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[12-1-1]

Fundamental of
Vibration (1)

Flutter

Dynamic response of structures
due to wind

A (amplitude) Self-excited vibration
(flutter)

Limited vibration buffeting
(vortex-induced vibration)

V (wind velocity)

Vibration and Control




Mode shape and natural period

q T1
t
1st mode
~ ¢ —
t
2 nd mode

Ti : natural period (sec.)

fi (=1/T) : natural frequency (cycle/sec., Hz)

Free vibration

T
v v ]
\ A

Vt)=AcosWt
t = Acos[%} t

A : amplitude

T : natural period (sec.)

f (=1/T) : frequency (Hz, cycle/sec.)
W (=27f) : circular frequency (rad./sec.)

Free vibration with damping
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Free vibration of 1—DOF

Degree of Freedom
X(t)
kf Kkx | i = » —-mX = kx
w t mx + kx=0
X —m X +wx=0
w=yk/m

W : weight (N, kN) w: natural circular
m (=w/g) : mass frequency
g (=9.8m/sec?)

: gravitational acceleration
k : spring constant (N/mm)

X (=%—2t)2() : acceleration

X = Acoswt + Bsinwt
att=0 = X =Xo, V[:g—);]= Vo (<« initial condition)
X = Xocoswt + %sinmt
o
= Ccos (wt-B)

c =,/xe2+[§]2 =/AZ+BZ , B =tan-1(B/A)
(0=/k/m, f=m/2,r=%[4/¥ , T=1/f=21/0

X(t)

T
7

C X(t)=Ccos (wt—B)
2N/ \«\/ t

-

B/w : phase lag
|

X1 X2, > X1 X2 ...
X2, X3, X2, X3,
ex.1 ex.2 X(t)
X(t) T
W
w=100kn K x®
K = 20kN/mn w ®/
X(®) L
=/ Kk - /[ 20 _ : :
©=JW/g ‘w/mo/geoo =44.3 when load (P) is applied at @
Xa = L
T=28 - 2 - 0.142 sec. 48EI
i EI : flexural rigidity of beam
—-1_
f=4=704Hz K (spring constant) = % = 74?_51
- [k — [48EI 9 _ [48EI9
O =N m AT e TV WE
= 21T _ WL
T =% =2"Y78Erg
ex.3 Pendulum ex.4 U-shape pipe with water
X(t)
T
T (] X — LI | B R
188 +go=0 t
P J I
= /9
O
mgcos®
= / L
mgsine/ T=21 g L
mg
LAWo 5t + 2woAx = 0
e x+23x=0

Wwo : water weight per unit volume
A : diameter of pipe
L : Length of pipe with water

= /29 = L
WYL, TEMY 5




Free vibration of 1—-DOF with damping

o T mX + Fa + kx = 0
d
wglﬂ\ 1) Solid friction

w Fa = cx

x ) 2) Coulomb friction
Fda = -UN
M : friction coefficient
N : press force

3) Viscous force
Fa= cx(=cv)
v : velocity

xw h> 1.0 over damping

5

xty h=1.0 critical damping

/wt

xv h <1.0 vibration

NFr~——r.
|\

t
T

Viscous damping

X
kx’w‘g 1 ’ﬂ* X(t) m¥X + cx+ kx =0
L|_I |7\\ﬁ‘ X + 2hox + 02x =0 —(a)
w

v w=/k/m
v
X J/mse e 2hw=5 [h = ﬁ]

C : damping constant h : damping coefficient

Assuming X = Ce-Pt, and substituting into eq. (a)
p2+ 2hwp+w?2=0

p=-hw £/h2-1

h <1.0 = p=-hotin/i1-h?

v = e-hot[Asin(wy/I-h2)t + Becos(wy/1-h2)t]
= Xe-hot {sin(wy1-h2)t-do)}
Ta=— 20
wy1-h2

409

Logarithmic decrement (&)

_ X1 _ e~—hoty _
o= Indt = In S = hoTd
27th
J1-h?

Since h< 1.0 , 0=27h

exl

Damped vibration with Ta= 1.0 sec.
After 10 sec., an amplitude was reduced to 90%

o= In[ Xm ]= 207Th
Xm+10) 41-h2

Xm _ _1

Xm+10 .9

from

20Mh _ (1) _
201h |n[072] = 0.1054

207th = 0.1054/1-h?

0= 27Th = 1.678 x 10-3

In case of earthquake input

m@ + cx+ kx =0

$=7+X

|
/ mX + cx + kx = —-mZ




[12-1-2]

Fundamental of
Vibration (2)

dx
—x—
X
M M+dM
Yo) . Q \ Q+dQ 5
—pAVdX [ii = TJ{]
p=7/g -pAVdx +Q+dQ=Q
¥s: weight . 2
per unit volume PAY = gig {Q=%=_%@I%}
g : gravitational 0% |, 92 (10 _
acceleration PAGE * WEEISTZJ =0
p : mass ¢ EI : const.
per unit volume
PA 3% 3% _
EI ot2 " ox* ~

Vibration of beams

[simple beam]

[cantilevered beam]

1 st mode 2nd mode 3rd mode

Assuming V= Xoelwt

% oo

oo (vew(g)

X = AsinhAx + BcoshAx + CsinAx + DcosAx

in case of simple support bridges

- _dX _
atx=0, X—W—O
- - dX _
atx =1L, X_dxz_
U
sinAL=0
AL=iT

wi = )\24/%
- (3R

X = sini%x - (elot)

mode shape
Boundary AL
conditions 1st 2nd 3rd
Fix-Free 1.8751 4.6941 7.8548
Fix-Fix 4.7300 7.8532 10.9956
Fix-Pin 3.9266 7.0686 10.2102

X= Xo+ Xp
Xo= et (C1cost + C2sinw‘t)
0’ =/1-h7 ‘@
Xe= Acos Wpt + Bsinwpt —(2)
Substituting eq.(2) into eq.(1)
_Fo w? — wp?
M (W o )%+ dhw’wp

2hw wp
(wz_ mpz )2 + 4hw’wg

_Fo
B="m

X= et (Cirosw't + C2sinw't )
ey :
Q- m J(1 - 0p? / ©2)*+ ah w2/ w?
Fo - Fo

wm “K ~ Ost (static response)

} cos(wpt —P)

Forced vibration of 1-DOF

_ 2%
e [
K c T ; I 7Nl 7 n
0
w t
Xt M= % w I 4 NS N
external loading
Under harmonic excitation
mX + €X + kX = Fo cos (Wpt)
%+ 2hwx +0x = [%j cos(@pt) —— (1)

x =Xo (general solution [« free vibration])
+ Xp (particular solution)

1 D
L= = =D
J(1- 0 /w?) +an w2/ @? Ot

D : dynamic response
L : magnification factor (due to vibration)

Since first term (xo: free vibration with damping)
will distinguish as time passes , hence second term
(xp) exists, and peak value Lmax.

dL ®
d(wp /@) =D —> @ =41-2n2

1
Lmax. = 2h




How to avoid resonance

|
(S
|L h (damping (1) Avoid (o» /w=1.0)
3 coefficient) =0
wp: frequency of force

w: frequency of structures
change %J%]

(2) Add(increase) damping

“&h=0.2

Wp /W

Tw
9y , 9 (9v
T 4 ; xtax ax]dx
2 e X _pacidx
2 2
T : tension force oy _ 90V _
pAc atz2 T axz = 0
2 2
v _ 20V _ 2. T
atz Naxz = [)‘ PAJ

Assuming v=V(X) * q()

Vibration of string (cable)

&q 2 . _

at2 +w°q =0 —(1)

v L, _

p% +A v=0 2)
Fromeq. (1)

q = Acws®t + Bsinwt
From eq. (2)
V = C1 cos [(’;\—L] X 4 C25in[u;\Lj%

smu;\—|‘= %%:Iﬂ'
_dirm, _ix [T
i = L A= L pAc

Ac : cross sectional area of string

Torsional vibration

T : torsional moment

r0 (displacement)

dA = rdedr

Vibration of beams under compressive force

v(t)

-

=-pIp gztez dx + T+ dT

In case of round section
4
Ip=J = @ (D : diameter)

P P t
1
]
5% % a'w _ Wi
PA e -P—ax2 +EI o =0 we=0
i=
1.0 i
i=3
l v (x) =V (t)e™ i=2
i=1
0.5
(P [EL [ 1P
“’"[Lj pA Y17z .
Pe : Euler (elastic)buckling load 0.5 1.0 PE
Vibration of plate
/V a (4-side; simply supported)
Vs
b
. X
(m=1, n=1) (m=2, n=1)
‘W ‘W o2*W 2W _
B(% +2520y2 T oy J+orgE=0
! W(x,y,t):ZZAmnsinmgxsin—Yng eiot

W = B [0+
B= #tfw) , t : plate thickness




Rayleigh method

— approximate method for frequency —

Assuming vibrational mode shape satisfying
boundary conditions, and calculate kinematic
energy (K) and strain energy (V),

Kmax. = Vmax. = natural frequency

Dynamic response due to wind

A (amplitude) o
self excited vibration
(flutter, galloping)

vortex-induced vibration

/

buffeting

>V (wind velocity)

ex. beams
V(@)
=PArtavY??
K= (3¢ ax
= EL gy [P F—
V=5 [2h] e
Assuming V(x,t) = X (x) coswt
K= -‘";—mILﬁdx - sin2mt
_ EI iy .
V= 2ju‘dex cos2mt .
EI ¢
Kmax. = Vmax. — 2 = M
pA [ X2dx

We assume X = sin%x

o= (15

Control of vibration

(1) Aerodynamic means
control the wind flow by changing

cross-sectional shape (or)

by attachment

(2) Structural (Mechanical) means
add damping etc.

Structural (Mechanical) means

1) Change natural frequency
by mass or stiffness change
T we will face difficulty

2) Add damping (untuned type)

}Passive type
3) Add damping (tuned type)

4) Active damping

Truss and beam elements

EA; (axial rigidity) E? (ﬂe"”rﬂjﬁgi"“")
A i Nj Mi 6j
AL WA
ui uj | i )
Vi | )
Lij | Lij
{i}=m 1-1H£} Qi 12 6Lij[-12 6Lj
N;j Lij (-1 1 )|y Mi| _ ELj 4Lii2-6Li 2Li?| .
1 Stiffness matrix |Qi |  Li® 12 -6Lj
Mj sym. 4L

1 Stiffness matrix

[truss element] [beam element]

Vi
(]
Vi
6j

Multi degree of freedom
by finite element analysis

[Static response] [Dynamic response]

[K1{d}={P} [M]{a}+[C:Hc'l}+[K]{d}={|(=(§)}
[K] : Stiffness matrix .. o

{d} : displacement vector eaﬁE::a]ki :'“},ut
{P} : force vector

[M] : mass matrix
[C] : damping matrix

d _:k_,P(t)

P P(t)
{ d(t) mass
element | node

—— ke ——

Plane (2D) model
(by truss and beam elements)

x(u)
I—’ ‘/Inode node
OYVAVAVAVAN A
o * truss element
x(u) node
y(v) i
et 5
node e

beam element
(with axial force)




Spatial (3D) model

(cable)
truss element *
z(w)
x(w) beam element
y(v) —

} beam element

spring element l'

a cable-stayed bridge modeled by
truss and beam elements

Eigenvalue analysis

[M]{d}+[KI{d}={o} ([C]=[0],{P}={0O})
l putting {d}={q} et
det | [K]- w2[M] |=0

\

i, [(] («<modal matrix) are obtained
{d} is expressed by
{d}=[ol{a}

{d} : displacement vector
{q} : generalized displacement vector

Mass matrix

PAL;
L PA__ element /
=
L i L
Y (lumped mass)

(consistent mass)

[m] = Ly TA® "PIAE) 1dE )

uj
=[A®]1 {5
Vi

j
6j

eXI

[M]{d}+[C]{d} +[K]{d} = —Zo[M]{1}
Z0 . ground movement

{1 {11, -1}
[C] : proportional damping
{d}=I[pl{q}

[I"IMI[@]{q}+[@]T[CI[@]{a} +[eTIKI[®]{a}
= Zo[@]"[M]{1}
from orthogonality condition of each mode,
independent vibration of each mode is obtained
M{'Gs + G'as + Ki'qs = — Zo[@]T[M1{1}
G+ 2w+ w2 q = - 2LeIIMI]

. M
= —Bjzo

[12-1-3]

Vibration(DVD)
& Commentary




[12-2-1]

History & Name of
cable-stayed bridge

T
anchor cable .

cable
e

: | girder |

earth-anchor Jonn

Single span cable-stayed bridge

\\\\\\
eable
anchor cable

= cable

1 I girder
' |
focking bearing | side span main span

2-span continuous cable-stayed bridge

anchor cabile

catie

girder

sidespan mains Sgan side span

3-span continuous cable-stayed bridge

A cable-stayed bridge suspends
the girder using diagonal cables.

L

¢ —— .
M‘i f(eog) z%m
r

L'l a
M earth7

anchor

3-span suspension bridge

(QQQ QQQ\,

bo
=
— Z
at o — =
5 /

.

Single span suspension bridg

11110 S

v
M I

Continuous suspension bridge

\’

History

Cable-stayed bridges

self-anchored system
(1compression in the girder)

Suspension bridges

earth-anchored system
(1good soil condition is requisite)

Cable-stayed bridge by Verantius,
supporting the timber deck by chains
(Venice, 1617)




LU

Timber cable-stayed bridge

by Loescher
(Loescher : German carpenter, 1784)

W//11\N/1\N

Fan type cable-stayed bridge
proposed by Poyet French (1821)

King’s Meadows Bridge
S~ A

Tower : cast iron

Cable : wire

constructed by English engineers,
Redpath and Brown in 1817

Dryburgh Bridge (span 79m, UK)

(pedestrian bridge crossing over Tweed river)

A A

The bridge was collapsed in 1817,

a half year after opening
The reason is chain broken

due to wind-induced vibration

Cable-stayed pedestrian bridge,
crossing over Saale river, Germany

A

A e W S S

In 1824, the bridge was collapsed.
The reason is the broken of chain due to walker
loading

Harp-type cable-stayed bridge
proposed by Hatley (1840)

A = X

Hatley pointed out that
in-plane flexural rigidity of Harp type
is inferior to that of Radial type

{in-plane flexural rigidity)
[Harp-type] < [Radial type]

At that time, famous scientist Navier made
accident investigation, and concluded that

Suspension bridge is
superior to cable-stayed bridge

Since then, this type of the bridge almost
disappeared until the Stromsund bridge in
Sweden was constructed in 1955, and it is
called * beginning of modern bridge”

Cable-stayed bridge constructed
over cannel at Manchester,
UK (at around 1840)

AN AR

0, = H P

Similar configuration to that of
modern cable-stayed bridge




Albert Br. over the Thames(1873, UK)

Stromsund Br. (Sweden, 1955)

Beginning of
modern cable-stayed bridge

Cable-stayed and suspension bridge*
proposed by Dischinger (1938)
Hamburg, Germany

SRR N

Proposal for a railway bridge with a span of 750-m
over the Elbe river near Hamburg, Germany

*in order to increase in-plane flexural rigidity
*in order to get smaller deflection

Cable-stayed bridge crossing the Rhein river

Theodor-Heuss Br.
(Dusseldorf, 1957)

This time period, Severins Br.
number of cable is small. (Koeln, 1959)

First multi-cable type Cable-stayed bridge

Friedrich Ebert Br.
(Bonn, Germany, 1967)
21

Simple span cable-stayed bridge

r
anchor cable L.

Number of span

2-span continuous cable-stayed bridge

cable tower

anch .
or cable A cable

=» | -

| ; |
rocking bearing |, side span _|l| main span

(pendulum support)




3-span continuous cable-stayed bridge

tower

Girder bending moment
[at completion]

EEEERRE KRR KNS

L__ f_fr_(sei")__..__‘ L_______ Le ,___J

- girder bridge - - cable-stayed bridge -

(moment is proportional to Lf':)

anchor cable
cable
—E" - - ~— - = 32
I girder - - Y
rocking bearing |
side span o main span " side span

vertical and lateral loadings

Stress Resultants

girder bridge

L bending moment

cable-stayed
bridge

L bending moment

axial force

Mechanical behavior under live loading

uplift forceT----

L T T A A

anchor cable

uplift force

Anchor cable plays an important role

Under lateral loading

lateral loading
(wind & earthquake)

/N

. . W A ——2A

bending moment of girder
girder itself* has to resist lateral loading
*out-of-plane flexural rigidity

Pendulum support (up-lift force)

i

Suspension bridges

a
b

S T e 2

a-a b-b

restoring force
(expected)




Lc

Wind load on cables
Wc
at girder at tower

Weclc Weclc
2 L Lc J 2

A

Static instability -(2)-

At the cable-stayed bridge design,

if span length (L) is large, and
the width of the girder (B) is narrow*,

(L/B is large more than around 40)

be careful about lateral instability!!

* 2-lane bridge (narrow width) with long span

Cables

[HiAm anchor cable]
PE pipe

[New PWS cable] =2
/ high density PE pipe
filament tape
both have cable anchor (socket) with high fatigue strength

cable section

A&z ]
— Y S|
—— cable socket
(cable anchor)
——
[New PWS]

Anchor girder

o - A

I SN o

Design of Cable anchor in the girder

| —cable |, —cable
| !
N e G|
anchor girder bracket girder type
L/cable

socket .
pipe anchor

Pipe anchor

girder

VN N

| e

cable socket




Anchor plate

' anchor plate < ;
abe | g {U/‘T socket (rear type)

cable

Cable anchor in the tower

tower wall tower wall tower wall

/%ﬁ f@ f@

anchor girder  anchor plate saddle

cable cover

Buffer (by rubber)
To mitigate secondary moment

|watersg  PE pipe

cover (rubber)
noter __ \ V.,

O/
1.0

i;"!i/ ‘/’"u

Q"’.].-"r !f-'u

Ku (KN/em)

| 1 1 1
0 ol 100 150 200

Yo : without spring (KB)

Calculation of stress resultants
(N—[on], M—[ov], Q—[Tb], T—[Ts])
and deflection (98) is carried out by

Finite Element Analysis using fish-bone
model (beam or fiber elements).

At structural details* accompanied by
stress concentration**, Finite Element
Analysis (shell & solid elements) is
carried out.

* cable anchor structures etc.
** can not be caught by beam element

Stress resultants
& deflection

FEA of the Cable Anchoring Section

Cable Tension
F=7,000kN




Fish-bone model for cable-stayed bridges

‘%eam element
truss element

beam element X

rigid bar

Non-linear analysis

(Suspension bridges)

If H
f g
“ linear relationship

(Cable-stayed bridges,

Lf arch bridges etc.)
N

\d

d

Calculation theory for the design

[KE]{d}={f} —F—F— (1)
linear analysis
[KE+Ka(ND)]{d}={f} ——(2)

linearized finite displacement analysis

[KE] : elastic matrix

Np : initial axial force under dead load (given)
[ Ke(ND)]: geometrical matrix

{d?} : displacement vector

{f} : force vector
Influence line analysis is possible!!

Geometrical non-linear analysis
[KE+Kc(Np+2N)J{~d}={af}

(3)
large displacement

Material & geometrical non-linear analysis
[Ke+Kp+Ka(Np+2N)]{ad}={2f}——(4)
t

Plastic behavior

Since displacement under construction is large,
eq. (3) has been used.

To obtain ultimate strength,
eq. (4) has been used.

Analysis Case L1 [a(D+L)+Ps]

Girder yielding 1.79(D+L)+PS
Cable yielding 2.61(D+L)+PS
Tower yielding 2.63(D+L)+PS

Maximum Load 2.95(D+L)+PS

Load cases of Ultimate Strength Analysis

Live Load Cases
L1: Loading on the all spans L3:Loading on the left half of center span
L2:Loading on the center span L4:loading on the left side span

T T T T T T T T T T T I TT T e TTTTTTTTH w

OO T T T G U T T LTI T T LT T I T we

OO O O T O T T T T T T T T T LT T T T T) s

FENEEEEENEEN NN N )
[ [il. T1
CIIrrrm

Load factor (a)

Deflection (m)
Load — deflection at the center of the girder




[12-2-2]

Design parameters &
their selection (1)

[1] Mono or multi-cellular

box [closed-section] girder
(from aerodynamic stability and maintainability)

[2] Truss girder
(mainly for double-deck type)

[3] Open-section [n -section] girder
(from economical viewpoint, however,
shows poor aerodynamic stability
compared to box section)

() :reason of selection

[1] Girder

closed section

g " g U L

pen-closed section

(=]

G—r

open section («—2-plane cable is inevitable)

C ) I T T =
ik L 5| EEPREF FERRF ESTTS g (%

[n-section] [multi-I section]

Combination with tower type
closed section

open section (62 -plane cable arrangement)

A A

Aerodynamic means
flap

\r ‘7 fgiring
e ol S
(girder)

Lj———UQJA_L_L)

dAaflartar

e T

flat plate arranged intermittently

deflector corner-cut

(tower)

From aerodynamic stability viewpoint,

Streamlined box section
has been selected.

Combination of
[box section] & [2-plane cable arrangement] &
[A-shaped tower]
gives highest torsional rigidity

Truss girder
(double deck type)




Upper deck : roadway

Lower deck : railway Steel-concrete composite I girder

cast-in-situ
precast RC slab

T Tt~

4z

precast RC slab

¥ cast-in-situ \

= T = main girder
L% 1
cross beam longitudinal beam

Girder with open section
(from economical viewpoint)

Twin Box type
(from aerodynamic viewpoint)

gl gyl

ralid s,

\ cross beam

T -shaped (2-I) girder bridge with steel deck [COST]

Open ( 7T -shape)section = Closed box section
{12-plane cable*}

- From aerodynamic stability viewpoint,
closed section is preferably selected
in Japan (typhoon attack)

* maintainability has to be taken into account

*since torsional rigidity of the girder is very low




(Steel-concrete) Hybrid girder

PC girder with steel corrugated web

PC girder with steel pipe truss web

Curved Cable-stayed bridges

[2] Tower

a)Type
b)Hight

“A"” shaped Tower

e H-type Portal

ATA
—

Inverted Y-type Single Double-A type

AL

“H"” shaped Tower




Comparison between A
& H tower under torsional loading

tower top tower top
no movement 4
i, L}
l bridge axis 1 bridge axis

[higher torsional rigidity is expected (higher wind stability)]

856m
No.1 in Europe

Two towers

1,018m
(single tower)

Single tower




Tower underneath the girder
(king post type)

A-shaped tower (side view)

tower underneath the girder

b) Height of the tower
(from the deck level)

L
&%AM A% - Lc/h'=_5
Lc

e
h
/ﬁ (1.8L)/h =5
e :
h L/h =10
b A-Igl (extradosed-type)
PC glrdelE “ ’i

side view

make lower

Optimal (economical) solution Lc/h £5.0

If difficult to set (Lc /h =5.0) at site,
don‘t exclude and check (compare!!)

2

[1] cable-stayed bridge with a lower tower
(h < Lc/5.0)

[2] Another solutions

such as truss bridges, arch bridges and so on

Check which one is economical !!

Fukui Techno Port Br. (Cancel)




A large cable-stayed bridge with low
height tower is planned crossing
a channel near major airport in Japan.

575.0m

Low height span

tower

Reclaimed
land

Extradosed type bridge

Odawara Blueway Bridge Tsukuhara Bridge

Shinmeisei Bridge Himi Bridge

Cable-stayed bridges
=P
L 1 =
L L |

L/ h 2 5.0 (economical)

Extradosed type
I N N
i " — r-Y
k L |
L/h=10.0

Under dead load,

cables support the girder.

However,
since cable inclination is small, &

flexural rigidity of the girder is large,

live load is carried by mainly girder.

= less possibility of fatigue in cables

[3] Cables

a) Cable arrangement — radial, fan, harp
b) Cable hnumber —multi, a few

c) Cable plane —one & two

d) Cable type

In Japan,
cable safety factor against breaking

is set 1.7 (for extradosed-type)

That for conventional cable-stayed
bridge is 2.5*

*in USA, Europe, it is 2.2.

a) Cable arrangement

m ¢  [Radial-type]
- il

i (Fan)
A 't [Fan-type]
e l i (Semi-fan)

A/N ? [Harp-type]
L£ J.. !




Radial-type

Fan-type

From mechanical viewpoint, since steep
inclination of cables can be obtained,

radial type is preferable.

However, since multi-cable has to be anchored
at one point, complex structural detail for
anchoring is requisite,

I

Fan (or semi-fan) type has been preferably
employed.

=» many practices is Fan type!!

Harp-type

Even though mechanical efficiency* is a little bit
inferior, because of smaller cable inclination,

In my private opinion and feeling,

Harp-type looks nice and gives a beautiful
appearance.

*span up to 500m, difference of mechanical efficiency
compared to fan-type is not so severe (please try to check).

cable®
T
cable® ®___? T
T®: ! girder
|TH,® W
Th,®@ !
TO > T®
Th,® > Th,@
:EE:B:ESq
\ \ Tsine = Lo
o
Leo ales T=(qlLco /sie
Nmax.
¢
he ho qLé
o Nmax.= 8h0
h{j:l—'_“-—_




Under live load

Fan-type

Harptype |( =2 =]

b) Number of cable
[ under dead load ]

axial force
A ;
¢

axial force

Multi-cable system

Under live load

multi-type

Stayed by one (or) a few number of cables

Multi-cable

Cable size is smaller.

= easier to handle (design, fabrication,
erection and maintenance viewpoints)

= easier to replace

= prone to vibrate (sometimes, need
damper etc.)




c) Cable planes

! one-plane
|

N L e e e
| two-plane
> = -

three-plane i

One-plane

Two-plane

One-plane

- Box section with high torsional rigidity
is requisite.

- Cable size is double compared to two-
plane type.

- Bridge width becomes wider for central
(single) tower and cable anchoring.

However, from aesthetic viewpoint, it is
beautiful (my feeling)

[HiAm anchor cable] and [New PWS]

Cable strand with socket is made at shop and
transferred to the site.

Anchor system (socket) has high fatigue
strength.

Strand is consisted by ®(diameter)-7* parallel
wire (New PWS has a slight twist).

*7-millimeter diameter
(wire diameter of PWS for suspension bridge is around
5 millimeters)

d) Cable type

Cable section [New PWS]




Cable socket (cable anchor)

Cable anchor

Physical property [HiAm anchor cable]

[H—— o e

Cable anchor

Strand ropes is transferred,
and cable is made at site.

Strand and section

Cable structure and damping system

Anchorage




[12-2-3]

Design parameters &
their selection (2)

ARy

simple span

PN o T\

two-span three-span

[4] Number of span

2-span

3-span

anchor cable

ok "

Deformation of the system

(71 if no anchor cables )
cable elongation

0 0
x0 d

X

Multi-span cable-stayed bridge

(TTTTTITITRT]

due to tower top movement (— ) = flexible

Installation of intermediate piers
in the side span is very effective

for increasing
in-plane flexural rigidity




Countermeasures

A-shaped tower

N P N
L LX LY L

/horizontal cables

1 1 L L =

diag/onal cables

b e e e

Without supplementary cables

A

- clidda sads

il |
H
Nhat Tan Bridge [Vietnam, span = 300m)

Yanba Br. (span = 135m) [Extradosed-type]



[5] Span length

Max. (possible*) span length
of cable-stayed bridge will be

around 1,200-m (or 1,300-m)

Suspension bridge will be

3,500-m**

* From economical comparison with suspension bridge
**Using current cable material




[6] Cable system

(axial force in the girder,
compression = tension)

Self-anchored system

A A

& Z 7y 2

S ST NS RS S

Axial force in the girder

Perfect-anchored system
(Axial force in the girder is in tension)

A\hoﬁzontaloo nent of gable terisign

v
— -«— — -«—

Fix Free Free Fix

Axial force in the girder
(+) tension

Partial-anchored system

expansh{nyl\ /I\

Axial force in the girder
(+) tension, (-) compression

Partially earth-anchored system
AR RN
A

| R
[ L |

~=by

compression

te}'lsion

‘ self-anchored ’
f I \
earth-anchored

Erection method (1)

- cable erection + balanced cantilever erection -

cable for erection

A=

balanced cantilevered erectiof;:’_

Span extension by incorporating
partially earth-anchored system

th/ = T
PN TS
\/ ’ = ] \\ﬂ :
T i J : i 5%
I L Le/2 ,J_L" 1 ! 1
71",:: —-(1) 2an (Lo +LeLo) —(2)

set eq.(1) and eq.(2) to be equal,
Lc + 2Lo = /2 X Lc

Erection method (2)

- balanced cantilevered erection -

A 5

L L

) //'T\ AT

| i

temporally suppo [ S
y A

AR !
rﬁ\i\‘:\

\/’;A_‘:g;). o :

4
pull force for closure




Combined [earth and self-anchored

cable-stayed] bridge and [suspension] bridge

3rd Bosporus Strait Br. (Istanbul in Turkey)

Cable-stayed bridges

h

|
P | >,

| L |

L/ h £ 5.0 («<economical)

[7] Extradosed PC Bridges

Extradosed type
A@ m
i — ~— 2
| L |
L/h=10.0

[8] Hybrid (composite & mixed)
cable-stayed bridges




Hybrid type

[All-Steel]
' e J L:,d | [ J_l-e
l {Aimingat - - gl} er PC girder
economical solution

A)C tower A)C tower

steel-concrete composite girder
Steel (or) RCtower

| | | | H._l_intennediatepiers

l—l —

PC girder PC girder

Steel-concrete composite girder bridges

%

L.
St St

" steel cross beam steel cross beam

steel 1-girder steel box-girder

Basic concept

Steel : light but expensive

Concrete : heavy but cheaper

!

Combination (How to combine)
of both merits &
lead to economical solution

Steel-concrete composite I girder

cast-in-situ
cables precast RC slab

47

precast RC slab \

A 1
cross beam  longitudinal beam

main girder

| |
| /cast-in-place concrete |

/precast RC slab
\A/I-girder
—

steel cross beam

j' cast-in-place concrete |

; precast RC slab 11

I-girder
| N =
=5 B =
teel longitudinal beam
teel cross beam

2-I-girder with composite RC slab

will be cheaper
than steel box girder

However, it shows
poor aerodynamic stability

Force flow

nlcable B cable
RC slab RC slab
/ /

~_ _—
. T-girder AN / ,

7

steel cross beam sts cross beam

RCslab = Cross beam = Cable




yShinminato Br;

)y
steel tower
v 4 v
O : axial compressive force in the girder is smal ‘{' 1 JL' steel girder {' { ‘J]'
P'C girEIer PEgird'er
Steel-concrete Mixed type
/"><ncrete tower
\steel girder
steel (or) concrete
) tower
L1lLlL 1111
iconcretﬁ steel girder concrete il Il
girder girder Ak Steel Ik
PC girder PC girder




% PC box girder with steel corrugated web
+— RCtower ~,

RC tower

| *+ gtee] girder |’
"PCgirder” “pc girdet:|

l ” ""J_pier 5
r steel box girder
Can Tho Br.
(Vietnam)
oy RC tower ~—

«PC box girder PC box girder
steel box girder

[9] Pedestrian
cable-stayed bridge




[12-3-1,2]

Estimation of
stress resultants of
cable-stayed bridge

Tension in cables at completion under dead load

[1] horizontal component of tension to be in equal

N @ tower and foundation
s tower I are subjected to N0 bending
\ pier
foundation
[2]
.4.‘..‘/-&[-\“\ ..nla. T

bending moment in the girder is small

[3] No force for closure of the girder

deadload

(TAT] [ TTAW] [ TAE]

ﬂ\/l\
N T

™ bending moment
™ (Toe) ~T~

" bending moment
cable pre-stress {P:} = {To} - {Toe}

tension under dead load
Designer’s decision

Bending moment in the girder

Wb Wo ?

%WDLZ L/2  L/2
L
——
Wpb
S -

- -
O aWe g We
T T2

(n) (n)

(+) 8 +)
T1
L T2
L

T: : designer’s choice

Incaseof (Ls<Lc/2)

/ \# bending moment
T I ! / due to {Vs—0s}
Ls Lc

asymmetric arrangement

Vs q& —
I
|

PR
L W []
i L 4

Ve=q, (=qs)

{vs-as}

V. >4,

In case of (Ls%= Lo/ 2) Gvaiiiiiy Wo (dead load)

|Leo Qe = Wolco
Ac

Symmetric arrangement of cables |

| e ik

e o | \QV\\\%\
T. Vas ¥4, J_ o +qt:c ¥ac

(dc=¢s)

Countermeasure (1)
Installation of additional piers in a side span

o —

//\.4\ ¢

;‘/ \ '

— I % femee it ) o m S gl
additional piers

(these also contribute to high in-plane flexural rigidity)




Countermeasure (2)

Installation of concrete weight(concrete girder)

with additional piers in a side span
concrete weight

T ¢
Vs
Acon
qcon > VS
concrete .
L Qﬂ';lr\ steel girder
¢ <«— mixed type
\additional piers

Ex. Bending moment at completion
(Shinminato Br.)

— dead load

dead load + prestress

steel tower
A< >N\
v A
11l 111l
| steel girder | |
PIC girder PEgir(;er

F—

Countermeasure (3)

Vs—dQs

&7 |
etri it .
ymmetric arrangement concrete weight

TET

bending moment due to {Vs—ds}

pier

2 e

“]' ' Steel i fL
PC airder PC g‘Erder

Fundamental rule

External ey
Force Deformation
Section Original Shape

Force

BRIDGE CLOSURE METHOD*

* By Mr. Tomoda (NIPPON KOEI)

Concept of camber
(Simple Girder)

S M S S T ! I 1 I I 1 ] DeadlLoad

Deformation

Camber




Concept of camber
(3-span continuous girder)

1 1 1 1 7 I 1T ] 1 ] "] DeadLoad

Sy \—\

Deformation

>

Camber

Cantilever construction method
(3 span continuous girder)

Bent construction method

(Simple Girder)
Can?“be%hqpe
e ©° @ T e

®

" Bent (Temporary Bent)

Completed
Shape

>

k:

¥
=i
¥

>

Remove the bents

T %
Bent construction @ Bent construction
@ @
A — s VU —i\
Remove the bents @ Remove the bents
®
M Girder Closure M
Jack up @ Jack up
2N Completed
i \ Shape

Jack down I Jack down

Concept of camber
(Cable-stayed Bridge)

Camber

Cantilever construction

Cantilever construction method
(Center span)

Bent construction Bent construction

&

T(Cable Tension)
=Td’(Dead Load)
+Tp(Prestress)

Girder Closure

NN TN
AAAE NWIRIORHA0E | S

: T Sl s 55 e T T :
No need for bents [ No need for bents
W «~W—
Adjust the Girder Joints

by the weight on the girder




Completed
Shape

P AN RN
A A

NN
A A

T(Cable Tension) =Td(Dead Load) +Tp(Prestress)

Axial force in the girder

dTsine = qdx
dTcose = dN
dr dN= qdx | _ qdx

e sin@ * cos@ tan@®
(1/tan9= X/hT)
dx dN= q_ xdx

LC
Nmax.=fLCIZC|N = hr [%2]

_a’
~ 8hr

Lc/2
)

[T B TE XX ITTTXY|
h) N aL?
H — C
- T : Nmax. -_— 8hT
1 Neax.
PR P
Suspension bridges n . H= ql_cz
. (f:sag)
“; ca/ble Lc :-
Arch bridges 5 N= qL2
8f
(f:raise)

(Ls<Lcs2)
dead load (Wad)

YYYY VWYYV

YYYVVY

hr

Td

d.\.ANd l 1

L | L

LC/2
£Ng = Wa [ dx - P xdlx

- ()

I TTET] [TTTTX] [ EXEETNE]

e Fan type (radial type)]
) N

T
ke L.
[ Semi-fan type(fan type) ]

|
Lc

[harp type]

g

T
A

2
¢ Nrmaxe 9LC
max.= 8he

live load (p)
| TEEEE] [ EEEAE]

Py h

T

T

2N, n
| Le

Ls

_ pL
~Np = gp;

AN=ANd+ ~Np

= (1= + B




Axial force distribution

b |
ho ¢
': ]
LS : L¢
x ! ” [
AN
i o
(Wd + E) ch
8ho

X parabolic distribution

dead load (wd)

W,Lco TD sind = Walco
L'-_CDJ T, = WaLco

sin@

Tension in cables

under live load

3n
L 28
I

e

B \reaction (or deflection)
uniform load (p)

3 .
Ru =?7;B' % . pLCD =38i pLCD = 1-2pLCD

concentrated load (P)

Rc =P%Lcn = PZB Lco

Ru+Rc=1.2pLe + PZB Lco

Tension in cable for the design

Tsin® = WaLco +(1.2p+%) Leo

T={ WL + (1.2p+P2—B) Lo} /sin®

Cross sectional area (Ac)
Ac=T /oa

oa : allowable stress of cable

Bending moment
in the girder

Tension in anchor cable and
uplift force at end support

anchor cable

5 T~
T anchor h ¢

(p T

{ AN L1 |
Ls ! Lc

F

2 L 2
= a2

Tcosp=~N
T anchor = AN / COSSI?
Uplift force
Rup-iit= ANtan  (=Tanchor * Sin )

T~

T |

girder (EI)

R

k (spring)
x Beam on Elastic Foundation(BEF model)
28
|‘—‘| _ ik
B=+ ZE1
1
48 EI : flexural rigidity of girder




Calculation of k

E AC in’ - IR 1]
k = cha +sin"® / Led EcA.: axial rigidity

A.: cross sectional area of cable

Bending moment distribution by live load

— T
¢
\Ms
4 ! Ls =P, P
: 168> ~ 48
I
T
[ 1 pLs P
| 1 Mg=—=> =22 4 I
| 8 43 2 a8
- bLs . P
88 " 4B

P

[ ITTIEEEIEEAEENY:)

A=—"—
1648°

Pr P
M= +
168> 48
p : uniformly distributed load
P : concentrated load

Axial force and bending moment
in the tower

Axial force in the tower
q q

h;

I
N|f—
T
N‘iﬁ

[ [©
+

e}
T

I q = (Wd + p)
hr

| | ’ (+ axial force
qLc

from self-weight)

2

Rt
2qn

m:%g (8—6E+E’)

Mmax. =

= PpLS = hv
an="gn /v . &=

Bending moment

spring (anchor cable)

anchor cable
O\ hy

qn
hy

Prediction of bending stress change
due to web depth (box section) change




el D~

o . A o N

N Els
e . .
3303 IS t\ 3 am on elastic foundation
k=k (2)

Under uniformly distributed loading (p) ,
design bending moment (atA) ingiven.

Change of stress (o)

O _ M2 Wi_ [Tz , Wi

O " M1 W2 Ic1 W2

J @ +iAwi/ 6Ar) / (1+ iAwz / 6A¢)

=1.0 (<« notaffected by web depth )

In case of concentrated load (P)

_P_
48

0[BT
0 5V

Mc =

— P

M. = 1642
_4/k

= 4Elc

box girder
B L B
01 ) 02
hy h2

Ar : cross sectional area of upper and lower flanges
Aw : cross sectional area of webs (i : number of web plate)

Under assumption that k is constant ,
M changes due to change of web depth (h)

M2 - Ic2
M: Ic1

2 : 2 ;
Ie1 =%(Af+%) , T2 =%(Af+%) ,

Wi =Te1/(hi/2) , Wz2=1Is2/(h2/2)

Prediction of stress (on & ob)
depending on span length

on : normal stress due to axial force
ob : bending stress

Prediction of girder stress depending on span (L)
( multi-cable type , girder with box section )
.’ 1
,'I /pavement 17/ cable
I 1
box girder
Assumption of dead load ( Wo)
Wb = 1.4 %As + Wos = NN7:As (N =2.0~2.5)

% : weight per unit volume ( 77kN/m3)
As : cross-sectional area of girder resisting axial force

1.4 : increment coefficient (< I assumed)
to take into account of cross beam etc.
not resisting axial force

Wos : superimposed dead load (pavement, curb etc.)

Omax. = (155~194)Lc (kN/m?2)

Lc: span (m) (n=2.0~2.5)
O (N/mm?) n=2.5
2008 =—==1=———l/~— sMa90v (Oy/1.7=210"™™)
n=2.0
1017 71"~ sm400(Gy/1.7=140N/mm?)
100 7
50 7 _ _
JErmet) S O (bending stress ; estimated)

0 Span (L)

0 500 1,000

2
Nea = 9L = @ (e} G p . -
el [hoJ Le=gneLe (m=(L/ho)

hr B .
4\ Uho=%hr q Lc/hr 5 5.0

| lc Lc/ho 56.7

q=Wb+p=Wb(1+ w) p : live load
Wh(1+w) . fin Lc
8

Nmax. =

= Jgs—AS(um) nnle

_Noax. — n¥%
Omax. = y- o 778 (1+w) n nlc

Assumption is made.
nn=6.7, w=0.2

Predicted stress(o)-span(L<) relationship

O (N/mm?)
A I |
200 - -
. S
box sectio
150
hr ho
100 Lc
50 hr=Lc/5
o> ho=Lc/ 6.7
0 +Lc (p/Wb = 0.2)
(1] 500 1,000 live-to-dead load ratio

O, : normal stress due to axial force
Ob : bending stress




[12-3-3]
Exercises
— Estimation of stress resultants -

Multi-cable type 3-span continuous bridge
span = 290m, 590m

[1] Axial force and stress in the girder

[2] Tension in cables and required cable area
[3] Up-lift force

[4] Bending moment and stress in the girder
[5] Axial force in the tower

[6] Max. bending moment in the tower

Model — 1 (span = 290m)

G e

B 5=120 l."||]:'>g_ B0 5= 120 20| 8215=120 1515 @] 5= 120
13 I Le=290 B - -]

Model =2 (span = 590m)

{m}

118(=ht)

A

i 10]
|f. 18@15-270 b5 18@15-270

[Model - 1]
Dead load (W,)

21,200 (mm)
600/, 8500 3000 8500 600

g AP o |

320%: !
ald 1 HE i 3,000
twPe————— i 1) I u
3
te
t, = tp = t,, = 20mm (assumed)
(including longitudinal ribs)
Curb  2x0.6X0.32X24.5 kN/m* = 9.4 kN/m
Median Strip 2x0.71x0.32%x24.5 kN/m3 =  11.1 kN/m
Asphalt pavement  2x8.5%0.08x22.5 kN/m3 =  30.6 kN/m
Rail  4x 0.5 kN/m3 = 2.0 kN/m

Steel girder  1.4x1.088x77.5 kN/m* = 118.0 kN/m

[Model - 1]
Live load (B — live load)

8,500 8,500
5,750 2750 2,750 5,750 1

1
pl,pz/ 2P 2P,

1
p = (5.5m><10 kN/m? + §X11.5m><10 kN/mZ) x10m = 1,125 kI

deal with as concentrated load
(assumption)

1
P =5.5mx3.0 kN/m? +§x11.5mx3.0 kN/m? = 33.75 kN/m

uniformload P =33.75 kN/m

concentrated load p = 1,125 kN

Wa = 171.1 kN/m

* 1.4 : take into account steel volume not resisting axial
force such as cross beams ,diaphragms etc.

wx Ag = 2%21.2%0.02 + 4x3%0.02 = 1.088 m?

0.02x3?
Is = 2%21.2X0.02x1.52 + 4% =2.088 m*
[Model - 1]
{AA} Axial force and stress inthe girder
(Wd + p) 2
Npax. = ThoLC (at tower)
Le=290m , hy=34+24/2=46m
W, =1711 kN/m , p =33.75 kN/m
Nz, = TELH3379) o002 — 4615 kv
max. = 8x46 T
_ Ningx, 46,815

Omax. = 7 =088~ 43,028 kN/m? (= 43.0 N/mm?)

Axial force due to concentrated load (P)

No¥T —
D PN
L'(=Lc/2) 145
Np = P ——-= = 1125x - = 2,813 kN
N, 2813
=P 2 (= 2
owp =7 = Togg = 2585 kN/m? (=26 N/mm?)

Omax. = Omax. T onp = 45.6 N/mmz

{AA — 1} incase of Radial — type

B (171.1 + 33.75)
Omax. = 8x58
Omax. = 341+ 2.6 = 35.7 N/mm?

><2902/1.088 =34.1 N/mm?



[Model - 1]

{AA — 2} incaseof Harp — type

1711+ 33.75
Omax. = %xmoz/m% =53.5 N/mm?

Omax. = Omax. + Oyp = 53.5 4+ 2.6 = 56.1 N/mm?

Maximum stress at the tower point

N/mm?
Fan Radial Harp
On 45.6 35.7 56.1
[Model - 1]
Allowable stress of cable is assumed
04 = 640 N/mm? (aa = @/2.5)
T breaking
> S.746x10° x1.1 = 16,751 mm?
c 640 2 T 20 mm
T margin
¢7 (A = 38.47 mm?)
N re > 0751 4354 (436)
0. of wire 3847 - R
T check Catalog of cables
EA
K =—C5in20/Lep
cable
_ 10700168 % 0.3952/17.5 = 203.9 kN/m?
T 1469 ' DR "

LS 203.9 =0.0187 (% 0.0150)
p= 4E] ~ |4x2.0x108x2.088 ——— '

Set B =0.0187 , and repeat.

1,125x0.0187
T,sin6 = (1.2)(33.75 + 4) x17.5
= 8928 kN
T, = 2,260 kN
Tp + T, = 9,840 kN
9,840x103
c> 2 x1.1 = 16,913 mm? (0.0169 m*)
640
_ 2x108x0.0169

2 — 2
1269 % 0.395%/17.5 = 205.1 kN/m

[Model - 1]
{BB} Cable tension force

2Ry
©

|
=0.75Ls | =Lc/4 E

(1) Cable (@) (m)
58[ ! Leapie = 146.9
RN U s sinf = 0.395

[ dead load |

The

7.5] 10
Lep=17.5

Tysin@ = Wylep = 171.1x17.5 = 2,994.3 kN
T, = 7,580 kN

[live load (impact is not included) ]
first , assume S = 0.0150

. PB
Ty, sin@ = (1.2p + 7) Lep

1,125%0.015

= (1.2><33.75 + 2

)><17.5

= 856.4 kN
T, = 2,168 kN

T=T4+T,=9746 kN

[Mode!l - 1]

. 2051 =0.0187 d !l
B = |axzoxi09xz088 = L0187 converged i

(2) Cable (b)
Leapie = 88.0 (m)

7

4@3=12——
34 S
15| |4@15460

75
=Lc/4

N e
7.5]7.5
Leo-15

Tysin@ = 171.1x15 = 2,567 kN
Ty = 4,907 kN
assume [ = 0.023

sin@ = 0.523

1,125%0.023
T, sinf = (1.2><33.75 + 7) x15

2
= 801kN
T, = 1,533 kN
Ty + T, = 6,440 kN
6,440x103

— 2 4
c> 640 x1.1 = 11,069 mm* (0.0111 m*)

P 2x108x0.011
- 88

. 4559 =0.0230 (OK!)
b= 4x2.0x108x2.088  ——— N

% 0.5232/15 = 455.9 kN/m?



[Mode!l - 1]
(3) Cable (¢

Lcable =117.2 6@3=18

3
: 34 |52

6@15:9” 15
sinf = 0.444
105
=(.75Ls

) /
7.5]7.5
Lcep=15

Tysin@ = 171.1x15 = 2,567 kN
Ty = 5,782 kN
assume [ = 0.020

1,125x0.02
T,sin6 = (1.2x33.75 +=————) x15

777 kN
T, = 1,750 kN
Tp + T, = 7,532 kN
- 7,532x103

¢ 640

x1.1 = 12,946 mm? (0.0129 m*)

_ 2x108%0.013
117.2

= 291.6 =0.020 (OK!)
b= 4x2.0x108x2.088  ——— N

X 0.4442 /15 = 291.6 kN /m?

[Mode!l - 1]

{00}

N/mm?
50

120 372 456 342

L) 5,609 (kN)

@ @
©

Ac (mm?2) No. of @7 wire
@ 16,913 440
®) 11,069 286
© 12,946 338
@ 24,417 634

> per bridge

¢7 (A = 38.5mm?)

[Model - 1]

(4) Cable @ « Anchor cable

Wchz Lg 2 PLCZ
AN = 1-4(—= — N,
8hy (LC) * T (+N,)

8x58 290 gxsg T 2813

=4,125+6,117 + 2,813

_171.1)(2902{ (134)2} 33.75%2902

= 13,055 kN )

146.9 (m)
PN
Ta A A cos¢ = 0.919
135
Tycos¢p = AN

Ty = AN = 14,206 kN

A" cosp T

14,206x103

c> Txl.l = 24,417 mm? (0.0244 m*)

{€CC} UP - lift force

58
Ry = ANtan ¢ = 13,055% = = 5,609 kN

13,055
( Way,/end = =11,999 kN/m? = 12.0 N/mm? )
1.088
[Model - 1]
DD} Bending moment and stress in the girder
g g
qQ
© ® @
position * J5
@ =Lc/2 0.0187
() =Lc/4 0.0230
© =3Ls/4 0.0200
* from tower point
1) at @
_pm P
T 16p2 + 48
33.75xm 1,125

= 16x0.01872 T #x0.0187
= 18,941 + 15,040
=33,981kN-m

33,981
~ 72088

op x1.5 = 24.4 N/mm?

T web depth (=3m)/2

@) at ®
3375w . 1,125
" 16x0.02302 * 4x0.0230
=12,521 + 12,228

= 24,749 kN -m

24,749
~ 2.088

oy x1.5 =17,779 kN/m? = 17.8 N/mm?



[Model - 1]

3) at @
Ls P
m=Ps,
86 4B
_33.75x135 N 1,125
T 8x0.02 4x0.02
= 28,477 + 14,063
= 42,540 kN -m
42,540 1.5 = 30.6 N/mm?
=—F7X1lo = B
% = 3088 220 A/mm.

{op}

(N/mm?)

. N 1
!

L

306 24}

50

o, (N/mm?)

[Mode!l - 2]
(L = 590m)

{AA} Axial force and stress inthe girder

Wy +
Nmax, = %LCZ (at tower)

Le =590m , hy=64+54/2=91m
W, =1711 kN/m , p = 33.75 kN/m

N _ (711 +33.75) 590% = 97,951 kN
max. = 8x91 % -

o Mumax _ 97,951
max. = T4 T 1088

v = p &/
T

1,125 295 2,813 kN
= = X—=
P h ’ 118 ’

2,813
. 1.088

D>|_§2

Onp = = 2,585 kN/m? (= 2.6 N/mm?)

Omax. = Omax. T Onp = 92.6 N/mmz

=90,028 kN/m? (=90.0 N/mm?)

[Model - 1]
{EE} Axial forceinthe tower
Np =Wy +p) L +2P

= (171.1 4+ 33.75)x 290 4+ 2x1,125 = 61,657 kN

/61,657 kN
(+ self weight )

{FF} Max.bending moment in the tower

s—h"—24 =0.308
T h78
pL:? 33.75%290% 1

— / y =

- X— =321 kN
8hy 8x46 24 /m

qn

h
Rr =22 ¢ (8- 65+ )

_321x78

% 0.308% (8 — 6x0.308 + 0.308%)

= 5,958 kN

P R;* 59587
max- T oxR,  2x321

= 55,292 kN -m

[Mode!l - 2]

(L¢ =590m)

{BB} Cable tension force

285
d cos¢p = m = 0.924

=Lc/4

(1) Cable ®)

Leapre = 162.8
9@3=27
64 0

J sin@ = 0.559
15+ ] 9@15135
150 Lep =15

(m)

Tysin@ = WyLep = 171.1x15.0 = 2,567 kN
Ty = 4,591 kN
assume f = 0.02

1,125%0.02
T,sing = (1.2><33.75 + —) x15

= 777kN
T, = 1,390 kN

T, +T, = 5981 kN
5,981x103

5, 2280107

x1.1 = 10, 2 (0. 4
¢ 0 1.1 = 10,280 mm? (0.0103 m*)

_ 2x108%0.0103
162.8

= 2636 =0.0199 (OK!)
b= 4x2.0x108%2.088  ——— -

% 0.5592/15 = 263.6 kN/m?



[Mode!l - 2]
(L¢ = 590m)

(2) Cable @ « Anchor cable

WyLc? Ls\? Lc?
AN = 24¢ {1—4(—5)}+p £ (+N,)

8hy Lc 8hy
_ 171.1x5902 (285)2 33.75%5902 2813
~ 8x118 590 8x118 ’

= 4,202 + 12,445 + 2,813
= 19,460 kN )
Tycos¢p = AN

Ty = aN = 21,061 kN
A" cosgp T

21,061x103

— 2 4
c> 640 x1.1 = 36,199 mm* (0.0362 m*)

No. of ¢7 wire > 941

{€C} UP - lift force
Ry = AN tan ¢ = 19,460% o = 8,057 kN
u = an¢g =19, Jg5 = &

19,460

— 2 _ 2
1088 — 17,886 kN/m* = 17.9 N/mm?* )

( Wo,/end =

[Mode!l - 2]
(L =590m)

{DD} Bending moment and stress in the girder

®
_pm P
T 16p2 + 48
33.75x7 1,125

~ 16x0.01992 * 4x0.0199

= 16,725 + 14,133

= 30,858 kN - m
30,858 s )
95 =~ oag X15 = 22,168 kN/m? = 222 N/mm

[Mode!l - 2]
(L¢ = 590m)

{on}

N/mm?
100

180 740 926 695

L 805.7 (kN)
R

Ac (mm?) No. of ¢7 wire

10,208 268

®
@ 36,199 941

X per bridge

¢7 (A = 38.5mm?)

[Mode!l - 2]
(L = 590m)

{EE} Axial force inthe tower
Ny = Wy +p) Lc + 2P
= (171.1 + 33.75)x 590 + 2x1,125 = 123,112 kN

TS~123112kN

(+ self weight )

{FF} Max.bending moment in the tower

Y
¢= h 158
Lc* 33.75x590% 1
P X — =299 kN/m

= gp, /v =—gro1 %54
qrh
Rp =g £ (B-6f+¢&%)

_ 299x158

x 0.342% (8 — 6x0.342 + 0.342%)

= 12,093 kN

Rr? 12,0932
2R, 2X299

Mmax. =

= 244,550 kN - m



[12-4-1]

Design &
Erection of Cables

Wc (dead load)

[T T T ST T
H x H
y f
HY  Hey+dy) f:sag
X

X dx
L

Hy'= Wedx + H(y+dy)  ( )'=-2( )
0 = Wcdx + Hdy’

4
Hy” + We =0
| (atx=0,L—y=0)
y= %x (L-x)
Wcl2 H= Wcl2
- 8f

f="8H '

Design of cables

design of (rubber) buffer ———— >
(mitigating bending stress)

tower wall

design of cable
cross sectional area (Ac)
(ensuring safety against
cable broken and fatigue)

design of damper
(preventing cable vibration)

Wc (dead load)

Wel LTI Il

=_Weyo  (h Wc
Y ==X +(L+2HL)x

— Wdl?
f= 8H

Cable curve
Wedx

H

paraboliccurve‘ \I
|

f
weds=wecdx-y 1+(dy/dx)?

Hy"+wc=0

H

dy Hy"+we y/1+y2 = 0

H
catenary curve p
X

= -

rigid bar

girder and tower

[Ke + Ks(No)] {d} = {f}

socket

bearing plate bearing plate

shim -
\4 /\ —
cable —

B
fabrication length
socket A center of
/ tower
V\
A catenary curve
(assume parabolic)
s \ | - X

Eerr =

Eerr :

: Young's modulus of straight cable’
: weight per unit length by
: horizontal projection of cable
: tensile stress in cable

Eo
Y2L2E0
*12e8

elastic modulus
of cable with sag o ___l
(equivalent Young‘s modulus) &)

w0

00 (—




Eerr = 212 Eo vy
vz A+t o
120m3 162
Om= O'O;-O'u ,u= %

0o : max. stress
Ou : min. stress

Eo
Eerp=z —m ——————
L L2 (GaTAE (Y ASCE)
24 T2 T2
Ac : cross-sectional area of cable
Ti : min. tension

Tr : max. tension

by JHBS

1) Strength check ( against breaking )
Ob+ OL+i <Oa (0a=08/ (¥=2.5) )
Ob (=Tp/Ac) : stress due to dead load
OL+i (=TL+i/Ac) : stress due to live load (including impact)

To, T+ : tension in cables
Oe : breaking stress of cables

2) Fatigue strength check

Y (safety factor) is set to be
equal to or greater than 2.5,
safety against fatigue is ensured (by JHBS)

Safety check and
cross-sectional area (Ac)

Impact =52

.
k

' L (by JHBS)

LL—‘\J\ influence line

In many cases in Japan, i = 0.2 has been used

by Honshu-Shikoku Bridge Authority
1) Strength check (against breaking )
Ob+ OL+i <Oa (Oa= 08/ 2.5)

2) Strength check (against yielding)
Ob+ OL+i <Oa (Oa= Oc / 2.0)

O : yield stress

Q0.2 = 1.0700.7 (=0cy)

COo.7 (pt. A) has been used
as Ocy in Japan

Linear cumulative damage rule

AO

Ni

N
fatigue damage

[ Miner's law (or)
modified Miner's law ]

p=zfj)=10

aci
(el "]

Omax| léss than
Omax/20

AOve

ni : (cycle of 20i ) in obtained by
rainflow counting method

3) Stress check including secondary stress

Ob+ OL+i + Ob < Oa (0a= 08/ 2.0)
Ob : secondary (bending) stress

4) Fatigue strength check
Check stress ( 40%) is by rainflow method

Check method is Minor's law

ni
EN < 1.0

* A0 includes bending stress

Fatigue check by DIN1073 (1974)

Ora= 628 (Mra) Krz 0.681
=_ 2452
= e Kr < 0.681
K = Ob+0.50L,min
Ob+0.50L,max

Of = Op+0.50L,max

Ofa : allowable stress

Of : stress to be checked

Op : stress due to dead load

Ot,min. : min. stress due to live load
OLmax. : max. stress due to live load




Secondary stress (bending stress)

0 ] T (0] g 7o SR N em

Yo : without spring (KB)

Type of cable

Suppression of cable vibration by damper
&/(LL)

L

7! |
FH_'-_. x —
[HC
=1 cable (mass : m)

)
I oo

[Top priority]

Protecting water penetration

High fatigue strength

at anchor system (socket)

Locked coil rope

(Zinc coated) Z-shape wire

T
painting E Lcr < E parallel
OB, LCR < OB, parallel

Cable section [New PWS]

Cables (parallel wire)

[HiAm anchor cable]
PE pipe

[New PWS cable] [ <32

filament tape
both have cable anchor (socket) with high fatigue strength

Cable socket (cable anchor)




Physical property [HiAm anchor]

S— Comrmnema

Erection of cables

Strand and section (SEE cable)

ERNEEEAR

Reeled cable

Reeled cable (at factory)

Set to unreeler

(transport to site)

Reeled cable set to unreeler machine

Cable expansion







— ar g

~ Eafeen imctaiiatinn of rabie

N4 ‘E_ _~ pull rod + PC strand
P AN S N

40 NN
| T

Tension introduction by center hole jack

strand chuck A/

strand chuck B

Cable led to girder anchor

Cable tensioning

Tension introduction

pull up by jack

erection step and
stress resultants

Safety check at each erection stage
and (center-hole) jack volume (size]
for cable tensioning

l
inverse analysis (explain at next PPT)

using geometrical non-linear analysis

(since displacement under erection is large)

Wd
TTITE)
e e ——
Lol :
L L
_ M o War?
Cantilevered beam Q @ Wl
(2-block erection)
Wa : dead load Wd
L L
o 2Wdl2
Q ® 2WdlL
W
—
! L L ! {
Wadlt = wdL  Wdl?
2WdlL2 o
° / 2 2
WdL 2
2w & “\wa [+] ek
— completion — ,
{—3"‘;"'- @ Wal?
% 2
1) WadL
2
WgL °
WadL @
L

— first block —




[ Befors ciosure ]

ol el ol
SRS AAiwe  adas
T el 4
-~ M=G=0
‘;L_\._“\_D 45:%0
(*)
[ Before superimposed dead loading ]
W . A - o
T 4+ S+ a8,

mmonmpoed dead loadeg

+ - i G L S S R R 2
“\\:\ - //./
et el
) aSi(aN .aM . 40,8788,

-
> -

. T,

AR m A

= sNMQT.E)

\;\_)| \‘_::]_JI\'JI)

W

a1t
*_

(-
-

o =

(Sa+ asy

removal of block(fl

[ Bafors tansioning cable [a] ]

e A
bk
*

D e AS.(ANLAM,AQL AT, 8 8.)

SN
S e S ) DM‘ 453(aNs, AMs, 4G, 4T, 8 81)
[

)

S+LAS
design (computed) value

at each erection stage

3
compare

and check, and adjust ®
+

| measured value

(girder level and tension in cables)
[by vibration method and sometimes, load cell]

@ mainly, change (adjust) the
tension using shim plates
[insert {or) remove]

So [Ny Mo Qo T, &0 ) : values at completion
A5 (aN, AM. .20 4T, .4 8, ) : changed values
N :auial force , M : bending moment

Q :shear force , T :tension in cables

& : deflection

Tension in cable by vibration method

r<3 (use2nd mode)
sag is large C
r=¥%@E0%102-626¢)  (§210)

rz23 (use1stmode)
sag is small N
r= %(flL)z{o.857—1o.89 (%) } (3sg=17)

— 4w 2 C Cy?2
r=4@ni1-22¢-2(5)} (17s8)
=42 (100 <E)

fi, f2 : measured 1st and 2nd frequency

At each stage,
- configuration

(girder level and tower inclination)
- tension in cables

are measured and checked

c=./El9 EA : axial rigidity
wL* EI : flexural rigidity
_ /T w : cable unit weight
E=vEr-t g (= 9.8"/sect)

= ’ wL _(0.3IE+0.5)
~ V¥ 128EA(5)3cos°@  0.31§-0.5

d=f/Lo




Appendix - 1

Reference from
NEW-PWS cable brochure

Cable socket (cable anchor)

Cable section

Reeled cable (at factory)

(transport to site)

Reeled cable set to unreeler machine

crane

Lift up of cable sodket to tower anchorage

Cable expansion

Cable tensioning




Appendix - 2

Reference from
HiAm & DINA cable brochure

Set to unreeler

Reeled cable

Cable led to girder anchor

Cable anchor

1OM ANGHON CADLE]

Cable anchor

Physical property

e Comrmnema




Strand and section

Appendix - 3

Reference from
SEEE cable brochure

Cable structure and damping system Anchorage




[12-4-2]

Design of Girder

cable plane
B

'] i

I cable plane

y
| | [n

B(width) : from traffic (volume, flow)

H(height) : from maintainability, fabrication and
preventing in-plane global buckling

Priority
At the design (after basic design),
first step to do,

Check performance (safety) of
the girder and tower under wind load

Check performance under (huge) earthquake

in case of box-girder and multi-cable type

] \

/ |
— e N

e Le

H >Lc / (500~ 600) (< for 4-lane bridge)
Tno possibility of in-plane buckling

H(m) inspection viewpoint, 2.5m more [recommendation]
O
3.0 T o }actual bridges
20
1.0 possibility of in-plane global buckling
0 Lc(m)

500 1000




in case of open-section
ex. Alex Fraser bridge (span=485m)

. 36m (width) i
RC slab {
L3 1

N

H=2.0m cross beam )
. Steel girder

- Composite 2-I-girder -

see practice and judge!!

under lateral (wind) loading

! N PN wind load to cables

B J

wind load
Lc / B<40
has been recommended

Wind Load on Cables
Riary
wind load (pw)
Lca

%Pcha
1
TPWL& %wa:a

Lca = cable length

Example of frame model

p =%de2CdG

P (N /m?) : wind load per unit area
o (=1.23 k9/m’) : air density

Vd (m/sec) : design wind velocity

Cd: drag coefficient
G : gust factor
Pw(N/m)=PA,

An: projection area (m’/ m)

girder and tower
[Ke + Ka(No)] {d} = {f} rigid bar
20
Impact i=
P 50 + L
Faw L kel L
Fan i i Fis

the same definition of (L)
as continuous beam




Stress(o, T )

cable
N Mz My
O=— Y
A+ 1z Y+ i z X
z
= On + Obz + Oby

y

G : center of gravity
- (Qy
T= (g )+ Ts
= Tp + Ts (shear stress due to torsion)

= shear flow theory is applied for more exact evaluation

1 b
O'max. beff =‘/o- o-(s) ds
Omax. fb
s O, = 2 O(S)ds
Dert

a(s) !
I

by JHBS, b is defined by
ber = f (b, Leq.)

Leq : equivalent span length

shear lag

befr1  befr2 Q —~— Deff,1 bef1 beff2 | e ——
[ I : | i

Omax. Omax.
G z G z
Omax. y y
Beff3" G : center of gravity

(Iz and position of centroid G) are calculated
using effective width (ber) to evaluate (Omax)

Equivalent span length (Leq.)

berr = f (b, Lea.) by JHBS
am 2
3¥ITY  oading

‘l,l»' influence line

example of (7,,7s) distribution

G z Tb
(shear due to flexure
by shear flow theory)

Ts
(shear due to pure torsion)

[1] Against global buckling

Oc + Obz + Oby

Ocaz Obagz Obao <10

oc: axial compressive stress
ocaz : allowable column buckling stress
Obagz , Obao (= 0y/1.7): allowable bending stress
4 since no lateral torsional buckling
will produce
[2] Against local (plate) buckling
Oc+ Obz + Oby < Ocal
ocal : allowable plate buckling stress
(Oc,0bz, Oby) are calculated based on
linearized finite displacement analysis

Safety check of the girder

[1] Global buckling strength




( case— 2 ] E--method(inelastic eigenvalue analysis)
1) elastic eigenvalue analysis

|Ke (Ei, Ii) + kKe (Ni)| =0
Le,i=74/ Ei Li / (KNi )

[Ke]: elastic stiffness matrix

[Ke]: geometric matrix

Le,i : buckling length of elasticity of element (i)
Ei : young 's modulus of elasticity of element (i)
Ii : geometrical moment of inertia of element (i)

K : min. eigenvalue
Ni : compressive axial force of element (i)

calculation of (ocz)

sl |

f N
buckling mode compression

[ case—1)
Ocr=0y —> Ocaz =0y /1.7
4 no buckling is assumed

the following check has to be made
a) elastic geometrical non-linear analysis
(or) p) elasto-plastic & geometrical non-linear analysis
{ T Ultimate strength analysis}

2) modify Ei —— Esi

. ON,i 3
Bi=Ge, i B
oe,i : buckling stress of element (i)

on,i ¢ strength of element (i) ¢
% A/euler curve

.
‘KE(Ef,i,Ii)+KKG (Ni)|=0 g‘e’ \ Strength

curve
M.

Le,i=T4 Ef,iIi /(kNi) on =

3) until converged value of Le,i.

Load cases of Ultimate Strength Analysis

Live Load Cases
L1:Loading on the all spans L3: Loading on the left half of center span
L2:Loading on the center span  L4:loading on the left side span

RN e SRS AN S e e e SRS AN N
OO I O T IO T TIITIIIITITIIITT]
NN NN N R RN
NN )
O irTTm
OTITrrrrrTm

. . . A= 1 /Oy Le
calculation is continued TVE v
r=1/ I/A

4) Ocaz = Ocr(Le,i)/1.7 ( )
-~
o
Nt
S
]
whd
Q
o
©
(1]
-]
-

Deflection (m)
Load — deflection at the center of the girder

Analysis Case L1 [a(D+L)+Ps]

Girder yielding 1.79(D+L)+PS
Cable yielding 2.61(D+L)+PS
Tower yielding 2.63(D+L)+PS

Maximum Load 2.95(D+L)+PS

Analysis Case L2 [a(D+L)+Ps]

Girder yielding 2.03(D+L)+PS

Tower yielding 2.38(D+L)+PS

Cable yielding 2.68(D+L)+PS

Maximum Load 2.91(D+L)+PS




Load factor (a)

Deformation (m)
Load — Deflection at the center of the girder

Steel deck

[2] Local buckling strength

Steel deck plate

closed section

cross beam

deck pIate

\scallop/ <tmin. = 8Mmm

2
tmin. = 8mm .
{t= 6mm} } fillet welding

(T under good corrosive environment)

Deck plate thickness and rib arrangement

t=0.037b* mm (B-live load)
t = 0.035b* mm (A-live load)
(t 212 mm)

b b
\_/m\_/ ﬁ_

; |
B =620 ~660™ b =300~ 340™
b =300 ~ 340mm

*defined from viewpoint of no damage to pavement
[mostly no possibility of local buckling]

Design of lower flange

vertical stiffener web
e
cross beam longitudinal rib

J (
Nana ) ¥l =

Recent topics (due to fatigue problem)

2mm

Mostly, 1 thickness has been used so far.

Due to severe fatigue damage,

=>

16" thickness is recommended

calculation of (0Ocal)

Vertical Ly
stiffener -

Longitudinal
stiffener

T T T ~
) 3 3 ' stiffened plate




Global buckling Buckling
of stiffened plates of longitudinal ribs

Local buckling of plates

41

Ultimate strength of stiffened plate by JHBS

/T T

(kr=4n2)
Gcr/O'y
10 1

/R%
y
load carrying

05 capacity

05 10 Rr
O =10 RrR=0.5
g =1. <o0.
go=15-Re 0.5<Re=1.0 |0 = 0a/1.7
&=% 1.0<Rr

{Local elastic buckling stress} =
{Global elastic buckling stress}

o)
A— b — Ot

condition( 0¢’ = 0¢ )
(]

@is obtained.

+ ¥ (flexural rigidity
of longitudinal rib)

n : number of panel
n-1: number of longitudinal ribs

Design of longitudinal ribs ( I,)

— I =~
ne—fp =
12(1-v? 1

A bt h tr A = hrtr

T Y " — hr3tr
10n - =#:t L= 3
From condition,

ot (buckling stress of plate = o (buckling stress of stiffened plate)

—_— Iu;%tf‘ n,req.

een ribs) 1 12 ny
k=4n? k| \ck=grrg {3+ W)
Kmin.g - -
L \g=p 1tk
6 = & | : 1nn o
*~ bt

ao=Y1+n7,

a<do.| a>0o

1) a=ao (&) It;%'%
2
T = 4202000 - &L (t2t0) (Re<05)
=darn@ms)- G (t<w) (Re>05)

( to is the thickness when Rr=05 )

2) the others [(@>a0), (@Sao & Ii< PP 140 e )
Tors = L 1{20704n8)-1-1] (t2to) (Re<05)

1 2
=L amame)-1f-11  (t>t) (Re>05)

Buckling strength of stiffened plate
with small aspect ratio (@ =a/b)

— Plate (&) Column behavior —

b

— Plate behavior —

a
Plate i =L 7

Column ———__/plate

b

Design of cross beam ( I;)

Arc

_hc3te .
Lz bt 1407 req T Te="3" HAreehie?
=11 4a 3 IE‘C ==tc |h'c
~EsZea T
[Global]l
OEmin. = O
1+/(A+n7%) (A+7+/ar) 1 12 nn
@sao 2 1+nk 2 {0+ a )+ G
. a
Ttreq. = 1+nf‘a;3mq -5+ 4(1-fn6) - neglected
1+/A+n1) (1+71/a) 1+/A+ndy) _
a>a0 2 1+nk 227 9ms,  —N=0

Column approach

I
!

) | I
¥k l )

(
_ /
b

_ -
b b

_l_
o
o

be/2 be be be be be be/2

No = {[%‘;]c.n.AT + [g.—'ﬂp- be - t} —(3)

No : load carrying capacity of stiffened plate
(Oc)c:  load carrying capacity of column

n : number of rib

AT : cross-sectional area of column with T-section
(Oc)p: load carrying capacity of plate




Evaluation of strength

(Ocr)c
[%‘3] =1.0 (  A<0.2)
(] p— —
=1.109-0.545 (0.2<A <1.0)

=1.0/(0.773+ A2) (1.0<A )
x=1/Oy@ = /It
A=7yE [r} F=var
It : geometrical moment of inertia of T-section
a : distance of cross beams

%= 0.702Re* —1.640Re? + 0.654Re + 0.926

_ b /Ocr
Re=0.5263 4/

First, Ocr is assumed and repeat calculation
until converged ocr is obtained

(Oc)p : load carrying capacity of plate with width (be) ,
and simply supported at 4-side.

Strength of plate under oym only (Gymo)

0vmo [Y{= In/(bt3/11)}>r*]

a Oym
t
- Om  Gym
by b2 ~ ~p
| bridge axis
—

5[

plate| column | plate
’ behavior behavior

Oym
Gymo = Oym +0.9a'0'ym (a-1)

Oymo : strength under Oym only

Check of biaxial compression

; cable
[ R T < T
Oym b 0ym
Oym Oom bridge axis
b a
b _h___h_""--__
Oxm 2 Oym 2
(G + (G <10

T proposed by Kitada (1988)
Oxmo (= strength under Oxm only) is estimated by eq. (3)

Oyme _ x
o, - 1.0 ( A<0.2)
=1.109-0.545 A (0.2<A <1.0)
=1.0/(0.773+ A2) (1.0<A )
x=412b /Oy
A= EVE
Oym

o, = 0.542R3-1.249R2+0.412R+0.968 (0.3<R<1.3)
T proposed by Komatsu (1978)

—l g_1241—1/2 .E =
R=1 /12099 (B] (k=4.0)

Design of web

T \JT o, a
t | a (aspect ratio) = a/b’

VY = 02/01
n=rt/01

Eat =ittt e S
Oor = KO:
Tor = Kz« O:
o =)

K, Kz : buckling coefficient

Safety check against buckling

JO24372 < O

Vsyreq.

Vera = 1.25 + (0.3+0.15¥ )™
=1.55+0.15Y (n =0)

Ow /0Oy =1.0 R<0.5
Ow /0Oy =15-R 05=R<1.0

Ow /0Oy =0.5/R? 1.0=R

Oy : yield stress

[3] Global & local
coupled buckling strength

0a = 0%z X (0% / [oy/ 1.7 1)

Ocaz (in[1])—> ©a (allowable coupled buckling stress )
[reduced]

* Ocaz = allowable global buckling stress

xx Ocal : allowable local buckling stress




global-local coupled buckling

Design of anchor girder

[4] check of combined stresses (o,7)

Qe = 1/ 02+ 372 < 110a

e =4/ 0~ 050, +0,°+372 < 1.10a

Oe : equivalent stress

Ga=0y/ (T: 1.7)

Anchor girder

= T

e " 0¥ PRI anchor girder
\

| shim

Design of anchor girder

=T
= stiffeners

T/2 A/§, == web web

P e |

a

oE
- - -b
Lo T;\Z/ | H J_L

Pipe anchor

girder

/A ™

| e

cable socket

T .I
1
1 I
b-b
Arib Design of stiffeners
T/2
= i— < Oa
Aweb (ca=o0y/17)
A=4.Arib+Aweb
Design of flange & web

L




FE Analysis of the Cable Anchoring Section

Cable Tension
F=7,000kN

The Stress State of the Anchoring Section
The Case of adding a Reinforcing Members

The Stress State of the Anchoring Section
Primary Structure




[12-4-3]

Design of Tower

856m

No.1 in Europe

“A"” or “Inverted-Y"” shaped Tower

“H"” shaped tower

Single tower

Two towers

Height of tower

/@' : height from deck level
¢

i

[

Lc/H%5.0

e

[

(1.8Lc) /H%5.0




Basic dimension of tower

Hr

-| fabrication (welding)

'
BT! ‘TH_ _EEE\_ Eii*’=>’ cable angggge

& maintenance space

Determination of Br

Bt/2 i keep Bt/2 | "’(\?; -
workin
'ars space |«~ space
T N T
\

rear type socket

‘ | o ‘ welding
i

anchor girder type  anchor plate type

|
VA /o fabrication (welding)
cable |qder i & maintenance space
Ht,___ =BT
bridge axis ==
71|
anchor cable - flexible tower
N / (preferable)

l

in-plane flexural stiffness
depends on anchor cable,

not on tower stiffness.

flexible tower is preferable.

First step

Cable size* & anchor system (type and erection)
are determined.

(i)
*/N (%
|""ILL:D !

Cable (i) —tension (Ti) andarea (Aci)
Ti= (Wa+1.2p+P8) 1o /5in@
T
Aci= o= (x1.1)
margin
p : distributed loading
P : concentrated loading

selection of cable type

design of anchor system

<«— fabrication view point

maintenance view point

Assumption of ( Brand Hr)

1

Structural analysis using frame model

Shear lag is also taken into account

Effective width
beft. = befr. (width, Leq.)

Equivalent length (Leq.)
is obtained depending on

moment distribution pattern

[parabolic] or [straight]

Safety check
Stress (0, 7)
X
0=%+%X +%z
Z = Oc + Obz + Obx
y T=Tb+Ts

(similar to main girder)

Procedure of safety check
is similar to main girder

Design of rigid frame corner part

lN

M
4 .
«——g Stress concentration

—
—_—

S
M

In

Stress concentration




[1] Against global buckling

Oc Obz Oby
Ocaz + Obagz + Obao <10

Oc: axial compressive stress
Ocaz: allowable column buckling stress
Obagz ,Ghao (= 0y/1.7): allowable bending stress

4 since no lateral torsional buckling
will produce

[2] Against local (plate) buckling
OC + Obz + Oby < Ocal
ocal : allowable plate buckling stress

(0, Obz, Oby) are calculated based on
linearized finite displacement analysis

2) modify Ei ——> Eri

. ONyi .
Ef’l_io'e,i Ei

Oe,i : buckling stress of element (i)
on,i @ strength of element (i)

N \e/euler curve
|Ke (Et,i, Ii) + kKe (Ni)|=0 o \‘\S\tren%ﬂ:ve

Le,i=74 Es,ili /(kKNi)  ON =

3) until converged value of Le,i
calculation is continued =T VE "¢

4) Ocaz = Ocr(Le,i)/1.7

Er-method (inelastic eigenvalue analysis)

1) elastic eigenvalue analysis
|KE(Ei,Ii) + kK (Ni)| =0
Le,i=T4 Ei I; / (KN;)

[Ke]: elastic stiffness matrix

[Ke]: geometric matrix

Le,i : buckling length of elasticity of element (i)
Ei : young 's modulus of elasticity of element (i)
I : geometrical moment of inertia of element (i)
K : min. eigenvalue
Ni : compressive axial force of element (i)

Example of application of Er method
A(eigenvalue) = 9.61

Tower -out of plane-
i Le = 50m (upper part}, Le = 100m (lower part)

_'T
&
;_!_ — — -_— -_
360m
b -
Tower -in plane-
Upper part Lower part
ey
[A =852, Le=55m] [A=13.06, Le = 45m)

Effective buckling length (He) of single tower

R—

He=H
[Follower force]

Load cases of Ultimate Strength Analysis

Live Load Cases
L1:Loading on the all spans L3:Loading on the left half of center span
L2:Loading on the centerspan  L4:loading on the left side span

o O O e e O O s O o e O O O O Y

OO T T T G U T T LTI T T LT T I T we

OO T T T T T T T T T T T T T T T T T T T I T T T T T T T T T T) e

FENEEEEENEEE NN NN )
MTTTTTIT771T1
OTTTTTTITTITT11

Rigid frame (Rahmen) structures

l(;)l L He : effective buckling length
(He_uppervalue( k=5)

Lower value(5<k=10)

T 1
S J. J R

Ic : geometrical moment

He=1.5H =3.5H comerical m
={1.5-0.04(k-5)}H —{3 5-0.2(k-5)}H ofinertia of column
Is : geometrical moment
of inertia of beam
L L
—
H He=1.9H H He=2.2H
={1.9-0.14(k-5}H
H H

Analysis Case L1 [a(D+L)+Ps]

Girder yielding 1.79(D+L)+PS
Cable yielding 2.61(D+L)+PS
Tower yielding 2.63(D+L)+PS

Maximum Load 2.95(D+L)+PS




Load factor (a)

Deflection (m)
Load — deflection at the center of the girder

calculation of (0cal)

Vertical
stiffener
o Sbeam% =
<
Longitudinal 4
stiffener
a
=
{ T T T { R
— || L stiffened plate
a a

Design of stiffened plate

Explained at [Design of the girder]

[3] Global & local
coupled buckling strength

Oa = GazX (0% / [oy/ 1.7 1)

Ocaz (in[1])— 0©a (allowable coupled buckling stress )
[reduced]

% Ocaz : allowable global buckling stress

xx Ocal : allowable local buckling stress

Cable anchor in the tower

tower wall tower wall tower wall

A A A

anchor girder anchor plate saddle

Anchor plate

K e [ A
cablle ianchurplate W“/ socket (rear WIDE]

cable




[12-5-1]

. Crawler crane !“-W‘Er rane :
Erection of
Girder & Tower I R [N R (PP

[Tower erection]

Large block erection
by floating crane




[Girder erection]

[1] All bent (staging) erection

AN
/ . jack-up /
//’A\\\\\ //%\\\
AT N e -—//ﬂ SN

.—

RIS el

\
Bent (temporary pier)

[2] Girder erection
(large block by floating crane)




[3] Cantilevered erection

Side span (erection by temporary piers)
+ Center span (by cantilevered erection)

bent (temporary pier)




27

A

/

bent (temporary pier)

[4] Balanced cantilevered erection




35

34 36

Tower cranes

(not for erection of RC tower,
for erection of cables and
for lifting materials)

[5] Push-out erection method




Crawler crane and tower crane

erection
(DVD)




[12-5-2]

Wind-resistant Design

Wind tunnel test (section model test)

Dynamic response of structure due to wind

A(amplitude) Self-excited vibration
(flutter)

Limited vibration
(vortex-induced vibration) buffeting

V(wind velocity)

Wind tunnel test (full model test)

1) Mechanical means

a) Passive-type
- add damping
(untuned type)[«cable]
+ TMD(tuned type)

b) Active-type

Countermeasures
(Oscillation suppression method)

I \HS
| =) T
g

\

e




How to avoid resonance

(1) Avoid (wp /w=1.0)
wp: frequency of force

: h (damping
coefficient) = 0

w: frequency of structures
change [a/%j

(2) Add(increase) damping

<h=0.2

Wp /W

cable

girder

N / ! L

Tuned mass damper

Connecting cables by wires

/

connecting wire

cable

Bannaguro Bridge (1990)

(Hokkaido)

Hydraulic damper

weight

Pendulum-type TMD




wind

vibration constrained
by cables

v

wind

vortex-induced
vibration

wind

vortex-induced
vibration

Pendulum type TMD

Hi

TMD (Tuned Mass Damper)

2-DOF forced vibration with damping

o) S damper
Sb(b)
_]_ J_ | /‘1‘ l{tower wall
G) o) mass
t
o
~N
T T=To To
(tuned)
Effectiveness of TMD
1’-‘: 1.1 e
J0L00 & i oen bod 0 mY
E 0. A
0.0
B=d 0,140 8 =0.013
Ly veusd | H‘]U UL
{ ] il Gl sl

(harmonic)
Y o 1-DOF
; : 1]
/ =
lﬂ% my
=
L Cur
2) Aerodynamic means
e fairing
(girder)
K
s $ \
deflector baffle plate
flat plate arranged interm'rm;ntly /
deflector corner-cut
(tower)

rotational spring

s SATn ~

TMD

TLD

Tower — [Corner cut] & [Deflector]

w0

o
commer cut W g
R _f g B ¢
?F_.J=] 113000 ] ' 17777 B z
— | 4 ~3s
TEREIL EEE ! TR
~J i 7 L
1 1A [
ot L . 41 7 L #esn
i SRR R i
1 T [ 368
| I
g || Besnos500 ] _ R - o
B AL R R oo B
H H _ R e
Higashi Kobe Br. wind flow = \T LE %h@eaﬂs
L
whafisg
12500

Katsushika Harp Br.




Deflector was employed

Cables

Corner cut was employed

Rain vibration

water path (upper part)

water path (J&—f

Rain vibration of cables
[conditions of occurrence]

[rainy day (not heavy rain)]
4

[wind speed : from 10 to 15m/s]
+
[wind direction : nearly parallel
to bridge axis]

Cable with indented surface

Suppressing cable vibration

Indented surface cable was employed




Gear-type surface Cross section (Main girder)

Shin-minato Bridge
[Hybrid cable-stayed bridge] ”%“
il 1o
MH
Span:360m M wﬁ
[“ Ll
i 4 [Corner cut]
i’ !
1 O O
0 0

Wind tunnel test(2002)

5r 100G mar -
o it
4t = 80f :
Rain vibration of cables £ 3l ¢ 60l
2 L[5
(DVD) :—é 2'?@ 40r [ smmstemionainzimm=oar’
1} 201 |
R AN - AR T
EFRYAE (ms)
{pper partof cabies (ong cabies)] Vortex-induced vibration
| changed to of the girder

(DVD)




Opening related ceremony Opening of walkway

Flap (Countermeasure)




[12-5-3]

Span Limitation of
Self-anchored
Cable-stayed System

Dry-air Injection System
of Akashi Kaikyo Bridge







R
A
I ,.".




If the width is around 10 meters
(for 2-lane bridge),

and span exceeds 400 meters more,

Lateral stability has to be
carefully checked.

If large (L/B) ratio,
a suspension bridge is recommended.

world longest span (1,104m)

L/Hw = 320 (guess) L/Hw) & (L/B) of
L/B = 43 (guess) (Icfng s)pan( /8)

cable-stayed bridges




Buckling of the girder near tower (Tatara Br.)

TR .|. A = ] T | ||1T
| T o |
- olo 380 20)||20 g0 2q|||.20 ¥
B | i *|

501 -}—;—- Bridge aws diectio

(d) Tower

L a5 e
(a) M25-3.5

(b) M30-3.5

|
|
|
ol J
010 20 30 40 % W0 M0 W 010 0 30 40 %0 K 7080 N0

Wind weloity (m's] Wina vwiocay (s}
(8] bonzontal Sapiocement i) Rotatenal srls

o ° _—, . .
0 10 0 30 40 %0 0 T80 W 010020 0 40 80 & 0 0 W
ang veoaty (s Win vaiechty im's)

() Horzonts! dispiscamant {61 Fotetions! angle

Rl i

\Wind velociy (mv)
i) Vierscal dapincement

Completed Under construction
Model [30-mode] Selberg [20-mode] Selberg
M25-35 120 131 100 94
(144) (151)
M254.0 127 135 102 100
M30-3.5 120 131 102 9

Note: Cable vibration is taken into account for values in parentheses.
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[10-3-2] (1)

!

AL/2 [ «— rigid bar
E,|E2|Es E.
L
AijAz|As] <o ¢ |As
AL/2 f Je— rigid bar

PV

E; : Young's modulus of elasticity

A - Cross sectional area

E:A_L:i:i: oo zi
L EA EA; EnAy
E2A2 EnAn
P=J3SP, =P +—2P 4+ -+ + P,
i 1 ElAl 1 E1A1 1
ErA; + EyAy + -+ + E A,
= P,
E1A1 !
ElAl
P =—
1T SEA;
EyA;
P, =
27 SEA;
[10-3-2] (3)
¢ A1)
- 2 % 105 x 100 — 0571p
17 2%x105%100+3x10*x500
=571kN
3 x 10* x 500
P, = 0.429P

~ 2% 105 x 100 + 3 x 10* x 500

= 429kN

(P, + P, = 1,000kN = P)

[10-3-2] (2)

E1A,
pp=—1
EA; + ExA,

Ez4,
Pp=— 22
EAy + EyA,

( 01 ) Find P1 ,Pg

under conditions
E, =2 x10° N/mm?
Ay = 100 mm?
E, =3 x10* N/mm?
A, = 500 mm?

P =1,000 kN

[10-3-2] (4)

(Q2) Find 07,0, , 6

— 0y=100N/mm?

. T

¢ 0x=150N/mm?
Txy =25N/mm?




[10-3-2] (4)
( A2 )

150 + 100
2

1
010 = iE\/(150—100)2+4X252
=125+ 354 (N/mm?)

0, =160.4 N/mm?, o,=89.6 N/mm?

1 2t 1 2x25 \ 1
0y =>tan™t (—2 ) = ¢ _1(7)=—t el
o= gmn (dx—oy 2@ (150 -100) 2= @

tan(20,) =1 - 6, =225°

UCJ,L—B;X<0 (c056>0, Jy—ox<0)
01=160.4N/mm?
\ /‘teo/:zz.y
/ ‘\ 02=89.6N/mm?
[10-3-2] (6)
( A3 )

1) 0, =+/1502 + 3 x 302 = 158.7 N/mm? < 1.10,

(=231 N/mm?)

2) 0, =+/1802 — 180 x 120 + 1202 + 3 x 502 = 180.8 N /mm?>
<1llo,

3) 0, =+/1802 + 180 x 120 + 1202 + 3 x 502 = 275.5 N/mm?
> 1.10,

[10-3-2] (5)
Safety check ( by JHBS )
Yo <o,

0, =min. {ay,00 }/1.7

yield stress bu‘c\kling strength
<1,
Tq =Ty/1.7 (‘ry = O'y/\/g)
0,(20,21) < 1l1a,

0q = 0y/1.7

( @3 ) Calculate Oe ,and check safety
1) g, = 150 N/mm? ,7,, = 30 N/mm?
2) g, = 180 N/mm? 0, = 120 N/mm?, 1., = 50 N/mm?
3) oy = 180 N/mm? 0, = =120 N/mm? 1, = 50 N/mm?

0q = 210 N/mm? (SM490Y)

[10-3-3] (1)
b
-3 A=bt
Xa — X
G T bt
s X6 =17
X X
Iy = Iy + AS?
Iye = Iy — AS?
G : center of gravity (centroid)
Iy = Iy + AS?
h/2
Iyg = Iy — AS?
X X
o]
Xe——1h/2 G X

A : cross sectional area of section

G : center of gravity (centroid)



[10-3-3] (2)

(Q) Find A\l

(mm)

1 400

28

X—-—-f--—-=X | 2,000

=28

2 400

28

1,000 167

*— XEB“*"—"“X 2,000

Xo ——x
1,000 Gs

|_|_\L 42

600

Gs : center of gravity

[10-3-3] (4)

CA)

(cm)
1) A=2x40x 2.8+ 1.6 x 200 = 544 cm?

I, =2%X40x28x101.4% + 2 x

2.8% x40 + 2003 x 1.6

12 12
1146.3 11,066,667
= 2,303,159 + 146.3 + 1,066,667
= 3,369,826") cm*
(%) 146.3 is excluded
2) (cm)
A y Ay Ay*
1-UPL 400%28 112 1014 | 11,357 1’151’55732*
1-'WPL 2,000x16 | 320 - - 1,066,667
I-LPL 60042 252 | —102.1 | —25,729 2’626’2%*
3 684 —14,372| 4,845,198
—301,644**
14,372 =-21.0 Ixc = 4,543,554cm*
684 (= _210mm)
(mm) (*) is excluded to calculate (lyg )
1,210 (#+) 824 =21x21 % 684 = 301,644
EI
N
210 |Gs
790

[10-3-3] (3)
(mm)
3) ; 3,000 '
‘ ‘ 20
750 =12 Gs <12
P =X T 1500
750
20
1,500
2 . 4,000 .
RC_ | 1
B 1300
L——)‘ 28 T100
400
1,210 ||| Xt AL S Ty
U GV \Y
2o elld o). 4 112,000
Gs
790 e
16
l—l—,r 42
600
Esteel )
n=—2et —7
( ECO?ICTEfE
[10-3-3] (5)
3) (cm)
A y Ay Ay?
1-UPL 3,000%20 | 600 76 45,600 3»465»288*
2WPL 1500%12 | 360 - - 675,000
I-LPL 1500%20 | 300 —76 | —22,800 1’732’51‘88*
) 1,260 22,800 | 5,873,400
—412,789**
= 22,800 =181 Ixc = 5,460,611cm*
1,260 (=181mm)
() is excluded to calculate (Iy; )
(+%) 824 =18.1 x 18.1 x 1,260 = 412,789
4) (cm)
A y Ay Ay?
. o 37,957,071
1-DPL 4,000x300| 1,714.3*| 148.8** | 255,088 108 e
1-ST  Girder™** | 684 - - 4,543,554
) 2,398.3 255,088 | 42,629,196

=106.4 Ixc = 15,478,138cm’
=1,064mm)

255,088
~ 23983 (

% 1,714.3 = 400 x 30/7 (n=7)
#% 148.8 = 121.0 + 2.8 + 10 + 15
303 x 400
2 7
wxkk see (A) ,2)
sxxxx 024 = 106.4 X 106.4 X 2,398.3 = 27,151,058

**%x 128,571 =



[10-3-3] (6)
(mm)
1,000 1,210 |1,238
T 210
Gs
1,000 790 | 832
_\;[ 5
574
174 146 274
Gv
1,064
1,896 1,854
Gs
[10-3-4] (2)

5) 45;&

|E L I L

6) P—>
l
Ho 2o

e A
Ra L Lo Re
L
7) Mo
iy ?R
Ra L L, B
L T

8) Find (Ry,Ty,Tg)

rigid bar \J\ 1\ 1\ h
Ta Ts
T1 P
Ra | L L L |

( Q) Find Reactions (R4, Rg, Ha)

&~ D
t 0
Ra L Rs
f—————
2)
el
L0 A
A 0
L/2 L/2
3)
Viw =
RA'Tt ¢R
bt
Ly
» e
V. =
RAlP L/2 TRB
L/2

(10-3-4] (1)

[10-3-4] (3)
9) Find (My,R,)
lP
Fl k
M | A '
/l\
R L H L J L ‘
10) Find (T,,Tg)
60° 30°
Ta Ts
P
11) Find (Hy,R,,T)
P
% h
30°
HA—)§
YL L




[10-3-4] (4)
CAD

b z
@—_" ————— —
/1\

__l
1\

A
a@) Rpl=——xsL=—r

: 8
- ]

A
a@) Rl =—xX—=--Pyl?

[10-3-4] (6)
(A

&
NS

; NI
J’@
=
N
i

»
¥ >

S-
s‘.\n"____._._

[10-3-4] (5)
CAD
3) p
® L
Ra TRB
L L
—~ A
@ RpL = P(L+L,)
L
P Ry=P (1 + f)
L
PR POl Ri=P—Ry=P-P-PT
L
Ry = —Pf
4) ;|;PoL
=17
Kocounir om0 iy i il
@
i) T
Ra L Rg
a®) I;;L=P0LXL=POL2
Ry = P,L
Ry=PyL—Rp=0
[10-3-4] (D)
6) Py
h
S O
Ra L, L, Re
— T
Hy=—P
p
at(®) RgL =Ph b h
PL PT
Ry=P—
Ry=—-R,=—P-
7 ® Mo
Rf? L ¢ L. ¢RB




[10-3-4] (8)

8)
P
@ TA TB
NN
. o 95
L L
_Tuh _ Tgh
" EA " EA
- 2T, =Tpg
A~ A~ A
a@) TuL + Tz(2L) = P(3L)
T, + 2Tz = 3P
5T, =3P (Ty =2T,)
T—3P
A7 5
T—6P
-
4
RA=P—(TA+TB)=—§P
[10-3-4) (10)
11)
T P
73 o
® S5x1 h
HA—)‘ff— =
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™~ 1
3
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[10-3-4] (9)
9 L
lp
M, P( —%)I IP%
Rj\ L J
Ry=P(1- %)
M, = P(L—a)
10) Tacos30° Trsin30°
T

>

Tasin30° Tecos30°

V3 1
Tag +Ts5=P - (V3T,+Ts =2P)
1 V3
T =T - (T, =3Ty)
3Ty + Ty = 4T = 2P
. P
)
V3
Ty=—P
A2
[10-4-4] (1)
Ou
M M
Oy ==Yy =—
u I u Wu
. MM
X G X Op = IW—W{)
ye
( uZJ{’)
(Yo=Yu=Ye¢) o0
Ou M M
JuzTyu_W_u
Yu
G X MM
ve Op = Iy"_we
(o]
G : centroid



[10-4-4] (2)
/Rc /gm
Fou Yot o '\05u
\Y%
Vou
Os¢

M
Osy = Eysu

M
Osp = EYS{’

Ocu = I_YCu /Tl
v

M
Ocp = I—J/ce /n
v

n: Es/Ec (Young's modulus ratio)

[10-4-4] (4)

CA)

1)

2)

_ 1,238 1362

oy 5x 10°
Tu _ x -
o, 4,543,554 x 10* " 832 91.6

N/mm?

Oeu 10 x 10° 574,53 .,
P S — =
v 15478138 x 107 < 272’7 = 75 N/mm

Oou 10 x 10° 174 112

=t = X = N 2
v 15478138 X 107 < 1896 _ 1225 /™M

[10-4-4] (3)

(Q)
1)  See [10-3-3] (2),
when M=5 (MN - m), calculate

(0., 0

2) See [10-3-3] (4),
when M=10 (MN - m), calculate

(O, Oce) , (O, Ose)

[10-5-3] (1)

( Q1 ) Identity the members (*, ** ) are
subjected to tension or compression.

s 1 R
1) /( %) under uniform load
(%) o
2) (3ksk)
\
Viw < .y
(%)
3) f/*)
/
A A

(s%3k)



[10-5-3] (2)

( Q2 ) Find member force from
node and section methods.

P
(U  (U)
(D) h
0 (Ds) \ /(Ds)
4 (L) | (L) EL e
P8 A P8 x P8 B
S U R R A
L=521
diagonal member length Lp = h? + (1/2)?
sinf = h/Lp , cos@ = (1/2)/Lp
[10-5-3] (4)

Judge the following truss structures
stable , unstable.

D

2)

3)

o
o
+—I
=
=
N

7,

[10-5-3] (3)

( Q3 ) Stable and unstable ( plane problem )

[ Internal |

m : number of members
o
i/

e f’
/ﬂ" %'\" -
ST

m=3+2(j —3)=2j-3

j + number of nodes

mzZ2j—3 — stable
m=2j—3 - stable (determinate )
(n; =m+ 3 —2j) — degree of redundancy
m<2j—3 — unstable
[ External |
r=3 — stable
r=3 — stable (determinate )
(n,=r—13) — degree of redundancy
r<3 — unstable
r : number of reactions
[ Total system |
m+r=22j—-3+3=2j — stable
m+r=2j — stable (determinate )
(ny =m+r-—2j) — degree of redundancy
m+r<2j — unstable
[10-5-3] (5)
(A1)
D
(%) compression (—)
(xx) tension (+)
2)
(%) tension (+)
(x%) compression (—)
3)
(%) compression (—)
(%) compression (=)
[ note |

Have a deformed image under uniform load !!



[10-5-3] (6)
( A2 )

(Reactions)
= A~
Rp-L =P(2.51)
P
Rp =25P1/(L=521) =3

Ry=P-—==—
4 2 2
(Dy) [ put sin=s, cosf=c |
7 s+l =0
1S+ 5=

‘A >1, Dy =—

N o
PR

N
BT

N| o
© =

[10-5-3] (8)
( A3 )

1) m=9
j=6
r=3
[1] (m=9)=(2j=12)-3=9 — stable , determinate
[E] r=3 — stable,determinate

[T] (m+r=12)=2x6=12 — stable ,determinate

2)  m=22
j=12
r=4
[I] (m=22)>(2j=24)—3=21 - stable(n; =1)
[E] r=4>3 — stable (n, =1)
[T] (m+7r=26)> (2] =24) — stable (n; =2)
3) m=>5
j=5
=5

[I] m=5<(2j=10)-3=7 — unstable
[E] r=5>3
[T] (m+7=10)=(2j = 10)

[10-5-3] (D)

U, @
Ds
@ ]—) Ls

-4

A pTx 2
at(@) Ush+(20) =0 Up=-Py
¥ P 5 5 4
a(b) Lsh==-24 Ly =P
D s+P—0 p,=-L.1
5 2" 5T 2 s



[11-2-1,2] (1) [11-2-1,2] (2)

( Q1 ) Reaction (Ry is (4P/5). Using influence
line, conform it. i/\/({%\/\/\ S—sing
A ‘ A

1 2 ] T
P P S = h/Jh? + (A/2)?
o S— L=42}
RMs ans Tr, iP lP
L (a)
(b) [T v
. . (yo—nv
( Q2 ) Reaction (Rg) is (pol/8) and moment
(M) is (poL?/16). Using influence line,
conform them.
po L1113
& =
R 2 | 12 TR
L
( Q3 ) The lower deck type truss is subjected
to three types of loading. Find axial
force in the diagonal member (D;) using
influence |ine.
[11-2-1,2] 3) [11-2-1,2) 4)
¢ A1) { A3 )
Influence line of Ry is as follows.
P ST I Pty
] 1.1
| 5 | RA=Pn=§P fﬂ s -
L— e £
————_ 1
L5l 4L/5 | %% _"“-‘-—-___J S
A3 203
¢ A2 )
Influence line of Rp , Mc are as follows. (@) P P
V¥

po I3 o
77 PoL
Al 4_ 10 Rp = pody = - }%>a/

8
L/2 | L/2 11 11 P 1
b=r(35-3'5) =75
L
A =5x05xz=¢ (b)
ttr e e tes 33 W
Ay
po LTI L P e
G v
Mc=poA2=0_
16 11 4 A1 1 1 8 24 1
L2 | L2 L1 =21 4,=-1. 1.8 o 1
2 4S 3 6 S 2 25 3 3 S



[11-2-1,2] (5)

© e eeyrery

[note]

Q1)

[11-2-3,4] (1)

( Q1 ) The member is subjected to tension.

1,000 kN ( under dead load )
1,400 kN ( under live load )
200 kN ( under temperature change )

the cross-sectional area of the member is 180 cm®,

and the material grade is SM400
( oy=235 N/mn?Y, 0a=140 N/mn?’ ) .

Check the safety
(Q2)
11,200
600 10,000 600
- | e
Girder-1
2,600 . 6,000 L 2,600

- N

40m

(@) Find live load to Girder-1

(b) Find design bending moment and shear force at ()
(Girder-1)

[11-2-1,2] (6)

(Q3)
C))

wAa
D3 D3S 4+ 2wA = —+wil
wh 2
2
wi 1

Ra=2wh - D3 = 53

¢ AT )

LA L
3wl wi
D -
w s D3S +=5==— +wh
2
ZA T - Ds=0
(11-2-3,4] (2)
1,000 x 103 B
op = m =55.6 N/mm (dead load )
—1'4OOX1O3—778N 2 (live load )
o, = Tsoxi0z =" /mm ive loa
200 x 10° )
or = Tgox 10z = 111 N/mm? (temperature change )

op + 0, =133.4N/mm? < o, = 140 N/mm?
op + o, + o7 = 144.5 N/mm? < 140 x 1.15 = 161 N/mm?

(' in case of check using stress resultants )

Np = 1,000 kN
N, = 1,400 kN
Ny = 200 kN

Ny = 0,4 = 4,230 kN

N, = Nyt./1.7 = 2,488 kN
Np+ N, =2,400kN < N,

Np + Ny + Ny = 2,600 kN < N, x 1.15 = 2,861 kN



[11-2-3,4] )

¢ A2 )
5,500 2,500
r P1, P2 /’l/ %Pl , %Pz
4
2,000 6,000 ’—‘
1.333 |1.0 0417
L —
(@)

1] Distributed load (p:)

1-1 For bending moment (p;=10 kN/m?)

1.333 + 0.417
2
0.417

X 5.5m x 10kN/m? = 48.13 kN /m

10
X 2.5m X7kN/mZ = 2.61kN/m
T 5074 kN/m

1-2  For shear force (p;=12 kN/m?)

12
X 50.74 XE = 60.89 kN/m

2] Distributed load (p:=3.5 kN/n??) (L <80m)

3.5
Y 50.74 x 0 - 17.76 kN /m

[11-2-3,4] (5)
2-2 Design shear force by live load

10m

]

il
i 1

0.5

025 ——
20m _L 20m |

1
Q=5 %05 x20m x 17.76 kN /m x (1 +0.222)

0.5+ 0.25
2

=108.5+279.0

x 10m x 60.89 kN/m x (1 + 0.222)

= 387.5kN

[11-2-3,4] 4

(b)
1] impact

20 200222 (1= 40m)
50+L 90 = am

=

2] Influence line and loading
2-1 Design bending moment by live load

40m

| 75m |

\>t>< 20m

111 111 TP

1
M= 5 X 10m X 40m x 17.76 kN /m x (1 + 0.222)

10+ 75
2><( )m X 5m x 50.74 kN /m x (1 + 0.222)

=4,340.5 + 5,425.4
=9,7659kN - m

[11-3-1] (1)
Strength (o, ) of columns (by JHBS)

Ocr /Oy

1.0 Euler curve
/ Ocr/Oy = 10

05

02 10 15

0.2)

~
a
IIA

0'cr/o_y =10 (
Ucr/o'y =1.109—-0.5471, (0.2 < A, = 1.0)

1.0

— 1.0 < 2,
0.773 + A.* ( ¢ )

GCT/Gy =

O
A= X
Op

0a=Gcr/y (Y51-7)



[11-3-1] (2)

( Q1) Find elastic buckling stress (o) and
strength (o, ) of columns with a height
of 5,000 mm, and with support (boundary)
conditions { (a) :PIN-PIN , (b) :FIX-FIX }.

The material grade is SM400 (o ,=235 N/mm?).

I5)
S

113

[11-3-1] 4)
(b) FIX — FIX support (L, = 2,500 mm)
Pp = 4Pg(piy—pivy = 4 X 7.996 X 10° = 3.198 x 10° (N)

o = 40gpin-piv) = 4 X 166.6 = 666.4 (N /mm?)

re= 2= |22 _s0s

€7 |og 6664
since,(0.2< 1. <1.0)

/Gy =1.109 — 0.5472, = 0.784

ocr = 0.784 0,, = 184.3 (N/mm?)

0y = 0, /1.7 =108.4 (N/mm?)
JHBS

Ly =220 547
e/V = 2596 O™

L
0, = 140 — 0.82 (7" - 18) =109.9 (N/mm?)

[11-3-1] (3)

¢ A1)
A=2X14x1+2%x10x%x 1 =48 cm?
103 x 1
L, =2x14x1x55%2+2x =1,013.7 cm*
143 x 1

I, =2x10Xx1x65%+2x =1,3023cm* > I,

12

(a) PIN — PIN support (L, =5,000mm)
2 2

= " Goooye

=7.996 x 10° (N)

_ Py 7996 x 10°

% 2.0 x 10° x 1,013.7 x 10*

P —— 2
o = 28 X 102 166.6 (N/mm?)
/0 ,235
A= 2= |=——==1190(>10
<~ lop  J1666 ( )
1.0
0ol =g7ms a0t
. (4

Oer = 0.457 6, = 107.4 (N /mm?)
0, = 04 /1.7 = 63.2(N/mm?)

JHBS
,1x ,1,013.7
v= 5= 18 =4.596 (cm)
Le/y =X _ 1088
/¥ =4596~
1,200,000
Oq = 64.7 (N/mm?)

T 6,700 + (L,/7)?

(11-3-1] (5

X Check of plate strength

(mm)

120

b=100mm , t=10mm

4.0 'k (t)z 722,315 (t)z
=40X—m798 (=) = —
% 200-v®) \b ' b

=7223.2 (N/mm?)

R= 2= |23 _o180<0s5
T lop 72232 7 ’

—)Jcrzo'y




[11-3-2] (1)

Strength (o ) of beams (by JHBS)

Ocr /Oy
10 Euler curve
/ Ocr /Oy = 1_/’?&1)2
* L not exceed v2
05
02 T

Ucr/cy =10 ( p =02)
Oer/0y =1.0 = 0.412( 24, — 0.2) (02 < 2, = V2 )

In case that M varies between fix point,

check section (M)

M, M; (>M;)
(—F—)

M, ‘\_IMeq M M,

e =——

Meq. = max. {(0.6M; + 0.4M,) , (0.4M,)}

0, can be increased to {(M/ng) Oa}

[11-3-2] (3)

( Q3 ) The following beam is subjected to bending

(@

moment and laterally constrained at
supports. Find allowable stress based on
JHBS. The material grade is SM490Y.

(mm)
M ( E ‘) M
L =5,000
(b)
(mm) (mm)
400 300

.=I S ) ——%16
w16 2,500 j 9 1,500

e 36 =526

500 400

[11-3-2] (2)

( Q1) The simply supported beam with laterally
constrained at supports is subjected to
bending moment (M). Find elastic buckling
moment (Mg) and ultimate moment (M) .

The material grade is SM400 (o ,=235N/mm?).

300 (mm)
M M l‘_‘y)i E 0

( DI

X ———t——X 1,200

e

¥ | b

300

( Q2 ) Find increment coefficient of allowable
stress. The beam is given in (Q1) ,
and subjected to the following moment.
The satisfy check section is

%MC M

B ks

(11-3-2] (4)

( Q4 ) Obtain shear stress under shear (Q).

(mm)
300
T .,
16

e 10
1516 <t 1,500

16



[11-3-2] ()

(A1)
12 x116°
Iy = 2X30 X 2 x 59 + ~———— = 573810 cm*
g, 30x2 12x120 o
v 12 12

h\? 120\?
Ly=1, (E) =9,000 x (T) = 32,400,000 cm®

( I, : warping constant )
My =2 |ELG 1+”2><EIw
e=q [ELG 12G]
T 2
E(Z) EJLI,

2
) X 2% 105 x+/9 x 107 x 3.24 x 1013

=2.958x 10° N -mm

_( T
~\6,000

ince, w, = 2738 X107 _ g6 00
since, W, = 500 =9.

M, = 235X W, = 235 X 9.56 x 10° = 2.247 x 10° N - mm

[11-3-2] (7)
¢ A3 )
(@  L/b=5,000/400 = 12.5

Ac=40%x24=96cm?, A, =250X 1.6 =400 cm?

A, /A = 400/96 = 4.17 > 2

K= 3+AW =225
- 240 7

(=31) < %(:12.5) < 27

=3

L
Opg = 210 — 2.3(1{5— 7) =161.4 (N/mm?)

(b)  L/b=5,000/300 = 16.7
Ac=30%x1.6=48cm?, A, =150x%0.9 = 135cm?

Ay/Ac =135/48 =2.81 > 2
Ay
K= 3+E_2'10
7 L
Z(=333) < 2(=167) < 27
£(=333) < (=167)

L
Opq = 210 —2.3 ( K- 7) = 1454 (N/mm?)

[11-3-2] (6)

oMy 2.247x109_0872(>02)
b= Mg~ 2.958x10° :

6cr/0y =1.0 — 0.412( 1, —0.2) = 0.723
ocr = 0.723 0, = 169.9 N/mm?
My = 0¢p Wy = 169.9 X 9.56 X 10° = 1.624 (MN - m)
Opa = O¢r/1.7 =99.9 N /mm?
by JHBS
A, =30x2.0=060cm?, A, =120 X 1.2 = 144 cm?
Ay /A = 144/60 = 2.4 > 2.0
K =43+ A,/(A.) = 2.05

% = 45) < £ (=20) <30
L(=45) < 7 (=20)
L
Opa = 140 — 1.2 (1( P 9) =101.6 N/mm?

¢ A2 )
M,y = 0.6M; + 0.4M, = 0.8M
M,q = 0.4M; = 0.4M
.
M,y = 0.8M
M/Mgq =125

Opq can be increased 1.25 oy,

(11-3-2] (8)
( M)

1503 x 1

=2x30x1.6x75.8%
I =2%30x1.6x758°+ 1z

=832,831.4 (cm*) (- 8.328 x 10° mm*)

Q 300x1,516
=X —

_ -5
o= - 1.365 x 10750

Q 300x1516 16_ . .

=X — X — =4, X

277 2 10 Q

_Q [1516* 300x1516 16] .o o
Tmax. =7 8 2 |~ " Q

Q Q

=< =-—< __—6. x 1075
Tmean = == Tegox 10 0067 X 107°Q

when Q =200kN (2x10°N),
7, = 2.7 N/mm?, 1, = 8.7 N/mm?, Tpqr. = 15.6 N/mm?

Tiean = 13.3 N/mm?

]

L

7=27 3 (N/mm?)
- Trean =133

| Tpax= 15.6

-




[11-3-3] (1) [11-3-3] (2)

Strength of plate (by JHBS) ( Q1 ) Obtain the ultimate strength(o,) of the
following plates. The material grade is
Oer 0 Unstiffened plate SM400 (o =235 N/mm” ).

Euler curve
Ot = 1/R (R @ (mm)

] / S.S.
Y3 S S S_— = =
Stiffened plate | % s oSS [ 1400
P S—f—e
05 07 10 75> RerRe a 2
k=kmin. = 4.0
S.S. = Simpl, rt
Unstiffened plate Hmplestppo
ocr/0y, =10 ( R = 0.7)
5 (b)
O¢r/0y =0.5/R (0.7 <R )
SS.
Stiffened plate :Igoo
ocr/0y =10 ( Rr = 0.5) FREE
O¢r/0y =15 —Rg (05 < Rz = 1.0) #
20
/0y, =0.5/Rg* 1.0 < R
Oer/ 0y =0.5/Rn (10 < Ry ) k= kmin. = 0.426
[11-3-3] (3) [11-3-3] (4)
(Q2) Find the allowable stress (o.=0./1.7) ( Q4 ) Design the following lower flange.
of the following column with height of TT
10m and (FIX-FIX) support. The material ‘\— —————— 5 /
grade is SM490Y (O'y =355 N/mmz) \;7--_— cross beam
\ A
y (mm) ¥ \
Ly PN
A 15@ 400 = 6,000
X x | 400 10m 6,000 a=2,000
105« B _ 2000 _ .
2 “=%000
LT{)YJ 0 (a) Find the allowable stress of the lower flange.
(b) Design the longitudinal rib.
( Q3 ) Check the safety of the following (€)  Design the cross beam.
stiffened plate. (05 ) Find the elastic shear buckling stress (T¢)
The material grade is SM400 (o ,=235N/mm?) ;:‘ (o)
(mm)
1-PL 200 x 22
= = t=16 \If SS. SS. T h=2,000
.:*,Fm At = :
4@600=2,400 1500 a==075
b =2,400
n?E t\?
pitch of cross beam (a) = 2,880mm e = kfm(ﬁ)
a 2,880 k; = 5.34 + 4.00 (h/a)? a/h > 1.0
= =12

“ =P 2400 = 4.00 + 534 (h/a)? a/h £1.0



[11-3-3] (®)

( Q6 ) Find the ultimate strength(z,.) of the
(@3) plate using Basler's formula.
The material grade is SM400

(z, :%:135 N /mn?)

Ter

Tult._Tﬂ_'_\/g_( _E)

&0 Ve
(post buckling strength )

Ter = Tp ( 7; = 087y)

Ter = | 087y, 15 (0.8 T, < Tg )

[11-3-3] (1)
(A2)

1) Column strength
A=2x30%X24+2x40x%x1=224cm? (22,400 mm?)

3
1
I, =2x30x24x21.2%+2x = 75,386 cm*
, 30° x 2.4 Y
Iy =2x%x40x1.0x14.5 +2XT=27,620C‘m < I
m? m?
_ _ 5 8 _
Pr = ?Ely = W X 2 X 10° x 2.762 x 108 = 21,785,772(N)

Py 21785772
% =4 T T 22,400

ay 355 _
\/7 9726 =0.604(02<2:;<1.0)

Oer/ 0y = 1.109 — 0.547 A¢ =0.779 = 0, (C) = 0.779 g,

=972.6 (N/mm?)

2) Plate (400 x 10) strength
—ax—"E x(t)z =722 315(t)2
EEna—wvy b)) T

—722315(10)2—4514N 2
T 400/ ~ T /mm

355

——— = 0.887 > 0.7
451.4
0cr/0y = 0.5/R? =0.636 — 0, (P) = 0.636 0y,

3) Coupled strength
O¢r = 0¢r (C) X 0 (P) /0y, = 0.495 g, = 175.9 N /mm?

Oq = 0,-/1.7 = 103.5 N/mm?

[11-3-3] (6)
()
m’E t
% = kv (E)
E =2x105(N/mm?)
v (Poisson's ratio) = 0.3

(@ b=400, t=12 , k=40

2

t 2
op = 722 315( ) = 650 N/mm?

9y _ 235
=0.60 <0.70
op 650

0cr/0y =1.0 = 0o = 0, = 235 N/mm?
0, = 0. /1.7 =140 N/mm?
(b) b=300, t=20 , k=0426

2
op =76 927( ) =341 N/mm?

235 _ =0.83>0.70
341

6./0, =0.5/R? =0.726
o = 0.726 0, = 170.6 N/mm?
0, = 0. /1.7 =100.4 N/mm?
Based on JHBS
b (= 400)
—

(@) t(=12) > =103 - o, = 140 N/mm?

w) 2E390 _ee o< L= 234
16 1287239

- 0, = 23,000(t/b)* = 102.2 N /mm?

(11-3-3] (8)

¢ A3 )
B o, m?E t\?
o = (kp = 4n%) 5 =77y (E)
b=2400mm , t=24mm , n=4

2
_11557o4o<) = 1,155.7 (N/mm?)

-5 o

Oer/0y = 1.0 > o =0, =235 (N/mm?)
0q = 0,-/1.7 = 140 (N/mm?)

—045 <0.5

X Check of longitudinal rib (1 — PL 200 x 22)

(cm)
20% x 2.2

l{:?=5,866.7cm4
Ap=20X%2.2 =44 cm? > bt —240X2'4—144 2
e= AT T T Tloxa e
s=e 0764
‘T bt 240%x24

I 5,866.7

=195

Ve = pe3/11 T (240 x 2.49)/11

a=4T+nxy,=V1+4x195 =298
(a(=12) < ap)
2,400

t0=28x4=21.4mm




[11-3-3]1 (9)
Vereg. = 4a’n (t?o)z (1 +néy) - w

2
3 ) 21.4
=4x12°%x4x >4 X (144 x0.0764)

(1.22 + 1)?

=224
4

bt?
I,(= 5,866.7 cm*) < 17 Veres. = 6,765.2 cm*

Out!!
X Change size of longitudinal rib to (220 x 22)

223 %22
= T = 7,8085 cm4

Ap=22x22=484cm? > bt =14.4 cm?
£ = o= . 10n_ .

A, 484
bt~ 240 x 2.4

8 = =0.084

L 7,808.5
T bt3/11 (240 x 2.43)/11

Ye =259

a=31+nxy,=V1+4%x259=320 > a(=12)

) 21.4\%
Yereg. =4 x 1.22 x 4 % (7) x (14 4 x 0.084)

(1.22 + 1)2
T =23.0
bt3
I,(= 7,808.5 cm*) > 7 Veres. = 6,937 cm*
Ok!!
[11-3-3] (11)
{ M)
m2E t\2
(@ og =4n* 121-v?) (E)

(n=15, b=6,000mm , t=16mm)
mE x( 16 )2—11557N 2
120 =) < \gooo) = L1557 N/mm

Ry= | 2= |35 554505
P oy 11557 :

0cy/0y =15—R, =0.946 — 0., = 0.946 g, = 335.8 N/mm?
Og = 0¢r/1.7 = 197.5 N/mm?

=4x15% x

by JHBS
b (— 000 _g7 )<t(—16 )
a6fm\ a6x1x15 MM = Lomm
b (__ 6000 _ ..
<22fn(_22x1><15_ 'mm>

=210 46<b 22)—210 46( 6,000 )
%a = © \tfn = ©\Tex1x15

=196.2 N/mm?

(b) Longitudinal rib
Assume plate 190 x 20 (SM490Y)

A, 38

Ae=l9><2.0=380m2, IS[:E:m

= 0.0396
_ 19% x 2.0

= 3 = 4573 cm*

[11-3-3] (10)
X Check of ribs. (plate 220 x 22 : SM400)

b (=220)
t(=22mm) > T—U.me

- g, = 140 N/mm? < rib

Cross beam

200 (mm)

30| 12JL Plate 220 < 20 350

Y 220

353 x 1.2 ) .
¢ = f-l- 20 X 1.2 X 35.6* = 47,567 cm
I 2b—t3>< 1+nyl,reg.

T 4q3
240x2.4% 1+4x23
X

11 4x1.23

= 4,058.2 cm*

I, (= 47,567 cm*) =

[11-3-3] (12)
L 4,573
T bt3/11° (600 x 1.63)/11

Ye =20.5

a=4T+nxy,=V1+15x205=419 > a(=0.33)

Since R, >0.5

a? +1)?%
Yereq. = 4a’n (1 + nsé’) - %
0.33% + 1)?
=4x0.332x15x (1 + 15 x 0.0396) —% =103
bt 600 x 1.6
A, (= 2y > = " —64cm?
(=38em?) = 00 = Tox1s - o4em
bt3 600 x 1.6%

I,(= 4,573 cm*) = 17 Verea = x 10.3 = 2,301 cm*

11

Since a little bit conservative ,we select more smaller
plate for ribs. Itis 160 x 16 (SM490Y ).

Ap =16 X 1.6 X 25.6 cm? 8 = 25.6 =0.027
e= : LMt T ox 1.6
163 x 1.6 .
,=————=2185cm
3
I, 2,185

Ve 9.8

Tht3 /11 (600 x 1.6%)/11

a=4T+nxy,=V1+15x98=349 > a(=033)

(a? +1)?
Yereq. = 4a2n(1 + Tlé‘g) -

(0332 + 1)?

=4x0.332%x15x (1 + 15 x 0.027) — 5

9.1



[11-3-3] (13)

Ao 256omty > DL _600X16
A= E0em) > o0 T 1ox 15 oM

bt3 600 x 1.63
I,(= 2,185 cm*) > I Verea =1 % 9.1 = 2,033 cm*

Plate 160 x 16 is employed for longitudinal ribs.
(c¢) Cross beam

200
¥

l6=== =

400|  >Ake9 160% 16

40° x 0.9
I =20 X 1.6 X 4082 + ———— = 72,468 cm*

I, (= 72,468 cm*)

bt® 14 nV¥preq. _ 600X 16> 14+15x9.1

—X X
11 4a3 11 4x0.333
= 70,533 cm*
200
AN F_J.‘—*lG
Plate 160 16 9 _[400
16— M'
L 15 @400 = 6,000
6,000
[11-4-1] (1)

( Q1 ) Design the friction—type bolt (M22, FioT,
2-plane friction) connection of the
following I-section. The material grade
is SM490Y (o ,=210 N/mm?)

The shear force is 295 kN.

360 (mm) (N/mm?)
‘. 1315
128.6
4
1,800
F
. y i ® 1558

s | ’ 1594

( Q2 ) Find the net cross—sectional area at the
Sections (A) and (B).

75 75 65 65

85 140 40
390

40

[11-3-3] (14)
(-

a/h <1.0 - k; =4.00+ 534 (h/a)?> =7.0

=k i (t)z = 1,264,051 (t)2 =80.9 (N/mm?)
Aoy \n) T 5) =809 (N/mm?”)
¢ A6 )
1y £0.87, = 108 N/mm?* - 17, =1z = 80.9 N/mm?
80.9
Twe _ 809 ‘/5_(1_135)

=—+——==2 =(.599 4+ 0.278 = 0.877
Ty 135 2 \1+0.752

Tye = 0.877 7, = 118.4 N /mm?

(11-4-1] (2)
A1)

(1) Connection of the upper flange.
oy = —1315 < 0.75 x 210 = 157.5 N /mm?

— Designusing 75% of full strength.

* Number of bolts and arrangements.

~ 157.5x360x 18

96,000 =10.6 — 12 bolts

90 2@75*  40%*
e
=150 =N

Ll

11}
JiL
HU.
i
1

360

2
QF‘T\
« Splice plate (SM490Y )
(mm)
1—splpl 360 x 9 = 3240
2—spl pl 155 x 10 = 3,100
A spl = 6,340
360 X 18

Ospr = 157.5 X — 0= = 161.0 < 210 (N/mm?)

x 75 < pitch(=75) < 150
% min.edge (=32) < 40
wkx 75 < gauge (=75) < 24+ (=24%x9=216)



[11-4-1] (3)
(2) Connection of the lower flange.
o, =159.4 > 0.75% 210 = 157.5 N/mm?

— Design using the design stress.

* Number of bolt and arrangement.

_ 159.4 x 480 X 22

M= 96,000 =17.5 - 18 bolts

90 _4@70=280 40

3@45
=135

.-
-
.-

LLT7

130,
480

135

..
N\t
3@45

T
e

Voo

=
40
=

* Splice plate (SM490Y )
Check of plate to be connected.

— A section —
A, = (480 — 2 x 25) x 22 = 9,460 mm?

_1594x480x22_1779 <210(N 2)
oL Pt o060 fmm
— B section —

A, = (480 — 4 x 25) x 22 = 8,360 mm?

480 X 22 /16\"
“(

=1594 X ——X|-—=] =180.0 <210(N 2
oy 59.4 x 8360 18) 80.0 0(N/mm?*)

* 2 — bolt force already transferred to splice plate.

[11-4-1] (5)
a irstrow (p: Working force
(@) F (p: Working force)
157.5 +133.5
e %X (95 + 55) X 9 = 196,425 (N)
196,425 21 3 bolt
= = N
™ =96000 oS
(b) Third row
117.2 + 101.6
s = X (47.5 4+ 50.0) X 9 = 95,999 (N)
95,999 1.0 2 bolt
B =1. -
" = 96,000 o

Total number of bolt is 38.

Safety under shear.

295 x 103
p="""""

2 g = 7763(N) < Py =96000(N)

Safety under combined moment and shear.

196,425
Py = 3

P= /PPIZ + P2 =65934(N) < P, =96,000(N)

= 65,475 (N)

[11-4-1] (4)

159
Areq. =480 X 22 X — =

=8,016 (mm?)

1—spl pl (480 —4 x25) x 14 = 5320
2—spl pl (215—2 x25) x 14 = 4,620
Aspl = 9,940 (mm?) > Ayeq

480 x 22 5
Osp, = 159.4 X 9940 =169.3 <210 (N/mm?)
702
w=d-p*/ig :25__4><45:_2'22 <0

(3)  Connection of the web.

* Number of bolt and arrangement.

2075=150 ¢, 2@75=150
asf et sfien

s
&t
12@100-1200
1280
1800

(11-4-1] (6)

« Splice plate (SM490Y )
4—splpl 190 x 9 = 1,710+
2—spl pl 1,280 x 9 = 11,520 «

* Cross — sectional area of one plate.

(a) Moment of inertia of splice plate

19.0° x 0.9
Ig=2x(171x 66.4% + ————
12
19.03 x 0.9
+17.1 X 83.6% X ————
12
128.0° x 0.9
+2x(115.2 X 8.6 + —————
12
180°% x 0.9
=723,479 (cm*) > Iy = —; = 437,400 (em*)

(b) Moment acting on splice plate
Is
Ms = o, X —
s LX3,

1,800° X 9/12 + 1,800 X 9 x 862
986

=157.5x%

(c) Fiber stress in splice plate

7.18 x 108

OspL = 735 % 100 * 0oL

= 92.4 N/mm? < 0,4 =210 (N/mm?)



(11-4-1]1 (D) [11-4-2] (1)

¢ A2 ) ( Q1) Find the fillet welding size (S)

(a) At section(@) 300 )

Ay =39 x 2.8 = 109.2 cm? R

d? 6.52 Q/
w =d—-—=25-——-7—-=0.015 > 0 2,000
4 4x42
o X2 @\ “
An=Ag—2><(2.5+2w)x2.8 — T
— | k
=1092-2 x (25+2x%0.015) x 2.8 S

=95 cm?
( Q2 ) Find the required size (S) of the fillet
(b) At section(®) weld. The material grade is SM400.

Ap=A44—2 x 25 X% 28 150mm

=109.2 — 14 = 95.2 cm?
100kN <— —> 100kN

( Q3 ) Check the safety.

oo ™
6
500 kN <— —= 500 kN
[11-4-2) (2) [11-4-2] (3)
( Q4 ) A groove welding part is subjected to ¢ ALY
tension (P) and shear force (Q). VZtmar S S < toin
The material grade is SM400
(o,=140N/mm?, 7 ,=80N/mm?). (@ V2x26 =72mm £ S < tyy, (= 10mm)
Check the safety. - § =8mm
® V2x36 =85mm £ S < tyy, (=10mm)
(1) P =1,000kN S —9mm
(2) Q=650kN CA2)
(3) P=1000kN & Q =650kN
SIi Ma(throat)
groove welding (nm) L‘TJ
p<—Q? L %p S oo 2% 150 X = x 80 = 100 x 10°
16 V2 (=m)
t =16mm S >589mm > S =6mm
¢ A3 )
Ii W ? = 4.24mm
(S=6mm)
——500X103 =983 N/mm? > _80 N/mm?
= 2caaaxeoo oS N/mm > BYN/mm

Not safe !!



(11-4-2] 4)
( AMd )

(1) P =1,000kN

_ 1,000 x 102

- 2 2
500 X 16 =104.2 N/mm* < 140 N/mm
(2) Q=650kN

650 x 1073

= = 2 2
500 X 16 67.7 N/mm* < 80 N/mm

(3) P=1000kN & Q=650kN

(104.2)2+(67.7)2 — 127 > 12
140 g ) T~

Not safe

[11-4-3] (2)

Daily, 300 trucks cross the bridge.
Find the fatigue life using Miner's law.

D=3 -10
=xii=n

i

AC N/mm?)

[11-4-3] (1)

( Q1) The following S-N curve is obtained.

s 1
\ilogm S=-3 logio N + 4.05

N
(1) Find S, when N =2x10°

(2) Find S, when N = 10°

( Q2 ) The following bridge is subjected to truck
crossing. The One-way is with sand and the
return way is without sand.

(with sand) (without sand)
e Eoy

(S
W

The section(A has the detail with a fatigue
grade of (F), and is subjected to

stress due to a dead load. = 40 N/mm?
stress due to the truck (with sand). =90 N/mm?

stress due to the truck (without sand). = 70 N/mm?

[11-4-3] (3)
¢ ALY
(1) S=89.1N/mm?
(2) S=112.2 N/mm?

( Substitute N value into eq.)

A2 )

Ac? N =2 x 10° x 653

Aoy =90 N/mm?

65\°
Ny =2 x 106 (%) = 753,429

o, = 70 N/mm?

65\°
N, =2 x 106 (%) =1,601,312

n n
— +— =n(1,312 % 107 + 0.6245 x 10~%)
Ny N,

=1.9465x10° - n=1

n = 514,139
514,139
Jlel i year ~ year
300 % 365 4.695 = 47
T T T

Cycle day fatigue life



[11-5-11 (1)
( Q1) Find min. RC thickness (ki =1.25, k, =1.00)

8700 (mm)
600 7,500 1600
gl 1 n
100
13501 3000 | 3000 [1350
600250
=
T
| SE
1,350

( Q2 ) Find the design moment (The main direction
and the distributing reinforcement)
My, Mz, M; and My per unit length due to a
live load.

lB c b (oom)

L=425 L][ T

L=2,500 | L=2,500

[11-5-1] (3)

(1) At. A (L=0425m)
main. M;,; =0
dist. M. =(015L+0.13) P =0.194P

(2) At. B (L=0425m)

) PL
main. ML+i = m =0.530 P

dist. My =0

(3) At.C (L=25m)
main.  My,; =0.8(0.12L+0.07) P = 0.296 P
dist.  My; =08(0.10L+0.04) P =0.232P

(4) At.D (L=25m)
main. My ,;=—-M,;(atC)=-0.296 P
dist. My =0

(MLH- . kN-m/m , P =100kN )

[note ]

Based on JBHS, increase the coefficient
is specified as follows, when slab span
is perpendicular to the vehicle travel
direction.

[11-5-1] (2
¢ A1)
(1) Cantilevered slab

150
L =1,350—-600— 250 — -5 = 425 mm (= 0.425m)

dy =80L + 200 = 2340 mm — 234mm

7
rounding
d = kik,dy = 1.25x1.00 X 234 = 292.5mm —_290 mm
T
rounding

(2)  Continuous slab

dy =30L+ 110 =30x 3.0+ 110 = 200.0 mm - 200 mm

T
rounding
d = kik,dy =1.25x1.00 X 200 = 250.0 mm —_250 mm
T
rounding
250+100 > 290
I'_\\ 1,250mm
¥
= T
100mm
(haunch)

slab thickness 250mm is selected

(11-5-1] (4)

1A

slab span L 2.5 L > 25

coef ficient 1.0 1.0+ (L — 2.5)/12

In this question (Q2), since L = 2.5m

increment coefficient in 1.0




[11-5-2] (1)

( Q1) Find the effective width of the cross
section (composite section) given below.

(mm)
2440 3,000
T
4
—— 300
100 -t
PL 500 X 30
PL2500x 18— |0 N_*
PL 500 X 40 40m

( Q2 ) Find the effective width of the box girder
given below.
(mm)

2,000 6,000 2,000

T T

3,000

)

PtA 1.5

H

0.8Li=32m | * | %% | 0.6,=36m
L1:4Om L2:60m

* 0.2L; =8m L, (at support B)
wx 02L,=12m =02(L +L,)=20m

[11-5-2] (3)

(ALY
10_9& 500 100 (mm)
L i
457 45°
b1:2,090J L b,=2,650
2,450 3,000

(a) Cantilevered slab
by/L, = 2.09/40 = 0.052 > 0.05

A= {11=2(by/Ly)} by = 0996 b, = 2,082 mm
(b)  Span slab
b,/Ly, = 2.65/40 = 0.066 > 0.05
Ay = {1.1—2 (by/L,)} by = 0.986 b, = 2,958 mm
A =2,082+ 100+ 500 + 100 + 2,958 = 5,740 mm

beff=5,740

'}

300

| |
[ ]
500 30 100
18 2,500
L_)] B — T

500

[11-5-2] (2)

( Q3 ) Design the horizontal and vertical stiffeners.
The material grade is SM490Y.

(mm)
0.2h,=500
-
PL140x 12 h,=2,500
PL 140% 12 12
a=2,000

( Q4 ) Check the stability of the web under
normal and shear stresses.
The material grade is SM400.

(mm)
0 =180 N/mm?

hy=2,000 16 Ié
I a=2,000 0=180 7=40N/mm?

[11-5-2] 4)
(A2) 1
bi=2m  b;=3m 2
!
.
b=3m !
1 P.A

(@ by/L, =2/32=00625 > 0.05
A ={1.1=2(by/L)} by = 0.975 b, = 1,950 mm

(b) b,/L, =3/32=0.0938 > 0.05
Ay = {11 =2 (by/Ly)} by = 0.912 b, = 2,736 mm

A=4,686" Z

* 4,686 = 1,950 + 2,736

2,000 [ A=2,736

(2) P.. B (atintermediate support)
(@ 002 < b/L,(=2/20) < 03
Ay ={1.06 — 3.2 (by/Ly) + 4.5 (b1 /L)) by

=0.725b, = 1,450 mm



[11-5-2] (5)

(b) 002 < by/L,(3/20=0.15) < 03
Ay = {1.06 — 3.2 (by/Ly) + 4.5 (b2/Ly)?} b,

=0.681b, = 2,043 mm

a—3493 T

* 3,493 = 1,450 + 2,043

2000 | !

A=2,043

3) P.C
(@) by/Ly =2/36=0.0556 > 0.5
A ={11—-2(by/L)} by = 0.989 b, =1,978mm
(b)  by/Ly =3/36=0.0833 > 0.5
Ay ={1.1—2 (by/L)} b, = 0.933 b, = 2,799 mm

A=4,777* (|L

i x 4,777 = 1,978 + 2,799

[11-5-2] ()
(Y

a/h, =1 < 15
4
(5522) [(%)2+{m}z]

_( 2,000 )‘* (180)Z+{ 40 }2
“\100x 16/ |\345 58 + 77 (2,000/2,000 )

=0.879 < 1.0
OK !!

[11-5-2] (6)
{ A3 )

(1) Horizontal stif fener (SM490Y)
(em)
200

Yhreq = 30 (a/h,, ) =30 X 750 = 24

hy, £, 250 x 1.23

Inreq. > 17 Vhrea = 1 X 24 = 943 cm*

hyt, 143 x1.2
I, = W3 Y = — =109 em* > Iy req

A= (mm)
web—"]
(SM490Y) 7o =712

i
12
(2) Vertical stif fener (SM400)

(mm)

PL 140 x 12 (SM490Y)

h
t, (= 12m) > —2 = 10.8 mm
(hv=)140 (tv=)12 13
"
N web )
(SM490Y)

2,500
hy > 3—+ 50 = 133.3mm
(140)
(em)

5 250\
Yoreq = 8.0 (hy/a)? =8 X (ﬁ) =125
hu t° 250 x 1.23

Iv,req. > 11 Yvreq. = 11 x 12.5 = 491 cm*

3
vtv

h
I, = = 1,098 cm* > Iy req.

(11-5-3] (1)

( Q1) Find gusset plate thickness (t,)
3000kN '\ 71 2500N

( Q2 ) Check the safety of the following chord
member under compression (N).
The material grade is SM490Y.

N = —5,000 kN

ef fective buckling length (L,)

Ley = 7,600 mm (in — plane)

Le, = 7,600 mm (out — of plane)

Ley = Le, = 7,600 mm (< panel length)

430
499
y 360
25 15
(S |
s
25

25 T
yA
b/t (=350/22 = 15.9 , 320/25 = 12.8) < 31.6 (SM490)



[11-5-3] (2)

¢ A1)
t,=2 ><3’000= 12 mm
g 500
2,500
tg =2 W =125mm
-ty = 13 mm
¢ A2 )
(cm)
A y Ay Ay?
1-Flg PL 430x22 946 191 1,807 34,511
2—W PL 360X 25 180.0 - - 19,440
1—Flg PL 350x25 87.5 —1525 —1,334 20,349
362.1 473 74,300 (cm*®)
473 __ =612
§ =557 =13(m) I, = 73,688 (cm*)

43 %22 . 353 % 2.5
2T 12 12

=86,789 (cm*) > I,
A, =180 (cm?) > 04 A =04 x 362.1 = 144.8 (cm?)

= /Iy/A =143 (cm), 1, =./I,/A=155(cm)

Ay (= Ley/ry) =531 > A, (=Le,/r;) =49.0

+2 %36 x2.5x18.752

Ley 2
Oq =210 = 15 { =% =14 | = 1514 (N/mm?)
v
o = 5,000 x 103/(362.1 X 10%) = 138.1 (N/mm?) < o,
(Safe 1)



[12-1-1] (D

( Q1) Calculate natural frequency (f) and
circular frequency (w), when
(a) T =1sec.
(b) T =2sec.

(Q2 ) Is the following correct or not?
Natural frequency (f) of stiff structures
(ex. beam difficult to bend)
is higher than flexible one
(ex. easy to bend)

( Q3 ) Natural circular frequency (w) of the
mass — spring system is given,

V = 1m3(steel)

When,

(Vsteet =775 kN/m3 )

g : gravity of acceleration (=9.8m/sec?)
Find (w) and (f).

[12-1-1] (3)
¢ ALY
f=1/T , w=2nf

(a) f=1cycle/s , w=628rad./s
(b) f=0.5¢/s , w=314rad./s

¢ A2 )
YES

¢ A3 )
w(weight) = 77.5 kN/m> x 1m3 = 77.5 kN

w_ 775kN 91kN
98m/sec2 sec?

WkN/m o 0
7.91 (kN /m)sec? raa./sec

=—=0.179¢c/s (or H,)

(@) T=2 0.5m =1.42
a =T 98 (m/sec?) ~ sec.
(b) T=2 2 _ 2.84

= 4T 98 = 4. sec.

m(mass) =

¢ A4 )

(12-1-1] (2)

( Q4 ) Natural period (T) of the pendulum is
given by

L
T =2m |—
g

L : length of pendulum
Find T, when (a)L=0.5m, (b)L=2m.

(Q5)

sec.

+———(C =5kN—
/ i
K =1kN/mm

V= 0.5m3(steel)

Calculate damping coefficient (h)
1
_\/ka

( Q6 ) Find damping coefficient (h)
displacement (cm)
5.0

2.56

1.64
3.20 A\ 205 /TN ts)
\V/

—5.0 0.5 sec 0.5 sec

[12-1-1] 4)
¢ A5 )
w = 77.5 kN/m3 x 0.5 m3 = 38.75 KN
=0
w kN
m=—=3954— sec?
9
SEC
C=5KN-—
m
In 5 {%V . sec}
- V2km - kN kN
Jz -1,000 (%) - 3.954{(%) sec?}
=5.623 x 1072
¢ A6 )
Xm e 2Th/V1-h? 3 20
X,,,+1 =205
| ‘ 2mch (3.20) 0.446
n = = = 0.
Xmel ViR \2.05
h=0.071



[12-1-2] (1) (12-1-2] (2)

(Q1) (d)—1 Assume steel girder only resists
. 9,000 . (mm) bending (non - composite girder)
!‘ . RCslab ‘] 4 300
T T 100 (d)—2 Assume composite girder resists
i B L bending
600
S ) s s
steel girder L L
Sl 183,000
:::I::::::I:::I ﬁ
L_,j_’r40 steel girder composite girder
600
(@) Find cross sectional area (A;) and (62) When span L=60m (composite girder) ,
moment of inertia (I) of steel girder. find (f).
(b) Find cross sectional area (A,) and (@3) Find (fi) of the bar.

moment of inertia (I,) of composite

. Ac= 0.0077 m*
girder ( n=Es/E.=7.0 ). ‘
«— 2=z —> T= 3000kN
(©) Find total weight (w [per unit length]) [ L=30m
of composite girder.
(d) Find first natural frequency (f;) and flzi % p=b
period (Ty), when simple span (L) is 40m. phe g
[12-1-2] (3) [12-1-2] (4)
¢ A1) (c)
Slab : 9m x 0.3m x 24.5kN/m3 = 66.15kN/m
(@) A =2%60x4+300x1.8=1,020cm? (one girder) Steel : 0.204m? X 77.5kN/m3 = 15.81kN/m
3003 x 1.8
s =2X 60 X 4 X 1522 + ———— (@)
= 15,139,920 cm* (one girder) W, = (E)z £l
(0.1514m*) L/ m
w  (66.15 + 15.81){kN /m} secy?
b (cm) m= E - 9.8 {m/sec?} = 8363 {kN (7) }
A y Ay Ay? E =2.0x10% kN/m?
1-D PL9,000x300 | 3,857 179% | 690,403 | 123,582,137
(n=7) 289,286 @-1
2-Steel girder 2,040 — - 30,279,840 I=1c=041514m* L = 40
T 5,897 690,403 | 154,151,263 =hs=0 moo, AEAUm
_690403 808620827 _ (™ \2 [2.0 X 108{kN/m?} X 0.1514{m*}
5897 1y=73,289,181cm* w1 = (40{m}> 8363 {kN (ﬂ)z}
Ay = 5,897 cm? (0.7329m") m
I, = 73,289,181 cm* — 3.7 rad/sec
w
 (179) =@+i+ 10 + 15 fl = 2—; = 059HZ(C/S) ) Tl = 1.69 sec
ﬁra half of RC slab thickness
thickness of flange (d) -2
a half of web depth

I=1,=07329m* , L=40m

900 x 30°
*+ (289,286) = T/ 7 _ (n )2 2.0 X 108 x 0.7329
“1= g0 83.63

ek (80,862,082) = 8° - 4, 6.158 rad)
= o. ra sec

w
£, = 2—71[ =1299 H,(c/s) , T, = 0.77 sec



[12-1-2] (5)

(¢ A2 )
712 (2.0 x 108 x 0.7329
Wy = (%) \/; = 3.626 rad/sec
£, = % = 0.577 H,(c/s) , T, = 1.73 sec
¢ A3 )

¥ 775 N/mP) {(kN) 2}
p= g 9.8{m/sec?} 7:908 m#) %€

1 3,000 {kN}
-
2>30(m} 17,908 {(KN) sec?} x 0.0077 (m?}

m*

=3.70H,



Special Lecture for
Structural Analysis

Professor of Nagaoka University of
Technology

Eiji IWASAKI

1. Concept of finite element method

1.2 Truss element

Consider a uniform prismatic elastic bar of length L,

with elastic modulus E and cross-sectional area A.

Axial strain &, axial stress o, and axial force N are
au

& ox

o, =Ee, N= f 0,dA = EAe,
a

where u s axial displacement of a point at x.

Equation of equilibrium at small region
dn a%u General solution
—

—=0 =) EA— =0 u=C +Cx
dx ax? : N
where C; and C, are constants of integration

By boundary conditions at x = 0 and x = L,
u=uatx=0 === u =0C
u=upatx=L == u,=C +0CL

Therefore, « [ Note: Ny and N are not
u=Nu+Nyu,  where Ny I Nz =7 | axial force at ends 1 and 2

N; and N, are called as shape functions in finite element analysis.

1.2 Truss element

By previous displacement u, axial force N is
VP i F+N=0

U — Uy
N=EA——
L

Equations of equilibrium at ends 1 and 2
EA
Fit (g =) =0
EA
Fo= Gt~ ) = 0
Ordinary, the finite element analysis is used matrix description such as follows
EAc1 -1y _ (R
T(—l 1 )[112} - [Fz}

The square matrix in above equation is called as element stiffness matrix.
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1.1 Solution method of structural mechanics

Solution of structural mechanics requires to satisfy following equations

« Equation of equilibrium ( force and moment balance )
+ Relation of stress ( force ) and strain ( deformation )
+ Deformation geometry ( compatibility condition, support condition )

Solution methods of structural mechanics can use two type as followings

+ Force method
« Displacement method

Force method that forces are unknown variables, is quite useful for solving simple
problems with a few unknown forces. It is useful to solve small problems by hand
calculation. It is probably a familiar method.

Displacement method that displacements are unknown variable is a very systematic
procedure for solving problems. This method is used in all finite element computer
programs. However, it is not suitable for hand calculation.

Q1. Solve axial forces and displacement

Solve the axial forces of each member and displacement
at top point of the truss structure on the right figure.

E: Elasticity modulus
A Cross-sectional area

1.3 Beam element

Consider a uniform plane beam member, with elastic
modulus £ and centroidal moment of inertia / of its
cross-sectional area.

Axial strain e, axial stress o, and bending moment M are
2%
0x?

o, = Ee,

v
ax?

where v is deflection of a point at x.

M=—f oydA = EI
a

Equation of equilibrium at small region

d*M atv
T T Bl

General solution
v =Cy+ Cox + Cax? + Cyx®

where from C, to C, are constants of integration Q_y 4 a0
x ax

1.3 Beam element
By boundary conditions at x = 0 and x = L,
v=vatx=0 m) v;=0C

v'=6atx=0 6, =,
! = 6= ‘ Vs —vi 20,46,
v=vyatx=L By, =G+ CL+ G+ L gt Thth

V=6atx=L B g, =, +20L+3C,L2 oot it o
Therefore, v B
v = Nyvy + Nyvy + Nyby + Nb,
where Ny =1-382+28 N =(§— 262 +&9L x
N, =382 - 28 No= (- + €L T

From N, to N, are called as shape functions in finite element analysis.
Bending moment M and shear force Q are
El El EI
M=EN" = F(IZE —6)(v1 —v3) +T(6§ —4)6; +T(6§ —2)6,

L, 12E1 6E1
Q=M= -~ (v —v2) =5 (61 +62)
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1.3 Beam element

Equations of equilibrium at ends 1 and 2 My +M=0 M;-M=
2E1 +Q=0 —0=
My =T =) =G =0 = Gre e
6EI 2E1
Mz~ (v —va) =~
12E1 6EI
Q fT(m *Vz)*?(b’x +6,)=0
12E1 6EI
@+ 0= v) + 7 (0 +6,) =0

Ordinary, the finite element analysis is used matrix description such as follows
12 6L 12 6L\ (V1 Q&
Ell 6L a2 —6L 212 \)6:( _ )M
B\-12 —6L 12 —6L))7%2 Q.
6L 212 —6L 412/ \62 M,

The square matrix in above equation is called as element stiffness matrix.

1.4 Combination of truss and beam elements

Combine equations of truss and beam elements

T 0 0 T 0 0\ (% £
0 B B O B B\|["n Q
0B B 0 B B|)6i(_)M
T 00T 0 0 Fy
0B B OB BJ|" Q.
0 B B 0 B B/ \6; M,
where “T” and “B” in matrix indicates for and

force at truss and beam elements.

In the finite element method, the above relation between displacement and force is also
expressed by simply following as

_ o o)y _ (1)

wa=r o (el {f

where d and f list the nodal displacement and nodal force components,
dy and d, list atnode 1and 2,

f1and £ list force components at node 1 and 2, respectively.

1.6 Element of arbitrary orientation

Consider x and y axes are arbitrary oriented.

Nodal displacements u; and v, in the x-y coordinate
are obtained by displacement components in the X-Y
coordinate.

uy = Uy cosa +Vysina B
i

vy = —Uysina +V; cosa

Similarly, displacements at node 2 are

2 cosa +V;sina x-y coordinate and X-Y coordinate are
v, = —Upsina + V; cosa called as local element coordinate system
Above relationship is also expressed by simply | @nd global structural coordinate system,

following as respectively.
d=TD

Uy ¢ s 0 000 Uy

where vy - ¢ 0 000 v
_Ja o o1 000 o,

4= 1w T™looo ¢ so D=1y,

v 000 —s c 0 v

0, 000 0 01 o,

c=cosa  s=sina

1.6 Element of arbitrary orientation

Nodal forces F; and Q; in the x-y coordinate are obtained
by in the X-Y
Fy = Pyy cosa + Pyy sina

Q= —Pyysina + Py cosa
Similarly, forces at node 2 are

Fy = Pyycosa+ Py sina

Q2 = —Pygzsina + Py, cosa
Above relationship is also expressed by simply following as
f=TF
" In x-y coordinate, related equation between nodal
where Py Fyy displacements and nodal forces are
o Fry f=kd
My My
F=\r( F=\r, In X-Y coordinate,
Q Fy, F=T'f=T7f =T"kd = T"kTD = KD
M, M, Therefore, stiffness matrix in X-Y coordinate are
K=T"kT
where  T7!=
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1.5 Formulas for element matrices
Formulas for element matrices are also obtained by the principle of virtual work.
f 0 8exdV = FySuy + Qv + My 80, + Fybu, + Qu8v; + My86,
V

where 8u, 8v etc indicate virtual displacements.
If displacements satisfies the above equation, they also satisfy the conditions of equilibrium.

In previous bar and beam element, strain and stress are

= —yv 0y = Eéx
where displacements u and v are expressed by quantities of nodes 1 and 2 as follows
w= Ny + Naip = Ned v = Navy + Nyvy + Nsby + Nob, = Npd
where

Ne=(N; 0 0 N, 0 0 N,={0 Ny N 0 Ny Ng}
The equation of principle of virtual work is rewritten as follows
MTf BTEBdVd =§d"f =) kd=f
v
where
k= f BTEBAV B=N,-yN}
v

ndicates row and column
transposition of

Q2. Derive truss element stiffness matrix by
the principle of virtual work

The element stiffness matrix k is defined by following equation.
T t T N,
k= | BTEBaV = B'EBdAdx  where  B=N; ="'
v o Ja dx
In truss element, N, is

x
Ne=(Ny Ny) m=1-3 M=}

Derive stiffness matrix k in truss element.

Q3. Derive truss element stiffness matrix on
the global structural coordinate

The truss element stiffness matrix is written as follows on the element coordinates system
EAr1 -1
k’T(-1 1)
Transformation matrix is
e s 00
T=( o ¢ )

Derive truss element matrix on the global structural coordinate system.

1.7 Assembly of elements

Consider assembly two elements truss or beam elements.
However, this concept can use other many type elements.

Relation between displacements and forces of element A.
Kiy Kf)\ (D) _ (F{
ki Kf,) 03]~ \Ff
Similarly, relation between displacements and forces of element B.
K%, K3\ (D) _ (FY
K5 K3 \03) (F
where these equations are written by global structural coordinate.
By equilibrium and compatibility conditions at each nodes
D{=D, D4{=D{=D, DY{=D; (Compatibility conditions)

F{=F, F{+F{=F, F§=F, (Equilibrium conditions)

From these equations
Fy=K#iD, +K{,D, Ky K. 0\ (D) (F,
Fy = KADy + (KE+KE)D, + KE,D; mm | KSy K, +KE, KD {Dz} - [Fz
F3=K%,D, + K5:D; 0 K%, K%

2018/1/17

2018/1/17



1.7 Assembly of elements

Assembled global equation between nodal
displacements and nodal forces are following

The above global stiffness matrix s included in each element stiffness matrices
corresponding nodal components of row and column.

Therefore, global stiffness matrix can obtained systematic or automatically from each
element stiffness matrices without using nodal equilibrium and compatibility conditions.

In structure that consists three members and four nodes as shown right figure, the global
equation is following

iy Kt 0 F
Kfy K + K5 4[KG] K _r,
0 K&, K5, T Fs
0 0 Fi.

Q4. Derive global equation

Derive global equation for structure that consists four elements.

1.9 How to set support conditions

Fy, Qy and Q, mean reaction forces. These reaction forces are unknown values.

Next, the previous equation is separated into two parts.

4EL o 281
T T\ () (My Previous equation
0 B0 Puyr=iF 0 _EA o
0, M, T
oo g 2 ] A
AT B oo |
g o gl 0 2o flT|n
o m)le) o e o e 0
T iz 2 v M,
2o 4E
Lo 4

Solving the first equation obtains the displacement.

Substituting these displacements into the second equation obtains reaction forces.

1.10 Support conditions

Both sides hinge Hinge and roller
No singular No singular
Both sides roller Hinge and free
Singular Singular

If rigid body motion and rotation are constrained by appropriate support condition,
stiffness matrix is no singular. Then displacements can solve from equilibrium equation.

When the equation can not be solved by FEM, the support conditions are often not
appropriate.
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1.8 Singularity of stiffness matrix

Equation of equilibrium KD = F will be solved with respect to the displacements D given
forces F. At this time, appropriate support conditions must be imposed on the

displacement.
Matrix A is singular if |4]

Element stiffness matrix is singular.
For example, truss stiffness matrix
_|EA1 -1y =
el = (2, Ol =
For example, beam stiffness matrix
12 6L -12 6L
\k\=ﬂ 6L 412 —6L 217 || _
P\-12 —6L 12 —6L
6L 217 —6L 4I?
Global stiffness matrix that assembled all elements is also singular.
If appropriate support conditions are imposed in the equation of equilibrium, stiffness
matrix is not singular.
If matrix s singular, equation can not be solved.

Therefore, support condition is very important.

1.9 How to set support conditions

Consider one beam element for simplicity explanation.

EA kA
B9 0 -EA o o
o e e o _um e | B
=T = v, )
0 SEL 4 0 —SEL 28 L L
= = T |)e | _ M
-0 0o £ 9 0 ||* £
o _um e g e | [v2]|@2
1= | e, M,
41

o B 2

T T T
in simply support conditions, that is i, = v; = v, = 0, F;, Q; and Q, mean reaction
forces. These reaction forces are unknown values.

Instead of the conditions of displacement equal to zero, reduce the size of stiffness matrix.

0 - o
6Bl 6Bl B
I L7
B o 2BL [(6) ﬁ'
T o bl =
U] 6, F
o5 o sk 0
2 ra M,
26 4B
T T

1.10 Support conditions

Rigid body motions and rotation in two dimensional space.

Rigid body motions and rotations in three dimensional space.

These rigid body displacements must be restrained by supporting conditions.

Q5. Confirm the singularity of stiffness matrix

Both sides roller

u #0 u #0
v =0 vy =0
6, %0 6, %0

In the above both sides roller supported beam, confirm the singularity of stiffness matrix.
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Ex.1 Truss bridge

Introduce what elements are used in the truss bridge model.

2. Typical finite elements

2.1 Plane elasticity problem

Previous stress-strain relations are described by follows.

Ox E 1 v 0 €x
rere e o) (08 ) efd)
Tay. 1=v2\0 0 a-w2 Yy,

Strain-displacement relations are also described by follows.
a/ax 0 ”
£=0u where g= 0 a/ay u:{v}
a/dy a/ox,
The equation of virtual strain energy is
U= f (0288 + 008y + Ty Sy )dV = f SeTodV
v v
The equation of virtual work by load is
W= f (qxbu + qyov)dV + f (DB + py6v)dS = f su”qdv + f su"pds
v s v s
The equation of principle of virtual work is

8U =W

2.2 Plate bending problem

Consider bending deformation of the plate in the x-y plane

When the rotation 6, 0, are occurred by the bending deformation,
the displacement at a position away from the x-y plane by z is

u =20, v =—2z6;
where 6, and 6, are rotation about x-axis and y-axis, respectively.

By the above displacements, strains are

—du dv _ 30y
Yay -W*W-Z(Ty ?7)

28y _

And out of plane shear strains are
v, dw _ w
Yoz =ty = Oty
—dw , 0u _ dw
Yo =Gxtar =ax t Oy

where w is displacement of z-axis direction

2018/1/17
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2.1 Plane elasticity problem

When uniaxial stress is occuring, stress-strain relations are denoted by following equations
in isotropic linear elasticity.

When three axes of stress are happen, the equation are as follows by superposition.

1
)

£

1
) =5 (0, —vo, ~va,)

1
& =5 (0~ Vo —va,)

2.1 Plane elasticity problem

If the thickness of direction of z-axis is very thin, it can be assumed
to be a plane stress situation.  Therefore, 7, ~ 0

Previous relation between stress and strain are

1 v
G=p(0=ve) &= V) &= p(otay)
Solving the first two equations for stresses
E E
o= Tl ve) oy =gy (ey e

On the other hand, the shear stress is

Ty = G¥xy

where G is shear elasticity modulus, | U8 are obtained by displacements
E

C=3a+w

— du dv
Yxy = 5ytox

2.2 Plate bending problem

Strain-displacement relations are also described by following equations.

£=0u
where 0 0z
a

0 -z 0 w
0 2f o u=1ex}
3 1 0 g}/
P
3
2 0 1

Stress-strain relations are denoted by following equations in plate bending problem with
shear deformation, where x and y axes are set in-plane, z axis is set out of plane.

o=Ee
where Oy v 0 0 ]
ay 1 0 0 0
o={Txy 0 (1-v)/2 0 0
Tyz 0 0 a-v/2 0
Tax. 0 0 0 a-v/2

2.2 Plate bending problem
The equation of virtual strain energy is
50 = [ (082 + 0y, + iy + 18130 + tucbra)dV = [ eToav
The Equau‘:m of virtual work by load is ’
W= fv (6w + my86, +m, 66, )dV + fs (D20 + M 56, +m,,86,)dS
= fv sulqdv + fs SuTpds

The equation of principle of virtual work is

8U =W

The element that combines the plane element and the plate bending element is called a
shell element.

2018/1/17

2018/1/17



2.4 Interpolation of displacement

D wisi by nodal di as followings
= Nyuy + Nyiy + -+ = Nd
where u; is displacement as i-th node, and N is the shape function for i-th node.

(0
N={N, Ny -} d= {uz}

By above interpolation,
&£=0u=0dNd=Bd where B=4N is called B-matrix in FEM
o =Ee=EBd

Therefore, the principle of virtual work §U = W is
6d"kd =5d"f  EEE) kd=f

where

k:f BTEBAV f=f Nqul/+f NTpds
v v s

2.6 Feature of some elements

Displacements in the finite element are interpolated as follows

=Py Bpx + By

v = Bi+ Bsx + ey
where uand v are displacements for x and y axes directions, respectively.

B; (i = 1+6) are represented by nodal displacements.
In plane problem, strains are
o
a=g=h

Ll
2=p

&y
_ouov
Yay = gytax = B2t Bs
Strains do not vary within the element, this element is called “constant strain element”.

2.5 Types of finite elements

In plane stress problem and plate bending problem, quadrilateral and triangle finite
elements are used.
Types of commonly used finite element are as follows

Q4 element
Q8 element
T3 element
T6 element

2.6 Feature of some elements

Displacements in the finite element are interpolated as follows
w= By fox + Byy + fax® + fexy + fey?
v =7+ Pox + foy + Prox? + Praxy + frzy?
where wand v are displacements for x and y axes directions, respectively.
B; (i = 1-12) are represented by nodal displacements.

In plane problem, strains are

=38 = B+ 2Pux + By
&y =50 = By + urix +2B10y
Yoy = G432 = By + By + (Bs + 2B10)x + (2B + Br)y

Strains can vary linearly within the element, this element is called “linear strain element”.

2.6 Feature of some elements

Displacements in the finite element are interpolated as follows
=Pyt Box + sy + Buxy
v = s+ Bex + Bry + Pexy
where uand v are displacements for x and y axes directions, respectively.
P (i = 1+8) are represented by nodal displacements.
In plane problem, strains are
e =00 =+ Buy
& =Py

du 9
Yry = gy+gx = (B + Be) + Bax + fgy
In slender beam, shear strain ¥ is much smaller than
axial strain &, or &,. We can be regarded y,, =~ 0.

Yy =0 =D Ps+Ps~0 B~0 fz~0 Anypositioninthe element

= &=~f &=~pf  Acuracywill decrease. Called shear locking
In many commercial software Q4 element are revised to avoidance this shear locking.

Ex.2 Cantilever beam problem

Plane elements of different types are compared
by using cantilever beam problem.

« Types of element : T3, T6, Q4 and Q8 elements
+ The number of Nodes : 11x3, 21x5, 41x7, 61x9

(5)T6, 11x3
(6) T6, 21x5
(7)Te, 41x7

(8) T6, 61x9

Ex.2 Cantilever beam problem

Plane elements of different types are compared
by using cantilever beam problem.

« Types of element : T3, T6, Q4 and Q8 elements
+ The number of Nodes : 11x3, 21x5, 41x7, 61x9

(1) 73, 11x3
(2)73,21x5
(3) 73, 41x7

(4) T3, 61x9

Ex.2 Cantilever beam problem

Plane elements of different types are compared
by using cantilever beam problem.

+ Types of element : T3, T6, Q4 and Q8 elements
+ The number of Nodes : 11x3, 21x5, 41x7, 61x9

(9) Q4,11x3
(10) Q4, 21x5
(11) Q4, 41x7

(12) Q4, 61x9
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Ex.2 Cantilever beam problem
Plane elements of different types are compared
by using cantilever beam problem.

« Types of element : T3, T6, Q4 and Q8 elements
* The number of Nodes : 11x3, 21x5, 41x7, 61x9
excluding the number of Q8 elements
(13) @8, 11x3-5x1
(14) 08, 21x5-10x2

(15) 8, 41x7-15x3

(16) Q8, 61x9-20x4

Ex.2 Cantilever beam problem

Plane elements of different types are compared
by using cantilever beam problem.

* Types of element : T3, T6, Q4 and Q8 elements
* The number of Nodes : 11x3, 21x5, 41x7, 61x9

+ The accuracy of the stress is no so good compared with that of displacement.
+ The accuracy of results will improve when many nodes and/or elements are used.
« Performance of T3 element is not good,
.but this element is robust for more complicated problems such as material nonlinearity.

3.1 Type of nonlinear problem
In structural mechanics, types of nonlinearity include the following

« Material nonlinearity, in which material properties are functions of the state of
stress or strain, such as nonlinear elasticity, plasticity etc.

. i inearity, in which di is large enough that equilibrium

equations must be written with respect to the deformed structural geometry.

Buckling phenomena, in which a mode of deformation suddenly change to other

mode as the load increases.

In these problems, equilibrium equation that is the relation between nodal displacements
and nodal forces are influenced with values of nodal displacements.

Therefore, to solve this equation needs Newton-Raphson iteration method.

3.2 Solution methods of nonlinear problem

Linear Problem Non-linear Problem
F=Ku=P FQu)=P
Kw =5
Solving the simultaneous equations Repeatedly solving the simultaneous
once gives an answer. equations until the answer converges gives.
an answer.
f 5£TodV = 6d"p f SAE" (0 + Ag)dV = SAd" (p + Ap)
v v

d=p kad+f=p+dp

k fHTEBdV f=f B'odV
n v

2018/1/17
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Ex.3 Modeling near the connection of
members

3. Nonlinear problems

3.2 Solution methods of nonlinear problem

Three kinds of iterative Newton-Raphson methods

Load incremental method

give Ap, solve kAd = Ap +p — f for Ad

Displacement incremental method

give specific component of Ad , solve kAd = Ap +p — f for Ad and Ap
Arch length incremental method

give arc length AS , solve kAd = Ap + p — f for Ad and Ap

Solving the nonlinear equilibrium equation corresponds to solving the equilibrium curves
in load-displacement space.

Ex.2 Material nonlinear problem

A 13-thincremental step number

B:20-th incremental step number
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Ex.3 Geometrical nonlinear problem

Initial (2=0)
A(1=1.579)
8(1-0552)
o A1l. Solve axial forces and displacement
D (2=1.741)
£ (1-0.480) Solve the axial forces of each member and displacement
. at top point of the truss structure on the right figure.
£ (1=0625)
6 0-2955) Let N; and N, be the axial forces of each member.

By the equilibrium condition at top point,

(=N; + Np)cos +P =0
Ny + N;)sin6 =
(N +N)sin6 =0 E : Elasticity modulus
where sing = " cosf = L A': Cross-sectional area
VIZ + H? VIZ+ H?

Solving the equilibrium equation,

Ex.4 Suspension bridge N= P _ P
1555 2= 5 &
Confirmation of ultimate state by nonlinear analysis of suspension bridge 2cos 6 2cos 6
25
A1l. Solve axial forces and displacement A1l. Solve axial forces and displacement
The elongation of each members by axial force are b= E In the previous solution, the axial forces were used as
ZA - .
B Nlm - PIZTH? ::E;zl\zn variable. Here, we use displacement as a
VWITTEA T 2EAcost e d |
/ Let u is displacement at top point.
NNIZ+H? NI + H? {. P PP
v, = =— =-v; The elongations of each members are
EA EA
. . vy =ucosf
Each membfer is connected‘at“a point. In other word, v, = —ucos 6 \
by the condition of compatibility, . - . - S
The above elongations are satisfied the compatibility condition.
v, PVIZ+ H? {a
u= 050 = 2EAcosZ O By the above elongations, the axial ;orces of each members are
vy ucos
The displacement u can also be obtained from the axial force by the theorem of Ny = EA———=s=FA——
il p “ y 1 ,LZ+H2 ,/L2+H2
Castigliano. 0
Ny pa V2 g, ucos
U _NNTHHZN, NN HHZON, _ PN+ 2 2 VEr o2 VEr o2
U=—= =
P EA P EA 0P 2EAcos?@ When the above axial forces are applied to equation of equilibrium

condition, displacement u is obtained.

Where U is called strain energy that defined by following
Alternatively, it can be obtained by using the theorem of Castigliano.

25
g SV o ,
— 2EA P=— where U= Z EAgfL;
i ou




A2. Derive truss element stiffness matrix by
the principle of virtual work

The element stiffness matrix k is defined by following equation.

L dN,
k= f BTEBAV = f f BTEBdAdx  where B=N;=——
v 0 Ja dx

In truss element, N, is

x
Ne={Ny N} N1:1—Z Ny =

x
L
Derive stiffness matrix k in truss element.

dN, 11
B=N,=—t=]_2 Z
£ dx {L L}

k= [ [ o= [ (YL Jorae= B2

A4. Derive global equation

Derive global equation for structure that consists four elements.

12 \

Kiy +K? Ki, K73 0 D, Fy
K3, K$, + K5, K3 0 Dy _)F2
K%, K5, K% + K55 KS, || D3 Fs

D F
0 0 K3 K§, + 4

A3. Derive truss element stiffness matrix on
the global structural coordinate

The truss element stiffness matrix is written as follows on the element coordinates system

EAr1 -1
k=7 (—1 1 )
Transformation matrix is

=G o )

Derive truss element matrix on the global structural coordinate system.

c
EA

0
wemr=S2(5 ) 0G5 S
0 s

c 0 c
_EAfs o (c s —c 75) EA[ (s
L\ 0 ¢)\—c =s ¢ s)TL\|=¢2

0 s —cs

)

s —c® —cs
s —cs —s?
—cs ¢*  cs
—s? ¢s  s?

A5. Confirm the singularity of stiffness matrix

Fromv; = v, =0,

EA —EA ¢

L

0 & o sk £y
z 2|y Q1
4E1 2EI

0T 0 T )e(_/m

_EA o EA U (™) F

L L

o sr o _sm |\02) |Q
1z Z M,

0 2Bl 4EL
L L

Next, the previous equation is separated into two parts.

% 0 7% 0 Uy Fy
4E1 2EI
0 7 0 F)e(_)m (0
EA EA u;
w0 % o Jlf |
0 2EL o 4EI 2
L L

0

Both sides roller

v, =0 v, =0

Q4 and Q, are reaction forces

6EI eery (4
= 0 z 60, 7{Q1]
o )i~ le;

From equation of left side, we understand that the stiffness matrix is singular.

Displacement can not be solved from this equation.



Bago Br. TTP [2018.02.22]

Review (look back) of

Design method

[Required performance]
- Safety

- Serviceability
- Constructability

[Limit State]

- Safety (Ultimate, Strength)Limit
- Serviceability Limit

- Fatigue Limit

[Design Method]
- Performance-based Desigh Method
- Limit State Design Method

Required performance and its level
for structures are defined.

whether or not
the required performance level
is satisfied

[Check Method]

+ Load Resistance Factor Design Method
(LRFD)

- Partial Factor Design Method (PFD)

- Allowable Stress Design Method (ASD)

4

Basis

S = R (Safety check)

: Action (N*, M*, Q*)
: Resistance (Nuit.*, Muit.*, Quit.*)
*x: factored value

A0

Ex.
M1.3D + 1.75[L + 1] = ®u - Murt.
O 1.0D + 1.30[L + I] = Ds- Oy

AASHTO LRFD

Design Level

- Level- I «Standard>»
Partial factor is used
«S* S R*» (S*,R¥*): factored action & resistance
- Level-II
Safety index(B) is used
«B Z Brarget>»
* Level-I
Failure probability(Ps) is used

<«Pf = P, target»

Limit State to be checked

- Strength Limit StateI ~V
Ex. I :vehicle running(no wind)
I :allowed special type of vehicle (no wind)

+ Extreme Limit StateI, T
I :erathquake load
I :collisoion (ship, ice)

- Serviceabilty Limit State I ~IV

Ex. I :Yielding of material

- Fatigue Limit State I (forever),II (limited duration)
[totally 13 cases are checked] 8




Check Format(LRFD)
&leiQ i= ®Rn = R:

yi : load factor*
®: resistance factor*
ni :modification factorfor load (= nonsn:)

[no:ductility, nz: redandancy, nz: importance]
Q : load effect

Rn : (Nominal) resistance
R: : factored resistance

*yi, ® are based on reliability theory (safety index B)

Ex. of check of outer girder
[Strength Limit State I (flexure)]

M = 1.25 x (2,119 + 302.5) + 1.50 x (388.9)

1DC tparapet DWW
+ 1.75 x (2,961)
tlive load

= 8,792kft < ®r - Ma = 10,973kft
1=1.0 tplastic strength
[action/_resistance = 0.80]

DC : dead load excluding wearing surface load (DW)11

Strength Limit State - 1

$1.25DC + 1.50DW + 1.75[LL + IM] = Sur.

S : Stress resultants

Sult. : Ultimate strength( = ®Rn {Rn : nominal strength})
DC : Dead load excluding (DW)

DW : Wearing surface [concrete pavement in USA]

LL + IM: Livre load (LL) including inpac (IM)

Serviceability Limit State - I

f1.00D + 1.30[LL + IM] = 0.95fy

t overload (heavy vehicle)

f: stress
fy : yield stress 10

[Serviceability Limit State I
(Lower flange)]

f=1.00 x (17.73 + 1.91)
+ 1.00 x (2.46) + 1.30 x (13.3)
= 44.3kf/in2
< ®b-Fy = 0.95 x 50 = 47.5kf/in>

SI Unit {305N/mn? < 327N/mn?}

[action/resistance = 0.93]— controll%q

Bago Br. TTP[22.02.2018]
Review (look back) of design of
Slab,

girder bridges
and truss bridges

Concrete and steel decks

RC deck Steel deck
X
A
U-rib flat plate rib
w

| "*--._‘_yh.,_‘* ! 1 cross beam |
¥ \
z (w)

W=w (xy)

Design of slab




RC Slab

[Slab action]

RC slab

__gueaded studs

Steel girder

[Steel-concrete composite slab]

concrete

Xﬁ Perfobond-type rib
Bottom steel plate

Main reinforcement \

Distributing reinforcement Hole for preventing slip

Design of RC deck

Damage of slabs

Crack in pavement surface Cave in
Separation of mortar and aggregate Crack net
[upperpart of slab [underneath of slab]

Load and Displacement

P
P
P y P
X
w w
y
z X
wW=Ww (x, y) z W=W (%)
Internal Stress
X [o,T]
mx
AN
my ox oy
z X qyy B 'D(szy szy‘z/
( Txy= Tyx)
M [o] [z]
Q
Definition of slab Span (L)
250 "1‘ P directic;nafmain rﬁinforoement
' L L
Al L/J I,'/J
T e
boy2 - skew supported girder -

Minimum slab thickness (d) required

do (mm) L:span (m)
running
= running direction
direction -
s ot (L

-+ -

simple slab 40L + 110 65L+ 130

continuous slab 30L+ 110 40L + 130

0<L<0.25|280L+ 160
slab 240L + 130
025<L 80L+210

d (>do) =kik2do




Coefficient K1 and K2

ki : effect of large-size truck volume

N : Number of truck / day ki
N< 500 1.10
500 = N < 1,000 1.15
1,000 = N < 2,000 1.20
2,000=N 1.25

k2 (=0.9 /M/Mo > 1.0) :
: effect of differential settlement
Mo : design moment
M :Mo+4M (1 +1i)
4M : additional moment
i :impact coefficient

(-] - J

Deformation of RC slab

my=!
y=0 mx=0 my>mx
my my mx
mx
my
x
y

Additional _(increase) rate
for simple and continuous slab

L (m) L=25 25<L=4.0
coefficient 1.0 1.0 + (L-2.5) /12
(direction of main reinforcement)

Allowable stress of reinforcement

(N/mm?)
SD345
‘ tension 140
| compression 200

Check of stress

of concrete (compression)
and reinforcement (tension)

Slab moment

Desigh moment per unit length (1m)
by T-load for RC slab

simple slab i il slab
0<L=4m 0<L=4m) (0<L=15")
at at at_ t t t
ZFan center St Pemedsie| 2800 | %
Zspan
deadioad™| wiz | w2 | wiz | g | we |
w) 8 14 10 [3gpanmore] 2
_wL2
10
main o1z ® 08 08 _os PL _
T +0.07)p | x @ x @ -ex® 130L+0.25
load
distributing | (0.10L 0151
+0.04)p | 08% 0.8x — —  [vo13p
L : slab span

p = 100'
(%) : distributing direction (M=0)

Design of steel deck plates

Steel deck plate

/'-——__ ,‘\Cbsfd section
/T_/___:__:{/Z mf;ﬁon
A A / )
cross beaqu_“——-;:",“rt:___:__q—__

deck plate —
N\

\soallop / o
=]

<l

? } fillet welding




Steel deck

Deck plate thickness and rib arrangement

t =0.035b (z12™)
B
b b _b

\J \LJ 1

B=620~660"" b=300~340""
b =300~ 340"

Recent topics (due to fatigue problem)

Mostly , 12™™ thickness has been used so far.
Due to severe fatigue damage,

=

16mm thickness is recommended

(in case of trough [U-shaped] ribs)

Calculation of stress resultants
(grid model)

cross beam longitudinal rib
A 4 —
¥ —
B % C - =
T T T T
1 I 1 1
[ —

Pts. A,B,C : Observation points
Pts.AB : for designing longitudinal ribs
pt. C : for designing cross beams

Steel deck fatigue

O—/

\ O\ Deck plate—longitudinal ribs

Cross beam—longitudinal rib ing at itudinal ribs

Steel deck fatigue

Penetrating to deck surface:/ = crackin

Impact (;) for the design

longitudinal ribs i= 04
20
50 + L
L : span of cross beams
Additional increase rate (¢ ) for cross beams

cross beams i=

k = ko ( LS 4)
k = ko —(ko-1)x(L-4)/6 ( 4<L=10)
k = 1.0 (10<L )
ko = 1.0 ( B=2)
ko = 1.0 + 0.2 x(B -2) (2<B=3)
ko = 1.2 (3< )

B : distance of cross beams

Effective Width

shear lag

_2b1_2b2 _2b3 </

M ATA2 A2A3 A3

\ / v/ equal area
OAT\"L
=b (b/Le=0.02) Wa
A={1.06—3.2[%]+4.5[%T}h b

(0.02<b/Le<0.30) effective width (A) is
A=0.15Le (0305 b/,) introduced to catch (oa)

b
Le : equivalent span length Aoa=[ "o (y) dy

20



Equivalent span length (Le)
longitudinal ribs 5’"‘
A (Le=0.6L) A A -
::W
cross beams A
AL (Le=L) ‘_:‘Lb‘_il
0.2I;1‘._‘0.2L2 0.2L2 0.2L3
A“l sih2 v, cross beam
[ = R A Y
Al (Le=0.81L1)
Ast (Le=0.2 (L1+L2) )
Az (Le=0.61L2)
Asz2 (Le = 0.2 (L2+L3) )
.22 0212
cross beam
M A /
bl e i _
A (Le=211)
A2 (Le=0.2 (L1+L2) )
Az (Le=213)

Buckling of girder and plates
global buckling

M web buckling
Q

flange buckling R

Local buckling of compressed plate and web|

21
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Stress evaluation

loRy ' O
Ore OcuL

T-loading
( floor action )

(girder action)

allowable stress (N/a®)

SM4a90Y
SM400 | (o0 PRELA SM570
SMA400W SMA490W | SMAS70W
t=40 195 260 295 355
40<ts75 275 345
175 245
75 <t =100 265 335

(1 in case of combined stress check )

Design of girder bridges

Internal Stress of I-girder

M O(normal stress)

Q T (shear stress)

Lateral torsional buckling

22

24



Local Bucking at Flange-PL

Buckling at Web-PL

Torsion Deformation
no possibility of lateral torsional buckling

Cross Section of Box-girder

———"
[j:[ Single box girder|

At s@rt 47:

L= —
|

H i D 2-box girder

LA} 1

|

—
i

25

27

Shear Buckling at Web-PL

Global lateral torsional buckling

S (shear center) S (shear center)

Steel Plate Deck Box-girder

=l

/Erough rib

L |

Internal Stress of Box-girder
/>‘\

A

M on

[¢):3 Q

26
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Effective Width by Bending Stress
Ex. (SM490Y)
oA ) __0.14nhw
Be Be o2 - losshu
hw=2500" -ty o

tw, min.=1hT"; tw, min. _M tw, min. _%
2500 _ 50 3 = 11,970 = g.5mm

o8 Be Be =250 203 11.97 8.5

Be = Effective width —21mm —12mm —9omm

Minimum web thickness

hw without vertical stiffener
L/ hw = 15~20

S ey | sMs70
. Ma M5;
[simple support] SMA400W SMas0 SMA490w | SMA570W
b —_— [minhw| 70w | 60tw | s57tw 50tw
i L
4 vertical stiffener (v. siffener
horizontal stiffener( ) ex. (SM400) (SM490Y)
(h. stiffener) — h h
f tw > J0 =214mm  tw > ool =26.3m
hw=1500 | -~
SMA400W SMA490YW | SMAS70W W Ttw  — 22mm —5 27mm
no h.stiffener | hw/152 | hw/130 | hw/123 | hw/110 |
one h.stiffener | hw/2s6 | hw/220 | hw/209 | hw/1ss e "‘°"est'?.:;" 22"‘]’;‘: mmsg;fae" Z7'"|"‘,
no V. ner allowed no V. ner allowed
two h.stiffener | hw/310 hw/310 hw/294 hw/262

29

When span (L) becomes longer,
web depth (Hw) becomes higher.
(L /Hw : 15~20 {simple span})

Design of web

(1) Horizontal stiffeners

See PPT No.5
Thickness of web without stiffeners

becomes considerably large.

l}%ul; K [TJ = TT
Ot = ko(=23.9) - Owo
— To avoid thick web,

(2) Vertical stiffeners

Te =kr * Oro
stiffeners (H & V) are employed v =125
to prevent buckling.

verification formula

Flange in compression

I = ths
IF - —

‘E t T3
% W B> B2 e

JL : th. Turea=8.0 (1)
(A~

+

Check of shear strength of web
bu ~ lateral torsional buckling (O ) ,
ateral torsional buckling (=) [ex. In case of no horizontal stiffener]
b, b: ~ local buckling (O h o2 5
w T
O = min. { Oba, G } (] [[m]: {S7vssma?) }51.0 (a/hw > 1.0)
2
strength of beams (o) (S Lsgermarare] | 510 @/ 1.0)
In tension
b1 must be satisfied
t>-7

31




In case of the web with stiffener
0.2hw [0} 0.14hw [0}
.22hw
hvl 0.gnw (T:o.s(!hw 64h N
i i 0=0.280
a - a_
one h. stiffener two h. stiffeﬁer
B = 0.8hw B = 0.64hw
O = 0.60 O =0.280
E = } — formula without stiffener
-0

Stress resultants (M, Q)

are calculated using following model

main girder

" main girder

(1b) normal stress (ob) of box girder
ob = (M/I) -y =0ba

Oba = Oy/1.7
T no lateral torsional buckling

I : geometrical moment of inertia
(calculate using effective width A)

I — i L
8 T s
— LI

BL A A

Effective width (A)

Shear lag Wi 2b2 b3,
/ IF I PR P T
MA2 A2As As Aa
L bi] 2b2 | 2b3 [2ba] e ‘E
2ba

b
LY S Ooh= [ "o y)dy

A1 A1=A2 .
o O A A A o (y)dy / oo
v T

A': for evaluating peak stress (0o)

33
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Safety check

(1a) normal stress (ov) of I-gider

ob=(M/I)-y=o0a

min. {Oba, Ocal}

Oa

M : bending moment

I : geometrical moment of inertia

Oba : allowable flexural compressive stress
Ocal : allowable local buckling stress

lateral torsional buckling (oba)

L B
local buckling (Gcar)
A=b ( o s0.05)
A=fri-2[E)ib
(0.05< 2-<0.30) o _
- parabolic -
A=0.15Le  (0.30s B )
Le
- b
A=b ( e =0.02)
b b2
A={1.06-3.2||+4.5/ | |b
Le) Le
[ ] 'E —(2) - straight -
(0.02 < -<0.30)
A=0.15Le  (0.30 < bE ) 1
moment
Le: equivalent span length distribution

1~ M(le=L) byeq.(1)
T e\ Mi(le=0.8L) byeq.(1)
2. Aa(le=0.6L)

| 021 (02> 022025 rsy(Le = 0.2 (Li+La)) by eq.(2)
Lol L L. Aale=02(L2+3) #

o e | Mule=L)  byeq.(1)

02ls > AL2(Le = 0.8L3) by eq. (1)
| i As(Le = 2L2) byeq.(2)

34
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Effective width of concrete slab

(2) shear stress (7 ,) in flexure

rn=%<1a(=1v /1.7)

Q : shear force

Aw : cross sectional area of webs
Ta : allowable shear stress

vy : shear yield stress (= oy /y/3 )

% in case of checking flange, shear stress based on
shear flow theory is recommended

(6) bi-axial stress ( ox , oy ,tx) check

(8- ()8)+ (&) <2
TXY_-r0Ox
e
Mises stress (ge) 10%up
Ge = /0= 0x0y + 0y +3Tx? < 110a
(8- (808 + (81 +ala< 22
ry =Gy /{3 — 0a=J37a(0y: yield stress)

(8- (R + (89« ) <22

Design of stiffeners

39
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( 3) normal and shear stresses (ow ,7s,7w)

in torsion

in case of I-section, (Ow,Ts,Tw) can be neglected.
in case of box-section, (Ow,Tw) can be neglected.
Ow : warping stress
Ts : St.Venante shear stress (pure torsion)
1w : shear stress due to warping torsion

(4) combined stress ( ob ,7,) check
{%]2+ [;—:]1< 1.2%

Ob < Oa

Th <Ta

(5) with torsional moment

[gajz+ [%]Q 1.2%
0O < 0Oa

T <Ta

O = Ob + Ow

T

Tb + Ts +TwW

* take into account that loading conditions for Gmax. , Tmax are different

Vertical stiffener at support

thl: 'hw c=ﬁ<cca Ti’z
L

4 Oa=0u/1.7 l [F0-5hw
R _a . (O : column Il
(reaction) buckling strength )
W w0 W T
12tw12tw 12tw 12tw 12twi2tw12tw12tw
. To<2atw >24tw |

Effective area (Aeff < 1.7Astiffener)

Example

=19 (material grade : SM400)

tw=12 L '120

v
[ERRLSEEN

Aweh = 288x12 =
Arb = 2x120x19 =
80.16(e™) < 1.7Arib =82.08(™")
Iy =2,534™, 1y = 5.62°"
Le/ry = 0.5x160™) 5,62 = 14.2  (hw:1600™")
R =879.4 (kN)

= 879.4x10% _ (N/mm?)
Oc = g0 16x107 = 109.0 < O (0k)

2-stiffener plate 120x9

(Le/ry < 18 — Oca = 140 N/mm2)

40
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Horizontal stiffeners

3
—2tn In= L';h
hn
i
e tw Inz Mty

Thyrea.= 30 (a/hw)

a : distance of vertical stiffeners
hw : depth of the web

Intermediate vertical stiffeners

vertical stiffener at support

4wy @=F=15)

intermediate
vertical stiffener
s n compression flange  tension flange
tw g d
mm
S =4~5™™  ts scallop 35
(mm)
d>fu 5™ }ﬁllet no w{‘elding
te>-d_mm) welding  subjectedto o loading
13 concentrated
loading
End diaphragm
(0',1 )

Rv Try Z o
Bearing stress (ob) Normal stress (on)

aso | l"z i e fRe
v e,
-o-
to
tr { B -I'ﬁ TRy 4Ry
B R
oz _ R Onz _ R
= “AstBeto P

As : cross-sectional area of the stiffeners

Intermediate diaphragms
(to prevent distortion)

B DA [

plate cross bracing cross frame
I

0
plate type i bracing type

43

; Iv = tV2V3
t hutw?
I :'“* I > 11 Y vrea.
n—)l mv 2
J: h vurea =8.0 ()
1
tI: a : distance of vertical stiffeners

hw : depth of the web

Design of support diaphragms

& intermediate diaphragms

Torsion and distortion . .
under eccentric loading
,LP PR P2 P2 P2
+

= +

- bending - U

e o4
L)
P/a + P/4
P/4
P/a P/4
- torsion - - distortion -

/N

Warping stress (Ow) Distortional Distortional
warping stress (Oow)  bending stress (Qios)

Ow +

44

42



Torsion and distortion

rotation
(warping torsion theory) intermediate diaphragm

distortion

Mp
Opw= waﬂ
w
Elpy,
(distortional
k k k warping rigidity
of box girder)
K(intermediate dia.) Lp e
K BEAM
Analo
K, k BEF } Y

45

Name of Truss Members

-
Members

-
lower chord longitudinal girder —

gusset plate cross beam

47

Design of truss bridges

Types of typical Truss Bridge

Warren truss Warren truss
(parallel chord) (curved chord)
Warren Truss Pratt tr
with Vertical Material att truss
Howe truss K truss

Cross section and Panel point

Cross section Panel point

o Ng N

Bending moment (M)

Shear force (Q)
Bending moment(M)  Axial force (N)

Shear force(Q)
Axial force (N)
- Rigid frame structure - - Truss -

- Vierendeel Br. -

46



Preliminary design

A 2
panel length (A) |
span (L) 4
H/L=1/6~1/8
6 = 40 ~ 60°
A=6~10m
d*<L/ 600

k

*deflection by live load (excluding impact)

h/A for pin structure

_;Lhinge (pin)
/\

h_1 1
AT ~20 assumption for analysis
A': panel length .~ moment

™\ to reduce

P
moment rigid connection (reality)

If (h/A) is large, rigid frame model is used.

Cross section

Portal bracing ¢ upper lateral bracing

upper chord

longitudinal girder

Design of longitudinal girder

2

T
y—t—-—--

lz
- upper chord -

z
I

lz
- lower chord -

(B s e

y b'=b+ (2~3)™

T

-~
I—~diagonal member

- For the compressive member,
box section is used and the condition
Az (=Le/rs) < Ay (SLe/ry)
must be satisfied.
A : slenderness ratio
- (Aw) must be greater than (0.4Ag).
Aw : cross-sectional area of the web
Ag : cross-sectional area of the chord

Frame model

[ upper lateral ]

FCKCKXKE B

6@7.143 = 42.857™

cross beam

upper chord
end post, p:e 'é
N 1200 3
8 s
‘diagonal member L "z
lower chord A=7.1430
7@7.143 = 50.000™ 9
S
end 1oag
crossbeam * [S T TS AT A AT T
FANANZANZANZANZAN L

TE
longitudinal girder g

[floor system and lower lateral]

49

PT

Wd
_.::L= ;1)33'“

(

Pr
I Wa
| L=7.143"
[§

=A)

Maximum bending moment and shear force|

— Wdl2
Md = 8

Mu+i = % (1+i)

20

i-.20 __20 __
| = 50+L = 5047.143 - 03

Qd= W;L

Qu+i = Pr(1+i)

Stress check

outer girder (&) inner girder
2501,750 1,000 1,000 1,750 1,000 1,750 500
PP WPoPL PP
@ I I I ]
650, 2,600 2,600 | 2,600 |
] ]
/5({000 <000
Linfi fine] y  Cinfl line ]
Load intensity

W, ®

We, ® }deadload

P, ® | ..
! live load
PT,

o = MetMisidy (= 0y / 1.7)
1 since no possibility of buckling
T = Q‘%L—“< tal=ty/1.7)

(Plus design of vertical stiffener)

Deflection check
PT
5< WLoo (L<10™)
\6

52
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Design of cross beam

Span of cross beam is assumed to be
distance between chord member

A=7.143"

El =
71437 | 7.1437 H "
L2143 743 area of influence line

[ influence line ]

Wd,1 (outer girder) = Wd,®) x A
Wd,2 (inner girder) = Wa,(® x A
Wad : Self weight of cross beam

Maximum bending moment

/1,200, 1,750 1,000, 1,750 1,200
Wd,ll lP |P\ﬂV¢Z|P Pl\f\’d,i Wa
(ITE L ETTTET FI IR T TR LTI

2.

| |
850 2600 | 2600 850
6,900

“““‘»-:ﬂ‘l.fKrA =5.951m

[influence line ]

)

Md, Mu+i

Buckling of Truss Member

Buckling due to compression

53

55

Shear force

)
700 1,750 1,000 1,750 _ 1,700 _

P War P WaziP PE Wa Wa

L T =
850/ 2,600 | 2600 850,
6,900

gl/___-—f‘kA = 3.450"
- ) P /slab
[influence line ] lower
chord (||| cross beam
Qq, Qu+i 450, 250
70009

Design of
chord and web members

Effective buckling length (Le)

[ Chord member ]
in-plane & out-of-plane buckling  Le = A (panel length)

A

[ Web member ]

in-plane buckling out-of-plane buckling
-
Le=A

Lo/ Le(>080)
_ (first assumption
< [ Le = 0.9A Pt J

Maximum allowable slenderness ratio”

e
main member 120
compression |
secondary membef 150
N main member 200
tension
secondary member 240

* to ensure bridge global rigidity

*x_effective buckling length (in compression)
panel length (intension)

*xx members in cross or lateral bracing
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Ex. Design of upper chord
(ex.) Upper chord Us ( Axial force = -2370.1<N)

370 (mm)
z
= - A=217.6"
y : ve Iy= 37,151"“:
s 16+ 16 16 I = 39,633 > Iy
F— (SM400)

310

local buckling of plate b/t =31/1.6 = 19.4 < 38.7 (ok)
global buckling of member
Le/r = 714.3 //37,151/217.6 =54.6

Oca = 140 — 0.82 (54.6 — 18) = 110"™"

= 2370.1x103 _ N/,
0 =57 6x10 = 1089 < 0 (0k)

Design of gusset plate

t (plate thickness, mm) > 2 x %

P : maximum force of end post or web member (kN)
b : width of end post or web member (mm)

Design of upper lateral bracing

wind load ( > earthquake load )
u: us: |}
&/’Tﬁrﬁ"m

L= 12)\ 42,857 _\

16,900

Ny

965

A= -14.14m
JT=E N = + 3.80x14.14

[ influence line of UD1 ] “Twind load (kN/m)
=+53.73*N

T @ :A=—3.5714“‘
x N = -3.80x3.5714

[influence fine of US1] = —13.57 N

-0.660
i

-1.000

UD:

N _ check of slenderness ratio
— in compression —

» 1610 . Le/ry = 496.5/4/307/24.3 = 140 < 150

y I y
A=243" 9

=307 7z
et
12 =307¢T 0c = BBIXIG_ 5 1 (W) <1 207y =34.9 ™)
(ok11)

o= S0, <550

ey = 45.6 (0.5+ 1000) = 29.1M/m™)

110"

— in tension — extra coefficient

160
5 25 Ot = 53 73><103_ 36.20Vmm) ¢ 1 2ga
° = 1.2x140 = 168(N/mn)
9 m o
An =(160-2x25) x9+ 110 xo= 1,485
An : net cross sectional area
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Design of lateral bracing members

buckling length

Le = 0.9A (A: panel length)

( *from conservative viewpoint, Le = A )
max. allowable slenderness ratio

in compression Le/r < 150
in tension A /r<240

Strut and lateral bracing members attached to
chord in compression
have to be designed to resist the following loads

. P1+P2
Strut : 100

lateral bracing : PL 3’0"2 sec®

o
gusset

Oc<0a (Le=6,900m"m)

* height of strut in lower deck type bridge
shall have the same height of the chord

Design of lower lateral bracing

earthquake load (> wind load )

/
e rd d Y " b =3
X DX A &

L=7x7,143=50,000

~
8 N[O ~——
al N A =30.84m N =11.31x30.84 = 348.8"

earthauake load (kN/m)

o1 \
“s 258 01 = 3488X10°_ 198 8(Vmm)< 1 500
180 | @ = 1.5x140 = 210(/mm?)

An =(180-2x25) X9+65x9= 1,755'“"‘ extra coefficient
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Pony Truss Bridges

121

Design of Pony truss

no upper lateral bracing

< M

v He—/1) —>H= ﬁ
|
z —-ﬁ-— z
J P : maximum compressive
axial force
ry > 1.5rx Safety shall be checked

under H loading
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