4.3 STUDY ON STEEL BOX GIRDER BRIDGE

In this section, study results on the 3-span and 7-span of steel box girder bridges, as shown in Figure below, will be presented.

It is noted that 5-span PC box girder bridge (3@51m+2@52m) was originally designed instead of 3-span bridge. However, Pier No.9 was cancelled during this JICA study as requested by MOC because a navigation channel is possibility to be widened to the section between P8 and P10 in future. After due study, 3-span bridge was determined from better structural feature.

Source: JICA Study Team

4.3.1 Basic Design for Superstructure of Steel Box Girder Bridge

4.3.1.1 Selection of Type of Steel Box Girder Bridge

In the F/S, separated bridge structure for up and down lanes was proposed taking account of the adjacent bridge structure types. In order to further reduce the construction cost and shorten the construction period, other arrangements of girders, including a combined structure type for up and down lanes was studied and compared. Items to be compared are steel weight, structural stability, construction plan (difficulty) and construction period and maintenance cost based on the structural analysis and preliminary cost estimate.

(i) F/S (up and down lanes separation structure)

(ii) Alternative in B/D (up and down lanes combined structure)

Source: JICA Study Team

Figure 4.3.2 Type of Main Girder of Steel Box Girder with Steel Plate

(1) Structural Stability

1) Reaction of Bearing

If separation structure, especially high height girder structure, is adopted, an up/down-lift force or axial force induced to bearings due to horizontal force like a seismic force or a wind force will be larger than that of the combined structure because of the arm length of the couple force as shown in the figure below.

Moreover, the pedestrian way in both sides was decided to be unnecessary at the initial stage of B/D, so the total width was reduced by 2.0 m and the distance between both outer girders will also be shortened.

From the reason of the above qualitative consideration, combined structure type seemed to be suitable, and so it was decided to be adopted.

2) Influence of Wind

In general, a long span bridge with perpendicular tall web plate will be easy to be oscillated by wind (Karman vortex). One of the ways to avoid this influence is to adopt an inclined web. The inclination angle of approximately 60° of the outer web is common, taking account of fabrication.

Figure 4.3.4 Image of the Karman Vortex

However, if the web height is changed into a curved form, as long as it keeps the inclination angle, width of the bottom flange will also change as shown in the figure below. This means that the diaphragm, which is an important element to ensure the accuracy of the box shape, shall have a different shape at each position, and so will increase the fabrication cost. Therefore, the girder of uniform height was decided to be more appropriate in terms of fabrication cost than the girder of changeable height planned in the F/S.

Figure 4.3.5 Varying Width of Bottom Flange

3) Web Height

Web height is the most important factor to consider in deciding the suitable stiffness for bending moment induced from dead load and live load. It will be possible to decrease the thickness of the flange

in accordance with the increase in the height of the web. This means, eventually there would be a deduction in steel weight. However, if the flange thickness is too thin, then many additional stiffeners will be necessary to keep its minimum stiffness against local buckling. The suitable web height for the continuous steel box girder may be around 1/30 of the 112-m span length from the experiential viewpoint of the suitable thickness of the flange plate. However, there is another requirement that web height shall be harmonized with the adjacent bridges crossing over the Bago River from the viewpoint of uniformity. In addition, the tall segment of over 3-m height will have to be divided into two parts because of transportation possibility. The following figure shows a sample trailer to be used for the transportation of the segment.

Source: JICA Study Team

The inclined web height will affect the width of the bottom flange. Therefore, web height and its inclination will be considered, taking account of its width, so that it will be possible to be transported.

Table 4.3.1 Relationship Between Girde	er Height and Width of the Bottom Flange
--	--

1000	h(m)	θ°	Rad	tan $\boldsymbol{\theta}$	b(m)	a+b(m)	a(m)
	2.7	70	1.222	2.747	0.98	3.00	2.02
	2.7	61	1.065	1.804	1.50	3.00	1.50
	2.7	60	1.047	1.732	1.56	3.00	1.44
1	2.7	50	0.873	1.192	2.27	3.00	0.73
	3.0	70	1.222	2.747	1.09	3.00	1.91
-	3.0	63.5	1.108	2.006	1.50	3.00	1.50
	3.0	60	1.047	1.732	1.73	3.00	1.27
	3.0	50	0.873	1.192	2.52	3.00	0.48
	3.3	70	1.222	2.747	1.20	3.00	1.80
	3.3	65.5	1.143	2.194	1.50	3.00	1.50
	3.3	60	1.047	1.732	1.91	3.00	1.09
	3.3	50	0.873	1.192	2.77	3.00	0.23

Source: JICA Study Team

Considering the width of the bottom flange in the red cell above, the case where the web height is 2.7 m and web inclination is 61° was selected in the B/D as the most suitable one.

4) Deck Slab Type

A deck slab has two functions, one is to distribute and transmit load to the main girder, and the other is to serve as the primary member as a top flange resisting against bending moment.

- i. Steel Deck Type
- Steel deck slab is consisted continuously of steel plate, several longitudinal stiffeners, and crossbeams. Longitudinal stiffeners are supported by crossbeams, and the crossbeams are supported by the web of the main girders, like multi-grid frames.
- Steel deck is fabricated at a shop like the main girder, and is installed at the same time with

the main girder.

Source: JICA Study Team

- ii. Composite Deck Type
 - Composite deck with steel and concrete consists of steel plate or shapes, re-bars and concrete.
 - Steel part of composite deck will be pre-fabricated at the manufacturer's factory as shown in the figure below.

a: Main Girder

- b: Bottom Steel Plate
- c: Haunch Steel Plate
- d: Crossbeam Stiffened Bottom Plate (I-shape)
- e: Longitudinal Re-bar
- f: Curb of Concrete

Composite Deck Panel

Source: JICA Study Team

Figure 4.3.8 Composite Deck Panel (Status of Shop Assembly)

Types of deck slab were compared in terms of self-weight, construction period, and cost. The result is summarized in Table 4.3.2 below. Steel deck panel was recommended to be applied because it is superior in all aspects.

	Steel Deck Panel	Composite Deck Panel
Douth of Dougl	19 mm (maximum)	260 mm: Required depth in the case of 6 m panel
Deput of Panel	Thickness as a flange plate	span
	4 1-N/2	8 kN/m^2
Weight	4 KIN/III- (Elange and U rih)	(Bottom plate, Crossbeam, Re-bar and Concrete in-
	(Flange and U-rib)	situ)
Increase of		125%
Bending Moment	100%	The increse of 4 kN/m ² may be 40% of the total dead
due to Dead Load		load, then at least 25% of B.M will be increse
Construction		120%
Dariad	100%	Composite Deck panel installation will be possible
Period		after main girder erection
		100%
Construction Cost	100%	Reduction of steel deck will be mostly cancelled by
		the increase of B.M
Evaluation	Selected	May not be selected
Source: JICA Study 7	Team	

Table 4.3.2Comparison of Deck Slab Type

(2) Number of Main Girder and its Position

There are two options relating to the number of main girders; one is the 3-girder type and the other is the 4-girder type. Both types were compared from the following viewpoints:

- Steel Weight: This will depend on the number of web plates, and the effective total width of the bottom flange plate.
- Fabrication Cost: This depends on the number of segments and their self-weight.
- Transportation Cost: This depends on the dimension and weight that is possible to be transported.
- Erection Cost: This depends on the erection method and the required crane capacity and erection period.

The 4-girder type was recommended because it is superior in terms of cost and construction efficiency and there was no disadvantage found.

		Alternative-1: 3-Girders	Alternative-2: 4-Girders (Option-1)
	Profile	1500 500 500 500 500 500 500 1500 1500 500 500 500 500 500 500 500 500 500	
	Outer Girder		
	Steel Deck Thickness	4440mm x19mm	3240mm x 16mm
	Bottom Flange Thickness	2940mm x 44mm	1740mm x 60mm
	Description	Outer Girder should be spliced to 2 parts for transportation. These parts shall be checked for its matching accuracy at shop.	All girders can be transported without division to small parts. Thickness of Bottom flange of the outer girder will be needed to use thicker plate, for instance abut 60mm, because the flange width is smaller.
Struct	ural Aspect	To meet with requirements of stress and displacement. To be ensured durability of main girder because distance from wheel load to the web can be kept at 850mm.	To meet with requirements of stress and displacement. To be ensured durability of main girder because distance from wheel load to the web can be kept at 400mm.
	Estimated Weight	8,954 ton (Main Girder Only)	8,855 ton (Main Girder Only)
ŝ	Fabrication Cost (1)	1.000	0.950
8	Transportation Cost ¹⁷ (2)	1.000	0.955
μĒ.	Averaged Weight for Erection	2.7 ton/m	2.4 ton/m
용	Lifting Weight per 25m ~	07.5 Mars that 250 to 0.0 is required	60.0
sto	Availability of Crane Capacity 3/	More than 200 ton crane, the number of bent in the river should be increased	200 ton CC is required.
8	Erection Cost (3)	1.000	0.864
Cost and	Total Cost = i.+ii.+iii. i. Fabrication ((1) x 50%) ii. Transportation ((2) x 15%) iii. Erection ((3) x 35%)	1.000	0.920
Primary maintenance items will be corrosion or dirtiness of steel plates and bolted joints. Partial Visual inspection will be possible by looking from the man-hols that are prepared at main girder's web of about 25m pitch.		Primary maintenance items will be corrosion or dirtiness of steel plates and bolted joints. Partial Visual inspection will be possible by looking from the man-hols that are prepared at main girder's web of about 25m pitch.	Primary maintenance items will be corrosion or dirtiness of steel plates and bolted joints. Partial Visual inspection will be possible by looking from the man-hols that are prepared at main girder's web of about 25m pitch.
Evalu	ation		
8	tructural Aspect	Ø	0
	aintenance Aspect	X	
her Aspects	Landscape View	Same inclination of web plate as Cable Stayed Bridge. Inclination of web plate does not match with PC girder.	Same inclination of web plate as Cable Stayed Bridge. Inclination of web plate does not match with PC girder.
8 -	Efficiency against Wind Oscillation	Inclination 60°	Inclination 60°
Comparison Contraction Contrac			

Table 4.3.3 Comparison of the Cross Section of the Steel Box Girder

*2/ Erection of the girders by using 3 bents for one span 112m is assumed. *3/ Crane capacity for construction of substructure is 200 ton. Therefore, no need to mobilize another crane if the options of 4-Girders is applied

Source: JICA Study Team

4.3.1.2 Selection of Erection Method of Steel Box Girder Bridge

Two erection methods were introduced as follows:

- i. Launching Method by Erection Nose Girder
 - The segments of the main girders will be pre-assembled on the pre-stressed concrete girder that was erected beforehand at the backyard.
 - The web plate that is supported on the temporary movable platform shall be stiffened by the additional plates to avoid local buckling.
- ii. Bent Erection Method by Crawler Crane on Barge
 - The segments of the main girders will be connected at the site assembling yard and transported by barge.
 - Lifting pieces for maximum lifted weight shall be prepared on the top flange.
 - Several temporary bents shall be prepared at each span, and bolting connection will be done when the erected girders will be installed on the bents, step by step.

i. Launching Method by Erection Nose Girder

ii. Bent Erection Method by Crawler Crane on Barge

Source: JICA Study Team

Figure 4.3.9 Erection Methods of Steel Box Girder Bridge

Details of the erection methods will be presented in the Construction Plan part of this report.

4.3.1.3 Superstructure of Steel Box Girder Bridge

(1) Arrangement of Girder Position

The distance between the web and wheel was considered so that the wheel load does not act on the web directly, in relation to the actual lane component and girder position. Eventually, a 450 mm distance at mid lane and 400 mm distance at the outer lane were put on hold.

Note: Distance between both wheels is 6 feet (approximately 1.8 meter). Source: JICA Study Team

Figure 4.3.10 Position of Wheel Loads and Web

(2) Condition of Live Load

The carriageway was decided to consist of three lanes with 3 m width in each direction, in accordance with the AASHTO LRFD specifications, although actual traffic lane only consists of two lanes per one direction.

Combination of Truck Load and Lane Loads at the Cross Section

Source: JICA Study Team

(3) Condition of Dead Load

Dead loads including steel weight, pavement, curb, guard rail, and future overlay loads will be considered in the design.

Source: JICA Study Team

(4) Widening of the Median Curb to the Adjacent Cable-Stayed Bridge

The width of the median curb should be widened from 1.5 m to 3.7 m because the adjacent cablestayed bridge has a 3.7 m wide median curb of cable anchor zone. Therefore, the width of the median curb shall be widened to keep smooth drivability. The transition curve line of the curb was designed as shown below.

Source: JICA Study Team

Figure 4.3.13 Transition Line Between the Steel Box Girder Bridge and Cable-Stayed Bridge

(5) Adjustment of the Bridge Width to PC Box Girder and On-ramp Bridges

On the Pier 5, PC Box Girder on the main alignment and On-ramp of PC Box Girder are connected (Figure 4.3.14).

Source: JICA Study Team

Therefore width of Steel Box Girder is widened as connected to main alignment and on-ramp.

Figure 4.3.15 Cross-section of the Steel Box Girder at Pier 5

The alignment of Main bridge and On-ramp are as follows:

Figure 4.3.16 Allignment of main bridge and on-ramp

4.3.1.4 Study on the Number of Continuous Span and Supporting Condition

(1) 7-Span Bridge

In the F/S, continuous span was proposed in terms of seismicity. In the B/D, the number of continuous span was comparatively studied between seven and a combination of four and three since the bridge length is 776 m. The general assessment of the number of continuous span is summarized in Table 4.3.4 below.

Table 4.3.4 General Assessment of the Number of Continuous Spar	Table 4.3.4	General Assessment of the Number of Continuous Span
---	-------------	---

	Case-1: 7-continuous span	Case-2 Combination of 4 and 3 continuous
Advantage	It can reduce bending moment and the thickness of girder plates.	span Relatively smaller displacement due to temperature changes ($\pm 25^{\circ}$), approx. 100
Disadvantage	Relatively larger displacement due to temperature changes ($\pm 25^{\circ}$), approx. 140 mm.	It increases the weight of the steel of the girder to approx. 163 tons because of the larger bending moment.
Source: JICA Stud	ly Team	

As for the support, two types which can distribute inertial force of earthquake into the substructures are comparatively studied, i.e., elastic support type and fixed support type. Basic characteristics of these types are summarized in Table 4.3.5 below.

Table 4.3.5 General Characteristics of Two Types of Support

Source: JICA Study Team

To select the optimum option for the number of continuous span and support type, elastic support and fix support for the cases of 7-continuous span and 4+3 continuous span were compared in terms of the structural aspect, workability for superstructure erection and setting, economical aspect, travel comfort, and O&M. The following table shows the evaluation result.

After the evaluation, the fix support condition in a 7-continuous span bridge was selected because all items were ranked as superior.

Alternative	Alt-A	Alt-B	Alt-C	Alt-D
Continuous Span	7 Continuous	Spans Bridge	4+3 Continuous	Spans Bridge
Support Condition/ Bearing Type	Elastic Support Condition	Fix Support Condition	Elastic Support Condition	Fix Support Condition
Comments A mental	 P13 P13 It has a moderate risk of occurring resonance between soft ground and bridge because natural period of oscillation of the bridge is relatively longer. namely 1.7 second. (O) 	 P13. P20 J It has a low risk of occurring resonance between soft ground and bridge because natural period of oscillation of the bridge is relatively shorter, namely approx. 0.9 second (◎) 	 13 P17 P20 P P18 a moderate risk of occurring resonance between soft ground and bridge because natural period of oscillation of the bridge is relatively longer, namely 1.7 second. (0) 	 P1/7 P20 It has kw risk of occurring resonance between soft ground and bridge because natural period of oscillation of the bridge is relatively shorter, namely 1.0 second at P13-P17 and 0.9 second for P17-P20. (O)
aucutat Aspect	 Horizontal force due to temperature change and inertial force can be evenly distributed to all substructures P13 to P20 and resisted by both bearings and substructures. (⁽⁽⁽⁾⁾) 	 Horizontal force due to inertial force can be equally distributed to substructures of P 14 to P 19, and horizontal force due to temperature is slightly larger at P 14 and P 10. These forces are resisted by the substructures (O) 	 Horizontal force due to temperature change and inertial force can be evenly distributed to all substructures, and resisted by both bearings and substructures. (⁽ⁱ⁾) 	•Horizontal force due to temperature change and inertial force will be unevenly distributed to substructures of P14 to P19, (Δ)
Max. Inertial Force	6,000kN at P17	7.500kN at P19	5.960kN at P17	8,560kN at P15
Max. Horizontal Force due to temperature change	1,850k at P13	4.500kN at P19	1,319kN at P13	5.570kN at P19
Max. relative displacement between super- and sub- structure	.177mm at P 13	82mm at P13	190mm at P17	87mm at P13
Workability for Superstructure	 Required special attention in setting griders to adjust larger accumulated error of span length due to longer continuous spans. (O) 	 Required special attention in setting griders to adjust larger accumulated error of span length due to longer continuous spans. (O) 	 Easier to set the position of the girders because of smaller accumulated error of span length, and can earlier fix the anchor bolts by non-shrinkage mortal. (⁽⁽⁽⁽⁾⁾)) 	 Easier to set the position of the graders because of smaller accumulated error of span length, and can earlier fix the anchor bolts by non-shrinkage mortal (^(O))
Cost	 Substructure strength can be minimized. Instead, required large size of expansion joints and bearings to accommodate with larger displacement due to temperature change and inertial force, <cost 1.00="" ratio=""> (⁽⁽⁾)</cost> 	 Smalkr size of expansion joints and bearings can be used because forces from superstructure can be supported by mainly substructure not bearings. Instead, required larger size of re-bar for some parts of substructure. <-Cost ratio 1.00> (⁽ⁱ⁾) 	 Thicker plate of grider is required to accommodate with larger bending moment, then steel weight increase at 163 ton. Cost ratio 1.02> (O) 	•Thicker plate of grider is required to accommodate with larger bending moment, then steel weight increase at 163 ton. •Required large size of re-bar for some parts of substructure at $P14$ - $P16$. •Cost ratio 1.03- (Δ)
Travelling Comfortability	 More confortable because of only 2 locations of expansion joint (⁽⁽ⁱ⁾)) 	-More comfortable because of only 2 locations of expansion joint (\bigcirc)	 Lower comfortable because of 3 locations of expansion joint (O) 	 Lower confortable because of 3 locations of expansion joint (O)
Operation & Maintenance	 Less mairtenance work because of lower nos. of shoes (nos.32) and expansion joints (nos.2) (^(C)) 	-Less maintenance work because of lower nos. of shoes (nos.32) and expansion joints (nos.2) (\odot)	 More maintenance work because of breger nos. of shoes (nos. 36) and expansion joints (nos.3) (O) 	 More maintenance work because of larger nos. of shoes (nos. 36) and expansion joints (nos. 3) (O)
Evaluation	Less recommended	Most recommended	Less recommended	Less recommended
Note: O:Better O.Normal	∆; Warse			

Table 4.3.6 Study Results on the Number of Continuous Span and Support Condition (P13-P20)

Detailed Design Study on The Bago River Bridge Construction Project

Source: JICA Study Team

(2) 3-Span Bridge

A 3-continuous span is applied in terms of structural and economical aspect. As for the support condition, two alternatives, namely elastic support (Alt-A) and fix support (Alt-B), are comparatively studied. Seismic horizontal force is evenly distributed to all piers in the elastic support condition, meanwhile 60% of inertial force is concentrated to one pier in the fix support condition which might be caused by unequal span length, different pier height and substructure rigidity. Since larger dimension and higher grade of rebar and steel sheet pipe are required for substructure in the fix support condition, the cost becomes 6% higher than Alt-A.

Accordingly, Alt-A is superior in terms of aseismicity and economic aspects.

Alternative	Alt-A	Alt-B
Continuous Span	3 Co	ontinuous Spans Bridge
Support Condition/ Bearing Type	Elastic Support Condition	Fix Support Condition Move Fix Fix Move
	• It has a moderate risk of occurring resonance be soft ground and bridge because natural period of oscillation of the bridge is relatively longer, it is 1.6 second. (O)	• It has a low risk of occurring resonance between soft ground and bridge because natural period of oscillation of the bridge is relatively shorter, it is 0.92 second. (^(©))
Structural Aspect/ Aseismicity	•Seismic horizontal force can be effectively distrib all substructures P5 to P10 and resisted by both be and substructures. (⁽⁽⁽⁾))	•Seismic horizontal force is concentrated to one pier (P6) among 4 piers, which rate is around 60%. It has a risk to collapse superstructure in the case that the bearing of P6 would be damaged because remaining bearings would not have enough capacity to support superstructure. Accordingly, special attention for countermeasure to prevent collapse is required. (\triangle)
Max. Inertial Force (Kh0.3)	4,600kN at P6	9,600kN at P6
Max. Horizontal Force due to temperature change(± 15°)	420kN at P10	730kN at P6,P7
Max. relative displacement between super- and sub- structure (earthquake)	±207mm at P13	±62mm at P5
Ditto (temperature change± 25°)	±44mm at P10	±43mm at P10
Economical Aspect (Cost)	 Substructure dimension can be minimized by pier thickness 3.0m using Dia.32 or Dia.38 as main reb normal grade of steel sheet with SK Y400. Instead required large size of expansion joints to accommo with larger displacement due to inertial force. Rub bearing cost is normally higher than other types su steel/iron ones. <cost 1.00="" ratio=""> (^(O))</cost> 	•Smaller size of expansion joints can be used, and steel/iron type of bearings can be applied and their costs are normally much lower than rubber bearing. Instead, larger substructure dimension is required with large size of main re-bar for pier column and footing (two-stage of Dia.51) and high grade of steel sheet with 116, SK Y490. <cost 1.06="" ratio=""> (Δ)</cost>
Evaluation	Most recommended	Less recommended

Table 4.3.7 Study Results on the Support Condition (P5-P10)

Note: \bigcirc :Better O:Normal \triangle : Worse

Source: JICA Study Team

4.3.2 Basic Design for Substructure of Steel Box Girder Bridge

4.3.2.1 Items to be Comparatively Studied in Basic Design

In the F/S, the substructure was preliminary studied and structural outline was planned as summarized in the table below. In B/D, review of the F/S and further comparative studies among the alternatives including the structural analysis were carried out to determine the items listed below, and the optimal option is selected as basis for the detailed design.

- Shape and width, concrete class and grade of re-bars of pier column
- Construction method of SPSP foundation
- Shape and size of SPSP foundation, and material, thickness and length of steel pipe

Table 4.3.8 Structural Outline of Substructure Planned in the F/S

4.3.2.2 Design Conditions for Comparative Study

Substructure at P19 was examined as a representative of the piers from P14 to P19 since boring and laboratory test done in the F/S were at the exact location of P19 and reaction force from superstructure is relatively high among the target piers. The design condition is summarized in nTable 4.3.9, and the soil properties of each layer and the design water levels for the design of P19 are shown in the figure below.

Source: JICA Study Team based on the F/S

Item	Design Conditions
Soil Properties	Use soil properties obtained from BH04 in F/S. Details to be referred to are in Figure
	4.3.17
	Liquefaction is considered.
Design Water	High Water Level: EL+4.6 m (1%, F/S)
Levels	High Water Level for Construction: EL+4.4 m (4%, F/S)
	Low Water Level: EL-2.45 m (Mean Low Water Spring, F/S)
Loads	Reaction Force from Superstructure: due to dead load: 21,884 kN, live load: 5,462 kN
	Design Horizontal Seismic Coefficient for Inertial Force: 0.3
	Water Stream Pressure to Pier and Temporary Cofferdam: 16.8 kN at 0.6 x water depth
	Seismic Water Pressure to Pier: 1,446 kN for longitudinal direction and 248 kN for
	transverse direction at 3/7 x water depth
Others	Local scouring is not considered in the basic design

Table 4.3.9 Major Design Conditions for the Design of P19 (Representing the Piers)

Source: JICA Study Team

Source: JICA Study Team

Figure 4.3.17 Soil Properties and Design Water Levels for the Design of P19 (Representing the Piers)

4.3.2.3 Shape of the Cross Section of the Pier Column

The oval shape, rectangular shape, and round shape were comparatively studied and the result is summarized in Table 4.3.10.

The most important consideration for the selection of the shape of the cross section of the pier column in a river bridge is the water flow. At the location of Bago Bridge, water flow always changes toward upstream or downstream due to the tides, but the flow direction is almost uniform. As for the cost aspect, oval shape and round shape are nearly the same. Therefore, oval shape is appropriate from the aspects of the lowest negative influence on the water flow and lower cost of substructure.

Comparative Item	Oval Shape (planned in the F/S)	Rectangular Shape	
Schematic	Water Flow		
Obstruct the water flow	Lowest because of streamline shape	Moderate	
Cost Ratio of Substructure ^{*1/}	1.00	1.19	
Evaluation	Most Recommended	Less Recommended	
Comparative Item	Round Shape		
Schematic			
Obstruct the water flow	Highest due to wider dimension against water flow. Also, this shape is suitable		
	when the direction of river flow is often changed like at the river junction.		
	However, since there is a uniform flow of	lirection at Bago River Bridge location, it	
	is not necessary to be applied.		
Cost Ratio of Substructure ^{*1/}	0.97		

Table 4.3.10 Comparison of the Shape of the Pier Column

Note: *1/ Construction cost of substructure includes costs of pier column and foundation. Minimum size of foundation depending on the pier column shape is assumed for rough cost estimate.

Source: JICA Study Team

4.3.2.4 Width of the Pier Column

(1) Width of the Pier Column at the Transverse Direction

The width of the pier column at the transverse direction will be determined by the girder layout of the superstructure and not by structural analysis.

Since the girder cross section is modified from the F/S as explained in Section 4.3.1.1, the width of the pier column can be adjusted to 17 m from 20 m at the top and to 11 m from 14 m at the bottom. A width of 17 m shall meet the requirement of the minimum distance (76 cm) between the anchor bolt of the bearing shoe and the edge of the pier head, and adequate space of jack-up of girders for maintenance is also considered.

(2) Width of the Pier Column at the Longitudinal Direction

The width of the pier column at the longitudinal direction will be determined by structural analysis. Although width of 3.5 m is possible to be applied as shown in Table 4.3.11, a width of 4.0 m is proposed taking into account the difficulty of the high grade re-bar procurement and workability of triple re-bar arrangement in the cofferdam.

~					~ 1, 1, 1
Case		Mat	erial		Structural Analysis
Width 4.5 m	SD345,	D38,	double	re-bar	Rebar σ s 278 < σ sa 300 N/mm ² (OK)
(planned in the F/S)	arrangeme	ent,			Concrete σ c 11 < σ ca 12 N/mm ² (OK)
	$\sigma_{ck} = 24$	N/mm ²			
Width 4.0 m	SD390,	D38,	double	re-bar	Rebar σ s 320 < σ sa 345 N/mm ² (OK)
(Recommended in the	arrangeme	ent,			Concrete σ c 12.6 < σ ca 15 N/mm ²
B/D)	$\sigma ck = 30$	N/mm ²			(OK)
Width 3.5 m	SD490,	D35,	triple	re-bar	Rebar σ s 358 < σ sa 435 N/mm ² (OK)
	arrangeme	ent,			Concrete σ c 14 < σ ca 15 N/mm ² (OK)
	σ ck = 30	N/mm ²			
Width 3.0 m	SD490,	D35,	triple	re-bar	Rebar σ s 426 < σ sa 435 N/mm ² (OK)
	arrangeme	ent,			Concrete σ c 17 > σ ca 15 N/mm ² (<u>NG</u>)
	$\sigma ck = 30$	N/mm ²			

Table 4.3.11	Results of the Structural Analysis of the Pier Column
--------------	---

Source: JICA Study Team

As a result of the study above, the width of the pier column is determined as shown in Figure 4.3.18 below.

Source: JICA Study Team

Figure 4.3.18 Width of the Pier Column

4.3.2.5 Construction Method of SPSP Foundation

There are three construction methods, namely: permanent foundation and temporary cofferdam method (Alt-A), permanent foundation method (Alt-B), and temporary cofferdam method (Alt-C). The third one is the construction of footing and pier inside the steel pipe pile using a temporary cofferdam and it is usually applied in a shallow river. Accordingly, for the foundation of the steel box girder bridge, Alt-A and Alt-B were comparatively studied. Alt-B has two options; one is ordinary structure which has a large dimension so that it can reduce horizontal displacement, and the other is a slender structure which can reduce the influence on water flow but requires reinforcing shear capacity of interlocking.

Option-1 of Alt-B, permanent foundation method, has advantages of moderate construction cost and shorter construction period. However, it is not recommended because of the obstruction of the water flow and passing vessels and faster corrosion of the steel pile that is assumed at 0.1 - 0.3 mm per year. Although, Option-2 of Alt-B can improve influence on the water flow and vessels by slender structure, construction cost is the highest due to longer pile length with high shear capacity of interlocking and thicker steel pipe and same issue about corrosion as in Option-1 shall be unavoidable unless countermeasure against corrosion such as lining is applied.

Finally, Alt-A, permanent foundation and temporary cofferdam method, is selected because of less influence on the water flow and passing vessels and the lowest construction cost. The comparison among the alternatives is referred to in the following table.

Item	Alt-A: Permanent Foundation a	and Temporary Cofferdam Method
Schematic	17400 4400 17400 1740 1740 1740 1740 1740 1740 1740 1740 1740 1740 17527 1800 17527 1800 17527 1800 17527 1800	Bulkhad part #1200 L=37. Im N=34 I=14mm SKY400 0.uter part #1200 L=41.5m N=34 I=14mm SKY400 19927
Outline of	SPSP is used in both permanent foundation and	d temporary cofferdam. First, SPSP is constructed
Construction	up to the water elevation, filling the material in	to interlocking that prevents the passage of water.
Method	After constructing the footing and pier, the cof	ferdam will be cut and pulled up by operations.
Steel Pipe	Outer part: Dia.1.2 m, Length 41.5 m, thickness	ss t = 14 mm, SKY400, nos. 34
Advantage	Buiknead part: Dia.1.2 m, Length 37.1 m, thick	kness $t = 14 \text{ mm}$, SK t 400, nos. 6
Auvantage	• Lowest construction cost (cost ratio 1.00)	2 VESSEIS
	• Most popular method of SPSP	
Disadvantage	Longer construction period	
Evaluation	Most Re	commended
Item	Alt-B: Permanent Foundation Method	Alt-B: Permanent Foundation Method
	(Option-1) Ordinary Structure Type	(Option-2) Slender Structure Type
Schematic	Bukhad part g1200 LSGm KHE LEIdem SKX400 UP UP U	2750 2750 2750 2750 200 2750 200 200 200 200 200 200 200 2
Outline of Construction Method	SPSP structure is used in permanent foundatio installing the pile up to the water level. It is unrestricted section of flow and clearance for s	ns only. Footing and pier will be constructed after usually applied in river areas or sea ports with ships crossing.
Steel Pipe	Outer part: Dia.1.2 m, Length 50 m, thickness	Outer part: Dia.1.2 m, Length 55 m, thickness t
Requirement	I = 14 mm, SK Y 400, nos. 34 Bulkhead part: Dia 1.2 m. Length 50 m.	= 25 mm, SK Y 400, nos. 30 Bulkhead part: Dia 1.2 m. Length 55 m.
	building part. Dia.1.2 III, Lengui 30 M, thickness $t = 14 \text{ mm SKV}400 \text{ nos } 6$	building part. Dia.1.2 III, Length 55 III, thickness $t = 25 \text{ mm SKV}400 \text{ nos } 5$
		 Analyzed by an imaginary well beam method High shear stiffness and shear capacity of interlocking shall be used.

Table 4.3.12 Comparison of the Construction Method of SPSP

Advantage	 Shorter construction period because no excavation and no footing inside temporary cofferdam Moderate construction cost including countermeasure against corrosion (ratio 1.04) 	 Less influence on the water flow and passing vessels Shortest construction period
Disadvantage	 Relatively obstruct the water flow and passing vessels Acceleration of corrosion of the steel part which repeats emerging from water is concerned. Corrosion speed is assumed at 0.1 - 0.3 mm per year. Inferior landscape 	 Highest construction cost including countermeasure against corrosion (ratio 1.26) Acceleration of corrosion of the steel part which is repeatedly submerged in the water is concerned. Corrosion speed is assumed at 0.1 0.3 mm per year. Inferior landscape
Evaluation	Not Recommended	Less Recommended

Source: JICA Study Team

4.3.2.6 Shape and Size of SPSP

Before studying the shape and size of SPSP, the construction step should be examined first because it will affect the size of the foundation.

(1) Construction Steps

Standard construction step of SPSP in the permanent foundation and temporary cofferdam method, which is proposed in Section 4.3.2.5, is that the cofferdam part will be cut and pulled up by the operations after constructing the footing and pier column (Alt-A). In order to pull up the steel pipes, the steel pipes of the cofferdam shall be arranged outside the pier head. This causes larger dimension of SPSP foundation.

In order to reduce the size of the SPSP foundation, another step, i.e., the steel pipes of cofferdam part will be pulled up after constructing the pier column except the pier head (Alt-B), is comparatively studied and shown in Table 4.3.13 below.

Table 4.3.13Comparison of the Construction Steps in Removing the Cofferdam Part of the
SPSP

Source: JICA Study Team

Alt-B (construction step for reducing size of SPSP) is recommended because it can reduce the size of the SPSP foundation and is also superior in terms of construction cost and period.

(2) Shape and Size of the SPSP Foundation

The shapes of the SPSP foundation, i.e., oval, rectangular, and round, are comparatively studied as shown in the table below. Dimensions of each shape type are determined as minimum size to keep a temporary work space, more than 1.5 m distance between pier column surface and steel pipe inside surface, and all types have adequate structural capacity. Oval shape is proposed to be applied because

it is superior in terms of economic aspect, and has a shorter construction period.

Comparative Item	Oval Shape (planned in the F/S)	Rectangular Shape
Schematic	Outer part Nos.30	Outer part Nos.38
Senematic	Bulkhead part Nos.6	Bulkhead part Nos.6
Dimension	17.0 m x 11.3 m	18.5 m x 11.3 m
Outer Pipe	Nos $30 \times 415 \text{ m}$	Nos $38 \times 415 \text{ m}$
Bulkhead Pipe	Nos. 6 x 37.1 m	Nos. 6 x 37.1 m
Design Result		
Displacement (cm)	$3.3 \le 5.0$ (OK)	$2.6 \le 5.0$ (OK)
Bearing (kN/nile)	$1.654 \le 6.492$ (OK)	$1.514 \le 6.448$ (OK)
Stress (N/mm ²)	175.0 < 210 (OK)	145.6 < 210 (OK)
Total Weight of Steel	5 882 kN	7 213 kN
Pipes	2,002 m (,,210 htt
Construction Cost/	Cost ratio 1.00/ Shortest	Cost ratio 1.23/ Longest
Period		
Evaluation	Most Recommended	Less Recommended
Comparative Item	Round Shape	
	Tto unite Shiep •	
Schematic	Cuter part Nos.34 Bulkhead part Nos.10	
Schematic Dimension	Diameter 16.8 m	
Schematic Dimension Outer Pipe	Diameter 16.8 m Nos. 34 x 41.5 m	
Schematic Dimension Outer Pipe Bulkhead Pipe	Diameter 16.8 m Nos. 34 x 41.5 m Nos. 10 x 37.1 m	Note:
Schematic Dimension Outer Pipe Bulkhead Pipe Design Result	Diameter 16.8 m Nos. 34 x 41.5 m Nos. 10 x 37.1 m	Note: • Shape of cross section of pier column
Schematic Dimension Outer Pipe Bulkhead Pipe Design Result Displacement (cm)	Diameter 16.8 m Nos. 34 x 41.5 m Nos. 10 x 37.1 m	Note: • Shape of cross section of pier column is determined as oval type in section
Schematic Dimension Outer Pipe Bulkhead Pipe Design Result Displacement (cm) Bearing (kN/pile)	Diameter 16.8 m Nos. 34 x 41.5 m Nos. 10 x 37.1 m 2.3 < 5.0 (OK) 1,404 < 6,468 (OK)	Note: • Shape of cross section of pier column is determined as oval type in section 4.3.2.3.
Schematic Dimension Outer Pipe Bulkhead Pipe Design Result Displacement (cm) Bearing (kN/pile) Stress (N/mm ²)	Diameter 16.8 m Nos. 34 x 41.5 m Nos. 10 x 37.1 m 2.3 < 5.0 (OK) 1,404 < 6,468 (OK) 136.4 < 210 (OK)	 Note: Shape of cross section of pier column is determined as oval type in section 4.3.2.3. The length and the weight of pipes
Schematic Dimension Outer Pipe Bulkhead Pipe Design Result Displacement (cm) Bearing (kN/pile) Stress (N/mm ²) Total Weight of Steel	Diameter 16.8 m Nos. 34 x 41.5 m Nos. 10 x 37.1 m 2.3 < 5.0 (OK) 1,404 < 6,468 (OK) 136.4 < 210 (OK) 7,143 kN	 <u>Note:</u> Shape of cross section of pier column is determined as oval type in section 4.3.2.3. The length and the weight of pipes does not include temporary part of
Schematic Dimension Outer Pipe Bulkhead Pipe Design Result Displacement (cm) Bearing (kN/pile) Stress (N/mm ²) Total Weight of Steel Pipes	Diameter 16.8 m Nos. 34 x 41.5 m Nos. 10 x 37.1 m 2.3 < 5.0 (OK) 1,404 < 6,468 (OK) 136.4 < 210 (OK) 7,143 kN	 <u>Note:</u> Shape of cross section of pier column is determined as oval type in section 4.3.2.3. The length and the weight of pipes does not include temporary part of steel pipe.
Schematic Dimension Outer Pipe Bulkhead Pipe Design Result Displacement (cm) Bearing (kN/pile) Stress (N/mm²) Total Weight of Steel Pipes Construction Cost/	Diameter 16.8 m Nos. 34 x 41.5 m Nos. 10 x 37.1 m 2.3 < 5.0 (OK) 1,404 < 6,468 (OK) 136.4 < 210 (OK) 7,143 kN Cost ratio 1.13/ Moderate	 Note: Shape of cross section of pier column is determined as oval type in section 4.3.2.3. The length and the weight of pipes does not include temporary part of steel pipe. The construction cost includes costs
Schematic Dimension Outer Pipe Bulkhead Pipe Design Result Displacement (cm) Bearing (kN/pile) Stress (N/mm²) Total Weight of Steel Pipes Construction Cost/ Period	Diameter 16.8 m Nos. 34 x 41.5 m Nos. 10 x 37.1 m 2.3 < 5.0 (OK) 1,404 < 6,468 (OK) 136.4 < 210 (OK) 7,143 kN Cost ratio 1.13/ Moderate	 Note: Shape of cross section of pier column is determined as oval type in section 4.3.2.3. The length and the weight of pipes does not include temporary part of steel pipe. The construction cost includes costs of footing, bottom slab, cofferdam and

Table 4.3.14 Shape and Dimension of the SPSP Foundation

Source: JICA Study Team

(3) Thickness of Footing

The thickness of the footing is determined based on the bending moment and the shear force. Also, the footing must have enough stiffness to ensure that the connection between the footing and the pier, and

between the footing and the pile are rigid. In addition, if the foundation is constructed through the permanent foundation and temporary cofferdam method, then it is required to consider the dimension of the connection with the footing to determine the thickness of the footing. Based on the structural calculation, at least 3.1 m thickness is required taking into account the number of reinforcement stud. Accordingly, the thickness of the footing is proposed at 4.0 m instead of 6.0 m as planned in the F/S.

As for the bottom slab by underwater concrete, its thickness in meter can be obtained from the equation of "0.1 x depth (m) \geq 1.0" taking account of the temporary cofferdam wall reaction that is nearly in proportionate to the excavation depth, irregularity in underwater excavation, and placement accuracy of underwater concrete, as well as referring to the past construction cases. In this study, the depth is around 20 m. Therefore, the thickness of the bottom slab is proposed at 2.0 m.

When the bottom slab concrete is placed in the weak stratum, a sand layer with a thickness of 0.5-1 m might be provided as enhanced support for the ground. In this study, thickness of the sand mat is assumed at 0.5 m for budgetary purpose. During construction, necessity and thickness of sand mat shall be determined while taking account of the excavated soil condition.

4.3.2.7 Diameter and Thickness of Steel Pipe

For the SPSP foundation with oval shape selected in Section 4.3.2.6, diameter and thickness are comparatively studied between steel pipes with a diameter of 1.0 m and 1.2 m as shown in Table 4.3.15. The optimal one is determined as the steel pipe with a diameter of 1.2 m and thickness of 14 mm because it has the adequate structural capacity, slightly lower construction cost, and shorter construction period.

Comparative Item	Dia.1.0 m (planned in the F/S)	Dia.1.2 m				
Schematic	Outer part t=14,16mm Nos.34 SKY400 Bulkhead part t=14mm Nos.6 SKY400 	Outer part t=14mm Nos.30 SKY400 Bulkhead part t=14mm Nos.6 SKY400 				
Dimension	17.1 m x 9.7 m	17.0 m x 11.3 m				
Outer Pipe ^{*1/}	Nos. $34 \times 29.0 \text{ m} (t = 16 \text{ mm})$	Nos. 30 x 41.5 m (t = 14 mm)				
	Nos. $34 \times 12.5 \text{ m} (t = 14 \text{ mm})$					
Bulkhead Pipe ^{*1/}	Nos. 6 x 37.1 m (t = 14 mm)	Nos. 6 x 37.1 m (t = 14 mm)				
Design Result						
Displacement (cm)	3.7 < 5.0 (OK)	3.3 < 5.0 (OK)				
Bearing (kN/pile)	1,500 < 5,528 (OK)	1,672 < 6,492 (OK)				
Stress (N/mm ²)	187.8 < 210 (OK)	176.4 < 210 (OK)				
Total Weight of Steel Pipes ^{*1/}	5,907 kN	5,882 kN				
Construction Cost ^{*2/} / Period	Cost ratio 1.01/ Longer	Cost ratio 1.00/ Shorter				
Evaluation	Less Recommended	Most Recommended				

Table 4.3.15 Comparison of Diameter and Thickness of Steel Pipe

Note: *1/ The length and the weight of pipes do not include the temporary part of the steel pipe.

*2/ The construction cost includes the costs of footing, bottom slab, cofferdam and SPSP foundation. Source: JICA Study Team

4.3.2.8 Outline of the Proposed Substructure for Steel Box Girder Bridge in the B/D

Through the studies in Sections 4.3.2.3 to 4.3.2.7, the configuration of the substructures for steel box girder bridge is determined and are as shown in the table below.

Table 4.3.16	Structural Outline of the Substructure of P19 (Representing the Piers) for Steel
	Box Girder Bridge

Item	Description	
Pier Column		
Shape:	Oval shape with an overhang	
Size:	17 m width at top and 11 m at	Plant
	bottom	000
	Thickness is 4.0 m	
Material:	Reinforced Concrete	
	Class of concrete: 30 MPa	21
	Grade of rebar: SD345	1200 1316 11000 13315 1200 2472 2472
Foundation		
Shape:	Oval shape	
Size:	Dimension 17.0 m x 11.3 m	
	Thickness of footing 4.0 m	
	Thickness of bottom slab 2.0	
	m	
	Thickness of Sand Mat 0.5 m	<u>1200</u> 14631.8 1200 11343.8
	Diameter of steel pipe 1.2 m	17031.8
	Thickness of steel pipe: 14	Bulkhowal part g1200 jus71 mi Niti fintiami SkY400
	mm	
	Length of steel pipe: 41.5 m	Coulor part of 2000
Material	Grade of steel pipe: SKY400	
Construction	Foundation and Temporary	
Method:	Cofferdam Method	
		17031.8
		General View of the Substructure P19 Representing the Piers

Source: JICA Study Team

Final Report

4.3.3 Detailed Design for Superstructure of the Steel Box Girder Bridge (7-Span Bridge)

4.3.3.1 Design Condition

(1) **Profile**

Span Length:

1.2 + 110.8 + 5@112.0 + 103.1 + 0.9 = 776.0 m (Bridge Length)

Italicized figures of 1.2 and 0.9 above show the combined length of the clearance and marginal length from the end girder to the bearing position. There has been a slight change for it is longer than the value on the B/D because of the displacement in consideration of the seismic behavior and temperature elongation.

The width composition is same as the B/D.

Normal Width 0.6 + 9.0 + 1.5 + 9.0 + 0.6 = 20.7 mWidened Width 0.6 + 9.0 + 3.7 + 9.0 + 0.6 = 22.9 m

Italicized figures of 0.6, 1.5, and 3.7 above show the side barrier (coping) and median barrier (coping) width.

Source: JICA Study Team

Figure 4.3.19 General View

(2) Live Load

AASHTO load was adopted on the design of the 6-lane carriageways that is different from the actual 4-lane carriageways, and loading lanes were taken in the severest condition.

There are three kinds of loading, 1-Truck load, Tandem load, and Uniform Lane load, which are shown in the figure below.

Source: AASHTO specification

	22,900		22.900
			G1 G2 G3 G4
	4.177 8.200 4.177		4.177 8.200 4.177
1-LANE(case1) Uniform Load	3.000 19,300 (1500	3-LANES Truck Load	3,000, 3,000, 3,000, 13,300 345,00 (kN)
1-LANE(case2) Truck Load	3000 kN	3-LANES Tandem Load	2000 3000 3000 3000 13.300
1-LANE(case2) Tandem Load	220.00 (kl) 7/700 3.000 12.200	3-LANES Uniform Load	3 10 (kN/m2) 3 00 3.0000 3.000 3.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.00
1-LANE(case2) Uniform Load	3.10 (klv/m/2) 3.000 3.000 16.300	6-LANES Truck Load	325.00 (KV) 325.00 (KV) 325.00 3.0000 3.000 3.000 3.0000 3.000 3.000 3
2-LANES(case1) Truck Load	245.00 (%) 2.000 (%) 2.000 (%) 16.300	6-LANES Tandem Load	220.00 (KN) 220.00 3.000 (KN) 220.00 3.0000 3.000 3.000 3.0000 3.000 3.000 3.000 3.000 3
2-LANES(case1) Tandem Load	220.00 (N) 2.00 (N) 3.000 3.000 16.300	6-LANES Uniform Load	310 (kN/m2) 320 (kN/m2) 3000 - 19,300
2-LANES(case1) Uniform Load	3.10 (kNh2) 4.700 3.000 3.000 12.200	HS20_TWIN(1-LANE(case1)) Truck Load	315.00 ((N) 315.00 (N) 3.000 19.300
2-LANES(case2) Truck Load	4.700 3.000 3.000 12.200	HS20_TWIN(1-LANE(case1)) Tandem Loz	220.000 (kV) 3d 3.000 (kV) 19.300 19.300
2-LANES(case2) Tandem Load	220.00 (tv) 4.700 3.000 3.000 12.200	HS20_TWIN(1-LANE(case1)) Uniform Loa	d 3 0 (kN/m2) 7700 3.000 12.200
2-LANES(case2) Uniform Load	3.10 (41) 22	HS20_TWIN(1-LANE(case2)) Truck Load	325.00 (kN) 7.700 3.000 12.200
		HS20_TWIN(1-LANE(case2)) Tandem Loa	ad 220.00 (kW) 7.700 3.000 12.200
		HS20_TWIN(1-LANE(case2)) Uniform Loc	3.10 (kN/m2)

Source: JICA Study Team

(3) Dead Load

_

The following items were considered:

- Pavement of asphalt 80 mm thick asphalt laid at whole carriageway
- Coping as wheel guard 330 mm deep concrete casted from steel deck plate
- Railing at side barrier Steel railing weight is assumed.
- Railing at median strip Dual steel railing weight is assumed
- Miscellaneous weight Provisional weight as future overlay load
- Steel weight Assumed in accordance with the girder weight based on B/D

(These weights will be reviewed during the step by step design)

Unit weight of each item is calculated in accordance with its unit volume weight as shown on JSHB.

Source: JICA Study Team

Figure 4.3.22 Dead Load Variations

(4) Supporting Condition

- This bridge is supported by eight piers at the longitudinal road direction.
- Every girder has been assumed to be supported on elastic bearing that was rotatable and only longitudinally movable during the B/D.
- However, the end bearing capacity against rotation distortion due to live load was reviewed, and then it was decided that multi-fixed bearing system will be suitable in case that the substructure is built on soft foundation.
- Elasticity coefficient including flexibility of substructure on soft soil has been reviewed eventually at the design stage of substructure and bearing.

Figure 4.3.23 Bearing Support Condition

Final Report

4.3.3.2 Analysis of the Main Girder

(1) Software for Analysis

- Superstructure was analyzed using the common software named 'APPOLO', which is for Grid Frame Analysis.
- This software consists of 5-steps bridge designing.
- 1st: Calculating the alignment and coordinates of each line and grid point
- 2^{nd} : Analysis of grid frame that is for the purpose of determining design forces of each member.
- 3rd: Calculating section properties of each member in accordance with JSHB.
- 4th: Automatically drawing in accordance with determined member section composition.
- 5th: Quantities calculation

This software system is shown in the following figure.

Source: Catalogue prepared by the software company

Figure 4.3.24 Analysis Flow of the Software

4.3.3.3 Results of the Analysis and the Determined Section Composition

(1) Reaction

Analyzed reaction was reflected into the design of the substructure and the bearing support.

	Reaction Table (unit	t:Kn)							
		P13	P14	P15	P16	P17	P18	P19	P20
	Pavement	362.1	1,053.7	890.2	953.0	941.5	914.6	1,009.7	337.0
	Side Railing	19.4	52.5	46.3	48.4	47.9	47.0	50.8	18.8
	Side Coping	192.3	519.3	458.4	479.0	474.8	465.4	502.6	185.9
	Steel Girder	1,228.9	3,625.2	3,039.0	3,267.4	3,226.5	3,128.9	3,467.6	1,135.8
	Median coping	116.1	275.9	192.3	223.0	217.0	208.4	237.6	66.7
	Overlay	167.5	478.6	402.5	431.4	426.0	414.0	456.7	152.9
	Median Railing	6.2	20.3	16.1	17.9	17.6	16.8	19.2	5.4
G1 & G4	Total Dead Weight	2,092.5	6,025.6	5,044.7	5,420.0	5,351.3	5,195.2	5,744.3	1,902.5
	Live load with impact (Max)	1,030.3	2,043.6	1,963.6	2,021.3	2,008.9	1,980.2	1,992.3	1,009.9
	Live load with impact (Min)	-338.0	-370.9	-481.5	-466.2	-466.3	-469.4	-367.7	-320.9
	Total Rection(Max)	3,122.8	8,069.2	7,008.3	7,441.3	7,360.2	7,175.3	7,736.6	2,912.4
	Total Rection(Min)	1,754.6	5,654.7	4,563.3	4,953.8	4,884.9	4,725.8	5,376.6	1,581.6
	Pavement	334.6	1,007.9	851.4	882.8	876.7	855.9	966.7	299.6
	Side Railing	1.7	9.9	6.4	7.1	7.1	6.5	9.0	0.5
	Side Coping	16.3	98.0	63.2	70.8	69.8	64.8	89.2	4.8
	Steel Girder	1,329.3	3,946.6	3,357.4	3,475.0	3,451.7	3,373.9	3,791.3	1,202.6
	Median coping	330.7	548.0	446.0	468.0	462.5	454.7	502.0	171.6
	Overlay	160.2	447.9	375.2	389.9	387.0	377.8	427.1	131.8
	Median Railing	14.9	42.0	36.6	37.7	37.4	36.7	40.6	13.9
G2&G3	Total Dead Weight	2,187.6	6,100.3	5,136.1	5,331.3	5,292.2	5,170.3	5,825.9	1,824.8
	Live load with impact (Max)	989.8	1,872.8	1,804.5	1,802.3	1,799.4	1,779.1	1,826.3	909.5
	Live load with impact (Min)	-196.2	-201.6	-319.4	-290.5	-295.9	-299.9	-199.8	-184.3
	Total Rection(Max)	3,177.4	7,973.1	6,940.6	7,133.6	7,091.6	6,949.5	7,652.3	2,734.3
	Total Rection(Min)	1,991.4	5,898.7	4,816.7	5,040.7	4,996.4	4,870.5	5,626.2	1,640.5
Whole Dea	ad Load	8,560.2	24,251.7	20,361.7	21,502.5	21,287.0	20,731.0	23,140.3	7,454.6
Whole Liv	e Load with Impact	4,040.1	7,832.8	7,536.1	7,647.2	7,616.6	7,518.6	7,637.3	3,838.8
Σ	Total	12,600.3	32,084.5	27,897.8	29,149.7	28,903.6	28,249.5	30,777.6	11,293.4
Whole Dea	ad Load	8,560.2	24,251.7	20,361.7	21,502.5	21,287.0	20,731.0	23,140.3	7,454.6
Whole Liv	e Load without Impact	3,593.2	6,971.8	6,707.7	6,806.6	6,779.3	6,692.1	6,797.7	3,395.6
Σ	Total	12,153.3	31,223.5	27,069.4	28,309.1	28,066.4	27,423.1	29,938.1	10,850.2
Whole Dea	ad Load	8,560.2							7,454.6
Whole Liv	e Load without	2 2 2 2 9							2 1 1 5 2
Impact and	Truck	3,332.8							5,115.5
Σ	Total	12.153.3							10.850.2

 Table 4.3.17
 Reaction Components at Each Pier

Source: JICA Study Team

(2) Member Force and Section Composition Diagram

The section dimensions and grade of material are determined so that the following criteria are satisfied:

- Each section is designed so that the stress based on bending moment and shearing force shall be within the allowable stress of the adopted material grade.
- The JSHB requires that the deflection due to live load shall be less than 1/500 of span length.
- All block joints are fastened by high strength bolts. Therefore, axial tensile stress at tensile part shall take account of the decreased section area because of the bolt holes. In case that tensile stress would be more than the allowable stress, the thickness of the section should be increased.
- Steel deck plate is stiffened by u-shaped trough ribs, so that torsional stiffness is increased for wheel load.
- Compression stress part of lower flange is stiffened by plate ribs in accordance with thickness of flange. These ribs shall be fastened by high strength bolts at block joint as stress member.
- Web plate is stiffened by horizontal stiffeners at 2-level position, so as decreasing web thickness. These stiffeners only act as stiffeners but not as stress member.
- Required section properties are calculated as follows:

Source: JICA Study Team

Figure 4.3.25 Typical Calculation Sample of the Section

- The thickness and the material grade of all sections have been determined and calculated in accordance with the bending moment.
- The following diagrams show part of the section composition of G1 and G2 girders as example.

STRESS DIAGRAM OF MAIN GIRDER G1 (P13-P20) (1)

Source: JICA Study Team

STRESS DIAGRAM OF MAIN GIRDER G2 (P13-P20) (1)

Final Report

																					Uni	a muu syining	
			1	2	3	4	5	6	7	8		9			10		11		12	13]
Section			Sec-1	Sec-2	Sec-3	Sec-4	Sec-5	Sec-6	Sec-7	Sec-8		Sec-9		Sec-10		Sec-11	5	Sec-12	Sec-13	Section		1.	
Deck Plate	Thickness	16,	16, 16	16, 16, 16	16, 16, 16	16, 16, 16	16, 16, 16	16, 16, 16	16, 16, 16	16, 16, 16		16, 16, 16		22, 22, 22			27, 27, 27	27,	27, 27	27, 27, 27	Thickness	Deck Plate	1
	Quality	(3)	(3),(3)	(3),(3),(3)	(3),(3),(3)	(3),(3),(3)	(3),(3),(3)	(3),(3),(3)	(3),(3),(3)	(3),(3),(3)		(3),(3),(3)			(3),(3),(3)		(3),(3),(3)	(3),	(3),(3)	(3),(3),(3)	Quality		
Longitu	Number	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	6-U-Rib	Number	Longitu	1
-dinal Rib1	Section	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	320*240*8	Section	-dinál Rib1	
Longitu	Number	5-Bulb	5-Bulb	5-Bulb	4-Bulb	4-Bulb	4-Bulb	4-Bulb	4-Bulb	2-Bulb	2-Bulb	2-Bulb	2-Bulb	2-Bulb	2-Bulb	2-Bulb	2-Bulb	2-Bulb	2-Bulb	2-Bulb	Number	Longitu	1
-dinal Rib2	Section	230°11	230*11	230*11	230°11	230*11	230°11	230°11	230°11	230*11	230°11	230°11	230*11	230*11	230*11	230*11	230*11	230*11	230*11	230°11	Section	-dinal Rib2	
Left Web	Height	2747	2746.9	2746.9	2746.9	2746.9	2746.9	2747	2747	2747	2747	2747	2747	2741	2741	2741	2736	2736	2736	2736	Height	Left Web	1
	Thickness		11(3)	11(4)	11(4)	11(4)	11(4)	11(4)	11(4)	11(4)		11(3)			13(4)		13(4)		13(4)	11(4)	Thickness		
Right Web	Height	2801	2801.1	2801.1	2801.1	2801.1	2801.1	2801	2801	2801	2801	2801	2801	2795	2795	2795	2790	2790	2790	2790	Height	Right Web	1
	Thickness		11(3)	11(4)	11(4)	11(4)	11(4)	11(4)	11(4)	11(4)		11(3)			13(4)		13(4)		13(4)	11(4)	Thickness		
Lower	Number		3	3	3	3	3	3	3	3		3			7		7		7	7	Number	Lower	1
flange Verfical	Width		220	220	220	220	220	220	220	220		220			220		220		240	220	Width	flange Verlical	
rib	Thickness		19(3)	19(4)	19(4)	19(4)	19(4)	19(4)	19(4)	19(4)		19(3)			19(4)		19(4)		19(4)	19(4)	Thickness	rib	
Lflg W=294	10 T		14(3)	20(4)	28(4)	32(4)	32(4)	32(4)	26(4)	18(4)		18(3)			27(4)		32(4)		40(4)	35(4)	Lfig W=18	50 T	1
Deck Plate	σ	0	-73	-128	-165	-185	-186	-185	-167	-140	-81	-5	63	-4	48	123	164	193	193	174	σ	Deck Plate	1
	σa	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	σa	1	
	σα-σ	210	137	82	45	25	24	25	43	70	129	205	147	206	162	87	46	17	17	36	σa-σ	1	
Lower	σ	0	138	198	203	205	208	205	210	206	118	8	-96	5	-61	-156	-214	-218	-218	-216	σ	Lower	1
flange	σa	210	210	255	255	255	255	255	255	255	210	210	139	255	255	255	255	255	255	255	σa	flange	1
	σα-σ	210	72	57	52	50	47	50	45	49	92	202	43	250	194	99	41	37	37	39	σa-σ	1	
Web	т	70	58	44	31	20	17	22	34	44	56	70	70	58	58	71	79	82	75	85	т	Web	1
	та	120	120	145	145	145	145	145	145	145	120	120	120	145	145	145	145	145	145	145	та	1	1
	Combined	0.34	0.57	0.66	0.65	0.63	0.64	0.63	0.68	0.70	0.45	0.34	0.43	0.16	0.18	0.54	0.91	0.96	0.92	0.98	Combined	1	
Calculated	points	Left	J-1	J-2	J-3	J-4		J-5	J-6	J.7	J-8	J-9	J-9	Left	Left	J-10	J-11	Max Left	Max Right	J-12	Calculated	1 points	1
Stress of N	et Area σ																				Stress of	Net Area or	1
I fla asol																					L fla asol		1

Source: JICA Study Team

Figure 4.3.27 Typical Section Composition, G2 (P13-P14)

4.3.3.4 Analysis of Steel Deck

(1) Design Method of Steel Deck

- The steel deck will be analyzed as equivalent multi-grid frame.
- The model of the grid frame consists of webs, cross girder, crossbeams, and longitudinal stiffeners.

Source: JICA Study Team

Figure 4.3.28 Concept of Wheel Loading on Steel Deck

(2) Stress Evaluation of Steel Deck

- Longitudinal ribs or cross ribs have combined stresses of primary stress as a deck member of the whole main girder and secondary stress as a member of the deck frame.
- The stress of longitudinal rib is of the same direction as the main girder stress. Therefore, this stress shall be combined with the stress of the main girder and shall be within the allowable stress as shown below.
 - $\sigma 1$: Primary stress as a member of the main girder
 - $\sigma 2$: Secondary stress as a member of the deck frame
 - α : Safety factor (1.4 as specified by the JSHB)
 - σa : Allowable stress of the material deck plate

 $\sigma 1{+}\sigma 2 < \sigma a \, \boldsymbol{\cdot} \, \alpha$

- If $\sigma 2$ is smaller than 0.4* σa , then the formula above will always be satisfied.
- The stress of the cross rib is in the right angle direction of the stress of the main girder, so the biaxial stress shall be checked.

Biaxial calculation formula:

K = (σx / σa)2 - (σx / σa) * (σy / σa) + (σy / σa)2 + (τ / τa)2 \leq 1.2

- σ x : Normal stress of the main girder (N/mm²) τ x : Shear stress of the main girder (N/mm²)
- σ y : Normal stress of the crossbeam (N/mm²) τ y : Shear stress of the crossbeam (N/mm²)
- σ a : Allowable tensile stress of the main girder (N/mm²)
- τa : Allowable shear stress of the main girder or crossbeam (N/mm²)

Where, by checking location:

Flange point $(\tau / \tau a) = (\tau x / \tau xa)$

Web point $(\tau / \tau a) = Max((\tau x / \tau x a), (\tau y / Max(\tau x a, \tau y a)))$

(3) Analysis Model of Deck Frame

- Wheel load shall act on the longitudinal stiffener or crossbeam so that the maximum bending moment will occur.
- Vertical ribs are considered as one bar members without any cross sectional deformation. Therefore, the torsional rigidity (using only the simple torsional resistance) is not reduced; it is 100% valid and is calculated by the following formula:

Torsional rigidity = $4*A2 / {(u/tR) + (a/tP)}$

A : Cross sectional area surrounded by the U-shaped steel

- u: Expanded width of the U-shaped steel
- a : Upper width of the U-shaped steel
- tR: Thickness of the U-shaped steel
- tP: Thickness of the deck plate
- The virtual distribution girder that performs the load distribution between the longitudinal ribs gives the bending rigidity equivalent to the rigid structure consisting of the deck plate and the longitudinal rib peripheral wall in consideration of the sectional deformation of the longitudinal rib. Since this rigid structure continues in the direction of the bridge axis, the equivalent cross sectional secondary moment per unit length is obtained first, and in the Lattice Model, one distribution girder is provided at the lateral rib intervals to provide bending rigidity.

Source: Analysis manual prepared by the software company

Figure 4.3.29 Concept of Equivalent Virtual Beam of Steel Deck

- There are five deck models, i.e.: side deck, top deck of G1, top deck of G2, median deck, and center deck, that are to be considered.

A10	A25	3	A 20	5	A 52	7	8	9	A 01	11	A05	13	14	15	A102	17		- 4-5
19	26	33	40	47	<u>54</u>	61	68	75	82	89	96	103	110	117	124	131		
20	• 27	34	• 41	48	55	62	. 69	76	. 83	90	. 97	104	• 111	118	125	132		
22	• 29	<u>96</u> 97	• 43	50	• 57	65	•71	78	+ 85 oc	92	• 99	107	• 113	120	• <u>127</u>	194		
24	31	38	44	52	- 59	66	73	80	. 87	93	100	107	114	121	120	135		5 mm
137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153		
$ \stackrel{2}{\leftarrow} 2$	2500 >	< <u>2</u> ! 2	$\xrightarrow{500}$	$ \stackrel{2}{\leftarrow} 2$	500 500	$ \frac{2}{2}$	$\xrightarrow{500}$	← ² ←	2500	$ \stackrel{2}{\leftarrow} 2$	500 →	$ \stackrel{2!}{\leftarrow} 1_2$	500 →	$ \stackrel{2}{\leftarrow} 2$	500 500		3000	

- The top deck of G2 is shown in the following figure.

Source: JICA Study Team

- Dead load to be considered

Pavement (road section)	1.80 kN/m ²
Steel weight	2.00 kN/m ²

- Section profile of member

Cross sectional sh	nape Thickn	ess of deck plate 16 mm	
Longitudinal rib	Sec-2	U.RIB 320 * 240 * 8	
Lateral rib	Sec-2	WEB PL 800 * 9	FLG PL 200 * 10
Diaphragm		WEB PL 2100 * 10	FLG PL 220 * 10

- Wheel load shall act on the longitudinal stiffener or crossbeam so the maximum bending moment will occur.
- Distance of the wheel is 1.8 m, and contact area of each wheel is 510 mm wide and 250 mm long.

Source: AASHTO specification

- Impact coefficient is based on the following formula which is based on JSHB:
Longitudinal ribi = 0.4Lateral rib & bracketi = 20/(50+L)L: Span length of lateral rib and bracket (m)

(4) Diagram of Bending Moment

- The maximum/minimum bending moment of the longitudinal rib was calculated based on influence line and area.
- The critical moment occurred at the mid span.

Source: JICA Study Team

Final Report

(5) Analysis Results of Each Rib Force

Member	Cross-secti on	Case of interest	Point of interest	Load type	Bending moment (kN·m)	Shear force (kN)
Longitudinal rib	Sec-2	At Max. bending	45	Dead load	0.73	0.05
				T - Load	43.43	-57.88
				Total	44.16	-57.83
				Additional Total	44.16	-57.83
		At Min. bending	40	Dead load	-0.93	2.61
				T - Load	-23.97	13.43
				Total	-24.90	16.05
				Additional Total	-24.90	16.05
		At Max. shear	67	Dead load	-1.01	2.70
				T - Load	0.18	107.48
				Total	-0.83	110.18
				Additional Total	-0.83	110.18
Lateral rib	Sec-2	At Max. bending	39	Dead load	8.89	-5.52
				T - Load	110.82	0.88
				Total	119.71	-4.64
				Additional Total	95.77	-4.64
		At Min. bending	77	Dead load	7.95	4.92
				T - Load	-14.20	-9.31
				Total	-6.25	-4.39
				Additional Total	-95.77	-4.39
		At Max. shear	3	Dead load	0.00	11.05
				T - Load	0.00	195.64
				Total	0.00	206.68
				Additional Total	0.00	206.68

 Table 4.3.18
 Table of the Member Force

) List of Cross-sectional Force

Source: JICA Study Team

Table 4 3 19	Table of the Deflection due to Live	load
10010 4.0.10		, Louu

Member	Cross-section	Point of interest	Load type	Deflection (mm)
Longitudinal rib	Sec-2	44	T - Load	0.63
Lateral rib	Sec-2	38	T - Load	0.15

Source: JICA Study Team

(6) Stress Calculation of the Longitudinal Rib

- A two-type rib, that is a bulb plate rib or a U-shaped rib, is adopted.
- Each rib is calculated as a beam structure, so that stress will be less than allowable stress.
- The typical calculation procedure is shown in the following figure.

Figure 4.3.33 Sample Calculation of the Longitudinal Rib

(7) Stress Calculation of the Cross Rib

- Cross ribs are a kind of elastic support member for longitudinal ribs.
- The typical calculation procedure is shown in the following figure.

			$A(cm^2)$	Y(cm)	AY(cm ³)) $I(cm^4)$
1-DECK	PL	540 * 16(SM400)	86.40	-40.80	-3525	143825
1-WEB	PL	800 * 9(SM400)	72.00	0.00	0	38400
1-LFLG	PL	200 * 10(SM400)	20.00	40.50	810	32805
			178.40		-2715	215030
		E = -2715/	178.40 = -	15.22 cm		
		I = 215030	- 178.40 *	$-15.22^2 =$	173708	cm^4
		$Y_{u} = -26.38 c$	m. Y₁⁼	= 56.22 (em	

(8) Biaxial Stress at the Cross Point of Both Webs of the Main Girder and Cross Rib

Calculation procedure of converted stress is as the follows.

- The cross point at both webs is shown in the following figure. This point has biaxial stress, main girder stress, and cross rib stress. These stresses are orthotropic respectively.

- The checking location is shown by the black dot in the sketch above.
- The maximum value is based on the checking of the right and left sides of the node point respectively, and of positive and negative stress, respectively.
- Biaxial calculation formula is shown as follows:

K = (σx / σa)2 - (σx / σa) * (σy / σa) + (σy / σa)2 + (τ / τa)2 \leq 1.2

- σ x : Normal stress of the main girder (N/mm²)
- σ y : Normal stress of the crossbeam (N/mm²)
- σ a : Allowable tensile stress of the main girder (N/mm²)
- τx : Shear stress of the main girder (N/mm²)
- τy : Shear stress of the crossbeam (N/mm²)
- τa : Allowable shear stress of the main girder or crossbeam (N/mm²)

Where, by checking location,

FLG point $(\tau / \tau a) = (\tau x / \tau xa)$ WEB point $(\tau / \tau a) = Max((\tau x / \tau xa), (\tau y / Max(\tau xa, \tau ya)))$

- The stress of the main girder and cross ribs are calculated at every cross point.
- The calculation result is shown the following table.

(3) Main girde	er (G-2	Web name :	LWEB (L	IFLG-sid	e)				
	Cro	ss sec	tion							
	No.	No.	Check P't	σх	σу	σa	τx	τу	τa	K
End. sup.	1	1	FLG	0	-54	210	33	0	120	0.14
			₩ЕВ	0	53	210	60	24	120	0.32
	2	2	FLG	-71	22	210	26	0	120	0.21
			WEB	-70	21	210	48	8	145	0.26
	3	3	FLG	-120	22	210	19	0	120	0.42
			WEB	-118	21	210	35	8	145	0.44
	4	4	FLG	-154	26	210	15	0	120	0.66
	-	-	WFB	-152	26	210	26	12	145	0.66
	5	5	FLG	-174	26	210	8	0	120	0.81
			WEB	-172	26	210	14	12	145	0.79
	6	6	FLG	174	30	210	12	0	120	0.84
			WEB	-172	30	210	22	14	145	0.83
	7	7	FLG	-158	22	210	16	0	120	0.68
	•	•	WFB	-156	21	210	31	š	145	0.69
	8	8	FLG	-123	26	210	22	ő	120	0.46
	^o	Ŷ	WEB	-121	26	210	41	12	145	0.50
	Q	q	FLG	-66	34	210	- 11	12	120	0.00
	5	2	WER	65	34	210	54	14	120	0.20
	10	10	FLC	64	-20	210	22	14	120	0.01
	10	10	LTQ	63	-30	210	53	14	145	0.23
	11	11	WED FLC	105	-16	210	94	14	140	0.29
	11	11	rLG WED	105	-16	210	45	10	145	0.35
Tut and	10	10	WED ELC	176	-15	210	10	12	145	0.37
Int. sup.	12	12	FLG	170	-22	210	26	10	120	0.85
	10	10	WEB	172	-22	210	19	19	145	0.88
	13	13	PLG	125	16	210	22	0	120	0.44
			WEB	122	-15	210	41	12	145	0.46
	14	14	FLG	119	-26	210	33	0	120	0.48
			WEB	117	-26	210	63	12	145	0.58
	15	15	FLG	56	-30	210	26	0	120	0.18
			WEB	55	-30	210	50	14	120	0.30
	16	16	FLG	-53	34	210	21	0	120	0.16
			WEB	-52	34	210	39	14	120	0.23
	17	17	FLG	-89	34	210	15	0	120	0.29
			AER	87	34	210	28	14	120	0.32
	18	18	FLG	-103	34	210	9	0	120	0.35
			#EB	-102	34	210	16	14	120	0.36
	19	19	FLG	-98	30	210	12	0	120	0.32
			#EB	-96	30	210	22	14	120	0.33
	20	20	FLG	-75	30	210	17	0	120	0.22
			AEB	-74	30	210	33	14	120	0.27
	21	21	FLG	-33	30	210	24	0	120	0.11
	00	00	WEB	-33	30	210	45	14	120	0.21
	22	22	FLG	73	-26	210	29	0	120	0.24
			жЕВ	72	-26	210	44	12	120	0.31
	23	23	FLG	115	-18	210	28	0	120	0.41
			ЖЕВ	113	-18	210	50	8	145	0.46
Int. sup.	24	24	FLG	174	-29	210	31	0	120	0.89
			WEB	171	-29	210	55	16	145	0.94
	25	25	FLG	113	-18	210	29	0	120	0.40
			WEB	112	-18	210	50	8	145	0.46
	26	26	FLG	70	-26	210	31	0	120	0.23
			WEB	69	-26	210	58	12	145	0.32
	27	27	FLG	-48	34	210	26	0	120	0.16
			<i>AEB</i>	-47	34	210	49	14	145	0.23
	28	28	FLG	-97	26	210	20	0	120	0.31
			WEB	-96	26	210	37	8	120	0.37

Table 4.3.20 Calculation Result of the Biaxial Stress Check

- Index value K is smaller than 1.2 at all of the cross points. This means that the cross ribs have sufficient capacity for the wheel load.

Final Report

(9) Calculation of Bracket

- Bracket is cantilevered out from the web of outer main girder, and located at every 2.5 m spacing, so the stress is in the transverse direction of the primary stress of the main girder.
- The considered critical condition is the case when the wheel load acts on the point at the forehead of the bracket.
- These brackets are calculated as an I-beam section with the effective width of the deck plate as the top flange.

Source: JICA Study Team

Figure 4.3.36 Sample Calculation of the Effective Width of the Bracket

Sectional Area and Moment of Inertia $A(cm^2)$ Y(cm) $AY(cm^3)$ $I(cm^4)$ 1-DECK PL 798 * 16(SM400) 127.68 -40.80 -5209 212541 800 * 9(SM400) 0.00 0 38400 1-WEB PL 72.00 200 * 10(SM400) 1-LFLG PL 20.00 40.50 810 32805 219.68 -4399 283746 -4399/219.68 = -20.03 cm E = $283746 - 219.68 * -20.03^2 =$ I =195644 cm⁴ $Y_u =$ $-21.57 \text{ cm}, \text{ Y}_{\text{L}} = 61.03 \text{ cm}$ Bending stress $-94.7*10^6$ * -215.7 / ($195644*10^4$) = $10 \text{ N/mm}^2 < \sigma_{ta} = 140 \text{ N/mm}^2$ $\sigma_u =$ $-94.7*10^6*$ 610.3 / (195644*10⁴) = -30 N/mm² $< \sigma_{ca} =$ 133 N/mm² $\sigma_{L} =$ Shear stress $167.9*10^{3}$ / $7200 = 23 \text{ N/mm}^2 < \tau_a =$ 80 N/mm² $\tau =$ Combined stress; $\kappa = (-29 / 140)^2 + (23 / 80)^2 = 0.13 < 1.2$ * For the Joint (attachment/spliced part) Bending stress $-94.7*10^6*$ $-215.7/(195644*10^4) = 10 \text{ N/mm}^2 < \sigma_{ta} = 140 \text{ N/mm}^2$ $\sigma_u =$ $-94.7*10^6* \qquad 610.3 / (195644*10^4) =$ -30 N/mm² < σ_{ca} = 133 N/mm² $\sigma_L =$ Shear stress $\tau =$ 167.9*10³ / $7200 = 23 \text{ N/mm}^2 < \tau_a =$ 80 N/mm² Combined stress $-29 / (140)^{2} + (23 / 80)^{2} = 0.13 < 1.2$ κ=(

Source: JICA Study Team

Figure 4.3.37 Sample Calculation of the Bracket

(10) Calculation of the Longitudinal Side Beam

- Longitudinal side beam has the distribution function for the load between two brackets.
- This member is calculated as a beam with the effective width of the deck plate for the top flange.

Figure 4.3.38 Calculation of the Effective Width for the Longitudinal Beam

Sectional Area and Moment of Inertia $A(cm^2)$ Y(cm) $AY(cm^3)$ $I(cm^4)$ 1-DECK PL 194 * 16(SM400) 31.02 -20.80 -645 13421 1-WEB PL 400 * 10(SM400) 40.00 0.00 0 5333 1-LFLG PL 100 * 10(SM400) 175 3063 10.00 17.50 81.02 -470 21817 $\mathbf{E} =$ -470/81.02 = -5.80 cm $21817 - 81.02 * -5.80^2 =$ 19088 cm^4 I = $Y_u = -15.80 \text{ cm}, \quad Y_L = -25.80 \text{ cm}$ Bending stress $1.6*10^6$ * -158.0 / ($19088*10^4$) = -1 N/mm² < σ_{ca} = 140 N/mm² $\sigma_u =$ $\sigma_L = 1.6*10^6 * 258.0 / (19088*10^4) = 2 \text{ N/mm}^2 < \sigma_{ta} = 140 \text{ N/mm}^2$ Shear stress $0.1*10^3$ / 4000 = 0 N/mm² < $\tau_a = 80$ N/mm² $\tau =$ Combined stress $2/(140)^{2} + (0/(80))^{2} = 0.00 < 1.2$ κ = (Verification of the Deflection Deflection due to live load $\delta = 0.1 \text{ mm} \leq \delta_a = L / 500 = 2500 / 500 = 5.0 \text{ mm}$ Calculation of Stiffener b = 40.0 : Abdominal plate height (cm) 1.0: Abdominal plate thickness (cm) t = $\sigma =$ 1 : Edge compressive stress intensity of abdominal plate (N/mm²) 0: Shear stress intensity of abdominal plate (N/mm²) $\tau =$ Verification of Abdominal Plate Thickness $K_{\rm h} = \sqrt{(\sigma_{\rm a} / \sigma)} = \sqrt{(140 / 1)} = 10.8$ $\therefore K_{\rm h} = 1.2$ $b / (152 * K_h) = 40.0 / (152 * 1.2) = 0.2 \text{ cm} < t = 1.0 \text{ cm}$ The horizontal stiffener is omitted.

Source: JICA Study Team

Figure 4.3.39 Calculation of the Longitudinal Beam

Final Report

4.3.3.5 Summary of Steel Weight

(1) Quantity Table of Main Girder

Steel materials are classified in accordance with each category, grade, and thickness. -

Category	Grade	Thickness	Cross Girder	Deck Plate	Main Girder	Sub-Total
PL	SM400A	9		266.981	254.293	521.274
		10	98,044	105,958	53,128	257,130
		11			1.262	1.262
		12	12,702		3.636	16.358
		15			143	1 4 4 8
		10			177.066	177.066
		22			657.060	657.060
		30			4.608	4.608
	SM400A Total		110.746	372.939	1.153.266	1.636.951
	SM490YA	9		244.916	122.426	367.342
		10			10.022	10.022
		11			321.040	321.040
		12			448.150	448.150
		1.5			47,300	47,300
		15			79.414	79.414
		16		1 533 124	159 200	1 692 324
		10		1.330.010	100.200	2.010.172
	10tai	17		1.778.040	1.241.132	3.019.172
	201490 I D	18		71.850	23.010	94.878
		19		75 877	389.167	465 034
		20		159.696	68.228	227.924
		21			95.766	95.766
		22			20,578	20,578
		23			9.824	9.824
		24		27.636	1.696	29.332
		25		102.653	6.297	108.950
		20		00,870	25,612	92,482
		27			2234	22 366
		36			10 564	10.564
	SM490YB				10.001	101001
	Total			504.586	758.566	1,263.152
	SM570	9			63.848	63.848
		10			2.928	2.928
		11			284,562	284,562
		12			387.587	387.587
		15			20.266	20.266
		14			93.024	93.024
		16			36,836	36,836
		17			13.542	13.542
		18			43.868	43.868
		19			169.118	169.118
		20			47.796	47.796
		21			28.210	28.210
		22			30.944	30.944
		2.1 D.4			14,474	41 012
		24			41.018 20.170	29 170
		26			21.723	21.723
		27			25,987	25.987
		28			47.644	47.644
		29			14.589	14.589
		30			88.146	88.146
		31			938	938
		32			55.038	55,038
		3.0			1 220	1.280
		35			27 168	27 168
		36			10.456	10.456
		37			10.744	10.744
		38			28.698	28.698
		39			12.150	12.150
		40			35,696	35.696
	SM570 Total				1,748.468	1,748.468
	SM570-H	41			23.812	25.812
		42			12.198	0 272
		44			12 780	12 780
		45			26,144	26.144
		46			24.048	24.048
		47			13,652	13,652
		51			44.450	44.450
		52			10.196	10.196
	Ch 1270 TT	<u>54</u>			10.590	10.590
DI Tatal	5M370-H	rotat	110.744	7655565	187.242	187.242
ri iotal			110.740	2.035.505	5.068.074	1.0.14.983

Table 4.3.21 Quantity Table of Steel Box Girder

Category	Grade	Thickness	Cross Girder	Deck Plate	Main Girder	Sum
U	SM490YA	320* 240* 8		754,400	32.800	787.200
	SM490YA Tota	al		754,400	32,800	787,200
	U Total			754,400	32,800	787.200
BULB	SM490YA	230* 11		202.008	19.471	221.479
	SM490YA Tot	al		202.008	19.471	221.479
	BULB Tota	d		202.008	19.471	221.479

TCB	\$10T	M 22	11.333	117.329	128.662
	S10T Total		11.333	117.329	128.662
	TCB Tota	1	11.333	117.329	128.662

Category	Cross Girder	Deck Plate	Main Girder	Sum
PL Total	110.746	2.655.565	5,088.674	7.854.985
U Total		754,400	32,800	787,200
BULB Total		202,008	19,471	221,479
1CB Total		11,333	117.329	128.662
Total weight	110,746	3,623,306	5,258,274	8,992,326

Source: JICA Study Team

(2) Segment Weight for Erection Block

- The block weight is a very important factor to be considered in the erection procedure.
- The following table shows each segment's weight and assumed pre-assembly weight.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		G1	G2	G3	G4	2 or 3	3 Segments	s Pre-Asse	embly
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-1	21.701	20.566	20.624	21.701	46.772	42.800	42.858	46.772
BLK-3 26.537 24.253 24.253 25.427 25.427 25.427 25.427 25.427 25.427 25.427 25.427 25.217 50.660 50.660 55.256 BLK-6 27.413 25.236 25.236 27.429	BLK-2	25.071	22.234	22.234	25.071				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-3	26.537	24.253	24.253	26.537	54.364	49.680	49.680	54.364
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-4	27.827	25.427	25.427	27.827				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-5	27.804	25.424	25.424	27.827	55.217	50.660	50.660	55.256
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-6	27.413	25.236	25.236	27.429				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-7	26.052	23.439	23.439	26.052	48.971	44.590	44.590	48.971
BLK-9 21,700 21.148 21.148 21.700 45.041 44.772 44.772 45.041 BLK-10 23.341 23.624 23.341	BLK-8	22.919	21.151	21.151	22.919				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-9	21.700	21.148	21.148	21.700	45.041	44.772	44.772	45.041
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-10	23.341	23.624	23.624	23.341				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-11	21.123	23.214	23.214	21.123	44.111	47.152	47.152	44.111
BLK-13 27.762 30.105 30.105 27.762 49.888 51.778 51.778 49.888 BLK-14 22.126 21.673 21.673 22.126	BLK-12	22.988	23.938	23.938	22.988				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-13	27.762	30.105	30.105	27.762	49.888	51.778	51.778	49.888
BLK-15 21.996 21.854 21.986 65.578 64.853 64.853 65.578 BLK-16 21.706 21.483 21.706 BLK-17 21.876 21.516 21.516 21.876 <td>BLK-14</td> <td>22.126</td> <td>21.673</td> <td>21.673</td> <td>22.126</td> <td></td> <td></td> <td></td> <td></td>	BLK-14	22.126	21.673	21.673	22.126				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-15	21.996	21.854	21.854	21.996	65.578	64.853	64.853	65.578
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-16	21.706	21.483	21.483	21.706				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-17	21.876	21.516	21.516	21.876				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-18	16.993	16.591	16.591	16.993	61.690	59.009	59.009	61.690
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-19	22.548	21.506	21.506	22.548				
BLK-21 22.149 20.912 20.912 22.149 42.986 43.040 43.040 42.986 BLK-22 20.837 22.128 22.128 20.837	BLK-20	22.149	20.912	20.912	22.149				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BLK-21	22.149	20.912	20.912	22.149	42.986	43.040	43.040	42.986
BLK-23 25.634 26.501 26.501 25.634 43.720 44.761 44.761 43.720 BLK-24 18.086 18.260 18.260 18.086	BLK-22	20.837	22.128	22.128	20.837				
BLK-24 18.086 18.260 18.086	BLK-23	25.634	26.501	26.501	25.634	43.720	44.761	44.761	43.720
BLK-25 24.799 25.763 25.763 24.799 44.804 46.789 46.789 44.804 BLK-26 20.005 21.026 21.026 20.005	BLK-24	18.086	18.260	18.260	18.086		10 - 00		
BLK-26 20.005 21.026 21.026 20.005	BLK-25	24.799	25.763	25.763	24.799	44.804	46.789	46.789	44.804
BLK-27 20.662 22.421 22.421 20.662 64.931 67.800 67.800 64.931 BLK-28 21.522 22.617 22.617 21.522 BLK-29 22.747 22.762 22.747 BLK-30 17.578 17.386 17.386 17.578 62.961 61.089 61.089 62.961 BLK-31 22.794 22.555 22.555 22.794 BLK-32 22.589 21.148 21.148 22.589 </td <td>BLK-26</td> <td>20.005</td> <td>21.026</td> <td>21.026</td> <td>20.005</td> <td></td> <td></td> <td></td> <td></td>	BLK-26	20.005	21.026	21.026	20.005				
BLK-28 21.522 22.617 22.617 21.522	BLK-2/	20.662	22.421	22.421	20.662	64.931	67.800	67.800	64.931
BLK-29 22.747 22.762 22.747 62.961 61.089 62.961 BLK-30 17.578 17.386 17.386 17.578 62.961 61.089 62.961 BLK-31 22.794 22.555 22.555 22.794 62.961 61.089 62.961 BLK-32 22.589 21.148 21.148 22.589 62.961 61.089 62.961 BLK-32 22.589 21.148 21.148 22.589 62.961 61.089 62.961 BLK-33 21.700 21.148 21.148 22.589 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.983 62.984 64.620 45.828 64.620 45.828 64.620 45.828 64.620 45.828 64.620 45.828 64.620 45.828 64.620 45.828 64.620 64.620 64.623 </td <td>BLK-28</td> <td>21.522</td> <td>22.61/</td> <td>22.617</td> <td>21.522</td> <td></td> <td></td> <td></td> <td></td>	BLK-28	21.522	22.61/	22.617	21.522				
BLK-30 17.578 17.386 17.386 17.578 62.961 61.089 61.089 62.961 BLK-31 22.794 22.555 22.555 22.794	BLK-29	22.747	22.762	22.762	22.747	00.001	01.000	01.000	00.001
BLK-31 22.794 22.555 22.794	BLK-30	17.578	17.386	17.386	17.578	62.961	61.089	61.089	62.961
BLK-32 22.589 21.148 21.148 22.589	BLK-31	22.794	22.555	22.000	22.794				
BLK-33 21.700 21.148 21.700 42.688 42.498 42.498 42.498 42.688 BLK-34 20.988 21.350 21.350 20.988 BLK-35 26.655 26.002 26.002 26.655 46.181 44.634 44.634 46.181 BLK-36 19.526 18.632 18.632 19.526 42.688 46.620 45.828 46.620 45.828 46.620 45.828 45.828 46.620 45.828 45.828 46.620 45.828 45.828 46.620 45.828 45.828 46.620 45.828 45.828 46.620 45.828 45.828 46.620 45.828 45.828 45.828 46.620 45.828 45.828 45.828 45.828 46.620 45.828 45.828 45.828 46.620 45.828 45.828 45.828 46.620 45.828 45.828 45.828 45.828 45.828 45.828 45.828 45.828 45.828 45.828 45.828 45.828 45.828	BLK-32	22.589	21.148	21.148	22.389	40.600	40.400	42.400	42,699
BLK-34 20.988 21.330 20.988 1	DLN-33	21.700	21.140	21.140	21.700	42.000	42.490	42.490	42.000
BLK-35 20.003 20.002 20.003 40.181 44.034 44.034 40.181 BLK-36 19.526 18.632 18.632 19.526	DLK-34	20.900	21.300	21.000	20.900	46 101	11 621	44.624	46 101
BLK-30 18.032 18.034		10 526	19.622	10 622	10 526	40.101	44.034	44.034	40.101
BLK-37 20.412 23.233 20.412 43.828 40.020		25 412	25 255	25.255	25 412	45 0 2 0	46.620	46.620	45 0 2 0
BLK-38 20.416 21.365 20.416 20.416 21.365 20.416 10.000 BLK-39 20.596 20.912 20.912 20.596 66.623 64.056 64.056 66.623 BLK-40 22.202 21.031 21.031 22.202 BLK-41 23.825 22.113 22.113 23.825 BLK-42 18.317 16.972 16.972 18.317 64.589 59.846 59.846 64.589 BLK-43 23.683 21.962 21.962 23.683 BLK-44 22.589 20.912 20.912 22.589	BLK-38	20.412	21.255	21.205	20.412	40.020	40.020	40.020	40.020
BLK-33 20.336 20.312 20.312 20.336 60.023 64.036 64.036 60.023 BLK-40 22.202 21.031 21.031 22.202	DEK 30	20.410	21.303	21.000	20.410	66 623	64.056	64.056	66 623
BLK +0 22.202 21.031 22.103 22.202 BLK +41 23.825 22.113 23.825 BLK +42 18.317 16.972 16.972 18.317 64.589 59.846 59.846 64.589 BLK +43 23.683 21.962 23.683 BLK +44 22.589 20.912 20.912 22.589 BLK +45 21.700 20.912 20.912 21.700 42.846 41.726 41.726 42.846 BLK +46 21.146 20.814 20.814 21.146 BLK +47 26.006 25.612 25.612 26.006 44.994 43.646 43.646 44.994 BLK +48 18.988 18.034 18.988 18.988 18.988 18.988	BLK 33	20.000	20.312	21.0312	20.330	00.023	04.000	04.030	00.025
BLK-42 18.317 16.972 18.317 64.589 59.846 59.846 64.589 BLK-43 23.683 21.962 23.683 64.589 59.846 59.846 64.589		22.202	22.031	27.001	22.202				
BLK-42 10.017 10.072		18 317	16 972	16 972	18.317	64 589	59 846	59 846	64 589
BLK-44 22.589 20.912 22.589 BLK-45 21.700 20.912 22.589 BLK-45 21.700 20.912 21.700 42.846 41.726 41.726 42.846 BLK-46 21.146 20.814 20.814 21.146 BLK-47 26.006 25.612 25.612 26.006 44.994 43.646 43.646 44.994 BLK-48 18.988 18.034 18.988	BLK-43	23 683	21.962	21.962	23 683	04.000	00.040	00.040	04.000
BLK-45 21.700 20.912 20.912 21.700 42.846 41.726 41.726 42.846 BLK-46 21.146 20.814 20.814 21.146 41.726 43.646 44.994 43.646 43.646 44.994	BIK-44	22 589	20.912	20.912	22 589				
BLK-46 21.146 20.814 20.814 21.146 11.726 11.726 42.046 BLK-47 26.006 25.612 25.612 26.006 44.994 43.646 43.646 44.994 BLK-48 18.988 18.034 18.988 18.988 18.034 18.988	BI K-45	21 700	20.912	20.012	21 700	42 846	41 726	41 726	42 846
BLK-47 26.006 25.612 26.006 44.994 43.646 43.646 44.994 BLK-48 18.988 18.034 18.9888 18.9888 18.9888 <td>BI K-46</td> <td>21 146</td> <td>20 814</td> <td>20.814</td> <td>21 146</td> <td>12.010</td> <td></td> <td></td> <td>12.010</td>	BI K-46	21 146	20 814	20.814	21 146	12.010			12.010
BLK-48 18.988 18.034 18.034 18.988	BLK-47	26 006	25 612	25.612	26 006	44 994	43 646	43 646	44 994
	BLK-48	18.988	18.034	18.034	18.988				

 Table 4.3.22
 Table of Segment Weight for Erection Block (1)

Source: JICA Study Team

	G1	G2	G3	G4	2 or 3 Segments Pre-Assembly			
BLK-49	25.306	24.671	24.671	25.306	45.815	45.383	45.383	45.815
BLK-50	20.509	20.712	20.712	20.509				
BLK-51	21.706	20.916	20.916	21.706	68.654	65.289	65.289	68.654
BLK-52	22.794	21.761	21.761	22.794				
BLK-53	24.154	22.612	22.612	24.154				
BLK-54	18.563	18.020	18.020	18.563	65.293	63.735	63.735	65.293
BLK-55	23.987	23.440	23.440	23.987				
BLK-56	22.743	22.275	22.275	22.743				
BLK-57	21.700	21.383	21.383	21.700	42.250	42.406	42.406	42.250
BLK-58	20.550	21.023	21.023	20.550				
BLK-59	25.797	25.332	25.332	25.797	44.000	42.950	42.950	44.000
BLK-60	18.203	17.618	17.618	18.203				
BLK-61	25.333	24.673	24.673	25.333	46.233	45.385	45.385	46.233
BLK-62	20.900	20.712	20.712	20.900				
BLK-63	21.700	20.912	20.912	21.700	66.302	68.373	68.373	66.302
BLK-64	21.808	23.488	23.488	21.808				
BLK-65	22.794	23.973	23.973	22.794				
BLK-66	17.499	18.395	18.395	17.499	61.971	61.279	61.279	61.971
BLK-67	22.624	21.972	21.972	22.624				
BLK-68	21.848	20.912	20.912	21.848				
BLK-69	20.885	21.370	21.370	20.885	41.855	43.178	43.178	41.855
BLK-70	20.970	21.808	21.808	20.970				
BLK-71	26.936	28.273	28.273	26.985	47.849	49.926	49.926	47.898
BLK-72	20.913	21.653	21.653	20.913				
BLK-73	25.180	26.417	26.417	25.180	47.008	49.069	49.069	47.008
BLK-74	21.828	22.652	22.652	21.828				
BLK-75	21.275	21.714	21.714	21.275	44.407	43.675	43.675	44.407
BLK-76	23.132	21.961	21.961	23.132				
BLK-77	25.300	23.367	23.367	25.300	51.258	46.791	46.791	51.258
BLK-78	25.958	23.424	23.424	25.958				
BLK-79	25.715	23.389	23.389	25.715	50.571	45.765	45.765	50.571
BLK-80	24.856	22.376	22.376	24.856				
BLK-81	24.119	24.222	24.222	24.119	41.059	41.060	41.060	41.059
BLK-82	16.940	16.838	16.838	16.940				

 Table 4.3.23
 Table of Segment Weight for Erection Block (2)

(3) Painting System

All of superstructure steel shall be painted in accordance with the specifications and drawing as shown in following figure.

Description		General Surface		(Steel Mills and Fabrica	Joint Connection ation Shop: splice plate, filler plate and (Construction Site: Splice Plate and B	conlact surface of girder) olts)	Surface in Contact with Concrete and Pavement	
	I. E	External	II. Internal	III. E	External	IV Internal	V. Conoral Surface	VI. Joint Connection
	(A) Normal	(B) Particular	II. Internal	(A) Normal	(B) Particular	TV. Internal	V. General Sunace	VI. Joint Connection
Steel Mills		-		-	-		-	-
1. Preliminary Surface	Blast Cleaned (ISO Sa2.5)	Blast Cleaned (ISO Sa2.5)	Blast Cleaned (ISO Sa2.5)	Blast Cleaned (ISO Sa2.5)	Blast Cleaned (ISO Sa2.5)	Blast Cleaned (ISO Sa2.5)	SSPC-SP10	SSPC-SP10
Treatment							Near - white	Near - white
							Blast Cleaning	Blast Cleaning
2. Primer	Inorganic Zinc-Rich	Inorganic Zinc-Rich	Inorganic Zinc-Rich	Inorganic Zinc-Rich	Inorganic Zinc-Rich	Inorganic Zinc-Rich	Inorganic Zinc-Rich	Inorganic Zinc-Rich
	Shop Primer	Shop Primer	Shop Primer	Shop Primer	Shop Primer	Shop Primer	Shop Primer	Shop Primer
	DFT : 15µm (160g/m²)	DFT : 15µm (160g/m²)	DFT : 15µm (160g/m²)	DFT : 15µm (160g/m²)	DFT : 15µm (160g/m²)	DFT : 15µm (160g/m²)	DFT : 15µm (200g/m²)	DFT : 15µm (200g/m²)
Fabrication Shop								
Surface Treatment	Blast Cleaned (ISO Sa2.5)	Blast Cleaned (ISO Sa2.5)	Power Tool Cleaned	Blast Cleaned (ISO Sa2.5)	Blast Cleaned (ISO Sa2.5)	Blast Cleaned (ISO Sa2.5)	SSPC-SP10	SSPC-SP10
			(ISO Sa3)				Near - white	Near - white
							Blast Cleaning	Blast Cleaning
4. 1st Under-Coat	Inorganic Zinc-Rich Paint	Inorganic Zinc-Rich Paint	Formulated Epoxy Resin	Inorganic Zinc-Rich Paint	Inorganic Zinc-Rich Paint	Inorganic Zinc-Rich Paint	High Build Type Inorganic	High Build Type Inorganic
	DFT : 75µm (600g/m²)	DFT : 75µm (600g/m²)	DFT : 120µm (410g/m²)	DFT : 75µm (600g/m²)	DFT : 75µm (600g/m²)	DFT : 75µm (600g/m²)	Zinc Rich Paint (Self-Curing	Zinc Rich Paint (Self-Curing
							Solvent Type)	Solvent Type)
							DFT : 30µm (280g/m²)	DFT : 75µm (700g/m²)
5. 2nd Under-Coat	Epoxy Resin	Epoxy Resin	Formulated Epoxy Resin	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)
	DFT : (160g/m²)	DFT : (160g/m ²)	DFT : 120µm (410g/m²)					
3rd Under-Coat	Epoxy Resin	Epoxy Resin	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)
	DFT : 120µm (540g/m²)	DFT : 240µm (1080g/m²)						
4th Under-Coat	Fluorescent Resin	Fluorescent Resin	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)
	DFT : 30µm (170g/m²)	DFT : 30µm (170g/m²)						
8. 5th Intermediate Coat	Fluorescent Resin	Fluorescent Resin	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)
	DFT : 25µm (140g/m²)	DFT : 25µm (140g/m²)						
9. Finish Coat	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)
Construction City								(N.A.)
Construction Sile	(N A)	(N.A.)	(01.4.)	Dower Teel Cleaned	Dower Tool Cleaned	Dawar Taol Cleaned	(1) (A)	(N.A.)
TO, Surface meannent	(N.A.)	(NDC)	(N.A.)	(ICO CI2)	(CO SI2)	(ICO CI2)	(N.A.)	(N.A.)
11 1ot Heder Cost	(0) (0)	(N.A.)	(1) (1)	(130 313)	(150 515)	(130 313)	(01.4.)	(2) (2)
TT. TSI UTUEI-CUAL	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.H.)	(N.A.)	(N.A.)	(N.A.)
12. 2nd Linder-Coat	(N A)	(N A)	(NA)	Formulated Enory Resin	Formulated Enory Resin	Formulated Enory Resin	(N A)	(N A)
12. 2nd onder oour	(13.5)	(13.5)	(13.5)	DET 120µm (410q/m²)	DET: 120um (410n/m²)	DET 160n/m²	(131)	(13.1)
13. 3rd Under-Coat	(N.A.)	(N.A.)	(N.A.)	Ultra Thick Epoxy Resin	Ultra Thick Epoxy Resin	Ultra Thick Epoxy Resin	(N.A.)	(N.A.)
				DFT : 300um (1100g/m²)	DFT: 600um (2200g/m²)	DFT : 300um (1100g/m²)		
14. 4th Under-Coat	(N.A.)	(N.A.)	(N.A.)	Fluorescent Resin	Fluorescent Resin	(N.A.)	(N.A.)	(N.A.)
				DFT : 25um (170g/m²)	DFT : 25µm (170g/m²)			
				(140g/m ² by brush)	(140g/m ² by brush)			
15. 5th Under-Coat	(N.A.)	(N.A.)	(N.A.)	Fluorescent Resin	Fluorescent Resin	(N.A.)	(N.A.)	(N.A.)
				DFT : 25µm (140g/m²)	DFT : 25µm (140g/m²)			
				(120g/m ² by brush)	(120g/m ² by brush)			
16. Intermediate Coat	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)
17. Finish Coat	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)	(N.A.)
Explanatory Remarks								+++++++++++
(cinerialCI)		<u></u>	+				-	
						Lettered and		

4.3.4 Detailed Design for Superstructure of the Steel Box Girder Bridge (3-Span Bridge)

4.3.4.1 Design Condition

(1) **Profile**

Span Length:

0.9 *m* + 75.6 m + 76.5 m + 102.8 + 1.2 *m* = 257.0 m (Bridge Length)

Italicized figures of 0.9 m and 1.2 m above show the combined length of the clearance and marginal length from the end girder to the bearing position.

The width composition is same as the B/D.

Source: JICA Study Team

Figure 4.3.41 General View

Normal Width (S1) 0.6 + 9.0 + 1.5 + 9.0 + 0.6 = 20.7 m

Widened Width (S2) 0.6 + 9.0 + 3.7 + 9.0 + 0.6 = 22.9 m

Italicized figures of 0.6, 1.5, and 3.7 above show the side barrier (coping) and median barrier (coping) width.

(2) Live Load

AASHTO load was adopted on the design of carriageways, and loading lanes were taken in the severest condition.

There are three kinds of loading, 1-Truck load, Tandem load, and Uniform Lane load, which are shown in the figure below.

Source: AASHTO specification

(3) Dead Load

The following items were considered:

- Pavement of asphalt 80 mm thick asphalt laid at whole carriageway
- Coping as wheel guard 330 mm deep concrete casted from steel deck plate
- Railing at side barrier Steel railing weight is assumed.
- Railing at median strip Dual steel railing weight is assumed
- Miscellaneous weight Provisional weight as future overlay load
- Steel weight Assumed in accordance with the girder weight based on B/D

(These weights will be reviewed during the step by step design)

Unit weight of each item is calculated in accordance with its unit volume weight as shown on JSHB.

Source: JICA Study Team

Figure 4.3.43 Dead Load and Live Load Variations

(4) Supporting Condition

- This bridge is supported by four (4) piers at the longitudinal road direction.
- Every girder has been assumed to be supported on elastic bearing that was rotatable and only longitudinally movable.

- Elasticity coefficient including flexibility of substructure on soft soil has been reviewed eventually at the design stage of substructure and bearing.

Source: JICA Study Team

4.3.4.2 Analysis of the Main Girder

(1) Software for Analysis

A Software for 3-span continuous steel bridge is the same software "APPOLO" as Steel Box Girder Bridge (7-Span Bridge).

4.3.4.3 Results of the Analysis and the Determined Section Composition

(1) Reaction

Analyzed reaction was reflected into the design of the substructure and the bearing support.

					unit: kN
			P5		
Load		Gir	der		Total
	G1	G2	G3	G4	Totai
PAVEMENT	275.81	272.82	358.50	420.52	1,327.65
RAILING	12.36	2.24	4.03	12.38	31.01
CURB	122.41	22.17	39.89	122.52	306.99
DECK WEIGHT	457.96	413.73	549.89	638.43	2,060.01
GIRDER WEIGH	772.80	454.48	607.65	580.56	2,415.49
MEDIAN STRIP	119.82	90.44	128.52	53.35	392.13
ADITIONAL WEIGHT	128.23	115.85	154.00	178.76	576.84
MEDIAN RAILING	9.47	7.19	10.21	4.13	31.00
SUPPORT WEIGHT	13.76	15.59	22.15	20.35	71.85
NOSE WEIGHT	3.35	-10.96	20.14	19.20	31.73
Total Dead Load	1,915.97	1,383.55	1,894.98	2,050.20	7,244.70
Live Load (without Impact) Girder Max	1,229.65	674.38	812.35	1,184.61	3,900.99
Live Load (without Impact) Girder Min	-436.28	-133.10	-70.19	-113.29	-752.86
Live Load (with Impact) Girder Max	1,320.97	733.18	891.82	1,284.67	4,230.64
Live Load (with Impact) Girder Min	-466.74	-144.11	-75.10	-120.84	-806.79
Total Reaction (D+L:Girder Max(without Impact))	3,145.62	2,057.93	2,707.33	3,234.81	11,145.69
Total Reaction (D+L:Girder Min(without Impact))	1,479.69	1,250.45	1,824.79	1,936.91	6,491.84
Total Reaction (D+L:Girder Max(with Impact))	3,236.94	2,116.73	2,786.80	3,334.87	11,475.34
Total Reaction (D+L:Girder Min(with Impact))	1,449.23	1,239.44	1,819.88	1,929.36	6,437.91

Table 4.3.24 Reaction Components at Each Pier

			P6		
Load		Gir	der		Total
	G1	G2	G3	G4	TOLAT
PAVEMENT	636.44	693.86	780.46	982.12	3,092.88
RAILING	28.21	7.05	7.58	31.46	74.29
CURB	279.25	69.76	75.02	311.43	735.46
DECK WEIGHT	1,033.01	1,068.40	1,196.89	1,493.87	4,792.17
GIRDER WEIGH	1,473.33	1,363.98	1,419.72	1,417.85	5,674.88
MEDIAN STRIP	202.86	268.85	290.18	108.44	870.34
ADITIONAL WEIGHT	289.24	299.15	335.13	418.28	1,341.81
MEDIAN RAILING	17.32	22.73	24.47	9.90	74.41
SUPPORT WEIGHT	0.00	0.00	0.00	0.00	0.00
NOSE WEIGHT	0.19	-0.03	0.00	-0.16	0.00
Total Dead Load	3,959.84	3,793.74	4,129.45	4,773.19	16,656.24
Live Load (without Impact) Girder Max	1,854.54	1,207.43	1,330.88	2,082.86	6,475.71
Live Load (without Impact) Girder Min	-463.81	-226.89	-210.96	-318.33	-1,219.99
Live Load (with Impact) Girder Max	1,947.85	1,278.07	1,409.40	2,185.38	6,820.70
Live Load (with Impact) Girder Min	-484.27	-239.35	-221.33	-332.39	-1,277.34
Total Reaction (D+L:Girder Max(without Impact))	5,814.38	5,001.17	5,460.33	6,856.05	23,131.95
Total Reaction (D+L:Girder Min(without Impact))	3,496.03	3,566.85	3,918.49	4,454.86	15,436.25
Total Reaction (D+L:Girder Max(with Impact))	5,907.69	5,071.81	5,538.85	6,958.57	23,476.94
Total Reaction (D+L:Girder Min(with Impact))	3,475.57	3,554.39	3,908.12	4,440.80	15,378.90
	-				
			P7		
Load		Gir	P7 der		
Load	 G1	Gir G2	P7 der G3	G4	Total
Load	G1 904.02	Gir G2 797.38	P7 der G3 818.85	G4 1.029.17	Total
Load PAVEMENT RAILING	G1 904.02 37.87	Gir G2 797.38 12.91	P7 der G3 818.85 13.43	G4 1,029.17 38.85	Total 3,549.42 103.06
Load PAVEMENT RAILING CURB	G1 904.02 37.87 374.93	Gir G2 797.38 12.91 127.79	P7 der G3 818.85 13.43 132.92	G4 1,029.17 38.85 384.62	Total 3,549.42 103.06 1.020.25
Load PAVEMENT RAILING CURB DECK WEIGHT	G1 904.02 37.87 374.93 1.473.90	Gir G2 797.38 12.91 127.79 1.269.58	P7 der G3 818.85 13.43 132.92 1.303.95	G4 1,029.17 38.85 384.62 1.642.38	Total 3,549.42 103.06 1,020.25 5.689.81
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH	G1 904.02 37.87 374.93 1,473.90 2,070.42	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47	P7 der G3 818.85 13.43 132.92 1,303.95 1.875.88	G4 1,029.17 38.85 384.62 1,642.38 2,070.72	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT MEDIAN RAILING	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69 23.21	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48 29.07	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11 29.85	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87 20.88	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15 103.00
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT MEDIAN RAILING SUPPORT WEIGHT	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69 23.21 0.00	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48 29.07 0.00	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11 29.85 0.00	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87 20.88 0.00	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15 103.00 0.00
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT MEDIAN RAILING SUPPORT WEIGHT NOSE WEIGHT	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69 23.21 0.00 -0.02	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48 29.07 0.00 0.00	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11 29.85 0.00 0.00	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87 20.88 0.00 0.02	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15 103.00 0.00 0.00
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT MEDIAN RAILING SUPPORT WEIGHT NOSE WEIGHT Total Dead Load	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69 23.21 0.00 -0.02 5,628.25	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48 29.07 0.00 0.00 4,836.14	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11 29.85 0.00 0.00 4,946.10	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87 20.88 0.00 0.02 5,950.77	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15 103.00 0.00 0.00 21,361.26
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT MEDIAN RAILING SUPPORT WEIGHT NOSE WEIGHT Total Dead Load Live Load (without Impact) Girder Max	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69 23.21 0.00 -0.02 5,628.25 2,194.66	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48 29.07 0.00 0.00 4,836.14 1,376.79	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11 29.85 0.00 0.00 4,946.10 1,403.26	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87 20.88 0.00 0.02 5,950.77 2,268.78	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15 103.00 0.00 0.00 21,361.26 7,243.49
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT MEDIAN RAILING SUPPORT WEIGHT NOSE WEIGHT Total Dead Load Live Load (without Impact) Girder Max Live Load (without Impact) Girder Min	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69 23.21 0.00 -0.02 5,628.25 2,194.66 -459.79	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48 29.07 0.00 0.00 4,836.14 1,376.79 -132.85	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11 29.85 0.00 0.00 4,946.10 1,403.26 -124.80	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87 20.88 0.00 0.02 5,950.77 2,268.78 -335.63	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15 103.00 0.00 21,361.26 7,243.49 -1,053.07
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT MEDIAN RAILING SUPPORT WEIGHT NOSE WEIGHT Total Dead Load Live Load (without Impact) Girder Max Live Load (without Impact) Girder Max	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69 23.21 0.00 -0.02 5,628.25 2,194.66 -459.79 2,278.57	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48 29.07 0.00 0.00 4,836.14 1,376.79 -132.85 1,144.41	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11 29.85 0.00 0.00 4,946.10 1,403.26 -124.80 1,473.67	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87 20.88 0.00 0.02 5,950.77 2,268.78 -335.63 2,364.77	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15 103.00 0.00 0.00 21,361.26 7,243.49 -1,053.07 7,261.42
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT MEDIAN RAILING SUPPORT WEIGHT NOSE WEIGHT Total Dead Load Live Load (without Impact) Girder Max Live Load (with Impact) Girder Max Live Load (with Impact) Girder Max Live Load (with Impact) Girder Max	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69 23.21 0.00 -0.02 5,628.25 2,194.66 -459.79 2,278.57 -483.95	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48 29.07 0.00 0.00 4,836.14 1,376.79 -132.85 1,144.41 -142.76	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11 29.85 0.00 0.00 4,946.10 1,403.26 -124.80 1,473.67 -134.14	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87 20.88 0.00 0.02 5,950.77 2,268.78 -335.63 2,364.77 -352.79	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15 103.00 0.00 21,361.26 7,243.49 -1,053.07 7,261.42 -1,113.64
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT MEDIAN RAILING SUPPORT WEIGHT NOSE WEIGHT Total Dead Load Live Load (without Impact) Girder Max Live Load (with Impact) Girder Max Live Load (with Impact) Girder Max Live Load (with Impact) Girder Max	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69 23.21 0.00 -0.02 5,628.25 2,194.66 -459.79 2,278.57 -483.95 7,822.91	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48 29.07 0.00 0.00 4,836.14 1,376.79 -132.85 1,144.41 -142.76 6,212.93	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11 29.85 0.00 0.00 4,946.10 1,403.26 -124.80 1,473.67 -134.14 6,349.36	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87 20.88 0.00 0.02 5,950.77 2,268.78 -335.63 2,364.77 -352.79 8,219.55	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15 103.00 0.00 21,361.26 7,243.49 -1,053.07 7,261.42 -1,113.64 28,604.75
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT MEDIAN RAILING SUPPORT WEIGHT NOSE WEIGHT Total Dead Load Live Load (without Impact) Girder Max Live Load (without Impact) Girder Min Live Load (with Impact) Girder Max Live Load (with Impact) Girder Min Total Reaction (D+L:Girder Max(without Impact)) Total Reaction (D+L:Girder Min(without Impact))	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69 23.21 0.00 -0.02 5,628.25 2,194.66 -459.79 2,278.57 -483.95 7,822.91 5,168.46	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48 29.07 0.00 0.00 4,836.14 1,376.79 -132.85 1,144.41 -142.76 6,212.93 4,703.29	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11 29.85 0.00 0.00 4,946.10 1,403.26 -124.80 1,473.67 -134.14 6,349.36 4,821.30	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87 20.88 0.00 0.02 5,950.77 2,268.78 -335.63 2,364.77 -352.79 8,219.55 5,615.14	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15 103.00 0.00 0.00 21,361.26 7,243.49 -1,053.07 7,261.42 -1,113.64 28,604.75 20,308.19
Load PAVEMENT RAILING CURB DECK WEIGHT GIRDER WEIGH MEDIAN STRIP ADITIONAL WEIGHT MEDIAN RAILING SUPPORT WEIGHT NOSE WEIGHT Total Dead Load Live Load (without Impact) Girder Max Live Load (without Impact) Girder Min Live Load (with Impact) Girder Max Live Load (with Impact) Girder Min Live Load (with Impact) Girder Min Total Reaction (D+L:Girder Max(without Impact)) Total Reaction (D+L:Girder Max(with Impact)) Total Reaction (D+L:Girder Max(with Impact))	G1 904.02 37.87 374.93 1,473.90 2,070.42 331.23 412.69 23.21 0.00 -0.02 5,628.25 2,194.66 -459.79 2,278.57 -483.95 7,822.91 5,168.46 7,906.82	Gir G2 797.38 12.91 127.79 1,269.58 1,847.47 396.46 355.48 29.07 0.00 0.00 4,836.14 1,376.79 -132.85 1,144.41 -142.76 6,212.93 4,703.29 5,980.55	P7 der G3 818.85 13.43 132.92 1,303.95 1,875.88 406.12 365.11 29.85 0.00 0.00 4,946.10 1,403.26 -124.80 1,473.67 -134.14 6,349.36 4,821.30 6,419.77	G4 1,029.17 38.85 384.62 1,642.38 2,070.72 304.27 459.87 20.88 0.00 0.02 5,950.77 2,268.78 -335.63 2,364.77 -352.79 8,219.55 5,615.14 8,315.54	Total 3,549.42 103.06 1,020.25 5,689.81 7,864.49 1,438.08 1,593.15 103.00 0.00 21,361.26 7,243.49 -1,053.07 7,261.42 -1,113.64 28,604.75 20,308.19 28,622.68

			P10		
Load		Gir	der		Total
	G1	G2	G3	G4	TOLAT
PAVEMENT	382.14	307.52	366.59	303.76	1,360.01
RAILING	16.62	4.37	6.38	13.96	41.34
CURB	164.58	43.26	63.18	138.22	409.24
DECK WEIGHT	636.53	532.42	627.67	509.59	2,306.20
GIRDER WEIGH	841.05	757.97	879.39	677.54	3,155.95
MEDIAN STRIP	177.51	297.32	320.12	145.41	940.36
ADITIONAL WEIGHT	178.23	149.08	175.75	142.68	645.74
MEDIAN RAILING	8.61	12.31	13.63	6.80	41.35
SUPPORT WEIGHT	17.20	31.13	31.13	17.20	96.67
NOSE WEIGHT	0.00	0.00	0.00	0.00	0.00
Total Dead Load	2,422.47	2,135.38	2,483.84	1,955.16	8,996.86
Live Load (without Impact) Girder Max	1,521.59	1,046.55	1,114.45	1,452.71	5,135.30
Live Load (without Impact) Girder Min	-573.92	-422.14	-383.40	-644.72	-2,024.18
Live Load (with Impact) Girder Max	1,601.57	1,101.39	1,169.66	1,531.31	5,403.93
Live Load (with Impact) Girder Min	-602.69	-441.99	-402.09	-675.79	-2,122.56
Total Reaction (D+L:Girder Max(without Impact))	3,944.06	3,181.93	3,598.29	3,407.87	14,132.16
Total Reaction (D+L:Girder Min(without Impact))	1,848.55	1,713.24	2,100.44	1,310.44	6,972.68
Total Reaction (D+L:Girder Max(with Impact))	4,024.04	3,236.77	3,653.50	3,486.47	14,400.79
Total Reaction (D+L:Girder Min(with Impact))	1,819.78	1,693.39	2,081.75	1,279.37	6,874.30

(2) Member Force and Section Composition Diagram

The section dimensions and grade of material are determined so that the following criteria are satisfied:

- Each section is designed so that the stress based on bending moment and shearing force shall be within the allowable stress of the adopted material grade.
- The JSHB requires that the deflection due to live load shall be less than 1/500 of span length.
- All block joints are fastened by high strength bolts. Therefore, axial tensile stress at tensile part shall take account of the decreased section area because of the bolt holes. In case that tensile stress would be more than the allowable stress, the thickness of the section should be increased.
- Steel deck plate is stiffened by u-shaped trough ribs, so that torsional stiffness is increased for wheel load.
- Compression stress part of lower flange is stiffened by plate ribs in accordance with thickness of flange. These ribs shall be fastened by high strength bolts at block joint as stress member.
- Web plate is stiffened by horizontal stiffeners at 2-level position, so as decreasing web thickness. These stiffeners only act as stiffeners but not as stress member.
- Required section properties are calculated as follows:

Source: JICA Study Team

Figure 4.3.45 Typical Calculation Sample of the Section

- The thickness and the material grade of all sections have been determined and calculated in accordance with the bending moment.
- The following diagrams show part of the section composition of G1 and G2 girders as example.

Detailed Design Study on The Bago River Bridge Construction Project

Final Report

Source: JICA Study Team

Figure 4.3.47 Typical Section Composition, G2 (P5-P6)

4.3.4.4 Analysis of Steel Deck

(1) Design Method of Steel Deck

- The steel deck will be analyzed as equivalent multi-grid frame.
- The model of the grid frame consists of webs, cross girder, crossbeams, and longitudinal stiffeners.

Source: JICA Study Team

Figure 4.3.48 Concept of Wheel Loading on Steel Deck

(2) Stress Evaluation of Steel Deck

- Longitudinal ribs or cross ribs have combined stresses of primary stress as a deck member of the whole main girder and secondary stress as a member of the deck frame.
- The stress of longitudinal rib is of the same direction as the main girder stress. Therefore, this stress shall be combined with the stress of the main girder and shall be within the allowable stress as shown below.
 - $\sigma 1$: Primary stress as a member of the main girder
 - $\sigma 2$: Secondary stress as a member of the deck frame
 - α : Safety factor (1.4 as specified by the JSHB)
 - σa : Allowable stress of the material deck plate

 $\sigma 1 + \sigma 2 < \sigma a \cdot \alpha$

- If $\sigma 2$ is smaller than 0.4* σa , then the formula above will always be satisfied.
- The stress of the cross rib is in the right angle direction of the stress of the main girder, so the biaxial stress shall be checked.

Biaxial calculation formula:

 $K = (\sigma x / \sigma a) 2 - (\sigma x / \sigma a) * (\sigma y / \sigma a) + (\sigma y / \sigma a) 2 + (\tau / \tau a) 2 \leq 1.2$

 σ x : Normal stress of the main girder (N/mm²) τ x : Shear stress of the main girder (N/mm²)

- σ y : Normal stress of the crossbeam (N/mm²) τ y : Shear stress of the crossbeam (N/mm²)
- σ a : Allowable tensile stress of the main girder (N/mm²)
- τa : Allowable shear stress of the main girder or crossbeam (N/mm²)

Where, by checking location:

Flange point $(\tau / \tau a) = (\tau x / \tau xa)$

Web point $(\tau / \tau a) = Max((\tau x / \tau xa), (\tau y / Max(\tau xa, \tau ya)))$

(3) Analysis Model of Deck Frame

- Wheel load shall act on the longitudinal stiffener or crossbeam so that the maximum bending moment will occur.
- Vertical ribs are considered as one bar members without any cross sectional deformation. Therefore, the torsional rigidity (using only the simple torsional resistance) is not reduced; it is 100% valid and is calculated by the following formula:

Torsional rigidity = $4*A2 / {(u/tR) + (a/tP)}$

- A : Cross sectional area surrounded by the U-shaped steel
- u : Expanded width of the U-shaped steel
- a : Upper width of the U-shaped steel
- tR: Thickness of the U-shaped steel
- tP: Thickness of the deck plate
- The virtual distribution girder that performs the load distribution between the longitudinal ribs gives the bending rigidity equivalent to the rigid structure consisting of the deck plate and the longitudinal rib peripheral wall in consideration of the sectional deformation of the longitudinal rib. Since this rigid structure continues in the direction of the bridge axis, the equivalent cross sectional secondary moment per unit length is obtained first, and in the Lattice Model, one distribution girder is provided at the lateral rib intervals to provide bending rigidity.

Source: Analysis manual prepared by the software company

- There are eight deck models as follows:
 - MODEL-1: S1~C1 / between G2R~G3L : edge · between girder and girder
 - MODEL-2: S1 \sim C1 / between G3R \sim G4L : edge · between girder and girder
 - MODEL-3: D1 \sim D2 / between G3R \sim G4L : intermediate · between girder and girder
 - MODEL-4: C9~C10 / between G2R~G3L : intermediate · between girder and girder
 - MODEL-5: $C9 \sim C10$ / between G3R $\sim G4L$: intermediate · between girder and girder
 - MODEL-6: C24~S2 / between LL1~G1UL : edge · intermediate overhang
 - MODEL-7: C24~S2 / between G1UL~G1R : edge · inside the box girder
 - MODEL-8: C24~S2 / between G1R~G2L : edge · between girder and girder
- The MODEL-1 is shown in the following figure.

Figure 4.3.50 Analysis Model of Steel Deck

-	Dead	load	to	be	considered
---	------	------	----	----	------------

Pavement (road section)	1.80 kN/m^2
Steel weight	2.00 kN/m^2

- Section profile of member

Cross sectional sh	ape Thick	ness of deck plate 16 mm	l
Longitudinal rib	Sec-2	U.RIB 320 * 240 * 8	
Lateral rib	Sec-2	WEB PL 800 * 9	FLG PL 200 * 10
Diaphragm		WEB PL 2100 * 10	FLG PL 220 * 10

- Wheel load shall act on the longitudinal stiffener or crossbeam so the maximum bending moment will occur.
- Distance of the wheel is 1.8 m, and contact area of each wheel is 510 mm wide and 250 mm long.

Figure 4.3.51 Wheel Load to be Considered on Steel Deck

- Impact coefficient is based on the following formula which is based on JSHB:

Longitudinal rib i = 0.4

Lateral rib & bracket i = 20/(50+L) L: Span length of lateral rib and bracket (m)

(4) Analysis Results of Each Rib Force of MODEL-1

Table 4.3.25 Table of the Member Force of MODEL-1

nember	section	focusing case	panel point	load type	bending moment(kN·m)	shearing force(kN)
longitudi nal rib	Sec-1	Max bending moment	18	dead load	1.73	-0. 53
				T-LOAD	25, 13	-30, 92
				total	26.86	-31.44
				premium total	26, 86	-31.44
		min bending moment	25	dead load	-1, 20	-4. 52
		artic article and article arti		T-LOAD	-11, 45	-31, 19
				total	-12.66	-35, 71
		-		premium total	-12,66	-35.7
		Max shearing force	25	dead load	-1.20	-4. 52
				T-LOAD	1.00	-52.10
				total	-0.21	-56, 63
				premium total	-0, 21	-56, 63
	Sec-2	Max bending moment	17	dead load	1.23	-0.34
				T-LOAD	48.51	-61.44
				total	49,74	-61.77
				premium total	49,74	-61.77
		min bending moment	24	dead load	-0.78	-3, 12
· · · · · · · · · · · · · · · · · · ·		and a strange and strange		T-LOAD	-23, 48	-61.66
				total	-24, 27	-64.78
				premium total	-24, 27	-64, 78
		Max shearing force	24	dead load	-0.78	-3.12
	-	and an an ang tot to		T-LOAD	0.75	-102.82
	-		1 1	total	-0.03	-105.93
				premium total	-0.03	-105, 93
transvers e rib	Sec-2	Max bending moment	55	dead load	31.31	-4. 88
				T-LOAD	79.58	1.22
1				total	110.89	-3.65
	-			premium total	92.88	-3. 57
		min bending moment	5	dead load	0.00	27.36
				T-LOAD	0.00	-13.39
1				total	0.00	13.97
				premium total	-92.88	13.09
		Max shearing force	7	dead load	0.00	29.08
(T-LOAD	0.00	149.10
				total	0.00	178.15
				premium total	0.00	187.90
cross beam	Sec-12	Max bending moment	13	dead load	13.34	-2.01
				T-LOAD	89.21	0.01
				total	102.55	-1.99
	-		(premium total	121.46	-3.61
·		min bending moment	1	dead load	0.00	11.98
				T-LOAD	0.00	-7.16
				total	0.00	4.78
				premium total	-121.46	11.31
		Max shearing force	1	dead load	0.00	11.95
				T-LOAD	0.00	154.13
	×			total	0.00	166.07
				premium total	0.00	242. 24

Source: JICA Study Team

(b) Live load defl	ection list			
Member	Section	Panel Point	Load Type	deflection(mm)
Longitudinal Rib	Sec-1	18	T-LOAD	0.54
	Sec-2	17	T-LOAD	0.63
Transverse Rib	Sec-2	55	T-LOAD	0.17
Cross Beam	Sec-12	13	T-LOAD	0.01

Table 4.3.26 Table of the Deflection due to Live Load

(5) Stress Calculation of the Longitudinal Rib

- A two-type rib, that is a plate rib or a U-shaped rib, is adopted.
- Each rib is calculated as a beam structure, so that stress will be less than allowable stress.
- The typical calculation procedure is shown in the following figure.

Figure 4.3.52 Sample Calculation of the Longitudinal Rib

(6) Stress Calculation of the Cross Rib

- Cross ribs are a kind of elastic support member for longitudinal ribs.
- The typical calculation procedure is shown in the following figure.

			$A(cm^2)$	Y(cm)	$AY(cm^3)$	I(cm ⁴)
1-DECK	PL	540 * 16(SM400)	86.40	-40.80	-3525	143825
1-WEB	PL	800 * 9(SM400)	72.00	0.00	0	38400
1-LFLG	PL	200 * 10(SM400)	20.00	40.50	810	32805
			178.40		-2715	215030
		E = -2715/	178.40 = -	15.22 cm		
		I = 215030	- 178.40 *	$-15.22^2 =$	173708	cm^4
		V = -26.38 cm	m V.=	= 56.22 (m	

Bending stress $112.3*10^6$ * $-263.8 / (173708*10^4) = -17 \text{ N/mm}^2 < \sigma_{ca} = 140 \text{ N/mm}^2$ $\sigma_u =$ $\sigma_L = 112.3*10^6 * 562.2 / (173708*10^4) = 36 \text{ N/mm}^2 < \sigma_{ta} = 140 \text{ N/mm}^2$ Shear stress $16.6*10^3$ / 7200 = 2 N/mm² < τ_a = 80 N/mm² $\tau =$ Combined stress $36 / (140)^2 + (2 / 80)^2 = 0.07 < 1.2$ **κ** = (Shear Stress of Vertical Rib-Missing Part 2 * B 2 Ξ Ве $16.6*10^3$ / 7200 = 2 N/mm² $< \tau_a = 80$ N/mm² $\tau_k =$ $\tau_v = \tau_k * \; H_g \; / \; H_n = 2 \; * \; 80.0 \; / \; 52.3 = 4 \; N/mm^2 \quad < \tau_a$ Verification of Deflection Deflection due to live load $\delta = 0.2 \text{ mm} \leq \delta_a = L / 500 = 3000 / 500 = 6.0 \text{ mm}$

Source: JICA Study Team

(7) Biaxial Stress at the Cross Point of Both Webs of the Main Girder and Cross Rib

Calculation procedure of converted stress is as the follows.

- The cross point at both webs is shown in the following figure. This point has biaxial stress, main girder stress, and cross rib stress. These stresses are orthotropic respectively.

- The checking location is shown by the black dot in the sketch above.
- The maximum value is based on the checking of the right and left sides of the node point respectively, and of positive and negative stress, respectively.
- Biaxial calculation formula is shown as follows:

K = (σx / σa)2 - (σx / σa) * (σy / σa) + (σy / σa)2 + (τ / τa)2
$$\leq$$
 1.2

- σ x : Normal stress of the main girder (N/mm²)
- σ y : Normal stress of the crossbeam (N/mm²)
- σ a : Allowable tensile stress of the main girder (N/mm²)

 τx : Shear stress of the main girder (N/mm²)

- τy : Shear stress of the crossbeam (N/mm²)
- τa : Allowable shear stress of the main girder or crossbeam (N/mm²)

Where, by checking location,

FLG point $(\tau / \tau a) = (\tau x / \tau xa)$ WEB point $(\tau / \tau a) = Max((\tau x / \tau xa), (\tau y / Max(\tau xa, \tau ya)))$

- The stress of the main girder and cross ribs are calculated at every cross point.
- The calculation result is shown the following table.

Table 4.3.27 Calculation Result of the Biaxial Stress Check

1)	Main	girder	G1	Web	name :	LWEB (UFLG-side)	
			Cross	sectio	n		

	0100	a sect	1011							100
-	No.	No.	Check P'	t ox	σу	σa	τΧ	τy	τa	K
End. sup	. 1	1	FLG	0	14	140	25	0	80	0.10
	2	1	FLG	-32	11	140	22	0	80	0.15
	3	2	FLG	-52	11	140	19	0	80	0.23
	4	2	FLG	-74	11	140	16	0	80	0.37
	b	3	FLG	-84	11	140	14	0	80	0.44
	6	3	FLG	-95	11	140	10	0	80	0.53
	-	4	FLG	-98	11	140	8	0	80	0.55
	8	5	FLG	-100	11	140	5	0	80	0.57
	9	C	FLG	-97	11	140	10	0	80	0. 40
	10	6	FLG	-91	11	140	10	0	80	0.49
	12	7	FLG	-66	11	140	15	0	90	0.39
	12	7	FLO	-42	11	140	10	0	80	0.17
	14	9	FLG	-21	11	140	20	0	80	0.10
	15	10	FLG	31	0	140	22	0	80	0.13
	16	10	FLG	65	0	140	24	0	80	0.15
Int sun	17	11	FLG	102	0	210	25	0	120	0.28
int. sup	18	12	FLG	72	0	140	19	0	80	0.32
	19	12	FLG	47	0	140	17	0	80	0.15
	20	13	FLG	29	0	140	14	0	80	0.07
	21	14	FLG	17	0	140	12	0	80	0.04
	22	14	FLG	-20	11	140	9	0	80	0.05
	23	15	FLG	-25	11	140	8	0	80	0.06
	24	15	FLG	-29	11	140	6	0	80	0.07
	25	16	FLG	-26	11	140	8	0	80	0.07
	26	17	FLG	-21	11	140	9	0	80	0.05
	27	17	FLG	27	0	140	11	0	80	0.06
	28	18	FLG	41	0	140	13	0	80	0.11
	29	18	FLG	60	0	140	17	0	80	0.23
	30	19	FLG	80	0	210	19	0	120	0.17
	31	20	FLG	102	0	210	21	0	120	0.27
	32	20	FLG	138	0	210	24	0	120	0.47
Int. sup	. 33	21	FLG	173	0	210	30	0	120	0.74
	34	22	FLG	128	0	210	30	0	120	0.44
	35	22	FLG	84	0	210	28	0	120	0.21
	36	23	FLG	47	0	140	27	0	80	0.23
	37	24	FLG	-14	11	140	26	0	80	0.13
	38	24	FLG	-51	11	140	23	0	80	0.25
	39	26	FLG	-78	11	140	20	0	80	0.42
	40	26	FLG	-103	11	140	17	0	80	0.65
	41	27	FLG	-121	11	210	15	0	120	0.38
	42	28	FLG	-134	11	210	11	0	120	0.45
	43	28	FLG	-145	11	210	12	0	120	0.53
	44	29	FLG	-152	11	210	10	0	120	0.57
	45	29	FLG	-156	11	210	7	0	120	0.60
	46	30	FLG	-157	11	210	6	0	120	0.60
	47	31	FLG	-154	11	210	8	0	120	0.58
	48	31	FLG	-147	11	210	9	0	120	0.53
	49	32	FLG	-138	11	210	12	0	120	0.48
	50	32	FLG	-124	11	210	14	0	120	0.40
	51	33	FLG	-110	11	210	17	0	120	0.33
	52	34	FLG	-94	11	140	19	0	80	0.56
	53	34	FLG	-69	11	140	22	0	80	0.36
	54	35	FLG	-40	11	140	26	0	80	0. 22
End sun	1010	.5.53	P1 (-	0	4	1411	254	0	2611	11.14

Source: JICA Study Team

- Index value K is smaller than 1.2 at all of the cross points. This means that the cross ribs have

sufficient capacity for the wheel load.

(8) Calculation of Bracket

- Bracket is cantilevered out from the web of outer main girder, and located at every 2.5 m spacing, so the stress is in the transverse direction of the primary stress of the main girder.
- The considered critical condition is the case when the wheel load acts on the point at the forehead of the bracket.
- These brackets are calculated as an I-beam section with the effective width of the deck plate as the top flange.

Source: JICA Study Team

Figure 4.3.55 Sample Calculation of the Effective Width of the Bracket

Sectional Area and Moment of Inertia $A(cm^2)$ Y(cm) $AY(cm^3)$ $I(cm^4)$ PL 1-DECK 798 * 16(SM400) 127.68 -40.80 -5209 212541 800 * 9(SM400) 1-WEB PL 0 72.00 0.00 38400 1-LFLG PL 200 * 10(SM400) 20.00 40.50 810 32805 219.68 -4399 283746 -4399/ 219.68 = -20.03 cm E = I = $283746 - 219.68 * -20.03^2 =$ 195644 cm^4 $Y_u =$ $-21.57 \text{ cm}, \text{ Y}_{\text{L}} = 61.03 \text{ cm}$ Bending stress $-94.7*10^6$ * -215.7 / ($195644*10^4$) = 10 N/mm² < σ_{ta} = 140 N/mm^2 $\sigma_u =$ $-94.7*10^6*$ 610.3 / (195644*10⁴) = $-30 \text{ N/mm}^2 < \sigma_{ca} =$ 133 N/mm² $\sigma_L =$ Shear stress $\tau = 167.9*10^3$ / 7200 = 23 N/mm² < τ_a = 80 N/mm² Combined stress; $\kappa = (-29 / 140)^2 + (23 / 80)^2 = 0.13 < 1.2$ * For the Joint (attachment/spliced part) Bending stress $\sigma_{\rm u} = -94.7*10^6* -215.7/(195644*10^4) = 10 \text{ N/mm}^2 < \sigma_{\rm fa} =$ 140 N/mm² $-94.7*10^6*$ 610.3 / (195644*10⁴) = $-30 \text{ N/mm}^2 < \sigma_{ca} =$ 133 N/mm² $\sigma_{I} =$ Shear stress $\tau =$ $7200 = 23 \text{ N/mm}^2 < \tau_a = 80 \text{ N/mm}^2$ $167.9*10^{3}$ / Combined stress $-29 / (140)^{2} + (23 / 80)^{2} = 0.13 < 1.2$ κ=(

Source: JICA Study Team

Figure 4.3.56 Sample Calculation of the Bracket

(9) Calculation of the Longitudinal Side Beam

- Longitudinal side beam has the distribution function for the load between two brackets.
- This member is calculated as a beam with the effective width of the deck plate for the top flange.

Figure 4.3.57 Calculation of the Effective Width for the Longitudinal Beam

	a and Mo	ment of Inertia				
			$A(cm^2)$	Y(cm)	$AY(cm^3)$	I(cn
1-DECK	PL	194 * 16(SM400)	31.02	-20.80	-645	13421
1-WEB	PL	400 * 10(SM400)	40.00	0.00	0	5333
1-LFLG	PL	100 * 10(SM400)	10.00	17.50	175	3063
			81.02		-470	21817
		E = -470/	81.02 =	-5.80 cm		
		I = 21817	- 81.02 *	$-5.80^2 =$	19088	cm^4
		$Y_u = -15.80 c$	m, $Y_L =$	= 25.80 c	m	
Bending stress	8					
$\sigma_{\mathfrak{u}} =$	1.6*10 ⁶	* -158.0 / (1908	$8*10^4) =$	-1 N/mm	$^2 < \sigma_{ca} =$	140 N/n
$\sigma_L =$	1.6*10 ⁶	* 258.0 / (1908	$(8*10^4) =$	2 N/mr	$n^2 < \sigma_{ta} =$	140 N/1
$\kappa = ($	2/1	$(40)^2 + (0)^2$	$(80)^2 = 0.00$	0 < 1.2		
Verification of	f the Defi	ection $\delta = 0.1$ m		- T / 500 - 2	2500 / 500 -	5 0
Verification o Deflectio	f the Defi n due to i	ection ive load $\delta = 0.1 \text{ mm}$	$m \leq \delta_a =$	= L / 500 = 2	2500 / 500 =	= 5.0 mm
Verification of Deflectio Calculation of	f the Defindue to B	ection ive load $\delta = 0.1 \text{ mm}$	${\mathfrak n}~\leq~\delta_{{\mathfrak a}}$ =	= L / 500 = 2	2500 / 500 =	= 5.0 mm
Verification of Deflectio Calculation of b = 4	f the Defl n due to B Stiffener 40.0 : Ab	ection ive load $\delta = 0.1 \text{ mm}$ dominal plate height ($m \leq \delta_a =$ cm)	= L / 500 = 2	2500 / 500 =	= 5.0 mm
Verification of Deflectio Calculation of b = 4 t =	f the Defi n due to l Stiffener 40.0 : Ab 1.0 : Abc	ection ive load $\delta = 0.1 \text{ mm}$ dominal plate height (lominal plate thickness	$m \leq \delta_a =$ cm) s (cm)	= L / 500 = 2	2500 / 500 =	= 5.0 mm
Verification of Deflectio Calculation of b = 4 t = -1 $\sigma = -1$	f the Defi n due to B Stiffener 40.0 : Ab 1.0 : Ab 1 : Edge	ection ive load $\delta = 0.1 \text{ mm}$ dominal plate height (lominal plate thickness e compressive stress in	$m \leq \delta_a =$ cm) s (cm) ntensity of a	= L / 500 = 2 abdominal p	2500 / 500 = blate (N/mm	= 5.0 mm
Verification of Deflectio Calculation of b = 4 t = -7 $\sigma = -7$	f the Defl n due to H Stiffener 40.0 : Ab 1.0 : Ab 1 : Edge 0 : Shea	ection ive load $\delta = 0.1 \text{ mm}$ dominal plate height (a lominal plate thickness e compressive stress ir r stress intensity of ab	$m \leq \delta_a =$ cm) s (cm) ntensity of a dominal pl	= L / 500 = 2 abdominal p ate (N/mm ²)	2500 / 500 = blate (N/mm)	= 5.0 mm
Verification of Deflectio Calculation of b = 4 t = -4 $\sigma = -7$ $\tau = -7$ Verification	f the Defi n due to B Stiffener 40.0 : Ab 1.0 : Ab 1 : Edge 0 : Shea	ection ive load $\delta = 0.1 \text{ mm}$ dominal plate height (dominal plate thickness e compressive stress in r stress intensity of ab dominal Plate Thickness	$m \leq \delta_a =$ cm) s (cm) itensity of a dominal placess	= L / 500 = 2 abdominal p ate (N/mm ²)	2500 / 500 = plate (N/mm)	= 5.0 mm
Verification of Deflectio Calculation of b = 4 t = 5 $\sigma = 7$ $\tau = 1$ Verification $K_h = 1$	f the Defined n due to B Stiffener 40.0 : Ab 1.0 : Ab 1 : Edge 0 : Shea ion of Ab	ection ive load $\delta = 0.1 \text{ mm}$ dominal plate height (dominal plate thickness e compressive stress in r stress intensity of ab dominal Plate Thickness) = $\sqrt{(140 / 1)} = 10.8$	m $\leq \delta_a =$ cm) s (cm) itensity of a dominal pl css $\therefore K_h = 3$	abdominal p ate (N/mm ²)	2500 / 500 = plate (N/mm	²)
Verification of Deflectio Calculation of $b = -\alpha$ $t = -\alpha$ $\tau = -\alpha$ Verification $K_h = -\alpha$ $b / (-\alpha)$	f the Defined n due to B Stiffener 40.0 : Ab 1.0 : Ab 1 : Edge 0 : Shea ion of Ab $\sqrt{(\sigma_a / \sigma_b)}$ 152 * K _h	ection ive load $\delta = 0.1$ m dominal plate height (a lominal plate thickness e compressive stress in r stress intensity of ab dominal Plate Thickness) = $\sqrt{(140 / 1)} = 10.8$) = 40.0 / (152 * 1.2)	m $\leq \delta_a =$ cm) s (cm) itensity of a dominal pl ess $\therefore K_h = 1$ p = 0.2 cm	L / 500 = 2 abdominal p ate (N/mm ²) 1.2 < t = 1.0 cm	2500 / 500 = plate (N/mm)	= 5.0 mm

Figure 4.3.58 Calculation of the Longitudinal Beam
4.3.4.5 Summary of Steel Weight

(1) Quantity Table of Main Girder

- Steel materials are classified in accordance with each category, grade, and thickness.

Material SM570-H	Thickness 44	Deck PL	Linghutinal Splice	Tranaverse Splice	Girder 13316	Geder Splite	Cruss Girtler	Orman Gerdar Spine	Disphragm	Diaphragm Splitce	Grossbeam	Crissibilian Splice	Inspection: Walkerry	Total 133
1	42	1			12683		-		-	-	-	-	-	126
income of a	41	-	-		4782	-				_		-	-	47
SM570-H.5	iubtotal	-	÷	-	30761	-		-		-	-			307
SM570	38		-		8767	-	-	-	-	-	-	-	-	87
1.11	39	1	-	-	4120	-	-	-	-	-	-	-	-	41
1.1.1	30		-		0262	693		-	-		-	-	-	
	29	1	-		3223	916			-	-		-	-	41
	28	-				441			-			-		4
	27	1			3010	-								30
	26				2890	740								36
1	25					356								3
	24					929								9
	23	1			1	1272								12
	22		1		7596	1479								90
	21	1		-		9.35					-	-	-	9
	20	-	-	-	-	333		_	-			-	-	3
	19	-	-	-	-	214			-	-	-	-	-	2
	18	1.		-		468				-	-	-	-	4
	17				85340	222			-	-			-	855
	10	-	-	-	-	209		-	-	-	-	-	-	
	15	-	-	-		190		-	-	-	-	-	-	1 1
	10	-	-	-	-	4740	-	-	-	-		-	-	47
SM570 S-h	total	1	-		118528	19667			-		1	1		1381
SM5200-H	57	1	-		4897				1		1	1		40
	52	1			4400									44
1.1.1	50	1				1	920	1						
1.1	45	1		-	14432	1		1			1		1	144
	44		1				805							1
1	42	1.1			3732	1						-		37
	41	-	-		8515			-	-		-	-	-	65
SM520C-H	Subtotal	-	-	-	35976		1728	-	-	-	-		-	377
SM490YB	40	-	-		4544	_		-	-	-		-	-	45
	38		-	-	22847	-			-			-	-	228
	36		+ +	-	18398		-	-	-	-	-	-	-	183
	35	-	-	-	13652	-	-		-	-	-	-	-	138
	34	-		-	60/4	-	-	-	-		-	-	-	00
	34	-		-	6310	OFF.	-		-		-	-	-	00
	30	1	-	-	4956	999	-	-	-	-	-	-	-	60
	20	-			2977	440			-					37
	28	1		-	12441	1137	2216							157
	27	1.1	1		15061	1								150
	26		1		10828	360	1			· · · · · · · ·			· · · · · · · · ·	111
	25	-11	-		6697	1404	3846							115
	24	64136	1.0000		5531	944		12			1.0	· · · · · · · · ·		706
	23	_	-	-	2649	2103				-		-	-	47
	22	-	-		45297	1607	6812	-	-			-	-	537
	21	-		-	7869	4529				-	-	-	-	123
1.1.1	_20	-	-	-	13850	1913	-	-	-	-	-	-	-	157
	19	-	-		4700	4693	-		-	-	-	-	-	93
	18	1	-	5200	12424	024			-				-	184
ENADOUT C	t I/	64130		1003	350627	2000	10074	-	-	-	-	-		4507
SM490VA	16	255218		9200	15364	1422	120/9		1		1	-	-	2720
	15		-	-	228309	3277				-	-	-	-	2315
	14	-		9089	318352	501								3275
	13				3960	1466								54
	12				18464	586								100
	.0	1	· · · · · ·		3892	5043						-		85
	10	1		2506	53279	41637								974
	9	1.	23464	8328	1000	55822					1.000			876
SM490YA 5	sibtotal	255218	23464	19923	641620	109734	-	-	-		-		-	10495
SM490C	52	-	-	-	1316	-		-		-	-	-	-	13
	43	-	-	-	1080	-	-	-	-		-	-	-	10
Philippin -	41	-	-	-	1200	-	-	-	-	-	-	-	-	12
SM490C SU	AG	-		-	3596	-	-	-		-	-	-	-	35
SMADOR	39				10/2			-	-		-	1	1	10
SM400A	32	1			-	-	1054	-			1	-	-	1 10
	24	150185			-		tude	-	-		1			150
1	22	1.00.00			2364		1238							30
1.11.1	19	486	1	-	43838	1	2580	1000	1000	-	12852	1.000	1.000	597
	17	1	1		20690	1			1			-		206
	16	512702				1	17305		-			-		5300
	15	1.000		-	25121						7236		-	323
	13	-	-		1578						1		-	15
	12	1840	-	-				-	-		-	-	-	B
	11	-			12370	-	3178	-		-	-	-	-	155
	10	5876		-	108	-	18752	-	17174		26071	-	-	675
	9	14961	-	-	3200		80029	-	57758	-	81741	-	-	2376
Cheston a	0	5945	-		VPANA	-	interes	-		-	Interes	-	-	5
SM400A Su	DEGTAI	691995	-		109669		124138		74932	-	127900	-	-	1128
55400	21	-			-	241	-	-	-		1	-	1	-
1.11	10	-	-	-		105	-		-	-	-	-	-	-
	10	/50	-	innet	-	08		-			1	1	1	100
1.1.1	16	1	-	10004			-	-	-	-	-	1	1	100
	15	1	-	010		154			-		1		-	1
1.1.1	14	1	-	10011		102								20
1.1.1	13	1		- Courts		185			-				-	
	12	-		1		196	1	168					1.1	1.1.3
1.0.1	11		2			207		356			1			1 5
				1 10013		201							1	1

Table 4.3.28 Quantity Table of Steel Box Girder

	1	9	1090	47382	18459	_	439		23846	1	8741		17450		117407
		8					260		1						260
		. 6			2221		635					-		-	2856
		4.5			-		270	1						-	270
		3.2	1				196								196
		2.3					739								739
	SS400 Sub	total	1846	47382	56754		4283		24370		8741		17450		160826
PL S	ubtotal		1013195	70846	81883	1292189	160297	139158	24370	74932	8741	127900	17450	-	3010941
FB	SS400	65+ 6								1.1.1.1				4752	4752
		50* 6	115			758									873
FB Subtotal			115			758	S							4752	5625
L	SS400	65+ 65+ 6			-									26475	26475
U	SM490YA	320* 240* 8	92871			-									92871
1	SM400A	320+ 240+ 8	194269						1		1				194269
U.Sul	btotal		287140				1	1							287140
STK	STK400	165.2* 4.5	455											_	486
RB	SS400	13 0			254					-					254
EXP	XG11	600		1	1.11						1			8605	8605
TOB	SIOT	M 22	1 1	23171	21753		44549		10687		4086		8033		112289
HTB	FIOT	M 22			10149		1510	Q.							11959
BN	SS400	M 12			485									1296	1781
1.1	SUS304	M 16	82	1	-										82
BN Subtotal		82	1	485									1296	1863	
Chair	SUS304	5+18+42+250	54							1.1	-				54
Comp	onent Weigh	t Total	1301072	94017	114534	1292927	206656	139158	35057	74932	12827	127900	25483	41128	3465691
Total			1301072	94017	114534	1292927	206656	139158	35057	74932	12827	127900	25483	41128	3465091

Source: JICA Study Team

(2) Segment Weight for Erection Block

- The block weight is a very important factor to be considered in the erection procedure.
- The following table shows each segment's weight and assumed pre-assembly weight.

Table 4.3.29 Table of Segment Weight for Erection Block	Table 4.3.29	Table of Segment Weight for Erection Block
---	--------------	--

				unit: kgf
	G1	G2	G3	G4
Block-1	21,281	20,709	20,669	21,898
Block-2	18,733	16,952	17,489	20,162
Block-3	20,428	18,589	19,016	22,330
Block-4	20,360	18,031	18,842	22,465
Block-5	20,860	18,671	19,492	22,854
Block-6	19,886	18,150	18,528	21,737
Block-7	18,686	17,165	17,534	19,915
Block-8	18,157	17,182	17,307	18,460
Block-9	16,627	15,787	15,785	17,298
Block-10	16,820	15,953	16,438	17,746
Block-11	16,690	15,693	15,667	17,328
Block-12	18,349	17,338	17,302	18,201
Block-13	18,887	18,190	18,169	18,768
Block-14	16,277	15,669	15,683	16,148
Block-15	18,563	17,707	17,686	18,446
Block-16	16,280	15,692	15,681	16,612
Block-17	19,111	18,127	18,088	19,025
Block-18	20,688	18,432	18,430	21,074
Block-19	20,980	17,927	18,044	21,485
Block-20	21,773	19,458	19,604	22,466
Block-21	18,636	16,582	16,689	19,039
Block-22	16,979	15,177	15,312	17,215
Block-23	18,617	17,428	17,197	18,398
Block-24	20,712	18,726	18,482	20,164
Block-25	21,829	20,570	20,285	21,264
Block-26	24,244	23,782	23,011	23,459
Block-27	23,179	22,943	22,499	22,793
Block-28	20,879	20,424	20,055	20,615
Block-29	20,782	20,839	20,430	20,544
Block-30	23,125	23,411	23,154	22,838
Block-31	20,329	20,470	20,208	20,157
Block-32	19,685	18,674	18,411	19,479
Block-33	18,639	17,679	17,520	18,253

4.3.5 Detailed Design for Substructure of Steel Box Girder Bridge (7-Span Bridge)

Based on the results of the B/D, which is presented in Section 4.3.2, further studies were carried out in the D/D for the piers from P14 to P19 taking into account the updated topographic, geological, and hydrologic conditions and loads from the superstructure.

4.3.5.1 Design Conditions

(1) Standard and Design Criteria

- Specifications for Highway Bridges Part-I, IV, V 2012 (Japan Road Association)
- Design and construction handbook for Steel Sheet Pile Foundation Method 1997 (Japan Road Association)
- JIS A5530, Japanese Industrial Standard for Steel Pipe Sheet Pile
- JIS G3444 STK400, Japanese Industrial Standard for Interlocking Pipe

(2) Analytical Software for Design

- UC-1 Foundation Design developed by Forum 8 for SPSP Foundation
- UC-1 Substructure Design developed by Forum 8 for RC Pier

(3) Materials to be Used

Concrete : $\sigma_{ck} = 30 \text{ N/mm}^2$ [for pier column and beam]

: $\sigma_{ck} = 24 \text{ N/mm}^2$ [for footing (top slab concrete)]

- : $\sigma_{ck} = 21 \text{ N/mm}^2$ [for bottom slab concrete, concrete filling to steel pipe]
- Reinforcing bars: SD390 [for main reinforcement of pier column]

: SD345 [for other members]

- Reinforcing stud bars: SD345 [for connection between footing and steel sheet pile]
- Steel sheet pile : SKY400, SKY490

Estimated corrosion thickness: 2.0 mm/100 years

- Pipe-pipe interlocking joint: STK400 φ165.2 x t11

(4) Design Soil Condition

At the section of the steel box bridge, two boreholes in the F/S and four boreholes in D/D, a total of six boreholes, were performed. Boreholes at P15 and P19 are far from the center of the foundation, which are around 37 m and 28 m away, respectively. Soil profile and geotechnical design parameters were established based on the laboratory soil test results and field test results, and design parameters such as N-value, unit weight, internal friction angle, cohesive strength and deformation modulus are provided as the average value in Bago River section as presented in Chapter 2.1 Soil Investigation.

Pier No.	Boring No.	Boring Location
P14	No.BD-07 (D/D)	center of the foundation
P15	No.13BH-03 (F/S)	37 m from the center of the foundation
P16	No.BD-06 (D/D)	center of the foundation
P17	No.BD-05 (D/D)	center of the foundation
P18	No.BD-04 (D/D)	center of the foundation
P19	No.13BH-04 (F/S)	28 m from the center of the foundation

 Table 4.3.30
 Borings at Steel Box Bridge Section

Since there is a saturated soil layer having ground water level higher than 10 m below the ground surface and located at a depth less than 20 m below the ground surface, liquefaction potential is evaluated and deduction factor due to liquefaction at the time of earthquake is considered in the foundation design.

(5) Loads and Load Combinations

1) Loads

For substructure design, various forces including earth pressure, water pressure, wind loads, effect of temperature change, collision load of vessel, flowing water pressure and hydrodynamic pressure during earthquake as shown in the figure below were properly considered as critical load combination.

2) Load Combination

The design cases and corresponding allowable stress for members are shown in the following tables.

Lo	oad Combination	Design Water	Level	Water Velocity	Local Scouring	Increase of
		(MSL+r	n)	(m/s) for Flowing		Allowable
	r		-	Water Pressure		Stress
А.	Ordinary	High tide in	3.18 m	No consideration	No consideration	1.0
	Condition	spring the			Maximum	
		Low tide in	-2.39 m	No consideration	No consideration	
		spring the			Maximum	
В.	Ordinary condition with	High tide in	3.18 m	No consideration	No consideration	1.15
	effect of	spring the			Maximum	
	temperature	Low tide in	-2.39 m	No consideration	No consideration	
	change *only for	spring tide			Maximum	
	longitudinal					
	direction					
C.	Extreme wind	HHWL (1%)	4.99 m	No consideration	No consideration	1.35 *1.25 for
	situation with				1/2 6	transversal
	effect of				1/2 of maximum	direction
	temperature					
	change					
D.	Vessel Collision	High tide in	3.18 m	No consideration	No consideration	1.5
	for P14	spring tide			1/2 of maximum	
	Vessel Collision	At maximum	2.53 m	1.19 m/s	No consideration	
	for P15-P19	water flow			1/2 of maximum	
E.	Earthquake	Average	0.29 m	0.6 m/s for	No consideration	1.5
	Condition			dynamic water	1/2 of maximum	
	(Level-1)			pressure		
F.	During	HWL (5%)	4.34 m	0.65 m/s	No consideration	1.5
	Construction	Low tide in	-2.39 m			
		spring tide				

Table 4.3.31	Load Combinatior	and Allowable	Stress in Pier	Column and	Foundation Design
--------------	------------------	---------------	----------------	------------	-------------------

Source: JICA Study Team

Table 4.3.32 Load Combination and Allowable Stress in Pier Beam Design

Load Combination	Increase of Allowable Stress
Vertical Direction	
G. Ordinary Condition *live load with impact	1.0
H. Earthquake Condition	1.5
Horizontal Direction	
I. With effect of temperature change	1.15
J. Earthquake Condition	1.5

Source: JICA Study Team

3) Loads from Superstructure

Dead load and live load with/without impact from superstructure for the substructure design is summarized in the table below.

Loads	P13	P14	P15	P16	P17	P18	P19	P20
Dead Load	8,600	24,300	20,400	21,600	21,300	20,800	23,200	7,500
Live Load with Impact	4,100	7,900	7,600	7,700	7,700	7,600	7,700	3,900
ΣD+L+I	12,700	32,200	28,000	29,300	29,000	28,400	30,900	11,400
Dead Load	8,600	24,300	20,400	21,600	21,300	20,800	23,200	7,500
Live Load w/o Impact	3,600	7,000	6,800	6,900	6,800	6,700	6,800	3,400
ΣD+L	12,200	31,300	27,200	28,500	28,100	27,500	30,000	10,900
Horizontal Force due to temperature change $\pm 15^{\circ}$	900	5,400	3,100	1,200	900	3,100	5,800	800

Table 4.3.33	Dead Load and	Live Load with/without Im	pact for the Substructure Design

Note: - Values of P13 and P20 are just for reference.

- Friction force (dead load x 0.1) is considered for horizontal force at movable supports at P13 and P20.

Source: JICA Study Team

Since the structure which can distribute inertial force of earthquake into several substructures is applied for the 7-continuous spans, a shared weight on each substructure is calculated by Eigenvalue analysis using framed structure model as shown in the figure below.

Source: JICA Study Team

Figure 4.3.60 Framed Structure Model

The result is summarized in the table below.

 Table 4.3.34
 Shared Weight of Superstructure on Substructures

	Item	P13	P14	P15	P16	P17	P18	P19	P20	
В	ridge Axis Direction									
-	Shared Weight (kN)	900	23,200	23,200	24,200	25,000	25,500	26,400	800	
-	Natural period of oscillation of the bridge (second)	0.790(s)								
В	ridge Axis Perpendicular Directi	on								
-	Shared Weight (kN)	8,600	24,300	20,400	21,600	21,300	20,800	23,200	7,500	
-	Natural period of oscillation of the bridge (second)	0.52(s)	0.57(s)	0.54(s)	0.53(s)	0.53(s)	0.53(s)	0.54(s)	0.46(s)	

Note: - Values of P13 and P20 are just for reference.

- The amount of the shared weight in bridge axis direction of P13 and P20 are considered as friction force which is calculated by dead load x 0.1.

4.3.5.2 SPSP Foundation Design

(1) Design Flow

Detailed design of the SPSP foundation is carried out based on the flow as shown in the figure below.

Source: JICA Study Team

(2) Footing Top Elevation

Setting of the footing top elevation is very important because it will affect the stability of the structure in the long term and construction cost. For the design of the SPSP, in general, deeper setting of footing below the riverbed may require a thicker steel pipe and/or higher grade pile due to larger displacement and stress during construction.

Therefore, in this Project, footing top elevation is set to more than 1 m from the lowest elevation of existing riverbed among piers as shown in the table below, and projection of the footing above the riverbed after local scouring will be allowed and finally, the stability during ordinary and earthquake conditions will be considered in the design.

Pier		Scour of	Components		Riverbed	Footing Top	Scoured
No	Total	Scour for	Scour for	Contraction	Elevation	Elevation	Level
110.	Scour (m)	Pier (m)	Pile Cap (m)	Scour (m)	(MSL+m)	(MSL+m)	(MSL+m)
P14	5.15	4.03	0.76	0.36	-6.28	-8.06	-11.43
P15	5.75	4.73	0.66	0.36	-5.09	-8.06	-10.84
P16	5.09	4.11	0.63	0.36	-5.26	-8.06	-10.36
P17	3.00	2.28	0.36	0.36	-6.70	-8.06	-9.70
P18	3.01	2.12	0.53	0.36	-6.99	-8.06	-10.00
P19	2.90	2.09	0.45	0.36	-6.88	-8.06	-9.78

Table 4.3.35 Setting of Footing Top Elevation

Source: JICA Study Team

(3) Pile Tip Elevation

The tip of the steel pipe pile foundation of the well type in principle has to be supported by good soil ground layer, which assumes an N-value greater than 30 for sand soil and 20 for clay soil. In addition, the supporting layer must have a sufficient thickness not to be affected by the lower layers. Pile tip is set into the bearing layer to more than the length of the diameter of pile, namely, 1.2 m as shown in the figure below.

Source: JICA Study Team

(4) Design Model of SPSP Structure

As for the design model of the SPSP, if D < 30 m and L/D > 1 and $\beta Le > 1$, then finite-length beam on an elastic ground model is used, and if D > 30 m and $L/D \le 1$ and $\beta Le \le 1$, analysis by an imaginary

well beam that considers shear slippage of the interlocking or three dimension model is applied.

Finite-length beam on an elastic ground is applied for the design model of the SPSP structure for all foundations from P14 to P19 based on the criteria mentioned above.

Table 4.3.36 Selection of the Design Model of the SPSP Structure
--

Pier No.	P14	P15	P16	P17	P18	P19
D (m)	17.16	17.16	17.16	17.16	17.16	17.16
L/D	2.39	2.57	2.45	2.45	2.45	2.37
βLe	1.49	1.60	1.57	1.57	1.57	1.52

D (m): width of foundation: larger value among D (m) or B (m)

L (m): length of steel pipe pile

L_e (m): embedded length of foundation underground

B (1/m): characteristic factor of foundation

Source: JICA Study Team

(5) Design External Force

Design external force acting as point forces through the axis of the centroid on the center of the footing is considered for the SPSP foundation design as shown in the figure below. The external force (V_0,H_0,M_0) of the top of footing is considered. The vertical load V_0 includes weights of footing, filled concrete inside steel piles, soil on the footing and buoyancy of pier. If the footing projects due to local scouring, inertial forces working on the projected parts will be considered as distributed load in addition to the external force (V_0,H_0,M_0) of the top of footing.

Design external force acting as point forces through the axis of the centroid on the center of the bottom of the footing is considered for the SPSP foundation design as shown in the figure below.

Source: JICA Study Team

Figure 4.3.63 Point of Loading of External Forces

For critical design load combination, the combined external forces during earthquake condition (Level-1) are summarized in the table below.

	Condition									
	Load Direction	$V_0(kN)$	$H_0(kN)$	$M_0(kN.m)$						
D14	Bridge axis direction	55,800	16,200	244,000						
114	Bridge axis perpendicular direction	55,800	15,100	267,500						
D15	Bridge axis direction	51,700	15,600	238,900						
F13	Bridge axis perpendicular direction	51,700	13,600	233,800						
D16	Bridge axis direction	52,800	15,800	241,200						
110	Bridge axis perpendicular direction	52,800	13,900	238,300						
D17	Bridge axis direction	51,800	16,000	240,500						
11/	Bridge axis perpendicular direction	51,800	13,700	231,100						
D19	Bridge axis direction	51,000	16,300	239,700						
F10	Bridge axis perpendicular direction	51,000	13,600	223,700						
D 10	Bridge axis direction	53,100	16,300	240,600						
P19	Bridge axis perpendicular direction	53,100	14,200	236,200						

Table 4.3.37 Design External Force (V_0,H_0,M_0) at the top of Footing during Earthquake Condition

Source: JICA Study Team

(6) Verification of Foundation Dimension

1) Bearing Capacity and Displacement

Stability of the SPSP foundation is verified by bearing capacity and displacement and its results are summarized in the tables below.

Bri	de Axis Direction						Unit: kN
Diar		Ord	linary Condition	n^{*1}	Eart	thquake Condit	ion ^{*2}
No	Item	Vertical	Allowable	Judgement	Vertical	Allowable	Judgement
110.		Reaction	Value		Reaction	Value	
	Axial compression	1,821 <	2,855	OK	1,553 <	4.259	OK
P14	resistance	1.001	1 0 4 2	0.17	1 - 1 -	1.661	0.17
	Pulling-out	1,821 >	-1,043	OK	1,546 >	-1,661	OK
	resistance	1 720 <	2 007	OV	1 400 -	2 011	OV
	Axial compression	1,/29 <	2,007	UK	1,496 <	3,011	OK
P15	Pulling-out	1 720 >	-1.006	OK	1 375 >	1 566	OK
	resistance	1,7292	-1,000	0K	1,575 -	-1,500	0K
	Axial compression	1 752 <	2 406	OK	1 521 <	3 609	OK
D1	resistance	1,752	2,100	0IX	1,521	5,005	ÖR
P16	Pulling-out	1,752 >	-991	OK	1,408 >	-1,558	OK
	resistance				,	,	
	Axial compression	1,693 <	1,763	OK	1,510 <	2,644	OK
P17	resistance						
11/	Pulling-out	1,693 >	-893	OK	1,367 >	-1,359	OK
	resistance	1.660	1 = 1 =	0.17	1 401	0 (01	0.17
	Axial compression	1,660 <	1,/4/	OK	1,491 <	2,621	OK
P18	resistance	1 660 >	075	OV	1 2 4 2 >	1 222	OV
	Pulling-out	1,000 >	-8/3	UK	1,342 >	-1,323	UK
	Avial compression	1 724 <	1 791	OK	1 574 <	2 687	OK
	resistance	1,724 <	1,771	OK	1,574 <	2,007	0K
P19	Pulling-out	1.724 >	-850	OK	1.375 >	-1.290	OK
	resistance	-,/	000		-,0,0	-,_> 0	

Table 4.3.38 Verification of Bearing Capacity

Bridge Axis Perpendicular Direction

Unit: kN

		Ord	inary Condition	n*1	Fart	auake Conditi	on ^{*2}
Pier No.	Item	Vertical Reaction	Allowable	Judgement	Vertical Reaction	Allowable Value	Judgement
	Axial compression	1,821 <	2,855	OK	1,801 <	4,259	OK
P14	Pulling-out	1,821 >	-1,043	OK	1,299 >	-1,661	OK
	Axial compression	1,729 <	2,007	OK	1,492 <	3,011	OK
P15	Pulling-out	1,729 >	-1,006	OK	-1,379 >	-1,566	OK
	resistance Axial compression	1,752 <	2,406	OK	1,527 <	3,609	OK
P16	resistance Pulling-out	1,752 >	-991	OK	1,402 >	-1,558	OK
	resistance Axial compression	1,693 <	1,763	OK	1,481 <	2,644	OK
P17	resistance Pulling-out	1.693 >	-893	OK	1.396 >	-1.359	OK
	resistance	1 660 <	1 747	OK	1 491 <	2 621	OK
P18	resistance	1,000 <	075	OK	1,771 <	1 222	OK
	resistance	1,000 >	-8/3	UK	1,342 >	-1,323	UK
D 10	Axial compression resistance	1,724 <	1,791	OK	1,528 <	2,687	OK
P19	Pulling-out resistance	1,724 >	-850	OK	1,421 >	-1,290	OK

Note: *1: ordinary condition at low tide in spring tide w/o local scouring

*2: earthquake condition at 1/2 of maximum local scouring

Source: JICA Study Team

				Unit: cm			
Pier	Itom	Earthquake Condition ^{*1}					
No.	nem	Displacement*2	Allowable Value	Judgement			
D14	Bride Axis Direction	3.3 <	5.0	OK			
P14	Bridge axis perp. direction	3.0 <	5.0	OK			
D15	Bride Axis Direction	3.2 <	5.0	OK			
P15	Bridge axis perp. direction	2.5 <	5.0	OK			
D16	Bride Axis Direction	2.8 <	5.0	OK			
P10	Bridge axis perp. direction	2.2 <	5.0	OK			
D17	Bride Axis Direction	2.6 <	5.0	OK			
P1/	Bridge axis perp. direction	2.0 <	5.0	OK			
D10	Bride Axis Direction	2.9 <	5.0	OK			
P18	Bridge axis perp. direction	2.1 <	5.0	OK			
D 10	Bride Axis Direction	2.5 <	5.0	OK			
P19	Bridge axis perp. direction	2.0 <	5.0	OK			

Table 4.3.39 Verification of Displacement

Note: *1: earthquake condition at 1/2 of maximum local scouring

*2: displacement at design ground level

Source: JICA Study Team

2) Stress of Outer Steel Pipe Sheet Piles

In a steel pipe sheet pile foundation of the type that also serves as a temporary cofferdam, the steel

pipe sheet piles are used as cofferdam walls during the work execution. Therefore, cofferdam walls shall be verified to be safe against the loads acting during temporary work.

As the top slab concrete is placed with the steel pipe sheet piles in a deformed state, the residual stress (σ 1) due to and remaining after work execution and the stress (σ 2) occurring due to the design external forces after completion should be added. The sum (σ) shall be equal to the allowable stress (σ a) or less.

Because the stress occurring in the steel pipe sheet pile during drainage is influenced by the sequence of work execution, it is necessary to fully investigate the work sequence and execute the design according to that work.

Construction Step of Temporary Cofferdam a)

The underwater/atmospheric excavation method is applied because the stress during drainage and residual stress can be smaller. The construction step of temporary cofferdam for the case of P14 is shown in the figure below, and other cases have similar steps as that of P14.

Work activities

m

Step-1: Install 1st support and drainage up to EL+0.34

Step-2: Install 2nd support and excavate up to EL-14.56 m

Step-3: Placement of bottom slab concrete and drainage up to EL-

Source: JICA Study Team

Figure 4.3.64 Construction Step of Temporary Cofferdam by Combined Underwater and Atmospheric Excavation (P14 Case)

As explained above, at the construction step just before construction of footing concrete, namely Step-5, residual stress of the pile will be considered. Diagram of the displacement and bending moment for the case of P14 is shown in the figure below, and the maximum displacement due to moment occurs

between the lowest support and bottom slab concrete.

Source: JICA Study Team

Figure 4.3.65 Diagram of Displacement and Bending Moment at the Construction Step when Residual Stress of the Pile is Considered (P14 Case)

b) Combined stress of the pile during construction and due to the design external forces after completion

The following figure shows that combined stress is within the allowable stress under earthquake condition.

where

 σ : combined stress (= σ 1+ σ 2), σ 1 : stress after completion loads.

 $\sigma 2$: residual stress during construction, σa : allowable stress in steel pipe sheet pile

Source: JICA Study Team

Figure 4.3.66 Combined Stress for the SPSP of P14 at Earthquake Condition

Pier	Elevation (m)	$\sigma 1^{*1}$ (N/mm ²)	σ2 (N/mm ²)	σ_{max} (N/mm ²)	σa (N/mm²)	Judgement
P14	-22.09	35.86	58.61	94.48 <	140	OK
P15	-22.59	34.06	66.67	100.73 <	140	OK
P16	-12.16	34.52	64.26	98.78 <	140	OK
P17	-22.66	33.35	85.54	118.89 <	140	OK
P18	-20.16	32.71	81.03	113.74 <	140	OK
P19	-33.16	38.63	77.11	115.74 <	140	OK
Bridge Axis P	erpendicular Dire	<u>ction</u>				
Pier	Elevation (m)	$\sigma 1^{*1}$ (N/mm ²)	$\sigma 2 (N/mm^2)$	$\sigma_{max}~(N/mm^2)$	$\sigma a (N/mm^2)$	Judgement
P14	-12.16	35.86	60.90	96.76 <	140	OK
P15	-22.59	34.06	68.65	102.71 <	140	OK
P16	-12.16	34.52	68.61	103.14 <	140	OK
P17	-22.66	33.35	87.63	120.98 <	140	OK
P18	-20.16	32.71	83.20	115.91 <	140	OK
P19	-33.16	38.63	77.11	115.74 <	140	OK

Table 4.3.40Verification of SPSP (SKY400 part) Combined Stress at Ordinary ConditionBridge Axis Direction

*1: ordinary condition at low tide in spring tide w/o local scouring

Source: JICA Study Team

Table 4.3.41	Verification of SPSP	(SKY400 part) Comb	ined Stress at	Earthquake Condition
Bridge Axis Dire	ection			

Pier	Elevation (m)	$\sigma 1^{*1}$ (N/mm ²)	$\sigma 2 (N/mm^2)$	$\sigma_{ m max}$ (N/mm ²)	σ a (N/mm ²)	Judgement
P14	-21.16	126.74	58.58	185.32 <	210	OK
P15	-22.16	119.45	66.14	185.59 <	210	OK
P16	-22.06	113.95	62.61	176.56 <	210	OK
P17	-22.06	111.39	85.41	196.80 <	210	OK
P18	-20.16	125.14	81.03	206.18 <	210	OK
P19	-19.16	120.04	66.40	186.44 <	210	OK

Bridge Axis Perpendicular Direction

Pier	Elevation (m)	$\sigma 1^{*1}$ (N/mm ²)	$\sigma 2 (\text{N/mm}^2)$	$\sigma_{ m max}$ (N/mm ²)	σ a (N/mm ²)	Judgement
P14	-21.16	127.23	59.34	186.57 <	210	OK
P15	-22.59	111.90	68.65	180.55 <	210	OK
P16	-22.16	109.21	64.47	173.68 <	210	OK
P17	-22.16	105.36	87.00	193.02 <	210	OK
P18	-20.16	111.46	83.20	194.66 <	210	OK
P19	-19.16	112.04	68.44	180.48 <	210	OK

*1: earthquake condition at 1/2 of maximum local scouring

(7) Verification of Structural Members

1) Footing (Top Slab)

a) Design Sections

The footing of a steel pipe sheet pile foundation generally has a large rigidity and is rigidly connected to the steel pipe sheet piles. It can be calculated as a cantilever with the fixed end at the outer edge of the lower end of the body. Reaction by the soil under the footing inside the well will not be considered in the footing design for safety.

A verification of the sections of footing will be made at the section A-A for bending moment and section B-B for shear force as shown in figure below, and such section forces shall be calculated per unit width at the position of the steel pipe sheet pile that produces the maximum vertical reaction force.

(Bridge Axis Direction)(Bridge Axis Perpendicular Direction)Source: Design and Construction Manual Published by the Japanese Association for Steel Pipe PilesFigure 4.3.67Section Calculation Model and Design Section of Footing

b) Design Conditions

- Width of footing for design b = 100.0 cm, thickness of footing h = 400.0 cm
- Concrete design strength: 24 N/mm²
- Applied reinforcement bar: SD345 (underwater member)

c) Rebar Arrangement

P14 and P19		P15-P18		
Bridge Axis Direc	etion	Bridge Axis Direction		
Upper tension:	cover 150 mm D32@260	Upper tension:	cover 150 mm D32@260	
	cover 300 mm D32@260		cover 300 mm D32@260	
Lower tension:	cover 300 mm D51@183	Lower tension:	cover 300 mm D51@183	
	cover 500 mm D51@302		cover 500 mm D51@370	
Bridge Axis Perpe	endicular Direction	Bridge Axis Perpendicular Direction		
Upper tension:	cover 118 mm D32@209	Upper tension:	cover 118 mm D32@209	
	cover 268 mm D32@408		cover 268 mm D32@408	
Lower tension:	cover 230 mm D51@209	Lower tension:	cover 230 mm D51@209	
	cover 430 mm D51@408		cover 430 mm D51@408	

It is noted that shear reinforcement is arranged by D22@600 at chessboard patterns, which quantity is equal to approximately 0.15%, although it is not required in the calculation.

d) Verification of Stress in Footing and Content of Rebar

Design of bending moment is verified by tensile stress and content of rebar in the section as deep beam which has a deeper depth of the footing than 1/2 of design span that is the distance from the edge of pier column to the inside surface of the outer steel sheet pile.

Design of shear force is verified so that average shear stress should be within the allowable shear stress of concrete or allowable shear stress of concrete and shear reinforcement.

Verification of the footing structure is summarized in the table below.

	Bridge Axis Directio	n					
D:		Ore	dinary Condition	n*1	Eart	thquake Conditi	on ^{*2}
Pier	Item	Stress/Rebar	Allowable	Judgement	Stress/Reb	Allowable	Judgement
INO.		Content	Value	-	ar Content	Value	-
	Upper tensile stress	$\sigma_{c}: 0.00 <$	8	OK	σ _c : 2.85 <	12	OK
		$\sigma_{s}: 0.00 <$	160	OK	σs:178.13<	300	OK
D14	Lower tensile stress	$\sigma_{c}: 2.16 <$	8	OK	σ _c : 5.68 <	12	OK
P14		σ _s : 71.81 <	160	OK	σ _s :189.34<	300	OK
	Rebar Content	177.88 >	111.49	OK	177.88 >	157.11	OK
	Shear stress	$\tau_{m}: 0.33 <$	1.00	OK	τ _m : 0.85<	1.51	OK
	Upper tensile stress	$\sigma_{c}: 0.00 <$	8	OK	σ _c : 2.89<	12	OK
		$\sigma_{s}: 0.00 <$	160	OK	σ _s :180.20<	300	OK
D15	Lower tensile stress	σ_c : 2.05 <	8	OK	σ _c : 5.51<	12	OK
F13		σ_{s} :70.92 <	160	OK	σ _s :191.13<	300	OK
	Rebar Content	165.55 >	103.74	OK	165.55 >	149.10	OK
	Shear stress	$\tau_{\rm m}: 0.31 <$	0.98	OK	$\tau_{m}: 0.81 <$	1.51	OK
	Upper tensile stress	$\sigma_{c}:0.00<$	8	OK	σc:2.89<	12	OK
		$\sigma_{s}:0.00<$	160	OK	$\sigma_s:180.48 <$	300	OK
D16	Lower tensile stress	σc:2.08<	8	OK	σc:5.59<	12	OK
F 10		σ _s :72.19<	160	OK	σ _s :193.72<	300	OK
	Rebar Content	165.55 >	105.59	OK	165.55 >	151.13	OK
	Shear stress	$\tau_{m}: 0.31 <$	0.98	OK	$\tau_{\rm m}$:0.79<	1.51	OK
	Upper tensile stress	$\sigma_c: 0.00 <$	8	OK	σc:2.94<	12	OK
		$\sigma_{s}: 0.00 <$	160	OK	σ _s :183.79<	300	OK
D17	Lower tensile stress	$\sigma_c: 2.04 <$	8	OK	σ _c :5.57<	12	OK
F1/		$\sigma_{s}: 70.67 <$	160	OK	σ _s :193.03<	300	OK
	Rebar Content	165.55 >	103.37	OK	165.55 >	150.59	OK
	Shear stress	τ _m : 0.30	0.98	OK	$\tau_{m}: 0.81 <$	1.49	OK
	Upper tensile stress	$\sigma_c: 0.00 <$	8	OK	σc:3.01<	12	OK
		$\sigma_{s}: 0.00 <$	160	OK	σ _s :188.22<	300	OK
D18	Lower tensile stress	σc:2.00<	8	OK	σc:5.56<	12	OK
110		σ _s :69.39<	160	OK	σ _s :192.69<	300	OK
	Rebar Content	165.55 >	101.49	OK	165.55 >	150.32	OK
	Shear stress	$\tau_m: 0.29 <$	0.98	OK	$\tau_m: 0.81 <$	1.49	OK
	Upper tensile stress	$\sigma_c: 0.00 <$	8	OK	σc:2.91<	12	OK
		$\sigma_{s}: 0.00 <$	160	OK	σ _s :181.55<	300	OK
P19	Lower tensile stress	σc:2.04	8	OK	σc:5.52<	12	OK
117		σ _s :68.02<	160	OK	σ _s :183.90<	300	OK
	Rebar Content	177.88 >	105.83	OK	177.88 >	152.60	OK
	Shear stress	$\tau_m: 0.31 <$	1.00	OK	$\tau_m: 0.83 <$	1.53	OK
	Note: Unit stress in N/I	mm², Rebar Con	tent in cm ²				

Table 4.3.42 Verification of Footing Structure

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
No. Content Value Content Value Content Value Upper tensile stress $\sigma_c: 0.00 <$ 8 OK $\sigma_c: 2.37 <$ 12 OK $\sigma_s: 0.00 <$ 160 OK $\sigma_c: 153.16 <$ 300 OK P14 Lower tensile stress $\sigma_c: 1.77 <$ 8 OK $\sigma_c: 4.74 <$ 12 OK Rebar Content 146.67 > 88.39 OK $\sigma_s: 178.35 <$ 300 OK Shear stress $\tau_m: 0.32 <$ 0.98 OK $\tau_m: 0.81 <$ 1.49 OK Upper tensile stress $\sigma_c: 0.00 <$ 8 OK $\sigma_c: 1.97 <$ 12 OK $\sigma_s: 0.00 <$ 160 OK $\sigma_s: 1.27.35 <$ 300 OK $\sigma_s: 0.00 <$ 160 OK $\sigma_s: 1.77 <$ 300 OK $\sigma_s: 0.00 <$ 160 OK $\sigma_s: 1.27.35 <$ 300 OK $\sigma_s: 0.00 <$ 160 OK $\sigma_s: 157.74 <$ 300 OK $\sigma_s: 61.7$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Upper tensile stress $\sigma_c:0.00 <$ 8 OK $\sigma_c:2.01 <$ 12 OK $\sigma_s:0.00 <$ 160 OK $\sigma_s:129.74 <$ 300 OK Lower tensile stress $\sigma_c:1.67 <$ 8 OK $\sigma_c:4.28 <$ 12 OK
$\sigma_{s}:0.00< 160 \text{ OK } \sigma_{s}:129.74< 300 \text{ OK}$ Lower tensile stress $\sigma_{c}:1.67< 8 \text{ OK } \sigma_{c}:4.28< 12 \text{ OK}$
Lower tensile stress σ_c :1.67< 8 OK σ_c :4.28< 12 OK
$\sigma_{s}:62.83 < 160 \text{ OK } \sigma_{s}:160.91 < 300 \text{ OK}$
Rebar Content $146.67 > 83.51$ OK $146.67 > 114.07$ OK
Shear stress $\tau_{\rm m}$: 0.30< 0.98 OK $\tau_{\rm m}$: 0.74< 1.49 OK
Upper tensile stress $\sigma_c: 0.00 < 8$ OK $\sigma_c: 1.94 < 12$ OK
$\sigma_{s}: 0.00 < 160 \text{ OK } \sigma_{s}: 125.41 < 300 \text{ OK}$
p_{17} Lower tensile stress σ_c : 1.64< 8 OK σ_c : 4.18< 12 OK
$\sigma_{\rm s}:61.54 < 160 \text{ OK } \sigma_{\rm s}:157.33 < 300 \text{ OK}$
Rebar Content $146.67 >$ 81.80 OK $146.67 >$ 111.53 OK
Shear stress $\tau_{\rm m}$:0.30< 0.98 OK $\tau_{\rm m}$:0.72< 1.49 OK
Upper tensile stress $\sigma_c: 0.00 < 8$ OK $\sigma_c: 1.89 < 12$ OK
$\sigma_{s}: 0.00 < 160 \text{ OK } \sigma_{s}: 121.89 < 300 \text{ OK}$
P18 Lower tensile stress σ_c :1.61< 8 OK σ_c :4.09< 12 OK
$\sigma_{\rm s}:60.42 < 160 \text{ OK } \sigma_{\rm s}:153.99 < 300 \text{ OK}$
Rebar Content $146.67 >$ 80.13 OK $146.67 >$ 109.17 OK
Shear stress $\tau_m: 0.29 <$ 0.98 OK $\tau_m: 0.71 <$ 1.49 OK
Upper tensile stress $\sigma_c: 0.00 < 8$ OK $\sigma_c: 1.99 < 12$ OK
$\sigma_{s}: 0.00 < 160 \text{ OK } \sigma_{s}: 128.50 < 300 \text{ OK}$
Lower tensile stress σ_c :1.67< 8 OK σ_c :4.30< 12 OK
$\sigma_{\rm s}:62.99 < 160 \text{ OK } \sigma_{\rm s}:161.65 < 300 \text{ OK}$
Rebar Content $146.67 >$ 83.73 OK $146.67 >$ 114.60 OK
Shear stress $\tau_m: 0.3 <$ 0.98 OK $\tau_m: 0.74 <$ 1.49 OK

Dridgo	Avia	Dornor	adioul	nr Dira	ontion
DHUYE	AXIS	FEIDEI	Iuicuia	מו כבו ומ	

Note: Unit stress in N/mm², Rebar Content in cm²

*1: ordinary condition at low tide in spring tide w/o local scouring

*2: earthquake condition at 1/2 of maximum local scouring

2) Connection between SPSP and Footing

The required number of moment and shear reinforcement for connection between SPSP and footing by Reinforcement Stud Method is calculated as follows:

- a) Design Condition
 - Applied reinforcement bar: SD345 (underwater member), Diameter 22 mm
 - Concrete design strength: 24 N/mm²
 - Material of SPSP: SKY490
 - Joint method: Reinforcement Stud Method
- b) Required Number of Moment and Shear Reinforcement

The required number of reinforcement is 16-17 for moment and it ranges between 54 and 72 for shear. Therefore, 20 studs for moment for all piers, 72 studs for shear for P15-P19 and 76 studs for shear for P14 are arranged as shown in the figure below and it was verified by the allowable stress summarized in the table below.

Source: JICA Study Team

Figure 4.3.68 Layout of Reinforcement Stud

Bridge	Axis Direction							
Pier No	Critical	$\sigma_{\rm s}$	σ_{sa}	nb nba	Critical	$ au_{\mathrm{s}}$	τ_{sa}	ns nsa
P14	Wind+	174.1<	216.0	20≥17	Temperature	103.3<	110.4	76≥72
P15	Wind+	169.2<	216.0	20≥16	Earthquake	151.8<	180.0	72 ≥61
P16	Wind+	165.1<	216.0	20≥16	Earthquake	153.9<	180.0	72 ≥62
P17	Temperature Wind+	164.4<	216.0	20≥16	Earthquake	153.0<	180.0	72 ≥62
P18	Temperature Wind+	169.2<	216.0	20≥16	Earthquake	152.7<	180.0	72 ≥62
P19	Temperature Wind+	175.0<	216.0	20≥17	Earthquake	154.9<	180.0	72 ≥62
	Temperature							

Table 4.3.43 Verification of Connection between SPSP and Footing

Bridge Axis Perpendicular Direction

Pier No.	Critical condition	$\sigma_{\rm s}$	$\sigma_{\rm sa}$	nb nba	Critical condition	$\tau_{\rm s}$	τ_{sa}	ns nsa
P14	Wind	152.9<	200.0	20≥16	Earthquake	147.7<	180.0	76≥63
P15	Wind	152.9<	200.0	20≥16	Earthquake	139.8<	180.0	72 ≥56
P16	Wind	152.9<	200.0	20≥16	Earthquake	142.3<	180.0	72 ≥57
P17	Wind	152.9<	200.0	20≥16	Earthquake	137.8<	180.0	72≥56
P18	Wind	152.9<	200.0	20≥16	Earthquake	134.9<	180.0	72 ≥54
P19	Wind	152.9<	200.0	20≥16	Earthquake	141.5<	180.0	72 ≥57

Note:

 σ s: tensile stress of the moment reinforcing bar caused by moment and horizontal force (N/mm²) σ sa: allowable tensile stress of the reinforcing bar (N/mm²)

nb: number of moment reinforcement nba: required number of moment reinforcement

ts: shear stress of shear reinforcement (N/mm²)

tsa: allowable shear stress (N/mm²)

ns: number of shear reinforcement nsa: required number of shear reinforcement

Source: JICA Study Team

3) Connection between Footing and Pile Head of Bulkhead Piles

The pile head of the bulkhead part of the SPSP will be inserted and rigidly connected by reinforcing bars with the footing, and it has been verified in terms of stress and content of reinforcement as follows:

- a) Design Condition
 - Applied reinforcement bar: SD345 (underwater member)
 - Concrete design strength: 24 N/mm²
- b) Rebar Arrangement

Steel pile is inserted at 100 mm to the footing and it is fixed by 12 numbers of main reinforcements of φ 29 mm and filled concrete as shown in the figure below.

Source: JICA Study Team

Figure 4.3.69 Detail of Pile Head Connection

c) Verification of Required Content of Reinforcement and Stress

The result of the verification of the connection between footing and bulkhead pile for the case of critical condition is summarized in the table below.

Table 4.3.44 Verification of Connection between Footing and Bulkhead Pile

Bridge Axis Direction

Pier No.	Critical Condition	Load on th	ne Pile Head	Content of Rebar	Required Content of	σ _s (N/mm ²)	σ_{sa} (N/mm ²)
		Moment (kN.m)	Axial Load (kN)	(cm ²)	Rebar (cm ²)	× ,	× ,
P14	Earthquake	348.0	Min-718 Max 3588	77.1 >	56.7	222.8	300.0
P15	Earthquake	335.0	Min-747 Max 3395	77.1 >	57.1	223.7	300.0
P16	Earthquake	327.0	Min-676 Max 3370	77.1 >	53.3	209.5	300.0
P17	Earthquake	320.0	Min-655 Max 3306	77.1 >	51.8	204.0	300.0
P18	Earthquake	327.0	Min-719 Max 3322	77.1 >	55.2	216.8	300.0
P19	Earthquake	327.0	Min-660 Max 3380	77.1 >	52.6	207.0	300.0
			101ax 3500				

d) Required Anchorage Length of Reinforcing Bars

Anchorage length of reinforcing bars, L = 1,200 mm, from the main reinforcement of footing must be longer than $L0+10 \text{ x} \text{ }\phi$.

$$Lo = \frac{\sigma \, \text{sa}}{4 \cdot \tau \, \text{oa}} \phi = 906 \quad (\text{mm})$$

 $L \ge Lo + 10 \ge \phi = 1,196 \text{ (mm)}$

 $\sigma sa:$ allowable tensile stress of the reinforcing bar 200.00 (N/mm^2)

тsa: allowable shear stress 1.600 (N/mm²)

 ϕ : Diameter of Reinforcing bar: $\phi 29~mm$

4.3.5.3 RC Pier

(1) Verification of RC Pier Column

1) Design Section

A verification of the sections of pier column will be made at the section A-A against bending moment and shear force in each bridge axis and axis perpendicular direction as shown in the figure below.

Source: JICA Study Team

Figure 4.3.70 Design Section of Pier Column

2) Design Condition

- Applied reinforcement bar: SD345 for shear reinforcement, SD390 for main reinforcement (underwater member)
- Concrete design strength: 30 N/mm²

3) Sectional Forces at the Bottom of the Pier Column

Sectional forces at the bottom of the pier column during earthquake condition as critical load for the design are summarized in the table below. The force due to the hydrodynamic pressure during earthquake is included in the shear force, S, and bending moment, M.

	Load Direction	V (kN)	S (kN)	M (kN.m)
D14	Bridge axis direction	48,500	15,700	243,600
P14	Bridge axis perpendicular direction	48,500	14,800	266,700
D15	Bridge axis direction	44,300	15,600	239,300
P13	Bridge axis perpendicular direction	44,300	13,600	235,300
D16	Bridge axis direction	45,200	15,800	241,500
P10	Bridge axis perpendicular direction	45,200	13,800	238,300
D17	Bridge axis direction	44,500	15,900	239,900
P1/	Bridge axis perpendicular direction	44,500	13,600	230,900
D 10	Bridge axis direction	43,700	16,000	239,700
P18	Bridge axis perpendicular direction	43,700	13,400	224,400
D 10	Bridge axis direction	45,800	16,200	241,500
P19	Bridge axis perpendicular direction	45,800	14,000	236,300

Table 4.3.45 Sectional Force in Earthquake Condition

Source: JICA Study Team

4) Rebar Arrangement

- a) Main Reinforcement
- Main reinforcement is arranged as shown in the figure below, and no deduction of the rebar is made through the pier column.

Figure 4.3.71 Rebar Arrangement (Main Reinforcement)

- b) Shear Reinforcement
- Lateral tie to avoid the column from buckling due to shear force: D22, double reinforcement, 150

mm pitch through the column

- Intermediate hoop to avoid the lateral tie from jutting outside: 8 nos. for bridge axis direction and 4 nos. for bridge axis perpendicular direction per cross section, 150 mm pitch through the column

5) Verification

Pier column structure is verified by compressive stress of concrete, tensile stress of rebar, shear stress and content of shear reinforcement. The result of verification at earthquake condition which is critical condition for pier column design is summarized in the table below. Since average shear stress is over allowable stress that only concrete resists against shear force, shear reinforcement is arranged to meet the requirement.

Table 4.3.46 Verification of Pier Column Stress at Earthquake Condition

Bridge Axis Direction

Pier No.	Compre Stress (N	ssive /mm ²)	Tensile S (N/mr	Stress n ²)	Shear (N/	r Stress mm ²)	She Reinfor Content	ear cement (mm ²)	Judgement
	$\sigma_{\rm c}$	σ_{ca}	$\sigma_{\rm s}$	σ_{sa}	$\tau_{ m m}$	τ_{a1}, τ_{a2}	Aw	Aw _{Req}	
P14	12.1<	15.0	330.6<	345.0	0.40<	0.28,2.85	3871.0>	747.7	OK
P15	11.9<	15.0	333.5<	345.0	0.40<	0.28,2.85	3871.0>	733.8	OK
P16	12.0<	15.0	335.2<	345.0	0.40<	0.27,2.85	3871.0>	766.5	OK
P17	11.9<	15.0	334.0<	345.0	0.41<	0.28,2.85	3871.0>	779.0	OK
P18	11.9<	15.0	335.8<	345.0	0.41<	0.28,2.85	3871.0>	796.2	OK
P19	12.0<	15.0	333.6<	345.0	0.42<	0.28,2.85	3871.0>	828.8	OK

Bridge Axis Perpendicular Direction

Pier No.	Compre Stress (N	ssive /mm ²)	Tensile S (N/mr	Stress n ²)	Shear (N/	r Stress mm ²)	She Reinford Content	ear cement (mm ²)	Judgement
	σ_{c}	σ_{ca}	σ_{s}	$\sigma_{\rm sa}$	τ_{m}	τ_{a1}, τ_{a2}	Aw	Aw_{Req}	
P14	7.1<	15.0	142.8<	345.0	0.37<	0.21,2.85	2322.6>	359.0	OK
P15	6.2<	15.0	121.1<	345.0	0.34<	0.21,2.85	2322.6>	293.5	OK
P16	6.3<	15.0	121.5<	345.0	0.35<	0.21,2.85	2322.6>	305.1	OK
P17	6.1<	15.0	115.5<	345.0	0.34<	0.21,2.85	2322.6>	293.0	OK
P18	5.9<	15.0	110.8<	345.0	0.34<	0.21,2.85	2322.6>	282.6	OK
P19	6.3<	15.0	117.4<	345.0	0.35<	0.21,2.85	2322.6>	316.2	OK

oc: Compressive Stress of Concrete

σca: Allowable Compressive Stress of Concrete

 σ s: Tensile Stress of Rebar σ sa: Allowable Tensile Stress of Rebar

TM: Average Shear Stress Ta1: Allowable Shear Stress if only concrete resists against shear force

Ta2: Allowable Shear Stress if both concrete and shear reinforcement resist against shear force

Aw: Shear reinforcement content Awreq: Required shear reinforcement content in ra1 <rm

Source: JICA Study Team

(2) Verification of Beam at Pier Head

1) Design Section

Since the distance from the front of the column to the loading point (bearing), l, is smaller than the height of beam, h, namely $h/l=7000/1548=4.5\geq1.0$, this kind of beam will be designed as a corbel. And, design section (A-A) is set at 400 mm inside of column because of the oval column shape as shown in the figure below. It will be verified at A-A section in terms of bending moment and shear. The section at h/2 (=3500 mm) from A-A section is outside of the beam, so verification of shear force will be made only at A-A section.

Source: JICA Study Team

Figure 4.3.72 Design Section of Pier Head Beam

2) Design Loads

Design loads for verification of the beam structure are summarized in the table below, and the largest values among piers for each condition are used for the verification.

Condition	Load Component	P14	P15	P16	P17	P18	P19
Vertical direction							
Ordinary Condition	Dead Load at G1 girder	6,100	5,100	5,500	5,400	5,200	5,800
(Dead + Live Loads)	Live Load with Impact at G1 girder	2,100	2,000	2,100	2,100	2,000	2,000
	Weight of Beam	1,578	1,578	1,578	1,578	1,578	1,578
_	Total	9,778	8,678	9,178	9,078	8,778	9,378
Earthquake	Dead Load at G1 girder	6,100	5,100	5,500	5,400	5,200	5,800
Condition	Weight of Beam	1,578	1,578	1,578	1,578	1,578	1,578
(Dead Load + Effect	Vertical reaction force due to	1,400	1,200	1,200	1,200	1,200	1,300
of earthquake)	earthquake from Superstructure ^{*1}						
	Total	9,078	7,878	8,278	8,178	7,978	8,678
Bridge axis perpendic	ular direction						
Earthquake	Inertia force of superstructure	2,400	2,100	2,200	2,100	2,100	2,300
Condition	-						
Bridge axis direction							
Effect of	Horizontal force due to	1,400	500	300	300	800	1,500
temperature change	temperature change						
Earthquake	Inertia force on the beam	473	473	473	473	473	473
Condition	Inertia force on superstructure	1,800	1,800	1,900	1,900	2,000	2,000
	Total	2.273	2.273	2.373	2.373	2.473	2.473

Table 4.3.47 Design Loads for Beam Design

Note: *1: It is calculated in accordance with Chapter 15.4 of Specifications for Highway Bridges Part-V 2012.

3) Design condition

- Applied reinforcement bar: SD345 for main reinforcement, stirrup
- Concrete design strength: 30 N/mm²

4) Rebar Arrangement

Main reinforcement and stirrup at the design section (A-A) is arranged as shown in the figure below.

Location	Cover (mm)	Diameter	Arrangement
Upper (main	150	D32	24@155.8 in average
reinforcement)	250	D32	13@287.7 on average
Lower	150	D32	5@282 in average
Side	103	D22	(125+20@300+200) x 2 sides
Stirrup	-	D22	150mm pitch

Source: JICA Study Team

Figure 4.3.73 Rebar Arrangement (Main Reinforcement)

5) Verification of Reinforcement Content (Vertical Bridge Axis Perpendicular Direction)

As for the section against bending moment at vertical bridge axis perpendicular direction, it is verified by the reinforcement content of tension rebar arranged at upper beam and side rebar by corbel design, and the result is summarized in the table below.

Table 4.3.48 Verification of Reinforcement Content at Vertical Direction of Beam

Item	Unit	Ordinary Condition (Dead Load)	Ordinary Condition (Dead and Live Loads)	Earthquake Condition
Design Tensile Force (T)	kN	2,454.8	3,161.0	5,325.6
Allowable Tension Stress (σ_{sa})	N/mm ²	100.00	180.00	300.00
Tensile Reinforcement Arranged Content (Asu) Required Content (AsuReq ^{*1})	mm ²	Asu ≥ AsuReq OK 30,973.80 24,547.28	Asu ≥ AsuReq OK 30,973.80 17,561.19	Asu ≥ AsuReq OK 30,973.80 17,751.95
Reinforcement at Sides Arranged Content (Ass) Required Content (AssReq ^{*2})	mm ²	Ass ≥ AssReq OK 17,806.60 12,389.52	Ass ≥ AssReq OK 17,806.60 12,389.52	Ass ≥ AssReq OK 17,806.60 12,389.52

Note: *1: $AsuReq = 1000 \cdot T / \sigma sa$

*2: AssReq = 0.4 • Asu

6) Verification for Bending Moment (Horizontal Bridge Axis Direction)

As for the section against bending moment at horizontal bridge axis direction, it is verified by the compressive and tensile stress occurring at section A-A by the allowable stress method, and the result is summarized in the table below.

Item	Unit	Effect of Temperature Change	Earthquake Condition
Bending Moment (M)	kN.m	2,922 (= 1,500 kN x 1.948 m)	4,597 (= 473 kN x 1.48 m + 2000 kN x 1.948 m)
Distance between edge of compressive side and neutral axis (x)	Mm	538	538
Compressive Stress σ_c Tensile Stress σ_s	N/mm ² N/mm ²	$0.86 < \sigma_{ca} \\ 80.88 < \sigma_{sa}$	1.36 <σ _{ca} 127.23 <σ _{sa}
Coefficient Increase of Allowable Stress α Allowable Compressive Stress σ_{ca} Allowable Tensile Stress σ_{sa}	N/mm ² N/mm ²	1.15 11.50 207.00	1.50 15.00 300.00

Source: JICA Study Team

7) Verification of Shear Force (Horizontal Bridge Axis Direction)

As for the section against shear force at horizontal bridge axis direction, it is verified by the shear stress occurring at section A-A by the allowable stress method, and the result is summarized in the table below. Content of stirrup is 774.2 mm², which is equivalent to approximately 0.2% at the minimum, although arrangement is not required.

Table 4.3.50 Verification of Shear Stress at Horizontal Direction of Beam

Item	Unit	Effect of Temperature Change	Earthquake Condition
Sectional Force			
Shear Force (S)	kN	1,500	2,474
Bending Moment (M)	kN.m	2,922	4,597
Effective Height (d)	mm	3,645	3,645
Shear Force considering Effective Height (Sh) ^{*1}	kN	1,500	2,474
Coefficient Increase of			
Allowable Stress (α)	-	1.15	1.50
Ratio of rebar (pt) ^{*2}	%	0.050	0.050
Coefficient of allowable shear	-	0.668	0.668
stress related to "d" (ce)			
Coefficient of allowable shear	-	0.601	0.601
stress related to "pt"(cpt)			
$ au_{ m m}$	N/mm ²	0.067 <	0.111 <
τ_{a1}	N/mm ²	0.115	0.148
τ_{a2}	N/mm ²	2.185	2.850
Shear Reinforcement Content			
Aw	mm^2	774.2	774.2
AwReq	mm^2	0.0	0.0
1			

Note: *1: Sh=M-M/d x (tan β +tan γ), β and γ = zero in this case *2: pt=As/(b x d) Source: JICA Study Team

8) Verification of Bridge Seat

a) Seating Length at P13 and P20

The seating length, which is defined as the distance between the edge of the girder and the edge of the top of substructure in longitudinal direction, should be long enough to prevent departure and unseating of the superstructure from the top of the substructure. The required value (S_{EM}) can be calculated at the equation below as specified in the JSBH.

 $S_{EM} = 0.7 + 0.005 \text{ x}$ span length (m)

Pier No.	P13	P20	
Span Length	110.8m	103.1m	
Required Seating Length (S _{EM})	1.254m	1.216m	
Seating Length	3.550m	2.150m	
Judge	OK	OK	

Table 4.3.51Verification of Seating Length

Source: JICA Study Team

b) Bearing Edge Distance (S)

The bearing edge distance (S), which is defined as the distance between the center of anchor bolt of bearing and the edge of the top of the substructure, shall be equal to or larger than the following value:

 $S \ge 0.2 + 0.005 x$ span length (m)

Pier No.	P13	P14	P15	P16	P17	P18	P19	P20
Span Length	110.8m	112m	112m	112m	112m	112m	112m	103.1m
Minimum	0.754m	0.76m	0.76m	0.76m	0.76m	0.76m	0.76m	0.72m
Edge								
Distance								
Edge	1.157m	0.802m	0.802m	0.802m	0.802m	0.802m	0.802m	0.757m
Distance (S)								
Judge	OK							
•								

Table 4.3.52 Verification of Bearing Edge Distance

Source: JICA Study Team

c) Bridge Seat Strength

Bridge seats is designed with sufficient strength to withstand the vertical and horizontal forces through bearings. Horizontal force (design horizontal seismic force) transmitted from the bearings is resisted by concrete and reinforcement. The resisting area of concrete is the summation of three planes in directions of sideward and downward with edge angles of 45 degrees as shown in figure below.

Planes for resisting against forces

Source: JSBH

Figure 4.3.74 Image of Resisting area of Concrete

The bridge seats against design horizontal seismic force is verified as follows:

Evaluation of strength

 $P_{bs} = Pc + Ps$ ($Pc \ge Ps$), $P_{bs} \ge$ Design horizontal seismic force ($P_h(N)$)

Where,

P_{bs}	: Strength of bridge seat (N)
	Note that the strength is determined under the condition that the strength borne by
	reinforcements does not exceed that borne by concrete.
Pc	: Strength borne by concrete (N)
	$Pc = (\alpha \cdot 0.32 \cdot \sqrt{\sigma_{ck}} \cdot Ac) / 1000.0$
$\mathbf{P}_{\mathbf{s}}$: Strength borne by reinforcement (N)
	$Ps = \Sigma \{\beta \cdot (1 - h_i / da) \cdot \sigma_{sy} \cdot A_{si}\} / 1000.0$
α	: Coefficient for determining the strength borne by concrete
σ_{n}	: Bearing stress at bottom of bearing support against vertical force (N/mm ²)
σ_{ck}	: Design strength of concrete (N/mm ²)
Ac	: Resistance area of concrete (mm ²)
β	: Correction factor associated with the strength borne by reinforcement
\mathbf{h}_{i}	: Distance from bridge seat surface of i th reinforcement (m)
da	: Distance from center of anchor bolt in the rear side of bearing support to bridge seat edge
$\sigma_{\rm sy}$: Yield point of reinforcement (N/mm ²)
Asi	: Cross sectional area of i th reinforcement (mm ²)

The calculation results is summarized in table below.

Table 4.3.53	Verification	Result of Bridge	Seat Strength
	D M.		D10

Pier No.	Р	19
Girder	G1&G4	G2&G3
Design horizontal seismic force Ph (kN) *per bearing	2,000	2,000
Resistance area of concrete Ac (mm ²)	5,901,000	14,771,000
Bearing stress at bottom of bearing support against vertical	2.50	2.53
force σ n (N/mm ²)		
Coefficient for determining the strength borne by concrete	0.30	0.30
Strength borne by concrete Pc (kN)	3,050	7,700
Strength borne by reinforcement Ps (kN)	2,090	3,140
Strength of bridge seat Pbs (kN)	5,140	10,840
Judge (Pbs≧Ph)	OK	OK
Source: JICA Study Team		

4.3.5.4 Structure Drawing

Through the basic design and the detailed design presented in Sections 4.3.2 and 4.3.4, the substructure of P14-P19 is designed in terms of economical and structural aspects. The structural drawing is shown in the figure below.

PIER No.	STATION				Elevation (m)			
1121110		EL0 (H)	EL1	EL2	EL3	EL4	EL5	EL6
P14	1+424	+13.840m (21.9m)	+4.840m	-6.276m	-8.060m	-8.850m	-11.430m	-49.160m
P15	1+536	+13.540m (21.6m)	+4.840m	-5.091m	-8.060m	-7.970m	-10.840m	-52.160m
P16	1+648	+13.240m (21.3m)	+4.840m	-5.262m	-8.060m	-7.810m	-10.360m	-50.160m
P17	1+760	+12.840m (20.9m)	+4.840m	-6.695m	-8.060m	-8.200m	-9.700m	-50.160m
P18	1+872	+12.540m (20.6m)	+4.840m	-6.989m	-8.060m	-8.490m	-10.000m	-50.160m
P19	1+984	+12.240m (20.3m)	+4.840m	-6.878m	-8.060m	-8.330m	-9.780m	-48.660m

Source: JICA Study Team

Figure 4.3.75 Structure Drawing of Substructure of P14-P19

4.3.5.5 Quantities of Major Items of Substructure

Quantity of the major items of the substructure for the steel box girder bridge is calculated for cost estimation and it is summarized in the following table.

Item	P14	P15	P16	P17	P18	P19	Total
SPSP (ton)							
Permanent part	629.6 t	673.8 t	644.4 t	644.4 t	644.4 t	622.3 t	3,858.8 t
Temporary part	193.3 t	1,159.8 t					
Concrete (m ³)							
24 MPa	493 m ³	2,958 m ³					
30 MPa	971 m ³	958 m ³	946 m ³	930 m ³	917 m ³	905 m ³	5,627 m ³
Re-bar (ton)							
D13-D32	95.0 t	570.0 t					
D38-D51	99.6 t	97.5 t	96.7 t	95.7 t	94.9 t	95.4 t	579.7 t

Table 4.3.54 Quantity of the Major Items of the Substructure for the Steel Box Girder Bridge

Source: JICA Study Team

4.3.6 Detailed Design for Substructure of Steel Box Girder Bridge (3-Span Bridge)

4.3.6.1 Design Conditions

(1) Standard and Design Criteria

The same standard and design criteria as 7-Span Bridge will be applied.

(2) Analytical Software for Design

The same analytical software as 7-Span Bridge will be used.

(3) Materials to be Used

Concrete : $\sigma_{ck} = 30 \text{ N/mm}^2$ [for pier column and beam]

: $\sigma_{ck} = 24 \text{ N/mm}^2$ [for footing (top slab concrete)]

: $\sigma_{ck} = 21 \text{ N/mm}^2$ [for bottom slab concrete, concrete filling to steel pipe]

- Reinforcing bars: SD345 [for all members]
- Reinforcing stud bars: SD345 [for connection between footing and steel sheet pile]
- Steel sheet pile : SKY400, SKY490

Estimated corrosion thickness: 2.0 mm/100 years

- Pipe-pipe interlocking joint: STK400 φ165.2 x t11

(4) **Design Soil Condition**

At the section of the 3-span of steel box bridge, two boreholes drilling were performed in D/D. Boreholes for P6 is far from the center of the foundation, which are around 26 m away.

Pier No.	Boring No.	Boring Location
P6	No.BD-18 (D/D)	26 m from the center of the foundation
P7	No.BD-13 (D/D)	center of the foundation

Table 4.3.55 Borings at Steel Box Bridge Section

Since there is a saturated soil layer having ground water level higher than 10 m below the ground surface and located at a depth less than 20 m below the ground surface, liquefaction potential is evaluated and deduction factor due to liquefaction at the time of earthquake is considered in the foundation design.

(5) Loads and Load Combinations

1) Loads

The same loads for substructure design as 7-span bridge will be considered.

2) Load Combination

The design cases and corresponding allowable stress for members are same as 7-span bridge except vessel collision case, which is shown in the following table.

Table 4.3.56 Load Combination and Allowable Stress in Pier Column and Foundation Design

Lo	oad Combination	Design Water I (MSL+m)		Level)	Water Velocity (m/s) for Flowing Water Pressure	Local Scouring	Increase of Allowable Stress	
D.	Vessel Collision for P6,P7	High spring	tide tide	in	3.18 m	No consideration	No consideration 1/2 of maximum	1.5

Source: JICA Study Team

3) Loads from Superstructure

Dead load and live load with/without impact from superstructure for the substructure design is summarized in the table below.

Table 4.3.57	Loads from Su	perstructure fo	or the Substructure	e Design

Unit: kN

Loads	P5	P6	P7	P10
Dead Load	7,200	16,700	21,400	9,000
Live Load with Impact	2,700	4,700	5,400	2,900
ΣD+L+I	9,900	21,400	26,800	11,900
Dead Load	7,200	16,700	21,400	9,000
Live Load w/o Impact	2,500	4,500	5,200	2,700
ΣD+L	9,700	21,200	26,600	11,700
Horizontal Force due to temperature change $\pm 15^{\circ}$	400	200	200	500

Values of P5 and P10 are loads only from 3-span bridge.

Source: JICA Study Team

Since the structure which can distribute inertial force of earthquake into several substructures is applied for the 3-continuous spans, a shared weight on each substructure is calculated by Eigenvalue analysis using framed structure model as shown in the figure below.

Source: JICA Study Team

Figure 4.3.76 Framed Structure Model

The result is summarized in the table below.

	Table 4.3.58	Shared Weight of Su	perstructure or	Substructures
--	--------------	---------------------	-----------------	---------------

	Item	P5	P6	P7	P10	
B	ridge Axis Direction					
-	Shared Weight (kN)	12,800	15,300	14,500	11,800	
-	Natural period of oscillation of the bridge (second)	1.60(s)				
B	ridge Axis Perpendicular Direction					
-	Shared Weight (kN)	6,700	16,300	23,100	8,400	
-	Natural period of oscillation of the bridge (second)	0.28(s)	0.38(s)	0.45(s)	0.51(s)	
		0.45(s) in oscillation unit consisting of all				
		substructu	ires			

Values of P5 and P10 are loads only from 3-span bridge.

Source: JICA Study Team

4.3.6.2 SPSP Foundation Design

(1) **Design Flow**

Design flow of the SPSP foundation is same as that of 7-span bridge.

(2) Footing Top Elevation

Since it is located at the riverbank, footing top elevation is set to deeper one, of which more than 1 m from the elevation of existing riverbed or from the lowest water level (L.W.L.=-2.39m) to prevent projection of steel pipe above the water.

Diar	Scour of Components				Riverbed	Footing Top	Scoured
No	Total	Scour for	Scour for	Contraction	Elevation	Elevation	Level
INO.	Scour (m)	Pier (m)	Pile Cap (m)	Scour (m)	(MSL+m)	(MSL+m)	(MSL+m)
P6	3.84	3.15	0.36	0.33	-1.72	-3.45	-5.56
P7	2.32	1.01	0.99	0.33	-5.35	-6.35	-7.67

 Table 4.3.59
 Setting of Footing Top Elevation

(3) Pile Tip Elevation

Pile tip is set into the bearing layer of Clayey Sand-II with N-value 50 (sand soil) to more than the length of the diameter of pile 1.2 m, and the pile tip elevation is EL-54.660m at P6 and EL-56.660m at P7 as shown in the figure below.

Source: JICA Study Team

Figure 4.3.77 Soil Profile and Pile Tip Position

(4) Design Model of SPSP Structure

Finite-length beam on an elastic ground is applied for the design model of the SPSP structure for all foundations of P6 and P7 as same as the cases of 7-span bridge.

Table 4.3.60 Selection of the Design Model of the SPSP Structure

Pier No.	P6	P7
D (m)	21.7	20.1
L/D	2.37	2.50
βLe	1.46	1.45

D (m): width of foundation: larger value among D (m) or B (m)

L (m): length of steel pipe pile

Le (m): embedded length of foundation underground

B (1/m): characteristic factor of foundation

Source: JICA Study Team

(5) Design External Force

For critical design load combination, the combined external forces during earthquake condition (Level-1) are summarized in the table below.

	Load Direction	$V_{o}(kN)$	$H_0(kN)$	$M_0(kN.m)$
P6	Bridge axis direction	45,335	11,100	123,800
	Bridge axis perpendicular direction	45,335	10,800	146,600
P7	Bridge axis direction	48,932	11,700	153,600
	Bridge axis perpendicular direction	48,932	13,100	219,800

Table 4.3.61 Design External Force (V₀,H₀,M₀) at the top of footing during Earthquake

Source: JICA Study Team

(6) Verification of Foundation Dimension

1) Bearing Capacity and Displacement

Stability of the SPSP foundation is verified by bearing capacity and displacement and its results are summarized in the tables below.

Table 4.3.62	Verification	of Bearing	Capacity
--------------	--------------	------------	----------

Bri	de Axis Direction						Unit: kN
D:		Ord	linary Condition	n^{*1}	Eart	hquake Condit	ion ^{*2}
Pier	Item	Vertical	Allowable	Judgement	Vertical	Ållowable	Judgement
No.		Reaction	Value	U	Reaction	Value	0
	Axial compression	1,567<	3,946	OK	1,379<	5,919	OK
D	resistance	-	-			-	
PO	Pulling-out	1,567>	-1,863	OK	1,288>	-3,196	OK
	resistance	-	-			-	
	Axial compression	1,554<	3,273	OK	1,412<	4,909	OK
P7	resistance						
	Pulling-out	1,544>	-1,686	OK	1,306>	-2,855	OK
	resistance						

Bridge Axis Perpendicular Direction

Unit: kN

Dian	Ordinary Condition ^{*1}			Earthquake Condition ^{*2}			
No	Item	Vertical	Allowable	Judgement	Vertical	Allowable	Judgement
INO.		Reaction	Value	-	Reaction	Value	-
	Axial compression	1,567<	3,946	OK	1,388<	5,919	OK
D6	resistance						
10	Pulling-out	1,567>	-1,863	OK	1,279>	-3,196	OK
	resistance						
P7	Axial compression	1,554<	3,273	OK	1,390<	4,909	OK
	resistance						
	Pulling-out	1,544>	-1,686	OK	1,328>	-2,855	OK
	resistance						

Note: *1: ordinary condition at low tide in spring tide w/o local scouring *2: earthquake condition at 1/2 of maximum local scouring

Source: JICA Study Team

Table 4.3.63	Verification	of Displaceme	nt
--------------	--------------	---------------	----

Pier	Itare	Earthquake Condition ^{*1}			
No.	Item	Displacement*2	Allowable Value	Judgement	
D6	Bride Axis Direction	2.2cm <	5.0cm	OK	
Po ·	Bridge axis perp. direction	1.6cm <	5.0cm	OK	
D7	Bride Axis Direction	1.9cm <	5.0cm	OK	
P/ -	Bridge axis perp. direction	1.8cm <	5.0cm	OK	

Note: *1: earthquake condition at 1/2 of maximum local scouring *2: displacement at design ground level

2) Stress of Outer Steel Pipe Sheet Piles

As explained in 7-span bridge part, cofferdam walls shall be verified to be safe against the loads acting during temporary work.

a) Construction Step of Temporary Cofferdam

The underwater/atmospheric excavation method is applied because the stress during drainage and residual stress can be smaller. The construction step of temporary cofferdam for the case of P7 is shown in the figure below, and P6 cases have similar steps as that of P7.

Source: JICA Study Team

Figure 4.3.78 Construction Step of Temporary Cofferdam by Combined Underwater and Atmospheric Excavation (P7 Case)

At the construction step just before construction of footing concrete, namely Step-5, residual stress of the pile will be considered. Diagram of the displacement and bending moment for the case of P7 is shown in the figure below, and the maximum displacement due to moment occurs between the lowest support and bottom slab concrete.

b) Combined stress of the pile during construction and due to the design external forces after completion

The following figure shows that combined stress is within the allowable stress under earthquake condition.

where

 σ : combined stress (= σ 1+ σ 2), σ 1 : stress after completion loads.

 $\sigma 2$: residual stress during construction, σa : allowable stress in steel pipe sheet pile

Source: JICA Study Team

Figure 4.3.80 Combined Stress for the SPSP of P7 at Earthquake Condition
Table 4.3.64	Verification of SPSP (SKY400 part) Combined Stress at Ordinary Condition	۱
Bridge Axis Direct	on	

Pier	Elevation (m)	$\sigma 1^{*1}$ (N/mm ²)	σ2 (N/mm ²)	σ_{max} (N/mm ²)	σa (N/mm²)	Judgement				
P6	-11.16	30.14	66.97	97.12<	140	OK				
P7	-10.35	30.37	53.58	83.94<	140	OK				
Bridge Axis P	Bridge Axis Perpendicular Direction									
Pier	Elevation (m)	$\sigma 1^{*1}$ (N/mm ²)	σ2 (N/mm ²)	σ_{max} (N/mm ²)	σa (N/mm²)	Judgement				
P6	-11.16	31.46	69.36	100.82<	140	OK				
P7	-10.35	31.02	63.08	94.11<	140	OK				

*1: ordinary condition at low tide in spring tide w/o local scouring Source: JICA Study Team

 Table 4.3.65
 Verification of SPSP (SKY400 part) Combined Stress at Earthquake Condition

 Bridge Axis Direction

Pier	Elevation (m)	$\sigma 1^{*1}$ (N/mm ²)	$\sigma 2 (\text{N/mm}^2)$	$\sigma_{ m max}$ (N/mm ²)	$\sigma a (N/mm^2)$	Judgement				
P6	-11.45	75.16	66.85	142.00<	210	OK				
P7	-10.35	81.65	53.58	135.23<	210	OK				
Bridge Axis Perpendicular Direction										
Pier	Elevation (m)	$\sigma 1^{*1}$ (N/mm ²)	$\sigma 2 (\text{N/mm}^2)$	$\sigma_{ m max}$ (N/mm ²)	$\sigma a (N/mm^2)$	Judgement				
P6	-11.16	69.57	69.36	138.93 <	210	OK				
P7	-10.35	84.46	63.08	147.54<	210	OK				

*1: earthquake condition at 1/2 of maximum local scouring Source: JICA Study Team

Final Report

(7) Verification of Structural Members

1) Footing (Top Slab)

a) Design Sections

The same sections of footing as 7-span bridge will be verified in terms of bending moment and shear force.

b) Design Conditions

- Width of footing for design b = 100.0 cm, thickness of footing h = 400.0 cm
- Concrete design strength: 24 N/mm²
- Applied reinforcement bar: SD345 (underwater member)

c) Rebar Arrangement

	P6	P7			
Bridge Axis Dire	<u>ction</u>	Bridge Axis Dire	<u>ection</u>		
Upper tension:	cover 150 mm D32@288	Upper tension:	cover 150 mm D29@278		
Lower tension:	cover 150 mm D32@203		cover 300 mm D29@286		
	cover 300 mm D32@208	Lower tension:	cover 290 mm D38@228		
			cover 440 mm D38@234		
Bridge Axis Perp	endicular Direction	Bridge Axis Perpendicular Direction			
Upper tension:	cover 120 mm D29@189	Upper tension:	cover 121 mm D29@198		
Lower tension:	cover 118 mm D32@189		cover 271 mm D29@410		
	cover 268 mm D32@201	Lower tension:	cover 236 mm D38@198		
			cover 386 mm D38@212		

It is noted that shear reinforcement is arranged by D22 at approximately 600mm at chessboard patterns, which quantity is equal to approximately 0.15%, although it is not required in the calculation.

d) Verification of Stress in Footing and Content of Rebar

Design of bending moment is verified by tensile stress and content of rebar in the section as deep beam which has a deeper depth of the footing than 1/2 of design span that is the distance from the edge of pier column to the inside surface of the outer steel sheet pile.

Design of shear force is verified so that average shear stress should be within the allowable shear stress of concrete or allowable shear stress of concrete and shear reinforcement.

Verification of the footing structure is summarized in the table below.

Bridge Axis Direction

Diar		Ord	linary Condition	n*1	Earthquake Condition ^{*2}			
No	Item	Stress/Rebar	Allowable	Judgement	Stress/Reb	Allowable	Judgement	
INO.		Content	Value		ar Content	Value		
	Upper tensile stress	$\sigma_{c}: 0.00 <$	8	OK	$\sigma_c: 0.95 <$	12	OK	
P6		$\sigma_{s}: 0.00 <$	160	OK	σs:90.63<	300	OK	
	Lower tensile stress	σ _c : 1.41 <	8	OK	$\sigma_{c}: 3.06 <$	12	OK	
		$\sigma_{s}: 77.49 <$	160	OK	σ _s :167.85<	300	OK	
	Rebar Content	77.31 >	56.84	OK	77.31 >	65.67	OK	
	Shear stress	$\tau_{m}: 0.26 <$	0.88	OK	τ _m : 0.54<	1.34	OK	
	Upper tensile stress	$\sigma_{c}: 0.00 <$	8	OK	σ _c : 1.31<	12	OK	
		$\sigma_{\rm s}: 0.00 <$	160	OK	σs:95.73<	300	OK	
D7	Lower tensile stress	σ _c : 1.51 <	8	OK	σ _c : 3.64<	12	OK	
Γ/		σ_{s} :70.73 <	160	OK	σ _s :170.30<	300	OK	
	Rebar Content	98.72 >	63.03	OK	98.72 >	80.94	OK	
	Shear stress	$\tau_{m}: 0.28 <$	0.96	OK	$\tau_{m}: 0.66 <$	1.45	OK	
		-	-					

Table 4.3.66 Verification of Footing Structure

Note: Unit stress in N/mm², Rebar Content in cm²

Bridge Axis Perpendicular Direction

Diar		Ord	linary Condition	n*1	Earthquake Condition ^{*2}			
No	Item	Stress/Rebar	Allowable	Judgement	Stress/Rebar	Allowable	Judgement	
INO.		Content	Value		Content	Value		
	Upper tensile stress	$\sigma_{c}: 0.00 <$	8	OK	σ _c : 0.25<	12	OK	
P6		$\sigma_{s}: 0.00 <$	160	OK	σs:21.51<	300	OK	
	Lower tensile stress	σ _c : 1.73 <	8	OK	σc:3.06<	12	OK	
		$\sigma_s: 92.56 <$	160	OK	σ _s :163.70	300	OK	
	Rebar Content	81.53 >	72.19	OK	81.53 >	68.09	OK	
	Shear stress	$\tau_{m}: 0.26 <$	0.84	OK	$\tau_{\rm m}: 0.45 <$	1.28	OK	
	Upper tensile stress	$\sigma_c: 0.00 <$	8	OK	σ _c : 1.66<	12	OK	
		$\sigma_{s}: 0.00 <$	160	OK	σ _s :117.85<	300	OK	
D7	Lower tensile stress	σ _c : 1.93 <	8	OK	$\sigma_{c}: 4.55 <$	12	OK	
Γ/		$\sigma_{s}:85.27 <$	160	OK	σ _s :200.69<	300	OK	
	Rebar Content	111.35 >	86.71	OK	111.35 >	108.83	OK	
	Shear stress	$\tau_{m}: 0.28 <$	0.82	OK	$\tau_{m}: 0.63 <$	1.25	OK	
		2 5 4 6						

Note: Unit stress in N/mm², Rebar Content in cm²

*1: ordinary condition at low tide in spring tide w/o local scouring

*2: earthquake condition at 1/2 of maximum local scouring

Source: JICA Study Team

2) Connection between SPSP and Footing

The required number of moment and shear reinforcement for connection between SPSP and footing by Reinforcement Stud Method is calculated as follows:

- c) Design Condition
 - Applied reinforcement bar: SD345 (underwater member), Diameter 22 mm
 - Concrete design strength: 24 N/mm²
 - Material of SPSP: SKY400
 - Joint method: Reinforcement Stud Method

d) Required Number of Moment and Shear Reinforcement

The required number of reinforcement is 12 and 13 for moment and 43 and 50 for shear, respectively at P6 and P7. Therefore, 16 studs for moment at both piers, 56 studs for shear at P6 and 64 studs for shear at P7 are arranged as shown in the figure below and it was verified by the allowable stress summarized in the table below.

Source: JICA Study Team

Bridge A	xis Direction									
Pier No.	Critical condition	$\sigma_{\rm s}$	$\sigma_{\rm sa}$	nb	nba	Critical condition	$\tau_{\rm s}$	$ au_{\mathrm{sa}}$	ns	nsa
P6	Wind+ Temperature	158.0<	216.0	16	≥12	Earthquake	136.2<	180.0	56	≥43
P7	Wind+ Temperature	166.2<	216.0	16	≥13	Earthquake	140.5<	180.0	64	≥50
Bridge Axis Perpendicular Direction										
Pier No.	Critical condition	$\sigma_{\rm s}$	σ_{sa}	nb	nba	Critical condition	$\tau_{\rm s}$	τ_{sa}	ns	nsa
P6	Wind	147.4<	200.0	162	≥12	Earthquake	113.9<	180.0	56	≥36
P7	Wind	155.8<	200.0	16 2	<u>></u> 13	Earthquake	133.9<	180.0	64	≥48
Note:	σs: tensile	e stress of t	he moment	reinfor	cing ba	ar caused by m	noment and	d horizontal for	ce (N/	mm²)
	σsa: allov	vable tensile	e stress of th	ne reint	forcing	ı bar (N/mm²)				
	nb: numb	er of mome	nt reinforce	ment	n	ba: required nu	umber of m	noment reinford	cemen	t
	тs: shear	stress of sh	ear reinforc	ement	(N/mr	m²)				
	тsa: allow	able shear/	stress (N/m	m²)						
	ns: numb	er of shear	reinforceme	ent	nsa	a: required nun	nber of she	ear reinforcem	ent	

3) Connection between Footing and Pile Head of Bulkhead Piles

Since P7 has the bulkhead steel sheet pile, the connection of the pile head is verified in terms of stress and content of reinforcement as follows:

- a) Design Condition
 - Applied reinforcement bar: SD345 (underwater member)
 - Concrete design strength: 24 N/mm²
- b) Rebar Arrangement

Steel pile is inserted at 100 mm to the footing and it is fixed by 12 numbers of main reinforcements of φ 22 mm and filled concrete as shown in the figure below.

Source: JICA Study Team

Figure 4.3.82 Detail of Pile Head Connection (P7)

c) Verification of Required Content of Reinforcement and Stress

The result of the verification of the connection between footing and bulkhead pile for the case of critical condition is summarized in the table below.

Table 4.3.68 Verification of Connection between Footing and Bulkhead Pile

Bridge Axis Direction

Pier No.	Critical Condition	Load on th Moment (kN.m)	e Pile Head Axial Load(kN)	Content of Rebar (cm ²)	Required Content of Rebar(cm ²)	σ_s (N/mm ²)	$\sigma_{sa} \ (N/mm^2)$
P7	Earthquake	188.0	Min -18.0 Max 2178	46.5 >	13.3	92.95	300.0

d) Required Anchorage Length of Reinforcing Bars

Anchorage length of reinforcing bars, L = 1,000 mm, from the main reinforcement of footing must be longer than L0+10 x φ .

$$Lo = \frac{\sigma \, sa}{4 \cdot \tau \, oa} \phi = \frac{688 \, mm}{688 \, mm}$$

 $L \ge Lo + 10 \ x \ \phi = 908 \ (mm)$

 $\sigma sa:$ allowable tensile stress of the reinforcing bar 200.00 (N/mm^2)

тsa: allowable shear stress 1.600 (N/mm²)

 $\phi:$ Diameter of Reinforcing bar: $\phi 22mm$

4.3.6.3 RC Pier

(1) Verification of RC Pier Column

1) Design Section

A verification of the sections of pier column will be made at the bottom section against bending moment and shear force in each bridge axis and axis perpendicular direction as shown in the figure below.

2) Design Condition

- Applied reinforcement bar:

SD345 for shear reinforcement and main reinforcement (underwater member)

- Concrete design strength: 30 N/mm²

3) Sectional Forces at the Bottom of the Pier Column

Sectional forces at the bottom of the pier column during earthquake condition as critical load for the design are summarized in the table below. The force due to the hydrodynamic pressure during earthquake is included in the shear force, S, and bending moment, M.

	Load Direction	V (kN)	S (kN)	M (kN.m)
D4	Bridge axis direction	36,000	11,000	123,700
P6 1	Bridge axis perpendicular direction	36,000	10,800	146,600
D7	Bridge axis direction	41,300	11,600	154,200
P/	Bridge axis perpendicular direction	41,300	13,100	223,400

 Table 4.3.69
 Section Force in Earthquake Condition

Source: JICA Study Team

4) Rebar Arrangement

- c) Main Reinforcement
- Main reinforcement is arranged as shown in the figure below, and no deduction of the rebar is made through the pier column.

Figure 4.3.83 Rebar Arrangement (Main Reinforcement)

Source: JICA Study Team

- d) Shear Reinforcement
- Lateral tie to avoid the column from buckling due to shear force: D19 (P6) and D22 (P7), 150 mm pitch through the column
- Intermediate hoop to avoid the lateral tie from jutting outside: 15 nos.(P6) and 11 nos.(P7) for bridge axis direction and 2 nos. for bridge axis perpendicular direction per cross section, 150 mm pitch through the column

5) Verification

Pier column structure is verified by compressive stress of concrete, tensile stress of rebar, shear stress and content of shear reinforcement. The result of verification at earthquake condition which is critical condition for pier column design is summarized in the table below. Since average shear stress is over allowable stress that only concrete resists against shear force, shear reinforcement is arranged to meet the requirement.

Bridge Ay	bridge Axis Direction										
Pier No.	Compre Stress (N	ssive /mm ²)	Tensile S (N/mr	Stress n ²)	Shear (N/	r Stress mm ²)	She Reinford Content	ear cement (mm ²)	Judgement		
	σ_{c}	σ_{ca}	σ_{s}	σ_{sa}	$\tau_{\rm m}$	τ_{a1}, τ_{a2}	AW	AW _{Req}			
P6	8.3<	15.0	249.4<	300.0	0.26<	0.28,2.85	4871.0>	0.0	OK		
P7	10.7<	15.0	281.3<	300.0	0.33<	0.32,2.85	5032.0>	106.3	OK		

Table 4.3.70 Verification of Pier Column Stress at Earthquake Condition

Bridge Axis Perpendicular Direction

Pier No.	Compressive Stress (N/mm ²)		Tensile Stress (N/mm ²)		sile Stress Shear Stress Shear Stress Reinforce Content (hear Stress (N/mm ²) Shear Reinforcement Content (mm ²)		Judgement
	$\sigma_{\rm c}$	σ_{ca}	$\sigma_{\rm s}$	σ_{sa}	$\tau_{\rm m}$	τ_{a1}, τ_{a2}	Aw	Aw_{Req}	
P6	2.2<	15.0	13.9<	300.0	0.25<	0.19,2.85	1146.0>	95.1	OK
P7	4.9<	15.0	77.4<	300.0	0.36<	0.21,2.85	1548.4>	244.5	OK
				AI	laurah la O				

σc: Compressive Stress of Concrete *σc*a: Allowable Compressive Stress of Concrete

 σ s: Tensile Stress of Rebar σ sa: Allowable Tensile Stress of Rebar

tm: Average Shear Stress ta1: Allowable Shear Stress if only concrete resists against shear forceta2: Allowable Shear Stress if both concrete and shear reinforcement resist against shear forceAw: Shear reinforcement contentAwreq: Required shear reinforcement content in ta1 < tm</td>

Source: JICA Study Team

(2) Verification of Beam at Pier Head

1) Design Section

Since the distance from the front of the column to the loading point (bearing), l, is smaller than the height of beam, h, namely $h/l=7000/1215=5.8\geq1.0$, this kind of beam will be designed as a corbel. And, design section (A-A) is set at 300 mm inside of column because of the oval column shape as shown in the figure below. It will be verified at A-A section in terms of bending moment and shear. The section at h/2 (=3500 mm) from A-A section is outside of the beam, so verification of shear force will be made only at A-A section.

2) Design Loads

Design loads for verification of the beam structure are summarized in the table below, and the largest values among piers for each condition are used for the verification.

Condition	Load Component	P6	i	P7	
	-	Gl	G4	G1	G4
Vertical Section					
Ordinary Condition (Dead	Dead Load	4,000	4,800	5,700	6,000
+ Live Loads)	Live Load with Impact	2,000	2,200	2,300	2,400
	Weight of Beam	1,223	1,223	1,223	1,223
	Total	7,223	8,223	9,223	9,623
Earthquake Condition	Dead Load	4,000	4,800	5,700	6,000
(Dead Load + Effect of	Weight of Beam	1,223	1,223	1,223	1,223
earthquake)	Vertical reaction force due to earthquake from Superstructure ^{*1}	700	800	900	1,000
	Total	5,923	6,823	7,823	8,223
Additional load in the	Inertia force on superstructure	1,300	1,300	1,800	1,800
corbel design	Inertia force on the beam	400	400	400	400
	Total	1,700	1,700	2,200	2,200
Horizontal Section					
Effect of temperature	Horizontal force due to	100	100	100	100
Earthquake Condition	Inertia force on superstructure	1 200	1 200	1 100	1 100
La aquake Condition	Inertia force on the beam	400	400	400	400
	Total	1,600	1,600	1,500	1,500

Note: *1: It is calculated in accordance with Chapter 15.4 of Specifications for Highway Bridges Part-V 2012 (Japan Road Association)

Source: JICA Study Team

3) Design condition

- Applied reinforcement bar: SD345 for main reinforcement, stirrup
- Concrete design strength: 30 N/mm²

4) Rebar Arrangement

Main reinforcement and stirrup at the design section (A-A) is arranged as shown in the figure below.

<u>P6</u>

Location	Cover (mm)	Diameter	Arrangement
Upper	150	D29	18@153 in average
(main reinforcement)	250	D29	10@276 in average
Lower	150	D29	4@300
Side	97	D16	(125+20@300+200) x 2 sides
Stirrup	-	D19	150mm pitch

P7

Location	Cover (mm)	Diameter	Arrangement
Upper	150	D32	18@153 in average
(main reinforcement)	250	D32	10@276 in average
Lower	150	D32	4@300
Side	103	D19	(125+20@300+200) x 2 sides
Stirrup	-	D19	150mm pitch

Source: JICA Study Team

Figure 4.3.85 Rebar Arrangement (Main Reinforcement)

5) Verification of Reinforcement Content (Vertical Bridge Axis Perpendicular Direction)

As for the section against bending moment at vertical bridge axis perpendicular direction, it is verified by the reinforcement content of tension rebar arranged at upper beam and side rebar by corbel design, and the result is summarized in the table below.

Table 4.3.72 Verification of Reinforcement Content at Vertical Direction of Beam

<u>P6</u>

Item	Unit	Ordinary Condition (Dead Load)	Ordinary Condition (Dead and Live Loads)	Earthquake Condition
Design Tensile Force (T)	kN	1,604.1	2,196.0	3,519.3
Allowable Tension Stress (σ_{sa})	N/mm ²	100.00	180.00	300.00
Tensile Reinforcement Arranged Content (Asu) Required Content (AsuReq ^{*1})	mm ²	Asu ≥ AsuReq OK 19,272.00 16,041.00	Asu ≥ AsuReq OK 19,272.00 12,199.73	Asu ≥ AsuReq OK 19,272.00 11,731.07
Reinforcement at Sides Arranged Content (Ass) Required Content (AssReq ^{*2})	mm ²	Ass ≥ AssReq OK 9,135.00 7,708.80	Ass ≥ AssReq OK 9,135.00 7,708.80	Ass ≥ AssReq OK 9,135.00 7,708.80

<u>P7</u>

Item	Unit	Ordinary Condition (Dead Load)	Ordinary Condition (Dead and Live Loads)	Earthquake Condition
Design Tensile Force (T)	kN	1,882.4	2,510.2	4,344.0
Allowable Tension Stress (σ_{sa})	N/mm ²	100.00	180.00	300.00
Tensile Reinforcement Arranged Content (Asu) Required Content (AsuReq ^{*1})	mm ²	Asu ≥ AsuReq OK 23,826.00 18,823.80	Asu ≥ AsuReq OK 23,826.00 13,945.64	Asu ≥ AsuReq OK 23,826.00 14,479.93
Reinforcement at Sides Arranged Content (Ass) Required Content (AssReq ^{*2})	mm ²	Ass ≥ AssReq OK 13,179.00 9,530.40	Ass ≥ AssReq OK 13,179.00 9,530.40	Ass ≥ AssReq OK 13,179.00 9,530.40

Note: *1: AsuReq = $1000 \cdot T / \sigma$ sa

*2: AssReq = 0.4 · Asu

Source: JICA Study Team

6) Verification for Bending Moment (Horizontal Bridge Axis Direction)

As for the section against bending moment at horizontal bridge axis direction, it is verified by the compressive and tensile stress occurring at section A-A by the allowable stress method, and the result is summarized in the table below.

		P6		P7		
Item	Unit	Effect of	Earthquake	Effect of	Earthquake	
		Temperature	Condition	Temperature	Condition	
		Change		Change		
Bending Moment (M)	kN.m	155.80	2,413.05	151.50	2,209.95	
Distance between edge of compressive side and neutral axis (x)	mm	340	340	391	391	
Compressive Stress σ_c	N/mm ²	$0.09 < \sigma_{ca}$	1.34 <σ _{ca}	$0.07 < \sigma_{ca}$	$1.05 < \sigma_{ca}$	
Tensile Stress σ_s	N/mm ²	$9.80 < \sigma_{sa}$	$151.75 < \sigma_{sa}$	$6.95 < \sigma_{sa}$	$101.34 < \sigma_{sa}$	
Coefficient Increase of Allowable						
Stress α	- N/mm ²	1.15	1.50	1.15	1.50	
Allowable Compressive Stress σ_{ca}	N/mm^2	11.50	15.00	11.50	15.00	
Allowable Tensile Stress σ_{sa}	18/11111	207.00	300.00	207.00	300.00	

Table 4.3.73 Verification of Bending Moment Stress at Horizontal Direction of Beam

Source: JICA Study Team

7) Verification of Shear Force (Horizontal Bridge Axis Direction)

As for the section against shear force at horizontal bridge axis direction, it is verified by the shear stress occurring at section A-A by the allowable stress method, and the result is summarized in the table below. Content of stirrup is 573.0mm², which is equivalent to approximately 0.2% at the minimum, although arrangement is not required.

		P6		P7	
Item	Unit	Effect of Temperature Change	Earthquake Condition	Effect of Temperature Change	Earthquake Condition
Section Force					
Shear Force (S)	kN	100.00	1,566.89	100.00	1,466.89
Bending Moment (M)	kN.m	155.80	2,413.05	151.50	2,209.95
Effective Height (d)	mm	2,732	2,732	2,735	2,735
Shear Force considering Effective Height (Sh) ^{*1}	kN	100.00	1,566.89	100.00	1,466.89
Coefficient Increase of					
Allowable Stress (α)	-	1.15	1.50	1.15	1.50
Ratio of rebar (pt) ^{*2}	%	0.038	0.038	0.052	0.052
Coefficient of allowable shear	-	0.740	0.740	0.740	0.740
stress related to "d" (ce)					
Coefficient of allowable shear	-	0.576	0.576	0.605	0.605
stress related to "pt"(cpt)					
τ _m	N/mm ²	0.006 <	0.092 <	0.006 <	0.086 <
τ_{a1}	N/mm ²	0.123	0.158	0.129	0.166
τ_{a2}	N/mm ²	2.185	2.850	2.185	2.850
Shear Reinforcement Content					
Aw	mm ²	573.0	573.0	573.0	573.0
AwReq	mm ²	0.0	0.0	0.0	0.0

 Table 4.3.74
 Verification of Shear Stress at Horizontal Direction of Beam

Note: *1: Sh=M-M/d x (tan β +tan γ), β and γ = zero in this case *2: pt=As/(b x d)

8) Verification of Bridge Seat

a) Seating Length at P5 and P10

The seating length, which is defined as the distance between the edge of the girder and the edge of the top of substructure in longitudinal direction, should be long enough to prevent departure and unseating of the superstructure from the top of the substructure. The required value (S_{EM}) can be calculated at the equation below as specified in the JSBH.

 $S_{EM} = 0.7 + 0.005 \text{ x span length (m)}$

Pier No.	P5	P10
Span Length	75.6m	102.8m
Required Seating Length (S _{EM})	1.078m	1.214m
Seating Length	2.150m	3.550m
Judge	OK	OK
Source: JICA Study Team		

Table 4.3.75 Verification of Seating Length

b) Bearing Edge Distance (S)

The bearing edge distance (S), which is defined as the distance between the center of anchor bolt of bearing and the edge of the top of the substructure, shall be equal to or larger than the following value:

 $S \ge 0.2+0.005 \text{ x span length (m)}$

Table 4.3.76	Verification	of Bearing	Edae	Distance
10010 1.0.10	Vonnoadon	or boaring	Lago	Diotarioo

Pier No.	P5	P6	P7	P10
Span Length	75.6m	76.5m	102.8m	102.8m
Minimum Edge Distance	0.578m	0.583m	0.714m	0.714m
Edge Distance (S)	0.620m	1.016m	1.040m	0.918m
Judge	OK	OK	OK	OK

Source: JICA Study Team

c) Bridge Seat Strength

Bridge seats is designed with sufficient strength to withstand the vertical and horizontal forces through bearings. Horizontal force (design horizontal seismic force) transmitted from the bearings is resisted by concrete and reinforcement. The resisting area of concrete is the summation of three planes in directions of sideward and downward with edge angles of 45 degrees as shown in figure below.

Planes for resisting against forces

Source: JSAB

Figure 4.3.86 Image of Resisting area of Concrete

The calculation results on the bridge seats against design horizontal seismic force is summarized in table below.

Pier No.	I	26	Р	7
Girder	G1	G4	G1	G4
Design horizontal seismic force Ph (kN) *per bearing	1,200	1,200	1,100	1,100
Resistance area of concrete Ac (mm ²)	6,657,000	8,218,000	6,234,000	8,330,000
Bearing stress at bottom of bearing support against vertical	2.07	2.50	2.80	2.97
force σ n (N/mm ²)				
Coefficient for determining the strength borne by concrete	0.27	0.30	0.31	0.32
Strength borne by concrete Pc (kN)	3,160	4,260	3,420	4,710
Strength borne by reinforcement Ps (kN)	1,890	1,890	1,790	1,980
Strength of bridge seat Pbs (kN)	5,050	6,150	5,210	6,690
Judge (Pbs≧Ph)	OK	OK	OK	OK
Source: JICA Study Team				

Table 4.3.77	Verification	Result of	Bridge	Seat	Strength

4.3.6.4 Structure Drawing

Through the basic design and the detailed design presented in Sections 4.3.2 and 4.3.6, the substructure of P6-P7 is designed in terms of economical and structural aspects. The structural drawing is shown in the figure below.

Figure 4.3.88 Structure Drawing of Substructure of P7

4.3.6.5 Quantities of Major Items of Substructure

Quantity of the major items of the substructure for the steel box girder bridge is calculated for cost estimation and it is summarized in the following table.

Item	P6	P7	Total
SPSP (ton)			
Permanent part	741.2t	772.1t	1,513.3t
Temporary part	109.9t	165.9t	275.8t
Concrete (m ³)			
24 MPa	482.8m ³	436.4m ³	919.2m ³
30 MPa	774.4m ³	797.5m ³	1,571.9m ³
Re-bar (ton)			
D13-D32	119.3t	76.2t	195.5t
D38-D51	0.0t	77.6t	77.6t

Table 4.3.78 Quantity of the Major Items of the Substructure for the Steel Box Girder Bridge

Source: JICA Study Team

4.3.7 Detailed Design of Bridge Accessories

4.3.7.1 Bearings for 7-Span Bridge

- (1) Design Conditions
- a) Applied Design Standard:
 - Specifications for Highway Bridges Part-V 2012 (Japan Road Association)
 - Manual for Bearing for Highway Bridges 2004 (Japan Road Association)
- b) Design Temperature Range: 25°C±25°C, and additional 5°C is considered as initial deformation at the installation of the bearings.
- c) Classification of Ground Condition: Class III
- d) Support Condition

Table 4.3.79 Support Condition

Pier	Span Length	Nos. of bearing	Support Condition			
No.	L(m)	N	Bridge Axis Direction	Bridge Axis Perpendicular Direction		
P13		4	Movable	Fix		
P14	110.8	4	Fix	Fix		
P15	112.0	4	Fix	Fix		
P16	112.0	4	Fix	Fix		
P17	112.0	4	Fix	Fix		
P18	112.0	4	Fix	Fix		
P19	112.0	4	Fix	Fix		
P20	103.1	4	Movable	Fix		

e) Design Loads from Superstructure for Bearing Design:

Table 4.3.80	Design Loads from Superstructure
--------------	----------------------------------

Pier	Max. Reaction	For Rotation	For Stress Amplitude		Dead	Max. Live load	
No.	Rmax1	Rmax2	Rmax'	Rmin'	ΣRd	Rdmax	Rlmax
	(kN)	(kN)	(kN)	(kN)	(kN/pier)	(kN)	(kN)
P13	3178	3123	3178	1991	8561	2188	1031
P14	8070	7973	8070	5655	24252	6101	0
P15	7009	6941	7009	4563	20362	5137	0
P16	7442	7134	7442	4954	21503	5332	0
P17	7360	7092	7360	4885	21287	5293	0
P18	7176	6950	7176	4726	20731	5171	0
P19	7737	7653	7737	5377	23141	5826	0
P20	2913	2735	2913	1582	7455	1825	1010

Source: JICA Study Team

f) Design Horizontal Force for Bearing Design:

Table 4.3.81	Horizontal Forces
Table 4.3.81	Horizontal Forces

Pier No.	Bridge Axis Direction		Bridge Axis Perpendicular Direction		
		Earthquake			
	Ordinary	Condition	Earthquake Condition		
	Condition	Level-1	Level-1		
	(kN/pier)	(kN/pier)	(kN/pier)		
P13	900	900	2,600		
P14	10,800	7,000	7,300		
P15	6,200	7,000	6,200		
P16	2,400	7,300	6,500		
P17	1,800	7,500	6,400		
P18	6,200	7,700	6,300		
P19	11,500	7,900	7,000		
P20	800	800	2,300		

Source: JICA Study Team

g) Displacement for Bearing Design:

130 mm at P13 and 120 mm at P20 due to effect of temperature change ($\Delta 30^{\circ}$ C).

(2) Dimension of Bearing

P14-P19 Fix Support (Rubber Bearing Type):

Source: JICA Study Team

Figure 4.3.89 Dimension of Bearing (Fixed Rubber Bearing Type)

P13 and P20 Movable Support (BPB Type):

Source: JICA Study Team

Figure 4.3.90 Dimension of Bearing (Movable BPB Type)

4.3.7.2 Bearings for 3-Span Bridge

(1) Design Conditions

- a) Applied Design Standard: same as 7-span bridge
- b) Design Temperature Range: 25°C±25°C
- c) Classification of Ground Condition: same as 7-span bridge
- d) Design Seismic Coefficient: The bearings of P5 and P10 shall be designed by design seismic coefficient 0.45 (0.3 x 1.5 times) to meet the requirement of the seismic performance 2 instead of installation of any other anti-collapse structure.
- e) Support Condition

Pier	Span Length	Nos. of bearing	Support Condition		
No.	No. L(m) N		Bridge Axis Direction	Bridge Axis Perpendicular Direction	
P5		4	Elastic	Fix	
P6	75.6	4	Elastic	Fix	
P7	76.5	4	Elastic	Fix	
P10	102.8	4	Elastic	Fix	

Table 4.3.82 Support Condition

Source: JICA Study Team

f) Design Loads from Superstructure for Bearing Design:

Pier	Max. Reaction	For Rotation	For Stress A	Amplitude	Dead	Load	Max. Live load
No.	Rmax1	Rmax2	Rmax'	Rmin'	ΣRd	Rdmax	Rlmax
	(kN)	(kN)	(kN)	(kN)	(kN/pier)	(kN)	(kN)
P5	3,400	2,100	3,200	1,300	7,200	2,100	1,400
P6	7,000	5,000	7,000	4,400	16,700	4,800	2,200
P7	8,400	6,200	8,000	5,100	21,400	6,000	2,400
P10	4,100	3,200	3,500	1,200	9,000	2,500	1,700

 Table 4.3.83
 Design Loads from Superstructure

Source: JICA Study Team

g) Design Horizontal Force for Bearing Design:

To estimate the horizontal force due to effect of temperature change, range $\Delta 50^{\circ}$ C is applied in accordance with the conditions for estimation of the displacement.

Horizontal force in bridge axis direction at end bearings is calculated by using 1.5 times of design seismic coefficient

	Bridge Axis Direction			Bridge Axis Perpendicular Direction		
Dian	Ordinary	Earthquake Condition		Earthquake Condition		
No	Condition($\Delta 50^{\circ}$)	Level-1		Level-1		
INO.			Design seismic			
	(kN/pier)	(kN/pier)	coefficient	(kN/pier)	Design seismic coefficient	
P5	1,300	5,800	0.3 x 1.5	2,000	0.3	
P6	600	4,600	0.3	4,900	0.3	
P7	500	4,400	0.3	6,900	0.3	
P10	1,400	5,300	0.3 x 1.5	2,500	0.3	

Table 4.3.84 Horizontal Forces

Source: JICA Study Team

h) Displacement for Bearing Design:

To estimate the displacement due to deflection of superstructure due to live loads and effects of temperature change, range $\Delta 50^{\circ}$ C is applied so that the bearing is able to be set at any temperature without adjustment of displacement (rubber deformation).

According to the design condition as mentioned above, bearings of P5 and P10 are designed by 1.5 times of design seismic coefficient.

Table 4.3.85 Displacement

	Bridge Axis Direction							
Pier	Ordinary Condition(Δ50°C)	Earthquake Condition Level-1						
No.	Displacement	Displacement	Design seismic coefficient					
P5	80mm	310mm	0.3 x 1.5					
P6	28mm	180mm	0.3					
P7	10mm	170mm	0.3					
P10	88mm	286mm	0.3 x 1.5					

(2) Dimension of Bearing

Figure 4.3.91 Dimension of Bearing

4.3.7.3 Expansion Joint for 7-Span Bridge

(1) Design Concept

- The adjacent gap and marginal length of girder end have been determined taking account of the displacement due to seismic movement and temperature elongation between adjacent bridges.
- The modular type is adopted considering the above condition.

(2) Required Expansion/Contraction Value for the Displacement of Expansion Joint

The displacement due to seismic behavior and temperature expansion/contraction is shown in the table below.

Item		Unit	P13		P20	
			Cable Stay	Steel	Steel	PC Box
			Bridge	Box	Box	
Seismic	Displacement per one side	mm	±87	±34	± 55	±212
Level (L1)	Maximum displacement (1)	mm	± 87		± 2	212
	Coefficient due to different natural period (2)		$\sqrt{2}$		٦	/2
	Margin 15mm (3)	mm	±15		±	15
	Displacement $(1)x(2)+(3)$	mm	±138	8	±3	315
	Design Value for Seismic Behavior (A)	mm	±138	8	±3	315
Normal	Creep	mm	-	-	-	-
Condition	Shrinkage due to drying	mm	-	-	-	-
Elongation/	Expanded length of the device	mm	+68	+102	+112	+68
Shrinkage	Contraction length of the device	mm	-68	-102	-112	-30
(25°C±	Basic Expansion + Contraction (1)	mm	136	204	224	98
25°C)	Margin (2)=(1) x20%, min10mm	mm	27	41	45	20
,	Expansion + Contraction $(3)=(1)+(2)$	mm	163	245	269	118
			(±82)	(±123)	(±135)	(±59)
	Design Value for Normal Behavior (B)	mm	±204		±194	
Final Design Value for Expansion/Contraction		mm	±204		±315	
Larger amount	(A) or (B)					
Marginal Gap		mm	400		3	50

Table 4.3.86 Table of Displacement at Different Factor (P13,P20)

Source: JICA Study Team

(3) Selection of Expansion Type

Modular type joint was adopted since it is suitable for the large expansion and contraction of more than 200 mm. The typical modular joint is described below.

- Several edge beams with rubber sheets are placed on support beams that were on the sliding bar in anchor box. The capacity of displacement depends on the length of anchor box and its marginal space.

Source: Catalogue from manufacturer

Figure 4.3.92 Sample of Modular Expansion Joint

- The end of steel deck plate must be cut out, since this expansion joint type has about 500 mm height. So, additional deck plate was prepared from the end diaphragm to the girder end.
- After the installation of the expansion joint, the space between the expansion joint to diaphragm shall be filled by casting concrete.

Source: JICA Study Team

Figure 4.3.93 Modification at End of Steel Deck for the Installation of the Expansion Joint

4.3.7.4 Expansion Joint for 3-Span Bridge

(1) Design Concept

Same design concept as 7-span bridge is considered.

(2) Required Expansion/Contraction Value for the Displacement of Expansion Joint

The displacement due to seismic behavior and temperature expansion/contraction is shown in the table below.

SeismicDisplacement per one sidemm ± 194 ± 207 ± 17 ± 207 Level (L1)Maximum displacement (1)mm ± 207 ± 207 Coefficient due to different natural1.01.0period (2)Margin 15mm (3)mm ± 15 Margin 15mm (3)mm ± 222 ± 222 Design Value for Seismic Behavior (A)mm ± 222 ± 222 NormalCreepmmConditionShrinkage due to dryingmmElongation/Expanded length of the devicemm+55+41ShrinkageContraction length of the devicemm-25-41(25°C±Basic Expansion + Contraction (1)mm808225°C)Margin (2)=(1) x20%, min10mmmm1616Expansion + Contraction (3)=(1)+(2)mm969857Design Value for Normal Behavior (B)mm ± 97 ± 78	Item		Unit	P5 (Ma PC Box	in line) Steel Box	P5(Ra PC Composite Slab	mp) Steel Box
Level (L1) Maximum displacement (1) mm ± 207 ± 207 Coefficient due to different natural 1.0 1.0 period (2) Margin 15mm (3) mm ± 15 ± 15 Displacement (1)x(2)+(3) mm ± 222 ± 222 Design Value for Seismic Behavior (A) mm ± 222 ± 222 Normal Creep mm	Seismic	Displacement per one side	mm	±194	±207	± 17	±207
Coefficient due to different natural period (2)1.01.0Margin 15mm (3)mm ± 15 ± 15 Displacement (1)x(2)+(3)mm ± 222 ± 222 Design Value for Seismic Behavior (A)mm ± 222 ± 222 NormalCreepmmConditionShrinkage due to dryingmmElongation/Expanded length of the devicemm+55+41ShrinkageContraction length of the devicemm-25-41(25°C±Basic Expansion + Contraction (1)mm8082478225°C)Margin (2)=(1) x20%, min10mmmm16161016Expansion + Contraction (3)=(1)+(2)mm96985798(±48)(±49)(±29)(±49)(±29)(±49)Design Value for Normal Behavior (B)mm ± 97 ± 78	Level (L1)	Maximum displacement (1)	mm	±2	07	± 20	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Coefficient due to different natural		1.	.0	1.0)
Margin 15mm (3)mm ± 15 ± 15 Displacement (1)x(2)+(3)mm ± 222 ± 222 Design Value for Seismic Behavior (A)mm ± 222 ± 222 NormalCreepmmConditionShrinkage due to dryingmmElongation/Expanded length of the devicemm+55+41ShrinkageContraction length of the devicemm-25-41(25°C±Basic Expansion + Contraction (1)mm80824725°C)Margin (2)=(1) x20%, min10mmmm16161016Expansion + Contraction (3)=(1)+(2)mm96985798(±48)(±49)(±29)(±49)(±49)(±29)(±49)Design Value for Normal Behavior (B)mm±97±78		period (2) $M_{\rm max}$ (2)		. 1		. 1.	-
Displacement (1)x(2)+(3)mm ± 222 ± 222 Design Value for Seismic Behavior (A)mm ± 222 ± 222 NormalCreepmmConditionShrinkage due to dryingmmElongation/Expanded length of the devicemm+55+41+33+41ShrinkageContraction length of the devicemm-25-41-14-41(25°C±Basic Expansion + Contraction (1)mm8082478225°C)Margin (2)=(1) x20%, min10mmmm16161016Expansion + Contraction (3)=(1)+(2)mm96985798(±48)(±49)(±29)(±49)Design Value for Normal Behavior (B)mm ± 97 ± 78		Margin 15mm (3)	mm	±.	15	±1:	
Design Value for Seismic Behavior (A)mm ± 222 ± 222 NormalCreepmmConditionShrinkage due to dryingmmElongation/Expanded length of the devicemm+55+41+33+41ShrinkageContraction length of the devicemm-25-41-14-41(25°C±Basic Expansion + Contraction (1)mm8082478225°C)Margin (2)=(1) x20%, min10mmmm16161016Expansion + Contraction (3)=(1)+(2)mm96985798(±48)(±49)(±29)(±49)Design Value for Normal Behavior (B)mm±97±78		Displacement $(1)x(2)+(3)$	mm	±2	22	± 22	2
NormalCreepmmConditionShrinkage due to dryingmmElongation/Expanded length of the devicemm+55+41+33+41ShrinkageContraction length of the devicemm-25-41-14-41 $(25^{\circ}C\pm$ Basic Expansion + Contraction (1)mm80824782 $25^{\circ}C$)Margin (2)=(1) x20%, min10mmmm16161016Expansion + Contraction (3)=(1)+(2)mm96985798(±48)(±49)(±29)(±49)Design Value for Normal Behavior (B)mm±97±78		Design Value for Seismic Behavior (A)	mm	±2	22	±22	2
ConditionShrinkage due to dryingmmElongation/Expanded length of the devicemm $+55$ $+41$ $+33$ $+41$ ShrinkageContraction length of the devicemm -25 -41 -14 -41 $(25^{\circ}C\pm$ Basic Expansion + Contraction (1)mm 80 82 47 82 $25^{\circ}C$)Margin (2)=(1) x20%, min10mmmm 16 16 10 16 Expansion + Contraction (3)=(1)+(2)mm 96 98 57 98 (±48)(±49)(±29)(±49) besign Value for Normal Behavior (B) mm ±97 ±78	Normal	Creep	mm	-	-	-	-
Elongation/Expanded length of the devicemm $+55$ $+41$ $+33$ $+41$ ShrinkageContraction length of the devicemm -25 -41 -14 -41 $(25^{\circ}C\pm$ Basic Expansion + Contraction (1)mm 80 82 47 82 $25^{\circ}C$)Margin (2)=(1) x20%, min10mmmm 16 16 10 16 Expansion + Contraction (3)=(1)+(2)mm 96 98 57 98 (±48)(±49)(±29)(±49) besign Value for Normal Behavior (B) mm ± 97 ± 78	Condition	Shrinkage due to drying	mm	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Elongation/	Expanded length of the device	mm	+55	+41	+33	+41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Shrinkage	Contraction length of the device	mm	-25	-41	-14	-41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(25°C±	Basic Expansion + Contraction (1)	mm	80	82	47	82
Expansion + Contraction (3)=(1)+(2) mm 96 98 57 98 (± 48) (± 49) (± 29) (± 49) Design Value for Normal Behavior (B) mm ± 97 ± 78	25°C)	Margin $(2)=(1) \times 20\%$, min10mm	mm	16	16	10	16
Design Value for Normal Behavior (B) mm ±97 ±78	25 0)	Expansion + Contraction $(3)=(1)+(2)$	mm	96	98	57	98
Design Value for Normal Behavior (B)mm±97±78Eine Design Value for Normal Behavior (B)mm±00±78				(±48)	(±49)	(±29)	(±49)
		Design Value for Normal Behavior (B)	mm		97)	±7	8
Final Design Value for Expansion/Contractionmm±222±222	Final Design Value for Expansion/Contraction		mm	±222		±222	
Larger amount (A) or (B)	Larger amount (A) or (B)						
Marginal Gap mm 350 250	Marginal Gap		mm	35	50	250)

Table 4.3.87 Table of Displacement at Different Factor (P5,P10)

Item		Unit	D10	
	Item	Om	Steel	Cable
			Box	Stav
Seismic Level	Displacement per one side	mm	+190	+56
	Maximum displacement (1)	mm	±170 ±10	200 00
(L1)	Coefficient due to different natural	111111		, ,
	period (2)		N2	2
	Margin 15mm (3)	mm	± 1	5
	Displacement $(1)x(2)+(3)$	mm	±28	34
	Design Value for Seismic Behavior (A)	mm	±28	34
Normal	Creep	mm	-	-
Condition	Shrinkage due to drying	mm	-	-
Elongation/	Expanded length of the device	mm	+44	+62
Shrinkage	Contraction length of the device	mm	-44	-62
(25°C±25°C)	Basic Expansion + Contraction (1)	mm	88	124
	Margin (2)=(1) x20%, min10mm	mm	18	25
	Expansion + Contraction $(3)=(1)+(2)$	mm	106	149
			(±53)	(±75)
	Design Value for Normal Behavior (B)	mm	±12	28
Final Design Value for Expansion/Contraction			±28	34
Larger amount (A) or (B)				
Marginal Gap		mm	40	0

Source: JICA Study Team

(3) Selection of Expansion Type

- Modular type joint was adopted since it is suitable for the large expansion and contraction of more than 200 mm.
- Several edge beams with rubber sheets are placed on support beams that were on the sliding bar in anchor box. The capacity of displacement depends on the length of anchor box and its marginal space.
- The end of steel deck plate must be cut out, since this expansion joint type has about 500 mm height. So, additional deck plate was prepared from the end diaphragm to the girder end.
- After the installation of the expansion joint, the space between the expansion joint to diaphragm shall be filled by casting concrete.

4.4 STUDY ON PC BOX GIRDER BRIDGE

4.4.1 General

The B/D of the concrete box girder bridge was conducted based on the terms of agreement in the F/S, and the design team performed confirmation and studies of design policy, design conditions, structural types, bridge length and spanning, and other works that were necessary for this Project. The design team conducted the F/S report review work and found some outstanding issues that should be worked out prior to the subsequent detailed design stage.

Thereafter, D/D was conducted in order to ensure rationality of facilities planned at the B/D stage under some updated design conditions such as natural condition survey result (soil investigation, topographic survey, etc.) and the future ground elevation.

The summary of the evolution of the design is shown in Table 4.4.1.

Item	Feasibilit	y Study	Basic Design		Detailed Design	
Bridge Width	22.300 m		20.700 m ~ 27.297 m		20.700 m	
A1 (Thilawa) Side						
			Box width	6.500 m		
Box Girders Width	Box width	7.400 m	& 8.500 m		Box width	6.500 m
& Cantilever Slab Length	Cantilever	1.800 m	Cantilever	1.650 m	Cantilever	1.650 m
_			~ 3.950 m			
Bridge Length	407.	0m	507.0)m	250.0m	
Number of substructure	8 nc	DS.	10 nos.		6 nos.	
Equidation Trues	SPSP:	4 nos.	SPSP:	3 nos.	SPSP:	0 nos.
Foundation Type	Cast-In-Situ:	4 nos.	Cast-In-Situ:	7 nos.	Cast-In-Situ:	6 nos.
A2 (Yangon) Side						
Box Girders Width	Box width	7.400 m	Box width	6.500 m	Box width	6.500 m
& Cantilever Slab Length	Cantilever	1.800 m	Cantilever	1.650 m	Cantilever	1.650 m
Bridge Length	300.0) m	300.0) m	300.0	m
Number of substructure 7 nos.		7 nos.		7 nos.		
Earn dation Trues	SPSP:	4 nos.	SPSP:	3 nos.	SPSP:	3 nos.
Foundation Type	Cast-In-Situ:	3 nos.	Cast-In-Situ:	4 nos.	Cast-In-Situ:	4 nos.

Table 4.4.1 Summary of Design Output Evolution

Source: JICA Study Team

The basic design and detailed design of the PC box girder bridge are explained hereinafter.

4.4.2 Study on Bridge Length of PC Box Girder Bridge

4.4.2.1 Design Principle

The length of the PC box girder bridge and its span arrangement were comprehensively examined considering terrain on site, geological condition, crossing obstacles, construction workability and economic efficiency. At this conjuncture, utilization of technologies of Japanese companies and promotion for their participation shall be taken into account in accordance with the F/S as instructed in the TOR of this study.

4.4.2.2 Study Conditions

(1) Geography and Geology

- A1 (Thilawa) side

The site for this approach bridge consists of a flood channel and a low-flow channel river whose elevations are around MSL+ $3.00 \text{ m} \sim 4.00 \text{ m}$ and MSL - $5.00 \text{ m} \sim 7.00 \text{ m}$, respectively. No future land use plan, including reclamation or river training plan, exists.

The bearing stratum for the bridge is Clayey SAND-II distributed at MSL-40.0 m \sim -55.0 m, whose N-value is around 50. There are no appropriate soil layers other than this layer with sufficient firmness and thickness to support bridge reactions.

- A2 (Yangon) side

The site for this approach bridge consists of a flood channel and a low-flow channel river whose elevations are around MSL+2.50 m \sim 4.50 m and MSL-1.50 m \sim 6.00 m, respectively. No future land use plan, including a reclamation or river training plan, exists.

The bearing stratum for the bridge is Clayey SAND-I and Clayey SAND-II distributed at MSL- $40.0 \text{ m} \sim -45.0 \text{ m}$, whose N-value is around 50. There are no appropriate soil layers other than this layer with sufficient firmness and thickness to support bridge reactions.

(2) Crossing Object Conditions

Crossing objects are investigated by means of site survey and literature survey supported by the counterpart. There are some objects that should be taken into account in the bridge span arrangement planning as control points. These are navigation channel of Bago River, existing in-river piers of Thanlyin Bridge, and the embankment section of on-ramp road (to be constructed under this Project). It is confirmed that other crossing objects are available for relocation. Summary of the crossing objects is shown in Table 4.4.2.

				Control Point	
No.	Crossing Object Name	Chainage	Relocation	Abut-	Pier
				ment	1 101
1	On-ramp (embankment section)	0+542.5	Possible	No	No
2	Natural levee (boundary of low-flow	0+654.0	No	Yes	No
	channel)				
3	Left end of navigation (P10) *Note 1	0+864.0	No	-	Yes
4	Right end of navigation (P22)	2+88.0	No	-	Yes
5	Low-flow channel	2+238.0	No	Yes	No
6	Power cable (high tension)	2+384.0	No	No	No
7	Toll gate area	2+400.0	No	Yes	Yes

Table 4.4.2 Summary of Crossing Obstacles for Span Arrangement

Note: Control point of bridge span examination for B/D stage. Based on a notice of DWIR made during the D/D stage regarding the navigation channel location of Bago River, the control point of the left end of navigation channel should be around STA No. 0+760. In accordance with this notice, the JICA Study Team reconsidered the span arrangement and bridge type, then decided to substitute 3-span continuous steel box girder bridge for 4-span PC box girder bridge.

Source: JICA Study Team

(3) Construction Conditions

- Site Conditions

There are no buildings/facilities which require cautious construction adjacent to the bridge in order to avoid any harmful displacement. There are no objects that restrain the construction works.

- River Conditions

Tidal fluctuation is a dominant factor for the river water level variation. Design high water level is MSL+4.990 m, and the design high water level for construction is MSL+ 4.340 m. Tidal range is approximately 5.00 m for spring tide.

- River flow velocity and flow direction:

Maximum flow velocity is 1.0 m/s.

- Economic span for BD

The economic span length is estimated using the following formula which is recommended in the "Bridge Design Standards of NEXCO (East Nippon Expressway Company Limited)":

L= a x {h+1/3(Df)}

Where,

h = Substructure height

Df = Foundation depth

a = coefficient $(1 \sim 1.5)$ depending on construction circumstances of a proposed bridge

The construction circumstance of the target bridge is worse because of existence of in-river piers. Consequently, a longer span length is more economical than one with shorter length in general due to lesser number of in-river piers. Based on this viewpoint, the coefficient "a" should be 1.5. As a result of economic span length estimation, it is determined that the economic span is 50.0 m as shown in Table 4.4.3.

Item	A1 (Thilawa) Side	A2 (Yangon) Side
Average substructure height: h	18.7 m	19.4 m
Average foundation depth: Df	48.4 m	37.4 m
$h + 1/3 \ge Df$	34.8 m	31.9 m
Case 1: $a = 1.0$	35.0 m	31.9 m
Case 2: $a = 1.5$	52.3 m	47.8 m
Proposed economic span length	50.0 m	50.0 m

 Table 4.4.3
 Estimation of Economic Span Length

Source: JICA Study Team

4.4.2.3 Determination of Bridge Length

(1) A1 (Thilawa) Side

- Available Area for Abutment Placement

On the left bank, a relatively dense grove exists and overall ground elevation is approximately MSL+4.0 m, which is nearly the same height as the normal H.W.L of Bago River. As a result of these natural circumstances, it is thought that water flow at the flood channel of the left bank is stagnated or quite small; consequently, discharge at the flood channel is nearly ignorable. Therefore, placement of abutment on the flood channel is possible without major impact on river discharge capacity. Hence, placement of abutment is possible up to the line A-A in Figure 4.4.1.

Source: JICA Study Team

- Alternatives for Bridge Length Comparison

The beginning point of bridge lengths to be utilized for this comparison is "end pier of the cablestayed bridge" as shown in Figure 4-83. Piers are arranged from this control point to the inland direction at 50 m interval referring to the economical span length of this bridge. Three alternatives for the bridge length comparison are summarized as follows:

Alternative 1:	A1 Abutment at STA No. 0+457.0 m, $L = 407 \text{ m} (\text{F/S})$
Alternative 2:	A1 Abutment at STA No. 0+407.0 m, $L = 457 \text{ m} (\text{F/S} + 50 \text{ m})$
Alternative 3:	A1 Abutment at STA No. $0+357.0 \text{ m}$, L = 507 m (F/S + 100 m)

- Comparison Result

As shown in Table 4.4.4, it is confirmed that Alternative 3: "A1 Abutment at STA No. 0+357.0 m, L = 507 m (F/S + 100 m)" is the most recommendable plan in terms of economy, workability, and construction period. Meanwhile, the abutment height for Alternative 3 is the minimum height considering a vertical space in front of the abutment, and any longer bridge length cannot be proposed.

Recommendation Alternative 3: A1 Abutment at STA No. 0+357.0 m, L = 507 m

Table 4.4.4 Comparison of Bridge Length at A1 Side

Legend: \oslash Very Good, \bigcirc Good, \triangle Average Source: JICA Study Team

(2) A2 (Yangon) Side

- Available Area for Abutment Placement

There are JEE and MOC factory buildings and a relatively dense grove on the right bank, and overall ground elevation is approximately MSL+4.0 m or higher, which is nearly the same height as the normal H.W.L of Bago River. As a result of these natural circumstances, it is thought that water flow at the flood channel of left bank is stagnated or quite small; consequently, discharge at the flood channel is nearly ignorable. Therefore, placement of abutment on the flood channel is possible without major impact on river discharge capacity. Hence, placement of abutment is possible up to the line A-A in Figure 4.4.2.

Unavailable for abutment placement

Available for abutment placement

Source: JICA Study Team

- Alternatives for Bridge Length Comparison

The beginning point of bridge lengths to be utilized for this comparison is "end pier of steel box girder bridge" as shown in Figure 4.4.2. Piers are arranged from this control point to the inland direction at 50 m interval referring to the economical span length of this bridge. Two alternatives for the bridge length comparison are summarized as follows:

Alternative 1: A2 Abutment at STA No. 2+338.0 m, Length = 250 m (F/S-50 m)

Alternative 2: A2 Abutment at STA No. 2+388.0 m, Length = 300 m (F/S)

- Comparison Result

It is confirmed that Alternative 2: "A2 Abutment at STA No. 2+388.0 m, Length = 300 m (F/S)" is the most recommendable plan in terms of economy, workability, and construction period as shown in Table 4.4.5. Meanwhile, no longer bridge length alternative is provided because the toll gate area starts just behind this abutment with a significant road widening.

Recommendation Alternative 2: A2 Abutment at STA No. 2+388.0 m, L = 300 m

Figure 4.4.2 Available Area for Abutment Placement and Bridge Length Alternatives

Legend: \bigcirc Very Good, \bigcirc Good, \triangle Average Source: JICA Study Team

4.4.3 Study on Span Length

4.4.3.1 Basic Conditions for the Study

Approach bridges (concrete bridge section) are planned as PC box girder bridges with SBS erection. Their roadway composition and cross section are as shown in Figure 4.4.3.

Source: JICA Study Team

Figure 4.4.3 Cross Section of PC Box Girder for the Study (Standard Width)

4.4.3.2 Comparative Study

The PC box girder bridges are planned with a girder height of H = 2.7 m, which is unified with the cable-stayed bridge section and steel box girder bridge section. Comparative study has been carried out on the PC box girder of A2 side section (bridge length = 300 m). Three alternatives have been considered as shown in Figure 4.4.4, for which constant span lengths (advantageous for SBS method) can be applied. Optimum span length has been selected among these three alternatives from the viewpoints of structural aspects, cost, and applicability of the span arrangement to A1 side. These three alternatives are within applicable span lengths, and have no special problems for construction.

1 / 1

For A1 side, the following shall be taken into account for the determination of the pier locations:

- 1) Crossing Road (Embankment section of on-ramp)
- 2) Nose of On-ramp (End pier of on-ramp bridge)
- 3) Pier Locations of Thanlyin Bridge

In the study of span length, hence, applicability to A1 side is confirmed.

4.4.3.3 Yangon Side (A2 Side)

Result of the comparative study on span length at Yangon side (A2 side) is tabulated in Table 4.4.6.

Span length of 50 m is recommended as the optimum solution, as the girder height is adequate for the span length and reasonable design is possible, and this is the most economical option.

Table 4.4.6 Comparison of Span Arrangement of PC Box Girder (A2 Side)

	Reference Drawing	Comments	Evaluation
	5×60000=300000	Girder height: 2.7 m (Adequate height: 3.2 m)	
60m		Smaller girder height for span length, and required amount of prestressing tendons is greater.	
		Cost: Ratio = 1.04	
	. 6×50000=300000 _	Girder height: 2.7 m = adequate height	
50 m		Girder height is adequate for span length, and reasonable design is possible.	Most Recommended
		Cost: Ratio = 1.00	
	6×43000=25800042000	Girder height: 2.7 m (Adequate height: 2.3 m)	
43 m		Greater girder height for span length, and required amount of prestressing tendons is smaller.	
		Cost: Ratio = 1.08	

Source: JICA Study Team

4.4.3.4 Thilawa Side (A1 Side)

Result of the comparative study on span length at Thilawa side (A1 side) is tabulated in Table 4.4.7.

In addition to the advantages shown in the study at Yangon side (A2 side), span length of 50 m has the following advantages:

- Arrangement with same/similar span length is possible, even considering restrictions such as on-ramp nose and crossing road.
- Pier locations fit with Thanlyin bridge.

On the other hand, the other options have disadvantages such as uneven span lengths due to the restrictions, too long maximum span length (approx. 70 m for span length 60 m), or pier locations do not fit with Thanlyin bridge.

Span length 50 m is hence recommended also for Thilawa side (A1 side).

Table 4.4.7 Comparison of Span Arrangement of PC Box Girder (A1 Side)

Source: JICA Study Team

4.4.3.5 Conclusion

As a result of the study above, 50 m has been selected as the basic span length for the PC box girder bridge section because of adequate girder height to span length, lowest cost, and applicability to A1 side.

4.4.3.6 Change of Length of PC Box Girder Bridge in the D/D Stage

For Thilawa side (A1 side), according to the request for restriction of pier location in river portion from MWIR to MoC, the span arrangement of the section between P5 and P10 has been changed. To respond to this request, the bridge type of P5 ~ P10 section has been changed to steel box girder bridge. The detailed design of PC box girder bridge has therefore been carried out for A1 ~ P5 section in Thilawa side, and for P20 ~ A2 section in Yangon side.

4.4.4 Study on Superstructure of PC Box Girder Bridge

4.4.4.1 Review of Bridge Type and Erection Method Selected in the F/S

In the preceding F/S, PC box girder bridge with precast segments (SBS (span-by-span) erection) has been selected as the bridge type and erection method from the viewpoints of utilization of Japanese bridge technology and request from MoC for introduction of new technology. JICA's ToR of this Detailed Design Study also states to adopt this policy. In this section, consequently, bridge type (PC box girder bridge) and erection method (SBS method with precast elements) are taken as precondition for the study, and applicability of these bridge type and erection method for the given design condition has been reviewed.

(1) PC Box Girder Bridge with Span-by-Span (SBS) Erection

Typical span length applied to SBS method is between 40 m \sim 55 m, but can also reach up to approximately 60 m based on some experiences. Hence, PC box girder with SBS erection is applicable without problem to spans of approximately 50 m.

Note: 22 examples were picked up (16 in Japan, 6 in overseas) Source: JICA Study Team

Figure 4.4.5 Typical Span Lengths Erected with SBS Method

Application of SBS method to this Project also has the following advantages:

- PC box girder section has long total bridge length (1.6 km in total) effectiveness in construction cost due to re-use of erection equipment
- Erection of superstructure with minimum use of the space below bridge for in-river section

Typical SBS erection procedure is shown in Figure 4.4.6.

Source: JICA Study Team, based on the "Manual for Planning of Prestressed Concrete Highway Bridges" by Japan Prestressed Concrete Contractors Association, 2007

Figure 4.4.6 Erection Procedure of Span-by-Span Method (with Overhead Truss)

(2) Fabrication of Precast Elements

Fabrication of precast segments is categorized into two basic categories: long-line casting method and short-line casting method. Short-line method is applied in this Project. Advantages of short-line method compared to long-line method are as follows:

- Smaller yards for segment prefabrication.
- Applicable to curved girders using three-dimensional adjustment mechanism.
- Smaller area of soil improvement in case of soft ground yards.
- Concentrated quality control as the concrete is cast at the same place

Short-line method is thus considered to be suitable for this approach bridge as it has curved section and limited space for construction yards with soft ground.

Source : "Construction and Design of Prestressed Concrete Segmental Bridges" by Walter Podolny Jr., Jean M. Muller, 1982

Figure 4.4.7 Typical Short-Line Precasting Operation

4.4.4.2 Superstructure of PC Box Girder Bridge

(1) Basic Conditions for the Study of the Superstructure

Basic conditions for the study/review of superstructure are as follows:

- Span length : approx. 50 m (from the study result on span length)
- Girder height : 2.7 m (unified with cable-stayed bridge and steel box girder bridge)
- Bridge type : PC box girder bridge (adopted in the F/S)
- Erection method : SBS erection with precast segments (adopted in the F/S)
- Road width : Widening due to merging of on-ramp shall be taken into account.
- Location of on-ramp nose, end of cable-stayed bridge shall also be considered.

(2) Bridge Layout and Variation of Bridge Width

1) A1~P10

In the A1~P10 section, the bridge is divided at P5 and P8, and the bridge layout is 5 x 50 m + 3 x 51 m + 2 x 52 m.

For the box width, 6.5 m is adopted as the standard width, and 8.5 m is adopted for the especially wide section of P5~P8 (upstream).

Source: JICA Study Team

- As the on-ramp is merged in the A1~P10 section (PC box girder section), bridge width is discontinuous at the ramp nose, and the width varies at the merging section.
- The superstructure shall be divided adjacent to the on-ramp nose due to the discontinuous bridge width.
- Box width and box shape shall be basically unified for ease of fabrication of precast segments and erection by SBS method. On the other hand, the bridge width of upstream side largely varies due to merging of on-ramp (10.2 m (standard) ~ 16.8 m (at P5) ~ 10.2 m (P10)), and this large variation cannot be accommodated just by the widening of the cantilever slabs while maintaining uniform box width. Two types of box width are hence adopted (6.5 m as standard width, and 8.5 m for especially wide section (P5~P8)).
- Taking the above into account, the superstructure is divided at P5 and P8. The bridge layout between A1~P10 is 5 x 50 m + 3 x 51 m + 2 x 52 m consequently.

2) P20~A2

For the P20~A2 section, bridge layout is 6 x 50 m. The box width is 6.5 m (same as the standard section in A1~P10), as the bridge width is 10.2 m uniform.

(Box width is shown in red)

Plan

Cross Section (P20~A2)

Source: JICA Study Team

Figure 4.4.9 Bridge Layout and Box Width of the Girder (A1~P10)

3) Change of PC Box Girder Bridge Length in the Detailed Design Stage

In the detailed design stage, bridge type of the spans of P5~P10 has been changed to steel box girder bridge. The detailed design of PC box girder bridges has therefore been carried out for the spans A1~P5 at Thilawa side, and for the spans P20~A2 at Yangon side.

(3) Accommodation to Curvature of Bridge

The approach bridge has a slightly curved alignment (R = 2000 m) in A1 side (Thilawa side). On the other hand, the box element of the girder is planned to be straight between pier tables, considering ease of prefabrication and construction by SBS method. These curvatures are hence accommodated by varying the width of slab tip (const. thickness), while arranging the box element straight between pier tables and maintaining box width and width of tapered section of slab.

Source: JICA Study Team

Figure 4.4.10 Accommodation to Curvature and Widening of Bridge

(4) Girder Height

A height of 2.7 m is adopted for the girder height of PC box girder bridges, unified with cable-stayed bridge and steel box girder bridge. The ratio of girder height to span length is $1/18.5 \sim 1/19.3$ for span length of 50 m \sim 52 m, which is within adequate range (desirable ratio for continuous PC box girder with SBS erection is $1/17 \sim 1/20$).

(5) Member Thickness

Thicknesses of girder elements are determined based on structural function as longitudinal girder and transverse box frame, and function to place prestressing tendons.

The girder cross sections and thicknesses of members are shown below.

Source: JICA Study Team

Figure 4.4.11 Girder Cross Section (Standard Section and P8~P10 Widened Section)

Table 4.4.8	Thickness of Gi	irder Members	(Standard Section	and P8~P10	Widened Section)
-------------	-----------------	---------------	-------------------	------------	------------------

	Member	Thickne	ss [mm]	Function						
	Top slab	At center	260	 Structural function: transverse deck slab to support wheel load, compression flange to resist bending of the girder Arrangement of transverse tendons 						
enter	Contilouor clob	At web	460	 Structural function: transverse cantilever slab to support wheel load, compression flange to resist bending of the girder Arrangement of transverse tendons 						
At span (Cantilever siao	At edge	260	 Structural function: transverse cantilever slab to support wheel load, compression flange to resist bending of the girder Arrangement of transverse tendon anchors 						
	Bottom slab	At center	 Structural function: transverse box frame member to resist deformation Arrangement of longitudinal tendons 							
	Wah	Bottom	300	- Structural function: transverse box frame member to resist bending from						
	web	Тор	400	top/cantilever slab, girder member to resist shear						
	Top slab	At center	260	 Structural function: transverse deck slab to support wheel load Arrangement of longitudinal/transverse tendons 						
upport	Cartilana alah	At web	460	 Structural function: transverse cantilever slab to support wheel load Arrangement of transverse tendons 						
diate s	Canthever slab	At edge	260	 Structural function: transverse cantilever slab to support wheel load Arrangement of transverse tendon anchors 						
At interme	Bottom slab	At center	240	 Structural function: transverse box frame member to resist deformation, compression flange to resist bending of the girder Arrangement of longitudinal tendons 						
A	Web	Bottom	450	- Structural function: transverse box frame member to resist bending from						
	WED	Тор	550	top/cantilever slab, girder member to resist shear						

(6) Shear Key Arrangement

As the PC box girder bridges in this Project are constructed with precast segments by SBS method, shear keys were provided at each joint between segments in order to transfer the shear stresses adequately across joints and to avoid harmful displacement at joints. Concrete multiple shear keys were applied as the type of shear key which is reliable and commonly used in PC box girder bridges. The outline of design result is shown in Figure 4.4.12 and Figure 4.4.13

Source: JICA Study Team

Figure 4.4.13 Shear Key Arrangement (Typical Section)

(7) Prestressing Tendons

1) Longitudinal Tendons

As the PC box girder bridge will be constructed with precast elements using the SBS method, the weight of superstructure shall be trimmed from construction points of view and for seismic aspects, On the other hand, it is desirable to place some internal tendons, which are integrated with and behave together with concrete section, to obtain adequate deformability of the girder. For the longitudinal prestressing of PC box girder bridges, therefore, internal tendons are applied in combination with

external tendons, to obtain deformability of the girder while minimizing increase of member thickness due to arrangement of internal tendons.

a) External Tendons

The 19S15.2 mm has been selected for external tendons, which is reasonable for PC box girders of similar span lengths and has many experiences of application. Considering the possibility of future cable replacement, ECF (Epoxy Coated and Filled Strand) + HDPE sheath has been selected as the type of external tendon, obtaining multiple anti-corrosion function while aiming to improve the workability of cable replacement.

	Bare Strand	ECF Strand	Semi-Prefabricated Cable
Schematic View			
Protection for Corrosion	• Grouting + HDPE sheath	• Epoxy coating on each strand + HDPE sheath	• Galvanizing or epoxy coating etc. on each strand (+ filler agent) + HDPE sheath/coating
Workability	 Strands are pushed one by one into HDPE sheath. After stressing, the sheath is grouted along all length. Larger equipment is not required as the strands are installed one by one. 	 Strands are pushed one by one into HDPE sheath. After stressing, anchor zone is grouted (sheath is not grouted). Larger equipment is not required as the strands are installed one by one. 	 Larger cranes etc. are required for installation as the strands have been prefabricated in the shape of one unit cable at factory. Grouting is required only at anchorage.
Maintenance	• Difficulties in cable replacement as the cables are grouted.	• Easier cable replacement as the cables are not grouted except anchorage zone, and each strand can be handled one by one.	• Difficulties in handling at cable replacement as the cables in the shape of unit and installed in the girder.
Evaluation		MOST RECOMMENDED	

Table 4.4.9 Comparison of External Tendon Type

Source: JICA Study Team

b) Internal Tendons

The 12S15.2 mm has been applied as internal longitudinal tendon, which has many experiences of application to PC box girders of similar span lengths, and whose anchorage can be installed within the length of precast segment. At least two internal tendons have been installed at each section in order to ensure the deformability of the girder.

c) Transverse Tendons for Deck Slab

Both pre-tensioning and post-tensioning are applicable to transverse prestressing for deck slabs of precast segmental box girders. In this Project, post-tensioning method has been selected for deck slab prestressing, which is superior in geometry control of precast segments. The 3S12.7 mm has been selected as the type of tendons, as multi-strand is better in terms of procurement in Myanmar compared to large capacity single strands.

d) Tendons for Crossbeam Reinforcement

The crossbeams at pier table have functions to transfer reaction from superstructure to substructure through bearings. In addition, in this bridge, it is also a stress concentrated zone due to anchorage of external tendons. The crossbeams thus need to be reinforced by prestressing. For transverse prestressing, 4S15.2 mm has been used. For vertical prestressing, PC bars of 32 mm diameter have been applied, as the vertical tendon is short and PC bar with threaded anchorage system is advantageous than PC strands with wedge anchorages which have large loss of prestress for short tendons by pull-in of wedges.

2) Longitudinal Tendon Arrangement (External and Internal Tendon)

a) A1-P5

Source: JICA Study Team

3) Standard Section (Box Width 6.5 m)

Anternal Tendor 12515.2mm 4EA

4.4.4.3 Global Analysis

(1) Analysis Models

In the global analysis of PC box girder bridges, two different analysis models were used for normal loads and seismic loads, respectively. For normal loads, sectional forces were calculated using plane frame models, and superstructure and substructures were analyzed separately. In this analysis, sectional forces were calculated considering construction steps of superstructure (span-by-span construction). For seismic actions, the analysis was performed using three-dimensional frame models, and distribution of seismic horizontal forces from superstructure acting on each substructure was calculated by the models in which superstructures and substructures are incorporated together.

Figure 4.4.15 Analysis Model for Normal Loads (A1~P5)

- The girders were assumed to be erected from abutment toward river, both at A1-P5 and P20-A2 section.
- Longitudinal tendons anchored at girder end at abutment were assumed to be tensioned on one side in the girder, and not tensioned at the abutment side (the other longitudinal tendons were assumed to be tensioned at both sides).
- Internal and external tendons in longitudinal direction were assumed to be tensioned at erection of each span.

Source: JICA Study Team

Figure 4.4.17 Assumption of Construction Sequence (P20~A2)

4.4.5 Summary of the Detailed Design Result for Superstructure

(1) A1~P5

1) For Bending

Stress immediately after Anchor Set

Stress for Permanent Load

Stress for Service Load (Lmax)

Stress for Service Load (Lmin)

1) For Shear

Diagonal Tensile Stress (Permanent Load)

Check for Compressive Failure of Concrete Web

Source: JICA Study Team

Check for Ultimate Moment (Negative)

Diagonal Tensile Stress (Service Load)

Check for Diagonal Tensile Failure

(2) P20~A2

1) For Bending

A ₽25

STRESS (N/mm2)

STRESS (N/mm2)

Stress immediately after Anchor Set

Ď P23

A ₽22

₽24

Stress for Service Load (Lmax)

Source: JICA Study Team

2) For Shear

Diagonal Tensile Stress (Permanent Load)

Check for Compressive Failure of Concrete Web

Source: JICA Study Team

4.4.6 Substructure of PC Box Girder Bridge

4.4.6.1 Design Principle

Review of appropriateness of design outputs of the F/S was performed at the B/D for optimization of contents of facilities in relation to the bridge substructure with respect to structural types, dimensions, and number. Such optimizations were carried out with sufficient structural calculations, comparative studies in terms of economy, workability, constructability, and construction period.

Detailed structural analysis was performed at D/D for updating design conditions and upgrading

Check for Ultimate Moment (Negative)

Diagonal Tensile Stress (Service Load)

Check for Diagonal Tensile Failure

analytical accuracy based on the B/D results. Major updates at D/D were natural conditions obtained from geographic survey and topographic survey, and proposed future ground elevation. Reaction forces of superstructure for design of substructure were also updated.

Also note that a notice was issued by DWIR during D/D stage regarding the navigation channel location of Bago River. In complying with the notice, the JICA Study Team reconsidered the span arrangement and bridge type, then decided to substitute a 3-span continuous steel box girder bridge for a 4-span PC box girder bridge. Due to this change, design of piers of P6 through P9 was omitted from the design scope of the PC concrete bridge.

4.4.6.2 Study of Substructure Height

(1) General

Substructure height was designed referring to the proposed heights of planned road (PH), ground level (GL), and required heights related to superstructure which include height from pavement structure through bridge bearing. As a result, substructure heights were determined as round numbers by 10 cm.

Reflecting an elevation of reclamation for construction yard preparation (MSL+4.300 m), foundation level of on-land substructures was determined based on MSL+4.300 m.

Figure 4.4.18 Explanatory Diagram of Substructure Height

(2) Planned Depth of Overburden above Pile Cap and SPSP Top Slab

- On Land Substructures

The depth of overburden above the pile cap shall be secured sufficiently with regard to the planned future ground level. Amount of the overburden was around 0.5 m. The amount of overburden shall be altered at respective substructure locations in case of necessity such as an arrangement of buried conduit, and surface roads.

In the B/D, the amount of overburden was set to 1.0 m as a default plan subject to the update of the topography survey result, buried utility survey, and determination of future ground level at

the D/D stage.

In D/D, it was confirmed that there would be no buried utilities around the substructures both now and in the future other than drainage lines to be constructed under this Project for discharge of rainwater on the bridge. Also, it was determined that future ground level would be MSL+4.300 m as mentioned in the foregoing. Thus, the amount of overburden was set to 0.5 m.

- In-river Substructures (P20~P22)

The overburden depth of top slab of SPSP to riverbed shall be secured sufficiently for assurance of workability of grout injection work at permanent segment of SPSP connection pipes. Such elevation is determined as 1.0 m from the existing deepest riverbed around the target bridge section.

In the B/D, elevation of top slab upper surface for P7 \sim P9 and P20 \sim P22 was set at MSL-8.4 m as default plan subject to the update of the bathymetric survey result and riverbed analysis result at D/D stage.

In this D/D, the elevation of top slab upper surface for P20-P22 was set at MSL-7.900 m referring to the aforementioned bathymetric survey result. Note that piers of P7~P9 were omitted from the design scope of PC bridge based on the notice of DWIR

- In-river Substructures at Riverfront (P23)

Riverbed levels at the riverfront, where P23 is planned, are much shallower than that of low-flow channel section. The elevation of top surface of pile cap should be set at a level which secures 0.5 m of overburden depth from the existing riverbed (MSL-0.50 m) or the Low Water of Ordinary Spring Tide (L.W.O.S.T = MSL-2.06 m) whichever is lower for assurance of aesthetic.

Note that the P6 pier was omitted from the design scope of the PC bridge based on the notice of DWIR.

(3) Conclusion of Substructure Heights

Conclusions of the substructure heights are presented in Table 4.4.10 and Table 4.4.11.

Item	Mark	Unit	A1	P1	P2	P3	P4	P5
Station Number	STA	m	357.00	407.00	457.00	507.00	557.00	607.00
Proposed height	PH	m	8.692	9.942	11.192	12.442	13.691	14.830
Top elevation of substructure	KCL	m	8.692	6.424	7.709	8.959	10.173	11.309
Existing Ground EL	GL1	m	3.223	3.254	3.025	3.156	3.260	3.149
Future Ground EL	GL	m	4.300	4.300	4.300	4.300	4.300	4.300
Pile cap thickness	FH	m	1.900	1.900	1.900	1.900	1.900	1.900
Total Substructure height	Н	m	6.800	4.600	5.900	7.100	8.300	9.600
EL of Pile cap bottom	FL	m	1.892	1.824	1.809	1.859	1.873	1.709
Foundation Type	-	-	CIP Pile					

Table 4.4.10 Summary of Substructure Heights at A1 (Thilawa) Side

Item	Mark	Unit	P20	P21	P22	P23	P24	P25	A2
Station Number	STA	m	2088.00	2138.00	2188.00	2238.00	2288.00	2338.00	2388.00
Proposed height	PH	m	15.304	14.753	13.926	12.825	11.575	10.325	9.113
Top elevation of substructure	KCL	m	11.868	11.245	10.408	9.342	8.057	6.773	9.113
Existing Ground EL	GL1	m	-6.554	-6.155	-4.610	-0.041	4.116	4.016	4.110
Future Ground EL	GL	m	-7.490	-7.490	-7.490	0.550	4.300	4.300	4.300
Pile cap thickness	FH	m	4.000	4.000	4.000	2.200	1.900	1.900	1.900
Total Substructure height	н	m	23.400	22.800	21.900	14.000	6.200	4.900	7.300
EL of Pile cap bottom	FL	m	-11.532	-11.555	-11.492	-4.658	1.857	1.873	1.813
Foundation Type	-	-	SPSP	SPSP	SPSP	CIP Pile	CIP Pile	CIP Pile	CIP Pile

 Table 4.4.11
 Summary of Substructure Heights at A2 (Yangon) Side

Source: JICA Study Team

4.4.6.3 Dimensions of Abutment

(1) Width

The width at the top surface of the parapet wall shall be the same as the effective cross section of road or wider. The abutments A1 and A2 are located at a straight section of the main bridge. Therefore, constitution of cross section and width can be the same as the typical cross section of the bridge.

Source: JICA Study Team

Figure 4.4.19 Abutment Width

(2) Bridge Seat

The bridge seat shall have sufficient space for arrangement of bridge bearings that support the superstructure. The bridge shall also have a space that works to prevent the unseating of bridge in case of occurrence of unexpected seismic force, displacement or deformation occurring in a bridge caused by unpredicted earthquake ground motion in the design, destruction of the surrounding ground, or unexpectedly complicated vibration in the structural members.

As for unseating prevention in the bridge axis, the seating length is to be provided at the terminal supports and the halving joints. As for the unseating prevention in the transverse direction to the bridge axis, anchor bars are installed as displacement constraint structures.

- Determination of Seating Length (S_{EM})

The seating length should be long enough to prevent departure and unseating of the superstructure from the top of the substructure. Value of the seating was obtained from the equation below as specified in the JSBH.

 $SEM=0.7+0.005\ell$

Where,

 ℓ : Length of the effective span (m). When two superstructures with different span length are supported on one bridge pier, the longer of the two shall be used. $\ell = 50.0$ m for A1 and A2.

$$S_{EM} = 0.7 + 0.005 \text{ x } 50.000$$

$$= 0.950 (m)$$

- Determination of Bearing Edge Distance (S)

The bearing edge distance, which is defined as the distance between the edge of bearing and the edge of top of the substructure (or bearing support edge distance) shall be equal to or larger than the following value:

$$S \ge 0.2 + 0.005\ell$$

= 0.450 (m)

Check results of the bridge seat dimensions are summarized in Table 4.4.12 and

Seating length of Abutment

Source: JICA Study Team Figure 4.4.20 Unseating Length

Source: JICA Study Team Figure 4.4.21 Bearing Edge Distance

Table 4.4.13. The layout of the bridge seat is presented in Figure 4.4.22.

	Unit:mm	A1	P1	P2	P3	P4	P5	i.
Span Length		50,000	50,000	50,000	50,000	50,000	50,000	76,500
Wild CD	(2,000	2,500	2,500	2,500	3,000	2,250	2,250
width of Bridge Sea		20,700	17,000	17,000	17,000	17,000	25,000	25,000
Anahar Balt	φ	65	85	85	85	85	65	
(Fiving holts of harrings)	nos.	4	4	4	4	4	4	
(Fixing boits of bearings)	c.t.c.	850	1,100	1,100	1,100	1,100	850	
Anchor Bar	φ	70	100	100	100	100	70	
(Displacement Constraint	nos.	3	4	4	4	4	3	÷
Structure)	c.t.c.	450	300	300	300	300	450	
Eda Distance	LL	575	700	700	700	950	825	
Edge Distance	TT	2,875	900	900	900	900	1,025	
from Anchor Boll	Skew	813	598	598	598	1,102	1,117	
Minimum Edge Distan	ice	450	450	450	450	450	450	583
Seating Length of Gird	ler	1,750	4		-	-	2,050	1.5
Minimum Seating Length or	f Girder	950	950	950	950	950	950	1,083

Table 4.4.12 Check Results of Bridge Seat Width (A1 Side)

1	Unit: mm	P2	0	P21	P22	P23	P24	P25	A2
Span Length		104,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000
Width of Deideo Son		2,250	2,250	3,000	3,000	3,000	2,500	2,500	2,000
width of Bridge Sea		17,000	17,000	17,000	17,000	17,000	17,000	17,000	20,700
Anchor Bolt	φ	75	65	85	85	85	85	85	65
(Fiving holts of hearings)	nos.	4	4	4	4	4	4	4	4
(I IXing boils of bearings)	c.t.c.	1270x800	850	1,100	1,100	1,100	1,100	1,100	850
Anchor Bar	φ	-	70	100	100	100	100	100	70
(Displacement Constraint	nos.	· · · · · · · · · · · · · · · · · · ·	3	4	4	4	4	4	3
Structure)	c.t.c.	1 A 1	450	300	300	300	300	300	450
Edan Distance	LL	950	825	950	950	950	700	700	575
From "Anohor Bolt"	TT	757	1,025	900	900	900	900	900	2,875
from Alterior Bon	Skew	1,018	1,117	1,102	1,102	1,102	598	598	813
Minimum Edge Distan	720	450	450	450	450	450	450	450	
Seating Length of Gird	ler	1,950	2,000	-	- P. 14	1-4.0	andro f	9.0	1,750
Minimum Seating Length o.	1,220	950	950	950	950	950	950	950	

 Table 4.4.13
 Check Results of Bridge Seat Width (A2 Side)

Source: JICA Study Team

Source: JICA Study Team

Figure 4.4.22 Layout of Bridge Seat for Abutment (A1 and A2)

(3) Maintenance Space at Bridge Seat of Abutment

As for the structural details, which may contribute to prolongation of the bridge life span, bridge seats shall be graded by around 2% in order to avoid puddle on the bridge seat.

Moreover, a space for ventilation should be provided at the terminal support. For this purpose, a distance of 500 mm was secured. This space will also be utilized for inspections of bearings, and entrance path of PC box girder. Schematic illustration is shown in Figure 4.4.23.

Source: JSHB

Figure 4.4.23 Maintenance Space at Bridge of Abutment

4.4.6.4 Dimensions of Pier

(1) Bridge Seat

The bridge seat shall have sufficient space for arrangement of bridge bearings that support superstructures. The bridge shall also have a space that works to prevent the unseating of bridge in case of occurrence of unexpected seismic force, displacement or deformation in a bridge caused by unpredicted earthquake ground motion in the design, destruction of the surrounding ground, or unexpectedly complicated vibration in the structural members.

As for unseating prevention in the bridge axis, the seating length is to be provided at the terminal supports and the halving joints. As for the unseating prevention in the transverse direction to the bridge axis, anchor bars are installed as displacement constraint structures.

Source: JICA Study Team

Figure 4.4.24 Unseating Length

The seating length was estimated for piers of P5 and P20 that were terminal support piers. For other intermediate piers, such seating

length is unnecessary because PC concrete bridge is continuous bridge and there is no unseating situation in the bridge axis.

- - Determination of Seating Length (S_{EM}) [P5 and P20]

The seating length should be long enough to prevent departure and unseating of the superstructure from the top of the substructure. The value of the seating was obtained from the equation below as specified in the JSBH.

 $SEM = 0.7 + 0.005\ell$

Where,

ℓ: Length of the effective span (m). When two superstructures with different span length are supported on one bridge pier, the longer of the two shall be used. The ℓ for P5 and P20 are 74.0 m and 104.0 m, respectively.

 $S_{EM} = 0.7 + 0.005 \text{ x} [74(m) \text{ or } 104 (m)]$

= 1.070 (m) [P5 Pier] = 1.220 (m) [P20 Pier]

- Determination of Bearing Edge Distance (S)

The bearing edge distance, which is defined as the distance between the edge of the bearing and the edge of the top of the substructure (or bearing support edge distance) shall be equal to or larger than the following value:

$$S \quad \geqq 0.2 + 0.005\ell$$

Check results of bridge seat dimensions are summarized in Table 4.4.12 and

Source: JICA Study Team

Figure 4.4.25 Bearing Edge Distance Table 4.4.13. Layouts of bridge seat are displayed in Figure 4.4.26 through Figure 4.4.29.

Source: JICA Study Team

Source: JICA Study Team

Source: JICA Study Team

(2) Dimensions of Pier Column

For the general concept of dimensions for piers adopted from the F/S and applied to all piers in the B/D, a ginkgo shape pier (*see Figure 4.4.30 Conceptual Diagram of "Ginkgo Shape"*) was employed. However, after due review of structural heights under the latest configurations during the D/D, it was confirmed that it is not rationale to adopt the gingko shape pier for some piers with relatively low height. In other words, those low height piers should not have overhang beams because of insufficient column height and such beams would just be buried on the ground despite using more reinforcement bars and timbering supports for their construction compared with a wall type column. Due to this, a wall type column was employed for piers of P1 through P3 at Thilawa side as well as P24 and P25 at Yangon side.

Regarding piers of P4, P5 and P20 through P23, which have Diag reasonable heights for construction of beams on the column,

Source: Logo of Tokyo Metropolitan Government (Left) and Wikipedia (Right)

Figure 4.4.30 Conceptual Diagram of "Ginkgo Shape"

the ginkgo shape pier was employed as selected during B/D. Comparisons are shown in Table 4.4.14 and Table 4.4.15.

Table 4.4.14 General Shapes of Wall Type Piers for P1~P3, P24 and P25 at D/D

Source: JICA Study Team

Table 4.4.15 General Shapes of Piers with Overhang Beam for P4, P5, P20~P23 at D/D

The cross section of column was determined based on the stress status of column under various load conditions or minimum dimensions of bridge seat. The summary of the basis of determination is explained in Table 4.4.16.

11
e at F/S stage as
putation (steel bar
er 32- 2 layer)
n
n
at F/S stage
1

 Table 4.4.16
 Summary of Basis of Determination of Cross Sectional Dimensions

Source: JICA Study Team

(3) Study on Applicability of Hollow Section Column

When a high pier with a pier column having a large cross sectional area is required, a hollow section column may be suitable instead of a solid section column due to reduction of inertial force rooted in the mass of the pier column which may facilitate seismic design of substructure and foundation. Also, reduction of concrete volume to be used may provide cost benefits.

Looking at the substructures of PC box girder bridges, the maximum column height is 19.4 m at P20 pier, which is not classified as a high pier in general. However, its cross sectional dimension in bridge axis is 4.5 m that is sufficient for construction of a hollow section column (an assumed minimum inner dimension for construction is 2.0 m). Therefore, a study on applicability of a hollow section column was performed at the D/D.

A model used in this study is shown in Figure 4.4.31. Dimensions of the hollow section are (H)9.0 m x (B)2.5 m x (W)9.0 m. The bottom elevation of the hollow section was determined based on the height of an assumed plastic zone, where the column shall have solid section as stipulated in the JSBH. The upper elevation of the hollow section was determined with respect to rebar arrangement of overhang beam.

Figure 4.4.31 Schematic Diagram of Hollow Section Column Pier (P20)

This study revealed that there were little benefits in terms of cost (cost ratio of 0.99 against the solid column type) whereas there were disadvantages in terms of workability for construction and maintenance. Specifically, for the cost aspect, concrete volume could be reduced but quantity of formwork and falsework for inner space construction and axial rebar of column will be increased. It is also possible that a narrow space construction has various difficulties and may cause a longer construction duration. Also, such narrow space may toughen maintenance and rehabilitation of column in the future. Overall, it was concluded that a hollow sectional column was not applicable to the PC box girder bridge section. Comparison result is summarized in Table 4.4.17

Table 4.4.17 Comparison of Solid Section Column and Hollow Section Column

Source: JICA Study Team

4.4.7 Foundation of PC Box Girder Bridge

4.4.7.1 Design Principle

Review of appropriateness of design outputs in the F/S was performed in the B/D for optimization of contents of facilities in relation to the bridge foundation with respect to structural types, dimensions, and number. Such optimizations were carried out with sufficient structural calculations and comparative studies in terms of economy, workability, constructability, and construction period.

Detailed structural analysis was performed at the D/D for updating design conditions and upgrading analytical accuracy based on the B/D results. Major updates at the D/D were natural conditions obtained from geographic survey and topographic survey, and proposed future ground elevation. Reaction forces of superstructure for design of substructure were also updated.

4.4.7.2 Selection of Bearing Stratum and Embedment Length of Foundation

(1) Selection of Bearing Stratum

The basement layer in the bridge design for this bridge site is Clayey SAND-II, which is distributed uniformly at the top surface elevation of around MSL-40.0~-60.0 m. Its firmness, represented by N-value of 50, was examined through the standard penetration test (SPT). There are no appropriate soil layers other than the basement layer with sufficient firmness and thickness to support bridge reactions at the left (Thilawa) side flood channel of Bago River. On the other hand, some parts of the Clayey SAND-I layer distributed just above the Clayey SAND-II at the right (Yangon) side flood channel are regarded as the bridge bearing stratum. Soil profile is displayed in Figure 4.4.32 and Figure 4.4.33.

A1 Side (Thilawa):Clayey SAND-II layer,MSL-50.0~-60.0 mA2 Side (Yangon):Clayey SAND-I and II layers,MSL-30.0~-50.0 m

(2) Embedment Length of Foundation

Embedment length of foundation is complied using a value recommended in the Specifications for Highway Bridges (Japan Road Associations) as follows:

Cast-In-Situ Pile Foundation: Around 1.0 D or more considering unevenness of bearing stratum Steel Pipe Sheet Pile Foundation: Around 1.0 D or more for obtaining sufficient plunging effect *Note: The "D" represent pile diameter.*

Foundation length and bearing stratum elevation determined for each substructure at D/D are summarized in Table 4.4.18 and Table 4.4.19.

Item	Mark	Unit	A1	P1	P2	P3	P4	P5
Station Number	STA	m	357.00	407.00	457.00	507.00	557.00	607.00
EL of Pile cap bottom	FL	m	1.892	1.824	1.809	1.859	1.873	1.709
EL of Bearing layer	S	m	-49.020	-53.620	-57.660	-52.770	-53.590	-51.480
Pile diameter	D	m	1.500	2.000	2.000	2.000	2.000	2.000
Minimum socket length			1.0D	1.0D	1.0D	1.0D	1.0D	1.0D
Foundation Type	-	-	CIP Pile					
Pile Length	L	m	53.000	58.000	62.000	57.000	58.000	55.500
Reference Boring No.	-	-	BD23	BD22	BD21	BH-01	BD20	BD19
Bearing Stratum	-	-	CS-II	CS-II	CS-II	CS-II	CS-II	CS-II

Table 4.4.18 Summary of Foundation Length at A1 (Thilawa) Side

Source: JICA Study Team

Table 4.4.19 Sumr	ary of Foundation Length at A2 (Yangon) Side
-------------------	--

Item	Mark	Unit	P20	P21	P22	P23	P24	P25	A2
Station Number	STA	m	2088.00	2138.00	2188.00	2238.00	2288.00	2338.00	2388.00
EL of Pile cap bottom	FL	m	-11.532	-11.555	-11.492	-4.658	1.857	1.873	1.813
EL of Bearing layer	S	m	-47.220	-49.450	-42.400	-34.650	-42.650	-33.760	-27.870
Pile diameter	D	m	1.200	1.200	1.200	2.000	2.000	2.000	1.500
Minimum socket length			1.5D	1.5D	3.0D	1.0D	1.0D	1.0D	1.0D
Foundation Type	-	-	SPSP	SPSP	SPSP	CIP Pile	CIP Pile	CIP Pile	CIP Pile
Pile Length	L	m	41.500	44.000	39.000	32.500	47.000	38.000	31.500
Reference Boring No.	-	-	BD3	BD2	BD1	BD17	BD16	BD15	BD14
Bearing Stratum	-	-	CS-II	CS-II	CS-I	CS-I	CS-I	CS-I	CS-I

Source: JICA Study Team

4.4.7.3 Evaluation of Geotechnical Parameters for Design

Evaluation of geotechnical investigation results was performed by the geological specialists of the Project with unified viewpoint and described in detail at the relevant section of this report. With regard to evaluation of geotechnical parameters for bridge design, bridge designers should take into account the specific features of each bridge locations in deference to outputs of the geological specialists. In this sub-section, modulus of deformation of soils and reduction factor (D_E) for geotechnical parameters due to liquefaction, that have a profound effect on design of bridge foundation, are reported.

Generally, the displacement of foundations largely depends on the behavior of the weak sections of the bearing ground. In addition, the horizontal displacement of foundations with respect to the loads acting on the top of the foundations varies with the properties of the surface layers. According to the geotechnical investigation results that had been conducted during B/D, the modulus of deformation of soils shall be reduced as an overall tendency comparing with ones obtained in F/S and used in B/D. It is remarked that the modulus of surface layers should be decreased approximately by 50% based on the results. Additionally, it was discovered that the effects of liquefaction should be considered more seriously than that considered in the F/S and the B/D. Since a single soil layer at A2 (Yangon) side was considered as a liquefaction layer in the F/S-B/D, number of soil layers and scale of reduction for geotechnical parameters due to liquefaction should be increased in the D/D. The modulus of deformation factor (D_E) are shown in Table 4.4.20 and Table 4.4.21.

Above all, it was confirmed that the properties of the surface layers for deformation were weaker than that of the F/S-B/D, and the fact brought increments of pile number and/or pile diameters for assurance of structural stability.

Str. No.		Al			P1			P2			P3			P4			P5	
Br No.		BD-23			BD-22			BD-21			No13BH-	-01	BD-20				BD-19	
Depth	Soil type	BD	DD	Soil type	BD	DD	Soil type	BD	DD	Soil type	BD	DD	Soil type	BD	DD	Soil type	BD	DD
1	Filled Soil	N=2 E=1400 DE=N/A	N=1 E= 700 D _E =N/A	Filled Soil	N=2 E=1400 DE=N/A	N=1 E= 700 D _E =N/A	Filled Soil	N=2 E=1400 DE=N/A	N=1 E= 700 D _E =N/A	Filled Soil	N=2 E=1400 DE=N/A	N=1 E= 700 D _E =N/A	Filled Soil	N=2 E=1400 DE=N/A	N=1 E= 700 D _E =N/A	Filled Soil	N=2 E=1400 DE=N/A	N=1 E= 700 DE=N/A
3 4 5 6 7	CLAY-I	N=1 E=1800 D _E =N/A	N=1 E =900 D _E =N/A	CLAY-I	N=1 E=1800 D _E =N/A	N=1 E =900 D _E =N/A	CLAY-I	N=1 E=1800 D _E =N/A	N=1 E =900 D _E =N/A	CLAY-I	N=1 E=1800 D _E =N/A	N=1 E= 900 D _E =N/A	CLAY-I	N=1 E=1800 D _E =N/A	N=1 E =900 D _E =N/A	CLAY-I	N=1 E=1800 D _E =N/A	N=1 E=900 D _E =N/A
8	I-Y		N=3 E= 2000			D _E =2/3		-	D _E =2/3	-			1-	N=5	N=3 E=2000 D _E =1/3			N=3
10	CLA	N=5	$D_{E}=1/3$						D _E =1				and	E=2500	D _E =2/3	dy Y-I	N=5	D _E =2/3
11 12	Sandy 6	E=2500 D _E =N/A	D _E =2/3	Sandy CLAY-I	N=5 E=2500 D _E =N/A	N=3 E= 2000 D _E =N/A	Sandy CLAY-I	N=5 E=2500 D _E =N/A	N=3 E= 2000 D _E =1	I-Y			CI S	DE=N/A	D _E =1	San CLA	E=2500 D _E =N/A	D _E =1
13										CLA	N=5	N=3						
14 15 16	I-UN	N=14	N=15	I-UN	N=14	N=15	I-UNV	N=14	N=15	Sandy	D _E =N/A	D _E =N/A	SAND-I	N=14 E=9800	N=15 E= 6000	I-UNA	N=14	N=15
17	SAI	E=9800	E=6000	SAJ	E=9800	E=6000	ty S	D _E =1	DE=1	-	N=14	N=15	Silty	D _E =1	D _E =1	ty S	D _E =1	DE=1
18	Silty	D _E =1	D _E =1	Silty	D _E =1	D _E =1	Sil	-		Silty SAND-	E=9800 D _E =1	E=6000 D _E =1				Sil	-	
20										SaCL-II	D _E =N/A	D _E =N/A	CL-AII	D _E =N/A	D _E =N/A			

Table 4.4.20 Comparison of Modulus of Deformation of Soil for A1 (Thilawa) Side (B/D vs D/D)

Str. No.		P20			P21			P22			P23			P24			P25			A2	
Br No.		BD-3			BD-2			BD-1			BD-17			BD-16			BD-15			BD-14	
Depth	Soil type	BD	DD	Soil type	BD	DD	Soil type	BD	DD	Soil type	BD	DD	Soil type	BD	DD	Soil type	BD	DD	Soil type	BD	DD
1	ents			R.S.	E=2800, D _g =N/A	E=1200, D _E =1/3							F.S	E=2000, D ₆ =N/A	E=2100, D _E =N/A	F.S	E=2000, D _k =N/A	E=2100, D _E =N/A	F.S	E=2000, D _E =N/A	E=2100, D ₈ =N/A
2	dime	N=4	N=3				-	N=4	N=1												
3	/er se	D _E =N/A	$D_{E}=1/3$	ŀΧ	N=4	N=1	LAY	E=2800	E=900	ŀλ	N=1	N=1				-	N=1	N=1			N=1
4	Riv			CLA	E=2800 D _E =N/A	D _E =2/3	C	D _E =N/A	$D_{E}=1/3$	CLA	$D_E=1800$ $D_E=N/A$	$D_{E}=1/3$				LAY	E=1800	E=900	-	N=1	E=900
5	CL-I	E=2800, D ₆ =N/A	E -900 , D _E -N/A										-	N=1	N=1	G	D _E =N/A	D _E =N/A	LAY	E=1800	D _E =N/A
6													LAY	E=1800	E=900				D	D _E =N/A	
7			N=13			N=13	ly D-I	N=5	N=13				D	D _E =N/A	D _E =N/A						D _E =1
8	.		E=5200			E=5200	Sil SAN	E=2500 D _E =2/3	E=5200 D _E =2/3			N=13									D _E =2/3
9	ND	N=5	$D_{E} = \frac{1}{3}$			D _E =2/3			_			E=6500 D _F =2/3									
10	ltyS/	E=2500 D _E =2/3								D-I	N=5	-									
11	Si	_		ġ	N=5					SAN	E=2500					D-I	N-5	N=13			
12			D _E =2/3	lty S/	E=2500 D _E =2/3		-UN	N=5	N=30	Silty	D _E =2/3					SAN	E=2500	E=6500	D-I	N-5	N-12
13				Si			ty SA	E=2500 D _E =2/3	E=17500 D _E =1			D _E =1				Silty	DE=2/3	D _E =1	SAN	E=2500	E=6500
14	ПΛ	N=5	N=7			D _E =1	Sil		-				_						Silty	$D_E=2/3$	D _E =1
15	CL-1	E=2500 DE=2/3	E=4900 DE=N/A										dv.	N=5	N=13						
16													lty SA	E=2500 D _E =2/3	E=6500 D _E =1						
17	ND-C	N=30	N=20				9 Q	N=30	N=20	II-O	N=30	N=25	Si	_	-						
18	ySAl	E=21000	E=14000	<u>ہ</u> ر	N=30	N=20	ySAl	E=21000	E=14000	NAS	E=21000	E=17500				п	N=30	N=25	-	N=30	N=25
19	Claye	D _E =1	D _E =1	laye ND-	E=21000	E=14000	Claye	D _E =1	D _E =1	Silty	D _E =1	D _E =1				Silty ND-	E=21000	E=17500	Silty ND-	E=21000	E=17500
20				S S	D _E =1	D _E =1	Ŭ									SA	D _E =1	D _E =1	SA	D _E =1	D _E =1

Table 4.4.21 Comparison of Modulus of Deformation of Soil for A2 (Yangon) Side (B/D vs D/D)

Source: JICA Study Team

4.4.7.4 Estimation of Down Drag Zone

Occurrence of down drag due to reclamation for preparation of construction yard whose finished elevation is MSL+4.300 m was anticipated. Accordingly, depth of the down drag zone was analyzed using laboratory test results of soil samples obtained at D/D. Analysis results shown in Table 4.4.22 were utilized for the design of foundation.

			0-					
Item	Mark	Unit	A1	P1	P2	P3	P4	P5
Station Number	STA	m	357.00	407.00	457.00	507.00	557.00	607.00
Existing Ground EL	GL1	m	3.223	3.254	3.025	3.156	3.260	3.149
Future Ground EL	GL	m	4.300	4.300	4.300	4.300	4.300	4.300
Foundation Type	-	-	CIP Pile					
Pile Length	L	m	53.000	58.000	62.000	57.000	58.000	55.500
Downdrag Zone	EL	m	-10.0	-10.6	-9.7	-11.8	-9.6	-10.5
Reference Boring No.	-	-	BD23	BD22	BD21	BH-01	BD20	BD19
Bearing Stratum	-	-	CS-II	CS-II	CS-II	CS-II	CS-II	CS-II

Table 4.4.22 Assessment Result of Down Drag

1. A1 ((Thilawa)	Side:	PC-Bo	x Girde	r Bridge

2. A2 (Yangon) Side: PC-Box Girder Bridge

Item	Mark	Unit	P20	P21	P22	P23	P24	P25	A2
Station Number	STA	m	2088.00	2138.00	2188.00	2238.00	2288.00	2338.00	2388.00
Existing Ground EL	GL1	m	-6.554	-6.155	-4.610	-0.041	4.116	4.016	4.110
Future Ground EL	GL	m	-7.490	-7.490	-7.490	0.550	4.300	4.300	4.300
Foundation Type	-	-	SPSP	SPSP	SPSP	CIP Pile	CIP Pile	CIP Pile	CIP Pile
Pile Length	L	m				32.500	47.000	38.000	31.500
Downdrag Zone	EL	m				-6.7	-6.7	-3.8	- <mark>3.</mark> 9
Reference Boring No.	-	-	BD3	BD2	BD1	BD17	BD16	BD15	BD14
Bearing Stratum	-	-	CS-I	CS-I	CS-I	CS-I	CS-I	CS-I	CS-I

Source: JICA Study Team

4.4.7.5 Selection of Foundation Type

(1) Design Policy

Bridge foundation type of Bago Bridge should be selected considering the temporary structures to be required at the respective substructure locations due to site conditions. Thus, comparative studies for the selection of foundation type should be conducted for on-land and in-river sections separately. Additionally, a study for the in-river section should consist of a low-flow channel and a waterfront section, where riverbed level is much shallower than that of the low-flow channel.

As the result of comparative study at B/D, the steel pile sheet pile (SPSP) foundation cum cofferdam was recommended as foundation type of in-river substructures, and a combination of cast-in-place (CIP) pile foundation (pile diameter = 1.500 m) and steel sheet pile cofferdam was recommended for on-land and waterfront substructures.

Updating of design conditions and upgrading of analytical accuracy were made to the above B/D results. Then, when necessary, reconsideration of pile arrangement including selection of pile diameter was performed at D/D for optimization.

(2) Design Conditions

Design conditions applied for the B/D are summarized as follows:

- Bearing stratum is Clayey SAND-II at around MSL-50.0 m
- Design reaction from superstructure is moderate to large due to superstructure type (concrete box girder) and span length (50.0 m)

- Groundwater level is high (cross to ground surface)
- Representative substructure height of pier employed for this study is 8 m and 20 m for on-land pier and in-river pier, respectively
- Representative substructure height of abutment employed for this study is 8 m
- Unit costs of bridgework employed for this study are reconfigured based on those used in the F/S.

(3) Selection of Foundation Type at B/D

1) B/D Result: On-land (A1~P5, P24~A2)

On-land foundations are constructed after ground preparation that includes reclamation.

Regarding prefabricated concrete pipe pile types, such as PHC (Pretensioned Spun High Strength Concrete) pile, diameters of 600 mm or smaller can be procured in Myanmar. However, these diameters are too small against bridge scale and seismic force. Moreover, only percussion method is procurable in Myanmar whereas inner excavation method is demanded in terms of the required driving depth and penetration against a relatively firm intermediate sandy soil layer. In order to overcome these situations, an offshore procurement of large diameter PHC piles with inner excavation drilling machines is one of the options, but less economical than adoption of CIP pile that is locally procurable. As mentioned above, prefabricated concrete pipe pile types were excluded from this comparative study of foundation type.

Regarding steel pipe pile foundation, those with diameters of 600 mm or smaller are procurable in Myanmar. However, these diameters are also too small against bridge scale and seismic force. Moreover, only percussion method is procurable in Myanmar whereas inner excavation method is demanded in terms of the required driving depth and penetration against a relatively firm intermediate sandy soil layer. In order to overcome these situations, an offshore procurement of large diameter steel piles with inner excavation drilling machines is one of the options similar to the PHC pile case, but less economical than adoption of CIP pile that is locally procurable. As mentioned above, steel pipe pile foundation was excluded from the comparative study of foundation type at B/D.

About the CIP pile foundation, reverse circulation drilling method is suitable for the required borehole depth. Based on bridge scale and seismic force, pile diameters for comparative study were 1.2 m, 1.5 m, and 2.0 m. Procurement and construction plan should be referred to relevant chapters of this report. It was confirmed as the result of study that "CIP pile foundation (reverse circulation drilling method) D = 1.5 m" was the most advantageous foundation type among the alternatives in terms of economy, workability, and construction period. This foundation type was adopted for abutments and piers (onland). Summary of these comparative studies is shown in Table 4.4.23 and Table 4.4.24.

2) B/D Result: In-river (Low-flow channel) (P5~P9, P20~P22)

Exposure to water surface of bridge structure other than pier column has not been permitted by a relevant authority. Consequently, members of foundation such as steel pipe sheet piles and top slab shall be constructed below a certain riverbed elevation, and a temporary cofferdam is necessary for their construction. Because of a very high design water head for cofferdam that is around 15 m, SPSP cofferdam is the best structural type that will enable to resist such high water pressure. The steel sheet pile method, which is a conventional cofferdam type, is not suitable for the water head.

When the pile type foundation is required due to depth of bearing stratum and when SPSP cofferdam is selected as an economical and feasible cofferdam type, SPSP foundation cum cofferdam is commonly adopted.

Based on above considerations, "SPSP Foundation cum cofferdam D = 1.2 m" was the most advantageous foundation type among the alternatives in terms of economy, workability, and

construction period. This foundation type was adopted for in-river piers (low-flow channel) at B/D. Summary of the comparative studies is shown in Table 4.4.25.

3) B/D Result: In-river (Riverfront) (P6 and P23)

Exposure to water surface of bridge structure other than pier column has not been permitted by a relevant authority. Consequently, members of foundation such as steel pipe sheet piles and top slab or pile cap for CIP pile foundation shall be constructed below a certain riverbed elevation, and a temporary cofferdam is necessary for their construction.

Because of the relatively shallower riverbed level at riverfront pier locations, the design water head for cofferdam is set at around 10 m which is applicable for a steel sheet pile cofferdam. In this study, alternatives were as follows:

Source: JICA Study Team

It was confirmed that Alternative 2: "CIP pile foundation (reverse circulation drilling method) D = 1.5 m" was the most advantageous foundation type for the waterfront pier in terms of economy, workability, and construction period. This foundation type was adopted for waterfront piers (P6 and P23). Summary of the comparative studies is shown in Table 4.4.26.

Note: Based on a notice of DWIR made during the D/D stage regarding the navigation channel location of Bago River, location of piers P6 through P9 had been rearranged or omitted, and design of the in-river piers at Thilawa side was deleted from the scope of PC concrete bridge after due consideration of the JICA Study Team. However, for the purpose of design activity log above, illustration is still used. In addition, the result of the comparative study on foundation type of riverfront piers is still available to explain the adequateness of P23 foundation type, this illustration is used in D/D report.

(4) Review Policy of Foundation Type at the D/D

Update of design conditions and upgrade of analytical accuracy were conducted as mentioned in the design principle.

Soil parameter	To apply updated soil parameters that was obtained after the B/D. It was revealed that deformation coefficients of soils were smaller than the ones used in the B/D. Additionally, the scale of liquefaction effect for foundation design is larger than the expected at the B/D.
Ground elevation and structural height	The amount of the overburden depth is 0.5 m at the D/D, whereas it was 1.0 m at the B/D. The foundation level of on-land substructures was determined, taking into account the ground level for construction (MSL+4.300 m). Due to those changes, structural heights were shortened by $1.0 \sim 1.5 \text{ m}$
Analytical accuracy	Implementation of global analysis under the updated conditions and improvement of analytical accuracy adequately as D/D.

(5) Review Results

1) On-land (A1~P5, P24~A2)

It was confirmed that "CIP pile foundation (reverse circulation drilling method) D = 2.0 m" was the most economical foundation type for on-land piers. For abutment foundation type, it was confirmed that "CIP pile foundation (reverse circulation drilling method) D = 1.5 m" was the most preferable foundation type as it was selected at the B/D.

Piers: CIP pile foundation (reverse circulation drilling method) D = 2.0 m

Abutments: CIP pile foundation (reverse circulation drilling method) D = 1.5 m

The above review results are shown in Table 4.4.27 and Table 4.4.28.

2) In-river (Low-flow channel) (P20~P22)

The overall size of SPSP foundation is subject to dimensions of column and stability analysis of SPSP foundation. Regarding the dimensions of column for intermediate piers, 3.0 m in the bridge axis direction was sufficient under the updated conditions, whereas 3.5 m was proposed at the B/D. Consequently, it was confirmed that the overall size of SPSP could be minimized.

For the overall size of SPSP for P20 pier, dimensions of column could not be minimized because they were determined as the minimum dimension of a terminal support pier.

The above explanations are summarized in Table 4.4.29.

P20: SPSP foundation cum cofferdam 11.373 m x 17.164 m (Steel pipe diameter 1.2 m)

P21~22: SPSP foundation cum cofferdam 8.535 m x 17.222 m (Steel pipe diameter 1.2 m)

3) In-river (Riverfront) (P23)

There were no major changes in terms of construction conditions such as water level and riverbed elevations. Thus, the means of coffering, namely, steel sheet pile, was not changed from the B/D. Regarding the foundation type of P23 pier, CIP pile foundation (reverse circulation drilling method) D = 2.0 m was selected referring to the review result of on-land piers foundation type.

Piers: CIP pile foundation (reverse circulation drilling method) D = 2.0 m

	Pile Diame	eter		Cast in Place R	tC Piles \$1.2m		Cast in Place R(C Piles p1.5m		Cast in Place R	C Piles \$2.0n	
	Outline Daw	g		000 MINOL 000 000 MINOL 0000 000 MINOL 000 000 MINOL 000 000 MINOL 000 000 M	Brolgers Longhudina international and	2000 - 20		Bridgets Longtudnal Dire 1000, 3710 3750, 14 100 3750 100	6 10 0000 DATE OFFE OFFE OFFE OFFE	And		
		-	1	Bridge's Longin	tudinal Direction		Bridge's Longitu	idnal Direction		Bridge's Longitu	idnal Direction	
	item	mark	unit	Presistent Situation	Seismic Situa	tion	Presistent Situation	Seismic Situatio	R	Presistent Situation	Seismic Situ	lation
		Pmax	N	2,070.2	3,124.4		2,778.1	4,468.1		4,399.9	6,267,3	
	Maximum	Ra	KN	6,156.0	9,413.0		7,784.0	11,956.0		10,600.0	16,397.0	
1	Pile Keactions	0/03	1	0.3	0.3		0.4	0.4		0.4	0.4	
Design	Amount	K	mm	3.8	12.0		4.2	14.1		3.2	13.6	
Results	y	oxa	uuu	15.0	15.0		15.0	15.0		15.0	15.0	
1	Displacement	ы	1	0.3	0.8		0.3	0.9		0.2	60	
	Stress	gs	N/mm	10.4	210.3		11.2	193.3		53	170.0	
	of	GSa	N/mm	160.0	300.0		160.0	300.0		160.0	300.0	
	a Pile	0/03	1	0.1	0.7		0.1	0.6		0.0	0.6	
	Maximum St	tress of a	Pile	σs= 210.26 kN/m ² <σs	$sa = 300 kN/m^2$ (C	DK)	os= 193.26 kN/m ² <osa< td=""><td>$= 300 \text{kN/m}^2$ (OK</td><td></td><td>σs= 170.00 kN/m² <σs</td><td>$a = 300 kN/m^2$ (</td><td>(OK)</td></osa<>	$= 300 \text{kN/m}^2$ (OK		σs= 170.00 kN/m ² <σs	$a = 300 kN/m^2$ ((OK)
Construc	tability			The amount of number of pile thus this alternative is the most terms of constructability.	is largest and t inferior one in	Δ	This alternative entails the smal works.	ller amount of pile	0	This alternative entails the sma pile works.	dest amount of	0
Construc	tion Period			The amount of pile works incluence excavation is consirably large.	uding ground (3.7Months)	Ø	The amount of pile works inclus excavation is consirably the sma	ding ground allest (3.1Months)	0	The amount of pile works inclu excavation is consirably smalle	tding ground r. (3.2Months)	0
Environ	mental Aspect			This alternative entails the larg excavation works.	gest amount of	Δ	This alternative entails the smal excavation works.	lest amount of	0	This alternative entails small ar excavation works.	nount of	0
Cos Rat	DO DO			1.279		⊲	1.000		0	1.260		Ō
Overal	1 Evaluation			7	A		0			0		
										Note O: Good.	O: Fair. ∆ : Not Rec	bommended

Table 4.4.23 Comparison of Foundation Type for Abutment at B/D

Detailed Design Study on The Bago River Bridge Construction Project

Source: JICA Study Team
Cast in Place RC Piles \$2.0m

Cast in Place RC Piles \$\$1.5m

Cast in Place RC Piles \$\$1.2m

	and the second s	noi noor obstaat		00994 0025 0009 0000 0000 0000 0000	and the second s				Market Control	001 000 001000		
	(104/041-600)				1042-6201				(161@96-520)		,	
item mark unit p	Treadent Schution	Seisme Shorton	Precident Situation	Seismir Shutim	President Situation	Seismis Sentian	President Situation	Seismic Senation	President Situation	Seisnir Sinution	Presistent Situation	Direction Sevenic Sevenion
Prazi kN	2,892.5	5,480.1	2,892.3	5,107.0	3,796.7	6,531.1	3,796.7	6,576.1	5,453.5	S,420.9	5,453,5	9,044.6
NAXMILLIN R.a. KN	6,995.0	10,611.0	6,995.0	10,611.0	\$,883.0	13,510.0	8,883.0	13,510.0	12,351.0	18,860.0	12,351.0	18,860.0
The reactions d'03 -	0.4	0.5	0.4	0.5	0.4	0.5	0.4	0.5	0.4	0.4	0.4	0.5
Design Amount on mm	0.0	13.5	0.0	112	0.0	12.3	0.0	11.2	0.0	10.5	0.0	1.11
Results of oxa mm	15.0	15.0	15.0	15,0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Displacement R -	0.0	0.9	0.0	0.7	0.0	0.5	0.0	0.7	00	0.7	0.0	0.7
Stress as N/mm ²	-28.6	729.7	-28.6	261.4	-24.7	178.0	-24.7	205.8	-21.8	185.4	-21.8	202.9
of GSB N/mm ²	-200.0	300.0	-200.0	300.0	-200.0	300.0	-200.0	300.0	-200.0	300.0	-200.0	300.0
a Pile d'da -	0.1	0.8	0.1	0.9	1.0	0.6	1.0	0.7	0.1	0.6	0,1	0.7
Maximum Stress of a Pile		05= 274.69 kN m ² <0	sa= 300kN/m ² (OK)			55= 220.05 kN/m2<	asa= 300kN/m2 (OK)		. 0	is= 225.66 kN/m2 <c< td=""><td>552= 300kN m2 (OK)</td><td></td></c<>	552= 300kN m2 (OK)	
T Constructibility al	he amount of rum! tternative is the most metroctability.	ber of pile is largest a stirferior one in term	und these this as of	A	This alternative enta	is the smaller amou	at of pile works.	o	This alternative eritar	is the smallest amo	at of ple works.	0
Construction Period	the amount of pile u constrably large. (2	vorks including grour .18Mooths)	ad excavation is	0	The amount of pile v considerly the smale	votis including grou st. (2.14Months)	nd excavation is	0	The amount of ple w constrably smaller. (otks including grou 2.20Morths)	nd excavation is	٩
Errutormental Aspect w	tas alternative enta- orks	is the largest amount	t of excavation	4	This alternative enta works	is the smallest amo	urt of excavation	Ø	This alternative entail	is small amount of e	sscavation works.	0
CostRato		1037		0		1.000		0		1.155		A
Judge		0	0				0				4	
										Note 2: Good O	:Fair. A : Not Recom	nended

Table 4 4 24	Comparison of Foundation	n Type for On land Diere at B/D
Table 4.4.24	Companson of Foundation	IT Type for On-land Flers at D/D

Source: JICA Study Team

Pile Diameter

	- n (or - + t - i) morth to to to an animum	10+	ALCH DIG TA TO TO TO TA TO TA TO TA TO	(II= 50)
Outine Drawing		<u> </u>		R COOO
Constructibility	The amount of number of pile is largest and thus this alternative is the most inferior one in terms of constructability.	٩	This alternative entails the smaller amount of pile works.	0
Construction Period	The amount of pile works including ground excavation is consirably large. (5.4Months)	0	The amount of pile works including ground excavation is consirably the smallest. (4.8Months)	0
Environmental A spect	This alternative entails the largest amount of excavation works.	Þ	This alternative entails the smallest amount of excavation works.	Ø
Cost Ratio	1.050	0	1.000	0
Judge	0		0	

Table 4.4.25Comparison of Pipe Diameter of SPSP Foundation at B/D (Low-flow Channel
Piers P7~P9, P20~P22)

Source: JICA Study Team

Evaluation Item	Alt-1 : SPSP Foundation (D=1.2m) [selected i	nFS]	Alt-2 : CIP Pile Foundation (D=1.5m)	
Schematic View	D=1200mm x 44 nos. (L=55.0m)		D=1500mm x 24 nos. (L=50.5m)	
Workability & Quality Control	 Sufficient watertightness to a planned waterhead Changes of pile length during construction is available Facile quality control due to use of prefabricated steel pipe piles Careful adjustment is necessary for driving of deep steel pipes 	0	Sufficient watertightness to a planned waterhead Flexible to changes of pile length during construction Careful quality control is necessary for in-situ concrete casting Careful quality control is necessary for construction of deep borehole	0
Structural Aspect	- Sufficient to support a superstrucure reaction	0	- Sufficient to support a superstrucure reaction	0
Cost Ratio	1.87	\triangle	1.00	0
Construction Period	4.4 Months (for Pier P6)	0	4.1 Months (for Pier P6)	۲
Environmental Aspect	 Louder noise and larger vibration than CIP pile construction of foundation Smaller amount of disposal of excavated soil 	0	- Lower noise and vibration than SPSP foundation construction - Larger amount of disposal of excavated soil	0
Evaluation	Less Recommended		Recommended	

Table 4.4.26 Comparison of Foundation Type for Riverfront Piers at B/D (P6 and P23)

 $\mathsf{Legend}: \ \textcircled{O} \ \mathsf{Very} \ \mathsf{Good}, \ \bigcirc \ \mathsf{Good}, \ \bigtriangleup \ \mathsf{Average}$

		E F					5	2					1					
	Outline Draw		item	Maximum	Pile	Reactions	Amount	Disnlacemen	t	Stress	of	a Pile	Maximum St.	Constructibil	Construction P	Environmental.	Cost Ratic	Judge
1	a a		mark unit	Pmax kN	Ra kN	0/0a .	OX DDD	oxa mu	К.	US N/DR	OSA N/m	o/08 .	ress of a Pile	lity	eriod	Aspect		
	Profilicional (Animal/Typenol)		Treastent Situation	1,608.0	3,530.0	0.46	0.0	1 15.0	0:00	n ² -17.0	n ² -200.0	0.09	and the second se	The amount of nu alternative is the m	The amount of pil is consirably small	This alternative en excavation works.		
 State of the second seco			al Direction	3,089.1	5,516.0	0.56	14.4	15.0	0.96	211.5	300.0	0.71	os= 268 kN/m ² <01	unber of pile is larg uost inferior one in	le works including , ler,	stails the smallest a	1.237	
100 M 100 M			Presistent Situation	1,608.0	3,530.0	0.46	0.0	15,0	0.00	-17.0	-200.0	0.09	sa= 300kN/m ² (OK)	gest and thus this terms of	ground excavation	mount of		
	ooale loses cozz-son-ziller dorts		Direction Seismic Situatio	2,978.8	5,516.0	0.54	8.1.1	15.0	86.0	267.6	300.0	0.89		Δ	0	0		
	MOLOGINOTYMACTUCHOT		n Presistent Situation	2,003.8	4,632.0	0.43	0.0	15.0	0.00	-14.0	-200.0	0.07		This alternative works.	The amount of I is consirably the	This alternative works.	_	
			inal Direction	3,540.6	7,294.0	0.49	12.8	15.0	0.85	184.5	300.0	0.61	os= 232 kN/m2<0.	entails the smallest a	oile works including, smallest.	entails small amount	1.235	
			Presistent Situation	2,003.8	4,632.0	0.43	0.0	15,0	0.00	-14.0	-200.0	0.07	se= 300kN/m2 (OK	mount of pile	ground excavation	of excavation		
	13060 13060 3000-3000-1300		e Direction Seismic Situation	3,582.1	7,294.0	0.49	13.4	15.0	0.89	231.6	300.0	0.77	0	o	0	Þ		
	דרסאסוגרסאיזיר מוצרגעיטור		Dresistent Sinistio	3,895.5	6,523.0	0.60	0.0	20.0	0.00	-15.5	-200.0	0.08		This alternative e	The amount of p is consirably large	This alternative e works.		
			mal Direction of Seismic Simation	6,853.1	10,403.0	0.66	17.3	20.0	0.86	180.5	300.0	0.60	os= 242 kN/m2<0	entails smaller amou	ile works including e.	entails the largest an	1.000	
			Presistent Situation	3,895.5	6,523.0	0.60	0.0	20.0	0.00	-15.5	-200.0	0.08	sa= 300kN/m2 (OK)	at of pile works.	ground excavation	ount of excavation		0
	43080 - 25000 - 26000	3	Direction Seismic Situation	7,390.5	10,403.0	0.71	17.9	20.0	0.89	242.2	300.0	0.81		0	0	o	0	

Detailed Design Study on The Bago River Bridge Construction Project

Final Report

Source: JICA Study Team

	Pile Danne	ster		Cast in Place)	RC Piles of .1m		Clast in Place R	C Piles of .5m	-	Casi	i in Place	in Place RC Piles φ2.0n
	Outline Draw	a in the second s		The second		an Ang anonagan Pi					NGI	
		13		Bridge's Longi	tudinal Direction		Bridge's Longitu	Idinal Direction			Bridge's Long	Bridge's Longitudinal Direction
	item	mark	tert	Presistent Situation	Seismic S.	ituation	Presistent Situation	Seismic S	ituation	Pre	esistent Situation	esistent Situation Seismic S
	Concert.	Pmax	KN	1,208.0	1,844	9.	1,605.1	2,400	1.7		2,404.1	2,404.1 3,76
	Maximum	Ra	RN	2,797.0	4,400	0.0	3,730.0	5,916	0.3		5,353.0	5,353.0 8,602
1	rue Keachons	0/03	à	0.43	0.42		0.43	0.4	-		0.45	0.45 0.45
Design	Amount	Xo	mm	5.3	13.6	1	4.5	13.(9		4.3	4.3 14.
Results	of	0703	mm	15.0	15.0		15.0	15.(0		15.0	5.0 15.
	Displacement	R	Ż	0.35	0.00	2	0.30	0.9	1	0	.29	0.9
	Stress	QS	N/mm	38.6	272.	7	29.6	262.	9	2	2.1	2.1 255
	of	osa	N/mm	160.0	300.	0	160.0	300.	0.	16	50.0	50.0 300
	a Pile	0/03	ł	0.24	0.91		0.18	0.8	8	0	.14	.14 0.8
	Maximum St	tress of a	Pile	$\sigma s = 273 \text{ kN/m}^2 < \sigma s a$	$1 = 300 kN/m^2$	(NO)	05= 263 kN/m ² <058 =	= 300 kN/m ²	(OK)	GS= 25	5 kN/m ² <os< td=""><td>$5 \text{ kN/m}^2 < \sigma \text{sa} = 300 \text{ kN/m}^2$</td></os<>	$5 \text{ kN/m}^2 < \sigma \text{sa} = 300 \text{ kN/m}^2$
Construc	tability			The amount of number of 1 and thus this alternative is t inferior one in terms of con	pile is largest the most structability.	4	This alternative entails the s amount of pile works.	maller	0	This alternativ amount of pill	ve entails the e works.	e entails the smallest e works.
Construc	tion Period			The amount of pile works i ground excavation is consir-	including ably smaller.	0	The amount of pile works in ground excavation is consira smalleet	nchuding tbly the	0	The amount o ground excava	f pile works tion is cons	f pile works including tion is consirably large.
Environ	mental Aspect			This alternative entails the samount of excavation work	smallest s.	0	This alternative entails smal excavation works,	l amount of	0	This alternativ amount of ex	ve entails the cavation wor	e entails the largest savation works.
Cost Rat	ġ			1.095		0	1.000		0		1.171	1111
Dverall I	evaluation						0	0				

Table 4.4.28 Review of Foundation Type for Abutment at D/D

Source: JICA Study Team

Note @:Good, O:Fair, ∆:Not Recommended

Table 4.4.29 Comparison of Overall Size of SPSP Foundation at D/D

4.4.8 Summary of Detailed Design Results for Substructure and Foundation

4.4.8.1 Load Combinations

Load combinations for design of substructures and foundations are shown in Table 4.4.30 which shall comply with the specifications in the JSHB. It is remarked that load situation relating to "extreme wind situation" was not applied to the PC box girder bridge because the amount of wind load on the concrete structures was quite small compared with seismic inertia force.

											-				
Load Combinations	Load Situations	(1) Dead Loads (D)	(2) Live Loads (L)	(3) Impact (I)	(4) Prestress Force (PS)	(5) Influence of Creep of Concrete (CR)	(6) Influence of D dry Shrinkage of Concrete (SH)	(7) Earth Pressure (E)	(8) Water Pressure (HP)	(9) Buoyancy (U)	(10) Wind Loads (W)	(11) Effect of Temperature Change (T)	(12) Seismic Effects (EQ)	(13) Collision of Vessel (CO)	Increase Coefficients
1. Principal loads (P) + particular loads corresponding to principal loads (PP)		\bigcirc	\bigcirc	0	0	0	0	0	0	\bigcirc					1.00
		$\overline{0}$	0	0	$\overline{0}$	0	0	0	0	0					1.00
		0	0	0	$\overline{0}$	0	0	0	0	0			-		1.00
	Ordinary	0	0	$\overline{0}$	$\overline{0}$	0	$\overline{0}$	0	0	0			-		1.00
2. Principal loads (P) + particular loads corresponding to principal loads (PP) +	condition	0	0	0	0	0	0	0	0	0		0			1.15
effects of temperature change (T)		0	0	0	0	0	0	0	0	0		0			1.15
		0	0	0	0	0	0	0	0	0		0			1.15
		0	0	Ō	0	0	Ō	0	0	0		0			1.15
3. Principal loads (P) + particular loads corresponding to principal loads (PP) + wind		0	0	0	0	0	0	0	0	0	0				1.25
loads (W)	Extreme	0	0	0	0	0	0	0	0	0	0				1.25
4. Principal loads (P) + particular loads corresponding to principal loads (PP) +	Wind	0	0	0	0	0	0	0	0	0	0	0			1.35
effects of temperature change (T) +wind loads (W)		0	0	0	0	0	0	0	0	0	0	0			1.35
5. Principal loads (P) + particular loads corresponding to principal loads (PP) +	Vessel	\bigcirc	0	0	0	0	0	0	0	0				\bigcirc	1.50
vessel collision loads (CO)	Collision	0	0	0	0	0	0	0	0	0				0	1.50
6. Principal loads except live loads and impacts + seismic effects (EQ)	Earth-	0			0	0	0	0	0	0			0		1.50
	quake	\cap			$ \bigcirc$	$ \bigcirc$		$ \bigcirc$	$ \circ $	$\left \right\rangle$			$\left \right\rangle$		1.50

Table 4.4.30 Load Combinations for Design of PC Box Girder Bridge

Source: JICA Study Team

4.4.8.2 Reaction Forces of Superstructure for Design of Substructures

The values of reaction force transmitted from superstructure to substructure are summarized in Table 4.4.31 and Table 4.4.32.

								Pack	age-1 : PC	-Box			
	D	escriptions			Al	P1	P2	P3	P4		Р	5	
										P4side	P6side	PO4	Total
	Bear (M: Movable, F	ing Conditions Fixed, E: Elasti	c support)		Е	Е	Е	Е	Е	Е	Е	М	
	Working Height	For Bridge Ax	is direction	m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A	Above Bridge Seat	For Transvers	e Direction	m	-	2.500	2.500	2.500	2.500	2.500	2.500	2.500	2.500
	Dead Loa	ads	1	kN	11,600	22,800	22,800	23,200	22,800	11,800	13,700	2,000	27,500
V	Line Londo	Max	2	LN	2,800	5,600	5,600	5,600	5,600	2,800	3,500	600	6,900
	Live Loads	Min	3	KIN	-400	-600	-1,000	-1,000	-600	-400		-100	-500
	Influence of dry shrink	age of concrete	4	kN	300	390	160	-160	-390	-350	0	-110	-460
	Influence of creep of c	oncrete	5	kN	530	640	270	-270	-640	-620	0	-50	-670
	Effect of temperature of	change (+)	6	kN	-620	-770	-350	350	770	650	750	100	1,500
н	Effect of temperature of	change (-)	6	kN	620	770	350	-350	-770	-650	-750	-100	-1,500
	G · · · · · · · · · · · ·	Longitudinal	Ø	kN	3,050	6,250	7,500	7,450	6,200	3,500	3,900	300	7,700
	Seismic effects	Transversal	8	kN	2,650	7,400	6,700	6,700	7,600	2,650	3,350	750	6,750
м	Eccentric moment	Longitudinal	9	kN.m	0	0	0	0	0				-400
M	due to Dead Load	Transversal	10	kN.m	0	0	0	0	0				-60,900

 Table 4.4.31
 Reaction Forces of Superstructure for A1 Side

Source: JICA Study Team

Table 4.4.32	Reaction Forces	of Superstructure	for A2 Side
		or eapered detaile	

								Pack	age-2 : PC	-Box			
	D	escriptions				P20		P21	P22	P23	P24	P25	A2
					P19side	P21side	Total						
	Bear (M: Movable, F	ing Conditions Fixed, E: Elasti	c support)		Е	Е		Е	Е	Е	Е	Е	Е
	Working Height	For Bridge Ax	is direction	m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A	Above Bridge Seat	For Transvers	e Direction	m	2.500	2.500	2.500	2.450	2.450	2.400	2.450	2.500	-
	Dead Los	ads	1	kN	7,650	11,800	19,450	22,600	23,200	22,800	23,000	22,800	11,600
V	T' T 1	Max	2	1.11	3,400	2,800	6,200	5,600	5,600	5,600	5,600	5,600	2,800
	Live Loads	Min	3	KIN	-900	-400	-1,300	-600	-1,000	-1,000	-1,000	-600	-400
	Influence of dry shrink	age of concrete	4	kN	0	360	360	480	260	0	-260	-420	-340
	Influence of creep of c	oncrete	5	kN	0	620	620	870	450	0	-450	-750	-580
TT	Effect of temperature of	change (+)	6	kN	-110	-620	-730	-1,030	-550	0	550	880	700
п	Effect of temperature of	change (-)	6	kN	110	620	730	1,030	550	0	-550	-880	-700
	S -ii ff t	Longitudinal	Ø	kN	1,150	3,300	4,450	6,400	6,500	8,050	7,150	6,150	3,250
	Seisinic effects	Transversal	8	kN	2,250	2,700	4,950	7,600	6,600	6,950	6,650	7,600	2,650
м	Eccentric moment	Longitudinal	9	kN.m			5,000	0	0	0	0	0	0
IVI	due to Dead Load	Transversal	10	kN.m			0	0	0	0	0	0	0

Source: JICA Study Team

4.4.8.3 Computation of Columns of T-shaped Piers

The columns of T-shaped piers can be designed as cantilevers with fixed ends at the section connected to the footings. In the design process, the most adverse combination of axial forces and bending moments shall be applied.

The overhang beams of T-shaped piers can be designed as follows:

- The overhang beams are designed as cantilevers.
- The overhang length of the cantilever is defined as the length from the vertical section at the front

surface of the column to the beam in case of rectangular column, and from the position one tenth of the column diameter inward from the front of the column to the beam end in case of an oval section column.

Computation results are shown in Table 4.4.33 through Table 4.4.38.

Table 4.4.33Calculation Results for Wall and Comume (A1, P1~P3)

σs; Bending Unit Stress σsa; Allowable Unit Stress

τm; Unit Share Force

τa; Allowable Unit Share Force

R-ratio; Design result / Capacity

Table 4.4.34 Calculation Results for Wall and Columns (P4~P5)

osa : Allowable Unit Stress

tm : Unit Share Force

ta : Allowable Unit Share Force

R-ratio : Design result / Capacity

σs; Bending Unit Stress σsa; Allowable Unit Stress

τm; Unit Share Force

τa; Allowable Unit Share Force

R-ratio ; Design result / Capacity

Table 4.4.36 Calculation Results for Wall and Columns (P24, P25, and A2)

σsa; Allowable Unit Stress

 τm ; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

Table 4.4.37 Calculation Results for Overhang Beams (P4 and P5)

os ; Bending Unit Stress

osa ; Allowable Unit Stress

τm ; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

		Р	20 LEFT&RIG	HT	P2	1~P23LEFT&F	IGHT
Side V Cross Se	iew of Beam & ction of Beam	CBA	Н	<u>Ç</u>	C B A	¢	
		Cro	oss Section of H	Beam	C	ross Section of I	Beam
							settin
			2-D29@144		mecht D22	2-D32@140	0.00 0.00
//	/	P. P. P.	20 LEFT&RIG	HT	P2	1~P23LEFT&F	UGHT C
	concrete	Section A	24N/mm2	Section C	Section A	24N/mm2	Section C
Material	reinforcement		SD345			SD345	·
section	В	4,500	4,500	4,500	3,000	3.000	3,000
position	Н	5.000	2.016	2.744	5.000	1.800	2.750
Check for	os (N/mm2)	68.110		•	80.660		
Bending	osa(N/mm2)	100.000		÷	100.000	1.34	-
Moment	R-ratio	0.681			0.807		
Check for	Tm(N/mm2)		0.020	0.680		0.020	1.110
Shear	Ta(N/mm2)		0.249	1.900	1	0.290	1.900
	R-ratio		0.080	0.358		0.069	0.584
Ju	dgement	OK	OK	OK	OK	OK	OK

Table 4.4.38 Calculation Results for Overhang Beams (P20~P23)

Note :

os ; Bending Unit Stress

osa : Allowable Unit Stress τm ; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

4.4.8.4 Computation of Reverse T-shaped Abutment

The wall of the reverse T-shaped abutment can be designed as cantilevers with fixed ends at the section connected to the footings.

A parapet shall be designed to carry earth pressure as well as vehicle load (T-loads) and the loads from the approach slab.

The wing wall shall be designed as slabs to receive superimposed loads due to live loads and earth pressure. The slab in this case shall be cantilevers fixed on two sides to a wall and footing.

Computation results are shown in Table 4.4.33 and Table 4.4.36.

4.4.8.5 Design of Bridge Seats

Bridge seats shall be designed with sufficient strength to withstand the vertical and horizontal forces from bearings. Bridge seats should be designed so that corrosion of bearing and girders can be minimized.

Horizontal forces transmitted from bearings are carried by concrete and reinforcement. The resisting area of concrete is the summation of three planes in directions of sideward and downward with edge angles of 45 degrees as shown in Figure 4.4.35. The calculation results of the required reinforcement bar are shown in Table 4.4.39.

4.4.8.6 Computation of Footings

Footing shall be designed in consideration of the most adverse load combinations among self-weights, overburden load such as soils, presence of buoyancy, subgrade reaction, and reaction from foundations. Footings may be designed as beam members and as cantilevers.

The footings shall retain thickness necessary to serve as structural members. Also, the footings shall have sufficient thickness to be regarded as rigid bodies, when they are assumed as rigid bodies in the stability analysis of the foundation.

Computation results are shown in Table 4.4.40 through Table 4.4.43.

Final Report

		100	A1	Id	P2	p3	P4	4	5	P2	0	p21	P22	P23	P24	P25	A2	ION	POI	PO2	PO3
		Unit				2		P4 Side	P6 Side	P19 Side	P21 Side										
Breadth of Anchor Bars	В	unu	006	006	006	006	006	006		1270	900	006	006	006	006	006	006	2500	2500	2500	2500
Distance from the Center of the Anchor Bar to the Edge of Bridge Seat	da	uu	630	1250	1250	1250	1500	006		1750	006	1500	1500	1500	1250	1250	650	650	750	750	750
Resisting Area in Concrete	Ac	mm2	2,022,325	6,010,408	6,010,408	6,010,408	8,273,149	3,436,539	0	*****	3,436.539	8,273,149	8,273,149 8	273,149 0	5.010.408	5,010,408	2.022.325	3,493,107	4,242,641	1242,641 4	242,641
Design Strength of Concrete	ock	N/mm2	24.0	24.0	24.0	24.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
Coefficient to Calculate Pc	a	\overline{v}	0.31	0.33	0.33	0.34	0.31	0.30	#DIV/0	0.23	030	15.0	0.32	0.31	0.34	0.33	0.31	0,40	0,40	0.41	0.41
Load Carried by Concrete; $Pc = 0.32a\sqrt{-00}k^*Ac$	Pc	kN	066	3,151	3,151	3,181	4,566	1,792	#DIV/01	4,674	1,792	4,546	4,608	4,566	3,166	3,151	066	2,193	2,664	2,747	2,747
Yield Point of Reinforcement	Śsp	N/mm2	345	345	345	345	345	345	345	345	345	345	345	345	345	345	345	345	345	345	345
Modification Coefficient for Load Carried by Reinforcement	ß	4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Total Cross Sectional Area of Reinforcing Bar *1	ΣAsi	2mm2	6111	16198	12760	12760	11083	9696	#DIV/01	14138	9696	11083	11083	11083	12760	16198	6111	4384	13572	13572	13572
Load Carried by Reinforcement, Ps = Z[ß (1-hi/da) osw*Aā]	ps	kN	1,054	2,794	2,201	2,201	1,912	1,673	#DIV/0	2,439	1,673	1,912	1,912	1,912	2,201	2,794	1,054	756	2,341	2,341	2,341
Strength of the Bridge Scat, $Pls = Pc + Ps$	Pfbs	kN	2.044	5,945	5,352	5,382	6,478	3,465	#DIV/0	7,113	3,465	6,457	6,520	6,478	5,367	5,945	2,044	2,949	5,005	5,088	5,088
Design Horizontal Force	H	kN	2.025	5,850	5,100	5,100	5,850	2,025		431	2,025	5,775	5,100	5,325	5,100	5,850	2.025	810	3,825	1.845	1,350
R-ratio	к	2	66.0	0.98	0.95	0.95	06.0	0.58	#DIV/0	90.0	0.58	0.89	0.78	0.82	56.0	86.0	0.99	0.27	0.76	0.36	0.27
Calculation of Reinforcing Bar Area (ZAsi)																					
		101	W	Id	P2	Ed .	P4	d'	5	P2	0	P21	P22	P23	P24	P25	A2	IOV	POI	PO2	PO3
		NUI						P4 Side	P6 Side	p19 Side	P21 Side										
Diameter of Reinforcing Bar	0	uu	D16	D25	D25	D25	D25	D25	D25	D25	D25	D25	D25	D25	D25	D25	D16	D16	D25	D25	D25
Number of Reinforcing Bar	a	800	20	18	16	16	61	81		24	18	61	16	-61	16	18	20	31	3	33	23
Cross Sectional Area of Reinforcing Bar	Asl	nm2	3972	9120.6	8107.2	8107.2	9627.3	9120,6	0	12160.8	9120.6	9627.3	9627.3	9627.3	8107.2	9120.6	3972	4170.6	11654.1	11654.1	11654.1
Depth of Reinforcing Bar from the Surface of the Bridge Seat	щ	uuu	001	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
(I-h)/da)	÷		0.846	0.920	0.920	0.920	0.933	0.889	#DIV/0	0.943	0.889	0.933	0,933	0.933	0,920	0.920	0.846	0.846	0.867	0,867	0,867
Diameter of Reinforcing Bar	ø	uu	D16	D25	D22	D22	D16	D16	D16-	D16	D16	D16	D16	D16	D22	D25	D16	DI6	DI6	D16	D16
Number of Reinforcing Bar	n	sou	20	18	46	16	12	01		15	10	12	12	12	16	18	20	7	23	23	23
Cross Sectional Area of Reinforcing Bar	As2	mm2	3972	9120.6	6193.6	6193.6	2383.2	9861	0	2979	1986	2383.2	2383,2	2383.2	6193.6	9120.6	3972	1390.2	4567,8	4567.8	4567.8
Depth of Reinforcing Bar from the Surface of the Bridge Seat	54	uu	200	180	180	180	180	180	180	180	180	180	180	180	180	180	200	250	180	180	180
(1-h2/da)	a.	X	0.692	0.856	0.856	0.856	0880	0.800	#DIV/0	168/0	0.800	0.880	0.880	0.880	0.856	0.856	0.692	0.615	0.760	0.760	0.760
Total Cross Sectional Area of Reinforcing Bar, ΣAsi = Σ(Asi (1-hi/da))	<u>S</u> Asi	mm2	6111	16198	12760	12760	11083	9696	#DIV/0	14138	9696	11083	11083	11083	12760	16198	-6111	4384	13572	13572	13572

Table 4.4.39	Calculation Results	of Reinforcement Bar	for Bridge Seats
--------------	---------------------	----------------------	------------------

Table 4.4.40 Calculation Results for Footing of Piers (P1~P3)

 $\sigma s \ ; \ Bending \ Unit \ Stress$

 σ sa; Allowable Unit Stress

- τm ; Unit Share Force
- τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

Table 4.4.41 Calculation Results for Footing of Piers (P4 and P5)

σs ; Bending Unit Stress

osa ; Allowable Unit Stress

τm ; Unit Share Force

ta ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

Table 4.4.42 Calculation Results for Footing of Piers (P23, P24 and P25)

σs ; Bending Unit Stress

σsa; Allowable Unit Stress

τm ; Unit Share Force

τa , Allowable Unit Share Force

R-ratio ; Design result / Capacity

		/	12		ABUT	MENT			
Cros (Longitudin	s Section of I al & Transvo SD345	Pile Cap rsal Direction)							
			A		- POOL	2	A	01	
			A FRONT	d BACK	FRONT	2 BACK	AfFRONT	D1 BACK	
Arangement	0		A FRONT D29@125 D30@250	1 BACK D29@250	A FRONT D29@125	2 BACK D29@250	Af FRONT D29@250	01 BACK D25@250	
Arangement	1		A FRONT D29@125 D29@250 D16@500	Al BACK D29@250 D25@125 D16@500	A FRONT D29@125 D29@250 D16@500	2 BACK D29@250 D25@250	A0 FRONT D29@250 D22@250 D16@500	D1 BACK D25@250 D32@250	
Arangement of reinforcement	0.2.3	(±) (5) (6) (7)	A FRONT D29@125 D29@250 D16@500 117.42	1 BACK D29@250 D25@125 D16@500 27.92	A FRONT D29@125 D29@250 D16@500 152.83	2 BACK D29@250 D25@250 D16@500 38.34	A6 FRONT D29@250 D22@250 D16@500 135 89	D1 BACK D25@250 D32@250 D16@500 60.23	
Arangement of reinforcement	1 2 3 Ordinary	€ ③ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤	A FRONT D29@125 D29@250 D16@500 117.42 160.00	A1 BACK D29@250 D25@125 D16@500 27.92 184.00	A FRONT D29@125 D29@250 D16@500 152.83 160.00	2 BACK D29@250 D25@250 D16@500 38.34 160.00	A6 FRONT D29@250 D22@250 D16@500 135.89 160.00	D1 BACK D25@250 D32@250 D16@500 60.23 160.00	
Arangement of reinforcement Check for	① ② ③ Ordinary	(i) (ii) (iii) (iii) (iii) (iii) (iiii) (iiii) (iiii) (iiii) (iiii) (iiiii) (iiiii) (iiiii) (iiiii) (iiiii) (iiiiii) (iiiiii) (iiiiii) (iiiiiii) (iiiiiii) (iiiiiii) (iiiiiii) (iiiiiiii) (iiiiiiii) (iiiiiiii) (iiiiiiii) (iiiiiiii) (iiiiiiii) (iiiiiiii) (iiiiiiiii) (iiiiiiiii) (iiiiiiiii) (iiiiiiiii) (iiiiiiiiii	A FRONT D29@125 D29@250 D16@500 117.42 160.00 0.73	1 BACK D29@250 D25@125 D16@500 27.92 184.00 0.15	PRONT D29@125 D29@250 D16@500 152.83 160.00 0.96	2 BACK D29@250 D25@250 D16@500 38.34 160.00 0.24	A4 FRONT D29@250 D22@250 D16@500 135.89 160.00 0.85	D1 BACK D25@250 D32@250 D16@500 60.23 160.00 0 38	
Arangement of reinforcement Check for Bending	① ② ③ Ordinary	(1) (2) (2) (2) (3) (6) (6) (5) (N/mm ²) (7)	A FRONT D29@125 D29@250 D16@500 117.42 160.00 0.73 224.96	1 BACK D29@250 D25@125 D16@500 27.92 184.00 0.15 204.16	A FRONT D29@125 D29@250 D16@500 152.83 160.00 0.96 283.10	2 BACK D29@250 D25@250 D16@500 38.34 160.00 0.24 273.60	Af FRONT D29@250 D22@250 D16@500 135.89 160.00 0.85 264.21	D1 BACK D25@250 D32@250 D16@500 60.23 160.00 0.38 235.89	
Arangement of reinforcement Check for Bending Stress	① ② ③ Ordinary Seismic	 ④ ⑤ ⑥ σs (N/mm²) σsa(N/mm²) R-ratio σs (N/mm²) σs a(N/mm²) 	A FRONT D29@125 D29@250 D16@500 117.42 160.00 0.73 224.96 300.00	1 BACK D29@250 D25@125 D16@500 27.92 184.00 0.15 204.16 300.00	A FRONT D29@125 D29@250 D16@500 152.83 160.00 0.96 283.10 300.00	2 BACK D29@250 D25@250 D16@500 38.34 160.00 0.24 273.60 300.00	A0 FRONT D29@250 D22@250 D16@500 135.89 160.00 0.85 264.21 300.00	D1 BACK D25@250 D32@250 D16@500 60.23 160.00 0.38 235.89 300.00	
Arangement of reinforcement Check for Bending Stress	1 2 3 Ordinary Seismic	 ④ ⑤ ⑥ Øs (N/mm²) Øs (N/mm²) R-ratio Øs (N/mm²) Øs (N/mm²) R-ratio 	A FRONT D29@125 D29@250 D16@500 117.42 160.00 0.73 224.96 300.00 0.75	1 BACK D29@250 D25@125 D16@500 27.92 184.00 0.15 204.16 300.00 0.68	A FRONT D29@125 D29@250 D16@500 152.83 160.00 0.96 283.10 300.00 0.94	2 BACK D29@250 D16@500 38.34 160.00 0.24 273.60 300.00 0.91	A6 FRONT D29@250 D22@250 D16@500 135.89 160.00 0.85 264.21 300.00 0.88	D1 BACK D25@250 D32@250 D16@500 60.23 160.00 0.38 235.89 300.00 0.79	
Arangement of reinforcement Check for Bending Stress	1 2 3 Ordinary Seismic	④ ③ ⑤ σs (N/mm ²) σsa(N/mm ²) R-ratio σs (N/mm ²) σsa(N/mm ²) R-ratio	A FRONT D29@125 D29@250 D16@500 117.42 160.00 0.73 224.96 300.00 0.75 0.254	Al BACK D29@250 D25@125 D16@500 27.92 184.00 0.15 204.16 300.00 0.68 0.154	A FRONT D29@125 D29@250 D16@500 152.83 160.00 0.96 283.10 300.00 0.94 0.335	2 BACK D29@250 D25@250 D16@500 38.34 160.00 0.24 273.60 300.00 0.91 0.153	A6 FRONT D29@250 D22@250 D16@500 135.89 160.00 0.85 264.21 300.00 0.88 0.260	D1 BACK D25@250 D32@250 D16@500 60.23 160.00 0.38 235.89 300.00 0.79 0.143	
Arangement of reinforcement Check for Bending Stress	1 2 3 Ordinary Seismic	④ ⑤ ⑤ ♂s (N/mm²) R-ratio ơs (N/mm²) R-ratio ơs (N/mm²) R-ratio m (N/mm²) R-ratio rm (N/mm²) ratio	A FRONT D29@125 D29@250 D16@500 117.42 160.00 0.73 224.96 300.00 0.75 0.254 0.473	A1 BACK D29@250 D25@125 D16@500 27.92 184.00 0.15 204.16 300.00 0.68 0.154 0.190	A FRONT D29@125 D29@250 D16@500 152.83 160.00 0.96 283.10 300.00 0.94 0.335 0.519	2 BACK D29@250 D25@250 D16@500 38.34 160.00 0.24 273.60 300.00 0.91 0.153 0.259	A4 FRONT D29@250 D22@250 D16@500 135.89 160.00 0.85 264.21 300.00 0.88 0.260 0.747	D1 BACK D25@250 D32@250 D16@500 60.23 160.00 0.38 235.89 300.00 0.79 0.143 0.282	
Arangement of reinforcement Check for Bending Stress	① ② ③ Ordinary Seismic Ordinary	(1) (2) (A FRONT D29@125 D29@250 D16@500 117.42 160.00 0.73 224.96 300.00 0.75 0.254 0.473 0.54	1 BACK D29@250 D25@125 D16@500 27.92 184.00 0.15 204.16 300.00 0.68 0.154 0.190 0.81	P FRONT D29@125 D29@250 D16@500 152.83 160.00 0.96 283.10 300.00 0.94 0.335 0.519 0.65	2 BACK D29@250 D25@250 D16@500 38.34 160.00 0.24 273.60 300.00 0.91 0.153 0.259 0.59	A4 FRONT D29@250 D22@250 D16@500 135.89 160.00 0.85 264.21 300.00 0.88 0.260 0.747 0.35	D1 BACK D25@250 D32@250 D16@500 60.23 160.00 0.38 235.89 300.00 0.79 0.143 0.282 0.51	
Arangement of reinforcement Check for Bending Stress Check for Shear	Ordinary Seismic Ordinary	(1) (2) (A FRONT D29@125 D29@250 D16@500 117.42 160.00 0.73 224.96 300.00 0.75 0.254 0.473 0.54 0.439	Al BACK D29@250 D25@125 D16@500 27.92 184.00 0.15 204.16 300.00 0.68 0.154 0.190 0.81 0.284	A FRONT D29@125 D29@250 D16@500 152.83 160.00 0.96 283.10 300.00 0.94 0.335 0.519 0.65 0.579	2 BACK D29@250 D25@250 D16@500 38.34 160.00 0.24 273.60 300.00 0.91 0.153 0.259 0.59 0.204	A4 FRONT D29@250 D22@250 D16@500 135.89 160.00 0.85 264.21 300.00 0.88 0.260 0.747 0.35 0.466	D1 BACK D25@250 D32@250 D16@500 60.23 160.00 0.38 235.89 300.00 0.79 0.143 0.282 0.51 0.264	
Arangement of reinforcement Check for Bending Stress Check for Shear Stress	1 2 3 Ordinary Seismic Ordinary	(1) (1) (2) (A FRONT D29@125 D29@250 D16@500 117.42 160.00 0.73 224.96 300.00 0.75 0.254 0.473 0.54 0.439 0.720	1 BACK D29@250 D25@125 D16@500 27.92 184.00 0.15 204.16 300.00 0.68 0.154 0.190 0.81 0.284 0.289	A FRONT D29@125 D29@250 D16@500 152.83 160.00 0.96 283.10 300.00 0.94 0.335 0.519 0.65 0.579 0.790	2 BACK D29@250 D25@250 D16@500 38.34 160.00 0.24 273.60 300.00 0.91 0.153 0.259 0.59 0.204 0.348	A0 FRONT D29@250 D22@250 D16@500 135.89 160.00 0.85 264.21 300.00 0.88 0.260 0.747 0.35 0.466 1.137	D1 BACK D25@250 D32@250 D16@500 60.23 160.00 0.38 235.89 300.00 0.79 0.143 0.282 0.51 0.264 0.429	

Table 4.4.43 Calculation Results for Footing of Abutments (A1, A2, and AO1)

 σs ; Bending Unit Stress

σsa; Allowable Unit Stress

τιι ; Unit Share Force

 τa ; Allowable Unit Share Force

R-ratio; Design result / Capacity

4.4.8.7 Design of Foundation

Pile foundation and SPSP foundation shall conform to the following requirements under ordinary, earthquake, and vessel collision conditions:

- The axial reaction at each pile head shall not exceed the allowable pile bearing capacity. The axial allowable bearing capacity can be estimated by dividing the ultimate bearing capacity of the pile determined from related factors such as ground conditions and construction methods by the factor of safety.
- The displacements at each pile head shall not exceed the allowable displacements in order not to leave a large residual displacement and to keep within the limit of possibility of evaluation of elastic behavior. The allowable horizontal displacement is principally determined to be 1% based on the results of many loading tests.

For a large elastic foundation with a width of 5 m or more such as SPSP foundation, the allowable displacement is determined to be 50 mm because few loading tests data are available.

For a pile foundation with a pile diameter of 1.5 m or less, the allowable displacement is 15 mm. For a pile foundation with a pile diameter of 2.0 m, the allowable displacement is 20 mm.

The allowable displacement of abutment foundation is 15 mm regardless of the foundation width because the displacement may increase with time due to the effects of creep and backfill settlement.

- The axial reaction at each pile head shall not exceed the allowable pile bearing capacity.
- The stresses generated in members of pile foundations shall not exceed the allowable stresses specified in the relevant section of this report.

Computation results of CIP pile foundation stability are shown in Table 4.4.44 through Table 4.4.46.

The calculation results of cross sectional stress of CIP piles are shown in Table 4.4.47 through Table 4.4.49.

Also, calculation results of SPSP are summarized in Table 4.4.50 through Table 4.4.54.

	A1	Pl	P2	P3	
Boling Log & Pile Length (m)					
Pile Information	L		1		
Diameter of Pile (mm)	1.500	2.000	2.000	2 000	
Number of Piles (Nos.)	28	12	12	12	
Pile Length (m)	52.9	57.9	61.9	56.9	
Bearing Resistance of Ordi	nary				
Pile Head Reaction (kN)	1,602	4,196	4,019	4,307	
Bearing Capacity (kN)	3,730	5,531	7,140	6,320	
R-Ratio	0.430	0.759	0.563	0.681	
Horizontal Movement of Or	rdinary				
Horizontal Movement (mm)	3.7	4.1	1.8	1.7	
Capacity (mm)	15.0	20.0	20.0	20.0	
R-Ratio	0.246	0.205	0.090	0.083	
Bearing Resistance of Seisn	nic		<u>.</u>		
Pile Head Reaction (kN)	2,384	5,982	6.677	6,762	
Bearing Capacity (kN)	5,910	8,920	11,372	10,087	
R-Ratio	0.403	0.671	0.587	0.670	
Horizontal Movement of Se	ismic				
Horizontal Movement (mm)	13,5	17.5	19.3	18.2	
Capacity (mm)	15.0	20.0	20.0	20.0	
R-Ratio	0.902	0.876	0.964	0.909	
Bearing Capacity of Group	Piles of Ordinary				
Axial Compression Fordes (kN	42,816	43,606	44,962		
Bearing Capacity (kN)	1,053,211	949,265	1,026,902	-	
R-Ratio	0.041	0,046	0.044		
Judgement of Lateral Move	ement		1		
Identifying Index	1.830	-			

Table 4.4.44 Calculation Results of CIP Pile Foundation Stability (A1~P3)

* We also conducted a study on the negative skin friction force, but another case became severe in all foundations, so the value of bearing resistance is ordinary case.

	P4	P5
Boling Log & Pile Length (m)		
Pile Information		
Diameter of Pile (mm)	2,000	2,000
Number of Piles (Nos.)	12	21
Pile Length (m)	57,9	55.4
Bearing Resistance of Ordinary		
Pile Head Reaction (kN)	4,506	3,415
Bearing Capacity (kN)	6,511	6,127
R-Ratio	0.692	0.557
Horizontal Movement of Ordin	ary	
Horizontal Movement (mm)	4.2	1.8
Capacity (mm)	20.0	20,0
R-Ratio	0.209	0.088
Bearing Resistance of Seismic		
Pile Head Reaction (kN)	7,090	6,443
Bearing Capacity (kN)	10,386	9.783
R-Ratio	0.683	0.659
Horizontal Movement of Seismi	c	
Horizontal Movement (mm)	19,1	18.0
Capacity (mm)	20.0	.20,0
R-Ratio	0.955	0.901
Bearing Capacity of Group Pile	es of Ordinary	
Axial Compression Fordes (kN)	45,210	63,530
Bearing Capacity (kN)	791,906	1,413,665
R-Ratio	0.057	0,045

Table 4.4.45 Calculation Results of CIP Pile Foundation Stability (P4 and P5)

* We also conducted a study on the negative skin friction force, but another case became severe in all foundations, so the valu bearing resistance is ordinary case.

	P23	P24	P25	AZ
Boling Log & Pile Length (m)				
Rile Information				
Diameter of Pile (mm)	2 000	2.000	2.000	1 500
Number of Piles (Nos.)	12	12	8	18
Pile Length (m)	32.4	46.9	37.9	31.4
Bearing Resistance of Ordinary				
Pile Head Reaction (kN)	5 554	4 223	5 922	2.299
Bearing Capacity (kN)	8 559	11 527	9 177	5.085
R-Ratio	0.649	0.366	0.645	0.452
Horizontal Movement of Ordina	rv			
Horizontal Movement (mm)	0.3	2.5	5.0	4.6
Capacity (mm)	20.0	20.0	20.0	15.0
R-Ratio	0.017	0.123	0.251	0.303
Bearing Resistance of Seismic				
Pile Head Reaction (kN)	10352.4	6,676	7,879	3,537
Bearing Capacity (kN)	12959.0	17,731	14,137	7,807
R-Ratio	0.799	0.376	0.557	0.453
Horizontal Movement of Seismic				1
Horizontal Movement (mm)	13.9	16.4	17.8	14.6
Capacity (mm)	20.0	20.0	20.0	15.0
R-Ratio	0.695	0.819	0.892	0.971
Bearing Capacity of Group Piles	of Ordinary			
Axial Compression Fordes (kN)	65,741	45,475	_	39,934
Bearing Capacity (kN)	460,353	812,083	_	534,902
R-Ratio	0.143	0.056		0.075
Judgement of Lateral Movement				
Identifying Index	—	—	_	0.509
Capacity	—	-		1.200

Table 4.4.46 Calculation Results of CIP Pile Foundation Stability (P23~P25 and A2)

* We also conducted a study on the negative skin friction force, but another case became severe in all foundations, so the value of bearing resistance is ordinary case.

	A1	P1	P2	P3
Cross Section of Pile SD345	A1	P1	P2	193 190 190 190 190 190 190 190 190 190 190
Check for Bending Stress				
Ordinary				
σs (N/mm ²)	37.98	2.05	_	_
σsa (N/mm ²)	184.00	184.00	_	_
R-ratio	0.21	0.01	_	_
Seismic				
σs (N/mm ²)	261.33	231.75	261.79	272.44
σsa (N/mm ²)	300.00	300.00	300.00	300.00
R-ratio	0.87	0.77	0.87	0.91
Check for Shear Stress				
Ordinary				
τm (N/mm ²)	0.095	0.052	0.022	0.022
τa (N/mm ²)	0.446	0.505	0.601	0.601
R-ratio	0.21	0.10	0.04	0.04
Seismic	-			
$\tau m(N/mm^2)$	0.335	0.324	0.354	0.378
τa (N/mm ²)	0.445	0.399	0.399	0.399
R-ratio	0.75	0.81	0.89	0.95
-		•	•	•

Table 4.4.47 Calculation Results of Cross Section of CIP Pile Foundation (A1~P3)

 $\sigma s \ ; \ \ Bending \ Unit \ Stress$

 $\sigma sa \ ; \ \ Allowable \ Unit \ Stress$

 τm ; Unit Share Force

 τa ; Allowable Unit Share Force

	P4	P5
Cross Section of Pile SD345	44-D35@120 AS=420.904cm ²⁷	²⁰⁰ 580 580 590 500 500 500 500 500 500 500 500 50
	-171	
Check for Bending Stress		
<u>Check for Bending Stress</u> Ordinary		
Check for Bending Stress Ordinary 55 (N/mm²)	1.24	
Check for Bending Stress Ordinary os (N/mm²) osa (N/mm²)	1.24 184.00	
<u>Check for Bending Stress</u> Ordinary σs (N/mm²) σsa (N/mm²) R-ratio	1.24 184.00 0.01	
Check for Bending Stress Ordinary os (N/mm²) osa (N/mm²) R-ratio Seísmic	1.24 184.00 0,01	
Check for Bending Stress Ordinary os (N/mm²) osa (N/mm²) R-ratio Seismic os (N/mm²)	1.24 184.00 0.01 211.74	248.61
Check for Bending Stress Ordinary os (N/mm ²) osa (N/mm ²) R-ratio Seismic os (N/mm ²) osa (N/mm ²)	1.24 184.00 0.01 211.74 300.00	248.61 300.00
Check for Bending Stress Ordinary os (N/mm²) osa (N/mm²) R-ratio Seismic os (N/mm²) osa (N/mm²) R-ratio	1.24 184.00 0,01 211.74 300.00 0,71	
Check for Bending Stress Ordinary ors (N/mm²) orsa (N/mm²) R-ratio Seismic ors (N/mm²) orsa (N/mm²) R-ratio R-ratio Check for Shear Stress	1.24 184.00 0.01 211.74 300.00 0.71	
Check for Bending Stress Ordinary ors (N/mm²) orsa (N/mm²) R-ratio Seismic ors (N/mm²) orsa (N/mm²) R-ratio Check for Shear Stress Ordinary	1.24 184.00 0.01 211.74 300.00 0.71	 248.61 300.00 0.83
Check for Bending Stress Ordinary oss (N/mm²) ossa (N/mm²) R-ratio Seismic oss (N/mm²) csa (N/mm²) csa (N/mm²) csa (N/mm²) csa (N/mm²) oss (N/mm²) ordinary Ordinary m (N/mm²)	1.24 184.00 0.01 211.74 300.00 0.71 0.052	248.61 248.61 300.00 0.83 0.018
Check for Bending Stress Ordinary oss (N/mm²) oss (N/mm²) R-ratio Seismic oss (N/mm²) oss (N/mm²) oss (N/mm²) R-ratio Check for Shear Stress Ordinary m (N/mm²) ra (N/mm²)	1.24 184.00 0.01 211.74 300.00 0.71 0.052 0.562	248.61 300.00 0.83 0.018 0.524
Check for Bending Stress Ordinary os (N/mm²) osa (N/mm²) R-ratio Seismic os (N/mm²) R-ratio Check for Shear Stress Ordinary m (N/mm2) ta (N/mm2) ta (N/mm2) R-ratio	1.24 184.00 0.01 211.74 300.00 0.71 0.052 0.562 0.09	248.61 300.00 0.83 0.018 0.524 0.03
Check for Bending Stress Ordinary σs (N/mm²) σsa (N/mm²) R-ratio Seismic σs (N/mm²) αsa (N/mm²) R-ratio Check for Shear Stress Ordinary τm (N/mm2) τa (N/mm2) τa (N/mm2) R-ratio	1.24 184.00 0,01 211,74 300.00 0,71 0,052 0,562 0,09	248.61 300.00 0.83 0.018 0.524 0.03
Check for Bending Stress Ordinary σs (N/mm²) σsa (N/mm²) R-ratio Seismic σs (N/mm²) R-ratio Check for Shear Stress Ordinary m (N/mm²) τa (N/mm²) τa (N/mm²) R-ratio Seismic τ m(N/mm²)	1.24 184.00 0.01 211.74 300.00 0.71 0.052 0.562 0.09 0.338	248.61 300.00 0.83 0.018 0.524 0.03 0.315
Check for Bending Stress Ordinary ors (N/mm ²) osa (N/mm ²) R-ratio Seismic os (N/mm ²) csa (N/mm ²) R-ratio Check for Shear Stress Ordinary m (N/mm2) ta (N/mm2) R-ratio Seismic t m(N/mm2) ra (N/mm2) ra (N/mm2) ra (N/mm2)	1.24 184.00 0.01 211.74 300.00 0.71 0.052 0.562 0.09 0.338 0.422	248.61 300.00 0.83 0.018 0.524 0.03 0.315 0.399

Table 4.4.48 Calculation Results of Cross Section of CIP Pile Foundation (P4 and P5)

σs : Bending Unit Stress

osa; Allowable Unit Stress

tm ; Unit Share Force

τa ; Allowable Unit Share Force

	P23 P24		P25	A2	
Cross Section of Pile SD345	199 199 199 190 190 190 190 190 190 190	19 19 19 19 19 19 19 19 19 19 19 19 19 1	2000 1590 1590 100 100 100 100 100 100 100 100 100 1	1900 1900 1900 1900 1900 1900 1900 1900	
Check for Bending Stress					
Check for Bending Stress Ordinary					
<u>Check for Bending Stress</u> Ordinary σs (N/mm2)			5.88	54.92	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2)			5.88 184.00	<u>54.92</u> 184.00	
Check for Bending Stress Ordinary σs (N/mm2) σsa (N/mm2) R-ratio			5.88 184.00 0.03	54.92 184.00 0.30	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic			5.88 184.00 0.03	54.92 184.00 0.30	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic os (N/mm2)			5.88 184.00 0.03 260.33	54.92 184.00 0.30 269.11	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic os (N/mm2) osa (N/mm2)			5.88 184.00 0.03 260.33 300.00	54.92 184.00 0.30 269.11 300.00	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic os (N/mm2) osa (N/mm2) R-ratio			5.88 184.00 0.03 260.33 300.00 0.87	54.92 184.00 0.30 269.11 300.00 0.90	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic os (N/mm2) osa (N/mm2) R-ratio R-ratio Check for Shear Stress			5.88 184.00 0.03 260.33 300.00 0.87	54.92 184.00 0.30 269.11 300.00 0.90	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic os (N/mm2) osa (N/mm2) R-ratio Check for Shear Stress Ordinary			5.88 184.00 0.03 260.33 300.00 0.87	54.92 184.00 0.30 269.11 300.00 0.90	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic os (N/mm2) osa (N/mm2) R-ratio Check for Shear Stress Ordinary tm (N/mm2)			5.88 184.00 0.03 260.33 300.00 0.87 0.088	54.92 184.00 0.30 269.11 300.00 0.90 0.164	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic os (N/mm2) osa (N/mm2) R-ratio Check for Shear Stress Ordinary tm (N/mm2) ta (N/mm2)			5.88 184.00 0.03 260.33 300.00 0.87 0.088 0.616	54.92 184.00 0.30 269.11 300.00 0.90 0.164 0.474	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic os (N/mm2) osa (N/mm2) R-ratio Check for Shear Stress Ordinary tm (N/mm2) ta (N/mm2) ra (N/mm2) R-ratio			5.88 184.00 0.03 260.33 300.00 0.87 0.088 0.616 0.14	54.92 184.00 0.30 269.11 300.00 0.90 0.164 0.474 0.35	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic os (N/mm2) osa (N/mm2) R-ratio Check for Shear Stress Ordinary tm (N/mm2) ta (N/mm2) ta (N/mm2) R-ratio Seismic			5.88 184.00 0.03 260.33 300.00 0.87 0.088 0.616 0.14	54.92 184.00 0.30 269.11 300.00 0.90 0.164 0.474 0.35	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic os (N/mm2) cas (N/mm2) rasa (N/mm2) R-ratio Check for Shear Stress Ordinary tm (N/mm2) ta (N/mm2) R-ratio Seismic c m(N/mm2)			5.88 184.00 0.03 260.33 300.00 0.87 0.088 0.616 0.14 0.457	54.92 184.00 0.30 269.11 300.00 0.90 0.164 0.474 0.35 0.529	
Check for Bending Stress Ordinary os (N/mm2) osa (N/mm2) R-ratio Seismic os (N/mm2) csa (N/mm2) R-ratio Check for Shear Stress Ordinary tm (N/mm2) ta (N/mm2) R-ratio Seismic t m(N/mm2) ta (N/mm2) ta (N/mm2) ta (N/mm2)			5.88 184.00 0.03 260.33 300.00 0.87 0.088 0.616 0.14 0.457 0.437 (2.550)	54.92 184.00 0.30 269.11 300.00 0.90 0.164 0.474 0.35 0.529 0.508 (2.550)	

Table 4.4.49 Calculation Results of Cross Section of CIP Pile Foundation (P23~P25 and A2)

σsa; Allowable Unit Stress

 τm ; Unit Share Force

 τa ; Allowable Unit Share Force

	Itom		Unit	P.	20	P21		P22	
	Item			Ordinary	Seismic	Ordinary	Seismic	Ordinary	Seismic
		Vo	kN	58,871.1	51,485.3	52,152.5	45,736.5	53,296.9	47,057.5
Forces ^{*2}		Но	kN	1,710.0	13,531.0	2,380.0	13,400.6	1,260.0	12,319.8
		Mo	kN.m	38,174.0	188,271.1	44,744.0	197,122.1	22,554.0	175,437.3
Displaceme	ent ^{*2}			•					
At Top of	Displacement	δ1	cm	0.281	1.971	0.453	2.076	0.185	1.413
Top Slab	Allowable	δa	cm	5.000	5.000	5.000	5.000	5.000	5.000
Pile Beari	ng*2 (P20:L=47.5	m, P21:L	=56.5m, P2	22:L=51.5m)				
	Max	Rmax	kN/pile	1,646	1,538	1,639	1,478	1,670	1,516
Vertical	Min	Rmin	kN/pile	1,625	1,322	1,621	1,381	1,661	1,425
Reaction	Bearing	Ra	kN/pile	3,760	5,440	4,231	6,286	4,483	6,664
	Pull-out	Pa	kN/pile	-1,672	-2,778	-1,940	-3,375	-1,602	-2,757
Pile Stresse	s								
Exterior	Thickness	t	mm	1	4	1	4	14	4
P20,21:SKY	After Construction	σ1 ^{*2}	N/mm ²	44.85	106.40	48.29	127.76	37.71	104.43
420	During construction	σ2	N/mm ²	107.16	107.16	95.35	95.35	83.11	83.11
P22:SKY4	Combined	σ_{max}	N/mm ²	152.01	213.56	143.64	223.11	120.82	187.54
	Allowable	σa	N/mm ²	185.00	280.00	185.00	280.00	140.00	210.00
Bulkhead* (SKY400)	2 After Construction	σ1	N/mm ²	43.40	112.73	48.50	132.77		
t=14mm	Allowable	σa	N/mm ²	140.00	210.00	140.00	210.00	_	_

Table 4.4.50	Calculation	Results of	SPSP	Foundation	Stability	and Stress	(Longitudinal)
							\	

*1:Designed by Well Model according

*2:due to after construction loads

Longitudinal Direction – Ordinary Condition Figure:Stress Diagram of Steel Pipe Sheet Pile for P22

Itom		TT:::t	P20		P21		P22		
	Item		Unit	Ordinary	Seismic	Ordinary	Seismic	Ordinary	Seismic
		Vo	kN	58,871.1	51,485.3	52,152.5	45,736.5	53,296.9	46,880.9
Forces ^{*2}		Но	kN	2.7	12,290.8	1.6	12,430.5	1.0	11,196.3
		Мо	kN.m	9.6	183,347.3	6.0	209,890.0	4.3	178,441.8
Displacemen	t*2								
At Top of	Displacemen t	δ1	cm	0.000	1.521	0.000	1.308	0.000	0.903
Top Slab	Allowable	δa	cm	5.000	5.000	5.000	5.000	5.000	5.000
Pile Bearing	g*2 (P20:L=47.5	m, P21:L	=56.5m, P2	22:L=51.5m)				
	Max	Rmax	kN/pile	1,635	1,486	1,630	1,557	1,666	1,528
Vertical	Min	Rmin	kN/pile	1,635	1,374	1,630	1,301	1,666	1,402
Reaction	Bearing	Ra	kN/pile	3,760	5,440	4,231	6,286	4,483	6,664
	Pull-out	Pa	kN/pile	-1,672	-2,778	-1,940	-3,375	-1,602	-2,757
Pile Stresses									
	Thickness	t	mm	1	4	1	6	1	4
Exterior (SKY490)	After Construction	σ_1^{*2}	N/mm ²	36.64	99.65	36.52	115.76	32.62	91.13
(P22·SKY4	During construction	σ2	N/mm ²	102.80	102.80	80.18	79.95	70.37	70.37
00)	Combined	σ_{max}	N/mm ²	139.45	202.46	116.70	195.70	102.98	161.50
	Allowable	σa	N/mm ²	185.00	280.00	185.00	280.00	140.00	210.00
Bulkhead ^{*2} (SKY400)	After Construction	σ1	N/mm ²	36.65	109.72	36.52	122.44		—
t=14mm	Allowable	σa	N/mm ²	140.00	210.00	140.00	210.00	_	—

Table 4.4.51	Calculation Results of SPSP Foundation Stability and Stress ((Transverse)

*1:Designed by Well Model according

*2:due to after construction loads

*:Designed by Well Model according

Transversal Direction – Seismic Condition Figure:calculation results of Steel Pipe Sheet Pile for P22

				P20		P2	21	P22		
			Unit	Ordinary	Seismic	Ordinary	Seismic	Ordinary	Seismic	
	Bending moment	MA	kN.m	3807.0	7869.0	3494.0	7243.0	2719.0	6729.0	
-	Necessary reinforcement	Asr	cm ²	72.627	80.397	56.271	72.589	50.456	67.240	
Lower	Neutral axis	x	cm	108.5	108.5	100.8	100.8	100.8	100.8	
tensile	Stresses	σc σs	N/mm ² N/mm ²	2.13 78.49	4.41 162.25	2.07 84.62	4.30 175.40	1.61 65.84	4.00 162.95	
	Resultant tensile force Reinforcement requirements	T As	kN cm ²	1691.9 105.742	3497.5 116.582	1552.9 83.943	3219.0 107.301	1208.4 75.524	2990.6 99.685	
	Bending moment	MA'	kN.m	2644.0	-2340.0	1242.0	-3165.0	2075.0	-2578.0	
	Necessary reinforcement	Asr	cm ²	0.000	21.104	0.000	28.733	0.000	23.303	
Upper	Neutral axis	x	cm	9.3	69.7	9.3	69.7	9.3	69.7	
tensile	Stresses	σc σs	N/mm ² N/mm ²	0.00 0.00	1.85 125.86	0.00 0.00	2.51 170.27	0.00 0.00	2.04 138.70	
-	Resultant tensile force Reinforcement requirements	T As	kN cm ²	0.0 0.000	1039.8 34.662	0.0 0.000	1406.7 46.891	0.0 0.000	1145.9 38.197	
	Allowable stresses	σca σsa	N/mm ² N/mm ²	8.00 160.00	12.00 300.00	9.20 185.00	12.00 300.00	8.00 160.00	12.00 300.00	
A	verage shearing force	QB Tm Tal	kN N/mm ² N/mm ²	1230.0 0.34 1.01	2533.0 0.69 1.53	1525.0 0.41 1.16	3165.0 0.86 1.56	1208.0 0.33 1.03	2975.0 0.81 1.56	
A	verage shearing force	S τm τal'	kN N/mm ² N/mm ²	1214.0 0.33 1.01	2517.0 0.69 1.53	1525.0 0.41 1.16	3165.0 0.86 1.56	1208.0 0.33 1.03	2975.0 0.81 1.56	
Shearin	g force carried by concrete	Sca	kN	3675.0	5592.0	4261.0	5736.0	3769.0	5736.0	
	Shearing force	Sh'	kN	0.0	0.0	0.0	0.0	0.0	0.0	
	Longitudinal spacing	s	cm	100.0	100.0	100.0	100.0	100.0	100.0	
Diagonal tension	Reduction coefficient	Cds	_	0.245	0.245	0.171	0.171	0.171	0.171	
reinforce	Allowable tensile stresses	σsa	N/mm ²	160.00	200.00	160.00	200.00	160.00	200.00	
ment	Used reinforcement	Aw	cm ²	1.986	1.986	1.986	1.986	1.986	1.986	
	Necessary reinforcement	Awreq	cm ²	0.000	0.000	0.000	0.000	0.000	0.000	

Table 4.4.52	Calculation Results for SPSP Foundation Top Slab	(Longitudinal)
--------------	--	----------------

-

				P2	20	P	21	Ρ.	2
			Unit	Ordinary+ W	Seismic	Ordinary	Seismic	Ordinary	Seismic
	Bending moment	MA	kN.m	2879.0	6672.0	2765.0	7418.0	2825.0	6763.0
	Necessary reinforcement	Asr	cm ²	53.017	66.002	50.862	73.694	51.986	66.953
Lower	Neutral axis	x	cm	101.3	101.3	101.3	101.3	101.3	101.3
tensile	Stresses	σς σs	N/mm ² N/mm ²	1.68 69.07	3.90 160.06	1.62 66.35	4.34 178.00	1.65 67.78	3.96 162.28
	Resultant tensile force Reinforcement requirements	T As	kN cm ²	1279.7 79.983	2965.4 98.847	1229.1 76.817	3297.0 109.902	1255.4 78.463	3005.9 100.196
	Bending moment	MA'	kN.m	2879.0	-1745.0	2765.0	-2676.0	2824.0	-1916.0
	Necessary reinforcement	Asr	cm ²	0.000	15.535	0.000	24.014	0.000	17.084
Upper	Neutral axis	x	cm	8.0	70.0	8.0	70.0	8.0	70.0
tensile	Stresses	σς σs	N/mm ² N/mm ²	0.00 0.00	1.37 93.16	0.00 0.00	2.10 142.83	0.00 0.00	1.50 102.28
	Resultant tensile force Reinforcement requirements	T As	kN cm ²	0.0 0.000	775.6 25.854	0.0 0.000	1189.2 39.640	0.0 0.000	851.6 28.387
	Allowable stresses	σca σsa	$\frac{N/mm^2}{N/mm^2}$	8.00 160.00	12.00 300.00	8.00 160.00	12.00 300.00	8.00 160.00	12.00 300.00
A	Average shearing force	QB tm tal'	kN N/mm² N/mm²	1045.0 0.28 0.92	2338.0 0.63 1.40	1046.0 0.28 0.95	2701.0 0.73 1.44	1079.0 0.29 0.95	2480.0 0.67 1.44
A	werage shearing force	S TM Tal'	kN N/mm ² N/mm ²	1022.0 0.28 0.92	2316.0 0.62 1.40	1031.0 0.28 0.95	2686.0 0.72 1.44	1061.0 0.29 0.95	2462.0 0.66 1.44
Shearin	ng force carried by concrete	Sca	kN	3417.0	5199.0	3508.0	5339.0	3508.0	5339.0
	Shearing force	Sh'	kN	0.0	0.0	0.0	0.0	0.0	0.0
	Longitudinal spacing	S	cm	100.0	100.0	100.0	100.0	100.0	100.0
Diagona tension	d Reduction coefficient	Cds		0.252	0.252	0.239	0.239	0.239	0.239
reinforc	e Allowable tensile stresses	σsa	N/mm^2	160.00	200.00	160.00	200.00	160.00	200.00
ment	Used reinforcement	Aw	cm ²	1.986	1.986	1.986	1.986	1.986	1.986
	Necessary reinforcement	Awreq	cm ²	0.000	0.000	0.000	0.000	0.000	0.000

Table 4.4.53 Calculation Results for SPSP Foundation Top Slab (Transverse)

.

Source: JICA Study Team

Table 4.4.54 Calculation Results for Connection Stud of SPSP Foundation

Design condition

: SD345 (underwater)
: $\sigma ck = 24 (N/mm^2)$
: SKY490 (P20,P21), SKY400(P22)
: $D = 1200.0 (mm)$
: $Z = 13081.0(P20,P21), 15184.5(P22) (cm^3)$
: reinforcement stud welding

Table 8.3.56-5 Design Results of connection between Top Slab and Steel Pipe Sheet Pile

	Load	σs1	σs2	σs	σsa	nb nba	τs	τsa	ns nsa
	case	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(nos/layer)	(N/mm^2)	(N/mm^2)	(nos)
P20	Ordinary	153.93	4.60	158.53	185.00	$16 \ge 14$	66.15	111.00	76 ≧ 46
P20	Seismic	200.46	38.51	238.97	300.00	$16 \ge 13$	124.64	180.00	$76 \ge 53$
P21	Ordinary	153.93	6.86	160.79	185.00	16 ≧ 14	75.05	111.00	76 ≧ 52
P21	Seismic	200.46	38.67	239.13	300.00	16 ≧13	155.78	180.00	76 ≧66
P22	Ordinary	116.35	2.02	118.37	160.00	$16 \ge 12$	59.42	96.00	$76 \ge 48$
P22	Seismic	174.52	35.52	210.04	300.00	$16 \ge 12$	146.40	180.00	$76 \ge 62$

Figure : Detail for Connection between Top Slab and Steel Pipe Sheet Pile

4.4.9 Bridge Accessories

4.4.9.1 Bearings

The lengths of PC box girder bridges are L = 250 m in Thilawa side (A1 side) and L = 300 m in Yangon side (A2 side), and the effect of restraint forces is significant due to the shortening of the girder induced by creep and shrinkage as well as due to the shortening/expansion induced by temperature change. On the other hand, horizontal forces from the superstructure during earthquake must be adequately distributed to each substructure. For the support condition of the PC box girder bridges, therefore, the superstructure is planned to be elastically supported in the longitudinal direction, and elastomeric rubber bearings are adopted. The superstructure is transversally fixed, considering the connection with the on-ramp bridge

	Elastic Support	Fixed + Moveable Support
	Elastomeric Rubber Bearing	Pot Bearing
Applicable type of bearings		T
Effect of restraint forces	• Effect of restraint force to substructures is smaller, as the superstructure is elastically supported in the longitudinal direction.	• Effect of restraint forces to substructures is larger, as the superstructure is fixed at most of the superstructures.
Transfer of seismic horizontal force	 In the longitudinal direction, horizontal forces are elastically distributed to each substructure. In the transverse direction, horizontal forces are transferred from superstructure to substructures by anchor bars. 	• Horizontal forces are transferred to the substructures through steel components of bearings. Substructures with movable supports do not contribute in resisting seismic forces.
Evaluation	RECOMMENDED	

Table 4.4.55 Comparison of Support Condition and Bearing Type

Source: JICA Study Team

Source: JICA Study Team

Figure 4.4.36 Arrangement of Bearing and Anchor Bar

	Base Plate				A	Anchor Bo	Rubber Bearing				
	L1	T1	H1	d1	11	n1	L3	T3	RBL	RBT	H3
A1	1080	1080	60	$\phi 65$	650	4	850	850	920	920	309
P1	1420	1420	75	φ 85	850	4	1100	1100	1220	1220	293
P2	1420	1420	75	φ 85	850	4	1100	1100	1220	1220	258
P3	1420	1420	75	φ 85	850	4	1100	1100	1220	1220	258
P4	1420	1420	75	$\phi 85$	850	4	1100	1100	1220	1220	293
P5	1080	1080	60	φ 65	650	4	850	850	920	920	275

	5	Sole Plate				Anchor H	Bar		PL	Height
	L2	T2	H2	d2	12	n2	L4	T4	H4	Н
A1	1080	1080	60	ϕ 65	650	4	850	850	32	493
P1	1420	1420	75	$\phi 85$	850	4	1000	1000	40	523
P2	1420	1420	75	$\phi 85$	850	4	1000	1000	40	488
P3	1420	1420	75	φ 85	850	4	1000	1000	40	488
P4	1420	1420	75	φ 85	850	4	1000	1000	40	523
P5	1080	1080	60	φ65	650	4	850	850	32	459

		Base Plate				Anchor B	Rubber Bearing				
	L1	T1	H1	d1	11	nl	L3	T3	RBL	RBT	H3
P20	1080	1080	60	ϕ 65	650	4	850	850	920	920	309
P21	1420	1420	75	$\phi 85$	850	4	1100	1100	1220	1220	293
P22	1420	1420	75	$\phi 85$	850	4	1100	1100	1220	1220	293
P23	1420	1420	75	$\phi 85$	850	4	1100	1100	1220	1220	258
P24	1420	1420	75	φ85	850	4	1100	1100	1220	1220	293
P25	1420	1420	75	$\phi 85$	850	4	1100	1100	1220	1220	327
A2	1080	1080	60	ϕ 65	650	4	850	850	920	920	323

	Sole Plate					Anchor H	Bar		PL	Height
	L2	T2	H2	d2	12	n2	L4	T4	H4	Н
P20	1080	1080	60	$\phi 65$	650	4	850	850	32	493
P21	1420	1420	75	$\phi 85$	850	4	1000	1000	40	523
P22	1420	1420	75	$\phi 85$	850	4	1000	1000	40	523
P23	1420	1420	75	$\phi 85$	850	4	1000	1000	40	488
P24	1420	1420	75	$\phi 85$	850	4	1000	1000	40	523
P25	1420	1420	75	$\phi 85$	850	4	1000	1000	40	557
A2	1080	1080	60	$\phi 65$	650	4	850	850	32	507

Figure 4.4.37 Elastomeric Rubber Bearing

4.4.9.2 Expansion Joints

As the horizontal movement of PC box girder bridge during earthquake is large due to the relatively high design seismic coefficient (kh = 0.3), its expansion joints need to accommodate large displacement. As a result of the following comparative study, "modular expansion joint" has been selected, considering various aspects such as waterproofing, driving comfort, and maintenance as well as accommodation of large displacement.

	Modular Expansion Joint	Steel Finger Joint
Schematic View		
Accommodation of large displacement	 Can accommodate wide range of movement, and applicable especially to large movement. 	• Can accommodate wide range of movement.
Waterproofing	 Excellent cut-off performance against water. 	• Moderate cut-off performance against water.
Driving comfort	Good driving comfort	Good driving comfort
Maintenance	High durability of steel componentsThe components can be replaced relatively easily.	• Relatively difficult to replace the components.
Evaluation	RECOMMENDED	

 Table 4.4.56
 Comparison of Expansion Joint Type for PC Box Girder Bridge

Source: JICA Study Team

Design Result (A1 and A2)

Source: JICA Study Team

4.4.9.3 Bridge Railing

Steel railings have been adopted as the bridge railings, uniformly with the main bridge (with cablestayed bridge and steel box girder bridge). Class of railing is Class A in "Specifications for Highway Railings" by Japan Road Association. The heights are 0.9 m at the median side and 1.1 m at the roadside considering fall prevention of pedestrians in case of emergency.

4.4.9.4 Drainage System

Rainwater on the bridge surface is drained by catch pits installed at the shoulder of the bridge deck. As the bridge is located on land for the A1~P5 section, the rainwater from the catch pits is horizontally led to the substructures, and then vertically drained to the catch basin on the ground, which is connected to the side ditch. For the A2 side, the rainwater from the catch pits between P20~P23 (in-river section) is led under the girder by vertical drain pipes and discharged on to the river, while rainwater from those between P23~A2 (on-land section) is treated in the same manner as in the A1~P5 section.

Source: JICA Study Team

Figure 4.4.39 Catch Pits Arrangement and Detail (PC Box Girder Bridge)

4.5 STUDY ON ON-RAMP BRIDGE

The B/D of the on-ramp bridge was conducted based on the terms of agreement in the F/S, and the design team confirmed and studied the design policy, design conditions, structural types, bridge length and spanning, and other works that are necessary for the Project. The design team reviewed the F/S report and found out that some outstanding issues should be worked out prior to the subsequent detailed design stage.

Thereafter, the D/D was conducted in order to ensure rationality of facilities planned in the B/D under some updated design conditions such as natural condition survey result (soil investigation, topographic survey, etc.) and the future ground elevation.

A summary of the evolution of design output is shown in Table 4.5.1.

Item	Feasibility Study	Basic Design	Detailed Design		
Bridge Width	5 750 m	6 450 m	6 450 m		
	5.750 III				
Superstructure	PC-I Girder 3 girders	PC-I Girder 2 girder	PC-I Girder 2 girder		
Bridge Length	187.8 m	115.2 m	115.2 m		
Number of Substructure	7 nos.	5 nos.	5 nos.		
Foundation Type	Cast-In-Situ: 7 nos. Diameter: 1.0 m	Cast-In-Situ: 5 nos. Diameter: 1.5 m	Cast-In-Situ: 5 nos. Diameter: 1.5 m		

Table 4.5.1 Summary of Design Outputs Evolution

Source: JICA Study Team

4.5.1 Study on Bridge Length of On-ramp Bridge

4.5.1.1 Design Principle

The length of on-ramp bridge and its span arrangement was comprehensively examined considering the terrain on site, geological conditions, crossing obstacles, construction workability, and economic efficiency.

4.5.1.2 Study Conditions

(1) Geography and Geology

The site for this approach bridge consists of a flood channel and a low-flow channel river whose elevations are around MSL+3.00 m~4.00 m and MSL -5.00 m~7.00 m, respectively. Neither future land use plan including reclamation nor river training plan exists.

The bearing stratum for the bridge is distributed at MSL-40.0 m \sim -55.0 m, whose N-value is around 50. There are no appropriate soil layers other than this layer with sufficient firmness and thickness to support bridge reactions.

(2) Crossing Objects

Crossing objects are investigated by means of site survey and literature survey supported by the counterpart. There are objects that should be taken into account for the bridge span arrangement planning as control points such as embankment section of on-ramp road (to be constructed under this Project). It is confirmed that relocation of other crossing objects is possible. Summary of the crossing objects is shown in Table 4.5.2.

No	Creasing Object Name	Chainaga	Dalagation	Control Point		
INO.	Crossing Object Name	Chainage	Relocation	Abutment	Pier	
1	On-ramp (embankment section)	0+542.5	No	Yes	Yes	
2	Location of approach end (nose)	0+654.0	No	No	Yes	
3	Beginning point of on-ramp curved section	0+542.5	No	Yes	No	

Table 4.5.2 Summary of Crossing Obstacles for Span Arrangement

Source: JICA Study Team

(3) Construction Conditions

- Site conditions

There are no buildings/facilities which require cautious construction adjacent to the bridge in order to avoid any harmful displacement. There are no objects that will restrain the construction works.

Pile cap should be outside of the on-ramp road in the plan.

- Ground water level

Temporary cofferdam shall be used due to relatively high ground water level.

- Superstructure erection

Fixed staging support is not to be used because of the existence of soft surface soil that requires ground improvement work for installation of the fixed staging support.

The bridge section of the on-ramp should not be in a curved section.

- Economic span for BD

The economic span length is estimated using the following formula that is recommended in the "Bridge Design Standards of NEXCO (East Nippon Expressway Company Limited)":

$$L = a x {h+1/3(Df)}$$

Where,

- h = Substructure height
- Df = Foundation depth

a = coefficient $(1 \sim 1.5)$ depending on the construction circumstances of the proposed bridge

The construction circumstance of the proposed bridge is worse because of the existence of in-river piers. Consequently, a longer span length is more economical than one with a shorter length due to lesser number of in-river piers. Based on this viewpoint, the coefficient "a" should be 1.5. As a result of the economic span length estimation, it is determined that the economic span is 50.0 m.

Item	On-ramp Bridge
Average substructure height: h	10.4 m
Average foundation depth: Df	53.1 m
$h + 1/3 \times Df$	28.1 m
Case 1: $a = 1.0$	28.1 m
Case 2: $a = 1.5$	42.2 m
Proposed economic span length	30.0 m

 Table 4.5.3
 Estimation of Economic Span Length

(4) Determination of Bridge Length and Span Arrangement

The previously mentioned study conditions are illustrated as follows:

Source: JICA Study Team

Figure 4.5.1 Control Points for Bridge Length and Span Arrangement

Beginning Point (Abutment)	:	STA No.0+410.000 (approximate station number)
End Point (Pier)	:	STA No.0+526.000

4.5.1.3 Study on Span Arrangement

- Alternatives

There are two restrictions that control the bridge length. These are the abutment location as the beginning point of the on-ramp bridge at STA No.0+410.000 and the approach end (nose) as the end point of the on-ramp bridge at STA No.0+526.000, as displayed in Figure 4.5.1. Piers are arranged between these control points with careful attention to the embankment section of the on-ramp road as the crossing object. Span length should be close to 30 m referring to the economical span length of this bridge. After due consideration of the span arrangement, three alternatives were proposed as follows:

Source: JICA Study Team

Figure 4.5.2 Alternatives for Span Arrangement for On-ramp Bridge

- Comparison Result

Source: JICA Study Team

4.5.2 Study on Superstructure of On-ramp Bridge

4.5.2.1 Selection of Type of On-ramp Bridge

(1) **Basic Conditions**

The on-ramp bridge is planned to be a 4-span continuous bridge with straight alignment and length of 115.2 m (4 spans x 28.8 m). Its width composition is shown below.

Source: JICA Study Team

Figure 4.5.3 Width Composition of On-ramp Bridge

The project site has soft grounds with insufficient bearing capacity, and soft soil treatment might be necessary in case conventional falsework is required to support heavy structure.

(2) Comparative Study

The study is carried out for the following three alternatives, and the optimum option is selected based on the study on workability (quality control), structural aspects, cost, and maintenance.

Option-1: PC Hollow Slab Option-2: PC I Girder Option-3: Steel I Girder

Option-1: PC Hollow Slab

PC hollow slab has been widely used in ramp bridges due to its applicability to curved alignment (castin-place) and low girder height. In this case, however, soil improvement might be necessary to support conventional falsework required for construction of superstructure.

Option-2: PC I Girder

PC I girder is one of the most economical options, and can be applied to this on-ramp bridge without problem as it is planned as a straight bridge. Fabrication yard for precast girders is required.

Option-3: Steel I Girder

A steel girder with RC slab. Periodical re-painting for steel member is required.

	PC Hollow	PC I Girder (Plan at F/S)	Steel I Girder
Reference drawing	6450 600 \$250 600		
Election Method	All Staging Method	Crane Erection Method	Crane Erection Method
Workability and Quality Control	 Inferior in quality control as the girder is cast-in-situ. Soil improvement might be necessary in order to support falseworks. 	 Superior in quality control as the girders are pre-cast. No scaffolding below the girder is required. Girder fabrication yard is required. 	 Superior in quality control as the girders are pre-fabricated in factory. No special problem on erection, although the scaffolding below the girder is required.
Structural Aspect	 Applicable span length: 20-30 m Heavy weight. 	 Applicable span length: 25-40 m Moderate weight. 	 Applicable span length: 25-60 m Light weight.
Cost	Ratio = 1.04	Ratio = 1.00	Ratio = 1.05
Maintenance Aspect	 Replacement of bearings and expansion joints is required. 	 Replacement of bearings and expansion joints is required. 	 Re-painting is required in addition to replacement of bearings and expansion joints.
Evaluation		Most Recommended	

 Table 4.5.5
 Comparison of Bridge Types for On-ramp Bridge

Source: JICA Study Team

As a result of the study, PC I girder has been selected as the bridge type of the on-ramp bridge because of lowest cost, without need of conventional falsework, and superior in quality control. Girder fabrication yard can be prepared adjacent to the bridge.

4.5.2.2 Selection of Erection Method of On-ramp Bridge

PC I girder will be constructed based on the following procedure:

(1) Fabrication of girders \rightarrow (2) Erection of girders \rightarrow (3) Installation of PC panels \rightarrow (4) Construction of crossbeams \rightarrow (5) Construction of CIP slabs \rightarrow (6) Longitudinal connections

The girders are planned to be erected by cranes as their number is small (8 girders). The girder weight is approximately 75 t per girder.

Source: "Guidebook for Preparation of Method Statement (for Simple Beams and Segmental Beams)" by Japan Prestressed Concrete Contractors Association

Figure 4.5.4 Girder Erection by Cranes (for Reference)

4.5.2.3 Superstructure of On-ramp Bridge

(1) Girder Arrangement

The girder arrangement is planned based on the policy of reducing the weight of superstructure as much as possible, in order to reduce the seismic load to substructure. As the bridge width is 6.45 m, two girders with 3.8 m spacing has been adopted.

Source: JICA Study Team

Figure 4.5.5 Arrangement and Cross Section of the Girder

(2) Slab Thickness

Slab thickness is planned as the standard thickness related to the girder spacing. As the girder spacing is 3.8 m, total slab thickness (PC panel + CIP slab) is 270 mm.

Final Report

Source: "Guidebook for design and construction of PC-I girder bridges with precast PC panel" by Japan Prestressed Concrete Contractors Association

Figure 4.5.6 Slab Thickness

(3) Prestressing Tendon

1) Longitudinal Tendons

The 12S12.7 mm is applied as longitudinal tendons, referring to "Guidebook for design and construction of PC-I girder bridges with precast PC panel" by Japan Prestressed Concrete Contractors Association.

2) Transverse Tendons for Precast PC Panel of Deck Slab

PC tendons for precast PC panels of deck slab are planned to be pre-tensioned. The 1S9.3 mm is applied as transverse tendons for the precast PC panels, referring to "Guidebook for design and construction of PC-I girder bridges with precast PC panel" by Japan Prestressed Concrete Contractors Association.

3) Tendons for Crossbeam Reinforcement

For transversal prestressing, PC bars with diameter of 32 mm have been applied, as the transversal tendon is short and PC bar with threaded anchorage system is advantageous than PC strands with wedge anchorages which have large loss of prestress for short tendons by pull-in of wedges.

4.5.2.4 Global Analysis

(1) Analysis models

In the global analysis of PC-I girder bridges, three different analysis models were used for normal loads and seismic loads, respectively. For normal loads, sectional forces due to self-weight were calculated using beam model, while sectional forces due to superimposed dead load and live load were calculated using plane grid models to take the load distribution to each girder into account, and superstructure and substructures were analyzed separately. In this analysis, sectional forces were calculated considering construction steps of superstructure (erection of I girders, construction of deck slab and crossbeams). For seismic actions, the analysis was performed using three-dimensional frame models, and distribution of seismic horizontal forces from superstructure acting on each substructure was calculated by the models in which superstructures and substructures are incorporated together.

Figure 4.5.7 Analysis Model for Normal Loads (On-ramp Bridge)

Figure 4.5.8 Analysis Model for Seismic Action (On-ramp Bridge)

Final Report

4.5.2.5 Summary of the Detailed Design Results for Superstructure

- (1) AO1~P5
- 1) For Bending

Stress for Service Load (Lmax) Stress for Service Load (Lmin) Center Span (PO2 - PO3) Center Span (PO1 – PO2) 18 18 Slab Top Gdr. Top Gdr. Btm Slab Top Gdr. Top Gdr. Btm. .16 16 14 14 12 12 10 10 o (N/m2) (N/mm2) 312 213 3301 312 313 207 2201 SEC No SEC No. Side Span (PO3-P5) Side Span (AO1-PO1) 18 18 Slab Top Gdr. Top Gdr. Btm. Slab Top Gdr. Top Gdr. Btm. 16 16 14 14 12 12 10 10 0 (N/m2) 2223 0 (N/mm2) 22 101102 112113 407 SEC No. 412 413 1101 4084 405 4401 1084 105 106 107 105 109 \$06 408 SEC No.

Safety Ratio for Flexural Fracture at Ultimate State (Center Span)

Source: JICA Study Team

Safety Ratio for Flexural Fracture at Ultimate State

2) For Shear

Source: JICA Study Team

Diagonal Tensile Stress (Permanent Load)

Diagonal Tensile Stress (Service Load)

4.5.3 Substructure of On-ramp Bridge

4.5.3.1 Design Principle

The review of the appropriateness of design outputs in the F/S was performed at the B/D stage for optimization of contents of facilities in relation to the bridge substructure with respect to structural types, dimensions, and number. Such optimizations were carried out with sufficient structural calculations and comparative studies in terms of economy, workability, constructability, and construction period.

Detailed structural analysis was performed at the D/D stage for updating design conditions and upgrading analytical accuracy based on the B/D results. Major updates in the D/D include natural conditions obtained from geographic survey and topographic survey and a proposed future ground elevation. Reaction forces of superstructure for design of substructure were also updated.

4.5.3.2 Study of Substructure Height

(1) General

Substructure heights were designed referring to the proposed heights of the planned road (PH), ground level (GL) and required heights related to superstructure which include the height from pavement structure through bridge bearing. As a result, substructure heights were determined and rounded to the nearest 10 cm. Refer to the schematic diagram shown in Figure 4.5.9.

Considering the elevation of reclamation for construction yard preparation (MSL+4.300 m), foundation level of on-land substructures was determined based on MSL+4.300 m.

Figure 4.5.9 Explanatory Diagram of Substructure Height

(2) Planned Depth of Overburden above Pile Cap

The depth of overburden above pile cap shall be secured sufficiently with reference to the planned future ground level. Amount of the overburden was around 0.5 m. The amount of overburden shall be altered at respective substructure locations in case of necessity such as the arrangement of buried conduit, surface roads, etc.

In the B/D, the amount of overburden was set at 1.0 m as the default plan subject to updating based on the topography survey result, buried utility survey, and determination of the future ground level in the D/D stage.

In the D/D, it was confirmed that there would be no buried utilities around the substructures both at present and in the future, other than the drainage lines that are to be constructed under this Project for discharge of rainwater on the bridge. Also, it was determined that future ground level would be MSL+4.300 m as mentioned in the foregoing. Thus, the amount of overburden was set at 0.5 m.

(3) Conclusion of Substructure Heights

The conclusions on substructure heights are presented in Table 4.5.6.

Item	Mark	Unit	A01	PO1	PO2	PO3
Station Number	STA	m	0+411.009	0+439.809	0+468.609	0+497.409
Proposed height	PH	m	9.452	11.030	12.587	13.803
Top elevation of substructure	KCL	m	9.452	8.332	9.891	11.111
Existing Ground EL	GL1	m	3.281	2.936	2.959	3.076
Future Ground EL	GL	m	4.300	4.300	4.300	4.300
Pile cap thickness	FH	m	1.900	1.900	1.900	1.900
Total Substructure height	Н	m	7.600	6.500	8.100	9.300
EL of Pile cap bottom	FL	m	1.852	1.832	1.791	1.811
Foundation Type	-	-	CIP Pile	CIP Pile	CIP Pile	CIP Pile

Table 4.5.6 Summary of Substructure Heights of On-ramp Bridge

Source: JICA Study Team

4.5.3.3 Dimensions of Abutment

(1) Width

The width at the top surface of the parapet wall shall be the same as the effective cross section of the road or wider. The abutment AO1 is located between a straight section and an easement (clothoid) curve section of on-ramp bridge. Thus, a certain amount of road widening is necessary for securing the prescribed effective road width.

Concretely, the intersection point of the front edge of the parapet wall and the inside surface of the left side curb concrete line should be a control point for the left side width. In the same way, the intersection point of the right side curb concrete line and the end edge of approach slab should be the control point for the right side width. As a result of the above consideration, the required distance of the widening is 150 mm.

Figure 4.5.10 Abutment Width

Final Report

(2) Bridge Seat

The bridge seat shall have sufficient space for arrangement of bridge bearings that support the superstructures. The bridge shall also have a space that works to prevent the unseating of the bridge in case of the occurrence of unexpected seismic force, displacement or deformation occurring in the bridge caused by unpredicted earthquake ground motion, destruction of the surrounding ground, or unexpectedly complicated vibration in the structural members.

As for unseating prevention in the bridge axis, the seating length is to be provided at the terminal supports and the halving joints. For intermediate piers, the seating length is not required because the bridge is a continuous bridge that has continuous girders. As for the unseating prevention in the transverse direction to the bridge axis, anchor bars are installed as displacement constraint structures.

- Determination of Seating Length (S_{EM})

The seating length should be long enough to prevent departure and unseating of the superstructure from the top of the substructure. Value of the seating was obtained from the equation below as specified in the JSBH.

 $SEM = 0.7 + 0.005\ell$

Where,

 ℓ : Length of the effective span (m). When two superstructures with different span lengths are supported on one bridge pier, the longer of the two shall be used. $\ell = 28.8$ m for AO1.

 $S_{EM} \quad = 0.7{+}0.005 \ x \ 28.800$

= 0.844 (m)

- Determination of Bearing Edge Distance (S)

The bearing edge distance, which is defined as the distance between the edge of the bearing and the edge of the top of the substructure (or bearing support edge distance) shall be equal to or larger than the following value:

 $S \ge 0.2 + 0.005\ell$ = 0.344 (m)

The results of the checking of bridge seat dimensions are summarized in Table 4.5.7.

Source: JICA Study Team Figure 4.5.11 Unseating Length

Source: JICA Study Team Figure 4.5.12 Bearing Edge Distance

τ	AO1	PO1	PO2	PO3	Р5	
Span Length		28,800	28,800	28,800	28,800	28,800
Wild of Deider Cort	1,100	1,500	1,500	1,500	2,250	
width of Bridge Seat		6,450	5,500	5,500	5,500	25,000
An al an Dalk	B _{LL}	420	420	420	420	420
(Fiving bolts of basrings)	B _{TT}	620	620	620	620	620
(Fixing boits of bearings)	c.t.c.	3,800	3,800	3,800	3,800	3,800
Anchor Bar	φ	36	75	50	46	36
(Displacement Constraint	nos.	6	6	6	6	6
Structure)	c.t.c.	500	500	500	500	500
	LL	650	750	750	750	450
Edge Distance	TT	1,975	1,500	1,500	1,500	1,501
ITOIII AIICIIOI Bai	Skew	919	1,061	1,061	1,061	636
Minimum Edge Distan	ce	344	344	344	344	344
Seating Length of Gird	er	1,000	-	-	-	1,000
Minimum Seating Length of	Girder	844	844	844	844	844

Table 4.5.7 Results of Bridge Seat Width (On-ramp)

Source: JICA Study Team

Source: JICA Study Team

(3) Space for Maintenance

As for structural details which may contribute to the prolongation of the bridge lifespan, bridge seats shall be graded by around 2% in order to avoid puddle on the bridge seat.

Moreover, a space for ventilation should be provided at the terminal support. For this purpose, a distance of 500 mm was secured. This space will also be utilized for inspections of bearings. Schematic illustration is shown below.

Source: JICA Study Team (based on "Manual for Design and Construction – Bridges" by Tohoku Regional Bureau, MLIT, Japan)

Figure 4.5.14 Space for Maintenance

4.5.3.4 Dimensions of Pier

(1) Bridge Seat

The bridge seat shall have sufficient space for arrangement of bridge bearings that support the superstructures. The bridge shall also have a space that works to prevent the unseating of the bridge in case of the occurrence of unexpected seismic force, displacement or deformation occurring in a bridge caused by unpredicted earthquake ground motion, destruction of the surrounding ground, or unexpectedly complicated vibration in the structural members.

As for the unseating prevention in the bridge axis, the seating length is to be provided at the terminal supports and the halving joints. As for the unseating prevention in the transverse direction to the bridge axis, anchor bars are installed as displacement constraint structures.

The examination of the seating length for P5 pier, which is the other side of the terminal support, should be referred to the relevant section of PC concrete bridge. For other intermediate piers, such seating length is unnecessary because the on-ramp bridge is a continuous bridge and there is no possibility of unseating in the bridge axis.

- Determination of Seating Length (S_{EM})

Not required.

- Determination of Bearing Edge Distance (S)

The bearing edge distance, which is defined as the distance between the edge of the bearing and the edge of the top of the substructure (or bearing support edge distance) shall be equal to or larger than the following value:

 $S \quad \geqq 0.2 + 0.005 \ell$

Where,

Length of the effective span (m). When two superstructures with different span lengths are supported on one bridge pier, the longer of the two shall be used. The l for PO1 through PO3 is 28.8 m.

The bridge seat dimensions, considering the above, are summarized in Table 4.5.7.

The layout of the bridge seat of Piers PO1 through PO3 is shown in Figure 4.5.16.

Source: JICA Study Team

Figure 4.5.15 Bearing Edge Distance

Source: JICA Study Team

Figure 4.5.16 Layout of Bridge Seat for Piers P01 through P03

(2) Dimensions of Pier Column

The exterior view of the on-ramp substructures was based on the concept of the main bridge substructures. However, the exterior view of the main bridge substructures was revised after the review of the D/D due to the shorter height of the substructures. Consequently, the exterior view of the on-ramp substructures was demanded to be revised from an overhang beam type to a wall type referring to adjacent on-land piers.

These changes resulted in a slight increment of pier column concrete volume, whereas, quantities of reinforcement bar and timber support for the overhang beam became unnecessary. The comparison of the abovementioned general shapes of piers is summarized in Table 4.5.8.

Table 4.5.8 General Shapes of Piers in D/D

The cross section of the column was determined based on the stress status of column under various load conditions or minimum dimensions of bridge seat, as summarized in Table 4.5.9.

Table 4.5.9	Summary	of Basis	of Determ	nination of	Cross	Sectional	Dimensions

Pier Number Bridge Axis Width		Bridge Axis Width	Transverse Direction Width	Overhang Length
Wall Type	PO1 PO2 PO3	1.5 m Required width for bridge seat arrangement	5.5 m Required width for bridge seat arrangement (5.50 m)	None (no overhang beam)

Source: JICA Study Team

4.5.4 Foundation of On-ramp Bridge

4.5.4.1 Design Principle

The review of the appropriateness of the design outputs in the F/S was performed in the B/D stage for optimization of contents of facilities in relation to the bridge foundation with respect to the structural types, dimensions, and number. Such optimizations were carried out with sufficient structural calculations and comparative studies in terms of economy, workability, constructability, and construction period.

Detailed structural analysis was performed in the D/D stage for updating the design conditions and upgrading analytical accuracy based on the B/D results. Major updates in the D/D include natural conditions obtained from the geographic survey and topographic survey, and the proposed future ground elevation. Reaction forces of superstructure for design of substructure were also updated.

Source: JICA Study Team

4.5.4.2 Selection of Bearing Stratum and Embedment Length of Foundation

(1) Selection of Bearing Stratum

The basement layer in the bridge design for this bridge site is Clayey Sand-II, which is distributed uniformly at the top surface elevation of around MSL-40.0 \sim -60.0 m. Its firmness is represented by an N-value of 50, which was examined by SPT. There are no appropriate soil layers other than the basement layer with sufficient firmness and thickness to support bridge reactions.

On-ramp Bridge: Clayey Sand-II layer, MSL-50.0~-55.0 m

Source: JICA Study Team

(2) Embedment Length of Foundation

Embedment length of foundation is based on the value recommended in the Specifications for Highway Bridges (Japan Road Associations) as follows:

Cast-In-Situ Pile Foundation: Around 1D or more considering unevenness of bearing stratum Note: The "D" represent pile diameter.

Item	Mark	Unit	AO1	PO1	PO2	PO3
Station Number	STA	m	0+411.009	0+439.809	0+468.609	0+497.409
EL of Pile cap bottom	FL	m	1.852	1.832	1.791	1.811
EL of Bearing layer	S	m	-52.770	-52.770	-53.590	-53.590
Pile diameter	D	m	1.500	2.000	2.000	2.000
Minimum socket length			1.0D	1.0D	1.0D	1.0D
Foundation Type	-	-	CIP Pile	CIP Pile	CIP Pile	CIP Pile
Pile Length	L	m	56.500	57.000	57.500	58.000
Reference Boring No.	-	-	BH-01	BH-01	BD20	BD20
Bearing Stratum	-	-	CS-II	CS-II	CS-II	CS-II

 Table 4.5.10
 Summary of Foundation Length (On-ramp)

Source: JICA Study Team

4.5.4.3 Evaluation of Geotechnical Parameters for Design

Evaluation of geotechnical investigation results was performed by the geological specialists of the Project with unified viewpoint and was described in detail at the relevant section of this report. With regard to the evaluation of the geotechnical parameters for bridge design, bridge designers should take into account the specific features of each bridge location in deference to outputs of the geological specialists. In this subsection, the modulus of deformation of soils and reduction factor (D_E) for geotechnical parameters due to liquefaction, that have a profound effect on the design of bridge foundation, are reported.

Generally, the displacement of foundations largely depends on the behavior of the weak sections of the bearing ground. In addition, the horizontal displacement of foundations with respect to the loads acting on the top of the foundations vary with the properties of the surface layers. According to the geotechnical investigation results that had been conducted during the B/D, the modulus of deformation of soils shall be reduced generally compared with the ones obtained in the F/S and used in the B/D. It is remarked that the modulus of surface layers should be decreased approximately by 50% based on the results. Additionally, it was discovered that the effects of liquefaction should be considered more seriously in the D/D than in the F/S and the B/D. Since a single soil layer at A2 (Yangon) side was considered as a liquefaction layer in the F/S-B/D, the number of soil layers and scale of reduction for geotechnical parameters due to liquefaction should be increased in the D/D. The summary of the modulus of deformation of soils and reduction factor (D_E) is displayed in Table 4.5.11.

Overall, it was confirmed that the properties of the surface layers against deformation were weaker than those in the F/S-B/D, and the fact brought increments of pile number and/or pile diameters for assurance of structural stability.

Str. No.		AO1			PO1			PO2			PO3			
Br No.		No13BH-	-01		No13BH-01			BD-20			BD-20			
Depth	Soil type	BD	DD	Soil type	BD	DD	Soil type	BD	DD	Soil type	BD	DD		
1	Filled Soil	N=2 E=1400	N=1 E= 700	Filled Soil	N=2 E=1400	N=1 E= 700	Filled Soil	N=2 E=1400	N=1 E= 700	Filled Soil	N=2 E=1400	N=1 E=700		
2	I	DE-N/A	DE-IN/A	-	DE-N/A	DE-IN/A	-	DE-N/A	DE-IN/A	-	DE-N/A	DE-IN/A		
3 4 5 6 7	CLAY-I	N=1 E=1800 D _E =N/A	N=1 E= 900 D _E =N/A	CLAY-I	N=1 E=1800 D _E =N/A	N=1 E= 900 D _E =N/A	CLAY-I	N=1 E=1800 D _E =N/A	N=1 E= 900 D _E =N/A	CLAY-I	N=1 E=1800 D _E =N/A	N=1 E =900 D _E =N/A		
8 9 10	-							N=5 E=2500	$N=3 \\ E=2000 \\ D_E=1/3 \\ D_E=2/3$	Sandy LAY-I	N=5 E=2500	$\begin{array}{c} N=3\\ E=2000\\ D_{E}=1/3\\ \end{array}$		
11 12	I-Y			I-Y			5° 0	DE=N/A	D _E =1	5° 0	DE=N/A	D _E =1		
13 14 15 16	SandyCLA	N=5 E=2500 D _E =N/A	N=3 E= 2000 D _E =N/A	SandyCLA	N=5 E=2500 D _E =N/A	N=3 E= 2000 D _E =N/A	I-DND-I	N=14 E=9800	N=15 E= 6000	I-DNA2	N=14 E=9800	N=15 E= 6000		
17 18 19	Silty SAND-1	N=14 E=9800 D _E =1	N=15 E= 6000 D _E =1	Silty SAND-1	N=14 E=9800 D _E =1	N=15 E= 6000 D _E =1	Silty	D _E =1	D _E =1	Silty	D _E =1	D _E =1		
20	SaCL-II	D _E =N/A	D _E =N/A	SaCL-II	D _E =N/A	D _E =N/A	CL-AII	D _E =N/A	D _E =N/A	CL-AII	D _E =N/A	D _E =N/A		

Table 4.5.11 Comparison of Modulus of Deformation of Soil for On-ramp Bridge (B/D vs D/D)

Source: JICA Study Team

4.5.4.4 Estimation of Down Drag Zone

Occurrence of down drag due to reclamation for preparation of construction yard whose finished elevation is MSL+4.300 m was anticipated. Accordingly, the depth of the down drag zone was analyzed using laboratory test results of soil samples obtained in the D/D. Analysis results shown in Table 4.5.12 were utilized for the design of the foundation.

3. ON Ramp Bridge:	PC-	T Gir	der Bridg	e			
ltem	Mark	Unit	AO1	PO1	PO2	PO3	PO4 (P5)
Station Number	STA	m	0+411.009	0+439.809	0 + 468.609	0+497.409	0+526.209
Existing Ground EL	GL1	m	3.281	2.936	2,959	3.076	3.149
Future Ground EL	GL	m	4.300	4.300	4.300	4.300	4.300
Foundation Type	-	-	CIP Pile	CIP Pile	CIP Pile	CIP Pile	CIP Pile
Pile Length	L	m	56.500	57.000	57.500	58.000	55.500
Downdrag Zone	EL	m	-11.8	-11.8	-9.6	-9.6	-10.5
Reference Boring No.	-	-	BH-01	BH-01	BD20	BD20	BD19
Bearing Stratum	-	-	CS-11	CS-11	CS-II	CS-II	CS-II

Table 4.5.12 Assessment Result of Down Drag

Source: JICA Study Team

4.5.4.5 Selection of Foundation Type

(1) Design Policy

Bridge foundation type of the on-ramp bridge should be selected through a comprehensive comparative study, in which economy, workability, constructability, and construction period are examined.

As a result of the comparative study in the B/D, cast-in-place (CIP) pile foundation (pile diameter = 1.500 m) was recommended as the foundation type of the on-ramp bridge.

Updating of design conditions and upgrading of analytical accuracy were made to the above B/D results. Then, when necessary, reconsideration of pile arrangement including the selection of pile diameter was performed in the D/D for optimization.

(2) Design Conditions

Design conditions applied for B/D are summarized as follows:

- Bearing stratum is Clayey Sand-II at around MSL-50.0 m
- Design reaction from superstructure is moderate due to superstructure type (concrete I girder) and span length (30.0 m)
- Groundwater level is high (close to ground surface)
- Representative substructure height of pier employed for this study is 8 m for on-land pier
- Representative substructure height of abutment employed for this study is 9 m
- Unit costs of bridgework employed for this study are reconfigured based on the ones used in the F/S.

(3) Selection of Foundation Type at B/D

On-land foundations are constructed after ground preparation that includes reclamation.

Prefabricated concrete pipe pile types, such as PHC (Pretensioned Spun High Strength Concrete) pile, with diameter of 600 mm or smaller are procurable in Myanmar. However, these diameters are too small against bridge scale and seismic force. Moreover, only the percussion method is procurable in Myanmar, whereas, inner excavation method is necessary in terms of the required driving depth and penetration against a relatively firm intermediate sandy soil layer. In order to overcome these situations, offshore procurement of large-diameter PHC piles with inner excavation drilling machines is one of the options, but less economical than adoption of CIP pile that is locally procurable. As mentioned above, prefabricated concrete pipe pile types were excluded from this comparative study of foundation type.

Regarding steel pipe pile foundation, piles with a diameter of 600 mm or smaller are procurable in Myanmar. However, these diameters are also too small against bridge scale and seismic force. Moreover, only the percussion method is procurable in Myanmar, whereas, inner excavation method is necessary in terms of the required driving depth and penetration against a relatively firm intermediate sandy soil layer. In order to overcome these situations, the offshore procurement of large-diameter steel piles with inner excavation drilling machines is one of the options similar to the PHC pile case, but less economical than the adoption of the CIP pile that is locally procurable. As mentioned above, steel pipe pile foundation was excluded from this comparative study of foundation type in the B/D.

About the CIP pile foundation, reverse circulation drilling method is suitable for the required borehole depth. Based on the bridge scale and seismic force, pile diameters for comparative study were 1.2 m, 1.5 m, and 2.0 m. Procurement and construction plan should be referred to the relevant chapters of this report. It was confirmed as a result of the study that "CIP pile foundation (reverse circulation drilling method) D = 1.5 m" was the most advantageous foundation type among the alternatives in terms of economy, workability, and construction period. This foundation type was adopted for abutments and piers (on-land). The summary of these comparative studies is shown in Table 4.5.14 and Table 4.5.15.

(4) Review Policy of Foundation Type in D/D

Updating of design conditions and upgrading of analytical accuracy were conducted as mentioned in the design principle. Additionally, the overlap of pile cap and embankment section of the on-ramp road in the plan (*see Figure 4.5.18*) should be confirmed.

Soil parameter	To apply updated soil parameters that were obtained after the B/D. It is revealed that deformation coefficients of soils were smaller than the ones used in the B/D. Additionally, the scale of liquefaction effect for foundation design is larger than that expected in the B/D.
Ground elevation and structural height	Amount of the overburden depth is 0.5 m in the D/D, whereas it was 1.0 m in the B/D. The foundation level of on-land substructures was determined while taking into account the ground level for construction (MSL+4.300 m). Due to these changes, structural heights were shortened by 1.5 ~2.0 m
Analytical accuracy	Implementation of global analysis under the updated conditions and improvement of analytical accuracy adequately as D/D.
Overlap in plan position	For securing the flatness of road surface of embankment section of on-ramp road and flexibility in the construction schedule, the pile cap of PO2 pier should not overlap with the embankment road.

(5) Review Results

It was confirmed that the "CIP pile foundation (reverse circulation drilling method) D = 2.0 m" was the most economical foundation type for on-land piers. For abutment foundation type, it was confirmed that the "CIP pile foundation (reverse circulation drilling method) D = 1.5 m" was the most preferable foundation type as it was selected in the B/D. It should be remarked that the comparison was made taking into account the available sizes of pile cap as summarized in Table 4.5.13. Result of this review is shown in Table 4.5.16 and Table 4.5.17.

Piers: CIP pile foundation (reverse circulation drilling method) D =2.0 m

Abutments: CIP pile foundation (reverse circulation drilling method) D =1.5 m

Source: JICA Study Team

Figure 4.5.18 Crossing Point of Embankment Road of On-ramp and PO2 Pier

Pile	Pile C	ap Size
Diameter	Pile spanning 2.5D	Pile spanning 2.0D
φ1.0	<i>9.5 m</i> x 7.0 m	8.0 m x 7.0 m
	(overlap)	(lack of stability)
φ1.2	8.4 m x 8.4 m	7.2 m x 7.2 m
	(1.264)	(lack of stability)
φ1.5	<i>10.5 m</i> x 7.0 m	<i>9.0 m</i> x 7.0 m
	(overlap)	(lack of stability)
φ2.0	9.0 m x 9.0 m	8.0 m x 8.0 m
	(overlap)	(1.000)
Top Row: Size	e of pile cap Bottom Row: Cost Ratio	

Table 4.5.13 Available Pile Cap Size and Costs of On-ramp Pier

Source: JICA Study Team

.

Cast in Place RC Piles \$2.0m

Cast in Place RC Piles 01.5m

Cast in Place RC Piles \$1.2m

Bindrid Direction 1900 000 000 1900 000	u	nic Situation	1947.2	6,406.0	0.3	11.3	15.0	0.8	183.1	300.0	0.6	n ² (OK)	of ©	(s) A	Ó	Δ	
600 1500 100 10	Bridge's Longitudinal Directi	esistent Situation Seisn	4,173.2 4	10,606.0 1	0.4	29	15.0	0.2	20.7	160.0	0.1	s= 183.11 kNm ² <osa 300="" =="" kn="" n<="" td=""><td>mative entails the smallest amount o.</td><td>unt of pile works including ground on is consirably smaller. (1.6Month</td><td>mative entails small amount of on works.</td><td>1.396</td><td>A</td></osa>	mative entails the smallest amount o.	unt of pile works including ground on is consirably smaller. (1.6Month	mative entails small amount of on works.	1.396	A
DOCT DOCH DOCC		n Pr										Ð	O This alte	© The amo excavati	This alte excavable	0	
Bridge's Longhadnia Directoo	udnal Direction	Seismic Situatio	3,645.4	11,966.0	0.3	11.7	15.0	0.8	193.6	300.0	0.6	$a = 300 \text{ kN/m}^2$ (OK)	ler amount of pile	ling ground allest. (1.3Months)	lest amount of		Ø
2001500 500 200100 500 200100 1000 200100 1000	Bridge's Longit	Presistent Situation	2,369.2	7,790.0	0.3	4,4	15.0	0.3	21.3	160.0	0.1	os= 193.63 kN/m ² <os< td=""><td>This alternative entails the smal works.</td><td>The amount of pile works inclue excavation is consirably the sma</td><td>This alternative entails the small excavation works.</td><td>1.000</td><td>8</td></os<>	This alternative entails the smal works.	The amount of pile works inclue excavation is consirably the sma	This alternative entails the small excavation works.	1.000	8
404/9*'s Longhudinal Direction 4200 3000_30001200 1200 3000_30001200 1200 30001200	Idnal Direction	Seismic Situation	2,622,0	9,421.0	0.3	11.4	15.0	0.8	218.0	300.0	0.7	$a = 300 \text{ kN/m}^2$ (OK)	s largest and thus Δ ior one in terms of	ding ground (1.5Months)	est amount of Δ	0	0
20000000000000000000000000000000000000	Bridge's Longitu	Presistent Situation	1,574.9	6,161.0	0.3	4.9	15.0	0.3	35.7	160.0	0.2	os=217.96 kN/m ² <osa< td=""><td>The amount of number of pile i this alternative is the most infer</td><td>The amount of pile works inclu- excavation is consirably large.</td><td>This alternative entails the large excavation works.</td><td>1.185</td><td>0</td></osa<>	The amount of number of pile i this alternative is the most infer	The amount of pile works inclu- excavation is consirably large.	This alternative entails the large excavation works.	1.185	0
Outine Dawing	1	unt	KN	kN	ā	mm	mm	ð	Nmm ²	N/mm ²		Pile					
		MIRIN	Pmax	Ra	G/03	Xo	GXB	Я	50	osa	0/04	ress of a					
		uem	Ne	mumxetvi	Fue reactions	Amount	of	Displacement	Stress	of	a Pile	Maximum Sh	ctability	ction Period	mental Aspect	atto	lation
				D esign R esuits					Constru	Constru	Environ	Cost Ra	Evalu				

Table 4.5.14 Comparison of Foundation Type for On-ramp Bridge Abutment

Source: JICA Study Team

Pile Diameter

	Pile Diam	eter		Cast in Place R	RC Piles ol.2n			Cast in Place R	the self of the se		Ŭ	Cast in Place R	C Piles \$2.0m	
	Outlie Dray	1			And	400% 000% (000% (400% - 40%)	98 <u>8</u>		1000 1000 1000 1000 1000 1000 1000 100	0051 0057 005			2000 000 2000 000 000 000 000 000 000 0	0000 0000 0000 0000
	item	mark swi	Longitudin	al Direction	Transvers	e Direction	L ongitude	nal Direction	Transverse	e Direction	Longtuder	I Direction	Transverse	Direction
	THEM	India A	Presstert Situation	Seismic Situation	Presstent Situation	Seismic Smation	Presistent Situation	n Seismic Situation	Presstert Situation	Seismic Situation	Presstent Stuation	Seismic Smation	Presistent Situation	Seismic Situation
		Pmax kN	6'752'1	3,810.8	1,734.9	3,464.3	2,826.0	5,084.3	2,826.0	5,079.2	3,114.9	5,573.9	3,114.9	5,210.4
	unuaxery of the	Ra KN	6,041.0	9,243.0	6,041.0	9,243.0	7,737.0	11,844.0	7,737.0	11,844.0	10,781.0	16,684.0	10,781.0	16,684.0
	rue Keactions	C/03	0.3	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3
Design	Amount.	Git min	0.0	12.9	0.0	9.1	0.0	13.1	0'0	12.6	0.0	11.4	0.0	9.8
Results	æ	oxa mm	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
	Displacement	•	0.0	6.0	0.0	0.6	0.0	6'0	0.0	0.8	0.0	0.8	0.0	0.7
	Stress	os N/mt	n ² -18.4	336.0	-13.4	186.7	1.91-	2222	-19.7	192.5	-13.1	165.3	-13.1	205.5
	đ	dsa N/mu	n ² -200.0	300.0	-200.0	300.0	-200.0	300.0	-200.0	300.0	-200.0	300.0	-200.0	300.0
	a Pae	G'03	0.1	0.5	0.1	0.6	0.1	0,7	0.1	9.0	0.1	0.6	0.1	0.7
	Maximum St	ress of a Pile		or 235.95 kN m ² <	55a= 300kN/m ² (OK)			05= 222.22 kN/m2<6	05a= 300kN/m2 (OK)			as= 205.53 kN/m2 <a< td=""><td>sa= 300kN/m2 (OK)</td><td></td></a<>	sa= 300kN/m2 (OK)	
	Construction	A.	The amount of num alternative is the mo constructability.	ther of pile is largest a ost inferior one in terr	and thus this ins of	Φ	This alternative en	tais the smallest amo.	urt of pile works.	0	This alternative enta	els smaller am our of	pik works.	0
	Construction P	triod	The amount of pile constrably smaller.	works including grou	nd excavation is	0	The amourt of pile constrably the smal	works including grou liest	nd excavation is	0	The amount of pile v constratify large.	v aks including gram	d excavation is	A
	Envir ormental.	Aspect	This alternative enti- works	ails the smallest amor	unt of excavation	0	This alternative ent	ads snall an out of e	ixcavabon w orks.	0	This alternative entra works.	ils the largest amount	of excavation	4
	Cost Rab			1.140		0		1,000		0		1.348		A
	Judge				0				e					

Table 4.5.15 Comparison of Foundation Type for On-ramp Bridge Piers

Source: JICA Study Team

Pile Diameter Cast in Place RC Piles of .2m	Outline Drawing	item mark unit Longhudinal Direction Transverse Direction Longh	Presistent Situation Seismic Stituation Presistent Stuation Sciencie Scination Presistent Situation	Maximum Prnsx kN 928.8 2,507.3 928.8 2,300.7 1,494.0	Pile Ra kN 3,562.0 5,563.0 3,562.0 4,521.0	Reactions or/os - 0.26 0.45 0.26 0.41 0.33	sign runout ox mm 0.0 14.0 0.0 11.8 0.0	sults Divisionment over mm 15.0 15.0 15.0 15.0 15.0 15.0	Propression R - 0.00 0.93 0.00 0.79 0.00	Stress as N/mm ² -10.6 297.7 -10.6 242.0 -10.7	of 538 Nimm ² -200.0 300.0 -200.0 300.0 -200.0	a Pile a/03 - 0.05 0.99 0.05 0.81 0.05	Maximum Stress of a Pile $\sigma_{s=29\%} kNm^2 < \sigma_{s=300} kNm^2 (OK)$	The amount of number of pile is largest and thus this This alternative Constructibility alternative is the most inferior one in terms of Δ works.	The amount of pile works including ground excavation The amount o Construction Period is constrably smaller.	This alternative entails the smallest amount of This alternative entails the smallest amount of This alternative entails Environmental Aspect excavation works. © works.	Cost Ratio 1.216 Δ	
Cast in Place RC Piles of .5m		dinal Direction Transverse L	ion Seismic Situation Presistent Situation S	3,221.7 1,494.0	7,126.0 4,521.0	0.45 0.33	14.0 0.0	15.0 15.0	0.93 0.00	247.4 -10.7	300.0 -200.0	0.82 0.05	os= 247 kN/m2 <osa= (ok)<="" 300kn="" m2="" td=""><td>entails the smallest amount of pile</td><td>pile works including ground excavation e smallest.</td><td>entails stnall amount of excavation</td><td>1.001</td><td></td></osa=>	entails the smallest amount of pile	pile works including ground excavation e smallest.	entails stnall amount of excavation	1.001	
		irection.	ismic Situation Pr	3,177.3	7,126.0	0.45	14.6	15.0	0.97	186.1	300.0	0.62		0	©	0	0	a tarrey
Cast in Place R(Longitudinal Direction	esistent Situation Seismic Situation	2,174.6 4,935.9	6,253.0 9,992.0	0.35 0.49	0.0 19.5	20.0 20.0	0.00 0.98	-9.2 265.8	-200.0 300.0	0.05 0.89	os= 266 kN/m2 <osa< td=""><td>his alternative entails smaller amoun</td><td>he amount of pile works including gr consirably large.</td><td>his alternative entails the largest amo orks.</td><td>1.000</td><td>0</td></osa<>	his alternative entails smaller amoun	he amount of pile works including gr consirably large.	his alternative entails the largest amo orks.	1.000	0
C Piles \$2.0m		Transverse D	Presistent Situation Se	2,174.6	6,253.0	0.35	0.0	20.0	0.00	-9.2	-200.0	0.05	a= 300kN/m2 (OK)	t of pile works.	round excavation	unt of excavation		
	0008	rection	ismic Situation	4,544.2	9,992.0	0.45	16.7	20.0	0.83	214.6	300.0	0.72		0	0	0	0	

Table 4.5.16	Review of Foundation Type for On-ramp Piers in the D/D

Detailed Design Study on The Bago River Bridge Construction Project

Final Report

Cast	avorate pact	Brid	unit Presistent Situa	kN 1,211.9	kN 3,403.0	. 0.36	nun 7.5	mm 15.0	. 0.50	N/mm ² 70.3	N/mm ² 160.0	. 0.44	Pile 05= 260 k	The amount of number this alternative is the π constructability.	The amount of pile we excavation is almost sa	This alternative entails excavation works.		
om Place RC Piles of 2m		ge's Longitudinal Direction	tion Seismic S	1,855	5,320	0.3	14.	15(0.0	260.	300.	0.87	$N/m^{2} < \sigma_{Sa} = 300 \text{ kN/m}^{2}$ (C	r of pile is largest and thus lost inferior one in terms of	orks including ground me as other options	the smallest amount of	1117	
	0001 00024-000-2090 0001		ituation	17	0	5			-	4	0	0.87	(X)	4	Ø	Ø	٩	
Cast in Place Rt	ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD	Bridge's Longitu	Presistent Situation	1,613.2	4,476.0	0.36	6.7	15.0	0.45	54.3	160.0	0.34	$\sigma s = 256 \text{ kN/m}^2 < \sigma s a =$	This alternative entails the smallest works.	The amount of pile works includin excavation is almost same as other	This atternative entails small amou excavation works.	1.000	0
Piles \$1.5m		dinal Direction	Seismic Sit	2,502.(7,054.0	0.35	14.4	15.0	0.96	255.9	300.0	0.85	300 kN/m ² (OI	amount of pile	g ground options	at of		
	10051 20000000 2000		uation	6	6								0	0	0	0	0	
Cast in Place R(Bridge's Longitu	Presistent Situation	2,512.6	6,323.0	0.40	5.4	15.0	0.36	48.2	160.0	0.30	$\sigma s = 264 \text{ kN/m}^2 < \sigma s a =$	This alternative entails smallest am works.	The amount of pile works including excavation is almost same as other	This alternative entails the largest a excavation works.	1.048	
C Piles \$2.0m	2000 2000 100 1000 1	dinal Direction	Seismic Sit	3,604.1	10,091.	0.36	14.2	15.0	0.95	264.0	300.0	0.88	= 300 kN/m ² (OI	ount of pile	g ground options	mount of		
	- El Gi a		lation										0	Ø	Ø	Ø	0	

Detailed Design Study on The Bago River Bridge Construction Project

Final Report

Source: JICA Study Team

4.5.5 Summary of Detailed Design Results for Substructure and Foundations

4.5.5.1 Load Combinations

Load combinations for design of substructures and foundations are displayed in Table 4.5.18 which shall comply with the specifications in the JSHB. It is remarked that load situation relating to "extreme wind situation" was not applied to the PC box girder bridge because the amount of wind load on the concrete structures was quite small in comparison with the seismic inertia force.

Load Combinations	Load Situations	(1) Dead Loads (D)	(2) Live Loads (L)	(3) Impact (I)	(4) Prestress Force (PS)	(5) Influence of Creep of Concrete (CR)	(6) Influence of D dry Shrinkage of Concrete (SH)	(7) Earth Pressure (E)	(8) Water Pressure (HP)	(9) Buoyancy (U)	(10) Wind Loads (W)	(11) Effect of Temperature Change (T)	(12) Seismic Effects (EQ)	(13) Collision of Vessel (CO)	Increase Coefficients
1. Principal loads (P) + particular loads corresponding to principal loads (PP)		\bigcirc	0	0	0	0	0	0	0	0					1.00
		\bigcirc	0	0	0	0	0	0	0	0					1.00
		\bigcirc	0	0	0	0	0	0	0	0					1.00
	Ordinary	\bigcirc	0	0	0	0	0	0	0	0					1.00
2. Principal loads (P) + particular loads corresponding to principal loads (PP) +	condition	0	0	0	0	0	0	0	0	0		0			1.15
effects of temperature change (T)		0	0	0	0	0	0	0	0	0		0			1.15
		0	0	0	0	0	0	0	0	0		0			1.15
		\bigcirc	0	0	0	0	0	0	0	0		0			1.15
3. Principal loads (P) + particular loads corresponding to principal loads (PP) + wind		0	0	0	0	0	0	0	0	0	0				1.25
loads (W)	Extreme	0	0	0	0	0	0	0	0	0	0				1.25
4. Principal loads (P) + particular loads corresponding to principal loads (PP) +	Wind	0	0	0	0	0	0	0	0	0	0	0			1.35
effects of temperature change (T) +wind loads (W)		0	0	0	0	0	0	0	0	0	0	0			1.35
5. Principal loads (P) + particular loads corresponding to principal loads (PP) +	Vessel	0	0	0	0	0	0	0	0	0				0	1.50
vessel collision loads (CO)	Collision	0	0	0	0	0	0	0	0	0				0	1.50
6. Principal loads except live loads and impacts + seismic effects (EQ)	Earth-	0			0	0	0	0	0	0			0		1.50
	quake	\bigcirc			0	0	0	0	0	0			0		1.50

Table 4.5.18 Load Combinations for Design of On-ramp Bridge

4.5.5.2 Reaction Forces of Superstructure for Design of Substructures

The values of reaction force transmitted from the superstructure to the substructure are summarized in Table 4.5.19.

						Packa	ge-1 : On-	Ramp	
	D	escriptions			AO1	PO1	PO2	PO3	PO4
	Bear (M: Movable, F	ing Conditions Fixed, E: Elasti	c support)		М	F	F	F	М
	Working Height	For Bridge Ax	is direction	m	0.000	0.000	0.000	0.000	0.000
A	Above Bridge Seat	For Transvers	e Direction	m	1.900	1.900	1.900	1.900	2.500
	Dead Lo	ads	1	kN	2000	4000	4200	4200	2000
v	T. T 1	Max	2	1.57	600	1200	1100	1200	600
	Live Loads	Min	3	KN	-100	-100	-200	-100	-100
	Influence of dry shrink	4	kN	110	480	-100	-390	-110	
	Influence of creep of c	5	kN	50	190	-40	-150	-50	
	Effect of temperature of	6	kN	-100	-440	90	350	100	
н	Effect of temperature	change (-)	6	kN	100	440	-90	-350	-100
	Calination officiate	Longitudinal	Ī	kN	300	2650	1250	900	300
	Seismic effects	Transversal	8	kN	550	1300	1300	950	750
м	Eccentric moment	Longitudinal	9	kN.m	0	0	0	0	0
M	due to Dead Load	Transversal	10	kN.m	0	0	0	0	0

Table 4.5.19 Reaction Forces of Superstructures (On-ramp Bridge)

Source: JICA Study Team

4.5.5.3 Computation of Columns of T-shaped Piers

The columns of T-shaped piers can be designed as cantilevers with fixed ends at the section connected to the footings. In the design process, the most adverse combination of axial forces and bending moments shall be applied.

The overhang beams of T-shaped piers can be designed as follows:

- The overhang beams are designed as cantilevers.
- The overhang length of the cantilever is defined as the length from the vertical section at the front surface of the column to the beam in case of rectangular column, and from the position one tenth of the column diameter inward from the front of the column to the beam end in case of an oval section column.

The calculation results for columns of T-shaped piers are shown in Table 4.5.20.

4.5.5.4 Computation of Reverse T-shaped Abutment

The wall of reverse T-shaped abutment can be designed as cantilever with fixed ends at the section connected to the footings.

The parapet shall be designed to carry earth pressure as well as vehicle load (T-loads) and the loads from the approach slab.

The wing wall shall be designed as slabs to receive superimposed loads due to live loads and earth pressure. The slab in this case shall be cantilever fixed on two sides to a wall and footing.

The calculation results for the wall of the reverse T-shaped abutment are shown in Table 4.5.20.

Table 4.5.20 Calculation Results for Wall and Columns (AO1, PO1~PO3)

C ress

τa : Allowable Unit Share Force

R-ratio ; Design result / Capacity

4.5.5.5 Design of Bridge Seats

Bridge seats shall be designed with sufficient strength to withstand the vertical and horizontal forces from bearings. Bridge seats should be designed so that corrosion of bearing and girders can be minimized.

Horizontal forces transmitted from bearings are carried by concrete and reinforcement. The resisting area of concrete is the summation of the three planes in the sideward and downward directions with edge angles of 45 degrees as shown in Figure 4.5.19. The calculation results of the required reinforcement bar are shown in Table 4.4.39.

Source: JICA Study Team

Figure 4.5.19 Calculation of Bridge Seat

4.5.5.6 Computation of Footings

Footing shall be designed in consideration of the most adverse load combination of self-weight, overburden load such as soils, presence of buoyancy, subgrade reaction, and reaction from foundations. Footings may be designed as beam members and as cantilevers.

The footings shall retain a thickness necessary to serve as structural members. Also, the footings shall have sufficient thickness to be regarded as rigid bodies, when they are assumed as rigid bodies in the stability analysis of the foundation.

The calculation results for the footing of piers are shown in Table 4.5.21.

Table 4.5.21 Calculation Results for Footing of Piers(PO1~PO3)

 σs ; Bending Unit Stress

σsa; Allowable Unit Stress

τm; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

4.5.5.7 Design of Foundation

The pile foundation and the SPSP foundation shall conform to the following requirements under ordinary, earthquake, and vessel collision conditions.

- The axial reaction at each pile head shall not exceed the allowable pile bearing capacity. The axial allowable bearing capacity can be estimated by dividing the ultimate bearing capacity of the pile, determined from related factors such as ground conditions and construction methods, by the factor of safety.
- The displacements at each pile head shall not exceed the allowable displacements in order not to leave a large residual displacement and to keep within the limit of possibility of evaluation of elastic behavior. The allowable horizontal displacement is principally determined to be 1% based on the results of many loading tests.
- For a large elastic foundation with a width of 5 m or more such as SPSP foundation, the allowable displacement is determined to be 50 mm because few loading tests data are available.
- For a pile foundation with a pile diameter of 1.5 m or less, the allowable displacement is 15 mm. For a pile foundation with a pile diameter of 2.0 m, the allowable displacement is 20 mm.
- The allowable displacement of abutment foundation is 15 mm regardless of the foundation width because the displacement may increase with time due to the effects of creep and backfill settlement.
- The axial reaction at each pile head shall not exceed the allowable pile bearing capacity.
- The stresses generated in the members of pile foundations shall not exceed the allowable stresses specified in the relevant section of this report.

The calculation results of the CIP pile foundation stability and cross sectional stress are shown in Table 4.5.22 and Table 4.5.23, respectively.

	AO1	PO1	PO2	PO3
Boling Log & Pile Length (m)				
Dile Information				
Diameter of Pile (mm)	1 500	2 000	2 000	2 000
Number of Piles (Nos.)	9	5	4	4
Pile Length (m)	56.4	57.0	57.5	58.0
Bearing Resistance of Ordinary	50.4	57.0	57.5	50.0
Pile Head Reaction (kN)	1.546	3.220	2.805	3.864
Bearing Capacity (kN)	4.476	6.361	6.385	6,550
R-Ratio	0.345	0.506	0.439	0.590
Horizontal Movement of Ordina	rv			
Horizontal Movement (mm)	6.4	6.9	2.1	8.6
Capacity (mm)	15.0	20.0	20.0	20.0
R-Ratio	0.427	0.347	0.107	0,432
Bearing Resistance of Seismic			***	
Pile Head Reaction (kN)	2,512	5,330	4,733	5,088
Bearing Capacity (kN)	7,054	10,149	10,193	10,445
R-Ratio	0.356	0.525	0.464	0.487
Horizontal Movement of Seismic	2	I	I	1
Horizontal Movement (mm)	14.2	19.8	16.4	17.7
Capacity (mm)	15.0	20.0	20.0	20.0
R-Ratio	0.949	0.992	0.818	0.887
Bearing Capacity of Group Piles	s of Ordinary	I	I	1
Axial Compression Fordes (kN)	12,144	11,248	9,993	10,322
Bearing Capacity (kN)	310,198	330,692	205,404	207,765
R-Ratio	0.039	0.034	0.049	0.050
Judgement of Lateral Movement	t			
Identifying Index	3.569	_	_	_
Capacity	1.200	—	-	_

Table 4.5.22 Calculation Results of CIP Pile Foundation Stability(AO1~PO3)

* We also conducted a study on the negative skin friction force, but another case became severe in all foundations, so the value of bearing resistance is ordinary case.

	A01	PO3		
Cross Section of Pile SD345	150 150 160 160 160 160 160 160 160 160 160 16	100 150 150 150 150 150 150 150 150 150	1.02 50 160 160 160 160 160 160 160 16	44-D29@124 AS=282.656cm ²
Check for Bending Stress				
Ordinary				
σs (N/mm2)	57.60	39.39	_	50.64
σsa (N/mm2)	184.00	184.00	_	184.00
R-ratio	0.31	0.21	_	0.28
Seismic			I	
σs (N/mm2)	251.96	268.69	203.16	227.68
σsa (N/mm2)	300.00	300.00	300.00	300.00
R-ratio	0.84	0.90	0.68	0.76
Check for Shear Stress	•			
Ordinary				
τm (N/mm2)	0.105	0.076	0.020	0.076
τa (N/mm2)	0.412	0.349	0.566	0.379
R-ratio	0.25	0.22	0.04	0.20
Seismic		1	1	
τm(N/mm2)	0.332	0.336	0.227	0.238
τa (N/mm2)	0.438	0.399	0.375	0.375
R-ratio	0.76	0.84	0.61	0.63

Table 4.5.23 Calculation Results of Cross Section of CIP Pile Foundation(AO1~PO3)

 σs ; Bending Unit Stress $\sigma s a$; Allowable Unit Stress

osa; Anowable Unit Stre τm; Unit Share Force

τa; Allowable Unit Share Force
4.5.6 Bridge Accessories

4.5.6.1 Bearings

In the on-ramp bridge, the superstructure is planned to be longitudinally fixed at intermediate supports, and movable at the end supports. The superstructure is transversally fixed, considering the connection with the approach bridge. Rubber pads are adopted for bridge bearings, and anchor bars are planned to be installed on top of the substructures for fixing.

Source: JICA Study Team

4.5.6.2 Expansion Joints

Steel joint has been selected as the type of expansion joint for the on-ramp bridge, considering better durability and maintenance.

	Steel Joint	Rubber Joint
Schematic View		
Functional performance	High stiffness of steel componentHigh durability of steel components.Moderate driving comfort	 Larger deflection due to rubber components Deterioration by UV rays. Better driving comfort due to rubber surface
Construction	 Easy installation Light weight	 Easy installation Light weight
Maintenance	 The components can be partially replaced Long service life 	Relatively difficult to replace the components.Slightly shorter service life
Evaluation	RECOMMENDED	

Table 4.5.24	Comparison of Ex	kpansion Joint Type	for On-ramp Bridge	э

Figure 4.5.21 Expansion Joint of On-ramp Bridge (at AO1)

4.5.6.3 Bridge Railing

Steel railings have been adopted as the bridge railings, uniformly with the main bridge. Class of railing is Class A in "Specifications for Highway Railings" by Japan Road Association. The height of railing is 1.1 m, considering the conformity with the main bridge.

4.5.6.4 Drainage System

Rainwater on the bridge surface is drained by catch pits installed at the shoulder of the bridge deck. As the on-ramp bridge is located on land, the rainwater from the catch pits is horizontally led to the substructures, and then vertically drained to the catch basin on the ground, which is connected to the side ditch.

Source: JICA Study Team

4.6 STUDY ON FLYOVER BRIDGE

4.6.1 Study on Flyover Bridge

4.6.1.1 Decision of Length of North Approach Road and Flyover Bridge

The original bridge plan in the Supplemental F/S had been reviewed prior to the commencement of the B/D, based on the updated design condition and soil investigation survey.

The summary of the review results is given in Table 4.6.1 and each review result is explained in the following sections.

Review Item	Original Plan in Supplemental F/S	Revised Plan in D/D	Reference
Flyover Length	L = 547 m	L = 602 m	4.6.1.1
Span Arrangement	34 + (40 + 60 + 33) + (7@30 m) + (33 + 64 + 40) + 33	2@30 m + (55 + 70 + 55) + 6@30 m + 35 + 52 + 35 + 2@30	4.6.1.2
Superstructure Type	 Standard Section PC-I Girder (Max. span length = 34 m) Special Sec. at Shukinthar Myopat I/S Steel-I Girder (Max. span length = 60 m) Special Sec. at Yadanar I/S Steel-I Girder (Max. span length = 64 m) 	 Standard Section PC-I Girder (Max. span length = 30 m) Special Sec. at Shukinthar Myopat I/S Steel Box Girder (Max. span length = 70 m) Special Sec. at Yadanar I/S Steel-I Girder (Max. span length = 52 m) 	4.6.1.3
Foundation Type	Cast-in-place RC Pile ($D = 1200$)	Cast-in-place RC Pile ($D = 1500$)	4.6.1.4

Table 4.6.1 Summary of Review Result

Source: JICA Study Team

4.6.1.2 Flyover Length

(1) Introduction

In the Supplemental F/S, the flyover length was determined by the generally applicable abutment height on soft soil ground without the technical comparative study since the available existing information was limited. Therefore, in this study, the optimum flyover length was reviewed/re-examined in terms of economical aspect through the following comparative study, taking into account the additional soil investigation and the updated design condition. The alternatives are given below.

- Alternative-1 : Shortest Flyover Length / L = 542 m (Nearly the original flyover length of 542 m in the F/S)
- Alternative-2 : Shortest Flyover Length + 30 m
- Alternative-3 : Shortest Flyover Length + 60 m
- Alternative-4 : Shortest Flyover Length + 90 m

(2) Review Result

As a result of the comparative study given in Table 4.6.2, "Alternative-3: Shortest Flyover Length + 60 m" was revealed to be the most economical option. The flyover length is 602 m.

Table 4.6.2Comparative Study on Location of Abutment 1 and Abutment 2Abutment 1

Abutment 2

Source: JICA Study Team

^{*}Depth for Soft Gournd Treatment is assumed to be 16.5m from G.L.

4.6.1.3 Span Arrangement for Flyover

(1) Introduction

A flyover can be divided into two sections; one is the special section at intersections and the other is the standard section between/outside of the intersections as shown in Figure 4.6.1. In accordance with the revised flyover length, span arrangement was re-examined in consideration of the following points:

a) Required Minimum Span Length for Special Section at the Intersections

Construction gauge (5.0 m) should be secured under the flyover, and the pier should be located outside of the intersection (crosswalk) for road safety in order that pedestrians can be recognized by drivers in the intersection. Accordingly, pier location/minimum span length is controlled by the construction gauge (5.0 m) and/or location of the crosswalk. The required minimum span length for each intersection is shown in Table 4.6.3.

Location	Required Min. Span Length	Remark
Shukinthar I/S	70 m	Pier location is controlled by crosswalk as shown in Figure 4.6.1
Yadanar I/S	52 m	Pier location is controlled by construction gauge as shown in Figure 4.6.1

Table 4.6.3 Required Minimum Span Length at Intersection

Source: JICA Study Team

Figure 4.6.1 Required Minimum Span Length at Shukinthar Myopat I/S and Yadanar I/S

b) Economical Span Arrangement

For the special section at both intersections, the side span length can be determined by the economical span ratio between the side span length and the center span length (0.7 to 0.8:1.0). The standard section is basically divided into a 30 m span.

(2) Span Arrangement of Flyover

As a result of the review, the below span arrangement is applied to the flyover.

Source: JICA Study Team

4.6.1.4 Superstructure Type for Flyover

(1) Introduction

In accordance with the revised span arrangement in the previous section, the original superstructure type was reviewed through a comparative study. The comparative study was conducted for 1) Standard section, 2) Special section at Shukinthar Myopat I/S, and 3) Special section at Yadanar I/S. The items below are taken into account for the evaluation.

- Workability and Quality Control at the Site
- Structural Aspect
- Construction Cost
- Construction Period
- Maintenance Aspect

Source: JICA Study Team

Figure 4.6.3 Location of Shukinthar Myopat I/S, Yadanar I/S and Standard Section in Flyover

(2) Superstructure Type for Standard Section

In consideration of the applied maximum span length (30 m) in this section, the alternatives below are extracted for the comparison.

- Alternative-1 Steel-I Girder
- Alternative-2 PC-I Girder (Original plan in the Supplemental F/S)
- Alternative-3 PC Hollow Slab

As a result of the comparative study, in terms of the economical aspect, "Alternative-2 PC-I Girder" is the optimal superstructure type in the standard section as shown in Table 4.6.4.

Evaluation Item	Alt-1 Steel-I Girder	Alt-2 PC-I Girder (Plan at F/S)		Alt-3 PC Hollow Slab		
Schematic View			$\begin{array}{c} 12.75 \\ 50 \\ 2.0\% \\ \hline \\ \hline \\ 2.0\% \\ \hline \\ $		12.75 050 5.50 0.75 5.50 0.50 2.0% Q 2.0%	
Erection Method	Crane Erection Method		Crane Erection Method		All Staging Method	
Workability & Quality Control	 Girder blocks are prefabricated in factory so that quality control can be easier. Field work can be simplified. 	0	 Girders are pre-casted at the construction yard so that quality control can be easier. Field work can be simplified 	0	 Cast-in-situ method is inferior in quality control of girders. Field work is not simple. 	Δ
Structural Aspect	- Applicable span length : 30-60 m - Light weight	0	- Applicable span length : 20-40 m - Moderate weight	0	- Applicable span length : 20-30 m - Heavy weight	Δ
Construction Cost	Ratio = 1.18	Δ	Ratio = 1.00	0	Ratio = 1.05	0
Construction Period	5 months	0	7 months	0	11 months	Δ
Maintenance Aspect	 Re-painting is necessary in addition to replacement of bearing and expansion joints. 	Δ	 Replacement of bearings and expansion joints is necessary. 	0	 Replacement of bearings and expansion joints is necessary. 	0
Evaluation	Less Recommended		Most Recommended		Less Recommended	

Table 4.6.4 Comparative Study of Superstructure Type for Standard Section

Legend : \bigcirc Very Good, \circ Good, \triangle Moderate \times Not Good

(3) Superstructure Type for Special Section at Shukinthar Myopat I/S

In consideration of the applied maximum span length (70 m) in this section, the alternatives below are extracted for comparison¹.

- Alternative-1 Steel-I Girder (Original plan in the Supplemental F/S)
- Alternative-2 Steel Box Girder

As a result of the comparative study, in terms of the economical aspect, construction schedule and structural aspect, "Alternative-2 Steel Box Girder" is the optimal superstructure type in the special section at Shukinthar MyoPat Intersection as shown in Table 4.6.5.

Table 4.6.5 Comparative Study of Superstructure Type for Special Section at Shukinthar Myopat I/S

Evaluation Item	Alt-1 Steel-I Girder (Plan at F/S)	Alt-2 Steel Box Girder				
Schematic View						
Erection Method	Crane Erection Method	Crane Erection Method				
Workability & Quality Control	 Girder blocks are fabricated in a factory so that quality control can be easier. Field work can be simplified 	 Girder blocks are fabricated in a factory so that quality control can be easier. Field work can be simplified 	0			
Structural Aspect	 Applicable span length : 30-60 m Torsional stiffness is secured by additional lateral bracing for small radius curve section Heavy weight (956 t) 	Δ	 Applicable span length : 40-80 m Appropriate bridge type for the section where small curve radius is applied Light weight (707 t) 	0		
Construction Cost	Ratio = 1.16	Ratio = 1.00	\bigcirc			
Construction Period	17 months	0	15 months	\bigcirc		
Maintenance Aspect	 Re-painting is necessary in addition to replacement of bearing and expansion joints. 	0	 Re-painting is necessary in addition to replacement of bearing and expansion joints. 	0		
Evaluation	Less Recommended	Most Recommended				

Legend : \bigcirc Very Good, \circ Good, \triangle Moderate \times Not Good

¹ PC (box) girder is excluded from the above alternatives since its heavy weight is a disadvantage in the erection at the intersection and economical aspect (pile numbers will be increased due to heavy weight).

(4) Superstructure Type for Special Section at Yadanar I/S

In consideration of the applied maximum span length (52 m) in this section, the alternatives below are extracted for comparison².

- Alternative-1 Steel-I Girder (Original plan at Supplemental F/S)
- Alternative-2 Steel Box Girder

As a result of the comparative study, in terms of economical aspect, construction schedule, and structural aspect, "Alternative-1 Steel-I Girder" is the optimal superstructure type in the special section at Yadanar Intersection as shown in Table 4.6.6.

Evaluation Item	Alt-1 Steel-I Girder (Plan at F/S)	Alt-2 Steel Box Girder			
Schematic View					
Erection Method	Crane Erection Method	Crane Erection Method			
Workability & Quality Control	 Girder blocks are fabricated in a factory so that quality control can be easier. Field work can be simplified. 	0	 Girder blocks are fabricated in a factory so that quality control can be easier. Field work can be simplified. 	0	
Structural Aspect	- Applicable span length : 30-60 m - Light weight (339 t)	\bigcirc	- Applicable span length : 40-80 m - Heavy weight (364 t)	0	
Construction Cost	Ratio = 1.00	\bigcirc	Ratio = 1.19	Δ	
Construction Period	9 months	0	9 months	0	
Maintenance Aspect	 Re-painting is necessary in addition to replacement of bearing and expansion joints. 	0	 Re-painting is necessary in addition to replacement of bearing and expansion joints. 	0	
Evaluation	Most Recommended		Less Recommended		

Table 4.6.6 Comparative Study of Superstructure Type for Special Section at Yadanar I/S

Legend : \bigcirc Very Good, \circ Good, \triangle Moderate \times Not Good

 $^{^{2}}$ PC (box) girder is excluded from the above alternatives since its heavy weight is a disadvantage in the erection at the intersection and economical aspect (pile numbers will be increased due to heavy weight).

4.6.1.5 Foundation Type for Flyover

(1) Introduction

The following site conditions are taken into account for the extraction of alternatives:

- <u>Loading Level</u> : Normal (PC-I Girder/Max. span 30 m)

Large (Steel-I Girder/Max. span 52 m, Steel Box Girder/Max. span 70 m)

- <u>Construction Yard</u> : Construction yard is limited/narrow in the residential area
- <u>Vibration and Noise</u> : Low possibility of vibration and noise is desirable for construction in the residential area
- <u>Harmful Gas</u> : Low influence of harmful gas due to the construction is desirable for construction in the residential area
- <u>Soil Condition/Depth of Supporting Layer</u> : G.L -40 m to 45 m
- <u>Soil Condition/Soil Type of Supporting Layer</u> : Clay-IV (PF2 PF8)

Clayey Sand II (AF1, PF1, PF9- AF2)

According to Table 4.6.7, Cast-in-place RC pile, PHC/SC Pile, Steel Pipe Pile, Diaphragm Wall Foundation and Concrete Caisson can be applied as the foundation type of flyover. However, Diaphragm Wall Foundation and Concrete Caisson are excluded from the alternatives since these foundation types are not economical if the loading level is not so large.

Hence, the three alternatives below are nominated for the comparative study of foundation type. The comparative study was conducted for 1) Standard section represented by "AF1" and "PF6", and 2) Special section represented by "PF3".

- Alternative-1 Precast PC Pile
- Alternative-2 Cast-in-place RC Pile (Original plan in the Supplemental F/S)
- Alternative-3 Steel Pipe Pile

	Criteria	Cast- in-place RC Pile	PHC / SC PIle	Steel Pipe Pile	Diaphragm wall	Steel pipe sheet pile	Concrete Caisson	
	Construction on	Water Depth < 5 m	×	Δ	Δ	×	0	Δ
ų	River/Sea	Water Depth > 5 m	×	Δ	Δ	×	0	Δ
ctio	Construction Yard	Narrow/Limited	Δ	Δ	Δ	Δ	×	Δ
stru		Vibration, Noise	0	Δ	Δ	0	×	0
ons	Environment	Impact on Adjacent Structure	0	Δ	Δ	0	Δ	Δ
of C		Harmful Gas	0	0	0	0	0	0
on c	Loading Level	Small (Span < 20 m)	0	0	0	×	×	0
ditie		Normal (20 m \leq Span < 50 m)	0	0	0	0	0	0
one		Large (50 m < Span)	0	Δ	0	0	0	0
0		Vertical Load > Sway Load	0	0	0	Δ	Δ	Δ
		Vertical Load < Sway Load	0	0	0	0	0	0
		< 5 m	Δ	×	×	×	×	×
	T 1 0 7 1	5 ~ 15 m	0	0	0	Δ	Δ	0
	Depth of Supporting	$15 \sim 25 \text{ m}$	0	0	0	0	0	0
u	Layer from Ground Level	$25 \sim 40 \ m$	0	0	0	0	0	0
ditio	Hom Ground Lever	$40 \sim 60 \text{ m}$	0	Δ	0	0	0	0
ono		≥ 60 m	Δ	×	×	Δ	Δ	Δ
D pr	Water Level on Land	W.L is nearly G.L	Δ	0	0	Δ	0	0
our	Lic	uefaction	0	0	0	0	0	0
G		Clay $(20 \le N)$	0	0	0	0	0	0
	Soil Type of	Sand/Gravel $(30 \le N)$	0	0	0	0	0	Δ
	Supporting Layer	Soft Rock/Hard soil	0	0	0	0	0	0
		Hard Rock	Δ	×	×	Δ	×	×

Table 4.6.7 Possible Foundation Type for Flyover

 $\label{eq:legend:omega} \ensuremath{\mathsf{Legend}}: \circ \ensuremath{\mathsf{Highly}} \ applicable \ \square \ \ensuremath{\mathsf{Applicable}} \ \ensuremath{\mathsf{X}} \ \ensuremath{\mathsf{Inapplicable}} \ \ensuremath{\mathsf{Legend}} \ \ensuremath{\mathsf{X}} \ \ensuremath{\mathsf{Inapplicable}} \ \ensuremath{\mathsf{X}} \ \ensuremath{\mathsf{Inapplicable}} \ \ensuremath{\mathsf{X}} \ \ensuremath{\mathsf{Inapplicable}} \ \ensuremath{\mathsf{X}} \ \ensuremath{\mathsf{Inapplicable}} \ \ensuremath{\mathsf{X}} \ \ensuremath{\mathsf{Legend}} \ \ensuremath{\mathsf{X}} \ \ensuremath{\mathsf{X}} \ \ensuremath{\mathsf{X}} \ \ensuremath{\mathsf{Applicable}} \ \ensuremath{\mathsf{X}} \ \ensurema$

Source: Prepared by the JICA Study Team based on JSHB

Figure 4.6.4 Representative Substructure for the Comparative Study of Foundation Type

(2) Foundation Type for Flyover

As given in Table 4.6.8 to Table 4.6.10, in terms of economical aspect, "Alternative-2 Cast-in-place RC Pile" is the optimal foundation type for the flyover section.

Evaluation Item	Alt-1 Precast PC Pile		Alt-2 Cast-in-place RC Pile (Plan at F/S)	Alt-3 Steel Pipe Pile		
Schematic View	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 H H H H H H H H J 5	D = 1500 mm x 8 Nos (L = 41.5)	1500 ⊕ € 5 m)	D = 1000 mm x 13 Nos (L= 4 m)	∰ ⊕ €1.5
Workabilit y & Quality Control	 Inflexible to changes of pile length during construction Precast PC pile is superior in quality control)	 Flexible to changes of pile length during construction Careful quality control is necessary for cast-in-place pile 	0	 Inflexible to changes of pile length during construction Pre-fabricated steel pile is superior in quality control 	0
Structural Aspect	- Bearing capacity/pile: Low - Applicable length : 5 m – 40 m	7	- Bearing capacity/pile: High - Applicable length : 5 m – 60 m	0	- Bearing capacity/pile: Medium - Applicable length : 5 m – 60 m	0
Constructio n Cost	Ratio = 1.56	7	Ratio = 1.00	0	Ratio = 1.34	0
Constructio n Period	32 days / Foundation	7	23 days / Foundation	0	14 days / Foundation	0
Environme ntal Aspect	 Larger noise and vibration Disposal of excavated soil is necessary 	7	 Low noise and vibration Disposal of excavated soil is necessary 	0	 Larger noise and vibration Disposal of excavated soil is necessary 	0
Evaluation	Less Recommended		Most Recommended		Less Recommended	

 Table 4.6.8
 Comparative Study of Foundation Type for Special Section (AF1)

Legend : \bigcirc Very Good, \circ Good, \triangle Moderate \times Not Good

Evaluation Item	Alt-1 Precast PC Pile		Alt-2 Cast-in-place RC Pile (Plan at F/S)	Alt-3 Steel Pipe Pile		
Schematic View	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D = 1500 mm x 6 Nos (L = 3 m)	7.5	D = 1000 mm x 8 Nos (L = 3 m)	37.5
Workability & Quality Control	 Inflexible to changes of pile length during construction Precast PC pile is superior in quality control 	0	 Flexible to changes of pile length during construction Careful quality control is necessary for cast-in-place pile 		 Inflexible to changes of pile length during construction Pre-fabricated steel pile is superior in quality control 	0
Structural Aspect	 Bearing capacity/pile: Low Applicable length : 5 m – 40 m 	Δ	- Bearing capacity/pile: High - Applicable length : 5 m - 60 m		- Bearing capacity/pile: Medium - Applicable length : 5 m – 60 m	0
Construction Cost	Ratio = 1.15	Δ	Ratio = 1.00		Ratio = 1.09	0
Construction Period	15 days / Foundation	Δ	14 days / Foundation	0	9 days / Foundation	\bigcirc
Environmenta l Aspect	 Larger noise and vibration Disposal of excavated soil is necessary 	Δ	 Low noise and vibration Disposal of excavated soil is necessary 		 Larger noise and vibration Disposal of excavated soil is necessary 	0
Evaluation	Less Recommended		Most Recommended		Less Recommended	

Table 4.6.9 Comparative Study of Foundation Type for Special Section (PF6)

Legend : \bigcirc Very Good, \circ Good, \triangle Moderate \times Not Good

Evaluation Item	Alt-1 Precast PC Pile		Alt-2 Cast-in-place RC Pil (Plan at F/S)	Alt-3 Steel Pipe Pile		
Schematic View	$D = 600 \text{ mm x 30 Nos (L = 40.0 \text{ m)}}$	-	$D = 1500 \times 6 \text{ Nos } (L = 40.0)$	m)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Workability & Quality Control	 Inflexible to changes of pile length during construction Precast PC pile is superior in quality control 	0	 Flexible to changes of pile length during construction Careful quality control is necessary for cast-in-place pile 	0	 Inflexible to changes of pile length during construction Pre-fabricated steel pile is superior in quality control 	0
Structural Aspect	- Bearing capacity/pile: Low - Applicable length : 5 m – 40 m	Δ	 Bearing capacity/pile: High Applicable length : 5 m – 60 m 	0	- Bearing capacity/pile: Medium - Applicable length : 5 m – 60 m	0
Construction Cost	Ratio = 1.37	Δ	Ratio = 1.00	0	Ratio = 1.85	0
Construction Period	20 days / Foundation	Δ	18 days / Foundation	0	15 days / Foundation	0
Environmenta l Aspect	 Larger noise and vibration Disposal of excavated soil is necessary 	Δ	 Low noise and vibration Disposal of excavated soil is necessary 		 Larger noise and vibration Disposal of excavated soil is necessary 	0
Evaluation	Less Recommended		Most Recommended		Less Recommended	

Table 4.6.10 Comparative Study of Foundation Type for Special Section (PF3)

 $Legend: \ \textcircled{O} \ Very \ Good, \circ \ Good, \Delta \ Moderate \times Not \ Good$

(3) Optimum Diameter of Foundation Pile

In addition to the above study, the comparative studies were conducted to justify the optimum diameter of cast-in-place RC pile. As shown in Table 4.6.11, "Alternative-3 D = 1500 mm" is the most economical option.

Item		Alt-1 D = 1000 mm	Alt-2 D = 1200 mm	Alt-3 D = 1500 mm
	A E 1	Ratio = 1.05	Ratio = 1.21	Ratio = 1.00
	AFI	(18 Nos / L = 41.5 m)	(12 Nos / L = 41.5 m)	(8 Nos / L = 41.5 m)
Construction	PF6	Ratio = 1.17	Ratio = 1.07	Ratio = 1.00
Cost		(15 Nos / L = 37.5 m)	(8 Nos / L = 37.5 m)	(6 Nos / L = 37.5 m)
		Ratio = 1.16	Ratio = 1.39	Ratio = 1.00
	PF3	(15 Nos / L = 40.0 m)	(12 Nos / L = 40.0 m)	(6 Nos / L = 40.0 m)
Evaluation		Less Recommended	Less Recommended	Most Recommended

Table 4.6.11 Comparative Study of Foundation Diameter

Source: JICA Study Team

4.6.2 Basic Design Results

4.6.2.1 Steel Girder Bridge

(1) Steel Box Girder Bridge

The profile, plan, and typical cross section of the steel box girder bridge in the B/D are shown in the following figure.

Source: JICA Study Team

Figure 4.6.5 Plan, Profile and Typical Cross Section of Steel Box Girder Bridge in the B/D

(2) Steel-I Girder Bridge

The profile, plan, and typical cross section of the steel-I girder bridge in the B/D are shown in the following figure.

Figure 4.6.6 Plan, Profile and Typical Cross Section of Steel-I Girder Bridge in the B/D

4.6.2.2 PC-I Girder Bridge

The profile, plan, and typical cross section of the PC-I girder bridge in the B/D are shown in the following figures.

Figure 4.6.7 Plan, Profile and Typical Cross Section of PC-I Girder Bridge in the B/D (PF5-PF7)

Source: JICA Study Team

Figure 4.6.8 Plan, Profile and Typical Cross Section of PC-I Girder Bridge in the B/D (PF7-PF11)

4.6.2.3 Substructures and Foundations

The general view of the abutment and pier in the B/D is shown in the following figures.

Source: JICA Study Team

Figure 4.6.9 General View of Abutment in the B/D

C SECTION

NO.	SUBSTRUCTURE No.	H1 (mm.)	B1 (mm.)	B2 (mm.)	PILE DIAMETER (mm.)	PILE LENGTH (m.)	NUMBER OF PILES
1	PF1	4800	10500	6750	φ1500	41.5	6
2	PF3	6600	10500	8000	φ1500	40.0	6
3	PF4	7800	10500	7500	\$\$1500	41.0	6
4	PF6	8800	10500	6750	φ1500	37.5	6
5	PF7	8800	10500	6750	φ1500	39.0	6
6	PF8	8600	10500	7500	φ1500	39.0	6
7	PF9	8400	10500	7500	φ1500	39.0	6
8	PF10	8300	10500	7500	φ1500	39.0	6
9	PF12	7500	10500	6750	φ1500	40.0	6
10	PF13	6400	10500	6750	φ1500	42.0	6
11	PF15	5600	10500	6750	φ1500	43.0	6

Figure 4.6.10 General View of Pier (Type A) in the B/D

2 110

NO.	SUBSTRUCTURE No.	H1 (mm.)	H2 (mm.)	B1 (mm.)	B2 (mm.)	PILE DIAMETER (mm.)	PILE LENGTH (m.)	NUMBER OF PILES
1	PF2	5000	830	10500	6750	φ1500	41.5	6
2	PF5	8200	520	10500	6750	φ1500	37.5	6
3	PF11	7600	580	10500	6750	φ1500	39.5	6
4	PF14	5600	790	10500	6750	φ1500	42.5	6

Source: JICA Study Team

D SECTION

4.6.3 Major Updates in the Detailed Design from the Basic Design

4.6.3.1 Major Updates on Steel Girder Bridge

(1) Steel Box Girder Bridge

Nothing was updated from the B/D.

(2) Steel-I Girder Bridge

In the D/D, the flange width was optimized for cost reduction as shown in the table below.

Table 4.6.12 Compa	rison of Configuratio	n of Steel-I Girder
--------------------	-----------------------	---------------------

Ite	em	B/D	D/D		
Cindon	Height	2400 mm	2400 mm		
Girder	Flange Width	620 mm	590 mm		
RC Deck	Thickness	240 mm	240 mm		

Source: JICA Study Team

4.6.3.2 Major Updates on PC-I Girder Bridge

The updates on PC-I girder bridge are shown in the following table:

Table 4.6.13	Comparison of PC-I Girder
--------------	---------------------------

Item	B/D	D/D
Number of Girders	5 nos.	4 nos.
Girder Height	1800 mm	1900 mm
Deck Thickness	250 mm	170 mm

Source: JICA Study Team

In the B/D, the reinforced concrete deck slab had been applied in the superstructure. If the reinforced concrete deck slab is applied, the superstructure needs five main girders because the span length of the reinforced concrete deck slab is generally about 3 m between the main girders, and the overhang length of the deck slab is generally about 1.5 m from the center of the girder to the end of the deck slab. In addition, the girder height had been assumed to be 1800 mm based on conventional ratio, which is 1/17, to the average span length. The main girder on the cross section in the B/D is shown in Figure 4.6.12.

Figure 4.6.12 Cross Section of Superstructure for PC-I Girder Bridge in the B/D

In the D/D, the composite concrete deck slab (reinforced concrete deck slab and prestressed concrete plate) was considered to be applied to the superstructure to reduce the number of main girders. The span length of the composite concrete deck slab which is located between the main girders is generally 2.6 m to 3.8 m. Hence, the main girder height increased by 10 mm from the B/D but the number of main girders was reduced. Finally, the main girder height is 1900 mm to 2000 mm and the number of main girders is four.

On the other hand, the structure type of the overhang is same as in the B/D. The overhang length of the reinforced concrete deck slab is 1.125 m. The cross section of the superstructure in the D/D is shown in Figure 4.6.13

(): PF7 to PF11

Source: JICA Study Team

4.6.3.3 Major Updates on the Substructures and Foundations

The updates on substructures and foundations are as follows:

- Geotechnical design parameters

The geotechnical design parameters determined in the B/D were reviewed and modified in the D/D, because the number of boring results used to determine the parameters was increased in the D/D. For more details of the location and coordinate of boreholes, refer to Section 4.6.4.4(1). The modulus of deformation "E" had been calculated as E = 700 N for all layers according to the worth value obtained by borehole lateral load test in the B/D. In the D/D, on the other hand, E was calculated to be E = 500 N for

Figure 4.6.13 Cross Section of Superstructure for PC-I Girder Bridge in the D/D

only "Silty Sand I" because the results of the additional tests conducted in the D/D were also considered. Additionally, the layer distribution was reviewed and updated before the commencement of the D/D, based on the soil investigation surveys conducted in the D/D. For more details, refer to Section 4.6.4.4(1).

Table 4.6.14 Comparison of Design Soil Parameters between the B/D and D/D <Design Soil Parameter in B/D>

Layer	N Average ^{*1}	Unit Weight "Y" (kN/m3)	Cohesion "c" (kN/m2)	Friction Angle "\phi"*5 (°)	Modulus of Deformation "E" (kN/m2)
FILLED SOIL	4	16 *3	24 *4	0	1300 *6
CLAY-I	4	18 2	24 *1	0	1300 *6
SANDY CLAY-I	6	17 *2	25 *1	0	4200 *7
SILTY SAND-I	10	17 *2	0 *4	32	7000 *7
SANDY SILT	9	18 "3	54 *4	0	6300 *7
SILTY SAND-II	23	19 *3	0 *4	33	16100 *7
CLAY-II	22	18 "3	132 *4	0	15400 *7
CLAYEY SAND-I	41	19 *3	0 *4	33	28700 *7
CLAY-III	35	18 *3	210 "4	0	24500 *7
CLAYEY SAND-II	50	19 "3	0 *4	37	35000 *7
CLAY-IV	50	18 **	300 *4	0	35000 *7

<Design Soil Parameter in D/D>

Layer	N Average *1	Unit Weight "γ" (kN/m3)	Cohesion "c" (kN/m2)	Friction Angle " ϕ " *5 (°)	Modulus of Deformation "E" (kN/m2)
FILLED SOIL	4	18 *3	24 *4	0	1300 *6
CLAY-I	4	18 *2	24 *1	0	1300 *6
SILTY SAND-I	10	18 *2	0 *4	32	5000 *8
SANDY SILT	8	17 ^{*3}	48 *4	0	5600 *7
SILTY SAND-II	22	19 * ³	0 *4	33	15400 *7
CLAY-II	21	18 *3	126 *4	0	14700 *7
CLAYEY SAND-I	35	19 ^{*3}	0 *4	33	24500 *7
CLAY-III	35	18 *3	210 *4	0	24500 *7
CLAYEY SAND-II	50	19 *3	0 *4	37	35000 *7
CLAY-IV	50	18 *3	300 *4	0	35000 *7

Source: JICA Study Team

- Assessment result of soil liquefaction

The assessment of soil liquefaction was reviewed in the D/D, because the number of boring sites considered was increased. However, the result of liquefaction assessment was not changed from the B/D to the D/D; the geotechnical parameters are reduced only for the layer of the Sandy Silt up to 10 m in depth. On the other hand, it was not necessary to reduce the geotechnical parameters for the other layers. For more details of the liquefaction assessment, refer to Section 4.6.4.4(2).

												500									
(a) 0 ≦	$x \le 10$	_									(a) 0≦:	x≦10			_		_			_	
_	FL	R	FL	R	FL	R	FL	R	FL	R	-	FL	R	FL	R	FL	R	FL	R	FL	R
1.1	FILLEI	SOIL	CLA	Y-1	SILTYS	AND-I	SAND	Y SILT	SILTYS	SAND-II		FILLED	SOIL	CLA	Y-I	SILTY S	AND-I	SAND	f SILT	SILTY	SAND
BH-01			6,766	1.465	1.086	0.274		-			BH-01			5.922	1.263	1.093	0.269				
BH-02	3.771	0.689	1 910	0.433	1.093	0.308					BH-02	3.393	0.617	1.827	0.407	1.078	0.293				-
BH-03			4.483	0.894	1.039	0.253	0.898	0.236			BH-03			3.953	0.780	1.044	0.247	0.910	0.231	-	
BH-04	2,281	0.424	2.807	0.612	2.146	0.565					BH-04	2.111	0.395	2.517	0.548	1.432	0.365		-		_
BH-05	-	-	0.943	0.189	1.501	0.357	0.896	0.237		1. Contraction 1. Con	BH-05		_	0.942	0.186	1.396	0.324	0.912	0.232	_	-
BH-06					1.132	0.272					BH-06			-	-	1.103	0.267	_	-		
BH-07	1.130	0.200	0.979	0.189	1.203	0.305					BH-07	1.109	0.197	0.968	0.186	0.953	0.242	_		-	
BH-08				-	1.360	0.295		-			BH-08					1.425	0.315	_	_	_	-
BH-09		-	1.441	0 272	1.280	0.278					BH-09		_	1.433	0.269	1.207	0.264	_	_		
BH-10					1.189	0 252					BH-10	-	_	-	_	1.155	0.248		_	_	
BH-11			0.922	0 192	1138	0.261		_			BH-11		_		_	1.130	0.257	_	_		
BH.12	-	_		0.178	3.551	0.951					BH-12		_	10.110		3.210	0.859		_		
D12 12	-		11 597	7 666	7754	2 1 10	_	_		-	BH-15			10.138	2.207	0.880	1.920				
DII 14		_	2 212	0.464	1.452	0.277					BH-14		_	1.832	0.407	1.400	0.300				
011-14	3 304	0.430	2.405	0,404	1.435	0.377	0.007	0.217			BH-5(13)		0.165		2 / 1 / 2	0.991	0.225				-
Average	2.394	0.458	3.405	0,728	1.925	0.493	0.897	0.257			ave	2.204	0.403	3.281	0.695	1.700	0.431	0.911	0.232		
DL	<u> </u>	-		-			2/	3		-	DE	1 1					-	2	3	-	
(b) 10	<x≦20< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(b) 10<</td><td>$x \le 70$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x≦20<>										(b) 10<	$x \le 70$									
	FL	R	FL	R	FL	R	FL	R	FL	R	1 100 100	FI	P	FL	P	FT	P	FT	R	FI	R
	FILLEI	SOIL	CLA	Y-1	SILTYS	AND-I	SAND	Y SILT	SILTYS	AND JI	-	FILLED	SOIL	CLA	VJ	SILTYS	AND	SAND	SUT	SILTY	ANT
BH-01				-			0.963	0.254	1168	0.292	BH-01	TILLE	OOL			SADIT		0.975	0.250	1.163	0.2
BH-02							2.964	0.847	1 488	0.596	BH-02							2.588	0.717	1.434	0.3
BH-03							1.167	0 307	1.149	0.288	BH-03							1.034	0.266	1.147	0.2
									1 106	0.284	BH-04									1.076	0.2
BH-04							7.336	1.923	1.068	0.266	BH-05							1.409	0.362	1.071	0.7
BH-04 BH-05								0.000	1.013	0.251	BH-06			1				1.089	0.285	1.021	0.2
BH-04 BH-05 BH-06							1.131	0.289							_	the second se	10.000	and the second se	the second s		0.7
BH-04 BH-05 BH-06 BH-07					1.884	0.494	1.131	0.289	0.962	0.234	BH-07					0.970	0.261	1.301	0.348	0.974	10.2
BH-04 BH-05 BH-06 BH-07 BH-08					1.884	0.494	1.131 0.994 1.270	0.259	0.962	0.234	BH-07 BH-08					0.970	0.261	1.301	0.348	0.974	0.2
BH-04 BH-05 BH-06 BH-07 BH-08 BH-09					1.884 1.300	0.494	1.131 0.994 1.270 1.677	0.259	0.962	0.234	BH-07 BH-08 BH-09			-		0.970 1.128 1.089	0.261 0.276 0.256	1.301 1.221 1.263	0.348 0.301 0.301	0.974 1.075 1.224	0.2
BH-04 BH-05 BH-06 BH-07 BH-08 BH-09 BH-10					1.884 1.300 1.121	0.494 0.321 0.259	1.131 0.994 1.270 1.677 2.014	0.289 0.259 0.307 0.390 0.472	0.962	0.234 0.256 0.291	BH-07 BH-08 BH-09 BH-10			T		0.970 1.128 1.089	0.261 0.276 0.256	1.301 1.221 1.263 1.888	0.348 0.301 0.301 0.447	0.974 1.075 1.224 1.228	0.2 0.2 0.2
BH-04 BH-05 BH-06 BH-07 BH-08 BH-09 BH-10 BH-10					1.884 1.300 1.121	0.494 0.321 0.259	1.131 0.994 1.270 1.677 2.044	0.289 0.259 0.307 0.390 0.472	0.962 1.073 1.254 1.221 1.261	0.234 0.256 0.291 0.285	BH-07 BH-08 BH-09 BH-10 BH-11					0.970 1.128 1.089	0.261 0.276 0.256	1.301 1.221 1.263 1.888 1.214	0.348 0.301 0.301 0.447 0.287	0.974 1.075 1.224 1.228 1.200	0.2 0.2 0.2 0.2
BH-04 BH-05 BH-06 BH-07 BH-08 BH-09 BH-10 BH-11 BH-11					1.884 1.300 1.121	0.494 0.321 0.259	1.131 0.994 1.270 1.677 2.044 1.232	0.289 0.259 0.307 0.390 0.472 0.290	0.962 1.073 1.254 1.221 1.254	0.234 0.256 0.291 0.285 0.294	BH-07 BH-08 BH-09 BH-10 BH-11 BH-12					0.970 1.128 1.089 1.010	0.261 0.276 0.256 0.256	1.301 1.221 1.263 1.888 1.214 0.995	0.348 0.301 0.301 0.447 0.287 0.268	0.974 1.075 1.224 1.228 1.200 0.854	0.2 0.2 0.2 0.2 0.2
BH-04 BH-05 BH-06 BH-07 BH-08 BH-09 BH-10 BH-11 BH-11 BH-12					1.884 1.300 1.121 1.040	0.494 0.321 0.259 0.280	1.131 0.994 1.270 1.677 2.044 1.232 1.025	0.289 0.259 0.307 0.390 0.472 0.290 0.269	0.962 1.075 1.254 1.221 1.254 0.869	0.234 0.256 0.291 0.285 0.294 0.218	BH-07 BH-08 BH-09 BH-10 BH-11 BH-12 BH-13					0.970 1.128 1.089 1.010 1.031	0.261 0.276 0.256 0.278 0.278	1.301 1.221 1.263 1.888 1.214 0.995 1.007	0.348 0.301 0.301 0.447 0.287 0.268 0.272	0.974 1.075 1.224 1.228 1.200 0.854 1.182	0.2 0.2 0.2 0.2 0.2 0.2
BH-04 BH-05 BH-06 BH-07 BH-08 BH-09 BH-10 BH-11 BH-11 BH-12 BH-13					1.884 1.300 1.121 1.040 0.972	0.494 0.321 0.259 0.280 0.265	1.131 0.994 1.270 1.677 2.044 1.232 1.025 1.033	0.289 0.259 0.307 0.390 0.472 0.290 0.269 0.272	0.962 1.075 1.254 1.221 1.254 0.869 1.200	0.234 0.256 0.291 0.285 0.294 0.218 0.218 0.301	BH-07 BH-08 BH-09 BH-10 BH-11 BH-12 BH-13 BH-14					0.970 1.128 1.089 1.010 1.031 1.168	0.261 0.276 0.256 0.258 0.286 0.310	1.301 1.221 1.263 1.888 1.214 0.995 1.007 13.839	0.348 0.301 0.301 0.447 0.287 0.268 0.272 3.613	0.974 1.075 1.224 1.228 1.200 0.854 1.182 1.319	0.2 0.2 0.2 0.2 0.2 0.2 0.3
BH-04 BH-05 BH-06 BH-07 BH-08 BH-09 BH-10 BH-11 BH-11 BH-12 BH-13 BH-14					1.884 1.300 1.121 1.040 0.972 1.248	0.494 0.321 0.259 0.280 0.280 0.265 0.324	1.131 0.994 1.270 1.677 2.044 1.232 1.025 1.033 14.509	0.289 0.259 0.307 0.390 0.472 0.290 0.269 0.272 3.683	0.962 1.073 1.254 1.221 1.254 9.869 1.200 1.346	0.234 0.256 0.291 0.285 0.294 0.218 0.301 0.333	BH-07 BH-08 BH-09 BH-10 BH-11 BH-11 BH-12 BH-13 BH-14 BH-5(13)					0.970 1.128 1.089 1.010 1.010 1.031 1.168 0.851	0.261 0.276 0.256 0.256 0.286 0.310 0.201	1.301 1.221 1.263 1.888 1.214 0.995 1.007 13.839	0.348 0.301 0.301 0.447 0.287 0.268 0.272 3.613	0.974 1.075 1.224 1.228 1.200 0.854 1.182 1.319 1.386	0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3

Table 4.6.15 Comparison of Assessment Results of Soil Liquefaction between the B/D and D/D In B/D In B/D

Source: JICA Study Team

- Supporting layer

The supporting layer was also reviewed in the D/D because the results of the soil investigation surveys were updated in the D/D as shown in Figure 4.6.14. For more details, refer to Section 4.6.4.4(3).

Source: JICA Study Team

- Configuration of abutments and piers

The configuration of abutments and piers was also modified in the D/D due to the abovementioned updates. The following figure shows the configuration of the representative abutment and piers in the B/D and D/D.

Source: JICA Study Team

Figure 4.6.15 Update on Configuration of Representative Substructures between the B/D and D/D

4.6.4 Detailed Design Results

4.6.4.1 Detailed Design of Steel Girder Bridge

(1) Design Condition

1) General Design Condition

The general design conditions for steel box girder and steel-I girder are shown in Table 4.6.16 and Table 4.6.17, respectively.

Item	Conditions
General	
Bridge Type	Continuous 3-span steel box girder bridge (Sta. 2+736.000 to Sta. 2+916.000)
Bridge Length	180 m
Girder Length	179.4 m
Span Arrangement	55.0 m + 70.0 m + 55.0 m
Total Width	12.75 m
Effective Width	11.00 m
Structure Type	
Main Girder	Steel Structure
Crossbeam	Steel Structure
Deck	Reinforced Concrete Structure (RC Structure)
Materials	
Concrete	RC Structure: 24 N/mm ² (Deck)
Reinforcement Bar	SD345
Steel	SM400, SM490Y, SS400, S10T

Table 4.6.16 General Design Condition of S	Superstructure in Steel Box Girder Bridge
--	---

Source: JICA Study Team

Table 4.6.17 General Design Condition of Superstructure in Steel-I Girder Bridge

Item	Conditions
General	
Bridge Type	Continuous 3-span I-section steel plate girder (Sta. 3+96.000 to Sta. 3+218.000)
Bridge Length	122 m
Girder Length	121.4 m
Span Arrangement	35.0 m + 52.0 m + 35.0 m
Total Width	12.75 m
Effective Width	11.00 m
Structure Type	
Main Girder	Steel Structure
Crossbeam	Steel Structure
Deck	Reinforced Concrete Structure (RC Structure)
Materials	
Concrete	RC Structure: 24 N/mm ² (Deck)
Reinforcement Bar	SD345
Steel	SM400, SM490Y, SS400, S10T

2) Design Case for Superstructure and Load Combinations

The design load case, the load combinations, and the load factors are shown in Table 4.6.18 and Table 4.6.15.

Design Load Case	Load Combinations	Load Factors
Under Dead Load	Self-Weight, Weight of Bridge Surface	1.00
Under Design Load	Dead Load + Live Load + Impact	1.00
Lindon Wind Load	Dead Load + Wind Load	1.25
Under wind Load	Design Load + Wind Load	1.25
Under Earthquake Load	Dead Load + Earthquake Load	1.50
Under Collision Load	Design Load + Collision Load	1.50

 Table 4.6.18
 Design Case, Load Combinations and Multiplication Factors

Source: JSHB

Table 4.6.19	Member Design Case
--------------	--------------------

	Design Case
Main Girder	Under Dead Load + Live Load + Impact
Crossbeam, Stringer Bracket	Under Dead Load + Live Load + Impact
Sway Bracing	Wind or Earthquake, Slenderness Ratio
Lateral Bracing	Wind or Earthquake, Slenderness Ratio

Source: JSHB

3) Design Parameter of Materials

a) Structural Steel and Reinforcement Bar

The design parameters of the structural steel and the reinforcement bar are shown in Table 4.6.20.

Table 4.6.20	Design Parameters of Structural Steel and Reinforcement Bar
--------------	---

			Yield Stress	s (N/mm ²)	
		Young's	Steel Thickness	Steel	Tensile
Material	Туре	Modulus (N/mm^2)	16 mm to 40	Thickness	Strength
		(18/1111-)	mm	40 11111 10 75	(19/11111)
				mm	
Structural Staal	SS400/SM400	2.0×10^{5}	235	215	400 to 510
Siluciulal Steel	SM490Y	2.0~10	355	335	490 to 610
Reinforcement Bar	SD345	2.0×10 ⁵	345 to	440	490 or over

Source: JSHB

b) Concrete

The design parameter of concrete is shown in .

Table 4.6.21.

Material	Design Strength	Young's Modulus
Concrete	24 N/mm ²	$2.0 \times 10^5 \text{N/mm}^2$
	•	

Source: JSHB

4) Allowable Stress of Materials

a) Structural Steel

- Basic Allowable Stress

The basic allowable stress of the structural steel is defined based on the yield stress. The basic allowable stress and the yield stress of the structural steel are shown in Table 4.6.22.

		SM400		SM490Y	
Stress Type	Unit	Steel Thickness Up to 40 mm	Steel Thickness 40 mm to100 mm	Steel Thickness Up to 40 mm	Steel Thickness 40 mm to 75 mm
Basic Allowable Stress	N/mm ²	140	125	210	195
Yield Stress	N/mm ²	235	215	355	335
Safety Factor		1.68	1.72	1.69	1.72

 Table 4.6.22
 Basic Allowable Stress and Yield Stress of Structural Steel

Source: JSHB

- Allowable Axial Compressive Stress of Structural Steel

The allowable axial compressive stress is calculated based on the allowable axial compressive stress in the case of not considering the local buckling, the upper limit of the allowable axial compressive stress, and the allowable stress in consideration of the local buckling.

The allowable axial compressive stress without local buckling is determined based on the strength obtained considering its variations in quality, as specified in the JSHB II 3.2.

The allowable compressive stress considering local buckling is shown in the item "e" below. The upper limit of the allowable axial compression stress is given in Table 4.6.22.

The allowable axial tensile stress and allowable bending tensile stress are the values considering the safety factor against the basic tensile yield stress as shown in Table 4.6.22.

- Allowable Bending Compressive Stress of Structural Steel

The allowable bending compressive stress is decided by the fixing conditions of the compression flange and section type, as specified in the JSHB II 3.2.

The allowable bending compressive stress is based on the values shown in Table 4.6.22 and is defined as the value taking into consideration the influence of the lateral buckling strength of the girder.

- Allowable Stress for Local Buckling of Structural Steel

The allowable stress for local buckling is decided by considering the influence of residual stress due to initial irregularities such as the support condition, initial deformation, welding and other initial irregularities, based on the values in Table 4.6.22. It is calculated by the equation shown in the JSHB II 4.2.

- Allowable Shear Stress of Structural Steel

The allowable shear stress applies the tensile yield condition of Von Mises against the basic tensile yield stress, $\tau y = \sigma y/\sqrt{3}$, and is provided in consideration of the safety factor of 1.7. The value is shown in Table 4.6.23.

		SM400		SM490Y	
Stress Type	Unit	Steel Thickness Up to 40 mm	Steel Thickness 40 mm to 75 mm	Steel Thickness Up to 40 mm	Steel Thickness 40 mm to 75 mm
Allowable Shear Stress	N/mm ²	80	75	120	115

 Table 4.6.23
 Allowable Shear Stress of Structural Steel

Source: JSHB

- Allowable Stress of Reinforcement Bar for Deck Slab

The allowable stress of reinforcement bars in the deck is shown in Table 4.6.24.

 Table 4.6.24
 Allowable Stress of Reinforcement Bar

Stress Type	SD345
Allowable Tensile Stress	140 N/mm ²
Allowable Compressive Stress	200 N/mm ²

Source: JSHB

b) Concrete

The allowable compressive stress of concrete is shown in Table 4.6.25.

Table 4.6.25 Allowable Compressive Stress of Concrete

Design Strength	Allowable Compressive Stress
24 N/mm ²	8.0 N/mm ²

Source: JSHB

(2) Detailed Design of Steel Box Girder Bridge

1) Analytical Modelling

a) Grillage Analysis

The steel box girder bridge, composed of beam structures, main box girders, and crossbeams, is modelled with linear beam elements in two dimension as shown in Figure 4.6.16. The geometrical moment of inertia and physical property shall be inputted as linear element, and dead load and live load are put on the grillage model. The load is statically distributed to the longitudinal members by the crossbeams. The grillage model is analyzed by the displacement method; the sectional force, the displacement at an arbitrary point, and the reaction force at the supports are calculated by using the line of influence.

b) Grid Model

Figure 4.6.16 Grid Model

2) Design of Main Girder

a) Main Girder Arrangement

The arrangement of the main girder is determined by the supporting span of the slab. The desired overhang length of the deck is 1.2 m or less. The spacing of the main girder is determined in such a way that the influence of additional bending moment due to the difference in rigidity between the stringer and the girder is not large. As a result, the arrangement of the main girders is shown in Figure 4.6.17.

Source: JICA Study Team

Figure 4.6.17 Arrangement of Main Girders

b) Stiffener of Box Girder

For the purpose of stiffening, the upper and lower flanges are placed as two rib plates in the area of positive bending moment, and five rib plates in the area of negative moment.

The thickness of the flange of the main girder is designed to satisfy the allowable stress considering the local buckling.

c) Connection of Members

The joining method of the main girder is friction grip connection with high strength bolts. The number of bolt rows should be eight or less. When designing a connection, fillers shall be used to adjust the physical gaps between the base metals.

The base material of the splice plate and bolt connecting part shall be coated with inorganic zinc paint.

d) Checking Item

The girders are designed based on the sectional forces calculated by the grillage analysis, and each member is designed so that its stress is less than the allowable unit stress under each load combination. The checking items are shown in Table 4.6.26.

Members	Checking Item
Flange	Compressive stressTensile stress
Web	- Shear stress
Flange and Web	- Verification of resultant stress
Girder	- Deflection

 Table 4.6.26
 Checking Items for Main Girder Design

Source: JICA Study Team

e) Stress of Main Girder

The flange is a stiffened plate, and the thickness of the main girder flange is determined in such a way that the sectional stress is less than the allowable stress.

At the center of the span, the positive bending moment is maximum, and the shear force is small. Also, the lower flange is in tension state and the upper flange is in a compression state. In Section (4), (17), (30), which are in the positive moment area, the upper flange is stiffened with five rib plates, and was checked if its stress is smaller than the allowable stress in consideration of local buckling. The lower flange is stiffened with two rib plates, and was checked if its stress is smaller than the allowable stress is smaller than the allowable stress is smaller than the allowable tensile stress.

In the continuous girder at the intermediate support, the negative bending moment is maximum, and shearing force is also large. The lower flange is in a compression state and the upper flange is in a tension state.

In Section (10), (24), which are in the negative moment range, the upper flange is stiffened with two rib plates, and was checked if its stress is smaller than the allowable tensile stress. The lower flange is stiffened with five rib plates and was checked if its stress is smaller than the allowable stress considering local buckling.

The thickness of web plate is decided by the minimum thickness in which local buckling is not expected when the horizontal stiffener is installed in one stage.

The calculation result of stress is shown in Table 4.6.27.

Table 4.6.27 Stress Check of the Main Girder

Source: JICA Study Team

f) Moment Diagram

The moment diagram of the main girder is shown in Figure 4.6.18.
Detailed Design Study on The Bago River Bridge Construction Project

Source: JICA Study Team

g) Verification of Safety for Loads

The deflection was checked to ensure the stability of the structure and its safety. The allowable value of deflection is defined by the equation below.

L / 500 where, L: span length (m).

Check Position	Girder Name	Span Length (m)	Deflection Value (mm)	Allowable Value (mm)	Judgement
First Span	G1	55	66	109	OK
	G2	55	65	108	OK
Second Span	G1	70	96	139	OK
	G2	70	101	141	OK
Third Span	G1	55	63	108	OK
	G2	55	68	110	OK

Table 4.6.28 Verification of Deflection

Source: JICA Study Team

Final Report

3) Design of RC Deck Slab

a) Thickness of Deck

The thickness of the deck was decided from the following equation:

 $D = 1.25 \times (30L + 110) = 220 \text{ mm} \Rightarrow 220 \text{ mm}$

1.25: coefficient related to traffic volume of large vehicles.

b) Design for Bending Moment of Deck

This slab was designed according to the JSHB II. The reason is that the weight of the design wheel of JSHB T-Load is 200 kN while the weight of the axle and the wheel of the design car of AASHTO HL 93 is 145 kN, so it is better for the RC slab to be designed with a larger force. Therefore, the bending moment of the deck is calculated by the unit width (1 m) of the T-Load specified in the JSHBII 8.2.4.

c) Checking Item

The depth of the deck and arrangement of reinforcement bars are determined in such a way that the sectional stress calculated by the sectional force is less than the allowable unit stress.

Materials	Checking Item				
Concrete	- Compressive stress				
Reinforcement Bar	- Tensile stress				

Table 4.6.29 Checking Items for RC Deck Slab Design

Source: JICA Study Team

d) Stress of RC Slab

The calculation result of stress is shown in Table 4.6.30.

Table 4.6.30	Stress of Deck
--------------	----------------

	Main Reinforce	ement Direction	I	Transverse Reinforcement Direction			
	Stress (N/mm ²) Stress (J/mm ²)	
	D19(@150		D16@125			
Center of Span	Concrete	5.0<8.0	OK	Concrete	5.4<8.0	OK	
	Reinforcement Bar	te 5.0<8.0 OK Concrete 5.4<8.0 ent Bar 112<140	118<140	OK			
	D19(@150					
Support	Concrete	3.4<8.0	OK				
	Reinforcement Bar	84<140	OK				

Source: JICA Study Team

4) Design of Crossbeam

a) Design Case for Crossbeam

• Load Case: Dead Load + Live load + Impact

b) Shape of Crossbeam and Stress Check

The calculation result of stress is shown in Table 4.6.31.

End	Crossbeam	Intermediate Crossbeam		
	320	250		
	- 9		- 12	
	1 1784 و	-1788 1788		
	<u>320</u>		250 ²¹	
	Stress (N/mm ²)		Stress (N/mm ²)	
Upper Flange	76 < 140 OK	Upper Flange	48 < 140	
Web	24 < 80 OK	Web	24 < 80	
Lower Flange	77 < 117 OK	Lower Flange	48<103	

Table 4.6.31Stress of Crossbeam

Source: JICA Study Team

5) Design of Stringer

a) Design Case for Stringer

Load Case: Dead Load + Live load + Impact

b) Shape of Stringer and Stress Check

The calculation result of stress is shown in Table 4.6.32.

Table 4.6.32Stress of Stringer

	Inside Stringer		Outside Stringer		
	220 61 10 008 61 220			220 9 9 1009 11 220	
	Stress (N/m	m^2)		Stress (N/mm ²)	
Flange	101 < 136	OK	Flange	116 < 140 OK	
Web	40 < 80	OK	Web	30 < 80 OK	

Source: JICA Study Team

Final Report

6) Design of Bracket

- Design Case for Bracket
 - Load Case: Dead Load + Live load + Impact

The calculation result of stress is shown in Table 4.6.31.

Source: JICA Study Team

7) Checking of Welding by Fatigue Accumulated Stress-Range Cycles

The additional finish of the welding is not necessary as a result of fatigue check. The welding positions to be checked and the results are shown in Table 4.6.34.

Table 4.6.34 Results of Fatigue Check

	Check Point Maximum Stress Range	Accumulated Stress-range Cycles	
Flange – Web	$43 \text{ N/mm}^2 < 46 \text{ N/mm}^2$		OK
Web – Stiffener	21 N/mm ² < 42 N/mm ²		OK
Web-Gusset	27 N/mm ² < 32 N/mm ²		OK

Source: JICA Study Team

8) General View of Steel Box Girder Bridge

The following figures show the profile, plan, and typical cross section of the steel box girder bridge.

Source: JICA Study Team

(3) Detailed Design of Steel-I Girder Bridge

1) Analytical Modelling

a) Grillage Analysis

This bridge is made of beam structures, and both girders and crossbeams are modelled as linear beam elements with two dimensions. The geometrical moment of inertia and physical property shall be inputted as linear elements, and dead load and live load are put on the grillage model. The load is statically distributed by the crossbeams between the longitudinal members. The grillage model is analyzed by the displacement method; and the sectional force and displacement at an arbitrary point and the support reaction are calculated using the line of influence.

b) Grillage Analysis

2) Design of Main Girder

a) Arrangement of Main Girder

The arrangement of the main girder is decided by the supporting span of the deck. The desired spacing of the main girder with RC deck is 3 m or less, and the desired overhang length of the deck is 1.2 m or less. As a result, the arrangement of the main girder is as shown in Figure 4.6.22.

Source: JICA Study Team

Figure 4.6.22 Arrangement of Main Girder

b) Allowable Stress of Flange

If the compression flange is directly fixed to a concrete deck, then almost no lateral buckling occurs, therefore, the lateral buckling can be neglected in the design. However, the lower flange is designed by the allowable bending compressive stress.

c) Shape of Flange

The thickness of a projecting plate subjected to compressive stress shall be 1/16 of the projecting width.

The flange width is adjusted to be about 1/4 of the main girder height.

d) Connection of Members

The joining method of the main girder is friction grip connection with high strength bolts. The number of bolt rows should be eight or less. When designing a connection, fillers shall be used to adjust the physical gaps between the base metals.

The base material of the splice plate and bolt connecting part shall be coated with inorganic zinc paint.

e) Checking Item

The girders are designed based on the sectional forces calculated by the grillage analysis, and each

member is designed so that its stress is less than the allowable unit stress under each load combination. The checking items are shown in Table 4.6.35

Members	Checking Item
Flange	Compressive stressTensile stress
Web	- Shear stress
Flange and Web	- Verification of resultant stress
Girder	- Deflection

Table 4.6.35 Checking Items for Main Girder Design

Source: JICA Study Team

f) Stress of the Main Girder

The width of the flange should be smaller than 1/3 of the girder height and as for the thickness, 40 mm or less is better.

In the continuous girder, as for the intermediate support, the negative bending moment is maximum, and the shearing force is also large. The lower flange is in compression state and the upper flange is in tension state.

In Section (4), which is the negative moment area, the upper flange is set in such a way that its stress is smaller than the allowable tensile stress. Also, the thickness of the lower flange is decided in such a way that its stress is smaller than the allowable stress in consideration of local buckling and lateral buckling.

At the center of the span, the positive bending moment is maximum and the shear force is small. The lower flange is in tension state and the upper flange is in compression state. The thickness of the main girder flange is determined in such a way that the stress is less than the allowable stress.

Section (7) is in the positive moment range and the lower flange is set in such a way that its stress is smaller than the allowable tensile stress. Furthermore, the thickness of the upper flange is decided in such a way that its stress is smaller than the allowable stress considering local buckling.

The thickness of web plate is decided by the minimum thickness in which local buckling is not expected when the horizontal stiffener is installed in one stage.

The calculation result of stress is shown in Table 4.6.36.

Girder	Sect	ion	Shape			Stress (N/mm ²)	Judgement
	(4)	(7)		Upper flange	590x32	188<210	OK
	(+)	500		Lower flange	590x39	-165<185	ОК
	290	S	(4)	Web	2369x12	50<120.0	OK
G1 G5				Resultant Stress		0.94<1.2	OK
01,05	12 001	374 71		Upper flange	590x26	-162<186	OK
	2 2	2		Lower flange	590x21	179<210	OK
	0		(7)	Web	2374x12	6 <120.0	OK
	590 ~	590 7		Resultant Stress		0.71<1.2	OK
	(4)	(7)		Upper flange	590x22	191<210	OK
	500	590 	(4)	Lower flange	590x29	-167<185	OK
62.64	SI			Web	2378x12	41<120.0	ОК
				Resultant Stress		0.92<1.2	ОК
02,04	175 2378 2400	175 2375 2400	(7)	Upper flange	590x25	-144<172	OK
				Lower flange	590x19	164<210	OK
				Web	2374x12	8<120	OK
	590	590		Resultant Stress		0.59<1.2	OK
	(4)	(7)		Upper flange	590x21	198<210	OK
	500	500		Lower flange	590x27	-175<185	OK
		4	(4)	Web	2379x12	42<120.0	OK
G3		3		Resultant Stress		0.98<1.2	ОК
	379 400	376	(7)	Upper flange	590x24	-146<159	OK
	2	5 5		Lower flange	590x19	162<210	ОК
		6		Web	2376x12	8 <120.0	ОК
	590 59	590		Resultant Stress		0.58<1.2	OK

g) Moment Diagram

The moment diagram of the main girders is shown in Figure 4.6.23.

Source: JICA Study Team

h) Verification of Safety for Loads

The deflection is checked to ensure the stability of the structure and safety. The allowable value of deflection is defined by the equation below.

L/(2000/L)	(10< L<40)
L/500	(40 <l)< td=""></l)<>

where, L: span length (m)

Check Position	Girder Numbe r	Span Length (m)	Deflection Value (mm)	Allowable Value (mm)	Judgement
	G1,G5	35	23	59	OK
First Span	G2,G4	52	18	59	OK
	G3	35	18	59	OK
Second Span	G1,G5	52	54	104	OK
	G2,G4	52	46	104	OK
	G3	52	43	104	OK
Third Span	G1,G5	35	23	59	OK
	G2,G4	35	18	59	OK
	G3	35	18	59	OK

Table 4.6.37Verification of Deflection

Source: JICA Study Team

3) Design of RC Deck Slab

a) Thickness of Deck

The thickness of the deck is decided from the following equation:

 $d = 1.25 \times (30L+110) = 235 \text{ mm} \Rightarrow 240 \text{ mm}$

1.25: coefficient related to traffic volume of large vehicles

b) Design Bending Moment of Deck

This slab is designed according to the JSHB II. The reason is that the weight of the design wheel of JSHB T-Load is 200 kN while the weight of the axle and the wheel of the design car of AASHTO HL 93 is 145 kN, so it is better for the RC slab to be designed with a larger force. Therefore, the bending moment of the deck is calculated as the unit width (1 m) of the T-Load specified in the JSHBII 8.2.4.

c) Arrangement of Reinforcement Bars

The reinforcement bars of the deck are arranged with deformed rebar with diameters of 13, 16 or 19. The concrete cover is 30 mm or more. The center-to-center distance of the main reinforcement is a minimum of 100 mm or a maximum of 300 mm.

d) Checking Item

The depth of deck and arrangement of reinforcement bars are determined in such a way that the sectional stress calculated by the sectional force is less than the allowable unit stress. If the influence of the differential settlement is not considered, it is desirable that the allowable stress of reinforcement bar has a margin of approximately 20 N/mm² with respect to the allowable stress of 140 N/mm².

Table 4.6.38	Checking	Items for RC	Deck Slab	Design
	<u> </u>			<u> </u>

Materials	Checking Item
Concrete	- Compressive stress
Reinforcement Bar	- Tensile stress

e) Stress of RC Slab

The calculation result of stress is shown in Table 4.6.39.

Table 4.6.39 Stress of RC Slab

Bending	Main Reinforce	ment Direction		Transverse Reinforcement Direction			
Moment	Stress (1	N/mm ²)		Stress (N	/mm ²)		
Cantilever	D19@	<i>v</i>]150					
Slab	Concrete	5.7<8.0	OK				
Cantilever Slab D19@150 Concrete 5.7<8.0 OK							
Cantilever	D19@150			D16@150			
Slab	Concrete	4.1<8.0	OK	Concrete	2.1<8.0	OK	
Standard	Reinforcement Bar	D19@150 D16@150 crete 4.1<8.0	OK				
	D19@	<i>v</i>]150		D16@	150		
Center of Span	Concrete	4.4<8.0	OK	Concrete	-4.4<8.0	OK	
	Reinforcement Bar 105<140 OK		Reinforcement Bar	114<140	OK		
	D19@	0150					
Support	Concrete	-2.8<8.0	OK				
	Reinforcement Bar	47<140	OK				

Source: JICA Study Team

f) Design of Crossbeam

- Design Case for Crossbeam
 - Load Case: Dead Load + Live load + Impact
- Shape of Crossbeam and Stress Check

The calculation result of stress is shown in Table 4.6.40.

End	Crossbeam	Intermediate Crossbeam				
<u>6</u>	250	0	250			
2080		1880				
6 —		Q				
	Stress (N/mm ²)		Stress (N/mm ²)			
Flange	16 < 140 OK	flange	74 < 119			
Web	19 < 80 OK	Web	12 < 80			

Table 4.6.40 Stress of Crossbeam

4) Design of Sway Bracing

- Design Case for Sway Bracing
 - Load Case: Wind, Earthquake

The calculation result of stress is shown in Table 4.6.41.

Source: JICA Study Team

5) Design of Lateral Bracing

- Design Case for Lateral Bracing
 - Load Case: Wind, Earthquake

The calculation result of stress is shown in Table 4.6.42.

 Table 4.6.42
 Result of Lateral Bracing

(4) Checking of Welding by Fatigue Accumulated Stress-Range Cycles

The additional finish of the welding is not necessary as a result of fatigue check. The welding positions to be checked and the results are shown in Table 4.6.43.

Table 4.6.43 Results of Fatigue Check

Check Point	Maximum Stress Range	Accumulated Stress-range Cycles	
Flange – Web	52 N/mm ² > 47 N/mm ²	0.54 < 1.0	OK
Web – Stiffener	56 N/mm ² > 62 N/mm ²		OK
Web-Gusset	40 N/mm ² > 32 N/mm ²	0.57 < 1.0	OK

Source: JICA Study Team

1) General View of Steel-I Girder

The following figures show the profile, plan, and typical cross section of the steel-I girder bridge.

Source: JICA Study Team

Figure 4.6.24 Plan and Profile of Steel-I Girder

Figure 4.6.25 Typical Cross Section of Steel-I Girder

4.6.4.2 Detailed Design of PC-I Girder Bridge

The design of the PC-I Girder Bridge is described for the representative section between PF14 and PF15.

(1) Design Condition

1) General Design Condition

The general design conditions of the superstructure in PC-I Girder Bridge are shown in Table 4.6.44.

Item	Conditions				
General					
	(1) 2 spans continuous PC-I girder bridge with composite deck				
	(Sta. 2+676.000 to Sta. 2+736.000)				
Bridge Type	(2) 2 spans continuous PC-I girder bridge with composite deck				
blidge Type	(Sta. 2+916.000 to Sta. 3+96.000)				
	(3) 2 spans continuous PC-I girder bridge with composite deck				
	(Sta. 3+218.000 to Sta. 3+278.000)				
Bridge Length	(1) 60.00 m, (2) 180.00 m, (3) 60.00 m				
Girder Length	(1) 59.85 m, (2) 59.90 m, 119.80 m, (3) 59.85 m				
Span Arrangement	(1) $28.80 \text{ m} + 28.85 \text{ m}$, (2) $28.85 \text{ m} + 28.85 \text{ m}$, $4@28.80 \text{ m}$, (3) $28.85 \text{ m} + 28.80 \text{ m}$				
Total Width	12.75 m				
Effective Width	11.00 m				
Structure Type					
Deck Slab	Composite Structure (Prestressed Concrete and Reinforced Concrete)				
Main Girder	Prestressed Concrete Structure (PC Structure)				
Crossbeam	Prestressed Concrete Structure (PC Structure)				
Connecting Part	Reinforced Concrete Structure (RC Structure)				
Materials					
Concrete	Main Girder, PC Plate: 40 N/mm ²				
Concrete	RC Deck, Crossbeam, Connecting Part: 30 N/mm ²				
Re-bar	SD345				
	Main Girder: SWPR7BL, 7S15.2				
PC Strand	Crossbeam: SWPR7BL, 4S15.2				
	PC Plate: SWPR7AL, 1S9.3				

T 1 1 1 0 1 1				
Table 4.6.44	General Design Col	nditions of Sup	perstructure in PC-I	Girder Bridge

Source: JICA Study Team

2) Design of Superstructure

a) Design Case and Load Combination

PC strands are used for PC plate, main girder, and crossbeam. For the PC strand, it is necessary to check the tensile stress for the "Under Design Load" case. The design case and its load combination are shown in Table 4.6.45.

Table 1 G 1E	Decian Cooo and La	ad Cambination fa	r DC Strand for "Und	or Dooign Lood" Cooo
Table 4.0.45	Design Case and LC	ao compination io		el Design Load Case

	Design Case	Load Combination		
	During Prestressing	-		
	Immediately after Prestressing	-		
	Under Effective Prestressing Force	-		
		Self-Weight + Weight of Deck Slab + Effective Prestress		
	During Deck Slab	Force		
	Construction	+ Secondary Bending Moment of Effective Prestress Force		
PC Strand	(for Main Girder Design)	+ Influence of Creep of Concrete		
Design		+ Influence of Drying Shrinkage of Concrete		
		Self-Weight + Weight of Deck Slab and Bridge Surface		
	Under Deed Load	+ Effective Prestress Force		
	(for Main Girder Design)	+ Secondary Bending Moment of Effective Prestress Force		
	(101 Main Olider Design)	+ Influence of Creep of Concrete		
-		+ Influence of Drying Shrinkage of Concrete		
	Under Live Load (for Main Girder Design)	Under Dead Load + Live Load + Impact		

Source: Prepared by the JICA Study Team based on JSHB

It is needed to check the concrete stress in the PC structure and the concrete and re-bar stress in the RC structure for the "Under Design Load" case. For checking of PC-I girder bridge, the design case and its load combination are shown in Table 4.6.46.

Ta	able 4.6.46	Design C	ase and L	.oad C	combinat	ion for	Concrete	and	Re-ba	for "	Under	Design
		-			Load"	Case						_
	Design	Case				L oad	Combinati	on				

Design Case	Load Combination					
Immediately after	Self-Weight + Prestress Force Immediately after Prestressing					
Prestressing	Secondary Bending Moment of Prestress Force Immediately after Prestressing					
Before Deck Slab	Self-Weight + Effective Prestress Force					
Construction	+ Secondary Bending Moment of Effective Prestress Force					
Construction	+ Influence of Creep of Concrete + Influence of Drying Shrinkage of Concrete					
During Deck Slab	Self-Weight + Weight of Deck Slab + Effective Prestress Force					
Construction	+ Secondary Bending Moment of Effective Prestress Force					
Construction	+ Influence of Creep of Concrete + Influence of Drying Shrinkage of Concrete					
Under Dead Load	Self-Weight + Weight of Bridge Surface + Effective Prestress Force					
(for Deck Slab Design)	+ Secondary Bending Moment of Effective Prestress Force					
(IOI Deek Slab Desigil)	+ Influence of Creep of Concrete + Influence of Drying Shrinkage of Concrete					
Under Dead Load	Self-Weight + Weight of Deck Slab and Bridge Surface					
(for Main Girder,	+ Effective Prestress Force					
Crossbeam and	+ Secondary Bending Moment of Effective Prestress Force					
Connection Part	+ Influence of Creen of Concrete + Influence of Drying Shrinkage of Concrete					
Design)	+ influence of creep of concrete + influence of brying similating of concrete					
Under Live Load	Under Dead Load + Live Load + Impact					
Under Collision Load	Under Dead Load + Live Load + Impact + Collision Load					
Under Wind Load	Under Dead Load + Wind Load + Live Load + Impact					
(with Live Load)	Onder Dead Ebad + wind Ebad + Elve Ebad + Impact					
Under Wind Load	Under Dead Load + Wind Load					
(without Live Load)						
Under Temperature	Under Dead Load + Live Load + Impact + Effective Temperature Change					

The main girder, crossbeam, and connecting parts are needed to be checked for the "Under Ultimate Load" case. The "Under Ultimate Load" case is further divided into three cases. The details of the design cases are shown in Table 4.6.47.

Table 4.6.47	Design	Case and	Load	Combination	for the	"Under	Ultimate L	_oad"	Case

Design Case	Load Combination		
Case 1	1.3 x (Under Dead Load) + 2.5 x (Live Load + Impact) +1.0 x (Statically Indeterminate Force)		
Case 2	1.0 x (Under Dead Load) + 2.5 x (Live Load + Impact)		
	+1.0 x (Statically Indeterminate Force)		
Case 3	1.7 x (Under Dead Load) + 1.7 x (Live Load + Impact)		
Case 5	+1.0 x (Statically Indeterminate Force)		

Source: Prepared by the JICA Study Team based on JSHB

b) Checking Item for Deck Slab Design

For the design of deck slab, the weights of axles and wheels for the design truck under the AASHTO HL93 is 145 kN. On the other hand, the weights of wheels for the design under the Specifications for Highway Bridges is 200 kN. The stress of slab is better to be designed with large force. Therefore, the bending moment of the deck is calculated by the unit width (1 m) due to the T-load as specified in the Japanese Standard (Specifications for Highway Bridges 2012 II 8.2.4).

PC Plate Design

The checking items for the PC plate design are shown in Table 4.6.48.

Table 4.6.48	Checking Items for F	C Plate Design
--------------	----------------------	----------------

Checking Item	Load Condition		
Tensile Stress of PC Strand	During PrestressingImmediately after PrestressingUnder Effective Prestressing Force		
Combined Flexural Stress	Immediately after PrestressingDuring Deck Slab Construction		

Source: Prepared by the JICA Study Team based on JSHB

Design of Composite Deck Slab and RC Deck Slab

The checking items for design of the composite deck slab and RC deck slab are shown in Table 4.6.49.

Location	Direction	Type of Deck Slab	Checking Item	Load Condition
	Transverse	Composite Deck Slab	- Combined Flexural Stress (Volume of Tension Re-bar ^{*1})	• Under Live Load
Between Main Girders (Continuous Structure)	Direction	RC Deck Slab	 Compressive Stress of Concrete Tensile Stress of Re-bar 	• Under Live Load
	Longitudinal Direction	RC Deck Slab	 Compressive Stress of Concrete Tensile Stress of Re-bar 	• Under Live Load
Outside of Girder (Cantilever Structure)	Transverse Direction	RC Deck Slab	 Compressive Stress of Concrete Tensile Stress of Re-bar 	 Under Dead Load Under Live Load Under Collision Load Under Wind Load (with/without Live Load)
Structure)	Longitudinal Direction			Under Live Load

Table 4.6.49 Checking Items for Design of Composite Deck Slab and RC Deck Slab

Source: Prepared by the JICA Study Team based on JSHB

*1 For the checking of the volume of tension reinforcement bar, if the tensile stress occurs due to the combined flexural stress, the minimum tension reinforcement bar volume written in the JSHB is placed in the RC deck slab. If the tensile stress does not occur due to the combined flexural stress, the minimum tension reinforcement bar volume and required tension reinforcement bar volume are calculated. The larger one is placed in the RC deck slab.

c) Checking Item for Main Girder Design

The checking items for the main girder design are the bending moment and the shear force. These forces are checked for the "Under Design Load" and "Under Ultimate Load" cases and the details of the checking items are shown in Table 4.6.50.

Type of Force	Design Case	Checking Item	Load Condition
Bending Moment	Under Design Load	- Tensile Stress of PC Strand	 During Prestressing Immediately after Prestressing During Deck Slab Construction Under Live Load
		 Combined Flexural Stress (Volume of Tension Re-bar^{*1}) 	 Immediately after Prestressing During Deck Slab Construction Under Dead Load Under Live Load Under Temperature Load
	Under Ultimate Load	- Bending Moment to Failure	Case 1Case 2Case 3
Shear Force	Under Design Load	 Mean Shear Stress of Concrete (Volume of Diagonal Tension Re-bar^{*2}) 	Under Live LoadUnder Temperature Load
		- Diagonal Tensile Stress of Concrete	Under Dead LoadUnder Live LoadUnder Temperature Load
	Under Ultimate Load	- Web Concrete against Compressive Strength to Failure	Case 1Case 2
		 Members against Diagonal Tensile Strength to Failure^{*3} 	• Case 3

Table 4.6.50	Checking Ite	ems for Main	Girder Design
--------------	--------------	--------------	---------------

*1 For the checking of the volume of tension reinforcement bar, if the tensile stress occurs due to the combined flexural stress, the minimum tension reinforcement bar volume written in the JSHB is placed in the main girder. If the tensile stress does not occur due to the combined flexural stress, the minimum tension reinforcement bar volume and required tension reinforcement bar volume are calculated. The larger one is placed in the main girder.

*2 For the checking of the mean shear stress, if the checking is satisfied, the minimum diagonal tension reinforcement bar volume written in the JSHB is placed in the main girder. If the checking is not satisfied, the minimum diagonal tension reinforcement bar volume and required diagonal tension reinforcement bar volume are calculated. The larger one is placed in the main girder.

*3 For the checking of members against diagonal tensile strength failure, if the checking for mean shear stress of concrete is not satisfied, the checking of members against diagonal tensile stress failure is calculated.

d) Checking Item for Crossbeam Design

Crossbeam Design at the End of Main Girder

The checking items for the crossbeam design at the end of the main girder are bending moment and shear force. These forces are checked for the "Under Design load" and "Under Ultimate load" cases and the details of the checking items are shown in Table 4.6.51.

Type of Force	Design Case	Checking Item	Load Condition
Bending Moment	Under Design Load	- Tensile Stress of PC Strand	 During Prestressing Immediately after Prestressing Under Effective Prestressing Force
		- Combined Flexural Stress (Volume of Tension Re-bar ^{*1})	Under Dead LoadUnder Live Load
Shaar Force	Under Design Load	 Mean Shear Stress of Concrete (Volume of Diagonal Tension Re-bar^{*2}) 	Under Live Load
		- Diagonal Tensile Stress of Concrete	Under Dead LoadUnder Live Load
Shear Force	Under Ultimate Load	 Web Concrete against Compressive Strength to Failure Members against Diagonal Tensile Strength to Failure^{*3} 	 Case 1 Case 2 Case 3

Table 4.6.51	Checking Items for	Crossbeam Design at the	End of Main Girder
	0	0	

*1 For the checking of the volume of the tension reinforcement bar, if the tensile stress occurs due to the combined flexural stress, the minimum tension reinforcement bar volume written in JSHB is placed. If the tensile stress does not occur due to the combined flexural stress, the minimum tension reinforcement bar volume and required tension reinforcement bar volume are calculated. The larger one is placed.

*2 For the checking of the mean shear stress, if the checking is satisfied, the minimum diagonal tension reinforcement bar volume written in JSHB is placed. If the checking is not satisfied, the minimum diagonal tension reinforcement bar volume and required diagonal tension reinforcement bar volume are calculated. The larger one is placed.

*3 For the checking of members against diagonal tensile strength failure, if the checking for mean shear stress of concrete is not satisfied, the checking of members against diagonal tensile stress failure is calculated.

Intermediate Crossbeam Design

The checking items for the intermediate crossbeam design are bending moment and shear force. These forces are checked for the "Under Design load" and "Under Ultimate load" cases and the details of the checking items are shown in Table 4.6.52.

Type of Force	Design Case	Checking Item	Load Condition
Bending Moment	Under Design	- Tensile Stress of PC Strand	 During Prestressing Immediately after Prestressing Under Effective Prestressing Force
	Load	 Combined Flexural Stress (Volume of Tension Re-bar^{*1}) 	Under Dead LoadUnder Live Load
	Under Ultimate Load	- Bending Moment to Failure	Case 1Case 2Case 3
Shear Force	Under Design Load	 Mean Shear Stress of Concrete (Volume of Diagonal Tension Re-bar^{*2}) 	• Under Live Load
		 Diagonal Tensile Stress of Concrete 	Under Dead LoadUnder Live Load
	Under Ultimate Load	 Compressive Strength to Failure Members against Diagonal Tensile Strength to Failure 	Case 1 Case 2 Case 3

Table 4.6.52 Checking Items for Intermediate Crossbeam Design

*1 For the checking for volume of the tension reinforcement bar, if the tensile stress occurs by the combined flexural stress, the minimum tension reinforcement bar volume written in the JSHB is placed. If the tensile stress does not occur by the combined flexural stress, the minimum tension reinforcement bar volume and required tension reinforcement bar volume are calculated. The larger one is placed.

*2 For checking for the mean shear stress, if the checking is satisfied, the minimum diagonal tension reinforcement bar volume written in the JSHB is placed in the crossbeam. If the checking is not satisfied, the minimum diagonal tension reinforcement bar volume and required diagonal tension reinforcement bar volume are calculated. The larger one is placed in the crossbeam.

Crossbeam Design at Connecting Part

The checking items for the crossbeam design at connecting part are shown in Table 4.6.53.

 Table 4.6.53
 Checking Items for Crossbeam Design at Connecting Part

Checking Item	Load Condition		
- Tensile Stress of PC Strand	During PrestressingImmediately after PrestressingUnder Effective Prestressing Force		
- Mean Compressive Stress of Concrete			

Source: Prepared by JICA Study Team based on JSHB

e) Checking Items for Coupling Concrete Design at Connecting Part

The checking items for the coupling concrete design at connecting part are bending moment. These forces are checked under the "Under Design load" and "Under Ultimate load" and the detail of checking items is shown in Table 4.6.54.

Type of Force	Design Case Checking Item		Load Condition	
Bending Moment	Under Design Load	Compressive Stress of ConcreteTensile Stress of Re-bar	Under Dead LoadUnder Live LoadUnder Temperature Load	
	Under Ultimate Load	- Bending Moment to Failure	Case 1Case 2Case 3	

Table 4.6.54 Checking Items for Coupling Concrete Design at Connecting Part

3) Design Strength and Allowable Stress of Materials

a) Concrete

Concrete is applied in the deck slab, the main girder, the crossbeam and the coupling concrete at the connection part. Design Strength of 40 N/mm² is applied for the PC plate in the deck slab and main girder. A 30 N/mm² is applied for the RC slab in the deck slab, crossbeam and coupling concrete at the connecting part. The design strength and the allowable stress of these concrete are shown in Table 4.6.55.

Item		Unit	Main Girder	Crossb	Deck Slab	Coupling Concrete	
Design Strep	ngth		N/mm ²	40.00	30.0	30.0	30.00
Compressive Strength during Prestressing			N/mm ²	34.00	25.00		25.00
Allowable	Flexural	Immediately after Prestressing	N/mm ²	19.00	14.00		
Compressiv	e Stress	Under Live Load	N/mm ²	14.00	11.00	10.00	10.00
Under Temperature Load		N/mm ²	16.10				
A 11 1 1		Immediately after Prestressing	N/mm ²	-1.50	0.00		
Allowable	Flexural	Under Dead Load	N/mm ²	0.00	0.00		
Tensile Stress	Under Live Load	N/mm ²	-1.50	0.00			
		Under Temperature Load	N/mm ²	-2.00			
		Under Design Load	N/mm ²	0.55	0.45		
		Under Ultimate Load	N/mm ²	5.30	4.00		
Mean Shear	Stress	Under Ultimate Load (Shear Force & Torsional Moment)	UnitMain GirderCrossb eamDeck Slab N/mm^2 40.0030.030.0singN/mm²34.0025.00 $!ly$ after N/mm²19.0014.00 $!g$ N/mm²14.0011.00 $!e$ LoadN/mm²16.10 $!ly$ after N/mm²N/mm² $!ly$ after N/mm²0.00 $!ly$ after N/mm²0.00 $!g$ 0.000.00 $!g$ 0.000.00 $!g$ 0.000.00ad LoadN/mm²-1.50 $!g$ 0.000.00e LoadN/mm²-2.00imate LoadN/mm²0.55 $!g$ 0.45imate LoadN/mm²6.10 $!d$ MomentN/mm² $!ce$ al MomentN/m² $!ce$ al Moment $!c$				
Under		Shear Force or Torsional Moment	N/mm ²	-1.00	-0.80		
Allowable Dead Load Diagonal	Dead Load	Shear Force & Torsional Moment	N/mm ²	-1.30	-1.10		
Tensile Stress	Under Live	Shear Force or Torsional Moment	N/mm ²	-2.00	-1.70		
	Load	Shear Force & Torsional Moment	N/mm ²	-2.50	-2.20		

Table 4.6.55 Design Strength and Allowable Stress of Concrete

Source: Prepared by JICA Study Team based on JSHB

b) PC Strand

PC strands are applied in the PC plate, the main girder and the crossbeam. The SWPR7BL is applied for the main girder and the crossbeam. The SWPR7AL is applied PC plates. The design strength and allowable stress of PC strand is shown in Table 4.6.56.

	Item	Unit	Main Girder Crossbeam	PC Plate
Material of PC	Strand		SWPR7BL	SWPR7AL
Tensile Strength		N/mm ²	1850.0	1700.0
Yield Stress		N/mm ²	1600.0	1450.0
	During Prestressing	N/mm ²	1440.0	1305.0
Allowable	Immediately after Prestressing	N/mm ²	1295.0	1190.0
Tensile Stress	During Deck Slab Construction	N/mm ²	1100.0	1020.0
	Under Live Load	N/mm ²	1100.0	1020.0

Table 4.6.56 Design Strength and Allowable Stress of PC Strand

c) Reinforcement Bar

Reinforcement bars are applied in the deck slab, main girder, crossbeam and coupling concrete at the connection part. The allowable stress of the reinforcement bar is shown in Table 4.6.57.

Table 4.6.57 Yield Strength and Allowable Stress of Reinforcement Bar

Item		Unit	Main Girder, Crossbeam, Coupling Concrete	Deck Slab
Yield Strength		N/mm ²	345	345
Allowable Tensile Stress	Under Dead Load	N/mm ²	100	100
	Under Live Load	N/mm ²	180	140
	Under Impact	N/mm ²	200	200

Source: Prepared by JICA Study Team based on JSHB

4) Design Parameters of Materials

a) Concrete

The design parameters of concrete are shown in Table 4.6.58.

n Parameters	of Concrete
	n Parameters

It	Unit	Main Girder	Crossbeam, Deck Slab Connection Part	
Design Strength		N/mm ²	40.00	30.00
Compressive Strengt	N/mm ²	34.00	25.00	
Young's Modulus	Under Live Load	N/mm ²	3.10 x 10 ⁴	2.80 x 10 ⁴
	Immediately after Prestressing	N/mm ²	2.92 x 10 ⁴	2.58 x 10 ⁴
Creep Coefficient	N/mm ²	2.60	2.60	
Drying Shrinkage St	rain	N/mm ²	20.0 x 10 ⁻⁵	20.0 x 10 ⁻⁵

Source: Prepared by JICA Study Team based on JSHB

b) PC Strand

The design parameters of PC strands are shown in Table 4.6.59.

Item		Unit	Main Girder, Crossbeam	PC Plate
Type of PC Strand		-	15.2 mm	9.3 mm
Material of PC Strand		-	SWPR7BL	SWPR7AL
Cross Sectional Area		mm ²	138.7	51.61
Young's Modulus		N/mm ²	2.00 x 10 ⁵	2.00 x 10 ⁵
Relaxation Rate		%	1.5	1.5
Amount of PC Strand Set		Mm	6.0	-
	λ	1/m	0.004	-
Friction Coefficient	μ	1/rad	0.300	-
	μ	1/rad	0.300	

Table 4.6.59 Design Parameters of PC Strands

c) **Reinforcement Bar**

The design parameters of reinforcement bar are shown in Table 4.6.60.

Table 4.6.60 Design Parameters of Reinforcement Bar

Item	Unit	Reinforcement Bar			
Type of Reinforcement Bars	-	SD345			
Young's Modulus	N/mm ²	2.00 x 10 ⁵			
Source: Dronared by IICA Study Team based on ISUD					

Source: Prepared by JICA Study Team based on JSHB

5) Load Combination and Multiplication Factor

The load combination and the multiplication factor "Under Design Load" are shown in Table 4.6.61.

Load Combination	Multiplication Factor
Under Dead Load/ Under Live Load	1.00
Under Temperature Load	1.15
Under Wind Load	1.25
Under Collision Load	1.50
Under Earthquake	1.50
Under Erection Load	1.25

Source: Prepared by JICA Study Team based on JSHB

(2) Consideration of Superstructure Design

In the B/D, the reinforced concrete deck slab had been applied in superstructure. If the reinforced concrete deck slab is applied, the superstructure needs five main girders because the span length of the reinforced concrete deck slab is generally about 3 m between the main girders, and the overhang length of the deck slab is generally about 1.5 m from the center of girder to the end of deck slab. The girder height is assumed to be 1.8 m by a conventional ratio, which is 1/17, to the average span length. Hence, the main girder on the cross section is shown in Figure 4.6.26.

Source: JICA Study Team

Figure 4.6.26 Cross Section of Superstructure for PC-I Girder Bridge in the B/D

In the D/D, the composite concrete deck slab (reinforced concrete deck slab and prestressed concrete plate) is considered to be applied to the superstructure between the main girders to reduce the number of main girders. The span length of composite concrete deck slab which is located between the main girders is generally 2.6 m to 3.8 m. Hence, the main girder height increased by 10 mm from the B/D but the number of main girders is reduced. Finally, the main girder height is 1900 mm and number of main girders is four.

On the other hand, the structure type of overhang is the same as the B/D. The overhang length of the reinforced concrete deck slab is 1.125 m. The cross section of the superstructure in the D/D is shown in Figure 4.6.27.

Source: JICA Study Team

(3) Grid Model Analysis

The PC-I girder bridge has four main girders as shown in Figure 4.6.27. The main girder design is carried out after one main girder is selected from the four main girders by the grid model analysis. The plan of the grid model analysis is shown in Figure 4.6.28.

Figure 4.6.27 Cross Section of Superstructure for PC-I Girder Bridge in the D/D

Source: JICA Study Team

Figure 4.6.28 Plan of Grid Model Analysis from PF14 to PF15

1) Result of Grid Model Analysis

The grid model analysis is carried out using the dead load and live load in the grid model as shown in Figure 4.6.28. From the result of the grid model analysis, the G2 has the largest sectional force, thus, the G2 main girder was selected for the design of the main girder. The sectional forces of G1 to G4 are shown in Table 4.6.62.

Type of Force	Design Case	Unit	G1	G2	G3	G4
Bending Moment	Under Design Load	kNm	8047	8317	8317	8047
Shear Force	Under Dead Load	kN	-1110	-1150	-1150	-1110

Table 4.6.62 Sectional Forces in Main Girder

Source: JICA Study Team

(4) Design of Deck Slab

The deck slab is designed for both directions, namely, transverse and longitudinal directions. For the design of the deck slab for the transverse direction, the checking points are "1" to "5" as shown in Figure 4.6.29 which is at the end of the girder and in Figure 4.6.30 which is at the center of the span. The "1" section is checked as composite concrete structure, while "2" to "5" sections are checked as reinforced concrete structure. For the design of the deck slab in the longitudinal direction, the deck slab is checked as reinforced concrete structure.

Source: JICA Study Team

1) **Design of PC Plate**

The results of the design of PC plate are shown in Table 4.6.63.

Table 4.6.63 Result of Design of PC Plate

					Unit: N/mm ²	
		Combined Fl	exural Stress	Tensile Stress of PC Strand		
Load Condition	Checking Position	Allowable	Result	Allowable	Result	
	Value	Result	Value	Kesun		
During Prestressing		-	-	1305.0	1225.0	
Immediately after	Top of PC Plate	15 100	9.17	1100.0	1121 1	
Prestressing	Bottom of PC Plate	-1.5~19.0	8.34	1190.0	1131.1	
During Deck Slab	Top of DC Dista		10.59			
Construction	Top of FC Flate	0.0.15.0	10.38	1020.0	021.0	
(Under Effective	Bottom of PC Plate	0.0~13.0	3.69	1020.0	921.9	
Presuressing Force)						

Source: JICA Study Team

Design of Deck Slab between Main Girders 2)

Deck Slab Design at End of Main Girder

The results of the design of deck slab between main girders at the end of the main girder are shown in Table 4.6.64 to Table 4.6.66.

Table 4.6.64Result of Design of Deck Slab between Main Girders in Transverse Direction
at "1" Section at End of Main Girder

				Unit: N/mm ²	
Section	Load		Combined Flexural Stress		
Section	Condition	Checking Position	Allowable Value	Result	
1	Under Live Load	Top of RC Deck Slab	11.0	3.53	
		Bottom of RC Deck Slab	11.0	-0.81	
		Top of PC Plate	0.0 15.0	8.35	
		Bottom of PC Plate	0.0~15.0	1.31	

Source: JICA Study Team

Table 4.6.65Result of Design of Deck Slab between Main Girders in Transverse Direction
at "2" and "3" Sections at End of Main Girder

						Unit: N/mm ²
Section	Load		Compressive Strength of Concrete		Tensile Stress of Re-bar	
	Condition	Type of Force	Allowable Value	Result	Allowable Value	Result
2 Under Live Load	Under Live	Positive Moment		3.90		60.6
	Load	Negative Moment	10.0	3.79	140.0	79.3
3	Under Live Load	Negative Moment	10.0	2.58	140.0	74.4

Source: JICA Study Team

Longitudinal Direction

Table 4.6.66Result of Design of Deck Slab between Main Girders in Longitudinal Direction
at End of Main Girder

				Unit: N/mm ²
Load Condition	Compressive Strength of Concrete		Tensile Stress of Re-bar	
Load Condition	Allowable Value	Result	Allowable Value	Result
Under Live Load	10.0	8.66	140.0	100.2

Source: JICA Study Team

Deck Slab Design at Center of Span

The results of the design of deck slab between the main girders at the center of the span are shown in Table 4.6.67 to Table 4.6.69.

Table 4.6.67Result of Design of Deck Slab between Main Girders in Transverse Direction
at "1" Section at Center of Span

					Unit: N/mm ²
	Load Condition		Charleine Desition	Combined Flexural Stress	
Section			Checking Position	Allowable Value	Result
			Top of RC Deck Slab	Slab	4.23
1	Under Live Load	Bottom of RC Deck Slab	11.0	-0.97	
			Top of PC Plate	0.0~15.0	8.17
			Bottom of PC Plate		0.58

Source: JICA Study Team

Table 4.6.68Result of Design of Deck Slab between Main Girders in Transverse Direction
at "2" and "3" Sections at Center of Span

					l	Unit: N/mm²
Section	Load T. CE		Compressive Strength of Concrete		Tensile Stress of Re-bar	
Section	Condition	Type of Force	Allowable Value	Result	Allowable Value	Result
ſ	Under Live	Positive Moment		6.71		104.3
Z	Load	Negative Moment	10.0	3.27	140.0	68.4
3	Under Live Load	Negative Moment	2.56	78.6		

Source: JICA Study Team

Longitudinal Direction

Table 4.6.69Result of Design of Deck Slab between Main Girders in Longitudinal Direction
at Center of Span

				Unit: N/mm ²
Load Condition	Compressive Strength of Concrete		Tensile Stress of Re-bar	
	Allowable Value	Result	Allowable Value	Result
Under Live Load	10.0	9.96	140.0	115.25

Source: JICA Study Team

3) Design of Deck Slab outside the Main Girder

Deck Slab Design at End of Main Girder

The results of the design of the deck slab outside of the main girder at the end of the main girder are shown in Table 4.6.70 and Table 4.6.71.

					Unit: N/mm ²	
Section	Lond Condition	Compressive	Compressive Strength of Concrete		Tensile Stress of Re-bar	
	Load Condition	Allowable Value	Result	Allowable Value	Result	
	Under Dead Load	-	-	100.0	5.39	
	Under Live Load	10.0	0.21	140.0	5.39	
	Under Collision Load	15.0	2.04	300.0	53.54	
4	Under Wind Load (with Live Load)	12.5	0.35	175.0	9.19	
	Under Wind Load (without Live Load)	12.5	0.50	175.0	12.99	
	Under Dead Load	-	-	100.0	10.21	
	Under Live Load	10.0	1.14	140.0	32.82	
	Under Collision Load	15.0	2.59	300.0	74.65	
5	Under Wind Load (with Live Load)	12.5	1.26	175.0	36.16	
	Under Wind Load (without Live Load)	12.5	0.59	175.0	16.90	

Table 4.6.70Result of Design of Deck Slab Outside the Main Girder in Transverse
Direction at "4" and "5" Sections at End of Main Girder

Source: JICA Study Team

Longitudinal Direction

Table 4.6.71Result of Design of Deck Slab Outside the Main Girder in Longitudinal
Direction at the End of Main Girder

				Unit: N/mm ²
Load Condition	Compressive Strength of Concrete		Tensile Stress of Re-bar	
	Allowable Value	Result	Allowable Value	Result
Under Live Load	10.0	1.62	140.0	58.50

Source: JICA Study Team

Deck Slab Design at Center of Span

The results of the design of the deck slab outside the main girder at the center of the span are shown in Table 4.6.72 to Table 4.6.73.

Table 4.6.72Result of Design of Deck Slab Outside the Main Girder for Transverse
Direction at "4" and "5" Sections at Center of Span

					Unit: N/mm ²
Section	Land Condition	Compressive Cone	e Strength of crete	Tensile Stress of Re-bar	
	Load Condition	Allowable Value	Result	Allowable Value	Result
	Under Dead Load	-	-	100.0	5.39
	Under Live Load	10.0	0.21	140.0	5.39
	Under Collision Load	15.0	2.04	300.0	53.54
4	Under Wind Load (with Live Load)	12.5	0.35	175.0	9.19
	Under Wind Load (without Live Load)	12.5	0.50	175.0	12.99
	Under Dead Load	-	-	100.0	13.78
	Under Live Load	10.0	2.10	140.0	64.55
	Under Collision Load	15.0	3.33	300.0	102.54
5	Under Wind Load (with Live Load)	12.5	2.20	175.0	67.62
	Under Wind Load (without Live Load)	12.5	0.65	175.0	19.90

Source: JICA Study Team

Longitudinal Direction

Table 4.6.73Result of Design of Deck Slab Outside the Main Girder in Longitudinal
Direction at Center of Span

				Unit: N/mm ²
Load Condition	Compressive Strength of Concrete		Tensile Stress of Re-bar	
	Allowable Value	Result	Allowable Value	Result
Under Live Load	10.0	2.05	140.0	74.25

Source: JICA Study Team

(5) Main Girder Design

1) Cross Section of Main Girder

For the design of the main girder, the cross section of the main girder is assumed as shown in Figure 4.6.31.

Figure 4.6.31 Cross Section of Main Girder

2) Checking Position of Main Girder

The checking position for the bending moment and shear force is shown in Figure 4.6.32 and Table 4.6.74.

Source: JICA Study Team

 Table 4.6.74
 Checking Position for Bending Moment and Shear Force

No.	Distance from Beginning of Girder	Description	No.	Distance from Beginning of Girder	Description
1	0.500 m	Supporting Point	9	16.121 m	Bend Point of PC Strand
2	1.450 m	Checking of Shear Force	10	18.531 m	Five-eighths of Span
3	4.000 m	Cross Section Changes	11	22.138 m	Six-eighths of Span
4	4.106 m	One-eighth of Span	12	25.744 m	Seven-eighths of Span
5	7.713 m	Two-eighths of Span	13	25.850 m	Cross Section Changes
6	11.319 m	Three-eighths of Span	14	28.400 m	Checking of Shear Force
7	14.078 m	Bend Point of PC Strand	15	29.350 m	Supporting Point
8	14.925 m	Center of Span			

Source: JICA Study Team

3) Arrangement of PC Strand

Five PC strands with specifications for 7S15.2 of SWPR7BL are placed in the main girder. The arrangement of the five PC strands is shown in Figure 4.6.33. The stress of the PC strand during prestressing is $1,300 \text{ N/mm}^2$.

4) Design for Bending Moment

The design for bending moment under design load involves "Tensile Stress of PC Strand" and "Combined Flexural Stress (Volume of Tension Re-bar)". The "Bending Moment to Failure" will be checked for the bending moment under ultimate load.

Design for Tensile Stress of PC Strand

The result of the design for tensile stress for PC strands is shown in Table 4.6.75. The checking case is indicated for "During Prestressing", "Immediately after Prestressing", "During Deck Construction", and "Under Live Load".

Table 4.6.75 Re	sult of Design for	Tensile Stress	of PC Strand
-----------------	--------------------	-----------------------	--------------

			Unit: N/mm ²
Load Condition	Checking Position	Allowable Value	Result
During Prestressing	-	Under 1440	1300.00
Immediately after Prestressing	Cross Section "6"	Under 1295	1178.26
During Deck Construction	Cross Section "2"	Under 1100	1085.92
Under Live Load	Cross Section "1"	Under 1100	1013.90

Source: JICA Study Team

Design for Combined Flexural Stress (Checking for Volume of Tension Re-bar)

The result of the design for the combined flexural stress is shown in Table 4.6.76. The checking case is indicated for "Immediately after Prestressing", "During Deck Construction", "Under Dead Load", "Under Live Load", and "Under Temperature Load".

				Un	it: N/mm ²
Load Condition	Section	Checking Position	Allowable Value	Result	
Immediately after		Top of Girder	15 < < 10.0	0.84	
Prestressing		Bottom of Girder		14	.70
During Deck		Top of Girder	$15 < \pi < 14.0$	6.	36
Construction		Bottom of Girder	-1.3<00<14.0	6.	74
		Top of Deck	(Deck<10.0)	2.	78
Under Dead Load		Top of Girder	$0.0 < \pi < 14.0$	5.29	
	Cross Section "8" (Center of Span)	Bottom of Girder	0.0<00<14.0	2.89	
		Top of Deck	(Dask < 10.0)	Max	4.26
			(Deck<10.0)	Min	2.40
Under Live Load		Top of Girder		Max	6.51
Under Live Load			-1.5 <oc<14.0< td=""><td>Min</td><td>4.98</td></oc<14.0<>	Min	4.98
		Dettern of Cinter		Max	-0.54
		Bottom of Girder		Min	3.77
		Top of Dools	(Dask 11.5)	Max	4.99
		TOP OF DECK	(Deck<11.5)	Min	3.13
Under		Ton of Cindon		Max	5.80
Temperature Load		Top of Girder	2.0 < -2 < 16.10	Min	4.27
		Pottom of Cirdor	-2.0<00<10.10	Max	-0.85
		Bottom of Girder		Min	3.46

Table 4.6.76 Result of Design for Combined Flexural Stress

The result of the checking for volume of tension reinforcement bars is shown in Table 4.6.77. In Table 4.6.76, the main girder has tensile stress "Under Live Load" and "Under Temperature Load". The stress for "Under Temperature Load" case is larger than that for the "Under Live Load" case. Hence, the checking for volume of tension reinforcement bar is carried out for the "Under Temperature Load" case.

Table 4.6.77	Result of Volume of Tension Re-bar
--------------	------------------------------------

			Unit: cm ²
Load Condition	Checking Position	Minimum Tension Re-bar Volume	Required Tension Re-bar Volume
Under Temperature Load	Cross Section "8" (Center of Span)	8.529	3.518

Source: JICA Study Team

From Table 4.6.77, the minimum volume of the tension reinforcement bar is placed in the main girder.

Checking for Bending Moment to Failure (Under Ultimate Load)

The result of the checking for the bending moment to failure is shown in Table 4.6.78. The critical case, "case 3", is shown in Table 4.6.47.

Table 4.6.78	Result of Checking	g for Bending	Moment to Failure
--------------	--------------------	---------------	-------------------

Checking Position	a) Resisting Bending Moment to Failure (kNm)	b) Acting Bending Moment to Failure (kNm)	Safety Degree a) / b)
Cross Section "8" (Center of Span)	15295	12868	1.189

Source: JICA Study Team
5) Design for Shear Force

The design for shear force under design load involves "Mean Shear Stress (Volume of Diagonal Tension Reinforcement Bar)" and "Diagonal Tensile Stress of Concrete". For the "Under Ultimate Load" case, the "Web Concrete against Compressive Strength to Failure" and "Members against Diagonal Tensile Strength to Failure" will be checked.

Design for Mean Shear Stress of Concrete (Volume of Diagonal Tension Re-bar)

The result of the design for the mean shear stress is shown in Table 4.6.79.

Table 4.6.79 Result of Design for Mean Shear Stress of Concrete

		Unit: N/mm ²
Checking Position	Allowable Value	Result
Cross Section "3"	$\tau_{\rm m} <= 0.55$	1.276

Source: JICA Study Team

In Table 4.6.79, the calculated value is over the allowable value on the mean shear stress. Hence, the required volume of diagonal tension reinforcement bar is calculated as given in Table 4.6.80.

Table 4.6.80 Result of Volume of Diagonal Tension Re-bar

		Unit: cm
Checking Position	Minimum Diagonal Tension Re-bar Volume	Required Diagonal Tension Re-bar Volume
Cross Section "3"	4.40	10.77

Source: JICA Study Team

From Table 4.6.80, the required volume of diagonal tension reinforcement bar is placed in the main girder.

Design for Diagonal Tensile Stress of Concrete

The result of the design for diagonal tensile stress of concrete is shown in Table 4.6.81.

Table 4.6.81 Result of Design for Diagonal Tensile Stress of Concrete

				Unit: N/mm	
Load Condition	Section	Checking Position	Allowable Value	wable Value Result	
		Base of Upper Flange		-0.11	
Under Dead	Neutral Axis before Composition	1 > 1 0	-0.11		
Load	Cross Section "3"	Neutral Axis after Composition	σI=>-1.0	-0.12	
		Base of Lower Flange		-0.06	
		Base of Upper Flange		Max -0.46 Min -0.09	
Under Live Load Cross Section "3"	Neutral Axis before		Max -0.48		
	Composition	σI−> 2.0	Min -0.09		
	Closs Section 5	Neutral Axis after	01->-2.0	Max -0.49	
		Composition		Min -0.09	
		Base of Lower Flores		Max -0.34	
		Dase of Lower Flange		Min -0.05	

Checking for Web Concrete against Compressive Strength to Failure (Under Ultimate Load)

The result of the checking for web concrete against compressive strength to failure is shown in Table 4.6.82.

Table 4 6 82	Result of Checking	for Web Concrete a	gainst Compressive	Strength to Failure
10010 1.0.02	recould of One of the		gamer oomprooonre	

Checking Position	a) Compressive Strength	b) Acting Shear Force	Safety Degree
	to Failure (kN)	(kN)	a) / b)
Cross Section "3"	2709.7	1482.1	1.83

Source: JICA Study Team

Checking for Members against Diagonal Tensile Strength to Failure (Under Ultimate Load)

The acting shear force is shown in Table 4.6.83. If D13 is used as the diagonal tension re-bar, the interval of re-bar should be less than 235 mm. If D16 is used, the interval of re-bar should be less than 368 mm. After all, re-bar of D16 and 125 mm interval are applied.

Checking Position	Acting Shear Force (kN)
Cross Section "3"	1482.1

Source: JICA Study Team

(6) Design of Crossbeam

For the design of the crossbeam, it is divided into the following three parts: a) Crossbeam at the End of Main Girder, b) Intermediate Crossbeam, and c) Crossbeam at Connecting Part. Figure 4.6.34 shows the dimension of the crossbeam for the three parts.

Figure 4.6.34 Dimension of Crossbeam

1) Crossbeam at the End of Main Girder

a) Design for Bending Moment

The design for the bending moment under design load includes "Tensile Stress of PC Strand" and "Combined Flexural Stress (Volume of Tension Re-bar)".

Design for Tensile Stress of PC Strand

The result of the design for tensile stress for PC strands is shown in Table 4.6.84. The checking case is indicated for "During Prestressing", "Immediately after Prestressing", and "Under Effective Prestressing Force".

	Unit: N/mm ²
Allowable Value	Result
Under 1440	1250.00
Under 1295	1150.60
Under 1110	1056.00
	Allowable Value Under 1440 Under 1295 Under 1110

Table 4.6.84 Result of Design for Tensile Stress of PC Strand

Source: JICA Study Team

Design for Combined Flexural Stress (Checking for Volume of Tension Re-bar)

The result of the design for combined flexural stress is shown in Table 4.6.85. The checking case is indicated for the "Under Dead Load" and "Under Live Load" cases.

			Unit:	N/mm²
Load Condition	Checking Position	Allowable Value	Re	sult
Under Dead Load	Top of Crossbeam	0.012.0		1.17
Under Dead Load	Bottom of Crossbeam	$0.0 \sim 12.0$		1.58
	Ton of Crossboom		Max	1.61
Under Live Load	Top of Crossbeam	0.0 ~ 12.0	Min	0.89
	Pottom of Crossboam		Max	1.11

Table 4.6.85	Result of Design for Combined Flexural Stress
--------------	---

Source: JICA Study Team

b) Design for Shear Force

The design for shear force under design load involves "Mean Shear Stress of Concrete (Volume of Diagonal Tension Reinforcement Bar)" and "Diagonal Tensile Stress of Concrete". The checking for the "Under Ultimate Load" case involve "Web Concrete against Compressive Strength to Failure" and "Members against Diagonal Tensile Strength to Failure".

Design for Mean Shear Stress of Concrete (Volume of Diagonal Tension Re-bar)

The result of the design for the mean shear stress is shown in Table 4.6.86.

Table 4.6.86 Result of Design for Mean Shear Stress of Concrete

Min

1.88

Allowable Value	Result
$\tau_{m} <= 0.45$	0.08

Source: JICA Study Team

Design for Diagonal Tensile Stress of Concrete

The result of the design for diagonal tensile stress of concrete is shown in Table 4.6.87.

		Unit: N/mm ²
Load Condition	Allowable Value	Result
Under Dead Load	σI=>-0.80	0.000
Under Live Load	σI=>-1.70	-0.005

Table 4.6.87 Result of Design for Diagonal Tensile Stress of Concrete

Source: JICA Study Team

Checking for Concrete against Compressive Strength to Failure (Under Ultimate Load)

The result of the checking for web concrete against compressive strength to failure is shown in Table 4.6.88.

Table 4.6.88	Result of Checking	for Concrete a	against Compre	essive Strenath to	Failure

a) Compressive Strength	b) Acting Shear Force	Safety Degree
to Failure (kN)	(kN)	a) / b)
5688	253	22.5

Source: JICA Study Team

Checking for Members against Diagonal Tensile Strength to Failure (Under Ultimate Load)

The result of the checking for members against diagonal tensile strength to failure is shown in Table 4.6.89.

Table 4.6.89 Result of Checking for Members against Diagonal Tensile Strength to Failure

a) Diagonal Tensile Strength to Failure (kN)	b) Acting Shear Force (kN)	Safety Degree a) / b)
2133	253	8.43

Source: JICA Study Team

2) Intermediate Crossbeam

a) Design for Bending Moment

The design for the bending moment under design load involes "Tensile Stress of PC Strand" and "Combined Flexural Stress (Volume of Tension Re-bar)". The checking for the bending moment under ultimate load involves "Bending Moment to Failure".

Design for Tensile Stress of PC Strand

The result of the design for tensile stress for PC strands is shown in Table 4.6.90. The checking case is indicated for "During Prestressing", "Immediately after Prestressing", and "Under Effective Prestressing Force".

Table 4.6.90	Result of Design for	Tensile Stress	of PC Strand
--------------	----------------------	-----------------------	--------------

		Unit: N/mm ²
Load Condition	Allowable Value	Result
During Prestressing	Under 1440	1250.0
Immediately after Prestressing	Under 1295	1149.1
Under Effective Prestressing Force	Under 1110	1026.0

Source: JICA Study Team

Design for Combined Flexural Stress (Checking for Volume of Tension Re-bar)

The result of design for combined flexural stress is shown in Table 4.6.91. The checking case is indicated for the "Under Dead Load" and "Under Live Load" cases.

			Unit: N/mm ²
Load Condition	Checking Position	Allowable Value	Result
	Top of Deck Slab	<-10.0	-0.32
Under Deed Leed	Bottom of Deck Slab	<=10.0	-0.21
Under Dead Load	Top of Crossbeam	0.011.0	1.92
	Bottom of Crossbeam	$0.0 \sim 11.0$	4.57
	Top of Deck Slab		Max 0.55
	Top of Deck Stab	<-10.0	Min -0.89
	Bottom of Deck Slab	<-10.0	Max 0.36
Under Live Load	Bottom of Deck Slab		Min -0.60
	Top of Crossboom		Max 1.90
	Top of Crossbeam	0.0 ~ 11.0	Min 1.94
	D.#		Max 2.29
Bottom of Crossbeam			Min 6.10

Table 4.6.91 Result of Design for Combined Flexural Stress
--

Source: JICA Study Team

Checking for Bending Moment to Failure (Under Ultimate Load)

The result of the checking for the bending moment to failure is shown in Table 4.6.92. The critical case, "case 2", is shown in Table 4.6.53.

Table 4.6.92 Result of Checking for Bending Moment to Failure

a) Resisting Bending Moment to Failure (kNm)	b) Acting Bending Moment to Failure (kNm)	Safety Degree a) / b)
2383.7	1325.8	1.80

Source: JICA Study Team

b) Design for Shear Force

The design for shear force under design load involves "Mean Shear Stress of Concrete (Volume of Diagonal Tension Reinforcement Bar)" and "Diagonal Tensile Stress of Concrete". The checking for the "Under Ultimate Load" case involves "Compressive Strength to Failure" and "Members against Diagonal Tensile Strength to Failure".

Design for Mean Shear Stress of Concrete (Volume of Diagonal Tension Re-bar)

The result of the design for the mean shear stress is shown in Table 4.6.93.

Table 4.6.93 Result of Design for Mean Shear Stress of Concrete

Result
0.65

Source: JICA Study Team

In Table 4.6.93, the calculated value is over the allowable value of the mean shear stress. Hence, the required volume of diagonal tension reinforcement bar is calculated as given in Table 4.6.94.

	Unit: cm ²
Minimum Diagonal Tension	Required Diagonal Tension
Re-bar Volume	Re-bar Volume
6.00	9.66

From Table 4.6.94, the required volume of diagonal tension reinforcement bar is placed in the crossbeam.

Design for Diagonal Tensile Stress of Concrete

The result of the design for diagonal tensile stress of concrete is shown in Table 4.6.95.

Table 4.6.95 Result of Design for Diagonal Tensile Stress of Concrete

....

	UI	nit: N/mm [_]				
Load Condition	Allowable Value	Result				
Under Dead Load	σI=>-0.80	Max	-0.014			
Olider Dedd Lodd	01 × 0.00	Min	-0.014			
Under Live Load	$\sigma I \rightarrow 1.70$	Max	-0.18			
Under Live Load	011./0	Min	-0.18			

Source: JICA Study Team

Checking for Compressive Strength to Failure (Under Ultimate Load)

The result of the checking for compressive strength to failure is shown in Table 4.6.96.

Table 4.6.96 Result of Checking for Compressive Strength to Failure

a) Compressive Strength	b) Acting Shear Force	Safety Degree
to Failure (kN)	(kN)	a) / b)
1494.6	529.3	2.82

Source: JICA Study Team

Checking for Members against Diagonal Tensile Strength to Failure (Under Ultimate Load)

The acting shear force is shown in Table 4.6.97. If D13 is used as the diagonal tension re-bar, the interval of re-bar should be less than 262 mm. If D16 is used, the interval of re-bar should be less than 400 mm. After all, re-bar of D13 and 250 mm interval are applied.

Table 4.6.97	Result of Acting Shear Force
--------------	------------------------------

Acting Shear Force (kN)	
529.3	
Source: IICA Study Toom	

Source: JICA Study Team

3) Crossbeam at Connection Part

The checking items are "Tensile Stress of PC Strand" and "Mean Compressive Strength of Concrete".

Design for Tensile Stress of PC Strand

The result of design for tensile stress for PC strands is shown in Table 4.6.98. The checking cases include "During Prestressing", "Immediately after Prestressing", and "Under Effective Prestressing Force".

Table 4.6.98Result of Design for Tensile Stress of PC Strand and Mean Compressive Stress of
Concrete

			Uni	t: N/mm²			
Load Condition	Tensile Stress o	of PC Strand	Mean Compressive Stress of Concrete				
Load Condition	Allowable Value	Result	Allowable Value	Result			
During Prestressing	Under 1440	1250.0					
Immediately after Prestressing	Under 1295	1151.2	more than 1.50	1.61			
Under Effective Prestressing Force	Under 1110	1051.5					

Source: JICA Study Team

(7) Design of Coupling Concrete (Connecting Part)

For the design of coupling concrete, the checking position for the bending moment is shown in Figure 4.6.35.

Source: JICA Study Team

Figure 4.6.35 Checking Position of Coupling Concrete

The design for the bending moment under design load involves "Compressive Stress of Concrete" and "Tensile Stress of Re-bar". The checking for bending moment under ultimate load involves "Bending Moment to Failure".

Design for Compressive Stress of Concrete and Tensile Stress of Re-bar

The result of the design for compressive stress of concrete is shown in Table 4.6.99. The checking cases include "Under Dead Load", "Under Live Load", and "Under Temperature Load".

					Unit: N/r	nm ²		
C a ati a n	Leed Condition	True of Former	Compressive Conc	Strength of rete	Tensile Stress of Re-bar			
Section	Load Condition	Type of Force	Allowable Value	Result	Allowable Value	Result		
1		Negative Moment	-	-		0.00		
2	Under Deed Leed	Positive Moment		-	100	27.25		
2	Under Dead Load	Negative Moment	-	-	100	0.00		
3		Negative Moment	-	-		0.00		
1		Negative Moment		3.53		95.18		
2	Under Live Load	Positive Moment	10.0	0.74	160.0	43.54		
Z	Under Live Load	Negative Moment	10.0	3.53	100.0	95.18		
3		Negative Moment		3.53		95.18		
1		Negative Moment		3.65		98.28		
2	Under Temperature	Positive Moment	11.5	1.62	184.0	95.51		
2	Load	Negative Moment	11.3	3.53	164.0	95.18		
3		Negative Moment		3.65		98.02		

Table 4.6.99 Result of Design for Compressive Stress of Concrete and Tensile Stress of Re-bar

Source: JICA Study Team

Checking for Bending Moment to Failure (Under Ultimate Load)

The result of checking for bending moment to failure is shown in Table 4.6.100. The critical case, "Case 1 and 2", is shown in Table 4.6.54.

Section	Type of Force	a) Resisting Bending Moment to Failure (kNm)	b) Acting Bending Moment to Failure (kNm)	Safety Degree a) / b)
1	Negative Moment	-5969.78	-5031.28	1.19
C	Positive Moment	4561.52	847.72	5.38
Z	Negative Moment	50(0.78	-4783.31	1.25
3	Negative Moment	-3969.78	-5022.72	1.20

 Table 4.6.100
 Result of Checking for Bending Moment to Failure

Source: JICA Study Team

(8) Result of Design for Other Sections

Since the above result was for the representative section of PF14-PF15, the following figures show the major profile, cross section, and calculation results of the other sections.

1) AF1-PF2

Figure 4.6.36 and Figure 4.6.37 show the profile, plan, and cross section of AF1-PF2.

Source: JICA Study Team

Figure 4.6.36 Profile and Plan (AF1-PF2)

Source: JICA Study Team

Figure 4.6.37 Cross Section (AF1-PF2)

a) AF1-PF1

The following tables show the calculation results for AF1-PF1.

47	4 5 900 5 300 775 7	3 2 300 0	1 1100 280	1100 00	2 3		4	4 5 0/5 75 540 1015	3 2 540	1100 320	1100	2 3	
		Deck		muei					Dec	k at Center a	span		
					Result of I	Design of P	C Plate	(Unit: N/mr	n2)				
		Deck	cat End of C	arder	0.	CD 1			Dec	k at Center S	span	0	CD 1
Load	Condition	Checking Position	Allowable Value	Result	Allowable Value	Result	Load	Condition	Checking Position	Allowable Value	Result	Allowable	Result
During	Prestressing	-	-	-	1305	1225	During	Prestressing	-	-	-	1305	1225
Immed	iatelv after	Top of PC Plate		9.17			Immed	iatelv after	Top of PC Plate		9.17		
Pres	tressing	BottomofPC Plate	-1.5~19.0	8.34	1190	1131	Pres	tressing	BottomofPC Plate	-1.5~19.0	8.34	1190	1131
During Do (Under Effe	eck Construction ective Prestressing)	Top of PC Plate Bottomof PC Plate	0.0~15.0	10.58 3.69	1020	921	During D (Under Effe	eck Construction ective Prestressing)	Top of PC Plate Bottomof PC Plate	0.0~15.0	10.58 3.69	1020	921
					Result of	f Design of	Deck (U	Jnit: N/mm2	3				
					De	ck between	n Main C	irders	.)				
	Ι	Deck at End of	Girder (Tran	verse Direc	tion)				Deck at Center	Span (Trany	verse Direct	ion)	
0	Load	Checking	0	ombined Fl	exural Stres	s	C	Load	Checking	0	Combined Fl	exural Stres	s
Section	Condition	Position	Allowab	le Value	Res	sult	Section	Condition	Position	Allowab	le Value	Res	ult
		Top of RC Deck	11	0		3.48			Top of RC Deck	11	0		4.15
1	Under	BottomofRC Deck	11	.0		-0.80	1	Under	BottomofRC Deck	11	.0		-0.95
1	Live Load	Top pfPC Plate	0.0.	15.0		8.35	Live Load		Top pf PC Plate	0.0.15.0			8.19
		BottomofPC Plate	0.0~	-15.0		1.36			BottomofPC Plate	0.0~	15.0		0.65
a .:	Load	Type of	Strength o	f Concrete	Stress o	f Re-bar		Load	Type of	Strength of Concrete		Stress o	f Re-bar
Section	Condition	Force	Allowable	Result	Allowable	Result	Section	Condition	Force	Allowable	Result	Allowable	Result
		Positive Moment	Value	3.84	Value	59.7			Positive Moment	Value	6.60	Value	102.5
2	Under	Negative Moment	10.0	3.74	140.0	78.4	2	Under	Negative Moment	10.0	3.23	140.0	67.5
3	Live Load	Negative Moment		2.56		73.6	3	Live Load	Negative Moment		2.52		77.6
	De	eck at End of G	irder (Longi	udinal Dire	ction)			D	eck at Center S	pan (Longit	udinal Direc	ction)	
			Strength o	f Concrete	Stress o	f Re-bar				Strength o	f Concrete	Stress o	f Re-bar
	Load Cone	dition	Allowable	Pacult	Allowable	Pacult		Load Con	dition	Allowable	Pacult	Allowable	Pacult
			Value	Kesun	Value	Kesun				Value	Kesun	Value	Kesun
	Under Live	e Load	10.0	8.66	140.0	100.2	<u></u>	Under Live	e Load	10.0	9.96	140.0	115.3
	г)eck at End of (Girder (Trop	verse Direc	De tion)	ek outside	oi Main	Girder	Deck at Center	Snan (Trans	verse Direct	ion)	
	1	Nor at Life OI	Strength o	f Concrete	Stress	f Re-bar			beek at Center	Strength o	f Concrete	Stress o	f Re-bar
Section	Load	Condition	Allowable	D L	Allowable	D L	Section	Load	Condition	Allowable	D	Allowable	D l
			Value	Result	Value	Result				Value	Result	Value	Result
	Under	Dead Load	-	-	100.0	8.2		Under	Dead Load	-	-	100.0	8.2
	Under	Live Load	10.0	0.31	140.0	8.2		Under	Live Load	10.0	0.31	140.0	8.2
4	Under C	ollison Load	15.0	2.15	300.0	56.4	4	Under C	ollison Load	15.0	2.15	300.0	56.4
	Under Wind L	oad (with Live Load)	12.5	0.46	175.0	12.0		Under Wind L	oad (with Live Load)	12.5	0.46	175.0	12.0
	Under Wind Lo	Dad (W/o Live Load)	12.5	0.60	175.0	15.8		Under Wind L	oad (W/o Live Load)	12.5	0.60	175.0	15.8
	Under		-	-	100.0	13.2		Under		-	-	100.0	16.7
5	Under	Live Load	10.0	3.53	200.0	101.5	-	Under	Live Load	10.0	2.46	200.0	/5./
5	Under Wind L	pad (with Live Load)	13.0	4.98	175.0	143.4		Under Wind I	oad (with Live Load)	13.0	3.70	175.0	70 0
	Under Wind Load (with Live Load) 12.5				175.0	104.9		Under Wind L	oad (w/o Live Load)	12.3	2.30	175.0	10.8
	<u>ل</u>	ck at End of G	irder (Longi	0.09 Judinal Dira	1/3.0 ction)	19.9			eck at Center S	12.3	0.74 udinal Dire	1/3.0	22.8
	D		Strength o	f Concrete	Stress o	f Re-bar		D	eek at center 5	Strength o	f Concrete	Stress o	f Re-har
	Load Cone	dition	Allowable	D	Allowable	n oai		Load Con	dition	Allowable	D	Allowable	n n n
			Value	Result	Value	Result				Value	Result	Value	Result
	Under Live	Load	10.0	1.86	140.0	67.2		Under Liv	e Load	10.0	2.29	140.0	82.9

D13@125mm

1483 kN

Cross Section "3"

1.16

13176 kNm

15295 kNm

Checking Position

Cross Section "8'

3	···			C Strand (N/m	Result				s of Concrete (N	Result			Part)	2)	Tensile Stress of I	Allowable Value Ro			100:0			160.0				184.0					Satety Degr	alini							
1 2			nection Part	Tensile Stress of P(Allowable Value	1440	1295	1110	dean Compressive Stress	Allowable Value	1.50		oncrete (Connecting	res s of Re-bar (N/mm	Compressive Strangth of Concrete	Allowable Value Result	•			-	1.53	10.00 2.18	1.53	1.53	1.90	11.50 2.99	1.53	1.90	ad)	b) Acting Bending	Moment to Failure	(kNm)	-4343	2123	-3844	-4346			
			Cross Beam at Con-		Ition	ressing	Prestressing	tressing Force	ition		tressing Force		Design of Coupling Co	oncrete and Tensile St	н Н	1 ype of Force	Negative Moment	Positive Moment	Negative Moment	Negative Moment	Negative Moment	Positive Moment	Negative Moment	Negative Moment	Negative Moment	Positive Moment	Negative Moment	Negative Moment	ıre (Under Ultimate Lo	a) Resisting	Bending Moment to	(kNm)	-5970	6058	0203	0120-			
đ					Load Cond	During Presti	Immediately after	nder Effective Pres	I nad Cond		nder Effective Pres		Result of]	ress ive Stress of Co		LOAD CONDITION		Under Dead	Load			Under Live	Load		Under	Temperature	Load		ng Moment to Failt		Type of Force		Negative Moment	Positive Moment	Negative Moment	Negative Moment			
					_			2	_1		Þ			Compi	Cantion		-	,	7	3	-	2	'	3		2	1	ŝ	Bendi		Section		-	, ,	4	3			
		ss Beam				Disgonal Tensile Stress of Concret	Allowable Value Result	σI=>-0.80 0.00	σI=>-1.70 -0.0	nder Ultimate Load)	Safety Degree	21.85	ider Ultimate Load)	Safety Degree	a)/b)	8.20			nal Tension Re-bar)		Required Diagonal Tancion Do hor	Volume		10.28 cm2		(Result	Max -0.0	Min -0.02	Max -0.17	Min -0.18		nate Load)	Safety Degree	a)/b)	2.71		ider Ultimate Load)	rement of Re-bar
		t of Design of Cro		gn for Shear Force	crete (N/mm2)	m Shear Sress of Concrete	vable Value Result	180 0 150	2.00	e Strength to Failure (U) Acting Shear Force	260 kN	Strength to Failure (Un) Acting Shear	Force	260 kN	0	gn for Shear Force	te (Volume of Diago		Mm. Diagonal	Volume		6.00 cm2		Concrete (N/mm2	Allowable Value		000		αI=>-1./U		Failure (Under Ultir) Acting Shear	Force	552 kN		e Strength to Failure (Un	Arrance
/		Resul		Desig	ar Stress of Con	a Docition		Dead Load	Live Load	e against Compressiv	pressive b	2 kN	inst Diagonal Tensile	nal Tensile b	1 to Failure	I kN		Desig	r Stress of Concre	ear Stress of	ncrete	Result		0.69		Lensile Stress of	Condition A	and I and	Cau LUau	-	LIVE LOAD		ive Strength to]	pressive b	to Failure	5 kN		inst Diagonal Tensile	ting Shear Force
			ain Girder		Mean She	Chaobin		Under I	Under]	Web Concret	a) Con Strenoth	568.	Members aga	a) Diago	Strength	213	Beam		M can Shea	Mean She	Cor	Allowable	Value	$\tau_{m}\!\!<=\!\!0.45$		Diagonal	Load C	I Indae I			Under		Compress	a) Con	Strength	1495		Members aga	AC
			t End of Ma		C Strand	Result	1250	1151	1056							•	ate Cross H			C Strand	Result	1250	1149	1024							•			•				begree	(9
			ss Beama		Stress of I	Allowable Value	1440	1295	1110			,				•	Intermedi		V/mm2)	Stress of I	Allowable Value	1440	1295	1110		•					•		•	•				Safety I	a)/
ng Part)			Cro	nt (N/mm2)	xural Stress	Result	-			111	-	1.60	fax 1.58	fin 1.13	1ax 0.92	4in 1.83		loment	PC Strand ()	xural Stress	Result			-	-0.36	-0.24	2.28	4.55	ax 0.52	in -0.91	ax 0.35	lin -0.61	ax 2.18	tin 2.34	ax 2.21	in 6.01	ad)	Bending	Failure
te (Connecti				nding Mome	Combined Fle	lowable Value					.0 ~ 12.0		~	2	N 0.21 ~ 0.	2		r Bending N	ile Stress of	Combined Flex	lowable Value			-	<=10.0		0~11.0	2.1	M	M	V=10.0	Σ	Σ	M 0 11 0	W not a not	M	Ultimate Lo	b) Acting I	Moment to
Joupling Concre				Design for Bei	Thecking Position	AL		-		Top of Cross	Beam 0	Cross Beam	Top of Cross	Beam	Bottom of	Cross Beam		Design fo	Stress and Tens	Thecking Position	AI.		,	-	Top of Deck	Bottom of Deck	Top of Cross Beam	dottom of Cross Beam	Too of Dools	1 ob of Deck	Bottom of	Deck	Top of Cross	Beam	Bottomof	Cross Beam	o Failure (Under	ing Moment	re
Cross Beam and C					I and Condition		During Prestressing	Immediately after Prestnessing	During Deck Construction	-	Under Dead				Under Live Load				Combined Flexural	I and Candidian		During Prestressing	Immediately after Prestnessing	During Deck Construction		Under Dead	Load	Ξ.				Inder I ive I ond					Bending Moment t	a) Resisting Bend.	to Failu

250

ete (N/mn

d (N/mm2)

Table 4.6.103 Calculation Results for the Crossbeam and Coupling Concrete (AF1-PF1)

Stress of Re-bar Result 95.8 8 41.4 41.4 51.2 149.8 41.4

41.4

Source: JICA Study Team

s against Diagonal Tensile Strength to Failure (Under Ultimate Load) Acting Shear Force Arrangement of Re-bar

Safety Degree a)/b) 1.79

b) Acting Bending Moment to Failure 1329 kNm

2384 kNm

D13@250mm

552 kN

2.85

1.55

b) PF1-PF2

The following tables show the calculation results for PF1-PF2.

47	4 5 900 15 300 775 7	3 2 300 00	1100 280	1100 00	2 3		47	4 5 04 75 540 1015 2	3 2 540 20	1 1100 328	1100 30	2 3			
		Deen		,iidei	Decult of I)osign of P	C Diata	(Init. N/m	" <u>)</u>		- pun				
		Deal	t at End of (Surd on	Kesuit of I	Jesign of F		(Unit: IVini	IIZ)	k at Cantar (2000				
		Deer	Strongth o	fConorata	Stragg o	f Do hor				Strongth o	f Conorato	Stragg o	f Do hor		
Load	Condition	Checking Position	Allowable	Result	Allowable	Result	Load	Condition	Checking Position	Allowable	Result	Allowable	Result		
During	Prestressing	-	-	-	1305	1225	During	Prestressing	-	-	-	1305	1225		
Immed	iatelv after	Top of PC Plate		9.17			Immed	iatelv after	Top of PC Plate		9.17				
Pres	tressing	BottomofPC Plate	-1.5~19.0	8.34	1190	1131	Pres	tressing	BottomofPC Plate	-1.5~19.0	8.34	1190	1131		
During Do	eck Construction	Top of PC Plate		10.58	1000		During D	eck Construction	Top of PC Plate		10.59				
(Under Effe	ective Prestressing)	BottomofPC Plate	0.0~15.0	3.69	1020	922	(Under Effe	cctive Prestressing)	BottomofPC Plate	0.0~15.0	3.69	1020	922		
					Result	Design of	Deck (I	nit: N/mm ¹	2)						
					De	ck between	Main C	irders	·)						
	г	Peck at End of (Girder (Tran	verse Direc	tion)	ek betweet		Jilde13	Deck at Center	Snan (Trany	verse Direct	ion)			
	Load	Checking		ombined F	lexural Stres	s		Lord	Chacking		Combined F	exural Stres	s		
Section	Condition	Position	Allowah	le Value	Res	 ault	Section	Condition	Position	Allowah	le Value	Res	sult		
		Top of RC Deck		ie rulue		3 50			Top of RC Deck				4 19		
	Under	BottomofRC Deck	11	.0		-0.81		Under	BottomofRC Deck	11	.0		-0.96		
1	Live Load	Top pfPC Plate				8.35	1	Live Load	Top pfPC Plate	l 			8.18		
		BottomofPC Plate	0.0~	15.0		1.33			BottomofPC Plate	0.0~	15.0		0.62		
			Strength o	f Concrete	Stress o	f Re-bar				Strength o	fConcrete	Stress o	f Re-bar		
Section	Load Condition	Type of Force	Allowable Value	Result	Allowable Value	Result	Section	Load Condition	Type of Force	Allowable Value	Result	Allowable Value	Result		
2	Under	Positive Moment		3.87		60.1	2	Under	Positive Moment		6.65		103.3		
	Live Load	Negative Moment	10.0	3.76	140.0	78.8	-	Live Load	Negative Moment	10.0	3.25	140.0	67.9		
3		Negative Moment		2.57		74.0	3		Negative Moment		2.54		78.1		
	De	ck at End of G	irder (Longi	udinal Dire	ction)			Ľ	eck at Center S	pan (Longit	udinal Dire	ction)			
			Strength o	f Concrete	Stress o	f Re-bar				Strength o	f Concrete	Stress o	f Re-bar		
	Load Cone	dition	Allowable	Result	Allowable	Result		Load Con	dition	Allowable	Result	Allowable	Result		
	Under Live	Load	Value	8.66	Value	100.2		Under Liv	e Load	Value	0.06	Value	115.2		
<u> </u>	Shadi Live		10.0	0.00	1-10.0 De	ck outside	l of Main	Girder		10.0	9.90	170.0	115.5		
<u> </u>	г	Deck at End of (Girder (Tran	verse Direc	tion)				Deck at Center	Span (Tran	verse Direct	ion)			
		Line of t	Strength o	f Concrete	Stress o	f Re-bar		[Strength o	fConcrete	Stress o	f Re-bar		
Section	Load	Condition	Allowable	Der k	Allowable	D- k	Section	Load	Condition	Allowable	Der h	Allowable	Dec. 1		
			Value	Kesult	Value	Result				Value	Result	Value	Kesult		
	Under	Dead Load		-	100.0	8.2	l	Under	Dead Load	-	-	100.0	8.2		
	Under	Live Load	10.0	0.31	140.0	8.2		Under	Live Load	10.0	0.31	140.0	8.2		
4	Under C	ollison Load	15.0	2.15	300.0	56.3	4	Under C	ollison Load	15.0	2.15	300.0	56.3		
	Under Wind L	oad (with Live Load)	12.5	0.46	175.0	12.0		Under Wind L	oad (with Live Load)	12.5	0.46	175.0	12.0		
	Under Wind Lo	oad (w/o Live Load)	12.5	0.60	175.0	15.8		Under Wind L	oad (w/o Live Load)	12.5	0.60	175.0	15.8		
	Under	Dead Load	-	-	100.0	13.1		Under	Dead Load	-	-	100.0	16.6		
	Under	Live Load	10.0	3.52	140.0	101.4		Under	Live Load	10.0	2.46	140.0	75.6		
5	Under C	ouison Load	15.0	4.97	300.0	143.3	5	Under C	ouison Load	15.0	3.69	300.0	113.6		
	Under Wind Load (with Live Load) 12.5 3.64 17					104.8	8 Under Wind		oad (with Live Load)	12.5	2.56	175.0	78.7		
		au (W/O LIVE LOAD)	12.5	0.69	175.0	19.8		Under Wind L	oau (w/o Live Load)	12.5	0.74	175.0	22.7		
	De	еск at End of G	rder (Longi	udinal Dire	ction)	CD 1		E	eck at Center S	pan (Longit	udinal Dire	ction)	CD 1		
	Load Con	lition	Strength o	Concrete	Stress o	i Ke-bar		Load Con	dition	Strength o	Concrete	Stress o	i Ke-bar		
		T 1	Value	Result	Value	Result			T 1	Value	Result	Value	Result		
	Under Live Load		Under Live Load		10.0	1.86	140.0	67.2		Under Liv	e Load	10.0	2.29	140.0	82.9

Table 4.6.105 Calculation Results for the Main Girder (PF1-PF2)

Final Report

Result Mean Compressive Stress of Concrete (N/mm/ Tensile Stress of Re-ba Safety Degree a)/b) Tensile Stress of PC Strand (N/mm2 Result Result 0061 058 057 Allowable Value 160.0 84.0 0.00 006 Result of Design of Coupling Concrete (Connecting Part) npressive Stress of Concrete and Tensile Stress of Re-bar (N/mm2) b) Acting Bending Moment to Failure (kNm) Result Allowable Value Allowable Value 1110 140 1295 1.50 Cross Beam at Connection Part able Value 240 240 300 780 10.00 11.50 anding Moment to Failure (Under Ultimate Load) 400 400 Bending Moment to Failure Negative Moment Positive Moment Negative Moment Negative Moment Positive Moment Negative Moment Negative Moment Negative Moment Negative Moment Negative Moment Positive Moment Negative Moment Type of Force a) Resisting 0061 Under Effective Prestressing Force Under Effective Prestressing Force (IkNm) Immediately after Prestressing . During Prestressing Load Condition Load Condition 950 Load Condition Negative Moment Type of Force Negative Moment Positive Moment Under Dead Negative Moment Temperature Under Live Under Load Load Load 950 Section hcer 2 2 2 ~ 0061 -0.02 0.00 -0.02 -0.18 0.01 Required Diagonal Tension Re-bar Volume Result 0.1 Safety Degree a)/b) Safety Degree a) / b) ean Shear Stress of Concrete (Volume of Diagonal Tension Re-bar) Arrangement of Re-bar Safety Degree ive Strength to Failure (Under Ultimate Load) 10.23 cm2 fembers against Diagonal Tensile Strength to Failure (Under Ultimate Load) nbers against Diagonal Tensile Strength to Failure (Under Ultimate Load) a)/b) Result 21.85 8.20 (PF.2) Max Min Max Min D13@250mm Allowable Value ompressive Strength to Failure (Under Ultimate Load) σI=>-0.80 al=>-1.70 Result of Design of Cross Beam iagonal Tensile Stress of Concrete (N/mm2) 0.08 Design for Shear Force Mean Shear Stress of Concrete Allowable Value Result b) Acting Shear Force Design for Shear Force Min. Diagonal Tension Re-bar b) Acting Shear Allowable Value b) Acting Shear 1ean Shear Stress of Concrete (N/mm2) 6.00 cm2 σI=>-1.70 260 kN σI=>-0.80 Force 550 kN 260 kN Force Volume $\tau_m \leq = 0.45$ Acting Shear Force 550 kN 68 a) Diagonal Tensile Strength to Failure Mean Shear Stress of eb Concrete against Com Result Checking Position Under Dead Load Strength to Failure Strength to Failure Under Dead Load Under Live Load a) Compressive Load Condition Under Live Load a) Compressive Concrete 1495 kN 5682 kN 2131 kN Allowable. .m<=0.45 Value Tirder Cross Beam at End of Main • Stress of PC Strand 1250 1250 1149 1024 1151 1056 Stress of PC Strand Intermediate Cross Result Safety Degree a)/b) , 1.79 Mowable Value 1440 1440 1110 1110 omb ined Flexural Stress and Tensile Stress of PC Strand (N/mm2) , 1.14 1.60 1.58 1.13 0.92 1.83 -0.36 2.28 4.53 0.53 0.35 -0.61 2.18 2.35 2.19 6.01 Design for Bending Moment (N/mm2) Combined Flexural Stress 1334 kNm b) Acting Bending ross Beam and Coupling Concrete (Connecting Part) Result Moment to Failure Result Design for Bending Moment Max Min Max Max Min Min Max Min Мах Min Max Min ending Moment to Failure (Under Ultimate Load) wable Value 12.0 Allowable Value $0.0 \sim 11.0$ $0.0 \sim 11.0$ $0.0 \sim 12.0$ <=10.0 <=10.0 $0.0 \sim 1$ a) Resisting Bending Moment to Failure Top of Cross Top of Cross Beam Top of Deck Top of Cross Fop of Cross Cross Beam Cross Beam Bottom of Cross Beam Bottom of op of Deck Bottom of PF.1 Bottom of Deck Bottom of • • • Beam Beam Beam Checking Posi hecking Pos Deck •••• 2384 kNm ring Prestressing Load Condition rring Prestressing Jnder Live Load Load Condition Inder Live Load Under Dead Under Dead Load Load

Table 4.6.106	Calculation Results for	the Crossbeam and	Coupling Concrete	(PF1-PF2)
---------------	-------------------------	-------------------	-------------------	-----------

2) PF5-PF7

Figure 4.6.38 and Figure 4.6.39 show the profile, plan, and cross section of PF5-PF7.

Figure 4.6.39 Cross Section (PF5-PF7)

a) PF5-PF6

The following tables show the calculation results for PF5-PF6.

0 ^L ² /47	4 5 90 5 300 775 7	3 2 300 20	1 1100 280 cat End of C	1100 0 0	2 3		4	4 5 0/25 75 540 1015	3 2 540 Dec	1100 32 k at Center S	1 1100 280	2	3
				haor	D 1/ 41		C DL /	at	•		spun		
					Result of I	Design of P	C Plate	(Unit: N/mr	n2)		-		
		Deck	cat End of C	Girder					Dec	k at Center S	Span		
Load	Condition	Checking Position	Strength o Allowable Value	f Concrete Result	Stress o Allowable Value	f Re-bar Result	Load	Condition	Checking Position	Strength o Allowable Value	f Concrete Result	Stress o Allowable Value	f Re-bar Result
During	Prestressing	-	-	-	1305	1225	During	Prestressing	-	-	-	1305	1225
Immedi	ately after	Top of PC Plate		9.17			Immed	iately after	Top of PC Plate		9.17		
Pres	tressing	Bottom of PC Plate	-1.5~19.0	8.34	1190	1131	Pres	stressing	BottomofPC Plate	-1.5~19.0	8.34	1190	1131
During De (Under Effe	ck Construction ctive Prestressing)	Bottom of PC Plate	0.0~15.0	3.70	1020	922	Under Effe	eckConstruction ective Prestressing)	BottomofPC Plate	0.0~15.0	3.70	1020	923
					Result of	Design of	Deck (U	Jnit: N/mm2	2)				
					De	ck betweer	n Main C	Girders					
	Ι	Deck at End of O	Girder (Tran	verse Direc	tion)				Deck at Center	Span (Tran	verse Direct	ion)	
G	Load	Checking	(Combined Fl	exural Stres	s	c	Load	Checking	(Combined F	exural Stres	s
Section	Condition	Position	Allowab	le Value	Res	ult	Section	Condition	Position	Allowab	le Value	Res	sult
		Top of RC Deck				3.55		1	Top of RC Deck				4.25
	Under	Bottom of RC Deck	11	.0		-0.81		Under	BottomofRC Deck	11	.0		-0.98
1	Live Load	Top pfPC Plate				8.34	1	Live Load	Top pf PC Plate				8.17
		Bottom of PC Plate	0.0 ~	-15.0		1.29			BottomofPC Plate	0.0~	15.0		0.56
			Strength o	f Concrete	Stress o	f Re-bar				Strength of Concret		Stress o	f Re-bar
Section	Load	Type of	Allowable		Allowable		Section	Load	Type of	Allowable		Allowable	
	Condition	Force	Value	Result	Value	Result		Condition	Force	Value	Result	Value	Result
2		Positive Moment		3.92		60.9	2		Positive Moment		6.74		104.8
2	Live Load	Negative Moment	10.0	3.80	140.0	79.5	2	Live Load	Negative Moment	10.0	3.28	140.0	68.7
3	Live Load	Negative Moment		2.59		74.7	3	Live Load	Negative Moment		2.57		78.9
	De	eck at End of G	irder (Longi	tudinal Dire	ction)			D	eck at Center S	pan (Longit	udinal Dire	ction)	
			Strength o	f Concrete	Stress o	f Re-bar				Strength o	f Concrete	Stress o	f Re-bar
	Load Cone	dition	Allowable	Pacult	Allowable	Pacult		Load Con	dition	Allowable	Pasult	Allowable	Pecult
			Value	Kesun	Value	Kesun				Value	Kesun	Value	Kesun
	Under Live	e Load	10.0	8.66	140.0	100.2		Under Liv	e Load	10.0	9.96	140.0	115.3
					De	ck outside	of Main	Girder					
	I	Deck at End of C	Girder (Tran	verse Direc	tion)	an -			Deck at Center	Span (Tran	verse Direct	ion)	27.
Section	T I	Condition	Strength o	f Concrete	Stress o	f Re-bar	Section	Test	Condition	Strength o	t Concrete	Stress o	f Re-bar
Section	Load	Condition	Allowable	Result	Allowable	Result	Dection	Load	Condition	Allowable	Result	Allowable Value	Result
	Under	Dead Load	-	-	100.0	8.9		Under	Dead Load	-	-	100.0	8.9
	Under	Live Load	10.0	0.34	140.0	8.9	1	Under	Live Load	10.0	0.34	140.0	8.9
4	Under C	ollison Load	15.0	2.18	300.0	57.0	4	Under C	ollison Load	15.0	2.18	300.0	57.0
	Under Wind L	oad (with Live Load)	12.5	0.49	175.0	12.7		Under Wind L	oad (with Live Load)	12.5	0.48	175.0	12.7
	Under Wind Lo	oad (w/o Live Load)	12.5	0.63	175.0	16.5		Under Wind L	oad (w/o Live Load)	12.5	0.63	175.0	16.5
	Under	Dead Load	-	-	100.0	13.9		Under	Dead Load	-	-	100.0	17.2
	Under	Live Load	10.0	3 94	140.0	113.6	1	Under	Live Load	10.0	2 54	140.0	78.1
5	Under C	ollison Load	15.0	5 40	300.0	115.0	5	Under C	ollison Load	15.0	3 78	300.0	116.1
	Under Wind Load (with Live Load)			4.06	175.0	116.9		Under Wind L	oad (with Live Load)	12.5	2 64	175.0	81.2
	Under Wind Load (w/o Live Load) 12.5				175.0	20.5		Under Wind L	oad (w/o Live Load)	12.5	0.76	175.0	23.4
	De	ck at End of G	irder (Longi	tudinal Dire	ction)	20.3		n n	eck at Center S	pan (Longit	udinal Dire	tion)	23.4
	D		Strength o	fConcrete	Stress	f Re-bar		D		Strength o	fConcrete	Stresso	f Re-bar
	Load Con	dition	Allowable	Result	Allowable	Result	Load Con		dition	Allowable	Result	Allowable	Result
			Value	Icoun	Value	Tusun				Value	Tusun	Value	nesun
	Under Live Load		10.0	1.93	140.0	69.9		Under Liv	e Load	10.0	2.37	140.0	85.6

Final Report

Main Girder 1300 120 1060 120					GIRDER LENGTH(ON CL) 29850			
	<u>↓</u> •••••		3 4	2	4 4 6	10	£—	12 13	14 15
	1000 1000 1000					0#7=			
	<u> </u> ⊈ +				SPAN LENGTH(ON CL)	28850			
	chot-	500-1							200
	Result of Design	of Main Girder of Ben	ding Moment			Result of Design	ı of Main Girder of She	ar Force	
Tensile Stress of PC Strand					Mean Shear Stress of Concn	ste (Volume of Diago	nal Tension Re-bar)		
Load Condition	Checkin	g Position	Combined Flexura A flowable Value	al Stress (N/mm2) Result		Mean Shear Stress	of Concrete (N/mm2)	Volume of Diagonal Ter	ision Re-bar (cm2)
During Prestressing			1440	1320	Checking Position	Allowable Value	Result	Tension Re-bar	Tension Re-bar
Immediately after Prestressing	Cross S	ection "8"	1295	1172				Volume	Volume
During Deck Construction	Cross S	ection "8"	1100	1068	Croce Cantion "2"		9C 1	140	10.00
Under Live Load	Cross S.	cction "8"	1100	988		CC.0\1111	1.40	4:40	10.30
Combined Flexural Stress (Check	king for Volume o	f Tension Re-bar)			Diagonal Tensile Stress of C	oncrete			
Load Condition	Section	Checking Position	Tensile Stress of	Re-bar (N/mm2) Posult	Load Condition	Section	Checking Position	Diagonal Tensile Stress o	f Concrete (N/mm2) Besult
		F-;O T-	Allowable value	NCSUIL 0.02				Allowaute value	Incoult
Immediately atter Prestressing Ci	"oss Section "8"	Lop of Oliger Bottom of Girder	-1.5 <ac<19< td=""><td>14.95</td><td></td><td></td><td>Base of Upper Flange</td><td></td><td>-0.11</td></ac<19<>	14.95			Base of Upper Flange		-0.11
During Deck Construction C	oss Section "8"	Top of Girder	-1.5 <ac </ac c<14.0	6.42			Neutral Axis before		-0.10
		Bottom of Girder		6.88	Under Dead Load	Cross Section "3"	Composition	al=>-1.0	
		Top of Deck	(Deck<10.0)	2.86			Neutral Axis after		-0.11
Under Dead Load C	"oss Section "8"	Top of Girder	0.0<\actrice						
		Bottom of Girder		2.88 Max 4.38			Base of Lower Flange		-0.06
	_	Top of Deck	(Deck<10.0)	Min 2.47			Doo of Linear Flored		Max -0.46
Under Live Load Cr	oss Section "8"	Ton of Girder		Max 6.63			Dase of Opper Flange		Min -0.09
	_	-	-1.5 <ac< td=""></ac<>	Min 5.06			Neutral Axis before		Max -0.47
	_	Bottom of Girder		Max -0.65	Under Dead Load	Cross Section "3"	Composition	σI=>-2.0	Min -0.09
				Min 5.80			Neutral Axis after		Max -0.49
	_	Top of Deck	(Deck<11.5)	Max 2.20			Composition		Min -0.09
	_			May 5.03			Base of Lower Flange		Min -0.05
		Top of Girder		Min 4.35	Web Concrete against Com	pressive Strength to F	ailure (Under Ultimate]	Load)	
Under Temperature Load	oss Section "8"	2	-2.0 <ac<16.10< td=""><td>Max -0.96</td><td></td><td></td><td></td><td></td><td></td></ac<16.10<>	Max -0.96					
	_	Bottom of Girder		Min 3.48	Checking Po	sition	a) Compressive Strength to Failure	b) Acting Shear Force	Safety Degree a)/b)
	-	Ter	ision Re-bar Volume (cr	n2)			0		1 1-
		Minimum	9.29 R.	equired 4.32	Cross Sectio	u "3"	2716 kN	1498 kN	1.81
Bending Moment to Failure (Un	der Ultimate Load		•		Members against Diagonal 7	fens ile Strength to Fa	ilure (Under Ultimate L	oad)	
Checking Positio	Ē	a) Resisting Bending Moment to Failure	b) Acting Bending Moment to Failure	Safety Degree a) / b)	Checking Position Cross Section "3"	Acting S 1498	hear Force kN	Arrangement D13@12	of Re-bar 5mm
Cross Section "8		15295 kNm	13154 kNm	1.16					

Table 4.6.108	Calculation Re	sults for the	Main Girde	⁻ (PF5-PF6)
---------------	----------------	---------------	------------	------------------------

Cross Beam and (Coupling Conc	crete (Conne	ecting Part)/			/ /						-			2	.0	
										021					 	∏ <u>i⊢</u> –	
	· · ·									0061	20 320	0061		0320320		~	
				_		(($\left\{ \right\}$	1	6	 	304 340 340 340 340 340 340 340 340 340	220		J 	
- E	PF.5							Ŀ	(9)		002	+	780		2100 950		
							Re	sult of Design of	Cross Beam								
			C	toss Beam.	at End of N	fain Girder							Cross Beamat Co	onnection Part			
	Design for	Bending Me	oment (N/mm2				De	sign for Shear F	orce			I and Can	1 islam	Tensile Stree	ss of PC St	rand (N/mm	n2)
I and Condition	Checking Position	Combined	Flexural Stress	Stress of	PC Strand	Mean Shea	r Stress of C	oncrete (N/mm2)				LUAU CUI	IIOIII	Allowable Va	alue	Result	
		Allowable Value	Result	Allowable Valu	° Result	Chaobing	Docition	Mean Shear Stress of Con-	crete Disgonal Tensile.	Stress of Concrete		During Pres-	tressing	1440			1250
During Prestressing		'	'	1440	1250	CIECKII	LOSIHOII	Allowable Value Res	ult Allowable Value	Result	Im	nediately after	Prestress in g	1295			1151
Immediately after Prestressing	'	'	'	1295	1151	Under De	ad Load	2 / 14	σI=>-0.80	0.00	Under	r Effective Pre.	stressing Force	1110			1051
During DeckConstruction		'	'	1110	1056	Under Li	ve Load	CH-O-~m1	σI=>-1.70	-0.01		I and Con	1 it ion	Mean Compressiv	ve Stress of	Concrete (N/r	(mm2)
	Top of Cross		51.1			Web Concrete :	against Compre.	ssive Strength to Fail.	ure (Under Ultimate	c Load)		FOR COL		Allowable Va	alue	Result	
Under Dead	Beam	$-0.0 \sim 12.0$				a) Comp Strength t	or Earline	b) Acting Shee	ar Safety	Degree	Under	r Effective Pre	stressing Force	1.50			1.61
TOUR	Bottomot Cross Beam		1.60	'	'	5682	kN kN	259 kN	a)/ 21.	e 4.							
	Top of Cross		Max 1.55	'		Members again:	ist Diagonal T er	sile Strength to Failu	re (Under Ultimate	Load)		Result of	Design of Coupling	Concrete (Conn	ecting Par	t)	
has Tank Task at	Beam	0.01.00	Min 1.13	-		a) Diagons	al Tensile	b) Acting Shea	ur Safety	Degree	Compressi	ive Stress of C	oncrete and Tensile	Stress of Re-bar	(N/mm2)		
Olider Live Load	Bottomof	0.071 ~ 0.0	Max 0.93	-	-	Strength t	to Failure	Force	a)/	(p)	Soction I o	ad Condition	Tuna of Found	Compressive Strength of	Concate Ter	sile Stress of R	Re-bar
	Cross Beam		Min 1.84	-	-	2131	kN	259 kN	.8	23			Type of Force	Allowable Value R6	esult Allow	able Value Re	esult
				Intermed	liate Cross	Beam					-		Negative Moment				0.0
	Design	1 for Bending	g Moment				Ď	sign for Shear F	orce		-	Under Dead	Positive Moment	L			49.4
Combined Flexura	I Stress and To	ensile Stress	s of PC Strand	(N/mm2)		Mean Shear	Stress of Con	ncrete (Volume of I	Diagonal Tension	n Re-bar)	4	Load	Negative Moment	 '		0.00	5.4
I oad Condition	Checking Position	Combined	Flexural Stress	Stress of	PC Strand	Mean Shea	IT Stress of		P		3		Negative Moment		,		0.0
		Allowable Value	Result	Allowable Valu	e Result	Conc	crete	Tension Re-ha	r Tension	Diagonai 1 Re-har	-		Negative Moment		4.54		122.3
During Prestressing	-	'	'	1440	1140	Allowable	Result	Volume	Volt	ume	2	Under Live Load	Positive Moment	10.00	1.27	0.0	63.4
During DeckConstruction				0111	1024	τ<≡0.45	0.68	6 00 cm2	9 74	1 cm2	"		Negative Moment		4 54		122.3
	Ton of Deck		-0.38		-		0000				, –		Negative Moment		4.79		129.1
Under Dead	Bottom ofDeck	<=10.0	-0.25	•		Diagonal Te	ensile Stress	of Concrete (N/)	mm2)		, ,	Under	Positive Moment		2.09		104.8
Load	Top of Cross Beam	001	2.28	-		Load Co	ndition	Allowable Valu	ie Res	sult	71	I emperature	Negative Moment	05.11	4.54	0.48	122.3
	Bottom of Cross Beam	0.0 ~ 11.0	4.58	'	,	I Inder De	ped I bed	ת⊫>-0.80	Max	к -0.02	3		Negative Moment		4.82		129.9
	Ton of Dools		Max 0.45	'	-			0000 - 10	Min	1 -0.02	Bending N	foment to Fail	ure (Under Ultimate	Load)			
	Top UL Deck	<=10.0	Min -0.85	'		Under Liv	ve Load	ת⊫>-1 70	Max	x -0.17			a) Resisting	b) Acting Ben	ding	afety Deare	99
	Bottomof		Max 0.30	'	'				Min	1 -0.16	Section T	ype of Force	Failure	Moment to Fa	vilure	a)/b)	3
UnderLiveLoad	Deck		Min -0.57	'									(kNm)	(kNm)		, . , .	
	Top of Cross		Max 2.15	'	'	Compressiv	ve Strength t	to Failure (Under	Ultimate Load		z -	legative Moment	-597(-5756		1.04
	Beam	0.0~11.0	Min 2.34	'	,	a) Comp	pressive	b) Acting Shea	Ir Safety	Degree	, P	sitive Moment	605	~	1391		4.36
	Bottomof		Max 2.40	'	-	Strength t	to Failure	Force	a)/	(p)	z	legative Moment	1265-		-5312		1.12
	Cross Beam		Min 5.83	'	-	1495	kN	532 kN	2.	81	3 N	legative Moment			-5785		1.03
Bending Moment	to Failure (Un	der Ultimate	: Load)				:										
a) Resisting Ben to Faih	ding Moment ure	b) Actii Momen	ng Bending nt to Failure	Safety a)	Degree	Members again Activ	nst Diagonal I o ng Shear Fo	rce A	rrangement of	Load) Re-bar							
2384	kNm		1216 kNm	-	96		532 1	KN	D13@250m	E							

Table 4.6.109 Calculation Results for the Main Girder (PF5-PF6)

b) **PF6-PF7**

The following tables show the calculation results for PF6-PF7.

4	4 5 924 75 300 775 7	3 2 300 300	1100 28 at End of C	2 7 1100 00	2 3		47	4 5 001 75 540 1015	3 2 540	2 1 1100 328	1100 30	2 3	
		Detti		and of	D 1/ 61	. · · · · · · · · · · · · · · · · · · ·			2)		Spun		
		D_ 1	. E. 1. 66		Result of I	Jesign of P	C Plate	(Unit: N/mi	m2)		~		
		Deck	at End of C	arder	~	27. 1			Dec	k at Center S	span		0.00
Load	Condition	Checking Position	Allowable	Result	Allowable	f Re-bar Result	Load	Condition	Checking Position	Allowable	Result	Allowable	f Re-bar Result
During	Prestressing		value	-	1305	1225	During	Prestressing		value		1305	1225
Lung	:	Top of PC Plata		0.17	1505	1223	Lunna J	:	Top of PC Plata		0.17	1505	1225
Pres	tressing	Bottom of PC Plate	-1.5~19.0	8.34	1190	1131	Pres	tressing	Bottom of PC Plate	-1.5~19.0	8.34	1190	1131
D : D	10	Top of PC Plate		10.59			n : n	10	Top of PC Plate		10.59		
(Under Eff	ective Prestressing)	Bottom of PC Plate	0.0~15.0	3 70	1020	922	(Under Effe	ective Prestressing)	Bottom of PC Plate	0.0~15.0	3 70	1020	923
				5.70	1		L			1	5.70		
					Result of	f Design of	Deck (U	Jnit: N/mm2	2)				
					De	eck betweer	1 Main C	Jirders					
	I	Deck at End of (Girder (Tran	verse Direc	tion)				Deck at Center	Span (Tran	verse Direct	ion)	
Section	Load	Checking		Combined F	lexural Stres	s	Section	Load	Checking	(Combined F	exural Stres	s
	Condition	Position	Allowab	le Value	Re	sult		Condition	Position	Allowab	le Value	Res	sult
		Top of RC Deck	11	0		3.55			Top of RC Deck	11	0		4.25
1	Under	Bottom of RC Deck	11	.0		-0.81	1	Under	Bottom of RC Deck		1.0		-0.98
1	Live Load	Top pf PC Plate	0.0	15.0		8.34		Live Load	Top pfPC Plate	0.0	15.0		8.17
		Bottom of PC Plate	0.0~	-15.0		1.29			Bottom of PC Plate	0.0~	15.0		0.56
	Load	Type of	Strength o	f Concrete	Stress o	f Re-bar		Lord	Type of	Strength o	f Concrete	Stress o	f Re-bar
Section	Condition	Force	Allowable	Result	Allowable	Result	Section	Condition	Force	Allowable	Result	Allowable	Result
		Positiva Moment	Value	2.02	Value	(0.0			Regitive Moment	Value	6.74	Value	104.9
2	Under	Negative Memory	10.0	3.92	140.0	60.9 70.5	2	Under	Negative Managet	10.0	0.74	140.0	104.8
	Live Load	Negative Moment	10.0	3.80	140.0	/9.5		Live Load	Negative Moment	10.0	3.28	140.0	68.7
3		Negative Moment	1 0	2.59	l	/4./	3	L	Negative Moment		2.5/		/8.9
	De	eck at End of G	rder (Longi	tudinal Dire	ction)	0.D. 1		L	Deck at Center S	pan (Longit	udinal Dire	ction)	an 1
	Load Com	dition	Strength o	f Concrete	Stress o	f Re-bar		Load Com	dition	Strength o	of Concrete	Stress o	f Re-bar
	Load Collo	antion	Allowable	Result	Allowable	Result		Loau Con	union	Allowable	Result	Allowable	Result
	Under Live	e Load	10.0	8.66	140.0	100.2		Under Liv	e Load	10.0	9.96	140.0	115.3
				0.00	De	ck outside	ofMain	Girder			1		
	г	Deck at Fnd of (Girder (Tran	verse Direc	tion)			-	Deck at Center	Span (Trany	verse Direct	ion)	
			Strength o	f Concrete	Stress o	f Re-bar				Strength o	of Concrete	Stress o	f Re-bar
Section	Load	Condition	Allowable	Result	Allowable	Recult	Section	Load	Condition	Allowable	Result	Allowable	Result
	Undor	Dood Lood	Value		Value	0.2		Undon	Dead Load	Value	Kesun	Value	ACSUN 0.2
	Under		-	-	100.0	9.3		Under	Line Load	-	- 0.25	100.0	9.3
	Under		10.0	0.36	140.0	9.3		Under		10.0	0.35	140.0	9.3
4	Under C	ollison Load	15.0	2.19	300.0	57.4	4	UnderC	ollison Load	15.0	2.19	300.0	57.4
	Under Wind L	oad (with Live Load)	12.5	0.50	175.0	13.1		Under Wind I	.oad (with Live Load)	12.5	0.50	175.0	13.1
	Under Wind Lo	bau (W/o Live Load)	12.5	0.65	175.0	16.9		Under Wind L	.oad (w/o Live Load)	12.5	0.64	175.0	16.9
	Under	Dead Load	-	-	100.0	14.5		Under	Dead Load	-	-	100.0	17.9
	Under	Live Load	10.0	3.96	140.0	114.2		Under	Live Load	10.0	2.56	140.0	78.8
5	Under C	ollison Load	15.0	5.42	300.0	156.0	5	Under C	ollison Load	15.0	3.80	300.0	116.8
	Under Wind L	oad (with Live Load)	12.5	4.08	175.0	117.5	1	Under Wind I	.oad (with Live Load)	12.5	2.66	175.0	81.9
	Under Wind Lo	oad (w/o Live Load)	12.5	0.74	175.0	21.2		Under Wind L	.oad (w/o Live Load)	12.5	0.78	175.0	24.0
	De	eck at End of G	rder (Longi	tudinal Dire	ction)			E	Deck at Center S	pan (Longit	udinal Dire	ction)	
	T LO	1	Strength o	f Concrete	Stress o	f Re-bar		1 10	1	Strength o	f Concrete	Stress o	f Re-bar
	Load Cone	aition	Allowable Value	Result	Allowable	Result		Load Con	dition	Allowable	Result	Allowable Value	Result
		Load	10.0	1 93	140.0	69.9		Under Liv	e Load	10.0	2.37	140.0	85.6

Table 4.6.111 Calculation Results of the Main Girder (PF6-PF7)

Cross Beam and C	oupling Conc	srete (Conn	ecting Part)	//			//				0/	- 1 2	بو س	-			đ
										1111 ••	09809			1344 329	∐⊧=≂╤= ∏⊦_~		0061
	BF.6										1975 2				═┓ <u>╎</u> ╷╷┼╒┥╴╷	8	
								Result of Design	1 of Cross	Beam			Ť				
			C	ross Bean	1 at End of	f Main	Jirder						Cross Beam at	Connection Pa	r		
	Design for	Bending Mc	oment (N/mm2			H		Design for Shea	ur Force			I and Con	والفارمية	Tensile	Stress of PO	Strand (N	(mm2)
Load Condition	hecking Position	Combined	Flexural Stress	Stress o	f PC Stran	W	can Shear Stress c	f Concrete (N/m	m2)					Allowabi	e Value	Resu	ł
During Prestressing		Allowabic Value	Kesult -	Allowabic va 1440	Ine Kesul 12	= 0%	Thecking Position	Mean Shear Stress of Allowable Value	concrete Da Result Alk	agonal Tensile Stress of Concre wable Value Result	0	During Pres Immediately after	ttressing r Prestressing	125	1 22	•	
Immediately after Paestussing	-			1295	Ë	51	Jnder Dead Load		0	I=>-0.80 0.00	5	nder Effective Pre	stressing Force	Ξ	0		
During Deck Construction	,		,	1110	10:	56	Under Live Load	τ _m <=0.45	0.08	I=>-1.70 -0.0i		I and fan	dition	Mean Comp	ressive Aress	of Concrete	(N/mm2)
-	Top of Cross		1.15	,	'	We	b Concrete against Con	pressive Strength to	Failure (Und	er Ultimate Load)	1			Allowabi	e Value	Resu	h
Under Dead Load	Bottom of	$0.0 \sim 12.0$	1.60		· ·	s	a) Compressive trength to Failure	b) Acting S Force	hear	Safety Degree a) / b)		nder Effective Pre	sstressing Force		-		
	on of Cmes		Max 1.55	1	,	Mer	nbers against Diagonal	Tensile Strength to F	ailure (Unde	z Ultimate Load)		Result of	Design of Complin	or Concrete (C	onnecting	Part)	
	Beam		Min 1.13	,		a	Diagonal Tensile	b) Acting S	hear	Safety Degree	Compr	essive Stress of C	Concrete and Tensi	le Stress of Re-	-bar (N/mm	5)	
Under Live Load	Bottom of	$0.0 \sim 12.0$	Max 0.95		'	s	trength to Failure	Force		a)/b)	Cantin		E.	Compressive Stree	gth of Concrete	Tensile Stress	of Re-bar
	Cross Beam		Min 1.84	-	•		2131 kN	259 kN	7	8.23	101720	Load Condition	1 type of Force	Allowable Value	Result /	llowable Value	Result
				Interm	ediate Cro	ss Beat	u				-		Negative Momer	nt	-		
	Design	1 for Bendin	g Moment			╞		Design for Shea	ur Force		,	Under Dead	Positive Momen	-			
Combined Flexural:	Stress and Te	ansile Stress	: of PC Strand	(N/mm2)		Ň	an Shear Stress of (Concrete (Volume	of Diagons	al Tension Re-bar)	7	Load	Negative Momer	' ' =		1000	
T and Candidian C	becking Position	Combined	Flexural Stress	Stress o	f PC Stran	M. DI	an Shear Stress o	رو 			3		Negative Momer	t I			
LOAD CONDITION	Internet Survey	Allowable Value	Result	Allowable Va	he Resul	=	Concrete	Min. Diago	onal R	Required Diagonal	-		Negative Momer	ıt			
During Prestressing		-		1440	12:	50 AI	lowable Result	Volume	c-Dair	Volume	2	Under Live	Positive Momen	10.00	•	160.0	•
Immediately after Prestressing	-	'	'	1295	ÈÈ	49	Value	000	<	0		Load	Negative Momer	=	'		
Truing poor come account			-			4	NU CHUEN	00 010 CII	1	7110 C/ K	~ ·		Inegative Momer		'		
Under Dead B	op of Deck otom of Deck	<=10.0	-0.3(· ·	· ·	Ĕ	ıgonal Tensile Str	ess of Concrete ((N/mm2)		- ,	Under	Positive Momen	11 11 12			
Load	op of Cross Beam	00 11 0	2.28	'	•		Load Condition	Allowable V	Value	Result	7	I emperature	Negative Momer	11-20	-	0.40	-
	ttom of Cross Beam	0.11 ∽ U.U	4.54	-	•		Jnder Dead Load	σ]=>-0.8	0	Max -0.07	3		Negative Momer	at		·	
	Ton of Deck		Max 0.4'.	'	'					Min -0.0.	2 Bendir	ig Moment to Fai	ilure (Under Ultimat	e Load)			
1	where to do t	<=10.0	Min -0.85	'	•	1	Under Live Load	ol=>-1.7	0	Max -0.17			a) Resisting	b) Acting	Bending	Safety D	sorree
	Bottom of		Max 0.3	'	-				_	Min -0.1t	5 Section	Type of Force	Failure	Moment	o Failure	a) / b	
Under Live Load	Deck		Min -0.5'	-	-		ċ.	1 + F - T - 1	1		-	N	(kNm)	(KN	(iii)		
-	l op of Cross Beem		1.2 VIII		'	3	Inpressive sureng			ale Loau)	-	Decitive Memory				'	
	Bottomof	$0.0 \sim 11.0$	Max 234			~~~	a) compressive trength to Failure	E Force	ncar	satety Degree a)/b)	7	Nezative Moment				· ·	
-	Cross Beam		Min 5.84	-	·		1494 kN	533 kN		2.80	3	Negative Moment	'			'	
Bending Moment to) Failure (Un	der Ultimate	Load)														
a) Resisting Bendi to Failur	ng Moment	b) Actir Momen	ng Bending t to Failure	Safety	v Degree	Me	A offing Change	Tensile Strength to F	Failure (Unde	ar Ultimate Load)							
1 1826	Nm		1234 bNim	· · · ·	1 03			1 OLCO	DI	3@250mm	_						
4 1017	IIIN		11VIA PC41		<i>CZ</i> .1	=	ŝ		1	J(W 4.7 VIIII							1

Table 4.6.112 Calculation Results for the Crossbeam and Coupling Concrete (PF6-PF7)

3) **PF7-PF11**

Figure 4.6.40 and Figure 4.6.41 shows the profile, plan, and cross section of PF7-PF11.

Figure 4.6.40 Profile and Plan (PF7-PF11)

Figure 4.6.41 Cross Section (PF7-PF11)

a) PF7-PF8

The following tables show the calculation results for PF7-PF8.

4	4 5 0/27 75 300 775	3 2 300 700	1100 28	1100	2 3		4	4 5 00 75 540 1015	3 2 540	1100 32	1100 80	2 540	3
		DCCM		Jiidei					Dee	k at Center i	Span		
		D 1	(E 1 60	Y 1	Result of I	Design of P	C Plate	(Unit: N/mr	n2)	1	2		
		Deck	cat End of C	nrder	C(CD 1			Dec	k at Center :	Span	C.	CD 1
Load	Condition	Checking Position	Allowable Value	Result	Allowable Value	Result	Load	Condition	Checking Position	Allowable	Result	Allowable Value	Result
During	Prestressing	-	-	-	1305	1225	During	Prestressing	-	-	-	1305	1225
Immed	iately after	Top of PC Plate	1.5, 19.0	9.17	1100	1121	Immed	iately after	Top of PC Plate	15,190	9.17	1100	1121
Pres	tressing	BottomofPC Plate	-1.5~19.0	8.34	1150		Pres	tressing	BottomofPC Plate	-1.5~19.0	8.34	1190	1151
During Do (Under Effe	eck Construction ective Prestressing)	Top of PC Plate Bottomof PC Plate	0.0~15.0	10.60 3.71	1020	924	During D (Under Effi	eck Construction ective Prestressing)	Top of PC Plate BottomofPC Plate	0.0~15.0	10.62 3.73	1020	926
					Result of	f Design of	Deck (U	Init: N/mm2	2)				
					De	eck betweer	n Main C	irders					
	Ι	Deck at End of O	Girder (Tran	verse Direc	tion)				Deck at Center	Span (Tran	verse Direct	ion)	
Section	Load	Checking	(Combined F	lexural Stres	s	Section	Load	Checking	(Combined Fl	exural Stres	s
	Condition	Position	Allowab	le Value	Res	sult	Section	Condition	Position	Allowab	le Value	Res	sult
		Top of RC Deck	11	.0		3.75			Top of RC Deck	1	1.0		4.53
1	Under	BottomofRC Deck				-0.86	1	Under	Bottom of RC Deck				-1.04
	Live Load	Top pf PC Plate	0.0~	-15.0		8.31		Live Load	Top pf PC Plate	0.0~	15.0		8.12
		BottomotPC Plate	01	60	<i>C</i> .	1.09			Bottom of PC Plate	C	<u></u>	<u></u>	0.29
Section	Load	Type of	Strength o	f Concrete	Stress o	f Re-bar	Section	Load	Type of	Strength o	of Concrete	Stress o	f Re-bar
	Condition	Force	Value	Result	Value	Result		Condition	Force	Value	Result	Value	Result
2		Positive Moment		4.15		64.4	2		Positive Moment		7.20		111.8
	Live Load	Negative Moment	10.0	3.97	140.0	83.0	2	Live Load	Negative Moment	10.0	3.45	140.0	72.2
3		Negative Moment		2.71		78.0	3		Negative Moment		2.70		83.0
	De	eck at End of G	irder (Longi	tudinal Dire	ction)			E	Deck at Center S	pan (Longi	udinal Dire	ction)	
	Load Con	dition	Strength o	f Concrete	Stress o	f Re-bar		Load Con	dition	Strength o	of Concrete	Stress o	f Re-bar
	Load Collo	antion	Allowable Value	Result	Allowable Value	Result		Load Coli	unon	Allowable	Result	Allowable Value	Result
	Under Live	e Load	10.0	8.66	140.0	100.2		Under Liv	e Load	10.0	9.96	140.0	115.3
					De	ck outside	of Main	Girder					
	I	Deck at End of O	Girder (Tran	verse Direc	tion)				Deck at Center	Span (Tran	verse Direct	ion)	
Section	T 1.	C 14:	Strength o	f Concrete	Stress o	f Re-bar	Section		Conditi	Strength o	f Concrete	Stress o	f Re-bar
Section	Load	Condition	Allowable	Result	Allowable	Result	Section	Load	Condition	Allowable	Result	Allowable	Result
	Under	Dead Load	-	-	100.0	5.8		Under	Dead Load	-	-	100.0	5.8
	Under	Live Load	10.0	0.22	140.0	5.8	1	Under	Live Load	10.0	0.22	140.0	5.8
4	Under C	ollison Load	15.0	2.06	300.0	53.9	4	Under C	Collison Load	15.0	2.06	300.0	53.9
	Under Wind L	oad (with Live Load)	12.5	0.37	175.0	9.6		Under Wind L	.oad (with Live Load)	12.5	0.37	175.0	9.6
	Under Wind Lo	oad (w/o Live Load)	12.5	0.51	175.0	13.4		Under Wind L	oad (w/o Live Load)	12.5	0.51	175.0	13.4
1	Under	Dead Load	-	-	100.0	10.8		Under	Dead Load	-	-	100.0	14.4
_	Under	Live Load	10.0	1.40	140.0	40.3	_	Under	Live Load	10.0	2.14	140.0	65.9
5	Under C	ollison Load	15.0	2.85	300.0	82.2	5	Under C	oilison Load	15.0	3.38	300.0	103.9
1	Under Wind L	oau (with Live Load)	12.5	1.52	175.0	43.7		Under Wind I	oad (w/o Live Load)	12.5	2.24	175.0	69.0
		ck at End of G	12.3	U.01	1/5.0 ction)	17.5		<u> </u> Г	eck at Center S	nan (Longi	U.0/	1/5.0	20.6
		Sex at Life of G	Strength o	f Concrete	Stress o	fRe-bar		L	con at contel a	Strength o	of Concrete	Stress	fRe-bar
	Load Con	dition	Allowable	D l	Allowable	D 1		Load Con	dition	Allowable	D L	Allowable	D L
			Value	Result	Value	Result				Value	Result	Value	Result
	Under Live	e Load	10.0	1.63	140.0	59.1		Under Liv	e Load	10.0	2.07	140.0	74.8

Main Girder

5000

1.11

14462 kNm

16030 kNm

Cross Section "8"

Cross Beam and (Coupling Conc	rete (Conne	scting Part)			//					ō		-	5	2	3	Γ,
<u> + +</u>											0950 21 0061			05E0			
									E B		0SZ		200 200 200 200 780 780	52523		· · ·	
							Res	ult of Design	of Cross	Beam				-	710	Ţ	
			0	toss Beam	at End of N	fain Girder		D					Cross Beam at Co.	nnection Part			
	Des ign for	Bending Mc	ment (N/mm2				Des	sign for Shear	r Force				1.51	Tensile S	tress of PC	Strand (N/m	m2)
I and Condition	Checking Position	Combined	Flexural Stress	Stress of	PC Strand	Mean Shear	Stress of Co	oncrete (N/m	m2)			Load Con	dition	Allowable	Value	Result	
		Allowable Value	Result	Allowable Val	ue Result	Checking	Position	Mean Shear Stress of	Concrete Diag	gonal Tensile Stress of Concrete		During Pres	tressing	144(1250
During Prestressing				1440	1250	9	<	Ilowable Value R	cesult Allo	wable Value Result		mmediately after	Prestressing	1295			1151
Immediately after Prestressing During DeckConstruction		•		1110	1151	Under De Under Li	ad Load	$\tau_{m} \leq 0.45$	0.08	=>-0.80 0.00 =>-1.70 -0.01	Č	ter Effective Pre	stressing Force	Mean Compre	essive Stress	of Concrete (D	1050 V/mm2)
	Top of Cross					Web Concrete a	gainst Compress	I sive Strength to F	Failure (Unde	r Ultimate Load)		Load Con	dition	Allowable	Value	Result	
Under Dead	Beam	0.0~12.0	1.12	'	'	a) Comp	ressive	b) Acting Sl	hear	Safety Degree	Cn	ler Effective Pre	stressing Force	1.50			1.71
Load	Bottom of Cross Beam		1.49	'	1	Strength t 5682]	o Failure cN	Force 261 kN		a)/b) 21.77							
	Top of Cross		Max 1.53	-		Members again	t Diagonal Tens	sile Strength to F.	ailure (Under	·Ultimate Load)		Result of	Design of Coupling (Concrete (Co	nnecting P	art)	
I Indae I and	Beam	0 01 00	Min 1.05	-	-	a) Diagona	ll Tensile	b) Acting Sl	hear	Safety Degree	Compre	ssive Stress of C	Oncrete and Tensile 5	Stress of Re-h	oar (N/mm2	(
Under Live Load	Bottomof	0.21 ~ 0.0	Max 0.86	-	-	Strength t	o Failure	Force		a)/b)	Santion	Tand Can divise	Turn of Bonno	Compressive Streng	th of Concrete	Fensile Stress of	f Re-bar
	Cross Beam		Min 1.77	- /	-	2131	¢N	261 kN		8.16	IIOIIAC		Type of Force	Allowable Value	Result A	lowable Value R	kesult
				Interme	diate Cross	Beam					-		Negative Moment				16.0
	Des ign	1 for Bending	g Moment				Des	sign for Shear	r Force		,	Under Dead	Positive Moment			0001	18.8
Combined Flexura	l Stress and Te	ansile Stress	of PC Strand	(N/mm2)		Mean Shear S	stress of Conc	crete (Volume o	of Diagonal	I Tension Re-bar)	7	Load	Negative Moment	· ·		0.001	28.0
I and Condition	Checking Position	Combined	Flexural Stress	Stress of	FPC Strand	Mean Shear	Stress of	i i	ء -	- 1 -	3		Negative Moment				17.0
	0	Allowable Value	Result	Allowable Val	ne Result	Conc	rete	Min. Diago	har Ke	equired Diagonal	-		Negative Moment		4.91		136.5
During Prestressing	,	•		1440	1250	Allowable	Result	Volume	-Dar	Volume	2	Under Live	Positive Moment	10:00	0.77	160.0	46.3
Immediately after Prestressing	-		-	1295	1149	Value						Load	Negative Moment		4.91		136.5
During DeckConstruction	'		'	1110	1028	τ ^{m<=0.45}	0.61	6.00 cm	5	8.49 cm2			Negative Moment		4.91		136.5
4	Top of Deck	<=10.0	-0.33	'	'	E C		,	(C/10)		-	Under	Negative Moment		4.95		137.6
Under Dead	Top of Cross Beam		156	· ·		Load Co	ndition	A llowable V	fame (a	Recult	2	Temperature	Negative Moment	11.50	4 91	184.0	21.2
	Bottom of Cross Beam	$0.0 \sim 11.0$	4.73	'	·	-				Max -0.02	3	Load	Negative Moment	. <u>.</u>	4.77		132.6
	Tower		Max 0.50	-	•	Under De	ad Load	σI=>-0.8(Min -0.02	Bending	Moment to Fail	lure (Under Ultimate L	(pao			
	1 op of Deck	/=10.0	Min -0.81	•		ThdarT	bad a	12 1-7-1-8		Max -0.19			a) Resisting	b) Acting F	Bending	Cofetti Dao	
	Bottom of		Max 0.34		'					Min -0.19	Section	Type of Force	Failure	Moment to	Failure	and yours	2100
Under Live Load	Deck		Min -0.56				c	, ,		:			(kNm)		1)		
	Top of Cross		Max 1.54			Compressiv	e Strength to	o Failure (Und	der Ultima	te Load)	-	Negative Moment	-6286		-5883		1.07
	DCall	$0.0 \sim 11.0$	3C.1 mM	, 	•	a) Comp Stmnath t	Cessive	b) Acting SI Force	hear	Safety Degree	7	Positive Monieur	1907		0771		5.74 1 -
	Cmss Beam		Min 5.07			1.6141	N	NJ PCS		3.08	,	Negative Moment	-6286		1692-		C1.1
Rending Moment	to Failure (Und	4 or Ulltimate	I nad)			1101		1 TH 1.40	-	0000	,			_	TILOP-		1111
a) Resisting Bend	tine Moment	b) Actin	to Bending	Safetv	Degree	Members again	t Diagonal Tens	sile Strength to F.	ailure (Under	Ultimate Load)							
to Fail	ure	Momen	t to Failure	a)	(q)	Acti	ng Shear For	ce	Arranger	nent of Re-bar							
2575	kNm		1348 kNm		.91		524 k	N	D13	@250mm							

Table 4.6.115 Calculation Results for the Crossbeam and Coupling Concrete (PF7-PF8)

Final Report

b) **PF8-PF9**

The following tables show the calculation results for PF8-PF9.

Main Girder 1300	+ 6								
		r			GIRDER LENGTH(ON	CL) 29850			t
			34	<u>ں</u>	6 7 8	9 10		12 13	14 15
	0 32 5000 1520	=1400 t@320				072=			
240 240					SPAN LENGTH(ON C	L) 28850			
100	5002	500							200
	Result of Design	of Main Girder of Ben	ding Moment			Result of Design	of Main Girder of She	ear Force	
Tensile Stress of PC Strand					Mean Shear Stress of Concr	ete (Volume of Diagor	tal Tension Re-bar)		
Load Condition	Checkin	g Position	Combined Flexur	al Stress (N/mm2)		Mean Shear Stress	of Concrete (N/mm2)	Volume of Diagonal Te	nsion Re-bar (cm2)
Durino Prestressino			Allowable Value 1440	Result 1320	Checking Position	A llowable Value	Result	Min. Diagonal Tension Re-har	Required Diagonal Tension Re-har
Immediately after Prestressing	Cross S	action "8"	1295	1121				Volume	Volume
During Deck Construction	Cross S	action "8"	1100	1025			0.00		1000
Under Live Load	Cross S	ection "8"	1100	944	Cross Section "3"	CC.0=>mt	6/ .0	4.40	8.84
Combined Flexural Stress (Cl	necking for Volume o	f Tension Re-bar)			Diagonal Tensile Stress of C	oncrete			
1101		e	Tensile Stress o	f Re-bar (N/mm2)			e T	Diagonal Tensile Stress c	f Concrete (N/mm2)
Load Condition	Section	Checking Position	Allowable Value	Result	Load Condition	Section	Checking Position	Allowable Value	Result
Immediately after	Cross Section "8"	Top of Girder	-1.5<9c<	0.83			Base of Unner Flange		0.00
Prestressing		Bottom of Girder		13.09			anne saddo to ame		
During Deck Construction	Cross Section "8"	Top of Girder	-1 5<مد<140	5.93			Neutral Axis before		00.0
Homoniculos wood Simina		Bottom of Girder		6.10	Under Dead Load	Cross Section "3"	Composition	м]=>-1 0	2010
		Top of Deck	(Deck<10.0)	2.49			Neutral Axis after	0.1-0-10	00.0
Under Dead Load	Cross Section "8"	Top of Girder	0.0<\cupece<14.0	4.93			Composition		0.00
		Bottom of Girder	0	2.83			Base of Lower Flance		0.00
		Top of Deck	(Deck<10.0)	Max 3.63					00.0
				Min 2.16			Base of Upper Flange		Max -0.21
Under Live Load	Cross Section "8"	Top of Girder		Max 5.89			11		Min 0.00
			-1.5<5c<14.0	Min 4.64			Neutral Axis before		Max -0.16
		Bottom of Girder		Max 0.30	Under Dead Load	Cross Section "3"	Composition	σI=>-2.0	Min 0.00
				0C.C IIIM			Neutral Axis after		NIAX -0.20
		Top of Deck	(Deck<11.5)	Max 4.50			composition		Min 0.00
		4		Min 3.02			Base of Lower Flange		Max -0.10
		Top of Girder		Max 5.51				-	Min 0.00
Under Temperature Load	Cross Section "8"	terms to do t	-2.0<0c<16.10	Min 4.06	Web Concrete against Com	pressive Strength to F	ailure (Under Ultimate]	Load)	
		Bottom of Girder		Max -0.28			a) Comressive		Safety Degree
				Min 3.00	Checking Po	sition	Strength to Failure	b) Acting Shear Force	a)/b)
		Ter	ision Re-bar Volume (c	m2)		-	0		
		Minimum	3.45 R	tequired 0.46	Cross Sectio	n "3"	3054 kN	1662 kN	1.84
Bending Moment to Failure	Under Ultimate Load	(Members against Diagonal	Fensile Strength to Fai	ilure (Under Ultimate L	oad)	
Checking Doc	rition	a) Resisting Bending	b) Acting Bending	Safety Degree	Checking Position	Acting SI	tear Force	Arrangement	of Re-bar
A SIMPANA	IIODI	Moment to Failure	Moment to Failure	a)/b)	Cross Section "3"	1662	kN	D13@12	5mm
Cross Section	n "8" n	16130 kNm	12061 kNm	1.34					

Cross Beam and Co	upling Conc	rete (Conne	ecting Part	\$			//				-	2 3	5	- -	-5	3
								Res	ult of Design of Cr	oss Beam						
				Cross	Beamat E	nd of Ma	in Girder						Cross Beam at Con	inection Part		
	Design for E	Bending Mc	oment (N/m	un2)				De	sign for Shear Forc	e		I and Co		Tensile Stress of	of PC Strand	(N/mm2)
Load Condition	hecking Position	Combined	Flexural Stre	ess Stre	ss of PC	Strand	Mean Shear:	Stress of C	oncrete (N/mm2)			TOAU CO	Полини	Allowable Value	Re	sult
		Allowable Value	Result	Allow	able Value	Result	Checking P	osition	Mean Shear Shess of Concrete	Diagonal Tensile Stress	of Concrete	During Pro	sstressing	1440	_	1250
During Prestressing		•	•	-	440				Allowable Value Result	Allowable Value	Result	Immediately aft	er Prestressing	1295		1151
Immediately after Prestressing		'	•	+	295		Under Dea	id Load	τ _m <=0.45	al=>-0.80		Under Effective P	restressing Force	1110		1050
During Deck Construction	op of Cross		'	-		-	Under LIV. Web Concrete ag.	e Load	sive Strength to Failure (σ1=>-1./0 Under Ultimate Los	- (pi	Load Co	ndition	Allowable Value	rress of Concr	ere (N/mm2) sult
Under Dead	Beam	0.0~12.0		_			a) Compre	essive	b) Acting Shear	Safety Deg	gree	Under Effective P	restressing Force	1.50		1.71
Load	Bottom of Cross Beam		ı				Strength to - kl	e Failure N	Force - kN	a)/b)						
L	op of Cross		Max				Members against	Diagonal Ten	sile Strength to Failure (I	Under Ultimate Loa	(p	Result	of Design of Coupling C	oncrete (Connecti	ng Part)	
Under Live Load	Beam	$0.0 \sim 12.0$	Min	\parallel			a) Diagonal	Tensile	b) Acting Shear	Safety De	gree Con	pressive Stress of	Concrete and Tensile St	tress of Re-bar (N/	mm2)	
	Bottom of		Max	+	,		Strength to	Failure	Force	a)/b)	Sect	ion Load Conditic	n Type of Force	Compressive Strength of Conc	Me Tensile St	ress of Re-bar
_	cross beam		Min	_	-	-	- k	z	- kN	' 				Allowable Value Resu	It Allowable Val	ne Result
				In	termediate	e Cross B	team					_	Negative Moment	'		0.0
	Design	for Bendin	g Moment					De	sign for Shear Forc	e	, 	Under Dead	Positive Moment	'	1000	19.4
Combined Flexural 5	Stress and Te.	insile Stress	of PC Strai	nd (N/m	m2)		Mean Shear St	tress of Con	crete (Volume of Diag	gonal T ension Re	>-bar) ⁴	Load	Negative Moment	'	0.001	0.0
I and Condition	becking Position	Combined	Flexural Stre	ess Stre	ss of PC	Strand	Mean Shear	Stress of	-				Negative Moment	'		0.0
		Allowable Value	Result	Allow	able Value	Result	Concre	ete	Min. Diagonal Tancion Re-har	Kequired Dis Tension Re	agonal 1		Negative Moment		34	92.7
During Prestressing	,	'		_	440	1250	Allowable	Result	Volume	Volume	2-Ual	Under Live	Positive Moment	10.00	94	57.0
Immediately after Prestressing	,	·	'	-	295	1149	Value					Foad	Negative Moment	3.	7	92.7
During Deck Construction		'	'			8701	tm<=0.45	90.0	6.00 cm2	1.45 CI	2		Negative Moment	Ϋ́,	2	1.26
Under Dead	op of Deck	<=10.0		0.25			Diago nal Ter	Jsile Stress	of Concrete (N/mn	(5)		Under	Negative Moment Positive Moment	~	48	89.1
Load T ₆	p ofCross Beam	011		1.56			Load Con	dition	Allowable Value	Result		Temperature	Negative Moment	11.50 3.	34 184.0	92.7
<u> </u>	tiom of Cross Beam	0.11 ~ 0.0	4	4.51			Under Dear	d Load	dI=>-0 80	Мах	-0.01	FOR	Negative Moment	3	21	89.2
	Ton of Dock		Max (0.52	-	,			000-1 10	Min	-0.01 Ben	ding Moment to F	ailure (Under Ultimate Lc	oad)		
	Top of Deck	<=10.0	Min -(0.78			UnderLive	eLoad	dl=>-1.70	Max	-0.16		a) Resisting Bending Moment to	b) Acting Bendin	g Safety	Deame
	Bottomof		Max (0.36	,	-		-		Min	-0.16 Seci	ion Type of Fore	Failure	Moment to Failur	e and a)	/b)
Under Live Load	Deck		Min -(0.54	,								(kNm)	(kNm)		
L	op of Cross		Max	1.54	-	,	Compressive	: Strength t	o Failure (Under Ult	timate Load)	-	Negative Momer	-6286	-43	90	1.46
	Beam	$0.0 \sim 11.0$	Min	1.58	-	•	a) Compre	essive	b) Acting Shear	Safety De	gree 2	Positive Mome	11 4802	15	40	3.12
	Bottom of		Max	2.54	,		Strength to	Failure	Force	a)/b)		Negative Momer	-6286	4	68	1.47
;	Cross beam		Min	5.88			1615 k	z	483 kN	3.34		Negative Momer		-43	60	1.46
Bending Moment to a) Besisting Bendin	Failure (Und	der Ultimate	: Load)		afatir Dao	001	Members against	Diagonal Ten	sile Strength to Failure (I	Juder Ultimate Loa						
to Failur	e e	Momen	it to Failure		a)/b)	2	Actin	g Shear Fo.	rce Arra	ngement of Re-	bar					
2575 k	Nm		1292 kNn		1.99			483 1	Ņ	D13@250mm						

Table 4 6 117	Calculation Results for the Crossbeam	n and Coupling Concrete (PE8-PE9)
		in and Coupling Concrete (i 1 0-i 1 3)

c) **PF9-PF10**

The following tables show the calculation results for PF9-PF10.

Main Girder 1300	1								
120 1060 1	8				GIRDER LENGTH(ON C	L) 29850			
240			3 4	<u>۔</u> ی	9	10		1213	14 15
0000	5000 5000 1520	=1400 †@320				=240			
240 240	<u></u>				SPAN LENGTH(ON CL) 28850			
	5002	200							200
	Result of Design	of Main Girder of Bene	ding Moment			Result of Design	of Main Girder of She	ar Force	
ensile Stress of PC Strand					Mean Shear Stress of Concre	te (Volume of Diagon	ial Tension Re-bar)		
I oad Condition	Checking	o Position	Combined Flexura	ll Stress (N/mm2)		Mean Shear Stress of	of Concrete (N/mm2)	Volume of Diagonal Ter	tsion Re-bar (cm2)
		0	Allowable Value	Result	Checking Position	•		Min. Diagonal	Required Diagonal
During Prestressing			1440	1320	5	Allowable Value	Result	Tension Re-bar	Tension Re-bar
mmediately after Prestressing	Cross St	ection "8"	1295	1121				Volume	Volume
During Deck Construction	Cross St	ection "8"	1100	1025	Cross Section "3"	700 55	0.75	440	8.75
Under Live Load	Cross St	ection "8"	1100	946	C 11011225 55012	CC:0-~III	<i>C</i> ''0		67.0
Combined Flexural Stress (Cl	hecking for Volume o	fTension Re-bar)			Diagonal Tensile Stress of C	oncrete			
I oad Condition	Section	Checking Desition	Tensile Stress of	Re-bar (N/mm2)	Load Condition	Saction	Checking Dosition	Diagonal Tensile Stress o	f Concrete (N/mm2)
EDdd Collandoll	IIOIDOC		Allowable Value	Result		OCCUOII		Allowable Value	Result
Immediately after	Cmss Section "8"	Top of Girder	-1 5 <acure< td=""><td>0.83</td><td></td><td></td><td>Base of Unner Flange</td><td></td><td>000</td></acure<>	0.83			Base of Unner Flange		000
Prestressing		Bottom of Girder		13.09			Sum traddo to ome		
During Deck Construction	Cmss Section "8"	Top of Girder	-1 5<\cccl40	5.93			Neutral Axis before		000
		Bottom of Girder	2	6.10	Under Dead Load	Cross Section "3"	Composition	μ]=>-10	
		Top of Deck	(Deck<10.0)	2.60		C 1100000 00010	Neutral Axis after	0.110	000
Under Dead Load	Cross Section "8"	Top of Girder	0.0//14.0	5.01			Composition		0.00
		Bottom of Girder	0.41~20~0.0	2.62			Bass of Lawser Flow as		000
		E		Max 3.74			base of Lower Flange		0.00
		Top of Deck	(Deck>10:0)	Min 2.25					Max -0.17
Indae Lina Lond	Current Continue 101	Ton of Gudor		Max 5.98			Dase of Upper Flange		Min 0.00
Olluci Live Luau	CIUSS Section 0		15/140	Min 4.72			Neutral Axis before		Max -0.18
		Bouton of Circles	0:41/30/01-	Max 0.09	Hadan Daad Laad	Curron Constinue 11211	Composition	0 0 ~ 1-	Min 0.00
				Min 3.40	Olluce Deau Loau	C IIOSS Section 3	Neutral Axis after	0.7-~-10	Max -0.18
		To a of Deals	Desk(11.6)	Max 4.61			Composition		Min 0.00
		10 pot Deck	(CIII STORY)	Min 3.12			13 - 14 - U		Max -0.15
		Ton of Gudon		Max 5.39			Dase of Lower Flange		Min 0.00
I h der Temnerature I oad	Cruse Section "8"	innin to do t	-2 06mc<16 10	Min 4.13	Web Concrete against Comp	ressive Strength to Fi	ailure (Under Ultimate I	Load)	
		Bottom of Girder	01:01-00-0:7-	Max -0.48	:		a) Compressive	1	Safety Degree
				Min 2.83	Checking Pos	lion	Strength to Failure	b) Acting Shear Force	a)/b)
		Ten	ision Re-bar Volume (cr	n2)					
		Minimum	5.74 R	equired 1.33	Cross Section	1 "3"	3057 kN	1618 kN	1.89
Bending Moment to Failure (Under Ultimate Load				Members against Diagonal T	ensile Strength to Fai	ilure (Under Ultimate L	oad)	
Checking Pos	ition	a) Resisting Bending	b) Acting Bending	Safety Degree	Checking Position	Acting SI	near Force	Arrangement	of Re-bar
		Moment to Failure	Moment to Failure	a)/b)	Cross Section "3"	1618	kN	D13@12	Jum
Cross Section	"8" u	16130 kNm	12287 kNm	1.31					

ross beam and	conbing cond	rete (Conn	ecting Part)			//				-	2 3			~
							=					932		[
	· · · ·							· · · · ·	320320 1000	 	•••	0400 1344	006L	•••
	PF.9							Щ. Ц. Ц.	452	950 2		240 300 300 300 300 300 300 300 300 40		•
							Result of Desi	ign of Cross	Beam					
			0	moss Beam	n at End of N	Aain Girder						Cross Beam at Co.	nnection Part	
	Design for E	Bending Mo	oment (N/mm	(2)			Design for Sh	hear Force			Load Cone	lition	Tensile Stress o	ofPC
ad Condition	Checking Position	Combined	Flexural Stress	Stress o	FPC Strand	Mean Shear Stress	of Concrete (N	(/mm2)	and Tane its States of Communi-		During Base	and the second	Allowable Value	
ring Prestressing		Allowaute value	- Incoult	1440	- ICSUI	Checking Positio	n Allowable Value	Result Allow	vable Value Result		During rics mediately after	ressing Prestressinσ	1295	+
diately after Prestnessing				1295		Under Dead Load	P	al		Cne	ler Effective Pres	stressing Force	1110	┢
ing Deck Construction			,	1110		Under Live Load	tm<=0.45	α <u>Γ</u>	=>-1.70 -		Load Cone	lition	Mean Compressive S	tress
Under Dead	Top of Cross Beam		'	,		Web Concrete against Co	ompressive Strength b) Acting	t to Failure (Unde 7 Shear	r Ultimate Load) Safety Degree	Cne	ler Effective Pres	stressing Force	Allowable Value 1.50	
Load	Bottom of Cross Beam	0.0~12.0	-			Strength to Failur - kN	re For	ce KN	a)/b)	Ļ				
	Top of Cross		Max	•	•	Members against Diagon	al Tensile Strength t	to Failure (Under	Ultimate Load)		Result of	Design of Coupling (Concrete (Connecti	ing
hoo I on I and	Beam	0.01 0.0	Min	•	-	a) Diagonal Tensi	ile b) Acting	g Shear	Safety Degree	Comprei	ssive Stress of C	oncrete and Tensile S	Stress of Re-bar (N/	'nm2
	Bottomof	0.71 ~ 0.0	Max	-	,	Strength to Failur	re For	ce	a)/b)	Section	Load Condition	Type of Force	Compressive Strength of Conce	3
	Cross beam		Min	'		- KN	'	kΝ					Allowable Value Kesu	2
				Interme	ediate Cross	Beam				-		Negative Moment	'	
	Design	for Bendin	g Moment				Design for Sh	hear Force		, ,	Under Dead	Positive Moment		-
nbined Flexura.	I Stress and Ter	nsile Stress	s of PC Strand	(N/mm2)		Mean Shear Stress of	f Concrete (Volur	me of Diagonal	Tension Re-bar)	1	Load	Negative Moment	'	
ad Condition	Checking Position	Combined	Flexural Stress	Stress of	f PC Strand	Mean Shear Stress	t of Min Di-	-		9		Negative Moment	•	-
		Allowable Vahie	Result	Allowable Val	he Result	Concrete	Tension	agonal K Re-har	equired Diagonal Tension Re-har	-		Negative Moment	3.	8
ing Prestressing		-	•	1440	1250	Allowable Resul	It Volui	me	Volume	2	Under Live	Positive Moment	10.00	8
diately after Prestnessing	-			1295	1149	Value		_			Load	Negative Moment		8
ing Deck Construction		-	-	1110	1028	$\tau_{m} \leq = 0.45$ (0.54 6.00	cm2	7.46 cm2	с ,		Negative Moment	3.	8
- - -	Top of Deck	<=10.0	-0.2	-	'	E	U.	(C		-	Under	Negative Moment	~ -	818
Load	Top ofCross Beam		1.51	· ·	, ,	Luagonal Tensue S Toad Condition	Allowable	e Value	Result	2	Temperature	Positive Moment	11.50	
	Bottom of Cross Beam	$0.0 \sim 11.0$	4.5	-	,				Max -0.01	3	Load	Negative Moment		4
	- - -		Max 0.5.	2 -	•	Under Dead Loa	d σ⊫>4	0.80	Min -0.01	Bending	, Moment to Fail	ure (Under Ultimate L	(pad	
	1 op of Deck	-10.0	Min -0.78	- 8		Loop Line Land		02.1	Max -0.16			a) Resisting	b) Acting Bendin	50
	Bottom of Deck	0.01->	Max 0.3	- 9					Min -0.16	Section	Type of Force	Bending Moment to Failure	Moment to Failur (kNm)	2
ler Live Load	Ton of Cross		Max 1.5-	-		Compressive Stren.	gth to Failure (L	Under Ultimat	te Load)	-	Negative Moment	(kNm) -6286	-46	83
	Beam	011 00	Min 1.5	-		a) Compressive	b) Acting	g Shear	Safety Degree	,	Positive Moment	4802	12	2
	Bottomof	0.0~ 11.0	Max 2.5.	- 5	•	Strength to Failur	re For	ce	a)/b)	7	Negative Moment	2013	-46	8
	Cross Beam		Min 5.80	- 8	-	1615 kN	483	kN	3.34	3	Negative Moment	0070-	-49	07
ding Moment	to Failure (Und	er Ultimate	: Load)											
Resisting Ben to Failt	ding Moment ure	b) Actu Momer	ng Bending nt to Failure	Safety a)	/ Degree / b)	Members against Diagon Acting Shea	al Tensile Strength 1 ar Force	to Falure (Under	Ultimate Load) nent of Re-bar					
2575	kNm		1291 kNm		66	7	483 kN	D13	@250mm					

22.6 0.0

100.0

91.7 91.7 90.7 94.7 91.7

160.0

2

184.0

Safety Degree a) / b)

.16

Tensile Stress of Re-bar Allowable Value Result

Part)

Source: JICA Study Team

125(050

f Concrete (N/m

Result

C Strand (N/mm2)

Result

_____ Ϊŀ

950

• • .

. .

D13@250mm

Acting Shear Force 483 kN

Safety Degree a)/b) 1.99

b) Acting Bending Moment to Failure 1291 kNm

2575 kNm

3.80

d) PF10-PF11

The following tables show the calculation results for PF10-PF11.

0L2/47	4 5 90 5 300 775 7	3 2 300 00	1 1100 280	1100 00	2 3		47	4 5 00/4 75 540 1015	3 2 540	1 1100 325	1100 30	2 540				
		Deer		Jildel					Dec		эран					
					Result of I	Design of P	C Plate	(Unit: N/mi	n2)							
		Deck	c at End of C	arder					Dec	k at Center S	span		0D 1			
Load	Condition	Checking	Strength o	f Concrete	Stress o	f Re-bar	Lood	Condition	Checking	Strength o	f Concrete	Stress o	f Re-bar			
Load	condition	Position	Allowable	Result	Allowable Value	Result	LUau	condition	Position	Allowable	Result	Allowable Value	Result			
During	Prestressing	-	-	-	1305	1225	During	Prestressing	-	-	-	1305	1225			
Immed	iately after	Top of PC Plate		9.17			Immed	iately after	Top of PC Plate		9.17					
Pres	tressing	Bottom of PC Plate	-1.5~19.0	8.34	1190	1131	Pres	tressing	Bottom of PC Plate	-1.5~19.0	8.34	1190	1131			
During Do	eck Construction	Top of PC Plate		10.58			During D	eck Construction	Top of PC Plate		10.59	1000				
(Under Effe	ctive Prestressing)	Bottom of PC Plate	0.0~15.0	3.69	1020	922	(Under Effe	ective Prestressing)	Bottom of PC Plate	0.0~15.0	3.70	1020	923			
				•	Docult of	Docian of	Dock (I	nit: N/mm)		1					
					De	ck betweer	Main (virders	-)							
	r	Deck at End of (Girder (Tran	verse Direc	tion)			silders	Deck at Center	Span (Trany	verse Direct	ion)				
	Load	Checking		Combined F	lexural Stres	s		Load	Checking		Combined F	exural Stres	s			
Section	Condition	Position	Allowab	le Value	Res	sult	Section	Condition	Position	Allowab	le Value	Res	sult			
		Top of RC Deck				3.53			Top of RC Deck				4.23			
	Under	Bottom of RC Deck	11	.0		-0.81		Under	BottomofRC Deck	11	.0		-0.97			
1	Live Load	Top pfPC Plate				8.35	1	Live Load	Top pfPC Plate				8.17			
		Bottom of PC Plate	0.0~	-15.0		1.31			Bottom of PC Plate	0.0~	15.0		0.58			
			Strength o	fConcrete	Stress o	f Re-bar				Strength o	f Concrete	Stress o	f Re-bar			
Section	Load	Type of Force	Allowable	Derrik	Allowable	D 14	Section	Load	Force	Allowable	Derrik	Allowable	Derrik			
			Value	Result	Value	Result		Condition	Toree	Value	Result	Value	Result			
2	Under	Positive Moment		3.90		60.6	2	Under	Positive Moment		6.71		104.3			
	Live Load	Negative Moment	10.0	3.79	140.0	79.3		Live Load	Negative Moment	10.0	3.27	140.0	68.4			
3		Negative Moment		2.58		74.4	3		Negative Moment		2.56		78.6			
	De	eck at End of G	irder (Longi	tudinal Dire	ction)			E	Deck at Center S	pan (Longit	udinal Dire	ction)				
	Load Con	dition	Strength o	f Concrete	Stress o	f Re-bar		Lond Con	dition	Strength o	f Concrete	Stress o	f Re-bar			
	Load Collo	anion	Allowable	Result	Allowable Value	Result		Loau Con	dition	Allowable	Result	Allowable Value	Result			
	Under Live	e Load	10.0	8.66	140.0	100.2		Under Liv	e Load	10.0	9.96	140.0	115.3			
					De	ck outside	of Main	Girder								
	Ι	Deck at End of	Girder (Tran	verse Direc	tion)				Deck at Center	Span (Tran	verse Direct	ion)				
			Strength o	fConcrete	Stress o	f Re-bar				Strength o	f Concrete	Stress o	of Re-bar			
Section	Load	Condition	Allowable	Result	Allowable	Result	Section	Load	Condition	Allowable	Result	Allowable	Result			
	Under	Deedleed	Value	Tubun	Value			Under	Deedleed	Value	Tusun	Value	Result			
	Under Dead Lo		-	-	100.0	5.4		Under	Line Load	-	-	100.0	5.4			
4	Under C	Live Load	10.0	0.21	140.0	5.4	4	Under Live Load		10.0	0.21	140.0	5.4			
4	Under Wind L	onison Load	15.0	2.04	300.0	53.5	4	Under Wind I	ord (with Live Load)	15.0	2.04	175.0	53.5			
	Under Wind L	ad (w/o Live Load)	12.3	0.35	1/3.0	9.2	1	Under Wind I	oad (w/o Live Load)	12.3	0.35	1/3.0	9.2			
	Under	Dead Load	12.5	0.30	1/5.0	10.0		Under	Deed Load	12.5	0.50	1/5.0	13.0			
	Under	Live Load	- 10.0	- 114	140.0	22 0	1	Under	Live Load	-	- 2 10	140.0	13.8 64.6			
5	Under C	ollison Load	15.0	2 50	300.0	52.0 74 7	5	Under	follison Load	15.0	2.10	300.0	102.5			
	Under Wind L	pad (with Live Load)	12.5	1.59	175.0	36.7	Ĩ	Under Wind I	.oad (with Live Load)	12.5	2 20	175.0	67.6			
	Under Wind Lo	oad (w/o Live Load)	12.5	0.50	175.0	16.0	1	Under Wind L	oad (w/o Live Load)	12.5	0.65	175.0	19.0			
	L De	eck at End of G	irder (Longi	tudinal Dire	ction)	10.9		Γ	Deck at Center S	pan (Longit	udinal Dire	ction)	17.5			
			Strength o	fConcrete	Stress o	f Re-bar				Strength o	fConcrete	Stress o	f Re-bar			
	Load Con	dition	Allowable	p 1	Allowable	D 1.		Load Con	dition	Allowable	D 1	Allowable	D L			
			Value	Kesult	Value	Kesult				Value	Kesult	Value	Kesult			
	Under Live	e Load	10.0	1.62	140.0	58.5		Under Liv	e Load	10.0	2.05	140.0	74.2			

Final Report

		$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Cross Beamat Connection Part	Tensile Stress of PC Strand (N/mm2)	Load Condition Allowable Value Result	Ouring Prestressing 1440 -	esult Immediately after Prestressing 1295 -	0.00 Under Effective Prestressing Force 1110 -	-0.01 Load Condition	tree Under Effective Prestressing Force 1.50 -		Result of Design of Coupling Concrete (Connecting Part)	the Compressive Stress of Concrete and Tensile Stress of Re-bar (Nmm2)	Sertion I and Foundation Turns of Lonna Compassive Stags of Constants Tensile Stress of Rebar	Albwabk Value Result Albwabk Value Result Albwabk Value Result	1 Negative Moment -	, Under Dead Positive Moment -	-bar) ² Load Negative Moment - 100.0 -	3 Negative Moment -	gonal 1 Negative Moment -	2 Under Live Positive Moment 10.00 - 160.0	2 Load Negative Moment -	1 Negative Moment -	2 Under Positive Moment 11 50 - 184.0	- Lond Negative Moment - 107.0 -	-0.02 3 Negative Moment -	-0.02 Bending Moment to Failure (Under Ultimate Load)	-0.17 a)Resisting b)Acting Bending Safety Degree -0.17 Section Type of Force Bending Moment to Moment to Failure Safety Degree	Failure (kNm) a)/ v)	I Negative Moment	ree Positive Moment	Z Negative Moment	3 Negative Moment			Ī
		2100 950 200 950 730 730 730 730 730 730 730 730 730 73		Cross Beamat Connection Part	Tensile Str	Load Condition Allowable	During Prestressing 1440	rediately after Prestressing 1295	Effective Prestressing Force 1110	Load Condition	Effective Prestressing Force 1.50		Result of Design of Coupling Concrete (Con	ve Stress of Concrete and Tensile Stress of Re-ba	od Condition Tuna of Lonna	au Collumbil 1 ypc OI 1 Olco Albwabk Value]	Negative Moment	Jnder Dead Positive Moment	Load Negative Moment	Negative Moment	Negative Moment	Under Live Positive Moment 10.00	Load Negative Moment	Negative Moment	Under Positive Moment 11 50	Load Negative Moment	Negative Moment	foment to Failure (Under Ultimate Load)	a) Resisting b) Acting Bending Moment to P	Failure (kNm) (kNm)	egative Moment	sitive Moment -	egative Moment	egative Moment			
	1							Imi	Under		Under			Compressi	Section 1 o		-	,	7	3		5		-	- -	4	3	Bending N	Section T		z -	, Po	V V	3 N			
		PF.11	ss Beam				Diagonal Tensile Stress of Concrete	Allowable Value Result	σI=>-0.80 0.00	σI=>-1.70 -0.01	nder Ultimate Load) Safety Degree	a)/b) 21.77	der Ultimate Load)	Safety Degree	a)/b)	8.16			nal Tension Re-bar)		Kequired Diagonal Tangian Da har	Volume	7 84 cm2)	Result	Max -0.02	Min -0.02	Max -0.17 Min -0.17		nate Load)	Safety Degree	a)/b)	3.24		ider Ultimate Load)	
			ult of Design of Cro		sign for Shear Force	on crete (N/mm2)	dean Shear Stress of Concrete	Ilowable Value Result	0.08		b) Acting Shear	Force 261 kN	sile Strength to Failure (Un	b) Acting Shear	Force	261 kN		sign for Shear Force	stete (Volume of Diago		Min. Diagonal Tancion De her	Volume	6 00 cm2		of Concrete (N/mm2	Allowable Value	σE>-0.80		σ=>-1.70		o Failure (Under Ultir	b) Acting Shear	Force	498 kN		sile Strength to Failure (Un	
//			Res	ı Girder	De	Aean Shear Stress of C	e	Checking Position	Under Dead Load	Under Live Load	veb Concrete against Compres a) Compressive	Strength to Failure	fembers against Diagonal Ten	a) Diagonal Tensile	Strength to Failure	2131 kN	am	De	Acan Shear Stress of Con-	Aean Shear Stress of	Concrete	Allowable Result	Value 0.57		Diagonal Tensile Stress	Load Condition	Under Dead Load		Under Live Load		Ompressive Strength t	a) Compressive	Strength to Failure	1615 kN		1embers against Diagonal Ten	11 12 12
				End of Mair		Strand	Result	1250	1151	1058	-		-				te Cross Be		4	Strand	Result	1250 /	1149		-			•		.				-		gree	
//				s Beam at]		tress of PC	lowable Value	1440	1295	1110			 	 	•	,	Intermedia		(mm2)	tress of PC	lowable Value	1440	1110			-	-			-				-		Safety De	a) / P.
cting Part)				Cros	nent (N/mm2)	lexural Stress S	Result A				1.12	1.49	Max 1.53	Min 1.05	Max 0.86	Min 1.77		Moment	of PC Strand (N.	lexural Stress S	Result A			-0.29	-0.20	1.56	4.62	Max 0.52	Min -0.83 Max 0.36	Min -0.57	Max 1.54	Min 1.58	Max 2.55	Min 6.00	(pad)	3 Bending	A. Tailone
ete (Conner					ending Mor	Combined F	Allowable Value	-			0.01			- 00				for Bending	isile Stress	Combined F	Allowable Value	,			<= 10:0	0.0	0.11 ~ U.U		<= 10.0			0.11.00			er Ultimate I	b) Acting	Manual
Coupling Concr		PF.10			Design for B	Checking Desition	Checking rosition		-		Top of Cross Beam	Bottomof Cross Beam	Top of Cross	Beam	Bottom of	Cross Beam		Design 1	l Stress and Ten	Checking Position	~			Top of Deck	Bottom of Deck	Top ofCross Beam	Bottom of Cross Beam	Ton of Dack	Bottom of	Deck	Top of Cross	Beam	Bottomof	Cross Beam	to Failure (Und:	ling Moment	-
Cross Beam and C							Load Condition	During Prestressing	Immediately a feer Prestrus sing	During DeckConstruction	Under Dead	Load		1 1 1 1 1 1 1 -	Under Live Load				Combined Flexural	I and Condition		During Prestressing	Immediately after Prestassing During DeckConstruction		Under Dead	Load			A	Tt- Jan Line Lond	Under Live Loau				Bending Moment	a) Resisting Benc	to Ball

Table 4.6.122	Calculation Results for the	Crossbeam and	Coupling Concrete	(PF10-PF11)
---------------	-----------------------------	---------------	--------------------------	-------------
4) **PF14-AF2**

Figure 4.6.42 and Figure 4.6.43 show the profile, plan, and cross section of PF14-AF2.

Figure 4.6.42 Profile and Plan (PF14-AF2)

Source: JICA Study Team

Figure 4.6.43 Cross Section (PF14-AF2)

a) PF14-PF15

The following tables show the calculation results for PF14-PF15.

47	4 5 9014 75 300 775 7	3 2 300 00 Deck	1 1100 280 cat End of C	 1100 00	2 3		4	4 5 0LE 75 540 1015	3 2 540 220	1100 32 k at Center S	1 1 1100 280 Span	2	3
					DLL	· · · · · · · · · · · · · · · · · · ·	CDL	(TI */ NI/	2)		Spuil		
		Deal	+ E	Xudan.	Result of I	Jesign of P	C Plate	(Unit: N/mr	n2)	la et Comton (
		Deck		nrder	<i>C</i> (CD 1			Dec		span	C.	CD 1
Load	Condition	Checking Position	Allowable Value	Result	Allowable Value	Result	Load	Condition	Checking Position	Allowable Value	Result	Allowable Value	Result
During	Prestressing	-	-	-	1305	1225	During	Prestressing	-	-	-	1305	1225
Immed	iately after	Top of PC Plate	1.5.10.0	9.17	1100		Immed	iately after	Top of PC Plate	1.5.10.0	9.17	1100	
Pres	tressing	Bottom of PC Plate	-1.5~19.0	8.34	1190	1131	Pres	tressing	BottomofPC Plate	-1.5~19.0	8.34	1190	1131
During Do (Under Effe	eck Construction ective Prestressing)	Top of PC Plate Bottom of PC Plate	0.0~15.0	10.58 3.69	1020	922	During Do (Under Effe	eck Construction ective Prestressing)	Top of PC Plate Bottomof PC Plate	0.0~15.0	10.59 3.70	1020	923
					Result of	Design of	Deck (U	nit: N/mm2	3				
					De	ck betweer	n Main C	irders	,				
	Ι	Deck at End of (Girder (Tran	verse Direct	tion)				Deck at Center	Span (Tran	verse Direct	ion)	
Section	Load	Checking	0	Combined Fl	lexural Stres	s	Santian	Load	Checking	0	Combined F	lexural Stres	s
Section	Condition	Position	Allowab	le Value	Res	sult	Section	Condition	Position	Allowab	le Value	Res	ult
		Top of RC Deck	11	0		3.53			Top of RC Deck	11			4.23
1	Under	Bottom of RC Deck		.0		-0.81	1	Under	BottomofRC Deck	11	1.0		-0.97
1	Live Load	Top pfPC Plate	0.0.	15.0		8.35	1	Live Load	Top pfPC Plate	0.0-	15.0		8.17
		Bottom of PC Plate	0.0 ~	-15.0		1.31			BottomofPC Plate	0.0~	-15.0		0.58
	Load	Type of	Strength o	f Concrete	Stress o	f Re-bar	a .:	Load	Type of	Strength o	f Concrete	Stress o	f Re-bar
Section	Condition	Force	Allowable Value	Result	Allowable Value	Result	Section	Condition	Force	Allowable Value	Result	Allowable Value	Result
2	Under	Positive Moment	10.0	3.90		60.6	2	Under	Positive Moment	10.0	6.71		104.3
	Live Load	Negative Moment	10.0	3.79	140.0	79.3		Live Load	Negative Moment	10.0	3.27	140.0	68.4
	D	Negative Moment	irder (Longi	2.58 tudinal Dira	ction)	/4.4			Negative Moment	pan (Longit	2.50	ation)	/8.6
			Strength o	f Concrete	Stress o	f Re-bar		D	eek at center 5	Strength o	of Concrete	Stress o	f Re-bar
	Load Cone	dition	Allowable		Allowable			Load Con	dition	Allowable		Allowable	
			Value	Result	Value	Result				Value	Result	Value	Result
	Under Live	e Load	10.0	8.66	140.0	100.2		Under Live	e Load	10.0	9.96	140.0	115.3
		=	~		De	ck outside	of Main	Girder		~ -		• .	
	I	Deck at End of	urder (Tran	verse Direc	tion)	CD 1		1	Deck at Center	Span (Tran	verse Direct	10n)	CD 1
Section	Load	Condition	Allowable	Concrete	Allowable	i Ke-bar	Section	Load	Condition	Strength o	Concrete	Allowable	i Ke-bar
			Value	Result	Value	Result				Value	Result	Value	Result
	Under	Dead Load	-	-	100.0	5.4		Under	Dead Load	-	-	100.0	5.4
	Under	Live Load	10.0	0.21	140.0	5.4		Under	Live Load	10.0	0.21	140.0	5.4
4	Under C	ollison Load	15.0	2.04	300.0	53.5	4	Under C	ollison Load	15.0	2.04	300.0	53.5
	Under Wind L	oad (with Live Load)	12.5	0.35	175.0	9.2		Under Wind L	oad (with Live Load)	12.5	0.35	175.0	9.2
	Under Wind Lo	oad (w/o Live Load)	12.5	0.50	175.0	13.0		Under Wind L	oad (w/o Live Load)	12.5	0.50	175.0	13.0
	Under	Dead Load	-	-	100.0	10.2		Under	Dead Load	-	-	100.0	13.8
	Under	Live Load	10.0	1.14	140.0	32.8	_	Under	Live Load	10.0	2.10	140.0	64.6
5	Under C	ollison Load	15.0	2.59	300.0	74.7	5	Under C	ollison Load	15.0	3.33	300.0	102.5
	Under Wind L	oad (with Live Load)	12.5	1.26	175.0	36.2		Under Wind L	oad (with Live Load)	12.5	2.20	175.0	67.6
		valu (W/O LIVE LOAd)	12.5	0.59	175.0	16.9		Under Wind L	baals at Cr. 1	12.5	0.65	175.0	19.9
	De	ск at End of G	rder (Longr	f Const	ction)	fDo k		D	eck at Center S	pan (Longit	f Con-	store start	fDa h-r
	Load Con	lition	Allowebb	Concrete	Alloweble	i ke-bar		Load Con	dition	Allowebb	Concrete	Allowebb	r Ke-bar
	Loud Colle		Value	Result	Value	Result		Loud Coll		Value	Result	Value	Result
	Under Live	e Load	10.0	1.62	140.0	58.5		Under Liv	e Load	10.0	2.05	140.0	74.2

Main Girder 1300	Ŧ								
120 1060 1	8				GIRDER LENGTH(ON C	L) 29850			ī
	500		3.4 	<u>س</u> ى	6 7 8 6	6 - 10	11	12 13 	14 15
540 540	1020 522 00 10	00				01/			
006	1120					- Z=			
					SPAN LENGTH(ON CL) 28850		_	
	5002	500							200
	Result of Design	of Main Grder of Ben	ding Moment			Result of Design	1 of Main Girder of Sh	ear Force	
Tensile Stress of PC Strand	D		a		Mean Shear Stress of Concr	ete (Volume of Diagor	nal Tension Re-bar)		
I oad Condition	Checkin	o Position	Combined Flexur	al Stress (N/mm2)		Mean Shear Stress	of Concrete (N/mm2)	Volume of Diagonal Te	nsion Re-bar (cm2)
		HOTICO 1 9	Allowable Value	Result	Checking Position	:		Min. Diagonal	Required Diagona
During Prestressing	0	101	1440	1300		Allowable value	Kesult	Lension Ke-bar Volume	I ension Ke-bar Volume
Immediately atter Prestressing	Cross S	sction 8	6671	CC11 C201					A OILING
Uuring Deck Construction	Cross S	setion '8"	1100	2001	Cross Section "3"	τm<=0.55	1.28	4.40	10.77
Combined Flevural Stress (C)	o en Volume o	f Tension Re-har)	0011	016	Dia aon al Tensile Stress of (oncrete			
			Tensile Stress of	Re-har (N/mm2)				Diagonal Tensile Stress c	f Concrete (N/mm2
Load Condition	Section	Checking Position	Allowable Value	Result	Load Condition	Section	Checking Position	Allowable Value	Result
Immediately after Desetres sing	Cross Section "8"	Top of Girder	-1.5 <ac<19< td=""><td>0.84</td><td></td><td></td><td>Base of Upper Flange</td><td></td><td>-0.1</td></ac<19<>	0.84			Base of Upper Flange		-0.1
т тсэпсээшg		Bottomol Olider		14./0					
During Deck Construction	Cross Section "8"	Top of Girder Bottom of Girder	-1.5<6c<14.0	6.36 6.74		"C"	Neutral Axis before Composition	0 - - -	-0.1
		Top of Deck	(Deck<10.0)	2.78	Under Dead Load	Closs section 3	Neutral Axis after	0:1-/-10	-0.1
Under Dead Load	Cross Section	I op of Girder	0.0< ∞ c<14.0	67.0 08 C			Composition		
			(Ded)~10.00	2.03 Max 4.26			Base of Lower Flange		-0.0
			(0.01~2020)	Min 2.40			Base of Upper Flange		Max -0.4
Inder I we I oad	Cruse Section "8"	Ton of Girder		Max 6.51					Min -0.0
		topic to dot	-1 5 <mc<14.0< td=""><td>Min 4.98</td><td></td><td></td><td>Neutral Axis before</td><td></td><td>Max -0.4</td></mc<14.0<>	Min 4.98			Neutral Axis before		Max -0.4
		BottomofGuder	0.11. 00. 0.1.	Max -0.54	Hnder Deed Lond	Croce Section "3"	Composition	ر (Min -0.0
				Min 3.77	Olluci Deau Loau		Neutral Axis after	0.7	Max -0.4
		Ton of Dool	(Dodb/11.5)	Max 4.99			Composition		Min -0.0
		Top Ut Deck	(CITI-VADOT)	Min 3.13			Been of Louise Flow 20		Max -0.3
		Ton of Girdon		Max 5.80			Dase of LOWELFIALISE		Min -0.0
Indor Tomorotum I and	Conce Contine 101	1 ob or ourger	0.0000000	Min 4.27	Web Concrete against Com	pressive Strength to F	ailure (Under Ultimate	Load)	
Under temperature Load	CLOSS Section 6	č c	01.01/20/0.2-	Max -0.85					4
-		Bottom of Girder		Min 3.46	Checking Po	sition	a) Compressive Strength to Failure	b) Acting Shear Force	Safety Degree a) / b)
		Ter	nsion Re-bar Volume (ci	n2)					
		Minimum	8.53 R	equired 3.52	Cross Section	n "3"	2710 kN	1482 kN	1.83
Bending Moment to Failure	(Under Ultimate Load				Members against Diagonal	Fensile Strength to Fa	ilure (Under Ultimate L	oad)	
Checking Po-	cition	a) Resisting Bending	b) Acting Bending	Safety Degree	Checking Position	Acting SI	hear Force	Arrangement	of Re-bar
ALL SIMMAND	IIOIIIS	Moment to Failure	Moment to Failure	a)/b)	Cross Section "3"	1482	kN	D13@12	Smm

Table 4.6.124 Calculation Results for the Main Girder (PF14-PF15)

Detailed Design Study on The Bago River Bridge Construction Project

Source: JICA Study Team

Main Grder

1.19

12868 kNm

15295 kNm

Cross Section "8"

				of PC Strand (e Res				stress of Concre-	e Res				ing Part)	/mm2)	Tensile Stre	It Allowable Value		1000	1000		.53	.74 160.0	-23	.53	8 8	.62 184.0	2	.64		g Safety	re a)/		31	848	783	123	
			nnection Part	Tensile Stress	Allowable Value	1440	1295	1110	Mean Compressive :	Allowable Value	1.50			Concrete (Connect	Stress of Re-bar (N	Compassive Stength of Conc	Allowable Value Resu	'	' 	'	-	3	10.00	<u> </u>		<u> </u>	11.50	m	[] 3	budu)	b) Acting Bendir	Moment to Failu	(KINIII)	-5(4	-5(
	1007 100 100		Cross Beam at Cor		dition	tressing	Prestressing	stressing Force	با الأرامية. الأفرامية	IIIIIII	stressing Force			Design of Coupling (Oncrete and Tensile S	Tyne of Fome	1 ype of 1 otec	Negative Moment	Positive Moment	Negative Moment	Negative Moment	Negative Moment	Positive Moment	Negative Moment	Negative Moment	Negative Moment	Positive Moment	Negative Moment	Negative Moment	I al Dacietino	Bending Moment to	Failure	(kNm)	-5970	4562	-5970		
					Load Con	During Prest	Immediately after	ider Effective Pre-	I and Can	LOAU COIL	ider Effective Pre-			Result of	sssive Stress of C	I oad Condition			Under Dead	Load			UnderLive	Load		Under	Temperature	Load	a Moment to Fail			Type of Force		Negative Moment	Positive Moment	Negative Moment	Negative Moment	
	26 102							Un			Un				Compre	Section			¢	4	ю	-	2		с -	-	2		3 Bendin		:	Section		-	2		ę	
		ss Beam				Diagonal Tensile Stress of Concrete	Allowable Value Result	σI=>-0.80 0.00	σE>-1.70 -0.01	nder Ultimate Load)	Safety Degree	a)/b)	22.48	der Ultimate Load)	Safety Degree	a)/b)	8.43			nal Tension Re-bar)	- - - -	Kequired Diagonal Tension Delhar	Volume		9.66 cm2			Result	Max -0.01 Min -0.01		Max -0.18	Min -0.18		nate Load)	Safety Degree	a) / b)	2.83	
		esult of Design of Cro		besign for Shear Force	Concrete (N/mm2)	Mean Shear Stress of Concrete	Allowabk Value Result	0.08	00.0	essive Strength to Failure (U	b) Acting Shear	Force	NX 602	ensile Strength to Failure (Un	b) Acting Shear	Force	253 kN		besign for Shear Force	ncrete (Volume of Diago	- - -	Mm. Diagonal Tension De har	Volume		6.00 cm2		is of Concrete (N/mm2	Allowable Value	σI=>-0.80		σI=>-1.70			to Failure (Under Ultin	b) Acting Shear	Force	529 kN	
		R	rder	D	n Shear Stress of	aoltin o Docition		nder Dead Load	nder Live Load	Concrete against Compr) Compressive	ength to Failure	NX 880C	ers against Diagonal Te	Diagonal Tensile	ength to Failure	2133 kN		D	1 Shear Stress of Co	n Shear Stress of	Concrete	wable Result	lue	=0.45 0.65	, T	onal Tensile Stres	oad Condition	ider Dead Load		nder Live Load			press ive Strength) Compressive	ength to Failure	1495 kN	
			Main Gir	╞	1 Mear	ť	0	1 Un	6 Ur	Web C	â	Stre		Memb	a) D	Stre	_	s Beam		Mean	d Mea		0 Allor	9 Va	6 Tm≤=	;	Diag	1	5		5	<u> </u>		Com	(a)	Str		
			tt End of		PC Strand	Result	125	115	105					'		'		liate Cros			PC Strand	Result	125	114	102	'		'			'	·	'	'	'	'	•	
	1		ss Beam		Stress of	Allowable Value	1440	1295	1110					•	•			Intermed		V/mm2)	Stress of	Allowable Value	1440	1295	1110	•	•	•				•		•	•			
Part)			Crc	ent (N/mm2)	xural Stress	Result	,		,	1 17		1.58		4ax 1.61	Ain 1.11	4ax 0.89	Ain 1.88		foment	PC Strand ()	xural Stress	Result			-	-0.52	-0.21	1.92	4.57 Iav 0.55	00.0 VB	1in -0.89	lax 0.36	1in -0.60	lax 1.90	fin 1.94	lax 2.29	fin 6.10	ad)
ete (Connecti				inding Mome	Combined Fle	llowable Value			,		0 1 00		-	4	M 0 21 ~ 0 0	N N N N N N N N N N N N N N N N N N N	A		or Bending N	sile Stress of	Combined Fle	llowable Value	-	-		<=10.0		$0.0 \sim 11.0$		<u>-</u>	<=10.0	2	2,	2	$0.0 \sim 11.0$	2	N	r Ultimate Lo
Coupling Concre				Design for Be	Checking Position	Y	'	'	,	Top of Cross	Beam	Bottom of	CIUSS DCall	Top of Cross	Beam	Bottom of	Cross Beam		Design fe	Stress and Ten-	Checking Position	V		-		I op of Deck	Bottom of Deck	Top of Cross Beam	Bottom of Cross Beam	Top of Deck		Bottom of	Deck	Top of Cross	Beam	Bottom of	Cross Beam	to Failure (Unde
Cross Beam and C	L L				I and Condition		During Prestressing	Immediately after Prestressing	During Deck Construction		Under Dead	Load			[]nder1 ive Load =					Combined Flexural	I and Condition		During Prestressing	Immediately after Prestressing	During Deck Construction		Under Dead	Load			!		Under Live Load					Bending Moment t

Table 4.6.125 Calculation Results for the Crossbeam and Coupling Concrete (PF14-PF15)

Result

s of Re-bar

0.0 95.2 43.5 95.2 95.2

98.3

5

Source: JICA Study Team

(Cum

15

105

(N/mm Ħ

Arrangement of Re-bar

Acting Shear Force 529 kN

Safety Degree a) / b) 1.80

b) Acting Bending Moment to Failure 1326 kNm

a) Resisting Bending Moment to Failure 2384 kNm

D13@250mm

Members against Diagonal Tensile Strength to Failure (Under Ultimate Load)

b) **PF15-AF2**

The following tables show the calculation results for PF15-AF2.

47	4 5 900 5 300 775 7	3 2 300 00	1 1100 280 cat End of C	1100 iirder	2 3		4	4 5 0/F 75 540 1015	3 2 540 220	1100 32	1100 80	2 540	3
					DLC			(TT +)) (2)	en contor :	-puii		
					Result of I	Jesign of P	C Plate	(Unit: N/mr	n2)				
		Deck	cat End of C	arder	-				Dec	k at Center S	span	-	
T 1.	o 1%	Checking	Strength o	f Concrete	Stress o	f Re-bar		c 1'''	Checking	Strength o	f Concrete	Stress o	f Re-bar
Load	Condition	Position	Allowable	Result	Allowable	Result	Load	Condition	Position	Allowable	Result	Allowable	Result
During	Prestressing	-	-	-	1305	1225	During	Prestressing	-	-	-	1305	1225
Immed	iately after	Top of PC Plate		9.17		1220	Immed	iately after	Top of PC Plate		9.17	1505	1220
Pres	tressing	BottomofPC Plate	-1.5~19.0	8 34	1190	1131	Pres	tressing	BottomofPC Plate	-1.5~19.0	8 34	1190	1131
		Top of PC Plate		10.58					Top of PC Plate		10.59		
(Under Effe	ctive Prestressing)	BottomofPC Plate	0.0~15.0	3 69	1020	922	(Under Effe	eckConstruction ective Prestressing)	BottomofPC Plate	0.0~15.0	3 70	1020	923
				5.09							5.70		
					Result of	f Design of	Deck (U	nit: N/mm2	2)				
L					De	eck betweer	n Main C	arders					
	Ι	Deck at End of O	Girder (Tran	verse Direc	tion)				Deck at Center	Span (Tran	verse Direct	ion)	
Section	Load	Checking		ombined F	lexural Stres	s	Section	Load	Checking		Combined Fl	exural Stres	s
	Condition	Position	Allowab	le Value	Res	sult		Condition	Position	Allowab	le Value	Res	sult
		Top of RC Deck	11	0		3.53			Top of RC Deck	11	0		4.23
1	Under	BottomofRC Deck		.0		-0.81	1	Under	BottomofRC Deck		.0		-0.97
1	Live Load	Top pfPC Plate	0.0.	15.0		8.35	<u>'</u>	Live Load	Top pfPC Plate	0.0~	15.0		8.17
		Bottom of PC Plate	0.0 %	-15.0		1.31			BottomofPC Plate	0.0~	15.0		0.58
	Load	Type of	Strength o	f Concrete	Stress o	f Re-bar		Load	Type of	Strength o	f Concrete	Stress o	f Re-bar
Section	Condition	Force	Allowable	Result	Allowable	Result	Section	Condition	Force	Allowable	Result	Allowable	Result
		D. 111 M.	Value		Value				D 11 M	Value		Value	1010
2	Under	Positive Moment	10.0	3.90	140.0	60.6	2	Under	Positive Moment	10.0	6.71	140.0	104.3
	Live Load	Negative Moment	10.0	3.79	140.0	79.3		Live Load	Negative Moment	10.0	3.27	140.0	68.4
3	P	Negative Moment		2.58		74.4	3	L	Negative Moment		2.56		78.6
	De	eck at End of G	rder (Longr	tudinal Dire	ction)	CD 1		L	beck at Center S	pan (Longit	udinal Direc	ction)	CD 1
	Load Con	lition	Strength o	f Concrete	Stress o	f Re-bar		Load Con	dition	Strength o	f Concrete	Stress o	f Re-bar
	Load Colle	anion	Allowable Value	Result	Allowable Value	Result		Load Coll	union	Allowable Value	Result	Allowable Value	Result
	Under Live	e Load	10.0	8.66	140.0	100.2		Under Liv	e Load	10.0	9.96	140.0	115.3
					De	ck outside	of Main	Girder					
<u> </u>	Ι	Deck at End of (Girder (Tran	verse Direc	tion)		-		Deck at Center	Span (Tran	verse Direct	ion)	
			Strength o	f Concrete	Stress o	f Re-bar				Strength o	f Concrete	Stress o	f Re-bar
Section	Load	Condition	Allowable	Darwk	Allowable	Darwh	Section	Load	Condition	Allowable	Par. 14	Allowable	Dogult
			Value	Result	Value	Result				Value	Result	Value	Result
	Under	Dead Load	-	-	100.0	5.4		Under	Dead Load	-	-	100.0	5.4
	Under	Live Load	10.0	0.21	140.0	5.4	ł	Under	Live Load	10.0	0.21	140.0	5.4
4	Under C	ollison Load	15.0	2.04	300.0	53.5	4	Under C	ollison Load	15.0	2.04	300.0	53.5
	Under Wind L	oad (with Live Load)	12.5	0.35	175.0	9.2		Under Wind L	oad (with Live Load)	12.5	0.35	175.0	9.2
	Under Wind Lo	oad (w/o Live Load)	12.5	0.50	175.0	13.0		Under Wind L	oad (w/o Live Load)	12.5	0.50	175.0	13.0
	Under	Dead Load	-	-	100.0	10.2		Under	Dead Load	-	-	100.0	13.8
	Under	Live Load	10.0	1.14	140.0	32.8		Under	Live Load	10.0	2.10	140.0	64.6
5	Under C	ollison Load	15.0	2.59	300.0	74.7	5	Under C	ollison Load	15.0	3.33	300.0	102.5
	Under Wind L	oad (with Live Load)	12.5	1.26	175.0	36.2		Under Wind L	oad (with Live Load)	12.5	2.20	175.0	67.6
	Under Wind Lo	oad (w/o Live Load)	12.5	0.59	175.0	16.9		Under Wind L	oad (w/o Live Load)	12.5	0.65	175.0	19.9
	De	eck at End of G	irder (Longi	tudinal Dire	ction)			D	eck at Center S	pan (Longit	udinal Direc	ction)	
			Strength o	f Concrete	Stress o	f Re-bar				Strength o	f Concrete	Stress o	f Re-bar
	Load Cone	dition	Allowable	Result	Allowable	Result		Load Con	dition	Allowable	Result	Allowable	Result
	TL 1 T	T 1	Value	·····	Value			TT 1 T	T 1	Value	- cooun	Value	
	Under Live	e Load	10.0	1.62	140.0	58.5		Under Liv	e Load	10.0	2.05	140.0	74.2

Cross Beam and Co		Conn	cting Part)						AF 2								000L	
			C	¢	- - -		_	Result of Design	n of Cros	s Beam	-			e C				
		:	5	ross Bean	nat End of	Mam G	rder							Cross Beamat Co	nnection Part			
	Design for	Bending Mc	Flexural Stress	Ctmcc o	PC Strand	Mag	n Chaar Strace of	Design for Shea	ar Force		Τ		Load Conc	lition	Tensile St	Value 1	Strand (N/mm2 Decult	
Load Condition Ch	acking Position	Allowable Value	Result	Allowable Va	he Result			Mean Shear Sress of	Concrete Di	isgonal Tensile Stees	s of Concrete		During Prest	ressing	1440	Aaluc	-	
During Prestressing				1440	125	5	ecking Position	Allowable Value F	Result AU	lowable Value	Result	Imm	ediately after	Prestressing	1295			
Immediately after Prestressing		,		1295	E	5	nder Dead Load	- τ _{m<=0.45}	0.08	rI=>-0.80	0.00	Under	Effective Pres	tressing Force	1110			
During Deck Construction	-	'	-	1110	105	2	nder Live Load		D	sI=>-1.70	-0.01		Load Cond	lition	Mean Compre	ssive Stress o	f Concrete (N/m	m2)
T. Under Dead	op of Cross Beam	001	1.17	'	'	W cb N cb	Concrete against Con) Compressive	b) Acting S	Falure (Unc	safety De	ad) gree	Under	Effective Pres	tressing Force	Allowable 1.50	Value	Result -	
Load	Bottom of Jross Beam	0.0	1.58	1	'	Sti	ength to Failure 5688 kN	Force 253 kN	7	a)/b) 22.48								
Ĕ	op of Cross		Max 1.61		•	Memt	pers against Diagonal	Tensile Strength to F	failure (Unde	er Ultimate Los	(p)		Result of	Design of Coupling	Concrete (Coi	nnecting P	urt)	
Inder I ive I oad	Beam	0.0~12.0	Min 1.11		·	a) I	Diagonal Tensile	b) Acting S	hear	Safety De	gree	ompressi	/e Stress of C	oncrete and Tensile:	Stress of Re-b	ar (N/mm2)		
	Bottomof	0.21 ~ 0.0	Max 0.89	'	'	Str	ength to Failure	Force	_	a)/b)		ection Los	d Condition	Type of Force	Compressive Strength	h of Concrete T	ensile Stress of Re-	bar
C	Tross Beam		Min 1.88	'	'		2133 kN	253 kb	7	8.43		3		rype of Long	Allowable Value	Result AB	wable Value Rest	ılt
				Interme	ediate Cros	ss Beam						-		Negative Moment				
	Design	for Bending	g Moment					Design for Shea	ur Force			ر ر	nder Dead	Positive Moment			1000	
Combined Flexural S	tress and Te	ansile Stress	of PC Strand ((N/mm2)		M ea.	n Shear Stress of C	oncrete (Volume	of Diagon:	al Tension R	e-bar)	4	Load	Negative Moment	'		-	
I and Condition Ch	ecking Position	Combined	Flexural Stress	Stress o	fPC Strand	d Mea	in Shear Stress o	f ,, E	-		-	3		Negative Moment				
		Allowable Value	Result	Allowable Va	hue Result		Concrete	Tension Be	nai har	Tension P	agonal a-har	-		Negative Moment				
During Prestressing				1440	125	50 Allo	wable Result	Volume	The second	Volum	e	2	Jnder Live	Positive Moment	10.00		160.0	
Immediately after Prestnessing During Deck Construction				1110	114	6 ×	alue = 0.45	5 600 cm	c	9.65 0	<u>د</u>	"	Load	Negative Moment			<u>'</u>	
Tc	of Deck		-0.32		-							-		Negative Moment		 		
Under Dead	ttom of Deck	<=10.0	-0.21	ŀ		Diag	onal Tensile Stre	sss of Concrete	(N/mm2)		1	۰ ۲	Under	Positive Moment			- 0191	Π
Load To	p ofCross Beam	0.0~ 11.0	1.92	'	•		oad Condition	Allowable V	Value	Result		-	Load	Negative Moment				
Bott	tom of Cross Beam	0.0	4.57		•	5	nder Dead Load	σI=>-0.8		Max	-0.01	3		Negative Moment				
L	op of Deck		CCU XBINI	<u>'</u>	·						1 10.0-	cnung M	OTTENT TO FAIL	are (Under Ultimate I a) Resisting	0 0 0	-		
		<=10.0	Mm -0.89	<u> </u>	•	Ð	nder Live Load	σI=>-1.7		Max	-0.18	E	Ę	Bending Moment to	b) Acting B	ending	Safety Degree	
	Bottomof		Max 0.36	<u>'</u>	•			_		Min	-0.18	(I lucitor	/pe of Force	Failure	Moment to	Failure	a)/b)	
Jnder Live Load	Deck		Min -0.60	<u> </u>	•							_		(kNm)	(KNm	()		
Ľ	op of Cross		Max 1.90	'	•	Com	pressive Strengt	h to Failure (Un	der Ultim	ate Load)		ž T	sgative Moment	-				
	Beam	$0.0 \sim 11.0$	Min 1.94	'	•) Compressive	b) Acting S	hear	Safety De	gree	2	sitive Moment	-	'		•	
(Bottomof		Max 2.29	<u>'</u>	•	5	ength to Failure	Force		a)/b)		ž	sgative Moment					
	ross beam	;	Min 6.10	'	•		1495 kN	529 kr		2.83	╡	3 2	gative Moment					
Bending Moment to a) Resisting Bendin	Failure (Un-	der Ultimate	Load) 10 Bendino	Safety	, Deoree	Memb	ers against Diagonal	Tensile Strength to F	ailure (Unde	r Ultimate Loa	(p							
to Failure	0.0	Momen	t to Failure	a`.	(q/(Acting Shear	Force	Arrange	ment of Re	-bar							
2384 kh	Λm		1325 kNm		1.80		52	9 kN	DI	3@250mm								

Table 4.6.128 Calculation Results for the Crossbeam and Coupling Concrete (PF15-AF2)

4.6.4.3 Detailed Design of Substructures and Foundations

(1) Soil Conditions

Soil conditions in the flyover section had been reviewed in the B/D based on the results of the soil investigation surveys conducted in the Supplemental F/S. In the D/D, one additional result, which is shown in Figure 4.6.44 and marked with yellow, was added to determine the geotechnical design parameters. The location and coordinates of boreholes are shown in Figure 4.6.44 and Table 4.6.129, respectively.

Source: JICA Study Team

Figure 1 6 11	Lagation of Paring Dainta in Elyavar Saction
FIGULE 4.0.44	Location of bonnu Points in Fivover Section

BH No.	Easting (E)	Northing (N)	Elevation MSL: (m)
BH-01	203871.632	1860013.429	+5.02
BH-02	203939.419	1859955.273	+5.05
BH-03	203988.555	1859910.930	+5.21
BH-04	204044.248	1859862.131	+5.26
BH-05	204091.678	1859823.064	+5.00
BH-06	204138.122	1859780.059	+5.18
BH-07	204182.001	1859742.035	+5.27
BH-08	204231.206	1859651.127	+5.76
BH-09	204264.719	1859651.489	+5.66
BH-10	204261.084	1859612.551	+4.97
BH-11	204288.053	1859558.128	+5.20
BH-12	204312.961	1859485.491	+4.37
BH-13	204341.023	1859405.546	+4.01
BH-14	204384.785	1859326.929	+4.52
13BH-05	204429.640	1859229.371	+4.96

 Table 4.6.129
 Coordinates of Boring Points

Source: JICA Study Team

Regarding the information for the determination of geotechnical parameters, the FR of the Supplemental F/S had been used in the B/D. In the D/D, the geotechnical parameters determined in the B/D were reviewed and modified because additional boring was considered. The parameters established in the B/D and D/D are shown in the following tables.

Layer	N Average *1	Unit Weight "γ" (kN/m³)	Cohesion "c" (kN/m ²)	Friction Angle " ϕ " *5 (°)	Modulus of Deformation "E" (kN/m ²)
FILLED SOIL	4	16 *3	24 *4	0	1300 *6
CLAY-I	4	18 *2	24 *1	0	1300 *6
SANDY CLAY-I	6	17 ^{*2}	25 ^{*1}	0	4200 *7
SILTY SAND-I	10	17 *2	0^{*4}	32	7000 *7
SANDY SILT	9	18 *3	54 ^{*4}	0	6300 ^{*7}
SILTY SAND-II	23	19 *3	0^{*4}	33	16100 ^{*7}
CLAY-II	22	18 *3	132 *4	0	15400 ^{*7}
CLAYEY SAND-I	41	19 *3	0^{*4}	33	28700 ^{*7}
CLAY-III	35	18 *3	210 *4	0	24500 ^{*7}
CLAYEY SAND-II	50	19 ^{*3}	0 *4	37	35000 *7
CLAY-IV	50	18 *3	300 *4	0	35000 *7

Table 4.6.130 Geotechnical Design Parameters for Flyover Design in the B/D

*1 Maximum N value is 50

*2 Average values obtained by each test

*3 Referenced by Japanese Standard (NEXCO)

*4 Calculated by C = 6 N (referenced by Japanese Standard (NEXCO)). The value of sandy soil is 0.

*5 Calculated with N value using effective overburden pressure

*6 Test value obtained by unconfined compression test

*7 E = 700 N according to the worth value obtained by borehole lateral load test

Table 4 6 131	Geotechnical Design Parameters for Fly	vover Design in the D/D
10010 1.0.101	Coole of the coole	yovor boolgi in the b/b

Layer	N Average *1	Unit Weight "γ" (kN/m³)	Cohesion "c" (kN/m ₂)	Friction Angle " ϕ " *5 (°)	Modulus of Deformation "E" (kN/m ²)
FILLED SOIL	4	18 *3	24 *4	0	1300 *6
CLAY-I	4	18 *2	24 *1	0	1300 *6
SILTY SAND-I	10	18 *2	0 *4	32	5000 *8
SANDY SILT	8	17 *3	48 *4	0	5600 ^{*7}
SILTY SAND-II	22	19 *3	0 *4	33	15400 *7
CLAY-II	21	18 *3	126 *4	0	14700 *7
CLAYEY SAND-I	35	19 *3	0 *4	33	24500 *7
CLAY-III	35	18 *3	210 *4	0	24500 *7
CLAYEY SAND-II	50	19 *3	0 *4	37	35000 *7
CLAY-IV	50	18 *3	300 *4	0	35000 *7

Source: JICA Study Team

*1 Maximum N value is 50

*2 Average values obtained by each test

*3 Referenced by Japanese Standard (NEXCO)

*4 Calculated by C = 6 N (referenced by Japanese Standard (NEXCO)). The value of sandy soil is 0.

*5 Calculated with N value using effective overburden pressure

*6 Test value obtained by unconfined compression test

*7 E = 700 N according to the worth value obtained by borehole lateral load test

*8 E = 500 N according to the worth value obtained by borehole lateral load test

Note: Red parts show the changes from the B/D to D/D.

The modulus of deformation "E" had been calculated to be E = 700 N for all layers according to the worth value obtained by borehole lateral load test in the B/D. In the D/D, on the other hand, E was calculated to be E = 500 N for only Silty Sand-I because the results of additional tests conducted in the D/D were also considered.

Additionally, the layer distribution was reviewed and updated before the commencement of the D/D based on the soil investigation surveys conducted in the D/D, as shown in Figure 4.6.45 and Figure 4.6.46.

(2) Assessment of Soil Liquefaction

According to the JSHB V, the conditions which require liquefaction assessment are as follows:

- i. The saturated soil layer which exists in the depth of less than 20 m from the existing ground level, and the groundwater level is less than 10 m from the existing ground level.
- ii. The soil layer whose fine fraction content "FC" is 35% or less, or whose plasticity index "Ip" is 15 or more even if FC is over 35%.
- iii. The soil layer whose mean particle diameter D50 is 10 mm or less, and whose 10% particle size D10 is 1 mm or less.

The requirements for liquefaction assessment of the ground in the flyover section are as follows:

- Saturated soil layer: Alluvium exists between GL 0 m and 20 m (Corresponding to i)
- Groundwater level: Between GL 1.5 m and 3.6 m (Corresponding to i)
- Fine fraction content "FC": The value of FC is distributed from 8.7% (Corresponding to ii)
- Mean particle diameter D50: Maximum value is 0.73 mm up to GL -20 m (Corresponding to iii)

Considering the above, the liquefaction assessment should be conducted and the reduction coefficient "DE" of geotechnical parameters was determined according to Table 4.6.132 as specified in the JSHB V. DE was determined by using the mean value of the range of resistivity against liquefaction "FL" and dynamic shear strength ratio "R" calculated with respect to each layer for the related boreholes.

Range of Resistivity against	Depth from Existing Ground	Dynamic Shear St	rength Ratio "R"
Liquefaction "FL"	Surface "x" (m)	R□0.3	0.3 <r< td=""></r<>
EI < 1/2	0 <x<10< td=""><td>0</td><td>1/6</td></x<10<>	0	1/6
FL~1/3	10 <x<20< td=""><td>1/3</td><td>1/3</td></x<20<>	1/3	1/3
1/2-EL-2/2	0 <x<10< td=""><td>1/3</td><td>2/3</td></x<10<>	1/3	2/3
1/3 <fl>2/3</fl>	10 <x<20< td=""><td>2/3</td><td>2/3</td></x<20<>	2/3	2/3
2/2~EL <1	0 <x<10< td=""><td>2/3</td><td>1</td></x<10<>	2/3	1
2/3~FL~I	10 <x<20< td=""><td>1</td><td>1</td></x<20<>	1	1

 Table 4.6.132
 Reduction Coefficient of Geotechnical Parameters

Source: JSHB

Although DE had been determined by using the mean value of the range of resistivity against liquefaction "FL" and dynamic shear strength ratio "R" calculated with respect to each layer for the related 14 boreholes in the B/D, another result of 13BH-05 was added to be considered in the D/D. The results of liquefaction assessment conducted in the B/D and D/D are shown in the following tables. As shown in Table 4.6.133 (a) and Table 4.6.134 (a), geotechnical parameters are reduced only in the layer of the Sandy Silt up to 10 m in depth. In the other layers, on the other hand, geotechnical parameters are not necessary to be reduced. This result of the assessment was not changed from the B/D to the D/D.

Figure 4.6.45 and Figure 4.6.46 show the soil profile including the results of liquefaction assessment

in the B/D and in D/D, respectively.

able 4.6.133
able 4.6.133

$(a) \ 0 \leq x \leq 10$										
	FL	R	FL	R	FL	R	FL	R	FL	R
	FILLEI	D SOIL	CLA	AY-I	SILTY S	SAND-I	SAND	Y SILT	SILTY S	SAND-II
BH-01			6.766	1.465	1.086	0.274				
BH-02	3.771	0.689	1.910	0.433	1.093	0.308				
BH-03			4.483	0.894	1.039	0.253	0.898	0.236		
BH-04	2.281	0.424	2.807	0.612	2.146	0.566				
BH-05			0.943	0.189	1.501	0.357	0.896	0.237		
BH-06					1.132	0.272				
BH-07	1.130	0.200	0.979	0.189	1.203	0.305				
BH-08					1.360	0.295				
BH-09			1.441	0.272	1.280	0.278				
BH-10					1.189	0.252				
BH-11			0.922	0.192	1.138	0.261				
BH-12					3.551	0.953				
BH-13			11.587	2.565	7.754	2.149				
BH-14			2.213	0.464	1.453	0.377				
Average	2.394	0.438	3.405	0.728	1.923	0.493	0.897	0.237		
DE	1	1	1	1	1	1	2.	/3		-

(b) 10<x≦20

	FL	R	FL	R	FL	R	FL	R	FL	R
	FILLEI	D SOIL	CLA	AY-I	SILTY S	SAND-I	SAND	Y SILT	SILTY S	AND-II
BH-01							0.963	0.254	1.168	0.292
BH-02							2.964	0.847	1.488	0.396
BH-03							1.167	0.307	1.149	0.288
BH-04									1.106	0.284
BH-05							7.336	1.923	1.068	0.266
BH-06							1.131	0.289	1.013	0.251
BH-07					1.884	0.494	0.994	0.259	0.962	0.234
BH-08					1.300	0.321	1.270	0.307	1.073	0.256
BH-09					1.121	0.259	1.677	0.390	1.254	0.291
BH-10							2.044	0.472	1.221	0.285
BH-11							1.232	0.290	1.254	0.294
BH-12					1.040	0.280	1.025	0.269	0.869	0.218
BH-13					0.972	0.265	1.033	0.272	1.200	0.301
BH-14					1.248	0.324	14.509	3.683	1.346	0.333
Average					1.261	0.324	2.873	0.736	1.155	0.285
DE	-	-		-	1	1	1	1	1	1

(a) $0 \leq x$	k≦10									
	FL	R	FL	R	FL	R	FL	R	FL	R
	FILLEI	O SOIL	CLA	Y-I	SILTY	SAND-I	SAND	Y SILT	SILTY S	SAND-II
BH-01			5.922	1.263	1.093	0.269				
BH-02	3.393	0.617	1.827	0.407	1.078	0.293				
BH-03			3.953	0.780	1.044	0.247	0.910	0.231		
BH-04	2.111	0.395	2.517	0.548	1.432	0.365				
BH-05			0.942	0.186	1.396	0.324	0.912	0.232		
BH-06					1.103	0.267				
BH-07	1.109	0.197	0.968	0.186	0.953	0.242				
BH-08					1.425	0.315				
BH-09			1.433	0.269	1.207	0.264				
BH-10					1.155	0.248				
BH-11					1.130	0.257				
BH-12					3.210	0.859				
BH-13			10.138	2.207	6.886	1.920				
BH-14			1.832	0.407	1.400	0.366				
BH-5(13)					0.991	0.225				
ave	2.204	0.403	3.281	0.695	1.700	0.431	0.911	0.232		
DE	1		1		1		2	2/3		-
(b) 10<	$x \leq 20$									

Table 4.6.134 Results of Liquefaction Assessment in the D/D

	FL	R	FL	R	FL	R	FL	R	FL	R
	FILLE	D SOIL	CLA	AY-I	SILTY S	SAND-I	SAND	Y SILT	SILTY S	SAND-II
BH-01							0.975	0.250	1.163	0.286
BH-02							2.588	0.717	1.434	0.374
BH-03							1.034	0.266	1.147	0.283
BH-04									1.076	0.272
BH-05							1.409	0.362	1.071	0.263
BH-06							1.089	0.285	1.021	0.255
BH-07					0.970	0.261	1.301	0.348	0.974	0.247
BH-08					1.128	0.276	1.221	0.301	1.075	0.256
BH-09					1.089	0.256	1.263	0.301	1.224	0.283
BH-10							1.888	0.447	1.228	0.285
BH-11							1.214	0.287	1.200	0.277
BH-12					1.010	0.278	0.995	0.268	0.854	0.218
BH-13					1.031	0.286	1.007	0.272	1.182	0.302
BH-14					1.168	0.310	13.839	3.613	1.319	0.330
BH-5(13)	_				0.851	0.201			1.386	0.320
ave					1.035	0.267	2.294	0.594	1.157	0.283
DE	-	-	-	-	1	1	1	Į	1	l

(3) Selection of Supporting Layer

Bridge foundations should be supported by a good and hard supporting layer. The supporting layer can be determined by the following conditions as specified in the JSHB:

- Clay: N value more than 20
- Sandy Soil: N value more than 30

The Clay-III and Clay-IV layer with N value of 20 or more are identified as the supporting layer. Since the unconfined compressive strength of the layers was not confirmed, 60 N is expected to be secured as the ultimate bearing capacity of the pile end according to the Standard Design Specifications Vol. 2 Bridge Construction published by NEXCO (Japan Road Association), so that the ultimate bearing capacity of 2100 kN/m² and 3000 kN/m² can be applied for the Clay-III and Clay-IV layer respectively.

Based on the soil investigation results, the supporting layer had been defined in the B/D as shown in Figure 4.6.45. Most of the supporting layers were the upper end of Clayey Sand-II. However, some were the upper end of Clayey Sand-I and Clay-IV layers whose N value is 50 or more. The supporting layer, on the other hand, was modified in the D/D as shown in Figure 4.6.46 because the results of the soil investigation surveys were updated in the D/D. Most of the supporting layer are the upper end of the Clayey Sand-II and Clay-IV layers. However, some are the upper end of ClayeIII whose N value is 20 or more.

(4) Design of Substructures and Foundation

Table 4.6.135 shows the general design conditions of the substructure, and Table 4.6.136 shows the support conditions between the superstructure and substructure of each abutment and pier. In the D/D, the condition determined in the B/D was reviewed and modified to optimize the lateral force distribution on each substructure considering the height of substructures and the soil conditions. It was modified for only two supports between PF5 and PF6, and between PF14 and PF15.

Item	Conditions					
General						
	Abutment	Inverted T-type abutment				
Structure Type P F Materials	Pier	T-type pier				
	Foundation	Cast-in-place RC pile				
Materials						
Conorata	Abutment and Pier	$\sigma_{ck} = 24 \text{ N/mm}^2$				
Concrete	Cast-in-place RC pile	$\sigma_{ck} = 30 \text{ N/mm}^2$				
Reinforcement Bar	SD345					
Backfilled Material	$\gamma = 19 \text{ kN/m}^3, \text{ C} = 0,$	$\varphi = 30$				
Overburden Material	$\gamma = 18 \text{ kN/m}^3$					
Foundation						
Diameter	$\varphi = 1500 \text{ mm}$					
Soil Design Parameters	Referenced by 4.6.4.3	1)				
Liquefaction	Referenced by 4.6.4.3	(2)				

Table 4.6.135	General Design Conditions of Substructure

Substructures	Superstructures	Support Condition in B/D	Support Condition in D/D
AF1		M (Moveable Condition)	Same as on the left
PF1	2@PC-I	F (Fixed Condition)	Same as on the left
DEO		F	Same as on the left
PF2		E (Elastic Condition)	Same as on the left
PF3	2004 11	Е	Same as on the left
PF4	3@Steel box	Е	Same as on the left
DE5		Е	Same as on the left
PFS		М	F
PF6	2@PC-I	F	Same as on the left
DE7		М	Same as on the left
PF/		М	Same as on the left
PF8		F	Same as on the left
PF9	4@PC-I	F	Same as on the left
PF10		F	Same as on the left
DE11		М	Same as on the left
PFII		Е	Same as on the left
PF12	2@841 1	Е	Same as on the left
PF13	3@Steel-1	Е	Same as on the left
DE14		Е	Same as on the left
PF14		М	F
PF15	2@PC-I	F	Same as on the left
AF2		М	Same as on the left

Table 4.0. 150 Support Conditions between Superstructure and Substructure	Table 4.6.136	Support Conditions between Superstructure and Substructure
---	---------------	--

1) Strength and Allowable Stress of Materials

a) Concrete

Concrete is used for the abutments, piers, and foundations. The strength and the allowable stress of concrete are shown in Table 4.6.137.

Table 4.6.137 Strength and Allowable Stress of Concrete

	Item	Unit	Abutment, Pier	Foundation
Design Strength		N/mm ²	24.00	30.00
Allowable	Flexural Compressive Stress	N/mm ²	8.00	8.00
Compressive Stress	Axial Compressive Stress	N/mm ²	6.50	6.50
	Resisted by Only Concrete	N/mm ²	0.23	0.23
Shear Stress	Resisted by Concrete and Stirrup	N/mm ²	1.70	1.70
	Punching Shear Stress	N/mm ²	0.90	-
Bond Stress		N/mm ²	1.6	1.2

Source: JICA Study Team

b) Reinforcement Bar

Reinforcement bar is used for the abutments, piers, and foundations. The strength and allowable stress of reinforcement bar to be used are shown in Table 4.6.138.

	Item		Unit	Abutment, Pier	Foundation
Yield Stress			N/mm ²	345	345
	Under Dead Load		N/mm ²	100	100
Allowable		Normal Member	N/mm ²	180	180
Tensile Stress	Under Live Load	Underwater Member	N/mm ²	160	160
	Under Impact		N/mm ²	200	200

Table 4.6.138 Strength and Allowable Stress of Reinforcement Bar

Source: Prepared by JICA Study Team based on JSHB

2) Design Parameters

a) Concrete

The design parameters of concrete are shown in Table 4.6.139.

Table 4.6.139	Design Parameters of Concrete
---------------	-------------------------------

Item	Unit	Abutment, Pier	Foundation
Design Strength	N/mm ²	24.00	30.00
Young's Modulus	N/mm ²	2.5 x 10 ⁴	2.5 x 10 ⁴
Creep Coefficient	N/mm ²	2.60	2.60
Drying Shrinkage Strain	-	20.0 x 10 ⁻⁵	20.0 x 10 ⁻⁵

Source: Prepared by the JICA Study Team based on JSHB

b) Reinforcement Bar

The design parameters of the reinforcement bar are shown in Table 4.6.140.

Table 4.6.140	Design Parameters of Reinforcement Bar
	0

	Unit	Reinforcement Bar
Type of Reinforcement Bar	-	SD345
Young's Modulus	N/mm ²	2.00 x 10 ⁵

Source: Prepared by the JICA Study Team based on JSHB

c) Load Conditions

Table 4.6.141 shows the vertical reaction force applied by two types of superstructures, namely, PC-I girder bridge and steel box girder bridge, in the B/D. Since the design of the superstructure was updated in the D/D, the vertical reaction force was also updated as shown in Table 4.6.142

Table 4.6.141 Load Conditions in the B/D

	TT. *4	Substructure Number								
Type of Reaction Force	Unit	AF1	PF1	PF2		PF3	PF4	PF5		
Dead Load "Rd"	kN	4300	1000 0	4300	3100	11100	11100	3100	4300	
Live Load "Rl"	kN	1200	2100	1200	1600	3200	3200	1600	2100	
Lateral Force in Bridge Axis Direction	kN	650	1000	13	00	3200	3200	18	00	
Lateral Force in Perpendicular Direction to Bridge Axis	kN	-	3000	23	00	3400	3400	23	00	

	TT. 14	Substructure Number								
Type of Reaction Force	Unit	PF6	PF7		PF8	PF9	PF10	PF11		
Dead Load "Rd"	kN	10000	4300	4300	9700	9300	9700	4300	1900	
Live Load "Rl"	kN	2100	1200	1200	2100	2000	2100	1200	1300	
Lateral Force in Bridge Axis Direction	kN	2900 3500		00	3800	3800	3800	15	00	
Lateral Force in Perpendicular Direction to Bridge Axis	kN	3000	26	00	2800	2800	3000	19	00	

	TL.'A	Substructure Number						
Type of Reaction Force	Unit	PF12	PF13	PF	14	PF15	AF2	
Dead Load "Rd"	kN	8000	8000	1900	4300	10000	4300	
Live Load "Rl"	kN	2500	2500	1300	1200	2100	1200	
Lateral Force in Bridge Axis Direction	kN	2100	2100	10	00	1000	650	
Lateral Force in Direction of Perpendicular to Bridge Axis	kN	2500	2500	1900		3000	-	

Table 4.6.142 Load Conditions in the D/D

	TI:4	Substructure Number								
Type of Reaction Force	Unit	AF1	PF1	PF2		PF3	PF4	PF5		
Dead Load "Rd"	kN	3800	7000	3900	3200	11100	11200	3200	3800	
Live Load "Rl"	kN	1100	2000	1100	1600	3100	3200	1600	1100	
Lateral Force in Bridge Axis Direction	kN	600	3200	1300	1700	3200	2600	1400	2600	
Lateral Force in Direction of Perpendicular to Bridge Axis	kN	-	2000	23	00	3500	3100	21	00	

	TT	Substructure Number							
Type of Reaction Force	Unit	PF6	PF7		PF8	PF9	PF10	PF11	
Dead Load "Rd"	kN	7700	3900	4300	8400	7900	7800	3900	1900
Live Load "Rl"	kN	2000	1100	1100	1900	1800	1900	1100	1200
Lateral Force in Bridge Axis Direction	kN	2100	600	700	3200	2800	3800	600	1100
Lateral Force in Perpendicular Direction to Bridge Axis	kN	3000	16	00	2900	2600	3000	15	00

	TT. '4	Substructure Number							
Type of Reaction Force	Unit	PF12	PF13	PF	514	PF15	AF2		
Dead Load "Rd"	kN	7800	7800	1900	3800	7700	3800		
Live Load "Rl"	kN	2500	2500	1200	1100	2000	1100		
Lateral Force in Bridge Axis Direction	kN	1700	1900	1300	1200	3300	600		
Lateral Force in Perpendicular Direction to Bridge Axis	kN	2200	2300	17	00	2800	-		

In the B/D, the structural calculation had been conducted at the representative substructures, such as AF1, PF3, PF5, PF8 and PF12, in consideration of the above design reaction force. The configuration of other substructures had been assumed based on the calculations for representative substructures. In the D/D, on the other hand, the calculation was conducted for all substructures.

(5) Design of Reversed T-type Abutment Including Foundation

The configuration of the reversed T-type abutment in the B/D is shown in Figure 4.6.47. The design had been carried out taking into consideration the load applied on the abutment wall by the bearings supporting the bridge structures. The lateral loads had also been considered, which are applied on the abutment walls due to the earth pressure generated from the retained side including surcharge loads and loads from the approach slab. In addition to the lateral earth pressure due to backfill materials, a live loading surcharge equal to 11.6 kN/m^2 had also been considered for the design.

The configuration was also modified in the D/D as shown in Figure 4.6.48 because the geotechnical design parameters and supporting layer were updated as mentioned above. The design was carried out as with the B/D.

Item	DimensionAF1AF2		Domork				
nem			Kemark				
H (mm)	8300	9000	Total height of abutment				
H1 (mm)	3980	4640	Wall height				
H2 (mm)	2420	2460	Parapet height				
S (mm)	3750	3750	Spacing of piles : 2.5 x Pile diameter (= 1500 mm) or more				
W (mm)	14250	12750	Width of pile cap in perpendicular direction to bridge axis				
Pile Length (m)	40.5	43.5					
No. of Pile	8	6	Determined by the displacement at pile head under earthquake load				

Figure 1617	Configuration	of Reversed T	$\Gamma_{\rm type}$ Abutment in the B/C
1 iyule 4.0.47	Configuration	ULIVEVELSER I	-type Abutilient in the D/L

Itam	Dimensio	on	Domont
nem	AF1	AF2	Kemark
H (mm)	8300	9600	Total height of abutment
H1 (mm)	4050	5290	Wall height
H2 (mm)	2350	2410	Parapet height
S1 (mm)	3750	4875	Spacing of piles in perpendicular direction to bridge axis : 2.5 x Pile
51 (1111)	5750	1075	diameter (=1500 mm) or more
S2 (mm)	4500	4000	Spacing of piles in : 2.5 x Pile diameter (= 1500 mm) or more
W1(mm)	12770	12750	Width of abutment in perpendicular direction to bridge axis
W2 (mm)	14250	12750	Width of pile cap in perpendicular direction to bridge axis
B1 (mm)	2500	2000	Width of heel in bridge axis direction
B2 (mm)	3000	3000	Width of toe in bridge axis direction
B3 (mm)	7500	7000	Width of pile cap in bridge axis direction
Pile Length	40.5	34.0	
(m)	-U.J	54.0	
No. of Pile	8	6	Determined by the displacement at pile head under earthquake load

Figure 4.6.48 Configuration of Reversed T-type Abutment in the D/D

The width of the abutment wall had been determined to be 2.0 m considering the reinforcement arrangement, the minimum seating length to avoid unseating of girder from substructures under earthquakes (SE), and the minimum cover concrete to prevent bridge seat from shear failure (S). In the D/D, the expansion joint gap was changed, and SE and S were also modified because the span length was revised. Figure 4.6.49 shows the width of the abutment wall with SE and S in the B/D and D/D.

Source: JICA Study Team

The results of the structural calculation conducted in the D/D for AF1 and AF2 are shown in the following tables.

Table 4.6.143 Calculation Results of Abutments

<u>AF1</u>

Stability Calculation Results

	Pushing Fo	orce (kN)	Tensile	Force (kN)	Displacement (mm)		
Load Case	Calculated	Allowable	Calculated	Allowable	Calculated	Allowable	
	Value	Value	Value	Value	Value	Value	
Under Design Load	2972 < 7610		22	88>0	5.3	15.0	
During Earthquake	4511 < 11592		255	>-7931	13.9□15.0		

Sectional Calculation Results

Me	mber	Para	pet	Wall	Foot	ing	Pile
Location		Front	Back	Back	Under Toe	Above Heel	
Load Case		Design Load	Earthquake	Earthquake	Design Load	Earthquake	Earthquake
G., (*	M (kN/m)	68.16	59.36	1012.41	688.79	772.17	2881.8
Force	N (kN)			540.37			254.8
1 0100	S (kN)		50.39	314.07	1196.39	312.77	1019.6
Reinforcement Bar Volume (mm ²)		Front D22@250 Back D22@250		Front D16@250 Back D22@250	D32@250	D25@250	D32×36
	Σc	4.07	3.55	3.99	2.55	3.15	10.91
	σca	8.00	12.00	12.00	8.00	12.00	12.00
Stress	σs	139.95	121.87	206.52	141.47	230.75	263.79
(N/mm^2)	σsa	160.00	300.00	300.00	160.00	300.00	300.00
	τ		0.144	0.170	0.725	0.179	0.641
	τα		0.548	0.204	1.647	0.405	0.499
Stirrup	Awreq, Aw						1.091 < 5.730

AF2

Stability Calculation Results

		Pushing Fo	orce (kN)	Tensile I	Force (kN)	Displacement (mm)	
Loa	d Case	Calculated Value	Allowable Value	Calculated Value	Allowable Value	Calculated Value	Allowable Value
Under Design Load		4206 < 6169		2937>0		6.20 15.0	
During Earthquake		6236<	9331	219>	>-6595	14.3 🗆 15.0	
Sectional (Calculation Re	sults			•		
Me	ember	Para	pet	Wall	Foot	ing	Pile
Location		Front	Back	Back	Under Toe	Above Heel	
Load Case		Design Load	Earthquake	Earthquake	Design Load	Earthquake	Earthquake
	M (kN/m)	68.16	62.43	1382.95	405.22	1022.44	2673.2
Force	N (kN)	——		602.33			-59.3
	S (kN)		52.00	419.52	——	468.95	1590.4
Reinforcement Bar Volume (mm ²)		Front D22@250 Back D22@250		Front D25@250 Back D25@250	D25@250	D29@250	D32×36
	σc	4.07	3.73	4.85	1.81	3.77	10.09
	σca	8.00	12.00	12.00	8.00	12.00	12.00
Stress	σs	139.95	128.18	249.62	128.65	242.66	253.36
(N/mm^2)	σsa	160.00	300.00	300.00	160.00	300.00	300.00
	τ		0.148	0.227		0.268	1.000
	та		0.548	0.220		0.669	0.489
Stirrup	Awreq, Aw			0.165< 1.986			3.909 < 5.730

Source: JICA Study Team

Where, M is bending moment $(kN \cdot m)$

N is axial force (kN) S is shear force (kN) σc is compressive stress (N/mm²) σc is allowable compressive stress (N/mm²) σs is tensile stress (N/mm²) σs is allowable tensile stress (N/mm²) τ is shear stress (N/mm²) τ a is allowable shear stress (N/mm²)

(6) Design of T-type Pier Including Foundation

The configurations of the T-type pier in the B/D are shown in Figure 4.6.50 and Figure 4.6.53. The circle haunch is applied to the shape of the pier head considering the landscape. The piers can be divided into two types; one is the normal type pier and the other is the end pier. Similar to the width of abutment wall, the column width is determined considering the reinforcement arrangement, the minimum seating length to avoid unseating of girders from the substructures because of earthquakes (SE), and the minimum cover concrete to prevent bridge seat from shear failure (S). In the B/D, the column width had been determined to be 2.2 m at PF8 normal piers and 3.0 m at PF5 end piers.

The configurations of the T-type pier in the D/D are shown in Figure 4.6.51 and Figure 4.6.54. The dimension was modified based on the calculation in the D/D. Same with the B/D, the column width was determined to be 2.2 m for the normal pier and 3.0 m for the end pier.

	Dime	nsion										
Item	PF1	PF3	PF4	PF6	PF7	PF8	PF9	PF1	PF1	PF1	PF1	Remark
- Ц1	480	660	780	880	880	860	840	830	Z 750	5 640	560	Diar haight
(mm)	480	0	0	0	0	0	0	0	0	040	0	i lei neight
L (m)	41.5	40.0	41.0	37.5	39.0	39.0	39.0	39.0	40.0	42.0	43.0	Pile length
No. of Pile	6	6	6	6	6	6	6	6	6	6	6	Determined by the displacement at pile head under earthquake load

Figure 4.6.50 Configuration of T-type Pier (Normal Pier) in the B/D

	Dimer	nsion										
Item	PF1	PF3	PF4	PF6	PF7	PF8	PF9	PF1 0	PF1 2	PF1 3	PF15	Remark
H1	5000	6400	7900	1000	990	9900	9500	9100	730	640	5900	Pier height
(mm)				0	0				0	0		
S1	3750	3750	3750	3750	500	3750	3750	3750	500	500	3750	Spacing of pile in perpendicular
(mm)					0				0	0		direction to bridge axis
S2	5500	3750	3750	3750	375	4500	3750	4500	375	375	4500	Spacing of pile in bridge axis
(mm)					0				0	0		direction
W	1050	1050	1050	1050	800	1050	1050	1050	800	800	10500	Width of pile cap in
(mm)	0	0	0	0	0	0	0	0	0	0		perpendicular direction to
(IIIII)												bridge axis
В	8500	1050	6750	6750	675	7500	6750	7500	675	675	7500	Width of pile cap in bridge axis
(mm)		0			0				0	0		direction
L (m)	41.5	38.0	40.5	33.5	37.0	37.0	35.5	32.5	33.0	32.5	34.0	Pile length
No. of												Determined by the displacement
Pile	6	9	6	6	4	6	6	6	4	4	6	at pile head under earthquake
1 IIC												load

Figure 4.6.52 Determination of Column Width for Normal Pier

Itom	Dime	nsion			Domonk
Item	PF2	PF5	PF11	PF14	Kemar k
H1 (mm)	5000	8200	7600	5600	Pier height
H2 (mm)	830	520	580	790	Differential height of pier head
L (m)	41.5	37.5	39.5	42.5	Pile length
No. of Pile	6	6	6	6	Determined by stress of pile

Itom	Dimens	sion			Domoule
Item	PF2	PF5	PF11	PF14	кепагк
H1 (mm)	5000	8800	7900	5700	Pier height
H2 (mm)	960	950	790	790	Differential height of pier head
S1 (mm)	3750	3750	5000	5000	Spacing of pile in perpendicular direction to bridge axis
S2 (mm)	5500	5000	3750	5000	Spacing of pile in bridge axis direction
W(mm)	10500	10500	8000	8000	Width of pile cap in perpendicular direction to bridge
w (mm)					axis
B(mm)	8500	8000	6750	8000	Width of pile cap in bridge axis direction
L (m)	41.5	35.5	32.5	33.5	Pile length
No. of Pile	6	6	4	6	Determined by stress of pile

Figure 4.6.54 Configuration of T-type Pier (End Pier) in the D/D

The structural calculation results at all piers are shown in Table 4.6.144.

Table 4.6.144 Calculation Results for Piers

PF1 (PC-I Girder Bridge)

Stability Calculation Results										
	Pushing F	orce (kN)	Tensile Fo	orce (kN)	Displacement (mm)					
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated				
	Value	Value	Value	Value	Value	Value				
During Earthquake in	5509 < 12252		505 > 8407		13 5 15 0					
Bridge Axis Direction	5598~	12233	-303 /	-8407	13.5<15.0					
During Earthquake in										
Perpendicular Direction	4680 < 12253		413>-8407		8.4<15.0					
to Bridge Axis										

Sectional Calculation Results

In Bridge Az	xis Direction						
Mei	mber	Bea	am	Column	Foo	oting	Pile
Location		Vertical	Horizontal	Bottom	Тор	Bottom	Under
	ation	ventical	Horizontai	Bottom	Surface	Surface	Ground
Load	l Case	Dead Load	Earthquake	Earthquake	Earthquake	Earthquake	Earthquake
Santianal	M (kN/m)	3376.90	1881.69	29017.02	-6552.70	24065.22	2652.0
Forma	N (kN)			9395.86			-787.6
Force	S (kN)	2785.21	976.56	4518.76	-3539.71	15691.70	960.9
Dainfana	amant Dan	Top:D	32×14				
Valum	$e (mm^2)$	D	32×14	D32@125	D29@250	D32@125	D32×36
voium		Side:D	22×13				
	σc	2.13	2.31	7.82	2.76	6.60	9.90
	σca	8.00	12.00	12.00	12.00	12.00	12.00
Stress	σs	75.69	187.82	273.19	177.74	244.74	283.53
(N/mm^2)	σsa	100.00	300.00	300.00	300.00	300.00	300.00
	τ	1.000	0.318	0.315	0.193	0.906	0.604
	τα	0.305	0.190	0.301	0.590	1.365	0.489
Stirrup	Awreq, Aw	1464.4 <2322.6	107.4<972.8	55.7<397.2			0.882<5.730
In Perpendic	cular Direction	to Bridge Axis					
т			II. '	D. #	Тор	Bottom	Under
Loc	ation	vertical	Horizontai	Bottom	Surface	Surface	Ground
Load	l Case			Earthquake	Earthquake	Earthquake	Earthquake
G., (1), (1)	M (kN/m)			16237.02	-703.86	1535.38	1824.02
Sectional	N (kN)			9395.86			130.53
Force	S (kN)			2718.76	-475.66	-475.66	660.86
Reinforce Volum	ement Bar e (mm ²)			D32@250	D19@250	D29@250	D32×36
	σc			1.56	0.93	1.07	-6.90
	σca			12.00	12.00	12.00	12.00
Stress	σs			6.06	96.38	66.16	168.17
(N/mm^2)	σsa			300.00	300.00	300.00	300.00
	τ			0.180	0.032	0.033	0.416
	τα			0.198	0.783	1.077	0.497
Stirrup	Awreq, Aw						

PF2 (Steel Box Girder Bridge and PC-I Girder Bridge)

Stability Calculation Results Tensile Force (kN) Pushing Force (kN) Displacement (mm) Load Case Calculated Allowable Calculated Allowable Allowable Calculated Value Value Value Value Value Value During Earthquake in 6109 < 12380 -592>-8460 14.0<15.0 Bridge Axis Direction During Earthquake in Perpendicular 5434 < 12380 83.7>-8460 9.8<15.0 Direction to Bridge Axis

Sectional Calculation Results

In Bridge	Axis Direction						
М	ember	Bea	ım	Column	Foc	oting	Pile
Lo	action	Vertical	Horizontal	Bottom	Тор	Bottom	Under
LU	cation	vertical	Horizontai	Bottom	Surface	Surface	Ground
Lag	d Casa	Dead Load	Forthqualta	Forthquaka	Earthquak	Design	Forthquaka
LUG	iu Case	Deau Loau	Latinquake	Laitiiquake	e	Load	Багшүчаке
Sectional	M (kN/m)	2400.05	1062.33	33640.10	-5301.56	11239.22	2736.6
Forma	N (kN)			10801.08		——	-874.3
Force	S (kN)	1333.98	1049.66	4810.32	-3585.90	17226.07	1009.5
Reinfor	cement Bar	Top D3	32×17	D20@125	D25@250	D20@125	D22×26
Volur	ne (mm ²)	Side D	16×14	D29@125	D25@250	D29@125	D32×36
	σc	1.47	1.03	5.92	2.47	3.34	10.20
	σca	8.00	12.00	12.00	12.00	8.00	12.00
Stress	σs	81.41	136.37	235.57	181.06	140.03	295.07
(N/mm^2)	σsa	100.00	300.00	300.00	300.00	160.00	300.00
	τ	0.335	0.152	0.241	0.195	0.994	0.635
	та	0.229	0.145	0.227	0.543	1.644	0.489
Stirrup	Awreq, Aw	406.5<1548. 4	11.5 <972.8	55.2<397.2			1.116<5.730
In Perpend	licular Directio	on to Bridge Axis					
т		TT (* 1	TT 1 1	D //	Тор	Bottom	Under
Loc	ation	Vertical	Horizontal	Bottom	Surface	Surface	Ground
Load	l Case			Earthquake	Earthquak e	Earthquake	Earthquake
Sectional	M (kN/m)			22058.75	-868.60	1912.48	2104.05
Forma	N (kN)			10801.08			-198.94
Force	S (kN)			3410.32	-475.66	-475.66	776.12
Reinforc Volum	ement Bar e (mm ²)		-	D29@250	D16@250	D25@250	D32×36
	σc			1.57	1.10	1.32	7.92
	σca			12.00	12.00	12.00	12.00
Stress	σs			11.83	134.97	95.49	207.84
(N/mm^2)	σsa			300.00	300.00	300.00	300.00
· · · ·	τ			0.166	0.032	0.033	0.488
	τα			0.175	0.734	0.990	0.493
Stirrup	Awreq, Aw						

٦

PF3 (Steel Box Girder Bridge)

Stability Calculation Results

	Pushing	Force (kN)	Tensile Fo	orce (kN)	Displacement (mm)		
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated	
	Value	Value	Value	Value	Value	Value	
During Earthquake in	4004 < 11021		124 > 7220		96<150		
Bridge Axis Direction	4004 \	<11021	-134/	-/338	9.0 < 15.0		
During Earthquake in							
Perpendicular Direction	dicular Direction 5063 < 11021		-313>-7338		10.1<15.0		
to Bridge Axis							

Sectional Calculation Results In Bridge Axis Direction

In Bridge A	as Direction						
Member		В	eam	Column	Foc	oting	Pile
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load	l Case	Dead Load	Earthquake	Earthquake	Earthquake	Earthquake	Earthquake
G	M (kN/m)	852.7	248.41	34194.20	-7518.66	32500.48	1814.4
Sectional	N (kN)			14024.08			-366.3
Force	S (kN)	109.63	868.50	4077.22	-2810.73	13549.32	624.1
Reinforc Volum	ement Bar e (mm²)	Top I Side I	D22×15 D16×14	D32@125	D32@250	D32@125 D32@125	D32×28
	σc	0.89	0.40	9.26	2.90	7.96	7.81
	σca	8.00	12.00	12.00	12.00	12.00	12.00
Stress	σs	66.18	44.29	290.94	166.07	234.12	235.20
(N/mm^2)	σsa	100.00	300.00	300.00	300.00	300.00	300.00
	τ	0.023	0.173	0.284	0.153	0.799	0.393
	τа	0.170	0.179	0.301	0.387	0.895	0.448
Stirrup	Awreq, Aw	_	_	——	——		
In Perpendicular Direction		to Bridge Ax	is				
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load	l Case			Earthquake	Earthquake	Earthquake	Earthquake
C a ati a mal	M (kN/m)			37104.20	-1359.45	2803.65	1911.3
Earrag	N (kN)			14024.08			-313.0
Force	S (kN)			4377.22	-587.58	-587.58	657.4
Reinforc Volum	ement Bar e (mm²)	_		D32@250	D25@250	D29@250 D29@250	D32×28
	σc			4.10	1.39	1.63	8.23
	σca			12.00	12.00	12.00	12.00
Stress	σs			73.07	106.43	72.57	243.95
(N/mm^2)	σsa			300.00	300.00	300.00	300.00
	τ			0.290	0.031	0.034	0.414
	τα			0.198	0.907	1.363	0.448
Stirrup	Awreq, Aw			116.8<397.2			

PF4 (Steel Box Girder Bridge)

Stability Calculation Results

	Pushing Force (kN)		Tensile Force (kN)		Displacement (mm)		
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated	
	Value	Value	Value	Value	Value	Value	
During Earthquake in Bridge Axis Direction	6457<13382		-28>-9003		10.2<15.0		
During Earthquake in Perpendicular Direction to Bridge Axis	6699<13382		-270>-	9003	7.9<	<15.0	

Sectional Calculation Results

In Brid Direction	lge Axis							
Me	mber	Be	eam	Column	Foc	oting	Pile	
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground	
Load	l Case	Dead Load	Earthquake	Earthquake	Earthquak e	Earthquake	Earthquake	
Sectional	M (kN/m)	858.70	218.41	33717.38	-1971.48	13112.28	1893.7	
Forma	N (kN)		——	14690.03	<u> </u>	——	-252.5	
Force	S (kN)	109.63	718.50	3647.01	-973.18	-973.18	772.8	
Reinforc Volum	ement Bar e (mm ²)	Top E Side I	D22×15 D16×14	D32@125	D19@250	D32@250	D32×28	
	σc	0.89	0.35	9.13	1.18	4.64	8.16	
	σca	8.00	12.00	12.00	12.00	12.00	12.00	
Stress	σs	66.65	38.94	278.03	117.47	250.84	238.69	
(N/mm^2)	σsa	100.00	300.00	300.00	300.00	300.00	300.00	
	τ	0.023	0.143	0.254	0.053	0.056	0.486	
	τα	0.170	0.179	0.301	1.139	1.188	0.448	
Stirrup							0.289<5.73	
	Awreq, Aw						0	
In Perpendi	In Perpendicular Direction to Bridge Axis							
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground	
Load	l Case			Earthquake	Earthquak e	Earthquake	Earthquake	
Sectional	M (kN/m)		<u> </u>	33917.38	-857.94	2710.67	1434.20	
Force	N (kN)			14690.03	<u> </u>		-494.33	
Toree	S (kN)		<u> </u>	4147.01	-377.73	-377.73	856.13	
Reinforc Volum	ement Bar e (mm ²)			D32@250	D16@250	D19@250	D32×28	
	σc			4.38	1.35	2.69	6.60	
	σca			12.00	12.00	12.00	12.00	
Stress	σs			81.01	169.00	257.22	196.70	
(N/mm^2)	σsa			300.00	300.00	300.00	300.00	
	τ			0.275	0.032	0.033	0.539	
	τα			0.198	0.731	0.843	0.448	
Stirrup	Awreq, Aw			97.4<397.2			0.690<5.73 0	

PF5 (Steel-I Girder Bridge and PC-I Girder Bridge)

Stability Calculation Results									
	Pushing F	orce (kN)	Tensile Force (kN)		Displacement (mm)				
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated			
	Value	Value	Value	Value	Value	Value			
During Earthquake in	7866 <11610		-1857 >-7638		13.6 <15.0				
Bridge Axis Direction									
During Earthquake in									
Perpendicular Direction	6104 <11610		-95>-7638		7.5 <15.0				
to Bridge Axis									

Sectional Calculation Results

In Bridge A	x1s Direction							
Me	mber	Bea	ım	Column	Foo	oting	Pile	
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground	
Load	l Case	Dead Load	Earthquake	Earthquake	Earthquake	Earthquake	Earthquake	
	M (kN/m)	2480.09	1660.24	61262.59	-8040.90	21304.05	2140.7	
Sectional	N (kN)			12643.78			-2123.0	
Force	S (kN)	1347.67	779.30	6093.13	-7198.31	22497.57	1211.0	
Reinforc	ement Bar $e(mm^2)$	Top D3 Side D	32×17 16×14	D32@125	D29@250	D32@125	D32×36	
volum		1 52	1.61	8 27	3 39	5 84	7 58	
		8.00	12.00	12.00	12.00	12.00	12.00	
Stress	σs	84.13	213.13	293.35	218.10	216.00	289.96	
(N/mm^2)	σsa	100.00	300.00	300.00	300.00	300.00	300.00	
()	τ	0.344	0.187	0.309	0.392	1.299	0.762	
	τα	0.231	0.142	0.270	0.675	2.011	0.489	
Stirrup	Awreq, Aw	435.3<1548.4	49.6<972.8	159.2<397.2			2.085<5.730	
In Perpendic	In Perpendicular Direction to Bridge Axis							
T		Vartiant	aal Uarizantal	Detterre	Тор	Bottom	Under	
Loc	ation	vertical	Horizontai	izontal Bottom	Surface	Surface	Ground	
Load	l Case	——		Earthquake	Earthquake	Earthquake	Earthquake	
Castianal.	M (kN/m)			33719.64	-904.62	2294.93	1386.73	
Forma	N (kN)	——		12643.78			-360.74	
Force	S (kN)			3793.13	-447.68	-447.68	827.70	
Reinforc Volum	ement Bar e (mm ²)		_	D32@250	D19@250	D29@250	D32×36	
	σc			2.70	0.97	1.43	5.18	
	σca			12.00	12.00	12.00	12.00	
Stress	σs	——	——	47.68	97.87	90.83	146.19	
(N/mm^2)	σsa			300.00	300.00	300.00	300.00	
	τ			0.185	0.032	0.033	0.521	
	τα			0.206	0.784	1.078	0.489	
Stirrup	Awreq, Aw	—					0.242<5.730	

PF6 (PC-I Girder Bridge)

Stability Calculation Results

	Pushing Force (kN)		Tensile Force (kN)		Displacement (mm)		
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated	
	Value	Value	Value	Value	Value	Value	
During Earthquake in	6107<10984		-580>-7146		10.7 < 15.0		
Bridge Axis Direction					10.7 < 15.0		
During Earthquake in	6485 < 10984						
Perpendicular Direction			-958>	-958>-7146		8.4<15.0	
to Bridge Axis							

Sectional Calculation Results In Bridge Axis Direction

In Bridge A	xis Direction						
Me	mber	Bear	n	Column	Foo	oting	Pile
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load	l Case	Dead Load	Earthquake	Earthquake	Earthquake	Earthquake	Earthquake
Castian 1	M (kN/m)	3824.50	1233.21	36085.67	-3255.48	12297.83	2069.9
Sectional	N (kN)			11982.35			-804.8
Force	S (kN)	3002.08	615.62	3684.71	-973.18	-973.18	779.1
Reinforc Volum	ement Bar e (mm ²)	Top D32 D32 Side D22	2×14 2×14 2×13	D29@125 D29@125	D19@250	D32@250	D32×36
	σc	2.41	1.51	8.22	1.94	4.35	7.69
	σca	8.00	12.00	12.00	12.00	12.00	12.00
Stress	σs	85.72	123.09	229.45	193.97	235.26	229.01
(N/mm ²)	σsa	100.00	300.00	300.00	300.00	300.00	300.00
	τ	1.097	0.204	0.263	0.053	0.056	0.490
	τα	0.308	0.191	0.357	1.139	1.188	0.489
Stirrup	Awreq, Aw	1664.1<2322.6	10.4<972.8				0.008<5.730
In Perpendie	cular Direction	to Bridge Axis					
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load	l Case			Earthquake	Earthquake	Earthquake	Earthquake
Sections1	M (kN/m)			43345.67	-1202.17	2603.62	1473.0
Force	N (kN)			11982.35			-1182.8
Force	S (kN)			4284.71	-377.73	-377.73	879.1
Reinforc Volum	ement Bar e (mm ²)		-	D29@250	D16@250	D19@250	D32×36
	σc			6.69	1.89	2.58	6.29
	σca			12.00	12.00	12.00	12.00
Stress	σs			291.89	236.81	247.06	187.99
(N/mm^2)	σsa			300.00	300.00	300.00	300.00
	τ			0.284	0.032	0.033	0.553
	τα			0.229	0.731	0.843	0.489
Stirrup	Awreq, Aw			69.4<397.2			0.489<5.730

٦

PF7 (PC-I Girder Bridge)

Stability Calculation Results

	Pushing Force (kN)		Tensile Force (kN)		Displacement (mm)		
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated	
	Value	Value	Value	Value	Value	Value	
During Earthquake in	7372<12276		596>-8139		11.0 < 15.0		
Bridge Axis Direction					11.0<15.0		
During Earthquake in	7307 < 12276		661>-8139		9.7<15.0		
Perpendicular Direction							
to Bridge Axis							

Sectional Calculation Results In Bridge Axis Direction

III Druge A	and an	Deer		Calumn	Eas	tina	Dila
Ivie	mber	Bean	n	Column	FOC	bung	Pile
Loc	ation	Vertical	Horizontal	Bottom	Top	Bottom	Under
					Surface	Surface	Ground
Load	l Case	Dead Load	Earthquake	Earthquake	Earthquake	Design Load	Earthquake
Santianal	M (kN/m)	4030.06	698.48	23270.62	-530.96	5638.51	2017.8
Forma	N (kN)		_	12519.03			301.9
Force	S (kN)	2758.92	350.68	2595.71	-741.47	-741.47	837.5
D i c		Top D32	2×14				
Reinforc	ement Bar	D32	2×14	D25@125	D19@250	D32@250	D32×24
Volum	$e (mm^2)$	Side D22	2×13	0	0	Ŭ	
	σc	2.54	0.86	7.56	0.34	2.58	9.42
	σca	8.00	12.00	12.00	12.00	8.00	12.00
Stress	σs	90.32	69.72	252.84	33.58	140.52	257.85
(N/mm^2)	σsa	100.00	300.00	300.00	300.00	160.00	300.00
	τ	0.922	0.110	0.181	0.053	0.056	0.527
	τα	0.298	0.196	0.258	1.141	1.192	0.456
Stirrup	Awreq, Aw	1316.3<2322.6					0.545<5.730
In Perpendic	cular Direction	to Bridge Axis					
				Bottom	Тор	Bottom	Under
Loc	ation	Vertical	Horizontal		Surface	Surface	Ground
Load	l Case			Earthquake	Design Load		Earthquake
Castional	M (kN/m)			26498.74	-59.02		1528.64
Forma	N (kN)		_	12519.03			367.27
Force	S (kN)			2895.71			912.46
Reinforc Volum	ement Bar e (mm ²)		-	D25@125	D16@250	D19@250	D32×24
	σc			2.64	0.09		7.12
	σca			12.00	8.00		12.00
Stress	σs			23.45	11.63		187.07
(N/mm^2)	σsa			300.00	160.00		300.00
	τ			0.192			0.574
	τα			0.175			0.628
Stirrup	Awreq, Aw			21.2<397.2			

PF8 (PC-I Girder Bridge)

Stability Calculation Results

	Pushing Force (kN)		Tensile Force (kN)		Displacement (mm)		
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated	
	Value	Value	Value	Value	Value	Value	
During Earthquake in	7084 < 12076		-1153>-8009		12 2 15 0		
Bridge Axis Direction					12.3 < 15.0		
During Earthquake in	6603 < 12076		-673>-8009		8.2<15.0		
Perpendicular Direction							
to Bridge Axis							

Member Calculation Results

In Bridge A	xis Direction						
Me	mber	Bea	am	Column	Foo	oting	Pile
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load	l Case	Dead load	Earthquake	Earthquake	Earthquake	Earthquake	Earthquake
	M (kN/m)	3969.10	1838.91	46517.77	-6741.36	21860.04	1998.5
Sectional	N (kN)			12644.63			-1438.4
Force	S (kN)	3095.13	1019.54	5373.39	-5176.45	20149.56	1062.2
Reinforc Volum	ement Bar e (mm ²)	Top D. D Side D	32×14 32×14 22×13	D32@125 D32@125	D29@250	D32@125	D32×36
	σc	2.50	2.26	9.51	2.84	5.99	7.26
	σca	8.00	12.00	12.00	12.00	12.00	12.00
Stress	σs	88.96	183.55	257.46	182.85	222.31	248.19
(N/mm ²)	σsa	100.00	300.00	300.00	300.00	300.00	300.00
	τ	1.051	0.317	0.377	0.282	1.163	0.668
	τα	0.296	0.195	0.378	0.782	1.862	0.489
Stirrup	Awreq, Aw	1595.3 <2322.6	107.2<972.8				1.369<5.730
In Perpendie	cular Direction	to Bridge Axis					
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load	l Case			Earthquake	Earthquake	Earthquake	Earthquake
	M (kN/m)			41717.77	-1139.58	2604.81	1472.28
Sectional	N (kN)			12644.63			-958.08
Force	S (kN)			4173.39	-419.7	-419.70	878.86
Reinforc Volum	ement Bar e (mm ²)		_	D32@250	D19@250	D29@250	D32×36
	σc			5.60	1.51	1.82	5.38
	σca			12.00	12.00	12.00	12.00
Stress	σs			183.86	156.05	112.24	178.66
(N/mm^2)	σsa			300.00	300.00	300.00	300.00
	τ			0.277	0.032	0.033	0.553
	τα			0.245	0.784	1.079	0.489
Stirrup	Awreq, Aw			40.1<573.0			0.488<5.730

PF9 (PC-I Girder Bridge)

·	Pushing Force (kN)		Tensile Force (kN)		Displacement (mm)		
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated	
	Value	Value	Value	Value	Value	Value	
During Earthquake in	6121<11459		-591>-7657		11.1<15.0		
Bridge Axis Direction							
During Earthquake in							
Perpendicular Direction	5998<11459		-467>	-467>-7657		7.5<15.0	
to Bridge Axis							

Member Calculation Results

In Bridge Axis Direction							
Member		Beam		Column	Foo	Footing	
Laa	- 4 ¹	Vertical	Homigramtal	Dattam	Тор	Bottom	Under
Location		ventical	Horizontai	Bottom	Surface	Surface	Ground
Load Case		Dead load	Earthquake	Earthquake	Earthquake	Earthquake	Earthquake
Sectional Force	M (kN/m)	3567.20	1383.41	33967.47	-3279.97	12330.26	2011.1
	N (kN)			11993.71			-825.8
	S (kN)	2794.72	759.42	4128.11	-973.18	-973.18	853.0
Reinforcement Bar Volume (mm ²)		Top D32×14 D32×14 Side D22×13		D29@125 D29@250	D19@250	D32@250	D32×32
Stress (N/mm ²)	σc	2.25	1.70	8.62	1.96	4.37	7.98
	σca	8.00	12.00	12.00	12.00	12.00	12.00
	σs	79.95	138.09	265.45	195.43	235.88	250.04
	σsa	100.00	300.00	300.00	300.00	300.00	300.00
	τ	0.953	0.237	0.293	0.053	0.056	0.537
	τα	0.297	0.195	0.323	1.139	1.188	0.469
Stirrup	Awreq, Aw	1382.9 <2322.6	36.2<972.8				0.519<5.730
In Perpendicular Direction to Bridge Axis							
Location		Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load Case				Earthquake	Earthquake	Earthquake	Earthquake
Sectional Force	M (kN/m)			36577.47	-956.62	2363.82	1345.94
	N (kN)			11993.71			-702.57
	S (kN)			3828.11	-377.73	-377.73	802.98
Reinforcement Bar Volume (mm ²)				D29@250	D16@250	D19@250	D32×32
Stress (N/mm ²)	σc			4.78	1.50	2.35	5.31
	σca			12.00	12.00	12.00	12.00
	σs			138.10	188.44	224.31	174.27
	σsa			300.00	300.00	300.00	300.00
	τ			0.254	0.032	0.033	0.505
	та			0.209	0.731	0.843	0.469
Stirrup	Awreq, Aw			56.5<397.2			0.279<5.730
PF10 (PC-I Girder Bridge)

Stability Calculation Results

	Pushing Force (kN)		Tensile Fo	orce (kN)	Displacement (mm)		
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated	
	Value	Value	Value	Value	Value	Value	
During Earthquake in	7172<9365		-1542>-6567		13 4 15 0		
Bridge Axis Direction					13.4 < 15.0		
During Earthquake in							
Perpendicular Direction	6313<9365		-683>-6567		8.2<15.0		
to Bridge Axis							

Member Calculation Results

In Bridge A	xis Direction						
Me	mber	Bea	am	Column	Foo	oting	Pile
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load	l Case	Dead load	Earthquake	Earthquake	Earthquake	Earthquake	Earthquake
	M (kN/m)	3514.70	2153.41	48705.28	-8059.90	22166.83	2183.1
Sectional	N (kN)			11742.78			-1791.7
Force	S (kN)	2834.72	1199.42	5882.84	-6284.65	20416.34	1163.8
Reinforcement Bar Volume (mm ²)		Top D32×14 D32×14 Side D22×13		D32@125 D32@125	D29@250	D32@125	D32×36
	σc	2.21	2.64	9.90	3.40	6.08	8.51
	σca	8.00	12.00	12.00	12.00	12.00	12.00
Stress	σs	78.77	214.94	277.81	218.62	225.43	280.23
(N/mm^2)	σsa	100.00	300.00	300.00	300.00	300.00	300.00
	τ	0.966	0.374	0.420	0.342	1.178	0.732
	τα	0.297	0.195	0.378	0.782	1.862	0.489
Stirrup	Awreq, Aw	1411.7 <2322.6	156.7<972.8	169.4<573.0			1.858<5.730
In Perpendie	cular Direction	to Bridge Axis					
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load	l Case			Earthquake	Earthquake	Earthquake	Earthquake
	M (kN/m)			39835.28	-1145.02	2447.03	1475.33
Sectional	N (kN)			11742.78			-932.74
Force	S (kN)			4182.84	-419.70	-419.70	880.43
Reinforc Volum	ement Bar e (mm ²)		_	D32@250	D19@250	D29@250	D32×36
	σc			5.40	1.51	1.71	5.40
	σca		<u> </u>	12.00	12.00	12.00	12.00
Stress	σs			185.62	156.79	105.44	178.01
(N/mm^2)	σsa			300.00	300.00	300.00	300.00
	τ			0.278	0.032	0.033	0.554
	τα			0.245	0.784	1.079	0.489
Stirrup	Awreq, Aw			40.9<573.0			0.495<5.730

PF11 (PC-I Girder Bridge and Steel-I Girder Bridge)

Stability Calculation Results									
	Pushing Force (kN)		Tensile Fo	orce (kN)	Displacement (mm)				
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated			
	Value	Value	Value	Value	Value	Value			
During Earthquake in	7271 < 0291		175 \ (510		13 5 1 15 0				
Bridge Axis Direction	/2/1<	9281	-1/5>-6510		13.5<15.0				
During Earthquake in									
Perpendicular Direction	6739<9281		357>-6510		10.5<15.0				
to Bridge Axis									

Member Calculation Results

In Bridge A:	In Bridge Axis Direction								
Me	mber	Bea	m	Column	Foo	oting	Pile		
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground		
Load	l Case	Dead load	Earthquake	Earthquake	Earthquake	Earthquake	Earthquake		
	M (kN/m)	2895.92	787.68	23169.77	-1115.55	4545.11	2240.6		
Sectional	N (kN)			10906.33			-432.3		
Force	S (kN)	2171.92	406.57	3231.90	-517.63	-517.63	996.5		
Reinforcement Bar Volume (mm ²)		Top D32×15 D32×8 Side D19×13		D25@250	D16@250	D22@250	D32×28		
	σc	1.60	0.67	5.57	0.85	2.81	9.64		
	σca	8.00	12.00	12.00	12.00	12.00	12.00		
Stress	σs	75.99	75.88	258.67	101.02	227.52	289.39		
(N/mm^2)	σsa	100.00	300.00	300.00	300.00	300.00	300.00		
	τ	0.516	0.090	0.162	0.037	0.039	0.627		
	τα	0.249	0.147	0.175	0.864	0.921	0.448		
Stirrup	Awreq, Aw	1026.3 <1548.4					1.365<5.730		
In Perpendie	cular Direction	to Bridge Axis							
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground		
Load	l Case			Earthquake	Dead Load		Earthquake		
C. dianal	M (kN/m)			23442.01	-59.02		1777.70		
Forma	N (kN)	——		10906.33			99.3		
Force	S (kN)		——	3031.90			946.50		
Reinforc Volum	ement Bar e (mm ²)		_	D25@250	D16@250	D16@250	D32×28		
	σc			1.71	0.08		7.67		
	σca	——	——	12.00	8.00		12.00		
Stress	σs			15.87	9.19		206.64		
(N/mm^2)	σsa			300.00	160.00		300.00		
	τ			0.148			0.595		
	τα			0.135			0.465		
Stirrup	Awreq, Aw		¯	20.8<397.2			0.997<5.730		

PF12 (Steel-I Girder Bridge)

Stability Calculation Results

	Pushing Force (kN)		Tensile F	orce (kN)	Displacement (mm)	
Load Case		Allowab	Calculate	Allowable		Calculated
	Calculated Value	le Value	d Value	Value	Allowable Value	Value
During Earthquake in Bridge Axis Direction	6603<8980	6603<8980		-6329	12.0<15.0	
During Earthquake in Perpendicular Direction to Bridge Axis	7234<8980	7234<8980		-6329	12.2<15.	0

Member Calculation Results

In Bridg	ge Axis						
Direction							
Member		Beam	1	Column	Foc	oting	Pile
Location		Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load Case		Dead load	Earthquak e	Earthquake	Earthquake	Design Load	Earthquake
Sectiona	M (kN/m)	3405.70	666.41	16399.54	-467.78	5131.84	1798.67
l Force	N (kN)	——		11063.65	——	——	380.51
	S (kN)	2568.87	360.66	2679.09	-741.47	-741.47	858.30
Reinforcement Bar Volume (mm ²)		Top D32×14 D32×14 Side D19×13		D25@250	D19@250	D32@250	D32×28
	σc	2.15	0.93	6.60	0.30	2.35	7.76
	σca	8.00	12.00	12.00	8.00	8.00	12.00
Stress	σs	76.33	89.23	249.48	29.58	127.89	194.78
(N/mm^2)	σsa	100.00	300.00	300.00	300.00	160.00	300.00
	τ	0.857	0.110	0.187	0.053	0.056	0.540
	τα	0.293	0.182	0.218	1.141	1.192	0.897
Stirrup	Awreq, Aw	1188.3<1548.4					

In Perpendicular Direction to Bridge Axis

Loca	tion	Vertical	Horizont al	Bottom	Top Surface	Bottom Surface	Under Ground
Load Case				Earthquake	Dead Load		Earthquake
Sectiona	M (kN/m)			26869.54	-59.02		2069.6
1 Force	N (kN)			11063.65		_	-252.2
	S (kN)			3179.09			983.3
Reinforce Volume	ment Bar (mm ²)			D25@250	D16@250	D19@250	D32×28
	σc			2.89	0.09		8.92
	σca			12.00	8.00		12.00
Stress	σs			41.86	11.63		259.63
(N/mm^2)	σsa			300.00	160.00		300.00
	τ			0.211			0.619
	τα	_		0.144			0.448
Stirrup	Awreq, Aw			85.2<397.2			1.301<5.73 0

PF13 (Steel-I Girder Bridge)

Stability Calculation Results

	Pushing Force (kN)		Tensile Force (kN)		Displacement (mm)	
Load Case		Allowable	Calculate	Allowable	Allowable	Calculated
	Calculated Value	Value	d Value	Value	Value	Value
During Earthquake						
in Bridge Axis	6410<8808		661	>-6190	11.6<15.0	
Direction						
During Earthquake						
in Perpendicular	6056 < 89	208	115	>_6100	11 5 15 0	
Direction to Bridge	6956<8808		115	-0190	11.5 < 15.0	
Axis						
Member Calculation	Results					

Member Calculation Results

In Bridge Axis Direction

Men	nber	Beam		Column	Fo	Footing	
Loca	tion	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load	Case	Dead load	Earthquak e	Earthquake	Earthquake	Design Load	Earthquake
	М						
Sectiona	(kN/m)	3405.70	734.41	15314.20	-431.23	5000.26	1772.69
1 Force	N (kN)			10724.08			402.30
	S (kN)	2568.87	400.66	2777.22	-741.47	-741.47	882.83
Dainforca	mont Dor	Top D32	×14				
Volume	(mm^2)	D32	×14	D25@250	D19@250	D32@250	D32×28
volume (mm2)		Side D19	×13				
	σc	2.15	1.03	6.11	0.28	2.29	7.65
	σca	8.00	12.00	12.00	12.00	8.00	12.00
Stress	σs	76.33	98.34	221.78	27.27	124.61	190.58
(N/mm^2)	σsa	100.00	300.00	300.00	300.00	160.00	300.00
	τ	0.857	0.123	0.194	0.053	0.056	0.555
	τα	0.293	0.182	0.218	1.141	1.192	0.897
Stirrup	Awreq, Aw	1188.3<1548.4					
In Perpend	licular Dir	ection to Bridge Ax	is				
Loca	tion	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load	Case			Earthquake	Dead Load		Earthquake
Sectiona	M (kN/m)			25004.20	-59.02		1973.5
1 Force	N (kN)			10724.08			-143.7
	S (kN)			3177.22			982.8
Reinforce Volume	ment Bar (mm ²)			D25@250	D16@250	D19@250	D32×28
	σc			2.61	0.09		8.51
	σca			12.00	8.00		12.00
Stress	σs			32.79	11.63		242.52
(N/mm^2)	σsa			300.00	160.00		300.00
. ,	τ			0.211			0.618
	τα			0.144			0.448
Stirrup	Awreq, Aw			85.1<397.2			1.299<5.73 0

٦

PF14 (Steel-I Girder Bridge and PC-I Girder Bridge)

Stability Calculation Results

	Pushing Force (kN)		Tensile Force (kN)		Displacement (mm)	
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated
	Value	Value	Value	Value	Value	Value
During Earthquake in	7275<9151		-420>-6456		14.2<15.0	
Bridge Axis Direction						
During Earthquake in	6304<9151		551>-6456		10.3<15.0	
Perpendicular Direction						
to Bridge Axis						

Member Calculation Results In Bridge Axis Direction

Mei	mber	Bea	m	Column	For	vina	Pile
IVICI		Dea		Column	Ton	Bottom	Under
Loc	ation	Vertical	Horizontal	Bottom	Surface	Surface	Ground
Load	l Case	Dead load	Earthquake	Earthquake	Earthquake	Design Load	Earthquake
Continue1	M (kN/m)	2893.00	1437.55	26367.70	-2122.68	9221.99	2632.8
Sectional	N (kN)			9724.03			-727.3
Force	S (kN)	2165.92	777.78	4407.21	-727.48	13716.63	1325.2
Reinforcement Bar Volume (mm ²)		Top D3 D Side D3	32×15 32×8 19×13	D32@250	D29@250	D32@125	D32×36
	σc	1.60	1.22	5.50	0.97	3.28	9.83
	σca	8.00	12.00	12.00	12.00	8.00	12.00
Stress	σs	75.91	138.48	249.11	61.12	123.44	279.27
(N/mm^2)	σsa	100.00	300.00	300.00	300.00	160.00	300.00
	τ	0.515	0.172	0.221	0.052	1.039	0.834
	τα	0.249	0.147	0.203	1.169	1.760	0.489
Stirrup	Awrea Aw	1020.1	29.9 <972.8	72.3<397.2			2.634<5.730
In Perpendic	ular Direction	to Bridge Axis	<772.0				
Loc	ation	Vertical	Horizontal	Bottom	Top Surface	Bottom Surface	Under Ground
Load	l Case	——		Earthquake	Dead Load	——	Earthquake
	M (kN/m)			18970.18	-69.95		1887.81
Sectional	N (kN)			9724.03			244.58
Force	S (kN)			2907.21			950.24
Reinforce Volum	ement Bar e (mm ²)			D32@250	D19@250	D29@250	D32×36
	σc			1.33	0.08		7.15
	σca			12.00	8.00		12.00
Stress	σs			8.26	7.57		169.76
(N/mm^2)	σsa			300.00	160.00		300.00
	τ			0.141			0.598
	τα			0.156			0.512
Stirrup	Awreq, Aw						0.632<5.730

PF15 (PC-I Girder Bridge)

Stability Calculation Results

	Pushing Force (kN)		Tensile Fo	orce (kN)	Displacement (mm)		
Load Case	Calculated	Allowable	Calculated	Allowable	Allowable	Calculated	
	Value	Value	Value	Value	Value	Value	
During Earthquake in	5410<9245		-215>-6537		10.7 / 15.0		
Bridge Axis Direction					10.7 < 15.0		
During Earthquake in							
Perpendicular Direction	5216<9245		-21>-6537		7.3<15.0		
to Bridge Axis							

Member Calculation Results In Bridge Axis Direction

In Bridge Axis Direction								
Member		Beam		Column	Footing		Pile	
Location		Vertical	Horizontal	Bottom	Тор	Bottom	Under	
					Surface	Surface	Ground	
Load Case		Dead load	Earthquake	Earthquake	Earthquake	Earthquake	Earthquake	
Sectional Force	M (kN/m)	3462.20	1908.41	26919.74	-2470.30	21400.44	1903.2	
	N (kN)	——	<u> </u>	10435.42	——		-467.0	
	S (kN)	2974.72	1059.42	4920.63	-973.18	15134.94	1903.4	
Reinforcement Bar Volume (mm ²)		Top D32×14						
		D32×14		D32@125	D25@250	D29@125	D32×28	
		Side D22×13		_	_	_		
Stress (N/mm ²)	σc	2.18	2.34	7.28	1.15	6.36	8.18	
	σca	8.00	12.00	12.00	12.00	12.00	12.00	
	σs	77.60	190.49	235.32	84.37	266.62	251.06	
	σsa	100.00	300.00	300.00	300.00	300.00	300.00	
	τ	1.014	0.330	0.343	0.053	0.874	0.631	
	τα	0.297	0.195	0.301	1.324	1.389	0.448	
Stirrup	Awreq, Aw	1512.8 <2322.6	118.3<972.8	168.4<397.2			1.398<5.730	
In Perpendicular Direction to Bridge Axis								
Location		Vertical Horizontal	D. #	Тор	Bottom	Under		
			Horizontal	Bottom	Surface	Surface	Ground	
Load Case				Earthquake	Earthquake	Earthquake	Earthquake	
Sectional Force	M (kN/m)			25129.74	-814.84	1898.96	1492.20	
	N (kN)	——	<u> </u>	10435.42	——		-272.39	
	S (kN)			3620.63	-419.70	-419.70	786.73	
Reinforcement Bar				D32@250	D16@250	D25@250	D32×28	
Volume (mm ²)								
Stress (N/mm ²)	σc	——		2.60	1.24	1.50	6.42	
	σca	——		12.00	12.00	12.00	12.00	
	σs			34.20	150.38	107.78	191.92	
	σsa			300.00	300.00	300.00	300.00	
	τ			0.240	0.032	0.033	0.495	
	τα			0.198	0.734	0.992	0.448	
Stirrup	Awreq, Aw			53.8<397.2			0.356<5.730	

Final Report

4.6.4.4 Bridge Accessories

(1) Bearing Condition and Bearing

There are two types of bearing conditions; one is the "Fixed and Moveable Support" and the other is the "Elastic Support". If the "Fixed and Moveable" support conditions are applied to large-scale bridges, the horizontal force during earthquake and/or temperature load tends to be concentrated on the fixed piers, although the displacement at the girder end can be relatively small, then the size of the substructure and foundation would be too large. The "Fixed and Moveable" support condition is widely used in small-scale bridges.

Therefore, when determining the support condition and bearing type, it is necessary to consider the structural effect of the bearing conditions, such as lateral load distribution, displacement, etc.

1) PC-I Girder Bridge

The lateral force under earthquake and/or temperature load may not be large even if the "Fixed and Moveable" support condition is applied to a three span PC-I girder bridge since PC-I girder bridge with span of 30 m is a small-scale bridge. Hence, the "Fixed and Moveable" support condition shall be applied to the PC-I girder bridges in the flyover section using an economical pad type rubber bearing as shown in Figure 4.6.56 and Figure 4.6.57.

Source: JICA Study Team

The lateral force and vertical force of a superstructure can be smoothly transmitted to substructures through the pad type rubber bearing which can follow the displacement of girders caused by temperature change, drying shrinkage, creep, and earthquake. In addition, the bearing is reinforced with thin steel plates to control the swelling of rubber by the compressive force. Fixed bearing condition shall be secured by anchor bars between girders as shown in Figure 4.6.57.

2) Steel Bridge

The length of the steel girder bridge (180 m) is relatively long and the maximum span is 70 m. As shown in Figure 4.6.58, in case of elastic bearing condition, the lateral force is shared by four piers. On the other hand, in case of the "Fixed and Moveable" bearing condition, the lateral force is shared only by two piers. The difference in the distributed lateral load to the substructure and displacement at the girder ends due to the bearing conditions may affect the economic viability of the overall structure. Hence, a comparative study was carried out to identify the optimum bearing conditions for steel girder bridges in the flyover section. As a result of the comparative study, in terms of economic aspect, the "Alt-1 Rubber Bearing" condition is the optimum option for the bearing condition for steel girder bridges.

Source: JICA Study Team

Figure 4.6.58 Distribution of Horizontal Force

	Alt-1 Rubber Bearing	Alt-2 Fixed and Moveable		
Schematic Picture		Fix: Move		
Structural Characteristics	 Lateral earthquake load can be distributed to all the piers. Displacement can be small. 	 Lateral earthquake load is concentrated on fixed piers and size of foundation would be larger. Displacement is smallest. 		
Displacement at Girder End	60 mm	10 mm		
Horizontal Force at Intermediate Piers	3,300 kN	4,300 kN		
Cost*	<i>Ratio</i> = 1.00	<i>Ratio</i> = 1.02		
Evaluation Most Recommended		Less Recommended		

Table 4.6.145 Bearing of Steel Bridges Condition

Note: Total cost including substructures, foundations, expansion joints and bearings Source: JICA Study Team

(2) Expansion Joint

The functions required for the expansion joint are the following:

- To ensure good driving conditions, even if the girder is deformed by girder temperature variations, concrete creep, concrete drying shrinkage, and loads.
- To ensure waterproofing against rainwater penetration.
- To ensure durability against vehicular traffic.
- Low noise and vibration caused by traffic.
- Easy maintenance and repair.

Expansion joints are mainly classified into rubber type and steel type. As a result of comparative study, in terms of durability and ease of maintenance, "Alt-1 Steel Type Joint" shall be applied in the flyover section.

Table 4.6.146 Comparison of Expansion Joint

(3) Unseating Prevention System

The unseating prevention system consists of the seating length of the girder at the support and a structure to prevent the superstructure from unseating during an earthquake. These components are appropriately selected in accordance with the bridge type, type of bearing supports, and ground conditions.

The possibility of the unseating of the superstructure from substructures during an earthquake is quite low if the superstructure is supported by four or more substructures as specified in the JSHB. On the other hand, an unseating prevention system should be installed since the possibility of unseating may be relatively high if the superstructure is supported by less than four substructures. Considering the above, the necessity of the unseating prevention system is evaluated as shown in Table 4.6.147.

As shown in Figure 4.6.59, the unseating prevention system by anchor bars shall be applied to the two span PC-I girder bridges in flyover sections.

Bridge Type	No. of Span	No. of Substructure	Unseating Prevention System
PC-I Girder	2	3 (AF1 – PF2)	Necessary (by anchor bars)
Steel Box Girder	3	4 (PF2-PF5)	Not necessary
PC-I Girder	2	3 (PF5-PF7)	Necessary (by anchor bars)
PC-I Girder	4	5 (PF7-PF11)	Not necessary
Steel-I Girder	3	4 (PF11-PF14)	Not necessary
PC-I Girder	2	3 (PF14- AF2)	Necessary (by anchor bars)

 Table 4.6.147
 Necessity of Unseating Prevention System

(4) Drainage System

Rainwater on the bridge surface is drained by catch pits placed at an appropriate distance on the shoulder, in order to secure traffic safety. The drain pipe for each pier leads the rainwater to the catch basin, and the rainwater goes to the side ditch. The distribution diagram of the drain is shown in Figure 4.6.60 to Figure 4.6.62.

- Steel Box Girder Bridge

Source: JICA Study Team

Figure 4.6.60 Drainage Distribution Diagram of Steel Box Girder Bridge

- Steel I-section Girder Bridge

Source: JICA Study Team

Figure 4.6.61 Drainage Distribution Diagram of Steel-I Girder Bridge

- PC-I Girder Bridge

Source: JICA Study Team

Figure 4.6.62 Drainage Distribution Diagram of PC-I Girder Bridge