because it recycles the nutrients and is also hygienic. However, strict quality control and education of users are essential.

There are different sludge composting methods. The simplest method is the pile composting shown in Figure 4.3-13 Dewatered sludge is piled on a flat concrete bed after adjusting its moisture content to around 60% by adding some organic materials such as sawdust, rice hulls, straw, bark, or composted sludge. Air is supplied by a blower system or through periodical turnover by shovel or tractor. It usually takes 10-14 days for the first stage fermentation. The second stage fermentation takes 1 to 3 months to produce matured composted sludge. Since the STP site is too small to accommodate a composting facility, dewatered sludge should be sent to a composting plant located elsewhere.

Sludge compost contains nitrogen and phosphorus but only a small amount of potassium. Composting with other organic wastes such as cow dung can increase the potassium content and thus the value of compost products.

If there are no agricultural activities in the area to use the composted sludge, dumping may be the only option. Some dump sites do not accept materials with more than 60% moisture content. Dewatered sludge usually at around 80% moisture content must be dried before dumping.

Source: JET
Figure 4.3-13 Pile Composting

4.4 On-Site Facilities and Septage Management

4.4.1 On-site Facilities

To connect the entire area in Sri Jayawardenapura Kotte to the sewerage system will take a long time. In some areas, septic tanks will continue to be used for wastewater treatment. The design, construction, and maintenance of septic tanks should comply with Sri Lank Standards 745 Part II: 2009 so their proper functioning can be maintained.

4.4.2 Septic Tanks

Septic tanks retain wastewater, allowing the solids to separate from the suspension, and facilitate partial decomposition to reduce pollution load. A septic tank must be adequately sized to perform these functions properly.

The schematic of a typical septic tank is shown in APPENDIX 5. The tank should be waterproof and durable enough to withstand external soil load as well as internal water pressure. Where the tank is placed under a driveway or parking area, the specifications must ensure the ability to withstand reasonable vehicle loads.

4.4.3 Operation \& Maintenance of Septic Tanks

Periodic maintenance is important for functional sustainability. Therefore, users and owners should be aware of the following precautions:
(i) Sludge removal

A septic tank requires sludge removal at regular intervals. When filled with sludge and scum, the tank should be partially cleaned, leaving about one-third to half of the sludge as a 100 to 150 mm layer of "seed sludge" to restart the treatment process. The sludge pumped from the tank is disposed at the STP to be constructed.
(ii) Access Cover

An access cover is kept tightly shut to prevent other waste from entering the tank. When damaged, it should be repaired or replaced immediately.
(iii) Mosquitoes

To prevent mosquito breeding, make sure that the septic tank is kept tightly closed. Vents must be covered with mosquito mesh and checked periodically. The mesh must be replaced, as required.
(iv) Blockage

Blockage is typically caused by solids clogging the inlet of the septic tank. Preventive measures should be taken. Solid matter should be cleared from the access cover, using a long and flexible stick.

CHAPTER 5 INSTITUTIONAL ARRANGEMENTS FOR IMPLEMENTATION

The implementation of sewerage systems requires planning, design, construction, and eventually operation and maintenance (O\&M). Capacity development of staff from NWSDB, relevant regional support centres (RSCs), and MCs is needed to ensure required tasks are satisfactorily conducted at each level.

5.1 Project Implementation and Management

5.1.1 Examples of Project Implementation Structures in Sri Lanka

Table 5.1-1 shows the implementation structure of water and sewerage works in 6 municipalities. Some sewerage works are under implementation or at the planning stage.

Table 5.1-1 Organization of Water and Sewerage Works in 6 Municipalities

Area	Water works			Sewerage works			
	Ownership	Management	O\&M	Ownership	Management	Pipe	
CMC	N	N				---	MC
Kandy	MC	MC	MC	MC	MC (unfixed)	N (unfixed)	OCM (unfixed)
Ratmalana- Moratuwa	N	N	N	N	N	N	N
Ja-ela/Ekala	N	N	N	N	N	N	N
Hikkaduwa	N	N	N	N	N	N	N
Kataragama	N	N	N	N	N	N	N

Colombo MC (CMC) owns the sewerage works and operates and maintains the pumping stations and sewer networks, while the water works is owned and managed by NWSDB.

Kandy MC owns the water and sewerage works, but the O\&M of STP will be outsourced to NWSDB, while the MC will conduct sewer pipe maintenance

The water and sewerage works in Ratmalana-Moratuwa, Ja-ela/Ekala, Hikkaduwa, and Kataragama, are owned and managed by NWSDB.

The ownership and the implementation structure of the sewerage works is determined by each municipality.

5.1.2 Public Works in Sri Jayawardenapura Kotte MC

Table 5.1-2 shows the water, solid waste, on-site sanitation, road construction/maintenance, and storm-water management in the MC.

Table 5.1-2 Public Works in Sri Jayawardenapura Kotte MC

Water works	Responsible organization		NWSDB, Western Central
	Water supply schemes		9
	Blanch offices		21
	Planning \& Designing		Engineer 3, Technical 2, Others 7
	WTP	Full scale	1
		Partial scale	1
		Out-sourcing	no
	Laboratory		0
		Out-sourcing	- -
	Transmission and Distribution		Engineer 47, Technical 175, Others 1,219
	Meter reading		198
	Charge Collection		Area engineer 9, Senior commercial 10, Others 38
		Out-sourcing	no
Solid waste management	Responsible organization		MC (Public health department)
	Works		Collection, transportation and disposal
	Type of tasks	Planning \& Designing	Implementing (Public Health department)
		Construction	Implementing (Engineering department)
		O\&M	Implementing (Public Health department)
	Financing sources		MC budget, Service charge
	Service charge		
	Dumping site	Location	Karadivana (by soild waste management authority of province)
		Capacity	
	Collection	Method	by vehicles
		Vehicles	Compactor 8, Tractor 2, Cart 14,
	Staff	PHI	1
		Supervisor	-
		Labors	-
	Out-sourcing		no
On-site sanitation	Responsible organization		No responsibility on MC, All the responsibility on house-owners
	Type of tasks	Planning \& Designing	- -
		Construction	-
		O\&M	-
	No. of septic tanks	At present	-
		Future	-
	Financing sources		-
	Services	Installation	-
		Approval	-
		Supervisor	-
	Sludge removal	Frequency	-
		Procedure	-
		Sludge disposal site	-
	Service charge	Installation	-
		Sludge disposal	-
	Staff	Supervisor	-
		PHI	-
		Upper level labor	-
		Labors	-
	Out-sourcing		- -
Road construction and maintenance works	Responsible organization		MC (Engineering department)
	Works		MC road networks
	Type of tasks	Planning \& Designing	Implementing
		Construction	Implementing
		O\&M	Implementing
	Financing sources		MC budget, Govemment subsidy
	Staff	Engineer	2
		Technical officer	8
		Others	8 (work supervisor)
	Out-sourcing	Details	Laving of as con concrete
		Type of contract	Tender called contracts
Storm water management	Responsible organization		No responsibility on MC nor NWSDB
			- -
	Type of tasks	Planning \& Designing	-
		Construction	-
		O\&M	-
	Existing drainage system		-
	Financing sources		-
	Staff	Engineer	-
		Technical officer	-
		Others	-
	Out-sourcing		-

Source: MC
The water supply system in Sri Jayawardenapura Kotte is one of 9 systems operated by NWSDB, Western Central RSC.

The MC provides all the other public works services from planning to O\&M without outsourcing. The water tariff covers the expenses for water supply and the MC budget and government subsidies are used to cover the costs of providing the other services. Owners manage on-site sanitation and the MC is not involved.

5.1.3 Organizational Options for Implementing Sewerage Works

5 options are prepared for the implementation of sewerage works as shown in Table 5.1-3.
Table 5.1-3 Organizational Options for Implementing Sewerage Works

Activity	Option 1	Option 2	Option 3	Option 4	Option 5
Request of sewerage works	NWSDB	NWSDB	LA	LA	LA
Approval of sewerage works	MWSD	MWSD	$\begin{aligned} & \text { MWSD } \Rightarrow \\ & \text { MLGPC } \end{aligned}$	$\begin{gathered} \text { MWSD } \Rightarrow \\ \text { MLGPC } \end{gathered}$	$\begin{gathered} \text { MWSD } \Rightarrow \\ \text { MLGPC } \end{gathered}$
Budget Preparation	$\begin{gathered} \text { MWSD } \Rightarrow \\ \text { NWSDB } \end{gathered}$	$\begin{gathered} \text { MWSD } \Rightarrow \\ \text { NWSDB } \end{gathered}$	$\begin{gathered} \text { MLGPC } \Rightarrow \\ \text { LA } \\ \hline \end{gathered}$	$\begin{gathered} \text { MLGPC } \Rightarrow \\ \text { LA } \end{gathered}$	$\begin{gathered} \text { MLGPC } \Rightarrow \\ \text { LA } \end{gathered}$
Project Planning	NWSDB assisted by LA				
$\begin{aligned} & \text { Planning \& } \\ & \text { Designing } \end{aligned}$	NWSDB \& C/C				
Construction	P/C	P/C	P/C	P/C	P/C
Construction Supervision	NWSDB \& C/C				
Ownership of facilities	NWSDB	NWSDB	LA	LA	LA
O\&M Sewer Networks	NWSDB	P/O supervised by NWSDB	LA	P/O supervised by LA	LA
O\&M STP			NWSDB		
Loan Settlement	$\begin{aligned} & \text { MWSD } \Rightarrow \\ & \text { NWSDB } \end{aligned}$	$\begin{aligned} & \text { MWSD } \Rightarrow \\ & \text { NWSDB } \end{aligned}$	$\begin{gathered} \text { MLGPC } \Rightarrow \\ \text { LA } \end{gathered}$	$\begin{gathered} \text { MLGPC } \Rightarrow \\ \text { LA } \end{gathered}$	$\begin{gathered} \text { MLGPC } \Rightarrow \\ \text { LA } \end{gathered}$

Notations : 1. LA- Local Authority MCs, Urban Council (UC), Pradeshiya Sabha (PS))
2. NWSDB- National Water Supply \& Drainage Board
3. MWSD- Ministry of Water Supply \& Drainage
4. MLGPC- Ministry of Local Government \& Provincial Councils
5. C/C-Appointed Consultants/Contractor
6. P/C- Private Contractor
7. P / O - Private Operator

Source: JET
In Options 1 and 2, the sewerage system is owned and managed by NWSDB, in one case the O\&M is outsourced to the private sector.

In Options 3 and 4, the system is owned by MC but O\&M of the STP is outsourced either to NWSDB (Option 3), or to the private sector (Option 4),

In Option 5 the system is owned, operated, and maintained by MC.
In all five options, the planning, design, and construction is carried out by NWSDB because they are experienced with these tasks.

5.1.4 Preferred Implementation Structure for Sewerage Works

Water works in the MC area are managed by NWSDB, therefore it makes sense that the sewerage works should also be managed by NWSDB for the following advantages:
A) Service charge can be set lower

The integration of water and sewerage services will reduce the duplication of functions such as
accounting, human resources, customer service, and billing. The savings in administrative overhead can help reduce the sewerage service charge.

B) Experience and knowledge

NWSDB has many experienced engineers and skilled labourers that are working in RSC North Central and managing the MC's water works. The Greater Colombo Sewerage (GCS) Office, organized under Assistant General Manager (AGM) (O\&M-GC), is responsible for managing several existing sewerage works. Some NWSDB staff can be transferred to the sewerage works in Sri Jayawardenapura Kotte MC to ensure a smooth start-up and operation.

Therefore, Options 1 or 2 are preferred for implementing the sewerage works in Sri Jayawardenapura Kotte MC.

5.2 Organization for Implementation

To organize the implementation of the sewerage system in Jayawardenapura Kotte MC, the detailed roles of NWSDB, relevant RSC and MC must be defined. Table 5.2-1 shows the roles for each party from planning to O\&M for Options 1 and 2.

Table 5.2-1 Roles of NWSDB and MC at Various Project Implementation Stages

Option-1		Implementation Stage			
		Planning	Designing	Construction	O\&M
NWSDB	Tasks	Supervision Decision of STP site and others	Supervision	Supervision	O\&M of sewerage works Consideration of out-sourcing
	Staff	* Technical Team	* PD under DGM * Staff in Project Management Units (PMU)	\Rightarrow	* Staff in STP *Staff for sewer networks
RSC	Tasks		Supporting project activities	\Rightarrow	Supporting O\&M of sewerage system Public awareness Promotion of house connection
	Staff		* Manager in sewerage works	\Rightarrow	\Rightarrow
MC	Tasks	Cooperation for planning works	Cooperation for land acquisition	Cooperation for STP and sewer networks construction	Monitoring of effluent Public awareness Promotion of house connection
	Staff	* Staff for tasks above	\Rightarrow	\Rightarrow	\Rightarrow

Option-2		Implementation Stage			
		Planning	Designing	Construction	O\&M
NWSDB	Tasks	Supervision Decision of STP site and others	Supervision	Supervision	Supervision
	Staff	* Technical Team	* PD under DGM * Staff in PMU	\Rightarrow	* Supervisor of O\&M of sewerage system
RSC	Tasks		Supporting project activities	\Rightarrow	Supporting O\&M of sewerage system Public awareness Promotion of house connection
	Staff		* Manager in sewerage works	\Rightarrow	\Rightarrow
MC	Tasks	Cooperation for planning works	Cooperation for land acquisition	Cooperation for STP and sewer networks construction	Monitoring of effluent Public awareness Promotion of house connection
	Staff	*Staff for tasks above	\Rightarrow	\Rightarrow	\Rightarrow

Source: JET

5.2.1 Organization of the NWSDB Sewerage Department

The organization of the NWSDB sewerage department is as shown in Figure 5.2-1 When the sewerage project is implemented, the engineering tasks in planning, design, construction and O\&M will increase.

Source: JET
Figure 5.2-1 Organization of the NWSDB Sewerage Department
Some re-organization of the sewerage department must be made to cope with the increased tasks as shown in Figure 5.2-2

The responsibilities of the Deputy General Manager (DGM) can be split into DGM/Specialist (Engineering) and DGM (O\&M). AGM for planning and design (P\&D) can be split into AGM (Plan \& Tech.) and AGM (Design). AGM (O\&M-Regionals) can be added to AGM (O\&M-GC) to cope with the increased work load.

Source: JET
Figure 5.2-2 Proposed Re-organization of the NWSDB Sewerage Department
At the planning and design stage, NWSDB will establish a Technical Team, as shown in Figure 5.2-3 to work with the consultants. At the construction stage, a Project Director (PD) will be added under the Additional General Manager (Add. GM) and a Project Management Unit (PMU) for supervising the construction works will be established under the PD.

A Manager under the AGM (O\&M-Regionals) will work with the RSC to coordinate the O\&M of STP and sewer networks.

Source: JET
Figure 5.2-3 NWSDB Sewerage Department Responsibilities for Project Implementation

5.2.2 Organization of RSC Western Central

In the Sri Jayawardenapura Kotte area, the AGM (O\&M-GC) is responsible for all aspects of sewerage including customer services. RSC Western Central has no direct involvement in managing the sewerage works in the MC. However, because the sewerage service charge is added to the water bill collected by the RSC, some strengthening of the RSC organization will be needed for the increased workload in. billing, collecting and accounting.

5.2.3 Organization of Sri Jayawardenapura Kotte MC

Sri Jayawardenapura Kotte MC will support the implementation of the sewerage works by securing the STP site and providing input and assistance to NWSDB during the planning, design and construction stages.

At the O\&M stage, the MC will monitor STP effluent quality and the nearby environment to ensure
compliance. The MC will assist NWSDB with building public awareness and the promotion of house connections.

5.3 Capacity Development

5.3.1 Securing Human Resources

(1) NWSDB

A PD and a PMU are required at the construction stage. A Manager reporting to the AGM (O\&M-Regionals) and engineers, technical staff, drivers, and labourers are needed to operate and maintain the facilities. Some staff can be transferred from existing sewerage and water supply operations to facilitate the start up. New staff will have to be hired to fill the vacancies left by the transfers.

There are 13 national universities (most with faculties of civil, mechanical, electrical engineering, chemistry, and environmental sciences), and there are 8 technical colleges/high-schools. There will be many graduates who will have the required knowledge to join the work force in the sewerage sector.

Table 5.3-1 Faculties at National Universities and Technical Colleges/High Schools

University	Civil Works	Electrical	Mechanical	Chemistry	Environment
Colombo				\checkmark	
Peradeniya	\checkmark	\checkmark	\checkmark	\checkmark	
Sri Jayewardenepura				\checkmark	
Kelaniya	\checkmark				\checkmark

Source: JET
Satisfactory working conditions and compensation are important to keep staff motivated. NWSDB salaries are higher than those of similar positions in the private sector. NWSDB has a decent promotion system and staff is motivated to perform well.

Table 5.3-2 Comparison of Salaries and Benefits between NWSDB and the Private Sector

Grade	Staff of NWSDB		Staff of a private sector		
	Salary (LKR)		Benefits (in LKR)	Salary (LKR)	Benefits in (LKR)
1	Engineer	125,000	39,500	105,000	21,000
2	Supervisor	75,000	30,500	37,500	6,000
3	Skilled Labourer	50,000	28,500	27,500	8,000
4	Un-skilled Labourer	40,000	28,000	19,000	5,000

Source: JET
(2) MC

Additional MC staff will be required for coordination with NWSDB in the acquisition of STP and pumping station sites and in the construction of sewer networks.

At the O\&M stage the MC's health department would likely be given extra responsibilities such as monitoring the STP effluent and surrounding areas, conducting public awareness campaigns and promotion of house connections. Therefore additional human resources and training will be required.

5.3.2 Development of Human Resources

A lot of technical knowledge and experience is required from planning to O\&M. Capacity development is very important especially when many new staff with almost no experience will be hired. Training seminars and OJT are necessary.

(1) NWSDB Training Centre

The Training Centre is not offering many technical programs on sewerage systems. As many staff will need training, this aspect of the Centre's curriculum will have to be enhanced. shows the programs that should be added.

Table 5.3-3 Required Training Programs for Sewerage Systems

Category	No.	Title of the Program
Planning	1	Planning of Sewage Works
	2	Principle of Asset Management
Designing	1	Designing of Sewer System
	2	Jacking Method
	3	Rehabilitation of Pipe Networks
	4	Designing of STP
	5	Mechanical System Design in STP
	6	Electrical System Design in STP
O\&M	1	Maintenance of Sewer System
	2	Operation of STP
	3	Maintenance of Mechanical System in STP
	4	Maintenance of Electrical System in STP
	5	Water Quality Management
	6	Commercial and Industrial Wastewater Management
Safety Management	1	On-site Safety management
Risk Management	1	On-site Risk Management

NWSDB staff as well as those from relevant MCs and private sector companies (if outsourcing is used) should participate in the training programs.

(2) On-the-Job Training (OJT)

OJT in the STP, at pumping stations, and sewer networks is necessary. Generally, the contractor will conduct OJT for staff of STP at commissioning. Staff should also be dispatched to other STPs for 6 months to a year to gain experience in maintenance and trouble-shooting.

5.3.3 Sewer Maintenance Equipment and Vehicles

Scheduled sewer cleaning is carried out regularly and at emergency situations. There should be adequate number of specialized machines and vehicles for the work. The operation can start with the number of machines and vehicles other systems are using, as shown in Table 5.3-4 More can be added as the service area expands and as more maintenance is required.

Table 5.3-4 Sewer Maintenance Equipment \& Vehicles at Existing Sewerage Systems

	Dehiwala - Mount Lavinia	Jayawadanagama - Kolonnawa	Ja-ela/Ekala
Gully/ Jetting Combined Machine	-	1	-
Gully Bowser	2	1	1
Portable Jetting Machine	1	1 (with frequent breakdown)	1 (with frequent breakdown)
Crane Truck	-	1	-
(with frequent breakdown)	-		
High Pressure Jet Machine	1	1	1
High Pressure Water Spraying Machine	-	-	

Source: JET

5.3.4 Customer Service

RSC Western Central is already managing customer service for water supply. When sewerage is added to their responsibilities, they will have to deal with and track customer complaints such as foul odour and clogged pipes. They can learn from other locations where sewerage systems are already in operation.

5.4 Construction Management for the Project

The project management unit (PMU) established under the PD will oversee the activities during construction.

5.4.1 PMU

There will be 40 staff in the PMU, including engineers and labourers.

5.4.2 Project Office

It would be ideal to have the PMU office in the RSC. However, if this arrangement cannot be accommodated, the office can be set up near the project site. The office should be big enough to house the contractors as well. Another matter to bear in mind is the need to have enough parking for people who have visit the project site.

CHAPTER 6 COST ESTIMATE AND PROCUREMENT

6.1 Project Cost

6.1.1 Construction and Project Costs

Construction cost is estimated based on NWSDB's "RATES 2016". The rates not contained in this schedule are calculated based on previous JICA projects and Pre-F/S reports in Sri Lanka. Construction costs are presented in APPENDIX 6.

Project cost is estimated based on the following conditions.

```
Construction cost
Consulting cost
Consulting period
Construction period
Administration cost
Physical contingency
Interest during construction
Front end fee
Tax and duty
Price escalation
Exchange rate
```

Estimated with price level at January, 2017
Estimated with price level at January, 2017
2019~2026
$2021 ~ 2026$
5%
5\%
Construction : 0.3% Consulting : 0.01%
0.2%
15\%
Local currency : 3.8\%, Foreign currency: 1.6\%
LKR $1=$ JPY 0.77

Project cost is estimated at approximately 57.2 billion LKR or 44.1 billion Japanese Yen (JPY), excluding tax and duty, as shown in Table 6.1-1 Details of the project cost estimate are presented in APPENDIX 7.

Table 6.1-1 Estimated Project Cost

			Amount		$\begin{gathered} \hline \text { Total Amount } \\ \hline \text { LKR } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { Total Amount } \\ \hline \text { JPY } \\ \hline \hline \end{gathered}$
			L.C. (LKR)	F.C. (JPY)		
1	Con	truction Cost				
	A	Sri Jayawardenapura Kotte STP (Q = 35,000m3/day)	4,887,272,727	5,644,800,000	12,218,181,818	9,408,000,000
	B	Trunk Sewer \& Pump Station	3,884,573,000	4,878,220,000	10,219,925,000	7,869,338,000
	C	Branch Sewer \& Pump Station	7,079,587,000	3,522,960,000	11,654,860,000	8,974,242,000
	D	House Connection	4,950,000,000	0	4,950,000,000	3,811,500,000
	Sub-total of 1(A-D)		20,801,432,727	14,045,980,000	39,042,966,818	30,063,080,000
2	Administration cost		2,700,000,000	0	2,700,000,000	2,079,000,000
3	Consulting cost		1,354,000,000	3,129,000,000	5,417,636,000	4,171,580,000
4	Physical contingency for construction cost		1,309,000,000	773,000,000	2,312,896,000	1,780,930,000
5	Price escalation for construction cost		5,381,000,000	1,419,000,000	7,223,857,000	5,562,370,000
6	Land acquisition and compensation		- -	-	- -	- -
7	Interest during construction		0	323,000,000	419,481,000	323,000,000
8	Front-end Fee		0	84,000,000	109,091,000	84,000,000
9	Tax and duty		9,861,000,000	0	9,861,000,000	7,592,970,000
	Sub-total of (2-9)		20,605,000,000	5,728,000,000	28,043,961,000	21,593,850,000
	Total including Tax and Duty		41,406,432,727	19,773,980,000	67,086,926,000	51,656,933,000
	Total excluding Tax and Duty		31,545,432,727	19,773,980,000	57,225,926,000	44,063,963,000
	Eligible Portion (1, 3, 4, 5 and 7)		28,845,432,727	19,689,980,000	54,416,835,000	41,900,963,000
	Non-Eligible Portion (2, 6, 8 and 9)		12,561,000,000	84,000,000	12,670,091,000	9,755,970,000

[^2]
6.1.2 Operation and Maintenance (O\&M) Cost

O\&M cost is estimated based on the Ratmalana/Moratuwa sewerage system as shown in Table 6.1-2 The detailed estimate is presented in APPENDIX 8, which includes staff cost, utilities, chemical cost, repair expenses, installation cost, security expenses, and other expenses.

Table 6.1-2 Estimated O\&M Cost

	Total Amount (LKR/year)	Total Amount (JPY/year)
Sri Jayawardenapura Kotte	$499,877,000$	$386,112,000$

Source: JET

6.2 Multi-Phased Construction

Construction should be conducted in phases because of the size of the project - service area of 3,392 ha and cost of 57.2 billion LKR (44.1 billion JPY).

The total project cost for phased construction would be higher than the estimated cost shown above. The extra cost will depend on the number of phases and timing.

CHAPTER 7 FINANCIAL PLAN

7.1 Financial Condition of Sri Jayawardenapura Kotte Municipal Council

Table 7.1-1 shows a summary of the Income \& Expenditure Statement for SJKMC. Revenue should cover total expenditures. Any surplus or deficit is rolled over to the next year. Similar to other MCs, Sri Jayawardenapura Kotte MC pays the monthly salaries of central government employees working at the MC and gets reimbursed annually through a central to provincial government budgetary transfer. This is included in the "Revenue, Grant \& Reimbursement" account.

In this MC, the amount shown under the "Revenue, Grant \& Reimbursement" account is also posted to the "Other Revenue" account. The MC also receives grants to cover part of the project cost, which is posted to the "Capital Receipts and Grants" account.

Table 7.1-1 Summary of Income \& Expenditure for Sri Jayawardenapura Kotte MC

Year	2012	2013	2014	2015
Actual Revenue				
Assessment Rates	166.99	177.34	198.37	226.26
Rent	24.47	27.64	23.20	25.28
License Fees	2.70	8.08	5.48	5.86
Charges for Service	42.27	41.15	59.08	56.29
Warrant Cost/Fine	12.17	11.51	12.67	3.51
Stamp duty	86.83	242.95	214.35	425.35
Court Fines	14.42	1.47	1.14	1.38
Other Revenue ${ }^{\text {1 }}$	209.62	219.52	258.35	384.99
Total	559.46	729.65	772.64	1,128.91
Recurrent Expenditure				
Personal Emoluments	261.92	292.21	335.25	441.25
Travelling Expenses	4.82	6.06	5.72	3.25
Supplies \& Equipment	68.39	78.40	107.01	87.76
Repairs to Capital Assets	7.13	6.30	7.55	9.18
Transport	129.82	170.00	180.75	157.36
Interest \& Dividends	4.15	6.42	4.39	19.11
Grants	13.72	16.00	19.01	16.94
Pension Gratuity	2.91	3.01	2.74	2.90
Total	492.85	578.41	662.42	737.75
Actual revenue minus Recurrent Expenditure	66.61	151.24	110.22	391.16
Revenue, Grant \& Reimbursement	200.34	207.36	247.96	376.19
Capital Receipts \& Grants	11.63	68.15	343.04	272.87
Capital Expenditure	149.56	254.18	667.51	730.18
Total Surplus (deficits)	-71.32	-34.79	-214.24	-66.15

Note: *1; Other revenue includes "Revenue, Grant \& Reimbursement".
Source: Sri Jayawardenapura Kotte MC
Sri Jayawardenapura Kotte MC has recorded an annual budget deficit since 2012, even after including salary reimbursement and capital receipts and grants. The annual deficit was largest in 2014. The deficit occurs because "Capital Expenditure" exceeds "Capital Receipts \& Grants" as shown in Figure 7.1-3.

The difference between actual revenues and recurrent expenditures is positive which indicates that revenues are adequate for covering operating and maintenance costs (Figure 7.1-2). However, this result is somewhat misleading because actual revenues include salary reimbursement from the central government.

The capital account balance (capital receipts minus capital expenditures) has had large deficits (138 million to 457 million LKR) and the deficits have been increasing rapidly. These large deficits were enough to nullify the positive balance in recurrent accounts.

The deficit as a percentage of total revenue was $13 \%, 5 \%, 28 \%, 6 \%$ in 2012, 2013, 2014, and 2015. According to the MC, capital expenditure in 2015 included several housing construction projects' for low income settlement. These houses will be sold and the MC expects to recover most of the expenditure. Sri Jayawardenapura Kotte MC's financial condition is slightly weak. Nevertheless, the deficit amount is manageable.

Considering the weak financial condition of the MC, it is recommended that sewerage services be implemented and operated by NWSDB with the cost burden for construction shifted to the central government (in the event of an ODA loan, repayment should be borne by the central government). The sewerage tariff should be set to fully recover the O\&M costs.

Source: JET, based on Sri Jayawardenapura Kotte MC data
Figure 7.1-1 Trend of Total Surplus (deficits)

- Sri Jayawardenapura Kotte MC

Unit: million LKR

Source: JET, based on Sri Jayawardenapura Kotte MC data
Figure 7.1-3 Trend of Capital Receipts minus Capital Expenditure - Sri Jayawardenapura Kotte MC

Source: JET, based on Sri Jayawardenapura Kotte MC data
Figure 7.1-2 Trend of Actual Revenue minus Recurrent Expenditure - Sri Jayawardenapura Kotte MC

7.2 Financing Sewerage Facility Construction and O\&M

7.2.1 Construction, $\mathbf{O \& M}$ and Replacement Costs

The Cabinet Memorandum "Regularizing Foreign Financing Mechanism in Relation to Water Supply and Sewerage Project", dated 26 January 2016, stipulates that the Treasury will bear 100% of the debt service (capital \& interest) for sewerage projects.

In many countries including Japan, the sewage tariff does not cover the full cost of construction, $\mathrm{O} \& \mathrm{M}$, and future replacement. In many developing countries such as Malaysia, Thailand, and Vietnam, it is usually difficult for the sewage tariff to cover even just the O\&M costs because of the low willingness to pay.

The following cost burden principle for sewerage service should be used in Sri Lanka:

- 100% of the construction cost to be covered by the central government, i.e. 100% grant to NWSDB or MC.
- O\&M costs shall be covered by the sewage tariff which will be increased gradually.
- small-scale replacements should be covered by NWSDB's or the MC's own budget, but large-scale ones will be conducted as projects funded by the central government.

Therefore, the sewage tariff is structured to cover the only the $O \& M$ costs of the sewerage facilities.

7.2.2 Sewage Tariffs

(1) Two Types of Tariffs

Two types of sewage tariffs are proposed to recover the full costs of O\&M for sewerage systems:

- Type 1 recovers the O\&M costs of the sewerage facilities that serve customers in the MC's sewer service area. MCs would use this type of tariff when they own, operate, and maintain the sewerage system or if NWSDB applies a project specific tariff to the MC instead of the Type 2 tariff.
- Type 2 is a uniform, nation-wide tariff that would recover O\&M costs of all sewerage facilities owned, operated, and maintained by the NWSDB including those identified in the City M/P. (refer to Figure 7.2-1).

Source: JET

Figure 7.2-1 Difference Between Type 1 and Type 2 Sewage Tariff

(2) Calculation Methodology

The sewage tariff is calculated by dividing the estimated annual O\&M costs (excluding depreciation and replacement) by total water consumption of the sewerage customers.

A profit margin is provided to set aside funds for small-scale replacements and contingencies such as unexpected disasters or sudden price hike of cost items. It is set at 10% of the O\&M costs for Type 1 and 5% for Type 2 tariff. The higher rate reflects the much smaller budget for MCs compare to that of NWSDB.

Sewage charges will be added to the water bill. The sewage charge is calculated by dividing the total O\&M costs by the water consumption volume. Therefore, the sewage charge to each customer is proportional to amount of water they consume.

(3) Proposed Sewage Tariff

The sewage tariff proposed by the Strategic M/P is calculated for NWSDB to recover all the O\&M costs under current conditions. The tariff would be incrementally implemented in 2019 and 2022 (Strategic M/P, Section 7.3.1). The sewage tariff to cover the O\&M costs of each City M/P is calculated by considering that it can take up to ten years to reach full operational capacity.

When NWSDB is responsible for the O\&M and billing on behalf of the MC, the sewage tariff proposed by the Strategic M/P should be implemented as planned. A tariff increase for each City M/P would be implemented after the STP is operating at full capacity.

Year	2017	2018	2019	2020	2021	2022	2023	2024	2025
1st Tariff Raise of Strategic M/P			\triangle						
2nd Tariff Raise of Strategic M/P						\triangle			
3rd Tariff Raise of City M/P (if necessary)								\triangle	

Figure 7.2-2 Implementation Schedule for Tariffs

When the MC is responsible for sewerage services, the sewage tariff can be implemented in one step. The timing can be at the discretion of the MC but it should be done before the facilities start to operate.

7.2.3 Assumptions for Calculating Proposed Tariffs

The following assumptions are used to calculate the proposed sewage tariff:

- total volume of water consumed by customers is based on the Design Criteria
- price inflation is not reflected in the calculation. Inflation adjustment would be included in the calculation of an actual sewage tariff.
- customers are charged for connecting to the sewage collection system (as is the present practice).

7.2.4 Sewage Tariff Calculation

The following tables show the Type 1 and Type 2 sewage tariff to cover the O\&M cost of the proposed City M/P project. The calculated tariffs are a weighted average that is based on the total water consumption of domestic, commercial, and industrial customers.
(1) Type 1: MC does the O\&M and the billing or NWSDB sets a special tariff for the MC

Table 7.2-1 Calculation of Type 1 Sewage Tariff -Sri Jayawardenapura Kotte MC

No.	Items	Unit	Description	Amount
1	Annual O\&M costs	LKR/year	Total	499,876,455
2	Expected profit (10%) ($=1 \times 10 \%$)	LKR/year	Total	49,987,646
3	O\&M costs with profit ($=1+2$)	LKR/year	Total	549,864,101
4	Sewage Flow	$\mathrm{m}^{3 /}$ day	Domestic Flow	19,008
		$\mathrm{m}^{3 /}$ day	Non-Domestic Flow	6,653
		$\mathrm{m}^{3 / y}$ year	Total	9,366,265
5	Sewage Return Factor	\%		80.0
6	Water Consumption Volume ${ }^{\text {¹ }}$	$\mathrm{m}^{3} /$ year	Total	11,707,831
7	Sewage Tariff ($=3 / 6$)	LKR/m ${ }^{3}$		46.97

Note: *1; Water consumption volume is calculated by dividing the estimated sewage flow by (Sewage return factor/100). Source: JET
(2) Type 2: NWSDB National Sewage Tariff

Table 7.2-2 Calculation of Type 2 Sewage Tariff (3rd increment) - Sri Jayawardenapura Kotte MC

Items	Unit	Description	Amount
Operating Expense	LKR	Existing (2015) ${ }^{\text {+1 }}$	410,282,866
		New facilities (City M/P) ${ }^{\text {*2 }}$	499,876,455
		Total	910,159,321
Income to be subtracted from Expense	LKR	Connection Charge	25,531,614
		P\&D/Bowser ${ }^{* 3}$	160,854,906
		Total	186,386,520
O\&M costs after subtraction	LKR	Total	723,772,801
Expected Profit (5\%)	LKR	Total	36,188,640
O / M costs after subtraction plus profit	LKR	Total	759,961,441
Water Consumption Volume of Sewerage Customers	$\mathrm{m}^{3} /$ year	Existing (2015)	6,240,008
		New facilities (City M/P)	11,707,831
		Total	17,947,839
Sewage Tariff	$\mathrm{LKR} / \mathrm{m}^{3}$	-	42.34

Note: *1; based on actual cost data for 2015 for O\&M costs of the existing sewerage facilities with operational costs of head office.
*2; For City M/P, based on maximum O\&M costs at full capacity.
*3; based on a 3 year average, including contract service fee, planning and design service, and gully bowser (desludging septic tanks) revenue.
Source: prepared by JET, based on the data from NWSDB

If the City M/P is implemented, the NWSDB sewage tariff would reach $42.34 / \mathrm{m}^{3}$. LKR (third increase), when the STP operation reaches full capacity.

7.2.5 Affordability and Ability to Pay

The following 3 assumptions are made in the analysis of household ability to pay (ATP) sewerage charges:

- third tariff increment for City M/P is set for 2024
- trend of household income increase shall continue
- the increase in sewage tariff for domestic, commercial, and industrial customers should be the same. If the increase for commercial and industrial customers is higher than that of domestic customers, monthly charge for households should be set lower.

Figure 7.2-3 Shows the monthly charge based on Type 1 sewage tariff and the ATP based on household income data of Colombo District. Figure 7.2-4 shows the monthly charge based on Type 2 sewage tariff for NWSDB and the ATP based on national average household income data. ATP is set at 1% of average household income, based on International Bank for Reconstruction and Development (IBRD) (WB) estimate.

Note: ATP is estimated based on the District HH income data Source: JET

Figure 7.2-3 Comparison of Type 1 Sewage Tariff and Ability to Pay

Note: ATP is estimated based on the District HH income data Source: JET

Figure 7.2-4 Comparison of Type 2 Sewage Tariff and Ability to Pay

As shown in the Figure 7.2-3, the monthly household sewage charge (Type 1) is 45% to 48% of the ATP and is affordable. The high average household income in the Colombo District is reflected by the high level of affordability in this MC.

As shown in Figure 7.2-4, the monthly household sewage charge (Type 2) is 42% to 66% of the ATP and is affordable.

It is recommended to check the average household income data again when the actual tariff is prepared.

7.2.6 Sewage Tariff Tables (Type 2 NWSDB)

The previous tariff calculation was based on a weighted average applied to all consumer categories. Table 7.2-3 and Table 7.2-4 are examples of how the sewage tariff (Type 2) can be calculated from the NWSDB water tariff tables. This method makes it easier to calculate and to avoid charging a customer
more for sewage than for water consumption. In this example, the domestic sewage tariff would be 50% of the water tariff and would be added to the water bill.

Table 7.2-3 Example of Domestic Sewage Tariff (for 2024)
Domestic Sewage Tariff $=50 \%$ of the following water supply tariffs

No. of units	Domestic - Samurdhi Recipient		Domestic - Non Samurdhi Tenement Garden		Other than for Samurdhi Recipient and Tenement Garden	
	Usage charge (LKR/Unit)	Monthly Service Charge (LKR)	Usage charge (LKR/Unit)	Monthly Service Charge (LKR)	Usage charge (LKR/Unit)	Monthly Service Charge (LKR)
00-05	5	50	8	50	12	50
06-10	10	50	11	65	16	65
11-15	15	50	20	70	20	70
16-20	40	80	40	80	40	80
21-25	58	100	58	100	58	100
26-30	88	200	88	200	88	200
31-40	105	400	105	400	105	400
41-50	120	650	120	650	120	650
51-75	130	1,000	130	1,000	130	1,000
Over 75	140	1,600	140	1,600	140	1,600

Table 7.2-4 Example of Non-Domestic Sewage Tariff: (in 2024)
Non-domestic Sewage Tariff as a \% of the following water supply tariffs:

- Commercial; 70\%
- Government hospital; 70\%
- Industries (SME); 150\%
- Industries (non-SME \& Govt. Institution) 150\%

No. of units	Commercial		Government Hospital		Industries SME*			
	Usage charge (LKR/ Unit)	Monthly Service Charge (LKR)	Usage charge (LKR/ Unit)	Industries other than SME \& Government Institution				
	Usage charge (LKR/ Unit)	Monthly Service Charge (LKR)	Usage charge (LKR/ Unit)	Monthly Service Charge (LKR)				
$00-25$	75	290	53	250	56	265	58	275
$26-50$	75	575	53	500	56	525	58	550
$51-75$	75	1,150	53	1,000	56	1,050	58	1,100
$76-100$	75	1,150	53	1,000	56	1,050	58	1,100
$101-200$	75	1,840	53	1,600	56	1,680	58	1,760
$201-500$	75	2,875	53	2,500	56	2,625	58	2,750
$501-1,000$	75	4,600	53	4,000	56	4,200	58	4,400
$1,001-2,000$	75	8,625	53	7,500	56	7,875	58	8,250
$2,001-4,000$	75	14,375	53	12,500	56	13,125	58	13,750
$4,001-10,000$	75	28,750	53	25,000	56	26,250	58	27,500
$10,001-20,000$	75	57,500	53	50,000	56	52,500	58	55,000
Over 20,000	75	115,000	53	100,000	56	105,000	58	110,000

Note: *; Small and Medium Enterprises
Source: JET
Any future increase in water tariffs would result in a corresponding increase in the sewage tariff. The planning for water and sewage tariff increases must be well-coordinated.

The third tariff increment should be implemented by 2024. By then the water supply tariff will have almost certainly been increased. In such a case, the percentages applied to the water tariff (50% of domestic water tariff) would be lower.

7.3 Financial Plan Conclusions

A) The financial condition of Sri Jayawardenapura Kotte MC is weak. Therefore, the sewerage services should be implemented and operated by NWSDB with the cost burden for construction shifted to the central government (in the event of an ODA loan, repayment should be borne by the central government)
B) The following cost burden principle for sewerage service should be used in Sri Lanka:

- Central government should cover 100% of the construction cost, i.e. 100% grant for NWSDB or MC
- Sewage tariff should be calculated to cover O\&M costs, and implmeneted incrementally
- small-scale replacements should be covered by NWSDB's or the MC's own budget, but large-scale ones should be funded as projects by the central government.
C) Type 1 sewage tariff is calculated to recover O\&M costs from revenue collected from the customers in the MC area; Type 2 recovers the total O\&M costs of the sewerage business of NWSDB including the O\&M costs of City M/P, from revenue NWSDB collects from all its sewerage customers.
D) Type 1 sewage tariff for MC is estimated at $46.97 / \mathrm{m}^{3}$ LKR
E) Type 2 sewage tariff for NWSDB is estimated at $42.34 / \mathrm{m}^{3}$ LKR
F) Both sewage charges (Type 1 and Type 2) are under 66% of the household ATP (1% of average household income). This indicates that an average household can afford the sewage charge.
G) The latest average household income data should be used for the tariff calculation.

CHAPTER 8 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

8.1 Existing Conditions

Environmental and Social conditions in the Project area are presented in CHAPTER 2.

8.2 Regulations and Organizations Related to ESC

Laws and regulations related to ESC at the national level, and organizations responsible for implementation, were studied in the Strategic Sewerage M/P (Section I of this report). No regulations specific to or published by Sri Jayawardenapura Kotte MC relevant to the Project were identified. National regulations described in the Strategic Sewerage M/P can be found in APPENDIX 9.

8.3 Comparison with JICA Guidelines

Comparison of National regulations with those of JICA is given in APPENDIX 10.

8.4 International Commitments

The Government of Sri Lanka (GOSL) is party to several international agreements related to environment and human rights. Agreements specific to Sri Jayawardenapura Kotte MC could not be found. (see APPENDIX 11).

8.5 EnVIRONMENTAL ScOPING

Scoping is defined as the process of identifying the content and extent of the environmental information to be submitted to the competent authority under the Environmental Impact Assessment (EIA) procedure. Scoping of the project components and reasons for evaluation are shown in Table 8.5-1.

Table 8.5-1 Environmental Scoping

Item	Evaluation		Reason
1 Air pollution	P/C	B-	Dust and exhaust gases are generated during construction.
	O	D	No impacts are expected during operation.
2 Water pollution	P/C	B-	Excavation and runoff will cause turbidity during construction.
	O	B+	Treatment of sewage and greywater will reduce water pollution.
3 Soil pollution	P/C	B-	Construction equipment and transfer of construction materials contribute to soil pollution.
	O	D	No impacts are expected during operation.
4 Waste	P/C	B-	Construction waste will be generated.
	O	B-	Sludge will be generated during operation of treatment facilities.
5 Noise and vibrations	P/C	B-	Noise and vibrations will be generated during construction.
	O	B-	Noise and vibrations will be generated during operation.
6. Ground subsidence	P/C	C-	Impacts are unknown and require investigation.
	O	C-	Impacts are unknown and require investigation.
7. Offensive odours	P/C	D	No impacts are expected during construction.
	O	B-/B+	B-: Odour will be generated at the STP during operation. $\mathrm{B}+$: Improved sewerage collection and environmental conditions will reduce offensive odours in the Project area.
8 Geographical features	P/C	C-	Impacts are unknown and require investigation.
	O	D	No impacts are expected during operation.
9 Bottom sediments	P/C	D	No impacts are expected during construction.
	O	B+	Collection and treatment of waste water will improve benthic conditions of water bodies.
10 Biota and ecosystems	P/C	C-	Impacts are unknown and require investigation. (Included in EIA)
	O	$\mathrm{C}+/ \mathrm{C}$ -	$\mathrm{C}+$: Ecosystems will benefit from improved water quality. C-: Negative impacts of STP are unknown and need investigation.

Item	Evaluation		Reason
10b Protected lands	P/C	D	There are no protected natural lands in the Project area.
	O	D	
11 Water usage	P/C	C-	Impacts are unknown and require investigation.
	\bigcirc	C-	Water usage downstream of Project has not been investigated. Thus, impacts are unknown and require investigation.
12 Accidents	P/C	B-	Construction activities and disruption to traffic will increase risk of accidents.
	O	B-	Accidents may occur in treatment facilities during operation.
13 Global warming	P/C	D	No impacts are expected during construction.
	O	D	No impacts are expected during operation.
14 Land acquisition	P/C	B-	Land for treatment plant, pumping stations, and sewerage lines will be required.
	O	D	No impacts are expected during operation.
15 Local economies	P/C	$\mathrm{C}+/ \mathrm{C}-$	$\mathrm{C}+$: Construction activities may increase in local employment and economic activities. C-: Construction activities may inconvenience local businesses.
	O	C+	Improved water environment will positively impact aquaculture and businesses (tourism etc)
16 Land use	P/C	C-	Land use patterns may be impacted by acquisition, resettlement, and construction of facilities.
	O	D	No additional impact caused by operation is expected.
17 Social institutions	P/C	D	No impacts are expected during construction.
	O	D	No impacts are expected during operation.
$18 \quad$ Existing infrastructures services social and	P/C	B-	Traffic disturbance will be caused by construction activities.
	O	B +	Infrastructure for sewerage collection and treatment will be created.
19 Poor (low incomehouseholds)	P/C	C-	Low income people may be impacted by construction activities.
	O	C-	Impacts are unknown and require investigation.
19a Indigenous and ethnic populations	P/C	C-	Socially vulnerable populations may be impacted by construction activities.
	O	C-	Impacts are unknown and require investigation.
20 Misdistribution of benefits and damages	P/C	C-	Impacts are unknown and require investigation.
	O	C-	Impacts are unknown and require investigation.
21 Local conflicts of interest	P/C	C-	Impacts are unknown and require investigation.
	O	C-	Impacts are unknown and require investigation.
22 Gender	P/C	C-	Women may receive unequal economic opportunities during construction.
	O	C+	Women, who suffer disproportionately from water borne diseases, are expected to benefit from improved water environment.
23 Children's rights	P/C	C-	Child labour may occur during construction.
	O	C+	Children, who suffer disproportionately from water borne diseases, are expected to benefit from improved water environment.
24 Cultural heritage	P/C	C-	Construction activities may impact heritage sites.
	O	C+	Improved water environment and sanitation facilities are expected to reduce negative impacts on heritage sites (especially during pilgrimage and festival periods).
24a Landscapes	P/C	B-	Construction activities will impact landscape in the Project area.
	O	B-	Newly constructed facilities will impact landscape in the Project area.
25 Infectious diseases such as HIV/AIDS	P/C	B-	Influx of construction workers will increase risk of infectious diseases.
	O	B +	Improved sanitation services will decrease incidence of infectious diseases (especially during and following peak pilgrimage periods).

[Evaluation]

A : Significant impact is expected,
B : Some impact is expected,
C : Extent of impact is unknown,
D : No impact is expected
$+/-$: Impact is Positive / Negative
Source: JET

8.6 TOR for Environmental and Social Considerations Study

8.6.1 Purpose

The purpose of the survey at this preparatory stage is to predict and assess the type and scale of possible project impacts on the natural and social environment.

8.6.2 Items to be Targeted and Evaluated in the Study

Items that received A, B, or C ranking (Table 8.5-1) should be reviewed and evaluated. Other items identified as the survey proceeds should also be included.

8.6.3 Target Areas

The target areas are the proposed construction sites, and areas immediately surrounding the Project facilities.

8.6.4 Target Periods

Target periods are the stages of planning, execution, and operation of the constructed facilities.

8.6.5 Contents and Methodology for ESC Study

The information to be collected and the typical counter-measures to be reviewed are presented in Table 8.6-1.

Table 8.6-1 The ESC Study Associated with the Project

Item				Study/Countermeasure	Status
No.	Title	Evaluation			
01	Air Pollution	P/C	B-	Study: Air pollution standards, construction vehicles and methods. Method: Site survey, literature survey of regulations and standards.	$\begin{aligned} & \mathrm{M} / \mathrm{P} \\ & \mathrm{~F} / \mathrm{S} \end{aligned}$
		0	D	N/A	N/A
02	Water Pollution	P/C	B-	Study: Water pollution standards, construction methods. Method: Site survey, literature survey of regulations and standards.	$\begin{aligned} & \hline \mathrm{M} / \mathrm{P} \\ & \mathrm{~F} / \mathrm{S} \end{aligned}$
		0	B+	Study: Water pollution standards, treatment methods, water quality, flow rates, pollution loads.	M/P
03	Soil Pollution	P/C	B-	Study: Soil pollution standards, prevention measures/construction methods, construction equipment Method: Site survey, literature survey of regulations and standards.	$\begin{aligned} & \mathrm{M} / \mathrm{P} \\ & \mathrm{~F} / \mathrm{S} \end{aligned}$
		O	D	N/A	N/A
04	Waste	P/C	B-	Study: Waste management regulations/procedures, Collection and disposal methods, disposal site conditions. Method: Site surveys, hearing surveys of concerned parties.	Complete
		O	B-	Study: Sludge generation. Method: Treatment method.	F/S
05	Noise and Vibrations	P/C	B-	Study: Noise regulations, current condition, construction methods. Method: Site surveys, hearing surveys of concerned parties, noise measurement surveys.	Complete
		O	B-	Study: Treatment method and possible noise generation.	F/S
06	Ground Subsidence	P/C	C-	Study: Geographic conditions.	F/S
07	Offensive Odours	P/C	D	N/A	N/A
		O	B-/B+	Study: Current odour conditions, treatment method. Method: Site surveys, hearing surveys of concerned parties.	$\begin{aligned} & \mathrm{M} / \mathrm{P} \\ & \mathrm{~F} / \mathrm{S} \end{aligned}$
08	Geographical Features	P/C	C-	Study: Geographic conditions. Method: Geographical survey.	F/S

		0	D	N/A	N/A
09	Bottom Sediments	P/C	D	N/A	N/A
		O	B+	Study: Sediment conditions of water bodies. Method: Site surveys, literature surveys, water quality surveys.	$\begin{aligned} & \hline \text { F/S } \\ & \text { EIA } \end{aligned}$
10	Biota and Ecosystems	P/C	C-	Study: Inventory of flora and fauna in the construction area.	F/S
		O	$\mathrm{C}+/ \mathrm{C}-$	Method: Site survey, hearing survey of concerned parties	EIA
10a	Protected lands	P/C	D	N/A	N/A
		O	D	N/A	N/A
11	Water Usage	P/C	C-	Study: Water use practices of local communities, impacts of sewerage treatment on water usage. Method: Site surveys, hearing surveys of concerned parties.	M/P
		O	C-		F/S
12	Accidents	P/C	B-	Study: Construction/industrial safety regulations, traffic safety/accident prevention methods. Method: Site surveys, literature survey, hearing surveys of concerned parties.	$\begin{aligned} & \mathrm{M} / \mathrm{P} \\ & \mathrm{~F} / \mathrm{S} \end{aligned}$
		0	B-	Study: Industrial safety regulations. Method: Literature surveys.	$\begin{aligned} & \hline \text { M/P } \\ & \text { F/S } \end{aligned}$
13	Global Warming	P/C	D	N/A	N/A
		O	D	N/A	N/A
14	Land Acquisition	P/C	B-	Study: Land requirements, acquisition procedures, compliance to JICA guidelines. Method: Site surveys, literature surveys, hearing surveys of concerned parties.	$\begin{aligned} & \mathrm{M} / \mathrm{P} \\ & \mathrm{~F} / \mathrm{S} \end{aligned}$
		0	D	N/A	N/A
15	Local Economies	P/C	C+/C-	Study: Local economic environment, industries, markets. Relevant laws and regulations. Method: Site surveys, literature surveys, hearing surveys of concerned parties.	M/P
		O	C+		F/S
16	Land Use	P/C	C-	Study: Land use practices of local communities. Method: Site surveys, hearing surveys of concerned parties.	F/S
		O	D		
17	Social Institutions	P/C	D	N/A	N/A
		O	D	N/A	N/A
18	Existing Social Infrastructures and Services	P/C	B-	Study: Traffic patterns, location of important social infrastructure (schools, hospitals, religious institutions, etc) Method: Site survey, inventory survey, public consultation.	M/P
		0	B+		F/S
19	Poor (low income households)	P/C	C-	Study: Census/demographic data, economic status, and land use patterns of affected peoples. Method: Interview survey of concerned parties, relevant laws, and regulations.	M/P
		O	C-		F/S (EIA)
19a	Indigenous and ethnic populations	P/C	C-	Study: Census/demographic data, economic status, and land use patterns of affected peoples. Method: Interview survey of concerned parties, relevant laws, and regulations.	M / P
		O	C-		F/S (EIA)
20	Misdistribution of benefits and damages	P/C	C-	Study: Social and economic conditions.Method: Hearing surveys of concerned parties, public consultation.	M/P
		O	C-		F/S
21	Local Conflicts of interest	P/C	C-	Study: Risks and prevalence of conflicts of interest.	M/P
		O	C-	Method: Hearing surveys of concerned parties, public consultation.	F/S
22	Gender	P/C	C-	Study: Working conditions/statistics of women, gender equality policies. Method: Interview survey of concerned parties, relevant laws, and regulations.	$\begin{aligned} & \mathrm{M} / \mathrm{P} \\ & \mathrm{~F} / \mathrm{S} \end{aligned}$
		0	C+	Study: Health and working conditions of women. Method: Hearing survey of concerned parties, data collection.	$\begin{aligned} & \hline \mathrm{M} / \mathrm{P} \\ & \mathrm{~F} / \mathrm{S} \\ & \hline \end{aligned}$
23	Children's Rights	P/C	C-	Study: Child labour laws. Method: Interview survey of concerned parties, relevant laws and regulations.	$\begin{aligned} & \hline \mathrm{M} / \mathrm{P} \\ & \mathrm{~F} / \mathrm{S} \text { (EIA) } \end{aligned}$
		O	C+	Study: Water borne diseases and children Method: Interview survey of concerned parties, data collection.	$\begin{aligned} & \hline \text { M/P } \\ & \mathrm{F} / \mathrm{S} \\ & \hline \end{aligned}$
24	Cultural Heritage	P/C	C-	Study: Location of cultural heritage sites. Method: Site survey, location of registered heritage/historical sites, Interview survey of concerned parties.	$\begin{aligned} & \hline \mathrm{M} / \mathrm{P} \\ & \mathrm{~F} / \mathrm{S} \text { (EIA) } \end{aligned}$

| | | O | $\mathrm{C}+$ | Study: Impacts of pollution on heritage sites.
 Method: Interview survey of concerned parties. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 24 a | Landscapes | P / C | $\mathrm{B}-$ | Study: Location of significant cultural, religious, and tourism sites,
 construction locations and methods.
 Method: Site survey, Interview survey of concerned parties. | M / P
 F / S (EIA)
 D / D |
| 25 | O | $\mathrm{B}-$ | | | |
| Infectious
 Diseases such as
 HIV/AIDS | P / C | $\mathrm{B}-$ | Study: Prevalence of AIDS/HIV and other infectious diseases,
 current prevention programs.
 Method: Data collection, Interview surveys of concerned parties. | M / P | |
| F / S | | | | | |

Source: JET

8.6.6 Prediction and Evaluation of Potential Impacts

Prediction and evaluation of potential impacts should be conducted for items ranked A, B, or C in Section 8.5: Environmental Scoping.

Each item should be re-evaluated as the survey proceeds, and the scoping table updated accordingly. Subsequently, items with A or B ranking should be evaluated in terms of the extent of the impact.

8.6.7 EMP and EMoP

When the Project causes foreseeable but unavoidable environmental impacts, EMP will determine how to mitigate the impacts, and EMoP will identify steps to be taken by relevant authorities to ensure that mitigation measures are effectively implemented. Execution plans, frequency of measures, lead organization, support for the organization, and budget should be provided for EMP and EMoP.

8.6.8 Stakeholder Consultation

Consultations with a Faculty of Science Professor of Colombo University and a local NGO were conducted at the start of the Project to understand the needs of the area and to confirm the relevance of the Project. Details on the meeting minutes are given in APPENDIX 12

The results of the ESC studies should be presented at stakeholder consultations, and the stakeholder feedback should be collected.

8.7 Draft EMPand EMoP

Environmental and social considerations will be managed through EMP. EMP will be implemented through EMoP. EMP development of the is not appropriate at this stage. Draft versions of EMP and EMoP are presented in APPENDIX 13. They will be further developed as the Project proceeds and as more information becomes available.

8.8 Schedule of ESC Activities

Surveys related to ESC will be conducted according to the schedule shown in Figure 8.8-1.

Stage	Period		$\begin{aligned} & \hline \text { ESC } \\ & \text { Expert } \\ & \hline \end{aligned}$	EIA Study	Target		Environmenta1 Study	Remark		
			Original		Selected					
Strategic MP	2016	Jan				335 local authorities (79)	(Approx.) 5 local authorities	Primary study	Environmental policies, plans and programs National level research	
		Feb								
		Mar								
		Apr								
$\begin{aligned} & 5 \text { Cities MP } \\ & \text { (Pre-F/S) } \end{aligned}$		May Jun			$\begin{array}{lr} \hline 5 & \text { local } \\ \text { authorities } \end{array}$	$\begin{array}{lr} \hline 2 & \text { local } \\ \text { authorities } \end{array}$	Preparation study for Initial Environmenta 1 Examination (IEE)/EIA	Literature search Site survey		
		Jul								
		Aug								
		Sep								
Feasibility Study (F/S)	2017	May			Sri JayawardenapuraKotte MC(If selected for F / S)		EIA Study	EMP(draft) Monitoring Plan(draft) EIA Report Resettlement Action Plan Stakeholder Meeting		
		Jun								
		Jul								
		Aug								
		Sep								
		Oct								
		Nov								
		Dec								

Figure 8.8-1 Schedule for ESC Surveys

CHAPTER 9 CONCLUSION AND RECOMMENDATION

9.1 F/S IMPLEMENTATION

The most important aspect in implementing a sewerage project is the acquisition of land for the STP and sludge disposal site.

In Sri Jayawardenapura Kotte MC, NWSDB and the Joint Coordination Committee have confirmed that a site for a STP has been identified, and a sludge disposal site is available. NWSDB is also considering the construction of a composting plant at separate a site presently used for pipe storage.

Therefore, the sewerage project in Sri Jayawardenapura Kotte can start immediately after conducting an F / S.

9.2 Risk and Mitigation Measures

Risks and mitigation measures associated with the implementation of the Project are listed in Table 9.2-1 Major risks include delays in land acquisition as well as increase in the construction cost.

Table 9.2-1 Risks and Mitigation Measures

Risks	Mitigation Measures
Delay: due to the start of Pumping Stations and STP, if the identified lands are not acquired before the commencement of the project	Joint Coordinating Committee (JCC), UDA, NWSDB and other relevant agencies must take appropriate actions in a timely manner for clearing project sites before the construction.
Delay: due to the start of pumping stations and STP, if necessary approvals for the EIA and the drainage plan of SLLRDC are not granted before the commencement of project	JCC, UDA, NWSDB and other relevant agencies must take appropriate actions in a timely manner to obtain necessary approvals before the construction.
Cost Increase: if there are variances in cost for building foundations and pipe trenching and bedding.	Soil test must be carried out to identify the soil conditions.
Low Inflow: of sewage at the treatment plant, if the development of the city is delayed.	JCC must make the appropriate stage wise sewerage development plan based on the city development carried-out by Mega polis.

Source: JET

9.3 CONCLUSION AND RECOMMENDATIONS

The sewerage project in Sri Jayawardenapura Kotte is of very high priority, because the city is the administrative capital of Sri Lanka. The population to be served is significant. The proposed sewage treatment process is an advanced biological system that can remove nitrogen and phosphorus. It is expected to have a significant positive impact on water quality.

The locations for pumping stations are not yet identified. These locations and land requirements need to be determined at the F/S stage, so that sites can be acquired together with the STP site. The F/S should include geotechnical and other basic site investigations so that construction cost can be estimated accurately and that problems during construction can be avoided

APPENDICES

APPENDICES

APPENDIX 1: Waste Water Flow Calculation

SRI JAYAWARDANAPURA KOTTE WASTE WATER FLOW CALCULATION

APPENDIX 2: Inflow Sewage Quality
Inflow sewage quality - Measured data of inflow sewage -

		Raddolugama ${ }^{11}$	Maththegoda ${ }^{1)}$	Hikkaduwa ${ }^{11}$	$\begin{gathered} \text { Moratuwa/ } \\ \text { Rathmalana** } \end{gathered}$	$\begin{gathered} \text { Ja-Ela! } \\ \text { Ekara** } \end{gathered}$	Average	Design raw water quality	Moratuwa/Rathmalana (First stage planned values)	
pH at $26^{\circ} \mathrm{C}$		6.7	6.4	7.0	6.6-8.5	-	6.7			pH at $26^{\circ} \mathrm{C}$
Total Suspended Solids at $104^{\circ} \mathrm{C}$	mg/l	163	90	139	232	.	156	160	458	Total Suspended Solids at $104^{\circ} \mathrm{C}$
Chemical Oxygen Demand Total	mg/l	609	473	446	274	628	486	600	1057	Chemical Oxygen Demand Total
Chemical Oxygen Demand Soluble	mg/l	241	241	206	.	-	229	.	.	Chemical Oxygen Demand Soluble
Biochemical Oxygen Demand-5Total	mg/l	383	247	240	87	187	229	240	355	Biochemical Oxygen Demand- 5Total
Biochemical Oxygen Demand- 5 Soluble	mg/l	159	116	149	.	.	141	.	.	Biochemical Oxygen Demand- 5 Soluble
Nitrate-Nitrogen and Nitrite Nitrogen	mg/	2.3	2.5	5.7	1.0	.	2.9	.	.	Nitrate-Nitrogen and Nitrite Nitrogen
Ammoniacal Nitrogen	mg/l	26	28	24	14	.	23	.	.	Ammoniacal Nitrogen
Total Nitrogen	mg/l	39	34	33	42	.	37	45	55	Total Nitrogen
Total Phosphorous	mg/l	5.9	3.3	2.9	2.8	.	3.7	6	12	Total Phos phorous

-D
**A Average of 1 -year mea surement

		Raddolugama			Maththegoda			Hikkaduwa		
		23,24 Nov. 2016	29,30 Nov. 2016	5,6 Dec 2016	25,26 Nov. 2016	1,2 Dec 2016	7,8 Dec 2016	27,28 Dec 2016	3,4 Dec 2016	9,10 Dec 2016
pH at $26^{\circ} \mathrm{C}$		6.6	6.93	6.7	6.2	6.9	6.2	7.3	6.42	7.4
Total Suspended Solids at $104^{\circ} \mathrm{C}$	mg/l	814*	115	211	54	115	100	59	165	194
Chemical Oxygen Demand Total	mg/l	752*	650	567	510	670	239	344	406	587
Chemical Oxygen Demand Soluble	mg/l	184*	261	220	312	330	80	206	201	212
Biochemical Oxygen Demand-5Total	mg/l	669*	402	363	189	390	162	186	213	321
Biochemical Oxygen Demand- 5 Soluble	mg/l	99.8*	136	181	120	181	48	109	167	172
Nitrate-Nitrogen and Nitrite Nitrogen	mg/l	2.2	28^{*}	2.4	2.5	1.4	3.5	1.2	13.7	2.2
Ammonia cal Nitrogen	mg/l	10	30	38	19	42	24	18	19	35
Total Nitrogen	mg/	13	61	42	25	46	32	21	35	42
Total Phosphorous	mg/	4	8.8	4.8	0.4	5.8	3.8	0.6	4.1	4.1

*JET considered values in gray as outliers and not used for the design.

APPENDIX 3: Layout Plan, Sewer Design Calculations and Longitudinal Cross Section

SEW Line No.									Master P	Area			it Sower Wa	ater $\left(\mathrm{m}^{3} / \mathrm{s} /\right.$		Legend	P		
		R	ESIC	CA	LCU	AT	NS	Sri Jayawardenapura Kotte MC				0.000280				(0): Main Sewer	P. 1		
		Cutchment Area		Lengath Accumulated Leneth	Design Outfow			Design Sewer Line								Note			
				Sewer Water Outflow	Total Outllow	$\begin{array}{\|c} \text { Dia } \\ \text { (internal Diameter) } \end{array}$		Slope	V	Cap	$\begin{array}{\|c\|} \hline \text { Existing } \\ \text { Ground Lewer } \end{array}$	Seser Invert Elevation	Earth Covering						
		Anos	Accumulated Ares					Area Input			Point laput	Upoer Lower	Upper Lower	Upper L.ower					
		(ha)	(ha)		(m)	$\left(\mathrm{m}^{3} / \mathrm{s}\right)$	(m²/s)		($\mathrm{m}^{3} / \mathrm{s}$)		(tmm)	(\% $\%$)	(m/s)	$\left(\mathrm{m}^{3} / \mathrm{s}\right)$	(m)			(m)	(m)
				1092					PE				3.34	2.119	1.01	From MTPS-01			
STO1	©	155.23	155.23	1092	0.043		0.043		225 (201)		orce Main		14.66	13.446	1.00				
				1469				GRP					14.66	13.047	1.01				
STO2	©	224.34	379.57	2561	0.106		0.106		600 (600)	1.20	0.75	0.213	2.50	0.892	1.00				
				31					PE				2.50	-3.000	5.16				
ST03	\bigcirc		379.57	2591	0.106		0.106		3555 (324.8)		cted Sipho		2.44	-3.000	5.10				
				537				GRP					2.44	0.390	1.34				
ST04	©	133.17	512.74	3128	0.144		0.144		700 (700)	1.00	0.76	0.293	3.55	-0.365	3.21	To ST09			
				62				HD	PP				2.82	1.157	1.33				
ST05	©	97.78	97.78	62	0.027		0.027		355 (324.8)	2.40	0.70	0.055	1.87	0.633	1.00				
				15									1.87	-4.190	5.87				
STOE	-		97.78	77	0.027		0.027		200 (178.6)		ated Sipho		1.77	-4.190	5.77				
				1054				GR					1.77	0.130	1.13				
ST07	©	93.16	190.94	1131	0.053		0.053		500 (500)	1.50	0.74	0.146	3.51	-1.769	4.77	To MTPS-02			
				721				GRP					3.51	2.003	1.00	From MTPS-02			
STO8	©	54.97	245.91	1852	0.069		0.069		500(500)	1.50	0.74	0.146	3.55	0.615	2.43				
				867				GRP					3.55	-0.465	3.21				
STO9	©	49.70	808.35	3994	0.226		0.226		800 (800)	0.90	0.79	0.397	4.32	-1.583	5.09				
				41				GRP					4.32	-4.700	8.51				
ST10	O		808.35	4034	0.226		0.226		500 (500)		erted Sipho		4.30	4.700	8.49				
				709				GR					4.30	-1.910	5.40				
STII	©	93.03	901.38	4743	0.252		0.252		800 (800)	0.90	0.79	0.397	5.71	-2.886	7.79	To MPS-03			
				1105				HD			Force Main		2.21	0.903	1.01	From MPS-01			
ST12	©	296.47	296.47	1105	0.083		0.083		315 (281.8)		Force Main		26.94	25.641	1.00	To ST14			
				2310				HD			orce Main		4.66	-0.130	4.41	From MPS-02			
ST13	©	440.11	440.11	2310	0.123		0.123		400 (366)		orce Main		26.94	25.556	1.01				
				1408				GRP					26.94	24.342	1.79				
ST14	-	159.19	895.77	3718	0.251		0.251		800 (800)	0.90	0.79	0.397	2.65	0.840	1.00	Tost18			
				618				HD	PE				20.56	19.243	1.02				
ST15	©	69.95	69.95	618	0.020		0.020		315 (281.8)	2.70	0.68	0.043	2.54	0.454	1.79				
				11				HD	PE				2.54	-1.100	3.47				
ST16	\bigcirc		69.95	629	0.020		0.020		180 (164.6)		erter Sipho		2.30	-1.100	3.23				
				59				HD	PE				2.30	0.284	1.72				
ST17	©	2.09	72.04	687	0.020		0.020		315 (281.8)	2.70	0.68	0.043	2.65	0.106	2.25				
				2235				GRP					2.65	-0.512	2.25				
ST18	©	109.58	1077.39	5952	0.302		0.302	-	900 (900)	0.80	0.80	0.512	5.71	-3.669	8.47				
				107				GRP					5.71	-3.969	8.46				
ST19	Q		1978.77	6059	0.554		0.554		1200 (1200)	0.60	0.84	0.955	4.43	-5.971	9.19	To MPS-03			
				278				GRP					4.43	1.452	1.76	From MPS-03			
ST20	-	66.95	2045.72	6336	0.573		0.573		1200 (1200)	0.60	0.84	0.955	3.21	0.090	1.91				
				33				GRP					3.21	-1.700	4.40				
ST21	©		2045.72	6369	0.573		0.573		$500(500) \times 2$		erted Sipho		3.15	-1.700	4.34	To ST22			

The Project for the Strategic Master Plan Under Sewerage Sector in Democratic Socialist Republic of Sri Lanka (Phase 1) Final Report Section II Five Cities'Master Plan

Existing Graund Level

Earth Covering
Sever Invert Eleation
necumulated length
E

Existing Graund Level
Earth covering
Serer Invert Elevation

Accurulisted lentith
䎹

			줄	\%

APPENDIX 4: Draft Amendment of Tolerance Discharge Limits

Schedule III

```
Tolerance limit values for the discharge of wastewaters or effluents (industrial /
domestic) from a prescribed activity into the inland surface waters
```

No.	Parameter	Unit, type of limit	Toterance limit values for Inland surface waters
1.	Total suspended solids	$\mathrm{mg} / 1, \max$.	50
2.	Total dissolved solids	$m \mathrm{~m} / 1$, max.	1000
3.	pH at ambient temperature	-	6.0-8.5
4.	Biochemical oxygen demand $\left(\mathrm{BOD}_{5}\right.$ in 5 days at $20^{\circ} \mathrm{C}$)	mg/ 1,max.	30
5.	Temperature at the point of discharge	${ }^{0} \mathrm{C}$, max ${ }^{\text {a }}$	Ambient water temperature ± 5 or 40 whichever is lesser
6.	Oils and greases	$\mathrm{mg} / 1, \max$.	10
7.	Phenols (as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$)	mg/1,max.	1.0
8.	Chemical oxygen demand (COD)	mg/ 1, max.	250
9.	Colour (Maximum spectral absorption coefficient)	Wave length range 436 nm , (Yellow range) 525 nm , (Red range) 620 nm , (blue range)	$\begin{aligned} & 7 \mathrm{~m}^{-1} \\ & 5 \mathrm{~m}^{-1} \\ & 3 \mathrm{~m}^{-1} \end{aligned}$
10.	Dissolved phosphates (as P)	mg/ 1,max.	5

11.	Total Kjeldhal nitrogen (as N)	mg/ 1, max	150
12.	Ammoniacal nitrogen (as N)	mg/ 1 max.	50
13.	Nitrate (as N)	$\mathrm{mg} / 1, \max$.	10
14.	Cyanide (as CN)	mg/1,max.	0.05
15.	Total residual chlorine (as Cl_{2})	mg/ 1,max.	0.5
16.	Chlorides (as Cl)	mg/ 1,max.	400
17.	Fluorides (as F)	mg/ 1, max.	2.0
18.	Sulphides (as S)	$\mathrm{mg} / 1, \max$.	0.5
19.	Arsenic, total (as As)	mg/ 1,max.	0.05
20.	Cadmium, total (as Cd)	$\mathrm{mg} / 1, \max$.	0.03
21.	Chromium, total (as Cr)	$\mathrm{mg} / 1, \mathrm{max}$.	0.05
22.	Chromium, hexavalent (as $\left.\mathrm{Cr}^{6+}\right)$	mg/ $1, \max$.	0.01
23.	Copper, total (as Cu)	$\mathrm{mg} / 1, \max$.	0.05
24.	Iron, total (as Fe)	$\mathrm{mg} / 1, \mathrm{max}$.	3.0
25.	Lead, total (as Pb)	$\mathrm{mg} / 1$, max .	0.05
26.	Mercury, total (as Hg)	$\mathrm{mg} / 1, \max$.	0.001
27.	Nickel, total (as Ni)	$\mathrm{mg} / 1$, max.	0.2
28.	Selenium, total(as Se)	mg/ $1, \max$.	0.05
29.	Zinc, total (as Zn)	mg/ $1, \max$.	2.0
30.	Silver, total (as Ag)	$\mathrm{mg} / 1, \max$.	0.035
31.	Pesticides (Total)	mg/ 1 ,max.	0.005
32.	Surfactants (Total)	$\mathrm{mg} / 1, \mathrm{max}_{4}$	5.0
33.	Faecal coliform	MPN / 100 ml , max.	150

1		mg/1, max.	250
34.	Sulphates (as S)		
35.	Radio Active Material: (a) Alpha emitters (b) Beta emitters	micro curie/ml, max micro curie/ml, max	10^{-8}
	10^{-7}		

Note 1: All efforts should be made to remove unpleasant odour as practicable as possible.

Note 2: These limit values are based on the premise that for inland surface water the dilution factor may be at least $1: 8$. In an event where the dilution factor is found to be less, the limit values in the Schedule should be adjusted on a proportional basis so as to give rise to more stringent limit values.

Note 3: The above mentioned general standards and criteria should cease to apply with regard to a particular industry when industry specific standards and criteria are stipulated for that industry.

APPENDIX 5: General Layout of Septic Tank

APPENDIX 6: Detail of Project Costs

APPENDIX 7: Detail of Annual Fund Requirement

APPENDIX 8: Breakdown of Operating Expenditure
Moratuwa Ratmalana-8119

Type of Expenditure	Moratuwa Ratmalana WWTP	Moratuwa Ratmalana Distribution Network	Moratuwa (Soysapura)	Total
Salary			21,586,000.00	21,586,000.00
Utility Cost	9,460,008.00	3,300,000.00	103,000.00	12,863,008.00
Chemical Cost	383,000.00	-		383.000 .00
Repair and Maintanance Cost	810,050.00	142,950.00	1,271,000.00	2,224,000.00
Establishment Cost	862,000.00	-	1,115,000.00	1,977,000.00
Security and Rent Cost	1,162,000.00	2,324,000.00	1,121,000.00	4,607,000.00
Total	12,677,058.00	5,766,950.00	25,196,000.00	43,640,008.00

Treatment Plant and Network

			Total Amount (LKR)
Sri Jayawardanapura Kotte MC	35000	$\mathrm{~m} 3 / \mathrm{d} \rightarrow 35000 \times 39.13 \times 365=$	$499,876,455$
Anuradhapura MC	14000	$\mathrm{~m} 3 / \mathrm{d}->1400 \times 39.13 \times 365=$	$199,950,582$
Badulla MC	4000	$\mathrm{~m} 3 / \mathrm{d}->4000 \times 39.13 \times 365=$	$57,128,738$
Nuwara Eliya MC	4700	$\mathrm{~m} 3 / \mathrm{d}->4700 \times 39.13 \times 365=$	$67,126,267$
Dehiwala-Mt Lavinia MC	20000	$\mathrm{~m} 3 / \mathrm{d} \rightarrow 20000 \times 39.13 \times 365=$	$285,643,689$

APPENDIX 9: Regulations and Organizations Related to ESC

In Sri Lanka, various environmental legislations and standards are in force pertaining to wastewater collection, treatment, and disposal practices in order to safeguard the environment. It should be noted that many number of statutes exist which deal with this subject directly or indirectly. The most important legislations and standards are;

- National Environmental Act No. 47 of 1980 and No. 56 of 1988 and its amendments
- Tolerance limits for the discharge of industrial waste in to inland surface waters
- Tolerance limits for industrial effluents discharged on land for irrigation purpose
- Tolerance limits for industrial and domestic effluents discharged into marine coastal areas
- Tolerance limits for discharge of effluents into public sewers with central treatment plants
- Hazardous Waste Disposal
- Air Quality and Offensive Odor
- Noise and Vibration
- Marine Pollution Prevention Act no 59 of 1981
- Coast Conservation Act No. 57 of 1981 amended by Act No 64 of 1988 and its amendments
- Flood Protection Ordinance No 4 of 1924
- Land development Ordinance of 1935
- Nuisance Ordinance No. 15 of 1862 as amended by act No 57 of 1946
- State Land Ordinance No 8 of 1947
- Soil Conservation Act No 25 of 1951
- Urban Development Authority Law No 41 of 1978
- Mahaweli Authority of Sri Lanka Act No 23 of 1979
- Municipal Councils Ordinance No 29 of 1947 amended by act no 61 of 1981
- Fauna and Flora Protection Ordinance No 2 of 1987
- Agrarian Services Act No 58 of 1979 amended by Act No. 4 of 1991
- Irrigation Ordinance No 32 of 1946, amended by No 48 of 1968 and by No 13 of 1994
- Forest Ordinance No 16 of 1907 as amended by Act No 23 of 1995

1.1 Approvals Required for a Sewerage Project

The proposed Project and each of its subprojects will be in full concurrence with legal requirements of the relevant Government Ministries and agencies.

Central Environmental Authority (CEA)

Approval of CEA under EIA regulations is required for the implementation of any "Prescribed Project" and valid Environmental Protection License (EPL) is required to discharge effluents in to the environment.

Coast Conservation and Coastal Resources Management Department (CC\&CRMD - Commonly known as CCD)
Approval of the Director General of CC\&CRMD is required for any development activity to be carried out within the Coastal Zone as defined under Coast Conservation Act.

Local Authority (LA) (Municipal Councils, Urban Councils or Pradeshiya Sabha)

To carryout construction activities of the project, the approval of relevant Local Authority must be obtained.

Mahaweli Authority of Sri Lanka (MASL)

As the responsible agency for Mahaweli River, the Mahaweli Authority in Sri Lanka MASL has been vested with the authority of granting permission for development works in the Mahaweli River and its reservation. Moreover, MASL is also a Project Approving Agency Gazette under the NEA.

Road Development Authority (RDA), Provincial Road Development Authority (PRDA)
If the project activities require to lay pipelines along provincial or national roads, the approval of PRDA or RDA is required.

Department of Archaeology

It is the state agency responsible for conservation of archaeological artefacts and structures of historical interest whether lying or hidden beneath the surface of the ground or in any water/lake. Any development project on such land will have to be permitted by the Director General of Archaeology.

The Forest Department

The Forest Department in its role as statutory custodian of state forests and lands and the plantation of new forests, has been vested with powers so as to not granting permission for any development activity within any land declared, proposed or defined under the Forest Ordinance.

The Department of Wild Life Conservation

The Department of Wild Life Conservation has been vested with the powers as to not grant permission for development projects which are proposed to be located within, or within a 1 mile radius of National Reserves declared under the Fauna and Flora Protection Ordinance without carrying out EIA.

Department of Agrarian Development

Filling of any paddy cultivation land is envisaged for the construction of sewerage treatment plants, laying of pipelines or related structures, approval of the Department, of Agrarian Development is required.

Urban Development Authority (UDA)

If the development activities of the proposed project are within an area declared under UDA law, approval of UDA is required.

APPENDIX 10: Comparison with JICA Guidelines

There are some gaps between the current Sri Lankan Regulations and JICA Guideline, but they are rather insignificant. The governmental laws pay less attention to the social impacts than JICA Guidelines. Thus, the preparing of the Resettlement Action Plan (RAP) is not mandatory. The 30 day term for public comment that the government stipulates differs greatly from the recommended 120-day JICA policy. Although JICA's guidelines suggest that the project proponents should disclose information related to it, under the Sri Lanka's legislation, the responsibility of information disclosure is incurred not by the project proponent but by the PAA.

Comparison of JICA and Sri Lankan Policies and Guidelines

Item	JICA Guidelines	Sri Lankan Policies and Regulations
EIA / IEE Process	At the scoping stage and EIA draft report stage, the project proponent has to hold stakeholder meetings in the area to explain the contents. The comments should be reflected in the plan. EIA reports / RAP will be disclosed 120 days prior to concluding the agreement documents.	Stakeholders are provided an opportunity to comment in the scoping stage. The stakeholders are usually related governmental organizations (not local community/general public). The stakeholders and public can submit queries and comments on the EIA draft report. The comments should be addressed in the final report. EIA reports will be opened for 30 days for public comments.
Environmental Checklist	A check list is provided for each sector. These items should be included in the EIA report.	The PAA shall prepare terms of reference for an EIA. No specific checklist is provided.
Involuntary Resettlement Process	The project proponent is obliged to prepare a RAP. If number of resettled household is small (e.g. one household), the RAP can be simplified one. The RAP is prepared as part of the EIA Report.	In case that the number of resettled households is 20 or more, the NIRP requires a RAP.
Compensation for land resettlement	Full replacement cost must be applied as much as possible.	The Land Acquisition Act (LAA) provides for the payment of compensation on the basis of "market value" which is defined as the "amount which the land might be expected to have realized if sold by a willing seller in the open market as a separate entity". The National Involuntary Resettlement Policy (NIRP) recommends that compensation for loss of land, structures, other assets and income should be based on full replacement cost and should be paid promptly together with transaction costs.
Compensation for non-registered residents	All residents before the cut-off-date are eligible.	The LAA does not have any provisions on this issue. The NIRP recommends that affected persons who do not have documented title to land should receive fair and just treatment.
Grievance mechanism \quad redress	The project proponent is obliged to have a grievance redness mechanism.	The LAA provides a limited grievance redress mechanism whereby certain grievances of the affected persons relating to compensation can be referred to the Board of Review established under

Item	JICA Guidelines	Sri Lankan Policies and Regulations
		the LAA. The NIRP recommends the establishment of an internal monitoring system by project executing agencies to monitor the implementation of RAPs and handling of grievances. Grievances redress mechanism formally instituted by the project authorities with the support of the Divisional Secretaries of the project area.

APPENDIX 11: International Commitments related to ESC

International Commitments

A list of Environment-related International Conventions, Protocols, and Treaties is given in Table.
List of Environment-related International Conventions, Protocols, and Treaties

No	Environment-Related International Conventions, Protocols, and Treaties
1	International Plant Protection Convention (Rome, 1951)
2	Plant Protection Agreement for the South East Asia and Pacific Region (Rome, 1956)
3	Convention on Wetlands of International Importance especially as Waterfowl Habitat (Ramsar, 1971)
4	Convention Concerning the Protection of the World Cultural and Natural Heritage (Paris, 1972)
5	Convention on International Trade in Endangered Species of Wild Fauna and Flora (Washington, 1973)
6	Convention on Conservation of Migratory Species (Bonn, 1979)
7	Vienna Convention for the Protection of the Ozone Layer (Vienna, 1985)
8	Montreal Protocol on Substances that Deplete the ozone Layer (Montreal 1987)
9	United Nations Framework Convention on Climate Change (New York, 1992)
10	Convention on Biological Diversity (Rio De Janeiro, 1992)
11	International Convention to Combat Desertification (Paris 1994)
12	United Nations Convention to Combat Desertification in those Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa (Paris, 1994)
13	Kyoto protocol to the United Nations Framework Convention on Climate Change (Kyoto, 1997)
14	Cartagena protocol on Biosafety to the Convention on Biological Diversity (Cartagena, 2003)
15	Convention on Conservation of Migratory Species (Bonn, 1979)

APPENDIX 12: Record of Consultation with Public and Authorities

Record of Meeting/Discussion

Record of Meeting/Discussion

Record of Meeting/Discussion

APPENDIX 13: Draft EMP and EMoP

Mitigation Measures

Mitigation measures proposed with respect to the stages of: (i) planning and design (ii) construction and (iii) operation is given in Table 1.
The Project for the Strategic Master Plan Under Sewerage Sector in Democratic Socialist Republic of Sri Lanka (Phase 1)

Environmental Impact / Issue	Mitigation Measure	Implementing Organization	Responsible Organization
	water bodies where applicable. All debris and residual spoil material including any excess earth will be disposed only at designated locations. The debris and spoil material will be disposed in such a manner that (i) watercourses and drainage paths are not blocked; (ii) the disposed material will not be washed away by floods and (iii) will not be a nuisance to the public.		
Transport of earth material	Vehicles will be properly maintained to ensure the good running conditions and those which are not in suitable condition will be replaced. Provide covers during transportation	Contractor	Consultant/ NWSDB
Dust Control	Enclosing or covering the construction site in order to control the dust dispersion. Protecting stockpiles from water and wind erosion; Using a water truck for dust suppression on all exposed areas Establishing and enforcing vehicle speed limits to minimize dust generation; Use tarpaulins to cover loose material when transported to and from the site. Locating stockpiles away from sensitive receptors; Loaded haul trucks travelling to and from the site having loads leveled to avoid spillage; Carrying out progressive rehabilitation of cleared land;	Contractor	Consultant/ NWSDB
Burrow pits	Eligible contractor/s who are operating burrow pits with necessary approvals / permits, will only be selected. Noise, dust and related safety issues during loading, transportation and unloading will be controlled to meet' the standards and norms	Contractor	Consultant/ NWSDB
Construction Waste Disposal	System to collect waste cement slurry will be provided to avoid contamination of drainage paths. Wastewater from washing of equipment used for concrete mixing and transporting of concrete will be disposed safely. All discarded and used oil and grease will be collected, stored and disposed (reuse / sell). All potentially water polluting chemicals and oils will be stored (a) at locations sufficiently away from watercourses and storm water drainage paths and chances of spillage. machinery. (b) in a manner that would minimize Minimize the oil and chemical spillages during operation and properly maintain the equipment and Debris and spoil will be disposed of only to designated places in such a manner that (i) waterways and drainage paths are not blocked, and (ii) the disposed material will not be washed away by heavy storm water flows.	Contractor	Consultant/ NWSDB
Drainage issues	STP site should be located on the high ground to avoid water ingress Natural drain paths should not be disturbed during any construction activity	Contractor	Consultant/ NWSDB

The Project for the Strategic Master Plan Under Sewerage Sector in Democratic Socialist Republic of Sri Lanka (Phase 1)
Final Report Section II Five Cities' Master Plan

Environmental Impact / Issue	Mitigation Measure	Implementing Organization	Responsible Organization
Noise and vibration	Temporary noise barriers / screens will be placed. All construction work will be carried out during day time as much as possible and work will be stopped after 6 pm . Workers involved in high noise generating activities (such as compacting, concrete/cement mixing operations using the mixers) and handling high noise generating machinery and equipment will be provided with ear plugs or mufflers. To the extent possible, attempts will be made to use equipment and machinery that produce low noise levels Proper and regular maintenance and/or servicing of equipment and machinery will be carried out.	Contractor	Consultant/ NWS\&DB
	Operational phase		
Impacts on Water Resources	Prevent seepage of polluted water to the ground by applying suitable lining for the ponds, raise the levels of the site and the tanks etc as applicable. Establish the STP on a sufficient high ground to avoid the flood impact. Avoid spillages of septage during operation - specially during unloading - and take precautionary measures to prevent mixing septage with storm water drainage system. As a precautionary step, it is proposed to monitor the ground water quality in the area. Ensure the disposal of treated effluent to a reed bed (artificial wet-land) with species which suit the climatic and coastal conditions of the area. Ensure the necessary effluent quality for disposal to inland waters	$\begin{aligned} & \text { NWS\&DB / } \\ & \text { MC } \end{aligned}$	NWS\&DB MC Consultant
Odor from STP	Shielding of the unloading bay to an extend to prevent odorous gases being blown away by the wind Hydraulic arrangements that would minimize agitation of sewage during the release to the treatment system Keeping much of the screen channel close to prevent release of gases to air Establish and properly maintain a thick green belt along the STP site and pumping station where applicable.	NWS\&DB $\quad 1$ MMC	MMC NWSDB
Sludge disposal	Use dewatered sludge as fertilizer. It is recommended that the sludge be disposed at suitable site such as coconut land or suitable plantation land or through burial in to dug pits.	NWS\&DB / MMC	$\begin{array}{\|lc} \hline \text { MMC } & \text { / } \\ \text { NWSDB } \end{array}$

DRAFT ENVIRONMENTAL MONITORING PLAN

Objective Of Environmental Monitoring Plan

In order to fulfil the following objectives an appropriate Environmental Monitoring Programme (EMoP) will be carried out.

- Check the implementation of mitigatory measures to ensure whether they are in conformity with the requirements
- Ensure that the impact does not exceed legal standards
- Provide timely warnings of potential environmental damages

The EMoP characterizes the proposed mitigation and monitoring actions as a set of tasks. In the EMoP the specific responsibilities on task implementation on the project proponent, the contractor(s), and the regulatory agency (agencies) are assigned. These tasks should be implemented within a specified time/period by the agency responsible and as per the specifications set out in the EMoP.

Environmental monitoring committee

The monitoring programme will be undertaken by a committee and all relevant line agencies, local government bodies and interested parties shall take part in the monitoring activities. An Environmental Monitoring Committee (EMC) consisting of the members from the following agencies shall be set up by CEA.

- Central Environmental Authority
- Municipal Council
- National Water Supply and Drainage Board
- Divisional Secretariat
- RDHS and Anuradhapura General Hospital
- Irrigation Department
- Archaeological Department
- Road Development Authority
- Provincial Road Development Authority
- Sri Lanka Railway
- Department of Forest Conservation
- Department of Wildlife Conservation
- Any other agency deemed necessary by the EMC

Outline of environmental monitoring plan

Environmental Monitoring activities shall take place during Design, Construction and Operation stages of the project. Regular site inspections are required to assess whether the various mitigatory measures suggested are properly implemented and they are effective in achieving the objectives of environmental protection. Outline of the Environmental Monitoring Plan is presented in Table 2.
One important aspect of monitoring should be to assess the effectiveness of the mitigation measures suggested, where they are found lacking, appropriate new actions to mitigate any adverse effects should be undertaken. This requires measurements of selected environmental parameters at identified locations and a summary of the measurement schedule proposed is given in Table 3.
The Project for the Strategic Master Plan Under Sewerage Sector in Democratic Socialist Republic of Sri Lanka (Phase 1) Final Report Section II Five Cities 'Master Plan Sri Jayawardenapura Kotte
Table 2: Outline of the Environmental Monitoring Plan

Activity	Expected Negative Impact	Mitigation measures	Responsible for Mitigation	Responsible for Monitoring	Parameters to be monitored	Location	Frequency
Pre-construction stage	Cutting of trees	Permits to be obtained for cutting trees. Cut down of branches wherever possible, rather than cutting the whole tree	Contractor	MC / NWSDB	Number of trees in the project area	Project sites	Before commencing
	Burrowing of earth	Approvals to be obtained	Contractor	MC / NWSDB	Field reports and observations	Project sites	Before commencing
Construction stage	$\begin{aligned} & \text { Damages to } \\ & \text { existing roads } \end{aligned}$	Excavation should be done after studying the design drawings	Contractor	MC / NWSDB	Field reports and observations	Project sites	Once every two months
	Traffic congestion	Implement a proper traffic management plan. Use sign boards and barricaes	Contractor	MC / NWSDB	Field reports and observations	Project sites	Weekly
	Generation of dust	Systemic watering on excavated soil	Contractor	MC / NWSDB	Field reports and observations	Project sites	Once every two weeks
		Using a tarpaulin cover while transporting the materials such as sand, cement and excavated soil	Suppliers	MC / NWSDB	Field report and complaints if any	Off the project site	Weekly
		Taking measures to minimize the dust when loading and unloading the materials	Contractor	MC / NWSDB	Field report and complaints if any	Project site	Weekly
	Increased noise level	Machinery should not produce a noise level above 75 db . Relevant equipment should be used to monitor the noise levels	Contractor	MC / NWSDB	Noise reports and complaints if any	Project site	Daily
	Waste generation and camping on the location	Solid waste generated should be disposed properly and removed to appropriate disposal yards	Contractor	MC / NWSDB	Field reports	Project site	Once every three months
	Impacts on existing habitats	No endemic or endangered species are damaged. Cutting of	Contractor	MC / NWSDB	Field reports	Project site	Once every six months

The Project for the Strategic Master Plan Under Sewerage Sector in Democratic Socialist Republic of Sri Lanka (Phase 1) Final Report Section II Five Cities 'Master Plan Sri Jayawardenapura Kotte

		tree should be compensated by planting of more trees around the area						
O\&M stage	Sludge generation	Collecting sludge in an underground chamber and proper disposal of it	MC / NWSDB	MC / NWSDB	Maintenance report	Project area	Daily	
	Possible negative impacts on water quality and quantity	Water quality and quantity tests to be carried out regularly	MC / NWSDB	MC / NWSDB	Field reports	Project site	Once month	every

Aspect	Parameter	Method	Stage	Frequency
Noise level	Day and Night time Noise level (dB)	Portable noise meter (range $0-120 \mathrm{~dB}(\mathrm{~A})$)	Pre-construction	Once (Basel measurement)
			Construction	Once a year
			Operation	Yearly; On complaints
Air quality $/$ Odour	$\mathrm{SO}_{2}, \quad \mathrm{NO}_{2}, \quad \mathrm{CO}$,$\mathrm{PM10,SPM}$	Spectrometric method; High volume sampling and Gravimetric analysis	Pre-construction	Once (Basel measurement)
			Construction	Two times
			Operation	Yearly; On complaints
Water Quality	EC, TSS, DO,BOD, COD, pH,Oil and grease,E-coli	Portable meter, method Spectrometric	Pre-construction	Once (Basel measurement)
			Construction	Two times
			Operation	Yearly; On complaints

[^0]: Source: Census of Population and Housing 2012, Department of Census and Statistics

[^1]: C: Flow Velocity Coefficient, R: Hydraulic Radius (m),
 S: Hydraulic Gradient, A: Cross Section Area (m^{2})

[^2]: Source: JET

