
Appendix A Materials of Lectures and Seminars

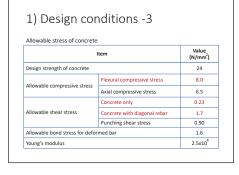
A-2 Structural Analysis General

[Structural Analysisi General_L01]

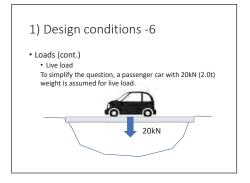
1

1) Design conditions -1

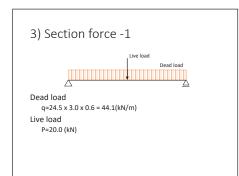
• Subject for the design conditions

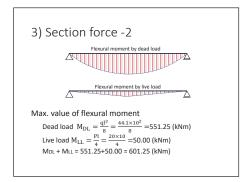

- Which <u>Standards</u> do you apply?
- Which materials do you use?
- Which loads do you consider?
- Which geometrical (road) conditions do you apply?
- Which natural conditions do you consider?Which conditions for the construction of the bridge do
- vou consider?
- Structural designers should describe these conditions before starting structural analysis.

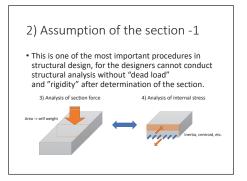
- Design Standard
 - In this lecture, Standards for Highway Bridges (JSHB) is applied. Allowable Stress Method (ASD) is applied.
- Materials

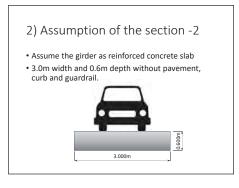

• Concrete: ack=24N/mm²

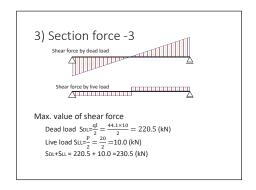
- Reinforcing bar (rebar): SD345
- Note: Description of the strength of these materials is preferable.

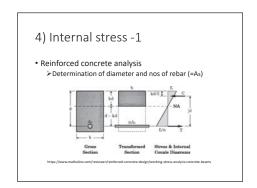


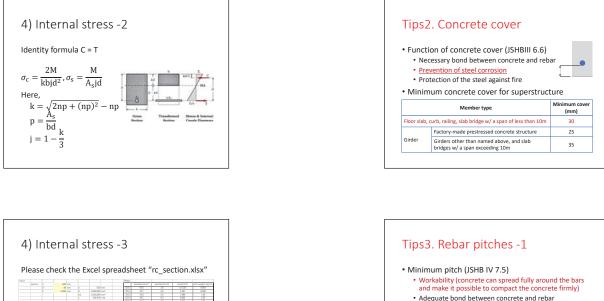

1) Design conditions -4					
Allowable stress of rebar (SD345) Item Value (N/mm ²)					
	Principal loads w/o live	load and impact	100		
ess	Combination of load w/o collision load or earthquake load	General members	180		
Tensile stress		Floor slab and slab bridges w/ a span of 10m or less	140		
Te	Combination of load w/ collision load or earthquake load		200		
	Value for calculation of lap joint length or bond length		200		
Comp	Compressive stress		230		
/oung's modulus			2.0x10 ⁵		


l) De	sign condition	ns -5
Loads		
• Dea	d load (self weight)	
	Material	Unit weight (kN/m ³)
	Steel	77.0
	Cast iron	71.0
	Reinforced concrete	24.5
	Prestressed concrete	24.5
	Concrete	23.0
	Cement mortar	21.0
	Pitch (for waterproofing)	11.0
	Asphalt	22.5



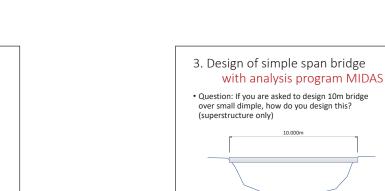


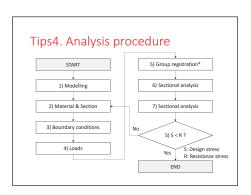





6

[Structural Analysisi General_L01]





[Structural Analysisi General_L01]

10.000m

>Larger than 40mm and 4/3 times the maximum size of

Spacing

coarse aggregate

Example: Use 25mm coarse aggregate 4/3 x 25 = 33.3mm < 40mm

Rebar

Tips3. Rebar pitches -2

• Minimum amount of rebar (JSHB III 6.4) The cross-sectional area of main axial tensile reinforcement placed in a reinforced concrete structure shall be determined in accordance with Equation;

 $A_{st} \geq 0.005 b_w \cdot d$

• Ductile fracture and brittle fracture

4) Internal stress -3

 Shear stress 230,500 $\tau_{\rm m} = \frac{{\rm S}_{\rm n}}{{\rm bd}} = \frac{230,500}{3,000 \times 600} = 0.128 < 0.23$

No need to arrange the diagonal rebar

1) Modelling 3) Boundary conditions Boundary conditions • Node • [Node/Element] -> [Nodes] -> [Create Nodes] Δ • Element • [Element] -> [Create Elements] Y My: Free Dx: Free 2) Material & Section 4) Loads Material • "Load Case" • [Properties] -> [Material Properties] • [Load] -> [Load Type -> Static Load] -> [Static Load Cases] Self Weight Section [Structure Loads/Masses] -> [Self Weight] Select elements with Z=-1 and "Add" • Live load (as concentrate load at node) 13

[Structural Analysisi General_L01]

14

Practice 1

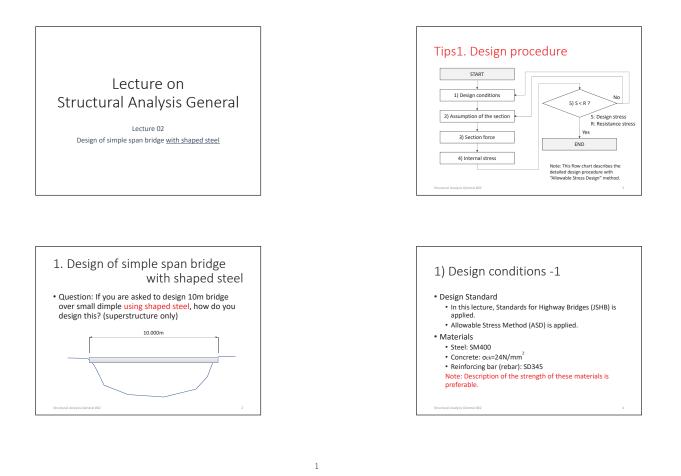
Design the same bridge with thinner depth of concrete girder

• Pitch of rebar can be used @125mm

Practice 2

• Design 12.0m long bridge with 5.0m width • Live load is 50kN (single)

6) Perform analysis

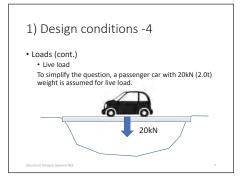

• Perform analysis

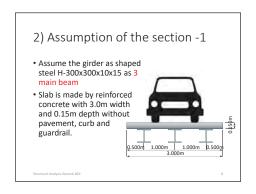
[Structural Analysisi General_L01]

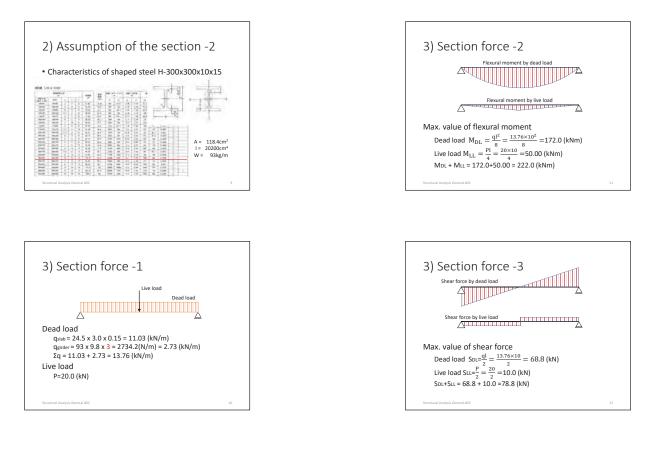
5) Group registration

"Group Type"
[Tree Menu] -> [Group]tab • Structure Group, Boundary Group, Load Group, etc.

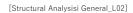
Characteristic function of MIDAS

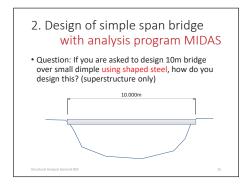

[Structural Analysisi General_L02]

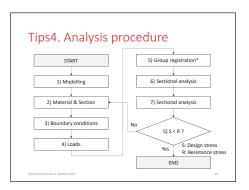

[Structural Analysisi General_L02]


2

Allowable stress of steel (SM400)					
Ite	Value (N/mm ²)				
Allowable tension stress and	Thickness less than 40mm	140			
flexural tension stress	Thickness over 40mm	125			
Allowable flexural compression	Thickness less than 40mm	140			
stress w/o considering buckling	Thickness over 40mm	125			
Allowable shear stress	Thickness less than 40mm	80			
Allowable shear stress	Thickness over 40mm	75			

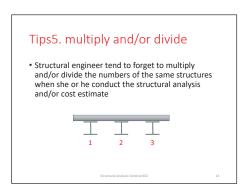

., DC3	ign conditio	13 - 5	
Loads			
 Dead 	load (self weight)		
[Material	Unit weight (kN/m ³)	
[Steel	77.0	
	Cast iron	71.0	
	Reinforced concrete	24.5	
	Prestressed concrete	24.5	
	Concrete	23.0	
	Cement mortar	21.0	
	Pitch (for waterproofing)	11.0	
1	Asphalt	22.5	

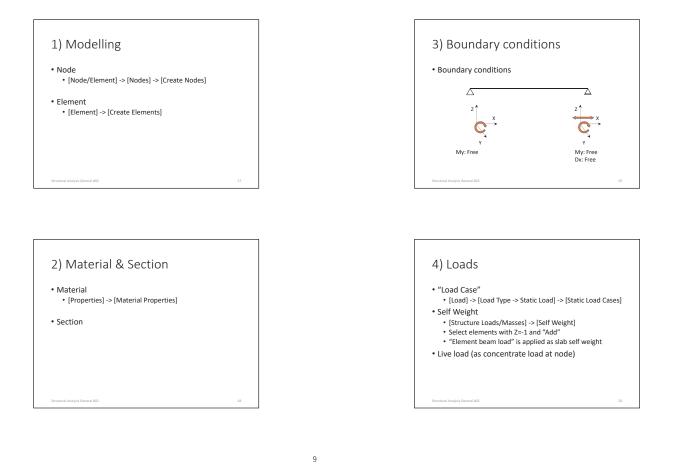




[Structural Analysisi General_L02]

6





• Tension and compression stress of beam $\sigma_{u,1} = \frac{M}{1}y = \frac{222.0/3 \times 10^6}{20200 \times 10^4} \times 150 = 54.95 (N/mm^2) < 140 N/mm^2$

• Shear stress $\tau = \frac{S}{4} = \frac{78.8 \times 10^2 / 3}{118.4 \times 10^2} = 2.22 \text{ (N/mm²) < 80 N/mm²}$

[Structural Analysisi General_L02]

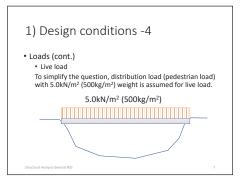
5) Group registration

"Group Type"
[Tree Menu] -> [Group]tab

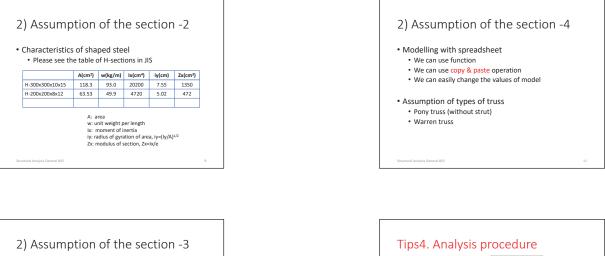
Structure Group, Boundary Group, Load Group, etc.

Characteristic function of MIDAS

6) Perform analysis	
Perform analysis	
Structural Analysis General #02	22

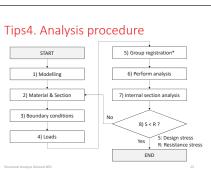

[Structural Analysisi General_L03]

[Structural Analysisi General_L03]


2

Allowable stress of steel (SM4	90)	
Anowable stress of steel (sivi4	Value (N/mm ²)	
Allowable tension stress and flexural tension stress	Thickness less than 40mm	140
	Thickness over 40mm	125
Allowable flexural compression	Thickness less than 40mm	140
stress w/o considering buckling	Thickness over 40mm	125
Allowable shear stress	Thickness less than 40mm	80
Allowable snear stress	Thickness over 40mm	75

,	esign conditio	ns -3
Loads		
• De	ad load (self weight)	
	Material	Unit weight (kN/m ³)
	Steel	77.0
	Cast iron	71.0
	Reinforced concrete	24.5
	Prestressed concrete	24.5
	Concrete	23.0
	Cement mortar	21.0
	Pitch (for waterproofing)	11.0
	Asphalt	22.5



2) Assumption of the section -1	
 Assume the chord, diagonal member, cross beam as shaped steel <u>H-300x300x10x15</u> 	
 Slab is made by reinforced concrete with 3.0m width and 0.15m depth supported by the stringer of <u>H-200x200x8x12</u> 	
Reinforced concrete slab	o.lishm
Structural Analysis General 803	8

Preparation of model of truss

- Structural engineer <u>should avoid modelling</u> directly to MIDAS if the model becomes large and complexed
- Drawing of the truss model, table of nodes, elements should prepare before input
 Using spreadsheet program (Microsoft Excel) is better way to prepare the table of nodes, elements
- The output of the spreadsheet could be the report (and checking sheet) for the analysis

[Structural Analysisi General_L03]

5

7

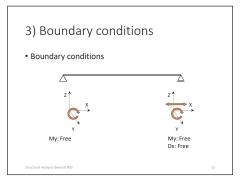
[Structural Analysisi General_L03]

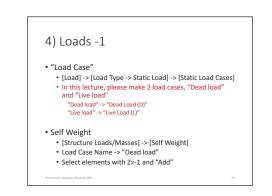
6

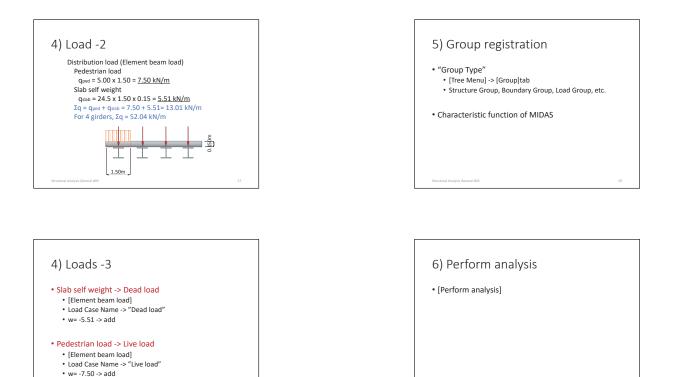
8

1) Modelling

- Node
 - [Node/Element] -> [Nodes] -> [Nodes Table] Copy (Ctrl+C) from spreadsheet -> Paste (Ctrl+V) to the Nodes table

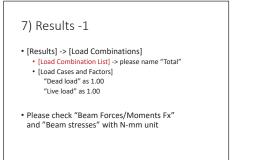

• Element

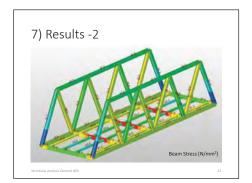

- [Elements] -> [Elements Table] Copy (Ctrl+C) from spreadsheet -> Paste (Ctrl+V) to the
- Elements table

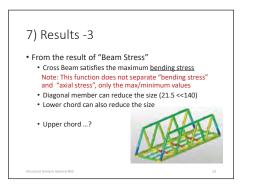

2) Material & Section

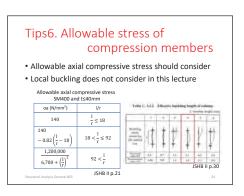
 Material [Properties] -> [Material Properties]

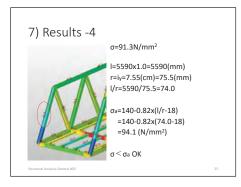
- Section
 - First assumption is "Stringer" with H-200x200 and "Other members" with H-300x300

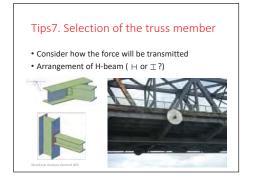


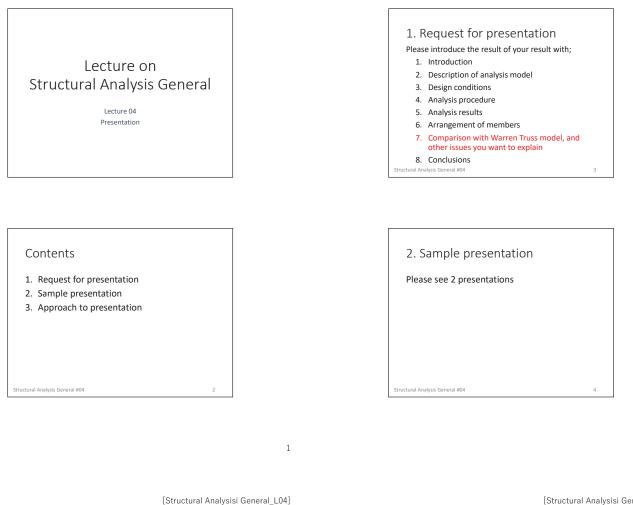



[Structural Analysisi General_L03]


9


[Structural Analysisi General_L03]



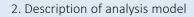


- Select the different truss types shown in the distributed papers
- Draw the model (with nodes and elements) of the truss
- 3. Input these nodes and elements in the table of Microsoft Excel
- 4. Assume the members with H-300x300 and calculate
- 5. (If possible) optimize the members

ructural Analysis General #03

[Structural Analysisi General_L04]

2


1. Introduction

I would like to explain the result of truss bridge design. Structural software MIDAS/Civil was used for the structural analysis.

First, I will explain the analysis model ,design condition of the bridge and analysis procedure. After the explanation, I will show the analysis result and arrangement of truss members.

Conclusions will be stated at the end of this presentation.

ctural Analysis General #04

3D truss model was assumed to design 20m long and 6m width pedestrian bridge. Warren truss was selected as truss type. No strut was arranged, which means the truss is pony truss. The height of the upper chord is 5.0m.

3. Design conditions

For bridge design, Standard for Highway Bridge (JSHB) was applied. Allowable Stress Design (ASD) method was selected for sectional calculation. Live load is 5.0kN/m² pedestrian load on the RC slab with 0.15m thickness.

Truss members was chosen from shaped steel in Japanese Industrial Standard (JIS).

tructural Analysis General #04

4. Analysis procedure

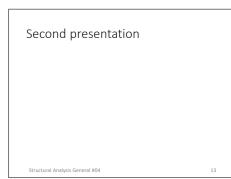
For the first step, modelling was conducted on MIDAS/Civil with using table of nodes and elements on Microsoft Excel. After inputting material, section, boundary conditions, load conditions and group registration, analysis was performed.

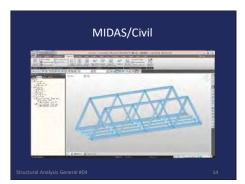
Result of the analysis can be seen graphically on the MIDAS/Civil interface.

Structural Analysis General #04

5. Analysis results

From the result of the analysis, maximum bending moment was observed at crossbeam, the value was 191.4kNm.


Maximum compressive axial force was found in the center of upper chord, which was 315.7kN.


Maximum tension axial force was affected 216.6kN on lower chord.

Structural Analysis General #04

5

[Structural Analysisi General_L04]

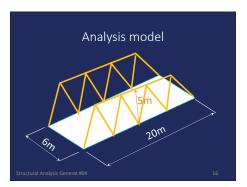
6. Arrangement of members

First assumption was shaped steel H-300x300, which was not satisfied at crossbeam. H-350x350 was selected as crossbeam. On the other hand, center of the diagonal

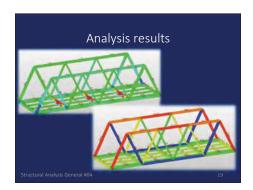
member was replaced to H-300x150 because only the smaller compression and tension was working.

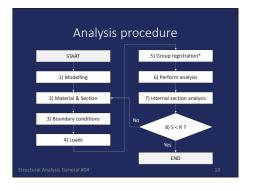
tructural Analysis General #04

7. Conclusions


Warren truss bridge was modelled and analyzed by the program MIDAS/Civil. The member was selected H-350x350 for crossbeam and H-300x150 for some diagonal member, instead of H-300x300 of first assumption.

tructural Analysis General #04


[Structural Analysisi General_L04]

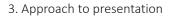

Introduction Description of analysis model Design conditions Analysis procedure Analysis results Arrangement of members Conclusions

Arrangement of members

[Structural Analysisi General_L04]

10

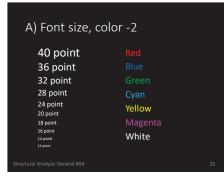
[Structural Analysisi General_L04]


9

Warren truss bridge by MIDAS/Civil H-350x350 for crossbeams H-300x150 for diagonal members

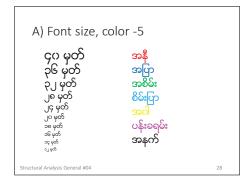
How do you feel about these 2 presentations?

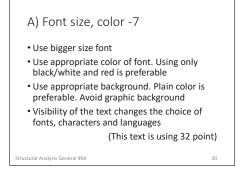
Structural Analysis General #04

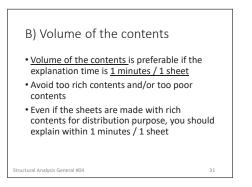



Please check these points;

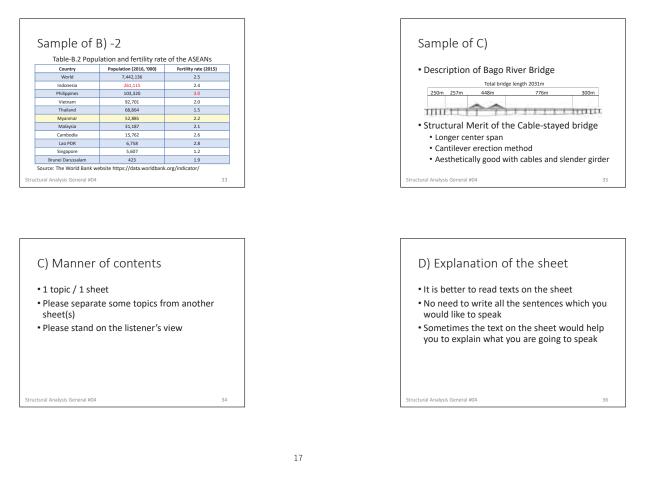
- A) Font size, color
- B) Volume of contents
- C) Manner of contents
- D) Explanation of the sheetE) Function of PowerPoint
- E) Function of FowerFoin
- F) Other issues


ructural Analysis General #04



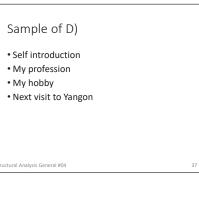

[Structural Analysisi General_L04]

A) Font size, col	or -6
40 ポイント 36 ポイント 32 ポイント 28 ポイント 24 ポイント 20 ポイント 18 ポイント 18 ポイント 18 ポイント 18 ポイント	あか あお みどり みずいろ むらさき くろ
Structural Analysis General #04	



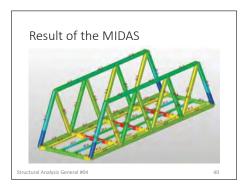
10

[Structural Analysisi General_L04]



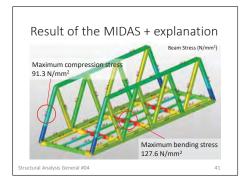
	Sample of B) -1				
	Table-B.1 Population and fertility rate of the world				
	Country	Population (2016, '000)	Fertility rate (2015)		
	World	7,442,136	2.5		
	China	1,378,665	1.6		
	Niger	20,673	7.3		
	Myanmar	52,885	2.2		
	Japan	126,995	1.5		
	Source: The World Bank we	bsite https://data.worldbank	.org/indicator/		
tru	tructural Analysis General #04 32				

[Structural Analysisi General_L04]



E) Functions of PowerPoint

- You can use many kinds of animation effects
- Avoid too many effects in one sheet
- Please use the effects in a polite way
- Effects should use effectively
- Distinguish yourself by contents itself, not by animation effect


Structural Analysis General #04

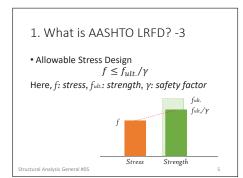
18

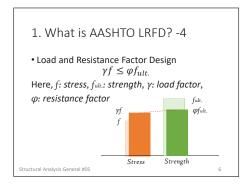
[Structural Analysisi General_L04]

Lecture on Structural Analysis General

Lecture 05 AASHTO LRFD design with MIDAS/Civil Tutorial (PC simple span bridge)

Contents


- 1. What is AASHTO LRFD?
- 2. Limit state
- 3. Load factor and resistance factor
- 4. Loadings


Structural Analysis General #05

5. Actual input to MIDAS/Civil

[Structural Analysisi General L05]

1

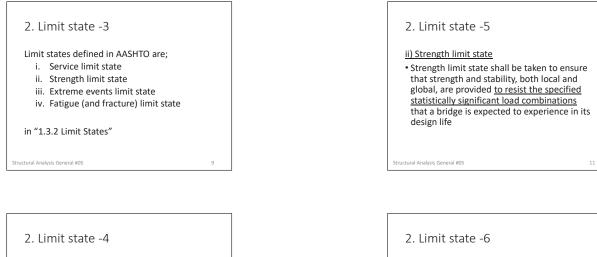
1. What is AASHTO LRFD? -1

- <u>American Association of State Highway and</u> <u>Transportation Officials</u> (AASHTO) publishes Standard Specifications for road and bridge on design and construction
- Every State (50 states in US) regulates the specifications based on AASHTO Standard Specifications

Structural Analysis General #05

1. What is AASHTO LRFD? -2

- AASHTO adopted <u>Load and Resistance Factor</u> <u>Design</u> (LRFD), a kind of Limited State Design (LSD), for bridge design
- Allowable Stress Design (ASD) was used until 2002 in AASHTO

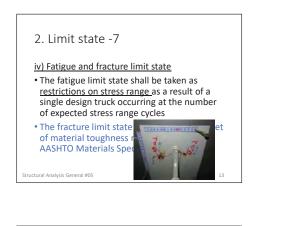

Structural Analysis General #05

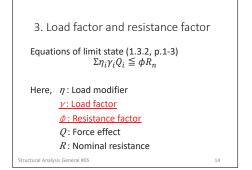
4

[Structural Analysisi General L05]

2. Limit state -1	
LRFD equation in AASHTO (1.3.2, p.1-3) $\Sigma \eta_i \gamma_i Q_i \leq \phi R_n$	
Here, η : Load modifier γ : Load factor ϕ : Resistance factor Q: Force effect	
R : Nominal resistance Structural Analysis General #05	7

2. Limit state -2			
Load modifier η_l (1.3.2, p.1-3) $\eta_l = \frac{1}{\eta_D \eta_R \eta_l} \leq 1.0$			
Here, η_i : Load modifier η_D : Ductility (1.3.3) η_R : Redundancy (1.3.4) η_I : Operational importance (1.3.5)			
Structural Analysis General #05	8		


i) Service limit state


• The service limit state shall be taken as <u>restrictions</u> on stress, deformation, and crack width under regular service conditions

Structural Analysis General #05

5

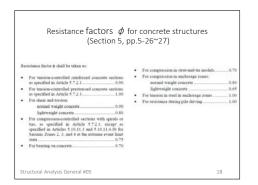
[Structural Analysisi General L05]

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text>

iii) Extreme event limit state

Structural Analysis General #05

• The extreme event limit state shall be taken

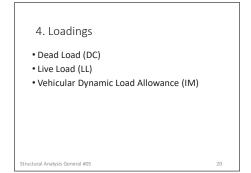

to ensure the <u>structural survival of a bridge</u> during a major earthquake or flood, or when collided by a vessel, vehicle, or ice flow, possibly under scoured conditions

			(n 7	-1/	1 Ta	ble 3	1	1_1)				
	R	-		p.3	- 1-	+ 10	DIE J		1-1		a films of	7764	er + Tax	_
Load Confusions Load Bate	の所設けたたちの湯	日間は離れ日	*1	*1	#2	11	77	70		40		*	ct.	a
trough 1	5	1.9	1.00			1.00	0.76120	-	10	-	-	-	-	-
(sales) acted). Storagh 3		1.00	1.00		-	1.00	0.551.25	-	74	-		-	-	
Strongth 32	3	-	1.00	14	-	1.00	0.501.20	74	74	-	-		-	-
Innegh IV	5	-	1.00	-		1.08	8.991.05			-			-	
Strength V	5	1.14	1.00	24	1.0	1.00	0.501,0	10	718	-			-	-
Enterne Event 1	ъ.	+0	1.00	-	-	1.08	-			1.80			-	-
Extreme Event II	5	8.50	1.00	-		1.00					1.00	1.00	1.09	1.80
harrise I	1.00	1.98	1.00	*3	1.0	1.00	1.901.30	-	74					
barries 3	1.00	1.94	1.00			1.36	100120						-	-
Samuel III.	1.00	1.81	1.48		-	1.00	1.801.20	100	14	-			-	
Service PC	1.00	-	1.00	17		1.00	1.001.20	-	1.0	-	-	_	-	
LL DV & CZ	-	1.94			-	-	-			-			-	-
Forge B-	-	8.79	-	-	-	-	-	-	-	-		-	-	-

6

[Structural Analysisi General_L05]

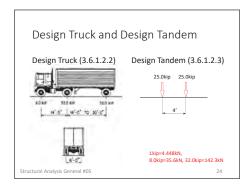
	(p.3-15 Table 3.4.1-2)			
	Type of Load, Foundation Type, and	Load	Factor	
	Matland Used to Calculate Downshing	Mexicities	5-Maniness	
DC Component a	ed Altachments	1.25	0.90	
DC: Strength IV (1.50	0.90	
DD Downshrag	Piles, or Tomilarion Method.	1.4	0.25	
	Piles, 3 Mathed	1.05	0.30	
	Duilled shafts, O'Neill and Ranse (1999) Method	1.25	0.57	
DH* Wearing has	faces and Utilities	1.50	0.65	
EN Horizoptal E.	nrth Pressoan			
 Active 		1.50	0.90	
 Asheit 		1.15	0.90	
 AEP for such 	day has	1.15	NA	
EL: Locked-in Co	edministra Stratian	1.00	1.00	
EP. Vertical Earth	Pressna			
 Overall State 	latv.	1.00	NA	
	dis and Aburmany	1.35	1.00	
· Regal Buried		1.30	0.90	
 Ragid Franker 		1.35	0.90	
 Flexible Boxic 				
	tox Cultures, Metachenil Plate Cultures with Deep Corregations, and	1.5	0.9	
	na Culranta	1.5	0.8	
	plastic Citrarta	1.05	0.0	
· All effe			1.120	
ET Earth Vershie		1.10	0.75	1

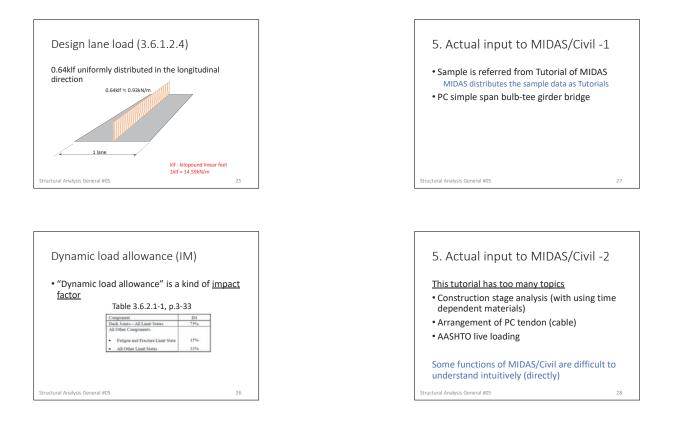


[Structural Analysisi General_L05]

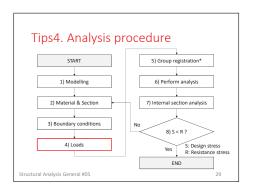
	Unit Weights (p.3-18 Ta			
		1kcf = 157.1kN/m		
	Material	Unit Weight (kcf)		
Abanansan Ali	098	0.175		
Determination W	earing Surfaces	0.140		
Cest later		0.450		
Cinder Filling		0.060		
Compacted Sa	nd, Silt. or Clay	0.120		
Cincrete	Lightweight	0.110		
	Sand-Lightweight	0.120		
	Normal Weight with f'_ 5.0 ksi	0.149		
	Normal Weight with 5.0 < f_ > 15.0 kai	0.140 + 0.001 /5		
Loose Send. 5	it, or Ocaval	8.100		
Seft City		0.100		
Rolled Graval, Macadam, or Ballast		0.140		
Steel		0.490		
Stone Massing	1	0.170		
Wood	Hard	0.060		
	Seft.	0.050		
Water .	Fresh	0.0624		
	542	0.0640		
Den		Weight per Unit Length (klf)		
Transit Rails, 7	Ties, and Fastening per Track	0.200		

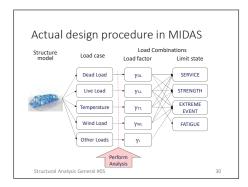
11057	7. Major units us	seu in 05
Unit	Description	Conversion to SI
lb	pound	0.4536kg = 4.448N
kip	kilopound	4.448kN
inch		0.0254m
feet		0.3048m = 12inch
lb/ft	pound per feet	14.59N/m
ksi	kilopound per square inch	6.894N/mm ²
psf	pound per square feet	47.88N/m ²
kcf	kilopound per cubic feet	157.1kN/m ³



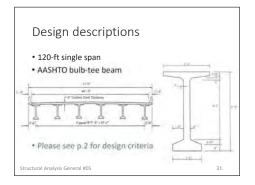


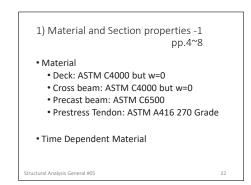
10

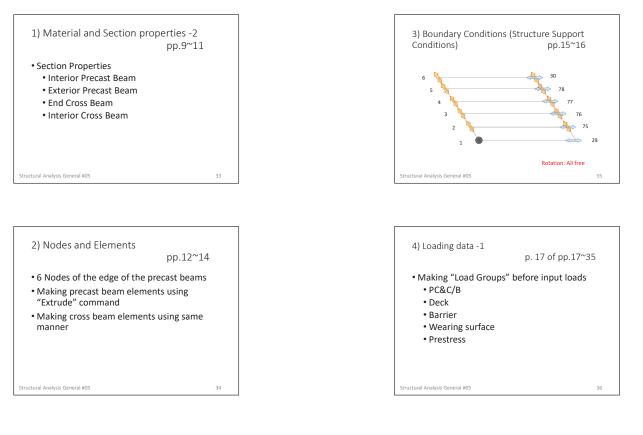

[Structural Analysisi General_L05]


Live Load (vehicular load)	
 HL-93 loading (3.6.1.2, p.3-20) Design track or design tandem, and Design lane load 	
Design track or Design tandem	
Structural Analysis General #05	23

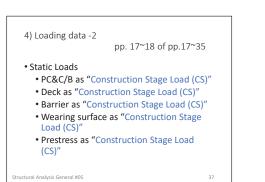
[Structural Analysisi General_L05]

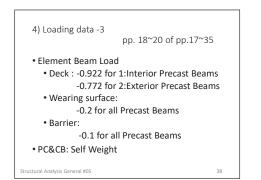






14


[Structural Analysisi General L05]

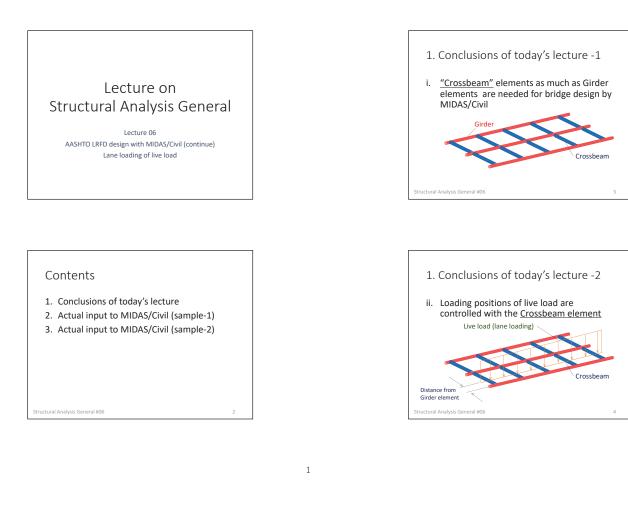


[Structural Analysisi General_L05]

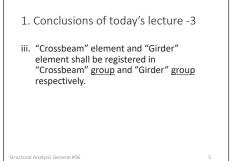
4) Loading data -4 pp. 21~28 of pp. 17~35 • Prestress Data and Loads $\overbrace{Further R Starte Functions}^{Further R Starte Functions}$ Further Starte Start

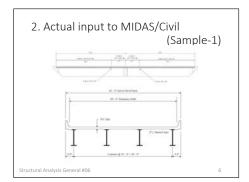
• Di	Lane 1~4 in essign of "Veh	Traffic Line I	,
• As	TDM (Tander	every 12-feet	

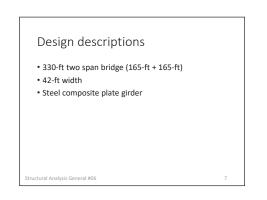
18

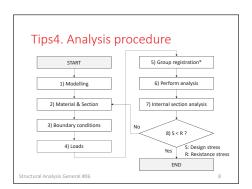

[Structural Analysisi General L05]

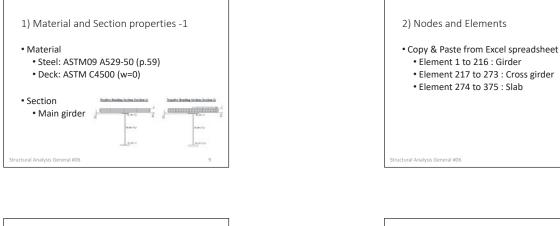
		pp.36~42
Construction	stag	ges p.36
Stage	Day	Description
Stage 1 (30 days)	1	Placing of precast beams and cross beams. Prestressing of strands.
	21	Pouring deck slab.
Stage 2 (30 days)	1	Composite beam & slab behavior takes place
	1	Installation of barrier.
	6	Placing of wearing surface.
Stage 3 (10000 days)		

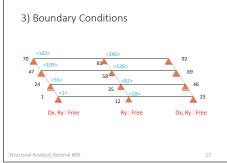

7) Perform Analysis p.44
 Verification and Interpretation of Results "Auto Generation" of the "Load Combination" of <u>AASHTO-LRFD 12</u>
Structural Analysis General #05 43

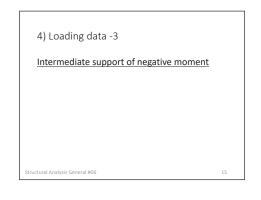

6) Moving Load Analysis Control p.43	
• Input "Moving Load Analysis Control" data	
Structural Analysis General #05	42


[Structural Analysisi General_L06]




[Structural Analysisi General_L06]





[Structural Analysisi General_L06]

[Structural Analysisi General_L06]

6

4) Loading data -3	
--------------------	--

Intermediate support of negative moment i. Input "Span start" elements to "Define Design Traffic Line Lane"

- Register "Girder" group to "Lane Supports (Negative Moment)"
- iii. Add node number of intermediate supports to "Lane Supports (Reactions at Intermediate Supports)"

tructural Analysis General #06

4) Loading data -2

4) Loading data -1

• Steel girder self weight -> Function of MIDAS

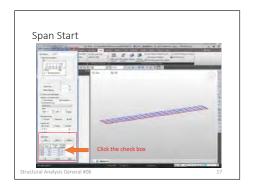
Other loads: Element Beam Loads
Deck self weight : 1,425 lb/ft
Haunch self weight: 52.5 lb/ft
Barrier walls : 320 lb/ft
Wearing surface : 585 lb/ft

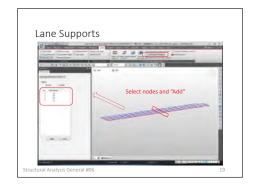
Definition of "Traffic Line Lanes"
Lane 1~3 in every 12-feet
Assign of "Vehicles"

1) Material and Section properties -2

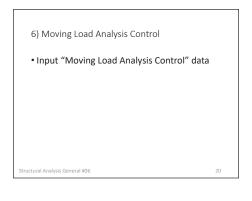
• Crossbeam as "Cross girder" AISC10(US) W44x290

Slab (End slab) as "Crossbeam"

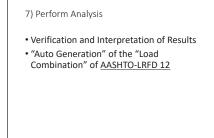

Assume this member has same thickness as slab of composite girder (12-ft x 9.5-in)

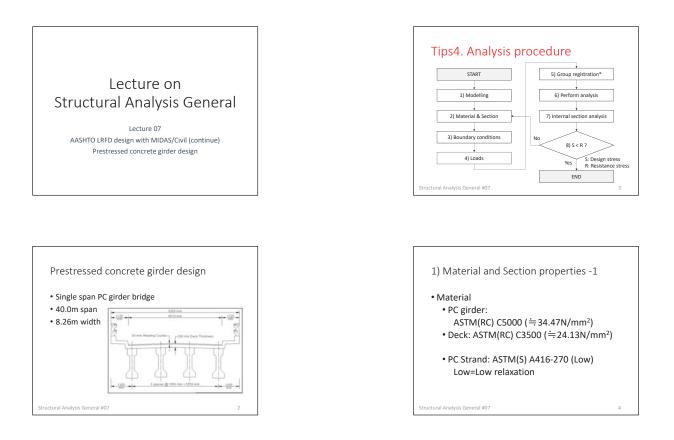

• Section (cont.)

every 18-feet


• TDM (Tandem) and TRK (Track) • Moving Load Cases

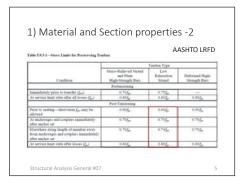
Structural Analysis General #06



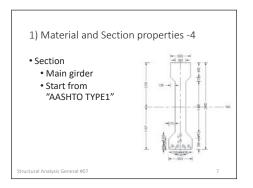


11

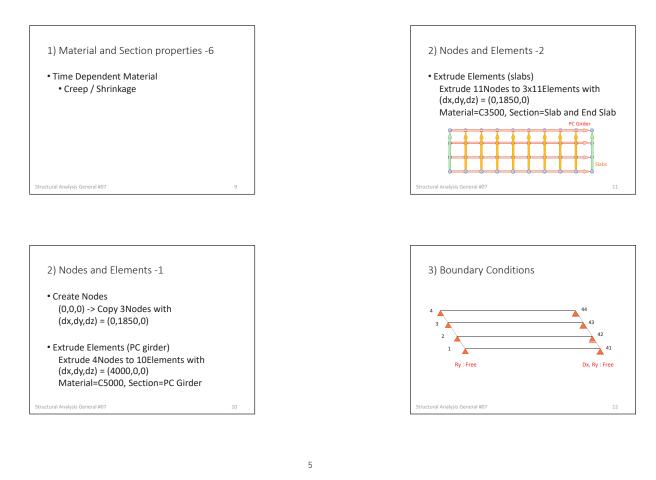
[Structural Analysisi General_L06]



TIPS	7. Major units us	sed in US
Unit	Description	Conversion to SI
lb	pound	0.4536kg = 4.448N
kip	kilopound	4.448kN
inch		0.0254m
feet		0.3048m = 12inch
lb/ft	pound per feet	14.59N/m
ksi	kilopound per square inch	6.894N/mm ²
psf	pound per square feet	47.88N/m ²
kcf	kilopound per cubic feet	157.1kN/m ³

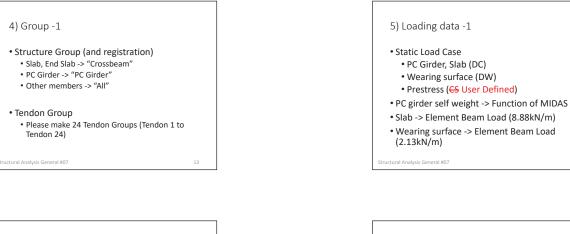

[Structural Analysisi General_L07]

1



3.4 Allowable Stress of Pr	estressing Steel	JSHB III Concret
values in Table 3.4.1.	prestressing steel for prestresse Allowable Tensile Stress of Pr	estressing Steel
Stress state	Allowable tensile stress	Ronarks
1) During prostressing	The value of 0.80 $\sigma_{\rm jm}$ or 0.90 $\sigma_{\rm jm}$ which ever is smaller	etu: Tenzile strength (N/mm ²) of
2) Immediately after prostressing	The value of 0.70 $\sigma_{\rm ps}$ or 0.85 $\sigma_{\rm ps}$ whichever is smaller	prestressing steel c_: Yield point (Nitum ²) of
3) Under design load	The value of 0.60 $\sigma_{\mu\nu}$ or 0.75 $\sigma_{\mu\nu}$ whichever is smaller	prestressing steel

[Structural Analysisi General_L07]


1) Material and Section properties -5
 Section Slab as Solid Rectangular H=200mm x B=4000mm
• End Slab as Solid Rectangular H=200mm x B=2000mm
Structural Analysis General #07 8

[Structural Analysisi General_L07]

[Structural Analysisi General_L07]

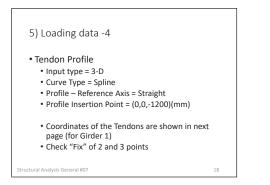
6

- Load Group
- PC Girder
- Slab
- Wearing surfacePrestress

tructural Analysis General #07

5) Loading data -2

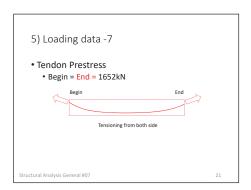
- Moving Loads (HL-93)
 Definition of "Traffic Line Lanes"

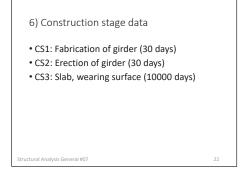

 Lane 1 only (925mm distance from Girder 2)

 Assign of "Vehicles"

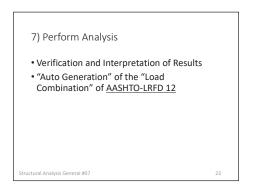
 TDM (Tandem) and TRK (Track)
 Dynamic Load Allowance = 33%
 - Moving Load Cases

tructural Analysis General #07

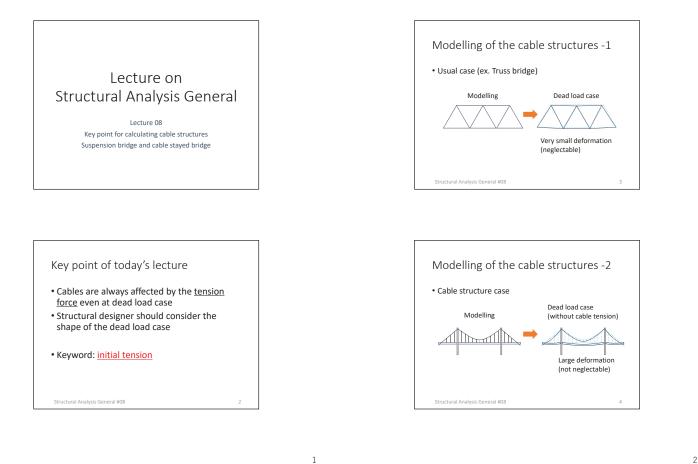

, ,	ALTERIA Tensioni Property		
• Temp./Prestress	Franke Tape Tanke Hara Tape Tapen Tape Tape Tape Tapeto Anno		
 Tendon Property Internal (Post-Tension Total Tendon Area >12.7mm(0.5") ->12nos Duct Diameter 70mm 	If Annual Indiana Maria Indian	1 11,1, 111	

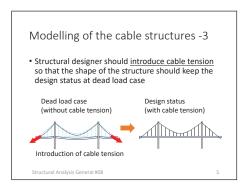


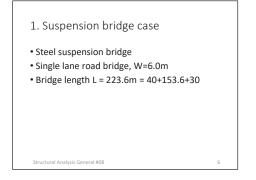
5) Loading data -5								
Tendon 1		Tendon 2			Tendon 3			
X(mm)	Y(mm)	Z(mm)	X(mm)	Y(mm)	Z(mm)	X(mm)	Y(mm)	Z(mm)
0	0	2100	0	0	1750	0	0	1400
9096	0	390	8731	0	240	9058	0	90
30904	0	390	31269	0	240	30942	0	90
40000	0	2100	40000	0	1750	40000	0	1400
Tendon 4		Tendon 5			Tendon 6			
X(mm)	Y(mm)	Z(mm)	X(mm)	Y(mm)	Z(mm)	X(mm)	Y(mm)	Z(mm)
0	0	1050	0	0	700	0	0	350
8430	0	90	7409	0	90	5223	0	90
31570	0	90	32591	0	90	34777	0	90
40000	0	1050	40000	0	700	40000	0	350
ctural An	alysis Ger	neral #07						19

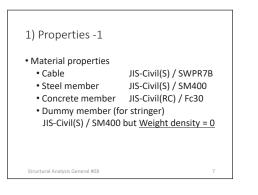

Girder1	Girder2	Girder3	Girder4
0	->1850	->3700	->5550
Tendon1	Tendon7	Tendon13	Tendon19
Tendon2	Tendon8	Tendon14	Tendon20
Tendon3	Tendon9	Tendon15	Tendon21
Tendon4	Tendon10	Tendon16	Tendon22
Tendon5	Tendon11	Tendon17	Tendon23
Tendon6	Tendon12	Tendon18	Tendon24

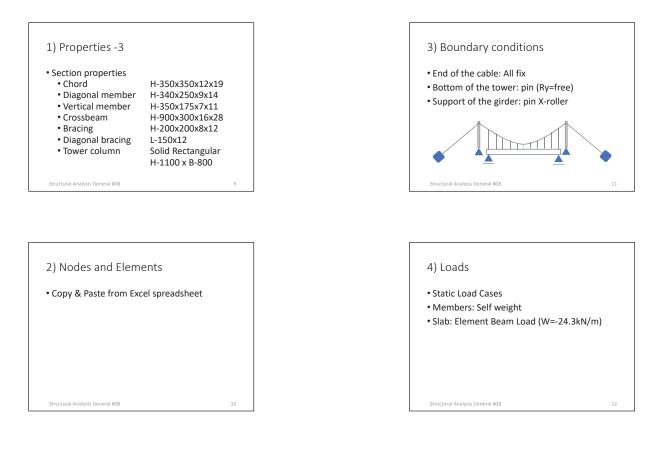
[Structural Analysisi General_L07]



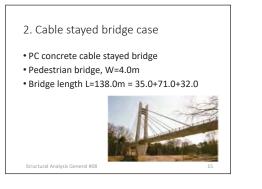

[Structural Analysisi General_L07]

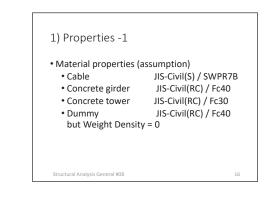



[Structural Analysisi General_L08]


[Structural Analysisi General_L08]

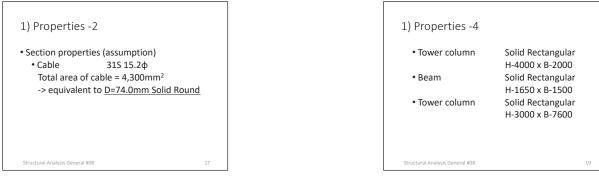
1) Properties -2
<i>,</i> .
Section properties
• Main cable 19 – 52¢, 7x37
Total area of cable = 24,890mm ²
-> equivalent to <u>D=178.0mm Solid Round</u>
 Hanger cable 1 – 42φ, 7x19
Total area of cable = 846mm ²
-> equivalent to <u>D=32.8mm Solid Round</u>
Structural Analysis Gonoral #09

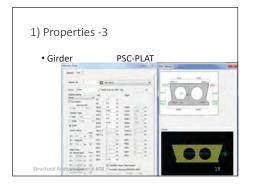


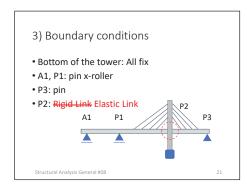

[Structural Analysisi General_L08]

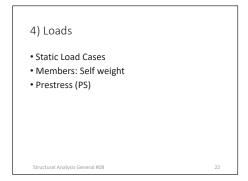
5) Groups

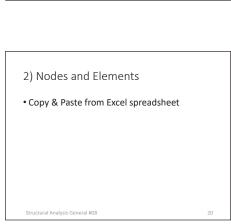
• Please make "Structure Group", "Boundary Group" and "Load Group"


6) After calculation of the structural model with cable tension=0
• Check the "Deformation" and "Tension force of Main cable"
• Input "Initial tension" to the main cable
• "Pretension Loads" in Temp./Prestress
• Temperature Load
ΔT=N/(AEα)
ΔT: Temperature, N:Axial force, A: Area of the cable, E: Young's modulus, α: Thermal coefficient

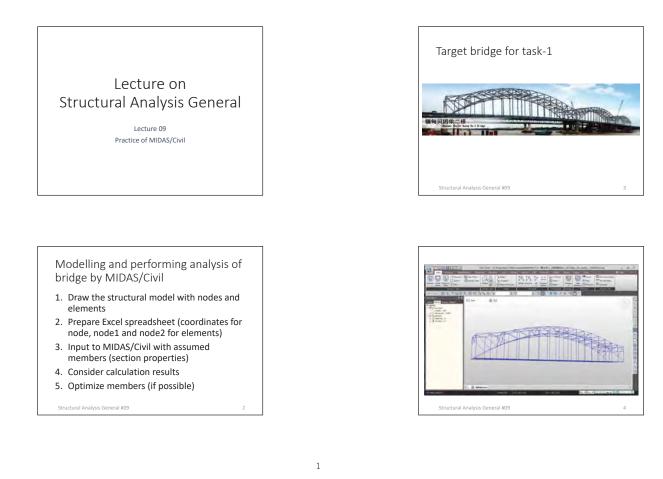





[Structural Analysisi General_L08]



[Structural Analysisi General_L08]



[Structural Analysisi General_L08]

5) Groups	
Please make "Structure Group", "Boundary Group" and "Load Group"	

6) After calculation of the structura model with cable tension=0	al
Check the "Deformation" and "Tension fo of Main cable"	rce
 <u>Input "Initial tension" to the main cable</u> "Pretension Loads" in Temp./Prestress Temperature Load ΔT=N/(AEα) 	
Δ T: Temperature, N:Axial force, A: Area the cable, E: Young's modulus, α : There coefficient	
Structural Analysis General #08	24

[Structural Analysisi General_L09]

[Structural Analysisi General_L09]

Assumptions for task-1 and task-2

- Live load: AASHTO LRFD HL-93 (4-lane)
 Slab thickness t=200mm -> unit weight (for Element Beam Load) 11.76kN/m
- Wearing surface (asphalt pavement) t=80mm -> unit weight 4.32kN/m

	Schedule	of Lectur	e 9 and 10	
	Program	Session	Activities	
	Locturo 0	Morning	Practice of structural	
	Lecture 9	Afternoon*	analysis with MIDAS/Civil	
	Lecture 10	Morning	*Progress of analysis will be asked at the end of Lecture 9	
		Afternoon	Presentation (13:30~) 15 minutes maximum	
Structural Analysis General #09				

Suggestions -1

- Material property: <u>stronger material</u> shall be used for the longer span bridge
- (ex. SM400 to SM490, SM520 or higher)
- Section property: <u>shaped steels</u> shall be changed to <u>built-up sections</u> (ex. I-section to box shape)
- Stringer and cross beam shall be designed by <u>composite structure</u> with concrete slab

Structural Analysis General #09

Suggestions -2

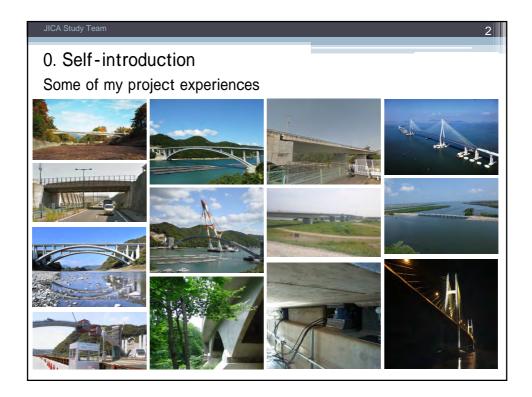
<u>Applied standard</u> shall carefully be chosen
 Limit state design (AASHTO LRFD)
 Allowable stress design (old JSHB)

Structural Analysis General #09

5

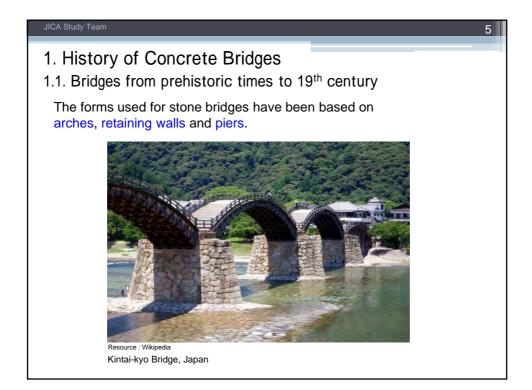
Thank you very much for your attention.

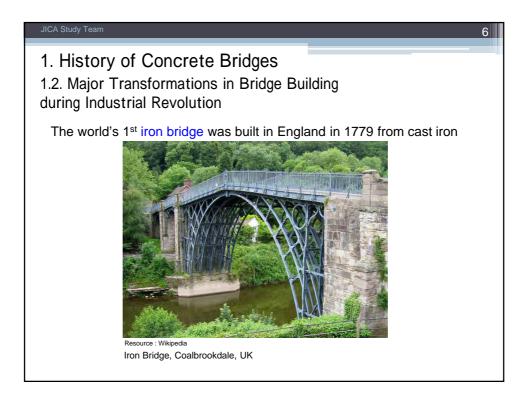
ကျေးဇူးတင်ပါတယ်။

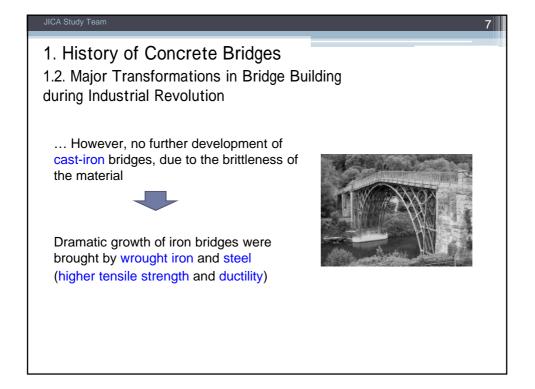

ありがとうございました

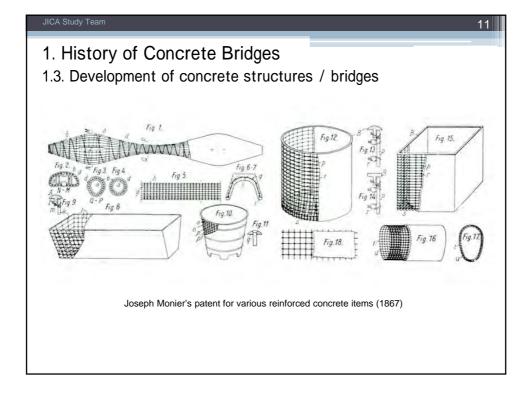
Structural Analysis General #09

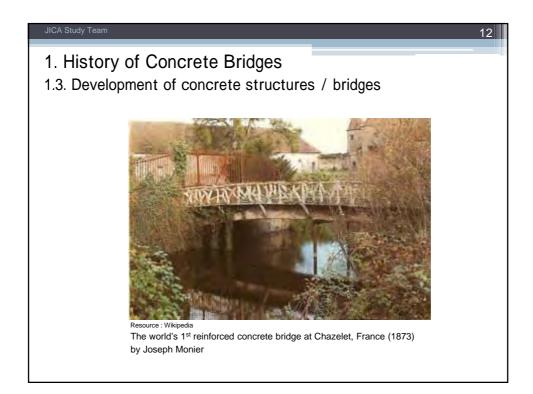
Appendix A Materials of Lectures and Seminars

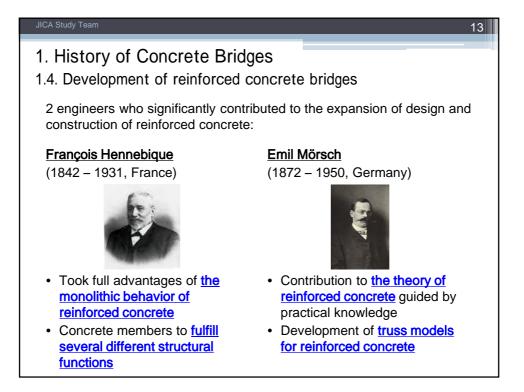

A-3 Superstructure Design (Concrete)



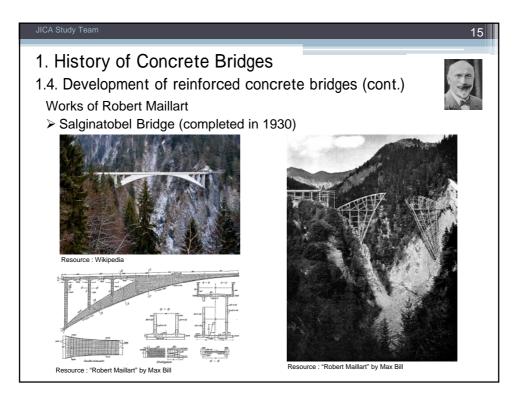


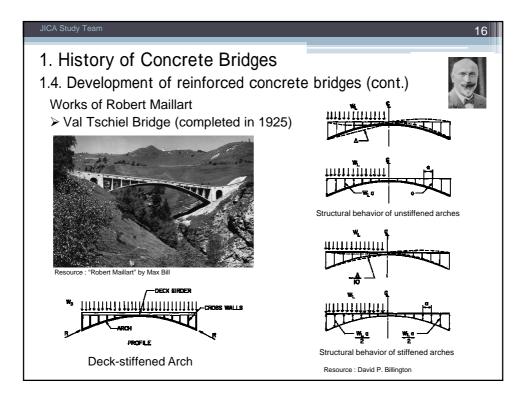


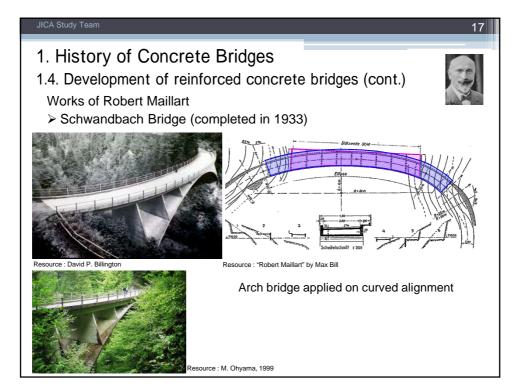


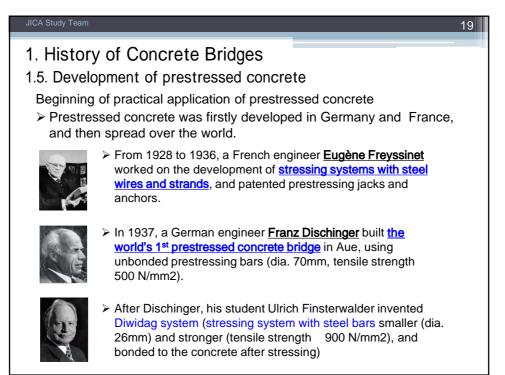

JICA Study Team 8
1. History of Concrete Bridges 1.2. Major Transformations in Bridge Building during Industrial Revolution
 From prehistoric times to 19th century, bridges had been designed by master builders using empirical guidelines (= based on experiences) built with simple tools and from traditional materials (stones and timbers)
 By the early 19th century, bridges were designed by engineers using newly developed theory of structures (graphic statics etc.) built from stronger, lighter, industrially produced materials (industrialized iron)

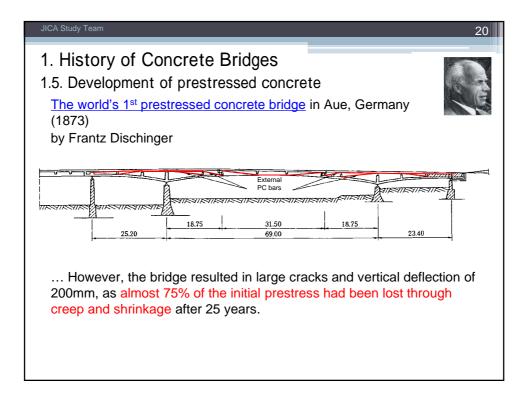
JICA Study Team g 1. History of Concrete Bridges 1.2. Major Transformations in Bridge Building during Industrial Revolution (cont.)					
Industrialized steel quickly became the pre-eminent material for railway bridge construction - However, some disadvantages for railways					
	Steel	Concrete			
Advantages	StrengthLight weightSpeed of construction	 Maintenance-free Lower ratio of live load to dead load 			
Disadvantages	 High maintenance cost Higher ratio of live load to dead load (cannot carry heavier, faster trains) 	 Lower strength Heavier weight Slower speed of construction 			
Need for application of another new material – Portland cement concrete					

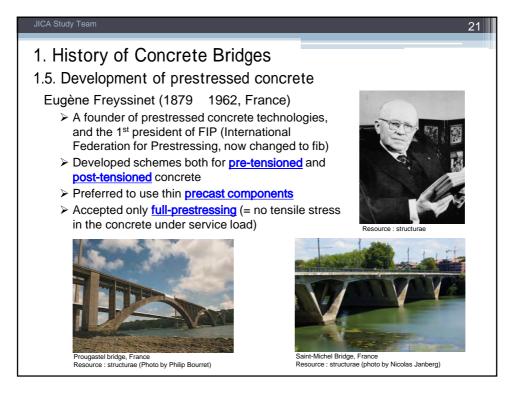

1. History of Concrete Bridges 1.3. Development of concrete structures / bridges				
Year	Name (Country)	Event		
1850	Thaddeus Hyatt (U.S.A.)	 Investigation of reinforced concrete (RC) beams Development of structural details 		
1855	A. Lambot (France)	A patent for RC boat		
1860s	(France & Spain)	 1st plain concrete bridges (arches) – identical to masonry structures 		
1860	François Coignet (France)	 A patent for concrete slabs w/ embedded iron mesh 		
1867	Joseph Monier (France)	 A patent for wire-reinforced concrete flowerpot – the 1st to recognize the vast potential of RC as a material for structures 		
1873	Joseph Monier (France)	• The world's 1 st reinforced concrete bridge		
Resource : JICA Study Team (based on "Prestressed Concrete Bridges" by Christian Menn)				



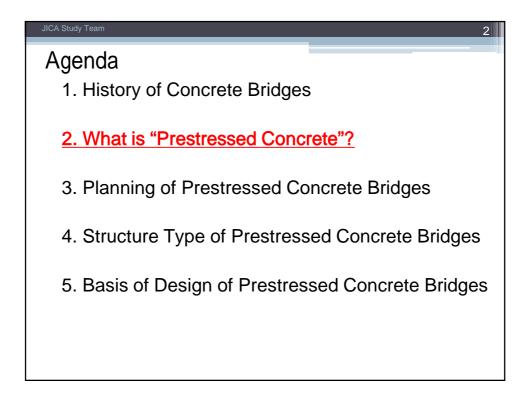


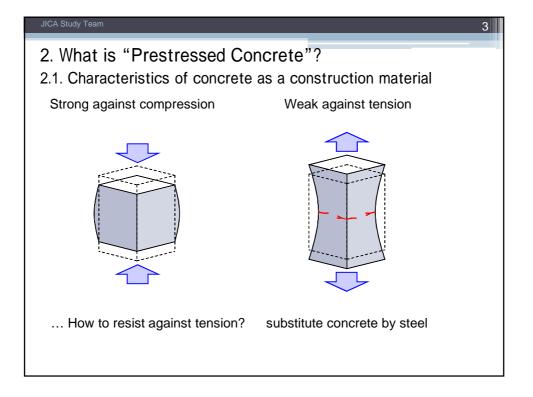


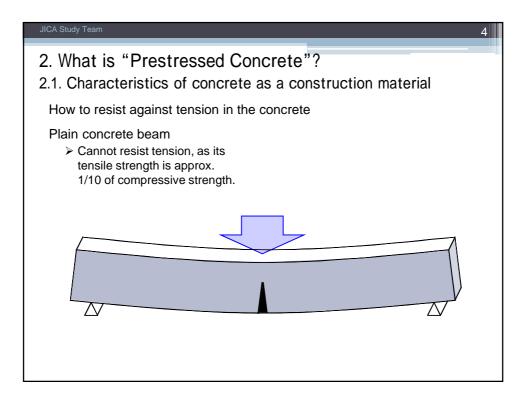


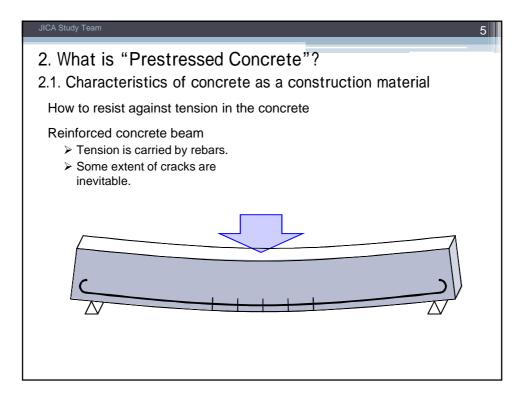


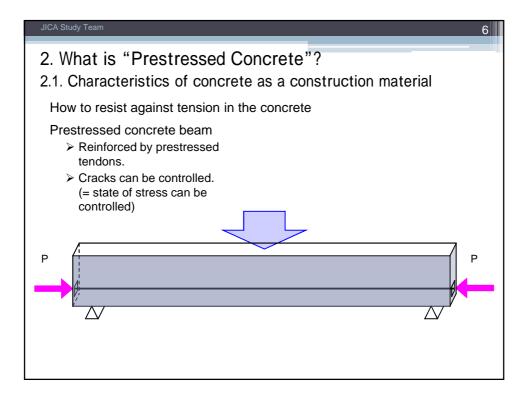
JICA Study Team 18
1. History of Concrete Bridges 1.5. Development of prestressed concrete
In 1888, a patent for prestresing system (for slabs, planks and beams) by W. Döring (Germany)
 However, no further practical application for 40 years Insufficient study on creep & shrinkage of concrete and relaxation of steel Materials (high strength steel & concrete) still to be developed Prestressing anchors and jacks still to be developed

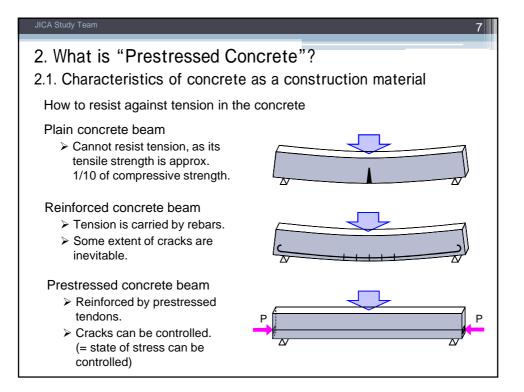


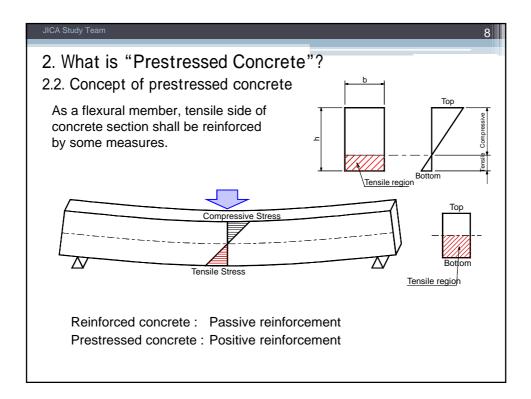


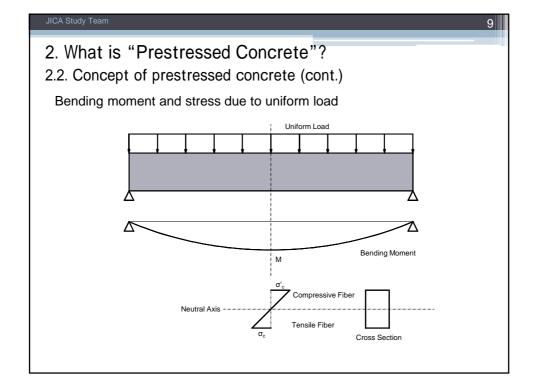


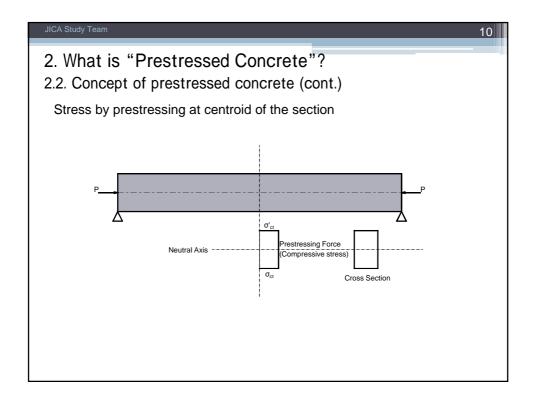


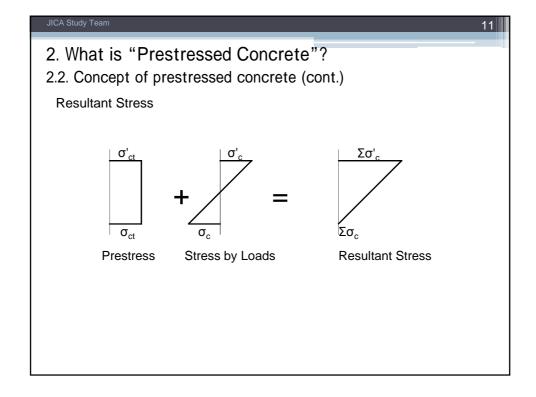


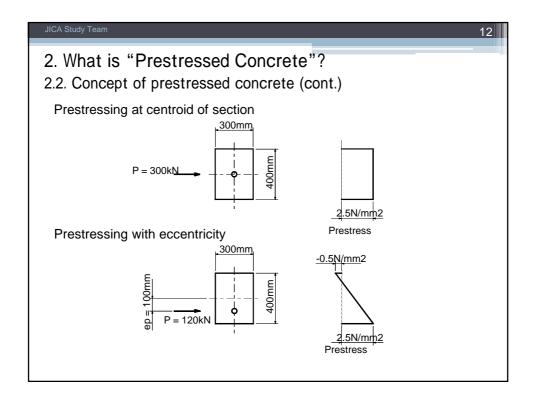


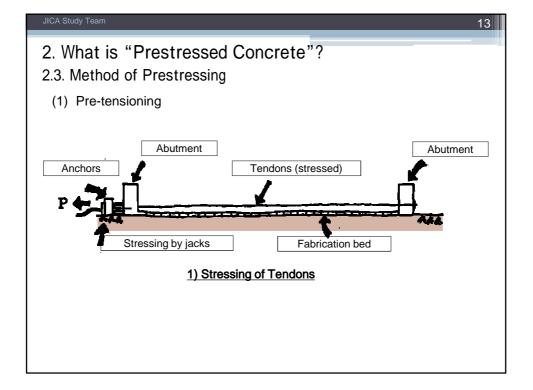


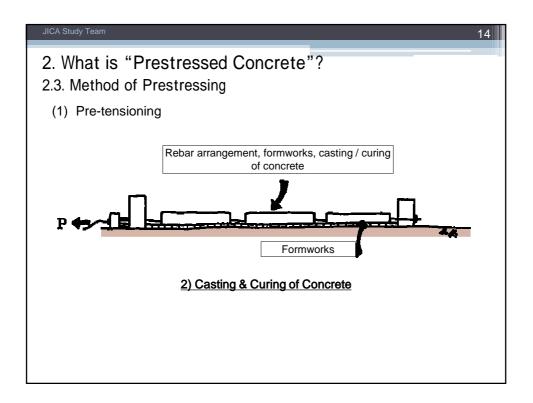


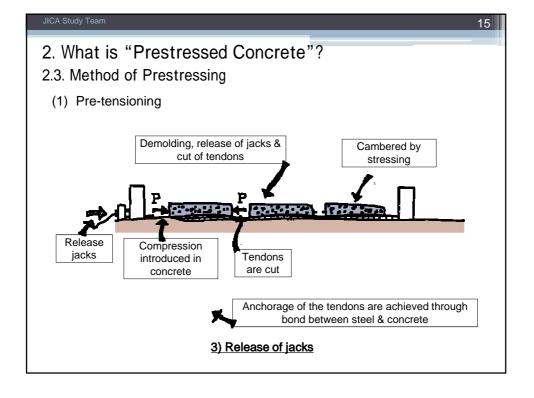


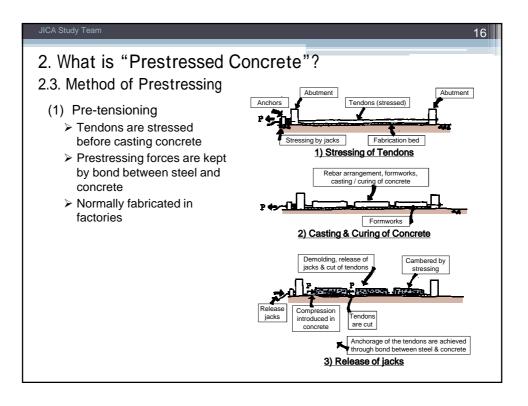

Technical Transfer on Bago River Bridge Construction Project

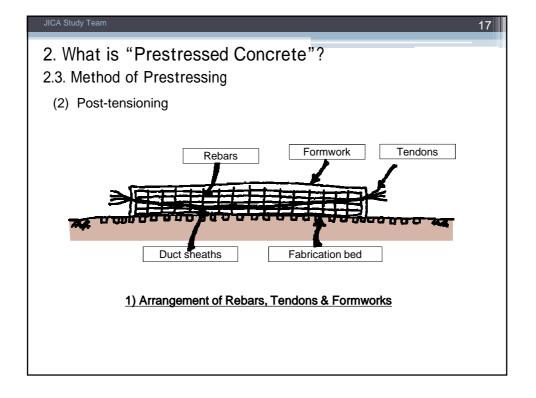


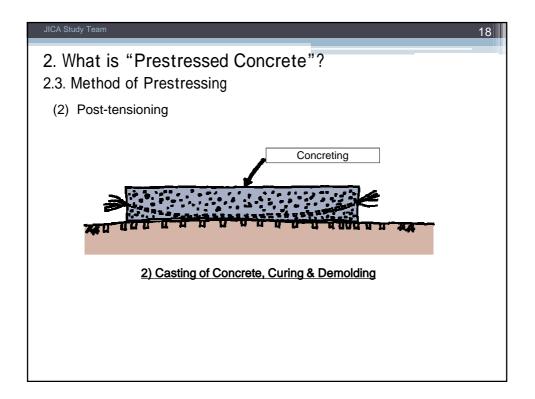


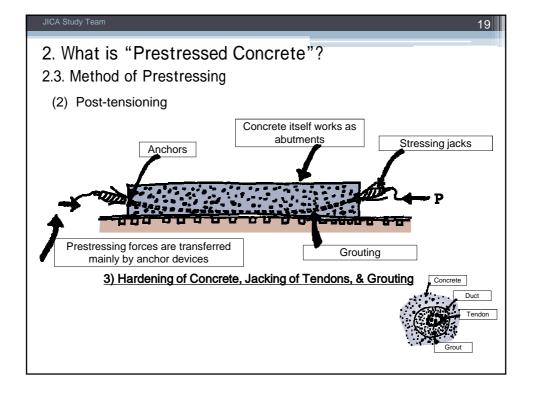


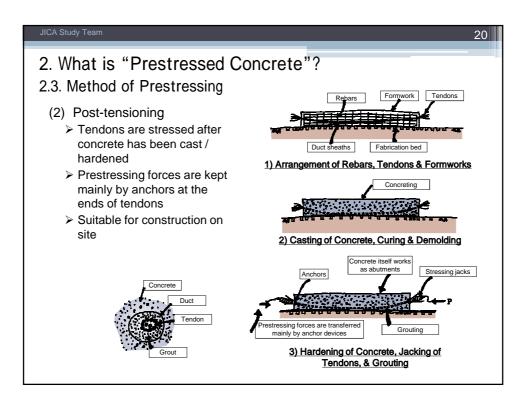


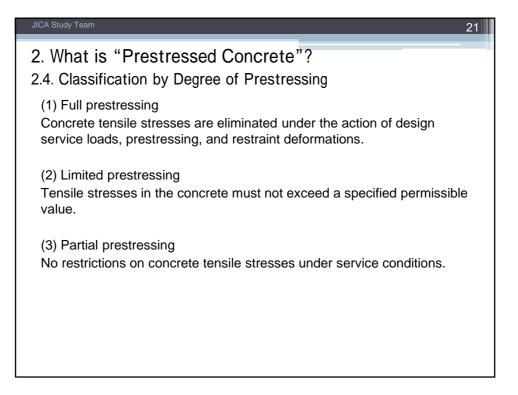


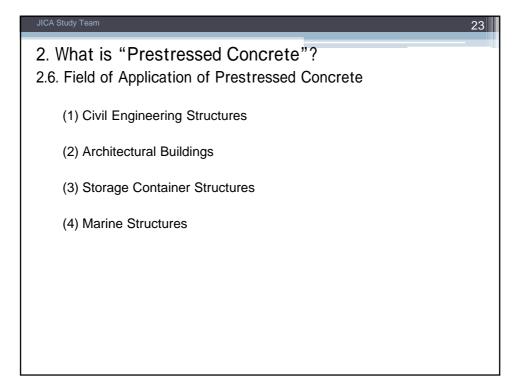


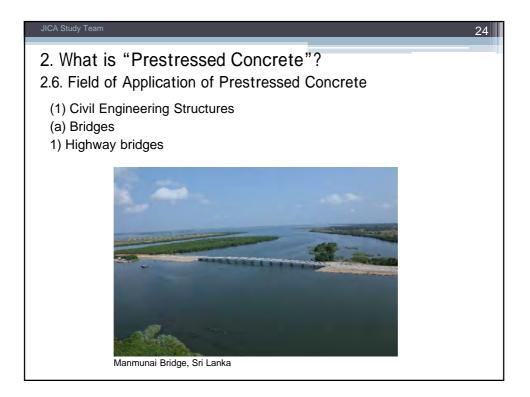


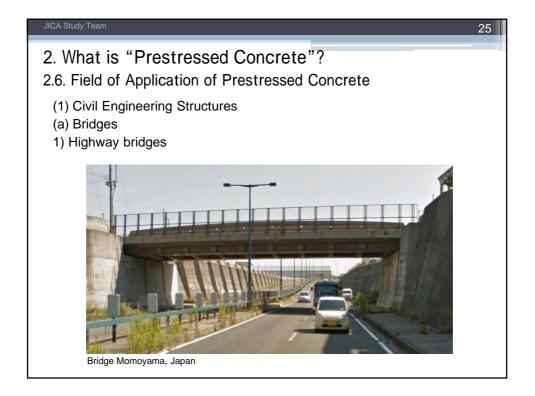


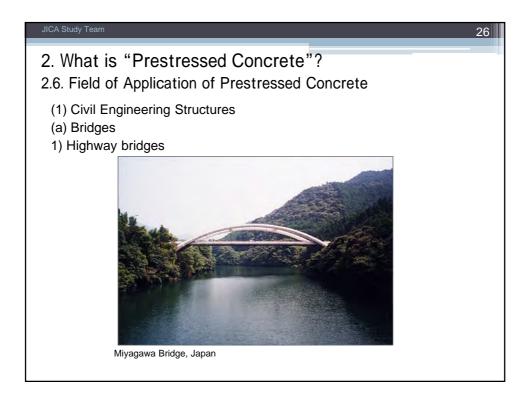


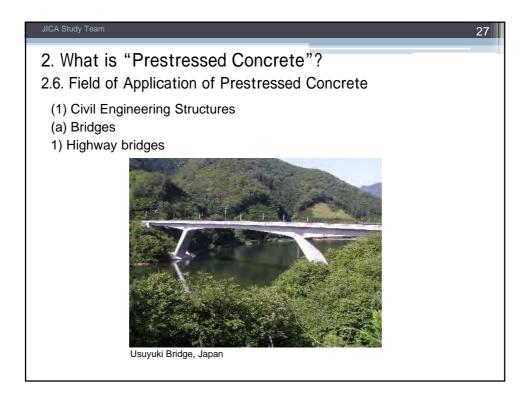


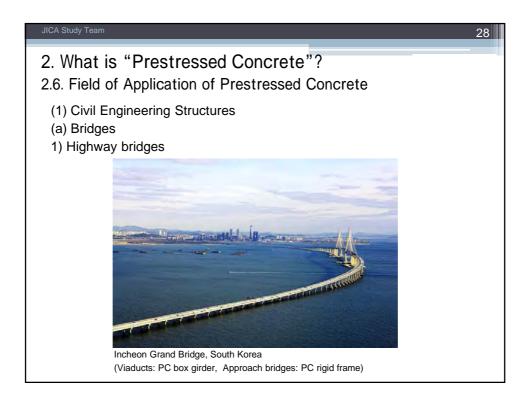


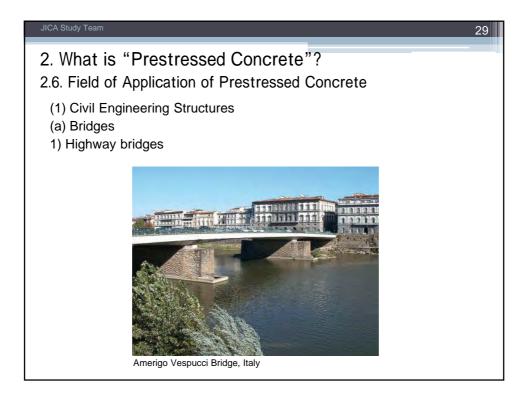


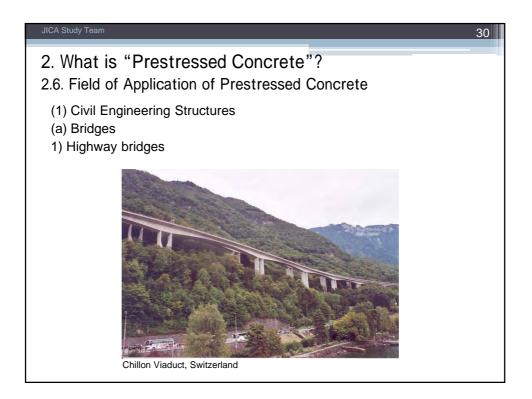


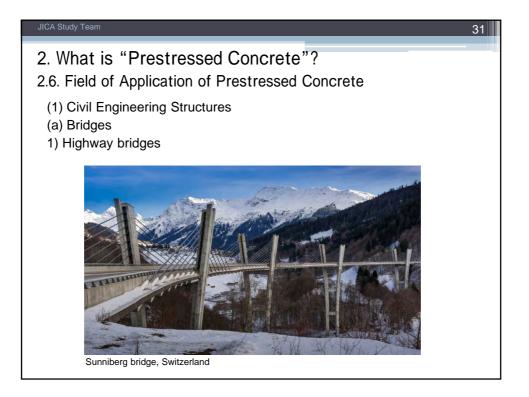


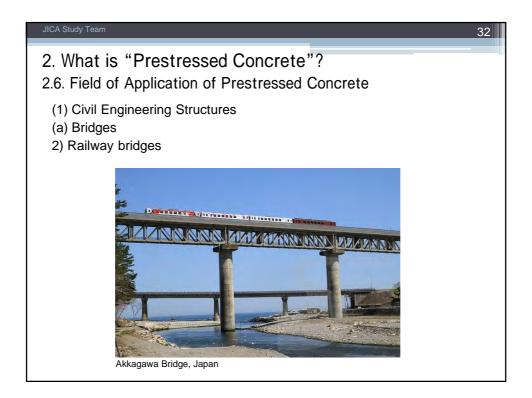

JICA Study Team	22
2. What is "Prestressed Concrete"?	
2.5. Characteristics of Prestressed Concrete Structures	
(1) Durability, impermeability than RC structures	
No / limited cracks by prestressing	
(2) Lighter and slender than RC structures	
Due to efficient use of cross section by controlling state of stress	
(3) Connection of precast elements by prestressing	
Reduction of site work, mechanical erection, shortening of construction period	
(4) Applicable for segmental construction	
Free cantilever, movable scaffolding, span-by-span erection etc.	
(5) Higher safety	
Confirmation of safety at the time of prestressing	
(6) Higher capacity against fatigue	
Smaller increase of tensile stress in steel	
(7) Smaller vibrations and noises	
•••	

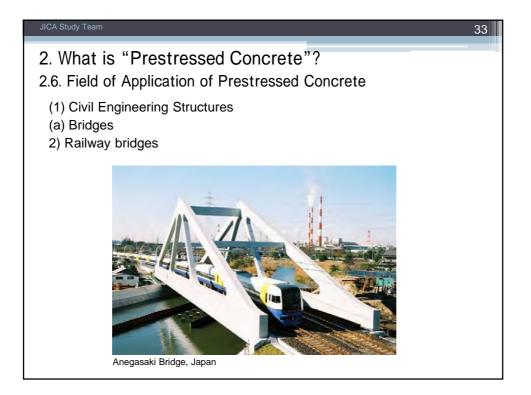


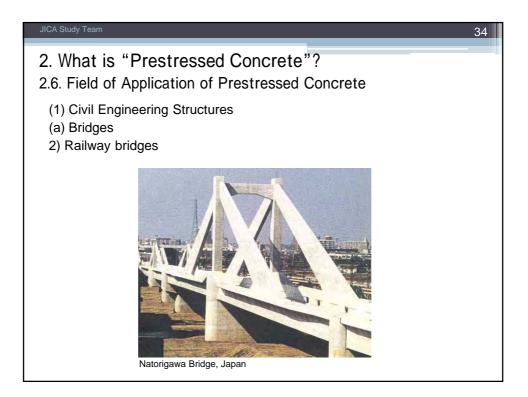


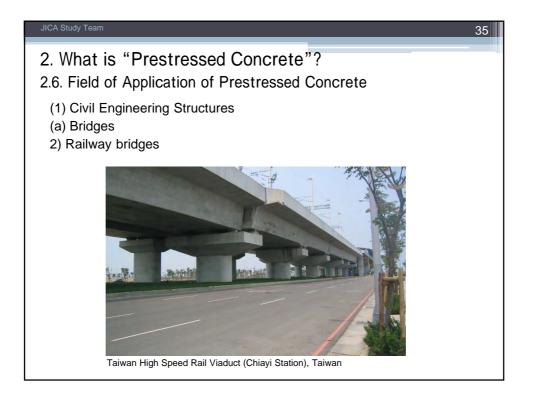


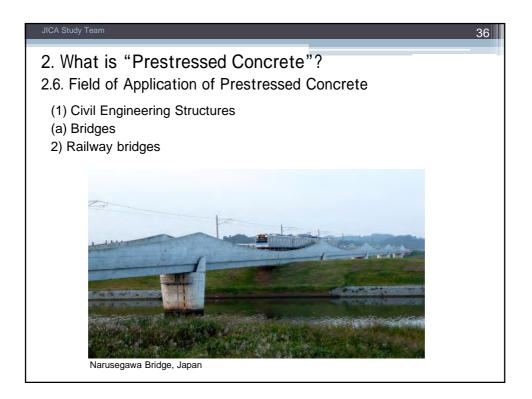


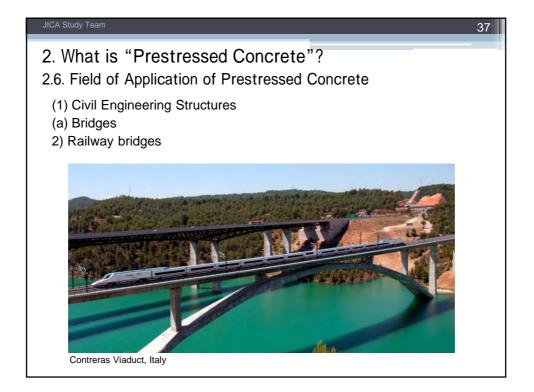


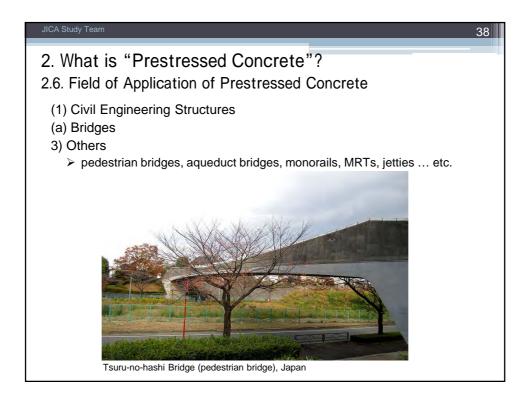


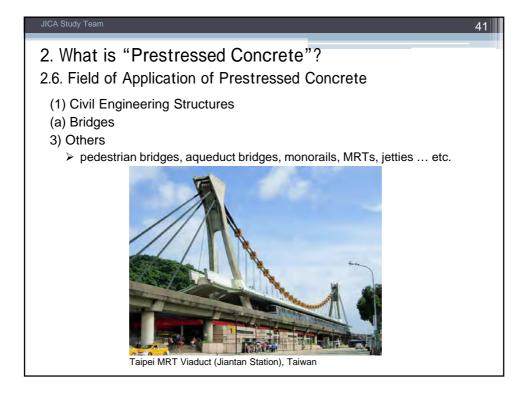


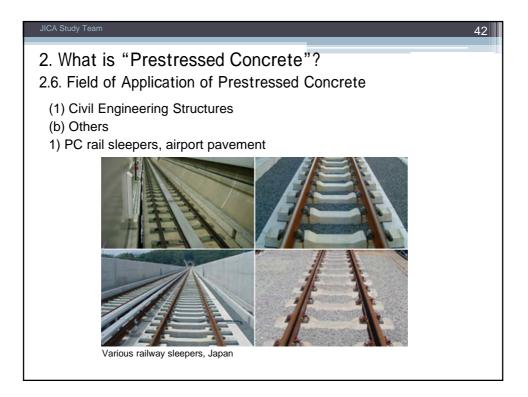


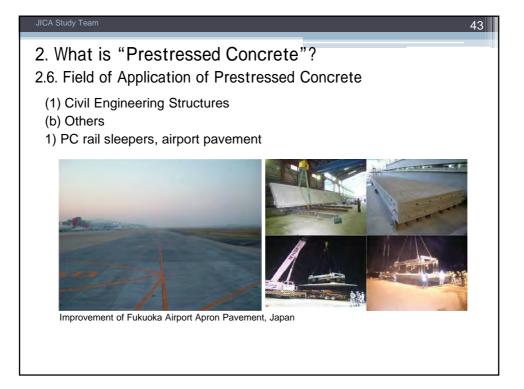


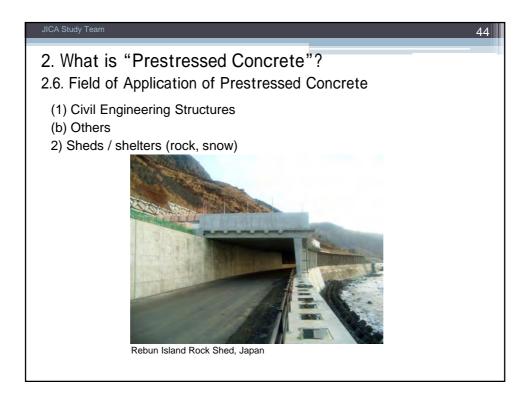


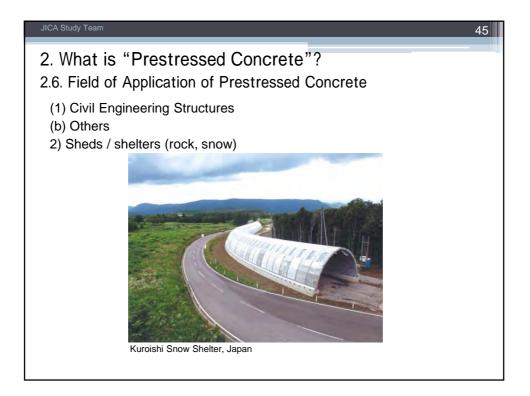


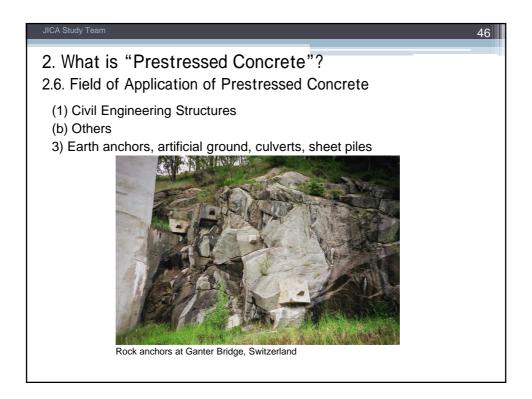


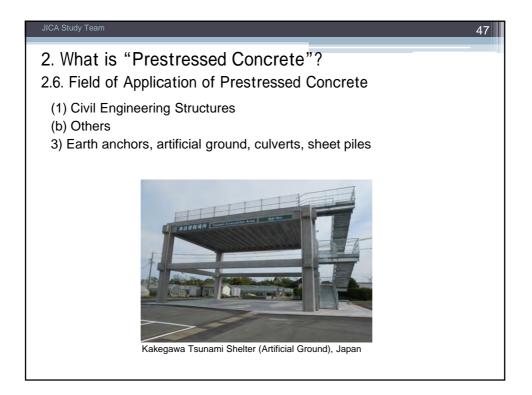


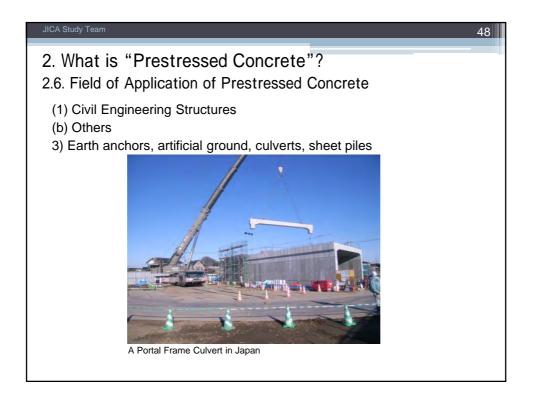

Technical Transfer on Bago River Bridge Construction Project

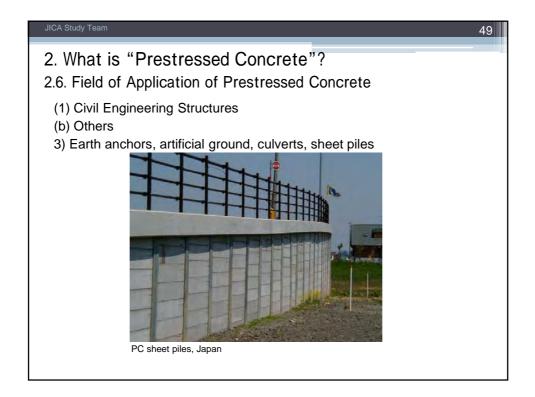


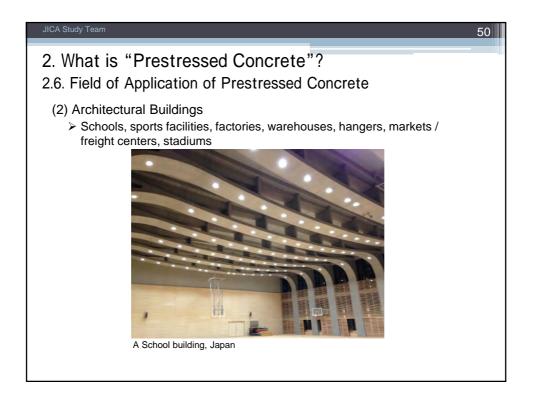


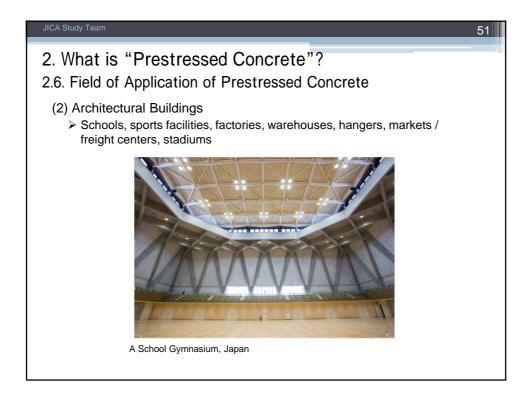


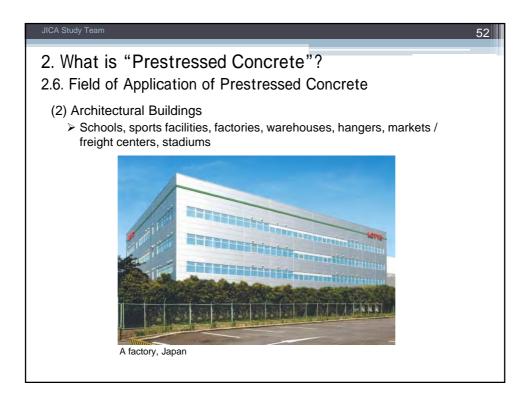


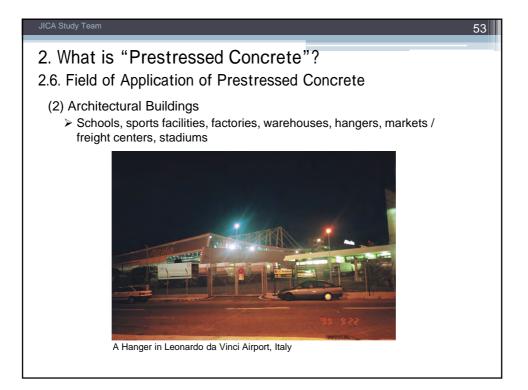


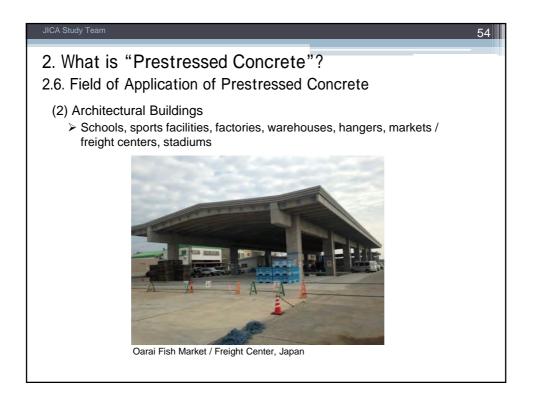


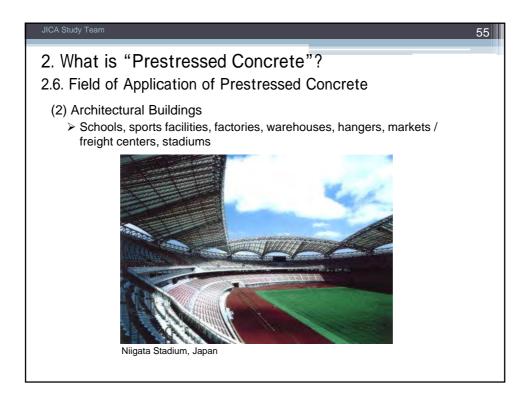


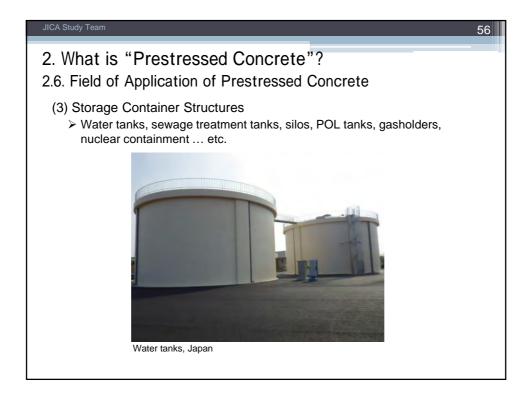


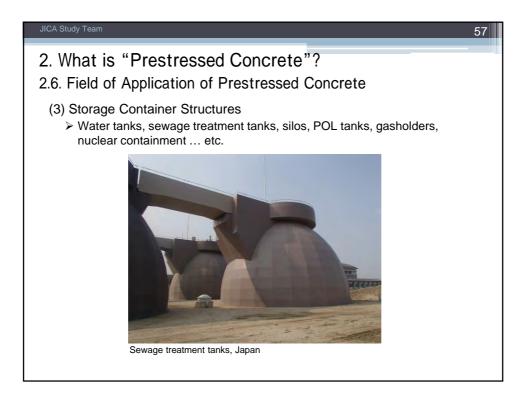


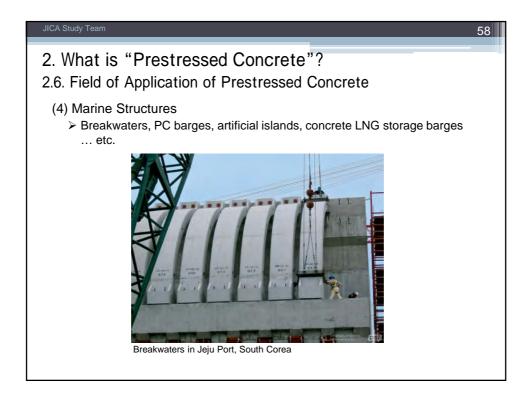


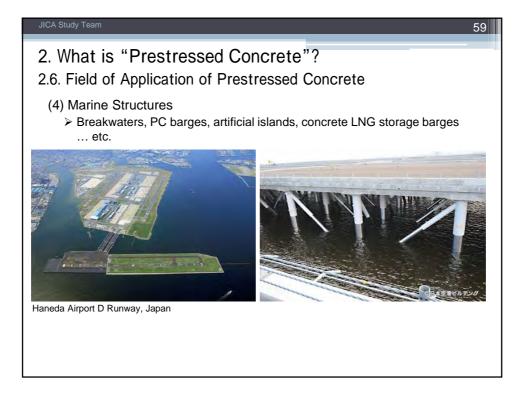


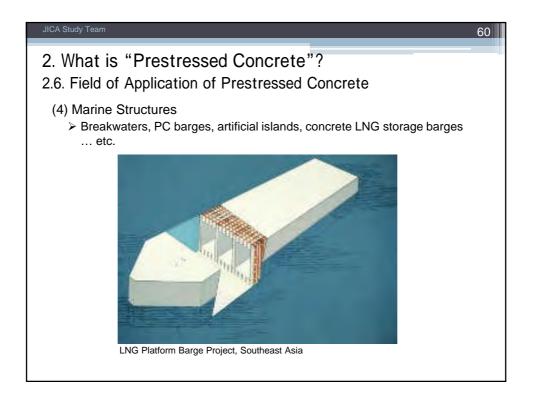


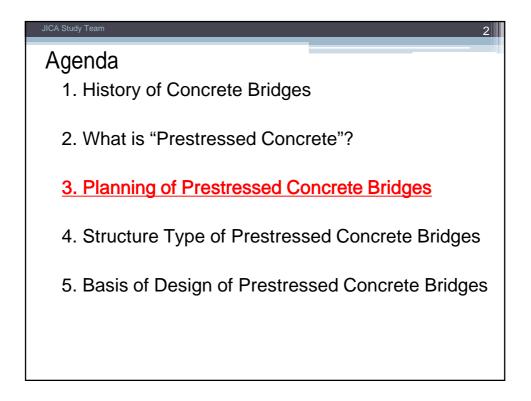


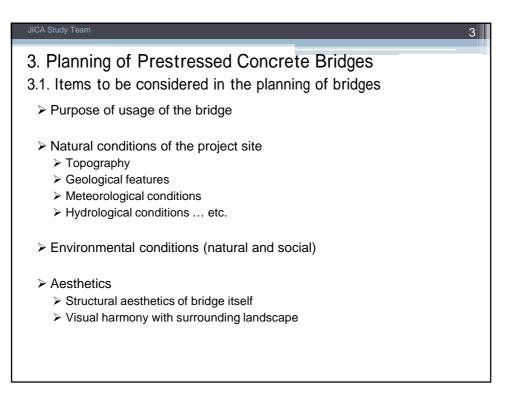


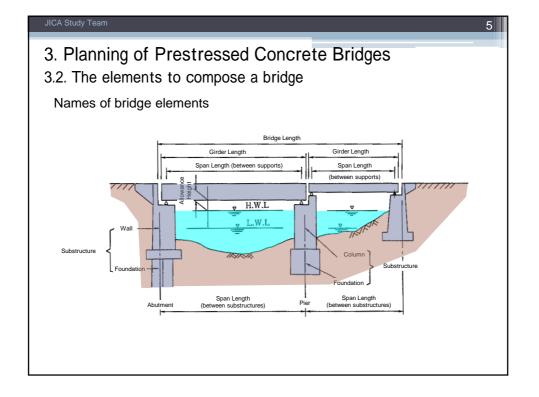


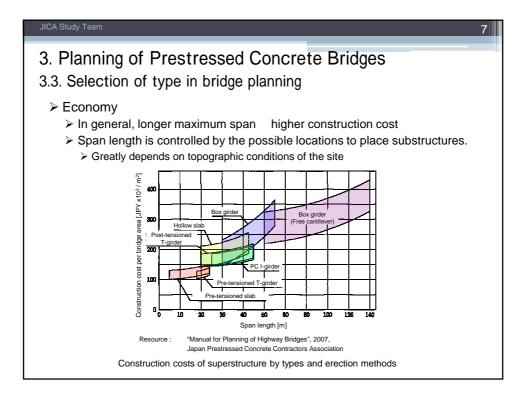


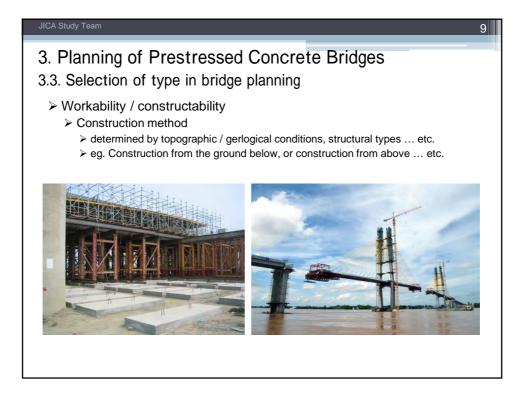


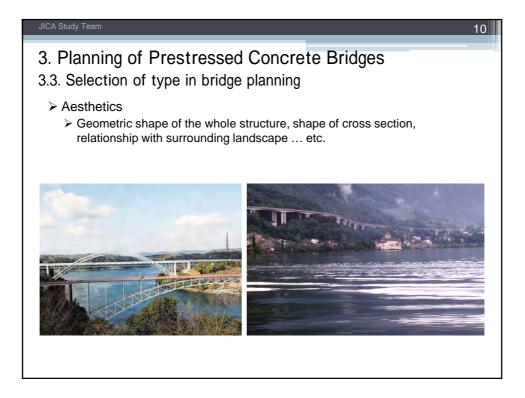


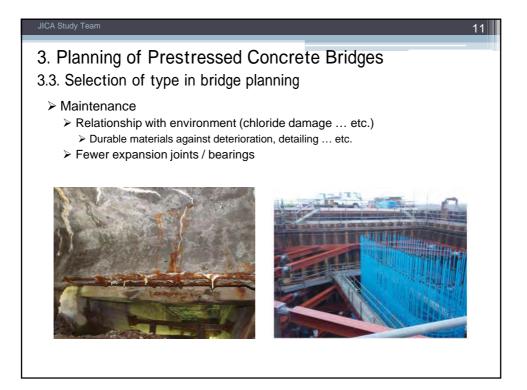


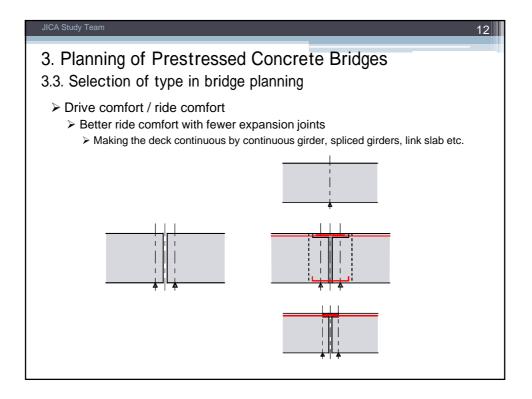


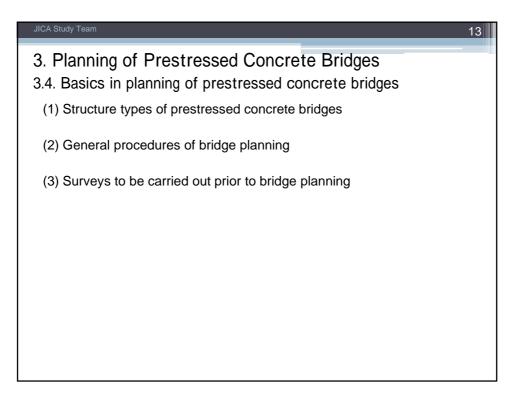


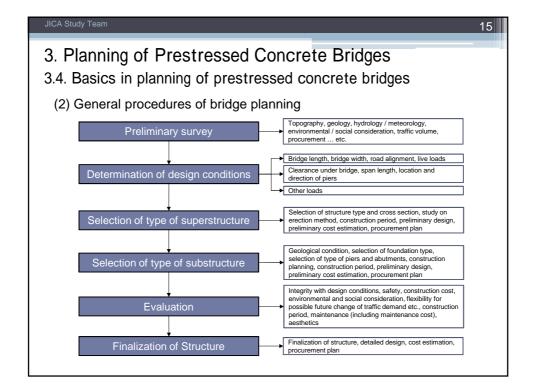

JICA Study Team 4
3. Planning of Prestressed Concrete Bridges3.2. The elements to compose a bridge
 Superstructure Support the loads such as vehicle and pedestrians directly
 Substructure Support the loads from superstructure and transfer the forces to foundation
> Foundation
Support the loads from substructure and transfer the forces to the ground

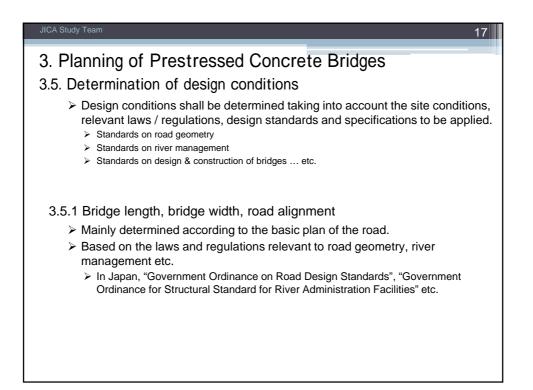


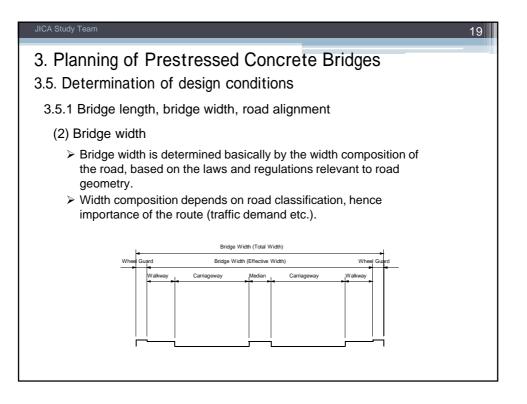

JICA Study Team 6
3. Planning of Prestressed Concrete Bridges
3.3. Selection of bridge type in bridge planning
≻ Economy
Structural feature
Workability / constructability
> Aesthetics
> Maintenance
Drive confort / ride confort

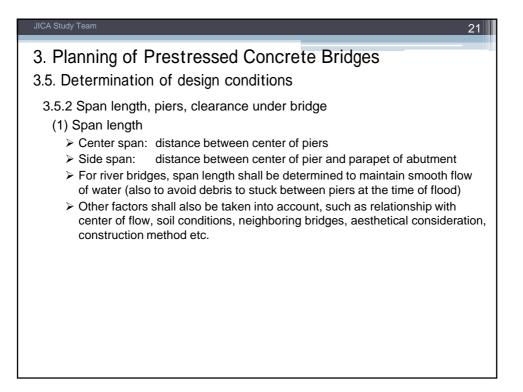


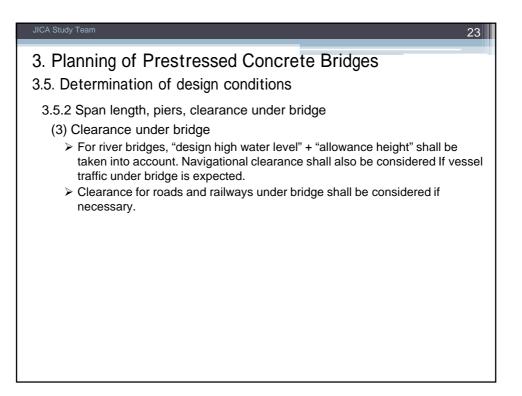


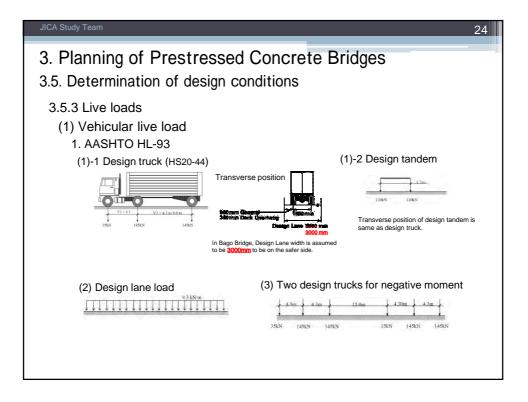



Technical Transfer on Bago River Bridge Construction Project

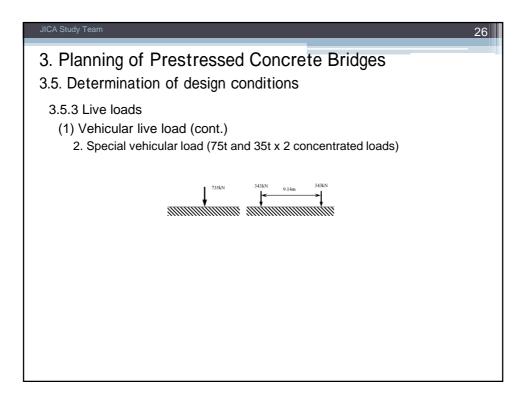

Planning of Prestressed Concrete Bridges 4. Basics in planning of prestressed concrete bridges (1) Structure types of prestressed concrete bridges	
1) Structure types of prestressed concrete bridges	
Applicability	/
Structure type PCa CI	Р
Simple girder bridge	•
Spliced girder bridge	-
Continuous girder bridge	/
Continuous rigid frame bridge	1
Rigid frame bridge with hinge	/
T frame bridge *	/
Cable stayed bridge	,
Arch bridge	/
Truss bridge	/
Stress ribbon bridge 🖉 🗸 🗸	/
* : Applicability depends on the size of project etc.	

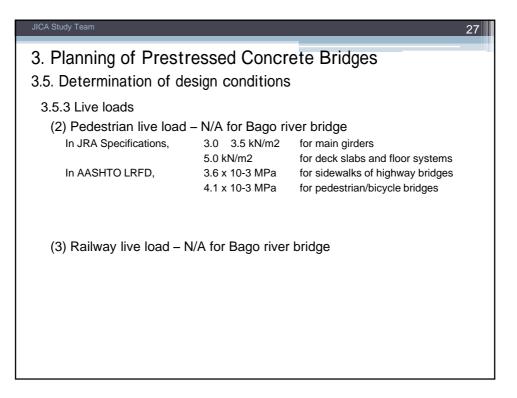

JICA Study Team	16
•	essed Concrete Bridges prestressed concrete bridges
(3) Surveys to be carried o	ut prior to bridge planning
Item	Description
Topographic survey	Ground level, land use, faults, crossing obstacles etc.
Geological survey	Soil properties, bearing layer, groundwater level, risk of land slide etc.
Hydrological / meteorological survey	Water level, flow volume/velocity, conditions on use of river etc. Weather, climate (temperature), rainfall (rainy/dry seasons), snowfall, earthquake etc.
Environmental / social survey	Biota, air pollution, water contamination, noise, vibration, chloride damage, landscape etc. Land use, land owning, need for resettlement etc.
Traffic survey	Type of vehicles, loads, road width etc.
Construction condition	Access road, temporary roads, construction yards, neighboring projects etc.
Procurement	Construction materials / equipment (domestic / import), transportation, costs
Others	Electricity/water available for construction works, surrounding facilities, public utilities (need for relocation) etc.

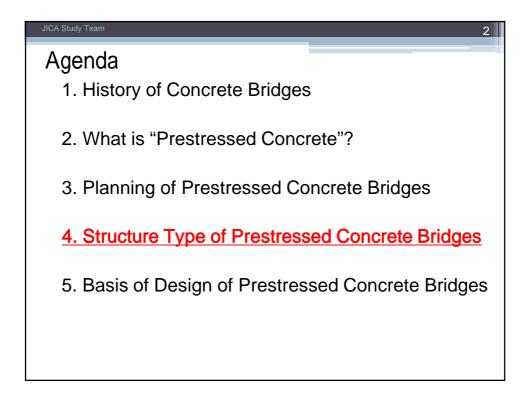

JICA Study Team 18
3. Planning of Prestressed Concrete Bridges3.5. Determination of design conditions
3.5.1 Bridge length, bridge width, road alignment
(1) Bridge length
 Bridge length is determined according to road plan, road alignment, location of bridge and abutments. The location of abutments are determined by the relationship with control points such as crossing obstacles (rivers, roads, railways, public utilities etc.), height of abutments etc.

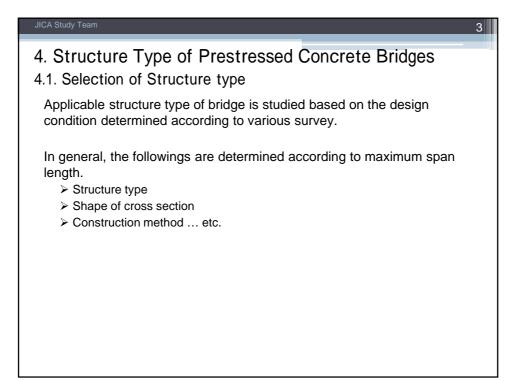


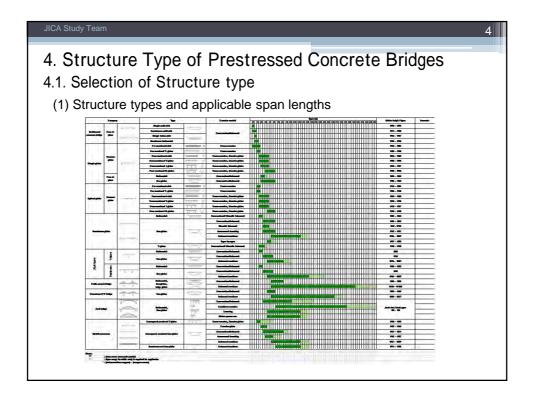
JICA Study Team 20
 Planning of Prestressed Concrete Bridges 3.5. Determination of design conditions
3.5.1 Bridge length, bridge width, road alignment
(3) Road alignment
 Road alignment is determined by topographic features of the route etc., in accordance with the laws and regulations relevant to road geometry. In Japan, "Government Ordinance on Road Design Standards" etc. Road alignment also depends on road classification, hence importance of the route (traffic demand etc.). Road alignment might include horizontal / vertical curve, variation of crossfall / superelevation etc.

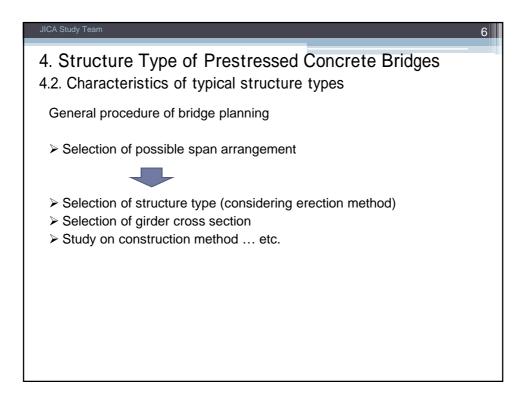


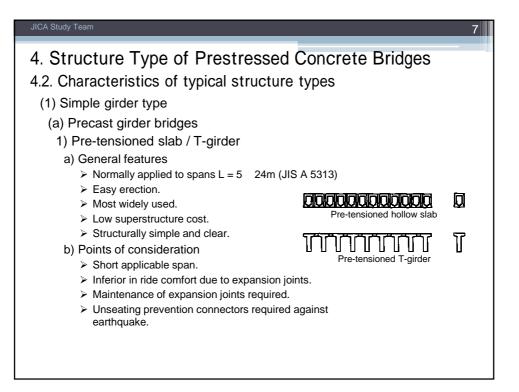

JICA Study Team 22
3. Planning of Prestressed Concrete Bridges3.5. Determination of design conditions
 3.5.2 Span length, piers, clearance under bridge (2) Piers Pier thickness is determined firstly by structural requirement. For river bridges, pier thickness shall also be determined to maintain smooth flow of water. It is desirable to choose direction and shape of cross section (oval etc.) so as not to disturb river flow. Visual appearance (including relationship with surrounding landscape) is also important.

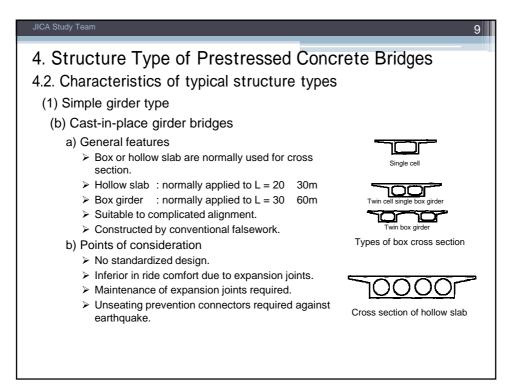



JICA Study Team				25
3. Planning of Pr 3.5. Determination			Bridges	
3.5.3 Live loads (1) Vehicular live lo 1. AASHTO HL-93				
Types of combin 1) (1)-1 + (2) 2) (1)-2 + (2) 3) (3) x 0.9 + (2)				
	1)-1: Design to(1)-2: Design to(2): Design to(3): Two des	andem	gative moment	
Multiple presence	e factor			
	Number of Loaded Lanes	Multiple Presence Factors, m		
	1 2 3 >3	1.20 1.00 0.85 0.65	-	
	Note: Nominal lane wi	dth shall be 3.0m.	-	

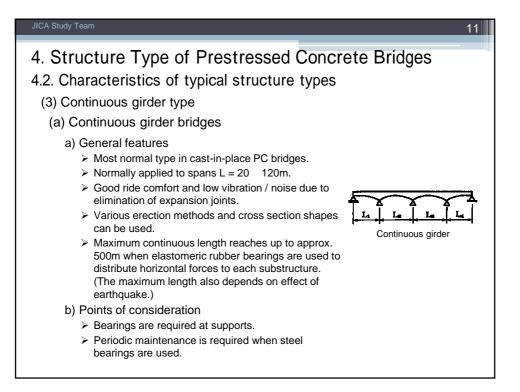


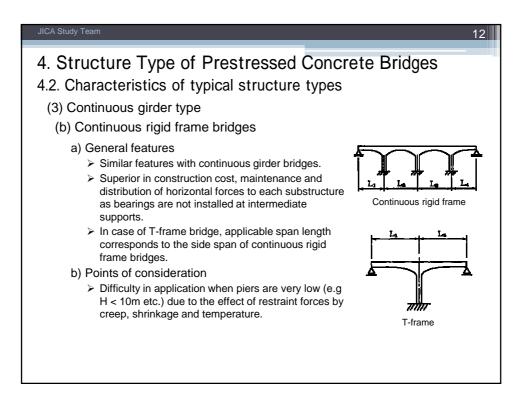


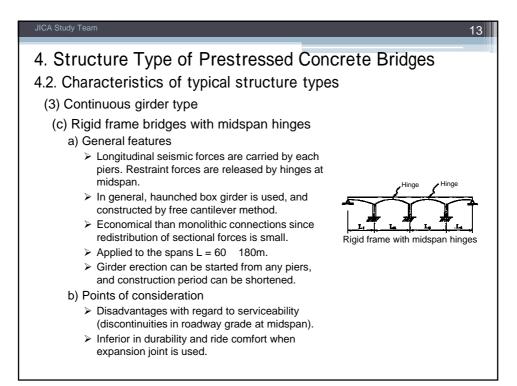




JIC	A Study Te	am				5
4.′	1. Sele	ection of S	pe of Prestressed (Structure type depth to span length h/L (ridges	
		Cross se	ction, structure type, constructio	n method etc.	h/L	
		Slab beam (IIS A5313 standard beam)		1/18 1/28	i
	PCa	Precast T-gir	der		1/16 1/20	
		Precast I-gird	der		1/14 1/18	
		Hollow slab			1/20 1/25	
		Double-T (Tr	iple-T)		1/16 1/18	
			Conventional falsework, unifor	m girder height	1/20 1/22	
			Free cantilever, uniform girder	height	1/16 1/18	
	CIP		Incremental launching, uniform	n girder height	1/16 1/18	
		Box girder	Continuous girder	At pier	1/16 1/20	1
			(haunched girder)	At span center	1/30 1/40	
			Hinged rigid frame	At pier	1/15 1/18	i
			(haunched girder)	At center	1/40 1/60	

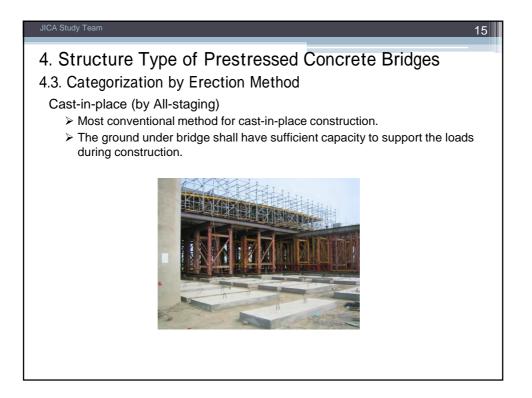


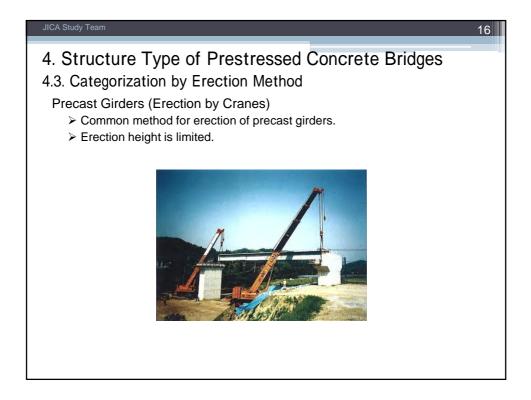

JICA Study Team 8
4. Structure Type of Prestressed Concrete Bridges
4.2. Characteristics of typical structure types
(1) Simple girder type
(a) Precast girder bridges
2) Post-tensioned T-girder
a) General features
 Normally applied to spans L = 20 45m (Japanese Standard Design of MLIT).
➤ Easy erection.
> Widely used.
Low superstructure cost. Post-tensioned T-girder
Structurally simple and clear.
Segmental construction can be applied if fabrication yard cannot be prepared.
b) Points of consideration
Short applicable span.
Inferior in ride comfort due to expansion joints.
Maintenance of expansion joints required.
 Unseating prevention connectors required against earthquake.

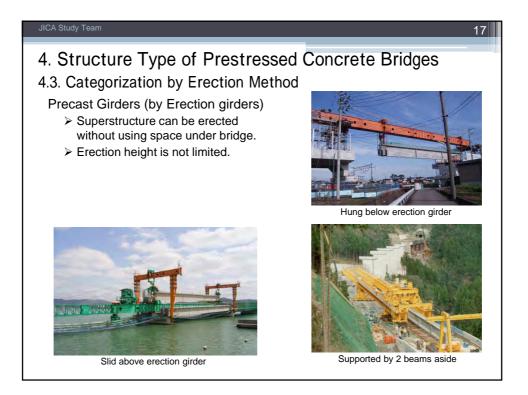


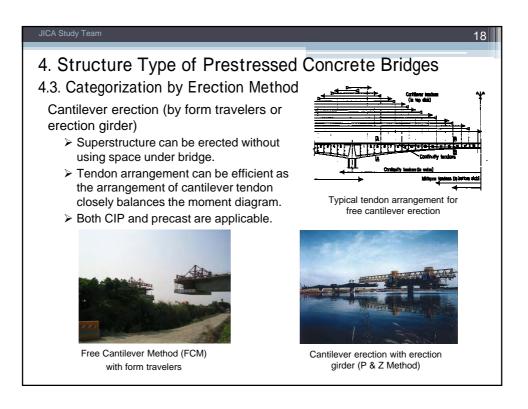
JICA Study Team	10
 4. Structure Type of Prestressed Col 4.2. Characteristics of typical structure typ (2) Spliced girder type Aimed to improve ride comfort and durability by s support and omitting expansion joints, while main girders 	DES
 a) General features Same benefits with simple girders. Applicable to all types of precast girders. Good ride comfort as well as continuous girder. Easier maintenance due to elimination of expansion joints and unseating prevention connectors. b) Points of consideration Rubber bearings shall be used at intermediate supports. Substructures shall be designed with similar consideration to continuous girders. 	Main rebars Splice rebars Precast beam CIP portion Rubber bearing Detail of Girder Splicing

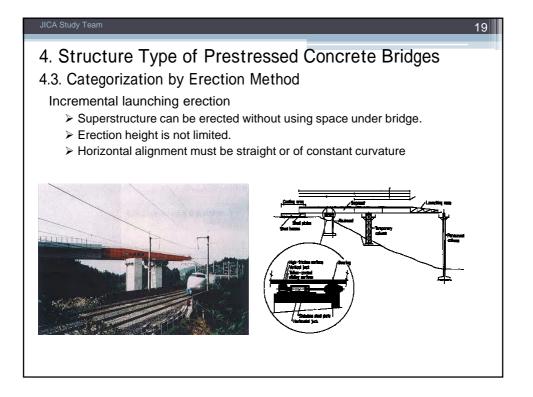
Technical Transfer on Bago River Bridge Construction Project

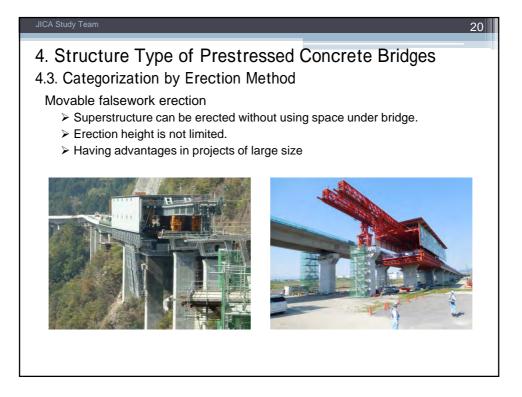


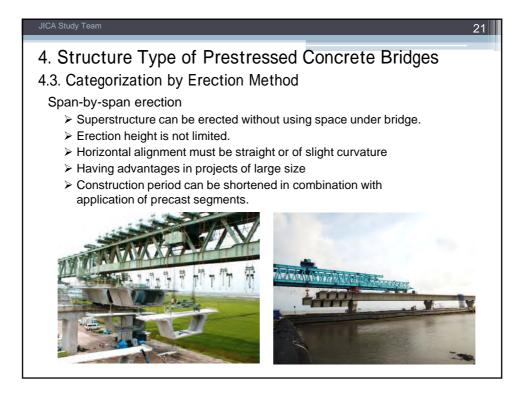


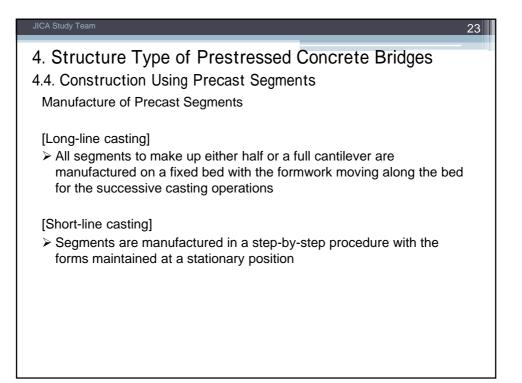


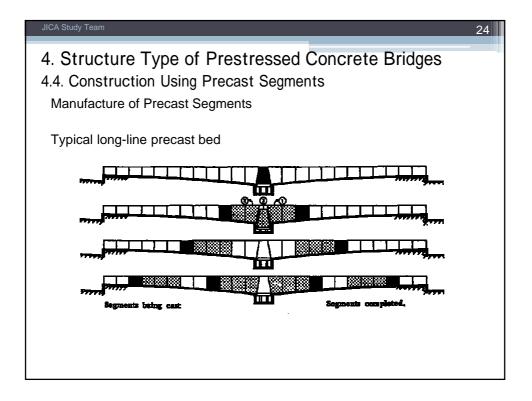

JICA Study Team																		
4. Struc	tur	e Type of	Ρ	re	st	re	SS	ed	I C	or	٦C	re	te	В	ric	lge	S	
4.3. Categ	jori	zation by E	ree	ctio	on	Me	eth	100	k									
	$\overline{\ }$				Pre	cast						Cast-i	n-Place					
		Erection method	Precas	t girder		Precast	segmen	ıt	Conver false		Mov false		Canti erec		Incren laund			
Condition				Crane erection	All-staging	Span-by-Span erection	Erection girder	Free cantilever by derrick crane	prefabricated falsework	column-type falsework	Hanger type	Support-type	Free cantilever by form traveller	Erection girder	Concentrated jacks	Distributed jacks		
		2040m																
	đţ	40-60m																
	Span length	60-80m																
	ŝ	80–100m																
		>100m																
		Variation of girder depth																
		Horizontal curve																
		Widening of main girder																
	dition	Space under girder																
	Construction condition	Rapid construction																
	ructio	Advantage for multiple spans																
	Const	Safetey under girder																
		Advantage for weather condition																
		Transportation of material & equipment w/o using under girder																
		Construction of high bridge																
		Most applicable Applicable Not applicable Careful study required for applicat	ion					-					-		-			

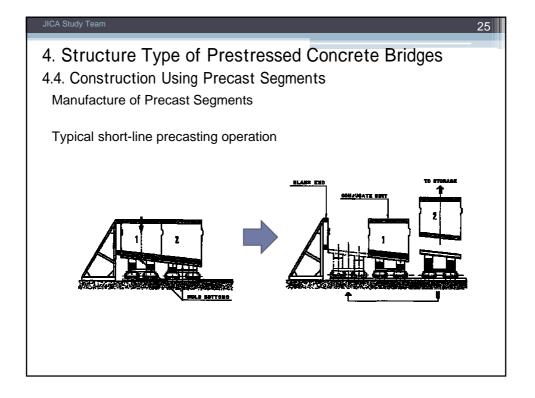

Technical Transfer on Bago River Bridge Construction Project

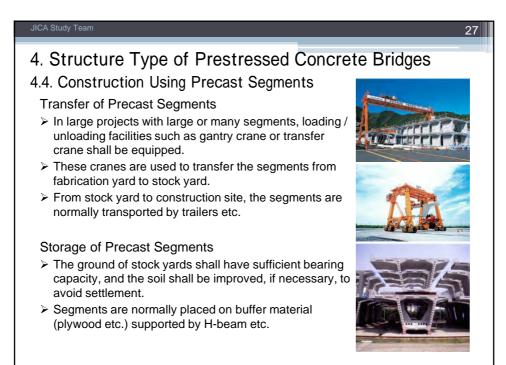


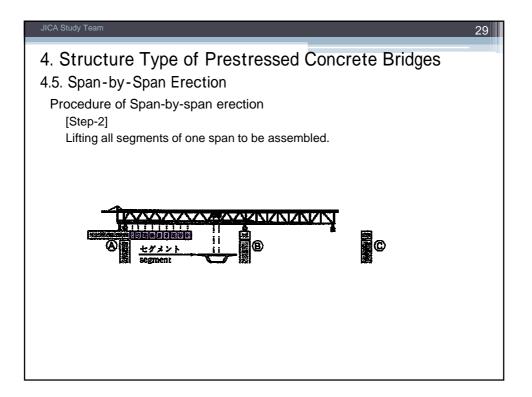


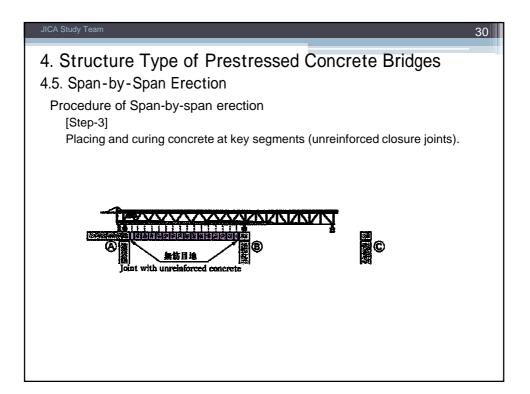


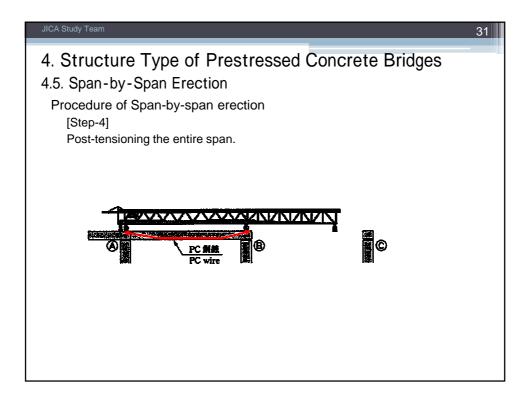


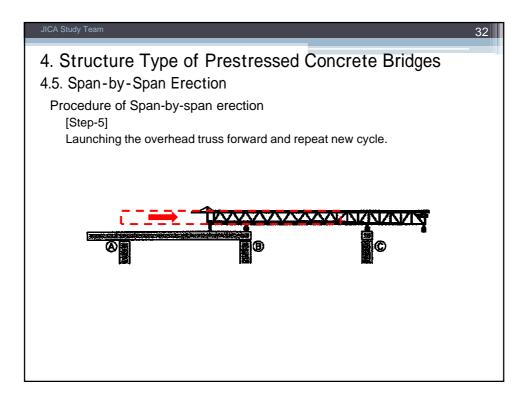


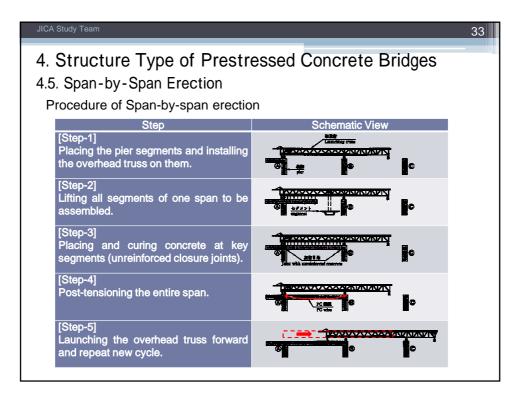

JICA Study Team 22
4. Structure Type of Prestressed Concrete Bridges
4.4. Construction Using Precast Segments
General Characteristics of Precast Segment Method
[Advantages]
Shorter construction period than cast-in-place construction due to separation of segment fabrication work and erection work
Stable quality due to concentrated control and mechanized fabrication of segments such as formworks etc.
Upskilling effect due to regular repetition of identical fabrication / erection work, and laborsaving due to mechanization
Lower loss of prestress by smaller creep / shrinkage deformation of members after erection, due to storage periods of segments after fabrication
[Disadvantages]
No longitudinal tensile stress permitted, as the reinforcements is discontinuous at the joints between segments
Normally economical only for long bridges, due to the high cost of fabrication / erection equipment

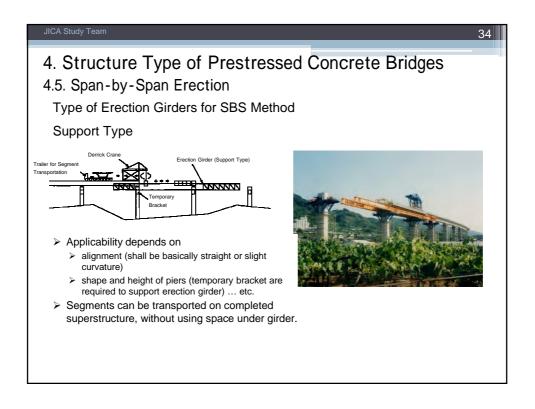


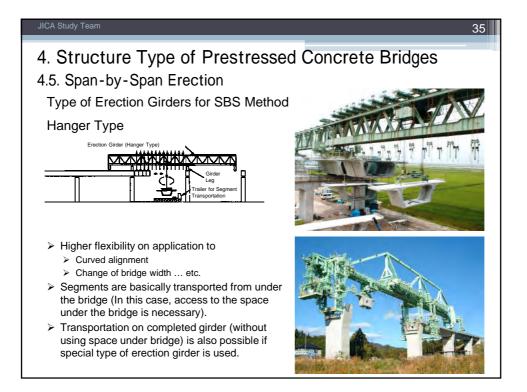


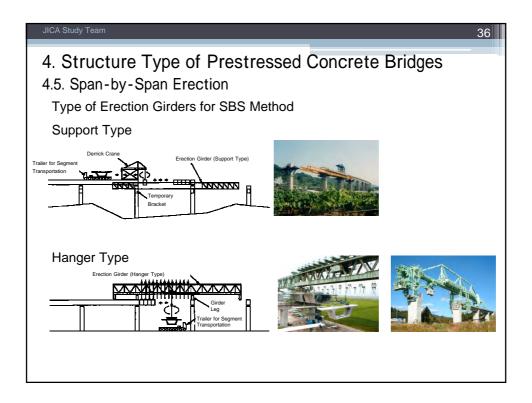

JICA Study Team 26 4. Structure Type of Prestressed Concrete Bridges 4.4. Construction Using Precast Segments Characteristics of Long-line and Short-line method			
	Long-line casting	Short-line casting	
Accommodation to complicated alignment, variety of cross section	 Easily applicable, as the bed is prepared for final shape of the girder 	 Fabrication is complicated when girder height etc. varies 	
Fabrication equipment	Simple and inexpensive equipment	 Large and expensive equipment Laborsaving is possible by mechanizing equipment 	
Fabrication cycle	Long fabrication cycle	 Many segments can be fabricated in short period due to short cycle (1 segment / day) 	
Fabrication yards	• Large yard is required due to the long fabrication bed	Smaller fabrication yard	
Suitability	Bridges with varying cross section, or small bridges with few segments	Large / long bridges with many segments of unified cross section	

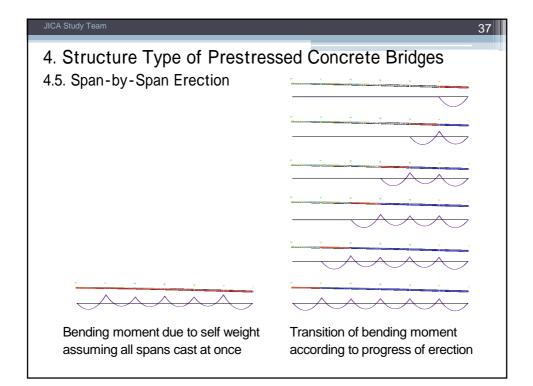


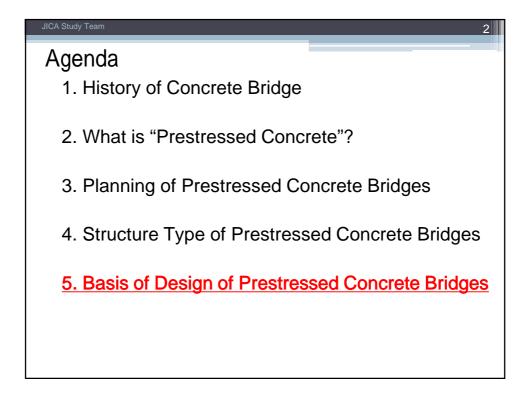


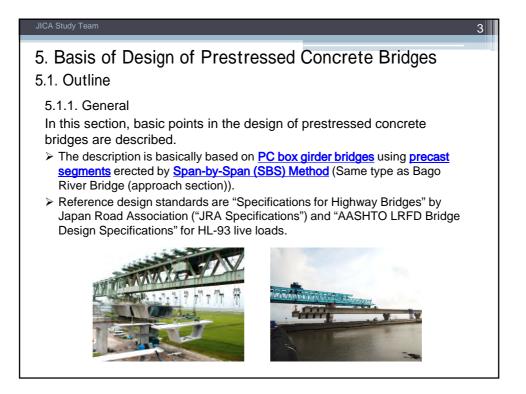


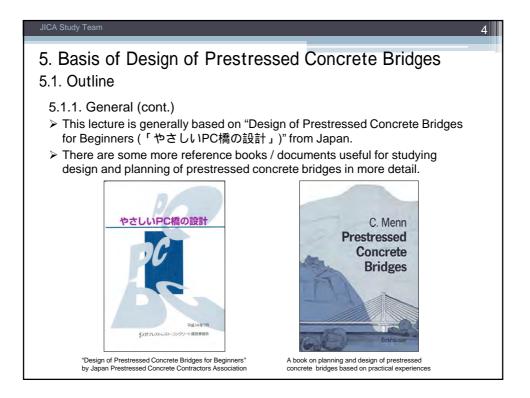


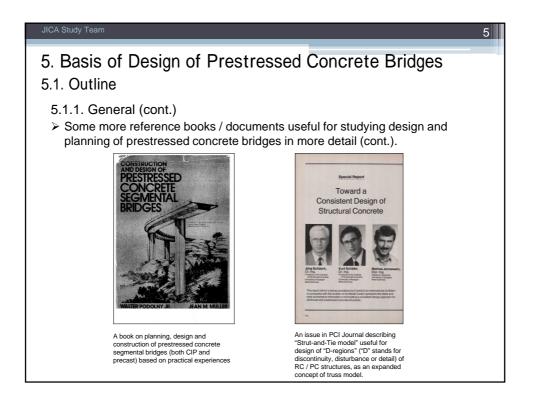


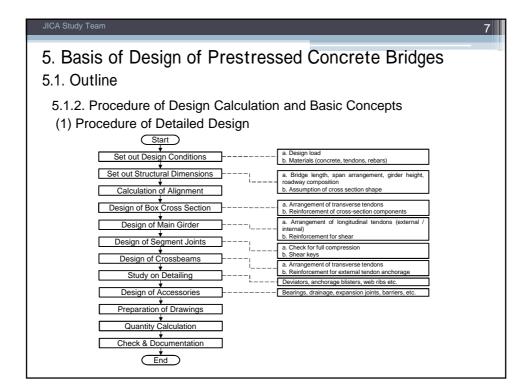


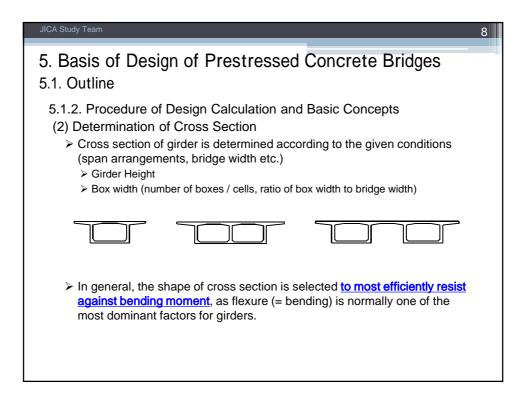


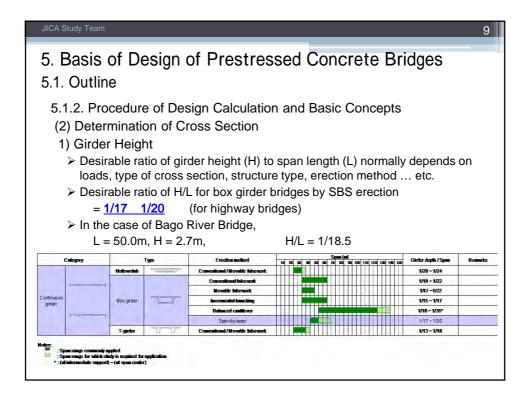


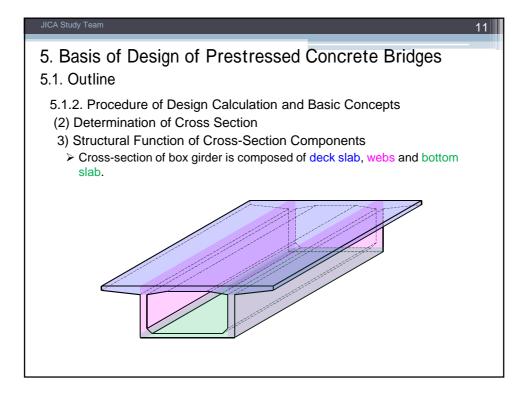


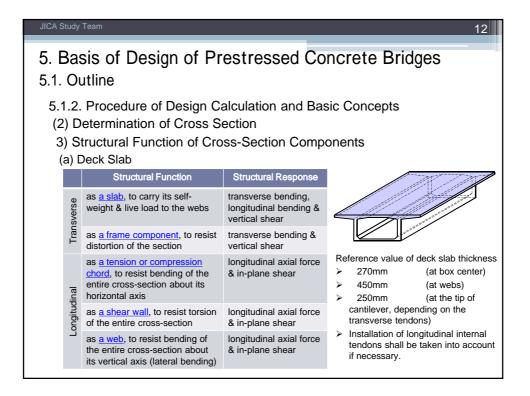

JICA Study Team 38
4. Structure Type of Prestressed Concrete Bridges
4.5. Span-by-Span Erection
Points of Consideration on Planning
[Segment Length]
In case of insufficient fabrication / stock yard for segments adjacent to construction site:
Segments must be transported via public road from factory or distant fabrication yards
 Segments length must thus be determined from the viewpoints of transportation (max. 3 m), as well as economy and structural aspects etc. (Too short segments are not reasonable.)
[Pier Segments]
For pier segments, weight reduction must be studied:
Splitting of segment, casting diaphragms in place after installation etc.
[Prestressing of Deck Slabs]
Both post-tensioning and pre-tensioning can be applied for deck slab prestressing.
Pre-tensioning method
Possible to save on-site work and advantageous for projects with many segments
On the other hand, difficulties on geometry control of segments (matching at joints between segments etc.).
Post-tensioning method
Needs more labor work than pre-tensioning method
However, geometry control of segments is easier than pre-tensioning.

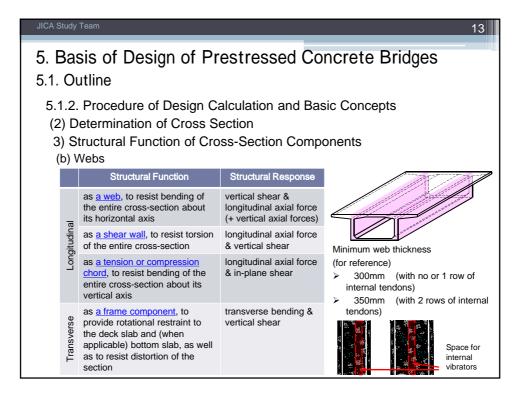


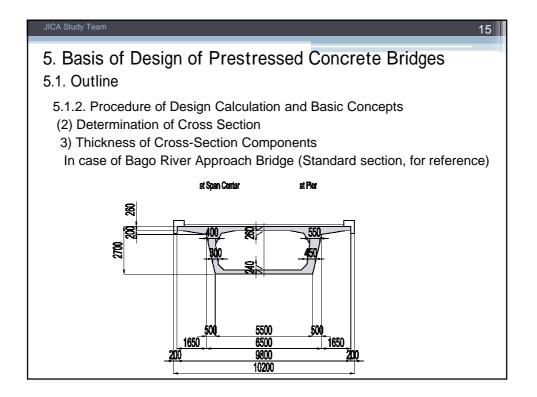


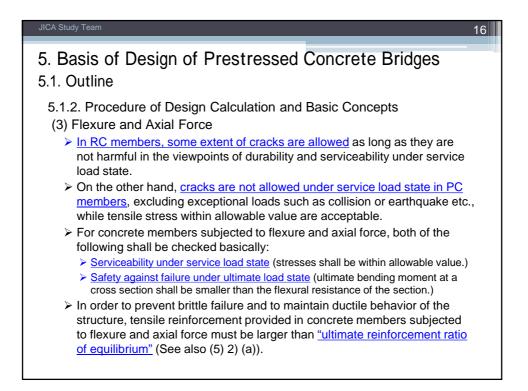


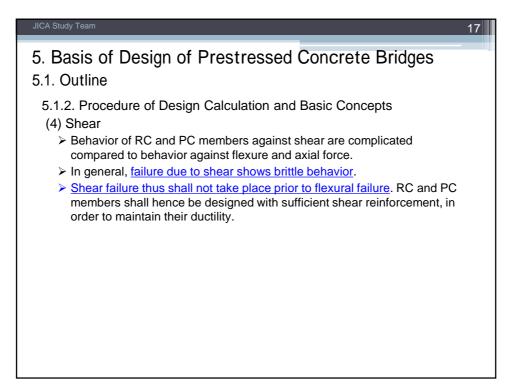

JICA Study Team 6
5. Basis of Design of Prestressed Concrete Bridges 5.1. Outline
5.1.2. Procedure of Design Calculation and Basic Concepts(1) Procedure of Detailed Design
 [Assumption of Shape/Dimension and Calculation of Sectional Forces] <u>Confirmation of design conditions</u> (structural standards, site conditions, material properties etc.).
 <u>Assumption of member shape / dimensions</u> based on the design condition. <u>Calculation of sectional forces</u> based on the above-assumed members.
[Check of Stresses under Service Loads]
JRA Specifications is based basically on <u>allowable stress method</u> .
Member elements (reinforcement, PC tendons and concrete) are <u>checked to satisfy</u> <u>specified allowable values</u> under most critical actions (bending moment, shear etc.) due to specified combinations of <u>service loads</u> .
[Check of Safety against Failure]
Member elements are also checked for <u>safety of resistance against failure</u> under most critical actions due to specified combinations of <u>ultimate loads</u> as well.

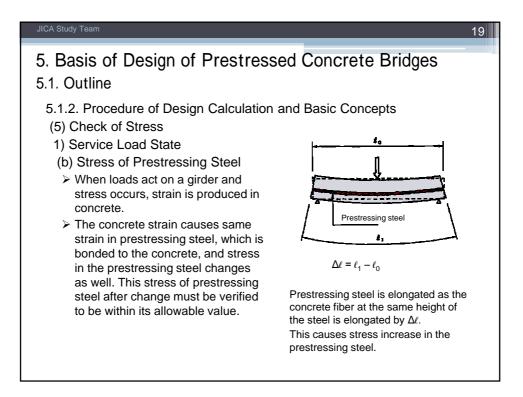


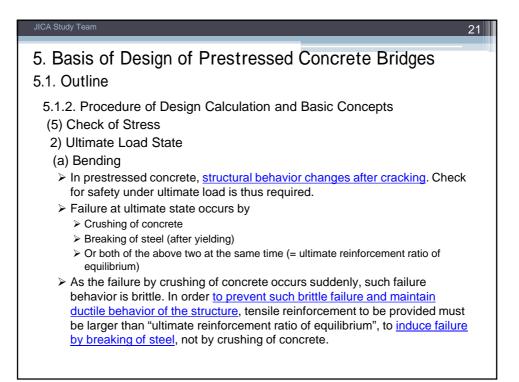


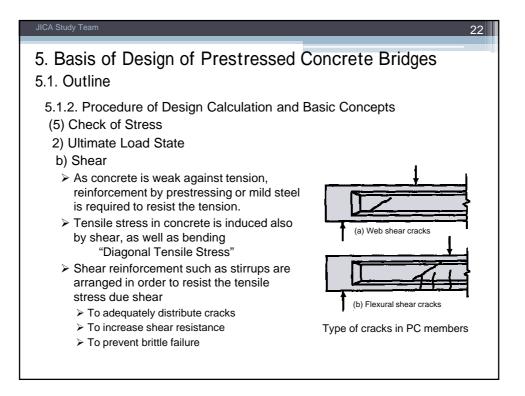

JICA Study Team					10					
5. Basis of Des 5.1. Outline	ign of Pr	estress	sed Co	ncrete Br	idges					
 5.1.2. Procedure of Design Calculation and Basic Concepts (2) Determination of Cross Section 2) Box Width > Ratio of box width B to bridge width D (= deck slab width) is determined taking into account the balance of bending moment in deck slab. > In JRA Specifications, common deck span lengths are as follows: 										
	Category	Structure	Span leng	th						
	Simple and	RC	0 L 4.							
	Continuous Slab	PC	0 L 6.	0						
	Cantilever Slab	RC PC	0 L 1. 0 L 3.	-						
➤ Desirable ratio	of B/D is as	follows:								
Type of Cross Sect	ion Deck Structure	Desk Slab V	Vidth: D [m]	Ratio of Box Width to Deck Slab Width: B / D	Remarks					
	RC			055 ~ 0.65						
1 cell box	PC			0.50 ~ 0.60						
2 cells box	RC			0.64 ~ 0.72						
	PC			0.64 ~ 0.72						

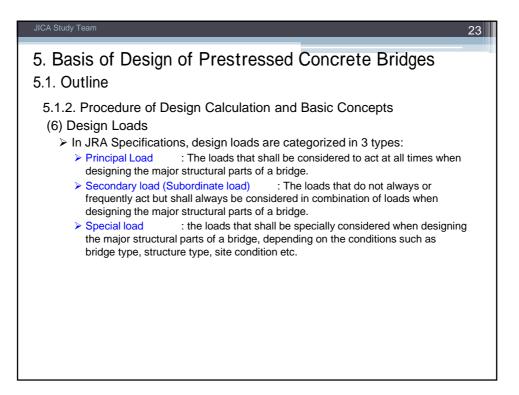


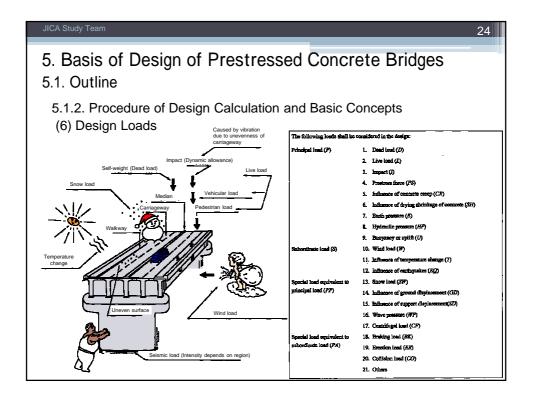


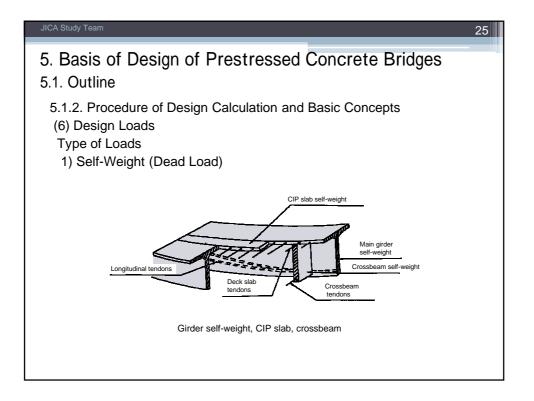

JICA S	tudy	Team		14					
	5. Basis of Design of Prestressed Concrete Bridges 5.1. Outline								
 5.1.2. Procedure of Design Calculation and Basic Concepts (2) Determination of Cross Section 3) Structural Function of Cross-Section Components (c) Bottom Slab 									
		Structural Function	Structural response						
1	linal Transverse	as <u>a slab</u> , to carry its self- weight & any superimposed loads to the webs	primarily transverse bending, as well as vertical shear						
		as <u>a frame component</u> , to resist distortion of the section	transverse bending & vertical shear	Minimum bottom slab thickness					
		linal	<u>ch</u> er	as <u>a tension or compression</u> <u>chord</u> , to resist bending of the entire cross-section about its horizontal axis	longitudinal axial force & in-plane shear	 > 200mm (without internal tendons) > 250mm (with internal tendons) > Thickness of bottom slabs at intermediate supports are 			
	-ongitudinal	as <u>a shear wall</u> , to resist torsion of the entire cross-section	longitudinal axial force & in-plane shear	determined considering compressive stress.					
	Ĵ	as <u>a web</u> , to resist bending of the entire cross-section about its vertical axis (lateral bending)	longitudinal axial force & in-plane shear	When tendons are anchored at bottom slab, thickness shall be carefully studied.					

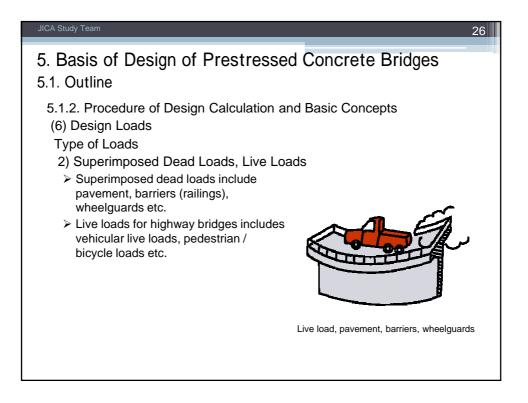


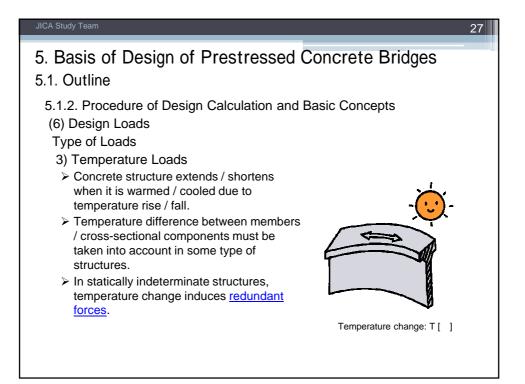


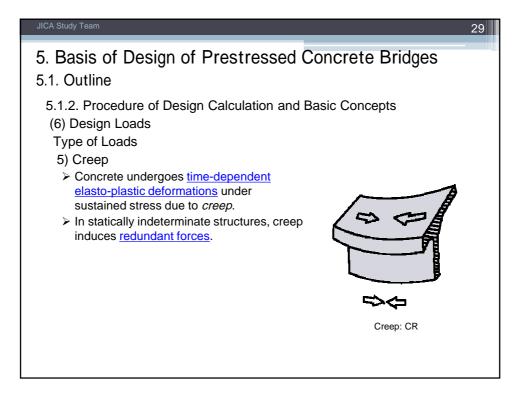

JICA Study Team 18
5. Basis of Design of Prestressed Concrete Bridges 5.1. Outline
 5.1.2. Procedure of Design Calculation and Basic Concepts (5) Check of Stress 1) Service Load State (a) Allowable Stress In the design according to JRA Specifications, stresses are checked for concrete, reinforcing steel and prestressing steel. In prestressed concrete bridges, high strength materials are used for concrete and steel, in order to fully utilize the capacity of prestressing steel.

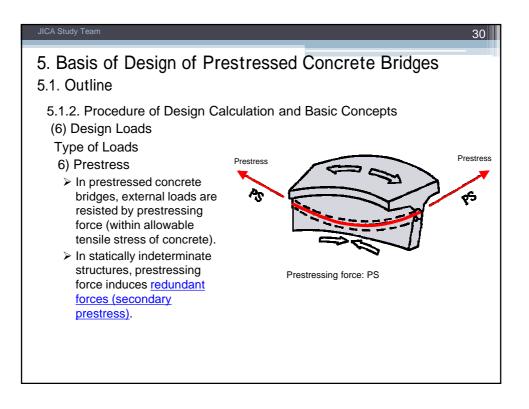


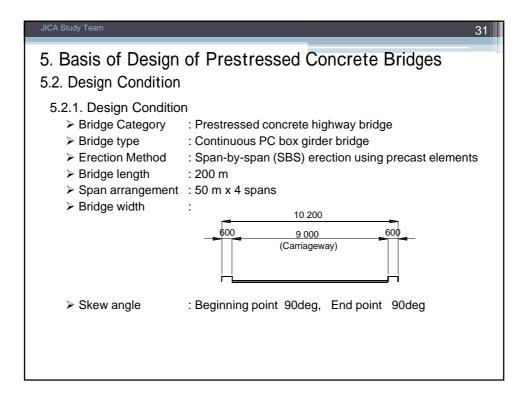

JICA Study Team 20
5. Basis of Design of Prestressed Concrete Bridges 5.1. Outline
 5.1.2. Procedure of Design Calculation and Basic Concepts (5) Check of Stress 1) Service Load State (c) Reinforcement > In PC box girders, amount of prestressing force is determined according to the tensile stress in the girder induced by loads, and resultant stress of girder cross sections are verified.
 Reinforcement for detailing consideration, such as minimum reinforcement, is specified which is not determined by calculation. Minimum reinforcement is specified aiming to: control shrinkage / thermal cracks within harmless range prevent sudden failure of concrete members by actions larger than design assumptions.

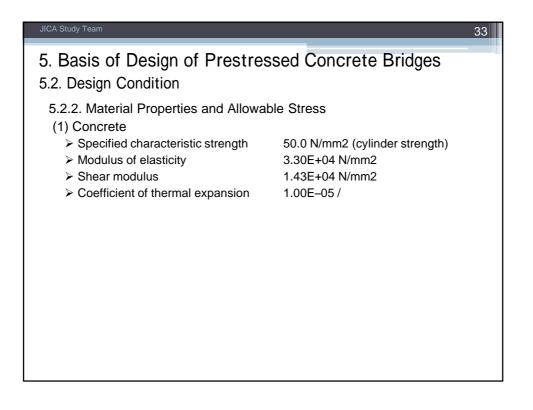


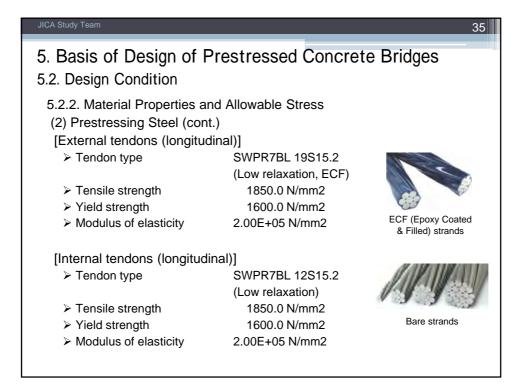


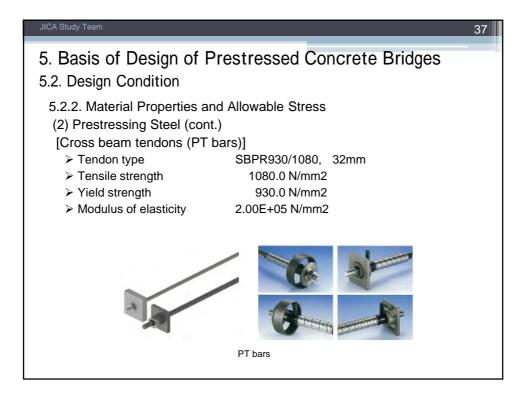




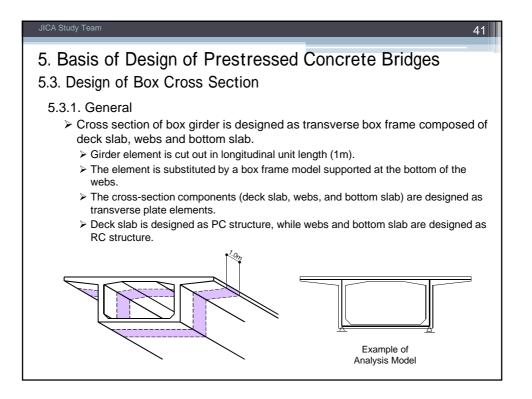


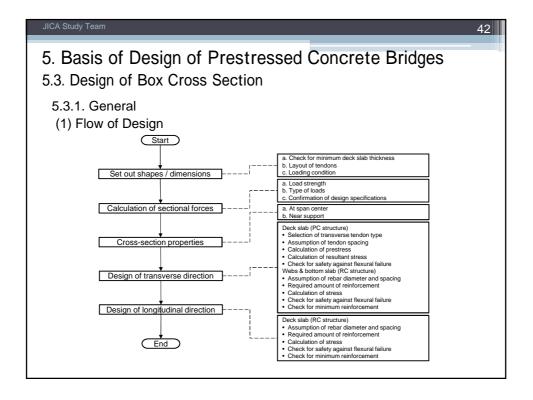

JICA Study Team 28
5. Basis of Design of Prestressed Concrete Bridges 5.1. Outline
 5.1.2. Procedure of Design Calculation and Basic Concepts (6) Design Loads Type of Loads 4) Shrinkage Shrinkage in concrete is induced by Decrease in volume by <u>chemical reaction</u> <u>between water and cement (hydration)</u>. The amount of decrease by the hydration is approximately 10%. Drying of water in excess of the amount used for above-mentioned hydration. The amount of decrease by drying depends on the amount of excess water etc. Shrinkage is a <u>time-dependent long-term</u> <u>effect</u> as well as creep. In statically indeterminate structures, shrinkage induces <u>redundant forces</u>.

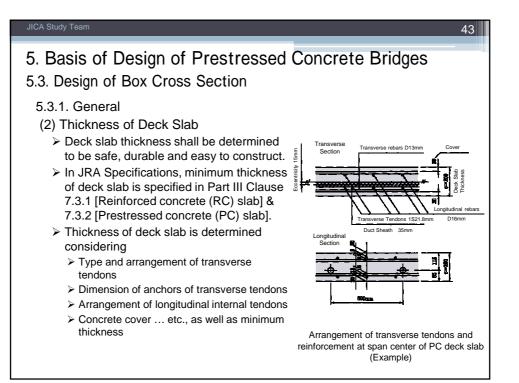



JICA Study Team	32
5. Basis of Design 5.2. Design Condition	of Prestressed Concrete Bridges
5.2.1. Design Condition	on
Design Live Loads	: AASHTO HL-93,
	Special Vehicular load (75t x 1 concentrated load)
	(35t x 2 concentrated loads)
Design Standards	: "Specifications for Highway Bridges", JRA
	"AASHTO LRFD Design Specifications"
	(for HL-93 load)
Impact factor	: i = 10 / (25 + ℓ) for main girder
	$i = 20 / (50 + \ell)$ for deck slab
	(where, ℓ = span length)
Horizontal alignme	ent: Straight
Crossfall	: Level (simplified for example)
Profile	: Level (simplified for example)
Load combination	under ultimate loads:
1) 1.3 x [Dead lo	oads] + 2.5 x [Live loads + Impact]
2) 1.0 x [Dead lo	oads] + 2.5 x [Live loads + Impact]
3) 1.7 x [Dead lo	pads + Live loads + Impact]

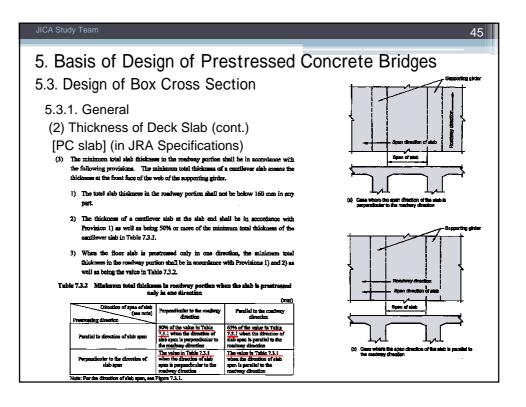
JICA	Study Team												34
	5. Basis of Design of Prestressed Concrete Bridges 5.2. Design Condition												
	5.2.2. Material Properties and Allowable Stress(1) Concrete (cont.)												
Tab	de 3.2.2 Allowabl	e comprensivo strem (N/mm concrete structure	")forp	n al Ural	başı		Table 3.2.5 A	llew	able diagonal tenalls stress (IVar concrets structure	m ²) ல்	r prantn	been	
Silven type		tign standard strength of outprate	30	40	50	60	Stress type		Design standard strongth of concrete	30	40	30	60
	stress	1) Rectangular section	15.0	19.0	21.0	23.0	Principal loads other than live load and	[1]	Case where sizes force alone or	6.1	1.0	12	13
immedia Sfin nentreu		2) T-shaped or box-shaped methon	14.0	18.0	20.0	22.0			considered	0.0	·~	14	L
pression	ang 3) Axial com	AND	11,0	14,5	16.0	17.0	banpeact	2)	Case: where both shear fixed and toraicaal moment are to be considered.	44	1.3	1.5	1.6
	Bending	4) Rectangular section	12,0	15.0	17.0	19.0	Combination of londs	n	Case where shear force alone or				
Other	oomprossivo strace	5) T-shaped or box-shaped section	11,0	14.0	16.0	(8.0	not considering, collision ford or the		torzional morrent alone is to be equilated	1.7	2.0	2.3	2,5
	6) Axial com	promitvo strass	8.5	11.0	13.5	15.0	officia of outbouckes	4)	Case where both shear force and territorial moment are to be considered.	2,2	25	2.8	3.0
able 3.2.3 	De	is stress (N/coun ¹) for proster ign standard strength of concrete	aaad c 30	increio 40	structi 50	60							
	1) Immediately after	prestreasing	1.2	1.3	1.8	2.0							
Bending	2) Principal loads of	ter than live load and impact	0	0	۵	a							
teautite	Principal loads and	3) Floor stats	0	D	<u>0</u>	0							
strag	special loads corresponding to "original load"	4) Segment joint of precast segment bridges	0	0	0	0							
		5) Other cases.	1.2	15	1.8	2.0							
	toratile stress		0	0	0	0							

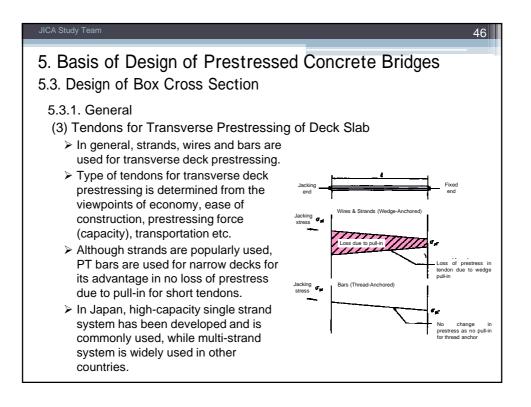

JICA Study Team	36
5. Basis of Design of F 5.2. Design Condition	Prestressed Concrete Bridges
5.2.2. Material Properties a (2) Prestressing Steel (con [Deck slab tendons (trans)	t.)
Tendon type	SWPR7BL 3S12.7 (Low relaxation)
Tensile strength	1850.0 N/mm2
Yield strength	1600.0 N/mm2
Modulus of elasticity	2.00E+05 N/mm2
[Cross beam tendons (stra	ands)]
Tendon type	SWPR7BL 4S15.2 (Low relaxation)
Tensile strength	1850.0 N/mm2
Yield strength	1600.0 N/mm2
Modulus of elasticity	2.00E+05 N/mm2

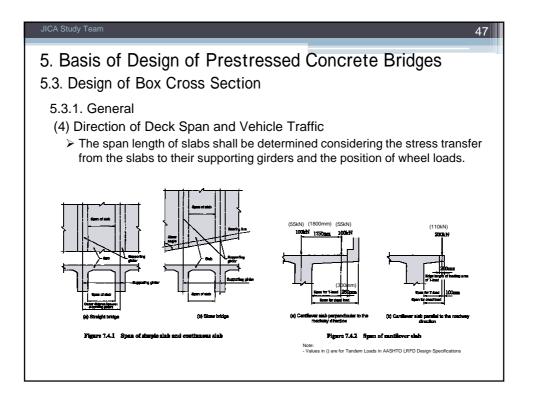


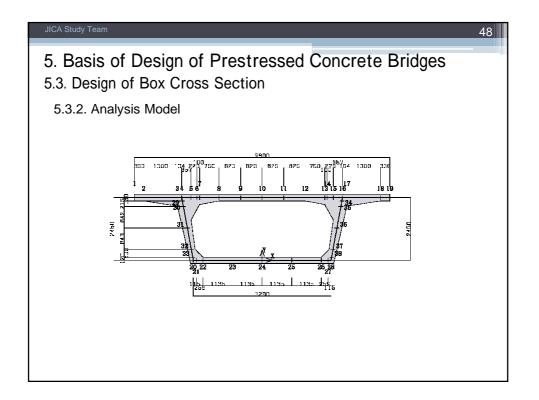

	ıdy Team			38						
	asis of Design of Design Condition	f Prestressed C	oncrete Bridges							
(2)	 following states, based During prestressing Immediately after prest Under design load 	ont.) allowable stress of tend d on specified tensile st	dons are specified at the rength and yield strength.							
	Stress state	Allowable tensile stress	Remarks							
	i) During prestressing	The value of 0.80 σ_{pu} or 0.90 σ_{pp} , whichever is smaller	are: Tensile strength (N/mm ²) of							
	2) Immediately after prestressing	The value of 0.70 $\sigma_{\mu\nu}$ or 0.85 $\sigma_{\mu\mu}$ whichever is smaller	PC tendon σ_{pp} : Yield point (N/mm ²) of PC							
	3) Under design load The value of 0.60 σ_{pv} or 0.75 σ_{pv} tend point (which your C tendon) whichever is smaller									

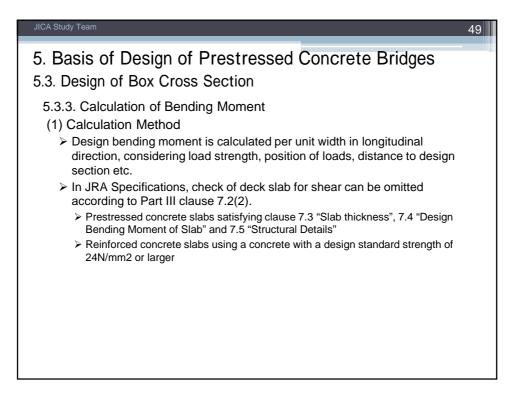
JICA Study Team									39						
5. Basis of Design of Prestressed Concrete Bridges 5.2. Design Condition															
5.2.2. Materia (2) Prestressi	•	el (co	ont	.)		tress .m ²) of PC tendo:	n								
	PC tendos typ	·	Allo	wable tenaile stran	During prestreasing	Immediately after presidencing	Under design kend								
				5 mm	1260	1120	960								
		SWPRIAL SWPDIN		SWPRIAL SWPDIN				SWPRIAL SWPDIN		7	1170	1050	900		
												6 mm	1125	1015	J 70
	Steel wire	dre		941012								041010			
								S maa	1350	1190	1020				
		SWPRIEN SWPRIEL		7 mm	1250	1120	960								
				9 man	1215	1085	930								
		SWPR2N SWPR2L		2.9 mm (2-strand wire)	1530	1365	1170								
		SWPR7AN	7-staa	d wira)	1305	1190	1020								
	Stuel steamd	SWPR7EN (SWPR7EL (1440	1295	1110								
				17.8 mm	1440	1295	1110								
		SWPR19N		19.3 mm	1440	1295	1110								
		SWPR.19L (19-strand w	tra).	20.3 mm	1440	1260	1080								
				2].8 mm	1440	1260	1080								
				28,6 mm	1350	1250	1080								
	Sapel bar	Round ber Type A	2	\$BPR745/1030	706	667	58B								
		Round ber	1	58FR930/1040	837	756	64 E								
		Тура В	2	SBFR930/1180	837	790	<i>69</i> 7								

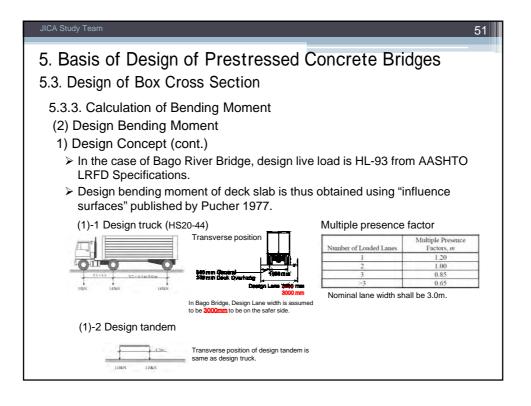

JICA Study Team								40	
5. Basis of Design of Prestressed Concrete Bridges 5.2. Design Condition									
 5.2.2. Material Properties and Allowable Stress (3) Reinforcing Steel > Reinforcement type (class) SD345 									
➤ Yield stre	➢ Yield strength 345.0 N/mm2								
> Modulus	of	elasticity	2.00E+05 N	/mm2	2				
		Table 3.3.1 Allow	able stress (N/mm²) of	reinforces	ocot				
	Reinforcement type				SD295A SD295B	SD345]		
		1) Principal loads other then five load		80	100	100			
	Teculie stree	2) Reference value of allowable stress to be used when collision	General members	140	180	180	_		
		load or the effects of earthquakes are not considered in the	Floor slab and slab bridges with a span of 10 rg or less	140	140	140			
		 Reference value of allowable stream load or the effects of surfaquakes an combination of loads 		140	180	200			
		 Reference value of allowable stress calculating the lap joint length or by reinforcement 		140	180	200			
1	5)	Compressive stress			140	200			

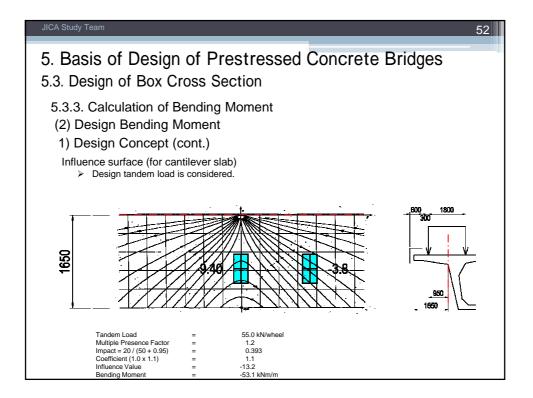


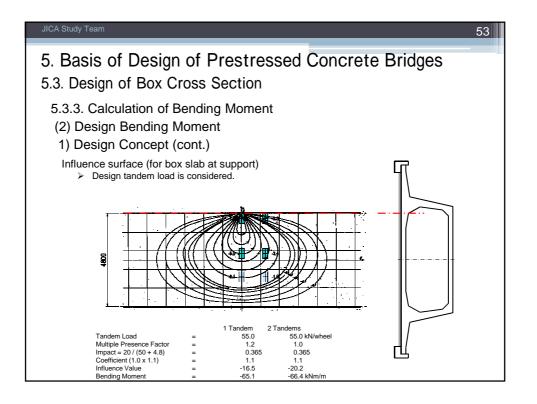


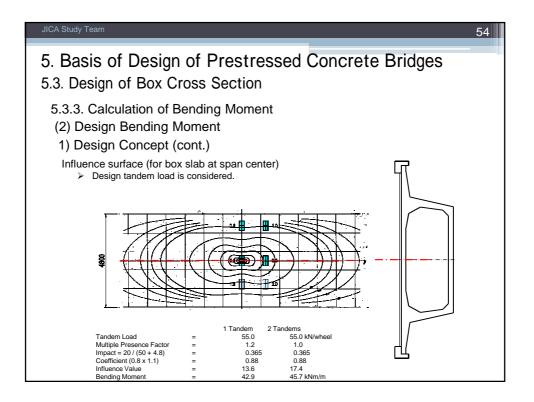


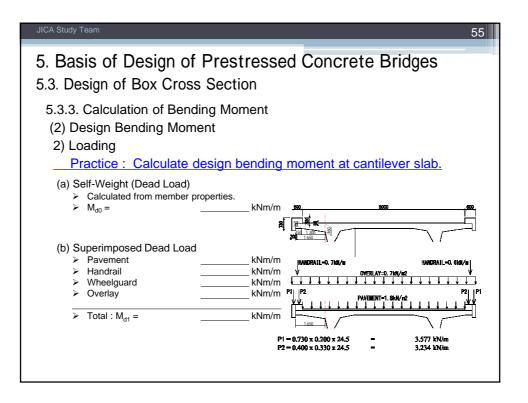

JICA Study Team				44			
5. Basis of Design of Prestressed Concrete Bridges							
 5.3.1. General (2) Thickness of Deck Slab (cont.) [RC slab] (in JRA Specifications) (3) The minimum total thickness of a slab in the roadway shall be 160 mm or the value shown in Table 7.3.1, whichever is greater. The minimum total thickness of a camilever alab in Table 7.3.1 is referred to as the thickness at the front face of the supporting girder web. 							
However, when the traffi desirable to design with thickness stipulated in Ta Table 7.3.1 Min	Asymptotic states						
Direction Sinds type	Direction of span of slab (see note) Sind type			- Reactivey direction			
Simple	Simple sisb			〕 ┼──┶┾╍ ╱ <u>┷┼</u> ┶──┼ │			
Continuous	30/+110	50 / + 130	Span of slab				
Cantilever slab							
where 1: Space length Note: For the span direc	 (3) Gause where the span direction of the slab is parallel to the nonline direction of the slab is parallel to the nonline direction of deck slab 						

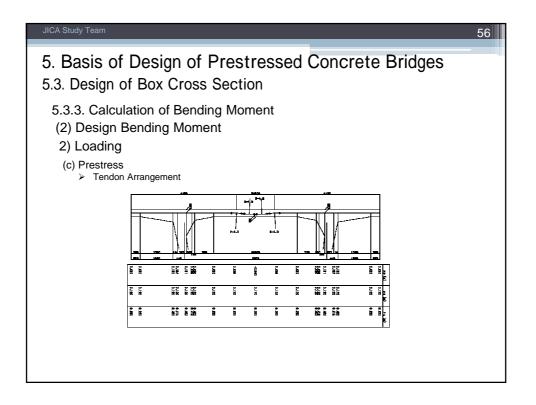


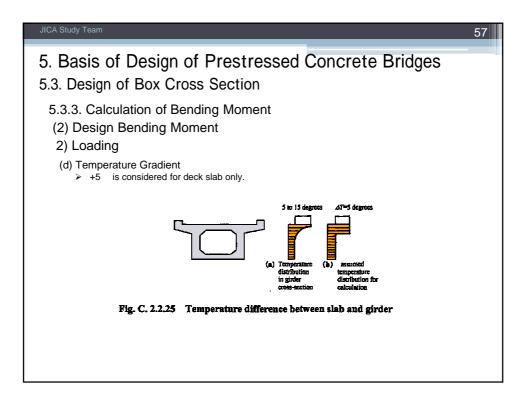


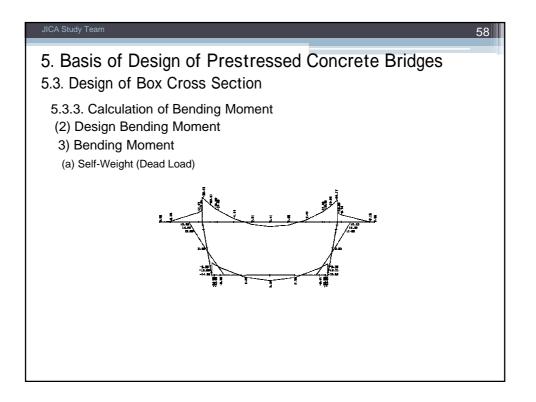


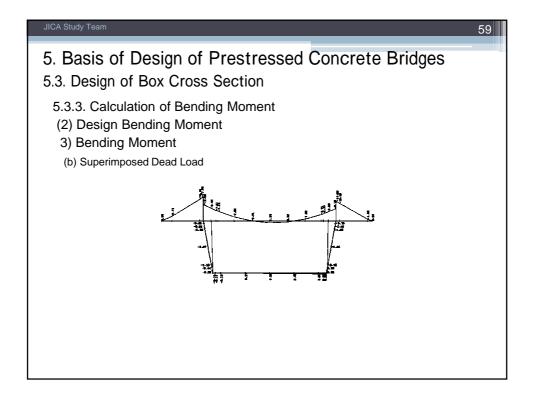


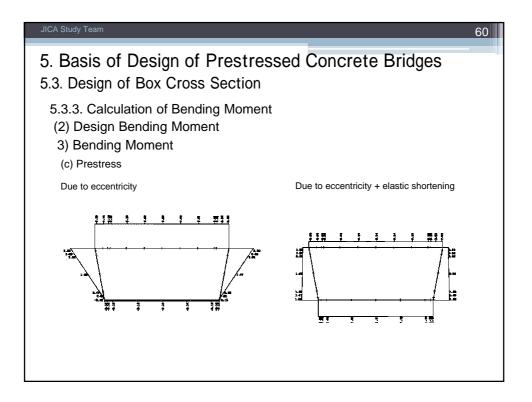

JIC	A Study ⊺	Гeam						50	
5. Basis of Design of Prestressed Concrete Bridges									
5.3. Design of Box Cross Section									
5.3.3. Calculation of Bending Moment									
(2) Design Bending Moment									
1) Design Concept									
			•			0		ig moment for deck slab due to live	
	lo	bad	(I-load) i	s defi	ned a	s the f	unctio	ons of deck span length.	
	Table 7.4.		ign beading word			n) of sink	•	Table 7.4.2 Increase coefficient of bending moment parallel to the span of a simple alab	
			due to T-loade (in				(kN·m/m)	and continuous stab when the direction of the stab span is perpendicular to the readway direction	
State types	Bending	Countr-	Direction of historyna (anomaly) Direction of burgles	. dire	ta incominany alian	Parajiaj to I dira		Śpanikogiń / (m.) / ≦ 25 25	
	moneal type	ection		Parallel to span	Popentinalar Iospan	Peopliei to spen	Perpendicular Io spen	Increase exertilizioni 1.0 1.0 + (1-2.5)/12 1.125 + (1-4.0)/26	
Shaple data	Spec beating, comment	RC PC	01/14 01/16	+ (0.12 J + 0.17} P	+ (0.107 + 0.04) P	+ (0.23) + 0.05) P	+(0.06 / +0.06) /	Table 7.4.3 Increase coefficient of leading moment perallel to the span of a contilever	
Continuous	Spen baseing, mennent	RC PC	05/54 05/54	+ (199% of Simple sist)	+ (10% of Stapic sist)	+ (\$8% of Simple slab)	+ (30% of Stanpic stale)	sinb when the direction of the sinb span is perpendicular to the readway direction	
	Support Senaling	RC PC	45/54	- (0.197 + 0.1251 /	-	+ (80% of Sizesia state)		[Spearliangeth / (po) / ≤ 1.5 1.5 < / ≤ 3.0	
	Support bending	RC	05/50	-P-/		-(0,717 +0.220,7	-	Increase case?flotent 1.0 1.0 + (/-1.5)/29	
		ĸ	05/515	1.30/+8.25					
Canillana dab	Bial banding	RC	13 538</td <td>-0,22) #</td> <td> <u>-</u></td> <td></td> <td></td> <th></th>	-0,22) #	<u>-</u>				
	Drating, more state mount capt	PC	0 \$ / \$ 3.0	-	+{8L13 / +0.13) #	-	+ (4L14 / +0.07) P		
RC: Refutforend ensures slab PC: Provinces6 concrets slab (: Statu pana eguintar T-local explanation 1.6.Section 7.4.3 (m)									
P: Courseided load of T-load above in Section 2.2.2 of the Volume of Commune (100 kH) (Note) For the direction of the slab span, zao Figure 7.3.1.									

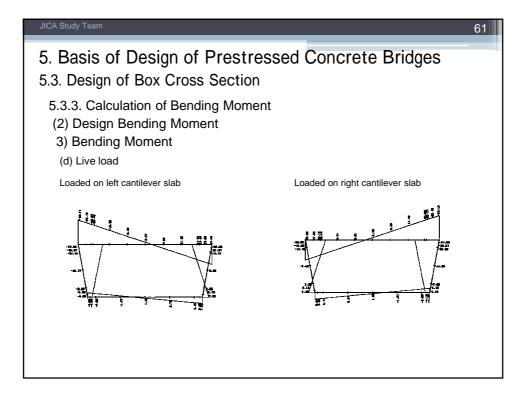


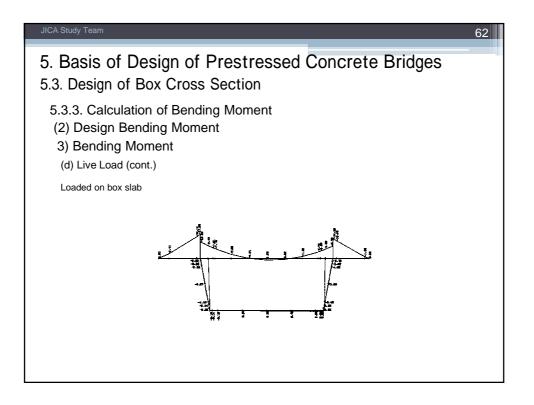


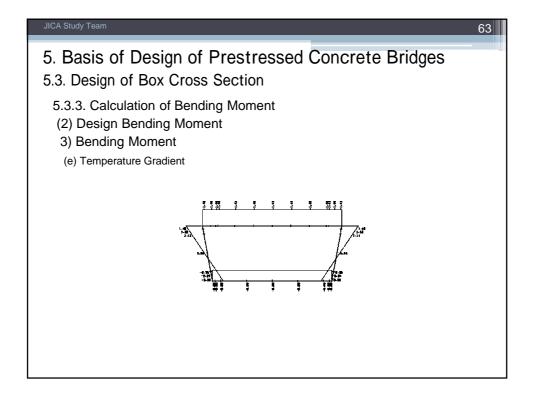


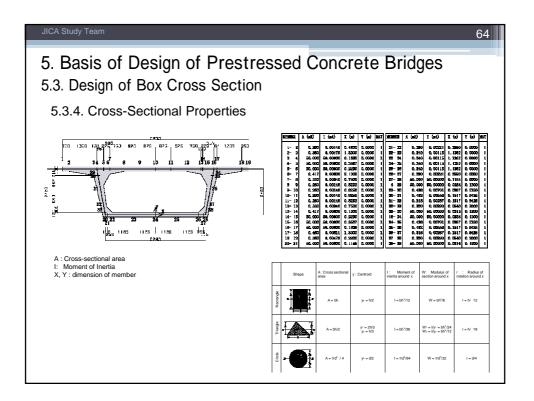


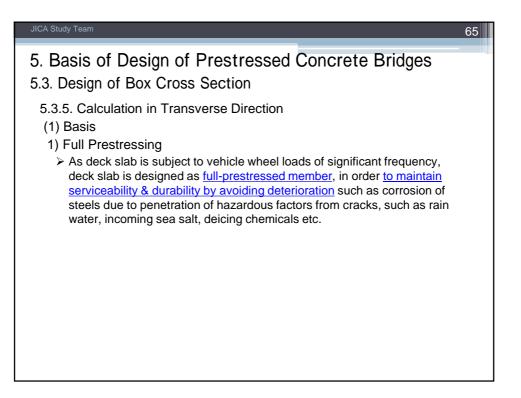


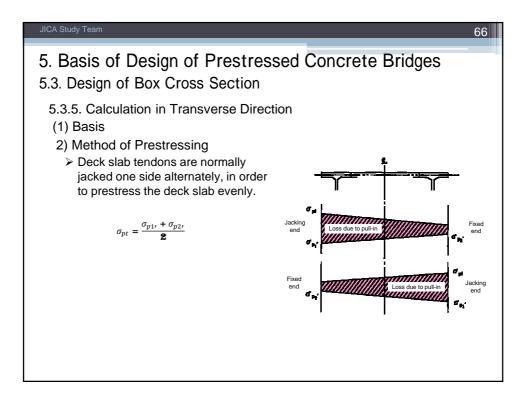


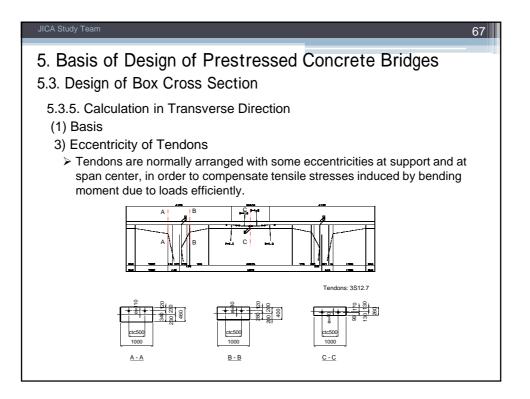


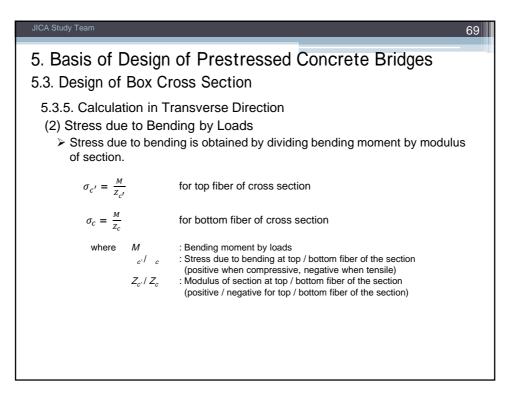


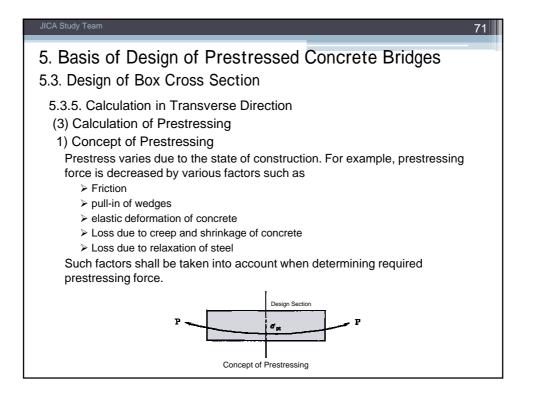


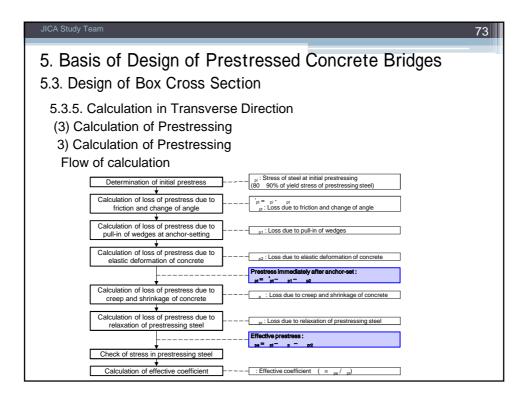


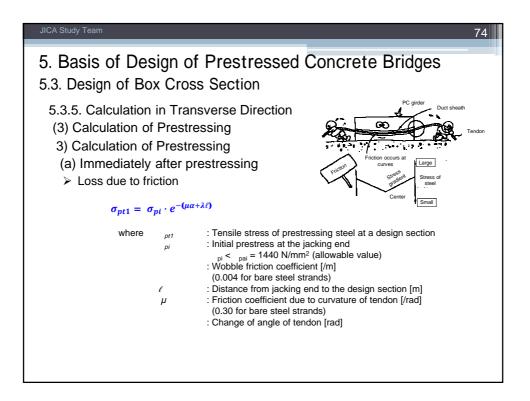


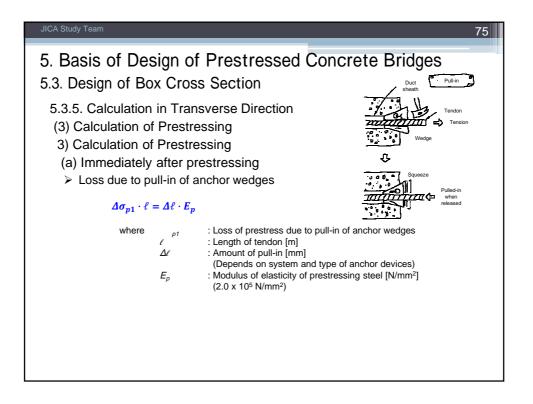


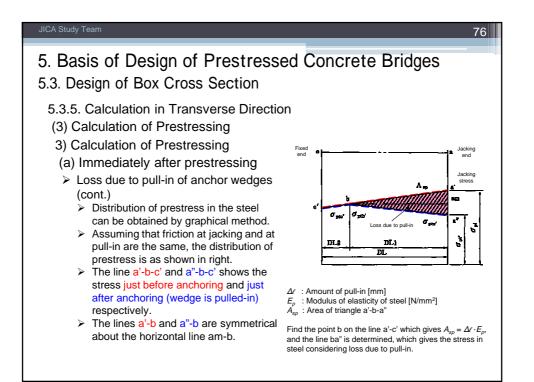




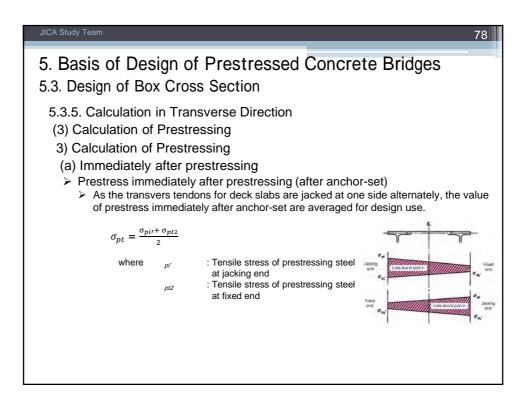

JICA Study Team	68
5. Basis of Design of Prestressed Concrete Bridges 5.3. Design of Box Cross Section	
 5.3.5. Calculation in Transverse Direction (1) Basis 4) Points of Consideration on Tendon Arrangement > The followings shall be taken into account in the determination of tendon arrangement: > The deck slab shall be evenly prestressed. > Size of anchor devices and distribution width of prestress shall be considered. > Prestress at each section shall not be excessively large nor small. 	

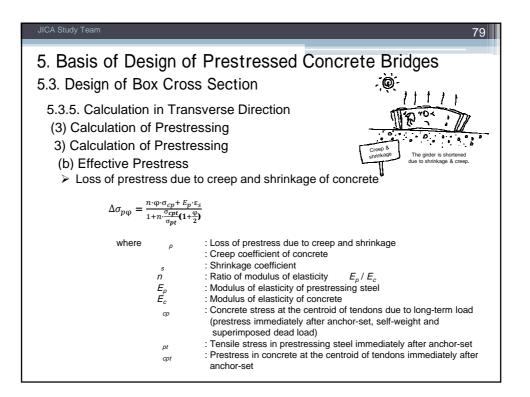


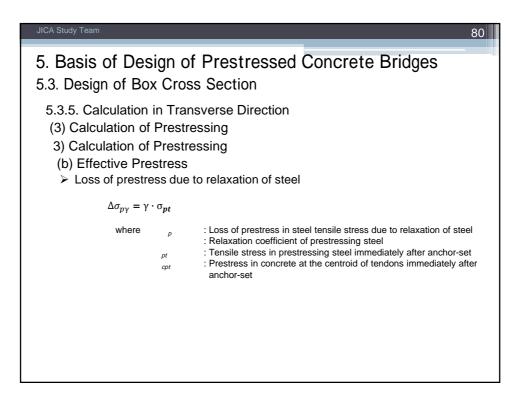

JICA Study Team		70
5. Basis of Design 5.3. Design of Box	In of Prestressed Concrete Bri Cross Section	dges
(2) Stress due to B	Transverse Direction ending by Loads ate stress due to bending by loads.	
	Service loads Max. + Temperature gradient Min Tiress due to load	
	Section modulus Z = I / yc m ³ /m	
	Immediately after anchor set bottom	
	Permanent load top bottom	
	Max. top bottom	
	Service loads Max top	
	+ bottom Temperature Min. top gradient bottom	

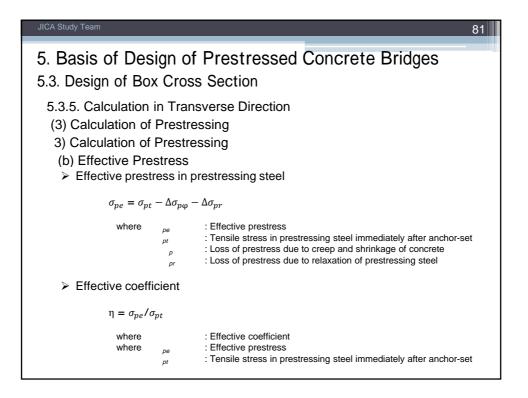


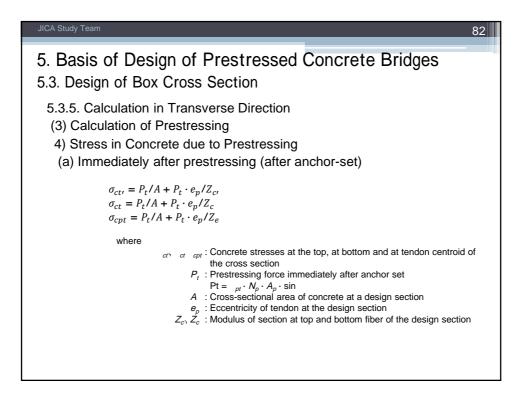
JICA Study Team 72
5. Basis of Design of Prestressed Concrete Bridges 5.3. Design of Box Cross Section
5.3.5. Calculation in Transverse Direction(3) Calculation of Prestressing
2) Loss of Prestress 1. Loss due to friction
Friction in the jack and anchorage, and friction in the duct cause loss of prestress from jacking point to a design section.
 Loss due to pull-in of wedges At the setting of anchorages, tendons are pulled in with wedges by some extent. This causes the reduction of prestressing force.
 Loss due to elastic deformation of concrete Concrete is shortened by prestressing force. When multiple tendons are used, the prestress of formerly jacked tendons is decreased due to the elastic shortening of the concrete by newly jacked tendons.
 4. Loss due to creep and shrinkage of concrete > Long-term effects such as creep and shrinkage cause shortening of concrete.
 5. Loss due to relaxation of steel > When prestressing steel is kept with uniform tensile strain, its tensile stress will be decreased with time.

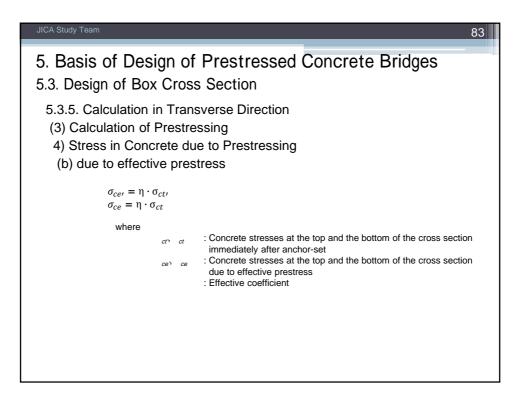


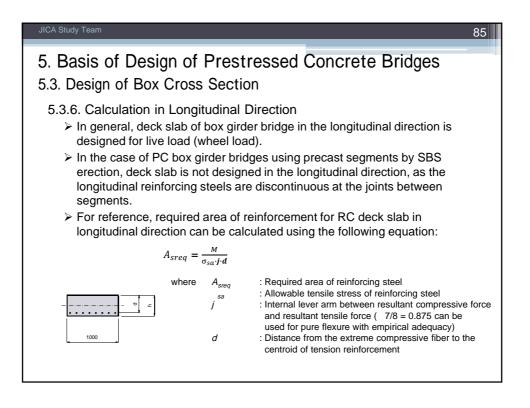


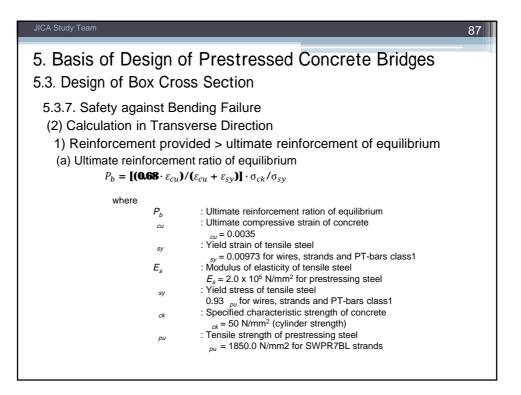


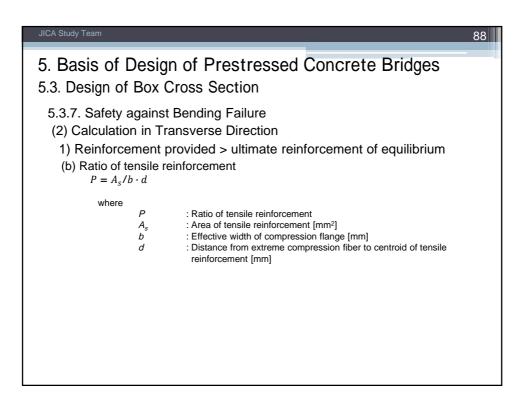


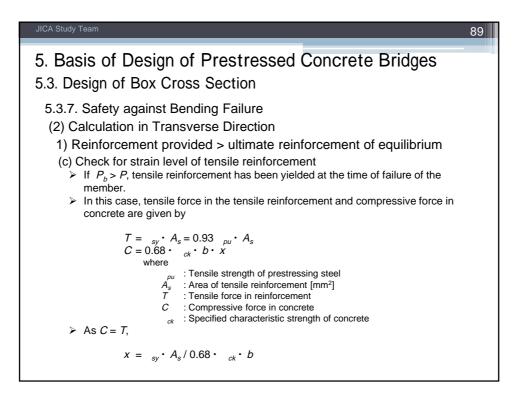

JICA Study Team		77
5. Basis of Design of P 5.3. Design of Box Cross S	restressed Concrete Bridges	
 5.3.5. Calculation in Transve (3) Calculation of Prestressi 3) Calculation of Prestressi (a) Immediately after prest Loss due to elastic deform 	ng ng ressing	-
(a) In the pretensioning method	where	
$\Delta \sigma_p = n \cdot \sigma_{cpg}$	$\Delta \sigma_p$: Loss of tensile stress of PC steel (N/mm ²)	
(b) In the post-tensioning method	n : Ratio of Young's modulus $n = \frac{E_{\rho}}{E_{c}}$	
$\Delta \sigma_{\rho} = \frac{1}{2} n \cdot \sigma_{qqg} \cdot \frac{N-1}{N}$	E_p : Young's modulus of PC steel (N/mm ²)	
	E_c : Young's modulus of concrete at the time of tensioning (N/r	nm²)
	σ_{qw} : Stress in concrete due to PC steel tensioning at the centre PC steel (N/mm²)	id of the
	N: Number of times of PC steel tensioning (number of PC steel	el bars)

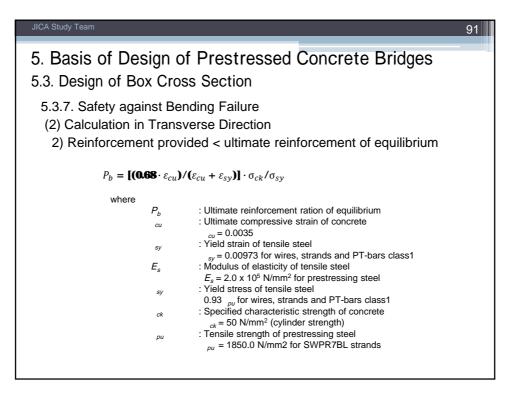


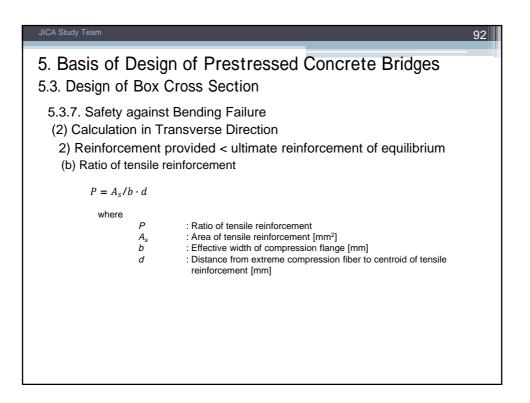


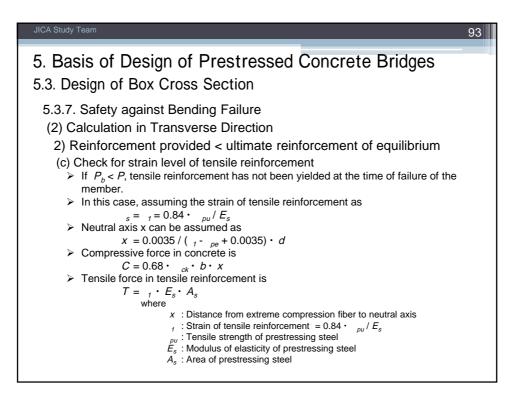


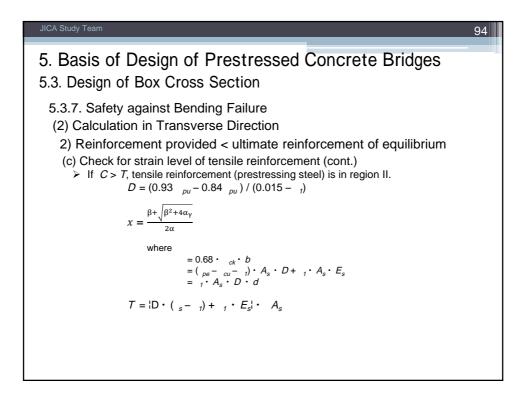


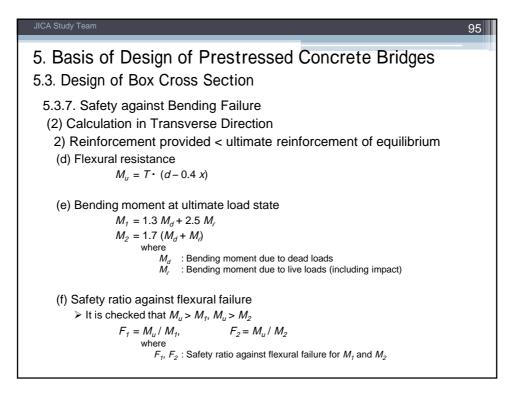

JICA Study Team		
5. Basis of Des 5.3. Design of Bo	•	Prestressed Concrete Bridges
5.3.5. Calculation (4) Resultant Stre (a) Immediately after	er anchor-	set
$\sigma_{ci'} = \sigma_{cd}$		$\sigma_{ci} = \sigma_{cd0} + \sigma_{ct}$
(b) At service load s		
$\sigma_{cs'} = \sigma_{c'}$	+ σ _{ce} ,	$\sigma_{cs} = \sigma_c + \sigma_{ce}$
where		
	ctiv ci	: Resultant stress at the top and the bottom of the cross section immediately after anchor-set
	cd0; cd0	: Concrete stress at the top and the bottom of the cross section due to self-weight
	ct'ı ct	: Concrete stresses at the top and the bottom of the cross section immediately after anchor-set
	cs' cs	: Resultant stress at the top and the bottom of the cross section at service load state
	с, с	: Concrete stress at the top and the bottom of the cross section due to service loads
	ce', ce	: Concrete stresses at the top and the bottom of the cross section due to effective prestress
Resultant stres	s shall be o	hecked to satisfy allowable stress.

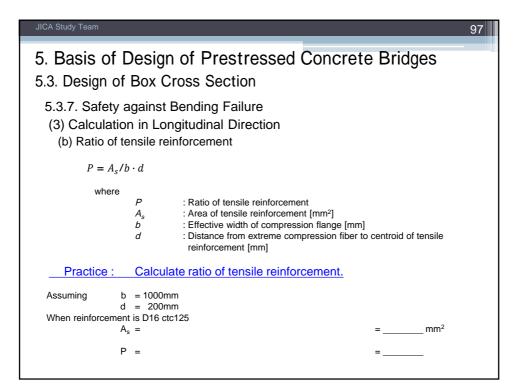

JICA Study Team 86
5. Basis of Design of Prestressed Concrete Bridges 5.3. Design of Box Cross Section
 5.3.7. Safety against Bending Failure (1) Basis In concrete structure, safety against failure is not always obtained even though the member is designed to satisfy allowable stress. Check for resistance under ultimate load state is thus required as well as to satisfy allowable stress under service load state.

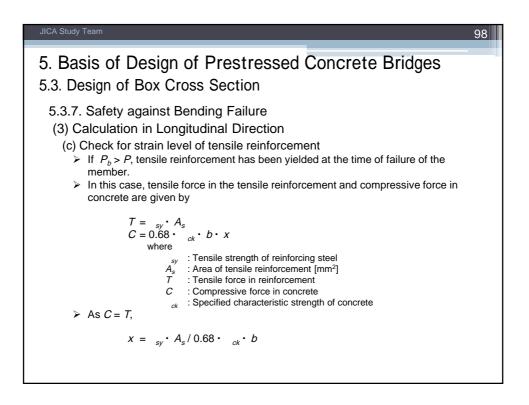


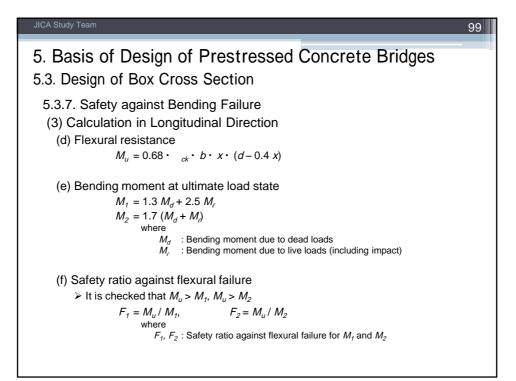


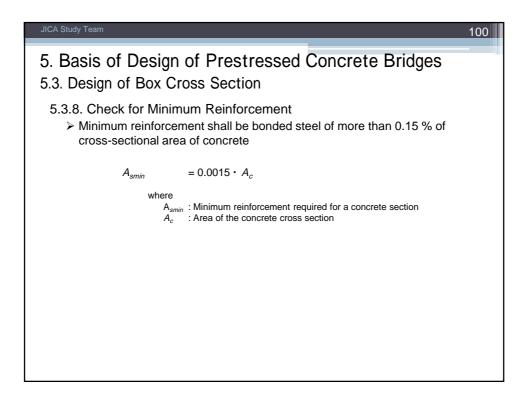


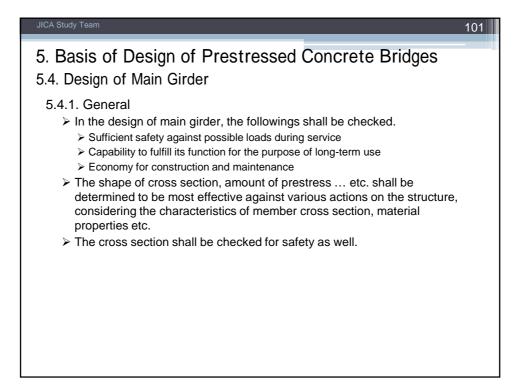

JICA Study Team	90
5. Basis of Design of Prestressed Concrete Bridges 5.3. Design of Box Cross Section	
 5.3.7. Safety against Bending Failure (2) Calculation in Transverse Direction 1) Reinforcement provided > ultimate reinforcement of equilibrium (d) Flexural resistance M_u = 0.68 · _{ck} · b · x · (d - 0.4 x) 	
(e) Bending moment at ultimate load state $M_7 = 1.3 M_d + 2.5 M_\ell$ $M_2 = 1.7 (M_d + M_\ell)$ where M_d : Bending moment due to dead loads M_ℓ : Bending moment due to live loads (including impact)	
(f) Safety ratio against flexural failure > It is checked that $M_u > M_1$, $M_u > M_2$ $F_1 = M_u / M_1$, $F_2 = M_u / M_2$ where F_1, F_2 : Safety ratio against flexural failure for M_1 and M_2	

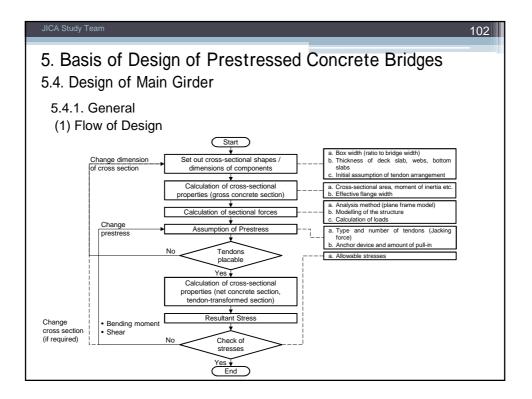


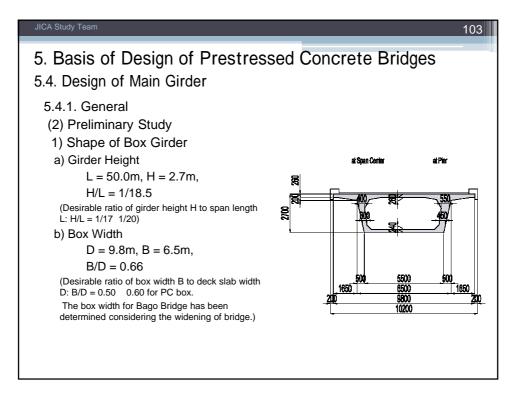


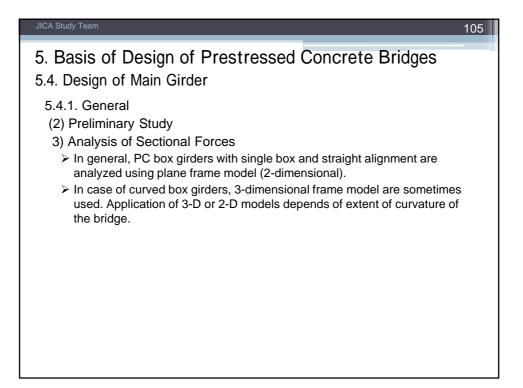


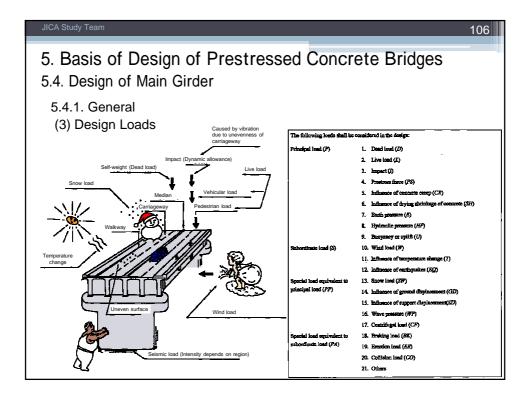


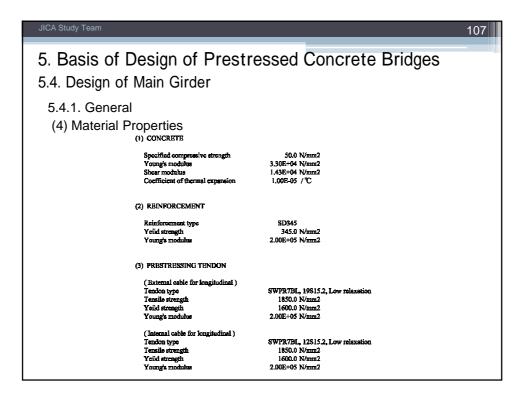

JICA Study Team		96
5. Basis of Des 5.3. Design of Bo	sign of Prestressed Concrete Bridges	
(3) Calculation in (a) Ultimate reinf	inst Bending Failure a Longitudinal Direction orcement ratio of equilibrium $r \epsilon_{cu} / (\epsilon_{cu} + \epsilon_{sy}) \cdot \sigma_{ck} / \sigma_{sy}$	
	: Ultimate compressive strain of concrete $_{cu} = 0.0035$: Yield strain of tensile steel $_{sy} = _{sy} / E_s = 345.0 / (2.0 \times 10^5) = 0.00148$ for reinforcing steel SD345	
Practice : C P _b =	alculate ultimate reinforcement ration of equilibrium. =	



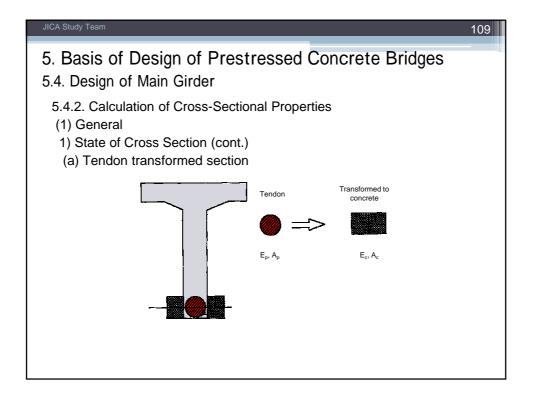


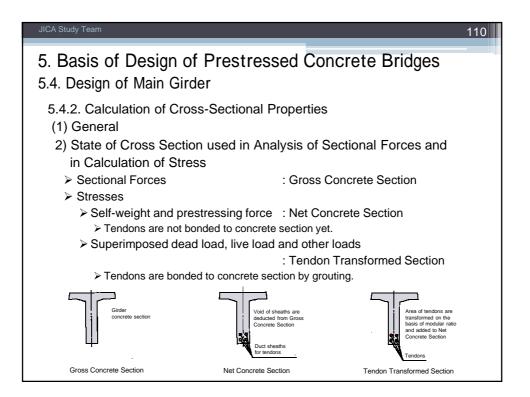


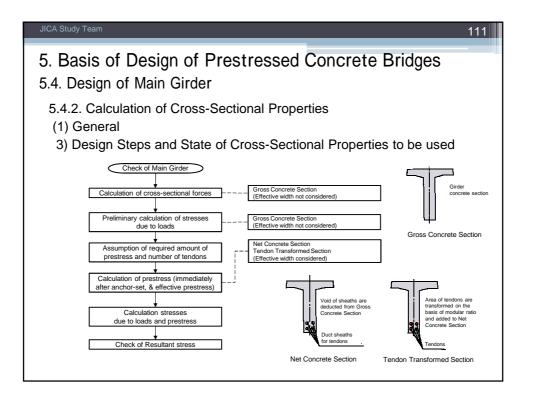


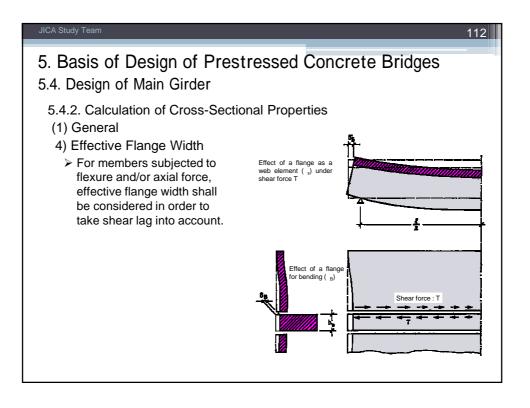


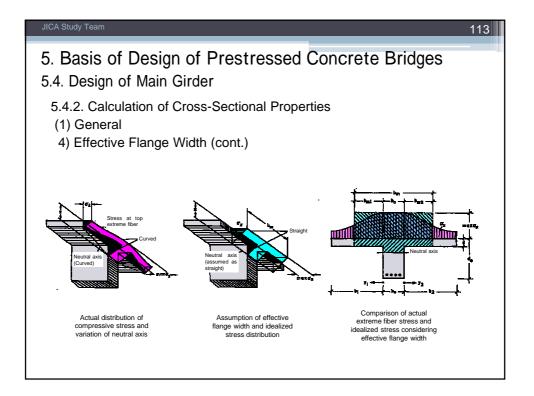


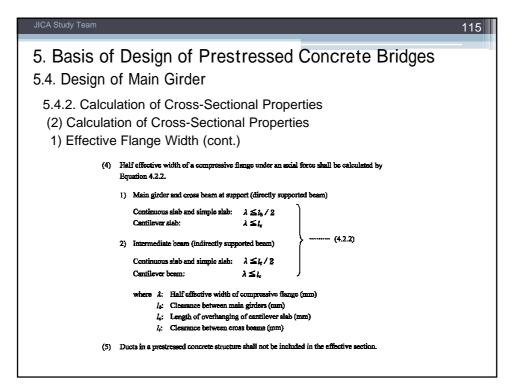

JICA Study Team 104
5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder
 5.4.1. General (2) Preliminary Study 2) Number of Tendons and Prestressing Force Number of tendons and prestressing force are determined considering minimum number to be arranged, member dimensions etc. as well as structural requirement (to obtain desirable state of stress at each section etc.) In the case of Bago River Bridge, 2 internal tendons at least (1 tendon / web) are arranged in order to obtain adequate deformability of the girder at ultimate load state, as the girder is composed of precast segments and not connected by reinforcing steels in the longitudinal direction.

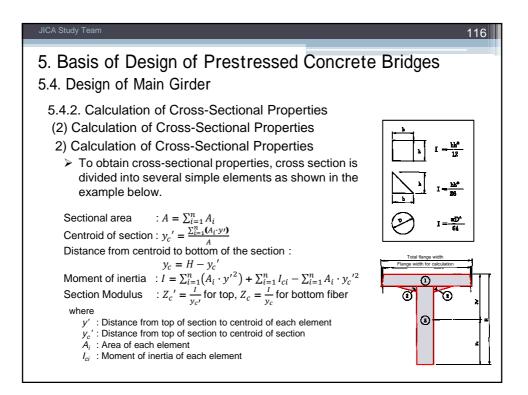


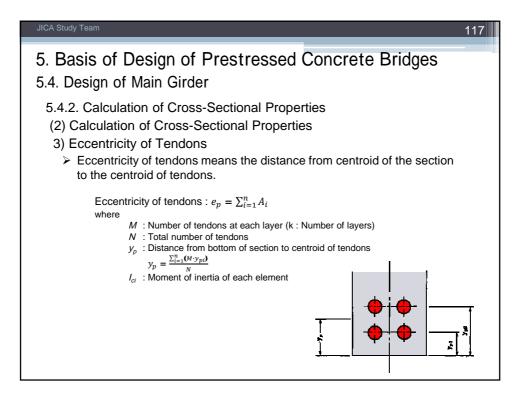


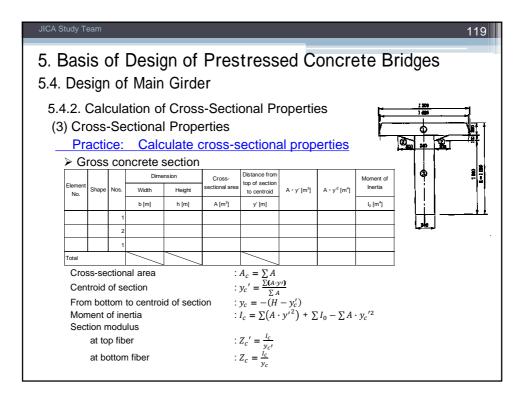


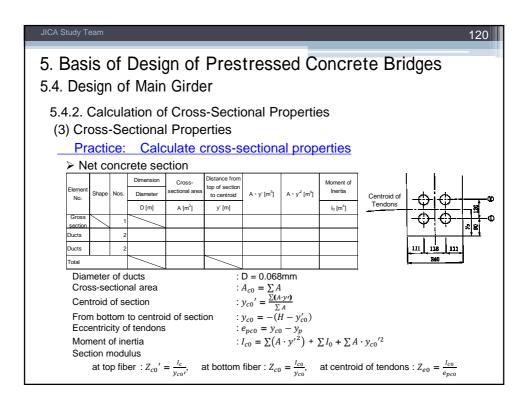


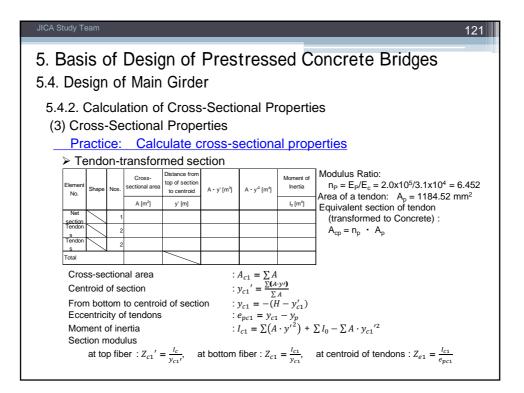




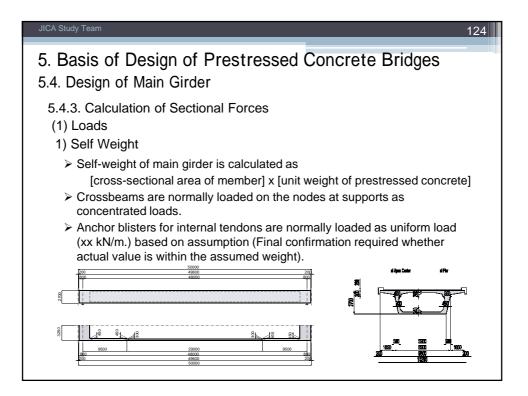


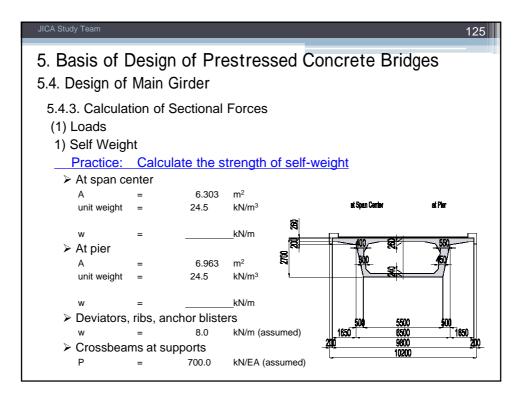

JICA Study Team	114
5. Basis of Design of Prestressed Concrete Br 5.4. Design of Main Girder	idges
1) Main girder and cross beam at a support (directly supported beam) $\lambda = -\frac{i}{8} + b_{a}$ (Value in the back of the structure of the struc	ik of heareth (mm) ween mean girders (mm) sistenging of carkilever eleb (mm) ween crose beams (mm)
$\lambda = \frac{n-1}{6} (l_b + h_w) + b_s$ for a continuous slab and simple slab: $\lambda \le l_s / 2$ for a cantilever slab: $\lambda \le l_s$ $\bigcup_{k=1}^{10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^$	Sugment Point tangel ()) for contraction of calibrative which D A D A B A.2 (A + 4) B A.2 (A + 4) B A.2 (A + 4) D A.4 (A + 4) D A.4 (A + 4) D A.4 (A + 4)
	39 24 39 0.84

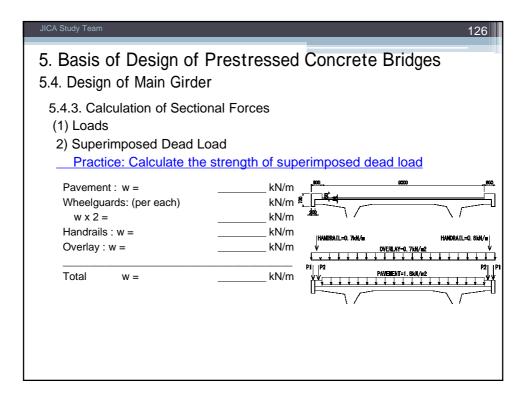


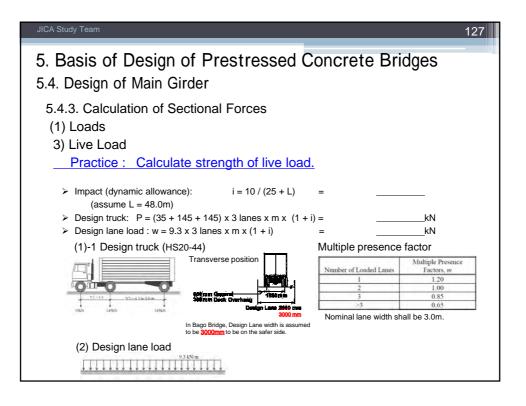


5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder
5.4.2. Calculation of Cross-Sectional Properties(2) Calculation of Cross-Sectional Properties4) Cross Sections for Check
 Check of stress etc. shall be carried out for all the critical cross sections. (eg. Span center, at support etc.) Cross-sectional properties shall be calculated for standard section as well as for the sections in which the thickness of elements (slabs, webs) varies (near support etc.)

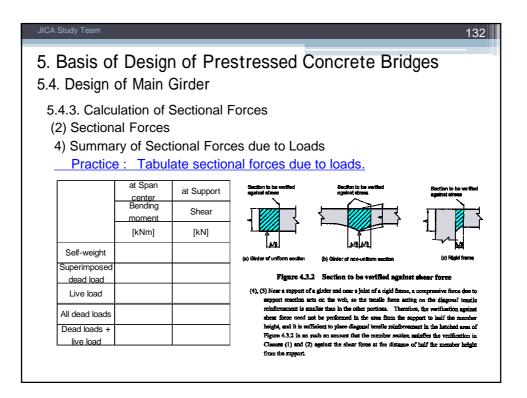


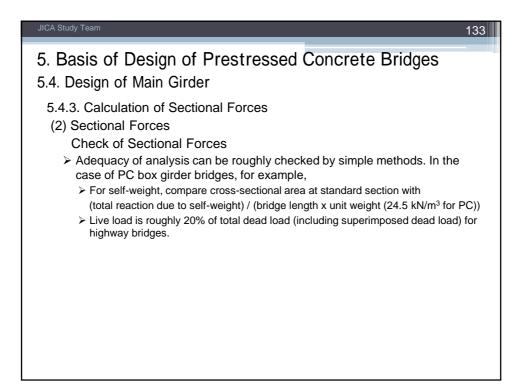





JICA Study Team						122
5. Basis of Design 5.4. Design of Main G			essed	Conc	rete B	Bridges
5.4.2. Calculation of C (3) Cross-Sectional P 4) Summary <u>Practice : Tabula</u>	ope	rties	·		<u>.</u>	
	unit	symbol	Gross concrete section	Net concrete section	Tendon- transformed section	
Cross-sectional area	m²	A				
Distance from top to centroid	m	У'				
Distance from bottom to centroid	m	у				
Eccentricity of tendons	m	ep				
Eccentricity of tendons	m	ep	\sim			
Eccentricity of Al tendons	m	e _p	\sim			
Moment of inertia	m ⁴	I.				
at top	m ³	Z				
Section modulus		Z				
tendon centroi	m	Z _e				

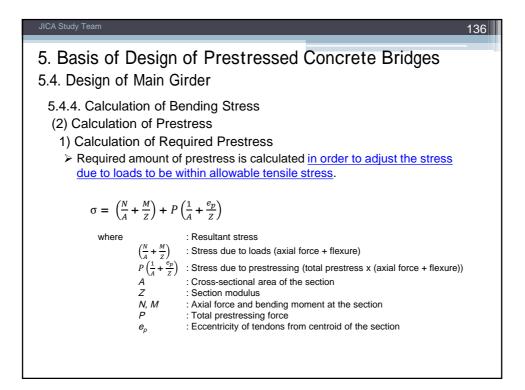
010711	Study Te	am											123
				sign c ain Gir		estres	ssed	Co	nc	rete	Bridg	jes	
(3 2	3) Crc 1) Sur	oss- nma	Sectio ary	nal Pro	operties	ctional s es for bo	·			8 8 8			
										2	_1650]	5300 6300 9800 10200	500 <u>1650</u> 200_
at span cer	nter						at support			4		6500 9600	
at span cer	nter	unit	symbol	Gross concrete section	Net concrete section	Tendon- transformed section	at support		unit	symbol	Gross concrete section	6500 9600	
	nter	unit m ²	symbol	concrete		transformed	Cross-s	sectional	unit m²	symbol	Gross concrete	6500 9600 10200 Net concrete section	Tendon- transformed
Cross-sec Distant top to c	ctional area ce from centroid			concrete section	section	transformed section	Cross-s are Distance top to c	sectional rea ce from centroid			Gross concrete section	6500 9600 10200 Net concrete section	Tendon- transformed section
Cross-sec Distant top to o Distant bottom to	ctional area ce from centroid ce from o centroid	m²	A	concrete section 6.303	section 6.252	transformed section 6.352	Cross-s arr Distanc top to c Distanc bottom to	sectional ea ce from centroid ce from	m²	A	Gross concrete section	800 900 10200 Net concrete section 6.963	Tendon- transformed section 6.963
Cross-sec Distant top to (Distant bottom to Eccentri	ctional area ce from centroid ce from	m² m	A y'	concrete section 6.303 1.001	section 6.252 0.988	transformed section 6.352 1.013	Cross-s arr Distanc top to c Distanc	sectional ea ce from centroid ce from o centroid city of All	m² m	A y'	Gross concrete section	800 900 10200 Net concrete section 6.963 1.035	Tendon- transformed section 6.963 1.038
Cross-sec Distant top to c Distant bottom to Eccentri tenc	ctional area ce from centroid ce from o centroid city of All	m² m m	A y' y	concrete section 6.303 1.001	section 6.252 0.988 -1.712	transformed section 6.352 1.013 -1.687	Cross-s arr Distanc top to c Distanc bottom to Eccentric tend	sectional ea ce from centroid ce from o centroid city of All	m² m m	A y' y	Gross concrete section	800 900 10200 Net concrete section 6.963 1.035	Tendon- transformed section 6.963 1.038
Cross-sec Distant botton bottomtr Eccentri tend Moment	ctional area ce from centroid ce from o centroid city of All dons	m ² m m	A y' y e _p	concrete section 6.303 1.001 -1.699	section 6.252 0.988 -1.712 -1.592	transformed section 6.352 1.013 -1.687 -1.567	Cross-s arr Distanc top to c Distanc bottom to Eccentric tend Moment	sectional ea ce from ce from ce from ce from cetroid city of All dons	m ² m m	A y' y e _p	Gross concrete section 6.963	800 900 10200 Net concrete section 6.963 1.035 -1.665	Tendon- transformed section 6.963 1.038 -1.662
Cross-sec Distant top to c Distant bottom to Eccentri tenc	ctional area ce from centroid ce from o centroid city of All dons of inertia	m ² m m m m ⁴	A y' y e _p	concrete section 6.303 1.001 -1.699 6.4367	section 6.252 0.988 -1.712 -1.592 6.3103	transformed section 6.352 1.013 -1.687 -1.567 6.5594	Cross-s arr Distanc top to c Distanc bottom to Eccentric tend	sectional ea ce from centroid ce from o centroid city of All dons of inertia	m ² m m m m	A y' y e _p I	Gross concrete section 6.963	800 900 10200 Net concrete section 6.963 1.035 -1.665 6.7799	Tendon- transformed section 6.963 1.038 -1.662 6.7799

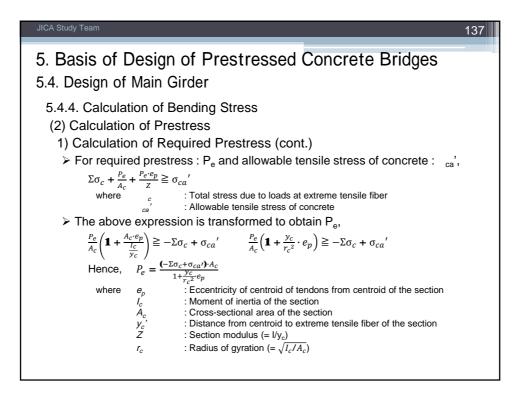


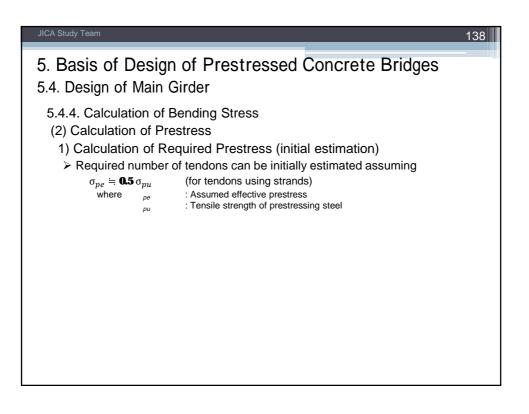

JICA Study Team 128
5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder
5.4.3. Calculation of Sectional Forces(2) Sectional Forces1) Self Weight
Practice : Calculate sectional forces (bending moment, shear) and support reaction due to Self-weight.
Loading
Bending moment diagram
Shear diagram

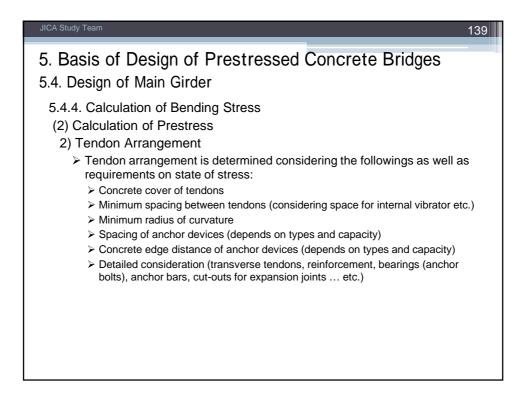
JICA Study Team 129
5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder
5.4.3. Calculation of Sectional Forces(2) Sectional Forces2) Superimposed Dead Load
Practice : Calculate sectional forces (bending moment, shear) and support reaction due to Superimposed Dead Load.
Loading
Bending moment diagram
Shear diagram

JICA Study Team	1	30
5. Basis of D 5.4. Design of	Design of Prestressed Concrete Bridges Main Girder	
5.4.3. Calculat (2) Sectional I 3) Live Load	tion of Sectional Forces Forces	
Practice :	Calculate sectional forces (bending moment, shear) and support reaction due to Live Load.	
Loading		
Bending moment diagram		


JICA Study Team 131	
5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder	
5.4.3. Calculation of Sectional Forces(2) Sectional Forces3) Live Load	
Practice : Calculate sectional forces (bending moment, shear) and support reaction due to Live Load.	
Loading	
Shear diagram	

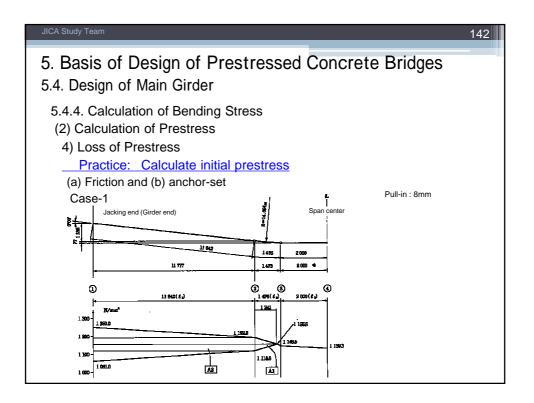


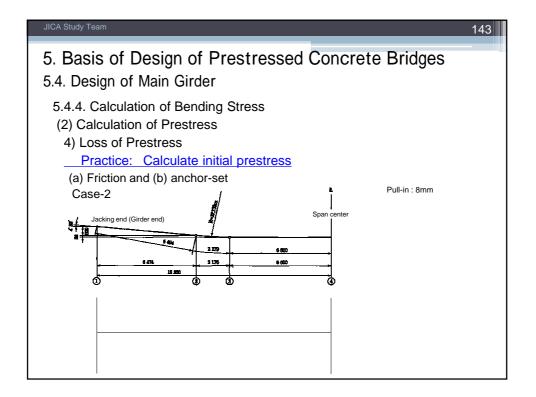


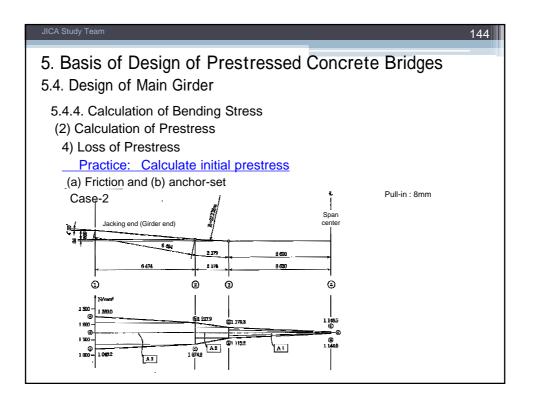

JICA Study Team	134
5. Basis of Desig 5.4. Design of Main	n of Prestressed Concrete Bridges Girder
,	Bending Stress and Stresses due to Loads nding and axial force is obtained by the following
$\sigma_{c'} = \frac{M}{Z_{c'}} + \frac{N}{A_c}$	for top fiber of cross section
$\sigma_c = \frac{M}{Z_c} + \frac{N}{A_c}$	for bottom fiber of cross section
where M N c ^{./} c Z _c ./Z _c A _c	at top / bottom fiber of the section (positive when compressive, negative when tensile)

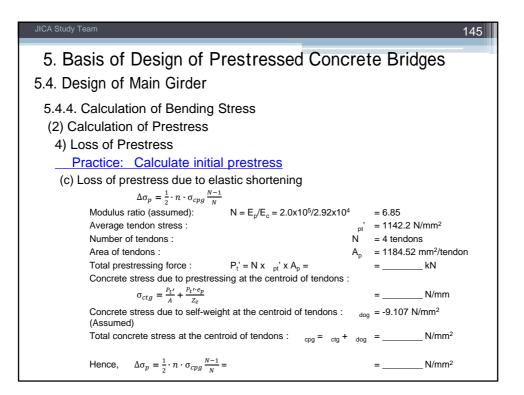
JICA Study	Team						135	
5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder								
(1) S	Calculation ectional F cractice :	orces and	l Stresses	due to Lo		<u>s.</u>		
		Bending moment	Section modulus Stress due to loads			Section modulus		
			at top	at bottom	at top	at bottom		
		M _d [kNm]	Z _c ' [mm ³]	Z _c ' [mm ³]	_d ' [N/mm²]	_d [N/mm²]		
	Self-weight							
	Superimposed dead load Live load							
	All dead loads							
	Dead loads + live load							

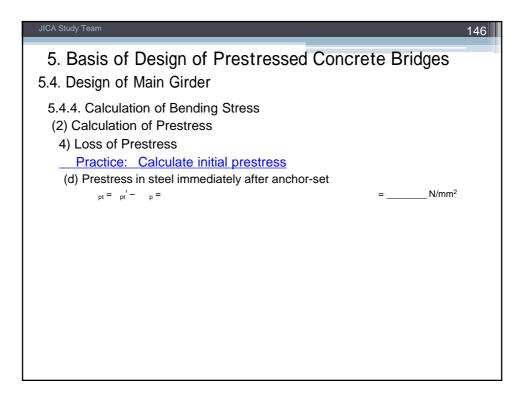


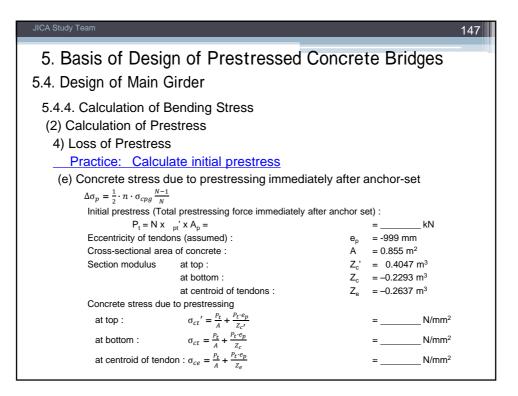


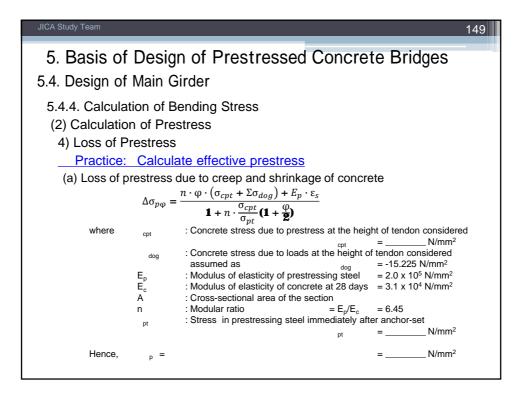


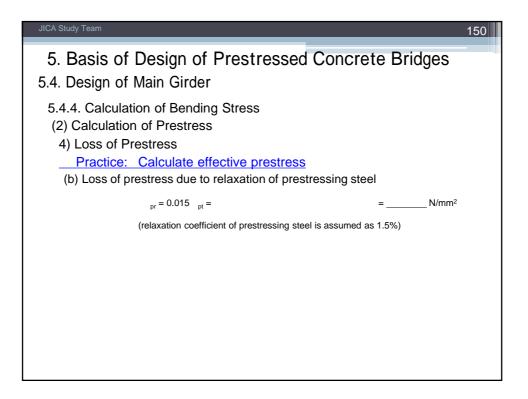


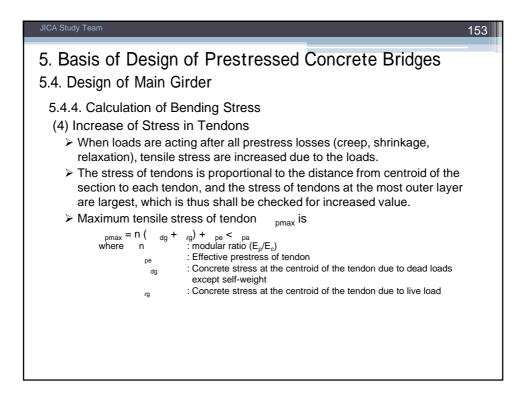

JICA Study Team 140
5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder
5.4.4. Calculation of Bending Stress(2) Calculation of Prestress3) Efective Prestress (Flow of calculation)
Determination of initial prestress Calculation of loss of prestress due to friction and change of angle [pi : Stress of steel at initial prestressing [80 90% of yield stress of prestressing steel] [pi = pi - pi pi : Stress of steel at initial prestressing [90% of yield stress of prestressing steel]
Calculation of loss of prestress due to pull-in of wedges
Calculation of loss of prestress due to elastic deformation of concrete
Calculation of loss of prestress due to creep and shrinkage of concrete
Calculation of loss of prestress due to relaxation of prestressing steel
Check of stress in prestressing steel
Calculation of effective coefficient : Effective coefficient (= ce / co)

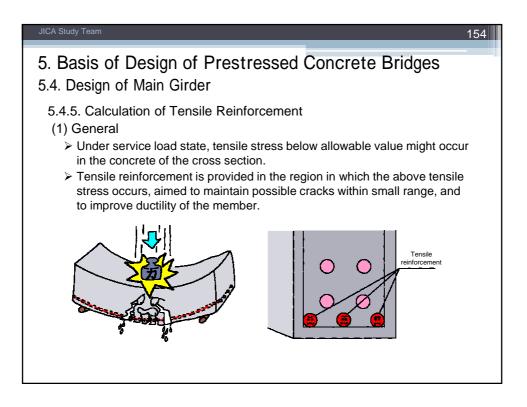


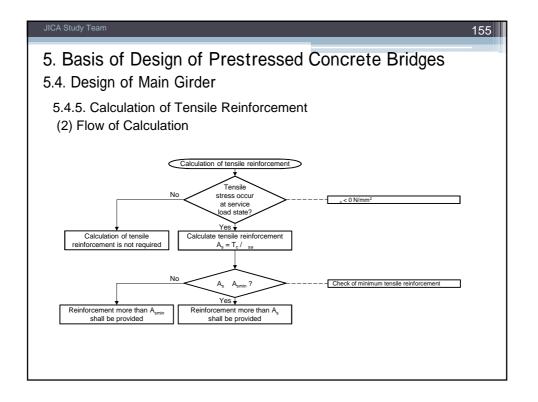


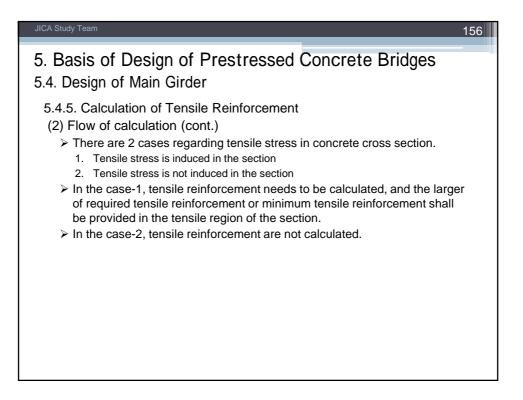


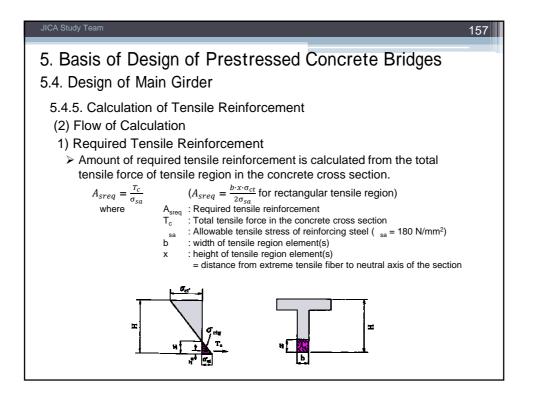


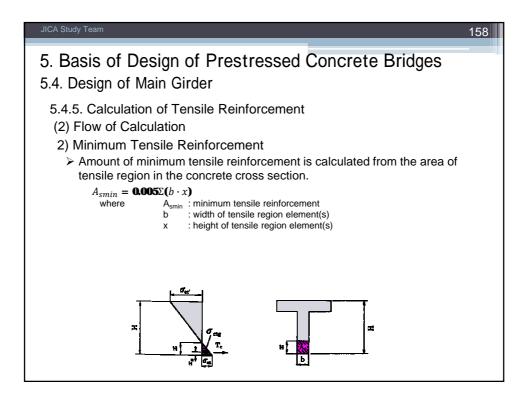

JICA Study Team				148
5. Basis of Design of	Prestressed	Concr	ete B	ridges
5.4. Design of Main Girder				
5.4.4. Calculation of Bending(2) Calculation of Prestress4) Loss of Prestress	g Stress			
Practice: Calculate init	ial prestress			
(f) Resultant stress immedia		et		
Concrete stress due to load	at top :	σ_{d0}'	=	N/mm ²
	at bottom :	σ_{d0}	=	N/mm ²
Concrete stress due to prestre	ess immediately after ar at top :	nchor set σ_{ct}'	_	N/mm ²
	at bottom :	σ_{ct}	=	
Resultant stress at top :	$\sigma_c{}' = \sigma_{d0}{}' + \sigma_{ct}{}'$		=	N/mm ²
at botto	om : $\sigma_c = \sigma_{d0} + \sigma_{ct}$		=	N/mm ²

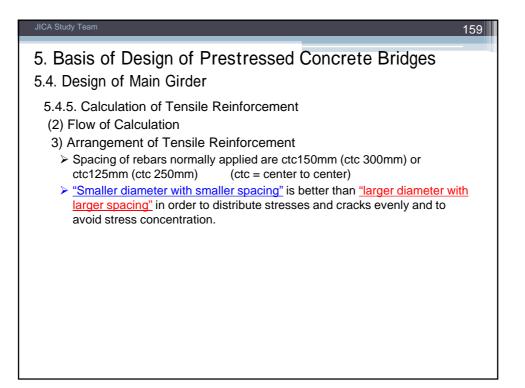


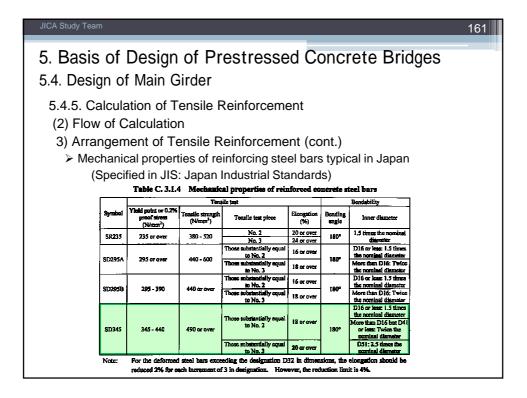


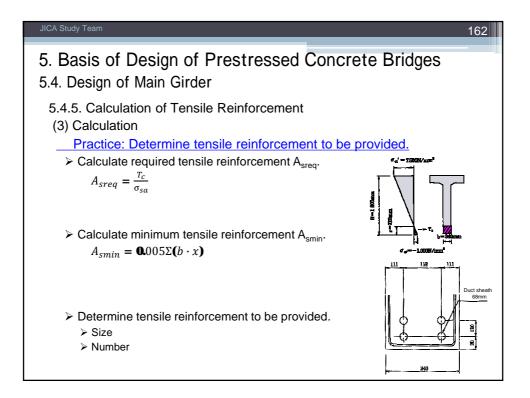

JICA Study Team	151
5. Basis of Design of Prestressed Concre 5.4. Design of Main Girder	ete Bridges
 5.4.4. Calculation of Bending Stress (2) Calculation of Prestress 4) Loss of Prestress <u>Practice: Calculate effective prestress</u> (c) Effective prestress in prestressing steel 	
pe = pt - p - pr =	=N/mm ²
Check _{pe} < _{pa}	= 1110.0 N/mm ²
Effective coefficient : $= pe/pt =$	=
(d) Concrete stress due to effective prestress	
at top: $_{ce}$ ' = x $_{ct}$ ' =	=N/mm ²
at bottom : _{ce} = x _{ct} =	= N/mm ²

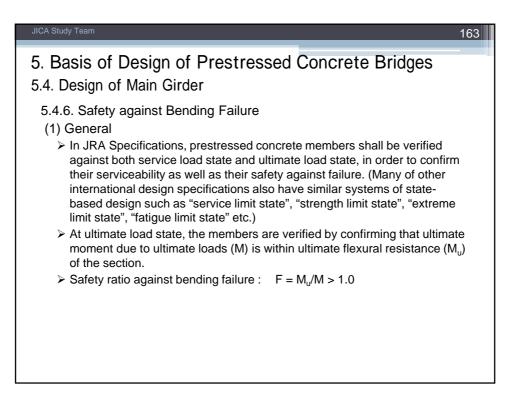

JICA Study Team								152
	5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder					-		
5.4.4. Calculation (3) Resultant Stre <u>Practice: Ca</u> > At span cente	ess <mark>alcula</mark>	-						
			Immediately a	fter anchor set	At service	load state		
			at top	at bottom	at top	at bottom		
		immediately after	. [N/mm²]	, [N/mm²]	. [N/mm²]	, [N/mm²]		
	Internal prestress	anchor-set	-1.70	11.24				
	presuess	Effective prestress immediately after			-1.52	10.07		
	External prestress	anchor-set	-1.15	12.72	\sim			
		Effective prestress immediately after			-1.05	11.62		
	Total prestress	anchor-set		<hr/>		/		
	-	Effective prestress						
		Self-weight		<				
		Live load						
		ediately after						
		nchor set dead loads						
	Dead le	oads + Live load	\sim	\sim				
	Allowable	compression	20.00	20.00	16.00	16.00		
	stress _{ca} [N/mm ²]	tension	0.00	0.00	0.00	0.00		
	[!		1				

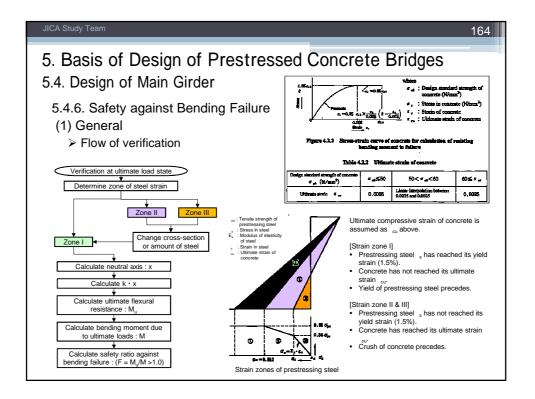


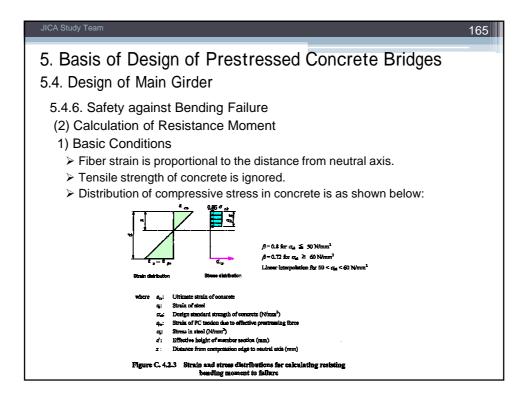


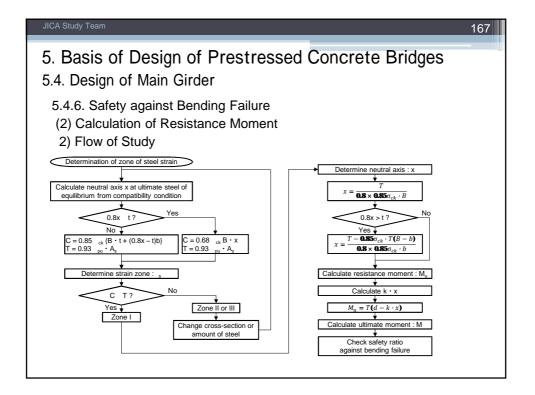


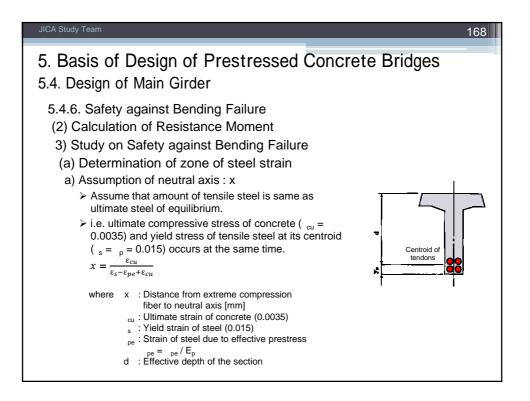


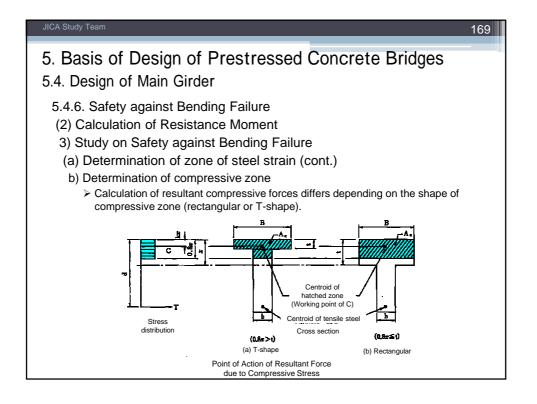


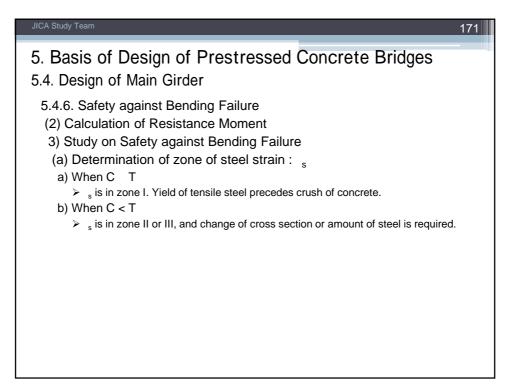


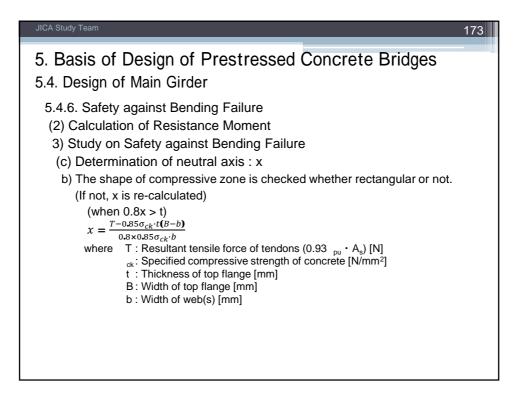

JICA Study Team						160
5. Basis o	•		estress	ed Conc	rete Br	ridges
5.4. Desigr	of Main	Girder				
5.4.5. Calo	culation of	Tensile R	einforcem	nent		
(2) Flow (of Calculat	ion				
. ,			ainforcam	ent (cont.)		
	•			typically us		n
		-	-		seu in Japa	al I
(Sh	ecified in J	io. Japan i	nuusinai Si	lanuarus)		
	Table C. 3			nsions of deformed		-
	Designation	Unit mens (kg/m)	Nominal discretter (4) (mm)	Nominal cross-sectional area (3) (mar ²)	Pecipheral leagth (/) (mm)	
	D6 D10	0.249 0.560	6.35 9.53	31,67 71,33	20 30	
	DIS	0.995	12.7	126.7	40	}
	D 16	1.56	15.9	198.6	50	
	D 19	2.24	19.1	286.5	60	
	D 22 D 25	3.04	22,2 25,4	387.1 506.7	70 80	
	D 29	5.04	28.6	642.4	90	
	D 32	6.23	31.8	794.2	100	
	D 35	7.51	34.9	956.6	110	
	D 38 D 41	\$.95 10.5	38.1 41.3	1140 1340	120 130	
	D 51	15.9	50.8	2027	150	
						=

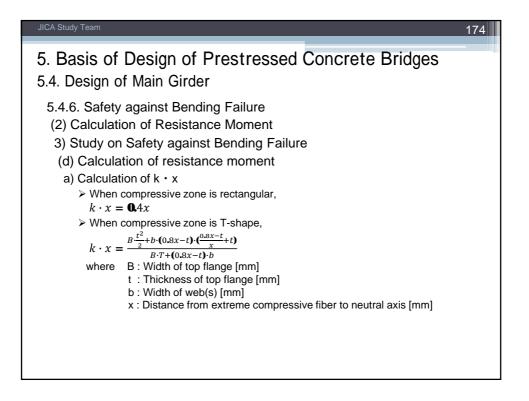


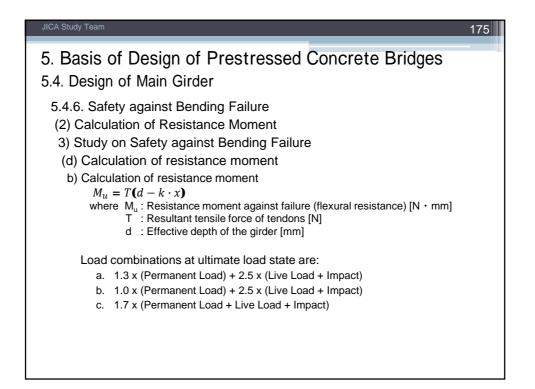


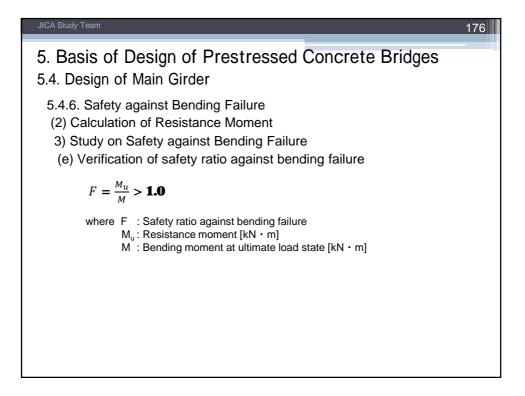


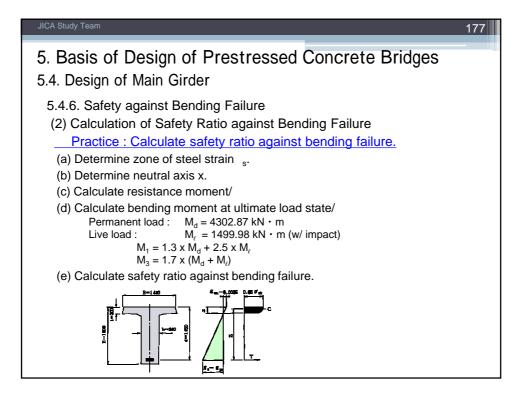


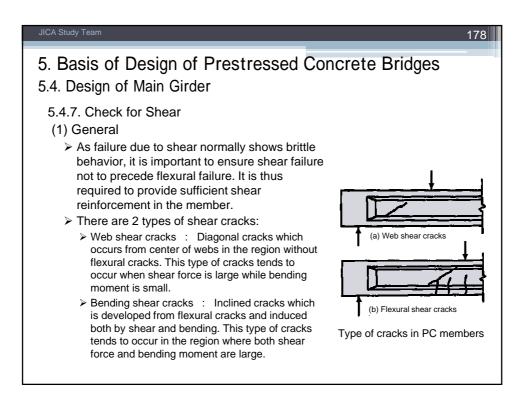


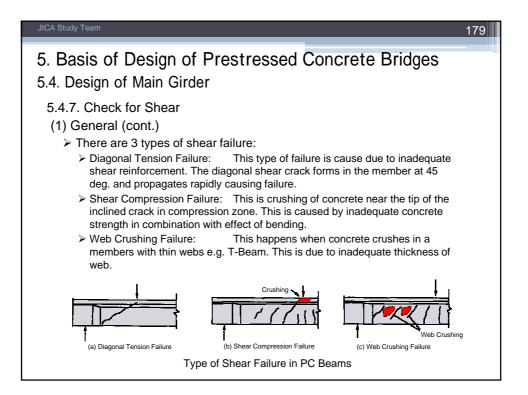


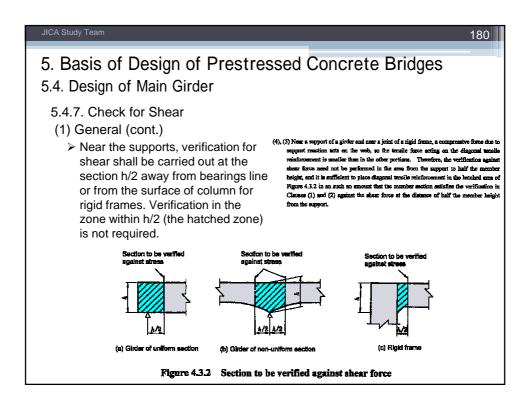

JICA Study Team 170
5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder
5.4.6. Safety against Bending Failure (2) Calculation of Resistance Moment 3) Study on Safety against Bending Failure (a) Determination of zone of steel strain (cont.) c) Calculation of Compressive / Tensile Resultant Forces > Resultant tensile force of steel : T $T = 0.93\sigma_{pu} \cdot A_s$
where pu: Tensile strength of prestressing steel [N/mm²] A _s : Total area of tendons [mm²]
\sim Resultant compressive force of concrete : C $C = 0.85\sigma_{ck}\{B \cdot t + (0.8x - t)b\}$ for T-shape compressive zone $C = 0.85\sigma_{ck}B \cdot x$ for rectangular compressive zone
 where ck: Specified compressive strength of concrete [N/mm²] B: Width of top flange [mm] x: Distance from extreme compressive fiber to neutral axis [mm] t: Thickness of top flange [mm] b: Width of web(s) of the girder [mm]

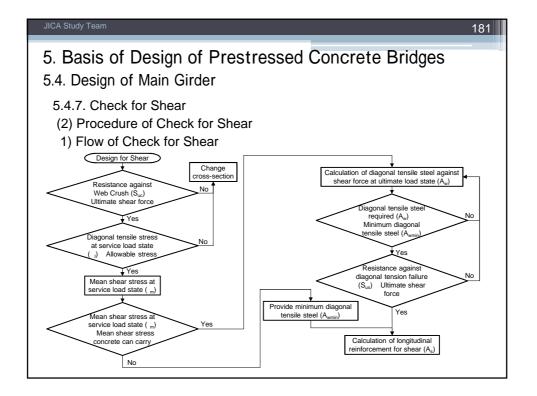


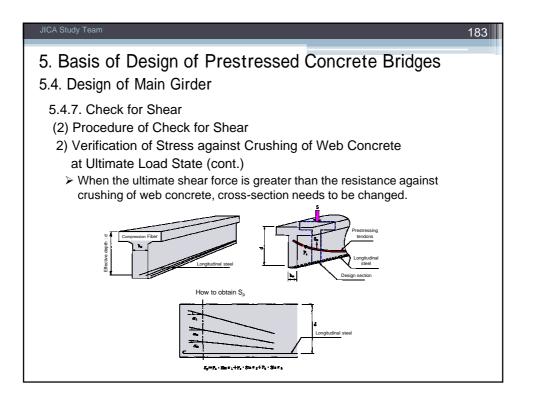

JICA Study Team	172
5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder	-
5.4.6. Safety against Bending Failure (2) Calculation of Resistance Moment 3) Study on Safety against Bending Failure (c) Determination of neutral axis : x a) Neutral axis x is calculated assuming that the compressive zone is rectangular (within the thickness of top flange) (when $0.8x ext{ t})$ $x = \frac{T}{0.8 \times 0.85 \sigma_{ck} \cdot B}$ where T : Resultant tensile force of tendon (0.93 pu $\cdot A_s)$ [N] _{ck} : Specified compressive strength of concrete [N/mm ²] B : Width of top flange of the girder [mm]	

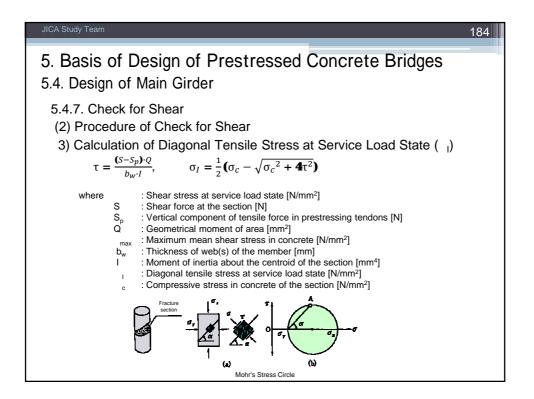


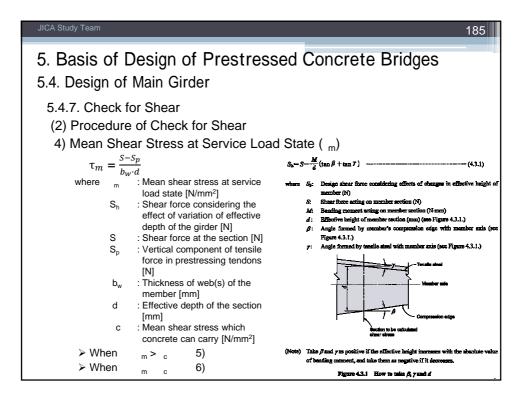


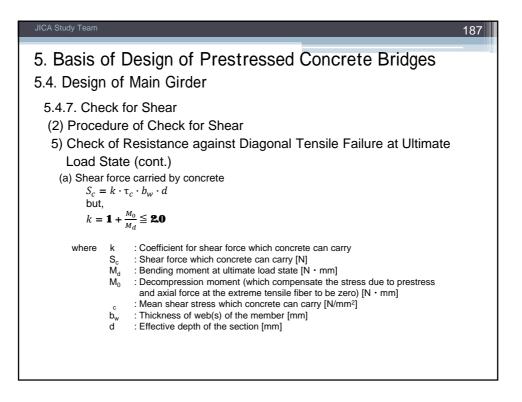


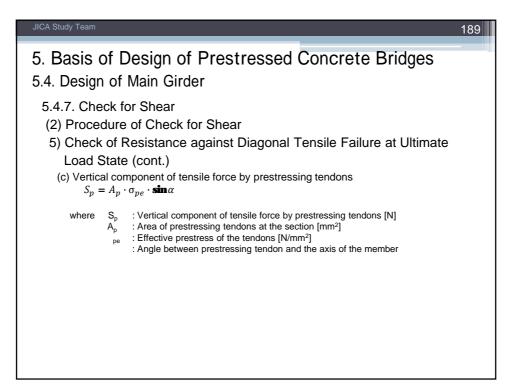


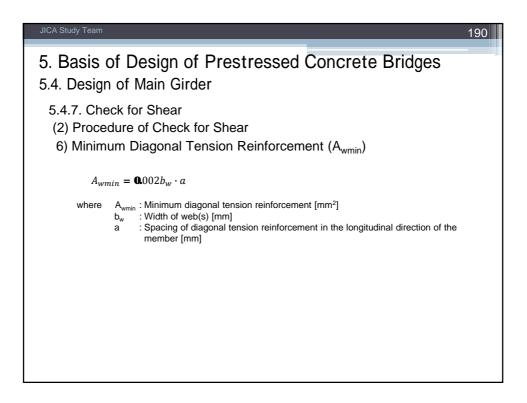


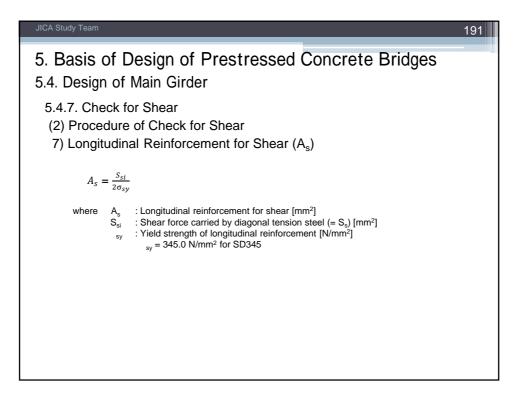


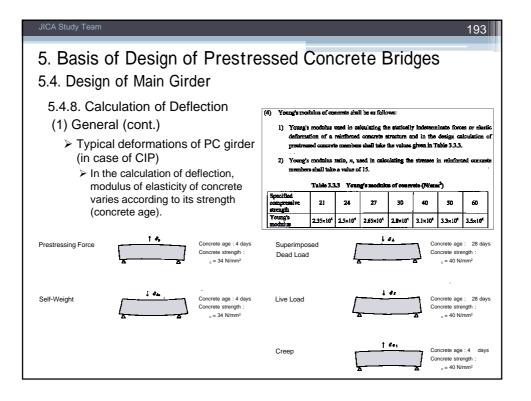


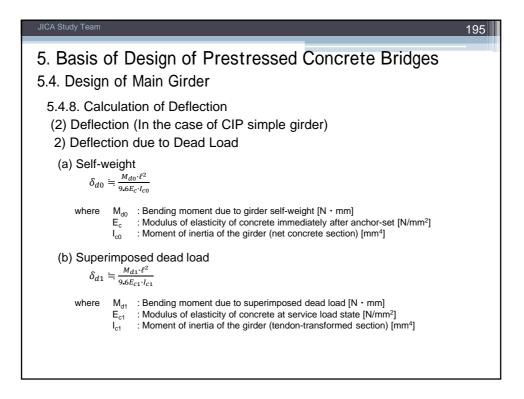

JICA Study Team		182
	of Design of Prestressed Concrete Bridges of Main Girder	
(2) Proced 2) Verifica at Ultin ➤ In JRA smalle	ick for Shear dure of Check for Shear ation of Stress against Crushing of Web Concrete nate Load State A Specifications, shear force at ultimate load state shall be er than resistance against crushing of web concrete. = $\tau_{max} \cdot b_w \cdot d + S_p$	
where	$\begin{array}{lll} S_{uc} & : \mbox{Resistance against crushing of web concrete [N]} \\ & & : \mbox{Maximum mean shear stress in concrete [N/mm^2]} \\ & & : \mbox{Thickness of web(s) of the member [mm]} \\ & & : \mbox{Effective depth of the section [mm]} \\ & & : \mbox{Vertical component of tensile force in prestressing tendons [N]} \\ & & S_p = A_p \cdot \ _{pe} \cdot \sin \\ & A_p & : \mbox{Area of prestressing tendons in the section [mm^2]} \\ & & : \mbox{Effective tensile stress of tendons in the section [N/mm^2]} \\ & & : \mbox{Angle between member axis and prestressing tendons} \end{array}$	

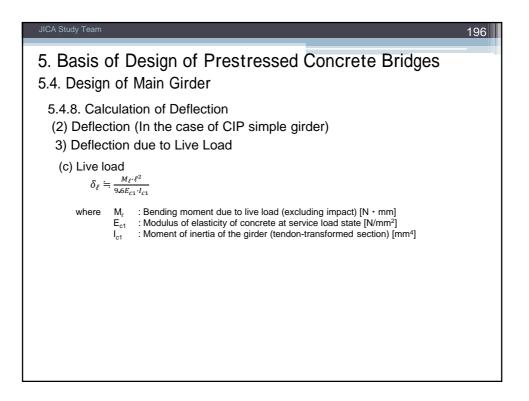


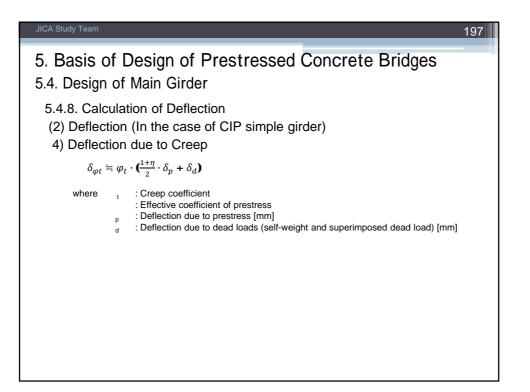


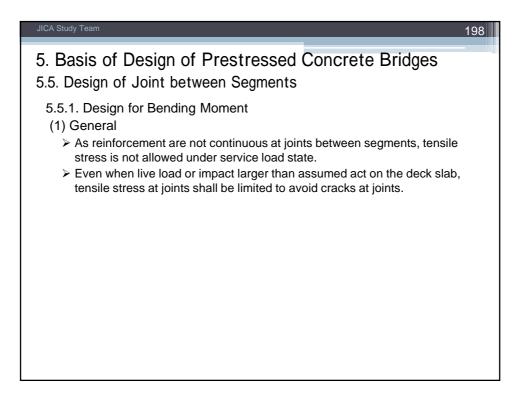

JICA Study Team		186
	of Design of Prestressed Concrete Bridges	-
(2) Proce 5) Check Load \$ ≻ In JR small	eck for Shear dure of Check for Shear c of Resistance against Diagonal Tensile Failure at Ultimate State A Specifications, shear force at ultimate load state shall be er than resistance against diagonal tensile failure. = $S_c + S_s + S_p$	
where	 S_{us} : Resistance against diagonal tensile failure [N] S_c : Shear force which concrete can carry [N] S_s : Shear force which diagonal tension steel can carry [N] S_p : Vertical component of tensile force in prestressing tendons [N] 	

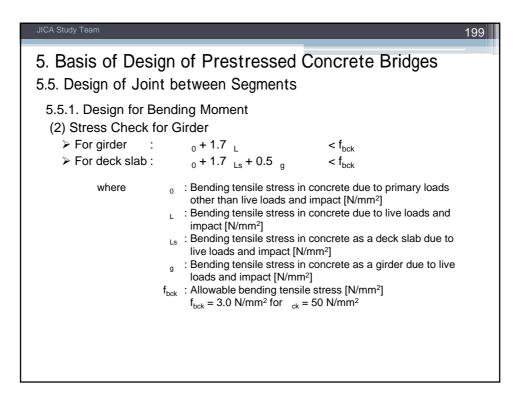

JICA Study Team 188	
5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder	
 5.4.7. Check for Shear (2) Procedure of Check for Shear 5) Check of Resistance against Diagonal Tensile Failure at Ultimate Load State (cont.) (b) Shear force carried by diagonal tension steel	

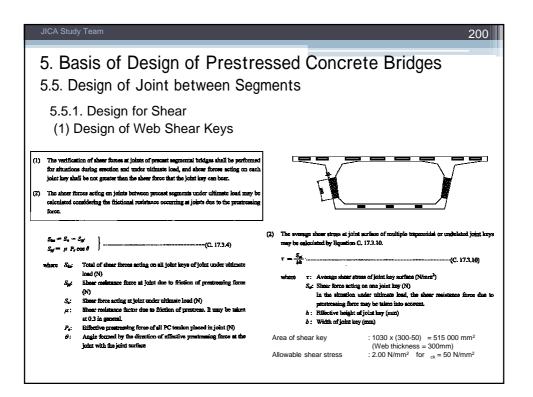


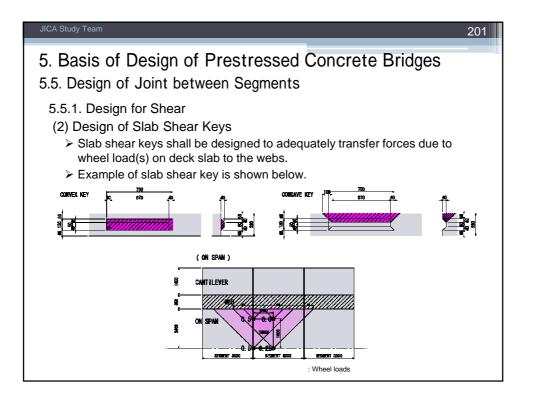


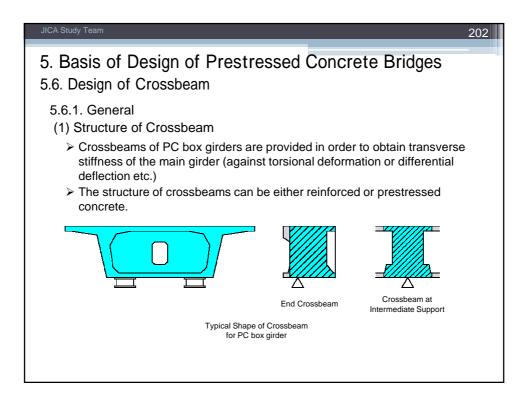

JICA Study Team 192
5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder
5.4.8. Calculation of Deflection (1) General
 Deformations of member is categorized in Iongitudinal extension / shortening, and vertical deflection.
These deformations are induced by prestress, self-weight, creep and shrinkage of concrete etc.
In prestressed concrete members, cambers for these deformations shall be taken into account, as these deformations affect bridge alignment etc.
Deflections calculated by engineers in design stage are for reference. Actual camber value to be applied shall be calculated by contractors at the construction stage upon their construction condition, construction schedule, materials etc. in order to obtain targeted alignment / profile of the structure.
Deflections due to live load shall be checked to satisfy allowable value.

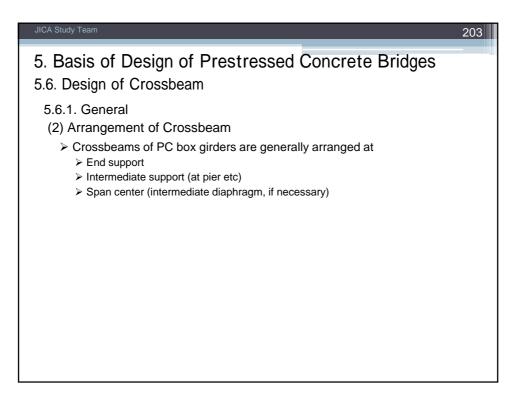


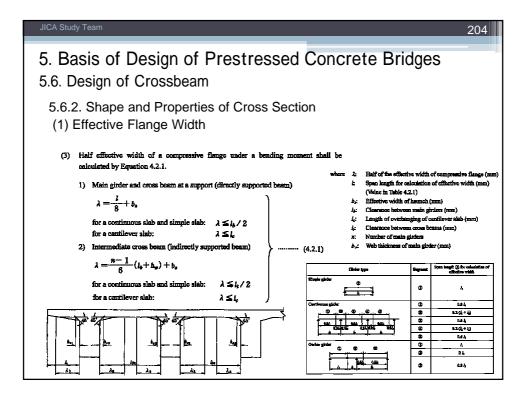

JICA Study Team 19	94
5. Basis of Design of Prestressed Concrete Bridges 5.4. Design of Main Girder	
 5.4.8. Calculation of Deflection (2) Deflection (In the case of CIP simple girder) > Deflection for CIP simple girders can be approximated by the following formulas. (+ (positive) when downward, – (negative) when upward) 1) Deflection due to Prestress 	
For uniform cross-section with varying M _p : (Tendons are curved up from span center toward support) $\delta_p = \frac{-M_p \cdot \ell^2}{9E_c \cdot l_{c0}} = -\frac{P_t \cdot e_{c0p} \cdot \ell^2}{9E_c \cdot l_{c0}}$	
$ \begin{array}{lll} \mbox{where} & M_p & : \mbox{Bending moment due to total prestress immediately after anchor-set [N \cdot mm]} \\ P_t & : \mbox{Total prestress immediately after anchor-set [N]} \\ \ell & : \mbox{Span length [mm]} \\ e_{pc0} & : \mbox{Eccentricity of tendons [mm]} \\ E_c & : \mbox{Modulus of elasticity of concrete immediately after anchor-set [N/mm^2]} \\ I_{c0} & : \mbox{Moment of inertia of the girder (net concrete section) [mm^4]} \\ \end{array} $	

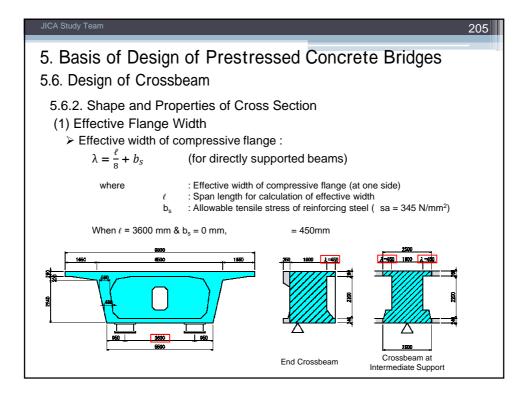


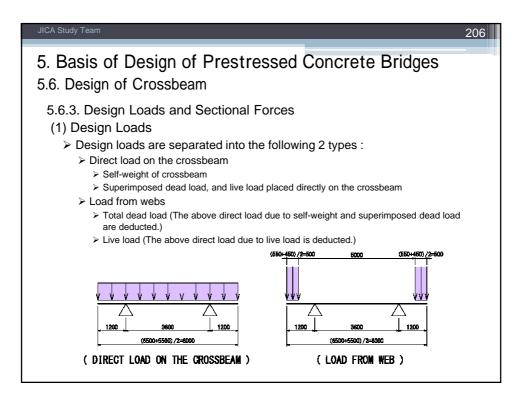


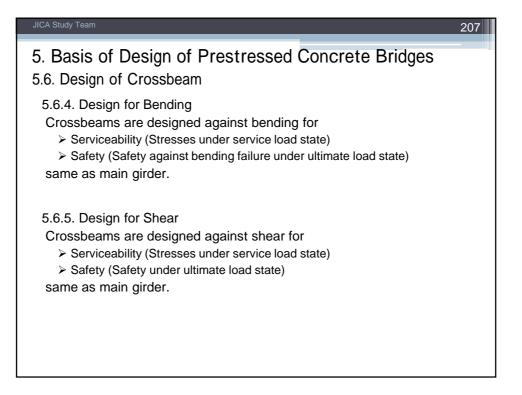


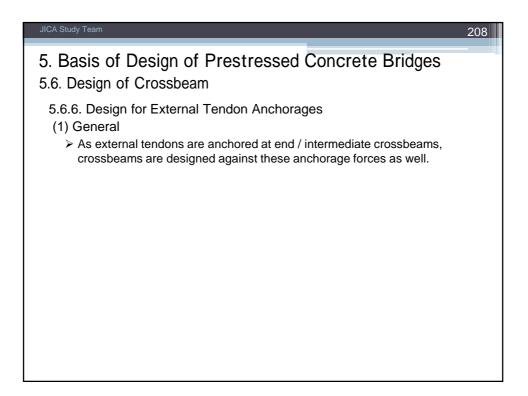


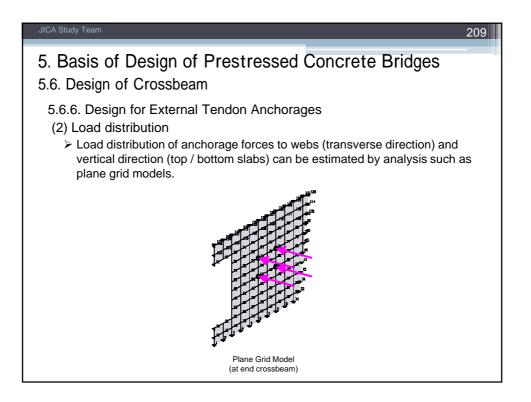


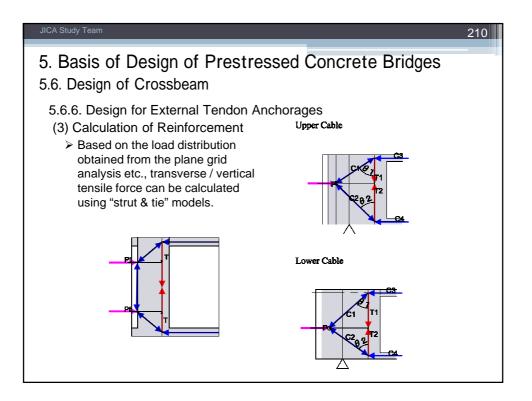


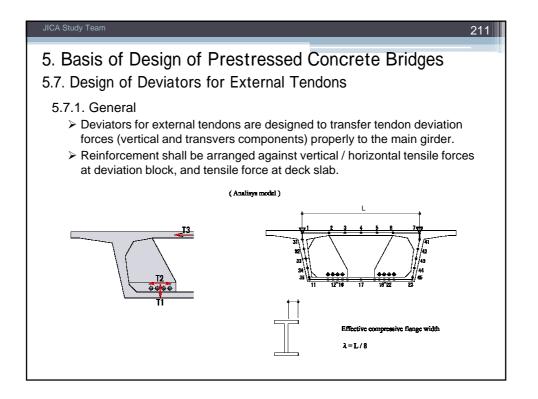


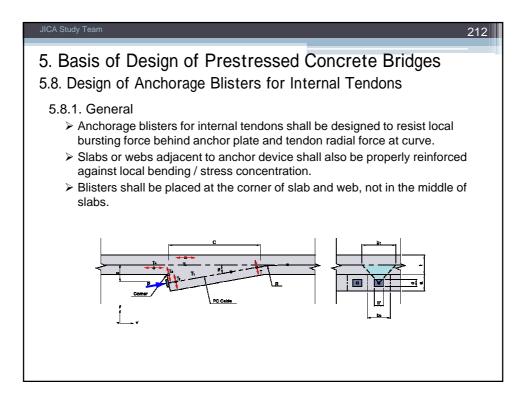


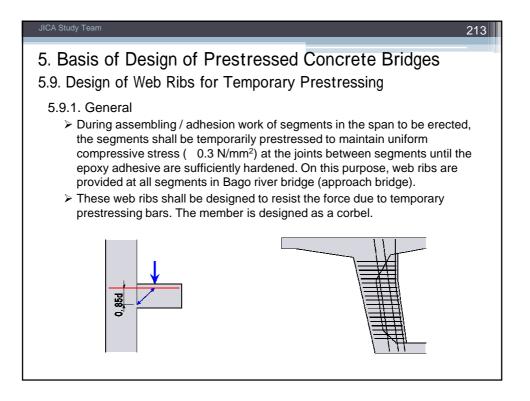












JICA Study Team 214
5. Basis of Design of Prestressed Concrete Bridges 5.10. Support Reaction
5.10.1 General
In general, support reactions of bridges are calculated for bearings (including impact due to vehicles) and for substructures (excluding impact).
Check of Reaction
Adequacy of analysis can be roughly checked by simple methods. In the case of PC box girder bridges, for example,
 For self-weight, compare cross-sectional area at standard section with (total reaction due to self-weight) / (bridge length x unit weight (24.5 kN/m³ for PC)) Live load is roughly 20% of total dead load (including superimposed dead load) for highway bridges.