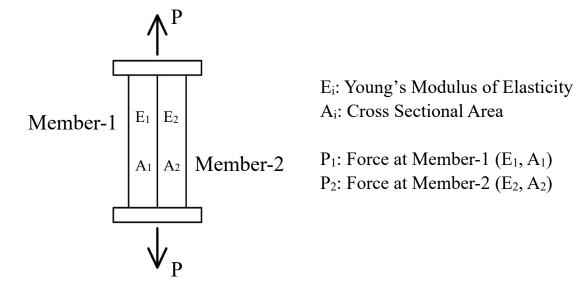
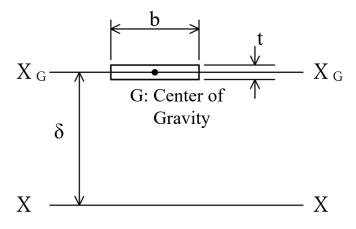
付録 B 理解度測定試験

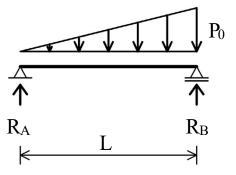

B-1 特別講義のプレテスト

Pre-Test (19th Oct. 2017) Lecture : Special Lecture for Cable Stayed Bridge

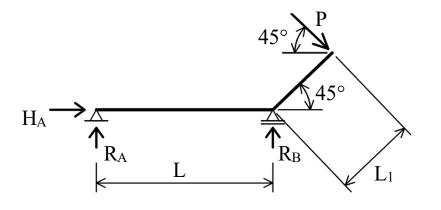
Name :	Score :
--------	---------


Question 1.

Calculate the force at each member: P_1 and P_2

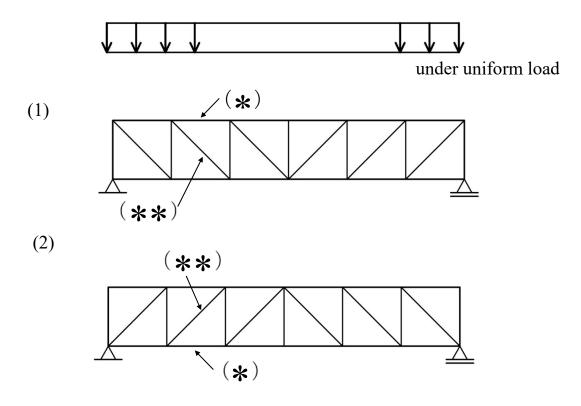

Question 2.

Calculate second moment of inertia about the X_G axis $[I_{XG}]$ and X axis $[I_X]$.


Question 3.

Calculate reaction force of R_A , R_B and H_A .

Question 4.

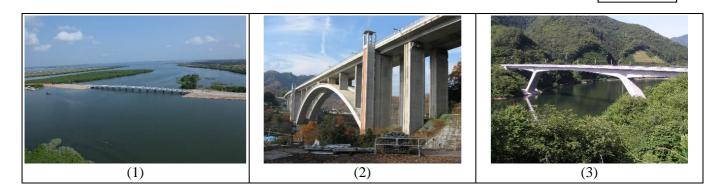

Calculate reaction force of R_A , R_B and H_A .

$$\sin 45^\circ = \cos 45^\circ = 1/\sqrt{2}$$

Question 5.

Identify the members (*, **) are subjected to tension or compression.

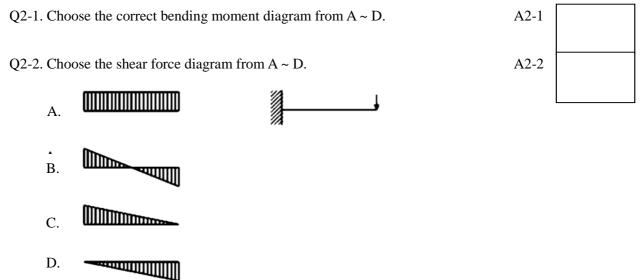
付録 B 理解度測定試験


B-2 上部工の設計概論(コンクリート橋)のプレテスト

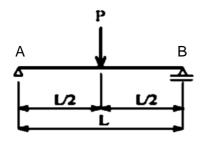
Pre-Test Lecture : Superstructure Design-1 (Concrete)

Name :	Score :

Question 1. Type of Bridges


Select the correct combination of bridge types from the following options A ~ E:

A.	(1) Frame bridge	(2) Girder bridge	(3) Arch bridge
B.	(1) Frame bridge	(2) Arch bridge	(3) Girder bridge
C.	(1) Girder bridge	(2) Frame bridge	(3) Arch bridge
D.	(1) Girder bridge	(2) Arch bridge	(3) Frame bridge
E.	(1) Arch bridge	(2) Frame bridge	(3) Girder bridge


Question 2. Basic of Statics

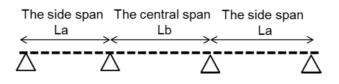
A concentrated load is acting on the tip of a cantilever beam as shown in the right figure below.

Question 3. Basic of Statics

A concentrated load P is acting at the center of a simply supported beam of length L.

Q3-1. Calculate the support reactions at A (left) and B (right). Reaction at support A: Reaction at support B:

Q3-2. Draw the bending moment diagram.


A_____B

Q3-3. Calculate the maximum bending moment.

Mmax =

Question 4. Consideration on Span Arrangement

Select the correct combination of span length ratio which is statically most ideal for three-span continuous girder among the following options (construction condition & erection method are ignored).

- A. La : Lb = 1.0 : 1.0
- B. La : Lb = 1.0 : 1.2
- C. La : Lb = 1.0 : 1.25
- D. La : Lb = 1.0 : 1.3
- E. La : Lb = 1.0 : 1.5

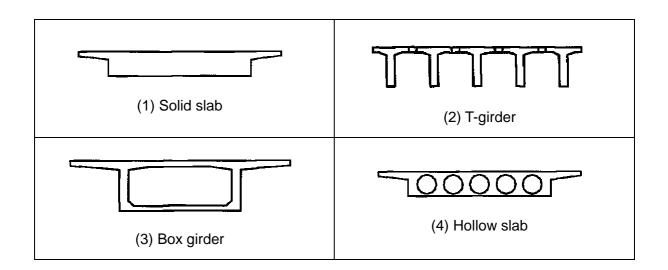
Question 5. Erection Method of Concrete Girder Bridges

Select the name of erection method for concrete girder bridges from the options $A \sim E$ which is described in the following.

[Erection method]

A Concrete girder is constructed symmetrically from pier tables block by block using form travelers.

- A. Span-by-span erection method
- B. Free Cantilever erection method
- C. Incremental launching method
- D. Crane erection method
- E. Erection beam method


Question 6. Creep and Shrinkage of Concrete

Select the most appropriate description about creep and shrinkage of concrete from the followings.

- A. Creep deformation is assumed to be proportional to the elastic displacement.
- B. Deformation due to creep is finished in about one month.
- C. Creep is caused only by self-weight.
- D. Creep is a phenomenon to steel
- E. Shrinkage strain is increased gradually after casting of concrete.

Question 7. Type of Girder Cross Section

Select the correct combination of cross sections of concrete girder bridge arranged in the order of practically applicable span lengths from longer to shorter.

- A. (1) (2) (3) (4)
- B. (1) (4) (2) (3)
- C. (2) (3) (1) (4)
- D. (3) (4) (2) (1)
- E. (3) (2) (4) (1)

Question 8. Concrete bridges using precast elements

Describe advantages and disadvantages of applying precast elements to concrete bridges, compared to castin-place construction.

付録 B 理解度測定試験

B-3 基礎工・下部工の設計概論のプレテスト

Pre-Test Lecture : Substructure Design

Name :	Score :
--------	---------

Question 1. [score 10]

Please select the suitable type of foundation under the conditions below from A. to D.

Conditions:

- There is gravel, size range from Dia.100 to Dia.150mm, in the middle layer.
- Bearing layer, soft rock, exists in 35m from ground surface.
- Extremely large amount of inflow water.
- Water depth is 1.5m.
- A. Cast-in-Placed RC Pile Foundation by All Casing Method
- B. Deep Foundation
- C. Pneumatic Caisson Foundation
- D. Diaphragm Wall Foundation

Answer:_____

Question 2. [score 10]

Please select the most suitable type of foundation from A. to D. under the conditions below.

Conditions:

- Bearing layer, sand with N-value 50, exists over 60m depth from ground surface.
- There is high possibility that the position of the support layer is not same depth.
- Water depth is 3.0m.
- Vibration and noise control are required.
- A. Steel Pipe Pile by percussion driving method
- B. Steel Pipe Pile by vibratory hammer method
- C. Rotation Steel Pile Method
- D. SPSP

Answer:

Question 3. [score 10]

Why Cast-in-placed RC Pile by All Casing Method is not applicable under the conditions that very soft layer in the middle layer or the vicinity of surface layer exist?

Answer:

\sim												Founda	tion				-			De	ep	cais			
			foundation type		driving pile method				il e le enire						cast-i	n-place	piles		foundation		found	ation			
		<u> </u>	ioundation type		arivi	1				ile borin	-			steel			method							steel pile	diaphr
				spread founda	PHC	steel p	ipe piles vibrato	РНС р	iles • S	C piles concret	ste	el pipe p	iles concret	pipe pile	prebori ng	all	reverse circulat	earth	Rotatio n Pile	set pile deep	column ar	pneum		sheet pile	agm wall
	applied	l condition		tion	piles	percuss ion	ry	final driving	jetting and	е	final	jetting and	е	soil	metho	casing	ion	drill	metho	founda	deep founda	atic	open	founda	founda tion
					• SC piles	metho	hamme r	metho	mixing metho	ent	driving metho	mixing metho	placem ent	cement piles	d	metho d	drill metho	metho d	d	tion	tion			tion	
						d	metho d	d	d	metho d	d	d	metho d				d								
		There is a very soft layer in the middle layer or the vicinity of the surface layer			0	0	0	0	0	0	0	0	0	0	0	×	0	0	0	×	×	0	Δ	0	0
	condition until	There is a v	ery hard layer in the intermediate layer	\square	Δ	\bigtriangleup		0	0	0	0	0	0	0	0	\bigtriangleup	0	×	0	0	0	0	Δ		0
	bearing	gravelin	gravel diameter less than or equal to 50mm		Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	layer	the middle	gravel diameter 50 \sim 100mm	\angle	\triangle	\triangle	\triangle	\bigtriangleup		\bigtriangleup	\triangle		\bigtriangleup	0	0	\triangle	×	0	0	0	0	0	0	\bigtriangleup	\bigtriangleup
			gravel diameter 100 \sim 150mm		×	×	×	×	×	×	×	×	×	×	×	\bigtriangleup	×	×	×	0	0	0	\bigtriangleup	×	\triangle
			There is a ground to liquefaction	$\left \right $	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\checkmark	$\left \right $	0	0	0	0
			less than 5m	0	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	\angle	\times	×	×	×
			5~15m	\triangle	0	0	0	0	0	0	0	0	0	0	0	0	\bigtriangleup	0	0	0	0	0	0	\bigtriangleup	Δ
		depth	15~25m	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ground conditio	bearing		25~40m	×	0	0	0	0	0	0	0	0	0	0	0	0	0	\triangle	0		\triangle	0	0	0	0
n			40~60m	×	Δ	0	0	\triangle		\triangle	0	0	0	0	0	\triangle	0	×	0	×	×	\triangle	0	0	0
			over 60m	×	×	\triangle	\triangle	×	×	×	×	×	×	\bigtriangleup	\bigtriangleup	×	\triangle	×	0	×	×	\times	\bigtriangleup	\triangle	
	layer	soil	sand • sand gravel (30≦N)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	condition		cohesivesoil (20≦N)	0	0	0	0	0	\triangle	×	0	Δ	×	\bigtriangleup	\bigtriangleup	0	0	0		0	0	\bigtriangleup	\bigtriangleup	0	0
			soft rock • hardpan	0	×	0	\triangle	0		×	0		×	\bigtriangleup	\bigtriangleup	0	0	0		0	0	0	0	0	0
			hard rock	0	×	×	×	×	×	×	×	×	×	×	×	\triangle	\triangle	\triangle	×	0	0	\triangle	×	×	
		There is high possibility that the position of the support layer is not same depth, including; slope is large, irregularities of surface layer is heavy, etc.,			Δ						\bigtriangleup					0	0	0	0	0	0	Δ	×	0	0
		Groundwat	er level is near the ground surface		0	0	0	0	0	0	0	0	0	0	0	\bigtriangleup	\bigtriangleup	\bigtriangleup	0		\bigtriangleup	0	0	0	
	groundwater		arge amount of inflow water	\triangle	0	0	0	0	0	0	0	0	0	\triangle	\triangle	\triangle	\triangle	\triangle	0	×	×	0	0	0	\triangle
	condition		esian water that 2m deeper than the surface	×	0	0	0	×	×	×	×	×	×	×	×	×	×	×	0	×	×	\triangle	\bigtriangleup	0	×
		g	roundwater flow rate over 3m/min	×	0	0	0	0	×	×	0	×	×	×	×	×	×	×	0	×	×	0	Δ	0	×
type	type of support friction allo			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		\angle		$ \triangleleft$	$ \triangleleft$	
			friction pile	\sim	0	0	0	×	×	×	×	×	×	0	×	0	0	0	×					<	\leftarrow
	aquatic construction		water depth less than 5m		0	0	0	Δ.			Δ			×	×	×	×	×	0	\vdash	$ \triangleleft$	Δ.	Δ	0	×
constru	construction		water depth over 5m	×		0	0	Δ.	Δ.				Δ	×	×	×	×	×	0			Δ	Δ	0	×
ction			rowness of work space	0					Δ		Δ	Δ		Δ	Δ		Δ			0 X	0			×	
conditio			struction of batter pile	\vdash	0	0	0	×	×	×	×	×	×	×	×	×	×	×	0				\leq		
n			effect of toxic gas vibration and noise control		0	O X	0	0	0	0	0	0	0	0	0	0	0	0	0	×	×	×	0	O X	0
	surrounding			0	×		<u>^</u>		0		<u>^</u>				0	0			0			0			
	environment Effects on adjacent structures		0	\times	\triangle	\triangle	\bigtriangleup	0	0	\triangle	0	0	0	0	0	0	0	0	\triangle	\bigtriangleup	\triangle	\bigtriangleup	\triangle	0	

Table: Referential Criteria of Applicability of Foundation Type

Applicability O: high riangle: moderate X: low

Question 4. [score 10]

Does the following layer have a possibility to occur liquefaction?

- The groundwater level is in less than 5m from earth surface, and the saturation soil layer exists in a range from surface to 15m depth.
- D50 [50% particle diameter] is 7 mm and D10 [10% particle diameter] is 1 mm.
- Plasticity index (IP) is less than 12 and fine-grain fraction content (FC) is 38%.
- A. Yes, it has possibility. So, further evaluation (calculation of F_L (resistivity to liquefaction)) is necessary for judgement.
- B. No, it does not have possibility.

Answer:

Question 5. [score 8 x 5 questions]

Does the Clayey Sand layer in 16m depth have a possibility to occur liquefaction? Please assess that layer based on the laboratory test result for sampling No.P14.

Question 5.1 Please read D50 [50% particle diameter] in the Grain Size Distribution Curve.

Answer:_____

Question 5.2 Please read D10 [10% particle diameter] in the Grain Size Distribution Curve.

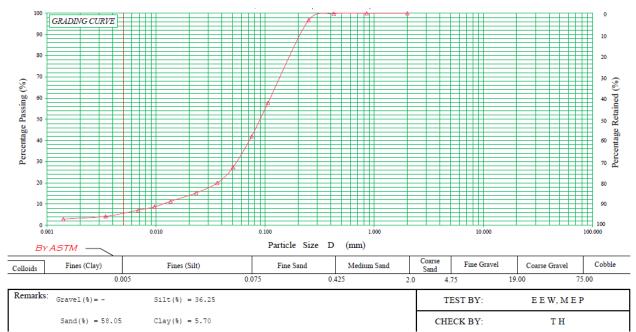
Answer:_____

Question 5.3 Please read FC [fine-grain fraction content] in the Grain Size Distribution Curve. *FC is the fraction of fine grains (<0.075mm) contained in the ground material (<75mm).

Answer:_____

Question 5.4 Please calculate IP (Plasticity index) from Atterberg's Limit Test Result.

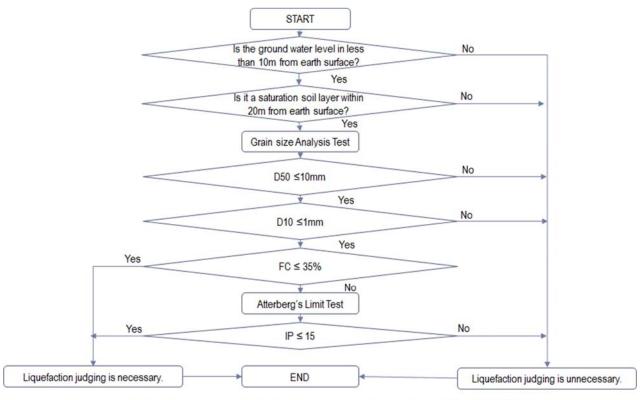
Answer:


Question 5.5 Does this soil layer have a possibility to occur liquefaction?

- A. Yes, it has possibility. So, further evaluation (calculation of F_L (resistivity to liquefaction)) is necessary for judgement.
- B. No, it does not have possibility.

Answer:_____

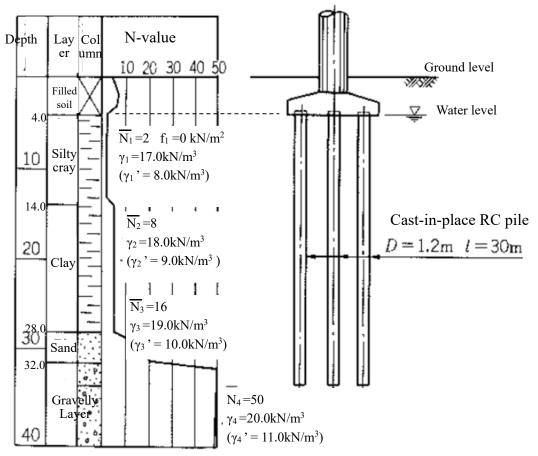
Boring Log	(Bore Hole No.BH-BD-05 in the river,	ground level EL-6.90m)


						λ				m) &	~	1	STANDA TEST	RD PENETRATION TEST I METHOD (ASTM)	PMT	SAM	IPLING		\square
	N (m)	(ii	S (m)			DENSI	ш	SOIL DESCRIPTION	т) HLG	EPTH (ER (mm	PTH (m	(II)	(ii	CURVE OF BLOW	B ()	(E)			
SCALE (m)	ELEVATION	DEPTH GL - (m)	THICKNESS (m)	DIAGRAM	COLOUR	RELATIVE DENSITY (or) CONSISTENCY	SOIL NAME		DATE & DEPTH (m)	CASING (DEPTH (m) DIAMETER (mm))	WATER DEPTH (m)	DEPTH GL - (m)	N-Value (Blows / 30cm)	N-Value (Blows / 30cm) 0 10 20 30 40 50	SAMPLE (Type & No.)	DEPTH GL - (m)	TCR (%)	SCR (%)	RQD (%) SCALE (m)
	-14.90				brownish gray	Loose to medium dense	Silty SAND	Loose to medium dense, brownish gray, moist, fine to medium grained, Silty SAND (River sediments)				1.00 2.00 3.00 4.00 5.00 6.00 7.00	6/30 14/30 630 6/30 5/30 8/30 12/30		P-1 P-2 P-3 P-4 P-5 P-6 P-7	$\begin{array}{r} 1.00\\ 1.45\\ 2.00\\ 2.45\\ 3.00\\ 3.45\\ 4.00\\ 4.45\\ 5.00\\ 5.45\\ 6.00\\ 6.45\\ 7.00\\ 7.45\\ \end{array}$			1 2 minil mi
		8.00	8.00	* * *] 16 0	8.00	 	8.00	4/30	2	P-8	8.00			8
9 10 11		12.00			gray	Loose to medium dense	Clayey SAND	Loose to medium dense, gray, moist, fine to medium grained, low plastic Clayey SAND GL: (9.00 ~ 9.42)m; gray, low to medium plasticity, CLAY, with trace of fine sand layer is observed as intercalated layer at that depth		Ø112			4/30 1130 16/30 10/30		р-10 Р-11	8.45 9.00 (2) cm 9.42 10.00 10.45 11.00 11.45 12.00 12.45			հան 9 հան 10 հան 11 հան 11 հա
14	-19.90 -21.90				gray	Soft	CLAY	Soft, gray, moist, low to medium plasticity, CLAY, with trace of fine grained sand	13.00		100	13.00 14.00 15.00	4/30		P-12 0 T-2 P-13	13.50 (#) cm 14.15 15.00			1
16					gray	Medium dense	Clayey SAND	Medium dense, gray, moist, fine grained, low plastic Clavey SAND				16.00	17/30	1	P-14	16.00			1
	-24.90	18.00	3.00			Gense	SAND	PRSUC CLAYCY SAND	-			17.00	13/30 11/30	Í	P-15 P-16	16.45 17.00 17.45 18.00			
19 20 21 22	-28.90	22.00	4.00		gray	Firm to stiff	Sandy CLAY	Firm to stiff, gray, moist, fine grained, low to medium plasticity, Sandy CLAY				19.00 20.00 21.00 22.00	6/30 10/30 9/30		P-17 P-18 P-19 P-20	18.45 19.00 19.45 20.00 20.45 21.00 21.45 22.00			17 118 118 119 119 110 110 110 110 110 110 110 110

Particle Size Analysis Test (Grain Size Distribution Curve of Sample No.P-14)

Laboratory Test Result (Atterberg's Limit)

	Sample No.			P-11	P-12	T-2	P-13	P-14
				12.00	13.00	13.50	15.00	16.00
	Depth (m)			~	~	~	~	~
				12.45	13.45	14.15	15.45	16.45
Moisture Content			%	22.57	33.18	34.98	27.56	28.25
Bulk Density		, 3	-	-	1.726	-	-	
Burk Delisity		Ρt	g/cm ³	-	-	1.734	-	-
Atterberg's	Liquid Limit	WL	%	-	51.70	36.40	17.65	23.11
Limit	Plastic Limit	WP	%	-	21.83	21.83	14.15	18.42



Flow Chart of Initial Assessment of Potential of Liquefaction

Question 6. [score 10 x 2 questions]

Calculation of Ultimate Bearing Capacity and Pull-Out Capacity of single CIP RC Pile with Diameter 1.2m and length 30m.

Geological Condition

Note)

The shaft resistance intensity for soft clay layer with small N value needs to to be estimated by appropriate soil tests. Here, the value of f_l for silty clay layer is to be calculated as 0 kN/m² due to un-reliability.

Type of foundation

- Cast-in-place RC pile
- Pile diameter: D=1.2m
- Pile length: L=30.0m
- Unit weight of RC concrete: 24.5kN/m³

Question 6.1 Calculate Ultimate Bearing Capacity of Pile (Ru) (kN)

$Ru = qd \cdot Ap + U \cdot \Sigma(Li \cdot fi)$

qd: ultimate end bearing capacity intensity per unit area (kN/m²)

Table: qd for Cast-in place RC pile:

Ground Type	Ultimate Bearing Capacity End Bearing Intensity (kN/m ²)
Gravelly Layer and Sandy Layer ($N \ge 30$)	3,000
Sturdy Gravelly Layer ($N \ge 50$)	5,000
Hard Cohesive Soil Layer	$3 q_u$

Notes) q_u : unconfined compressive strength (kN/m²),

N: N value from the Standard Penetration Test (SPT)

(Source: JSHB)

Ap : area of pile tip (m^2)

U : perimeter of pile (m)

Li : thickness of soil layer considering shaft resistance(m)

fi : maximum shaft resistance of soil layer considering pile shaft resistance (kN/m^2)

It is noted that shaft friction is not considered in the range of $1.0 \cdot D$ from the tip of pile for calculation of ultimate bearing capacity.

Table: maximum shaft resistance depending on pile installation method and soil type

Ground Type Pile Installation Method	Sandy Soil	Cohesive Soil
Driven Pile Method (including Vibro-hammer Method)	$2N (\leq 100)$	$c \text{ or } 10 N (\leq 150)$
Cast-in-place RC Pile Method	$5N(\le 200)$	<i>c</i> or $10 N (\le 150)$
Bored Pile Method	$2N(\le 100)$	$0.8c \text{ or } 8 N(\le 100)$
Pre bored Pile Method	$5N(\le 150)$	<i>c</i> or 10 <i>N</i> (\leq 100)
Steel Pipe Soil Cement Pile Method	$10N(\le 200)$	<i>c</i> or $10 N (\le 200)$

(Note) c: cohesion of ground (kN/m^2) , N: N value from SPT.

i	Depth	Thickness	Soil	Averag	Shaft resistance	$li \cdot f_i$
	(m)	li (m)	type	ed N-	intensity f_i (kN/m ²)	(kN/m)
				value		
1	4.0-14.0	10.0	Silty	2	0	0
			clay			
2	14.0-28.0	14.0	Clay			
3	28.0-32.0	4.0	San			
			d			
4	32.0-33.0	1.0	Gra			
			vel			
4	33.0-34.0	1.0	Gra			
			vel			
	Total	30.0	-	-	-	

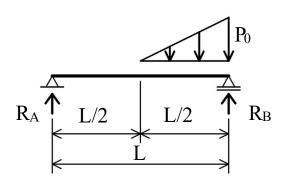
Answer:

Question 6.2 Calculate Ultimate Pull-Out Capacity Pu (kN)

 $Pu=Ux \Sigma lix fi$

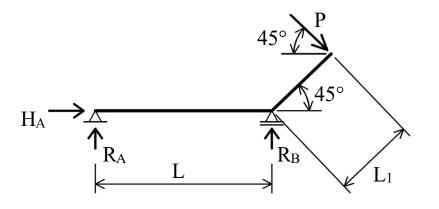
Answer:_____

付録 B 理解度測定試験


B-4 特別講義の中間試験

Examination (20th Dec. 2017) 09:30~11:30 (2h) Lecture: Special Lecture

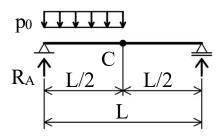
Name:	Score:


Question 1.

Calculate reaction force of $\underline{R}_{A}, \underline{R}_{B}$.

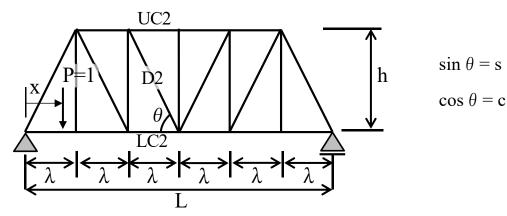
Question 2.

Calculate reaction force of \underline{R}_{A} , \underline{R}_{B} and \underline{H}_{A} .


$$\sin 45^\circ = \cos 45^\circ = 1/\sqrt{2}$$

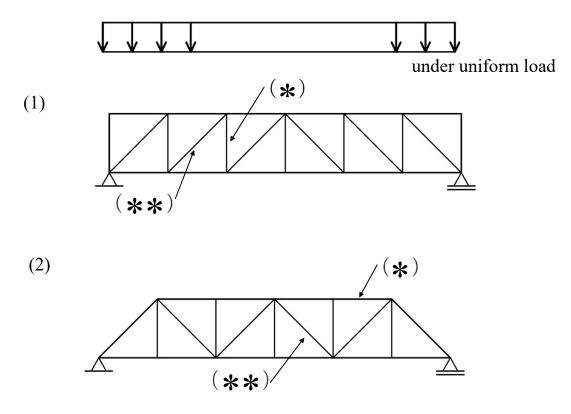
Question 3.

(1) Draw Influence line of Reaction at A, B (Ra, Rb), Moment at C (Mc) and Shear Force at C (Qc)

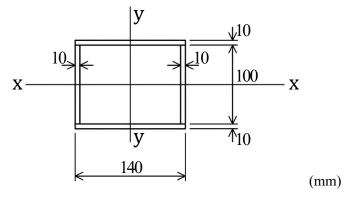


(2) Calculate Reaction Ra and Moment at C using Influence line.

Question 4.


Draw Influence Line of member force at upper chord (UC2), diagonal member (D2) and lower chord (LC2).

4


Question 5.

Identify the members (*, **) are subjected to tension or compression.

Question 6.

(1) Calculate Area (A), Second Moment of Inertia at x-axis (Ix) and y-axis (Iy).

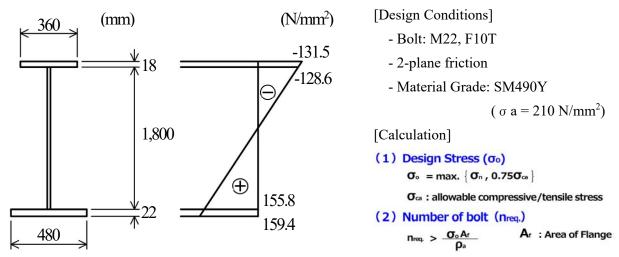
(2) Calculate allowable buckling stress of column by JSHB. (Equations: Refer next page)

- Cross Section: Same with the section at (1) Length of Column L=5000mm
- Support Condition of Column: Fix-Fix Material: SM400

Steel type Plate thickness (mm)	SS400 SM400 SMA400W	SM490	SM490Y SM520 SMA490W	SM570 SMA570W			
40 or less	$140 - 0.82 \left(\frac{l}{r} - 18\right):$ $18 < \frac{l}{s} \leq 92$	$185: \frac{l}{r} \le 16$ $185-1. 2\left(\frac{l}{r}-16\right):$ $16 < \frac{l}{r} \le 79$ $\frac{1,200,000}{5,000+\left(\frac{l}{r}\right)^{2}}:$ $79 < \frac{l}{r}$	$210-1.5(\frac{l}{r}-15)$:	$255: \frac{l}{r} \le 18$ $255-2. 1 \left(\frac{l}{r}-18\right):$ $18 < \frac{l}{r} \le 67$ $\frac{1, 200, 000}{3, 500 + \left(\frac{l}{r}\right)^{2}}:$ $67 < \frac{l}{r}$			
		$175: \frac{l}{r} \leq 16$ $175-1.1\left(\frac{l}{r}-16\right):$	$ \begin{array}{r} 195 : \frac{l}{r} \leq 15 \\ 195 - 1.3 \left(\frac{l}{r} - 15\right): \\ 15 < \frac{l}{r} \leq 77 \\ \underline{1,200,000} \\ 4,700 + \left(\frac{l}{r}\right)^{2}: \\ 77 < \frac{l}{r} \\ 190: \frac{l}{r} \leq 16 \\ 190 - 1.3 \left(\frac{l}{r} - 16\right): \\ 16 < \frac{l}{r} \leq 78 \\ \underline{1,200,000}: \\ \end{array} $	$245: \frac{l}{r} \leq 17$ $245-2. 0 \left(\frac{l}{r}-17\right):$ $17 < \frac{l}{r} \leq 69$ $\frac{1, 200, 000}{3, 600 + \left(\frac{l}{r}\right)^{2}:}$ $69 < \frac{l}{r}$ $240: \frac{l}{r} \leq 17$ $240-1. 9 \left(\frac{l}{r}-17\right):$ $17 < \frac{l}{r} \leq 69$			
$\frac{1}{r} = \frac{1}{\sqrt{\frac{1}{A}}}$ $\frac{l}{r} = \frac{1}{\sqrt{\frac{1}{A}}}$							
			I: Second Mome A: Area of Cross				

Allowable Buckling Stress of Column

β=2.0

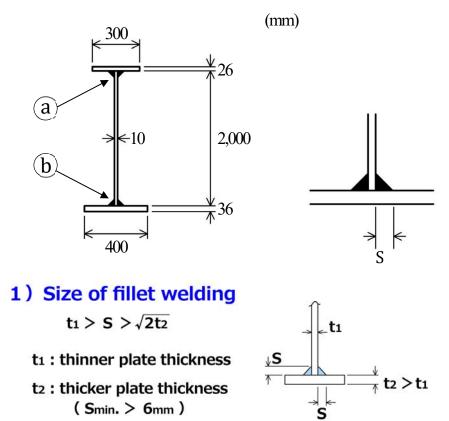

β=1.0

β=0.7

β=0.5

Question 7.

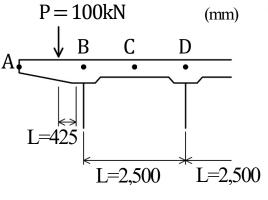
Calculate required number of friction bolts at upper flange and lower flange.



Allowable bolt force (pa)

bolt grade	nominal designation of thread	r	μ	α	σ _y (N/mm²)	A e (mm ²)	N (kN)	Pa (kN)
	M20					245	133	31
F8T	M22	1.7	0.4	0.85	640	303	165	39
	M24					353	192	45
F10T S10T	M20					245	165	39
	M22	1.7	0.4	0.75	900	303	205	48
	M24					353	238	56

Question 8.


Calculate fillet welding size (s) at a and b.

Question 9.

Calculate <u>design moment of slab by live load</u> in main direction and distributing direction at A, B, C and D.

by T-load for RC slab $(kN \cdot m/m)$

		simple slab $(0 < L \leq 4^m)$	continuous slab $(0 < L \leq 4^m)$			cantilevered slat $(0 < L \le 1.5^m)$	
		at span center	at span center	at span center (end span)	at intermediate support	at support	at tip
d	ead load ^(*) (w)	<u>wL²</u> 8	<u>wL²</u> 14	<u>wL</u> ² 10	$\frac{2-\text{span}}{-\frac{\text{wL}^2}{8}}$ 3-span more $-\frac{\text{wL}^2}{10}$	- <u>wL</u> ² 2	_
T- load	main reinforcement	(0.12L A +0.07) p	0.8×(A)	0.8×(A)	-0.8×(A)	PL 1.30L+0.25	
	distributing reinforcement	(0.10L B +0.04) p	0.8×®	0.8×®		_	(0.15L +0.13)p

付録 B 理解度測定試験

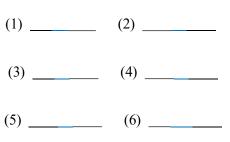
B-5 上部工の設計概論(コンクリート橋)の中間試験

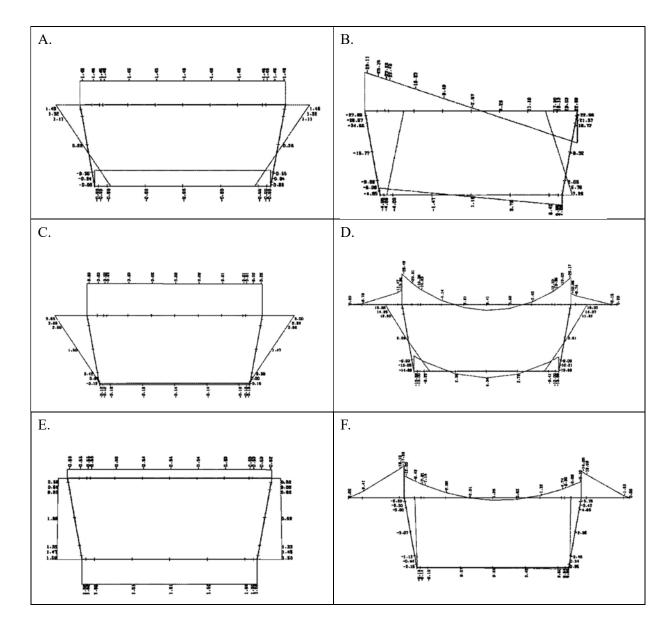
Examination Lecture : Superstructure Design (Concrete)

Name :	Score :
--------	---------

Question 1. Erection Methods of Prestressed Concrete Bridges

Select the correct combination of erection methods by which girders can be erected without using space under bridge from the following options $A \sim E$:

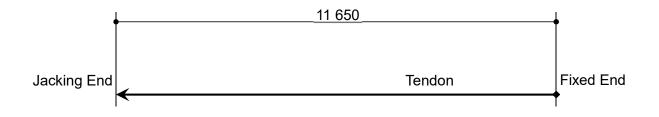



- (1) Precast girders by crane erection
- (2) Precast girders by erection girders
- (3) Free cantilever erection
- (4) Incremental launching erection
- (5) All-staging erection by conventional falsework
- (6) Movable falsework erection
- (7) Span-by-span erection
- A. (1) (2) (3) (4) (5)
- B. (1) (3) (4) (5) (7)
- C. (2) (3) (4) (5) (6)
- D. (2) (3) (4) (6) (7)
- E. (3) (4) (5) (6) (7)

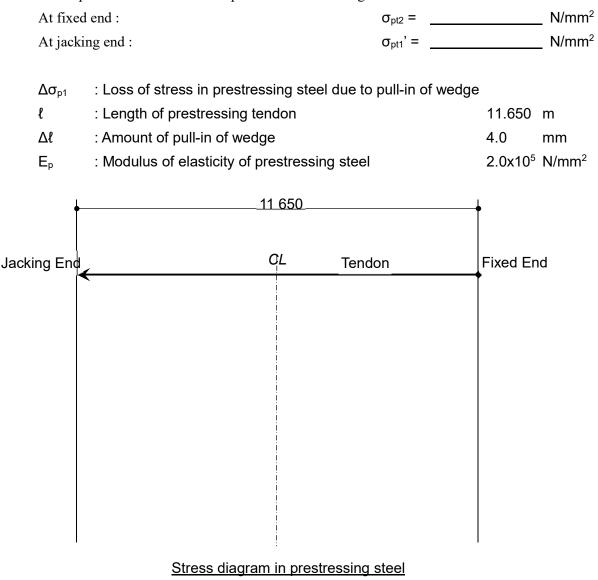
Question 2. Bending moment diagram of PC BOX Cross Section

Select the proper diagram of bending moment generated on PC BOX Cross sections by each load case from the following figures :

- (1) Self-weight (Dead Load)
 (1) _____ (2) _____
 (2) Prestress (Due to eccentricity)
 (3) Prestress (Due to eccentricity + elastic shortening)
 (3) (4)
- (4) Live Load (Loaded on left cantilever slab)
- (5) Live Load (Loaded on box slab)
- (6) Temperature Gradient

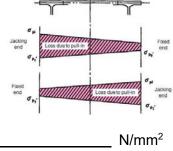

Question 3. Concrete bridges using precast elements

Describe advantages and disadvantages of applying precast elements to concrete bridges, compared to castin-place construction.


Question 4. Calculation of Prestress in deck slab (transverse prestressing)

Q3-1. Calculate the prestress immediately after anchor-set		
a) Calculate the prestress after loss due to friction :	σ _{pt} . =	N/mm ²

σ_{pt1}	: Tensile stress in prestressing steel at the section considered	ed	
σ_{pt}	: Initial stress in prestressing steel at the jacking end	1 250.0	N/mm ²
λ	: Wobble friction coefficient per unit meter	0.004	/m
ł	: Distance from jacking end to the section considered	11.650	m
μ	: Friction coefficient due to change of angle of tendon	0.3	/rad
α	: Change of angle	0.0	rad



b) Calculate the prestress after loss due to pull-in of anchor wedges:

c) Calculate the prestress immediately after anchor-set Elastic deformation is ignored. Tendons are jacked at one side alternately.

$$\sigma_{p1.} = (\sigma_{p1'} + \sigma_{pt2}) / 2$$

Design Technology Transfer

Q3-2. Calculate the effective prestress.

a) Calculate the loss of prestress due to cr	eep and shrinkage. $\Delta \sigma_{\varphi} =$	N/mm ²
--	--	-------------------

$\Delta\sigma_{\phi}$: Loss of stress in prestressing steel due to creep and shrir	hkage of concrete
Φ	: Creep coefficient of concrete	2.6
٤s	: Shrinkage strain of concrete	20x10 ⁻⁵
n	: Modular ratio E _p / E _c	7.143
Ep	: Modulus of elasticity of prestressing steel	$2.0x10^{5} \text{ N/mm}^{2}$
Ec	: Modulus of elasticity of cpncrete	2.8x104 N/mm2
σ_{cp}	: Stress in concrete at the centroid of tendon due to self-we	eight of concrete
	and prestress immediately after anchor-set	2.405 N/mm ²
σ_{pt}	: Stress in prestressing steel immediately after anchor-set ((see Q3-1c)
σ_{cpt}	: Stress in concrete immediately after anchor-set	2.405 N/mm ²

b) Calculate the loss of prestress due to relaxation of steel. $\Delta \sigma_{p\gamma} =$ _____ N/mm² $\Delta \sigma_{p\gamma}$: Loss of stress in prestressing steel due to relaxation

γ : Relaxation coefficient of prestressing steel 1.5 %

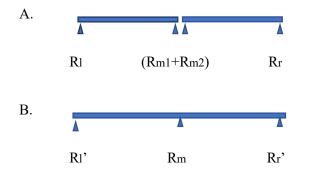
 σ_{pt} : Stress in prestressing steel Immediately after anchor-set (see Q3-1c)

c) Calculate effective prestress in prestressing steel. $\sigma_{pe} =$ N/mm²

d) Calculate effective coefficient.

 $\eta = \sigma_{pe} / \sigma_{pt} =$ N/mm²

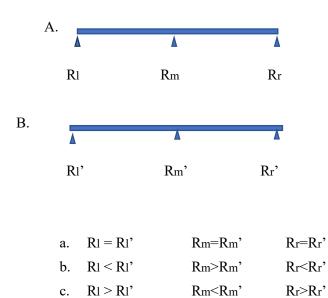
付録 B 理解度測定試験


B-6 上部工の設計概論(鋼橋)の中間試験

Examination Lecture : Superstructure Design (Steel)

Name :	Score :
--------	---------

Q1 Select the proper relation between each support reactions subjected to two beam condition A and B as figured below.


Here, load and beam stiffness I is constant through the span and same for A and B.

a.	$R_{m1}=R_{1}=R_{1}$ '	(Rm1+Rm2)=Rm	Rm2=Rr=Rr'
b.	R1 <r1'< td=""><td>(Rm1+Rm2)>Rm</td><td>Rr<rr'< td=""></rr'<></td></r1'<>	(Rm1+Rm2)>Rm	Rr <rr'< td=""></rr'<>
c.	R1>R1'	$(Rm1+Rm2) \le Rm$	Rr>Rr'
d.	R1 <r1'< th=""><th>(Rm1+Rm2) < Rm</th><th>Rr<rr'< th=""></rr'<></th></r1'<>	(Rm1+Rm2) < Rm	Rr <rr'< th=""></rr'<>

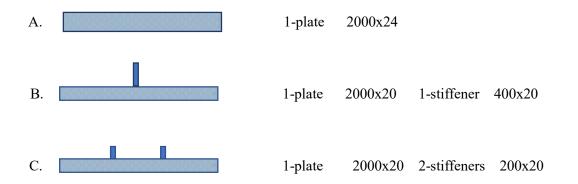
Q2 Select the proper relation between each support reactions subjected to two beam condition A and B as figured below.

Here, load is constant through the span and same for A and B. However, beam stiffness of A; Ia is larger than beam stiffness of B; Ib.

Rm>Rm'

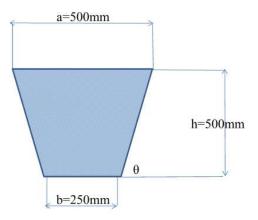
Rr>Rr'

d.

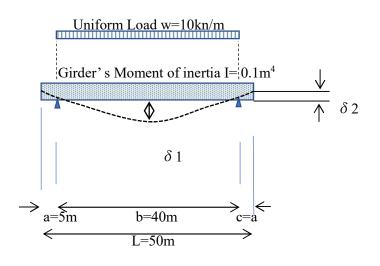

 $R_1 > R_1'$

- Q3 Select either of \bigcirc (Correct) or \times (Wrong) about descriptions below.
 - a. Young's Modulus E is defined as the ratio of the elongation by its length between before/after loading.
 - b. Usually, Young's Modulus E is applied as $2.0 \times 10^5 (\text{kn/m}^2)$.
 - c. A moment of inertia for rectangular section which is a part of the combined section become larger, as the rotation axis of the whole combined section is more apart from the neutral axis of the rectangular section.
 - d. Polar geometrical Moment of Inertia Ip is described as $Ip=(Ix+Iy)^2$
 - e. According to allowable stress against buckling, a bar of fulfil section is weaker than a pipe section in case that both area are same.
 - f. Euler's Buckling Phenomena is hypothesized that steel material elasticity is sustained till the steel stress comes to yield point.

<u>a b c</u>


d e f

Q4 Select the proper relation of critical compression stress between section of A to C as figured below. Here, total sectional area of steel material is same in A to C.


- a. $\sigma \operatorname{cr} (A) = \sigma \operatorname{cr} (B) = \sigma \operatorname{cr} (C)$
- b. $\sigma \operatorname{cr} (A) < \sigma \operatorname{cr} (B) = \sigma \operatorname{cr} (C)$
- c. $\sigma \operatorname{cr} (A) < \sigma \operatorname{cr} (B) < \sigma \operatorname{cr} (C)$
- d. $\sigma \operatorname{cr} (B) < \sigma \operatorname{cr} (A) < \sigma \operatorname{cr} (C)$

Q5 Calculate the moment of inertia ; I for trapezoidal section as figure below.

Q6 Consider a simple girder 40m length with 5m of cantilever beam at the both ends.

Here, calculate the deflection at the mid of span ; δ 1 and deflection at the end of cantilever ; δ 2. Load is considered as uniform load distributed between supports only.

Supplemental explanation

Formula for bending moment; M and deflection; y of simple span beam with distributed load can be ;

$$A = \frac{q l^{2}}{2} \left(\frac{x}{l} - \frac{x^{2}}{l^{2}} \right)$$
$$M_{max} = \frac{q l^{2}}{8} \qquad y = \frac{q l^{4}}{24EI} \left(\frac{x}{l} - 2\frac{x^{3}}{l^{3}} + \frac{x^{4}}{l^{4}} \right)$$

- Angle of deflection can be expressed as ;

 $dy/dx = \theta$

付録 B 理解度測定試験

B-7 基礎工・下部工の設計概論の中間試験

Examination Lecture : Substructure Design

Name :	Score :	

Q.1 Major verification for pile foundation

Describe the verifications to be satisfied for pile foundation design in terms of structural stability and stress verification of pile body.

A.1

Q.2 Assessment of Soil liquefaction

Describe the initial consideration for potential of liquefaction required for foundation design before calculation of FL (Liquefaction resistivity factor).

For an alluvial sandy layer having all of following three conditions, liquefaction assessment shall be judged by FL (Liquefaction resistivity factor).

1) The groundwater level is in less than <u>(a)</u> m from earth surface, and the saturation soil layer exists in the depth within <u>(b)</u> m from ground surface.

2) The soil layer whose fine-grain fraction content is less than (c) %, or the soil layer whose plasticity index is less than (d) even if fine-grain fraction content exceeds (c) %.

3) The soil layer which D(e) ((e) % particle diameter) is less than (f) mm and D(f) ((f) % particle diameter) is less than 1mm.

A.2

(a) _____ (b) _____ (c) _____

(d) (e) (f)

Q.3 Technical feature of Steel Pipe Sheet Pile

Describe details regarding follows for structural aspect of Steel Pipe Sheet Pile foundation.

(1) Provision of overall sectional stiffness

(2) Occurrence of residual stress on pipes

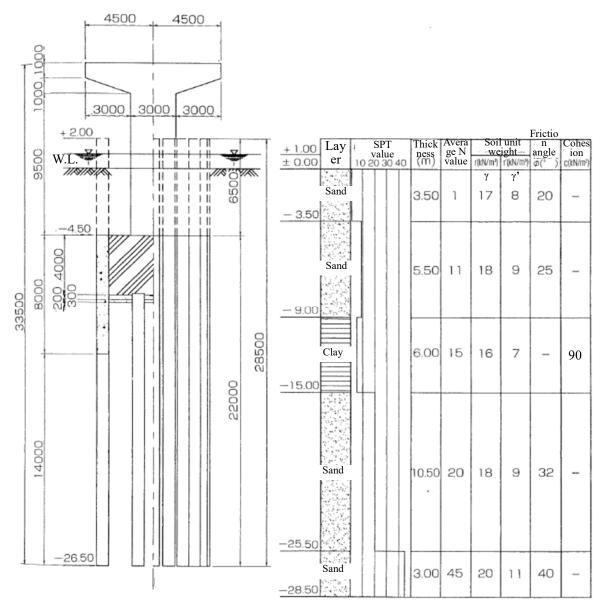
A.3

Q.4 Construction Step of Steel Pipe Sheet Pile Foundation

Arrange followings as construction steps of SPSP foundation in order of actual work flow.

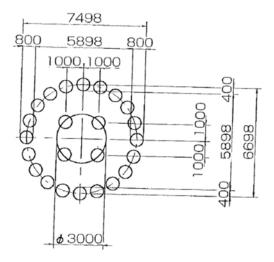
- a. Pier construction
- b. Installation of guide piles and guide frames
- c. Mortal filling in joint pipes, concrete filling in main pipes at neat top slab
- d. Cutting and removal SPSP at cofferdam portion
- e. Driving of steel pipe sheet piles
- f. Support beam setting and dewatering inside cofferdam
- g. Underwater excavation inside cofferdam
- h. Temporary platform installation
- i. Stud welding for pile head connection
- j. Underwater concreting for bottom slab
- k. Support beam setting and dewatering inside cofferdam completely
- 1. Casting concrete for top slab

A.4


Q.5 Bearing Capacity and Pull-out Capacity of SPSP

Calculate "Allowable bearing capacity" and "Allowable pull-out capacity" of pile. Ordinary case and Seismic case shall be obtained, respectively.

Foundation Type


Steel Pipe Sheet Pile Foundation Method: Driven pile method

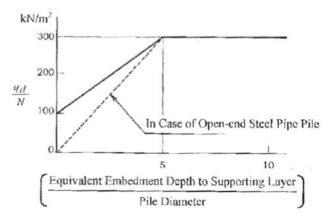
Profile Outline

Note) For obtaining a shaft resistance intensity for clay layer, apply cohesion C shown above table.

Sectional Detail

- Exterior wall : 20piles

(L=22.0m at permanent portion, L=6.5m at temporary portion)


- Inner single piles : 4piles (L=18.0m)

Pile diameter : 800mm, Enclosed area of pile : $0.503m^2$

- U1 : Peripheral lengths along the lines enveloping the outer periphery of the well part = 23.556m
- U2 : Sum of peripheral lengths along the lines enveloping the inner peripheries = 28.582m
- A: Enclosed area by well top slab = $30.2m^2$

Supplemental Explanation

- End bearing capacity for driving pile method

- Shaft resistance for driving pile method

Ground Type Pile Installation Method	Sandy Soil	Cohesive Soil
Driven Pile Method (including Vibro-hammer Method)	$2N(\le 100)$	<i>c</i> or 10 <i>N</i> (\leq 150)

- Allowable bearing capacity of pile

$$R_{a} = \frac{1}{n} R_{u}$$

$$R_{u} = q_{d} A_{i} + \frac{1}{n_{1} + n_{2} + n_{3}} (U_{1} \Sigma L_{1} f_{i} + U_{2} \Sigma L_{1} f_{j})$$

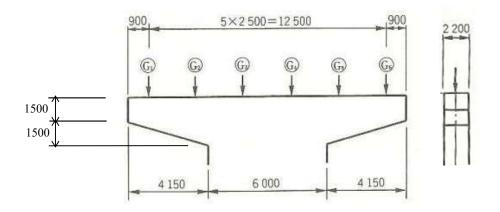
- Allowable pull-out force of pile

$$P_{n} = \frac{1}{n} P_{u} + W$$

$$P_{n} = \frac{1}{n_{1} + n_{2} + n_{3}} (U_{1} \Sigma L_{1} f_{1} + U_{2} \Sigma L_{1} f_{3})$$

A.5

Q.6 Design of Beam of RC Pier


(1)Calculate bending moment worked at verification section of the beam for Vertical direction.

Here, load case is to be considered both of a) Dead+Live case and b) Dead only case

(2)Determine rebar arrangement of the beam at tension side by verification of bending stress of (a) and (b).

Supplemental Design Condition

Reaction force from girders to be applied for beam design is given as below.

	Dead load (kN)	Live load (kN)
Reaction force at G1 (G6)	1470	600
Reaction force at G2 (G5)	1470	600
Reaction force at G3 (G4)	1470	600

- Material properties
- Design standard concrete strength : $\sigma_{ck} {=} 24 N / mm^2$
- Type of reinforcement bar : SD345
- Diameter & Dimensions of bar :

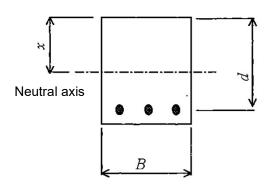

	Diameter (mm)	Dimension (mm ² /bar)
D19	19.1	286.5
D22	22.2	387.1
D25	25.4	506.7
D29	28.6	642.4
D32	31.8	794.2
D35	34.9	956.6

Table-4.3.1 Allowable Stresses of Reinforcing Bars (N/mm²)

Tyr	Type of Reinforc be of Stress and Structur	SR235	SD295A SD295B	SD345	
		l Loads except Live Loads	80	100	100
	Basic Values in Cases	2) General Members	140	180	180
Tensile Stress	of Load Combinations without Collision or Seismic Effects	140	160	160	
	4) Basic Values in Cas with Impacts or Seisn	ses of Load Combinations nic Effects	140	180	200
	5) Basic Values for Cal or Anchoring Length	140	180	200	
6) Comp	ressive Stress		140	180	200

Supplemental Explanation

Formula of RC Section calculation

- Position of neutral axis

$$x = \frac{nA_s}{B}\left(-1 + \sqrt{1 + \frac{2Bd}{nA_s}}\right)$$

- Compressive stress of concrete

$$\sigma_c = \frac{2M}{Bx(d-\frac{x}{3})}$$

- Tensile stress of reinforcement

$$\sigma_{s} = \frac{M}{A_{s}(d - \frac{x}{3})} \quad \sigma_{s} = n \cdot \sigma_{c} \frac{d - x}{x}$$

A.6

付録 C 写真

C-1 講義及びセミナーの写真

付録 C 写真

C-2 認定書授与式の写真

JICA ミャンマー事務所 西形康太郎次長スピーチ

研修生代表スピーチ (Ms. Nant Thar Hmwe, Deputy Director (Civil) of MOC)

付録 D 出席表

Detailed Design Study on Bago River Bridge Construction Project Design Technology Transfer

Attendance Record (1)

October ~ December, 2017

	Date					Oc	tober												No	vemb	ber					November) 14 15 16 17 20 21 22 23 24 27 28 29 30																
	Date	16	17	19 2	20 2	23	24 2	25	26 2	7 3	0 31	1	6	7	8	9 1	0 14	15	16	17	20	21	22 2	3 2	4 27	28	29	30	1	4	5	6 7	8	11	12	13	13	15 1	19 2	20 2	1 22	
	Lecture	Spe	ecial	Lecture	;						Ser	ninar					Special Lecture															Semi nar	i	Special Lectu		ure				Rate		
1	Daw Ei Htwe San Deputy Director (Civil)	0	0	0		0	\circ	C	\circ			0	0	0	0	0	- 0	0	0	0	0	0	0				0	0	0	0	0			0	0	0	0	\circ				98
2	Daw Nant Tha Hmwe Assistant Director (Civil)	0	0	0 0		0	0	C	0 0			0	0	0	0	0	- 0	0	0	0	0	0	0				0	0	0	0	0	0 0		0	0	0	0 0	0 () C			98
3	Daw San Phyu Phyu Saw Assistant Director (Civil)	0	0	0 0		0	0 0	C	0 0			0	0	0	0	0 (0	0	0	0	0	0 0			0	0	0	0	0	0	0 0		0	0	0	0 (0				100
4	Daw Yu Yu Naing Staff Officer (Civil)	0	0	0 0		0	0 0	C	0 0			0	0	0	0	0	- 0	0	0	0	0	0	0 0				0	0	0	0	0	0 0		0	0	0	0 (0 (98
5	Daw Lai Mon Phyo Junior Engineer (1) (Civil)	0	0	0 0		0	0 0	D C	0 0			0	0	0	0	0 (0	0	0	0	0	0 (0	0	0	0	- (0	0 0		0	0	0	0 0	0 () (98
6	Daw Kyi Thar Soe Junior Engineer (1) (Civil)	0	0	0 0		0	0 0	C	0 0			0	0	0	0	0 (0	0	0	0	0	0 (0	0	0	0	0	0	0 0		0	0	0	0	0) (100
7	Dr. Hay Man Myint Maung Junior Engineer (1) (Civil)	0	0	0 0		0	0	C	0 0			0	0	0	0	0	- 0	0	0	0	0	0	0		. 0	0	0	0	0	0	0	0 0		0	0	0	0 0	0				93
8	Daw Htet Tint Wai Junior Engineer (1) (Civil)	0	0	0 0		0	0	C	0			0	0	0	0	0	- 0	-	-	-	-	-		- -		-	-	-	-	-	-		-	-	-	-	-	-			-	
9	Daw Shwe Yamin Myat Junior Engineer (3) (Civil)	0	0	0	- (0	0	С	0 0			0	0	0	0	-	- 0	0	0	0	0	0	0 (0	0	0	0	0	0	0 0) -	0	0	0	0 (0	- (89
10	U Hein Zaw Junior Engineer (4) (Civil)	0	0	0 0	C	0	0	С	0 0			-	0	0	0	0 (0	0	0	0	0	0 (0	0	0	-	0	0	0 0		0	0	0	0 0	0	- (93
11	Daw Swe Hnin Aye Junior Engineer (1) (Civil)			I					I				1				0	0	0	0	0	0	0 (0	0	0	0	0	0	0 0		0	0	0	0 (0 () (100
12	Daw Hnin Fi Fi Chaw																0	0	0	0	0	0	0 (0	0	0	0	0	0	0 0		0	0	0	0	0) (100
13	Dr. Khin Su Su Htwe Professor (YTU)	0	-		-	-	-	-		- -		-	-	-	-	-		-	-	-	-	-		- -		-	-	-	-	-	-		-	-	-	-	-	-			-	
14	U Phyo Hein Kyaw Ph.D (Thesis) (YTU)	0	0	0	-	-	-	-				-	-	-	-	-		-	-	-	-	-				-	-	-	-	-	-		-	-	-	-	-	-			-	
15	Daw Hnin Yadanar Kyaw Junior Engineer (1) (Civil)										0	0									0	0	0 0				1	1						0	0	-	-	-	-			
16	Daw Htoo Eain Lwin Staff Officer (Civil)										0	0									0	0	0 0) -										-	-	-	-	-	-			
17	Daw Swe Hnin Aye Junior Engineer (1) (Civil)										0	0																										·				
18	Daw Hnin Ei Ei Chow Junior Engineer (2) (Civil)										0	_																														

Detailed Design Study on Bago River Bridge Construction Project Design Technology Transfer Attendance Record (2) January ~ February , 2018

Date		January																					F	ebruai	ry													
Date	8	9	10	11	12	15	16	17	18	19	22	23	24	25	26	29	30	31	1	2	5	6	7	8	9	13	14	15	16	19	20	21	22	23	26	27	28	
Lecture								Speci al lectur e																									Speci al lectur e	Cere mony			Prese ntatio n	Attendance Rate
Detailed Practice for Steel Cable	e Stay	yed B	ridge	e																																		
1Daw Ei Htwe San1Deputy Director (Civil)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	95%
2 Daw Nant Tha Hmwe Deputy Director (Civil)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	95%
Detailed Practice for Steel Box	Girde	er Bri	dge																																			
3 Dr. Hay Man Myint Maung Junior Engineer (1) (Civil)	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	-	-	0	0	0	0	-	-	-	0	0	0	0	0	0	0	0	0	0	84%
4 Daw Shwe Yamin Myat Junior Engineer (3) (Civil)	0	0	0	0	0	0	-	0	0	0	0	0	0	-	0	0	0	0	-	-	-	0	0	0	0	0	0	0	0	-	-	0	0	0	0	0	0	81%
Detailed Practice for PC Box Gi	irder	Bridg	ge																																			
5 Daw Lai Mon Phyo Junior Engineer (1) (Civil)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	97%
6 Daw Kyi Thar Soe Junior Engineer (1) (Civil)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100%
Detailed Practice for Foundation	1 & S	ubstr	uctui	re																																		
7 Daw San Phyu Phyu Saw Assistant Director (Civil)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100%
8 Daw Yu Yu Naing Staff Officer (Civil)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	97%
9 Daw Swe Hnin Aye Junior Engineer (1) (Civil)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100%
10 Daw Hnin Ei Ei Chaw Junior Engineer (2) (Civil)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100%
11 U Hein Zaw Junior Engineer (4) (Civil)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	97%