

Road Development Authority Japan International Cooperation Agency

Bridge Repair Manual

October 2017

The Project for Capacity Development on Bridge Management In The Democratic Socialist Republic of Sri Lanka

Table of Contents

1. Gei	neral	1
1.1	Purpose of the Bridge Repair Manual	1
1.2	Scope of Application	1
2. In-l	Depth Investigation	1
2.1	Purpose of In Depth Investigation	1
2.2	Approaches to In Depth Investigation	2
	Identification of Cause of Defect, Damage and Deterioration	
2.4	In Depth Investigation Method and Information to be obtained	4
2.4.	.1 In-Depth investigation method and information to be obtained on concrete structures	5
2.4.	.2 In-Depth investigation method and information to be obtained on steel structures	7
2.4.	.3 In-Depth Investigation method and information to be obtained on concrete and steel structures	8
	dge Repairs and Strengthening	
3.1	Approaches to Selection of Bridge Repair Methods	9
3.2	Classification of minor and major repair	2
3.3	Selection of repair method	4
3.4		
3.4.	.1 Repair Methods for Concrete Structures	1
(1)	Plastering method	1
(2)	Grouting method – Injecting or Poring	3
(3)	Routing and sealing method2	5
(4)	Epoxy injection method	7
(5)	Mortar spraying method2	8
(6)	Continuous fiber reinforced sheet bonding	0
(7)	Partial replacement of deck slab	2
(8)	Plastering / Grouting Pile Concrete	3
(9)	Sacrifice Anode material	5
(10)) Substrate impregnation	6
(11)) Surface coating	7
(12)) Water proofing	8
(13)) Corrosion inhibitor	0
3.4.	.2 Repair methods for steel structure	1
(1)	Supplementing steel plate bonding	1
(2)	Stop hole	
3.5	Recording of Bridge Repair Results	3

Attachments

Attachment-1	Specification for Plastering Method
Attachment-2	Cleaning the Surface of Steel Members
Attachment-3	Specification for Zone Painting
Attachment-4	Machinery and Equipment for Repair Work
Attachment-5	Outline of Representative In-Depth Investigation

List of Tables

2.1	General Type and Cause of Defect, Damage and Deterioration for Concrete Structures
2.2	General Type and Cause of Defects Damage and Deterioration for Steel Structure
2.3	In-Depth Investigation methods for concrete structures (Table 1 of 2)
2.4	In-Depth Investigation methods for concrete structures (Table 2 of 2)
2.5	In-Depth Investigation methods for steel structures7
2.6	In-Depth Investigation methods for concrete and steel structures
3.1	Performance Requirements
3.2	Types of Remedial Measures According to Performance
3.3	Classification of repair method for concrete structure
3.4	Classification of repair method for steel structure
3.5	Classification of repair method for foundation
3.6	Classification of repair method for accessories
3.7	Classification of repair method for others14
5.1	General Information of Maintenance
5.2	Work Description of a Bridge
5.3	Classification of Work On, Category of Work, Work Item and Unit

List of Figures

2.1	Flow Chart of In-depth Investigation	2
3.1	Type of defects, damages and deterioration: Spelling, Delamination (Except deck slab)	15
3.2	Type of defects, damages and deterioration: Crack (Concrete Structures)	16
3.3	Type of defects, damages and deterioration: Spelling, Delamination	17
3.4	Type of defects, damages and deterioration: Crack (RC Deck Slab)	18
3.5	Selection of repair method for steel member	19
3.6	Selection of repair method for foundation	20
3.7	Selection of repair bearing	20
3.8	Selection of repair method for Expansion joint	20

Abbreviations

Organizations				
GOSL	Government of Sri Lanka			
МНЕН	Ministry of Higher Education and Highways			
JICA	Japan International Cooperation Agency			
RDA	Road Development Authority			
Division in RDA				
CD	Construction Division			
ES	Engineering Services			
M&M	Maintenance and Management			
BD	Bridge Designs			
P	Planning			
PMU	Project Management Unit			
RBCU	Rural Bridges Construction Unit			
R&D	Research and Development			
BM&AU	Bridge Management and Assessment Unit			
BAU	Bridge Assessment Unit (1990s)			
Position	Druge Assessment enit (19903)			
DG	Director General			
ADG	Additional Director General			
DD	Deputy Director			
C/P	Counterpart			
PD	Provincial Director			
CE	Chief Engineer			
EE	Executive Engineer			
TO	Technical Officer			
Manual				
BMM1997	Bridge Maintenance Manual /1997 RDA			
RMM1989	Road Maintenance Manual /1989.2 RDA			
VRCSG	Visual Road Condition Surveys Guidelines / 2012.6 RDA Planning Division			
Others	Visual Road Condition Surveys Guidelines / 2012.0 RD/11 failining Division			
BMS	Bridge Management System			
OJT	On-the-Job Training			
BOQ	Bill of Quantity			
RMTF	Road Maintenance Trust Fund			
BIV	Bridge Inspection Vehicle			
PPE	Personal Protective Equipment			
DP	Damage Point			
HI	Health Index			
II	Importance Index			
FOI	Functionally Obsolete Index			
LHS	Left Hand Side			
RHS	Right Hand Side			
BDS	Bridge Database System Pridge Database System			
BRMS				
BISS	Bridge Inspection Support System			

1. General

1.1 Purpose of the Bridge Repair Manual

Repairs is one of the main components of bridge management cycle.

Its aim is to prevent further development of defects, damages and deterioration and restore to reasonable / satisfactory status.

Purpose of the Bridge Repair Manual is to systematically select appropriate repair methods to each type of defects, damages and deterioration of bridges maintained by the RDA.

1.2 Scope of Application

This manual is intended to serve as a guide for the repair work to be undertaken by RDA.

In particular to act as a guide to select the appropriate repair method suitable for Sri Lanka.

Detailed design method for repair, strengthening, reconstruction and replacement are not included in this manual.

2. In-Depth Investigation

2.1. Purpose of In Depth Investigation

In order to carry out in-depth investigations the status of the structure should be identified specifically and defects quantitatively.

Selecting more items to investigate and methods for collecting data, and arranging more investigation points helps to obtain more detail and accurate information of the structure. However, increase of investigation items and adopting complicated investigation methods lead to more time and cost required for investigations. Also, if inappropriate frequency and coverage of investigation, or inappropriate investigation methods or elements are selected, it becomes difficult to assess the defects, damages and deteriorations.

The main purposes of in depth investigation are listed below.

- 1) To understand the cause of defects, damage and deterioration
- 2) To identify the degree and extent of damage / extent of defects, damages and deteriorations and the measures required to rectify them
- 3) To select the appropriate bridge repair method
- 4) To collect data and information necessary for detail design.

2.2. Approaches to In Depth Investigation

The approaches from periodic inspection to Repair / strengthening work are shown in the following flowchart.

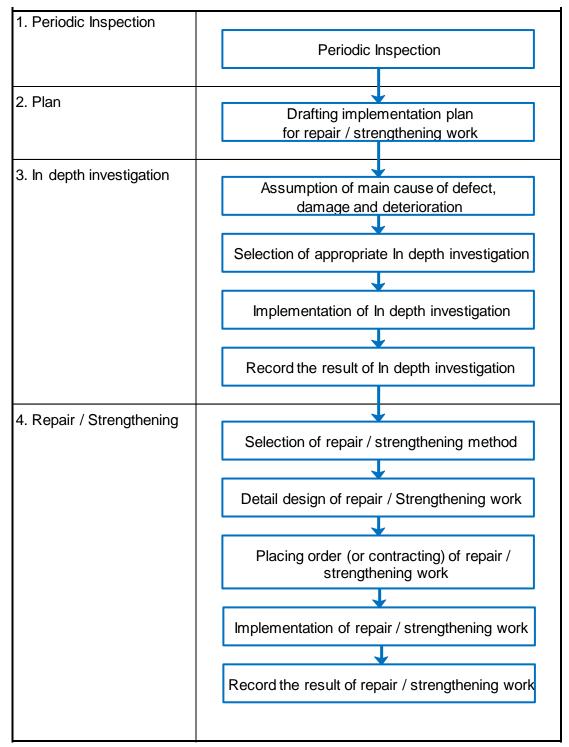


Figure 2.1-Flow Chart of In-depth Investigation

2.3 Identification of Cause of Defect, Damage and Deterioration

It is important to identify the cause of defect, damage and deterioration in order to select the in-depth investigation methods.

General relation between type and cause of defect, damage and deterioration for concrete and steel structures are shown in the following Table.

Cause		Carbonation	Chloride	Chemical	Fatigue	Heat or temperature
	Crack parallel to reinforcement	0	0			
	Small crack					0
Status of crack	Grid patterned Mesh-patterned			0	0	0
сгаск	Flexural crack Shear crack				0	
	Through crack with equal interval					0
Delamination, Spalling		0	0	0		
Exposure of reinforcing steel		0	0	0		
Rust fluid		0	0	0		
Free lime		0	0	0	0	

Table 2.1. General Type and Cause of Defect, Damage andDeterioration for Concrete Structures

Table 2.2. General Type and Cause of Defects Damage and Deterioration

For Steel Structure

Cause Type	Chloride	Chemical	Waterproof defect	Cyclic Load / Fatigue	Collision	Support settlement
Degradation of paint, Corrosion	0	0	0			
Crack, Rupture				0	0	0
Falling, Looseness				0	0	0
Deformation				0	0	0

2.4 In Depth Investigation Method and Information to be obtained

In Depth Investigation methods shall be selected properly considering the condition of the structure, based on relevant information and the cause of the defect, damage and deterioration of the structure to be obtained.

Type of In-depth investigation methods and information to be obtained are shown in the following table. The rough classification of In-Depth Investigations are as follow.

- (a) Non- destructive investigation
- (b) Investigation involving local destruction
- (c) Loading and vibratory loading investigation of existing structures
- (d) Investigation for evaluation of environmental actions

	In depth investigation	Information to be obtained	
Non-destructive	Using surface	Using rebound hammer	i. Concrete strength
investigation	hardness	*	
	Using	Using the electrical	i. Locations and diameters of
	Electromagnetic	conductivity and	reinforcing steel in concrete and
	induction	magnetism of steel 💥	depth of cover
		➢ Using the	ii. State of water content
		electromagnetic	
		induction of concrete	
	Using elastic	Hammer tapping	i. Concrete quality, e.g. compressive
	waves	➢ Ultrasonic testing ⅔	strength and modulus of elasticity
		Impact elastic wave	ii. Depth of crack on concrete
		method	iii. Delamination, peeling and voids
		Acoustic emission	in concrete
		testing	iv. Dimensions of members such as
			the thickness of concrete
			v. Grouting in sheath (Prestressed
			concrete structures)
	Using	➤ X-ray method	i. Locations and diameters of steel
	electromagnetic	 Electromagnetic radar 	in concrete and concrete cover
	waves	method 🔆	ii. Delamination, peeling and voids
		Infra-red devices	in concrete
		(thermography method)	iii. Distribution of cracks in concrete
			iv. Grouting in sheath (Prestressed
			concrete structures)
	Electrochemical	➢ Half-cell potential	i. Tendency of Corrosion of
	method	method 💥	reinforcement in concrete
		> Polarization	ii. Rate of corrosion of
		resistance method	reinforcement in concrete
		➢ Four electrodes method	iii. Electric resistance of concrete
	Using optical fiber s	cone	i. Internal conditions of concrete
	Sing optical noer s	cope	
			ii. Grouting in sheath (Prestressed
			concrete structures)

2.4.1 In-depth investigation method and information to be obtained on concrete structures Table 2.3. In-Depth Investigation methods for concrete structures (Table 1 of 2)

Note :

*Refer to attachement.5

In de	epth investigation method	Information to be obtained
Investigation	Core sampling *	i. Crack depth
involving local	Collection of drilled powder	ii. Compressive strength, tensile strength and
destruction	produced while drilling a hole in	elastic modulus of concrete (loading tests)
	concrete	iii. Carbonation depth of concrete
		iv. Analysis of concrete (chemical analysis,
		fluorescence X-ray analysis, X-ray
		analysis, thermal analysis, optical
		microscope, polarization microscope,
		scanning electron microscope and EPMA)
		v. Conditions of chloride ions (concentrations
		of chloride ions and distribution of
		concentrations)
		vi. Analysis of mix proportions
		vii. Released expansion and residual expansion
		of concrete
		viii. Air and water permeability of concrete
		ix. Pore size distribution
		x. Air void distribution in concrete
	Chipping	xi. State of corrosion of reinforcement (by
		chipping)
	Sampling steel	xii. Tensile strength of reinforcement (by
		sampling reinforcement)

Table 2.4 In-Depth Investigation methods for concrete structures (Table 2 of 2)

Note :

ℜRefer to attachement.5

2.4.2 In-Depth Investigation method and information to be obtained on steel structures

In depth investigation method			Information to be obtained	
Non-destructive		Penetrant test	Defect of welding, Status of crack	
investigation		Magnetic particle test	Status of crack	
	Outer	Eddy current test	Status of crack	
Damage Internal damage		Measuring thickness of steel member by using Ultrasonic test, Depth gauge, Micro meter X	Degree of corrosion	
		Ultrasonic test	Defect of welding, Internal defect	
		Radiographic test	Defect of welding, Internal defect	
	Damage of bolt	Tapping test Ultrasonic test	Loosening, Existence of crack Existence of crack	

Table 2.5. In-Depth Investigation methods for steel structures

Note :

XRefer to attachement.5

2.4.3 In-Depth Investigation method and information to be obtained on concrete and steel structures

In-l	Depth Investigation method	Information to be obtained
Loading and	 Road alignments, driving feeling 	i. Section stiffness of member (static and
vibratory	test	dynamic stiffness)
loading	 Loading and vibratory loading tests 	ii. Vibration characteristics
investigation of		
existing		
structures		
Investigation	Based on existing records	i. Meteorological conditions (e.g. temperature,
for evaluating	Based on meteorological data	maximum / minimum temperature,
environmental	Direct measurement (using sensors,	humidity, precipitation and insulation)
actions	etc.)	ii. Water supplies (conditions of weathered part
	> Monitoring	of bridge exterior, conditions of water
		supplies from the ground, waterproof layers
		and drain facilities)
		iii. Salt supplies (e.g. amount of air-borne salt,
		effects of seawater and amount of deicing
		agents spread)
		iv. Wind (direction, velocity and frequency)
		v. Carbon dioxide concentration
		vi. PH of highly acidic river water
		vii. Water quality in sewerage facilities
		viii. Occurrence of acid precipitation and acid fog
		ix. Alkali supplies
		x. Loading conditions
		(vehicles, vibrations, water pressure, etc.)
		xi. External forces related to disasters
		(e.g. earthquakes and fires)

 Table 2.6.
 In-Depth Investigation methods for concrete and steel structures

3. Bridge Repairs and Strengthening

3.1. Approaches to Selection of Bridge Repair Methods

(1) Performance Requirements

The performance requirements expected from the maintenance process of an ordinary structure includes safety, serviceability, and hazard for third party, an aesthetic appearance and landscape, and durability. The output expected from maintenance is shown in Table 3.1

ITEN	MS	Performance Requirements
		It is related to safety against sectional fracture, safety against
Safety (Structura	ll stability)	fatigue fracture and safety with respect to the stability of
		structure.
	Stiffness	It is related to the performance that enables the user of structure
Serviceability	Sumess	to use it comfortably. (e.g. Riding quality)
Serviceability	Except for	It is related to the functional requirement of the structure.
	stiffness	(e.g. Water- tightness, Permeability, Sound proofing)
		It is related to the resistance of the structure to time based
Durability		deterioration of performance due to the degradation of members
		of the structure under intended action.
		It is related to damage to third parties caused by structures such
Hazards for third	l party	as the falling of cover concrete lumps or bolts and the noise that
		is caused while the structure is in service.
Aesthetic appearance and		It is related to the harmonization with the surrounding
landscape	earance and	environment including the effects of stain of rust and cracks due
lanuscape		to the deterioration.

Table	3.1	Performance	Requirements	
raore	J.1	1 chioninance	requirements	

(2) Type and Selection of Remedial Measures

The types of remedial measures shall be selected based on the performance of the structure and the level of performance to be achieved after effecting remedial measures. Types of remedial measures to be taken according to performance are shown in Table 3.2.

	J 1	of Refficulti Medsures / Recording	8					
		Level of performance to be	Level of performance to be achieved and type of remedial					
Iten	20	measure	measure					
11011	15	Level at the time of original	Level higher than at the time					
		construction	of construction					
Safety (Structura	l stability)	Strengthening	Strengthening					
	Stiffness	Strengthening	Strengthening					
Serviceability	Except for	Repair	Donoir					
	stiffness	Kepan	Repair					
Durability		Repair	Repair					
Hazards for third	l party	Repair	Not Applicable					
Aesthetic app	earance and	Repair	Repair					
landscape		Kepan	Kepan					

Table 3.2 Types of Remedial Measures According to Performance

(3) Selection of Repair Method and Material

Experienced engineer shall select the appropriate repair method and material to each bridge from the repair manual by carefully considering each type of defect, damage and deterioration.

Repair method shall be effective against investigated defects, damage and deterioration and sufficiently durable in principle. Also, it shall restore defected, damaged and deteriorated bridge to the original status.

When damage / degradation is in early stage and / or small in size, repair work is facile and effective. On the other hand, when the defect, damage and deterioration has advanced onto a serious stage , large in size, or arisen due to material characteristics, etc. repair work would not be very effective nor durable and the magnitude of repair and the cost is enormous..

In case, the defect, damage and deterioration is not in a harmful condition structurally and also for the safety of the third party, and the defects are not increasing or progressing slowly based on the results of in depth or periodical inspections, it may be allowed to progress without repair, while monitoring closely.

(4) Detail Design for Repair Work

In case detail design for repair work is necessary, it shall be conducted by subject specialized engineer. The designer shall examine the selection of repair method and materials, structural analysis to ensure safe conditions during repair activity.

Detail design for repair may be omitted when it is obvious that the influence of the repair work to the structural stress is minimum. Reconstruction may need to be considered in such a case if the damage is severe.

(5) Planning the Repair Work

A plan for the repair work shall be prepared in advance of the actual work.

The plan shall include, but not limited to, the amount of work needed, type of repair, material to be used, drawings, inspection sheets, working schedule and rough cost estimates.

Some repair work may require preparation in advance, for example, removing dust from the parts identified for repairs. Also, a plan for preparatory work such as installation of scaffolding to support repair work need to be prepared.

3.2. Classification of minor and major repair

Classification of Minor and Major repair with consideration of technical difficulty and necessary equipment is shown in following tables.

3.2.1 Concrete structure (Superstructure / Substructure)

Table 3.3 Classification of repair method for concrete structure

Classification		Repair / Streng	gthening Method
		Plastering X1	Used for repair of scaling, spalling
			$(Area < 10m^2, Depth < 30mm)$
	Danain	Jacket wall / Foot	Used for preventing the scour of bridge
	Repair	protection	foundation
		Routing and sealing	Used for crack repair
Minor Repair		method	(Crack width $>$ 1.0mm)
Winor Kepan		Apply rust Inhibitor on	Used for preventing corrosion of
		reinforcement	reinforcing steel
	Preventive	Substrate impregnation	Used for preventing chloride ion, moisture
	Flevenuve	(Silane)	and air from penetration
		Surface coating	Used for preventing deteriorate factors
			from penetration
		Epoxy Injection	Used for repair crack
			(Crack width < 1.0mm)
		Recasting concrete	Used for repair of scaling, spalling
			(Area > $10m^2$, Depth > $30mm$)
		Grouting	Used for repair of scaling, spalling
	Repair		(Area > $10m^2$, Depth > $30mm$)
			Scour
		Wet and dry mortar	Used for repair of scaling, spalling
		spraying	(Area > $10m^2$, Depth > $30mm$)
Major Repair		Pouring / Injection	Used for repair of scaling, spalling
		method with form	$(Area > 10m^2, Depth > 30mm)$
		Continuous	
	Strengthening	fiber-reinforced sheet	Used for increasing the strength
		bonding	
		Sacrificial Anode	Used for protecting from salt damage and
		Material (Attached to	carbonation
	Preventive	reinforcing steel)	
		Calcium Nitrite /	Used for protecting from salt damage and
		Lithium Nitrite	carbonation

Note

 $\times 1$: Refer to attachment1

3.2.2 Steel structure (Superstructure)

Table 3.4	Classification	of repair	method for	steel structure

Classification	Repair / Strengthening Method								
		Zone painting X2	Used for recovery of small area surface						
			coating						
	Repair	Repainting	Used for recovery of large area surface						
Minor Repair	Repair		coating						
Willor Kepali		Replacing lost bolts &							
		nuts							
	Preventive	Anti-corrosion painting	Used for preventing from corrosion.						
		system	osed for preventing from corrosion.						
		Replacement of steel	Used for increasing or recovering the						
		bridge member	strength						
	Repair	Painting complex	Used for recovery of large area surface						
	Repair	structures	coating						
		Steel Plate Bonding	Used for increasing or recovering the						
Major Repair			strength						
		Continuous Fiber							
	Strengthening	Reinforced Sheet /	Used for increasing the strength						
		Plate Bonding							
	Preventive	Introducing stop holes	Used for preventing the stress concentration						
	1 ievenuve		due to fatigue crack						

Note :

XRefer to attachment 3

(1) Foundation

Classification		Repair / Strength	nening Method
		Widening the footing (For spread Foundation)	Used for improving the stability of foundation
Major Repair	Strengthening	Provision of Additional Piles (For pile foundation)	Used for improving the stability of foundation

Table 3.5 Classification of repair method for foundation

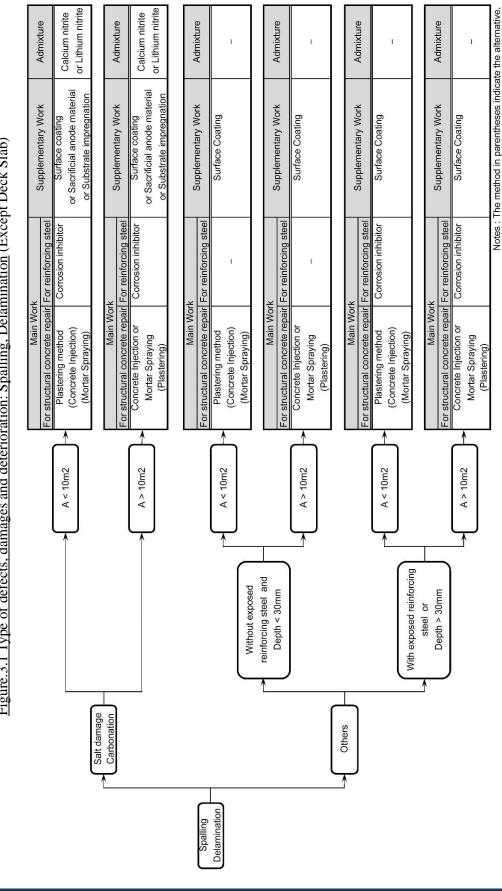
(4) Accessories

Table 3.6 Classification of repair method for accessories

Classification		Repair / Strengthening Method
Minor Dopoir	Donoir	Replacement of Asphalt Sealant of joint
Minor Repair	Repair	Replacing damaged hand rail
Major Repair	Repair	Replacement of Bearing / Expansion Joint

(5) Others

 Table 3.7 Classification of repair method for others


Classification		Repair / Strengthening Method
	Preventive	Reducing impact on bridge due to approach settlement by road
Minor Donoin	Treventive	rehabilitation
Minor Repair	Preventive	Providing approach slabs or prevention of consolidation settlement
	Treventive	on approaches

3.3. Selection of repair method

5 kind of flowcharts for selection of applicable repair methods are shown as follows. Repair method should be selected correspond to type, cause and degree of defect, damage and deterioration.

- Repair methods for concrete structure (Except for deck slab)
- Repair methods for concrete structure (Deck slab)
- Repair methods for steel structure
- Repair methods for foundation
- Repair methods for accessories

Figure.3.1 Type of defects, damages and deterioration: Spalling, Delamination (Except Deck Slab)

15

(1) Selection of repair method for concrete structure (Except for deck slab)

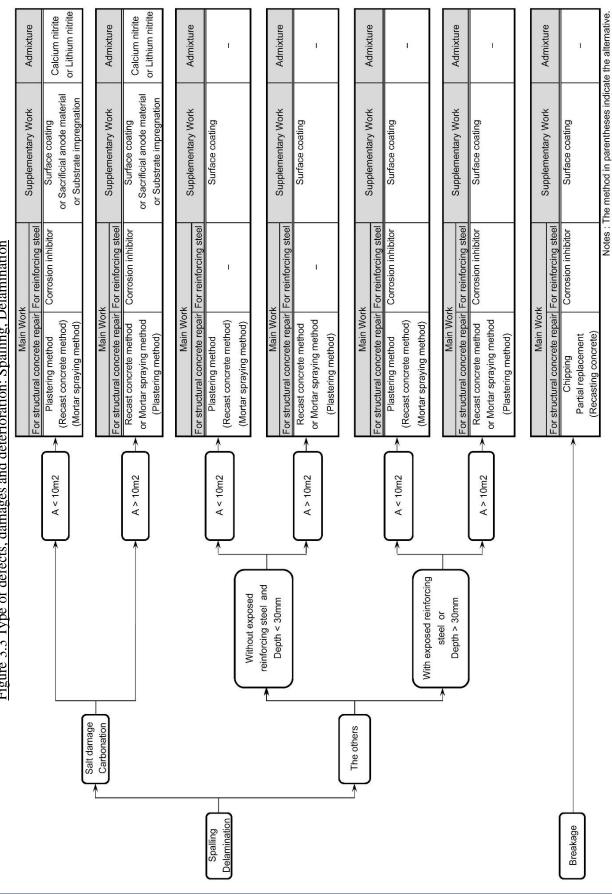

Admitte		Calcium nitrite or Lithium nitrite	A desired use			I		A classified and	Admixture	1		Adminture	AUTINIUR		I	oto the elternotive
Cumpomonton Morth		Surface coating or Sacrificial anode material or Substrate impregnation	Sumatran Mort	Supplementary WOLK	Surface coating			Comparison (Mark	supplementary work	Surface coating		Cumpmonton Mort		Surface coating	2	Natoo : The method is acceptance indicate the alternative
Main Work	For structural concrete repair For reinforcing steel	Plastering method Corrosion inhibitor (Concrete Injection) (Mortar Spraying)	Main Work	For structural concrete repair For reinforcing steel	Plastering method Corrosion inhibitor	(Concrete Injection)	(Mortar Spraying)	Main Work	For structural concrete repair For reinforcing steel	Funxy injection		Main Work	For structural concrete repair For reinforcing steel		► Routing & Sealing	
					With rust leachate					Crack width	Without rust leachate			Crack width	1.0mm <w< td=""><td></td></w<>	
		 Salt damage Carbonation 														
				Crack	CIRCK											

Figure 3.2 Type of defects, damages and deterioration: Crack (Concrete Structures)

Bridge Repair Manual

Figure 3.3 Type of defects, damages and deterioration: Spalling, Delamination

(2)

17

Selection of repair method for concrete structure (deck slab)

	Admixture	Calcium nitrite or Lithium nitrite	Admixture	1		Admixture	I		Admixture	I		Admixture	1	Admixture	1	ate the alternative.
	Supplementary Work	Surface coating or Sacrificial anode material or Substrate impregnation	Supplementary Work	Surface coating		Supplementary Work	Surface coating		Supplementary Work	Surface coating		Supplementary Work	Surface coating	Supplementary Work	Surface coating	Notes : The method in parentheses indicate the alternative.
Figure 3.4 Type of defects, damages and deterioration: Crack (RC Deck Slab)	For structural concrete For reinforcing steel	Corrosion inhibitor	Main Work For structural concrete For reinforcing steel		Main Work	For structural co	$\begin{array}{c} \begin{array}{c} \\ \hline \\ $		A direction Main Work For reinforcing steel		Without rust	leachale Main Work For structural concrete For reinforcing steel	Crack width Crack width O.2mm < w < 1.0mm	Vor	Space < 0.5m or Chipping Concrete For reinforcing steel Chipping Corrosion inhibitor or water leakage (Recasting concrete)	
		Salt damage Carbonation						The others								
				Crack						10						

(3) Selection of repair method for steel structure

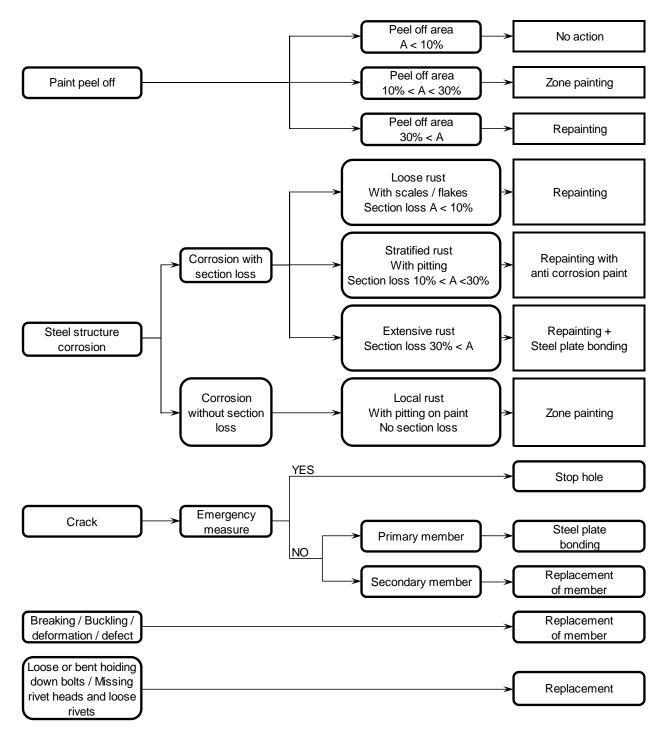


Figure 3.5 Selection of repair method for steel member

(4) Selection of repair method for foundation

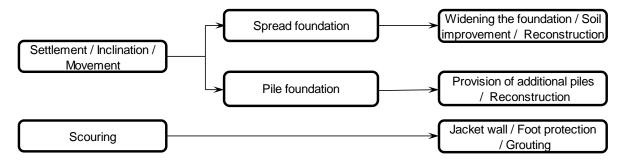


Figure 3.6 Selection of repair method for foundation

(5) Selection of repair method for accessories (Bearing and Expansion joint) Bearing

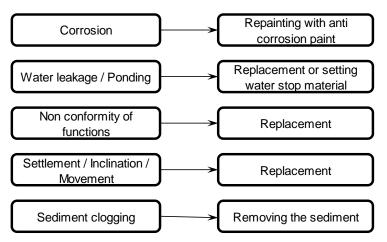


Figure 3.7 Selection of repair bearing

Expansion Joint

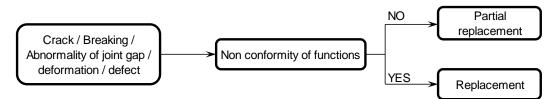
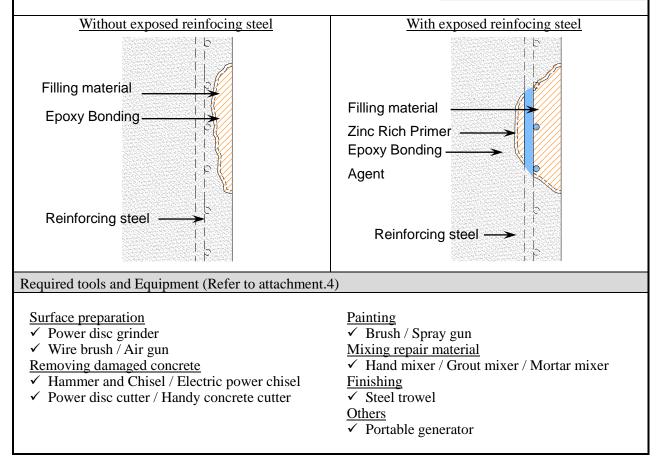


Figure 3.8 Selection of repair method for Expansion joint


- 3.4. Outline of Repair / Strengthening Method
- 3.4.1 Repair Methods for Concrete Structures

(1) Plastering method

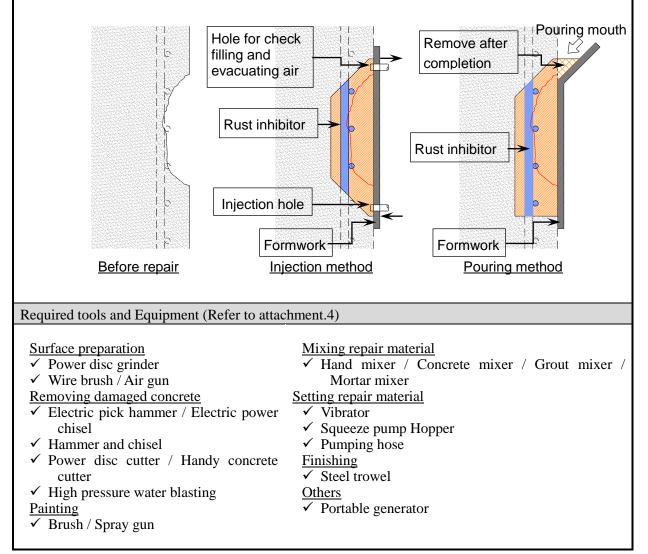
Minor Repair	Plastering method
Work description	

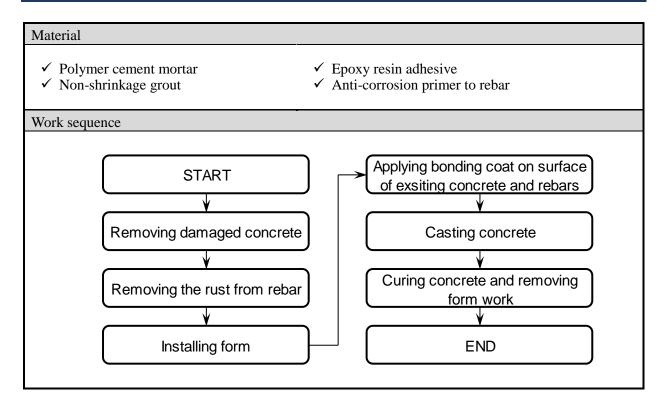
This method is applied for repairing small areas where concrete is defective, damaged and deteriorated with spalling, scaling and collision. This method is generally used with steel trowel and requires no formwork. Generally, the plastering thickness is limited to maximum of 100mm but it depends on the material to be used. Plastering can apply for both defects with or without exposed reinforcing steel. The material for plastering is cement mortars or polymer cement mortars depending on the type of plastering, location and extent of damage.

Material

- ✓ Cement mortar✓ Polymer cement mortar

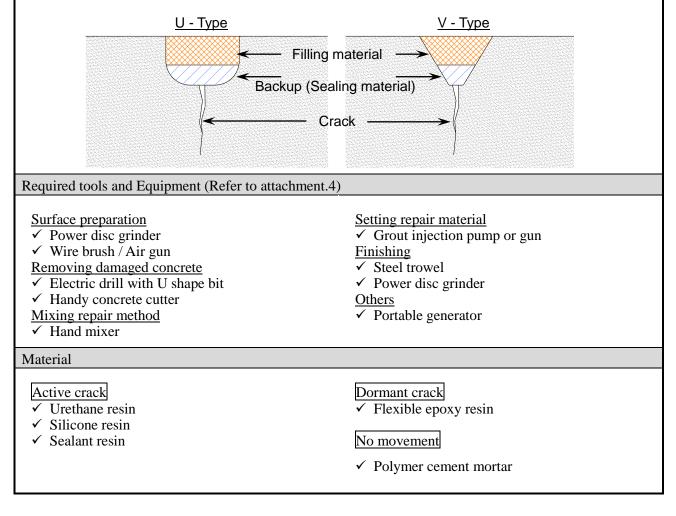
- ✓ Epoxy bonding coat✓ Zinc rich primer

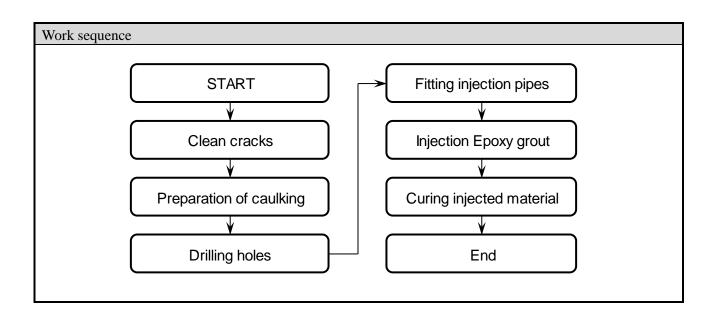

Comparise	on table for property	of material
	Cement mortar	Polymer cement mortar (Polymer cement ratio) Low
Elastic modulus	High	Low
Bending / Tensile strength	Low	High
Adhesive property		Good
Thermal expansion coefficient	Low	High
Heat resistance	High	Low
Electric resistance	Low	High
Deterioration factor resistance	Low	High
Cost	Low	High
START Removing defective cond Cleaning inside of the defective part and reba Applying coating on the defective part and reba		up the defective part ↓ Curing ↓ End


(2) Grouting method – Injecting or Poring

Major Repair	Grouting method – Injecting or Poring
Work description	

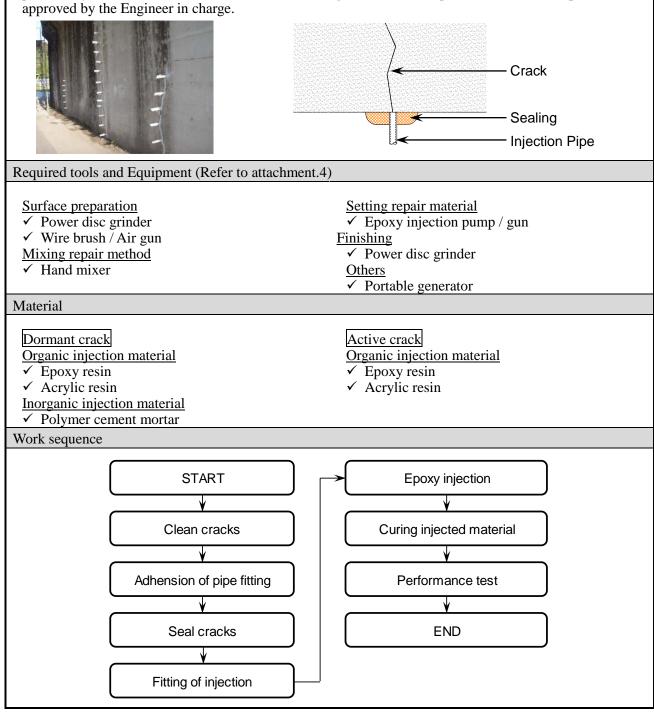
This method is generally most suitable for severely defective, damaged and deteriorated concrete, or for largely defective, damaged, deteriorated areas where the reinforcing steel is exposed. This method is generally grouting the area with non-shrinkage mortar or concrete with setting of formwork. If placing concrete by vibration is a problem, free grouting with flowing self-compacting concrete should be adopted to minimize the vibration requirement. Grouting has two categories depending on materials used, i.e. Portland cement and Non-shrink cement. Considering the damaged part, degree of damage, formwork shape and density of reinforcing steel, the application of grouting material such as concrete and grout shall be selected.


(3) Routing and sealing method


Major Repair	Routing and sealing method
Work description	

This method is generally applied for the crack when width is over 1.0mm. This method can be applied both for active and dormant crack. The sealant is generally installed in a wide recess cut along the crack. The dimensions of recess (width and depth) depend on the total crack movement and the cyclic movement and the capability of the joint sealant used. For selection of filling material, crack movement should be calculated taking into account the applied loads, shrinkage and temperature variations. Crack width should be more than 1.0mm. In this case, the top surface edges should be chipped or sawn to form a V or U - type, in order to provide a caulking for inlet of gravity flow of resin into the crack by injection

pump. Cracks wider than 1.0mm generally require epoxy based injection material (mix of epoxy and mineral filler)



(4) Epoxy injection method

Major Repair	Epoxy injection method
Work description	

This method is generally applied for the crack width which is from 0.2mm to 1.0mm. It can be applied to concrete structures, particularly to deck slab. The work include preparation of concrete surface, insertion of pipe fittings bonded with adhesion, injection of epoxy, curing and conducting performance test. Epoxy injection for concrete cracks requires highly skilled process and its effectiveness depends mostly on the proficiency of a certified technician. The staff assigned should be qualified based on experience and approved by the Engineer in charge.

(5) Mortar spraying method

Major Repair	Mortar spraying method
Work description	

This method is generally most suitable for severely damaged concrete, or for large defects, damaged and deteriorated areas exposing the reinforcing steel. Spray gun is used to spray the mortar and concrete by compressed air rendering and profiling of vertical and overhead surfaces.

Mortar spraying method is divided in to two namely dry mortar spraying and wet mortar spraying. In the

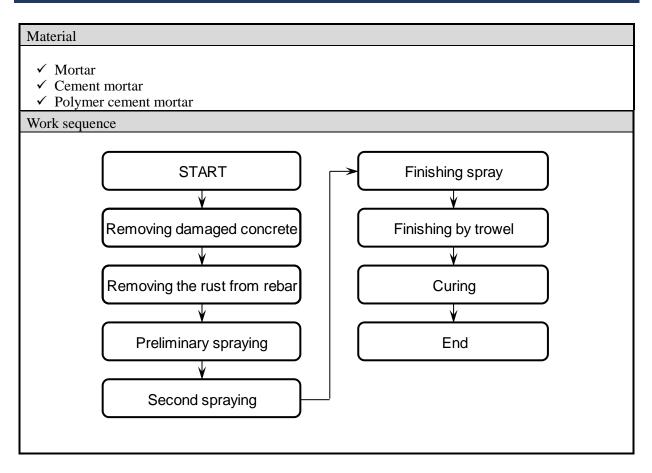
dry mix methods, premix of sand and cement is fed into the hopper of a machine that with the help of compressed air convey the mix through the hose to the nozzle where water is added. For the wet mix method, aggregate, cement, water and admixture are premixed in a concrete plant. The main benefit with the wet mix method versus the dry mortar method is; improved quality, less powdery dust, improved working environment, less rebound, higher capacity and improved safety.

Comparison table for DRY and WET MORTAR SPRAYING

	DRY MORTAR SPRAYING	WET MORTAR SPRAYING
Spraying capacity	1.0m ³ / hour	0.5m ³ / hour
Thickness of 1 layer	2~10cm	2~3cm
Water content control	Nozzle	During mixing
Interval time of spraying	Several time~one day	3hours∼one day
Conveying distance	~ 500m	~ 50m
Equipment for spraying	Large	Small
Powdery dust	Large quantity	Small quantity

Required tools and Equipment (Refer to attachment.4)

Surface preparation


- ✓ Power disc grinder
- ✓ Wire brush / Air gun
- Removing damaged concrete
- ✓ High pressure water blasting
- Electric pick hammer / Electric power chisel / Hammer and Chisel
- ✓ Power disc cutter / Handy concrete cutter <u>Painting</u>
- ✓ Brush / Spray gun
- Mixing repair method
- ✓ Mortar mixer
- Finishing
- \checkmark Steel trowel

Setting repair material (Dry mortar)

- ✓ Dry spray nozzle
- \checkmark Air compressor
- ✓ Dry mortar spraying equipment
- ✓ Hopper
- ✓ Water tank
- ✓ High washer pump
- Setting repair material (Wet mortar)
- ✓ Wet spray nozzle
- ✓ Air compressor
- ✓ Hopper
- ✓ Squeeze pump
- ✓ Pumping hose

Others

✓ Portable generator

(6) Continuous fiber reinforced sheet bonding

Major Repair	Continuous fiber reinforced sheet bonding (CFRS)
Work description	

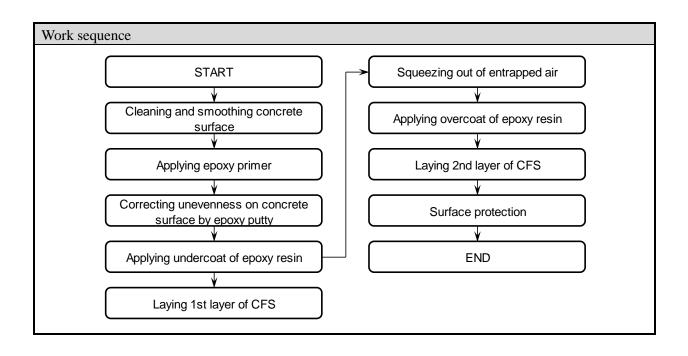
This method is used for reinforced concrete repairs and strengthening. System consist of a combination of continuous fiber reinforced material and adhesive resin such as epoxies and other materials. The composite product is intended to enhance the capacity of the concrete deck slab and extend its service life. The function of resin is to serve as an adhesive bond onto the concrete surface and facilitate the transfer of stress to and from the continuous fiber reinforced sheet.

This work consists of furnishing and installing two type of continuous fiber reinforced sheets for concrete strengthening system in accordance with the plans and specifications. The system shall be designed to strengthen and stiffen concrete bridge deck slab and tested by the Engineer to verify performance. The related strengthening system for the concrete deck slab shall generally consist of continuous fiber reinforced sheet bonding to the concrete surface with epoxy adhesive.

The continuous arrangement is commonly used during the early stage of CFRS bonding application at the bottom of the deck slab. However, in most of the cases it is observed that the entrapped air which could be easily released was found in the installed CFS. These air voids reduce bond strength between CFRS and concrete surface and must be squeezed out by roller. On the other hand, in the grid arrangement, CFRS does not totally cover the required surface due to which, the CFRS is installed in strap-type method in both directions. According to experimental results, effectiveness of the second system is almost the same as that of continuous arrangement. Moreover, entrapped air in the second system can be squeezed out easily using a roller. Thus, the grid arrangement is recommended considering its ease of application, least cost and acceptable effectiveness. The CFRS should be applied as two layers in both the longitudinal and transverse directions.

Required tools and Equipment (Refer to attachment.4)

Surface preparation

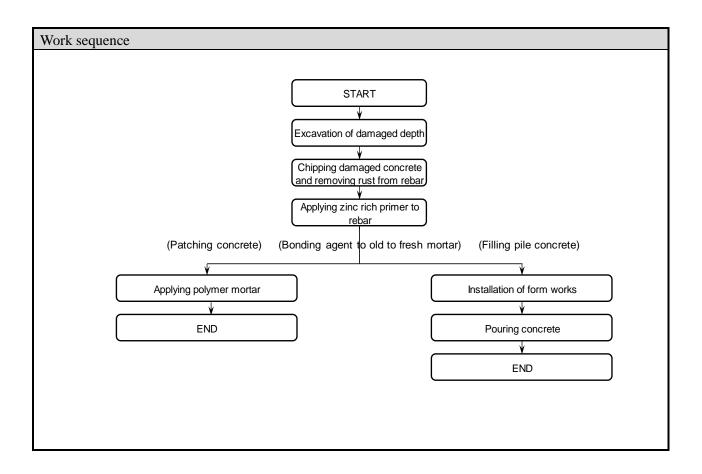

- Power disc grinder
- ✓ Wire brush / Air gun
- Painting
- ✓ Brush / Brush roller
- ✓ Steel trowel

Material

Mixing repair method ✓ Hand mixer <u>Others</u> ✓ Portable generator

- ✓ Carbon fiber sheet
- ✓ Epoxy primer

✓ Epoxy putty✓ Epoxy resin adhesive



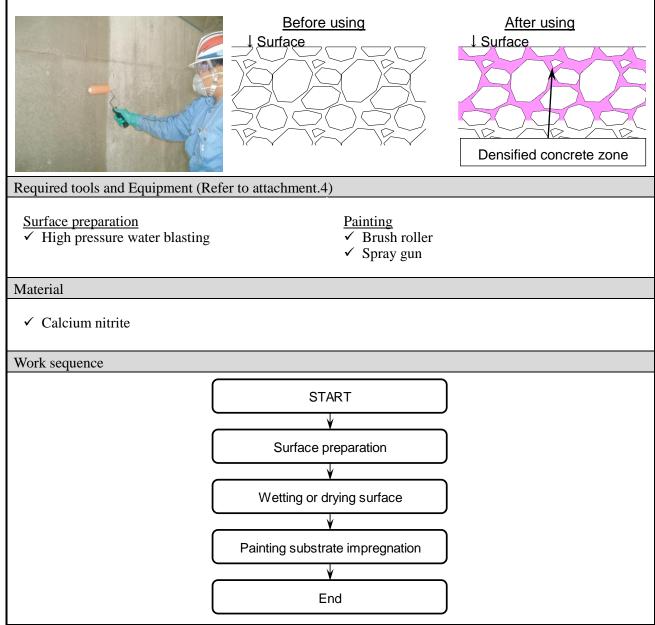
(7) Partial replacement of deck slab

(7) Partial replacement of decl	: slab		
Major Repair	Partial replacement of decl	k slab	
Work description			
defective, damaged and de deterioration will be furth stability and serviceability damage and deterioration fracturing, spalling, delan leakages. Generally, recas damaged and deteriorated	eplacing portion of the concr eteriorated. If the part is not er aggravated which could of the structure. The prese lead to corrosion of the mination, honeycombing of ting concrete involve removed concrete area, cleaning to preserve and placement of new	removed, the defect, impair the strength, ence of such defect, e reinforcing rebar, concrete or water val of the defective, up of substrate and	
Required tools and Equipme	ent (Refer to attachment.4)		
 Surface preparation ✓ Power disc grinder ✓ Wire brush / Air gun Removing damaged concr ✓ Concrete cutter / Handy ✓ Hammer and Chisel / Electric pick hammer ✓ High pressure water blate Painting ✓ Brush / Spray gun 	<u>ete</u> y concrete cutter Electric power chisel , asting	Mixing repair method ✓ Concrete mixer Setting repair material ✓ Vibrator ✓ Squeeze pump ✓ Hopper ✓ Pumping hose <u>Finishing</u> ✓ Steel trowel <u>Others</u> ✓ Portable generator	
Material			
 ✓ Portland cement ✓ Silica fume ✓ Epoxy resin (bonding c ✓ Zinc rich primer (Bond Work sequence 			
			n aurtaga at
Protecting e	START → exsiting structure → amaged concrete ↓ g rusted rebars ↓	Applying bonding coat o exsiting concrete an Casting concrete Curing concrete and rer END	ete
Insta	Illing form		

(8) Plastering / Grouting Pile Concrete

spalling cover concrete / missing concrete section and exposing reinforcing steel. Plastering repair of bored concrete pile is carried out to restore small areas where sound concrete i defective, damaged and deteriorated by spalling, scaling and impact. This method is generally applie using trowel and required minimum or no formworks. On the other hand, the concrete is filled inside the bored pile where inadequate concreting had occurred. Plastering of pile concrete is applicable when the concrete is spalled with the exposure of reinforcing steel and polymer cement mortar is used for in such repairs. The pile which has a missing section of concrete, in such cases, Portland cement should be filled with concrete, in such cases, Portland cement should be used in concrete. Image: Concrete of the exposure of the exposed reinforcing steel and polymer cement mortar is used for in such cases, Portland cement should be used in concrete. Required tools and Equipment (Refer to attachment.4) Image: Concrete of the exposed reinforcing steel of the exposed of the exposed of the exposed reinforcing steel of the exposed of th) Plastering / Grouting Pile C						
Due to scouring some of bored pile head areas below a pile cap may appear above ground surface wit spalling cover concrete / missing concrete section and exposing reinforcing steel. Plastering repair of bored concrete pile is carried out to restore small areas where sound concrete is defective, damaged and deteriorated by spalling, scaling and impact. This method is generally applie using trowel and required minimum or no formworks. On the other hand, the concrete is filled inside the bored pile where inadequate concreting had occurred. Plastering of pile concrete is applicable when the concrete is spalled with the exposure of reinforcing steel and polymer cement mortar is used for in such repairs. The pile which has a missing section of concrete, in such cases, Portland cement should be filled with concrete, in such cases, Portland cement should be used in concrete. Required tools and Equipment (Refer to attachment.4) Surface preparation Painting * Nower disc grinder * Brush / Spray gun Mixing repair material * Hand mixer / Mortar mixer * Hammer and Chisel / Electric power chisel * Hand mixer / Grout mixer / Mortar mixer * Naterial Grouting * Others * Pottable generator	Minor Repair	Plastering / Grouting Pile	Concrete				
spalling cover concrete / missing concrete section and exposing reinforcing steel. Plastering repair of bored concrete pile is carried out to restore small areas where sound concrete i defective, damaged and deteriorated by spalling, scaling and impact. This method is generally applie using trowel and required minimum or no formworks. On the other hand, the concrete is filled inside the bored pile where inadequate concreting had occurred. Plastering of pile concrete is applicable when the concrete is spalled with the exposure of reinforcing steel and polymer cement mortar is used for in such repairs. The pile which has a missing section of concrete, in such cases, Portland cement should be filled with concrete, in such cases, Portland cement should be used in concrete. Image: Concrete is applicable when the concrete is provided with concrete, in such cases, Portland cement should be used in concrete. Surface preparation Painting Brush / Spray gun Mixing repair material Hand mixer / Grout mixer / Mortar mixer Finishing Steel trowel Others Portable generator Material Plastering V Cement mortar Cirouting	Work description						
Surface preparation Painting ✓ Power disc grinder ✓ Brush / Spray gun ✓ Wire brush / Air gun Mixing repair material Removing damaged concrete ✓ Hand mixer / Grout mixer / Mortar mixer ✓ Hammer and Chisel / Electric power chisel ✓ Hand mixer / Grout mixer / Mortar mixer ✓ Power disc cutter / Handy concrete cutter ✓ Steel trowel Others ✓ Portable generator ✓ Material Grouting ✓ Cement mortar ✓ Polymer cement mortar	Due to scouring some of bored pile head areas below a pile cap may appear above ground surface with spalling cover concrete / missing concrete section and exposing reinforcing steel. Plastering repair of bored concrete pile is carried out to restore small areas where sound concrete is defective, damaged and deteriorated by spalling, scaling and impact. This method is generally applied using trowel and required minimum or no formworks. On the other hand, the concrete is filled inside the bored pile where inadequate concreting had occurred. Plastering of pile concrete is applicable when the concrete is spalled with the exposure of reinforcing steel and polymer cement mortar is used for in such repairs. The pile which has a missing section of concrete, in such cases, Portland cement should be used in concrete.						
Plastering Grouting ✓ Cement mortar ✓ Polymer cement mortar	Surface preparation ✓ Power disc grinder ✓ Wire brush / Air gun <u>Removing damaged concre</u> ✓ Hammer and Chisel / E	<u>ete</u> lectric power chisel	 ✓ Brush / Spray gun <u>Mixing repair material</u> ✓ Hand mixer / Grout mixer / Mortar mixer <u>Finishing</u> ✓ Steel trowel <u>Others</u> 				
✓ Cement mortar ✓ Polymer cement mortar	Material						
 ✓ Polymer cement mortar ✓ Non-shrinkage grout ✓ Epoxy bonding coat ✓ Epoxy bonding coat 	 ✓ Cement mortar ✓ Polymer cement mortar 		 ✓ Polymer cement mortar ✓ Non-shrinkage grout 				

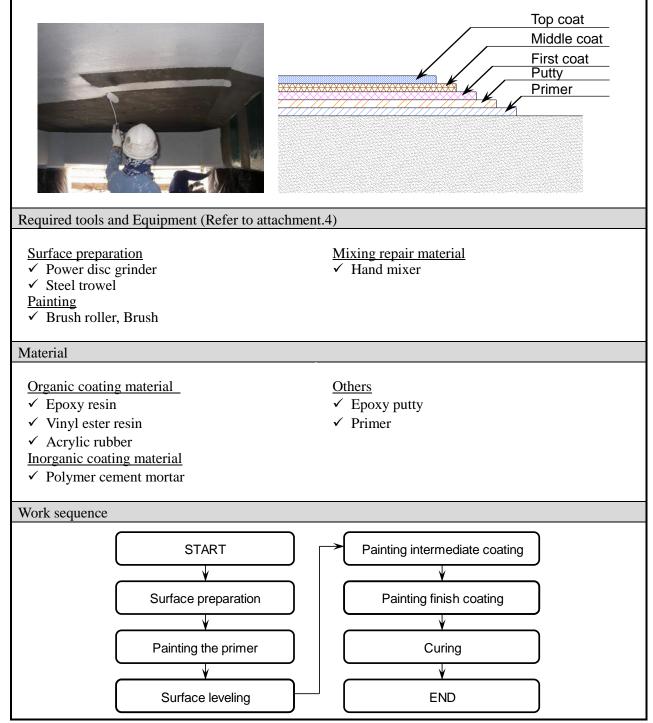
(9) Sacrifice Anode material


9) Sacrifice Anode material	
Supplement method	Sacrifice Anode material
Work description	
anode material to the reint to prevent corrosion that is the corrosion caused by sa Sacrifice anode materia reinforcement steel in c thereby avoid future probl incipient anodes. Sacrifice anode material is ties which can attach in	supplement by attaching the sacrifice for accurring normally, it is effective for alt or due to carbonation. al is used to galvanically protect chloride contaminated concrete, and blems associated with the formation of is fixed to reinforcement steel by wire in horizontal, vertical and overhead electrochemical continuity.
Required tools and Equipme	ent (Refer to attachment.4)
Surface preparation ✓ Power disc grinder ✓ Wire brush / Air gun <u>Removing damaged concre</u> ✓ Hammer and Chisel / E ✓ Power disc cutter / Han	Electric power chisel <u>Finishing</u>
Material	
 ✓ Sacrifice anode materia Work sequence 	al (Zinc)
S ⁻	TART Painting primer
Removing de	efective concrete
Removing the	e rust from rebar
-	sacrifice anode e reinforcing steel

(10) Substrate impregnation

Supplement method	Substrate impregnation
Work description	

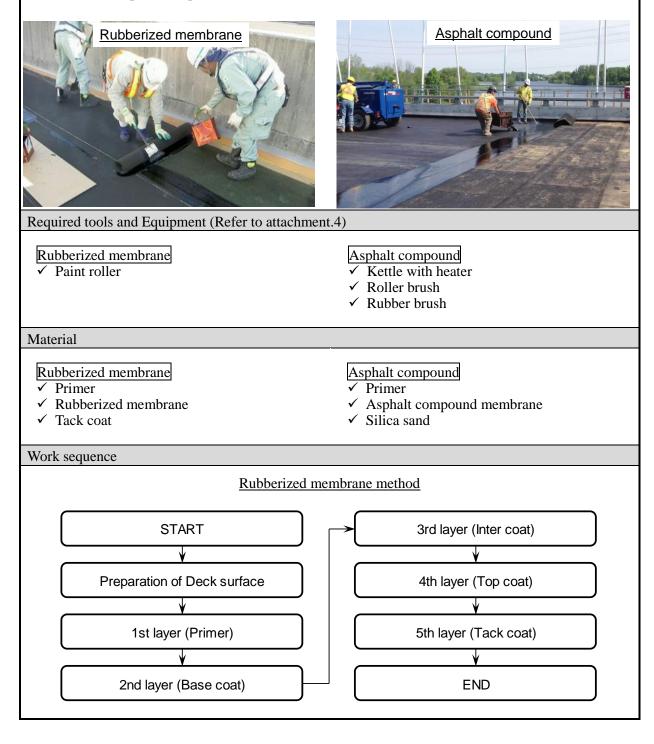
This method is used as supplement when painting substrate impregnation on concrete surface. On surface application, it penetrates the concrete and improves its properties in specific ways, such as densifying, strengthening, enhancing alkalinity, or enhancing water repelling properties.


All types of surface penetrant have a number of advantageous characteristics, (1) they are colorless and transparent, ensuring no degradation of the external appearance of the concrete surface; (2) they can be applied easily and quickly, with little effort compared to other techniques such as coating methods or lining methods; (3) they are environmentally friendly as little industrial waste is generated and they do not require organic solvents or other harmful chemicals.

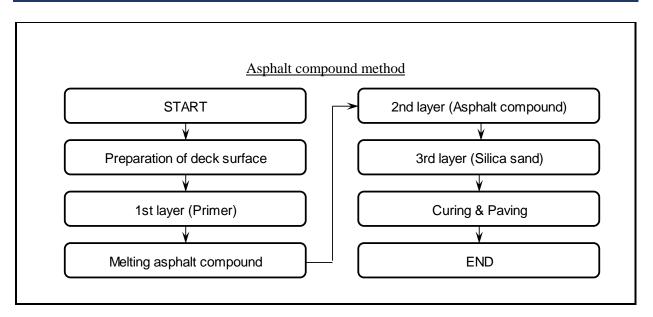
(11) Surface coating

Supplement method	Surface coating
Work description	

This method is used as supplemental to prevent the ingress of factors that can cause deterioration of the concrete or prevent spalling of concrete cover by forming a protective film on the concrete surface. Surface coating can be broadly classified into organic material and inorganic material.



(12) Water proofing


Supplement method	Water proofing
Work description	

Concrete is usually alkaline and therefore protects the reinforcing steel. However, the effect of its contact with water and corrosive materials reduce the alkaline environment and allows an electrolytic process to commence, thus corroding the reinforcement steel.

The primary protection against this destructive damage is through installation of waterproofing membrane or asphalt compound on the deck slab.

Bridge Repair Manual

(13) Corrosion inhibitor

Supplement method	Corrosion inhibitor
Work description	

This supplement method is effective to prevent the formation of rust on reinforcing steel.

Before applying corrosion inhibitor on reinforcing bar, generated rust on reinforcing steel and defective, damaged and deteriorated concrete shall be removed.

Application should be in a dry and clean environment as data sheet required.

Thickness of the coating and waiting time between applications shall be in accordance with data sheet.

Zinc rich primer system

Polymer cement system

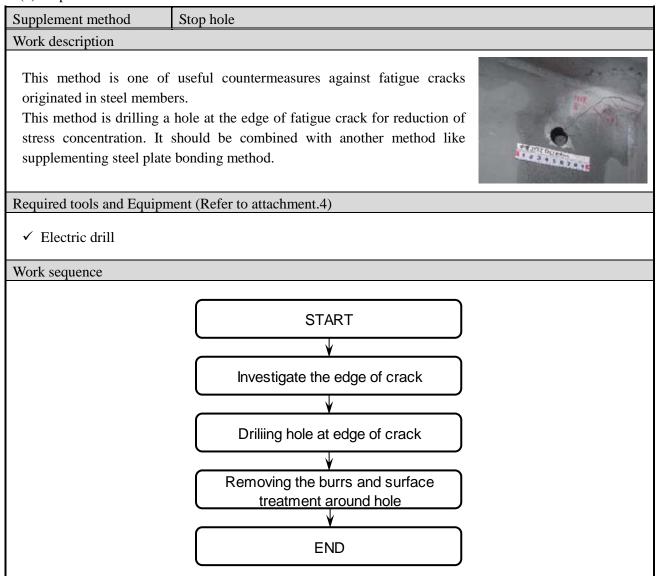
Epoxy resin system

Required tools and Equipment (Refer to attachment.4)

✓ Brush / Spray gun

 \checkmark Wire brush

Material


- ✓ Zinc rich primer system
- ✓ Polymer cement system
- ✓ Epoxy resin system

3.4.2 Repair methods for steel structure

(1) Supplementing steel plate bonding

(1) Supplementing steel pla Major Repair	Supplementing steel plate bonding
Work description	
deformation (d) losing / m The causes of above defe stress due to the heavy traffic (d) fatigue (e) lack detailed structural design Supplemental steel plate strength of the steel mem to a damaged area or by m a new steel plate. Sup replacement of a member breakage of the member.	 a lack of maintenance by painting (b) over traffic (c) vibration caused by of required considerations for a etc. be is provided to restore lost ber by adding a new steel plate eplacing damaged member with plemental steel plate without r will be applicable to crack / . Also supplemental steel plate of a member will be applicable
Required tools and Equipm	ent (Refer to attachment.4)
Surface preparation ✓ Disc sander ✓ Wire brush ✓ Power disc grinder Cutting and drilling ✓ Gas cutter ✓ Electric drill Welding ✓ Welding plant	Bolting ✓ Fastening wrench ✓ Electric wrench Painting ✓ Paint brush Others ✓ Portable generator
Work sequence	
Positio Driling the Surf:	START

3.5. Recording of Bridge Repair Results

After completion of the Repair / Strengthening work, the result shall be recorded in both Form General Information of Maintenance" and "Work Description of a Bridge".

(1) General Information of Maintenance

General Information of Maintenance shall be recorded by EE Office at each province.

Target Bridge shall be selected from Inventory.

 Table 5.1
 General Information of Maintenance

lork Amou	int , Do 🧑					
	int : Rs 2		Contractor		6)	
ear	: 3		Work Period	~~~~~~	D	~
lanagemer	nt Offic :		Work By	: (B Contract	Force Account
arget Brido	ge					
No.	Route No.	Name of Road	Bridg	e No.		Name of Bridge
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

1). Work No

The ordering number shall be recorded.

- 2). Work Amount Total cost of Repair work shall be recorded.
- 3). Year

The ordering year shall be recorded.

4). Management Office

Representative office which is conducting the Repair work shall be recorded.

5). Work name

The project name shall be recorded.

6). Contractor

The contractor's name shall be recorded, in case the repair work was performed by a contractor.

7). Work period

The total duration of repair work at each ordering unit shall be recorded.

8). Work by

Contract or Force account shall be selected

9). Remark

The important information exceptions as necessary shall be recorded

(2) Work Description of a Bridge

Work description of a bridge shall be recorded for each bridge.

In this sheet "Work on", "Category of Work", "Work Item", "Target HI", "Quantity" and "Unit" shall be recorded. Other items are automatically entered from inventory.

Route No. : A002			~~~~	-Galle-Hambantot	a-Wellawaya			
Bridge No. : 199 / 4 in Km			Name of Bridge :	Name of Bridge :				
Separation : Not Separated			Widened : Not Wide	ened				
Province : Southern			District : Hamban	tota				
EE Divisior	n : Tangalle							
Length of B	Bridge(m) :	7.600	Total Number of Span	: 1				
Span Arrar	ngement :							
Width(m)	:	Overall: 10.80	Effective: 10.20	Center Media	ın:			
Width of Cr	oss Sec.(m) :	Left Sidewalk: 0.95	Carriageway: 8.30	Rigth Sidewa	lk: 0.95			
Skew Angle	e(degree) :	0						
No.	Work On	Category of Work	Work Item	Target HI	Quantity	Unit		
1	1		1	2	(1)	1		
2	U	U	U	 C 	U	U		
3								
4								
5								
6								
7								
8								
9								
10								
						L		
Remarks	: 3							
	-							

e
(

(1) Classification of "Work On", "Category of work", "Work item" and "Unit"

Classification of Work On, Category of work, Work item and Unit refer Table 5.3.

Work On Category of Work					Work Item	Unit
		1	Maintenance	_	—	Span : Number of
				1	Replacement of pavement	repaired spans
				2	Replacement of Expansion Joint	
1			D '		Replacement of Accessories	
1	Bridge Surface	ridge Surface 2 Repair 3 ((Drainage / Service duct / Railing			
					/ Parapet)	
				4	Repair work for approach road	
		3	Others 💥	_	—	
		1	Maintenance	_	—	Span : Number of
				1	Concrete Main / Cross Beam	Repaired spans
2	Superstructure			2	Steel Main / Cross Beam	
2		2	Repair	3	Concrete deck slab	
				4	Steel deck slab	
		3	Others 🔆	—	_	
		1	Maintenance	—	—	Span : Number of
3 Bridge Bearing	2	Repair	_	Replacement of Bearing	Repaired spans	
			Others 💥		_	
		1	Maintenance	_	_	Nos : Number of
				1	Repair work for Substructure	Repaired piers
4	Substructure	2	2 Repair	2	Countermeasure against scour	or abutments
		3	Others 💥	_	_	
5		1	Maintenance	—	_	Record the unit
	Others	2	Repair			according to each
		3	Others 💥	—		category of work.
No ;	ote XDetail informatic	on sh	all be recorded in	Rem	arks.	

Table 5.3	Classification of Work On, Category of Work, Work Item and Unit
-----------	---

(2) Target HI

The management level (target health index) for the member at each bridge unit shall be recorded by BM&AU members.

(3) Remarks

The important information such as detail repair or strengthening method, position, material or coating system applied shall be recorded.

Attachment 1 - Specification for Plastering Method

Table of Contents

1.	Work flow and requirement ······ 1
2.	Material ····· 8
3.	Equipment list ······ 10
4.	Storage and Shelf Life
5.	Quality Control
6.	Inspection Sheet and Repair Record14
7.	Health and Safety

List of Tables

3
4
5
8
8
9
9
10
13
14
15
16
17
18
19
20
- -

1. Work flow and requirement

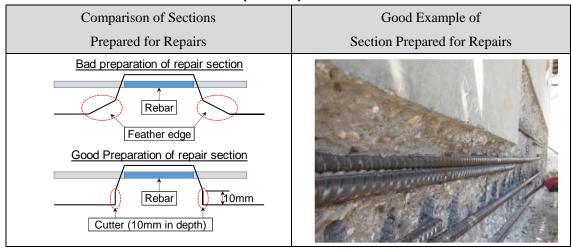
If repair work is to be conducted by adopting plastering method (procedure), prior to commencement of the repairs the contractor should submit a proposal explaining the procedure to the Engineer in charge for his perusal and approval before commencement of Repairs.

1.) Preparatory Inspection

Identify the location of delaminating, spalling surface, deteriorated concrete by hammer tapping or other suitable method.

2.) Marking Cut Lines

Mark the cutting lines by tape or chalk.


The cutting line should be approximately 30mm from the edge of the deteriorated surface.

3.) Saw Cut

In order to prevent the formation of the featheredge, saw cut or disk cutter should be used. Depth of the saw cut shall be around 10mm. Feather edge lead to separation of repair material. Care should be taken to prevent damages to the existing steel reinforcements.

Table 1.1 Example of Repaired Section

4.) Removal of Defective Concrete

Remove all defective, unsound and contaminated concrete and prepare the edge of the patching area as shown in the attached photo. If local corrosion in steel reinforcements with section losses is found requiring additional bars, remove only the damaged concrete including the sections of steel bars that is required to bond the new reinforcements with new steel bars.

Concrete within the marked areas shall be removed

using light mechanical breakers or hammers and chisels. All the exposed steel reinforcements should be removed and sound of concrete substrate should be used to determine the nature of the concrete to the satisfaction of the Engineer in charge, before breaking the concrete beneath the steel reinforcements. To avoid generation of micro cracks, it is recommended to use high pressure water blasting method.

Grade of Water Pressure	Description
Low Pressure	Used for cleaning concrete and steel
(Up to 18N/mm2(MPa) / 180bar / ~2,600PSI	substrate
High Pressure	Used for cleaning steel substrate and for
(From 18 to 60 N/mm ² (MPa) / 600bar / \sim 8,700PSI	removal of concrete
Very High Pressure	Used for concrete removal when low
(From 60 to 110N/mm2(MPa) / 1,100bar / \sim	water volume is available
16,000PSI	

Table 1.2 Water Jets and Grade of Water Pressures in Use

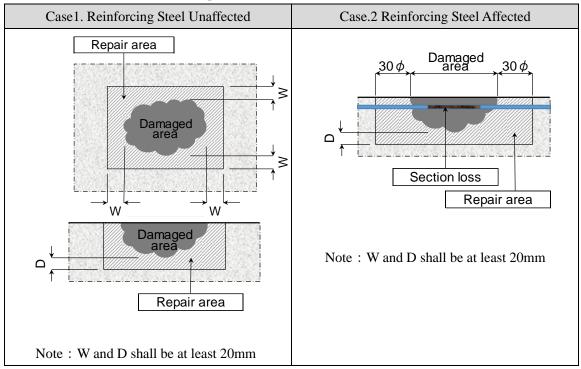
★ Extracted from EN1504-1

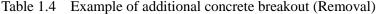
5.) Inspection after Chipping

Inspect overhang, featheredge, air ventilation, loose materials, rust on steel reinforcements and surrounding space identified for repair mortal etc.

6.) Cleaning of Concrete and Steel Reinforcements

Remove loose particles and dust using light pressure water or vacuum cleaner. Concrete surface to be bonded must be free from dirt, oil, grease, asphalt etc. Corrosion must be removed before placing the new concrete. If deterioration is due to chloride contamination or if the steel reinforcements is covered with loose corrosion elements having pits, use high pressure water blasting until all the rust is removed. The concrete surfaces selected for repair shall be prepared by mechanical scrubbing to remove loose materials, surface laitance, organic contaminants and moss, and then coated by bonding primer. Utmost care shall be taken to ensure that vibration generated during the process does not cause delamination of adjacent render or concrete.




 Table 1.3
 Reference Photos of Surface Treatment of Steel Reinforcements

7.) Additional Concrete Breakout (Removal)

Where the breakout (removed) section indicates that the exposed reinforced steel is further corroded or the surrounding concrete is not sound, an enlarged area should be taken for demolition to the satisfaction of the Engineer in charge.

The depth of removal of concrete in clearly defined areas can be increased based on the written instructions from Engineer in order to remove all defected, damaged and deteriorated concrete. The additional concrete excavation shall not extend more than 20mm from the bottom layer of main steel reinforcements. During removal utmost care should be undertaken to minimize damage to existing steel. Used for reinforcements.

8.) Additional or Replacement Reinforcing Steel

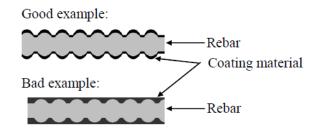
In case of reinforcing steel which has 10% or more section losses due to the corrosion, additional or replacement reinforcing steel shall be provided as instructed by the Engineer. Replacement of reinforcing steel shall be cleaned to the same standard as the existing ones. This replacement reinforcing steel shall be lapped on the side of the existing bars and should be spot welded on one side. It shall be fixed along its length at suitable intervals to prevent sagging. The corroded reinforcing steel shall be cleaned and applied with anti-corrosive paint to prevent further corrosion.

9.) Applying Primer to Concrete and Anti-Corrosive Paint to Reinforcing Steel

Concrete surface shall be saturated with clean low pressure water for a minimum of 2 hours before application ensuring that all pores and pits are adequately wet. The surface shall not be allowed to dry before application.

Primer is applied to clean concrete surfaces in order to bond firmly. With a brush working vigorously to ensure that they are evenly covered all around. In case, the condition of the substrate of existing concrete is dry when applying repair material, there is the possibility of occurrence of dry out phenomenon. It occurs when water in repair material will be absorbed by existing concrete and which will induce restraint of hydration reaction and this phenomenon cause hardening or adhesive failure. Application of the primer (water absorption adjustment material) on substrate of the concrete will prevent the occurrence of dry out phenomenon.

Moisture condition of base surface before application of primer shall be in accordance with data


sheet. In case that the usage of primer is not adhered to due to misconception, bonding strength might be lower than what is achieved with the application of primer.

Applying Anti Corrosive Paint (Zinc rich primer / Polymer cement / Epoxy resin) to Reinforcing Steel Surface shall be cleaned

The reinforcing steel should be blasted or wire blasted (Power or Hand tool) to remove all traces of corrosion and surface should be dry.

No matter the paint used is single or two components, mix thoroughly until a uniform consistency is reached, since the epoxy based zinc rich paint is precipitated before using. Continue to stir the mixture periodically during the application to avoid precipitation.

When applying anti corrosive paint on reinforcing steel, it is necessary to keep the surface evenly as shown below.

10.) Filling up Repair Material

Generally, the repair material should be placed in layers of about 20mm thickness. The maximum thickness for one layer shall be in accordance with data sheet. Compact each layer thoroughly over the entire surface using a wooden or steel trowel.

Generally, there should be no delays (time) between the placing and compacting of layers. The plastering to the surrounding concrete is performed using a form material, and then using a wood float or steel trowel. The repair material shall be mixed using equipment (normally a hand mixer) approved by the Engineer.

The water shall be added to the dry components and thoroughly mixed to achieve a uniform mixture (viscosity), unless otherwise approved by the Engineer. The repair material shall then be applied to the bonding agent using hand packing and trowel to the satisfaction of Engineer in charge. The textured finish of the final repair mortar layer shall match the finish on the existing interior surface.

The repair mortar application shall be built up to the original surface profile in layers not exceeding 20mm and the final layer shall not exceed 15mm, unless otherwise recommended by the manufacturer and approved by the Engineer in charge.

11.) Curing

Variety of repair materials are in need of continuous curing to develop strength and impermeability, and to minimize drying shrinkage while bond strength is developing. Curing of the repair mortar shall be in accordance with the polymer modified additive manufacturer's instructions. Where curing agents are specified by manufacturer, they shall be applied immediately after the surface is available for the next repair of mortar layer or troweled to a finish. Avoid direct sunlight during curing by means of sheet or boards.

12.) Visual and Audio Check

After repaired part get hardened, strike it with the hammer to detect from the sound emanates to make sure that separation does not occur.

2. Material Specification

1.) Specification

Specification of material for repair work by plastering method is shown in following table.

	Requirement			
Item	Structural		Non-Structural	
	Class R4 Class R3		Class R2	Class R1
Compressive Strength	≧45MPa	≧25MPa	≧15MPa	≧10MPa
Chloride Ion Content	≦0.05%			05%
Adhesive Bond	≥ 2.0 MPa ≥ 1.5 MPa $\geq 0.$			SMPa
	Max average crack width < 0.05mm			
Restrained shrinkage	No crack width > 0.1mm			No
Expansion	No delamination			requirement
	≧2.0MPa	≧1.5MPa	≧0.8MPa	
DURABILITY Carbonation Resistance (not required if coated)	dk≦Control concrete C(0.45)		Not requirement	
Elastic Modulus	≧20GPa ≧15GPa Not re		quired	

Table 2.1	Specification	of repair r	naterial for s	tructural and N	Ion-Structural
14010 2.1	opeenieution	or repair i	inacerrar ror b	a declarar and r	ion buactura

*Extracting from BS EN 1504-3

Table 2.2 Specification of Lpoxy Donding Agent to concrete surface	Table 2.2	Specification of Epoxy Bonding Agent to concrete surface
--	-----------	--

Item	Test Method	Specification
Compressive strength	ASTM D695M	70N/mm ²
Flexural strength	ASTM D790M	40N/mm ²
Tensile strength	ASTM D638M	30N/mm ²
Tensile shear bond to steel	ASTM 1002	15N/mm ²
Slant shear bond to mortar	ASTM C882	15N/mm ²
Bond strength of cured concrete to fresh concrete	ASTM D7274	15N/mm ²

1		8
Item	Test Method	Specification
Adhesion	ASTM D3359	Minimum rating : 3A
Salt spray resistance	ASTM D3-37	Excellent

 Table 2.3
 Specification of Zinc Rich Primer for reinforcing steel

Table 2.4 Specifications of water for mixing repair material

Classification	NOTE
Potable water	
Water recovered from processed in the concrete	Need to check Annex A of BS EN1008
industry or combined water	
Water from underground sources or natural	Need to check Annex B of BS EN1008
surface water and industrial waste water	

Extracting from BS EN1008

3. Equipment list

General equipment and tools need for plastering method are shown in following table.

	Table 5.1 Equipment list			
1.Preparatory inspection and clean the surface				
Hand brush	Air blower	Hammer		
The same				
2.Making cut line and saw cut				
Таре	Chalk	Power disc cutter		
3.Removal of defective concrete su	urface treatment for reinforcing steel			
Chisel	Electric pick hammer	Hammer		
Wire brush	Electric wire brush	Air blower		

Table 3.1Equipment list

4. Preparation of repair material and	l mixing	
Hand mixer	Measure cup	Weight measuring apparatus
N N N N N N N N N N N N N N N N N N N		
Pail can		
5.Setting repair material		
Steel trowel	Panel for repair material	Brush
6.Others		
Portable generator	Curing sheet	Cloth

4. Storage and Shelf Life

The requirement of storage and shelf life shall be in accordance with data sheet.

General requirement of the repair materials are as follow.

- Material can be kept for 12 months if store in original unopened bags in cool and dry warehouse conditions. Generally, refer to material data sheet.
- ▶ Keep away from direct sunlight and rainfall.
- Unopened and undamaged sealed packing in dry condition at temperatures between +5 centigrade and 30 centigrade.
- > Avoid excessive compaction.
- > Utilize the opened bags to the fullest.
- > Clearance from the ground level for pallets to be protected from rainfall.
- 5. Quality Control
- 1) Standard check items for before, during and after preparation of repair work

General tests shown in following table are purposed to confirm the condition of repair material, ambient and substrate of structure before, during and after preparation of conducting repair work. Some tests may be omitted when assessment result of below contents are satisfied.

Characteristic	Reference	Frequency	Parameters
Temperature (ambient and	Record	During application	Within Product Data
substrate)			Sheet limits
Ambiant Uumiditu	Record	During application	Within Product Data
Ambient Humidity			Sheet limits
Precipitation	Record	During application	Keep records and provide
			protection
Packaging	Visual	Every bag	No damage
Dry Product aspect	Visual	2 bags per 10	Loose, no lumps and not
Dry Floduct aspect			compacted
Mixed material	Visual	Every mix	Homogeneous, no lumps
			no un-mixed dry powder
	Visual	After preparation and	No contamination, loose
Cleanliness of Concrete		immediately before	particles or defects
		application	
	EN ISO8501-1	After preparation and	No rust, scale or
Cleanliness of Steel Bars		immediately before	contamination
		application	(Grade Sa 2 or Sa $2_{1/2}$)
Delaminating Concrete	Hammer Sounding	After preparation	No delamination concrete
	Visual or EN 1766	After preparation	Minimum roughness
Roughness	on horizontal		2mm(repair area)
Kougilliess	surfaces		No laitance
			layer(smoothing mortars)
Surface Tensile Strength of	EN 1542	After preparation	>1.0N/mm ² for
the Substrate		works	structural repair

 Table 5.1
 Items of Quality Control (Before, during and after preparation)

2) Standard check items after completion of repair work

General tests shown in following table are proposed to confirm the status after completion of repair work.

Characteristic	Reference	Frequency	Parameters
Crack	Visual	28 days after application	No crack on application section
Presence of Voids / Delaminating	EN 12504-1 Hammer sounding or ultrasonic testing	After application	No delaminating on application section

 Table 5.2
 Items of Quality Control (After completion)

6. Inspection Sheet and Repair Record

Repair result shall be recorded such as as-built drawings, inspection sheets, investigation reports, repair design report, construction scene photograph and method statement. As for the inspection sheets are shown in following table. Table 6.1Inspection sheet (1)

			Inspe	ction sh	eet(1)			
	ent	:						
	Consultant Contractor							
Cont	ractor	:						
			<u>INSPECTI</u>	ONOF	MATE	RIAL		
			:					
BRIDE		UCTORE NAM						
1.Main materia	als							
Materials		Desci	ription			Name / sou	urce	Expire dat
		y mixed						
		ary Portland c						
Cement		strength Portl						
		Ultra early strength Portland cement						
□ Others								
Aggregate	□≦	mm						
Fiber		/ Organic						
	□Polyn							
Admixture		k setting agent	<u>i</u>					
	□ Ultra □ Other	fine powder						
2.Other mater		<u>s</u>						
Materials		Desc	ription			Name / sou	Irce	Expire dat
Primer		00001						
Curing comp								
3.Purchased	Quantity							•
Materials		of packing	Unit	Qua	Intity	Total Amount	Condition	Mill sheet
Cement								
Aggregate								
Fiber								
Admixture								
Primer								
Curing comp.								
Curing comp. 4.Note								
Curing comp. 4.Note 5.Judgment								
Curing comp. 4.Note 5.Judgment	epted	INot Accepted			The Cc	pnsultant	The	Client
Curing comp. 4.Note 5.Judgment	· [The cor	Intractor			onsultant		Client
Curing comp. 4.Note 5.Judgment	· [Signatu		onsultant	The Signature :	Client
Curing comp. 4.Note 5.Judgment	· [The cor				onsultant		Client
4.Note 5.Judgment	ŝ	The cor			ure :	onsultant		Client
Curing comp. 4.Note 5.Judgment	ŝ	The cor Signature :		Signatu	ure :	onsultant	Signature :	Client

hangetion sheet(2)									
	Inspection sheet(2) Client :								
	Consultant :								
	Contractor :								
	INSPECTION OF MATERIAL								
	INSPECTION DATE :								
	BRIDGE / STRUCTURE NAME :								
1.Quantity Table									
	Repair Area in Contract								
No.	Length	Width	Area		Renair	method			
1.0.	(m)	(m)	(m ²)		Repair method				
1									
2 3									
		Actua	al Area Remov	ed (Accepted f	or payment)				
No.	Length	Width	Depth	Area		Repair method			
110.	(m)	(m)	(m)	(m ²)					
1									
2									
3.0010	crete surface,E Item			Che	eck				
Fe	ather edge		OK : No feath	ner edge exists					
	ncrete edge	🗆 NG 🛛	OK: Saw cut	t(about 10mm)	is made at th	ne concrete edge			
	crete surface			urface to be fille					
C	Overhang	□ NG □	OK : No over	hang which cau	use problem of	concrete filling			
4.Remarks									
5.Judgement □Accepted □Not Accepted									
		The contractor		The Consultant		The Client			
		Signature :		Signature :		Signature :			
		Name :		Name :		Name :			

Table 6.2Inspection sheet (2)

		Incro	ction sheet(3)			
Client			citori sheet(<u>3)</u>			
Consultant	•					
Contractor						
	•	INSPECTI	ON OF MATER	RIAL		
INSPECTION	I DATE	:				
BRIDGE / ST	RUCTURE NA	ME :				
1.Steel bar						
ltems			Description		Jud OK	dge NG
Corrosion rem	oved by	□Sand bla		er method	UK	NG
Existance of c			l corrosion is re			
Additional ste			nged or not req			
		Allal	Firmly fixed	ulleu		
Splicing / fixation Spacing of st		Sufficient and	cing for repair	matorial filling		
Spacing of St		Sumcient spa	icing for repair	material ming		
		I				
2.Anti-corrosion prim	er					
a. Neccesity of applic	cation	□Req	uired □Not	required		
b. Product name and	l component					
Product name	Com	p.A (Liquid, Po	wder)	Com	p.B (Liquid, Po	wder)
c. Standard coverage	Э					
		for				
d. Quantity used						
Plan						
Actual						
Difference						
e. Application						
ltems		Judge				
	C	NK N	G			
Quantity						
Visual						
3.Note						
4.Judgement						
Accepted I	□Not Accepted					
	The co	ntractor	The Co	nsultant	The	Client
	Signature :		Signature :		Signature :	
	Name :		Name :		Name :	

Table 6.3Inspection sheet (3)

Table 6.4Inspection sheet (4)

			Inspec	ction sheet(4)			
	Client	:					
	Consultant	:					
.	Contractor	:					
			INSPECTI	ON OF MATER			
	INSPECTION	DATE RUCTURE NAI					
1.Mix P □ Site	Propotion of rep mix	air material					
	Material	W/C	Cement	Water	Aggregate	Admixture1	Admixture2
	Amount						
	idy mixed						
2.Prime			use (ls substra				
Pro	duct name	Com	p.A (Liquid, Pov	wder)	Comp	p.B (Liquid, Po	wder)
3.Mixin	g of repair mat	erial					
Batch	Mixing E	quipment			Weight / Volume		
No.			Cement	Water	Aggregate	Admixture	Admixture
- 1	OK	NG	()	()	()	()	()
1							
2 3							
3		e(min)					
Batch		, , ,	Juc	dge		Note	
Batch No.	Start hh mm	End hh mm	OK	dge NG	-	Note	
	Start	End				Note	
No.	Start	End				Note	
No.	Start	End				Note	
No. 1 2 3	Start hh mm	End hh mm				Note	
No. 1 2 3 4.Applie	Start hh mm cation / castinç	End hh mm g / spraying	ОК				
No. 1 2 3 4.Applid Batch	Start hh mm cation / castinç	End hh mm	ОК	NG	Temperature	Note	dge
No. 1 2 3 4.Applie	Start hh mm cation / castinç	End hh mm g / spraying	OK Application	NG time(min)	Temperature		dge NG
No. 1 2 3 4.Applid Batch No. 1	Start hh mm cation / casting Equip OK	End hh mm g / spraying oment NG	OK Application Start	NG time(min) End	Temperature	Juc	-
No. 1 2 3 4.Applid Batch No. 1 2	Start hh mm cation / casting Equip OK	End hh mm g / spraying oment NG	OK Application Start	NG time(min) End	Temperature	Juc	-
No. 1 2 3 4.Applid Batch No. 1	Start hh mm cation / casting Equip OK	End hh mm g / spraying oment NG	OK Application Start	NG time(min) End	Temperature	Juc	-
No. 1 2 3 4.Applid Batch No. 1 2	Start hh mm cation / casting Equip OK	End hh mm g / spraying oment NG	OK Application Start	NG time(min) End	Temperature	Juc	-
No. 1 2 3 4.Applid Batch No. 1 2 3	Start hh mm cation / casting Equip OK	End hh mm g / spraying oment NG	OK Application Start	NG time(min) End	Temperature	Juc	-
No. 1 2 3 4.Applia Batch No. 1 2 3 4.Note	Start hh mm cation / casting Equip OK D	End hh mm g / spraying oment NG	OK Application Start	NG time(min) End	Temperature	Juc	-
No. 1 2 3 4.Applid Batch No. 1 2 3	Start hh mm cation / casting Equip OK D D C C C C C C C C C C C C C C C C C	End hh mm g / spraying oment NG	OK Application Start hh mm	NG time(min) End	Temperature	Juc	-
No. 1 2 3 4.Applia Batch No. 1 2 3 4.Note	Start hh mm cation / casting Equip OK D D C C C C C C C C C C C C C C C C C	End hh mm g / spraying oment NG U U NG D D Not Accepted	OK Application Start hh mm	NG time(min) End hh mm		Juc	NG
No. 1 2 3 4.Applia Batch No. 1 2 3 4.Note	Start hh mm cation / casting Equip OK D D C C C C C C C C C C C C C C C C C	End hh mm	OK Application Start hh mm	NG time(min) End hh mm	onsultant	Juc OK The (NG
No. 1 2 3 4.Applia Batch No. 1 2 3 4.Note	Start hh mm cation / casting Equip OK D D C C C C C C C C C C C C C C C C C	End hh mm g / spraying oment NG U U NG D D Not Accepted	OK Application Start hh mm	NG time(min) End hh mm	onsultant	Juc	NG
No. 1 2 3 4.Applia Batch No. 1 2 3 4.Note	Start hh mm cation / casting Equip OK D D C C C C C C C C C C C C C C C C C	End hh mm	OK Application Start hh mm	NG time(min) End hh mm	nsultant	Juc OK The (NG

Table 6.5	Inspection sheet (5)
-----------	----------------------

			nispection sh	· · /		
Inspection sheet(5) Client						
Consultant						
<u> </u>						
	•	INSPECT	ON OF MATE	RIAL		
INSPECTION						
BRIDGE / STR	RUCTURE NAM	ME :				
1.Curing						
ltem		Desc	ription		Ch OK	eck NG
Curing method	Water s	pray / Water r	nat / Curing co	mpound		
Curing period		More not les		•		
Wind protection		lf red	quired			
Sunlight protection		lf rec	quired			
		lf rec	quired			
2.Visual Inspection						
		Ch	neck		Nists	
ltem		OK	NG		Note	
Dimensior	ns					
Roughnes						
Existance of loosir	ng material					
Color						
Cracks						
3.Physical Inspection						
		Ch	neck		Niete	
ltem		OK	NG	Note		
Sounding (hamn	ner) test			Required		
Rebound hamn	ner test			When require	d	
4.Remark						
5.Judgement	Not Accorted					
	The co		The Co	onsultant	The	Client
	Signature :		Signature :		Signature :	
	olghatare .		olghatare .			
	Name :		Name :		Name :	
	•					

7. Health and Safety

7.1. Risk Assessment

The risk to health and safety from falling objects or defects in the structure shall be properly assessed. Platforms and temporary structures shall provide a stable and safe area to work. Do not take any unnecessary risks.

7.2. Personal Protection

Handling or processing repair materials may generate dust which can cause mechanical irritation to the eyes, skin, nose and throat.

Appropriate eye protection shall be worn at all times while handling and mixing products.

Approved dust masks shall be worn to protect the nose and throat from dust.

Safety shoes, gloves and other appropriate skin protection shall be worn at all times.

Always wash hands with suitable soap after handling products and before food consumption

Eye protection	Gloves	Helmet	Dust masks
Work wear	Safety shoes	Safety vest	Safety belt
			C C C C C C C C C C C C C C C C C C C
Soundproofing			
earplugs			

7.3. First Aid

Seek immediate medical attention in the event of excessive inhalation, ingestion or eye contact causing irritation. Do not induce vomiting unless directed by medical personnel. Flush eyes with plenty of clean water occasionally lifting upper and lower eyelids. Remove contact lenses immediately. Continue to rinse eye for 10 minutes and then seek medical attention. Rinse contaminated skin with plenty of water. Remove contaminated clothing and continue to rinse for 10 minutes and seek medical attention.

For detailed information refer to the material safety data sheet.

7.4. Traffic control

If the repair work will be conducted under open traffic, the inspectors shall pay attention to provide safety for vehicles and pedestrians. Flagmen and safety cones must be placed to notice the working site to vehicles / pedestrians. The work shall be complied with all relative law / regulations in Sri Lanka.

Attachment 2 - Cleaning the Surface of Steel Members

Table of Contents

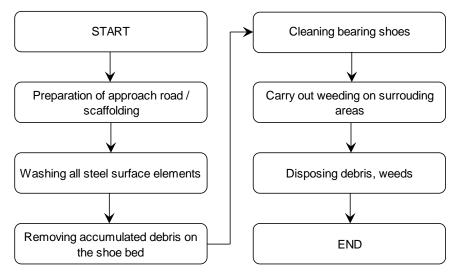
1.	Work description	
2.	Work sequence and requirement 1	
3.	Application criteria ······ 3	;
4.	Required material and tools / equipment 4	Ļ

List of Tables

Table 2.1	Reference photos	2
Table 2.2	Equipment list	. 5

List of Figures

$\Sigma_{1}^{1} = 2 1$	Work Flow of Cleaning the Surface of Steel Member 1	1
FIGHTe / I	work Flow of Cleaning the Nirtace of Nieel Member	1


1. Work Description

During the serviceable life of a bridge, several components get dirty due to deposition of foreign materials. Materials that accumulate on the deck slab surface flows with the rain water towards the drainage spouts which may choke the outlets and affect proper drainage. Also the materials that accumulate on the deck and carried by the rain water towards the girder or expansion joint can pass through any opening present therein and accumulate on the pier cap, abutment caps and around the bearings. Such accumulation can cause malfunctioning of the girder or bearings since debris tend to hold water and lead to generate corrosion. Also growth of vegetation such as grass, shrubs and other plants on the components of bridge equally affect the smooth functioning of those components.

Various components of the bridge, namely deck surface, curb and side walk, expansion joints, pier caps, abutment caps, trusses and their web members, lower flanges of beams and girder, wind bracing and drains shall be thoroughly cleaned from accumulated dust, debris and other foreign materials at regular intervals. It will prevent the deterioration of the bridge, which will help to preserve the bridge components in their original conditions and extend the service life of the bridge as well as provide safety and comfort to the road users. Areas which have been cleaned should be protected from accumulated sand, gravel, dirt, and other foreign materials. Therefore, the vegetation grown on the components of bridges and near the bridges and vegetation near the bridges that obstruct the natural flow of water underneath the bridges shall be removed.

2. Work Sequence and Requirement

2.1. Work sequence

Work flow for cleaning the steel surface due to debris accumulation is shown below.

Figure 2.1 Work Flow of Cleaning the Surface of Steel Member

Table 2.1Reference photos

2.2. Work Requirement

2.2.1. General

All accumulated foreign materials shall be removed from bridge sidewalks, bridge decks, top of curbs, beam flanges, gusset plates, abutment bridge seats, top of pier, truss joints, deck drain systems, and other locations specified and as directed by the Engineer, prior to cleaning with water pressure equipment. Removal shall be performed using hand brooms, hand shovels, scrapers, vacuum cleaners or other methods acceptable to the Engineer. The removed materials shall be collected and disposed at an approved waste area in accordance with prevailing local regulations.

2.2.2. High Pressure Water

Salt contaminants, dirt, and other detrimental foreign matters shall be removed without damaging or peeling the paint from any steel structure. If high-pressure water is used, the maximum water pressure shall be within the limits to prevent the damage of paint. The cleaning operation shall be discontinued if the foreign materials have not been easily removed or if cleaning operation is causing damage to existing paint coating. In this situation, the high pressure water shall be adjusted to clean the surface without damaging the paint coating.

All deck drains and its accessories shall be flushed with high pressure water after accumulated foreign material have been properly removed. Drainage system may have to be disassembled to remove large blockage of accumulated foreign material. Should this be necessary, the system shall be reassembled to their original configuration immediately after cleaning and checked whether the system is operating properly.

The high pressure water jet shall be used to flush out the interior surface of all girders and truss members until clear water comes out from the other end.

The exterior surface of all truss members, miscellaneous structural steel connecting the truss members, and floor beam ends projecting outwardly from the row of exterior stringers shall be thoroughly washed using high pressure water.

The source of water used for cleaning purposes shall be an approved one. The water should also be free from sediments and salt contaminants and the expenses involved in securing the approval for the quality of water to be used will be the responsibility of the entrusted body if the activity is outsourced.

3. Application Criteria

Criteria for cleaning applied to the bridge including its steel surface, deck and substructure are recommended below:

3.1. Surface of Steel Plate

The surface of steel bridge should be cleaned and washed by brushing with fresh water or using high water blasting, including the top and bottom flanges, web plates, diaphragms, lateral members and gusset plate. For convenience, inspection vehicle may be utilized to carry out cleaning of the bridge soffit.

3.2. Bridge Deck Slab

All surface areas of the bridge deck should be cleaned including the curbs, expansion joints, drain pits and railing. This may be performed by manual shoveling / sweeping or using high pressure water blasting.

3.3. Bridge Substructure

All areas under the superstructure should be cleaned, including the bearing bed, concrete diaphragms and pier caps. This may be done by manual shoveling / sweeping or using high pressure water blasting. For accessing the top of piers, a high ladder or hang ladder will be useful and an inspection vehicle can be utilized, if possible.

4 Required Material and Tools / Equipment

1). Required Materials

Freshwater suitable for cleaning

Water to be used for cleaning of the bridge components shall be clean and free from unwanted foreign materials such as sediments, salt contaminants, chemicals, grease, oil, rubbish and other substance, which are harmful to the bridge components.

Engineer's approval shall be taken on the source and quality of water. All necessary tests shall be performed on water samples at laboratories to be specified by the Engineer, and test certificates shall be provided as required.

The water should be pH Value between 7-8 with Conductivity level below $60 \mu s$ / m.

In general following water quality is appropriate to use.

- Potable water
- > Water recovered from processes in concrete industry
- ➢ Water from underground sources
- > Natural surface water and industrial waste water (Necessary to be tested)

2). Required Tools / Equipment

Hand Shovel	Hand Brush	Wire Brush
	res a fer	
Scraper		
2 20		
High Pressure Water Blasting Machine (Water Pressure 5MPa – 20MPa)	Water Tank	Portable Generator

Table 2.2Equipment list

Attachment 3 - Specification for Zone Painting

Table of Contents

1. Work Description ····· 1
1) Introduction · · · · · 1
2. Design Conditions
2.1. Classification of Durability and Environment
2.3. Equipment for Surface Treatment
2.4 Coating System (ISO12944-5)10
3. Equipment
4. Quality Control ······18
4.1. Standard check items for the current status of painting and rust
4.2 Standard Check Items after Surface Treatment
4.3 Standard Check Items before Treatment
4.4 Standard Check Items during Painting
4.5 Standard check Items after Painting
5. Recommended Substrate Conditions and Temperature
6. Inspection Sheet and Repair Record23
7. Health and Safety ······26
7.1. Risk Assessment ······26
7.2 Personal Protection ······26
7.3 First Aid
7.4. Traffic Control

List of Tables

Table 1.1	Reference Photos of Surface Treatment	2
Table 2.1	Classification of Durability	3
Table 2.2	Classification of Environment	. 3
Table 2.3	Atmospheric and corrosively category and example of typical environment	4
Table 2.4	Standard Grades for Surface Treatment	. 5
Table 2.5	Standard grades of surface treatment	6
Table 2.6	Standard Grades of Surface Treatment and Reference Photos	. 8
Table 2.7	Equipment for Surface Treatment	. 9
Table 2.8	Recommended Film Thickness for Each Condition	.10
Table 2.9	Coating systems for low-alloy carbon steel for corrosively category C2	.11
Table 2.10	Coating systems for low-alloy carbon steel for corrosively category C3	.12
Table 2.11	Coating systems for low-alloy carbon steel for corrosively category C4	.13
Table 2.12	Coating systems for low-alloy carbon steel for corrosively category C5-I and C5-M	. 14
Table 2.13	General properties of different generic types of paint	.15
Table 3.1	Equipment lists	.16
Table 3.2	Degree of Rusting and Rusted Area	.18
Table 3.3	Degree of Rusting and Rusted Area on a Coating	.18

List of Figures

Eiguro 1 1	Work flow of zone painting	1
	work now of zone painting	
0	θ	

Appendix :	Type of failure of painting	28
Table 1	Coating defects (1/2)	28
Table 2	Coating defects (2/2)	29

1. Work Description

1) Introduction

Due to thin paint coating on steel surfaces, the steel surface may be exposed to atmosphere resulting in accumulation of corrosion. Zone painting at the early stage of paint degradation or corrosion prevents further deterioration.

Work included in this section comprises field zone painting on steel members at localized areas including surface preparation and other associated works. This covers only painting on relatively small affected areas which can be carried out with the use of small power tools/ hand tools. Painting for large areas required blast cleaning for surface treatment and should be carried out with detail work plan in accordance with ISO-12944.

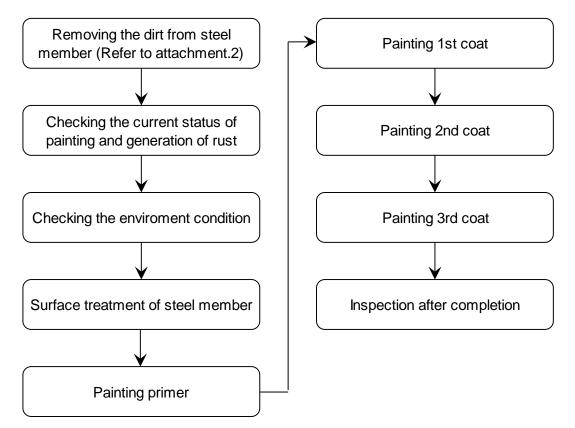


Figure 1.1 Work flow of zone painting

1.Setting scaffolding	2. Removing the tar applied on the	3. Removing the tar applied on the
	girder using scraper. This	girder by hammer tapping. This
	procedure shall be conducted	procedure shall be conducted
	before surface cleaning using	after surface cleaning using high
	high pressure water.	pressure water.
4. Conducting surface treatment	5.After completion of surface	
using electric cup-wire brush or	treatment at one part	
power disc grinder.	(The part surrounded by red line	
	is the completed area for surface	
	treatment)	

 Table 1.1
 Reference Photos of Surface Treatment

Procedure 3 is necessary in case tar was applied on surface of the steel member. They shall be removed by hammer tapping or scraper before conducting surface treatment by electric cup-wire brush or power disc grinder. Otherwise, the tar will be melted by friction heat by electric cup-wire brush or power disc grinder and adhering to them.

2. Design Conditions

2.1. Classification of Durability and Environment

It is necessary to decide the classification of durability of the coating and environment of the bridge's location in accordance with ISO12944-1 and ISO12944-2 to decide the coating system.

The definition of durability range is different from "guarantee duration". Durability is a technical consideration that can help the RDA to set up a maintenance plan. A guarantee time is the subject of clauses in the contract and is not within the scope of this part of ISO 12944. There are no rules that link the two periods of time.

Classification of durability of coating and environment are shown in the following Table.

	-
Durability	Durability Range
Low (L)	2 years to 5 years
Medium (M)	5 years to 15 years
High (H)	More than 15 years

 Table 2.1
 Classification of Durability

*Extracting from ISO12944-1

	Table 2.2 Classification of Environment			
Environmental Category		Description		
C1	Very low	Rural Areas, Low pollution, Dry & Neutral atmospheres		
C2	Low	Unheated Building, Possible condensation		
C3	Medium	Urban atmospheres, Moderate SO2 pollution		
C4	High	Industrial and Coastal		
C5 I	Very high Industrial	Industry with high humidity and adverse atmospheres		
]			

Table 2.2 Classification of Environment

Marine coastal, offshore high salinity

* Extracting from ISO12944-2

Very high marine

C5 M

Corrosivity	Mass loss per unit surface/thickness loss (after first year of exposure)			Examples of typical environments in a temperate climate (informative only)		
category	Low-carb Mass loss g/m ²	on steel Thickness loss μm	Zi Mass loss g/m ²	nc Thickness loss μm	Exterior	Interior
C1 very low	≤ 10	≤ 1,3	≤ 0,7	≤ 0,1	_	Heated buildings with clean atmospheres, e.g. offices, shops, schools, hotels.
C2 low	> 10 to 200	> 1,3 to 25	> 0,7 to 5	> 0,1 to 0,7	Atmospheres with low level of pollution. Mostly rural areas.	Unheated buildings where condensation may occur, e.g. depots, sports halls.
C3 medium	> 200 to 400	> 25 to 50	> 5 to 15	> 0,7 to 2,1	Urban and industrial atmospheres, moderate sulfur dioxide pollution. Coastal areas with low salinity.	Production rooms with high humidity and some air pollution, e.g. food-processing plants, laundries, breweries, dairies.
C4 high	> 400 to 650	> 50 to 80	> 15 to 30	> 2,1 to 4,2	Industrial areas and coastal areas with moderate salinity.	Chemical plants, swimming pools, coastal ship- and boatyards.
C5-I very high (industrial)	> 650 to 1 500	> 80 to 200	> 30 to 60	> 4,2 to 8,4	Industrial areas with high humidity and aggressive atmosphere.	Buildings or areas with almost permanent condensation and with high pollution.
C5-M very high (marine)	> 650 to 1 500	> 80 to 200	> 30 to 60	> 4,2 to 8,4	Coastal and offshore areas with high salinity.	Buildings or areas with almost permanent condensation and with high pollution.

Table 2.3 Atmospheric and corrosively category and example of typical environment

NOTES

1 The loss values used for the corrosivity categories are identical to those given in ISO 9223.

2 In coastal areas in hot, humid zones, the mass or thickness losses can exceed the limits of category C5-M. Special precautions must therefore be taken when selecting protective paint systems for structures in such areas.

* Extracting from ISO12944-2

2.2. Surface Treatment Grade

The primary purpose of surface treatment is to ensure the removal of deleterious matter and to obtain a surface that permits satisfactory adhesion of priming paint to the steel. It shall be in accordance with ISO8501-1. It will also assist in reducing the amounts of contaminants that initiate corrosion.

Surface treatment grade are shown in following table.

Standard preparation grade ¹⁾	Surface preparation method	Representative photographic examples in ISO 8501-1 ^{2) 3) 4)}	Essential features of prepared surfaces For further details, including treatment prior to and after surface preparation (column 2), see ISO 8501-1.	Field of application
Sa 1	Blast- cleaning (6.2.3)	B Sa 1 C Sa 1 D Sa 1	Poorly adhering mill scale, rust and paint coatings and foreign matter are removed. ⁵⁾	The surface preparation of
Sa 2		B Sa 2 C Sa 2 D Sa 2	Most of the mill scale, rust, paint coatings and foreign matter is removed. Any residual contamination shall be firmly adhering.	a) uncoated steel surfaces; b) coated steel
Sa 2½		A Sa 2½ B Sa 2½ C Sa 2½ D Sa 2½	Mill scale, rust, paint coatings and foreign matter are removed. Any remaining traces of contamination shall show only as slight stains in the form of spots or stripes.	surfaces, if the coatings are removed to the extent that the specified preparation grade is achieved. ⁶⁾
Sa 3 ⁷⁾		A Sa 3 B Sa 3 C Sa 3 D Sa 3	Mill scale, rust, paint coatings and foreign matter are removed. The surface shall have a uniform metallic colour.	grade is admeved>
St 2	Hand- or power-tool cleaning (6.2.1, 6.2.2)	B St 2 C St 2 D St 2	Poorly adhering mill scale, rust, paint coatings and foreign matter are removed. ⁵⁾	
St 3		B St 3 C St 3 D St 3	Poorly adhering mill scale, rust, paint coatings and foreign matter are removed. ⁵⁾ However, the surface shall be treated much more thoroughly than for St 2 to give a metallic sheen arising from the metal substrate.	
FI	Flame cleaning (6.3)	A FI B FI C FI D FI	Mill scale, rust, paint coatings and foreign matter are removed. Any remaining residues shall show only as a discoloration of the surface (shades of different colours).	6)
Be	Acid pickling (6.1.8)		Mill scale, rust and residues from paint coatings are removed completely. Paint coatings shall be removed prior to acid pickling by suitable means.	Prior to hot-dip- galvanizing, for example.

Table 2.4	Standard	Grades	for	Surface	Treatment

Key to symbols used:

Sa = blast-cleaning (ISO 8501-1)

St = hand-tool or power-tool cleaning (ISO 8501-1)

FI = flame cleaning (ISO 8501-1)

Be = acid pickling

2) A, B, C and D are initial conditions of uncoated steel surfaces (see ISO 8501-1).

3) The representative photographic examples show only surfaces or surface areas that were previously uncoated.

4) In the case of steel surfaces with painted or unpainted metal coatings, an analogous application of certain standard preparation grades may be agreed, provided that these are technically feasible under the given conditions.

5) Mill scale is considered to be poorly adhering if it can be removed by lifting with a blunt putty knife.

6) The factors influencing assessment shall be given particular consideration.

7) This surface preparation grade can only be achieved and maintained under certain conditions which it may not be possible to produce on site.

Standard preparation grade ¹⁾	Surface preparation method	Representative photographic examples in ISO 8501-1 or ISO 8501-2 ^{2) 4) 6)}	Essential features of prepared surfaces For further details, including treatment prior to and after surface preparation (column 2), see ISO 8501-2.	Field of application
P Sa 2 ³⁾	Localized blast- cleaning	B Sa 2 C Sa 2 D Sa 2 (apply to uncoated parts of the surface)	Firmly adhering paint coatings shall be intact. ⁵⁾ From the surface of the other parts, loose paint coatings and most of the mill scale, rust and foreign matter are removed. Any residual contamination shall be firmly adhering.	The surface preparation of coated steel surfaces on which some paint coatings remain. ⁷⁾
P Sa 21⁄2 ³⁾		B Sa 2½ C Sa 2½ D Sa 2½ (apply to uncoated parts of the surface)	Firmly adhering paint coatings shall be intact. ⁵⁾ From the surface of the other parts, loose paint coatings and mill scale, rust and foreign matter are removed. Any remaining traces of contamination shall show only as slight stains in the form of spots or stripes.	
P Sa 3 ³⁾⁸⁾		C Sa 3 D Sa 3 (apply to uncoated parts of the surface)	Firmly adhering paint coatings shall be intact. ⁵⁾ From the surface of the other parts, loose paint coatings and mill scale, rust and foreign matter are removed. The surface shall have a uniform metallic colour.	
P Ma ³⁾	Localized machine abrading	P Ma	Firmly adhering paint coatings shall be intact. ⁵⁾ From the surface of the other parts, loose paint coatings and mill scale, rust and foreign matter are removed. Any remaining traces of contamination shall show only as slight stains in the form of spots or stripes.	
P St 2 ³⁾	Localized hand- and power-tool cleaning	C St 2 D St 2	Firmly adhering paint coatings shall be intact. ⁵⁾ From the surface of the other parts, poorly adhering mill scale, rust, paint coatings and foreign matter are removed.	
P St 3 ³⁾		C St 3 D St 3	Firmly adhering paint coatings shall be intact. ⁵⁾ From the surface of the other parts, poorly adhering mill scale, rust, paint coatings and foreign matter are removed. However, the surface shall be treated much more thoroughly than for P St 2 to give a metallic sheen arising from the metal substrate.	

Table 2.5	Standard grades of surface treatment
14010 2.0	Standard Brades of Sarrace dealinent

* Extracting from ISO12944-4

The status of surface of steel member and reference photos after conducting surface treatment at each grade are shown in following table.

Representative Photographic Examples in	Essential Features of Prepared Surface
ISO8501-1 and ISO8501-2	
ISO 12944-4 : P Sa 2	Firmly adhering paint coating shall be intact.
ISO 8501 : B Sa2, C Sa2, D Sa2	From the surface of the other parts, loose paint
	coatings and most of the mill scale, rust and
	foreign matter are removed. Any residual
BSa2 CSa2 DSa2	contamination shall be firmly adhering.
ISO 12944-4 : P Sa 2.5	Firmly adhering paint coating shall be intact.
ISO 8501 : B Sa2.5, C Sa2.5, D Sa2.5	From the surface of the other parts, loose paint
	coating and mill scale, rust and foreign matter are
	removed. Any remaining traces of contamination
	shall only as slight stains in the form of spots or
	stripes.
BSa2,5 CSa2,5 DSa2,5	
ISO 12944-4 : P Sa 3	Firmly adhering paint coatings shall be intact.
ISO 8501 : B Sa3, C Sa3, D Sa3	From the surface of the other parts, loose paint
	coating and mill scale, rust and foreign matter are
	removed. The surface shall have a uniform
	metallic color.
BSa3 CSa3 DSa3	

Table 2.6 Standard Grades of Surface Treatment and Reference Photos

* Extracting from ISO8501-2

Representative photographic examples in ISO8501-1 or ISO8501-2	Essential features of prepared surface
ISO 12944-4 : P St 2 ISO 8501 : C St2, D St2	Firmly adhering paint coatings shall be intact. From the surface of the other parts, poorly adhering mill
BSt2 CSt2 DSt2	scale, rust, paint coating and foreign matter are removed.
ISO 12944-4 : P St 3	Firmly adhering paint coatings shall be intact. From
ISO 8501 : C St3, D St3 BSt3 CSt3 DSt3	the surface of the other parts, poorly adhering mill scale, rust, paint coatings and foreign matter are removed. However, the surface shall be treated much more thoroughly than for P St2 to give a metallic sheen arising from the metal substrate.

★ Extracting from ISO8501-2

2.3. Equipment for Surface Treatment

General necessary equipment need for each surface treatment are shown in the following table.

Surface Treatment	General Equipment						
Method							
Hand tools	Chipping hammers, Spatulas, Hand scrapers, Hand wire brushes, Abrasive						
cleaning	papers, Plastic fleece with embedded abrasives, Emery cloth						
	Rotary de Scaler, Rotary wire brushes, Sanding machines, Sanding disc,						
Power tool	Rotary abrasive-coated paper wheels (flap wheels), Abrasive grinders,						
cleaning	Plastic fleece with embedded abrasives, Chipping hammers and needle						
	guns, Percussion hammer						
	Centrifugal abrasive blast cleaning, Compressed air abrasive blast cleaning,						
Plast algoning	Vacuum or suction head abrasive blast cleaning, Moisture injection abrasive						
Blast cleaning	blast cleaning, Compressed air wet abrasive blast cleaning, Slurry blast						
	cleaning, Bristle Blaster 💥						

[™]For reference

Equipment : Bristle Blaster

Advantage :

- Removes corrosion, coating, scale and adhesive residues
- > Surface preparation grade comparable with SA 2.5 3 per ISO8501 1
- ► Roughness level of up to 120µm Rz
- ATEX –approved for use in Zone 1 (potentially explosive) atmospheres in accordance with Ex II 2G c II A T4 X
- ➢ Fast, flexible and cost − effective to use
- \blacktriangleright Eco friendly and safe to use
- ➤ Ideal for spot repairs, touch up jobs and preparing welds

Bristle Blaster

2.4 Coating System (ISO12944-5)

The total film thickness shall be decided with consideration of durability range and environmental category of each bridge's location in accordance with ISO12944-1 and 12944-2. The surface encountered in new structures are low-alloy steel of rust grade A, B and C as defined in ISO8501-1, as well as galvanized steel and metallized steel (see ISO 12944-1). Possible surface treatment of the different substrates is described in ISO12944-4. The recommended film thickness for each environmental category and durability range are shown in the following table.

Environmental	Durability	Recommended Film	Recommendation of
Category	Range	Thickness	area to apply
	Low	75µm	
C1	Medium	75µm	
	High	75µm	
	Low	80µm	
C2	Medium	150µm	
	High	200µm	
	Low	120µm	
C3	Medium	160µm	
	High	200µm	
	Low	160µm	
C4	Medium	200µm	
	High	240µm	
	Low	200µm	
C5 I & C5 M	Medium	280µm	
	High	320µm	

 Table 2.8
 Recommended Film Thickness for Each Condition

* Extracting from ISO12944-5

The substrate and the recommended surface treatment grade are given in ISO12944-5 for each corrosive category. The coating system listed below are typical examples of systems used in the environmental defined in ISO 12944-2 when applied to steel surface with rust grade A to C, as defined in ISO8501-1, or to hot-dip-galvanized steel or metallized steel.

Where the steel has deteriorated to the extent that pitting corrosion has taken place (rust grade D in ISO 8501-1), the dry film thickness or the number of coats shall be increased in consideration of surface roughness.

Substrate: Low-alloy carbon steel Surface preparation: For Sa 21/3 from rust grade A, B or C only (see ISO 8501-1)											
		Priming coa	t(s)		Subsequent coat(s)	Paints	system	Evne	ected du	rahility	
System No.	Binder	Binder Type of No. of NDFT ^b Binder No	No. of	NDFT ^b			ability				
	Dilider	primer ^a	coats	in µm	type	coats	in µm	Low	Med	High	
A.2.01	AK	Misc.	1	40	AK	2	80				
A2.02	AK	Misc.	1-2	80	AK	2-3	120				
A2.03	AK	Misc.	1-2	80	AK, AY, PVC, CR ^c	2-4	160				
A2.04	AK	Misc.	1-2	100	_	1-2	100				
A2.05	AY, PVC, CR	Misc.	1-2	80	AY, PVC, CR ^c	2-4	160				
A2.06	EP	Misc.	1-2	80	EP, PUR	2-3	120				
A2.07	EP	Misc.	1-2	80	EP, PUR	2-4	160				
A2.08	EP, PUR, ESI ^a	Zn (R)	1	60 ^e	_	1	60				

Table 2.9	Coating systems	for low-alloy carbo	on steel for corrosiv	vely category C2

Binder for priming coat(s)	Туре	Water-borne possible	Binder for subsequent coat(s)	Туре	Water-borne possible
AK = Alkyd	1-pack	х	AK = Alkyd	1-pack	Х
CR = Chlorinated rubber	1-pack		CR = Chlorinated rubber	1-pack	
AY = Acrylic	1-pack	х	AY = Acrylic	1-pack	х
PVC = Poly(vinyl chloride)	1-pack		PVC = Poly(vinyl chloride)	1-pack	
EP = Epoxy	2-pack	х	EP = Epoxy	2-pack	х
ESI = Ethyl silicate	1- or 2-pack	х	PUR = Polyurethane, aliphatic	1- or 2-pack	Х
PUR = Polyurethane, aromatic or aliphatic	1- or 2-pack	х			

^a Zn (R) = Zinc-rich primer, see 5.2. Misc. = Primers with miscellaneous types of anticorrosive pigments.

^b NDFT = Nominal dry film thickness. See 5.4 for further details.

c It is recommended that compatibility be checked with the paint manufacturer.

^d It is recommended for ESI primers that one of the subsequent coats be used as a tie coat.

e It is also possible to work with an NDFT from 40 μm to 80 μm provided the zinc-rich primer chosen is suitable for such an NDFT.

* Extracting from ISO12944-5

Surface tre	atment grade	Surface treatment method
	St2, 3	Hand or Power cleaning
	Sa2, 3	Blast cleaning

	e: Low-alloy carb preparation: For !		rust grade	e A, B or C	only (see ISO 8501-1)					
		Priming coa	nt(s)		Subsequent coat(s)	Paint	system	Ema	اند اند ما	
System No.	Binder	Type of primer ^a	No. of coats	NDFT ^b in µm	Binder type	No. of coats	NDFT ^b in µm	Ехрес	ted du	adility
		primer	coats	in pin	type	coats	in pin	Low	Med	High
A3.01	AK	Misc.	1-2	80	AK	2-3	120			
A3.02	AK	Misc.	1-2	80	AK	2-4	160			
A3.03	AK	Misc.	1-2	80	AK	3-5	200			
A3.04	AK	Misc.	1-2	80	AY, PVC, CR ^c	3-5	200			
A3.05	AY, PVC, CR ^c	Misc.	1-2	80	AY, PVC, CR ^c	2-4	160			
A3.06	AY, PVC, CR ^C	Misc.	1-2	80	AY, PVC, CR ^c	3-5	200			
A3.07	EP	Misc.	1	80	EP, PUR	2-3	120			
A3.08	EP	Misc.	1	80	EP, PUR	2-4	160			
A3.09	EP	Misc.	1	80	EP, PUR	3-5	200			
A3.10	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	—	1	60			
A3.11	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	EP, PUR	2	160			
A3.12	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	AY, PVC, CR ^c	2-3	160			
A3.13	EP, PUR	Zn (R)	1	60 ^e	AY, PVC, CR ^c	3	200			

Table 2.10 Coating systems for low-alloy carbon steel for corrosively category C3

Binder for priming coat(s)	Туре	Water-borne possible	Binder for subsequent coat(s)	Туре	Water-borne possible	
AK = Alkyd	1-pack	Х	AK = Alkyd	1-pack	Х	
CR = Chlorinated rubber	1-pack		CR = Chlorinated rubber	1-pack		
AY = Acrylic	1-pack	Х	AY = Acrylic	1-pack	Х	
PVC = Poly(vinyl chloride)	1-pack		PVC = Poly(vinyl chloride)	1-pack		
EP = Epoxy	2-pack	Х	EP = Epoxy	2-pack	Х	
ESI = Ethyl silicate	1- or 2-pack	Х	PUR = Polyurethane, aliphatic	1- or 2-pack	Х	
PUR = Polyurethane, aromatic or aliphatic	1- or 2-pack	х				

^a Zn (R) = Zinc-rich primer, see 5.2. Misc. = Primers with miscellaneous types of anticorrosive pigment.

^b NDFT = Nominal dry film thickness. See 5.4 for further details.

c It is recommended that compatibility be checked with the paint manufacturer.

d It is recommended for ESI primers that one of the subsequent coats be used as a tie coat.

It is also possible to work with an NDFT from 40 µm up to 80 µm provided the zinc-rich primer chosen is suitable for such an NDFT.

* Extracting from ISO12944-5

e

Surface tre	atment grade	Surface treatment method
	St2, 3	Hand or Power cleaning
	Sa2, 3	Blast cleaning

	Low-alloy carbor eparation: For Sa		st grade A,	B or C on	y (see ISO 8501-1)					
		Priming coa	it(s)		Subsequent coat(s)	Paints	system			- 1. 11.1
System No.	Binder	Type of primer ^a	No. of coats	NDFT ^b in µm		No. of coats	NDFT ^b in µm	Ехрес	ted du	
		princi	coub		.,pc			Low	Med	High
A4.01	AK	Misc.	1-2	80	AK	3-5	200			
A4.02	AK	Misc.	1-2	80	AY, CR, PVC ^c	3-5	200			
A4.03	AK	Misc.	1-2	80	AY, CR, PVC ^c	3-5	240			
A4.04	AY, CR, PVC	Misc.	1-2	80	AY, CR, PVC ^c	3-5	200			
A4.05	AY, CR, PVC	Misc.	1-2	80	AY, CR, PVC ^c	3-5	240			
A4.06	EP	Misc.	1-2	160	AY, CR, PVC ^c	2-3	200			
A4.07	EP	Misc.	1-2	160	AY, CR, PVC ^c	2-3	280			
A4.08	EP	Misc.	1	80	EP, PUR	2-3	240			
A4.09	EP	Misc.	1	80	EP, PUR	2-3	280			
A4.10	EP, PUR, ESI ^a	Zn (R)	1	60 ^e	AY, CR, PVC ^c	2-3	160			
A4.11	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	AY, CR, PVC ^c	2-4	200			
A4.12	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	AY, CR, PVC ^c	3-4	240			
A4.13	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	EP, PUR	2-3	160			
A4.14	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	EP, PUR	2-3	200			
A4.15	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	EP, PUR	3-4	240			
A4.16	ESI	Zn (R)	1	60 ^e	_	1	60			

Table 2.11	Coating systems f	for low-allow	<i>i</i> carbon steel	for corrosivel	v category C4
10010 2.11	Couring by bronno i	or iow uno	curbon steer	101 0011051701	y cutogory or

Binder for priming coat(s)	Туре	Water-borne possible	Binder for subsequent coat(s)	Туре	Water-borne possible
AK = Alkyd	1-pack	х	AK = Alkyd	1-pack	х
CR = Chlorinated rubber	1-pack		CR = Chlorinated rubber	1-pack	
AY = Acrylic	1-pack	х	AY = Acrylic	1-pack	х
PVC = Poly(vinyl chloride)	1-pack		PVC = Poly(vinyl chloride)	1-pack	
EP = Epoxy	2-pack	х	EP = Epoxy	2-pack	х
ESI = Ethyl silicate	1- or 2-pack	х	PUR = Polyurethane, aliphatic	1- or 2-pack	х
PUR = Polyurethane, aromatic or aliphatic	1- or 2-pack	Х			

^a Zn (R) = Zinc-rich primer, see 5.2. Misc. = Primers with miscellaneous types of anticorrosive pigments.

^b NDFT = Nominal dry film thickness. See 5.4 for further details.

c It is recommended that compatibility be checked with the paint manufacturer.

^d It is recommended for ESI primers that one of the subsequent coats be used as a tie coat.

It is also possible to work with an NDFT from 40 µm up to 80 µm provided the zinc-rich primer chosen is suitable for such an NDFT.

* Extracting from ISO12944-5

Surface tre	atment grade	Surface treatment method
	St2, 3	Hand or Power cleaning
	Sa2, 3	Blast cleaning

Substrate: L	ow-alloy carbon ste	el								
Surface prep	paration: For Sa 2½	from rust gra	ade A, B o	or C only (see ISO 8501-1)					
1993 B. 199	Р	riming coat(s	5)		Subsequent coat(s)	Paint	system	Expected		
System No.	Binder	Type of	No. of	NDFT ^b	Binder	No. of	NDFT b	d	urabili	ty
		primer ^a	coats	in µm	type	coats	in µm	Low	Med	High
C5-I										
A5I.01	EP, PUR	Misc.	1-2	120	AY, CR, PVC ^c	3-4	200			
A5I.02	EP, PUR	Misc.	1	80	EP, PUR	3-4	320			
A5I.03	EP, PUR	Misc.	1	150	EP, PUR	2	300			
A5I.04	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	EP, PUR	3-4	240			
A5I.05	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	EP, PUR	3-5	320			
A5I.06	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	AY, CR, PVC ^c	4-5	320			
С5-М										
A5M.01	EP, PUR	Misc.	1	150	EP, PUR	2	300			
A5M.02	EP, PUR	Misc.	1	80	EP, PUR	3-4	320			
A5M.03	EP, PUR	Misc.	1	400	_	1	400			
A5M.04	EP, PUR	Misc.	1	250	EP, PUR	2	500			
A5M.05	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	EP, PUR	4	240			
A5M.06	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	EP, PUR	4-5	320			
A5M.07	EP, PUR, ESI ^d	Zn (R)	1	60 ^e	EPC	3-4	400			
A5M.08	EPC	Misc.	1	100	EPC	3	300			

Table 2.12	Coating systems for	low-alloy carbon s	steel for corrosively	category C5 – I and C5 - M

X Extracting from ISO12944-5

Surface tre	atment grade	Surface treatment method
	St2, 3	Hand or Power cleaning
	Sa2, 3	Blast cleaning

Suitability		Der					8		
■ Good		Chlorinated rubber			ď	e,	Ethyl zinc silicate		-
▲ Limited	20	ted			Polyurethane, aromatic	Polyurethane, aliphatic	ic si		E poxy combination
Poor	(vin ride	rina	<u>ic</u>	υ	uret	uret	1 zin	\$	cy bina
 Not relevant 	Poly(vinyl chloride)	Chlo	Acrylic	Alkyd	Polyurett aromatic	Polyureti aliphatic	Ethy	Epoxy	Cod
	(PVC)	(CR)	(AY)	(AK)	(PUR,	(PUR,	(ESI)	(EP)	(EPC)
	(1 00)		(711)	(/ (())	aromatic)	aliphatic)	(201)		
Gloss retention	A	A	A		•			•	•
Colour retention	A	A			•			٠	٠
Resistance to chemicals:									
Water immersion	A	-	▲	•		•	A		
Rain/condensation		-			-	A	-	-	
Solvents	•	•	•	•		A	-	-	A
Solvents (splash)	٠	•	•	-				-	
Acids					-		•		
Acids (splash)			A	•			•	•	
Alkalis	A	A	A		A		•		-
Alkalis (splash)		-		A			•		
Resistance to dry heat:									
up to 70 °C	•	•							
70 °C to 120 °C	—	_		-		-		-	A
120 °C to 150 °C				•		•			
> 150 °C but u 400 °C	_	_	_	-				_	_
Physical properties:									
Abrasion resistance	٠	•	•			A		-	▲
Impact resistance		A	A		•			-	A
Flexibility				A			•		Ă
Hardness	A	A						-	

 Table 2.13
 General properties of different generic types of paint

* Extracting from ISO12944-5

3. Equipment

General tools and equipment for zone painting are shown in following table.

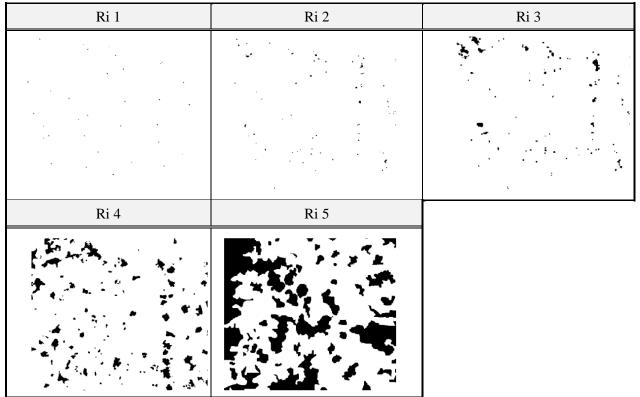
1.Cleaning steel surface Hand brush Wire brush Scraper Air blower Hammer 2.Surface treatment Wire brush Electric cup wire brush Power disc grinder Bristle Blaster Air blower Needle hammer 3. Mixing paint Hand mixer Measure cup Can

Table 3.1 Equipment lists

4.Painting		
Woolen brush roller	Porous Brush roller	Spray gun
Brush	Roller bucket	
5.Measuring instrument	-	
Measuring temperature and relative humidity	Measuring temperature of steel surface	Measuring thickness of coating
6.Others		
Portable generator	Cloth	Таре
Curing sheet		

4. Quality Control

- 4.1. Standard check items for the current status of painting and rust
 - > Status of rust on the existing painting


ISO4628-3 Paints and varnish - Evaluation of degradation of coating

Degree of Rusting	Rusted Areas (%)
Ri 0	0
Ri 1	0.05
Ri 2	0.5
Ri 3	1
Ri 4	8
Ri 5	40 to 50

 Table 3.2
 Degree of Rusting and Rusted Area

* Extracting from ISO 4628-3

Table 3.3	Degree of Rusting and Rusted Area on a Coating

* Extracting from ISO 4628-3

Status of generation of rust on steel

Grade A	Grade B
Steel surface largely covered with adhering mill scale but little, if any, rust. Grade C	Steel surface which has begun to rust and from which the mill scale has begun to flake. Grade D
С	D
Steel surface on which the mill scale has rusted away or from which it can be scraped, but with slight pitting visible under normal vision.	Steel surface on which the mill scale has rusted away and on which general pitting is visible under normal vision.

 Table 4.3
 Reference photos of each rust grades of initial condition of uncoated substrate

*Extracting from ISO8501-1

> ISO8502-6,9 Extracting soluble salts using bresle sampler and analyzing conductivity

This Chloride Test on steel or Salt Test on steel using the Bresle Patch method will help to prevent coating failure due to salts such as chlorides and sulphates contaminating the surface prior to the coating application. This contamination can be tested quickly and simply using the Bresle Method to ensure the correct surface cleanliness.

Complying with International Standards: ISO 8502-6 and ISO 8502-9.

> Adhesion Test in compliance to ASTM D3359 Method A or Method B

These test methods are used to establish whether the adhesion of coating to a substrate is at a generally adequate level.

Test method A- An X-cut is made in the film to the substrate, pressure – sensitive tape is applied over the cut and then removed, and adhesion is assessed qualitatively on the 0 to 5 scale.

Test method B - A lattice pattern with either six or eleven cuts in each direction is made in the film to the substrate, pressure- sensitive tape is applied over the lattice and then removed, and adhesion is evaluated by comparison with descriptions and illustrations.

Test Method A is generally intended for use at job sites. Test method B is more suitable for use in laboratory. Also, Test method B is not considered suitable for films thicker than 5mils $(125\mu m)$.

parallel cuts) Classification	5	4	3	2	1	0
Surface of cross-cut area from which flaking has occurred. (Example for 6	None					Greater than 65%

5: The edges of the cuts are completely smooth; none of the squares of the lattice is detached.

4: Small flakes of the coating are detached at intersections; less than 5 % of the area is affected.

3: Small flakes of the coating are detached along edges and at intersections of cuts. The area affected is 5 to 15 % of the lattice.

2: The coating has flaked along the edges and on parts of the squares. The area affected is 15 to 35 % of the lattice.

1: The coating has flaked along the edges of cuts in large ribbons and whole squares have detached. The area affected is 35 to 65 % of the lattice.

0: Flaking and detachment worse than Grade 1.

Rating	Description
5A	No peeling or removal
4A	Trace peeling or removal along the incisions
3A	Jagged removal along the incisions up to 1/16 on either side
2A	Jagged removal along the incisions up to 1/8 on either side
1A	Removal of most of the coating from the area of the "X" under the tape
0A	Removal of coating beyond the area of the "X"

Table 4.4Measuring Adhesion by Tape Test Method A (X-cut)

- 4.2 Standard Check Items after Surface Treatment
 - Surface dust to be Tested after Dry-abrasive Blasting to comply ISO8502-3
 - Surface Profile Test either via Needle Gauge or Text Test Tape suitable for required average Blast profile- ASTM D4417(method C), ISO 8503-5
- 4.3 Standard Check Items before Treatment
 - ASTM F2420-05(2011) Environment Test to be carried out Relative humidity(RH) is on or below 85% & substrate temperature should be at least 3 centigrade higher than the dew point correspond to the prevailing RH at the time of application.
 - > Mix portion of paint shall be in accordance with data sheet.
- 4.4 Standard Check Items during Painting
 - Application must be carried out with Wet Film Monitoring in compliance to ISO2808-7B and BS3900-C5-7
 - ➢ Film thickness and spreading rate shall be in accordance with data sheet.
 - > Pot life of painting shall be in accordance with data sheet.
 - > Over-coating interval of painting shall be in accordance with data sheet.
 - > Curing time of painting shall be in accordance with data sheet.

- 4.5 Standard check Items after Painting
 - Measurement of DFT to comply ISO19840 and SSPC PA2. SSPC PA2 ISO 1416 : 1999(E)-3.4 Measurement of Dry Film thickness by digital / ultrasonic elecometer or similar instrument
 - Pin hole / holiday / Misses identification test to be carried out internally to comply NACE Standard SP 0188 and ISO 2960 : 2011& 2960 : 011 & ASTM – D4787

5. Recommended Substrate Conditions and Temperature

Substrate condition for painting shall be in accordance with data sheet.

General requirements for the painting are shown below.

- Maximum relative humidity during application and curing is 85%
- > Do not apply during rain, fog or mist.
- During application and curing, a substrate temperature down to 5 centigrade is acceptable provided substrate is dry and free from ice
- > Previous coat; dry and free from any contamination
- Substrate temperature should be at least 3 degree above dew point correspond to the prevailing RH at the time of application
- 6. Inspection Sheet and Repair Record

The result of zone painting shall be recorded. The record should include as-built drawings, inspection sheets, investigation reports, construction scene photograph, and method statement. Inspection sheets are shown below.

	<u>PROJECT NAME</u>	
Client :		
Consultant :		
Contractor		
	INSPECTION OF MATER	RIAL
INSPECTION DATE	:	
STRUCTURE NAME	:	
ltem	D	escription
Area of Zone painting		
Surface preparation		
Date of painting		
Prime Coat		
1st Coat		
2nd Coat		
3rd Coat		
Note		
Photos	Before Zone painting	<u>After Zone painting</u>

Table 6.1Inspection Sheet (1)

Table 6.2Inspection Sheet (2)

		PROJECT NAME		
Client	·			
Consultant	:			
Contractor	•			
	INS	PECTION OF MATER	RIAL	
INSPECTION				
STRUCTURE	NAME :			
Method of surface pre				
Date of surface prepa				
Grade of surface prep		1.04	Orad	Quel
Contractor	Prime coat	1st	2nd	3rd
Contractor				
Supplier				
Name of painting Standard				
Color				
Date of painting				
Weather				
Temperature				
RH				
Status of				
existing paint				
Grade				
Equipment				
Cleaning the painting				
Name of painting				
Area of Zone				
painting (m ²)				
Method of painting				
Paint consumption				
(kg)				
Paint consumption				
(kg/m ²)				
Thickness				
(µm)				
Location of storage				
from				
previous painting				
Note			1	1

Table 6.3Inspection Sheet (3)

	PROJECT NAME						
	Client			•=			
	Consultant						
	Contractor						
		•	INSPECTI	ON OF MATER	IAL		
	INSPECTION	DATE	•				
	STRUCTURE	NAME	:				
1.Gen	eral						
	ltem				Description		
	Area of pair	nting			•		
	Date of measu						
Stand	ard total thickne	ess of painting					
2.Mea	surment results	s of painting thic	ckness				
	ocation of			Thickness	of painting		
me	asurement	1	2	3	4	5	Average Xi
1							
2							
3							
4	ļ						
5	ļ						
6	ļ						
7	1						
8							
9			A.				
	Average value and Standard deviation $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i = \mu m$ $s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (\overline{X} - X_i)^2} = \mu m$						
Stand	dard deviation			μm			
		Average thickn					μm
	anagement	Minimum thick					μm
t	hickness	Standard devia	ation				μm

NOTE

1.Measurement location : 1nos / 10m²

2. Measurement number at 1 location : 5nos

3. Average thickness shall be thicker than 90% of targeted total thickness

4. Minimum thickness shall be thicker than 70% of targeted total thickness

5.Standard deviation shall be smaller than 20% of targeted total thickness

If the average thickness is thicker than targeted total thickness, thickness of painting meet the requirement even standard deviation is bigger than 20% of targeted total thickness.

6. Measurement of film thickness shall be carry out after completion of painting

7. Health and Safety

7.1. Risk Assessment

The risk to health and safety from falling objects or defects in the structure shall be properly assessed. Platforms and temporary structures shall provide a stable and safe area to work. Do not take any unnecessary risks.

7.2 Personal Protection

Handling or processing cement products may generate dust which can cause mechanical irritation to the eyes, skin, nose and throat.

Appropriate eye protection shall be worn at all times while handling and mixing products.

Approved dust masks shall be worn to protect the nose and throat from dust.

Safety shoes, gloves and other appropriate skin protection shall be worn at all times.

Always wash hands with suitable soap after handling products and before food consumption

Eye protection	Gloves	Helmet	Dust masks
Work wear	Safety shoes	Safety vest	Safety belt
			COP O
Soundproofing			
earplugs			

Table 7.1 Safety Equipment

7.3 First Aid

Seek immediate medical attention in the event of excessive inhalation, ingestion or eye contact causing irritation. Do not induce vomiting unless directed by medical personnel.

Flush eyes with plenty of clean water occasionally lifting upper and lower eyelids. Remove contact lenses immediately. Continue to rinse eye for 10 minutes and then seek medical attention. Rinse contaminated skin with plenty of water. Remove contaminated clothing and continue to rinse for 10 minutes and seek medical attention.

For detailed information refer to the material safety data sheet.

7.4. Traffic Control

If the repair work will be conducted under open traffic, the inspectors shall pay attention to provide safety for vehicles and pedestrians. Flagmen and safety cones must be placed to indicate the working site to vehicles /pedestrians. The work shall be done in compliance with all prevailing applicable Laws /regulations in Sri Lanka.

Appendix : Type of failure of painting

Table 1.Coating defects (1/2)

Adhesion	Alligatoring	Bleeding
Blistering	Bloom	Chalking
Cissing	Cratering	Delamination
C FROM		
Dry spray	Fading	Filiform

Mud Cracking	Orange Peel	Peeling
2.123.100		C FORMA
Pinhole	Runs	Rust Rash
E. FEGADO		
Rust Spotting	Sagging	Solvent Popping
Rust Spotting	Sagging	Solvent Popping

Table 2Coating defects (2/2)

Attachment 4 - Machinery and Equipment for Repair Work

Table of Contents

1.	Equipment for concrete repair work1
2.	Equipment for steel repair work

1. Equipment for concrete repair work

Concrete cutter	Handy concrete cutter	High pressure water blasting
Hammer		
3.Painting		
Brush	Brush roller	Spray gun
·		


4.Mixing repair material			
Hand mixer	Concrete mixer	Grout mixer	
A CONTRACT			
Mortar mixer	Measure cup	Weight measuring apparatus	
5.Setting repair material			
Air compressor	Caulking gun	Squeeze pump	
Grout injection gun	Epoxy injection gun	Vibrator	
Hopper	Wet spraying machine	Dry spraying machine	
	PUEZDEGIE		

6.Setting repair material			
Wet spraying nozzle	Dry spraying nozzle		
	a la		
7.Finishing	-		
Steel trowel	Panel for repair material		
8.Others	-		
Portable generator	High pressure water pump	Reinforcing steel cutter	
Curing sheet	Pail can	Таре	

2. Equipment for steel repair work

1.Surface preparation				
Power disc grinder	Air gun	Wire brush		
	THE PP			
High pressure water blasting	Electric wire brush	Electric cup wire brush		
Scraper	Bristle Blaster	Needle hammer		
2 20				
2.Painting (Steel work)				
Woolen brush roller	Porous Brush roller	Spray gun		
Brush	Roller bucket			

3.Mixing Paint (Steel work)		
Hand mixer	Bucket for paint	Measure cup
Weight measuring apparatus		
4.Steel process (Steel work)		
Gas cutter	Gas welding machine	
5.Bolting (Steel work)		
Torque wrench	Torque wrench	
	Sie	

Attachment 5 - Outline of Representative in Depth Investigation

Table of Contents

1.	Rebound Hammer Test ······ 1
2.	Carbonation Depth Measurement Test
3.	Chloride penetration Depth Measurement Test
4.	Ultrasonic Pulse Velocity Test
5.	Rebar Detection Test (Magnetic Type) 6
6.	Rebar Detection Test (Rader Type) ······ 7
7.	Half-Cell Electric Potential Test
8.	Metal Thickness Test ······ 9

1. Rebound Hammer Test

General investigation item	State of concrete
Information to be obtained	Strength of concrete
	The test method is based on the principle that the rebound of an elastic mass (the hammer piston or impact plunger) depends on the
	hardness of the material it strikes, and the assumptions that the
	hardness is proportional to the materials strength and the material is
General	homogenous. Rebound hammer test can only assess the
	compressive strength of the near surface layer of concrete in the zone of influence of hammer impact. It is useful in finding weak
	areas in concrete in a structure.
Finite and	
<u>Equipment</u>	During test

2. Carbonation Depth Measurement Test

General investigation item	State of concrete	
Information to be obtained	Degree of penetration of deterioration factor (Depth of carbonation)	
General	Degree of penetration of deterioration factor (Depin of carbonation) Carbonation of concrete occurs when carbon dioxide, in the atmosphere in the presence of moisture, reacts with hydrated cement minerals to produce carbonates, e.g. calcium carbonate. The carbonation process is also called de-passivation. Carbonation penetrates below exposed surface of concrete extremely slow. The significance of carbonation is that the usual protection of reinforcing steel generally present in concrete due to the alkaline conditions caused by hydrated cement paste is neutralized by carbonation. Thus, if the entire concrete cover over the reinforcing steel is carbonated, corrosion of steel would occur if moisture and oxygen could reach the steel. The 1% Phenolphthalein Solution is made by dissolving 1gm of Phenolphthalein in 90 cc of ethanol. The solution is made up to 100 cc by adding distilled water. The pH value indicates if a solution is acid or alkaline, and therefore corrosion of reinforcing steel bars is determined if possible or not. pH < 7 : acid pH = 7 : neutral pH > 7 up to 14 : alkaline	

Taking core

Core after testing

3. Chloride penetration Depth Measurement Test

General investigation item	State of concrete	
	Degree of penetration of deterioration factor (Depth of chloride	
Information to be obtained	penetration)	
	Chloride ions penetrate into concrete up to the surface of the	
	reinforcing bars and destroying the passive-state film. When this	
	destroyed film is subjected to oxygen and water, the reinforcing	
	bars start to rust or begin to corrode. For chloride ions that penetrate	
	into concrete, there are specifically two types of salinity: an internal	
General	salinity contained in sea sand, mixing water, etc., used during	
General	concrete production and an external salinity, such as seawater,	
	seawater splash, blown-in salinity, spray from anti-freezing agents,	
	etc., after concrete solidification.	
	Taking core from existing structure and slicing it into $1 - 2cm$	
	thickness. After slicing the core, pulverization each specimen and	
	measure the chloride ions by potentiometric titration.	
<u>Equipment</u>	Taking core	

Attachment 5 - Outline of Representative In Depth Investigation

4. Ultrasonic Pulse Velocity Test

General investigation item	State of concrete	
Information to be obtained	Depth of crack, Delamination and internal voids	
General	A pulse of longitudinal vibrations is produced by an electro-acoustical transducer, which is held in contact with one surface of the concrete under test. When the pulse generated is transmitted into the concrete using a liquid coupling material such as grease or cellulose paste, it undergoes multiple reflections at the boundaries of the different material phases within the concrete. A complex system of stress waves develops, which include both longitudinal and shear waves, and propagates through the concrete. The first waves to reach the receiving transducer are the longitudinal waves, which are converted into an electrical signal by a second transducer. Electronic timing circuits enable the transit time "T" of the pulse to be measured.	
Equipment		

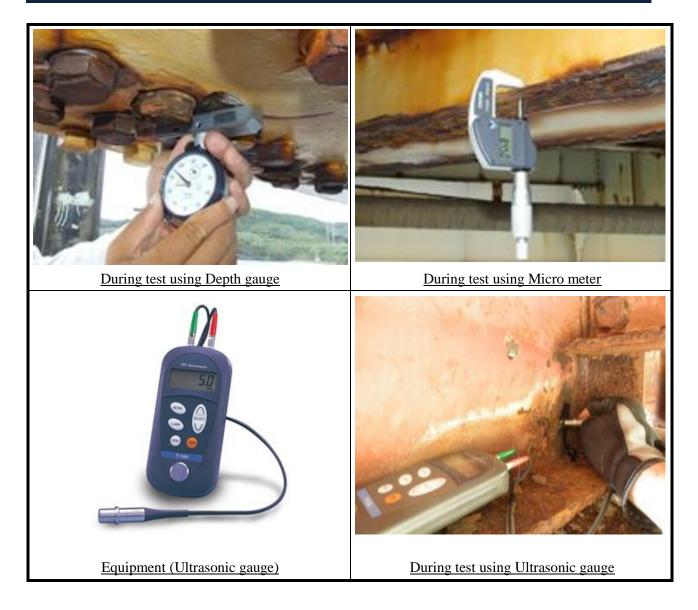
5. Rebar Detection Test (Magnetic Type)

General investigation item	State of reinforcing steel	
Information to be obtained	Location and diameter	
General	As a magnetic type scanning apparatus is turned on, it generates an electromagnetic field. When a reinforcing bar (rebar) or other metal object lies within this field, the lines of force become distorted. The disturbance caused by the presence of the metal in turn, produces a local change in field strength as detected by the search head and indicated by the meter. Both the orientation and proximity of the metal to the search head affect the meter reading. It is therefore possible to locate reinforcing bars and determine their orientation. Under ideal conditions, both bar size and cover can be estimated when neither is known. With apparatus using magnetic induction, a multi-coil search is used with a lower operating frequency than eddy current type. The principle used is similar to that of a transformer. Such instruments are less sensitive to non-magnetic materials than those using eddy current principle.	

6. Rebar Detection Test (Rader Type)

General investigation item	State of reinforcing steel	
Information to be obtained	Location, diameter and cover	
	Electromagnetic waves are transmitted from the antenna toward the	
	concrete as shown in diagram below. The electromagnetic waves are	
	reflected by an interface with the reflecting objects (e.g., reinforcing	
	steel bars or cavities) whose electrical property is different from that	
	of concrete. The waves are reflected back into the surface of concrete	
	and received by the receiving antenna placed near the concrete	
	surface. The distance to the reflecting objects can be calculated from	
General	the time the reflected waves need to reach the receiving antenna. The	
	horizontal locations of the objects can be detected by moving the	
	main unit on the surface of concrete. Since this radar is designed to	
	probe objects with high resolution that are near from the surface of	
	concrete, it transmits pulse waves having a width of only about one	
	nanosecond (one-billionth of a second) or less.	
<u>Equipment</u>	During test	

7. Half-Cell Electric Potential Test


General investigation item	State of reinforcing steel	
Information to be obtained	State of steel corrosion embedded in concrete	
General	The corrosion (rusting) of steel rebar is an electro-chemical process,	
	involving anodic (corroding) and cathodic (passive) areas of the	
	metal. By measuring concrete-surface electrical potentials relative to	
	a standard reference electrode on a pre-defined grid, the presence	
	and location of corrosion and its probable future performance may	
	be assessed. To use this technique, it is necessary that a continuous	
	electrical current is present in the reinforcing bars (this is normally	
	achieved with a metal wire connecting the various reinforcing	
	element, for example horizontal and vertical bars). A multi meter can	
	be used to check that this electric current exists.	

測定端子

8. Metal Thickness Test

material thickness, integrity, or other physical properties by means of high-frequency sound waves. It has become a widely used technique for quality control. In thickness gauging, ultrasonic techniques permit quick and reliable measurement of thickness without requiring access to both sides of a part. Accuracies as high as ± 1 micron or ± 0.0001 inch are achievable in some applications. Precision ultrasonic thickness gauges usually operate at frequencies between 500 KHz and 100 MHZ, using piezoelectric transducers to generate bursts of sound waves when excited by electrical pulses.	General investigation item	State of steel
material thickness, integrity, or other physical properties by means of high-frequency sound waves. It has become a widely used technique for quality control. In thickness gauging, ultrasonic techniques permit quick and reliable measurement of thickness without requiring access to both sides of a part. Accuracies as high as ± 1 micron or ± 0.0001 inch are achievable in some applications. Precision ultrasonic thickness gauges usually operate at frequencies between 500 KHz and 100 MHZ, using piezoelectric transducers to generate bursts of sound waves when excited by electrical pulses.	Information to be obtained	Thickness of steel member
General when measuring thick, highly attenuating, or highly scattering materials, while higher frequencies will be recommended to optimize resolution in thinner, non-attenuating, non-scattering materials. A pulse-echo ultrasonic thickness gauge determines the thickness of a part or structure by accurately measuring the time required for a short ultrasonic pulse generated by a transducer to travel through the thickness of the material, reflect from the back or inside surface, and be returned to the transducer. In most applications this time interval is only a few microseconds or less. The measured two-way transit time is divided by two to account for the down-and-back travel path, and then multiplied by the velocity.		This ultrasonic nondestructive testing is used in characterizing material thickness, integrity, or other physical properties by means of high-frequency sound waves. It has become a widely used technique for quality control. In thickness gauging, ultrasonic techniques permit quick and reliable measurement of thickness without requiring access to both sides of a part. Accuracies as high as ± 1 micron or ± 0.0001 inch are achievable in some applications. Precision ultrasonic thickness gauges usually operate at frequencies between 500 KHz and 100 MHZ, using piezoelectric transducers to generate bursts of sound waves when excited by electrical pulses. Typically, lower frequencies will be used to optimize penetration when measuring thick, highly attenuating, or highly scattering materials, while higher frequencies will be recommended to optimize resolution in thinner, non-attenuating, non-scattering materials. A pulse-echo ultrasonic thickness gauge determines the thickness of a part or structure by accurately measuring the time required for a short ultrasonic pulse generated by a transducer to travel through the thickness of the material, reflect from the back or inside surface, and be returned to the transducer. In most applications this time interval is only a few microseconds or less. The measured two-way transit time is divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. The result is expressed in the

