セクション II
都市下水道マスタープラン

①スリジャヤワルダナプラコッテ
（2）アヌラーダプラ
（3）バドゥッラ
（4）ヌワラエリヤ
（5）デヒワラ・マウントラビニア

スリランカ民主社会主義共和国
都市計画•上水道省
政策立案•経済省
国家上下水道公社

スリランカ国

下水セクター開発計画策定 プロジェクト（第I期）

セクション II都市下水道マスタープラン

①スリジャヤワルダナプラコッテ

平成29年5月
（西暦2017年）

独立行政法人
国際協力機構（JICA）

株式会社日水コン

為替レート
（2017年5月）
1 LKR $=0.74041 \mathrm{JPY}$
1 USD $=150.340$ LKR
1 USD $=111.313 \mathrm{JPY}$

スリランカ国下水セクター開発計画策定プロジェクト（第 I 期） セクションII 都市下水道マスタープラン

（1）スリジャヤワルダナプラコッテ目次

目次 ．I
掲載表一覧 IV
掲載図一覧 VI
略語表 VII
要約 S－1
第1章 背景と目的 1－1
1.1 背景 1－1
1.2 目的とスコープ 1－2
第2章 対象区域の現状 2－1
2． 1 自然環境 2－1
2．1．1 気象 2－1
2．1．2 地形 ．2－2
2．1．3 地質 ．2－3
2．1．4 水文 2－4
2．1．5 水質および水量 ．2－5
2．1．6 環境条件 2－9
2．1．7 保護区 2－10
2．1．8 動植物． 2－13
2． 2 社会環境． 2－16
2．2．1 行政制度 2－16
2．2．2 人口統計 2－16
2．2．3 保健•疾患 2－16
2．2．4 宗教•民族 2－17
2．2．5 貧困率 2－17
2．2．6 歴史と文化（遺産） 2－18
2．2．7 経済 2－18
2．2．8 土地利用 2－20
2．2．9 水供給と衛生 2－22
2．2．10 廃葉物． 2－24
2． 3 下水道整備の必要性 2－25
第3章 下水道の基本条件 3－1
3.1 基本条件 3－1
3．1．1 目標年次 3－1
3．1．2 計画及び設計基準 3－1
3．1．3 下水道サービス対象地域の選定． 3－3
3．1．4 計画污水量 3－6
3．1．5 設計污水水質 3－6
第4章 下水道の基本計画と設計 4－1
4． 1 下水道整備計画 4－1
4． 2 下水収集設備 4－1
4．2．1 下水道管渠 4－1
4．2．2 ポンブ施設 4－2
4．2．3 取付け管 4－3
4． 3 下水処理施設 4－3
4．3．1 処理法 4－3
4．3．2 下水処理場用地 4－4
4．3．3 下水処理プロセス 4－6
4．3．4 臭気対策 4－9
4．3．5 污泥処理処分． 4－10
4．4 オンサイト施設と腐敗槽汚泥管理 4－12
4．4．1 オンサイト施設 4－12
4．4．2 腐敗槽の構造 4－12
4．4．3 腐敗槽の維持管理． 4－12
第5章 プロジェクト実施のための組織制度改革 5－1
5.1 下水道事業の実施体制 5－1
5．1．1 スリランカにおける実施体制の事例。 5－1
5．1．2 スリジャヤワルダナプラコッテ $M C$ における公共事業の実施状況 5－1
5．1．3 実施体制のオプション 5－3
5．1．4 最適な下水道事業の実施体制 5－3
5． 2 実施体制確立のための組織作り 5－4
5．2．1 NWSDB下水道部門の組織 5－5
5．2．2 RSC（西部中央）の組織． 5－6
5．2．3 MC の組織． ．5－6
5.3 事業実施に向けた各機関の能力強化 5－6
5．3．1 人材確保 5－6
5．3．2 人材育成． ．5－8
5．3．3 機材，車両の調達。 5－8
5．3．4 侕客サービス 5－9
5．4 下水道建設プロジェクトの実施 5－9
5．4．1 PMU． 5－9
5．4．2 プロジェクト事務所． 5－9
第6章 事業費 6－1
6． 1 概算事業費 6－1
6．1．1 建設費及び事業費． 6－1
6．1．2 運転維持管理費 6－2
6． 2 段階的整備計画 6－2
第7章 財務計画 7－1
7． 1 スリジャヤワルダナプラコッテ MC の財務状況 7－1
7.2 下水道整備と運営維持管理（O\＆M）の財務計画 7－3
7．2．1 建設，$O \& M$ 及び設備更新の費用負担 7－3
7．2．2 必要な下水道料金計算の方法論 7－3
7．2．3 下水道料金単価計算の前提条件． 7－5
7．2．4 下水道料金単価計算の結果 7－5
7．2．5 家庭の支払可能性． 7－6
7．2．6 改訂された下水道料金表の例（タイプ2，NWSDB 用） $7-7$
7． 3 財務計画の結論 7－9
第8 章 環境社会配慮 8－1
8.1 現在の状況 8－1
8.2 環境社会配慮関連法規の概要 8－1
8.3 相手国制度と JICA ガイドラインの乘離 8－1
8.4 国際公約 8－1
8.5 スコーピング 8－1
8． 6 環境社会配慮の TOR 8－3
8．6．1 環境社会配慮の目的 8－3
8．6．2 対象となる項目 8－3
8．6．3 対象地域 8－3
8．6．4 対象期間 8－3
8．6．5 環境社会配慮調查の内容と方法 8－3
8．6．6 影響の予測と評価． 8－5
8．6．7 EMPとEMoP の計画 8－5
8．6．8 ステークホルダー協議 8－6
8．7 ドラフトEMPと EMoP 8－6
8． 8 環境社会配慮活動計画 8－6
第9章 結論と提言 9－1
9.1 実施の可能性 9－1
9．2 リスクと緩和策 9－1
9.3 結論と提言 9－1
APPENDIX 1
APPENDIX 1：Waste Water Flow Calculation A－1
APPENDIX 2：Inflow Sewage Quality and A－2
appendix 3：Layout Plan，Sewer Design Calculations and Longitudinal Cross Section A－4
APPENDIX 4：Draft Amendment of Tolerance Discharge Limits A－35
APPENDIX 5：General Layout of Septic Tank A－38
APPENDIX 6：DETAIL of PRoJect Costs A－40
APPENDIX 7：Detail of Annual Fund Requirement A－41
APPENDIX 8：Breakdown of Operating Expenditure A－42
APPENDIX 9：REGULATIONS and Organizations Related to ESC A－43
APPENDIX 10：COMPARISON WITH JICA GUIDELINES A－45
APPENDIX 11：InTERNATIONAL COMMITMENTS RELATED TO ESC A－46
APPENDIX 12：RECORD OF CONSULTATION wITH Public and Authorities A－47
APPENDIX 13：Draft EMP and EMoP A－50

掲載表一覧

表1 概算事業費 S－2
表 2．1－1 スリジャヤワルダナプラコッテ MC 地域の湿原 2－2
表 2．1－2 水質調査結果（スリジャヤワルダナプラコッテ） 2－6
表 2．1－3 動物調査結果 2－13
表 2．1－4 植物調査結果 2－15
表 2．2－1 スリジャヤワルダナプラコッテ MC の人口 2－16
表 2．2－2 年齢階級別の慢性疾患率 2－16
表 2．2－3 糖尿病および高血圧の有病率 2－17
表 2．2－4 宗教別人口 2－17
表 2．2－5 民族別人口 2－17
表 2．2－6 貧困率 2－17
表 2．2－7 スリジャヤワルダナプラコッテ MC の考古学的保護記念物 2－18
表 2．2－8 西部州の産業別 GDP（現在価格） 2－18
表 2．2－9 コロンボ県の月平均家庭所得の内訳（2012／13） 2－19
表 2．2－10 スリジャヤワルダナプラコッテ MC の土地利用状況 2－20
表 2．2－11 スリジャヤワルダナプラコッテ MC における飲料水施設の整備状況． 2－22
表 2．2－12 スリジャヤワルダナプラコッテ MC における衛生施設の整備状況 2－23
表 2．2－13 固形廃棄物の構成内容 2－24
表 3．1－1 汚水量算定基準 3－1
表 3．1－2 下水管渠設計に用いた係数値 3－2
表 3．1－3 管種 3－2
表 3．1－4 ポンプ施設のタイプ 3－3
表 3．1－5 M／P 地域に含まれるDSD 及び GND 3－5
表 3．1－6 計画汚水量 3－6
表 3．1－7 設計汚水水質 3－6
表 4．2－1 主要な管渠一覧 4－2
表 4．2－2 主要なポンプ施設 4－2
表 4．3－1 流入水質及び放流水質 4－7
表 5．1－1 6都市における水道，下水道事業の実施体制 5－1
表 5．1－2 スリジャヤワルダナプラコッテ MC における公共事業の実施状況， 5－2
表 5．1－3 下水道事業実施体制のオプション 5－3
表 5．2－1 下水道事業の各段階における各機関の役割分担 5－4
表 5．3－1 国立大学，単科大学及び工業高校の学部 5－7
表 5．3－2 NWSDBと同業民間企業での毎月の給料及び手当 5－7
表 5．3－3 NWSDB 研修センターの研修プログラムに追加すべき項目 5－8
表 5．3－4 既存下水道事業における下水設備維持管理に使用される重機の所有台数。 5－9
表 6．1－1 概算事業費 6－1
表 6．1－2 運転維持管理費 6－2
表 7．1－1 スリジャヤワルダナプラコッテ MC の収支概要 7－1
表 7．2－1 都市 M／P で提案される下水道料金単価の計算スリジャヤワルダナプラコッテ MC．7－5
表 7．2－2 NWSDB の下水道料金単価（第3回値上分）の計算スリジャヤワルダナプラコッテMC．7－6
表 7．2－3 改訂された下水道料金表の例：家庭用（2024 年時点） 7－7
表 7．2－4 改訂された下水道料金表の例：非家庭用（2024 年時点） 7－8
表 8．5－1 スコーピング評価とその理由 8－1
表 8．6－1 ESC 関連調査内容 8－4
\qquad表 9．2－1 リスクと緩和策9－1

掲載図一覧

図1 スリジャヤワルダナプラコッテ下水道整備計 S－2
図 2 ステップ流入式多段硝化脱窒法（三段ステップ流入生物学的栄養塩除去プロセス） S－2
図 2．1－1 月平均最高•最低気温 2－1
図 2．1－2 月平均降水量 2－1
図 2．1－3 スリジャヤワルダナプラコッテ MC 地域の地形図 2－3
図 2．1－4 ブロジェクト対象地域の地質図 2－4
図 2．1－5 プロジェクト対象地域の排水網および内水面 2－5
図 2．1－6 調査位置図 2－6
図 2．1－7 スリジャヤワルダナプラコッテにおける污染の状況 2－8
図 2．1－8 Colombo Fort 観測点の PM10 レベル 2－10
図 2．1－9 プロジェクト対象地域の遊水池等 2－12
図 2．1－10 コロンボ地区の自然破壊を受けやすい地域 2－13
図 2．2－1 月当たり家庭所得の比較 2－19
図 2．2－2 スリジャヤワルダナブラコッテ MC の土地利用状況 2－20
図 2．2－3 スリジャヤワルダナプラコッテの土地利用計画（2008－2020） 2－21
図 2．2－4 コロンボ市の下水道へ接続している施設． 2－23
図 2．2－5 Karadiyana 処分場（左），コンポスト施設（右） 2－25
図 3．1－1 スリジャヤワルダナプラコッデにおける M／P 地域 3－4
図 4．1－1 スリジャヤワルダナブラコッテ下水道整備計画図 4－1
図 4．3－1 窒素の挙動 4－3
図 4．3－2 BNR プロセスの例 4－4
図 4．3－3 処理場用地 4－5
図 4．3－4 処理場整備案 4－5
図 4．3－5 処理場用地（東側部分） 4－6
図 4．3－6 処理場用地（西側部分） 4－6
図 4．3－7 下流のボートコース 4－6
図 4．3－8 処理場用地（南側部分） 4－6
図 4．3－9 ステップ流入式多段硝化脱窒法（三段ステップ流入生物学的栄養塩除去プロセス） 4－7
図 4．3－10 処理施設の暫定配置図 4－8
図 4．3－11 同時凝集法の原理 4－9
図 4．3－12 圧入型スクリュープレス脱水機の構造． 4－11
図 4．3－13 汚泥処分方法 4－11
図 4．3－14 堆積型コンポスト装置 4－12
図 5．2－1 現在の NWSDB 下水道部門の組織図 5－5
図 5．2－2 NWSDB 下水部門の組織図案． 5－5
図 5．2－3 計画から O\＆M までの業務の実施担当部署 5－6
図 7．1－1 スリジャヤワルダナプラコッテ MC の最終的な黒字（赤字）の傾向 7－2
図 7．1－2 スリジャヤワルダナプラコッテ MC の収入から経常費用を引いた額の傾向 7－2
図 7．1－3 スリジャヤワルダナプラコッテ MC の資本収支の傾向 7－2
図 7．2－1 下水道料金単価の二つのタイプの違いと対象機関 7－4
図 7．2－2 料金値上げの実施スケジュール例 7－5
図 7．2－3 将来の下水道料金と支払可能性の比較（タイプ 1） 7－7
図 7．2－4 将来の下水道料金と支払可能性の比較（タイブ 2） 7－7
図 8．8－1 ESC 計画 8－6

略語表

ADB	Asian Development Bank	アジア開発鋃行
ADWF	Average Dry Weather Flow	晴天時平均下水量
AFD	Agence Française de Development	フランス開発方
Addl．GM	Additional General Manager	局長
ASRT	Aerobic Solids Retention Time	好気的固形物滞留時閐
AGM	Assistant General Manager	部長補佐
ATP	Affordability To Pay	支払可能額
BOD	Biochemical Oxygen Demand	生物化学的酸素要求量
BOI	Board of Investment	スリランカ投資庁
CBO	Community Based Organization	市民団体，コミュニティーベースの組織
CP	Counterpart	カウンターパート
CEA	Central Environmental Authority	中央噮境局
CMC	Colombo Municipal Council	コロンボ市
CODCr	Chemical Oxygen Demand	化学的酸素要求量
DCS	Department of Census and Statistics	政府統計局
DGM	Deputy General Manager	部長
DMMC	Dehiwala－Mt．Lavinia Municipal Council	デヒワラ・マウントラビニアMC
DNB	Department of National Budget	国家予算局
DNP	Department of National Planning	国家計画局
DO	Dissolved Oxygen	溶存酸素
DS	Divisional Secretariats	地区事務局
EC	Electric Conductivity	電気伝導性
EIA	Environmental Impact Assessment	嘸境影響評偳
EMP	Environmental Management Plan	關境管理計画
EMoP	Environmental Monitoring Plan	モニタリング計画
EPL	Environmental Protection License	嘸境保護ライセンス
EPZ	Export Processing Zone	輸出加工区
ERD	Department of External Resource	外部餈源局
ETWWA	Energy，Transport，and Water department of the World Bank	世界銀行エネルキー・運輸•水局
F／S	Feasibility Study	実行可能性（フィージビリティ）調査
FY	Financial Year	会計年度
GC	Greater Colombo	大コロンボ圈
GOSL	Government of Sri Lanka	スリランカ政府
GCS	Greater Colombo Sewerage	大コロンボ圈下水
IBRD	International Development Bank for Reconstruction and	国際復垌開発銀行
IEE	Initial Environmental Examination	初期影響評偳
IFRS	International Financial Reporting Standard	国際会計基淮
IRR	Intermal Rate of Return	内部収益率
JBIC	Japan Bank for International Cooperation	国際協力銀行
JCC	Joint Coordinating Committee	合同調整委員会
JICA	Japan International Cooperation Agency	国際協力機楥
JECES	Japan Education Center of Environmental Sanitation	日本镮境整備教育センター
JPY	Japanese Yen	日本円
JSWA	Japan Sewage Works Agency	日本下水道㙝会
LKR	Sri Lanka Rupee	スリランカルピー
MASL	Mahaweli Authority in Sri Lanka	マハウェリ河川事務所
M\＆E	Mechanical and Electrical	機械電気
MC	Municipal Council	市評議会
M／M	Minutes of Meeting	議事録
MOPPEA	Ministry of Policy Planning and Economic Affairs	政策立案•経済問题省

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクション I 都市下水道マスタープラン スリジャヤワルダナプラコッテ

MOCPWS	Ministry of City Planning and Water Supply	都市開発•上下水道省
MOPCLG	Ministry of Provincial GovernmentCouncils \＆Local	地方議会•地方自治体省
MRT	Minimum Rate Test	ミニマム・レート・テスト
MTPS	Manhole Type Pumping Station	マンホールポンプ施設
NH3－N	Ammonia Nitrogen	アンモニア態窒素
NWSDB	National Water Supply \＆Drainage Board	国家上下水道公社
O\＆M	Operation and Maintenance	維持管理
OD	Oxidation Ditch	オキシデーションディッチ
PDWF	Peak Dry Weather Flow	晴天時最大汚水量
PMU	Project Management Units	プロジェクト管理ユニット
PO	Plan of Operations	運用計画
PPIAF	Public－Private Infrastructure Advisory Facility	民活インフラ助言ファシリティ
PS	Pradeshiya Sabha	地区評議会
ROA	Return on Asset	総資産利益率
ROE	Return on Equity	株主資本利益率
RSC	Regional Support Center	地域サポートセンター
R／D	Record of Discussion	討議議事録
SIDA	$\begin{array}{l}\text { Swedish International Development Cooperation } \\ \text { Agency }\end{array}$	スウェーデン国際開発協力庁
SLS	Sri Lanka Standard	スリランカ基漼
SRT	Solids Retention Time	固形物滞留時間
STP	Sewage Treatment Plant	下水処理施設
PPTA	Project Preparatory Technical Assistance	プロジェクト漼備の技術支援
T－N	Total Nitrogen	全窒素
TOR	Terms of Reference	指示書
T－P	Total Phosphorus	全りん
TKN	Total Kjedahl Nitrogen	ケルダール窒素
TSS	Total Suspended Solids	浮遊物質
UC	Urban Council	群評議会
UDA	Urban Development Authority	都市開発庁
UNDP	The United Nations Development Programme	国連開発計画
WACC	Weighted Average Cost of Capital	加重平均資本コスト
WAST	Weighted Average Sewerage Tariff	加重平均下水料金
WB	World Bank	世界銀行
WDF	Wastewater Discharge Fee	工場排水料金
WHO	World Health Organization	世界保健機関
WQI	Water Quality Index	水質指標
WTP	Water Treatment Plant	浄水場

要約

第1章では本プロジェクト及び成果の一つであるスリランカ全土を対象とした「戦略的下水道マス タープラン」の策定の背景を説明した。そして，「戦略的下水道マスタープラン」では下水道を整備 する 15 の優先都市やこの優先 15 都市から「都市下水道マスタープラン」を策定する下記の 5 都市 の選定経緯について説明した。
－スリジャヤワルダナプラコッテ
－アヌラーダプラ
－バドゥッラ
－ヌワラエリヤ
－デヒワラ・マウントラビニア

第2章ではスリジャヤワルダナプラコッテにおける下水道整備対象区域の現状として，自然環境，社会環境とプロジェクトの必要性を述べた。自然環境では対象地域の汸水が流れ込む国会議事堂周辺 の湖の水質の Biochemical Oxygen Demand（BOD ：生物化学的酸素要求量），アンモニアや大腸菌群数 の増加が認められ，人の活動による水質悪化を示した。また，社会環境ではスリジャヤワルダナブラ コッテが属するコロンボ県の平均家庭所得は全国平均を上回り，下水道を導入した場合料金収入面か らは事業実施の持続性が高いことを示した。また， 96% が腐敗槽に接続しており，水質の保全及び改善のためには効率的に下水を処理する下水道の整備の必要性を述べた。

第3章では下水道計画の基本条件の設定について述べた。具体的には計画目標年次2046年，下水道サービスエリアはスリジャヤワルダナプラコッテ市全域とその周辺地域の $3,392 h a$ ，下水道供用人口 198,000 人，日最大汚水量約 $35,000 \mathrm{~m}^{3 /}$ 日と設定した。

第4章では下水道の基本計画と設計について述べた。下水道施設の基本計画として図 $\mathbf{1}$ に管渠ル ート，ポンプ場及び下水処理場の位置を示した。下水処理方式は高い窒素除去率と狭い敷地面積から本邦技術であるステップ流入式多段硝化脱窒法（図2）とした。また，汚泥処理はスクリュープレス脱水機による機械脱水 + コンポスト処理とした。

Source：JET
図 1 スリジャヤワルダナプラコッテ下水道整備計画図

Source：JET
図 2 ステップ流入式多段硝化脱窒法（三段ステップ流入生物学的栄養塩除去プロセス）
第5章ではプロジェクト実施のための組織制度改革案について述べた。スリジャヤワルダナプラコ ッテの下水道事業は National Water Supply \＆Drainage Board（NWSDB ：国家上下水道公社）が実施す べきと提案した。その理由は，すでに水道事業を NWSDB が行っており下水道との一体化は料金徴収などのコストを縮減できること，また，NWSDBの人材を活用できる点からである。また，人材の能力強化のために NWSDB 研修センターの研修内容の充実や OJT による技術の習得を提案した。

第6章では下水道整備に係るコストを算出した。事業費として表1に示す内容で総額約 441 億円（税抜），維持管理費は年間 3.9 億円となった。

表1 概算事業費

			Amount		Total Amount	Total Amount
			LC．（LKR）	F．C．（JPY）	LKR	JPY
1	Construction Cost					
	A	Sri Jayawardenapura Kotte STP（Q＝35，000m3／day）	4，887，272，727	5，644，800，000	12，218，181，818	9，408，000，000
	B	Trunk Sewer \＆Pump Station	3，884，573，000	4，878，220，000	10，219，925，000	7，869，338，000
	C	Branch Sewer \＆Pump Station	7，079，587，000	3，522，960，000	11，654，860，000	8，974，242，000
	D	House Connection	4，950，000，000	0	4，950，000，000	3，811，500，000
	Sub－total of 1（A－D）		20，801，432，727	14，045，980，000	39，042，966，818	30，063，080，000
2	Administration cost		2，700，000，000	0	2，700，000，000	2，079，000，000
3	Consulting cost		1，354，000，000	3，129，000，000	5，417，636，000	4，171，580，000
4	Physical contingency for construction cost		1，309，000，000	773，000，000	2，312，896，000	1，780，930，000
5	Price escalation for construction cost		5，381，000，000	1，419，000，000	7，223，857，000	5，562，370，000
6	Land acquisition and compensation		－	－	－	－
7	Interest during construction		0	323，000，000	419，481，000	323，000，000
8	Front－end Fee		0	84，000，000	109，091，000	84，000，000
9	Taxand duty		9，861，000，000	0	9，861，000，000	7，592，970，000
	Sub－total of（2－9）		20，605，000，000	5，728，000，000	28，043，961，000	21，593，850，000
	Total including Taxand Duty		41，406，432，727	19，773，980，000	67，086，926，000	51，656，933，000
	Total excluding Tax and Duty		31，545，432，727	19，773，980，000	57，225，926，000	44，063，963，000
	Eligible Portion（1，3，4， 5 and 7）		28，845，432，727	19，689，980，000	54，416，835，000	41，900，963，000
	Non－Eligible Portion（2，6，8 and 9）		12，561，000，000	84，000，000	12，670，091，000	9，755，970，000

Source：JET

第7章では財務計画として建設費は中央政府が負担するため，維持管理費を回収できる下水道料金 を 2 案提案した。ケース 1 はスリジャヤワルダナプラコッテ下水道のみの維持管理費から設定した下水道料金で，ケース 2 はNWSDB が運営している下水道から算定した下水道料金である。この結果， ケース1の下水道料金単価は46．97 Sri Lanka Rupee（LKR：スリランカルピー）$/ \mathrm{m}^{3}$ ，ケース 2 では $42.34 \mathrm{LKR} / \mathrm{m}^{3}$ で両料金とも世銀の家庭の支払可能性の上限を下回っていた。

第8章では環境社会配慮として，自然環境または社会環境に影響を及ぼすと考えられる項目を抽出 するためのスコーピング結果と Feasibility Study（F／S：実行可能性（フィージビリティ）調査）時に想定される環境社会配慮調査内容案をまとめた。

第 9 章の「結論•提言」では，結論としてスリジャヤワルダナプラコッテの下水道事業は，スリラ ンカの行政上の首都を対象としたものであり供用人口も大きく，窒素リンの除去を考慮した高度処理 の下水処理の導入が検討されているため，水質保全の効果は大きく，その事業実施優先度は極めて高 いものである点述べた。そして，事業実施で重要な下水処理場用地及び適正に稼働している最終処分場の状況も確認していることからスリジャヤワルダナプラコッテを円借款実施を前提とした F／S 対象地域とした。

また，提言として，事業の円滑な実施の観点から下水処理場用地及び中継ポンプ場用地の早期取得 やプロジェクトコストの上昇を防ぐため，F／S においては地質調査等の基礎調査を行う必要がある点 をまとめた。

第1章 背景と目的

1.1 背景

スリランカ民主社会主義共和国（以下，「スリランカ国」という。）は，2013 年時点で国民一人あ たりの所得が 3,162 米ドル，経済成長率は 7.3% となり（出典：JETRO ホームページ，スリランカ基礎的経済指標），着実な経済成長のもと 2016 年までに一人あたりの所得を 4,000 米ドルまで引き上げ中進国入りを目指している。これまでの活発な経済成長は，都市化や水使用量の増加を招き，生活排水や工場排水の急激な増加をもたらした。

一方，都市下水の基本インフラである下水道は，2014年時点においてスリランカ全体で約 2.4% の普及率に留まっている。このため，大部分の生活排水は未処理のまま河川や海域に放流され，衛生状態の悪化や水道水源の急激な水質悪化を招いている。

そこで，スリランカ政府は2010年に策定された国家方針（出典：Department of National Planning （DNP：国家計画局），Mahinda Chintana Vision for the Future）で「下水道整備と安全な水の供給」を持続可能な発展のための重要な要素と位置づけ，2025年までにオンサイト及びオフサイトの衛生施設へのアクセス率を 100% にする目標を掲げている。さらに，NWSDB の事業計画では 2020 年までに下水道普及率を 7.0% にする目標を設定している。

スリランカ政府は，2025 年までに政府目標及び環境局が導入予定の環境基準による水環境改善を達成するため戦略的下水道マスタープランの必要性を認識し，日本政府に「下水セクター開発計画策定プロジェクト（以下，「本プロジェクト」という。）」の支援を要請し，日本政府は本プロジェクト を採択した。同採択に基づき，2015年8月にJapan International Cooperation Agency（JICA：国際協力機構）－スリランカ側で Record of Discussion（R／D：討議議事録）が署名され，本プロジェクトが実施 されることとなった。

スリランカ側と合意された本ブロジェクトの概要は下記のとおりである。
（1）目的
スリランカ主要都市において，汚水対策に係るマスタープラン（以下，「M／P」という。）が策定さ れ，計画策定能力が強化されることにより，河川や海域の水質汚濁の緩和に寄与する。
（2）成果
1）スリランカ国全体を対象とした「戦略的下水道 $\mathrm{M} / \mathrm{P} 」$ の策定
2）優先都市における「都市下水道 M / P 」の策定
3）優先都市から選択された対象都市における下水道整備の F／S 調査の実施
4）国家上下水道公社及び F / S 調査を実施した都市の下水セクターの組織能力強化
2016年1月から6月に本プロジェクトの成果1）であるスリランカ国全土を対象にした「戦略的下水道 M / P 」（本報告書のセクション I）を策定した。この M / P では，効果的な下水道整備と個別処理 の改善を促進することによって包括的な水環境の改善を目指ため，全国の主要な 79 都市を対象に以下の 6 項目の観点から評価し下水道整備の方向性を示した。

- 都市化の状況
- 公衆衛生
- 都市開発
- 下水道事業の持続可能性
- 水環境への影響
- 下水道計画の成熟度

この結果，国家目標である下水道普及率 7.0% を満たすため，2035年までに上位 15 都市（コロン ボ，キャンディ，スリジャヤワルダナブラ・コッテ，アヌラーダプラ，バドウッラ，ケラニア，ヌワ ラエリヤ，ゴール，デヒワラ・マウントラビニア，ネゴンボ，コティカワッテームレリヤワ，ラトナ プラ，ハンバントータ，トリンコマレー，マハラガマ）に下水道を行う優先都市として選定した。

一方個別処理については，主な汚水処理方式である腐敗槽の処理機能を保持するためには，腐敗槽汚泥の引抜きとその処理が有効なため，下水道優先整備都市を除いた 11 都市を腐敗槽汚泥処理に関 して緊急に施設を整備する都市，13 都市を改善が必要な都市として分類し，腐敗槽汚泥処理導入に よる個別処理の改善の方向性を示した。

さらに，「戦略的下水道 M／P」では 15 の優先整備都市の中から都市下水道 M／P を行う5都市の選定を以下の項目を考慮し行った。

- コロンボ市や他ドナーの支援が重複しない都市
- 下水道の実施計画がなく，地域的な発展に寄与する戦略に重要な都市

この結果，次の5つの都市を都市下水道 M／P の対象として選定した。
－スリジャヤワルダナプラコッテ
－アヌラーダプラ
－バドゥッラ
－ヌワラエリヤ
－デヒワラ・マウントラビニア
本報告書（セクション II－（1）は，本プロジェクトの成果 2）優先都市における「都市下水道 M／P」 の策定の一部であり，上記 5 都市の内，「スリジャヤワルダナプラコッテ」の「都市下水道 M／P」を検討したものである。

1.2 目的とスコープ

本報告書の目的は，スリジャヤワルダナプラコッテの水環境改善を下水道の導入により行うための下水道整備計画を策定するものである。この計画では，下水道整備区域を設定し，下水道整備の全体像を示すだけでなく，今後の事業実施のための条件を整理するものである。

第2章 対象区域の現状

2． 1 自然環境

2．1．1 気象

（1）概況

スリジャヤワルダナプラコッテ Municipal Council（MC：市評議会）区域とその周辺は低湿地域（サブカテゴリーWL3）内に位置する。WL3 農業生態系地域は，主にガンパハ，コロンボ地区に分布し，西部州で最低の 1,700 以上ミリメートルの平均年間降水量を享受し， 3 月中旬から 12 月の相対的な乾燥期間がある。
（2）気温
気温の年間変動は少なく，年平均気温は $30^{\circ} \mathrm{C}$ である。月別気温は図 2．1－1 の通りである。

Source：JET，using Department of Meteorology data
図 2．1－1 月平均最高•最低気温

（3）降水量

スリジャヤワルダナプラコッテの平均最高降水量は 5 月に得られ， 377 mm である。その他の月に関しては図 2．1－2 の通りである。

Source：JET，using Department of Meteorology data
図 2．1－2 月平均降水量

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート

2．1．2 地形

スリジャヤワルダナプラコッテ MC 地域は，地理的に陸地と内水面から構成される。湿原の分布 は表 2．1－1 の通りである。スリジャヤワルダナプラコッテの行政区域は，北の Heen Ela，南の Diyawanna Oya 支流，東のカドウウェラ MC，西の Maharagama UC により形成されている。その面積 は17平方 km であり， 10 区から構成されている。

表 2．1－1 スリジャヤワルダナプラコッテ MC 地域の湿原

Ward No．	Name	Extent Total（ha）	Extend Marshland（ha）	\％．of Marshland
1	Rajagiriya West	122	32	26.2
2	Rajagiriya East	120	25	20.8
3	Welikada	206	79	38.3
4	Nawala	321	58	18.1
5	Ethul Kotte	165	53	32.1
6	Pita Kotte	270	86	31.8
7	Pagoda	142	21	14.8
8	Nugegoda North	69	7	10.0
9	Nugegoda South	76	0	0
10	Gangodawila	213	0	0
	Total			$\mathbf{2 1 . 2}$

[^0]湿地は Nugegoda South と Gangodawila 区を除くすべての区に存在する。これらの湿地は，南西モン スーンでの豪雨（5－8月）の間に遊水池として機能する。これらはまた，地域に生物多様性と良好な生息環境を提供している。図 2．1－3に当該地域の地形図を示す。

Source：Survey Department of Sri Lanka
図 2．1－3 スリジャヤワルダナプラコッテ MC 地域の地形図

2．1．3 地質

当該地域は高地複合地質に分類される。主要な岩石の種類は，片麻岩，シリマナイト－グラファイ ト片麻岩，珪岩，大理石，また数種のチャルノク岩から成るグラニュライト相である。花崗片麻岩に は，ガーネット黒雲母片麻岩も存在する。床岩はラテライト土壌断面の密な外殻によって覆われてい

る。このラテライト土壌断面の厚さは，場所によって大きく異なる。地質図を図 2．1－4 に示した。

図 2．1－4 プロジェクト対象地域の地質図

2．1．4 水文

プロジェクト対象地域の排水網および内水面を図 2．1－5に示す。こうした運河や湿地のネットワー クは，洪水流量調整のために重要である。流域の地形は南東から北西へ傾斜しており，その面積は 99 平方 km である。Heen Ela 湿地（Nawala），主な遊水領域のうち Kolonnawa 運河が始まる Kotte 湿地，および主な調整池に含まれる Diyawannawa 湿地が運河系統に繋がっている。議事堂のある湖
（Diyawanna Oya）はコロンボの運河システムの源流となっている。流向は Kolonnawa Ela と Dematagoda Ela を通じて北に流れ，北方閘門を通じて Kelani River に注ぐ。一方，南および西側への流れは，Kotte Ela，Nawala Ela および Kirulapone Ela を通り，Wellawatta 運河および Dehiwala 運河河口から海に注いでいる。

Source：Sri Lanka Land Reclamation and Development Corporation
図 2．1－5 プロジェクト対象地域の排水網および内水面

2．1．5 水質および水量

（1）水質
スリジャヤワルダナプラコッテにおいて，簡易的に採水が可能な地点を調査対象地域内から選定し，スリランカ下水放流基準項目及び環境基準項目（案）に該当する測定項目に関して水質調査を行った。結果を表 2.12 に，調査位置図を図 2.16 に示す。

表 2．1－2 水質調査結果（スリジャヤワルダナプラコッテ）

Sri Jayawardenepura Kotte		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Criteria
pH	-	7.6	7.4	7.2	7.3	7.6	-
Temperature	${ }^{\circ} \mathrm{C}$	32.6	29.7	30.3	31.2	30.5	-
Odor	-	$!$	-	1	1	-	ND
Color	$\mathrm{mg} \mathrm{Pt} / \mathrm{L}$	<15	<15	40	23	16	100
EC	$\mathrm{uS} / \mathrm{cm}$	317	177	343	298	281	700
Turbidity	NTU	35	6	12	11	136	-
TSS	mg / l	52	23	64	48	43	40
TDS	mg / l	220	130	250	210	200	-
DO	mg / l	7	5.1	8.2	4.1	7.8	5
BOD	mg / l	8	4.8	4	4	7.6	4
COD	mg / l	26	27	22	18	24	15
Nitrate	mg / l	0.51	0.81	0.52	0.56	0.52	10
Ammonia	mg / l	0.18	4.9	2.2	1.9	1.35	0.59
T－P	mg / l	0.14	0.28	0.3	0.24	0.25	-
PO ${ }_{4}{ }^{3-}-\mathrm{P}$	mg / l	0.08	0.18	0.21	0.17	0.15	0.4
Cl	mg / l	39.9	12.2	30.2	26.2	26.2	600
T－NTotal	mg / l						
Nitrogen（T－N： 全窒素）		0.74	5.78	2.74	2.5	1.95	-
Fecal Coliform	$/ 100 \mathrm{ml}$	64	800	84	100	304	1×10^{3}
Total Coliform	$/ 100 \mathrm{ml}$	158×10^{2}	18×10^{4}	3×10^{4}	15×10^{4}	6×10^{4}	1×10^{4}

Note：！：不快な臭気。網掛け部分は，目安以上の値
Source ：JET

Source ：JET

図 2．1－6 調査位置図

スリジャヤワルダナプラコッテ地域における汚染状況を評価するため，現在スリランカで環境基準として導入が検討されている「Revised Ambient Water Quality Standards」を目安として比較を行った。当該基準案より，一般的な水環境の基準として，カテゴリ C（魚類および水生生物水域）を参照した。カテゴリCにおける数値設定の無い場合は，下位基準となるカテゴリ D， E，Fより最低値を採用した。（なお，カテゴリ A は飲料水水源，B は親水用水源である。）

基準案との比較の結果，Total Suspended Solids（TSS：浮遊物質），Dissolved Oxygen（DO ：溶存酸素），BOD，COD，Ammonia および Total Coliformにおける数値が目安を上回り，汚染状況が示された。

分布の状況からは，全ての地点で周辺からの排水により汚染されている状況が確認された。各地点に関して，地点－1 および地点－2 は感潮域，また地点－3および地点－4 は湖への流入河川，地点－5は湖の止水域である（図 2．1－7）。これらの地点において，二種類の汚染タイプが観察さ れた。先ずTSS，BOD，COD，Ammonia および Total Coliform などのように，全体的に進行し ている汚染状況である。また，DO のように，流入河川の汚染が他の箇所よりも進行している項目も見られ，湖への影響が懸念される。

Note：赤印は目安以上の地点を示す。
図 2．1－7 スリジャヤワルダナプラコッテにおける汚染の状況

（2）下水道整備により期待される効果

上記の通り，スリジャヤワルダナプラコッテ地区においては，TSS，DO，BOD，COD，Ammonia および Total Coliform の分布に示されるような汚染状況が見られる。TSS は下水処理目標の $35 \mathrm{mg} / \mathrm{L}$ を現状で大きく上回っており，下水道を整備することにより大幅な水質改善が期待で きる。DO 値の低い嫌気性の水質は処理場での曝気により容易に改善される。BOD や COD に よる湖への負荷は，活性汚泥による有機物分解により低減される。Ammonia は，好気菌により変化，低減される。また Total Coliform は消毒により大幅に減少する。

以上から，下水道整備によるスリジャヤワルダナプラコッテの水環境向上は，十分に効果が見込まれると考えられる。

（3）水量

スリジャヤワルダナプラコッテの特徴的な水域は図 2．1－6に示した地域を中心として形成さ れる。地点－1 および地点－2 は比較的大きい河川上にあるが感潮域であり，水の流れる方向が時間によって異なるため流量の把握が困難である。また地点－3 および地点－4 は湖への流入河川上 にあるが，流量の測定が困難な小河川である。また，地点－5 は形としては流入河川の末端に当 たるが，流れは無い。

2．1．6 環境条件

（1）大気質
スリランカ政府は，連続的に環境大気質を監視するため，1997年 Colombo Fort に唯一の監視地点を設置した。1998年から2012年に渡るPM10 の年平均から，当物質レベルがこの期間中， $70 \sim 80 \mu \mathrm{~g} / \mathrm{m}^{3}$ の範囲内で比較的安定して推移していることが明らかになった（図 2．1－8）。 このレベルは，WHO のガイドライン $\left(50 \mu \mathrm{~g} / \mathrm{m}^{3}\right)$ と比較して高くなっている。

スリジャヤワルダナプラコッテ MC 地域内の大気污染の主な原因は，車両や産業からの排出 である。当該地域の急速な発展，交通量の多い幹線道路（Kirulapona－Delkanda 区域，Sri Jayawardenapura Mawatha 区域およびBorella－Rajagiriya－Battaramulla 区域）およびその他の道路，機関車の交通が大気汚染物質の排出量の上昇に起因している。

特に水のレベルが低い乾季に起こる運河からの悪臭の発散は，排水口に投査された固形廃棄物の腐敗が原因となっている。

Source：Central Environmental Authority
図 2．1－8 Colombo Fort 観測点の PM10 レベル

（2）騒音•振動

当該地域内の現在の環境騒音•振動レベルは，都市化，工業，商業活動等に起因している。プ ロジェクト地域内においては特に交通騒音が支配的であり，主要道路（Kirulapona－Delkanda， Sri Jayawardenapura Mawatha，Borella－Rajagiriya－Battaramulla など）やその他の道路で発生してい る。これらの道路は，ピーク時だけでなく夜間も交通量が多い。高しベルの騒音•振動は，列車運行からも発生しており，こうした都市活動全てがプロジェクト地域内の高い騒音•振動レベル に㟢与している。

2．1．7 保護区

プロジェクト地域の湿地は，図2．1－9に示す通りである。

（1）スリジャヤワルダナプラ・サンクチュアリ

Diyawanna Oya 湿原は水鳥が多くみられる。鳥類の営巣などを考慮し，Diyawanna Oya 湿原の一部は動植物保護条例の下，1985年9月1日の臨時官報によりスリジャヤワルダナプラ・サン クチュアリとして宣言された。その合計範囲は 449.2 ヘクタールであり，スリランカ，アジアの湿地に原生の固有鳥類，蝶，トンボ，および哺乳動物などの生息地となっている。固有種や絶滅危惧種を含む内陸湿地に見られる植物相は固有の生態系を形成している。新たに構築された Beddagana 湿原公園の 18 ヘクタールはスリジャヤワルダナプラ・サンクチュアリの範囲内にあ る。

（2）Diyawanna Oya 湿原

Diyawanna Oya 湿原の大部分は，スリジャヤワルダナプラコッテ MC 内に位置している。この湿原は，西部州コロンボ地区のケラニ川の左岸に位置する人工運河の水系である（ $652^{\prime} 55^{\prime \prime}-655$ ， $45^{\prime \prime} \mathrm{N} / 7952^{\prime} 35^{\prime \prime}$－ $7955^{\prime} 15^{\prime \prime}$ E）。Kolonnawa 湿地，Heen－ela 湿地と Kotte 湿地は，この水系の主 な流域として機能している。この領域（ 400 へクタール）はコロンボ市内の主要な排水システム や遊水池として機能している。Diyawanna oya 湿原の特徴は以下の 3 点である。（1）レクリエー

ション環境の提供，（2）周辺地域における住民の収入源（漁業，牛の放牧，薪などの収集），（3）水系としての恩恵および動植物の退避地としての役割。

（3）コロンボ遊水湿原

コロンボ遊水湿原（ 1,200 ヘクタール）は，首都圏のコロンボに散在する開水路，湖，水田，淡水湿地を包含する大規模なネットワークである。現在，湿地（399ヘクタール）の一部が保護区として宣言され，国有化されている。残りの約 800 ヘクタールは個人所有の水田となっている。

（4）Thalangama Tank 環境保護区

Thalangama Tank およびその周辺は，2007年3月5日付け臨時官報 1487／10により，国家環境法に基づく環境保護区（EPA）として宣言された。この区域は MC 境界から約 2 キロ離れている

図 2．1－9 プロジェクト対象地域の遊水池等

（5）バッファーゾーン

規定されたバッファーゾーンは存在していないものの，自然破壊を受けやすい地区は Central Environmental Authority（CEA：中央環境局）の規制の下で定められている。これらの地域は，自然および保護区のための緩衝地帯と考えることができる。

こうした脆弱な個所は CEA によりマッピングされており，コロンボ県に関するマップを図 2．1－10に示す。

Source：Central Environmental Authority
図 2．1－10 コロンボ地区の自然破壊を受けやすい地域

2．1．8 動植物

スリジャヤワルダナブラコッテ地域の動植物相を文献および現地調査を通じて行った。結果を表 2．1－3および表 2．1－4にまとめた。なお，詳細についてはさらなる現地調査が必要である。

表 2．1－3 動物調査結果

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションII都市下水道マスターブラン スリジャヤワルダナプラコッテ

| Class | Type | Saxa | | Significant Species（common name） |
| :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{c}Conservation

Status

（IUCN 3．1）\end{array}\right]\)

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションI都市下水道マスタープラン スリジャヤワルダナプラコッテ

表 2．1－4 植物調査結果

Taxa		Significant Species（common name）	Conservation Status （IUCN 3．1）
Family	Species		
Moraceae		Ficus religiosa（Bodhi tree）	LC
Anacardiaceae		Mangifera indica（Mango）	None
		Spondias dulcis（Ambarella）	None
		Annona reticulate（Custard apple）	None
		Plumeria rubra（Frangipani）	None
		Phyllanthus myrtifolius（Mousetail plant）	None
		Alstonia macrophylla（Hard milkwood）	lc
		Leucaena leucocephala（white leadtree）	None
		Muntingia calabura（Capulin）	None
		Musa x paradisaca（Plantains）	None
		Tecoma stans（Trumpetbush）	None
		Macaranga indica	None
		Swietenia mahogany	
		Ludwigia decurrens（Willow primrose）	LC
		Lygodium spp．（Climbing fern）	
Salviniaceae		Salvinia molesta（Kariba weed）	LC
		Ipomoea aquatic（Kankun）	LC
		Cyclosorus interaptus（Swamp shield－fern）	None
		Eichhornia crassipes（Water hyacinth）	None
		Cerbera odollam（Suicide tree）	None
		Cyperus pilosus	
		Hibiscus tiliaceus（Beach Hibiscus）	LC
		Colocasia esculenta	
		Panicum repens（Torpedograss）	None
		Leersia Hexandra（Southern cutgrass）	LC
		Rhyncospora sp	
		Eleocharis sp	
		Brachiaria sp	
		Bacopa sp	
		Phragmites karka	
		Annona glabra（Swamp apple）	
		Cerbera manghas（Sea mango）	
		Syzygium sp	
		Melastoma sp	
		Lantana camara（Big sage）	

Source：
Egodawatta and Warnasooriya（2014）
Manamendraarachchi and Adikari（2014）
Munashingha et al．，（2009）
Dharmasena，（1993）
Wijerathna and Baladurage
IUCN Redlist
JET

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションI 都市下水道マスタープラン スリジャヤワルダナプラコッテ

2． 2 社会環境

2．2．1 行政制度

スリジャヤワルダナプラコッテ MC は，市の発展に関わるあらゆる事業の管理のため 1997 年に設立され，市内で行われた全計画を担当してきた。MC はスリジャヤワルダナプラコッテ部門事務局 （DSD），コロンボ県，西部州，スリランカの下位に属する。MC区の総面積は $17 \mathrm{~km}^{2}$ であり， 10 区 からなる。西部州の総面積は3，684 km^{2} であり，コロンボ県は $699 \mathrm{~km}^{2}$ である。

2．2．2 人口統計

スリランカ国勢調査統計局によると，スリジャヤワルダナプラコッテ MC の人口密度は 6，300 人 $/ \mathrm{km}^{2}$ ，コロンボ県は 3,487 人 $/ \mathrm{km}^{2}$ ，西中部州は 1,652 人 $/ \mathrm{km}^{2}$ であった。なお，スリジャヤワルダナプ ラコッテ MCの 2012 年の人口は 107,925 人であった。GND および性別に基づく人口は表 2．2－1 の通 りである。

表 2．2－1 スリジャヤワルダナプラコッテ MC の人口

Name of GND	Total	Male		Female	
		No	\％	No	\％
Obsekarapura	11，963	5，925	49.5	6，038	50.5
Welikada West	7，004	3，195	45.6	3，809	54.4
Welikada East	6，749	3，183	47.2	3，566	52.8
Rajagiriya	3，591	1，878	52.3	1，713	47.7
Welikada North	4，834	2，389	49.4	2，445	50.6
Nawala West	4，059	2，032	50.1	2，027	49.9
Koswatta	5，707	2，767	48.5	2，940	51.5
Ethulkotte West	3，371	1，664	49.4	1，707	50.6
Ethulkotte	5，929	2，877	48.5	3，052	51.5
Pitakotte East	3，984	1，912	48.0	2，072	52.0
Pitakotte	3，634	1，753	48.2	1，881	51.8
Pitakotte West	5，301	2，439	46.0	2，862	54.0
Nawala East	5，473	2，573	47.0	2，900	53.0
Nugegoda West	5，627	2，635	46.8	2，992	53.2
Pagoda	5，446	2，537	46.6	2，909	53.4
Nugegoda	3，365	1，678	49.9	1，687	50.1
Pagoda East	5，944	2，902	48.8	3，042	51.2
Gangodavila North	5，352	2，493	46.6	2，859	53.4
Gangodavila South	7，305	3，554	48.7	3，751	51.3
Gangodavila East	3，287	1，606	48.9	1，681	51.1
Total	107，925	51，992	48.2	55，933	51.8

Source：Census of Population and Housing 2012，Department of Census and Statistics（DCS ：政府統計局）

2． 2.3 保健•疾患

年齢グループに基づく，全国およびコロンボ県の慢性疾患率は以下の通りである。数値から，コロ ンボ県の数値は年齢により異なり，15歳～24歳の数値は国平均より低いがそれ以外の 15 歳以下， 25歳以上の数値は国平均より高いことがわかる（表 2．2－2）。

表 2．2－2 年齢階級別の慢性疾患率

	Less than 15 years	$15-24$ years	$25-59$ years	60 and above
Colombo District	3.3%	2.4%	20.7%	63.4%
Sri Lanka	2.8%	3.3%	18.5%	55.2%

Source：National Survey on Self－reported Health in Sri Lanka 2014，Department of Census and Statistics

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションI 都市下水道マスタープラン スリジャヤワルダナプラコッテ

15 歳以上の人口の糖尿病および高血圧の有病率は，コロンボ県がスリランカの平均値を上回って いる（表 2．2－3）。

表 2．2－3 糖尿病および高血圧の有病率

	Diabetes	High Blood Pressure
Colombo District	11.2%	11.9%
Sri Lanka	7.2%	9.2%

Source：National Survey on Self－reported Health in Sri Lanka 2014，Department of Census and Statistics

2． 2.4 宗教•民族

宗教別のコロンボ県人口は表 2．2－4に示す通りである。

表 2．2－4 宗教別人口

Buddhist	Hindu	Islam	Roman Catholic	Other Christian	Other	Colombo District Total
$1,631,659$	185,944	274,267	162,701	67,405	2,324	$2,324,300$
70.2%	8.0%	11.8%	7.0%	2.9%	0.1%	100%

Source：Economic and Social Statistics of Sri Lanka－2014，Central Bank of Sri Lanka，April 2014
民族別のコロンボ県人口は表2．2－5に示す通りである。
表 2．2－5 民族別人口

Sinhala	SL Tamil	Indian Tamil	SL Moor	Other	Colombo District Total
$1,778,090$	234,754	23,243	248,700	37,189	$2,324,300$
76.5%	10.1%	1.0%	10.7%	1.6%	100%

Source：Economic and Social Statistics of Sri Lanka－2014，Central Bank of Sri Lanka，April 2014

2．2．5 貧困率

スリランカ国勢調查統計局により，家計収支調査（Household Income and Expenditure Survey ：HIES） が行われた。District，Province および国家レベルでの貧困率は，表2．2－6に示す通りである。

表 2．2－6 貧困率

	Poor HH \％		
	$2006 / 07$	$2009 / 10$	$2012 / 13$
Sri Lanka	12.6	7.0	5.3
Western Province	6.50	3.00	1.50
Colombo District	3.90	2.50	1.10

Source ：Census and Statistics Department

2．2．6 歴史と文化（遺産）

古代スリランカには長期的に栄えた首都が 4 都市あった。コッテの古代王国は 15 世紀中にス リジャヤワルダナプラを中心としていた。これに関連する記念物として，考古学局は保護対象を定めた。スリジャヤワルダナプラコッテ MC の考古学的保護記念物の一覧を表 2．2－7に示す。

表 2．2－7 スリジャヤワルダナプラコッテ MC の考古学的保護記念物

Monument	Declared on
Ancient Tunnel at Kotte Ananda Sastralaya	$27-$ Jun－52
Ancient water canal	12 －Aug－71
Obeysekera Walawwa	13 －Nov－92
Parakumba Pirivena	14 －May－71
Pitakotte Raja Maha Vihara	$17-$－May－13
Ancient rampart－Ethul Kotte ruins	$23-$ Feb－07

Source：JET

2．2．7 経済

（1）概況

西部州，コロンボ県に位置するスリジャヤワルダナプラコッテは，国の首都である。1985 年 に，首都がコロンボからこの MC に移転された。同 MC のディヤワンナ湖の島に国会議事堂が建てられており，ほとんどの省ではすでにこの町に本部を移転した。そのため，この MC は行政都市として機能している。スリランカ日本通りのような広い道路があり，列車やバスの便も良 い。スリジャヤワルダナプラコッテ MC，コロンボ MC及びデヒワラ・マウントラビニア MC は， コロンボ県の最も都市化した地域となっている。ヌゲゴダは，スリジャヤワルダナブラコッテ MC の主要な商業地域であり，あらゆる商業銀行と金融会社がこの地域に本社や支社を置いてい る。表 2．2－8 は，西部州の産業別 GDP を示している。

表 2．2－8 西部州の産業別 GDP（現在価格）

	Unit：Million LKR							
No	Sector	$\mathbf{2 0 1 0}$		$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$		
1	Agriculture	75,942	3.0%	92,191	3.2%	93,187	2.9%	91,965
2	Industry	802,790	31.9%	966,704	33.4%	$1,135,586$	35.0%	$1,280,355$
3	Services	$1,634,176$	65.0%	$1,835,532$	63.4%	$2,015,081$	62.1%	$2,270,921$
	GDP	$2,512,908$	100.0%	$2,894,428$	100.0%	$3,243,854$	100.0%	$3,643,241$
	GDP Share Percentage	44.8		44.2	42.8	100.0%		

Source：CBSL Annual Report 2014
大コロンボ圏を含む西部州のGDP は，国のGDPの42～44\％に相当する。サービス業は最大の産業で，州の GDP の 60～65\％を占めている（国平均：56．8\％）。工業部門は州の GDP の $30 \sim 35 \%$
（国平均：32．5\％）を占めている。サービス業は，西部州の GDP のうちの最も大きな部分を生 み出してきた。

（2）家庭所得

平均家庭所得は，＂Household Income and Expenditure Survey 2012／2013＂のデータを活用できる。 その抜粋を，表2．2－9および図 2．2－1 に示している。表 2．2－9に示すように，コロンボ県の月平均家庭所得は2012／13 年度に 77，723LKR であった。「賃金／給与」が，所得の 37.4% 占め，最も大きな所得源となっている。図2．2－1 は，コロンボ県の家庭所得が国家平均を 41% 上回っており，西部州の平均よりも 17.5% 高いことを示している。スリジャヤワルダナプラコッテでは，下水道料金が計画される際に，家庭の支払可能性（Affordability To Pay（ATP ：支払可能額））に，念の ため注意する必要がある。

表 2．2－9 コロンボ県の月平均家庭所得の内訳（2012／13）

No．	Sector	Colombo District	Unit：LKR／month	
1	Average Household Income	77,723		
2	Per capita	19,346		
3	Ave．No．of Income Receivers	1.9		
4	Wage／Salaries	29,860	37.4%	
5	Agricultural Activities	708	0.9%	
6	Non Agric．Activities	19807	24.8%	
7	Other Cash Income	8811	11.0%	
8	Income by Adhoc Gain	6271	7.9%	
9	Non Monetary Income	12266	15.4%	
10	Income In Kind	2078	2.6%	

Source：Household Income and Expenditure Survey 2012／2013，Department of Census and Statistics，Ministry of Policy Planning Economic Affairs

Source：Household Income and Expenditure Survey 2012／2013，Department of Census and Statistics，Ministry of Policy Planning Economic Affairs

図 2．2－1 月当たり家庭所得の比較

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート

2．2．8 土地利用

スリジャヤワルダナプラコッテ地区の土地利用状況を以下の表 2．2－10 および図 2．2－2 に示す。市の 70% 程度が開発され，残りは湿地帯，湖，畑などとなっている。

図 2．2－2 スリジャヤワルダナプラコッテ MC の土地利用状況
表 2．2－10 スリジャヤワルダナプラコッテ MC の土地利用状況

Landuse Type	Area（Ha）
Builtup Area	117.83
Other Crops	2.74
Homesteads	1060.21
Marshy	304.53
Paddy	94.48
Rubber	1.45
Waterbody	69.36

Source：Survey Department of Sri Lanka

土地利用計画では，河川沿いの湿地帯保護地帯以外は，住宅地又は開発地として計画されている（図 2．2－3）。

Source：Urban Development Authority
図 2．2－3 スリジャヤワルダナプラコッテの土地利用計画（2008－2020）
注：2008－2020ゾーニングプランは，Urban Development Authorityによって作成され，現在の利用状況を考慮し各ソーンを設定して いる。特別住宅地域（Special Residential Zone）は，住居者住宅のみの利用に限定され，優先住宅地域（Primary Residential Zone）は，小規模な商業活用のみが許される居住者専用住宅地域である。混合開発地域（Mixed development Zone）は，ある一定の範囲内で全 ての用途に活用が認められ，その活用の程度は各自治体で異なっている。

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションI 都市下水道マスタープラン スリジャヤワルダナプラコッテ

2． 2.9 水供給と衛生

（1）水供給

スリジャヤワルダナプラコッテ MC における飲料水施設の整備状況を表 2．2－11 に示す。水道普及率はほぼ 100% である。水道の問題点として，水道接続数の増加に伴い，ピーク時に供給量不足が生じ，特に屋上タンクを備えていない低所得家庭にピーク時に水道が利用できない傾向 がある。

表 2．2－11 スリジャヤワルダナプラコッテ MC における飲料水施設の整備状況

i		$\begin{aligned} & \frac{\ddot{\delta}}{8} \\ & \sum_{3}^{2} \end{aligned}$	틍			$\overline{0}$ 0 0 0 0 0 0 5					$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \equiv \end{aligned}$	$\begin{aligned} & \text { n } \\ & \dot{0} \\ & \stackrel{0}{\circ} \\ & \end{aligned}$				
1	Obsekarapura	514C	2，858	14	1	－	2，662	105	65	－	3	－	－	－	－	8
2	Welikada West	514A	1，505	28	1	1	1，391	71	10	－	2	－	－	－	1	－
3	Welikada East	514	1，743	36	10	4	1，520	76	92	－	3	－	－	－	1	1
4	Rajagiriya	514B	782	2	－	－	727	18	29	－	1	－	－	－	5	－
5	Welikada North	514D	1，216	7	－	－	1，104	34	63	－	－	－	－	－	－	8
6	Nawala West	520	1，096	33	5	－	981	53	4	－	12	－	－	－	8	－
7	Koswatta	520 A	1，529	43	2	1	1，354	83	43	－	1	－	－	－	2	－
8	Ethulkotte West	521 A	912	20	－	－	858	24	9	－	1	－	－	－	－	－
9	Ethulkotte	521	1，586	38	1	2	1，451	62	28	－	2	－	－	－	2	－
10	Pitakotte East	522 A	1，070	44	2	24	945	35	13	－	1	－	－	－	6	－
11	Pitakotte	522 B	961	32	1	－	901	11	5	－	5	－	－	－	2	4
12	Pitakotte West	522	1，430	74	2	－	1，324	17	8	－	1	－	－	－	3	1
13	Nawala East	520B	1，442	61	4	－	1，344	21	8	－	3	－	－	－	1	－
14	Nugegoda West	519B	1，478	37	－	－	1，248	113	56	－	9	－	－	－	9	6
15	Pagoda	519A	1，447	57	2	1	1，355	18	7	－	3	－	－	－	4	－
16	Nugegoda	519	928	24	3	－	889	6	3	－	－	－	－	－	3	－
17	Pagoda East	519C	1，498	48	4	2	1，351	28	59	－	5	\checkmark	－	－	1	\checkmark
18	Gangodavila North	526	1，324	96	2	2	1，190	18	6	－	6	－	－	－	2	2
19	Gangodavila South	526 A	1，921	132	9	10	1，513	213	40	－	2	－	－	－	2	－
20	Gangodavila East	526 C	857	40	1	－	753	17	46	－	－	－	－	－	－	\checkmark
	SJKMC Total		27，583	866	50	47	24，861	1，023	594	－	60	－	－	－	52	30

Source：Census of Population and Housing 2012，Department of Census and Statistics

（2）衛生状況

スリジャヤワルダナプラコッテ MC における衛生施設の整備状況を表 2．2－12 に示す。約 96\％ が臭気の上昇を防ぐトラップのついた腐敗槽のトイレを利用している。また，汚水の大部分は腐敗槽と浸透槽で処理されている。

表 2．2－12 スリジャヤワルダナプラコッテ MC における衛生施設の整備状況

خ	$\begin{aligned} & \sum_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & \check{Z} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & 0 \\ & \sum_{0} \end{aligned}$	$\stackrel{\text { ভ }}{\stackrel{\circ}{\circ}}$				$\begin{aligned} & \text { ㅎ } \\ & \text { \# } \end{aligned}$	
1	Obsekarapura	538 C	2，858	2727	111	18	2	0
2	Welikada West	537	1，505	1420	3	73	9	0
3	Welikada East	537A	1，743	1673	17	52	1	0
4	Rajagiriya	537B	782	780	2	0	0	0
5	Welikada North	538	1，216	1201	4	4	6	1
6	Nawala West	538B	1，096	1085	9	1	1	0
7	Koswatta	538A	1，529	1487	29	12	1	0
8	Ethulkotte West	540A	912	896	14	2	0	0
9	Ethulkotte	540	1，586	1507	62	17	0	0
10	Pitakotte East	536A	1，070	993	60	16	1	0
11	Pitakotte	536	961	956	1	2	2	0
12	Pitakotte West	539／42A	1，430	1393	36	1	0	0
13	Nawala East	540B	1，442	1425	8	9	0	0
14	Nugegoda West	539／42	1，478	1447	29	2	0	0
15	Pagoda	539／42B	1，447	1385	25	35	2	0
16	Nugegoda	541	928	923	5	0	0	0
17	Pagoda East	539／42C	1，498	1359	133	6	0	0
18	Gangodavila North	544	1，324	1320	2	2	0	0
19	Gangodavila South	544A	1，921	1838	28	54	1	0
20	Gangodavila East	545A	857	835	15	7	0	0
SJKMC Total			27，583	24，875	593	313	26	1

Source：Census of Population and Housing 2012，Department of Census and Statistics
唯一，国会議事堂，Sethsiripaya，Isurupaya，Sri Jayewardenepura Hospital Complex（SJP Hospital） のような官庁街区や重要施設の汚水はポンプを使い最終的に Colombo Municipal Council（CMC ： コロンボ市）の下水道に接続している（図 2．2－4）。

図 2．2－4 コロンボ市の下水道へ接続している施設

汚水処理の課題として，市の大部分は標高が低く，さらに地下水面が高いため，浸透槽の土壌浸透が適切に機能していない。加えて，建物の敷地面積が小さいため敷地内に適切な大きさの腐敗槽を設置することが困難となっている。また，雨季には地下水位の上昇と浸透性の悪い土壌に よって，腐敗槽や浸透槽の浸透機能が適切に行われずせず，結果として近隣の水域や地下水を汚染している。

商業ビルでは，建設時に導入したオンサイト施設は，適正に維持管理されていないため処理機能が年々悪化している。

この結果，スリジャヤワルダナプラコッテの主要な水系であるディヤワナ・オヤ（Diyawanna Oya）の水質が悪化している。

2．2．10 廃棄物

高度な都市化と工業化に伴い，固体廃棄物の発生率が高まっている。スリジャヤワルダナプラコッ テ MC の廃棄物発生量は 150 トン／日であり，発生率は 1.27 キロ／人／日である。各世帯，商業施設，公共機関，病院や医療センター，市場等から，固形廃棄物が大量に排出されている。さらに市内では大，中規模の産業で発生する廃棄物によって事態が悪化している。スリジャヤワルダナプラ総合病院 やその他のいくつかの医療センターは，対処が必要な特別（医療）廃棄物を発生させている。MC 内 において排出された固形廃裹物の構成内容を以下の表 2．2－13 に示した。

発生した廃棄物の約 100 トンノ日は，MC が提供する収集および廃棄サービスによって処理されて おり，主に以下の 2 方法を採用している。

- 各戸廃棄物収集サービスおよび都市固形廃棄物管理担当者による処分場への搬送
- 民間企業による委託廃棄物収集および処分場への搬送

現在，10 区からの約 50 トン／日の廃棄物は，PHI の監督の下で MC によって収集されている。集め られた廃棄物は Karadiyana 処分場に送られる。残りの分は MC によって任命された民間企業によっ て処理されている。

表 2．2－13 固形廃棄物の構成内容

Category	$\%$
Bio－degradable	63.63
Paper \＆cardboard	8.22
Glass	1.50
Metal	0.98
Wood	0.83
Rubber \＆Cloths	$4 . .75$
Polythene＋plastic	8.92
Soil \＆Ceramic	3.65
Electronic waste	0.02
Demolition waste	1.41
Other	6.54

Source：Sri Jayawardenapura Kotte MC
図 2．2－5に Karadiyana 処分場とコンポスト施設の写真を示す。

図 2．2－5 Karadiyana 処分場（左），コンポスト施設（右）

2.3 下水道整備の必要性

スリランカでは 2010 年に策定された国家方針において，2025年までにオンサイト及びオフサイト の衛生施設へのアクセス率を 100% にする目標を掲げ，NWSDB の事業計画では 2020 年までに下水道普及率を 7.0% にする目標を設定している。

国連ではミレニアム開発目標（MDG）の次の開発目標として，持続可能な開発目標（SDGs）を設定 し，「2030年までにすべての人に水と衛生へのアクセスと持続可能な管理を確保する」という衛生の目標を設定し，以下の指標を定めている。

- 2030年までにすべての人に適切な衛生設備へのアクセスを達成する。
- 2030年までに未処理汚水の排水量を半減し，水質改善を目指す。

2012 年時点のスリランカの下水道普及率は 2.4% であり，それ以外は腐敗槽に代表されるオンサイ ト施設により汚水が処理されている。しかしながら，腐敗槽による活水処理は人口が密集しているス リジャヤワルダナプラコッテでは有効に機能せず，水域では活水に由来する BOD やアンモニア，大腸菌群数の増加が確認されている（2．1．5 参照）。

このため，水質の保全及び改善のためには下水の更なる処理が必要であり，効率的に下水を処理す ることができる下水道の整備が必要である。

第3章 下水道の基本条件

3.1 基本条件

NWSDBは2010年10月に自国資金で，＂PROJECT PROPOSAL FOR SRI JAYEWARDENEPURA KOTTE WASTEWATER DISPOSAL SYSTEM＂を作成した。この計画では目標年次を 2040 年とし，管渠整備は自然流下管約 47 km ，圧送管約 15 km ，計画汚水量は $21,500 \mathrm{~m}^{3} /$ 日，一次処理した処理水を延長 1.7 km ，管径 $1,500 \mathrm{~mm}$ の HDPE 管で導水し，海洋放流を行う計画としている。また，計画人口 は，2001年に実施された国勢調査での2009年次人口及びスリジャヤワルダナプラコッテ統計局によ る年間報告書を参考として算出している。本 M／Pでは，上記の計画を参考に，2012 年の国勢調査結果を加味した。また，下水処理場による処理を行う基本計画を作成した。

3．1．1 目標年次

＂NWSDB Design Manual D7 Wastewater Collection，Treatment，Disposal \＆Re－Use 2012＂では，下水道管渠，ポンプ場，下水処理場，排水処理及び利用に関する設計期間を 30 年と定めている。従って，本 M／P の目標年次を 2046年とした。

3．1．2 計画及び設計基準

計画及び設計基準は＂NWSDB Design Manual D7 Wastewater Collection，Treatment，Disposal \＆Re－Use 2012＂を基にNWSDB とJICA 専門家による技術委員会で討議し，以下のように決定した。

（1）汚水量算定

汚水量算定基準を表3．1－1 に示す。
表 3．1－1 汚水量算定基準

Item	Value	Remarks
Per capita water consumption	120 lpcd	
Domestic Flow	80%	of water consumption
Non－domestic Flow	35%	of Domestic Flow
Average Dry Weather Flow（ADWF ：晴天時 平均下水量）	Domestic＋Non－domestic flow	
Daily maximum dry weather flow	1.15 times	of ADWF
Hourly Maximum Dry Weather Flow	1.6 times	of ADWF
Peak Dry Weather Flow（PDWF ：晴天時最 大汚水量）	3 times	of ADWF
Infiltration	20%	of ADWF

Planning of Sewer Pipe System：PDWF＋Infiltration
Planning of Pumping Station：Hourly Maximum Dry Weather Flow＋Infiltration
Source：JET
（2）下水道管渠
a．幹線の流量計算
自然流下管には Manning 式を，圧送管には Hazen William 式をそれぞれ用いる。表 3．1－2 に下水管渠設計に用いた係数値を示す。

Manning 式

$\mathrm{Q}=\mathrm{A} \times \mathrm{V}$ ，

$$
\mathrm{V}=1 / \mathrm{n} \times \mathrm{R}^{2 / 3} \times \mathrm{S}^{1 / 2}
$$

ここで， Q ：流量 $\left(\mathrm{m}^{3} / \mathrm{sec}\right), \mathrm{V}:$ 流速 $(\mathrm{m} / \mathrm{sec})$ ，
$\mathrm{n}:$ 粗度係数，R：径深（m），S：動水勾配，A：断面積（ m^{2} ）

Hazen William 式

$\mathrm{Q}=\mathrm{A} \times \mathrm{V}, \quad \mathrm{V}=0.84935 \times \mathrm{C} \times \mathrm{R}^{0.63} \times \mathrm{S}^{0.54}$
ここで， $\mathrm{Q}:$ 流量 $\left(\mathrm{m}^{3} / \mathrm{sec}\right), \mathrm{V}:$ 流速 $(\mathrm{m} / \mathrm{sec})$ ，
C：流速係数，R：径深 $(\mathrm{m}), \mathrm{S}:$ 動水勾配，A：断面積 $\left(\mathrm{m}^{2}\right)$
表 3．1－2 下水管渠設計に用いた係数値

Type of Pipe	n （Roughness Coefficient）	C （Flow Velocity Coefficient）
PVC Pipe	0.013	120
HDPE Pipe	0.013	120
GRP Pipe	0.013	120
DI Pipe（Ductile Cast Iron Pipe）	0.013	120

The design slopes of gravity sewers are checked based on tractive force required to flush the sand particles expected in sewage flow．
Source：JET

b．流速

最小流速： $0.65 \mathrm{~m} / \mathrm{s}$
最大流速： $3.0 \mathrm{~m} / \mathrm{s}$

c．余裕率

管径 600 mm 以下： 200% 以上
管径 700 mm 以上： 150% 以上
d．最小土被り
1.0 m
e．最小管径
幹線： 225 mm （圧送管を除く）
支線： 160 mm （圧送管を除く）
取付け管： 110 mm

f．管種

管種を表 3．1－3に示す。
表 3．1－3 管種

Diameter	Purpose	Pipe Material
200 mm or less	Gravity	PVC Pipe
225 to 355 mm	Gravity	HDPE Pipe
400 mm or above	Gravity	GRP
100 to 400 mm	Force Main	HDEP
Above 400 mm	Force Main	DI Pipe

（3）ポンプ施設
表 3．1－4にポンプ施設のタイブを示す。タイプは，Manhole Type Pumping Station（MTPS ：マン ホールポンプ施設）とポンプ場施設（Major Pumping Station：MPS）に大別される。セイロン電

力公社（Ceylon Electricity Board：CEB）の技術的要件として，ポンプ施設に変圧器を設置しない場合は 42 kVA 以下でなければならない。反対に， 42 kVA より大きくなる場合は変圧器等の設備が必要となり，ポンブ場施設が必要となる。他に，周辺環境と立地条件に応じて MTPS でも用地取得が必要となる場合がある。

表 3．1－4 ポンプ施設のタイプ

Type of Pumping Station	Site	Electricity
MTPS：Manhole Type Pumping Station	Under Road	Less than 42 kVA
MPS：Major Pumping Station	Property Required	42 kVA and above

（4）下水処理場

下水処理場は以下を考慮する。
＞原水水質及び排水基準
＞用地が下水処理場への適用条件を満たしているか
＞建設費及び運用維持管理費
＞運用維持管理が容易であること

3．1．3 下水道サービス対象地域の選定

本 M／P の下水道サービス対象地域は下記を考慮して決められている。
＞目標年次の 2046 年に，人口及び発展度合が成熟状態と推測されること
＞大規模商業地域や学校，ホテル，住宅，宗教施設等があること
＞住宅地域の人口密度が高いこと
$>$ 下水道管渠整備を実施した方が効率的であり，かつ，効果的と考えられること
－MC だけでなく，污水を効率的に収集できる隣接都市内の地域も考慮すること

図3．1－1 に示す範囲を M／P 地域として決定した。

Source：JET based on data of Survey Department of Sri Lanka
図 3．1－1 スリジャヤワルダナプラコッテにおける M／P 地域

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションI都市下水道マスタープラン スリジャヤワルダナプラコッテ

この地域に含まれる DSD 及び GND（Grama Niladhari Division）を表3．1－5に示す。

表 3．1－5 M／P 地域に含まれる DSD 及び GND

S／No．	GND No．	GND	S／No．	GND No．	GND
1	Kaduwela DSD		3	Maharagama DSD	
1.1	492	Subhoothipura	3.1	525A	Udahamulla East
1.2	492 A	Battaramulla South	3.2	524	Madiwella
1.3	492 B	Battaramulla North	3.3	493A	Thalawathugoda West
1.4	492 D	Rajamalwatta	3.4	493B	Thalawathugoda East
1.5	477	Thalangama North A	3.5	526B	Gangodavila South B
1.6	479B	Asiri Uyana	3.6	526D	Jambugasmulla
1.7	479A	Pahalawela	4	Maharagama DSD	
2	Sri Jayawardanapura Kotte DSD		4.1	523	Mirihana North
2.1	514C	Obsekarapura	4.2	523 A	Mirihana South
2.2	514 A	Welikada West	4.3	524 A	Pragathipura
2.3	514	Welikada East	4.4	525	Thalapathpitiya
2.4	514B	Rajagiriya	4.5	525B	Udahamulla West
2.5	514D	Welikada North	5	Kaduwela DSD	
2.6	520	Nawala West	5.1	492C	Udumulla
2.7	520A	Koswatta	5.2	479F	Aruppitiya
2.8	521A	Ethulkotte West	5.3	479E	Batapotha
2.9	521	Ethulkotte	6	Dehiwala DSD	
2.10	522 A	Pitakotte East	6.1	537A	Dutugemunu
2.11	522B	Pitakotte	6.2	537B	Kohuwala
2.12	522	Pitakotte West			
2.13	520B	Nawala East			
2.14	519B	Nugegoda West			
2.15	519A	Pagoda			
2.16	519	Nugegoda			
2.17	519C	Pagoda East			
2.18	526	Gangodavila North			
2.19	526A	Gangodavila South			
2.20	526 C	Gangodavila East			

Note：S／No 1－3 are referring＂PROJECT PROPOSAL FOR SRI JAYEWARDENEPURA KOTTE WASTEWATER DISPOSAL SYSTEM＂
Source：JET based on data of Department of Census and Statistics

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションII 都市下水道マスタープラン スリジャヤワルダナプラコッテ

3．1．4 計画汚水量

セクション1 APPENDIX 12 と同様の方法で，地域毎の人口増加率，目標年次の将来人口を算出し た。その値を基に，下水道整備計画区域に該当する地域の人口を求め，表 3．1－6に示す計画汚水量を算定した。計算結果の詳細を APPENDIX 1 に示す。

表 3．1－6 計画汚水量

M／P Area （ha）	Item	2046	Remarks	
3500	a Population	198，000		
	b Water Consumption（1／d／cap）	120		
	c Sewage Ratio（\％）	80		
	d Domestic Flow（ $\mathrm{m}^{3} / \mathrm{d}$ ）	19，008	$\mathrm{d}=\mathrm{a} \times \mathrm{b} \times \mathrm{c}$	
	e Non－Domestic Flow（ $\mathrm{m}^{3} / \mathrm{d}$ ）	6，653	$\mathrm{e}=\mathrm{dx} 35 \%$	
	f Point Source（ $\mathrm{m}^{3} / \mathrm{d}$ ）			
	g Infiltration（ $\mathrm{m}^{3} / \mathrm{d}$ ）	5，132	$\mathrm{g}=(\mathrm{d}+\mathrm{e}+\mathrm{f}) \times 20 \%$	
	h Daily Average Flow（ $\mathrm{m}^{3} / \mathrm{d}$ ）	30，793	$\mathrm{h}=\mathrm{d}+\mathrm{e}+\mathrm{f}+\mathrm{g}$	
	i Daily Maximum Flow（ $\mathrm{m}^{3} / \mathrm{d}$ ）	34，642	$\mathrm{i}=(\mathrm{d}+\mathrm{e}+\mathrm{f}) \times 1.15+\mathrm{g}$	For STP design
	j Hourly Maximum Flow（ $\mathrm{m}^{3} / \mathrm{d}$ ）	46，190	$\mathrm{j}=(\mathrm{d}+\mathrm{e}+\mathrm{f}) \times 1.6+\mathrm{g}$	For PS design
	k Peak Flow $\left(\mathrm{m}^{3} / \mathrm{d}\right)$	82，115	$\mathrm{k}=(\mathrm{d}+\mathrm{e}+\mathrm{f}) \times 3.0+\mathrm{g}$	For Sewer design

Source：JET

3．1．5 設計汚水水質

設計汚水水質は，水質分析及びNWSDBとの打合せの結果，表 3．1－7 とした。設計汚水水質の詳細を APPENDIX 2 に示す。

表 3．1－7 設計汚水水質

	Influent Wastewater	
	Design	
BOD_{5}	240	
COD	600	
TSS	160	
T－N	45	
T－PTotal Phosphorus （T－P：全りん）	6	

Unit：mg／L
Source：JET

第4章 下水道の基本計画と設計

4.1 下水道整備計画

スリジャヤワルダナプラコッテ MC の下水道整備計画を図4．1－1 に示す。APPENDIX 3 に拡大図，流量計算書，縦断図を添付する。
\square
Source：JET
図 4．1－1 スリジャヤワルダナプラコッテ下水道整備計画図

4.2 下水収集設備

本 M／P では，下水処理場と主要なポンプ施設の縦断に影響を及ぼす下水道幹線を設計した。 M／P 区域全体で必要となる支線は類似案件を参考にし，延長のみ概算で算出した。家屋への取付 け管に関しては，将来人口から概算で算出した。

4．2．1 下水道管渠

主要な管渠一覧を表 4．2－1 に示す。

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションI都市下水道マスタープラン スリジャヤワルダナプラコッテ

表 4．2－1 主要な管渠一覧

＊Pipe Jacking of HDPE Pipe \＆GRP Pipe is installed by the slipling method．
Source：JET

4．2．2 ポンプ施設

主要なポンプ施設を表 4．2－2 に示す。
表 4．2－2 主要なポンプ施設

Item No．	Design Flow	Total Pump Head	Unit	
MPS－01	Approximately $2.5 \mathrm{~m}^{3} / \mathrm{min}$	40 m	$2+(1)$	To require the land about 0.1 ha for MPS
MPS－02	Approximately $3.7 \mathrm{~m}^{3} / \mathrm{min}$	45 m	$2+(1)$	To require the land about 0.1 ha for MPS
MPS－03	Approximately $16.7 \mathrm{~m}^{3} / \mathrm{min}$	15 m	$2+(1)$	To require the land about 0.1 ha for MPS
MPS－04	Approximately $1.8 \mathrm{~m}^{3} / \mathrm{min}$	30 m	$2+(1)$	To require the land about 0.08 ha for MPS
MPS－05	Approximately $17.3 \mathrm{~m}^{3} / \mathrm{min}$	15 m	$3+(1)$	To require the land about 0.1 ha for MPS
MTPS－01	Approximately $2.6 \mathrm{~m}^{3} / \mathrm{min}$	30 m	$1+(1)$	
MTPS－02	Approximately $3.2 \mathrm{~m}^{3} / \mathrm{min}$	10 m	$1+(1)$	
MTPS－03	Approximately $0.3 \mathrm{~m}^{3} / \mathrm{min}$	35 m	$1+(1)$	
MTPS－04	Approximately $1.5 \mathrm{~m}^{3} / \mathrm{min}$	25 m	$1+(1)$	

Notes：MPS：Major Pumping Station MTPS：Manhole Type Pumping Station（1）：One pump unit for stand－by Source：JET

4．2．3 取付け管

目標年次の 2046 年には約 49,500 世帯があると試算される。これは2046年次の人口が約 198，000人，政府統計局が発行した＂Household Income and Expenditure Survey 2012／13＂が示す一世帯の平均家族数が 4 人であることを参考に算出した。

4． 3 下水処理施設

4．3．1 処理法

（1）許容放流基準への適合
下水処理施設の処理水は，許容放流基準に適合しなければならない。許容放流基準は現在改正中であり，まだ官報告示はなされていないが，すでに改正案は公表されている。スリジャヤワル ダナプラコッテ MC 下水道計画の目標年次は2046年であるので，放流水質は当然改正案に適合 する必要がある。許容放流基準の改定案を APPENDIX 4 に示す。有機物に関しては改正案は大 きくは変わっていない。重金属に関する許容放流基準は厳しくなる。下水処理に大きく影響しそ うな新規導入項目は，硝酸性窒素が $10 \mathrm{mg} / \mathrm{L}\left(\mathrm{NO}_{3}-\mathrm{N}\right.$ として）以下という基準である。

図 4．3－1 窒素の挙動
図 4．3－1 は生物学的排水処理における窒素の挙動を示したものである。アンモニア性窒素と有機態窒素の一部は，硝化反応において，まずアンモニア酸化細菌（AOB）により亜硝酸に酸化 され，さらに亜硝酸酸化細菌（NOB）によって酸化されて，最終的に硝酸となる。生成した硝酸性窒素は，その許容放流基準が $10 \mathrm{mg} / \mathrm{L}$ 以下であるので，これに適合するために脱窒により削減する必要がある。硝化反応は，通常，長い Solids Retention Time（SRT：固形物滞留時間）条件下で運転される小規模な下水処理施設においては自然に進行する。これに加えて，スリランカ の高い排水水温は硝化の進行を助長する。このため，硝化の抑制は容易ではなく，現実的な選択肢とは考えられない。これらを考慮すると，下水処理ブロセスには脱窒工程が必要である。脱窒工程は，活性汚泥法には比較的容易に組み込めるが，生物膜法や安定化池に組み込むのは難しい。

（2）適用可能な処理プロセス

スリジャヤワルダナプラコッテの下水道計画では，日最大汚水量が $35,000 \mathrm{~m}^{3} /$ 日であり，これ は中規模の下水道である。このため，小規模な下水処理施設で広く用いられているオキシデーシ

ョンディッチプロセスはスリジャヤワルダナプラコッテの下水道には不向きである。脱窒による窒素除去が必要であることを考慮すると，処理プロセスは生物学的栄養塩類除去（BNR）プロ セスである必要がある。生物学的栄養塩類除去プロセスには様々なものがある。図4．3－2 に広く用いられている基本的な BNR プロセスをいくつか示す。

MLE（Modified Ludzack－Ettinger）process： N removal

Multi stage step－feed BNR process（Two－stage）：N removal

$\mathrm{A}_{2} \mathrm{O}$（Anaerobic－Anoxic－Oxic）process： N, P removal

Source：JET
図 4．3－2 BNR プロセスの例

これらのプロセスは，基本的に無酸素槽と好気槽の組み合わせである。これに嫌気槽が付加さ れる場合には，プロセスにおいて生物学的リン除去が生じる。これらの他にも様々な BNR プロ セスがある。例えば，硝化槽に生物膜担体を入れた BNR プロセスが最近日本で普及している。反応槽中の硝化細菌が生物膜担体の導入により増加するので，硝化槽の滞留時間を短縮すること ができる。

4．3．2 下水処理場用地

下水処理場用地として，スリジャヤワルダナプラコッテ市内バタラムラのコスワッテの用地が指定 された。（図 4．3－3）この用地は不規則な形状であり，総面積は約 5ha であるが，場内に $33,000 \mathrm{Volt}$ の高圧線が通っているため，スリラン力電力庁（CEB：Ceylon Electricity Board）に確認したところ高圧

線から 2 m 以内には建築物は許可されていない。また， 2 m Lか離隔が確保できない場合，高圧線側 に窓も建設することもできない。このため，下水処理設備の維持管理のためのトラックの移動を考慮 すると高圧線から 10 m 以上は施設を離して建設する必要がある。よって，使用可能な用地は南西部 の 2 ha （ 5 エーカー）のみに限定される。さらに，敷地の中央に小水路が流れている。この用地は，大雨の場合には遊水地としての機能が期待されている。このため，敷地の北の部分には盛土はできず， ステージ構造としなければならない（図 4．3－4）。図 4．3－5～図4．3－8に処理場用地とその下流のボー トコースの写真を示す。

図 4．3－3 処理場用地

Note The STP design is previous one．
Source：Sri Lanka Land Reclamation and Development Corporation（SLLRDC）
図 4．3－4 処理場整備案

図 4．3－8 処理場用地（南側部分）
図 4．3－7 下流のボートコース

4．3．3下水処理プロセス

（1）必要処理レベル

想定流入水質と目標放流水質を表 4．3－1 に示す。流入水質は，モラトゥワ／ラトマラナ処理場， ジャエラ／エカラ処理場及びコロンボ市近效のいくつかの下水処理場における測定結果に基づ き，NWSDB との協議により決定した。設計目標放流水質のうち，いくつかは許容放流水質より も厳しい数値となっている。これは，放流地点下流に位置するボートコース及び水路の水質悪化 を防止するためである。これらの設計目標放流水質は，CEAによる審查の結果，変更される可能性がある。

表 4．3－1 流入水質及び放流水質

Inflow		Effluent	
	Tolerance limit		Design target value
BOD_{5}	240	30	15
COD	600	250	75
TSS	160	50	15
$\mathrm{~T}-\mathrm{N}$	45	-	-
TKN	-	150	2.5
$\mathrm{NH}_{4}-\mathrm{N}$	-	50	2.5
$\mathrm{NO}_{3}-\mathrm{N}$	-	10	10
$\mathrm{~T}-\mathrm{P}$	6	-	3
Soluble－P	-		2

Source：JET

（2）処理プロセス

適用される生物学的栄養塩除去プロセス（BNR）は下記の条件を満たす必要がある。
1）放流水質が設計目標放流水質を満たすこと。
2）全施設が所与の用地に収まること。
3）維持管理コストが低減されること。
これらの条件を考慮すると，ステップ流入式多段硝化脱窒法（三段ステップ流入生物学的栄養塩除去プロセス）が最適な処理プロセスであると考えられる。図4．3－9に，三段ステップ流入生物学的栄養塩除去プロセスの処理フローを示す。

Influent

Source：JET
図 4．3－9 ステップ流入式多段硝化脱窒法（三段ステップ流入生物学的栄養塩除去プロセス）
本ブロセスにおいては，無酸素槽と硝化槽を組み合わせた段が，第一段から第三段まで流下方向に並んでいる。流入水は等量が各段の脱窒槽に供給される。各槽の容量は，各段の生物量が等 しくなるように設定される。

このようなプロセスの構成により，下記のような利点が得られる。
1）小さい循環比（ 0.5 Q ）で高い窒素除去率（約 80% ）が達成できる。
2）返送汚泥による循環のみで十分であるので，各段における内部循環は必要ない。
3）生物反応槽の水理学的滞留時間（HRT）は 10 時間以下（反応槽内における活性污泥と汚水との接触時間が 10 時間以下ということ）であり，反応槽の大きさを小さくできるた め，施設を用地内に十分配置できる。

（3）施設配置

図 4．3－10 に三段ステップ流入生物学的栄養塩除去プロセスの暫定的な概略配置図を示す。
\square
Source：JET
図 4．3－10 処理施設の暫定配置図

（4）主な単位プロセス

1）スクリーンと沈砂池
流入下水はまずスクリーン・沈砂池を通過し，ここで流入下水中の砂と粗大夾雑物が除去さ れる。この工程は機械設備を保護するために重要である。下水処理場は下水管網の普及してい ない地域から発生する腐敗槽汚泥をかなり長期間に亘って受け入れる。腐敗槽汚泥は，設備保護のため，生物処理施設に流入する前に専用受入スクリーン設備により粗大夾雑物を注意深く除去しなければならない。本施設は最初沈殿池を設置しないので，受入れ可能な腐敗槽污泥量 は，最大で流入水量の 0.5% とすべきである。

2）最初沈殿池

本施設では，用地面積に制限があるため，最初沈殿池は設置しない。

3）反応槽

最初沈殿池流出水はプロセスの中心である反応槽に流入する。反応槽の全 HRT は 9.5 時間 と想定している。流入水は三等分され，各脱窒槽に流入する。好気槽では，有機物の好気的分解と硝化が生じる。硝酸性窒素を含む混合液は，返送污泥により第一段の無酸素槽に返送され る。各無酸素槽では脱窒反応が生じ，硝酸性窒素は N_{2} ガスに還元される。無酸素槽において脱窒に必要な有機物は流入水により供給される。

第一段の無酸素槽には，嫌気部分が組み込まれる。嫌気条件を導入することで，リンは活性汚泥から放出される。放出されたリン酸は好気槽で活性汚泥に再度吸収され，リンはある程度生物学的に除去される。目標放流リン濃度を満足するため，バックアップ設備として第三段好気槽末端に同時凝集設備を設置する。凝集剤は，第三段好気槽末端で活性活泥に直接，滴下さ れる。混合•凝集反応は好気槽内で生じ，また，固液分離は最終沈殿池で行われるため，凝集剤タンクと滴下設備のみが追加で必要となる。図 4．3－11に同時凝集法の原理を示す。

図 4．3－11 同時凝集法の原理

4）最終沈殿池

混合液は沈殿池で 3.4 時間滞留し固液分離される。水面積負荷は $25 \mathrm{~m}^{3} / \mathrm{m}^{2}$／日である。上澄水 は沈殿池の越流堰から流出する。沈殿した固形物は汚泥収集ピットに集められ，第一段の無酸素槽に返送される。

5）消毒

処理水は放流前に病原菌による衛生リスク低減のため消毒される。消毒槽では通常，次亜塩素酸ナトリウム（ NaOCl ）が処理水に添加される。放流水域の漁業等の水利用上の理由から塩素消毒を避けなければならない場合には，UV 照射が適用される。

6）その他

用地面積の制約から，管理棟は水処理施設上部に配置するか，あるいは汚泥処理棟と合棟と する。

4．3．4 臭気対策

臭気発生源としては下記が考えられる。

- 沈砂池
- 最初沈殿池
- 反応槽
- 汚泥処理プロセス

これらの内では，沈砂池，最初沈殿池，污泥処理プロセスが主な臭気源である。反応槽からの臭気 は，通常さほど強くない。脱臭設備の必要性は下水処理場の周辺環境によって決まる。脱臭プロセス としては，下記のようなものがある。

- 活性炭吸着
- 生物脱臭＋活性炭吸着
- 臭気の反応槽への送気
- 土壤脱臭

土壌脱臭は簡単な方法であるが，脱臭能力の保持のためには定期的な土壌の切返しが必要である。 もし，強力な脱臭が必要な場合には活性炭が必要である。

4．3．5 汚泥処理処分

（1）生成汚泥の性状

スリジャヤワルダナプラコッテ処理場の三段ステップ流入生物学的栄養塩除去プロセスから は，最初沈殿池が無いため余剰汚泥のみが発生する。余剩汚泥発生量は含水率 80% の脱水汚泥 として34t／日と見積もられており，これは 6.9 DSt ／日に相当する。余剰污泥は主な構成成分がバ イオマスであるため，タンパク質の含有量が多い。生物学的栄養塩除去プロセスからの余剰汚泥 は，プロセスのSRT が長いため，好気的に安定化されている。従って，臭気発生は最初沈殿池污泥よりは通常かなり少ない。もし，余剰污泥が貯留槽中で嫌気状態になると，リンが余剰汚泥 から液中に放出され，污泥処理返流水として水処理プロセスに返送される。污泥処理返流水によ るリン負荷増加を防止するため，迅速な処理が望ましい。

（2）汚泥処理

1）濃縮

濃縮工程は，脱水工程に供給される汚泥量を低減するために重要な工程である。余剰汚泥は重力のみでは十分な濃縮ができないため，機械濃縮が効率的かつ迅速である。余剰汚泥の機械濃縮法としては，常圧浮上濃縮，遠心濃縮，重力ベルト濃縮，スクリュープレス濃縮が多く用 いられており，これらを F／S で検討する。

2）嫌気性消化

本施設からは余剰汚泥のみが発生するが，余剰污泥は嫌気性消化には適さないので，嫌気性消化は汚泥処理プロセスとしては考慮しない。

3）脱水

脱水機としては，ベルトプレス脱水機，スクリュープレス脱水機，遠心脱水機が一般的に用 いられている。最近では，（1）スクリューブレス脱水機は脱水機本体，凝集設備，制御盤等 がパッケージュニットとして供給されるので，コンパクトに設置できる，（2）運転は容易で無人運転も可能である，（3）余剰活泥の濃縮無しでの直接脱水も可能，といった理由で，ス クリューブレス脱水機が広まっている（図 4．3－12）。

Dewatering zone Thickening zone

Source：Japan Sewage Treatment Plant Constructors Association
図 4．3－12 圧入型スクリュープレス脱水機の構造

（3）汚泥処分

スリジャヤワルダナプラコッテ処理場の場合，日最大汚水量 $35,000 \mathrm{~m}^{3} /$ 日に対する汚泥発生量 は，含水率 80% として 34 t ／日と計算される。水処理プロセスから発生する余剰汚泥の最終処分 には，図 4．3－13 に示すようにいくつかの選択肢がある。

Source：JET
図 4．3－13 汚泥処分方法
下水汚泥は植物の必須栄養素である窒素とリンを含んでいる。このため，脱水污泥はコンポス トあるいは乾燥汚泥として農業利用することが理想的である。添泥のコンポスト化の場合，含水率や C／N 比を調整するための前調整として，通常，何らかの有機物が添加される。有機物は， コンポスト化過程で分解•安定化される。

コンポスト化過程では発酵温度は $65^{\circ} \mathrm{C}$ 以上まで上昇するので，病原菌は不活化される。十分，熟成した汚泥コンポストは不快臭はしない。污泥コンポストは，栄養循環と衛生面の視点から乾燥や埋め立てよりも利点がある。汚泥コンポストは窒素分を多く含有するため，肥料としての農業利用に適している。しかしながら，これを実現するためには，特に重金属に関する厳しい製品品質管理とユーザの啓蒙活動が不可欠である。

コンポスト化ブロセスには様々な種類がある。最も簡単なものは堆積型コンポスト設備である。図 4．3－14に堆積型コンポスト設備を示す。脱水汚泥はおがくず，もみ殻，稲わら，樹皮，污泥 コンポスト等を添加して含水率を約 60% に調整した後，平らなコンクリート床上に積み上げら れる。空気は通気管やショベルトラクタによる切り返しによって供給される。通常，一次発酵が終了するまで $10 \sim 14$ 日かかる。その後，汚泥は $1 \sim 3$ ヶ月間熟成される。

下水汚泥は牛糞のような他の有機廃棄物と混合してコンポスト化することによって，コンポス ト化製品の価値を高めることができる。下水汚泥コンポストは窒素とリンは含有しているが，カ リウムは少量しか含まれない。牛粪との混合コンポストによつて下水汚泥コンポストにカリウム を補給することができる。

Dewatered sludge

Source：JET
図 4．3－14 堆積型コンポスト装置
もし，下水污泥コンポストを受け入れる農業活動が無い場合，埋め立てが最終的な選択となる。埋め立て処分場によっては，脱水汚泥受入に例えば 60% 以下と言った含水率の制限を設けてい る。このような場合，脱水汚泥の含水率は通常 80% 程度であるため，直接受入はできない。こ のため，乾燥によって脱水污泥の含水率を低減する必要がある。

4． 4 オンサイト施設と底敗槽污泥管理

4．4．1 オンサイト施設

スリジャヤワルダナプラコッテは全地域が下水道処理区域として提案しているが，すべての家が下水管へ接続するには時間がかかるため，腐敗槽はある地域ではオンサイト衛生施設の改善策となる。 このため，腐敗槽の設計，建設および維持管理は，適切な機能を維持するため Sri Lanka Standard （SLS：スリランカ基準）745パート2： 2009 に従い行うべきである。

4．4．2 腐敗槽の構造

腐敗槽の機能は，汚水の固形物と浮遊性物質を分離し，滞留させることにより部分的な消化を促進 させ汚濁負荷を低減することである。このため，腐敗槽の容量はこれらの機能が十分果たせるよう考慮する。

一般的な腐敗槽図面を APPENDIX 5 に示す。構造は防水性で十分な強度を持ち，外部の土圧と内部の水圧に耐える必要があり，道路下や駐車場の下に設置される場合，妥当な車重に耐えるように設計する。

4．4．3 腐敗槽の維持管理

定期的な維持管理は，機能を良好に持続するために重要であり，使用者と所有者に対し以下の項目 について十分な注意喚起が必要である。
（i）汚泥引抜き
腐敗槽は，定期的に污泥引抜きが必要である。一般的には汚泥やスカムで一杯になった時に 100 mm から 150 mm の汚泥を次の運転時の「種汚泥」として利用するため， $1 / 3 \sim$ 半分ぐらいの污泥を残し汚泥を引抜く。種汚泥の保持のため完全に引抜いてはならない。そして，引抜かれた汚泥は建設される下水処理場で処理処分を行う。
（ii）開閉カバー
開閉カバーはし尿以外の一般ごみなどの侵入や転落を防ぐため，常に密封し，破損した場合は

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート

すぐに修理•交換する。
（iii）蚊
蚊の発生を防ぐため，カバーし常に密閉するように注意する。通気パイプには蚊防護ネットを設置し定期的に確認し必要に応じて交換する。
（iv）閉塞
一般的な閉塞の原因は，腐敗槽の流入口が固形物で詰まることであるため，開閉カバーなどか ら適度な柔らかさを持った長い棒で取り除き，閉塞が起きないように管理する。

第5章 プロジェクト実施のための組織制度改革

下水道事業を計画，設計，建設，O\＆M の各段階で適切に実施するためには，NWSDB，関係する Regional Support Center（RSC ：地域サポートセンター），そしてMC 等がそれぞれの分担する業務を十分に実施する能力が必要である。

5.1 下水道事業の実施体制

5．1．1 スリランカにおける実施体制の事例

下水道事業の実施体制はいくつかの方法が用いられている。表 5．1－1 はスリランカで下水道事業を実施中，または実施予定の 6 都市における水道及び下水道事業の実施体制を示した。

表 5．1－1 6 都市における水道，下水道事業の実施体制

Area	Water works			Sewerage works			
	Ownership	Management	O\＆M	Ownership	Management	O\＆M	
						STP	Pipe
CMC	N	N	N	MC	MC	－－－	MC
Kandy	MC	MC	MC	MC	$\begin{gathered} \text { MC } \\ \text { (unfixed) } \end{gathered}$	$\begin{gathered} \mathrm{N} \\ \text { (unfixed) } \end{gathered}$	$\begin{gathered} \mathrm{MC} \\ \text { (unfixed) } \\ \hline \end{gathered}$
Ratmalana－ Moratuwa	N	N	N	N	N	N	N
Jaela－Ekala	N	N	N	N	N	N	N
Hikkaduwa	N	N	N	N	N	N	N
Kataragama	N	N	N	N	N	N	N

Note：N；NWSDB
Source：JET
コロンボ MC では表のとおり，水道事業は NWSDB が運営しているが，下水道事業は MC が事業主であり，ポンプ場や管路網の O\＆M は MC が実施している。

キャンディ MC の場合，水道事業の事業主はMC であり，下水道事業についても MC が事業主に なる予定である。そして，管路網の維持管理は MC が実施するが，下水処理場の O\＆M は NWSDB に委託して実施する予定となっている。

それ以外の MC，（モラトゥワ／ラトマラナ，ジャエラ／エカラ，ヒッカドゥワ，カタラガマ）で は，下水道事業は水道事業と一緒に NWSDB が運営し，O\＆M も実施している。

そのため，先ず事業の運営と O\＆M をどのような体制で実施するかを決める必要がる。

5．1．2 スリジャヤワルダナプラコッテ MC における公共事業の実施状況

スリジャヤワルダナプラコッテ MC では下水道事業は未だ実施されていない。表 5．1－2 には MC に おける 5 つの公共事業，即ち，水道，廃棄物，オンサイト施設管理，道路建設／管理，雨水排除の実施状況を示した。

表 5．1－2 スリジャヤワルダナプラコッテ MCにおける公共事業の実施状況

Source：MC
表のとおり，水道事業は NWSDB が事業を運営している。実際のところ，NWSDB の RSC（西部中央）が 9 か所の事業のうちのひとつとして実施している。廃重物と道路建設／管理については MC が計画段階から O\＆M 段階まで，概ね民間委託なしに独自に実施しており，財源としてはMC の予算 や国の補助金で賄っている。しかし，オンサイト施設管理については土地，家屋の所有者が設置から維持管理までを管理しており，MC は関与していない。

5．1．3 実施体制のオプション

上述のようなスリジャヤワルダナプラコッテ MC における公共事業の実施状況中で，下水道事業 の実施体制として表 5．1－3 の 5 つのオプションがある。

表 5．1－3 下水道事業実施体制のオプション

Activity	Option 1	Option 2	Option 3	Option 4	Option 5
Request sewerage works	NWSDB	NWSDB	LA	LA	LA
Approval of sewerage works	MWSD	MWSD	MWSD \Rightarrow MLGPC	MWSD \Rightarrow MLGPC	MWSD \Rightarrow MLGPC
Budget Preparation	MWSD \Rightarrow NWSDB	MWSD \Rightarrow NWSDB	MLGPC \Rightarrow LA	MLGPC \Rightarrow LA	MLGPC \Rightarrow LA
Project Planning	NWSB assisted by LA	NWSDB assisted by LA			
Planning Designing	NWSDB \＆C／C				
Construction	P／C	P／C	P／C	P／C	P／C
Construction Supervision	NWSDB \＆C／C				
Ownership of facilities	NWSDB	NWSDB	LA	LA	LA
O\＆M	NWSDB	P／O supervised by NWSDB	NWSDB	P／O supervised by LA	LA
Loan Settlement	MWSD \Rightarrow NWSDB	MWSD \Rightarrow NWSDB	MLGPC \Rightarrow LA	MLGPC \Rightarrow LA	MLGPC \Rightarrow LA

Notations ：1．LA－Local Authority（Municipal Council，Urban Council（UC：群評議会），Pradeshiya Sabha）
2．NWSDB－National Water Supply \＆Drainage Board
3．MWSD－Ministry of Water Supply \＆Drainage
4．MLGPC－Ministry of Local Government \＆Provincial Councils
5．C／C－Appointed Consultants／Contractor
6．P／C－Private Contractor
7．P／O－Private Operator
Source：JET
オプション－1 と 2 では下水道事業は NWSDB が運営を行う。違いは O\＆M を民間委託するかどう かである。オプション－3 から5 は MC が下水道の事業主となる選択肢である。オプション－3 では Sewage Treatment Plant（STP：下水処理施設）の O\＆M を NWSDB に委託，オプション－4 では民間に委託する，そして，オプション－5 はすべてを MC が独自に実施する。すべてのオプションで計画，設計，建設段階は十分な経験を有する NWSDB が実施する。

5．1．4 最適な下水道事業の実施体制

スリジャヤワルダナプラコッテ MC の場合は水道事業を NWSDB が実施しているため，以下の理由で下水道事業も NWSDB が実施するのがよい。

1．下水道料金を低く設定できる。
水道事業と下水道事業を一体的に実施することにより，例えば経理や人事，顧客サービス，料金徴収などの業務を共通化できるため，下水道料金を低く設定できる。

2．NWSDB の人材を活用することができる。
スリジャヤワルダナブラコッテ MC の水道事業を実施する RSC（西部中央）や大コロンボ圈 で既に下水道を運営している大コロンボ圏下水 Assistant General Manager（AGM ：部長補佐）
（Greater Colombo Sewerage（GCS：大コロンボ圏下水））の下に組織された大コロンボ圈下水事務所には多くの技術者や熟練職員がいるため，下水道事業の円滑な立上げのためには一部の職員をスリジャヤワルダナプラコッテ MC の下水道事業に配置することが有効である。一方，MC が水道事業を実施せず，下水道事業のみを実施する場合には，必要な技術者，作業員を全て雇用 し，一からトレーニングする必要があり，効率的でない。

そのため，オプション－1と 2 が最適な下水道事業実施体制となる。

5． 2 実施体制確立のための組織作り

スリジャヤワルダナプラコッテ MC における下水道事業実施に向けた組織作りを検討するにあた っては，NWSDB，RSC（西部中央），MC の分担する業務内容を先ず明確にする必要がある。

表5．2－1 は当 MCで最適なオプションである 1 と 2 において，計画段階から O\＆M 段階までの各機関の役割分担を示した。

表 5．2－1 下水道事業の各段階における各機関の役割分担

Option－1		Stage of sewerage works			
		Planning	Designing	Construction	O\＆M
NWSDB	Tasks	Supervision Decision of STP site and others	Supervision	Supervision	O\＆M of sewerage works Consideration of out－sourcing
	Staff	＊Technical Team	＊PD under DGM ＊Staff in PMU	\Rightarrow	\Rightarrow
RSC	Tasks		Supporting project activities	\Rightarrow	Supporting O\＆M of sewerage system Public awareness Promotion of house connection
	Staff		＊Manager in sewerage works	\Rightarrow	＊Staff in STP ＊Staff for sewer networks
MC	Tasks	Cooperation for planning works	Cooperation for land acquisition	Cooperation for STP and sewer networks construction	Monitoring of effluent Public awareness Promotion of house connection
	Staff	＊Staff for tasks above	\Rightarrow	\Rightarrow	\Rightarrow

Option－2		Stage of sewerage works			
		Planning	Designing	Construction	O\＆M
NWSDB	Tasks	Supervision Decision of STP site and others	Supervision	Supervision	Supervision
	Staff	＊Technical Team	＊PD under DGM ＊Staff in PMU	\Rightarrow	\Rightarrow
RSC	Tasks		Supporting project activities	\Rightarrow	Supporting O\＆M of sewerage system Public awareness Promotion of house connection
	Staff		＊Manager in sewerage works	\Rightarrow	＊Supervisor of O\＆M of sewerage system
MC	Tasks	Cooperation for planning works	Cooperation for land acquisition	Cooperation for STP and sewer networks construction	Monitoring of effluent Public awareness Promotion of house connection
	Staff	＊Staff for tasks above	\Rightarrow	\Rightarrow	\Rightarrow

Source：JET

5．2． 1 NWSDB 下水道部門の組織

現在の NWSDB 下水道部門の組織は図 5．2－1 のとおりであるが，今後大コロンボ圈や地方に下水道 プロジェクトが増加すると，計画•設計•建設のエンジニア業務の増加だけでなく，O\＆M 業務も増加する。

Source：JET

図 5．2－1 現在の NWSDB 下水道部門の組織図

そこで，図 5．2－2 に示したように，業務量の増大に対応した NWSDB 下水道部門の組織図案を提案 した。

下水道担当の Deputy General Manager（DGM ：部長）の業務を 2 つに分けて，DGM／専門家（エン ジニアリング）と DGM（O\＆M）を設ける。現在は計画と設計は同じ AGM の下に業務を行っている が，AGM（計画•技術）と AGM（設計）に分ける。さらに，地方における下水道事業の増加に対応 するため，AGM（O\＆M－大コロンボ圈）に加えて，AGM（O\＆M－地方）を設置する。

Source：JET
図 5．2－2 NWSDB 下水部門の組織図案
下水道ブロジェクトが開始されると，図 5．2－3に示したように，計画•設計段階では技術チームを結成して，コンサルタントと協働して計画•設計策定作業を行う。建設段階では Additional General Manager（Addl．GM ：局長）の下にプロジェクト・ディレクター（PD）を置き，その下に建設業務を管理監督するための Project Management Units（PMU ：プロジェクト管理ユニット）を設置する。

また，AGM（O\＆M－大コロンボ圈）の下にマネジャーを置きプロジェクトの調整を行い，O\＆M 段階ではマネジャーの下に実際に下水処理場と管路施設の O\＆Mを実施する組織を設置する。

Source：JET
図 5．2－3 計画から O\＆M までの業務の実施担当部署

5．2．2 RSC（西部中央）の組織

スリジャヤワルダナプラコッテ MC 地域においては，下水道事業は顧客サービスを含めて AGM （O\＆M－大コロンボ圈）が担当するため，RSC（西部中央）は直接には事業に関わらない。しかし ながら，下水道料金は水道料金と一緒に RSC で徴収することになるため，料金計算等の業務増に対 する組織強化が必要となる。

5．2．3 MC の組織

スリジャヤワルダナプラコッテ MC は事業の計画段階から建設段階まで，プロジェクトに必要な様々な業務，例えば，処理場用地取得や管路網の建設工事などについて支援を行う。O\＆M段階では下水処理場放流水や周辺環境のモニタリングを通じて，事業主体が法令を遵守した事業を実施してい るかどうか監視を行う。また，下水道普及活動，戸別接続の促進などについてNWSDB に協力する。 これらの活動については MC の環境部局が担当するのが適切であり，人材の確保，育成が必要であ る。

5.3 事業実施に向けた各機関の能力強化

5．3．1 人材確保

（1）NWSDB
下水道プロジェクトの実施において，設計•建設段階ではPD と PMU の組織を設置する必要 がある。また，STP と管路施設の O\＆M 段階では AGM（O\＆M－大コロンボ圏）の下にマネジャ ーを置き，その下に実際に O\＆M を行うためのエンジニア，テクニカルスタッフ，運転手，作業員を確保する必要がある。これらの人材の一部は，プロジェクトの円滑な推進のために，既存の下水道または水道のプロジェクトから回すのが適切である。

人材を回した後の不足に対しては新規の雇用を行うが，表 5．3－1 のとおり，スリランカでは全国に国立大学が 15 校あり，その多くで下水道事業実施に必要な土木，機械，電気，化学，衛生学科を有しているほか，単科大学と工業高校があり，多くの技術系の卒業生を輩出している。そ のため，技術系の職員の確保は難しくないと考えられる。

表 5．3－1 国立大学，単科大学及び工業高校の学部

University	Civil Works	Electrical	Mechanical	Chemistry	Environment
Colombo				\checkmark	
Peradeniya	\checkmark	\checkmark	\checkmark	\checkmark	
Sri Jayewardenepura				\checkmark	
Kelaniya				\checkmark	
Moratuwa	\checkmark	\checkmark	\checkmark	\checkmark	
Jaffna	\checkmark	\checkmark	\checkmark	\checkmark	
Ruhuna	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Open University	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Eastern				\checkmark	
South Eastern	\checkmark	\checkmark	\checkmark		
Rajarata				\checkmark	\checkmark
Sabaragamuwa					
Wayamba		\checkmark			
Uva Wellassa					
Visual \＆Performing Arts					
Collage／High school	Civil Works	Electrical	Mechanical	Chemistry	Environment
Construction Industry Development Authority	\checkmark	\checkmark	\checkmark		
Ceylon－German Technical Training Institute		\checkmark	\checkmark		
National Apprentice \＆ Industrial Training Authority	\checkmark	\checkmark	\checkmark		
National Vocational Training Authority	\checkmark	\checkmark	\checkmark		
Industrial Technical Institute				\checkmark	\checkmark
National Building Research Organization	\checkmark				\checkmark
Institute of Chemistry				\checkmark	\checkmark

Source：JET
職員のモチベーションを高く維持するには，十分な待遇が必要である。表 5．3－2 に示したとお り，同業の民間企業と比較してNWSDB の給与は十分に高い。また，NWSDB は昇格についても適切な制度を有しているため，職員は高いモチベーションを維持できると考えられる。

表 5．3－2 NWSDB と同業民間企業での毎月の給料及び手当

Grade	Staff ofNWSDB		Staff of a private sector		
	Salary（SLR）	Benefits （in SLR）	Salary（SLR）	Benefits in（SLR）	
1	Engineer	125,000	39,500	105,000	21,000
2	Supervisor	75,000	30,500	37,500	6,000
3	Skilled Laborer	50,000	28,500	27,500	8,000
4	Un－skilled Laborer	40,000	28,000	19,000	5,000

Source：JET
（2）
一方，MC でも下水処理場やポンプ場の用地，管路網の建設工事などの業務について調整を行 う人材が必要であり，また下水処理場の周辺環境や放流水のモニタリングや下水道普及啓発を実施する人材が必要となる。

5．3．2 人材育成

下水道は計画から設計，建設，O\＆M までの各段階で専門的な知識と経験が必要であり，下水道事業の円滑な推進のためには，関係する職員の能力向上が重要である。特に，O\＆M段階ではSTP や管路施設に人材を新たに張り付けるが，多く職員が経験に乏しいため，机上の研修や OJT により，十分な能力向上を図る必要がある。

（1）NWSDB 研修センターにおける研修

NWSDB 研修センターの研修プログラムには現在のところ下水道技術に関するものが少ない が，今後の下水道事業の増加に伴い職員の増加が見込まれるため，研修プログラムを充実させる必要がある。表 5．3－3 は加えるべき研修項目を示した。

表 5．3－3 NWSDB 研修センターの研修プログラムに追加すべき項目

Category	Title of the Program
Planning	Planning of Sewage Works
	Principle of Asset Management
Designing	Designing of Sewer System
	Jacking Method
	Rehabilitation of Pipe Networks
	Designing of STP
	Mechanical System Design in STP
	Electrical System Design in STP
O\＆M	Maintenance of Sewer System
	Operation of STP
	Maintenance of Mechanical System in STP
	Maintenance of Electrical System in STP
	Water Quality Management
	Commercial and Industrial Wastewater Management
Safety Management	On－site Safety management
Risk Management	On－site Risk Management

研修センターにおける研修には NWSDB の職員だけでなく，関係する MC の職員や，業務を民間に委託する場合には民間企業の職員も受講できるようにするのが望ましい。
（2）オンザジョブトレーニング（OJT）
下水処理場，ポンプ場，下水管路施設の現場における実際の O\＆M 作業については，OJT によ る研修が最も効果的である。下水処理場では，試運転の際に施工業者が職員に対してOJT で指導するのが一般的である。ただ，試運転では施設，設備の保全や故障対応等を研修することは難 しいため，既存の下水処理場で半年から1年程度 O\＆M を経験するのが効果的である。

5．3．3 機材，車両の調達

下水管路施設については定期的な清掃，顧客の苦情による緊急清掃等，現場に出向いて作業を行う ため，それに必要な機材と車両を確保する必要がある。台数等は表 5．3－4 に示した既存の下水道事業 における実績等に基づくのが妥当であるが，下水道区域の拡大，戸別接続の増加，管路施設の経年劣化により必要台数が増加することは認識しておく必要がある。

表 5．3－4 既存下水道事業における下水設備維持管理に使用される重機の所有台数

	Dehiwela／Mt．Lavinia	Jayawadanagama／ Kolonnawa	Ja－ela／Ekala
Gully／ Jetting Combined Machine	-	1	-
Gully Bowser	2	1	1
Portable Jetting Machine	1	1 （with frequent breakdown）	1 （with frequent breakdown）
Crane Truck	-	1	
（with frequent breakdown）	-		
High Pressure Jet Machine	1	1	-
High Pressure Water Spraying Machine	-	1	1

Source：JET

5．3．4 顧客サービス

スリジャヤワルダナプラコッテ MC の地域では下水道事業の顧客サービスは AGM（O\＆M－大コロ ンボ圏）が担当するが，既にモラトゥワ／ラトマラナ，ジャエラ／エカラなどの下水道プロジェクト で顧客サービスを実施しているため，同様にスリジャヤワルダナプラコッテにおいても実施する。

5． 4 下水道建設プロジェクトの実施

下水道建設プロジェクトが始まると，主な活動はPD の下に組織された PMU が担当して建設業務 が行われる。

5．4．1 PMU

既存の他プロジェクトの PMU を参考にすると，エンジニアから作業員まで含めて概ね 40 人程度 の大きな組織となる。

5．4．2 プロジェクト事務所

PMU の事務所はRSC 内に置くのが最適であるが，収容しきれない場合には，プロジェクトサイト の近くに事務所を設置する必要がある。事務所には現場に行くのに使う車両を駐車するスペースを確保する必要がある。

また，PMU の事務所とは別に，施工業者の事務所についても検討しておく必要がある。

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションII都市下水道マスタープラン スリジャヤワルダナプラコッテ

第6章 事業費

6.1 概算事業費

6．1．1 建設費及び事業費

建設費は，NWSDB の価格一覧書＂RATES 2016＂を参考に算出した。＂RATES 2016＂に記載がない工種はスリランカにおける類似のJICA 案件，Pre－F／S 等を参考とした。建設費の積算表を APPENDIX 6 に示す。なお，用地取得費及び補償費は含んでいない。

概算事業費は，下記の条件で算出した。

```
建設費
    コンサルサービス費用
    コンサルサービス期間
    建設期間
    事務費
    予備費
    建中金利
    フロント・エンド・フイー
    税
    エスカレーション
    為替レート
建設費
```

\qquad

2017年1月価格による積算
2017年1月価格による積算
2019年～2026年
2021年～2026年
5\％
5\％
建設： 0.3% コンサル： 0.01%
0.2%
15%
現地貨： 3.8% ，外貨： 1.6%
LKR 1 ＝Japanese Yen（JPY：日本円）
0.77

概算事業費は表 6．1－1 に示すように，税抜で約 441 億円（約 572 億 LKR）と算出された。概算事業費算出の詳細を APPENDIX 7 に示す。

表 6．1－1 概算事業費

			Amount		Total Amount	Total Amount
			LC．（LKR）	E．C．（JPY）	LKR	JPY
1	Construction Cost					
	A	Sri Jayawardenapura Kotte STP（Q＝35，000m3／day）	4，887，272，727	5，644，800，000	12，218，181，818	9，408，000，000
	B	Trunk Sewer \＆Pump Station	3，884，573，000	4，878，220，000	10，219，925，000	7，869，338，000
	C	Branch Sewer \＆Pump Station	7，079，587，000	3，522，960，000	11，654，860，000	8，974，242，000
	D	House Connection	4，950，000，000	0	4，950，000，000	3，811，500，000
	Sub－total of 1（A－D）		20，801，432，727	14，045，980，000	39，042，966，818	30，063，080，000
2	Administration cost		2，700，000，000	0	2，700，000，000	2，079，000，000
3	Consulting cost		1，354，000，000	3，129，000，000	5，417，636，000	4，171，580，000
4	Physical contingency for construction cost		1，309，000，000	773，000，000	2，312，896，000	1，780，930，000
5	Price escalation for construction cost		5，381，000，000	1，419，000，000	7，223，857，000	5，562，370，000
6	Land acquisition and compensation		－	－－	－－	－－
7	Interest during construction		0	323，000，000	419，481，000	323，000，000
8	Front－end Fee		0	84，000，000	109，091，000	84，000，000
9	Tax and duty		9，861，000，000	0	9，861，000，000	7，592，970，000
	Sub－total of（2－9）		20，605，000，000	5，728，000，000	28，043，961，000	21，593，850，000
	Total including Tax and Duty		41，406，432，727	19，773，980，000	67，086，926，000	51，656，933，000
	Total excluding Taxand Duty		31，545，432，727	19，773，980，000	57，225，926，000	44，063，963，000
	Eligible Portion（1，3，4， 5 and 7）		28，845，432，727	19，689，980，000	54，416，835，000	41，900，963，000
	Non－Eligible Portion（2，6， 8 and 9）		12，561，000，000	84，000，000	12，670，091，000	9，755，970，000

Source：JET

6．1．2 運転維持管理費

表 6．1－2 に運転維持管理費を示す。モラトゥワ／ラトマラナ下水処理場の維持管理費を参考に，算出 した。詳細はAPPENDIX 8 に示す。この運転維持管理費には給与，光熱費，薬品代，修繕費，設置費，警備費が含まれている。

表 6．1－2 運転維持管理費

	Total Amount（LKR／year）	Total Amount（JPY／year）
Sri Jayawardenepura Kotte	$499,877,000$	$386,112,000$

Source：JET

6． 2 段階的整備計画

計画対象地域の面積は3，392 ha，概算事業費約 441 億円（約 572 億 LKR）と比較的大規模な建設と なるため，段階的に整備することが考えられる。その場合の事業費は，事業期間によって異なるが，上記で算出した事業費を上回ることになる。
スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションI 都市下水道マスタープラン スリジャヤワルダナプラコッテ

第7章 財務計画

7． 1 スリジャヤワルダナプラコッテ MC の財務状況

表 7．1－1 は，スリジャヤワルダナプラコッテ MC の収入•支出の概要を示している。基本的に，ス リジャヤワルダナプラコッテ MC の総支出は，その収入によって賄われなければならない。年間の黒字もしくは赤字は，翌年度に繰り越される。しかし，他の MC と同じく，スリジャヤワルダナプ ラコッテ MC は MC で働いているが中央政府に所属する職員の給与の「返済（MC が毎月の給与を中央政府所属職員に仮払いし，後でその年間総額の精算を受けること）」を州政府を通じて中央政府か ら受け取っている。これは表7．1－1の「収入，無償及び返済（Revenue，Grant \＆Reimbursement）」勘定に含まれている。このMCでは，「収入，無償及び返済」の額は「その他の収入（Other Revenue）」勘定に含まれている。MC はまた，プロジェクト費用の一部を無償で受け取っており，これは表の「資本的収入及び無償（Capital Receipts \＆Grants）」勘定に分類されている。

表 7．1－1 スリジャヤワルダナプラコッテ MC の収支概要

Year	2012	2013	2014	2015
Revenue				
Assessment Rates	166.99	177.34	198.37	226.26
Rent	24.47	27.64	23.20	25.28
License Fees	2.70	8.08	5.48	5.86
Charges for Service	42.27	41.15	59.08	56.29
Warrant Cost／Fine	12.17	11.51	12.67	3.51
Stamp duty	86.83	242.95	214.35	425.35
Court Fines	14.42	1.47	1.14	1.38
Other Revenue ${ }^{\text {1 }}$	209.62	219.52	258.35	384.99
Total	559.46	729.65	772.64	1，128．91
Expenditure				
Personal Emoluments	261.92	292.21	335.25	441.25
Travelling Expenses	4.82	6.06	5.72	3.25
Supplies \＆Equipment	68.39	78.40	107.01	87.76
Repairs to Capital Assets	7.13	6.30	7.55	9.18
Transport	129.82	170.00	180.75	157.36
Interest \＆Dividends	4.15	6.42	4.39	19.11
Grants	13.72	16.00	19.01	16.94
Pension Gratuity	2.91	3.01	2.74	2.90
Total	492.85	578.41	662.42	737.75
Actual revenue over Recurrent Expenditure	66.61	151.24	110.22	391.16
Revenue，Grant \＆Reimbursement	200.34	207.36	247.96	376.19
Capital Receipts \＆Grants	11.63	68.15	343.04	272.87
Capital Expenditure	149.56	254.18	667.51	730.18
Total Surplus（deficits）	－71．32	－34．79	－214．24	－66．15

Source：Sri Jayawardenepura Kotte MC
Note：＊1；Other revenue includes＂Revenue，Grant \＆Reimbursement＂．
表 7．1－1 の最後の行に示されるように，スリジャヤワルダナプラコッテ MC は，2012 年以来，給与返済と資本無償を反映した値で，年間赤字を記録してきた。

年間赤字額は，2014 年に最大であり，過去数年変動してきた（図 7．1－1）。経常収支に関しては， MC は過去数年間黒字を記録しており，黒字幅は拡大してきた（図 7．1－2）。このMC における経常収入は，「収入，無償及び返済」の額，すなわち，中央政府からの給与返済を含んでいることに留意す る必要がある。

年間赤字の主な理由の一つは，「資本支出（Capital Expenditure）」が「資本収入及び無償（Capital

Receipts \＆Grants）」よりも大きく拡大していることである。図7．1－3 に示されるように，資本収支残高（資本収入から資本支出を引いた額）は，巨額な赤字（138～456 百万 LKR であり，急激に増加し ている。資本勘定におけるこうした大きな赤字が，経常勘定の黒字を使い切るのに十分なものであつ た。

しかし，スリジャヤワルダナプラコッテ MC の赤字総額の総収入に占める割合は，2012年から2015年の 4 年間で，それぞれ，－ 13% ，$-5 \%, ~-28 \%, ~-6 \%$ であつた。2014年を除くと，これは－5 $\%$ から－ 13% であった。さらに，MC によると，2015 年の資本支出は，いくつかの低所得者用住宅建設事業を含 んでいる。建設後の住宅は，販売され，支出の多くの部分を回収できると予想されている。スリジャ ヤワルダナプラコッテ MC の財務状況は，若干厳しい状態にあるにもかかわらず，赤字の規模は制御可能なレベルにあると考えられる。

MC の財務状況を考慮すると，下水道サービスは中央政府の建設費費用負担（外国融資を活用する場合でも，融資返済は中央政府負担）で，NWSDBによって整備されることが提案される。下水道料金は必要な O\＆M 費用を完全に回収できるように設定されるべきである。

Source：JET，based on Sri Jayawardenepura Kotte MC data
図 7．1－1 スリジャヤワルダナプラコッテ MCの最終的な黒字（赤字）の傾向

Source：JET，based on Sri Jayawardenepura Kotte MC data
図 7．1－2 スリジャヤワルダナプラコッテ MCの収入から経常費用を引いた額の傾向

Source：JET，based on Sri Jayawardenepura Kotte MC data図 7．1－3 スリジャヤワルダナプラコッテ MCの資本収支の傾向

7． 2 下水道整備と運営維持管理（O\＆M）の財務計画

7．2．1 建設，08M 及び設備更新の費用負担

2016年1月26日付の内閣覚書「上下水道事業の海外融資メカニズムの規制（Regularizing Foreign Financing Mechanism in Relation to Water Supply and Sewerage Project）」において，水道•下水道事業へ の中央政府無償について規定された。この覚書によると，国庫が下水道事業の債務（元本および金利） の 100% を負担するとしている。

日本を含む多くの国では，下水道料金で，下水道事業の全ての費用（建設，O\＆M，および更新費用）を回収できていない。さらに，マレーシア，タイ，ベトナムを含む多くの途上国においては，支払意志額（Willingness To Pay：Water Treatment Plant（WTP ：浄水場））が低いため，下水道料金で下水道施設の O\＆M 費用だけでさえ回収することは，通常難しい。

そこで，本報告書では，スリランカの下水道サービスに次のような費用負担原則を適用することを提案している。
－建設費用の 100% は中央政府によって負担される。NWSDB もしくは MC にとっては 100% 無償とされる。

- O\＆M 費用は，段階的な料金値上を通じて，下水道料金によって回収される。
- 更新費用は，小規模の更新の場合は，NWSDB もしくはMC の予算で負担され，大規模の場合はプロジェクトとすることによって，中央政府によって負担される。

そのため，下水道料金は下水道施設の O\＆M 費用を回収できるように設定されることが望ましい。

7．2．2 必要な下水道料金計算の方法論

（1）ニつのタイプの下水道料金単価

この下水道料金計算の最終的なアウトプットは，将来の下水道施設の O\＆M 費用を回収しうる下水道料金単価である。

下水道料金単価は二つのタイプで計算される。タイプ 1 は，MC 地域から徴収される下水道料金収入によって，プロジェクトの O\＆M 費用を回収するように計算された単価である。タイプ 2 は，NWSDB の全下水道使用者からの下水道料金収入を含めた総収入で，都市 M／P の O\＆M 費用 を含む NWSDB 下水道部門の総 O\＆M 費用を回収するように計算された単価である。タイプ 1 の下水道料金単価は，第一に MC が下水道施設の維持管理を行う場合，当該 MC によって使用 される。さらに，NWSDB が MC 地域に地域限定の特別料金を適用する場合にも使用できる。夕 イプ 2 の下水道料金単価は NWSDB が建設された施設を運転維持管理する場合に，NWSDB によ って使用される（図 7．2－1 参照）。

Types of Unit Sewerage Tariff	Type 1：Unit Sewerage Tariff of the City M／P for the MC	Type 2：Unit Sewerage Tariff of the City M／P for NWSDB
－What recovers O\＆M costs of the City M／P？ －From whom tariff is collected？	－O\＆M costs of the City M／P is recovered by sewerage tariff revenue of the MC． －Tariff is collected from sewerage customers of the MC．	－Total O\＆M costs with those of City M / P are recovered by sewerage tariff revenue of entire NWSDB． －Tariff is collected from sewerage customers of NWSDB． －Single sewerage tariff for entire country．
Applied to which organization？	Applied to the MC（which conduct O\＆M and tariff billing by itself） or Applied to NWSDB（in case it sets special tariff only for the MC）	Applied to NWSDB（in case of single tariff for entire country）

Source：JET
図 7．2－1 下水道料金単価の二つのタイプの違いと対象機関

（2）下水道料金単価計算の方法論

必要な O\＆M 費用を回収しうる下水道料金単価は，（減価償却費と更新費を除く）年間 O\＆M費用推定額を，下水道使用者の総水使用量で割ることで求められる。

下水道料金単価の計算では，一定割合の利益が考慮される。利益は，将来の小規模な更新や，予期せぬ災害への対策，もしくは費用の急激な上昇への対処などに使われる。利益の大きさは， タイプ 1 の下水道料金単価では，O\＆M 費用の 10% で設定される。タイプ 2 の下水道料金単価は， O\＆M 費用の 5% で設定される。MC が維持管理する場合は，高い利益率を設定する。これは， MC が下水道部門を設置する場合，その予算規模はNWSDBのそれよりもはるかに小さいものに なり，他方で，緊急時と想定外の事故に対しては，ある程度の規模の利益を確保する必要がある と考えられるからである。

下水道料金は，現在行われているように，水道料金請求書に併記して請求されることを想定し ている。そこで，各下水道使用者が，検針された水使用量に比例して下水道料金を請求されるよ うに，O\＆M 費用を水使用量で割って下水道単価を求める。

（3）戦略的 M／P で提案された下水道料金との関係

戦略的 M／P で提案された下水道料金単価は，NWSDB 下水道部門が，現在の状況で必要とさ れる全ての O\＆M 費用を回収できるように計算されている。現在の財務状況をできるだけ早く改善するために，戦略的 M／P の料金値上げは早急に行うことが望まれる（戦略的 M／P，7．3．1 で 2019年と 2022 年に設定した）。

都市 M／P で提案する下水道料金は，新しいプロジェクトの O\＆M 費用を回収できるように計算される。都市 M／P で提案され，建設される施設がフル稼働するまでには，数年から 10 年近く の時間を要する。

そこで，NWSDB が当該 MC の下水道システムの O\＆M と料金徴収を担当する場合には，戦略的 M／P で提案された下水道料金値上げが始めに実施されるべきである。その後に，都市 M / P の料金値上が，下水処理場のフル稼働までに行われることになると想定される（図 7．2－2）。

Year	2017	2018	2019	2020	2021	2022	2023	2024	2025
1st Tariff Raise of Strategic M／P			\triangle						
2nd Tariff Raise of Strategic M／P						\triangle			
3rd Tariff Raise of City M／P（if necessary）								\triangle	

Source：JET
図 7．2－2 料金値上げの実施スケジュール例
MC が下水道サービスを担当する場合，下水道料金値上は一度だけ行われ，その時期は，下水道施設の操業開始までに MC によって決定される。

7． 2.3 下水道料金単価計算の前提条件

必要な下水道料金単価は，以下の前提で計算されている。

- 都市 M / P の下水道使用者の総水使用量は，都市 M / P の設計基準から引用する。
- インフレーションは下水道料金単価の計算には反映されておらず，提案される料金は実質価格で ある。実際の下水道料金表を作成する際にインフレ調整が必要である。
－下水道各戸接続の初期費用に関しては，現在，別途請求される接続料金によって回収されている。 この状況は将来も変わらないものとする。

7．2．4 下水道料金単価計算の結果

（1）タイプ 1：MC が O\＆M 及び料金徴収を実施する場合（または NWSDB が地域特別料金を課す場合）の下水道料金単価
表 7．2－1 は，都市 M／P の下水道料金単価の計算結果を示している。
表 7．2－1 都市 M／P で提案される下水道料金単価の計算スリジャヤワルダナプラコッテ MC

No．	Items	Unit	Description	Amount
1	Annual O\＆M costs	LKR／year	Total	499，876，455
2	Expected profit（10\％）（ $=1 \times 10 \%$ ）	LKR／year	Total	49，987，646
3	O\＆M costs with profit（ $=1+2$ ）	LKR／year	Total	549，864，101
4	Sewage Flow	$\mathrm{m}^{3} /$ day	Domestic Flow	19，008
		$\mathrm{m}^{3} /$ day	Non－Domestic Flow	6，653
		$\mathrm{m}^{3 /}$ year	Total	9，366，265
5	Sewage Ratio	\％		80.0
6	Water Consumption Volume ${ }^{\text {＋}}$	$\mathrm{m}^{3 /}$ year	Total	11，707，831
7	Unit Sewerage Tariff（ $=3 / 6$ ）	LKR／m ${ }^{3}$		46.97

Note：＊1；Sewerage Ratio is the average share of sewage volume among water consumption volume of a user．Therefore，water consumption volume is calculated by dividing sewage flow by＂sewage ratio／100＂．
Source：JET
必要な下水道料金単価は，46．97LKR $/ \mathrm{m}^{3}$ と算出され，検針された水使用量に乗じて料金が求め られる。MCが下水道施設の O\＆M と料金徴収を行う場合には，MC がこの料金単価に基づき料金表を作成することが提案される。

（2）タイプ $2: N W S D B$ が 0\＆M 及び料金徵収を実施する場合の下水道料金単価

表 7．2－2 は，都市 M／P のプロジェクト完了後，NWSDB で適用すべき下水道料金単価と計算過程を示している。これは，都市 M／P のO\＆M 費用を含めたNWSDB 下水道部門の全ての O\＆M 費用を回収するため，NWSDB の全ての下水道使用者に適用されることを想定している。

表 7．2－2 NWSDB の下水道料金単価（第3回値上分）の計算スリジャヤワルダナプラコッテ MC

Items	Unit	Description	Amount
Operating Expense	LKR／year	Existing（2015）${ }^{\text {＋1 }}$	410，282，866
		New facilities（City M／P）${ }^{2}$	499，876，455
		Total	910，159，321
Income to be subtracted from Expense	LKR／year	Connection Charge	25，531，614
		P\＆D／Bowser ${ }^{* 3}$	160，854，906
		Total	186，386，520
O\＆M costs after subtraction	LKR／year	Total	723，772，801
Expected Profit（5\％）	LKR／year	Total	36，188，640
O／M costs after subtraction plus profit	LKR／year	Total	759，961，441
Water Consumption Volume of Sewerage Customers	$\mathrm{m}^{3} /$ year	Existing（2015）	6，240，008
		New facilities（City M／P）	11，707，831
		Total	17，947，839
Unit Sewerage Tariff	$\mathrm{LKR} / \mathrm{m}^{3}$	－	42.34

Note：＊1；As O\＆M costs of the existing sewerage facilities with operational costs of head office，actual costs data in 2015 was utilized．
＊2；As O\＆M costs of the City M／P，maximum O\＆M costs by full capacity was utilized．
＊3；Average value of 3 years data was utilized，including contract service fee，planning and design service，and gully bowser（desludging septic tanks）revenue．
Source：prepared by JET，based on the data from NWSDB
都市 M／P が実施された場合，NWSDB は下水処理場のフル稼働までに，家庭用，商業用，お よび工業用の下水道料金単価の加重平均が $42.34 \mathrm{LKR} / \mathrm{m}^{3}$ になるように料金表を作成し，料金値上げを行うことが提案される。

7．2．5 家庭の支払可能性

下水道料金の家庭の支払可能性（ATP）が，以下の 3 点を前提として分析された。

- 3 回目の都市 M / P の料金値上を 2024 年に設定
- 平均家庭所得の過去の増加率が今後も継続
- 家庭用，商業用，及び工業用の各下水道料金単価が同じ割合で値上げされる。そのため，もしも商業用と工業用使用者の単価が家庭用よりも高く引き上げられれば，家庭用の月額料金を低く抑 えることができる。

図 7．2－3 と図 7．2－4 は，家庭の支払可能性の上限額と，提案された下水道料金単価に基づく月額下水道料金（家庭用）の比較を示している。図7．2－3には，MCのためのタイプ 1 の下水道料金単価に基づく月額料金と，コロンボ県の家庭所得データに基づく支払可能性上限額が示されている。図 7．2－4 には，NWSDB のためのタイプ 2 の下水道料金単価に基づく月額料金と，国平均の家庭所得データに基づく支払可能性上限額が示されている。家庭の支払可能性は，平均家庭所得の 1% で試算されてい る。この割合（ 1% ）は，下水道サービスに対する家庭の支払可能性の上限として，International Bank for Reconstruction and Development（IBRD ：国際復興開発銀行）（世銀）によって推定されたものであ る。

Note：ATP is estimated based on the District HH income data，
Source：JET
図 7．2－3 将来の下水道料金と支払可能性の比較
（タイプ 1）

Note：ATP is estimated by national average HH income data． Source：JET

図 7．2－4 将来の下水道料金と支払可能性の比較

 （タイプ 2）図 7．2－3 に示された通り，タイプ 1 における家庭用使用者の下水道料金月額は，家庭の支払可能性上限の $45 \sim 48 \%$ である。これは，平均的な家庭が，タイプ 1 の下水道料金単価に基づく値上げされた請求額を支払うことができるということを示唆している。この理由の一つは，コロンボ県の平均家庭所得が高く，この MC の支払可能性上限額を引き上げているからである。

タイプ 2 では，図 7．2－4 に示された通り，家庭用の下水道料金月額は，支払可能額上限の 42～66\％ である。これは，家庭が提案された下水道料金に基づく請求額を支払うことができることを示唆して いる。

実際の料金表の作成前には，平均家庭所得の最新情報を用いて，再度チェックされることが望まし い。

7．2．6 改訂された下水道料金表の例（タイプ 2，NWSDB 用）

ここまでは，O\＆M 費用を回収できる将来の下水道料金を，全使用者カテゴリーの平均単価として提案してきた。この下水道料金単価を実現できる無数の料金表が，各使用者ごとに存在する。表 7．2－3 と表 7．2－4 は，多種多様な下水道料金表の中の（タイプ 2 で NWSDB 用の）一例を示している。これ らは，水使用量の少ない使用者で，水道料金よりも高い下水道料金の請求がされるといった事態を避 けるとともに，下水道料金計算を簡単にするために，現在の水道料金表を用いて作られている。

表 7．2－3 改訂された下水道料金表の例：家庭用（2024 年時点）
Sewerage tariff：Domestic； $\mathbf{5 5} \%$ of the following water supply tariff

No，of units	Domestic－Samurdhi Recipient		Domestic－Non Samurdhi Tenement Garden		Other than for Samurdhi Recipient and Tenement Garden	
	Usage charge （LKR／Unit）	Monthly Service Charge （LKR）	Usage charge （LKR／Unit）	Monthly Service Charge （LKR）	Usage charge （LKR／Unit）	Monthly Service Charge （LKR）
00－05	5	50	8	50	12	50
06－10	10	50	11	65	16	65
11－15	15	50	20	70	20	70
16－20	40	80	40	80	40	80
21－25	58	100	58	100	58	100
26－30	88	200	88	200	88	200
31－40	105	400	105	400	105	400
41－50	120	650	120	650	120	650
51－75	130	1，000	130	1，000	130	1，000
Over 75	140	1，600	140	1，600	140	1，600

表 7．2－4 改訂された下水道料金表の例：非家庭用（2024 年時点）
Sewerage tariff：Commercial；70\％of the following water supply tariff
Government hospital； $\mathbf{7 0 \%}$ of the following water supply tariff
Industries（SME）； $\mathbf{1 5 0 \%}$ of the following water supply tariff
Industries（non SME \＆Govt．Institution）； $\mathbf{1 5 0 \%}$ of the following water supply tariff

No．of units	Commercial		Government Hospital			Industries under SME＊		Industries other than SME \＆Government Institution	
	Usage charge （LKR／ Unit）	Monthly Service Charge （LKR）	Usage charge （LKR．／／ Unit）	Monthly Service Charge （LKR）	Usage charge （LKR．／ Unit）	Monthly Service Charge （LKR）	Usage charge （LKR．／／ Unit）	Monthly Service Charge （LKR）	
	75	290	53	250	56	265	58	275	
$26-50$	75	575	53	500	56	525	58	550	
$51-75$	75	1,150	53	1,000	56	1,050	58	1,100	
$76-100$	75	1,150	53	1,000	56	1,050	58	1,100	
$101-200$	75	1,840	53	1,600	56	1,680	58	1,760	
$201-500$	75	2,875	53	2,500	56	2,625	58	2,750	
$501-1,000$	75	4,600	53	4,000	56	4,200	58	4,400	
$1,001-2,000$	75	8,625	53	7,500	56	7,875	58	8,250	
$2,001-4,000$	75	14,375	53	12,500	56	13,125	58	13,750	
$4,001-10,000$	75	28,750	53	25,000	56	26,250	58	27,500	
$10,001-20,000$	75	57,500	53	50,000	56	52,500	58	55,000	
Over 20，000	75	115,000	53	100,000	56	105,000	58	110,000	

Note：＊；Small and Medium Enterprises
Source：JET
水道料金値上げが行われた場合，下水道料金も値上げされることに留意する必要がある。そこで，水道部門と下水道部門の間で，料金改定計画に関する調整が不可欠である。

2024 年の水道料金表は，現在と同じではなく値上げされているであろう。その場合，水道料金に乗じられる下水道料金の割合（表 7．2－3 の家庭用では 55% ）は例の値よりも低くなる。

7.3 財務計画の結論

この章で記載された財務計画の結論を以下に示す。
i．現状，スリジャヤワルダナプラコッテ MC の財政状況は若干厳しい状況である。そこで，下水道サービスは NWSDB によって整備され，建設費用は中央政府負担とされる（外国融資を活用 する場合でも，融資返済は中央政府負担とする）ことを提案する。
ii．スリランカ国で次の費用負担原則が下水道サービスに適用されることを提案する。
－建設費用の 100% は中央政府によって負担される。NWSDB もしくは MC にとっては 100%無償とされる。

- O\＆M 費用は，段階的な料金値上を通じて，下水道料金によって回収される。
- 更新費用は，小規模の更新の場合は，NWSDB もしくはMCの予算で負担され，大規模の場合はプロジェクトとすることによって，中央政府によって負担される。
iii． 2 つのタイプの下水道料金単価が計算された。タイプ 1 は，MC 地域から徴収される下水道料金収入によって，プロジェクトの O\＆M費用を回収するように計算された単価である。タイプ 2 は， NWSDB の全下水道使用者からの下水道料金収入を含めた総収入で，都市 M／P の O\＆M 費用を含 む NWSDB 下水道部門の総 O\＆M 費用を回収するように計算された単価である。
iv．MC 用のタイプ 1 の下水道料金単価は， $46.97 \mathrm{LKRm}^{3}$
v．NWSDB 用のタイプ 2 の下水道料金単価は， $42.34 \mathrm{LKR} / \mathrm{m}^{3}$
vi．タイプ 1 ，タイプ 2 の両方の単価に基づく下水道料金請求額は，ともに家庭の支払可能性（ATP） の上限額（平均家庭所得の 1% ）の範囲内にあった。タイプ 1 とタイプ 2 の下水道料金請求額は，支払可能性上限額の 66% 以下にあった。これは，平均的な家庭が値上げされた請求額を支払う ことができることを示唆している。
vii．実際の料金表の作成前には，平均家庭所得の最新情報を用いて，支払可能性を再度チェックする ことを提案する。
スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションI都市下水道マスタープラン スリジャヤワルダナプラコッテ

第8章 環境社会配慮

8.1 現在の状況

現在の環境状況•社会状況については第 2 章を参照。

8．2 環境社会配慮関連法規の概要

国家レベルの環境社会配慮関連法規又は実施関連組織は，当プロジェクトの「戦略的下水道 M／P」 で調査した。都市レベルの関連法規は調査したがスリジャヤワルダナプラコッテ MC 特有の法規は なかった。国家レベルの環境社会配慮関連法規又は関連組織は「戦略的下水道 M／P」又は当報告書の APPENDIX 9 を参照。

8.3 相手国制度と JICA ガイドラインの乘離

JICA 環境社会配慮ガイドライン（2010年4月）及びスリランカ国の環境関連法規を比較した。結果を APPENDIX 10 に示す。大きな違いが見られた場合，両国の要件を満たす対策を検討する。

8.4 国際公約

スリランカ国は複数の人権や環境保護に関連する国際公約に加盟•加入している。都市レベルの関連公約は調査したがスリジャヤワルダナブラコッテ特有の国際公約はなかった。スリランカ国加盟の国際公約は APPENDIX 11 に記載する。

8.5 スコーピング

当プロジェクトが自然環境又は社会環境に及ぼす又は及ぼすと考えられる項目を抽出し， Environmental Impact Assessment（EIA ：環境影響評価）規程に基づき関連組織に提出するための，ス コーピングを行った。スコービング評価の結果，またその理由を表 8．5－1 に示す。

表 8．5－1 スコーピング評価とその理由

Item	Evaluation		Reason
1 Air pollution	P／C	B－	Dust and exhaust gases are generated during construction．
	0	D	No impacts are expected during operation．
2 Water pollution	P／C	B－	Excavation and runoff will cause turbidity during construction．
	0	B＋	Treatment of sewage and greywater will reduce water pollution．
3 Soil pollution	P／C	B－	Construction equipment and transfer of construction materials contribute to soil pollution．
	O	D	No impacts are expected during operation．
4 Waste	P／C	B－	Construction waste will be generated．
	0	B－	Sludge will be generated during operation of treatment facilities．
5 Noise and vibrations	P／C	B－	Noise and vibrations will be generated during construction．
	O	B－	Noise and vibrations will be generated during operation．
6．Ground subsidence	P／C	C－	Impacts are unknown and require investigation．
	0	C－	Impacts are unknown and require investigation．
7．Offensive odors	P／C	D	No impacts are expected during construction．
	O	B－／B＋	B－：Odor will be generated at the WWTP during operation． B＋：Improved sewerage collection and environmental conditions will reduce offensive odors in the Project area．
8 Geographical features	P／C	C－	Impacts are unknown and require investigation．
	0	D	No impacts are expected during operation．

```
スリラン力国下水セクター開発計画策定プロジェクト ファイナル•レポート
```

セクション I 都市下水道マスタープラン スリジャヤワルダナプラコッテ

Item		Evaluation	

【Evaluation】

A ：Significant impact is expected，
B ：Some impact is expected，
C：Extent of impact is unknown，
D ：No impact is expected
$+/-:$ Impact is Positive／Negative
Source：JET

8． 6 環境社会配慮の TOR

8．6．1 環境社会配慮の目的

本調査の現段階の目的は自然環境又は社会環境に影響する又は影響すると考えられる項目を抽出 し，その影響の規模や内容を査定することである。

8．6．2 対象となる項目

上記，スコーピング結果（表 8．5－1）がA，B又はCと評価された項目についてTOR調査を行う。調査が進むにあたつて必要と確認された項目も対象となる。

8．6．3 対象地域

工事現場•施設，又はその周辺が調査対象市域となる。

8．6．4 対象期間

計画，実施，オペレーション期間が調査対象期間となる。

8．6．5 環境社会配慮調査の内容と方法

調査するべき情報と対応策を以下の表 8．6－1 に示す。

```
スリラン力国下水セクター開発計画策定プロジェクト ファイナル•レポート
```

セクションII都市下水道マスタープラン スリジャヤワルダナプラコッテ

表 8．6－1 ESC 関連調査内容

Item				Study／Countermeasure	Status
No．	Title		uation		
01	Air Pollution	P／C	B－	Study：Air pollution standards，construction vehicles and methods． Method：Site survey，literature survey of regulations and standards．	In progress （M／P，F／S stage）
		0	D	N／A	N／A
02	Water Pollution	P／C	B－	Study：Water pollution standards，construction methods． Method：Site survey，literature survey of regulations and standards．	In progress （M／P，F／S stage）
		0	B＋	Study：Water pollution standards，treatment methods，water quality， flow rates，pollution loads．	$\begin{aligned} & \text { Complete } \\ & \text { (M/P stage) } \end{aligned}$
03	Soil Pollution	P／C	B－	Study：Soil pollution standards，prevention measures／construction methods，construction equipment Method：Site survey，literature survey of regulations and standards．	In progress （M／P，F／S stage）
		0	D	N／A	N／A
04	Waste	P／C	B－	Study：Waste management regulations／procedures，Collection and disposal methods，disposal site conditions． Method：Site surveys，hearing surveys of concerned parties．	$\begin{aligned} & \text { Complete } \\ & \text { (M/P stage) } \end{aligned}$
		O	B－	Study：Sludge generation． Method：Treatment method．	F／S stage
05	Noise and Vibrations	P／C	B－	Study：Noise regulations，current condition，construction methods． Method：Site surveys，hearing surveys of concerned parties，noise measurement surveys．	$\begin{aligned} & \text { Complete } \\ & \text { (M/P stage) } \end{aligned}$
		O	B－	Study：Treatment method and possible noise generation．	F／S stage
06	Ground Subsidence	P／C	C－	Study：Geographic conditions．	F／S stage
		O	C－	Method：Geographic survey．	
07	Offensive Odors	P／C	D	N／A	N／A
		\bigcirc	B－／B＋	Study：Current odor conditions，treatment method． Method：Site surveys，hearing surveys of concerned parties．	In progress （M／P，F／S stage）
08	Geographical Features	P／C	C－	Study：Geographic conditions． Method：Geographical survey．	F／S stage
		0	D	N／A	N／A
09	Bottom Sediments	P／C	D	N／A	N／A
		O	B＋	Study：Sediment conditions of water bodies． Method：Site surveys，literature surveys，water quality surveys．	F／S，EIA stage
10	Biota and Ecosystems	P／C	C－	Study：Inventory of flora and fauna in the construction area．	F／S，EIA stage
		O	$\mathrm{C}+/ \mathrm{C}$－	Method：Site survey，hearing survey of concerned parties	
10a	Protected lands	P／C	D	N／A	N／A
		O	D	N／A	N／A
11	Water Usage	P／C	C－	Study：Water use practices of local communities，impacts of	In progress
		O	C－	sewerage treatment on water usage． Method：Site surveys，hearing surveys of concerned parties．	（M／P，F／S stage）
12	Accidents	P／C	B－	Study：Construction／industrial safety regulations，traffic safety／accident prevention methods． Method：Site surveys，literature survey，hearing surveys of concerned parties．	In progress （M／P，F／S stage）
		O	B－	Study：Industrial safety regulations． Method：Literature surveys．	In progress （M／P，F／S stage）
13	Global Warming	P／C	D	N／A	N／A
		O	D	N／A	N／A
14	Land Acquisition	P／C	B－	Study：Land requirements，acquisition procedures，compliance to JICA guidelines． Method：Site surveys，literature surveys，hearing surveys of concerned parties．	In progress （M／P，F／S stage）
		0	D	N／A	N／A
15	Local Economies	P／C	$\mathrm{C}+/ \mathrm{C}-$	Study：Local economic environment，industries，markets． Relevant laws and regulations． Method：Site surveys，literature surveys，hearing surveys of concerned parties．	$\begin{aligned} & \hline \text { In progress } \\ & \text { (M/P, F/S stage) } \end{aligned}$

```
スリラン力国下水セクター開発計画策定プロジェクト ファイナル•レポート
```

セクションII都市下水道マスタープラン スリジャヤワルダナプラコッテ

Item				Study／Countermeasure	Status
No．	Title	Eva	uation		
16	Land Use	P／C	C－	Study：Land use practices of local communities． Method：Site surveys，hearing surveys of concerned parties．	F／S
		O	D		
17	Social Institutions	P／C	D	N／A	N／A
		0	D	N／A	N／A
18	Existing Social Infrastructures and Services	P／C	B－	Study：Traffic patterns，location of important social infrastructure （schools，hospitals，religious institutions，etc） Method：Site survey，inventory survey，public consultation．	$\begin{aligned} & \text { In progress } \\ & (\mathrm{M} / \mathrm{P}, \mathrm{~F} / \mathrm{S} \text { stage }) \end{aligned}$
		O	B＋		
19	Poor （low income households）	P／C	C－	Study：Census／demographic data，economic status，and land use patterns of affected peoples． Method：Hearing survey of concerned parties，relevant laws and regulations．	$\begin{aligned} & \text { In progress } \\ & (\mathrm{M} / \mathrm{P}, \mathrm{~F} / \mathrm{S}, \mathrm{EIA} \text { stage }) \end{aligned}$
		O	C－		
19a	Indigenous and ethnic populations	P／C	C－	Study：Census／demographic data，economic status，and land use patterns of affected peoples． Method：Hearing survey of concerned parties，relevant laws and regulations．	$\begin{aligned} & \text { In progress } \\ & (\mathrm{M} / \mathrm{P}, \mathrm{~F} / \mathrm{S}, \mathrm{EIA} \text { stage }) \end{aligned}$
		O	C－		
20	Misdistribution of benefits and damages	P／C	C－	Study：Social and economic conditions． Method：Hearing surveys of concerned parties，public consultation．	In progress （M／P，F／S stage）
		O	C－		
21	Local Conflicts of interest	P／C	C－	Study：Risks and prevalence of conflicts of interest． Method：Hearing surveys of concerned parties，public consultation．	$\begin{aligned} & \hline \text { In progress } \\ & (\mathrm{M} / \mathrm{P}, \mathrm{~F} / \mathrm{S} \text { stage) } \end{aligned}$
		O	C－		
22	Gender	P／C	C－	Study：Working conditions／statistics of women，gender equality policies． Method：Hearing survey of concerned parties，relevant laws and regulations．	In progress （M／P，F／S stage）
		0	C＋	Study：Health and working conditions of women． Method：Hearing survey of concerned parties，data collection．	$\begin{aligned} & \hline \text { In progress } \\ & \text { (M/P, F/S stage) } \\ & \hline \end{aligned}$
23	Children＇s Rights	P／C	C－	Study：Child labor laws． Method：Hearing survey of concerned parties，relevant laws and regulations．	In progress （M／P，F／S，EIA stage）
		O	C＋	Study：Water borne diseases and children Method：Hearing survey of concerned parties，data collection．	In progress （M／P，F／S stage）
24	Cultural Heritage	P／C	C－	Study：Location of cultural heritage sites． Method：Site survey，location of registered heritage／historical sites， hearing survey of concerned parties．	$\begin{aligned} & \text { In progress } \\ & (\mathrm{M} / \mathrm{P}, \mathrm{~F} / \mathrm{S}, \mathrm{EIA} \text { stage }) \end{aligned}$
		O	C＋	Study：Impacts of pollution on heritage sites． Method：Hearing survey of concerned parties．	
$\begin{aligned} & \hline 24 \mathrm{a} \\ & 01 \end{aligned}$	Landscapes Air Pollution	P／C	B－	Study：Location of significant cultural，religious，and tourism sites， construction locations and methods． Method：Site survey，hearing survey of concerned parties． Study：Air pollution standards，construction vehicles and methods． Method：Site survey，literature survey of regulations and standards．	$\begin{aligned} & \text { In progress } \\ & (\mathrm{M} / \mathrm{P}, \mathrm{~F} / \mathrm{S}, \mathrm{EIA}, \mathrm{D} / \mathrm{D} \\ & \text { stage }) \end{aligned}$
		P／C	B－		
02	Water Pollution	O	D	N／A	$\begin{aligned} & \text { In progress } \\ & (\mathrm{M} / \mathrm{P}, \mathrm{~F} / \mathrm{S} \text { stage }) \end{aligned}$
		P／C	B－	Study：Water pollution standards，construction methods． Method：Site survey，literature survey of regulations and standards．	

Source：JET

8．6．6 影響の予測と評価

前項（8．5 スコーピング）で A，B 又は C と評価された項目については影響の予測と評価を行う。 プロジェクト実施にあたり再検討しスコーピング表をアップデートする。

8．6．7 EMP とEMoPの計画

事業計画の実施により回避できない環境影響が発生する可能性が予測された場合，対策方法を示す Environmental Management Plan（EMP ：環境管理計画）と，その対策の責任組織，実施方法，期間等，実施に当たっての管理方法を示す Environmental Monitoring Plan（EMoP：モニタリング計画）を作成 する。内容には実施項目，頻度，体制，予算の検討を含める。

8．6．8 ステークホルダー協議

当プロジェクトの開始と同時に現地のニーズや姿勢の調査のため，現地の大学教授（コロンボ大学）
と NGO 団体との情報共有•意見交換協議を行った。内容は APPENDIX 12 に記載する。
また，調査計画や結果の概要を現地ステークホルダー協議にて説明し，各ステークホルダーの意見 を聴取する必要がある。

8． 7 ドラフト EMP と EMoP

当プロジェクトの環境社会配慮はEMP によって管理される。EMP はEMoP によって実施される。 EMP は現段階で情報が不足していることから適切に作成できないため EMP と EMoP のドラフトを APPENDIX 13 に提示する。プロジェクトが進むにあたつて新しい情報を取り入れ EMP•EMoPの詳細を作成していく。

8． 8 環境社会配慮活動計画

環境社会配慮関連の調査は以下に示す図 8．8－1 の通りに行う。

Stage	Period		$\begin{array}{\|c\|} \hline \text { ESC } \\ \text { Expert } \\ \hline \hline \end{array}$	$\begin{aligned} & \text { EIA } \\ & \text { Study } \\ & \hline \end{aligned}$	Target		$\begin{gathered} \text { Environmenta } \\ 1 \text { Study } \\ \hline \hline \end{gathered}$	Remark	
			Original		Selected				
Strategic MP	2016	Jan				335 local	（Approx．）	Primary study	$>$ Environmental
		Feb			authorities (79)	$\begin{aligned} & 5 \text { local } \\ & \text { authorities } \end{aligned}$		policies，plans and programs	
		Mar						$\gg \begin{gathered}\text { National } \\ \text { research }\end{gathered}$	
		Apr							
$\begin{gathered} 5 \text { Cities MP } \\ \text { (Pre-F/S) } \end{gathered}$		May			$\begin{array}{lr} \hline 5 & \text { local } \\ \text { authorities } \end{array}$	$\begin{array}{lr} \hline 2 & \text { local } \\ \text { authorities } \end{array}$	Preparation study for Initial Environmenta 1 Examination （IEE ：初期影響評価） ／EIA	$\begin{array}{ll} \hline> & \text { Literature } \\ \text { search } \\ > & \text { Site survey } \end{array}$	
		Jun							
		Jul							
		Aug							
		Sep							
Feasibility Study	2017	May			$\begin{aligned} & \text { Sri Jayawardenapura } \\ & \text { Kotte MC } \end{aligned}$		EIA Study	$>$ EMP（draft） $>$ Monitoring $>$ Plan（draft） $>$ EIA Report $>$ Resettlement Action Plan	
		Jun							
		Jul							
		Aug							
		Sep							
		Oct							
		Nov							
		Dec							

Source：JET
図 8．8－1 ESC 計画

第9章 結論と提言

9.1 実施の可能性

スリジャヤワルダナプラコッテは下水処理場用地も確認されかつ，最終処分場も適正に運営されて いる。また，NWSDBでは最終処分場で汚泥のコンポスト処理ができない場合，現在パイプの保管場所となっている NWSDB 用地をコンポスト施設として転用することも検討している。

下水道事業の実施において，下水処理場の用地と最終処分場の確保が最も重要である。スリジャヤ ワルダナプラコッテでは現時点でNWSDB 及び Joint Coordinating Committee（JCC ：合同調整委員会） で下水処理場用地を確認し，最終処分場も適切に稼働していることから，F／S 実施後に施設整備を進 めることができる可能性がある。よって，スリジャヤワルダナプラコッテを F／S 対象地域とする。

9．2 リスクと緩和策

プロジェクト実施段階におけるリスクと緩和策を表 9．2－1に示す。特に下水処理場及びポンプ場の用地取得に関する項目が事業延滞の原因となる。

表 9．2－1 リスクと緩和策

Risks	Mitigation Measures
Delay：due to the start of Pumping Stations and STP，if the identified lands are not acquired before the commencement of the project	JCC，UDA，NWSDB and other relevant agencies must take appropriate actions in a timely manner for clearing project sites before the construction．
Delav：due to the start of pumping stations and STP，if necessary approvals for the EIA and the drainage plan of SLLRDC are not granted before the commencement of project	JCC，UDA，NWSDB and other relevant agencies must take appropriate actions in a timely manner to obtain necessary approvals before the construction．
Cost Increase：if there are variances in cost for building foundations and pipe trenching and bedding．	Soil test must be carried out to identify the soil conditions．
Low Inflow：of sewage at the treatment plant，if the development of the city is delayed．	JCC must make the appropriate stage wise sewerage development plan based on the city development carried－out by Megapolis．

Source：JET

9． 3 結論と提言

スリジャヤワルダナプラコッテの下水道事業は，スリランカの行政上の首都を対象としたものであ り，供用人口も大きく，窒素リンの除去を考慮した下水処理場のため，水質保全の効果は大きく，そ の事業実施優先度は極めて高い。

本プロジェクトの下水処理場用地は確認されているものの，中継ポンプ場の位置などは確定されて おらず，F／S 実施期間中にその位置及び必要面積を確定し，下水処理場用地と合わせて早期の取得を行うようにすべきである。また，事業実施期間中のプロジェクトコストの上昇を防ぐため，F／Sにお いては地質調査等の基礎調査を行い建設コストの積算に注意すべきである。

APPENDICES

APPENDIX

APPENDIX 1：Waste Water Flow Calculation

APPENDIX 2：Inflow Sewage Quality and

Inflow sewage quality－Measured data of inflow sewage－

		Raddoluga ma ${ }^{1 /}$	Maththegoda ${ }^{17}$	Hikka duwa ${ }^{1 /}$	$\begin{gathered} \text { Moratuwa/ } \\ \text { Rathmalana** } \end{gathered}$	$\begin{gathered} \text { Ja-Ela/ } \\ \text { Ekara*** } \end{gathered}$	Average	Design raw water quality	Moratuwa／Rathmalana （First stage planned values）	
pH at $26^{\circ} \mathrm{C}$		6.7	6.4	7.0	6．6－8．5	．	6.7			pH at $26^{\circ} \mathrm{C}$
Total Suspended Solids at $104^{\circ} \mathrm{C}$	mg／l	163	90	139	232	．	156	160	458	Total Suspended Solids at $104^{\circ} \mathrm{C}$
Chemical Oxygen Demand Total	mg／	609	473	446	274	628	486	600	1057	Chemical Oxygen Demand Total
Chemical Oxygen Demand Soluble	mg／	241	241	206	－	．	229	－	．	Chemical Oxygen Demand Soluble
Biochemical Oxygen Demand－5Total	mg／	383	247	240	87	187	229	240	355	Biochemical Oxygen Demand－5Total
Biochemical Oxygen Demand－ 5 Soluble	mg／	159	116	149	．	．	141	－	．	Biochemical Oxygen Demand－ 5 Soluble
Nitrate－Nitrogen and Nitrite Nitrogen	mg／	2.3	2.5	5.7	1.0	．	2.9	．	．	Nitrate－Nitrogen and Nitrite Nitrogen
Ammonia cal Nitrogen	mg／l	26	28	24	14	．	23	．	．	Ammonia cal Nitrogen
Total Nitrogen	mg／	39	34	33	42	．	37	45	55	Total Nitrogen
Total Phos phorous	mg／l	5.9	3.3	2.9	2.8	．	3.7	6	12	Total Phosphorous

1）Average values of the three measurements which were conducted from December 2016 to January 2017 （Annex 1）
＊＊Data taken between October 2013 and February 2016
＊＊＊Average of 1 －year measurement
The Result of Sewage Analysis

		Raddolugama			Maththegoda			Hikkaduwa		
		23，24 Nov． 2016	29，30 Nov． 2016	5，6 Dec 2016	25，26 Nov． 2016	1，2 Dec 2016	7，8 Dec 2016	27，28 Dec 2016	3，4 Dec 2016	9，10 Dec 2016
pH at $26^{\circ} \mathrm{C}$		6.6	6.93	6.7	6.2	6.9	6.2	7.3	6.42	7.4
Total Suspended Solids at $104^{\circ} \mathrm{C}$	mg／l	814＊	115	211	54	115	100	59	165	194
Chemical Oxygen Demand Total	mg／l	752＊	650	567	510	670	239	344	406	587
Chemical Oxygen Demand Soluble	mg／l	184＊＊	261	220	312	330	80	206	201	212
Biochemical Oxygen Demand－5Total	mg／l	669＊＊	402	363	189	390	162	186	213	321
Biochemical Oxygen Demand－ 5 Soluble	mg／l	99．8＊	136	181	120	181	48	109	167	172
Nitrate－Nitrogen and Nitrite Nitrogen	mg／l	2.2	28＊	2.4	2.5	1.4	3.5	1.2	13.7	2.2
Ammoniacal Nitrogen	mg／l	10	30	38	19	42	24	18	19	35
Total Nitrogen	mg／	13	61	42	25	46	32	21	35	42
Total Phosphorous	mg／	4	8.8	4.8	0.4	5.8	3.8	0.6	4.1	4.1

[^1]APPENDIX 3：Layout Plan，Sewer Design Calculations and Longitudinal Cross Section

スリラン力国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクションII 都市下水道マスタープラン
スリジャヤワルダナプラコッテ

DL $=$

Ncounvisted length
$\stackrel{5}{5}$

APPENDIX 4：Draft Amendment of Tolerance Discharge Limits

Schedule III

Tolerance limit values for the discharge of wastewaters or effluents（industrial／ domestic）from a prescribed activity into the inland surface waters

No．	Parameter	Unit，type of timit	Tolerance limit values for Inland surface waters
1.	Total suspended solids	$\mathrm{mg} / 1, \max$ ．	50
2.	Total dissolved solids	mg／1，max．	1000
3.	pH at ambient temperature	－	6．0－8．5
4.	Biochemical oxygen demand $\left(\mathrm{BOD}_{5}\right.$ in 5 days at $20^{\circ} \mathrm{C}$ ）	$m g / 1, \max$ ．	30
5.	Temperature at the point of discharge	${ }^{\circ} \mathrm{C}, \max$	Ambient water temperature ± 5 or 40 whichever is lesser
6.	Oils and greases	$\mathrm{mg} / 1, \max$ ．	10
7.	Phenols（as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ ）	$\mathrm{mg} / 1, \max$ ．	1.0
8.	Chemical oxygen demand （COD）	mg／ 1 ，max．	250
9.	Colour （Maximum spectral absorption coefficient）	Wave length range 436 nm ，（Yellow range） 525 nm ，（Red range） 620 nm ，（blue range）	$\begin{aligned} & 7 \mathrm{~m}^{-1} \\ & 5 \mathrm{~m}^{-1} \\ & 3 \mathrm{~m}^{-1} \end{aligned}$
10.	Dissolved phosphates（as P）	mg／1，max．	5

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート

11.	Total Kjeldhal nitrogen（as $\mathrm{N})$	mg／1，max．	150
12.	Ammoniacal nitrogen（as N ）	$\mathrm{mg} / 1, \max$ ．	50
13.	Nitrate（as N）	$\mathrm{mg} / 1, \mathrm{max}$ ．	10
14.	Cyanide（as CN）	mg／1，max．	0.05
15.	Total residual chlorine $\text { (as } \mathrm{Cl}_{2} \text {) }$	mg／1，max．	0.5
16.	Chlorides（as Cl）	mg／1，max．	400
17.	Fluorides（as F）	mg／1，max．	2.0
18.	Sulphides（as S）	$\mathrm{mg} / 1, \max$ ．	0.5
19.	Arsenic，total（as As）	$\mathrm{mg} / 1, \mathrm{max}$ ．	0.05
20.	Cadmium，total（as Cd）	$\mathrm{mg} / 1, \max$	0.03
21.	Chromium，total（as Cr ）	$\mathrm{mg} / 1, \mathrm{max}$ ．	0.05
22.	Chromium，hexavalent（as $\left.\mathrm{Cr}^{6+}\right)$	mg／ $1, \max$ ．	0.01
23.	Copper，total（as Cu ）	mg／1，max．	0.05
24.	Iron，total（as Fe）	$\mathrm{mg} / 1, \mathrm{max}$.	3.0
25.	Lead，total（as Pb）	$\mathrm{mg} / 1, \max$ ．	0.05
26.	Mercury，total（as Hg）	mg／ 1 ，max．	0.001
27.	Nickel，total（as Ni）	$\mathrm{mg} / 1, \max$ ．	0.2
28.	Selenium，total（as Se ）	mg／1，max．	0.05
29.	Zinc，total（as Zn ）	$\mathrm{mg} / 1, \max$ ．	2.0
30.	Silver，total（as Ag）	$\mathrm{mg} / 1, \max$ ．	0.035
31.	Pesticides（Total）	mg／ 1 ，max．	0.005
32.	Surfactants（Total）	$\mathrm{mg} / 1, \max _{4}$	5.0
33.	Faecal coliform	MPN／ 100 ml ，max．	150

34.	mg／1，max：	250	
35.	Radio Active Material： （a）Alpha emitters （b）Beta emitters	micro curie／ml，max	micro curie／ml，max

Note 1：All efforts should be made to remove unpleasant odour as practicable as possible．

Note 2：These limit values are based on the premise that for inland surface water the dilution factor may be at least $1: 8$ ．In an event where the dilution factor is found to be less，the limit values in the Schedule should be adjusted on a proportional basis so as to give rise to more stringent limit values．

Note 3：The above mentioned general standards and criteria should cease to apply with regard to a particular industry when industry specific standards and criteria are stipulated for that industry．

APPENDIX 5：General Layout of Septic Tank

APPENDIX 6：Detail of Project Costs

，im
$\underset{\substack{\text { sex } \\ \text { nox }}}{\text { sen }}$

	Tramestram	Sper	Voe	Qamer			${ }^{\text {ctin }}$ Amat			Tobl Amocnt						
					$\frac{L C}{1 K R}$	$\left.\right\|_{P C} ^{P r}$	$\frac{\mathrm{LC}}{\frac{\mathrm{KR}}{\mathrm{KR}}}$	$\frac{F C}{F V}$								
1 	STP															
	So Jaywankerapans Kate STP （1）-3500 analidy）		4	1			4 ¢ 2 mma	Sormene	12218181818	vecouose						
	5 atam or						4887 272,719	5.848008080	12，715，181， 18	maxamen						
31	Traks Seur															
			\pm	$\frac{23}{20}$	$\frac{3500}{400}$		${ }^{165000}$		${ }^{2 \times 85000}$	$\frac{215000}{210000}$						
			－	${ }^{14}$	＋mom	7200	\％10x0	1060000	1978000	${ }_{1}^{12030000}$						
			－	\＃	＋$+\infty$	1800	14.00	25300	5hem	379000						
		Dpre mexexectle 400	m	8	6×10		37700	46000	87×0	65000						
			$=$	c	N00	880	15.000	ssomo	simo	exam						
		Dape maxextedre 1 1 m	＝	120		2nino	481000	2874000	p12mom	2488000						
		Dre	＝	sir	，	3.00	57800	20s300	y	smom						
			\square	\％2	50	3， 1×0	5	1731000	1930．000	${ }^{21250}$						
		Drab：maxemecter 3sm	m	53	5×0	23.50	538500	12354000	xosiome	15.515000						
			m	231	980	38.50	2485000	sagrox	10165×0	2 smom						
			＝	4	10100	2sano	stowo	128000	2185000	1.851000						
		Depro maxexeteder 1 im	－	4	smax	28300	2317000	1731.00	18.808000	14279500						
			＝	2π	7200	2850	2048000	790000	12397000	9846000						
			$=$	24	8.80	2300	18×000	64teos	10，190000	${ }^{78} 800000$						
		Dape mexexmbey 3 an	＝	20	ILso	2900	${ }^{685000}$	15773000	23， 2000	Hismom						
		Dape mexexectap 3 Sm	\cdots	${ }^{58}$	15100	3300	6 \％0xam	11385000	3353800	18.013000						
			$=$	M	14×0	2000	${ }^{2727000}$	159000	8 mmom	6330000						
			－	ए9	15100	2000	1950000	3872000	691300	5，385000						
		Dexe	＝	317	0.400	400	271200	$11 \times 9 \times 20$	1678500	12000000						
		xepe impexectioy 20 m	－	3）	1200	$4 \times \infty$	3177200	13.3400	80.37200	13.800×0						
		Deve imexexredty 23 mm	－	55	12000	4.500	078000	19202000	Ramem	м 273000						
		Dape ：matextedres 3 3a	－	32	13.80	3980	Sulum	115 spax	19.917000	15.105000						
		Te	＝	40	H000	3900	\％ita	Hemam	5enco	19873000						
		Oremememembe	$=$	${ }_{30} 2$	16.500	${ }^{3} 5000$	Sheo	1.061000	12505000	1.760000						
		Depe mexereter 1． m	m	43	8×0	43， 50	355 mom	183300	2786000	2110050						
		Depe macxertave 20 m	＝	2m	10,100	5300	2 2max	2sstom	14804000	11.60000						
	Suntum mut el Cap FRP NDDOO	Dere maxextratay 2 sm	$=$	236	${ }^{103000}$	41.00	${ }^{3011000}$	924000	15850×0	1230000						
		Daxe extexectur 3 sm	\＃	8	21300	4850	121800	2880000	4.485000	$3 \mathrm{smose0}$						
		Dare maxexecing ism	$=$	4	2080	4×0	Simos	1985000	1.145800	2881000						
	Smbud		m	30	8500	sime	2 max	1538300	2070000	15588000						
			＝	${ }^{2 \times 8}$	1090	5.00	297700	1397800	\％osiox	1161800						
			＝	109	10000	5200	1 190000	S419000	873700	03000						
	Suph mimald frapres Nomeo	Dope exe excedide 100	＝	18	1400	32000	${ }^{2385000}$	Sssta00	10 Sacos	${ }^{\text {sis }}$						
	Smitumblec（Ratrs Nomo	dere maxemety 40 m	a	18	21.00	55100	${ }_{3} 914000$	9730000	165500000	1274000						
			$=$	105	nom	53×00	231000	5888×00	288000	7300700						
	－	Depreiextumaty 2 sm	＝	39.	17×0	com	477880	15123000	24180000	18885000						
		Dre	a	30	10 moc	2000	1595500	48 moxeo	78810000	cosume						
			－	＊s	2000	com	9，00000	${ }^{2959} 5 \times 0$	प，	1075000						
			$=$	＂，	${ }_{2}$		${ }^{2}$	17203000	Smpoco	$\underline{200000}$						
			＝	$1{ }^{17}$	11230	10000	1.50000	11851100	10.85900	11.008500						
			＝	＊${ }^{5}$	15200	101200	2018000	46850.00	\％ 20000	5278000						
			$=$	28	1400	101200	127 mox	3018200	4684900	33778500						
			$=$	in^{17}	27100	101300	45	1730 coeo	21．10000	30971000						
		Dapo mexatectay 10	＝	s4．	77×0	10190	158100	5745000	2033500	（5astixa						
		Dabe maxureturition	$=$	va	30.500	1004×0	931800	1132000	somico	1873800						
		Dapee maexteday 1 Sm	$=$	24	15×30	190200	368000	45938300	Susmo	＋8813000						
		Depe ma cxection 20 mm	\＃	30	17230	12050	629900	O844000	\％，833000	7423500						
		Depe mexexteidy 3 \％m	＝	76	28300	19050	1580000	188635000	21433×00	16150000						
		Dreb mexecrectre 3am	＝	28.	53020	19.40	${ }_{\text {sobacos }}$	\＄900000		${ }^{1} 129390000$						
	Sutam		\pm	140	11300	19200	stumo	20skom	，9mem	$\frac{1250000}{}$						
			＝	क 4	∞	1000	82000	25000	\％\％700	590000						
			＝	20	80	2500	5380	1.35000	2 mbmom	1231000						
			＝		1.00	2500	1900	3 max	5sm0	${ }^{8.000}$						
	Sumblemembl（HDPE CO235	Depe maxexmble 19m	＝	109	sex	，nmo	${ }^{38300}$	R041900	63150	4×8000						
			＝	，	1200	N00	31000	4300	7000	59000						
		Dape atexeredre 1 im	＝	v	900	＋500	116100	ssome	1273000	\％2000						
			$=$	Lios	1000	7.000	L10s 200	889800	1214000	9385000						
		Daph arexereder 10 mm	＝	193	1200	12200	231000	455000	Mmomo	\％ocmom						
		Dase maxaretatiom	＝	$1{ }^{1}$	1000	12 mo	18000	1311000	1898000	1，472000						
		Date maxexrecte 3 3m	$=$	172	1.00	1230	18880	1，54000	2118.80	1.66000						
			＝	80	1500	23584	307000	2889000	\％017．00	\％\times ¢0800						
		Depe mexexetion 1am	＝	13	3 mol	37104	507000	4185000	Q19000	smom						
			＝	m？	${ }^{3} 5000$	585032	11.306000	112×54000	157351000	IT，						
			m	tim		\％\％970			simparo	S88875000						
			를	$\frac{259}{30}$	$\frac{7300}{3000}$	5 save			$\frac{205534000}{30785000}$	$\frac{159}{}$						
			$=$	158	${ }^{85} 500$	83302	18570×0	${ }_{1} 15373000$	12720000	145987						
		Dreteraxexectur 10 m	＝	${ }^{2 / 5}$	10000	1000004	$2 \mathrm{Casas} \times 0$	34031000	350885000	20.153000						
			$=$	\％	100000	108306	\％91300	25xmex	（13805000	191978600						
		Depre exeexereday 1an	－	6	30500	3395	191800	1401000	ravicem	19 ramo						
			$=$		3000	21331	＊2000	3staom	3019000	1.1850000						
			＝	12	1100	245\％	1874000	2988800	1180000	\％311000						
			＝	析	5000	sum	1，60．000	1100000	1600000	1278080						
		Dere erexerectay 10 m	－	${ }^{4}$	35000	2358.814	5278800	4088200	82mixo	4883×0						
	Terpeary		mo	1800	2000		7317000		T1217000	S9， 175000						
			ma	${ }^{38} \times 3$	490		155×8000		119580 mox	145885×00						
82	Pmap statas															
			x		\＃，mame				5amomo	O7，700000						
	Stax Pemprestim		${ }^{*}$		Sर．anceo		${ }^{2850000000}$		28.80000×00	2195850000						
	Sthotat ora						\＄ $\mathrm{S} 84 \times 571,000$	4， 818.230 .500	10．19925009							
	Brathtur															
${ }_{1}$	brawh sur															
		Dxem maxemeedere 2 Sa	ㄹ	${ }^{\text {cas }}$	$\underline{4 \times 0}$	0×3	гтихаио	21， 2×5000	Smampa	Isko						
			4	07010	2000		1 ITRTO00		138372000	109325000						
			$4{ }^{12}$	नापन			smansmo		3 3，	2190130000						
	Namat Tye Pure		${ }^{\text {¢ }}$	30	100000	695000	момахо		200000000	140000000						
	\＄ 10.40 or						，，079， 587,000	3，322，90．000	11．68，	．074．24，${ }^{\text {a }}$						
B	Hoser Casarctibe															
D	Hapecamem		19		mom		0		m	18140000						
										18 l						
	Stitatid						． $6850.000,000$		4．950．00000	S311spowe						
	Sthet on						$30 \times 8014252,727$		30．839968818	30．80．atacm						
	Atamatioceas						$22^{2 \times 0 \times 0000}$			12090000000						
，	comatrecat						134000000	318000000	$5417 \times 60 \times 0$							
4									$\frac{217250000}{1 m 985000}$	$\frac{1730980000000}{5 \times 29000}$						
\bigcirc																
	Lerratary							maxam	498 mam	\％，						
9	Taxatios						$98910 \times 0 \times 0$		98sicome	${ }^{\text {chen }}$						
	Stumbertag						20.0050000 .000	S．78，000．000	28，404，90，．000	11，59， 8 ， 6 ，0，000						
									67，086，920．000	$\frac{51.56093 .3000}{4.509305000}$						
									\＄4．416．835．000							
							12， 61.0060 .000	84，000，000	12，070，90，，000	0，75s，970．000						

APPENDIX 7：Detail of Annual Fund Requirement

APPENDIX 8：Breakdown of Operating Expenditure

Moratuwa Ratmalana－8119

Type of Expenditure	Moratuwa Ratmalana WWTP	Moratuwa Ratmalana Distribution Network	Moratuwa （Soysapura）	Total
Salary			21，586，000．00	21，586，000．00
Utility Cost	9，460，008．00	3，300，000．00	103，000．00	12，863，008．00
Chemical Cost	383，000．00	－		383，000．00
Repair and Maintanance Cost	810，050．00	142，950．00	1，271，000．00	2，224，000．00
Establishment Cost	862，000．00	－	1，115，000．00	1，977，000．00
Security and Rent Cost	1，162，000．00	2，324，000．00	1，121，000．00	4，607，000．00
Total	12，677，058．00	5，766，950．00	25，196，000．00	43，640，008．00

Treatment Plant and Network

			Total Amount（LKR）
Sri Jayawardanapura Kotte MC	35000	$\mathrm{~m} 3 / \mathrm{d} \rightarrow>35000 \times 39.13 \times 365=$	$499,876,455$
Anuradhapura MC	14000	$\mathrm{~m} 3 / \mathrm{d} \rightarrow>1400 \times 39.13 \times 365=$	$199,950,582$
Badulla MC	4000	$\mathrm{~m} 3 / \mathrm{d} \rightarrow>4000 \times 39.13 \times 365=$	$57,128,738$
Nuwara Eliya MC	4700	$\mathrm{~m} 3 / \mathrm{d} \rightarrow 4700 \times 39.13 \times 365=$	$67,126,267$
Dehiwala－Mt Lavinia MC	20000	$\mathrm{~m} 3 / \mathrm{d} \rightarrow 20000 \times 39.13 \times 365=$	$285,643,689$

APPENDIX 9：Regulations and Organizations Related to ESC

In Sri Lanka，various environmental legislations and standards are in force pertaining to wastewater collection，treatment，and disposal practices in order to safeguard the environment．It should be noted that many number of statutes exist which deal with this subject directly or indirectly．The most important legislations and standards are；
－National Environmental Act No． 47 of 1980 and No． 56 of 1988 and its amendments
－Tolerance limits for the discharge of industrial waste in to inland surface waters
－Tolerance limits for industrial effluents discharged on land for irrigation purpose
－Tolerance limits for industrial and domestic effluents discharged into marine coastal areas
－Tolerance limits for discharge of effluents into public sewers with central treatment plants
－Hazardous Waste Disposal
－Air Quality and Offensive Odor
－Noise and Vibration
－Marine Pollution Prevention Act no 59 of 1981
－Coast Conservation Act No． 57 of 1981 amended by Act No 64 of 1988 and its amendments
－Flood Protection Ordinance No 4 of 1924
－Land development Ordinance of 1935
－Nuisance Ordinance No． 15 of 1862 as amended by act No 57 of 1946
－State Land Ordinance No 8 of 1947
－Soil Conservation Act No 25 of 1951
－Urban Development Authority Law No 41 of 1978
－Mahaweli Authority of Sri Lanka Act No 23 of 1979
－Municipal Councils Ordinance No 29 of 1947 amended by act no 61 of 1981
－Fauna and Flora Protection Ordinance No 2 of 1987
－Agrarian Services Act No 58 of 1979 amended by Act No． 4 of 1991
－Irrigation Ordinance No 32 of 1946，amended by No 48 of 1968 and by No 13 of 1994
－Forest Ordinance No 16 of 1907 as amended by Act No 23 of 1995

Approvals Required for a Sewerage Project

The proposed Project and each of its subprojects will be in full concurrence with legal requirements of the relevant Government Ministries and agencies．

Central Environmental Authority（CEA）

Approval of CEA under EIA regulations is required for the implementation of any＂Prescribed Project＂and valid Environmental Protection License（EPL）is required to discharge effluents in to the environment．

Coast Conservation and Coastal Resources Management Department（CC\＆CRMD－Commonly known as CCD）

Approval of the Director General of CC\＆CRMD is required for any development activity to be carried out within the Coastal Zone as defined under Coast Conservation Act．

Local Authority（LA）（Municipal Councils，Urban Councils or Pradeshiya Sabha）

To carryout construction activities of the project，the approval of relevant Local Authority must be obtained．

Mahaweli Authority of Sri Lanka（MASL）

As the responsible agency for Mahaweli River，the MASL has been vested with the authority of granting permission for development works in the Mahaweli River and its reservation．Moreover，MASL is also a Project Approving Agency Gazette under the NEA．

Road Development Authority（RDA），Provincial Road Development Authority（PRDA）
If the project activities require to lay pipelines along provincial or national roads，the approval of PRDA or RDA is required．

Department of Archaeology

It is the state agency responsible for conservation of archaeological artefacts and structures of historical interest whether lying or hidden beneath the surface of the ground or in any water／lake．Any development project on such land will have to be permitted by the Director General of Archaeology．

The Forest Department

The Forest Department in its role as statutory custodian of state forests and lands and the plantation of new forests，has been vested with powers so as to not granting permission for any development activity within any land declared，proposed or defined under the Forest Ordinance．

The Department of Wild Life Conservation

The Department of Wild Life Conservation has been vested with the powers as to not grant permission for development projects which are proposed to be located within，or within a 1 mile radius of National Reserves declared under the Fauna and Flora Protection Ordinance without carrying out EIA．

Department of Agrarian Development

Filling of any paddy cultivation land is envisaged for the construction of sewerage treatment plants，laying of pipelines or related structures，approval of the Department，of Agrarian Development is required．

Urban Development Authority（UDA）

If the development activities of the proposed project are within an area declared under UDA law，approval of UDA is required．

APPENDIX 10：Comparison with JICA Guidelines

There are some gaps between the current Sri Lankan Regulations and JICA Guideline，but they are rather insignificant．The governmental laws pay less attention to the social impacts than JICA Guidelines．Thus， the preparing of the Resettlement Action Plan（RAP）is not mandatory．The 30 day term for public comment that the government stipulates differs greatly from the recommended 120－day JICA policy． Although JCA＇s guidelines suggest that the project proponents should disclose information related to it， under the Sri Lanka＇s legislation，the responsibility of information disclosure is incurred not by the project proponent but by the PAA．

Comparison of JICA and Sri Lankan Policies and Guidelines

Item	JICA Guidelines	Sri Lankan Policies and Regulations
EIA／IEE Process	At the scoping stage and EIA draft report stage，the project proponent has to hold stakeholder meetings in the area to explain the contents．The comments should be reflected in the plan． EIA reports／RAP will be disclosed 120 days prior to concluding the agreement documents．	Stakeholders are provided an opportunity to comment in the scoping stage．The stakeholders are usually related governmental organizations（not local community／general public）． The stakeholders and public can submit queries and comments on the EIA draft report．The comments should be addressed in the final report． EIA reports will be opened for 30 days for public comments．
Environmental Checklist	A check list is provided for each sector． These items should be included in the EIA report．	The PAA shall prepare terms of reference for an EIA．No specific checklist is provided．
Involuntary \quad Resettlement Process	The project proponent is obliged to prepare a RAP．If number of resettled household is small（e．g．one household）， the RAP can be simplified one． The RAP is prepared as part of the EIA Report．	In case that the number of resettled households is 20 or more，the NIRP requires a RAP．
Compensation for land resettlement	Full replacement cost must be applied as much as possible．	The Land Acquisition Act（LAA）provides for the payment of compensation on the basis of＂market value＂which is defined as the＂amount which the land might be expected to have realized if sold by a willing seller in the open market as a separate entity＂． The National Involuntary Resettlement Policy（NIRP）recommends that compensation for loss of land，structures， other assets and income should be based on full replacement cost and should be paid promptly together with transaction costs．
Compensation for non－registered residents	All residents before the cut－off－date are eligible．	The LAA does not have any provisions on this issue． The NIRP recommends that affected persons who do not have documented title to land should receive fair and just treatment．
Grievance mechanism \quad redress	The project proponent is obliged to have a grievance redness mechanism．	The LAA provides a limited grievance redress mechanism whereby certain grievances of the affected persons relating to compensation can be referred to the Board of Review established under the LAA． The NIRP recommends the establishment of an internal monitoring system by project executing agencies to monitor the implementation of RAPs and handling of grievances．Grievances redress mechanism formally instituted by the project authorities with the support of the Divisional Secretaries of the project area．

APPENDIX 11：International Commitments related to ESC

International Commitments

A list of Environment－related International Conventions，Protocols，and Treaties is given in Table．
List of Environment－related International Conventions，Protocols，and Treaties

No	Environment－Related International Conventions，Protocols，and Treaties
1	International Plant Protection Convention（Rome，1951）
2	Plant Protection Agreement for the South East Asia and Pacific Region（Rome，1956）
3	Convention on Wetlands of International Importance especially as Waterfowl Habitat（Ramsar，1971）
4	Convention Concerning the Protection of the World Cultural and Natural Heritage（Paris，1972）
5	Convention on International Trade in Endangered Species of Wild Fauna and Flora（Washington，1973）
6	Convention on Conservation of Migratory Species（Bonn，1979）
7	Vienna Convention for the Protection of the Ozone Layer（Vienna，1985）
8	Montreal Protocol on Substances that Deplete the ozone Layer（Montreal 1987）
9	United Nations Framework Convention on Climate Change（New York，1992）
10	Convention on Biological Diversity（Rio De Janeiro，1992）
11	International Convention to Combat Desertification（Paris 1994）
12	United Nations Convention to Combat Desertification in those Countries Experiencing Serious Drought and／or
13	Desertification，Particularly in Africa（Paris，1994）
14	Kyoto protocol to the United Nations Framework Convention on Climate Change（Kyoto，1997）
15	Contagena protocol on Biosafety to the Convention on Biological Diversity（Cartagena，2003）

APPENDIX 12：Record of Consultation with Public and Authorities

Record of Meeting／Discussion

Record of Meeting／Discussion

Main Subject：

1．To make known the JET＇s intention to perform M／P for the Project，and its contents．
2．To collect thoughts and opinions regarding the Project and apply them for its implementation

Topic	Contents of Discussion	Conclusion
1	By JET： General introduction of current project（Presented：IC／R presentation）．	
2	CEJ： Kaduwela may be an interesting location for sewerage project． a）High domestic sewerage needs：direct dumping of domestic sewerage to Kelani River，complaints of itchiness and reactions to bathing in river，etc b）Highly industrialized：industrial effluent and solid waste in Kelani river c）Water treatment plant located downstream is affected by pollution at Kaduwela． Many other water and land pollution issues were discussed	
3	CEJ and JET will further consult each other as the Project progresses．	
4	Documents： Kelani River Edatabase．pdf Content－Kelani River industrial pollution 2015 Kelani River industrial pollution	
Actions to be taken	bntil When	

Record of Meeting／Discussion

Main Subject：

1．To make known the JET＇s intention to perform M／P for the Project，and its contents．
2．To collect thoughts and opinions regarding the Project and apply them for its implementation

Topic	Contents of Discussion	Conclusion			
1	By JET： General introduction of current project（Presented：IC／R presentation）．				
2	Prof．Jayathunge＇s response： Odor issues should be controlled． The extent of industrial and medical waste water included in the study，or treated at the waste water treatment plant should be discussed．				
3	Prof．Jayathunge will be leaving the department due to retirement． She will appoint others to participate in the consultations，from chemistry and biology backgrounds．				
4	Actions to be taken				
	until When				

APPENDIX 13：Draft EMP and EMoP

Mitigation Measures
Mitigation measures proposed with respect to the stages of：（i）planning and design（ii）construction and（iii） operation is given in Table 1.
Table 1：Environmental Impact－Mitigation Matrix
スリラン力国下水セクター開発計画策定プロジェクト ファイナル・レボート
セクション I 都市下水道マスタープラン

Environmental Impact／Issue	Mitigation Measure	Implementing Organization	Responsible Organization
Dust Control	＊Enclosing or covering the construction site in order to control the dust dispersion． －Protecting stockpiles from water and wind erosion； －Using a water truck for dust suppression on all exposed areas －Establishing and enforcing vehicle speed limits to minimize dust generation； －Use tarpaulins to cover loose material when transported to and from the site． －Locating stockpiles away from sensitive receptors； －Loaded haul trucks travelling to and from the site having loads leveled to avoid spillage； －Carrying out progressive rehabilitation of cleared land；	Contractor	Consultant／ NWSDB
Burrow pits	－Eligible contractor／s who are operating burrow pits with necessary approvals／permits，will only be selected． －Noise，dust and related safety issues during loading，transportation and unloading will be controlled to meet＇the standards and norms	Contractor	Consultant／ NWSDB
Construction Waste Disposal	－System to collect waste cement slurry will be provided to avoid contamination of drainage paths． －Wastewater from washing of equipment used for concrete mixing and transporting of concrete will be disposed safely． －All discarded and used oil and grease will be collected，stored and disposed（reuse／sell）． －All potentially water polluting chemicals and oils will be stored（a）at locations sufficiently away from watercourses and storm water drainage paths and（b）in a manner that would minimize chances of spillage． －Minimize the oil and chemical spillages during operation and properly maintain the equipment and machinery． －Debris and spoil will be disposed of only to designated places in such a manner that（i）waterways and drainage paths are not blocked，and（ii）the disposed material will not be washed away by heavy storm water flows．	Contractor	Consultant／ NWSDB
Drainage issues	－STP site should be located on the high ground to avoid water ingress －Natural drain paths should not be disturbed during any construction activity	Contractor	Consultant／ NWSDB
Noise and vibration	－Temporary noise barriers／screens will be placed． －All construction work will be carried out during day time as much as possible and work will be stopped after 6 pm ． －Workers involved in high noise generating activities（such as compacting，concrete／cement mixing operations using the mixers）and handling high noise generating machinery and equipment will be provided with ear plugs or mufflers． －To the extent possible，attempts will be made to use equipment and machinery that produce low noise levels －Proper and regular maintenance and／or servicing of equipment and machinery will be carried out．	Contractor	Consultant／ NWS\＆DB
	Operational phase		
Impacts on Water Resources	－Prevent seepage of polluted water to the ground by applying suitable lining for the ponds，raise the levels of the site and the tanks etc as applicable． －Establish the STP on a sufficient high ground to avoid the flood impact． －Avoid spillages of septage during operation－specially during unloading－and take precautionary measures to prevent mixing septage with storm water drainage system． －As a precautionary step，it is proposed to monitor the ground water quality in the area． －Ensure the disposal of treated effluent to a reed bed（artificial wet－land）with species which suit the climatic and coastal conditions of the area． －Ensure the necessary effluent quality for disposal to inland waters	NWS\＆DB／MC	NWS\＆DB／MC ／Consultant
Odor from STP	－Shielding of the unloading bay to an extend to prevent odorous gases being blown away by the wind －Hydraulic arrangements that would minimize agitation of sewage during the release to the treatment system －Keeping much of the screen channel close to prevent release of gases to air －Establish and properly maintain a thick green belt along the STP site and pumping station where applicable．	NWS\＆DB／MMC	MMC $/$ NWSDB

スリランカ国下水セクター開発計画策定プロジェクト ファイナル・レポート
セクシヨンII 都市下水道マスターブラン
スリジャヤワルダナプラコッテ

Environmental Impact／Issue		Mitigation Measure	Implementing Organization
Sludge disposal	Responsible Organization		

DRAFT ENVIRONMENTAL MONITORING PLAN

Objective Of Environmental Monitoring Plan

In order to fulfil the following objectives an appropriate Environmental Monitoring Programme（EMoP）will be carried out．
－Check the implementation of mitigatory measures to ensure whether they are in conformity with the requirements
－Ensure that the impact does not exceed legal standards
－Provide timely warnings of potential environmental damages
The EMoP characterizes the proposed mitigation and monitoring actions as a set of tasks．In the EMoP the specific responsibilities on task implementation on the project proponent，the contractor（s），and the regulatory agency（agencies）are assigned．These tasks should be implemented within a specified time／period by the agency responsible and as per the specifications set out in the EMoP．

Environmental monitoring committee

The monitoring programme will be undertaken by a committee and all relevant line agencies，local government bodies and interested parties shall take part in the monitoring activities．An Environmental Monitoring Committee（EMC）consisting of the members from the following agencies shall be set up by CEA．
－Central Environmental Authority
－Municipal Council
－National Water Supply and Drainage Board
－Divisional Secretariat
－RDHS and Anuradhapura General Hospital
－Irrigation Department
－Archaeological Department
－Road Development Authority
－Provincial Road Development Authority
－Sri Lanka Railway
－Department of Forest Conservation
－Department of Wildlife Conservation
－Any other agency deemed necessary by the EMC

Outline of environmental monitoring plan

Environmental Monitoring activities shall take place during Design，Construction and Operation stages of the project．Regular site inspections are required to assess whether the various mitigatory measures suggested are properly implemented and they are effective in achieving the objectives of environmental protection． Outline of the Environmental Monitoring Plan is presented in Table 2.
One important aspect of monitoring should be to assess the effectiveness of the mitigation measures suggested，where they are found lacking，appropriate new actions to mitigate any adverse effects should be undertaken．This requires measurements of selected environmental parameters at identified locations and a summary of the measurement schedule proposed is given in Table 3.
スリラン力国下水セクター開発計画策定プロジェクト ファイナル・レポート セクションII 都市下水道マスタープラン
スリラン力国下水セクター開発計画策定プロジェクト ファイナル・レボート セクション！都市下水道マスタープラン

Aspect	Parameter	Method	Stage	Frequency	Responsibility	Location
Noise level	Day and Night time Noise level（dB）	Portable noise meter （range $0-120 \mathrm{~dB}(\mathrm{~A})$ ）	Pre－construction	Once measurement） （Baseline	Contractor／NWSDB／ EMC	At STP site boundary； Sensitive locations along the sewer network；Selected pumping stations；
			Construction	Once a year	$\begin{aligned} & \text { Contractor / NWSDB / } \\ & \text { EMC } \\ & \hline \end{aligned}$	
			Operation	Yearly； On complaints	NWSDB／EMC	
$\begin{aligned} & \text { Air quality } \\ & \text { Odour } \end{aligned}$	$\begin{array}{lll} \mathrm{SO}_{2}, & \mathrm{NO}_{2}, & \mathrm{CO}, \\ \mathrm{PM}_{10}, \mathrm{SPM} & \end{array}$	Spectrometric method；Highvolume samplingGravimetric analysis	Pre－construction	Once measurement） （Baseline	$\begin{aligned} & \text { Contractor / NWSDB / } \\ & \text { EMC } \\ & \hline \end{aligned}$	At STP site； Sensitive locations along the sewer network； Selected pumping stations；
			Construction	Two times	Contractor／NWSDB／ EMC	
			Operation	Yearly； On complaints	NWSDB／EMC	
Water Quality	EC，TSS，DO，BOD， COD，pH，Oil and grease，E－coli	Portable water quality meter， Spectrometric method	Pre－construction	Once measurement） （Baseline	$\begin{aligned} & \text { Contractor / NWSDB / } \\ & \text { EMC } \\ & \hline \end{aligned}$	Malwathu Oya near STP site－ （i） upstream downstream； Streams at sensitive locations along the sewer network； Streams at selected pumping stations；
			Construction	Two times	$\begin{aligned} & \text { Contractor / NWSDB / } \\ & \text { EMC } \end{aligned}$	
			Operation	Yearly； On complaints	NWSDB／EMC	

[^0]: Source：Survey Department of Sri Lanka

[^1]: ＊JET considered values in gray as outliers and not used for the design．

