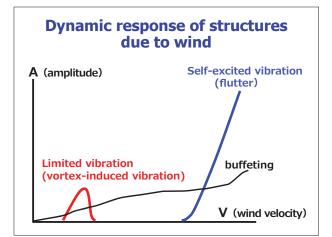
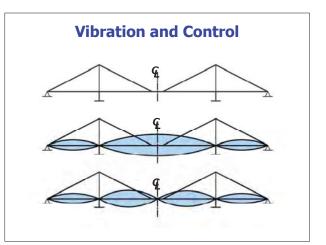
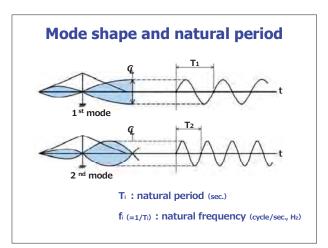

# **Contents of December Lecture**

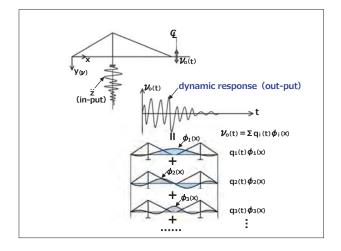
- Cable-stayed bridges -

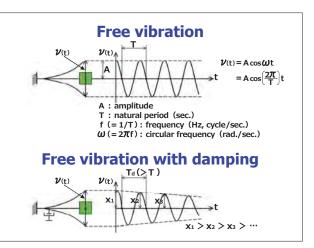

| [12-4-1] | Design and erection of cable       |
|----------|------------------------------------|
| [12-4-2] | Design of girder                   |
| [12-4-3] | Design of tower                    |
| [12-5-1] | Erection of girder and tower (DVD) |
| [12-5-2] | Wind resistant design (DVD)        |

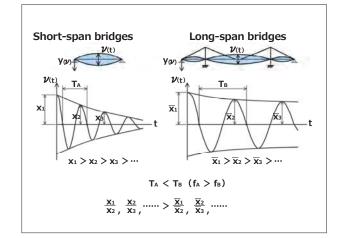
[12-5-3] Limit span of cable-stayed bridges

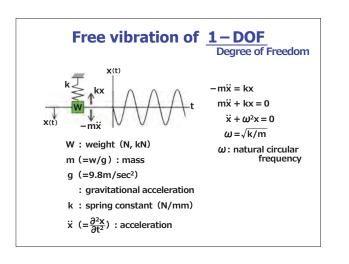

| [12-1-1]   | Fundamental of vibration (1)                 |
|------------|----------------------------------------------|
| [12-1-2]   | Fundamental of vibration (2)                 |
| [12-1-3]   | Vibration (DVD)                              |
| [12-2-1]   | History and name                             |
| [12-2-2]   | Design parameters and selection (1)          |
| [12-2-3]   | Design parameters and selection (2)<br>(DVD) |
| [12-3-1,2] | Estimation of stress resultants (1)          |
| [12-3-3]   | Exercises                                    |

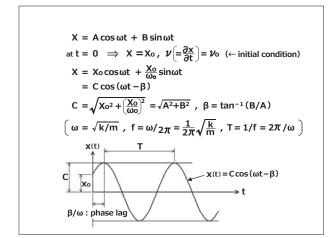


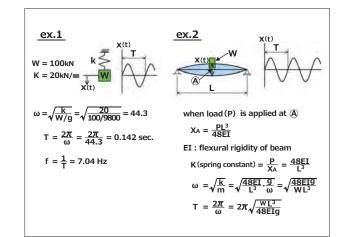



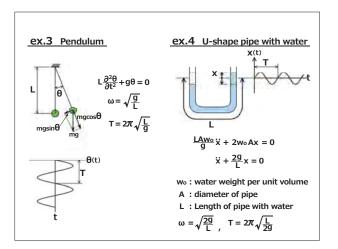



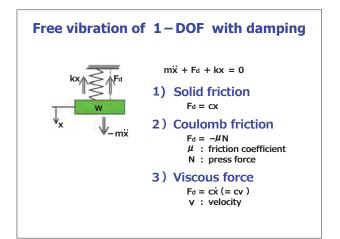



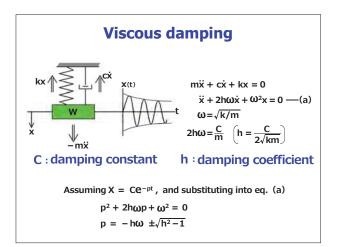



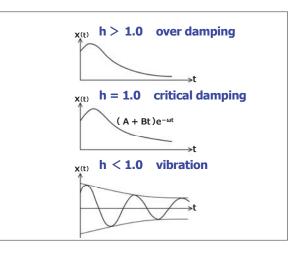



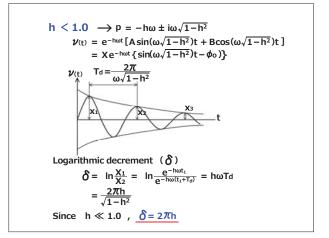



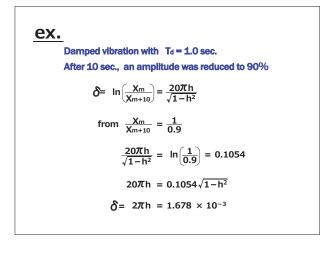



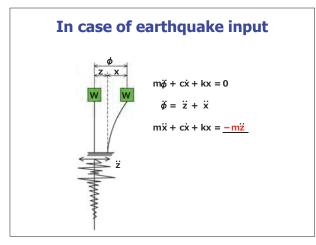



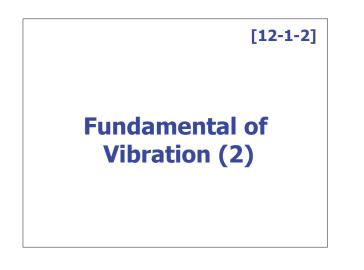



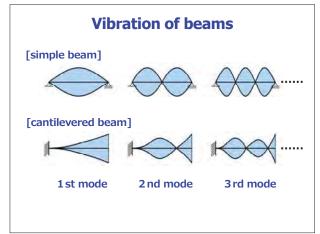



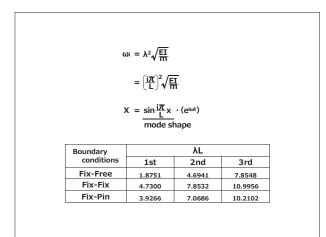



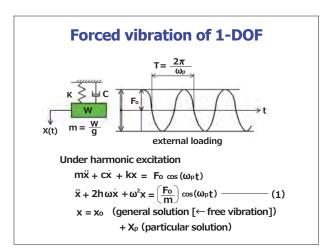



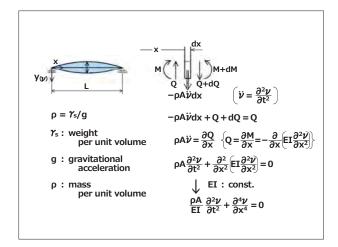



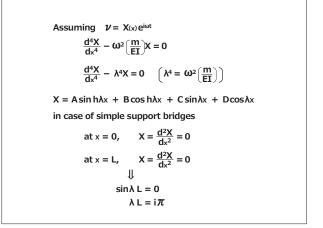



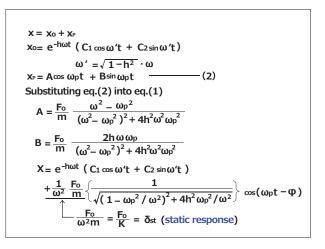



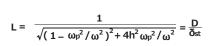



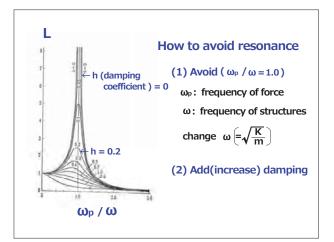



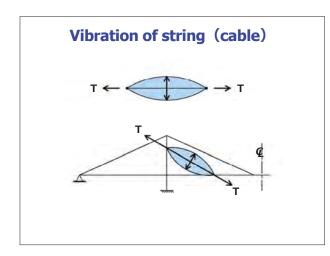


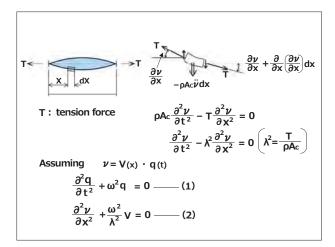


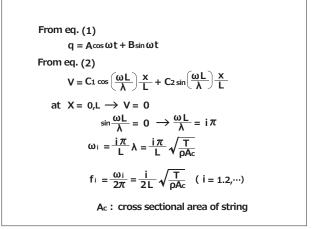


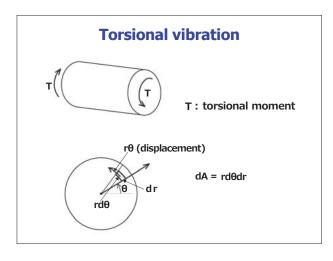


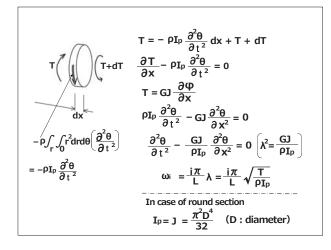



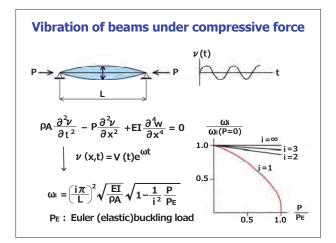


D: dynamic response

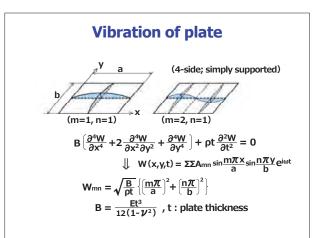

L: magnification factor (due to vibration)


Since first term ( $x_0$ : free vibration with damping) will distinguish as time passes , hence second term ( $x_p$ ) exists, and peak value  $L_{max}$ .


$$\frac{dL}{d(\omega_{\rm p}/\omega)} = D \rightarrow \frac{\omega_{\rm p}}{\omega} = \sqrt{1-2h^2}$$
$$L_{\rm max} \doteq \frac{1}{2h}$$



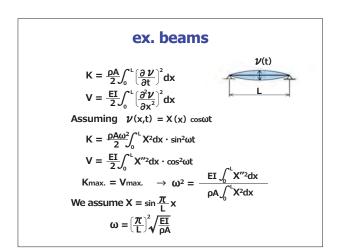



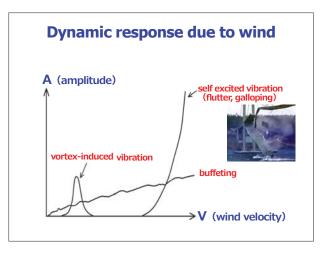


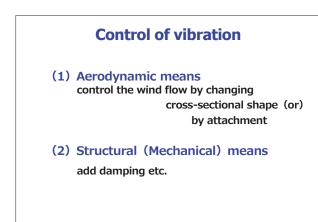


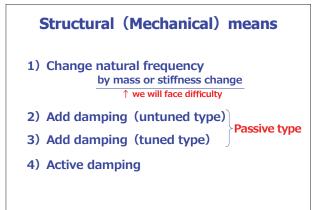


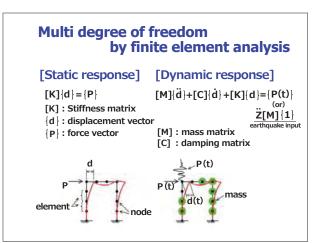


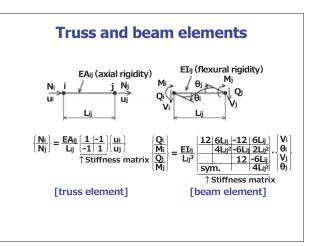



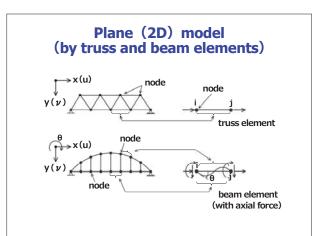


#### **Rayleigh method**

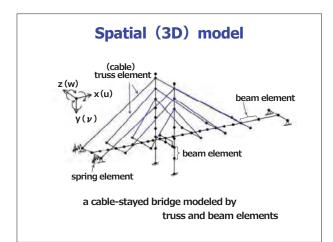

- approximate method for frequency -

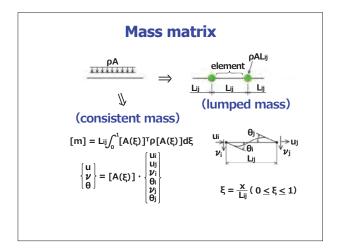

Assuming vibrational mode shape satisfying boundary conditions, and calculate kinematic energy (K) and strain energy (V),

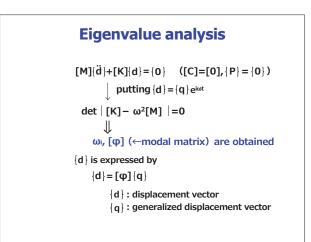


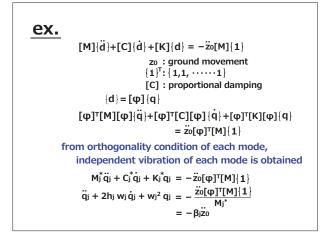



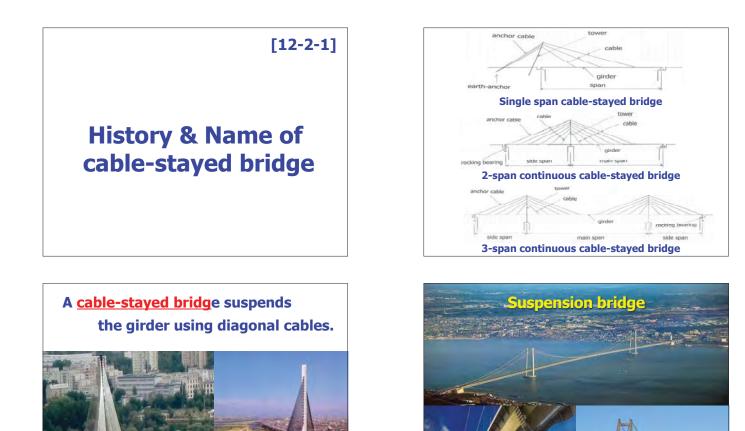



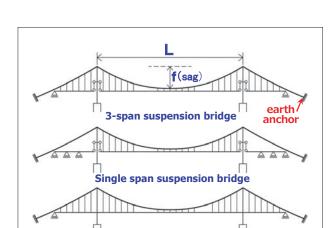



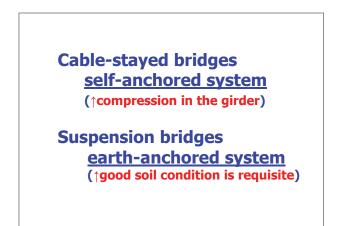





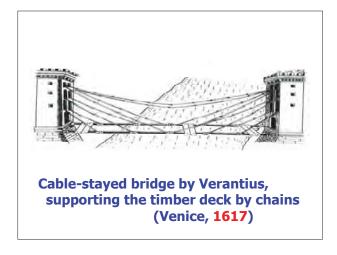



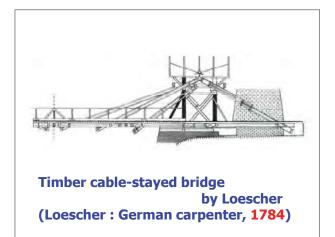



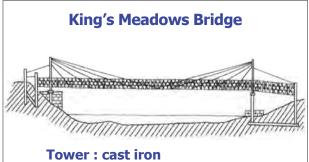





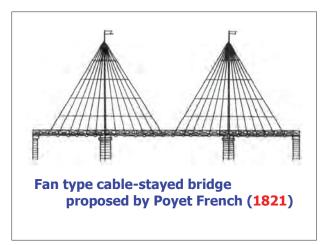


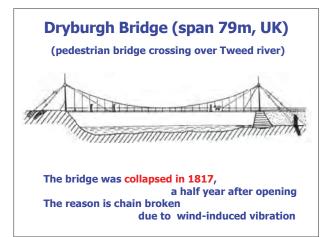



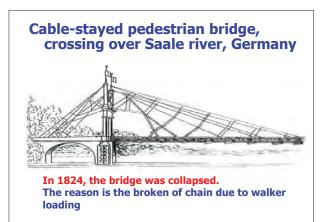



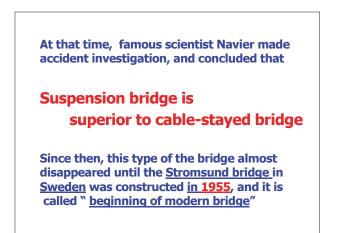



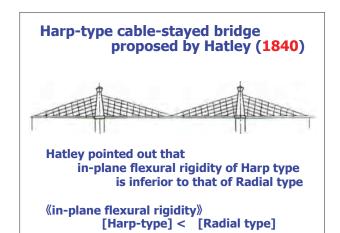

Continuous suspension bridge





Cable : wire constructed by English engineers, Redpath and Brown in 1817













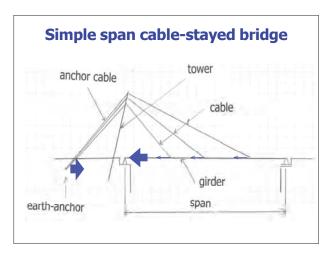
modern cable-stayed bridge

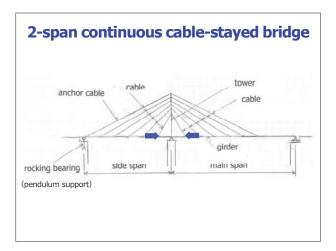


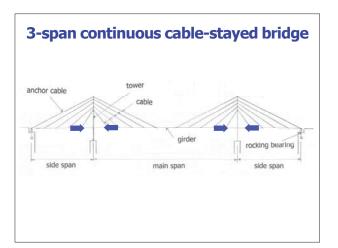


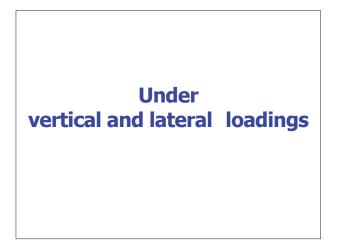
\*in order to increase in-plane flexural rigidity \*in order to get smaller deflection

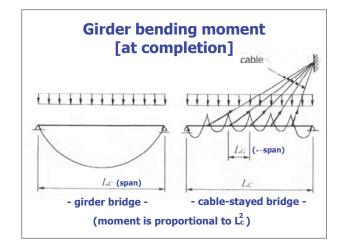
# Stromsund Br. (Sweden, 1955)





Beginning of modern cable-stayed bridge

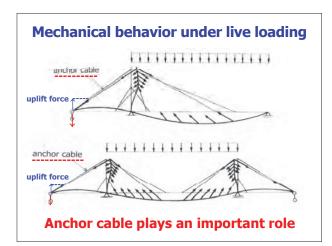


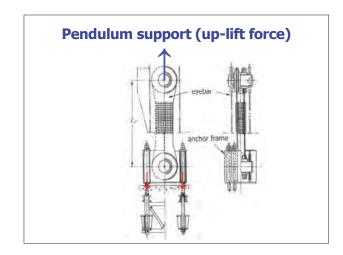



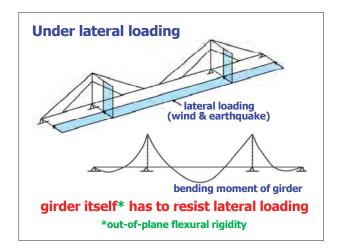



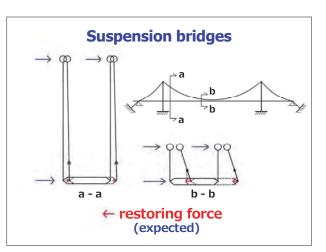


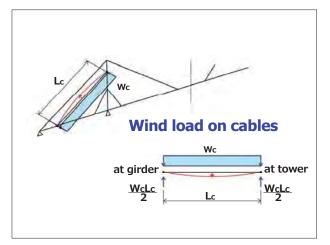




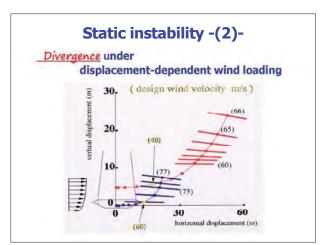



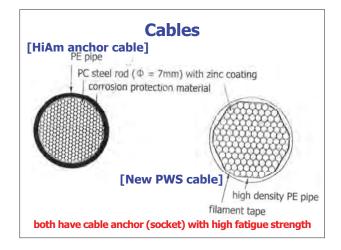



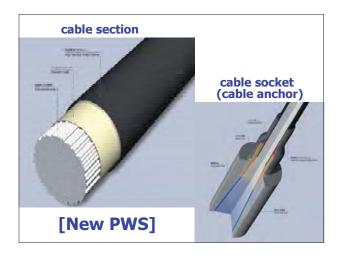



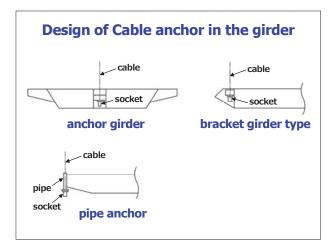





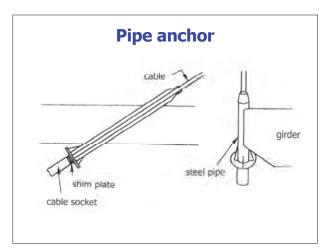



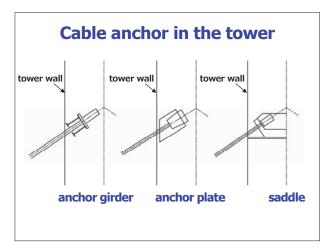



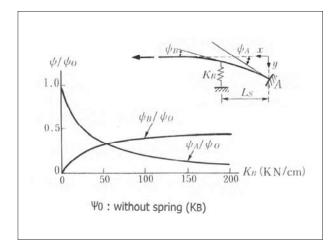




At the cable-stayed bridge design, if span length (L) is large, and the width of the girder (B) is narrow\*, (L/B is large more than around 40) be careful about lateral instability!! \* 2-lane bridge (narrow width) with long span

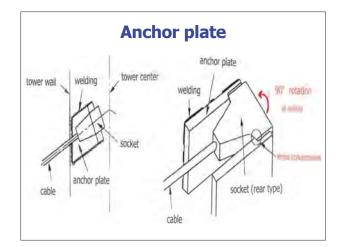


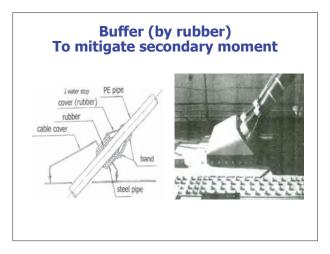




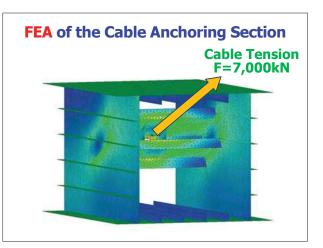



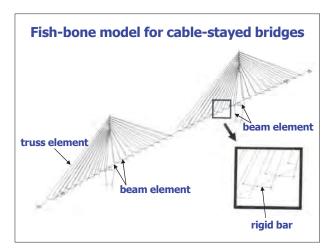




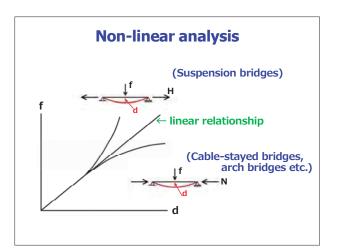


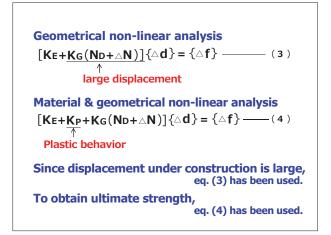


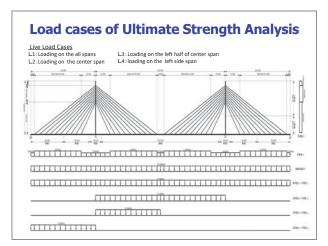


Calculation of stress resultants  $(N \rightarrow [\sigma_n], M \rightarrow [\sigma_b], Q \rightarrow [\tau_b], T \rightarrow [\tau_s])$ and deflection ( $\delta$ ) is carried out by <u>Finite Element Analysis using fish-bone</u> model (<u>beam or fiber elements</u>).

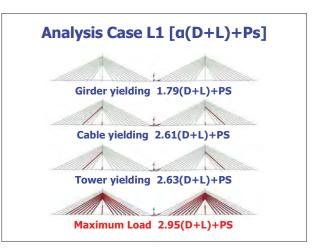
At structural details\* <u>accompanied by</u> <u>stress concentration\*\*</u>, <u>F</u>inite <u>E</u>lement <u>A</u>nalysis (<u>shell & solid elements</u>) is carried out.

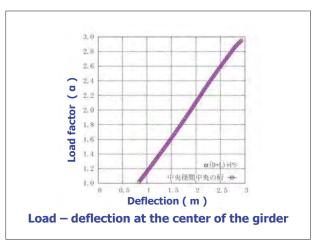

\* cable anchor structures etc.

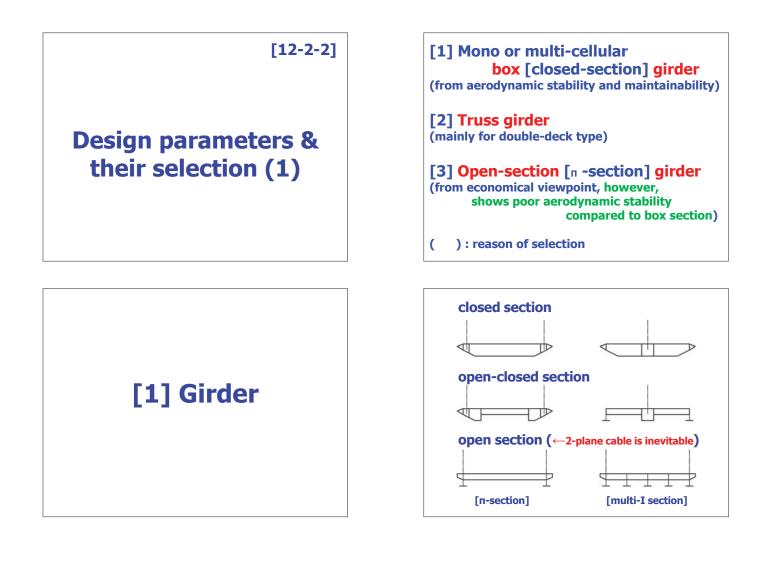

\*\* can not be caught by beam element

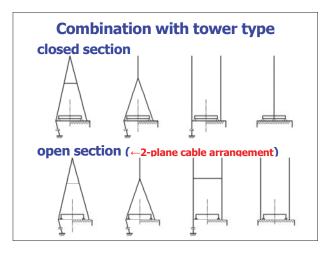




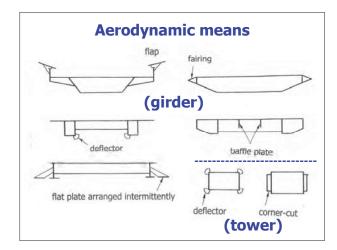


| Calculation theory for the design                                                  |  |  |
|------------------------------------------------------------------------------------|--|--|
| $[K_E] \{d\} = \{f\}$ (1)<br>linear analysis                                       |  |  |
| $\frac{[K_E+K_G(N_D)]\{d\}=\{f\}}{\text{linearized finite displacement analysis}}$ |  |  |
| $[K_E]$ : elastic matrix $N_D$ : initial axial force under dead load (given)       |  |  |
| $[K_{G}(N_{D})]$ : geometrical matrix                                              |  |  |
| {d} : displacement vector                                                          |  |  |
| $\{f\}$ : force vector                                                             |  |  |
| Influence line analysis is possible!!                                              |  |  |









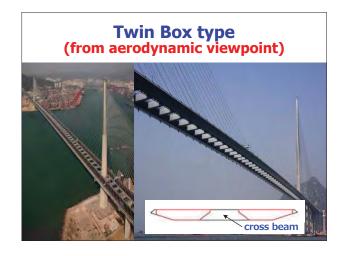














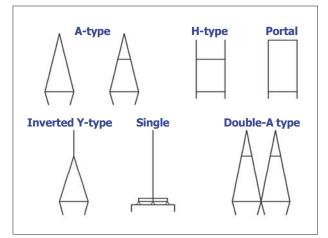







## [COST]

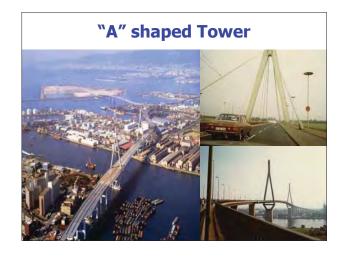
<u>Open ( $\pi$ -shape)section</u>  $\leq$  Closed box section { $\uparrow$ 2-plane cable\*}


- From aerodynamic stability viewpoint, closed section is preferably selected in Japan (typhoon attack)
- maintainability has to be taken into account

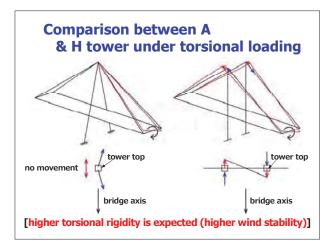
\*since torsional rigidity of the girder is very low











### **Curved Cable-stayed bridges**







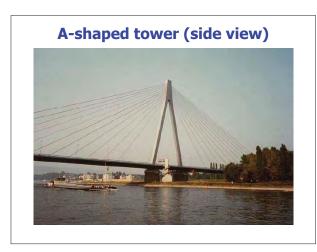




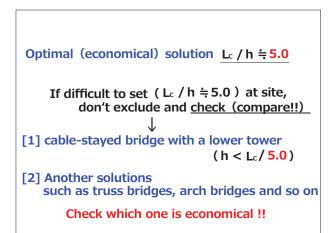






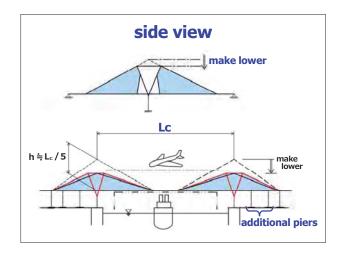




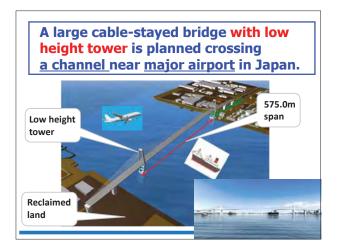



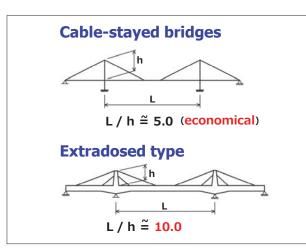




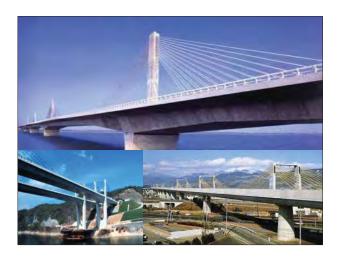














# Extradosed type bridge Odawara Blueway Bridge Tsukuhara Bridge (i) River Shinmeisei Bridge Himi Bridge



Under dead load,

cables support the girder.

However,

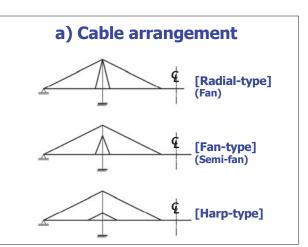
since cable inclination is small, & flexural rigidity of the girder is large,

live load is carried by mainly girder.

➡ less possibility of fatigue in cables

In Japan,

cable safety factor against breaking


is set <u>1.7</u> (for extradosed-type)

That for <u>conventional cable-stayed</u> bridge is <u>2.5</u>\*

\*in USA, Europe, it is 2.2.

# [3] Cables

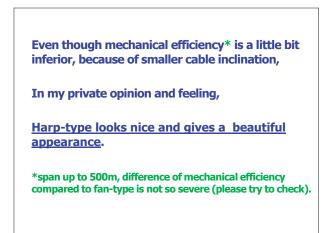
- a) Cable arrangement radial, fan, harp
- b) Cable number -multi, a few
- c) Cable plane –one & two
- d) Cable type

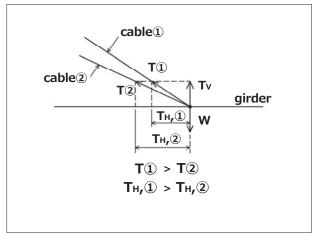


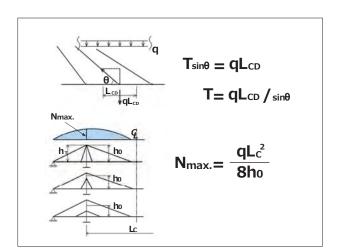


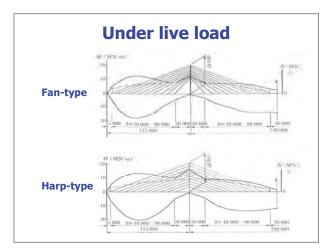
From mechanical viewpoint, since steep inclination of cables can be obtained, radial type is preferable.

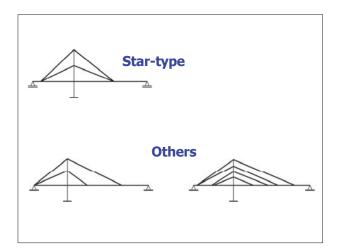
<u>However</u>, since multi-cable has to be anchored at one point, <u>complex structural detail for</u> <u>anchoring</u> is requisite,


Fan (or semi-fan) type has been preferably employed.


many practices is Fan type!!

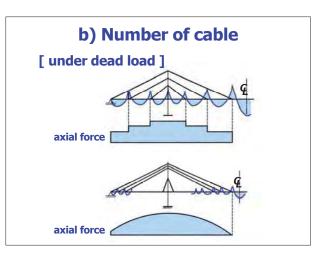


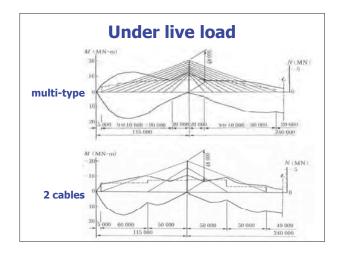






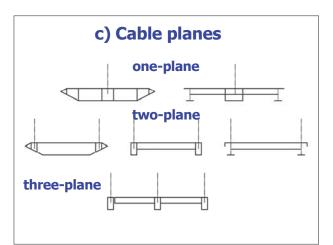










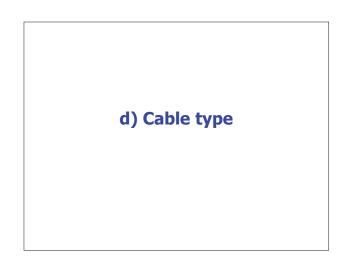






## Multi-cable

#### Cable size is smaller.

- ➡ easier to handle (design, fabrication, erection and maintenance viewpoints)
- ➡ easier to replace
- prone to vibrate (sometimes, need damper etc.)






## **One-plane**

- Box section with high torsional rigidity is requisite.
- Cable size is double compared to twoplane type.
- Bridge width becomes wider for central (single) tower and cable anchoring.

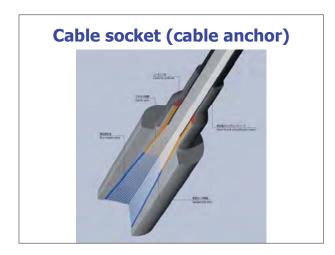
However, from aesthetic viewpoint, it is beautiful (my feeling)

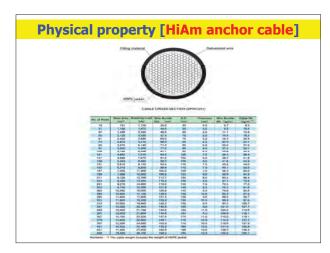


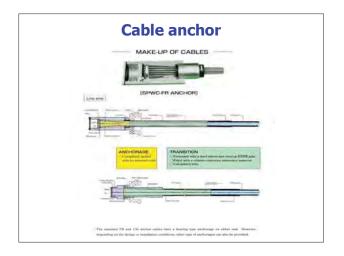


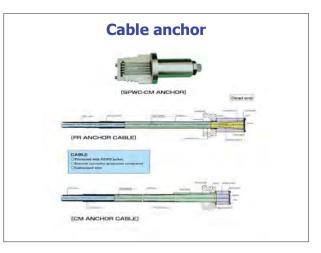


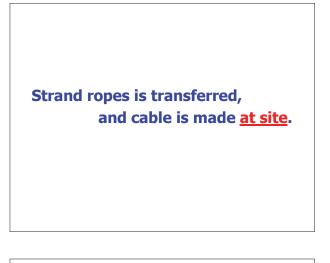
### [HiAm anchor cable] and [New PWS]


Cable strand with socket is made <u>at shop</u> and transferred to the site.


Anchor system (socket) has high fatigue strength.

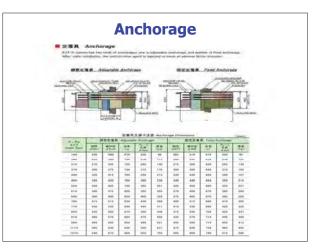

Strand is consisted by  $\Phi$ (diameter)-7\* parallel wire (New PWS has a slight twist).

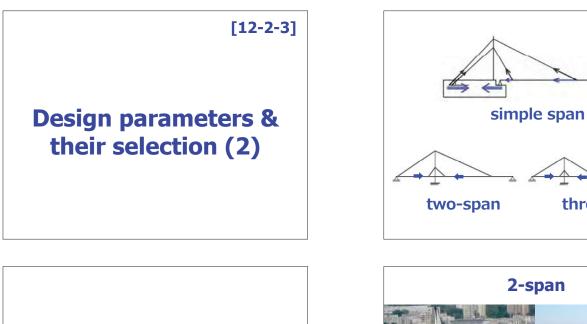

\*7-millimeter diameter (wire diameter of PWS for suspension bridge is around 5 millimeters)







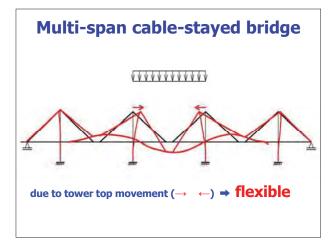



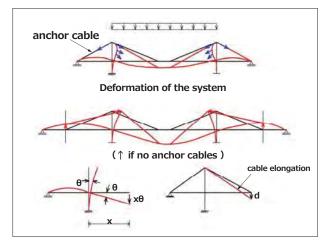


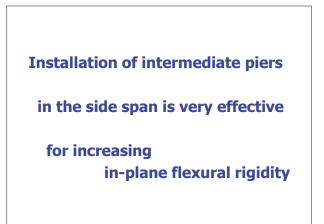


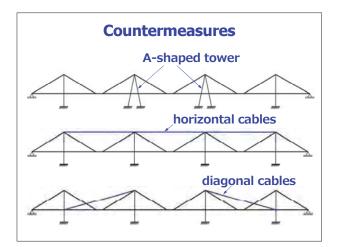






# [4] Number of span





three-span









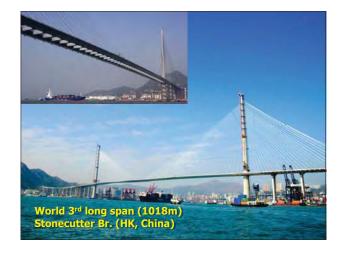




















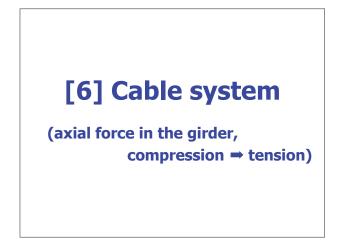


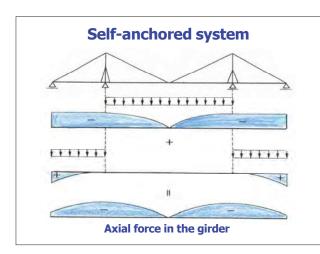


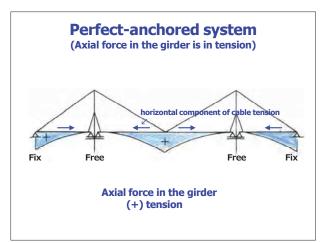


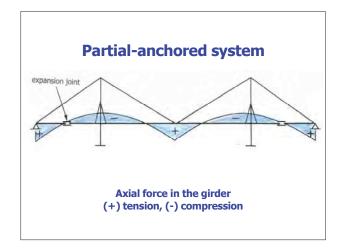


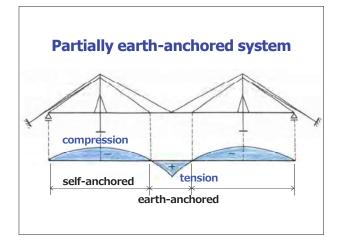


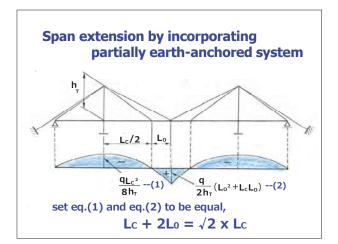


Max. (possible\*) span length of cable-stayed bridge will be

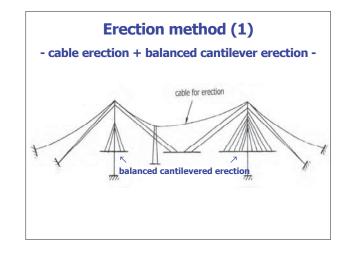

around 1,200-m (or 1,300-m)

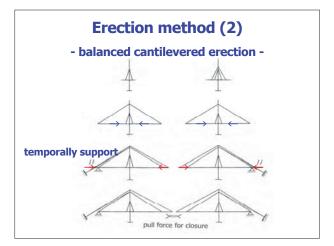

Suspension bridge will be


### <u>3,500-m</u>\*\*


\* From economical comparison with suspension bridge \*\*Using current cable material

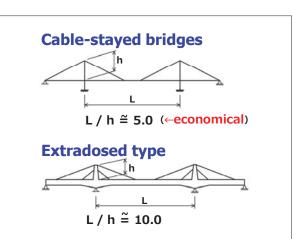


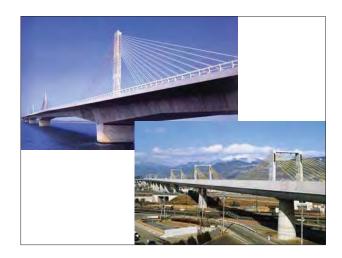



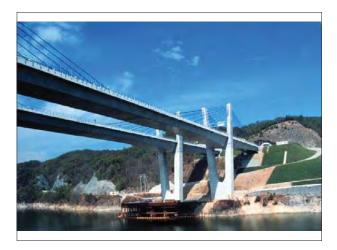







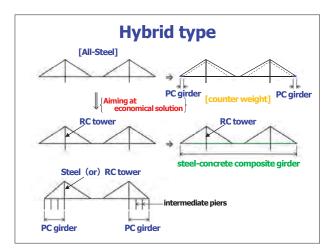



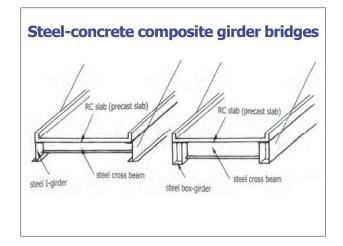




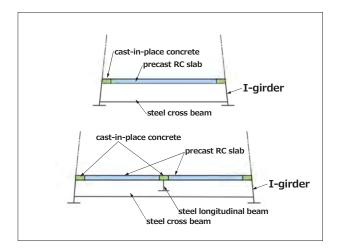


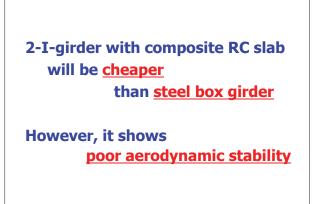






[8] Hybrid (composite & mixed) cable-stayed bridges

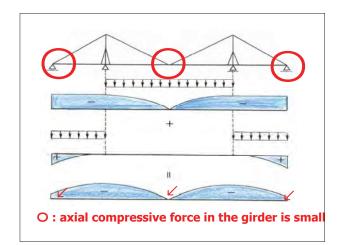


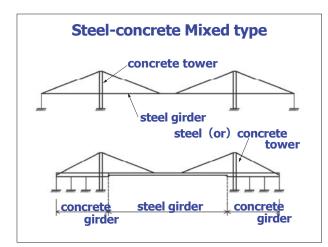




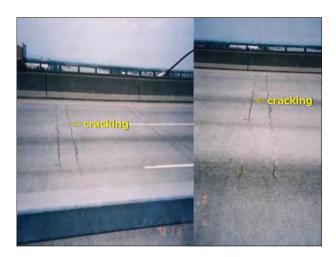


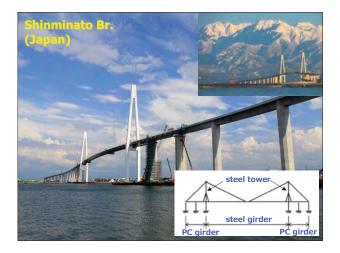


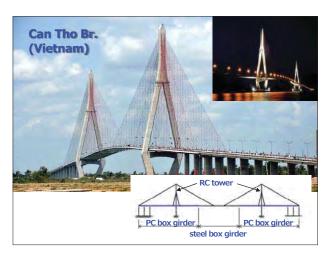








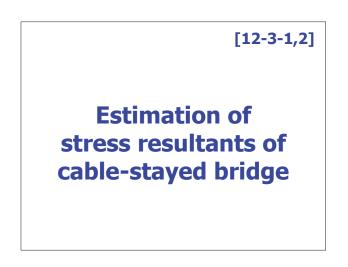


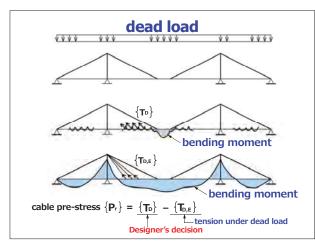


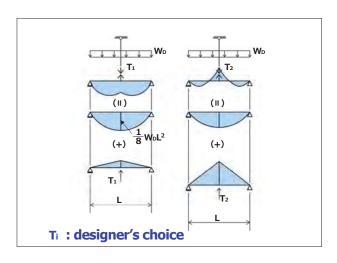


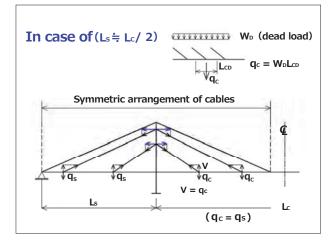


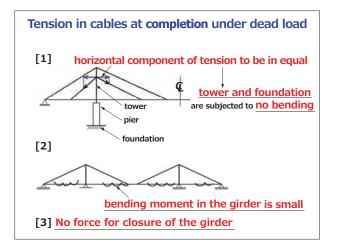


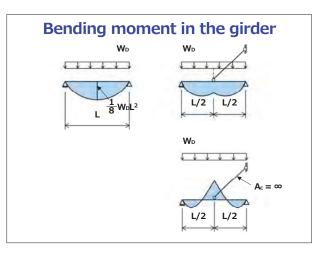


# [9] Pedestrian cable-stayed bridge

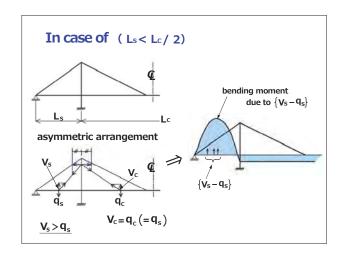


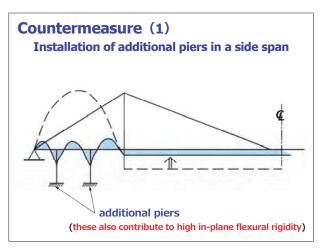



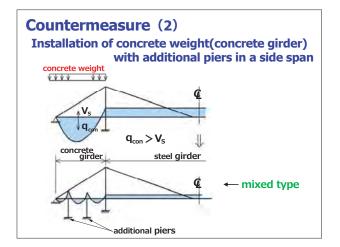



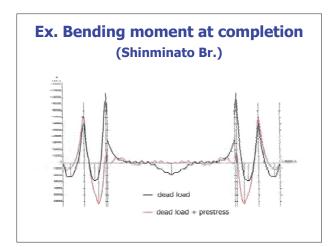



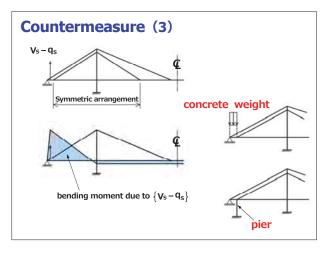





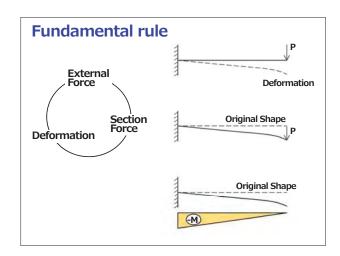



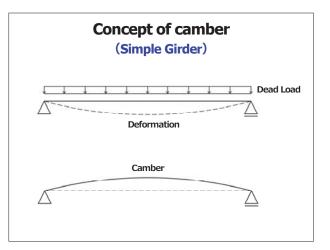



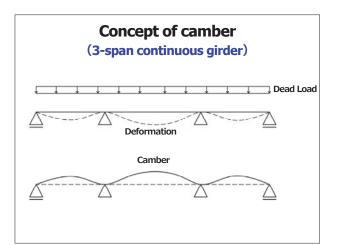


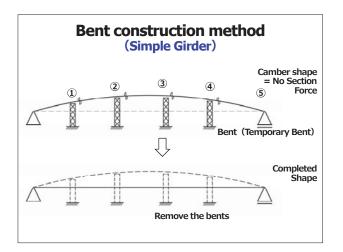


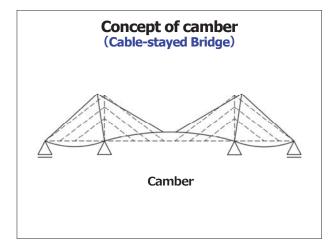


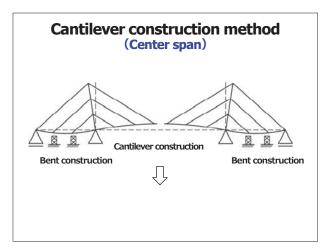



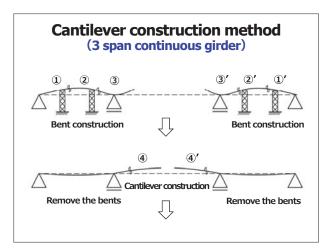



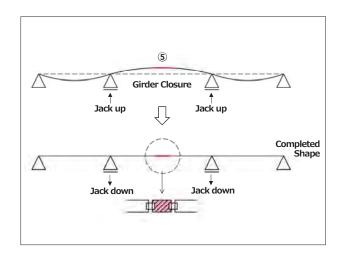



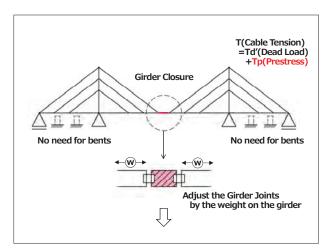


\* By Mr. Tomoda (NIPPON KOEI)

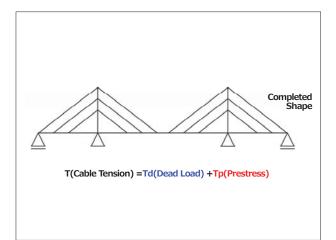


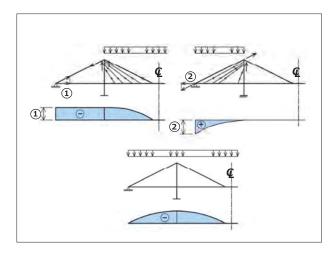



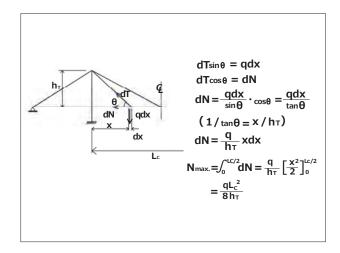


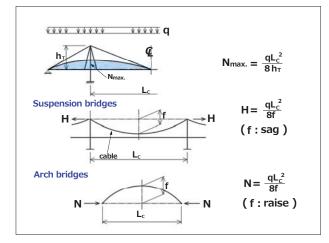



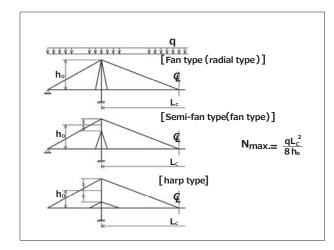



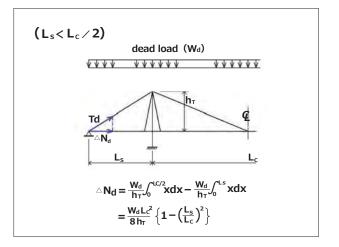


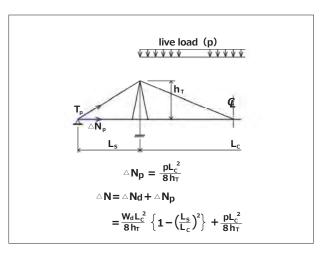



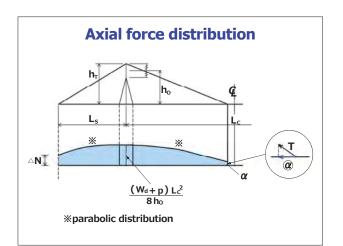



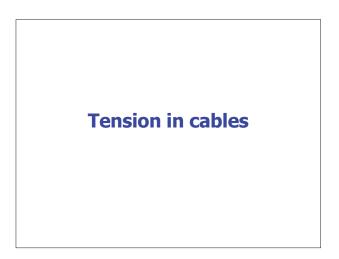



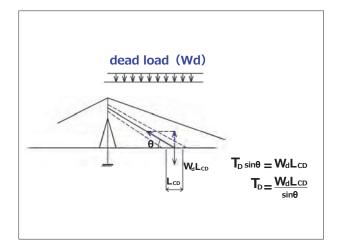



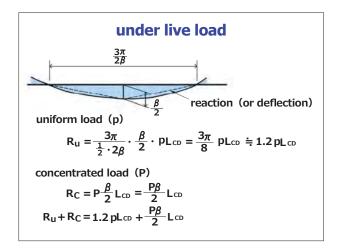



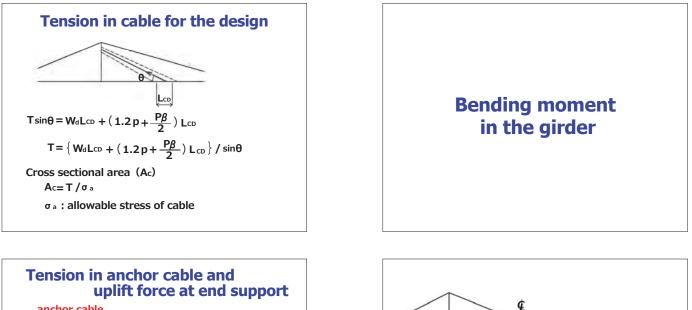



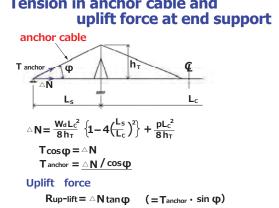



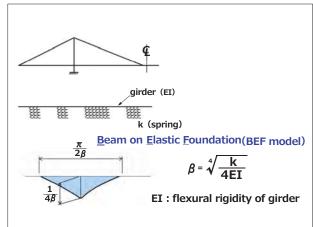



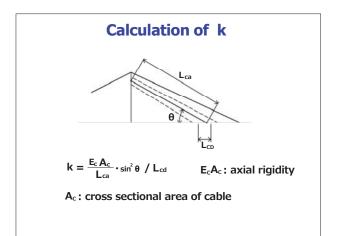



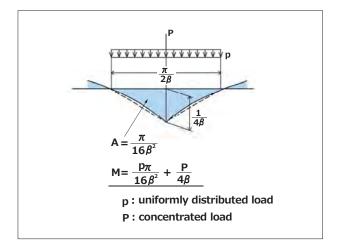



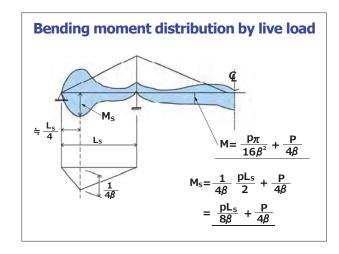



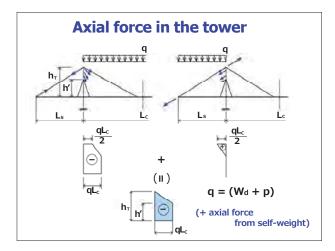



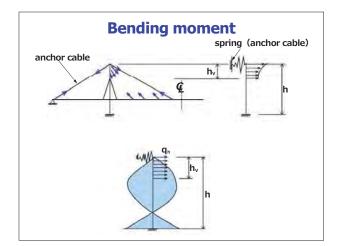





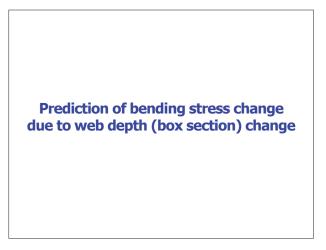



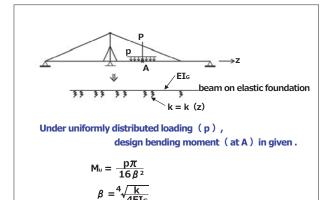



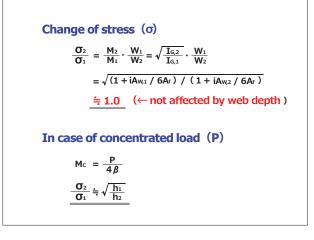


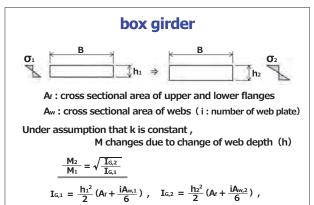



### Axial force and bending moment in the tower

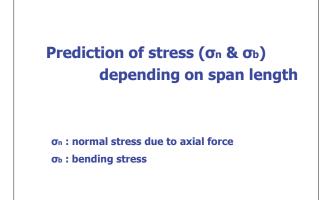


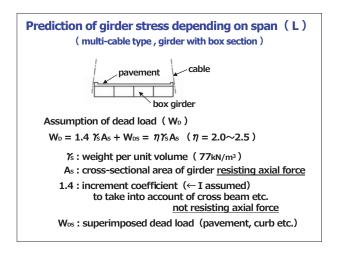



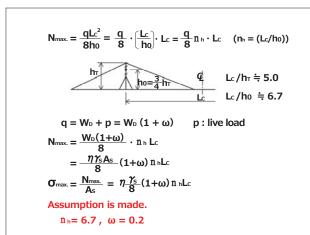


$$M_{max.} = \frac{R_{T}^{2}}{2q_{h}}$$

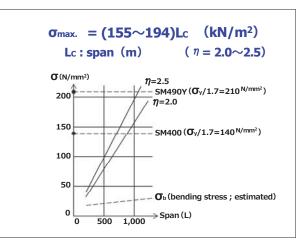

$$R_{T} = \frac{q_{h}h}{8} \xi (8-6\xi+\xi^{3})$$

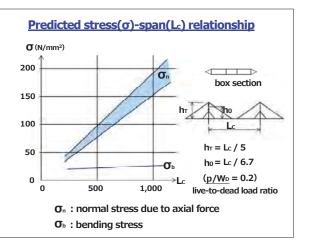
$$q_{h} = \frac{pL_{C}^{2}}{8h_{0}} / h_{V} , \quad \xi = \frac{h_{V}}{h}$$





$$W_1 = I_{G,1} / (h_1 / 2)$$
 ,  $W_2 = I_{G,2} / (h_2 / 2)$ 



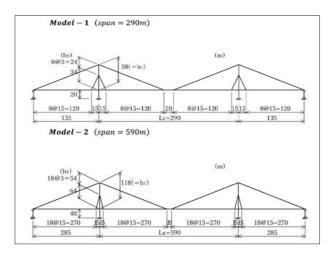




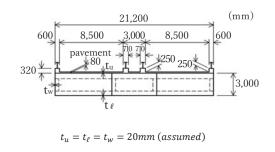




### [Model - 1]


### - Estimation of stress resultants -

**Exercises** 


Multi-cable type 3-span continuous bridge

span = 290m, 590m

- [1] Axial force and stress in the girder
- [2] Tension in cables and required cable area
- [3] Up-lift force
- [4] Bending moment and stress in the girder
- [5] Axial force in the tower
- [6] Max. bending moment in the tower

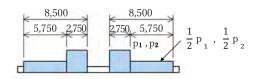


**Dead load**  $(W_d)$ 



| (including longitudinal ribs) |            |           |                   |   |            |
|-------------------------------|------------|-----------|-------------------|---|------------|
| Curb                          | 2×0.6×0    | 0.32×24.5 | kN/m <sup>3</sup> | = | 9.4 kN/m   |
| Median Strip                  | 2×0.71×0   | 0.32×24.5 | $kN/m^3$          | = | 11.1 kN/m  |
| Asphalt pavement              | 2×8.5×0    | 0.08×22.5 | $kN/m^3$          | = | 30.6 kN/m  |
| Rail                          | $4 \times$ |           | $kN/m^3$          |   | 2.0 kN/m   |
| Steel girder                  | 1.4×1.     | 088×77.5  | kN/m <sup>3</sup> | = | 118.0 kN/m |

\* 1.4 : take into account steel volume not resisting axial force such as cross beams , diaphragms etc.


\*\* 
$$A_S = 2 \times 21.2 \times 0.02 + 4 \times 3 \times 0.02 = 1.088 m^2$$
  
 $\left(I_S = 2 \times 21.2 \times 0.02 \times 1.5^2 + 4 \times \frac{0.02 \times 3^2}{12} = 2.088 m^4\right)$ 

[Model - 1]

 $W_{d} = 171.1 \text{ kN/m}$ 

### [Model - 1]

**Live load**  $(\beta - live load)$ 



 $p = \left(5.5m \times 10 \ kN/m^2 + \frac{1}{2} \times 11.5m \times 10 \ kN/m^2\right) \times \underline{10m} = \underline{1,125 \ kl}$ deal with as concentrated load (assumption)

P = 
$$5.5m \times 3.0 \ kN/m^2 + \frac{1}{2} \times 11.5m \times 3.0 \ kN/m^2 = 33.75 \ kN/m$$

uniform load  $P = 33.75 \ kN/m$ 

concentrated load 
$$p = 1,125 kN$$

{AA} Axial force and stress in the girder  $\binom{W_{1}+p}{2}$ 

$$N_{max.} = \frac{(W_d + p)}{8h_0} L_c^2 \quad (at \ tower)$$

$$L_c = 290m \ , \ h_0 = 34 + 24/2 = 46 \ m$$

$$W_d = 171.1 \ kN/m \ , \ p = 33.75 \ kN/m$$

$$N_{max.} = \frac{(171.1 + 33.75)}{8 \times 46} \times 290^2 = 46,815 \ kN$$

$$\sigma_{max.} = \frac{N_{max.}}{A_S} = \frac{46,815}{1.088} = 43,028 \ kN/m^2 \ (= 43.0 \ N/mm^2)$$

Axial force due to concentrated load (P)

$$N_{P} = P \frac{L'(\cong L_{c}/2)}{h_{T}} = 1,125 \times \frac{145}{58} = 2,813 \ kN$$
$$\sigma_{NP} = \frac{N_{p}}{A_{s}} = \frac{2,813}{1.088} = 2,585 \ kN/m^{2} \ (= 2.6 \ N/mm^{2})$$
$$\overline{\sigma_{max}} = \sigma_{max} + \sigma_{NP} = \frac{45.6 \ N/mm^{2}}{2}$$

 $\{AA - 1\}$  in case of Radial – type

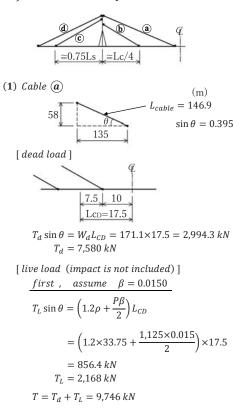
$$h_0 = h_T (= 58 m)$$

 $\sigma_{max.} = \frac{(171.1 + 33.75)}{8 \times 58} \times 290^2 / 1.088 = \frac{34.1 \ N/mm^2}{34.1 + 2.6} = 35.7 \ N/mm^2$ 

### 【Model - 1】

[Model - 1]

 $\{AA - 2\}$  in case of Harp - type


$$\sigma_{max.} = \frac{\frac{42}{16}}{\frac{171.1 + 33.75}{8 \times 37}} \times 290^2 / 1.088 = 53.5 \ N/mm^2$$

 $\sigma_{max.} = \sigma_{max.} + \sigma_{NP} = 53.5 + 2.6 = 56.1 \ N/mm^2$ 

Maximum stress at the tower point

|                  |      |        | N/mm <sup>2</sup> |
|------------------|------|--------|-------------------|
|                  | Fan  | Radial | Harp              |
| $\sigma_{\rm n}$ | 45.6 | 35.7   | 56.1              |

{**BB**} Cable tension force



[Model - 1]

Allowable stress of cable is assumed  

$$\sigma_{a} = 640 \ N/mm^{2} \quad \left(\sigma_{a} = \frac{\sigma_{B}}{2.5}\right) \\ \uparrow breaking$$

$$A_{c} > \frac{9,746 \times 10^{3}}{640} \times 1.1 = 16,751 \ mm^{2} \\ \uparrow margin$$

$$\phi 7 \ (A = 38.47 \ mm^{2})$$

$$\frac{No. \ of \ wire \ > \ \frac{16,751}{38.47} = \underline{435.4} \ (436) \\ \uparrow \ check \ Catalog \ of \ cables$$

$$K = \frac{EA_{c}}{L_{cable}} \sin^{2} \theta / L_{CD}$$

$$= \frac{2 \times 10^{8} \times 0.0168}{146.9} \times 0.395^{2} / 17.5 = 203.9 \ kN/m^{2}$$

$$\beta = \sqrt[4]{\frac{K}{4EI}} = \sqrt[4]{\frac{203.9}{4 \times 2.0 \times 10^{8} \times 2.088}} = \underline{0.0187} \quad (\neq 0.0150)$$

$$Set \ \beta = 0.0187 \ , \ and \ repeat.$$

$$T_{L} \sin \theta = \left(1.2 \times 33.75 + \frac{1,125 \times 0.0187}{2}\right) \times 17.5$$

$$= 892.8 \ kN$$

$$T_{D} + T_{L} = 9,840 \ kN$$

$$A_{c} > \frac{9,840 \times 10^{3}}{640} \times 1.1 = 16,913 \ mm^{2} \ (0.0169 \ m^{4})$$

$$K = \frac{2 \times 10^{8} \times 0.0169}{146.9} \times 0.395^{2} / 17.5 = 205.1 \ kN/m^{2}$$

205.1  $\frac{200.1}{4 \times 2.0 \times 10^8 \times 2.088} = \frac{0.0187}{0.0187}$  converged !!  $\beta =$ (**2**) Cable **b**  $L_{cable} = 88.0$ (m) 4@3=12 34 Or  $\sin\theta = 0.523$ 15 4@15=60 75 ≅Lc/4 b 7.5 7.5 LcD=15  $T_d \sin \theta = 171.1 \times 15 = 2,567 \, kN$  $T_d = 4,907 \ kN$ assume  $\beta = 0.023$  $T_L \sin \theta = \left(1.2 \times 33.75 + \frac{1,125 \times 0.023}{2}\right) \times 15$  $= \begin{array}{l} 801 \ kN \\ T_L = 1,533 \ kN \\ T_d + T_L = 6,440 \ kN \end{array}$  $A_C > \frac{6,440 \times 10^3}{640} \times 1.1 = 11,069 \ mm^2 \ (0.0111 \ m^4)$  $K = \frac{2 \times 10^8 \times 0.011}{88} \times 0.523^2 / 15 = 455.9 \ kN/m^2$  $\beta = \sqrt[4]{\frac{455.9}{4 \times 2.0 \times 10^8 \times 2.088}} = \underline{0.0230} \quad (OK !!)$ 

【Model - 1】

[Model - 1]

(3) Cable (c)  

$$L_{cable} = 117.2$$

$$f(m)$$

(4) Cable (a) 
$$\leftarrow Anchor cable$$
  

$$\Delta N = \frac{W_d L_c^2}{8h_T} \left\{ 1 - 4 \left(\frac{L_s}{L_c}\right)^2 \right\} + \frac{pL_c^2}{8h_T} (+N_\rho)$$

$$= \frac{171.1 \times 290^2}{8 \times 58} \cdot \left\{ 1 - 4 \left(\frac{134}{290}\right)^2 \right\} + \frac{33.75 \times 290^2}{8 \times 58} + 2,813$$

$$= 4,125 + 6,117 + 2,813$$

$$= 13,055 \ kN^{(\bullet)}$$

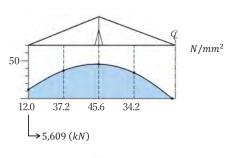
$$T_A = \frac{146.9}{135} \qquad (m)$$

$$T_A \cos \phi = \Delta N$$

$$T_A \cos \phi = \Delta N$$

$$T_A = \frac{\Delta N}{\cos \phi} = 14,206 \ kN$$

$$A_c > \frac{14,206 \times 10^3}{640} \times 1.1 = 24,417 \ mm^2 \ (0.0244 \ m^4)$$


$$\{CC\} \ UP - lift force$$

$$R_u = \Delta N \tan \phi = 13,055 \times \frac{58}{135} = 5,609 \ kN$$

$$( (\bullet) \sigma_n/end = \frac{13,055}{1.088} = 11,999 \ kN/m^2 = 12.0 \ N/mm^2 )$$

[Model - 1]







|   | Ac (mm <sup>2</sup> ) | No. of $\phi$ 7 wire |
|---|-----------------------|----------------------|
| a | 16,913                | 440                  |
| b | 11,069                | 286                  |
| c | 12,946                | 338                  |
| d | 24,417                | 634                  |
|   |                       | 💥 per bridge         |

$$\phi 7 \; (A \cong 38.5 \; mm^2)$$

[Model - 1] {DD} Bending moment and stress in the girder

| C | 0              | a a                |
|---|----------------|--------------------|
|   | position *     | β                  |
| a | $\cong$ Lc / 2 | 0.0187             |
| b | $\cong$ Lc / 4 | 0.0230             |
| C | ≅ 3Ls / 4      | 0.0200             |
|   |                | * from tower point |

(1) at **a** 

$$M = \frac{\rho \pi}{16\beta^2} + \frac{P}{4\beta}$$

$$= \frac{33.75 \times \pi}{16 \times 0.0187^2} + \frac{1,125}{4 \times 0.0187}$$

$$= 18,941 + 15,040$$

$$= 33,981 \ kN \cdot m$$

$$\sigma_b = \frac{33,981}{2.088} \times \frac{1.5}{1.5} = \frac{24.4 \ N/mm^2}{1.088} \times \frac{1.5}{1.6} = \frac{24.4 \ N/mm^2}{1.088}$$
(2) at (b)
$$M = \frac{33.75 \times \pi}{16 \times 0.0230^2} + \frac{1,125}{4 \times 0.0230}$$

$$= 12,521 + 12,228$$

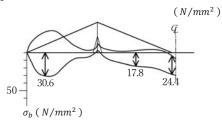
= 24,749 
$$kN \cdot m$$

$$\sigma_b = \frac{24,749}{2.088} \times 1.5 = 17,779 \ kN/m^2 = \frac{17.8 \ N/mm^2}{2.088}$$

### [Model - 1]

(3) at (c)  

$$M = \frac{\rho L_s}{8\beta} + \frac{P}{4\beta}$$


$$= \frac{33.75 \times 135}{8 \times 0.02} + \frac{1,125}{4 \times 0.02}$$

$$= 28,477 + 14,063$$

$$= 42,540 \text{ kN} \cdot m$$

$$\sigma_b = \frac{42,540}{2.088} \times 1.5 = \underline{30.6 \text{ N/mm}^2}$$

 $\{\sigma_b\}$ 



*{EE}* Axial force in the tower

$$N_T = (W_d + \rho) L_c + 2P$$
  
= (171.1 + 33.75)× 290 + 2×1,125 = 61,657 kN  
61,657 kN  
(+ self weight )

#### {FF} Max. bending moment in the tower

$$\xi = \frac{h_V}{h} = \frac{24}{78} = 0.308$$

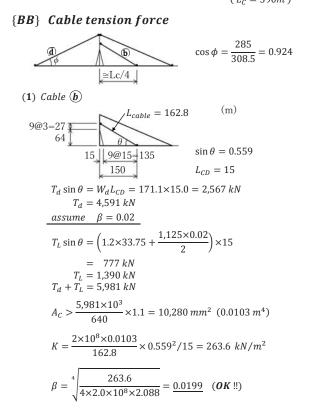
$$q_h = \frac{pL_c^2}{8h_0} / h_V = \frac{33.75 \times 290^2}{8 \times 46} \times \frac{1}{24} = 321 \ kN/m$$

$$R_T = \frac{q_h h}{8} \ \xi \ (8 - 6\xi + \xi^3)$$

$$= \frac{321 \times 78}{8} \times 0.308 \times (8 - 6 \times 0.308 + 0.308^3)$$

$$= 5.958 \ kN$$

$$M_{max.} = \frac{R_T^2}{2 \times R_h} = \frac{5.958^2}{2 \times 321}$$


$$= \frac{55.292 \ kN \cdot m}{8}$$

Model - 2( $L_c = 590m$ )

### $\{AA\}$ Axial force and stress in the girder

$$\begin{split} N_{max.} &= \frac{(W_d + p)}{8h_0} L_c^2 \quad (at \ tower) \\ L_c &= 590m \ , \ h_0 &= 64 + 54/2 = 91 \ m \\ W_d &= 171.1 \ kN/m \ , \ p &= 33.75 \ kN/m \\ N_{max.} &= \frac{(171.1 + 33.75)}{8 \times 91} \times 590^2 = 97,951 \ kN \\ \sigma_{max.} &= \frac{N_{max.}}{A_s} = \frac{97,951}{1.088} = 90,028 \ kN/m^2 \ (= 90.0 \ N/mm^2) \\ N_p &\cong P \ \frac{(L_c/2)}{h_T} = 1,125 \times \frac{295}{118} = 2,813 \ kN \\ \sigma_{NP} &= \frac{N_p}{A_s} = \frac{2,813}{1.088} = 2,585 \ kN/m^2 \ (= 2.6 \ N/mm^2) \\ \overline{\sigma_{max.}} &= \sigma_{max.} + \sigma_{NP} = \underline{92.6 \ N/mm^2} \end{split}$$

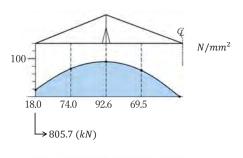
Model - 2( $L_c = 590m$ )



Model - 2( $L_c = 590m$ )

(2) Cable  $(d) \leftarrow \underline{Anchor \ cable}$ 

$$\begin{split} \Delta N &= \frac{W_a L_c^2}{8 h_T} \left\{ 1 - 4 \left(\frac{L_s}{L_c}\right)^2 \right\} + \frac{p L_c^2}{8 h_T} \left( + N_\rho \right) \\ &= \frac{171.1 \times 590^2}{8 \times 118} \cdot \left\{ 1 - 4 \left(\frac{285}{590}\right)^2 \right\} + \frac{33.75 \times 590^2}{8 \times 118} + 2,813 \\ &= 4,202 + 12,445 + 2,813 \\ &= 19,460 \ kN^{(*)} \\ T_A \cos \phi &= \Delta N \\ T_A \cos \phi &= \Delta N \\ T_A &= \frac{\Delta N}{\cos \phi} = 21,061 \ kN \\ A_c &> \frac{21,061 \times 10^3}{640} \times 1.1 = 36,199 \ mm^2 \ (0.0362 \ m^4) \end{split}$$


No. of  $\phi$ 7 wire > 941


$$\{CC\}$$
 UP - lift force

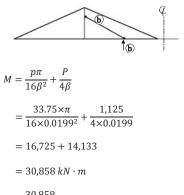
$$R_u = \Delta N \tan \phi = 19,460 \times \frac{118}{285} = 8,057 \, kN$$

$$( \circ \sigma_n/end = \frac{19,460}{1.088} = 17,886 \ kN/m^2 = 17.9 \ N/mm^2 )$$

 $\{\sigma_n\}$ 






|   | Ac (mm <sup>2</sup> ) | No. of $\phi$ 7 wire |
|---|-----------------------|----------------------|
| b | 10,208                | 268                  |
| d | 36,199                | 941                  |

💥 per bridge



Mode| - 2( $L_c = 590m$ )

#### {DD} Bending moment and stress in the girder



$$\sigma_b = \frac{30,858}{2.088} \times 1.5 = 22,168 \ kN/m^2 = \underline{22.2 \ N/mm^2}$$

Mode | - 2( $L_c = 590m$ )

### {EE} Axial force in the tower

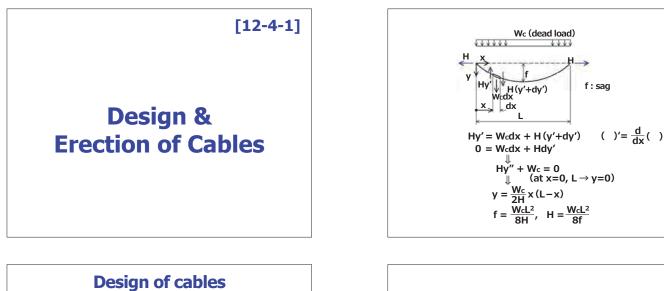
$$N_T = (W_d + p) L_c + 2P$$
  
= (171.1 + 33.75)× 590 + 2×1,125 = 123,112 kN

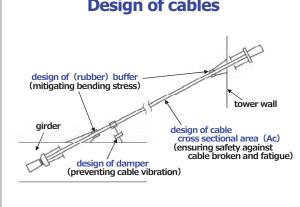
### 123,112 kN (+ self weight )

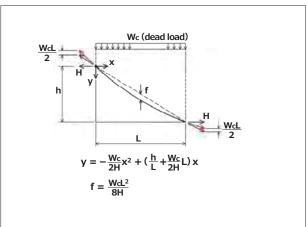
#### {FF} Max. bending moment in the tower

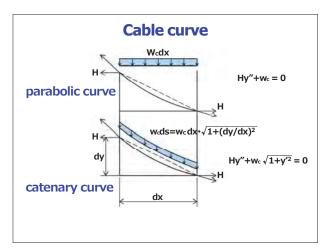
$$\xi = \frac{h_V}{h} = \frac{54}{158} = 0.342$$

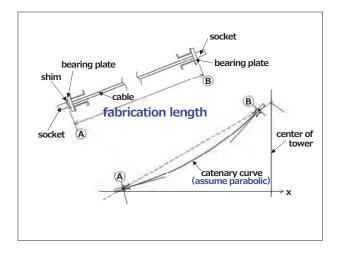
$$q_h = \frac{pL_c^2}{8h_0} / h_V = \frac{33.75 \times 590^2}{8 \times 91} \times \frac{1}{54} = 299 \ kN/m$$

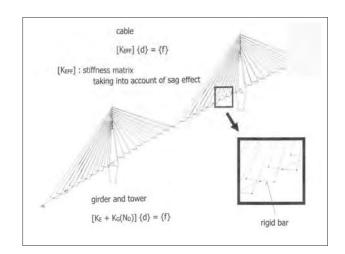

$$R_T = \frac{q_h h}{8} \xi (8 - 6\xi + \xi^3)$$

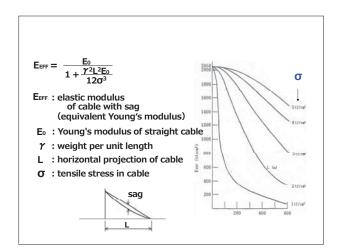

$$= \frac{299 \times 158}{8} \times 0.342 \times (8 - 6 \times 0.342 + 0.342^3)$$


$$= 12,093 \ kN$$


$$M_{max.} = \frac{R_T^2}{2 \times R_h} = \frac{12,093^2}{2 \times 299}$$


$$= 244,550 \ kN \cdot m$$

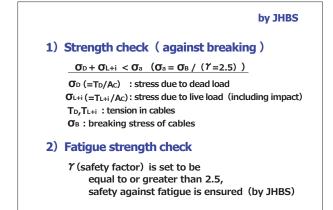


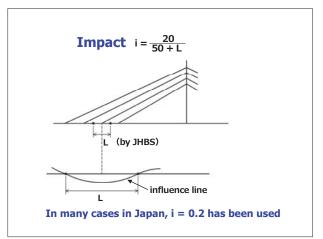



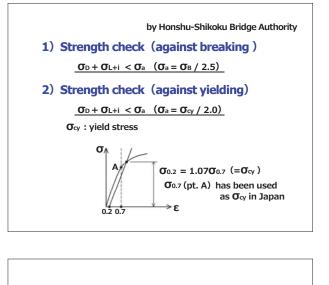


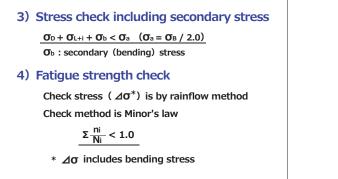


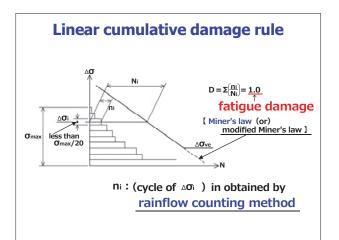


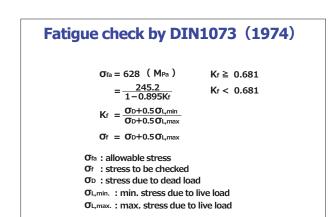



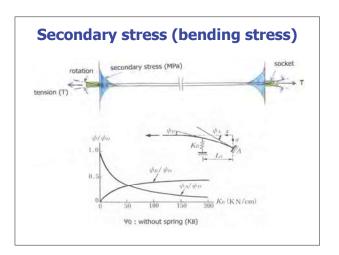



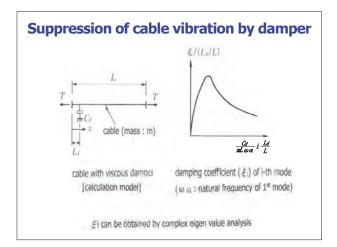


$$\begin{split} \mathsf{E}_{\text{EFF}} &= \frac{\mathsf{E}_0}{1 + \frac{\gamma^2 L^2}{12 \sigma m^3} \cdot \frac{(1 + \mu)^4}{16 \mu^2} \cdot \mathsf{E}_0} \\ \sigma_m &= \frac{\sigma_0 + \sigma_u}{2} \ , \mu = \frac{\sigma_0}{\sigma_u} \\ \sigma_0 &: \text{max. stress} \\ \sigma_u &: \text{min. stress} \end{split}$$

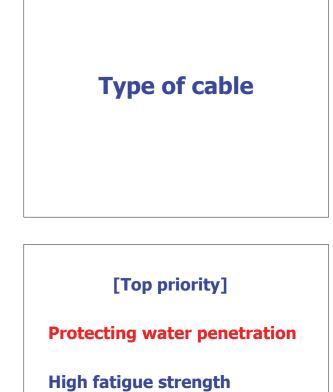

$$\begin{split} \mathsf{E}_{\text{EFF}} &= \frac{\mathsf{E}_0}{1 + \frac{(\gamma L)^2 (\mathsf{T}_1 + \mathsf{T}_f) \, \mathsf{A}_c \, \mathsf{E}_0}{24 \, \mathsf{T}_1^2 \, \mathsf{T}_f^2}} \qquad (by \, \mathsf{ASCE}) \\ \mathsf{A}_c &: \text{cross-sectional area of cable} \\ \mathsf{T}_i &: \text{min. tension} \\ \mathsf{T}_f &: \text{max. tension} \end{split}$$



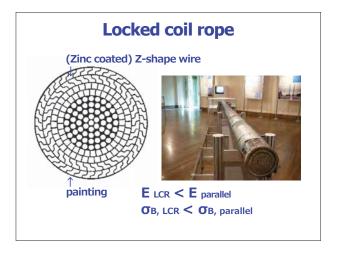



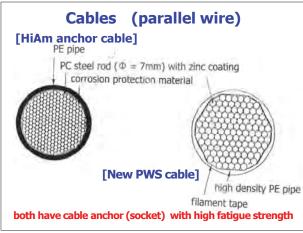










at anchor system (socket)

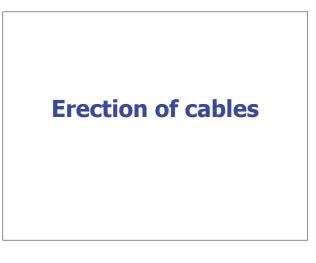






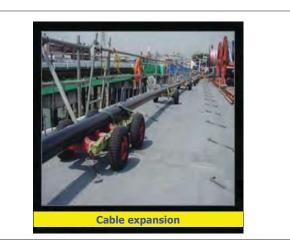


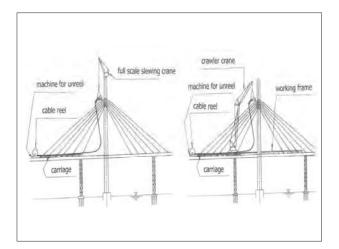
|                                                                                                              | / thea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  | )                                                                                                                                                                                                                        | wind wire                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  | 1                                                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| No. of Wome                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Repairing Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d CHORE SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                              | Tophistal                                                                                                                                                                                                                | New Barrater                                                                                                                                                 | Catar WL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Same/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( and                                                                            | ( and )                                                                                                                                                                                                                  | den Thatter                                                                                                                                                  | Segres 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|                                                                                                              | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                               | 4.3                                                                                                                                                                                                                      | 17                                                                                                                                                           | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 27                                                                                                           | 1.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  | 4.0                                                                                                                                                                                                                      | 11.1                                                                                                                                                         | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                                                                                                              | 3.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18,1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75                                                                               | 3.5                                                                                                                                                                                                                      | 16.8                                                                                                                                                         | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 81                                                                                                           | 2.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79                                                                               | 8.5                                                                                                                                                                                                                      | 18.4                                                                                                                                                         | 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                                                                                                              | 1.610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                | 5.5                                                                                                                                                                                                                      | 25.0                                                                                                                                                         | 26.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                                                                                                              | 8.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                              | 8.2                                                                                                                                                                                                                      | 22.4                                                                                                                                                         | 30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 100                                                                                                          | 8.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                              | 22                                                                                                                                                                                                                       | 38.4                                                                                                                                                         | 88.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  | 6.5                                                                                                                                                                                                                      | 14.7                                                                                                                                                         | 41.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 10-                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| 107                                                                                                          | 4.890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 858                                                                              | 8.5                                                                                                                                                                                                                      | 41.8                                                                                                                                                         | 84.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 107<br>1000<br>101                                                                                           | 4.890<br>8.363<br>8.819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110                                                                              | 7.6                                                                                                                                                                                                                      | 45.8                                                                                                                                                         | 48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < |
| 127<br>1380<br>1491,<br>1497                                                                                 | 4.890<br>1.383<br>8.819<br>6.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,400<br>8,100<br>8,810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.0<br>54.4<br>56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 410<br>410<br>115                                                                | 7.5                                                                                                                                                                                                                      | 45.8                                                                                                                                                         | 48.5<br>93.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |
| 107<br>138<br>100<br>100<br>102                                                                              | 4.890<br>8.393<br>8.819<br>6.319<br>7.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8,400<br>8,120<br>8,810<br>11,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90.4<br>94.4<br>96.8<br>100.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 158<br>110<br>115<br>120                                                         | 7.6<br>7.6                                                                                                                                                                                                               | 45.5                                                                                                                                                         | 48.0<br>33.0<br>40.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 127<br>138<br>1481<br>1487<br>1487<br>1487<br>1789                                                           | 4.890<br>1.383<br>8.819<br>6.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.400<br>8.120<br>8.850<br>11,200<br>12,000<br>12,790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92.7<br>84.4<br>365.8<br>100.8<br>106.0<br>112.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110<br>110<br>120<br>120                                                         | 7.5<br>7.0<br>8.0<br>8.0                                                                                                                                                                                                 | 45.5<br>45.7<br>36.2<br>59.9<br>47.5                                                                                                                         | 48.5<br>61.0<br>61.0<br>61.3<br>61.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 107<br>100<br>101,<br>100<br>107<br>109<br>201<br>201                                                        | 4.190<br>1.363<br>1.519<br>4.310<br>1.350<br>1.980<br>4.120<br>8.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.400<br>8.100<br>8.800<br>11,200<br>12,000<br>12,700<br>13,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92.7<br>54.4<br>96.8<br>100.8<br>104.9<br>112.7<br>114.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110<br>115<br>120<br>120<br>120<br>120                                           | 7.5<br>7.0<br>8.0<br>8.0                                                                                                                                                                                                 | 45.5<br>45.1<br>36.2<br>59.9<br>63.5<br>67.1                                                                                                                 | 48.5<br>61.2<br>64.3<br>69.4<br>77.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 107<br>130<br>140<br>140<br>147<br>147<br>147<br>147<br>147<br>147<br>147<br>147<br>147                      | 4.890<br>L365<br>L365<br>L370<br>1,200<br>1,900<br>4,120<br>L300<br>8,120<br>8,120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8,400<br>8,120<br>8,850<br>11,200<br>12,000<br>12,000<br>14,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92.4<br>94.4<br>98.8<br>100.5<br>196.5<br>112.7<br>114.5<br>114.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110<br>115<br>120<br>120<br>120<br>120<br>120                                    | 7.4<br>7.6<br>8.0<br>8.0<br>8.0<br>7.4                                                                                                                                                                                   | 45.8<br>46.7<br>96.3<br>99.9<br>63.5<br>97.1<br>72.5                                                                                                         | 48.5<br>85.0<br>40.2<br>64.3<br>68.4<br>72.5<br>77.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 97<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                             | 4.890<br>1.363<br>8.810<br>8.370<br>1.300<br>1.900<br>6.120<br>8.300<br>8.370<br>8.370<br>8.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,400<br>8,120<br>8,850<br>11,200<br>12,200<br>12,200<br>13,500<br>14,000<br>13,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92.4<br>94.4<br>38.8<br>100.5<br>102.5<br>112.7<br>116.5<br>112.7<br>116.5<br>114.0<br>114.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  | 7.5<br>7.0<br>8.0<br>8.0<br>5.0<br>7.5<br>6.5                                                                                                                                                                            | 45.8<br>+85.1<br>346.3<br>595.0<br>63.6<br>67.7<br>72.5<br>72.5                                                                                              | 48.0<br>48.0<br>48.0<br>88.3<br>88.4<br>77.5<br>77.5<br>81.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 127<br>1280<br>1487<br>1487<br>1487<br>1487<br>1487<br>1487<br>1487<br>1487                                  | 4.890<br>L365<br>8.810<br>6.370<br>1.350<br>1.860<br>6.120<br>8.390<br>8.270<br>8.270<br>8.270<br>8.270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8,400<br>8,120<br>8,810<br>11,200<br>12,000<br>12,000<br>12,000<br>14,000<br>14,000<br>14,000<br>11,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9024<br>944<br>966<br>1003<br>1060<br>1127<br>1163<br>1160<br>6214<br>6268<br>1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  | 7.5<br>7.0<br>8.0<br>8.0<br>7.5<br>8.5                                                                                                                                                                                   | 41.5<br>46.3<br>36.9<br>63.5<br>67.5<br>72.5<br>75.4                                                                                                         | 48.0<br>95.0<br>40.9<br>96.3<br>98.4<br>77.5<br>77.5<br>81.6<br>45.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 127<br>1380<br>1401<br>1427<br>147<br>199<br>2011<br>2011<br>2011<br>2011<br>2011<br>2011<br>2011            | 4.890<br>E.380<br>E.370<br>F.370<br>F.370<br>F.370<br>F.370<br>F.380<br>F.370<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390<br>F.390  | 8,400<br>8,110<br>9,800<br>11,200<br>12,000<br>12,000<br>14,000<br>14,000<br>17,100<br>17,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9024<br>9844<br>9848<br>10025<br>11127<br>11828<br>11828<br>11828<br>11828<br>11828<br>11828<br>11828<br>11828<br>11848<br>11848<br>11848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  | 7.5<br>7.0<br>8.0<br>8.0<br>7.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8                                                                                                                      | 45.8<br>45.1<br>46.3<br>89.9<br>43.5<br>47.1<br>72.5<br>76.2<br>76.2<br>76.2<br>86.3<br>46.4                                                                 | 48.0<br>65.0<br>64.0<br>64.0<br>77.5<br>77.5<br>81.6<br>81.6<br>81.6<br>81.6<br>81.6<br>81.6<br>81.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 127<br>138<br>147<br>157<br>157<br>157<br>157<br>157<br>157<br>157<br>157<br>157<br>15                       | 4.800<br>8.341<br>6.770<br>7.200<br>7.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.2000<br>8.200<br>8.200<br>8.2000<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.200<br>8.20 | 8,400<br>8,110<br>8,810<br>11,200<br>12,700<br>12,700<br>13,300<br>14,400<br>14,400<br>14,400<br>17,400<br>17,400<br>17,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92.4<br>94.4<br>96.5<br>102.5<br>112.7<br>116.0<br>116.0<br>116.0<br>116.0<br>126.6<br>126.6<br>126.6<br>126.6<br>126.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  | 7.5<br>7.0<br>8.0<br>8.0<br>7.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5                                                                                                                                  | 45.8<br>46.3<br>39.9<br>623.0<br>67.7<br>72.5<br>76.2<br>76.2<br>76.2<br>76.4<br>86.5<br>86.6<br>90.8                                                        | 48.5<br>85.0<br>69.2<br>69.4<br>72.5<br>77.5<br>81.6<br>81.6<br>81.6<br>81.6<br>81.6<br>81.6<br>81.6<br>81.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 127<br>138<br>149<br>140<br>140<br>199<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>201 | 4.800<br>4.800<br>4.810<br>4.910<br>1.200<br>4.120<br>4.120<br>4.120<br>4.120<br>4.120<br>4.120<br>4.120<br>1.1400<br>11.400<br>11.400<br>11.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,405<br>8,110<br>8,850<br>11,200<br>12,700<br>12,700<br>14,200<br>14,200<br>14,200<br>14,200<br>17,400<br>17,400<br>17,400<br>14,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 902.4<br>984.4<br>984.8<br>100.5<br>112.7<br>118.0<br>118.0<br>128.4<br>128.6<br>128.6<br>128.6<br>128.6<br>128.8<br>128.6<br>128.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  | 75<br>75<br>75<br>80<br>80<br>75<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                       | 45.5<br>46.3<br>39.9<br>45.5<br>97.7<br>772.5<br>76.8<br>36.7<br>96.6<br>46.6<br>46.5                                                                        | 48.0<br>38.0<br>68.3<br>68.4<br>777.5<br>81.6<br>81.6<br>81.6<br>81.6<br>81.6<br>91.7<br>91.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 127<br>138<br>147<br>157<br>157<br>157<br>157<br>157<br>157<br>157<br>157<br>157<br>15                       | 4.990<br>8.449<br>8.449<br>8.770<br>7.700<br>7.700<br>8.770<br>8.770<br>8.770<br>8.770<br>8.770<br>8.770<br>8.770<br>8.770<br>11.800<br>11.800<br>11.800<br>11.800<br>11.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8,400<br>8,110<br>8,810<br>11,200<br>12,700<br>12,700<br>13,300<br>14,400<br>14,400<br>14,400<br>17,400<br>17,400<br>17,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92.4<br>94.4<br>96.5<br>102.5<br>112.7<br>116.0<br>116.0<br>116.0<br>116.0<br>126.6<br>126.6<br>126.6<br>126.6<br>126.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  | 7.5<br>7.0<br>8.0<br>8.0<br>7.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5                                                                                                                                  | 45.5<br>46.1<br>395.6<br>45.5<br>45.5<br>75.5<br>76.2<br>76.2<br>76.2<br>76.4<br>85.7<br>46.6<br>46.2<br>46.5<br>46.5<br>531.0                               | 485<br>96.3<br>96.4<br>77.5<br>81.6<br>81.6<br>81.6<br>81.6<br>91.7<br>75<br>81.6<br>91.7<br>75<br>91.7<br>75<br>91.7<br>91.7<br>91.7<br>91.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 107<br>108<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109                             | 4 190<br>1,345<br>4,411<br>4,270<br>1,200<br>1,960<br>4,120<br>4,120<br>4,120<br>4,120<br>4,120<br>4,120<br>4,120<br>4,120<br>4,120<br>11,405<br>11,405<br>11,405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.400<br>8.800<br>11,200<br>12,700<br>12,700<br>14,000<br>14,000<br>14,000<br>17,400<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,000<br>14,0000<br>14,0000<br>14,0000<br>14,0000<br>14,0000<br>14,0000000000 | 92.4<br>94.4<br>386.8<br>196.5<br>112.7<br>116.5<br>116.5<br>126.6<br>126.6<br>126.6<br>126.6<br>126.6<br>126.6<br>126.6<br>126.6<br>126.6<br>126.6<br>126.5<br>140.6<br>140.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 75<br>70<br>80<br>80<br>75<br>80<br>75<br>80<br>80<br>75<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                   | 45.8<br>46.3<br>365.9<br>45.5<br>87.7<br>72.5<br>275.7<br>75.4<br>86.6<br>96.6<br>96.6<br>96.2<br>531.0<br>525.0                                             | 48.0<br>38.0<br>68.3<br>68.4<br>777.5<br>81.6<br>81.6<br>81.6<br>81.6<br>81.6<br>91.7<br>91.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 97<br>98<br>98<br>99<br>99<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97                 | 4 990<br>1 345<br>8 411<br>6 370<br>1 350<br>1 990<br>4 100<br>8 370<br>8 370<br>8 370<br>8 370<br>8 370<br>1 360<br>11 400<br>11 400<br>11 400<br>12 400<br>13 400<br>14 400<br>10 400<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,408<br>8,110<br>8,850<br>11,200<br>12,790<br>12,790<br>14,400<br>14,400<br>14,500<br>17,500<br>17,500<br>17,500<br>16,500<br>17,500<br>17,500<br>17,500<br>16,500<br>21,100<br>21,100<br>21,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92.2<br>93.4<br>94.4<br>95.5<br>95.5<br>95.5<br>112.7<br>112.7<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5  | 115<br>115<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125               | 75<br>75<br>76<br>80<br>80<br>75<br>80<br>75<br>80<br>80<br>80<br>80<br>80<br>811<br>80<br>80<br>811<br>80<br>80<br>811<br>80<br>80<br>811<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 | 45.8<br>46.3<br>39.9<br>45.5<br>45.5<br>45.5<br>71.4<br>71.4<br>45.2<br>46.2<br>46.2<br>46.2<br>45.2<br>45.2<br>45.2<br>45.2<br>45.2<br>45.2<br>45.2<br>45   | 480<br>3430<br>543<br>683<br>683<br>684<br>773<br>814<br>818<br>818<br>700<br>713<br>818<br>700<br>7120<br>1120<br>1151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 101<br>101<br>102<br>102<br>102<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103        | 4 190<br>1,353<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.408<br>8.110<br>8.810<br>11.200<br>12.000<br>12.000<br>14.000<br>14.000<br>14.000<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.10000<br>17.10000<br>17.10000000000                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92.2<br>94.4<br>94.8<br>95.8<br>95.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5 | 108<br>115<br>128<br>128<br>128<br>128<br>128<br>128<br>128<br>128<br>128<br>128 | 75<br>70<br>80<br>80<br>70<br>80<br>75<br>85<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                               | 48.8<br>48.1<br>48.3<br>99.8<br>48.5<br>87.5<br>77.5<br>78.2<br>78.2<br>78.2<br>78.2<br>88.2<br>88.4<br>98.4<br>98.4<br>98.4<br>98.4<br>98.4<br>98.4<br>98.4 | 480<br>3450<br>943<br>943<br>963<br>773<br>773<br>773<br>773<br>854<br>858<br>818<br>947<br>947<br>795<br>947<br>795<br>947<br>795<br>947<br>795<br>947<br>795<br>947<br>795<br>947<br>795<br>945<br>945<br>945<br>945<br>945<br>945<br>945<br>945<br>945<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|                                                                                                              | 4 190<br>8 305<br>8 417<br>6 370<br>1 360<br>1 360<br>1 360<br>8 370<br>8 360<br>8 370<br>8 360<br>1 400<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.400<br>8.110<br>8.816<br>11.200<br>12.790<br>12.790<br>13.500<br>13.500<br>13.500<br>14.500<br>14.500<br>14.500<br>14.500<br>14.500<br>14.500<br>14.500<br>21.100<br>21.400<br>23.200<br>25.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92.2<br>94.4<br>98.8<br>100.5<br>195.5<br>112.7<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>114.5<br>124.6<br>124.6<br>124.6<br>124.6<br>124.6<br>124.6<br>124.6<br>124.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144.6<br>144 |                                                                                  | 75<br>75<br>76<br>80<br>80<br>75<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                           | 48.8<br>46.3<br>46.3<br>46.5<br>47.5<br>47.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77.5<br>77                                                                   | 400<br>3402<br>542<br>542<br>773<br>773<br>773<br>416<br>80,4<br>725<br>705<br>7<br>705<br>7<br>105<br>7<br>112<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>1<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>11 |   |
| 107<br>108<br>108<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109                      | 4 190<br>1,353<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,350<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,450<br>1,                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.408<br>8.110<br>8.810<br>11.200<br>12.000<br>12.000<br>14.000<br>14.000<br>14.000<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.100<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.1000<br>17.10000<br>17.10000<br>17.10000000000                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92.2<br>94.4<br>94.8<br>95.8<br>95.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5<br>191.5 | 108<br>115<br>128<br>128<br>128<br>128<br>128<br>128<br>128<br>128<br>128<br>128 | 75<br>70<br>80<br>80<br>70<br>80<br>75<br>85<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                               | 48.8<br>48.1<br>48.3<br>99.8<br>48.5<br>87.5<br>77.5<br>78.2<br>78.2<br>78.2<br>78.2<br>88.2<br>88.4<br>98.4<br>98.4<br>98.4<br>98.4<br>98.4<br>98.4<br>98.4 | 480<br>3450<br>943<br>943<br>963<br>773<br>773<br>773<br>773<br>854<br>858<br>818<br>947<br>947<br>795<br>947<br>795<br>947<br>795<br>947<br>795<br>947<br>795<br>947<br>795<br>947<br>795<br>945<br>945<br>945<br>945<br>945<br>945<br>945<br>945<br>945<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |


| ■ ストランドは                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                |                                                                                      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                |                                                                                      |  |
| The shared in control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A local part of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                | No. 107 Lantas                                                                       |  |
| D'DOTHER DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arturne                                                | S Inwidente    |                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                                                     | in the second  | 1000                                                                                 |  |
| a data a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | stime Selast   | - ar anna                                                                            |  |
| (T) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44-43+7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | And State                                              |                | -                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tent<br>aut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | descript<br>off-methods<br>bag (and)                   | 100            |                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AND                | 18246          | 54 (9 AB)                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1948                                                   | 100,000        | 100.000                                                                              |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and a second                                           |                | 0.000                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101 Bulling P                                          | Down a respect |                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -Bit Relevant                                          |                |                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                |                                                                                      |  |
| 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and Cable (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Section<br>in De Configuration                         |                |                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                | (15)<br>(15)                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | La Cable (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                | Sars.                                                                                |  |
| All and<br>Control of the second | and Cable C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Section<br>10 10 10 10<br>Configuration<br>10 10 10 10 | La 11          | SOTS<br>for Contra                                                                   |  |
| FAIR and<br>The second se | an Cable C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | And                |                | S295<br>top Constr<br>10                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | an Cable C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                | NUT COMMENT                                                                          |  |
| All and a second   | an Cable C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | And                |                | S295<br>top Constr<br>10                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ani<br>Canton<br>ani<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>Canton<br>C | Section                                                |                | SJFS<br>for Operation<br>int<br>int<br>int<br>int<br>int<br>int<br>int<br>int<br>int |  |



### (transport to site)





Reeled cable set to unreeler machine





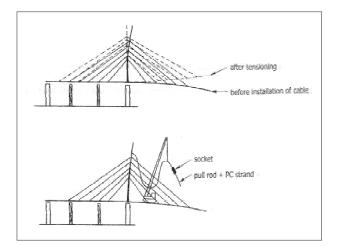


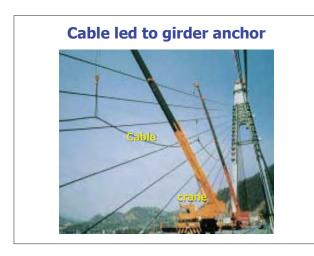


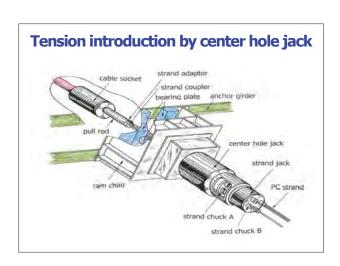


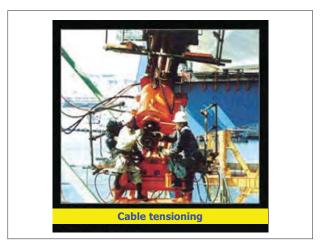


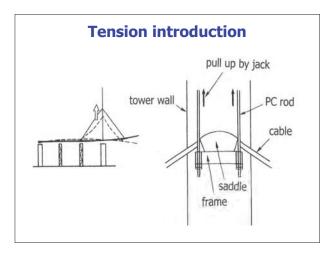


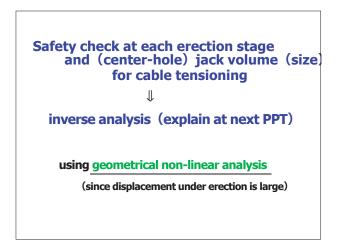



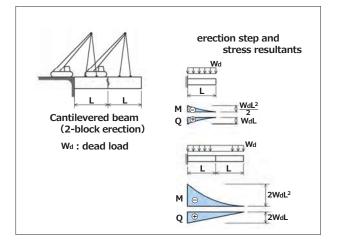



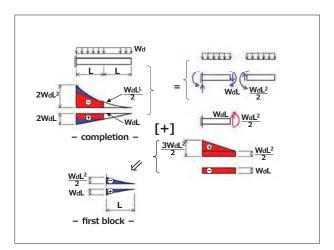



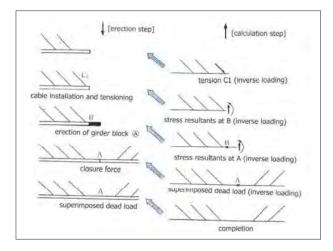



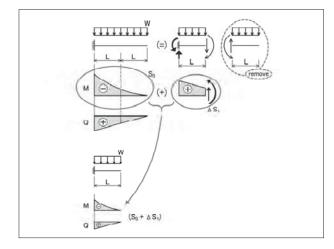



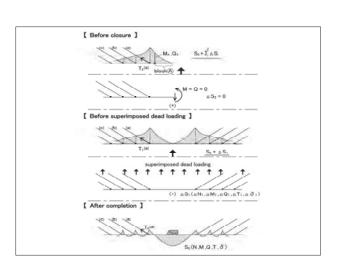



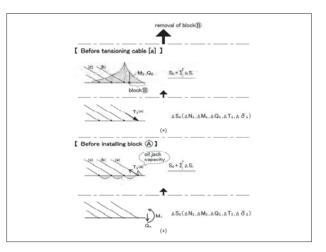



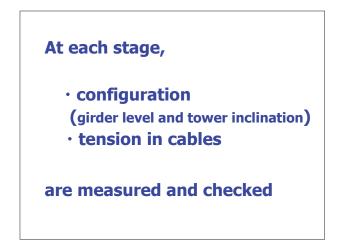



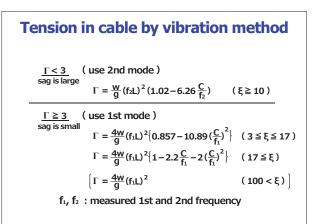



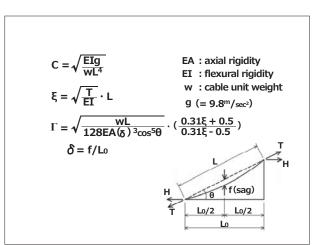



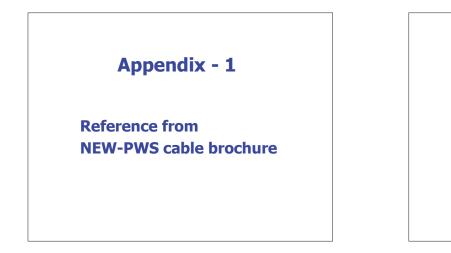



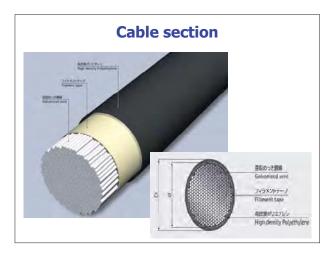


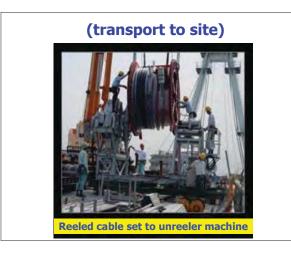



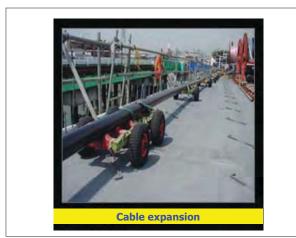



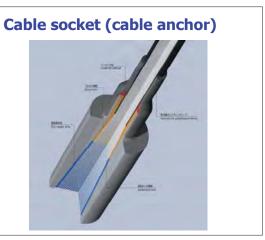





| $S_0 + \sum_{i=1}^{n} \Delta S_i$                                                               |
|-------------------------------------------------------------------------------------------------|
| T design (computed) value                                                                       |
| at each erection stage                                                                          |
| and check. and adjust @                                                                         |
| and check, and adjust @                                                                         |
| measured value                                                                                  |
| (girder level and tension in cables)                                                            |
| [by vibration method and sometimes, load cell]                                                  |
|                                                                                                 |
| mainly, change (adjust) the<br>tension using shim plates                                        |
| [insert (or) remove]                                                                            |
| $S_0 (N_0, M_0, Q_0, T_0, \delta_0)$ : values at completion                                     |
| $\Delta S_i (\Delta N_i, \Delta M_i, \Delta Q_i, \Delta T_i, \Delta \delta_i)$ : changed values |
| N ; axial force , M ; bending moment                                                            |
| Q : shear force , T : tension in cables                                                         |
| $\delta$ : deflection                                                                           |

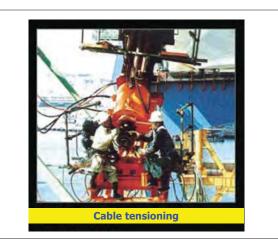


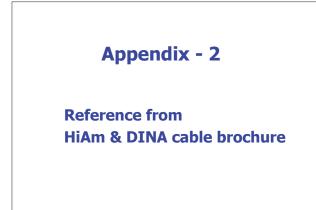







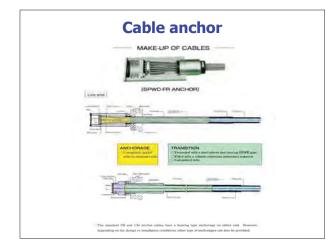



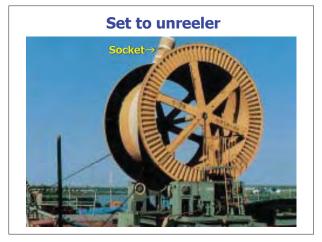





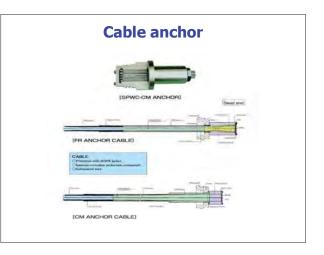


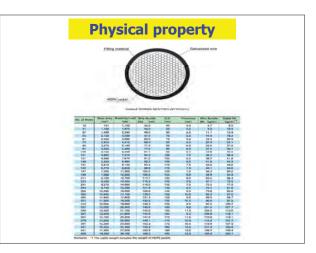


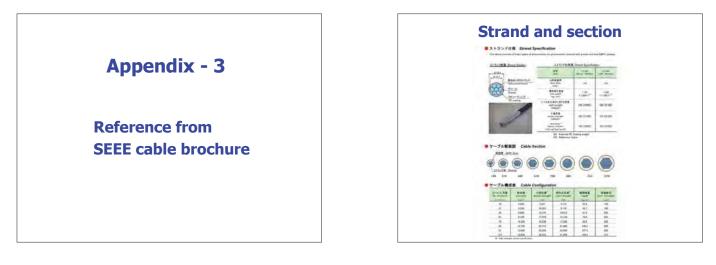



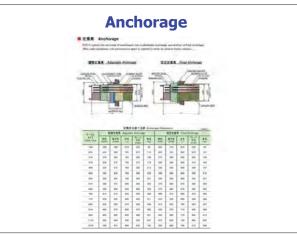

### **Reeled cable**

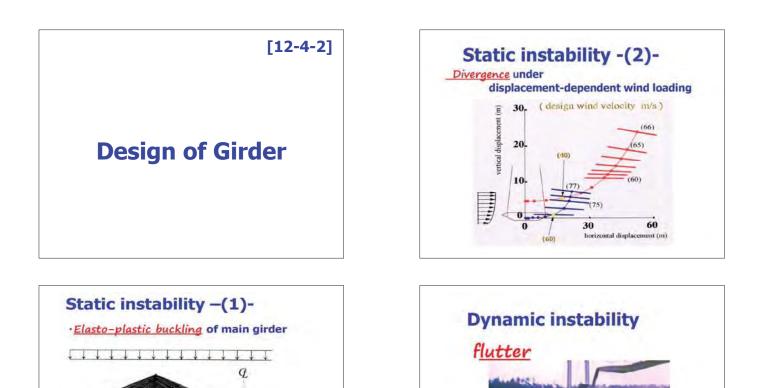










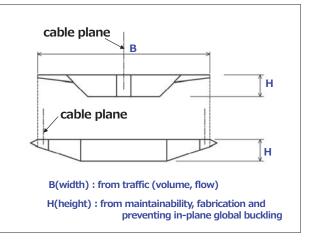


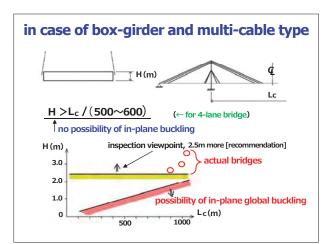



### Identification by analysis (based on non-linear 3D FEA )

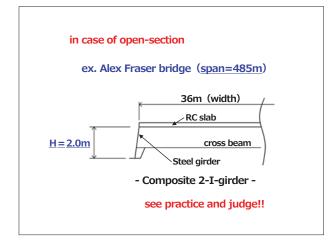
Side view of buckling of the gird (Tatara Br.)

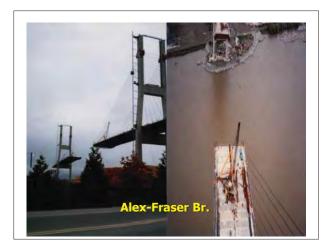
buckling

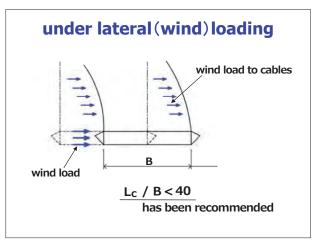

-buckling-

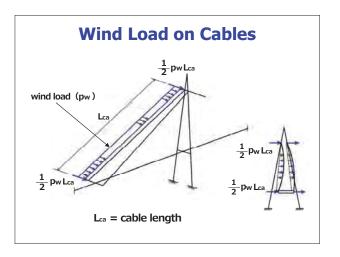

Elasto-plastic finite displacement analysis -divergence-Non-linear elastic analysis under displacement-dependent wind load -flutter-Complex eigenvalue analysis

using modal coordinate

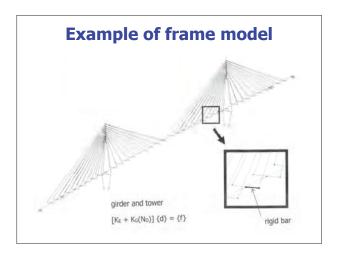

# Priority At the design (after basic design), first step to do, Check performance (safety) of the girder and tower <u>under wind load</u>

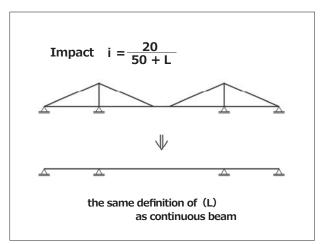

Check performance under (huge) earthquake

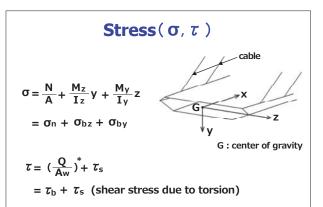


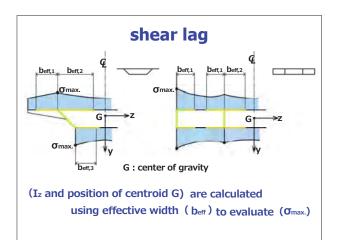


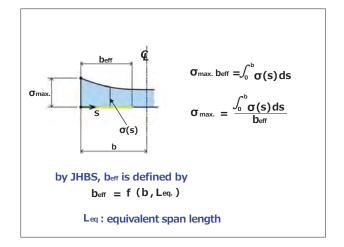



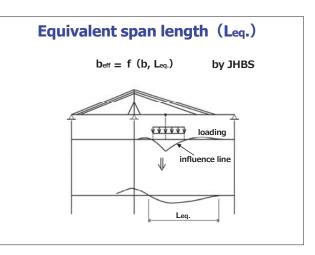



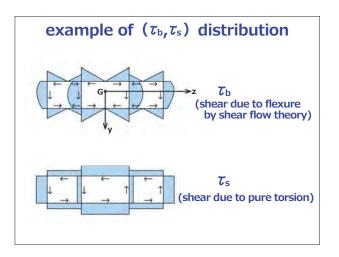





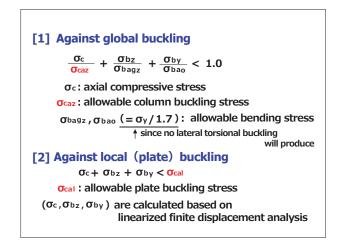


 $p = \frac{1}{2} \rho V d^{2}C dG$   $p (N/m^{2}) : \text{ wind load per unit area}$   $\rho (= 1.23 \text{ kg/m^{3}}) : \text{ air density}$  V d (m/sec) : design wind velocity C d : drag coefficient G : gust factor  $P_{W}(N/m) = PA_{n}$   $A_{n}: \text{ projection area } (m^{2}/m)$ 



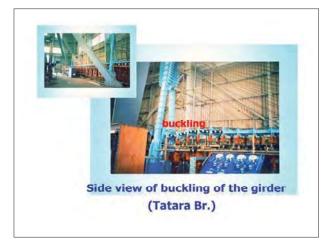



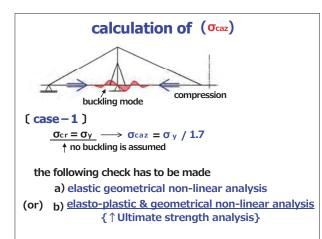




\* shear flow theory is applied for more exact evaluation





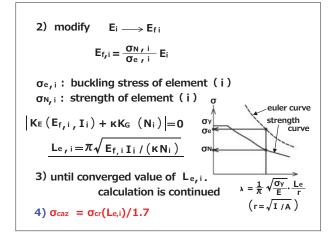


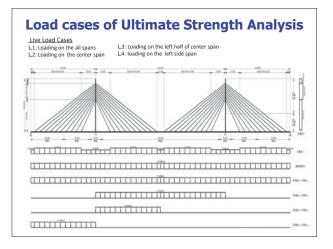


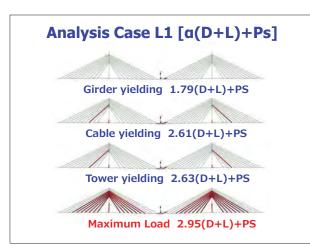

## [1] Global buckling strength

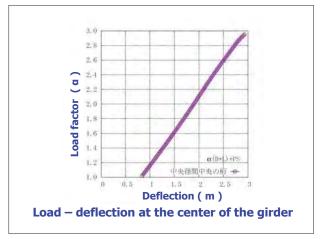


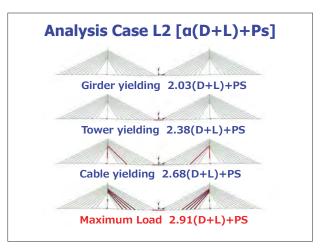


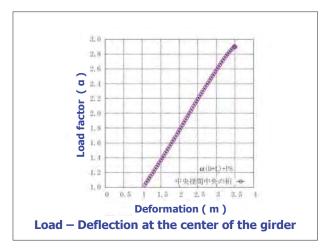

| ( case – 2 ) Ef-method(inelastic eigenvalue analysis) |
|-------------------------------------------------------|
| 1) elastic eigenvalue analysis                        |


$$\begin{vmatrix} \mathsf{K}_{\mathsf{E}} \left( \mathsf{E}_{\mathsf{i}}, \mathsf{I}_{\mathsf{i}} \right) + \kappa \mathsf{K}_{\mathsf{G}} \left( \mathsf{N}_{\mathsf{i}} \right) \end{vmatrix} = 0 \\ \mathsf{L}_{\mathsf{e}}_{,\mathsf{i}} = \pi \sqrt{\mathsf{E}_{\mathsf{i}} \mathsf{I}_{\mathsf{i}} / \left( \kappa \mathsf{N}_{\mathsf{i}} \right)} \end{aligned}$$


 $[K_E]$ : elastic stiffness matrix

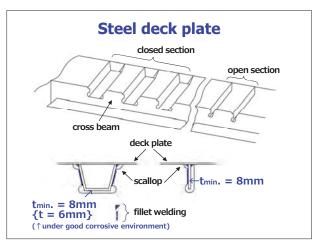

 $[K_G]$ : geometric matrix

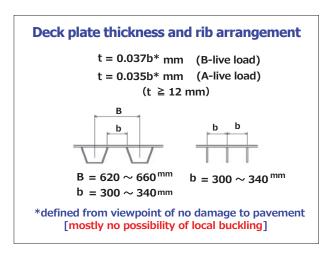

- L<sub>e</sub>, i : buckling length of elasticity of element (i)
- $E_i \ : \ young \ 's \ modulus \ of \ elasticity \ of \ element \ ( \ i \ )$
- ${\bf I}_{\,i}~:~\text{geometrical moment of inertia of element}$  ( i )
- κ : min. eigenvalue
- $N_i \ : \ compressive axial force of element \ ( i )$

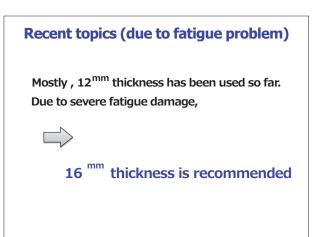


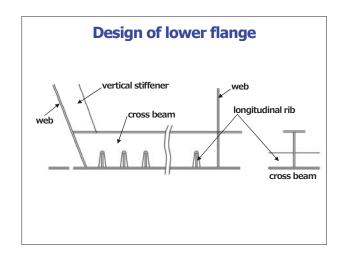


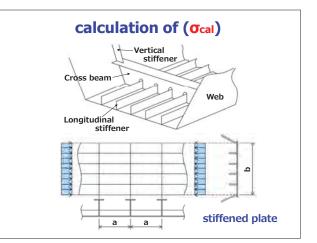


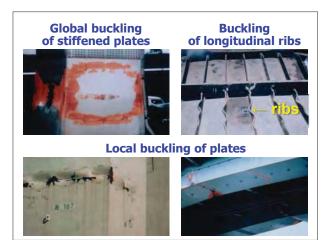



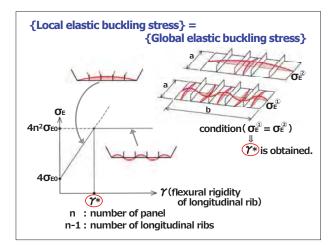



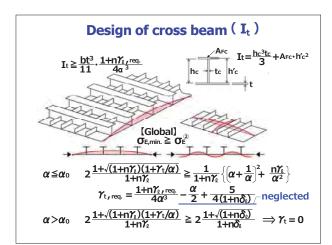



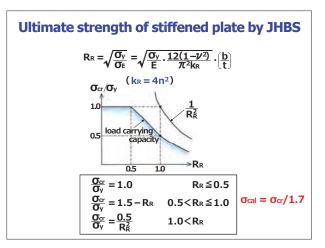



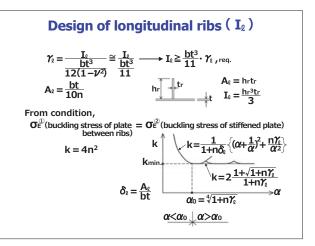



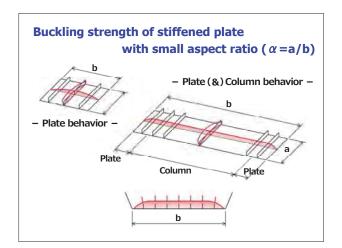



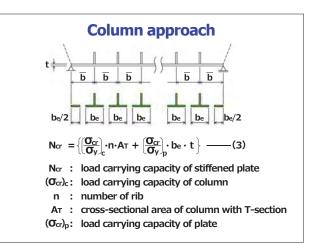


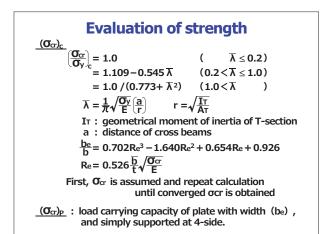



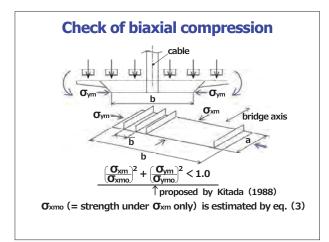



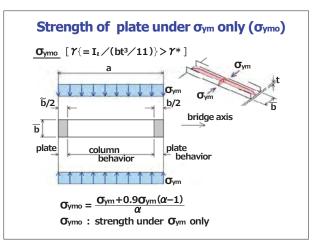



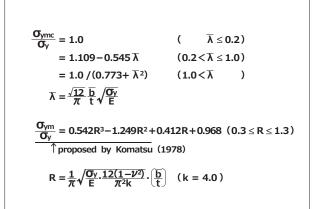



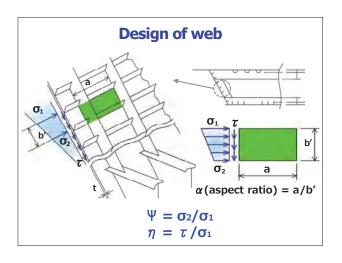


| 1) $\alpha \leq \alpha_0$ (&) $I_t \geq \frac{bt^3}{11} \cdot \frac{1+n\gamma_{\ell,\ell}}{4\alpha^3}$                                      |                      |                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|
| $\gamma_{\ell}$ , req. = $4\alpha^2 n \left(\frac{t_0}{t}\right)^2 (1+n\delta_{\ell}) - \frac{(\alpha^2+1)^2}{n}$                           | (t≧t₀)               | (R <sub>R</sub> <0.5)               |
| $= 4\alpha^2 n (1+n\delta_k) - \frac{(\alpha^2+1)}{n}$                                                                                      | (t <t<sub>0)</t<sub> | (R <sub>R</sub> >0.5)               |
| ( $t_0$ is the thickness when $R_R = 0$                                                                                                     | .5)                  |                                     |
| 2) the others $[(\alpha > \alpha_0), (\alpha \le \alpha_0 \& It <$                                                                          | <u>tti (</u>         | $\frac{\gamma_{\ell}}{\alpha^3}$ )] |
| $\gamma_{\ell, \text{reg.}} = \frac{1}{n} \left[ \left\{ 2n^2 \left( \frac{t_0}{t} \right) (1 + n\delta_{\ell}) - 1 \right\}^2 - 1 \right]$ | (t≧t₀)               | (R <sub>R</sub> <0.5)               |
| $= \frac{1}{n} \left[ \left\{ 2n^{2} (1+n\delta_{\ell}) - 1 \right\}^{2} - 1 \right]$                                                       | (t>t <sub>0</sub> )  | (R <sub>R</sub> >0.5)               |
|                                                                                                                                             |                      |                                     |



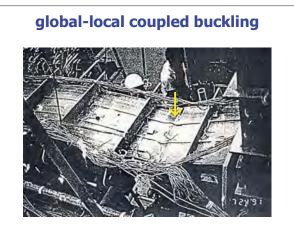



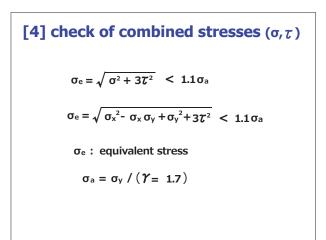



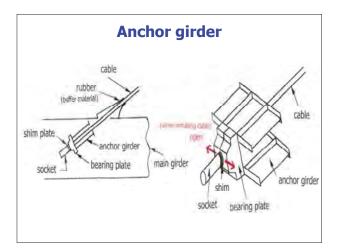


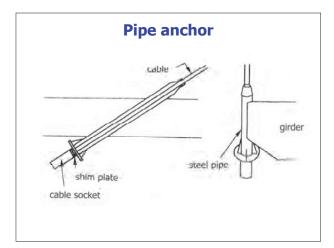




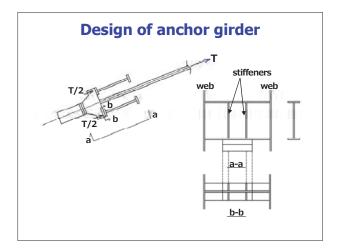



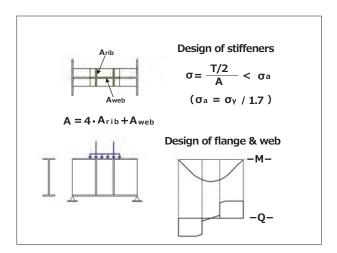


| Saf | ety check aga                                                                                                                                                                                                               | inst buckli               | ng |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----|
|     | $\sqrt{\sigma_1^2+3\tau^2} < \frac{\sigma_{vk}}{\nu_{B,re}}$                                                                                                                                                                | q.                        |    |
|     | $v_{\rm B,req.} = 1.25 + (0.3 + 0.3)$                                                                                                                                                                                       | ).15Ψ ) <sup>-4.3</sup> η |    |
|     | = 1.55 + 0.15Ψ                                                                                                                                                                                                              | $(\eta = 0)$              |    |
|     | $\sigma_{vK}/\sigma_{v} = 1.0$                                                                                                                                                                                              | R < 0.5                   |    |
|     | $\begin{aligned} \boldsymbol{\sigma}_{vk} / \boldsymbol{\sigma}_{v} &= 1.0 \\ \boldsymbol{\sigma}_{vk} / \boldsymbol{\sigma}_{v} &= 1.5 - R \\ \boldsymbol{\sigma}_{vk} / \boldsymbol{\sigma}_{v} &= 0.5/R^2 \end{aligned}$ | 0.5 ≦ R < 1.0             |    |
|     | $\sigma_{vK}/\sigma_{y} = 0.5/R^2$                                                                                                                                                                                          | 1.0 ≦ R                   |    |
|     | $R = \sqrt{\frac{\sigma_{y}}{\sigma_{vki}}}$                                                                                                                                                                                |                           |    |
|     | $\sigma_y$ : yield stress                                                                                                                                                                                                   | s                         |    |
|     |                                                                                                                                                                                                                             |                           |    |

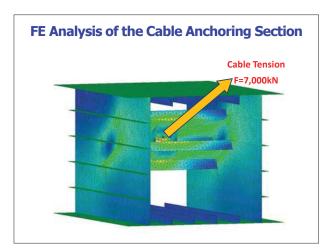

$$\begin{split} \boldsymbol{\sigma}_{vd} &= \frac{\sqrt{\sigma_{1}^{2} + 3\tau^{2}}}{\frac{1 + \Psi}{4} \cdot \frac{\sigma_{1}}{\sigma_{ocr}} + \sqrt{\left(\frac{3 - \Psi}{4} \cdot \frac{\sigma_{1}}{\sigma_{ocr}}\right)^{2} + \left(\frac{\tau}{\tau_{ocr}}\right)^{2}}}\\ \boldsymbol{\sigma}_{ocr} &= K \,\boldsymbol{\sigma}_{E}\\ \boldsymbol{\tau}_{ocr} &= K_{\tau} \cdot \boldsymbol{\sigma}_{E}\\ \boldsymbol{\sigma}_{E} &= \frac{\pi^{2} E}{12 (1 - \nu^{2})} \cdot \left(\frac{t}{b'}\right)^{2}\\ \boldsymbol{K}_{r} \, \boldsymbol{K}_{\tau} : \text{buckling coefficient} \end{split}$$

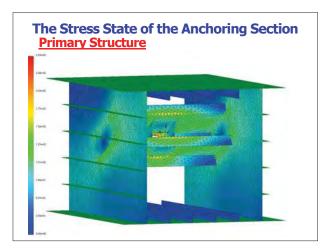
| [3] Global & local<br>coupled buckling strength                                                            |
|------------------------------------------------------------------------------------------------------------|
| $\sigma_{a} = \sigma_{caz}^{*} x (\sigma_{cal}^{**} / [\sigma_{y} / 1.7])$                                 |
| $\frac{\sigma_{caz}(in[1]) \rightarrow \sigma_{a} \text{ (allowable coupled buckling stress)}}{[reduced]}$ |
| * Ocaz : allowable global buckling stress                                                                  |
| <b>** Ocal : allowable local buckling stress</b>                                                           |

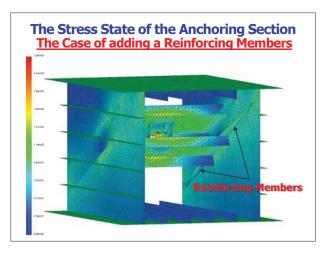








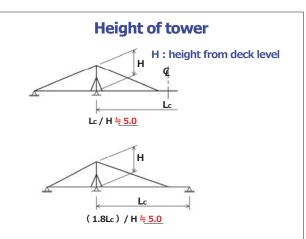


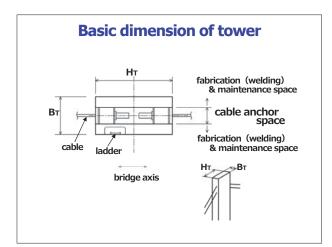


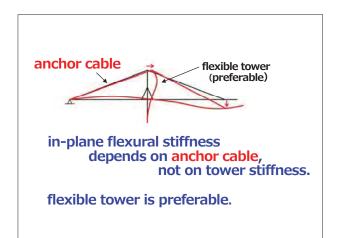


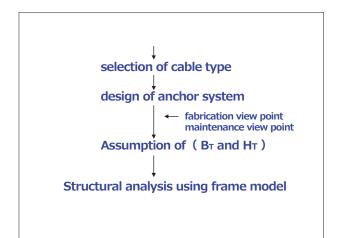


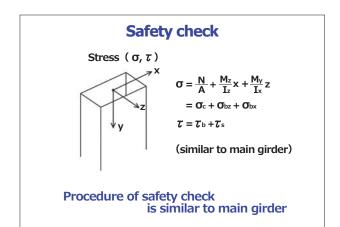


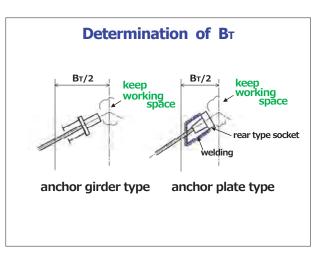



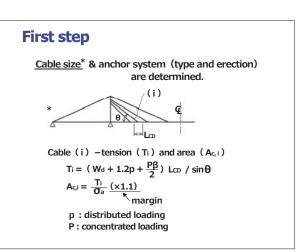



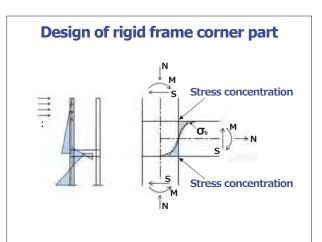












### Shear lag is also taken into account

Effective width beff. = beff. (width, Leq.)

Equivalent length (L<sub>eq.</sub>) is obtained depending on moment distribution pattern

[parabolic] or [straight]



#### [1] Against global buckling

$$\frac{\sigma_{c}}{\sigma_{caz}} + \frac{\sigma_{bz}}{\sigma_{bagz}} + \frac{\sigma_{by}}{\sigma_{bao}} < 1.0$$

 $\sigma_c$ : axial compressive stress

ocaz: allowable column buckling stress

 $\sigma_{bagz}, \sigma_{bao} (= \sigma_{Y} / 1.7)$ : allowable bending stress  $\uparrow$  since no lateral torsional buckling will produce

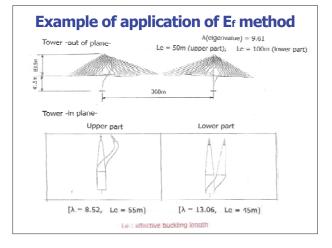
[2] Against local (plate) buckling

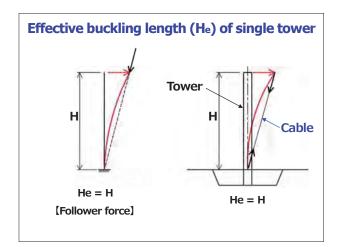
 $\sigma_{\rm C} + \sigma_{\rm bz} + \sigma_{\rm by} < \sigma_{\rm cal}$ 

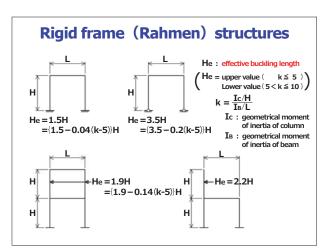
 $\ensuremath{\sigma_{\text{cal}}}$  : allowable plate buckling stress

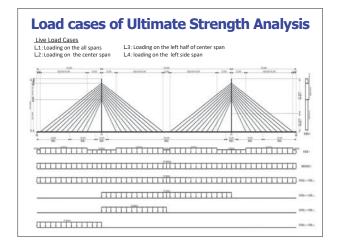
 $(\sigma, \sigma_{bz}, \sigma_{by}) \text{ are calculated based on} \\ linearized finite displacement analysis }$ 

#### Ef-method (inelastic eigenvalue analysis)

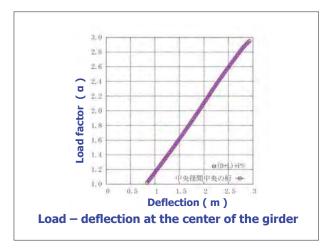

1) elastic eigenvalue analysis

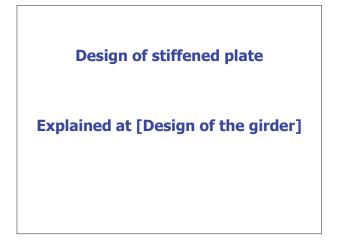

 $\left| K_{E} \left( E_{i}, I_{i} \right) + \kappa K_{G} \left( N_{i} \right) \right| = 0$ 

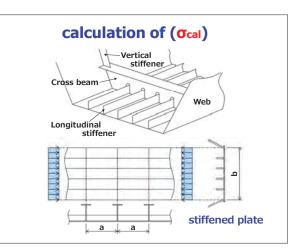

$$L_{e,i} = \pi \sqrt{E_i I_i / (\kappa N_i)}$$

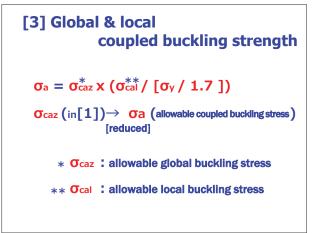

- [K<sub>E</sub>]: elastic stiffness matrix
- [K<sub>G</sub>]: geometric matrix
- L<sub>e</sub>, i: buckling length of elasticity of element (i)
- $\mathbf{E}_i$  : young 's modulus of elasticity of element ( i )
- ${\bf I}_{\,i}~$  : geometrical moment of inertia of element ( i )
- к : min. eigenvalue
- $N_i \ : \ compressive axial force of element \ ( i )$

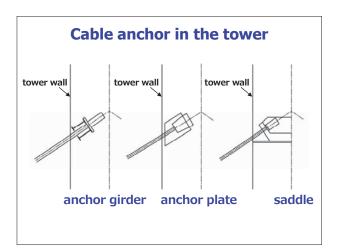
2) modify  $E_i \longrightarrow E_{f_i}$   $E_{f_r i} = \frac{\sigma_{N, i}}{\sigma_{e, i}} E_i$   $\sigma_{e, i}$ : buckling stress of element (i)  $\sigma_{N_r i}$ : strength of element (i)  $\kappa_E (E_{f_r i}, I_i) + \kappa_K (N_i) = 0$   $L_{e, i} = \pi \sqrt{E_{f_r i} I_i / (\kappa_{N_i})}$ 3) until converged value of  $L_{e, i}$  calculation is continued  $\Lambda = \frac{1}{\pi} \sqrt{\frac{\sigma_Y}{E}} \cdot \frac{L_e}{r}$  $(r = \sqrt{I/A})$ 

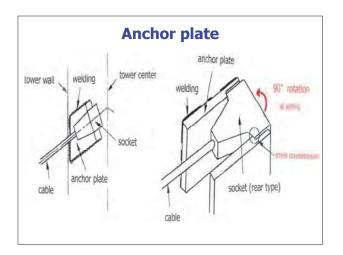


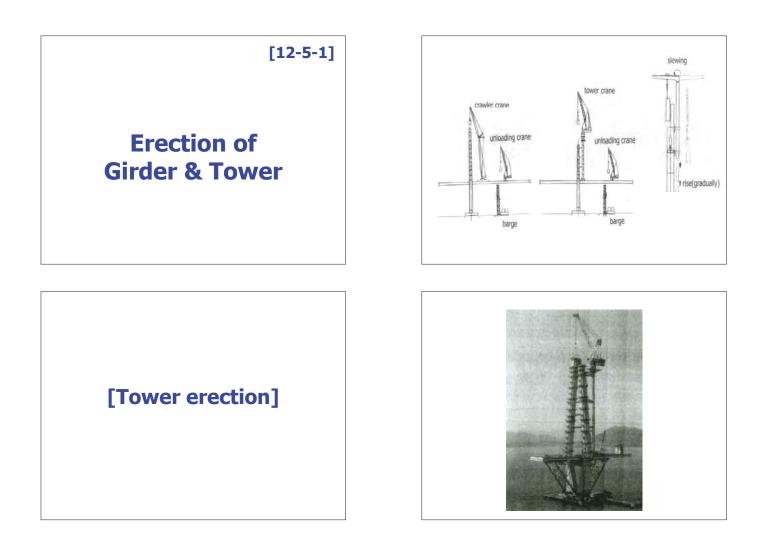



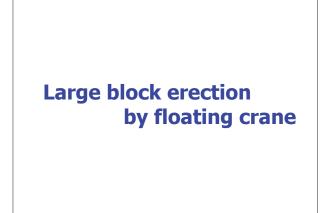



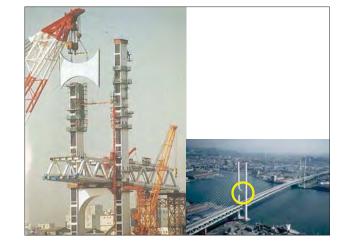







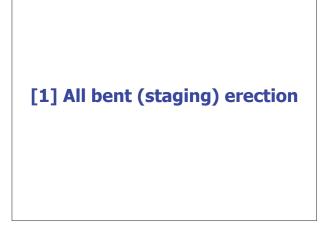


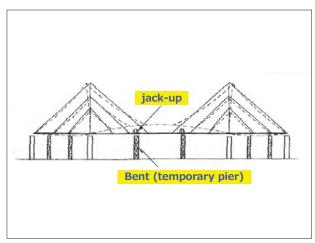


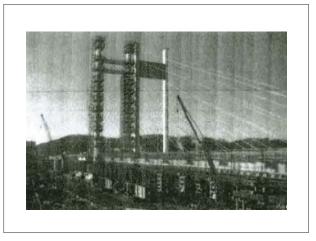









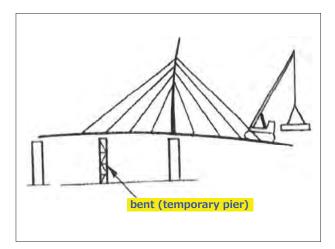











[2] Girder erection (large block by floating crane)







[3] Cantilevered erection Side span (erection by temporary piers) + Center span (by cantilevered erection)

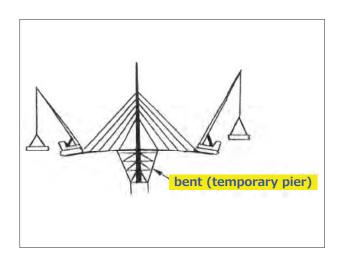


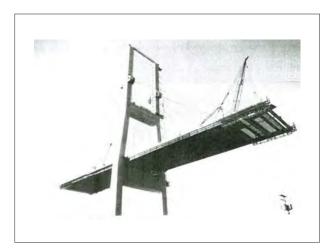














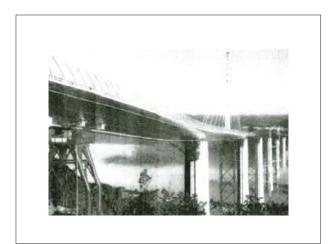










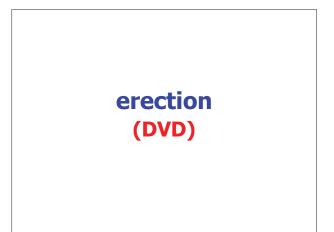





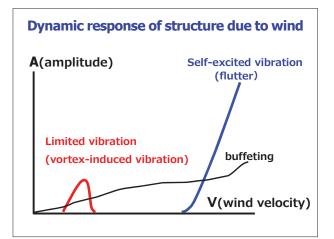

# [5] Push-out erection method

## **Tower cranes**

(not for erection of RC tower, for erection of cables and for lifting materials)







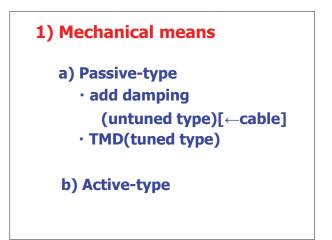


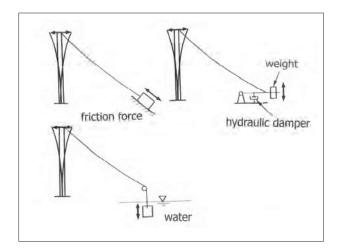


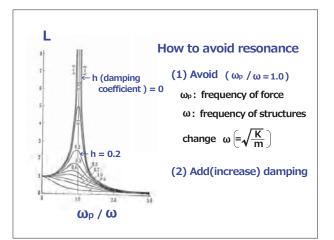


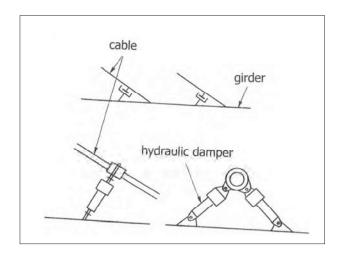


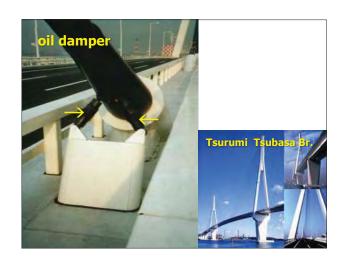




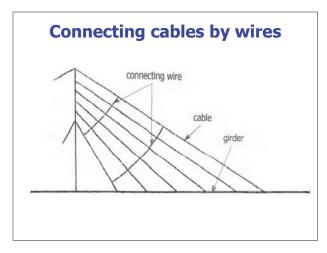


# Wind tunnel test (section model test)



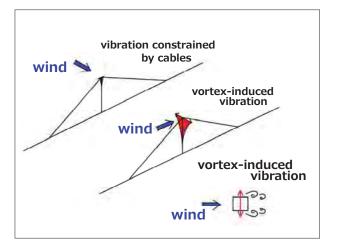


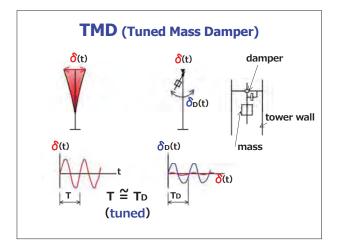


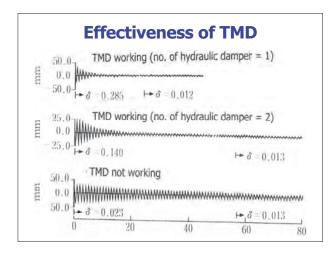



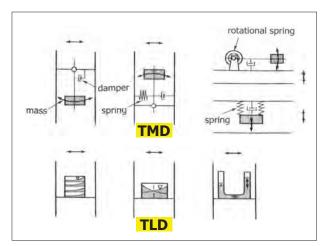


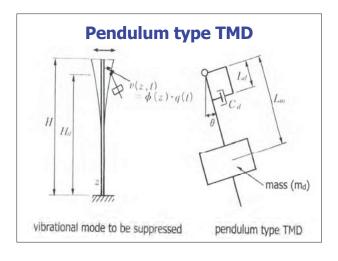


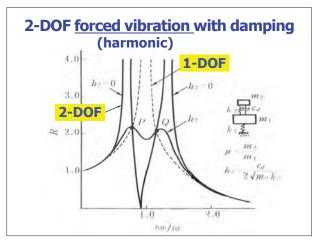



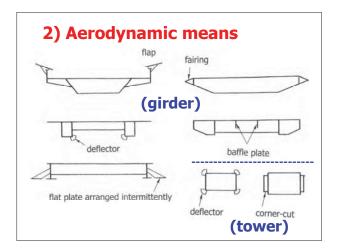



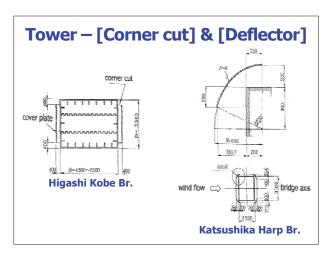



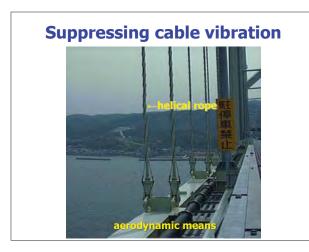



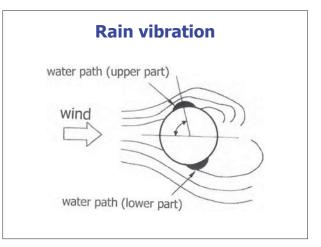






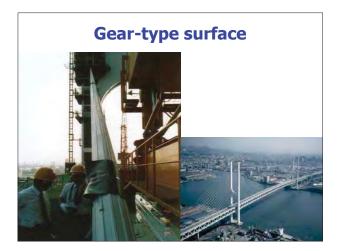



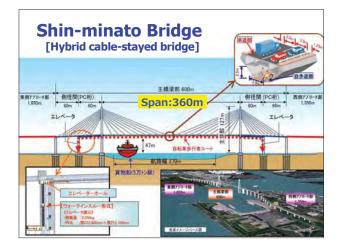


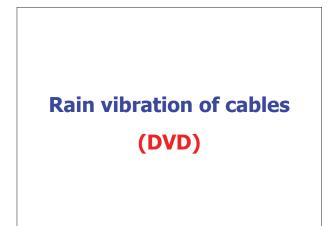






# Rain vibration of cables [conditions of occurrence] [rainy day (not heavy rain)] + [wind speed : from 10 to 15m/s] + [wind direction : nearly parallel to bridge axis]

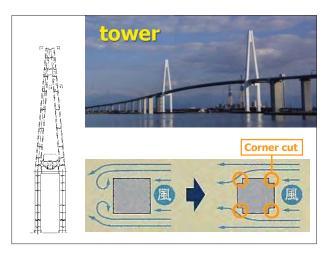


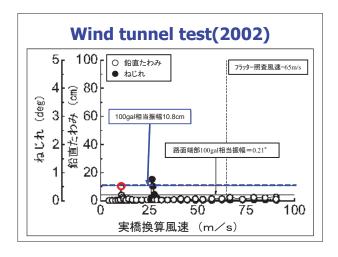


| Cables |
|--------|
|--------|









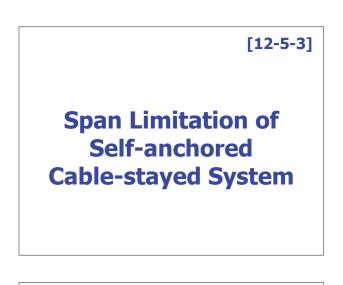



# <image>



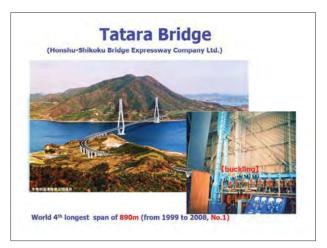


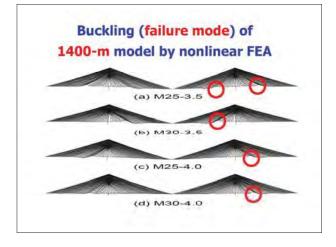


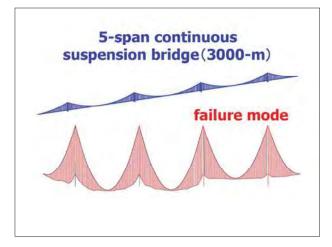

(DVD)

Opening related ceremony





# Opening of walkway


















# topics

- 1) Span limitation of <u>self-anchored</u> steel cable-stayed bridges
- 2) Possibility of further span extension

  a) <u>spatial</u> net system
  b) <u>partially earth-anchored</u> system
- 3) <u>Span limitation of self-anchored</u> <u>composite and PC</u> cable-stayed br.



We have to take into account two aspects

AA : Mechanical viewpoint BB : Economical viewpoint AA : From mechanical viewpoint!! Controlled by suspending ability of cables tower table (loss of ability) \*3,000m will be possible by current material !! \*4,000-5,000m will be possible by new material !! (light-weight & high strength)

# Another critical issue Need technology mitigating

1)long-cable vibration

Under construction, mitigation of

2) Vortex-induced vibration of the girder with a cantilevered length from 600 to 700 meters

Possible vib. depends on the site condition Solution by wind tunnel test

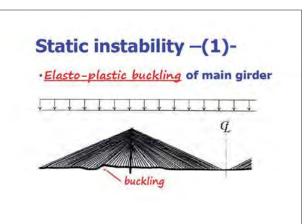
**BB** : From economical viewpoint!!

# **Competition (fair!!)**

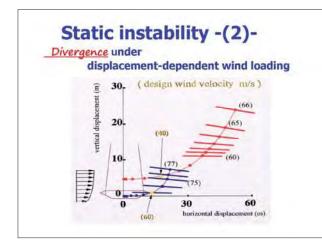
**Cable-stayed bridges** 

VS.

**Suspension bridges** 


What is the key point (subject) for fair comparison ???

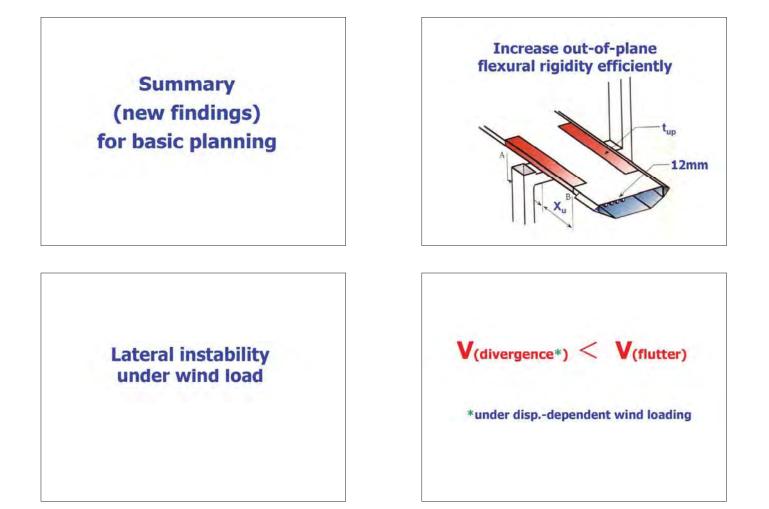
⇒ design main girder

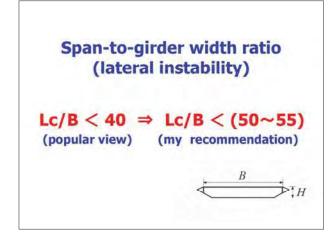

with minimum size

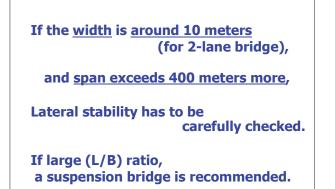

(ensuring safety against static and dynamic instabilities) Weight of girder controls <u>size</u> of

cables, towers, substructures and foundations



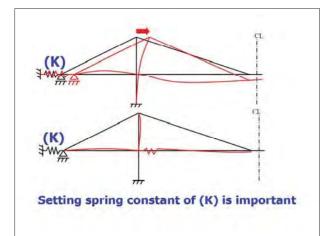


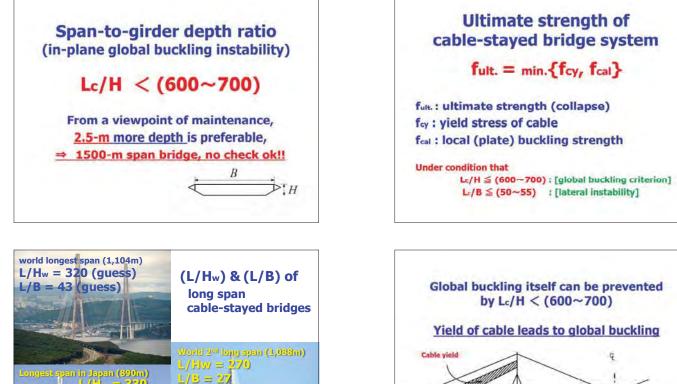



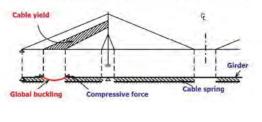




# Identification by analysis (based on non-linear 3D FEA )

-buckling-Elasto-plastic finite displacement analysis -divergence-Non-linear elastic analysis under displacement-dependent wind load -flutter-Complex eigenvalue analysis using modal coordinate



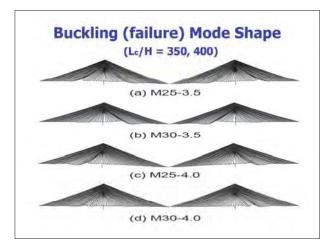



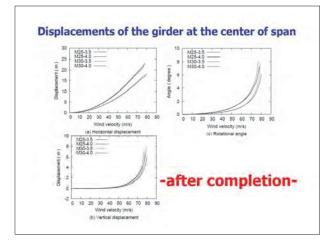



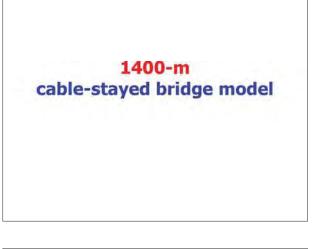

 $L/H_w = 330$ L/B = 30

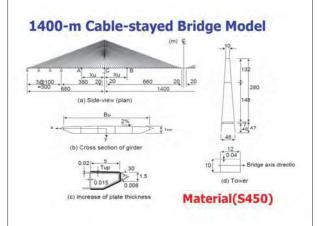


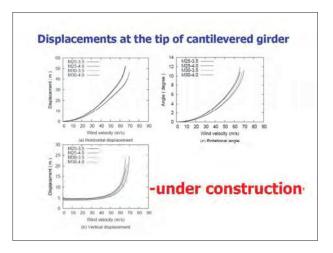




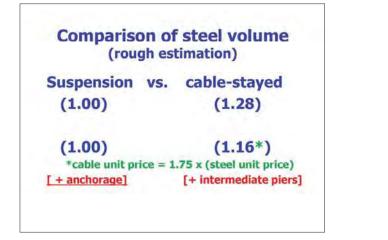



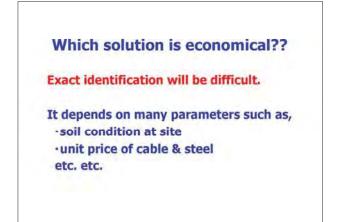


Buckling of the girder near tower (Tatara Br.)










# Flutter Onset Wind Velocity (m/s)

|         | Completed |         | Under construction |         |
|---------|-----------|---------|--------------------|---------|
| Model   | [30-mode] | Selberg | [20-mode]          | Selberg |
| M25-3.5 | 120       | 131     | 100                | 94      |
|         | (144)     |         | (151)              |         |
| M25-4.0 | 127       | 135     | 102                | 100     |
| M30-3.5 | 120       | 131     | 102                | 97      |
| M30-4.0 | 126       | 136     | 105                | 103     |
|         | (151)     |         | (168)              |         |

Note: Cable vibration is taken into account for values in parentheses.





# My conclusion!!

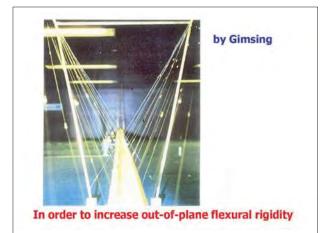
From 1,200 to 1,400m cable-stayed bridges

# will be possible!!

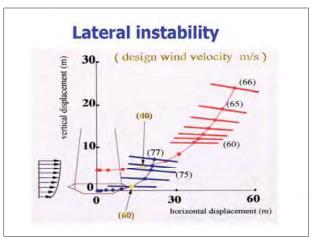
Depending on the site (soil) condition, should be included as one of alternatives

### -2nd Topic-

# Further span extension??


# - How to -

- 1) Spatial cable system (by Gimsing)
- 2) Partially earth-anchored system


# 1)Spatial cable system

(not promising : my opinion)

the reason why???









Important parameters to enhance V<sub>(divergence)</sub> under wind load are

<u>In-pane flexural rigidity</u> of the system
 <u>Torsional rigidity</u> of the system
 Effect of increase of out-of-plane flexural rigidity

will be minor

# **Brief summary**

1)Small reduction of out-of-plane bending moment

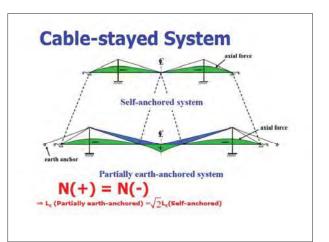
2)No contribution to enhance the wind velocity at lateral instability

3)Higher cost for erection

4)From aesthetic reason, it may be OK

from theoretical consideration,

In the girder, (max. compressive axial force) = (max. tensile axial force)

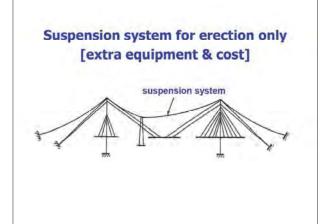

 $\sqrt{2}$  times span extension is possible

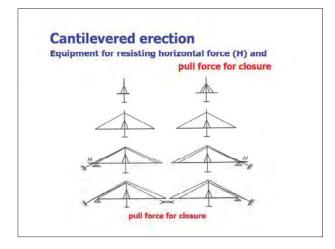
Realistic (or) Economical??

# What's difference under wind action?

Self-anchored vs. Partially earth-anchored







# After completion

a) 10% reduction of displacement and bending moment at the design wind velocity owing to earth-anchored system
b) Critical wind velocity is nearly the same!!

(Span = 1400m, Girder width = 34m, Girder depth = 4.6m : Earth-anchored length in the span is 370m)

# How to erect ??





Nearly the same behavior!!

Under (cantilevered) erection

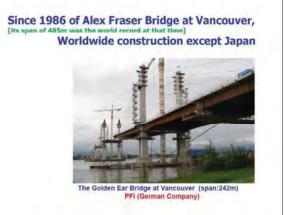
with self-anchored system

#### I talked,

from 1,200 to 1,400m cable-stayed bridges

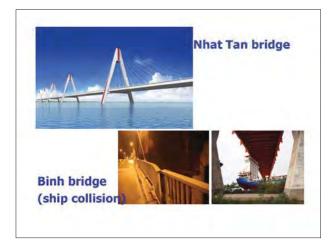
#### will be possible!!

(through economical comparison with suspension bridges)

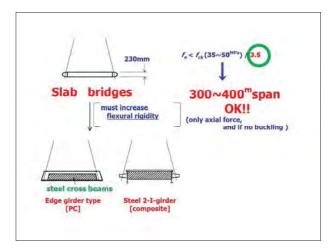

Partially earth-anchored system

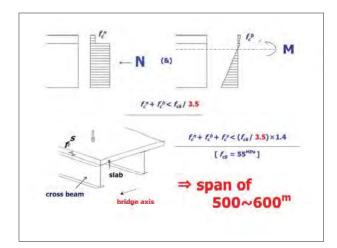
with a span of <u>1,600m</u> will be possible!! (taking into account of feasibility of erection) Pull force for closure of the girder is 10MN

[Cable-stayed system] Up to <u>1,200-1,400</u> meters (from economical reason) [Suspension system] Up to <u>3,000-3,500</u> meters (depending on cable material & aerodynamic stability) -3<sup>rd</sup> Topic-Steel-concrete composite cable-stayed bridges

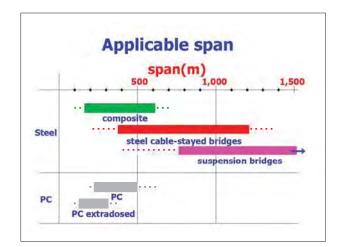

Spatial & Partially earth-anchored systems

will be hopeless (from economical reason)

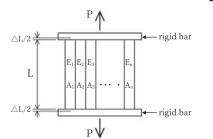


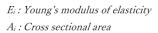












【10-3-2】 (1)





$$\varepsilon = \frac{\Delta L}{L} = \frac{P_1}{E_1 A_1} = \frac{P_2}{E_2 A_2} = \cdots = \frac{P_n}{E_n A_n}$$

$$P = \Sigma P_i = P_1 + \frac{E_2 A_2}{E_1 A_1} P_1 + \cdots + \frac{E_n A_n}{E_1 A_1} P_1$$

$$= \frac{E_1 A_1 + E_2 A_2 + \cdots + E_n A_n}{E_1 A_1} P_1$$

$$P_1 = \frac{E_1 A_1}{\Sigma E_i A_i} P$$

$$P_2 = \frac{E_2 A_2}{\Sigma E_i A_i} P$$

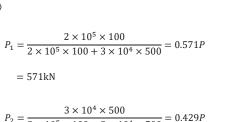
$$\vdots$$

« A1 »

$$P_{1} = \frac{E_{1}A_{1}}{E_{1}A_{2}}P$$

$$P_{1} = \frac{E_{1}A_{1}}{E_{1}A_{1} + E_{2}A_{2}}P$$

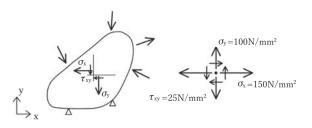
$$P_{2} = \frac{E_{2}A_{2}}{E_{1}A_{1} + E_{2}A_{2}}P$$
(Q1) Find P<sub>1</sub>,P<sub>2</sub>
under conditions
$$E_{1} = 2 \times 10^{5} N/mm^{2}$$


$$A_{1} = 100 mm^{2}$$

$$E_{2} = 3 \times 10^{4} N/mm^{2}$$

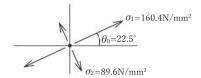
$$A_{2} = 500 mm^{2}$$

 $P = 1,000 \ kN$ 


【10-3-2】 (3)



$$P_2 = \frac{5 \times 10^{-10} \times 500^{-10}}{2 \times 10^5 \times 100 + 3 \times 10^4 \times 500} = 0.429P$$
$$= 429 \text{kN}$$
$$(P_1 + P_2 = 1,000 \text{kN} = P)$$


【10-3-2】 (4)





#### « A2 »

$$\begin{aligned} \sigma_{1,2} &= \frac{150 + 100}{2} \pm \frac{1}{2} \sqrt{(150 - 100)^2 + 4 \times 25^2} \\ &= 125 \pm 35.4 \ (N/mm^2) \\ \frac{\sigma_1 &= 160.4 \ N/mm^2}{\sigma_1 &= 160.4 \ N/mm^2}, \quad \frac{\sigma_2 &= 89.6 \ N/mm^2}{\sigma_2 &= 89.6 \ N/mm^2} \\ \theta_0 &= \frac{1}{2} \tan^{-1} \left( \frac{2\tau_{xy}}{\sigma_x - \sigma_y} \right) = \frac{1}{2} \tan^{-1} \left( \frac{2 \times 25}{150 - 100} \right) = \frac{1}{2} \tan^{-1} \ (1) \\ \tan(2\theta_0) &= 1 \ \rightarrow \ \frac{\theta_0 &= 22.5^{\circ}}{\sigma_y - \sigma_x} \\ \frac{\cos \theta_0}{\sigma_y - \sigma_x} &< 0 \ (\cos \theta > 0 \ , \ \sigma_y - \sigma_x < 0 \ ) \end{aligned}$$

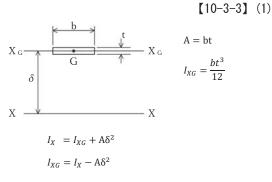


Safety check ( by JHBS )

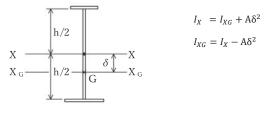
$$\begin{split} \Sigma \sigma &< \sigma_a \\ \sigma_a = \min. \; \left\{ \frac{\sigma_y}{\sigma_{cr}} \right\} / 1.7 \\ yield \; stress \; buckling \; strength \\ \Sigma \tau &< \tau_a \\ \tau_a &= \tau_y / 1.7 \quad \left( \tau_y = \sigma_y / \sqrt{3} \right) \\ \hline \frac{\sigma_e (\Sigma \sigma, \Sigma \tau) < \; 1.1 \sigma_a}{\sigma_a &= \sigma_y / 1.7 \end{split}$$

(  $\ensuremath{\texttt{Q3}}$  ) Calculate  $\sigma\!\ensuremath{\texttt{e}}$  , and check safety

1)  $\sigma_x = 150 N/mm^2$ ,  $\tau_{xy} = 30 N/mm^2$ 2)  $\sigma_x = 180 N/mm^2$ ,  $\sigma_y = 120 N/mm^2$ ,  $\tau_{xy} = 50 N/mm^2$ 3)  $\sigma_x = 180 N/mm^2$ ,  $\sigma_y = -120 N/mm^2$ ,  $\tau_{xy} = 50 N/mm^2$  $\sigma_a = 210 N/mm^2$  (SM490Y)


【10-3-2】 (6)

#### « A3 »


1)  $\sigma_e = \sqrt{150^2 + 3 \times 30^2} = 158.7 \ N/mm^2 < 1.1\sigma_a$ ( = 231 N/mm<sup>2</sup> )

2) 
$$\sigma_e = \sqrt{180^2 - 180 \times 120 + 120^2 + 3 \times 50^2} = 180.8 N/mm^2$$
  
<  $1.1\sigma_a$ 

3)  $\sigma_e = \sqrt{180^2 + 180 \times 120 + 120^2 + 3 \times 50^2} = 275.5 \, N/mm^2$ >  $1.1\sigma_a$ 



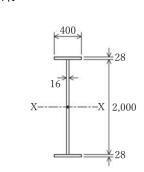
*G* : center of gravity (centroid)

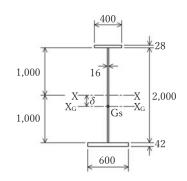


A : cross sectional area of section G : center of gravity (centroid)

【10-3-3】 (2)

(mm)


3)

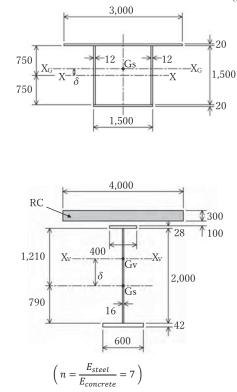

4)

(Q) Find A,I

1)

2)






Gs : center of gravity

【10-3-3】 (3)

[10-3-3] (5)





【10-3-3】 (4)

(cm) 1)  $A = 2 \times 40 \times 2.8 + 1.6 \times 200 = 544 \ cm^2$  $I_x = 2 \times 40 \times 2.8 \times 101.4^2 + 2 \times \frac{2.8^3 \times 40}{12} + \frac{200^3 \times 1.6}{12}$ 146.3 ↑ 1,066,667 = 2,303,159 + 146.3 + 1,066,667  $\approx$  3,369,826<sup>(\*)</sup> cm<sup>4</sup>

(cm) А Ay  $Ay^2$ ν 1,151,580 11,357 1-U PL 400×28 112 101.4 73\* 1-W PL 2,000×16 320 \_ 1,066,667 2,626,951 252 -102.1-25,729 1-L PL 600×42 370\* Σ 684 -14,372 4,845,198 -301,644\*\*  $\delta = \frac{-14,372}{684} = -21.0$  $I_{XG} = 4,543,554 \text{ cm}^4$ 684 (= -210 mm)

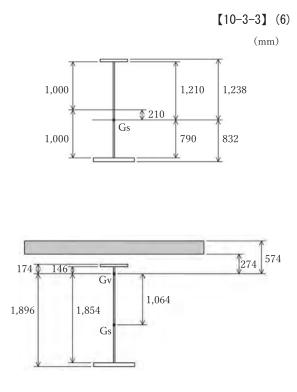
Gs

1,210

4 790 210

| (**) | $\delta^2 A = 21 \times 21 \times 684 = 301,\!644$ |
|------|----------------------------------------------------|

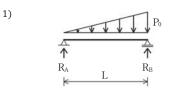
(\*) is excluded to calculate  $(I_{XG})$ 

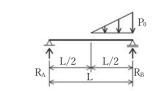

| 3)                                                                                                  |       |     |         | (cm)              |
|-----------------------------------------------------------------------------------------------------|-------|-----|---------|-------------------|
|                                                                                                     | А     | у   | Ay      | $Ay^2$            |
| 1-U PL 3,000×20                                                                                     | 600   | 76  | 45,600  | 3,465,600<br>200* |
| 2-W PL 1,500×12                                                                                     | 360   | -   | -       | 675,000           |
| 1-L PL 1,500×20                                                                                     | 300   | -76 | -22,800 | 1,732,800<br>100* |
| Σ                                                                                                   | 1,260 |     | 22,800  | 5,873,400         |
| $\delta = \frac{22,800}{1,260} = 18.1 \qquad I_{XG} = \frac{-412,789^{**}}{5,460,611 \text{ cm}^4}$ |       |     |         |                   |

(\*) is excluded to calculate  $(I_{XG})$ (\*\*)  $\delta^2 A = 18.1 \times 18.1 \times 1,260 = 412,789$ 



| 4)                                                                                  |            |          |         |         | (cm)                     |
|-------------------------------------------------------------------------------------|------------|----------|---------|---------|--------------------------|
|                                                                                     |            | А        | у       | Ay      | $Ay^2$                   |
| 1-D PL                                                                              | 4,000×300  | 1,714.3* | 148.8** | 255,088 | 37,957,071<br>128,571*** |
| 1-ST                                                                                | Girder**** | 684      | -       | -       | 4,543,554                |
|                                                                                     | Σ          | 2,398.3  |         | 255,088 | 42,629,196               |
| $\delta = \frac{255,088}{2,398.3} = 106.4 \qquad I_{\rm XG} = 15,478,138 \rm{cm}^4$ |            |          |         |         |                          |
| * $1,714.3 = 400 \times 30/7 \ (n = 7)$                                             |            |          |         |         |                          |
| ** 148.8 = 121.0 + 2.8 + 10 + 15                                                    |            |          |         |         |                          |
| *** $128,571 = \frac{30^3 \times 400}{12} / 7$                                      |            |          |         |         |                          |

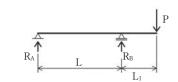

\*\*\*\*\*  $\delta^2 A = 106.4 \times 106.4 \times 2,398.3 = 27,151,058$ 

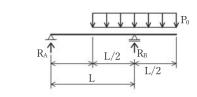



【10-3-4】 (1)

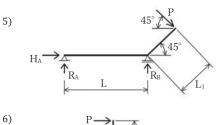
【10-3-4】 (3)

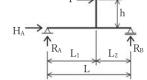




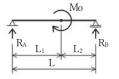



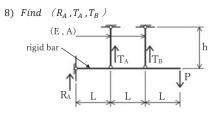

2)


3)

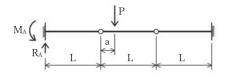

4)



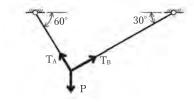




【10-3-4】 (2)

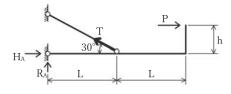





7)







9) Find  $(M_A, R_A)$ 



10) Find  $(T_A, T_B)$ 



11) Find  $(H_A, R_A, T)$ 



[10-3-4] (5)



2)

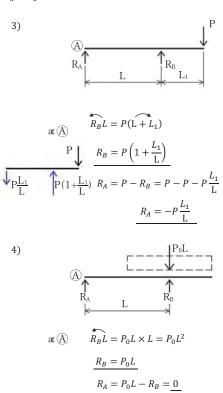
1)

P<sub>0</sub>L

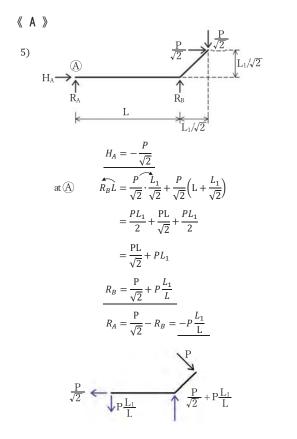
at (A) 
$$\widehat{R_B L} = \frac{P_0 L}{2} \times \frac{2}{3} L = \frac{P_0 L^2}{3}$$
$$\frac{R_B = \frac{P_0 L}{3}}{R_A = \frac{P_0 L}{2} - R_B = \frac{P_0 L}{6}$$

$$\frac{P_{0L}}{4}$$

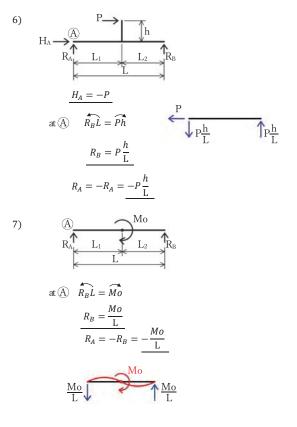
$$R_{A} = \frac{P_{0L}}{5L/6}$$


$$\frac{P_{0L}}{4}$$

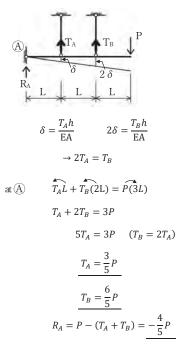
$$R_{B}$$


$$R_{A} = \frac{P_{0L}}{4} \times \frac{5L}{6} = \frac{5}{24}P_{0}L^{2}$$

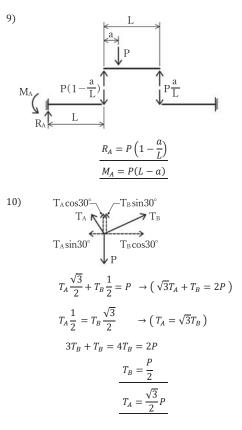
$$\frac{R_{B} = \frac{5}{24}P_{0}L}{R_{A} = \frac{P_{0L}}{4} - \frac{5}{24}P_{0}L = \frac{1}{24}P_{0}L$$


« A »

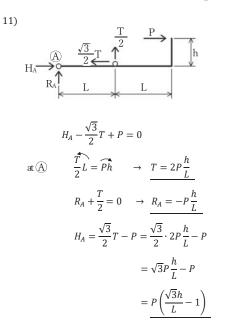



【10-3-4】 (6)

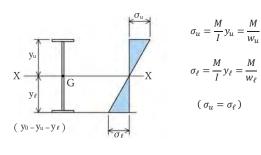


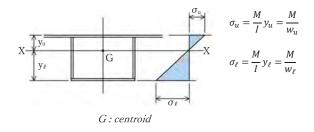

【10-3-4】 (7)

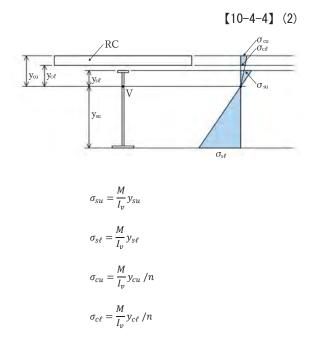



【10-3-4】 (8)




8)





【10-3-4】 (10)



【10-4-4】 (1)







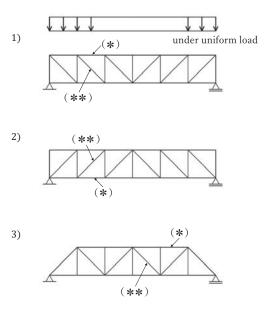
n: Es / Ec (Young's modulus ratio)

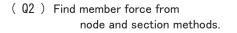
【10-4-4】 (3)

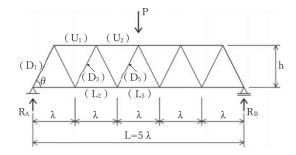
(Q)

See [10-3-3] (2),
 when M=5 (MN ⋅ m), calculate
 (σ<sub>u</sub>, σ<sub>ℓ</sub>)

2) See [10-3-3] (4), when M=10 (MN  $\cdot$  m), calculate  $(\sigma_{cu}, \sigma_{c\ell})$ ,  $(\sigma_{su}, \sigma_{s\ell})$ 


【10-4-4】 (4)


# $\begin{pmatrix} A \\ \end{pmatrix} \\ 1) \\ \frac{\sigma_u}{\sigma_\ell} = \frac{5 \times 10^9}{4,543,554 \times 10^4} \times \frac{1,238}{832} = \frac{136.2}{91.6} N/mm^2$ 2)


$$\begin{split} \frac{\sigma_{cu}}{\sigma_{c\ell}} &= \frac{10 \times 10^9}{15,478,138 \times 10^4} \times \frac{574}{274}/7 = \frac{5.3}{2.5} \; N/mm^2 \\ \frac{\sigma_{su}}{\sigma_{s\ell}} &= \frac{10 \times 10^9}{15,478,138 \times 10^4} \times \frac{174}{1,896} = \frac{11.2}{122.5} \; N/mm^2 \end{split}$$

【10-5-3】 (1)

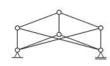
( Q1 ) Identity the members ( \* , \*\* ) are subjected to tension or compression.







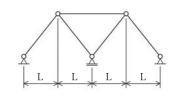
| diagonal member length                            | $L_D = \sqrt{h^2 + (\lambda/2)^2}$ |
|---------------------------------------------------|------------------------------------|
| $\sin\theta = h/L_D$ , $\cos\theta = (\lambda/2)$ | $)/L_D$                            |


(  $\ensuremath{\mathbb{Q}3}$  ) Stable and unstable ( plane problem )

```
[Internal]
         m : number of members
         m = 3 + 2(j - 3) = 2j - 3
        j : number of nodes
     m \ge 2j - 3
                                     \rightarrow stable
     m=2j-3
                                     \rightarrow stable (determinate)
     (n_i = m + 3 - 2j)
                                     \rightarrow degree of redundancy
     m < 2j - 3
                                     \rightarrow unstable
[External]
     r \ge 3
                                     \rightarrow stable
     r = 3
                                     \rightarrow stable (determinate)
                                     \rightarrow degree of redundancy
     (n_r = r - 3)
     r < 3
                                     \rightarrow unstable
        r: number of reactions
[Total system]
     m + r \ge 2j - 3 + 3 = 2j
                                     \rightarrow stable
     m + r = 2j
                                     \rightarrow stable (determinate)
```

【10-5-3】 (4)


Judge the following truss structures stable , unstable.








3)





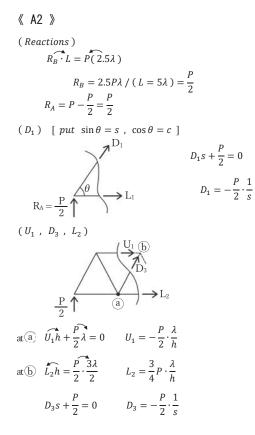
《 A1 》

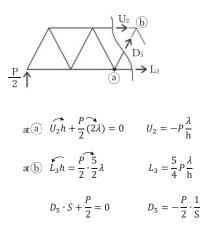
| 1) |      |                   |
|----|------|-------------------|
|    | (*)  | compression $(-)$ |
|    | (**) | tension (+)       |
| 2) |      |                   |
|    | (*)  | tension (+)       |
|    | (**) | compression $(-)$ |
| 3) |      |                   |
|    | (*)  | compression(-)    |

 $(\mathbf{n}_t = \mathbf{m} + \mathbf{r} - 2j)$ 

m + r < 2j

(\*) compression (-) (\*\*) compression (-)

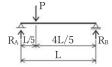

#### [note]


Have a deformed image under uniform load !!

【10-5-3】 (5)

 $\rightarrow$  degree of redundancy

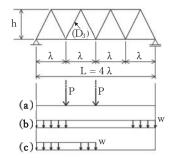
 $\rightarrow$  unstable






【10-5-3】 (8)

« A3 » 1) m = 9j = 6r = 3[1]  $(m = 9) = (2j = 12) - 3 = 9 \rightarrow stable$ , determinate [*E*] *r* = 3  $\rightarrow$  stable , determinate [T]  $(m + r = 12) = 2 \times 6 = 12$  $\rightarrow$  stable , determinate m = 222) *j* = 12 r = 4 $[\,I\,] \ (m=22) > (2j=24) - 3 = 21 \ \rightarrow \ stable \ (\ n_i = 1 \ )$ [E] r = 4 > 3 $\rightarrow$  stable (  $n_r = 1$  )  $[T] (m + r = 26) > (2j = 24) \rightarrow stable (n_t = 2)$ 3) m = 5i = 5r = 5 $[I] \quad m = 5 < (2j = 10) - 3 = 7 \quad \rightarrow unstable$ [*E*] *r* = 5 > 3 [T] (m + r = 10) = (2j = 10)


- 【11-2-1,2】 (1)
- ( Q1 ) Reaction (RA) is  $(4{\rm P}/5)\,.$  Using influence line, conform it.



( Q2 ) Reaction  $(R_B)$  is  $(p_0L/8)$  and moment  $(M_c) \mbox{ is } (p_0L^2/16) \,. \mbox{ Using influence line, conform them.}$ 

$$p_0$$
  $r_{A}$   $L/2$   $L/2$   $R_B$   $R_B$ 

( Q3 ) The lower deck type truss is subjected to three types of loading. Find axial force in the diagonal member ( $D_3$ ) using influence line.

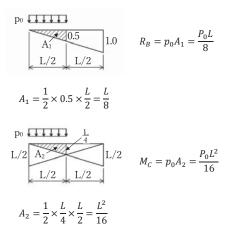


 $S = \sin \theta$ 

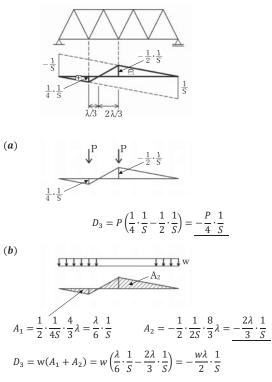
 $= h/\sqrt{h^2 + (\lambda/2)^2}$ 

【11-2-1,2】 (4)

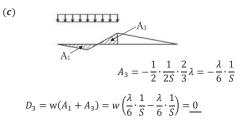
【11-2-1,2】 (3)


#### « A1 »

Influence line of  $R_A$  is as follows.


$$10 \begin{array}{c} \begin{array}{c} P \\ 4 \\ 5 \\ 1/5 \\ 1/5 \\ 4L/5 \end{array} \end{array} \qquad R_A = P\eta = \frac{4}{5}H$$

« A2 »

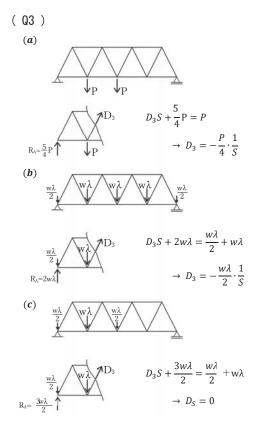

Influence line of  $R_B$ ,  $M_C$  are as follows.



« A3 »



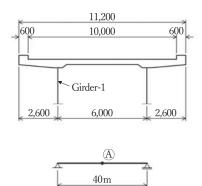
【11-2-1,2】 (5)




[note]

(Q1)  

$$\begin{array}{c} & \downarrow^{P} \\ R_{A} \uparrow \downarrow / 5 & 4L/5 \\ \hline R_{B} \\ at (B) \quad \widehat{R_{A}L} = P \times \left(\frac{4}{5}L\right) = \frac{4}{5}PL \quad \rightarrow R_{A} = \frac{4}{5}P
\end{array}$$


(Q2)  $P_{R_{A}} \xrightarrow{p_{0}L} c \xrightarrow{r_{R_{B}}} R_{A} \xrightarrow{\frac{p_{0}L}{2}} R_{B} \xrightarrow{r_{A}} R_{A} \xrightarrow{r_{A}} R_{A} \xrightarrow{r_{A}} R_{B}$ at (A)  $\widehat{R_{B}L} = \frac{p_{0}L}{2} \cdot \frac{L}{4} = \frac{p_{0}L^{2}}{8} \rightarrow R_{B} = \frac{p_{0}L}{8}$   $M_{C} = R_{B}\frac{L}{2} = \frac{p_{0}L^{2}}{16}$ 



【11-2-3,4】 (1)

(Q1) The member is subjected to tension. 1,000 kN ( under dead load ) 1,400 kN ( under live load ) 200 kN ( under temperature change ) the cross-sectional area of the member is 180 cm<sup>2</sup>, and the material grade is SM400 ( $\sigma_y=235 \text{ N/mm}^2$ ,  $\sigma_a=140 \text{ N/mm}^2$ ). Check the safety





(a) Find live load to Girder-1

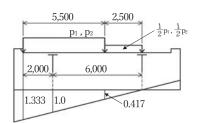
(**b**) Find design bending moment and shear force at (A) (Girder-1)

« A1 »

$$\sigma_{D} = \frac{1,000 \times 10^{3}}{180 \times 10^{2}} = 55.6 \, N/mm^{2} \quad (dead \ load \ )$$

$$\sigma_{L} = \frac{1,400 \times 10^{3}}{180 \times 10^{2}} = 77.8 \, N/mm^{2} \quad (live \ load \ )$$

$$\sigma_{T} = \frac{200 \times 10^{3}}{180 \times 10^{2}} = 11.1 \, N/mm^{2} \quad (temperature \ change \ )$$


$$\sigma_{D} + \sigma_{L} = 133.4 \, N/mm^{2} < \sigma_{a} = 140 \, N/mm^{2}$$

$$\sigma_{D} + \sigma_{L} + \sigma_{T} = 144.5 \, N/mm^{2} < 140 \times 1.15 = 161 \, N/mm^{2}$$

( in case of check using stress resultants )

 $N_{D} = 1,000 \, kN$   $N_{L} = 1,400 \, kN$   $N_{T} = 200 \, kN$   $N_{ult.} = \sigma_{y}A = 4,230 \, kN$   $N_{a} = N_{ul}t./1.7 = 2,488 \, kN$   $N_{D} + N_{L} = 2,400 \, kN < N_{a}$ 

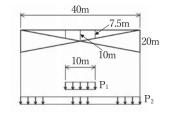
 $N_D + N_L + N_T = 2,600 \ kN \ < \ N_a \times 1.15 = 2,861 \ kN$ 



(**a**)

#### 1] Distributed load $(p_1)$

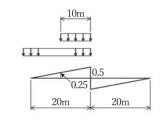
- $\begin{array}{rl} \textbf{1-1} & For \ bending \ moment \ (p_1 = 10 \ kN/m^2) \\ & \frac{1.333 + 0.417}{2} \times 5.5m \times 10 kN/m^2 = 48.13 \ kN/m \\ & \frac{0.417}{2} \times 2.5m \times \frac{10}{2} kN/m^2 = \ 2.61 \ kN/m \\ & \Sigma \quad 50.74 \ kN/m \end{array}$
- **1-2** For shear force  $(p_1=12 \text{ kN/m}^2)$  $\Sigma \quad 50.74 \times \frac{12}{10} = 60.89 \text{ kN/m}$
- 2] Distributed load  $(p_2=3.5 \text{ kN/m}^2)$  (L < 80m)  $\Sigma \quad 50.74 \times \frac{3.5}{10} = 17.76 \text{ kN/m}$


(**b**)

1] impact

 $i = \frac{20}{50+L} = \frac{20}{90} = 0.222 \quad (L = 40m)$ 

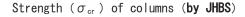
#### 2] Influence line and loading

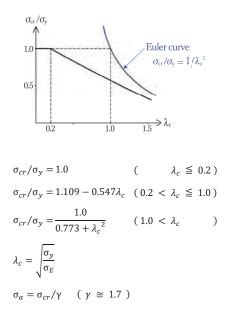

2-1 Design bending moment by live load



$$M = \frac{1}{2} \times 10m \times 40m \times 17.76 \ kN/m \times (1 + 0.222)$$
$$+ 2 \times \left(\frac{10 + 7.5}{2}\right)m \times 5m \times 50.74 \ kN/m \times (1 + 0.222)$$
$$= 4,340.5 + 5,425.4$$
$$= 9,765.9 \ kN \cdot m$$

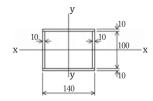
【11-2-3, 4】 (5)


2-2 Design shear force by live load




$$Q = \frac{1}{2} \times 0.5 \times 20m \times 17.76 \ kN/m \times (1 + 0.222)$$
$$+ \frac{0.5 + 0.25}{2} \times 10m \times 60.89 \ kN/m \times (1 + 0.222)$$
$$= 108.5 + 279.0$$

= 387.5 kN


【11-3-1】 (1)





【11-3-1】 (3)

- [11-3-1] (2)
- (Q1 ) Find elastic buckling stress ( $\sigma_{\rm E})$  and strength ( $\sigma_{\rm cr}$ ) of columns with a height of 5,000 mm, and with support (boundary) conditions { (a) : PIN-PIN , (b) : FIX-FIX }. The material grade is SM400( $\sigma_v$ =235 N/mm<sup>2</sup>).



« A1 »  $A = 2 \times 14 \times 1 + 2 \times 10 \times 1 = 48 \ cm^2$  $I_x = 2 \times 14 \times 1 \times 5.5^2 + 2 \times \frac{10^3 \times 1}{12} = 1,013.7 \ cm^4$  $I_y = 2 \times 10 \times 1 \times 6.5^2 + 2 \times \frac{14^3 \times 1}{12} = 1,302.3 \ cm^4 > I_x$ 

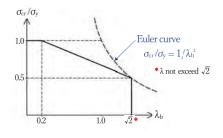
(a) 
$$PIN - PIN \ support \ (L_e = 5,000 \ mm)$$
  
 $P_E = \frac{\pi^2}{L^2} EI = \frac{\pi^2}{(5,000)^2} \times 2.0 \times 10^5 \times 1,013.7 \times 10^4$   
 $= 7.996 \times 10^5 \ (N)$   
 $\sigma_E = \frac{P_E}{A} = \frac{7.996 \times 10^5}{48 \times 10^2} = 166.6 \ (N/mm^2)$   
 $\lambda_c = \sqrt{\frac{\sigma_y}{\sigma_E}} = \sqrt{\frac{235}{166.6}} = 1.190 \ (> 1.0)$   
 $\sigma_{cr}/\sigma_y = \frac{1.0}{0.773 + \lambda_c^2} = 0.457$   
 $\sigma_{cr} = 0.457 \ \sigma_y = 107.4 \ (N/mm^2)$   
 $\sigma_a = \sigma_{cr}/1.7 = \underline{63.2 \ (N/mm^2)}$   
 $JHBS$   
 $\gamma = \sqrt{\frac{I_x}{A}} = \sqrt{\frac{1,013.7}{48}} = 4.596 \ (\ cm$ )  
 $L_e/\gamma = \frac{500}{4.596} = 108.8$   
 $\sigma_a = \frac{1,200,000}{6,700 + (L_e/\gamma)^2} = \underline{64.7 \ (N/mm^2)}$ 

- 【11-3-1】 (4)
- (b) FIX FIX support ( $L_e = 2,500 \text{ mm}$ )  $P_E = 4 P_{E(PIN-PIN)} = 4 \times 7.996 \times 10^5 = 3.198 \times 10^6 \ (N)$  $\sigma_E = 4\sigma_{E(PIN-PIN)} = 4 \times 166.6 = 666.4 (N/mm^2)$  $\lambda_c = \sqrt{\frac{\sigma_y}{\sigma_E}} = \sqrt{\frac{235}{666.4}} = 0.594$ since , (  $0.2 < \lambda_c \leq 1.0$  )  $\sigma_{cr}/\sigma_y = 1.109 - 0.547\lambda_c = 0.784$  $\sigma_{cr} = 0.784 \sigma_{v} = 184.3 (N/mm^{2})$  $\sigma_a = \sigma_{cr}/1.7 = 108.4 (N/mm^2) \leq$ JHBS

$$L_e/\gamma = \frac{250}{4.596} = 54.7$$
  
$$\sigma_a = 140 - 0.82 \left(\frac{L_e}{\gamma} - 18\right) = \underline{109.9 (N/mm^2)}$$

(mm)

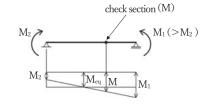
10


¥10 100

*℁ Check of plate strength* 

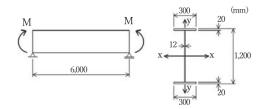
 $b=100\,mm$  ,  $t=10\,mm$ 

120


$$\begin{split} \sigma_E &= 4.0 \times \frac{\pi^2 E}{12(1-V^2)} \cdot \left(\frac{t}{b}\right)^2 = 722,315 \left(\frac{t}{b}\right)^2 \\ &= 7223.2 \ (N/mm^2) \\ R &= \sqrt{\frac{\sigma_y}{\sigma_E}} = \sqrt{\frac{235}{7223.2}} = 0.180 < 0.5 \\ &\to \sigma_{cr} = \sigma_y \end{split}$$



 $\sigma_{cr}/\sigma_y = 1.0$  (  $\lambda_b \leq 0.2$  )

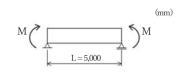

 $\sigma_{cr} / \sigma_{y} = 1.0 - 0.412 (\lambda_{b} - 0.2) (0.2 < \lambda_{b} \le \sqrt{2})$ 

In case that M varies between fix point,

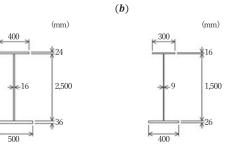


$$\begin{split} M_{eq} &= max. \{(0.6M_1 + 0.4M_2) \text{ , } (0.4M_1)\} \\ \sigma_a \text{ can be increased to } \{(M/M_{eq}) \sigma_a\} \end{split}$$

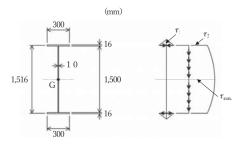
- (Q1) The simply supported beam with laterally constrained at supports is subjected to
- constrained at supports is subjected to bending moment(M). Find elastic buckling moment(M<sub>E</sub>) and ultimate moment(M<sub>cr</sub>). The material grade is SM400 ( $\sigma_v$ =235 N/mm<sup>2</sup>).




( Q2 ) Find increment coefficient of allowable stress. The beam is given in (Q1) , and subjected to the following moment. The satisfy check section is (B)




【11-3-2】 (3)


(Q3) The following beam is subjected to bending moment and laterally constrained at supports. Find allowable stress based on JHBS. The material grade is SM490Y.







(  $\mathtt{Q4}$  ) Obtain shear stress under shear (Q).



【11-3-2】 (6)

$$\begin{split} I_x &= 2 \times 30 \times 2 \times 59^2 + \frac{1.2 \times 116^3}{12} = 573,810 \ cm^4 \\ I_y &= 2 \times \frac{30^3 \times 2}{12} + \frac{1.2^3 \times 120}{12} \cong 9,000 \ cm^4 \\ I_w &\cong I_y \left(\frac{h}{2}\right)^2 = 9,000 \times \left(\frac{120}{2}\right)^2 = 32,400,000 \ cm^6 \\ (I_w: warping \ constant \ ) \\ M_E &= \frac{\pi}{L} \sqrt{EI_y GJ} \left(1 + \frac{\pi^2 \times EI_w}{L^2 GJ}\right) \\ &\cong \left(\frac{\pi}{L}\right)^2 E \sqrt{I_y I_w} \\ &= \left(\frac{\pi}{6,000}\right)^2 \times 2 \times 10^5 \times \sqrt{9 \times 10^7 \times 3.24 \times 10^{13}} \\ &= \frac{2.958 \times 10^9 \ N \cdot mm}{600} = 9.56 \times 10^6 \\ M_y &= 235 \times M_x = 235 \times 9.56 \times 10^6 = 2.247 \times 10^9 \ N \cdot mm \end{split}$$

$$\begin{split} \lambda_b &= \sqrt{\frac{M_y}{M_E}} = \sqrt{\frac{2.247 \times 10^9}{2.958 \times 10^9}} = 0.872 \ (> 0.2 \ ) \\ \sigma_{cr} / \sigma_y &= 1.0 - 0.412 ( \ \lambda_b - 0.2 \ ) = 0.723 \\ \sigma_{cr} &= 0.723 \ \sigma_y = 169.9 \ N/mm^2 \\ M_{cr} &= \sigma_{cr} \ W_x = 169.9 \times 9.56 \times 10^6 = \underline{1.624} \ (MN \cdot m \ ) \\ \sigma_{ba} &= \sigma_{cr} / 1.7 = \underline{99.9} \ N/mm^2 \end{split}$$

by JHBS

$$\begin{split} A_c &= 30 \times 2.0 = 60 \ cm^2 \ , \ A_w = 120 \times 1.2 = 144 \ cm^2 \\ A_w/A_c &= 144/60 = 2.4 > 2.0 \\ K &= \sqrt{3 + A_w/(2A_c)} = 2.05 \\ \frac{9}{K}(=4.5) \ < \frac{L}{b} \ (= 20) \ < 30 \\ \sigma_{ba} &= 140 - 1.2 \left( K \ \frac{L}{b} - 9 \right) = 101.6 \ N/mm^2 \end{split}$$

#### « A2 »

$$\begin{split} M_{eq} &= 0.6M_1 + 0.4M_2 = 0.8M \\ M_{eq} &= 0.4M_1 = 0.4M \\ \downarrow \\ M_{eq} &= 0.8M \\ M/M_{eq} &= 1.25 \\ \underline{\sigma_{ba} \ can \ be \ increased \ 1.25 \ \sigma_{ba}} \end{split}$$

【11-3-2】 (7)

#### « A3 »

(a) 
$$L/b = 5,000/400 = 12.5$$
  
 $A_c = 40 \times 2.4 = 96 \ cm^2$ ,  $A_w = 250 \times 1.6 = 400 \ cm^2$   
 $A_w/A_c = 400/96 = 4.17 \ge 2$   
 $K = \sqrt{3 + \frac{A_w}{2A_c}} = 2.25$ 

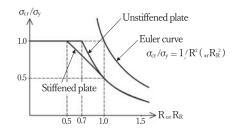
$$\frac{7}{k}(=3.1) < \frac{L}{b}(=12.5) < 27$$
$$\underline{\sigma_{ba}} = 210 - 2.3\left(K\frac{L}{b} - 7\right) = \underline{161.4(N/mm^2)}$$

 $(b) \qquad L/b = 5,000/300 = 16.7$ 

 $A_C = 30 \times 1.6 = 48 \ cm^2$ ,  $A_w = 150 \times 0.9 = 135 \ cm^2$  $A_w/A_C = 135/48 = 2.81 \ge 2$ 

$$K = \sqrt{3 + \frac{A_w}{2A_c}} = 2.10$$

$$\frac{7}{k} (= 3.33) < \frac{L}{b} (= 16.7) < 27$$


$$\frac{\sigma_{ba}}{2} = 210 - 2.3 \left( K \frac{L}{b} - 7 \right) = \underline{145.4 (N/mm^2)}$$

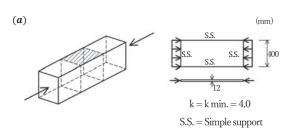
【11-3-2】 (8)

### « A4 »

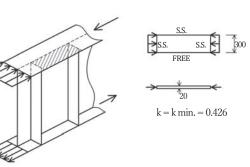
$$I = 2 \times 30 \times 1.6 \times 75.8^{2} + \frac{150^{3} \times 1}{12}$$
  
= 832,831.4 (cm<sup>4</sup>) ( $\rightarrow$  8.328 × 10<sup>9</sup> mm<sup>4</sup>)  
 $\tau_{1} = \frac{Q}{I} \times \frac{300 \times 1,516}{4} = 1.365 \times 10^{-5}Q$   
 $\tau_{2} = \frac{Q}{I} \times \frac{300 \times 1,516}{2} \times \frac{16}{10} = 4.369 \times 10^{-5}Q$   
 $\tau_{max.} = \frac{Q}{I} \times \left[\frac{1,516^{2}}{8} + \frac{300 \times 1,516}{2} \times \frac{16}{10}\right] = 7.818 \times 10^{-5}Q$   
 $\tau_{mean} = \frac{Q}{A_{w}} = \frac{Q}{1,500 \times 10} = 6.667 \times 10^{-5}Q$   
when  $Q = 200 \ kN \ (2 \times 10^{5} \ N)$ ,  
 $\tau_{1} = 2.7 \ N/mm^{2}$ ,  $\tau_{2} = 8.7 \ N/mm^{2}$ ,  $\tau_{max.} = 15.6 \ N/mm^{2}$   
 $\tau_{mean} = 13.3 \ N/mm^{2}$ 

#### Strength of plate (by JHBS)



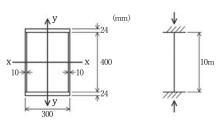

#### Unstiffened plate

| $\sigma_{cr}/\sigma_y = 1.0$       | $(\qquad R \leq 0.7)$ |  |
|------------------------------------|-----------------------|--|
| $\sigma_{cr}/\sigma_{v} = 0.5/R^2$ | (0.7 < R)             |  |


#### Stiffened plate

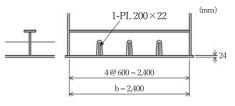
| $\sigma_{cr}/\sigma_y = 1.0$         | $(\qquad R_R \leq 0.5)$ |
|--------------------------------------|-------------------------|
| $\sigma_{cr}/\sigma_y = 1.5 - R_R$   | $(0.5 < R_R \leq 1.0)$  |
| $\sigma_{cr}/\sigma_y = 0.5/{R_R}^2$ | $(1.0 < R_R)$           |

(Q1) Obtain the ultimate strength( $\sigma_{\rm cr}$ ) of the following plates. The material grade is SM400 ( $\sigma_{\rm y}$ =235 N/mm<sup>2</sup>).




(**b**)



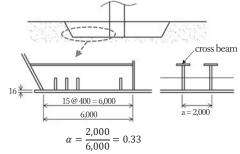

【11-3-3】 (3)

(Q2) Find the allowable stress ( $\sigma_a = \sigma_{cr}/1.7$ ) of the following column with height of 10m and (FIX-FIX) support. The material grade is SM490Y ( $\sigma_y = 355 \text{ N/mm}^2$ )

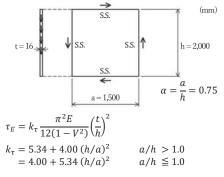


(Q3) Check the safety of the following stiffened plate.

The material grade is SM400( $\sigma_{\rm y}{=}235\,{\rm N/mm^2})$ 




pitch of cross beam (a) = 2,880mm


$$\alpha = \frac{a}{b} = \frac{2,880}{2,400} = 1.2$$

【11-3-3】 (4)

(Q4) Design the following lower flange.



- (*a*) Find the allowable stress of the lower flange.
- (**b**) Design the longitudinal rib.
- (c) Design the cross beam.
- (Q5) Find the elastic shear buckling stress ( $\tau_{\rm E}$ )



[11-3-3] (6)

[11-3-3] (5)

)

(Q6) Find the ultimate strength( $\tau_{\rm ult.})$  of the (Q3) plate using Basler's formula. The material grade is SM400

$$(\tau_y = \frac{O_y}{\sqrt{3}} = 135 \text{ N/mm}^2)$$
$$\tau_{ult} = \tau_{cr} = \sqrt{3} \left(1 - \frac{\tau_{cr}}{\tau_y}\right)$$

$$\begin{aligned} \frac{\tau_{ut.}}{\tau_y} &= \frac{\tau_v}{\tau_y} + \frac{\tau_z}{2} \cdot \frac{\tau_y}{\sqrt{1 + \alpha^2}} \\ (post buckling strength) \end{aligned}$$

$$\tau_{cr} &= \tau_E \qquad \left( \qquad \tau_E \leq 0.8 \, \tau_y \right) \\ \tau_{cr} &= \sqrt{0.8 \, \tau_y \, \tau_E} \qquad \left( 0.8 \, \tau_y < \tau_E \right) \end{aligned}$$

《 A1 》  $\sigma_E = k \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2$  $E = 2 \times 10^5 (N/mm^2)$ v (*Poisson's ratio*) = 0.3 (a) b = 400 , t = 12 , k = 4.0 $\sigma_E = 722,315 \left(\frac{t}{b}\right)^2 = 650 \ N/mm^2$  $R = \sqrt{\frac{\sigma_y}{\sigma_E}} = \sqrt{\frac{235}{650}} = 0.60 < 0.70$  $\sigma_{cr}/\sigma_y = 1.0 \rightarrow \sigma_{cr} = \sigma_y = 235 N/mm^2$   $\sigma_a = \sigma_{cr}/1.7 \cong \overline{140 N/mm^2} \longleftarrow$  b = 300 , t = 20 , k = 0.426 $\sigma_E = 76,927 \left(\frac{t}{b}\right)^2 = 341 \, N/mm^2$  $R = \sqrt{\frac{\sigma_y}{\sigma_E}} = \sqrt{\frac{235}{341}} = 0.83 > 0.70$  $\sigma_{cr}/\sigma_y=0.5/R^2=0.726$  $\sigma_{cr} = 0.726 \sigma_y = 170.6 N/mm^2$  $\sigma_a = \sigma_{cr} / 1.7 = 100.4 \, N/mm^2 \checkmark$ **Based on JHBS** (a)  $t (= 12) > \frac{b (= 400)}{38.7} = 10.3 \rightarrow \underline{\sigma_a = 140 \, N/mm^2}^{\mu}$ (b)  $\frac{b (= 300)}{16} = 18.8 < 20 < \frac{b}{12.8} (= 23.4)$ 

[11-3-3] (7)

#### « A2 »

1) Column strength

$$A = 2 \times 30 \times 2.4 + 2 \times 40 \times 1 = 224 \ cm^2 \ (22,400 \ mm^2)$$

$$\begin{split} I_x &= 2 \times 30 \times 2.4 \times 21.2^2 + 2 \times \frac{40^{\circ} \times 1}{12} = 75,386 \ cm^4 \\ I_y &= 2 \times 40 \times 1.0 \times 14.5^2 + 2 \times \frac{30^3 \times 2.4}{12} = 27,620 \ cm^4 < I_x \\ P_E &= \frac{\pi^2}{L_e^2} EI_y = \frac{\pi^2}{(5,000)^2} \times 2 \times 10^5 \times 2.762 \times 10^8 = 21,785,772(N) \\ \sigma_E &= \frac{P_E}{A} = \frac{21,785,772}{22,400} = 972.6 \ (N/mm^2) \\ \lambda_c &= \sqrt{\frac{\sigma_y}{\sigma_E}} = \sqrt{\frac{355}{972.6}} = 0.604 \ (0.2 < \lambda_c < 1.0) \\ \sigma_{cr}/\sigma_y &= 1.109 - 0.547 \ \lambda_c = 0.779 \ \rightarrow \ \sigma_{cr} \ (C) = 0.779 \ \sigma_y \end{split}$$

2) Plate  $(400 \times 10)$  strength

$$\begin{aligned} \sigma_E &= 4 \times \frac{\pi^2 E}{12(1-\nu^2)} \times \left(\frac{t}{b}\right)^2 = 722,315 \left(\frac{t}{b}\right)^2 \\ &= 722,315 \left(\frac{10}{400}\right)^2 = 451.4 \, N/mm^2 \\ R &= \sqrt{\frac{355}{451.4}} = 0.887 > 0.7 \end{aligned}$$

$$\sigma_{cr}/\sigma_y = 0.5/R^2 = 0.636 \rightarrow \sigma_{cr} (P) = 0.636 \sigma_y$$

3) Coupled strength  $\sigma_{cr} = \sigma_{cr} (C) \times \sigma_{cr} (P) / \sigma_{y} = 0.495 \sigma_{y} = 175.9 N/mm^{2}$  $\sigma_a = \sigma_{cr}/1.7 = 103.5 N/mm^2$ 

« A3 »

$$\begin{split} \sigma_E &= (k_R = 4n^2) \cdot \frac{\pi^2 E}{12(1-V^2)} \Big(\frac{t}{b}\Big)^2 \\ &= 2,400mm \ , \ t = 24mm \ , \ n = 4 \\ &= 11,557,040 \left(\frac{t}{b}\right)^2 = 1,155.7 \ (N/mm^2) \\ &R = \sqrt{\frac{\sigma_y}{\sigma_E}} = \sqrt{\frac{235}{1,155.7}} = 0.45 < 0.5 \\ &\sigma_{cr}/\sigma_y = 1.0 \ \rightarrow \ \sigma_{cr} = \sigma_y = 235 \ (N/mm^2) \\ &\sigma_a = \sigma_{cr}/1.7 \cong 140 \ (N/mm^2) \end{split}$$

 $\rightarrow \sigma_a = 23,000(t/b)^2 = 102.2 N/mm^2 \mu$ 

**%** Check of longitudinal rib  $(1 - PL 200 \times 22)$ 

$$I_{\ell} = \frac{20^3 \times 2.2}{3} = 5,866.7 \ cm^4$$

$$A_{\ell} = 20 \times 2.2 = 44 \ cm^2 > \frac{bt}{10n} = \frac{240 \times 2.4}{10 \times 4} = 14.4 \ cm^2$$

$$\delta_{\ell} = \frac{A_{\ell}}{bt} = \frac{44}{240 \times 2.4} = 0.0764$$

$$\gamma_{\ell} = \frac{I_{\ell}}{bt^3/11} = \frac{5,866.7}{(240 \times 2.4^3)/11} = 19.5$$

$$\alpha_0 = \sqrt[4]{1 + n \times \gamma_{\ell}} = \sqrt[4]{1 + 4 \times 19.5} = 2.98$$

$$(\alpha (= 1.2) < \alpha_0)$$

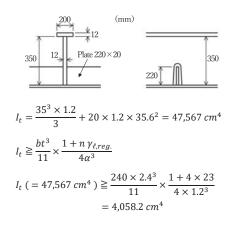
$$t_0 = \frac{2,400}{28 \times 4} = 21.4 \ mm$$

【11-3-3】 (8)

【11-3-3】 (10)

$$\begin{bmatrix} 11-3-3 \end{bmatrix} (9)$$
  
 $\gamma_{\ell,reg.} = 4\alpha^2 n \left(\frac{t_0}{t}\right)^2 (1+n\delta_\ell) - \frac{(\alpha^2+1)^2}{n}$   
 $= 4 \times 1.2^2 \times 4 \times \left(\frac{21.4}{24}\right)^2 \times (1+4 \times 0.0764)$   
 $-\frac{(1.2^2+1)^2}{4} = 22.4$   
 $ht^3$ 

$$\frac{l_{\ell}(=5,866.7\ cm^4)}{0} < \frac{bt^3}{11} \gamma_{\ell,reg.} = 6,765.2\ cm^4}{0ut}$$


$$\begin{split} I_{\ell} &= \frac{22^3 \times 2.2}{3} = 7,808.5 \ cm^4 \\ A_{\ell} &= 22 \times 2.2 = 48.4 \ cm^2 > \frac{bt}{10^n} = 14.4 \ cm^2 \\ \delta_{\ell} &= \frac{A_{\ell}}{bt} = \frac{48.4}{240 \times 2.4} = 0.084 \\ \gamma_{\ell} &= \frac{I_{\ell}}{bt^3/11} = \frac{7,808.5}{(240 \times 2.4^3)/11} = 25.9 \\ \alpha_0 &= \sqrt[4]{1 + n \times \gamma_{\ell}} = \sqrt[4]{1 + 4 \times 25.9} = 3.20 > \alpha \ (= 1.2 \ ) \\ \gamma_{\ell,reg.} &= 4 \times 1.2^2 \times 4 \times \left(\frac{21.4}{24}\right)^2 \times (1 + 4 \times 0.084) \\ &\qquad - \frac{(1.2^2 + 1)^2}{4} = 23.0 \\ I_{\ell} (= 7,808.5 \ cm^4) > \frac{bt^3}{11} \ \gamma_{\ell,reg.} = 6,937 \ cm^4 \\ \hline Ok \ !! \end{split}$$

**X** Check of ribs. (plate 220 × 22 : SM400)

$$t (= 22mm) > \frac{b (= 220)}{12.8} = 17.2 mm$$
$$\rightarrow \sigma_a = 140 N/mm^2 \leftarrow rib$$

\*\*

Cross beam



[11-3-3] (11)

#### « A4 »

$$\begin{aligned} \textbf{(a)} \quad \sigma_E &= 4n^2 \frac{\pi^2 E}{12(1-V^2)} \left(\frac{t}{b}\right)^2 \\ & (n=15 \ , \ b=6,000mm \ , \ t=16mm ) \\ &= 4 \times 15^2 \times \frac{\pi^2 E}{12(1-v^2)} \times \left(\frac{16}{6,000}\right)^2 = 1,155.7 \ N/mm^2 \\ & R_p = \sqrt{\frac{\sigma_y}{\sigma_E}} = \sqrt{\frac{355}{1,155.7}} = 0.554 \ > 0.5 \\ & \sigma_{cr}/\sigma_y = 1.5 - R_p = 0.946 \ \to \ \sigma_{cr} = 0.946 \ \sigma_y = 335.8 \ N/mm^2 \\ & \underline{\sigma_a = \sigma_{cr}/1.7 = 197.5 \ N/mm^2} \end{aligned}$$

#### by JHBS

$$\frac{b}{46fn} \left( = \frac{6,000}{46 \times 1 \times 15} = 8.7 \, mm \right) < t \ (= 16mm \ )$$

$$< \frac{b}{22fn} \left( = \frac{6,000}{22 \times 1 \times 15} = 18.2 \, mm \right)$$

$$\sigma_a = 210 - 4.6 \left( \frac{b}{tfn} - 22 \right) = 210 - 4.6 \left( \frac{6,000}{16 \times 1 \times 15} - 22 \right) /$$

$$= \underline{196.2 \, N/mm^2} \checkmark$$

(**b**) Longitudinal rib

Assume plate  $190 \times 20$  (SM490Y)

$$A_{\ell} = 19 \times 2.0 = 38 \ cm^2$$
,  $\delta_{\ell} = \frac{A_{\ell}}{bt} = \frac{38}{6,000 \times 1.6} = 0.0396$ 

$$I_{\ell} = \frac{19^3 \times 2.0}{3} = 4,573 \ cm^4$$

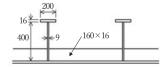
 $\begin{bmatrix} 11-3-3 \end{bmatrix} (12)$   $\gamma_{\ell} = \frac{I_{\ell}}{bt^3/11} = \frac{4,573}{(600 \times 1.6^3)/11} = 20.5$   $\alpha_0 = \sqrt[4]{1+n \times \gamma_{\ell}} = \sqrt[4]{1+15 \times 20.5} = 4.19 > \alpha (= 0.33)$ Since  $R_p > 0.5$   $\gamma_{\ell,req.} = 4\alpha^2 n (1+n\delta_{\ell}) - \frac{(\alpha^2+1)^2}{n}$   $= 4 \times 0.33^2 \times 15 \times (1+15 \times 0.0396) - \frac{(0.33^2+1)^2}{15} = 10.3$   $A_{\ell}(= 38 \text{ cm}^2) \ge \frac{bt}{10n} = \frac{600 \times 1.6}{10 \times 15} = 6.4 \text{ cm}^2$   $I_{\ell}(= 4,573 \text{ cm}^4) \ge \frac{bt^3}{11} \gamma_{\ell,req.} = \frac{600 \times 1.6^3}{11} \times 10.3 = 2,301 \text{ cm}^4$ Since a little bit conservative, we select more smaller plate for ribs. It is  $\underline{160 \times 16} (SM490Y)$ .  $A_{\ell} = 16 \times 1.6 \times 25.6 \text{ cm}^2 , \quad \delta_{\ell} = \frac{25.6}{600 \times 1.6} = 0.027$   $I_{\ell} = \frac{16^3 \times 1.6}{3} = 2,185 \text{ cm}^4$  $\gamma_{\ell} = \frac{I_{\ell}}{bt^3/11} = \frac{2,185}{(600 \times 1.6^3)/11} = 9.8$ 

$$\alpha_0 = \sqrt[4]{1 + n \times \gamma_\ell} = \sqrt[4]{1 + 15 \times 9.8} = 3.49 > \alpha \ (= 0.33)$$

$$\begin{split} \gamma_{\ell,req.} &= 4\alpha^2 n (1+n\delta_\ell) - \frac{(\alpha^2+1)^2}{n} \\ &= 4\times 0.33^2 \times 15 \times (1+15\times 0.027) - \frac{(0.33^2+1)^2}{15} = 9.1 \end{split}$$

[11-3-3] (13)

【11-3-3】 (14)


【11-4-1】 (2)

$$\begin{split} A_{\ell}(=25.6\ cm^2) \, &> \, \frac{bt}{10n} = \frac{600 \times 1.6}{10 \times 15} = 6.4\ cm^2 \\ I_{\ell}(=2,185\ cm^4) \, &> \, \frac{bt^3}{11}\ \gamma_{\ell,req.} = \frac{600 \times 1.6^3}{11} \times 9.1 = \underline{2,033\ cm^4} \end{split}$$

Plate  $160 \times 16$  is employed for longitudinal ribs.

(c) Cross beam

16 🛓



$$I_t = 20 \times 1.6 \times 40.8^2 + \frac{40^3 \times 0.9}{3} = 72,468 \ cm^4$$

 $I_t (= 72,\!468 \ cm^4)$ 

$$> \frac{bt^{3}}{11} \times \frac{1 + n \gamma_{\ell, reg.}}{4\alpha^{3}} = \frac{600 \times 1.6^{3}}{11} \times \frac{1 + 15 \times 9.1}{4 \times 0.33^{3}}$$
$$= 70,533 \ cm^{4}$$

MM

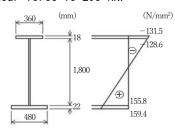
15@400=6,000 6,000

« A5 »

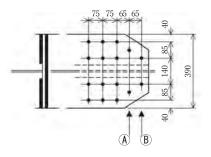
$$a/h < 1.0 \rightarrow k_{\tau} = 4.00 + 5.34 (h/a)^2 = 7.0$$
  
$$\tau_E = k_{\tau} \frac{\pi^2 E}{12(1-V^2)} \cdot \left(\frac{t}{h}\right)^2 = 1,264,051 \left(\frac{t}{h}\right)^2 = \underline{80.9 (N/mm^2)}$$

 $\tau_E \leq 0.8 \ \tau_y = 108 \ N/mm^2 \ \rightarrow \ \tau_{cr} = \tau_E = 80.9 \ N/mm^2$ 

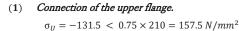
$$\frac{\tau_{ult}}{\tau_y} = \frac{80.9}{135} + \frac{\sqrt{3}}{2} \cdot \frac{\left(1 - \frac{80.9}{135}\right)}{\sqrt{1 + 0.75^2}} = 0.599 + 0.278 = 0.877$$


 $\tau_{ult} = 0.877 \ \tau_y = 118.4 \ N/mm^2$ 

#### 【11-4-1】 (1)

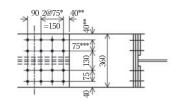

9 -

400


(Q1) Design the friction-type bolt (M22, F10T, 2-plane friction) connection of the following I-section. The material grade is SM490Y ( $\sigma_a$ =210 N/mm<sup>2</sup>) The shear force is 295 kN.



(Q2) Find the net cross-sectional area at the Sections  $(\overline{A})$  and  $(\overline{B})$ .




#### « A1 »

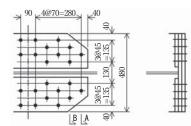


- $\rightarrow$  Design using 75% of full strength.
- Number of bolts and arrangements.

$$M = \frac{157.5 \times 360 \times 18}{96,000} = 10.6 \rightarrow 12 \text{ bolts}$$



$$\begin{array}{rcl} (mm) & (mm) \\ \hline 1 - \text{spl pl } 360 \times 9 &=& 3,240 \\ \hline 2 - \text{spl pl } 155 \times 10 &=& 3,100 \\ \hline A \, \text{spl } &=& 6,340 \\ \hline \sigma_{spL} &=& 157.5 \times \frac{360 \times 18}{6,340} = 161.0 < 210 \, (N/mm^2) \\ &* 75 \leq pitch(=75) < 150 \\ &** \ min.edge \, (= 32) < 40 \\ &*** \ 75 \leq gauge \, (= 75) < 24 + (= 24 \times 9 = 216) \end{array}$$


(2) Connection of the lower flange.

$$\sigma_L = 159.4 > 0.75 \times 210 = 157.5 N/mm^2$$

 $\rightarrow~$  Design using the design stress.

#### •Number of bolt and arrangement.

$$M = \frac{159.4 \times 480 \times 22}{96,000} = 17.5 \rightarrow 18 \text{ bolts}$$



#### • Splice plate (SM490Y)

Check of plate to be connected.

$$-Asection -$$

$$A_n = (480 - 2 \times 25) \times 22 = 9,460 \ mm^2$$

$$\sigma_L = 159.4 \times \frac{480 \times 22}{9,460} = 177.9 < 210 (N/mm^2)$$

#### -B section -

$$A_n = (480 - 4 \times 25) \times 22 = 8,360 \ mm^2$$

$$\sigma_L = 159.4 \times \frac{480 \times 22}{8,360} \times \left(\frac{16}{18}\right)^* = 180.0 < 210 (N/mm^2)$$

\* 2 - bolt force already transferred to splice plate.

【11-4-1】 (5)

(a) First row (p: Working force)

$$P_1 = \frac{157.5 + 133.5}{2} \times (95 + 55) \times 9 = 196,425 (N)$$
$$n_1 = \frac{196,425}{96,000} = 2.1 \rightarrow 3 \text{ bolts}$$

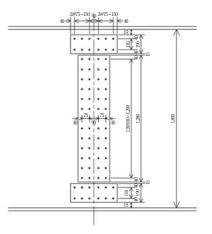
(**b**) Third row

$$P_3 = \frac{117.2 + 101.6}{2} \times (47.5 + 50.0) \times 9 = 95,999 (N)$$
$$n_3 = \frac{95,999}{96,000} = 1.0 \rightarrow 2 \text{ bolts}$$

Total number of bolt is 38.

Safety under shear.

$$P_s = \frac{295 \times 10^3}{38} = 7,763 (N) < P_a = 96,000 (N)$$


Safety under combined moment and shear.

$$P_{P_1} = \frac{196,425}{3} = 65,475 \ (N)$$
$$P = \sqrt{P_{P_1}^2 + P_s^2} = 65,934 \ (N) \ < \ P_a = 96,000 \ (N)$$

$$\begin{aligned} A_{req.} &= 480 \times 22 \times \frac{159.4}{210} = 8,016 \ (mm^2) \\ 1 - \text{spl pl} \quad (480 - 4 \times 25) \times 14 = 5,320 \\ \underline{2 - \text{spl pl}} \quad (215 - 2 \times 25) \times 14 = 4,620 \\ \hline A \text{ spl} &= 9,940 \ (mm^2) > A_{req.} \\ \\ \sigma_{spL} &= 159.4 \times \frac{480 \times 22}{9,940} = 169.3 < 210 \ (N/mm^2) \\ \hline \left( \omega = d - p^2/4g = 25 - \frac{70^2}{4 \times 45} = -2.22 < 0 \right) \end{aligned}$$

#### (3) *Connection of the web.*

• Number of bolt and arrangement.



【11-4-1】 (6)

#### • Splice plate (SM490Y)

$$4 - \text{spl pl}$$
 190 × 9 = 1,710

$$2 - \text{spl pl} \quad 1,280 \times 9 = 11,520 *$$

- \* Cross sectional area of one plate.
- (a) Moment of inertia of splice plate

$$I_{S} = 2 \times \left( 17.1 \times 66.4^{2} + \frac{19.0^{3} \times 0.9}{12} + 17.1 \times 83.6^{2} \times \frac{19.0^{3} \times 0.9}{12} \right)$$
$$+ 2 \times \left( 115.2 \times 8.6^{2} + \frac{128.0^{3} \times 0.9}{12} \right)$$
$$= 723,479 \ (cm^{4}) > I_{W} = \frac{180^{3} \times 0.9}{12} = 437,400 \ (cm^{4})$$

(b) Moment acting on splice plate

$$= \sigma_L \times \frac{I_S}{y_L}$$
  
= 157.5 ×  $\frac{1,800^3 \times 9/12 + 1,800 \times 9 \times 86^2}{986}$ 

(c) Fiber stress in splice plate

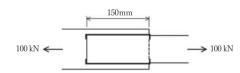
 $M_S$ 

$$\sigma_{spL} = \frac{7.18 \times 10^8}{7.235 \times 10^9} \times 931$$
  
= 92.4 N/mm<sup>2</sup> <  $\sigma_{ta}$  = 210 (N/mm<sup>2</sup>)

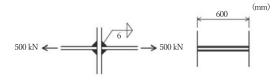
# 【11-4-1】 (7)


#### (a) At section (A)

$$A_g = 39 \times 2.8 = 109.2 \ cm^2$$
  
w =  $d - \frac{d^2}{4_g} = 2.5 - \frac{6.5^2}{4 \times 4.25} = 0.015 > 0$   
 $A_n = A_g - 2 \times (2.5 + 2w) \times 2.8$   
= 109.2 - 2 × (2.5 + 2 × 0.015) × 2.8  
= 95 \ cm^2

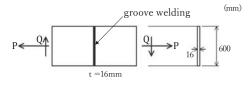

(b) At section B

$$A_n = A_g - 2 \times 2.5 \times 2.8$$
$$= 109.2 - 14 = 95.2 \ cm^2$$






(Q2) Find the required size (S) of the fillet weld. The material grade is SM400.




#### (Q3) Check the safety.



【11-4-2】 (2)

- ( Q4 ) A groove welding part is subjected to tension (P) and shear force (Q). The material grade is SM400  $(\sigma_a = 140 \text{ N/mm}^2, \tau_a = 80 \text{ N/mm}^2).$  Check the safety.
  - (1)  $P = 1,000 \ kN$
  - (2)  $Q = 650 \, kN$
  - (3)  $P = 1,000 \, kN \& Q = 650 \, kN$



【11-4-2】 (3)

« A2 »

$$s = \frac{s}{s}$$

$$2 \times 150 \times \frac{S}{\sqrt{2}} \times \frac{80}{(=\tau_a)} = 100 \times 10^3$$

$$S > 5.89 \, mm \rightarrow S = 6 \, mm$$

« A3 »

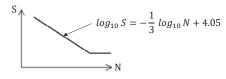
$$s = \frac{6}{\sqrt{2}} = 4.24 mm$$

$$s = \frac{6}{\sqrt{2}} = 4.24 mm$$

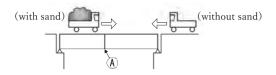
$$(S = 6 mm)$$

$$\tau = \frac{500 \times 10^{3}}{2 \times 4.24 \times 600} = 98.3 N/mm^{2} > \frac{80}{(=\tau_{a})}N/mm^{2}$$
Not safe !!

# 【11-4-2】 (4)


#### « A4 »

(1) P = 1,000 kN $\sigma = \frac{1,000 \times 10^3}{600 \times 16} = 104.2 \text{ N/mm}^2 < 140 \text{ N/mm}^2$ 


(2) 
$$Q = 650 \ kN$$
  
 $\tau = \frac{650 \times 10^{-3}}{600 \times 16} = 67.7 \ N/mm^2 < 80 \ N/mm^2$ 

(3) 
$$P = 1,000 \, kN \& Q = 650 \, kN$$
  
 $\left(\frac{104.2}{140}\right)^2 + \left(\frac{67.7}{80}\right)^2 = \underline{1.27 > 1.2}$ 

(Q1) The following S-N curve is obtained.

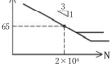


- (1) Find S, when  $N = 2 \times 10^6$
- (2) Find S, when  $N = 10^6$
- (Q2) The following bridge is subjected to truck crossing. The One-way is with sand and the return way is without sand.



The section (A) has the detail with a fatigue grade of (F), and is subjected to

stress due to a dead load. 
$$= 40 N/mm^2$$
  
stress due to the truck (with sand).  $= 90 N/mm^2$ 


stress due to the truck (without sand). =  $70 N/mm^2$ 

# 【11-4-3】 (2)

Daily, 300 trucks cross the bridge. Find the fatigue life using Miner's law.

$$\mathbf{D} = \Sigma \frac{n_i}{N_i} = 1.0$$





【11-4-3】 (3)

# « A1 »

(1)  $S = 89.1 N/mm^2$ 

(2) 
$$S = 112.2 N/mm^2$$

« A2 »

$$\Delta\sigma^3 \cdot N = 2 \times 10^6 \times 65^3$$

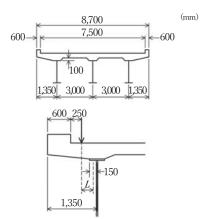
$$\Delta \sigma_1 = 90 \ N/mm^2$$

$$N_1 = 2 \times 10^6 \left(\frac{65}{90}\right)^3 = 753,429$$

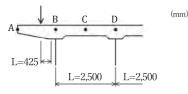
$$\sigma_2 = 70 \ N/mm^2$$

$$N_2 = 2 \times 10^6 \left(\frac{65}{70}\right)^3 = 1,601,312$$

$$\frac{n}{N_1} + \frac{n}{N_2} = n (1,312 \times 10^{-6} + 0.6245 \times 10^{-6})$$
$$= 1.9465 \times 10^{-6} \cdot n = 1$$


$$n = 514,139$$

$$\frac{514,139}{300 \times 365} = 4.695^{year} \cong 4.7^{year}$$


$$\stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longrightarrow} fatigue life$$

【11-5-1】 (1)

(Q1) Find min. RC thickness ( $k_1 = 1.25$ ,  $k_2 = 1.00$ )



(Q2) Find the design moment(The main direction and the distributing reinforcement)  $M_A$ ,  $M_B$ ,  $M_C$  and  $M_D$  per unit length due to a live load.



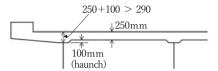
(1) Cantilevered slab

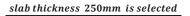
$$L = 1,350 - 600 - 250 - \frac{150}{2} = 425 mm (= 0.425m)$$
  

$$d_0 = 80L + 200 = 234.0 mm \rightarrow 234 mm$$
  

$$\uparrow$$
  
rounding  

$$d = k_1 k_2 d_0 = 1.25 \times 1.00 \times 234 = 292.5 mm \rightarrow 290 mm$$
  


$$\uparrow$$
  
rounding


(2) Continuous slab

$$d_0 = 30L + 110 = 30 \times 3.0 + 110 = 200.0 \text{ mm} \rightarrow 200 \text{ mm}$$

$$\uparrow$$
rounding

$$d = k_1 k_2 d_0 = 1.25 \times 1.00 \times 200 = 250 \text{ mm} \xrightarrow{\phantom{aaaaaaaaaa}{\uparrow}} \frac{250 \text{ mm}}{\uparrow}$$
rounding





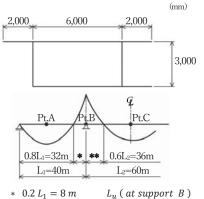
【11-5-1】 (3)

- (1) At. A (L = 0.425 m)main.  $M_{L+i} = 0$ dist.  $M_{L+i} = (0.15 L + 0.13) P = 0.194 P$
- (2) At. B (L = 0.425 m)main.  $M_{L+i} = \frac{PL}{1.30 L + 0.25} = 0.530 P$ 
  - dist.  $M_{L+i} = 0$
- (3) At. C (L = 2.5 m)main.  $M_{L+i} = 0.8 (0.12 L + 0.07) P = 0.296 P$ dist.  $M_{L+i} = 0.8 (0.10 L + 0.04) P = 0.232 P$
- (4) At. D (L = 2.5 m)main.  $M_{L+i} = -M_{L+i}(at C) = -0.296 P$ dist.  $M_{L+i} = 0$  $\left(M_{L+i}: kN \cdot m/m, P = 100kN\right)$

#### [note]

Based on JBHS, increase the coefficient is specified as follows, when slab span is perpendicular to the vehicle travel direction.

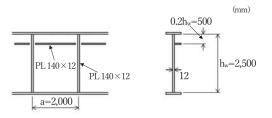
| 【1 | 1-5-1 |  | (4) |
|----|-------|--|-----|
|----|-------|--|-----|


| slab span   | $L \leq 2.5$ | L > 2.5            |
|-------------|--------------|--------------------|
| coefficient | 1.0          | 1.0 + (L - 2.5)/12 |

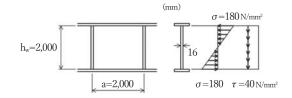
In this question (Q2), since L  $\leq$  2.5m increment coefficient in 1.0

(Q1) Find the effective width of the cross section (composite section) given below.



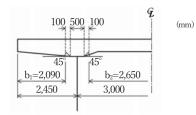

(Q2) Find the effective width of the box girder given below.




\*\*  $0.2 L_2 = 12 m$  =  $0.2 (L_1 + L_2) = 20 m$ 

【11-5-2】 (4)

( Q3 ) Design the horizontal and vertical stiffeners. The material grade is SM490Y.




(Q4) Check the stability of the web under normal and shear stresses. The material grade is SM400.



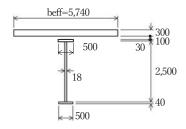
【11-5-2】 (3)

« A1 »



(a) Cantilevered slab

 $b_1/L_u = 2.09/40 = 0.052 > 0.05$ 


$$\lambda_1 = \{1.1 - 2 \ (b_1/L_u)\} \ b_1 = 0.996 \ b_1 = 2,082 \ mm$$

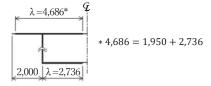
#### (b) Span slab

 $b_2/L_u = 2.65/40 = 0.066 > 0.05$ 

$$\lambda_2 = \{1.1 - 2 \ (b_2/L_u)\} \ b_2 = 0.986 \ b_2 = 2,958 \ mm$$

$$\lambda = 2,082 + 100 + 500 + 100 + 2,958 = 5,740 \ mm$$

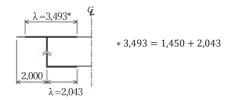



« A2 »

(1)  $P_t. A$ 

(a)  $b_1/L_u = 2/32 = 0.0625 > 0.05$  $\lambda_1 = \{1.1 - 2 (b_1/L_u)\} b_1 = 0.975 b_1 = 1,950 mm$ 

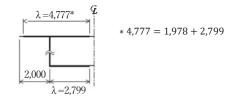
$$(b) \quad b_2/L_u = 3/32 = 0.0938 > 0.05$$


$$\lambda_2 = \{1.1 - 2 \ (b_2/L_u)\} \ b_2 = 0.912 \ b_2 = 2,736 \ mm$$



#### (2) $P_t$ . **B** (at intermediate support)

(a) 0.02 < 
$$b_1/L_u$$
 (= 2/20) < 0.3  
 $\lambda_1 = \{1.06 - 3.2 (b_1/L_u) + 4.5 (b_1/L_u)^2\} b_1$   
= 0.725  $b_1 = 1,450 mm$ 


(b) 0.02 < 
$$b_2/L_u$$
 (3/20 = 0.15) < 0.3  
 $\lambda_2 = \{1.06 - 3.2 (b_2/L_u) + 4.5 (b_2/L_u)^2\} b_2$   
= 0.681  $b_2$  = 2,043 mm



(**3**) *P<sub>t</sub>*. *C* 

(a) 
$$b_1/L_u = 2/36 = 0.0556 > 0.5$$
  
 $\lambda_1 = \{1.1 - 2 (b_1/L_u)\} b_1 = 0.989 b_1 = 1,978 mm$ 

(b) 
$$b_2/L_u = 3/36 = 0.0833 > 0.5$$
  
 $\lambda_2 = \{1.1 - 2 (b_2/L_u)\} b_2 = 0.933 b_2 = 2,799 mm$ 



# « A3 »

(1) Horizontal stiffener (SM490Y)

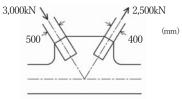
(2) Vertical stiffener (SM400)  
(hv=)140  
(hv=)140  
(mm)  
(hv=)140  
(mm)  
(mm)  

$$t_v (= 12m) > \frac{h_v}{13} = 10.8 mm$$
  
 $t_v (= 12m) > \frac{h_v}{13} = 10.8 mm$   
 $h_v > \frac{2,500}{30} + 50 = 133.3 mm$   
(cm)  
 $v_{v,req.} = 8.0 (h_w/a)^2 = 8 \times (\frac{250}{200})^2 = 12.5$   
 $l_{v,req.} > \frac{h_w t_w^3}{11} \gamma_{v,req.} = \frac{250 \times 1.2^3}{11} \times 12.5 = 491 cm^4$   
 $l_v = \frac{h_v^3 t_v}{3} = 1,098 cm^4 > l_{v,req.}$ 

【11-5-2】 (7)



 $a/h_w = 1 < 1.5$ 


$$\left(\frac{h_w}{100 t}\right)^4 \left[ \left(\frac{\sigma}{345}\right)^2 + \left\{\frac{\tau}{58 + 77 (h_w/a)^2}\right\}^2 \right]$$

$$= \left(\frac{2,000}{100 \times 16}\right)^4 \left[ \left(\frac{180}{345}\right)^2 + \left\{\frac{40}{58 + 77 (2,000/2,000)^2}\right\}^2 \right]$$

$$= \underbrace{0.879 < 1.0}_{OK !!}$$

【11-5-3】 (1)

( Q1 ) Find gusset plate thickness  $(t_{\rm g})$ 



(Q2) Check the safety of the following chord member under compression (N). The material grade is SM490Y.

> $N = -5,000 \, kN$ effective buckling length (L<sub>e</sub>) L<sub>e,y</sub> = 7,600 mm (in - plane) L<sub>e,z</sub> = 7,600 mm (out - of plane) L<sub>e,y</sub> = L<sub>e,z</sub> = 7,600 mm ( $\leftarrow$  panel length) **y** = \frac{430}{25} **y** = \frac{22}{360}

> > 25

b/t (= 350/22 = 15.9, 320/25 = 12.8) < 31.6 (SM490)

7

$$\begin{array}{rcl} & A & y & Ay & Ay^2 \\ 1 - Flg PL & 430 \times 22 & 94.6 & 19.1 & 1,807 & 34,511 \\ 2 - W & PL & 360 \times 25 & 180.0 & - & - & 19,440 \\ 1 - Flg PL & 350 \times 25 & 87.5 & -15.25 & -1,334 & 20,349 \\ \hline & & 362.1 & 473 & 74,300 \ (cm^4) \\ \hline & \delta = \frac{473}{362.1} = 1.3 \ (cm) & I_y = & -\frac{612}{73,688} \ (cm^4) \\ \hline & I_z = \frac{43^3 \times 2.2}{12} + \frac{35^3 \times 2.5}{12} + 2 \times 36 \times 2.5 \times 18.75^2 \\ = & 86,789 \ (cm^4) > I_y \\ A_w = 180 \ (cm^2) > 0.4 \ A = 0.4 \times 362.1 = 144.8 \ (cm^2) \\ r_y = \sqrt{I_y/A} = 14.3 \ (cm) \ , & r_z = \sqrt{I_z/A} = 15.5 \ (cm) \\ \lambda_y \ (= L_{e,y}/r_y) = 53.1 > \lambda_z \ (= L_{e,z}/r_z) = 49.0 \\ \sigma_{ca} = 210 - 1.5 \ \left( \frac{L_{e,y}}{r_y} - 14 \right) = 151.4 \ (N/mm^2) \\ \sigma = 5,000 \times 10^3/(362.1 \times 10^2) = 138.1 \ (N/mm^2) < \sigma_{ca} \\ (Safe !!) \end{array}$$

- ( Q1 ) Calculate natural frequency (f) and circular frequency ( $\omega),$  when
  - (*a*) T = 1 sec.
  - (**b**) T = 2 sec.
- ( Q2 ) Is the following correct or not? Natural frequency (f) of stiff structures (ex. beam difficult to bend) is higher than flexible one (ex. easy to bend)
- (Q3) Natural circular frequency ( $\omega$ ) of the mass spring system is given,

$$\omega = \sqrt{\frac{k}{m}}$$

When,

$$K = 10 \ kN/m$$

$$V = 1 \ m^3(steel)$$

$$(\gamma_{steel} = 77.5 \ kN/m^3)$$

g : gravity of acceleration (=9.8m/sec<sup>2</sup>) Find ( $\omega$ ) and (f).

【12-1-1】 (3)

 $f = 1/T , \quad \omega = 2\pi f$ (a)  $f = 1 \ cycle/s , \quad \omega = 6.28 \ rad./s$ (b)  $f = 0.5 \ c/s , \quad \omega = 3.14 \ rad./s$ 

# « A2 »

YES

#### « A3 »

 $w(weight) = 77.5 \ kN/m^3 \times 1 \ m^3 = 77.5 \ kN$ 

$$m(mass) = \frac{w}{g} = \frac{77.5 \ kN}{9.8m/sec^2} = 7.91 \frac{kN}{m} \cdot sec^2$$
$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{10 \ kN/m}{7.91 \ (kN/m)sec^2}} = 1.124 \ rad./sec$$
$$f = \frac{\omega}{2\pi} = 0.179 \ c/s \quad (or \ H_z)$$

« A4 »

(a) 
$$T = 2\pi \sqrt{\frac{0.5m}{9.8 (m/sec^2)}} = 1.42 \, sec.$$
  
(b)  $T = 2\pi \sqrt{\frac{2}{9.8}} = 2.84 \, sec.$ 

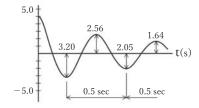
( Q4 ) Natural period (T) of the pendulum is given by

$$T = 2\pi \sqrt{\frac{L}{g}}$$

L : length of pendulum Find T, when (a) L=0.5m, (b) L=2m.

(Q5)  

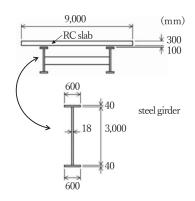
$$K = 1 \text{ } kN/mm$$


$$C = 5kN \frac{sec.}{m}$$

$$V = 0.5 \text{ } m^3(\text{steel})$$

Calculate damping coefficient (h)

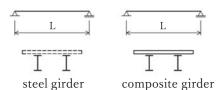
$$h = \frac{1}{\sqrt{2km}}$$


(Q6) Find damping coefficient (h) displacement (cm)



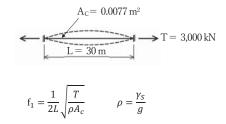
【12-1-1】 (4)

$$w = 77.5 \ kN/m^3 \times \frac{0.5 \ m^3}{(=V)} = 38.75 \ KN$$
$$m = \frac{w}{g} = 3.954 \frac{kN}{m} \cdot sec^2$$
$$C = 5 \ kN \cdot \frac{sec}{m}$$
$$h = \frac{C}{\sqrt{2km}} = \frac{5\left\{\frac{kN}{m} \cdot sec\right\}}{\sqrt{2 \cdot 1,000\left(\frac{kN}{m}\right) \cdot 3.954\left\{\left(\frac{kN}{m}\right)sec^2\right\}}}$$
$$= 5.623 \ \times \ 10^{-2}$$


$$\frac{X_m}{X_{m+1}} = e^{2\pi h/\sqrt{1-h^2}} = \frac{3.20}{2.05}$$
$$\ln \left| \frac{X_m}{X_{m+1}} \right| = \frac{2\pi h}{\sqrt{1-h^2}} = \ln \left( \frac{3.20}{2.05} \right) = 0.446$$
$$h = 0.071$$



- (a) Find cross sectional area  $(A_{\rm s})$  and moment of inertia  $(I_{\rm s})$  of steel girder.
- (b) Find cross sectional area  $(A_v)$  and moment of inertia  $(I_v)$  of composite girder (  $n=E_s/E_c=7.0$  ).
- (c) Find total weight (w [per unit length]) of composite girder.
- (d) Find first natural frequency  $(f_1)$  and period  $(T_1)$ , when simple span (L) is 40m.




- (d)-2 Assume composite girder resists bending



( Q2 ) When span L=60m (composite girder) , find  $({\rm f_1})\,.$ 

#### (Q3) Find $(f_1)$ of the bar.



[12-1-2] (3)

# « A1 »

(a)  $A_s = 2 \times 60 \times 4 + 300 \times 1.8 = 1,020 \text{ cm}^2$  (one girder)

$$\begin{split} I_s &= 2 \times 60 \times 4 \times 152^2 + \frac{300^3 \times 1.8}{12} \\ &= 15,139,920 \ cm^4 \ (one \ girder) \\ &\quad (0.1514m^4) \end{split}$$

(b) (cm)  

$$A \quad y \quad Ay \quad Ay^{2}$$
1-D PL 9,000×300 3,857 179\* 690,403 123,582,137  
(n=7) 690,403 123,582,137  
289,286\*\*  
2-Steel girder 2,040 - - 30,279,840  
 $\Sigma \quad 5,897 \quad 690,403 \quad 154,151,263$   
 $\delta = \frac{690,403}{5,897} = 117.1 \frac{-80,862,082***}{I_{V}=73,289,181 \text{ cm}^{4}}$   
 $A_{V} = 5,897 \text{ cm}^{2}$  (0.7329m<sup>4</sup>)  
 $I_{V} = 73,289,181 \text{ cm}^{4}$   
\* (179) =  $\frac{150}{1} + \frac{4}{2} + 10 + \frac{15}{2}$   
 $\int_{\text{thickness of flange}}^{\text{thickness}} a_{\text{half of RC slab thickness}}$   
\*\* (289,286) =  $\frac{900 \times 30^{3}}{12} / 7$   
\*\*\* (80,862,082) =  $\delta^{2} \cdot A_{V}$ 

.

【12-1-2】 (4)

 $Slab: 9m \times 0.3m \times 24.5 \ kN/m^3 = 66.15 \ kN/m$  $Steel: 0.204m^2 \times 77.5 \ kN/m^3 = 15.81 \ kN/m$ 

(**d**)

$$\omega_1 = \left(\frac{\pi}{L}\right)^2 \sqrt{\frac{EI}{m}}$$

$$m = \frac{w}{g} = \frac{(66.15 + 15.81)\{kN/m\}}{9.8\{m/sec^2\}} = 83.63\left\{kN\left(\frac{sec}{m}\right)^2\right\}$$
$$E = 2.0 \times 10^8 \ kN/m^2$$

$$\begin{aligned} (d) &- \mathbf{1} \\ I &= I_{s} = 0.1514 \ m^{4} \quad , \quad L = 40 \ m \\ \omega_{1} &= \left(\frac{\pi}{40\{m\}}\right)^{2} \sqrt{\frac{2.0 \times 10^{8}\{kN/m^{2}\} \times 0.1514\{m^{4}\}}{83.63\left\{kN\left(\frac{sec}{m}\right)^{2}\right\}}} \\ &= 3.7 \ rad/sec \\ f_{1} &= \frac{\omega_{1}}{2\pi} = \underline{0.59} \ H_{z}(c/s) \ , \ T_{1} &= \underline{1.69} \ sec \end{aligned}$$

$$\begin{aligned} (d) &- \mathbf{2} \\ I &= I_{v} = 0.7329 \ m^{4} \quad , \quad L = 40 \ m \\ \omega_{1} &= \left(\frac{\pi}{40}\right)^{2} \sqrt{\frac{2.0 \times 10^{8} \times 0.7329}{83.63}} \\ &= 8.158 \ rad/sec \\ f_{1} &= \frac{\omega_{1}}{2\pi} = \underline{1.299} \ H_{z}(c/s) \ , \ T_{1} &= \underline{0.77} \ sec \end{aligned}$$

« A2 »

$$\begin{split} \omega_1 &= \left(\frac{\pi}{60}\right)^2 \sqrt{\frac{2.0 \times 10^8 \times 0.7329}{83.63}} = 3.626 \; rad/sec \\ f_1 &= \frac{\omega_1}{2\pi} = \underline{0.577} \; H_z(c/s) \; , \; T_1 = 1.73 \; sec \end{split}$$

« A3 »

$$\rho = \frac{\gamma_s}{g} = \frac{77.5 \{kN/m^3\}}{9.8 \{m/sec^2\}} = 7.908 \left\{ \left(\frac{kN}{m^4}\right) sec^2 \right\}$$
$$f_1 = \frac{1}{2 \times 30\{m\}} \sqrt{\frac{3,000 \{kN\}}{7.908 \left\{ \left(\frac{kN}{m^4}\right) sec^2 \right\} \times 0.0077 \{m^2\}}}$$
$$= 3.70 H_z$$

# Special Lecture for Structural Analysis

Professor of Nagaoka University of Technology Eiji IWASAKI 

 1.1 Solution method of structural mechanics

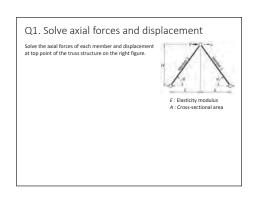
 Solution of structural mechanics requires to satisfy following equations

 • Equation of equilibrium (force and moment balance)

 • Relation of stress (force) and strain (deformation)

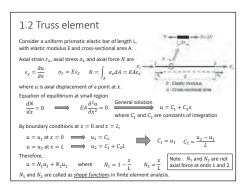
 • Deformation geometry (compatibility condition, support condition)

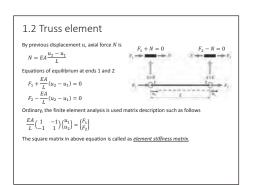
 Solution methods of structural mechanics can use two type as followings


 • force method

 • Displacement methods

 Force method that forces are unknown variables, is quite useful for solving simple problems with a few unknown forces. It is useful to solve small problems by hand calculation. It is problemy a familiar method.


 Displacement method that displacements are unknown variable is a very systematic procedure for solving problems. This method is used in all finite element computer programs. However, it is not suitable for hand calculation.

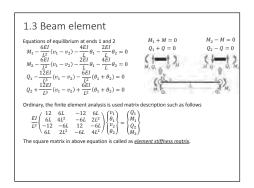


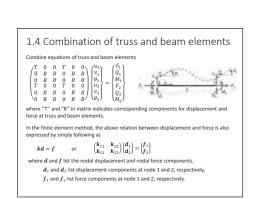



2018/1/17

1



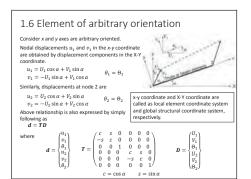


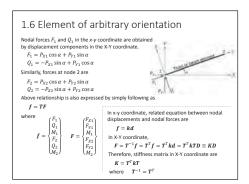


1.3 Beam element Consider a uniform plane beam member, with elastic modulus *E* and centroidal moment of inertia *l* of its cross-sectional area. Axial strain  $\varepsilon_{xx}$  axial stress  $\sigma_x$  and bending moment *M* are  $\varepsilon_x = \frac{du_x}{dx} = -y \frac{d^2 y}{dx^2}$   $\sigma_x = E \varepsilon_x$   $M = -\int_A \sigma y dA = EI \frac{d^2 y}{dx^2}$ where *l* is deflection of a point at *x*. Equation of equilibrium at strain all region  $\frac{d^2 M}{dx^2} = 0 \longrightarrow EI \frac{d^4 y}{dx^4} = 0$ General solution  $w = c_1 + c_2 x + c_3 x^2 + c_4 x^3$ where from  $C_1$  to  $C_4$  are constants of integration  $\frac{dQ}{dx} = 0 \qquad \frac{dM}{dx} + Q = 0$ 

| 1.3 Beam element                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                      |
| By boundary conditions at $x = 0$ and $x = L$ ,                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{c} v = v_1 \mbox{ at } x = 0 & & v_1 = C_1 \\ v' = \theta_1 \mbox{ at } x = 0 & & \theta_1 = C_2 \\ v = v_2 \mbox{ at } x = L & & v_2 = C_1 + C_2 L + C_3 L^2 + C_4 L^3 \\ v' = \theta_2 \mbox{ at } x = L & & \phi_2 = C_2 + 2C_3 L + 3C_4 L^2 \\ & & v' = \theta_2 \mbox{ at } x = L & & \phi_2 = C_2 + 2C_3 L + 3C_4 L^2 \\ \end{array} \right) $ |
| $ \begin{array}{c} v'=\theta_{2} \mbox{ at } x=L & \Longrightarrow & \theta_{2}=C_{2}+2C_{3}L+3C_{4}L^{2} \\ \mbox{Therefore,} & v=N_{3}v_{1}+N_{4}v_{2}+N_{5}\theta_{1}+N_{6}\theta_{2} \end{array} \\ \end{array} \\ C_{4}=2\frac{v_{1}-v_{2}}{L^{3}}+\frac{\theta_{1}+\theta_{2}}{L^{2}} \\ \end{array}$                                                          |
| where $N_3 = 1 - 3\xi^2 + 2\xi^3$ $N_5 = (\xi - 2\xi^2 + \xi^3)L$<br>$N_4 = 3\xi^2 - 2\xi^3$ $N_6 = (-\xi^2 + \xi^3)L$ $\xi = \frac{x}{L}$<br>From $N_1$ to $N_4$ are called as <u>shape functions</u> in finite element analysis.                                                                                                                                   |
| $ \begin{array}{l} \text{Bending moment } M \text{ and shear force } Q \text{ are } \\ M = EIv'' = \frac{EI}{L^2}(12\xi - 6)(v_1 - v_2) + \frac{EI}{L}(6\xi - 4)\theta_1 + \frac{EI}{L}(6\xi - 2)\theta_2 \\ Q = -M' = -\frac{12EI}{L^2}(v_1 - v_2) - \frac{6EI}{L^2}(\theta_1 + \theta_2) \end{array} $                                                             |

2

Δ



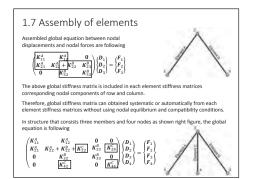




| 1.5 Formulas for element matrices                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formulas for element matrices are also obtained by the principle of virtual work.                                                                              |
| $\int_V \ \sigma_x \delta \varepsilon_x dV = F_1 \delta u_1 + Q_1 \delta v_1 + M_1 \delta \theta_1 + F_2 \delta u_2 + Q_2 \delta v_2 + M_2 \delta \theta_2$    |
| where $\delta u$ , $\delta v$ etc indicate virtual displacements.                                                                                              |
| If displacements satisfies the above equation, they also satisfy the conditions of equilibrium.                                                                |
| In previous bar and beam element, strain and stress are<br>$\varepsilon_r = u' - \gamma v'' \qquad \sigma_r = E \varepsilon_r$                                 |
| $v_x - u = yv$ $v_x - uv_x$<br>where displacements u and v are expressed by quantities of nodes 1 and 2 as follows                                             |
| $u = N_1 u_1 + N_2 u_2 \equiv N_t d$ $v = N_3 v_1 + N_4 v_2 + N_5 \theta_1 + N_6 \theta_2 \equiv N_b d$                                                        |
| where                                                                                                                                                          |
| $N_t = \{N_1 \ 0 \ 0 \ N_2 \ 0 \ 0\}$ $N_b = \{0 \ N_3 \ N_5 \ 0 \ N_4 \ N_6\}$                                                                                |
| The equation of principle of virtual work is rewritten as follows                                                                                              |
| $\delta d^{T} \int_{V} B^{T} EB dV d = \delta d^{T} f \implies kd = f$ where c $B^{T} indicates row and column transposition of B.$                            |
| $J_V = B^T$ indicates row and column                                                                                                                           |
| where $k = \begin{bmatrix} B^T E B dV & B = N'_t - \gamma N''_b \end{bmatrix}$ transposition of <b>B</b> .                                                     |
| $\mathbf{R} = \int_{V} \mathbf{D}  \mathbf{L} \mathbf{D}  \mathbf{u} \mathbf{v} \qquad \mathbf{B} = \mathbf{N}_{L} - \mathbf{y} \mathbf{N}_{b}^{\prime\prime}$ |

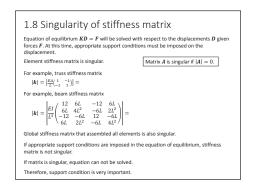
| Q2. Derive truss element stiffness matrix by the principle of virtual work                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The element stiffness matrix <b>k</b> is defined by following equation.<br>$\mathbf{k} = \int_{V} \mathbf{B}^{T} \mathbf{E} \mathbf{B} dV = \int_{0}^{L} \int_{A} \mathbf{B}^{T} \mathbf{E} \mathbf{B} dA dx  \text{where}  \mathbf{B} = \mathbf{N}_{b}^{*} = \frac{d\mathbf{N}_{t}}{dx}$ In truss element, $\mathbf{N}_{t}$ is<br>$\mathbf{N}_{t} = (N_{1}  N_{2}) \qquad N_{1} = 1 - \frac{x}{L} \qquad N_{2} = \frac{x}{L}$ |
| Derive stiffness matrix & in truss element.                                                                                                                                                                                                                                                                                                                                                                                    |

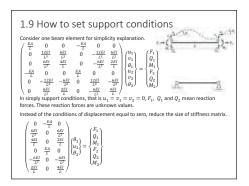







Q3. Derive truss element stiffness matrix on the global structural coordinate The truss element stiffness matrix is written as follows on the element coordinates system  $\mathbf{k} = \frac{EA}{L} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ Transformation matrix is  $\mathbf{r} = \begin{pmatrix} 0 & s & 0 \\ 0 & 0 & c \end{pmatrix}$ 

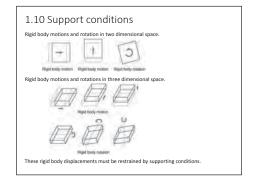

Derive truss element matrix on the global structural coordinate system.


| 1.7 Assembly of elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consider assembly two elements truss or beam elements.<br>However, this concept can use other many type elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Relation between displacements and forces of element A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{pmatrix} K_{11}^{A} & K_{12}^{A} \\ K_{21}^{A} & K_{22}^{A} \end{pmatrix} \begin{pmatrix} D_{1}^{A} \\ D_{2}^{A} \end{pmatrix} = \begin{pmatrix} F_{1}^{A} \\ F_{2}^{A} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Similarly, relation between displacements and forces of element B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{pmatrix} K_{22}^g & K_{23}^g \\ K_{32}^g & K_{33}^g \end{pmatrix} \begin{pmatrix} D_2^g \\ D_3^g \end{pmatrix} = \begin{cases} F_2^g \\ F_3^g \end{cases} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| where these equations are written by global structural coordinate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| By equilibrium and compatibility conditions at each nodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $D_1^A \equiv D_1$ $D_2^A = D_2^B \equiv D_2$ $D_3^B \equiv D_3$ (Compatibility conditions)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $F_1^A \equiv F_1$ $F_2^A + F_2^B \equiv F_2$ $F_3^B \equiv F_3$ (Equilibrium conditions )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| From these equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{array}{c} F_1 = K_{11}^A D_1 + K_{22}^A D_2 \\ F_2 = K_{21}^A D_1 + (K_{22}^A + K_{22}^B) D_2 + K_{23}^B D_3 \\ F_3 = K_{20}^A D_3 + K_{22}^B - K_{23}^B D_3 \\ F_4 = K_{21}^A - K_{22}^B - K_{23}^B D_3 \\ F_5 = K_{21}^A - K_{22}^B - K_{23}^B D_3 \\ F_5 = K_{21}^A - K_{22}^B - K_{23}^B D_3 \\ F_5 = K_{21}^A - K_{22}^B - K_{23}^B D_3 \\ F_5 = K_{21}^A - K_{22}^B - K_{23}^B - K_{23}^B$ |
| $F_{2} = K_{21}^{A}D_{1} + (K_{22}^{A} + K_{22}^{B})D_{2} + K_{23}^{B}D_{3} \implies \left\{ K_{21}^{A} + K_{22}^{A} + K_{22}^{B} + K_{23}^{B} \right\} \left\{ D_{2}^{A} \right\} = \left\{ F_{2}^{A} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $F_{3} = K_{32}^{B} D_{2} + K_{33}^{B} D_{3} \qquad \qquad V \qquad 0 \qquad K_{32}^{B} \qquad K_{33}^{B} / (D_{3})  (F_{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

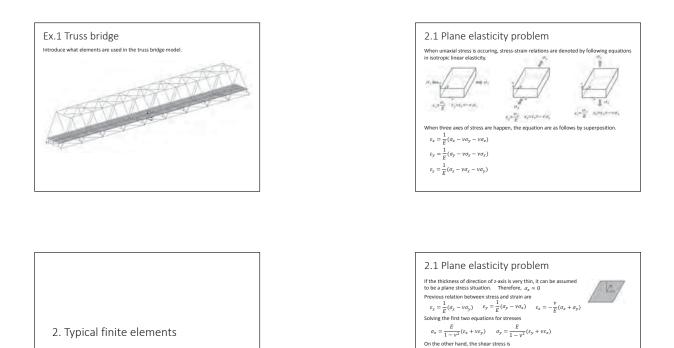
6



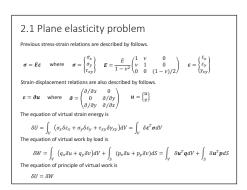


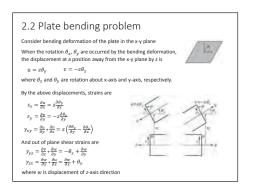


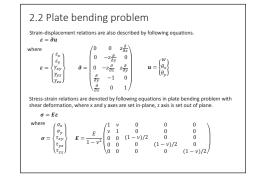




2018/1/17

1.9 How to set support conditions  $F_{\nu} \ q_{1} \ and q_{2} \ mean reaction forces. These reaction forces are unknown values.$ Next, the previous equation is separated into two parts. $<math display="block">\begin{pmatrix} \frac{427}{10} & 0 & \frac{227}{10} \\ \frac{247}{1} & 0 & \frac{427}{10} \\ \frac{427}{10} & 0 & \frac{427}{10$ 


|            | Both sides hinge                                     | Hinge and roller                                                                                                                                          |     |
|------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|            | 8                                                    | R B                                                                                                                                                       |     |
|            | No singular                                          | No singular                                                                                                                                               |     |
|            | Both sides roller                                    | Hinge and free                                                                                                                                            |     |
|            | A A                                                  | ß                                                                                                                                                         |     |
|            | Singular                                             | Singular                                                                                                                                                  |     |
| tiffness m | atrix is no singular. The<br>equation can not be sol | re constrained by appropriate support condition,<br>n displacements can solve from equilibrium equati<br>ved by FEM, the support conditions are often not | on. |





| Q5. Confi                             | rm the singularity of stiffness matrix |
|---------------------------------------|----------------------------------------|
| Both sid                              | des roller                             |
| H.                                    | 3                                      |
| $u_1 \neq 0$<br>$v_1 = 0$             | $u_2 \neq 0$<br>$v_2 = 0$              |
| $\nu_1 \equiv 0$<br>$\theta_1 \neq 0$ | $v_2 = 0$<br>$\theta_2 \neq 0$         |
|                                       |                                        |







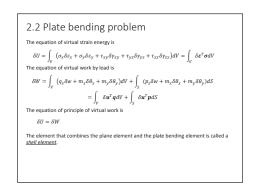




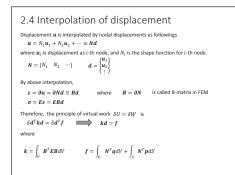
Strains are obtained by displacements 11 新

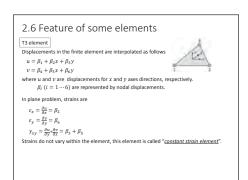
- Au

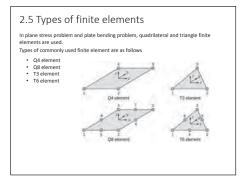
 $\varepsilon_x = \frac{\partial u}{\partial x}$ 

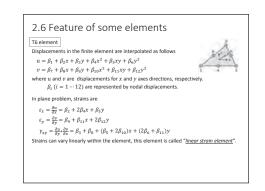

 $=\frac{\partial v}{\partial y}$ 

 $\varepsilon_y = \frac{\partial v}{\partial y}$ 


 $\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$ 

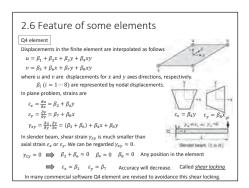

 $\tau_{xy}=G\gamma_{xy}$ 


where G is shear elasticity modulus.  $G = \frac{E}{2(1 + \nu)}$ 

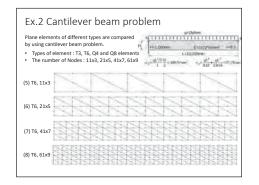



14





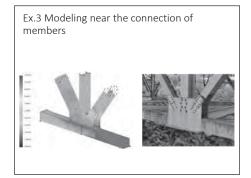


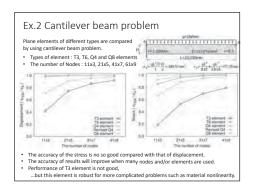



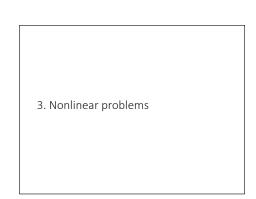

19

2018/1/17

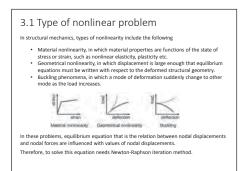


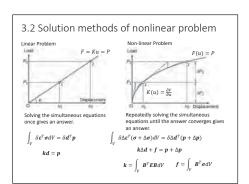

| Ex.2 Ca                                          |           |   |       |       |           |        |        | 01 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1-134   | tain)        |               |                |              |            |
|--------------------------------------------------|-----------|---|-------|-------|-----------|--------|--------|----|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|--------------|---------------|----------------|--------------|------------|
| by using can                                     |           |   |       |       |           | mpe    | i cu   | £. | t.    | 100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |         | -            | Tales.        | -              |              | ġ          |
| <ul> <li>Types of e</li> <li>The numb</li> </ul> |           |   |       |       |           |        |        |    | 1     | 1/1/1  | - 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k)   | 15,00   | 0/m<br>1/2 0 | 11 - 4        | 1 <sup>0</sup> |              | -          |
| (1) T3, 11x3                                     |           | < | T     |       | X         | 2      |        |    | 2     |        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4    | 2       | Ð            | 1             | X              | N N          |            |
| (2) T3, 21x5                                     | X         |   | \$    |       | 1212      | R      |        | 8  | XX    |        | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | ***     |              | 1111          |                | NOV1         | 11111      |
| (3) T3, 41x7                                     | (1)(-)(-) |   | 0.670 | (ANO) | THE PARTY | TO THE | N.Y.Y. | 1  | 0000  | 112/22 | 14-44<br>14-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No.  | 11/1/11 | 000          | (-Y.)(-)      | NWW.           | ( the second | a province |
| (4) T3, 61x9                                     |           |   | 0,014 |       | 11111     |        |        |    | 10000 |        | Part of the second seco | 1000 | 11110   | 00007        | in the second |                | 02020        | NUMBER OF  |



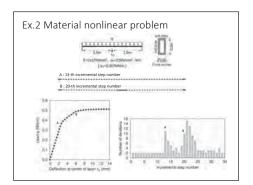


| Plane elemer                   |         |       |       |       |     | con  | npa | red | ŝ   | 4  | ii.  | T.  | π  | II.  | 11  | 11   | inin<br>I I      | I.I. | Ċ.    |          | a   | Ţ  |
|--------------------------------|---------|-------|-------|-------|-----|------|-----|-----|-----|----|------|-----|----|------|-----|------|------------------|------|-------|----------|-----|----|
| by using cant                  |         |       |       |       |     |      |     |     | -15 |    | Het. | 000 | -  |      |     |      | 6-2              | 3107 | witte | £.       | -10 | ġ. |
| <ul> <li>Types of e</li> </ul> |         |       |       |       |     |      |     |     |     | 15 |      |     |    |      | Ls. | 15,0 | (07              | m.   |       |          |     | -  |
| <ul> <li>The numb</li> </ul>   | er of N | lodes | : 11: | (3, 2 | 1x5 | , 41 | х/, | 61: | (9  | 92 | 14   | 241 | e. | 00 N | -   |      | $\hat{\tau}_{e}$ | -    | *21   | 6-<br>68 | 25  | -  |
| 1                              |         | _     | -     | _     | -   | _    |     | -   |     |    |      |     |    |      |     |      |                  | _    |       |          |     |    |
| (9) Q4, 11x3                   | _       | 1     | -     | _     | _   |      |     | L   |     | 1  | _    | _   |    | _    | 4.  | _    |                  |      | _     | L        | _   | _  |
|                                |         |       |       |       |     |      |     |     |     |    |      |     |    |      |     |      |                  |      |       | E        |     |    |
| 1                              | 1       |       |       | - Î   |     |      |     |     | t   | T  | T    |     |    | t    | t   | T    |                  |      | 1     |          | Ċ.  | 1  |
| (10) Q4, 21x5                  |         | 1     |       |       |     |      |     |     |     |    | +    | -   |    |      |     | +    |                  |      | -     |          | ÷   |    |
|                                |         | 1.    |       |       | 1   |      |     | 1   | 1   | 1  | 1    |     |    | 1    | ł.  | 1    |                  |      |       | 1        | 1   |    |
|                                | 11      | 1T    | 11    | 1     | 17  | Ŧ    | 1   |     | 1   | 1  |      |     | 1  | Ŧ    | T   |      |                  | T    | 1     | 1        | ΠÍ  |    |
| (11) Q4, 41x7                  | 11      |       | 11    |       |     | ÷    | ÷   |     |     | ÷  |      | 1   |    |      | ÷   |      |                  |      | 1     |          |     |    |
| 1                              | 1.1     | 11    | 13    | 1     | 1.1 | 1    | 1   |     |     | 1  |      |     | 1  |      | 1   |      |                  |      | 1     |          | 11  |    |
| 12) 04 64 0                    |         | H     | 11    | Ħ     | 11  | 1    | 1   | H   | 11  | Ħ  | +    |     | 1  | i i  |     | 1    |                  |      |       | Ð        |     |    |
| 12) Q4, 61x9                   |         | Bi    |       | 11    | 11  |      |     |     | Ħ   |    | ÷    | H   | ÷  | H    | ÷   |      | i i              |      |       | Ħ        |     |    |

18

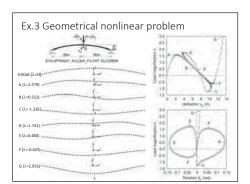

| Plane elements o                                                           | f different | types a | re co | mpar   | ed  | . 4 |        | ITT           | 111     | 111         | Wittern<br>1 a a | m               | 11   |     |
|----------------------------------------------------------------------------|-------------|---------|-------|--------|-----|-----|--------|---------------|---------|-------------|------------------|-----------------|------|-----|
| by using cantileve                                                         |             |         |       |        | - ē |     | (cj.09 | 0.            |         |             | Eco              | 10mm            | ÷    | máj |
| <ul> <li>Types of elements</li> <li>The number of excluding the</li> </ul> | f Nodes : 1 | 1x3, 21 | x5,4  | 1x7, 6 |     | 40  | 4/12   | 1 <u>1</u> =3 | an riva | 1.510.<br>m | ****             | 91 <sup>4</sup> | el." | -   |
| 13) Q8, 11x3-5x1                                                           |             |         |       |        | 1   |     |        |               |         |             |                  |                 |      |     |
| 14) Q8, 21x5-10x2                                                          |             | 1.      |       |        | Ē   |     |        | Ī             | 1       | -           | 1                |                 |      |     |
| 15) Q8, 41x7-15x3                                                          | 11          |         |       |        | 1   |     | -      |               |         | +++         |                  |                 |      |     |
| 16) Q8, 61x9-20x4                                                          | 111         | 11      | -     | ÷      |     | 1   | 1      | 1             | E       | E           | Ŀ                | E               | -    | 1   |

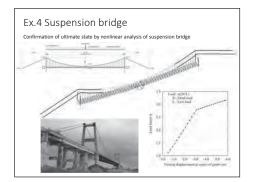






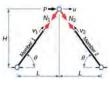




3.2 Solution methods of nonlinear problem There kinds of iterative Newton-Raphson methods 1. coad incremental method 2. obsplacement incremental method 3. croch length i



22

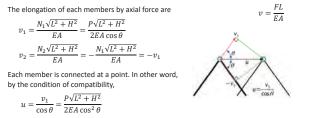







Solve the axial forces of each member and displacement at top point of the truss structure on the right figure. Let  $N_1$  and  $N_2$  be the axial forces of each member. By the equilibrium condition at top point,  $(-N_1 + N_2) \cos \theta + P = 0$  $(N_1 + N_2) \sin \theta = 0$ 

where 
$$\sin \theta = \frac{1}{\sqrt{L^2 + H^2}}$$
  $\cos \theta = \frac{1}{\sqrt{L^2 + H^2}}$ 

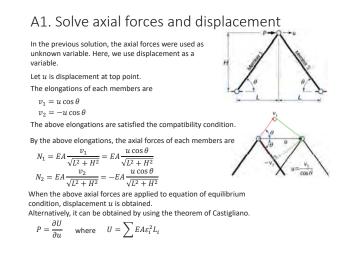

$$N_1 = \frac{P}{2\cos\theta} \qquad N_2 = -\frac{P}{2\cos\theta}$$



E : Elasticity modulus A : Cross-sectional area

25

# A1. Solve axial forces and displacement




The displacement  $\boldsymbol{u}$  can also be obtained from the axial force by the theorem of Castigliano.

$$u = \frac{\partial U}{\partial P} = \frac{N_1 \sqrt{L^2 + H^2}}{EA} \frac{\partial N_1}{\partial P} + \frac{N_2 \sqrt{L^2 + H^2}}{EA} \frac{\partial N_2}{\partial P} = \frac{P \sqrt{L^2 + H^2}}{2EA \cos^2 \theta}$$
  
where U is called strain energy that defined by following

Where U is called strain energy that defined by follow 
$$\frac{1}{2}$$

$$U = \sum \frac{N_i^2 L_i}{2EA}$$

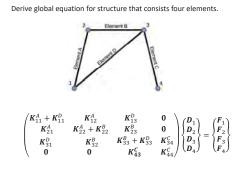


# A2. Derive truss element stiffness matrix by the principle of virtual work

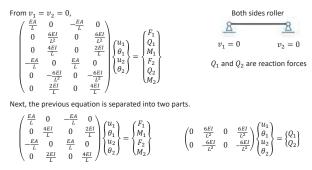
The element stiffness matrix  $m{k}$  is defined by following equation.

$$\mathbf{k} = \int_{V} \mathbf{B}^{T} E \mathbf{B} dV = \int_{0}^{L} \int_{A} \mathbf{B}^{T} E \mathbf{B} dA \, dx \quad \text{where} \quad \mathbf{B} = \mathbf{N}_{t}^{\prime} = \frac{dN_{t}}{dx}$$
  
In truss element,  $N_{t}$  is  
$$\mathbf{N}_{t} = \{N_{1} \quad N_{2}\} \qquad N_{1} = 1 - \frac{x}{L} \qquad N_{2} = \frac{x}{L}$$
  
Derive stiffness matrix  $\mathbf{k}$  in truss element.  
$$\mathbf{B} = \mathbf{N}_{t}^{\prime} = \frac{dN_{t}}{dx} = \left\{ -\frac{1}{L} \quad \frac{1}{L} \right\}$$
  
$$\mathbf{k} = \int_{0}^{L} \int_{A} \mathbf{B}^{T} E \mathbf{B} dA \, dx = \int_{0}^{L} \int_{A} \left\{ \frac{-1/L}{1/L} \right\} E \left\{ -\frac{1}{L} \quad \frac{1}{L} \right\} dA \, dx = \frac{EA}{L} \begin{bmatrix} 1 & -1\\ -1 & 1 \end{bmatrix}$$

# A3. Derive truss element stiffness matrix on the global structural coordinate


The truss element stiffness matrix is written as follows on the element coordinates system  $\mathbf{r} = \frac{EA}{(1 - 1)}$ 

$$\mathbf{K} = \frac{1}{L} \begin{pmatrix} -1 & 1 \end{pmatrix}$$
  
Transformation matrix is  
$$\mathbf{T} = \begin{pmatrix} c & s & 0 & 0 \\ 0 & 0 & c & s \end{pmatrix}$$


Derive truss element matrix on the global structural coordinate system.  $\langle a \rangle$ 

$$\begin{split} \mathbf{K} &= \mathbf{T}^{T} \mathbf{k} \mathbf{T} = \frac{EA}{L} \begin{pmatrix} c & 0 \\ 0 & c \\ 0 & s \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} c & s & 0 & 0 \\ 0 & 0 & c & s \end{pmatrix} \\ &= \frac{EA}{L} \begin{pmatrix} c & 0 \\ 0 & c \\ 0 & c \\ 0 & s \end{pmatrix} \begin{pmatrix} c & s & -c & -s \\ -c & -s & c & s \end{pmatrix} = \frac{EA}{L} \begin{pmatrix} c^{2} & cs & -c^{2} & -cs \\ cs & s^{2} & -cs & -c^{2} & -cs \\ -c^{2} & -cs & c^{2} & cs & -c^{2} & cs \\ -cs & -s^{2} & -cs & -c^{2} & cs & s^{2} \end{pmatrix} \end{split}$$

#### A4. Derive global equation



# A5. Confirm the singularity of stiffness matrix



From equation of left side, we understand that the stiffness matrix is singular.

Displacement can not be solved from this equation.

#### Bago Br. TTP [2018.02.22]

# Review (look back) of

# **Design method**



- Serviceability
- · Constructability
- . . . . . . . .

#### [Limit State]

- · Safety (Ultimate, Strength)Limit
- Serviceability Limit
- Fatigue Limit
- . . . . . . . .

#### [Design Method]

Performance-based Design Method

· Limit State Design Method

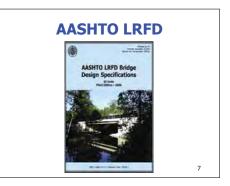
<u>Required performance</u> and <u>its level</u> for structures <u>are defined</u>.

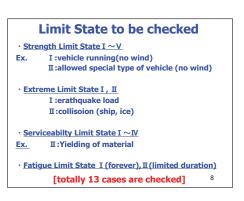


- Load Resistance Factor Design Method (LRFD)
   Partial Factor Design Method (PFD)
- Allowable Stress Design Method (ASD)

2

4


# **Basis**


#### $S \leq R$ (Safety check)

- S : Action (N\*, M\*, Q\*)
- R : Resistance (Nult.\*, Mult.\*, Qult.\*) \*: factored value

# $$\begin{split} & \text{Ex.} \\ & \text{M}_{1.3D} + 1.75[\text{L} + \text{I}] \leqq \pmb{\Phi}_{\text{U}} \cdot \textbf{M}_{\text{ult.}} \\ & \sigma \ \text{1.0D} + 1.30[\text{L} + \text{I}] \ \leqq \pmb{\Phi}_{\text{S}} \cdot \sigma_{\text{Y}} \end{split}$$

# $\label{eq:constraint} \begin{array}{|c|c|} \hline \textbf{Design Level} \\ \hline \textbf{Design Level-I} & < \textbf{Standard} \gg \\ \hline \textbf{Partial factor is used} \\ & < S^* \leq R^* > (S^*, R^*) : factored action & resistance \\ \hline \textbf{Level-II} \\ \hline \textbf{Safety index}(\beta) \mbox{ is used} \\ & < \beta \geq \beta target \gg \\ \hline \textbf{Level-III} \\ \hline \textbf{Failure probability}(P_f) \mbox{ is used} \\ & < P_f \leq P_{f, target} \gg \\ \end{array}$





# Check Format(LRFD)

# $\underline{\boldsymbol{\Sigma}\boldsymbol{\eta}_{i}\boldsymbol{\gamma}_{i}\boldsymbol{Q}}_{i} \leq \boldsymbol{\Phi}\boldsymbol{R}_{n} = \boldsymbol{R}_{r}$

γi : load factor\* Φ: resistance factor\*

- $\eta_i$  :modification factor for load (=  $\eta_i \eta_i \eta_i \eta_i$ )
- $[\eta_{\ell}: ductility, \ \eta_{\ell}: redandancy, \eta_{\ell}: importance] \\ Q: load effect$
- Rn : (Nominal) resistance
- Rr : factored resistance

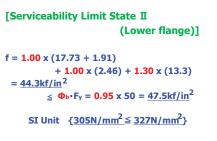
\* $\gamma$ i,  $\Phi$  are based on reliability theory (safety index  $\beta$ )

# Strength Limit State - I

 $\underline{S1.25DC + 1.50DW + 1.75[LL + IM]} \leq \underline{S}_{ult.}$ 

S : Stress resultants Sult. : Ultimate strength( = ΦRn {Rn : nominal strength}) DC : Dead load excluding (DW) DW : Wearing surface [concrete pavement in USA] LL + IM : Livre load (LL) including inpac (IM)

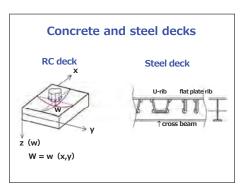
Serviceability Limit State - II


10

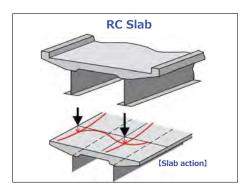
5


#### f1.00D + 1.30[LL + IM] ≦ 0.95fy ↑ overload (heavy vehicle) f: stress

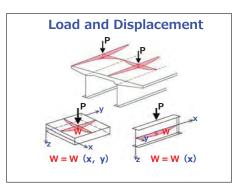
fy : yield stress

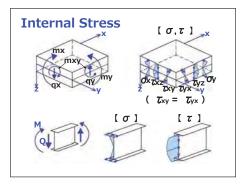

| Ex. of check of outer girder                               |
|------------------------------------------------------------|
| [Strength Limit State I (flexure)]                         |
| M = 1.25 x (2,119 + 302.5) + 1.50 x (388.9)                |
| <b>↑DC ↑parapet ↑DW</b>                                    |
| + 1.75 x (2,961)                                           |
| ↑live load                                                 |
| = 8,792kft ≦ <u>Φ</u> f · <u>M</u> n = 10,973kft           |
| ↑=1.0 ↑plastic strength                                    |
| [action/ <u>resistance</u> = 0.80]                         |
| DC : dead load excluding wearing surface load (DW) $_{11}$ |




[action/resistance = 0.93] ← controlled

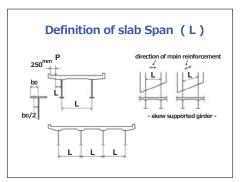




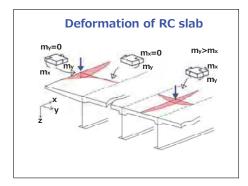


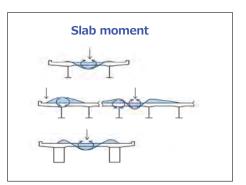


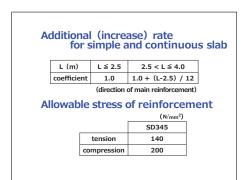




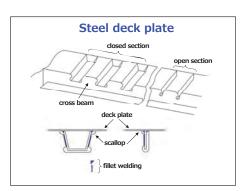





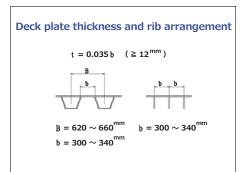


| Mi | inimum s        | ab thic      | kness (                | (d) required         |
|----|-----------------|--------------|------------------------|----------------------|
|    |                 | d            | (mm)                   | L:span (m)           |
|    |                 |              | running<br>direction   | running<br>direction |
|    | simple slab     | 40 L +       | 110                    | 65 L + 130           |
|    | continuous slab | 30 L +       | 110                    | 40 L + 130           |
|    | cantilever slab | 0 < L < 0.25 | 280L + 160             | 240 L + 130          |
|    |                 | 0.25 < L     | 80 L + 210             |                      |
|    |                 | d (>d₀)      | = k1 k2 d <sub>0</sub> |                      |

| Coefficient K1 a                                                                                                                                                                                                                              | nd K2    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| k1 : effect of large-size truc                                                                                                                                                                                                                | k volume |  |
| N : Number of truck / day                                                                                                                                                                                                                     | k1       |  |
| N < 500                                                                                                                                                                                                                                       | 1.10     |  |
| 500 ≦ N < 1,000                                                                                                                                                                                                                               | 1.15     |  |
| 1,000 ≦ N < 2,000                                                                                                                                                                                                                             | 1.20     |  |
| 2,000 ≦ N                                                                                                                                                                                                                                     | 1.25     |  |
| $\begin{array}{c} k_{2} \ (=0.9 \ \sqrt{M/Mo} > 1.0) : \\ : \ effect of differential settleme \\ M_{0} : design moment \\ M : M_{0} + _{\mathcal{M}} \ (1 + i) \\ _{\mathcal{M}} M : additional moment \\ i : impact coefficient \end{array}$ | ent      |  |



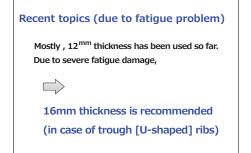


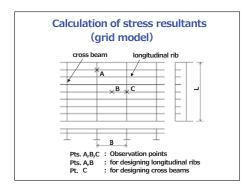

| De   | sign m                         | omen                                                | t per             | unit le                         | ength                                                                         | (1m)                   |                   |
|------|--------------------------------|-----------------------------------------------------|-------------------|---------------------------------|-------------------------------------------------------------------------------|------------------------|-------------------|
|      |                                |                                                     |                   | by T-                           | load fo                                                                       | or RC                  | slab              |
|      |                                | simple slab<br>(0 < L ≦ 4 <sup>m</sup> )            | c                 | continuous<br>(0 < L ≦ 4ª       | slab<br>")                                                                    | cantilever<br>(0 < L ≦ |                   |
|      |                                | at<br>span center                                   | at<br>span center | at<br>span center<br>(end span) | at<br>intermediate<br>support                                                 | at<br>support          | at<br>tip         |
| d    | ead load <sup>(*)</sup><br>(w) | <u>wL</u> <sup>2</sup><br>8                         | <u>wL²</u><br>14  | <u>wL</u> <sup>2</sup><br>10    | 2-span<br><u>wL<sup>2</sup></u><br>3-span more<br><u>wL<sup>2</sup></u><br>10 | <u>_wL²</u><br>2       | _                 |
| т-   | main<br>reinforcement          | (0.12L A<br>+0.07) p                                | 0.8×(Å)           | 0.8×(Å)                         | -0.8×(A)                                                                      | PL<br>1.30L+0.25       | —                 |
| load | distributing<br>reinforcement  | (0.10L B<br>+0.04) p                                | 0.8×®             | 0.8×®                           | _                                                                             | _                      | (0.15L<br>+0.13)p |
|      | (                              | L : slab s<br>p = 100 <sup>kl</sup><br>*) : distrib | Ň                 | rection (I                      | M=0)                                                                          |                        |                   |



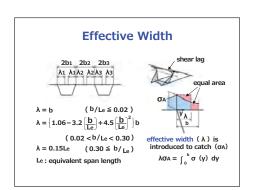


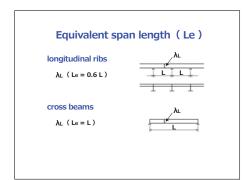


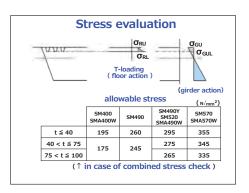





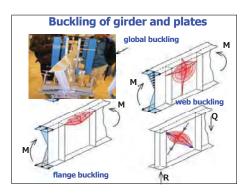



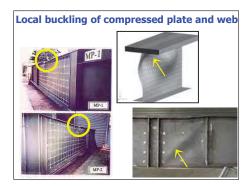



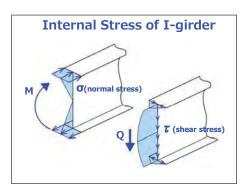


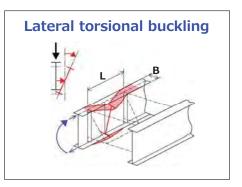


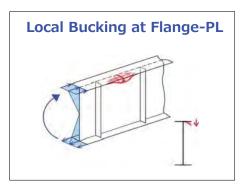
| longitudinal ribs $i = 0.4$              |                          |
|------------------------------------------|--------------------------|
| cross beams $i = \frac{20}{50 + 100}$    | L                        |
| L : span of cross beams                  |                          |
| Additional increase rate (k)             | for cross beam           |
| $\mathbf{k} = \mathbf{k}_0$              | ( L≦4)                   |
| $k = k_0 - (k_0 - 1) \times (L - 4) / 6$ | ( 4 < L ≦ 10)            |
| k = 1.0                                  | (10 < L )                |
| ko = 1.0                                 | ( B≦2)                   |
| $k_0 = 1.0 + 0.2 \times (B - 2)$         | (2 <b≦3)< td=""></b≦3)<> |
|                                          | (3<)                     |

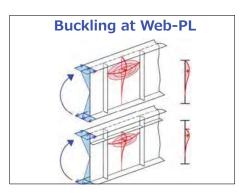


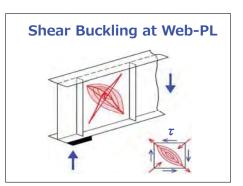



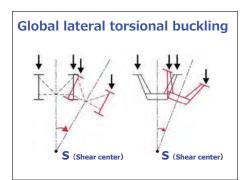



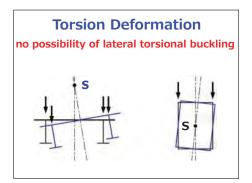



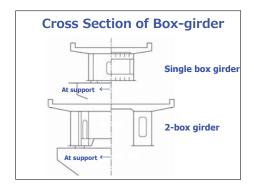



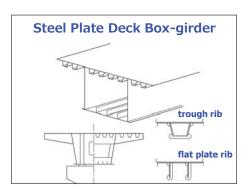



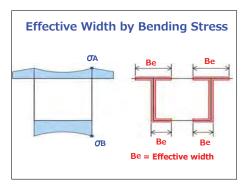



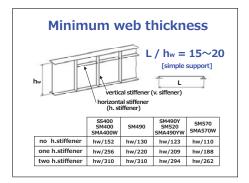



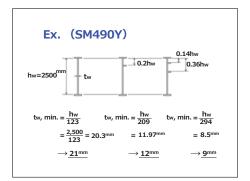



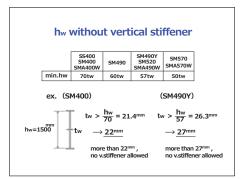


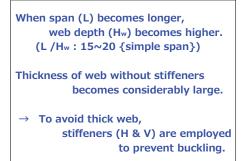


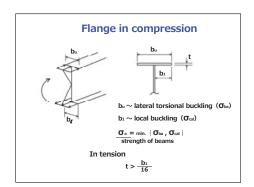


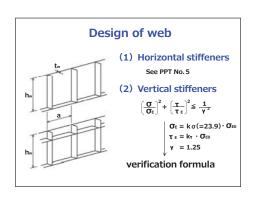



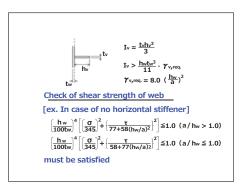



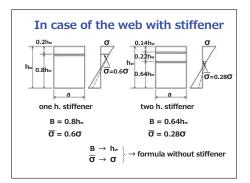



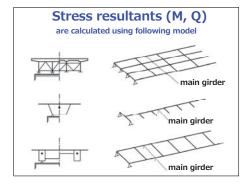



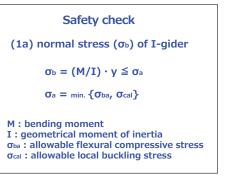



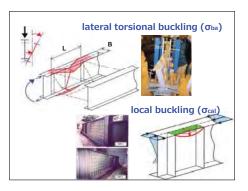



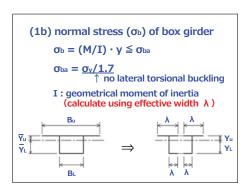



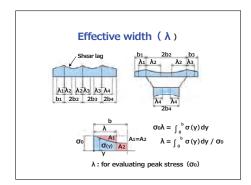



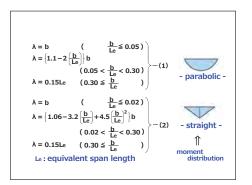



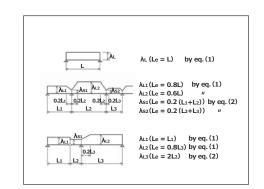



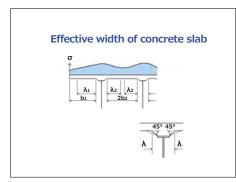



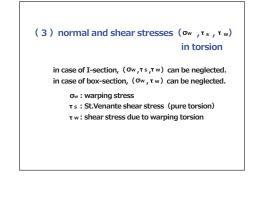



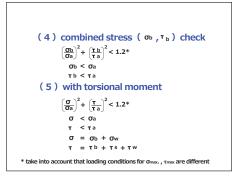





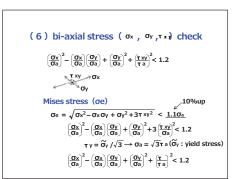




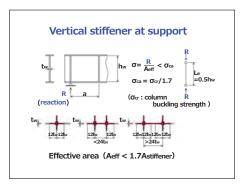


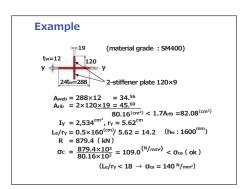




#### (2) shear stress ( $\tau_{b}$ ) in flexure

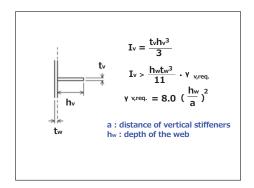

 $\tau b = \frac{Q}{Aw} < \tau a (= \tau y / 1.7)$ 

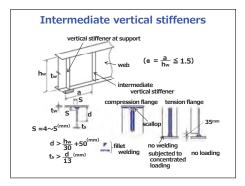
- Q : shear force Aw : cross sectional area of webs t a : allowable shear stress
- $\tau_y$  : shear yield stress (=  $\sigma_y / \sqrt{3}$ )


\* in case of checking flange, shear stress based on shear flow theory is recommended

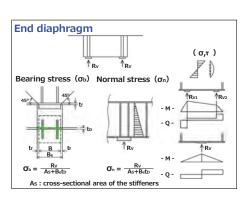


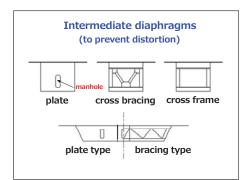

37

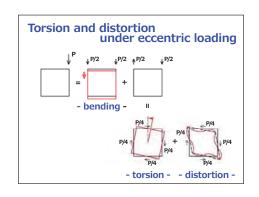


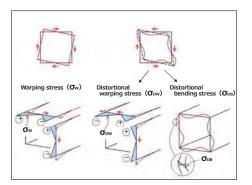



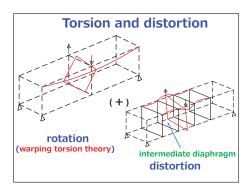


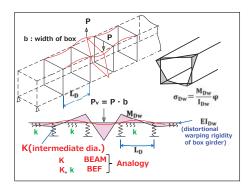



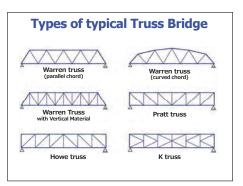



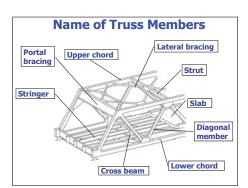



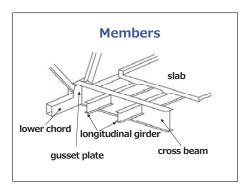



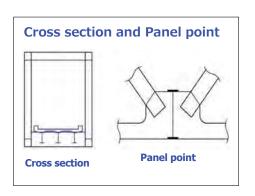



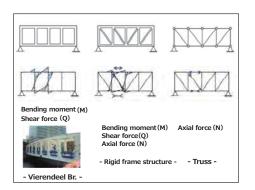


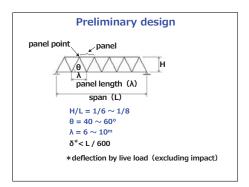



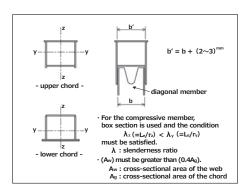



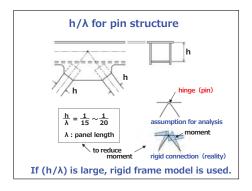



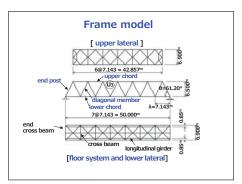



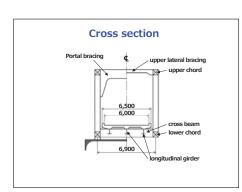



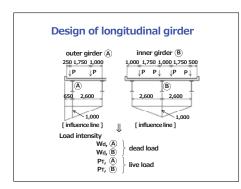



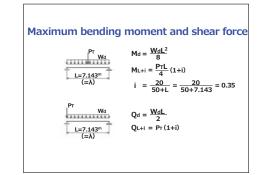



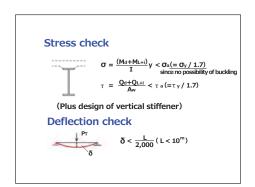



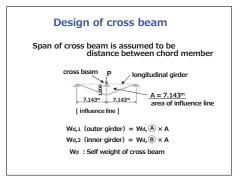



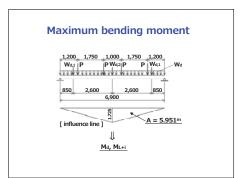



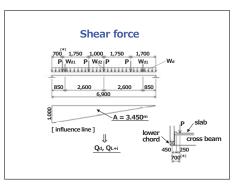



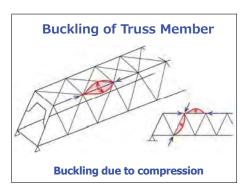



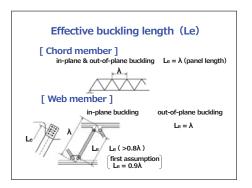



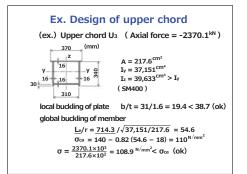


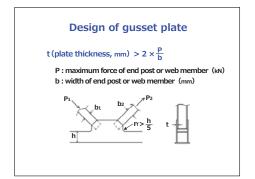



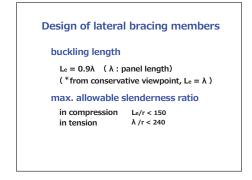


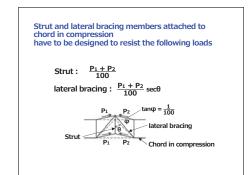



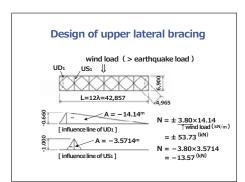




|                              | lowable slende                                                                             | rness r |
|------------------------------|--------------------------------------------------------------------------------------------|---------|
|                              | ]                                                                                          | L**/r   |
| comprossion                  | main member                                                                                | 120     |
| compression -                | secondary member***                                                                        | 150     |
| tension                      | main member                                                                                | 200     |
| tension                      | secondary member                                                                           | 240     |
| ** effective b<br>panel leng | bridge global rigidit<br>puckling length (in c<br>th (in tension)<br>in cross or lateral b | ompress |

