Attachment 4

Standard Repair Cost and Standard Unit Rate of Bridge Member Repair

Table of Contents

1. Basic Concept of Standard Repair Cost ······ 1				
2. Method to Calculate Standard Repair Cost				
2.1 Surface				
(1) Pavement 1				
(2) Expansion Joint				
(3) Accessories				
(4) Approaches				
2.2 Superstructure ····································				
(1) RC-S				
(2) PSC-PRE				
(3) PSC-POS, RCS-RCB				
(4) Box Bridge 4				
(5) Truss Bridge ······ 4				
(6) Steel Bridge 5				
(7) Arch Bridge 6				
2.3 Bridge Bearing ······ 7				
2.4 Substructure ······7				
3. Basis of Setting Standard Repair Cost······ 8				
3.1 Super Structure 8				
3.2 Substructure				
3.3 Surface				
4. Basis of Unit Repair Rate				

List of Tables

3.1.1.1	Basic Information of Bridge		
3.1.1.2	Assumed Degree Of Damage at Each HI······9		
3.1.1.3	Quantity of Repair Work at Each HI		
3.1.1.4	Cost for repair work as at border line of HI (=0, 30, 90) ······11		
3.1.2.1	Basic Information of bridge 12		
3.1.2.2	Assumed Degree of Damage at Each HI		
3.1.2.3	Quantity of Repair Work at Each HI		
3.1.2.4	Cost for repair work at border line of HI (=0, 30, 70,90)······15		
3.1.3.1	Basic Information of bridge 17		
3.1.3.2	Assumed Degree of Damage at Each HI		
3.1.3.3	Quantity of Repair Work at Each HI		
3.1.3.4	Cost for repair work at border line of HI (=0, 30, 90) ······20		
3.1.3.5	Assumed Degree of Damage at HI=0, 30, 70, 90 ······21		
3.1.3.6	Quantity of Repair Work at HI=0, 30, 70, 90 ·····22		
3.1.3.7	Cost for repair work at border line of HI (=0, 30, 70, 90) ······23		
3.1.3.8	Assumed Degree of Damage at HI=0, 30, 90 ······24		
3.1.3.9	Quantity of Repair Work at HI=0, 30, 9025		
3.1.3.10	Cost for repair work at border line of HI (=0, 30, 90) ······26		
3.1.4.1	Basic Information of bridge		
3.1.4.2	Assumed Degree of Damage at Each HI ······28		
3.1.4.3	Quantity of repair work at each HI (=0, 30, 90) ······29		
3.1.4.4	Cost for repair work at border line of HI (=0, 30, 90) ······30		
3.1.5.1	Basic Information of bridge		
3.1.5.2	Assumed Degree of Damage at Each HI (=0, 50) ···································		
3.1.5.3	Quantity of repair work at each HI (=0, 50)		
3.1.5.4	Cost for repair work at border line of HI (=0, 50) ···································		
3.1.5.5	Cost for repair work		
3.1.5.6	Assumed Degree of Damage at Each HI		
3.1.5.7	Quantity of repair work at each HI (=0, 50) ······37		
3.1.5.8	Cost for repair work at border line of HI (=0, 50)······38		
3.1.6.1	Basic Information of bridge		
3.1.6.2	Assumed Degree of Damage at Each HI (=0, 50) ······40		
3.1.6.3	Quantity of repair work at each HI (=0, 50) ······41		
3.1.6.4	Cost for repair work at border line of HI (=0, 50) ······42		
3.1.6.5	Cost for repair work 43		
3.1.6.6	Assumed Degree of Damage at Each HI		
3.1.6.7	Quantity of repair work at each HI (=0, 50) ······45		
3.1.6.8	Cost for repair work at border line of HI (=0, 50) ······46		
3.1.7.1	Basic Information of Bridge		
3.1.7.2	Assumed Degree of Damage at Each HI ······48		
3.1.7.3	Quantity of Repair Work at Each HI		
3.1.7.4	Cost for repair work at border line of HI (=0, 1) ······50		
3.1.7.5	Assumed Degree of Damage at Each HI (=0, 1) ······51		
3.1.7.6	Quantity of repair work at each HI (=0, 1)		

3.1.7.7	Cost for repair work at border line of HI (=0, 1) ······53
3.2.1	Basic Information of bridge
3.2.2	Assumed Degree of Damage at Each HI55
3.2.3	Quantity of repair work at each HI (=0, 1, 10)56
3.2.4	Cost for repair work at border line of HI (=0, 30, 90) ······57
4.1	Summary table for unit rate (1/2)61
4.1	Summary table for unit rate (2/2)62

List of Figures

Relation between HI and unit rate ······11
Relation between HI and unit rate ······16
Relation between HI and unit rate
Relation between HI and unit rate·····23
Relation between HI and unit rate

1. Basic Concept of Standard Repair Cost

The purpose of using Standard repair cost is to roughly estimate the scale of repair cost for the bridges which the RDA maintain and operate

Standard repair cost is determined by Health Index; however the type of damage varies even though the Heath Index is same. Therefore it is necessary to recognize the existence of the difference between standard and actual repair cost.

Besides, the necessity of repairs is decided not only by the periodic inspection results but also on the total repair cost estimated by SUR which indicates total repair cost for all bridges regardless of Heath Index, and do not indicate planned actual total repair cost.

2. Method to Calculate Standard Repair Cost

Standard Unit Rate is determined by Heath Index, and standard repair cost is calculated based on Standard Unit Rate, Length of bridge (Span length) and width of bridge.

The method of calculation for standard repair cost for each member is shown below.

2.1 Surface

(1) Pavement

Standard repair cost=

Heath Index \checkmark 100 \times Span Length \times Width of bridge \times Unit rate of repair work

[Unit rate of repair work]

Health Index	Unit rate (Rs / m ²)	NOTE
0~100	400	Refer Page 63

(2) Expansion Joint

Standard repair cost=

Heath Index \checkmark 100 × Width of bridge × Unit rate of repair work

[Unit rate of repair work]

Health Index	Unit rate (Rs / m)	NOTE
0~100	6,500	Refer Page 63

(3) Accessories

Standard repair cost=

Heath Index \checkmark 100 \times Span Length \times Unit rate of repair work

Unit rate of	of repair	work]
	n icpan	WUIN

Health Index	Unit rate (Rs / m)	NOTE
0~100	3,500	Refer Page 63

1

(4) Approaches

Standard repair cost=

Heath Index \checkmark 100 × Width of bridge × Unit rate of repair work

Health Index	Unit rate (Rs / m)	NOTE
0~100	6,200	Refer Page 63

2.2 Superstructure

(1) RC-S

1) Deck Slab

Standard repair cost=

Span Length × Width of bridge × Unit rate of repair work corresponding to HI

[Unit rate of repair work]

Health Index	Unit rate (Rs / m ²)	NOTE
0	31,300	Refer Page 11
30	20,800	22
90	900	>>
100	0	22

(2) PSC-PRE

1) Main Beam

Standard repair cost=

Span Length × Width of bridge × Unit rate of repair work corresponding to HI

[Unit rate of repair work]

Health Index	Unit rate (Rs / m ²)	NOTE
0	22,800	Refer Page 15
30	15,400	>>
70	1,700	"
90	300	>>
100	0	"

(3) PSC-POS, RCS-RCB

1) Main Beam

Standard repair cost=

Span Length \times Width of bridge \times Unit rate of repair work corresponding to HI

Health Index	Unit rate (Rs / m ²)	NOTE
0	24,300	Refer Page 20
30	16,200	"
90	300	27
100	0	22

2) Deck Slab

Standard repair cost=

Span Length \times Width of bridge \times Unit rate of repair work corresponding to HI

	=	1 –
Health Index	Unit rate (Rs / m ²)	NOTE
0	29,000	Refer Page 23
30	20,700	"
90	1,500	"
100	0	22

[Unit rate of repair work]

3) Diaphragm

Standard repair cost=

Span Length × Width of bridge × Unit rate of repair work corresponding to HI

【Unit rate of repair work】

Health Index	Unit rate (Rs / m ²)	NOTE
0	13,100	Refer Page 26
30	9,400	>>
90	300	22
100	0	>>

(4) Box Bridge

1) Deck Slab

Standard repair cost=

Span Length × Width of bridge × Unit rate of repair work corresponding to HI

[Unit rate of repair work]

Health Index	Unit rate (Rs / m ²)	NOTE
0	23,800	Refer Page 30
30	12,700	>>
90	1,100	>>
100	0	"

(5) Truss Bridge

1) Main Beam

Standard repair cost=

Span Length × Width of bridge × Unit rate of repair work corresponding to HI

[Unit rate of repair work]

Health Index	Unit rate (Rs / m ²)	NOTE
0	23,800	Refer Page 34
50	1,500	22
100	0	"

4

2) Deck Slab

Standard repair cost =

Span Length \times Width of bridge \times Unit rate of repair work corresponding to HI

【Unit rate of repair work】

Health Index	Unit rate (Rs / m ²)	NOTE
0	6,000	Refer Page 35
100	0	22

3) Cross Beam

Standard repair cost=

Span Length × Width of bridge × Unit rate of repair work corresponding to HI

[Unit rate of repair work]

	Health Index	Unit rate (Rs / m ²)	NOTE
	0	21,600	Refer Page 38
Γ	50	1,900	"
Γ	100	0	22

(6) Steel Bridge

1) Main Beam

Standard repair cost=

Span Length × Width of bridge × Unit rate of repair work corresponding to HI

[Unit rate of repair work]

Health Index	Unit rate (Rs / m ²)	NOTE
0	20,500	Refer Page 42
50	3,300	"
100	0	"

2) Deck Slab

Standard repair cost=

Span Length \times Width of bridge \times Unit rate of repair work corresponding to HI

Health Index	Unit rate (Rs / m ²)	NOTE
0	6,000	Refer Page 43
100	0	>>

3) Cross Beam

Standard repair cost=

Span Length × Width of bridge × Unit rate of repair work corresponding to HI

[Unit rate of repair work]

Health Index	Unit rate (Rs / m ²)	NOTE
0	15,300	Refer Page 46
50	1,900	22
100	0	"

(7) Arch Bridge

1) Arch Rib

Standard repair cost=

Span Length × Width of bridge × Unit rate of repair work corresponding to HI

[Unit rate of repair work]

Health Index	Unit rate (Rs / m ²)	NOTE
0	14,800	Refer Page 50
1	6,800	"
100	0	"

2) Spandrel

Standard repair cost=

Span Length \times Width of bridge \times Unit rate of repair work corresponding to HI

Health Index	Unit rate (Rs / m ²)	NOTE
0	12,100	Refer Page 53
1	6,800	22
100	0	22

2.3 Bridge Bearing

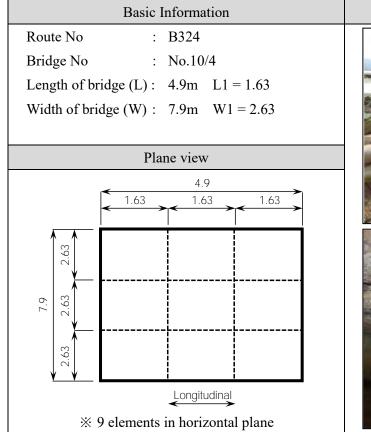
Standard repair cost=

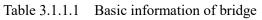
Health Index \checkmark 100 × Width of bridge × Unit rate of repair work

[Unit rate of repair work]

Health Index	Unit rate (Rs / m)	NOTE
0~100	132,700	Refer Page 60

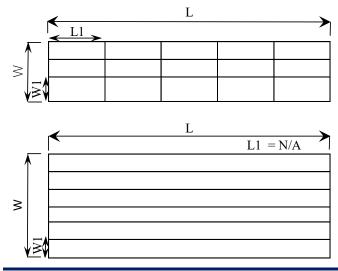
2.4 Substructure


Standard repair cost=


Span Length \times Width of bridge \times Unit rate of repair work corresponding to HI

Health Index	Unit rate (Rs / m ²)	NOTE
0	35,600	Refer Page 57
30	25,700	>>
90	1,700	>>
100	0	>>

- 3. Basis of Setting Standard Repair Cost
- 3.1 Super Structure
- 3.1.1. Structure type: RC-S
- (1) Sample Bridge to be applied for unit rate


Following bridge is used for cost estimation for repair work.

These figures are used for all the structure types

(2) Assumed Health Index and Degree of Damage

Repair method shall be selected based on area and depth of damage.

Border line of HI at which repair method shall be changed is shown in following table.

Degree of damage between the border lines shall be calculated by linear interpolation

HI	Degree of damage	Outline figure	
HI=0	 Spalling / Delamination / Ex-rebar (e grade) and crack (e grade) generate at 7 elements. X Average of Spalling / Delamination / Ex-rebar exist in 30% area of one element and the depth of damage is 80mm based on inspection result. X Cracks penetrate the element onto transversal direction. 	4.0 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33	
HI=30	Spalling / Delamination / Ex-rebar (e grade) and cracks (e grade) generate at 5 elements.		
HI=90	Crack (e grade) generates in one element.	4.9 1.63 1	
NOTE Spalling / Delamination / Ex-rebar Crack			

 Table 3.1.1.2
 Assumed Degree of Damage at Each HI

(3) Quantity Calculation for Repair Work

Quantities of repair work as at the border line (HI = 0, 30, 90) condition are shown in the following Table.

HI	Type of damage	Quantity of repair work	
HI=0	Spalling / Delamination / Ex-rebar	2.63 (L1) × 1.63 (W1) × 0.08 (Depth) × 30 % × 7 nos	0.7m ³
	Crack	2.63 × 7 nos	18.1m
HI=30	Spalling / Delamination / Ex-rebar	2.63 (L1) × 1.63 (W1) × 0.06 (Depth) × 30 % × 5 nos	0.4m ³
	Crack	2.63(L1)×5 nos	12.9m
HI=90	Crack	2.63(L1)×1 nos	2.6m

Table 3.1.1.3 Quantity of Repair Work at Each HI

(4) Cost Estimation of Repair Work as at Each HI Condition

The repair cost on border line of Health Index (HI=0, 30, 90) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (On the basis of repair cost in chapter 5 using same unit rates

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate applies for the calculation for repair work.

Between the border lines of Health Index conditions, the unit rate is calculated by linear interpolation.

This procedure is carried out by internal processing in BMS system.

HI	Type of damage	Repair method	Repair	cost	Refer No.
	Spalling / Delamination / Ex-rebar	Grouting	347,900	Rs	No.Co-32
	Crack	Crack Injection	162,900	Rs	No.Co-10
HI=0	_	CFRS bonding (Strengthening)	677,600		No.Co-50
	Total cost	t	1,188,400	Rs	
	Unit rate per m ²		31,300	Rs/m ²	
	Spalling / Delamination / Ex-rebar	Grouting	186,800	Rs	No.Co-33
	Crack	Crack Injection	116,100	Rs	No.Co-9
HI=30		CFRS bonding (Strengthening)	485,100		No.Co-51
	Total cost		788,000	Rs	
	Unit rate per	$\cdot m^2$	20,800	Rs/m ²	
HI=90	Crack	Crack Injection	33,400	Rs	No.Co-8
	Unit rate per	· m ²	900	Rs/m ²	

Table 3.1.1.4Cost for repair work at border line of HI (=0, 30, 90)

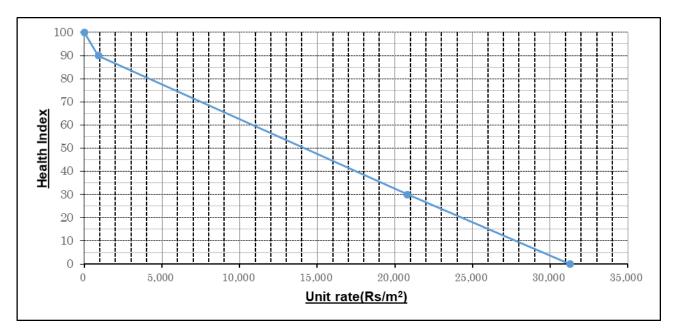
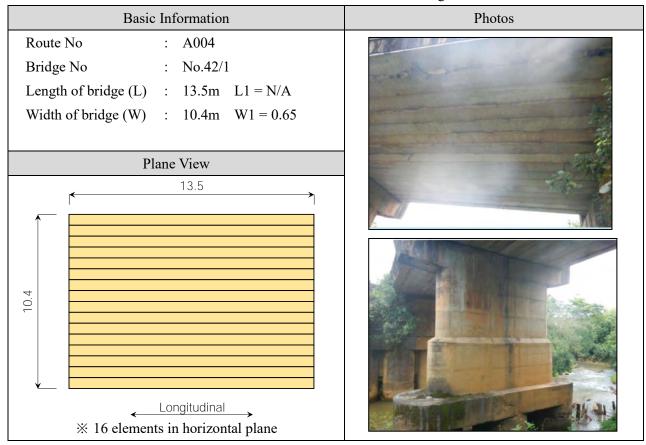



Figure 3.1.1.1 Relation between HI and unit rate

3.1.2 Super Structure type: PSC-PRE

(1) Sample Bridge to be applied for Unit Rate

Following bridge is used for cost estimation for repair work.

Table 3.1.2.1 Basic Information of Bridge

(2) Assumed Health Index and Degree of Damage

Repair method shall be selected based on area and depth of damage. Border line of HI at which repair method shall be changed is shown in the following table. Degree of damage between the border lines shall be calculated by linear interpolation.

HI	Degree of damage	Outline figure
HI=0	Spalling / Delamination / Ex-rebar (e grade) and crack (e grade) generate at 60% of total elements. PSC-PRE bridges in Sri Lanka do not have serious conditions equivalent to "HI=0". Therefore, it is assumed that degree of damage of PSC-PRE is same as RC-S. *Cracks penetrate the element to transversal direction.	13.5
HI=30	Spalling / Delamination / Ex-rebar (e grade) and cracks (e grade) generate on 40% of total elements.	
HI=70	Spalling / Delamination / Ex-rebar (e grade) and cracks (e grade) generate on 20% of total elements.	Longitadinal
HI=90	Cracks (e grade) generate in one element.	13.5 13.5 13.5
NOTE Spa	lling / Delamination / Ex-rebar, Crack	Longitudinal

Table 3.1.2.2. Assumed Degree of Damage at Each HI

(3) Quantity Calculation for Repair Work

Quantities of repair work as at the border line (HI = 0, 30, 70, 90) condition are shown in the following table.

HI	Type of damage	Quantity of repair work	
HI=0	Spalling / Delamination / Ex-rebar	13.5 (L) × 0.65 (W1) × 0.80 (Depth) × 30 % × 10 nos	2.1m ³
	Crack	$0.65 \times 10 \text{ nos}$	6.5m
HI=30	Spalling / Delamination / Ex-rebar	13.5 (L) × 0.65 (W1) × 0.06 (Depth) × 30 %× 7 nos	1.1m ³
	Crack	0.65×6 nos	3.9m
HI=70	Spalling / Delamination / Ex-rebar	13.5 (L) × 0.65 (W1) × 0.02 (Depth) × 30 %×3 nos	0.2m ³
	Crack	0.65(W1)×3 nos	2.0m
HI=90	Crack	0.65(W1)×1 nos	0.7m

Table 3.1.2.3 Quantity of Repair Work at Each HI

(4) Cost Estimation of Repair Work as at Each HI Condition

The repair cost as at border line of Health Index (HI=0, 30, 70, 90) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (On the basis of repair cost in chapter 5 mentioned which unit rate was used.)

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate is applied for the calculation for repair work.

Between the border lines of Health Index conditions, the unit rate is calculated by linear interpolation.

This procedure carried out by internal processing in BMS system.

HI	Type of damage	Repair method	Repair	cost	Refer No.
	Spalling / Delamination / Ex-rebar	Grouting	1,110,200	Rs	No.Co-36
	Crack	Crack Injection	58,500	Rs	No.Co-17
HI=0		CFRS bonding (Strengthening)	2,025,100	Rs	No.Co-48
	Total co	ost	3,193,800	Rs	
	Unit rate p	er m ²	22,800	Rs/m ²	
	Spalling / Delamination / Ex-rebar	Grouting	705,700	Rs	No.Co-37
HI=30	Crack	Crack Injection	35,100	Rs	No.Co-16
п1—30		CFRS bonding (Strengthening)	1,416,800	Rs	No.Co-49
	Total co	Total cost		Rs	
	Unit rate p	er m ²	15,400	Rs/m ²	
UL 70	Spalling / Delamination / Ex-rebar	Plastering	217,200	Rs	No.Co-3
HI=70	Crack	Crack Injection	18,000	Rs	No.Co-15
	Total co	ost	235,200	Rs	
	Unit rate p	er m ²	1,700	Rs/m ²	
HI=90	Crack	Crack Injection	28,800	Rs	No.Co-14
111 70	Unit rate p	er m ²	300	Rs/m ²	

Table 3.1.2.4Cost for repair work as at border line of HI (=0, 30, 70, 90)

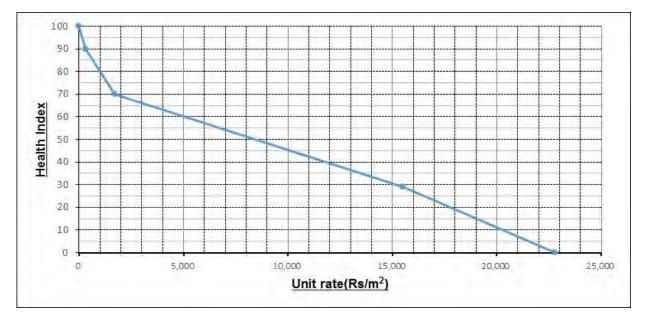


Figure 3.1.2.1 Relation between HI and unit rate

3.1.3 Structure Type –PSC-POS, RCS-RCB,

(1) Main Beam

1) Sample Bridge to be used for Repair Work

Following Bridge is used for Cost Estimation for Repair Work.

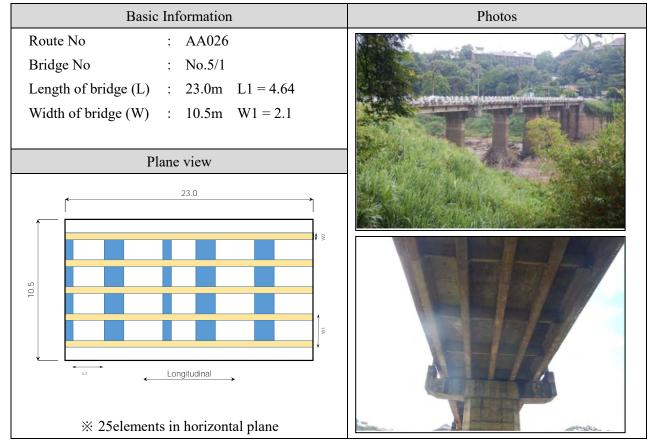


Table 3.1.3.1Basic Information of Bridge

2) Assumed Health Index and Degree of Damage

Repair method shall be selected based on the extent of area damaged and depth of the damage. Border line of HI at which repair method shall be changed is shown in the following table. Degree of damage between the border lines shall be calculated by linear interpolation.

HI	Degree of damage	Outline figure
HI=0	 Spalling / Delamination / Ex-rebar (e grade) and crack (e grade) generate at 80% of total elements. ** PSC-POS, RCS-RCB bridges in Sri Lanka do not have serious conditions equivalent to "HI=0". Therefore, it is assumed that degree of damage of PSC-POS, RCS-RCB is same as RC-S. ** Cracks penetrate the element to transversal direction. 	
HI=30	Spalling / Delamination / Ex-rebar (e grade) and crack (e grade) generate at 55% of total element.	
HI=90	Crack (e grade) generates two elements (Ratio: 8%).	
NOTE Spa	lling / Delamination / Ex-rebar,	

 Table 3.1.3.2
 Assumed Degree of Damage at Each HI

3) Quantity Calculation of Repair Work

Quantities of repair work as at the border line (HI = 0, 30, 90) condition are shown in the following table.

HI	I Type of damage Quantity of repair work		
пі	Type of damage	Quantity of Tepali work	
HI=0	Spalling / Delamination / Ex-rebar	4.64 (L1) × 0.4 (W2) × 0.08 (Depth) × 30 % × 19 nos	0.8m ³
	Crack	$0.40 \times 19 \text{ nos}$	7.6m
HI=30	Spalling / Delamination / Ex-rebar	4.64 (L1) × 0.4 (W2) × 0.06 (Depth) × 30 %×14 nos	0.5m ³
	Crack	0.40 (W2)×13 nos	5.2m
HI=90	Crack	0.40 (W2)×2 nos	0.8m

Table 3.1.3.3 Quantity of Repair Work at Each HI

4) Cost Estimation of Repair Work as at Each HI Condition

The repair costs as at border line of Health Index (HI=0, 30, 90) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (On the basis of repair cost in chapter 5, using same unit rates.)

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate applies for the calculation for repair work.

Between the border lines of Health Index conditions, the unit rate is calculated by linear

interpolation.

This procedure is carried out by internal processing in BMS system.

HI	Type of damage	Repair method	Repair	cost	Refer No.
	Spalling / Delamination / Ex-rebar	Grouting	899,600	Rs	No.Co-39
	Crack	Crack Injection	64,800	Rs	No.Co-20
HI=0	_	CFRS bonding (Strengthening)	4,889,500	Rs	No.Co-52
	Total cos	st	5,857,500	Rs	
	Unit rate per m ²		24,300	Rs/m ²	
	Spalling / Delamination / Ex-rebar	Grouting	241,000	Rs	No.Co-40
	Crack	Crack Injection	46,800	Rs	No.Co-19
HI=30		CFRS bonding (Strengthening)	3,603,600		No.Co-53
	Total cost		3,891,400	Rs	
	Unit rate pe	r m ²	16,200	Rs/m ²	
HI=90	Crack	Crack Injection	67,200	Rs	No.Co-18
	Unit rate pe	r m ²	300	Rs/m ²	

Table 3.1.3.4Cost for repair work at border line of HI (=0, 30, 90)

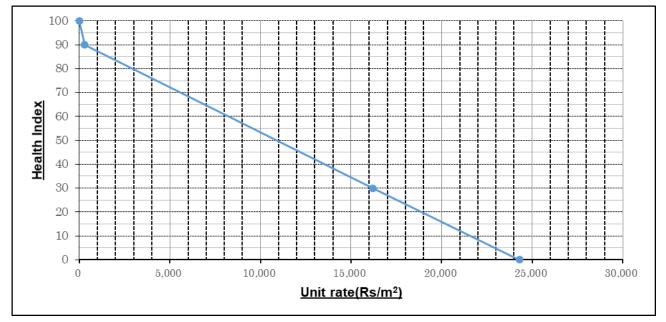


Figure 3.1.3.1 Relation between HI and unit rate

(2) Deck Slab

1) Assumed Health Index

Repair method shall be selected based on extent of area damaged and depth of damage. Border line of HI on which repair method shall be changed is shown in the Following Table. Degree of damage between the border lines shall be calculated by linear interpolation

HI	Degree of damage	Outline figure
	Spalling / Delamination / Ex-rebar (e grade) and	
	crack (e grade) generate at 80% of total elements.	
	%PSC-POS, RCS-RCB bridges in Sri Lanka do	<u>م</u>
	not have serious conditions equivalent to	
HI=0	"HI=0". Therefore, it is assumed that degree of	
	damage of PSC-POS, RCS-RCB same as RC-S.	
	*Crack penetrates the element to transversal	Date (Date 1945)
	direction.	
	Spalling / Delamination / Ex-rebar (e grade) and	۲ <u>م</u>
	crack (e grade) generate at 55% of total elements.	
HI=30		
	Spalling / Delamination / Ex-rebar (e grade)	23.0
	spandrel and crack (e grade) generate at 25% of	
HI=70	total elements.	
		<u>9%</u> 90 QX 09% 02%
	Spalling / Delamination / Ex-rebar (e grade) and	23. 0
	crack (e grade) generate at 10% of total elements.	
HI=90		
HI=90	10.5	
NOTE		
Spa	lling / Delamination / Ex-rebar,	
1		

Table 2 1 2 5	Assumed Degree of Damage at HI=0, 30, 70, 90
14010.5.1.5.5	Assumed Degree of Damage at III–0, 50, 70, 90

2) Quantity Calculation for Repair Work

Quantities of repair work on the border line (HI = 0, 70, 90) condition are shown in the following Table.

HI	Type of damage	Quantity of repair work		
	Spalling /			
111-0	Delamination /	8.05 (W/6+L/5) × 0.08 (Depth) × 30 % × 24 nos	4.6m ³	
HI=0	Ex-rebar			
	Crack	$1.75(W/6) \times 24 \text{ nos}$	42.0m	
	Spalling /			
111-20	Delamination /	8.05 (W/6+L/5) × 0.06 (Depth) × 30 % × 17 nos	2.5m ³	
HI=30	Ex-rebar			
	Crack	1.75(W/6) × 16 nos	28.0m	
	Spalling /			
HI=90	Delamination /	8.05 (W/6+L/5) × 0.01 (Depth) × 30 %×2 nos	0.1m ³	
	Ex-rebar			
	Crack	1.75(W/6)×3 nos	5.3m	

Table 3.1.3.6	Quantity of Repair Work at HI=0, 30, 70, 90
14010 5.1.5.0	Quality of Repair Work at Th 0, 50, 70, 50

3) Cost Estimation of Repair Work as at Each HI Condition

The repair cost on the border line of Health Index (HI=0, 30, 90) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (On the basis of repair cost in chapter 5 using same unit rates.)

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate applies for the calculation for repair work.

Between the border lines of Health Index conditions, the unit rate calculated by linear interpolation.

This procedure is carried out by internal processing in BMS system.

HI	Type of damage	Repair method	Repair cost		Refer No.
	Spalling / Delamination / Ex-rebar	Grouting	2,147,700	Rs	No.Co-41
	Crack	Crack Injection	378,000	Rs	No.Co-26
HI=0	_	CFRS bonding (Strengthening)	4,466,000	Rs	No.Co-54
	Total cost	t	6,991,700	Rs	
	Unit rate per	m^2	29,000	Rs/m ²	
	Spalling / Delamination / Ex-rebar	Grouting	1,570,000	Rs	No.Co-43
	Crack	Crack Injection	252,000	Rs	No.Co-25
HI=30		CFRS bonding (Strengthening)	3,164,700	Rs	No.Co-55
	Total cost		4,986,700	Rs	
	Unit rate per m ²		20,700	Rs/m ²	
HI=90	Spalling / Delamination / Ex-rebar	Plastering	303,700	Rs	No.Co-5
	Crack	Crack Injection	47,700	Rs	No.Co-24
	Total cost		351,400	Rs	
	Unit rate per	· m ²	1,500	Rs/m ²	

Table 3.1.3.7Cost for repair work at border line of HI (=0, 30, 70, 90)

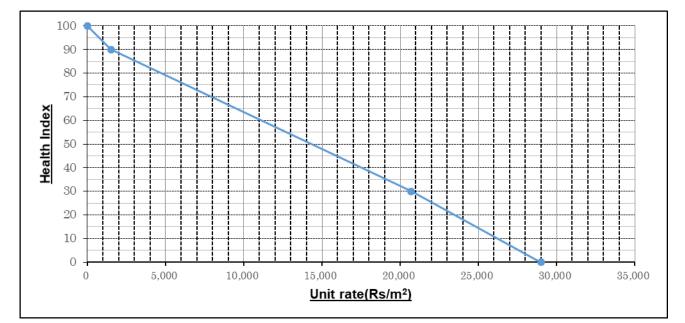


Figure 3.1.3.2 Relation between HI and unit rate

(3) Diaphragm

1) Assumed Health Index and Degree of Damage

The repair method shall be selected based on the extent of area damaged and depth of the damage. Border line of HI on which repair method shall be changed is shown in the following Table. Degree of damage between the border lines shall be calculated by linear interpolation.

HI	Degree of damage	Outline figure			
	Spalling / Delamination / Ex-rebar (e grade) and crack (e grade) generate at 80% of total elements. **PSC-POS, RCS-RCB bridges in Sri Lanka do	23.0			
HI=0	not have serious conditions equivalent to "HI=0". Therefore, it is assumed that degree of damage of PSC-POS, RCS-RCB is same as RC-S. % Crack penetrate the element to transversal direction.	R R			
HI=30	Spalling / Delamination / Ex-rebar (e grade) and crack (e grade) generate at 55% of total elements.				
HI=90	Crack (e grade) generates 10% of total elements.				
<u>NOTE</u> Spa	Illing / Delamination / Ex-rebar, Crack	L			

Table 3.1.3.8Assumed Degree of Damage at HI=0, 30, 90

(2) Quantity Calculation for Repair Work

Quantities of repair work as at the border line (HI = 0, 30, 90) condition are shown in following table.

HI	Type of damage	Quantity of repair work		
HI=0	Spalling / Delamination / Ex-rebar	2.1 (W1) × 0.4 (W2) ×0.08 (Depth) × 30 % × 20 nos	0.4m ³	
	Crack	$0.4 (W2) \times 20 \text{ nos}$	8.0m	
HI=30	Spalling / Delamination / Ex-rebar	2.1 (W1) × 0.4 (W2) ×0.06 (Depth) × 30 %×13 nos	0.2m ³	
	Crack	0.4(W2)×13 nos	5.2m	
HI=90	Crack	0.4(W2)×2 nos	0.8m	

Table 3.1.3.9 Quantity of Repair Work at HI=0, 30, 90

3) Cost Estimation of Repair Work as at Each HI Condition

The repair cost as at border line of Health Index (HI=0, 30, 90) condition is calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (On the basis of repair cost in chapter 5)

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate applies for the calculation for repair work.

Between the border lines of Health Index conditions, the unit rate is calculated by linear interpolation.

This procedure is carried out by internal processing in BMS system

HI	Type of damage	Repair method	Repair	cost	Refer No.
HI=0	Spalling / Delamination / Ex-rebar	Grouting	754,800	Rs	No.Co-44
	Crack	Crack Injection	72,000	Rs	No.Co-23
	_	CFRS bonding (Strengthening)	2,325,400	Rs	No.Co-56
	Total cost		3,152,200	Rs	
	Unit rate per m ²		13,100	Rs/m ²	
	Spalling / Delamination / Ex-rebar	Grouting	682,400	Rs	No.Co-45
	Crack	Crack Injection	46,800	Rs	No.Co-22
HI=30		CFRS bonding (Strengthening)	1,516,900	Rs	No.Co-57
	Total cost		2,246,100	Rs	
	Unit rate pe	r m ²	9,400	Rs/m ²	
HI=90	Crack	Crack Injection	67,200	Rs	No.Co-21
	Unit rate pe	r m ²	300	Rs/m ²	

Table 3.1.3.10Cost for repair work at border line of HI (=0, 30, 90)

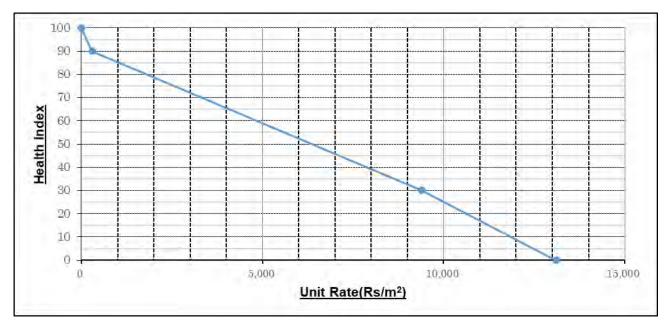


Figure 3.1.3.3 Relation between HI and unit rate

3.1.4 Structure type: Box Bridge

(1) Sample Bridge to be applied for unit rate

Following bridge is used for cost estimation for repair work.

Basic Information	Photos
Route No:A158Bridge No:No.14/3Length of bridge: $4.0m$ L1 = 1.33 Width of bridge: $9.75m$ W1 = 3.25	
Plane view 4.0 1.33 1.33 $1.33(L1)9$ Slowsup 4.0 1.33 1.33 $1.33(L1)1.33$ $(L1)1.33$ $1.33(L1)$	

(2) Assumed Health Index and Degree of Damage

Repair method shall be selected based on the extent of area damaged and depth of damage. Border line of HI on which repair method shall be changed is shown in the following Table. Degree of damage between the border lines shall be calculated by linear interpolation.

HI	Degree of damage	Outline figure		
HI=0	 Spalling / Delamination / Ex-rebar (e grade) and crack (e grade) generate at 5 elements. **Box bridges in Sri Lanka do not have serious conditions equivalent to "HI=0". Therefore, it is assumed that degree of damage of Box bridges is same as RC-S. **Cracks penetrates the element to transversal direction. 	6 4.0 1.33 1.33 3.22 3.22 3.22 3.22 3.23 3.22 3.23 3.22 3.23 3.22 3.23 3.23 3.23		
HI=30	Spalling / Delamination / Ex-rebar (e grade) generates 3 elements and crack (e grade) generates at 3elements.	4.0 4.0 		
HI=90	Crack (e grade) generates in one element.	4.0 1.33 1		
NOTE Spalling / Delamination / Ex-rebar,				

Table 3.1.4.2Assumed Degree of Damage at Each HI

Quantities of repair work on the border line (HI = 0, 30, 90) condition are shown in the following Table.

(3) Quantity Calculation for Repair Work

Quantities of repair work as at the border line (HI = 0, 30, 90) condition are shown in the following table.

HI	Type of damage	Quantity of repair work		
HI=0	Spalling / Delamination / Ex-rebar	3.25 (W1) × 1.33 (L1) × 0.08 (Depth) × 30 % × 5 nos	0.5m ³	
	Crack	3.25 (W1) × 5 nos	16.3m	
HI=30	Spalling / Delamination / Ex-rebar	3.25 (W1) × 1.33 (L1) × 0.06 (Depth) × 30 % × 3 nos	0.2m ³	
	Crack	3.25(W1)×3 nos	9.8m	
HI=90	Crack	3.25(W1)×1 nos	3.3m	

Table 3.1.4.3 Quantity of repair work at each HI (=0, 30, 90)

(4) Cost Estimation of Repair Work as at Each HI Condition

The repair costs on border line of Health Index (HI=0, 30, 90) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (On the basis of repair cost in chapter 5, using same unit rates.)

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis (method)

(In case the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate applies for the calculation of repair work.

Between the border lines of Health Index conditions, the unit rate is calculated by linear interpolation.

This procedure is carried out by internal processing in BMS system.

HI	Type of damage	Repair method	Repair o	cost	Refer No.
	Spalling / Delamination / Ex-rebar	Grouting	277,800	Rs	No.Co-34
	Crack	Crack Injection	146,700	Rs	No.Co-13
HI=0		CFRS bonding (Strengthening)	500,500		No.Co-58
	Total cos	st	925,000	Rs	
	Unit rate per m ²		23,800	Rs/m ²	
	Spalling / Delamination / Ex-rebar	Grouting	104,700	Rs	No.Co-35
	Crack	Crack Injection	88,200	Rs	No.Co-12
HI=30		CFRS bonding (Strengthening)	300,300		No.Co-59
	Total cost		493,200	Rs	
	Unit rate pe	r m ²	12,700	Rs/m ²	
HI=90	Crack	Crack Injection	40,500	Rs	No.Co-11
	Unit rate pe	$r m^2$	1,100	Rs/m ²	

Table 3.1.4.4 Cost for repair work at border line of HI (=0, 30, 90)

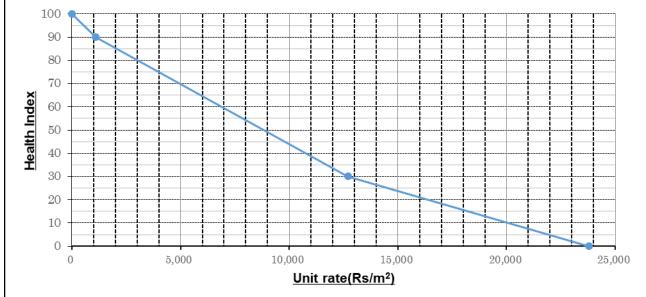


Figure 3.1.4.1 Relation between HI and unit rate

3.1.5 Structure type: Truss Bridge

(1) Main Beam

1). Sample Bridge to be applied for unit rate

Following bridge is used for cost estimation for repair work.

Basic Information		Photos	
Route No	: B188		
Bridge No	: No.5/4	Design of the second	
Length of bridge	: 12.6m (L1)	and the second sec	
Width of bridge	: 3.3m (W1)		
Number of main beam	: 2 nos	A STATE OF A	
Number of cross beam	: 13nos	S allowed and the second se	
Height of main beam	: 1.5m (H1)		
Height of cross beam	: 0.4m (H2)		
Length of cross beam	: 3.2m (L2)		
Plane view			
e e			
※ 15elements in horizontal plane			

2). Assumed Health Index and Degree of damage

Repair method shall be selected based on area and depth of damage.

Border line of HI at which repair method shall be changed is shown in following table.

Degree of damage between the border lines shall be calculated by linear interpolation.

Table 3.1.5.2 Assumed degree of damage at each HI (=0, 50)			
HI	Degree of damage	Outline figure	
HI=0	 Paint Degradation (e grade) and Corrosion (e grade) generate at all elements. **Paint Degradation exists on 50% area in one element. **Corrosion exists on 50% area in one element. 		
HI=50	 Paint Degradation (e grade) generate at all elements. ※Paint Degradation exist 50% area in one element. 		
	nt Degradation prosion		

Table 3.1.5.2 Assumed degree of damage at each HI (=0, 50)

Quantities of repair work as at the border line (HI = 0, 50) condition are shown in following table.

HI	Type of damage	Quantity of repair work					
III-0	Corrosion	1/2×12.6(L1)×2	12.6m				
HI=0	Paint Degradation	1.5(H1)×12.6(L1)×2×0.15×2	11.3m ²				
HI=50	Paint Degradation	1.5(H1)×12.6(L1)×2×0.15×2	11.3m ²				
HI-30							

Table 3.1.5.3 Quantity of repair work at each HI (=0, 50)

4). Cost estimation of repair work as at each HI condition

The repair cost as at border line of Health Index (HI=0, 50) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (On the basis of repair cost in chapter 5)

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case, the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate applies for the calculation for repair work.

Between the border lines of Health Index conditions, the unit rate is calculated by linear interpolation.

		1	(
HI	Type of damage	Repair method	Repair o	Refer No.	
	Paint Degradation	Painting	32,800	Rs	No.St-8
HI=0	Corrosion	Replacement of member	954,200	Rs	No.St-4
	Total cost		987,000	Rs	
	Unit rate per m ²		23,800	Rs/m ²	
111-50	Paint Degradation Painting		59,800	Rs	No.St-7
HI=50	Unit rate	per m ²	1,500	Rs/m ²	

Table 3.1.5.4Cost for repair work at border line of HI (=0, 50)

Figure 3.1.5.1 Relation between HI and unit rate

Table 3.1.5.5Cost for repair work								
Repair,	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber			
Replacem entofdeck slab		-	Deck slab	-	(NO.De-1)			
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE			
Equipm ent, Labor and	Redecki ng	6,000 Rs/m ²	77.7 m ²	466,200 Rs	Follow ing Maho EE office's cost estim ation			
M ateria I								
	Total	6,000 Rs/m ²		466,200 Rs				

(2) Deck slab

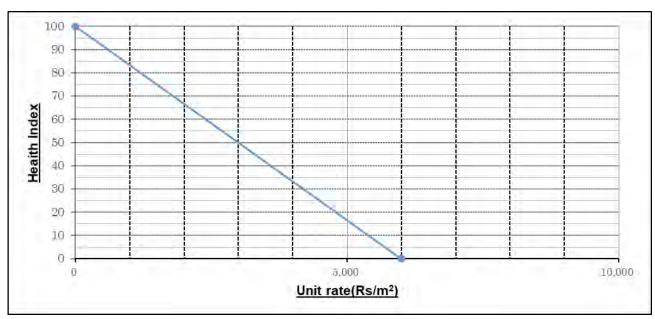


Figure 3.1.5.2 Relation between HI and unit rate

(3) Cross Beam

1). Assumed Health Index and Degree of damage

Repair method shall be selected based on area and depth of damage.

Border line of HI at which repair method shall be changed is shown in following table.

Degree of damage between the border lines shall be calculated by linear interpolation.

HI	Degree of damage						Outli	ine f	igure	e				
	Paint Degradation (e grade) and Corrosion (e grade) generate at all elements.	(12.6						•
HI=0	 *Paint Degradation exists on 50% area in one element. *Corrosion exists on 50% area in one element. 	M N	M	M N		r r		P	No.		r v	4	M M	
	Paint Degradation (e grade) generated at all elements.							12.6					;	
HI=50	% Paint Degradation exists on 50% area in one element.	Ŋ		M	N.			M	Ŵ	M	Ŵ	Ŋ		
NOTE Operation Orrosion														

Table 3.1.5.6 Assumed degree of damage at each HI

Quantities of repair work as at the border line (HI = 0, 50) condition are shown in following table.

HI	Type of damage	Quantity of repair work				
111_0	Corrosion	13×3.3(W1)∕2	21.5m			
HI=0	Paint Degradation	(0.4×2)×3.2(L2)×13	34.3m ²			
HI=50	Paint Degradation	(0.4(H2)×2)×3.2(L2)×13	34.3m ²			
Ш — 30						

Table 3.1.5.7 Quantity of repair work at each HI (=0, 50)

3). Cost estimation of repair work as at each HI condition

The repair cost as at border line of Health Index (HI=0, 30, 90) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (On the basis of repair cost in chapter 5) Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case the unit rate is not mentioned in HSR)

Procedure.2

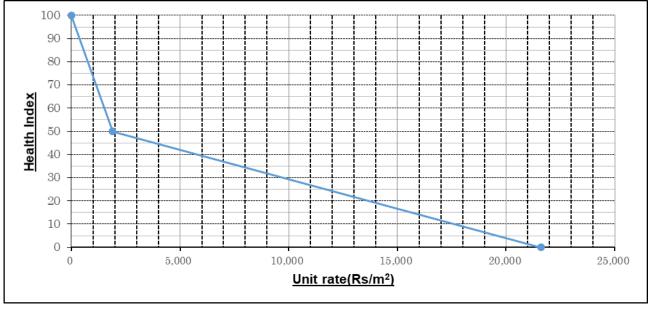
Calculate unit rate per area of bridge.

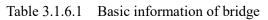
In BMS system, this unit rate applies for the calculation for repair work.

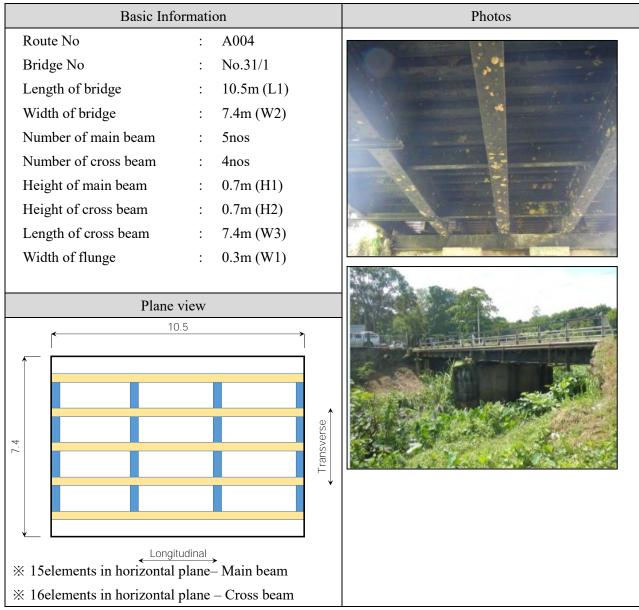
Between the border lines of Health Index conditions, the unit rate is calculated by linear interpolation.

	1				
HI	Type of damage	Repair method	Repair o	Refer No.	
	Paint Degradation	Painting	89,200 Rs		No.St-12
111-0	Corrosion	Steel plate bonding	806,500	Rs	No.St-2
HI=0	Total	cost	895,700	Rs	
	Unit rate per m ²		21,600	Rs/m ²	
111-50	Paint Degradation	Painting	74,900	Rs	No.St-11
HI=50	Unit rate	e per m ²	1,900	Rs/m ²	

Table 3.1.5.8Cost for repair work at border line of HI (=0, 50)




Figure 3.1.5.3 Relation between HI and unit rate


3.1.6 Structure type: Steel Bridge

(4) Main Beam

1). Sample Bridge to be applied for unit rate

Following bridge is used for cost estimation for repair work.

2). Assumed Health Index and Degree of damage

Repair method shall be selected based on area and depth of damage. Border line of HI at which repair method shall be changed is shown in following table. Degree of damage between the border lines shall be calculated by linear interpolation.

HI	Degree of damage	Outline figure				
HI=0	 Paint Degradation (e grade) and Corrosion (e grade) generated at all elements. ** Paint Degradation exists on 50% area in one element. ** Corrosion exists on 50% area in one element; 	10.5				
HI=50	 Paint Degradation (e grade) generated at all elements. ※Paint Degradation exists on 50% area in one element. 	10.5				
NOTE Paint Degradation, Corrosion						

Table 3.1.6.2 Assumed degree of damage at HI=0, 50

Quantities of repair work as at the border line (HI = 0, 50) condition are shown in following table.

HI	Type of damage	Quantity of repair work			
111_0	Corrosion	1/2×10.5(L1)×5	26.3m		
HI=0	Paint Degradation	(3×0.3(W1)+2×0.7(H1))×10.5(L1)×5	120.8m ²		
HI=50	Paint Degradation	(3×0.3(W1)+2×0.7(H1))×10.5(L1)×5	120.8m ²		

Table 3.1.6.3 Quantity of repair work at HI=0, 50

4). Cost estimation of repair work as at each HI condition

The repair cost as at border line of Health Index (HI=0, 30, 90) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (On the basis of repair cost in chapter 5)

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate is applied for the calculation for repair work.

Between the border lines of Health Index conditions, the unit rate is calculated by linear interpolation.

		1	(-))	
HI	Type of damage	Repair method	Repair cost		Refer No.
	Paint Degradation	Painting	15,800 Rs		No.St-6
111-0	Corrosion	Steel plate bonding	1,574,100	Rs	No.St-1
HI=0	Total	cost	1,589,900	Rs	
	Unit rate per m ²		20,500	Rs/m ²	
111-50	Paint Degradation	Painting	254,100	Rs	No.St-5
HI=50	Unit rate	per m ²	3,300	Rs/m ²	

Table 3.1.6.4Cost for repair work at border line of HI (=0, 50)

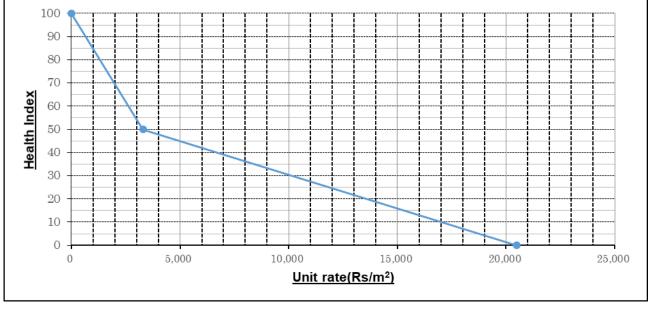


Figure 3.1.6.1 Relation between HI and unit rate

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
Replacem entofdeck slab		-	Deck slab	-	(NO.De-1)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent, Labor and	Redecking	6,000 Rs/m ²	77.7 m ²	466,200 Rs	Follow ing Maho EE office's cost estin ation
M ateria I	Total	6,000 Rs/m ²		466,200 Rs	

(5) Deck slab

Table 3.1.6.5Cost for repair work

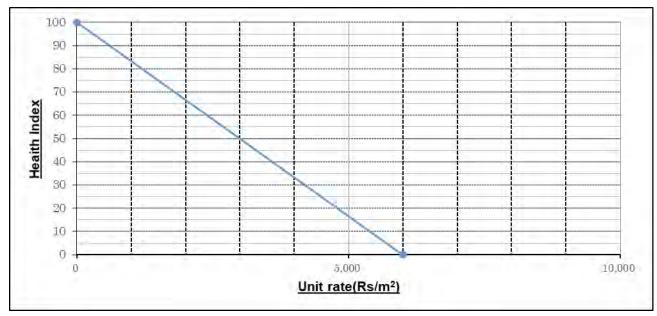


Figure 3.1.6.2 Relation between HI and unit rate

(6) Cross Beam

1). Assumed Health Index and Degree of damage

Repair method shall be selected based on area and depth of damage. Border line of HI at which repair method shall be changed is shown in following table. Degree of damage between the border lines shall be calculated by linear interpolation.

HI	Degree of damage		Outline figure
HI=0	 Paint Degradation (e grade) and Corrosion (e grade) generate at all elements. **Paint Degradation generated on 50% area of one element. **Corrosion exists on 50% area in one element. 	7.4	
HI=50	 Paint Degradation (e grade) generate at all elements. ※Paint Degradation generated on 50% area in one element. 	7.4	10.5
NOTE Pair	nt Degradation, Corrosion	<u> </u>	

Table 3.1.6.6 Assumed degree of damage at each HI

Quantities of repair work as at border line (HI = 0, 50) condition are shown in following table.

HI	Type of damage	Quantity of repair work	
III-0	Corrosion	1/2×7.4(W2)×4	14.8m
HI=0	Paint Degradation	(3×0.3(W1)+2×0.7(H2))×7.4(W3)×4	68.1m ²
HI=50	Paint Degradation	(3×0.3(W1)+2×0.7(H2))×7.4(W3)×4	68.1m ²
пі — 30			

Table 3.1.6.7 Quantity of repair work at each HI (=0, 50)

3). Cost estimation of repair work as at each HI condition

The repair cost as at border line of Health Index (HI=0, 30, 90) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (On the basis of repair cost in chapter 5)

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case, the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate is applied for the calculation for repair work.

Between the border lines of Health Index conditions, the unit rate is calculated by linear interpolation.

	1				
HI	Type of damage Repair method		Repair cost		Refer No.
	Paint Degradation	Painting	88,700	Rs	No.St-10
HI=0	Corrosion	Replacement of member	1,094,100	Rs	No.St-3
	Total cost		1,182,800	Rs	
	Unit rate	per m ²	15,300	Rs/m ²	
III -5 0	Paint Degradation Painting		141,300	Rs	No.St-9
HI=50	Unit rate	per m ²	1,900	Rs/m ²	

Table 3.1.6.8Cost for repair work at border line of HI (=0, 50)

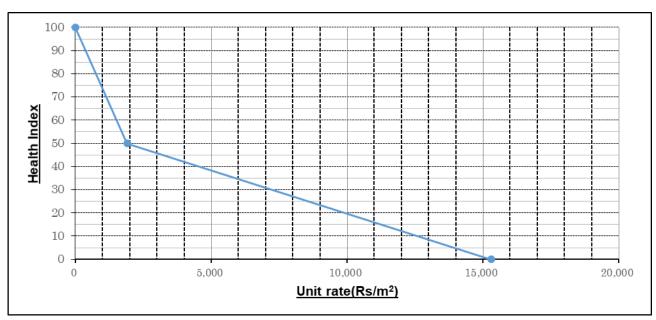


Figure.3.1.6.3 Relation between HI and unit rate

3.1.7 Structure type: Arch Bridge

(1) Arch Rib

1). Sample Bridge to be applied for unit rate

Following bridge is used for cost estimation for repair work.

Basic Information	Photos
Route No:B364Bridge No:No.7/15Length of bridge:8.6m (L2)Width of bridge:6.0m (W1)Arch rise:2.2m (H2)Clear span:7.1mLength of arch:8.95m (L1)Height of abutment:2.0m (H1)Height of spandrel:2.0m (H3)	
Plane view	
8.8 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93	

 Table 3.1.7.1
 Basic information of bridge

2). Assumed Health Index and Degree of damage

Repair method shall be selected based on area and depth of damage. Border line of HI at which repair method shall be changed is shown in following table. Degree of damage between the border lines shall be calculated by linear interpolation.

Degree of damage Outline figure HI 8.8 Arch Line (Displacement) generate. 2.93 2.93 2.93 2.00 HI=0 6.00 2.00 **\$** 8 Crack generate at 9 elements 8.8 2.93 2.93 2.93 2.00 HI=1 6.00 2.00 ¥ 2.00 <u>NOTE</u> ★ Crack Arch Line (Displacement),

Table 3.1.7.2 Assumed degree of damage at each HI

Quantities of repair work as at the border line (HI = 0, 30, 90) condition are shown in the following table.

HI	Type of damage	Quantity of repair work	
HI=0	Displacement	(8.95(L1)×6.0(W1)+2.0(H1)×6.0(W1))×0.25	16.4m ³
HI=1	Crack	8.95(L1)×3	26.9m

Table 3.1.7.3 Quantity of repair work at each HI

4). Cost estimation of repair work as at each HI condition

The repair cost as at border line of Health Index (HI=0, 30, 90) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (In basis of repair cost in chapter 5

mentioned which unit rate was used.)

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate applies for the calculation for repair work.

Between the border lines of Health Index conditions, the unit rate is calculated by linear interpolation.

HI	Type of damage Repair method		Repair cost		Refer No.
111-0	Arch line (Displacement)	Mortar spraying	763,600	Rs	No.Ar-1
HI=0	Total cost		763,600	Rs	
	Unit rate	per m ²	14,800	Rs/m ²	
Crack		Crack Injection	347,100	Rs	No.Co-30
HI=1	Unit rate	per m ²	6,800	Rs/m ²	

 Table 3.1.7.4
 Cost for repair work at border line of HI (=0, 1)

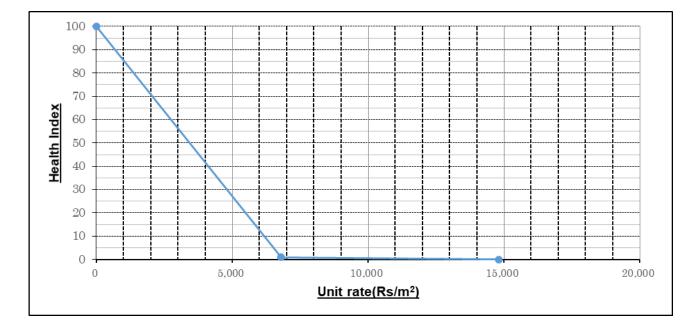


Figure 3.1.7.1 Relation between HI and unit rate

(2) Spandrel

1). Assumed Health Index and Degree of damage

Repair method shall be selected based on area and depth of damage.Border line of HI at which repair method shall be changed is shown in following table.Degree of damage between the border lines shall be calculated by linear interpolation.

Table 3.1.7.5Assumed degree of damage at each HI (=0, 1)

HI	Degree of damage	Outline figure
	Deteriorated (Loose) generate at all elements.	
		Parapet wall or Head Wall
HI=0		
	Abutment	
	Crack generated aAnd referments.	
		Parapet wall or Head Wall
HI=1	Abutment	
NOTE	1	
⊻k Cra	ck、 💯 Deteriorated (Loose)	

Quantities of repair work as at the border line (HI = 0, 1) condition are shown in following table.

HI	Type of damage	Quantity of repair work	
HI=0	Deteriorated (Loose)	$2 \times 0.25 \times ((2(H1)+2(H3)) \times 8.6(L2)-\pi/4 \times (2.2(H2)+7.0/2)^{-2}-7.0 \times 0.5 \times 7.0/2) \times 0.25 \times 2$	10.6m ³
HI=1	Crack	3×(2+2)×2	24.0m

Table 3.1.7.6 Quantity of repair work at each HI (=0, 1)

3). Cost estimation of repair work as at each HI condition

The repair costs as at border line of Health Index (HI=0, 30, 90) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (On the basis of repair cost in chapter 5

mentioned which unit rate was used.)

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case, the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate is applied for the calculation for repair work.

Between the border lines of Health Index conditions, the unit rate is calculated by linear interpolation.

HI	Type of damage	Repair method	Repair o	cost	Refer No.
	Deteriorated(Loose)	Mortar praying	619,900	Rs	No.Ar-2
HI=0	Total	cost	619,900	Rs	
	Unit rate per m ²		12,100	Rs/m ²	
TTT_1	Crack	Crack Injection	346,000	Rs	No.Co-31
HI=1	Unit rate	per m ²	6,800	Rs/m ²	

 Table 3.1.7.7
 Cost for repair work at border line of HI (=0, 1)

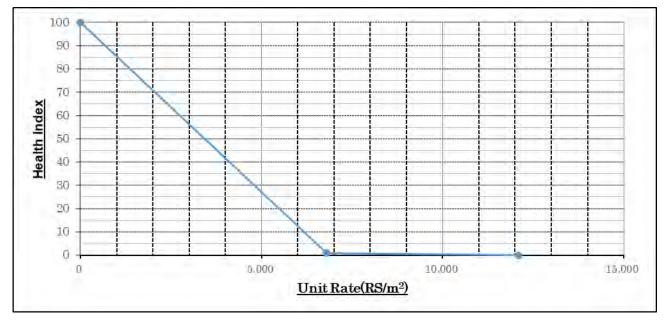


Figure 3.1.7.2 Relation between HI and unit rate

3.2 Substructure

(1) Sample Bridge to be applied for unit rate

Basic Information	Photos
Route No : A004	
Bridge No : No.31/1	
Length of bridge : 10.5m	
Width of bridge : 7.4m	
Height of Pier : 5.1m	1
Width of Pier : 7.4m (W2)	
Plane view	
7.4 2.47	

 Table 3.2.1
 Basic information of bridge

(2) Assumed Health Index and Degree of damage

Repair method shall be selected based on area and depth of damage. Border line of HI at which repair method shall be changed is shown in following table. Degree of damage between the border lines shall be calculated by linear interpolation.

HI	Degree of damage	Outline figure			
HI=0	Case1: Scour generate. Case2: Spalling / Delamination / Ex-rebar (e grade) and crack (e grade) generate at 9 elements (Ratio: 100%).	$\begin{array}{c c} \hline case1 \\ \hline case2 \\ \hline \hline case1 \\ \hline case2 \\ \hline case2 \\ \hline case1 \\ \hline case2 \\ case2 \\ \hline case2 \\ \hline case2 \\ case2$			
HI=30	Spalling / Delamination / Ex-rebar (e grade) generate 7 elements (Ratio: 78%) and crack (e grade) generate at 6 elements (Ratio: 67%).				
HI=90	Crack (e grade) generate at 1 elements (Ratio: 11%).				
• -	NOTE Scour Spalling / Delamination / Ex-rebar,				

 Table 3.2.2
 Assumed degree of damage at each HI

Quantities of repair work as at the border line (HI = 0, 1, 10) condition are shown in following table.

HI	Type of damage	Quantity of repair work	
HI=0	Scour	(7.4(W2)+2) ×2	18.8m ³
	Spalling /		
	Delamination /	1.7(H1)×2.47(W1)×0.08×0.30×9	0.9m ³
HI=0	Ex-rebar		
	Crack	1.7(H1)×9	15.3m
	Spalling /		
HI=30	Delamination /	1.7(H1)×2.47(W1)×0.06×0.30×7	0.5m ³
HI=30	Ex-rebar		
	Crack	1.7(H1)×6	10.2m
HI=90	Crack	1.7(H1)×1	1.7m

Table 3.2.3 Quantity of repair work at each HI (=0, 1, 10)

(4) Cost estimation of repair work as at each HI condition

The repair cost as at border line of Health Index (HI=0, 1, 10) condition are calculated according to the following procedure.

Procedure.1

Calculate the repair cost using following unit rate. (In basis of repair cost in chapter 5

mentioned which unit rate was used.)

Case.1: Unit rate mentioned in HSR

Case.2: Unit rate from contractor or Japanese basis

(In case, the unit rate is not mentioned in HSR)

Procedure.2

Calculate unit rate per area of bridge.

In BMS system, this unit rate applies for the calculation for repair work.

Between the border lines of Health Index conditions, the unit rate is calculated by linear interpolation.

HI	Type of damage	Repair method	Repair	cost	Refer No.
	Scour	Packing rubble and pouring concrete	250,300	Rs	No.Fu-1
HI=0	Total co	ost	250,300	Rs	
	Unit rate p	ber m ²	3,300	Rs/m ²	
	Spalling / Delamination / Ex-rebar	Grouting	325,800	Rs	No.Co-47
	Crack	Crack Injection	185,200	Rs	No.Co-29
HI=0	-	CFRS bonding (Strengthening)	870,100	Rs	No.Co-61
	Total cost		1,381,100	Rs	
	Unit rate per m ²		35,600	Rs/m ²	
	Spalling / Delamination / Ex-rebar	Plastering	181,000	Rs	No.Co-6
	Crack	Crack Injection	139,300	Rs	No.Co-28
HI=30	-	CFRS bonding (Strengthening)	677,600	Rs	No.Co-60
	Total cost		997,900	Rs	
	Unit rate per m ²		25,700	Rs/m ²	
111-00	Crack	Crack Injection	62,800	Rs	No.Co-27
HI=90	Unit rate p	per m ²	1,700	Rs/m ²	

Table 3.2.4 Cost for repair work at border line of HI (=0, 30, 90)

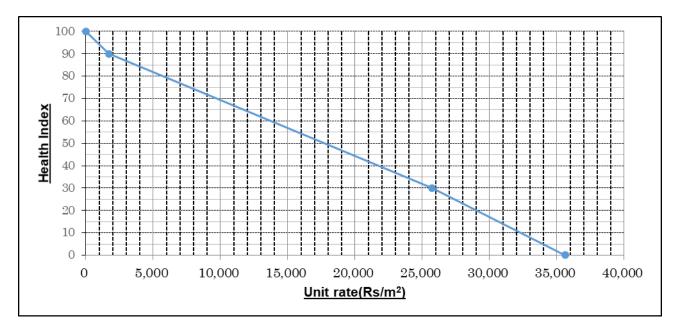


Figure 3.2.1 Relation between HI and unit rate

3.3 Surface

3.3.1 Pavement

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Pavem ent	-	Pavem ent	-	(N0.Pa-1)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
	Supply, lay and com pact asphalt prem ix concrete- Bridge decks	380 Rs/m ²	58.9 m 2	22,400 Rs	Unitrate is extracted from HSR Assum ed thickness is 5cm (S1-031)
	To ta l	400 Rs/m ²		22,400 Rs	

3.3.2 Expansion Joint

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Replacem ent	-	Expansion joint	-	(NO.Jo-1)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment, Laborand Material	M.S. ANGLE IRON AND HARD RUBBER EXPANSION JOINTS AS PER DRAW ING NO. T/B/107 REV.1	6,500 Rs/m	10.7 m	69,600 Rs	Unit rate is extracted from HSR (ST1-122)
	To ta l	6,500 Rs/m		69,600 Rs	

3.3.3 Accessories (Service Duct, Railing)

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Replacem ent	-	Serviceduct and Railing	-	(N0.Dr-1)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent, and up Labor and 110m m	Fixing pre casthand railing and uplight	1,100 Rs/m	20 m	22,000 Rs	Unit rate is extracted from HSR ST1-106
	110m m ϕ type 400 PVC service duct	640 Rs/m	20 m	12,800 Rs	Unit rate is extracted from HSR St1-147
	Total	3.500 Rs/m		34.800 Rs	

3.3.4 Approaches

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Approach	-	Approach	-	(NO.Ap-1)
	Item s	Unit Rate	Quantity (Duration)	TotalCost	NOTE
	Flatpaving 150mm thick	200 Rs/m 2	85.6 m ²	17,100 Rs	Unit rate is extracted from HSR Assum ed thickness is 5cm (S1-031)
Equipment, Labor, Material	Braking road surface	100 Rs/m ²	85.6 m ²	8,600 Rs	Unitrate is extracted from HSR (M1-002)
	Approved soil spread and com pactefd in place behind the abutm ent	470 Rs/m²	85.6 m ²	40,200 Rs	Unit rate is extracted from HSR Assum ed thickness 1.0m (EW 1-006)
	To ta l	6,200 Rs/m		65,900 Rs	

3.4 Bearing

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
Replacem ent		-	Bearing	-	(NO.Be-1)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	SUPPLYING AND LAYING APPROVED HARD RUBBER BEARING PADS 75MM X 12MM OVER CAPPING BEAMS AND UNDER THE APPROACH SLABS	1,500 Rs/m	21.4 m	32,100 Rs	Unitrate is extracted from HSR (ST1-122)
Labor and Material	Hydruulic Jack	1,700 Rs/day/nos	6 nos 14 day	142,800 Rs	Unit rate is extracted from japanese standard
	Tem porary support	23,200 Rs/day/nos	2 nos 14 day	649,600 Rs	Unit rate is extracted from japanese standard
	Crane Craw ler 25t	36,800 Rs/day	4 day	147,200 Rs	Unit rate is extracted from HSR
	Skilled labor A — 20stuff	32,000 Rs/day	14 day	448,000 Rs	Unit rate is extracted from HSR
	Total	132,700 Rs/m		1,419,700 Rs	

4. Basis of unit repair rate

The summary table of unit rate and basis are shown in the following.

Code number	Type of repair method	Type of bridge	Member	Health Index
(NO.Pa-1)	Pavement	-	Pavement	-
(NO.Ap-1)	Approach	-	Approach	-
(NO.Jo-1)	Replacement	-	Expansion joint	-
(NO.Be-1)	Replacement	-	Bearing	
(NO.Dr-1)	Replacement		Serviceduct and Railing	
(NO.St-1)	Steel Plate Bonding	Steel	Main Beam	HI=0
(NO.St-2)	Steel Plate Bonding	Truss	Cross Beam	HI=0
(NO.St-2)	Replacement of a steel members	Steel	Cross Beam	HI=0
(NO.St-4)	Replacement of a truss members	Truss	Main Beam	HI=0
(NO.St-5)	Zone Painting	Steel	Main beam	HI=50
(NO.St-6)	Zone Painting	Steel	Main beam	HI=0
(NO.St-7)	Zone Painting	Truss	Main beam	HI=50
(NO.St-8)	Zone Painting	Truss	Main beam	HI=0
(NO.St-9)	Zone Painting	Steel	Cross beam	HI=50
(NO.St-10)	Zone Painting	Steel	Cross beam	HI=0
(NO.St-11)	Zone Painting	Truss	Cross beam	HI=50
		Truss	Cross beam	HI=0
(NO.St-12) (NO.De-1)	Zone Painting Replacement of deck slab	-	Deck slab	
(NO.Co-1)		RCS	Deck Slab	- HI=30
(NO.Co-2)	Plastring (Polymer cement mortar) Plastring (Polymer cement mortar)	Box Bridge		HI=30
	Plastring (Polymer cement mortar)	PSC-PRE	Deck Slab Deck Slab	HI=30 HI=70
(NO.Co-3) (NO.Co-4)	Plastring (Polymer cement mortar)	PSC-POS,RCS-RCB	Main Beam	HI=70
	Plastring (Polymer cement mortar)	PSC-POS,RCS-RCB	Deck slab	HI=30 HI=90
(NO.Co-5) (NO.Co-6)	Plastring (Polymer cement mortar)	PSC-POS,RCS-RCB		HI=90 HI=30
(NO.Co-7)		P30-P03,R03-R05	Diaphragm Substructure	HI=30
(NO.Co-8)	Plastring (Polymer cement mortar)	RCS		HI=30 HI=90
(NO.Co-9)	Crack Injection Crack Injection	RCS	Deck Slab Deck Slab	HI=90 HI=30
(NO.Co-10)		RCS	Deck Slab	HI=30 HI=0
(NO.Co-11)	Crack Injection		Deck Slab	HI=0 HI=90
	Crack Injection	Box bridge	-	HI=90 HI=30
(NO.Co-12)	Crack Injection	Box bridge	-	HI=30
(NO.Co-13) (NO.Co-14)	Crack Injection Crack Injection	Box bridge PSC-PRE	 Deck Slab	HI=0 HI=90
(NO.Co-14)		PSC-PRE	Deck Slab	HI=90 HI=70
(NO.Co-16)	Crack Injection Crack Injection	PSC-PRE		HI=70
(NO.Co-17)	Crack Injection	PSC-PRE	Deck Slab Deck Slab	HI=30 HI=0
(NO.Co-18)	Crack Injection	PSC-POS,RCS-RCB	Main Beam	HI=0 HI=90
(NO.Co-19)		PSC-POS,RCS-RCB	Main Beam	HI=90 HI=30
(NO.Co-19)	Crack Injection Crack Injection	PSC-POS,RCS-RCB	Main Beam	HI=30 HI=0
(NO.Co-20)	Crack Injection	PSC-POS,RCS-RCB	Diaphragm	HI=0 HI=90
		PSC-POS,RCS-RCB		
(NO.Co-22) (NO.Co-23)	Crack Injection Crack Injection	PSC-POS,RCS-RCB	Diaphragm Diaphragm	HI=30 HI=0
(NO.Co-23)	Crack Injection	PSC-POS,RCS-RCB	Diaphragm Deck Slab	HI=0 HI=90
				HI=90 HI=30
(NO.Co-25) (NO.Co-26)	Crack Injection Crack Injection	PSC-POS,RCS-RCB	Deck Slab	HI=30 HI=0
/		PSC-POS,RCS-RCB	Deck Slab	HI=0 HI=90
(NO.Co-27) (NO.Co-28)	Crack Injection	-	Substructure	
	Crack Injection	-	Substructure Substructure	HI=30
(NO.Co-29)	Crack Injection	- Arab Dridge		HI=0
(NO.Co-30)	Crack Injection	Arch Bridge	Arch Rib	HI=1

Code number	Type of repair method	Type of bridge	Member	Health Index
(NO.Co-31)	Crack Injection	Arch Bridge	Spandrel	HI=1
(NO.Co-32)	Grouting	RCS	Deck Slab	HI=0
(NO.Co-33)	Grouting	RCS	Deck Slab	HI=29
(NO.Co-34)	Grouting	Box Bridge	Deck Slab	HI=0
(NO.Co-35)	Grouting	Box Bridge	Deck Slab	HI=29
(NO.Co-36)	Grouting	PSC-PRE	Deck Slab	HI=0
(NO.Co-37)	Grouting	PSC-PRE	Deck Slab	HI=30
(NO.Co-38)	Grouting	PSC-PRE	Deck Slab	HI=69
(NO.Co-39)	Grouting	PSC-POS,RCS-RCB	Main Beam	HI=0
(NO.Co-40)	Grouting	PSC-POS,RCS-RCB	Main Beam	HI=29
(NO.Co-41)	Grouting	PSC-POS,RCS-RCB	Deck slab	HI=0
(NO.Co-42)	Grouting	PSC-POS,RCS-RCB	Deck slab	HI=89
(NO.Co-43)	Grouting	PSC-POS,RCS-RCB	Deck slab	HI=30
(NO.Co-44)	Grouting	PSC-POS,RCS-RCB	Diaphragm	HI=0
(NO.Co-45)	Grouting	PSC-POS,RCS-RCB	Diaphragm	HI=29
(NO.Co-46)	Grouting	-	Substructure	HI=29
(NO.Co-47)	Grouting	-	Substructure	HI=0
(NO.Co-48)	Fiber sheet bonding	PSC-PRE	Deck Slab	HI=0
(NO.Co-49)	Fiber sheet bonding	PSC-PRE	Deck Slab	HI=29
(NO.Co-50)	Fiber sheet bonding	RCS	Deck Slab	HI=0
(NO.Co-51)	Fiber sheet bonding	RCS	Deck Slab	HI=29
(NO.Co-52)	Fiber sheet bonding	PSC-POS,RCS-RCB	Main Beam	HI=0
(NO.Co-53)	Fiber sheet bonding	PSC-POS,RCS-RCB	Main Beam	HI=29
(NO.Co-54)	Fiber sheet bonding	PSC-POS,RCS-RCB	Deck slab	HI=0
(NO.Co-55)	Fiber sheet bonding	PSC-POS,RCS-RCB	Deck slab	HI=29
(NO.Co-56)	Fiber sheet bonding	PSC-POS,RCS-RCB	Diaphragm	HI=0
(NO.Co-57)	Fiber sheet bonding	PSC-POS,RCS-RCB	Diaphragm	HI=29
(NO.Co-58)	Fiber sheet bonding	Box bridge	-	HI=0
(NO.Co-59)	Fiber sheet bonding	Box bridge	-	HI=29
(NO.Co-60)	Fiber sheet bonding	Substructure	-	HI=29
(NO.Fu-1)	Repair the Scouring part	-	Substructure	HI=0
(NO.Ar-1)	Mortar spraying	Arch bridge	Arch Rib	HI=0
(NO.Ar-2)	Mortar spraying	Arch bridge	Arch spandrel	HI=0

Table 4.1	Summa	ry table for	r unit rate ((2/2)

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Pavem ent	-	Pavem ent	I	(N0.Pa-0)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent, Labor,	Pacthing potholes ofm edium depth of 20-75m m	800 Rs/m²	29.4 m ²		Unit rate is extracted from HSR (MS-1)
Material					
	Tota /			23,500 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Pavem ent	-	Pavem ent	-	(NO.Pa-1)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment, Labor, Material	Supply, lay and com pact asphalt prem ix concrete- Bridge decks	380 Rs/m ²	58.9 m 2	22,400 Rs	Unit rate is extracted from HSR Assum ed thickness is 5cm (S1-031)
Materiai	To ta l	400 Rs/m ²		22,400 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Replacem ent	-	Expansion joint	-	(NO.Jo-1)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment, Laborand Material	M.S. ANGLE IRON AND HARD RUBBER EXPANSION JOINTS AS PER DRAW ING NO. T/B/107 REV.1	6,500 Rs/m	10.7 m	69,600 Rs	Unitrate is extracted from HSR (ST1-122)
	To ta l	6,500 Rs/m		69,600 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Approach	-	Approach	-	(NO.Ap-1)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
	Flatpaving 150mm thick	200 Rs/m ²	85.6 m ²	17,100 Rs	Unitrate is extracted from HSR Assum ed thickness is 5cm (S1-031)
Equipment, Labor,	Braking road surface	100 Rs/m ²	85.6 m ²	8,600 Rs	Unitrate is extracted from HSR (M1-002)
M ateria I	Approved soil spread and com pactefd in place behind the abutm ent	470 Rs/m²	85.6 m ²	40,200 Rs	Unitrate is extracted from HSR Assum ed thickness 1.0m (EW 1-006)
	Tota/	6,200 Rs/m		65,900 Rs	

Repair / Strengthening m ethod Replacem ent Item s		Type of bridge	Member	Health Index	Code num ber (NO.Be-1)
		-	Bearing	-	
		U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	SUPPLYING AND LAYING APPROVED HARD RUBBER BEARING PADS 75MM X 12MM OVER CAPPING BEAMS AND UNDER THE APPROACH SLABS	1,500 Rs/m	21.4 m	32,100 Rs	Unitrate is extracted from HSR (ST1-122)
Labor and Material	Hydruulic Jack	1,700 Rs/day/no	s6 nos 14 day	142,800 Rs	Unit rate is extracted from japanese standard
	Tem porary support	23,200 Rs/day/no	s2 nos 14 day	649,600 Rs	Unit rate is extracted from japanese standard
	Crane Craw ler 25t	36,800 Rs/day	4 day	147,200 Rs	Unit rate is extracted from HSR
	Skilled labor A — 20stuff	32,000 Rs/day	14 day	448,000 Rs	Unit rate is extracted from HSR
	Total	132,700 Rs/m		1,419,700 Rs	

Repair / Strengthening method		Type of bridge	M em ber	Health Index	Code num ber
Replacem ent		-	Serviceduct and Railing	-	(N0.Dr-1)
Item s		U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	Fixing pre casthand railing and uplight	1,100 Rs/m	20 m	22.000 Rs	Unit rate is extracted from HSR ST1-106
Labor and Material	110m m ϕ type 400 PVC service duct	640 Rs/m	20 m	12,800 Rs	Unitrate is extracted from HSR St1-147
	To ta l	3,500 Rs/m		34,800 Rs	

Repair / Strengthening method SteelPlate Bonding Item s		Type of	bridge	Member	Health Index		Code num ber
		S te e l		Main Beam	H I= 0		(N0.St-1)
		U n it F	late	Quantity (Duration)	TotalCost	t	NOTE
	W elding plant	13,000	Rs/day	5 day	65,000	Rs	Unit rate is extracted from HSR (B0-105)
	Generater Electric 7-10KVA	7,200	Rs/day	20 day	144,000	Rs	Unit rate is extracted from HSR (B0-130A)
	Crane Craw ler 25t	36,800	Rs/day	5 day	184,000	Rs	Unit rate is extracted from HSR
	Grinder	450	Rs/day	5 day	2,200	Rs	Unitrate is extracted from HSR (B0-105)
	Fabricating steel	1,400	Rs/day	4 day	5,600	Rs	Unit rate is extracted from HSR (ST1-131)
Equipm ent	Skilled labor A — 5stuff	12,800	Rs/day	20 day	256,000	Rs	Unit rate is extracted from HSR
and Labor	Surface treatm ent (Power tools)	2,000	R s/m 2	60.4 m ²	120,800	Rs	Unit rate is estin ated by contractor
	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600	Rs/m²	60.4 m ²	36,200	Rs	Unitrate is extracted from HSR (ST1-092)
	S ca ffo ld ing	2,500	Rs/m²	77.7 m ²	194,300	Rs	Unit rate is based on trial construction
	Sub Total				1,008,100	Rs	
Material	M ild Steel (h=0.5,L=10.5m ,n=5nos)				566,000	Rs	Unit rate is extracted from HSR (B0–411)
	Total				1,574,100	R s	

Repair / Strengthening method SteelPlate Bonding Item s		Type of bridge Truss		<i>M em ber</i> Cross Beam	Health Index H I= 0		(NO.St-2)
			W elding plant	13,000 F	₹s/day	5 day	65,000
	Generater Electric 7-10KVA	7,200 F	Rs/day	20 day	144,000	Rs	Unitrate is extracted from HSR (B0-130A)
	Crane Craw ler 25t	36,800 F	Rs/day	5 day	184,000	Rs	Unit rate is extracted from HSR
	Grinder	450 F	Rs∕day	5 day	2,200	Rs	Unitrate is extracted from HSR (B0–105)
	Fabricating steel	1,400 F	Rs/day	4 day	5,600	Rs	Unit rate is extracted from HSR (ST1-131)
Equipm ent	Skilled labor A — 5stuff	12,800 F	Rs/day	20 day	256,000	Rs	Unit rate is extracted from HSR
and Labor	Surface treatm ent (Power tools)	2,000 F	Rs/m²	17.2 m ²	34,400	Rs	Unit rate is estin ated by contractor
	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600 F	₹s/m²	17.2 m ²	10,300	Rs	Unitrate is extracted from HSR (ST1-092)
	S ca ffo ld ing	2,500 F	₹s/m²	42 m ²	105,000	Rs	Unit rate is based on trial construction
	Sub Total				806,500	Rs	
Material	M ild Steel (h=0.5,L=10.5m ,n=5nos)				0	Rs	Unit rate is extracted from HSR (B0-411)
	Total				806,500	Rs	

Repair / Strengthening m ethod Replacem ent of a steelm em bers Item s		Type of bridge	Member	Health Index	Code num ber
		S te e l	Cross Beam	H I= 0	(N0.St-3)
		U n it R a te	Quantity (Duration)	TotalCost	NOTE
	W elding plant	13,000 Rs/day	4 day	52,000 Rs	Unitrate is extracted from HSR (B0-105)
	Generater Electric 7–10KVA	7,200 Rs/day	20 day	144,000 Rs	Unit rate is extracted from HSR (B0-130A)
	Crane Craw ler 25t	36,800 Rs/day	4 day	147,200 Rs	Unit rate is extracted from HSR
	Grinder	450 Rs/day	4 day	1,800 Rs	Unit rate is extracted from HSR (B0-105)
	Fabricating steel	1,400 Rs/day	4 day	5,600 Rs	Unit rate is extracted from HSR (ST1-131)
	Skilled labor A — 5stuff	12,800 Rs/day	20 day	256,000 Rs	Unit rate is extracted from HSR
F in	Surface treatm ent (Power tools)	2,000 Rs/m ²	14.8 m ²	29,600 Rs	Unit rate is estin ated by contractor
Equipm ent, Labor and Material	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600 Rs/m²	14.8 m ²	8,900 Rs	Unitrate is extracted from HSR (ST1-092)
	S ca ffo ld ing	2,500 Rs/m²	30 m ²	75,000 Rs	Unit rate is based on trial construction
	Hydruulic Jack	1,700 Rs/day/nos	5 nos 10 day	8,500 Rs	Unit rate is extractied from japanese standard
			2 nos		Unit rate is extracted from
	Tem porary support	23,200 Rs/day/nos	10 day	46,400 Rs	japanese standard Bearing capacity : 50t
	Sub Total			775,000 Rs	
Material	Mild Steel			319,100 Rs	Unitrate is extracted from HSR (B0-411)
	To ta l			1,094,100 Rs	

Repair / Strengthening method Replacement of a trussmembers Items		Type of bridge	<i>Member</i> Main Beam	Health Index	Code num ber (NO.St-4) NOTE
		Truss		H I= 0	
		U n it R a te	Quantity (Duration)	TotalCost	
	W elding plant	13,000 Rs/day	4 day	52,000 Rs	Unit rate is extracted from HSR (B0-105)
	Generater Electric 7–10KVA	7,200 Rs/day	20 day	144,000 Rs	Unitrate is extracted from HSR (B0–130A)
	Crane Craw ler 25t	36,800 Rs/day	4 day	147,200 Rs	Unit rate is extracted from HSR
	Grinder	450 Rs/day	4 day	1,800 Rs	Unitrate is extracted from HSR (B0-105)
	Fabricating steel	1,400 Rs/day	4 day	5,600 Rs	Unitrate is extracted from HSR(ST1-131)
	Skilled labor A — 5stuff	12,800 Rs/day	20 day	256,000 Rs	Unit rate is extracted from HSR
Equipment	Surface treatm ent (Power tools)	2,000 Rs/m ²	5.7 m ²	11,400 Rs	Unit rate is estim ated by contractor
Equipment, Laborand Material	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600 Rs/m²	5.7 m ²	3,400 Rs	Unitrate is extracted from HSR (ST1-092)
	S ca ffo ld ing	2,500 Rs/m²	42 m ²	105,000 Rs	Unit rate is based on trial construction
	Hydruulic Jack	1,700 Rs/day/nos	4 nos 10 day	6,800 Rs	Unit rate is extractied from japanese standard
			2 nos		Unit rate is extracted from
	Tem porary support	23,200 Rs/day/nos	10 day	46,400 Rs	japanese standard
			10 003		Bearing capacity : 50t
	Sub Total			779,600 Rs	
Material	Mild Steel			174,600 Rs	Unitrate is extracted from HSR (B0-411)
	To ta /			954,200 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
Zone Painting Item s		S te e l	Main beam	H I= 50	(N0.St-5)
		U n it R a te	Quantity (Duration)	TotalCost	NOTE
	Surface treatm ent (Power took	2,000 R s/m 2	60.4 m ²	120,800 Rs	Unit rate is estim ated by contractor
Equipm ent, Labor and Material	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600 Rs/m²	60.4 m ²	36,200 Rs	Unitrate is extracted from HSR (ST1-092)
	S ca ffold ing	2,500 Rs/m 2	38.85 m ²	97,100 Rs	Unit rate is based on trial construction
	To ta l	5,100 Rs/m²		254,100 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Zone Painting	S te e l	Main beam	H I= 0	(N0.St-6)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
	Surface treatm ent (Power took	2,000 Rs/m 2	0 m ²	0 Rs	Unitrate is estim ated by contractor
Equipment, Laborand Material	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600 Rs/m ²	26.3 m ²	15,800 Rs	Unitrate is extracted from HSR (ST1-092)
	S ca ffo ld ing	2,500 Rs/m 2	0 m ²	0 Rs	Unit rate is based on trial construction
	Total	5,100 Rs/m ²		15,800 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Zone Painting	Truss	Main beam	H I= 50	(N0.St-7)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
	Surface treatm ent (Power took	2,000 R s/m 2	2.8 m ²	5,600 Rs	Unit rate is estim ated by contractor
Equipm ent, Labor and Material	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600 Rs/m ²	2.8 m ²	1,700 Rs	Unitrate is extracted from HSR (ST1-092)
	S ca ffo ld ing	2,500 Rs/m ²	21 m ²	52,500 Rs	Unitrate is based on trial construction
	Total	5,100 Rs/m²		59,800 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Zone Painting	Truss	Main beam	H I= 0	(N0.St-8)
	ltem s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
	Surface treatm ent (Power took	2,000 R s/m 2	12.6 m^2	25,200 Rs	Unitrate is estim ated by contractor
Equipm ent, Labor and Material	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600 Rs/m ²	12.6 m ²	7,600 Rs	Unitrate is extracted from HSR (ST1-092)
	S ca ffo ld ing	2,500 Rs/m 2	0 m ²	0 Rs	Unitrate is based on trial construction
	Total	5,100 Rs/m ²		32,800 Rs	

Repair	/ Strengthening m ethod Zone Painting	Type of bridge Steel	Member Cross beam	Health Index H I= 50	Code num ber (N0.St-9)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
	Surface treatm ent (Power took	2,000 R s/m 2	17 m ²	34,000 Rs	Unit rate is estim ated by contractor
Equipment, Laborand Material	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600 Rs/m ²	17 m ²	10,200 Rs	Unitrate is extracted from HSR (ST1-092)
	S ca ffo ld ing	2,500 Rs/m 2	38.85 m ²	97,100 Rs	Unit rate is based on trial construction
	Total	5,100 Rs/m ²		141,300 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Zone Painting	S te e l	Crossbeam	H I= 0	(N0.St-10)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
	Surface treatm ent (Power took	2,000 Rs/m 2	34.1 m ²	68,200 Rs	Unitrate is estim ated by contractor
Equipm ent, Labor and Material	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600 Rs/m²	34.1 m ²	20,500 Rs	Unitrate is extracted from HSR (ST1-092)
	S ca ffo kl ing	2,500 Rs/m ²	0 m ²	0 Rs	Unit rate is based on trial construction
	Tota/	5,100 Rs/m²		88,700 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Zone Painting	Truss	Crossbeam	H I= 50	(N0.St-11)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
	Surface treatm ent (Power took	2,000 R s/m 2	8.6 m ²	17,200 Rs	Unit rate is estim ated by contractor
Equipm ent, Labor and Material	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600 Rs/m ²	8.6 m ²	5,200 Rs	Unitrate is extracted from HSR(ST1-092)
	S ca ffold ing	2,500 Rs/m ²	21 m ²	52,500 Rs	Unit rate is based on trial construction
	To ta l	5,100 Rs/m ²		74,900 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Zone Painting	Truss	Crossbeam	H I= 0	(N0.St-12)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
	Surface treatm ent (Power took	2,000 Rs/m 2	34.32 m ²	68,600 Rs	Unit rate is estim ated by contractor
Equipment, Laborand Material	PAINTING WITH TWO COATS OF ENAMEL PAINT AFTER CLEANING, DERUSTING& APPLI CATION OF ONE COAT ANTICORROSIVE PAINT	600 Rs/m²	34.32 m ²	20,600 Rs	Unitrate is extracted from HSR (ST1-092)
	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unit rate is based on trial construction
	Total	5,100 Rs/m ²		89,200 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
Rep	acem entofdeck slab	-	Deck slab	-	(NO.De-1)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent, Labor and	Redecking	6,000 Rs/m ²	77.7 m ²	466,200 Rs	Follow ing Maho EE office's cost estim ation
Material					
	Total	6,000 Rs/m ²		466,200 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
Plastring	g (Polym er cem ent m ortar)	RCS	Deck Slab	H I= 30	(NO.Co-1)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment, Labor, Material	P la stering	423,400 Rs/m 3	0.4 m ³	169,400 Rs	Unit rate is estim ated by contractor
	S ca ffo ld ing	2,500 Rs/m ²	16.8 m ²	42,000 Rs	Unit rate is based on trial construction
	To ta l			211,400 Rs	

	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
Plastring	g (Polym er cem ent m ortar)	Box Bridge	Deck Slab	H I= 30	(NO.Co-2)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	Plastering	423,400 Rs/m 3	0.2 m ³	84,700 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	12.9 m ²	32,300 Rs	Unit rate is based on trial construction
Total				117,000 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
Plastring	g (Polym er cem ent m ortar)	PSC-PRE	Deck Slab	H I= 70	(NO.Co-3)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	P la stering	423,400 Rs/m 3	0.2 m ³	84,700 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffold ing	2,500 Rs/m ²	53 m ²	132,500 Rs	Unit rate is based on trial construction
	To ta l			217,200 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
Plastring	; (Polym er cem ent m ortar)	PSC-POS,RCS-RCB	Main Beam	H I= 30	(NO.Co-4)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	P la ste r in g	423,400 R s/m 3	0.5 m ³	211,700 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	24 m ²	60,000 Rs	Unitrate is based on trial construction
	Total			271,700 Rs	

-	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
Plastring	; (Polym er cem ent m ortar)	PSC-POS,RCS-RCB	Deck slab	H I= 90	(NO.Co-5)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	P la ste r in g	423,400 Rs/m 3	0.05 m ³	21,200 Rs	Unit rate is estin ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	113 m ²	282,500 Rs	Unit rate is based on trial construction
	Total			303,700 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
P la string	(Polym er cem ent m ortar)	PSC-POS,RCS-RCB	Diaphragm	H I= 30	(NO.Co-6)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	P la ste r in g	423,400 R s/m 3	0.2 m 3	84,700 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	244 m ²	610,000 Rs	Unit rate is based on trial construction
	Total			694,700 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
P la string	: (Polym er cem ent m ortar)	-	Substructure	H I= 30	(NO.Co-7)
	Item s	U n it Rate	Quantity (Duration)	TotalCost	NOTE
Equipment,	Plastering	423,400 Rs/m ³	0.5 m ³	211,700 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unitrate is based on trial construction
	Total			211,700 Rs	

Repair	/Strengtheningmethod	Typeofbridge	Member	Health Index	Code num ber
	Crack Injection	RCS	Deck Slab	H I= 90	(NO.Co-8)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	In jection	9,000 Rs/m	2.6 m	23,400 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	4 m ²	10,000 Rs	Unit rate is based on trial construction
	Total			33,400 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Crack Injection	RCS	Deck Slab	H I= 30	(NO.Co-9)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	12.9 m	116,100 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unitrate is based on trial construction
	Total			116,100 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Crack Injection	RCS	Deck Slab	H I= 0	(NO.Co-10)
	Item s	U n it R a te	Quantity	TotalCost	NOTE
Equipm ent,	In jection	9,000 Rs/m	18.1 m	162,900 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m 2	0 m ²	0 Rs	Unit rate is based on trial construction
	Total			162,900 Rs	

Repair.	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Crack Injection	Box bridge	-	H I= 90	(NO.Co-11)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	3.3 m	29,700 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	4.3 m ²	10,800 Rs	Unit rate is based on trial construction
	Total			40,500 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
	Crack Injection	Box bridge	-	H I= 30	(N0.Co-12)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	In jection	9,000 Rs/m	9.8 m	88,200 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo kl ing	2,500 Rs/m ²	0 m ²	0 Rs	Unit rate is based on trial construction
	Total			88,200 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
	Crack Injection	Box bridge	-	H I= 0	(NO.Co-13)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	In jection	9,000 Rs/m	16.3 m	146,700 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unit rate is based on trial construction
	Total			146,700 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
	Crack Injection	PSC-PRE	Deck Slab	H I= 90	(NO.Co-14)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	0.7 m	6,300 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	9 m ²	22,500 Rs	Unitrate is based on trial construction
	Tatal			00.000 B.	
	To ta l			28,800 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Crack Injection	PSC-PRE	Deck Slab	H I= 70	(NO.Co-15)
	Item s	U n it R a te	Quantity	TotalCost	NOTE
Equipm ent,	In jection	9,000 Rs/m	2 m	18,000 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m 2	0 m ²	0 Rs	Unitrate is based on trial construction
	To ta l			18,000 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Crack Injection	PSC-PRE	Deck Slab	H I= 30	(NO.Co-16)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	3.9 m	35,100 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unit rate is based on trial construction
	Total			35,100 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
	Crack Injection	PSC-PRE	Deck Slab	H I= 0	(NO.Co-17)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	6.5 m	58,500 Rs	Unit rate is estin ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unit rate is based on trial construction
	Total			58,500 Rs	

Repair,	/ Strengthening method Crack Injection	Type of bridge PSC-POS.RCS-RCB	Member Main Beam	Health Index H I= 90	<i>Code num ber</i> (N0.Co-18)
	Item s	Unit Rate	Quantity (Duration)	TotalCost	NOTE
Equipment, Labor, Material	In jection	9,000 Rs/m	0.8 m	7,200 Rs	Unit rate is estin ated by contractor
	S ca ffold ing	2,500 Rs/m ²	24 m ²	60,000 Rs	Unit rate is based on trial construction
	Total			67,200 Rs	

Repair.	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Crack Injection	PSC-POS,RCS-RCB	Main Beam	H I= 30	(NO.Co-19)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	In jection	9,000 Rs/m	5.2 m	46,800 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unit rate is based on trial construction
	Tota/			46,800 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Crack Injection	PSC-POS,RCS-RCB	Main Beam	H I= 0	(N0.Co-20)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	7.6 m	68,400 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unit rate is based on trial construction
	Total			68,400 Rs	

Repair.	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Crack Injection	PSC-POS,RCS-RCB	Diaphragm	H I= 90	(N0.Co-21)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	0.8 m	7,200 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffold ing	2,500 Rs/m ²	24 m ²	60,000 Rs	Unit rate is based on trial construction
	To ta l			67,200 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
	Crack Injection	PSC-POS,RCS-RCB	Diaphragm	H I= 30	(NO.Co-22)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	5.2 m	46,800 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unitrate is based on trial construction
	Total			46,800 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
	Crack Injection	PSC-POS,RCS-RCB	Diaphragm	H I= 0	(NO.Co-23)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	Injection	9,000 Rs/m	8 m	72,000 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unit rate is based on trial construction
	To ta l			72,000 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Crack Injection	PSC-POS,RCS-RCB	Deck Slab	H I= 90	(NO.Co-24)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	5.3 m	47,700 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unitrate is based on trial construction
	Total			47,700 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Crack Injection	PSC-POS,RCS-RCB	Deck Slab	H I= 30	(NO.Co-25)
	Item s	U n it R a te	Quantity	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	28 m	252,000 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m 2	0 m ²	0 Rs	Unit rate is based on trial construction
	Total			252,000 Rs	

Repair.	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Crack Injection	PSC-POS,RCS-RCB	Deck Slab	H I= 0	(N0.Co-26)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	42 m	378,000 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	ffolding 2,500 R s/m ² 0 m ² 0 R s	0 Rs	Unit rate is based on trial construction	
	 Tota/			378,000 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Crack Injection	-	Substructure	H I= 90	(NO.Co-27)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	In jection	9,000 Rs/m	1.7 m	15,300 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	19 m ²	47,500 Rs	Unit rate is based on trial construction
	To ta l			62,800 Rs	

Repair,	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Crack Injection	-	Substructure	H I= 30	(NO.Co-28)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment, Labor, Material	In jection	9,000 Rs/m	10.2 m	91,800 Rs	Unit rate is estim ated by contractor
	S ca ffo ld ing	2,500 Rs/m ²	19 m ²	47,500 Rs	Unit rate is based on trial construction
	To ta l			139,300 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Crack Injection	-	Substructure	H I= 0	(NO.Co-29)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment,	Injection	9,000 Rs/m	15.3 m	137,700 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	19 m ²	47,500 Rs	Unit rate is based on trial construction
	To ta l			185,200 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Crack Injection	Arch Bridge	Arch Rib	H I= 1	(N0.Co-30)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	In jection	9,000 Rs/m	26.9 m	242,100 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo kl ing	2,500 Rs/m ²	42 m ²	105,000 Rs	Unit rate is based on trial construction
	Total			347,100 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Crack Injection	Arch Bridge	Spandrel	H I= 1	(NO.Co-31)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	In jection	9,000 Rs/m	24 m	216,000 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	52 m ²	130,000 Rs	Unitrate is based on trial construction
	Tota/			346,000 Rs	

Repair.	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Grouting	RCS	Deck Slab	H I= 0	(NO.Co-32)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	Grouting	362,000 Rs/m ³	0.7 m ³	253,400 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	37.8 m ²	94,500 Rs	Unit rate is based on trial construction
	Total			347,900 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
	Grouting	RCS	Deck Slab	H I= 29	(NO.Co-33)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	Grouting	362,000 Rs/m ³	0.4 m ³	144,800 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	16.8 m ²	42,000 Rs	Unitrate is based on trial construction
	Total			186,800 Rs	

Repair	/ Strengthening method Grouting	<i>Type of bridge</i> Box Bridge	Member DeckSlab	Health Index H I= 0	Code num ber (N0.Co-34)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	Grouting	362,000 Rs/m ³	0.5 m ³	181,000 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	38.7 m ²	96,800 Rs	Unitrate is based on trial construction
	To ta l			277,800 Rs	

Repair	/Strengtheningmethod	Type of bridge	Member	Health Index	Code num ber
	Grouting	Box Bridge	Deck Slab	H I= 29	(NO.Co-35)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	Grouting	$362,000$ Rs/m 3	0.2 m 3	72,400 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	12.9 m ²	32,300 Rs	Unit rate is based on trial construction
	Total			104 700 Pc	
	10181			104,700 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
	Grouting	PSC-PRE	Deck Slab	H I= 0	(NO.Co-36)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	Grouting	362,000 Rs/m ³	2.1 m ³	760,200 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	140 m ²	350,000 Rs	Unit rate is based on trial construction
	Total			1,110,200 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
	Grouting	PSC-PRE	Deck Slab	H I= 30	(NO.Co-37)
	Item s	U n it R a te	Quantity	TotalCost	NOTE
Equipm ent,	Grouting	362,000 Rs/m ³	1.1 m ³	398,200 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	123 m ²	307,500 Rs	Unitrate is based on trial construction
	To ta l			705,700 Rs	

Repair	/Strengthening method	Typeofbridge	M em ber	Health Index	Code num ber
	Grouting	PSC-PRE	Deck Slab	H I= 69	(NO.Co-38)
	Item s	U n it R a te	Quantity	TotalCost	NOTE
Equipm ent,	Grouting	$362,000$ Rs/m 3	0.2 m ³	72,400 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	53 m ²	132,500 Rs	Unit rate is based on trial construction
	Total			204,900 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Grouting	PSC-POS,RCS-RCB	Main Beam	H I= 0	(NO.Co-39)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	Grouting	362,000 Rs/m 3	0.8 m ³	289,600 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	244 m ²	610,000 Rs	Unitrate is based on trial construction
	Total			899,600 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Grouting	PSC-POS,RCS-RCB	Main Beam	H I= 29	(N0.Co-40)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	Grouting	362,000 Rs/m ³	0.5 m ³	181,000 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	24 m ²	60,000 Rs	Unitrate is based on trial construction
	Total			241,000 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Grouting	PSC-POS,RCS-RCB	Deck slab	H I= 0	(N0.Co-41)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent, Labor, Material	Grouting	$362,000$ Rs/m 3	4.6 m 3	1,665,200 Rs	Unit rate is estim ated by contractor
	S ca ffo ld ing	2,500 Rs/m ²	193 m ²	482,500 Rs	Unitrate is based on trial construction
	Total			2,147,700 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Grouting	PSC-POS,RCS-RCB	Deck slab	H I= 89	(NO.Co-42)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent,	Grouting	362,000 Rs/m 3	0.05 m 3	18,100 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	113 m ²	282,500 Rs	Unitrate is based on trial construction
	Total			300,600 Rs	

Repair,	/ Strengthening m ethod Grouting	Type of bridge PSC-POS,RCS-RCB	<i>Member</i> Deckslab	Health Index H I= 30	Code num ber (N0.Co-43)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	ΝΟΤΕ
Equipm ent,	Grouting	362,000 Rs/m ³	2.5 m 3	905,000 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	266 m ²	665,000 Rs	Unit rate is based on trial construction
	Total			1,570,000 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Grouting	PSC-POS,RCS-RCB	Diaphragm	H I= 0	(NO.Co-44)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent, Labor, Material	Grouting	362,000 Rs/m ³	0.4 m ³	144,800 Rs	Unit rate is estim ated by contractor
	S ca ffo ld ing	2,500 Rs/m ²	244 m ²	610,000 Rs	Unitrate is based on trial construction
	Total			754,800 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Grouting	PSC-POS,RCS-RCB	Diaphragm	H I= 29	(N0.Co-45)
	Item s	U n it R a te	Quantity	TotalCost	NOTE
Equipm ent,	Grouting	362,000 Rs/m 3	0.2 m 3	72,400 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffold ing	2,500 Rs/m 2	244 m ²	610,000 Rs	Unit rate is based on trial construction
	Total			682,400 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Grouting	-	Substructure	H I= 29	(NO.Co-46)
	Item s	U n it R a te	Quantity	TotalCost	NOTE
Equipm ent, Labor.	Grouting	362,000 Rs/m ³	0.5 m 3	181,000 Rs	Unit rate is estin ated by contractor
	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unit rate is based on trial construction
	Tota /			181,000 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Grouting	-	Substructure	H I= 0	(NO.Co-47)
	Item s	U n it R a te	Quantity	TotalCost	NOTE
Equipm ent,	Grouting	362,000 Rs/m ³	0.9 m ³	325,800 Rs	Unit rate is estim ated by contractor
Labor, Material	S ca ffo ld ing	2,500 Rs/m ²	0 m ²	0 Rs	Unitrate is based on trial construction
	Total			325,800 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
F	iber sheet bond ing	PSC-PRE	Deck Slab	H I= 0	(N0.Co-48)
	Item s	U n it R a te	Quantity	TotalCost	NOTE
Equipment, Labor, Material	F ber sheet bond ing	77,000 Rs/m ²	26.3 m ²	2,025,100 Rs	Unit rate is estin ated by contractor 2Layer
	To ta l			2,025,100 Rs	

Repair,	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
Fiber sheet bonding Item s		PSC-PRE	Deck Slab	H I= 29 Tota Cost	(NO.Co-49)
		U n it R a te	Quantity		NOTE
Labor,	Fiber sheet bonding	77,000 Rs/m ²	18.4 m ²	1,416,800 Rs	Unitrate is estim ated by contractor 2Layer
Material	Total			1,416,800 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Fiber sheet bond ing	RCS	Deck Slab	H I= 0	(N0.Co-50)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment, Labor, Material	Fiber sheet bonding	77,000 Rs/m ²	8.8 m ²	677,600 Rs	Unit rate is estim ated by contractor 2Layer
	Total			677,600 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
F	iber sheet bond ing	RCS	Deck Slab	H I= 29	(N0.Co-51)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent, Labor,	Fiber sheet bond ing	77,000 Rs/m²	6.3 m ²		Unit rate is estim ated by contractor 2Layer
Material					
	Total			485,100 Rs	

Repair.	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
F	iber sheet bond ing	PSC-POS,RCS-RCB	Main Beam	H I= 0	(NO.Co-52)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent, Labor,	Fiber sheet bonding	77,000 Rs/m²	63.5 m ²	4,889,500 Rs	Unit rate is estim ated by contractor 2Layer
Material					
	Total			4,889,500 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
F	ber sheet bond ing	PSC-POS,RCS-RCB	Main Beam	H I= 29	(NO.Co-53)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Labor,	Fiber sheet bonding	77,000 Rs/m ²	46.8 m ²	3,603,600 Rs	Unit rate is estim ated by contractor 2Layer
Material	Tota/			3,603,600 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
F	ber sheet bond ing	PSC-POS,RCS-RCB	Deck slab	H I= 0	(NO.Co-54)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent, Labor, Material	Fiber sheet bonding	77,000 Rs/m ²	58 m ²	4,466,000 Rs	Unitrate is estim ated by contractor 2Layer
	To ta l			4,466,000 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
	Fiber sheet bonding	PSC-POS,RCS-RCB	Deck slab	H I= 29	(N0.Co-55)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent, Labor, Material	Fiber sheet bonding	77,000 Rs/m ²	41.1 m ²	3,164,700 Rs	Unit rate is estim ated by contractor 2Layer
	Total			3,164,700 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
Fiber sheet bonding		PSC-POS,RCS-RCB	Diaphragm	H I= 0	(NO.Co-56)
	Item s	U n it R a te	Quantity	TotalCost	NOTE
Equipm ent, Labor,	Fiber sheet bonding	77,000 Rs/m ²	30.2 m ²	2,325,400 Rs	Unit rate is estim ated by contractor 2Layer
Materia I					
	Total			2,325,400 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
ł	Fiber sheet bonding	PSC-POS,RCS-RCB	Diaphragm	H I= 29	(NO.Co-57)
	Item s	U n it R a te	Quantity	TotalCost	NOTE
Labor,	Fiber sheet bond ing	77,000 Rs/m ²	19.7 m ²	1,516,900 Rs	Unitrate is estimated by contractor 2Layer
Materia I	To ta l			1,516,900 Rs	

Repair	/Strengthening method	Type of bridge	M em ber	Health Index	Code num ber
ł	ber sheet bond ing	Box bridge	-	H I= 0	(N0.Co-58)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Labor,	Fiber sheet bonding	77,000 Rs/m ²	6.5 m ²	500,500 Rs	Unitrate is estim ated by contractor 2Layer
Materia I	Total			500,500 Rs	

Repair	/Strengthening method	Typeofbridge	M em ber	Health Index	Code num ber
Fiber sheet bonding		Box bridge	-	H I= 29	(NO.Co-59)
	Item s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Labor,	Fiber sheet bonding	77,000 Rs/m ²	3.9 m ²	300,300 Rs	Unit rate is estim ated by contractor 2Layer
Material	Total			300,300 Rs	

Repair	/Strengthening method	Typeofbridge	Member	Health Index	Code num ber
F	iber sheet bond ing	Substructure	-	H I= 29	(NO.Co-60)
	ltem s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipm ent, Labor, Material	Fiber sheet bonding	77,000 Rs/m ²	8.8 m ²	677,600 Rs	Unitrate is estim ated by contractor 2Layer
Materiai	Total			677,600 Rs	

Repair,	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
F	iber sheet bond ing	Substructure	-	H I= 0	(NO.Co-61)
	ltem s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Labor,	Fiber sheet bonding	77,000 Rs/m ²	11.3 m ²		Unit rate is estim ated by contractor 2Layer
Material					
	To ta l			870,100 Rs	

Repair	/Strengtheningmethod	Type of bridge	Member	Health Index	Code num ber
Re	pair the Scouring part	-	Substructure	H I= 0	(NO.Fu-1)
	ltem s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
Equipment, Laborand Material	Packing available rubble and aggregate filter layers behind m ansory walls	880 Rs/m ³	0.9 m ³	800 Rs	Unitrate is extracted from HSR (ST1-011)
	Random rubble masonry,150- 225M M	930 Rs/m ³	0.9 m ³	900 Rs	Unitrate is extracted from HSR (B0-301)
	MIXING & LAYING, CONCRETE MIXER	11,500 Rs/m ³	0.9 m ³	10,400 Rs	Unitrate is extracted from HSR(ST1-045)
	To ta l			12,100 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Mortar spraying	Arch bridge	Arch Rib	H I= 0	(N0.Ar-1)
	ltem s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
	Mortar spraying	21,000 Rs/m ³	16.4 m ³	344,400 Rs	Unitrate is extracted from HSR(ST1-011)
Equipm ent, Labor and	Reinforcing steel	104,200 Rs/t	1.2 t	125,100 Rs	Unit rate is extracted from HSR (B0-301)
Material	CUTTING & LAYING REINFORCEMENT	165 Rs/m ²	65.7 m²	10,900 Rs	Unit rate is extracted from HSR (ST1-056)
	Anchor	2,200 Rs/nos	81 nos	178,200 Rs	Unit rate is extracted from Japanese standard
	S ca ffo ld ing	2,500 Rs/m ²	42 m ²	105,000 Rs	Unit rate is based on trial construction
	Total			763,600 Rs	

Repair	/Strengthening method	Type of bridge	Member	Health Index	Code num ber
	Mortar spraying	Arch bridge	Arch spandrel	H I= 0	(N0.Ar-2)
	ltem s	U n it R a te	Quantity (Duration)	TotalCost	NOTE
	M ortar spraying	21,000 Rs/m ³	10.6 m ³	222,600 Rs	Unit rate is extracted from HSR (ST1-011)
Equipm ent, Labor and	Reinforcing steel	104,200 Rs/t	1.4 t	145,900 Rs	Unitrate is extracted from HSR (B0-301)
Material	CUTTING & LAYING REINFORCEMENT	165 Rs/m²	42.2 m ²	7,000 Rs	Unit rate is extracted from HSR (ST1-056)
	Anchor	2,200 Rs/nos	52 nos	114,400 Rs	Unit rate is extracted from Japanese standard
	S ca ffo ld ing	2,500 Rs/m ²	52 m ²	130,000 Rs	Unit rate is based on trial construction
	Total			619,900 Rs	

Attachment 5 - Standard Unit Rate for Bridge Reconstruction

Table of Contents

1. Genaral	1
2. Standard unit rate for reconstruction	1

List of Tables

1. Standard unit rate for reconstruction	1
2. Basis of Standard unit rate for bridge reconstruction (L<10m)	2
3. Basis of Standard unit rate for bridge reconstruction (L≥10m)	2

1. General

Standard unit rate for bridge reconstruction set based on RDA's previous reconstruction record.

In this unit rate includes Preliminaries, General, and Removal of existing structures, Superstructure, Substructure, Foundation and Miscellaneous structure cost.

Overhead, Profit, Contingencies for physical and price, Tax are not included.

2. Standard unit rate for reconstruction

Standard unit rate for reconstruction set 2 types. The bridges whose length is less than 10m and more than 10m.

The standard unit rate for bridge reconstruction are shown in following table.

Length of bridge	Type of bridge	Unit rate (Rs / m ²)	Referenced previous reconstruction record
L < 10m	Cast in place	169,000	A101C–BOQ–3/30, A169–BOQ – 2/5, A138–BOQ–26/11, G03F– BOQ–11/5
L ≧ 10m	Precast	338,000	A244A–BOQ–12/6, A241C–BOQ– 7/1, E042B-BOQ

Table 1 Standard unit rate for reconstruction

Number of BOQ Type of Bridge Length Width Area Removal of Existing Fou A101CB0Q (3-3) Box 10.4 10.4 108.2 500,000 8 A101CB0Q (3-5) Box 10.4 10.4 2.6 500,000 8 A169CB0Q (2-5) Box 6.0 10.4 62.4 800,000 10 A183CB0Q (26-11) Box 8.0 10.4 83.2 200,000 5	Dimensions of bridge			Summary of Bill			
Box 10.4 10.4 108.2 Box 8.9 10.4 92.6 Box 6.0 10.4 62.4 Box 8.0 10.4 83.2	Width Area	al of Foundation & Super ng Substructure Structure	Super Structure	Miscellaneous Structure	Preliminaries & General	Total	Unit Rate (Rs/m ²)
Box 10.4 10.4 108.2 Box 8.9 10.4 92.6 Box 6.0 10.4 62.4 Box 8.0 10.4 83.2	Struct	ure					
Box 8.9 10.4 92.6 500,000 Box 6.0 10.4 62.4 800,000 Box 8.0 10.4 62.4 800,000	108.2	500,000 8,463,095 3,118,717	3,118,717	500,000	500,000 1,640,000 14,221,812 131,500	14,221,812	131,500
Box 6.0 10.4 62.4 Box 8.0 10.4 83.2	10.4 92.6	00 8,911,091 2,841,045	2,841,045	500,000	1,640,000 14,392,136	14,392,136	155,500
Box 8.0 10.4 83.2 200,000	10.4 62.4	800,000 10,167,547 2,987,349	2,987,349	1,000,000	3,690,000 18,644,896	18,644,896	298,800
	10.4 83.2	00 5,020,000 2,131,252	2,131,252	0		7,351,252	88,400
Average	Average						169,000

<10m)
Ĺ,
reconstruction (
bridge
te for l
t rate
unit
standard
fs'
s o
asis
ñ
Table 2

(L≧10m)
reconstruction
l unit rate for bridge
rate f
unit
andarc
Basis of st
Table 3

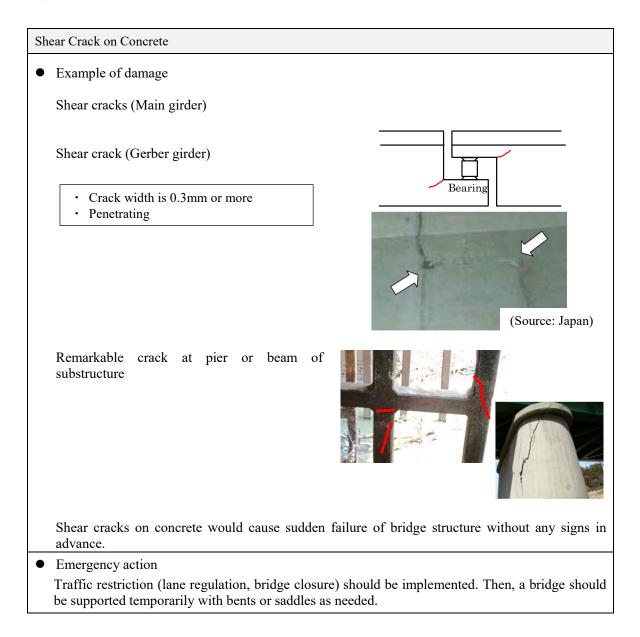
	Unit Rate (Rs/m ²)	355,600	444,200	t 215,100	338,000
	Total	76,215,411	43,262,701	106,241,754	
Summary of Bill	Preliminaries & General	5,540,000 76,215,411 355,600	5,615,000	500,000 4,390,000 106,241,754	
	Miscellaneous Structure	0	0	500,000	
	Super Structure	6,033,945	3,709,599	31,339,297	
	Foundation & Substructure	214.3 1,300,000 63,341,466 6,033,945	97.4 1,000,000 32,938,102 3,709,599	493.9 2,000,000 68,012,457 31,339,297	
	Removal of Existing Structure	1,300,000	1,000,000	2,000,000	
ridge	Area		97.4	493.9	Average
Dimensions of bridge	Width	9.4	13.7	9.8	A
Dime	Length	22.8	7.1	50.4	
	Type of Bridge	A244AB0Q-B363-12/6 PC	PC	PC	
	Number of BOQ		A241CBOQ - (7-1)	E042BBOQ	

*The rates are from RDA cost estimation / HSR 2016

Table of Contents

1. Impairing the Safety of Bridge Structures	1
2. Third- Party Effect	7

List of Figures


2.1 Range of Bridge Structure Affecting to Third-Party......7

When the damage in need of "Emergency Action" is detected during the bridge inspection, bridge inspection shall be interrupted and emergency actions must be implemented immediately. Then, for the damage implemented under "Emergency Action", the plan for the maintenance and repair should be developed.

This attachment describes the examples of damage in need of emergency action and the measures to be taken. "Emergency Action" is needed in view of "Impairing the Safety of Bridge Structures" and "Third-party Effect".

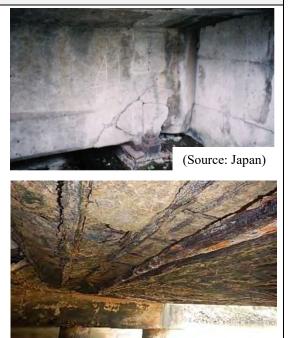
1. Impairing the Safety of Bridge Structures

Bridge structures might have collapsed or fallen down due to damage, which results in the decrease of load carrying capacity. Given below are examples of damage and recommended measures to be taken as an emergency action.

Other Damage on Concrete

• Example of damage

Bearing failure (remarkable crack) near support


(remarkable decreasing of function as bearing)

- Crack width is 0.3mm or more
- Impairing the bearing function

Delamination in wide area of the deck slab / main beam with remarkable corrosion or break of rebar / PC cable.

(corrosion of rebar / PC cable will develop more quickly in coastal areas.)

- Ex-rebar with remarkable corrosion or broken re-bar, or delamination
- Damage on about 60% of its all area

The above damage might cause collapse of the bridge structure.

Emergency action

Corrosion and Break on Steel Member

• Example of damage

Remarkable loss of structural steel (web in the photo) due to corrosion

- Loss of web steel on its entire depth
- Loss of lower flange steel by 50% or more
- Near support

Break of the diagonal member

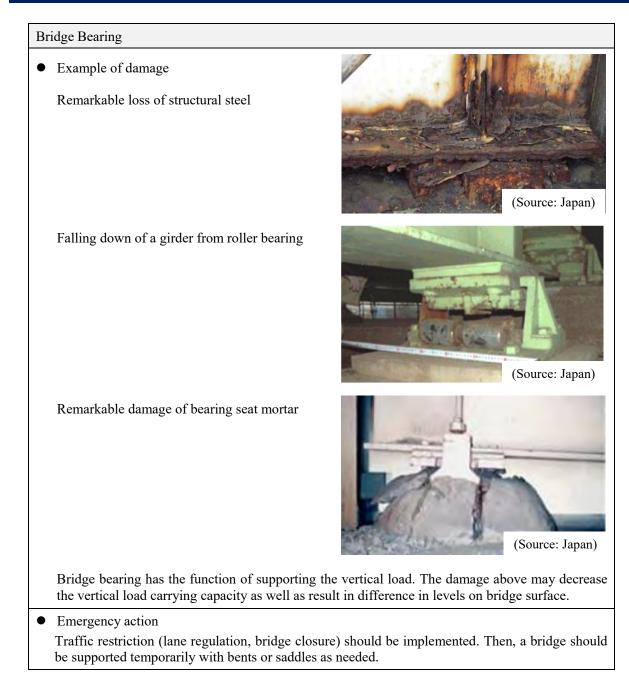
The damage such as those given above as well as remarkable corrosion of prestressing cables, panel points of truss / arch bridge and break of Gerber girder may cause the decrease of load carrying capacity.

Remarkable loss of structural steel and break of the diagonal member might cause sudden collapse of the bridge structure.

Emergency action

Traffic restriction (lane regulation, bridge closure) should be implemented. Then, the temporary support with bents or saddles should be implemented as needed.

Rivet / HSFG on Steel Member


• Example of damage

Damaged bolts, such as the serious corrosion and the missing of bolts, are about more than 25% of one bolt group and more in number

It is difficult to transmit force between members due to the above damage.

• Emergency action

Bridge Piers / Abutments in Water

• Example of damage

Exposed foundation due to riverbed degradation and/or local scour

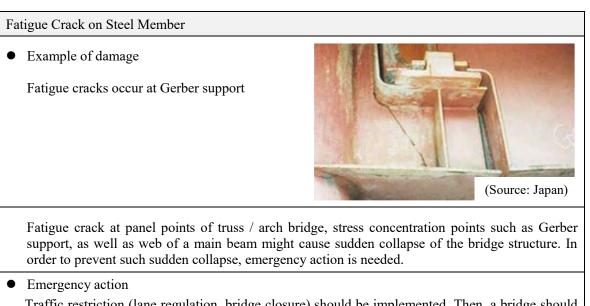
• Scoured under footing of pier/abutment

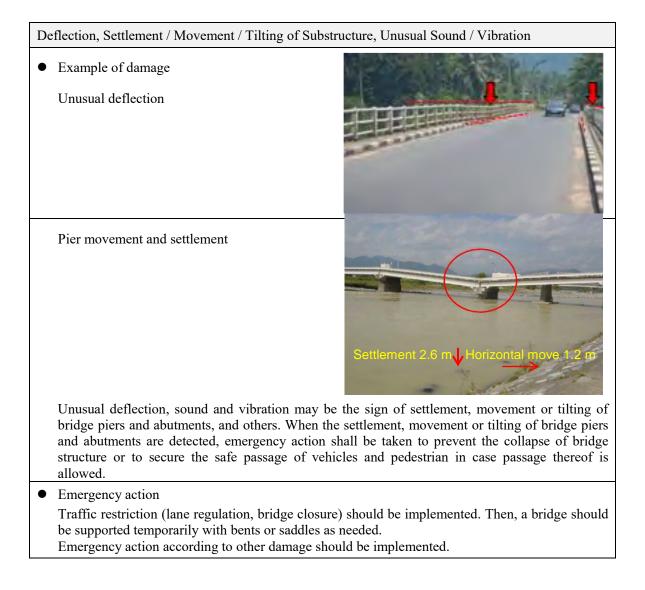
There is a possibility of the unusual deflection and the collapse of a bridge due to riverbed degradation and local scour. Settlement / movement / tilting of substructures might occur at the same time.

• Emergency action

Traffic restriction (lane regulation, bridge closure) should be implemented. Then, a bridge should be supported temporarily with bents or saddles as needed, and emergency foundation protection work with gabion box should be implemented.

Arch Line


• Example of damage


Large deformation of the arch line at its crown

For the stone arch, it is quite important to retain the arch line as designed. Deformation of arch line will result in the entire collapse of the arch structure.

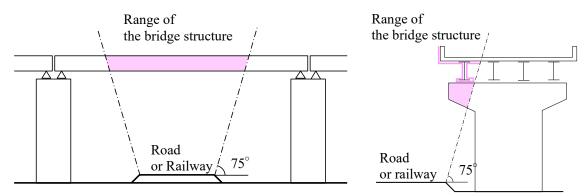
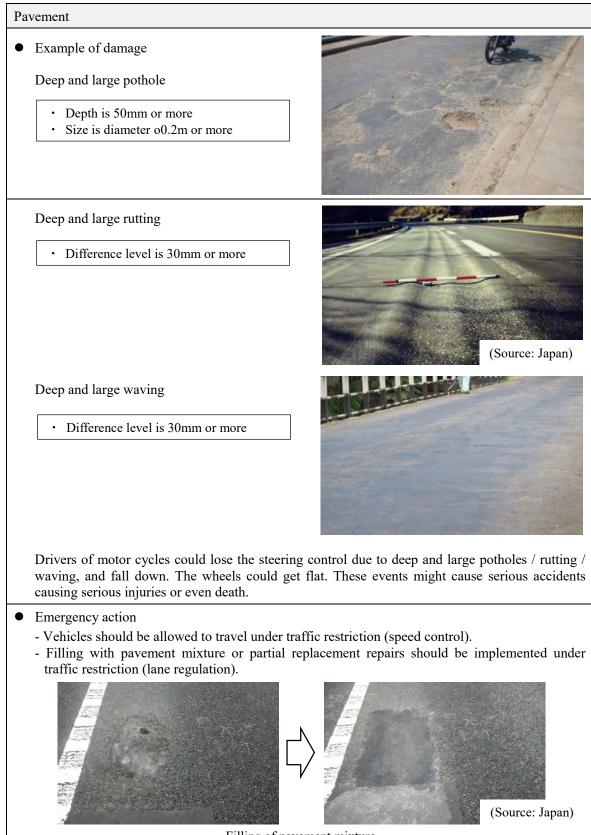
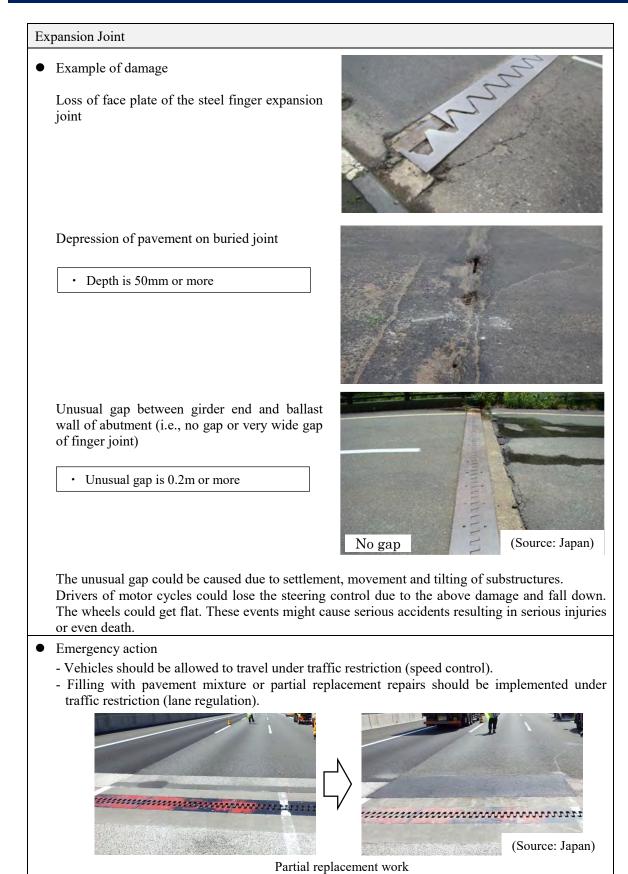
• Emergency action

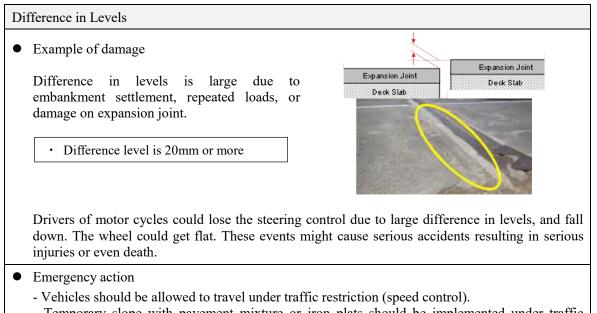
2. Third- Party Effect

When it is suspected that vehicles, trains and/or pedestrians under the bridge are adversely affected by the damage thereof, emergency actions shall be taken immediately. Examples of such damage as well as recommended measures are given below.

Figure 2.1 gives the range of the bridge, affecting the vehicles, trains and/or pedestrians thereunder and along thereof due to its damage.

In case that roads / railways under or along a bridge are not managed by RDA, it is imperative to report to the administrators thereof. Then, preventive measures such as traffic restriction (lane regulation, closure of road / railway) of roads under / along a bridge and installation of caution signs should be implemented as needed after the permission is given.


Figure 2.1 Range of Bridge Structure Affecting to Third-Party

Filling of pavement mixture

9

- Temporary slope with pavement mixture or iron plats should be implemented under traffic restriction (lane regulation)

Drainage

• Example of damage

Holes of drain pipe

In Bridge Inspection and Diagnosis Manual, "Damage on Drainage" is evaluated whether there is sediment of soil at catch basin or drainage pipe. However, other damage on drainage could cause the following obstacles;

- The splash of water from holes of drain pipe could damage bridge structures / vehicles / trains, or harm pedestrians.
- Falling of pipe / bolts due to damage of installation bolts could damage vehicles / trains or harm pedestrians.

When the drainage facilities do not function properly due to sediment of soil at catch basin or drainage pipe, ponding could occur on bridge surface. Drivers of motor cycles could lose the steering control due to ponding and fall down. This event might cause serious accidents resulting in serious injuries or even death.

• Emergency action

When the "Third-Party Effect" is suspected, this situation should be reported to the administrators who manage the roads / railways under a bridge. Then, preventive measures, such as traffic restriction (lane regulation, closure of road / railway) of roads / railways under a bridge and installation of caution signs, should be implemented as needed after the permission is given. In addition, repair works of drainage pipe and temporary fixing of drainage pipe should be implemented.

Railing / Parapet

• Emergency action

Missing, break, and large deformation of railing / parapet

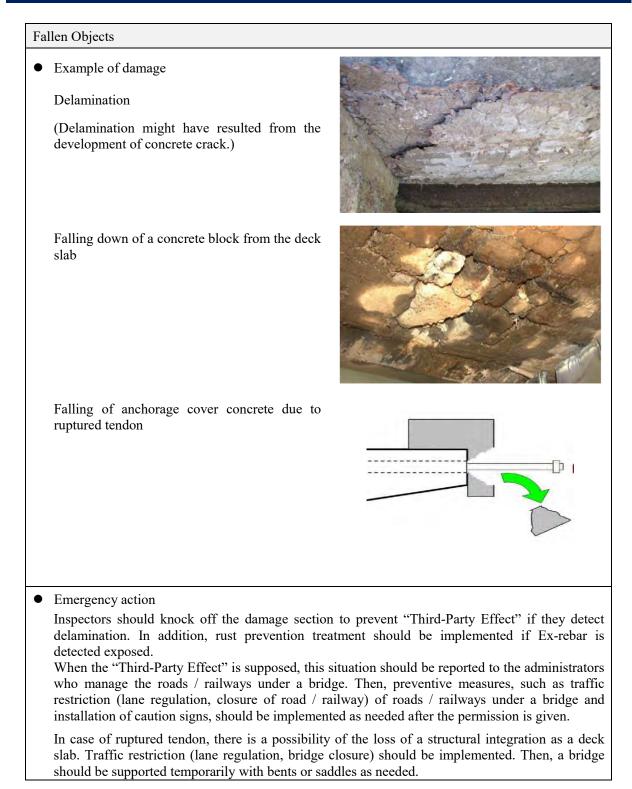
There is a possibility that vehicles and pedestrians will fall from the bridge due to missing or break of railing / parapet.

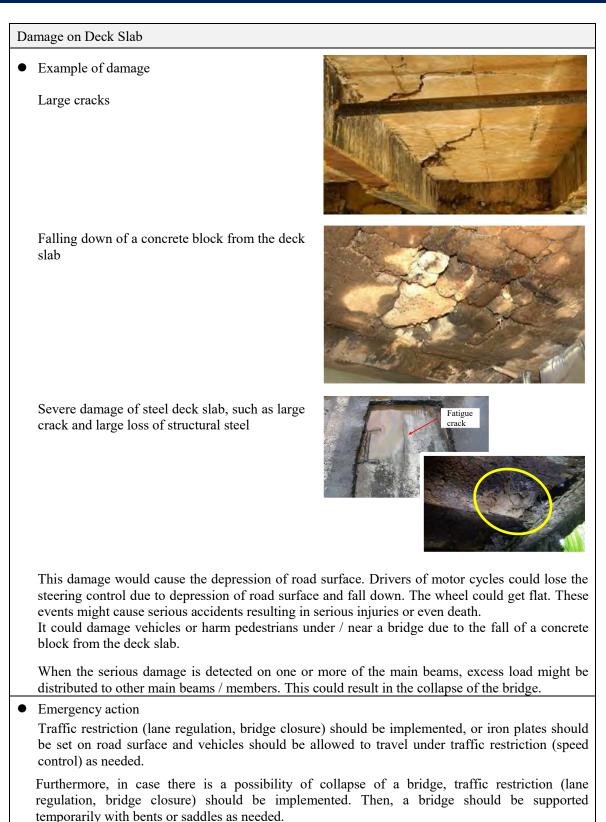
• Emergency action

Installation of caution signs and traffic restriction (lane regulation) shall be conducted so that the vehicles and pedestrians are restricted in approaching. Then, temporary railing should be installed.

Approach Road / River Bank

• Example of damage


Large collapse of approach road / riverbank that causes the depression and crack of road surface



Drivers of motor cycles could lose the steering control due to depression of road surface and fall down. Vehicles and pedestrians could fall from approach road. These events might cause serious accidents resulting in serious injuries or even death.

• Emergency action

Installation of caution signs and traffic restriction (lane regulation) shall be conducted so that the vehicles and pedestrians are restricted in approaching. Then, repair with sandbags and/or gabion boxes should be implemented.

Attachment 7 - Examples of Bridge Diagnosis

Table of Contents

1. Concrete	2
1.1 Classification C	2
1.2 Classification D	4
1.3 Other points to consider	6
2. Steel	7
2.1 Classification C	7
2.2 Classification D	9
2.3 Other points to consider	1
3. Others	5
3.1 Classification C	5
3.2 Classification D	6
3.3 Other points to consider	7

List of Tables

1.1	Rate of Corrosion Progress caused by Salt Damage and Carbonation	

List of Figures

1	Example of Damage of Wing Wall	6
2.1	Crack in deck slab (Steel)	.11
2.2	Fatigue Crack at the Welding Part of Sole Plates	12
2.3	Relationship between steel corrosion and humidity	14
2.4	Colombo average monthly temp and humidity	14

List of Photographs

1.2	Unsupported RC Deck Slab	1
2.1	Half through Bridge 1	3
2.2	Example of Corrosion of Galvanized Coating in Sri Lanka 1	3

Bridge inspection is implemented to collect the necessary data and information for efficient and effective bridge management within the limited human and financial resources. Data and information to be collected are condition of the bridges, which should be the quantified value for comparison among the bridges (not an absolute value).

In this Manual, quantified value of Health Index (HI) is introduced to express the soundness of bridge member, a span and an entire bridge based on the objective evaluation of damage obtained from the inspection.

Health Index (HI) is calculated for each member first, followed by for a span based on the HIs of bridge members and degree of importance of each bridge member to a span (weighting factor / correlation factor), and for an entire bridge for bridges with several spans. Details shall refer to Appendix (Guideline of Calculation of Health Index).

Health Index (HI) is used to prevent variations of the soundness among the inspectors / evaluators and to calculate the repair and maintenance costs for developing the bridge repair and maintenance plan.

Thereafter, soundness of the bridge member, a span and an entire bridge are categorized into four (4) classifications in order that the road administrator can generally understand the condition of bridges under its management and utilize it as a convenient indicator for releasing the bridge conditions to the public.

It is noted, however, that Health Index (HI) does neither consider all types of damage on each bridge member and rate of progress of damage, nor include the influence of location of damage to the soundness of the bridge member, a span and an entire bridge.

Therefore, highly experienced experts within RDA shall review and change the bridge soundness classification of a span (not of a bridge member) determined by Health Index from the viewpoints of shortcomings of HI mentioned above (hereinafter called "Bridge Diagnosis") at the end of bridge periodic inspection. The value of Health Index shall not be changed.

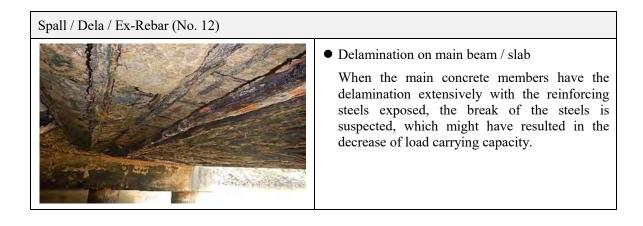
This Appendix provides the examples for the RDA experts to carry out the Bridge Diagnosis.

1. Concrete

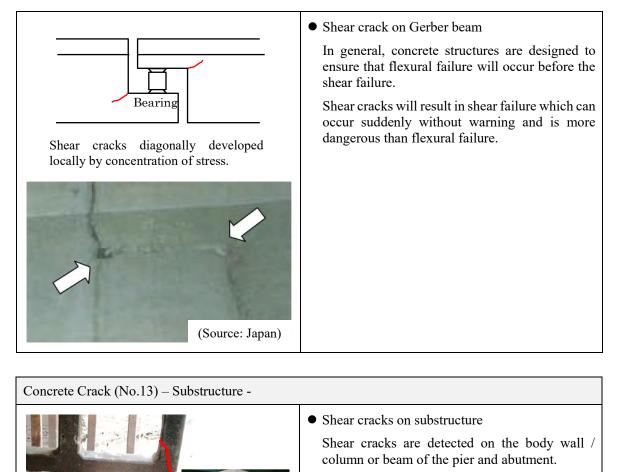
1.1 Classification C

This section provides the types and degree of damage that might impair the structural safety of an entire bridge and need to be repaired before the next periodic inspection (within 5 years).

If the types of damage with the degree thereof given below are detected at the periodic inspection, soundness of an entire bridge should be classified as "C", regardless of the bridge soundness classification determined by Health Index (HI).


Spall / Dela / Ex-rebar(No,12), Concrete Crack (No.13)		
	• Delamination on main concrete beam / slab to a large extent When the main concrete members have the delamination relatively to a large extent with the reinforcing steels exposed, it is suspected that steels in concrete may be seriously corroded. Such damage may impair the structural safety of an entire bridge shortly.	
	• Large crack on main concrete beam / slab When the main concrete members have cracks with large surface width, it is suspected that steels in concrete are extensively corroded, resulted in the decrease of load carrying capacity.	
(Source: Japan)	• Crack with water leakage on concrete structure When the concrete structures have cracks with water leakage widespread, it is supposed that concrete will deteriorate earlier near such cracks than other areas. Such damage will impair the structural safety of an entire bridge.	

Damage on Deck Slab (RC) (No.22-1)	
	 Pattern cracking on bridge deck slab Deck slab has a function of distributing the loads among the main beams. When the serious pattern cracking / map cracking (in both longitudinal and transversal directions) is observed on deck slab, it is suspected that excess load is delivered to a main beam due to the degradation of such load distribution function and damages the said beam. It will impair the structural safety of an entire bridge.
	• Penetrating crack on concrete main beam / slab When the penetrating crack(s) are detected on main concrete beams / slabs, load carrying capacity thereof will be decreased. It is suspected that excess load is delivered to other main beams / parts causing damages to the said beams / parts. It will impair the structural safety of an entire bridge.


1.2 Classification D

This section provides the type and degree of damage that might impair the structural safety of an entire bridge and need to be repaired immediately (within one year).

If the types of damage with the degree thereof given below are detected at the periodic inspection, soundness of an entire bridge should be classified as "D", regardless of the bridge soundness classification determined by Health Index (HI).

Concrete Crack (No.13) – Superstructure -		
Cource: Japan)	 Bearing failure at support of main beam Concrete beams near the support have remarkable cracks due to the bearing failure, which may result in the decrease of bearing capacity. Such damage will impair the structural safety of an entire bridge and lead to a bridge collapse. 	
Shear cracks diagonally developed near supports.	 Shear cracks on main beam In general, concrete structures are designed to ensure that flexural failure will occur before the shear failure. Shear cracks will result in shear failure which can occur suddenly without warning and is more dangerous than flexural failure. 	

Shear cracks will result in shear failure which can occur suddenly without warning and is more dangerous than flexural failure.

- 1.3 Other points to consider
- (1) Features of the rate of progress of steel corrosion caused by salt damage and carbonation
 - It is the reference to judge the rate of corrosion progress caused by the salt damage and carbonation.

Table 1.1: Rate of Corrosion Progress caused by Salt Damage and Carbonation

	Salt Damage	Carbonation of Concrete
Region	Coastal areas	All regions
Factor	Chloride ion	Carbon dioxide
Time corrosion occurs	After 20 - 40 years	After 50 years or more
Rate of corrosion	Rapid	Slow
Example Photo		

(2) Unsupported RC deck slab by additional new beam

There are some strengthening works with additional new beam(s) in Sri Lanka.

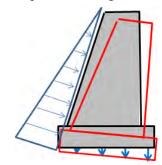
It was identified that some such bridges have additional new beams which do not support / integrate with deck slab. Unsupported deck slab might be damaged easily.

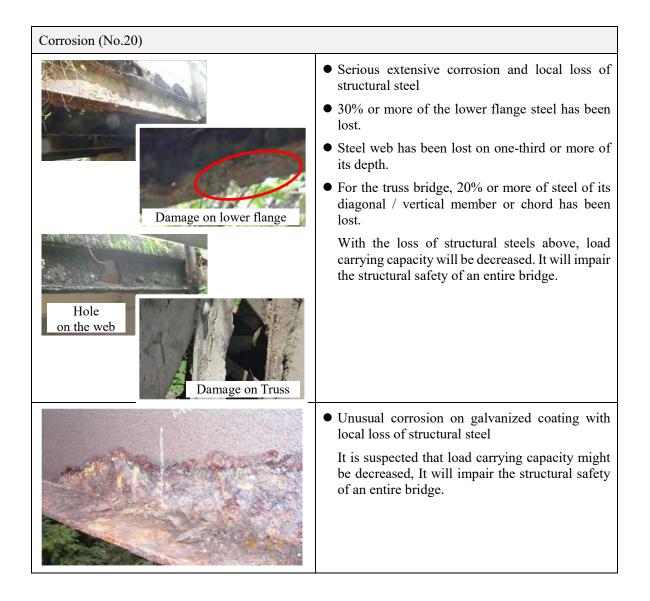
Pavement cracks on the slab along joint of deck slab

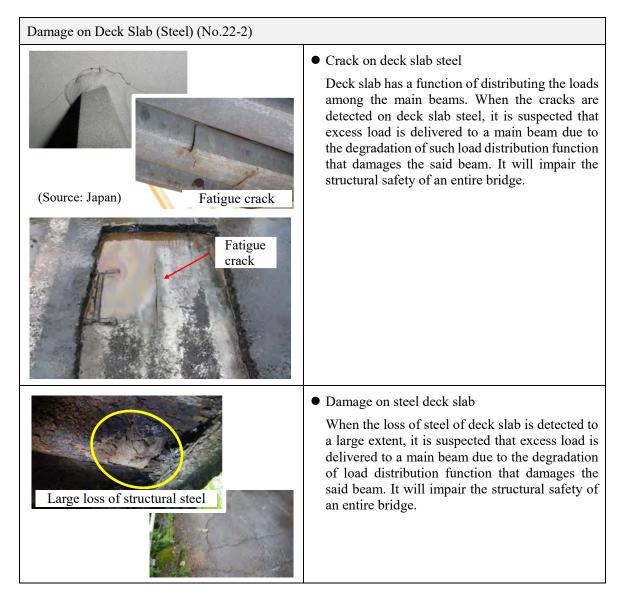
Photo 1.2 Unsupported RC Deck Slab

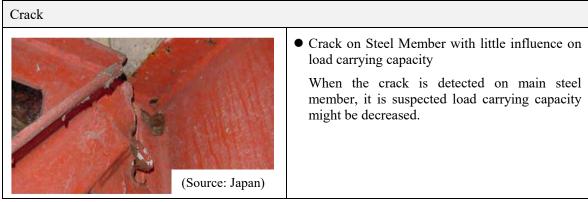
(3) Substructure on soft ground

Crack and displacement of the abutment wing on soft ground is frequently found due to settlement of the abutment foundation. This damage is found in lagoons and other places in soft ground.




Figure 1 Example of Damage of Wing Wall


2. Steel


2.1 Classification C

This section provides the types and degree of damage that might impair the structural safety of an entire bridge and need to be repaired before the next periodic inspection (within 5 years).

If the types of damage with the degree thereof given below are detected at the periodic inspection, soundness of an entire bridge should be classified as "C", regardless of the bridge soundness classification determined by Health Index (HI).

2.2 Classification D

This section provides the type and degree of damage that might impair the structural safety of an entire bridge and need to be repaired immediately (within one year).

If the types of damage with the degree thereof given below are detected at the periodic inspection, soundness of an entire bridge should be classified as "D", regardless of the bridge soundness classification determined by Health Index (HI).

Corrosion (No.20)		
	 Loss of web steel on its entire depth Loss of lower flange steel by 50% or more. Remarkable loss of structural steel might cause sudden collapse of the bridge structure. 	
	 Break of diagonal members of truss For the truss bridge, 40% or more of steel of its diagonal / vertical member or chord has been lost. Break of the diagonal member might cause sudden collapse of the bridge structure. 	

Damage (Rivet / HSFG) (No.21)	
	 25% or more of the bolts in number in one group are seriously corroded or missed It is difficult to transmit the force between members due to the above damage. As the result, this damage might cause sudden collapse of the bridge structure.

Fatigue Crack		
(Source: Japan)	• Fatigue crack at Gerber support Fatigue crack at panel points of truss / arch bridge, stress concentration points such as Gerber support, as well as web of a main beam might cause sudden collapse of the bridge structure.	

2.3 Other points to consider

(1) Fatigue crack on steel deck slab

In order to draw your attention at the bridge inspection, the below provides the locations where fatigue cracks may occur on steel deck slab as in Figure 2.1.

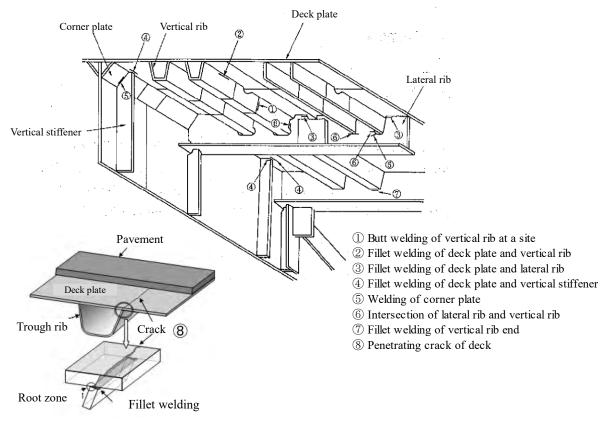


Figure 2.1 Crack in deck slab (Steel)

(2) Fatigue crack at sole plates

Bridge bearing has the functions to provide the rotation of a beam by live load, transfer of the horizontal load to the substructure, smooth movement of a beam by expansion and contraction arising from the variation in temperature.

When these functions do not exhibit efficiency due to the corrosion of steel bearings, fatigue cracks could occur at the welding part of sole plates. These cracks will develop rapidly from the lower flange to the web.

Figure 2.2 Fatigue Crack at the Welding Part of Sole Plates

(3) Half-through bridge

In Sri Lanka, most of the steel truss bridges are "half-through bridge" type. The part above the deck slab is properly maintained in general, such as cleaning or repainting. Engineers should pay attention to the conditions of truss members below the deck slab

Photo 2.1 Half-through Bridge

(4) Truss members buried in concrete

When such steel truss members as diagonal / vertical members are embedded in concrete (concrete deck slab, for example), steels in concrete will be rapidly damaged with the following reasons:

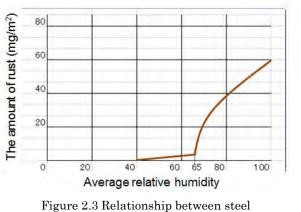
- Corrosion by repetitive wet and dry conditions

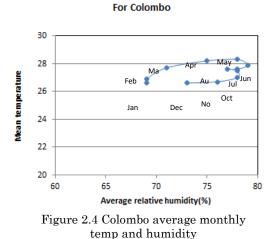
- Local force due to restriction of deformation of such member by concrete

The damage above will impair the structural safety of an entire bridge.

(5) Galvanized coating

On the surface of the steel material, the galvanized coating forms a zinc layer that functions as a zinc passive film to prevent the corrosion. It has a long-term durability in ordinary environments.


There are many galvanized steel bridges along the coast in the eastern and northern areas of Sri Lanka. In the coastal areas, chloride ions that adhere to the surface of galvanized coating corroded the zinc, and this corrosion develops rapidly from the surface layer to the base layer. Photo 2.1. Shows the example of a steel bridge galvanized in Sri Lanka after approximately 10 years from its completion. The zinc layer has decreased and the bare steel substrate is exposed in this photo. The painting over the galvanized coating is the effective measure in order to reduce the progress of the corrosion.


Photo 2.2 Example of Corrosion of Galvanized Coating in Sri Lanka

(6) Weather conditions in Sri Lanka

Figure 2.3 shows that corrosion of steel material occurs in the atmosphere which humidity exceeds 65%, and data shows that the amount of corrosion advances according to the humidity. The humidity in Colombo is shown in Figure 2.4. Due to the high humidity and temperature in the area around Colombo, it is believed that this represents a harsh environment for steel corrosion. It is also known that the speed of corrosion advances with repeated wet-dry cycles and the effects of dirt.

igure 2.3 Relationship between stee corrosion and humidity

3. Others

3.1 Classification C

This section provides the types and degree of damage that might impair the structural safety of an entire bridge and need to be repaired before the next periodic inspection (within 5 years).

If the types of damage with the degree thereof given below are detected at the periodic inspection, soundness of an entire bridge should be classified as "C", regardless of the bridge soundness classification determined by Health Index (HI).

Damage on Bridge Bearing (No.16)		
Cource: Japan)	 Remarkable loss of structural steel on bridge bearing and main beam Bridge bearing has the function of supporting the vertical load. The damage above may decrease the vertical load carrying capacity as well as result in difference in levels on bridge surface. 	
(Source: Japan)	• Fallen down of a beam from roller bearing Bridge bearing has the function of supporting the vertical load. The damage above may decrease the vertical load carrying capacity as well as result in difference in levels on bridge surface.	
(Source: Japan)	 Remarkable damage on bridge bearing seat mortar Bridge bearing has the function of supporting the vertical load. The damage above may decrease the vertical load carrying capacity as well as result in difference in levels on bridge surface. 	

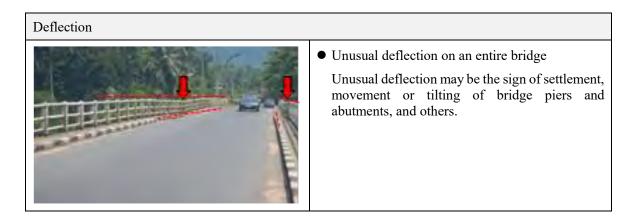
3.2 Classification D

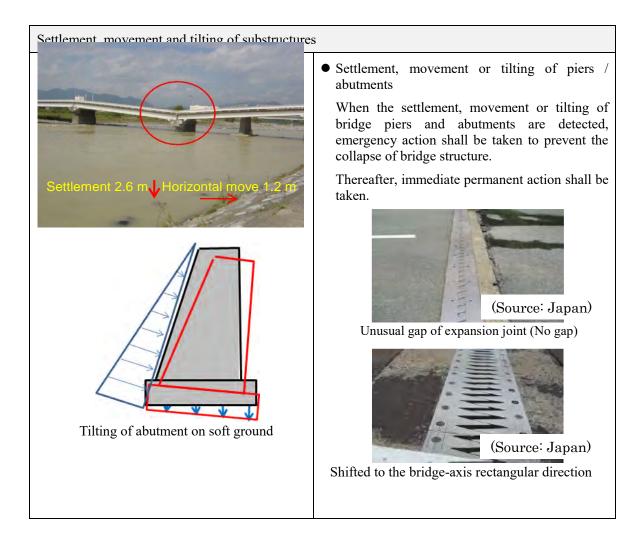
This section provides the type and degree of damage that might impair the structural safety of an entire bridge which would need to be repaired immediately (within one year).

If the types of damage with the degree thereof given below are detected at the periodic inspection, soundness of an entire bridge should be classified as "D", regardless of the bridge soundness classification determined by Health Index (HI).

Scour (No.17)

• Exposed foundation due to riverbed degradation and/or local scour


Unusual deflection and the collapse of a bridge might occur due to riverbed degradation and local scour. Settlement / movement / tilting of substructures might occur at the same time.


Arch Line (Displacement) (No.23), Deteriorated (Loose) 'No.24)

• Large deformation of arch line at its crown

For the stone arch, it is quite important to retain the arch line as designed. Deformation of arch line will result in the entire collapse of the arch structure.

- 3.3 Other points to consider
- (1) Unusual sound and vibration

When the unusual sound and vibration occur due to passage of vehicles, it is suspected that bridges might have

the following unusual conditions:

Unusual gap of expansion joint (No. 5), Large difference in levels (No.6), Break or lack of Railing / Parapet (N0.9), Large cracks on substructure or near supports (No. 13), Break of diagonal members of truss (No.20), Falling down of many bolts at a connection part (No.21), Cracks in deck slab (steel) (No.22-2), Unusual deflection

Attachment 8 - Method of Bridge Inspection by Bridge Inspection Vehicle

Table of Contents

1. Purpose
2. Planning of Inspection by BIV1
2.1 Leader1
2.2 Development of Inspection Plan
2.3 Coordination with the Stakeholders
3. Safety Management
3.1 Introduction
3.2 Communication during the Inspection
3.3 Monitoring of Traffic Controls during the Inspection
3.4 Securing Safety of Pedestrians
4. Traffic control
4.1 Traffic Control Plan
4.2 Traffic Control Equipment9
4.3 Implementation of Traffic Control10
5. Operation of the BIV
5.1 Introduction
5.2 Roles of the Members of the Bridge Inspection Staff14
5.3 Inspection of the BIV Prior to the Operation
5.4 Operation of the BIV (Main Procedure)
5.5 Important Remarks for Operation of the BIV
6. Implementation of Bridge Inspection
6.1 Introduction
6.2 Tools for the Inspection
6.3 Inspection of Concrete Bridges
6.4 Inspection of Steel Bridges
(1) Confirm locations of traffic control
(2) Locations for placing the Traffic Cones (RC)
(3) Start bringing in BIV and DC. Commence traffic control
(4) Location of Taper
(5) Placement of RC
(6) Completion of placement of traffic control equipment
(7) Start Bridge Inspection

List of Tables

2.1	Format of Inspection Plan
4.1	Standard arrangement of traffic control equipment
4.2	Equipment or traffic control9
4.3	The Roles of Each Staff Member During the Traffic Control10
4.4	Standard Procedure for Traffic Control11
5.1	Roles of staff during the bridge inspection by BIV14
5.2	Items for the Inspection of BIV- Prior to the Operation
6.1	Guideline for Evaluation of Structure Conditions by Hammering Inspection20
6.2	Example of Marking a Concrete Bridge by Chalk
6.3	Damage List and Abbreviations
6.4	Recording Method of the Major Damage Size on Damage Schematic Diagram
6.5	Communication between traffic control security staff

List of Figures

4.1	Relationship between traffic control and bridge inspection areas	7
4.2	Example to divide and shorten the range of inspection, and make the length of traffic control	
	shorter	7
4.3	(1)Traffic control of 2-lanes (Alternate Traffic Control)	8
4.3	(2)Traffic control of 2-wide lanes (Use shoulder width)	8
4.3	(3)Traffic control of 4-lanes (1 lane closure)	8
4.4	Procedures and roles of traffic control	13
5.1	Working Range Diagram (Maximum Outrigger Extension) Rated working load:200kg	17
6.1	An example of chalking and dimensional recording of a cross-section defect	21
6.2	Example of on-site situation of damage and a record of damages on the diagram	23
6.3	Examples of description of damages at site and diagrams showing damages	23
6.4	Damage diagram of concrete girder bridge	24
6.5	Damage diagram of a steel bridge	24
6.6	Locations of the 1 st and the 2 nd Points	27

List of Photographs

5.1	Example to position of the roller jacks on the service duct	16
6.1	Cellophane tape test	21

1. Purpose

Purpose of the bridge inspection methods described in this appendix is to collect necessary information for bridge management. It is for the same reason that the inspection methods were described in the bridge inspection and diagnosis manual. This appendix is a summary only of the important matters related to bridge inspection conducted by BIV.

This manual is an appendix to the "Bridge Inspection and Diagnosis Manual".

For an inspection by BIV, it is important to conduct a preliminary investigation, to decide the need for the usage of BIV, and to collect necessary information for development of a plan for the inspection. It is also important to ensure safety management procedures during the inspection.

2. Planning of Inspection by BIV

2.1 Leader

Inspection by BIV must be carried out according to the instructions given by the leader of the inspection team. A leader should be appointed prior to the inspection.

It is necessary to appoint a leader of the inspection team for an inspection by BIV, because the inspection requires more management practices, than the inspection without the inspection vehicle. These practices include planning and implementation of traffic control and operation of BIV. The leader is going to conduct the following tasks:

- 1) Develop an inspection plan.
- 2) Inform the inspection plan to the staff, who will assist him/her, in order to conduct the inspection according to the prepared plan
- 3) Provide necessary instructions to the staff and supervise all matters during the inspection.

2.2 Development of Inspection Plan

The leader needs to develop an inspection plan after conducting a preliminary survey. The inspection plan is developed according to the format shown in Table 2.1.

The preliminary investigation is conducted mainly to study if the bridge could be inspected by BIV, and to develop an idea about the traffic control.

The following are the conditions of bridges that can be inspected by BIV:

 The width of the carriageway is 3 meters or more (Note: A traffic closure will be required if it is one lane, however.)

- The height from the girder to the ground is around 1.7 meters or more (Note: An inspection of outside beam can be conducted even where the height is less than 1.7m)
- 3) There are no overhead electric wires in the working range of BIV. (Note: There should be a distance of more than 1 meter, in case voltage of the electric wires is less than 600V)

The inspection plan includes the following contents:

- 1) General description of the bridge
- 2) Description of the surrounding environment
- 3) Inspection plan including the following:
 - Scheduled date of inspection, an optional extra day, time duration for the inspection.
 - Area range of the inspection
 - Steps taken for the inspection
 - Method of traffic control

Classification Contents Province Route No. Bridge Length (m) Overall Width(m) Width of Width of carriageway(m) Sidewalk(m) General No. of Spans Type of Superstructure description of No. of Cross the bridge No. of Main Beam Beam Distance from the bottom a.>1.7m, b. <1.7m (), of the beam/deck to the Record measured values in () ground Starting and ending LHS _ positions Electric wires Starting and ending RHS positions Starting and ending LHS Surrounding Telecommunicatio positions environment n Cables Starting and ending RHS positions Existence of an intersection nearby Others Date of Scheduled date of inspection preliminary inspection Expected time to start and end the inspection Starting and ending LHS ____ positions of the inspection RHS Steps for the inspection ⇒ a. Traffic control of 2-lanes (Alternate traffic control) Inspection plan b. Traffic control of 2-wide lanes (use of shoulder width) Method of traffic control c. Traffic control of 4-lanes or more (1 lane closure) d. Road is closed e. Others Sections and orders of traffic 1st : 2^{nd} control, in case the traffic : control area is divided 3rd : 4th : Discussion with traffic

Table 2.1 Format of Inspection Plan

divisions of the relevant

police stations

2.3 Coordination with the Stakeholders

The leader will discuss with other departments of RDA, and consult with traffic divisions of the relevant police stations to arrange a suitable traffic control plan.

Coordination with EE offices is needed for effective coordination with the RDA.

It is recommended to consult the police for traffic control in the following instances

- (a) When the road is closed.
- (b) When traffic volume is large and traffic congestion is expected.
- (c) When there is a cross-point near the traffic control area and traffic congestion is expected.

3. Safety Management

3.1 Introduction

An inspection by BIV needs the following safety measures adopted , in addition to the matters needed for normal inspection:

- Conduct a safety meeting before commencing the work, and make sure tasks of each staff in traffic control and safety management are explained to them; and ensure inter personnel communication among the staff is properly laid down.
- 2) The staff members on the platform should always wear safety belts while at work.
- 3) The inspection must be suspended in case of bad weather conditions, especially during strong winds.

The safety meeting must make sure the roles of each staff member and communication method pertaining to the traffic control and inspection. It also needs to discuss about possible accidents, which might happen during the inspection. See the examples of possible accidents shown in the Reference.

3.2 Communication during the Inspection

The leader decides the method of communication during the inspection. He/she is going to provide instructions about commencement, suspension and completion of the inspection, and movement of BIV to each staff member. The leader also should ensure the method of communication to be followed by the inspection team and how signals should be given by the security staff to be assigned at the start- and end-points of the traffic control area.

Communication during the inspection by BIV will be conducted by using audio equipment installed in the vehicle. It is recommended that security staff assigned at the traffic control area use walkie-talkies to make sure smooth communication. In case if walkie-talkies are not available, discuss and decide an appropriate communication method, by using hand-held sign boards and other communication methods.

3.3 Monitoring of Traffic Controls during the Inspection

The leader needs to monitor movement of the security staff and, status of traffic control equipment, and take suitable measures if there are any improvements needed.

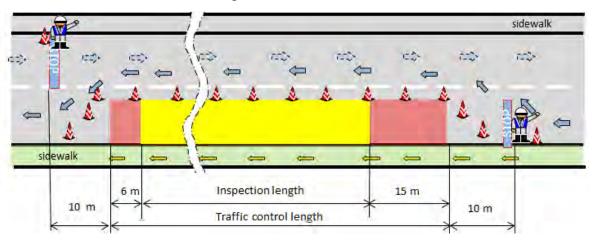
Improvement needed, for example, in case traffic cones are turned over, signals given by the security staff during stopping and then allowing vehicles to proceed along the bridge are not clear, and pedestrians will not be properly guided.

3.4 Securing Safety of Pedestrians

In the traffic control section, pedestrians need to bypass the traffic control area by walking on the sidewalk in opposite side or on a carriageway prepared at the side of the traffic control area. However, if the traffic volume is large and it is dangerous for them to cross the road, they are guided to walk on the sidewalk of the lane, in which the bridge inspection is carried out. When pedestrians travel under the boom of the BIV, it is necessary to stop moving the boom or platform of the vehicle or to ask them to wait until the work is over. Instruction for these arrangements need to be given by the leader of the inspection group.

4. Traffic control

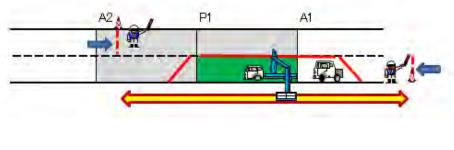
4.1 Traffic Control Plan


The leader needs to prepare a traffic control plan by conducting a preliminary investigation of the bridge to be inspected and its surrounding environment. The length of traffic control area is determined according to the scope of bridge inspection (Figure 4.1). If the length of the bridge and that of traffic control area is long, communication between the security staff becomes difficult. In an instance, it is recommended to divide the range of inspection in to sections ranging from 20 to 30 meters, to shorten the length of traffic control area (Figure 4.2).

The method of traffic control varies depending on the inspection ranges and width configuration of the bridge. There are three types of traffic controls as follows: (1) 2-lane road, (2) 2-lane road with wide width, and (3) 4-lanes road (Fig.4.3 (1) - 4.3 (3).

Each figure shows the standard arrangement of traffic control equipment. The standard arrangement of equipment is shown in Table 4.1.

Locations		Number of traffic control equipment
Locations of the secur points)	rity staff (Start and end	01 traffic cone
T au au	Start point	03 traffic cones
Taper	End point	03 traffic cones
Boundary of the traffic carriageway	c control area and the	Traffic cones of 4 -5 meter-interval
On the sidewalk in-front and behind the BIV		02 traffic cones


Figure 4.1 shows typical relationship between the inspection range by BIV and the length of the traffic control.

Situation of completion for the traffic control

Figure 4.1 Relationship between traffic control and bridge inspection areas

1st (A1-P1 Inspection area)

2nd (P1-A2 Inspection area)

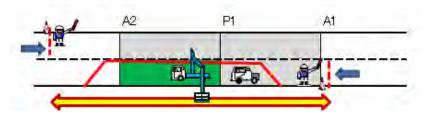


Figure 4.2 Example to divide and shorten the range of inspection, and make the length of traffic control shorter

Three patterns of traffic control are shown in the following figure 4.3

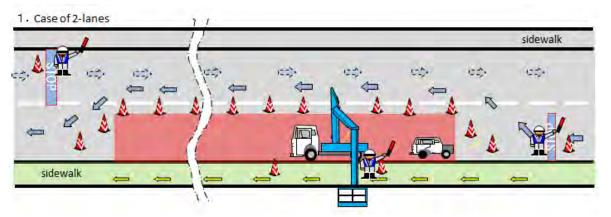


Figure 4.3(1) Traffic control of 2-lanes (Alternate Traffic Control)

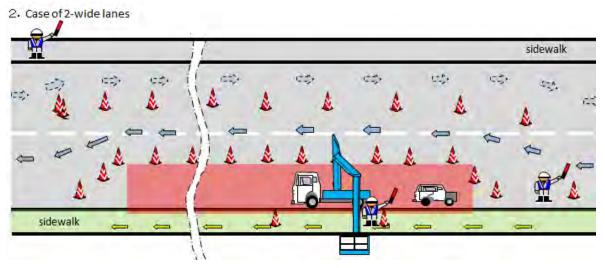


Figure 4.3(2) Traffic control of 2-wide lanes (Use shoulder width)

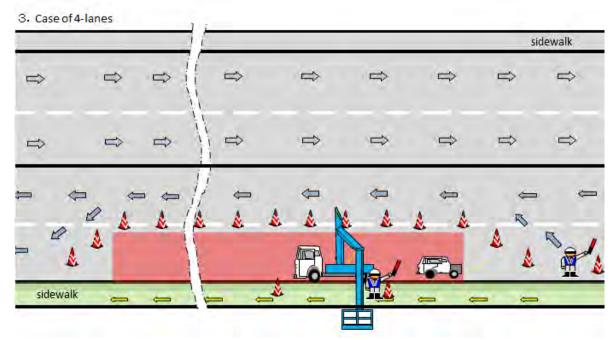


Figure 4.3(3) Traffic control of 4-lanes (1 lane closure)

8

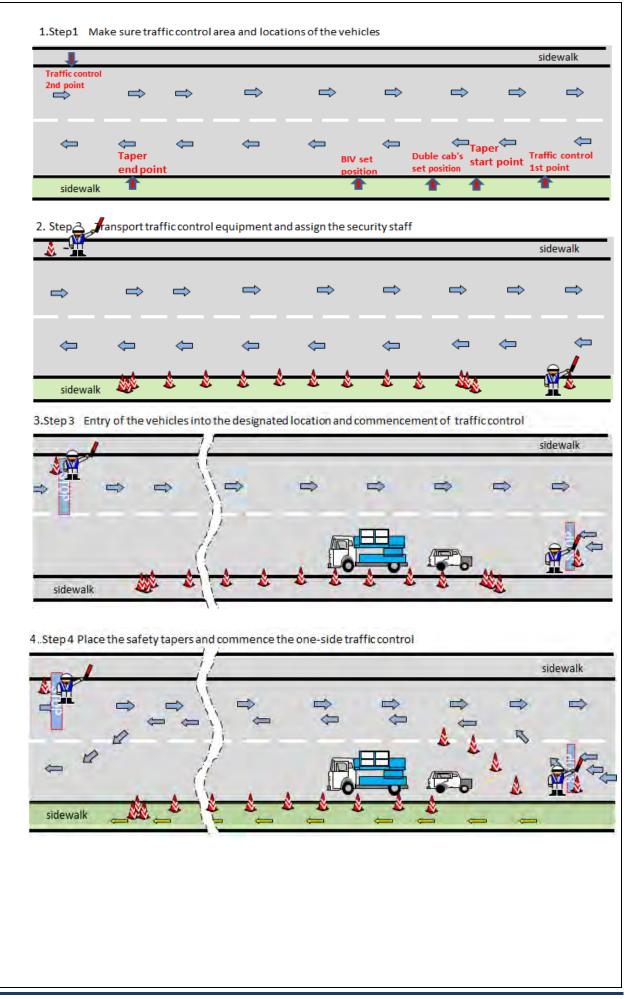
4.2 Traffic Control Equipment

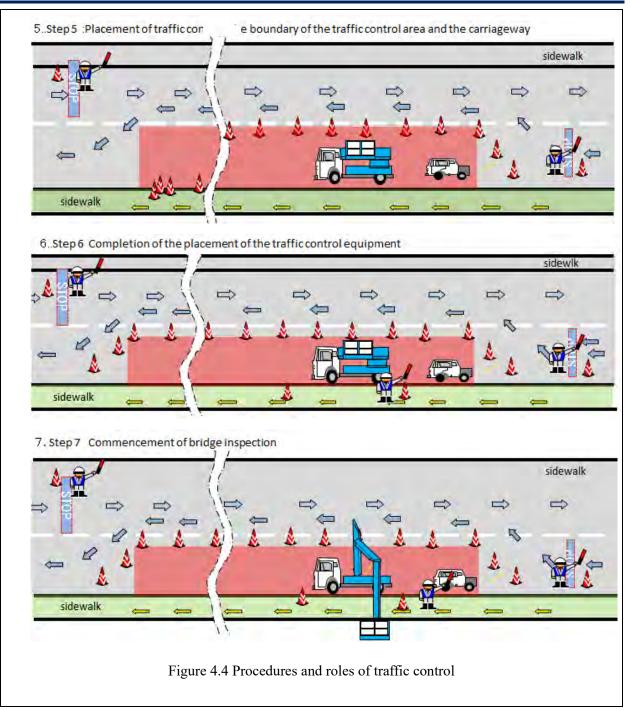
The traffic control equipment t	o be used is shown in the f	Collowing Table 4.2. If regulated equipment is
	insufficient, it should be	added to.
Ta	able 4.2 Equipment or the	raffic control
Equipment	Quantity	Application
Signboards	2	When it is judged necessary (Such as when the road is closed, or traffic congestion is expected.)
Traffic cones	25	
hand-held sign board and whistle, or flags & whistle	2	STOP

4.3 Implementation of Traffic Control

- 1. Traffic control is conducted by controlling road vehicles, for ensuring safety of the vehicles and technicians working for the bridge inspection by BIV, and to ensure safety of the moving vehicles and pedestrians.
- 2. Organizational structure of the inspection team is described in the bridge inspection and diagnosis manual. Traffic control should be implemented promptly according to the instructions provided by the leader of the inspection team.

The roles of each Member during the traffic control are shown in Table 4.3.


Category of staff	Necessary numbers	Roles and Responsibilities
		i. The leader decides locations of the traffic control equipment
		and instructs placement and removal of them.
Leader	01	ii. The leader instructs the BIV to enter the traffic control area.
		iii. The leader monitors status of the traffic control and instructs
		improvement when necessary.
		Before starting the traffic control, the inspection staff instructs
Inspection staff	02	security staff on the method of giving signals and communication
mspection sum	02	among the staff, including method of stopping vehicles and
		allowing to travel on the road.
BIV (operator &		i. The operator assists placement of the traffic control equipment.
driver)	02	ii. The driver brings in the BIV into the traffic control area after
		completion of the traffic control arrangement.
Double ash(driver)	01	The driver transports the traffic control equipment.
Double cab(driver)	01	During the inspection, the driver watches tail of the BIV.
		i. Two security staff members undertake traffic control. One
Traffic control		places traffic control equipment and gives safety guidance to the
security staff	04	pedestrians once the traffic control arrangement is completed.
(Including vehicle)		ii. One of them assists the traffic control and work as a
		replacement member.


Table 4.3 The Roles of Each Staff Member During the Traffic Control

3. Table 4.4 shows the standard procedure for traffic control on a two-lane road. The procedure of traffic control and roles of staff members during the traffic control are shown in Figure 4.4 The procedure for removal of the equipment will be conducted in an opposite manner.

Steps	Work Items
1. Make sure traffic control area	At the site of the traffic control, the leader firstly makes sure locations
and locations of the vehicles	of the security staff in the traffic control area, location of the tapers, and
	initial locations of the BIV and the double cab. The double cab is
	placed around 7-meters behind the BIV.
2. Transport traffic control	Transport the traffic control equipment to the sidewalk, where they are
equipment and assign the	supposed to be placed. Assign the engineer and a security staff at the
security staff	start- and end-points, where road vehicles are stopped.
3. Entry of the vehicles into the	Bring the BIV and the double cab to the designated location according
designated location and	to the instructions of the leader. Once the vehicles begin moving, the
commencement of traffic	engineer and the security staff place one of the traffic cones, which
control	were already transported to the designated locations, stop the vehicles
	at the start-point and commence traffic control. The engineer gives
	necessary instructions to the security staff for the control of traffic.
	Park the double cab, in a way that its front wheels turned to left, and the
	rear wheels are chocked.
4.Place the safety tapers and	One of the security staff and operators quickly place tapers with traffic
commence the one-side traffic	cones. Commence one-side traffic control after the placement of the
control	tapers.
5. Placement of traffic cones at	One of the security staff and the operator place traffic cones at $4-5$
the boundary of the traffic	meter intervals commencing from the start-point. (Place traffic cones
control area and the	on the sidewalk in-front and behind the BIV)
carriageway	
6. Completion of the placement	Complete the placement of the traffic control equipment by placing the
of the traffic control	safety taper at the end-point.
equipment	
7. Commencement of bridge	Commence the inspection. The leader provides necessary instructions
inspection	and undertakes safety management. The security staff assigned at both
	ends of the traffic control area undertakes traffic control. The security
	staff assigned at the middle of the area undertakes giving guidance to
	the pedestrians.

	Table 4.4	Standard	Procedure	for Traffic	Control
--	-----------	----------	-----------	-------------	---------

5. Operation of the BIV

5.1 Introduction

The leader confirms result of the startup inspection, result of the BIV, provides instructions of locations, commencement of work, movements in the traffic control area, suspension and end of the inspection work. It is recommended that during the operation of the BIV, the operator of the BIV always double checks and confirms the safety clearly and loudly by pointing out the results of each operation.

The leader and operator needs to understand the "Operation Manual" of the manufacturer of the vehicle which is being used for the BIV.

5.2 Roles of the Members of the Bridge Inspection Staff

Table 5.1 H	Roles of staff	f during the bridge inspection by BIV
Staff	Numbers	Roles and responsibilities
Leader	01	Responsible for overall management of the inspectio by BIV.
Inspection staff	02	Conduct bridge inspection and record the results.
Driver and operator of the BIV	02	Driver: Drive the inspection vehicle to the designated location. Operator: Operate the platform of the BIV

5.3 Inspection of the BIV Prior to the Operation

According to the instructions of the leader, the operator of the BIV carries out an inspection prior to the operation, reports the result to the leader and conducts a sampling inspection, if needed. Items for the initial inspection are shown in Table 5.2.

Item	Inspection Items	Inspection Contents	Inspection Method				
	Radiator	Quantity water,	Visual inspection				
Engine	Battery	Volume of electrolysis solution	Visual inspection				
	Hydraulic oil tank	Volume of oil, leakage of oil	Visual inspection				
	Tires	Damages, wear, pneumatic pressure	Visual inspection, palpation				
	Wheel mounting bottle	Loose, drop out	Visual inspection, palpation				
Undercarriage	Outrigger foot step	Outrigger condition	Operation check, visual inspection				
	Mission gear	Operating condition	Operation check of the clutch (by operating gears)				
	Traveling platform	Damages, dent	Visual inspection				
	Operating lever	Operating condition	Operation check (looseness of the lever)				
Operating device	Operating switch	Rattling	Operation check (Bounce back of buttons)				
	Operating valve	Leakage of oil	Visual inspection				
	Boom, arm	Crack, deformation	Visual inspection				
Boom device	Boom undulation, stretch cylinder	Malfunction, leakage of oil	Abnormal sound Visual inspection				
Work floor device	Work floor handrail	Damages,	Visual inspection				
	Emergency stop	Operating condition	Operation check				
Safety device	Instruments	Operating condition	Visual inspection				
Salety device	Alarm device	Operating condition	Operation check, alarm sound, function of lamps				

Table 5.2 Items for the Inspection of BIV- Prior to the Operation

5.4 Operation of the BIV (Main Procedure)

The main operation procedure of the BIV is shown below.

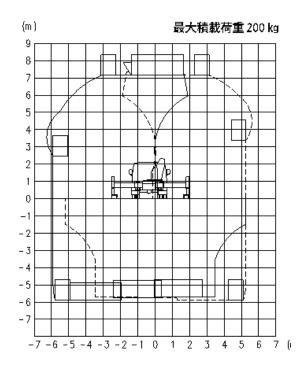
STEP1 Installation of outrigger

Watch outriggers you operate and jack-up one by one at a time (You have to make sure

there is no one at the direction of stretching the outriggers and around the jack.

- Set up the front and rear jacks properly.
- Make sure that all tires and jacks are properly fixed.
- If there is the service duct, roller jacks need to load on the end of the service duct(Photo 5.1).

Photo 5.1 Example to position of the roller jacks on the service duct.


STEP2	Get on the platform
	• Total weight is up to 200 kg (2 or 3 persons)
	• One engineer and one operator; or one engineer and one operator-cum-engineer.
STEP3	Installation of safety belt
	• Hang a safety belt on a hook.
STEP4	Boom operation
	• Extend the boom.
STEP5	Arm operation
	Slide the platform completely.
STEP6	Arm operation
	 Make the arm parallel to the side of the bridge.
STEP7	Platform operation (lateral direction)
	• Expand and move the arm, up and down, turn over the bridge,
	• Take care not to get too close to electric wires and other objects.
STEP8	Platform operation(vertical direction)
	Lower the platform vertically downward to the bridge.
STEP9	Platform operation (up to the under surface of the bridge)
	• Be careful the platform will not hit the main girder and others.
	• Be careful the staff on the platform will not be caught by the main girder and others.

STEP10 Vehicle movement

- Go ahead taking care of street lights and objects nearby.
- Go ahead taking care of bridge surface drains, uneven road surface and others.
- Confirm the signal of the staff on the platform and the driver when the vehicle moves.

Working range diagram with maximum outrigger extension of the BIV is given in Figure 5.1

Figure 5.1 Working Range Diagram (Maximum Outrigger Extension) Rated working load:200kg

5.5 Important Remarks for Operation of the BIV

- (1) Precautions to be taken when driving
- Make sure all the devices are stored when driving.
- If gravity of the vehicle is high, there is a risk that the vehicle might fall especially when it negotiates corners...
- Do not drive the vehicle where the permitted weight is less than the weight of the vehicle.
- Be careful when the vehicle travels on places with height restriction. The platform is located higher than the eye line.
- Do not drive the vehicle when someone is on the platform.
- (2) Stop operations when weather condition is not favorable(adverse)

Stop operation during following weather conditions:

- High winds: Average wind speed is 10m/s or continuous wind of more than 10 minutes
- · Heavy rain: Continuous rainfall of 50mm or more
- Thunder: At the time of lightning
- (3) Parking the vehicle on slope
- The maximum permissible incline on which the vehicle can be parked is 5 degrees. It is 3 degrees for roller travelling.
- Choke all wheels of the vehicle when the vehicle is parked on a slope.
- (4) Safety before operating the platform
- Make sure that all vehicle tires and jacks are properly fixed.
- Always use safety harness when working on the platform.
- (5) Safety while operating equipment of the vehicle
- Make sure no one stands beneath the platform and others.
- Do not drop items from the platform.
- Do not operate the machine roughly.
- Do not walk on the platform while working.
- Do not stretch yourself out from the platform.

6. Implementation of Bridge Inspection

6.1 Introduction

Purpose of the bridge inspection by BIV is to collect necessary information for bridge management, by approaching a part of the bridge, where no one can get close without the aid of an inspection vehicle. Since the inspection is conducted by approaching very close to the part of the bridge, in addition to the information described in the bridge inspection and diagnosis manual, information that is required for designing of repair works and for the preparation of bill of quantities can also be collected.

In case of damages by delamination or loss of structural concrete/ steel were found at the time of inspection by BIV, it is necessary to measure cracks, identify area of delamination by hammering inspection, measure area of defective steel portion as a result of corrosion, and record the results.

In a hammering inspection, you need to identify extent of float caused by rebar corrosion, which cannot be identified by visual inspection. For steel bridges, dimension of cross-sectional defect portion of the steel material, which affects safety of the bridge, and thickness of the steel material must be measured. Damage diagram provides necessary information for designing of repairs and for preparing bill of quantities.

6.2 Tools for the Inspection

The equipment used for the inspection is same as that is used for ordinary inspections. In addition. Crack gauge and choke need to be used. For steel bridges, wire brush, caliper and cello-tapes are also needed for inspection.

6.3 Inspection of Concrete Bridges

Inspection of concrete bridges include visual and hammering inspections. You need to measure and record size of the damages found by the hammering inspection.

(1) For hammering inspection, a 230-gram hammer (approximately 0.5 pounds) should be used in consideration of work efficiency, lesser impact to structures and easiness in recognizing rebound sound. The results of hammering inspection should be evaluated as described in Table 6.1.

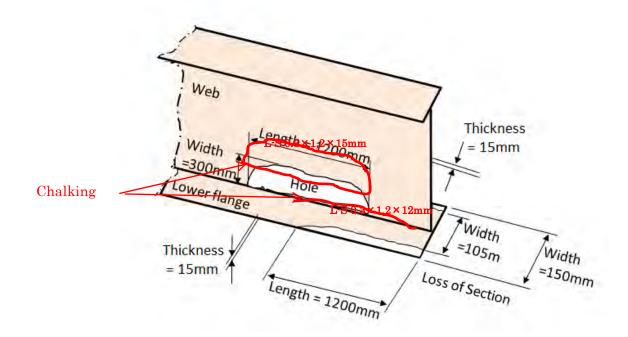
Results of Hammering Inspection	Expected Structure Conditions
High metallic clear sounds "king-king" "kong-kong" and strong rebound (Clear Sounds)	Sound
Heavy dull sounds "dong" "dos-dos" (Dull Sounds)	Deteriorated, voids near the surface
Light dull sounds "bocco" "pecco-pecco" (Dull Sounds)	Delamination

Table 6.1 Guideline for Evaluation of Structure Conditions by Hammering Inspection

A hammering inspection shall be carried out more precisely for the parts where damages were recognized by near visual observation, and for the joints of concrete.

(2) Mark (line) the location and range of the damages using a chalk. Measure the dimensions (length &width) of the damaged areas already marked by chalk; and write the dimensions on the location with chalk just like the figure in Table 6.2. It is desirable to use a chalk with appropriate ink, so that the mark remains until the next inspection.

Damage	Example of marking	Method of marking
Spalling/delamination /,expose-rebar	Chalking Width Im 1.0m×2.0m	Mark the damage by circling the damaged area. Write types of damage (abbreviation), width and length of the damage range by using chalk on the location.
Cracks	Width of maximum surface crack Length2m width2m 0.3×3.0m	Mark a line along the crack. Write the maximum width and length of the damage on the location.


Table 6.2 Example of Marking a Concrete Bridge by Chalk

6.4 Inspection of Steel Bridges

Inspection of steel bridges includes visual inspection and measurement of dimensions and depth of corrosion for the parts where corrosion is in progress and section defects are occurring. Likewise inspect damage conditions of bolt nuts and floor slabs.

Figure 6.1 shows an example of marking with chalk and dimensional recording of a cross-section defect of a steel bridge. After estimating the volume of the corrosion loss, clean the rust thoroughly with a wire brush or a similar device, and measure the residual plate thickness with a caliper. Dimension of the corroded area of a truss member needs to be measured so that the ratio of the area of section defect caused by corrosion against the original section area can be calculated.

Figure 6.1: An example of chalking and dimensional recording of a cross-section defect

The difference between rust and corrosion of steel surface can be identified by cello-tape test as shown in Photo 6.1. Rust adheres to the cello-tape in case it is corroded

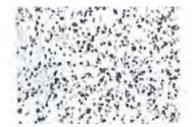


Photo 6.1 Cellophane tape test

6.5 Record of Damages

Enter the major damages onto the diagram showing damages.

Major damages are, cracks, flaking / floating, rebar exposure, corrosion, cross section defects, Scouring, and other damages which may create safety issues. Diagrams indicating the damaged areas of the structures must be scanned and filed in a proper manner.

Record the position and dimensions of the damaged area, which were marked by a chalk, on the diagram. The method of recording damages on the diagram is shown below.

- (1) Care should be taken to ensure the correct location and orientation of the damaged areas on the diagram (up and down of the diagram indicating the damages).
- (2) Record the size and orientation of the damages according to the scale of the figure.
- (3) Record the types and dimensions of the damage. Use the abbreviations shown in Table 6.3 for the types of damages. Table 6.4 shows the method of writing dimensions of the damages.

List	Abbreviation	Damage	List	Abbreviation	Damage
2882	Со	Corrosion		Ex-Rba	Expose-Rebar
\bigcirc	L-S	Loss of Section	Ø	Spa	Spalling
/	С	Crack	0	Sca	Scour
22	Dela	Delamination	0	Ot	Other

Table 6.3 Damage List and Abbreviations

Table 6.4 Recording Method of the Major Damage Size on Damage Schematic Diagram

Structural Member	Classified Type	Damage Type	Unit	Dimensions
		Crack	m	Crack width(mm)*Length
Superstructure	Concrete Arch	Spall, Delamination, Expose-Rebar	m	Width * Length
Superstructure		Loose / Missing Stone	m	Width * Length
	Steel	Corrosion	m	Width * Length
	Sleel	Loss of section	m	Width * Length * Thickness(mm)
		Crack	m	Length
Substructure	Concrete Steel	Spall, Delamination, Expose-Rebar	m	Width * Length
	Arch	Loose / Missing Stone	m	Width * Length
		Scour	m	Width * Length

Figure 6.2 shows an example of on-site situation of damage and a record of damages on the diagram.

Figure 6.2 Example of on-site situation of damage and a record of damages on the diagram

On-site situation

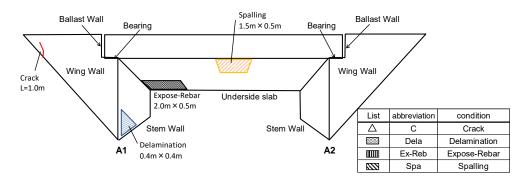
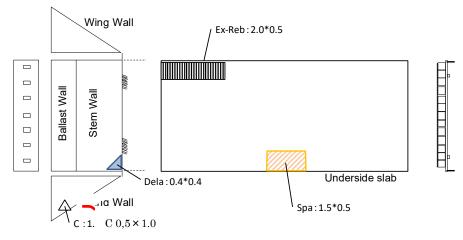
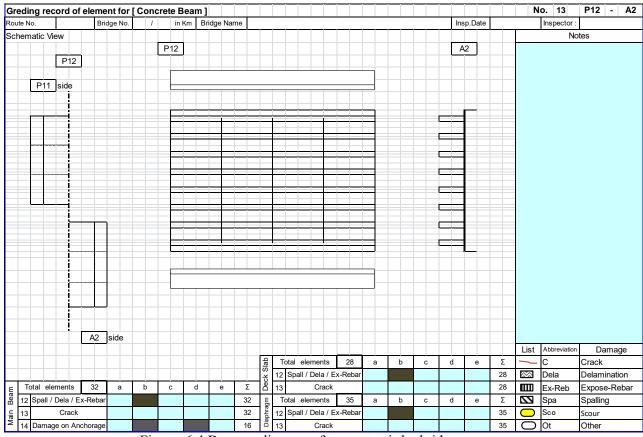




Figure 6.3 Examples of description of damages at site and diagrams showing damages

An example of writing a damage diagram

There are several forms of diagrams showing damages, according to the types of bridges. Figure 6.4 and Figure 6.5 shows examples of diagrams of damaged concrete girder bridge and a steel bridge respectively. This diagram to show damages, was made, in order to describe the degree of damage of each element.

Example of damage diagram (a concrete girder bridge)

Figure. 6.4 Damage diagram of concrete girder bridge

Example of damage diagram (a steel bridge)

reding re	ecord of																								lo. 1	A1 - F
oute No.		Bri	dge No.	1	in	Km	Bridg	e Nar	ne											h	nsp.Da	ate			Inspector :	
chematic \	∕iew																								No	tes
			A	\1													P1									
	A1																				A2					
														_												
								_					_								_		_			
																					-					
							_						-			_					-					
								Ē																		
						Þ	_			-		_	-			⊢	-									
	-+																				-+					
													-								_					
												_	-			⊢	-									
							_			_		_	_			+	-									
								_																		
												-						-	_		-					
															_						-					
														-					_		_					
							_	_				_	_		_				_		_		_			
	_						_	_		-		_	_						_		_					
						+	_			-		_	-		_			_	_				_	1.1.4	Abbreviation	Dave
						+	_			-		_	_		_			_	_		_		_	List		Damage
						++	_			-		_	_		_			_	_				_	***	Co	Corrosion
						+	_			-		_	_											Θ	L-S	Loss of Sect
							_																	/	С	Crack
Total e		24	а	b	с	d		е	Σ	Deck Slab			emen		20	а	b)	С	d	e	e	Σ	~~	Dela	Delamination
19 Paint	Degradat	ion							24	Dec	22	amage o	n Deck Sl	ab (Steel)/(RC)								20		Ex-Reb	Expose-Reba
20 Corro	sion								24	ш	To	al el	emen	ts	25	а	b)	с	d	e	•	Σ	Δ	Spa	Spalling
21 Damag	je (Rivet / H	SFG)								Diaphragm	20	Corros	sion										25	0	Sco	Scour
	position / Veg								8	a.					ISFG)							_			Ot	Other

Figure. 6.5 Damage diagram of a steel bridge

[Reference] Examples of the matters to be discussed at the preparatory meeting for bridge inspection by BIV

1. Examples of possible accidents during the inspection (Ref: Attachment 3.1)

1) Injuries by the outrigger during the process of setting

Ensure that people are not present close to the outrigger. When the setting is done You must instruct staff/people to keep a distance from the outrigger during the settings.

2) Vehicles enter the controlled area and hit BIV.

Make sure to use the safety belt when you are at the platform.

The leader and the traffic control security staff in-charge sound the whistle when there would be a risk.

3) A vehicle crashes onto another vehicle coming from opposite lane, when it tries to overtake at the starting point of the traffic control area.

Give clear instruction and stop the vehicle, which is trying to overtake. Stop the vehicle coming from the opposite lane, too. (use flags and whistles)

4) Falling over of safety cones

The traffic control security staff in the middle of the control area need to raise the safety cones.

5) People travelling between the area of BIV and the road when they stay out from the traffic controlled area and if hit by a road vehicle.

Instruct the people to use foot pavement at opposite side or traffic control security staff at the middle, to guide the people to use the pathway between BIV and safety cones.

2. Examples of signals (Ref: attachment 3.2)

(1) Signal by the leader during the operation

Blow a whistle 3 times to stop the operation. Then, the driver has to stop driving the BIV. The operator needs to stop movement of the arm.

(2) Communication between the Driver and the Operator

Communication between the driver of the BIV and operator on the platform needs to be conducted through the leader. The driver of the BIV has to go forward or stop the BIV following the hand signals of the leader at the time of moving the machine using the roller jacks.

(3) Communication among the traffic control security staff during the traffic control

Communication among the traffic control security staff during the traffic control needs to be conducted according to the following guide lines:

i) Stop the vehicles.

ii) Give signals to the traffic control security staff at the opposite side and mutually confirm that the vehicles were stopped.

iii) After the confirmation, let the vehicle at the opposite side to proceed.

iv) Communicate with each other by giving signals, and conduct alternate traffic control smoothly.

[Stop the next vehicle when there is an interruption of traffic flow, and let the vehicles on the other side travel]

Alert the traffic control security staff at the opposite side, by blowing a whistle, using flags and hand signals if there is a vehicle travelling without following the instruction to stop. The traffic control security staff at the other side, should immediately stop the vehicle.

Communication between the traffic control security staff can be conducted by using flags and by hand-held sign board as follows. It is recommended to use a whistle together with flags and plates.

		•					
Work items	Hand-held sign board	Flags					
Sterr sultinles	Raise "Stop" sign board	Hold the flag horizontally					
Stop vehicles	(blow whistles once)	(blow whistle once)					
Let the vehicles go	"Go" sign board (blow whistle once)	Wave the flag back and forth at horizontal position (blow whistle once)					
Acknowledge signs between the staff	Put left hand up	Put left hand up					
Alert the danger	Raise and wave the sign board (blow whistle)	Raise and wave the paddles (blow whistle)					

Table 6.5: Communication between traffic control security staff

3. Procedure for traffic control

Confirm roles of each staff

- (1) Confirm locations of traffic control
 - i) Locations to stop vehicles
 - ii) Locations to start and end the traffic control
 - iii) Locations to stop the double cab (DC) and the BIV firstly.
- (2) Locations for placing the Traffic Cones (RC)
 - i) Place the traffic cones along the pavement in the traffic control area [everybody to do this work]

ii) Engineer and traffic control security staff stand at the location where ordinary vehicles will be stopped.

(3) Start bringing in BIV and DC. Commence traffic control.

i) The leader gives instructions to bring BIV and DC and stop at the above-mentioned locations.

ii) Immediately stop the road vehicles at the 1st point (Engineer gives instructions to the traffic control security staff)

[Stop DC 10 m ahead of BIV. Turn the wheels to the left after it is stopped.]

(4) Location of Taper

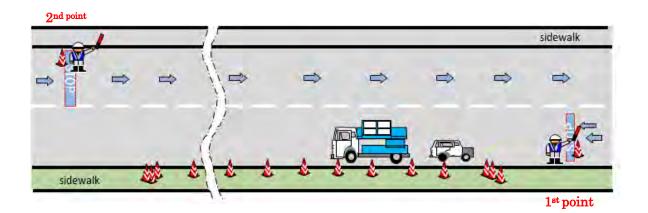
i) Transport the traffic cones and place the Tapers

[Traffic control security staff at the middle and the operator of the BIV to do this work]

ii) When setting of the Tapers is completed, start alternate traffic control by stopping the road vehicles at the 2nd point and then let the vehicles stopped at the 1st point to proceed

(5) Placement of RC

Place RC in 4 - 5m interval.


[Traffic control security staff at the middle and the operator of the BIV to do this work]

(6) Completion of placement of traffic control equipment

Placement of the traffic control equipment is completed, after the Taper is placed at the end of the traffic control area. Place RC on front and back of the BIV.

(7) Start Bridge Inspection

Figure 6.6: Locations of the 1st and the 2nd Points

