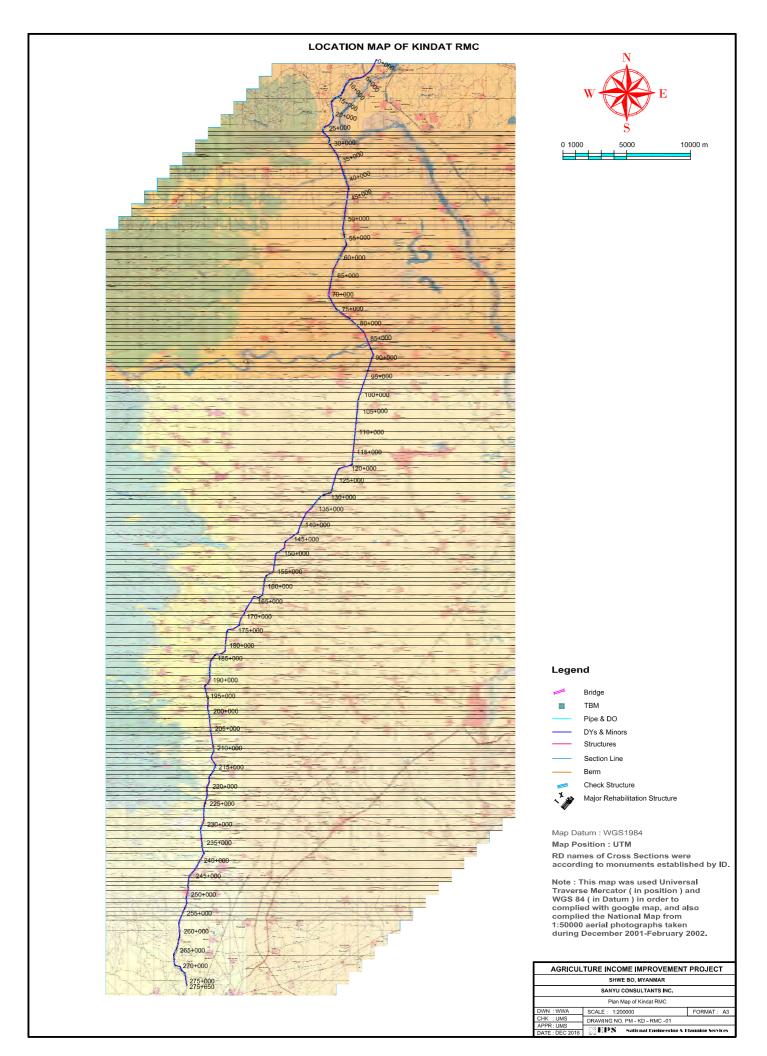


V-64

SANYU CONSULTANTS INC DIMN : Constraint Of Kindar O DATE :MAR 2017 DATE :MAR 2017

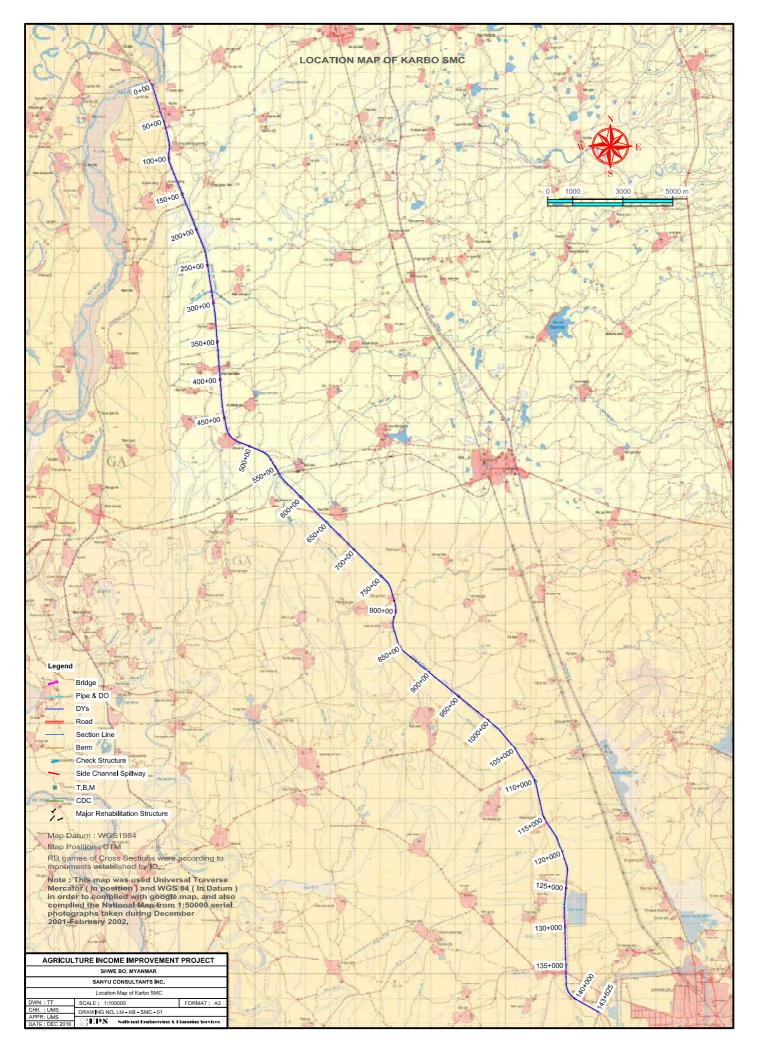
PROJECT

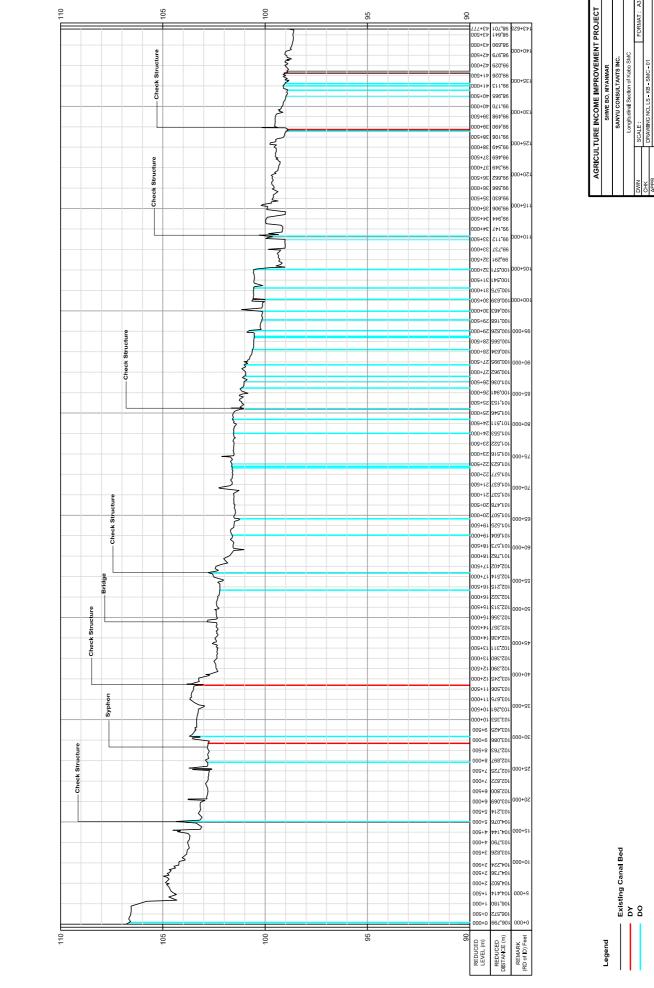

AGRICULTURE INCOME IMPROVEMENT


SHWE BO, MYANMAI

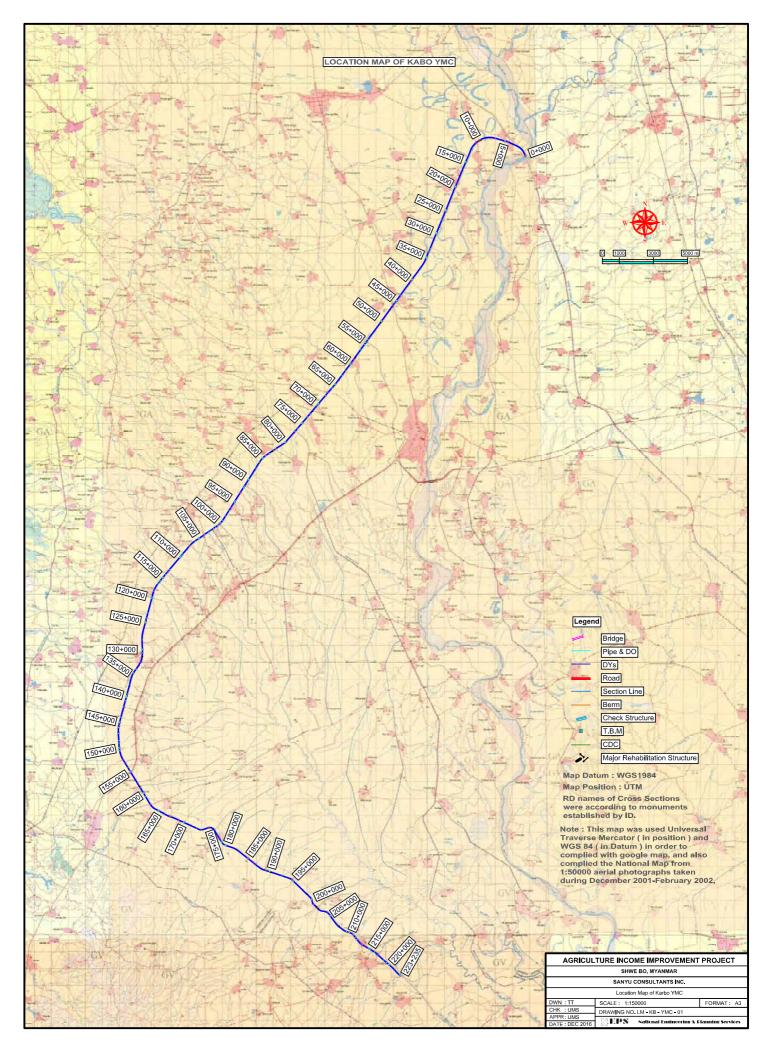
Legend

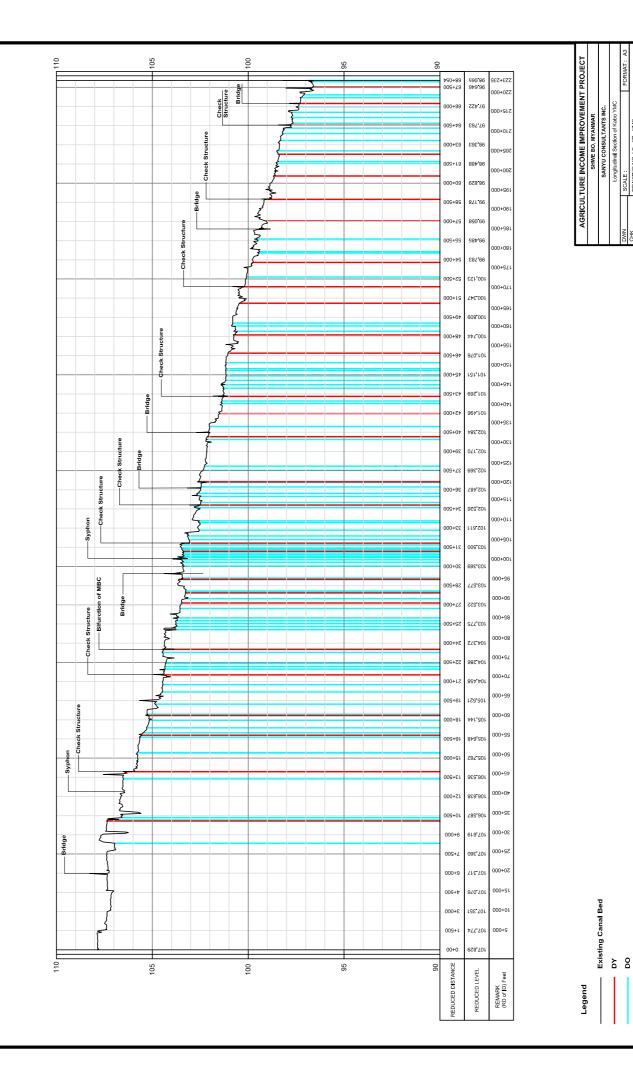
≿ 8


Existing Canal Bed



LONGITUDINAL SECTION OF KINDAT RMC


V-66



LONGITUDINAL SECTION OF KARBO SMC

V-68

LONGITUDINAL SECTION OF KABO YMC

V-70

ORMAT

DRAWING NO. LS KB YMC

SCALE :

Verification of the safety of Thapanzeik dam against flood

(1) Basic information of Thapanzeik dam

Thapanzeik dam, one of the biggest dams in Myanmar, is the main water source for the target irrigation area. It is located in the upstream of Mu River and it has 3,552 million cum of storage capacity with irrigable area of 199,866 ha. This dam was constructed for irrigation purpose on Mu River located in Kyunhla township of Kanbalu district, Sagaing Region.

After the Mu River Irrigation Survey Feasibility Study, the detail design of Thapanzeik dam with related structures was conducted by ITALCONSULT in February 1972, more than 40 years ago. Based on this design, construction of the dam started in 1996 and completed in 2001, and then the water storage was started from January 2001. Water discharge from the dam for irrigation was commenced from June 2001 to supplementary irrigate monsoon paddy. Basic information of Thapanzeik dam is shown in the table below:

Location	Kyun Hla Township, Sagaing (N 23°18'26.29", E95°20'54.53")		
Project Started	199	6-97	
Project to be Completed	2001-02		
Name of River	Mu F	River	
Catchment Area	8,961 Sq.km	3,460 Sq. Miles	
Average Annual Rainfall	963 mm	37.91 inches	
Average Annual Inflow	5,420 Million cubic -m	4.394 Million Acre-ft	
Type of Dam	Zoned Earth Dam		
Height of Dam	32.9 m	108 ft	
Length of Dam	6,884.5 m	22,587 ft	
Storage Capacity	3,552 Million cubic -m	2,880,000 Acre ft	
Dead Storage Capacity	118 Million cubic -m	95,800 Acre ft	
Effective Storage Capacity	3,434 Million cubic –m	2,784,200 Acre ft	
Water Spread Area at FTL	430 Sq-km	106,200 Acres	
Elevation of the Dam Top	RL 170.69 m	RL 560 ft	
Maximum Water Level of Reservoir	RL 168.25 m	RL 552 ft	
Full Tank level (FTL) of Reservoir	RL 166.12 m	RL 545 ft	
Service Spillway			
(a) Type of Spillway	Ogee Type with Radial Gate (spillwa	ay discharge can be control by gate)	
(C) Width of Spillway	133.2 m	437 ft	
(C) Design Discharge	3,964 cubic -m /s	140,000 cusecs	
(D) Elevation of the crest	RL 161.54 m	RL 530 ft	
Auxiliary Spillway			
(a) Type of Spillway	Ogee Type (o	overflow type)	
(b) Width of Spillway	367.9 m	1,207 ft	
(C) Design Discharge	1,133 cubic -m /s	40,000 cusecs	
(D) Elevation of the crest	RL 166.73 m	RL 547 ft	

Table 1	Basic Information of Thapanzeik Dam	

Source: JICA survey team

(2) Design flood discharge and design discharge of spillway

The Mu River originates in the hills of upper Myanmar and flows towards south for a distance of 290 miles (467 km) finally to join the Ayeyarwady river. The total catchment basin of the Mu river covers 6,000 square miles (15,540 km²), but at the Thapanzeik dam, 139 miles from its source, the catchment basin extends over an area of 3,460 square miles (8,961 km²).

According to the final design report, runoff at Thapanzeik dam was computed on the basis of

discharge data measured at Kabo weir location (catchment basin 4,826 square miles, 12,499 km²) adjusted by means of measurement taken at Thapanzeik dam. Investigations were performed pertaining to the statistical processing of flood data recorded on Mu River at Kabo weir so as to ascertain the most probable 50, 100 and 1,000 year floods. Flood discharge ranking on Mu River at Kabo weir from 1946 to 1967 are shown in Table 2. All the Kabo weir values had been adjusted to the Thapanzeik dam location by applying a factor of 0.876.

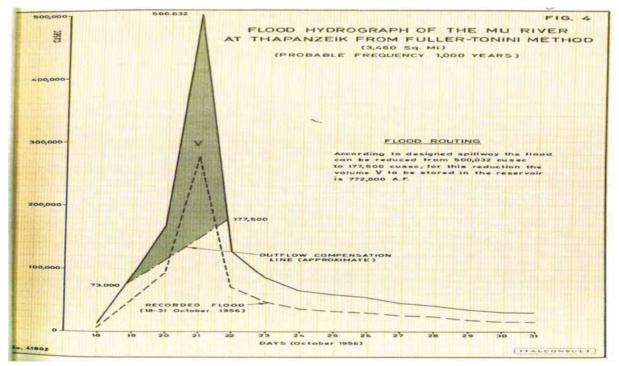
The spillway design flood at Thapanzeik dam was assumed to be 500,032 cusecs (14,159 m³/s), which is for 1,000 year flood. The hydrograph for this flood is given in Figure 1. The routing capacity of the reservoir between the full tank level of reservoir and maximum water level is such as to reduce the flood peak to 177,500 cusecs (5,026 m³/s), which is 35.5 % of the spillway design flood at Thapanzeik dam.

Flood discharge at Kabo weir Estimated flood discharge at Thapanzeik dam Occurrence date (m3/s) (cusec) (m3/s) (cusec) 1 1956/10/12 277,515 7,858 243,103 6,884 2 1966/10/1 125,000 3,540 109,500 3,101 1956/5/30 111,550 3,159 97,718 2,767 3 4 1962/10/13 94,470 2,675 82,756 2,343 5 1967/10/24 91,400 2,588 80,066 2,267 75,570 6 1954/6/4 2,140 66,199 1,875 7 1964/8/31 2,050 1,796 72,400 63,422 8 1961/9/20 68,360 1,936 59,883 1,696 9 1966/6/21 66.700 1,889 58.429 1,655

1,877

58,079

1,645


Table 2 Ranking of flood discharge (runoff water of Mu River) at Kabo weir from 1946 to 1967

Date resource: Mu River Irrigation Survey, Thapanzeik dam final design, Volume I Design data and criteria

66,300

10

1963/10/8

Source: Mu River Irrigation Survey, Thapanzeik dam final design, Volume I Design data and criteria
Figure-1 Flood hydrograph of the Mu river at Thapanzeik from fuller-Tonini method

Finally the maximum flood flow at Thapanzeik dam was estimated to be 500,032 cusecs (14,159 m³/s) with 1,000-year frequency. Then, when designing the spillway structure, accounting has been taken of the routing effect of the reservoir. The spillways had been proportioned for the maximum overall discharge of 177,500 cusecs (5,026 m³/s) at an elevation of 552' (168.25 m). Taking account of the routing effect of the reservoir, this is equivalent to the 1,000-year flood discharge of 500,032 cusecs (14,159 m³/s).

In detail, with the gates fully open, the gated spillway can discharge 73,000 cusecs (2,067 m³/s) while maintaining the reservoir at an elevation 545' (166.12 m). At elevation of t 547' (166.73 m), it can discharge 88,000 cusecs, without the emergency spillway coming into operation; this corresponds to about 162,000 cusecs (4,587 m³/s), taking account of the routing effect of the reservoir. When discharges attain higher water levels, the emergency spillway starts operating. This can discharge 47,500 cusecs (1,345 m³/s) at the awter level of 552' (168.25 m) while the gated spillway can discharge 130,000 cusecs (3,681 m³/s) at the same elevation.

Table-3	Spillway disch	arge which is tak	en account of the	routing effect of t	<u>the reservoir.</u>

	ble maximum discharge from spillway					
Water level of reservoir	Service		Auxiliary		Total	
	(cusecs)	(m ³ /s)	(cusecs)	(m ³ /s)	(cusecs)	(m ³ /s)
~ RL 530 ft (RL 161.54 m)	0	0	0	0	0	0
~ RL 545 ft (RL 166.12 m)	~ 73,000	2,067	0	0	~ 73,000	2,067
~ RL 547 ft (RL 166.73 m)	0	0	~ 88,000	~ 2,492		
~ RL 552 ft (RL 168.25 m)	~ 47,500	1,345	~ 177,500	~ 5,026		
Service spillway Auxiliary Spillway Dam embankment top RL 560 ft (RL 170.69 m)						
Maximum water leve	l RL 552 ft (RL	168.25 m)				
				Crest of Auxiliary		
Full tank level of rese	rvoir 545 ft (RL	166.12 m)		RL 547 ft (RL 1	68.25 m)	
Crest of Se	rvice Spillway					
	RL 168.25 m)					

(3) Evaluation of large flood after the completion of the Thapanzeik dam construction

In middle October 2015, there were heavy rains in the catchment basin of Thapanzeik dam, and then a large runoff water entered the dam reservoir. According to the data recorded by Thapanzeik office of IWUMD Shwebo maintenance office, the inflow to the dam was about 303,727 acre-ft/day (390 million m^3/day) on October 10, 2015, daily average flood discharge on per second was 153,129 cusecs (4,366 m^3/s) and the peak flood discharge was estimated to be 187,847 cusecs (5,319 m^3/s). This discharge is the 4th highest during the 15 years operation since 2001.

Although the highest flood discharge was 196,843 cusecs (5,574 m^3/s) on September 14, 2004, the flood discharge on October 12, 1956 was higher; it is 243,103 cusecs (6,884 m^3/s). However, since water level of dam reservoir was nearly full tank level, water level reached the maximum RL 548.10' on October 11, 2015. This water level of dam reservoir is highest for the 15 years operation since 2001. In this day, discharge from spillway also reached 64,538 cusecs (1,828 m^3/s), the biggest for 15 years.

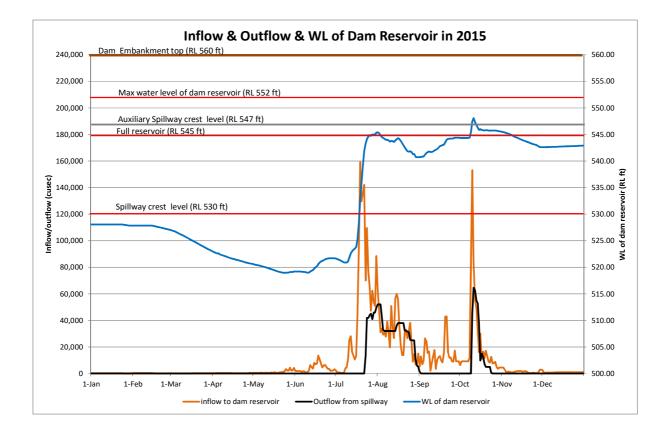
Of course, this spillway discharge is the highest during the last 15 years, but compared with the design discharge of 177,500 cusec (5,026 m^3/s); it is only 34.4% of the design spillway discharge. It was not a flood that threatened the safety of the dam.

	Rank	of the large floo	od	F	ank of high V	WL of dam re	servoir	
	Occurrence date	Daily average Flood discharge (cusec)	WL of the reservoir (RL ft)	Occurrence date	WL of the reservoir (RL ft)	Daily average Flood discharge (cusec)	height from spillway crest (ft)	Height till max WL (ft)
1	14-Sep-2004	196,843	542.50	11-Oct-2015	548.10	83,692	18.1	3.9
2	15-Sep-2004	177,360	544.50	10-Oct-2015	547.50	153,129	17.5	4.5
3	19-Jul-2015	159,271	532.75	12-Oct-2015	547.35	55,183	17.4	4.6
4	10-Oct-2015	153,129	547.50	13-Oct-2015	546.80	49,060	16.8	5.2
5	22-Jul-2015	142,097	541.85	14-Oct-2015	546.30	32,254	16.3	5.7
6	21-Jul-2015	135,972	539.20	23-Oct-2007	546.00	100,483	16.0	6.0
7	20-Jul-2015	129,761	535.90	16-Oct-2015	546.00	30,081	16.0	6.0
8	13-Sep-2004	124,015	538.40	24-Oct-2007	546.00	19,599	16.0	6.0
9	24-Jul-2015	109,607	544.10	3-Nov-2007	546.00	12,131	16.0	6.0
10	23-Oct-2007	100,483	546.00	19-Oct-2007	546.00	11,800	16.0	6.0

Table-4 Ranking of flood discharge at Thapanzeik Dam and high WL of dam reservoir from 2001 to2015

Table-4 Ranking of Spillway discharge from 2001 to2015

	Data	Discharge of	of spillway	WL of the	reservoir	Flood di	scharge
	Date	(cusec)	(m ³ /s)	(RL ft)	(RL m)	(cusec)	(m ³ /s)
1	11-Oct-15	64,538	1,828	548.10	167.06	83,692	2,370
2	12-Oct-15	62,684	1,775	547.35	166.83	55,183	1,563
3	15-Sep-04	59,986	1,699	544.50	165.96	177,360	5,022
4	13-Oct-15	55,006	1,558	546.80	166.66	49,060	1,389
5	9-Oct-04	54,987	1,557	545.35	166.22	41,859	1,185
6	11-Oct-10	54,091	1,532	544.75	166.04	23,788	674
7	14-Oct-15	52,987	1,500	546.30	166.51	32,254	913
8	1-Aug-15	51,988	1,472	545.40	166.24	63,547	1,799
9	2-Aug-15	51,988	1,472	545.25	166.19	47,350	1,341
10	3-Aug-15	51,988	1,472	544.85	166.07	30,971	877


In addition, the highest flood discharge of 196,843 cusecs $(5,574 \text{ m}^3/\text{s})$ for the last 15 years counts at 39% of the maximum flood flow of 500,032 cusecs $(14,159 \text{ m}^3/\text{s})$. Likewise, the highest flood discharge of 243,103 cusecs (6,884 m³/\text{s}), which is estimated based on the highest flood at Kabo weir in 1956, for the last 110 years from 1905 is 49% of the maximum flood flow.

Using the flood discharge data during 2001-2016 and the ranking data of flood discharge (runoff water of Mu River) at Kabo weir from 1946 to 1967, 1000 year flood is estimated to be 492,041 cusecs (13,933 m^3 /s) as shown in Table 5. It is almost the same as original design flood discharge. In addition, it is found that 196,843 cusecs (5,574 m^3 /s) of year 2004 equals to almost 25 year flood, and 243,103 cusecs (6,884 m^3 /s) of year 1956 equals to almost 100 year flood.

Therefore, considering the above, the safety of the dam against flooding is judged secured, although there is a possibility that climate change may affect the rainfall and the flood volume. It is, however, noted that should the gates not be operated as designed due to some accidents (service spillway is gated type), auxiliary spillway can handle only 47,500 cusec (1,345 m³/s). In this case, dam safety cannot be secured at all, even against only 2-year probability flood. Accordingly, the annual and periodical maintenance for the gates is very important.

Deskahilitererer	Flood di	scharge
Probability year	(cusecs)	(m ³ /s)
2	61,441	1,740
5	102,761	2,910
10	137,299	3,888
25	189,162	5,356
50	233,727	6,618
80	266,960	7,559
100	283,600	8,031
200	339,085	9,602
500	421,706	11,941
1000	492,041	13,933

Table-5 Re-estimated flood discharge of each probability year

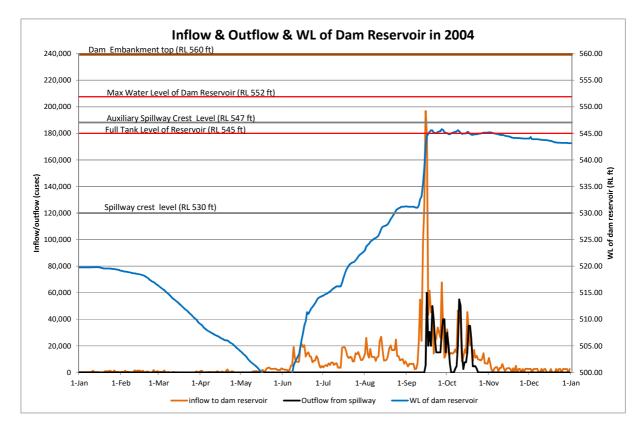
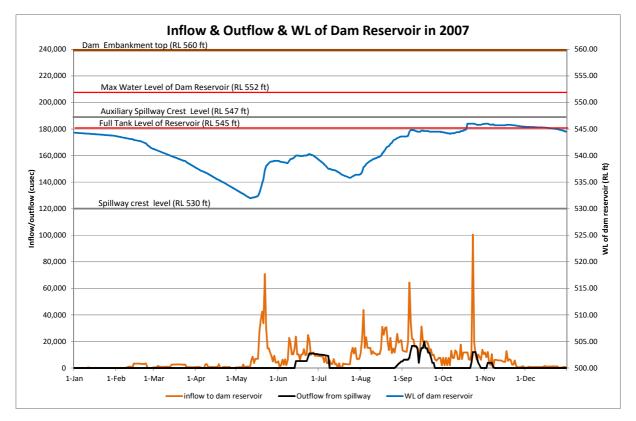
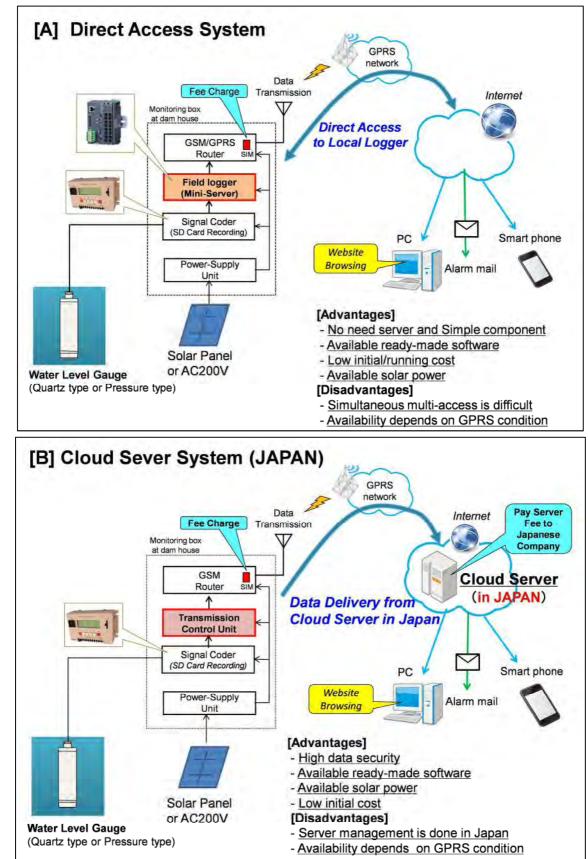
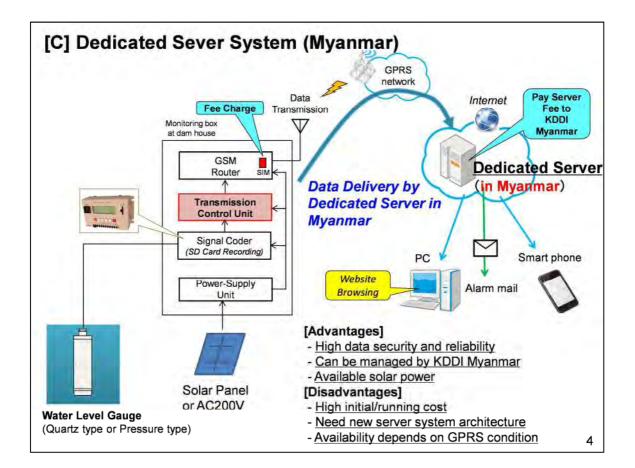


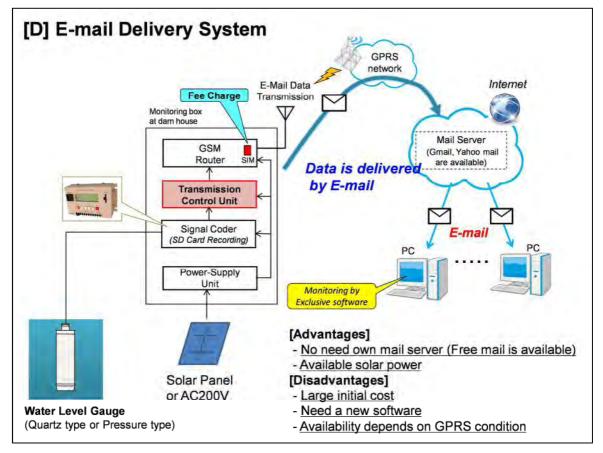
Figure-3 Inflow (runoff to dam reservoir) and outflow (spillway discharge) and water level of dam reservoir in 2004

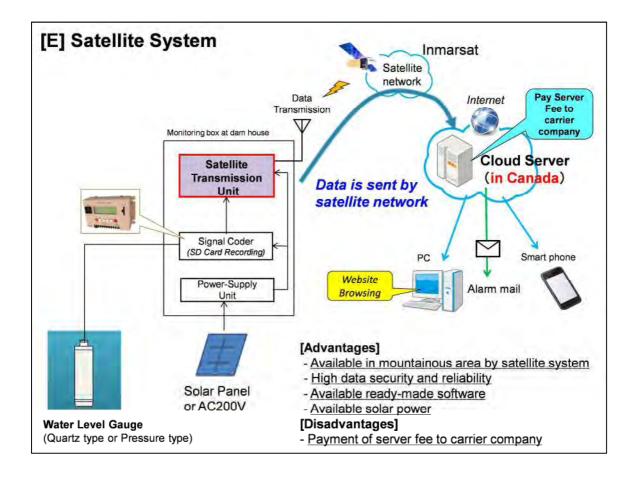



Figure-4 Inflow (runoff to dam reservoir) and outflow (spillway discharge) and water level of dam reservoir in 2007

Comparison on Type of Water Measurement Equipment


I. Comparison of Real-time Monitoring Systems


(Rate: 1US\$ = 115JPY)


Type	[A]	[B]	[C]	[O]	[E]
System Name	Direct Access System	Cloud Server System (JPN)	Dedicated Server System (MMR)	E-Mail Delivery System	Satellite System
Using Line	GPRS	GPRS	GPRS	GPRS	Satellite
Using Server (Place)	Ι	Cloud Server (Japan)	Dedicated Server (KDDI Myanmar)	Available Mail Server (Gmail, Yahoo mail etc.)	Cloud Server (Canada)
Maintenance	- Signal/Data check - Equipment cleanup	- Signal/Data check - Equipment cleanup	 Signal/Data check Equipment cleanup Server check 	- Signal/Data check - Equipment cleanup	- Signal/Data check - Equipment cleanup
Easiness of Maintenance	- Easy	- Easy	- Easy	- Easy	- Easy
Data Security	Medium	High	Very High	Middle	High
Monitoring Software	Can customize of ready-made software	Can customize of ready-made software	Need new architecture of server/software	Need new architecture	Can customize of ready-made software
Expandability of Station	Medium	High	High	Low	High
Monitorable Device	PC, Smartphone	PC, Smartphone	PC, Smartphone	PC only	PC, Smartphone
Power Supply	AC200V or Solar Panel	AC200V or Solar Panel	AC200V or Solar Panel	AC200V or Solar Panel	AC200V or Solar Panel
Advantage Point	 Low initial cost Simple component Available existing software 	 Low initial cost High data security Available existing software 	- High data security - Can maintain in Myanmar	- Low cost - No need of own server	- High data security - Available in mountain
Disadvantage Point	 Availability depends on GPRS condition 	 Important irrigation data is managed by foreign server Availability depends on GPRS condition 	 High cost of new system architecture Availability depends on GPRS condition 	 Need new software Availability depends on GPRS condition 	 Important irrigation data is managed by foreign server
Recommend	0			Δ	

II. Images of the Monitoring Systems A - E

III. Cost

1. Component List

No.	Equipment	No. of Types	Remarks
1	Water Level Gauge	6 types	A1-A6 of the following tables
2	Velocity Gauge	2 types/2 lines	B1-B2 of the following tables
3 Monitoring Box		2 types	C1-C2 of the following tables
4	Transmission System	5 types	D1-D5 of the following tables

2. Measuring Equipment Cost

2-1. Water Level Gauges

Selectable from the table below:

No.	Туре	Unit	Unit Price	Remarks
A1	Quartz Type	1 pc	1,300,000 JPY	Range: 10m
A2	Pressure Type (Made in Japan)	1 pc	250,000 JPY	Range: 10m
A3	Pressure Type (Not Japan-made)	1 pc	150,000 JPY	Range: 10m
A4	Microwave Type	1 pc	800,000 JPY	Range: 10m
A5	Ultrasonic Type	1 pc	2,000,000 JPY	Range: 10m
A6	Floating Type (Reed-Switch type)	1 pc	2,000,000 JPY	Range: 3.5m

(NOTE) The prices include a sensor and a signal coder for the sensor.

2.2 Flow Velocity Meter

Selectable from the table below:

No.	Туре	Unit	Unit Price	Remarks
B-1-1	Ultrasonic Type	1 set	5,000,000 JPY	1 measurement line
B-1-2	(Travel time difference)	1 set	6,000,000 JPY	2 measurement line
B-2-1	Microwave Type	1 set	3,200,000 JPY	1 sensor
B-2-2	(Doppler)	1 set	5,000,000 JPY	2 sensor (common controller)

(NOTE) The prices exclude the water level gauge for discharge calculation.

The water-level measuring station only needs the water level gauge (A), while the water discharge measuring station needs a combination of the water level gauge (A) and the velocity meter (B); the discharge is derived from computation using the water level and flow velocity observed.

2.3 Monitoring Box

No.	Туре	Unit	Unit Price	Remarks
C1	For Water Level Station	1 pc	1,000,000 JPY	Outdoor Wall-mount type
C2	For Discharge Station	1 pc	1,000,000 JPY	Stand Cabinet type

(NOTE) The prices exclude the sensor and signal coder.

3. Transmission System Cost

3-1. Initial Cost

3-1-1. Site Equipment

No.	System Type	Unit	Unit Price	Remarks
D1-1	D1-1 [A] Direct Access System		3,500 USD	per 1 sta.
D2-1	[B] Cloud Server System (JPN)	1 set	2,000 USD	per 1 sta.
D3-1	[C] Dedicated Server System (MMR)	1 set	2,000 USD	per 1 sta.
D4-1	[D] E-Mail Delivery System	1 set	2,000 USD	per 1 sta.
D5-1	[E] Satellite System	1 set	3,000 USD	per 1 sta.

3-1-2. Server / Software

No.	System Type	Unit	Unit Price	Remarks
D1-2	[A] Direct Access System	1 set	n.a.	
D2-2	[B] Cloud Server System (JPN)	1 set	5,000 USD	System total
D3-2	[C] Dedicated Server System (MMR)	1 set	50,000 USD	System total
D4-2	[D] E-Mail Delivery System	1 set	20,000 USD	System total
D5-2	[E] Satellite System	1 set	1,000 USD	System total

(NOTE) The software development cost is high for [C] and [D]. However, software necessary to be developed is only one. Therefore, the, the cost per measuring station decreases as the number of the stations increases.

3-2. Running Cost

3-2-1. Site Equipment

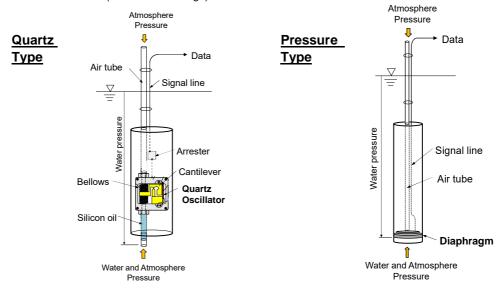
No.	System Type	Unit	Unit Price	Remarks
E1-1	[A] Direct Access System	1 set	1,800 USD	per 1 sta.
E2-1	[B] Cloud Server System (JPN)	1 set	1,800 USD	per 1 sta.
E3-1	[C] Dedicated Server System (MMR)	1 set	1,800 USD	per 1 sta.
E4-1	[D] E-Mail Delivery System	1 set	1,800 USD	per 1 sta.
E5-1	[E] Satellite System	1 set	1,800 USD	per 1 sta.

3-2-2. Communication Fee

No.	System Type	Unit	Unit Price	Remarks
E1-2	E1-2 [A] Direct Access System		600 USD	1 sta./year
E2-2	[B] Cloud Server System (JPN)	1 set	600 USD	1 sta./year
E3-2	[C] Dedicated Server System (MMR)	1 set	600 USD	1 sta./year
E4-2	[D] E-Mail Delivery System	1 set	600 USD	1 sta./year
E5-2	[E] Satellite System	1 set	2,000 USD	Incl. server fee

3-2-3. Server Maintenance Fee

No.	System Type	Unit	Unit Price	Remarks
E1-3	[A] Direct Access System	1 set	n.a.	
E2-3	[B] Cloud Server System (JPN)	1 set	5,000 USD	Total system/year
E3-3	[C] Dedicated Server System (MMR)	1 set	6,000 USD	Total system/year
E4-3	[D] E-Mail Delivery System	1 set	n.a.	
E5-3	[E] Satellite System	1 set	5,000 USD	Total system/year

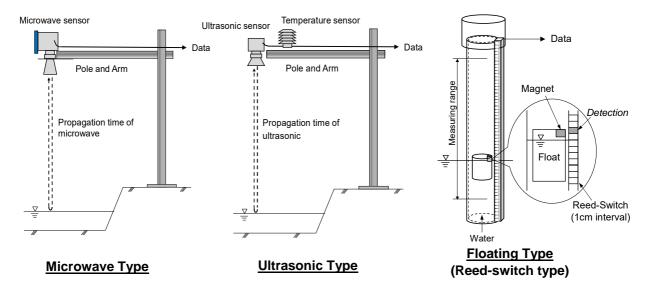

IV. Comparison / Specification of Equipment

1. Water Level Gauge

(1/2)

Turne	Quartz turna	Pressure type		
Туре	Quartz type	Japan-made	Except for Japan-made	
Measurement Principle	Water pressure detection (by Quartz-oscillator)	Water pressure detection (by strain of the membrane made of the Ceramic)	Water pressure detection (by strain of the membrane made of the Silicon)	
Accuracy and its stability	0.01/0.02/0.05% FS ^{*1} , stable (up to 1mm in 10m range)	0.1% FS ^{*1} , few drift (max 1cm error in 10m range)	0.1%/0.3% FS ¹ , frequent drift (max 3cm error in 10m range)	
Measurement Max. Range	Selectable 10/20/30/50/70m	Selectable 10/20m	Selectable 10/20m	
Expected Durability	15 years	10 years	3 to 5 years	
Installation	Easy (in the protective pipe on the bank or the pile	Easy (in the protective pipe on the bank or the pile	Easy (in the protective pipe on the bank or the pile	
Power supply	Solar or AC power	Solar or AC power	Solar or AC power	
Maintenance	 Data and power supply check Clean up 	 Data calibration(if necessary) Data and power supply check Clean up 	 Data calibration (frequently) Data and power supply check Clean up 	
Advantages	 High and stable accuracy Lightning surge protection by arresters High reliability backed by long time operation in rivers and dams of Japan 	 Low initial cost Lightning surge protection by arresters Many installation records in irrigation channels of Japan 	- Low initial cost	
Disadvantages			 Accuracy drift by deformation of silicon membrane Short durability 	
Suitable Target	Reservoir, Diversion dam	Channel	Channel (for temporary survey)	
Installation Record in Japan	- Main river's FFWS of MLIT - Dams of MAFF, MLIT, JWA - Diversion weirs of MAFF	 Irrigation canals of MAFF Pumping St. of MLIT Dams of MAFF, MLIT, JWA 		
Installation Record in Myanmar	- Myo Gyi dam (2015) - Myittha dam (2016)	- Mezali sulice gate (under the designing)		

*1 FS: "Full Scale" of the sensor (Measurement range)



Floating type Type Microwave type Ultrasonic type (Reed-Switch type) Water surface measurement Distance measurement **Distance measurement** Measurement between sensor and water between sensor and water by detecting the position of Principle the float with a magnet by surface by microwave surface by microwave propagation time propagation time reed switch Accuracy and its ±1cm, possibility of error by ±1cm, stable ±1cm, stable stability temperature change Measurement Selectable 1.0, 1.5, 2.0, 2.5, 15m 15m Max. Range 3.0, 3.5m Expected 10 to 15 years 10 to 15 years 15 years to 20 years Durability Easy (on the bridge or the Easy (on the bridge or the Easy (on the vertical Installation arm with pole) arm with pole) concrete bank or the pile) Solar or AC power Solar or AC power Solar or AC power Power supply Data and power supply Data and power supply Data and power supply Maintenance check check check Clean up Clean up Clean up Clean up Accuracy is not affected by Simple structure and high Non-contact measurement temperature durabilitv Non-contact measurement and safe from collision by Lightning surge protection Advantages and safe from collision by sediment and driftwood. by arresters sediment and driftwood Lightning surge protection So many operation results Lightning surge protection by arresters in FFWS of Japan by arresters Accuracy is affected by Accuracy is affected by temperature temperature Visible sensor and Disadvantages Visible sensor and possibility of Visible sensor and possibility of possibility of vandalism/theft vandalism/theft vandalism/theft Suitable Target Diversion dam, Channel Diversion dam, Channel Channel Installation - Irrigation canals of MAFF Record - Main river's FFWS of MLIT - Main river's FFWS of MLIT - Main river's FFWS of MLIT in Japan Installation Record

*1 FS: "Full Scale" of the sensor (Measurement range)

in Myanmar

MAFF: Ministry of Agriculture, Forestry and Fisheries, MLIT: Ministry of Land, Infrastructure, Transport and Tourism, FFWS: Flood Forecasting and Warning System

(2/2)

2. Flow Velocity Meter

Туре	Ultrasonic type (Propagation time difference)	Microwave type (Doppler shift)
Measurement Outline	T2 Flow Upper line Lower line	Flow
Measurement Principle	Measures a difference of the ultrasonic propagation time in the water between two transducers which are installed in both banks.	Measures a Doppler shift between sensor and flow surface by microwave.
Target	Cross-sectional mean velocity of underwater	Point velocity of water surface
Accuracy	± 0.04m/s	± 2%
Measurable Range	- 4 to + 4m/s (width: 2.8 to 140 m)	+0.5 to +20 m/s
Error Factor Air bubble, High turbidity		Low velocity (<0.5m/s) Backflow by pier downstream
Expected Durability	10 years	10 years
Installation	Fixing a pair of transducer in each concrete bank (under the water) obliquely.	Fixing required number of sensor on the bridge.
Power supply	AC power	AC power
Maintenance	 Data and power supply check Clean up 	 Data and power supply check Clean up
Advantages	 Accurate discharge calculation by cross-sectional mean velocity of underwater Measurable low velocity and backflow 	 Non-contact measurement and safe from collision by sediment and driftwood. Easy installation
Disadvantages	 Affected by air bubble and high turbidity. Need an installation in dry condition of channel 	 Need a correction take into account the underwater velocity distribution of depth and cross-section direction. Unmeasurable low velocity and backflow Visible sensor and possibility of vandalism/theft
Installation Record in Japan	- Downstream river including tidal area	- Upstream river, Debris flow torrent

3. Monitoring Box

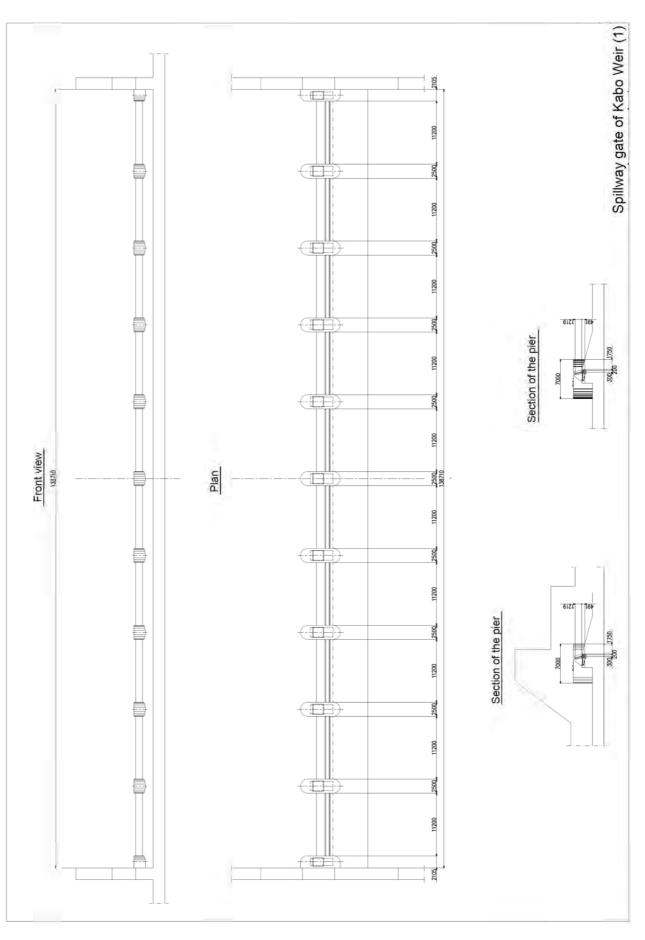
Function:	Data display/Recording/
Function.	Transmission
Dimensions:	700W×700H×200D mm or less
Weight:	30kg or less
Power Supply:	AC170V to 264V
Major Component:	Field Logger/Transmission Control Unit,
Major Component:	Router, Power supply unit

4. Signal Coder

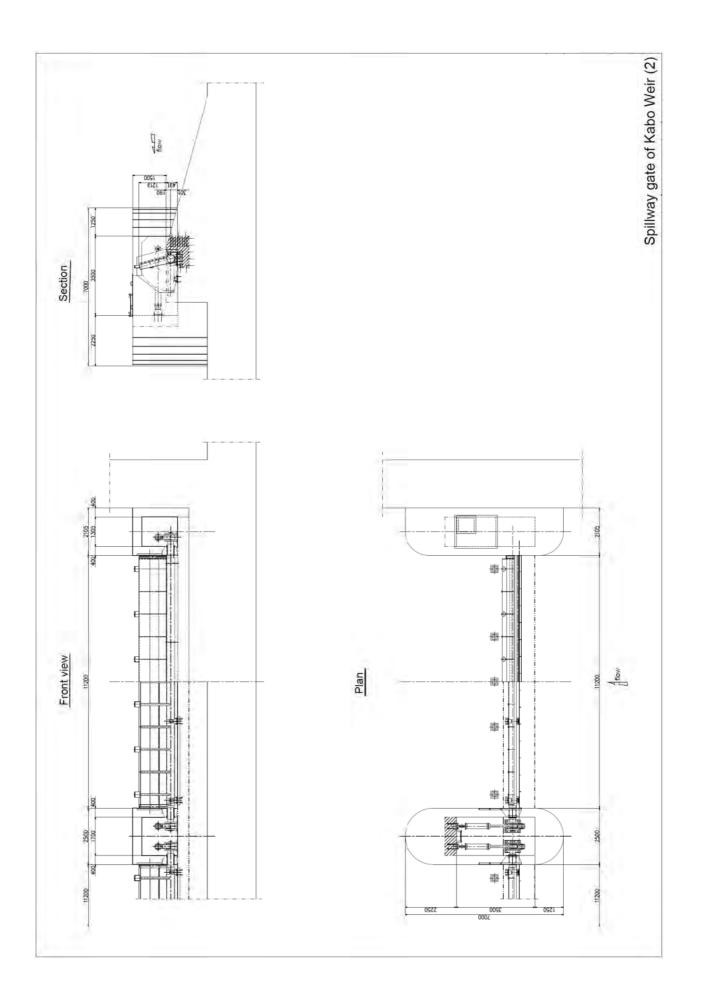
Input Signal	Frequency signal (Quartz type) 4-20mA (Pressure type)
Output Signal	4-20mA, RS485
Operation:	6 key switch
Data Display:	LCD
Data Recording:	Media: SD Card (CSV format recording)
Data Recording:	Interval: (Min.) 1min., (Max.) 1 hour
Operating Power Supply	DC12V
Current Consumption:	300mA or less
Ambient Temperature:	-10 to 50 °C
Relative Humidity:	30% to 90% (No condensing)
Dimensions:	180W×100H×50D mm
Weight:	1.5kg or less

5. Router

Processor/Memory:	ARM9/256MB Flash memory
Communication:	3G: 800/850/900/1900/2100 MHz
Communication.	2G: 850/900/1800/1900 MHz
Interface:	10/100Base-TX port×1, Serial Port×1,
interface.	Mini USB 2.0 OTG×1
Power Supply	DC8 to 40V
Ambient Temperature:	-20 to 70 °C
Dimensions:	110W×150H×40D mm
Weight:	230g or less


6. Field Logger

Communication:	DHPC (Dynamic Host Configuration Protocol)
Ethernet:	10BASE-T/100BASE-TX
Input:	Analog, Digital
Function:	Simple server (Web browsing for data table and trend graph) Alarm e-mail (to max 32 addresses)
Power supply:	DC 24V (12W)
Ambient Temperature:	-10 to 55C
Relative Humidity:	30% to 90% (No condensing)
Available OS/Browser:	 PC: OS: Windows Vista, Windows7(32bit/64bit),Windows8.1(32bit/64bit) Browser: Internet Explorer 10/11, Firefox 13.0.1, Chrome 26.0.1410.43m Tablet OS: iPad (iOS5 or new), Android (Android4.0 or new) Browser: iOS : Safari, Android: Chrome Smartphone OS: iPhone (iOS5 or new), Android (Android4.0 or new) Browser: iOS : Safari, Android: Chrome


7. Transmission Control Unit

Type Transmission control unit	
Function	Protocol conversion
FUNCTION	Router control
	LAN : 100BASE-TX/10BASE-T x 1ch
Interface	Input/Output : Analog or Digital In/Out x2ch
	Serial: RS-485 or RS-232C x1ch
Power supply	DC5V or DC12V
Ambient Temperature	-20 to 60°C

V-89

06-V

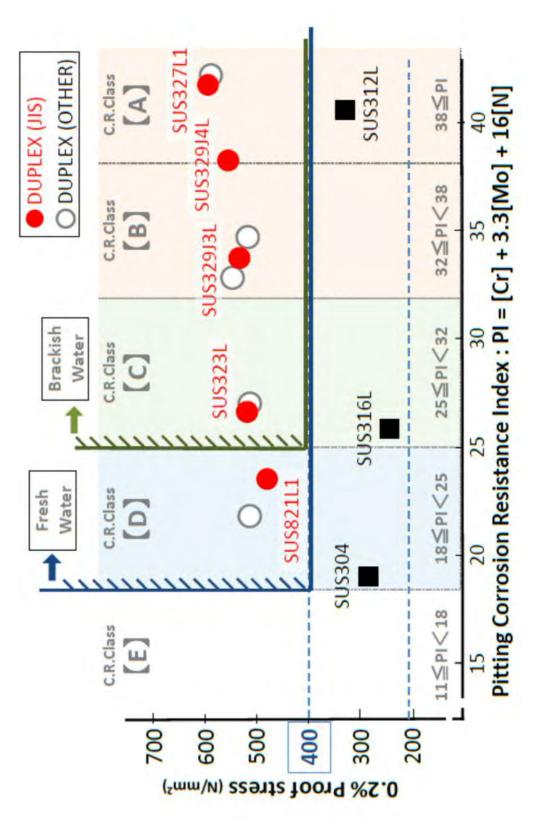
Compariso	on table on the hydrau	Comparison table on the hydraulic overturning flap gate for Spillway gate of Kabo Weir	Spillway gate of Kabo Weir	
		Normal steel gate	Stainless steel gate	Duplex stainless steel gate
Characteristic	Material	Rolled steel for welded structure (SM400)	Austenitic stainless steel (SUS304)	Alloy-saving Duplex Stainless Steel (SUS821L1)
	Tensile strength (N / mm 2)	400	520	600
	Yield point or yield strength	245	205	400
	Corrosion resistance	0.05 – 0.12 mm/year facing on water	It is hard to rust in air, freshwater.	It is harder than SUS304 to rust in air, freshwater.
	Weldability	It is a steel material developed considering weldability, and welding is relatively easy	Welding is easy in stainless steel, but it is difficult compared with ordinary steel. Particularly, upward welding requires skilled welder. In addition, corrosion resistance (sensitization) may	It is almost same as SUS304. "Sensitization" which is a deterioration phenomenon of corrosion resistance need not be considered.
			decrease as welding heat input increases.	
Merit		 Easy to obtain materials Easy fabrication (cutting, assembly, 	 Painting is unnecessary, so coating paint replacement is not necessary. 	Same as SUS304 In addition
		welding, machining)	 Maintenance cost is cheap. Because stainless steel is hard and 	It is possible to reduce the weight by reducing thickness, because tensile
		design is	has abrasion resistance, it is	strength and yield point is higher than
		 Fabrication cost is low. 	difficult to wear by flowing gravel and sand. (steel thickness is	SUS304.
			difficult to decrease)	
Demerit		 Gate leaf need Update pain Maintenance is high. 	 Fabrication (cutting, welding, machining) is difficult, compared 	Same as SUS304 However,
		\checkmark There is a risk of corrosion on the		Since the weight can be reduced,
		damaging painted surface due to	Processing at the site is even more	compared with SUS304 & SM400,
		driftwood and sweeping gravel on	difficult.	fabrication cost including material is
		the upstream side.	There is no freedom of color.	cheaper than SUS304. Moreover,
		\checkmark . It is difficult to repaint the paint at	➤ Because the design standard	operation cost is cheapest.
		the bottom and edge of the gate	strength (yield strength) is low, the	

ei.
Š
0
ğ
ž
Ъf I
<u>م</u>
ate
ö
Š
Ň
É
р С
Ļ
Ð
Ð
Jai
0,
ap
Ē
D C
Ē
<u>n</u>
E L
Ž
0
iЩ
้อเ
đ
È
Φ
th
Ç
0
Ыe
table on the hydraulic overturning flap gate for Spillway gate of Kabo M
ц
õ
Ľ.
Зa
Ē
ō

		Normal steel gate	Stainless steel gate	Duplex stainless steel gate
		leaf.	equipment weight becomes heavy. Fabrication cost is high.	
Gate span and gate size	d gate size	21 m x 6 spans + 5 pears (w=2.7m) = Total 138.7m Considered the possibility to weld the gate at the project site, gate span can be londer as much as possible.	11.2 m x 10 spans + 9 pears (w=2.5m) = Total 138.7m Considered the difficulty to weld the gate at the project site, gate span is a size which can be transported by track.	Same as SUS304
Size of Machin	Size of Machine room in pier		Same as SM404	Same as SM404
Weight of the gate	gate	14.0 ton/ gate x 6 = 84.0 ton	6.0 ton/gate x 10 = 60.0 ton	5.0 ton/gate \times 10 = 50.0 ton
Output of liftinç	Output of lifting device (hydraulic facilities)	3.7 kw	3.7 kw	3.7 kw
Life span of gate	ate	50 years under proper maintenance	More than 50 years	More than 50 years
Life span of lift	Life span of lifting device (hydraulic facilities)	25 years	25 years	25 years
Necessary days	fabrication	2 month for design, 2 month for procurement of material, 10 month for fabrication total 14 month	2 month for design, 2 month for procurement of material, 9 month for fabrication total 13 month	2 month for design, 2 month for procurement of material, 10 month for fabrication total 14 month
	installation	10 month	8 month	8 month
Fabrication	Gate leaf and guide flame	137 Million JPY	171 Million JPY	152 Million JPY
cost	Lifting device	150 Million JPY	150 Million JPY	150 Million JPY
	Total	287 Million JPY	321 Million JPY	307 Million JPY
Maintenance	Gate leaf and guide flame	90 Million JPY/50 years	50 Million JPY/50 years	50 Million JPY/50 years
cost	Lifting device	367 Million JPY/50 years	367 Million JPY/50 years	367 Million JPY/50 years
Total cost inclu	Total cost including 50 years maintenance cost	744 Million JPY	738 Million JPY	719 Million JPY
Selection				~

1.Chemical composition	l compos	ition			1.Chemical composition				
		υ	Si	Mn	c	iN	Mo	Cu	z
SUS821L1	Standard	≦0.030	≦0.75	2.00~4.00	20.50 ~ 21.50	1.50~2.50	≦0.60	0.50 ~ 1.50	0.50 ~ 1.50 0.15 ~ 0.20
	Typical	0.02	0.4	3.0	20.7	2.0	0.3	1.1	0.18
SUS 304	Standard	≦0.08	≦1.00	≦2.00	18.00 ~ 20.00	$8.00 \sim 10.50$	-	•	•
(ref.)	Typical	0.05	0.4	0.8	18.2	8.1	•		•
SUS323L	Standard	≦0,030	≦1.00	≦1.20	21.50 ~ 24.50	3.00 ~ 5.00	0.05 ~ 0.60	0.05 ~ 0.60	0.05 ~ 0.20
	Typical	0.01	0.5	1.0	23.6	3.9	0.3	•	0.14
SUS 316L (ref.)	Standard	≦0.030	≦1.00	≦2.00	16.00 ~ 18.00	12.00 ~ 15.00	2.00 ~ 3.00		,
	Typical	0.02	0.6	0.8	17.5	12.1	2.1	,	
2. Mechanical prope	iical prop	erties							
	Thick	Thickness (mm)	0.2	0.2%YS(N/mm ²)	TS(N/mm ²)	im ²)	EL(%)		HB
				1001	1001				

Alloy-saving Duplex Stainless Steel : Chemical composition and Mechanical Properties


	Thickness (mm)	0.2%YS(N/mm ²)	TS(N/mm ²)	EL(%)	HB
SUS821L1	Standard	400≤	600≦	25≦	≦290
	Typical (t=10)	492	101	44	213
SUS 304	Standard	205≦	520≦	40≦	≦187
(ref)	Typical (6≦t<15 ave.)	314	645	59	159
SUS323L	Standard	400≦	600≦	25≦	≦290
	Typical (t=8mm)	536	726	38	222
SUS 316L	Standard	175≦	480≦	40≦	≤187
(ref.)	Typical (6≦t<15 ave)	292	551	58	141

Magnetism	magnetic
Electric resistivity (x 10 ⁻² 0m)	13
Longitudinal Erastic modulus (kN/mm ²)	206
Average Thermal espansion (x 10 ⁻⁶ /°C)	12.6
Thermal conductivity (W/m·°C)	74.6
Specific heat (kJ/kg/°C)	0.48
Density (g/cm ³)	7.85
(Reference)	SS400 SM490

3. Physical Properties

V-94

V.9.3 Rehabilitation Plan of Kabo Weir (Bed Protection Works)

(1) Bed Protection Work of Kabo Weir

The structure type of bed protection work (riprap) of Kabo weir should be selected after consideration of 1) construction experiences of IWUMD, 2) procurement of construction materials at construction site, 3) construction machinery of IWUMD and 4) employment of workers. And three material types (concrete brock protection, concrete slab protection and gabion protection) are considered as the structure of bed protection work. Table 1 shows the characteristics of each structure of those bed protection works.

Maximum flood discharge of Mu River at Kabo weir reached 7,858m³/s and the flood caused large-scale bed scouring at the downstream side of Kabo weir in 2015. Bed protection work should have safety against the flood, durability against the sediment transport, and sufficient adaptability with the riverbed evolution. Considering the above-mentioned conditions, the concrete block bed protection work seems to be the most suitable structure for Kabo weir at present. In this regard, after the investigation of river conditions (river flow and riverbed conditions etc.) in detailed design stage, a structure type of the bed protection work should be selected based on the durability and safety against flood, efficiency of construction, maintenance, management and construction cost, etc. And the most suitable structure of the bed protection work can be combined with different type as needed.

The dimension of a large-scale bed scouring, caused by the flood in 2015, has been measured by topographic survey in this project. And backfilling material of this scouring is planned to be gabion, rubble and sediments at the upstream of weir, because these materials can be quarried around the project site. In case the sediments are not suitable as backfilling material due to high silt content, the utilization of this sediments should be considered as a mixed material (sediments and cement) or large-sized sand bags with the mixed material. And selection of the backfilling material needs the comparison of procurement cost, which depends on the location of quarry site and deposit area.

	Concrete Brock Protection Work	Concrete Slab Protection Work	Gabion Protection Work
Structure		(reinforced) at river bed. And	Laying the gabion with cobble/ rubble stone at river bed and joining by iron wire.
Safety/ Durability	settlement of river bed. And it is safe against the sediment-laden flow due to the enough energy	methods, It has a low adaptability to settlement of river bed. However it is quite effective against erosion (sand outflow). And this method should be	It has enough adaptability to settlement of river bed and also has friction resistance against the river bed. Compared with the other two methods, wear resistance against the heavy sediment-laden flow is low.
Construction method	countermeasures should be taken such as cobble stone filling between the blocks, laying mats	than the other two methods due to the cast-in-place concrete (reinforced) work. And the joint structure should have some	Compared with the other two methods, it has high efficiency of construction. The structure of riverbed should be safe against the sediment-laden flow and external force, etc.
Maintenance		•	The removal or repair of the broken member will be relatively easy and less expensive.
Construction Cost	High	High	Low
Comprehensive	Concrete brock is most suitable	If the energy dissipating	The safety and durability against

Table 1 Comparison of Construction Methods for Bed Protection Work

Evaluation	•		flood are inferior to the other two
	the downstream side of Kabo	at the existing apron duo to the	methods. And it is necessary to
	weir. Because concrete brock has	river conditions (longitudinal	use large-sized gabion and thick
	the characteristics of safety	incline, cross section of river,	iron wire and to give rust
	against the flood, durability	flood discharge), energy	resistance. However gabion is
	against the sediment-laden flow,	dissipater or concrete slab should	expected to prevent sand outflow,
	and adaptability enough for the	be laid. However concrete block	or the foundation of bed
	riverbed evolution. In this case,	or gabion is required to lay at the	protection built with concrete
			blocks. And gabions can be laid
	0	order to coordinate the	0
	between the blocks may flow out	roughness coefficient with that of	of bed protection in order to
	due to the heavy flood of river.	5	coordinate the roughness
	Therefore double structural bed		coefficient with that of natural
	protection work, which is 1) laying		river.
	the mat against sand outflow		
	under the block and 2) laying the		
	gabion under the block, is the one		
	0		
	of the option to keep the safety.		
	Ø	Δ	0

The cost of these protection works was estimated assuming the concrete brock protection work (including temporary works), whose cost is considered to be highest.

(2) Necessary Investigations for Rehabilitation Plan of Kabo Weir

The following investigations should be conducted with importance on the detailed design stage in order to make a rehabilitation plan and a construction plan of Kabo weir.

- (a) Topographic & river surveys: Confirmation of topography and site (property), condition of river bed and gut, forecasting future river bed evolution. These items will be used for layout of facilities and temporary work plan etc.
- (b) Geological survey: Design for the foundation of bed protection, calculation for creep length etc.
- (c) Survey of river conditions: Observation of discharge and water level, confirmation of maintenance flow and sediment amount, etc. The following items will be used for layout of facilities, planning for temporary work (cofferdam) and turbid water treatment facility etc.
- (d) Inspection of existing structures: Confirmation of gate facilities, bed protection works, foundation of facilities and related structures (slope protection etc.).
- (e) Environmental survey: Plants, birds, fish etc.
- (3) Plan of Temporary Works

Gate facility, bed protection and bank protection will be repaired during the dry season (from December to June: 7 months). And the construction site must be enclosed by temporary cofferdam. And the temporary cofferdam should not prevent the SMC & YMC from intake of the irrigation water. The temporary road (access road) will be constructed from the national road, which lies at 3,000ft downstream of Mu River, through the right bank of Mu River to Kabo wire (Figure 1).

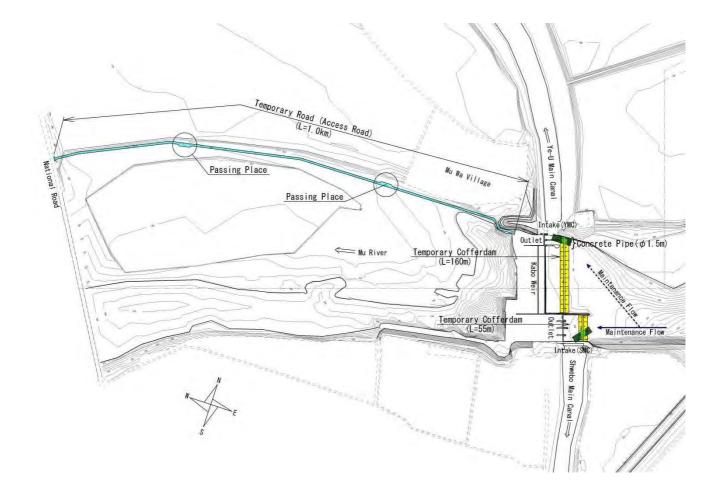


Figure 1 Plan of Temporary Road

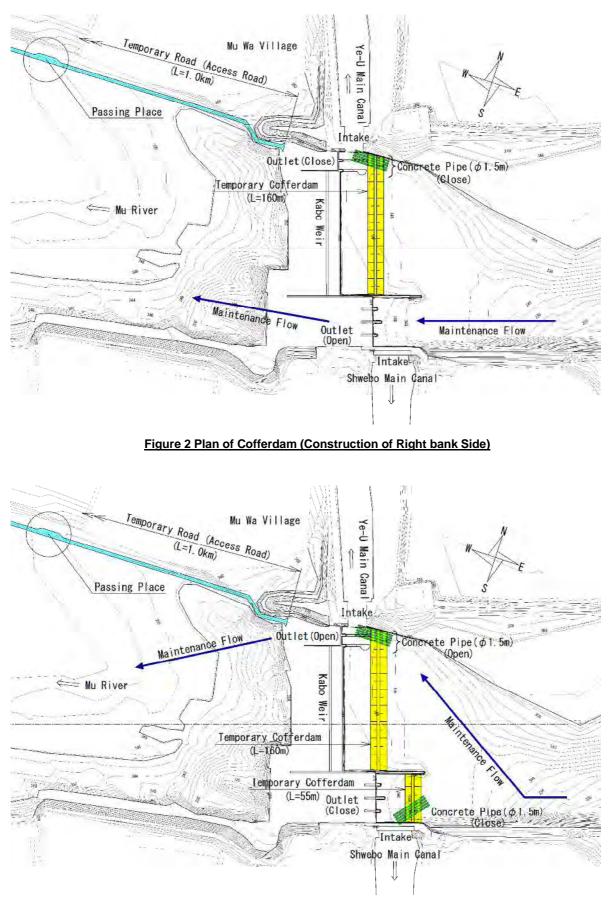


Figure 3 Plan of Cofferdam (Construction of Left bank Side)

V.10 Implementation Schedule on Irrigation and Drainage Improvement

The Basic policy of the construction schedule on the rehabilitation of the irrigation system is the follow.

Overall policy

- Based on the results of the interview survey to the famer, it is principle that irrigation for summer paddy will be stopped only once for each irrigation system for the construction.
- Since SMC, RMC and YMC have branch canal with long canal length, they are divided into two areas for the construction and stopping irrigation for summer paddy is only one time in different years.
- Among the four irrigation systems, the RMC irrigation system is the most problematic, and irrigation is not sufficient at AEC and BEC which is downstream of RMC. For this reason, the construction for the rehabilitation starts from RMC irrigation system.
- The construction schedule on the rehabilitation for the Kindat Diversion Dam and Kabo weir will be coordinated with the schedule for the rehabilitation of canals and schedule of gate procurement.

Rehabilitation of the canals and canal structures

- Regarding small rehabilitation works which can be completed during the annual water stop period (from December until beginning February), mainly the both Shwgbo and Ye-U maintenance office will carrier out the construction work within the annual water stop period in the 5 years.
- Regarding large rehabilitation works which need longer period than the annual water stop period, the construction circle 4 will carrier out the construction work by using one time of the long-term water stop period (December to June). If construction circle 4 will not have enough capacity for the works, the construction circle which is in charge of other districts will be assigned.

Kindat Diversion Dam

- The construction of the emergency spillway will starts from December 2019 which is the first year of construction in order to secure the sound of diversion dam as soon as possible.
- Considering the procurement period of the gate, starting construction for gate installation will start from December 2021.

Kabo weir

- Considering the procurement period of the gate, gate installation will start from December, 2021.
- Construction of the riverbed protection at D/S, which needs urgent to secure soundness of the weir, will start in the dry season from December of 2020.

Maintenance road

- Regarding the improvement of Inspection Path (IP) along OMC and MBC, it is assumed that experienced contractors will carry out, because IWUMD doesn't have enough experience on the asphalt pavement road construction.
- > Other IP will be implemented as part of normal maintenance by IWUMD from December 2018.
- Rehabilitation of canal will be given the priority. Rehabilitation of IP is implemented according to the amount of water channel construction.

	2016	0100	0000	1000	COC	1000	Month
	=		0 2 7 2 4	A 6 2 7 8 8 10 11 10 1 3	2707 7707	0 2 2 7 6 6 1 61 11	INIUIII
	2 1 71 11 01 6	7 1 71 11 01 6 9 / 0	6 0 / 0 C +	-	-		0
Land Acquisition							
IWUMD-1.1 Rehabilitation of Kindat Diversion Dam (Procurement)							
IWUMD-1.2 Rehabilitation of Kindat Diversion Dam (Construction)							
IWUMD-1.3 Rehabilitation of Kindat Diversion Dam (Dredging)							
IWUMD-1.4 Rehabilitation of Kindat Diversion Dam (Gate Installation)							
IWUMD-2.1 Rehabilitation of Kabo Weir (Procurement)							
IWUMD-2.2 Rehabilitation of Kabo Weir (Construction)			······································				
IWUMD-2.3 Rehabilitation of Kabo Weir (Gate Installation)							
IWUMD-3 Rehabilitation of OMC Irrigation System	······································		······································				
IWUMD-4.1 Rehabilitation of SMC Irrigation System (U/S)							
IWUMD-4.2 Rehabilitation of SMC Irrigation System (M/S & D/S)	······		· · · · · · · · · · · · · · · · · · ·				
IWUMD-5.1 Rehabilitation of RMC Irrigation System (U/S)							
IWUMD-5.2 Rehabilitation of RMC Irrigation System (AEC & BEC)							
IWUMD-6.1 Rehabilitation of YMC Irrigation System (U/S & MBC)	 		 				
IWUMD-6.2 Rehabilitation of YMC Irrigation System (M/S & D/S)	······································						
IWUMD-7 Flood monitoring & water management system							
IWUMD-8 Preparation Work and Quality Control and Maintenance of Machinery							

V.10 Implementation Schedule on Irrigation and Drainage Improvement

V.11 Topographic survey for detail design

V.11.1 Outline of the Survey and the responsibility of IWUMD and JICA Survey Team

Topographic survey and geological survey for detail design are necessary before or upon the deployment of the Consultants for the detail design. Therefore the surveys were agreed with the JICA appraisal mission in early July 2017, and recorded in the Minutes of Discussions (MD), and to be carried out during the coming dry season, say from early December 2017.

In November, 2017 the consultant team had detail discussions with the Irrigation and Water Utilization Management Department (hereafter called "IWUMD") to carry out the Topographic Survey and Structure Survey for detail design for AIIP which will be implemented under Japan ODA loan. Detail design is planned to start from December 2018. Accordingly, IWUMD is expected to conduct some parts of the topographic survey and structure survey in this coming dry season from December 2017. Remaining surveys shall be conducted during next dry season from December 2018 and completed at an earliest time for the detail design without any delay. Items to be conducted in dry season of 2017/18 and 2018/19 are shown in the table below. Additional investigation for design/ construction shall be conducted by IWUMD during design/ construction stage, when necessary.

Target of survey	Implem	entation
Target of survey	2017/18	2018/19
Kindat Diversion Dam	1	
Kabo Weir	1	
Canals under RMC,	1	1
Canals under SMC, OMC, YMC		1
Structure observation survey for canal structures under RMC	1	1
Structure observation survey for canal structures under SMC, OMC, YMC		1
Drainage Canals which need improvement of capacity		1
Inspection Path along the OMCl, and Ma Ya Kan Branch Canal of YMC		1

According to the discussion, topographic survey and structure survey for detail design will be conducted based on the followings;

1) IWUMD Investigation Branch and both Shwebo and Ye-U Maintenance office shall, till the end of March 2018, conduct topographic survey and structure survey in the table below. The detail of the work is shown in next section "V.11.2 TOR on topographic survey and structure survey".

i) Kindat Diversion Dam

Item	Investigation Branch	Maintenance Office
Plane survey at emergency spillway (up to main dam body)	1	
Longitudinal survey for the direction of dam axis from emergency spillway	1	
Cross section survey along the direction of dam axis at emergency spillway	1	
Longitudinal survey on centerline of emergency spillway (extension part)		
Cross section survey along centerline of emergency spillway (extension part)		
Longitudinal survey and cross section survey for the lead canal for RMC		
Contour line (topo) survey in the reservoir around head regulator of RMC	1	

ii) Kabo Weir

Item	Investigation Branch	Maintenance Office
Detail structure survey on the structure of Kabo Weir		1
Plane survey of Kabo Weir (Already conducted)		
Longitudinal & cross section drawing of the river (making based on top map)		1

iii) Canals under

Investigation Branch	Maintenance Office
✓	
✓	
 ✓ 	
	0

Target canal: Main canal, Extension canals, DY canals and Minor canals of RMC

iv) Structure observation survey for canal structures including bridges

Item	Investigation Branch	Maintenance Office
Detail structure survey and make sketch		1
Plane survey at the structures which need large scale rehabilitation		1
Section survey of structures		1

Target canal: RMC, SMC, YMC, OMC

- 2) The survey cost is estimated as approx. 81,000,000 Kyat (approx. 60,000 US\$) based on the regulation of IWUMD.
- 3) JICA Survey Team will support IWUMD by covering some of the costs for the surveys which will be conducted until March of 2018. Items of costs for the support are the following DIRECT COSTS only; Fuel for cars, rental of cars, allowance for staff/surveyors of IWUMD, labor cost for survey, and material necessary for the surveys. Budget is 60,000 US\$ (approximately 81 million Kyats). It is noted that JICA Survey Team cannot cover the extra expenditure beyond the budget; namely, extra expenditure shall be covered by IWUMD.
- 4) IWUMD shall submit all the receipts of expense, and necessary supplemental document. Upon the submission of the receipts and checking, JICA Survey Team will reimburse.
- 5) IWUMD shall submit to the JICA Survey Team the electric files of output such as the drawings and calculation sheet instead of hard copy. IWUMD may print hard copies for its reference purpose.
- 6) The work item and quantity can be changed and/or modified by the mutual consent of the two parties.
- 7) Should problems concerning the work and event not mentioned above occur, both parties will discuss and seek solutions in order to complete the work.

V.11.2 TOR on topographic survey and structure survey

1. Survey items for detail design

Items to be conducted under this MOU are below.

1) Kindat Diversion Dam

- Plane survey at emergency spillway (up to main dam body)
- > Longitudinal survey for the direction of dam axis from emergency spillway to the main dam body
- Cross section survey along the direction of dam axis at emergency spillway
- Longitudinal survey on centerline of emergency spillway (have been done)
- Cross section survey along centerline of emergency spillway (have been done)
- Longitudinal survey and cross section survey for the lead canal for RMC
- Contour line (topo) survey in the reservoir around head regulator of RMC

2) Kabo Weir

- > Detail structure survey (length, width, height, material, condition) on the structure of Kabo Weir
- Center line profile survey for the river dike (both sides)
- Longitudinal survey on centerline of the river dike (both sides)
- Cross section survey along the river dike (both sides)
- Plane survey of Kabo Weir
- Longitudinal & cross section drawing of the river

3) Canals (RMC)

- Longitudinal survey for Main Canal (26 Miles), Ayataw Extension Canal, Butalin Extension Canal, Dy and Minor canal (103 Miles)
- Cross section survey for Main Canal (26 Miles), Ayataw Extension Canal, Butalin Extension Canal, Dy and Minor canal (103 Miles)
- Location and spot elevation survey for inlet & outlet of all Head regulator including DO & turn-out

4) Structure observation survey for canal structures including bridges

- Detail structure survey (length, width, height, gate size, material, condition, etc.) and make sketch
- > Plane survey at the structures which need large scale rehabilitation
- Section survey of structures

Remaining survey items to be conducted in future are below.

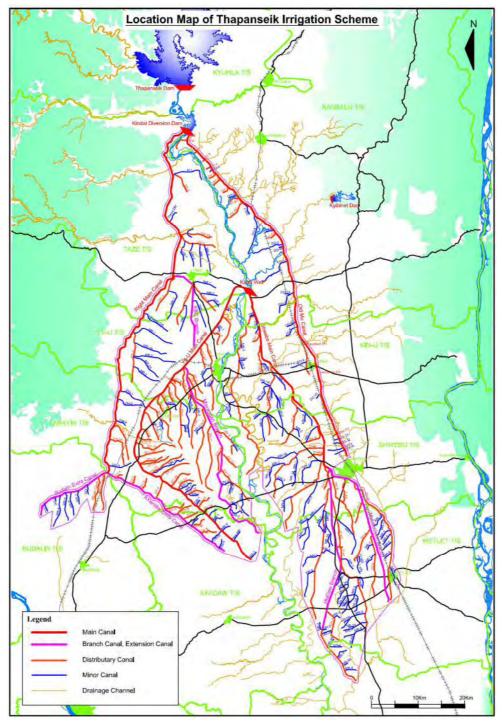
5) Canals (SMC, OMC, YMC, part of RMC)

- Longitudinal survey for all canals
- Cross section survey for all canals
- Location and spot elevation survey for inlet & outlet of all Head regulator including DO & turn-out

6) Structure observation survey for canal structures including bridges (SMC, OMC, YMC, part of RMC)

- Detail structure survey (length, width, height, gate size, material, condition, etc.) and make sketch
- > Plane survey at the structures which need large scale rehabilitation
- Section survey of structures

7) Drainage Canals which need improvement of capacity


- Center line profile survey for the drainages
- Longitudinal survey of the drainages

- Cross section survey along the drainages
- > Plane survey at the particular point such as joint points
- Structure survey (length, width, height, gate size, material, condition, etc.) in drainage such as culvert, bridge, intake wire

8) Inspection Path along the Old Mu Canal, and Ma Ya Kan Branch Canal of YMC

- Plane survey along the inspection paths
- Longitudinal survey on centerline of inspection paths
- Cross section survey along inspection paths

2. Location Map of the project (survey)

3. Detail of Surveys

1) Kindat Diversion Dam

The IWUMD shall conduct the topographic survey for the detail design of emergency spillway in Kindat Diversion Dam. The survey items to be carried out are mentioned in the table below. Although longitudinal survey and cross section survey on centerline of emergency spillway has been already conducted by Ye-U maintenance office of IWUMD, it is necessary to check the starting point (coordination) and extend the longitudinal & cross section survey of emergency spillway up to inlet of emergency spillway (200ft from dam axis).

	Detail of survey items							
No	Item	Quantity and Description						
1-1	Plane survey at emergency spillway (upto main	3,000ft x 2,000ft						
	dam body)							
1-2	Longitudinal survey for the direction of dam axis	Length: 3,000 ft, interval of station: 100 ft						
	from emergency spillway to main dam body	Width of cross section: 150ft						
1-3	Cross section survey along the direction of dam	Note: It is necessary to confirm alignment of the dam axis						
	axis at emergency spillway	line at the site.						
1-4	Longitudinal survey on centerline of emergency	Since IWUMD had been already surveyed, IWUMD shall						
	spillway	check the starting point (coordination) and add the						
1-5	Cross section survey along centerline of emergency	longitudinal & cross section drawing of emergency spillway						
	spillway	up to inlet of emergency spillway (200ft from dam axis)						
		based on result of the plane survey.						
1-6	Longitudinal survey and cross section survey for	Length: 6,000 ft, interval of station: 100 ft						
	the lead canal for RMC	Width of cross section: 150ft						
1-7	Contour line survey in the reservoir around head	1,700ft x 1,000ft						
	regulator of RMC							

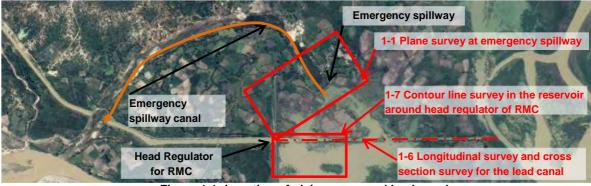


Figure 1-1: Location of plain survey and lead canal

Figure 1-2: Location of centerline of dam axis and emergency spillway

Kabo Weir

The IWUMD survey team shall conduct the topographic survey for the detail design of rehabilitation of Kabo weir. The survey items to be carried out are mentioned in the table below:

		Detail of survey items			
No	Item	Quantity and Description			
2-1	Detail structure survey (length,	Drawing as shown in Figure 2-1 had been already made by IWUMD. However,			
	width, thickness, height,	IWUMD will conduct the detail structure survey (length, width, thickness,			
	elevation, material, condition) on	height, elevation, material, condition) on the structure of Kabo Weir especially			
	the structure of Kabo Weir	superstructure and make report with detail drawings of each structure.			
2-2	Center line profile survey for the	Location of survey: see figure -2-1			
	river dike (both side)	Length: 2,800 ft at right bank 4,500 ft at left bank			
2-3	Longitudinal survey on centerline	al survey on centerline Interval of station: 100 ft			
	f the river dike (both side) Width of cross section: 150ft including river edge				
2-4	Cross section survey along the	Note: Stating point of survey is at U/S of intake for SMC and YMC			
	river dike (both side)	Note: Center line of the river dike will be mentioned in the topographic map			
2-5	Plane survey of Kabo Weir	IWUMD had already conducted.			
		(topographic map: see figure -2-3)			
2-6	Longitudinal & cross section	JICA survey team had already made the longitudinal section drawing as shown			
	drawing of the river	in Figure 2-1 based on the topographic map. IWUMD shall finalize and add			
		make cross section drawing for detail design,			

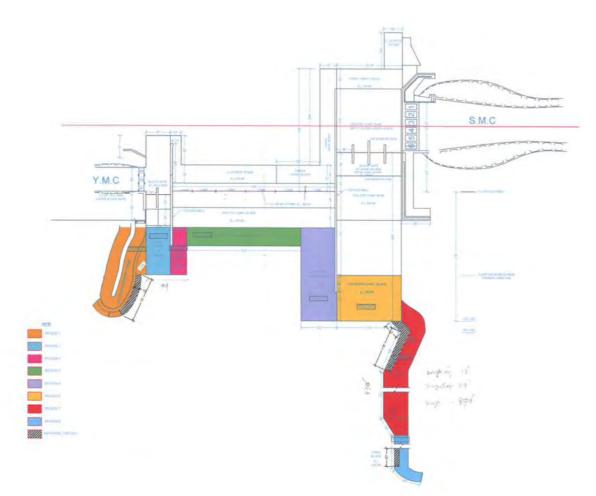


Figure 2-1: Drawing on the structure dimension of Kabo wire

Figure 2-2: Location of Center line profile survey & longitudinal cross section survey along the river dike

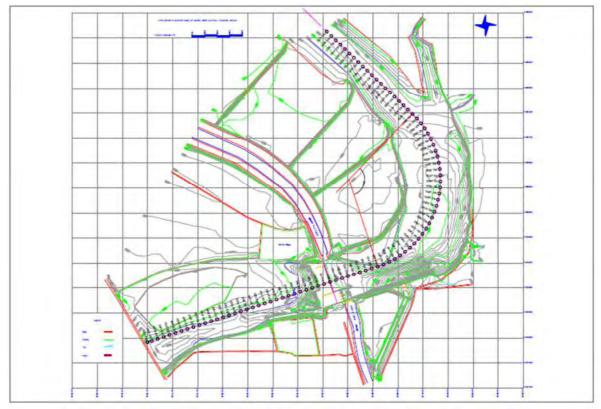


Figure 2-3: Topographic map at Kabo wire

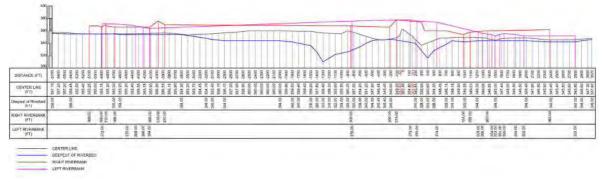


Figure 2-4: Longitudinal section drawing of the river at Kabo wire

2) Canals

The IWUMD shall conduct the topographic survey for canals. The survey items to be carried out are mentioned in the table below. Main canal of OMC, RMC, YMC, SMC had been already conducted by a local company employed by JICA survey team. However, interval of longitudinal survey and cross section survey were basically 1000 ft and 5000 ft respectively. Accordingly, the IWUMD survey team shall conduct the additional survey according to the site condition. Regarding Mainor canals, if it is target for desilting and re-sectioning, it shall be included in the survey works. The IWUMD survey team shall confirm with Shwebo and Ye-U maintenance offices.

	Detail of survey items									
No	Item	Quantity and Description								
3-1	Center line profile survey for all canals	Target canal: main canal, extension canal, branch canal, Dy								
3-2	Longitudinal survey for all canals	canal, DO canal of OMC system,								
3-3	Cross section survey for all canals	Length: 3,000 ft,								
		Interval of station: 100 - 500 ft (depend on the site condition)								
		Width of cross section: IWUMD's land property area of the								
		canal + minimum 10 ft at both side								
3-4	Location and spot elevation survey for inlet &	Target canal: main canal, extension canal, branch canal, Dy								
	outlet of all Head regulator including DO &	canal, DO canal of OMC system,								
	turn-out									

Number of Canar and Total length of Canar (kin) by category										
Conclastaran	ON	ЛС	SN	ΛC	RM	ΛC	۲N	ΛC	Т	otal
Canal category	Nos	km								
Main canal	1	76.2	1	43.7	1	84	1	68	4	271.9
Branch canal	0	0	2	63.5	3	73.4	1	29.1	6	166
Sub total	1	76.2	3	107.2	4	157.4	2	97.1	10	437.9
Dy Canal	21	44.4	21	267.1	21	125.8	38	241.7	101	679
DO canal	23	90.4								90.4
Sub total	44	134.8	21	267.1	21	125.8	38	241.7	101	769.4
Total	45	211	24	374.3	25	283.2	40	338.8	111	1,207.3
Minor Canal	35	106.8	76	246	46	193.2	27	59.8	184	605.8

Number of Canal and Total length of Canal (km) by category

Bench Mark (BM) and Monument of Temporary Bench Mark (TBM)

The IWUMD survey team shall find and check the physical existence of Bench Marks (BM) for irrigation systems and/or BM established by local company employed by JICA survey team. The IWUMD survey team shall establish concrete monuments or metal rivet on the existing concrete structures or stable rock surface as the Temporary Bench Mark (TBM) for the plane survey and longitudinal section survey at each head regulator.

The IWUMD survey team shall take photograph of each TBM and plot the location of TBM in the Topographic Map with appropriate mark. The IWUMD survey team shall prepare the description of coordination and elevation of TBM with sketch and photograph. The IWUMD survey team shall measure elevation of TBM including BM for the design/construction based on the existing BM. The leveling shall start from one existing BM and another existing BM. If the existing BM is not available at the other end, a loop back may be accepted.

Center line profile survey and base map

The IWUMD survey team shall conduct center line profile survey against the centerline of canal. The IWUMD survey team will make plan (base map) by using google earth of drone picture and mention the center line of canal on it. Plain map (base map) shall be placed together with longitudinal section drawing.

Longitudinal Survey

The IWUMD survey team shall conduct longitudinal survey along centerline of canal. Survey point of the

longitudinal line shall be basically 100ft interval and also at structure point as well as at the point wherever there is intersection, cross drainage, box culvert, bridges and the other structure. Structures shall be indicated by a flag with the name over the longitudinal line. When canal section is long straight, interval can extend up to maximum 500ft.

Cross Section Survey

The IWUMD survey team shall conduct cross section survey along centerline of canal. Interval of dike cross section survey shall be same as the Longitudinal Survey.

3) Structure observation survey for canal structure including bridge

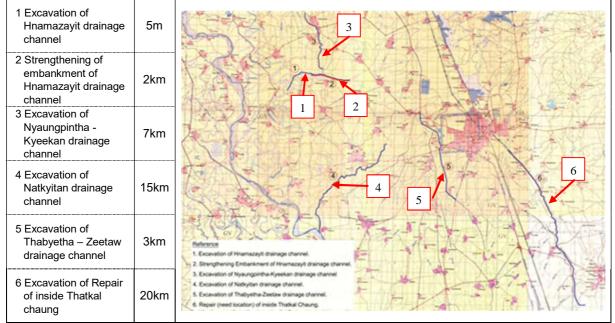
Although the number of the canal structure proposed for rehabilitation by preparatory survey is shown in the table below, detail structure survey for all canal structures to categorize the condition of the structures shall be conducted by IWUMD before commencement of the Yen-loan consultant service. Based on the results, IWUMD will make the draft repair plan (repair method, cost, and prioritization) for the structures needing minor repair, while the Yen-loan Consultants will conduct design for the structures requiring large scale rehabilitation and for new constructions.

Accordingly, the IWUMD survey team shall conduct structure observation survey for canal structure including bridges. The survey items to be carried out are mentioned in the table below. Main canal of OMC, RMC, YMC, SMC and 8 Dy canals (Hla Taw DY and DY1 of SMC, Thayetkan DY and DY5 of OMC, DY2 and DY4 of RMC, DY7 and DY18 of YMC) had been already conducted by a local company employed by JICA survey team. Accordingly, the survey team shall confirm whether plane survey and cross section survey to the canal structures in above canals is necessary with Shwebo and Ye-U maintenance offices.

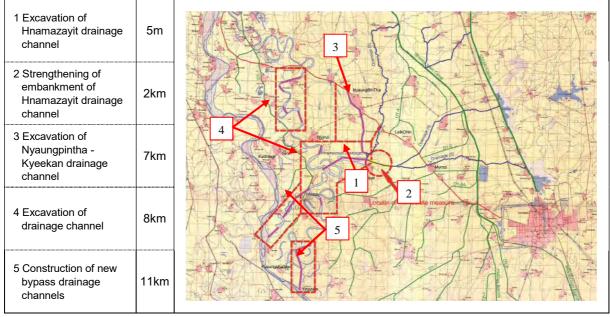
	Detail of survey items								
No	Item	Quantity and Description							
4-1	Detail structure survey (length, width,	All canal structures shall be categorized based on the condition of							
	thickness, height, gate size, material, condition,	the structures							
	etc.) and make sketch with photo All canal structures shall be measured and sketch								
	Based on the result, IWUMD will make the repair plan (repa								
	method, cost, and prioritization) for the structures needing mino								
	repair, while the Consultant will conduct design for the structure								
		requiring large scale rehabilitation and for new construction.							
4-2	Plane survey at the structure needs large scale	Regarding the structure which the Consultant will conduct design							
	rehabilitation	for the structures requiring large scale rehabilitation and for new							
4-3	Section survey of structure	construction, plane survey and section survey shall be conducted.							

Number of the Canal Structure Proposed for rehabilitation in 4 Irrigation System

Item		Unit	OMC	RMC	SMC	YMC	Total
	Rehabilitation of the Cross Regulator	Nos	13	6	6	7	32
	Rehabilitation of the Bifurcation	Nos	-	1	1	1	3
	Rehabilitation of the Head Regulator	Nos	40	14	15	29	88
	Rehabilitation of the Direct outlet	Nos	-	65	60	142	267
	Rehabilitation of the Drop Structure	Nos	1	-	-	-	1
Main	Rehabilitation of the Syphon	Nos	2	13	4	2	21
canal	Rehabilitation of the flume (canal bridge)	Nos	-	2	2	-	4
	Rehabilitation of the Spill-in structure	Nos	-	4	4	-	8
	Construction of the Spill-in structure	Nos	8	-	-	1	9
	Rehabilitation of the Spill-out structure	Nos	17	3	1	-	21
	Rehabilitation of the Cross Drainage	Nos	-	10	-	14	
	Rehabilitation of the Bridge	Nos	4	21	2	9	36
Branch	Rehabilitation of the Cross Regulator	Nos	/	11	-	-	11
&	Rehabilitation of the Head Regulator	Nos		30	9	13	52
Extensi	Rehabilitation of the Direct outlet	Nos		75	77	79	231
on	Rehabilitation of the Check Drop	Nos		10	25	8	43
canal	Rehabilitation of the Syphon	Nos		5	1	-	1
	Rehabilitation of the flume (canal bridge)	Nos	/	1	-	-	1


	Item	Unit	OMC	RMC	SMC	YMC	Total
	Rehabilitation of the Spill-in structure	Nos		18	-	-	18
	Rehabilitation of the Spill-out structure	Nos		8	-	-	8
	Rehabilitation of the Cross Drainage	Nos]	19	-	-	19
	Rehabilitation of the Bridge	Nos		9	9	8	26
	Rehabilitation of the Check Structure	Nos	36	10	12	10	78
	Rehabilitation of the Head Regulator	Nos	39	29	75	23	166
	Rehabilitation of the Outlet (Turn-out)	Nos	917	717	1,589	1,065	4,288
	Rehabilitation of the Drop Structure	Nos	114	80	173	75	472
Dy & Minor	Rehabilitation of the Syphon	Nos	1	1	5	-	7
canal	Rehabilitation of the flume (canal bridge)	Nos	2	-	-	-	2
Carlai	Rehabilitation of the Spill-in structure	Nos	3	-	-	-	3
	Rehabilitation of the Spill-out structure	Nos	-	-	-	-	-
	Rehabilitation of the Cross Drainage	Nos	10	3	9	17	39
	Rehabilitation of the Bridge	Nos	31	10	18	9	68

4) Drainage Canal need to improvement of capacity

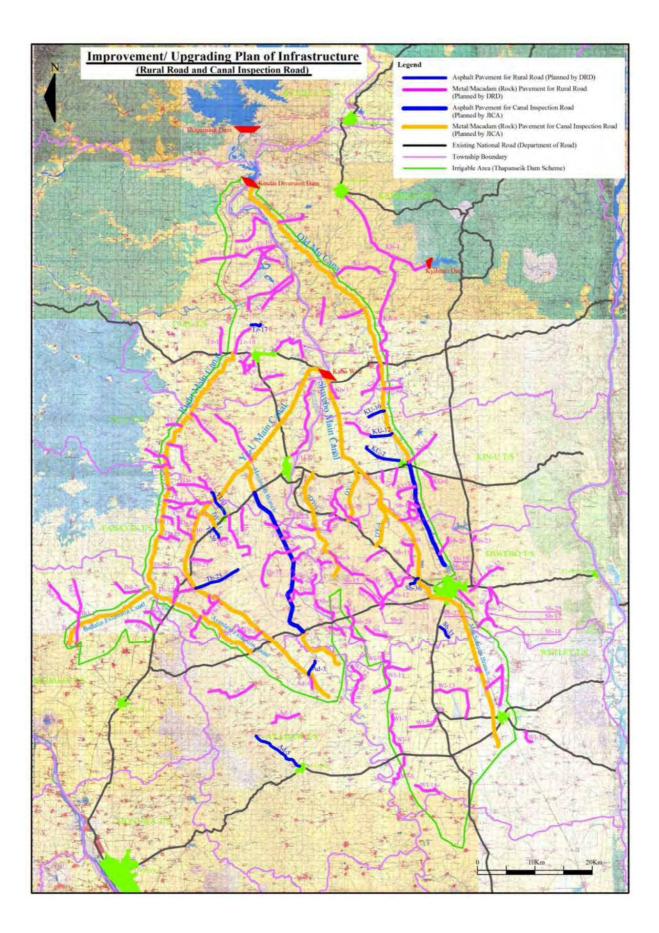

(It is not included in the work of this MOU)

The survey items to be carried out are mentioned in the table below. The IWUMD survey team shall confirm whether plane survey and section survey of structure are necessary with Shwebo and Ye-U maintenance offices.

	Detail of survey items					
No	Item	Quantity and Description				
5-1	Center line profile survey for the	Target canal: Hnamazayit drainage channel, Hnamazayit drainage channel,				
	drainage	Nyaungpintha - Kyeekan drainage channel, Natkyitan drainage channel,				
5-2	Longitudinal survey of the drainage	Thabyetha – Zeetaw drainage channel, Thatkal chaung, new bypass drainage				
5-3	Plane survey at the particular point	channels				
	such as joint point	Interval of station: 100 ft				
5-4	Structure survey (length, width,	All drainage canal structures shall be categorized based on the condition of				
	height, gate size, material,	the structures				
	condition, etc) in drainage such as	All drainage canal structures for rehabilitation shall be measured and sketch				
	culvert, bridge, intake wire	Based on the result, IWUMD will make the repair plan (repair method, cost,				
		and prioritization) for the structures needing minor repair, while the				
		Consultant will conduct design for the structures requiring large scale				
		rehabilitation and for new construction.				

Proposed Drainage Excavation and Strengthening of Embankment

Work Plan of Flood Mitigation by Drainage Channel near Hnamazayit


5) Inspection Path along the Old Mu Canal, and Ma Ya Kan Branch Canal of YMC

(It is not included in the work of this MOU)

Old Mu Canal (OMC) RD 184 + 300 - RD 264 + 000 and Ma Ya Kan Branch of YMC RD 11 + 400 - RD 72 + 300 will be improved to asphalt road and constructed by road Construction Company. The survey items to be carried out are mentioned in the table below:

	Betall of early theme					
No	Item	Quantity and Description				
6-1	Plane survey along the inspection path	Target: Old Mu Canal (OMC) RD 184 + 300 - RD 264 + 000				
6-2	Longitudinal survey on centerline of	L= 24.29 km				
	inspection path	Ma Ya Kan Branch of YMC RD 11 + 400 - RD 72 + 300 L= 18.56km				
6-3	Cross section survey along inspection path	Interval of station: 100 ft				

Detail of survey items

V.11.3 Completion of survey items in dry season of 2017/18

Survey Items, which has been completed until the end of March 2018 are below. The detail structure survey (length, width, height, material, condition) on the structure of Kabo Weir which was planned to conduct in this dry season of 2017/18 was canceled, and will be conducted in next dry season of 2018/19.

1) Kindat Diversion Dam

- Plane survey at emergency spillway
- > Longitudinal survey for the direction of dam axis from emergency spillway to the main dam body
- Cross section survey along the direction of dam axis at emergency spillway
- Longitudinal survey and cross section survey for the lead canal for RMC (3,300 ft)
- Contour line (topo) survey in the reservoir around head regulator of RMC (5,700 ft)

2) Canals (RMC irrigation system)

- Longitudinal survey for Main Canal (139,500 ft), Ayadaw Extension Canal (121,355 ft), Budalin Extension Canal (59,800 ft), Dy and Minor canal (563,180 ft)
- Cross section survey for Main Canal, Ayadaw Extension Canal, Budalin Extension Canal, Dy and Minor canal
- > Aforementioned surveys have been completed in below canals;

Right Main Canal (RMC) (RD 0 – RD 139+500)	Ayadaw Extension Canal (AEC)		
RMC Dy-1	AEC DO-1, 2, 3		
RMC Dy-1 Minor-1, 2	AEC Direct Minor-1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,		
RMC Direct Minor-1	13, 14, 15, 16, 17, 18, 19, 20		
RMC Dy-2	AEC Dy-1, 2, 3, 4, 5, 6, 7, 8, 9		
RMC Dy-2 Minor-1, 2, 3, 4	Budalin Extension Canal (BEC)		
RMC Dy-2A	BEC Dy-1, 2		
RMC Dy-2A Minor-1, 2, 3, 4	BEC Direct Minor-1, 2, 3, 4		
RMC, KBC, Dy-2			
RMC, KBC, Dy-2 Minor-1, 2, 3			

Location and spot elevation survey for inlet & outlet of all Head regulator including DO & turn-out (for the canals mentioned in above table)

3) Structure observation survey for canal structures including bridges

- Detail structure survey (length, width, height, gate size, material, condition, etc.) and make sketch
- > Plane survey at the structures which need large scale rehabilitation
- Section survey of structures

The structures of Right main canal, Ayadaw Extension Canal and Budalin Extension Canal have been completed.