Contents of December Lecture

- Cable-stayed bridges -
[12-1-1] Fundamental of vibration (1)
[12-1-2] Fundamental of vibration (2)
[12-1-3] Vibration (DVD)
[12-2-1] History and name
[12-2-2] Design parameters and selection (1)
[12-2-3] Design parameters and selection (2) (DVD)
[12-3-1,2] Estimation of stress resultants (1) [12-3-3] Exercises

Dynamic response of structures due to wind

[12-4-1] Design and erection of cable
[12-4-2] Design of girder
[12-4-3] Design of tower
[12-5-1] Erection of girder and tower (DVD)
[12-5-2] Wind resistant design (DVD)
[12-5-3] Limit span of cable-stayed bridges

Fundamental of Vibration (1)

Vibration and Control

Mode shape and natural period

T_{i} : natural period (sec.)
$\mathrm{f}_{\mathrm{i}}\left(=1 / \mathrm{T}_{\mathrm{i}}\right)$: natural frequency (cycle/sec., Hz_{z})

Free vibration of 1 -DOF
Degree of Freedom

$-m \ddot{x}=k x$
$m \ddot{x}+k x=0$
$\ddot{\mathrm{x}}+\omega^{2} \mathrm{x}=0$
$\omega=\sqrt{\mathrm{k} / \mathrm{m}}$
W : weight (N, kN)
m (=w/g) : mass
ω : natural circular
g ($=9.8 \mathrm{~m} / \mathrm{sec}^{2}$)
: gravitational acceleration
k : spring constant (N / mm)
$\ddot{\boldsymbol{x}}\left(=\frac{\partial^{2} \mathrm{x}}{\partial \mathrm{t}^{2}}\right):$ acceleration

$X=A \cos \omega t+B \sin \omega t$

at $\mathrm{t}=0 \Rightarrow \mathrm{X}=\mathrm{X}_{\mathrm{o}}, \nu\left(=\frac{\partial \mathrm{x}}{\partial \mathrm{t}}\right)=\nu_{\mathrm{o}}(\leftarrow$ initial condition)
$X=X_{o} \cos \omega t+\frac{X_{0}}{\omega_{0}} \sin \omega t$
$=C \cos (\omega t-\beta)$
$C=\sqrt{X_{o}{ }^{2}+\left(\frac{X_{0}}{\omega 0}\right)^{2}}=\sqrt{A^{2}+B^{2}}, \beta=\tan ^{-1}(B / A)$
$\left(\omega=\sqrt{k / m}, f=\omega / 2 \pi=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}, T=1 / f=2 \pi / \omega\right)$

Free vibration with damping

Short-span bridges

$\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\mathrm{B}}\left(\mathrm{f}_{\mathrm{A}}>\mathrm{f}_{\mathrm{B}}\right)$
$\frac{X_{1}}{X_{2}}, \frac{X_{2}}{X_{3}}, \cdots . .>\frac{\bar{X}_{1}}{\bar{X}_{2}}, \frac{\bar{X}_{2}}{\overline{X_{3}}}, \cdots \cdots$

ex. 1	ex. $2 \quad x(t)$
$\begin{gathered} \omega=\sqrt{\frac{k}{W / g}}=\sqrt{\frac{20}{100 / 9800}}=44.3 \\ T=\frac{2 \pi}{\omega}=\frac{2 \pi}{44.3}=0.142 \mathrm{sec} . \\ f=\frac{1}{T}=7.04 \mathrm{~Hz} \end{gathered}$	when load (P) is applied at (A) $\mathrm{X}_{\mathrm{A}}=\frac{\mathrm{PL}^{3}}{48 \mathrm{EI}}$ EI : flexural rigidity of beam $\begin{aligned} & \mathrm{K} \text { (spring constant) }=\frac{\mathrm{P}}{\mathrm{X}_{\mathrm{A}}}=\frac{48 \mathrm{EI}}{\mathrm{~L}^{3}} \\ & \omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{48 E I}{L^{3}} \cdot \frac{g}{\omega}}=\sqrt{\frac{48 \mathrm{EIg}}{\mathrm{WL}^{3}}} \\ & T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{W L^{3}}{48 E I g}} \end{aligned}$

ex.3 Pendulum \quad ex.4 U-shape pipe with water

Free vibration of 1-DOF with damping

$\mathrm{m} \ddot{\mathrm{x}}+\mathrm{Fd}+\mathrm{kx}=0$

1) Solid friction $\mathrm{Fd}=\mathrm{cx}$
2) Coulomb friction $\mathrm{F}_{\mathrm{d}}=-\mu \mathrm{N}$ μ : friction coefficient N : press force

3) Viscous force
$\mathrm{F}_{\mathrm{d}}=\mathrm{c} \dot{\mathrm{X}}(=\mathrm{cv})$ v : velocity

C : damping constant h : damping coefficient

Assuming $X=C e^{-p t}$, and substituting into eq. (a)

$$
\begin{aligned}
& p^{2}+2 h \omega p+\omega^{2}=0 \\
& p=-h \omega \pm \sqrt{h^{2}-1}
\end{aligned}
$$

$h<1.0$ vibration

$h<1.0 \rightarrow p=-h \omega \pm i \omega \sqrt{1-h^{2}}$ $\nu(\mathrm{t})=\mathrm{e}^{-\mathrm{h} \omega \mathrm{t}}\left[\mathrm{A} \sin \left(\omega \sqrt{1-\mathrm{h}^{2}}\right) \mathrm{t}+\mathrm{B} \cos \left(\omega \sqrt{1-\mathrm{h}^{2}}\right) \mathrm{t}\right]$ $\left.=X e^{-h \omega t}\left\{\sin \left(\omega \sqrt{1-h^{2}}\right) t-\phi_{0}\right)\right\}$

$$
\begin{aligned}
\delta & =\ln \frac{\mathbf{X}_{1}}{\mathbf{X}_{2}}=\ln \frac{\mathrm{e}^{-h \omega t_{1}}}{\mathrm{e}^{-h \omega\left(t_{1}+T_{d}\right)}}=\mathrm{h} \omega T_{d} \\
& =\frac{2 \pi h}{\sqrt{1-\mathrm{h}^{2}}}
\end{aligned}
$$

Since $h \ll 1.0, \delta=2 \pi h$

ex.

Damped vibration with $\mathrm{T}_{\mathrm{d}}=1.0 \mathrm{sec}$.
After 10 sec., an amplitude was reduced to 90%

$$
\begin{aligned}
\delta=\ln \left(\frac{X_{m}}{X_{m+10}}\right) & =\frac{20 \pi h}{\sqrt{1-h^{2}}} \\
\text { from } \frac{X_{m}}{X_{m+10}} & =\frac{1}{0.9} \\
\frac{20 \pi h}{\sqrt{1-h^{2}}} & =\ln \left(\frac{1}{0.9}\right)=0.1054 \\
20 \pi h & =0.1054 \sqrt{1-h^{2}} \\
\delta=2 \pi h & =1.678 \times 10^{-3}
\end{aligned}
$$

In case of earthquake input

$m \ddot{\phi}+c \dot{x}+k x=0$
$\ddot{\phi}=\ddot{z}+\ddot{x}$
$m \ddot{x}+c \dot{X}+k x=\underline{-m \ddot{z}}$

$[12-1-2]$
Fundamental of
Vibration (2)

Vibration of beams

[simple beam]

[cantilevered beam]

1 st mode

2 nd mode

3 rd mode

$\begin{aligned} \omega i & =\lambda^{2} \sqrt{\frac{E I}{m}} \\ & =\left(\frac{i \pi}{L}\right)^{2} \sqrt{\frac{E I}{m}} \\ X & =\frac{\sin \frac{i \pi}{L} x}{\text { mode shape }} \cdot\left(e^{i \omega t}\right) \end{aligned}$			
Boundary conditions	入L		
	1st	2nd	3rd
Fix-Free	1.8751	4.6941	7.8548
Fix-Fix	4.7300	7.8532	10.9956
Fix-Pin	3.9266	7.0686	10.2102

$\mathbf{X}=\mathbf{X o}_{\mathrm{o}}+\mathrm{X}_{\mathrm{P}}$
$X_{o}=e^{-h \omega t}\left(C_{1} \cos \omega^{\prime} t+C_{2} \sin \omega^{\prime} t\right)$

$$
\begin{equation*}
\omega^{\prime}=\sqrt{1-h^{2}} \cdot \omega \tag{2}
\end{equation*}
$$

$X_{\mathrm{P}}=\mathrm{A} \cos \omega_{\mathrm{p}} \mathrm{t}+\mathrm{B} \sin \omega_{\mathrm{p}} \mathrm{t}$
Substituting eq.(2) into eq.(1)

$$
A=\frac{F_{o}}{m} \frac{\omega^{2}-\omega_{p^{2}}}{\left(\omega^{2}-\omega_{p}^{2}\right)^{2}+4 h^{2} \omega^{2} \omega_{p}^{2}}
$$

$B=\frac{F_{o}}{m} \frac{2 h \omega \omega p}{\left(\omega^{2}-\omega_{p}^{2}\right)^{2}+4 h^{2} \omega^{2} \omega_{p}^{2}}$
$X=e^{-h \omega t}\left(C_{1} \cos \omega^{\prime} t+C_{2} \sin \omega^{\prime} t\right)$
$+\frac{1}{\omega^{2}} \frac{\mathrm{Fo}_{0}}{\mathrm{~m}}\left\{\frac{1}{\sqrt{\left(1-\omega_{p}^{2} / \omega^{2}\right)^{2}+4 h^{2} \omega_{p}^{2} / \omega^{2}}}\right\} \cos (\omega \mathrm{pt}-\varphi)$ $\frac{\mathrm{Fo}_{0}}{\boldsymbol{\omega}^{\mathbf{2} \mathrm{m}}}=\frac{\mathrm{Fo}_{0}}{\mathrm{~K}}=\delta_{\text {st }}$ (static response)

Forced vibration of 1-DOF

Under harmonic excitation
$\mathbf{m} \ddot{\mathbf{x}}+\mathbf{c} \dot{\mathbf{x}}+\mathbf{k x}=\mathrm{Fo}_{\mathrm{o}} \cos \left(\omega_{\mathrm{p}} \mathrm{t}\right)$
$\ddot{\mathrm{x}}+2 \mathrm{~h} \omega \dot{\mathrm{x}}+\omega^{2} \mathrm{x}=\left(\frac{\mathrm{Fo}}{\mathrm{m}}\right) \cos \left(\omega_{\mathrm{p}} \mathrm{t}\right)$
$x=x$ o (general solution [\leftarrow free vibration]) + Xp $_{\mathrm{p}}$ (particular solution)
$L=\frac{1}{\sqrt{\left(1-\omega_{p}^{2} / \omega^{2}\right)^{2}+4 h^{2} \omega_{p}^{2} / \omega^{2}}}=\frac{D}{\delta_{s t}}$
D : dynamic response
L : magnification factor (due to vibration)
Since first term (x_{0} : free vibration with damping) will distinguish as time passes, hence second term (X_{p}) exists, and peak value $\mathrm{L}_{\text {max. }}$

$$
\begin{align*}
& \frac{\mathrm{dL}}{\mathrm{~d}\left(\omega_{\mathrm{p}} / \omega\right)}=\mathrm{D} \rightarrow \frac{\omega_{\mathrm{p}}}{\omega}=\sqrt{1-2 \mathrm{~h}^{2}} \tag{1}\\
& L_{\text {max. }} \doteqdot \frac{1}{2 \mathrm{~h}}
\end{align*}
$$

How to avoid resonance \quad| (1) Avoid $\left(\omega_{p} / \omega=1.0\right)$ |
| :--- |
| ω_{p} : frequency of force |
| ω : frequency of structures |
| change $\omega\left(=\sqrt{\frac{\mathrm{K}}{\mathrm{m}}}\right)$ |

Vibration of string (cable)

Vibration of beams under compressive force

$P A \frac{\partial^{2} v}{\partial t^{2}}-P \frac{\partial^{2} \nu}{\partial x^{2}}+E I \frac{\partial^{4} w}{\partial x^{4}}=0$

Vibration of plate

$B\left(\frac{\partial^{4} W}{\partial x^{4}}+2 \frac{\partial^{4} W}{\partial x^{2} \partial y^{2}}+\frac{\partial^{2} W}{\partial y^{4}}\right)+\rho t \frac{\partial^{2} W}{\partial t^{2}}=0$ $\Downarrow w(x, y, t)=\Sigma \Sigma A m n \sin \frac{m \pi x_{\sin }}{\mathrm{a}} \frac{n \pi y_{\mathrm{e}}}{\mathrm{b}} \mathrm{e}^{i \omega t}$

$$
\mathbf{w}_{\mathrm{mn}}=\sqrt{\frac{B}{p t}}\left\{\left\{\frac{\left(\frac{m \pi}{a}\right)^{2}}{}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right\}
$$

$$
B=\frac{E t^{3}}{12\left(1-\nu^{2}\right)}, t: \text { plate thickness }
$$

Rayleigh method

- approximate method for frequency -

Assuming vibrational mode shape satisfying boundary conditions, and calculate kinematic energy (K) and strain energy (V),
$K_{\text {max }}=V_{\text {max. }} \rightarrow$ natural frequency

$$
\begin{array}{|c|}
\hline \text { ex. beams } \\
K=\frac{\rho A}{2} \int_{0}^{L}\left(\frac{\partial \nu}{\partial t}\right)^{2} d x \\
V=\frac{E I}{2} \int_{0}^{L}\left(\frac{\partial^{2} \nu}{\partial x^{2}}\right)^{2} d x \\
\text { Assuming } \nu(x, t)=x(x) \cos \omega t \\
K=\frac{\rho A \omega^{2}}{2} \int_{0}^{L} x^{2} d x \cdot \sin ^{2} \omega t \\
V=\frac{E I}{2} \int_{0}^{L} x^{\prime \prime 2} d x \cdot \cos ^{2} \omega t \\
K \text { max. }=V_{\text {max. }} \rightarrow \omega^{2}=\frac{E I}{L} \int_{0}^{L} x^{\prime \prime 2} d x \\
\rho A \int_{0}^{L} x^{2} d x \\
\text { We assume } X=\sin \frac{\pi}{L} x \\
\omega=\left(\frac{\pi}{L}\right)^{2} \sqrt{\frac{E I}{\rho A}}
\end{array}
$$

Structural (Mechanical) means

1) Change natural frequency

> by mass or stiffness change
\uparrow we will face difficulty
2) Add damping (untuned type)
3) Add damping (tuned type) Passive type
4) Active damping

Multi degree of freedom

by finite element analysis
[Static response] [Dynamic response]
$[\mathrm{K}]\{\mathbf{d}\}=\{\mathbf{P}\}$
$[\mathrm{M}]\{\overrightarrow{\mathbf{d}}\}+[\mathbf{C}]\{\dot{\mathbf{d}}\}+[\mathrm{K}]\{\mathbf{d}\}=\{\mathrm{P}(\mathrm{t})\}$
[K] : Stiffness matrix
\{d\} : displacement vector

$\left.\begin{array}{l}\text { Structural (Mechanical) means } \\ \text { 1) Change natural frequency } \\ \frac{\text { by mass or stiffness change }}{\uparrow \text { we will face difficulty }} \\ \text { 2) Add damping (untuned type) } \\ \text { 3) Add damping (tuned type) }\end{array}\right\}$ Passive type

Dynamic response due to wind

Control of vibration

(1) Aerodynamic means control the wind flow by changing cross-sectional shape (or) by attachment
(2) Structural (Mechanical) means add damping etc.

Truss and beam elements

Plane (2D) model (by truss and beam elements)

Mass matrix

(consistent mass)
$[m]=\operatorname{Lij} \int_{0}^{1}[A(\xi)]^{\top} \rho[A(\xi)] d \xi$

$$
\left\{\begin{array}{l}
\mathbf{u} \\
\nu \\
\boldsymbol{\theta}
\end{array}\right\}=[\mathbf{A}(\xi)] \cdot\left[\begin{array}{l}
\mathbf{u}_{\mathbf{i}} \\
\mathbf{u}_{\mathbf{j}} \\
\nu_{i} \\
\theta_{i} \\
\boldsymbol{\theta}_{\mathbf{j}} \\
\theta_{\mathrm{j}}
\end{array}\right\}
$$

Eigenvalue analysis

$[\mathrm{M}]\{\ddot{\mathrm{d}}\}+[\mathrm{K}]\{\mathbf{d}\}=\{\mathbf{0}\} \quad([\mathbf{C}]=[0],\{\mathbf{P}\}=\{0\})$
putting $\{\mathbf{d}\}=\{\mathbf{q}\} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}$
$\operatorname{det}\left|[K]-\omega^{2}[\mathrm{M}]\right|=0$
\Downarrow
$\omega_{\mathrm{i}},[\varphi]$ (\leftarrow modal matrix) are obtained
$\{d\}$ is expressed by
$\{\mathbf{d}\}=[\boldsymbol{\varphi}]\{\mathbf{q}\}$
\{d \} : displacement vector
\{ q\} : generalized displacement vector

ex.

$[\mathrm{M}]\{\ddot{\mathbf{d}}\}+[\mathrm{C}]\{\dot{\mathbf{d}}\}+[\mathrm{K}]\{\mathbf{d}\}=-\ddot{z}_{0}[\mathrm{M}]\{\mathbf{1}\}$
zo : ground movement
$\{1\}^{\top}:\{1,1, \cdots \cdots 1\}$
[C] : proportional damping

$$
\{\mathbf{d}\}=[\varphi]\{\mathbf{q}\}
$$

$[\varphi]^{\top}[\mathrm{M}][\varphi]\{\ddot{\mathbf{q}}\}+[\varphi]^{\top}[\mathrm{C}][\varphi]\{\dot{\mathbf{q}}\}+[\varphi]^{\top}[K][\varphi]\{\mathbf{q}\}$

$$
=\ddot{\mathrm{z}}[\mathrm{~L}]^{\top}[\mathrm{M}]\{\mathbf{1}\}
$$

from orthogonality condition of each mode,
independent vibration of each mode is obtained
$M_{j}^{*} \ddot{q}_{j}+C_{j}^{*} \dot{q}_{j}+K_{j}^{*}{ }_{\mathrm{q}}^{\mathrm{j}}=-\ddot{z}_{0}[\varphi]^{\top}[M]\{1\}$
$\ddot{q}_{j}+2 h_{j} w_{j} \dot{q}_{j}+w_{j}{ }^{2} q_{j}=-\frac{\ddot{z} 0[\varphi]^{\top}[M]\{1\}}{M_{j}^{*}}$ $=-\beta_{\mathrm{j} z}{ }^{\mathrm{M}_{\mathrm{j}}}$

Vibration(DVD) \& Commentary

History \& Name of cable-stayed bridge

History

Cable-stayed bridge by Verantius, supporting the timber deck by chains (Venice, 1617)

King's Meadows Bridge

Tower : cast iron
Cable : wire
constructed by English engineers, Redpath and Brown in 1817
Harp-type cable-stayed bridge
proposed by Hatley (1840)

At that time, famous scientist Navier made accident investigation, and concluded that

Suspension bridge is

superior to cable-stayed bridge

Since then, this type of the bridge almost disappeared until the Stromsund bridge in Sweden was constructed in 1955, and it is called " beginning of modern bridge"

In 1824, the bridge was collapsed. The reason is the broken of chain due to walker loading
Cable-stayed pedestrian bridge, crossing over Saale river, Germany

《in-plane flexural rigidity》 [Harp-type] < [Radial type]

Cable-stayed and suspension bridge* proposed by Dischinger (1938) Hamburg, Germany

Proposal for a railway bridge with a span of 750-m over the Elbe river near Hamburg, Germany
*in order to increase in-plane flexural rigidity
*in order to get smaller deflection

First multi-cable type Cable-stayed bridge

Simple span cable-stayed bridge

2-span continuous cable-stayed bridge

(pendulum support)

\square

Mechanical behavior under live loading

Anchor cable plays an important role

Under lateral loading

girder itself* has to resist lateral loading
*out-of-plane flexural rigidity

Design of Cable anchor in the girder

anchor girder

Stress resultants
\& deflection

Buffer (by rubber) To mitigate secondary moment

Calculation of stress resultants
$\left(\mathbf{N} \rightarrow\left[\sigma_{n}\right], \mathbf{M} \rightarrow\left[\sigma_{b}\right], \mathbf{Q} \rightarrow[\mathbf{T ь}], \mathbf{T} \rightarrow[\mathbf{T s}]\right)$ and deflection ($\bar{\delta}$) is carried out by Finite Element Analysis using fish-bone model (beam or fiber elements).

At structural details* accompanied by stress concentration**, Finite Element Analysis (shell \& solid elements) is carried out.

* cable anchor structures etc.
** can not be caught by beam element

FEA of the Cable Anchoring Section

Calculation theory for the design
$[\mathbf{K E}]\{\mathbf{d}\}=\{\mathbf{f}\}$
(1)
linear analysis
$\left[\mathbf{K E}+\mathbf{K G}_{\mathbf{G}}(\mathbf{N d})\right]\{\mathbf{d}\}=\{\mathbf{f}\}$
linearized finite displacement analysis
[K_{E}] : elastic matrix
ND : initial axial force under dead load (given)
$\left[K_{G}(N D)\right]$: geometrical matrix
$\{d\}$: displacement vector
$\{\mathbf{f}\}$: force vector
Influence line analysis is possible!!

Geometrical non-linear analysis

Material \& geometrical non-linear analysis
$\left[K_{E}+\frac{K_{P}}{\hat{\Lambda}}+K_{G}(\mathbf{N D}+\triangle \mathbf{N})\right]\{\Delta \mathbf{d}\}=\{\Delta \mathbf{f}\}-(4)$
Plastic behavior
Since displacement under construction is large, eq. (3) has been used.
To obtain ultimate strength,
eq. (4) has been used.

Load cases of Ultimate Strength Analysis

Design parameters \& their selection (1)

[1] Girder

[1] Mono or multi-cellular

box [closed-section] girder (from aerodynamic stability and maintainability)

[2] Truss girder

(mainly for double-deck type)
[3] Open-section [n -section] girder
(from economical viewpoint, however, shows poor aerodynamic stability compared to box section)
() : reason of selection

From aerodynamic stability viewpoint, Streamlined box section
has been selected.

> Combination of
[box section] \& [2-plane cable arrangement] \& [A-shaped tower] gives highest torsional rigidity
 ?

Girder with open section (from economical viewpoint)

π-shaped (2-I) girder bridge with steel deck

Steel-concrete composite I girder

[COST]

Open (π-shape)section \leqq Closed box section \{ \uparrow 2-plane cable* $\}$

- From aerodynamic stability viewpoint, closed section is preferably selected in Japan (typhoon attack)
- maintainability has to be taken into account
*since torsional rigidity of the girder is very low

(Steel-concrete) Hybrid girder
PC girder with steel corrugated web
PC girder with steel pipe truss web

[higher torsional rigidity is expected (higher wind stability)]

Two towers

tower underneath the girder
Tower underneath the girder (king post type)

b) Height of the tower (from the deck level)

$\mathrm{Lc} / \mathrm{h} \doteqdot 5$

$(1.8 \mathrm{Lc}) / \mathrm{h} \fallingdotseq 5$
$\mathrm{Lc} / \mathrm{h} \doteqdot 10$ (extradosed-type)
 (extradosed-type)

Optimal (economical) solution $\mathrm{Lc}_{\mathrm{c}} / \mathbf{h} \doteqdot 5.0$

If difficult to set ($L_{c} / h \fallingdotseq 5.0$) at site, don't exclude and check (compare!!) \downarrow
[1] cable-stayed bridge with a lower tower
($\mathrm{h}<\mathrm{L}_{\mathrm{c}} / 5.0$)
[2] Another solutions
such as truss bridges, arch bridges and so on Check which one is economical !!

Cable-stayed bridges

L/h $\cong 5.0$ (economical)
Extradosed type

L/h $\cong 10.0$

Under dead load,

 cables support the girder.However,
since cable inclination is small, \&
flexural rigidity of the girder is large,
live load is carried by mainly girder.
\Rightarrow less possibility of fatigue in cables

In Japan,
cable safety factor against breaking
is set 1.7 (for extradosed-type)
That for conventional cable-stayed bridge is $\underline{2.5}^{*}$

[^0]

[3] Cables

a) Cable arrangement - radial, fan, harp
b) Cable number -multi, a few
c) Cable plane -one \& two
d) Cable type

From mechanical viewpoint, since steep inclination of cables can be obtained, radial type is preferable.

However, since multi-cable has to be anchored at one point, complex structural detail for anchoring is requisite,

Fan (or semi-fan) type has been preferably employed.
\Rightarrow many practices is Fan type!!

Even though mechanical efficiency* is a little bit inferior, because of smaller cable inclination,

In my private opinion and feeling,

Harp-type looks nice and gives a beautiful appearance.
*span up to 500m, difference of mechanical efficiency compared to fan-type is not so severe (please try to check).

$$
\mathrm{T}_{\sin \theta}=\mathrm{q} \mathrm{~L}_{\mathrm{cD}}
$$

$$
\mathbf{T}=\mathbf{q} \mathrm{L}_{\mathrm{cD}} / \sin \theta
$$

$\mathbf{N}_{\text {max }}=\frac{\mathrm{qLc}^{2}}{8 \mathrm{~h}_{0}}$

Stayed by one (or) a few number of cables

Multi-cable

Cable size is smaller.
\Rightarrow easier to handle (design, fabrication, erection and maintenance viewpoints)
\Rightarrow easier to replace
\Rightarrow prone to vibrate (sometimes, need damper etc.)

[HiAm anchor cable] and [New PWS]

Cable strand with socket is made at shop and transferred to the site.

Anchor system (socket) has high fatigue strength.

Strand is consisted by $\boldsymbol{\Phi}$ (diameter)-7* parallel wire (New PWS has a slight twist).
*7-millimeter diameter
(wire diameter of PWS for suspension bridge is around 5 millimeters)

Cable section [New PWS]

Physical property [HiAm anchor cable]

Anchorage
-
四

Design parameters \& their selection (2)

due to tower top movement $(\rightarrow \leftarrow) \Rightarrow$ flexible

Installation of intermediate piers
in the side span is very effective
for increasing
in-plane flexural rigidity

[5] Span length

Max. (possible*) span length of cable-stayed bridge will be around 1,200-m (or 1,300-m)

Suspension bridge will be

3,500-m**

* From economical comparison with suspension bridge
**Using current cable material

[6] Cable system

(axial force in the girder, compression \Rightarrow tension)

Span extension by incorporating
partially earth-anchored system

set eq.(1) and eq.(2) to be equal,

$$
L c+2 L o=\sqrt{ } 2 \times L c
$$

Erection method (1)

- cable erection + balanced cantilever erection -

Combined [earth and self-anchored
cable-stayed] bridge and [suspension] bridge
$3^{\text {rd }}$ Bosporus Strait Br. (Istanbul in Turkey)
[7] Extradosed PC Bridges

Cable-stayed bridges

L/h $\cong 5.0$ (\leftarrow economical)

Extradosed type

$\mathrm{L} / \mathrm{h} \cong 10.0$

[8] Hybrid (composite \& mixed) cable-stayed bridges

Basic concept

Steel: light but expensive
Concrete : heavy but cheaper

\downarrow
 Combination (How to combine)

of both merits \&
lead to economical solution

O : axial compressive force in the girder is small

[9] Pedestrian
cable-stayed bridge

[12-3-1,2]

Estimation of stress resultants of cable-stayed bridge

cable pre-stress $\left\{\mathbf{P r}_{\mathbf{r}}\right\}=\left\{\mathbf{T}_{\mathbf{D}}\right\}-\left\{\mathbf{T}_{\mathrm{D}, \mathrm{E}}\right\}$
Designer's decision tension under dead load Designer's decision

T_{i} : designer's choice

In case of ($\mathrm{Ls}<\mathrm{Lc} / 2$)

asymmetric arrangement

Countermeasure (1)
Installation of additional piers in a side span

Countermeasure（2）

Installation of concrete weight（concrete girder） with additional piers in a side span

chete weight
 そうねね vねね

concrete
girder \quad steel girder

BRIDGE CLOSURE METHOD＊

＊By Mr．Tomoda（NIPPON KOEI）

Ex．Bending moment at completion （Shinminato Br．）

Countermeasure（3）

Fundamental rule

Concept of camber

（Simple Girder）

Cantilever construction method

 (3 span continuous girder)

$$
\begin{aligned}
& \text { (} \mathrm{L}_{\mathrm{s}}<\mathrm{L}_{\mathrm{c}} / 2 \text {) } \\
& \\
& \Delta N_{d}=\frac{W_{d}}{h_{T}} \int_{0}^{L / 2 / 2} x d x-\frac{W_{d}}{h_{T}} \delta_{0}^{L s} x d x \\
& =\frac{W_{a L C} L^{2}}{8 h_{T}}\left\{1-\left(\frac{L_{s}}{L_{c}}\right)^{2}\right\}
\end{aligned}
$$

live load (p)
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \quad \downarrow \downarrow \downarrow \downarrow \downarrow$

$$
\begin{gathered}
\Delta \mathbf{N}_{\mathrm{p}}=\frac{\mathrm{pL}_{\mathrm{c}}^{2}}{8 \mathrm{~h}_{T}} \\
\Delta \mathbf{N}=\Delta \mathbf{N d}_{\mathrm{d}}+\Delta \mathbf{N}_{\mathrm{p}} \\
=\frac{\mathbf{W}_{\mathrm{d}} \mathrm{~L}_{\mathrm{c}}^{2}}{8 \mathrm{~h}_{T}}\left\{1-\left(\frac{\mathrm{L}_{\mathrm{s}}}{\mathrm{~L}_{\mathrm{c}}}\right)^{2}\right\}+\frac{\mathrm{pL}_{c}^{2}}{8 \mathrm{~h}_{T}}
\end{gathered}
$$

Tension in cables

Tension in cable for the design

$\mathrm{T} \sin \theta=\mathrm{W}_{\mathrm{d}} \mathrm{Lcd}+\left(1.2 \mathrm{p}+\frac{\mathrm{P} \beta}{2}\right) \mathrm{Lcd}$

$$
\mathbf{T}=\left\{\mathbf{W}_{\mathrm{d}} \mathbf{L c D}+\left(1.2 \mathbf{p}+\frac{\mathbf{P} \beta}{\mathbf{2}}\right) \mathbf{L}_{\mathrm{cD}}\right\} / \sin \theta
$$

Cross sectional area (Ac_{c})
$A c=T / \sigma a$
σ_{a} : allowable stress of cable

Tension in anchor cable and

uplift force at end support

Bending moment in the girder

concentrated load (P)

$$
\begin{aligned}
\mathrm{RC}_{\mathrm{C}} & =\mathrm{P} \frac{\beta}{2} \mathrm{~L}_{\mathrm{cc}}=\frac{\mathrm{P} \beta}{2} \mathrm{~L}_{\mathrm{cd}} \\
\mathrm{R}_{\mathrm{u}}+\mathrm{R}_{\mathrm{C}} & =1.2 \mathrm{pLcd}+\frac{\mathrm{P} \beta}{2} \mathrm{~L}_{\mathrm{cd}}
\end{aligned}
$$

Bending moment
in the girder

$$
\begin{aligned}
& \Delta N=\frac{W_{d} L_{c}^{2}}{8 h_{T}}\left\{1-4\left(\frac{L_{s}}{L_{\mathrm{c}}}\right)^{2}\right\}+\frac{\mathrm{pL}_{\mathrm{c}}^{2}}{8 \mathrm{~h}_{T}} \\
& \qquad \begin{array}{l}
\mathrm{T} \cos \varphi=\triangle \mathbf{N} \\
\mathrm{T}_{\text {anchor }}=\triangle \mathrm{N} / \cos \varphi \\
\text { Uplift force }
\end{array} \\
& \quad \text { Rup-lift }=\triangle \mathbf{N} \tan \varphi \quad(=\text { Tanchor } \cdot \sin \varphi)
\end{aligned}
$$

Bending moment distribution by live load

$$
M_{s}=\frac{1}{4 \beta} \frac{\mathrm{pLs}}{2}+\frac{\mathbf{P}}{4 \beta}
$$

$$
=\frac{\mathrm{pL}_{\mathrm{s}}}{8 \beta}+\frac{\mathrm{P}}{4 \beta}
$$

Axial force and bending moment in the tower

Under uniformly distributed loading (p) , design bending moment (at A) in given.

$$
\begin{aligned}
\mathrm{M}_{\mathrm{u}} & =\frac{\mathrm{p} \pi}{16 \beta^{2}} \\
\beta & =\sqrt[4]{\frac{\mathrm{k}}{4 \mathrm{EI}}}
\end{aligned}
$$

box girder

A_{f} : cross sectional area of upper and lower flanges
Aw : cross sectional area of webs ($\mathrm{i}:$ number of web plate) Under assumption that k is constant ,
M changes due to change of web depth (h)

$$
\begin{aligned}
& \quad \begin{array}{l}
\frac{M_{2}}{M_{1}}=\sqrt{\frac{I_{G}, 2}{}} \mathbf{I}_{G, 1} \\
I_{G, 1}=\frac{h_{1}^{2}}{2}\left(A_{f}+\frac{i A_{w, 1}}{6}\right), \quad I_{G, 2}=\frac{h_{2}^{2}}{2}\left(A_{f}+\frac{i A_{w, 2}}{6}\right), \\
W_{1}=I_{G, 1} /\left(h_{1} / 2\right) \quad, \quad W_{2}=I_{G, 2} /\left(h_{2} / 2\right)
\end{array}, .
\end{aligned}
$$

Prediction of girder stress depending on span (L)

 (multi-cable type, girder with box section)

Assumption of dead load (W_{D})
$\mathbf{W}_{\mathrm{D}}=1.4 \gamma_{\mathrm{s}} \mathrm{As}_{\mathrm{s}}+\mathrm{W}_{\mathrm{Ds}}=\eta \gamma_{\mathrm{s}} \mathrm{A}_{\mathrm{s}} \quad(\eta=2.0 \sim 2.5)$
r_{s} : weight per unit volume ($77 \mathrm{kN} / \mathrm{m}^{3}$)
As : cross-sectional area of girder resisting axial force 1.4 : increment coefficient ($\leftarrow \mathrm{I}$ assumed) to take into account of cross beam etc. not resisting axial force
$W_{\text {DS }}$: superimposed dead load (pavement, curb etc.)

$\mathrm{LC}_{\mathrm{c}} / \mathrm{h}_{\mathrm{T}} \xlongequal{\rightleftharpoons} \mathbf{5 . 0}$
$\mathrm{Lc} / \mathrm{ho} \doteqdot 6.7$

$$
\begin{aligned}
\mathrm{q} & =\mathrm{W}_{\mathrm{D}}+\mathrm{p}=\mathrm{W}_{\mathrm{D}}(1+\omega) \quad \mathrm{p}: \text { live load } \\
\mathrm{N}_{\text {max }} & =\frac{\mathrm{W}_{\mathrm{D}}(1+\omega)}{8} \cdot \mathrm{n}_{\mathrm{h}} \mathrm{~L}_{\mathrm{c}} \\
& =\frac{\eta \gamma_{\mathrm{s}} A_{\mathrm{s}}}{8}(1+\omega) \mathrm{n}_{\mathrm{h}} \mathrm{Lc} \\
\sigma_{\text {max }} & =\frac{\mathbf{N}_{\text {max. }}}{\mathrm{As}_{\mathrm{s}}}=\eta \frac{\gamma_{\mathrm{s}}}{\mathbf{8}}(1+\omega) \mathrm{n}_{\mathrm{h}} L_{\mathrm{c}}
\end{aligned}
$$

Assumption is made.
$\mathrm{n}_{\mathrm{h}}=6.7, \omega=0.2$

Change of stress (σ)

$$
\begin{aligned}
\frac{\sigma_{2}}{\sigma_{1}} & =\frac{M_{2}}{M_{1}} \cdot \frac{W_{1}}{W_{2}}=\sqrt{\frac{I_{G}, 2}{I_{G}, 1}} \cdot \frac{W_{1}}{W_{2}} \\
& =\sqrt{\left(1+i A_{w, 1} / 6 A_{f}\right) /\left(1+i A_{w, 2} / 6 A_{f}\right)} \\
& \fallingdotseq 1.0 \quad(\leftarrow \text { not affected by web depth })
\end{aligned}
$$

In case of concentrated load (P)
$\mathrm{Mc}_{\mathrm{c}}=\frac{\mathrm{P}}{4 \beta}$
$\frac{\boldsymbol{\sigma}_{2}}{\boldsymbol{\sigma}_{1}} \doteqdot \sqrt{\frac{\mathrm{~h}_{1}}{\mathrm{~h}_{2}}}$

Prediction of stress ($\sigma_{\mathrm{n}} \& \sigma_{\mathrm{b}}$) depending on span length

σ_{n} : normal stress due to axial force
$\sigma b: b e n d i n g$ stress
$\sigma_{\text {max. }}=(155 \sim 194) L c \quad\left(k N / m^{2}\right)$
Lc: span (m) ($\eta=2.0 \sim 2.5)$

Predicted stress(σ)-span(Lc) relationship

σ_{n} : normal stress due to axial force
σ_{b} : bending stress

Exercises

－Estimation of stress resultants－

Multi－cable type 3－span continuous bridge
span $=290 \mathrm{~m}, 590 \mathrm{~m}$
［1］Axial force and stress in the girder
［2］Tension in cables and required cable area
［3］Up－lift force
［4］Bending moment and stress in the girder
［5］Axial force in the tower
［6］Max．bending moment in the tower

【ModeI－1】
Live load（ β－live load）

$\mathrm{p}=\left(5.5 \mathrm{~m} \times 10 \mathrm{kN} / \mathrm{m}^{2}+\frac{1}{2} \times 11.5 \mathrm{~m} \times 10 \mathrm{kN} / \mathrm{m}^{2}\right) \times \underline{10 \mathrm{~m}}=\underline{1,125 \mathrm{kl}}$ deal with as concentrated load （assumption）
$\mathrm{P}=5.5 \mathrm{~m} \times 3.0 \mathrm{kN} / \mathrm{m}^{2}+\frac{1}{2} \times 11.5 \mathrm{~m} \times 3.0 \mathrm{kN} / \mathrm{m}^{2}=33.75 \mathrm{kN} / \mathrm{m}$

$$
\begin{aligned}
\text { uniform load } & \mathrm{P}=33.75 \mathrm{kN} / \mathrm{m} \\
\text { concentrated load } & \mathrm{p}=1,125 \mathrm{kN}
\end{aligned}
$$

Dead load $\left(W_{d}\right)$

$$
t_{u}=t_{\ell}=t_{w}=20 \mathrm{~mm} \text { (assumed) }
$$

（including longitudinal ribs）

$$
\text { Curb } \quad 2 \times 0.6 \times 0.32 \times 24.5 \mathrm{kN} / \mathrm{m}^{3}=9.4 \mathrm{kN} / \mathrm{m}
$$

Median Strip $2 \times 0.71 \times 0.32 \times 24.5 \mathrm{kN} / \mathrm{m}^{3}=11.1 \mathrm{kN} / \mathrm{m}$ Asphalt pavement $2 \times 8.5 \times 0.08 \times 22.5 \mathrm{kN} / \mathrm{m}^{3}=30.6 \mathrm{kN} / \mathrm{m}$ Rail $4 \times \quad 0.5 \mathrm{kN} / \mathrm{m}^{3}=2.0 \mathrm{kN} / \mathrm{m}$

Steel girder	${ }^{*} .4 \times 1.088 \times 77.5 \mathrm{kN} / \mathrm{m}^{3}=118.0 \mathrm{kN} / \mathrm{m}$

$\mathrm{W}_{\mathrm{d}}=171.1 \mathrm{kN} / \mathrm{m}$
＊ 1.4 ：take into account steel volume not resisting axial force such as cross beams，diaphragms etc．
${ }^{* *} A_{S}=2 \times 21.2 \times 0.02+4 \times 3 \times 0.02=1.088 \mathrm{~m}^{2}$

$$
\left(I_{S}=2 \times 21.2 \times 0.02 \times 1.5^{2}+4 \times \frac{0.02 \times 3^{2}}{12}=2.088 \mathrm{~m}^{4}\right)
$$

【Model－1】

\｛AA\} Axial force and stress in the girder

$$
\begin{aligned}
& N_{\max .}=\frac{\left(W_{d}+\mathrm{p}\right)}{8 h_{0}} L_{C}{ }^{2} \quad(\text { at tower }) \\
& L_{C}=290 \mathrm{~m}, h_{0}=34+24 / 2=46 \mathrm{~m} \\
& W_{d}=171.1 \mathrm{kN} / \mathrm{m}, \mathrm{p}=33.75 \mathrm{kN} / \mathrm{m} \\
& N_{\max .}=\frac{(171.1+33.75)}{8 \times 46} \times 290^{2}=46,815 \mathrm{kN} \\
& \sigma_{\max .}=\frac{N_{\max .}}{A_{S}}=\frac{46,815}{1.088}=43,028 \mathrm{kN} / \mathrm{m}^{2} \quad\left(=43.0 \mathrm{~N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

Axial force due to concentrated load（P）

$N_{p}=P \frac{L^{\prime}\left(\cong L_{c} / 2\right)}{h_{T}}=1,125 \times \frac{145}{58}=2,813 \mathrm{kN}$
$\sigma_{N P}=\frac{N_{p}}{A_{s}}=\frac{2,813}{1.088}=2,585 \mathrm{kN} / \mathrm{m}^{2} \quad\left(=2.6 \mathrm{~N} / \mathrm{mm}^{2}\right)$
$\overline{\sigma_{\max }}=\sigma_{\max .}+\sigma_{N P}=\underline{45.6 \mathrm{~N} / \mathrm{mm}^{2}}$
$\{A A-1\}$ in case of Radial－type

$$
\begin{aligned}
& \sigma_{\max .}=\frac{(171.1+33.75)}{8 \times 58} \times 290^{2} / 1.088=34.1 \mathrm{~N} / \mathrm{mm}^{2} \\
& \overline{\sigma_{\max }}=34.1+2.6=35.7 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

$\{A A-2\}$ in case of Harp－type

$$
\begin{aligned}
& \sigma_{\max .}=\frac{(171.1+33.75)}{8 \times 37} \times 290^{2} / 1.088=53.5 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\max .}=\sigma_{\max .}+\sigma_{N P}=53.5+2.6=56.1 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Maximum stress at the tower point

	$\mathrm{N} / \mathrm{mm}^{2}$		
	Fan	Radial	Harp
σ_{n}	45.6	35.7	56.1

$\{B B\}$ Cable tension force

（1）Cable＠
（m）

［dead load］

$$
\begin{aligned}
T_{d} \sin \theta & =W_{d} L_{C D}=171.1 \times 17.5=2,994.3 \mathrm{kN} \\
T_{d} & =7,580 \mathrm{kN}
\end{aligned}
$$

［live load（impact is not included）］
first，assume $\beta=0.0150$
$T_{L} \sin \theta=\left(1.2 \rho+\frac{P \beta}{2}\right) L_{C D}$
$=\left(1.2 \times 33.75+\frac{1,125 \times 0.015}{2}\right) \times 17.5$
$=856.4 \mathrm{kN}$
$T_{L}=2,168 \mathrm{kN}$
$T=T_{d}+T_{L}=9,746 \mathrm{kN}$

【Model－1】

$$
\beta=\sqrt[4]{\frac{205.1}{4 \times 2.0 \times 10^{8} \times 2.088}}=\underline{0.0187} \text { converged }!!
$$

（2）Cable（b）

$$
\begin{aligned}
& \text { - } L_{\text {cable }}=88.0 \quad(\mathrm{~m}) \\
& 4 @ 3=12 \\
& 15 \rightarrow \xrightarrow[\substack{\text { (@15 }}]{\substack{40}} \sin \theta=0.523 \\
& \approx \mathrm{Lc} / 4 \\
& 7.57 .5 \\
& \xrightarrow{\mathrm{LCD}=15} \\
& T_{d} \sin \theta=171.1 \times 15=2,567 \mathrm{kN} \\
& T_{d}=4,907 \mathrm{kN} \\
& \text { assume } \quad \beta=0.023 \\
& T_{L} \sin \theta=\left(1.2 \times 33.75+\frac{1,125 \times 0.023}{2}\right) \times 15 \\
& =801 \mathrm{kN} \\
& T_{L}=1,533 \mathrm{kN} \\
& T_{d}+T_{L}=6,440 \mathrm{kN} \\
& A_{C}>\frac{6,440 \times 10^{3}}{640} \times 1.1=11,069 \mathrm{~mm}^{2}\left(0.0111 \mathrm{~m}^{4}\right) \\
& K=\frac{2 \times 10^{8} \times 0.011}{88} \times 0.523^{2} / 15=455.9 \mathrm{kN} / \mathrm{m}^{2} \\
& \beta=\sqrt[4]{\frac{455.9}{4 \times 2.0 \times 10^{8} \times 2.088}}=\underline{0.0230} \quad(\text { OK !!) }
\end{aligned}
$$

（3）Cable（c）

$T_{d} \sin \theta=171.1 \times 15=2,567 \mathrm{kN}$

$$
T_{d}=5,782 k N
$$

assume $\quad \beta=0.020$
$T_{L} \sin \theta=\left(1.2 \times 33.75+\frac{1,125 \times 0.02}{2}\right) \times 15$

$$
=777 \mathrm{kN}
$$

$$
T_{L}=1,750 \mathrm{kN}
$$

$T_{D}+T_{L}=7,532 \mathrm{kN}$
$A_{C}>\frac{7,532 \times 10^{3}}{640} \times 1.1=12,946 \mathrm{~mm}^{2}\left(0.0129 \mathrm{~m}^{4}\right)$
$K=\frac{2 \times 10^{8} \times 0.013}{117.2} \times 0.444^{2} / 15=291.6 \mathrm{kN} / \mathrm{m}^{2}$
$\beta=\sqrt[4]{\frac{291.6}{4 \times 2.0 \times 10^{8} \times 2.088}}=\underline{0.020} \quad($ OK ！！）

【ModeI－1】

$\left\{\boldsymbol{\sigma}_{\boldsymbol{n}}\right\}$

	Ac $\left(\mathrm{mm}^{2}\right)$	No．of $\phi 7$ wire
（a）	16,913	440
（b）	11,069	286
（c）	12,946	338
（d）	24,417	634

※ per bridge
$\phi 7\left(A \cong 38.5 \mathrm{~mm}^{2}\right)$
（4）Cable（d）\leftarrow Anchor cable

$$
\begin{aligned}
\Delta N & =\frac{W_{d} L_{C}{ }^{2}}{8 h_{T}}\left\{1-4\left(\frac{L_{S}}{L_{C}}\right)^{2}\right\}+\frac{p L_{C}}{8 h_{T}}\left(+N_{\rho}\right) \\
& =\frac{171.1 \times 290^{2}}{8 \times 58} \cdot\left\{1-4\left(\frac{134}{290}\right)^{2}\right\}+\frac{33.75 \times 290^{2}}{8 \times 58}+2,813 \\
& =4,125+6,117+2,813 \\
& =13,055 \mathrm{kN}^{(*)}
\end{aligned}
$$

（m）
$\cos \phi=0.919$
$T_{A} \cos \phi=\Delta N$

$$
T_{A}=\frac{\Delta N}{\cos \phi}=14,206 \mathrm{kN}
$$

$A_{C}>\frac{14,206 \times 10^{3}}{640} \times 1.1=24,417 \mathrm{~mm}^{2}\left(0.0244 \mathrm{~m}^{4}\right)$

$\{C C\} \quad U P-l i f t$ force

$$
R_{u}=\Delta N \tan \phi=13,055 \times \frac{58}{135}=5,609 \mathrm{kN}
$$

（ ${ }^{(*)} \sigma_{n} /$ end $=\frac{13,055}{1.088}=11,999 \mathrm{kN} / \mathrm{m}^{2}=12.0 \mathrm{~N} / \mathrm{mm}^{2}$ ）

【Model－1】
\｛DD\} Bending moment and stress in the girder

（1）at＠

$$
\begin{aligned}
& M=\frac{\rho \pi}{16 \beta^{2}}+\frac{P}{4 \beta} \\
&=\frac{33.75 \times \pi}{16 \times 0.0187^{2}}+\frac{1,125}{4 \times 0.0187} \\
&=18,941+15,040 \\
&=33,981 \mathrm{kN} \cdot \mathrm{~m} \\
& \sigma_{b}=\frac{33,981}{2.088} \times \underline{1.5}=\underline{24.4 \mathrm{~N} / \mathrm{mm}^{2}} \\
& \uparrow \text { web depth }(=3 \mathrm{~m}) / 2
\end{aligned}
$$

（2）at（b）

$$
\begin{aligned}
M & =\frac{33.75 \times \pi}{16 \times 0.0230^{2}}+\frac{1,125}{4 \times 0.0230} \\
& =12,521+12,228 \\
& =24,749 \mathrm{kN} \cdot \mathrm{~m} \\
\sigma_{b} & =\frac{24,749}{2.088} \times 1.5=17,779 \mathrm{kN} / \mathrm{m}^{2}=\underline{17.8 \mathrm{~N} / \mathrm{mm}^{2}}
\end{aligned}
$$

（3）at（c）

$$
\begin{aligned}
M & =\frac{\rho L_{S}}{8 \beta}+\frac{P}{4 \beta} \\
& =\frac{33.75 \times 135}{8 \times 0.02}+\frac{1,125}{4 \times 0.02} \\
& =28,477+14,063 \\
& =42,540 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\sigma_{b}=\frac{42,540}{2.088} \times 1.5=\underline{30.6 \mathrm{~N} / \mathrm{mm}^{2}}
$$

$\left\{\boldsymbol{\sigma}_{\boldsymbol{b}}\right\}$

$$
\begin{aligned}
& \text { 【Model - 2】 } \\
& \quad\left(L_{C}=590 \mathrm{~m}\right)
\end{aligned}
$$

$\{A A\}$ Axial force and stress in the girder

$$
\begin{aligned}
& N_{\max .}=\frac{\left(W_{d}+p\right)}{8 h_{0}} L_{C}^{2} \quad(\text { at tower }) \\
& L_{C}=590 \mathrm{~m}, h_{0}=64+54 / 2=91 \mathrm{~m} \\
& W_{d}=171.1 \mathrm{kN} / \mathrm{m}, p=33.75 \mathrm{kN} / \mathrm{m} \\
& N_{\max .}=\frac{(171.1+33.75)}{8 \times 91} \times 590^{2}=97,951 \mathrm{kN} \\
& \sigma_{\max .}=\frac{N_{\max .}}{A_{S}}=\frac{97,951}{1.088}=90,028 \mathrm{kN} / \mathrm{m}^{2} \quad\left(=90.0 \mathrm{~N} / \mathrm{mm}^{2}\right) \\
& N_{p} \cong P \frac{\left(L_{c} / 2\right)}{h_{T}}=1,125 \times \frac{295}{118}=2,813 \mathrm{kN} \\
& \sigma_{N P}=\frac{N_{p}}{A_{s}}=\frac{2,813}{1.088}=2,585 \mathrm{kN} / \mathrm{m}^{2} \quad\left(=2.6 \mathrm{~N} / \mathrm{mm}^{2}\right) \\
& \frac{\sigma_{\max .}}{}=\sigma_{\max .}+\sigma_{N P}=92.6 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

【Model－2】
$\left(L_{C}=590 \mathrm{~m}\right)$
\｛BB\} Cable tension force

$$
\cos \phi=\frac{285}{308.5}=0.924
$$

（1）Cable（b）

$T_{d} \sin \theta=W_{d} L_{C D}=171.1 \times 15.0=2,567 \mathrm{kN}$

$$
T_{d}=4,591 \mathrm{kN}
$$

assume $\quad \beta=0.02$
$T_{L} \sin \theta=\left(1.2 \times 33.75+\frac{1,125 \times 0.02}{2}\right) \times 15$ $=777 \mathrm{kN}$
$T_{L}=1,390 \mathrm{kN}$
$T_{d}+T_{L}=5,981 \mathrm{kN}$
$A_{C}>\frac{5,981 \times 10^{3}}{640} \times 1.1=10,280 \mathrm{~mm}^{2}\left(0.0103 \mathrm{~m}^{4}\right)$
$K=\frac{2 \times 10^{8} \times 0.0103}{162.8} \times 0.559^{2} / 15=263.6 \mathrm{kN} / \mathrm{m}^{2}$
$\beta=\sqrt[4]{\frac{263.6}{4 \times 2.0 \times 10^{8} \times 2.088}}=\underline{0.0199} \quad($ OK ！！）
（2）Cable（d）\leftarrow Anchor cable

$$
\begin{aligned}
\Delta N & =\frac{W_{d} L_{C}{ }^{2}}{8 h_{T}}\left\{1-4\left(\frac{L_{S}}{L_{C}}\right)^{2}\right\}+\frac{p L_{C}{ }^{2}}{8 h_{T}}\left(+N_{\rho}\right) \\
& =\frac{171.1 \times 590^{2}}{8 \times 118} \cdot\left\{1-4\left(\frac{285}{590}\right)^{2}\right\}+\frac{33.75 \times 590^{2}}{8 \times 118}+2,813 \\
& =4,202+12,445+2,813 \\
& =19,460 \mathrm{kN}
\end{aligned}
$$

$T_{A} \cos \phi=\Delta N$

$$
\begin{gathered}
T_{A}=\frac{\Delta N}{\cos \phi}=21,061 \mathrm{kN} \\
A_{C}>\frac{21,061 \times 10^{3}}{640} \times 1.1=36,199 \mathrm{~mm}^{2}\left(0.0362 \mathrm{~m}^{4}\right) \\
\quad \text { No. of } \phi 7 \text { wire }>941
\end{gathered}
$$

\｛CC\} UP-lift force

$$
R_{u}=\Delta N \tan \phi=19,460 \times \frac{118}{285}=8,057 \mathrm{kN}
$$

$$
\left.{ }^{\left({ }^{(*)}\right.} \sigma_{n} / \text { end }=\frac{19,460}{1.088}=17,886 \mathrm{kN} / \mathrm{m}^{2}=17.9 \mathrm{~N} / \mathrm{mm}^{2}\right)
$$

$$
\left(L_{C}=590 \mathrm{~m}\right)
$$

\｛DD\} Bending moment and stress in the girder

$$
M=\frac{p \pi}{16 \beta^{2}}+\frac{P}{4 \beta}
$$

$$
=\frac{33.75 \times \pi}{16 \times 0.0199^{2}}+\frac{1,125}{4 \times 0.0199}
$$

$$
=16,725+14,133
$$

$$
=30,858 \mathrm{kN} \cdot \mathrm{~m}
$$

$$
\sigma_{b}=\frac{30,858}{2.088} \times 1.5=22,168 \mathrm{kN} / \mathrm{m}^{2}=\underline{22.2 \mathrm{~N} / \mathrm{mm}^{2}}
$$

$\left\{\sigma_{n}\right\}$

	Ac $\left(\mathrm{mm}^{2}\right)$	No．of $\phi 7$ wire
（b）	10,208	268
（d）	36,199	941

※ per bridge

$$
\phi 7\left(A \cong 38.5 \mathrm{~mm}^{2}\right)
$$

【Model－2】

$$
\left(L_{C}=590 \mathrm{~m}\right)
$$

$\{E E\}$ Axial force in the tower

$$
\begin{aligned}
N_{T} & =\left(W_{d}+p\right) L_{C}+2 P \\
& =(171.1+33.75) \times 590+2 \times 1,125=123,112 \mathrm{kN}
\end{aligned}
$$

\｛FF\} Max.bending moment in the tower

$$
\begin{aligned}
\xi & =\frac{h_{V}}{h}=\frac{54}{158}=0.342 \\
q_{h} & =\frac{p L_{c}{ }^{2}}{8 h_{0}} / h_{V}=\frac{33.75 \times 590^{2}}{8 \times 91} \times \frac{1}{54}=299 \mathrm{kN} / \mathrm{m} \\
R_{T} & =\frac{q_{h} h}{8} \xi\left(8-6 \xi+\xi^{3}\right) \\
& =\frac{299 \times 158}{8} \times 0.342 \times\left(8-6 \times 0.342+0.342^{3}\right) \\
& =12,093 \mathrm{kN} \\
M_{\max } & =\frac{R_{T}{ }^{2}}{2 \times R_{h}}=\frac{12,093^{2}}{2 \times 299} \\
& =\frac{244,550 \mathrm{kN} \cdot \mathrm{~m}}{}
\end{aligned}
$$

D12-4-1]	
Design \&	
Erection of Cables	

$E_{\text {EFF }}=\frac{E_{0}}{1+\frac{\gamma^{2} L^{2}}{12 \sigma^{3}} \cdot \frac{(1+\mu)^{4}}{16 \mu^{2}} \cdot E_{0}}$
$\sigma_{m}=\frac{\sigma_{0}+\sigma_{u}}{2}, \mu=\frac{\sigma_{0}}{\sigma_{u}}$
σ_{0} : max. stress
$\sigma_{u}:$ min. stress
$E_{\text {EFF }}=\frac{E_{0}}{1+\frac{(\gamma L)^{2}\left(T_{i}+T_{f}\right) A_{c} E_{0}}{24 T_{i}{ }^{2} T^{2}}} \quad$ (by ASCE)
Ac: cross-sectional area of cable
T_{i} : min. tension
Tf: max. tension

1) Strength check (against breaking)
$\sigma_{D}+\sigma_{L+i}<\sigma_{a} \quad\left(\sigma_{a}=\sigma_{B} /(\gamma=2.5)\right)$
$\sigma_{D}(=T \mathrm{D} / \mathrm{Ac})$: stress due to dead load
$\sigma_{\mathrm{L}+\mathrm{i}}\left(=\mathrm{T}_{\mathrm{L}+\mathrm{i}} / \mathrm{Ac}\right)$: stress due to live load (including impact)
$\mathrm{T}_{\mathrm{d},} \mathrm{T}_{\mathrm{L}+\mathrm{i}}$: tension in cables
σ_{B} : breaking stress of cables
2) Fatigue strength check
γ (safety factor) is set to be equal to or greater than 2.5, safety against fatigue is ensured (by JHBS)

In many cases in Japan, $\mathbf{i}=\mathbf{0 . 2}$ has been used
by Honshu-Shikoku Bridge Authority

1) Strength check (against breaking)

$$
\underline{\sigma_{\mathrm{D}}+\sigma_{\mathrm{L}+\mathrm{i}}<\sigma_{\mathrm{a}} \quad\left(\sigma_{\mathrm{a}}=\sigma_{\mathrm{B}} / 2.5\right)}
$$

2) Strength check (against yielding)

$$
\underline{\sigma_{\mathrm{D}}+\sigma_{L+i}<\sigma_{\mathrm{a}} \quad\left(\sigma_{\mathrm{a}}=\sigma_{\mathrm{cy}} / 2.0\right)}
$$

$\sigma_{c y}$: yield stress

3) Stress check including secondary stress
$\sigma_{\mathrm{D}}+\sigma_{\mathrm{L}+\mathrm{i}}+\sigma_{\mathrm{b}}<\sigma_{\mathrm{a}} \quad\left(\sigma_{\mathrm{a}}=\sigma_{\mathrm{B}} / 2.0\right)$
$\sigma_{\mathrm{b}}:$ secondary (bending) stress
4) Fatigue strength check

Check stress ($\Delta \sigma^{*}$) is by rainflow method Check method is Minor's law

$$
\Sigma \frac{\mathrm{ni}_{\mathrm{i}}}{\mathrm{Ni}_{\mathrm{i}}}<1.0
$$

* $\Delta \sigma$ includes bending stress

Linear cumulative damage rule

n_{i} : (cycle of $\left.\Delta \sigma_{i}\right)$ in obtained by rainflow counting method

Fatigue check by DIN1073 (1974)

$$
\begin{array}{rlr}
\sigma_{\mathrm{fa}} & =628\left(\mathrm{MPa}_{\mathrm{Pa}}\right) & \mathrm{K}_{\mathrm{f}} \geqq 0.681 \\
& =\frac{245.2}{1-0.895 \mathrm{Kf}_{\mathrm{f}}} & \mathrm{Kf}_{\mathrm{f}}<0.681 \\
\mathrm{~K}_{\mathrm{f}} & =\frac{\sigma_{\mathrm{D}}+0.5 \sigma_{\mathrm{L} \text { min }}}{\sigma_{\mathrm{D}}+0.5 \sigma_{\mathrm{L}, \max }} &
\end{array}
$$

Ofa : allowable stress
σ_{f} : stress to be checked
σ_{D} : stress due to dead load
$\sigma_{L, \text { min. }}$: min. stress due to live load
$\sigma_{L, \text { max. }}$: max. stress due to live load

Type of cable

Suppression of cable vibration by damper

Ei can be obtained by complex eigen value analysis

Cables (parallel wire)

[HiAm anchor cable]
PE pipe
PC steel $\operatorname{rod}(\Phi=7 \mathrm{~mm})$ with zinc coating

filament tape
both have cable anchor (socket) with high fatigue strength
[Top priority]

Protecting water penetration

High fatigue strength at anchor system (socket)

Erection of cables

Strand and section (SEE cable)

-r-7uen
r-フavirn culnsector 0

ronter

Reeled cable (at factory)

(transport to site)

Reeled cable set to unreeler machine

Tension in cable by vibration method

```
```

$\Gamma<3 \quad$ (use 2nd mode)

```
```

$\Gamma<3 \quad$ (use 2nd mode)
sag is large $\quad \Gamma=\frac{\mathrm{w}}{\mathrm{g}}\left(\mathrm{f}_{2} \mathrm{~L}\right)^{2}\left(1.02-6.26 \frac{\mathrm{C}}{\mathrm{f}_{2}}\right)$
sag is large $\quad \Gamma=\frac{\mathrm{w}}{\mathrm{g}}\left(\mathrm{f}_{2} \mathrm{~L}\right)^{2}\left(1.02-6.26 \frac{\mathrm{C}}{\mathrm{f}_{2}}\right)$
$\Gamma \geqq 3$ (use 1st mode)
$\Gamma \geqq 3$ (use 1st mode)
sag is small

```
sag is small
```

$\mathrm{F}=\frac{\mathrm{g}}{\mathrm{g}}\left(\mathrm{f}_{2} \mathrm{~L}\right)^{2}\left(1.02-6.26 \frac{\mathrm{f}}{\mathrm{f}_{2}}\right.$

```
\[
\Gamma=\frac{4 w}{g}\left(f_{1} L\right)^{2}\left\{0.857-10.89\left(\frac{c}{f_{1}}\right)^{2}\right\}
\]
sag is small
\[
(3 \leqq \xi \leqq 17)
\]
\(f_{1}, f_{2}\) : measured 1st and 2nd frequency
\[
\begin{aligned}
\Gamma & =\frac{4 w}{g}\left(f_{1} L\right)^{2}\left\{1-2.2 \frac{C}{f_{1}}-2\left(\frac{C}{f_{1}}\right)^{2}\right\} & & (17 \leqq \xi) \\
{[\Gamma} & =\frac{4 w}{g}\left(f_{1} L\right)^{2} & & (100<\xi)]
\end{aligned}
\]



\section*{At each stage,}

\section*{- configuration}
(girder level and tower inclination)
- tension in cables
are measured and checked
\[
\begin{aligned}
& \mathrm{C}=\sqrt{\frac{\mathrm{EIg}}{\mathrm{WL}^{4}}} \quad \quad \mathrm{EA}: \text { axial rigidity } \\
& \xi=\sqrt{\frac{T}{E I}} \cdot \mathrm{~L} \quad \mathrm{w} \text { : cable unit weight } \\
& \mathrm{g}\left(=9.8^{\mathrm{m}} / \mathrm{sec}^{2}\right) \\
& \Gamma=\sqrt{\frac{W L}{128 E A(\delta)^{3} \cos ^{5} \theta}} \cdot\left(\frac{0.31 \xi+0.5}{0.31 \xi-0.5}\right) \\
& \delta=\mathrm{f} / \mathrm{Lo}
\end{aligned}
\]
Appendix \(=1\)
Reference from
NEW-PWS cable brochure

\section*{Cable socket (cable anchor)}


Lift up of cable socket to tower anchorage


Cable expansion

\begin{tabular}{|c|}
\hline Appendix-2 \\
Reference from \\
HiAm \& DINA cable brochure \\
\\
\end{tabular}

\begin{tabular}{|c|}
\hline Appendix - 3 \\
Reference from \\
SEEE cable brochure \\
\\
\hline
\end{tabular}

Strand and section


-r-フaverw conssecten

Design of Girder


\section*{Identification by analysis} (based on non-linear 3D FEA )
- buckling-

Elasto-plastic finite displacement analysis
- divergence-

Non-linear elastic analysis
under displacement-dependent wind load
-flutter-
Complex eigenvalue analysis using modal coordinate

\section*{Priority}

At the design (after basic design), first step to do, Check performance (safety) of the girder and tower under wind load


Check performance under (huge) earthquake

Static instability -(2)-
Divergence under displacement-dependent wind loading


\(B\) (width) : from traffic (volume, flow)
H(height) : from maintainability, fabrication and preventing in-plane global buckling
in case of box-girder and multi-cable type



\section*{under lateral(wind)loading}


\(\mathrm{p}=\frac{1}{2} \rho \mathrm{Vd}^{2} \mathrm{CdG}\)
\(p\left(N / m^{2}\right)\) : wind load per unit area
\(\rho\left(=1.23 \mathrm{~kg} / \mathrm{m}^{3}\right)\) : air density
\(\mathrm{V}_{\mathrm{d}}(\mathrm{m} / \mathrm{sec})\) : design wind velocity
\(C_{d}\) : drag coefficient
G: gust factor
\(\mathrm{p}_{\mathrm{w}}(\mathrm{N} / \mathrm{m})=\mathrm{PA}_{\mathrm{n}}\)
\(A_{n}\) : projection area ( \(\mathrm{m}^{2} / \mathrm{m}\) )

Impact \(\quad i=\frac{20}{50+L}\)

\(\Downarrow\)

the same definition of (L) as continuous beam

*shear flow theory is applied for more exact evaluation

\(\sigma_{\text {max. beff }}=\int_{0}^{b} \sigma(s) d s\) \(\boldsymbol{\sigma}_{\text {max. }}=\frac{\int_{0}^{\mathrm{b}} \sigma(\mathrm{s}) \mathrm{ds}}{\text { beff }}\)
by JHBS, beff is defined by
\[
b_{\text {eff }}=f(b, \text { Leq. })
\]

Leq : equivalent span length

Equivalent span length (Leq.)
\[
b_{\text {eff }}=f\left(b, L_{\text {eq. }}\right) \quad \text { by JHBS }
\]

[1] Against global buckling
\[
\frac{\sigma_{c}}{\sigma_{c a z}}+\frac{\sigma_{b z}}{\sigma_{b a g z}}+\frac{\sigma_{b y}}{\sigma_{b a o}}<1.0
\]
\(\sigma_{c}\) : axial compressive stress
\(\sigma_{c a z}\) : allowable column buckling stress
\(\sigma_{\text {bagz }}, \sigma_{\text {bao }} \underline{\left(=\sigma_{y} / 1.7\right)}\) : allowable bending stress
^ since no lateral torsional buckling
will produce
[2] Against local (plate) buckling
\[
\sigma_{c}+\sigma_{b z}+\sigma_{b y}<\sigma_{c a l}
\]
\(\sigma_{c a l}:\) allowable plate buckling stress
( \(\sigma_{c}, \sigma_{b z}, \sigma_{b y}\) ) are calculated based on linearized finite displacement analysis


〔case-2〕Ef-method(inelastic eigenvalue analysis)
1) elastic eigenvalue analysis
\[
\begin{aligned}
& \left|K_{E}\left(E_{i}, I_{i}\right)+\kappa K_{G}\left(N_{i}\right)\right|=0 \\
& L_{e}, i=\pi \sqrt{E_{i} I_{i} /\left(\kappa N_{i}\right)}
\end{aligned}
\]
[ \(K_{E}\) ]: elastic stiffness matrix
\(\left[K_{G}\right]\) : geometric matrix
Le, i : buckling length of elasticity of element (i)
\(\mathrm{E}_{\mathrm{i}}\) : young 's modulus of elasticity of element (i)
\(I_{i}\) : geometrical moment of inertia of element (i)
\(\kappa\) : min. eigenvalue
\(N_{i}\) : compressive axial force of element (i)
2) modify \(\mathrm{E}_{\mathrm{i}} \longrightarrow \mathrm{E}_{\mathrm{fi}}\)
\[
\mathrm{E}_{\mathrm{f}, \mathrm{i}}=\frac{\sigma_{\mathrm{N}, \mathrm{i}}}{\sigma_{\mathrm{e}}, \mathrm{i}} \mathrm{E}_{\mathrm{i}}
\]
\(\sigma_{e, i}\) : buckling stress of element (i)
\(\sigma_{N, i}\) : strength of element (i)

\(L_{e, i}=\pi \sqrt{E_{f, i} I_{i} /\left(\kappa N_{i}\right)}\)
3) until converged value of \(L_{e, i}\). calculation is continued
4) \(\sigma_{c a z}=\sigma_{c r}\left(L_{e, i}\right) / 1.7\)


\section*{Load cases of Ultimate Strength Analysis}

Live Load Cases
L3: Loading on the left half of center span
L2: Loading on the center span L4: loading on the left side span

 प1111111111111111111711111111111111111111 mm प111111111111111111111111111111111111me..
\(\qquad\)
पा1111111 \(=\cdots\)


\section*{Analysis Case L2 [a(D+L)+Ps]}

Girder yielding \(2.03(\mathrm{D}+\mathrm{L})+\mathrm{PS}\)

Tower yielding \(2.38(\mathrm{D}+\mathrm{L})+\mathrm{PS}\)

Cable yielding \(2.68(\mathrm{D}+\mathrm{L})+\mathrm{PS}\)

Maximum Load 2.91(D+L)+PS


Load - Deflection at the center of the girder


\section*{Deck plate thickness and rib arrangement}
\[
\begin{gathered}
t=0.037 b * m m \quad \text { (B-live load) } \\
t=0.035 b^{*} \mathrm{~mm} \quad \text { (A-live load) } \\
(t \geqq 12 \mathrm{~mm})
\end{gathered}
\]

\(B=620 \sim 660^{\mathrm{mm}}\)
\(b=300 \sim 340{ }^{\mathrm{mm}}\)
b \(=300 \sim 340 \mathrm{~mm}\)
*defined from viewpoint of no damage to pavement [mostly no possibility of local buckling]

\section*{Recent topics (due to fatigue problem)}

Mostly, \(12^{\mathrm{mm}}\) thickness has been used so far. Due to severe fatigue damage,

\(16{ }^{\mathrm{mm}}\) thickness is recommended


1) \(\alpha \leqq \alpha_{0}\) (\&) \(\mathrm{I}_{\mathrm{t}} \geqq \frac{\mathrm{bt}}{11} \cdot \frac{1+\mathrm{n} \gamma_{2}, \text { req. }}{4 \alpha^{3}}\)
\[
\left.\begin{array}{rlrl}
\gamma_{\ell, \text { req. }} & =4 \alpha^{2} n\left(\frac{t_{0}}{t}\right)^{2}\left(1+n \delta_{\ell}\right)-\frac{\left(\alpha^{2}+1\right)^{2}}{n} & & \left(t \geqq t_{0}\right) \\
& =4 a^{2} n\left(1+n \delta_{\ell}\right)-\frac{\left(\alpha^{2}+1\right)}{n} & & \left(t<t_{0}\right)
\end{array}\right)\left(R_{R}>0.5\right)
\]
( \(t_{0}\) is the thickness when \(\mathrm{R}_{\mathrm{R}}=0.5\) )
2) the others \(\left[\left(\alpha>\alpha_{0}\right),\left(\alpha \leqq \alpha_{0} \& \mathrm{I}_{\mathrm{t}}<\frac{\mathrm{bt}^{3}}{11} \cdot \frac{1+\mathrm{n} \gamma_{2}, \text { reg. }}{4 \alpha^{3}}\right)\right]\)
\[
\begin{aligned}
\gamma_{\ell, \text { reg. }} & =\frac{1}{n}\left[\left\{2 n^{2}\left(\frac{t_{0}}{t}\right)\left(1+n \delta_{\ell}\right)-1\right\}^{2}-1\right] & \left(t \geqq t_{0}\right) & \left(R_{R}<0.5\right) \\
& =\frac{1}{n}\left[\left\{2 n^{2}\left(1+n \delta_{\ell}\right)-1\right\}^{2}-1\right] & & \left(t>t_{0}\right)
\end{aligned} \quad\left(R_{R}>0.5\right) .
\]

\section*{Design of cross beam ( \(I_{t}\) )}

\[
\sigma_{\mathrm{cr}} / \sigma_{\mathrm{y}} \quad\left(k_{\mathrm{R}}=4 n^{2}\right)
\]

Buckling strength of stiffened plate
with small aspect ratio ( \(\alpha=\mathbf{a} / \mathrm{b}\) )
Ultimate strength of stiffened plate by JHBS
\[
R_{R}=\sqrt{\frac{\sigma_{y}}{\sigma_{E}}}=\sqrt{\frac{\sigma_{y}}{E} \cdot \frac{12\left(1-\nu^{2}\right)}{\pi^{2} k_{R}}} \cdot\left(\frac{b}{t}\right)
\]

\begin{tabular}{|lr|}
\hline\(\frac{\sigma_{c r}}{\sigma_{y}}=1.0\) & \(R_{R} \leqq 0.5\) \\
\(\frac{\sigma_{c r}}{\sigma_{y}}=1.5-R_{R}\) & \(0.5<R_{R} \leqq 1.0\) \\
\(\frac{\sigma_{c r}}{\sigma_{y}}=\frac{0.5}{R_{R}^{2}}\) & \(1.0<R_{R}\) \\
\hline
\end{tabular}

\section*{Design of longitudinal ribs ( \(\mathbf{I}_{\ell}\) )}


From condition,
\(\sigma_{E}^{(1)}\) (buckling stress of plate \(=\sigma_{E}^{2}\) (buckling stress of stiffened plate)
between ribs
\[
k=4 n^{2}
\]


\(\mathbf{N c r}=\left\{\left(\frac{\boldsymbol{\sigma}_{\mathrm{cr}}}{\boldsymbol{\sigma}_{\mathbf{y}}}\right)_{\mathbf{c}} \cdot \mathbf{n} \cdot \mathbf{A T}+\left(\frac{\boldsymbol{\sigma}_{\mathrm{cr}}}{\boldsymbol{\sigma}_{\mathbf{y}}}\right)_{\mathrm{p}} \cdot \mathbf{b e} \cdot \mathbf{t}\right\}\)
Nor : load carrying capacity of stiffened plate
\(\left(\sigma_{\mathrm{cr}}\right)_{\mathrm{c}}\) : load carrying capacity of column
\(n\) : number of rib
At : cross-sectional area of column with T-section
\(\left(\sigma_{c r}\right)_{p}\) : load carrying capacity of plate

\section*{Evaluation of strength}
\(\left(\sigma_{\mathrm{c})}\right)_{\mathrm{c}}\)
\[
\left.\begin{array}{rlrl}
\left(\frac{\sigma_{r}}{\sigma_{y}}\right)_{c} & =1.0 & & \left(\begin{array}{l}
\lambda
\end{array} \leq 0.2\right) \\
& =1.109-0.545 \pi & & (0.2<\bar{\lambda} \leq 1.0) \\
& =1.0 /\left(0.773+\bar{\pi}^{2}\right) & & (1.0<\bar{\pi}
\end{array}\right)
\]
\(\bar{\lambda}=\frac{1}{\pi} \sqrt{\frac{\sigma_{y}}{E}}\left(\frac{a}{r}\right) \quad r=\sqrt{\frac{I T}{A T}}\)
It : geometrical moment of inertia of T-section
a : distance of cross beams
\(\frac{\mathrm{be}}{\mathrm{b}}=0.702 \mathrm{Re}^{3}-1.640 \mathrm{Re}^{2}+0.654 \mathrm{Re}+0.926\)
\(\operatorname{Re}=0.526 \frac{\overline{\mathrm{~b}}}{\mathrm{t}} \sqrt{\frac{\mathrm{O}_{\mathrm{c}}}{\mathrm{E}}}\)
First, \(\sigma_{c r}\) is assumed and repeat calculation until converged \(\sigma c r\) is obtained
\(\left(\sigma_{\mathrm{cr}}\right)_{\mathrm{p}}\) : load carrying capacity of plate with width (be), and simply supported at 4 -side.

\section*{Check of biaxial compression}

\(\sigma_{\mathrm{xmo}}\) ( \(=\) strength under \(\sigma_{\mathrm{xm}}\) only) is estimated by eq. (3)

\section*{Strength of plate under \(\sigma_{y m}\) only ( \(\sigma_{y m o}\) )}
\(\boldsymbol{\sigma}_{\text {ymo }}\left[\gamma\left\{=\mathrm{I}_{\mathrm{e}} /\left(\mathrm{bt}^{3} / \mathbf{1 1}\right)\right\}>\gamma^{*}\right]\)

\[
\begin{aligned}
\frac{\sigma_{y m c}}{\sigma_{\mathrm{y}}} & =1.0 & & (\bar{\lambda} \leq 0.2) \\
& =1.109-0.545 \pi & & (0.2<\lambda \leq 1.0) \\
& =1.0 /\left(0.773+\bar{\Lambda}^{2}\right) & & (1.0<\pi) \\
\bar{\lambda} & =\frac{\sqrt{12}}{\pi} \frac{\overline{\mathrm{~b}}}{\mathrm{t}} \sqrt{\frac{\sigma_{\mathrm{y}}}{\mathrm{E}}} & &
\end{aligned}
\]
\[
\frac{\frac{\sigma_{\mathrm{ym}}}{\sigma_{\mathrm{y}}}=0.542 \mathrm{R}^{3}-1.249 \mathrm{R}^{2}+0.412 \mathrm{R}+0.968(0.3 \leq \mathrm{R} \leq 1.3)}{\text { proposed by Komatsu }^{(1978)}}
\]
\[
R=\frac{1}{\pi} \sqrt{\frac{\sigma_{y}}{E}} \cdot \frac{12\left(1-\nu^{2}\right)}{\pi^{2} k} \cdot\left(\frac{\overline{\mathrm{~b}}}{\mathrm{t}}\right) \quad(\mathrm{k}=4.0)
\]
\[
\sigma_{\mathrm{kk}}=\frac{\sqrt{\sigma_{1^{2}+3 \tau^{2}}}}{\frac{1+\Psi}{4} \cdot \frac{\sigma_{1}}{\boldsymbol{\sigma}_{\mathrm{ocr}}}+\sqrt{\left(\frac{3-\Psi}{4} \cdot \frac{\sigma_{1}}{\boldsymbol{\sigma}_{\mathrm{ocr}}}\right)^{2}+\left(\frac{\tau}{\tau_{\mathrm{ocr}}}\right)^{2}}}
\]
\[
\sigma_{o r r}=K \sigma_{\mathrm{E}}
\]
\[
\tau_{\text {ocr }}=\mathbf{K}_{\tau} \cdot \sigma_{\mathbf{E}}
\]
\[
\sigma_{E}=\frac{\pi^{2} \mathrm{E}}{12\left(1-\nu^{2}\right)} \cdot\left(\frac{\mathrm{t}}{\mathrm{~b}^{\prime}}\right)^{2}
\]
\(\mathrm{K}, \mathrm{K}_{\tau}\) : buckling coefficient

\section*{[3] Global \& local}
coupled buckling strength
```

\mp@subsup{\sigma}{\textrm{a}}{\prime}}=\mp@subsup{\sigma}{caz}{*}\mathbf{X}(\mp@subsup{\sigma}{cal}{**}/[\mp@subsup{\sigma}{\textrm{y}}{~}/1.7]
$\sigma_{\mathrm{caz}}(\mathrm{in}[1]) \rightarrow \sigma a$ (allowable coupled buckling stress) [reduced]

```
* Ocaz : allowable global buckling stress
** \(\sigma_{\text {cal }}\) : allowable local buckling stress


Design of anchor girder
[4] check of combined stresses ( \(\sigma, \tau\) )
\[
\begin{aligned}
& \sigma_{e}=\sqrt{\sigma^{2}+3 \tau^{2}}<1.1 \sigma_{a} \\
& \sigma_{e}=\sqrt{\sigma_{x}^{2}-\sigma_{x} \sigma_{y}+\sigma_{y}^{2}+3 \tau^{2}}<1.1 \sigma_{a} \\
& \sigma_{e}: \text { equivalent stress } \\
& \sigma_{a}=\sigma_{y} /(\gamma=1.7)
\end{aligned}
\]


FE Analysis of the Cable Anchoring Section


The Stress State of the Anchoring Section The Case of adding a Reinforcing Members


The Stress State of the Anchoring Section Primary Structure


\section*{Design of Tower}


\section*{Two towers}



Height of tower

(1.8Lc) \(/ \mathrm{H} \fallingdotseq 5.0\)

in-plane flexural stiffness depends on anchor cable, not on tower stiffness.
flexible tower is preferable.

anchor girder type

\section*{First step}

Cable size* \& anchor system (type and erection) are determined.


Cable (i) -tension ( \(\mathrm{T}_{\mathrm{i}}\) ) and area ( \(\mathrm{A}_{\mathrm{c}, \mathrm{i}}\) )
\(\mathrm{T}_{\mathrm{i}}=\left(\mathrm{W}_{\mathrm{c}}+1.2 \mathrm{p}+\frac{\mathrm{P} \beta}{2}\right) \mathrm{LcD} / \sin \theta\)
\(A_{c, i}=\frac{T_{i}}{\sigma_{a}} \frac{(\times 1.1)}{K_{\text {margin }}}\)
p : distributed loading
P : concentrated loading

\section*{Shear lag is also taken into account}

Effective width
\[
\text { beff. }=\text { beff. (width, Leq. })
\]

Equivalent length (Leq.)
is obtained depending on
moment distribution pattern
[parabolic] or [straight]

Design of rigid frame corner part

[1] Against global buckling
\[
\frac{\sigma_{c}}{\sigma_{c a z}}+\frac{\sigma_{b z}}{\sigma_{b a g z}}+\frac{\sigma_{b y}}{\sigma_{b a o}}<1.0
\]
\(\sigma_{c}\) : axial compressive stress
\(\sigma c a z\) : allowable column buckling stress
\(\sigma_{\text {bagz }}, \sigma_{\text {bao }}\left(=\sigma_{y} / 1.7\right)\) : allowable bending stress
\(\uparrow\) since no lateral torsional buckling
will produce
[2] Against local (plate) buckling
\[
\sigma_{c}+\sigma_{b z}+\sigma_{b y}<\sigma_{c a l}
\]

Ocal : allowable plate buckling stress
( \(\sigma, \sigma_{b z}, \sigma_{b y}\) ) are calculated based on linearized finite displacement analysis

\section*{Ef-method (inelastic eigenvalue analysis)}
1) elastic eigenvalue analysis
\[
\begin{gathered}
\left|K_{E}\left(E_{i}, I_{i}\right)+\kappa K_{G}\left(N_{i}\right)\right|=0 \\
L_{e}, i=\pi \sqrt{E_{i} I_{i} /\left(K N_{i}\right)}
\end{gathered}
\]
[ \(K_{E}\) ]: elastic stiffness matrix
[ \(K_{G}\) ]: geometric matrix
Le, i : buckling length of elasticity of element (i)
\(E_{i} \quad\) : young 's modulus of elasticity of element (i)
\(I_{i}\) : geometrical moment of inertia of element (i)
\(k\) : min. eigenvalue
\(\mathrm{N}_{\mathrm{i}}\) : compressive axial force of element (i)

Effective buckling length (He) of single tower

\(\mathrm{He}=\mathrm{H}\)
【Follower force】

\(\mathrm{He}=\mathrm{H}\)

Rigid frame (Rahmen) structures

He: effective buckling length \(\left(\begin{array}{c}\left.\mathrm{He}=\begin{array}{c}\text { upper value }( \\ \text { Lower value }(5<k \leqq 5) \\ \text { Lo }\end{array}\right)\end{array}\right.\)
\[
k=\frac{I_{c} / H}{I_{B} / L}
\]
Ic : geometrical moment of inertia of column IB : geometrical moment

2) modify \(\mathrm{E}_{\mathrm{i}} \longrightarrow \mathrm{E}_{\mathrm{fi}}\)
\[
E_{f, i}=\frac{\sigma_{N, i}}{\sigma_{e}, i} E_{i}
\]
\(\sigma_{\mathrm{e}, \mathrm{i}}\) : buckling stress of element (i)
\(\sigma_{\mathrm{N}, \mathrm{i}}\) : strength of element (i)
\(K_{E}\left(E_{f}, \mathbf{i}, \mathbf{I}_{\mathbf{i}}\right)+\kappa K_{G}\left(N_{i}\right) \mid=\mathbf{0}\)
\(\underline{L e, i}=\pi \sqrt{E_{f, i} I_{i} /\left(\kappa N_{i}\right)}\)
3) until converged value of \(L_{e, i}\)
calculation is continued \(\quad \Lambda=\frac{1}{\pi} \sqrt{\frac{\sigma_{V}}{\mathrm{E}}} \cdot \frac{\mathrm{Le}}{\mathrm{r}}\)
4) \(\sigma_{c a z}=\sigma_{c r}\left(L_{e, i}\right) / 1.7\)


\section*{Example of application of \(\mathrm{Ef}_{\mathrm{f}}\) method}
\begin{tabular}{cc} 
Tower -out of plane- & \multicolumn{2}{c}{\begin{tabular}{c}
\(\lambda\) (eigenvalue)
\end{tabular}\(=9.61\)} \\
Le \(=50 \mathrm{~m}\) (upper part), & Le \(=100 \mathrm{~m}\) (lower part)
\end{tabular}


Tower -in plane-


Ie: enective bucking lenath

\section*{Load cases of Ultimate Strength Analysis}

Live Load Cases
Li: Loading on the all spans \(\quad \mathrm{L}\) : Loading on the left half of center spa
L : Loading on the center span L 4 : loading on the left side span


\section*{Analysis Case L1 [a(D+L)+Ps]}

Girder yielding \(1.79(\mathrm{D}+\mathrm{L})+\mathrm{PS}\)

Cable yielding \(2.61(\mathrm{D}+\mathrm{L})+\mathrm{PS}\)

Tower yielding \(2.63(\mathrm{D}+\mathrm{L})+\mathrm{PS}\)

Maximum Load 2.95(D+L)+PS



\section*{Design of stiffened plate}

\section*{Explained at [Design of the girder]}






[Girder erection]

[2] Girder erection
(large block by floating crane)




\section*{Tower cranes}
(not for erection of RC tower, for erection of cables and for lifting materials)



Crawler crane and tower crane

erection
(DVD)
Wind-resistant Design

Wind tunnel test (section model test)


Wind tunnel test (full model test)


\section*{1) Mechanical means}
a) Passive-type
- add damping
(untuned type)[ \(\leftarrow\) cable]
- TMD(tuned type)
b) Active-type


Countermeasures
(Oscillation suppression method)



\section*{Tuned mass damper}






\section*{2-DOF forced vibration with damping}


\section*{2) Aerodynamic means}

(girder)

flat plate arranged intermittently


Tower - [Corner cut] \& [Deflector]



Corner cut was employed


\section*{Rain vibration of cables}
[conditions of occurrence]
[rainy day (not heavy rain)] +
[wind speed : from 10 to \(15 \mathrm{~m} / \mathrm{s}\) ]
\(+\)
[wind direction : nearly parallel to bridge axis]

Suppressing cable vibration



\section*{Rain vibration of cables}
(DVD)



\section*{Vortex-induced vibration of the girder \\ (DVD)}


\section*{Span Limitation of Self-anchored Cable-stayed System}





Span limitation
1) cable-stayed bridges
from 1,200 to \(1,400 \mathrm{~m}\)
2) Suspension bridges
around \(3,000 \mathrm{~m}\)
will be possible!!

\section*{topics}
1) Span limitation of self-anchored steel cable-stayed bridges
2) Possibility of further span extension
a) spatial net system
b) partially earth-anchored system
3) Span limitation of self-anchored composite and PC cable-stayed br.
\(-1^{\text {st }}\) Topic -

We have to take into account two aspects

AA : Mechanical viewpoint
BB : Economical viewpoint

Under construction, mitigation of
2) Vortex-induced vibration
of the girder with a cantilevered length
from \(\mathbf{6 0 0}\) to \(\mathbf{7 0 0}\) meters
Possible vib. depends on the site condition Solution by wind tunnel test

AA : From mechanical viewpoint!!

-3,000m will be possible by current material !! -4,000-5,000 m will be possible by new material !! (light-weight \& high strength)

\section*{Another critical issue Need technology mitigating}

\section*{1)long-cable vibration}

What is the key point (subject) for fair comparison ???
\(\Rightarrow\) design main girder with minimum size
(ensuring safety against
static and dynamic instabilities)
Weight of girder controls size of cables, towers, substructures and foundations

\section*{BB : From economical viewpoint!!}

\section*{Competition (fair!!)}

Cable-stayed bridges

\section*{vs.}

Suspension bridges

Static instability -(1)-
- Elasto-plastic buckling of main girder

q


\section*{Dynamic instability}
flutter


Identification by analysis (based on non-linear 3D FEA )
-buckling-
Elasto-plastic finite displacement analysis - divergence-

Non-linear elastic analysis
under displacement-dependent wind load -flutter-
Complex eigenvalue analysis
using modal coordinate
Summary
(new findings)
for basic planning

\(\square\)

\section*{Lateral instability} under wind load

Increase out-of-plane flexural rigidity efficiently
\(\mathbf{V}_{\text {(divergence*) }}<\mathbf{V}_{\text {(flutter) }}\)
*under disp.-dependent wind loading

Span-to-girder width ratio (lateral instability)

Lc/B \(<40 \Rightarrow\) Lc/B \(<(50 \sim 55)\) (popular view) (my recommendation)


If the width is around \(\mathbf{1 0}\) meters
(for 2-lane bridge),
and span exceeds 400 meters more,
Lateral stability has to be
carefully checked.
If large (L/B) ratio, a suspension bridge is recommended.

\section*{Span-to-girder depth ratio} (in-plane global buckling instability)
\[
\mathrm{Lc} / \mathrm{H}<(600 \sim 700)
\]

From a viewpoint of maintenance,
2.5-m more depth is preferable,
\(\Rightarrow 1500-\mathrm{m}\) span bridge, no check ok!!


In-plane instability under gravity loading


Setting spring constant of (K) is important

\section*{Ultimate strength of cable-stayed bridge system \\ \[
\mathrm{fult}=\min .\left\{\mathrm{f}_{\mathrm{cy}}, \mathrm{f}_{\mathrm{cal}}\right\}
\]}
fult.: ultimate strength (collapse)
\(\mathrm{f}_{\mathrm{cy}}\) : yield stress of cable
\(\mathrm{f}_{\text {cal }}\) : local (plate) buckling strength
Under condition that
\(\mathrm{Lc} / \mathrm{H} \leqq(600 \sim 700)\); [global buckling criterion]
\(\mathrm{L} / \mathrm{B} \leqq(50 \sim 55) \quad ;\) lateral instability]

Global buckling itself can be prevented by \(\mathrm{Lc}_{\mathrm{c}} / \mathrm{H}<(600 \sim 700)\)

Yield of cable leads to global buckling


\section*{Plate local buckling leads to global buckling} (coupled local/global buckling)


Buckling of the girder near tower (Tatara Br.)

\section*{1400-m cable-stayed bridge model}

1400-m Cable-stayed Bridge Model

(a) Side-view (plan)

(b) Cross section of girder
 (c) increses of plate mickness Material(S450)

Displacements at the tip of cantilevered girder


Wnd rubecty (mvis)

under construction
(d) \(\mathrm{M} 3 \mathrm{O}-4 . \mathrm{O}\)

Flutter Onset Wind Velocity (m/s)
\begin{tabular}{lccccc}
\hline & \multicolumn{2}{c}{ Completed } & & \multicolumn{2}{c}{ Under construction } \\
\cline { 2 - 3 } \cline { 5 - 6 } Model & {\([30\)-mode \(]\)} & Selberg & & [20-mode] & Selberg \\
\hline M25-3.5 & 120 & 131 & & 100 & 94 \\
& \((144)\) & & & \((151)\) & \\
M25-4.0 & 127 & 135 & & 102 & 100 \\
M30-3.5 & 120 & 131 & & 102 & 97 \\
M30-4.0 & 126 & 136 & & 105 & 103 \\
& \((151)\) & & & \((168)\) & \\
\hline
\end{tabular}

Note: Cable vibration is taken into account for values in parentheses.

\section*{Comparison of steel volume} (rough estimation)

Suspension vs. cable-stayed
(1.00)
(1.28)
(1.00)
(1.16*)
*cable unit price \(=1.75 \times\) (steel unit price)
[ + anchoragel
[ + intermediate piers]

Which solution is economical??

Exact identification will be difficult.

It depends on many parameters such as, -soil condition at site
- unit price of cable \& steel
etc. etc.

\section*{My conclusion!!}

From 1,200 to \(1,400 \mathrm{~m}\) cable-stayed bridges

\section*{will be possible!!}

Depending on the site (soil) condition, should be included as one of alternatives
\(-2^{\text {nd }}\) Topic-

\section*{Further span extension??}
- How to -
1) Spatial cable system (by Gimsing)
2) Partially earth-anchored system

since \(\mathbf{V}_{\text {(divergence) }}<\mathbf{V}_{\text {(flutter) }}\)
Important parameters to enhance \(\mathbf{V}_{\text {(divergence) }}\) under wind load are
1) In-pane flexural rigidity of the system
2) Torsional rigidity of the system

Effect of increase of out-of-plane flexural rigidity

\section*{will be minor}

\section*{Brief summary}
1)Small reduction of out-of-plane bending moment
2)No contribution to enhance the wind velocity at lateral instability
3)Higher cost for erection
4)From aesthetic reason, it may be OK
from theoretical consideration,
In the girder,
(max. compressive axial force)
\(=\) (max. tensile axial force)
\(\sqrt{2}\) times span extension is possible
Realistic (or) Economical??
\begin{tabular}{|c|}
\hline What's difference \\
under wind action? \\
Self-anchored vs. \\
Partially earth-anchored \\
\end{tabular}

Suspension system for erection only [extra equipment \& cost]


Cantilevered erection
Equipment for resisting horizontal force \((H)\) and pull force for closure

[Cable-stayed system]
Up to 1,200-1,400 meters
(from economical reason)
[Suspension system]
Up to 3,000-3,500 meters
(depending on cable material \& aerodynamic stability)
Spatial \&
Partially earth-anchored systems
will be hopeless
(from economical reason)

Since 1986 of Alex Fraser Bridge at Vancouver,
its span of 485 m was the world record at that time Worldwide construction except Japan

\section*{Steel-concrete composite cable-stayed bridges}


\(2^{\text {nd }}\) Forth roadway bridge (composite continuous bridge)

1) Longest span
2) Structural form (continuous type)

\section*{For worldwide competition}

Inevitable alternative to compete PC bridge!!
\(\Rightarrow\) Span Limitation!!


\section*{Technical issue}
1) Aerodynamic stability [poor] ensured by wind tunnel test
2) Stress transfer due to creep \& shrinkage
\(\uparrow\) 《Precast RC slab》
3) Under construction, since flexible, shape control


\(E_{i}:\) Young＇s modulus of elasticity \(A_{i}\) ：Cross sectional area
\[
\varepsilon=\frac{\Delta L}{L}=\frac{P_{1}}{E_{1} A_{1}}=\frac{P_{2}}{E_{2} A_{2}}=\cdots=\frac{P_{n}}{E_{n} A_{n}}
\]
\[
\mathrm{P}=\Sigma P_{i}=P_{1}+\frac{E_{2} A_{2}}{E_{1} A_{1}} P_{1}+\cdots+\frac{E_{n} A_{n}}{E_{1} A_{1}} P_{1}
\]
\[
=\frac{E_{1} A_{1}+E_{2} A_{2}+\cdots+E_{n} A_{n}}{E_{1} A_{1}} P_{1}
\]
\[
P_{1}=\frac{E_{1} A_{1}}{\sum E_{i} A_{i}} P
\]
\[
P_{2}=\frac{E_{2} A_{2}}{\Sigma E_{i} A_{i}} P
\]
\[
\vdots
\]

\[
\begin{aligned}
& P_{1}=\frac{E_{1} A_{1}}{E_{1} A_{1}+E_{2} A_{2}} P \\
& P_{2}=\frac{E_{2} A_{2}}{E_{1} A_{1}+E_{2} A_{2}} P
\end{aligned}
\]
（ Q1 ）Find \(P_{1}, P_{2}\)
under conditions
\[
\begin{aligned}
& E_{1}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \\
& A_{1}=100 \mathrm{~mm}^{2} \\
& E_{2}=3 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2} \\
& A_{2}=500 \mathrm{~mm}^{2} \\
& P=1,000 \mathrm{kN}
\end{aligned}
\]

《A1 》
\[
\begin{aligned}
P_{1} & =\frac{2 \times 10^{5} \times 100}{2 \times 10^{5} \times 100+3 \times 10^{4} \times 500}=0.571 P \\
& =571 \mathrm{kN}
\end{aligned}
\]
\[
P_{2}=\frac{3 \times 10^{4} \times 500}{2 \times 10^{5} \times 100+3 \times 10^{4} \times 500}=0.429 P
\]
\[
=429 \mathrm{kN}
\]
\[
\left(P_{1}+P_{2}=1,000 \mathrm{kN}=P\right)
\]
（ Q2 ）Find \(\sigma_{1}, \sigma_{2}, \theta_{0}\)


《A2 》
\[
\begin{aligned}
\sigma_{1,2} & =\frac{150+100}{2} \pm \frac{1}{2} \sqrt{(150-100)^{2}+4 \times 25^{2}} \\
& =125 \pm 35.4\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\
\sigma_{1} & =160.4 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{2}=89.6 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\]
\(\theta_{0}=\frac{1}{2} \tan ^{-1}\left(\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}\right)=\frac{1}{2} \tan ^{-1}\left(\frac{2 \times 25}{150-100}\right)=\frac{1}{2} \tan ^{-1}\)（1）
\[
\tan \left(2 \theta_{0}\right)=1 \rightarrow \underline{\theta_{0}}=22.5^{\circ}
\]
\[
\frac{\cos \theta_{0}}{\sigma_{y}-\sigma_{x}}<0 \quad\left(\cos \theta>0, \sigma_{y}-\sigma_{x}<0\right)
\]


Safety check（by JHBS ）
\[
\begin{aligned}
& \Sigma \sigma<\sigma_{a} \\
& \quad \sigma_{a}=\text { min. }\left\{\sigma_{y}, \sigma_{c r}\right\} / 1.7 \\
& \quad \text { yield stress } \\
& \Sigma \tau<\tau_{a} \\
& \quad \tau_{a}=\tau_{y} / 1.7 \quad\left(\tau_{y}=\sigma_{y} / \sqrt{3}\right) \\
& \frac{\sigma_{e}(\Sigma \sigma, \Sigma \tau)<1.1 \sigma_{a}}{} \\
& \hline \sigma_{a}=\sigma_{y} / 1.7
\end{aligned}
\]
（ Q3 ）Calculate \(\sigma e\) ，and check safety
1）\(\sigma_{x}=150 \mathrm{~N} / \mathrm{mm}^{2}\) ，\(\tau_{x y}=30 \mathrm{~N} / \mathrm{mm}^{2}\)
2）\(\sigma_{x}=180 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{y}=120 \mathrm{~N} / \mathrm{mm}^{2}, \quad \tau_{x y}=50 \mathrm{~N} / \mathrm{mm}^{2}\)
3）\(\sigma_{x}=180 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{y}=-120 \mathrm{~N} / \mathrm{mm}^{2}, \tau_{x y}=50 \mathrm{~N} / \mathrm{mm}^{2}\)
\[
\sigma_{a}=210 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{SM} 490 \mathrm{Y})
\]

【10－3－2】（6）
【10－3－3】（1）
《A3 》
1）\(\sigma_{e}=\sqrt{150^{2}+3 \times 30^{2}}=158.7 \mathrm{~N} / \mathrm{mm}^{2}<1.1 \sigma_{a}\) （ \(\left.=231 \mathrm{~N} / \mathrm{mm}^{2}\right)\)

2）\(\sigma_{e}=\sqrt{180^{2}-180 \times 120+120^{2}+3 \times 50^{2}}=180.8 \mathrm{~N} / \mathrm{mm}^{2}\)
\[
<1.1 \sigma_{a}
\]

3）\(\sigma_{e}=\sqrt{180^{2}+180 \times 120+120^{2}+3 \times 50^{2}}=275.5 \mathrm{~N} / \mathrm{mm}^{2}\) \(>1.1 \sigma_{a}\)

\(I_{X}=I_{X G}+\mathrm{A} \delta^{2}\)
\(I_{X G}=I_{X}-\mathrm{A} \delta^{2}\)
\(G\) ：center of gravity（centroid）

\[
\begin{aligned}
& I_{X}=I_{X G}+\mathrm{A} \delta^{2} \\
& I_{X G}=I_{X}-\mathrm{A} \delta^{2}
\end{aligned}
\]

A ：cross sectional area of section
\(G:\) center of gravity（centroid）
（Q）Find A，I
1）


2）


Gs ：center of gravity

【10－3－3】（4）
（mm）

4）


【10－3－3】（5）
3）
（cm）
\begin{tabular}{|c|c|c|c|c|}
\hline & A & y & Ay & \(\mathrm{Ay}^{2}\) \\
\hline 1－U PL \(3,000 \times 20\) & 600 & 76 & 45，600 & \[
\begin{array}{r}
3,465,600 \\
200^{*}
\end{array}
\] \\
\hline 2－WPL \(1,500 \times 12\) & 360 & － & － & 675，000 \\
\hline 1－LPL \(1,500 \times 20\) & 300 & －76 & －22，800 & \[
\begin{array}{r}
1,732,800 \\
100^{*}
\end{array}
\] \\
\hline \(\Sigma\) & 1，260 & & 22，800 & 5，873，400 \\
\hline
\end{tabular}
\[
\delta=\frac{22,800}{1,260}=18.1
\]
\(\mathrm{I}_{\mathrm{XG}} \frac{-412,789^{* *}}{=5,460,611 \mathrm{~cm}^{4}}\)
（＊）is excluded to calculate（ \(I_{X G}\) ）
\((* *) \delta^{2} A=18.1 \times 18.1 \times 1,260=412,789\)

4）
（cm）
\begin{tabular}{ll|c|c|c|c} 
& & A & y & Ay & \(\mathrm{Ay}^{2}\) \\
\hline 1－D PL & \(4,000 \times 300\) & \(1,714.3^{*}\) & \(148.8^{* *}\) & 255,088 & \(37,957,071128,571^{* * *}\) \\
\hline 1－ST & Girder＊＊＊＊ & 684 & - & - & \(4,543,554\) \\
\hline & \(\Sigma\) & \(2,398.3\) & & 255,088 & \(42,629,196\)
\end{tabular}
\(\delta=\frac{255,088}{2,398.3^{( }=}=106.4 \quad \frac{-27,151,058^{* * * * *}}{} \quad \frac{154 \mathrm{xG}=15,478,138 \mathrm{~cm}^{4}}{}\)
＊ \(1,714.3=400 \times 30 / 7 \quad(n=7)\)
＊＊ \(148.8=121.0+2.8+10+15\)
＊＊＊ \(128,571=\frac{30^{3} \times 400}{12} / 7\)
＊＊＊＊see \(\langle\mathrm{A}\rangle, 2\) ）
＊＊＊＊＊\(\quad \delta^{2} A=106.4 \times 106.4 \times 2,398.3=27,151,058\)

\section*{（mm）}
（ \(Q\) ）Find Reactions（ \(R_{A}, R_{B}, H_{A}\) ）


【10－3－4】（2）
1）


2）


3）


4）


【10－3－4】（3）
9）Find \(\left(M_{A}, R_{A}\right)\)


10）Find \(\left(T_{A}, T_{B}\right)\)


11）Find \(\left(H_{A}, R_{A}, T\right)\)


《A》

1）

at（A）\(\stackrel{R_{B} L}{R_{0}}=\frac{P_{0} L}{2} \times \frac{2}{3} \mathrm{~L}=\frac{P_{0} L^{2}}{3}\)
\[
\begin{aligned}
& R_{B}=\frac{P_{0} L}{3} \\
& R_{A}=\frac{P_{0} L}{2}-R_{B}=\frac{P_{0} L}{6}
\end{aligned}
\]

2）

at（A）\(\quad \underset{R_{B} L}{ }=\frac{P_{0} L}{4} \times \frac{5 L}{6}=\frac{5}{24} P_{0} L^{2}\)
\[
\begin{aligned}
& R_{B}=\frac{5}{24} P_{0} L \\
& R_{A}=\frac{P_{0} L}{4}-\frac{5}{24} P_{0} L=\frac{1}{24} P_{0} L
\end{aligned}
\]

《 A\(\rangle\)

【10－3－4】（6）
《A》
5）

\[
\begin{aligned}
\frac{H_{A}}{}=-\frac{P}{\sqrt{2}} \\
\text { at (A) } \quad \stackrel{P}{R_{B} L}=\frac{P}{\sqrt{2}} \cdot \frac{L_{1}}{\sqrt{2}}+\frac{P}{\sqrt{2}}\left(\mathrm{~L}+\frac{L_{1}}{\sqrt{2}}\right)
\end{aligned}
\]
\[
=\frac{P L_{1}}{2}+\frac{\mathrm{PL}}{\sqrt{2}}+\frac{P L_{1}}{2}
\]
\[
=\frac{P L}{\sqrt{2}}+P L_{1}
\]
\[
R_{B}=\frac{\mathrm{P}}{\sqrt{2}}+P \frac{L_{1}}{L}
\]
\[
R_{A}=\frac{\mathrm{P}}{\sqrt{2}}-R_{B}=-P \frac{L_{1}}{\mathrm{~L}}
\]
\[
\frac{\mathrm{P}}{\sqrt{2}} \leftarrow \underset{\downarrow \mathrm{P} \frac{\mathrm{~L}_{1}}{\mathrm{~L}}}{\uparrow} \frac{\mathrm{P}}{\sqrt{2}}+\mathrm{P} \frac{\mathrm{~L}_{1}}{\mathrm{~L}}
\]

3）

\[
R_{A}=-P \frac{L_{1}}{\mathrm{~L}}
\]

4）



【10－3－4】（7）
\[
\begin{gathered}
\text { at (A) } \begin{array}{l}
\stackrel{\leftrightarrow}{R_{B} L}=P\left(\overparen{\mathrm{~L}+L_{1}}\right) \\
\\
\downarrow_{\mathrm{P} \frac{\mathrm{~L}_{1}}{\mathrm{~L}}} \uparrow_{\mathrm{P}\left(1+\frac{\mathrm{L}_{1}}{\mathrm{~L}}\right)}^{\downarrow}
\end{array} \begin{array}{l}
R_{B}=P\left(1+\frac{L_{1}}{\mathrm{~L}}\right)
\end{array} \\
R_{A}=P-R_{B}=P-P-P \frac{L_{1}}{\mathrm{~L}}
\end{gathered}
\]


6）

\[
H_{A}=-P
\]
\[
\text { at (A) } \quad \widehat{R_{B} L}=\overparen{P h}
\]
\[
\begin{gathered}
R_{B}=P \frac{h}{\mathrm{~L}} \\
R_{A}=-R_{A}=-P \frac{h}{\mathrm{~L}}
\end{gathered}
\]

7）

at（A）\(\quad \stackrel{-}{R_{B} L}=\widehat{M o}\)
\(\frac{R_{B}=\frac{M o}{\mathrm{~L}}}{R_{A}=-R_{B}}=-\underline{\frac{M o}{\mathrm{~L}}}\)


8）

\[
\delta=\frac{T_{A} h}{\mathrm{EA}} \quad 2 \delta=\frac{T_{B} h}{\mathrm{EA}}
\]
\[
\rightarrow 2 T_{A}=T_{B}
\]
\[
\text { at (A) } \begin{gathered}
\widehat{T_{A} L}+\underset{T_{B}(2 \mathrm{~L})}{ }=\overparen{P(3 L)} \\
T_{A}+2 T_{B}=3 P \\
5 T_{A}=3 P \quad\left(T_{B}=2 T_{A}\right) \\
\frac{T_{A}=\frac{3}{5} P}{} \\
R_{A}=P-\left(T_{A}+T_{B}\right)=-\frac{4}{5} P
\end{gathered}
\]

【10－3－4】（10）
9）

\begin{tabular}{l}
\(R_{A}=P\left(1-\frac{a}{L}\right)\) \\
\(M_{A}=P(L-a)\) \\
\hline
\end{tabular}

10）

\[
\begin{aligned}
& T_{A} \frac{\sqrt{3}}{2}+T_{B} \frac{1}{2}=P \rightarrow\left(\sqrt{3} T_{A}+T_{B}=2 P\right) \\
& T_{A} \frac{1}{2}=T_{B} \frac{\sqrt{3}}{2} \quad \rightarrow\left(T_{A}=\sqrt{3} T_{B}\right) \\
& 3 T_{B}+T_{B}=4 T_{B}=2 P \\
& \frac{T_{B}}{}=\frac{P}{2} \\
& T_{A}=\frac{\sqrt{3}}{2} P
\end{aligned}
\]

【10－4－4】（1）
11）

\[
H_{A}-\frac{\sqrt{3}}{2} T+P=0
\]
\[
\text { at (A) } \quad \frac{\vec{T}}{2} L=\widehat{P h} \quad \rightarrow \quad \underline{T}=2 P \frac{h}{L}
\]
\[
R_{A}+\frac{T}{2}=0 \quad \rightarrow \underline{R_{A}=-P \frac{h}{L}}
\]
\[
H_{A}=\frac{\sqrt{3}}{2} T-P=\frac{\sqrt{3}}{2} \cdot 2 P \frac{h}{L}-P
\]
\[
=\sqrt{3} P \frac{h}{L}-P
\]
\(\sigma_{u}=\frac{M}{I} y_{u}=\frac{M}{w_{u}}\)
\(\sigma_{\ell}=\frac{M}{I} y_{\ell}=\frac{M}{w_{\ell}}\)
\(\left(\sigma_{u}=\sigma_{\ell}\right)\)

\(\sigma_{u}=\frac{M}{I} y_{u}=\frac{M}{w_{u}}\)
\(\sigma_{\ell}=\frac{M}{I} y_{\ell}=\frac{M}{w_{\ell}}\)

G：centroid
\[
=P\left(\frac{\sqrt{3} h}{L}-1\right)
\]

\[
\begin{aligned}
\sigma_{s u} & =\frac{M}{I_{v}} y_{s u} \\
\sigma_{s \ell} & =\frac{M}{I_{v}} y_{s \ell} \\
\sigma_{c u} & =\frac{M}{I_{v}} y_{c u} / n \\
\sigma_{c \ell} & =\frac{M}{I_{v}} y_{c \ell} / n
\end{aligned}
\]
\(n\) ：Es／Ec（Young＇s modulus ratio）

【10－4－4】（4）

《A》
1）
\(\frac{\sigma_{u}}{\sigma_{\ell}}=\frac{5 \times 10^{9}}{4,543,554 \times 10^{4}} \times \frac{1,238}{832}=\frac{136.2}{91.6} \mathrm{~N} / \mathrm{mm}^{2}\)

2）
\(\frac{\sigma_{c u}}{\sigma_{c l}}=\frac{10 \times 10^{9}}{15,478,138 \times 10^{4}} \times \frac{574}{274} / 7=\frac{5.3}{2.5} \mathrm{~N} / \mathrm{mm}^{2}\)
\(\frac{\sigma_{s u}}{\sigma_{s \ell}}=\frac{10 \times 10^{9}}{15,478,138 \times 10^{4}} \times \frac{174}{1,896}=\frac{11.2}{122.5} \mathrm{~N} / \mathrm{mm}^{2}\)
（Q）
1）See【10－3－3】（2），
when \(\quad M=5 \quad(M N \cdot m)\) ，calculate
\(\left(\sigma_{u}, \sigma_{\ell}\right)\)

2）See【10－3－3】（4），
when \(\quad M=10 \quad(M N \cdot m)\), calculate
\(\left(\sigma_{c u}, \sigma_{c \ell}\right),\left(\sigma_{s u}, \sigma_{s \ell}\right)\)
（ Q1 ）Identity the members（ \(*, * *\) ）are subjected to tension or compression．

1）


2）


3）

（ Q2 ）Find member force from node and section methods．

diagonal member length \(\quad L_{D}=\sqrt{h^{2}+(\lambda / 2)^{2}}\) \(\sin \theta=h / L_{D}, \quad \cos \theta=(\lambda / 2) / L_{D}\)
（ Q3 ）Stable and unstable（ plane problem ） ［ Internal］
\[
m: \text { number of members }
\]

\[
\begin{array}{ll}
\quad m=3+2(j-3)=2 j-3 & \\
\quad j: \text { number of nodes } & \\
m \geqq 2 j-3 & \rightarrow \text { stable } \\
m=2 j-3 & \rightarrow \text { stable (determinate) } \\
\left(\mathrm{n}_{i}=\mathrm{m}+3-2 j\right) & \rightarrow \text { degree of redundancy } \\
m<2 j-3 & \rightarrow \text { unstable }
\end{array}
\]
［External］
\[
\begin{aligned}
& r \geqq 3 \\
& \rightarrow \text { stable } \\
& r=3 \\
& \rightarrow \text { stable (determinate) } \\
& \left(\mathrm{n}_{r}=\mathrm{r}-3\right) \quad \rightarrow \text { degree of redundancy } \\
& r<3 \quad \rightarrow \text { unstable } \\
& r \text { : number of reactions } \\
& \text { [Total system ] } \\
& m+\mathrm{r} \geqq 2 j-3+3=2 j \quad \rightarrow \text { stable } \\
& m+r=2 j \\
& \rightarrow \text { stable (determinate) } \\
& \left(n_{t}=m+r-2 j\right) \quad \rightarrow \text { degree of redundancy } \\
& m+r<2 j \quad \rightarrow \text { unstable }
\end{aligned}
\]

Judge the following truss structures
stable，unstable．

1）


2）


《A1》
1）
（＊）compression（－）
（＊＊）tension（＋）
2）
（＊）tension（＋）
（＊＊）compression（－）

3）
（＊）compression（－）
（＊＊）compression（－）
［note］
Have a deformed image under uniform load ！！

《A2 》
（Reactions）
\[
\begin{aligned}
& \widehat{R_{B} \cdot} \cdot \hat{P(2.5 \lambda)} \\
& \quad R_{B}=2.5 P \lambda /(L=5 \lambda)=\frac{P}{2} \\
& R_{A}=P-\frac{P}{2}=\frac{P}{2}
\end{aligned}
\]
（ \(D_{1}\) ）［put \(\sin \theta=s, \cos \theta=c\) ］

\(\left(U_{1}, D_{3}, L_{2}\right)\)

at（a）\(\widehat{U_{1} h}+\frac{P}{2} \lambda=0 \quad U_{1}=-\frac{P}{2} \cdot \frac{\lambda}{h}\)
at（b）\(\stackrel{\leftarrow}{L_{2} h}=\frac{\vec{P}}{2} \cdot \frac{3 \lambda}{2} \quad L_{2}=\frac{3}{4} P \cdot \frac{\lambda}{h}\)
\[
D_{3} s+\frac{P}{2}=0 \quad D_{3}=-\frac{P}{2} \cdot \frac{1}{s}
\]

at（a）\(\overparen{U_{2} h}+\frac{P}{2}(2 \lambda)=0 \quad U_{2}=-P \frac{\lambda}{\mathrm{~h}}\)
at（b） \(\mathscr{L}_{3} h=\frac{P}{2} \cdot \frac{5}{2} \lambda \quad L_{3}=\frac{5}{4} P \frac{\lambda}{\mathrm{~h}}\) \(D_{5} \cdot S+\frac{P}{2}=0 \quad D_{5}=-\frac{P}{2} \cdot \frac{1}{S}\)

【10－5－3】（8）
《A3 》
1）\(m=9\)
\(j=6\)
\(r=3\)
［ \(I](m=9)=(2 j=12)-3=9 \quad \rightarrow\) stable，determinate
［E］\(r=3 \rightarrow\) stable，determinate
\([T](m+r=12)=2 \times 6=12 \rightarrow\) stable，determinate
2）\(m=22\)
\[
\begin{aligned}
& j=12 \\
& r=4
\end{aligned}
\]
［ \(I\) ］\((m=22)>(2 j=24)-3=21 \rightarrow\) stable \(\left(n_{i}=1\right)\)
［E］\(\quad r=4>3 \quad \rightarrow\) stable \(\left(n_{r}=1\right)\)
\([T](m+r=26)>(2 j=24) \quad \rightarrow\) stable \(\left(n_{t}=2\right)\)

3）\(m=5\)
\(j=5\)
\(r=5\)
［I］\(m=5<(2 j=10)-3=7 \quad \rightarrow\) unstable
［E］\(\quad r=5>3\)
\([T](m+r=10)=(2 j=10)\)

（ Q1 ）Reaction（ \(R_{A}\) ）is（4P／5）．Using influence line，conform it．

（ Q2 ）Reaction（ \(R_{B}\) ）is（ \(p_{0} L / 8\) ）and moment
\(\left(M_{c}\right)\) is（ \(p_{0} L^{2} / 16\) ）．Using influence line， conform them．

（ Q3 ）The lower deck type truss is subjected to three types of loading．Find axial force in the diagonal member \(\left(D_{3}\right)\) using influence line．

《A1 》
Influence line of \(R_{A}\) is as follows．


《A2》
Influence line of \(R_{B}, M_{C}\) are as follows．
\(\mathrm{p}_{0} \downarrow \downarrow \downarrow \downarrow \downarrow\)

\[
R_{B}=p_{0} A_{1}=\frac{P_{0} L}{8}
\]
\[
A_{1}=\frac{1}{2} \times 0.5 \times \frac{L}{2}=\frac{L}{8}
\]

\[
A_{2}=\frac{1}{2} \times \frac{L}{4} \times \frac{L}{2}=\frac{L^{2}}{16}
\]


【11－2－1，2】（3）
【11－2－1，2】（4）
（c）

\[
D_{3}=\mathrm{w}\left(A_{1}+A_{3}\right)=w\left(\frac{\lambda}{6} \cdot \frac{1}{S}-\frac{\lambda}{6} \cdot \frac{1}{S}\right)=\underline{0}
\]
［note］
（ Q1 ）

\[
\text { at (B) } \quad \overrightarrow{R_{A} L}=P \times\left(\frac{4}{5} L\right)=\frac{4}{5} P L \quad \rightarrow R_{A}=\frac{4}{5} P
\]
（Q2）

\[
\text { at (A) } \quad \stackrel{\leftrightarrow}{R_{B} L}=\frac{p_{0} L}{2} \cdot \frac{L}{4}=\frac{p_{0} L^{2}}{8} \rightarrow R_{B}=\frac{p_{0} L}{8}
\]
\[
M_{C}=R_{B} \frac{L}{2}=\frac{p_{0} L^{2}}{16}
\]
（ Q3 ）
（a）

（b）

（c）


（ Q1 ）The member is subjected to tension．
1，000 kN（under dead load）
\(1,400 \mathrm{kN}\)（under live load）
200 kN （ under temperature change ）
the cross－sectional area of the member is \(180 \mathrm{~cm}^{2}\) ， and the material grade is SM400 （ \(\left.\sigma_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{a}=140 \mathrm{~N} / \mathrm{mm}^{2}\right)\).
Check the safety
（Q2）

（a）Find live load to Girder－1
（b）Find design bending moment and shear force at（A）

\section*{《A1 》}
\(\sigma_{D}=\frac{1,000 \times 10^{3}}{180 \times 10^{2}}=55.6 \mathrm{~N} / \mathrm{mm}^{2} \quad(\) dead load \()\)
\(\sigma_{L}=\frac{1,400 \times 10^{3}}{180 \times 10^{2}}=77.8 \mathrm{~N} / \mathrm{mm}^{2} \quad(\) live load ）
\(\sigma_{T}=\frac{200 \times 10^{3}}{180 \times 10^{2}}=11.1 \mathrm{~N} / \mathrm{mm}^{2} \quad\)（temperature change ）
\(\sigma_{D}+\sigma_{L}=133.4 \mathrm{~N} / \mathrm{mm}^{2}<\sigma_{a}=140 \mathrm{~N} / \mathrm{mm}^{2}\)
\(\sigma_{D}+\sigma_{L}+\sigma_{T}=144.5 \mathrm{~N} / \mathrm{mm}^{2}<140 \times 1.15=161 \mathrm{~N} / \mathrm{mm}^{2}\)
（ in case of check using stress resultants ）
\(N_{D}=1,000 \mathrm{kN}\)
\(N_{L}=1,400 \mathrm{kN}\)
\(N_{T}=200 \mathrm{kN}\)
\(N_{u l t}=\sigma_{y} A=4,230 \mathrm{kN}\)
\(N_{a}=N_{u l} t . / 1.7=2,488 \mathrm{kN}\)
\(N_{D}+N_{L}=2,400 k N<N_{a}\)
\(N_{D}+N_{L}+N_{T}=2,600 \mathrm{kN}<N_{a} \times 1.15=2,861 \mathrm{kN}\)

《A2 》

（a）

\section*{1］Distributed load（ \(p_{1}\) ）}

1－1 For bending moment（ \(p_{1}=10 \mathrm{kN} / \mathrm{m}^{2}\) ）
\[
\begin{aligned}
& \frac{1.333+0.417}{2} \times 5.5 \mathrm{~m} \times 10 \mathrm{kN} / \mathrm{m}^{2}=48.13 \mathrm{kN} / \mathrm{m} \\
& \frac{\frac{0.417}{2} \times 2.5 \mathrm{~m} \times \frac{10}{2} \mathrm{kN} / \mathrm{m}^{2}=2.61 \mathrm{kN} / \mathrm{m}}{\Sigma 50.74 \mathrm{kN} / \mathrm{m}}
\end{aligned}
\]

1－2 For shear force \(\left(p_{1}=12 \mathrm{kN} / \mathrm{m}^{2}\right)\)
\[
\Sigma \quad 50.74 \times \frac{12}{10}=60.89 \mathrm{kN} / \mathrm{m}
\]

2］Distributed load（ \(p_{2}=3.5 \mathrm{kN} / \mathrm{m}^{2}\) ）（ \(L<80 \mathrm{~m}\) ）
\(\Sigma \quad 50.74 \times \frac{3.5}{10}=17.76 \mathrm{kN} / \mathrm{m}\)

2－2 Design shear force by live load

\(\mathrm{Q}=\frac{1}{2} \times 0.5 \times 20 \mathrm{~m} \times 17.76 \mathrm{kN} / \mathrm{m} \times(1+0.222)\)
\(+\frac{0.5+0.25}{2} \times 10 \mathrm{~m} \times 60.89 \mathrm{kN} / \mathrm{m} \times(1+0.222)\)
\(=108.5+279.0\)
\(=387.5 \mathrm{kN}\)
（b）

\section*{1］impact}
\[
i=\frac{20}{50+L}=\frac{20}{90}=0.222 \quad(L=40 \mathrm{~m})
\]

\section*{2］Influence line and loading}

2－1 Design bending moment by live load

\[
\begin{aligned}
\mathrm{M}= & \frac{1}{2} \times 10 \mathrm{~m} \times 40 \mathrm{~m} \times 17.76 \mathrm{kN} / \mathrm{m} \times(1+0.222) \\
& +2 \times\left(\frac{10+7.5}{2}\right) \mathrm{m} \times 5 \mathrm{~m} \times 50.74 \mathrm{kN} / \mathrm{m} \times(1+0.222) \\
= & 4,340.5+5,425.4 \\
= & 9,765.9 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
\]

【11－3－1】（1）
Strength（ \(\sigma_{\text {cr }}\) ）of columns（by JHBS）

\[
\begin{array}{ll}
\sigma_{c r} / \sigma_{y}=1.0 & \left(\lambda_{c} \leqq 0.2\right) \\
\sigma_{c r} / \sigma_{y}=1.109-0.547 \lambda_{c} & \left(0.2<\lambda_{c} \leqq 1.0\right) \\
\sigma_{c r} / \sigma_{y}=\frac{1.0}{0.773+\lambda_{c}^{2}} & \left(1.0<\lambda_{c}\right) \\
\lambda_{c}=\sqrt{\frac{\sigma_{y}}{\sigma_{E}}} \\
\sigma_{a}=\sigma_{c r} / \gamma \quad(\gamma \cong 1.7)
\end{array}
\]
（ Q1 ）Find elastic buckling stress（ \(\sigma_{\mathrm{E}}\) ）and strength（ \(\sigma_{\text {cr }}\) ）of columns with a height of \(5,000 \mathrm{~mm}\) ，and with support（boundary） conditions \｛（a）：PIN－PIN，（b）：FIX－FIX \}. The material grade is \(\operatorname{SM} 400\left(\sigma_{\mathrm{y}}=235 \mathrm{~N} / \mathrm{mm}^{2}\right)\) ．


《A1 》
\(A=2 \times 14 \times 1+2 \times 10 \times 1=48 \mathrm{~cm}^{2}\)
\(I_{x}=2 \times 14 \times 1 \times 5.5^{2}+2 \times \frac{10^{3} \times 1}{12}=1,013.7 \mathrm{~cm}^{4}\)
\(I_{y}=2 \times 10 \times 1 \times 6.5^{2}+2 \times \frac{14^{3} \times 1}{12}=1,302.3 \mathrm{~cm}^{4}>I_{x}\)
（a）PIN－PIN support（ \(\left.L_{e}=5,000 \mathrm{~mm}\right)\)
\(P_{E}=\frac{\pi^{2}}{L^{2}} E I=\frac{\pi^{2}}{(5,000)^{2}} \times 2.0 \times 10^{5} \times 1,013.7 \times 10^{4}\)
\[
=7.996 \times 10^{5}(N)
\]
\(\sigma_{E}=\frac{P_{E}}{A}=\frac{7.996 \times 10^{5}}{48 \times 10^{2}}=166.6\left(\mathrm{~N} / \mathrm{mm}^{2}\right)\)
\(\lambda_{c}=\sqrt{\frac{\sigma_{y}}{\sigma_{E}}}=\sqrt{\frac{235}{166.6}}=1.190(>1.0)\)
\(\sigma_{c r} / \sigma_{y}=\frac{1.0}{0.773+\lambda_{c}{ }^{2}}=0.457\)
\(\sigma_{c r}=0.457 \sigma_{y}=107.4\left(\mathrm{~N} / \mathrm{mm}^{2}\right)\)
\(\sigma_{a}=\sigma_{c r} / 1.7=\underline{\underline{63.2}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)}\)

\section*{JHBS}
\(\gamma=\sqrt{\frac{I_{x}}{A}}=\sqrt{\frac{1,013.7}{48}}=4.596(\mathrm{~cm})\)
\(L_{e} / \gamma=\frac{500}{4.596}=108.8\)
\(\sigma_{a}=\frac{1,200,000}{6,700+\left(L_{e} / \gamma\right)^{2}}=\underline{\underline{64.7\left(\mathrm{~N} / \mathrm{mm}^{2}\right)}}\)

【11－3－1】（4）
【11－3－1】（5）

\section*{※ Check of plate strength}

\[
\begin{aligned}
b & =100 \mathrm{~mm}, t=10 \mathrm{~mm} \\
\sigma_{E} & =4.0 \times \frac{\pi^{2} E}{12\left(1-V^{2}\right)} \cdot\left(\frac{t}{b}\right)^{2}=722,315\left(\frac{t}{b}\right)^{2} \\
& =7223.2\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\
R & =\sqrt{\frac{\sigma_{y}}{\sigma_{E}}}=\sqrt{\frac{235}{7223.2}}=0.180<0.5 \\
\rightarrow \sigma_{c r} & =\sigma_{y}
\end{aligned}
\]

\section*{Strength（ \(\sigma_{\text {cr }}\) ）of beams（by JHBS）}

\(\sigma_{c r} / \sigma_{y}=1.0 \quad\left(\quad \lambda_{b} \leqq 0.2\right)\)
\(\sigma_{c r} / \sigma_{y}=1.0-0.412\left(\lambda_{b}-0.2\right)\left(0.2<\lambda_{b} \leqq \sqrt{2}\right)\)

In case that \(M\) varies between fix point，

\(M_{\text {eq．}}=\max .\left\{\left(0.6 M_{1}+0.4 M_{2}\right),\left(0.4 M_{1}\right)\right\}\)
\(\sigma_{a}\) can be increased to \(\left\{\left(M / M_{e q}\right) \sigma_{a}\right\}\)
（ Q1 ）The simply supported beam with laterally constrained at supports is subjected to bending moment（ \(M\) ）．Find elastic buckling moment \(\left(M_{E}\right)\) and ultimate moment \(\left(M_{c r}\right)\) ．
The material grade is \(\operatorname{SM} 400\left(\sigma_{\mathrm{y}}=235 \mathrm{~N} / \mathrm{mm}^{2}\right)\) ．

（Q2 ）Find increment coefficient of allowable stress．The beam is given in（Q1）， and subjected to the following moment． The satisfy check section is（B）

（ Q3 ）The following beam is subjected to bending moment and laterally constrained at supports．Find allowable stress based on JHBS．The material grade is SM490Y．

（a）
（b）

（ Q4 ）Obtain shear stress under shear（Q）．


\section*{《A1》}
\(I_{x}=2 \times 30 \times 2 \times 59^{2}+\frac{1.2 \times 116^{3}}{12}=573,810 \mathrm{~cm}^{4}\)
\(I_{y}=2 \times \frac{30^{3} \times 2}{12}+\frac{1.2^{3} \times 120}{12} \cong 9,000 \mathrm{~cm}^{4}\)
\(I_{w} \cong I_{y}\left(\frac{h}{2}\right)^{2}=9,000 \times\left(\frac{120}{2}\right)^{2}=32,400,000 \mathrm{~cm}^{6}\)
（ \(I_{w}:\) warping constant ）
\(M_{E}=\frac{\pi}{L} \sqrt{E I_{y} G J\left(1+\frac{\pi^{2} \times E I_{w}}{L^{2} G J}\right)}\)
\(\cong\left(\frac{\pi}{L}\right)^{2} E \sqrt{I_{y} I_{w}}\)
\(=\left(\frac{\pi}{6,000}\right)^{2} \times 2 \times 10^{5} \times \sqrt{9 \times 10^{7} \times 3.24 \times 10^{13}}\)
\(=\underline{2.958 \times 10^{9} \mathrm{~N} \cdot \mathrm{~mm}}\)
since,\(W_{x}=\frac{5.738 \times 10^{9}}{600}=9.56 \times 10^{6}\)
\(M_{y}=235 \times W_{x}=235 \times 9.56 \times 10^{6}=2.247 \times 10^{9} \mathrm{~N} \cdot \mathrm{~mm}\)

【11－3－2】（7）

\section*{《 A3 》}
（a）\(\quad L / b=5,000 / 400=12.5\)
\(A_{C}=40 \times 2.4=96 \mathrm{~cm}^{2}, \quad A_{w}=250 \times 1.6=400 \mathrm{~cm}^{2}\)
\(A_{w} / A_{C}=400 / 96=4.17 \geq 2\)
\(K=\sqrt{3+\frac{A_{w}}{2 A_{C}}}=2.25\)
\(\frac{7}{k}(=3.1)<\frac{L}{b}(=12.5)<27\)
\(\underline{\sigma_{b a}}=210-2.3\left(K \frac{L}{b}-7\right)=\underline{161.4\left(\mathrm{~N} / \mathrm{mm}^{2}\right)}\)
（b）\(\quad L / b=5,000 / 300=16.7\)
\(A_{C}=30 \times 1.6=48 \mathrm{~cm}^{2}, \quad A_{w}=150 \times 0.9=135 \mathrm{~cm}^{2}\)
\(A_{w} / A_{C}=135 / 48=2.81 \geq 2\)
\(K=\sqrt{3+\frac{A_{w}}{2 A_{C}}}=2.10\)
\(\frac{7}{k}(=3.33)<\frac{L}{b}(=16.7)<27\)
\(\underline{\sigma_{b a}}=210-2.3\left(K \frac{L}{b}-7\right)=\underline{145.4\left(\mathrm{~N} / \mathrm{mm}^{2}\right)}\)
\[
\begin{aligned}
& \lambda_{b}=\sqrt{\frac{M_{y}}{M_{E}}}=\sqrt{\frac{2.247 \times 10^{9}}{2.958 \times 10^{9}}}=0.872(>0.2) \\
& \sigma_{c r} / \sigma_{y}=1.0-0.412\left(\lambda_{b}-0.2\right)=0.723 \\
& \sigma_{c r}=0.723 \sigma_{y}=169.9 \mathrm{~N} / \mathrm{mm}^{2} \\
& M_{c r}=\sigma_{c r} W_{x}=169.9 \times 9.56 \times 10^{6}=\underline{1.624(\mathrm{MN} \cdot \mathrm{~m})} \\
& \sigma_{b a}=\sigma_{c r} / 1.7=\underline{\underline{99.9 \mathrm{~N} / \mathrm{mm}^{2}}}
\end{aligned}
\]

\section*{by JHBS}
\(A_{c}=30 \times 2.0=60 \mathrm{~cm}^{2}, A_{w}=120 \times 1.2=144 \mathrm{~cm}^{2}\) \(A_{w} / A_{c}=144 / 60=2.4>2.0\)
\(K=\sqrt{3+A_{w} /\left(2 A_{c}\right)}=2.05\)
\(\frac{9}{\mathrm{~K}}(=4.5)<\frac{L}{b}(=20)<30\)
\(\sigma_{b a}=140-1.2\left(K \frac{L}{b}-9\right)=101.6 \mathrm{~N} / \mathrm{mm}^{2}\)
《 A 2 》
\[
\begin{aligned}
& M_{e q}=0.6 M_{1}+0.4 M_{2}=0.8 M \\
& M_{e q}=0.4 M_{1}=0.4 M
\end{aligned}
\]
\(\downarrow\)
\[
M_{e q}=0.8 M
\]
\[
M / M_{e q}=1.25
\]
\(\underline{\sigma_{b a} \text { can be increased } 1.25} \sigma_{b a}\)

\section*{《A4 》}
\(I=2 \times 30 \times 1.6 \times 75.8^{2}+\frac{150^{3} \times 1}{12}\)
\(=832,831.4\left(\mathrm{~cm}^{4}\right)\left(\rightarrow 8.328 \times 10^{9} \mathrm{~mm}^{4}\right)\)
\(\tau_{1}=\frac{Q}{I} \times \frac{300 \times 1,516}{4}=1.365 \times 10^{-5} Q\)
\(\tau_{2}=\frac{Q}{I} \times \frac{300 \times 1,516}{2} \times \frac{16}{10}=4.369 \times 10^{-5} Q\)
\(\tau_{\max .}=\frac{Q}{I} \times\left[\frac{1,516^{2}}{8}+\frac{300 \times 1,516}{2} \times \frac{16}{10}\right]=7.818 \times 10^{-5} Q\)
\(\tau_{\text {mean }}=\frac{Q}{A_{w}}=\frac{Q}{1,500 \times 10}=6.667 \times 10^{-5} Q\)
when \(Q=200 \mathrm{kN}\left(2 \times 10^{5} \mathrm{~N}\right)\) ，
\(\tau_{1}=2.7 \mathrm{~N} / \mathrm{mm}^{2}, \tau_{2}=8.7 \mathrm{~N} / \mathrm{mm}^{2}, \tau_{\max .}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\)
\(\tau_{\text {mean }}=13.3 \mathrm{~N} / \mathrm{mm}^{2}\)


Strength of plate（by JHBS）


\section*{Unstiffened plate}
\[
\begin{array}{llr}
\sigma_{c r} / \sigma_{y}=1.0 & (\quad \text { ( } \quad(0.7<R \\
\sigma_{c r} / \sigma_{y}=0.5 / R^{2} & )
\end{array}
\]

\section*{Stiffened plate}
\[
\begin{array}{ll}
\sigma_{c r} / \sigma_{y}=1.0 & \left(R_{R} \leqq 0.5\right) \\
\sigma_{c r} / \sigma_{y}=1.5-R_{R} & \left(0.5<R_{R} \leqq 1.0\right) \\
\sigma_{c r} / \sigma_{y}=0.5 / R_{R}^{2} & \left(1.0<R_{R}\right)
\end{array}
\]
（b）

（a）


【11－3－3】（4）
（ Q4 ）Design the following lower flange．

（a）Find the allowable stress of the lower flange．
（b）Design the longitudinal rib．
（c）Design the cross beam．
（ Q5 ）Find the elastic shear buckling stress（ \(\tau_{\mathrm{E}}\) ）

\[
\begin{aligned}
\tau_{E} & =k_{\tau} \frac{\pi^{2} E}{12\left(1-V^{2}\right)}\left(\frac{t}{h}\right)^{2} & & \\
k_{\tau} & =5.34+4.00(h / a)^{2} & & a / h>1.0 \\
& =4.00+5.34(h / a)^{2} & & a / h \leqq 1.0
\end{aligned}
\]
（Q6 ）Find the ultimate strength（ \(\tau_{\text {ult．}}\) ）of the （Q3）plate using Basler＇s formula．
The material grade is SM400
\[
\left(\tau_{y}=\frac{\sigma_{y}}{\sqrt{3}}=135 \mathrm{~N} / \mathrm{mm}^{2}\right)
\]
\(\frac{\tau_{u l t .}}{\tau_{y}}=\frac{\tau_{c r}}{\tau_{y}}+\frac{\sqrt{3}}{2} \cdot \frac{\left(1-\frac{\tau_{c r}}{\tau_{y}}\right)}{\sqrt{1+\alpha^{2}}}\)
（post buckling strength）
\(\tau_{c r}=\tau_{E} \quad\left(\quad \tau_{E} \leqq 0.8 \tau_{y}\right)\)
\(\tau_{c r}=\sqrt{0.8 \tau_{y} \tau_{E}} \quad\left(0.8 \tau_{y}<\tau_{E} \quad\right)\)

《A1》
\[
\begin{aligned}
\sigma_{E}= & k \frac{\pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{t}{b}\right)^{2} \\
& E=2 \times 10^{5}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\
& v(\text { Poisson's ratio })=0.3
\end{aligned}
\]
（a）\(b=400, t=12, k=4.0\)
\(\sigma_{E}=722,315\left(\frac{t}{b}\right)^{2}=650 \mathrm{~N} / \mathrm{mm}^{2}\)
\(R=\sqrt{\frac{\sigma_{y}}{\sigma_{E}}}=\sqrt{\frac{235}{650}}=0.60<0.70\)
\(\sigma_{c r} / \sigma_{y}=1.0 \rightarrow \sigma_{c r}=\sigma_{y}=235 \mathrm{~N} / \mathrm{mm}^{2}\)
\(\sigma_{a}=\sigma_{c r} / 1.7 \cong 140 \mathrm{~N} / \mathrm{mm}^{2} \stackrel{2}{ } \longleftarrow\)
（b）\(b=300, t=20, k=0.426\)
\(\sigma_{E}=76,927\left(\frac{t}{b}\right)^{2}=341 \mathrm{~N} / \mathrm{mm}^{2}\)
\(R=\sqrt{\frac{\sigma_{y}}{\sigma_{E}}}=\sqrt{\frac{235}{341}}=0.83>0.70\)
\(\sigma_{c r} / \sigma_{y}=0.5 / R^{2}=0.726\)
\(\sigma_{c r}=0.726 \sigma_{y}=170.6 \mathrm{~N} / \mathrm{mm}^{2}\)
\begin{tabular}{c}
\(\sigma_{c r}=\sigma_{c r} / 1.7=100.4 \mathrm{~N} / \mathrm{mm}^{2}\) \\
\hline
\end{tabular}

\section*{Based on JHBS}
（a）\(t(=12)>\frac{b(=400)}{38.7}=10.3 \rightarrow \underline{\sigma_{a}=140 \mathrm{~N} / \mathrm{mm}^{2}}\)
（b）\(\frac{b(=300)}{16}=18.8<20<\frac{b}{12.8}(=23.4)\)
\[
\rightarrow \sigma_{a}=23,000(t / b)^{2}=102.2 \mathrm{~N} / \mathrm{mm}^{2}
\]

【11－3－3】（8）

\section*{《 A2 》}

1）Column strength
\(A=2 \times 30 \times 2.4+2 \times 40 \times 1=224 \mathrm{~cm}^{2}\left(22,400 \mathrm{~mm}^{2}\right)\)
\(I_{x}=2 \times 30 \times 2.4 \times 21.2^{2}+2 \times \frac{40^{3} \times 1}{12}=75,386 \mathrm{~cm}^{4}\)
\(I_{y}=2 \times 40 \times 1.0 \times 14.5^{2}+2 \times \frac{30^{3} \times 2.4}{12}=27,620 \mathrm{~cm}^{4}<I_{x}\)
\(P_{E}=\frac{\pi^{2}}{L_{e}{ }^{2}} E I_{y}=\frac{\pi^{2}}{(5,000)^{2}} \times 2 \times 10^{5} \times 2.762 \times 10^{8}=21,785,772(\mathrm{~N})\)
\(\sigma_{E}=\frac{P_{E}}{A}=\frac{21,785,772}{22,400}=972.6\left(\mathrm{~N} / \mathrm{mm}^{2}\right)\)
\(\lambda_{C}=\sqrt{\frac{\sigma_{y}}{\sigma_{E}}}=\sqrt{\frac{355}{972.6}}=0.604\left(0.2<\lambda_{C}<1.0\right)\)
\(\sigma_{c r} / \sigma_{y}=1.109-0.547 \lambda_{C}=0.779 \rightarrow \sigma_{c r}(C)=0.779 \sigma_{y}\)

\section*{2）Plate \((400 \times 10)\) strength}
\[
\begin{aligned}
\sigma_{E} & =4 \times \frac{\pi^{2} E}{12\left(1-v^{2}\right)} \times\left(\frac{t}{b}\right)^{2}=722,315\left(\frac{t}{b}\right)^{2} \\
& =722,315\left(\frac{10}{400}\right)^{2}=451.4 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\]
\(R=\sqrt{\frac{355}{451.4}}=0.887>0.7\)
\(\sigma_{c r} / \sigma_{y}=0.5 / R^{2}=0.636 \rightarrow \sigma_{c r}(P)=0.636 \sigma_{y}\)
3）Coupled strength
\(\sigma_{c r}=\sigma_{c r}(C) \times \sigma_{c r}(P) / \sigma_{y}=0.495 \sigma_{y}=175.9 \mathrm{~N} / \mathrm{mm}^{2}\) \(\underline{\sigma_{a}=\sigma_{c r} / 1.7=103.5 \mathrm{~N} / \mathrm{mm}^{2}}\)

《A3 》
\[
\begin{aligned}
& \begin{aligned}
& \sigma_{E}=\left(k_{R}=4 n^{2}\right) \cdot \frac{\pi^{2} E}{12\left(1-V^{2}\right)}\left(\frac{t}{b}\right)^{2} \\
& \quad b=2,400 \mathrm{~mm}, t=24 \mathrm{~mm}, n=4 \\
&= 11,557,040\left(\frac{t}{b}\right)^{2}=1,155.7\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\
& R= \sqrt{\frac{\sigma_{y}}{\sigma_{E}}}=\sqrt{\frac{235}{1,155.7}}=0.45<0.5 \\
& \sigma_{c r} / \sigma_{y}=1.0 \rightarrow \frac{\sigma_{c r}=\sigma_{y}=235\left(\mathrm{~N} / \mathrm{mm}^{2}\right)}{\sigma_{a}=\sigma_{c r} / 1.7 \cong 140\left(\mathrm{~N} / \mathrm{mm}^{2}\right)}
\end{aligned}
\end{aligned}
\]
※ Check of longitudinal rib（ 1 －PL \(200 \times 22\) ）
\[
I_{\ell}=\frac{20^{3} \times 2.2}{3}=5,866.7 \mathrm{~cm}^{4} \quad-\quad=
\]
\[
A_{\ell}=20 \times 2.2=44 \mathrm{~cm}^{2}>\frac{b t}{10 n}=\frac{240 \times 2.4}{10 \times 4}=14.4 \mathrm{~cm}^{2}
\]
\[
\delta_{\ell}=\frac{A_{\ell}}{b t}=\frac{44}{240 \times 2.4}=0.0764
\]
\[
\gamma_{\ell}=\frac{I_{\ell}}{b t^{3} / 11}=\frac{5,866.7}{\left(240 \times 2.4^{3}\right) / 11}=19.5
\]
\[
\alpha_{0}=\sqrt[4]{1+n \times \gamma_{\ell}}=\sqrt[4]{1+4 \times 19.5}=2.98
\]
\[
\left(\alpha(=1.2)<\alpha_{0}\right)
\]
\[
t_{0}=\frac{2,400}{28 \times 4}=21.4 \mathrm{~mm}
\]
\[
\begin{aligned}
\gamma_{\ell, \text { reg. }} & =4 \alpha^{2} n\left(\frac{t_{0}}{t}\right)^{2}\left(1+n \delta_{\ell}\right)-\frac{\left(\alpha^{2}+1\right)^{2}}{n} \\
& =4 \times 1.2^{2} \times 4 \times\left(\frac{21.4}{24}\right)^{2} \times(1+4 \times 0.0764) \\
& -\frac{\left(1.2^{2}+1\right)^{2}}{4}=22.4
\end{aligned}
\]
\(\frac{I_{\ell}\left(=5,866.7 \mathrm{~cm}^{4}\right)<\frac{b t^{3}}{11} \gamma_{\ell, \text { reg．}}=6,765.2 \mathrm{~cm}^{4}}{\text { Out }!!}\)
※ Change size of longitudinal rib to \((220 \times 22)\)
\[
\begin{aligned}
& I_{\ell}=\frac{22^{3} \times 2.2}{3}=7,808.5 \mathrm{~cm}^{4} \\
& A_{\ell}=22 \times 2.2=48.4 \mathrm{~cm}^{2}>\frac{b t}{10^{n}}=14.4 \mathrm{~cm}^{2} \\
& \delta_{\ell}=\frac{A_{\ell}}{b t}=\frac{48.4}{240 \times 2.4}=0.084 \\
& \gamma_{\ell}=\frac{I_{\ell}}{b t^{3} / 11}=\frac{7,808.5}{\left(240 \times 2.4^{3}\right) / 11}=25.9 \\
& \alpha_{0}=\sqrt[4]{1+n \times \gamma_{\ell}}=\sqrt[4]{1+4 \times 25.9}=3.20>\alpha(=1.2) \\
& \gamma_{\ell, \text { reg. }}=4 \times 1.2^{2} \times 4 \times\left(\frac{21.4}{24}\right)^{2} \times(1+4 \times 0.084)
\end{aligned}
\]
\[
-\frac{\left(1.2^{2}+1\right)^{2}}{4}=23.0
\]
\(\frac{I_{\ell}\left(=7,808.5 \mathrm{~cm}^{4}\right)>\frac{b t^{3}}{11} \gamma_{\ell, \text { reg．}}=6,937 \mathrm{~cm}^{4}}{\boldsymbol{O} \boldsymbol{k}!!}\)

\section*{【11－3－3】（11）}

\section*{《A4》}
（a）\(\quad \sigma_{E}=4 n^{2} \frac{\pi^{2} E}{12\left(1-V^{2}\right)}\left(\frac{t}{b}\right)^{2}\)
\[
\begin{gathered}
(n=15, b=6,000 \mathrm{~mm}, t=16 \mathrm{~mm}) \\
=4 \times 15^{2} \times \frac{\pi^{2} E}{12\left(1-v^{2}\right)} \times\left(\frac{16}{6,000}\right)^{2}=1,155.7 \mathrm{~N} / \mathrm{mm}^{2} \\
R_{p}=\sqrt{\frac{\sigma_{y}}{\sigma_{E}}}=\sqrt{\frac{355}{1,155.7}}=0.554>0.5 \\
\sigma_{c r} / \sigma_{y}=1.5-R_{p}=0.946 \rightarrow \begin{array}{r}
\sigma_{c r}=0.946 \sigma_{y}=335.8 \mathrm{~N} / \mathrm{mm}^{2} \\
\sigma_{a}=\sigma_{c r} / 1.7=197.5 \mathrm{~N} / \mathrm{mm}^{2}
\end{array}
\end{gathered}
\]

\section*{by JHBS}
\[
\begin{gathered}
\frac{b}{46 \mathrm{fn}}\left(=\frac{6,000}{46 \times 1 \times 15}=8.7 \mathrm{~mm}\right)<t(=16 \mathrm{~mm}) \\
<\frac{b}{22 f n}\left(=\frac{6,000}{22 \times 1 \times 15}=18.2 \mathrm{~mm}\right) \\
\begin{aligned}
& \sigma_{a}=210-4.6\left(\frac{b}{t f n}-22\right)= 210-4.6\left(\frac{6,000}{16 \times 1 \times 15}-22\right) \\
&= 196.2 \mathrm{~N} / \mathrm{mm}^{2} \\
& \leftarrow
\end{aligned}
\end{gathered}
\]
（b）Longitudinal rib
Assume plate \(190 \times 20\)（SM490Y）
\(A_{\ell}=19 \times 2.0=38 \mathrm{~cm}^{2}, \quad \delta_{\ell}=\frac{A_{\ell}}{b t}=\frac{38}{6,000 \times 1.6}=0.0396\)
\(I_{\ell}=\frac{19^{3} \times 2.0}{3}=4,573 \mathrm{~cm}^{4}\)

【11－3－3】（12）
\[
\begin{aligned}
& \gamma_{\ell}=\frac{I_{\ell}}{b t^{3} / 11}=\frac{4,573}{\left(600 \times 1.6^{3}\right) / 11}=20.5 \\
& \alpha_{0}=\sqrt[4]{1+n \times \gamma_{\ell}}=\sqrt[4]{1+15 \times 20.5}=4.19>\alpha(=0.33)
\end{aligned}
\]

Since \(R_{p}>0.5\)
\[
\begin{aligned}
& \begin{aligned}
& \gamma_{\ell, \text { req. }}=4 \alpha^{2} n\left(1+n \delta_{\ell}\right)-\frac{\left(\alpha^{2}+1\right)^{2}}{n} \\
& \quad 4 \times 0.33^{2} \times 15 \times(1+15 \times 0.0396)-\frac{\left(0.33^{2}+1\right)^{2}}{15}=10.3 \\
& A_{\ell}(=\left.38 \mathrm{~cm}^{2}\right) \geqq \frac{b t}{10 n}=\frac{600 \times 1.6}{10 \times 15}=6.4 \mathrm{~cm}^{2} \\
& I_{\ell}\left(=4,573 \mathrm{~cm}^{4}\right) \geqq \frac{b t^{3}}{11} \gamma_{\ell, \text { req. }}=\frac{600 \times 1.6^{3}}{11} \times 10.3=2,301 \mathrm{~cm}^{4}
\end{aligned}
\end{aligned}
\]

Since a little bit conservative ，we select more smaller plate for ribs．It is \(160 \times 16\)（SM490Y）．
\[
\begin{aligned}
& A_{\ell}=16 \times 1.6 \times 25.6 \mathrm{~cm}^{2} \quad, \quad \delta_{\ell}=\frac{25.6}{600 \times 1.6}=0.027 \\
& I_{\ell}=\frac{16^{3} \times 1.6}{3}=2,185 \mathrm{~cm}^{4} \\
& \gamma_{\ell}=\frac{I_{\ell}}{b t^{3} / 11}=\frac{2,185}{\left(600 \times 1.6^{3}\right) / 11}=9.8 \\
& \alpha_{0}=\sqrt[4]{1+n \times \gamma_{\ell}}=\sqrt[4]{1+15 \times 9.8}=3.49>\alpha(=0.33) \\
& \gamma_{\ell, \text { req. }}=4 \alpha^{2} n\left(1+n \delta_{\ell}\right)-\frac{\left(\alpha^{2}+1\right)^{2}}{n} \\
& \quad=4 \times 0.33^{2} \times 15 \times(1+15 \times 0.027)-\frac{\left(0.33^{2}+1\right)^{2}}{15}=9.1
\end{aligned}
\]
\[
\begin{aligned}
& A_{\ell}\left(=25.6 \mathrm{~cm}^{2}\right)>\frac{b t}{10 n}=\frac{600 \times 1.6}{10 \times 15}=6.4 \mathrm{~cm}^{2} \\
& I_{\ell}\left(=2,185 \mathrm{~cm}^{4}\right)
\end{aligned} \frac{b t^{3}}{11} \gamma_{\ell, \text { req. }}=\frac{600 \times 1.6^{3}}{11} \times 9.1=\underline{2,033 \mathrm{~cm}^{4}} .
\]

\section*{Plate \(160 \times 16\) is employed for longitudinal ribs．}
（c）Cross beam

\[
\begin{aligned}
I_{t} & =20 \times 1.6 \times 40.8^{2}+\frac{40^{3} \times 0.9}{3}=72,468 \mathrm{~cm}^{4} \\
I_{t}( & \left.=72,468 \mathrm{~cm}^{4}\right) \\
& >\frac{b t^{3}}{11} \times \frac{1+n \gamma_{\ell, \text { reg. }}}{4 \alpha^{3}}=\frac{600 \times 1.6^{3}}{11} \times \frac{1+15 \times 9.1}{4 \times 0.33^{3}} \\
& =70,533 \mathrm{~cm}^{4}
\end{aligned}
\]
\[
【 11-4-1 】(1)
\]
（ Q1 ）Design the friction－type bolt（M22，F10T， 2－plane friction）connection of the following I－section．The material grade is SM490Y（ \(\sigma_{\mathrm{a}}=210 \mathrm{~N} / \mathrm{mm}^{2}\) ）
The shear force is 295 kN ．

（ Q2 ）Find the net cross－sectional area at the Sections（A）and（B）．


【11－4－1】（2）
《A5 》
\(a / h<1.0 \rightarrow k_{\tau}=4.00+5.34(h / a)^{2}=7.0\)
\(\tau_{E}=k_{\tau} \frac{\pi^{2} E}{12\left(1-V^{2}\right)} \cdot\left(\frac{t}{h}\right)^{2}=1,264,051\left(\frac{t}{h}\right)^{2}=80.9\left(\mathrm{~N} / \mathrm{mm}^{2}\right)\)

\section*{《A6 》}
\(\tau_{E} \leqq 0.8 \tau_{y}=108 \mathrm{~N} / \mathrm{mm}^{2} \rightarrow \tau_{c r}=\tau_{E}=80.9 \mathrm{~N} / \mathrm{mm}^{2}\)
\(\frac{\tau_{u l t}}{\tau_{y}}=\frac{80.9}{135}+\frac{\sqrt{3}}{2} \cdot \frac{\left(1-\frac{80.9}{135}\right)}{\sqrt{1+0.75^{2}}}=0.599+0.278=0.877\)
\(\tau_{u l t}=0.877 \tau_{y}=118.4 \mathrm{~N} / \mathrm{mm}^{2}\)
-11 －
《 A1 》
（1）Connection of the upper flange．
\[
\begin{aligned}
\sigma_{U} & =-131.5<0.75 \times 210=157.5 \mathrm{~N} / \mathrm{mm}^{2} \\
& \rightarrow \text { Design using } 75 \% \text { of full strength }
\end{aligned}
\]

\section*{－Number of bolts and arrangements．}
\[
\mathrm{M}=\frac{157.5 \times 360 \times 18}{96,000}=10.6 \rightarrow 12 \text { bolts }
\]


\section*{－Splice plate（SM490Y）}
\(1-\) spl pl \(360 \times 9=3,240\)
\begin{tabular}{ccc}
\(2-\) spl pl \(155 \times 10=\) & 3,100 \\
\hline A spl \(=6,340\)
\end{tabular}
\(\sigma_{s p L}=157.5 \times \frac{360 \times 18}{6,340}=161.0<210\left(\mathrm{~N} / \mathrm{mm}^{2}\right)\)
＊ \(75 \leq \operatorname{pitch}(=75)<150\)
＊＊min．edge \((=32)<40\)
＊＊＊ \(75 \leq\) gauge \((=75)<24+(=24 \times 9=216)\)
（2）Connection of the lower flange．
\[
\begin{aligned}
\sigma_{L} & =159.4>0.75 \times 210=157.5 \mathrm{~N} / \mathrm{mm}^{2} \\
& \rightarrow \text { Design using the design stress. }
\end{aligned}
\]

\section*{－Number of bolt and arrangement．}
\[
M=\frac{159.4 \times 480 \times 22}{96,000}=17.5 \rightarrow 18 \text { bolts }
\]


\section*{－Splice plate（SM490Y）}

Check of plate to be connected．
－A section－
\[
\begin{aligned}
& A_{n}=(480-2 \times 25) \times 22=9,460 \mathrm{~mm}^{2} \\
& \sigma_{L}=159.4 \times \frac{480 \times 22}{9,460}=177.9<210\left(\mathrm{~N} / \mathrm{mm}^{2}\right)
\end{aligned}
\]
－B section－
\[
\begin{aligned}
& A_{n}=(480-4 \times 25) \times 22=8,360 \mathrm{~mm}^{2} \\
& \sigma_{L}=159.4 \times \frac{480 \times 22}{8,360} \times\left(\frac{16}{18}\right)^{*}=180.0<210\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\
& * 2-\text { bolt force already transferred to splice plate. }
\end{aligned}
\]
（a）First row（ \(p\) ：Working force）
\[
\begin{aligned}
& P_{1}=\frac{157.5+133.5}{2} \times(95+55) \times 9=196,425(\mathrm{~N}) \\
& n_{1}=\frac{196,425}{96,000}=2.1 \rightarrow 3 \text { bolts }
\end{aligned}
\]
（b）Third row
\[
\begin{aligned}
& P_{3}=\frac{117.2+101.6}{2} \times(47.5+50.0) \times 9=95,999(\mathrm{~N}) \\
& n_{3}=\frac{95,999}{96,000}=1.0 \rightarrow 2 \mathrm{bolts}
\end{aligned}
\]

Total number of bolt is 38 ．
Safety under shear．
\[
P_{s}=\frac{295 \times 10^{3}}{38}=7,763(N)<P_{a}=96,000(N)
\]

Safety under combined moment and shear．
\[
\begin{aligned}
& P_{P_{1}}=\frac{196,425}{3}=65,475(\mathrm{~N}) \\
& P=\sqrt{P_{P_{1}}^{2}+P_{s}^{2}}=65,934(\mathrm{~N})<P_{a}=96,000(\mathrm{~N})
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{A}_{\text {req. }}=480 \times 22 \times \frac{159.4}{210}=8,016\left(\mathrm{~mm}^{2}\right) \\
& 1-\text { spl pl }(480-4 \times 25) \times 14=5,320 \\
& 2-\text { spl pl }(215-2 \times 25) \times 14=4,620 \\
& \text { A spl }=9,940\left(\mathrm{~mm}^{2}\right)>A_{\text {req }} . \\
& \sigma_{s p L}=159.4 \times \frac{480 \times 22}{9,940}=169.3<210\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\
& \left(\omega=d-p^{2} / 4 g=25-\frac{70^{2}}{4 \times 45}=-2.22<0\right)
\end{aligned}
\]
（3）Connection of the web．
－Number of bolt and arrangement．

）
－Splice plate（SM490Y）
\(4-\) spl pl \(190 \times 9=1,710 *\)
\(2-\) spl pl \(1,280 \times 9=11,520 *\)
＊Cross－sectional area of one plate．
（a）Moment of inertia of splice plate
\[
\begin{aligned}
I_{S}= & 2 \times\left(17.1 \times 66.4^{2}+\frac{19.0^{3} \times 0.9}{12}\right. \\
& \left.+17.1 \times 83.6^{2} \times \frac{19.0^{3} \times 0.9}{12}\right) \\
+ & 2 \times\left(115.2 \times 8.6^{2}+\frac{128.0^{3} \times 0.9}{12}\right) \\
= & 723,479\left(\mathrm{~cm}^{4}\right)>I_{W}=\frac{180^{3} \times 0.9}{12}=437,400\left(\mathrm{~cm}^{4}\right)
\end{aligned}
\]
（b）Moment acting on splice plate
\[
\begin{aligned}
M_{S}=\sigma_{L} \times & \frac{I_{S}}{y_{L}} \\
& =157.5 \times \frac{1,800^{3} \times 9 / 12+1,800 \times 9 \times 86^{2}}{986}
\end{aligned}
\]
（c）Fiber stress in splice plate
\[
\begin{aligned}
\sigma_{s p L} & =\frac{7.18 \times 10^{8}}{7.235 \times 10^{9}} \times 931 \\
& =92.4 \mathrm{~N} / \mathrm{mm}^{2}<\sigma_{t a}=210\left(\mathrm{~N} / \mathrm{mm}^{2}\right)
\end{aligned}
\]

《A2 》
（a）At section（A）
\[
\begin{aligned}
A_{g} & =39 \times 2.8=109.2 \mathrm{~cm}^{2} \\
\mathrm{w} & =d-\frac{d^{2}}{4_{g}}=2.5-\frac{6.5^{2}}{4 \times 4.25}=0.015>0 \\
A_{n} & =A_{g}-2 \times(2.5+2 \mathrm{w}) \times 2.8 \\
& =109.2-2 \times(2.5+2 \times 0.015) \times 2.8 \\
& =95 \mathrm{~cm}^{2}
\end{aligned}
\]
（b）At section（B）
\[
\begin{aligned}
A_{n} & =A_{g}-2 \times 2.5 \times 2.8 \\
& =109.2-14=95.2 \mathrm{~cm}^{2}
\end{aligned}
\]
（ Q1 ）Find the fillet welding size（S）

（ Q2 ）Find the required size（S）of the fillet weld．The material grade is SM400．

（ Q3 ）Check the safety．


【11－4－2】（2）
（ Q4 ）A groove welding part is subjected to tension（P）and shear force（ \(Q\) ）．
The material grade is SM400
\(\left(\sigma_{\mathrm{a}}=140 \mathrm{~N} / \mathrm{mm}^{2}, \quad \tau_{\mathrm{a}}=80 \mathrm{~N} / \mathrm{mm}^{2}\right)\).
Check the safety．
（1）\(P=1,000 \mathrm{kN}\)
（2）\(Q=650 \mathrm{kN}\)
（3）\(P=1,000 \mathrm{kN}\) \＆\(Q=650 \mathrm{kN}\)


【11－4－2】（3）
《A1》
\[
\sqrt{2 t_{\max }} \leqq S<t_{\min }
\]
（a）\(\sqrt{2 \times 26}=7.2 \mathrm{~mm} \leqq S<t_{\text {min．}}(=10 \mathrm{~mm})\)
\[
\rightarrow S=8 \mathrm{~mm}
\]
（b）\(\sqrt{2 \times 36}=8.5 \mathrm{~mm} \leqq S<t_{\text {min．}}(=10 \mathrm{~mm})\)
\[
\rightarrow S=9 \mathrm{~mm}
\]

《A2 》
\[
\begin{gathered}
2 \times 150 \times \frac{S}{\sqrt{2}} \times \frac{80}{\left(=\tau_{\mathrm{a}}\right)}=100 \times 10^{3} \\
S>5.89 \mathrm{~mm} \rightarrow \text { throat }) \\
\\
\begin{array}{c}
S=6 \mathrm{~mm}
\end{array}
\end{gathered}
\]

《A3 》
\[
\begin{aligned}
& S \underbrace{T}_{(S=6} a=\frac{6}{\sqrt{2}}=4.24 \mathrm{~mm}) \\
& \tau=\frac{500 \times 10^{3}}{2 \times 4.24 \times 600}=98.3 \mathrm{~N} / \mathrm{mm}^{2}>\frac{80}{\left(=\tau_{\mathrm{a}}\right)} \mathrm{N} / \mathrm{mm}^{2} \\
& \text { Not safe !! }
\end{aligned}
\]

《A4 》
（1）\(P=1,000 \mathrm{kN}\)
\[
\sigma=\frac{1,000 \times 10^{3}}{600 \times 16}=104.2 \mathrm{~N} / \mathrm{mm}^{2}<140 \mathrm{~N} / \mathrm{mm}^{2}
\]
（2）\(Q=650 \mathrm{kN}\)
\[
\tau=\frac{650 \times 10^{-3}}{600 \times 16}=67.7 \mathrm{~N} / \mathrm{mm}^{2}<80 \mathrm{~N} / \mathrm{mm}^{2}
\]
（3）\(P=1,000 \mathrm{kN}\) \＆\(Q=650 \mathrm{kN}\)
\[
\left(\frac{104.2}{140}\right)^{2}+\left(\frac{67.7}{80}\right)^{2}=\frac{1.27>1.2}{\text { Not safe }}
\]
（ Q1 ）The following S－N curve is obtained．

（1）Find \(S\) ，when \(N=2 \times 10^{6}\)
（2）Find \(S\) ，when \(N=10^{6}\)
（ Q2 ）The following bridge is subjected to truck crossing．The One－way is with sand and the return way is without sand．

【11－4－3】（3）
【11－4－3】（2）
Daily， 300 trucks cross the bridge．
Find the fatigue life using Miner＇s law．
\[
\mathrm{D}=\Sigma \frac{n_{i}}{N_{i}}=1.0
\]



The section（A）has the detail with a fatigue grade of（F），and is subjected to
\begin{tabular}{ll} 
stress due to a dead load． & \(=40 \mathrm{~N} / \mathrm{mm}^{2}\) \\
stress due to the truck（with sand）． & \(=90 \mathrm{~N} / \mathrm{mm}^{2}\) \\
stress due to the truck（without sand） & \(=70 \mathrm{~N} / \mathrm{mm}^{2}\)
\end{tabular}
stress due to the truck（without sand）．\(=70 \mathrm{~N} / \mathrm{mm}^{2}\)
stress due to a dead load．
\(=40 \mathrm{~N} / \mathrm{mm}^{2}\)
\(=90 \mathrm{~N} / \mathrm{mm}^{2}\)

《A1》
（1）\(S=89.1 \mathrm{~N} / \mathrm{mm}^{2}\)
（2）\(S=112.2 \mathrm{~N} / \mathrm{mm}^{2}\)
（Substitute \(N\) value into eq．）
《A2 》
\[
\Delta \sigma^{3} \cdot N=2 \times 10^{6} \times 65^{3}
\]
\(\Delta \sigma_{1}=90 \mathrm{~N} / \mathrm{mm}^{2}\)
\[
\begin{gathered}
N_{1}=2 \times 10^{6}\left(\frac{65}{90}\right)^{3}=753,429 \\
\sigma_{2}=70 \mathrm{~N} / \mathrm{mm}^{2} \\
N_{2}=2 \times 10^{6}\left(\frac{65}{70}\right)^{3}=1,601,312 \\
\frac{n}{N_{1}}+\frac{n}{N_{2}}=n\left(1,312 \times 10^{-6}+0.6245 \times 10^{-6}\right) \\
=1.9465 \times 10^{-6} \cdot n=1 \\
n=514,139
\end{gathered}
\]
\[
\frac{\frac{514,139}{\frac{300}{\uparrow} \times \frac{365}{\uparrow}}=4.695^{\text {year }} \cong}{\begin{array}{c}
4.7^{\text {year }} \\
\text { Cycle day }
\end{array}}
\]
（ Q1 ）Find min．RC thickness（ \(k_{1}=1.25, k_{2}=1.00\) ）

（ Q2 ）Find the design moment（The main direction and the distributing reinforcement）
\(M_{A}, M_{B}, M_{C}\) and \(M_{D}\) per unit length due to a live load．

（mm）

【11－5－1】（3）
（1）At．A \((L=0.425 \mathrm{~m})\)
main．\(\quad M_{L+i}=0\)
dist．\(\quad M_{L+i}=(0.15 L+0.13) P=0.194 P\)
（2）\(\quad A t . B \quad(L=0.425 \mathrm{~m})\)
main．\(\quad M_{L+i}=\frac{P L}{1.30 L+0.25}=0.530 P\)
dist．\(\quad M_{L+i}=0\)
（3）At．C \((L=2.5 \mathrm{~m})\)
main．\(\quad M_{L+i}=0.8(0.12 L+0.07) P=0.296 P\)
dist．\(\quad M_{L+i}=0.8(0.10 L+0.04) P=0.232 P\)
（4）At．\(D(L=2.5 \mathrm{~m})\)
main．\(\quad M_{L+i}=-M_{L+i}(\) at \(C)=-0.296 P\)
dist．\(\quad M_{L+i}=0\)
\(\left(M_{L+i}: k N \cdot m / m, \quad P=100 k N\right)\)

\section*{［note］}

Based on JBHS，increase the coefficient is specified as follows，when slab span is perpendicular to the vehicle travel direction．

\section*{《A1》}
（1）Cantilevered slab
\(L=1,350-600-250-\frac{150}{2}=425 \mathrm{~mm}(=0.425 \mathrm{~m})\)
\(d_{0}=80 L+200=234.0\)
rounding
rounding
\(d=k_{1} k_{2} d_{0}=1.25 \times 1.00 \times 234=\underset{\begin{array}{c}\frac{29}{\uparrow} \\ \text { rounding }\end{array}}{ } \rightarrow \underline{290 \mathrm{~mm}}\)
（2）Continuous slab

slab thickness 250 mm is selected

【11－5－1】（4）
\begin{tabular}{|c|c|c|}
\hline slab span & \(L \leqq 2.5\) & \(L>2.5\) \\
\hline coefficient & 1.0 & \(1.0+(L-2.5) / 12\) \\
\hline
\end{tabular}

In this question（Q2），since \(L \leqq 2\) ． 5 m increment coefficient in 1.0
（ Q1 ）Find the effective width of the cross section（composite section）given below．

（ Q2 ）Find the effective width of the box girder given below．
\[
\begin{array}{rlrl}
* & 0.2 L_{1} & =8 \mathrm{~m} & L_{u}(\text { at support } B) \\
* * & 0.2 L_{2} & =12 \mathrm{~m} & =0.2\left(L_{1}+L_{2}\right)=20 \mathrm{~m}
\end{array}
\]

【11－5－2】（3）
（ Q3 ）Design the horizontal and vertical stiffeners． The material grade is SM490Y．

（ Q4 ）Check the stability of the web under normal and shear stresses． The material grade is SM400．


《A1》

（a）Cantilevered slab
\[
\begin{aligned}
& b_{1} / L_{u}=2.09 / 40=0.052>0.05 \\
& \lambda_{1}=\left\{1.1-2\left(b_{1} / L_{u}\right)\right\} b_{1}=0.996 b_{1}=2,082 \mathrm{~mm}
\end{aligned}
\]
（b）Span slab
\[
\begin{aligned}
& b_{2} / L_{u}=2.65 / 40=0.066>0.05 \\
& \lambda_{2}=\left\{1.1-2\left(b_{2} / L_{u}\right)\right\} b_{2}=0.986 b_{2}=2,958 \mathrm{~mm} \\
& \lambda= 2,082+100+500+100+2,958=\underline{5,740 \mathrm{~mm}}
\end{aligned}
\]


《A2 》

（1）\(P_{t}, A\)
（a）\(b_{1} / L_{u}=2 / 32=0.0625>0.05\)
\[
\lambda_{1}=\left\{1.1-2\left(b_{1} / L_{u}\right)\right\} b_{1}=0.975 b_{1}=1,950 \mathrm{~mm}
\]
（b）\(\quad b_{2} / L_{u}=3 / 32=0.0938>0.05\)
\(\lambda_{2}=\left\{1.1-2\left(b_{2} / L_{u}\right)\right\} b_{2}=0.912 b_{2}=2,736 \mathrm{~mm}\)

（2）\(P_{t}, \boldsymbol{B}\)（at intermediate support）
（a） \(0.02<b_{1} / L_{u}(=2 / 20)<0.3\)
\[
\begin{aligned}
\lambda_{1} & =\left\{1.06-3.2\left(b_{1} / L_{u}\right)+4.5\left(b_{1} / L_{u}\right)^{2}\right\} b_{1} \\
& =0.725 b_{1}=1,450 \mathrm{~mm}
\end{aligned}
\]
（b） \(0.02<b_{2} / L_{u}(3 / 20=0.15)<0.3\)
\[
\lambda_{2}=\left\{1.06-3.2\left(b_{2} / L_{u}\right)+4.5\left(b_{2} / L_{u}\right)^{2}\right\} b_{2}
\]
\[
=0.681 b_{2}=2,043 \mathrm{~mm}
\]

＊3，493 \(=1,450+2,043\)
（3）\(P_{t} . C\)
（a）\(b_{1} / L_{u}=2 / 36=0.0556>0.5\)
\(\lambda_{1}=\left\{1.1-2\left(b_{1} / L_{u}\right)\right\} b_{1}=0.989 b_{1}=1,978 \mathrm{~mm}\)
（b）\(b_{2} / L_{u}=3 / 36=0.0833>0.5\)
\(\lambda_{2}=\left\{1.1-2\left(b_{2} / L_{u}\right)\right\} b_{2}=0.933 b_{2}=2,799 \mathrm{~mm}\)


《A3》
（1）Horizontal stiffener（SM490Y）
（cm）

（2）Vertical stiffener（SM400）

（cm）
\[
\begin{aligned}
& \gamma_{v, \text { req. }}=8.0\left(h_{w} / a\right)^{2}=8 \times\left(\frac{250}{200}\right)^{2}=12.5 \\
& I_{v, \text { req. }}>\frac{h_{w} t_{w}^{3}}{11} \gamma_{v, \text { req. }}=\frac{250 \times 1.2^{3}}{11} \times 12.5=491 \mathrm{~cm}^{4} \\
& I_{v}=\frac{h_{v}{ }^{3} t_{v}}{3}=1,098 \mathrm{~cm}^{4}>I_{v, \text { req. }}
\end{aligned}
\]

【11－5－3】（1）
（ Q1 ）Find gusset plate thickness（ \(\mathrm{t}_{\mathrm{g}}\) ）

（ Q2 ）Check the safety of the following chord member under compression（N）．
The material grade is SM490Y．
\[
N=-5,000 \mathrm{kN}
\]
effective buckling length（ \(L_{e}\) ）
\(L_{e, y}=7,600 \mathrm{~mm}\)（ in－plane ）
\(L_{e, Z}=7,600 \mathrm{~mm}\)（out－of plane）
\(L_{e, y}=L_{e, z}=7,600 \mathrm{~mm}(\leftarrow\) panel length \()\)

\(b / t(=350 / 22=\underline{15.9}, 320 / 25=\underline{12.8})<31.6(S M 490)\)

《A1》
\[
\begin{array}{r}
t_{g}=2 \times \frac{3,000}{500}=12 \mathrm{~mm} \\
t_{g}=2 \times \frac{2,500}{400}=12.5 \mathrm{~mm} \\
\rightarrow t_{g} \geqq 13 \mathrm{~mm}
\end{array}
\]

《A2 》
\[
\begin{aligned}
& \text { (cm) } \\
& \text { A y Ay } \mathrm{Ay}^{2} \\
& 1 \text { - Flg PL } 430 \times 22 \text { 94.6 } 19.1 \quad 1,807 \quad 34,511 \\
& 2 \text { - W PL } 360 \times 25180.0 \quad-\quad \text { - } \quad 19,440 \\
& \begin{array}{rrrrr}
1-\text { Flg PL } & 350 \times 25 & 87.5 & -15.25 & -1,334 \\
\hline 362.1 & 473 & 74,300\left(\mathrm{~cm}^{4}\right)
\end{array} \\
& \delta=\frac{473}{362.1}=1.3(\mathrm{~cm}) \quad I_{y}=73,688\left(\mathrm{~cm}^{4}\right) \\
& I_{z}=\frac{43^{3} \times 2.2}{12}+\frac{35^{3} \times 2.5}{12}+2 \times 36 \times 2.5 \times 18.75^{2} \\
& =86,789\left(\mathrm{~cm}^{4}\right)>I_{y} \\
& A_{w}=180\left(\mathrm{~cm}^{2}\right)>0.4 A=0.4 \times 362.1=144.8\left(\mathrm{~cm}^{2}\right) \\
& r_{y}=\sqrt{I_{y} / A}=14.3(\mathrm{~cm}), \quad r_{z}=\sqrt{I_{z} / A}=15.5(\mathrm{~cm}) \\
& \lambda_{y}\left(=L_{e, y} / r_{y}\right)=53.1>\lambda_{z}\left(=L_{e, z} / r_{z}\right)=49.0 \\
& \sigma_{c a}=210-1.5\left(\frac{L_{e, y}}{r_{y}}-14\right)=151.4\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\
& \sigma=5,000 \times 10^{3} /\left(362.1 \times 10^{2}\right)=138.1\left(\mathrm{~N} / \mathrm{mm}^{2}\right)<\sigma_{c a} \\
& \text { (Safe !!) }
\end{aligned}
\]
（ Q1 ）Calculate natural frequency（f）and circular frequency \((\omega)\) ，when
（a）\(T=1 \mathrm{sec}\) ．
（b）\(T=2 \mathrm{sec}\) ．
（ Q2 ）Is the following correct or not？
Natural frequency（f）of stiff structures （ex．beam difficult to bend） is higher than flexible one （ex．easy to bend）
（Q3 ）Natural circular frequency（ \(\omega\) ）of the mass－spring system is given，
\[
\omega=\sqrt{\frac{k}{m}}
\]

When，
\[
\begin{array}{r}
V=10 \mathrm{kN} / \mathrm{m} \\
\left(\gamma_{\text {steel }}=77.5 \mathrm{kN} / \mathrm{m}^{3}\right)
\end{array}
\]
g ：gravity of acceleration（ \(=9.8 \mathrm{~m} / \mathrm{sec}^{2}\) ）
Find（ \(\omega\) ）and（ f ）．

【12－1－1】（3）
【12－1－1】（4）
《A1》
\[
\mathrm{f}=1 / T \quad, \quad \omega=2 \pi f
\]
（a） \(\mathrm{f}=1 \mathrm{cycle} / \mathrm{s}, \omega=6.28 \mathrm{rad} . / \mathrm{s}\)
（b） \(\mathrm{f}=0.5 \mathrm{c} / \mathrm{s} \quad, \quad \omega=3.14 \mathrm{rad} . / \mathrm{s}\)
《A2 》
YES
《A3 》
\(w(\) weight \()=77.5 \mathrm{kN} / \mathrm{m}^{3} \times 1 \mathrm{~m}^{3}=77.5 \mathrm{kN}\)
\(m(\) mass \()=\frac{w}{g}=\frac{77.5 \mathrm{kN}}{9.8 \mathrm{~m} / \mathrm{sec}^{2}}=7.91 \frac{\mathrm{kN}}{\mathrm{m}} \cdot \mathrm{sec}^{2}\)
\(\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{10 \mathrm{kN} / \mathrm{m}}{7.91(\mathrm{kN} / \mathrm{m}) \mathrm{sec}^{2}}}=1.124 \mathrm{rad} . / \mathrm{sec}\)
\(\mathrm{f}=\frac{\omega}{2 \pi}=0.179 c / s \quad\left(\right.\) or \(\left.H_{Z}\right)\)
《A4 》
（a）\(T=2 \pi \sqrt{\frac{0.5 m}{9.8\left(m / \sec ^{2}\right)}}=1.42 \mathrm{sec}\) ．
（b）\(T=2 \pi \sqrt{\frac{2}{9.8}}=2.84 \mathrm{sec}\) ．
（ Q4 ）Natural period（T）of the pendulum is given by
\[
T=2 \pi \sqrt{\frac{L}{g}}
\]

L ：length of pendulum
Find T ，when（a） \(\mathrm{L}=0.5 \mathrm{~m}\) ，（b） \(\mathrm{L}=2 \mathrm{~m}\) ．
（Q5）


Calculate damping coefficient（h）
\[
h=\frac{1}{\sqrt{2 k m}}
\]
（Q6 ）Find damping coefficient（h） displacement（cm）

（Q1 ）

（a）Find cross sectional area \(\left(A_{s}\right)\) and moment of inertia（ \(I_{s}\) ）of steel girder．
（b）Find cross sectional area \(\left(\mathrm{A}_{\mathrm{v}}\right)\) and moment of inertia（ \(\mathrm{I}_{\mathrm{v}}\) ）of composite girder（ \(\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}=7.0\) ）．
（c）Find total weight（w［per unit length］） of composite girder．
（d）Find first natural frequency \(\left(\mathrm{f}_{1}\right)\) and period \(\left(T_{1}\right)\) ，when simple span
（L）is 40 m ．
（d）－1 Assume steel girder only resists bending（non－composite girder）
（d）－ 2 Assume composite girder resists bending

steel girder

composite girder
（ Q2 ）When span L＝60m（composite girder）， find（ \(\mathrm{f}_{1}\) ）．
（ Q3 ）Find（ \(f_{1}\) ）of the bar．


\section*{《A1》}
（a）\(A_{s}=2 \times 60 \times 4+300 \times 1.8=1,020 \mathrm{~cm}^{2}\)（one girder）
\[
\begin{aligned}
I_{s}= & 2 \times 60 \times 4 \times 152^{2}+\frac{300^{3} \times 1.8}{12} \\
= & 15,139,920 \mathrm{~cm}^{4}(\text { one girder }) \\
& \left(0.1514 \mathrm{~m}^{4}\right)
\end{aligned}
\]
（b）
（cm）
\begin{tabular}{c|c|c|c|c} 
& A & y & Ay & \(\mathrm{Ay}^{2}\) \\
\hline \begin{tabular}{c} 
1－D PL 9，000 \(\times 300\) \\
\((\mathrm{n}=7)\)
\end{tabular} & 3,857 & \(179^{*}\) & 690,403 & \(123,582,137\) \\
\hline 2－Steel girder & 2,040 & - & - & \(30,279,846^{* *}\) \\
\hline\(\Sigma\) & 5,897 & & 690,403 & \(154,151,263\)
\end{tabular}
\[
\delta=\frac{690,403}{5,897}=117.1 \quad \frac{-80,862,082^{* * *}}{\mathrm{I}=73,289,181 \mathrm{~cm}^{4}}
\]
\[
A_{V}=5,897 \mathrm{~cm}^{2}
\]
\[
\left(0.7329 \mathrm{~m}^{4}\right)
\]
\(*(179)=\frac{150}{\uparrow}+\frac{4}{\uparrow}+10+\frac{15}{\hat{\varsigma}_{\text {a half of RC slab thickness }}}\)
\(* *(289,286)=\frac{900 \times 30^{3}}{12} / 7\)
\({ }^{* * *}(80,862,082)=\delta^{2} \cdot A_{V}\)
（c）
Slab： \(9 \mathrm{~m} \times 0.3 \mathrm{~m} \times 24.5 \mathrm{kN} / \mathrm{m}^{3}=66.15 \mathrm{kN} / \mathrm{m}\) Steel ： \(0.204 \mathrm{~m}^{2} \times 77.5 \mathrm{kN} / \mathrm{m}^{3}=15.81 \mathrm{kN} / \mathrm{m}\)
（d）
\[
\begin{aligned}
& \omega_{1}=\left(\frac{\pi}{L}\right)^{2} \sqrt{\frac{E I}{m}} \\
& m=\frac{w}{g}=\frac{(66.15+15.81)\{\mathrm{kN} / \mathrm{m}\}}{9.8\left\{\mathrm{~m} / \mathrm{sec}^{2}\right\}}=83.63\left\{\mathrm{kN}\left(\frac{\mathrm{sec}}{\mathrm{~m}}\right)^{2}\right\} \\
& E=2.0 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
\]
（d）-1
\(I=I_{S}=0.1514 \mathrm{~m}^{4} \quad, \quad L=40 \mathrm{~m}\)
\(\omega_{1}=\left(\frac{\pi}{40\{m\}}\right)^{2} \sqrt{\frac{2.0 \times 10^{8}\left\{\mathrm{kN} / \mathrm{m}^{2}\right\} \times 0.1514\left\{\mathrm{~m}^{4}\right\}}{83.63\left\{k N\left(\frac{s e c}{m}\right)^{2}\right\}}}\)
\(=3.7 \mathrm{rad} / \mathrm{sec}\)
\(\mathrm{f}_{1}=\frac{\omega_{1}}{2 \pi}=\underline{0.59 H_{z}(c / s)}, T_{1}=\underline{1.69 \mathrm{sec}}\)
（d）-2
\(I=I_{V}=0.7329 \mathrm{~m}^{4} \quad, \quad L=40 \mathrm{~m}\)
\(\omega_{1}=\left(\frac{\pi}{40}\right)^{2} \sqrt{\frac{2.0 \times 10^{8} \times 0.7329}{83.63}}\)
\(=8.158 \mathrm{rad} / \mathrm{sec}\)
\(\mathrm{f}_{1}=\frac{\omega_{1}}{2 \pi}=\underline{1.299 \mathrm{H}_{\mathrm{z}}(\mathrm{c} / \mathrm{s})}, ~ T_{1}=\underline{0.77 \mathrm{sec}}\)

《A2 》
\[
\begin{aligned}
& \omega_{1}=\left(\frac{\pi}{60}\right)^{2} \sqrt{\frac{2.0 \times 10^{8} \times 0.7329}{83.63}}=3.626 \mathrm{rad} / \mathrm{sec} \\
& \mathrm{f}_{1}=\frac{\omega_{1}}{2 \pi}=\underline{0.577 \mathrm{H}_{z}(\mathrm{c} / \mathrm{s})}, T_{1}=1.73 \mathrm{sec}
\end{aligned}
\]

《A3 》
\[
\begin{aligned}
\rho & =\frac{\gamma_{s}}{g}=\frac{77.5\left\{\mathrm{kN} / \mathrm{m}^{3}\right\}}{9.8\left\{\mathrm{~m} / \mathrm{sec}^{2}\right\}}=7.908\left\{\left(\frac{\mathrm{kN}}{\mathrm{~m}^{4}}\right) \sec ^{2}\right\} \\
\mathrm{f}_{1} & =\frac{1}{2 \times 30\{m\}} \sqrt{\frac{3,000\{k N\}}{7.908\left\{\left(\frac{k N}{m^{4}}\right) \sec ^{2}\right\} \times 0.0077\left\{m^{2}\right\}}} \\
& =\underline{3.70 \mathrm{H}_{z}}
\end{aligned}
\]

\section*{Special Lecture for Structural Analysis}

Professor of Nagaoka University of Technology Eiji IWASAKI
1. Concept of finite element method

\subsection*{1.1 Solution method of structural mechanics}

Solution of structural mechanics requires to satisfy following equations
- Equation of equilibrium ( force and moment balance
- Deformation geometry ( compatibility condition, support condition )

Solution methods of structural mechanics can use two type as followings
- Force method
- Displacement method

Force method that forces are unknown variables, is quite useful for solving simple
problems with a few unknown forces. It is useful to solve small problems by hand problems with a few unknown forces. It is useful to solve small problems by han calculation. It is probably a familiar method.
Displacement method that displacements are unknown variable is a very ysstematic procedure for solving problems. This method is used in all finite element computer
programs. However, it is not suitable for hand calculation.



\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
1.3 Beam element \\
Equations of equilibrium at ends 1 and 2
\[
\begin{aligned}
& M_{1}-\frac{6 E I}{L^{2}}\left(v_{1}-v_{2}\right)-\frac{4 E I}{L} \theta_{1}-\frac{2 E I}{L} \theta_{2}=0 \\
& M_{2}-\frac{6 E I}{L^{2}}\left(v_{1}-v_{2}\right)-\frac{2 E I}{L} \theta_{1}-\frac{4 E I}{L} \theta_{2}=0 \\
& Q_{1}-\frac{12 E I}{L^{3}}\left(v_{1}-v_{2}\right)-\frac{6 E I}{L^{2}}\left(\theta_{1}+\theta_{2}\right)=0 \\
& Q_{2}+\frac{12 E I}{L^{3}}\left(v_{1}-v_{2}\right)+\frac{6 E I}{L^{2}}\left(\theta_{1}+\theta_{2}\right)=0
\end{aligned}
\] \\
Ordinary, the finite element analysis is used matrix description such as follows
\[
\frac{E I}{L^{3}}\left(\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right)\left\{\begin{array}{l}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{c}
Q_{1} \\
M_{1} \\
Q_{2} \\
M_{2}
\end{array}\right\}
\] \\
The square matrix in above equation is called as element stiffness matrix.
\end{tabular}} \\
\hline \\
\hline
\end{tabular}


\subsection*{1.5 Formulas for element matrices}

Formulas for element matrices are also obtained by the principle of virtual work.
\(\int_{V} \sigma_{x} \delta \varepsilon_{x} d V=F_{1} \delta u_{1}+Q_{1} \delta v_{1}+M_{1} \delta \theta_{1}+F_{2} \delta u_{2}+Q_{2} \delta v_{2}+M_{2} \delta \theta_{2}\)
where \(\delta u, \delta v\) etc indicate virtual displacements.
If displacements satisfies the above equation, they also satisfy the conditions of equilibrium In previous bar and beam element, strain and stress are
\(\varepsilon_{x}=u^{\prime}-y v^{\prime \prime} \quad \sigma_{x}=E \varepsilon_{x}\)
where displacements \(u\) and \(v\) are expressed by quantities of nodes 1 and 2 as follows
\(u=N_{1} u_{1}+N_{2} u_{2} \equiv N_{t} \boldsymbol{d} \quad v=N_{3} v_{1}+N_{4} v_{2}+N_{5} \theta_{1}+N_{6} \theta_{2} \equiv N_{b} \boldsymbol{d}\)
where
\(N_{t}=\left\{\begin{array}{llllll}N_{1} & 0 & 0 & N_{2} & 0 & 0\end{array}\right\} \quad N_{b}=\left\{\begin{array}{llllll}0 & N_{3} & N_{5} & 0 & N_{4} & N_{6}\end{array}\right\}\)
The equation of principle of virtual work is rewritten as follows
\(\delta d^{T} \int_{V} B^{T} E \boldsymbol{B} d V \boldsymbol{d}=\delta d^{T} f \quad \Longrightarrow \quad k d=f\)
\(\begin{aligned} & \text { where } \\ & \boldsymbol{k}=\int_{V} \boldsymbol{B}^{\tau} E \boldsymbol{B} d V \boldsymbol{B}=\boldsymbol{N}_{t}^{\prime}-y \boldsymbol{N}_{b}^{\prime \prime}\end{aligned}\)

Q2. Derive truss element stiffness matrix by the principle of virtual work
```

The element stiffness matrix }\boldsymbol{k}\mathrm{ is defined by following equation.

```
    \(\boldsymbol{k}=\int_{V} \boldsymbol{B}^{T} E \boldsymbol{B} d V=\int_{0}^{L} \int_{A} \boldsymbol{B}^{T} E \boldsymbol{B} d \boldsymbol{A} d x \quad\) where \(\quad \boldsymbol{B}=\boldsymbol{N}_{t}^{\prime}=\frac{d \boldsymbol{N}_{t}}{d x}\)
In truss element, \(N_{t}\) is
\[
N_{t}=\left\{\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right\} \quad N_{1}=1-\frac{x}{L} \quad N_{2}=\frac{x}{L}
\]

Derive stiffness matrix \(\boldsymbol{k}\) in truss element.


1.8 Singularity of stiffness matrix

Equation of equilibrium \(\boldsymbol{K} \boldsymbol{D}=\boldsymbol{F}\) will be solved with respect to the displacements \(\boldsymbol{D}\) given forces \(F\). At this time, appropriate support conditions must be imposed on the
Element stiffness matrix is singular. \(\quad\) Matrix \(A\) is singular if \(|A|=0\).
For example, truss stiffness matrix
\(|\boldsymbol{k}|=\left|\frac{E A}{L}\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)\right|=\)
for example, beam stiffness matrix
\(|\boldsymbol{k}|=\left|\frac{E I}{\overline{L^{3}}}\right| \begin{array}{cccc}12 & 6 L & -12 & 6 L \\ 6 L & 4 L^{2} & -6 L & 2 L^{2} \\ -12 & -6 L & 12 & -6 L \\ 6 L & 2 L^{2} & -6 L & 4 L^{2}\end{array}| |=\)
Global stiffness matrix that assembled all elements is also singular.
If appropriate support conditions are imposed in the equation of equilibrium, stiffness
If appropriate support
matrix is not singular.
If matrix is singular, equation can not be solved.
Therefore, support condition is very important.
1.9 How to set support conditions
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Consider one beam element for simplicity explanation.
\[
\left(\begin{array}{cccccc}
\frac{E A}{L} & 0 & 0 & -\frac{E A}{L} & 0 & 0 \\
0 & \frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} & 0 & -\frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} \\
0 & \frac{6 E I}{L^{2}} & \frac{4 E I}{L} & 0 & -\frac{6 E I}{L^{2}} & \frac{2 E I}{L} \\
-\frac{E A}{L} & 0 & 0 & \frac{E A}{L} & 0 & 0 \\
0 & -\frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} & 0 & \frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} \\
0 & \frac{6 E I}{L^{2}} & \frac{2 E I}{L} & 0 & -\frac{6 E I}{L^{2}} & \frac{4 E I}{L}
\end{array}\right)\left\{\begin{array}{l}
u_{1} \\
v_{1} \\
\theta_{1} \\
u_{2} \\
v_{2} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{l}
F_{1} \\
Q_{1} \\
M_{1} \\
F_{2} \\
Q_{2} \\
M_{2}
\end{array}\right\}
\] \\
In simply support conditions, that is \(u_{1}=v_{1}=v_{2}=0, F_{1}, Q_{1}\) and \(Q_{2}\) mean reaction forces. These reaction forces are unknown values. \\
Instead of the conditions of displacement equal to zero, reduce the size of stiffness matrix.
\[
\left(\begin{array}{ccc}
0 & -\frac{E A}{L} & 0 \\
\frac{6 E I}{L^{2}} & 0 & \frac{6 E I}{L^{2}} \\
\frac{4 E I}{L} & 0 & \frac{2 E I}{L} \\
0 & \frac{E A}{L} & 0 \\
-\frac{6 E I}{L^{2}} & 0 & -\frac{6 E I}{L^{2}} \\
\frac{2 E I}{L} & 0 & \frac{4 E I}{L}
\end{array}\right)\left\{\begin{array}{l}
\theta_{1} \\
u_{2} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{l}
F_{1} \\
Q_{1} \\
M_{1} \\
F_{2} \\
Q_{2} \\
M_{2}
\end{array}\right\}
\]
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}



13


When three axes of stress are happen, the equation are as follows by superposition.
\(\varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}-v \sigma_{z}\right)\)
\(\varepsilon_{y}=\frac{1}{E}\left(\sigma_{y}-v \sigma_{z}-v \sigma_{x}\right)\)
\(\varepsilon_{z}=\frac{1}{E}\left(\sigma_{z}-v \sigma_{x}-v \sigma_{y}\right)\)
2.1 Plane elasticity problem
When uniaxial stress is occuring, stress-strain relations are denoted by following equations
in isotropic linear elasticity.
When three axes of stress are happen, the equation are as follows by superposition.
\(\varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}-v \sigma_{z}\right)\)
\(\varepsilon_{y}=\frac{1}{E}\left(\sigma_{y}-v \sigma_{z}-v \sigma_{x}\right)\)
\(\varepsilon_{z}=\frac{1}{E}\left(\sigma_{z}-v \sigma_{x}-v \sigma_{y}\right)\)


y problem
\(\sigma=E \varepsilon\) where \(\quad \sigma=\left\{\begin{array}{c}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right\} \quad \boldsymbol{E}=\frac{E}{1-v^{2}}\left(\begin{array}{ccc}1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & (1-v) / 2\end{array}\right) \quad \boldsymbol{\varepsilon}=\left\{\begin{array}{l}\varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{x y}\end{array}\right\}\)
Strain-displacement relations are also described by follows.
\(\varepsilon=\partial u \quad\) where \(\quad \partial=\left(\begin{array}{cc}\partial / \partial x & 0 \\ 0 & \partial / \partial y \\ \partial / \partial y & \partial / \partial x\end{array}\right) \quad u=\left\{\begin{array}{l}u \\ v\end{array}\right\}\)
The equation of virtual strain energy is
\(\delta U=\int_{V}\left(\sigma_{x} \delta \varepsilon_{x}+\sigma_{y} \delta \varepsilon_{y}+\tau_{x y} \delta \gamma_{x y}\right) d V=\int_{V} \delta \varepsilon^{T} \sigma d V\)
The equation of virtual work by load is
\(\delta W=\int_{V}\left(q_{x} \delta u+q_{y} \delta v\right) d V+\int_{S}\left(p_{x} \delta u+p_{y} \delta v\right) d S=\int_{V} \delta \boldsymbol{u}^{T} \boldsymbol{q} d V+\int_{S} \delta \boldsymbol{u}^{T} \boldsymbol{p} d S\)
The equation of principle of virtual work is
\(\delta U=\delta W\)

\subsection*{2.2 Plate bending problem}

Strain-displacement relations are also described by following equations.
\(\varepsilon=\partial u\)
\(\varepsilon=\partial u\)
where \(\quad \varepsilon=\left\{\begin{array}{l}\varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{x y} \\ \gamma_{y z} \\ \gamma_{z x}\end{array}\right\} \quad \boldsymbol{\partial}=\left(\begin{array}{ccc}0 & 0 & z \frac{\partial}{\partial x} \\ 0 & -z_{\partial y}^{\partial y} & 0 \\ 0 & -\frac{\partial}{\partial x} & z_{\partial y} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & -1 & 0 \\ \partial & 0 & 1\end{array}\right) \quad u=\left\{\begin{array}{l}w \\ \theta_{x} \\ \theta_{y}\end{array}\right\}\)
Stress-strain relations are denoted by following equations in plate bending problem wit
shear deformation, where x and y axes are set in-plane, 2 axis is set out of plane
\(\sigma=E \varepsilon\)
where \(\quad \sigma=\left\{\begin{array}{l}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y} \\ \tau_{y z} \\ \tau_{z z}\end{array}\right\} \quad E=\frac{E}{1-v^{2}}\left(\begin{array}{ccccc}1 & v & 0 & 0 & 0 \\ v & 1 & 0 & 0 & 0 \\ 0 & 0 & (1-v) / 2 & 0 & 0 \\ 0 & 0 & 0 & (1-v) / 2 & 0 \\ 0 & 0 & 0 & 0 & (1-v) / 2\end{array}\right)\)

\[
\begin{aligned}
& \text { 2.4 Interpolation of displacement } \\
& \text { Displacement } u \text { is interpolated by nodal displacements as followings } \\
& u=N_{1} u_{1}+N_{2} u_{2}+\cdots \equiv \boldsymbol{N} d \\
& \text { where } \boldsymbol{u}_{i} \text { is displacement as } i \text {-th node, and } N_{i} \text { is the shape function for } i \text {-th node. } \\
& N=\left\{\begin{array}{llll}
N_{1} & N_{2} & \cdots
\end{array}\right\} \quad d=\left\{\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots
\end{array}\right\} \\
& \text { By above interpolation, } \\
& \boldsymbol{\varepsilon}=\boldsymbol{\partial} \boldsymbol{u}=\boldsymbol{\partial N} \boldsymbol{d} \equiv \boldsymbol{B d} \quad \text { where } \quad \boldsymbol{B}=\boldsymbol{\partial N} \quad \text { is called } \mathrm{B} \text {-matrix in FEM } \\
& \sigma=E \varepsilon=E B d \\
& \text { Therefore, the principle of virtual work } \delta U=\delta W \text { is } \\
& \delta \boldsymbol{d}^{T} \boldsymbol{k} \boldsymbol{d}=\delta \boldsymbol{d}^{T} \boldsymbol{f} \quad \Longrightarrow \quad \boldsymbol{k d}=f \\
& \text { where } \\
& \boldsymbol{k}=\int_{V} \boldsymbol{B}^{T} E \boldsymbol{B} d V \quad \boldsymbol{f}=\int_{V} \boldsymbol{N}^{T} \boldsymbol{q} d V+\int_{S} \boldsymbol{N}^{T} \boldsymbol{p} d S
\end{aligned}
\]

\subsection*{2.6 Feature of some elements}
t3 element
Displacements in the finite element are interpolated as follows
\(u=\beta_{1}+\beta_{2} x+\beta_{3} y\)
\(v=\beta_{4}+\beta_{5} x+\beta_{6} y\)
where \(u\) and \(v\) are displacements for \(x\) and \(y\) axes directions, respectively
\(\beta_{t}(i=1 \cdots 6)\) are represented by nodal displacements.
In plane problem, strains are
\(\varepsilon_{x}=\frac{\partial u}{\partial x}=\beta_{2}\)
\(\varepsilon_{y}=\frac{\partial v}{\partial y}=\beta_{6}\)
\(\gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\beta_{3}+\beta_{5}\)
Strains do not vary within the element, this element is called "constant strain element".

\subsection*{2.5 Types of finite elements}

In plane stress problem and plate bending problem, quadrilateral and triangle finite elements are used.
Types of commonly
Types of commonly used finite element are as follows
- Q4 element
- Q8 element

2.6 Feature of some elements T6 element
Displacements in the finite element are interpolated as follows
\(u=\beta_{1}+\beta_{2} x+\beta_{3} y+\beta_{4} x^{2}+\beta_{5} x y+\beta_{6} y^{2}\)
\(v=\beta_{7}+\beta_{8} x+\beta_{9} y+\beta_{10} x^{2}+\beta_{11} x y+\beta_{12} y^{2}\)
where \(u\) and \(v\) are displacements for \(x\) and \(y\) axes directions, respectively.
\(\beta_{t}(i=1 \cdots 12)\) are represented by nodal displacements.
In plane problem, strains are
\(\varepsilon_{x}=\frac{\partial u}{\partial x}=\beta_{2}+2 \beta_{4} x+\beta_{5} y\)
\(\varepsilon_{y}=\frac{\partial v}{\partial y}=\beta_{9}+\beta_{11} x+2 \beta_{12} y\)
\(\gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\beta_{3}+\beta_{8}+\left(\beta_{5}+2 \beta_{10}\right) x+\left(2 \beta_{6}+\beta_{11}\right) y\)
Strains can vary linearly within the element, this element is called "linear strain element".


\section*{Ex. 2 Cantilever beam problem}

by using cantilever beam problem.
- Types of element: \(T 3, T, \mathrm{Q}, \mathrm{a}\) and O elements
 (5) \(7,11 \times 3\)
(6) \(\mathrm{T}, 21 \times 5\) : C : C

(8) \(\mathrm{T}, 61 \times 9\)

T6, 61×9



21

Ex. 3 Modeling near the connection of members

3. Nonlinear problems

,

\subsection*{3.1 Type of nonlinear problem}

In structural mechanics, types of nonlinearity include the following
Material nonlinearity, in which material properties are functions of the state of
stress or strain, such
stress or strain, such as nonlinear elasticity, plasticity etc.
Geometrical nonlinearity, in which displacement is large enough that equilibrium
- Buckling phenomena, in which a mode of deformation suddenly change to other
mode as the load increases.


In these problems, equilibrium equation that is the relation between nodal displacements and nodal forces are influenced with values of nodal displacements.
Therefore, to solve this equation needs Newton-Raphson iteration method.

3.2 Solution methods of nonlinear problem

Three kinds of iterative Newton-Raphson methods
- Load incremental method

Live \(\Delta \boldsymbol{p}\), solve \(\boldsymbol{k} \Delta \boldsymbol{d}=\Delta \boldsymbol{\Delta}+\boldsymbol{p}-\boldsymbol{f}\) for \(\Delta \boldsymbol{d}\)
- Displacement incremental method
Displace specific ic icmponenent of \(\Delta \boldsymbol{d}\), solve \(\boldsymbol{k} \Delta \boldsymbol{d}=\Delta \boldsymbol{p}+\boldsymbol{p}-\boldsymbol{f}\) for \(\Delta \boldsymbol{d}\) and \(\Delta \boldsymbol{p}\)
give arc length \(\Delta S\), solve \(k \Delta \boldsymbol{d}=\Delta \boldsymbol{p}+\boldsymbol{p}-\boldsymbol{f}\) for \(\Delta \boldsymbol{d}\) and \(\Delta \boldsymbol{p}\)


Solving the nonlinear equilibrium equation corresponds to solving the equilibrium curves in load-displacement space.



\section*{A1. Solve axial forces and displacement}

The elongation of each members by axial force are
\[
\begin{aligned}
& v_{1}=\frac{N_{1} \sqrt{L^{2}+H^{2}}}{E A}=\frac{P \sqrt{L^{2}+H^{2}}}{2 E A \cos \theta} \\
& v_{2}=\frac{N_{2} \sqrt{L^{2}+H^{2}}}{E A}=-\frac{N_{1} \sqrt{L^{2}+H^{2}}}{E A}=-v_{1}
\end{aligned}
\]

Each member is connected at a point. In other word, by the condition of compatibility,
\[
u=\frac{v_{1}}{\cos \theta}=\frac{P \sqrt{L^{2}+H^{2}}}{2 E A \cos ^{2} \theta}
\]

The displacement \(u\) can also be obtained from the axial force by the theorem of Castigliano.
\[
u=\frac{\partial U}{\partial P}=\frac{N_{1} \sqrt{L^{2}+H^{2}}}{E A} \frac{\partial N_{1}}{\partial P}+\frac{N_{2} \sqrt{L^{2}+H^{2}}}{E A} \frac{\partial N_{2}}{\partial P}=\frac{P \sqrt{L^{2}+H^{2}}}{2 E A \cos ^{2} \theta}
\]

Where \(U\) is called strain energy that defined by following
\[
U=\sum_{i} \frac{N_{i}^{2} L_{i}}{2 E A}
\]

\section*{A1. Solve axial forces and displacement}

Solve the axial forces of each member and displacement at top point of the truss structure on the right figure.

Let \(N_{1}\) and \(N_{2}\) be the axial forces of each member. By the equilibrium condition at top point,
\[
\left(-N_{1}+N_{2}\right) \cos \theta+P=0
\]
\[
\text { where } \sin \theta=\frac{H}{\sqrt{L^{2}+H^{2}}} \quad \cos \theta=\frac{L}{\sqrt{L^{2}+H^{2}}}
\]


Solving the equilibrium equation,
\[
N_{1}=\frac{P}{2 \cos \theta} \quad N_{2}=-\frac{P}{2 \cos \theta}
\]

\section*{A1. Solve axial forces and displacement}

In the previous solution, the axial forces were used as unknown variable. Here, we use displacement as a variable.
Let \(u\) is displacement at top point.
The elongations of each members are
\(v_{1}=u \cos \theta\)

\(v_{2}=-u \cos \theta\)


By the above elongations, the axial forces of each members are
\(N_{1}=E A \frac{v_{1}}{\sqrt{L^{2}+H^{2}}}=E A \frac{u \cos \theta}{\sqrt{L^{2}+H^{2}}}\)
\(N_{2}=E A \frac{v_{2}}{\sqrt{L^{2}+H^{2}}}=-E A \frac{u \cos \theta}{\sqrt{L^{2}+H^{2}}}\)
When the above axial forces are applied to equation of equilibrium condition, displacement \(u\) is obtained.
Alternatively, it can be obtained by using the theorem of Castigliano.
\[
P=\frac{\partial U}{\partial u} \quad \text { where } \quad U=\sum E A \varepsilon_{i}^{2} L_{i}
\]

A2. Derive truss element stiffness matrix by the principle of virtual work

The element stiffness matrix \(\boldsymbol{k}\) is defined by following equation
\[
\boldsymbol{k}=\int_{V} \boldsymbol{B}^{T} E \boldsymbol{B} d V=\int_{0}^{L} \int_{A} \boldsymbol{B}^{T} E \boldsymbol{B} d A d x \quad \text { where } \quad \boldsymbol{B}=\boldsymbol{N}_{t}^{\prime}=\frac{d \boldsymbol{N}_{t}}{d x}
\]

In truss element, \(\boldsymbol{N}_{t}\) is
\[
\boldsymbol{N}_{t}=\left\{\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right\} \quad N_{1}=1-\frac{x}{L} \quad N_{2}=\frac{x}{L}
\]

Derive stiffness matrix \(\boldsymbol{k}\) in truss element.
\[
\begin{aligned}
& \boldsymbol{B}=\boldsymbol{N}_{t}^{\prime}=\frac{d \boldsymbol{N}_{t}}{d x}=\left\{\begin{array}{ll}
-\frac{1}{L} & \frac{1}{L}
\end{array}\right\} \\
& \boldsymbol{k}=\int_{0}^{L} \int_{A} \boldsymbol{B}^{T} E \boldsymbol{B} d A d x=\int_{0}^{L} \int_{A}\left\{\begin{array}{c}
-1 / L \\
1 / L
\end{array}\right\} E\left\{\begin{array}{ll}
-\frac{1}{L} & \frac{1}{L}
\end{array}\right\} d A d x=\frac{E A}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
\]

A4. Derive global equation

Derive global equation for structure that consists four elements.

\[
\left(\begin{array}{cccc}
\boldsymbol{K}_{11}^{A}+\boldsymbol{K}_{11}^{D} & \boldsymbol{K}_{12}^{A} & \boldsymbol{K}_{13}^{D} & \mathbf{0} \\
\boldsymbol{K}_{21}^{A} & \boldsymbol{K}_{22}^{A}+\boldsymbol{K}_{22}^{B} & \boldsymbol{K}_{23}^{B} & \mathbf{0} \\
\boldsymbol{K}_{31}^{D} & \boldsymbol{K}_{32}^{B} & \boldsymbol{K}_{33}^{B}+\boldsymbol{K}_{33}^{D} & \boldsymbol{K}_{34}^{C} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{K}_{43}^{C} & \boldsymbol{K}_{44}^{C}
\end{array}\right)\left\{\begin{array}{l}
\boldsymbol{D}_{1} \\
\boldsymbol{D}_{2} \\
\boldsymbol{D}_{3} \\
\boldsymbol{D}_{4}
\end{array}\right\}=\left\{\begin{array}{l}
\boldsymbol{F}_{1} \\
\boldsymbol{F}_{2} \\
\boldsymbol{F}_{3} \\
\boldsymbol{F}_{4}
\end{array}\right\}
\]

A3. Derive truss element stiffness matrix on the global structural coordinate

The truss element stiffness matrix is written as follows on the element coordinates system
\[
\boldsymbol{k}=\frac{E A}{L}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
\]

Transformation matrix is
\[
\boldsymbol{T}=\left(\begin{array}{cccc}
c & s & 0 & 0 \\
0 & 0 & c & s
\end{array}\right)
\]

Derive truss element matrix on the global structural coordinate system.
\[
\begin{aligned}
& \boldsymbol{K}=\boldsymbol{T}^{T} \boldsymbol{k} \boldsymbol{T}=\frac{E A}{L}\left(\begin{array}{ll}
c & 0 \\
s & 0 \\
0 & c \\
0 & s
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ccc}
c & s & 0 \\
0 \\
0 & 0 & c
\end{array} s\right) \\
& =\frac{E A}{L}\left(\begin{array}{ll}
c & 0 \\
s & 0 \\
0 & c \\
0 & s
\end{array}\right)\left(\begin{array}{cccc}
c & s & -c & -s \\
-c & -s & c & s
\end{array}\right)=\frac{E A}{L}\left(\begin{array}{cccc}
c^{2} & c s & -c^{2} & -c s \\
c s & s^{2} & -c s & -s^{2} \\
-c^{2} & -c s & c^{2} & c s \\
-c s & -s^{2} & c s & s^{2}
\end{array}\right)
\end{aligned}
\]

A5. Confirm the singularity of stiffness matrix
From \(v_{1}=v_{2}=0\),

\(Q_{1}\) and \(Q_{2}\) are reaction forces
Next, the previous equation is separated into two parts.
\[
\left(\begin{array}{cccc}
\frac{E A}{L} & 0 & -\frac{E A}{L} & 0 \\
0 & \frac{4 E I}{L} & 0 & \frac{2 E I}{L} \\
-\frac{E A}{L} & 0 & \frac{E A}{L} & 0 \\
0 & \frac{2 E I}{L} & 0 & \frac{4 E I}{L}
\end{array}\right)\left\{\begin{array}{l}
u_{1} \\
\theta_{1} \\
u_{2} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{l}
F_{1} \\
M_{1} \\
F_{2} \\
M_{2}
\end{array}\right\} \quad\left(\begin{array}{cccc}
0 & \frac{6 E I}{L^{2}} & 0 & \frac{6 E I}{L^{2}} \\
0 & -\frac{6 E I}{L^{2}} & 0 & -\frac{6 E I}{L^{2}}
\end{array}\right)\left\{\begin{array}{l}
u_{1} \\
\theta_{1} \\
u_{2} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right\}
\]

From equation of left side, we understand that the stiffness matrix is singular.
\begin{tabular}{|c|}
\hline Bago Br．TTP［2018．02．22］ \\
Review（look back）of \\
Design method \\
\end{tabular}
［Required performance］
－Safety
－Serviceability
－Constructability

\section*{［Limit State］}
－Safety（Ultimate，Strength）Limit
－Serviceability Limit
－Fatigue Limit
```

••••• • .

```
whether or not
the required performance level is satisfied

\section*{【Check Method】}
－Load Resistance Factor Design Method
（LRFD）
－Partial Factor Design Method（PFD）
－Allowable Stress Design Method（ASD）
\begin{tabular}{|c|}
\hline Basis \\
\hline \(\mathrm{S} \leqq \mathrm{R}\)（Safety check） \\
\hline S ：Action（ \({ }^{*}, \mathrm{M}^{*}, \mathrm{Q}^{*}\) ） \\
\hline \[
\begin{aligned}
& \text { R : Resistance (Nult.*, Mult.*, Qult.*) } \\
& \text { *: factored value }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Ex． \\
\(\mathrm{M}_{1.3 \mathrm{D}+1.75[\mathrm{~L}+\mathrm{I}]} \leqq \Phi_{\mathrm{u}} \cdot\) Mult． \\
\(\boldsymbol{\sigma}_{1.0 \mathrm{D}+1.30[\mathrm{~L}+\mathrm{I}]} \leqq \Phi_{\mathrm{s}} \cdot \sigma_{\mathrm{y}}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Design Level}
－Level－I＜＜Standard＞
Partial factor is used
«S＊§ \(\mathbf{R}^{*}\) 》（ \(\mathbf{S}^{*}, \mathbf{R}^{*}\) ）：factored action \＆resistance
－Level－II
Safety index \((\beta)\) is used
« \(\beta \geqq \beta\) target»
－Level－III
Failure probability \(\left(P_{f}\right)\) is used « \(\mathrm{Pf}_{\mathrm{f}} \leqq \mathrm{Pf}_{\mathrm{f}}\) target＞


\footnotetext{
Limit State to be checked
－Strength Limit State I～V
Ex．I ：vehicle running（no wind） II ：allowed special type of vehicle（no wind）
－Extreme Limit State I，II
I ：erathquake load
II ：collisoion（ship，ice）
－Serviceabilty Limit State I～IV
Ex．II：Yielding of material
－Fatigue Limit State I（forever），II（limited duration） ［totally 13 cases are checked］
}
```

Check Format(LRFD)
\Sigma\mp@subsup{n}{i}{\prime}\mp@subsup{V}{i}{\prime}\mp@subsup{Q}{i}{i}
Yi : load factor*
\Phi: resistance factor*
\etai
[\etao:ductility, \eta}\mp@subsup{\eta}{R}{}\mathrm{ : redandancy, }\etar\mathrm{ : importance]
Q : load effect
Rn: (Nominal) resistance
Rr : factored resistance

* yi, \Phi are based on reliability theory (safety index \beta)

```
```

 Ex. of check of outer girder
 [Strength Limit State I (flexure)]
M = 1.25 x (2,119 + 302.5) + 1.50 x (388.9)
\DC \parapet
+1.75 x (2,961)
\daggerlive load
=8,792kft \leqq \Phi}\mp@subsup{\Phi}{\textrm{f}}{}\cdotMn=10,973\textrm{kft
\uparrow=1.0 \uparrowplastic strength
\action/resistance =0.80】
DC : dead load excluding wearing surface load (DW) }1

```

\section*{Strength Limit State－I}

S1．25DC＋1．50DW＋1．75［LL＋IM］§ Sutt．
S：Stress resultants
Sult．：Ultimate strength \((=\Phi \operatorname{Rn}\{\mathrm{Rn}\) ：nominal strength \(\}\)
DC：Dead load excluding（DW）
DW ：Wearing surface［concrete pavement in USA］
LL＋IM ：Livre load（LL）including inpac（IM）
Serviceability Limit State－II
f1．00D＋1．30［LL＋IM］\(\leqq 0.95 f_{y}\)
\(\uparrow\) overload（heavy vehicle）
：stress
\(f_{y}\) ：yield stress
［Serviceability Limit State II
（Lower flange）］
\(\mathrm{f}=1.00 \times(17.73+1.91)\)
\(+1.00 \times(2.46)+1.30 \times(13.3)\)
\(=44.3 \mathrm{kf} / \mathrm{in}^{2}\)
\(\leqq \Phi_{b} \cdot F_{y}=0.95 \times 50=47.5 \mathrm{kf} / \mathrm{in}^{2}\)
SI Unit \(\left\{305 \mathrm{~N} / \mathrm{mm}^{2} \leqq 327 \mathrm{~N} / \mathrm{mm}^{2}\right\}\)

【action \(/\) resistance \(=0.93 】 \leftarrow\) controlled


Design of slab



\section*{Internal Stress}


Load and Displacement





Minimum slab thickness (d) required



Additional (increase) rate for simple and continuous slab


Allowable stress of reinforcement
\begin{tabular}{|c|c|}
\multicolumn{1}{c|}{} & \(\left(\mathrm{N} / \mathrm{mm}^{2}\right)\) \\
\cline { 2 - 2 } \multicolumn{1}{c|}{} & SD345 \\
\hline tension & 140 \\
\hline compression & 200 \\
\hline
\end{tabular}



Recent topics (due to fatigue problem)

Mostly, \(12^{\mathrm{mm}}\) thickness has been used so far. Due to severe fatigue damage,


16 mm thickness is recommended (in case of trough [U-shaped] ribs)

Impact (i) for the design

cross beams
cross beams
\(L\) : span of cross beams
Additional increase rate ( \(k\) ) for cross beams
\(k=k o \quad(\quad \mathrm{~L} \leqq 4)\)
\(k=k_{0}-\left(k_{0}-1\right) \times(L-4) / 6 \quad(4<L \leqq 10)\)
\(k=1.0 \quad(10<L \quad)\)
\(k_{0}=1.0 \quad(\quad B \leqq 2)\)
\(k_{0}=1.0+0.2 \times(B-2) \quad(2<B \leqq 3)\)
\(\mathrm{k} 0=1.2\) ( \(3<\) )
B : distance of cross beams

\section*{Effective Width}




\section*{Local Bucking at Flange-PL}


Shear Buckling at Web-PL


Global lateral torsional buckling



Internal Stress of Box-girder


Effective Width by Bending Stress


\section*{Minimum web thickness}


Ex. (SM490Y)

\[
\begin{aligned}
t w, \min . & =\frac{h w}{123} \quad t w, \min . & =\frac{h_{w}}{209} \quad t w, \min . & =\frac{h_{w}}{294} \\
& =\frac{2,500}{123}=20.3 \mathrm{~mm} & =11.97^{\mathrm{mm}} & =8.5^{\mathrm{mm}} \\
& \rightarrow \underline{21^{\mathrm{mm}}} & \rightarrow \underline{12^{\mathrm{mm}}} & \rightarrow \underline{9^{\mathrm{mm}}}
\end{aligned}
\]


When span ( L ) becomes longer, web depth ( Hw ) becomes higher.
(L / \(\mathrm{H}_{\mathrm{w}}\) : 15~20 \{simple span\})

Thickness of web without stiffeners becomes considerably large.
\(\rightarrow\) To avoid thick web, stiffeners (H \& V) are employed to prevent buckling.


\section*{Design of web}
(1) Horizontal stiffeners See PPT No. 5
(2) Vertical stiffeners \(\left(\frac{\boldsymbol{\sigma}}{\boldsymbol{\sigma}_{\mathrm{E}}}\right)^{2}+\left(\frac{\tau}{\mathrm{TE}}\right)^{2} \leqq \frac{1}{\mathrm{~V}^{2}}\)
\(\sigma_{\mathrm{E}}=\mathrm{k} \sigma(=23.9) \cdot \sigma_{\mathrm{E}}\)
\(\tau_{\mathrm{E}}=\mathrm{K}_{\mathrm{T}} \cdot \boldsymbol{\sigma}_{\mathrm{E} 0}\)
\({ }_{k}=1.25\)
verification formula


Check of shear strength of web
[ex. In case of no horizontal stiffener]
\(\left(\frac{\mathrm{hw}_{w}}{100 \mathrm{tw}}\right)^{4}\left[\left(\frac{\sigma}{345}\right)^{2}+\left\{\frac{\tau}{77+58(\mathrm{hw} / \mathrm{a})^{2}}\right\}^{2}\right] \leq 1.0 \quad\left(\mathrm{a} / \mathrm{hw}_{\mathrm{w}}>1.0\right)\)
\(\left(\frac{\mathrm{hw}_{w}}{100 t w}\right)^{4}\left[\left(\frac{\sigma}{345}\right)^{2}+\left\{\frac{\tau}{58+77\left(\mathrm{hw}_{\mathrm{w}}\right) 2}\right\}^{2}\right] \leq 1.0 \quad(\mathrm{a} / \mathrm{hw} \leqq 1.0)\)
must be satisfied


Stress resultants (M, Q)
are calculated using following model


\section*{Safety check}
(1a) normal stress ( \(\sigma_{ь}\) ) of I-gider
\[
\begin{aligned}
& \sigma_{\mathrm{b}}=(M / I) \cdot y \leqq \sigma_{\mathrm{a}} \\
& \sigma_{\mathrm{a}}=\min .\left\{\sigma_{\text {ba, }} \sigma_{\text {cal }}\right\}
\end{aligned}
\]

M : bending moment
I : geometrical moment of inertia \(\sigma_{\text {ba }}\) : allowable flexural compressive stress \(\sigma_{\text {cal }}\) : allowable local buckling stress



Effective width of concrete slab


( 3 ) normal and shear stresses ( \(\sigma_{w}, \tau_{s}, \tau_{w}\) ) in torsion
in case of I-section, ( \(\sigma_{w}, \tau \mathrm{~s}, \mathrm{~T} \mathrm{w}\) ) can be neglected. in case of box-section, ( \(\sigma_{w}, \tau w\) ) can be neglected.
\(\sigma_{\mathrm{w}}\) : warping stress
\(\tau \mathrm{s}\) : St.Venante shear stress (pure torsion)
iw : shear stress due to warping torsion
( 4 ) combined stress ( \(\sigma_{\mathrm{b}}, \mathrm{T}_{\mathrm{b}}\) ) check \(\left(\frac{\sigma b}{\sigma a}\right)^{2}+\left(\frac{\tau b}{\tau a}\right)^{2}<1.2^{*}\) \(\boldsymbol{\sigma} \mathrm{b}<\boldsymbol{\sigma} \mathrm{a}\)
\(\tau \mathrm{b}<\tau \mathrm{a}\)
( 5 ) with torsional moment
\(\left(\frac{\sigma}{\sigma a}\right)^{2}+\left(\frac{\tau}{\tau a}\right)^{2}<1.2^{*}\)
\(\sigma<\sigma a\)
\(\tau<\tau a\)
\(\sigma=\sigma b+\sigma w\)
\(\tau=\tau b+\tau s+\tau W\)
* take into account that loading conditions for \(\sigma_{\max }\), \(\tau_{\text {max }}\) are different
( 6 ) bi-axial stress ( \(\sigma_{x}, \sigma_{y}, \tau_{x}\) ) check
\[
\begin{aligned}
& \left(\frac{\sigma_{x}}{\sigma \mathrm{a}}\right)^{2}-\left(\frac{\sigma_{x}}{\sigma \mathrm{a}}\right)\left(\frac{\sigma_{y}}{\sigma \mathrm{a}}\right)+\left(\frac{\sigma_{y}}{\sigma \mathrm{a}}\right)^{2}+\left(\frac{\tau x y}{\tau \mathrm{a}}\right)^{2}<1.2 \\
& \xrightarrow[\sigma_{y}]{\tau x y} \rightarrow \sigma_{x} \\
& \text { Mises stress ( } \sigma \text { ) } \\
& \sigma_{e}=\sqrt{\sigma_{x}^{2}-\sigma_{x} \sigma_{y}+\sigma_{y}^{2}+3 \tau x y^{2}}<\underline{1.1 \sigma_{a}} \\
& \left(\frac{\sigma_{x}}{\sigma_{\mathrm{a}}}\right)^{2}-\left(\frac{\sigma_{x}}{\sigma_{\mathrm{a}}}\right)\left(\frac{\sigma_{y}}{\sigma_{\mathrm{a}}}\right)+\left(\frac{\sigma_{y}}{\sigma_{\mathrm{a}}}\right)^{2}+3\left(\frac{\tau x y}{\sigma_{\mathrm{a}}}\right)^{2}<1.2 \\
& \tau y=\tilde{\sigma}_{y} / \sqrt{3} \rightarrow \sigma_{a}=\sqrt{3} \tau a\left(\tilde{\sigma}_{y}: \text { yield stress }\right) \\
& \left(\frac{\sigma_{x}}{\sigma_{\mathrm{a}}}\right)^{2}-\left(\frac{\sigma_{x}}{\sigma_{\mathrm{a}}}\right)\left(\frac{\sigma_{y}}{\sigma_{\mathrm{a}}}\right)+\left(\frac{\sigma_{y}}{\sigma_{\mathrm{a}}}\right)^{2}+\left(\frac{\tau}{\tau \mathrm{a}}\right)^{2}<1.2
\end{aligned}
\]

Vertical stiffener at support


Effective area (Aeff \(<1.7\) Astiffener)

\section*{Example}


Aweb \(=288 \times 12=34.56\)
Arib \(=2 \times 120 \times 19=45.60\)
\(80.16^{\left(\mathrm{cm}^{2}\right)}<1.7 \mathrm{~A}_{\text {rib }}=82.08^{\left(\mathrm{cm}^{2}\right)}\)
\(\mathrm{Le}_{\mathrm{e} / \mathrm{ry}}=0.5 \times 160^{(\mathrm{cm}) / 5.62=14.2 \quad\left(\mathrm{hw}_{\mathrm{w}}: 1600^{\mathrm{mm}}\right), ~(\mathrm{~km})}\)
\(\mathrm{R}=879.4(\mathrm{kN})\)
\(\sigma_{c}=\frac{879.4 \times 10^{3}}{80.16 \times 10^{2}}=109.0^{\left(\mathrm{N} / \mathrm{mm}^{2}\right)}<\sigma_{\mathrm{ca}}(\) ok \()\)
\[
\left(\text { Le } / \mathrm{ry}<18 \rightarrow \sigma_{c a}=140 \mathrm{~N} / \mathrm{mm}^{2}\right)
\]




Design of truss bridges



Cross section and Panel point


Cross section


Panel point

\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Preliminary design
\[
\begin{aligned}
& H / L=1 / 6 \sim 1 / 8 \\
& \theta=40 \sim 60^{\circ} \\
& \lambda=6 \sim 10^{m} \\
& \delta^{*}<L / 600
\end{aligned}
\] \\
*deflection by live load (excluding impact)
\end{tabular} \\
\hline
\end{tabular}



Maximum bending moment and shear force
\[
\begin{aligned}
& \mathrm{i}=\frac{20}{50+\mathrm{L}}=\frac{20}{50+7.143}=0.35 \\
& \underset{\substack{\text { L=7.143m } \\
(=\lambda)^{\prime}}}{\substack{\mathrm{P}_{\mathrm{T}}}} \\
& Q_{d}=\frac{W_{a L}}{2} \\
& \mathrm{Q}_{\mathrm{L}+\mathrm{i}}=\mathbf{P T}(1+\mathrm{i})
\end{aligned}
\]

Design of longitudinal girder


Stress check

\begin{tabular}{|c|}
\hline Design of cross beam \\
\hline Span of cross beam is assumed to be distance between chord member \\
\hline  \\
\hline \(\mathrm{W}_{\mathrm{d}, 1}\) (outer girder) \(=\mathrm{Wd}_{\mathrm{d},}\left(\begin{array}{l}\text { ( }\end{array} \times \mathrm{A}\right.\) \\
\hline \(\mathrm{Wd}_{\mathrm{d}, 2}\) (inner girder) \(=\mathrm{Wd}_{\mathrm{d}}(\mathrm{B}) \times \mathrm{A}\) \\
\hline Wd : Self weight of cross beam \\
\hline
\end{tabular}


\section*{Design of chord and web members}


Effective buckling length (Le)
[ Chord member ]
in-plane \& out-of-plane buckling \(L e=\lambda\) (panel length)
[ Web member ]


Maximum allowable slenderness ratio*
\begin{tabular}{|c|c|c|}
\cline { 3 - 3 } \multicolumn{2}{c|}{} & \(\mathrm{L}^{* *} / \mathrm{r}\) \\
\hline \multirow{2}{*}{ compression } & main member & 120 \\
\cline { 2 - 3 } & secondary member** & 150 \\
\hline \multirow{2}{*}{ tension } & main member & 200 \\
\cline { 2 - 3 } & secondary member & 240 \\
\hline
\end{tabular}
* to ensure bridge global rigidity
** effective buckling length (in compression) panel length (in tension)
*** members in cross or lateral bracing

Ex. Design of upper chord (ex.) Upper chord \(U_{3} \quad\left(\right.\) Axial force \(\left.=-2370.1^{\mathrm{kN}}\right)\)

\(\mathrm{A}=217 . \mathrm{Cm}^{2}\)
\(\mathrm{I}_{\mathrm{y}}=37,151^{\mathrm{cm}}{ }^{4}\)
\(\mathrm{I}_{\mathrm{z}}=39,633^{\mathrm{cm} \mathrm{m}^{4}}>\mathrm{I}_{\mathrm{y}}\)
( SM400)
local buckling of plate \(\quad b / t=31 / 1.6=19.4<38.7\) (ok)
global buckling of member
\(\underline{\mathrm{Le}} / \mathrm{r}=\underline{714.3} / \sqrt{37,151 / 217.6}=54.6\)
\(\sigma_{c a}=140-0.82(54.6-18)=110^{\mathrm{N} / \mathrm{mm}^{2}}\)
\(\sigma=\frac{2370.1 \times 10^{3}}{217.6 \times 10^{2}}=108.9^{\mathrm{N} / \mathrm{mm}^{2}<\sigma_{\text {ca }} \text { (ok) }}\)

Design of lateral bracing members
buckling length
\(\mathrm{Le}=0.9 \lambda \quad(\lambda:\) panel length)
( \({ }^{*}\) from conservative viewpoint, \(\mathrm{Le}=\lambda\) )
max. allowable slenderness ratio
in compression Le/r<150
in tension \(\quad \lambda / r<240\)

\section*{Strut and lateral bracing members attached to}
chord in compression
have to be designed to resist the following loads

Strut: \(\frac{P_{1}+P_{2}}{100}\)
lateral bracing: \(\frac{P_{1}+P_{2}}{100} \sec \theta\)



Design of upper lateral bracing


* height of strut in lower deck type bridge shall have the same height of the chord

Design of lower lateral bracing



Design of Pony truss
no upper lateral bracing
```


[^0]: *in USA, Europe, it is 2.2.

