MYANMA RAILWAYS MINISTRY OF TRANSPORT AND COMMUNICATIONS THE REPUBLIC OF THE UNION OF MYANMAR

PREPARATORY SURVEY FOR YANGON-MANDALAY RAILWAY IMPROVEMENT PROJECT PHASE II

FINAL REPORT (FOR DISCLOSURE)

APPENDIX

FEBRUARY 2018

JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS GLOBAL CO., LTD. JAPAN INTERNATIONAL CONSULTANTS FOR TRANSPORTATION CO., LTD. PACIFIC CONSULTANTS CO., LTD. TONICHI ENGINEERING CONSULTANTS, INC. NIPPON KOEI CO., LTD. MYANMA RAILWAYS MINISTRY OF TRANSPORT AND COMMUNICATIONS THE REPUBLIC OF THE UNION OF MYANMAR

PREPARATORY SURVEY FOR YANGON-MANDALAY RAILWAY IMPROVEMENT PROJECT PHASE II

FINAL REPORT (FOR DISCLOSURE)

APPENDIX

FEBRUARY 2018

JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS GLOBAL CO., LTD. JAPAN INTERNATIONAL CONSULTANTS FOR TRANSPORTATION CO., LTD. PACIFIC CONSULTANTS CO., LTD. TONICHI ENGINEERING CONSULTANTS, INC. NIPPON KOEI CO., LTD.

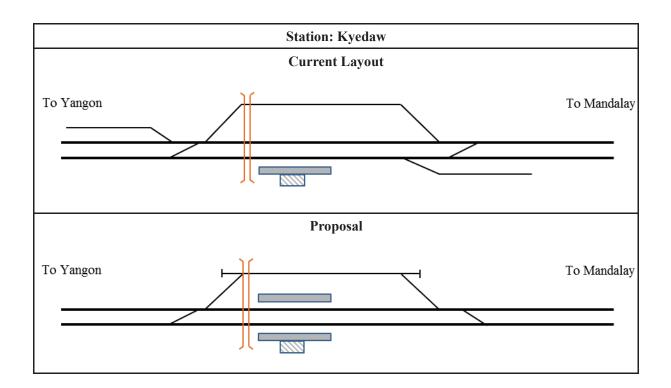
Appendix

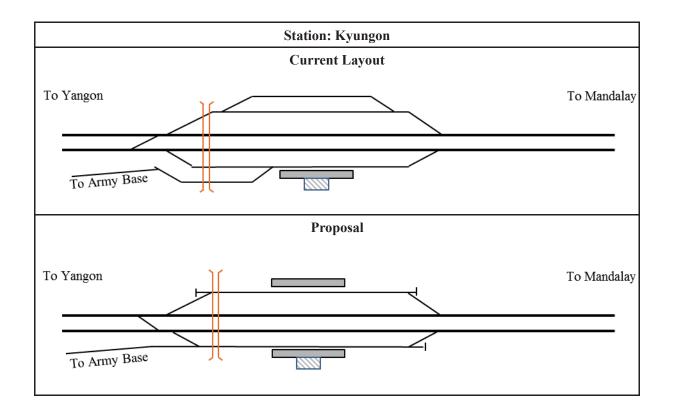
- > Appendix 5.1 : Train Operation
- > Appendix 5.4.1 : Exsiting Embankment Conditions
- > Appendix 5.4.2 : Outline Design for Earth Work
- ➢ Appendix 5.5.1 : Bridge List
- Appendix 5.5.2 : Bridge Plan
- > Appendix 5.5.3 : Investigation Record for Bridge on

Yangon-Mandalay Trunk Line

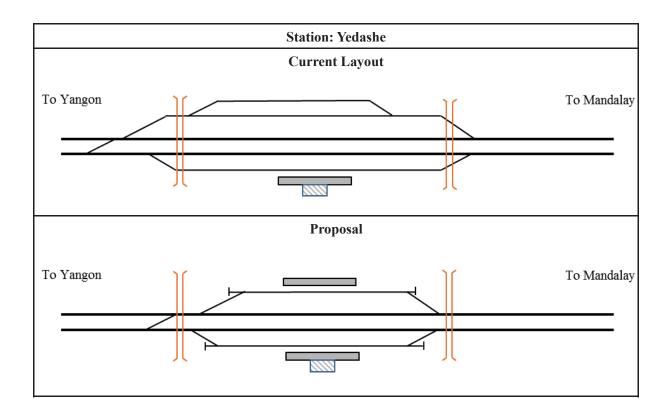
- Appendix 5.7 : Outline Design for Ancillary Civil Structures
- > Appendix 5.9 : Existing station Building Conditions
- > Appendix 5.16.1 : Location of Power Supply Equipment
- > Appendix 5.16.2 : Diagram of Power Supply System
- > Appendix 5.17 : Proposal of Urban Development Plan for Regional

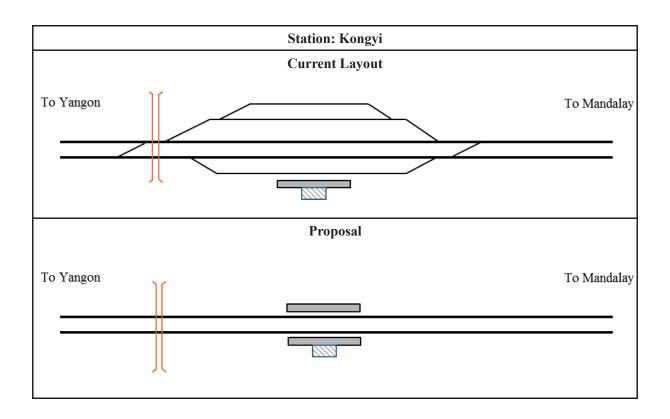
Cities, Mandalay Pathein and Mawlamyine.

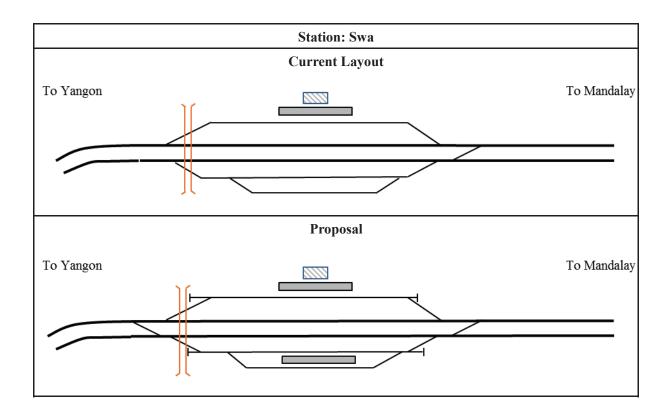

- > Appendix 8.1 : Environmental Impact Assessment
 - (1) Socio-economic Survey Form
 - (2) Results of Water Quality Analysis
 - (3) Photographs of Bird, Butterfly and Dragonfly Species in the Project Area
 - (4) Project Notification
 - (5) Record of the Stakeholder Meetings (scoping stage)
 - (6) Material used at the Stakeholder Meeting (scoping stage)
 - (7) Record of the Stakeholder Meetings (draft EIA reporting stage)
 - (8) Material used at the Stakeholder Meeting (draft EIA reporting stage)

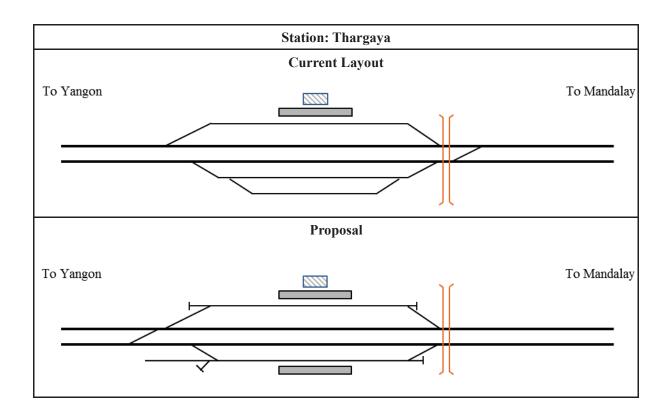

- > Appendix 8.2 : Abbreviated Resettlement Action Plan
 - (1) List of Affected land and Units
 - (2) Questionnaire Form used in the Socio-Economic Survey
 - (3) Cut-off date announcement
 - (4) Document for Individual Public Consultations
 - (5) Document for Public Consultation at Myohaung Station

APPENDIX 5.1

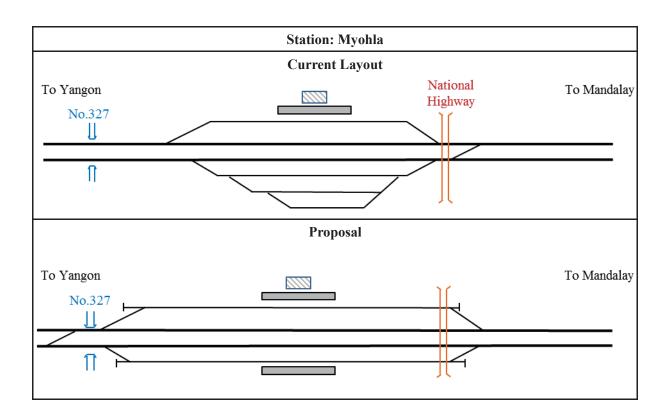

Train Operation

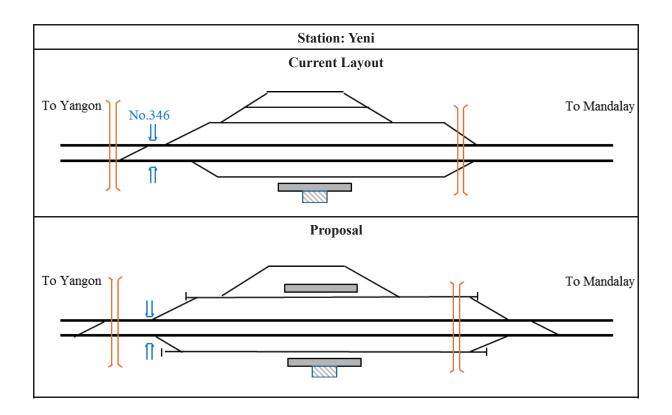

Legend in this Appendix	
Platform	Station building
Main Line	
Other Line	
- Safety siding or Trap point	
LevelBridgeCrossing1	
Level Bridg	g
Crossing e	

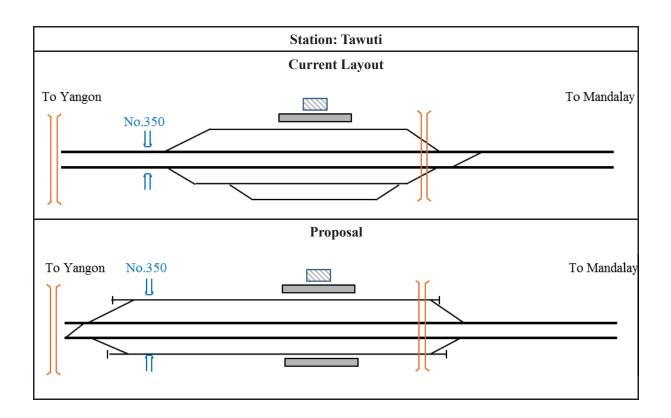


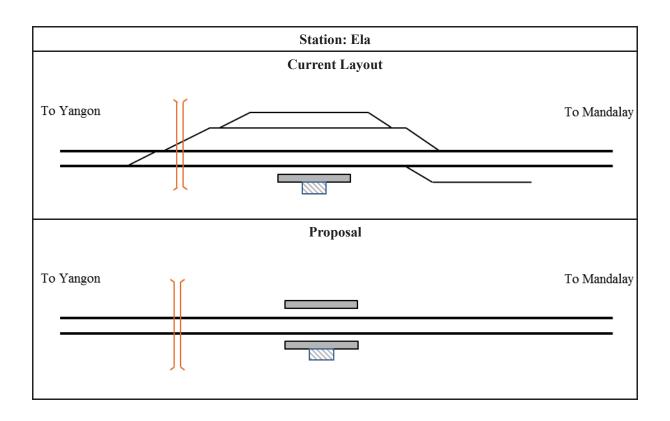


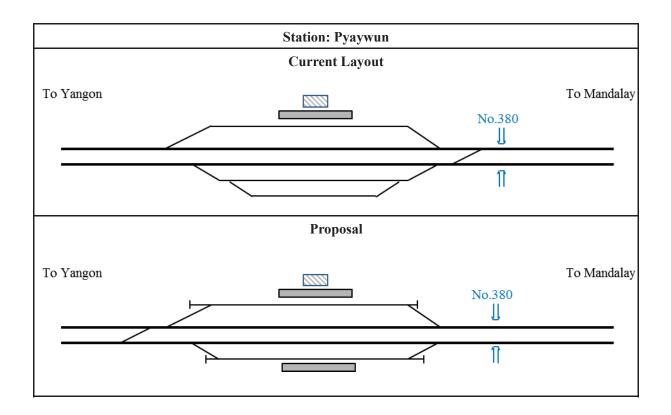
	Station: Kaytumadi	
	Current Layout	
To Yangon		To Mandalay
	Non Block Station	
	Proposal	
To Yangon		To Mandalay
	Abolishment of station	
Ĺ		

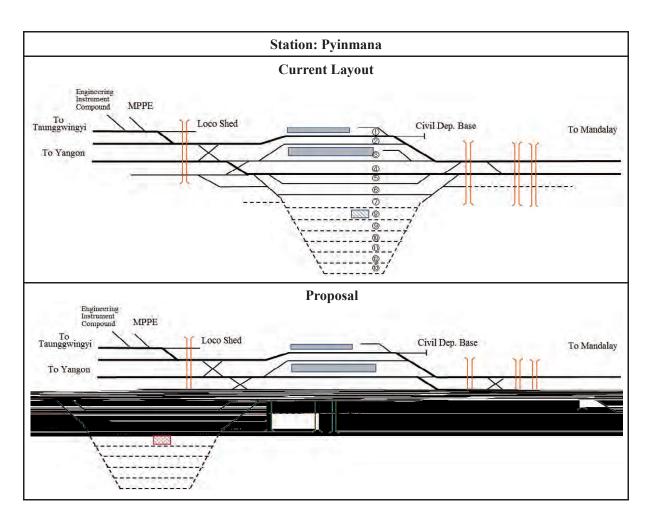


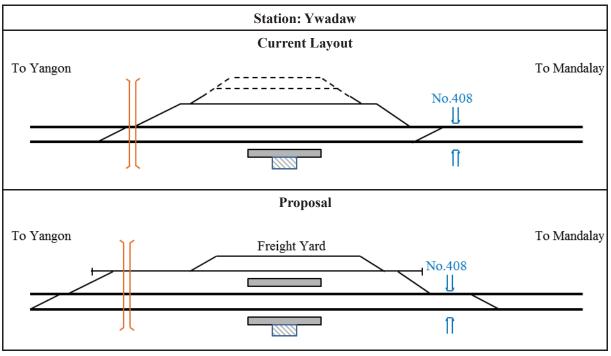


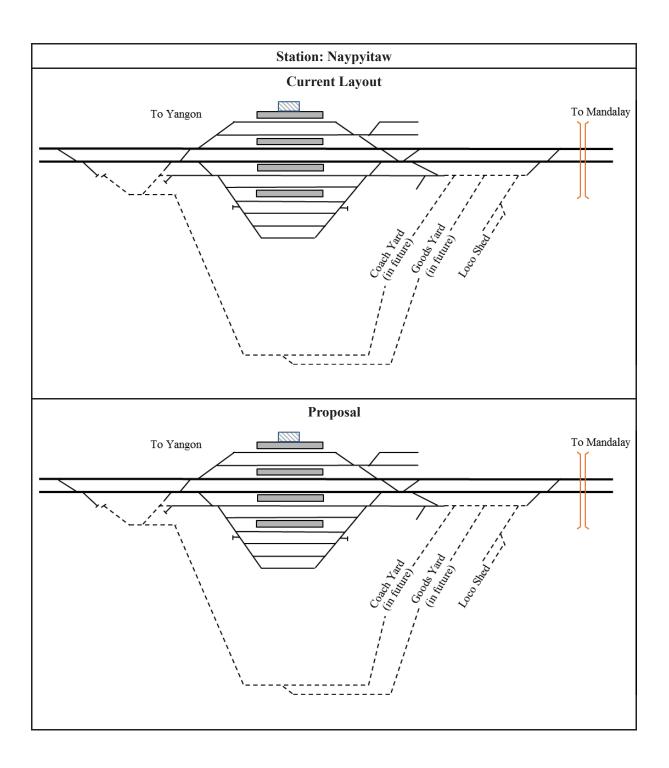


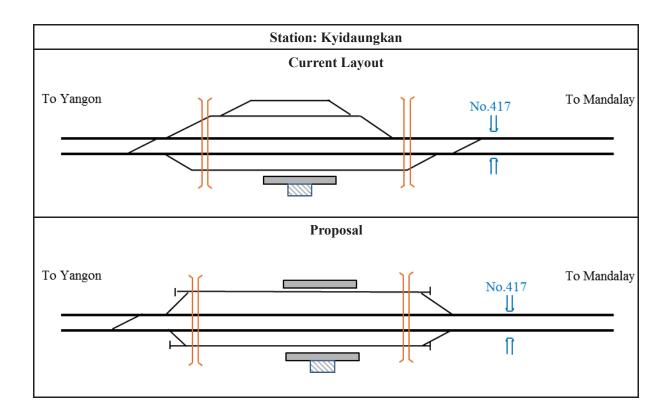

	Station: Tharyargon	
	Current Layout	
To Yangon		To Mandalay
	Non Block Station	
	Proposal	
To Yangon		To Mandalay
	Abolishment of station	10

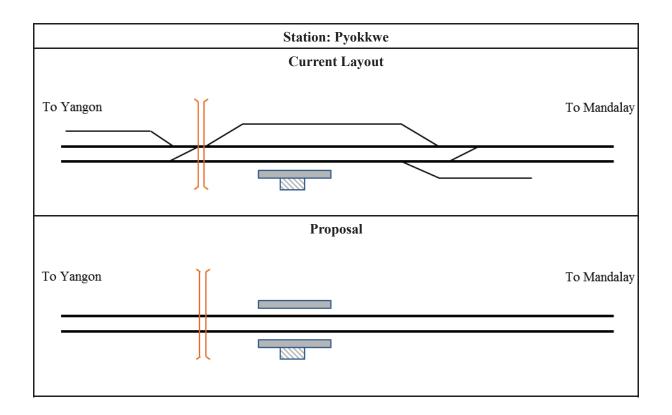


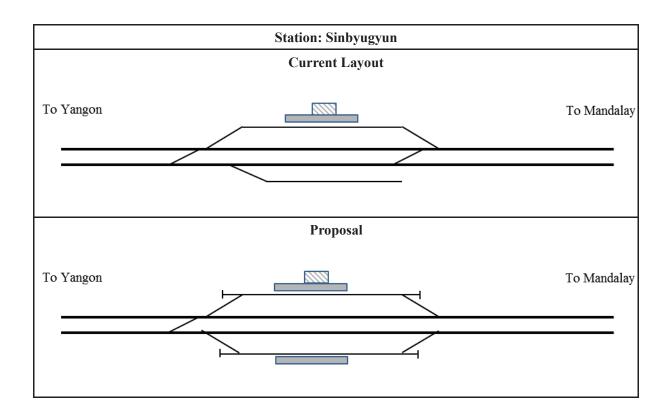




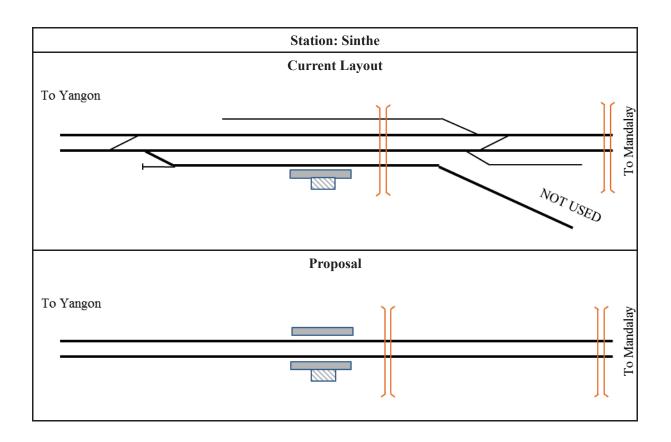

	Station: Hteininn	
	Current Layout	
To Yangon		To Mandalay
	Non Block Station	
	Proposal	
To Vancon		Ta Mandalan
To Yangon		To Mandalay
	Abolishment of station	

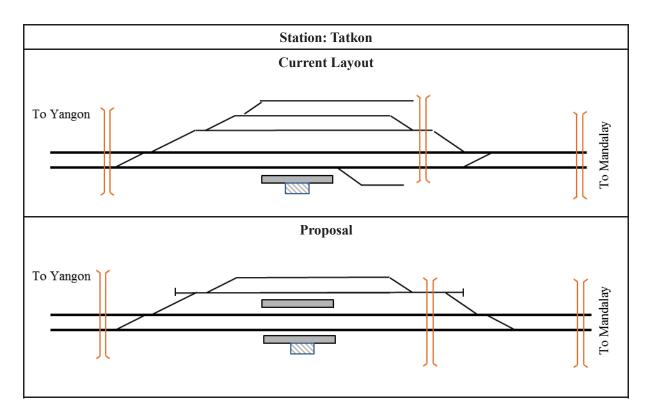


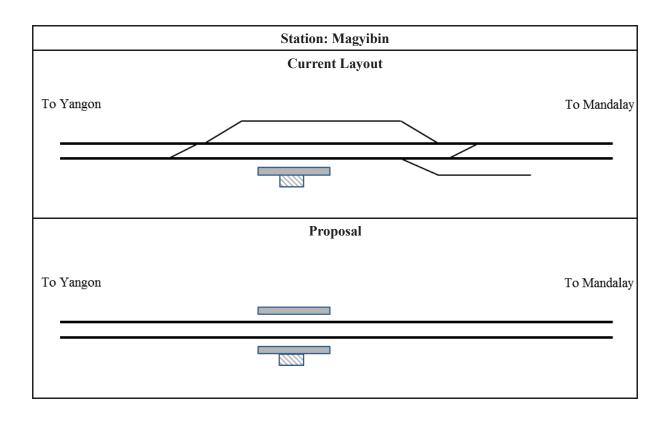


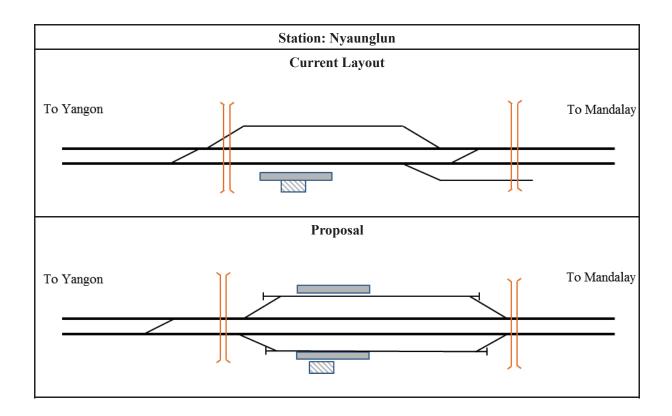


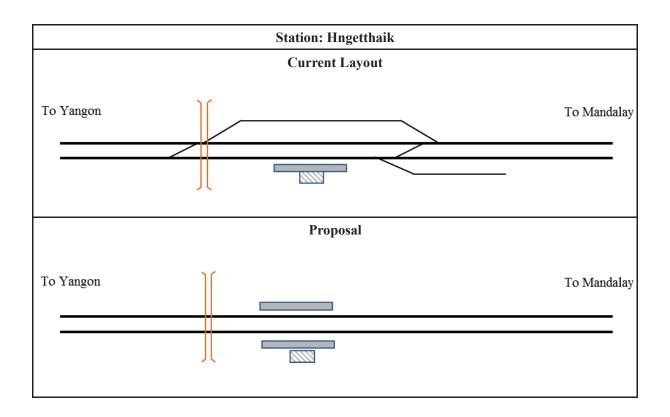


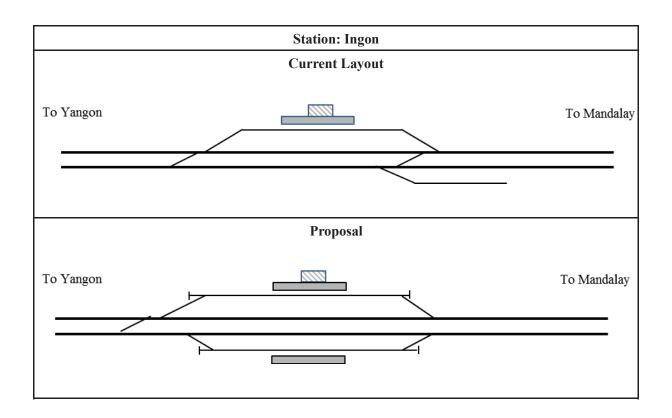


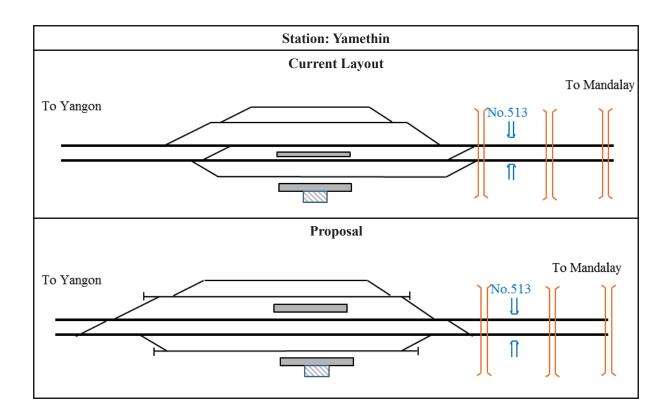


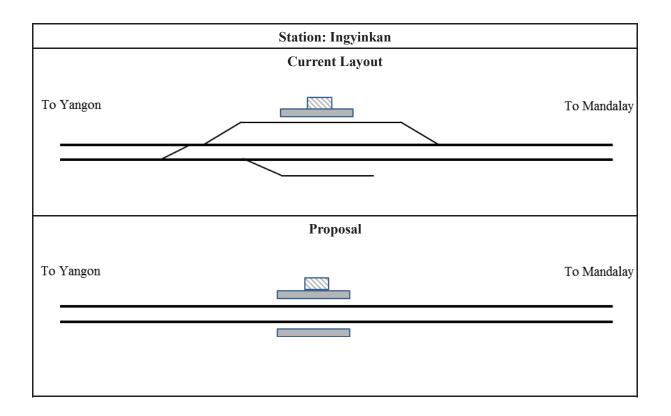


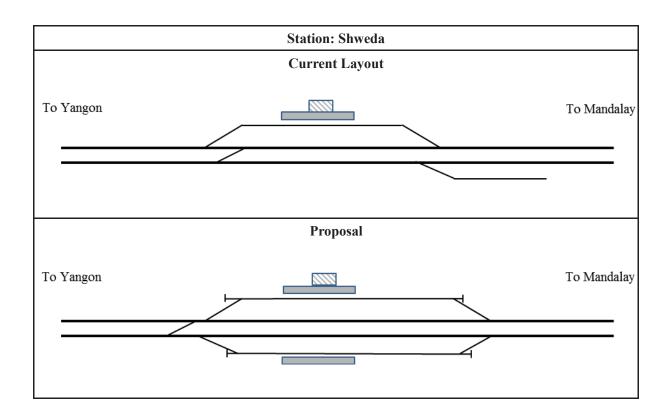


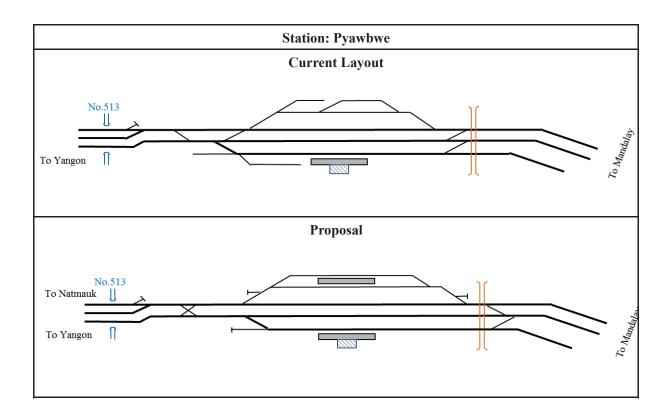




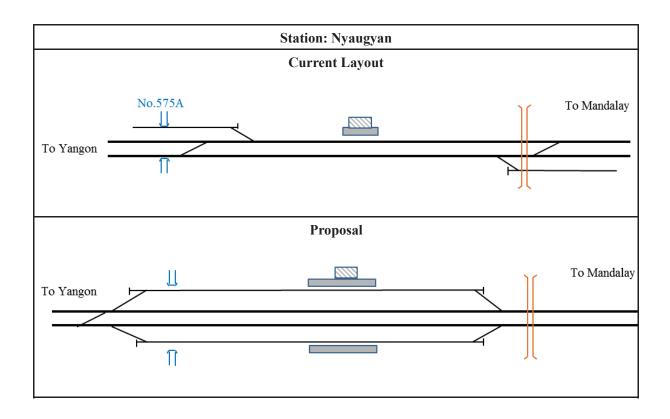


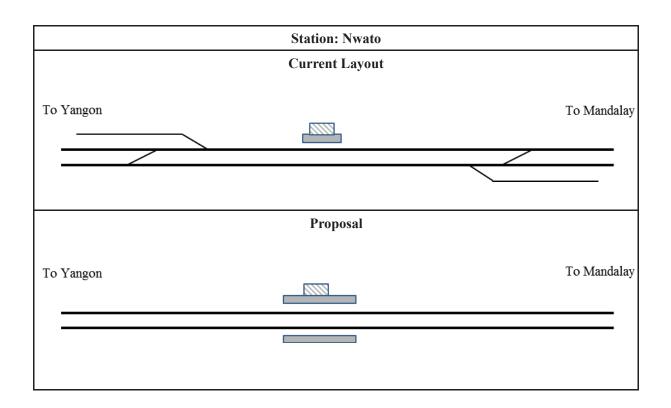


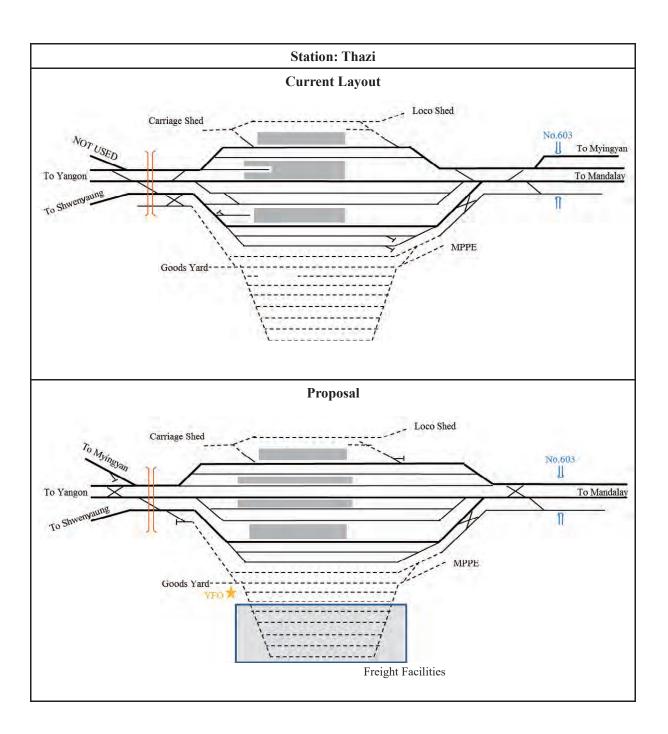


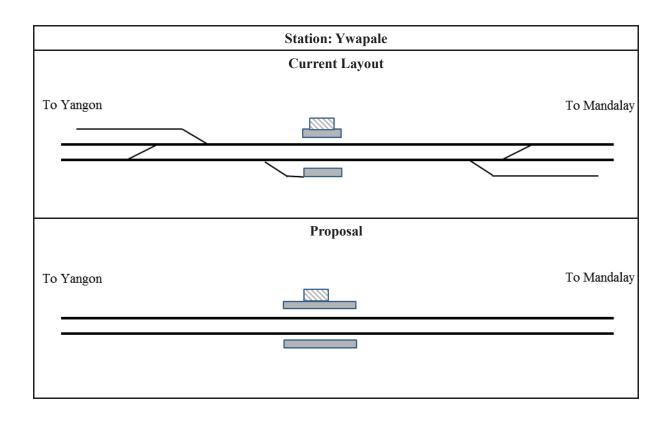


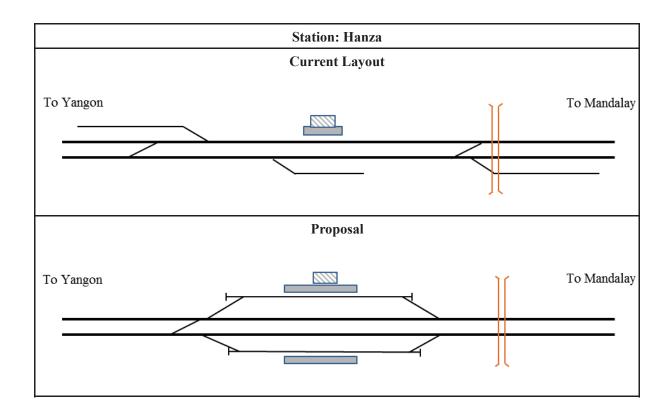


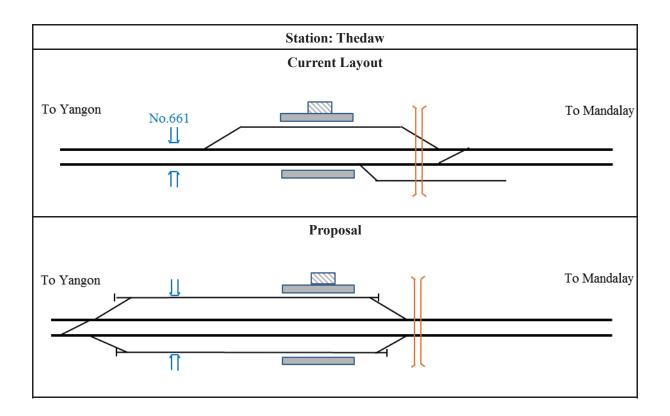


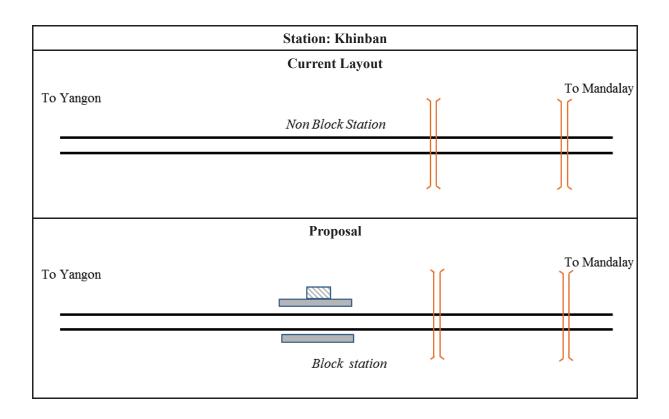


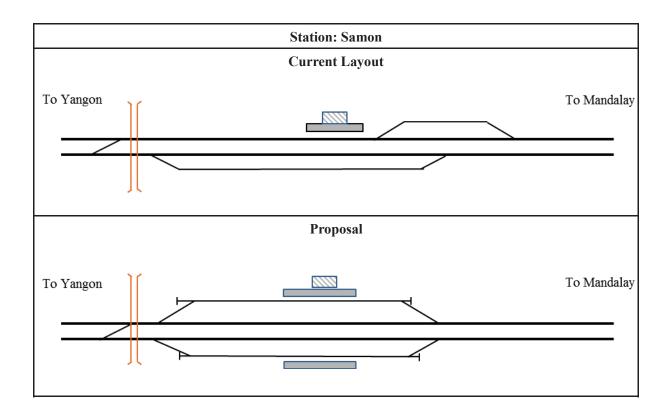


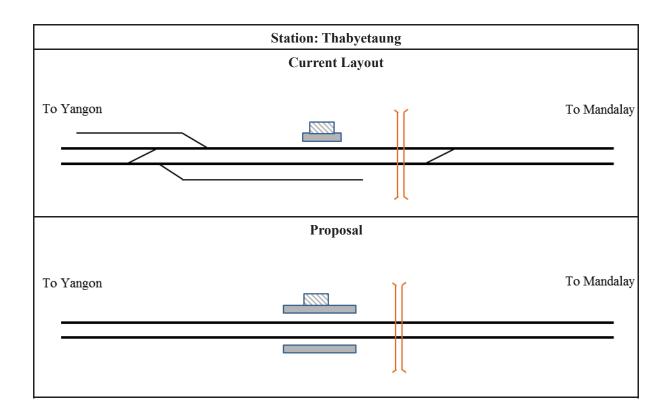


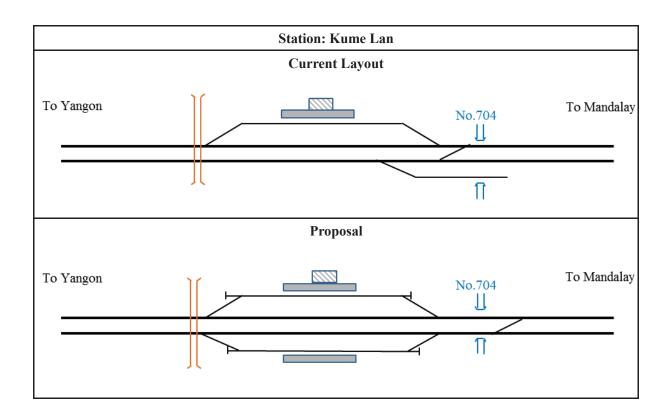


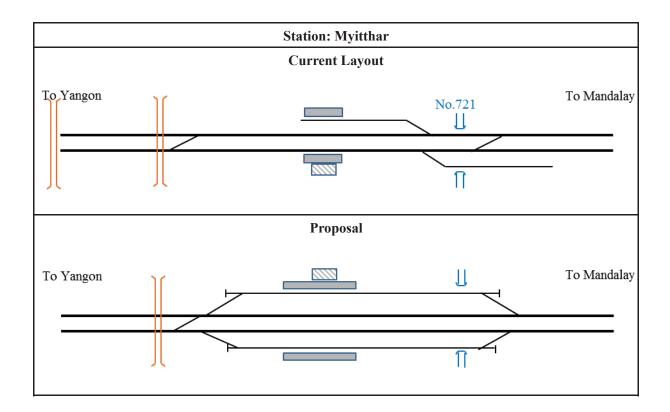


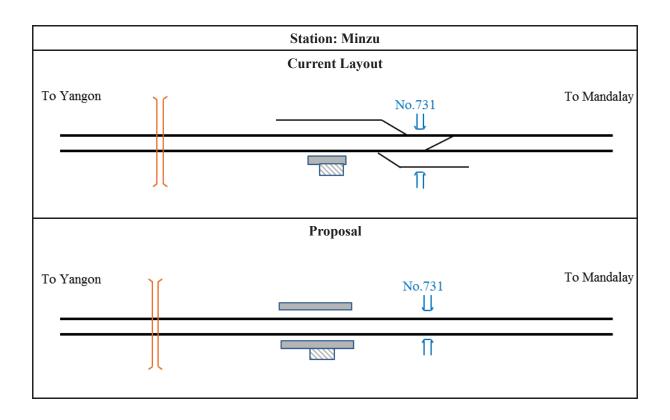


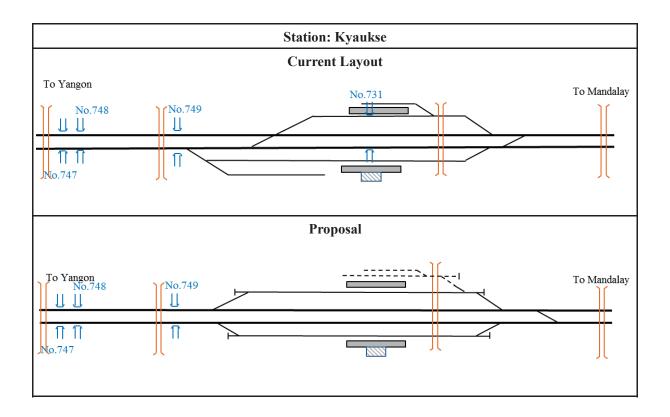


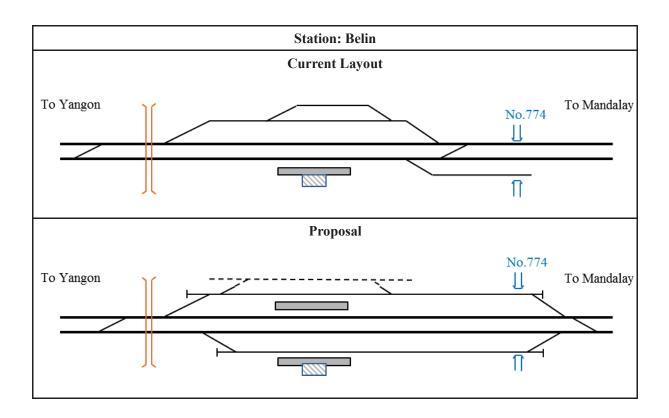

	Station: Dahattaw	
	Current Layout	
To Yangon		To Mandalay
	Non Block Station	
	Proposal	
To Yangon		To Mandalay
	Abolishment of station	

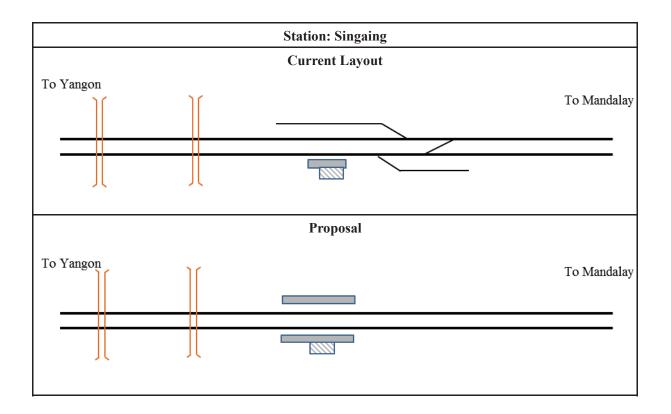


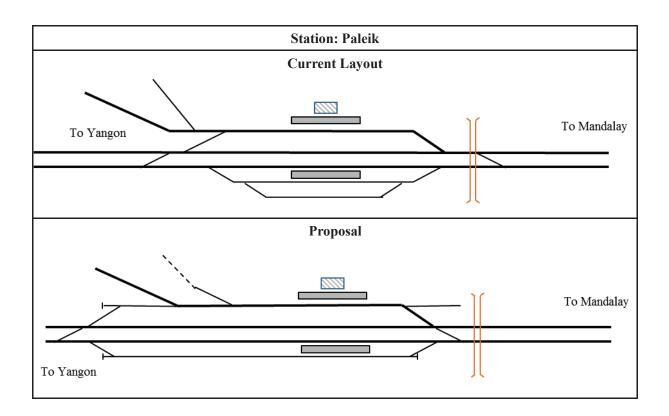


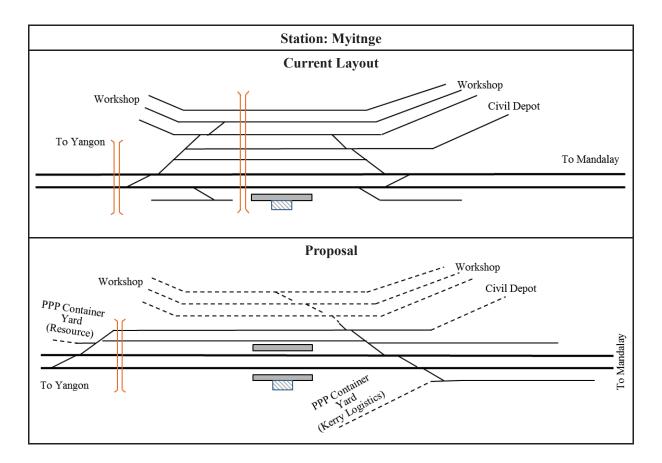


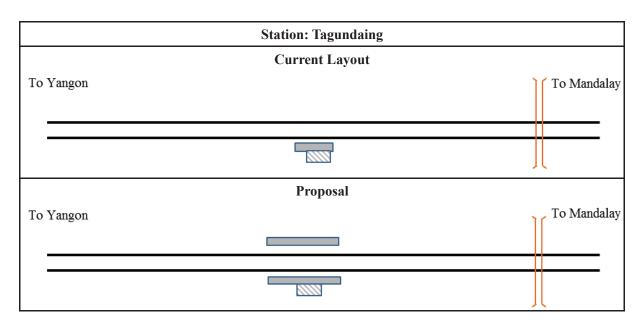

	Station: Odokkon	
	Current Layout	
To Yangon		To Mandalay
	Non Block Station	
	Proposal	
To Yangon		To Mandalay
	Abolishment of station	

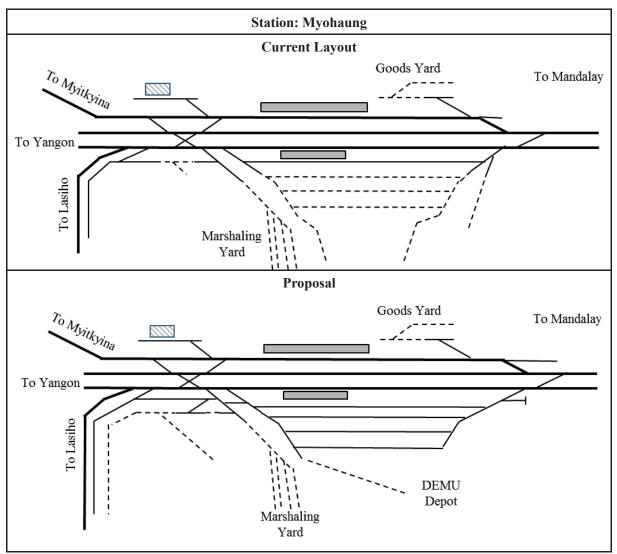


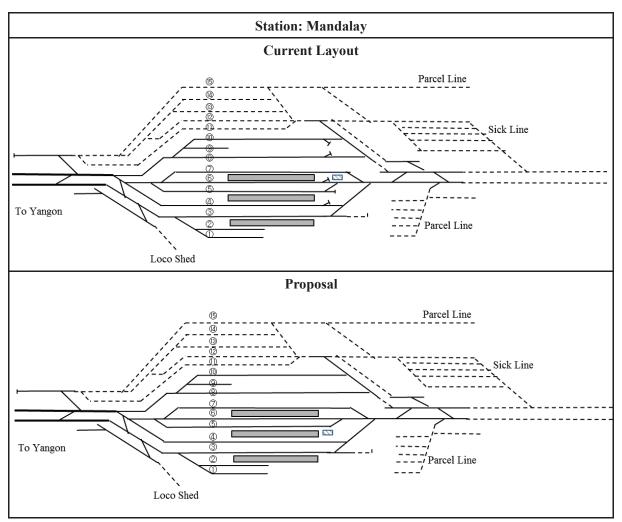












APPENDIX 5.4.1

Existing Embankment Conditions

Phase	Section	Station	Mile (km)		Embankment	Geotechnical Survey	Flooding Area hearing from MR during Site Inspection	n Settlement hearing from MR during Site Insp	ection on Sep 2nd to 6th September 2013	
Pilase	Section	Station		(mile(km))	Age		Description	Unstable Embankment	Soft Ground	
	1-1	Yangon	0 (0) 46.5 (75)	46.5 (75)	OLD (more than 40 years old)	CGS at FS stage- Standard Penetration Test: 3 nos Hand Auger Test: 7nos <gs 1at="" dd="" package="" stage=""> Bored Hole(BH): 172 nos Bi Total Length: 6,89m Standard Penetration Test-4,487 nos Hand Auger Test: 154 nos</gs>	No flooding after river improvement (Mile 40/00-42/06) No flooding after river improvement (Mile 43/17-23)	No settlemen	t problem	
		Bago				Dynamic Corn Penetration Test:215 nos			Settlement occuring on up&down line (Mile 82/12-24,	
hase 1	1-2	Pyuntaza	46.5 (75) 87.75(141)	41.25 (66)			Flooding (Mile 46/12- 49/12, 50/08-51/08) -Photo.2 No flooding after river improvement (Mile 83/13-14)- Photo.1 Flooding due to discharge from Pa Kaing Da Dam (83/14-84/14)	No settlement problem due to Embankment	81(22-24) -Photo.3	
	1-3	Taungoo	87.75 (141) 166 (267)	79.25(126)	OLD	CGS at FS stageS Standard Penetration Test: 3 nos Hand Auger Test: 3 nos CGS Package 2> Bord Hole[R9]: 149 nos BH Total Length: 4,410m Standard Penetration Test: 2,940 nos Hand Auger Test: 136 nos Dynamic Corn Penetration Test: 150 nos	Flooding(2006) (Mile 143/02-04, 145/15-22)	No settlement problem due to Embankment	Siding occuring on the down line (Mile 141/02-06) Silding occur on the up line (Mile 146/06-12) -Photo.4	Photo.1 Water Condition under bridg
		Tuungoo	166 (267)			SPT: Onos, HA: 2nos	Flooding (Mile 170/20-171/09)		Settlement occuring on up&down line (Mile 184/15-	
	2-1		232 (370)	67 (102)		HA:Mile231(up) pa=Min.150.34kPa at top HA:Mile231 (down) pa=Min.158.96kPa pa: Allowable Bearing Capacity	Flooding (Mile 181/15-182/01)	No settlement problem due to Embankment	18505) Sliding occuring on the down line (Mile 199/14-18) Sliding occur on the up line (Mile 216/23-24), Sliding occuring on the down line (Mile 220/16-17, 218/21-22, 218/14-16)	
		Yawadaw	232 (370)		(WINC 230*233)	SPT: 0nos, HA: 5nos	Flooding (263, 265/15-16)	Settlement occuring on the down line (Mile 238/01-04)		N - detail Parks - 2
nase 2	2-2	Ingyinkan	280(448)	49 (78)	OLD & NEW	HA:Mile 238 pa=Min. 135.98kPa HA:Mile 245 pa=Min. 135.97kPa HA:Mile 255 pa=Min. 135.30kPa HA:Mile 235 pa=Min. 135.98kPa HA:Mile 245 pa=Min. 135.97kPa	Flooding due to discharge from Thitson Dam (276/05-08)	Settlement occuring on the down line (Mile 243/12) - Photo.5 Settlement occuring on the down line (Mile 255/00-07&11- 18,256/00-06,257/03) Settlement occuring on the down line (Mile 260/20) Settlement occuring on the down line (Mile 268/01-24) Settlement occuring on the down line (Mile 276/09-13) Settlement occuring on the down line (Mile 276/09-13)	No settlement problem due to soft ground	Photo.2 River Improvement (M
1050 Z	2-3	ingyinkan	280(448)	63(101.5)	OLD & NEW	SPT: 1nos, HA: 3nos HA:Mile 309 pa=Min.128.31kPa HA:Mile 320 pa=Min.135.30kPa SPT:Mile 333:Min N=5 at -2.5m Silt HA:Mile 338 pa=Min.128.31kPa	Flooding (Mile 319- 321) Flooding (Mile 326) Flooding due to discharge from Kingter Dam (Mile 338)	Settlement occuring on the down line (Mie 280/10-281/22) Settlement occuring on the down line (Mie 285/04-12) Settlement occuring on the up line (Mie 293/05-06) Settlement occuring on the up line (Mie 305) Settlement occuring on the up line (Mie 336) -Photo.6	No settlement problem due to soft ground	
		Kume Lan	343(549.5)			SPT: 0nos, HA: 4nos	Flooding due to discharge from Kingter Dam (Mile 346)	Settlement occuring on the down line (Mile 348/18-20,		
	2-4		543(549.5)	42.5(71)	OLD & NEW (-382.75)	SP1: unos, HA: 4nos HA:Mile 350 pa=Min.128.31kPa HA:Mile 358 pa=Min.147.47kPa HA:Mile 366 pa=Min.143.64kPa HA:Mile 379 pa=Min.132.14kPa	Flooding due to discharge from Kingler Lam (wile 346) Flooding from Kingler Dam (Mile 348/19,351/01) Flooding due to discharge from Zaugyi Dam (Mile 357) Flooding (Mile 383)	35507) Stabilized up line slope by stone pitching (Mile 357) - Photo.7	No settlement problem due to soft ground	
					OLD	1 to the of 7 pd-mill 102. The d				

Photo.4 Settlement due to soft ground (Mile 146)

Photo.5 Settlement due to erosion by stream (Mile 243)

Photo.6 Settlement due to unstable embankment (Mile 336)

Photo.7 Stone Pitching to prevent erosion (Mile 357)

Appendix5.4.1

APPENDIX 5.4.2

Outline Design for Earth Work

Appendix 5.4.2 Outline Design for Earth Work

Design Item	Same as YM-D/D(1)		Remark
EW1.Design Standard	Yes	Railway Technical Research Institute (RTRI) and etc	
EW2.Embankment			
2.1 Basis of Design	Yes	Performance Level of rank II based on Deemed-to-Satisfy specifications (RTRI)	
2.2 Verification Method	Yes	Circular Slip Method/ Residual settlement 250mm or less /Conpaction:Thickness of each layer not exceed 200mm,a dry density of at least 90% of the maximum dry density, etc	
2.3 Embankment Drainage Works	Yes	Basically not required but earth drains provided at some	To ensure
2.4 Embankment Slope Protection	Yes	Sodding/ Stone Pitching / Preventive Piles	actual
2.5 Soft ground countermeasures	Yes	Stone Pitching / Preventive Piles / Surcharging	
2.6 Flooding countermeasures	Yes	Stone Pitching / Preventive Piles	locations at
2.7 Embankment of approaching part due to bridge raise up and replacement	Yes	Surcharging / Raised up embankment	D/D stage.
EW3.Deesign of Cut	Yes	NA	No cutting area
EW4. Design of Roadbed (sub-ballast)			
4.1 Basis of design	Yes	Performance-based Design Method	
4.2 Types of roadbeds	Yes	Crushed Stone / Existing Ballast to be used for the Sub-ballast	
4.3 Verification method of performance of Roadbed (Sub-ballast)	Yes	Sub- ballast :300mm thick	
4.4 Design based on deemed-to-satisfy specifications	Yes	K_{30} value required by the roadbed (sub-ballast) are 110 MN/m3or more.	
4.5 Construction	Yes	Compaction not exceed 150 mm thick	
4.6 Confirmation of the Requirements	Yes	FWD equipment (portable type)	
EW5. Design of Subgrade			
5.1 Basis of design	Yes	Performance-based Design Method	
5.2 Design based on deemed-to-satisfy specifications	Yes	K_{30} value required by the roadbed (sub-ballast) are 70 MN/m3or more.	
5.3 Confirmation of the Requirements	Yes	FWD equipment (portable type)	
EW6. Design of Retaining Structures			
6.1 Basis of Design	Yes	Performance-based Design Method	
6.2 Verification Methods for Retaining Structures	Yes	Check of Point of intersection of resultant force and base, Resistance against sliding and Settlement and tilting	
6.3 Design of Backfill	Yes	Compaction not exceed 300 mm thick, a dry density of at least 95% of maximum dry density	
6.4 Locations of Retaining Walls	Yes	Some locations are limited for construction of permanent embankment due to residences, passageways and/or waterways. To keep away from those restrictions, gravity walls have been provided.	To ensure actual locations at D/D stage.

APPENDIX 5.5.1

Bridge List

Exisiting Truss Bridges Bridges built after 2000

_								Non-	Bridge	Plan for	Precast Hume Pipe	Plan for	Box Culv	ert (or so	mething)	Plan	for Girder
	Station	Locat	tion	Location			L	Jp Line (UF	?)				Do	wn Line (E	DN)		
	Name			Kilometer	Interval	B	ridge Lengt	:h	Total	Axle	Remarks	B	ridge Leng	th	Total	Axle	Remarks
	&	Milea	-		(km)	Crean	Length	Total	Length	Load	Remarks	Crean	Length	Total	Length	Load	Remarks
	Bridge	(mil	e)	(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	Taungoo	165	21	266.950													
- 1	266 E	165	21	266.950	0.000	1	60	160	48.77		CLOSED (F.O.B)						
- 1						1	100				. ,						
- 1	266 F	166	2	267.285	0.335	1	1.5	1.5	0.46		YARD DRAIN (RO)						
1	266 G										CLOSED						
	266 H										CLOSED						
	266 I	166	9	267.755		1	1.5	1.5	0.46		RAIL OPENING						RAIL OPENING
	266 J	166	10	267.822	0.067	1	1.5	1.5	0.46		RAIL OPENING						RAIL OPENING
	267	166	13			1	4	4	1.22		ARCH CULVERT						ARCH CULVERT
	268	166	18	268.358	0.335	1	1.5	1.5	0.46		ARCH CULVERT						ARCH CULVERT
	269	166	23		0.335	1	6	6	1.83		ARCH CULVERT						ARCH CULVERT
*	270	167	7	269.230	0.536	2	40	80	24.38							HM	
	271	167	12		0.335	1	20	20	6.10							HM	
	272	167	17			1	10	10	3.05		909					HM	
	273	168	7	270.839		1	10	10	3.05	HM						HM	
	274	168	17	271.510	0.671	1	20	20	6.10							HM	
	275	169	20			1	10	10	3.05	ML						HM	
	276	170	2		0.402	2	6	12	3.66		FLAT TOP						FLAT TOP
	277	170	8			1	40	40	12.19							HM	
	278	170	18			1	20	20	6.10							HM	
	279	171	1	275.265		1	20	20	6.10							HM	
*	279 A	171	16		1.006	1	47.5	47.5	14.48	-	CLOSED (F.O.B)					_	
	Kyedaw 280	171	4	276.405		1	20	20	6.10							HM	
	281	172	16			1	3	3	0.91		CULVERT ARCH					TIVI	CULVERT ARCH
*	281 A	175	10			1	5	0	0.01		CLOSED (F.O.B)						
	Kyungon			282.440		_		_				_				_	
	282	176	5			1	20	20	6.10							ML	
	283	176	15			1	3	3	0.91								PIPE CULVERT CLOSED DOWI
	284	177	5			1	40	40	12.19								
	285	177	10		0.335	1	3	3	0.91		ARCH CULVERT						ARCH CULVERT
	286	178	14		1.878	1	20	20	6.10							ML	
	287	179	7	288.542	1.140	1	40	40	12.19	НМ						ML	
	288	179	20			1	20	20	6.10	ML						ML	
	Kaytumadi			290.487													

Exisiting Truss Bridges Bridges built after 2000

										Plan for	Precast Hume Pipe	Plan for			mething)	Plan f	for Girder
	Station	Locat	tion	Location			U	p Line (UF	,				Do	wn Line (E	DN)		
	Name	Milea		Kilometer	Interval	B	Bridge Lengtl	า	Total	Axle	Remarks	B	ridge Lengt	th	Total	Axle	Remarks
	&		-		(km)	Crean	Length	Total	Length	Load	Rellidiks	Orier	Length	Total	Length	Load	Reliaiks
	Bridge	(mil	e)	(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	289	180	19		0.469	1	40	40	12.19							HM	
	290	181	1	291.358		1	40	40	12.19							HM	
*	291	181	14			3	10+10+10	30	9.14							ML	
	292	182	19			1	2	2	0.61		RAIL OPENING						RAIL OPENING
	293	182	22			1	2	2	0.61		RAIL OPENING						RAIL OPENING
	Yedashe		6														
	294	183	12	295.315	0.402	1	3	3	0.91		ARCH CULVERT					1.15.4	ARCH CULVERT
	294 A	183	13	295.382	0.067	1	20 10	30	9.14							HM HM	
	295	183	20	295.851	0.469	1	10				CLOSED						CLOSED
	296	183	23	296.052	0.201	1	20	20	6.10		OLOOLD					ML	OLOGED
	297	184	11	296.857	0.805	1	20	20	6.10							ML	
_ ↓	298	184	14		0.201	3	20	60	18.29							ML	
÷	299	185	1	297.796		3	10	30	9.14							ML	
	300	186	6		1.945	1	20	20	6.10							ML	
	Kongyi	187	6					20	0110								
*	301	187	10		0.268	1	40	40	12.19		PRESTRESSED CONC:GIRDER					HM	SITTING SPAN
	302	188	14			1	3	3	0.91		ARCH CULVERT						ARCH CULVERT
	303	188	20		0.402	1	20	20	6.10							ML	
	304	189	10	304.837	0.939	1	6	6	1.83		ARCH CULVERT						ARCH CULVERT
	305	189	20	305.507	0.671	2	20	40	12.19	ML							
						1	100					1	58				
*	306	190	12	306.580	1.073	1	58	348	106.07	ML	Truss Girder	1	100	348	106.07		Truss Girder
						1	150 40					1	150 40				
	307	190	22	307.251	0.671	1	10	10	3.05				40				
	307 A	191	2			1	20	20	6.10								
	Swa	191		308.189					0110								
	308	191	15		0.201	1	20	20	6.10	ML							
	309	192	0		0.604	1	10	10	3.05	ML							
	310	192	10		0.671	1	20	20	6.10	ML							
	311	192	16		0.402	1	20	20	6.10	ML							
	312	192	21	310.402	0.335	1	20	20	6.10	HM							
	313	193	6		0.604	1	10	10	3.05		FLAT TOP						
	314	193	13		0.469	2	20	40	12.19	ML							
	315	194	4	312.481	1.006	1	20	20	6.10	ML							
	316	194	8	312.749	0.268	1	3	3	0.91		ARCH CULVERT						

Exisiting Truss Bridges Bridges built after 2000

										Plan for	Precast Hume Pipe	Plan for			omething)	Plan	for Girder
	Station	Locati	on	Location			l	Jp Line (UF					Do	wn Line (E	DN)		
	Name			Kilometer	Interval	B	ridge Lengt	h	Total	Axle	Domorko	B	ridge Lengt	th	Total	Axle	Domorko
	&	Milea			(km)	0	Length	Total	Length	Load	Remarks	0	Length	Total	Length	Load	Remarks
	Bridge	(mile	e)	(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	316 A	194	11	312.950	0.201	1	2	2	0.61		OPEN DRAIN			,			
	317	194	16		0.335	1	10	10	3.05	ML							
	318	194	20	313.554	0.268	1	3	3	0.91		ARCH CULVERT						ARCH CULVERT
	Thargaya	195	6	314.224													
	319	195	15			1	20	20	6.10	ML							
	320	196	14			1	40	40	12.19	ML							
	Tharyargon	197	0	317.041	0.671												
*	320 A	197	3		0.201	3	20	60	18.29	ML							
	321	197	9			1	20	20	6.10	ML							
	322	198	3		1.207	1	10	10	3.05	ML							
	323	198	9			2	10	20	6.10	ML							
	324	198	14			1	20	20	6.10	ML							
	324 A	199	0			1	20	20	6.10	HM							
\star	325	199	17			2	20	60	18.29	ML							
	326	200	19		1.743	1	2	2	0.61		RAIL OPENING						
	327	200	20			1	40	40	12.19	HM							
	Myohla	201		323.880													
	328	201	8								SYPHON CLOSED						
*	329	201	21			1	60	60	18.29	ML	Through PL Girder						Through PL Girder
	330	202	13			1	40	40	12.19								
	331	202	22			1	3	3	0.91								
	332	203	1	326.764							CLOSED DOWN						
	333	203	9			1	3	3	0.91		ARCH CULVERT						
	334	203	13			1	10	10	3.05							ML	
	335	203	17		0.268	1	20	20	6.10							ML	
	336	204	1	328.373		1	20	20	6.10							ML	
	337	204	10		0.604	1	10	10	3.05								
	338	205	0			1	40	40	12.19							HM	
	339	206	4			1	20	20	6.10		CONCRETE GIRDER					ML	CONCRETE GIRDER
	340	206	4	331.793		1	10	10	3.05		CONCRETE GIRDER					ML	CONCRETE GIRDER
	Yeni	206	12	332.330	0.536												
	341	206	15			1	3	3	0.91		ARCH CULVERT						
	342	206	22			1	3	3	0.91		ARCH CULVERT						
	343	207	3	333.335	0.335	1	20	20	6.10	ML							
	344		_														
	345	007	10	004.007	0.070	-	40	40	40.40								
	346	207	16	334.207	0.872	1	40	40	12.19	HM							

Exisiting Truss Bridges Bridges built after 2000

_										Plan for	Precast Hume Pipe	Plan for				Plan f	or Girder
- F	Station	Loca	tion	Location			U	lp Line (UF					Do	wn Line (D	DN)		
	Name				Interval	В	ridge Lengt	h	Total	Axle	Demode	В	ridge Lengt	h	Total	Axle	Demender
	&	Milea		Kilometer	(km)		Length	Total	Length	Load	Remarks		Length	Total	Length	Load	Remarks
	Bridge	(mil	le)	(km)	. ,	Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	347	208	3	334.945	0.738	1	10	10	3.05	ML							
	348	208	21	336.152	1.207	1	10	10	3.05	ML							
	349	209	10	337.023	0.872	1	20	20	6.10	ML						HM	
*	350	209	16	337.426	0.402	2	40	80	24.38	HM							
	Tawuti	210	0	337.962	0.536		L.		•								
						1	40			HM							
*	351	210	9	338.566	0.604	1	100	180	54.86		Through PL Girder						Through PL Girder
	050	0.10	4-	000 400	0.500	1	40	0	0.04	HM							
ŀ	352	210	17			2	1.5	3	0.91		PIPE CULVERT	1	4	4	1		
- -	353	211	0			1	3	3	0.91		ARCH CULVERT						
	354	211	5		0.335	1	3	3	0.91		ARCH CULVERT						
	355	211	12			1	1.5	1.5	0.46	N 41	ARCH CULVERT						
	356	211	18			1	20	20	6.10	ML							
	357	211	23			1	6	6	1.83	N 41	CULVERT						
	358	212	6			2	20	40	12.19	ML							
	359 360	212 212	10		0.268	1	20 1.5	20	6.10	ML	PIPE CULVERT						
	360	212	13 20			1	3	1.5 3	0.46		ARCH CULVERT						
	362	212	20			1	1.5	1.5	0.91		CULVERT						
-											GULVERI						
	363 364	213 213	14			1	40	<u>40</u> 2	12.19	HM							
	Hteininn	213 214	23	344.333 344.400			Z	2	0.61		PIPE CULVERT			_			
			2			1	20	20	6.10							N/I	
	365 366	214				-	20	20		HM						ML	
-	366	214 214	<u>11</u> 24		0.604	<u>1</u>	20 12.67	20 12.67	6.10 3.86			1	12.00	12.00	3.66		
	368	214	<u></u> 5			1	12.07	1.5	0.46				12.00	12.00	3.00		
	369	215	10			1	1.5	1.5	3.05								
	370	215	22		0.805	1	2	2	0.61								
H	370	215	4		0.402	1	23	20	6.10								
	Ela	210		348.825			20	20	0.10								
	372	216	20			2	20	40	12.19	ML							
	012	210	20	0-10.000	0.104	1	40		12.10	HM							
\star	373	217	3	349.429	0.469	1	150	250	76.20		Truss Girder						Truss Girder
						1	60										
	374	217	10			1	20	20	6.10	ML							
	375	217	18	350.435	0.536	1	20	20	6.10	ML							
	376	218	2	350.971	0.536	1	20	20	6.10	ML							

Exisiting Truss Bridges Bridges built after 2000

								Non-	Bridae	Plan for	· Precast Hume Pipe	Plan for	Box Culv	ert (or so	methina)	Plan f	or Girder
ſ	Station	1	ti a m	Location			U	Jp Line (UF						wn Line (E			
	Name	Loca		Location	Interval	В	ridge Lengt		Total	Axle		В	ridge Lengt	h	Total	Axle	
	&	Milea	0	Kilometer	(km)		Length	Total	Length	Load	Remarks		Length	Total	Length	Load	Remarks
	Bridge	(mil	le)	(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	377	218	6	351.239	0.268	1	20	20	6.10	ML			, í í í				
	378	218	14	351.776		1	10	10	3.05	ML							
*	379	218	19			3	20	60	18.29	HM							
	Pyaywun	219	4	352.715													
	380	219	10		0.402	1	10	10	3.05	ML							
	381	219	14	353.385	0.268	2	20	40	12.19	ML							
	382	220	2	354.190	0.805	2	20	40	12.19	ML							
	383	220	1	354.525	0.335	1	20	20	6.10	ML							
★	384	220	16	355.129	0.604	1	20	40	12.19	ML							
						1	20			HM							
	385	221	6	356.067	0.939	1	10	10	3.05	ML							
	386	221	15	356.671	0.604	1	10	10	3.05	ML							
	387										CLOSED						
	388	000		050.005	0.444	4	10	10	0.05	N.41	CLOSED						
	389	223	3	359.085		1	10	10	3.05	ML							
	390	223	12	359.688	0.604	2	10	20	6.10	ML							
	391	224	18	361.700		1	10	10	3.05		FLAT TOP CULVERT						
	391 A	224	19	361.767		1	4	4	1.22		CULVERT						
	391 B	224	19	361.767	0.000	1	10	10	3.05		CULVERT						
	391 C	224	19	361.767	0.000	1	4	4	1.22		CULVERT						
*	392	225	0				1				CLOSED (F.O.B)						
	Pyinmana	225	0	362.102	0.000												
						1	40			HM		1	45.75				
*	393	225	15	363.108	1.006	3	100	380	115.82		Truss Girder	4	85	414	126.19		PC Girder
						1	40			HM		1	28.25				
	394	226	6	364.114		1	3	3	0.91		ARCH CULVERT						
	395	226	15	364.718	0.604	1	10	10	3.05	ML							
	396	226	23	365.254	0.536	1	6	6	1.83		ARCH CULVERT						
	397	227	4	365.589	0.335	2	3	6	1.83		ARCH CULVERT						
	398	227	10	365.992	0.402	1	3	3	0.91		ARCH CULVERT						
	399	227	16	366.394	0.402	1	3	3	0.91		ARCH CULVERT						
[399 A	227	19	366.595	0.201	1	10	10	3.05	ML							
	400	227	19	366.595	0.000	1	3	3	0.91		ARCH CULVERT						
	401	227	24	366.930	0.335	1	3	3	0.91								
	402	228	7	367.400	0.469	1	10	10	3.05	HM							

Exisiting Truss Bridges Bridges built after 2000

									-	-	Precast Hume Pipe		Box Culv	vert (or so	mething)	Plan f	or Girder
[Station	Locat	ion	Location			ι	Jp Line (UF	P)				Do	own Line (E	DN)		
	Name				Interval	B	ridge Leng	th	Total	Axle	Demerles	В	ridge Leng	th	Total	Axle	Demeric
	&	Milea	-	Kilometer	(km)	0	Length	Total	Length	Load	Remarks	0	Length	Total	Length	Load	Remarks
	Bridge	(mile	e)	(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
_ [1	10	10	3.05	ML							
	403	228	21	368.339	0.939	1	6	6	1.83		ARCH CULVERT						
	404	229	2	368.674	0.335	1	10	10	3.05	ML							
	405	229	6	368.942	0.268	1	10	10	3.05	ML							
*	406	229	11	369.277	0.335	1	6	6	1.83		ARCH CULVERT						Plate Girder
	407	229	17	369.680	0.402	1	6	6	1.83		ARCH CULVERT						
	Ywadaw	230	0	370.149	0.469												
[408	230	5	370.484	0.335	1	10	10	3.05	ML							
	409	230	11	370.887	0.402	1	20	20	6.10	ML							
	410	231	11	372.496	1.609	1	6	6	1.83		FLAT TOP						CLOSED
	411	231	15	372.764	0.268	1	20	20	6.10	ML							
	412	232	5	373.703	0.939	1	20	20	6.10	HM							
	413	232	17	374.508	0.805	1	20	20	6.10	ML							
	Naypyitaw	233	0	374.977													
	413 A	233	4	0.0.2.0		1	2	2	0.61	ML	RAIL OPENING						
	414	233	6			1	20	20	6.10	ML							
	415	233	22			2	2.5	5	1.52		ARCH CULVERT						
	416	234	9			1	40	40	12.19	HM							
	Kyidaungkan		6														
*	417	235	12		0.402	2	40	80	24.38		PC Girder					HM	
	418	236	11	380.543	1.542	1	20	20	6.10	ML							
*	419	236	18	381.012	0.469	1	40	60	18.29	HM		1	?				PC Girder
						1	20			HM							
	420	236	24	381.415		1	20	20	6.10	ML							
	421	237	18	382.622		1	40	40	12.19	HM							
	422	238	4	383.292	0.671	1	20	20	6.10	ML							
	423	238	10	383.694	0.402	1	20	20	6.10	ML							
	424	238	18	384.231	0.536	1	40	40	12.19	HM					•		
	425	238	22		0.268	2	2	4	1.22		RAIL OPENING WITH DECK PLATE						
	425 A	239	4		0.402	1	1.5	1.5	0.46		EARTH WARE PIPE						
	426	239	6			1	3	3	0.91	N.41	ARCH CULVERT						
	427	239	9		0.201	1	20	20	6.10	ML					•		
	428	239	18	385.840	0.604	1	6	6	1.83		ARCH CULVERT						
	429	240	5	386.578	0.738	1	6	6	1.83		ARCH CULVERT						

Exisiting Truss Bridges Bridges built after 2000

								Non-	Bridge	Plan for	· Precast Hume Pipe	Plan for	Box Culv	ert (or so	mething)	Plan f	or Girder
	Station	Locat	ion	Location			U	Jp Line (UP)				Do	wn Line (C	DN)		
	Name	Milea		Kilometer	Interval	В	ridge Lengt	h	Total	Axle	Remarks	В	ridge Lengt	h	Total	Axle	Remarks
	&	(mile	-	(km)	(km)	Span	Length	Total	Length	Load	Remarks	Span	Length	Total	Length	Load	I CHIAINS
	Bridge	(1111)	=)	(KIII)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	430	240	9	386.846	0.268	1 2	2 1.5	5	1.52		RAIL OPENING WITH DECK PLATE PIPE CULVERT UNDER NO1 LINE						
	Pyokkwe	240	12	387.047	0.201	2	1.5										
	431	240	14	387.181	0.134	1	6	6	1.83		ARCH CULVERT						
	432	240	19	387.517	0.335	1	6	6	1.83		ARCH CULVERT						
*	433	240	24	387.852	0.335	2	40	80	24.38	НМ							PC Girder
	434	241	12	388.657	0.805	1	40	40	12.19	HM							
	435	242	6	389.864	1.207	1	10	10	3.05	ML							
\star	436	242	22	390.936	1.073	3	20	60	18.29	ML							RC Girder
	437	243	6	391.473	0.536	1	10	10	3.05	ML							
	Sinbyugyun	243	12	391.875	0.402												
	438	243	22	392.546		1	2	2	0.61		ARCH CULVERT						
	439	244	6	393.082	0.536	1	3	3	0.91		FLAP TOP						
	440	244	10	393.350	0.268	1	3	3	0.91		ARCH CULVERT						
	441	244	21	394.088	0.738	1	20	20	6.10	ML							
	442	245	8	394.826	0.738	1	20	20	6.10	ML							
	443	245	16	395.362	0.536	1	40	40	12.19	HM							
	443 A	245	22	395.765	0.402	1	20	20	6.10	ML							
	444	246	2	396.033	0.268	2	2	4	1.22		RAIL OPENING WITH DECK PLATE						
	445	246	5	396.234	0.201	1	3	3	0.91		ARCH CULVERT						
	446	246	14	396.837	0.604	1	40	40	12.19	HM							
	Shwemyo	246	18	397.106		4		4.5	0.40								
	447 448	246 247	20	397.240 397.575	0.134	1	1.5 10	1.5 10	0.46	ML	E.W.PIPE						
	440	247	11	398.246		1	1.5	1.5	0.46	IVIL	EW-PIPE						
	450	247	14	398.447	0.201	1	4.5	4.5	1.37		R.CC PIPE						
	450 A	248	6	399.520	1.073	1	10	10	3.05								
	451	249	1	400.794	1.274	1	10	10	3.05								
	452	249	18	401.934	1.140	1	6	6	1.83		SERVICE CLOSED ON 27.6.66						
\star	453	250	10	403.007	1.073	4	100	400	121.92		Truss Girder	6	57.5	345	105.16		PC Girder
	Sinthe	251	0	403.945	0.939												
	454	251	11	404.683	0.738	1	10	10	3.05	ML							
	455	252	9	406.158	1.475	1	20	20	6.10	ML							
	455 A	252	20	406.896	0.738	1	1.5	1.5	0.46		EW PIPE						

Exisiting Truss Bridges Bridges built after 2000

_										Plan for	Precast Hume Pipe	Plan fo				Plan f	or Girder
	Station	Loca	tion	Location			l	Jp Line (UF	P)				Do	own Line (E	ON)		
	Name	Milea		Kilometer	Interval	B	Bridge Lengt	:h	Total	Axle	Remarks	E	Bridge Leng	th	Total	Axle	Remarks
	&		•		(km)	Chan	Length	Total	Length	Load	Remarks	Cnon	Length	Total	Length	Load	Remarks
	Bridge	(mil	ie)	(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	Tatkon	253	12	407.969	1.073												
	456	253	19			1	20	20	6.10	ML							
	457	254	2	408.907	0.469	2	2	4	1.22		ARMCO PIPE						
	458	254	5	409.109	0.201	2	20	40	12.19	ML/HM							
	459	254	6	409.176	0.067	1	3	3	0.91		ARCH CULVERT						
	460	254	18	409.980	0.805	1	20	40	12.19								
	400	234	10	409.900	0.005	1	20	40	12.15	ML							
	461	255	2	410.517	0.536	1	10	20	6.10	ML							
	401	255	2	410.517	0.550	1	10	20	0.10	HM							
	462	255	10	411.053	0.536	1	20	20	6.10	ML							
	463	255	23	411.925	0.872	1	1.5	1.5	0.46		BRICK PIPE						
	464	256	2	412.126	0.201	1	10	10	3.05	ML							
	465	256	5	412.327	0.201	1	10	10	3.05	ML							
	466	256	18	413.199	0.872	1	10	10	3.05	ML							
	467	256	22	413.467	0.268	1	3	3	0.91		ARCH CULVERT						
Ν	<i>lagyibin</i>	257	12	414.406	0.939												
	468	257	13	414.473	0.067	1	3	3	0.91		ARCH CULVERT						
	469	257	17	414.741	0.268	1	10	10	3.05	ML							
	470	258	1	415.278	0.536	2	10	20	6.10	ML							
	471	258	6	415.613	0.335	1	10	10	3.05	ML							
	472	258	16	416.284	0.671	3	10	30	9.14	HM							
	473	258	24	416.820	0.536	1	20	20	6.10	ML	RAIL GIRDER						
	474	259	5	417.155	0.335	1	10	10	3.05	HM							
	475	259	11	417.558	0.402	1	10	10	3.05	HM							
	476	260	7	418.899	1.341	1	2	2	0.61		ARCH CULVERT						
×	477	260	10	419.100	0.201	2	40	80	24.38	HM							RC Girder
	478	260	16	419.502	0.402	1	2	2	0.61		ARCH CULVERT						
	479	260	20		0.268	1	10	10	3.05	HM							
	479 A	261	3	420.240	0.469	1	0.5	0.5	0.15		CI PIPE						
N	lyaunglun	261	12														
	480	261	12			2	3	6	1.83								
	481	261	18			1	6	6	1.83		FLAT TOP						
	482	262	3			1	20	20	6.10	ML							
	483	262	21	423.056	1.207	1	6	6	1.83		ARCH CULVERT						

Exisiting Truss Bridges Bridges built after 2000

_										Plan for	Precast Hume Pipe	Plan for	Box Culv	ert (or so	mething)	Plan f	or Girder
ſ	Station	Locatior	n	Location			U	lp Line (UP	,				Do	wn Line (C	,		
	Name	Mileage		Kilometer	Interval	В	ridge Lengt	h	Total	Axle	Remarks	В	ridge Lengt	h	Total	Axle	Remarks
	&	(mile)		(km)	(km)	Span	Length	Total	Length	Load	Remarks	Span	Length	Total	Length	Load	I Celliaika
	Bridge			()		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	484	263	8	423.794	0.738	1	6	6	1.83		ARCH CULVERT						
	484 A		10	423.928	0.134	1	3	3	0.91		R.C.C.PIPE						
*	485		21	424.666	0.738	1	40	40	12.19								PC Girder
	486	264	1	424.934	0.268	1	10	10	3.05	HM							
	487	264	2	425.001	0.067	1	2	2	0.61		ARCH CULVERT						
	488	264	6	425.269	0.268	1	2	2	0.61		ARCH CULVERT						
	489	264	7	425.336	0.067	1	10	10	3.05	HM							
[490	264	19	426.141	0.805	1	3	3	0.91		ARCH CULVERT						
	491	265	3	426.677	0.536	1	20	20	6.10	ML							
[492	265	7	426.946	0.268	1	3	3	0.91		ARCH CULVERT						
	493	265	16	427.549	0.604	1	1.5	1.5	0.46		ARCH CULVERT						
	494	266	4	428.354	0.805	1	20	20	6.10								
	495	266	9	428.689	0.335	1	2	2	0.61		ARCH CULVERT						
	496	266	12	428.890	0.201	1	3	3	0.91		ARCH CULVERT						
*	497	267	1	429.762	0.872	2	40	80	24.38	HM							PC Girder
	498	267	13	430.567	0.805	1	3	3	0.91		ARCH CULVERT						
	Hngetthaik	268	0	431.304	0.738												
[499	268	2	431.438	0.134	3	2	6	1.83		ARCH CULVERT						
	500	268	14	432.243	0.805	1	2	2	0.61		RAIL OPENING						
*	501	268	17	432.444	0.201	3	2	6	1.83		ARCH CULVERT						RC Girder
	502	269	1	432.981	0.536	1	1.5	1.5	0.46		ARCH CULVERT						
	503	269	3	433.115	0.134	3	2	6	1.83		ARCH CULVERT						
	504	269	8	433.450	0.335	1	2	2	0.61		ARCH CULVERT						
	505	269	12	433.718	0.268	1	10	10	3.05	HM							
	506	269	18	434.121	0.402	1	10	10	3.05	HM							
	507	270	2	434.657	0.536	1	20	20	6.10	HM							
	508	270	8	435.059	0.402	1	1.5	1.5	0.46		ARCH CULVERT						
	Ingon	270	18	435.730	0.671												
	509	270	23	436.065	0.335	2	10	20	6.10	HM							
	510	271	16	437.205	1.140	3	2	6	1.83		ARCH CULVERT						
	511	271	23	437.675	0.469	1	10	10	3.05	HM							

Exisiting Truss Bridges Bridges built after 2000

							Non-	Bridge I	Plan for	Precast Hume Pipe	Plan for	Box Culv	vert (or so	mething)	Plan f	for Girder
Station		ation	Location			l	Jp Line (UF					Do	own Line (E	DN)		
Name		eage	Kilometer	Interval	B	Bridge Lengt	:h	Total	Axle	Remarks	B	Bridge Leng	th	Total	Axle	Remarks
&		eage nile)	(km)	(km)	Span	Length	Total	Length	Load	Remarks	Span	Length	Total	Length	Load	Remarks
Bridge	(I		(KIII)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
512	27	2 10	438.412	0.738	1	10	10	3.05	HM							
513	27	3 7	439.820	1.408	1	10	10	3.05	HM							
513 A	27	3 19	440.625	0.805	1	40	40	12.19	HM							
513 B	27	3 22	440.826	0.201	2	1.5	3	0.91		PIE E/APE						
Yameth	in 274	12	441.765	0.939												
513 C	274	4 15	441.966	0.201	1	20	20	6.10								
513 D	27	5 2	442.704	0.738	1	2	2	0.61		RAIL OPENING						
513 E	27	5 10	443.240	0.536	1	10	10	3.05	HM							
513 F	27	5 21	443.978	0.738	1	10	10	3.05	HM							
513 G	27	6 5	444.514	0.536	1	2	2	0.61		ARCH CULVERT						
514	27	6 13	445.051	0.536	1	20	20	6.10	ML							
514 A	27	5 23	445.721	0.671	1	2	2	0.61		RAIL OPENING						
515	27	7 8	446.325	0.604	2	10	20	6.10	HM							
515 A	27	7 14	446.727	0.402	1	2	2	0.61		RAIL OPENING						
516	27	3 2	447.532	0.805	2	2	4	1.22		ARCH CULVERT						
Ingyinka	ın 278	3 12	448.202	0.671												
517	27	_			2	2	4	1.22		ARCH CULVERT						
518	28	_		2.012	2	2	4	1.22		ARCH CULVERT						
					1	34										
519	28	1 8	452.762	1.475	1	44	112	34.14		PL Girder						PC Girder
0.0	20		102.102		1	34		0								
Shwed	a 28	> 12	454.640	1.878												
520	28				1	2	2	0.61		ARCH CULVERT						
521	28				1	4	4	1.22		ARCH CULVERT						
522	28	_			1	20	20	6.10								
523	28		455.243		4	20	80	24.38	ML							RC Girder
524	28		455.511	0.268	3	20	60	18.29	BL							RC Girder
525	28	_		1.408	3	20	60	18.29	ML							
526	28	_				20	00	10.20		CLOSED WITH EARTH FILLING						
520	28		457.322	0.134	4	40	160	48.77		PC Girder	8	20	160	48.77	ML	PL Girder
528	28	_	460.071	2.749	2	20	40	12.19	HM		0	20	100	40.77		I L GILLEI
					2				TIVI	Truce Cirder	0	40	90	_		DC Cirdor
529	28		460.742	0.671	1	100	100	30.48		Truss Girder	2	40	80	24.38		PC Girder
530	28	6 5	460.608	(0.134)	1	2	2	0.61		ARCH CULVERT						

Exisiting Truss Bridges Bridges built after 2000

										Plan for	Precast Hume Pipe	Plan fo				Plan for the second	or Girder
	Station	Loca	tion	Location				Jp Line (UF	,					own Line (E	DN)		
	Name	Milea		Kilometer	Interval	E	Bridge Lengt	:h	Total	Axle	Remarks	E	Bridge Leng	th	Total	Axle	Remarks
	&	(mil		(km)	(km)	Span	Length	Total	Length	Load	I Cerridin's	Span	Length	Total	Length	Load	I CIIIdi KS
	Bridge	`		. ,		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	531	286	21	461.681	1.073	2	40	80	24.38	HM							
	Pyawbwe	287	12														
	532	287	18			1	6	6	1.83		FLAT TOP						
	533	288	14	464.430		1	6	6	1.83		ARCH CULVERT						
	534	288	18		0.268	1	6	6	1.83		ARCH CULVERT						
	535	288	22	464.966	0.268	1	2	2	0.61		RAIL OPENING						
\star	536	289	5	465.436	0.469	1	6	6	1.83		RAIL OPENING						
	537	289	8	465.637	0.201	1	6	6	1.83		RAIL OPENING						
	538	289	15	466.106	0.469	1	2	2	0.61		ARCH CULVERT						
	539	290	3	466.911	0.805	1	2	2	0.61		ARCH CULVERT						
	540	290	4	466.978	0.067	1	2	2	0.61		ARCH CULVERT						
	541	290	5	467.045	0.067	2	6	12	3.66		ARCH CULVERT						
	542	290	10	467.380	0.335	1	2	2	0.61		ARCH CULVERT						
	543	290	15	467.716	0.335	1	2	2	0.61		RAIL OPENING						
	544	291	20	469.660	1.945	1	2	2	0.61		ARCH CULVERT						
	545	291	21	469.727	0.067	1	6	6	1.83		FLAT TOP						
	546	291	1	468.386	(1.341)	1	6	6	1.83		ARCH CULVERT						
	547	291	4	468.587	0.201	1	2	2	0.61		ARCH CULVERT						
	548	291	15	469.325	0.738	1	2	2	0.61		RAIL OPENING						
	549	291	19	469.593	0.268	1	2	2	0.61		ARCH CULVERT						
	550	291	21	469.727	0.134	1	2	2	0.61		RAIL OPENING						
	551	292	3	470.130	0.402	1	2	2	0.61		FLAT TOP						
	552	292	7	470.398	0.268	1	2	2	0.61		RAIL OPENING						
	553	292	8			1	10	10	3.05	HM							
	553 A	292	9	470.532	0.067	1	2	2	0.61		RAIL OPENING						
	553 B	292	13	470.800	0.268	2	2	4	1.22		FLAT TOP						
	Shanywa	292	18		0.335												
	554	292	23		0.335	1	10	10	3.05	HM							
	555	293	8	-	0.604	1	2	2	0.61		ARCH CULVERT						
	556	293	15		0.469	1	20	20	6.10								
	557	293	21	472.946	0.402	1	2	2	0.61		ARCH CULVERT						
	558	294	6		0.604	1	2	2	0.61		ARCH CULVERT						
	559	294	9	473.751	0.201	1	6	6	1.83		ARCH CULVERT						
	560	294	15	474.153	0.402	1	4	4	1.22		ARCH CULVERT						

Exisiting Truss Bridges Bridges built after 2000

								Non-	Bridge	Plan for	· Precast Hume Pipe	Plan for	Box Culv	vert (or so	mething)	Plan f	or Girder
- F	Station	Locati	ion	Location			L	Jp Line (UP					Do	own Line (E	,		
	Name	Milea		Kilometer	Interval	В	ridge Lengt	h	Total	Axle	Remarks	В	ridge Leng	th	Total	Axle	Remarks
	&		Ŭ		(km)	Crean	Length	Total	Length	Load	Remarks	C	Length	Total	Length	Load	Remarks
	Bridge	(mile	e)	(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	561	294	18	474.354	0.201	1	20	20	6.10	HM							
	562	294	23	474.689	0.335	1	2	2	0.61		ARCH CULVERT						
	563	295	6	475.159	0.469	1	2	2	0.61		ARCH CULVERT						
	564	295	9	475.360	0.201	1	2	2	0.61		ARCH CULVERT						
	565	295	14	475.695	0.335	1	2	2	0.61		ARCH CULVERT						
	566	295	18	475.963	0.268	1	6	6	1.83		FLAT TOP						
	567	295	21		0.201	1	2	2	0.61		ARCH CULVERT						
	567 A	296	3		0.402	1	2	2	0.61		ARCH CULVERT						
	568	296	5		0.134	1	6	6	1.83	HM							
- L	569	296	8		0.201	1	2	2	0.61		ARCH CULVERT						
-	570	296	19			1	1.5	1.5	0.46		PIPE E/WARE						
	571	297	6			1	6	6	1.83	HM							
- 1	572	297	16		0.671						CLOSED						
	572 A	297	17			-	00		40.00		CLOSED NO GIRDER						
*	573	297	24	479.585	0.469	3	20 20	60	18.29		RC Girder RC Girder	2	20			N 41	
→	574	298	9	480.188	0.604	4	<u> </u>	200	60.96		PC Girder			200	60.96	ML	PL Girder
	0/ 1	200	Ŭ	100.100	0.001	1	20	200	00.00		RC Girder	4	40	200	00.00	HM	
	575	298	13	480.456	0.268	1	2	2	0.61		ARCH CULVERT						
	575 A	298	19			1	10	10	3.05	ML							
	576	299	3			1	4	4	1.22		ARCH CULVERT						
	Nyaungyan	299	6														
\star	577	299	8		0.134	3	20	60	18.29		RC Girder					HM	
	578	299	15		0.469	1	40	40	12.19	HM							
	579	299	22		0.469	1	2	2	0.61		ARCH CULVERT						
*	580	300	1	482.870	0.201	4	20	80	24.38		RC Girder					ML	
H	581	300	3	483.004	0.134	2	57.25	114.5	34.90		PC Girder	3	40	120	36.58	HM	PL Girder
	582	300	12		0.604	1	10	10	3.05	ML			10	120	00.00		
	583	300	14		0.004	1	20	20	6.10	ML							
╞	584	301	2	484.614	0.134	2	20	40	12.19	HM							
			3							TIVI	DO Circles	5	20	100	-		
*	585	301	9	485.016	0.402	2	50	100	30.48		PC Girder	5	20	100	30.48	HM/ML	
*	586	301	14		0.335	6	20	120	36.58		RC Girder					ML	PL Girder
	587	301	20		0.402	1	6	6	1.83		FLAT TOP						
	Nwato	302	6	486.424	0.671												

Exisiting Truss Bridges Bridges built after 2000

	•	•			-	-	-		-	-			D 0				
	Station									Plan for	Precast Hume Pipe	Plan for				Plan 1	for Girder
	Station	Locatio	on	Location	Internet.			Ip Line (UF		Auto				own Line (D	,	Andr	
	Name	Mileag	je	Kilometer	Interval	В	Bridge Lengt		Total	Axle	Remarks	В	ridge Leng		Total	Axle	Remarks
	&	(mile)		(km)	(km)	Span	Length	Total	Length	Load		Span	Length	Total	Length	Load	
	Bridge		´	, <i>,</i> ,			(feet)	(feet)	(m)	Туре			(feet)	(feet)	(m)	Туре	
*	588	302	16	487.095	0.671	3	40	120	36.58		PC Girder	4	40	160	48.77	HM	PL Girder
	589	303	3	487.832		1	10	10	3.05	HM							
	590	303	6	488.034	0.201	1	6	6	1.83	HM							
	591	303	8	488.168	0.134	1	6	6	1.83		FLAT TOP						
	591 A	303	10	488.302	0.134	1	1.5	1.5	0.46		C.I.PIPE						
	592	303	16	488.704		1	2	2	0.61		ARCH CULVERT						
	593	303	19	488.905		1	2	2	0.61		ARCH CULVERT						
	593 A	304	6	489.643		1	1.5	1.5	0.46		C.I.PIPE						
	594	304	10	489.911		1	6	6	1.83		ARCH CULVERT						
	594 A	304	14	490.179	0.268	2	20	40	12.19	HM							
	595	304	18	490.448		1	6	6	1.83		ARCH CULVERT						
	596	304	20	490.582	0.134	1	6	6	1.83		FLAT TOP						
	597	305	2	490.984		1	10	10	3.05	HM							
	598	305	4	491.118	0.134	1	6	6	1.83		ARCH CULVERT					N 41	
	500	205	0	491.386	0.069	<u>1</u> 1	20	80	24.38		RC Girder PC Girder					ML HM	
*	599	305	8	491.300	0.268	1	40 20	60	24.30		RC Girder					ML	
	600	305	8	491.386	0.000	1	6	6	1.83		RC Girder					IVIL	
	600 A	305	9	491.453		1	6	6	1.83		RAIL GIRDER UNDER.S.SS BRANCH						
	601	305	14	491.789		1	6	6	1.83		ARCH						
*	601 A	305	24	492.459		1	143	143	43.59		CLOSED (F.O.B)						
	Thazi	306		492.459													
	588 A					1	2	2	0.61		ARCH CULVERT						
		LOCO Y	/D E	NT		1	10	10	3.05	ML							
	603	306	9	493.063	0.604	1	20	20	6.10	HM							
	604	306	17	493.599	0.536	1	10	10	3.05	HM							
	605	307	1	494.136		1	2	2	0.61		ARCH CULVERT						
	606	307	8	494.605		1	6	6	1.83		ARCH CULVERT						
	607	307	9	494.672	0.067	1	2	2	0.61		ARCH CULVERT						
	607 A	307	22	495.544	0.872	2	10	20	6.10	ML							
	608	307	24	495.678		1	6	6	1.83	ML							
	609	308	10	496.349		1	2	2	0.61		ARCH CULVERT						
	610	308	14	496.617		1	2	2	0.61		ARCH CULVERT						
	611	308	20	497.019		1	2	2	0.61		ARCH CULVERT						
	612	309	20	497.556		1	3	3	0.01		ARCH CULVERT						
	012	309	4	497.556	0.530		3	3	0.91		ARCHOULVERT						

Exisiting Truss Bridges Bridges built after 2000

								Non-	Bridge I	Plan for	Precast Hume Pipe	Plan for	r Box Culv	ert (or so	mething)	Plan	for Girder
- F	Station	Locat	ion	Location			U	Jp Line (UF	')				Do	wn Line (E	DN)		
	Name			Kilometer	Interval	В	ridge Lengt	h	Total	Axle	Remarks	B	Bridge Leng	th	Total	Axle	Remarks
	&	Milea (mile		(km)	(km)	Span	Length	Total	Length	Load	Remarks	Span	Length	Total	Length	Load	I Celliai KS
	Bridge	(ITIIIe	=)	. ,		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	613	309	13	498.159	0.604	1	3	3	0.91		ARCH CULVERT						
	613 A	309	14			1	10	10	3.05	ML							
	614	309	20			1	2	2	0.61		ARCH CULVERT						
	614 A	309	23			2	10	20	6.10	ML							
	615	310	3			1	6	6	1.83		ARCH CULVERT						
	Ywapale	310		499.701	0.604												
	616	310	14			1	2	2	0.61		ARCH CULVERT						
	617	310	23			1	2	2	0.61		ARCH CULVERT						
	618	311	3		0.268	1	10	10	3.05	HM							
	619	311	7	500.975		1	10	10	3.05	HM	CONCRETE GIRDER						CONCRETE GIRDER
	620	311	12		0.335	1	10	10	3.05	HM							
	621	311	15			1	2	2	0.61		ARCH CULVERT						
*	622	311	18			2	40	80	24.38		PC Girder					ML	
	623	311	21			1	20	20	6.10	HM							
	624	312	3			2	2	6	1.83		ARCH CULVERT						
	624 A	312	8			1	10	10	3.05	ML							
	625	312	10			1	3	3	0.91		ARCH CULVERT						
	626	312	21			1	2	2	0.61		ARCH CULVERT						
	627	313	1	503.792		1	3	3	0.91		ARCH CULVERT						
	628	313	10			1	2	2	0.61		ARCH CULVERT						
	629	313	14			1	20	20	6.10	HM							
	630	313	17			1	2	2	0.61		ARCH CULVERT						
	631	313	22			1	6	6	1.83	ML							
- 1	632	313	24			1	2	2	0.61		ARCH CULVERT						
	633	314	5			1	40	40	12.19	HM							
	634	314	9			1	6	6	1.83		ARCH CULVERT						
	635	314	12			1	2	2	0.61		ARCH CULVERT						
	636	314	18		0.402	1	6	6	1.83		ARCH CULVERT						
	637	314	23			1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	638	315	3			1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	Hanza	315		507.748													
	639	315	16			1	40	40	12.19	ML							
	640	316	7	509.022		1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	641	316	16	509.626	0.604	1	10	10	3.05	HM							

Exisiting Truss Bridges Didges built after 2000

							Non-	Bridge	Plan for	Precast Hume Pipe	Plan for	r Box Culv	vert (or so	omething)	Plan f	or Girder
Station	Loca	tion	Location			ι	Jp Line (UF	')				Do	own Line ([DN)		
Name	Mile		Kilometer	Interval	B	ridge Leng	h	Total	Axle	Remarks	E	Bridge Leng	th	Total	Axle	Remarks
&	(mi	-	(km)	(km)	Span	Length	Total	Length	Load	Reliaiks	Span	Length	Total	Length	Load	Remarks
Bridge	(111)		. ,		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
642	316	23		0.469	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
643	317	5		0.402	1	2	2	0.61		ARCH CULVERT						
644	317	10			1	1.5	1.5	0.46		EARTHEN WARE PIPE						
645	317	13	511.034	0.201	1	2	2	0.61		ARCH CULVERT						
646	317	15	511.168	0.134	1	2	2	0.61		ARCH CULVERT						
647	317	22	511.637	0.469	1	2	2	0.61		ARCH CULVERT						
648	318	4	512.040	0.402	1	2	2	0.61		ARCH CULVERT						
649	318	14	512.710	0.671	1	1.5	1.5	0.46		E.W.PIPE						
ahattaw	318	18	512.978	0.268												
650	318	18	512.978	0.000	1	2	2	0.61		ARCH CULVERT						
651	318	22	513.247	0.268	1	2	2	0.61		ARCH CULVERT						
652	319	9	513.984	0.738	1	2	2	0.61		ARCH CULVERT						
653										CLOSED						
654	320	11	515.728	1.743	1	20	20	6.10	ML							
655	321	2	516.734	1.006	2	1.5	3	0.91		EARTHEN WARE PIPE						
656	321	3	516.801	0.067	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
657	321	5	516.935	0.134	2	1.5	3	0.91		EARTHEN WARE PIPE						
658	321	9	517.203	0.268	1	6	6	1.83		ARCH CULVERT						
659	321	14	517.538	0.335	1	2	2	0.61		ARCH CULVERT						
660	321	16	517.672	0.134	1	2	2	0.61		ARCH CULVERT						
004	004			0.000	1	20		0.44								
661	321	20	517.941	0.268	1	10	30	9.14	HM							
⁻ hedaw	322	6	518.611	0.671												
662	322	7	518.678	0.067	1	2	2	0.61		ARCH CULVERT						
000	202	40			2	20	00	04.00	1.15.4							DC Circler
663	322	10	518.879	0.201	1	40	80	24.38	HM							PC Girder
664	322	17	519.349	0.469	1	20	20	6.10	HM							
665	322	21	519.617	0.268	1	6	6	1.83		ARCH CULVERT						
666	322	23	519.751	0.134	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
667	323	5		0.402	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
668	323	12		0.469	1	2	2	0.61		ARCH CULVERT						
669	323	20		0.536	2	1.5	3	0.91		EARTHEN WARE PIPE						
669 A	324	3		0.469	2	40	80	24.38	ML							
670	324	17		0.939	2	2.5	5	1.52		R.C.PIPE						

Exisiting Truss Bridges Bridges built after 2000

•: Same span as Up Line (UP)

_										Plan for	r Precast Hume Pipe	Plan for				Plan fo	or Girder
	Station	Loca	tion	Location				Jp Line (UF	,					wn Line (E	,		
	Name	Milea		Kilometer	Interval	E	ridge Lengt		Total	Axle	Remarks	E	Bridge Lengt		Total	Axle	Remarks
	&	(mi		(km)	(km)	Span	Length	Total	Length	Load	rtonianto	Span	Length	Total	Length	Load	rtomanto
	Bridge	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(KIII)		opun	(feet)	(feet)	(m)	Туре		Opun	(feet)	(feet)	(m)	Туре	
	671										CLOSED						
	672										CLOSED						
	673										CLOSED						
	674	005	40	504.044	4.070			_			CLOSED			_			
ľ	Chinban	325		524.244		0	0.0	0	4.00								
	675	326	3	524.847	0.604	2	3+3	6	1.83		ARCH CULVERT						
	676		_								CLOSED						
	677	326	18			2	40	80	24.38	HM	PL Girder						PC Girder
	678	327	6			1	6	6	1.83		ARCH CULVERT						
	679	327	15		0.604	1	6	6	1.83	ML							
	680	327	22	527.731	0.469	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	681	328	10	528.535	0.805	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	Samon	329	0	529.474	0.939												
	682	329	17	530.614	1.140	1	6	6	1.83		ARCH CULVERT						
	<u> </u>	220	04	500.000	0.000	4	E7.5	000	70.40		DO Oirden	2	40	000	70.40	HM	Truce Oirden
	683	329	21	530.882	0.268	4	57.5	230	70.10		PC Girder	1	150	230	70.10		Truss Girder
-	684	330	11	531.821	0.939	4	40	160	48.77		PC Girder					HM	PL Girder
	685	330	17	532.223	0.402	1	20	20	6.10		CONCRETE GIRDER						
	686	330	23	532.626		1	10	10	3.05	ML							
	687	331	11	533.430	0.805	1	40	40	12.19	HM							
-	688	331	20	534.034	0.604	2	40	80	24.38		PC Girder					НМ	
	689	332	2	534.436	0.402	1	40	40	12.19	НМ							
	690	332	6			2	1.5+1.5	3	0.91		EARTHEN WARE PIPE						
С	dokkon			535.107													
	<u>691</u>	332	23			6	57.5	345	105.16		PC Girder	7	40	280	85.34	HM	PL Girder
	691 A	333	7	536.381	0.536	2	3+3	6	1.83		FLAT TOP						
	691 B	333	16			1	1.5	1.5	0.46		EARTHEN WARE PIPE						
																ML	
	692	334	23	539.063	2.079	5	20	100	30.48		RC Girder	5	20	100	30.48	HM	
	693	335	4	539.398	0.335	3	20	60	18.29	HM						1 11 11	
	694	335	8	539.667	0.268	3	20	60	18.29	1 11 11	PC Girder					ML	
	695	335	12			1	20	20	6.10	ML							
Tž	nabyetaung			541.142			20	20	0.10	IVIL							
	696	336		541.678		1	20	20	6.10	HM							

Appendix5.5.1-16

Exisiting Truss Bridges Bridges built after 2000

									-	-	r Precast Hume Pipe		Box Culv	ert (or so	mething)	Plan f	or Girder
	Station	Locat	ion	Location			L	Jp Line (UF	P)				Do	wn Line (E	DN)		
	Name				Interval	В	ridge Lengt	h	Total	Axle	Demerlie	В	ridge Lengt	th	Total	Axle	Demente
	&	Milea	-	Kilometer	(km)	0	Length	Total	Length	Load	Remarks	0	Length	Total	Length	Load	Remarks
	Bridge	(mil	e)	(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	697	337	20	543.690	2.012	1	3	3	0.91		ARCH CULVERT						
	697 A	338	16	545.031	1.341	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	698	338	19	545.232	0.201	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	698 A	339	3	545.769	0.536	1	2	2	0.61		ARMCO PIPE						
*	699	340	1	547.244	1.475	3	57.5	172.5	52.58		PC Girder	5	40	200	60.96	HM	PL Girder
	700	340	10		0.604	1	10	10	3.05	HM							
	701	340	23		0.872	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	702	341	2	548.920	0.201	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	703	341	6			1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	Kumelan	341	12		0.402												
	704	341	18		0.402	1	10	10	3.05	HM							
	704 A	341	21	550.194	0.201	1	10	10	3.05	ML							
	705	342	4	550.664	0.469	1	1	1	0.30		EARTHEN WARE PIPE						
	706	342	9	550.999	0.335	1	40	40	12.19	HM							
*	707	342	12	551.200	0.201	2	40	80	24.38	HM							PC Girder
	708	342	14		0.134	1	2	2	0.61		R.C.C.PIPE						
	709	342	19		0.335	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	710	343	1	552.072	0.402	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	711	343	6	552.407	0.335	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	712	343	11			1	2	2	0.61		ARCH CULVERT						
	713	344	2	553.748	1.006	2	20	40	12.19	HM							
	714	344	8	554.151	0.402	1	2	2	0.61	1.15.4	ARCH CULVERT						
	715	344	12	554.419	0.268	1	10	10	3.05	HM							
	716	345	2	555.358	0.939	1	10	10	3.05	HM							
	717	345	6	555.626	0.268	1	20	20	6.10	HM		4	00				DO Oirden
_	710	245	4.4		0.225	1	100	100	20.40	нм	Truco Cirdor	1	20	100	20.49		RC Girder
*	718	345	11	555.961	0.335		100	100	30.48	NIN	Truss Girder	1	60	100	30.48		PC Girder
													20				RC Girder
*	719	346	2	556.967	1.006	2	150	300	91.44		Truss Girder	1	57 85	312	95.10		PC Girder
	719 A	346	8	557.369	0.402	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
	719 B	346	11		0.201	1	1.5	1.5	0.46		EARTHEN WARE PIPE						
*	720	346	13		0.134	3	10	30	9.14	HM							RC Girder
	720 A	346	15		0.134	1	2	2	0.61		OPEN TOP						
- 1	Myitthar	347		558.442													
	721	347	4		0.268	1	10	10	3.05	HM							
	721 A	347	10	559.113		1	1.5	1.5	0.46		E.W.PIPE						

Exisiting Truss Bridges Bridges built after 2000

								Non-	Bridge	Plan for	Precast Hume Pipe	Plan for	Box Culv	ert (or so	mething)	Plan fe	or Girder
_ [Station	Looot	ion	Location			U	Jp Line (UP	')				Do	wn Line (C	DN)		
	Name	Locat		Location	Interval	В	Bridge Lengt	h	Total	Axle		В	ridge Lengt	h	Total	Axle	
	&	Milea	~	Kilometer	(km)		Length	Total	Length	Load	Remarks		Length	Total	Length	Load	Remarks
	Bridge	(mile	e)	(km)	` ´	Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	722	347	16	559.515	0.402	1	4	4	1.22		RAIL GIRDER						
	722 A	347	21	559.851	0.335	1	2	2	0.61		RAIL OPENING						
	723	347	23	559.985	0.134	1	1.5	1.5	0.46		E.W.PIPE						
- 1	724	348	4	560.320	0.335	1	2	2	0.61		RAIL OPENING						
- 1	725	348	10	560.722	0.402	1	1.5	1.5	0.46		E.W.PIPE						
	726	348	19	561.326	0.604	1	20	20	6.10	HM							
	726 A	349	1	561.728	0.402	1	6	6	1.83	HM							
	726 B	349	2	561.795	0.067	1	1.5	1.5	0.46		E.W.PIPE						
*	727	349	20	563.002	1.207	2	40	80	24.38	HM	I.R.S						PC Girder
	728	350	2	563.405	0.402	1	10	10	3.05	HM							
	729	350	10	563.941	0.536	1	2	2	0.61		ARCH CULVERT						
	729 A	351	3	565.081	1.140	1	1.5	1.5	0.46		E.W.PIPE						
												1	20				RC Girder
*	730	351	10	565.550	0.469	1	100	100	30.48	HM	Truss Girder	1	40	80	24.38		PC Girder
												1	20				RC Girder
	730 A	351	12			1	2	2	0.61		ARCH						
	730 B	351	22	566.355		2	20	40	12.19	HM							
	731	351	24	566.489	0.134	1	20	20	6.10	HM							
	Minzu	352	12	567.294	0.805												
	731 A	352	12	567.294	0.000	1	6	6	1.83		RAIL GIRDER						
	732	352	14	567.428	0.134	1	20	20	6.10	HM							
_ L	733	352	16	567.562	0.134	1	2	2	0.61		OPEN TOP						
_ L	734	352	22	567.964		1	1.5	1.5	0.46		E.W.PIPE						
	735	353	3	568.300		1	1.5	1.5	0.46		E.W.PIPE						
	735 A	353	3	568.300		1	1.5	1.5	0.46		E.W.PIPE						
	736	353	5	568.434	0.134	1	20	20	6.10	HM							
	737	353	8	568.635		1	1.5	1.5	0.46		E.W.PIPE						
	738	354	2	569.842	1.207	1	20	20	6.10	ML							
	738 A	354	6	570.110	0.268	2	1.5	3	0.91		E.W.PIPE						
	738 B	354	8	570.244	0.134	1	1.5	1.5	0.46		E.W.PIPE						
	738 C	354	13	570.580		1	1.5	1.5	0.46		E.W.PIPE						
	738 D	354	22	571.183	0.604	2	1.5	3	0.91		E.W.PIPE						
*	739	355	13	572.189	1.006	5	20	100	30.48	HM	2 NOS 1924 1NO 1927 & 2NOS 1928						RC Girder
	739 A	355	18	572.524		1	1.5	1.5	0.46		E.W.PIPE						
	740	355	22	572.792	0.268	1	10	10	3.05	HM							
	741	356	2	573.061	0.268	3	1.5	4.5	1.37		E.W.PIPE						
	742	356	9	573.530	0.469	1	1.5	1.5	0.46		E.W.PIPE						

Exisiting Truss Bridges Bridges built after 2000

										Plan for	Precast Hume Pipe	Plan for				Plan fo	or Girder
_ [Station	Locat	ion	Location				Jp Line (UF						wn Line (E	,		
	Name	Milea		Kilometer	Interval	B	ridge Lengt	h	Total	Axle	Remarks	B	ridge Lengt	h	Total	Axle	Remarks
	&				(km)	0	Length	Total	Length	Load	Remarks	0	Length	Total	Length	Load	Remarks
	Bridge	(mile	e)	(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
- 1	743	356	14	573.865	0.335	1	20	20	6.10	HM							
	743 A	357	5	574.871	1.006	2	10	20	6.10	HM							
	743 B	357	12	575.340	0.469	3	20	60	18.29	HM							
	744										CLOSED						
	745	357	17	575.676	0.335	1	10	10	3.05	HM							
	745 A										CLOSED						
	746	358	2			2	20	40	12.19	HM							
	746 A	358	4			1	1.5	1.5	0.46		E.W.PIPE						
	747	358	9	576.749	0.335	1	40	40	12.19	HM							
*	748	358	11	576.883	0.134	4	57.5	230	70.10		PC Girder	2 1	40 150	230	70.10	ML	Truss Girder
	749	359	1	577.822	0.939	2	1.5	3	0.91		E.W.PIPE						
	Kyaukse	359	6	578.157	0.335												
	750	359	8	578.291	0.134	2	2.5	5	1.52		R.C.C.PIPE						
	750 A										CLOSED						
[751	359	12			1	1.5	1.5	0.46		E.W.PIPE						
	751 A	359	12			1	1.5	1.5	0.46		E.W.PIPE						
	752	359	18		0.402	1	1.5	1.5	0.46		E.W.PIPE						
	752 A	359	20			1	1.5	1.5	0.46		E.W.PIPE						
	753	359	23		0.201	1	10	10	3.05	HM							
	754	360	6			1	1.5	1.5	0.46		E.W.PIPE						
	755	360	11		0.335	1	1.5	1.5	0.46		E.W.PIPE						
	756	360	15			1	20	20	6.10	HM							
	757	360	20			1	1.5	1.5	0.46		E.W.PIPE						
	758	361	1	581.040		1	1.5	1.5	0.46		E.W.PIPE						
	759	361	4		0.201	1	10	10	3.05	HM							
	760	361	11		0.469	1	1.5	1.5	0.46		E.W.PIPE						
	761	361	15			1	1.5	1.5	0.46		E.W.PIPE						
	762	361	17			1	1.5	1.5	0.46		E.W.PIPE						
	763	361	19		0.134	1	1.5	1.5	0.46		E.W.PIPE						
	764	361	22			1	2	2	0.61		RAIL OPENING						
	765	362	1	582.650		1	1.5	1.5	0.46		E.W.PIPE						
	766	362	2		0.067	1	1.5	1.5	0.46		E.W.PIPE						
	767	362	5			1	1.5	1.5	0.46		E.W.PIPE						
	768	362	6			1	10	10	3.05	HM	CONT:No.395						
	769	362	14		0.536	3	2	6	1.83		R.C.C.PIPE						
	770	362	19	583.857	0.335	1	1.5	1.5	0.46		E.W.PIPE						

Exisiting Truss Bridges Bridges built after 2000

								Non-	Bridge I	Plan for	Precast Hume Pipe	Plan for	Box Culv	ert (or so	mething)	Plan f	for Girder
	Station	Locatio	n	Location			U	p Line (UP	')				Do	wn Line (D	N)		
	Name				Interval	В	ridge Lengtl	n	Total	Axle	Demeric	В	ridge Lengt	h	Total	Axle	Demeric
	&	Mileage		Kilometer	(km)		Length	Total	Length	Load	Remarks		Length	Total	Length	Load	Remarks
	Bridge	(mile)		(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	771	362	22	584.058	0.201	2	20	40	12.19	HM	GIRDERS DAMAGEDS WAY BEAMS RAIL GIRDERS RUTIN						
	772	363	1	584.259	0.201	1	1.5	1.5	0.46		R.C.C.PIPE						
	Belin	363	12	584.997	0.738												
	773										CLOSED						
	774		13	585.064	0.067	1	10	10	3.05	HM							
	775		15		0.134	1	1.5	1.5	0.46		PIPE CULVERT						
	776		18	585.399	0.201	1	1.5	1.5	0.46		PIPE CULVERT						
	777		20	585.533	0.134	1	1.5	1.5	0.46		PIPE CULVERT						
	778		22	585.667	0.134	2	1.25	2.5	0.76		PIPE CULVERT						
	779	364	3	586.002	0.335	1	2	2	0.61		RAIL OPENING						
	780	364	8	586.338	0.335	1	2	2	0.61		RAIL OPENING						
	781	364	9	586.405	0.067	1	1.25	1.25	0.38		PIPE CULVERT						
	782										CLOSED						
- [783		17	586.941	0.536	1	1.25	1.25	0.38		PIPE CULVERT						
	784		20	587.142	0.201	1	2	2	0.61		PIPE CULVERT						
	785	364	23	587.344	0.201	1	2	2	0.61		RAIL OPENING						
	785 A										CLOSED						
	786	365	5	587.746	0.402	1	20	20	6.10	HM							
	787	365	6	587.813	0.067	1	1.25	1.25	0.38		PIPE CULVERT						
	787 A		16	588.483	0.671	1	4	4	1.22		ARCH						
\star	788		22	588.886	0.402	2	40	80	24.38	HM	PL Girder						PL Girder
	789	366	5	589.355	0.469	1	1.5	1.5	0.46		E.W.PIPE						
- [790	366	7	589.489	0.134	1	1.5	1.5	0.46		R.C.C.PIPE						
	791	366	9	589.623	0.134	1	1.25	1.25	0.38		E.W.PIPE						
_ [792		13	589.892	0.268	1	10	10	3.05	ML							
_ [793	366	16	590.093	0.201	1	10	10	3.05	HM							
	794	366	20	590.361	0.268	1	1.25	1.25	0.38		E.W.PIPE						
	795										CLOSED						
\star	796		23	590.562	0.201	1	60	60	18.29	ML	Through PL Girder						Through PL Girder
	797	367	6	591.032	0.469	1	1.5	1.5	0.46		E.W.PIPE						
	798	367	9	591.233	0.201	1	1.5	1.5	0.46		E.W.PIPE						
	799		11	591.367	0.134	1	1.5	1.5	0.46		E.W.PIPE						
	800	367	13	591.501	0.134	1	1.5	1.5	0.46		E.W.PIPE						
	801		18	591.836	0.335	1	10	10	3.05	HM							
	802		21	592.037	0.201	1	1.5	1.5	0.46		E.W.PIPE						
	803		24	592.239	0.201	1	10	10	3.05	ML							
	804	368	1	592.306	0.067	1	1.25	1.25	0.38		E.W.PIPE						

Exisiting Truss Bridges Bridges built after 2000

								Non-	-Bridge	Plan for	Precast Hume Pipe	Plan for	r Box Culv	ert (or so	mething)	Plan 1	for Girder
	Station	Locat	tion	Location			l	Jp Line (UF	^{>})				Do	wn Line (C	DN)		
	Name				Interval	В	ridge Lengt	h	Total	Axle	Domorko	B	Bridge Leng	th	Total	Axle	Domorko
	&	Milea	-	Kilometer	(km)		Length	Total	Length	Load	Remarks	0	Length	Total	Length	Load	Remarks
	Bridge	(mil	e)	(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
	805	368	5	592.574	0.268	1	2	2	0.61		R.C.C.FLAT TOP						
	806	368	12	593.043	0.469	1	10	10	3.05	HM							
S	Singaing	369	0	593.848	0.805												
	807	369	12			1	10	10	3.05	ML							
	808	370	2			1	10	10	3.05	HM							
	809	370	10			1	2	2	0.61		R.C.C.PIPE						
	810	370	11			1	4	4	1.22		RAIL OPENING						
	811	370	22			1	20	20	6.10	HM							
	811 A	371	6			1	1.5	1.5	0.46		R.C.C.PIPE						
	812	371	8			1	1.25	1.25	0.38		E.W.PIPE						
	813	371	15			1	1.5	1.5	0.46		E.W.PIPE						
	814	371	16			2	1.5	3	0.91		E.W.PIPE						
	815	371	20			2	1.25	2.5	0.76		E.W.PIPE						
	816	371	23			1	40	40	12.19	HM							
	817	372	4	000.011		1	1.25	1.25	0.38		E.W.PIPE						
	818	372	11			2	1.5	3	0.91		E.W.PIPE						
	819	372	15			1	1.5	1.5	0.46		E.W.PIPE						
	820	372	24			1	20	20	6.10	HM							
	821	373	12			1	14	14	4.27	HM	NOT IN TYPE PLAN						
*	822	374	1	601.962		1	45.5	45.5	13.87		CLOSED (F.O.B)						
	Paleik	374	6						0.40								
	823	374	10			1	1.5	1.5	0.46		E.W.PIPE						
	824	374	15			1	20	20	6.10	HM							
	825	375	1	603.571	0.671	1	1.5	1.5	0.46		E.W.PIPE						
\star	826	376	2	605.247	1.676	4	150	680	207.26	115.4	Truss Girder						Composite Steel
			-			2	40			HM							Box Girder (JFE)
*	827	377	2				45.5	45.5	13.87		CLOSED (F.O.B)	_		_		_	
	Myitnge 827 A	377	18 20			1	10	10	3.05	ML							
	827 A 828	377	20			1	10 1.5	<u>10</u> 1.5	0.46	IVIL	E.W.PIPE						
	828	378	12 24				1.5	1.5	0.46		E.W.PIPE E.W.PIPE						
	029 R.O.B	378	24	009.941	0.005		1.5	1.5	0.40		E.VV.FIFE						
						5	40			HM	CONT NO.3962 & 1924						
*	830	380	0	611.551	1.609	3	40	320	97.54	ML	CONT NO. 3962 & 1924 CONT NOE 334 / 2891 OF 1945	8	40	320	97.54		PC Girder
	831	380	7	612.020	0.469	1	1.5	15	4.57		C.I.PIPE						
T	agundaing	380		612.355			1.5	15	4.57		U.I.FIFE						
	832	380		612.355		1	1.5	1.5	0.46		PIPE CULVERT						
	032	300	21	012.909	0.004		1.5	1.5	0.40		HE COLVERT						

Exisiting Truss Bridges Bridges built after 2000

_								Non-	Bridge	Plan for	Precast Hume Pipe	Plan for	Box Culv	ert (or so	mething)	Plan f	or Girder
- [Station	Loca	tion	Location			ι	Jp Line (UF	P)				Do	wn Line (D	DN)		
	Name	Mile		Kilometer	Interval	E	Bridge Lengt	th	Total	Axle	Remarks	E	Bridge Lengt	h	Total	Axle	Remarks
	&		Ŭ		(km)	Snon	Length	Total	Length	Load	Reliaiks	Chan	Length	Total	Length	Load	Reliaiks
	Bridge	(mi	ie)	(km)		Span	(feet)	(feet)	(m)	Туре		Span	(feet)	(feet)	(m)	Туре	
_ [833	381	14	614.099	1.140	1	1.5	1.5	0.46		EARTH WARE PIPE						
	834	381	17	614.300	0.201	1	20	20	6.10	HM							
	835										CLOSED						
	836										CLOSED						
	Myohaung	382	18	615.976	1.676												
	837	383	2	616.513	0.536	1	1.5	1.5	0.46		E.W.PIPE						
	R.O.B																
	838	383	9	616.982	0.469	1	6	6	1.83		ARCH CULVERT						
*	838 A	383	19	617.653	0.671	1	45.5	45.5	13.87		CLOSED (F.O.B)						
- L	839	383	21	617.787	0.134	1	1.5	1.5	0.46		E.W.PIPE						
	Shanzu	384	0														
	840	384	5	618.323	0.335	1	1.5	1.5	0.46		PIPE CULVERT						
	R.O.B																
	841	384	7	618.457	0.134	1	40	40	12.19	ML							
	842										CLOSED						
	R.O.B																
*	843	385	3	619.799	1.341	1	45.5	45.5	13.87		CLOSED (F.O.B)						
	R.O.B																
	Mandalay	385	12	620.402	0.604												

APPENDIX 5.5.2

Bridge Plan

	Construction Plans of New Girder Bridges										
	Present Approx. New Girder Bridges										
Bridge No.	UP or DN	Total Bridge Length (m)	Existing Track Spacing (m)	Loaction Type of New Abutments	Adoptable PC Girder Length (m)	Number of Spans	Future Total Bridge Length (m)	Double or Single (Bridge Type)	Construction Sequence	Train Operation during Construction	Land Equisition for New
306		106.07	25	Type-2	30	4	120	Double	 [Option-1] 1) Construct a new double track bridge between existing bridges. 2) Leave the existing UP & DN bridges. 	Double	No
351		54.86	25	Туре-2	30	2	60	Double	 [Option-1] 1) Construct a new double track bridge between existing bridges. 2) Leave the existing UP & DN bridges. 	Double	No
373		76.20	20	Туре-2	25	3	75	Single + Single	 [Option-1] 1) Construct a new single track bridge between existing bridges. 2) Remove the existing UP bridge. 3) Construct another new single track bridge. 4) Leave the existing DN bridge. 	Double	No
202	UP	115.82	17.5	Turne 2	20		120	Single + Single	 [Option-1] 1) Construct a new single track bridge between existing bridges. 2) Remove the existing UP bridge. 3) Construct another new single track bridge. 	Double	Na
393	DN	126.19	17.5	Type-2	-2 30		120	or Single	 4) Leave the existing DN bridge. [Option-2] 1) Construct a new single track bridge between existing bridges. 2) Reuse the existing DN bridge (Reiforcement). 3) Leave the existing UP bridge. 	or Single	No
	UP	121.92						Double	[Option-1] 1) Construct a new double track bridge between existing bridges. 2) Leave the existing UP & DN bridges.	Double	
453	DN	105.16	25	Туре-2	30	4	120	or Single	 [Option-2] 1) Construct a new single track bridge between existing bridges. 2) Reuse the existing DN bridge (Reiforcement). 3) Leave the existing UP bridge. 	or Single	No
519		34.14		Туре-1	25	2	50	Single + Single or Single	 (Dption-1) 1) Remove a existing single track bridge. 2) Construct a new single track bridge at the loccation. 3) Remove another existing single track bridge. 4) Construct another new single track bridge at the loccation. (Dption-2) 1) Remove the existing UP bridge. 2) Construct a new single track bridge at the loccation. 3) Reuse the existing DN bridge (Reiforcement). 	Single	No
527		48.77		Type-1	30	2	60	Single + Single or Single	 1) Remove a existing single track bridge. 2) Construct a new single track bridge at the loccation. 3) Remove another existing single track bridge. 4) Construct another new single track bridge at the loccation. [Option-2] 1) Remove the existing DN bridge. 2) Construct a new single track bridge at the loccation. 3) Reuse the existing UP bridge (Reiforcement). 	Single	No

	Construction Plans of New Girder Bridges										
	Present Approx. New Girder Bridges										
Bridge No.	UP or DN	Total Bridge Length (m)	Existing Track Spacing (m)	Loaction Type of New Abutments	Adoptable PC Girder Length (m)	Number of Spans	Future Total Bridge Length (m)	Double or Single (Bridge Type)	Construction Sequence	Train Operation during Construction	Land Equisition for New
529	UP	30.48 24.38	12	Туре-2	30	1	30	Single + Single or Single	 [Option-1] 1) Remove the existing UP bridge. 2) Construct a new single track bridge at the loccation. (or a new double) 3) Construct another new single track bridge. 4) Leave the existing DN bridge. [Option-2] 1) Remove the existing UP bridge. 2) Construct a new single track bridge at the loccation. 3) Reuse the existing DN bridge (Reiforcement). 	Single	No
574		60.96	12	Туре-2	30	2	60	Single + Single or Single	 [Option-1] 1) Remove the existing DN bridge. 2) Construct a new single track bridge at the loccation. (or a new double) 3) Construct another new single track bridge. 4) Leave the existing UP bridge. [Option-2] 1) Remove the existing DN bridge. 2) Construct a new single track bridge at the loccation. 3) Reuse the existing UP bridge (Reiforcement). 	Single	No
581	UP DN	34.90 36.58	18	Туре-2	20	2	40	Single + Single or	[Option-1] 1) Construct a new single track bridge between existing bridges. 2) Remove the existing DN bridge. 3) Construct another new single track bridge. 4) Leave the existing UP bridge. [Option-2]	Double or Single	No
585		30.48		Туре-1	20	2	40	Nothing Single + Single or Single	 Reuse the existing UP & DN bridges (Reiforcement). [Option-1] Remove a existing single track bridge. Construct a new single track bridge at the loccation. Remove another existing single track bridge. Construct another new single track bridge at the loccation. [Option-2] Remove the existing DN bridge. Construct a new single track bridge at the loccation. Reuse the existing UP bridge (Reiforcement). 	Single	No
586		36.58		Туре-1	25	2	50	Single + Single or Single	 [Option-1] 1) Remove a existing single track bridge. 2) Construct a new single track bridge at the loccation. 3) Remove another existing single track bridge. 4) Construct another new single track bridge at the loccation. [Option-2] 1) Remove the existing DN bridge. 2) Construct a new single track bridge at the loccation. 3) Reuse the existing UP bridge (Reiforcement). 	Single	No

	Construction Plans of New Girder Bridges										
	Precent Approx New Girder Bridges										
Bridge No.	UP or DN	Total Bridge Length (m)	Existing Track Spacing (m)	Loaction Type of New Abutments	Adoptable PC Girder Length (m)	Number of Spans	Future Total Bridge Length (m)	Double or Single (Bridge Type)	Construction Sequence	Train Operation during Construction	Land Equisition for New
	UP	36.58						Single + Single	 [Option-1] 1) Remove the existing DN bridge. 2) Construct a new single track bridge between existing bridges. (or a new double) 		
588	DN	48.77	12.5	Type-2	25	2	50	or Nothing	 3) Construct another new single track bridge. 4) Leave the existing UP bridge. [Option-2] 1) Reuse the existing UP & DN bridges (Reiforcement). 	Single	No
683		70.10	12	Туре-2	25	3	75	Single + Single or Single	 [Option-1] 1) Remove the existing DN bridge. 2) Construct a new single track bridge at the loccation. (or a new double) 3) Construct another new single track bridge. 4) Leave the existing UP bridge. [Option-2] 1) Remove the existing DN bridge. 2) Construct a new single track bridge at the loccation. 3) Reuse the existing UP bridge (Reiforcement). 	Single	No
684		48.77	12	Туре-2	25	2	50	Single + Single or Nothing	 [Option-1] 1) Remove the existing DN bridge. 2) Construct a new single track bridge between existing bridges. (or a new double) 3) Construct another new single track bridge. 4) Leave the existing UP bridge. [Option-2] 1) Reuse the existing UP & DN bridges (Reiforcement). 	Single	No
691	UP	105.16	28	Type-2	25	4	100	Double or	[Option-1] 1) Construct a new double track bridge between existing bridges. 2) Leave the existing UP & DN bridges. [Option-2]	Double	No
091	DN	85.34	20	i ype-2	23	-	100	Single	 Construct a new single track bridge between existing bridges. Reuse the existing UP bridge (Reiforcement). Leave the existing DN bridge. 	Single	INO
692		30.48		Type-1	20	2	40	Single + Single or Nothing	 [Option-1] 1) Remove a existing single track bridge. 2) Construct a new single track bridge at the loccation. 3) Remove another existing single track bridge. 4) Construct another new single track bridge at the loccation. [Option-2] 1) Reuse the existing UP & DN bridges (Reiforcement). 	Single	No
699	UP	52.58	45	Туре-2	30	2	60	Double or	[Option-1] 1) Construct a new double track bridge between existing bridges. 2) Leave the existing UP & DN bridges.	Double	No
	DN	60.96						Nothing	[Option-2] 1) Reuse the existing UP & DN bridges (Reiforcement).	Single	

	Construction Plans of New Girder Bridges										
Present Approx.											
Bridge No.	UP or DN	Total Bridge Length (m)	Existing Track Spacing (m)	Loaction Type of New Abutments	Adoptable PC Girder Length (m)	Number of Spans	Future Total Bridge Length (m)	Double or Single (Bridge Type)	Construction Sequence	Train Operation during Construction	Land Equisition for New
718		30.48		Type-1	20	2	40	Single + Single or Single	 [Option-1] 1) Remove a existing single track bridge. 2) Construct a new single track bridge at the loccation. 3) Remove another existing single track bridge. 4) Construct another new single track bridge at the loccation. [Option-2] 1) Remove the existing UP bridge. 2) Construct a new single track bridge at the loccation. 3) Reuse the existing DN bridge (Reiforcement). 	Single	No
719	UP	91.44	21	Турс-2	30	3	90	Single + Single	 [Option-1] 1) Construct a new single track bridge between existing bridges. 2) Remove the existing UP bridge. 3) Construct another new single track bridge at the loccation. 4) Leave the existing DN bridge. 	Double	No
	DN	95.10	21	Type 2			or Single	 [Option-2] 1) Construct a new single track bridge between existing bridges. 2) Reuse the existing DN bridge (Reiforcement). 3) Leave the existing UP bridge. 	Single	110	
730	UP	JP 30.48	20	2	40	Single + Single	 [Option-1] 1) Remove a existing single track bridge. 2) Construct a new single track bridge at the loccation. 3) Remove another existing single track bridge. 4) Construct another new single track bridge at the loccation. 	Single	No		
	DN	24.38		51	20			or Single	 [Option-2] 1) Remove the existing UP bridge. 2) Construct a new single track bridge at the loccation. 3) Reuse the existing DN bridge (Reiforcement). 		
739		30.48		Type-1	20	2	40	Single + Single	 [Option-1] 1) Remove a existing single track bridge. 2) Construct a new single track bridge at the loccation. 3) Remove another existing single track bridge. 4) Construct another new single track bridge at the loccation. 	Single	No
748		70.10		Туре-1	30	3	90	Single + Single or Single	 [Option-1] 1) Remove a existing single track bridge. 2) Construct a new single track bridge at the loccation. 3) Remove another existing single track bridge. 4) Construct another new single track bridge at the loccation. [Option-2] 1) Remove the existing DN bridge. 2) Construct a new single track bridge at the loccation. 3) Reuse the existing UP bridge (Reiforcement). 	Single	No

	Construction Plans of New Girder Bridges										
		Present	Approx.	New Girder Bridges							
Bridge No.	UP or DN	Total Bridge Length (m)	Existing Track Spacing (m)	Loaction Type of New Abutments	Adoptable PC Girder Length (m)	Number of Spans	Future Total Bridge Length (m)	Double or Single (Bridge Type)	Construction Sequence	Train Operation during Construction	Land Equisition for New
788		24.38		Туре-1	20	2	40	Single + Single or Single	 [Option-1] 1) Remove a existing single track bridge. 2) Construct a new single track bridge at the loccation. 3) Remove another existing single track bridge. 4) Construct another new single track bridge at the loccation. [Option-2] 1) Remove the existing UP bridge. 2) Construct a new single track bridge at the loccation. 3) Reuse the existing DN bridge (Reiforcement). 	Single	No
796		18.29		Type-1	30	1	30	Single + Single	[Option-1] 1) Remove a existing single track bridge. 2) Construct a new single track bridge at the loccation. 3) Remove another existing single track bridge. 4) Construct another new single track bridge at the loccation.	Single	No
826	UP DN	207.26	15	Туре-2	30	7	210	Single	 [Option-2] 1) Remove the existing UP bridge. 2) Construct a new single track bridge between existing bridges. 3) Reuse the existing DN bridge (New Bridge). 	Single	No
830		97.54	8	Type-1	20	6	120	Single + Single or Single	 [Option-1] 1) Construct a new single track bridge <u>at the outside of the existing UP</u> bridge. 2) Remove the existing UP bridge. 3) Construct another new single track bridge at the loccation. 4) Leave the exisiting DN bridge. [Option-2] 1) Construct a new single track bridge <u>at the outside of the existing UP bridge</u>. 2) Reuse the existing DN bridge (Reinforcement). 3) Leave the existing UP bridge. 	Double	No

APPENDIX 5.5.3

Investigation Record for Bridge on Yangon-Mandalay Trunk Line

	Record for Bridge on Yangon - Mandalay Trun		
Bridge No. [Name (UP or DN)]	270 [(UP & DN)]	Mileage	167 / 7 -
	Comment		
- Steel Deck Plate Girder (UP & DN)			
$-40(ft) \times 2(span) = 80(ft) (UP \& DN)$ - Design Live Load: unknown (UP), axle load 17 t (DN)			
- Wooden sleepers are inserted in bearing point of abutmen			
- Wooden sleepers are stacked around the P1 pier (up line)			
- Dirt and corrosion are observed over a main girder.			

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (26.Apr.)										
Bridge No. [Name (UP or DN)]	291 [(UP & DN)]	Mileage	181 / 14 -							

Comment

- Steel Deck Plate Girder (UP & DN)
- $-10(ft) \times 3(span) = 30(ft) (UP \& DN)$
- Design Live Load: unknown (UP), axle load 13 t (DN)
- Railway ties are inserted in bearing point of abutments and piers of up & down line. It is considered to be a countermeasure against settlement of substructure.
- Outflow of back soil and ballasts is observed at an abutment.
- The bodies of abutments and piers are unable to be visually observed due to settlement or sediment.
- Dirt and corrosion are observed over a main girder. Also, traces of submergence is observed from bottom flange to middle of a web.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (26.Apr.)											
Bridge No. [Name (UP or DN)]	298 [(UP & DN)]	Mileage	184 / 14 -								

Comment

- Steel Deck Plate Girder (UP & DN)
- $-20(ft) \times 3(span) = 60(ft) (UP \& DN)$
- Design Live Load: unknown (UP), axle load 13 t (DN)
- Railway ties are inserted in bearing point of abutments and piers of up & down line. It is considered to be a countermeasure against settlement of substructure.
- Outflow of back soil and ballasts is observed at an abutment.
- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed.
- Dirt and corrosion are observed over a main girder.

Investigation	Record for Bridge on Yangon - Mandalay Trun	k Lina (96 Ann)	
Bridge No. [Name (UP or DN)]	299 [(UP & DN)]	K Line (20.Apr.) Mileage	185 / 1 -
bruge No. [Name (Of of DN)]		Wincage	100 / 1 -
	Comment		
- Steel Deck Plate Girder (UP & DN)			
$-10(ft) \times 3(span) = 30(ft) (UP \& DN)$			
Design Live Load unknown (UD) exteriord 12 t (DN)			
- Railway ties are inserted in bearing point of abutments a	nd piers of up line (concrete blocks are inserted in those of	of down line). It is considered t	to be a countermeasure
against settlement of substructure.			
- Aged deterioration, such as cracks of joint of bricks, chi			not obseved.
- Dirt and corrosion are observed over a main girder. Also	o, trace of submergence is observed from bottom flange to	o lower part of a web.	

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (26.Apr.)				
Bridge No. [Name (UP or DN)]	301 [(UP & DN)]	Mileage	187 / 10 -	
- the		The states		
			C. Martine C.	

- Prestressed Concrete Girder (UP), Steel Deck Plate Girder (DN)

- 40(ft) (UP & DN)

- Design Live Load: unknown (UP), axle load 17 t (DN)

- Outflow of back soil is observed at an abutment. Also, the bearing part is unable to be visually observed due to outflow of soil.

- Aged deterioration, such as cracks of joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not obseved.

- Dirt and corrosion are observed over a steel main girder. Also, trace of submergence is observed from bottom flange to lower part of a web.

- At concrete main girder, dirt on surface due to aging, and concrete honeycomb due to construction failure, are observed.

	Record for Bridge on Yangon - Mandalay Trun 306 [(UP & DN)]		100 / 12
Bridge No. [Name (UP or DN)]	306 [(UP & DN)]	Mileage	190 / 12 -
	Comment		
- Steel Through Truss Girder + Steel Deck Plate Girder (UP & DN)		
-100(ft) + 58(ft) + 150(ft) + 40(ft) = 348(ft) (UP), 60(ft)	+100(ft) + 150(ft) + 40(ft) = 350(ft) (DN)		
- Design Live Load: axle load 13 t (UP), unknown (DN)	· · · · · · · · · · · · · · · · · · ·		
- Aged deterioration, such as cracks of joint of bricks, chi - Dirt and corrosion are observed over a main girder.	ipped bricks, and dirt, is observed over abutments and pier	5.	
- A part of portal bracing has been cut off, and a temporal	ry material has been annlied there		
- Corrosion is observed at web of crossbeam under tracks	The part is repaired by a cover plate.		
- Distance between tracks of up line and down line is exp			

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (26.Apr.)			
Bridge No. [Name (UP or DN)]	320 A [(UP & DN)]	Mileage	197 / 3 -

- Steel Deck Plate Girder (UP & DN)
- $-20(ft) \times 3(span) = 60(ft) (UP \& DN)$
- Design Live Load: axle load 13 t (UP), unknown (DN)
- Design Live Load. axie load 15 t (UP), unknown (DN) - Wooden lumber is inserted in bearing point of abutments and piers of up & down lines. It is considered to be a countermeasure against settlement of substructure.
- Outflow of ballasts at the back is observed at an abutment.
- Aged deterioration, such as cracks of joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not obseved.
- Dirt and corrosion are observed over a main girder.
- Wooden lumber is inserted at joint gap of main girders whose purpose might be to prevent girders from hitting each other due to its lateral movement.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (26.Apr.)			
Bridge No. [Name (UP or DN)]	325 [(UP & DN)]	Mileage	199 / 17 -
	Comment		
- Steel Deck Plate Girder (UP & DN)			
$-20(ft) \times 3(span) = 60(ft) (UP \& DN)$			
- Design Live Load: axle load 13 t, 17 t (UP), unknown (DN) nents and piers of up and down lines. It is considered to be		of aubatmiations
- Wooden steepers are inserted in bearing points of abutt - Outflow of back soil and ballasts is observed at an abut	ment	countermeasures against settlement	
	ipped bricks, and dirt, is observed over abutments and piers	 S	
- Cracks are observed at the boundary section between p	iers of up line and down line.	,	
- Dirt and corrosion are observed over a main girder.			

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (26.Apr.)					
Bridge No. [Name (UP or DN)]	329 [(UP & DN)]	Mileage	201 / 21 -		
- Steel Through Plate Girder (UP & DN) - 60(ft) (UP & DN)	Comment				
- Design Live Load: axle load 13 t (UP & DN)					
- Aged deterioration, such as cracks of joint of bricks, ch	ipped bricks, and dirt, is observed over abutments and pier	rs. However, a great damage is no	t obseved.		

Aged deterioration, such as cracks of joint of bricks, chipped bricks, and dirt, is observed over abutments and
 Dirt and corrosion are observed over a main girder.

Investigation Re	ecord for Bridge on Yangon - Mandalay Trunl	x Line (26.Apr.)	
Bridge No. [Name (UP or DN)]	350 [(UP & DN)]	Mileage	209 / 16 -
	Comment		
- Steel Deck Plate Girder (UP & DN)			
$-40(ft) \times 2(span) = 80(ft) (UP \& DN)$			
- Design Live Load: axle load 17 t (UP), unknown (DN)			
- Aged deterioration, such as cracks of joint of bricks, chipped			
- A part of parapet of an abutment is repaired by concrete. H		ation.	
 There is difference in position between the center of joint g Dirt and corrosion are observed over a main girder. 	ap of main girders and the center of substructure.		

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (26.Apr.)			
Bridge No. [Name (UP or DN)]	351 [(UP & DN)]	Mileage	210 / 9 -
- Dirt and corrosion are observed over a main girder	pped bricks, and dirt, is observed over abutments and piers cam under tracks. Also, defective cross sections are observe		not obseved.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (26.Apr.)				
Bridge No. [Name (UP or DN)]	373 [(UP & DN)]	Mileage	217 / 3 -	
	Comment			
- Steel Through Truss Girder + Steel Deck Plate Girder ($10(\theta) + 150(\theta) + 00(\theta) = 250(\theta)$	UP & DN)			
$\frac{-40(ft) + 150(ft) + 60(ft) = 250(ft)}{-\text{Design Live Load: axle load 17 t} (UP), unknown (DN)}$				
- Aged deterioration, such as cracks of joint of bricks ch	ipped bricks, and dirt, is observed over abutments and pier	 S.		
- Progression of scouring is observed at piers.				
- Dirt and corrosion are observed over a main girder.				
	s. Also, partial deformation is observed at upper flange, wh	ich might have been caused by	derailment.	
- Distance between tracks of up line and down line is exp	anded in down line.			

Appendix5.5.3-12

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (26.Apr.)				
Bridge No. [Name (UP or DN)]	379 [(UP & DN)]	Mileage	218 / 19 -	
- Steel Deck Plate Girder (UP & DN)	Comment			
$\frac{1}{-20(\text{ft}) \times 3(\text{span}) = 60(\text{ft})}$				
- Design Live Load: axle load 17 t (UP & DN)				
- Aged deterioration, such as cracks of joint of bricks, chipped	bricks, and dirt, is observed over abutments and pier	s. However, a great damage is not	obseved.	
- Dirt and corrosion are observed over a main girder.				
- Residential houses are close to the starting side of down line.	Also, there is a drop structure around piers of down	line.		

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (26.Apr.)			
Bridge No. [Name (UP or DN)]	384 [(UP & DN)]	Mileage	220 / 16 -
	Comment		
- Steel Deck Plate Girder (UP & DN)			
$-20(ft) \times 2(span) = 40(ft) (UP \& DN)$			
- Design Live Load: axle load 13 t, 17 t (UP & DN)			
- Wooden sleepers are inserted in bearing point of abutm	ents and piers of up & down lines. It is considered to be a d	countermeasure against settlemer	it of substructure.
	ipped bricks, and dirt, is observed over abutments and pier	s. However, a great damage is no)t obseved.
- Dirt and corrosion are observed over a main girder.			
- Partial deformation is observed at upper flange of cross	beam under tracks.		

Partial deformation is observed at upper flange of crossbeam under tracks.

Investigation	Record for Bridge on Yangon - Mandalay Tru	nk Line (26.Apr.)	
Bridge No. [Name (UP or DN)]	393 [(UP & DN)]	Mileage	225 / 15 -
	Comment		
- Steel Deck Plate Girder + Steel Through Truss Girder (
$-40(ft) + 100(ft) \times 3(span) + 40(ft) = 380(ft) (UP), 45/9$			
- Design Live Load: axle load 17 t, unknown for truss gi	rder (UP), unknown (DN)		
	ipped bricks, and dirt, is observed over abutments and pie		
- As for the piers of down line, width of bridge axial dire	ction is narrow. Therefore girder seating length might be	potentially not enough. Also, there	e is no prevention works for

- Dirt and corrosion are observed over a main steel girder. Also, corrosion is observed at web of crossbeam under tracks.

- Residential houses are close to bridges.

- A part of portal bracing had been cut off, and a temporary material is applied there.

- Distance between tracks of up line and down line is expanded in down line.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (26.Apr.)Bridge No. [Name (UP or DN)]406 [(UP & DN)]Mileage225 / 0 -				
Bridge No. [Name (UP or DN)]	406 [(UP & DN)]	Mileage	225 / 0 -	
- Arch Culvert (UP), Steel Deck Plate Girder (DN)	Comment			
- 6(ft) (UP & DN)				
- Design Live Load: unknown (UP & DN)				

Investigation	Record for Bridge on Yangon - Mandalay Trun	k Line (27.Apr.)	
Bridge No. [Name (UP or DN)]	417 [(UP & DN)]	Mileage	235 / 12 -
- Prestressed Concrete Girder (UP), Steel Deck Plate Gird	Comment		
$\frac{-40(\text{ft}) \times 2(\text{span}) = 80(\text{ft}) (\text{UP \& DN})}{-40(\text{ft}) \times 2(\text{span}) = 80(\text{ft}) (\text{UP \& DN})}$			
- Design Live Load: unknown (UP), axle load 17 t (DN)			

- Design Live Load: unknown (UP), axle load 17 t (DN)
- Wooden sleepers are inserted in bearing point of abutments and piers of down line. It is considered to be a countermeasure against settlement of substructure.
- Outflow of back soil and ballasts are observed at an abutment.
- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed.
- Dirt and corrosion are observed over a main steel girder.
- At concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed.

Investigation R	ecord for Bridge on Yangon - Mandalay Tru	ınk Line (27.Apr.)	
Bridge No. [Name (UP or DN)]	419 [(UP & DN)]	Mileage	236 / 18 -
	Comment		
- Steel Deck Plate Girder (UP), Prestressed Concrete Girder			
-40(ft) + 20(ft) = 60(ft) (UP), unknown (DN) * The bridge	on downline had been rebuilt as a single-span bridge	>. 	
- Design Live Load: axle load 17 t (UP), unknown (DN)			
- Outflow of back soil and ballasts is observed at an abutme	nt.		

- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments. However, a great damage is not obseved.

- The bodies of piers and abutments at terminus side is unable to be visually observed due to settlement or sediment.

- Dirt and corrosion are observed over a main steel girder.

- At a concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed.

Investigation	n Record for Bridge on Yangon - Mandalay Trun	k Line (27.Apr.)	
Bridge No. [Name (UP or DN)]	433 [(UP & DN)]	Mileage	240 / 24 -
	Comment		
- Steel Deck Plate Girder (UP), Prestressed Concrete Gir	rder (DN)		
$-40(ft) \times 2(span) = 80(ft) (UP \& DN)$			

- Design Live Load: axle load 17 t (UP), unknown (DN)
- Outflow of back soil and ballasts are observed at an abutment.
- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not obseved.
- At an concrete-girder pier, there is defference in position between the center of joint gap of girders and the center of a pier.
- Dirt and corrosion are observed over a main steel girder.
- At a concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (27.Apr.)				
Bridge No. [Name (UP or DN)]	436 [(UP & DN)]	Mileage	242 / 22 -	
- Steel Deck Plate Girder (UP), Reinforced Concrete Gird	Comment			
$-20(ft) \times 3(span) = 60(ft) (UP \& DN)$				
- Design Live Load: axle load 13 t (UP), unknown (DN)				
- Wooden sleepers are inserted in bearing point of abutme	ents and piers of up line (steel girder). It is considered to be	e a countermeasure against settleme	ent of substructure.	
- Outflow of back soil and ballasts are observed at an abu	tment.			
	pped bricks, and dirt, is observed over abutments and piers	. However, a great damage is not o	bseved.	
- At a concrete-girder pier, there is defference in position	between the center of joint gap of girders and the center of	f a pier.		

- At a concrete-girder pier, there is defference in position between the center of joint gap of girders and the center of a pier.

- Dirt and corrosion are observed over a main steel girder. - At a concrete main girder, dirt on surface due to aging is observed. Deterioration condition of girder body is unable to be visually observed because it is covered by mortar.

Bridge No. [Name (UP or DN)] 453 [(UP & DN)] Mileage 250 / 10 - Image: State of the provide the state of the provide the state of the provide th		Record for Bridge on Yangon - Mandalay Trun		
 Steel Through Truss Girder (UP), Prestressed Concrete Girder (DN) 100(ft) × 4(span) = 400(ft) (UP), 57.5(ft) × 6(span) = 345(ft) Design Live Load: unknown (UP), unknown (DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. As for the piers of down line, width of bridge axial direction is narrow. Therefore girder seating length might be potentially not enough. Also, there is no prevention works for Dirt and corrosion are observed over a main steel girder. Partial deformation is also observed. Corrosion is observed at web of crossbeam under track. The corrosion part is being repaired by a cover plate. A part of portal bracing had been cut off, and a temporary material is applied there. 	Bridge No. [Name (UP or DN)]	453 [(UP & DN)]	Mileage	250 / 10 -
 Steel Through Truss Girder (UP), Prestressed Concrete Girder (DN) 100(ft) × 4(span) = 400(ft) (UP), 57.5(ft) × 6(span) = 345(ft) Design Live Load: unknown (UP), unknown (DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. As for the piers of down line, width of bridge axial direction is narrow. Therefore girder seating length might be potentially not enough. Also, there is no prevention works for Dirt and corrosion are observed over a main steel girder. Partial deformation is also observed. Corrosion is observed at web of crossbeam under track. The corrosion part is being repaired by a cover plate. A part of portal bracing had been cut off, and a temporary material is applied there. 				
 Steel Through Truss Girder (UP), Prestressed Concrete Girder (DN) 100(ft) × 4(span) = 400(ft) (UP), 57.5(ft) × 6(span) = 345(ft) Design Live Load: unknown (UP), unknown (DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. As for the piers of down line, width of bridge axial direction is narrow. Therefore girder seating length might be potentially not enough. Also, there is no prevention works for Dirt and corrosion are observed over a main steel girder. Partial deformation is also observed. Corrosion is observed at web of crossbeam under track. The corrosion part is being repaired by a cover plate. A part of portal bracing had been cut off, and a temporary material is applied there. 				
 Steel Through Truss Girder (UP), Prestressed Concrete Girder (DN) 100(ft) × 4(span) = 400(ft) (UP), 57.5(ft) × 6(span) = 345(ft) Design Live Load: unknown (UP), unknown (DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. As for the piers of down line, width of bridge axial direction is narrow. Therefore girder seating length might be potentially not enough. Also, there is no prevention works for Dirt and corrosion are observed over a main steel girder. Partial deformation is also observed. Corrosion is observed at web of crossbeam under track. The corrosion part is being repaired by a cover plate. A part of portal bracing had been cut off, and a temporary material is applied there. 				
 Steel Through Truss Girder (UP), Prestressed Concrete Girder (DN) 100(ft) × 4(span) = 400(ft) (UP), 57.5(ft) × 6(span) = 345(ft) Design Live Load: unknown (UP), unknown (DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. As for the piers of down line, width of bridge axial direction is narrow. Therefore girder seating length might be potentially not enough. Also, there is no prevention works for Dirt and corrosion are observed over a main steel girder. Partial deformation is also observed. Corrosion is observed at web of crossbeam under track. The corrosion part is being repaired by a cover plate. A part of portal bracing had been cut off, and a temporary material is applied there. 		Comment		
 - 100(ft) × 4(span) = 400(ft) (UP), 57.5(ft) × 6(span) = 345(ft) - Design Live Load: unknown (UP), unknown (DN) - Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not obseved. - As for the piers of down line, width of bridge axial direction is narrow. Therefore girder seating length might be potentially not enough. Also, there is no prevention works for - Dirt and corrosion are observed over a main steel girder. Partial deformation is also observed. - Corrosion is observed at web of crossbeam under track. The corrosion part is being repaired by a cover plate. - A part of portal bracing had been cut off, and a temporary material is applied there. 	- Steel Through Truss Girder (UP), Prestressed Concrete			
 Design Live Load: unknown (UP), unknown (DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. As for the piers of down line, width of bridge axial direction is narrow. Therefore girder seating length might be potentially not enough. Also, there is no prevention works for Dirt and corrosion are observed over a main steel girder. Partial deformation is also observed. Corrosion is observed at web of crossbeam under track. The corrosion part is being repaired by a cover plate. A part of portal bracing had been cut off, and a temporary material is applied there. 				
 As for the piers of down line, width of bridge axial direction is narrow. Therefore girder seating length might be potentially not enough. Also, there is no prevention works for Dirt and corrosion are observed over a main steel girder. Partial deformation is also observed. Corrosion is observed at web of crossbeam under track. The corrosion part is being repaired by a cover plate. A part of portal bracing had been cut off, and a temporary material is applied there. 	- Design Live Load: unknown (UP), unknown (DN)			
 Dirt and corrosion are observed over a main steel girder. Partial deformation is also observed. Corrosion is observed at web of crossbeam under track. The corrosion part is being repaired by a cover plate. A part of portal bracing had been cut off, and a temporary material is applied there. 	- Aged deterioration, such as cracks at joint of bricks, chi	pped bricks, and dirt, is observed over abutments and pier	s. However, a great damage is not	obseved.
 Corrosion is observed at web of crossbeam under track. The corrosion part is being repaired by a cover plate. A part of portal bracing had been cut off, and a temporary material is applied there. 			otentially not enough. Also, there	is no prevention works for
- A part of portal bracing had been cut off, and a temporary material is applied there.				
	- Corrosion is observed at web of crossbeam under track.	The corrosion part is being repaired by a cover plate.		
- Distance between tracks of up line and down line is expanded in down line.				
	- Distance between tracks of up line and down line is exp	anded in down line.		

Investigation Record	for Bridge on Yangon - Mandalay Trunk Line (f	from 26.Apr - 28.Apr)	
Bridge No. [Name (UP or DN)]	477 [(UP & DN)]	Mileage	260 / 10 -
	Comment		
- Steel Deck Plate Girder (UP), Reinforced Concrete Girder	· (DN)		
$-40(ft) \times 2(span) = 80(ft) (UP \& DN)$			

- Design Live Load: axle load 17 t (UP), unknown (DN)
- Wooden sleepers are inserted in bearing point of abutments and piers of up line (steel girder). It is considered to be a countermeasure against settlement of substructure.
- Outflow of back soil and ballasts is observed at an abutment.
- As for the other abutments and piers, aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed. However, a great damage is not observed.
- Dirt and corrosion are observed over a main steel girder.
- At a concrete main girder, dirt on surface due to aging is observed. Deterioration condition of girder body is unable to be visually observed because it is covered by mortar.

Investigation	Record for Bridge on Yangon - Mandalay Trun	k Line (27.Apr.)	
Bridge No. [Name (UP or DN)]	Record for Bridge on Yangon - Mandalay Trun 485 [(UP & DN)]	Mileage	263 / 21 -
344	· · · · · · · · · · · · · · · · · · ·		
	and the set		
a the second and the			Contraction Provide
	A CONTRACTOR OF	The the same and	
	and the second sec		
and the second sec	CARLON AND AND AND AND AND AND AND AND AND AN		
	Comment		
- Steel Deck Plate Girder (UP), Prestressed Concrete Gir			
$-40(ft) \times 2(span) = 80(ft) (UP \& DN)$	······ ·······························		
Design Live Load: unknown (LIP & DN)			

- Design Live Load: unknown (UP & DN)
- Wooden sleepers are inserted in bearing point of abutments and piers of up line (steel girder). It is considered to be a countermeasure against settlement of substructure.
- Outflow of back soil and ballasts is observed at an abutment.
- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed.
- Dirt and corrosion are observed over a main steel girder.
- At a concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed.

Investigation I	Record for Bridge on Yangon - Mandalay Tru	nk Line (27.Apr.)	
Bridge No. [Name (UP or DN)]	497 [(UP & DN)]	Mileage	267 / 1 -
	Comment		
- Steel Deck Plate Girder (UP), Prestressed Concrete Girde	r (DN)		
$-40(ft) \times 2(span) = 80(ft) (UP \& DN)$			
- Design Live Load: axle load 17 t (UP), unknown (DN)			
- Outflow of back soil and ballasts is observed at an abutm			
- Number of cracks are observed at abutments. Also, the bo	bdy of abutments of down line inclines forward.		
- Dirt and corrosion are observed over a main steel girder.			
- At a concrete main girder, dirt on surface due to aging, ar	nd concrete honeycomb or surface air voids due to cons	struction failure are observed.	

Bridge No. [Name (UP or DN)]	501 [(UP & DN)]	Mileage	268 / 17 -
Arch Culvert (UP), Reinforced Concrete Girder (DN) $2(ft) \times 3(span) = 6(ft) (UP), 6(ft) (DN)$	Comment		
Design Live Load: unknown (LIP & DN)			
Top edge of the culvert is partially broken, and outflow of Number of cracks are observed at cuvert and wing section.	ballast 1s observed.		
	bserved. Deterioration condition of girder body is unabl	a to be viewally, absorved because	··· 11 ···

Investigation	n Record for Bridge on Yangon - Mandalay Trunk	x Line (27.Apr.)	
Bridge No. [Name (UP or DN)]	n Record for Bridge on Yangon - Mandalay Trunk 519 [(UP & DN)]	Mileage	281 / 8 -
	Comment		
- Steel Deck Plate Girder (UP), Prestressed Concrete Gir			
-34(ft) + 44(ft) + 34(ft) = 112(ft) (UP & DN)			
- Design Live Load: unknown (UP & DN)			

- Outflow of back soil and ballasts is observed at an abutment. Also, damage of parapet caused by collision of girders is observed at abutments of up line (steel girder).
- Aged deterioration, such as cracks at joints of bricks, chipped bricks, and dirt, is observed over abutments and piers.
- Cracks are observed at the middle pier's boundary section between up line and down line, and at wing.
- Dirt and corrosion are observed over a main steel girder.
- At a concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (27.Apr.)				
Bridge No. [Name (UP or DN)]	523 [(UP & DN)]	Mileage	282 / 21 -	

- Steel Deck Plate Girder (UP), Reinforced Concrete Girder (DN)

 $-20(ft) \times 4(span) = 80(ft)$

- Design Live Load: axle load 13 t (UP), unknown (DN)
- Outflow of back soil and ballasts is observed at abutments.
- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed.
- Dirt and corrosion are observed over a main steel girder.

- At a concrete main girder, dirt on surface due to aging is observed. Deterioration condition of girder body is unable to be visually observed because it is covered by mortar.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (27.Apr.)				
Bridge No. [Name (UP or DN)]	524 [(UP & DN)]	Mileage	283 / 1 -	
	Comment			
- Steel Deck Plate Girder (UP), Reinforced Concrete Girde	er (DN)			
$-20(ft) \times 3(span) = 60(ft) (UP \& DN)$				
- Design Live Load: axle load 10.5 t (UP), unknown (DN)		· · · · · · · · · · · · · · · · · · ·		
- Wooden sleepers are inserted in bearing point of abutmen	nts and piers of up line (steel girder). It is considered to be	a countermeasure against sett	lement of substructure.	
- Outflow of back soil and ballasts is observed at an abutm				
- Soil is piled up at center span of the bridge due to floodin - Dirt and corrosion are observed over a main steel girder.				

Dirt and corrosion are observed over a main steel girder.
 At a concrete main girder, dirt on surface due to aging is observed. Deterioration condition of girder body is unable to be visually observed because it is covered by mortar.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (27.Apr.)				
Bridge No. [Name (UP or DN)]	527 [(UP & DN)]	Mileage	284 / 4 -	
 Prestressed Concrete Girder (UP), Steel Deck Plate Girde 40(ft) × 4(span) = 160(ft) (UP), 20(ft) × 8(span) = 160(ft) Design Live Load: unknown (UP), axle load 13 t (DN) Outflow of ballasts is observed at an abutment. At down line (steel girder), a wooden sleeper is inserted in the state of the sta	ft) (DN) n joint gap of girders whose purpose is preventing girders	to hit each other due to its lateral	movement. Also, There	
is difference in position between the center of joint gap of 1 - Aged deterioration, such as cracks of joint of bricks, chip - Dirt and corrosion are observed over a main steel girder.		r, a great damage is not obseved.		
 Dirt and corrosion are observed over a main steel girder. At a concrete main girder, dirt on surface due to aging, an Distance between tracks of up line and down line is expansion. 		ction failure are observed.		

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (27.Apr.)				
Bridge No. [Name (UP or DN)]	529 [(UP & DN)]	Mileage	286 / 7 -	
- Steel Through Truss Girder (UP), Prestressed Concrete	Comment			
- Steel Inrough Truss Girder (UP), Prestressed Concrete $-100(ft)$ (UP), $40(ft) \times 2(span) = 80(ft)$ (DN)				
- Design Live Load: unknown (UP & DN)				
- Aged deterioration, such as cracks of joint of bricks, chi	ipped bricks, and dirt, is observed over abutments and pie	rs. However, a great damage is not	t obseved.	
- As for the piers of down line, width of bridge axial direct				
- Dirt and corrosion are observed over a main steel girder				

Dirt and corrosion are observed over a main steel girder. Also, corrosion is observed at web of crossbeam under track.
 Deterioration and damage on infilled concrete at each point of truss is observed. Also, a part of portal bracing had been cut off, and a temporary material is applied there.

- Distance between tracks of up line and down line is expanded in down line.

Bridge No. [Name (UP or DN)]	Record for Bridge on Yangon - Mandalay Trun 536 [(UP & DN)]	Mileage	289 / 5 -
Rail Opening (UP & DN) 6(ft) (UP & DN)	Comment		
Design Live Load: unknown (UP & DN) Dutflow of back soil and ballasts is observed at abutments	Also, there is no retaining-wall function at the abutment part	so some crossing water channels ar	e completely under water

Investigation	Investigation Record for Bridge on Yangon - Mandalay Trunk Line (27.Apr.)			
Bridge No. [Name (UP or DN)]	573 [(UP & DN)]	Mileage	297 / 24 -	

- Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DN)
- $-20(ft) \times 3(span) = 60(ft) (UP \& DN)$
- Design Live Load: unknown (UP & DN)
- Outflow of back soil and ballasts is observed at an abutment.
- Wooden sleepers are inserted in bearing point of abutments and piers of down line (steel girder). It is considered to be a countermeasure against settlement of substructure.
- Cracks are observed at side wall of parapet at an abutment of up line (concrete girder).
- Damage on parapet section, which might be caused by collision with girder, is observed.
- Dirt and corrosion are observed over a main steel girder.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (27.Apr.) Bridge No. [Name (UP or DN)] 574 [(UP & DN)] Mileage 298 / 9 -
<image/>
<image/>
- Prestressed Concrete Girder + Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DN)

- $-20(ft) + 40(ft) \times 4(span) + 20(ft) = 200(ft) (UP), 20(ft) \times 6(span) = 200(ft) (DN)$
- Design Live Load: unknown (UP), axle load 13 t, 17 t (DN)
- Outflow of back soil and ballasts is observed at an abutment.
- As for the piers of down line, width of bridge axial direction is narrow. Therefoer girder seating length might be potentially not enough.
- A crack is observed between abutment and wing.
- Dirt and corrosion are observed over a main steel girder.
- At a concrete main girder, dirt on surface due to aging is observed.
- Distance between tracks of up line and down line is expanded in up line.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (27.Apr.)Bridge No. [Name (UP or DN)]577 [(UP & DN)]Mileage299 / 8 -				
Bridge No. [Name (UP or DN)]	577 [(UP & DN)]	Mileage	299 / 8 -	
	<image/>			
	Comment			
- Reinforced Concrete Girder (UP), Steel Deck Plate Girde	er (DN)			
$-20(ft) \times 3(span) = 60(ft) (UP \& DN)$				

- Design Live Load: unknown (UP), axle load 17 t (DN)
- Concrete blocks are inserted in bearing point beneath girder on abutments or piers of up line (steel girder). It is considered to be a countermeasure against settlement of substructure.
- Outflow of back soil and ballasts is observed at abutments.
- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed.
- Dirt and corrosion are observed over a main steel girder.

- At a concrete main girder, dirt on surface due to aging is observed. Deterioration condition of girder body is unable to be visually observed because it is covered by mortar.

 Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DX) Reinforc		Record for Bridge on Yangon - Mandalay Tru		200 / 1
 Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DN) 20(ft) × 4(span) = 80(ft) (UP & DN) Design Live Load: unknown (UP), axle load 13 t, 17 t (DN) wooden steepers are inserted in bearing point beneating proter on abutinents and plets of down time (steer girder). It is considered to be a countermeasure against settlement of cubetructure Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and plets. However, a great damage is not observed. 	Bridge No. [Name (UP or DN)]	580 [(UP & DN)]	Mileage	300 / 1 -
 Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DN) 20(ft) × 4(span) = 80(ft) (UP & DN) Design Live Load: unknown (UP), axle load 13 t, 17 t (DN) wooden steepers are inserted in bearing point beneating noter on abutinents and plets or down time (steer girder). It is considered to be a countermeasure against settlement or considered to be a countermeasure aga				
 Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DN) 20(ft) × 4(span) = 80(ft) (UP & DN) Design Live Load: unknown (UP), axle load 13 t, 17 t (DN) wooden steepers are inserted in bearing point beneating proter on abutinents and plets of down time (steer girder). It is considered to be a countermeasure against settlement of cubetructure Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and plets. However, a great damage is not observed. 				
- Design Live Load: unknown (UP), axle load 13 t, 17 t (DN) - wooden steepers are inserted in bearing point beneating nuer on abutilients and piers of down time (steer grider). It is considered to be a countermeasure against settlement of - Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutiments and piers. However, a great damage is not observed.	- Reinforced Concrete Girder (UP), Steel Deck Plate Gird			
- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not obseved.				
- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not obseved.	- Design Live Load: unknown (UP), axle load 13 t, 17 t (I	DN) For abutments and piers of down time (steer grider). It is ou	nstaereu w ve a countermeasure agains	a settlement or
······································	- Aged deterioration, such as cracks at joint of bricks, chin	pped bricks, and dirt, is observed over abutments and pi	ers. However, a great damage is not o	bseved.
- Dirt and corrosion are observed over a main steel girder	I - Dirt and corrosion are observed over a main steel girder.			
- At a concrete main girder, dirt on surface due to aging is observed. Deterioration condition of girder body is unable to be visually observed because it is covered by mortar.	- At a concrete main girder, dirt on surface due to aging is	observed. Deterioration condition of girder body is una	ble to be visually observed because i	t is covered by mortar.
- Distance between tracks of up line and down line is expanded in up line.	- Distance between tracks of up line and down line is expansion	nded in up line.		

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (27.Apr.)				
Bridge No. [Name (UP or DN)]	581 [(UP & DN)]	Mileage	300 / 3 -	
- Prestressed Concrete Girder (UP), Steel Deck Plate Gird	Comment			
$-57/3(\text{ft}) \times 2(\text{span}) = 114.5(\text{ft}) (\text{UP}), 40(\text{ft}) \times 3(\text{span}) =$				
- Design Live Load: unknown (UP), axle load 17 t (DN)				
- Outflow of ballasts is observed at an abutment.				
- Aged deterioration, such as cracks at joint of bricks, chip	ped bricks, and dirt, is observed over abutments. However	r, a great damage is not obseved.		
- At a steel-girder pier, there is defference in position betw				
- Dirt and corrosion are observed over a main steel girder.				

At a concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed.
Distance between tracks of up line and down line is expanded in up line.

Bridge No. [Name (UP or DN)]	Record for Bridge on Yangon - Mandalay Trun 585 [(UP & DN)]	Mileage	301 / 9 -
Prestressed Concrete Girder (UP), Steel Deck Plate Gird Althogh bridge span is unknown, we judge the span is 5	$0(ft) \times 2(span) = 100(ft)$ since there is one middle pier. (UP), 20(ft) × 5(span) = 100(ft) (DN)
Design Live Load: unknown (UP), axle load 13 t, 17 t (I Wooden sleepers are inserted in bearing point of abutme	DN) nts and piers of down line (steel girder). It is considered t	o he a countermeasure against se	ttlement of substructure
	pped bricks, and dirt, is observed over abutments and pier		
Dirt and corrosion are observed over a main steel girder.		, 6 8- 10 10	
	amage on wheel guard, and concrete honeycomb and sur	face air voids due to construction	failure are observed.

	Record for Bridge on Yangon - Mandalay Trunk		
Bridge No. [Name (UP or DN)]	586 [(UP & DN)]	Mileage 301 / 14 -	
			A CARLER AND
	Comment		
- Reinforced Concrete Girder (UP), Steel Deck Plate Gird	er (DN)		
$-20(ft) \times 6(span) = 120(ft) (UP \& DN)$			
- Design Live Load: unknown (UP), axle load 13 t (DN)	nts and ning of down line (staal sindar). It is associated to	a a countampaguna accinct actilement of substant	
- Wooden steepers are inserted in bearing point of abutine - Cracks are observed at side wall of parapet at an abutme	ents and piers of down line (steel girder). It is considered to		ure.
- Clacks are observed at side wall of parapet at all abutilie	in or up mie (concrete girder).		

- Outflow of back soil and ballasts is observed at an abutment.

- Dirt and corrosion are observed over a main steel girder.

- At concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (27.Apr.)				
Bridge No. [Name (UP or DN)]	588 [(UP & DN)]	Mileage	302 / 16 -	
- Prestressed Concrete Girder (UP), Steel Deck Plate G	Comment			
$-40(ft) \times 3(span) = 120(ft) (UP), 40(ft) \times 4(span) = 1$	60(ft) (DN)			
- Design Live Load: unknown (UP), axle load 17 t (DN)			
- Damage on scour-prevention work, which had been p	repared around pier base of down line (steel girder), is obser	ved. This damage was not observe	ed in investigation in 2013.	
- Cracks are observed at the body of an abutment of up				
	hipped bricks, and dirt, is observed over abutments. Howeve	er, a great damage 1s not obseved.		
- Dirt and corrosion are observed over a main steel gird	er. Also, deformation of sway bracing is observed.	uction failure are observed		
- Distance between tracks of up line and down line is ex-				
- Distance between tracks of up line and down line is ex	xpanded in up line.			

Investigation R	Record for Bridge on Yangon - Mandalay Trunk	Line (27.Apr.)	
Bridge No. [Name (UP or DN)]	599 [(UP & DN)]	Mileage	305 / 8 -
	<image/> <section-header></section-header>		
- Reinforced Concrete Girder + Prestressed Concrete Girde			
-20(ft) + 40(ft) + 20(ft) = 80(ft) (UP & DN)			

- Design Live Load: unknown (UP), axle load 13 t, 17 t (DN)

- Outflow of back soil and ballasts is observed at an abutment.

- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments. However, a great damage is not observed.

- Dirt and corrosion are observed over a main steel girder.

- At concrete main girder, dirt on surface due to aging is observed. Deterioration condition of RC girder body is unable to be visually observed because it is covered by mortar.

	Record for Bridge on Yangon - Mandalay Trun		
Bridge No. [Name (UP or DN)]	622 [(UP & DN)]	Mileage	311 / 18 -
	Comment		
- Prestressed Concrete Girder (UP), Steel Deck Plate Girde	er (DN)		
$-40(ft) \times 2(span) = 80(ft) (UP \& DN)$			
- Design Live Load: unknown (UP), axle load 13 t (DN)			
- Wooden sleepers are inserted in bearing point of abutme	nts and piers of down line (steel girder). It is considered t	o be a countermeasure against settler	nent of substructure.
- Aged deterioration, such as cracks at joint of bricks, chip	ped bricks, and dirt, is observed over abutments and pier	s. However, a great damage is not ob	seved.
- A crack is observed at wheel guard of a concrete girder.			
- Dirt and corrosion are observed over a main steel girder.			
- At concrete main girder, dirt on surface due to aging, and	l concrete honeycomb or surface air voids due to constru	ction failure are observed.	

Investigation Record	l for Bridge on Yangon - Mandalay Trunl	x Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	663 [(UP & DN)]	Mileage	322 / 10 -
	Comment		
- Steel Deck Plate Girder (UP), Prestressed Concrete Girder (DN)			
$-20(ft) \times 2(span) + 40(ft) = 80(ft) (UP \& DN)$ *Although information	mation of bridge span is shown in MR list, its actu	al bridge span is different from it	
- Design Live Load: axle load 17 t (UP), unknown (DN)			
- Outflow of ballasts is observed at abutment.			
- Dirt and corrosion are observed over a main steel girder.			
- A crack is observed at wheel guard of a concrete girder.			
- At a concrete main girder, dirt on surface due to aging, and concr	rete honevcomb or surface air voids due to constr	uction failure are observed.	

- At a concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed.

Investigation	Record for Bridge on Yangon - Mandalay Trun	x Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	677 [(UP & DN)]	Mileage	326 / 18 -
 Steel Deck Plate Gider (UP), Prestressed Concrete Gird 40(ft) × 2(span) = 80(ft) (UP & DN) 			
- Design Live Load: axle load 17 t (UP), unknown (DN)			
- Outflow of back soil is observed at an abutment.	er) and scouring around the basemnet are observed. A cracl	is also observed at abutment be	
- Dirt and corrosion are observed over a main steel girde	r	s also observed at adulitient boo	¹ <i>y</i> .
	and concrete honeycomb or surface air voids due to constr	uction failure are observed	
- Corresponding to settlement of substructure, the hight of	of wheel guard of a concrete girder has been raised up by bi	ricks and surface coating.	
L			

Bridge No. [Name (UP or DN)] 683 [(UP & DN)] Milege 329/21- Image: State of the state	Investigation	Record for Bridge on Yangon - Mandalay Trun	k Line (28.Apr.)	
 Prestressed Concrete Girder (UP), Steel Through Truss Girder (DN) 57.5(ft) × 4(span) = 230(ft) (UP), 40(ft) × 2(span) + 150(ft) = 230(ft) (DN) Design Live Load: unknown (UP), axle load 17 t (DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. Dirt and corrosion are observed over a main steel girder. Also, partial damage, which are considered to be bullet holes, are observed over the structure. At a concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed. 			Mileage	329 / 21 -
 Prestressed Concrete Girder (UP), Steel Through Truss Girder (DN) 57.5(ft) × 4(span) = 230(ft) (UP), 40(ft) × 2(span) + 150(ft) = 230(ft) (DN) Design Live Load: unknown (UP), axle load 17 t (DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. Dirt and corrosion are observed over a main steel girder. Also, partial damage, which are considered to be bullet holes, are observed over the structure. At a concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed. 				
 Prestressed Concrete Girder (UP), Steel Through Truss Girder (DN) 57.5(ft) × 4(span) = 230(ft) (UP), 40(ft) × 2(span) + 150(ft) = 230(ft) (DN) Design Live Load: unknown (UP), axle load 17 t (DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. Dirt and corrosion are observed over a main steel girder. Also, partial damage, which are considered to be bullet holes, are observed over the structure. At a concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed. 				
	 - 57.5(ft) × 4(span) = 230(ft) (UP), 40(ft) × 2(span) + 1 - Design Live Load: unknown (UP), axle load 17 t (DN) - Aged deterioration, such as cracks at joint of bricks, chi - Dirt and corrosion are observed over a main steel girder - At a concrete main girder, dirt on surface due to aging, a 	Girder (DN) 50(ft) = 230(ft) (DN) pped bricks, and dirt, is observed over abutments and pier . Also, partial damage, which are considered to be bullet h and concrete honeycomb or surface air voids due to constr	oles, are observed over the structu	obseved.

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (28.Apr.) Bridge No. [Name (UP or DN)] 684 [(UP & DN)] Mileage 330 / 11 - Image: State of the	bill york
	Difference -
	-
Comment	
- Prestressed Concrete Girder (UP), Steel Deck Plate Girder (DN)	
$-40(ft) \times 4(span) = 160(ft) (UP \& DN)$	
- Design Live Load: unknown (UP), axle load 17 t (DN)	
- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not obseved.	

- Dirt and corrosion are observed over a main steel girder.
- At a concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed.
- Distance between tracks of up line and down line is expanded in up line.

Investigation	Record for Bridge on Yangon - Mandalay Trunk	x Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	688 [(UP & DN)]	Mileage	331 / 20 -
- Prestressed Concrete Girder (UP), Steel Deck Plate Gird	Comment		
$-40(ft) \times 2(span) = 80(ft) (UP \& DN)$			
- Design Live Load: unknown (UP), axle load 17 t (DN)			
- Outflow of back soil and ballasts are observed at an abu	itment.		
	pped bricks, and dirt, is observed over abutments and piers	. However, a great damage is not	obseved.
- A crack is observed at boundary section between an abu			
- Dirt and corrosion are observed over a main steel girden			
	and concrete honeycomb or surface air voids due to constru	ction failure are observed.	
- Distance between tracks of up line and down line is exp	anded in down line.		

	Record for Bridge on Yangon - Mandalay Trunl	x Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	691 [(UP & DN)]	Mileage	332 / 23 -
		691	
	Comment		
- Prestressed Concrete Girder (UP), Steel Deck Plate Gird			
$-57.5(ft) \times 6(span) = 345(ft) (UP), 40(ft) \times 7(span) = 20$	80(ft) (DN)		
- Design Live Load: unknown (UP), axle load 17 t (DN)			
- Aged deterioration (dirt and etc.) is observed over abutm	nents and piers. However, a great damage is not obseved.		
 Pier basemnet of up & down lines is exposed due to score Dirt and corrosion are observed over a main steel girder. 	uning.		
 Dift and corrosion are observed over a main steel girder. Distance between tracks of up line and down line is expansion. 			
- Distance between tracks of up fine and down fine is expa			

Bridge No. [Name (UP or DN)]	ecord for Bridge on Yangon - Mandalay Trun 692 [(UP & DN)]	Mileage	334 / 23 -
Reinforced Concrete Gider (UP), Steel Deck Plate Girder			
$20(ft) \times 5(span) + 20(ft) \times 7(span) = 240(ft) *Although$ Design Live Load: unknown (UP), axle load 17 t (DN)	information of bridge span is shown in MR list, its actu	al bridge span is different from it	
Outflow of ballasts is observed at an abutment.			
Aged deterioration, such as cracks at joint of bricks, chipp	ed bricks, and dirt, is observed over abutments and pier	s. However, a great damage is no	ot obseved.
Dirt and corrosion are observed over a main steel girder.			
At an concrete main girder, dirt on surface due to aging is	observed Deterioration condition of girder body is un	able to be visually observed becau	use it is covered by morta

Investigation Record	for Bridge on Yangon - Mand	alay Trunk Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	694 [(UP & DN)]	Mileage	335 / 8 -
- Reinforced Concrete Girder (UP), Steel Deck Plate Girder (DN)	Comment		
$-20(ft) \times 3(span) = 60(ft) (UP \& DN)$ - Design Live Load: unknown (UP), axle load 13 t (DN)			
- Aged deterioration, such as cracks at joint of bricks, chipped brick	ks, and dirt, is observed over abutme	ents and piers. However, a great damage is no	ot obseved.
- Because of lateral movement of girder, bearing points are out of b	pridge seating.		
- Dirt and corrosion are observed over a main steel girder. Partial d	eformation is observed at a crossbea	m.	
- At a concrete main girder, dirt on surface due to aging is observed	1. Deterioration condition of girder b	ody is unable to be visually observed becaus	e it is covered by mortar.

Investigation Record	l for Bridge on Yangon - Mandalay Tru	unk Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	699 [(UP & DN)]	Mileage	340 / 1 -
	Comment		
- Prestressed Concrete Girder (UP), Steel Deck Plate Girder (DN)			
$-57/6(ft) \times 3(span) = 172.5(ft) (UP), 40(ft) \times 5(span) = 200(ft)$	(DN)		
- Design Live Load: unknown (UP), axle load 17 t (DN)			
- Outflow of back soil is observed at an abutment.			
- Aged deterioration, such as cracks at joint of bricks, chipped bric	cks, and dirt, is observed over abutments and p	iers. However, a great damage is no	t obseved.
- Scour-prevention work is placed around the basement of down li	ne (steel girder).		
Dirt and corresion are observed over a main steel girder			

- Dirt and corrosion are observed over a main steel girder.
 Distance between tracks of up line and down line is expanded in down line.

Investigation Recor	d for Bridge on Yangon - Mandalay Tr	unk Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	707 [(UP & DN)]	Mileage	342 / 12 -
	Comment		
- Steel Deck Plate Girder (UP), Prestressed Concrete Gider (DN)			
$-40(ft) \times 2(span) = 80(ft) (UP \& DN)$			
- Design Live Load: axle load 17 t (UP), unknown (DN)			
- Wooden sleepers are inserted in bearing point of abutments and	piers of up line (steel girder). It is considered t	o be a countermeasure against settler	nent of substructure.

- Outflow of ballasts is observed at abutment.
- Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed.
- Dirt and corrosion are observed over a main steel girder.
- At an concrete main girder, dirt on surface due to aging, and concrete honeycomb or surface air voids due to construction failure are observed.

	cord for Bridge on Yangon - Mandalay Trunk		
Bridge No. [Name (UP or DN)]	718 [(UP & DN)]	Mileage	345 / 11 -
	Comment		
- Steel Through Truss Girder (UP), Reinforced Concrete Gid			
-100(ft) (up), 20(ft) + 60(ft) + 20(ft) = 100(ft) (DN)			
- Design Live Load: axle load 17 t (UP), unknown (DN)			
- At an abutment of up line (truss girder), truss girders are su			
- A crack which is extending from parapet to structure body			
- Dirt and corrosion are observed over a main steel girder, an		<u>S.</u>	
- A part of portal bracing had been cut off, and a temporary i			
- At an concrete main girder, dirt on surface due to aging is obse	rved. Deterioration condition of RC girder body is unable to	be visually observed because it i	s covered by mortar.

Bridge No. [Name (UP or DN)] 719 [(UP & DN)] Mileage 346/2- Mileage		Record for Bridge on Yangon - Mandalay Trunk		
 Steel Through Truss Girder (UP), Prestressed Concrete Girder (DN) 150(ft) × 2(span) = 300(ft) (UP), 57(ft) + 85(ft) × 3(span) = 312(ft) (DN) Design Live Load: unknown (UP & DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. Pier basement is exposed due to scouring. Among them are the piers under down line, which are damaged on pile foundation itself. Dirt and corrosion are observed over a main steel girder. 	Bridge No. [Name (UP or DN)]	719 [(UP & DN)]	Mileage	346 / 2 -
 Steel Through Truss Girder (UP), Prestressed Concrete Girder (DN) 150(ft) × 2(span) = 300(ft) (UP), 57(ft) + 85(ft) × 3(span) = 312(ft) (DN) Design Live Load: unknown (UP & DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. Pier basement is exposed due to scouring. Among them are the piers under down line, which are damaged on pile foundation itself. Dirt and corrosion are observed over a main steel girder. 				
 Steel Through Truss Girder (UP), Prestressed Concrete Girder (DN) 150(ft) × 2(span) = 300(ft) (UP), 57(ft) + 85(ft) × 3(span) = 312(ft) (DN) Design Live Load: unknown (UP & DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. However, a great damage is not observed. Pier basement is exposed due to scouring. Among them are the piers under down line, which are damaged on pile foundation itself. Dirt and corrosion are observed over a main steel girder. 				
	 - 150(ft) × 2(span) = 300(ft) (UP), 57(ft) + 85(ft) × 3(span) - Design Live Load: unknown (UP & DN) - Aged deterioration, such as cracks at joint of bricks, chip - Pier basement is exposed due to scouring. Among them a - Dirt and corrosion are observed over a main steel girder. 	Firder (DN) an) = 312(ft) (DN) ped bricks, and dirt, is observed over abutments and piers re the piers under down line, which are damaged on pile	. However, a great damage is not o foundation itself.	bseved.

Investigation Record for Bridge on Yangon - Mandalay Trunk Li	ne (28.Apr.)	
Bridge No. [Name (UP or DN)] 720 [(UP & DN)]	Mileage	346 / 13 -
<image/>		
<image/>		
Comment		
- Steel Deck Plate Girder (UP), Reinforced Concrete Girder (DN)		
$\frac{-10(\text{ft}) \times 3(\text{span}) = 30(\text{ft}) \text{ (UP \& DN)}}{\text{Design Live Load and a load 17 t (UP) unknown (DN)}}$		
 Design Live Load: axle load 17 t (UP), unknown (DN) Aged deterioration, such as cracks at joint of bricks, chipped bricks, and dirt, is observed over abutments and piers. He 	wever a great damage is not a	abseved
- Aged deterioration, such as cracks at joint of oricks, empled breks, and dift, is observed over abuthents and piers. Ite	wever, a great damage is not o	
- At an concrete main girder, dirt on surface due to aging is observed. Deterioration condition of girder body is unable to	b be visually observed because	e it is covered by mortar.
	······································	

Investigation	n Record for Bridge on Yangon - Mandalay Trunk L	ine (28.Apr.)	
Bridge No. [Name (UP or DN)]	727 [(UP & DN)]	Mileage	349 / 20 -
	Comment		
- Steel Deck Plate Girder (UP), Prestressed Concrete Gir	der (DN)		
$-40(ft) \times 2(span) = 80(ft) (UP \& DN)$			
- Design Live Load: axle load 17 t (UP), unknown (DN)			
- Outflow of ballasts is observed at abutment.	· · · · · · · · · · · · · · · · · · ·		1 1
	ipped bricks, and dirt, is observed over abutments and piers. H	owever, a great damage 1s not	obseved.
- Damage on foot protection work is observed around the			
- Dirt and corrosion are observed over a main steel girde			
- At an concrete main girder, dirt on surface due to aging	, and concrete honeycomb or surface air voids due to construc	tion failure are observed.	

	Record for Bridge on Yangon - Mandalay Trunl		
Bridge No. [Name (UP or DN)]	730 [(UP & DN)]	Mileage	351 / 10 -
Steel Through Trans Cinder (UD) Deinferne d.C.	Comment		
- Steel Through Truss Girder (UP), Reinforced Concrete C - $100(ft)$ (UP), $20(ft) + 40(ft) + 20(ft) = 80(ft)$ (DN)	Birder + Prestressed Concrete Girder (DN)		
- Design Live Load: axle load 17 t (UP), unknown (DN)			
- Aged deterioration, such as cracks at joint of bricks, chip	ped bricks, and dirt, is observed over abutments and piers	. However, a great damage is not ob	seved.
- Dirt and corrosion are observed over a main steel girder.	Also, patial damages which might be bullet holes are obs	erved over the structure.	
- Part of entrance of truss bridge has been cut off, and a te	mporary material is fixed up there.		
- Corrosion is observed at web of crossbeam under track.		g.	

Investigation Record	l for Bridge on Yangon - Mandalay Trur	ık Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	739 [(UP & DN)]	Mileage	355 / 13 -
<image/>			
- Steel Deck Plate Girder (UP), Reinforced Concrete Girder (DN)	Comment		
$-20(\text{ft}) \times 5(\text{span}) = 100(\text{ft}) (\text{UP & DN})$			
 Design Live Load: axle load 17 t (UP), unknown (DN) Piers of up line (steel girder) is significantly damaged that temperature 			
- Piers of up line (steel girder) is significantly damaged that tempo	orary supports are applied.	absormed However a great damage	to is not observed
 At the other abutments and piers, aged deterioration, such as cra Dirt and corrosion are observed over a main steel girder. 	cks at joint of bricks, empped bricks, and dirt, is	observed. nowever, a great damag	ge is not observed.
- Dirt and corrosion are observed over a main steel gilder.			

- At concrete main girder, dirt on surface due to aging is observed. Deterioration condition of girder body is unable to be visually observed because it is covered by mortar.

	Record for Bridge on Yangon - Mandalay Trun		
Bridge No. [Name (UP or DN)]	748 [(UP & DN)]	Mileage	358 / 11 -
- Prestressed Concrete Girder (UP), Steel Deck Plate Gird	Comment der + Steel Through Truss Girder (DN)		
$-57.5(ft) \times 4(span) = 230(ft) (UP), 40(ft) + 150(ft) + 40$			
- Design Live Load: unknown (UP), axle load 13 t (DN)			
- The basement of pier of down line (truss girder) is expo			
- Any great damage is not observed at abutments and pier	rs of up line (PC girder).		
- Dirt and corrosion are observed over a main steel girder	r, and corrosion is observed at web of crossbeam under trac	cks.	
 Residential houses are close to the down line. Distance between tracks of up line and down line is exp 	unded in un line		
- Distance between tracks of up line and down line is exp			

Investigation Rec	ord for Bridge on Yangon - Mandalay Tr	unk Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	788 [(UP & DN)]	Mileage	365 / 22 -
	Comment		
- Steel Deck Plate Girder (UP & DN)			
$-40(ft) \times 2(span) = 80(ft) (UP \& DN)$			
- Design Live Load: axle load 17 t (UP & DN)			
- At abutments and piers, aged deterioration, such as cracks at	joint of bricks, chipped bricks, and dirt, is observ	ed. However, a great damage is not o	bseved.
- Dirt and corrosion are observed over a main steel girder.			

Investigation F	Record for Bridge on Yangon - Mandalay Trunk	Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	796 [(UP & DN)]	Mileage	366 / 23 -
- Steel Through Plate Girder (UP & DN)	Comment		
- 60(ft) (UP & DN)			
 Design Live Load: axle load 13 t (UP & DN) At abutments and piers, aged deterioration, such as crack 		, 1	1 1
- At abutments and piers, aged deterioration, such as crack	s at joint of bricks, chipped bricks, and dirt, is observed. H	owever, a great damage 1s not o	bseved.
- Dirt and corrosion are observed over a main steel girder.			

Investigation Rec	ord for Bridge on Yangon - Mandalay Trunk	Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	826 [(UP & DN)]	Mileage	376 / 2 -
- Steel Deck Plate Girder + Steel Through Truss Girder (UP),	Comment Steel Deck Plate Girder + Steel Box Girder (DN)		
$-40(ft) + 150(ft) \times 4(span) + 40(ft) = 680(ft) (UP), 632(ft) ($			
- Design Live Load: axle load 17 t, unknown for truss girder	(UP), unknown (DN)		
- At abutments and piers, aged deterioration, such as cracks at	joint of bricks, chipped bricks, and dirt, is observed.	However, a great damage is not ob	seved.
- Dirt and corrosion are observed over a main steel girder.	,, _,	, - 6 6- 10 100 00	
- Distance between tracks of up line and down line is expande	d in down line.		
**-			

Investigation Recor	d for Bridge on Yangon - Mandalay Tr	unk Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	830 [(UP & DN)]	Mileage	380 / 0 -
- Steel Deck Plate Girder (UP), Prestressed Concrete Girder (DN	Comment		
$-40(ft) \times 8(span) = 320(ft) (UP \& DN)$			
- Design Live Load: axle load 13 t, 17 t (UP), unknown (DN)			
- At abutments and piers, aged deterioration, such as cracks at jo	int of bricks, chipped bricks, and dirt, is observe	ed. However, a great damage is not ob	oseved.

- Dirt and corrosion are observed over a main steel girder.

- At a concrete main girder, dirt on surface due to aging, concrete honeycomb and surface air voids due to construction failure are observed.

Investigation	Record for Bridge on Yangon - Mandalay Tru ROB1 [(UP & DN)]	nk Line (28.Apr.)	
Bridge No. [Name (UP or DN)]	ROB1 [(UP & DN)]	Mileage	??? / 0 -
<image/>			
	Comment		
-			
<u> -</u>			
<u> -</u>			

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (28.Apr.)Bridge No. [Name (UP or DN)]ROB2 [(UP & DN)]Mileage??? / 0 -					
Bridge No. [Name (UP or DN)]	ROB2 [(UP & DN)]	Mileage	??? / 0 -		
	Comment				
-					
-					
- 					

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (28.Apr.) Bridge No. [Name (UP or DN)] ROB3 [(UP & DN)] Mileage ??? / 0 -					
Bridge No. [Name (UP or DN)]	ROB3 [(UP & DN)]	Mileage	??? / 0 -		
	Comment				
-					

Investigation Record for Bridge on Yangon - Mandalay Trunk Line (28.Apr.)Bridge No. [Name (UP or DN)]ROB4 [(UP & DN)]Mileage??? / 0 -						
Bridge No. [Name (UP or DN)]	ROB4 [(UP & DN)]	Mileage	??? / 0 -			
	Comment					
-						
-						