4.2 **STUDY ON CABLE-STAYED BRIDGE**

[Basic Design Stage]

4.2.1 Selection of Type of Cable-stayed Bridge

Review of the F/S Design 4.2.1.1

In the F/S, cable-stayed bridge was applied for the vessel operating route (span length = 224 m). The following table shows the applicable bridge types at each span.

Brie	Span Length (m) lge Type	Typical Cross Section	10 20 30 40 1	0 60 70 80 9	100 0 1 110 120 130	150 140 1 160 170 180 190	200 250 500 1000 2000 224 1 1 1
	Simple Composite H-Girder	10005					
	Simple Non-composite I-Girder	IZIZI		64			
	Simple Composite I-Girder	[S2]S2		69			
	Simple Non-composite Box Girder				0 92		
	Simple Composite Box Girder			75			
Bridg	Continuous Non-composite I-Girder	152(52)		0	89		
Girder	Continuous Non-composite Box Girder					0.147	
Plate	Steel Plate Deck I-Girder	THI		0.8	0		
	Steel Plate Deck Box Girder	Construction and a					O 250
	Simple I-Girder (PC/Composite Slab)	THE CAL					
	Continuous I-Girder			0	79.5		
	Narrow Box Girder	E L					
	(PC/Composite Slab)				85		
	Open Box Girder				87.7		
ame	Rigid Frame (π-Shape)				O 124		
gid Fr	Rigid Frame (V-Shape)	도장 장크					p 220
Ri	Continuous Rigid Frame	K L					0/230
	Simple Truss Bridge	-00000000				O 164	
Truss	Continuous Truss Bridge (Gerber Truss)						O 510
	Truss Bridge (PC/Composite Slab)	- Ali				155	i
	Langer	ATTA				○ 156	
	DeckLanger	the dis				8 140	
	Lohse						0 280
ch	Deck Lohse	the wh					20
V	Langered truss	AMMA,				O 156	
	Trussed Langer	A A A A A A A A A A A A A A A A A A A				© 175	i i
	Nielsen Lohse						♦ 305
	Unstiffened Arch	Alto Alto					0 297
Cable	Stayed Bridge						C 890
Suspe	nsion Bridge						1991

Table 4.2.1 Applicable Span of Steel Bridge

: Ordinary Applicable Range Source: JICA Study Team

: Applicable Range or : Maximum Span in Japan

Based on the table, 1) Continuous Truss Bridge (Gerber Truss), 2) Nielsen Bridge, 3) Cable-stayed Bridge, and 4) Suspension Bridge can be applied for that span length. However, because of the following reasons, only the Cable-stayed Bridge can be applied in this Project:

- 1) Continuous Truss Bridge (Gerber Truss): Usually, continuous truss bridge is applied for around 100 m span length. In case of more than 100 m span, Gerber Truss will be applied, but it is not good for maintenance and construction cost will become expensive.
- 2) Nielsen Bridge: In order to construct a Nielsen Bridge, cable construction method or large block erection method should be applied. However, both of the mentioned construction methods cannot be applied at the project site.
- 4) Suspension Bridge: Anchorage (anchor block for cable) is necessary for Suspension Bridge. However, there are no space available to construct the anchorage at the project site.

4.2.1.2 Flow Chart of Basic Design for Cable-stayed Bridge

In the B/D stage, the following items were considered and the best structure type was selected for each item:

Figure 4.2.1 Flow Chart of the Basic Design for Cable-stayed Bridge

4.2.2 Superstructure of Cable-stayed Bridge

4.2.2.1 Height of the Main Tower

Generally, the most economical gradient of the top cable of cable-stayed bridge is 1:2. In this Project, side span is 112 m (girder length :111 m) and top cable is fixed at 5 m from the end of the girder at the girder side. Therefore, considering the economical cable gradient (1:2), the height of the main tower is (111-5) / 2 = 53 m. Therefore, considering the work space at the top of the main tower for cable fixing, the total height of the main tower is decided as 53 + 5 = 58 m.

Source: JICA Study Team

4.2.2.2 Typical Girder Cross Section

(1) Typical Girder Cross Section

For the typical girder cross section, three types of cross section (Wide Box Cross Section, Conventional Box Cross Section, Narrow Box Cross Section) were compared. Based on the comparison results, <u>"Case-2: Conventional Box Cross Section"</u> was selected as the best type. Each figure, characteristics, and comparison results are shown as follows:

The most appropriate girder height for steel cable-stayed bridge is $h=2.5 \text{ m}\sim 2.8 \text{ m}$. In this Project, considering the main girder anchorage for stay cable, working space for cable installation, and economy, the girder height was decided as h=2.7 m. Furthermore, PC box girder and steel box girder have the same girder height and landscape direction in the river bridge.

22900 9000 3700 9000 600 600 250 250 3-Cell Box Girder 8 Girder type 80 80 11171717 Length of Overhang 3400mm 2.7m Girder height 5300 5300 500 500 6800 6800 3400 2500 3400

Source: JICA Study Team

Figure 4.2.3 Wide Box Cross Section

- Web is not located under the wheel load; therefore, this type is good for fatigue resistance.
- Painting area is smaller than in the other types; therefore, this type is superior in maintenance.

Conventional Box Cross Section

600

250

8 THUDUUT

6200

9000

250

80

UUUUU

4000

- Width of bottom flange is wide, and width of pier head will become wider.
- Due to the wide box cross section, the number of parts of the girder will be increased, and thus increasing assembly time at the site.

< Recommended >

Source: JICA Study Team

Figure 4.2.4 Conventional Box Cross Section

Characteristics:

Case-2

- Web is not located under the wheel load; therefore, this type is good for fatigue resistance.
- Overhang length is not so large; therefore, this type has a good balance for fatigue resistance.
- Steel weight is lower than the other types; therefore, this cross section is the most economical.

22900

Narrow Box Cross Section Case - 3

Source: JICA Study Team

Figure 4.2.5 Narrow Box Cross Section

Characteristics:

- Web is located under the wheel load; therefore, this type is not good for fatigue resistance.

- Overhang length is large; therefore, this type is not good in terms of deflection and fatigue resistance.

- Width of bottom flange is narrow, and width of pier head will become narrower.

- Because of the narrow box section, torsion and bending rigidity are small.

Туре		CASE - 1 Wide Box Cross Section	CASE - 2 Conventional Box Cross Section	CASE - 3 Narrow Box Cross Section
	Girder	4,660	4,600	4,630
Steel Weight	Tower	680	680	680
(t)	Cable	260	250	260
	Total	5,600	5,530	5,570
Total Cost	Ratio	1.01	1.00	1.01
Evaluati	on		0	

Table 4.2.2 Comparison of Steel Weight and Evaluation Results

(2) Type of Rib for Slab

As for the type of rib for the steel deck slab, Flat Rib and U Rib can be applied. Based on the comparison results, <u>U Rib</u> was selected as the best type (as for the rib under median and barrier, plate rib will be applied). Comparison of these ribs is as follows:

[Study Objective]

The objective is to select the most optimum steel deck longitudinal rib shape for this bridge.

[Study Conditions]

- 1) The span length of the longitudinal rib is 2.5 m (maximum spacing of transverse ribs is based on the "Fatigue Design Guidelines for Steel Road Bridge").
- 2) The ribs to be used in this study are Flat Rib (Open Section Rib) and U Rib (Closed Section Rib).
- 3) For the longitudinal ribs in the inner cells, Flat Rib will be used (Cables will be placed there so it will become a complex location.)
- 4) When using closed longitudinal ribs (U Rib), the thickness of the deck plate shall be at least 16 mm under the position where the wheel load of the large cars will be loaded. (Specifications for Highway and Bridges, Part II Steel Bridge (April 2012), from p. 295)
- 5) Minimum thickness of longitudinal ribs is 8 mm. (Specifications for Highway and Bridges, Part II Steel Bridge, (April 2012), from p. 296)

(Considering a high humidity climate leading to a corrosion environment, the plate thickness was selected as 8 mm.)

Source: 2016 Design Data Book

Figure 4.2.6 Size of U Rib

[Study Results]

Table 4.2.3 Comparison of Flat Rib and U Rib

Source: JICA Study Team

(3) Height of Bracket

The height of the bracket at the cable-stayed bridge was changed from 1.2 m to 1.6 m, and the bracket weight was compared. Based on the comparison results, <u>"Case-2: Bracket Height = 1.3 m</u>" was selected as the best type. Comparison results are shown as follows:

[Study Conditions]

The minimum thickness of the bracket shall be the thickness wherein longitudinal stiffeners will not be required. (Case-1 is determined by horizontal shear stress degree)

[Study Results]

	B racket C ross-Section						Stress (N/m m 2)			BracketW eight			
	Heinpht	P late	Bracket	Flange	Material	σ	CPA	π.»	h.×	я	Weight(f)	Ratio	Evaluation
	nogin	Thicknes	width	Thicknes	Туре	,	U UU	• ~		-	II O BILC (O	Ruco	
CASE-1	1200	12	370	15	SM 490Y	142	159	66	105	120	276.7	1.009	
CASE-2	1300	11	370	15	SM 490Y	131	159	65	105	120	274.3	1.000	0
CASE-3	1400	12	370	14	SM 490Y	118	141	54	90	120	293.5	1.070	
CASE-4	1500	13	370	13	SM 490Y	107	122	46	77	120	314.8	1.148	
CASE-5	1600	14	370	12	SM 490Y	97	105	40	67	120	337.7	1.231	

Table 4.2.4 Comparison of Bracket Height

₩ w (Vertical Shear Stress)、 h (Horizontal Shear Stress)

Source: JICA Study Team

Figure 4.2.7 Shape of Bracket

(4) Block Width

In order to transport the main girder from the factory to the project site, the main girder will be divided into blocks in the longitudinal direction and transverse direction.

The block width in the transverse direction was studied. Based on the comparison results, <u>"Case-1:</u> <u>Block Maximum Width = 3.06 m"</u> was selected as the best type.

[Study Conditions]

- 1) Maximum transportable width is 3.5 m.
- 2) It is preferable that the deck plate's bridge axis direction joint does not fall directly under the wheel loading point. (From "Fatigue Design Guidelines for Steel Road Bridge, Japan Road Association, 2002" p. 46)

Observations: This case was selected as the most optimum. Source: JICA Study Team

Observations: The width exceeds the maximum transportable width. Source: JICA Study Team

Observations: Compared to Case-1, longitudinal U Rib increased by 2 and the longitudinal Flat Rib decreased by 2.

Source: JICA Study Team

_

Figure 4.2.10 Block Maximum Width = 3.5 m

[Study Results]

	Block Maximum	No. Longi	tudinal Rib	Steel Deck	Steel Weight	Evaluation
	Width B1 (m)	U Rib	Flat Rib	Weight (t)	Ratio	Evaluation
CASE-1	3.060	26	12	2587	1.000	0
CASE-2	3.700	26	12	2587	1.000	
CASE-3	3.500	28	10	2598	1.004	

(5) Diaphragm Plate Thickness

The plate thickness of intermediate diaphragm was studied. As a result, <u>"Diaphragm plate thickness = 9 mm"</u> was enough for the outer cell and inner cell.

[Study Conditions]

- 1) Intermediate diaphragm plate thickness was studied, and the method was based on the Steel Highway Bridge Design Handbook (Japan Road Association).
- 2) Each cell was verified if each maintains its required rigidity

[Study Results]

	D aphragm Thickness	Required Rigidity (N·mm) ①		D aphragm R g d ity (N ⋅ m m) ②	1:2
0 uter C e II	9m m	5.20E+09	<	3.18E+10	0.16
Inner ce ll	9m m	1.50E+08	<	1.87E+10	0.01

 Table 4.2.6
 Results of Diaphragm Plate Thickness

Source: JICA Study Team

Verified outer cell cross section

Verified inner cell cross section

Source: JICA Study Team

Figure 4.2.11 Cross Section of Diaphragm

4.2.2.3 Types of Main Tower

(1) Comparison of Main Tower Types

Three types of main tower (Single Tower, A-Shape Tower, Twin Tower) were compared. Based on the comparison results, <u>"Case-1: Single Tower"</u> was selected as the best type. Each figure, characteristics, and comparison results are shown as follows:

Case - 1	Single Tower	< Recommended >
----------	--------------	-----------------

Girder type	3-Cell Box Girder
Girder Width	22.9m

Characteristics:

- Width of pier is smaller than in the other types.
- Due to the position of the main tower, the median strip is wider.
- This type has one straight pylon, and it is a simpler structure than the others.

Source: JICA Study Team

Figure 4.2.12 Single Tower

Case - 2 <u>A-Shape Tower</u>

Girder type	3-Cell Box Girder
Girder Width	21.2m

- Median strip can be narrowed compared to Case-1.
- Column of main tower will be located at both sides of the girder; therefore, pier width will be wider.

Source: JICA Study Team Figure 4.2.13 A-Shape Tower

Case - 3 <u>Twin Tower</u>

Girder type	2 Box Girders
Girder Width	20.7m

Characteristics:

- Cables are stayed at both ends of the girder cross section and median strip can be narrowed; therefore, width of median strip can fit into the next bridges.
- Column of main tower will be located at both sides; therefore, pier width will be wider compared to Case-1.

Final Report

Source: JICA Study Team

Figure 4.2.14 Twin Tower

Table 4.2.7	Comparison of Tower	Туре
-------------	---------------------	------

Туре		CASE - 1	CASE - 2	CASE - 3
		Single Tower	A-Shape Tower	Twin Tower
	Girder	4,600	4,310	4,450
Steel Weight	Tower	680	1,090	1,060
(t)	Cable	250	250	280
	Total	5,530	5,650	5,790
Total Cost Ratio		1.00	1.23	1.17
Evaluation		0		

* This total cost ratio includes cost of superstructure and substructure. Source: JICA Study Team

(2) Pylon Width

The pylon width affects the median width and the main girder width, so it is necessary to study in advance. The basic cross section of the pylon can be changed in the longitudinal direction to some point and can be adjusted by the plate thickness. Therefore, in very few cases, the cross section of the pylon is decided by the section force. In case anchors are placed in the tower, sufficient space for maintenance should be considered in the pylon width.

In case the saddle anchors are being excluded, and in order to compact the anchors, pylon cross section will become a three-cell structure. In that case, a study to evaluate whether there is enough space for maintenance or not must be done.

In case saddle type is selected, pylon cross section will be a one-cell structure. However, depending on the timing of insertion of the saddle, a space (almost the same width as the saddle) is needed at both sides of the saddle, so it is considered that the pylon width will be the same size.

Therefore, the study of pylon width is based on the case of an anchor girder type as a typical anchor structure. The basic cross section to be studied is 2.5 m (width) x 3.0 m.

The cable cross section was estimated through the following size:

In case of PWS : Hiam337 (Tensile strength Tu = 20400 kN)

In case of PC steel wire SEE (FUT-H) : 77H (Tensile strength Tu = 20097 kN)

The following shows the figure of the socket in the case of the tower side anchor being fixed.

Source: JICA Study Team

Figure 4.2.15 Figure of Cable Socket

From the figure, The FUT-H type has a bigger anchor part, so based on the FUT-H:77H, the positioning of the anchor on the pylon section was studied. The figure of the socket being placed in the inner tower is shown in Section 4.2.2.6, (2) Anchor Study.

- The anchor section needs b = 900 mm in the transverse direction.
- Manhole pathway for maintenance is needed in the outer side of the inner cell. The minimum width is as follows:

b1 = 50 (Vertical plate thickness) + 500 (Manhole ladder width) +

200 (Longitudinal Rib or Transverse Rib minimum height) = 750 mm

- Minimum width of Pylon, B is

 $B = 2 \times 750 + 900 = 2400 \text{ mm}$

This minimum width is considered as almost the limit when the anchor structure is selected as the girder anchor type. If possible, it is desirable to have more space; therefore, slight margin on both sides was kept and width of the pylon was set to 2.5 m in the Project.

4.2.2.4 Cable-stayed Arrangement

Three types of cable-stayed arrangement (Harp Arrangement, Fan Arrangement, Semi Fan Arrangement) were compared. Based on the comparison results, <u>"Case-3: Semi Fan Arrangement"</u> was selected as the best type. Each figure, characteristics, and comparison results are shown as follows.:

Source: JICA Study Team

Characteristics:

- Each cable is stayed parallel in the whole part of the pylon.
- From the structural point of view, the lower cables are not so efficient due to the gradient.
- From the aesthetic point of view, it has a good appearance and it is more attractive than the other arrangement types.

Source: JICA Study Team

- All cables are attached to a single point at the top of the pylon, making it difficult to attach the cables to one point; therefore, this type is not applied in long span cable-stayed bridges.
- From the structural point of view, the cables are working efficently due to the high gradient.
- From the aesthetic point of view, since all the cables are attached to the top, they do not give a great apperance if compared to the others.

Figure 4.2.18 Semi Fan Arrangement

Characteristics:

- The cables are distributed over the upper part of the pylon, which are more steeply inclined close to the pylon.
- From the structural point of view, gradient of the lower cables is bigger than in the Harp Arrangement; therefore, structural efficiency is higher.
- From the aesthetic point of view, cables are arranged in a single plane, giving also a good appearance.

Туре		CASE - 1	CASE - 2	CASE - 3
		Harp Arrangement	Fan Arrangement	Semi Fan arrangement
	Girder	4,840	4,640	4,600
Steel Weight	Tower	700	700	680
(t)	Cable	260	250	250
	Total	5,800	5,590	5,530
Total Cost Ratio		1.05	1.01	1.00
Evaluation				0

 Table 4.2.8
 Comparison of Cable Arrangement Types

4.2.2.5 Number of Cables

Three types of the number of cables at the left (right) side of the pylon (11 Cables, 10 Cables, 9 Cables) were compared. Based on the comparison results, <u>"Case-2: 10 Cables (Total: 40 Cables)"</u> was selected as the best type. Each figure, characteristics, and comparison results are shown as follows:

Source: JICA Study Team

Figure 4.2.19 11 Cables (Total: 44 Cables)

Characteristics:

- Increasing the number of cables will also increase significantly the time of erection.
- For each cable installed, the stiffening girder and the pylon need to be strengthened locally in order to be able to receive the stayed forces. Therefore, increasing the cables will also increase the parts that require local strengthening.

Figure 4.2.20 10 Cables (Total: 40 Cables)

- Its time of erection is faster compared to the erection time of 11 cables.
- This cable arrangement is more economical, due to the lower weight of the total cables compared to the 9 cables arrangement.

|--|

Characteristics:

- The lower the number of cables, the heavier the girder gets due to the rise of the momentum forces.
- Due to the increase of space between cables, the length and weight of the blocks increase, making it necessary for a bigger crane for the erection work.

Туре		CASE - 1 11 Cables	CASE - 2 10 Cables	CASE - 3 9 Cables
	Girder	4,630	4,600	4,670
Steel Weight	Tower	680	680	680
(t)	Cable	260	250	260
	Total	5,570	5,530	5,610
Total Cost Ratio		1.01	1.00	1.02
Evaluation			0	

Table 4.2.9	Comp	barison	of	Number	of	Cables
	· · · ·					

Source: JICA Study Team

4.2.2.6 Cable Type

(1) Comparison of Types of Cables

Three cable types (New Parallel Wire Strand Type, FUT-H Strand Type, Locked Coil Type) were compared. Based on the comparison results, <u>"Case-2: FUT-H Strand Cable"</u> was selected as the best type. Each figure, characteristics, and comparison results are shown as follows:

Case - 1 New Parallel Wire Strand (NPWS)

Characteristics:

- NPWS cables are prefabricated at the factory, reducing the erection time of the cables on site.
- NPWS cables are coated with polyethylene and zinc plating, making it resistant against corrosion.
- In order to install this type of cable it is necessary to have heavy machinery, such as big cranes and jacks.

Source: JICA Study Team

Case - 2 <u>FUT-H Strand Cables</u> < Recommended >

Characteristics:

- FUT-H cables are formed on site by tensioning each stranded wire one by one, slightly increasing the time of erection.
- FUT-H is covered by three types of materials (zinc plating, grease, polyethylene coating) and additional polyethylene pipe, protecting it from corrosion.
- During installation, it is necessary to have a small crane, jacks, and other small machines, avoiding the use of big cranes and vast loads on the girder during erection.

Young's modulus 1.95×105 N/mm2

Young's modulus 1.95×105 N/mm2

Filament tape

7mm wires

Source: JICA Study Team

Figure 4.2.23 FUT-H Strand Cable

Case - 3 Locked Coil Rope (LCR)

Characteristics:

- LCR cables are prefabricated at the factory, but in order to apply this type of cable in this design, it is necessary to have three cables per section, increasing the time of erection and fabrication.
- LCR cables have poor resistance against corrosion compared to the other types of cables.
- In order to install this type of cable , it is necessary to have heavy machinery, such as big cranes and jacks.

Z-shaped outer Wires Internal round Wires

Young's modulus 1.55×10⁵ N/mm²

Trme	CASE - 1	CASE - 2	CASE - 3		
Туре	NPWS(New Parallel Wire FUT-H strand cables		Locked Coil Rope		
	Cables 1~3	Cables 1~5	Cables 1~3		
Cabla	$:\phi7 x 337 A = 12969 mm^2$	$: \phi 15.6 \ge 70$ A = 10255m m ²	$: 3@\phi 92 A = 5850 \text{mm}^2 (x3)$		
Specifications (Starting from above)	Cables 4~6	Cables 6~10	Cables 4~7		
	$:\phi 7 \ge 199 A = 7658 m m^2$	$: \phi 15.6 \text{ x } 44 \text{ A} = 6446 \text{ m} \text{ m}^2$	$: 3@\phi76 A = 3960 \text{ mm}^2 (x3)$		
	Cables 7~10		Cables 8~10		
	$:\phi 7 \ge 187 A = 7197 \text{mm}^2$		$: 3@\phi 64 A = 2840 \text{ mm}^2 (x3)$		
Cable Weight	250t	250t	380t		
Cost Ratio	1.37	1.00	1.05		
Evaluation		0			

Table 4.2.10Comparison of Types of Cables

(2) Anchor Study

Anchors on girder and pylon were studied. Pylon cross section and the middle cell of the girder are as follows:

Pylon cross section : Transverse direction width: 2.5 m x Longitudinal direction width: 3.0 m

Girder middle cell point : Space between web: 2.5 m, Height of girder: 2.7 m

Cable was selected as FUT-H Strand Cables which is assembled by PC strand at the site. Maximum cross section is estimated as follows:

Cable: SEE, FUT-H-77H Tu≒20100 kN

Cables are fixed to the pylon. The pylon and girder sockets are shown below.

Source: JICA Study Team

Figure 4.2.25 Cable Socket at Pylon and Girder

For this cross section of girder and pylon, applicable anchor types were proposed. From a structural and workability point of view and considering the economical aspect, the most optimal anchor was selected. Study results are shown in the next page.

1) Pylon Anchor Structure

Three types of pylon anchor structure (Anchor Girder, Anchor Plate, Saddle) were compared. Based on the comparison results, <u>"Case-1: Anchor Girder"</u> was selected as the best type. Each figure, characteristics, and comparison results are shown as follows:

Case - 1 Anchor Girder < Recommended > ₃₀₀₀ A Manhole D -600 D C В В С -A 800 800 700 700 000 В Bearing Plate 2300 800 Work hole cover C D 3000

Overview: The cable socket is supported by the bearing plates which cross horizontally the two inner vertical plates of the tower.

Source: JICA Study Team

Figure 4.2.26 Anchor Girder

Weight (Per unit)	5.2t
Structurability	The tensile forces of the cable are supported by the anchor girders, the differences of horizontal forces and the vertical forces are transmitted to the pylon wall by a diaphragm and inner vertical plates. The bearing plate will become thicker but, it's possible to support the sockets in 2 directions rather than 4 directions.
Erection	It has a narrow section welding, it's necessary to be cautious with the assembly order and the production time. During erection it's easy to maintain the work
Evaluation	0

Table 4.2.11 Characteristics of Anchor Girder

Overview: The cable socket is supported by the bearing plate, and the bearing plate is supported by two bearing plates which are attached to the pylon inner vertical plates. Source: JICA Study Team

Weight (Per unit)	5.6t
	The vertical plate is in direct contact with the bearing plate making it possible to
	reduce the width of the pylon. Reducing the width of the pylon would also reduce
Structurability	the working space.
	The uneven stress in the welding part of the anchor plate should be payed
	attention in the design.
Erection	When assembling, the angle error of inner virtical plates should be reduced.
	Welding amount will be increased.
Evaluation	

Table 4.2.12 Characteristics of Anchor Plate

Overview: Both sides of the cable socket are attached to the saddle, which is supported by the lower side twodirectional beam.

Source: JICA Study Team

Figure 4.2.28 Saddle

Weight (Per unit)	5.7t
Structurability	The tensile force of the cables is supported by the saddle, the differences of horizontal forces and the vertical forces are transmitted to the pylon wall by a diaphragm and 2 direction beam. The stress condition will become complex in the inner saddle so special attention should be payed.
Erection	Despite the low variety of saddles, every angle of cable attachment needs to be changed. The pylon is easy to built up. When installing, the saddle can either be
Evaluation	

Source: JICA Study Team

2) Girder Anchor Structure

Four types of girder anchor structure (Anchor Girder, Vertical Beam, Pipe Anchor, Vertical Girder) were compared. Based on the comparison results, <u>"Case-1: Anchor Girder"</u> was selected as the best type. Each figure, characteristics, and comparison results are shown as follows:

Case - 1 <u>Anchor Girder</u> < Recommended >

Overview: The cable socket is supported by bearing plate and the bearing plate is supported by anchor girder at inner cell of the main girder. The anchor girder is fixed horizontally between the two webs of the inner cell. Source: JICA Study Team

Figure 4.2.29 Anchor Girder

Table 4.2.14 (Characteristics	of Anchor	Girder
	•••••••••••••••		•

Weight (Per unit)	3.6t
	All the cable tensile forces are passed from the anchor girder into the girder's
Structurability	web then to the whole Main Girder. The webs thickness tends to become thicker
	but the mechanical state becomes simple.
	It has narrow section welding, it's necessary to be cautious with the assembly
Erection	order and the production time.
	Since the sockets positioning point is relatively low, therefore when erecting, the
	space between the jack and the lower flange should be payed attention.
Evaluation	0

Source: JICA Study Team

Case - 2

Vertical Beam

Overview: Between the upper and lower flanges, two vertical beams are installed and bearing plate is attached to the horizontally fixed anchored girder in order to support the cable socket. Source: JICA Study Team

Figure 4.2.30 Vertical Beam

Weight (Per unit)	3.9t
	Cables horizontal forces are transmitted through the vertical beam to the lower
	and upper flange, the vertical forces are transmitted from the vertical beam into
Structurability	the diaphragm. The socket can also be positioned in the upper part. Since the
	forces will be concentrated in the lower and upper flange, the flanges width
	should be thicken specially the upper flange.
	It has narrow section welding, it's necessary to be cautious with the assembly
Erection	order and the production time. The position of the jack during the erection should
	be payed attention, due to the vertical beam and the support plate.
Evaluation	

Table 4.2.15 Characteristics of Anchor Girder

Overview: The cable socket is attached to the pipe placed in the middle cell of the main girder. The force is transmitted to the flange and web throughout the plates which are placed horizontally and vertically between the two diaphragms.

Source: JICA Study Team

Table 4.2.16	Characteristics	of Pipe Anchor
--------------	-----------------	----------------

Weight (Per unit)	3.6t
Structurability	Cables tensile force is transmitted from pipe to the whole main girder throughout 4 direction plate. The proportion of sharing of transmission forces between plates is unclear. Specially the upper plates effectiveness is unclear. It's necessary to pay attention to the momentum that the pipe receives as a part of the plates.
Erection	It has narrow section welding, it's necessary to be cautious with the assembly order and the production time. The position of the jack during the erection should be payed attention.
Evaluation	

Case - 4 Vertical Girder

Overview: Two vertical beams are placed in the inner middle cell, and anchored girder is placed between these two beams. In order to support the cable socket, bearing plate is attached to the anchor girder. Source: JICA Study Team

Figure 4.2.32 Vertical Girder

Table 4.2.17	Characteristics of	Vertical	Girde
	-		-

Weight (Per unit)	5.3t
	Cables horizontal force is transmitted to the deck plate throughout the vertical
Structurability	girder. The vertical forces are transmitted from the diaphragm to the web. There
	are unnecessary vertical girders that aren't transmitting cable forces and it is
	structurally useless.
	It has narrow section welding, it's necessary to be cautious with the assembly
Encet ion	order and the production time.
Erecuon	Anchor can be relatively be placed in the upper part, so during erection it's easy
	to maintain space.
Evaluation	

Source: JICA Study Team

4.2.2.7 Support Condition

Three types of support condition (M-F-M-M, M-F-F-M, E-E-E) were compared. Based on the comparison results, <u>"Case-2: M-F-F-M Support"</u> was selected as the best type. Each figure, characteristics, and comparison results are shown as follows:

Case - 1 <u>M-F-M-M</u>

Source: JICA Study Team

Characteristics:

- Horizontal displacement is resisted by pin bearing at one main tower, therefore, horizontal displacement of main girder due to temperature change and earthquake becomes slightly large.
- Horizontal displacement is resisted by pin bearing at one main tower and other bearings are movable, therefore, axial force does not act on main girder.
- Collision of girders with the next bridge's girder, and expansion amount at joints should be considered.
- In order to fix horizontal movement of girder, temporary pin bearing supports should be installed at M-supported pier at main tower during erection works.

Case - 2 <u>M-F-F-M</u> < Recommended >

Source: JICA Study Team

Figure 4.2.34 "M-F-F-M" Support

- Rigidity of overall structure is high, and horizontal movement is fixed by pin bearing to the main tower.
- Horizontal displacement during earthquake is small; therefore, gap at the girder ends and expansion joints will become compact.
- Because of the influence of temperature change, axial force acts on the main girder at the center span.
- Horizontal movement of the main girder is fixed by pin bearing at the main tower at all times; therefore, this type is a suitable structure even during erection works.

Type of	Rubber - Rubber
Bearings	- Rubber - Rubber
Displacement of	Templature Change: -40mm~+30mm
Main Girder	Earthquake: 650mm

Figure 4.2.35 "E-E-E" Support

Characteristics:

- Horizontal displacement is resisted by rubber bearing at the two main towers and the two side piers at both ends; therefore, horizontal displacement of main girder due to earthquake becomes large.
- Horizontal force caused by earthquake is dispersed throughout the piers; therefore, this type is efficient for seismic design.
- Vertical reaction force at the main pier is larger and multi-rubber bearing installment becomes necessary. Therefore, space at pier head will be decreased and this type is unfavorable in terms of maintenance.
- In order to fix horizontal movement of girder, temporary pin bearing supports should be installed during erection works.

Туре		CASE - 1 M-F-M-M	CASE - 2 M-F-F-M	CASE - 3 E-E-E-E
	Girder	4,600	4,600	4,590
Steel Weight	Tower	670	680	700
(t)	Cable	250	250	260
	Total	5,520	5,530	5,550
Total Cost	Ratio	1.05	1.01	1.00
Evaluati	ion		0	

Table 4.2.18 Comparison of Support Condition

4.2.3 Substructure of Cable-stayed Bridge

4.2.3.1 Shape of Pier Column at P11 and P12

Three types of shape of pier column at the intermediate pier of cable-stayed bridge (P11, P12) (Round Shape, Oval Shape, Oval Shape without overhang section) were compared. Based on the comparison results, <u>"Case-2: Oval Shape"</u> was selected as the best type. Each figure, characteristics, and comparison results are shown as follows:

Source: JICA Study Team

Figure 4.2.36 Round Shape Column

- Width of column in the transverse direction is wider than in other types; therefore, impediment ratio of river flow will become big.
- In order to install bearing support, pier head should be widened.

Source: JICA Study Team

Figure 4.2.37 Oval Shape Column

- Because of the shape of the column in the pier head, construction works will become difficult compared to the other types.
- From the aesthetic point of view, since this type has the same shape with the other spans, it has a good appearance.

Characteristics:

- Width of column in the transverse direction is narrower than in the other types; therefore, impediment ratio of river flow will become small.
- Because of the big cross section, concrete volume will become large.

Table 4.2.19	Comparison of Shape of Pier Column at P11 and P12
--------------	---

Quantities	Items	CASE - 1 Round Shape	CASE - 2 Oval Shape	CASE - 3 Round Shap (w/o overhang section)
X	Concrete ($\sigma ck=30N/mm^2$)	$1450{ m m}^3$	1960 m ³	2230 m ³
	Form Work	$700\mathrm{m}^2$	810 m ²	910 m ²
	Reinforcement (SD345)	230t	240t	220t
	Total Cost Ratio	0.87	1.00	1.01
	Evaluation	× (Pier column at river should be oval shape)	0	

4.2.3.2 Shape of Pier Column at P10 and P13

Three types of shape of pier column at the side pier of cable-stayed bridge (P10, P13) (Round Shape, Oval Shape, Oval Shape without overhang section) were compared. Based on the comparison results, <u>"Case-2: Oval Shape"</u> was selected as the best type. Each figure, characteristics, and comparison results are shown as follows:

Source: JICA Study Team

- Width of column in the transverse direction is wider than in the other types; therefore, impediment ratio of river flow will become big.
- In order to install bearing support, pier head should be widened.

Figure 4.2.40 Oval Shape Column

- Because of the shape of the column in the pier head, construction works will become difficult compared to the other types.
- From the aesthetic point of view, since this type has the same shape with the other spans, it has a good appearance.

Case – 3 Oval Shape (without overhang section)

Source: JICA Study Team

Characteristics:

- Width of column in the transverse direction is narrower than in the other types; therefore, impediment ratio of river flow will become small.
- Because of the big cross section, concrete volume will become large.

Table 4.2.20	Comparison of Shape of Pier Column at P10 and P13
--------------	---

Quantities	Items	CASE - 1 Round Shape	CASE - 2 Oval Shape	CASE - 3 Round Shape (w/o overhang section)
X	Concrete ($\sigma ck=30N/mm^2$)	1650 m ³	2060 m ³	2830 m ³
	Form Work	810 m ²	860 m ²	1080 m ²
	Reinforcement (SD345)	280t	210t	140t
Total Cost Ratio		1.08	1.00	1.01
Evaluation		× (Pier column at river should be oval shape)	0	

4.2.4 Foundation of Cable-stayed Bridge

4.2.4.1 Diameter of Steel Pipe Sheet Pile

(1) Study of Steel Pipe Sheet Pile Diameter (P11 and P12)

In the F/S stage, the diameter of the steel pipe sheet pile was planned to be 1000 mm. Here, a comparison of the diameters D = 1000 mm, 1200 mm and 1500 mm was conducted. Based on the comparison results, <u>"Case-2: φ 1200 mm" was selected as the best type.</u>

Case - 1 <u>RC Oval Shape φ1000 mm</u>

Source: JICA Study Team

Figure 4.2.42 Study Results for φ1000 mm

Final Report

Case - 2 $\underline{\text{RC Oval Shape } \phi 1200 \text{ mm}}$ < **Recommended** >

	CASE-2				
/	RC Oval Shape ϕ 1200				
Steel Pipe	Outer Wall Section		Partition Wall Section		
Sheet Pile	φ1200×t15(SKY490) ∟=64.5m φ120		φ1200×t1	14(SKY400) = 47.1m	
Steel Pipe Sheet Pile Amount	Outer Wall	Partition Wall		Total Amount	
	40 Piles	8 Piles		48 Piles	
Pipe Joint	Pipe Joint	Joint Type		Mortar Strength(kN/m ²)	
	φ165.2×t11	P-P		21	

Source: JICA Study Team

Figure 4.2.43 Study Results for φ 1200 mm

y 4.600 y 3.640

- 4, 600

3. 640

Case – 3

RC Oval Shape φ 1500 mm

	CASE-3 RC Oval Shape ϕ 1500						
Steel Pipe	Outer Wall Sect	ion	Partition Wall Section				
Sheet Pile	φ1500×t17(SKY490)	_=65.5m	ϕ 1500×t17(SKY400) $_$ =48.1m				
Steel Pipe	Outer Wall	Partition Wall		Total Amount			
Sheet Pile Amount	30 Piles	6 Piles		36 Piles			
Pine Joint	Pipe Joint	Joint Type		M ortar Strength(kN/m ²)			
r ipe Joint	φ165.2×t11	P-P		21			

		CASE- 1 RC Oval Shape φ1000				CASE- 2 RC Oval Shape φ1200				CASE-3 RC Oval Shape φ1500									
Shear Rigidity Principa			Principal Load, Dead Load+Earthquake Load				Principal Load, Dead Load+Earthquake Load					Principal Load, Dead Load+Earthquake Load							
(kN/m2) 600			600			600					600								
Shear S	Strength	Principal Load Dead Load + Earthquake Load			Principal Load Earthquake Load			Principal Load Dead Load + Earthquake Load				id + Load							
(kN	/m)		100			133			100 133			100			133				
Planar D Determina	imension Smallest shape was determined tion Factor from the construction space.				Smallest shape was determined from the construction space.					Smallest shape was determined from the construction space.									
	\square		δ (cm)	:	Rmax (kN)	Coump σ(pound Stress N/mm ²)		δ (cm)		Rmax Coumpou (kN) σ(N/		pound Stress N/mm ²)	δ (cm)			Rmax (kN)	Coumpound Stress σ(N/mm ²)	
Normal, Earthquake	Normal • Earthquake	2.599	Longi. Direction	2856	Longi. Direction	271	Trans. Direction	2.338	Longi. Direction	3023	Longi. Direction	262	Longi. Direction	2.495	Longi. Direction	3939	Longi. Direction	205	Trans. Direction
	Allowable Value	5.000	Earthquake	3800	Principal Load	278	Earthquake	5.000	Earthquake	4400	Earthquake	278	Earthquake	5.000	Earthquake	5300	Principal Load	278	Earthquake
Steel W	/eight(t) 1550				1520					1610									
Evalu	ation							0			0								

(2) Study of Steel Pipe Sheet Pile Diameter (P10 and P13)

Same as for P11 and P12, a comparison of the pile diameters at P10 and P13 was conducted. Based on the comparison results, <u>"Case-2: φ 1200 mm" was selected as the best type.</u>

- 4.600

Case - 1 <u>RC Oval Shape φ1000 mm</u>

	CASE- 1 RC Oval Shape φ1000						
Steel Pipe	Outer Wall Section	n	Partition Wall Section				
Sheet Pile	φ1000×t19(SKY400) ∟:	=64.5m	φ1000×t11(SKY400) ∟=47.1m			
Steel Pipe	Outer Wall	Partition Wall		Total Amount			
Sheet Pile Amount	40 Piles		8 Piles	48 Piles			
Pine Joint	Pipe Joint	Joint Type		Mortar Strength(kN/m ²)			
r ipe sonit	φ165.2×t11		P-P	21			

Figure 4.2.45 Study Results for φ 1000 mm

Final Report

Case - 2 <u>RC Oval Shape φ 1200 mm < Recommended ></u>

	CASE- 2 RC Oval Shape φ1200							
Steel Pipe	Outer Wall Section	1	Partition Wall Section					
Sheet Pile	φ1200×t16(SKY400) ∟:	=65.0m	φ 1200×t14(SKY400) $_$ =47.6m					
Steel Pipe	Outer Wall	Partition Wall		Total Amount				
Sheet Pile Amount	36 Piles	8 Piles		44 Piles				
Dine Joint	Pipe Joint	Joint Type		Mortar Strength(kN/m ²)				
r ipe Joint	φ165.2×t11		P-P	21				

Source: JICA Study Team

Case - 3

<u>RC Oval Shape q1500 mm</u>

	CASE-3 RC Oval Shape φ1500						
Steel Pipe	Outer Wall Section	n	Partition Wall Section				
Sheet Pile	φ1500×t17(SKY400) ∟:	=66.0m	φ 1500×t17(SKY400) $_$ =48.6m				
Steel Pipe	Outer Wall	Partition Wall		Total Amount			
Sheet Pile Amount	30 Piles		6 Piles	36 Piles			
Pipe Joint	Pipe Joint	Joint Type		Mortar Strength(kN/m ²)			
	φ165.2×t11		P-P	21			

Figure 4.2.47 Study Results for ϕ 1500 mm
	CASE- 1 RC Oval Shape \u00f6 1000				RC	C. C Oval	ASE-2 Shape φ1	200		CASE-3 RC Oval Shape \phi 1500									
Shear Rigidity (kN/m ²)		Principal Load, Dead Load+Earthquake Load				Principal Load, Dead Load+Earthquake Load				Principal Load, Dead Load+Earthquake Load									
		600				600				600									
Shear Strength		Principal Load Dead Earthqu			ad Loa quake	ıd + Load	Principal Load			Dead Load + Earthquake Load		Principal Load		Dead Load + Earthquake Load					
(kN/m)			100		133			100 133			100 133								
Planar D Determina	imension tion Factor	Smallest shape was determined from the construction space.				Smallest shape was determined from the construction space.				Smallest shape was determined from the construction space.									
	\square		δ (cm)	Rmax Coumpound Stress (kN) σ(N/mm ²)				δ (cm)		Rmax (kN)	Coum σ(pound Stress N/mm ²)		δ (cm)		Rmax (kN)	Coump σ(oound Stress N/mm ²)	
Normal, Earthquake	Normal * Earthquake	1.196	Longi. Direction	2103	Longi. Direction	204	Trans. Direction	1.098	Longi. Direction	2285	Longi. Direction	194	Longi. Direction	1.018	Longi. Direction	2830	Longi. Direction	160	Trans. Direction
Allowable Value		5.000	Earthquake	4100	Principal Load	210	Earthquake	5.000	Earthquake	4800	Earthquake	210	Earthquake	5.000	Earthquake	6100	Principal Load	210	Earthquake
Steel W	eight(t)		1250				1160						1620						
Evalu	ation				0														

Table 4.2.22	Comparison of Pile Diameters at P10 and P13
--------------	---

Source: JICA Study Team

4.2.4.2 Shape of Foundation at P11 and P12

In Section 4.2.4.1, pile diameter of φ 1200 mm was selected. The shape of foundation was studied and three types (Rectangular Shape, Round Shape, Oval Shape) were compared. Based on the comparison results, <u>"Case-3: Oval Shape"</u> was selected as the best type. Each figure, characteristics, and comparison results are shown as follows:

Source: JICA Study Team

Figure 4.2.48 Rectangle Shape

-59.600

Final Report

-59, 600

foundation has the same shape; therefore, t is the most suitable.

	CASE - 1 Rectangle Shape		CASE - 2 Round Shape		CASE - 3 Oval Shape		
	Location	Size	Number	Size	Number	Size	Number
Number and Size of Steel Pipe	Outer Wall	φ1200	44	φ1200	44	φ1200	40
	Inner Wall	φ1200	7	φ1200	13	φ1200	8
Steel Weigh	t	17	700	18	800	1600	
Total Cost Rat	1.06		1.12		1.00		
Evaluation					0		

Table 4.2.23 Comparison of Foundation Shapes at P11 and P12

Source: JICA Study Team

4.2.4.3 Shape of Foundation at P10 and P13

Same as for P11 and P12, comparison of the shape of foundation at P10 and P13 was conducted. Based on the comparison results, <u>"Case-3: Oval Shape</u>" was selected as the best type. Each figure, characteristics, and comparison results are shown as follows:

Final Report

Figure 4.2.53 Oval Shape

	CASE - Rectangle S	1 Shape	CASE - Round Sh	2 nape	CASE - 3 Oval Shape			
	Location	Size	Number	Size	Number	Size	Number	
Number and Size	Outer Wall	φ1200(t=16mm)	40	φ1200(t=16mm)	38	φ1200(t=16mm)	36	
	Inner Wall	φ1200(t=14mm)	7	φ1200(t=14mm)	11	φ1200(t=14mm)	8	
Steel Weight		1700		1800		1600		
Total Cost Rat	1.07		1.11		1.00			
Evaluation						0		

Table 4.2.24 Comparison of Foundation Shape at P10 and P13

Source: JICA Study Team

4.2.5 Bridge Accessories

4.2.5.1 Bridge Accessories

The following accessories will be included in the cable-stayed bridge:

Source: JICA Study Team

Figure 4.2.54 Bridge Accessories

The structure and location plan of bridge accessories will be studied and decided during the detailed design stage.

4.2.5.2 Bearing

(1) Edge Support Bearing

Structurally, since negative reaction forces normally act on the edge support points in cable-stayed bridges, a bearing structure which resist the reaction force is necessary. Also, since the edge support of the bridge needs a movable bearing due to temperature variation, a rocking bearing has generally been used for this occasion. The rocking bearing supports a vertical reaction force in both positive and negative directions, and is structured such that it can follow the movement of the girder in the longitudinal direction through a link structure provided above and below.

a) Rocking bearing b) Horizontal bearing

Source: JICA Study Team

Figure 4.2.55 Edge Support Bearing

(2) Pylon Section Bearings

Applicable bearings under the pylon support point are shown below. The reaction forces in this point are big and the rotation movement should not be restricted, so <u>pivot bearing was selected</u>.

			Fixed Bearing			
	Pivot bearing		Pin bearing		Rubber bearing	
Bearing shape			A Constant			
Characteristics	The upper section is a concave shape and t bottom section is a convex shape, each of which is spherically finsihed and combined, making a fixed bearing that can rotate in all directions. As a movable bearing rollers are used in combination.	he	It's a fixed bearing that can rotate in only direction in a structure where the upper section and the lower section are connected cylindrical pins. As a movable bearing, rol are used in combination.	one d by flers	The vertical load is supported using nature rubber type laminated rubber bearings, horizontal load is supported by the upper section blocks which restrict movement.	ul
Stability during superstructure construction	Horizontal movement is restricted, therefore, during superstructure erection it's a stable structure.	0	Horizontal movement is restricted, therefore, during superstructure erection it's a stable structure.	0	During superstructure erection, horizontal deflection occurs on the rubber bearing making it an unstabel structure. Therefore, tempeorary bearing installation is necessary.	
Functionality	For the rotation to be free in every direction,it's necessary for lateral rotation to be set free. It is possible to support large reaction force.	Q	It can only rotate in longitudinal direction, it's not suitable for a type of bridge where lateral rotation occurs.		Although lateral rotation is possible, it's likely to be difficult to design for a large movement and large rotation, or to be economical.	0
Inspection and repairability	Compared to a pin bearing, it has a simple structure where water is difficult to enter. When abnormal (earthquake etc.)), you can check the main part by removing the ring.	0	Since the pin can't be protected against corrosion, it's necessary corrosion countermeasures around the pin and cleaning maintenance. It's impossible to check the damage situation of the pin at the time of abnormality (at the time of earthquake etc.).	Δ	Since it is structured to receive the horizontal force by the rubber body and the side block, inspection after the earthquake is easy (it can be inspected from the appearance).	0
Evaluation	0	-				

Table 4.2.25	Comparison of	of Bearing	Types
--------------	---------------	------------	-------

Source: JICA Study Team

4.2.5.3 Expansion Joint

The expansion and contraction amounts of the expansion joint used in the basic design are shown below.

			Pl	.0	P	13
Bridge shape		PC-BOX	Cable Stayed Bridge	Cable Stayed Bridge	Steel Box Girder	
	Creep		12	—	_	
	Drying shrinkage		8	_	_	_
	Temperature variation	Temperature fall(PC Girder+20°C、 Steel girder +25°C)	12	63	63	130
Normal	Temperature variation	Temperature rise(PC Girder -20°C、 Steel girder -25°C)	-12	-63	-63	-130
Norman	Base expansion/contraction an	nount	44	126	126	260
	Margin amount	Base E/C amount ×20% Minimum 10mm	10	25	25	52
	Expansion / Contraction amou	nt	54	151	151	312
	Design amount of movement	Expansion/Contraction amount ×1/2 One side amount	±27	±76	±76	±156
	Movement amount	One side amount	±180	±47	±47	±285
Saismia		One side amount×√2	±255	±66	±66	±403
Seisinie	Margin amount		±15	±15	±15	±15
	Design amount of movement		±270	±81	±81	±418
Design amount of movement used in expansion joint		Maximum value from ordinary and seismic movement	±270	±81	±81	±418
Girder joint gap in expansion joint		Girder joint gap amount	300		500	
Design girder jo	oint gap expansion joint	Girder joint gap amount ± Design amount of movement	30~	570	82~918	

 Table 4.2.26
 Summary of Expansion Amounts

Source: JICA Study Team

In long span bridges (similar to this bridge), expansion joints which can follow a big amount of expansion/contraction is necessary. The following types of expansion joints can be selected from a conventional construction record. In this bridge, based on the summary of expansion amount, <u>Modular Expansion Joint</u> was selected.

Modular Expansion Joint	Steel Finger Joint
It's structure combines rubber material and steel material, and can also move in all directions.	The face plate is processed into a comb shape and it's structure is assembled with steel material.
It can also maitain water from filtering by attaching a durable high waterproof rubber into the original structure. It can be used from small bridges to big range bridges. It is used as a countermeasure for very large displacement	Excellent movability. It is used as a countermeasure for large displacements.
0	

Source: JICA Study Team

In the detailed design stage, the expansion/contraction amount will be calculated again, and the expansion joint will be re-selected based on the D/D results.

Final Report

4.2.6 Basic Design Results

4.2.6.1 Superstructure Basic Design Results

(1) Superstructure

(2) Main Girder Cross Section

Figure 4.2.57 B/D Results for Main Girder Cross Section

(3) Pylon and Cable Structure

Figure 4.2.58 B/D Results for Pylon and Cable Structure

4.2.6.2 Substructure Basic Design Results

(1) P10 and P13

Figure 4.2.59 B/D Results for Substructure of P10 and P13

(2) P11 and P12

[Detailed Design Stage]

4.2.7 Summary of Detailed Design

4.2.7.1 Design Flow

The detailed design was carried out through the following steps:

Figure 4.2.61 Detailed Design Flow

4.2.7.2 Review of Design Conditions

Some design conditions were revised from the B/D to the D/D as shown in the figure below.

Source: JICA Study Team

4.2.7.3 Detailed Design Results

Source: JICA Study Team

Figure 4.2.64 Design Results for Cable-stayed Bridge (Superstructure: Tower and Cable)

Detailed Design Study on The Bago River Bridge Construction Project

Detailed Design Study on The Bago River Bridge Construction Project

Final Report

4.2.8 Alignment Calculation

The alignment of the cable-stayed bridge is as shown in the figure below.

4.2.9 Summary of Superstructure Design

4.2.9.1 Design Calculation of Steel Deck

(1) Design Principle

1) Application of Equivalent Lattice Method

The Equivalent Lattice Method was used for the analysis of the steel deck. The Equivalent Lattice Method models the steel deck, stiffened by the attachment of the longitudinal and transverse ribs to the deck plate, as a plane lattice and applies the standard displacement method for analysis.

2) Selected Stiffness for Analysis

a) Bending Stiffness of Material

The bending stiffness of the longitudinal and transverse ribs was obtained from the Specifications for Highway Bridges II Steel Bridges - Table 9.4.2, with consideration of the effective width of the deck plate as a flange. The effective width was calculated by setting the equivalent effective length of the transverse ribs as L at the central section and 2L at the overhanging section.

Furthermore, torsional stiffness shall be taken into consideration for the longitudinal U Ribs. Also, a virtual beam for load distribution shall be created at equivalent intervals of the transverse ribs to incorporate the load distribution created by the deck plate on the longitudinal rib section.

b) Torsional Stiffness of U Ribs

Each longitudinal rib shall be considered as a rod member that does not undergo cross sectional deformation. Hence, the torsional stiffness (with only simple torsion resistance) does not decrease and shall be considered 100% effective as determined by the following equation:

Torsional Stiffness = $4 \cdot A^2 / \{(u/tR) + (a/tP)\}$

A: Enclosed cross sectional area of U Rib

u: Expanded width of U Rib

a: Upside width of U Rib

tR: Thickness of U Rib

tP: Thickness of deck plate

c) Calculation of Equivalent Virtual Beams for Load Distribution

The virtual beam for load distribution, which provides the load distribution to the longitudinal ribs, shall have an equivalent bending stiffness as a rigid frame structure created between the deck plate and the perimeter of the U Rib. Since this rigid frame structure extends along the longitudinal direction, the equivalent second moment of area for unit length is determined first, and in the lattice model, a load distribution beam is created at every interval of the transverse rib where the bending stiffness shall be concentrated.

3) Section Force through Analysis of Influence Line

The maximum and minimum section forces for every member of the longitudinal and transverse ribs are calculated by analyzing the effect of the influence line at every point.

4) AASHTO Configuration of Live Load

The AASHTO Design Live Load was considered as the design load of the steel deck. Based on AASHTO, more severe live load of Design Truck or Design Tandem shall be applied, while tire contact area is 250 mm (length) x 510 mm (width). The design load on the steel deck was set as shown in the figure below.

Source: JICA Study Team

Figure 4.2.69 AASHTO Configuration of Live Load

(2) Design Results

The cross sections of the longitudinal rib, transverse rib, brackets, and vertical side girder were decided based on the maximum stress resultants of each member. (For reference, evaluation results based on the JSHB are shown in the following tables.)

Transverse Rib (Outer web - Inner Web)			AASI	JSHB	
Transv	erse Rib (Outer web -	liller web)	Design Truck	Design Truck Design Tandem	
	Deck	Thickness: t	16	16	16
Section	Bottom flange	Width x t	240 x 10	240 x 10	240 x 10
	Web	Height x t	700 x 9	700 x 9	700 x 9
	Deck		SM400	SM400	SM400
Material	Bottom flange		SM490Y	SM490Y	SM490Y
	Web		SM490Y	SM490Y	SM490Y
	Deals	Bending Stress	31	39	43
	Deck	Allowable Value	140	140	140
	Dattam flance	Bending Stress	-56	-71	-78
	Bottom Hange	Allowable Value	172	172	172
Stress	XV - 1.	Shear Stress	26	34	49
	web	Allowable Value	120	120	120
	Composite	Composite Stress	0.12	0.19	0.30
		Vertical Shear	42	54	79
	Defective Part	Horizontal Shear	53	68	100
	Results		0.78	1.02	1.2
Deformation	Allowable Value	(mm)	10.0	10.0	10.0
			4 4 51	UTO	ICHD
Transv	verse Rib(Inner Web -	Inner Web)	AAS Design Truck	HTO Design Tandem	JSHB B Live Load
Transv	verse Rib(Inner Web -	Inner Web)	AASI Design Truck	HTO Design Tandem	JSHB B Live Load
Transv	verse Rib(Inner Web - Deck	Inner Web) Thickness: t Width x t	AASI Design Truck 16	HTO Design Tandem 16 150 x 10	JSHB B Live Load 16
Transv	verse Rib(Inner Web - Deck Bottom flange Web	Inner Web) Thickness: t Width x t Height x t	AASJ Design Truck 16 150 x 10 350 x 9	HTO Design Tandem 16 150 x 10 350 x 9	JSHB B Live Load 16 150 x 10 350 x 9
Transv Section	verse Rib(Inner Web - Deck Bottom flange Web Deck	Inner Web) Thickness: t Width x t Height x t	AASI Design Truck 16 150 x 10 350 x 9 SM400	HTO Design Tandem 16 150 x 10 350 x 9 SM400	JSHB B Live Load 16 150 x 10 350 x 9 SM400
Transv Section Material	Verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange	Inner Web) Thickness: t Width x t Height x t	AASI Design Truck 16 150 x 10 350 x 9 SM400 SM400	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400
Transv Section Material	Verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange Web	Inner Web) Thickness: t Width x t Height x t	AASI Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400 SM400
Transv Section Material	Verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange Web	Inner Web) Thickness: t Width x t Height x t Bending Stress	AASI Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400 SM400 8
Transv Section Material	Verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange Web Deck	Inner Web) Thickness: t Width x t Height x t Bending Stress Allowable Value	AASJ Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400 SM400 8 M400 8 140
Transv Section Material	verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange Web Deck	Inner Web) Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress	AASJ Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 3 140 -9	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400 SM400 8 400 SM400 -22
Transv Section Material	Verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange	Inner Web) Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value	AASJ Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 SM400 3 140 -9 131	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 SM400 3 3 140 -9 131	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400 SM400 8 400 8 140 -22 131
Transv Section Material Stress	Verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange	Inner Web) Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress	AASJ Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 3 140 -9 131	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 3 140 -9 131 4	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400 SM400 8 400 -22 131
Transv Section Material Stress	Verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange Web	Inner Web) Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress Allowable Value	AASI Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400 SM400 8 400 -22 131 10 80
Transv Section Material Stress	Verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange Web Composite	Inner Web) Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress Allowable Value Composite Stress	AASI Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400 SM400 8 140 -22 131 10 80 0.04
Transv Section Material Stress	Verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange Web Composite	Inner Web) Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress Allowable Value Composite Stress Vertical Shear	AASI Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 1311 4 80 0.01	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400 SM400 SM400 2 SM400 2 SM400 2 SM400 3 SM400 2 SM400 3 SM400 8 0 140 2 2 2 3 3 1 1 0 80 0.04 2 7
Transv Section Material Stress	Verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange Web Composite Defective Part	Inner Web) Thickness: t Width x t Height x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress Allowable Value Composite Stress Vertical Shear Horizontal Shear	AASI Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01 11	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01 11	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400 SM400 SM400 2 SM400 2 SM400 2 SM400 3 SM400 0 SM400 0 SM400 2 2 1 3 1 1 0 0 0.04 2 7 1 1
Transv Section Material Stress	Verse Rib(Inner Web - Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange Web Composite Defective Part Results	Inner Web) Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress Allowable Value Composite Stress Vertical Shear Horizontal Shear	AASJ Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 33 140 -9 131 4 80 0.01 111 4 0	HTO Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 SM400 30 3 140 -9 131 4 4 80 0.01 11 4 4 0	JSHB B Live Load 16 150 x 10 350 x 9 SM400 SM400 SM400 0 SM400 0 SM400 2 SM400 0 SM400 0 SM400 0 SM400 0 SM400 0 SM400 2 2 2 131 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.2.28 Design Results for Steel Deck (Transverse Rib)

	Bracket (at end)			HTO	JSHB
	Bracket (at eliu)		Design Truck	Design Tandem	B Live Load
	Deck	Thickness: t	16	16	16
Section	Bottom flange	Width x t	370 x 15	370 x 15	370 x 15
	Web	Height x t	1300 x 10	1300 x 10	1300 x 10
	Deck		SM400	SM400	SM400
Material	Bottom flange		SM490Y	SM490Y	SM490Y
	Web		SM490Y	SM490Y	SM490Y
	Deals	Bending Stress	37	43	51
	Deck	Allowable Value	140	140	140
	Dette m flemen	Bending Stress	-109	-126	-149
	Bottom Hange	Allowable Value	160	160	160
Stress	Wah	Shear Stress	37	41	53
	web	Allowable Value	120	120	120
	Composite	Composite Stress	0.35	0.47	0.68
	Defective Dout	Vertical Shear	46	52	66
	Defective Fait	Horizontal Shear	75	84	106
Defermation	Results	(mm)	2.89	3.44	4.12
Deformation	Allowable Value	(11111)	17.3	17.3	17.3
				r mo	IGUD
	Bracket (at intermediate)		AAS	HIO	JSHB
			Design Truck	Design Tandem	B Live Load
	Deck	Thickness: t	16	16	16

Table 4.2.29 Design Results for Steel Deck (Bracket)

Bracket (at intermediate)			AAS	JSHB	
	Bracket (at intermedi	late)	Design Truck	Design Tandem	B Live Load
	Deck	Thickness: t	16	16	16
Section	Bottom flange	Width x t	240 x 15	240 x 15	240 x 15
500000	Web	Height x t	1300 x 9	1300 x 9	1300 x 9
	Deck		SM400	SM400	SM400
Material	Bottom flange		SM490Y	SM490Y	SM490Y
	Web		SM490Y	SM490Y	SM490Y
	Deals	Bending Stress	24	29	30
	Deck	Allowable Value	140	140	140
	Dettern flames	Bending Stress	-89	-105	-111
	Bottom mange	Allowable Value	119	119	119
Stress	337.1	Shear Stress	28	34	41
	web	Allowable Value	120	120	120
	Composite	Composite Stress	0.23	0.32	0.38
	Defection Dent	Vertical Shear	35	43	51
	Defective Part	Horizontal Shear	56	69	82
	Results	()	2.44	2.96	3.07
Deformation	Allowable Value	(mm)	17.3	17.3	17.3

Source: JICA Study Team

Table 4.2.30 Design Results for Steel Deck (Longitudinal Rib)

	Lanaite dinal Dib		AAS	HTO	JSHB		
	Longitudinai Kio		Design Truck	Design Tandem	B Live Load		
Section	Deck	Thickness: t	16	16	16		
Section	Longi. Rib	Shape	U-320x240x8	U-320x240x8	U-320x240x8		
Matanial	Deck		SM400	SM400	SM400		
Materiai	Longi. Rib		SM400	SM400	SM400		
	Deck	Bending Stress	-35	-32	-41		
	Deck	Allowable Value	140	140	140		
	Bottom Edge of	Bending Stress	89	81	105		
Stress	Longi. Rib	Allowable Value	140	140	140		
	Wah of Longi Dib	Bending Stress	12	11	16		
	web of Longi. Kib	Allowable Value	80	80	80		
	Composite	Composite Stress	0.43	0.35	0.60		
Deformation	Results	(mm)	2.12	2.52	3.02		
Deformation	Allowable Value	(11111)	5.0	5.0	5.0		

4.2.9.2 Design Calculation for Main Girder

(1) Design Principle

1) Design Section Force

The section force determined by the static structural analysis for Case 1-6 (Refer to Section 4.2.3.7) shall be the design section force. The design force used shall be a factor of the ordinary load conditions.

Case	Description
Case 1	Dead Load
Case 2	Live Load
Case 3	Influence of Temperature Change
Case 4	Wind Load
Case 5	Earthquake
Case 6	Pre-stress

Table 4.2.31 Load Case

Source: JICA Study Team

2) Design Cross Section

The main girder cross section and plate joint directions are as shown in the figure below.

(2) Effective Width

The effective width against bending along the horizontal axis for the steel deck and flange is as given below.

						•	(11111)	
Sectio	n	L	l	Interval	b	b/l	λ	Eq. in JSHB
Section-1	U-Flg1	92000	92000	5200	5200	0.057	5127	(11.3.1)
	U-Flg2	92000	92000	5000	2500	0.027	2500	(11.3.1)
	U-Flg3	92000	92000	2500	1250	0.014	1250	(11.3.1)
	L-Flg	92000	92000	3500	1750	0.019	1750	(11.3.1)
	Web1	46000	46000	2559	1280	0.028	1280	(11.3.1)
	Web2	46000	46000	2659	1330	0.029	1330	(11.3.1)
Section-2	U-Flg1	92000	92000	5200	5200	0.057	5127	(11.3.1)
	U-Flg2	92000	92000	5000	2500	0.027	2500	(11.3.1)
	U-Flg3	92000	92000	2500	1250	0.014	1250	(11.3.1)
	L-Flg	92000	92000	3500	1750	0.019	1750	(11.3.1)
	Web1	104000	104000	2559	1280	0.012	1280	(11.3.2)
	Web2	104000	104000	2659	1330	0.013	1330	(11.3.2)
Section-3	U-Flg1	32000	32000	5200	5200	0.163	3421	(11.3.2)
	U-Flg2	32000	32000	5000	2500	0.078	2094	(11.3.2)
	U-Flg3	32000	32000	2500	1250	0.039	1178	(11.3.2)
	L-Flg	32000	32000	3500	1750	0.055	1571	(11.3.2)
	Web1	104000	104000	2559	1280	0.012	1280	(11.3.2)
	Web2	104000	104000	2659	1330	0.013	1330	(11.3.2)
Section-4	U-Flg1	115000	115000	5200	5200	0.045	5200	(11.3.1)
	U-Flg2	115000	115000	5000	2500	0.022	2500	(11.3.1)
	U-Flg3	115000	115000	2500	1250	0.011	1250	(11.3.1)
	L-Flg	115000	115000	3500	1750	0.015	1750	(11.3.1)
	Web1	146000	146000	2559	1280	0.009	1280	(11.3.1)
	Web2	146000	146000	2659	1330	0.009	1330	(11.3.1)

 Table 4.2.32
 Effective Width of Main Girder

Source: JICA Study Team

(3) Effective Buckling Length

The main girder shall not be analyzed for overall buckling except in the vicinity of the tower. The effective buckling length in the horizontal and vertical plane for the main girder near the tower is shown in the figure below.

Figure 4.2.71 Effective Buckling Length of Main Girder

(4) Additional Stress

1) Additional Stress at Cable Anchorage Member

While the cable propagates energy through the cable anchorage girder to the main girder web, it propagates through the cable anchorage location on the web, a comparatively localized point, causing an uneven distribution of stress in the main girder web. Therefore, the uneven distribution of stress at the cable anchorage location is verified with a calculation model which considers the application of reaction force from the cable anchorage girder on the surface which consists of expanded top and bottom flange at the cable anchorage position on the web.

Figure 4.2.72 Stress Analysis Model of Cable Anchorage Position

In the horizontal direction, an adjustment to stress as shown below is necessary because the main girder has not been constrained at the opposite of the cable extending direction.

a) Evaluation of Total Stress with Additional Stress

The total value of the main structure stress and additional stresses was evaluated. In the additional stresses, stress caused by anchorage position between diaphragms and uneven stress at cable anchorage were included.

As shown in the table below, the total stress was less than the allowable value in all sections.

					σ : Compr	ression +		
		σΜ	σD	σs1	σs2	Σσ	σcal	$\Sigma \sigma <= \sigma cal$
	U.Flg	63.8	3.6	14.9	-5.8	82.3	131.6	OK
C5	Web	25.1	-	51.5	51.5	76.6	157.0	OK
	L.Flg	97.6	8.3	4.5	1.0	106.9	146.9	OK
	U.Flg	67.9	2.3	8.6	-3.9	78.8	131.6	OK
C6	Web	28.3	-	51.7	51.7	80.0	158.0	OK
	L.Flg	92.8	5.9	2.5	0.8	99.5	102.1	OK
	U.Flg	52.6	3.2	9.4	-5.5	65.2	131.6	OK
С9	Web	35.5	-	41.2	41.2	76.7	146.0	OK
	L.Flg	70.9	8.1	1.8	1.9	80.9	102.1	OK
	U.Flg	53.4	3.7	8.4	-5.7	65.5	131.6	OK
C11	Web	41.9	-	27.2	27.2	69.1	141.0	OK
	L.Flg	75.6	9.6	1.3	2.3	87.5	102.1	OK
	U.Flg	55.5	3.8	15.4	-5.9	74.7	131.6	OK
C16	Web	29.0	-	53.0	53.0	82.0	153.0	OK
	L.Flg	64.2	9.7	4.6	1.1	75.0	102.1	OK

Table 4.2.33	Evaluation of	Total Stress	(N/mm^2)
--------------	---------------	---------------------	------------

 σM : Compressive stress due to main structure effect.

(At web position: the stress caused by axial force only)

 σD : Additional stress caused by anchorage position between diaphragms)

 σ s1: Maximum uneven stress at anchorage

 σ s2: Uneven stress at anchorage position (Transverse rib position)

2) Analysis of Biaxial Stress Condition

As the main girder is suspended by cable at the center of the cross section, arching upwards along the transverse direction, the bottom flange undergoes compression. For load conditions, which create compressive stress along the bottom flange in the longitudinal direction, a state where the bottom flange is affected by biaxial compressive stress occurs. Buckling is more likely to occur in this state than under uniaxial stress conditions and therefore, another evaluation is required.

The evaluation shall be performed by calculating the stress along the transverse direction and determining the pertinent allowable stress along the longitudinal direction.

a) Analysis along the Transverse Direction

By considering the main girder to be a lattice structure comprised of the vertical girder, the web, the diaphragms and the brackets, stress in the transverse direction is determined through the lattice analysis.

The analysis shall be performed for dead and live load conditions. The effect of the cable shall be considered by applying the vertical component of the tension in the cable as load.

Source: JICA Study Team

Figure 4.2.74 Lattice Analysis Model

b) Result of Lattice Analysis

The results of the lattice analysis are shown in the table below.

Sa	ation	Bending	Moment	Bot. Flange	Bot. Flange Stress			
50		M1	M2	Thickness	σM1	σM2		
	C1	-5632	-3993	14	44.4	31.5		
1	C2	-8555	-6954	14	63.0	51.2		
	C5	-8159	-6472	14	60.0	47.6		
2	C8	-7571	-6176	14	55.7	45.4		
3	С9	-7888	-6407	11	71.0	57.7		
4	C12	-7971	-6438	11	71.8	58.0		
Ē	C16	-8334	-6555	11	75.0	59.0		
3	C20	-5902	-4594	11	53.1	41.4		

M1: Bending moment of Cross Beam at center of the middle cell

M2: Bending moment of cross beam at inner web

c) Allowable Compressive Stress along the Longitudinal Direction

The bottom flange buckling evaluation under the biaxial compressive stress condition was performed through the evaluation of stress in the transverse direction and allowable stress in the longitudinal direction.

In the bottom flange, there are two values of allowable compressive stress in the longitudinal direction, i.e., in the inner cell section and in the outer cell section. The allowable compressive stress in the inner cell is smaller than that in the outer cell; therefore, the evaluation was performed for the inner cell section.

The calculation result shows that the buckling safety ratio v is bigger than 1.7, and the safety for biaxial buckling is ensured.

Thickness t mm	Width B mm	Trans. Rib Distance L mm	Longi. Rib Distance b mm	Longi. Rib Section br * tr	Trans. Direction σy N/mm2	Longi. Allowable Value σcal N/mm2	$\nu \ge 1.7$ for $\sigma x = \sigma cal$	
14	2500	2250	500	160*16	22.2	147	1 76	
(C1~C5)	3500	2230	470	100.10	32.5	157	1.76	
11 (C6 ~ C10)	2500	2250	500	160*16	26.4	102	2.43	
	3500	2230	470	100*10	30.4	115		
11 (C11~C15)	2500	2250	500	160*16	26.5	102	2.42	
	3500	2230	470	100.10	30.3	115		
11 (C16~C20)	2500	2250	500	160*16	27.2	102	2.41	
	3500	2230	470	100*10	57.2	115		

Table 4.2.35 Allowable Compressive Stress in Longitudinal Direction

(5) Calculation Results for Cross Section of Main Girder

The calculation results for the cross section of the main girder are shown in the figure below.

Figure 4.2.75 Cross Sectional Diagram of Main Girder

	S	SECTION T	YPE	1			TYPE-1						TYPE	-2		
		SECTION	¢	S1	EJ	E.Q	5.0	EJ4	E.JS	EÆ	ER	8.3	E.9	E.310	EJ11	EJ12
DECK		σ		336	38.1	48.7	-52.3	-57.1	-61.5	-67.3	-65.4	60.5	-542	-50.8	-56.9	#2
		5°8		1400	\$43.0	140.0	140.0	140.0	140.0	149.0	140.0	149,0	140.0	140.0	140.0	140.0
		LOAD CASE	E	04.47	0≪+⊺	04.47	04.47	- 04	04	DHL	DHL I	- 0H	D-E I	D-L	DHETR	D-ETR
BOTTO	61 C (s)	σ		-82	-17.7	-47.4	-62.7	-93.5	-26.1	-27.0	-15.6	-192	-35.0	-39.5	-21.0	-83
FLANG	e i l	σa		146.9	146.9	146.9	146.9	146.9	145.9	102.1	102.2	192.2	102.1	102.1	102.4	102
	- 6	LOAD CAS	ε	04.+T	0≪+7	0+L+T	D+L+T	D+L+T	D+ELG	D€LG	D+WgTR	DHHgTR	D+ELG	D+ELG	0+rsgTR	DH
WE8	8 1 425 423 321 258 224		212	19.6	24.3	26.6	26.6	26.1	25.1	45.1						
		COMBINED STRESS LOAD CASE		1200	120.0	120.0	120.0	120.0	120.0	129.0	120.0	129.0	120.0	120.0	120.8	\$20.6
				0.13	0.12	0.09	0.12	0.22	0.10	8.11	0.12	8.12	8,9	8.10	0.10	0.27
				DH	D+L	D+L	DHL	D+L	D+L	DHL	DHL	DHL	DHL	અ	DHL	D+L
															UNIT	r: kN • m, kN
1.1	TY	PE-3					1.4	1.1		TY	PE-4	1000	_			
£333	P112	P11R	EJ14	EJ15	EJ16	EJ	7	318	E319	E.(20	EJ21	EJ22	E./23	E224	E.125	E.126
-71.8	-74.0	-73.6	-70.2	-62.3	-56.6	12 -4	55.2	-65.7	-57,4	-58,4		-50.2	-46.4	-46.3		-5ô
\$40.0	149.0	140.0	140.0	140.0	140.0	0.134	40.0	540.0	140.0	140.0	140.0	140.0	140.0	140.0	549.00	140.0
D€TR	D+ETR	D+ETR	D-ETR	D+ETR	D-4	10.1	0+1	D+L	05	DHL	D+L	D-C	D+L+T	D€TR	D+ETR	0-ETR
-112.9	-130.1	-122.7	- 1976 -	-367	-15.6	8.55-2	19.4	-48.0	-15.3	-126	-12.5	-23.9	-21.5	-17.1	-1051	-167
157.9	157.9	157.9	157.9	102.1	102.4	1 14	22	102.1	102.2	102.4	102.5	102.1	102.1	102.1	102.1	1185
D+L	04	04	D-L+T	D+L+T	D+WgTR	DHW	gTR D	HT STR I	D+WgTR+I	D+WgTR+T	D+HigTR+T	D+ELG	D+ELG	D€lG	D+ELG	D+ETR
49.8	50.3	57.3	56.4	53.5	33.9		34.6	34.5	32.1	29.7	24.0	25.8	26.7	27.6	29.0	31.4
129.0	129.0	120.0	120.6	120.0	120.0	1	29.0	120.0	120.0	129.0	120.0	120.0	129.0	120.0	120.0	120.0
\$.40	0.50	0.50	0.39	0.28	8.14	5-1	0.14	-2.14	:0.14	0,13	0.10	86.0	80.0	-0.07	0.17	÷\$
D+L	0+1	D+L	D+L	0.4	0#	-	DH	Det	0.4	0.4	D#	0.4	D.4	D-H	D-H	04

	SECTION TYPE	1		TYPE-1			TYPE-2					
	SECTION	R1	R3	R5	R7	R9	R11	R13	R15	R17	R19	
BOTTOM	ar	-35.0	-71.0	-96.8	-100.0	-94.9	-29.2	-20.7	-34.9	-72.5	-50.9	
FLANGE	στα	130.5	130.5	130.5	130.5	138.5	\$00.7	100.7	100.7	100.7	108.7	
	LOAD CASE	D+L	DHL	D4L+T	BR	DHL+T	DIELG	DIELG	D+ELG	D-L	D-K.	
WEB	TW ²	46.1	36.0	31.0	27.4	30.5	26.6	30.0	32.3	32.5	32.4	
	TXZ.	70.8	75.1	75.1	75.1	75.1	41.1	41.1	41.1	41.1	41.1	
1.1.1	TW=TW'+TXZ	116.9	111.1	106.1	102.5	105.6	67.7	71.1	73.4	73.6	73.5	
	Ca.	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	
	LOAD CASE	D+L	D+L	D+L	D+L	D+L	D4L	D+L	DHL	DHL	D+L	

UNIT:	kN•m,	kN
-------	-------	----

TYPE-3	TYPE4											
14.	R30	R32	R34	R36	R38	R40	R42	R44	R46	R48		
-	-23.2	-36,0	-20.0	-16.8	-15.0	-28.6	-26.8	-23.0	-17.4	-9.3		
	98.3	98.3	98.3	98,3	98.3	90.6	90.6	90.6	90.6	90.6		
	D+₩ş5R	DÆLG	D+ligTR+T	D+WgTR+T	D+NgTR+T	D+ELG	D+ELG	D+ELG	D+ELG	DHELG		
~	40,8	40.7	39.1	35.7	31.7	34.2	32.3	33,1	34:4	36,4		
-	40.6	40.6	40.6	40.6	40.6	63.9	63.9	63.9	63.9	63.9		
	81.4	81.3	79.7	76.3	72.3	98.1	96.2	97.0	98.3	100,3		
	120.0	t20.0	120,0	t20.0	120.0	120.0	120.0	120.0	120.0	120.0		
-	D+L	D+L	DHL	D+L	DH	DHL	D+L	D+L	D+L	D+L		

and a second sec	NUMBER OF STREET, STRE
	a second a second s
	A AND ADDRESS OF ADDRESS ADDRES
	And a second sec
	ALL AND AND AND AND AND A MARK AND
1000 C	
and the second s	
And the second second	and the second s
The second second	- NAME AND ADDRESS OF A DESCRIPTION OF A
and the second second	

Source: JICA Study Team

Figure 4.2.76 Calculation Results for Cross Section of Main Girder

4.2.9.3 Design Calculation for Main Tower

(1) Design Principle

1) Design Section Force

The section force determined by the static structural analysis for Case 1-6 (Refer to 4.2.3.11) shall be the design section force. The design force used shall be a factor of the ordinary load conditions.

Case	Description					
Case 1	Dead Load					
Case 2	Live Load					
Case 3	Influence of Temperature Change					
Case 4	Wind Load					
Case 5	Earthquake					
Case 6	Pre-stress					

Table 4.2.36 Loading Cases

Source: JICA Study Team

2) Design Section

The main tower cross section and plate joint directions are shown in the figure below.

TYPICAL SECTION

Source: JICA Study Team

Figure 4.2.77 Design Cross Section

(2) Effective Width

The effective width of the flange and web of the main tower is as follows:

							(mm)	
Sect	ion	L	1	Interval	b	b/l	λ	Eq. in JSHB
Tower	Flg	53900	53900	2500	1250	0.023	1250	(10.3.1)
	Web	53900	107800	3000	1500	0.014	1500	(10.3.2)

Table 4.2.37 Effective Width of Main Tower

Source: JICA Study Team

(3) Effective Bucking Length

The effective buckling length of the main tower is as follows:

In-plane direction: 0.7h

Out-of-plane direction: 1.0h

Source: JSHB Part II, 2012

 Table 4.2.39
 Effective Buckling Length of Main Tower

	Structure Length h (m)	Coefficient	Effective Buckling Length (m)	
In-plane	53.900	0.700	37.730	
Out-of-plane	53.900	1.000	53.900	

Source: JICA Study Team

(4) Additional Stress

1) Additional Stress at Cable Anchorage Member

While the cable propagates energy through the cable anchorage girder to the main tower web, it propagates through the cable anchorage location on the web, a comparatively localized point, causing an uneven distribution of stress in the main tower web same as in the main girder. Therefore, additional stress for tower web shall be considered.

Source: JICA Study Team

Figure 4.2.78 Calculation Points of Stress

a) Evaluation of Additional Stress

Uneven stress and evaluation results at the cable anchorage position are shown in the table below.

Table 4.2.40 Unev	en Stress Distributio	n at Cable Anchorage I	Position
-------------------	-----------------------	------------------------	----------

Dag	ition	Stress p	er 10mm	t (mm)	σx1,z1= Girder A		Even Stress	Even Stress Unev		en Stress (additional)		
ros	non	σx0,σz0	τxz0	t (mm)	σx0,z0*10/t	Ag (m2)	(Left, Right)	Anchorage σx	σn	σx'	σz'	τxz
C1 20	а	-206.0	96.5	40	-51.5	0.11	-26.4	-77.9	-52.8	-25.1	-	24.1
(NI70)	b	-139.1	-108.3	40	-34.8	0.11		-61.2		-8.4	-	27.1
(N/0)	с	38.6	-126.4	40	9.7	0.48	3.1	12.8	6.2	-	0.4	31.6
65.16	а	-182.1	115.7	40	-45.5	0.11	-24.9	-70.4	-49.8	-20.6	-	28.9
(NI70)	b	-158.2	-75.6	40	-39.6	0.11		-64.5		-14.7	-	18.9
$(\mathbf{N}/0)$	с	66.2	-136	40	16.6	0.70	1.3	17.9	2.6	-	12.7	34.0
C6 15	а	-97.4	69.5	40	-24.4	0.11	12.7	-38.1	27.4	-10.7	-	17.4
(N127)	b	-92.7	-33.6	40	-23.2	0.11 -13.7	-36.9	-27.4	-9.5	-	8.4	
(N37)	с	44.3	-78.9	40	11.1	0.70	0.8	11.9	1.6	-	8.7	19.7
C10.11	а	-45.6	79	40	-11.4	0.11	0.11 -9.7	-21.1	10.4	-1.7	-	19.8
(N127)	b	-93.5	37.8	40	-23.4			-33.1	-19.4	-13.7	-	9.5
(1837)	с	96.7	-70.1	40	24.2	0.70	1.1	25.3	2.2	-	20.9	17.5

Source: JICA Study Team

Table 4.2.41 Analysis Result of Uneven Stress Distribution at Cable Anchorage Position

Position		Unever	1 Stress	Tower Stress		Total				
FOS	non	σx'	τxz	σf	τf	σf	σa	τf	та	
Section1	а	25.1	24.1	27.2	7.1	52.3	210	31.2	120	OK
J18	b	8.4	27.1	27.2	0.7	35.6	210	27.8	120	OK
(C1,20)	с	0.4	31.6	27.2	7.1	27.6	210	38.7	120	OK
Section1	а	20.6	28.9	109.5	6.6	130.1	210	35.5	120	OK
J17-14	b	14.7	18.9	109.5	1.7	124.2	210	20.6	120	OK
(C5,16)	с	12.7	34.0	109.5	6.6	122.2	210	40.6	120	OK
Section1	а	10.7	17.4	125.1	5.3	135.8	210	22.7	120	OK
J13	b	9.5	8.4	125.1	1.9	134.6	210	10.3	120	OK
(C6,15)	с	8.7	19.7	125.1	5.3	133.8	210	25.0	120	OK
Section1	а	1.7	19.8	154.4	2.6	156.1	210	22.4	120	OK
J12-9	b	13.7	9.5	154.4	2.7	168.1	210	12.2	120	OK
(C10,11)	с	20.9	17.5	154.4	2.6	175.3	210	20.1	120	OK

(5) Calculation Results for Cross Section of Main Tower

Calculation results for the cross section of the main tower are shown in the figure below.

Source: JICA Study Team

Figure 4.2.79 Calculation Results for Cross Section of Main Tower

Final Report

4.2.9.4 Design Calculation for Cable

- (1) Stay Cable
- 1) Specifications for Stay Cable

a) Specifications for Strand

Stay cable is composed of strand, which is a set of 7-galvanized strand wire and high-density polyethylene pipe. The specifications for the strand is as follows:

b) Cross Section of Stay Cable

The strands are arranged in a hexagonal pattern in the cross section of the stay cable. The number of strands was decided based on the maximum tension, which is calculated by static analysis.

Items	Equation				
Area (mm ²)	146.5 x N				
Unit Weight (kg/m)	1.288 x N + Wp (weight of outer cover pipe)				
Yield Point (kN)	222 x N				
Tensile Strength (kN)	261 x N				
Young's Modulus (kN/mm ²)	190				
Note: N: number of strands. Wn: Weight of outer cover nine (high-density polyethylene nine)					

Table 4.2.43 Characteristics of Stay Cable

Note: N: number of strands, Wp: Weight of outer cover pipe (high-density polyethylene pipe) Source: JICA Study Team

Figure 4.2.80 Cross Section of Stay Cable
2) Decision of Stay Cable Cross Section

The calculated results of the cable tension and cross section of the stay cable are shown in the table below.

No.	Load	Tension (kN)	Cable Type		
C1	Cable Tension max(all)	6616.6	φ15.6 * 70		
C2	Cable Tension max(all)	5935.1	φ15.6 * 70		
C3	Cable Tension max(all)	5322.2	φ15.6 * 70		
C4	Cable Tension max(all)	5033.1	φ15.6 * 70		
C5	Cable Tension max(all)	5291.6	φ15.6 * 70		
C6	Cable Tension max(all)	3144.2	φ15.6 * 37		
C7	Cable Tension max(all)	3457.4	φ15.6 * 37		
C8	Cable Tension max(all)	3675.1	φ15.6 * 37		
C9	Cable Tension max(all)	3752.1	φ15.6 * 37		
C10	Cable Tension max(all)	3628.3	φ15.6 * 37		
C20	Cable Tension max(all)	5622.5	φ15.6 * 70		
C19	Cable Tension max(all)	5335.9	φ15.6 * 70		
C18	Cable Tension max(all)	5150.0	φ15.6 * 70		
C17	Cable Tension max(all)	5177.1	φ15.6 * 70		
C16	Cable Tension max(all)	5488.0	φ15.6 * 70		
C15	Cable Tension max(all)	3227.5	φ15.6 * 37		
C14	Cable Tension max(all)	3521.6	φ15.6 * 37		
C13	Cable Tension max(all)	3696.9	φ15.6 * 37		
C12	Cable Tension max(all)	3738.0	φ15.6 * 37		
C11	Cable Tension max(all)	3607.9	φ15.6 * 37		

 Table 4.2.44
 Cable Tension and Cross Section

Source: JICA Study Team

Source: JICA Study Team

Source: JICA Study Team

Figure 4.2.81 Cable Number

The safety ratio for the cable structure in a cable-stayed bridge is "2.5" in the JSHB. Evaluation result is as follows:

10.01			
Cable No.	Max. Tension	Cable Strength	Safety Ratio
С1-С2, С16-С20 (70Н)	6617 kN	18270 kN	2.76 > 2.5 (OK)
C6-C10, C11-C15 (37H)	3752 kN	9657 kN	2.57 > 2.5 (OK)

Table 4.2.45 Evaluation of Cable Tension

€ MAIN TOWER

The selected cable cross section is as follows:

Table 4.2.46 Cross Section of Stay Cable

(2) Calculation of Stay Cable Length

The stay cable length is calculated by considering the "Catenary Curve". The calculation method is shown in the figure below.

Figure 4.2.82 Calculation Method of Catenary Curve

STAY CABLE	X_G	Z_G	X_T	Z_T	ł	h	W	Н	А	f	α	⊿Le	L	L ₀
NO.	(m)	(m)	(m)	(m)	(m)	(m)	(N/m)	(kN)	(<i>m</i> ²)	(mm)	(deg)	(m)	(m)	(m)
C1	-218.000	-1.297	-112.000	52.922	106.000	54.219	941.400	6093.200	0.010	246.400	26.673	0.410	119.705	119.295
C2	-209.000	-1.273	-112.000	50.922	97.000	52.195	941.400	5346.200	0.010	237.900	27.855	0.336	110.794	110.458
C3	-200.000	-1.250	-112.000	48.922	88.000	50.172	941.400	4678.100	0.010	227.100	29.250	0.275	101.941	101.666
C4	-191.000	-1.228	-112.000	46.922	79.000	48.150	941.400	4317.300	0.010	202.000	30.942	0.236	93.160	92.924
C5	-182.000	-1.207	-112.000	44.922	70.000	46.129	941.400	4405.500	0.010	159.200	33.028	0.223	84.475	84.252
C6	-173.000	-1.187	-112.000	42.922	61.000	44.109	497.900	2534.800	0.005	114.300	35.594	0.224	75.798	75.574
C7	-164.000	-1.168	-112.000	40.922	52.000	42.090	497.900	2652.900	0.005	82.900	38.771	0.218	67.421	67.203
C8	-155.000	-1.150	-112.000	38.922	43.000	40.072	497.900	2655.600	0.005	60.300	42.813	0.204	59.298	59.095
C9	-146.000	-1.133	-112.000	36.922	34.000	38.055	497.900	2453.200	0.005	44.900	48.090	0.180	51.552	51.373
C10	-137.000	-1.117	-112.000	34.922	25.000	36.039	497.900	2024.000	0.005	34.500	55.152	0.149	44.382	44.233
C11	-87.000	-1.047	-112.000	34.922	-25.000	35.969	497.900	2003.300	0.005	34.800	55.098	0.147	44.325	44.178
C12	-78.000	-1.038	-112.000	36.922	-34.000	37.960	497.900	2437.900	0.005	45.100	48.018	0.178	51.481	51.303
C13	-69.000	-1.030	-112.000	38.922	-43.000	39.951	497.900	2672.500	0.005	59.800	42.728	0.204	59.216	59.012
C14	-60.000	-1.023	-112.000	40.922	-52.000	41.944	497.900	2728.100	0.005	80.500	38.680	0.223	67.329	67.106
C15	-51.000	-1.016	-112.000	42.922	-61.000	43.938	497.900	2612.000	0.005	110.800	35.496	0.231	75.698	75.467
C16	-42.000	-1.011	-112.000	44.922	-70.000	45.933	941.400	4591.700	0.010	152.500	32.930	0.232	84.367	84.135
C17	-33.000	-1.007	-112.000	46.922	-79.000	47.928	941.400	4433.800	0.010	196.400	30.836	0.241	93.045	92.804
C18	-24.000	-1.004	-112.000	48.922	-88.000	49.925	941.400	4522.800	0.010	234.600	29.113	0.265	101.819	101.554
C19	-15.000	-1.001	-112.000	50.922	-97.000	51.923	941.400	4800.500	0.010	264.700	27.681	0.301	110.666	110.365
C20	-6.000	-1.000	-112.000	52.922	-106.000	53.922	941.400	5188.300	0.010	289.000	26.472	0.348	119.570	119.222

Table 4.2.47 Cable Section and Characteristics

4.2.9.5 Study on Cable Pre-stressing Force

(1) Study Overview

For a cable-stayed bridge, a type of bridge where the main girder is supported by diagonally stayed cables from towers, the stress at the main girder and the towers can be adjusted by pre-stressing the cables.

Ordinarily the main girder is subjected to bending moment with a tendency to be subjected to larger amounts around the center and around the main towers when pre-stressing has not been applied to the cable. Therefore, a study on the pre-stressing force in the cables was conducted to optimize the bending moment distribution in the girder and determine the pre-stressing force to be installed in the cable.

Figure 4.2.83 Bending Moment for Completed Stage

(2) Design Principle

The pre-stressing force in the cables was determined to satisfy the conditions below during the completed stage (D+Ps).

- 1. The bending moment distribution along the main girder is smoothened.
- 2. The tower must not be subjected to bending moment during the completed stage.
- 3. During the final girder closing, the girders do not require any force (closing force, enforcement) $\rightarrow M \doteqdot 0$ at joint

For the purpose of the study, the assumed loading on the structure during the closing state mentioned in item 3 above shall include the loads temporarily created by construction equipment such as cranes.

The analysis model for the study is shown below.

Load Condition: All loads (exclude included loads in Before Closing Model)

(3) Results of Study

The study results are shown in the table below.

Table 4.2.48 Study Results for Cable Pre-stressing

Sec	tion	Element	PS(kN)	Sec	tion	Element	PS(kN)	Sec	tion	Element	PS(kN)	Sec	tion	Element	PS(kN)
	per	401	<u>720</u>		per	411	<u>1420</u>		per	421	1420		per	431	<u>720</u>
	Upl	402	<u>330</u>	'	Upl	412	<u>650</u>	<u>650</u>	Upj	422	<u>650</u>		Upj	432	<u>330</u>
0		403	03 <u>0</u> –			413	20	12		423	<u>20</u>	ŝ		433	<u>0</u>
P1		404	-170	70 2		414	-360	ا تم ا		424	-360	P1		434	<u>-170</u>
an		405	<u>-50</u>	Dan		415	<u>-400</u>	Dan		425	<u>-400</u>	an		435	<u>-50</u>
Sp		406	210	l St		416	-20	0 N		426	-20	Sp		436	<u>210</u>
ide		407	<u>470</u>	lair		417	220	lair		427	220	ide		437	<u>470</u>
S	<u> </u>	408	700	2		418	470	2	L_	428	<u>470</u>	S	5	438	<u>700</u>
	wei	409	<u>1010</u>		wei	419	<u>810</u>		wei	429	<u>810</u>		wei	439	<u>1010</u>
	Lo	410	1450		Lo	420	1300		Lo	430	1300		Lo	440	1450

Source: JICA Study Team

4.2.9.6 Study on Cable Anchorage Structure

(1) Study Overview

The purpose of this study is to verify suitability of the cross section of each anchor and member which constitute the main tower and main girder close to the anchor. The three-dimensional finite element (3D FE) analysis was conducted on the cable anchor and the members near the anchor to obtain the distribution of local stress induced by cable tension (Maximum: D+L+PS). The study items are the following:

- Study Items
 - 1. Determining the stress of each member caused by cable tension
 - 2. Evaluation of the additional stress intensity at the web assumed by a simple calculation

(2) Anchor Structure on Main Tower

The Anchor Girder Structure, which transmits the differences of horizontal cable tensions and the vertical forces to the main tower from the anchor girder via a diaphragm and inner vertical plates, was selected.

Source: JICA Study Team

1) Analysis Model of Anchor Structure on Main Tower

The specifications for the analysis model and the model itself are shown in the table and figure below. As an analysis model, C401 (the anchor block (anchor girder and tower members) close to the top of the tower where the cable tension is maximum) was selected. The load was assumed to be P = 7,000 kN by rounding up the maximum load, which is defined as D (Dead Load) + L (Live Load) + PS.

Table 4.2.49 Specifications for Analysis Model

Analysis code	COMP (Nagaoka University of Technology)
Element type	Three-node shell element (17,370 elements)
Material model	Linear elastic model
Boundary conditions	Top and bottom: Fixed in vertical direction
	Axis of symmetry: Symmetric condition
Working load	Cable tension at the top: 7,000 kN (Rounded up)
	(Maximum design load: 6,617 kN)

Figure 4.2.88 Analysis Model

2) Analysis Results of Anchor Structure on Main Tower

The coordinate system and the stress output lines are shown in the figure below.

Source: JICA Study Team

Stress distribution of each stress output lines is shown in the figure below.

Source: JICA Study Team

Figure 4.2.91 Stress Distribution on B-B (Inner Web)

Figure 4.2.92 Stress Distribution on C-C (Inner Web)

Source: JICA Study Team

Figure 4.2.93 Stress Distribution on D-D (Anchor Girder Web)

Source: JICA Study Team

Figure 4.2.94 Stress Distribution on E-E (Anchor Girder Web)

Source: JICA Study Team

Figure 4.2.95 Stress Distribution on F-F (Anchor Girder Web)

Source: JICA Study Team

Figure 4.2.96 Stress Distribution on G-G (Inner Web)

Source: JICA Study Team

Figure 4.2.97 Stress Distribution on H-H (Center Web)

Figure 4.2.98 Stress Distribution on I-I (Center Web)

(3) Anchor Structure on Main Girder

The Anchor Girder Structure, which transmits the cable tension to the entire main girder via inner web, was selected. Although the Anchor Girder Structure tends to require a thicker web plate thickness, its physical characteristics are simple and clear.

Source: JICA Study Team

1) Analysis Model of Anchor Structure on Main Girder

The specifications for the analysis model and the model are shown in the table and figure below. The C401 analysis model (the anchor block (anchor girder and tower members) close to the top of the tower where the cable tension is maximum) was selected. The load was assumed to be P = 7,000 kN.

Table 4.2.50 Specifications for Analysis Model

COMP (Nagaoka University of Technology)
(Nagaoka University of Teenhology)
Three-node shell element (33,820 elements)
Linear elastic model
Left edge: Fixed in all directions
Right edge: Fixed in two directions in the transverse direction
Cable tension at the top: 7,000 kN (Rounded up)
(Maximum design load: 6,617 kN)

Figure 4.2.100 Analysis Model

2) Analysis Results of Anchor Structure on Main Girder

The coordinate system and the stress output lines are shown in the figure below.

Stress distribution of each stress output lines is shown in the figure below.

Figure 4.2.102 Stress Distribution on A-A (Inner Web)

Source: JICA Study Team

Source: JICA Study Team

Source: JICA Study Team

Figure 4.2.106 Stress Distribution on D-D (Anchor Girder Web)

Source: JICA Study Team

(4) Evaluation Results for Web at the Main Girder and Tower

Evaluation results for the inner web where the additional stress is concerned are shown in the table below.

Output Line (I	nner Web)	Stress (N/mm ²)	Allowable Value (N/mm ²)	Results
Tower	A-A Line	$50 \sim 160$	210	OK
	B-B Line	$50 \sim 150$	210	OK
Circler	A-A Line	$50 \sim 100$	143	OK
Girder	B-B Line	$50 \sim 100$	143	OK

Table 4.2.51 Stress at Inner Web

Source: JICA Study Team

In the design calculation, cross section of the web was decided by considering additional stress which was estimated by a simple calculation around the web. Furthermore, the safety performance of the web was confirmed through the FE analysis.

4.2.9.7 Static Structure Analysis

(1) Analysis Principle

- The superstructure and pier were modeled and the 3D frame analysis was performed.
- Midas Civil (developed by MIDAS IT Co.,) was employed as the analysis software.
- Considering the bridge construction steps, two analysis models were utilized, i.e., before girder closing and after girder closing.

Source: JICA Study Team

Figure 4.2.108 Analysis Models

For cables, the equivalent modulus of elasticity (EFFF) calculated by the Ernest Equation was employed to take into consideration the effect of sag. It should be noted that the tension force caused by the dead load at the completed stage (D+PS) was employed to calculate the stress σ .

$$\begin{split} \text{EFFF} &= \text{E0} / \left\{ 1 + \gamma^2 \cdot 1^2 \cdot \text{E0} / (12 \cdot \sigma^3) \right\} \\ \text{Where,} \quad \begin{array}{l} \text{EFFF} : \text{Modulus of elasticity of cable with sag} \\ & (\text{Equivalent modulus of elasticity}) \\ \text{E0} \quad : \text{Modulus of elasticity for straight cable} \\ \gamma \quad : \text{Weight of cable per unit length} \\ 1 \quad : \text{Horizontal projected length of cable} \\ \sigma \quad : \text{Tensile stress of cable (Dead load + Pre-stress)} \end{split}$$

The analysis model is shown in the figure below.

Source: JICA Study Team

(2) Loading Condition

1) Load Strength

Considering the bridge construction steps, design loads were separated and loaded into two analysis models, i.e., before girder closing and after girder closing.

Load Condition: All loads (exclude included loads in Before Closing Model)

Figure 4.2.110 Analysis Models During Loading

Source: JICA Study Team

Figure 4.2.112 Loading State-2

2) Loading Combinations

a) Design Section Force of Superstructure

- The names in () in the load combinations of wind and wind + temperature show load cases for main tower design.
- The stress resultants are equivalent values: the section force over the increase coefficient.

		_					Wind		Seismic			
Case	Name	Increase	Dead Load	PS	Live Load	Temperature	Transverse		Longitudinal		Transverse	
		coefficient	Loud				WTR \uparrow	WTR \downarrow	ELG→	ELG←	ETR ↑	ETR \downarrow
Dead Load	D[Db+Da+PS]: Dead Load+PS	1.00	0	0								
Normal	D+L	1.00	0	0	PICK UP							
Temperature	D+L+T	1.15	0	0	PICK UP	PICK UP						
	D+WgTR \uparrow (D+WtTR \uparrow)	1.25	0	0			0					
Wind	$D+WgTR \downarrow (D+WtTR \downarrow)$	1.25	0	0				0				
wind	D+L+WgTR \uparrow (D+L+WtTR \uparrow)	1.25	0	0	PICK UP		○x0.5					
	$D+L+WgTR \downarrow (D+L+WtTR \downarrow)$	1.25	0	0	PICK UP			○x0.5				
	D+WgTR \uparrow +T (D+WtTR \uparrow +T)	1.35	0	0		PICK UP	0					
Wind	$D+WgTR \downarrow +T (D+WtTR \downarrow +T)$	1.35	0	0		PICK UP		0				
Temperature	D+L+WgTR \uparrow +T (D+L+WtTR \uparrow +T)	1.35	0	0	PICK UP	PICK UP	○x0.5					
Ĩ	D+L+WgTR \downarrow +T (D+L+WtTR \downarrow +T)	1.35	0	0	PICK UP	PICK UP		○x0.5				
	D+ELG→	1.50	0	0					0			
Seismic Performance Level 1	D+ELG←	1.50	0	0						0		
	D+ETR ↑	1.50	0	0							0	
	D+ETR↓	1.50	0	0								0

Table 4.2.52	Loading Combination	Design Stress Resultant	s for Superstructure)
			· · · · · · · · · · · · · · · · · · ·

b) Section Force for Bearing Supports

- The names in () in the load combinations of wind and wind + temperature show load cases for main tower design.
- The stress resultants are raw values.
- The stress resultants at seismic performance level 2 are calculated for the bearing support design. Meanwhile, the bearing support was not designed based on the stress resultants for safety investigation of substructure.

Table 4.2.53 Loading Combination (Design Stress Resultants for Bearing Support)

						W	ind	Seismic			
Case	Name	Dead Load	PS	Live Load	Temperature	Trans	sverse	Longi	tudinal	Trans	sverse
		Loud				WTR \uparrow	WTR↓	ELG→	ELG←	ETR ↑	ETR \downarrow
Dead Load	D[Db+Da+PS]: Dead Load+PS	0	0								
Normal	D+L	0	0	PICK UP							
Temperature	D+L+T	0	0	PICK UP	PICK UP						
	D+WgTR \uparrow (D+WtTR \uparrow)	0	0			0					
Wind	$D+WgTR \downarrow (D+WtTR \downarrow)$	0	0				0				
vv ind	D+L+WgTR \uparrow (D+L+WtTR \uparrow)	0	0	PICK UP		○x0.5					
	D+L+WgTR \downarrow (D+L+WtTR \downarrow)	0	0	PICK UP			○x0.5				
	$D+WgTR \uparrow +T (D+WtTR \uparrow +T)$	0	0		PICK UP	0					
Wind	$D+WgTR \downarrow +T (D+WtTR \downarrow +T)$	0	0		PICK UP		0				
Temperature	D+L+WgTR \uparrow +T (D+L+WtTR \uparrow +T)	0	0	PICK UP	PICK UP	○x0.5					
	$D+L+WgTR \downarrow +T (D+L+WtTR \downarrow +T)$	0	0	PICK UP	PICK UP		○x0.5				
	D+ELG→	0	0					0			
Seismic	D+ELG←	0	0						0		
Level 1	D+ETR ↑	0	0							0	
	D+ETR↓	0	0								0
	D+SELG→	0	0					Ox1.5			
Seismic Performance Level 2	D+SELG←	0	0						Ox1.5		
	D+SETR ↑	0	0				1		1	Ox1.5	
	D+SETR↓	0	0								Ox1.5

Source: JICA Study Team

(3) Analysis Results

The analysis results are as follows:

Source: JICA Study Team

Source: JICA Study Team

Source: JICA Study Team

Source: JICA Study Team

Source: JICA Study Team

Source: JICA Study Team

Figure 4.2.122 Load at Normal State - Mxmin

Final Report

Figure 4.2.124 Perpendicular to the Main Tower at Seismic State - Sy

Final Report

Figure 4.2.125 Perpendicular to the Main Tower at Seismic State – AX

Elem	Load	Force (kN)	Elem	Load	Force (kN)
401	D+L(max)	6616.58	421	D+L(max)	5622.46
402	D+L(max)	5935.07	422	D+L(max)	5335.81
403	D+L(max)	5322.17	423	D+L(max)	5149.99
404	D+L(max)	5033.07	424	D+L(max)	5177.10
405	D+L(max)	5291.65	425	D+L(max)	5488.03
406	D+L(max)	3144.18	426	D+L(max)	3227.47
407	D+L(max)	3457.40	427	D+L(max)	3521.63
408	D+L(max)	3675.10	428	D+L(max)	3696.88
409	D+L(max)	3752.13	429	D+L(max)	3738.00
410	D+L(max)	3628.30	430	D+L(max)	3607.91
411	D+L(max)	5622.50	431	D+L(max)	6616.53
412	D+L(max)	5335.85	432	D+L(max)	5935.03
413	D+L(max)	5150.02	433	D+L(max)	5322.14
414	D+L(max)	5177.12	434	D+L(max)	5033.05
415	D+L(max)	5488.04	435	D+L(max)	5291.63
416	D+L(max)	3227.47	436	D+L(max)	3144.17
417	D+L(max)	3521.63	437	D+L(max)	3457.40
418	D+L(max)	3696.88	438	D+L(max)	3675.10
419	D+L(max)	3738.00	439	D+L(max)	3752.14
420	D+L(max)	3607.90	440	D+L(max)	3628.30

Table 4.2.54 Section Force of Cables

Final Report

4.2.9.8 Fatigue Design

(1) Flowchart for Fatigue Evaluation

Fatigue evaluation is conducted through the following flowchart:

Figure 4.2.126 Flowchart for Fatigue Evaluation
(2) Conditions for Fatigue Evaluation

1) Design Working Life and Loading

- Design working life: 100 years

- Traffic volume of large-sized car: $ADTT_{SLi} = 1672$ (Design traffic volume of large-sized car per day per lane in one direction)

- Load for fatigue design = (T-load) * $(1 + i_f)$

T load: 200 kN

 i_f : Impact coefficient $i_f = 10 / (50 + L)$

L: Span length for calculating the impact coefficient (m)

- Correction coefficient for live load

Correction coefficient for live load $\gamma_T = \gamma_{T1} * \gamma_{T2}$ (Coefficient is multiplied when calculating stress range)

 γ_{T1} : Correction coefficient for T-load

 $\gamma_{T1} = Log L_{B1} + 1.50 (Here, 2.00 \le \gamma_{T1} \le 3.00.)$

L_{B1}: Baseline length employed for calculating the correction coefficient for T-load (m)

 $(\gamma_{T1} \text{ is rounded to three decimal places})$

 γ_{T2} : Simultaneous loading coefficient

Table 4.2.55 Simultaneous Loading Coefficient γ_{T2}

ADTT _{SLi}	$L_{B2} \leq 50 \text{ m}$	$50 \text{ m} < L_{B2}$
≤ 2000	1.0	1.0
2000<	1.0	1.1

(In case the influence line of a member does not alternate in positive and negative) Source: Fatigue Design Recommendations for Steel Structure, JRA 2002

L: Baseline length for calculating the simultaneous loading coefficient (m)

ADTT_{SLi}: Design traffic volume of large-sized car per day per lane in one direction

 $(Car / (Day \cdot Lane))$

2) Calculation Method for Stress (General Equation)

$$\sigma = \frac{\text{Rc}}{\text{Ri}} * \left(\frac{N}{A} + \frac{Mx * (y*Iy+x*Ixy) + My * (x*Ix+y*Ixy)}{A} \right) * \gamma a$$

Where,

σ: Stress

Rc: Radius of curvature to neutral axis

Ri: Radius of curvature to evaluation position

N: Axial force

Mx: In-plane bending moment

My: Out-plane bending moment

A: Cross sectional area

Ix: Second moment of area with respect to x axis

Iy: Second moment of area with respect to y axis

Ixy: Product of inertia

x: Distance in x axis from neutral axis to evaluation position

y: Distance in y axis from neutral axis to evaluation position

ya: Structural analysis coefficient

 $\gamma a = 0.8$ for RC slab plate girder and box girder (except few main girder bridge)

 $\gamma a = 1.0$ for other types of bridge

3) Stress Range

Basic equation: $\Delta \sigma_{i,j} = |\sigma_{i,k1} - \sigma_{i,k2}| * \gamma_{T(i)}$

Where,

$ oldsymbol{\Delta}\sigma_{i,j}$: Stress range	(i is lane number and j is stress range number)
$\sigma_{i,k1}$: Maximum stress	(i is lane number and k1 is transversal load number)
$\sigma_{i,k2}$: Minimum stress	(i is lane number and k2 is transversal load number)
$\gamma_{T(i)}$: Correction coefficient for live load	(i is lane number)

4) Evaluation Procedure

a) Evaluation of Cutoff Limit of Stress Range against Constant Stress Amplitude (Simple Fatigue Evaluation)

The safety of the joint against fatigue is ensured if $\Delta \sigma_{ce}$ (the cutoff limit of the stress range against constant stress amplitude) and $\Delta \sigma_{max}$ (maximum stress range calculated from the previous chapter) satisfy the conditions below.

 $\[\] \sigma_{max} \leq \[\] \sigma_{ce} \, \cdot \, C_R \cdot \, C_t \]$

Where, $\Delta \sigma_{max}$: Maximum stress range calculated for target joint members from previous chapter

 $\Delta \sigma_{ce}$: Cutoff limit of stress range for constant stress amplitude

 C_R : Correction factor for average stress

Ct : Correction factor for plate thickness

b) Evaluation of Cumulative Fatigue Damage (Detailed Fatigue Evaluation)

In case where the evaluation mentioned above is not satisfied, the safety of the joint against fatigue is ensured if the evaluation equation stated below is satisfied.

$$D \leq 1.00$$

Where, D : Cumulative fatigue damage, $D = \Sigma D_i$

- D_i : Cumulative fatigue damage caused by moving load of design fatigue load of lane i. $D_i = \Sigma (nt_i / N_{i,j})$
- nti : Loading frequency of design fatigue load
- $N_{i,j}\,$: Fatigue life corresponding to $\sigma_{i,j}\,determined$ from design fatigue curve

 $N_{i,j} = C_0 \cdot (C_R \cdot C_t) / \sigma_{i,j}^{m}$

 $riangle \sigma_{i,j}$: jth stress range determined by moving load of design fatigue load set of lane i

 $C_0 \hspace{0.1in}:\hspace{0.1in} 2{\times}10^6 \cdot \hspace{0.1in} \bigtriangleup \hspace{-0.1in} \sigma_{\rm f}^{\hspace{0.1in} m}$

- $C_R \ : Correction \ factor \ for \ average \ stress$
- C_t : Correction factor for plate thickness
- m : Coefficient to describe slope of design fatigue curve

(3) Fatigue Evaluation of the Main Girder

1) Fatigue Evaluation Point

The fatigue evaluation points are shown below.

Source: JICA Study Team

\bigcirc	Deck plate joint
2	Deck and horizontal rib web
3	Deck and diaphragm
4	Deck and vertical rib
5	Bottom flange and horizontal rib web
6	Bottom flange and diaphragm
\bigcirc	Bottom flange and vertical rib
8	Sole plate (longitudinal)
9	Longitudinal rib of deck and transverse rib
10	Longitudinal rib of deck and diaphragm
(11)	Longitudinal rib of bottom flange and transverse rib
12	Longitudinal rib of bottom flange and diaphragm
13	Main girder inner web and deck
14	Main girder inner web and bottom flange
(15)	Main girder inner web (upper) and vertical stiffener
(16)	Main girder inner web (lower) and vertical stiffner
(17)	Main girder inner web rib (upper)
(18)	Main girder inner web rib(lower)
(19)	Main girder inner web and transverse rib flange (upper)
20	Main girder inner web and transverse rib flange (lower)

|--|

21)	Main girder inner web and transverse rib web (upper)
22	Main girder inner web and transverse rib web (lower)
23)	Main girder inner web and diaphragm (upper)
24)	Main girder inner web and diaphragm (lower)
25	Main girder outer web and deck
26	Main girder outer web and bottom flange
27)	Main girder outer web (upper) and vertical stiffener
28	Main girder outer web (lower) and vertical stiffner
29	Main girder outer web (upper) and horizontal stiffener
30	Main girder outer web (lower) and horizontal stiffner
31)	Main girder outer web and transverse rib flange (upper)
32	Main girder outer web and transverse rib flange (lower)
(33)	Main girder outer web and transverse rib web (upper)
34)	Main girder outer web and transverse rib web (lower)
35	Main girder outer web and diaphragm (upper)
36	Main girder outer web and diaphragm (lower)
37)	Main girder web and bracket web upper edge
38	Main girder web and bracket web lower edge
39	Main girder web and bracket bottom flange

2) Result of Fatigue Evaluation

The result of the fatigue evaluation is shown below.

		Poi	nt-1	Poi	nt-2	Poi	nt-3	Point-4		
р	NT	Gra	de D	Gra	de E	Gra	de E	Grade D		
Position	No.	a)	b)	a)	b)	a)	b)	a)	b)	
		Judge	$D = \Sigma Di, j$	Judge	$D = \Sigma Di, j$	Judge	$D = \Sigma Di, j$	Judge	$D = \Sigma Di, j$	
N	2			****	******					
Near D10	3	0<85		0<65		****	*****	0<88		
P10	4			****	******	0<81		0<109		
Middle	24	1<109		****	******	1<81		1<109		
od Side	25	1<109		1<81		****	*****	1<109		
Span	26	1<109		****	******	1<81		1<109		
N	49	49 1<109		1<81		****	******	1<109		
Near D11	50	1<109		****	******	1<81		1<109		
PII	52	2<109		****	******	2<81		2<109		
Middle	104	1<84		****	******	1<62		1<84		
of	105	1<84		1<62		****	******	1<84		
Center	106	1<84		****	******	1<62		1<84		
		Poi	nt-5	Poi	nt-6	Poi	nt-7	Poi	nt-8	
р. ;;;	NT	Gra	de E	Gra	Grade E		Grade D		de G	
Position	No.	a)	b)	a)	b)	a)	b)	a)	b)	
		Judge	$D = \Sigma Di, j$	Judge	$D = \Sigma Di, j$	Judge	$D = \Sigma Di, j$	Judge	$D = \Sigma Di, j$	
N	2	****	******	10<68		10<92		****	******	
Near	3	18<75		****	******	18<101		****	******	
P10	4	****	******	24<71		24<96		****	******	
Middle	24	****	******	50<68		50<93		****	******	
od Side	25	49<68		****	******	49<91		****	******	
Span	26	****	******	47<69		47<94		****	******	
N	49	15<81		****	******	15<109		****	******	
Near D11	50	****	******	16<81		16<109		****	******	
PII	52	****	******	19<81		19<109		19<42		
Middle	104	****	******	33<62		33<84		****	******	
of	105	32<62		****	******	32<84		****	******	
Center	106	****	******	33<62		33<84		****	******	
		Poi	nt-9	Poir	nt-10	Point-11		Poir	nt-12	
D		Gra	de E	Gra	de E	Gra	de E	Gra	de E	
Position	No.	a)	b)	a)	b)	a)	b)	a)	b)	
		Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	
N	2	****	******			****	******	10<68		
Near	3	0<65		****	******	18<75		****	******	
P10	4	****	******	0<81		****	******	24<71		
Middle	24	****	******	1<81		****	*****	50<68		
od Side	25	1<81		****	******	49<68		****	******	
Span	26	****	******	1<81		****	*****	47<69		
N	49	1<81		****	******	15<81		****	******	
Near D11	50	****	******	1<81		****	*****	16<81		
P11	52	****	******	2<81		****	******	19<81		
Middle	104	****	******	1<62		****	*****	33<62		
of	105	1<62		****	******	32<62		****	******	
Center	106	****	******	1<62		****	******	33<62		

Table 4.2.57 Results of Fatigue Evaluation (1)

Note: a) is the simple fatigue evaluation, b) is the detailed fatigue evaluation Source: JICA Study Team

		Point-13		Poir	nt-14	Poir	nt-15	Point-16		
Desition	N.	Gra	de D	Gra	de D	Gra	de E	Gra	de E	
Position	INO.	a)	b)	a)	b)	a)	b)	a)	b)	
		Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	
	2			10<92		****	******	****	******	
Near	3	1<90		18<101		5<74		14<75		
P10	4	1<109		24<96		****	******	****	******	
Middle	24	2<109		50<93		****	******	****	******	
od Side	25	2<109		49<91		14<81		39<72		
Span	26	2<109		47<94		****	******	****	*****	
	49	1<109		15<109		5<81		12<81		
Near	50	1<109		16<109		****	******	****	*****	
P11	52	2<109		19<109		****	******	****	******	
Middle	104	1<84		33<84		****	*****	****	******	
of	105	1<84		32<84		10<62		26<62		
Center	105	1<84		33<84		****	******	****	*****	
Center	100	1 NOT		Doir		Doir	st 10	Doir	at 20	
		F 01	da G	F 011 Cro	da G	F UII Cro	do G	F 01 Gro	da G	
Position	No.	- Ola		Ula -)		- Ula		Ula		
		a)		a)		a)		a)		
	2	Judge	$D = \Sigma D_{1,j}$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma D_{1,j}$	Judge	$D = \Sigma Dij$	
Near	2	2<35		8<35		*****	*****	*****	******	
P10	3	4<38		14<38		5<38		14<38		
	4	5<42		19<37		*****	******	*****	******	
Middle	24	11<42		41>37	0.62	*****	******	****	******	
od Side	25	11<42		39>37	0.58	14<42		39>37	0.57	
Span	26	11<42		38<38		****	*****	****	******	
Near	49	4<42		12<42		5<42		12<42		
P11	50	4<38		13<38		****	*****	****	*****	
	52	5<38		16<38		****	*****	****	*****	
Middle	104	7<32		26<32		****	*****	****	******	
of	105	7<32		26<32		9<32		26<32		
Center	106	7<32		26<32		****	******	****	*****	
		Poir	nt-21	Poir	nt-22	Poir	nt-23	Point-24		
Desition	Na	Gra	de E	Gra	de E	Gra	de E	Gra	de E	
Position	INO.	a)	b)	a)	b)	a)	b)	a)	b)	
		Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	
N	2	****	******	****	******			10<68		
Near D10	3	1<67		18<75		****	******	****	******	
P10	4	****	******	****	******	1<81		24<71		
Middle	24	****	******	****	******	2<81		50<68		
od Side	25	2<81		49<68		****	******	****	******	
Span	26	****	******	****	******	2<81		47<69		
	49	1<81		15<81		****	*****	****	******	
Near	50	****	******	****	******	1<81		16<81		
P11	52	****	******	****	******	2<81		19<81		
Middle	104	****	******	****	******	1<62		33<62		
of	105	1<62		32<62		****	******	****	******	
Center	106	****	*****	****	******	1<62		33<62		

Table 4.2.58 Results of Fatigue Evaluation (2)

Note: a) is the simple fatigue evaluation, b) is the detailed fatigue evaluation Source: JICA Study Team

		Poir	nt-25	Poi	nt-26	Poir	nt-27	Point-28		
n		Gra	de D	Gra	de D	Gra	de E	Gra	de E	
Position	No.	a)	b)	a)	b)	a)	b)	a)	b)	
		a) Iudaa	$D = \Sigma D;;$	a) Iudaa	$D = \Sigma D;$	a) Judao	$D = \Sigma D;$	a) Iudaa	$D - \Sigma D$	
	2	Judge	D – 2 Dij	Judge	D – Z Dij	Judge	D-2DL	Judge	D - 2 DL	
Near	2			10<92			******		******	
P10	3	1<95		18<101		11 4</td <td></td> <td>14<!--5</td--><td></td></td>		14 5</td <td></td>		
1 10	4	2<109		24<96		****	******	****	******	
Middle	24	4<109		50<93		****	*****	****	******	
od Side	25	4<109		49<91		29<81		39<72		
Span	26	3<109		47<94		****	******	*****	******	
opun	49	1<109		15<109		9<81		12<81		
Near	50	1<100		16<100		****	*****	****	******	
P11	50	1<109		10<109		****	******	****	*****	
AC 14	32	3<109		19<109				de de ale ale ale		
Middle	104	2<84		33<84		****	*****	****	******	
of	105	2<84		32<84		19<62		26<62		
Center	106	2<84		33<84		****	******	****	*****	
		Poir	nt-29	Poi	nt-30	Poir	nt-31	Poi	nt-32	
		Gra	de G	Gra	de G	Gra	de G	Gra	de G	
Position	No.	2)	b)	2)	h)	2)	h)	2)		
		a)	0)	a)	0)	a)	0)	a)	0)	
		Judge	$D = \Sigma D_{1,j}$	Judge	$D = \Sigma D_{i,j}$	Judge	$D = \Sigma D_{i,j}$	Judge	$D = \Sigma D_{i,j}$	
Near	2	2<35		8<35		****	******	****	******	
D10	3	4<38		15<38		10<38		14<38		
F 10	4	6<42		20<37		****	******	****	******	
Middle	24	12<42		43>37	0.75	****	******	*****	******	
od Side	25	12<42		41>36	0.7	28<42		39>37	0.57	
Snon	26	11<42		40>37	0.58	*****	******	*****	******	
Span	40	11 ~ 12		12<12	0.56	0~12		12-42		
Near	49	4<42		13~42		9542		12~42		
P11	50	4<42		14<42		****	*****	****	******	
	52	6<42		16<42		****	*****	****	******	
Middle	104	8<32		28<32		****	******	****	*****	
of	105	8<32		27<32		19<32		26<32		
		~ ~ -		27 02						
Center	106	8<32		28<32		****	******	****	*****	
Center	106	8<32 Poir		28<32 Poir		***** Poir	****** nt-35	**** Poi	******* nt-36	
Center	106	8<32 Poir	 nt-33 de F	28<32 Poir	 nt-34 de F	**** Poir	******* nt-35 de F	**** Poi	******* nt-36 de F	
Center Position	106 No.	8<32 Poir Gra	 nt-33 de E	28<32 Poir Gra	 nt-34 de E	**** Poir Gra	****** nt-35 de E	***** Poi Gra	******* nt-36 de E	
Center Position	106 No.	8<32 Poir Gra-	 nt-33 de E b)	28<32 28<32 Gra a)	 nt-34 de E b)	***** Poir Gra a)	******* nt-35 de E b)	***** Poi Gra a)	******* nt-36 de E b)	
Center Position	106 No.	8<32 Poir Gra a) Judge	$\begin{array}{c}\\ \text{nt-33}\\ \text{de E}\\ \hline \\ D = \Sigma \text{ Dij} \end{array}$	28<32 Poin Gra a) Judge	$\begin{array}{c}\\ \text{nt-34}\\ \text{de E}\\ \hline \\ D = \Sigma \text{ Dij} \end{array}$	***** Poir Gra a) Judge	$ ******* tr-35 de E b) D = \Sigma Dij $	***** Poi Gra a) Judge	$b)$ $D = \Sigma Dij$	
Center Position	106 No. 2	8<32 Poir Gra a) Judge *****	$\begin{array}{c}\\ \text{nt-33}\\ \text{de E}\\ \hline \\ D = \sum Di_{ij}\\ ******* \end{array}$	28<32 Poin Gra a) Judge *****	$\frac{1}{1}$ $\frac{1}$	***** Poir Gra a) Judge 	******* at-35 de E b) $D = \Sigma Dij$ 	***** Poi Gra a) Judge 10<68	******* at-36 de E b) D = Σ Dij 	
Center Position Near	106 No.	8<32 Poir Gra a) Judge ***** 1<70	$\begin{array}{c}\\ \text{nt-33}\\ \text{de E}\\ \hline \\ D = \sum Dij\\ *******\\\end{array}$	28<32 Poir Gra a) Judge ***** 18<75	$\begin{array}{c}\\ \text{nt-34}\\ \text{de E}\\ \hline \\ D = \sum Dij\\ *******\\\end{array}$	***** Poir Gra a) Judge *****	******* ******* **********	***** Poi Gra a) Judge 10<68 *****	******* nt-36 de E b) D = Σ Dij ******	
Center Position Near P10	106 No.	8<32 Poir Gra a) Judge ***** 1<70 *****	$\begin{array}{c}\\ \text{nt-33}\\ \text{de E}\\ \hline \\ D = \sum Dij\\ *******\\\\ *******\\ \end{array}$	28<32 Poin Gra a) Judge ***** 18<75 *****	$\begin{array}{c}\\ \text{nt-34}\\ \text{de E}\\ \hline \\ D = \sum Dij\\ *******\\\\ *******\\ \end{array}$	***** Poir Gra a) Judge ***** 2<81	******* ******* **********	***** Poin Gra a) Judge 10<68 ***** 24<71	******* nt-36 de E b) D = Σ Di,j ******	
Center Position Near P10 Middle	106 No. 2 3 4 24	8<32 Poir Gra a) Judge ***** 1<70 *****	 nt-33 de E b) D = Σ Dij ******* ***************************	28<32 Poin Gra a) Judge ***** 18<75 *****	 t-34 de E b) D = Σ Di,j ******* ***************************	***** Poin Gra a) Judge ***** 2<81 4<81	******* tt-35 de E b) D = Σ Dij ******* 	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68	******* nt-36 de E b) D = Σ Dij *******	
Center Position Near P10 Middle od Side	106 No. 2 3 4 24 25	8<32 Poir Gra a) Judge ***** 1<70 ***** ***** 4<81	 tt-33 de E b) D = Σ Dijj ******** *************************	28<32 Poin Gra a) Judge ***** 18<75 ***** ***** 49<68	 tt-34 de E b) D = Σ Di _i j ******** **************************	***** Poir Gra a) Judge ***** 2<81 4<81 *****	****** tt-35 de E b) D = Σ Di,j ******* *******	***** Poin Gra a) Judge 10<68 ***** 24<71 50<68 *****	******* nt-36 de E D = Σ Dij *******	
Center Position Near P10 Middle od Side	106 No. 2 3 4 24 25 26	8<32 Poir Gra a) Judge ***** 1<70 ***** ***** 4<81 *****	 tt-33 de E b) D = Σ Di,j ******* ******** *****************	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 *****	 tt-34 de E b) D = Σ Di,j ******* ***************************	***** Poin Gra a) Judge ***** 2<81 4<81 ***** 3<81	******* nt-35 de E b) D = Σ Di,j ******* *******	***** Poin Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69	******* nt-36 de E b) D = Σ Di,j ******* *******	
Center Position Near P10 Middle od Side Span	106 No. 2 3 4 24 25 26 40	8<32 Poir Gra a) Judge ***** 1<70 ***** 4<81 *****	 nt-33 de E b) D = Σ Di _i j ******* ***************************	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 *****	 nt-34 de E b) D = Σ Di,j ******* ***************************	***** Poin Gra a) Judge ***** 2<81 4<81 ***** 3<81 *****	****** nt-35 de E b) D = Σ Di,j ******* *******	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 *****	****** nt-36 de E D = Σ Diji ******* ******* ******* *******	
Center Position Near P10 Middle od Side Span Near	106 No. 2 3 4 24 25 26 49 50	8<32 Poir Gra a) Judge ***** 1<70 ***** ***** 4<81 ***** 1<81	 nt-33 de E b) D = Σ Di,j ******* ***************************	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 *****	 t-34 de E b) D = Σ Dijj ******* **************************	***** Poir Gra a) Judge ***** 2<81 4<81 ***** 3<81 *****	******* nt-35 de E D = Σ Di _i j ******* *******	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 *****	****** nt-36 de E D = Σ Dij *******	
Center Position Near P10 Middle od Side Span Near P11	106 No. 2 3 4 24 25 26 49 50	8<32 Poir Gra a) Judge ***** 1<70 ***** ***** 4<81 ***** 1<81 *****	 at-33 de E b) D = Σ Di,j ******* ******** ******** ********	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 *****	 nt-34 de E b) D = Σ Dij ******* ******** ******** ********	***** Poir Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 3<81 ***** 1<81	******* nt-35 de E D = Σ Dij ******* ******* *******	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 47<69	****** nt-36 de E b) D = Σ Dij ******* *******	
Center Position Near P10 Middle od Side Span Near P11	106 No. 2 3 4 25 26 49 50 52	8<32 Poir Gra a) Judge ***** 1<70 ***** ***** 4<81 ***** 1<81 *****	 t-33 de E b) D = Σ Di,j ******* ******** ******** ********	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** *****	 tr-34 de E b) D = Σ Di,j ******* ***************************	***** Poir Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81	****** nt-35 de E D = Σ Dij ******* ******* ******* *******	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 47<69 ***** 16<81 19<81	******* nt-36 de E D = Σ Dij ******* *******	
Center Position Near P10 Middle od Side Span Near P11 Middle	106 No. 2 3 4 24 25 26 49 50 52 104	8<32	 tr-33 de E b) D = Σ Di,j ******* ******** ******** ********	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 15<81 ***** *****	 tt-34 de E b) D = Σ Di,j ******* ***************************	***** Poir Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62	****** nt-35 de E D = Σ Di,j ******* ******* ******* *******	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62	****** nt-36 de E b) D = Σ Di,j ******* ******* *******	
Center Position Near P10 Middle od Side Span Near P11 Middle of	106 No. 2 3 4 24 25 26 49 50 52 104 105	8<32 Poir Gra a) Judge ***** 1<70 ***** 4<81 ***** 1<81 ***** ***** ***** 2<62	 nt-33 de E b) D = ∑ Di,j ******* ******** ******** ********	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** ***** 32<62	 nt-34 de E b) D = Σ Di,j ******* ******* ******* ******* ******	***** Poin Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 *****	****** nt-35 de E b) D = Σ Di,j ******* ******* ******* ******* *******	***** Poin Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 *****	****** nt-36 de E D = Σ Diji ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* *******	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center	106 No. 2 3 4 25 26 49 50 52 104 105 106	8<32 Poir Gra a) Judge ***** 1<70 ***** 4<81 ***** 1<81 ***** ***** 2<62 *****	 nt-33 de E b) D = Σ Di,j ******* ***************************	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** 49<68 ***** ***** 49<68 ***** ***** 32<62 *****	 nt-34 de E b) D = Σ Di,j ******* ***************************	***** Poin Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62	******* nt-35 de E b) D = Σ Dij ******* ******* ******* ******* ******	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	****** nt-36 de E D = Σ Dijj ******* ******* ******** ******* ******* ******* *******	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center	106 No. 2 3 4 24 25 26 49 50 52 104 105 106	8<32 Poir Gra a) Judge ***** 1<70 ***** 4<81 ***** 1<81 ***** 1<81 ***** 2<62 *****	 t-33 de E b) D = Σ Dij ******* ***************************	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** 15<81 ***** ***** 49<68 ***** ***** ***** ***** 49<68 ***** ***** ***** Poin a) Judge ***** **** **** ***** ***** ***** *****	 t-34 de E b) D = Σ Dijj ******* **************************	***** Poir Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62 Poir	******* nt-35 de E b) D = Σ Dij ******* ******* ******* ******** ******	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	****** nt-36 de E b) D = Σ Dij ******* ******* ******* ******** ******	
Center Position Near P10 Middle od Side Span Near P11 Middle of Center	106 No. 2 3 4 24 25 26 49 50 52 104 105 106	8<32 Poir Gra a) Judge ***** 1<70 ***** ***** 4<81 ***** 1<81 ***** 1<81 ***** 2<62 *****	 at-33 de E b) D = Σ Di,j ******* ******** ******** ********	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** 15<81 ***** ***** ***** 22<62 ***** Poin	 nt-34 de E b) D = Σ Di,j ******* ******** ******** ********	***** Poir Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62 ***** 2<62 Poir	******* nt-35 de E b) D = Σ Di,j ******* ******** ******** ******** ******** ******** ******** ******** ******* ******* ******* ******* ******* ******* ******** ******** ******** ******** ******** ******** ******** ******* ******** ******** ******** ******** ******** ******** ******** ******** ******** ******** ******** ******** ******** ******** ******* ******* ******* ******** ******** ********* ********	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	****** nt-36 de E b) D = Σ Dij ******* ******* ******* *******	
Center Position Near P10 Middle od Side Span Near P11 Middle of Center Position	106 No. 2 3 4 24 25 26 49 50 52 104 105 106 No.	8<32 Poir Gra a) Judge ***** ***** 4<81 ***** 4<81 ***** 1<81 ***** 2<62 ***** Poir Gra	 t-33 de E b) D = Σ Di,j ******* ******* ******** ******** ******	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** 49<68 ***** ***** 49<68 ***** ***** 49<68 ***** ***** ***** Poin Gra Gra Gra Gra Gra Gra Gra Gra Gra Gra	 tr-34 de E b) D = Σ Di,j ******* ***************************	***** Poir Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62 Poir Gra	******* nt-35 de E b) D = Σ Dijj ******* ******** ******** ******** ******** ******* ******** ******** ******* ******* ******* ******* ******* ******* ******* ******** ******** ******** ******* ******** ******** ********	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	****** nt-36 de E b) D = Σ Dij ******* ******* ******* *******	
Center Position Near P10 Middle od Side Span Near P11 Middle of Center Position	106 No. 2 3 4 25 26 49 50 52 104 105 106 No.	8<32 Poir Gra a) Judge ***** 1<70 ***** 4<81 ***** ***** ***** 2<62 ***** Poir Gra a)	 nt-33 de E b) D = Σ Di,j ******* ******** ******** ********	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** ***** 32<62 ***** Poin Gra a)	 nt-34 de E b) D = Σ Di,j ******* ******** ******** ********	***** Poin Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62 ***** 2<62 Poin Gra a)	******* nt-35 de E b) D = Σ Di,j ******* ******* ******* ******* ******* ******* ******* ******** ******* ******* ******* ******* ******* ******** ******** ******** ********	***** Poin Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	****** nt-36 de E b) D = Σ Diji ******* ******** ******** ******** ******** ******* ******* ******* ******* *******	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center	106 No. 2 3 4 25 26 49 50 52 104 105 106 No.	8<32 Poir Gra a) Judge ***** 1<70 ***** 4<81 ***** 1<81 ***** ***** 2<62 ***** Poir Gra a) Judge	 nt-33 de E b) D = Σ Di _i j ******* ***************************	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** 32<62 ***** Poin Gra a) Judge	 nt-34 de E b) D = Σ Di,j ******* ***************************	***** Poin Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62 Poin Gra a) Judge	******* nt-35 de E b) D = Σ Di,j ******* ******** ******** ******** ******** ******** ******** ******** ******** ********* ********* ******** ******** ******** ********* ******** ********** ************************************	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	******* nt-36 de E b) D = Σ Dijj ******* ******** ******** ******** ******** ******** ******** *******	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center Position	106 No. 2 3 4 25 26 49 50 52 104 105 106 No. 2	8<32 Poir Gra a) Judge ***** 1<70 ***** 4<81 ***** 4<81 ***** 1<81 ***** 2<62 ***** Poir Gra a) Judge	nt-33 de E b) D = Σ Dijj ******** ******* ******** ******** ******** ******** ********	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** 49<68 ***** ***** 49<68 ***** ***** 49<68 ***** ***** 49<68 ***** ***** 49<68 ***** ***** 49<68 ***** ***** ***** 49<68 ***** ***** ***** 49<68 ***** ***** ***** ***** ***** ***** ****	 nt-34 de E b) D = Σ Di,j ******* ***************************	***** Poin Gra a) Judge ***** 2<81 4<81 ***** 3<81 3<81 2<62 ***** 2<62 Poin Gra a) Judge 5<35	******* nt-35 de E b) D = Σ Di,jj ******* ******** ******** ******** ******** ******* ******* ******* ******* ******* ******* ******* ******* ******* ******* ******** ******** ******** ******** ********* ******** ******** ******** ******** ******** ******** ******** ******** ******** ********* ******** ********* ************ ************************************	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	****** nt-36 de E b) D = Σ Dijj ******* ******** ******** ******** ******** ******* ******* ******** ******** ******* ******* ******* ******* ******* ******* ******** ********* ******** ********** ******** ********* ******** ******** ******** ******* ******* ******** ******** ******** ******* ******** ******* ********	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center Position	106 No. 2 3 4 24 25 26 49 50 52 104 105 106 No. 2 3	8<32 Poir Gra a) Judge ***** 1<70 ***** 4<81 ***** 1<81 ***** 2<62 ***** Gra Judge Judge 1<70	$\begin{array}{c}\\ \text{nt-33} \\ \text{de E} \\ \hline \\ D = \sum \text{Di,j} \\ ******* \\ ******** \\ ******** \\ ******$	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** 49<68 ***** ***** 49<68 ***** ***** 49<68 ***** ***** 49<68 ***** ***** ***** 49<68 ***** ***** ***** 49<68 ***** ***** ***** 49<68 ***** ***** ***** ***** 49<68 ***** ***** ***** ***** ***** ***** ****	$\begin{array}{c}\\ \text{nt-34} \\ \text{de E} \\ \hline \\ D = \sum \text{Dij} \\ ****** \\ ******* \\ ******** \\ *******$	***** Poin Gra a) Judge ****** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ****** 2<62 Poin Gra a) Judge 5<35 10<38	$\begin{array}{c} ******* \\ ******* \\ \text{nt-35} \\ \text{de E} \\ \hline \\ D = \sum \text{Di}_{ij} \\ & \\ ******* \\ \hline \\ & \\ ******* \\ \hline \\ & \\ ******* \\ \hline \\ & \\ & \\ ******* \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	****** nt-36 de E b) D = Σ Dijj ******* ******* ******	
Center Position Near P10 Middle od Side Span Near P11 Middle of Center Position Near P10	106 No. 2 3 4 24 25 26 49 50 52 104 105 106 No. 2 3 4	8<32 Poir Gra a) Judge ***** ***** 4<81 ***** 1<81 ***** ***** 2<62 ***** Poir Gra a) Judge 1<70 2<81	$\begin{array}{c}\\ \text{nt-33}\\ \text{de E}\\ & b)\\ D = \sum \text{Dij}\\ *******\\ & ******\\ & ******\\ & ******\\ & ******\\ & *******\\ & *******\\ & *******\\ & *******\\ & *******\\ & *******\\ & *******\\ & *******\\ & *******\\ & *******\\ & *******\\ & *****\\ & *****\\ & *****\\ & ******\\ & *****\\ & *****\\ & *****\\ & *****\\ & *****\\ & *****\\ & *****\\ & *****\\ & *****\\ & *****\\ & *****\\ & *****\\ & *****\\ & ****\\ & *****\\ & *****\\ & *****\\ & *****\\ & ****\\ & ****\\ & ****\\ & ****\\ & ****\\ & ****\\ & ****\\ & ****\\ & ****\\ & ****\\ & ****\\ & & ***\\ & & ***\\ & & & &$	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** 15<81 ***** ***** 32<62 ***** Poin Gra a) Judge 5<68 10<74 13<77	$\begin{array}{c}\\ \text{nt-34} \\ \text{de E} \\ \hline \\ D = \sum \text{Dij} \\ ******* \\ \hline \\ ******* \\ & \\ & \\ ******* \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	***** Poir Gra a) Judge ****** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62 Poir Gra a) Judge 5<35 10<38 13<40	$\begin{array}{c} ******* \\ \text{nt-35} \\ \text{de E} \\ \hline \\ D = \Sigma \text{ Dij} \\ \hline \\ & \\ ******* \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	***** Poin Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	******* nt-36 de E b) D = Σ Dij ******* ******* ******	
Center Position Near P10 Middle od Side Span Near P11 Middle of Center Position Near P10 Middle	106 No. 2 3 4 25 26 49 50 52 104 105 106 No. 2 3 4 23 4 24	8<32 Poin Gra a) Judge ***** 1<70	 nt-33 de E b) D = Σ Di,j ******* ******* ******** ******** ******	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** 49<68 ***** ***** 49<68 ***** ***** 49<68 ***** ***** ***** 15<81 ***** ***** ***** 22<62 ***** Poin Gra a) Judge 5<68 10<74 13<77 27<81	 nt-34 de E b) D = Σ Di,j ******* ***************************	***** Poin Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62 Poin Gra a) Judge 5<35 10<38 13<40 77<42	******* nt-35 de E b) D = Σ Di,j ******* ******* ******** ******* ******	***** Poin Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	******* nt-36 de E b) D = Σ Diji ******* ******* ******* ******* ******* ******* ******* ******* ******* *******	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center Position Near P10 Middle	106 No. 2 3 4 25 26 49 50 52 104 105 106 No. 2 3 4 25	8<32 Poir Gra a) Judge ***** 1<70 ***** 4<81 ***** ***** 2<62 ***** Poir Gra a) Judge 1<70 2<81 4<81	$\begin{array}{c}\\ \text{nt-33} \\ \text{de E} \\ \hline \\ D = \sum \text{Di}_{ij} \\ ******* \\ ******** \\ ******** \\ ******$	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** 32<62 ***** Poin Gra a) Judge 5<68 10<74 13<77 27<81 26<91	$\begin{array}{c}\\ \text{nt-34} \\ \text{de E} \\ \hline \\ D = \sum Di_{ij} \\ ******* \\ ******** \\ ******** \\ ******$	***** Poin Gra a) Judge ****** 2<81 4<81 ***** 1<81 3<81 ***** 1<81 3<81 2<62 ***** 2<62 Poin Gra a) Judge 5<35 10<38 13<40 27<42 2642	$\begin{array}{c} ******* \\ \text{nt-35} \\ \text{de E} \\ \text{b)} \\ D = \sum \text{Di}_{ij} \\ \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 24<71 50<68 ***** 16<81 19<81 33<62 ***** 33<62	******* nt-36 de E b) D = Σ Dijj ******* ******** ******** ******** ******** ******** ******** ******* ******* ******* ******* *******	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center Position Near P10 Middle od Side	106 No. 2 3 4 25 26 49 50 52 104 105 106 No. 2 3 4 24 25 26 49 50 52 104 105 106 No. 2 3 4 24 25 26	8<32 Poin Graa a) Judge ***** 1 ***** 4<81	$\begin{array}{c}\\ \text{nt-33} \\ \text{de E} \\ \hline \\ D = \sum D_{i,j} \\ ******* \\ ******** \\ **************$	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** 49<68 ***** ***** ***** ***** ***** ***** ****	$\begin{array}{c}\\ \text{nt-34} \\ \text{de E} \\ \hline \\ D = \sum D_{i,j} \\ ******* \\ \\ ******** \\ \hline \\ ******** \\ \hline \\ ********$	***** Poin Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 Poin Gra a) Judge 5<35 10<38 13<40 27<42 26<42 26<42 26<42	$\begin{array}{c} ******* \\ \text{nt-35} \\ \text{de E} \\ b) \\ D = \sum Di_{ij} \\ \\ ******* \\ \\ ******* \\ \\ ******* \\ \\ ******* \\ \\ ******* \\ \\ ******* \\ \\ ******* \\ \\ + \\ + \\ \\ \\ \\$	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	******* nt-36 de E b) D = Σ Dijj ******* ******** ******** ******** ******** ******* ******** ******* ******** ******* ******* ******* ******** ******** ********* ********* ********* ********* ********* ************************************	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center Position Near P10 Near P10 Middle of Center Near	106 No. 2 3 4 24 25 26 49 50 52 104 105 106 No. 2 3 4 24 25 26 4 24 25 26	8<32 Poir Gra a) Judge ***** 1<70 ***** ***** 4<81 ***** 1<81 ***** 2<62 ***** 2<62 ***** Poir Gra a) Judge Gra a) Judge 1<70 2<81 4<81 4<81 3<81 3<11	$\begin{array}{c}\\ \text{nt-33} \\ \text{de E} \\ \hline \\ D = \sum \text{Dij} \\ ******* \\ ******* \\ ******** \\ ******$	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** 49<68 ***** ***** ***** ***** ***** 49<68 ***** ***** ***** ***** ***** ***** ****	$\begin{array}{c}\\ \text{nt-34} \\ \text{de E} \\ \hline \\ D = \sum \text{Dij} \\ ******* \\ ******** \\ \hline \\ ******** \\ ********$	***** Poin Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62 Poin Gra a) Judge 5<35 10<38 13<40 27<42 26<42 25<42 25<42	$\begin{array}{c} ******* \\ ******* \\ \text{nt-35} \\ \text{de E} \\ b) \\ D = \sum \text{Di}_{ij} \\ & \\ ******* \\ \hline \\ & \\ ******* \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	******* nt-36 de E b) D = Σ Dijj ******* ******** ******	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center Position Near P10 Middle od Side Span	106 No. 2 3 4 24 25 26 49 50 104 105 106 No. 2 3 4 24 25 26 49 20 106	8<32	$\begin{array}{c}\\ \text{nt-33} \\ \text{de E} \\ \hline \\ D = \sum \text{Dij} \\ ******* \\ ******* \\ ******** \\ ******$	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** 49<68 ***** ***** ***** ***** ***** ***** ****	$\begin{array}{c}\\ \text{nt-34} \\ \text{de E} \\ \hline \\ D = \sum \text{Dij} \\ ******* \\ ******** \\ \hline \\ ******** \\ & & & & & & \\ ******** \\ \hline \\ ******** \\ & & & & & \\ ******** \\ \hline \\ ******** \\ & & & & & \\ ******** \\ \hline \\ & & & & & \\ ******** \\ \hline \\ & & & & & \\ ******** \\ \hline \\ & & & & & \\ ******** \\ \hline \\ & & & & \\ ******** \\ \hline \\ & & & & \\ ******** \\ \hline \\ & & & & \\ ******** \\ \hline \\ & & & & \\ ******** \\ \hline \\ & & & & \\ ******** \\ \hline \\ & & & & \\ ******** \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******** \\ \hline \\ & & & & \\ ******** \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******** \\ \hline \\ & & & & \\ ******** \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ **** \\ \hline \\ & & & & \\ **** \\ \hline \\ & & & & \\ ****** \\ \hline \\ & & & & \\ ****** \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******** \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ******* \\ \hline \\ & & & & \\ ****** \\ \hline \\ & & & & \\ ***** \\ \hline \\ & & & & \\ ***** \\ \hline \\ & & & & \\ ***** \\ \hline \\ & & & & \\ ***** \\ \hline \\ & & & & \\ ***** \\ \hline \\ & & & & \\ ***** \\ \hline \\ & & & & \\ ***** \\ \hline \\ & & & & \\ & & & \\ & & & \\ \\ & & & &$	***** Poin Gra a) Judge ***** 2<81	$\begin{array}{c} ******* \\ ******* \\ \text{nt-35} \\ \text{de E} \\ b) \\ D = \sum Di_{ij} \\ & \\ ******* \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	******* nt-36 de E b) D = Σ Dijj ******* ******** ******	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center Position Near P10 Middle od Side Span Near P10	106 No. 2 3 4 25 26 49 50 52 104 105 106 No. 2 3 4 25 26 49 50 50	8<32 Poin Gra a) Judge ***** 1<70	$\begin{array}{c}\\ \text{nt-33}\\ \text{de E}\\ & b)\\ D = \sum \text{Di,j}\\ *******\\ *******\\ ********\\ ********\\ ******$	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** ***** ***** 32<62 ***** ***** 32<62 ***** Poin Gra a) Judge 5<68 10<74 13<77 27<81 26<81 25<81 8<81 9<81	$\begin{array}{c}\\ \text{nt-34}\\ \text{de E}\\ & b)\\ D = \sum \text{Di,j}\\ *******\\ ********\\ ********\\ ********$	***** Poin Gra a) Judge ***** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62 Poin Gra a) Judge 5<35 10<38 13<40 27<42 26<42 25<42 8<42 9<42	$\begin{array}{c} ******* \\ ******* \\ \text{nt-35} \\ \text{de E} \\ b) \\ D = \sum Di_{ij} \\ ******* \\ \hline \\ \hline$	***** Poin Gra a) Judge 10<68 ***** 24<71 50<68 ***** 24<71 50<68 ***** 16<81 19<81 33<62 ***** 33<62	******* nt-36 de E b) D = Σ Diji ******* ******** ******** ******** ******** ******** ******** ******** ******* ******** ******* ******** ******** ********* ********* ******** ********* ************************************	
Center Position Near P10 Middle of Side Span Near P11 Niddle of Center Position Near P10 Middle od Side Span Near P10	106 No. 2 3 4 25 26 49 50 52 104 105 106 No. 2 3 4 25 26 49 50 52 26 49 50 52	8<32 Poir Gra a) Judge ***** 1<70 ***** ***** 4<81 ***** ***** 2<62 ***** ***** 2<62 ***** Poir Gra a) Judge Judge I<70 2<81 4<81 3<81 4<81 3<81 1<81 3<81 1<81 3<81	$\begin{array}{c}\\ nt-33\\ de E\\ b)\\ D = \sum Di_{ij}\\ *******\\ ********\\ ********\\ ********$	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** 49<68 ***** ***** 32<62 ***** ***** 32<62 ***** Poin Gra a) Judge 5<68 10<74 13<77 27<81 26<81 25<81 8<81 9<81 11<81	$\begin{array}{c}\\ nt-34\\ de E\\ b)\\ D = \sum Di,j\\ ******\\ *******\\ *******\\ ********\\ ******$	***** Poin Gra a) Judge ****** 2<81 4<81 ***** 2<81 4<81 ***** 1<81 3<81 2<62 ***** 2<62 Poin Gra a) Judge 5<35 10<38 13<40 27<42 26<42 25<42 8<42 9<42 11<42	$\begin{array}{c} ******* \\ ******* \\ \text{nt-35} \\ \text{de E} \\ b) \\ D = \sum Di_{ij} \\ & \\ ******* \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	***** Poin Gra a) Judge 10<68 ***** 24<71 50<68 ***** 24<71 50<68 ***** 16<81 19<81 33<62 ***** 33<62	******* nt-36 de E b) D = Σ Dijj ******* ******** ******** ******** ******** ******** ******** ******* ******* ******* ******* ******* ******* ******* ******* ******** ********* ******** ********** ******** ******* ******** ******** ******* ******* ******** ********* ******** ******** ******** ******** ******** ************** ************************************	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center Position Near P10 Middle od Side Span Near P10	106 No. 2 3 4 25 26 49 50 52 104 105 106 No. 2 3 4 25 20 3 4 25 26 49 50 52 104	8<32 Poir Gra a) Judge ***** 1 ***** 4<81	$\begin{array}{c}\\ \text{nt-33}\\ \text{de E}\\ & b)\\ D = \sum \text{Di}_{ij}\\ *******\\ ***************************$	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** 49<68 ***** ***** 32<62 ***** ***** 32<62 ***** ***** Poin Gra a) Judge 5<68 10<74 13<77 27<81 26<81 25<81 8<81 9<81 11<81 18<62	$\begin{array}{c}\\ nt-34\\ de E\\ b)\\ D = \sum D_{i,j}\\ *******\\\\ *******\\ *******\\\\ *******\\ *******\\ *******\\ *******\\ ******$	***** Poin Gra a) Judge ****** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62 Poin Gra a) Judge 5<35 10<38 13<40 27<42 26<42 25<42 26<42 25<42 8<42 9<42 11<42 11<42 18<32	$\begin{array}{c} ******* \\ ******* \\ \text{nt-35} \\ \text{de E} \\ b) \\ D = \sum Di_{ij} \\ & \\ ******* \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	******* nt-36 de E b) D = Σ Dijj ******* ******** ********	
Center Position Near P10 Middle of Side Span Near P11 Middle of Center Position Near P10 Middle of Side Span Near P10	106 No. 2 3 4 25 26 49 50 52 104 105 106 No. 2 3 4 24 25 26 4 25 26 49 50 52 104 105	8<32 Poir Gra a) Judge ***** 1<70 ***** ***** 4<81 ***** 4<81 ***** 2<62 ***** Poir Gra a) Judge ***** 4<81 ***** ***** ***** ***** Q<62 ***** Poir Gra a) Judge 1<70 2<81 4<81 3<81 4<81 3<81 1<81 3<81 1<<81 3<81 2<62 2<67	$\begin{array}{c}\\ \text{nt-33}\\ \text{de E}\\ & b)\\ D = \sum \text{Dij}\\ *******\\ ***************************$	28<32 Poin Gra a) Judge ***** 18<75 ***** 49<68 ***** 49<68 ***** 49<68 ***** ***** ***** ***** ***** ***** ****	$\begin{array}{c}\\ nt-34\\ de E\\ b)\\ D = \sum Di,j\\ *******\\\\ *******\\ ********\\ ********$	***** Poin Gra a) Judge ****** 2<81 4<81 ***** 3<81 ***** 1<81 3<81 2<62 ***** 2<62 Poin Gra a) Judge 5<35 10<38 13<40 27<42 26<42 25<42 8<42 9<42 11<42 118<32 18<32	$\begin{array}{c} ******* \\ ******* \\ \text{nt-35} \\ \text{de E} \\ b) \\ D = \sum Di_{ij} \\ & \\ ******* \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	***** Poi Gra a) Judge 10<68 ***** 24<71 50<68 ***** 47<69 ***** 16<81 19<81 33<62 ***** 33<62	******* nt-36 de E b) D = Σ Dij ******* ******** ******	

 Table 4.2.59
 Results of Fatigue Evaluation (3)

Note: a) is the simple fatigue evaluation, b) is the detailed fatigue evaluation Source: JICA Study Team

(4) Fatigue Evaluation of the Cable Anchorage Member

Similar to the main girder, an evaluation of fatigue is performed for the cable anchorage member.

1) Cable Number C6~C15: Cable Cross Section φ 15.6×37

Fatigue evaluation equation

 $\triangle \sigma max \cong \triangle \sigma ce \cdot C_R \cdot Ct$ $\triangle \sigma max : Maximum stress range$

 $\triangle \sigma ce$: Constant stress amplitude

Maximum difference between maximum and minimum tension caused by fatigue load per cable

 $\Delta = 89.3$ kN (contains impact coefficient for fatigue evaluation)

Maximum difference between maximum and minimum stress of member caused by fatigue load on each cable anchorage member

			N S	finimum Yield Stress of Cable		Allowable Stress	
Δ	=	89.3	1	3870	×	210	
	=	4.8	N/mm ²		(c	ontains imp	pact coefficient for fatigue evaluation)

Calculation of maximum stress range $\Delta \sigma max$ for entire bridge

 $\Delta \sigma max = Stress$ range coefficient × Maximum difference between maximum and minimum stress × 4.8 3.0 = N/mm² $\leq \square \sigma c e \cdot C_R \cdot C t$ 14.5 = $\Delta \sigma c e \cdot C_R \cdot C t$ = 32.0 х 1.0×0.71 22.7 N/mm² = Here $\Delta \sigma ce =$ (Application of weld joint of G-grade or higher) 32.0 N/mm² $C_R =$ 1.00Ct =0.71

From the result of $\triangle \sigma max \cong \triangle \sigma ce \cdot CR \cdot Ct$, it can be judged that the safety for fatigue was ensured at the welding connection for cable anchorage.

2) Cable Number C1~C5 · C16~C20: Cable Cross Section φ 15.6×37

Fatigue evaluation equation

 $\triangle \sigma max \leq \triangle \sigma ce \cdot C_R \cdot Ct$ $\triangle \sigma max : Maximum stress range$ $\triangle \sigma ce : Constant stress amplitude$

Maximum difference between maximum and minimum tension caused by fatigue load per cable

 $\Delta = 209.2$ kN (contains impact coefficient for fatigue evaluation)

Maximum difference between maximum and minimum stress of member caused by fatigue load on each cable anchorage member

 $\Delta = 209.2 / 7310 \times 210$ $= 6.0 \text{ N/mm}^2 \text{ (contains impact coefficient for fatigue evaluation)}$

Calculation of maximum stress range $\Delta \sigma max$ for entire bridge

 $\int \sigma max =$ Stress range coefficient × Maximum difference between maximum and minimum stress 3.0 6.0 = × N/mm² = 18.0 $\Delta \sigma c e \cdot C_R \cdot C t$ = 32.0 × 1.0 х 0.71 22.7 = N/mm² Here *∐*σce = 32.0 N/mm² (Application of weld joint of G-grade or higher) $C_R =$ 1.00 Ct = 0.71

From the result of $\Delta \sigma max \leq \Delta \sigma ce \cdot CR \cdot Ct$, it can be judged that the safety for fatigue was ensured at the welding connection for cable anchorage.

4.2.9.9 Welding Design

(1) Calculation for Main Girder Welds

1) Calculation Principle

The welding of the main girder flange and the web shall use the largest weld size determined through the comparison of weld size based on shear stress, composite stress, and plate thickness.

Source: JICA Study Team

a) Weld Size Based on Shear Stress

S1= $\tau \cdot tw / (\tau a \cdot 0.707 \cdot 2)$ Where,

- τ : Shear Stress of Upper and Lower Component of Web (N/mm²)
- τa : Allowable Shear Stress (N/mm²)
- tw : Main Girder Web Thickness (mm)
- tu : Main Girder Upper Flange Thickness (mm)
- tl : Main Girder Bottom Flange Thickness (mm)

b) Weld Size Based on Composite Stress

```
\begin{array}{l} S2=\tau \cdot tw / (\tau a \cdot 0.707 \cdot 2 \cdot \sqrt{1.2 \cdot (\sigma/\sigma a)^2})) \\ \text{Where,} \\ \sigma \quad : \quad \text{Vertical Stress due to Bending Moment from Upper and Lower Component of Web (N/mm^2)} \end{array}
```

 σ a : Allowable Vertical Stress (N/mm²)

c) Weld Size Based on Plate Thickness

 $t1 > St \ge \sqrt{2 \cdot t2}$

Where,

t1 : Thickness of thinner base metal (mm)

t² : Thickness of thicker base metal (mm)

d) Required Size of Fillet Weld

Sreq =Max {S1, S2, St }

Where, $6 \leq S \leq 12$

2) Calculation Results for Welds

The results of the calculation for the main girder welds are listed below.

	tu	tw	Str	Stress		le Value	Fillet Welding Size				
Section	tl	tw	τ	σ	τа	σa	S1	S2	Sreq	$\sqrt{(2 \cdot t)}$	S
	(mm)	(mm)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(mm)	(mm)	(mm)	(mm)	(mm)
EJ2	16	14	31.1	-27.7	120	210	2.57	2.36	2.57	5.66	6
	14	14	27.5	-51.5	120	210	2.27	2.12	2.27	5.29	6
EJ4	16	14	22.1	-51.2	120	210	1.82	1.71	1.82	5.66	6
	14	14	19.6	-91.8	120	210	1.62	1.61	1.62	5.29	6
EJ6	16	14	19.4	-60.5	120	210	1.60	1.51	1.60	5.66	6
	11	14	16.6	-92.2	120	210	1.37	1.36	1.37	5.29	6
EJ8	16	14	25.8	-55.2	120	210	2.13	2.00	2.13	5.66	6
	11	14	21.3	-73.3	120	210	1.76	1.69	1.76	5.29	6
EJ10	16	14	24.8	-48.9	120	210	2.05	1.91	2.05	5.66	6
	11	14	21.1	-62.0	120	210	1.74	1.65	1.74	5.29	6
EJ12	16	14	42.8	-43.8	120	210	3.53	3.28	3.53	5.66	6
	11	14	35.3	-80.5	120	210	2.91	2.84	2.91	5.29	6
EJ14	16	17	54.3	-21.6	120	210	5.44	4.99	5.44	5.83	6
	15	17	47.7	-110.9	120	210	4.78	4.98	4.98	5.83	6
EJ16	16	14	33.2	-53.2	120	210	2.74	2.57	2.74	5.66	6
	11	14	30.6	-67.1	120	210	2.52	2.41	2.52	5.29	6
EJ18	16	14	34.6	-51.8	120	210	2.85	2.67	2.85	5.66	6
	11	14	30.7	-65.3	120	210	2.53	2.41	2.53	5.29	6
EJ20	16	14	30.2	-54.5	120	210	2.49	2.34	2.49	5.66	6
	11	14	26.6	-55.0	120	210	2.19	2.06	2.19	5.29	6
EJ22	16	14	26.4	-48.3	120	210	2.18	2.03	2.18	5.66	6
	11	14	23.0	-55.4	120	210	1.90	1.78	1.90	5.29	6
EJ24	16	14	27.9	-42.9	120	210	2.30	2.14	2.30	5.66	6
	11	14	23.9	-37.9	120	210	1.97	1.82	1.97	5.29	6
EJ26	16	14	30.8	-28.4	120	210	2.54	2.34	2.54	5.66	6
	11	14	25.9	89.7	120	210	2.14	2.12	2.14	5.29	6

Table 4.2.60 Calculation Results for Fillet Welds (Outer Web)

	tu	tw	St	ress	Addi	tional	Com	posite	Allowat	ole Value		Fillet V	Welding	Size	
Section	tl	tw	τ1	σ1	τ2	σ2	Στ	Σσ	τа	σa	S1	S2	Sreq	$\sqrt{(2 \cdot t)}$	S
	(mm)	(mm)	(N/mm ²)	(mm)	(mm)	(mm)	(mm)	(mm)							
EJ2	16	14	17.8	-30.6	-	-	17.8	-30.6	120	210	1.47	1.35	1.47	5.66	6
	14	14	14.4	-51.4	-	-	14.4	-51.4	120	210	1.19	1.11	1.19	5.29	6
EJ4	16	14	12.3	-55.9	-	-	12.3	-55.9	120	210	1.01	0.95	1.01	5.66	6
	14	14	10.0	-91.6	-	-	10.0	-91.6	120	210	0.82	0.82	0.82	5.29	6
EJ6	16	14	11.1	-65.6	-	-	11.1	-65.6	120	210	0.92	0.87	0.92	5.66	6
	11	14	8.5	-92.1	-	-	8.5	-92.1	120	210	0.70	0.70	0.70	5.29	6
EJ8	16	14	17.6	-58.8	-	-	17.6	-58.8	120	210	1.45	1.37	1.45	5.66	6
	11	14	13.3	-73.3	-	-	13.3	-73.3	120	210	1.10	1.06	1.10	5.29	6
EJ10	16	14	15.0	-51.1	-	-	15.0	-51.1	120	210	1.24	1.16	1.24	5.66	6
	11	14	11.4	-62.0	-	-	11.4	-62.0	120	210	0.94	0.89	0.94	5.29	6
EJ12	16	14	29.1	-44.9	-	-	29.1	-44.9	120	210	2.40	2.23	2.40	5.66	6
	11	14	22.0	-80.6	-	-	22.0	-80.6	120	210	1.81	1.77	1.81	5.29	6
EJ14	16	18	32.1	-20.2	-	-	32.1	-20.2	120	210	3.40	3.12	3.40	6.00	6
	15	18	25.9	-110.4	-	-	25.9	-110.4	120	210	2.75	2.86	2.86	6.00	6
EJ16	16	14	12.2	-55.1	-	-	12.2	-55.1	120	210	1.01	0.95	1.01	5.66	6
	11	14	9.8	-67.2	-	-	9.8	-67.2	120	210	0.81	0.77	0.81	5.29	6
EJ18	16	14	16.7	-54.1	-	-	16.7	-54.1	120	210	1.38	1.29	1.38	5.66	6
	11	14	13.0	-65.3	-	-	13.0	-65.3	120	210	1.07	1.02	1.07	5.29	6
EJ20	16	14	15.2	-57.9	-	-	15.2	-57.9	120	210	1.25	1.18	1.25	5.66	6
	11	14	11.8	-55.0	-	-	11.8	-55.0	120	210	0.97	0.92	0.97	5.29	6
EJ22	16	14	14.0	-50.7	-	-	14.0	-50.7	120	210	1.15	1.08	1.15	5.66	6
	11	14	10.8	-55.4	-	-	10.8	-55.4	120	210	0.89	0.84	0.89	5.29	6
EJ24	16	14	16.2	-46.4	-	-	16.2	-46.4	120	210	1.34	1.25	1.34	5.66	6
	11	14	12.4	-37.9	-	-	12.4	-37.9	120	210	1.02	0.95	1.02	5.29	6
EJ26	16	14	19.3	-4.2	-	-	19.3	-4.2	120	210	1.59	1.45	1.59	5.66	6
	11	14	14.6	89.4	-	-	14.6	89.4	120	210	1.20	1.19	1.20	5.29	6

Table 4.2.61	Calculation Results for Fillet Welds (Inner Web))
--------------	--	---

(2) Calculation for Main Tower Welds

1) Calculation Principle

The welding of the flange and web that bear the shear stress of the corner component shall be conducted using partial penetration welding. Further, the required throat thickness shall be the largest weld size determined through the comparison of weld size based on shear stress, composite stress, and plate thickness.

a) Required Throat Thickness Calculation

- Required Throat Thickness based on Shear Stress

a1 =
$$\tau \cdot (\text{tu or tl}) / \tau a$$

Where, τ : Shear Stress of Top · Bott (N/mm²)

- τa : Allowable Shear Stress (N/mm²)
- tw : Web Thickness (mm)
- tu : Top Thickness (mm)
- tl : Bott Thickness (mm)

- Required Throat Thickness based on Composite Stress

```
a2 = \tau · (tu or tl) / (\tau a · \sqrt{(1.2 - (\sigma/\sigma a)^2)})
```

- Required Throat Thickness

 $areq = 1.5 \cdot Max(a1, a2)$

b) Required Partial Penetration Weld Size

1. Design of Throat Thickness for ≤ 25 : $a = S1 + 0.707 \cdot S2$

Analysis 1 : $S1 \ge tw/2$ Analysis 2 : -Analysis 3 : $S1 \ge 2^*\sqrt{t} \ge 6 \text{ mm}$ Analysis 4 : $T1 > S \ge \sqrt{(2^*T2)} \ge 6 \text{ mm}$

2. Design of Throat Thickness for > 25 : $a = S1' + 0.707 \cdot (S1'' + S2)$

Analysis 1 : S1'+S1" \geq tw/2 Analysis 2 : S2 \geq S1" · (SEC-1) Analysis 3 : S1',S1" \geq 2* $\sqrt{t} \geq$ 6 mm Analysis 4 : T1 > S $\geq \sqrt{(2*T2)} \geq$ 6 mm Where, t1 : Thickness of Thinner Base Metal (mm) t2 : Thickness of Thicker Base Metal (mm)

2) Calculation Results for Welds

The results of the calculation for the main tower welds are listed below.

						Т	at	ole	; 4	1.2	2.6	62	1	Ca	alc	cul	at	io	n	Re	es	uľ	ts	fo	r I	=il	le	t۷	Ve	elc	s	(1	nn	e	- V	Ve	b)				
	Throat	n)	OK	OK	Я	ЯQ	OK	OK	OK	QK	QK	OK	OK	OK	OK	OK	OK	OK	Я	OK	OK	OK	OK	ОĶ	QK	ОĶ	OK	ОĶ	OK	OK	OK	Я	OK	OK	OK	OK	OK	OK	OK	OK	QK	QK
	Design	a(m	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	21.7	21.7	21.7	21.7	21.7	21.7	21.7	21.7	21.7	21.7	21.7	21.7
s	<u> </u>	4	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK
Analvsi		r	ЭK	ЭĶ	X	ЭK	Ж	ЭK	ЭK	Ж	Ж	ЭK	ЭK	ЭK	Ж	ЭK	ЭĶ	Ж	X	Ä	ЭĶ	Ж	ЭĶ	K	X	ЭK	Ж	K	K	ЭK	ЭK	X	K	ЭK	ЭK	ЭK	ЭK	ЭK	ЭK	ЭĶ	X	Ж
		~) K	Y	¥	Ă	¥) K) K	X	X	N X) K	K	Y) K	Y X	¥	¥	¥	Y X	Y	Y	X	¥	¥	X	X	Ä) X	K	¥	¥) K	K	K (K () K	K () X	¥	K
			к С	ч Ч	2 V	N N	N N	Х	K	х И	х С	к И	K	K	х	К	х С	N N	N N	N N	х С	N N	ч Ч	N N	2 M	N N	ч К	N N	N N	K	K	2 M	N N	К	K	K	K	К	K	Х	N N	N N
		_ 	9	0 6	6	0 6	9	9	9 0	0 6	06	0 6	9 0	9 0	9	9 0	9	9	0 6	0 6	9	9	0 6	0 6	6	9 0	0 6	0 6	0 6	9	9	0	0 6	9	9 0	9 0	9 0	9	9 0	9	0 6	9 0
	= S	m) (m	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	9	6	6	6	9	6	9	6	6	6	6	6
lds Size	I' SI	m) (m	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	9	6	6	6	9	6	9	6	6	6	6	6
We	•t) S	(m)	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94	37	37	37	37	37	37	37	37	37	37	37	37
	5 √(2	(mn	8	8	8	8.	8.	8.	8.	80	8.	8	8.	8.	8.	8.	8	8.	80	8	8.	8	<u></u>	8.	×.	% %	8	<u>×</u>	8.	S.	.8	8.	8	8.	7 8.	4	.8	8.	8.	<u>~</u>	80	8
	areq*1.5	(mm)	0.05	0.0	2.15	2.15	15.6(19.35	16.2(19.95	18.6(21.15	18.5(21.63	17.75	21.87	11.36	14.03	10.55	13.92	11.00	13.46	11.21	14.75	11.2	14.18	1.35	1.61	1.35	1.50	1.4(1.7(1.4]	1.6^{2}	1.47	1.6^{4}	1.5(1.6	1.62	1.68	1.7]	1.73
Ihroat	areq	(mm)	0.03	0.03	1.43	1.43	10.40	12.90	10.80	13.30	12.40	14.10	12.33	14.42	11.83	14.58	7.57	9.35	7.03	9.28	7.33	8.97	7.47	9.83	7.47	9.45	0.90	1.07	0.90	1.04	0.93	1.13	0.94	1.09	0.98	1.09	1.00	1.07	1.08	1.12	1.14	1.15
auired 7	- 2	(m	0.03	0.03	1.31	1.31	9.64	1.86	0.05	2.42	1.57	3.79	1.60	4.42	1.19	4.58	7.13	9.35	6.68	9.28	6.96	8.97	7.16	9.83	7.19	9.45	0.87	1.07	0.87	1.04	0.93	1.13	0.94	1.09	0.98	1.09	1.00	1.07	1.08	1.12	1.14	1.15
Re		(n	03	03	43	43	40	90	80 1	30 1	40	10	33 1	03 1	83 1	53 1	57	33	03	80	33	57	47	70	47	70	90	90	90	90	93	93	93	93	96	96	96	96	02	02	05	05
	al	um) (0	0		1.	10.	12.	10.	13.	12.	14.	12.	14.	11.	13.	.7	.8	.7	.7	.7	.9	.7	9		9	0	0	0	0.	0.	0	0	0	0.	0.	0.	0	1.	1.		-1
e Value	σa	(N/mm ²	21(21(210	21(21(21(21(210	210	210	21(210	21(21(21(21(21(21(21(21(21(21(21(21(21(21(21(21(210	21(21(21(210	21(21(21(21(21(21(21(
Allowabl	ta	(N/mm ²)	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
site	Σσ	N/mm ²)	-0.2	-0.2	-10.7	-10.7	-39.8	-27.6	-44.8	-48.1	-47.2	-82.7	-55.0	-105.7	-60.3	-122.2	-56.7	-133.8	-63.7	-147.5	-62.5	-171.2	-70.9	-180.1	-72.9	-175.3	-74.1	-147.5	-77.3	-140.7	-90.5	-150.7	-96.3	-143.4	-102.8	-136.5	-109.6	-130.2	-116.8	-126.9	-123.6	-127.7
Compc	Στ	V/mm ²) (0.1	0.1	4.3	4.3	31.2	38.7	32.4	39.9	37.2	42.3	37.0	42.1	35.5	40.6	22.7	25.0	21.1	23.4	22.0	19.7	22.4	20.1	22.4	20.1	2.7	2.7	2.7	2.7	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.5	3.5	3.6	3.6
le	52	mm ²) (D	1	1	'	'	-25.1	-0.4	-25.1	-0.4	-20.6	-12.7	-20.6	-12.7	-20.6	-12.7	-10.7	-8.7	-10.7	-8.7	-1.7	-20.9	-1.7	-20.9	-1.7	-20.9	1	'	'	1	'	'	'	'	'	1	1	'	1	1	1	'
ddition		m ²) (N/	-	•	-	'	4.1	1.6	4.1	1.6	. 6.8	4.0	. 6.8	4.0	. 6.8	4.0	7.4	9.7	7.4	9.7	9.8	7.5	9.8	7.5	9.8	7.5	•	'	'	1	1	-	'	•	1	-	1	•	-	•	-	-
A	5	(N/m	5	5		-	7	2 3	7 2	3	6 2	0	4 2	0 3	7 2	5	0	1	0	~	8	1	1	1	1	4		2		4	5			4	8	5	6	5	8	6	9	
ess	0 1	(N/mm ²	-0	Ģ.	-10.	-10.	-14.	-27.	-19.	-47.	-26.	-70.	-34.	-93.	-39.	-109.	-46.	-125.	-53.	-138.	-60.	-150.	-69.	-159.	-71.	-154.	-74.	-147.	-77.	-140.	-90.	-150.	-96.	-143.	-102.	-136.	-109.	-130.	-116.	-126.	-123.	-127.
Str	τ1	N/mm ²)	0.1	0.1	4.3	4.3	7.1	7.1	8.3	8.3	8.3	8.3	8.1	8.1	6.6	6.6	5.3	5.3	3.7	3.7	2.2	2.2	2.6	2.6	2.6	2.6	2.7	2.7	2.7	2.7	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.5	3.5	3.6	3.6
tw	tw	(IIIII) (I	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	35	35	35	35	35	35	35	35	35	35	35	35
'nL	F	(mm)	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	35	35	35	35	35	35	35	35	35	35	35	35
	Section		J20		J19		J18		J17		J16		J15		J14		J13		J12		J11		J10		J9		J8		J7		J6		J5		J4		J3		J2		Iſ	

Detailed Design Study on The Bago River Bridge Construction Project

Final Report

4.2.9.10 Evaluation of Ultimate Strength (1.7 x Design Loads)

(1) Examination Overview

For cable-stayed bridges, the analysis of design loads only does not ensure the designated safety factor (safety factor for steel bridges: 1.7) because the section force does not increase linearly with the increase of load. Therefore, the induced stress for at least 1.7 times the design load was verified to be lower than the yield stress.

Analysis Method: Finite Elastic Displacement Method

Evaluation Procedure: For the $1.7 \times (D + Li) + PS$ condition, members must not reach yield stress.

(D: Dead Load, L: Live Load, PS: Pre-Stressing Force, i: Impact Coefficient)

(2) Analysis Result

The stress resultants in the main girder for all load cases are shown below. As a result, stress in each member was less than the allowable value.

. JICA Sludy Team

Source: JICA Study Team

Figure 4.2.131 Main Girder - Shear Force Diagram

The stress resultants in the main tower for all load cases are shown below. As a result, stress in each member was less than the allowable value.

Final Report

(3) Evaluation Results for Girder

The evaluation results are shown in the table below. The stresses in all sections were less than the allowable value.

der Span-Section 1																
Stress		M-N	Iax			M-N	Ain			N-N	Iax			N-N	Iin	
(N/mm^2)	Σσ	σa	Στ	τa	Σσ	σa	Στ	τa	Σσ	σa	Στ	τа	Σσ	σa	Στ	τa
DECK-L	-54	140	0	80	-21	140	7	80	14	140	19	80	-25	140	10	80
DECK-R	-54	140	0	80	-21	140	7	80	14	140	19	80	-25	140	10	80
WEB-1	-49	166	0	120	11	210	10	120	12	210	27	120	-14	200	15	120
WEB-2	-53	161	0	120	-95	147	10	120	-27	152	27	120	-94	146	15	120
WEB-3	-53	161	0	120	-95	147	10	120	-27	152	27	120	-94	146	15	120
WEB-4	-49	166	0	120	11	210	10	120	12	210	27	120	-14	200	15	120
WEB-L	-29	182	0	120	-96	150	10	120	-27	153	28	120	-94	150	15	120
LFLG	57	210	0	120	-96	147	7	120	-27	147	20	120	-94	147	11	120
WEB-R	-29	182	0	120	-96	150	10	120	-27	153	28	120	-94	150	15	120
Side Span-S	Sectior	n 2														
Stress		M-N	Iax		M-Min					N-N	Iax			N-N	Iin	
(N/mm^2)	Σσ	σa	Στ	τα	Σσ	σa	Στ	τa	Σσ	σa	Στ	τa	Σσ	σa	Στ	τa
DECK-L	-59	140	2	80	-26	140	3	80	-55	140	4	80	-35	140	10	80
DECK-R	-59	140	2	80	-26	140	3	80	-55	140	4	80	-35	140	10	80
WEB-1	-53	167	3	120	-18	182	5	120	-49	167	5	120	-30	165	14	120
WEB-2	-57	162	3	120	-87	145	5	120	-54	163	5	120	-75	142	14	120
WEB-3	-57	162	3	120	-87	145	5	120	-54	163	5	120	-75	142	14	120
WEB-4	-53	167	3	120	-18	182	5	120	-49	167	5	120	-30	165	14	120
WEB-L	65	210	3	120	-87	149	5	120	64	210	5	120	-76	147	14	120
LFLG	65	210	3	120	-88	102	4	120	65	210	5	120	-76	102	12	120
WEB-R	65	210	3	120	-87	149	5	120	64	210	5	120	-76	147	14	120
ntermediat	o Diar	(at Tow	or) Se	otion 3												
Stress		M-N	/av			M-N	/lin			N-N	lav			N-N	Tin	
(21)	∇_{α}		Σπ		$\nabla_{\mathbf{q}}$		∇_{π}		Γa		Γax Vr	T O	∇_{α}		∇_{π}	
(N/mm)	20	0a	17	100	<u>20</u>	0a	<u>2</u> 1	100	<u>20</u>	0a		100	20	0a		100
DECK-L	-30	210	17	120	52	210	59	120	-25	210	23	120	39	210	28	120
DECK-R	-30	210	17	120	52	210	- <u>59</u>	120	-25	210	23	120	39	210	28	120
WEB-I	-17	201	18	120	42	210	62	120	11	210	24	120	30	210	30	120
WEB-2	-72	210	11	120	-149	210	39	120	-84	210	15	120	-130	210	19	120
WEB-3	-72	210	11	120	-149	210	39	120	-84	210	15	120	-130	210	19	120
WEB-4	-17	201	18	120	42	210	62	120	11	210	24	120	30	210	30	120
WEB-L	-72	177	18	120	-149	180	63	120	-85	179	24	120	-131	179	30	120
LFLG	-72	158	15	120	-150	158	51	120	-85	158	20	120	-131	158	25	120
WEB-R	-72	177	18	120	-149	180	63	120	-85	179	24	120	-131	179	30	120
Aain Span-	Sectio	n4														
Stress		M-N	Iax			M-N	/lin			N-N	Iax			N-N	Iin	
(N/mm^2)	Σσ	σa	Στ	τα	Σσ	σa	Στ	τa	Σσ	σa	Στ	τa	Σσ	σa	Στ	τa
DECK-L	-53	140	0	80	-11	140	11	80	-51	140	7	80	-32	140	0	80
DECK-R	-53	140	0	80	-11	140	11	80	-51	140	7	80	-32	140	0	80
WEB-1	-44	174	1	120	-23	175	16	120	-43	174	11	120	-35	160	0	120
WEB-2	113	210	1	120	-92	145	17	120	108	210	11	120	-50	139	0	120
WEB-3	113	210	1	120	-92	145	17	120	108	210	11	120	-50	139	0	120
WEB-4	-44	174	1	120	-23	175	16	120	-43	174	11	120	-35	160	0	120

Source: JICA Study Team

WEB-L 113

WEB-R 113

LFLG

-92

-92

-92

-50

-50

-50

(4) Evaluation Results for Tower

The evaluation results are shown in the table below. The stresses in all sections were less than the allowable value.

Upper Cable Section

Stress	M-Max					M-N	Min			N-N	Iax		N-Min					
(N/mm^2)	Σσ	σa	Στ	τа	Σσ	σa	Στ	τа	Σσ	σa	Στ	τа	Σσ	σa	Στ	та		
Тор	-81	210	6	120	9	210	7	120	0	210	0	120	-5	210	6	120		
LWeb	-81	210	10	120	-104	210	12	120	0	210	0	120	-99	210	10	120		
Rweb	-81	210	10	120	-104	210	12	120	0	210	0	120	-99	210	10	120		
Bott	-1	210	6	120	-104	210	7	120	0	210	0	120	-99	210	6	120		

Lower Cable Section

Stress	M-Max					M-N	Min			N-N	Iax		N-Min				
(N/mm^2)	Σσ	σa	Στ	τa	Σσ	σa	Στ	τа	Σσ	σa	Στ	τа	Σσ	σa	Στ	та	
Тор	-124	210	0	120	-7	210	1	120	-87	210	5	120	-82	210	1	120	
LWeb	-124	210	1	120	-149	210	2	120	-87	210	8	120	-99	210	1	120	
Rweb	-124	210	1	120	-149	210	2	120	-87	210	8	120	-99	210	1	120	
Bott	-18	210	0	120	-149	210	1	120	-7	210	5	120	-99	210	1	120	

Bottom of Tower

Stress	M-Max					M-N	Min			N-N	Iax		N-Min				
(N/mm^2)	Σσ	σa	Στ	τa	Σσ	σa	Στ	τa	Σσ	σa	Στ	τа	Σσ	σa	Στ	та	
Top	-125	205	2	120	-53	205	3	120	-125	205	2	120	-107	205	1	120	
LWeb	-125	210	4	120	-143	210	5	120	-125	210	4	120	-107	210	1	120	
Rweb	-125	210	4	120	-143	210	5	120	-125	210	4	120	-107	210	1	120	
Bott	-55	205	2	120	-143	205	3	120	-55	205	2	120	-101	205	1	120	

+ Horizontal bearing)

P12

4.2.9.11 Structural Analysis Considering Plasticity of Superstructure

(1) Safety Investigation Using Elasto-Plastic and Finite Displacement Analysis

1) Purpose of Structural Analysis

Different from a general girder bridge, a cable-stayed bridge has a complicated structure that is composed of cables and axial-force members. It is more difficult to accurately specify the ultimate load and the destruction mode for a cable-stayed bridge from past construction reports or research papers compared to a general girder bridge. The elasto-plastic and finite displacement analysis, which can track plastic buckling of main girder or main tower and plastic deformation of cable elements in a proper manner, was implemented to check the safety when the designed bridge reaches its ultimate state.

2) Contents of Analysis

By using the elasto-plastic and finite displacement analysis, safety evaluation under ultimate state of the designed bridge was performed based on the load coefficient design method. As a necessary parameter, the scale factor of load (α_{max}) at which the designed bridge reaches its ultimate state considering the elasto-plasticity was determined by gradually increasing the working force.

In order to evaluate the effect of loading range to the ultimate state, four cases of different loading conditions were assumed and employed in the analysis model shown in the figure below.

Load Combination / Load Scale Factor (α)	Loading Range of Live Load
α (D+L)+PS	L1: loading on the entire span L2: loading on the center span L3: loading on the half of center span L4: loading on the side span
Note: α: Load scale factor, D: Dead load, L: Live load	l, PS: Pre-stress
Source: JICA Study Team	
Pin-roller Bearing	Spring Support in Longi. Direction
Pin-roller Bearing (In actually, Rocking bearing, Spring Support in Longi. Direction 3.56E+05 (kN/m)	2.79E+05 (kN/m)

Source: JICA Study Team

P11

+ Horizontal bearing)

Source: JICA Study Team

Figure 4.2.135 Loading Range

3) Analysis Model

Table 4.2.66 depicts the fundamental information of the analysis model and Figure 4.2.136 shows the material model of the cable element.

Table 4.2.66 Specifications for Analysis Model

Analysis code	COMP (Nagaoka University of Technology)
Analysis method	2D elasto-plastic and finite displacement analysis
Element type	Main tower and main girder: Fiber element based elasto-plastic frame element
	(566 elements)
	Cable: Elastic cable element considering a sag (40 elements)
Material model	Main tower and main girder: Perfect elasto-plasticity
	Cable: Bilinear model (refer to the following figure)
Boundary conditions	Under the main tower: Pin support + spring in longitudinal direction
·	(P11) 3.56E+05 kN/m (P12) 2.79E+05 kN/m
	Both edge of the girder: Pin-roller support

Source: JICA Study Team

Source: JICA Study Team

Figure 4.2.136 Bilinear Model for Cable

4) Analysis Result

The load scale factor when the girder, cable, and tower yielded and at the ultimate state (when the load scale factor becomes maximum) is shown below.

Lord	Loading Dange	Load Scale Factor α										
Combination	of Live Load	Yield of Main Girder	Yield of Cable	Yield of Main Tower	Maximum (Ultimate State)							
	L1: loading on the entire span	2.07	2.51	2.84	2.98							
	L2: loading on the center span	2.35	2.47	2.15	2.66							
$\alpha (D+L) + PS$	L3: loading on the half of	2.31	2.47	2.26	2.72							
	center span L4: loading on the side span	2.30	2.57		3.20							
Source: JICA	Study Team											

From the analysis results, the following tendency was figured out regarding the process when the designed bridge reaches ultimate state.

Loading Range for Live Load	Process to Ultimate State
L1: loading on the entire span	Main girder (near the main tower) \rightarrow Cable (center)
	\rightarrow Main tower (base) \rightarrow [Ultimate state]
L2: loading on the center span	Main tower (middle) \rightarrow Main girder (near the main tower)
	\rightarrow Cable (middle) \rightarrow [Ultimate state]
L3: loading on the half of center span	Main tower (middle) \rightarrow Main girder (near the main tower)
	\rightarrow Cable (middle) \rightarrow [Ultimate state]
L4: loading on the side span	Main tower (middle) \rightarrow Cable (middle) \rightarrow [Ultimate state]
Source: JICA Study Team	

Table 4.2.68	Processes to	Ultimate State
--------------	--------------	----------------

Based on the analysis results, the following conclusions can be stated:

- The maximum load at ultimate state is about 2.7 times larger than D+L (dead load + live load). It means that the loading capacity of the designed bridge is high enough for the design load (D+L+PS).
- The designed bridge has sufficient loading capacity until the ultimate state. The relation between load and deflection at the center of the main girder does not change significantly even when the flange of the main girder or main tower is yielded.

The deformation mode and displacement for each loading case are shown in the figure below.

Analysis case L1 [α (D+L)+PS]

Figure 4.2.138 Deformation Figure (L1)

4-218

Analysis case L3 $[\alpha(D+L)+PS]$

Horizontal displacement in the direction of center span (m) Relation between load and horizontal displacement at the top and bottom of the tower

Source: JICA Study Team

Figure 4.2.142 Deformation Figure (L3)

Analysis case L4 [a(D+L)+PS]

Relation between load and horizontal displacement at the top and bottom of the tower

Relation between vertical reaction force and load regarding the main girder

Source: JICA Study Team

Figure 4.2.144 Deformation Figure (L4)

4.2.10 Summary of Substructure Design

4.2.10.1 Calculation of Main Tower Pier/Foundation (P11 and P12)

- (1) **Design Conditions**
- 1) Load Case

	Basic Load					Overdesign	
Scenario	Dead load	Live Load	Temperature Load	Wind Load	Impact Load	Seismic Load	factor
Regular	0	○*1					1.00
Temperature Flux	0	○*1	0				1.15
Wind	0			0			1.25
Marine Vessel Impact	0				0		1.50
Seismic	0					0	1.50

Table 4.2.69 Load Case

*1 Depending on combination with design water level, cases with and without is verified

Source: JICA Study Team

a) Reaction Force for Substructure Design

Table 4.2.70	Reaction	Force	for	Substructure	Design
--------------	----------	-------	-----	--------------	--------

Scenario		P11			P12		
		Rv(KN)	RH(KN)	RM(KNm)	Rv(KN)	RH(KN)	RM(KNm)
	Reguler HWL	51300	4700	0	51300	2200	0
	Reguler LWL	62800	-2200	0	62800	-4700	0
т.	Temperature HWL	51000	9300	0	51000	6800	0
Longi.	Temperature LWL	62900	-6800	0	62900	-9300	0
Direction	Wind	52100	1100	0	52100	-1100	0
	Vessel Impact	51300	4700	0	62800	-4700	0
	Seismic	52000	18500	0	52100	-15400	0
	Reguler HWL	51300	100	32000	51300	100	-32000
т	Reguler LWL	62800	100	32000	62800	-100	32000
Direction	Wind	52100	2200	33400	52100	2200	33300
	Vessel Impact	51300	100	32000	51300	100	-32000
	Seismic	52100	14300	93900	52100	14200	93100

Source: JICA Study Team

Reaction forces at P11 which has critical force (horizontal force and bending moment at seismic scenario) were selected as the design force for substructure of P11 and P12.

2) Design Lateral Seismic Factor

Seismic performance 1 kh = 0.30

Seismic performance 2 kh = 0.45 (used for evaluation of strength in the bridge seat member)

a) Design Water Level

Saanaria	Water Level	Flow rate
Scenario	(MSL+m)	(m/s)
Regular	+3.18	
(Temperature Flux)	-2.39	
Wind	+4.99	
Marine Vessel Impact	+3.18	
Seismic	+0.29	0.60

Table 4.2.71Design Water Level

Source: JICA Study Team

3) Impact Load of Marine Vessel

Longitudinal direction: 4850 kN

Transverse direction: 9700 kN (impact height +3.98)

4) Utilized Material

a) Unit Weight

Reinforced Concrete	γc	=	24.5 kN/m ³
Filling Sand	γd	=	18.0 kN/m ³
Water	γw	=	10.0 kN/m ³

b) Utilized Material and Allowable Stress

Table 4.2.72 Utilized Material and Allowable Stress (Concrete)

			(N/mm2)
		Pier	Pile Cap
Design strength ock		30.0	24.0
Compressive stress	Against bending	10.00	8.00
Compressive stress	Against axial force	8.50	6.50
	Borne by concrete only	0.25	0.23
Shearing stress	Bourne together with diagonal tension bars	1.90	1.70
	Punching shear stress (τa^3)	1.00	0.90
Bond stress	Deformed steel bars	1.80	1.60

					(N/mm2)
				Pier	Pile Cap
Type of st	Type of steel member				
	Principal load exluding live l	oad and impa	ct load are in effect	100.0	100.0
	Load combination does not include effect of impact and seismic event	Regular members		180.0	180.0
Tensile		Members underwater or underneath ground water level		160.0	160.0
stress	Load combination includes effect of impact and seismic event		Axial reinforcement	200.0	200.0
			Other than the above	200.0	200.0
	Calculation of rebar lap joint and embedment length			200.0	200.0
Compressi	Compressive stress				200.0

Table 4.2.73 Utilized Material and Allowable Stress (Steel)

5) Figure of Design Condition

Figure 4.2.145 Design Condition

(2) Design of Pier

1) Design of Beam

Item	Sign	Unit	Value
Dead load reaction	Rd1	kN	12500.0
force	Rd2	kN	12500.0
Live load reaction	R11	kN	8400.0
force	R12	kN	8400.0
Total reaction force	$\Sigma Rd + \Sigma Rl$	kN	41800.0
Pier width	HH	m	10.390
Pier thickness	HB	m	7.500
Bridge seat width	В	m	7.500
Distance between bearing	1	m	8.170
Induced load	Р	kN/m2	536.388
Splitting tensile force	Z*	kN	6902.108
Allowable stress	σsa	N/mm2	180.000
Required amount of steel reinforcement	Asr	cm2	383.450
Used emount of			D32
steel reinforcement	As	cm ²	52 (bars)
			412.984
Indeement			$As \ge Aw$
Judgement	-	-	ОК

Table 4.2.74Evaluation Result for Beam

$$P = \frac{\sum Rd + \sum Rl}{HH \cdot HB}$$
$$Z = 0.21 \cdot P \cdot l \cdot B$$
$$Asr = \frac{Z \cdot 10}{\sigma sa}$$

* Calculation of Splitting tensile force Z

Can be determined by the assumption of tensile chord occuring in deep beam

The force of the tensile chord can be determined by the Mmax from beam theory

$$Z = \frac{M \max}{a}$$

Considering difference between ordinary beams, inner arm length is determined through the following

$$a = 0.15 \cdot d \cdot (3 + l/d) \qquad (2 > l/d > l) a = 0.6 \cdot l \qquad (l/d \le l)$$

Due to stress transmission $d \,\dot{\Rightarrow} \, l$

$$a = 0.6 \cdot l$$

$$M_{\text{max}} = \frac{P \cdot l^2}{8}$$

$$\therefore Z = \frac{\frac{P \cdot l^2}{8}}{0.6 \cdot l}$$

$$= 0.21 \cdot P \cdot l$$
2) Design of Column

The column shall be designed as a cantilever beam by treating the joint between the footing as a fixed end. The column cross section shall be designed against the most unfavorable combination of axial force and bending moment.

a) Cross Section and Rebar Configuration

Source: JICA Study Team

[Overview of Calculation Result]

The following table shows the calculation results for beam.

				Lo	ngitude D	Direction		Transverse Direction			
	Membe	er Height	m	Elliptical Shape	;	12.000	×	7.500			
Cross		Main Pabar	1st block	D51	ctc	150		D51	ctc	269	
Section	Rebar	Main Kebai	2nd block	D51	ctc	150					
		Lateral Tie		D22	ctc	150		D22	ctc	150	
Cross		σc	N/mm2	10.46	i	15.00	0	8.85	≦	15.00	0
Closs	L1	σs	N/mm2	274.4	≦	300.0	0	200.2	≦	300.0	0
Coloulation	Earthquake	τm	N/mm2	0.439	>	0.201	_	0.362	>	0.179	-
Calculation		Aw_req	mm2	1523.5	≦	3096.8	0	733.3	≦	2322.6	0

Table 4.2.75	Calculation Result for Beam
	Ourould for Hoodil for Boarn

b) Cross Section Evaluation Results

The evaluation results for the column cross section are shown below.

Category	Unit	Regular Scenario HWL Water Level Considered	Regular LWL Scenario Water Level Considered	Temperature Flux HWL Scenario Water Level Considered	Temperature Flux LWL Scenario Water Level Considered
Load Condition		Dead load	Regular load	Dead + temp load	Dead + live + temp load
Axial Force N	kN	96841.24	108341.24	96541.24	108441.24
Bending Moment M	kN.m	105750	49500	209250	153000
Compression Edge~ Neutral Axis x	mm	7838	13519	5148	6855
Compressive Stress oc	N/mm ²	2.21	1.78	3.51	2.83
Tensile Stress σs	N/mm ²	-2.1	-12.21	22.41	3
Overdesign Factor α		1	1	1.15	1.15
Allowable Compressive Stress σca	N/mm ²	10	10	11.5	11.5
Allowable Tensile Stress σsa	N/mm ²	-200	-200	184	184
Cracking Moment Mc	kN.m	289550.53	301888.19	289228.67	301995.47
Yielding Moment My0	kN.m	690877.8	720620.98	690097.76	720877.34
Ultimate Bending Moment Mu	kN.m	822644.51	857066.21	821736.94	857362.01
Minimum Reinforcement for Bending Element		1.7M≦Mc	1.7M≦Mc	Mc≦Mu	1.7M≦Mc
Minimum Reinforcement for Axial Element	mm ²	76705.9	85814.8	66494.2	74690.5
Axial Force Nu	kN	97641.24	97641.24	97641.24	97641.24
0.008A1' (Axial Force Na=N)	mm ²	76705.9	85814.8	66494.2	74690.5
0.008A2' (Axial Force Nu)	mm ²	27640.8	27640.8	27640.8	27640.8
Total Reinforcement		OK	OK	OK	OK
Content As ≧ Asmin		UN	UN	UN	UN
Maximum Reinforcement Content Evaluation (My0≦Mu)		ОК	OK	OK	ОК

Table 4 2 76	Examination	of Bendina	Moment	(Longitudinal)	۱
		of Denaing	MONICIL	Longituuniar	,

Category	Unit	Wind Scenario	Marine Vessel Impact Scenario	Sesimic Scenario	
		Water Level Considered	Water Level Considered	Water Level Considered	
Load Condition		Wind load	Impact load	Lv1 Seismic Load	
Axial Force N	kN	97641.24	96841.24	97541.24	
Bending Moment M	kN.m	28173.51	169285	585015.11	
Compression Edge \sim Neutral Axis x	mm	19219	6007	2670	
Compressive Stress oc	N/mm ²	1.44	2.93	10.46	
Tensile Stress os	N/mm ²	-13.36	9.73	274.38	
Overdesign Factor α		1.25	1.5	1.5	
Allowable Compressive Stress σca	N/mm ²	12.5	15	15	
Allowable Tensile Stress sa	N/mm ²	-250	300	300	
Cracking Moment Mc	kN.m	290408.8	289550.53	290301.51	
Yielding Moment My0	kN.m	692959.57	690877.8	692701.74	
Ultimate Bending Moment Mu	kN.m	825061.65	822644.51	824762.94	
Minimum Reinforcement for Bending Element		1.7M≦Mc	1.7M≦Mc	Mc≦Mu	
Minimum Reinforcement for Axial Element	mm ²	61871.7	51137.3	51506.9	
Axial Force Nu	kN	97641.24	97641.24	97641.24	
0.008A1' (Axial Force Na=N)	mm ²	61871.7	51137.3	51506.9	
0.008A2' (Axial Force Nu)	mm ²	27640.8	27640.8	27640.8	
Total Reinforcement Content As \geq Asmin		ок	ОК	ок	
Maximum Reinforcement Content Evaluation (My0≦Mu)		OK	ОК	ок	

Category	Unit	Regular Scenario HWL	Regular LWL Scenario	Wind Scenario
		Water Level Considered	Water Level Considered	Water Level Considered
Load Condition		Dead load	Regular load	Wind load
Axial Force N	kN	96841.24	108341.24	97641.24
Bending Moment M	kN.m	34250	34250	83879.97
Compression Edge~ Neutral Axis x	mm	33352	36600	17261
Compressive Stress oc	N/mm ²	1.4	1.54	1.78
Tensile Stress σs	N/mm ²	-13.57	-15.62	-8.37
Overdesign Factor α		1	1	1.25
Allowable Compressive Stress σca	N/mm ²	10	10	12.5
Allowable Tensile Stress σsa	N/mm ²	-200	-200	-250
Cracking Moment Mc	kN.m	434259.12	452762.77	435546.33
Yielding Moment My0	kN.m	804648.26	847252.37	807625.48
Ultimate Bending	kN.m	1195519.89	1242889.66	1198842.86
Moment Mu				
Minimum		$1.7M \leq M_{\odot}$	$1.7M \leq M_{\odot}$	$1.7M \le M_{\odot}$
Reinforcement for		1.7NI = NIC	1./NI = NIC	1./NI = NIC
Minimum				
Painforcement for Avial	2	76705.0	0501/1 0	61971 7
Flament	mm	/0/03.9	03014.0	018/1./
Axial Force Nu	kN	97641.24	97641.24	97641 24
0.008A1' (Axial Force		57011.21	57011.21	57011.21
Na=N)	mm ²	76705.9	85814.8	61871.7
0.008A2' (Axial Force Nu)	mm ²	27640.8	27640.8	27640.8
Total Reinforcement				
Content As \geq Asmin		OK	OK	OK
Maximum				
Reinforcement Content		OK	OK	OK
Evaluation (My0≦Mu)				

Table 4.2.77Examination of Bending Moment (Transverse)

Category	Unit	Marine Vessel Impact	Sesimic Scenario	
Curegory	Olin	Scenario		
		Water Level Considered	Water Level Considered	
Load Condition		Impact load	Lv1 Seismic Load	
Axial Force N	kN	96841.24	97641.24	
Bending Moment M	kN.m	161320	577239.17	
Compression Edge \sim Neutral Axis x	mm	11806	4720	
Compressive Stress oc	N/mm ²	2.34	8.85	
Tensile Stress os	N/mm ²	0.1	200.15	
Overdesign Factor α		1.5	1.5	
Allowable Compressive Stress σca	N/mm ²	15	15	
Allowable Tensile Stress σsa	N/mm ²	300	300	
Cracking Moment Mc	kN.m	434259.12	435546.33	
Yielding Moment My0	kN.m	804648.26	807625.48	
Ultimate Bending Moment Mu	kN.m	1195519.89	1198842.86	
Minimum Reinforcement for Bending Element		1.7M≦Mc	Mc≦Mu	
Minimum Reinforcement for Axial Element	mm ²	51137.3	51559.7	
Axial Force Nu	kN	97641.24	97641.24	
0.008A1' (Axial Force Na=N)	mm ²	51137.3	51559.7	
0.008A2' (Axial Force Nu)	mm ²	27640.8	27640.8	
Total Reinforcement Content As \geq Asmin		ОК	ОК	
Maximum Reinforcement Content Evaluation (My0≦Mu)		ОК	ок	

Category	Unit	Regular Scenario HWL	Regular LWL Scenario	Temperature Flux HWL Scenario	Temperature Flux LWL Scenario	Wind Scenario
		Water Level Considered	Water Level Considered	Water Level Considered	Water Level Considered	Water Level Considered
Load Condition		Dead load	Regular load	Dead + temp load	Dead + live + temp load	Wind load
b	mm	11147	11147	11147	11147	11147
d	mm	6937	6937	6937	6937	6937
S	kN	4700	2200	9300	6800	1285.38
Ν	kN	96841.24	108341.24	96541.24	108441.24	97641.24
М	kN.m	105750	49500	209250	153000	28173.51
α		1	1	1.15	1.15	1.25
pt	%	0.27	0.27	0.27	0.27	0.27
ce		0.561	0.561	0.561	0.561	0.561
cpt		0.97	0.97	0.97	0.97	0.97
CN		1	1	1	1	1
τm	N/mm ²	0.061	0.028	0.12	0.088	0.017
τa_1	N/mm ²	0.136	0.136	0.157	0.157	0.17
τa_2	N/mm ²	1.9	1.9	2.185	2.185	2.375
σsa	N/mm ²					
s	mm					
Sca	kN					
Sh'	kN					
AwReq	mm ²					
Aw	mm ²					

Category	Unit	Marine Vessel Impact Scenario	Sesimic Scenario
		Water Level Considered	Water Level Considered
Load Condition		Impact load	Lv1 Seismic Load
b	mm	11147	11147
d	mm	6937	6937
S	kN	9550	33957.85
Ν	kN	96841.24	97541.24
М	kN.m	169285	585015.11
α		1.5	1.5
pt	%	0.27	0.27
ce		0.561	0.561
cpt		0.97	0.97
CN		1	1
τm	N/mm ²	0.123	0.439
τa_1	N/mm ²	0.201	0.201
τa_2	N/mm ²	2.85	2.85
σsa	N/mm ²		300
s	mm		150
Sca	kN		15576.54
Sh'	kN		18381.31
AwReq	mm ²		1523.51
Aw	mm ²		3096.8

Here

S : Shear Force N : Axial Load

M : Bending Moment

b : Sectional Width of Element

d : Effective Height

- α : Overdesign factor for allowable stress
- pt : Primary tension bar ratio

ce : Correction factor of allowable shear force for effective height d

cpt : Correction factor of allowable shear force for tension bar ratio CN : Correction factor due to longitudinal compressive load

 τm : Average shear force

 $\tau a1$: Allowable shear force when only concrete bears shear force

 $\tau a2$: Allowable shear force when shear reinforcement rebar

- and concrete bears shear force
- σ sa : Allowable tensile stress of rebar

s : Spacing of shear reinforcement rebar

Sca : Shear force borne by concrete

Sh' : Shear force borne by reinforcement rebar

Awreq : Necessary shear reinforcement content

to meet condition $\tau a 1 < \tau m$ Aw : Shear reinforcement content

Category	Unit	Regular Scenario HWL	Regular LWL Scenario	Wind Scenario	Marine Vessel Impact Scenario
		Water Level Considered	Water Level Considered	Water Level Considered	Water Level Considered
Load Condition		Dead load	Regular load	Wind load	Impact load
b	mm	6991	6991	6991	6991
d	mm	11056	11056	11056	11056
S	kN	100	100	2253.55	9800
Ν	kN	96841.24	108341.24	97641.24	96841.24
М	kN.m	34250	34250	83879.97	161320
α		1	1	1.25	1.5
pt	%	0.27	0.27	0.27	0.27
ce		0.5	0.5	0.5	0.5
cpt		0.97	0.97	0.97	0.97
CN		1	1	1	1
τm	N/mm ²	0.001	0.001	0.029	0.127
τa_1	N/mm ²	0.121	0.121	0.152	0.179
τa_2	N/mm ²	1.9	1.9	2.375	2.85
σsa	N/mm ²				
s	mm				
Sca	kN				
Sh'	kN				
AwReq	mm ²				
Aw	mm ²				

 Table 4.2.79
 Examination of Shear Force (Transverse)

Category	Unit	Wind Scenario
		Water Level Considered
Load		TT7' 1 1 1
Condition		Wind load
b	mm	6991
d	mm	11056
S	kN	27972.52
Ν	kN	97641.24
М	kN.m	577239.17
α		1.5
pt	%	0.27
ce		0.5
cpt		0.97
CN		1
τm	N/mm ²	0.362
τa_1	N/mm ²	0.179
τa ₂	N/mm ²	2.85
σsa	N/mm ²	300
s	mm	150
Sca	kN	13872.31
Sh'	kN	14100.21
AwReq	mm ²	733.31
Aw	mm ²	2322.6

Here

- S : Shear Force
- N : Axial Load
- M : Bending Moment
- b : Sectional Width of Element
 - d : Effective Height
- α : Overdesign factor for allowable stress
- pt : Primary tension bar ratio
- ce : Correction factor of allowable shear force for effective height d
- cpt : Correction factor of allowable shear force for tension bar ratio
- CN : Correction factor due to longitudinal compressive load tm : Average shear force
- ta1 : Allowable shear force when only concrete bears shear force
- τa2 : Allowable shear force when shear reinforcement rebar and concrete bears shear force
- σsa : Allowable tensile stress of rebar
- s : Spacing of shear reinforcement rebar
- Sca : Shear force borne by concrete
- Sh': Shear force borne by reinforcement rebar
- $Awreq \ : Necessary \ shear \ reinforcement \ content$
 - to meet condition $\tau a1 < \tau m$
 - Aw : Shear reinforcement content

3) Bridge Seat Design

a) Dimension of Bridge Seat Width

The distance between the bearing support edge and the top edge of the substructure was set in accordance with the Specifications for Highway Bridges IV 8.6.

Figure 4.2.147 Bridge Seat Width

Source: JICA Study Team

- Evaluation of edge distance for bearing support

The edge distance of bearing support was set through the following equation:

S = 0.2 + 0.0051

 $= 0.2 + 0.005 \times 224.000 = 1.320 \text{ m}$

Hence, the edge distance of bearing support can be set as:

 $S = 1.320 \text{ m} < 1.935 \quad \cdot \cdot \cdot \text{OK}$

b) Evaluation of Bridge Seat Strength

Since the bridge seat has a function to support the superstructure via the bearing support, large horizontal force would act on it during an earthquake. For this reason, the bridge seat needs to be designed to have sufficient strength against design horizontal seismic force.

The resistance area of concrete against horizontal force is illustrated in the following drawings.

Source: JICA Study Team

Figure 4.2.148 Resistance Area of Concrete

Final Report

- Evaluation of strength

Pbs = Pc + Ps ($Pc \ge Ps$)

 $Pbs = 2.0 \times Pc \quad (Pc < Ps)$

Here,

Pbs : Strength of bridge seat (kN)

Note that the strength is determined under the condition that the strength borne by reinforcements does not exceed that borne by concrete.

Pc : Strength borne by concrete (kN)

 $Pc = (\alpha \cdot 0.32 \cdot \sqrt{\sigma ck} \cdot Ac) / 1000.0$

Ps : Strength borne by reinforcement (kN)

 $Ps = \Sigma \{\beta \cdot (1 - hi / da) \cdot \sigma sy \cdot Asi\} / 1000.0$

- α : Coefficient for determining the strength borne by concrete
- σn : Bearing stress at bottom of bearing support against vertical force
- σck : Design strength of concrete (kN/mm²)
- Ac : Resistance area of concrete (mm^2)
- B : Correction factor associated with the strength borne by reinforcement
- Hi : Distance from bridge seat surface of ith reinforcement (m)
- Da : Distance from center of anchor bolt in the rear side of bearing support to bridge seat edge
- Σ sy : Yield point of reinforcement (N/mm²)
- Asi : Cross sectional area of ith reinforcement

Items	Results
Resistance area of concrete Ac (mm ²)	72756068
Bearing stress on (N/mm ²)	5.6
Coefficient for determining the strength borne by concrete α	0.477
Strength borne by concrete Pc (kN)	60790.489
Strength borne by reinforcement Ps (kN)	1246.459
Design horizontal seismic force Ph (kN)	25900
Strength of bridge seat Pbs (kN)	62036.948
Judge ($Ph \leq Pbs$)	OK

(3) Foundation Design

1) Ground Conditions

The following figure shows the ground condition:

Figure 4.2.149 Ground Condition

2) Foundation Shape (Steel Pile Sheet Pile Foundation)

The following figure shows the arrangement of the steel pile sheet pile foundation:

Figure 4.2.150 Dimensional Drawing of Foundation Shape

[Calculation Result Table]

The table for the calculation results for the foundation is shown below.

			Longitudinal Direction				Transverse Direction				
			Outer peripheral sheet pile	;	φ1200	×	56.00	×	36 Piles		
Size(Size(mm)×Length(m)×Number		Partitioned sheet pile	;	φ1200	×	52.10	×	8 Piles	
Pile Steel Pip Thicknes		Outer Upper Pile				t = 14	mm	(SKY490)			
	Steel Pipe Thickness	teel Pipe hickness	Lower Pile			t = 14	(SKY400)				
		Partitioned sheet pile				t = 14	mm	(SKY400)			
	Regular	δ	cm	0.41	\leq	5.00	0	0.07	\leq	5.00	0
	(Current	PNmax	KN/Number	2742	\leq	3535	0	2740	\leq	3535	0
Stability	River Bed)	PNmin	KN/Number	2389	\geq	-1865	0	2399	\geq	-1865	0
Calculation	Seismic	δ	cm	2.68	≦	5.00	0	2.26	≦	5.00	0
	(Current	PNmax	KN/Number	2607	≦	5267	0	2623	≦	5267	0
	River Bed)	PNmin	KN/Number	2293	\geq	-3092	0	2277	\geq	-3092	0
Combine	ed Stress	SKY400	N/mm2	142.9	≦	210.0	0	156.4	≦	210.0	0
River	Bed)	SKY490	N/mm2	244.1	≦	277.5	0	242.1	≦	277.5	0

Table 4.2.81	Calculation R	Results for Foundation	n
--------------	---------------	------------------------	---

Source: JICA Study Team

3) Evaluation Results (Current Riverbed)

The steel pipe sheet pile foundation was designed by satisfying the following conditions:

- Reaction force in longitudinal direction from steel pipe sheet pile \leq Allowable bearing capacity,

Displacement \leq Allowable displacement

- Stress of steel pile sheet pile \leq Allowable stress

The evaluation results are shown in the next page.

Items		U	nit	HWL[W] at regular senario	LWL[W] at regular senario	HWL[W] temperature flux senario
		Vo	kN	115432.2	131272.9	115132.2
Act	ting force	Но	kN	4700	2200	9300
		Мо	kN.m	105750	49500	209250
Level crown of	Displacement	δ1	cm	0.409	0.191	0.809
fundation	Deflection angle	θ1	mrad	-0.319	-0.149	-0.63
Design ground	Displacement	δ2	cm	0.409	0.191	0.809
surface	Deflection angle	θ2	mrad	-0.319	-0.149	-0.63
Max beno open	ding moment of ing caisson	Mmax	kN.m	-118087	-55275	-233661
Locat	ion of Mmax	Lm	m	-15.1	-15.1	-15.1
	Outer peripheral	σmax	N/mm2	66.36	67.11	78.44
	sheet pile (SKY400)	Lm	m	-31.6	-31.6	-31.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	66.15	62.66	84.4
		Lm	m	-15.1	-15.1	-15.1
C.	Partitioned sheet pile (SKY400)	σmax	N/mm2	64.56	66.27	79.06
Stress		Lm	m	-31.6	-31.6	-15.1
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max beno opening c	ding moment of aisson at bottom	MB	kN.m	2860	1339	5659
Vertical	Maximum	Rmax	kN/pile	2421	2742	2430
reaction force	Minimum	Rmin	kN/pile	2389	2727	2367
	Displacement	ба	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3535	3535	3535
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1865	-1865	-1865
	Stress (SKY400)	σa	N/mm2	140	140	161
	Stress (SKY490)	σa	N/mm2	185	185	212.75

Table 4.2.82 Evaluation Results for Foundation (Longitudinal Direction) - 1

	Items	U	nit	LWL[W] at temperature senario	Wind senario [W]	Marine vessle impact senario [W]
		Vo	kN	131372.9	114821.7	115432.2
Ac	ting force	Но	kN	6800	1285.4	9550
		Мо	kN.m	153000	28173.5	169285
Level crown of	Displacement	δ1	cm	0.591	0.11	0.736
fundation	Deflection angle	θ1	mrad	-0.461	-0.086	-0.552
Design ground	Displacement	δ2	cm	0.591	0.11	0.736
surface	Deflection angle	θ2	mrad	-0.461	-0.086	-0.552
Max ben oper	ding moment of ning caisson	Mmax	kN.m	-170849	-31605	-198003
Locat	ion of Mmax	Lm	m	-15.1	-15.1	-15.42
	Outer peripheral	σmax	N/mm2	79.38	56.95	75.87
	sheet pile (SKY400)	Lm	m	-31.6	-31.6	-31.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	81.08	52.15	78.85
		Lm	m	-15.1	-15.1	-15.42
C.	Partitioned sheet pile (SKY400)	σmax	N/mm2	77.18	56.47	74.33
Stress		Lm	m	-15.1	-31.6	-15.42
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ben opening c	ding moment of aisson at bottom	MB	kN.m	4138	767	4892
Vertical	Maximum	Rmax	kN/pile	2760	2396	2432
force	Minimum	Rmin	kN/pile	2714	2388	2378
	Displacement	ба	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3535	5267	3535
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1865	-3092	-1865
	Stress (SKY400)	σа	N/mm2	161	175	210
	Stress (SKY490)	σа	N/mm2	212.75	231.25	277.5

Table 4.2.83 Evaluation Results for Foundation (Longitudinal Direction) - 2

Items		Unit		Seismic senario [W]	Dynamic analysis Smax	Dynamic analysis Mmax
		Vo	kN	118384.4	116430.6	116099.6
Act	ting force	Но	kN	33957.8	30839.6	28637.3
		Мо	kN.m	585015.1	564659	590183
Level crown of	Displacement	δ1	cm	2.68	2.435	2.386
fundation	Deflection angle	θ1	mrad	-1.986	-1.847	-1.848
Design ground	Displacement	δ2	cm	2.68	2.435	2.386
surface	Deflection angle	θ2	mrad	-1.986	-1.847	-1.848
Max bene open	ding moment of ing caisson	Mmax	kN.m	-710854	-673577	-684630
Locat	ion of Mmax	Lm	m	-17.1	-16.6	-16.3
	Outer peripheral	σmax	N/mm2	135.89	128.66	127.77
	sheet pile (SKY400)	Lm	m	-31.6	-31.6	-31.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	161.6	154.87	156.5
		Lm	m	-17.1	-16.6	-16.3
~	Partitioned sheet pile (SKY400)	σmax	N/mm2	145.36	139.49	140.85
Stress		Lm	m	-17.1	-16.6	-16.3
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ben opening c	ding moment of aisson at bottom	MB	kN.m	25513	22998	22801
Vertical	Maximum	Rmax	kN/pile	2607	2552	2544
reaction force	Minimum	Rmin	kN/pile	2326	2299	2293
	Displacement	ба	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	5267	5267	5267
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-3092	-3092	-3092
	Stress (SKY400)	σa	N/mm2	210	210	210
	Stress (SKY490)	σa	N/mm2	277.5	277.5	277.5

Table 4.2.84 Evaluation Results for Foundation (Longitudinal Direction) - 3

	Items	U	nit	HWL[W] at regular senario	LWL[W] at regular senario	Wind senario [W]
		Vo	kN	115432.2	131272.9	114821.7
Ac	ting force	Но	kN	100	100	2253.6
		Мо	kN.m	34250	34250	83880
Level crown of	Displacement	δ1	cm	0.068	0.068	0.259
fundation	Deflection angle	θ1	mrad	-0.051	-0.051	-0.161
Design	Displacement	δ2	cm	0.068	0.068	0.259
surface	Deflection angle	θ2	mrad	-0.051	-0.051	-0.161
Max ben oper	ding moment of ning caisson	Mmax	kN.m	-34288	-34288	-90274
Locat	ion of Mmax	Lm	m	-10.3	-10.3	-15.1
	Outer peripheral	σmax	N/mm2	57.24	64.63	64.46
	sheet pile (SKY400)	Lm	m	-31.6	-31.6	-31.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	52.43	58.93	60.42
		Lm	m	-10.3	-10.3	-15.1
	Partitioned sheet pile (SKY400)	σmax	N/mm2	55.14	62.53	57.67
Stress		Lm	m	-31.6	-31.6	-31.6
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ben opening c	ding moment of aisson at bottom	MB	kN.m	1143	1143	2387
Vertical	Maximum	Rmax	kN/pile	2410	2740	2404
force	Minimum	Rmin	kN/pile	2399	2729	2380
	Displacement	δa	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3535	3535	5267
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1865	-1865	-3092
	Stress (SKY400)	σа	N/mm2	140	140	175
	Stress (SKY490)	σа	N/mm2	185	185	231.25

Table 4.2.85 Evaluation Results for Foundation (Transverse Direction) - 1

	Items	Unit		Marine vessle impact senario [W]	Seismic senario [W]	Dynamic analysis Smax
		Vo	kN	115432.2	118484.4	115142
Act	ing force	Но	kN	9800	27972.5	-20268.8
		Мо	kN.m	161320	577239.2	-439530
Level crown of	Displacement	δ1	cm	0.753	2.262	-1.471
fundation	Deflection angle	θ1	mrad	-0.411	-1.325	0.923
Design	Displacement	δ2	cm	0.753	2.262	-1.471
surface	Deflection angle	θ2	mrad	-0.411	-1.325	0.923
Max beno open	ling moment of ing caisson	Mmax	kN.m	-205259	-708517	525808
Locati	on of Mmax	Lm	m	-19.1	-18.7	-17.5
	Outer peripheral	σmax	N/mm2	81.96	148.25	118.98
	sheet pile (SKY400)	Lm	m	-31.6	-31.6	-31.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	77.61	153	124.72
		Lm	m	-19.1	-18.7	-17.5
_	Partitioned sheet pile (SKY400)	σmax	N/mm2	64.41	90.16	78.21
Stress		Lm	m	-31.6	-31.6	-31.6
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max benc opening ca	ling moment of aisson at bottom	MB	kN.m	3465	31306	-24613
Vertical	Maximum	Rmax	kN/pile	2422	2623	2520
force	Minimum	Rmin	kN/pile	2388	2314	2277
	Displacement	δa	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3535	5267	5267
Allowable value	Pulling-out bearing capasity	Pa	kN/pile	-1865	-3092	-3092
	Stress (SKY400)	σa	N/mm2	210	210	210
	Stress (SKY490)	σa	N/mm2	277.5	277.5	277.5

Table 4.2.86	Evaluation Results for Foundation ((Transverse Direction) - 2
		\	/

Items		U	nit	Dynamic analysis Mmax
		Vo	kN	115142
Ac	ting force	Но	kN	-20217.6
		Мо	kN.m	-440242
Level crown of	Displacement	δ1	cm	-1.47
fundation	Deflection angle	θ1	mrad	0.923
Design	Displacement	δ2	cm	-1.47
surface	Deflection angle	θ2	mrad	0.923
Max bene open	ling moment of ing caisson	Mmax	kN.m	526131
Locat	ion of Mmax	Lm	m	-17.5
	Outer peripheral	σmax	N/mm2	118.97
	sheet pile (SKY400)	Lm	m	-31.6
	Outer peripheral	σmax	N/mm2	124.76
	sheet pile (SKY490)	Lm	m	-17.5
G .	Partitioned sheet	σmax	N/mm2	78.21
Stress	pile (SKY400)	Lm	m	-31.6
	Partitioned sheet	σmax	N/mm2	
	pile (SKY490)	Lm	m	
	Pile (SKK400)	σmax	N/mm2	
	Pile (SKK490)	σmax	N/mm2	
Max ben opening c	ling moment of aisson at bottom	MB	kN.m	-24638
Vertical	Maximum	Rmax	kN/pile	2520
reaction force	Minimum	Rmin	kN/pile	2277
	Displacement	ба	cm	5
	Pushing bearing capacity	Ra	kN/pile	5267
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-3092
	Stress (SKY400)	σa	N/mm2	210
	Stress (SKY490)	σа	N/mm2	277.5

Table 4.2.87 Evaluation Results for Foundation (Transverse Direction) - 3

4) Temporary Coffering Calculation (Current Riverbed)

During the temporary coffering, as the stress the steel pipe sheet pile is subjected to is affected by the construction sequence, the stress is calculated for each construction stage.

Figure 4.2.152 Construction Stage (7th – 13th Stage)

Table 4.2.88 Temporary Coffering Calculation Results (Longitudinal Direction)

 Longitudinal 	Direction								
Ite	em	Unit	1st Step	2nd Step	3rd Step	4th Step	5th Step	6th Step	7th Step
Maximum D	isplacement	cm	0.154	0.154	1.575	1.575	7.961	5.566	9.291
Cofferdam	SKY400	N/mm2	0.51	0.51	58.59	58.59	102.75	88.69	159.11
Section	SKY490	N/mm2	1.13	1.13	51.41	51.41	133.59	105.15	182.58
Wall Section	SKY400	N/mm2	0.04	0.04	0.66	0.66	31.30	12.71	22.32
wen section	SKY490	N/mm2	1.13	1.13	15.50	15.50	134.79	105.24	182.29
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	210.00
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	280.00
Ite	em	単位	8th Step	9th Step	10th Step	11th Step	12th Step	13th Step	
Maximum D	isplacement	cm	9.841	10.108	10.238	10.242	10.238	10.238	
Cofferdam	SKY400	N/mm2	168.08	154.52	147.96	147.85	147.70	147.69	
Section	SKY490	N/mm2	210.72	229.42	240.12	239.38	243.74	243.77	
Wall Section	SKY400	N/mm2	20.78	16.08	12.06	15.15	15.14	15.14	
wen section	SKY490	N/mm2	207.99	226.52	238.78	238.14	243.03	242.98	
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	

Source: JICA Study Team

Table 4.2.89 Temporary Coffering Calculation Results (Transverse Direction)

 Traverse Dire 	ection								
Ite	em	Unit	1st Step	2nd Step	3rd Step	4th Step	5th Step	6th Step	7th Step
Maximum D	isplacement	cm	0.154	0.154	1.591	1.591	7.990	5.590	9.335
Cofferdam	SKY400	N/mm2	0.51	0.51	58.38	58.38	102.69	88.61	159.10
Section	SKY490	N/mm2	1.13	1.13	51.22	51.22	133.47	104.99	182.57
Wall Section	SKY400	N/mm2	0.04	0.04	0.66	0.66	31.33	12.71	22.37
wen section	SKY490	N/mm2	1.13	1.13	15.64	15.64	134.66	105.07	182.28
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	210.00
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	280.00
Ite	em	単位	8th Step	9th Step	10th Step	11th Step	12th Step	13th Step	
Maximum D	isplacement	cm	9.973	10.290	10.456	10.476	10.472	10.473	
Cofferdam	SKY400	N/mm2	171.03	158.35	150.91	150.19	150.18	150.14	
Section	SKY490	N/mm2	212.33	231.89	243.13	241.07	245.37	245.51	
Wall Section	SKY400	N/mm2	20.98	16.47	12.67	15.08	15.08	15.08	
wen section	SKY490	N/mm2	209.41	228.85	241.79	240.19	245.02	244.66	
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	

5) Total Stress Calculation (Current Riverbed)

The stress the steel pipe sheet pile is subjected to is evaluated as the total of the leftover stress from the construction stage and the design external force after completion.

Leftover stress + Design external force after completion \leq Allowable stress of steel pipe sheet pile

Table 4.2.90 Temporary Coffering Calculation Results (Longitudinal Direction)

1)	Material	:	SKY400
- /	material		5111100

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	$\sigma a(N/mm^2)$
1	Regular scenario HWL[W]	-31.6	66.36	7.03	73.39	140
2	Regular scenario LWL[W]	-47.9	62.29	15.15	77.43	140
3	Temperature flux scenario HWL[W]	-31.6	78.44	7.03	85.47	161
4	Temperature flux scenario LWL[W]	-31.6	79.38	7.03	86.41	161
5	Wind scenario [W]	-47.9	54.18	15.15	69.33	175
6	Marine vessel impact scenario [W]	-31.6	75.87	7.03	82.9	210
7	Seismic scenario [W]	-31.6	135.89	7.03	142.92	210
8	Seismic scenario[Smax]	-31.6	128.66	7.03	135.69	210
9	Seismic scenario [Mmax]	-31.6	127.77	7.03	134.8	210

2) Material : SKY490

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	σa(N/mm ²)
1	Regular scenario HWL[W]	-21.5	64.39	88.43	152.82	185
2	Regular scenario LWL[W]	-21.5	61.84	88.43	150.27	185
3	Temperature flux scenario HWL[W]	-21.5	80.92	88.43	169.35	212.75
4	Temperature flux scenario LWL[W]	-21.5	78.54	88.43	166.97	212.75
5	Wind scenario [W]	-21.5	51.69	88.43	140.12	231.25
6	Marine vessel impact scenario [W]	-21.5	76.58	88.43	165.01	277.5
7	Seismic scenario [W]	-21.5	155.64	88.43	244.07	277.5
8	Seismic scenario[Smax]	-21.5	148.36	88.43	236.79	277.5
9	Seismic scenario [Mmax]	-21.5	148.81	88.43	237.24	277.5

Source: JICA Study Team

Table 4.2.91 Temporary Coffering Calculation Results (Transverse Direction)

1) Ma	aterial : SKY400					
Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	$\sigma a(N/mm^2)$
	1 Regular scenario HWL[W]	-47.9	54.88	15.08	69.96	140
	2 Regular scenario LWL[W]	-47.9	62.27	15.08	77.36	140
	3 Wind scenario [W]	-47.9	57.65	15.08	72.74	175
	4 Marine vessel impact scenario [W]	-31.6	81.96	8.18	90.15	210
	5 Seismic scenario [W]	-31.6	148.25	8.18	156.43	210
	6 Seismic scenario[Smax]	-31.6	118.98	8.18	127.17	210
	7 Seismic scenario [Mmax]	-31.6	118.97	8.18	127.16	210

2) Material : SKY490

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	$\sigma a(N/mm^2)$
1	Regular scenario HWL[W]	-21.5	51.63	90.66	142.3	185
2	Regular scenario LWL[W]	-21.5	58.13	90.66	148.8	185
3	Wind scenario [W]	-21.5	59.68	90.66	150.35	231.25
4	Marine vessel impact scenario [W]	-21.5	77.32	90.66	167.99	277.5
5	Seismic scenario [W]	-21.5	151.45	90.66	242.11	277.5
6	Seismic scenario[Smax]	-21.5	122.74	90.66	213.4	277.5

6) Evaluation Results (Considering Scour)

Evaluation of steel pipe sheet pile foundation was also done considering the effects of scour.

	Items	Unit		HWL[W] at regular senario	LWL[W] at regular senario	HWL[W] temperature flux senario
		Vo	kN	109177.4	125018.1	108877.4
Ac	ting force	Ho kN		4700	2200	9300
		Мо	kN.m	105750	49500	209250
Level crown of	Displacement	δ1	cm	0.551	0.258	1.09
fundation	Deflection angle	θ1	mrad	-0.386	-0.181	-0.763
Design ground	Displacement	δ2	cm	0.44	0.206	0.87
surface	Deflection angle	θ2	mrad	-0.348	-0.163	-0.689
Max bene open	ding moment of ing caisson	Mmax	kN.m	-131370	-61492	-259945
Locat	ion of Mmax	Lm	m	-17.5	-17.5	-17.5
	Outer peripheral sheet pile (SKY400)	σmax	N/mm2	66.8	65.76	82.16
		Lm	m	-31.6	-31.6	-31.6
	Outer peripheral	σmax	N/mm2	65.69	61.09	86.01
	sheet pile (SKY490)	Lm	m	-17.5	-17.5	-17.5
C.	Partitioned sheet	σmax	N/mm2	64.51	64.69	80.07
Stress	pile (SKY400)	Lm	m	-31.6	-31.6	-17.5
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ben opening c	ding moment of aisson at bottom	MB	kN.m	3337	1562	6603
Vertical	Maximum	Rmax	kN/pile	2293	2613	2305
force	Minimum	Rmin	kN/pile	2256	2596	2232
	Displacement	δa	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3501	3501	3501
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1848	-1848	-1848
	Stress (SKY400)	σа	N/mm2	140	140	161
	Stress (SKY490)	σa	N/mm2	185	185	212.75

Table 4.2.92 Evaluation Results for Foundation (Longitudinal Direction) - 1

Items		Unit		LWL[W] at temperature senario	Wind senario [W]	Marine vessle impact senario [W]
		Vo	kN	125118.1	108566.8	109177.4
Acting force		Но	kN	6800	1285.4	9550
		Мо	kN.m	153000	28173.5	169285
Level crown of	Level Displacement		cm	0.797	0.149	0.994
fundation	Deflection angle	θ1	mrad	-0.558	-0.104	-0.673
Design	Displacement	δ2	cm	0.636	0.119	0.799
surface	Deflection angle	θ2	mrad	-0.504	-0.094	-0.613
Max ben oper	ding moment of ing caisson	Mmax	kN.m	-190067	-35227	-224282
Locat	ion of Mmax	Lm	m	-17.5	-17.5	-18.7
	Outer peripheral	σmax	N/mm2	81.31	54.94	79.03
	(SKY400)	Lm	m	-31.6	-31.6	-31.6
	Outer peripheral	σmax	N/mm2	81.57	50.16	80.47
	(SKY490)	Lm	m	-17.5	-17.5	-18.7
C .	Partitioned sheet pile (SKY400)	σmax	N/mm2	78	54.32	75.34
Stress		Lm	m	-31.6	-31.6	-18.7
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ben opening c	ding moment of aisson at bottom	MB	kN.m	4828	896	5756
Vertical	Maximum	Rmax	kN/pile	2633	2267	2306
force	Minimum	Rmin	kN/pile	2580	2257	2243
	Displacement	ба	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3501	5267	3501
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1848	-3092	-1848
	Stress (SKY400)	σa	N/mm2	161	175	210
	Stress (SKY490)	σа	N/mm2	212.75	231.25	277.5

Table 4.2.93 Evaluation Results for Foundation (Longitudinal Direction) - 2

Items		Unit		Seismic senario [W]	Dynamic analysis Smax	Dynamic analysis Mmax
		Vo	kN	112688.9	110735.1	110404.1
Act	ing force	Но	kN	33957.8	30839.6	28637.3
		Мо	kN.m	585015.1	564659	590183
Level crown of	Level Displacement		cm	2.68	2.435	2.386
fundation	Deflection angle	θ1	mrad	-1.986	-1.847	-1.848
Design	Displacement	δ2	cm	2.68	2.435	2.386
surface	Deflection angle	θ2	mrad	-1.986	-1.847	-1.848
Max beno open	ling moment of ing caisson	Mmax	kN.m	-710854	-673577	-684630
Locati	on of Mmax	Lm	m	-17.1	-16.6	-16.3
	Outer peripheral	σmax	N/mm2	133.23	126	125.12
	(SKY400)	Lm	m	-31.6	-31.6	-31.6
	Outer peripheral	σmax	N/mm2	159.27	152.54	154.16
	(SKY490)	Lm	m	-17.1	-16.6	-16.3
~	Partitioned sheet	σmax	N/mm2	143.03	137.15	138.52
Stress	pile (SKY400)	Lm	m	-17.1	-16.6	-16.3
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max bend opening ca	ling moment of aisson at bottom	MB	kN.m	25513	22998	22801
Vertical	Maximum	Rmax	kN/pile	2488	2434	2426
reaction force	Minimum	Rmin	kN/pile	2207	2180	2174
	Displacement	δa	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	5267	5267	5267
Allowable value	Pulling-out bearing capasity	Pa	kN/pile	-3092	-3092	-3092
	Stress (SKY400)	σа	N/mm2	210	210	210
	Stress (SKY490)	σa	N/mm2	277.5	277.5	277.5

Table 4.2.94 Evaluation Results for Foundation (Longitudinal Direction) - 3

Items		Unit		HWL[W] at regular senario	LWL[W] at regular senario	Wind senario [W]
		Vo	kN	109177.4	125018.1	108566.8
Ac	ting force	Но	kN	100	100	2253.6
		Мо	kN.m	34250	34250	83880
Level crown of	Displacement	δ1	cm	0.085	0.085	0.327
fundation	Deflection angle	θ1	mrad	-0.057	-0.057	-0.187
Design ground	Displacement	δ2	cm	0.069	0.069	0.272
surface	Deflection angle	θ2	mrad	-0.051	-0.051	-0.171
Max ben oper	ding moment of ning caisson	Mmax	kN.m	-34591	-34591	-96685
Locat	ion of Mmax	Lm	m	-12.7	-12.7	-17.5
	Outer peripheral	σmax	N/mm2	54.79	62.18	63.38
	(SKY400)	Lm	m	-31.6	-31.6	-31.6
	Outer peripheral	σmax	N/mm2	49.9	56.4	58.8
	(SKY490)	Lm	m	-12.7	-12.7	-17.5
C .	Partitioned sheet	σmax	N/mm2	52.39	59.79	55.44
Stress	pile (SKY400)	Lm	m	-31.6	-31.6	-31.6
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ben opening c	ding moment of aisson at bottom	MB	kN.m	1043	1043	2009
Vertical	Maximum	Rmax	kN/pile	2280	2610	2272
force	Minimum	Rmin	kN/pile	2269	2599	2252
	Displacement	ба	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3501	3501	5267
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1848	-1848	-3092
	Stress (SKY400)	σa	N/mm2	140	140	175
	Stress (SKY490)	σa	N/mm2	185	185	231.25

Table 4.2.95 Evaluation Results for Foundation (Transverse Direction) - 1

Items		Unit		Marine vessle impact senario [W]	Seismic senario [W]	Dynamic analysis Smax
		Vo	kN	109177.4	112788.9	109446.5
Act	ing force	Но	kN	9800	27972.5	-20268.8
		Мо	kN.m	161320	577239.2	-439530
Level crown of	Displacement	δ1	cm	0.95	2.262	-1.471
fundation	Deflection angle	θ1	mrad	-0.486	-1.325	0.923
Design	Displacement	δ2	cm	0.808	2.262	-1.471
surface	Deflection angle	θ2	mrad	-0.455	-1.325	0.923
Max bend open	ling moment of ing caisson	Mmax	kN.m	-231109	-708517	525808
Locati	on of Mmax	Lm	m	-21.1	-18.7	-17.5
	Outer peripheral	σmax	N/mm2	84.43	145.59	116.33
	(SKY400)	Lm	m	-31.6	-31.6	-31.6
	Outer peripheral	σmax	N/mm2	78.85	150.67	122.38
	(SKY490)	Lm	m	-21.1	-18.7	-17.5
_	Partitioned sheet	σmax	N/mm2	63.51	87.5	75.55
Stress	pile (SKY400)	Lm	m	-31.6	-31.6	-31.6
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max benc opening ca	ling moment of aisson at bottom	MB	kN.m	2380	31306	-24613
Vertical	Maximum	Rmax	kN/pile	2286	2504	2402
force	Minimum	Rmin	kN/pile	2263	2195	2159
	Displacement	ба	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3501	5267	5267
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1848	-3092	-3092
	Stress (SKY400)	σа	N/mm2	210	210	210
	Stress (SKY490)	σа	N/mm2	277.5	277.5	277.5

Table 4.2.96 Evaluation Results for Foundation (Transverse Direction) - 2

	Items	τ	Unit	Dynamic analysis Mmax
		Vo	kN	109177.4
Ac	ting force	Но	kN	9800
		Мо	kN.m	161320
Level crown of	Displacement	δ1	cm	0.95
fundation	Deflection angle	θ1	mrad	-0.486
Design	Displacement	δ2	cm	0.808
surface	Deflection angle	θ2	mrad	-0.455
Max bending moment of opening caisson		Mmax	kN.m	-231109
Location of Mmax		Lm	m	-21.1
	Outer peripheral	σmax	N/mm2	84.43
	sheet pile (SKY400)	Lm	m	-31.6
	Outer peripheral	σmax	N/mm2	78.85
	sheet pile (SKY490)	Lm	m	-21.1
	Partitioned sheet	σmax	N/mm2	63.51
Stress	pile (SKY400)	Lm	m	-31.6
	Partitioned sheet	σmax	N/mm2	
	pile (SKY490)	Lm	m	
	Pile (SKK400)	σmax	N/mm2	
	Pile (SKK490)	σmax	N/mm2	
Max ben opening c	ding moment of aisson at bottom	MB	kN.m	2380
Vertical	Maximum	Rmax	kN/pile	2286
reaction force	Minimum	Rmin	kN/pile	2263
	Displacement	δа	cm	5
	Pushing bearing capacity	Ra	kN/pile	3501
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1848
	Stress (SKY400)	σa	N/mm2	210
	Stress (SKY490)	σa	N/mm2	277.5

Table 4.2.97 Evaluation Results for Foundation (Transverse Direction) - 3

7) Temporary Coffering Calculation (Considering Scour)

During the temporary coffering, as the stress the steel pipe sheet pile is subjected to is affected by the construction sequence, the stress is calculated for each construction stage.

Table 4.2.98 Temporary Coffering Calculation Results (Longitudinal Direction)

 Longitudinal 	Direction								
Ite	em	Unit	1st Step	2nd Step	3rd Step	4th Step	5th Step	6th Step	7th Step
Maximum D	isplacement	cm	0.154	0.154	1.575	1.575	7.961	5.566	9.291
Cofferdam	SKY400	N/mm2	0.51	0.51	58.59	58.59	102.75	88.69	159.11
Section	SKY490	N/mm2	1.13	1.13	51.41	51.41	133.59	105.15	182.58
Wall Section	SKY400	N/mm2	0.04	0.04	0.66	0.66	31.30	12.71	22.32
wen section	SKY490	N/mm2	1.13	1.13	15.50	15.50	134.79	105.24	182.29
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	210.00
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	280.00
Ite	em	単位	8th Step	9th Step	10th Step	11th Step	12th Step	13th Step	
Maximum D	isplacement	cm	9.841	10.108	10.238	10.242	10.238	10.238	
Cofferdam	SKY400	N/mm2	168.08	154.52	147.96	147.85	147.70	147.69	
Section	SKY490	N/mm2	210.72	229.42	240.12	239.38	243.74	243.77	
Wall Section	SKY400	N/mm2	20.78	16.08	12.06	15.15	15.14	15.14	
wen section	SKY490	N/mm2	207.99	226.52	238.78	238.14	243.03	242.98	
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	

Source: JICA Study Team

Table 4.2.99 Temporary Coffering Calculation Results (Transverse Direction)

 Traverse Dire 	ection								
Ite	em	Unit	1st Step	2nd Step	3rd Step	4th Step	5th Step	6th Step	7th Step
Maximum D	isplacement	cm	0.154	0.154	1.591	1.591	7.990	5.590	9.335
Cofferdam	SKY400	N/mm2	0.51	0.51	58.38	58.38	102.69	88.61	159.10
Section	SKY490	N/mm2	1.13	1.13	51.22	51.22	133.47	104.99	182.57
Wall Castion	SKY400	N/mm2	0.04	0.04	0.66	0.66	31.33	12.71	22.37
wen section	SKY490	N/mm2	1.13	1.13	15.64	15.64	134.66	105.07	182.28
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	210.00
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	280.00
Ite	em	単位	8th Step	9th Step	10th Step	11th Step	12th Step	13th Step	
Maximum D	isplacement	cm	9.973	10.290	10.456	10.476	10.472	10.473	
Cofferdam	SKY400	N/mm2	171.03	158.35	150.91	150.19	150.18	150.14	
Section	SKY490	N/mm2	212.33	231.89	243.13	241.07	245.37	245.51	
Wall Castion	SKY400	N/mm2	20.98	16.47	12.67	15.08	15.08	15.08	
wen section	SKY490	N/mm2	209.41	228.85	241.79	240.19	245.02	244.66	
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	

8) Total Stress Calculation (Considering Scour)

The stress the steel pipe sheet pile is subjected to is evaluated as the total of the leftover stress from the construction stage and the design external force after completion.

Leftover stress + Design external force after completion \leq Allowable stress of steel pipe sheet pile

Table 4.2.100 Temporary Coffering Calculation Results (Longitudinal Direction)

1	Material	:	SKY400
ь,	, what chian	•	SIX 1400

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	σmax(N/mm ²)	σa(N/mm ²)
1	Regular scenario HWL[W]	-31.6	66.8	7.03	73.83	140
2	Regular scenario LWL[W]	-47.9	60.01	15.15	75.15	140
3	Temperature flux scenario HWL[W]	-31.6	82.16	7.03	89.19	161
4	Temperature flux scenario LWL[W]	-31.6	81.31	7.03	88.34	161
5	Wind scenario [W]	-47.9	51.63	15.15	66.78	175
e	Marine vessel impact scenario [W]	-31.6	79.03	7.03	86.06	210
7	Seismic scenario [W]	-31.6	133.23	7.03	140.26	210
8	Seismic scenario[Smax]	-31.6	126	7.03	133.03	210
9	Seismic scenario [Mmax]	-31.6	125.12	7.03	132.15	210

2) Material : SKY490

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	σa(N/mm ²)
1	Regular scenario HWL[W]	-21.5	64.85	88.43	153.28	185
2	Regular scenario LWL[W]	-21.5	60.69	88.43	149.12	185
3	Temperature flux scenario HWL[W]	-21.5	84.35	88.43	172.78	212.75
4	Temperature flux scenario LWL[W]	-21.5	80.35	88.43	168.78	212.75
5	Wind scenario [W]	-21.5	49.94	88.43	138.37	231.25
6	Marine vessel impact scenario [W]	-21.5	79.5	88.43	167.93	277.5
7	Seismic scenario [W]	-21.5	153.3	88.43	241.73	277.5
8	Seismic scenario[Smax]	-21.5	146.02	88.43	234.45	277.5
9	Seismic scenario [Mmax]	-21.5	146.47	88.43	234.9	277.5

Source: JICA Study Team

Table 4.2.101 Temporary Coffering Calculation Results (Transverse Direction)

1) Materi	al : SKY400					
Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	$\sigma a(N/mm^2)$
1	Regular scenario HWL[W]	-47.9	54.88	15.08	69.96	140
2	Regular scenario LWL[W]	-47.9	62.27	15.08	77.36	140
2	Wind scenario [W]	-47.9	57.65	15.08	72.74	175
4	Marine vessel impact scenario [W]	-31.6	81.96	8.18	90.15	210
5	Seismic scenario [W]	-31.6	148.25	8.18	156.43	210
e	Seismic scenario[Smax]	-31.6	118.98	8.18	127.17	210
7	Seismic scenario [Mmax]	-31.6	118.97	8.18	127.16	210

2) Material : SKY490

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	$\sigma a(N/mm^2)$
1	Regular scenario HWL[W]	-21.5	49.42	90.66	140.09	185
2	Regular scenario LWL[W]	-21.5	55.92	90.66	146.59	185
3	Wind scenario [W]	-21.5	58.5	90.66	149.17	231.25
4	Marine vessel impact scenario [W]	-21.5	78.82	90.66	169.48	277.5
5	Seismic scenario [W]	-21.5	149.11	90.66	239.78	277.5
6	Seismic scenario[Smax]	-21.5	120.4	90.66	211.06	277.5
7	Seismic scenario [Mmax]	-21.5	120.42	90.66	211.09	277.5

4.2.10.2 Calculation for Side Pier (P10 and P13)

- (1) Design Conditions
- 1) Load Case

		Basic Load						
Scenario	Dead	Live	Temperature	Wind	Impact	Seismic	factor	
	load	Load	Load	Load	Load	Load	lactor	
Regular	0	○*1					1.00	
Temperature Flux	0	○*1	0				1.15	
Wind	0			0			1.25	
Marine Vessel Impact	0				0		1.50	
Seismic	0					0	1.50	

Table 4.2.102 Load Case

*1 Depending on combination with design water level, cases with and without is verified

Source: JICA Study Team

a) Reaction Force for Substructure Design

				0				
			P10		P13			
S	cenario	Cable Stayed Bridge+PC Girder			Cable Stayed Bridge + Steel Box Girder			
		Rv(KN)	RH(KN)	RM(KNm)	Rv(KN)	RH(KN)	RM(KNm)	
	Reguler HWL	10200	450	12400	6200	0	10120	
	Reguler LWL	19000	450	12400	23900	0	10120	
	Temperature HWL	10100	750	12400	6100	900	10120	
Longi. Direction	Temperature LWL	19300	750	12400	24200	900	10120	
Direction	Wind	12800	0	12400	8800	0	10120	
	Vessel Impact	10200	450	12400	6200	0	10120	
	Seismic	12200	4350	12400	8300	900	10120	
	Reguler HWL	10200	100	16800	6200	100	14200	
Ŧ	Reguler LWL	19000	100	16800	23900	-100	14200	
Trans. Direction	Wind	12800	600	4620	8800	900	2860	
	Vessel Impact	10200	100	16800	6200	100	14200	
	Seismic	12800	4300	16010	8800	4300	14160	

Table 4.2.103	Reaction	Force for	Substructure	Design
---------------	----------	-----------	--------------	--------

Source: JICA Study Team

Reaction forces at P10 which has critical force (horizontal force and bending moment at seismic scenario) were selected as the design force for substructure of P10 and P13.

2) Design Lateral Seismic Factor

Seismic performance 2 kh = 0.45 (used for evaluation of strength in the bridge seat member)

a) Design Water Level

Seconoria	Water Level	Flow rate
Scenario	(MSL+m)	(m/s)
Regular	+3.18	
(Temperature Flux)	-2.39	
Wind	+4.99	
Marine Vessel Impact	+3.18	
Seismic	+0.29	0.60

Table 4.2.104Design Water Level

Source: JICA Study Team

3) Impact Load of Marine Vessel

Longitudinal direction: 4850 kN

Transverse direction: 9700 kN (impact height +3.98)

4) Utilized Material

a) Unit Weight

Reinforced Concrete	γc	=	24.5 kN/m ³
Filling Sand	γd	=	18.0 kN/m ³
Water	γw	=	10.0 kN/m ³

b) Utilized Material and Allowable Stress

Table 4.2.105 Utilized Material and Allowable Stress (Concrete)

			(N/mm2)
		Pier	Pile Cap
Design strength σck		30.0	24.0
Compressive stress	Against bending	10.00	8.00
	Against axial force	8.50	6.50
Shearing stress	Borne by concrete only	0.25	0.23
	Bourne together with diagonal tension bars	1.90	1.70
	Punching shear stress (τa^3)	1.00	0.90
Bond stress	Deformed steel bars	1.80	1.60

					(N/mm2)
				Pier	Pile Cap
Type of steel member			SD345	SD345	
Principal load exluding live loa		and impact load are in effect		100.0	100.0
Tensile stress	Load combination does not	Regular members		180.0	180.0
	include effect of impact and seismic event	Members underwater or underneath ground water level		160.0	160.0
	Load combination includes effect of impact and seismic event		Axial reinforcement	200.0	200.0
			Other than the above	200.0	200.0
	Calculation of rebar lap joint and embedment length			200.0	200.0
Compressive stress			200.0	200.0	

Table 4.2.106	Utilized Material	and Allowable	Stress ((Steel)
---------------	-------------------	---------------	----------	---------

5) Design Condition

(2) Pier Design

1) Beam Design

The cross sectional shape of the beam and arrangement of steel reinforcement are shown below.

Note: Side reinforcement is effective in the range of 0.85 times the effective height. Concrete cover for main steel reinforcement d' = 192 mmEffective height d = 8808 mm 0.85d = 7487 mmEffective range for side steel reinforcement = 192 + 7487 = 7679 mm

Source: JICA Study Team

Figure 4.2.156 Cross Section of Beam
[Overview of Calculation Result]

The following table shows the calculation results for the beam.

					Vertical Direction		Horizontal Direction				
Member Height		Height	m	9.000			7.500				
Cross			1st block	D29	_	25 rebars		D16	_	49本	
Section	Rebar	Main Rebar	2nd block	D29	_	18 rebars					
		Stirr	up	D22	-8rebars ct	c200		D22-2rebars+D16-1rebars ctc200			c200
Bridge Seat Cracking		Required rebar amount	mm2								
Cobel		Required rebar amount	mm2	25,512	≦	27,623	0	11,049	≦	19,463	0
		Load (ase Dead Load				During Earthquake				
	Verification	σc	N/mm2	0.83	≦	10.00	0	0.71	≦	15.00	0
		σs	N/mm2	82.6	≦	100.0	0	99.5	≦	300.0	0
Cross		Load (Case	Dead + Live Load				During Earthquake			
Section Calculation	Varification	τm	N/mm2	0.006	≦	0.143	0	0.047	≦	0.111	0
	vermeation	Awreq < Aw	mm2								
	Verification for	M < My	KN•m					8,704	≦	21,371	0
	Earthquake Performance 2	S < Ps	KN					3,636	≦	16,160	0

 Table 4.2.107
 Calculation Results for Beam

Source: JICA Study Team

a) Cross Section Design in Vertical Direction (as a Corbel)

The design tension force needs to be verified because the ratio of the beam height to the distance between root and loading point is more than 1.0.

Table 4.2.108 Evaluation of Amount of Steel Reinforcement

Item	Unit	Dead Load	Dead and Live Load
Load Condition		Dead Load	Regular Load
Design Tensile Force T	kN	2551.18	3035.36
Allowable Tensile Stressosa	N/mm ²	100	180
Upper Surface Tension Steel Reinforcement		$Asu \ge AsuReq OK$	Asu \geq AsuReq OK
Used Amount Asu	mm ²	27623.2	27623.2
Required Amount AsuReq		25511.79	16863.09
Additional reinforcement steel for side surface		Ass ≧ AssReq OK	$Ass \ge AssReqOK$
Used Amount Ass	mm ²	19462.8	19462.8
Required Amount AssReq		11049.28	11049.28

 $\text{ & AsuReq} = 1000 \cdot \text{T} / \sigma \text{sa}$

 $\text{X} \text{AssReq} = 0.4 \cdot \text{Asu}$

b) Cross Section Design in Vertical Direction (Allowable Stress Method)

- Evaluation for Bending Moment

The evaluation for the bending moment was performed at the root of the beam.

Source: JICA Study Team

Figure 4.2.157 Cross Sectional Shape

Table 4.2.109	Main Steel Reinforcement Used for Cross Section Calculation (Vertical
	Direction)

No.	Position(mm)	Size	Number	Amount (mm^2)		
1	150	D29	25	16060		
2	250	D29	18	11563.2		
$Sum \Sigma As = 27623.2$						

Note: Minimum amount of steel reinforcement

[Total steel reinforcement amount (27623.2 mm²)

 \geq 500 mm² of steel reinforcement amount per m (3750.0 mm²)] OK

Maximum amount of steel reinforcement

[Tension steel reinforcement amount (27623.2 mm²)

 \leq Balanced reinforcement amount Asb (2028980.4 mm²)] OK

Source: JICA Study Team

Table 4.2.110	Evaluation F	Results for	Cross Section
---------------	--------------	-------------	----------------------

Item	Unit	Dead Load	Dead and Live Load
Load Consition		Dead load	Regular load
Bending Moment M	kN.m	19100.47	22725.47
Compression Edge~Neutral Axis x	mm	1163	1163
Compressive Stress oc	N/mm ²	0.83	0.99
Tensile Stress σs	N/mm ²	82.64	98.32
Overdesign Factor α		1	1
Allowable Compressive Stress σca	N/mm ²	10	10
Allowable Tensile Stress σsa	N/mm ²	100	180
Minimum Reinforcement Amount as Bending Element		1.7M≦Mc	1.7M≦Mc

Note: Cracking Bending Moment Mc = 200477.52 kNm, Ultimate Bending Moment Mu = 83534.65 kNm Source: JICA Study Team

- Evaluation for Shear Force

The evaluation for the shear force was performed at the H/2 point from the beam root and bearing support position outside the H/2 point.

	Verified point	Width	Beam Height	tanβ+
Cross Section		(Equivalent Width)		
	x(m)	b(m)	H(m)	tany
1	4.5	7.487	2.906	1.625

Table 4.2.111 Verified Cross Section

Source: JICA Study Team

Table 4.2.112	Evaluation Result for Cross Section

Cross Section[1] $b = 7487$ mm $h = 2906$ mm					
Item	Unit	Dead Load	Dead and Live Load		
State		Dead Load	Regular Load		
S	kN	124.1	124.1		
М	kN.m	15.13	15.13		
d	mm	2714	2714		
Sh	kN	115.04	115.04		
α		1	1		
pt	%	0.136	0.136		
ce		0.743	0.743		
cpt		0.772	0.772		
τm	N/mm ²	0.006	0.006		
τa_1	N/mm ²	0.143	0.143		
τa_2	N/mm ²	1.9	1.9		

 $\Re Sh = S - M / d \cdot (\tan\beta + \tan\gamma)$

$$\tau m = Sh / bd$$

Here

S : Shear Force

M : Bending Moment

d : Effective Height

 $tan\beta+tan\gamma$: Effective Height Change

Sh: Shear Force in Accordance with Effective Height Change

pt : Primary tension bar ratio

ce : Correction factor of allowable shear force for effective height d

cpt : Correction factor of allowable shear force for tension bar ratio

 $\tau m\,$: Average shear force

 $\tau a1$: Allowable shear force when only concrete bears shear force

 $\tau a2$: Allowable shear force when shear reinforcement rebar and concrete bears shear force

c) Cross Section Design in Horizontal Direction (Allowable Stress Method)

The evaluation for the bending moment was performed at the root of the beam.

Source: JICA Study Team

Figure 4.2.158 Cross Sectional Shape

Table 4.2.113	Main Steel Reinforcement Used for Cross Section Calculation (Horizontal
	Direction)

No.	Position(mm)	Size	Number	Amount (mm^2)		
1	98	D16	14	2780.4		
2	689	D16	35	6951		
$Sum \Sigma As = 9731.4$						

Note: Minimum amount of steel reinforcement

[Total steel reinforcement amount (9731.4 mm²)

 \geq 500 mm² of steel reinforcement amount per m (4585.4 mm²)] OK

Maximum amount of steel reinforcement

[Tension steel reinforcement amount (9731.4 mm²)

 \leq Balanced reinforcement amount Asb (2792298.9 mm²)] OK

Source: JICA Study Team

Item	Unit	Temp Flux Scenario	Seismic Scenario
Load Consition		Dead + Temp load	Lv1 Seismic Load
Bending Moment M	kN.m	580	6092.64
Compression Edge~Neutral Axis x	mm	719	719
Compressive Stress oc	N/mm ²	0.07	0.71
Tensile Stress σs	N/mm ²	9.47	99.51
Overdesign Factor α		1.15	1.5
Allowable Compressive Stress oca	N/mm ²	11.5	15
Allowable Tensile Stress σsa	N/mm ²	207	300
Minimum Reinforcement Amount as Bending Element		1.7M≦Mc	1.7M≦Mc

Note: Cracking Bending Moment Mc = 142980.53 kNm, Ultimate Bending Moment Mu = 23344.64 kNm Source: JICA Study Team

- Evaluation for Shear Force

The evaluation for the shear force was performed at the beam root and bearing support position.

	Verified point	Width	Beam Height	tanβ+
Cross Section		(Equivalent Width)		
	x(m)	b(m)	H(m)	tany
1	0	7.7	7.5	0
2	2.9	5.228	7.5	0

Table 4.2.115 Verified Cross Section

Source: JICA Study Team

Table 4.2.116 Evaluation Result for Cross Section

Cross Secti	on[1] b=	7700 mm h = 7500	mm
Item	Unit	Temp Flux Scenario	Seismic Scenario
State		Dead + Temp load	Lv1 Seismic Load
S	kN	200	2523.89
М	kN.m	580	6092.64
d	mm	6980	6980
Sh	kN	200	2523.89
α		1.15	1.5
pt	%	0.018	0.018
ce		0.56	0.56
cpt		0.536	0.536
τm	N/mm ²	0.004	0.047
τa_1	N/mm ²	0.086	0.111
τa_2	N/mm ²	2.185	2.85

Here

S : Shear Force

M : Bending Moment

d : Effective Height

 $tan\beta+tan\gamma$: Effective Height Change

Sh: Shear Force in Accordance with Effective Height Change

pt : Primary tension bar ratio

ce : Correction factor of allowable shear force for effective height d

cpt : Correction factor of allowable shear force for tension bar ratio

 τm : Average shear force

 $\tau a1$: Allowable shear force when only concrete bears shear force

 $\tau a2$: Allowable shear force when shear reinforcement rebar and concrete bears shear force

d) Cross Section Design in Horizontal Direction (Evaluation for Seismic Performance 2)

The evaluation for the bending moment was performed at the root of the beam.

Source: JICA Study Team

Figure 4.2.159 Cross Sectional Shape

Table 4.2.117Main Steel Reinforcement Used for Cross Section Calculation (Horizontal
Direction)

Main Steel Reinforcement (Position means the distance from the side surface of the beam)

No.	Position(mm)	Size	Number	Amount (mm^2)
1	98	D16	14	2780.4
2	689	D16	35	6951
Su	$m \Sigma As = 97$	/31.4		

Note: Total steel reinforcement amount 9731.4 mm² satisfies [500 mm² of steel reinforcement amount per m (4585.4 mm²)]

Source: JICA Study Team

Table 4.2.118 Evalua	ation Result for	Cross Section
----------------------	------------------	----------------------

Item	Unit	Seismic Performance 2
Load Condition		Type 2
Bending Moment M	kN.m	8703.96
Yielding Bending Moment My	kN.m	21370.63

Note; Cracking Bending Moment Mc = 142980.53 kNm, Ultimate Bending Moment Mu = 23344.64 kNm Source: JICA Study Team

- Evaluation for Shear Force

The evaluation for the shear force was performed at the beam root and bearing support position.

Sh = S -	M∕d ∙ (tanβ ·	+ tany)				
	Verified	Effective	tanβ+	Shear Force	Bending	
No.	point	Height		Shear Porce	Moment	Sh (kN)
	x(m)	d(m)	tanγ	S (kN)	M (kN.m)	
1	0	6.98	0	3635.84	8703.96	3635.84
2	2.9	7.207	0	2098.19	488.98	2098.19

Table 4.2.119 Sectional Force

Source: JICA Study Team

Table 4.2.120 Evaluation of Shear Strength

Ps = Sc + Ss $Sc = Ce \cdot Cpt \cdot \tau c \cdot b \cdot d$ $Ss = \frac{Aw \cdot \sigma sy \cdot d(\sin \theta + \cos \theta)}{1.15 \cdot s}$

No.	Verified Point x(m)	Sc	Ss (kN)	Ps S	Sh
1	0	5975.44	10184.77	16160.21≧	3635.84
2	2.9	4152.44	10516.36	14668.79≧	2098.19

2) Design of Column

The column shall be designed as a cantilever beam by treating the joint between the footing as a fixed end. The column cross section shall be designed against the most unfavorable combination of axial force and bending moment.

Note that the steel reinforcement in the column-axial direction was set by dynamic analysis evaluation.

Source: JICA Study Team

Figure 4.2.160 Cross Section of Column

[Overview of Calculation Result]

The following table shows the calculation results for the column.

				Longitude Direction			Transverse Direction				
	Membe	er Height	m	Elliptical Shape	;	12.000	×	7.500			
Cross		Main Dahan	1st block	D32	ctc	125	*	D32	ctc	135	*
Section	Rebar	Main Rebar	2nd block	D32	ctc	125	*				
	Lateral	Lateral Tie		D22	ctc	150		D22	ctc	150	
Crear		σc	N/mm2	7.29	≦	15.00	0	4.96	≦	15.00	0
Cross	L1	σs	N/mm2	216.0	≦	300.0	0	100.3	≦	300.0	0
Section	Earthquake	τm	N/mm2	0.283	>	0.171	_	0.259	>	0.152	_
Calculation	_	Aw req	mm2	721.6	≦	3096.8	0	431.4	≦	2322.6	0

Table 4.2.121 Calculation Result for Column

Note: *※* was decided by dynamic analysis Source: JICA Study Team

a) Cross Section Evaluation Results

The evaluation results for the column cross section are shown below.

Category	Unit	Regular Scenario HWL Water Level Considered	Regular LWL Scenario Water Level Considered	Temperature Flux HWL Scenario Water Level Considered	Temperature Flux LWL Scenario Water Level Considered
Load Condition		Dead load	Regular load	Dead + temp load	Dead + live + temp load
Axial Force N	kN	62727.94	71527.94	62627.94	71827.94
Bending Moment M	kN.m	24556.6	24556.6	31516.6	31516.6
Compression Edge \sim Neutral Axis x	mm	14647	16176	12227	13472
Compressive Stress oc	N/mm ²	1.03	1.14	1.11	1.22
Tensile Stress σs	N/mm ²	-7.71	-9.33	-6.62	-8.31
Overdesign Factor a		1	1	1.15	1.15
Allowable Compressive Stress σca	N/mm ²	10	10	11.5	11.5
Allowable Tensile Stress osa	N/mm ²	-200	-200	-230	-230
Cracking Moment Mc	kN.m	252952.42	262393.41	252845.13	262715.26
Yielding Moment My0	kN.m	430262.88	454422.32	429986.86	455241.75
Ultimate Bending Moment Mu	kN.m	518103.16	546140.58	517783.4	547091.07
Minimum Reinforcement for		1.7M≦Mc	1.7M≦Mc	1.7M≦Mc	1.7M≦Mc
Bending Element					
Minimum Reinforcement for Axial Element	mm ²	49685.5	56655.8	43135.9	49472.5
Axial Force Nu	kN	65327.94	65327.94	65327.94	65327.94
0.008A1' (Axial Force Na=N)	mm ²	49685.5	56655.8	43135.9	49472.5
0.008A2' (Axial Force Nu)	mm ²	18493.4	18493.4	18493.4	18493.4
Total Reinforcement		OK	OK	OK	OK
Content As ≧ Asmin		UK	UK	UK	UK
Maximum Reinforcement Content Evaluation (My0≦Mu)		ОК	ОК	OK	ОК

Table 4.2.122 Examination of Bending Moment (Longitudinal)

Category	Unit	Wind Scenario	Marine Vessel Impact Scenario	Sesimic Scenario
		Water Level Considered	Water Level Considered	Water Level Considered
Load Condition		Wind load	Impact load	Lv1 Seismic Load
Axial Force N	kN	65327.94	62727.94	64727.94
Bending Moment M	kN.m	19147.13	88091.6	325677.33
Compression Edge \sim Neutral Axis x	mm	18305	6689	2471
Compressive Stress oc	N/mm ²	1.01	1.73	7.29
Tensile Stress σs	N/mm ²	-9.03	2.56	216
Overdesign Factor a		1.25	1.5	1.5
Allowable Compressive Stress σca	N/mm ²	12.5	15	15
Allowable Tensile Stress σsa	N/mm ²	-250	300	300
Cracking Moment Mc	kN.m	255741.8	252952.42	255098.1
Yielding Moment My0	kN.m	437432.56	430262.88	435779.14
Ultimate Bending Moment Mu	kN.m	526418.57	518103.16	524502.03
Minimum Reinforcement for Bending Element		1.7M≦Mc	1.7M≦Mc	Mc≦Mu
Minimum Reinforcement for Axial Element	mm ²	41395.9	33123.7	34179.8
Axial Force Nu	kN	65327.94	65327.94	65327.94
0.008A1' (Axial Force Na=N)	mm ²	41395.9	33123.7	34179.8
0.008A2' (Axial Force Nu)	mm ²	18493.4	18493.4	18493.4
Total Reinforcement Content As \geq Asmin		ок	ок	ок
Maximum Reinforcement Content Evaluation (My0≦Mu)		ОК	ок	ОК

				,
Category	Unit	Regular Scenario HWL	Regular LWL Scenario	Wind Scenario
1 10 12		Water Level Considered	Water Level Considered	Water Level Considered
Load Condition		Dead load	Regular load	Wind load
Axial Force N Panding Moment M	kN kN m	62/2/.94	/152/.94	65327.94
Compression Edge~	KIN.III	19120	19120	19021.95
Neutral Axis x	mm	38100	42604	38576
Compressive Stress oc	N/mm ²	0.91	1.02	0.95
Tensile Stress σs	N/mm ²	-9.42	-11.04	-9.84
Overdesign Factor α		1	1	1.25
Allowable Compressive Stress σca	N/mm ²	10	10	12.5
Allowable Tensile Stress sa	N/mm ²	-200	-200	-250
Cracking Moment Mc	kN.m	379370.38	393529.7	383553.82
Yielding Moment My0	kN.m	557398.67	593291.93	568049.29
Ultimate Bending	kN m	782135.06	823147 76	794314 99
Moment Mu		,02155100	02011/1/0	// 101 11//
Minimum Dainfrances for		171/~)/	171/~1/	171(<)(
Reinforcement for		$1./M \ge Mc$	1./M≧MC	$1./M \ge Mc$
Minimum				
Reinforcement for Axial	mm^2	49685.5	56655.8	41395.9
Element	1.5.7	(5225.04	(5225.04	(5225.04
Axial Force Nu	kN	65327.94	65327.94	65327.94
0.008A1 (Axial Force Na=N)	mm ²	49685.5	56655.8	41395.9
0.008A2' (Axial Force	2			
Nu)	mm ²	18493.4	18493.4	18493.4
Total Reinforcement		OV	OV	OV
Content As \geq Asmin		OK	OK	0K
Maximum				
Reinforcement Content		OK	OK	OK
Evaluation (My0 \ge Mu)				
Category	Unit	Marine Vessel Impact	Sesimic Scenario	
Category	Onit	Scenario	Sestine Section to	
		Water Level Considered	Water Level Considered	
Load Condition		Impact load	Lv1 Seismic Load	
Axial Force N	kN	62727.94	65327.94	
Compression Edge~	KIN.M	146190	319234.78	
Neutral Axis x	mm	9828	5045	
Compressive Stress oc	NI/			
Tensile Stress os	N/mm	1.91	4.96	
	N/mm ²	1.91	4.96 100.32	
Overdesign Factor a	N/mm ²	1.91 5.9	4.96 100.32	
Overdesign Factor α	N/mm ²	1.91 5.9 1.5	4.96 100.32 1.5	
Overdesign Factor α Allowable Compressive Stress σca	N/mm ² N/mm ² N/mm ²	1.91 5.9 1.5 15	4.96 100.32 1.5 15	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress Stress Stress	N/mm ² N/mm ² N/mm ²	1.91 5.9 1.5 15 300	4.96 100.32 1.5 15 300	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Creating Memory Ma	N/mm ² N/mm ² N/mm ² N/mm ²	1.91 5.9 1.5 15 300	4.96 100.32 1.5 15 300	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Cracking Moment Mc Vieldino Moment Mv0	N/mm ² N/mm ² N/mm ² N/mm ² kN.m	1.91 5.9 1.5 15 300 379370.38 557398.67	4.96 100.32 1.5 15 300 383553.82 568049.29	
Overdesign Factor α Allowable Compressive Stress Stress σca Allowable Tensile Stress σsa Cracking Moment Mc Yielding Moment My0 Ultimate Bending Output	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m	1.91 5.9 1.5 15 300 379370.38 557398.67 782135.06	4.96 100.32 1.5 15 300 383553.82 568049.29 794314.99	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Gsa Cracking Moment Mcy Mcy Vielding Moment My0 Ultimate Bending Moment Mu Moment	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m	1.91 5.9 1.5 15 300 379370.38 557398.67 782135.06	4.96 100.32 1.5 15 300 383553.82 568049.29 794314.99	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Cracking Moment Mc Yielding Moment My0 Ultimate Bending Moment Mu Minimum Beir forsement for	N/mm ² N/mm ² N/mm ² kN.m kN.m	1.91 5.9 1.5 15 300 379370.38 557398.67 782135.06	4.96 100.32 1.5 15 300 383553.82 568049.29 794314.99	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Cracking Moment My0 Ultimate Bending Moment Mu Minimum Reinforcement for Bending Element	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m	1.91 5.9 1.5 15 300 379370.38 557398.67 782135.06 1.7M≦Mc	4.96 100.32 1.5 15 300 383553.82 568049.29 794314.99 Mc≦Mu	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Gracking Moment Mc Cracking Moment Mc Yielding Moment My0 Ultimate Bending Moment Mu Minimum Reinforcement for Bending Element Minimum Kentherent for Bending Element Minimum	N/mm ² N/mm ² N/mm ² KN.m kN.m	1.91 5.9 1.5 15 300 379370.38 557398.67 782135.06 1.7M≦Mc	4.96 100.32 1.5 300 383553.82 568049.29 794314.99 Mc≤Mu	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Gracking Moment Mc Cracking Moment Mc Yielding Moment MyO Ultimate Bending Moment Mu Minimum Reinforcement for Bending Element Minimum Reinforcement for Axial	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m mm ²	1.91 5.9 1.5 15 300 379370.38 557398.67 782135.06 1.7M≦Mc 33123.7	4.96 100.32 1.5 15 300 383553.82 568049.29 794314.99 Mc≦Mu 34496.6	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Cracking Moment Mc Yielding Moment My0 Ultimate Bending Moment Mu Reinforcement for Bending Element Minimum Reinforcement for Axial Element	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m mm ²	1.91 5.9 1.5 15 300 379370.38 557398.67 782135.06 1.7M≦Mc 33123.7	4.96 100.32 1.5 15 300 383553.82 568049.29 794314.99 Mc≦Mu 34496.6	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Gracking Moment Mc Yielding Moment My0 Ultimate Bending Moment My0 Ultimate Bending Element Minimum Reinforcement for Bending Element Minimum Reinforcement for common for Axial Element Minimum Reinforcement for Axial Stress	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m kN.m kN.m	1.91 5.9 1.5 15 300 379370.38 557398.67 782135.06 1.7M≦Mc 33123.7 65327.94	4.96 100.32 1.5 300 383553.82 568049.29 794314.99 Mc≦Mu 34496.6 65327.94	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Cracking Moment Mc Yielding Moment Mv Ultimate Bending Moment Mu Minimum Reinforcement for Bending Element Minimum Reinforcement for Axial Element Axial Force Nu 0.008A1' (Axial Force	N/mm ² N/mm ² N/mm ² kN.m kN.m mm ² kN mm ²	1.91 5.9 1.5 300 379370.38 557398.67 782135.06 1.7M≦Mc 33123.7 65327.94 33123.7	4.96 100.32 1.5 15 300 383553.82 568049.29 794314.99 Mc≦Mu 34496.6 65327.94 34496.6	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Cracking Moment Mc Yielding Moment My0 Ultimate Bending Moment Mu Minimum Reinforcement for Bending Element Minimum Reinforcement for Axial Element Axial Force Nu 0.008AI' (Axial Force Na=N)	N/mm ² N/mm ² N/mm ² kN.m kN.m mm ² kN mm ²	1.91 5.9 1.5 300 379370.38 557398.67 782135.06 1.7M≦Mc 33123.7 65327.94 33123.7	4.96 100.32 1.5 300 383553.82 568049.29 794314.99 Mc≦Mu 34496.6 65327.94 34496.6	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Cracking Moment Mc Yielding Moment My Mu Minimum Reinforcement for Bending Element Minimum Reinforcement for Axial Element Miaimum Quitimate Force Nu Nu Nu Minimum Reinforcement for Axial Element Nu Nu Quitimate Force Nu 0.008A1' (Axial Force Nu Nu <t< td=""><td>N/mm² N/mm² N/mm² kN.m kN.m kN.m mm² kN mm² mm²</td><td>1.91 5.9 1.5 300 379370.38 557398.67 782135.06 1.7M≦Mc 33123.7 65327.94 33123.7 18493.4</td><td>4.96 100.32 1.5 300 383553.82 568049.29 794314.99 Mc≦Mu 34496.6 65327.94 34496.6 18493.4</td><td></td></t<>	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m mm ² kN mm ² mm ²	1.91 5.9 1.5 300 379370.38 557398.67 782135.06 1.7M≦Mc 33123.7 65327.94 33123.7 18493.4	4.96 100.32 1.5 300 383553.82 568049.29 794314.99 Mc≦Mu 34496.6 65327.94 34496.6 18493.4	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Cracking Moment Mc Cracking Moment Mc Minimum Moment Mu Minimum Reinforcement for Bending Element Minimum Reinforcement for Axial Element Miaiminum Reinforcerent for Axial Force Nu 0.008A1' (Axial Force Nu 0.008A2' (Axial Force Nu) Total Reinforcement Stal Force	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m mm ² kN mm ² mm ²	1.91 5.9 1.5 300 379370.38 557398.67 782135.06 1.7M≦Mc 33123.7 65327.94 33123.7 18493.4	4.96 100.32 1.5 15 300 383553.82 568049.29 794314.99 Mc≦Mu 34496.6 65327.94 34496.6 18493.4	
Overdesign Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa Cracking Moment Mc Yielding Moment My Mu Minimum Reinforcement for Bending Element Minimum Reinforcement for Axial Element Miai Force 0.008A1' (Axial Force Nu 0.008A2' (Axial Force Nu) Total Reinforcement Content As ≧ Asmin	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m mm ² kN mm ² mm ²	1.91 5.9 1.5 300 379370.38 557398.67 782135.06 1.7M≦Mc 33123.7 65327.94 33123.7 18493.4 OK	4.96 100.32 1.5 300 383553.82 568049.29 794314.99 Mc≦Mu 34496.6 65327.94 34496.6 18493.4 OK	
$\begin{array}{c c} \text{Overdesign Factor} & \alpha \\ \hline \text{Allowable Compressive} \\ \hline \text{Stress} & \sigma ca \\ \hline \text{Allowable Tensile Stress} \\ \hline \sigma sa \\ \hline \text{Cracking Moment} & \text{Mc} \\ \hline \text{Yielding Moment} & \text{MyO} \\ \hline \text{Ultimate Bending} \\ \hline \text{Moment} & \text{Mu} \\ \hline \text{Minimum} \\ \hline \text{Reinforcement for} \\ \hline \text{Bending Element} \\ \hline \text{Minimum} \\ \hline \text{Reinforcement for Axial} \\ \hline \text{Element} \\ \hline \text{Axial Force} & \text{Nu} \\ \hline 0.008A1' (Axial Force \\ \hline \text{Na} = \text{N}) \\ \hline 0.008A2' (Axial Force \\ \hline \text{Nu} \\ \hline \ \text{Total Reinforcement} \\ \hline \ \text{Content As} \geqq \text{Asmin} \\ \hline \end{array}$	N/mm ² N/mm ² N/mm ² kN.m kN.m mm ² kN mm ² mm ²	1.91 5.9 1.5 300 379370.38 557398.67 782135.06 1.7M≦Mc 33123.7 65327.94 33123.7 18493.4 OK	4.96 100.32 1.5 300 383553.82 568049.29 794314.99 Mc≦Mu 34496.6 65327.94 34496.6 18493.4 OK	
$\begin{array}{c} \text{Overdesign Factor} & \alpha \\ \text{Allowable Compressive} \\ & \text{Stress} & \sigma ca \\ \text{Allowable Tensile Stress} \\ & \sigma sa \\ \hline & \text{Cracking Moment} & \text{Mc} \\ \text{Yielding Moment} & \text{My} \\ \text{Ultimate Bending} \\ & \text{Moment} & \text{Mu} \\ \hline & \text{Minimum} \\ \text{Reinforcement for} \\ \text{Bending Element} \\ \hline & \text{Minimum} \\ \hline & \text{Reinforcement for Axial} \\ \hline & \text{Element} \\ \hline & \text{Axial Force} & \text{Nu} \\ \hline & 0.008A1' (Axial Force \\ & \text{Na=N}) \\ \hline & 0.008A2' (Axial Force \\ & \text{Nu} \\ \hline \\ \hline & \text{Total Reinforcement} \\ \hline \\ \hline & \text{Content} As \geqq \text{Asmin} \\ \hline \\ $	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m mm ² kN mm ² mm ²	1.91 5.9 1.5 300 379370.38 557398.67 782135.06 1.7M≦Mc 33123.7 65327.94 33123.7 18493.4 OK OK	4.96 100.32 1.5 15 300 383553.82 568049.29 794314.99 Mc≦Mu 34496.6 65327.94 34496.6 18493.4 OK OK	

Table 4.2.123 Examination of Bending Moment (Transverse)

Source: JICA Study Team

Category	Unit	Regular Scenario HWL	Regular LWL Scenario	Temperature Flux HWL Scenario	Temperature Flux LWL Scenario	Wind Scenario
		Water Level Considered	Water Level Considered	Water Level Considered	Water Level Considered	Water Level Considered
Load Condition		Dead load	Regular load	Dead + temp load	Dead + live + temp load	Wind load
b	mm	11147	11147	11147	11147	11147
d	mm	6932	6932	6932	6932	6932
S	kN	450	450	750	750	264.04
Ν	kN	62727.94	71527.94	62627.94	71827.94	65327.94
М	kN.m	24556.6	24556.6	31516.6	31516.6	19147.13
α		1	1	1.15	1.15	1.25
pt	%	0.161	0.161	0.161	0.161	0.161
ce		0.561	0.561	0.561	0.561	0.561
cpt		0.823	0.823	0.823	0.823	0.823
CN		1	1	1	1	1
τm	N/mm ²	0.006	0.006	0.01	0.01	0.003
τa_1	N/mm ²	0.115	0.115	0.133	0.133	0.144
τa_2	N/mm ²	1.9	1.9	2.185	2.185	2.375
σsa	N/mm ²					
s	mm					
Sca	kN					
Sh'	kN					
AwReq	mm ²					
Aw	mm ²					
	1					

Table 4.2.124	Examination of Shear Force	(Longitudinal)	1
---------------	----------------------------	----------------	---

Category	Unit	Marine Vessel Impact Scenario	Sesimic Scenario
		Water Level Considered	Water Level Considered
Load Condition		Impact load	Lv1 Seismic Load
b	mm	11147	11147
d	mm	6932	6932
S	kN	5300	21903.86
Ν	kN	62727.94	64727.94
М	kN.m	88091.6	325677.33
α		1.5	1.5
pt	%	0.161	0.161
ce		0.561	0.561
cpt		0.823	0.823
CN		1	1
τm	N/mm ²	0.069	0.283
τa ₁	N/mm ²	0.171	0.171
τa ₂	N/mm ²	2.85	2.85
σsa	N/mm ²		300
s	mm		150
Sca	kN		13204.33
Sh'	kN		8699.53
AwReq	mm ²		721.59
Aw	mm ²		3096.8

Here

S : Shear Force

N : Axial Load

M : Bending Moment

b : Sectional Width of Element

d : Effective Height

 α : Overdesign factor for allowable stress

pt : Primary tension bar ratio

ce : Correction factor of allowable shear force for effective height d

cpt : Correction factor of allowable shear force for tension bar ratio

CN : Correction factor due to longitudinal compressive load

τm : Average shear force

 $\tau a1$: Allowable shear force when only concrete bears shear force

τa2 : Allowable shear force when shear reinforcement rebar and concrete bears shear force

 σ sa : Allowable tensile stress of rebar

s : Spacing of shear reinforcement rebar

Sca : Shear force borne by concrete

Sh': Shear force borne by reinforcement rebar

Awreq : Necessary shear reinforcement content

to meet condition $\tau a1 < \tau m$

Aw : Shear reinforcement content

Category	Unit	Regular Scenario HWL	Regular LWL Scenario	Wind Scenario	Marine Vessel Impact Scenario
		Water Level Considered	Water Level Considered	Water Level Considered	Water Level Considered
Load Condition		Dead load	Regular load	Wind load	Impact load
b	mm	6991	6991	6991	6991
d	mm	11064	11064	11064	11064
S	kN	100	100	658.01	9800
Ν	kN	62727.94	71527.94	65327.94	62727.94
М	kN.m	19120	19120	19621.93	146190
α		1	1	1.25	1.5
pt	%	0.161	0.161	0.161	0.161
ce		0.5	0.5	0.5	0.5
cpt		0.822	0.822	0.822	0.822
CN		1	1	1	1
τm	N/mm ²	0.001	0.001	0.009	0.127
τa_1	N/mm ²	0.103	0.103	0.128	0.152
τa_2	N/mm ²	1.9	1.9	2.375	2.85
σsa	N/mm ²				
s	mm				
Sca	kN				
Sh'	kN				
AwReq	mm ²				
Aw	mm ²				

Category	Unit	Wind Scenario
		Water Level Considered
Load		Wind load
Condition		willa load
b	mm	6991
d	mm	11064
S	kN	20068.53
N	kN	65327.94
М	kN.m	319234.78
α		1.5
pt	%	0.161
ce		0.5
cpt		0.822
CN		1
τm	N/mm ²	0.259
τa_1	N/mm ²	0.152
τa_2	N/mm ²	2.85
σsa	N/mm ²	300
s	mm	150
Sca	kN	11768.5
Sh'	kN	8300.04
AwReq	mm ²	431.35
Aw	mm ²	2322.6

Here

- S : Shear Force N : Axial Load
- M : Bending Moment
- b : Sectional Width of Element
- d : Effective Height
- α : Overdesign factor for allowable stress
- pt : Primary tension bar ratio
- ce : Correction factor of allowable shear force for effective height d
- cpt : Correction factor of allowable shear force for tension bar ratio
- CN : Correction factor due to longitudinal compressive load
- τm : Average shear force
- $\tau a 1$: Allowable shear force when only concrete bears shear force
- τa2 : Allowable shear force when shear reinforcement rebar and concrete bears shear force
- σ sa : Allowable tensile stress of rebar
- s : Spacing of shear reinforcement rebar
- Sca : Shear force borne by concrete
- Sh': Shear force borne by reinforcement rebar
- Awreq : Necessary shear reinforcement content
 - to meet condition $\tau a1 < \tau m$
 - Aw : Shear reinforcement content

b) Evaluation of Cross Section through Dynamic Analysis

Steel reinforcements in the column-axial direction were decided based on the dynamic analysis evaluation. The following table shows the results of the dynamic analysis.

		Judgement						0	0	0	0	0	0	0	0	0	0	0	0
	or Shear	Arranged Rebar Amount	(cm2)					30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968
	Rebar fo	Required Rebar Amount	(cm2)							0.796	1.855	2.910	3.890	4.711	5.245	5.416	5.584	5.750	5.913
	Stress	τa	(N/mm_2)					0.223	0.218	0.214	0.211	0.208	0.206	0.204	0.205	0.204	0.204	0.204	0.203
	Shear	μ	(N/mm_2)					0.202	0.214	0.226	0.240	0.254	0.267	0.278	0.286	0.289	0.291	0.293	0.295
		ź	Adopted	10553.4	12292.3	13599.4	14641.5	15630.3	16565.0	17493.9	18526.4	19595.3	20621.2	21463.6	22136.3	22314.9	22490.9	22664.5	22835.7
	1	ar Force(k	Min	-10553.4	-12292.3	-13593.7	-14592.3	-15537.2	-16456.3	-17315.4	-18279.2	-19238.8	-19908.7	-20705.8	-21285.5	-21419.3	-21550.1	-21678.1	-21803.5
	;	She	Max	10496.7	12266.2	13599.4	14641.5	15630.3	16565.0	17493.9	18526.4	19595.3	20621.2	21463.6	22136.3	22314.9	22490.9	22664.5	22835.7
		udgement						0	0	0	0	0	0	0	0	0	0	0	0
	(N/mm2)	a 8	σsa=300					59.9	84.5	111.8	141.5	173.7	205.8	242.2	245.3	252.8	260.4	268.1	275.9
	Bending Stress	g	oca=15					3.0	3.7	4.4	5.2	6.0	6.8	7.6	7.8	8.0	8.2	8.3	8.5
irection	Axial	Force	(kN)	41699.1	30821.2	34612.6	37790.8	41037.8	44428.2	47818.2	51208.2	54598.0	57987.4	61376.8	63410.2	64088.2	64766.0	65443.8	66121.6
cudinal D	Bending	Moment	(kN·m)	51135.9	71089.1	93152.3	116815.0	144279.0	173250.0	203597.0	235347.0	268612.0	301556.0	337526.0	344978.0	352344.0	359803.0	367302.0	374855.0
in Longit		rce(kN)	Min	-41699.1	-24066.4	-28276.2	-31755.4	-34963.1	-38277.1	-41663.0	-45049.3	-48436.1	-51823.4	-55211.1	-57921.6	-59277.0	-59954.7	-60632.4	-61310.1
ulation		Axial Fo	Max	-26178.8	-30821.2	-34612.6	-37790.8	-41037.8	-44428.2	-47818.2	-51208.2	-54598.0	-57987.4	-61376.8	-63410.2	-64088.2	-64766.0	-65443.8	-66121.6
ion Calc	ding	t(kN · m)	Min	-26954.4	-46660.2	-68759.3	-92524.7	-120182.0	-149437.0	-180218.0	-212487.0	-246312.0	-280462.0	-317815.0	-325483.0	-333235.0	-341074.0	-348967.0	-356903.0
oss Sect	Ben	Momeni	Max	51135.9	71089.1	93152.3	116815.0	144279.0	173250.0	203597.0	235347.0	268612.0	301556.0	337526.0	344978.0	352344.0	359803.0	367302.0	374855.0
ult of Cr		Element no.		6010	6011	6012	6013	6014	6015	6016	6017	6018	6019	6020	6021	6022	6023	6024	6025
P10Pier Res				Upper End of Column		Curved Section							P10 Pier						Lower End of Column

Table 4.2.126 Dynamic Analysis Results for P10

Fir	al Report

P13Pier Rest	ult of Cr	oss Sect	ion Calci	ulation i	in Longit	udinal [<u>)irection</u>						-				•	
		Benc	ling	-	ł	Bending	Axial	Bending Stress	(N/mm_2)		1	:		Shear 5	tress	Rebar for	r Shear	
	Element no.	Moment	(kN · m)	Axial Fo	rce(kN)	Moment	Force	QC	a S	Judgement	Sh	ar Force(k	ź	ч	ta H	Required A Rebar 1 Amount 4	Arranged J Rebar Amount	udgement
		Max	Min	Max	Min	(kN·m)	(kN)	σca=15	$\sigma sa=300$		Max	Min	Adopted	(N/mm_2)	(N/mm_2)	(cm2)	(cm2)	
Upper End of Column	6310	14460.3	-36151.7	-22319.4	-18153.3	36151.7	22319.4				8256.8	-7907.2	8256.8					
	6311	30931.4	-53261.4	-26960.8	-22792.2	53261.4	26960.8				10537.8	-10148.2	10537.8					
Curved Section	6312	50144.1	-73105.3	-30751.8	-26581.0	73105.3	30751.8				12230.5	-11834.2	12230.5					
	6313	71457.3	-95025.1	-33929.4	-29757.0	95025.1	33929.4				13511.6	-13130.4	13511.6					
	6314	96863.2	-121035.0	-37176.0	-33002.2	121035.0	37176.0	2.5	43.8	0	14689.8	-14343.8	14689.8	0.190	0.227		30.968	0
	6315	124267.0	-148916.0	-40565.6	-36390.6	148916.0	40565.6	3.1	66.3	0	15796.3	-15498.4	15796.3	0.204	0.221		30.968	0
	6316	153460.0	-178472.0	-43955.2	-39779.0	178472.0	43955.2	3.8	92.1	0	16835.8	-16557.5	16835.8	0.218	0.216	0.116	30.968	0
	6317	184452.0	-209637.0	-47344.6	-43167.4	209637.0	47344.6	4.6	120.8	0	17949.6	-17652.8	17949.6	0.232	0.212	1.280	30.968	0
	6318	217267.0	-242456.0	-50734.0	-46556.0	242456.0	50734.0	5.4	152.2	0	19308.3	-18846.2	19308.3	0.250	0.209	2.602	30.968	0
P13 Pier	6319	251838.0	-274776.0	-54123.2	-49944.6	274776.0	54123.2	6.2	183.3	0	20683.7	-19993.3	20683.7	0.268	0.207	3.886	30.968	0
	6320	285258.0	-309642.0	-57512.4	-53333.4	309642.0	57512.4	7.0	218.1	0	21763.5	-20856.8	21763.5	0.282	0.205	4.914	30.968	0
	6321	291535.0	-317174.0	-59545.8	-55366.8	317174.0	59545.8	7.1	221.3	0	22850.3	-21589.0	22850.3	0.296	0.205	5.791	30.968	0
	6322	298892.0	-324758.0	-60223.6	-56044.6	324758.0	60223.6	7.3	229.1	0	23123.8	-21770.9	23123.8	0.299	0.205	6.045	30.968	0
	6323	306338.0	-332424.0	-60901.4	-56722.2	332424.0	60901.4	7.5	237.0	0	23394.1	-21948.3	23394.1	0.303	0.204	6.296	30.968	0
	6324	313851.0	-340197.0	-61579.2	-57400.0	340197.0	61579.2	7.7	245.1	0	23661.1	-22121.6	23661.1	0.306	0.204	6.543	30.968	0
Lower End of Column	6325	321410.0	-348034.0	-62257.0	-58077.8	348034.0	62257.0	7.9	253.2	0	23925.3	-22291.0	23925.3	0.310	0.204	6.787	30.968	0

Table 4.2.127Dynamic Analysis Results for P13

3) Bridge Seat Design

a) Dimension of Bridge Seat Width

The distance between the bearing support edge and the top edge of the substructure was set in accordance with the Specifications for Highway Bridges IV 8.6.

[P10 Pier]

Figure 4.2.161 Bridge Seat Width

- Evaluation of edge distance for bearing support

The edge distance of bearing support was set through the following equation:

S1 = 0.2 + 0.0051

 $= 0.2 + 0.005 \times 51.000 = 0.455 \text{ m}$

Hence, the edge distance of bearing support can be set as:

 $S1 = 0.455 \text{ m} < 0.650 \quad \cdot \cdot \cdot \text{OK}$

Similarly, the edge distance of the other bearing support was set through the following equation:

S2 = 0.2 + 0.0051

 $= 0.2 + 0.005 \times 111.000 = 0.755 \text{ m}$

Hence, the edge distance of bearing support can be set as:

 $S2 = 0.755 \text{ m} < 2.323 \quad \cdot \cdot \cdot \text{OK}$

- Evaluation of length of beam placement on column

The beam placement length is configured to satisfy the following equation:

SEM = 0.7 + 0.0051= 0.7 + 0.005 × 111.000 = 1.255 m SE = UR + UG= 0.560 + 0.555 = 1.115 m

UR = 0.560 m (0.5 times longitudinal bearing width (Specifications of Highway Bridges (p. 306))

 $UG = \varepsilon g \cdot L$ (Type III Ground)

 $= 0.00500 \times 111.000 = 0.555m$

Therefore, the length of beam placement on column is as follows:

SE = 1.255 m < 3.550 m • • • OK

[P13 Pier]

Figure 4.2.162 Bridge Seat Width

- Evaluation of edge distance for bearing support

The edge distance of bearing support was set through the following equation:

S1 = 0.2 + 0.0051

 $= 0.2 + 0.005 \times 111.000 = 0.755 \text{ m}$

Hence, the edge distance of bearing support can be set as:

S1 = 0.755 m < 2.323 m · · · OK

Similarly, the edge distance of the other bearing support was set through the following equation:

S2 = 0.2 + 0.0051

 $= 0.2 + 0.005 \times 110.800 = 0.754 \text{ m}$

Hence, the edge distance of bearing support can be set as:

S2 = 0.754 m < 0.800 m · · · OK

- Evaluation of length of beam placement on column

The beam placement length is configured to satisfy the following equation:

SEM = 0.7 + 0.0051= 0.7 + 0.005 × 110.000 = 1.255 m SE = UR + UG= 0.560 + 0.555 = 1.115 m

UR = 0.560 m (0.5 times longitudinal bearing width (Specifications of Highway Bridges (p. 306))

 $UG = \varepsilon g \cdot L$ (Type III Ground)

 $= 0.00500 \times 111.000 = 0.555$

Therefore, the length of beam placement on column is as follows:

SE = 1.255 m < 3.550 m • • OK

b) Evaluation of Bridge Seat Strength

Since the bridge seat has a function to support the superstructure via bearing support, large horizontal force would act on it during an earthquake. For this reason, the bridge seat needs to be designed to have sufficient strength against design horizontal seismic force.

The resistance area of concrete against horizontal force is illustrated in the following drawings:

Final Report

- Evaluation of strength

Pbs = Pc + Ps ($Pc \ge Ps$) $Pbs = 2.0 \times Pc$ (Pc < Ps)

Where,

where,	
Pbs	: Strength of bridge seat (kN)
	Note that the strength is determined under the condition that the strength borne by reinforcements does not exceed that borne by concrete.
Pc	: Strength borne by concrete (kN)
	$Pc = (\alpha \cdot 0.32 \cdot \sqrt{\sigma ck} \cdot Ac) / 1000.0$
Ps	: Strength borne by reinforcement (kN)
	$Ps = \Sigma \{\beta \cdot (1 - hi / da) \cdot \sigma sy \cdot Asi\} / 1000.0$
α	: Coefficient for determining the strength borne by concrete
σn	: Bearing stress at bottom of bearing support against vertical force
σck	: Design strength of concrete (kN/mm ²)
Ac	: Resistance area of concrete (mm ²)
β	: Correction factor associated with the strength borne by reinforcement
hi	: Distance from bridge seat surface of ith reinforcement (m)
da	: Distance from center of anchor bolt in the rear side of bearing support to bridge seat edge
σsy	: Yield point of reinforcement (N/mm ²)
Asi	: Cross sectional area of ith reinforcement (mm ²)
	Table 4.2.128 Result of Bridge Seat Evaluation

Items	Results
Resistance area of concrete Ac (mm^2)	11844514
Bearing stress on (N/mm^2)	0
Coefficient for determining the strength borne by concrete α	0.15
Strength borne by concrete Pc (kN)	3114.004
Strength borne by reinforcement Ps (kN)	1896.405
Design horizontal seismic force Ph (kN)	3000
Strength of bridge seat Pbs (kN)	5010.409
Judge (Ph≦Pbs)	OK

(3) Foundation Design

1) Ground Conditions

The following figure shows the ground condition:

Figure 4.2.164 Ground Condition

2) Foundation Shape (Steel Pile Sheet Pile Foundation)

The following figure shows the arrangement of the steel pile sheet pile foundation:

Figure 4.2.165 Dimensional Drawing of Foundation Shape

[Calculation Result Table]

The table of the calculation results for the foundation is shown below.

				Loi	ngitude D	Direction			Transvers	e Direction	
	Siza(mn	a)×I anoth(ma)	×Numhar	Outer peripheral sheet pile	;	φ1200	×	56.00	×	36 Piles	
	Size(IIII	1)^Lengui(m)	~INUILIDEI	Partitioned sheet pile	;	φ1200	×	52.10	×	8 Piles	
Pile		Outer	Upper Pile			t = 14	mm	(SKY490)			
	Steel Pipe Thickness	sheet pile	Lower Pile			t = 14	mm	(SKY400)			
		Partitioned sheet pile				t = 14	mm	(SKY400)			
	Regular	δ	cm	0.11	≦	5.00	0	0.06	≦	5.00	0
	(Current	PNmax	KN/Number	1991	≦	3893	0	1990	≦	3893	0
Stability	River Bed)	PNmin	KN/Number	1682	\geq	-1959	0	1684	\geq	-1959	0
Calculation	Seismic	δ	cm	2.51	≦	5.00	0	3.10	≦	5.00	0
	(Current	PNmax	KN/Number	1922	≦	5839	0	1924	≦	5839	0
	River Bed)	PNmin	KN/Number	1638	\geq	-3344	0	1608	≧	-3344	0
Combine	ed Stress	SKY400	N/mm2	161.0	≦	210.0	0	194.3	≦	210.0	0
River	Bed)	SKY490	N/mm2	208.5	≦	277.5	0	239.6	≦	277.5	0

Table 4.2.129	Calculation Results for Foundation
14016 4.2.123	

Source: JICA Study Team

3) Evaluation Results (Current Riverbed)

The steel pipe sheet pile foundation was designed by satisfying the following conditions:

- Reaction force in longitudinal direction from steel pipe sheet pile \leq Allowable bearing capacity,

Displacement \leq Allowable displacement

- Stress of steel pile sheet pile \leq Allowable stress

The evaluation results are shown in the next page.

Items		U	nit	HWL[W] at regular senario	LWL[W] at regular senario	HWL[W] temperature flux senario
		Vo	kN	74258.6	87399.3	74158.6
Ac	eting force	Но	kN	450	450	750
		Мо	kN.m	24556.6	24556.6	31516.6
Level crown of	Displacement	δ1	cm	0.11	0.11	0.152
fundation	Deflection angle	θ1	mrad	-0.09	-0.09	-0.122
Design ground	Displacement	δ2	cm	0.11	0.11	0.152
surface	Deflection angle	θ2	mrad	-0.09	-0.09	-0.122
Max ber ope	ding moment of ning caisson	Mmax	kN.m	-26162	-26162	-34502
Loca	tion of Mmax	Lm	m	-15.1	-15.1	-15.6
	Outer peripheral	σmax	N/mm2	41.83	48.52	43.21
	(SKY400)	Lm	m	-26.6	-26.6	-26.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	43.24	49.93	44.92
		Lm	m	-15.1	-15.1	-15.6
C.	Partitioned sheet pile (SKY400)	σmax	N/mm2	42.44	49.13	43.87
Stress		Lm	m	-15.1	-15.1	-15.6
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ber opening o	ding moment of caisson at bottom	MB	kN.m	739	739	976
Vertical	Maximum	Rmax	kN/pile	1692	1991	1692
force	Minimum	Rmin	kN/pile	1683	1982	1679
	Displacement	ба	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3893	3893	3893
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1959	-1959	-1959
	Stress (SKY400)	σa	N/mm2	140	140	161
	Stress (SKY490)	σa	N/mm2	185	185	212.75

Table 4.2.130 Evaluation Results for Foundation (Longitudinal Dire	tion) - 1
--	-----------

Items		Unit		LWL[W] at temperature senario	Wind senario [W]	Marine vessle impact senario [W]
		Vo	kN	87699.3	75448.1	74258.6
Ac	ting force	Но	kN	750	264	5300
		Мо	kN.m	31516.6	19147.1	88091.6
Level crown of	Displacement	δ1	cm	0.152	0.08	0.627
fundation	Deflection angle	θ1	mrad	-0.122	-0.068	-0.446
Design	Displacement	δ2	cm	0.152	0.08	0.627
surface	Deflection angle	θ2	mrad	-0.122	-0.068	-0.446
Max ben oper	ding moment of ning caisson	Mmax	kN.m	-34502	-19972	-116848
Locat	tion of Mmax	Lm	m	-15.6	-14.1	-18.1
	Outer peripheral	σmax	N/mm2	50.1	41.41	58.28
	(SKY400)	Lm	m	-26.6	-26.6	-26.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	51.82	42.56	62.08
		Lm	m	-15.6	-14.1	-18.1
	Partitioned sheet pile (SKY400)	σmax	N/mm2	50.76	41.95	58.49
Stress		Lm	m	-15.6	-14.1	-18.1
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ber opening c	ding moment of caisson at bottom	MB	kN.m	976	563	3234
Vertical	Maximum	Rmax	kN/pile	1999	1718	1708
force	Minimum	Rmin	kN/pile	1987	1711	1667
	Displacement	δa	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3893	5839	3893
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1959	-3344	-1959
	Stress (SKY400)	σa	N/mm2	161	175	210
	Stress (SKY490)	σа	N/mm2	212.75	231.25	277.5

Table 4.2.131 Evaluation Results for Foundation (Longitudinal Direction) - 2

Items		U	nit	Seismic senario [W]	Dynamic analysis Smax	Dynamic analysis Mmax
		Vo	kN	78510.8	78177.1	78493.9
Ac	ting force	Но	kN	21903.9	22835.7	-20836.6
		Мо	kN.m	325677.3	356633	-374855
Level crown of	Displacement	δ1	cm	2.29	2.506	-2.426
fundation	Deflection angle	θ1	mrad	-1.681	-1.829	1.812
Design	Displacement	δ2	cm	2.29	2.506	-2.426
surface	Deflection angle	θ2	mrad	-1.681	-1.829	1.812
Max ben oper	ding moment of ning caisson	Mmax	kN.m	-460266	-496750	498649
Locat	tion of Mmax	Lm	m	-18.1	-18.1	-18.1
	Outer peripheral	σmax	N/mm2	119.68	126.05	125.01
	(SKY400)	Lm	m	-26.6	-26.6	-26.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	135.56	142.97	143.52
		Lm	m	-18.1	-18.1	-18.1
~	Partitioned sheet pile (SKY400)	σmax	N/mm2	121.43	127.72	128.21
Stress		Lm	m	-18.1	-18.1	-18.1
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ben opening c	ding moment of caisson at bottom	MB	kN.m	19595	21627	-21449
Vertical	Maximum	Rmax	kN/pile	1910	1916	1922
force	Minimum	Rmin	kN/pile	1658	1638	1646
	Displacement	δa	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	5839	5839	5839
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-3344	-3344	-3344
	Stress (SKY400)	σa	N/mm2	210	210	210
	Stress (SKY490)	σa	N/mm2	277.5	277.5	277.5

Table 4.2.132 Evaluation Results for Foundation (Longitudinal Direction) - 3

Items		Unit		HWL[W] at regular senario	LWL[W] at regular senario	Wind senario [W]
		Vo	kN	74258.6	87399.3	75448.1
Ac	cting force	Но	kN	100	100	658
		Мо	kN.m	19120	19120	19621.9
Level crown of	Displacement	δ1	cm	0.064	0.064	0.103
fundation	Deflection angle	θ1	mrad	-0.048	-0.048	-0.066
Design	Displacement	δ2	cm	0.064	0.064	0.103
surface	Deflection angle	θ2	mrad	-0.048	-0.048	-0.066
Max ber ope	nding moment of ning caisson	Mmax	kN.m	-19333	-19333	-23096
Loca	tion of Mmax	Lm	m	-13.36	-13.36	-18.1
	Outer peripheral	σmax	N/mm2	40.79	47.48	42.5
	sheet pile (SKY400)	Lm	m	-26.6	-26.6	-26.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	41.73	48.42	43.1
		Lm	m	-13.36	-13.36	-18.1
C.	Partitioned sheet pile (SKY400)	σmax	N/mm2	39.15	45.84	40.02
Stress		Lm	m	-13.36	-13.36	-18.1
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ber opening	nding moment of caisson at bottom	MB	kN.m	594	594	502
Vertical	Maximum	Rmax	kN/pile	1691	1990	1718
force	Minimum	Rmin	kN/pile	1684	1983	1712
	Displacement	ба	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3893	3893	5839
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1959	-1959	-3344
	Stress (SKY400)	σа	N/mm2	140	140	175
	Stress (SKY490)	σа	N/mm2	185	185	231.25

Table 4.2.133 Evaluation Results for Foundation (Transverse Direction) - 1

Items		U	nit	Marine vessle impact senario [W]	Seismic senario [W]	Dynamic analysis Smax
		Vo	kN	74258.6	79110.8	77726.3
Ac	ting force	Но	Ho kN		20068.5	26332.8
		Мо	kN.m	146190	319234.8	453519
Level crown of	Displacement	δ1	cm	1.145	2.026	3.104
fundation	Deflection angle	θ1	mrad	-0.653	-1.279	-1.871
Design	Displacement	δ2	cm	1.145	2.026	3.104
surface	Deflection angle	θ2	mrad	-0.653	-1.279	-1.871
Max ben oper	ding moment of ning caisson	Mmax	kN.m	-210778	-454812	-635677
Locat	tion of Mmax	Lm	m	-20.1	-20.1	-20.1
	Outer peripheral	σmax	N/mm2	77.68	123.45	157.69
	sheet pile (SKY400)	Lm	m	-26.6	-26.6	-26.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	80.57	132.54	168.52
		Lm	m	-20.1	-20.1	-20.1
	Partitioned sheet pile (SKY400)	σmax	N/mm2	52.46	71.89	83.75
Stress		Lm	m	-20.1	-20.1	-20.1
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ben opening c	ding moment of caisson at bottom	MB	kN.m	2103	19547	24002
Vertical	Maximum	Rmax	kN/pile	1701	1919	1915
force	Minimum	Rmin	kN/pile	1675	1677	1618
	Displacement	δa	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3893	5839	5839
Allowable value	Pulling-out bearing capasity	Pa	kN/pile	-1959	-3344	-3344
	Stress (SKY400)	σa	N/mm2	210	210	210
	Stress (SKY490)	σa	N/mm2	277.5	277.5	277.5

Table 4.2.134 Evaluation Results for Foundation (Transverse Direction) - 2

	Items	U	nit	Dynamic analysis Mmax
		Vo	kN	77703.9
Ac	ting force	Но	kN	23647.4
		Мо	kN.m	470199
Level crown of	Displacement	δ1	cm	2.93
fundation	Deflection angle	θ1	mrad	-1.815
Design	Displacement	δ2	cm	2.93
surface	Deflection angle	θ2	mrad	-1.815
Max ber oper	ding moment of ning caisson	Mmax	kN.m	-627628
Locat	tion of Mmax	Lm	m	-19.1
	Outer peripheral	σmax	N/mm2	154.5
	sheet pile (SKY400)	Lm	m	-26.6
	Outer peripheral	σmax	N/mm2	166.88
	sheet pile (SKY490)	Lm	m	-19.1
~	Partitioned sheet	σmax	N/mm2	83.18
Stress	pile (SKY400)	Lm	m	-19.1
	Partitioned sheet	σmax	N/mm2	
	pile (SKY490)	Lm	m	
	Pile (SKK400)	σmax	N/mm2	
	Pile (SKK490)	σmax	N/mm2	
Max ber opening o	ding moment of caisson at bottom	MB	kN.m	25507
Vertical	Maximum	Rmax	kN/pile	1924
reaction force	Minimum	Rmin	kN/pile	1608
	Displacement	ба	cm	5
	Pushing bearing capacity	Ra	kN/pile	5839
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-3344
	Stress (SKY400)	σa	N/mm2	210
	Stress (SKY490)	σa	N/mm2	277.5

Table 4.2.135 Evaluation Results for Foundation (Transverse Direction) - 3

4) Temporary Coffering Calculation (Current Riverbed)

During the temporary coffering, as the stress the steel pipe sheet pile is subjected to is affected by the construction sequence, the stress is calculated for each construction stage.

Longitudinal	Direction								
Ite	m	Unit	1st Step	2nd Step	3rd Step	4th Step	5th Step	6th Step	7th Step
Maximum D	visplacement	cm	0.165	0.165	2.203	2.203	7.505	4.920	8.615
Cofferdam	SKY400	N/mm2	0.63	0.63	62.99	62.99	102.15	83.19	158.40
Section	SKY490	N/mm2	1.02	1.02	61.41	61.41	136.42	100.07	182.23
Wall Section	SKY400	N/mm2	0.04	0.04	5.83	5.83	58.00	31.02	51.56
well Section	SKY490	N/mm2	1.02	1.02	26.91	26.91	137.65	100.07	180.59
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	210.00
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	280.00
Ite	m	単位	8th Step	9th Step	10th Step	11th Step	12th Step	13th Step	
Maximum D	isplacement	cm	9.041	9.238	9.321	9.306	9.294	9.294	
Cofferdam	SKY400	N/mm2	175.13	172.06	168.21	168.82	169.43	169.43	
Section	SKY490	N/mm2	207.30	222.73	230.20	227.46	226.57	226.57	
Wall Section	SKY400	N/mm2	45.19	41.44	38.31	34.98	35.05	35.05	
wen section	SKY490	N/mm2	200.19	214.58	223.22	219.46	218.07	218.70	
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	
Strace	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	

Table 4.2.136 Temporary Coffering Calculation Results (Longitudinal Direction)

 Table 4.2.137
 Temporary Coffering Calculation Results (Transverse Direction)

Traverse Dire	ection								
Ite	em	Unit	1st Step	2nd Step	3rd Step	4th Step	5th Step	6th Step	7th Step
Maximum D	isplacement	cm	0.165	0.165	2.218	2.218	7.533	4.945	8.657
Cofferdam	SKY400	N/mm2	0.63	0.63	62.79	62.79	102.09	83.08	158.37
Section	SKY490	N/mm2	1.02	1.02	61.18	61.18	136.30	99.88	182.18
Wall Section	SKY400	N/mm2	0.04	0.04	5.82	5.82	58.12	31.06	51.71
wen section	SKY490	N/mm2	1.02	1.02	26.62	26.62	137.51	99.88	180.54
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	210.00
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	280.00
Ite	em	単位	8th Step	9th Step	10th Step	11th Step	12th Step	13th Step	
Maximum D	isplacement	cm	9.152	9.387	9.496	9.497	9.484	9.484	
Cofferdam	SKY400	N/mm2	177.40	175.03	170.72	170.40	170.94	170.94	
Section	SKY490	N/mm2	208.83	225.02	232.71	229.69	228.89	228.89	
Wall Section	SKY400	N/mm2	45.68	42.26	39.52	36.64	36.71	36.71	
wen section	SKY490	N/mm2	201.30	216.48	225.71	222.05	220.75	220.75	
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	

5) Total Stress Calculation (Current Riverbed)

The stress the steel pipe sheet pile is subjected to is evaluated as the total of the leftover stress from the construction stage and the design external force after completion.

Leftover stress + Design external force after completion \leq Allowable stress of steel pipe sheet pile

Table 4.2.138 Temporary Coffering Calculation Results (Longitudinal Direction)

1) Material : SKY400

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	$\sigma a(N/mm^2)$
1	Regular scenario HWL[W]	-26.6	41.83	34.98	76.82	140
2	Regular scenario LWL[W]	-26.6	48.52	34.98	83.51	140
3	Temperature flux scenario HWL[W]	-26.6	43.21	34.98	78.19	161
4	Temperature flux scenario LWL[W]	-26.6	50.1	34.98	85.08	161
5	Wind scenario [W]	-26.6	41.41	34.98	76.39	175
6	Marine vessel impact scenario [W]	-26.6	58.28	34.98	93.26	210
7	Seismic scenario [W]	-26.6	119.68	34.98	154.66	210
8	Seismic scenario[Smax]	-26.6	126.05	34.98	161.04	210
9	Seismic scenario [Mmax]	-26.6	125.01	34.98	159.99	210

2) Material : SKY490

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	$\sigma a(N/mm^2)$
	Regular scenario HWL[W]	-22.1	42.61	69.58	112.19	185
	2 Regular scenario LWL[W]	-22.1	49.31	69.58	118.88	185
	3 Temperature flux scenario HWL[W]	-22.1	44.21	69.58	113.79	212.75
	Temperature flux scenario LWL[W]	-22.1	51.1	69.58	120.68	212.75
	5 Wind scenario [W]	-22.1	42.02	69.58	111.6	231.25
	6 Marine vessel impact scenario [W]	-22.1	61.12	69.58	130.7	277.5
	7 Seismic scenario [W]	-22.1	131.81	69.58	201.39	277.5
	8 Seismic scenario[Smax]	-22.1	138.95	69.58	208.53	277.5
	9 Seismic scenario [Mmax]	-22.1	138.55	69.58	208.13	277.5

Source: JICA Study Team

Table 4.2.139 Temporary Coffering Calculation Results (Transverse Direction)

1) Material : SKY400

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	$\sigma a(N/mm^2)$
1	Regular scenario HWL[W]	-26.6	40.79	36.64	77.44	140
2	Regular scenario LWL[W]	-26.6	47.48	36.64	84.13	140
3	Wind scenario [W]	-26.6	42.5	36.64	79.14	175
4	Marine vessel impact scenario [W]	-26.6	77.68	36.64	114.32	210
5	Seismic scenario [W]	-26.6	123.45	36.64	160.1	210
6	Seismic scenario[Smax]	-26.6	157.69	36.64	194.34	210
7	Seismic scenario [Mmax]	-26.6	154.5	36.64	191.15	210

2) Material : SKY490

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	$\sigma a(N/mm^2)$
	1 Regular scenario HWL[W]	-22.1	41.27	72.26	113.53	185
	2 Regular scenario LWL[W]	-22.1	47.96	72.26	120.22	185
	3 Wind scenario [W]	-22.1	42.94	72.26	115.2	231.25
	4 Marine vessel impact scenario [W]	-22.1	80.37	72.26	152.63	277.5
	5 Seismic scenario [W]	-22.1	131.33	72.26	203.59	277.5
	6 Seismic scenario[Smax]	-22.1	167.3	72.26	239.56	277.5
	7 Seismic scenario [Mmax]	-22.1	164.96	72.26	237.23	277.5

6) Evaluation Results (Considering Scour)

Evaluation of steel pipe sheet pile foundation was also done considering the effects of scour.

The steel pipe sheet pile foundation was designed by satisfying the following conditions:

- Reaction force in longitudinal direction from steel pipe sheet pile \leq Allowable bearing capacity,

Displacement \leq Allowable displacement

- Stress of steel pile sheet pile \leq Allowable stress

Table 4.2.140	Evaluation	Results for	Foundation	(Lona	itudinal	Direction)) - 1
	Liadation		oundation	(raannan	Dirocaony	, .

Items		Unit		HWL[W] at regular scenario	LWL[W] at regular scenario	HWL[W] temperature flux scenario
		Vo	kN	68171.9	81312.6	68071.9
Acting force		Но	kN	450	450	750
		Мо	kN.m	24556.6	24556.6	31516.6
Level crown of	Displacement	δ1	cm	0.117	0.117	0.162
fundation	Deflection angle	θ1	mrad	-0.094	-0.094	-0.127
Design	Displacement	δ2	cm	0.097	0.097	0.135
surface	Deflection angle	θ2	mrad	-0.086	-0.086	-0.116
Max ben oper	ding moment of ning caisson	Mmax	kN.m	-26706	-26706	-35322
Locat	ion of Mmax	Lm	m	-15.6	-15.6	-16.1
	Outer peripheral sheet pile (SKY400)	σmax	N/mm2	38.92	45.61	40.36
		Lm	m	-26.6	-26.6	-26.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	40.26	46.95	42
		Lm	m	-15.6	-15.6	-16.1
_	Partitioned sheet pile (SKY400)	σmax	N/mm2	39.44	46.13	40.91
Stress		Lm	m	-15.6	-15.6	-16.1
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			<u> </u>
	Pile (SKK490)	σmax	N/mm2			
Max bending moment of opening caisson at bottom		MB	kN.m	754	754	996
Vertical	Maximum	Rmax	kN/pile	1554	1853	1553
force	Minimum	Rmin	kN/pile	1545	1843	1541
Allowable value	Displacement	δa	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3893	3893	3893
	Pulling-out bearing capasity	Pa	kN/pile	-1959	-1959	-1959
	Stress (SKY400)	σa	N/mm2	140	140	161
	Stress (SKY490)	σa	N/mm2	185	185	212.75

Items		Unit		LWL[W] at temperature scenario	Wind scenario [W]	Marine vessel impact scenario [W]
		Vo	kN	81612.6	69361.4	68171.9
Acting force		Но	kN	750	264	5300
		Мо	kN.m	31516.6	19147.1	88091.6
Level crown of	Displacement	δ1	cm	0.162	0.085	0.668
fundation	Deflection angle	θ1	mrad	-0.127	-0.07	-0.467
Design	Displacement	δ2	cm	0.135	0.071	0.57
surface	Deflection angle	θ2	mrad	-0.116	-0.064	-0.437
Max ber oper	nding moment of ning caisson	Mmax	kN.m	-35322	-20330	-121160
Loca	tion of Mmax	Lm	m	-16.1	-15.1	-18.1
	Outer peripheral sheet pile (SKY400) Outer peripheral sheet pile (SKY490)	σmax	N/mm2	47.26	38.45	56.25
		Lm	m	-26.6	-26.6	-26.6
		σmax	N/mm2	48.89	39.54	59.87
		Lm	m	-16.1	-15.1	-18.1
	Partitioned sheet pile (SKY400)	σmax	N/mm2	47.81	38.91	56.15
Stress		Lm	m	-16.1	-15.1	-18.1
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ber opening o	Max bending moment of		kN.m	996	573	3325
Vertical	Maximum	Rmax	kN/pile	1861	1580	1571
reaction force	Minimum	Rmin	kN/pile	1848	1573	1528
	Displacement	ба	cm	5	5	5
Allowable value	Pushing bearing capacity	Ra	kN/pile	3893	5839	3893
	Pulling-out bearing capasity	Ра	kN/pile	-1959	-3344	-1959
	Stress (SKY400)	σa	N/mm2	161	175	210
	Stress (SKY490)	σа	N/mm2	212.75	231.25	277.5

Table 4.2.141 Evaluation Results for Foundation (Longitudinal Direction) - 2

Items		Unit		Seismic scenario [W]	Dynamic analysis Smax	Dynamic analysis Mmax
		Vo	kN	74016	73682.3	73999.1
Acting force		Но	kN	21903.9	22835.7	-20836.6
		Мо	kN.m	325677.3	356633	-374855
Level crown of	Displacement	δ1	cm	2.29	2.506	-2.426
fundation	Deflection angle	θ1	mrad	-1.681	-1.829	1.812
Design	Displacement	δ2	cm	2.29	2.506	-2.426
surface	Deflection angle	θ2	mrad	-1.681	-1.829	1.812
Max ben oper	ding moment of ning caisson	Mmax	kN.m	-460266	-496750	498649
Location of Mmax		Lm	m	-18.1	-18.1	-18.1
	Outer peripheral sheet pile (SKY400)	σmax	N/mm2	117.39	123.77	122.72
		Lm	m	-26.6	-26.6	-26.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	133.27	140.68	141.24
		Lm	m	-18.1	-18.1	-18.1
_	Partitioned sheet pile (SKY400)	σmax	N/mm2	119.14	125.43	125.92
Stress		Lm	m	-18.1	-18.1	-18.1
	Partitioned sheet pile (SKY490)	σmax	N/mm2			
		Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ben opening c	ding moment of aisson at bottom	MB	kN.m	19595	21627	-21449
Vertical	Maximum	Rmax	kN/pile	1808	1814	1820
force	Minimum	Rmin	kN/pile	1556	1536	1544
	Displacement	δa	cm	5	5	5
Allowable value	Pushing bearing capacity	Ra	kN/pile	5839	5839	5839
	Pulling-out bearing capasity	Ра	kN/pile	-3344	-3344	-3344
	Stress (SKY400)	σа	N/mm2	210	210	210
	Stress (SKY490)	σа	N/mm2	277.5	277.5	277.5

Table 4.2.142 Evaluation Results for Foundation (Longitudinal Direction) - 3
	Items	U	nit	HWL[W] at regular scenario	LWL[W] at regular scenario	Wind scenario [W]
		Vo	kN	68171.9	81312.6	69361.4
Ad	cting force	Но	kN	100	100	658
		Мо	kN.m	19120	19120	19621.9
Level crown of	Displacement	δ1	cm	0.067	0.067	0.108
fundation	Deflection angle	θ1	mrad	-0.05	-0.05	-0.068
Design ground	Displacement	δ2	cm	0.057	0.057	0.094
surface	Deflection angle	θ2	mrad	-0.046	-0.046	-0.064
Max ber	nding moment of ning caisson	Mmax	kN.m	-19515	-19515	-23654
Loca	tion of Mmax	Lm	m	-14.1	-14.1	-18.1
	Outer peripheral	σmax	N/mm2	37.78	44.47	39.54
	(SKY400)	Lm	m	-26.6	-26.6	-26.6
	Outer peripheral sheet pile (SKY490)	σmax	N/mm2	38.67	45.36	40.12
		Lm	m	-14.1	-14.1	-18.1
	Partitioned sheet	σmax	N/mm2	36.07	42.76	36.96
Stress	pile (SKY400)	Lm	m	-14.1	-14.1	-18.1
	Partitioned sheet	σmax	N/mm2			
	pile (SKY490)	Lm	m			
	Pile (SKK400)	σmax	N/mm2			
	Pile (SKK490)	σmax	N/mm2			
Max ber opening	nding moment of caisson at bottom	MB	kN.m	584	584	490
Vertical	Maximum	Rmax	kN/pile	1553	1852	1579
force	Minimum	Rmin	kN/pile	1546	1844	1573
	Displacement	ба	cm	5	5	5
	Pushing bearing capacity	Ra	kN/pile	3893	3893	5839
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1959	-1959	-3344
	Stress (SKY400)	σа	N/mm2	140	140	175
	Stress (SKY490)	σа	N/mm2	185	185	231.25

Table 4.2.143 Evaluation Results for Foundation (Transverse Direction) - 1

	Items	Unit		Marine vessel impact scenario [W]	Seismic scenario [W]	Dynamic analysis Smax	
		Vo	kN	68171.9	74616	73231.5	
Ac	ting force	Но	kN	9800	20068.5	26332.8	
		Мо	kN.m	146190	319234.8	453519	
Level crown of	Displacement	δ1	cm	1.158	2.026	3.104	
fundation	Deflection angle	θ1	mrad	-0.664	-1.279	-1.871	
Design ground	Displacement	δ2	cm	1.017	2.026	3.104	
surface	Deflection angle	θ2	mrad	-0.631	-1.279	-1.871	
Max ben oper	ding moment of ning caisson	Mmax	kN.m	-216793	-454812	-635677	
Locat	tion of Mmax	Lm	m	-21.1	-20.1	-20.1	
	Outer peripheral	σmax	N/mm2	75.75	121.17	155.41	
	(SKY400)	Lm	m	-26.6	-26.6	-26.6	
	Outer peripheral	σmax	N/mm2	78.69	130.25	166.23	
	sheet pile (SKY490)	Lm	m	-21.1	-20.1	-20.1	
_	Partitioned sheet	σmax	N/mm2	49.78	69.6	81.47	
Stress	pile (SKY400)	Lm	m	-21.1	-20.1	-20.1	
	Partitioned sheet	σmax	N/mm2				
	pile (SKY490)	Lm	m				
	Pile (SKK400)	σmax	N/mm2				
	Pile (SKK490)	σmax	N/mm2				
Max ben opening c	ding moment of caisson at bottom	MB	kN.m	2587	19547	24002	
Vertical	Maximum	Rmax	kN/pile	1565	1817	1813	
force	Minimum	Rmin	kN/pile	1533	1575	1516	
	Displacement	ба	cm	5	5	5	
	Pushing bearing capacity	Ra	kN/pile	3893	5839	5839	
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-1959	-3344	-3344	
	Stress (SKY400)	σа	N/mm2	210	210	210	
	Stress (SKY490)	σа	N/mm2	277.5	277.5	277.5	

Table 4.2.144	Evaluation Results for Foundation	(Transverse Direction) - 2
---------------	-----------------------------------	-----------------------	-------

	Items	U	nit	Dynamic analysis Mmax
		Vo	kN	73209.1
Ac	eting force	Но	kN	23647.4
		Мо	kN.m	470199
Level crown of	Displacement	δ1	cm	2.93
fundation	Deflection angle	θ1	mrad	-1.815
Design ground	Displacement	δ2	cm	2.93
surface	Deflection angle	θ2	mrad	-1.815
Max ben oper	ding moment of ning caisson	Mmax	kN.m	-627628
Locat	tion of Mmax	Lm	m	-19.1
	Outer peripheral	σmax	N/mm2	152.21
	(SKY400)	Lm	m	-26.6
	Outer peripheral	σmax	N/mm2	164.59
	(SKY490)	Lm	m	-19.1
	Partitioned sheet	σmax	N/mm2	80.89
Stress	pile (SKY400)	Lm	m	-19.1
	Partitioned sheet	σmax	N/mm2	
	pile (SKY490)	Lm	m	
	Pile (SKK400)	σmax	N/mm2	
	Pile (SKK490)	σmax	N/mm2	
Max ber opening o	ding moment of caisson at bottom	MB	kN.m	25507
Vertical	Maximum	Rmax	kN/pile	1822
reaction force	Minimum	Rmin	kN/pile	1506
	Displacement	ба	cm	5
	Pushing bearing capacity	Ra	kN/pile	5839
Allowable value	Pulling-out bearing capasity	Ра	kN/pile	-3344
	Stress (SKY400)	σa	N/mm2	210
	Stress (SKY490)	σа	N/mm2	277.5

Table 4.2.145 Evaluation Results for Foundation (Transverse Direction) - 3

7) Temporary Coffering Calculation (Considering Scour)

During the temporary coffering, as the stress the steel pipe sheet pile is subjected to is affected by the construction sequence, the stress is calculated for each construction stage.

Table 4.2.146 Temporary Coffering Calculation Results (Longitudinal Direction)

 Longitudinal 	Longitudinal Direction										
Ite	m	Unit	1st Step	2nd Step	3rd Step	4th Step	5th Step	6th Step	7th Step		
Maximum Displacement		cm	0.165	0.165	2.203	2.203	7.505	4.920	8.615		
Cofferdam	SKY400	N/mm2	0.63	0.63	62.99	62.99	102.15	83.19	158.40		
Section	SKY490	N/mm2	1.02	1.02	61.41	61.41	136.42	100.07	182.23		
Wall Section	SKY400	N/mm2	0.04	0.04	5.83	5.83	58.00	31.02	51.56		
wen section	SKY490	N/mm2	1.02	1.02	26.91	26.91	137.65	100.07	180.59		
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	210.00		
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	280.00		
Ite	m	単位	8th Step	9th Step	10th Step	11th Step	12th Step	13th Step			
Maximum D	visplacement	cm	9.041	9.238	9.321	9.306	9.294	9.294			
Cofferdam	SKY400	N/mm2	175.13	172.06	168.21	168.82	169.43	169.43			
Section	SKY490	N/mm2	207.30	222.73	230.20	227.46	226.57	226.57			
Wall Section	SKY400	N/mm2	45.19	41.44	38.31	34.98	35.05	35.05			
wen section	SKY490	N/mm2	200.19	214.58	223.22	219.46	218.07	218.07			
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00			
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00			

Source: JICA Study Team

Table 4.2.147 Temporary Coffering Calculation Results (Transverse Direction)

Traverse Dire	Traverse Direction										
Ite	m	Unit	1st Step	2nd Step	3rd Step	4th Step	5th Step	6th Step	7th Step		
Maximum Displacement		cm	0.165	0.165	2.218	2.218	7.533	4.945	8.657		
Cofferdam	SKY400	N/mm2	0.63	0.63	62.79	62.79	102.09	83.08	158.37		
Section	SKY490	N/mm2	1.02	1.02	61.18	61.18	136.30	99.88	182.18		
Wall Section	SKY400	N/mm2	0.04	0.04	5.82	5.82	58.12	31.06	51.71		
wen section	SKY490	N/mm2	1.02	1.02	26.62	26.62	137.51	99.88	180.54		
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00	210.00		
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00	280.00		
Ite	m	単位	8th Step	9th Step	10th Step	11th Step	12th Step	13th Step			
Maximum D	visplacement	cm	9.152	9.387	9.496	9.497	9.484	9.484			
Cofferdam	SKY400	N/mm2	177.40	175.03	170.72	170.40	170.94	170.94			
Section	SKY490	N/mm2	208.83	225.02	232.71	229.69	228.89	228.89			
Wall Castion	SKY400	N/mm2	45.68	42.26	39.52	36.64	36.71	36.71			
Well Section	SKY490	N/mm2	201.30	216.48	225.71	222.05	220.75	220.75			
Allowable	SKY400	N/mm2	210.00	210.00	210.00	210.00	210.00	210.00			
Stress	SKY490	N/mm2	280.00	280.00	280.00	280.00	280.00	280.00			

8) Total Stress Calculation (Considering Scour)

The stress the steel pipe sheet pile is subjected to is to be evaluated as the total of the leftover stress from the construction stage and the design external force after completion.

Leftover stress + Design external force after completion \leq Allowable stress of steel pipe sheet pile

Table 4.2.148 Temporary Coffering Calculation Results (Longitudinal Direction)

1) Material : SKY400

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	$\sigma a(N/mm^2)$
1	Regular scenario HWL[W]	-26.6	38.92	34.98	73.9	140
2	Regular scenario LWL[W]	-26.6	45.61	34.98	80.59	140
3	Temperature flux scenario HWL[W]	-26.6	40.36	34.98	75.34	161
4	Temperature flux scenario LWL[W]	-26.6	47.26	34.98	82.24	161
5	Wind scenario [W]	-26.6	38.45	34.98	73.43	175
6	Marine vessel impact scenario [W]	-26.6	56.25	34.98	91.23	210
7	Seismic scenario [W]	-26.6	117.39	34.98	152.37	210
8	Seismic scenario[Smax]	-26.6	123.77	34.98	158.75	210
9	Seismic scenario [Mmax]	-26.6	122.72	34.98	157.71	210

2) Material : SKY490

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	σmax(N/mm ²)	$\sigma a(N/mm^2)$
	Regular scenario HWL[W]	-22.1	39.7	69.58	109.28	185
2	Regular scenario LWL[W]	-22.1	46.39	69.58	115.97	185
	Temperature flux scenario HWL[W]	-22.1	41.36	69.58	110.94	212.75
4	Temperature flux scenario LWL[W]	-22.1	48.26	69.58	117.84	212.75
	Wind scenario [W]	-22.1	39.05	69.58	108.63	231.25
(Marine vessel impact scenario [W]	-22.1	59.08	69.58	128.66	277.5
	Seismic scenario [W]	-22.1	129.52	69.58	199.1	277.5
5	Seismic scenario[Smax]	-22.1	136.66	69.58	206.24	277.5
9	Seismic scenario [Mmax]	-22.1	136.26	69.58	205.84	277.5

Source: JICA Study Team

Table 4.2.149 Temporary Coffering Calculation Results (Transverse Direction)

1) Material : SKY400

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	σmax(N/mm ²)	$\sigma a(N/mm^2)$
1	Regular scenario HWL[W]	-26.6	37.78	36.64	74.43	140
2	Regular scenario LWL[W]	-26.6	44.47	36.64	81.12	140
3	Wind scenario [W]	-26.6	39.54	36.64	76.19	175
4	Marine vessel impact scenario [W]	-26.6	75.75	36.64	112.4	210
5	Seismic scenario [W]	-26.6	121.17	36.64	157.81	210
6	Seismic scenario[Smax]	-26.6	155.41	36.64	192.05	210
7	Seismic scenario [Mmax]	-26.6	152.21	36.64	188.86	210

2) Material : SKY490

Case	Load Case	Occuring Position	$\sigma 1(N/mm^2)$	$\sigma 2(N/mm^2)$	$\sigma max(N/mm^2)$	$\sigma a(N/mm^2)$
	1 Regular scenario HWL[W]	-22.1	38.25	72.26	110.51	185
	2 Regular scenario LWL[W]	-22.1	44.94	72.26	117.2	185
	3 Wind scenario [W]	-22.1	39.98	72.26	112.24	231.25
	4 Marine vessel impact scenario [W]	-22.1	78.52	72.26	150.78	277.5
	5 Seismic scenario [W]	-22.1	129.04	72.26	201.3	277.5
	6 Seismic scenario[Smax]	-22.1	165.01	72.26	237.27	277.5
	7 Seismic scenario [Mmax]	-22.1	162.68	72.26	234.94	277.5

4.2.11 Summary of Bridge Accessories Design

4.2.11.1 Design Calculation of Rocking Bearing and Bearing Support

(1) Design Conditions

1) Support Conditions

The condition of the support in the cable-stayed bridge section is as listed in the table below.

	End Supp	oort Member: H	P10 · P13		Center Support Member: P10 · P13					
	Description Types	Bear	ing Conditic	n	Descriptor Tarres	Bearing Condition				
	Bearing Type	Longitudinal	Transverse	Vertical	Bearing Type	Longitudinal	Transverse	Vertical		
L	Rocking Bearing	Movable	Movable	Fixed	Pin-Roller Bearing	Movable	Movable	Fixed		
С	Horizontal Bearing	Movable	Fixed	Movable	Pivot Bearing	Fixed	Fixed	Fixed		
R	Pendellosung	Movable	Movable	Fixed	Pin-Roller Bearing	Movable	Movable	Fixed		

Table 4.2.150 Condition of Support

Source: JICA Study Team

Figure 4.2.170 Condition of Support

2) Structure of Bearings

The structure of the support section at each position is shown below.

a) Support Section Underneath Main Tower

Source: JICA Study Team

b) Bearing at Ends

Figure 4.2.172 Bearing Support at Girder End

3) Design Reaction Force of Bearing Support Section

The design reaction forces of the bearing sections are listed below.

							Cable-Sta	yed Bridge			
					End S	upports (P10)·P13)	Center	Supports (P	11·P12)	
					Roc	king	Horizontal Bearing	Pin-l	Roller	Pivot	Remarks
					L	R	С	L	R	С	
			Longitudin	al	Mov	/able	Movable	Movable		Fixed	
Bearin	g Restriction C	Condition	Transvers	e	Mov	Movable		Mov	/able	Fixed	
			Vertical		Fi	ked	Movable	Fi	ked	Fixed	
			Longitudinal	kN	—	—	_	_	_	1000	Per Bearing
Dead Loa	d Scenario Rea	action Force	Transverse	kN	—	—	0	0	0	0	100KN Round Up
			Vertical	kN	100	100		12400	12400	46200	
		Longitudinal	max	kN	_	_	_	_	_	4800	Per Bearing
Regular Scena	ario Reaction	Transverse	max	kN	_	_	100	0	0	100	100KN Round Up
For	rce	Ventical	max	kN	3100	3100	_	20800	20800	57700	
		Vertical	min	kN	-1800	-1800	_	7300	7300	44900	
		Longitudinal	max	kN	—	_	_		_	9200	Per Bearing
Temperature	Flux Scenario	Transverse	max	kN	—	_	100	0	0	100	100KN Round Up
Reaction	n Force	X7 (* 1	max	kN	3200	3200	_	20900	20900	58000	
		Vertical	min	kN	-1900	-1900		7100	7100	44200	
		Longitudinal	max	kN	—	_			_	4800	Per Bearing
Wind Scenar	rio Reaction	Transverse	max	kN	—	_	200	0	0	2100	100KN Round Up
For	rce Direction	N7 - 1	max	kN	3100	3100		22300	22300	57700	
1 fulloverse	Direction	Vertical	min	kN	-1900	-1900		5800	5800	44900	
L		Longitudinal	max	kN	_	_	—	_	_	9200	Per Bearing
Wind+Temp	erature Fux	Transverse	max	kN	_	_	200	0	0	2100	100KN Round Up
Transverse	n Force Direction	N7 - 1	max	kN	3300	3300		22400	22400	58000	
1 fulloverse	Direction	Vertical	min	kN	-1900	-1900		5600	5600	44200	
		Longitudinal	max	kN	—	_			_	1000	Per Bearing
Seismic Per	formance 1	Transverse	max	kN	—	_	1600	3800	3800	13700	100KN Round Up
Transverse	Direction	X7 1	max	kN	700	700		17500	17500	46200	kh=0.30
1 fulloverse	Direction	Vertical	min	kN	-500	-500		7400	7400	46200	
		Longitudinal	max	kN	_	_		5600	5600	25900	Per Bearing
Seismic Per	formance 2	Transverse	max	kN	—	_	0	0	0	0	100KN Round Up
Longituding	al Direction		max	kN	500	500	—	12500	12500	46400	kh=0.45
Longhuum	I Direction	Vertical	min	kN	-300	-300		12400	12400	46000	
		Longitudinal	max	kN	_	_			_	1000	Per Bearing
Seismic Per	formance 2	Transverse	max	kN	_	_	6700	5600	5600	20500	100KN Round Up
Transverse	Direction	X7 (* 1	max	kN	1000	1000		20000	20000	46200	kh=0.45
1 fulloverse	Direction	Vertical	min	kN	-800	-800		4900	4900	46200	
	Tem	perature Flux Sc	eneario	mm	68.0	68.0	68.0		_		About 25°C
Movement	Movement Wind Scenario Longitudinal Direction		al Direction	mm	—	_	_	_	_	_	
Amount	Seismic Perfe	ormance 1 Longit	udinal Direction	mm	55.8	55.8	55.8	_	_	_	
Seismic Performance 2 Longitudinal Direction		mm	83.8	83.8	83.8	—	_	—			
Beam Rotation		rad	1/140	1/140	_	1/230	1/230	1/230	1/10 Round Down		
	Dead Load	R	d	kN	100	100	_	12400	12400	46200	Per Bearing
Negative	Live Load	Rl(1	nin)	kN	-1900	-1900	_	-5100	-5100	-1300	100KN Round Up
Reaction Force Evaluation	Negative Reaction Force	Rd+	2×RI	kN	-3700	-3700		2200	2200	43600	
	Decision: N	egative Reaction	Force Counterme	easure	Necessary	Necessary		Not Necessary	Not Necessary	Not Necessary	

Table 4.2.151 Reaction Forces at Support

(2) Design of Pivot Bearing

The results of the pivot bearing design are listed below.

		Category		Units	Value		Allowable Value
Spherical Surface	В	earing Stress (Regular Scena	urio)	N/mm2	91.3	<	125.0
Section	В	earing Stress (Seismic Scena	urio)	N/mm2	97.5	<	425.0
Upper Shoe		Bearin	ng Stress	N/mm2	404.7	<	425.0
	Shear Stress Key	Sheari	ng Stress	N/mm2	51.5	<	170.0
	Bearing Stress between	Bearing Stress ((Regular Scenario)	N/mm2	16.5	<	250.0
	Supersturcutre	Bearing Stress (Seismic	Eccentricity	mm	485.3	>	381.7
		Scenario-Longitudinal)	Bearing Stress	N/mm2	28.6	<	425.0
			Tensile Stress of Set Bolt	N/mm2	5.5	<	612.0
			Shearing Stress of Set Bolt	N/mm2	313.6	<	340.0
			Combined Stress of Set Bolt	N/mm2	0.9	<	1.2
		Bearing Stress (Seismic	Eccentricity	mm	369.1	<	381.7
		Scenario-Transverse)	Bearing Stress	N/mm2	24.4	<	425.0
			Tensile Stress of Set Bolt	N/mm2	-	<	-
			Shearing Stress of Set Bolt	N/mm2	248.2	<	340.0
			Combined Stress of Set Bolt	N/mm2	-	<	-
	Bending Stress of Upper	Y1-Y1 Cross-Section (**)	Bending Stress	N/mm2	127.9	<	153.0
	Shoe	Y2-Y2 Cross-Section (**1)	Bending Stress	N/mm2	35.7	<	78.7
Lower Shoe	Bearing Stress between	Bearing Stress ((Regular Scenario)	N/mm2	10.9	<	210.0
	Substructure	Bearing Stress (Seismic	Eccentricity	mm	444.3	>	383.3
		Scenario- Longitudinal)	Bearing Stress	N/mm2	18.2	<	315.0
			Shearing Stress from Tension on Weld	N/mm2	1.5	<	153.0
			Shearing Stress from Horizontal Force on Weld	N/mm2	135.4	<	153.0
			Combined Stress of Set Bolt	N/mm2	0.8	<	1.0
		Bearing Stress (Seismic Scenario-Transverse)	Shearing Stress from Uplift Force	N/mm2	72.5	<	153.0
			Eccentricity	mm	338.0	<	383.3
			Bearing Stress	N/mm2	16.4	<	315.0
			Shearing Stress from Tension on Weld	N/mm2	-	<	-
			Shearing Stress from Horizontal Force on Weld	N/mm2	107.0	<	153.0
			Combined Stress of Set Bolt	N/mm2	-	<	-
]	Bending Stress of Lower Sh	oe	N/mm2	74.8	<	153.0
Ring	X-X Cross-Section (32)	Tensile Be	ending Stress	N/mm2	234.6	<	289.0
		Bendi	ng Stress	N/mm2	135.7	<	289.0
	Y-Y Cross- Section(**2)	Sheari	ng Stress	N/mm2	45.2	<	170.0
		Combin	ned Stress	N/mm2	0.3	<	1.2
	C Member Bearing Stress	Beari	ng Stres	N/mm2	79.5	<	425.0
	Anchor Bolt	Tensi	le Stress	N/mm2	293.2	<	612.0
Set Bolt	Т	ensile Stress from Uplift Fo	rce	N/mm2	167.8	<	612.0

Table 4.2.152 Design Calculation Results

*Refer to the next page for cross-section position

Figure 4.2.173 Pivot Bearing Overview and Cross Section Location

(3) Design of Pin Roller Bearing

The results of the pin roller bearing design are listed below.

		Unit	Value		Allowable value		
Pin	Bearing Stress of Colu	ımn Surface		N/mm2	72.7	<	125
	Stress by Horizontal	Tensile Stress		N/mm2	278.5	<	323
	Force in Transverse	Bearing Stress		N/mm2	362.2	<	425
	Direction	Shear Stress		N/mm2	138.5	<	170
Roller	Required Length			mm	589.6	<	1040
	Stress by Horizontal	Tensile Stress at Cutout Section		N/mm2	220.1	<	510
	Force in Longitudinal Direction	Bearing Stress		N/mm	15318.3	<	25490
Upper Shoe	Projection of upper	Shear Stress Caused by Horizontal Force		N/mm2	44.6	<	170
	surface of upper shoe	Shear Stress Caused by Horizontal Force		N/mm2	350	<	425
		Regular Scenario Bearing Stress		N/mm2	14.5	<	250
			Eccentricity	mm	25.5	<	216.1
		Moving scenario bearing stress	Bearing Stress	N/mm2	12.8	<	287.5
			Eccentricity	mm	232.2	<	233.3
			Bearing Stress	N/mm2	17.1	<	425
	Bearing Stress	Seismic Scenario Bearing Stress	Tensile Stress of Bolt	N/mm2	-	<	-
	between		Shear Stress	N/mm2	164.3	<	340
	Supersturcutre		Combined Stress	N/mm2	-	<	-
			Eccentricity	mm	2198	>	250
			Bearing Stress	N/mm2	92.7	<	425
		Seismic Scenario (Transverse Direction)	Tensile Stress of Bolt	N/mm2	549.76	<	612
			Shear Stress	N/mm2	164.3	<	340
		Combined Stress	N/mm2	1	<	1.2	
		Center cross section	Bending Stress	N/mm2	149.9	<	153
Bending stress		Y 2-Y 2 Cross section (¥1)	Bending Stress	N/mm2	60.6	<	153
		Cross section in transverse direction Bending Stress		N/mm2	169.8	<	289
Lower Shoe	Bensing Stress	Center cross section	Bending Stress	N/mm2	139.3	<	153
		Stress by Horizontal Force in Transverse Direction	Stress by Horizontal Force in Transverse Bearing stress at Cutout Direction Section		391.5	<	425
		Lower Shoe Bending Stress		N/mm2	176.6	<	289
		Lower Shoe Shear Stress		N/mm2	82.2	<	170
	Stopper		Bending Stress	N/mm2	71.9	<	289
		Stress by Horizontal Force in Transverse	Shear Stress	N/mm2	73.8	<	170
		Direction	Combined Stress	N/mm2	0.25	<	1.2
			Bearing Stress	N/mm2	326.3	<	425

Table 4.2.153	Design Calculation Results	- 1
---------------	----------------------------	-----

		Category	Unit	Value		Allowable value	
Bottom Board		Regular Scenario Bearing Stress		N/mm2	6.12	<	210
		Moving scenario bearing stress		N/mm2	8.25	<	241.5
			Eccentricity	mm	587.6	>	283.3
			Bearing Stress	N/mm2	13.8	<	425
		Saismia Saanaria Baaring Strass	Shear Stress Caused by Tension of Welded Section	N/mm2	11.6	<	136
	Dooming Stroop	Seisine Scenario Dearing Stress	Shear Stress Caused by Horizontal Force	N/mm2	43.7	<	136
	between Substurcutre		Combined Stress	N/mm2	0.1	<	1
			Lift force Scenario	N/mm2	29	<	136
			Eccentricity	mm	2198	>	333.3
			Bearing Stress	N/mm2	21.7	<	357
		Seismic Scenario (Transverse Direction)	Shear Stress Caused by Tension of Welded Section	N/mm2	95.6	<	136
			Shear Stress Caused by Horizontal Force	N/mm2	43.7	<	136
			Combined Stress	N/mm2	0.6	<	1
		Y1,2-Y1,2 Cross Section (¥2)	Bending Stress	N/mm2	82.4	<	153
	Bending Stress	Y 3-Y 3 Cross Section (**2)	Bending Stress	N/mm2	34.6	<	176
		Y 4,5-Y 4,5 Cross Section (¥2)	Bending Stress	N/mm2	146.6	<	153
Side Block			Bending Stress	N/mm2	170.5	<	289
		Stress on Y-Y Cross Section(3)	Shear stress	N/mm2	62	<	170
			Combined Stress	N/mm2	0.48	<	1.2
		Tensile Bending Stress on X-X Cross Section	×3)	N/mm2	260.1	<	289
	Stress of Main Body		Bending Stress	N/mm2	88.9	<	289
		Stress on X-X Cross Section (33)	Shear Stress	N/mm2	98.8	<	170
			Combined Stress	N/mm2	0.43	<	1.2
		Stress on Z-Z Cross Section (**3)	Bending Stress	N/mm2	280.7	<	425
			Shear Stress	N/mm2	57.8	<	170
		Verification Considering Horizontal Force in	Tensile Stress of Bolt	N/mm2	236.3	<	612
			Shear Stress	N/mm2	273.8	<	340
	Installing Bolt	Longitudinal Direction	Combined Stress	N/mm2	0.8	<	1.2
		Verification Considering Lift Force	Tensile Stress of Bolt	N/mm2	559.2	<	612
Cap	Bearing Stress	1		N/mm2	163.6	<	425
		Bending Stress		N/mm2	180.5	<	425
	Stress on Y-Y Cross	Shear Stress		N/mm2	91	<	161.5
	Section (¥4)	Combined Stress		N/mm2	0.71	<	1.2
Superstructure	Tensile Force Caused b	by Lift Force		N/mm2	109.1	<	612
Installing Bolt	Shear Stress			N/mm2	131.8	<	340

Table 4.2.154	Design	Calculation	Results - 2
		•	=

XSee the next page for the cross-section position

₩3

(4) Design of Horizontal Bearing

The results of the horizontal bearing design are listed below.

	Cate	egory		Unit	Value		Allowable Value
Slide Slope	Bearing Stress			N/mm2	79.0	<	157.5
Caller	X-X Cross Section	Bending Stress		N/mm2	60.1	<	229.5
Collar	(**1)	Tensile Stress		N/mm2	225.2	<	229.5
	Stress at Projection	Bearing Stress		N/mm2	297.8	<	375.0
	of upper shoe	Shear Stress		N/mm2	42.1	<	150.0
		Desire Otasan	Bearing Stress	N/mm2	49.3	<	323.0
		Bearing Stress	Tensile Stress of Bolt	N/mm2	532.0	<	799.0
		NI NI C	Bending Stress	N/mm2	234.9	<	255.0
Upper Shoe		XI-XI Cross	Shear Stress	N/mm2	56.8	<	150.0
	Stress of Main Body		Combined Stress	N/mm2	1.0	<	1.0
		Y1-Y1 Cross Section (₃₂)	Bending Stress	N/mm2	199.3	<	255.0
		Z1-Z1 Cross Section (*2)	Bending Stress	N/mm2	216.7	<	255.0
		Bearing Stress		N/mm2	93.4	<	375.0
	Stress of Cylinder		Bending Stress	N/mm2	218.9	<	229.5
Lower Shoe	Section	Foundation of Cylinder Section	Shear Stress	N/mm2	69.6	<	135.0
		Cymider Section	Combined Stress	N/mm2	1.2	<	1.2
	Stress of Main Body	Desire Oteren	Bearing Stress	N/mm2	7.7	<	12.0
		Bearing Stress	Tensile Stress of Bolt	N/mm2	125.9	<	285.0
		Y1-Y1Cross Section (¥3)	Bending Stress	N/mm2	96.7	<	229.5
		Y2-Y2 Cross Section (¥3)	Bending Stress	N/mm2	57.0	<	230.0
	Shear Stress			N/mm2	147.6	<	165.0
Anchor Bolt	Bond Stress			N/mm2	2.3	<	2.4
	Combined Stress			N/mm2	1.0	<	1.2
	Tensile Stress			N/mm2	532.0	<	799.0
Installing Girder	Shear Stress			N/mm2	296.2	<	405.0
Bon	Combined Stress			N/mm2	1.1	<	1.2

Table 4.2.155 D	sign Calculation Results
-----------------	--------------------------

 $\ensuremath{\overset{\scriptstyle \ensuremath{\scriptstyle \times}}{}}$ See the next page for the cross-section position

Figure 4.2.175 Horizontal Bearing Overview and Cross Section Location

(5) Design of Rocking Bearing

The results of the rocking bearing design are listed below.

		Category		Units	Value		Allowable Value
Endlink	Spherical Surface Bearing	Bearing Pressure (Interna	al Diameter)	N/mm2	41	<	50
	Spherical Bush	Maximum Bearing Stress	at Center Cross Section	N/mm2	23	<	50
	Bearing	Tensile Stress		N/mm2	55	<	290
	Pin	Bending Stress		N/mm2	262	<	290
		Shear Stress		N/mm2	57	<	160
	Anchor Structure at	Curved Beam Calculation	Cross Section Y (¥1)	N/mm2	132	<	153
	Upper Side		Cross Section X (¥1)	N/mm2	80	<	153
		Shear Stress	•	N/mm2	37	<	90
	Anchor Structure at	Curved Beam Calculation	Cross Section Y (¥1)	N/mm2	101	<	153
	Lower Side		Cross Section X (¥1)	N/mm2	49	<	102
		Shear Stress		N/mm2	40	<	60
Rocking Bearing	Tie Bar	Axial Compressive Stress		N/mm2	105	<	131
	Support Beam	Stress (Compression)	συ	N/mm2	73	<	207
			σl	N/mm2	85	<	210
		Stress (Tension)	συ	N/mm2	87	<	210
			σl	N/mm2	102	<	169
	Base of Beam Post	Design as Column	Axial Compressive Stress	N/mm2	47	<	210
			Bearing Stress	N/mm2	129	<	315
		Design as Beam	σ	N/mm2	3	<	210
			τ	N/mm2	9	<	120
	Base Plate	σ	N/mm2	155	<	210	
		τ	τ			<	120
	Anchor Bolt	σs		N/mm2	204	<	210
	Anchor Frame	Shear Stress of Web		N/mm2	37	<	120
		Compressive Stress of Dia	aphragm	N/mm2	108	<	210
		Stress of Flange	(A), (B) Panel Combined Stress	N/mm2	96	<	210
			(C), (D) Panel Combined Stress	N/mm2	27	<	210
			(E), (F) Panel Combined Stress	N/mm2	158	<	210

Table 4.2.100 Design Calculation results	Table 4.2.156	Design Calculation Results
--	---------------	-----------------------------------

 $\ensuremath{\overset{\scriptstyle\frown}{\times}}\xspace$ see the next page for the cross-section position

r = 398 (環軸半径)

Final Report

4.2.11.2 Study on Cable Damping Device

(1) Design Overview

Due to the exposure to constant winds, the cables of the cable-stayed bridge are said to be subjected to aerodynamically unstable oscillations, as stated below, which may lead to problems of fatigue at the cable ends. In this study, as a countermeasure for the aerodynamically unstable oscillation [1) Vortex induced vibration, 2) Rain-wind induced vibration] of the cable, the specifications of the apparatus and its damping effects when using high damping rubber damper were investigated.

1) Vortex induced vibration

With the exposure to constant winds, a Karman vortex occurs behind the cables which vibrates at the same natural frequency as the cable. The vibration is highly unlikely to be vibrating at a natural frequency in the primary mode, but generally found to be in a much higher mode. Because the vibrational energy is comparatively low, a logarithmic damping coefficient of about 0.01 (about 60 when expressed as a Scruton number) is said to be able to mitigate the vibration.

Source: JICA Study Team

Figure 4.2.177 Karman Vortex Schematics

2) Rain-wind induced vibration

With the exposure to winds during rain, the cable becomes hydrodynamically unstable due to the formation of a waterway on the cable causing vibration to be more easily generated. The vibration, occurring at a relatively low mode, has a larger swing compared to the vortex induced vibration. The vibrational energy is larger than that created by the vortex induced vibration, and therefore, a logarithmic damping coefficient of more than $0.02 \sim 0.03$ (about $120 \sim 200$ when expressed as a Scruton number) is needed to mitigate most of the vibration.

Source: JICA Study Team

Figure 4.2.178 Rain-Wind Induced Vibration Schematics

(2) Review for the Necessity of Vibration Countermeasure

In this design, the necessity for vibration countermeasure was determined by focusing the attention on the rain-wind induced vibration which needs a high additional damping factor. As a condition to mitigate the rain-wind induced vibration, the two points below must be satisfied. Therefore, a review of the necessity of vibration countermeasures shall be based on natural frequency and Scruton number.

<Conditions for mitigating rain-wind induced vibration>

The natural frequency of the cable must be 3 Hz or higher.

$$f_n = \frac{n}{2L} \sqrt{\frac{T}{m}} \ge 3$$

The Scruton number (a dimensionless quantity expressing the ease to vibrate) must be higher than 120~200.

$$S_C = \frac{2m\delta}{\rho D^2} \ge 120$$

The results of the review of the necessity of vibration countermeasures are shown in the table below. As the natural frequency and Scruton number do not satisfy the condition for mitigating rain-wind induced vibration for all cables, the installation of dampers (strong damping rubber damper) is necessary.

	Cable	Cable	Mass per	Cable	Structural	Air	Cable	Natural	frequency of	f cable f	Scruton
	number	tension T	unit	length	domning S	density $\boldsymbol{\rho}$	Diameter	Primary	Secondary	Tertiary	number
	number	(kN)	length m	length	damping o	(kg/m3)	D (m)	fl(Hz)	f2(Hz)	f3(Hz)	Sc
	C1	4400	90.2	118.917	0.005	1.293	0.190	0.929	1.857	2.786	19.324
↑	C2	4100	90.2	110.012	0.005	1.293	0.190	0.969	1.938	2.907	19.324
do	C3	3900	90.2	101.163	0.005	1.293	0.190	1.028	2.055	3.083	19.324
e (]	C4	3900	90.2	92.387	0.005	1.293	0.190	1.125	2.251	3.376	19.324
Side	C5	4100	90.2	83.707	0.005	1.293	0.190	1.273	2.547	3.820	19.324
an S ott	C6	2500	47.7	75.155	0.005	1.293	0.133	1.523	3.046	4.569	20.855
Sp: F	C7	2700	47.7	66.780	0.005	1.293	0.133	1.781	3.563	5.344	20.855
de	C8	2900	47.7	58.660	0.005	1.293	0.133	2.102	4.203	6.305	20.855
S	C9	2900	47.7	50.916	0.005	1.293	0.133	2.421	4.843	7.264	20.855
	C10	2900	47.7	43.747	0.005	1.293	0.133	2.818	5.636	8.454	20.855
(de	C11	2900	47.7	43.747	0.005	1.293	0.133	2.818	5.636	8.454	20.855
₹T	C12	2900	47.7	50.916	0.005	1.293	0.133	2.421	4.843	7.264	20.855
-mi	C13	2900	47.7	58.660	0.005	1.293	0.133	2.102	4.203	6.305	20.855
ottc	C14	2700	47.7	66.780	0.005	1.293	0.133	1.781	3.563	5.344	20.855
e (B	C15	2500	47.7	75.155	0.005	1.293	0.133	1.523	3.046	4.569	20.855
Side	C16	4100	90.2	83.707	0.005	1.293	0.190	1.273	2.547	3.820	19.324
an	C17	3900	90.2	92.387	0.005	1.293	0.190	1.125	2.251	3.376	19.324
: Sp	C18	3900	90.2	101.163	0.005	1.293	0.190	1.028	2.055	3.083	19.324
ntei	C19	4100	90.2	110.012	0.005	1.293	0.190	0.969	1.938	2.907	19.324
Ce	C20	4400	90.2	118.917	0.005	1.293	0.190	0.929	1.857	2.786	19.324

 Table 4.2.157
 Results for the Necessity of Vibration Countermeasure

(3) Design Method

1) Study Flow

The flow for the study of the cable mitigation apparatus is shown below.

Figure 4.2.179 Flow for the Study of Cable Mitigation Apparatus

Final Report

2) Analysis Model

The analysis model is shown below.

Source: JICA Study Team

a) Input Conditions

- Cable length:L[m]- Tension:T[kgf]- Unit weight:W[kgf/m]- Installation position:Xi[m]
- Loss coefficient : $\gamma [= \tan \delta]$

b) Calculations

- Unit mass of cable

- Reduced mass of cable
- nth angular frequency
- $: M = \frac{1}{2} \times \mu \times L \quad [kg]$ $\omega_n = \frac{n\pi}{L} \times \sqrt{\frac{T}{\mu}} \quad [rad / sec]$ $: K = \frac{G \times A}{t} \quad [kg / m]$

 $\mu = \frac{W}{\frac{Q}{g}} \quad [kg / m]$

- Stiffness of shear modulus

Where, G : Shear modulus of internal layer of rubber $[kg/m^2]$

- A : Cross sectional area of internal layer of rubber [m²]
- t : Height of internal layer of rubber [m]

- Mode function of mitigation apparatus position: $\phi_i(X_i) = \sin(n\pi \frac{X_i}{L})$

- Imaginary component of complex stiffness : $v = \frac{\gamma}{\sqrt{1 + \gamma^2}}$

- nth natural frequency of cable
- Logarithmic damping coefficient

$$f_n = \frac{\omega_n}{2\pi}$$

ng coefficient : $\delta = \frac{2\pi [\phi_1(X_i)]^2}{2M\omega_n} \frac{Kv}{\omega_n} e^{-0.72 \frac{\omega_n x_i (L-x_i) Kv}{TL} \frac{Kv}{\omega_n \gamma}}$

c) Design Constants

- Loss coefficient of rubber

Considering the design value to be on the safer side by assuming the rubber dependency on distortion factor, frequency, and temperature, it shall be set as follows:

 $\tan \delta = 0.63$ (20 °C, 40 °C)

 $\tan \delta = 0.76 \quad (0 \ ^{\circ}C)$

- Logarithmic damping coefficient of cable

 $\delta C = 0.005$ is set as the design value.

(4) Design of Mitigation Apparatus

1) Study of Mitigation Effect

By calculating the natural frequency of the cable, the Scruton number, and logarithmic damping coefficient with and without the mitigation apparatus, the effect of the mitigation is verified. The number of rubber dampers in the mitigation apparatus is examined to satisfy the condition below to consider the effect of temperature change on the elastic spring constant.

- 1) The logarithmic damping coefficient $\delta_{(C+D)}$ of low mode of frequency satisfies $\delta_{(C+D)} > 0.03$
- 2) The addition of rubber damper satisfies **Scruton Number > 120**

2) Study Result

- 1) When the mitigation apparatus is installed, if the logarithmic damping coefficient for the primary ~ tertiary mode of vibration is higher than 0.03 for all cables, the countermeasure for vortex induced vibration and rain-wind induced vibration is valid.
- 2) When the mitigation apparatus is installed, if the Scruton number is higher than 120 for all cables, the countermeasure for vortex induced vibration and rain-wind induced vibration is valid.

The calculation results for the natural frequency, logarithmic damping coefficient for all temperatures, and Scruton number for each cable condition are shown below.

er Unit Installation	Dampei Installatio	- H	Logarithmic	Damping C	Coefficient	Scruton	Logarithmic	c Damping C	Coefficient	Scruton	Logarithmic	Damping (Coefficient	Scruton
eter weight Position	t Position			(20°C)		Number		(40°C)		Number		(0°C)		z
. w Xi	Xi			δ _(C+D)				δ _(C+D)				$\delta_{(C+D)}$		
n kg/m m	m		Primary	Secondary	Tertiary	Sc (C+D)	Primary	Secondary	Tertiary	Sc (C+D)	Primary	Secondary	Tertiary	Sc (C+D)
002	444		0.020.0	0.0307	0.0370	151	0.0336	0.0222	0.0276	130	0.0510	0.0510	0.0501	000
0 90.2 4.31	4.31		0.0414	0.0409	0.0400	161	0.0357	0.0353	0.0345	138	0.0542	0.0535	0.0523	210
0 90.2 4.17	4.17		0.0435	0.0429	0.0419	168	0.0376	0.0371	0.0362	145	0.0568	0.0560	0.0546	220
90.2 4.01	4.01		0.0503	0.0495	0.0482	195	0.0481	0.0473	0.0460	186	0.0528	0.0520	0.0505	204
2 477 2 55	3.84		9150.0	8100.0	200000	204	0.0545	0.0524	0.0409	190	686U.U	7/000	40000	V81
3 47.7 3.36	3.36		0.0568	0.0555	0.0535	237	0.0573	0.0560	0.0539	239	0.0534	0.0522	0.0503	223
3 47.7 3.17	3.17		0.0617	0.0601	0.0575	257	0.0597	0.0582	0.0557	249	0.0630	0.0614	0.0587	263
3 47.7 2.98	2.98		0.0665	0.0645	0.0612	277	0.0632	0.0613	0.0582	263	0.0706	0.0684	0.0650	294
3 47.7 2.78	2.78		0.0718	0.0692	0.0651	300	0.0670	0.0646	0.0608	279	0.0792	0.0764	0.0718	331
3 47.7 2.79	2.79	_	0.0719	0.0694	0.0652	300	0.0671	0.0647	0.0608	280	0.0794	0.0765	0.0719	331
3 47.7 2.98	2.98	_	0.0666	0.0646	0.0613	278	0.0633	0.0614	0.0583	264	0.0707	0.0685	0.0651	295
3 47.7 3.17	3.17		0.0619	0.0602	0.0576	258	0.0599	0.0583	0.0558	250	0.0631	0.0615	0.0588	263
3 47.7 3.37	3.37		0.0570	0.0557	0.0536	238	0.0574	0.0561	0.0540	240	0.0535	0.0523	0.0503	223
3 47.7 3.56	3.56		0.0517	0.0507	0.0491	216	0.0546	0.0535	0.0518	228	0.0443	0.0434	0.0420	185
0 90.2 3.85	3.85		0.0530	0.0520	0.0504	205	0.0494	0.0485	0.0470	191	0.0584	0.0573	0.0555	226
90.2 4.02	4.02		0.0505	0.0497	0.0483	195	0.0483	0.0475	0.0462	187	0.0529	0.0521	0.0506	205
90.2 4.18	4.18		0.0438	0.0431	0.0421	169	0.0378	0.0372	0.0364	146	0.0570	0.0562	0.0548	220
0 90.2 4.33	4.33	_	0.0417	0.0411	0.0402	161	0.0360	0.0355	0.0347	139	0.0545	0.0537	0.0525	211
90.2 4.47 (4.47 (0.0395	0.0390	0.0382	153	0.0339	0.0335	0.0329	131	0.0521	0.0515	0.0504	201
90.2 4.44	4.44		0.0392	0.0387	0.0379	151	0.0336	0.0333	0.0326	130	0.0518	0.0512	0.0501	200
90.2 4.31	4.31	_	0.0414	0.0409	0.0400	160	0.0357	0.0353	0.0345	138	0.0542	0.0535	0.0523	210
0 90.2 4.17	4.17	_	0.0435	0.0429	0.0419	168	0.0376	0.0371	0.0362	145	0.0568	0.0560	0.0546	220
0 90.2 4.01	4.01	_	0.0503	0.0495	0.0482	195	0.0481	0.0473	0.0460	186	0.0528	0.0520	0.0505	204
90.2 3.84	3.84	_	0.0528	0.0518	0.0502	204	0.0493	0.0484	0.0469	190	0.0583	0.0572	0.0554	225
3 47.7 3.55	3.55	_	0.0516	0.0506	0.0490	215	0.0545	0.0534	0.0517	227	0.0442	0.0434	0.0420	184
3 47.7 3.36	3.36		0.0568	0.0555	0.0535	237	0.0573	0.0560	0.0539	239	0.0534	0.0522	0.0503	223
3 47.7 3.17	3.17		0.0617	0.0601	0.0575	257	0.0597	0.0582	0.0557	249	0.0630	0.0614	0.0587	263
3 47.7 2.98	2.98		0.0665	0.0645	0.0612	277	0.0632	0.0613	0.0582	263	0.0706	0.0684	0.0650	294
3 47.7 2.78	2.78	_	0.0718	0.0692	0.0651	300	0.0670	0.0646	0.0608	279	0.0792	0.0764	0.0718	331
3 47.7 2.79	2.79	_	0.0719	0.0694	0.0652	300	0.0671	0.0647	0.0608	280	0.0794	0.0765	0.0719	331
3 47.7 2.98	2.98	-	0.0666	0.0646	0.0613	278	0.0633	0.0614	0.0583	264	0.0707	0.0685	0.0651	295
3 47.7 3.17	3.17		0.0619	0.0602	0.0576	258	0.0599	0.0583	0.0558	250	0.0631	0.0615	0.0588	263
3 47.7 3.37	3.37	L-	0.0570	0.0557	0.0536	238	0.0574	0.0561	0.0540	240	0.0535	0.0523	0.0503	223
3.56	3.56	-	0.0517	0.0507	0.0491	216	0.0546	0.0535	0.0518	228	0.0443	0.0434	0.0420	185
0 90 2 3 85	3.85		0.0530	0.0520	0.0504	205	0 0494	0.0485	0.0470	191	0.0584	0.0573	0.0555	226
00.7 A 07	4 00	1	0.0505	0.0497	0.0483	105	0.0483	0.0475	0.0462	187	0.0520	0.0521	0.0506	205
00 00 4 10	4 18	1	0.0438	0.0431	0.0471	169	0.0378	0.0372	0.0364	146	0.0570	0.0562	0.0548	220
0 90.2 4 33	433	1	0.0417	0.0411	0.0402	161	0.0360	0.0355	0.0347	139	0.0545	0.0537	0.0525	211
200 CVV	LVV	1	0.0305	0.0200	0.0387	153	0.0330	0.0335	0.0220	121	0.0501	0.0515	0.0504	100
70.4 4.4/	i.	1	12CU.U	N2CU.U	70CU.U	CCI	20000		27CU.U	101	17000	CTCN/N	10000	102

Table 4.2.158 Study Results for Mitigation Apparatus

3) Installation of Mitigation Apparatus

The mitigation apparatus was installed as shown in the figure below. The fitting metals for the rod-type vibration mitigation apparatus were attached on the girder in case of vibration after completion.

Source: JICA Study Team

Figure 4.2.181 Installed Mitigation Apparatus

Figure 4.2.182 Fitting Metal for Rod-type Mitigation Apparatus

4.2.11.3 Main Body Design of Fairing

(1) Fairing Shape

The fairing is installed at the girder in order to improve the wind resistance of the bridge. The fairing shape was referred from past cases and the wind stability was checked by wind tunnel test.

Source: JICA Study Team

(2) Design Method

Design calculation is performed by applying wind and dead load.

The section force of the fairing member is calculated by applying the space frame model shown below.

By referring to past records of cable-stayed bridges, the fairing plate thickness is set to 6 mm.

Note: The interval of frame panel is 2250 mm of the maximum transverse rib interval Source: JICA Study Team

Figure 4.2.184 Space Frame Model

(3) Design Load

The section force used for the design of the longitudinal member is determined by loading the surface load on the upper surface (a-b) of the space frame.

The section force used for the design of the transverse member is determined by loading the line load on the transverse frame of the space frame as shown below.

Source: JICA Study Team

Figure 4.2.185 Space Frame Model

The overdesign factor of allowable stress is 1.25 for the steel weight + wind load.

As the section force of the member against the wind load from the side is smaller than that from the perpendicular direction, the calculation of the section force of the member against the wind load from the side is omitted.

(4) Evaluation of Cross Section

<member ab,bc>

Member ab which has the largest cross-sectional force was employed for this verification.

Cross-sectional force				From solid frame analysis
Member no. 120	1			
Bending moment	M =	0.243	kN•m	(Equivalent value with regular scenario)
Shear stress	S =	2.347	kN	(Equivalent value with regular scenario)
Axial force	N =	5.184	kN	(Equivalent value with regular scenario)

Effective width of flange on one side is 12t

Surface outside $I_y = 1494792$ (mm⁴)

(WEB Height]	100 _{mm})				$A (mm^2)$	<u>y (mm)</u>	Ay (mm ³)	$Av^2 (mm^4)$	I o(mm ⁴)
1 – FLG PL	SM400	144	\times	6	864	-53	-45792	2426976	2592
1 - WEB PL	SM400	100	Х	6	600	0	0	0	500000
					1464		-45792		2929568
e	= -31.3	mm						-	1432374
								Ix =	1497194
yl =	= -25	mm		:. ;	Zl = Ix / yl	=	$-59888~\mathrm{mm}^3$		
yu =	= 81	mm		:: ;	Zu = Ix / yı	u =	18416 mm^3		
Aw	= 600	mm^2							

Verification of allowable stress

 $\sigma l = N/A + M / Zl$ = 3.5 + -4 = -1 N/mm² < 1.00 × 140 = 140 N/mm² $\sigma u = N/A + M/Zu$ = 3.5 + 13.2

=
$$17 \text{ N/mm}^2$$
 < 1.00×140 = 140 N/mm^2

$$\tau \max = S / Aw$$

$$= 3.9 \text{ N/mm}^2 < 1.00 \times 80 = 80 \text{ N/mm}^2$$

$$F = \left(\frac{\sigma}{\sigma a}\right)^2 + \left(\frac{\tau}{\tau a}\right)^2 = 0.02 \leq 1.2$$

Final Report

4.2.11.4 Design of Expansion Joint

(1) Design Conditions of EJ-1 (P10)

The design conditions for the expansion joint are listed in the table below.

	Item	Left Girder (P9 side)	Right Girder (P11 side)
	Type of bridge	Steel deck slab girder	Steel deck slab girder
	Temp range	0 °C~50 °C	0 °C∼50 °C
	Load	72.5 kN fo	r back wheel
Sol	urce: JICA Study Team		

Table 4.2.159 Design Conditions

Figure 4.2.186 Location of Expansion Joint

(2) Expansion Amount

The design expansion amount of the expansion joint shall consider the regular and seismic conditions.

1) Regular Condition

Table 4.2.160	Expansion Amount	t at Regular (Condition
---------------	------------------	----------------	-----------

	Left Girder (P9 side)	Right Girder (P11 side)
Elongation amount by temp. change ΔLt	88 mm	136 mm
Elongation tolerance Δ Ly (General elongation tolerance × 20%)	18 mm	27 mm
Sum (Regular scenario) ΔLj	269	mm
Source: IICA Study Team		

Source: JICA Study Team

2) Seismic Condition

The design expansion amount at seismic condition is as follows:

 $\angle Lq = \sqrt{2} \times \pm 190 + \pm 15 = 568 \text{ mm}$

(3) Selection of Expansion Joint Type

The design expansion amount is determined for the regular condition as:

 ΔLj : 269 mm $\langle \Delta Lq$: 568 mm

Due to the design expansion amount, the modular type joint (maximum design movement of 640 mm) was selected.

(4) Evaluation of Cross Section

1) Evaluation of Middle Beam

- Calculation of Bending Moment

The middle beam was considered as a four-span continuous beam and the bending moment was calculated with the wheel loading condition as shown in the figure below.

Source: JICA Study Team

Figure 4.2.187 Bending Moment of Middle Beam

The maximum bending moment, calculated as shown above, shall be Mmax = $15240 \text{ kN} \cdot \text{mm}$.

- Stress Evaluation

Source: JICA Study Team


```
Impact Coefficient: i
```

i = 0.4

Maximum bending moment M of A-D

15240 [KN · mm] Mmax=

Bending Stress: σ1

```
\sigma_1 = Mmax x (1+i) x e_1 x 1000 / 1
          = 15240 \times (1 + 0.4) \times 63 \times 1000 / 11552000
                                                                                                        \sigma ba = \sigma y / 1.7
                                                                                                              = 355 / 1.7
                    116.4 N/mm<sup>2</sup> < \sigma ba = 210 \text{ N/mm}^2 (S355J2 + N)
           =
                                                                                                               ≒ 210 N/mm<sup>2</sup>
Shear Stress: 71
       \tau_1 = \text{Rmax x}(1+i) \times 1000 / A2
                                                                                                        \tau a = \sigma y / \sqrt{3} / 1.7
= 355 / \sqrt{3} / 1.7
          = 72.5 \times (1 + 0.4) \times 1000 / 1875
       =
                    54.1 N/mm<sup>2</sup> < \tau a = 120 N/mm<sup>2</sup> (S355J2 + N)
                                                                                                             = 120 \text{ N/mm}^2
Total Stress: U
     U = (\sigma 1 / \sigma ba)^{2} + (\tau 1 / \tau a)^{2}
```

 $= (116.4 / 210)^{2} + (54.1 / 120)^{2}$

< 1.2 = 0.51

2) Evaluation of Support Beam

The support beam shall be evaluated as a simple beam with the support located at the position of the bearing during maximum expansion.


```
\begin{array}{l} {\sf P} = 72.5 \quad {\sf kN} \\ {\sf L} = 1435 \quad {\sf mm} \\ {\sf L1} = 717.5 \ {\sf mm} \\ {\sf L2} = 717.5 \ {\sf mm} \end{array}
Max load acting on support beam
Max fulcrum interval
Loading position
 Loading position
Support beam height
                                                     d = 145 mm
 Impact coeficient
                                 I
     I = 0.4
Bending moment M1
    M1 = P \times L1 \times L2 / L
        = 72.5 x 717.5 x 717.5 / 1435 =
                                                         26100 KN .mm
  Cross-section coefficient Z1
     Z 1 = 1/6 \times d^2 \times 118
        = 1/6 \times 145^{2} \times 118 = 413500
                                                        mm3
Bending stress \sigma 1
 \sigma 1 = M 1 \times (1+1) \times 1000 / Z 1
     = 26100 x (1 + 0.4) x 1000 / 413500
  -
                   88.4 N /mm2 <
                                                          167 N /mm2
Shear stress 71
 \tau 1 = P \times (1 + I) \times 1000 / (d \times H)
     = 72.5 \times (1 + 0.4) \times 1000 / (145 \times 118)
     =
                    5.9 N /mm2 <
                                                              98 N /mm2
Total stress U
    U = (\sigma 1 / \sigma ba)^{2} + (\tau 1 / \tau a)^{2}
       = (88.4 / 167)^{2} + (5.9 / 98)^{2}
                                            <
             0.284
                                                           1.2
       =
```

Final Report

4.2.11.5 Drainage Device

(1) Catch Basin Shape

The catch basin shape is shown in the figure below.

Figure 4.2.190 Catch Basin Shape

(2) Configuration of Catch Basin Interval

The design conditions for the catch basin are as follows:

Rain intensity: 149 mm/h, Runoff coefficient: 0.9, Road drainage width: 11.450 m,

Gauckler-Manning coefficient: 0.013, Safety factor of flow: 0.8, Proportion of falling flow: 0.9

1) Calculation of Water Discharge

The water discharge shall be calculated from the following rational runoff formula to determine the size of the drainage structure:

$$q = \frac{1}{3600} \times C \cdot I \cdot W$$

- q: Discharge per unit road length (1/sec/m)
- C: Rational method runoff coefficient
- I: Rainfall intensity (mm/h)
- W: Road drainage width (m)

2) Calculation of Flow Rate

The average flow rate within the conduit shall be determined in principle using the following Manning's formula:

$$V = \frac{1}{n} \cdot R^{2/3} \cdot i^{1/2}$$

- V: Average velocity (m/sec)
- R: Hydraulic radius (m), R = A / S
- i: Slope of energy grade line
- n: Gauckler-Manning coefficient

A: Cross-sectional area of flow (m2) A=1/2xhxb

Figure 4.2.191 Calculated Cross Section

3) Calculation of Flow Rate

The flow volume within the drainage ditch and drainage pipe shall be determined by the average flow rate and flow area.

 $s=h+\sqrt{b^2+h^2}$

 $Q = V \cdot A \cdot \alpha$

Ls

- Q: Allowable flow volume (m3/sec)
- A: Cross-sectional area of flow
- α : Safety factor of flow (=0.8)

4) Calculation of Maximum Interval of Catch Basin

$$Ls = \frac{\gamma \cdot Q}{q}$$

s : Maximum interval of catch baisn (m) (Ls \le 20m)

 γ : Proportion of flow falling into catch ba $\gamma = 0.9$

- Q : Allowable flow volume (m3/sec)
- q: Discharge per unit road length (m3/sec/m)

5) Configuration of Catch Basin Interval

The calculation results of the maximum interval of catch basin are shown below.

Section		Distance	C.L Design height	Longitudinal slope	Transverse slope	Flow width B	Shoulder depth h	Area of flow A	Wetted perimeter P	Hydraulic radiusR
Edge i	Edge j	(m)	(m)	(%)	(%)	(m)	(m)	(m2)	(m)	(m)
0+860	0+880	20	17.746	-	2	1.5	0.03	0.0225	1.5303	0.014703
0+880	0+900	20	17.801	0.275	2	1.5	0.03	0.0225	1.5303	0.014703
0+900	0+920	20	17.85	0.245	2	1.5	0.03	0.0225	1.5303	0.014703
0+920	0+940	20	17.895	0.225	2	1.5	0.03	0.0225	1.5303	0.014703
0+940	0+960	20	17.934	0.195	2	1.5	0.03	0.0225	1.5303	0.014703
0+960	0+980	20	17.969	0.175	2	1.5	0.03	0.0225	1.5303	0.014703
0+980	0+1000	20	17.998	0.145	2	1.5	0.03	0.0225	1.5303	0.014703
1+0	1+20	20	18.023	0.125	2	1.5	0.03	0.0225	1.5303	0.014703
1+20	1+40	20	18.042	0.095	2	1.5	0.03	0.0225	1.5303	0.014703
1+40	1+60	20	18.057	0.075	2	1.5	0.03	0.0225	1.5303	0.014703
1+60	1+80	20	18.066	0.045	2	1.5	0.03	0.0225	1.5303	0.014703
1+80	1+88	8	18.071	0.025	2	1.5	0.03	0.0225	1.5303	0.014703
1+88	1+100	12	18.071	0	2	1.5	0.03	0.0225	1.5303	0.014703
1+100	1+120	20	18.07	-0.00833	2	1.5	0.03	0.0225	1.5303	0.014703
1+120	1+140	20	18.065	-0.025	2	1.5	0.03	0.0225	1.5303	0.014703
1+140	1+160	20	18.054	-0.055	2	1.5	0.03	0.0225	1.5303	0.014703
1+160	1+180	20	18.039	-0.075	2	1.5	0.03	0.0225	1.5303	0.014703
1+180	1+200	20	18.018	-0.105	2	1.5	0.03	0.0225	1.5303	0.014703
1+200	1+220	20	17.993	-0.125	2	1.5	0.03	0.0225	1.5303	0.014703
1+220	1+240	20	17.962	-0.155	2	1.5	0.03	0.0225	1.5303	0.014703
1+240	1+260	20	17.927	-0.175	2	1.5	0.03	0.0225	1.5303	0.014703
1+260	1+280	20	17.886	-0.205	2	1.5	0.03	0.0225	1.5303	0.014703
1+280	1+300	20	17.841	-0.225	2	1.5	0.03	0.0225	1.5303	0.014703
1+300	1+320	20	17.79	-0.255	2	1.5	0.03	0.0225	1.5303	0.014703
Sec	tion	Safety factor	Allowable flow volume	Road drainage	Runoff	Rain	per unit road	Propotion of	Maximum interval of	Interval of
			Q	width	coefficient	intensity	iciigiii	Taring now	catch basin	caten basin
Edge i	Edge j	α	(l/sec)	(m)	С	I[mm/h]	q(l/sec/m)	γ	Ls (m)	
0+860	0+880	-	-	-			-	-	-	-
0+880	0+900	0.8	5.44/235	11.45	0.9	149	0.426513	0.9	9.195532	9
0+900	0+920	0.8	5.141536	11.45	0.9	149	0.426513	0.9	8.679477	8
0+920	0+940	0.8	4.92721	11.45	0.9	149	0.426513	0.9	8.31/6/2	8
0+940	0+960	0.8	4.586983	11.45	0.9	149	0.426513	0.9	7.743331	7
0+960	0+980	0.8	4.345391	11.45	0.9	149	0.426513	0.9	/.33549/	1
0+980	0+1000	0.8	3.955431	11.45	0.9	149	0.426513	0.9	6.6//202	6
1+0	1+20	0.8	3.0/2525	11.45	0.9	149	0.426513	0.9	6.199627	6
1+20	1+40	0.8	3.201033	11.45	0.9	149	0.426513	0.9	5.404/09	5
1+40	1+00	0.8	2.844/20	11.45	0.9	149	0.426513	0.9	4.80221	5
1+60	1+80	0.8	2.203515	11.45	0.9	149	0.426513	0.9	3./19//0	5
1+80	1+88	0.8	1.042403	11.45	0.9	149	0.426513	0.9	2.772557	5
1+88	1+100	0.8	0.049242	11.45	0.9	149	0.426513	0.9	1 (00727	5
1+100	1+120	0.8	0.948242	11.45	0.9	149	0.426513	0.9	1.000/3/	2
1+120	1+140	0.8	1.642403	11.45	0.9	149	0.426513	0.9	2.//255/	3
1+140	1+100	0.8	2.4360/8	11.45	0.9	149	0.426513	0.9	4.112367	2
1+100	1+180	0.8	2.844/26	11.45	0.9	149	0.426513	0.9	4.80221	5
1+160	1+200	0.8	3.303923	11.45	0.9	149	0.420313	0.9	5.082052	2
1+200	1+240	0.8	3.0/2323	11.45	0.9	149	0.420313	0.9	6.002(12	6
1+240	1+240	0.8	4.069001	11.45	0.9	149	0.420313	0.9	7 225 407	6
1+260	1+200	0.8	4.343391	11.45	0.9	149	0.420313	0.9	7.020206	/
1+280	1+200	0.8	4./0312/	11.45	0.9	149	0.420313	0.9	1.939396	/
1+200	1+220	0.8	4.72/21	11.45	0.9	149	0.420313	0.9	0.51/0/2	8
17300	17320	0.8	5.243413	11.45	0.9	149	0.420313	0.9	0.004000	ð

Table 4.2.161 Calculation Results of Maximum Interval of Catch Basin

Note: Where the calculated value for maximum interval between catch basin is less than 5 m, the catch basin interval is set to more than 5 m
(3) Catch Basin Arrangement

The position of the catch basin is shown below:

Figure 4.2.192 Catch Basin Location

4.2.11.6 Guardrail

(1) Specifications of Guardrail

The Type-A combination railing (steel) which is shown in the standard drawings for Ministry of Land, Infrastructure, Transport and Tourism Hokuriku Regional Development Bureau was selected. The specifications of guardrail are as follows:

- Post interval : 2.0 m shall be set as the standard.
- Height of guardrail (Outer Side) :1.1 m from bridge surface

Figure 4.2.193 Detailed Plan of Guardrail (Outer Side)

Source: JICA Study Team

Source: JICA Study Team

Figure 4.2.195 Reinforcing Steel

(2) Design of Barrier Curb Footing

The fixing of the guardrail shall be designed. A continuous footing curb able to withstand the impact of a vehicle shall be installed, and the guardrail post shall be fixed on top of the curb.

1) Design Condition

- Design strength of concrete $= 3000 \text{ s} \cdot \text{s}^2 \text{ s}^2 \cdot \text{s}^2 \text{ s}^2 \text{ s}^2$
- Force applied per post

: Pmax = 45.0 kN*

Source: JICA Study Team

* Maximum Resistance Force of Railing Post: Pmax

Outline of the Railing Post

Post	: □-125x125x4.5
Cross Section Area	: A = 21.17 cm2
Second Moment of Inertia	: I = 506 cm4
Section Modulus	: Z = 80.09 cm3
Plastic Section Modulus	: Zp = 94.8 cm3

All Plastic Bending Moment

 $Mp = \sigma v x Zp = 235 / 94,800$

= 22,278,000 N • mm

Ultimate Resistance Force of Railing Post

$$Pw = Mp / H = 22,278,000 / 600$$

= 37130 N = 37.13kN

Maximum Resistance Force of Railing Post

Pmax = 37 x 1.2

$$= 44.556 \text{ kN} \approx 45.0 \text{ kN}$$

The ratio of Pw and Pmax: 1.2 was assumed from experimental results of other railings.

2) Design of Torsion Reinforcement

- Horizontal reinforcement against torque

If the cross sectional area of one bar for horizontal reinforcement against torque, arranged at interval a, is Awt (mm²), then:

$$Awt = \frac{Mt \cdot a}{1.6 \cdot bt \cdot ht \cdot \sigma y}$$
Here

$$Awt = \frac{Mt \cdot a}{1.6 \cdot bt \cdot ht \cdot \sigma y}$$
Here

$$Mt : Interval of horizontal reinforcement bar (mm)$$

$$Mt : Torsion acting on cross section of member N \cdot mm$$

$$\sigma y : Yield point of reinforcement bars (N/mm^{2})$$

$$bt,ht : Width and height specified in the above figure (mm)$$

$$Mt = P \cdot L = 45000 \times 965 = 43425000 \text{ N} \cdot mm$$

$$bt = 500 \text{ mm}$$

$$ht = 260 \text{ mm}$$

$$a = 300 \text{ mm}$$
If $SD345(\sigma y = 345 \text{ N/mm}^{2})$ is used
$$Awt = \frac{43425000 \times 300}{1.6 \times 500 \times 260 \times 345} = 181.5 \text{ mm}^{2} < 198.6 \text{ mm}^{2}$$

Therefore, SD345-D16 (198.6 mm²) is utilized.

3) Anchorage Reinforcement against Overturning

The floor deck of the continuous footing shall be fixed using post-installed anchor. The post-installed fixing anchor per effective width, discussed in the next chapter, is designed below.

Source: JICA Study Team

Figure 4.2.197 Anchorage of Floor Slab

Tensile force of the anchor is T, and self-weight per effective width is W. Considering equilibrium of forces about the point A, then:

 $T = \frac{Mt - W \cdot X}{J}$ Effective Width 24.5 × $0.33 \times 1.050 = 5093.55$ N W = $0.60 \times$ Assuming D = 500 mm500 $\mathbf{J} =$ $7/8 \times D =$ 7 / 8 \times 438 = mm 600 / 2 - 500 / X= B/2-D/8 =8 238 = mm $\frac{43425000}{438} - \frac{5093.55}{438} \times \frac{238}{438} =$ T = 96376 N

Assuming per effective width of 1050 mm, four bars are needed, the tensile strength T1 per bar of anchor is:

$$T1 = \frac{96376}{4} = 24094 \text{ N}$$

Therefore, the required cross sectional area As per bar is:

$$As = \frac{T1}{\sigma y} = \frac{24094}{345} = 69.8 \text{ mn}^2 < 198.6 \text{ mn}^2$$

Therefore, the guardrail is fixed by SD345-D16-4 post-installed fixing anchors per effective width of 1050 mm.

< Calculation of effective width (l)>

Figure 4.2.198 Calculation of Effective Width

- Evaluation of weld between rebar and steel deck

Allowable stress of studs	σsa	$= 140 \text{ N/mm}^2$
Increase coefficient at impact		= 1.5
Maximum tensile stress	σs	= T1 / Aw (D16)
		= 24094 / 198.6 = 121.3 N/mm ² < σca
Allowable tensile stress	σca	$= 0.9 \text{ x } 0.9 \text{ x } 140 \text{ x } 1.5 = 170 \text{ N/mm}^2$

- Evaluation of fixation length of reinforcement

L	$= T1 / (\pi x \phi x nc x \tau oa)$
	$= 24094 / (\pi \ge 15.9 \ge 1.5 \ge 1.60)$
	= more than 201 mm
nc	= 1.5
τοα	$= 1.60 \text{ N/mm}^2$
φ	= 15.9 mm
	L nc тоа ф

4.2.11.7 Design of Base for Miscellaneous Items

(1) Base for Road Lighting Pole

The road lighting pole weight was assumed as shown below, and the design of the base was performed. The calculation results are as follows:

1) Design Load

The assumed weight of the road lighting pole is:

12 m lighting pole (assumed weight) V = 1.900 kN (about 190 kg)

M =

 1.900×0.270

2) Design of Base

Figure 4.2.199 Base for Road Lighting Pole

a) Cross Section Design

			(SM4	400)	1	A		У			Ау		Ay ² -	⊦I	_
	1	- PL		976	×	#		15	6.2		-1	9.3		-3015	5	581	90	
	3	- PL		369	×	9		9	9.6			0		()	113	05	_
								25	5.8	cm ²				-3015	5 cm^3	694	95	cm^4
	2	_ Ay		- 11	0	~ ~ ~ ~										-355	36	
	0	A		1 1	0	cm									I =	339	59	cm ⁴
]	['= 255	5.8	×	-1	1.8	2	_	-35	53	6							
vu	=	- 18.5	-	1.	6	-	-11	.8	=	-	8.3	cm	L					
yl	=	+ 18.5	+			-	-11	.8	=	3	0.2	cm	L					
wu	=	-4091	CI	n^3														
wl	=	1124	cı	m ³														
σu	=	M∕wu	=	-0	.1	N/1	mm ²		<		σa		=	14() N/1	mm ²		
σl	=	M∕wl	=	0.	5	N/1	mm ²		<		σa		=	14() N/1	mm ²		
τ	=	S / Aw	=	0.	2	N/1	mm ²		<		τa		=	80) N/1	mm ²		
Comp	osit	e Stress																
(0	.5 /	140) 2	+	(0.2	2	/	8	0) 2	=	0.00	<	1.2		OK

b) Welding Design

Upper Flange: Full Penetration Welding

Web: Throat Thickness $a = 6 / \sqrt{2}$ 6 = 4.2 mm SM400) $Ay^2 + I$ А Ay (у 976 × 16 156.2 -19.3 -3015 58190 1 - PL 369×4.2 0 10658 6 - PL 93.9 0 $250.1 \ \mathrm{cm}^2$ -3015 cm^3 68848 cm^4 $\delta = \frac{Ay}{A} = -12.1 \text{ cm}$ -36346 32502 cm^4 I = $I' = 250.1 \times -12.1^2 = -36346$ yu = -18.5 - 1.6 - -12.1 = -8.0 cm- -12.1 = yl = + 18.5 +30.5 cm -4063 cm³ wu = 1066 wl = cm³ $M / wu = -0.1 N / mm^2$ 80 N/mm² = <σu τa = σl = M/wl = 0.5 N/mm^2 < τа 80 N/mm² = = S / Aw = 0.2 N/mm^2 < τа 80 N/mm² τ = **Composite Stress** (0.5 / $(80)^{2} + (0.2)^{2} = 0.00 < 0.2$ 1 OK

(2) Base for Navigation Sign

The navigation sign weight was assumed as shown below, and the design of the base was performed. The calculation results are as follows:

 1.000×0.886

Design Load 1)

The assumed weight of the navigation sign is:

Navigation sign (assumed weight)

М =

=

V = 1.000 kN (about 100 kg)

2) **Design of Base**

a) Cross Section Design

			(SM4(00)	А	У		Ау		$Ay^2 + I$	_
	1	- PL		784 >	< #		125.4	-1	9.3	-2420		46706	
	3	- PL	2	369 >	< g)	99.6		0	0		11305	_
							225.0	cm ²		-2420	cm^3	58011	cm^4
	2	_ Ay		10.9							_	-26028	
	0	A		-10.6	s cn	1]	I =	31983	cm^4
]	['= 225	5.0	× -	10.8	2	= -26	028					
	-				1010		20	020					
yu	=	- 18.5	-	1.6	-	-10).8 =	-9.3	cm				
yl	=	+ 18.5	+		-	-10).8 =	29.2	cm				
wu	=	-3439	cm	n^3									
wl	=	1095	cm	n^3									
σu	=	M⁄wu	=	-0.3	N	/mm ²	² <	σа	=	140	N/n	nm ²	
σl	=	M∕wl	=	0.8	N	/mm ²	<	σа	=	140	N/n	nm ²	
τ	=	S / Aw	=	0.1	N	/mm ²	<	τα	=	80	N/n	nm ²	
Comp	osit	e Stress											
(0	.8 / 1	40) ² +	(0.	1 /	80	$)^{2} =$	0.00	<	1.2	OK

b) Welding Design

Upper Flange: Full Penetration Welding

Web[.]

W	eb:]	Throat	Thickr	ness				
			/	6				a =	6 /	$\sqrt{2}$			
			/					=	4.2	mm			
			(SM4	00)	А	у		Ау		$Ay^2 + I$	_
	1	- PL		784 :	× 16	; 1	125.4	-1	9.3	-2420		46706	
	6	- PL		369	× 4.2	2	93.9		0	0		10658	
						2	219.3	cm ²		-2420	cm ³	57364	cm ⁴
	8	_ Ay	_ =	_11	0 cm						_	-26705	
	0	A	_	-11.	0 CH	L					I =	30659	cm^4
]	['= 21	9.3	× -	11.0	2 =	-26	5705					
yu	=	- 18.5	5 -	1.6	-	-11.	.0 =	-9.0	cm				
yl	=	+ 18.5	5 +		-	-11.	= 0.	29.5	cm				
wu wl	=	-3407 1039	cn cn	n ³ n ³									
σu	=	M∕ wu	=	-0.3	3 N/	mm ²	<	τа	=	80	N/m	1m ²	
σl	=	M∕wl	=	0.9	N/	mm ²	<	τα	=	80	N/m	1m ²	
τ	=	S / Aw	=	0.1	N/	mm ²	<	τa	=	80	N/m	1m ²	
Comp	osit	e Stress											
(0	.9 /	80) ² +	- (0.1	l /	80	$)^{2} =$	0.00	<	1	OK

(3) Base for Aircraft Warning Light

The aircraft warning light weight was assumed as shown below, and the design of the base was performed. The calculation results are as follows:

1) Design Load

The assumed weight of the aircraft warning light is:

Aircraft warning light (assumed weight) V = 0.200 kN (about 20 kg)

2) Design of Base

М	=	0.200	\times	0.210
	=	0.042	kNı	n
S	=	0.200	kN	

Source: JICA Study Team

Figure 4.2.201 Base for Aircraft Warning Light

a) Cross Section Design

			(SM	400)	А	у		Ay		$Ay^2 + I$	
	1	- PL		650	×	22	14	43.0	-1	6.1	-230	2	37062	
	3	- PL		300	×	15	1	35.0		0		0	10125	_
							2	78.0	cm ²		-230	2 cm^3	47187	cm^4
	8	A	y	_ 0	2	om							-19062	
	0	-	4	– -c		CIII						I =	28125	cm^4
]	['= 2	278.0	×	-8	.3	2 =	-19	9062					
					-	-		-						
yu	=	- 1	5 -	· 2	.2	-	-8.3	=	-8.9	cm				
yl	=	+ 1	5 -	F		-	-8.3	=	23.3	cm				
wu	=	-316	0	2m ³										
wl	=	120	7 .	cm ³										
σu	=	M∕w	vu =	= 0	.0	N/n	nm ²	<	σа	. =	= 14	0 N/1	nm ²	
σl	=	M∕w	vl =	= 0	.0	N/n	nm ²	<	σа	. =	= 14	0 N/1	mm ²	
τ	=	S / Aw	- =	= 0	.0	N/n	nm ²	<	τα	=	= 8	0 N/1	nm ²	
Comp	osit	e Stres	s											
(0	.0 /	140	$)^{2}$	+	(0.0	/	80) ² =	= 0.00) <	1.2	OK

b) Welding Design

Up	per Flange:				Throat	Thick	ness				
			9			a =	9 /	$\sqrt{2}$			
		/				=	6.4	mm			
W	eb;				Throat	Thick	ness				
			9			a =	9 /	$\sqrt{2}$			
		/				=	6.4	mm			
		(SN	<i>A</i> 400)	А	у		Ay		$Ay^2 + I$	
	2 - PL	65	$0 \times \epsilon$	5.4	82.7	-1	5.3	-1265		19355	-
	6 - PL	30	0 × 6	5.4	114.6		0	0		8591	_
					197.3	cm ²		-1265	cm ³	27946	cm^4
	s - Ay	,	61 0						_	-8111	
	0 – A		-0.4 C	111					I =	19835	cm^4
	I'= 19	7.3 ×	-6.4	4 ²	-81	11					
yu	= - 15	-	0.6 -	-6.	.4 =	-9.2	cm				
yl	= + 15	+	-	-6.	.4 =	21.4	cm				
wu	-2156	cm ³									
wl	= 927	cm ³									
σu	= M/wu	. =	0.0	N/mm ²	<	τа	. =	80	N/m	nm ²	
σl	= M/wl	=	0.0	N/mm ²	<	τα	. =	80	N/m	nm ²	
τ	= S / Aw	=	0.0	N/mm ²	<	τα	. =	80	N/m	nm ²	
Comp	osite Stress										
(0.0 /	80)	2 +	(0.	0 /	80) ² =	0.00	<	1	OK

(4) Support for Water Pipe

The water pipe weight (full water) was assumed as shown below, and the design of the water pipe support was performed. The calculation results are as follows:

Figure 4.2.202 Water Pipe Support

- Design Load Water Pipe (Full Water) 6.00 kN/m 0.15 kN/m Supporting Metals 0.015 9.81 × = W = 6.15 kN/m \rightarrow 6.20 kN/m - Install Distance L= 2.25 m (less than 2.25 m)-Force at Each Supporting Position $P = W \cdot L =$ 2.25 = 13.95 kN 6.20 × - Stress Resultants M= 1.57 kN·m 13.95 × 0.450 / 4 = S=13.95 / 2 6.98 kN = - Cross Section Design of Supporting Metals 100 x 100 x 10 (SS400) 1-L Z= 24.4 cm3 9.0 cm2 Aw= 10^{6} 10^{3} 24.4 × $\sigma = M/Z =$ 1.57 × / 64 N/mm2 140 N/mm2 < 10^{-3} 10^{2} 6.98 × / 9.0 × N/mm2 $\tau = S/Aw =$ = 8 < 80 N/mm2 - Evaluation of Bolts Bolt 2 - M16 (equivalent to SS400) Calculate as the 2-bolts will work effectively on shear force 13.835² $\times \pi \times 1/4 \times 2 \text{ nos} =$ A = 301 mm^2 - Shear Stress of Bolts Shear stress τ calculated from the shear force S 6.98×10^{3} / $N/mm^2 < \sigma a =$ τ= 301 = 23 80 N/mm^2 - Bearing Stress of Bolts: σ Area A= 14.5 × 6.0 = 87 mm^2 87 13.835 2 \times π \times 1/4 × 23 / 40 N/mm^2 σ= = < σa= 210 N/mm² - Evaluation of Diaphragm and Transverse Rib The web cross section directly under the supporting metal was evaluated: Force at 1 supporting metal P = 13.95 kNEffective Width Thickness Web cross section Aw = 100× 9 900 mm^2 = (Width of shape beam) $\sigma = P/Aw = 13.95 \times 10^{3}$ / 900 = 16 N/mm² < 140 N/mm^2

(5) Support for Electrical Cables

The electrical cable weight was assumed as shown below, and the design of the electrical cable support was performed. The calculation results are as follows:

Source: JICA Study Team

- Design Load Electrical Cable 0.300 × 5 1.50 kN/m = 9.81 kN/m Supporting Metals 0.007 0.07 × = W = 1.57 $kN/m \rightarrow$ 1.60 kN/m - Install Distance L= 2.25 m (less than 2.25 m)-Force at Each Supporting Position $P = W \cdot L =$ $1.60 \times$ 2.25 = 3.60 kN - Stress Resultants M= 3.60 × 0.425 / 4 = 0.38 kN·m S=3.60 / 2 = 1.80 kN - Cross Section Design of Supporting Metals 1-L 75 x 75 x 6 (SS400) Z= 8.47 cm3 Aw= 4.1 cm2 10^{-6} 8.47 × 10^{-3} $\sigma = M/Z =$ 0.38 × / 45 = N/mm2 < 140 N/mm2 10^{3} / 10^{2} $1.80 \times$ $\tau = S/Aw =$ 4.1 × 4 N/mm2 = < 80 N/mm2 - Evaluation of Bolts Bolt 2 - M16 (equivalent to SS400) Calculate as the 2-bolts will work effectively on shear force A = 13.835² $\times \pi \times 1/4 \times 2 \text{ nos} =$ 301 mm^2 - Shear Stress of Bolts Shear stress τ calculated from the shear force S 1.80×10^{3} / $\tau =$ 301 = $N/mm^2 < \sigma a =$ 6 80 N/mm² - Bearing Stress of Bolts: σ Area A= 14.5 × 6.0 = 87 mm^2 13.835² 87 σ= $\times \pi \times 1/4$ × 6 / = 10 N/mm^2 $< \sigma a =$ 210 N/mm^2 - Evaluation of Diaphragm and Transverse Rib The web cross section directly under the supporting metal was evaluated: P = 3.60 kNForce at 1 supporting metal Effective Width Thickness Web cross section Aw = 100× 9 = 900 mm^2 (Width of shape beam) 3.60×10^{3} / $\sigma = P/Aw =$ 900 = N/mm² 140 N/mm^2 4 <

4.2.11.8 Maintenance Equipment

(1) Inspection Facility Plan

_

Based on the inspection facility arrangement plan listed below, the installation of the inspection facility at the necessary positions are examined.

Inspection Point	Description	Note
Girder undersurface	Install inspection car rail for inspection and maintenance using girder undersurface inspection car*. Install scaffolding mountable temporary suspenders.	* Checked with assumed load for the inspection car
Inside girder	Install inspection roads and ladders. Install manholes at necessary positions.	
Tower outer surface	Install base plates for inspection and maintenance using gondola*.	* Checked with assumed load for the gondola
Inside tower	Install ladders. Install access ladders to link the inside of the girder to the inside of the tower. Install manholes at necessary positions.	
Top of pier	Install handrails at the top of the pier. Side pier*: Install access ladders from bridge face to pier top. Tower pier: Install access ladders from girder face to pier top.	* The access ladders at the side piers shall be installed at the adjacent bridge

able 4.2.162	Inspection Fa	acility Arrar	ngement Plan
--------------	---------------	---------------	--------------

Source: JICA Study Team

The maintenance route is shown in the figure below.

Detailed Design Study on The Bago River Bridge Construction Project

Figure 4.2.204 Maintenance Route

(2) Examination of Inspection Car Rail (Reference)

1) Examination Overview

The examination of the rail for the girder undersurface inspection car was performed.

The outline for the assumed inspection car is shown below.

Source: JICA Study Team

Figure 4.2.205 Girder Undersurface Inspection Car

2) Design Conditions

- The self-weight of the inspection car was set by referring to the inspection car at the Thanlyin Bridge.
- > The assumptions made for the saddle of the inspection car is as listed below.

•	Number of suspension points	: 4 Points
•	Number of wheels per suspension point	: 2 wheels

• Suspension point interval Long. Direction : 1.2m

Trans. Direction : 8.64m

- Maximum load of one suspension point : 34.3kN (3.5t)
- Sample image of saddle

Note: The detailed figure of the saddle shall be treated as reference. Source: JICA Study Team

Figure 4.2.206 Sample Image of Saddle

The scaffolding loads during construction has not been accounted for in this calculation. The calculation results (reference) is shown below.

(1)Specification			
Inspection Car			
Longitudinal length	1.2 m		
Transverse width	22.9 m		
Self weight, W	100 kN	6	
Live load, Pl	15 kN	and the second second	
Hanging Points of Inspection Car	4 points	tf	
Longitudinal distance of points	1.2 m		
Transverse distance of points	8.5 m		
Wheels at 1 point	2 wheels	d	
Wheels Transverse distance, Lb1	100 mm		
Wheels Longitudinal distance, Lb2	0 mm		
Rail for Inspection Car			
Section Properties of I-Beam (Rail)	d(mm) b(mm)	tw(mm) tf(mm) l(cm4)	Z(cm3)
	300 15	0 11.5 22 14700	978
Span of Rail	2.5 m		
Young's Modulus of Steel	2.00E+05 N/mm2		
(2) Load at one contact point			
Increase Coefficient			
Impact factor for live load, i	0.2	14 August 10	
Load at one hanging point: P	34.0 kN	P=(W/4+Pl*(1+i)/2)	OK
	3.47 ton		
(3)Verification of stress and deflection			
(3.1) As a beam			
Span length of rail, L	2.5 m		
Max Bending Moment, M	21.3 kNm	M=PL/4	
Max Shear Force, S	51.0 kN	S=1.5P	
Moment of Inertia, I	14700 cm4		
Section Modulus, Z	978 cm3		
Web Area, Aw	2944 mm2	Aw=(h-2*tf)*tw	
Bending Stress, o	21.7 N/mm2	0=M/Z	OK
Shear Stress, T	17.3 N/mm2	T=S/Aw	OK
Allowable Bending Stress, Ja	138.5 N/mm2	σa=1.25*(140-2.4*(L*1000/bf))	
Allowable Shear Stress, Ta	100.0 N/mm2	τ a=1.25*80	
Deflection 5	0.2765	S-DI 2/4951	
Deficition, C	0.0700 mm	0-125/4821	
Ratio of Deflection/Length: L/8	6641		
(3.2) As a flange plate carrying wheel	Sales and I		
Extended length of flange, Lt	44.25 mm	Lt=(Lb1-tw)/2	
BendingMoment, Mt	0.75 kNm	M=PLt/2	
ShearForce, St	25.5 kN	S=P/2	
Stress spread by 45 degree. Contact wid	th is not considered.		
Flange thickness at Loading Point, tf	26.9 mm		
Effective width, b	88.5 mm	b=2*Lt	
Section Modulus, Zt	10673 mm3		
Area, A	2381 mm2	A=b*tf'	
Bending Stress, σ	70.5 N/mm2		ОК
Shear Stress, τ	16.1 N/mm2		ок
Allowable Bending Stress, σa	175.0 N/mm2	σa=1.25*(140)	
Allowable Shear Stress, Ta	100.0 N/mm2	τ a=1.25*80	
length of welding			
a*Lreo=P/Ta			
welding size.s	7 mm		
a	6 1 mm		
_ Lreg	55.7377 mm	Lreg=P/(a*Ta)	

(3) Inspection Route inside Girder

The inspection route inside the girder is shown below.

600

137

486

B5

Figure 4.2.207 Inspection Route inside Girder

2380

537 100 50

(4) Examination of Supporting Member of Gondola for Tower Outer Surface Inspection

1) Gondola Supporting Member

The weight of the gondola was assumed as 300kg. Accordingly, the cross-section of the supporting members and stiffeners of the supports were decided as shown below.

Section Force

Source: JICA Study Team

Reaction Force

Bending Moment, Shear

 $\begin{array}{rclrcl} M &=& -P &\times & a &=& -3.0 &\times & 2.2 \\ &=& -6.6 & kN \cdot m \\ S &=& R_A &=& -11.0 & kN \end{array}$

•Examination of applied cross-section

Applied cross-section

H - 250 \times 250 \times 9 \times 14 ... Z = 860 cm³

Verification of bending stress

 $\begin{array}{rcl} \sigma &=& M \ / & Z \\ &=& -6.6 \ \times & 10 \ ^{\circ}6 \ / & 860 \ \times & 10 \ ^{\circ}3 \\ &=& -7.7 & N/mm^2 & < \sigma_a \ = & 140 \ N/mm^2 \end{array}$

Verification of shear stress

 $\begin{array}{rclrcrcrc} Aw = & 9 & \times & (& 250 & - & 2 & \times & 14 &) & = & 1998 & mm^2 \\ \tau & = & S & / & Aw = & 11.0 & \times & 10 & ^3 & / & 1998 \\ & & & = & 5.5 & N/mm^2 & < & \tau_a & = & 80 & N/mm^2 \end{array}$

Stiffners for supports

Applied cross-section

V-Stiff PL 2- 100 × 9

Verification of stress

$$\sigma_{a} = R_{B} / A_{b} = 14.0 \times 10^{3} / (2 \times 100 \times 9)$$

= 7.8 N/mm²

2) Reinforcement at Tower Side

Section Force

Source: JICA Study Team

•Necessary section modulus at reinforced section

Section force shall equal that of gondola suspension member Shall be adjusted to equal H - $250 \times 250 \times 9 \times 14 \dots Z = 860 \text{ cm}^3$

• Stiffners for supports

Applied cross-section

V-Stiff PL 2- 100 × 9

Verification of stress

$$\sigma_{a} = R_{B} / A_{b} = 14.0 \times 10^{3} / (2 \times 100 \times 9)$$

= 7.8 N/mm²

Configuration

Figure 4.2.210 Tower Side Reinforcement Plan

(5) Inspection Route inside Tower

The shaft ladders inside the tower is as shown below.

Figure 4.2.211 Shaft Ladders inside Towers

(6) Fall Preventive Handrail at Pier Top

Fall preventive handrails for inspection and maintenance of bearings and pier top are installed.

Figure 4.2.212 Fall Preventive Handrail at Pier Top

(7) Shaft Ladder

The shaft ladders to the top of the piers are installed as shown below.

1) Side Pier

The access ladders shall be installed linking the bridge face to the pier top as shown below. (The ladders shall be installed at the adjacent bridge).

Source: JICA Study Team

2) Tower Pier

The access ladders shall be installed linking the inside of the girder to the pier top.

Figure 4.2.214 Shaft Ladder (Tower Pier)

4.2.12 Summary of Seismic Analysis

4.2.12.1 Dynamic Analysis of Overall Structure

The purpose of the analysis is to observe the behavior of the main section, i.e., the cable-stayed bridge, during an earthquake. The static analysis of seismic design is shown in "Section 4.2.9.7 Static Structure Analysis" of this report.

(1) Non-Linear Dynamic Analysis Conditions

1) Outline of Structure

a) Structure Type

- Superstructure three-span continuous cable-stayed bridge
- Substructure Reinforced concrete single column type pier
- Foundation Type P10 Pier: Steel pipe sheet pile foundation
 - P11 Pier: Steel pipe sheet pile foundation
 - P12 Pier: Steel pipe sheet pile foundation
 - P13 Pier: Steel pipe sheet pile foundation

b) Bearing Support Condition

- P10 Pier: Movable (Fixed on transverse direction) Rocking Bearing
- P11 Pier: Fixed (Fixed on transverse direction)
- P12 Pier: Fixed (Fixed on transverse direction)
- P13 Pier: Movable (Fixed on transverse direction) Rocking Bearing
- c) Structural Plan

Source: JICA Study Team

Figure 4.2.215 Structural Plan of Superstructure

Source: JICA Study Team

Figure 4.2.216 Structural Plan of Main Tower

Figure 4.2.217 Structural Plan of P10 Pier

The figure above shows P10 pier. P13 pier has the same column dimension except for the embedded footing length, which was changed from 56.5 m to 49.5 m.

Source: JICA Study Team

Figure 4.2.218 Structural Plan of P11 Pier

The figure above shows P11 pier. P12 pier has the same column dimension except for the embedded footing length, which was changed from 60.5 m to 52.0 m.

Final Report

2) Basic Policy of Models

a) Analysis Model

The one mass point spring SR model shall be used.

b) Excitation Method

Acceleration for the excitation of the foundation is inputted.

c) Response Calculation

1) Integral time	: 0.02 seconds

2) Integration method	: Newmark β Method ($\beta = 0.25$)
-----------------------	---

d) Effect of Gravity

The section force and the cable pre-stress induced by gravity are set as the initial stage section force and included in the first step of the time response analysis.

e) Internal Damping · Radiational Damping

Rayleigh's damping shall be applied. For the configuration of Rayleigh's damping, the coefficients for the vibrational modes shall be specified as stated in the Specification of Highway Bridges V and shall be determined by the following equation:

$$h_{i} = \frac{\sum_{j=1}^{n} h_{j} \left\{ \phi_{ij} \right\}^{T} \left[K_{j} \right] \left\{ \phi_{ij} \right\}}{\left\{ \phi_{i} \right\}^{T} \left[K \right] \left\{ \phi_{i} \right\}}$$

 $\{\phi_{ii}\}$; Mode Vector of element j at ith mode

 h_i ; Dumping coefficient of element j

 $\begin{bmatrix} K_i \end{bmatrix}$; Stiffness matrix of element j

 $\{\phi_i\}$; Mode Vector of whole structure j at ith mode

 $\begin{bmatrix} K \end{bmatrix}$; Stiffness matrix of whole structure

3) Design Seismic Wave

The design seismic wave used for the dynamic analysis shall use the waveform of the Specification of Highway Bridges Level 1 Seismic Motion (Type III Ground) corresponding to kh = 0.3 of the seismic coefficient method.

Figure 4.2.219 Design Seismic Wave

4) Analysis Direction

The analysis of the bridge shall be performed in two directions, namely: the direction connecting the P10 and P13 pier, which is the Longitudinal Direction (LG), and the direction perpendicular to it, which is the Transverse Direction (TR), considering the bridge is straight.

Source: JICA Study Team

5) Evaluation Method for the Dynamic Analysis Results

a) Evaluation of Superstructure

The main girder and main column are verified to not undergo plasticization due to the seismic response section force. Furthermore, the response at the joint gap at the girder end and bearing support is verified to be below the allowable value.

b) Evaluation of Cable Member

The tension in the cable due the seismic response is verified to be below the allowable value. Furthermore, it is verified that no compression acts on the cable.

c) Evaluation of Pier

- Flexural capacity

The bending stress on the reinforced concrete member generated by the bending moment due to the seismic response is verified to be below the allowable bending stress.

- Shear capacity

The shearing stress on the concrete generated by the shear stress due to the seismic response is verified to be below the allowable shearing stress.

(2) Analysis Model

1) Analysis Model

The analysis model is a 3D model (6 degrees of freedom) of the entire bridge system.

Figure 4.2.222 Element Numbers

2) Models of Members

a) Superstructure

The superstructure shall be modelled as a linear beam member. An axis and a mass point shall be established at the centroid position of the superstructure, regardless of the analysis direction.

b) Bearing Support

The condition of the bearing support shall be as listed below.

Pier Number	Longitudinal	Transverse
Pier P10	Movable	Fixed
Pier P11	Fixed	Fixed
Pier P12	Fixed	Fixed
Pier P13	Movable	Fixed

Table 4.2.163	Bearing Support Condition
---------------	---------------------------

Source: JICA Study Team

Table 4.2.164 Models of Bear

Bearing Support Condition	Longitudinal	Transverse	Vertical	Longiaxis Rotation	Transaxis Rotation	Vertical-axis Rotation
Movable Support	Free	Restricted	Restricted	Restricted	Free	Free
Fixed Support	Restricted	Restricted	Restricted	Restricted	Free	Free

Source: JICA Study Team

c) RC Pier

Plastic hinge member : The plastic hinge section shall be considered as a non-linear beam element and the length shall be divided into five equal parts.

Ordinary member : Non-linear beam element

d) Foundation

The effect of the ground/foundation shall be replaced by a linear concentrated spring. The concentrated spring shall consider rotation and horizontal couple.

The overall model of the pier and foundation is shown below.

Source: JICA Study Team

3) Damping

a) Hysteresis Damping

Hysteresis damping is considered automatically in the dynamic analysis.

b) Damping Coefficient of Structural Elements

Structural Member		Dumping Coef	Remarks		
Superstructure	Steel		2%	Steel Structure Linear Member is 2%	
	Cable		1%	Cable is 1%	
Substructure	RC Pier	Linear	5%	Linear Member is 5%	
		Non-linear	1%	Non-linear Member is 5%	
Foundation	Ground Type III		20%	Steel Pipe Sheet Pile Foundation	
Bearing support	Fixed Bearing Support		0%	Fixed Bearing Support is 0%	
	Movable Bearing Support		0%	Movable Bearing Support is 0%	

Table 4.2.165	Damping	Coefficients	of Structural	Elements
---------------	---------	--------------	---------------	----------

Source: JICA Study Team

c) Internal Damping and Radiational Damping

Internal damping and radiational damping shall apply Rayleigh's damping and the damping coefficient for each member shall be obtained from the Specifications of Highway Bridges, Graph 7.3.1.
(3) Analysis Result

1) Natural Value Analysis

Rayleigh's damping was configured with two selected natural vibration modes which showed a clear distinction between the natural frequency and damping coefficient of the natural vibration mode in the focused direction.

Figure 4.2.224 Rayleigh Damping (Whole Cross Section Stiffness – Longitudinal)

Source: JICA Study Team

Source: JICA Study Team

The fundamental natural frequency mode for each analysis model is shown below.

Source: JICA Study Team

Figure 4.2.229 Fundamental Vibration Mode (Whole Cross Section Stiffness – Longitudinal)

2) Evaluation of Members

a) Main Girder Cross Section Evaluation

The seismic response value was verified to be below the allowable value, as shown below.

Table 4.2.166 Main Girder Cross Section Evaluation Result 1-2

Main Girde	r Cross	-Section 1										
Stress of N	lembers	5										
Mei	nber Nu	umber	Position	σ		σa	τ		τa	F		Fa
DECK	7	(EFT)	5097	-66.2	<	108.8	0.2	<	80.0	0.22	<	1.2
DECK	6	(W.R)	0	-33.2	<	108.8	10.5	<	80.0	0.07	<	1.2
DECK	7	(EFT)	5097	-66.2	<	108.8	0.2	<	80.0	0.22	<	1.2
BOTM	12	(W.L)	3500	-78.5	<	156.8	8.1	<	120.0	0.14	<	1.2
BOTM	12	(W.L)	3500	-78.5	<	156.8	8.1	<	120.0	0.14	<	1.2
BOTM	12	(W.L)	3500	-78.5	<	156.8	8.1	<	120.0	0.14	<	1.2
WEB	17	(W.L)	2962	-78.2	<	116.3	8.3	<	120.0	0.14	<	1.2
WEB	17	(W.C)	1481	-46.8	<	116.3	9.1	<	120.0	0.06	<	1.2
WEB	17	(W.L)	2962	-78.2	<	116.3	8.3	<	120.0	0.14	<	1.2
Safety Eva	luation of	of Member								-		
Mei	nber Nu	umber	Position	K		Ka	σ		σcal			
DECK	7	(EFT)	5097	0.50	<	1.0	66.2	<	108.8			
вотм	12	(W.L)	3500	0.39	<	1.0	78.5	<	156.8			
WEB	17	(W.L)	2962	0.42	<	1.0	78.2	<	116.3			
Vertical Ri	b Bottor	n Curb Stress	3									
Mei	nber Nı	umber	Rib Number	σ		σа						
DECK	2	(U.RIB)	2	36.6	<	140.0						
DECK	2	(RIB)	1	38.1	<	140.0						
DECK	6	(U.RIB)	29	-42.4	<	140.0						
DECK	6	(RIB)	30	-43.9	<	140.0						
DECK	7	(U.RIB)	37	-58.7	<	140.0						
DECK	7	(RIB)	38	-60.3	<	140.0						
Main Cinda	- C	S 4	······································									
Stress of M	I CIOSS. Iembers											
Met	nher Ni	, Imber	Position	6		G 2	τ		τ	F		Fa
DECK	2	(FFT)	-5066	_82.2	<	140.0	03	<	80.0	0.34	<	1 2
DECK	3	(WI)	5001	38.0	~	140.0	11.5	~	80.0	0.34	~	1.2
DECK	2	(W.L) (FFT)	5066	-38.9 82.2	~	140.0	0.3	~	80.0	0.10	~	1.2
BOTM	10	(W P)	-5000	67.6	~	114.7	11.4	~	120.0	0.11	~	1.2
BOTM	10	(W.R)	0	67.6	~	114.7	11.4	~	120.0	0.11	~	1.2
POTM	10	(W.R)	0	67.6	~	114.7	11.4	$\overline{}$	120.0	0.11	$\overline{}$	1.2
WFR	10	(W.K) (W.I.)	2962	67.5	~	114.7	0.1	~	120.0	0.11	~	1.2
WED	14	(W.C)	1481	52.0	~	116.2	10.6		120.0	0.11		1.2
WED	14	(W.C)	2062	-55.0	-	116.3	0.1	$\overline{}$	120.0	0.07	$\overline{}$	1.2
Safety Eva	huation (of Member	2902	-07.5	_	110.5	9.1		120.0	0.11	_	1.2
Mer	nher Ni	mber	Position	V		Ka			gaal			
DECK	2	(FFT)	F 081000	0.50	_	<u>Ka</u>	<u> </u>	_	140.0			
DECK	10	(W P)	-5000	0.39	-	1.0	67.6	$\overline{}$	140.0			
WED	10	(W.K)	2062	0.40	-	1.0	67.5	$\overline{}$	114.7			
WED Vertical Ri	14 h Rottor	(W.L)	2902	0.39		1.0	07.5		110.5			
Ma	nher M	mber	Rib Number	6		G 2						
DECK	ווטכו וענ ר			74.2	/	140.0						
DECK	2		2	- /4.2		140.0						
DECK	2		10	- /0.3	~	140.0						
DECK	2		10	-32.8	~	140.0						
DECK	3		9	-34./	<	140.0						
DECK	/ 7		3/	27.2	~	140.0						
LITEL K	/		58	3//	<	1400						

Table 4.2.167	Main Girder C	ross Section	Evaluation	Result 3-4
---------------	---------------	--------------	------------	------------

Main Girde	r Cross	Section 3										
Stress of M	lembers											
Mei	mber Nu	umber	Position	σ		σa	τ		τa	F		Fa
DECK	7	(EFT)	3422	-88.5	<	140.0	9.5	<	80.0	0.41	<	1.2
DECK	6	(W.R)	0	-40.0	<	140.0	27.8	<	80.0	0.20	<	1.2
DECK	7	(EFT)	3422	-88.5	<	140.0	9.5	<	80.0	0.41	<	1.2
BOTM	12	(W.L)	3500	-114.5	<	167.1	23.3	<	120.0	0.33	<	1.2
BOTM	12	(W.L)	3500	-114.5	<	167.1	23.3	<	120.0	0.33	<	1.2
BOTM	12	(W.L)	3500	-114.5	<	167.1	23.3	<	120.0	0.33	<	1.2
WEB	17	(W.L)	2962	-113.9	<	150.7	21.0	<	120.0	0.32	<	1.2
WEB	17	(W.C)	1481	-70.1	<	150.7	23.7	<	120.0	0.15	<	1.2
WEB	17	(W.L)	2962	-113.9	<	150.7	21.0	<	120.0	0.32	<	1.2
Safety Eva	luation o	of Member										
Mei	mber Nı	umber	Position	Κ		Ka	σ		σcal			
DECK	7	(EFT)	3422	0.63	<	1.0	88.5	<	140.0			
BOTM	12	(W.L)	3500	0.58	<	1.0	114.6	<	167.1			
WEB	17	(W.L)	2962	0.59	<	1.0	114.0	<	150.7			
Vertical Ri	b Bottor	n Curb Stress	3									
Mei	mber Nu	umber	Rib Number	σ		σa						
DECK	2	(U.RIB)	2	60.1	<	140.0						
DECK	2	(RIB)	1	62.6	<	140.0						
DECK	6	(U.RIB)	29	-62.8	<	140.0						
DECK	6	(RIB)	30	-65.6	<	140.0						
DECK	7	(U.RIB)	37	-91.5	<	140.0						
DECK	7	(RIB)	38	-94.6	<	140.0						
Main Girde	r Cross	Section 4										
Stress of N	1embers	Section 1										
Mei	mber Nu	umber	Rib Number	σ		σa	τ		τα	F		Fa
DECK	7	(EFT)	3422	-87.7	<	140.0	6.7	<	80.0	0.40	<	1.2
DECK	6	(W.R)	0	-49.5	<	140.0	19.7	<	80.0	0.19	<	1.2
DECK	7	(EFT)	3422	-87.7	<	140.0	6.7	<	80.0	0.40	<	1.2
BOTM	12	(W.L)	3500	-88.9	<	114.7	18.1	<	120.0	0.20	<	1.2
BOTM	12	(W.L)	3500	-88.9	<	114.7	18.1	<	120.0	0.20	<	1.2
BOTM	12	(W.L)	3500	-88.9	<	114.7	18.1	<	120.0	0.20	<	1.2
WEB	17	(W.L)	2962	-88.7	<	116.3	14.6	<	120.0	0.19	<	1.2
WEB	17	(W.C)	1481	-64.9	<	116.3	17.0	<	120.0	0.12	<	1.2
WEB	17	(W.L)	2962	-88.7	<	116.3	14.6	<	120.0	0.19	<	1.2
Safety Eva	luation o	of Member										
Mei	mber Nı	umber	Position	K		Ka	σ		σcal			
DECK	7	(EFT)	3422	0.63	<	1.0	87.7	<	140.0			
BOTM	12	(W.L)	3500	0.53	<	1.0	89.0	<	114.7			
WEB	17	(W.L)	2962	0.53	<	1.0	88.8	<	116.3			
Vertical Ri	b Bottor	n Curb Stress	3									
Mei	mber Nı	mber	Rib Number	σ		σa						
DECK	2	(U.RIB)	8	-37.2	<	140.0						
DECK	2	(RIB)	1	36.0	<	140.0						
DECK	6	(U.RIB)	29	-64.6	<	140.0						
DECK	6	(RIB)	30	-66.6	<	140.0						
DECK	7	(U.RIB)	37	-87.2	<	140.0						
	, 7	(010)	29	00.5		140.0						

b) Main Tower Cross Section Evaluation

The seismic response value was verified to be below the allowable value, as shown below.

Main Towe	er Cros	s Section	1									
Stress of M	lember	:s										
Memb	er Nu	mber	Position	σ		σa	τ		τα	F		Fa
U.FLG	1	(F.R)	2420	-113.8	<	210.0	3.3	<	120.0	0.29	<	1.2
U.FLG	1	(F.R)	2420	-113.8	<	210.0	3.3	<	120.0	0.29	<	1.2
U.FLG	1	(F.R)	2420	-113.8	<	210.0	3.3	<	120.0	0.29	<	1.2
L.FLG	2	(F.R)	2420	-123.7	<	210.0	3.3	<	120.0	0.35	<	1.2
L.FLG	2	(F.R)	2420	-123.7	<	210.0	3.3	<	120.0	0.35	<	1.2
L.FLG	2	(F.R)	2420	-123.7	<	210.0	3.3	<	120.0	0.35	<	1.2
WEB	4	(W.L)	3000	-124.4	<	210.0	3.3	<	120.0	0.35	<	1.2
WEB	4	(W.L)	3000	-124.4	<	210.0	3.3	<	120.0	0.35	<	1.2
WEB	4	(W.L)	3000	-124.4	<	210.0	3.3	<	120.0	0.35	<	1.2
Safety Eva	luation	of Membe	er									
Memb	er Nu	mber	Position	K		Ka	σ		σcal			
U.FLG	1	(F.R)	2420	0.635	<	1.0	117.6	<	210.0			
L.FLG	2	(F.R)	2420	0.684	<	1.0	127.9	<	210.0			
WEB	4	(W.L)	3000	0.687	<	1.0	128.7	<	210.0			

 Table 4.2.168
 Main Tower Cross Section Evaluation

Main Tower Cross Section 2 Main Tower Foundation

Stress of M	lember	rs										
Memb	er Nu	mber	Position	σ		σa	τ		τа	F		Fa
U.FLG	1	(F.L)	0	-169.6	<	206.6	4.5	<	120.0	0.65	<	1.2
U.FLG	1	(F.L)	0	-169.6	<	206.6	4.5	<	120.0	0.65	<	1.2
U.FLG	1	(F.L)	0	-169.6	<	206.6	4.5	<	120.0	0.65	<	1.2
L.FLG	2	(F.L)	0	-173.3	<	206.1	4.5	<	120.0	0.68	<	1.2
L.FLG	2	(F.L)	0	-173.3	<	206.1	4.5	<	120.0	0.68	<	1.2
L.FLG	2	(F.L)	0	-173.3	<	206.1	4.5	<	120.0	0.68	<	1.2
WEB	3	(W.L)	3000	-175.7	<	210.0	4.5	<	120.0	0.70	<	1.2
WEB	3	(W.L)	3000	-175.7	<	210.0	4.5	<	120.0	0.70	<	1.2
WEB	3	(W.L)	3000	-175.7	<	210.0	4.5	<	120.0	0.70	<	1.2
Safety Eva	luation	of Membe	er									
Memb	er Nu	mber	Position	Κ		Ka	σ		σcal			
U.FLG	1	(F.L)	0	0.955	<	1.0	181.1	<	206.6			
L.FLG	2	(F.L)	0	0.974	<	1.0	185.0	<	206.1			
WEB	3	(W.L)	3000	0.980	<	1.0	187.7	<	210.0			

Main	Tower Cross	Section 2 Cros	ss Sectional Change
Strace	of Members		

Stress of N	lember	rs										
Mem	ber Nu	mber	Position	σ		σa	τ		τα	F		Fa
U.FLG	1	(F.R)	2430	-147.3	<	201.2	3.9	<	120.0	0.49	<	1.2
U.FLG	1	(F.R)	2430	-147.3	<	201.2	3.9	<	120.0	0.49	<	1.2
U.FLG	1	(F.R)	2430	-147.3	<	201.2	3.9	<	120.0	0.49	<	1.2
L.FLG	2	(F.R)	2430	-153.9	<	200.7	3.9	<	120.0	0.54	<	1.2
L.FLG	2	(F.R)	2430	-153.9	<	200.7	3.9	<	120.0	0.54	<	1.2
L.FLG	2	(F.R)	2430	-153.9	<	200.7	3.9	<	120.0	0.54	<	1.2
WEB	4	(W.L)	3000	-155.4	<	210.0	3.9	<	120.0	0.55	<	1.2
WEB	4	(W.L)	3000	-155.4	<	210.0	3.9	<	120.0	0.55	<	1.2
WEB	4	(W.L)	3000	-155.4	<	210.0	3.9	<	120.0	0.55	<	1.2
Safety Eva	luation	of Membe	er									
Mem	ber Nu	mber	Position	K		Ka	σ		σcal			
U.FLG	1	(F.R)	2430	0.848	<	1.0	156.9	<	201.2			
L.FLG	2	(F.R)	2430	0.884	<	1.0	164.2	<	200.7]		
WEB	4	(W.L)	3000	0.874	<	1.0	165.8	<	210.0	1		

c) Cable Evaluation

The tension in the cable due to the seismic response is verified to be below the allowable value. Furthermore, it is verified that no compression acts on the cable.

Evaluat	ion of Cable	2									
		Response	Axial For	ce of Cable	(kN)	Evaluation	of Maximu	m Tension	Evaluation	on of Minimum	Tension
	Element	Longitu	ıdinal	Transverse	Amatraia	Max	Allowable		Max	Allowable	
	Number	Analy	ysis	Transverse	Analysis	Tension	Tension	Verdict	Tension	Compression	Verdict
		Max	Min	Max	Min	(kN)	(kN)		(kN)	(kN)	
	401	5103.3	3758.2	4390.8	4390.8	5103.3	7308.0	0	3758.2	0.0	0
	402	4588.0	3689.3	4101.8	4101.8	4588.0	7308.0	0	3689.3	0.0	0
ц 0 -	403	4262.0	3560.0	3881.0	3881.0	4262.0	7308.0	0	3560.0	0.0	0
ow(side	404	4340.8	3383.2	3831.0	3831.0	4340.8	7308.0	0	3383.2	0.0	0
an to otto	405	4737.3	3535.0	4074.6	4074.6	4737.3	7308.0	0	3535.0	0.0	0
Mai ⇒B	406	2804.4	2067.9	2438.2	2438.2	2804.4	3862.8	0	2067.9	0.0	0
111] side	407	3097.0	2277.8	2692.2	2692.1	3097.0	3862.8	0	2277.8	0.0	0
P. P.	408	3273.5	2380.1	2816.2	2816.1	3273.5	3862.8	0	2380.1	0.0	0
	409	3381.1	2274.7	2860.8	2860.7	3381.1	3862.8	0	2274.7	0.0	0
	410	3344.3	2117.7	2807.7	2807.6	3344.3	3862.8	0	2117.7	0.0	0
	411	4965.0	3754.4	4371.0	4371.0	4965.0	7308.0	0	3754.4	0.0	0
	412	4519.4	3657.8	4086.1	4086.1	4519.4	7308.0	0	3657.8	0.0	0
le r	413	4161.3	3529.2	3867.7	3867.7	4161.3	7308.0	0	3529.2	0.0	0
owe sic	414	4202.1	3510.6	3832.4	3832.4	4202.1	7308.0	0	3510.6	0.0	0
n to Dan otto	415	4526.1	3644.5	4069.3	4069.3	4526.1	7308.0	0	3644.5	0.0	0
Mai r s¦ →B	416	2760.6	2159.0	2438.1	2438.1	2760.6	3862.8	0	2159.0	0.0	0
nte op	417	3047.4	2362.4	2688.0	2688.0	3047.4	3862.8	0	2362.4	0.0	0
P1 C Ce	418	3294.4	2431.8	2821.5	2821.5	3294.4	3862.8	0	2431.8	0.0	0
	419	3505.0	2300.6	2864.8	2864.8	3505.0	3862.8	0	2300.6	0.0	0
	420	3561.4	2123.6	2814.6	2814.5	3561.4	3862.8	0	2123.6	0.0	0
	421	5050.7	3737.0	4370.9	4370.9	5050.7	7308.0	0	3737.0	0.0	0
	422	4501.8	3651.2	4086.1	4086.0	4501.8	7308.0	0	3651.2	0.0	0
e r	423	4219.2	3600.9	3867.7	3867.7	4219.2	7308.0	0	3600.9	0.0	0
owe sid	424	4232.9	3422.0	3832.4	3832.4	4232.9	7308.0	0	3422.0	0.0	0
n to Dan otto	425	4561.3	3590.4	4069.3	4069.2	4561.3	7308.0	0	3590.4	0.0	0
Mai r sµ →B	426	2768.7	2112.4	2438.1	2438.1	2768.7	3862.8	0	2112.4	0.0	0
12 N ante	427	3072.2	2315.4	2688.0	2688.0	3072.2	3862.8	0	2315.4	0.0	0
PI Ce T	428	3240.1	2361.3	2821.5	2821.5	3240.1	3862.8	0	2361.3	0.0	0
	429	3408.2	2256.3	2864.8	2864.8	3408.2	3862.8	0	2256.3	0.0	0
	430	3481.9	2117.8	2814.6	2814.5	3481.9	3862.8	0	2117.8	0.0	0
	431	5011.1	3725.9	4390.8	4390.8	5011.1	7308.0	0	3725.9	0.0	0
	432	4510.7	3656.0	4101.7	4101.7	4510.7	7308.0	0	3656.0	0.0	0
5.0	433	4176.4	3530.8	3880.9	3880.9	4176.4	7308.0	0	3530.8	0.0	0
owe side m)	434	4178.4	3461.2	3830.9	3830.9	4178.4	7308.0	0	3461.2	0.0	0
n to an s	435	4563.9	3583.0	4074.6	4074.6	4563.9	7308.0	0	3583.0	0.0	0
Aai spa ≯Bo	436	2759.3	2167.0	2438.2	2438.2	2759.3	3862.8	0	2167.0	0.0	0
2 N ide	437	3063.1	2332.3	2692.1	2692.1	3063.1	3862.8	0	2332.3	0.0	0
P1 s: (Tc	438	3211.6	2393.1	2816.2	2816.2	3211.6	3862.8	0	2393.1	0.0	0
	439	3370.8	2349.0	2860.8	2860.7	3370.8	3862.8	0	2349.0	0.0	0
	440	3421.8	2238.5	2807.7	2807.7	3421.8	3862.8	0	2238.5	0.0	0

Table 4.2.169 Cable Evaluation Results

d) Pier Evaluation

The bending stress on the reinforced concrete member generated by the bending moment due to the seismic response is verified to be below the allowable bending stress as shown below. Furthermore, the shearing stress on the concrete generated by the shear stress due to the seismic response is verified to be below the allowable shearing stress.

		Verdict						0	0	0	0	0	0	0	0	0	0	0	0			Verdict						0	0			2	0	0	0	0	0	0	0	0	0
	ement	Reinforcement Content	(cm^2)					30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968		ement	Reinforcement	(cm^2)					30.968	30.968	50.908	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968	30.968
	Shear Reinforce	Necessary Reinforcement Content	(cm^2)							0.796	1.855	2.910	3.890	4.711	5.245	5.416	5.584	5.750	5.913		Shear Reinforce	Necessary	(cm^2)					2.451	4.012	2.1//	6.0/4	0. /42	7.357	7.956	8.636	9.374	9.779	9.930	10.080	10.230	10.379
	Stress	ta	N/mm ²)					0.223	0.218	0.214	0.211	0.208	0.206	0.204	0.205	0.204	0.204	0.204	0.203		Stress	ta	N/mm ²)					0.286	0.272	707-0	0.25.0	002.0	0.246	0.243	0.240	0.238	0.238	0.238	0.237	0.237	0.237
	Shearing	ų	N/mm^2 (0					0.202	0.214	0.226	0.240	0.254	0.267	0.278	0.286	0.289	0.291	0.293	0.295		Shearing	1	N/mm ²) (0					0.324	0.334	0.245	0.500	CCC.0	0.361	0.367	0.375	0.384	0.391	0.393	0.395	0.397	0.399
ľ	î	Adopted	v alue (10553.4	12292.3	13599.4	14641.5	15630.3	16565.0	17493.9	18526.4	19595.3	20621.2	21463.6	22136.3	22314.9	22490.9	22664.5	22835.7		î	Adopted	Value	22055.3	22926.4	23677.7	24334.6	25086.0	25869.8	0.75002	2/080.6	2/498.9	27926.2	28398.4	29013.9	29733.7	30231.3	30383.1	30534.2	30687.6	30839.6
	: Force (k	Min Val		-10553.4	-12292.3	-13593.7	-14592.3	-15537.2	-16456.3	-17315.4	-18279.2	-19238.8	-19908.7	-20705.8	-21285.5	-21419.3	-21550.1	-21678.1	-21803.5		: Force (k		Min Val	-21153.9	-21709.3	-22194.6	-22626.0	-23198.5	-23943.0	2.4009-2-	776107-	0.06002-	-26178.7	-26620.5	-27027.3	-27395.4	-27632.5	-27698.5	-27764.5	-27828.8	-27891.5
	Shear	fax Val		10496.7	12266.2	13599.4	14641.5	15630.3	16565.0	17493.9	18526.4	19595.3	20621.2	21463.6	22136.3	22314.9	22490.9	22664.5	22835.7		Shear		fax Val	22055.3	22926.4	23677.7	24334.6	25086.0	25869.8	0.76007	0.080/2	2/498.9	27926.2	28398.4	29013.9	29733.7	30231.3	30383.1	30534.2	30687.6	30839.6
		Verdict						0	0	0	0	0	0	0	0	0	0	0	0			Verdict	4					0	0		b	2	0	0	0	0	0	0	0	0	0
	Stress m ²)	σS	5sa=300					59.9	84.5	111.8	141.5	173.7	205.8	242.2	245.3	252.8	260.4	268.1	275.9		Stress	d S	55a=300					26.1	46.6	/1.0	2.16	1.621	155.5	186.1	217.5	249.4	253.4	259.9	266.3	272.8	279.3
	Bending (N/m	QC	oca=15					3.0	3.7	4.4	5.2	6.0	6.8	7.6	7.8	8.0	8.2	8.3	8.5		Bending	QC IV/II	oca=15					2.8	3.6	4 4 7	5.5	0.1	7:0	7.9	8.8	9.6	9.8	10.0	10.2	10.3	10.5
Ī	Axial	Force	(kN)	41699.1	30821.2	34612.6	37790.8	41037.8	44428.2	47818.2	51208.2	54598.0	57987.4	61376.8	63410.2	64088.2	64766.0	65443.8	66121.6		Axial	Force	(kN)	56319.0	58798.8	61092.4	63255.8	65954.0	69201.2	72705.4	1.0010.4	/8/47.2	82188.6	85435.2	88681.4	91927.4	93875.0	94524.2	95173.4	95822.4	96471.6
	Bending	Moment	(kN·m)	51135.9	71089.1	93152.3	116815.0	144279.0	173250.0	203597.0	235347.0	268612.0	301556.0	337526.0	344978.0	352344.0	359803.0	367302.0	374855.0		Bending	Moment	(kN·m)	45939.5	71722.7	98351.9	125718.0	168351.0	212307.0	0.046/02	505596.0	348940.0	396304.0	444111.0	492394.0	541112.0	550936.0	560722.0	570520.0	580342.0	590183.0
	(NA)		Min	41699.1	-24066.4	-28276.2	31755.4	.34963.1	-38277.1	41663.0	45049.3	48436.1	51823.4	-55211.1	57921.6	-59277.0	-59954.7	-60632.4	-61310.1		UN1)	(m) >	Min	-52324.2	-54800.8	-57091.6	-59252.6	-61948.0	-65192.2	-08450.0	-/1681.0	0.0244/-	-78170.6	-81415.6	-84660.8	-87906.2	-89853.4	-90502.6	-91151.6	-91800.8	-92450.0
	A vial Forc		Max	26178.8 -	30821.2	34612.6	37790.8	41037.8 -	44428.2	47818.2	51208.2	54598.0	57987.4	61376.8 -	63410.2	64088.2	64766.0	65443.8 -	66121.6		A vial Forc		Max	56319.0	58798.8	61092.4 -	63255.8 -	65954.0 -	59201.2 -	- +	- 4.06400	- 7766/	82188.6 -	85435.2 -	88681.4 -	91927.4 -	93875.0	94524.2	95173.4	95822.4	96471.6
Result	ment		Min	26954.4 -	46660.2	8759.3 -	2524.7	20182.0 -	19437.0 -	30218.0 -	2487.0 -	46312.0 -	30462.0 -	7815.0 -	25483.0 -	3235.0 -	1074.0	- 0.7968	56903.0 -	Result	ment		Min	15939.5 -	1722.7 -	8351.9 -	25718.0 -	58351.0 -	2307.0	- 0.046/0	- 0.945.0	+8946.0	96304.0 -	4111.0 -	2394.0 -	41112.0 -	50936.0 -	50722.0 -	70520.0 -	80342.0 -	90183.0
alculation	nding Mor	(kN·m)	ax	135.9 -2	089.1	152.3 -t	815.0 -9	279.0 -12	250.0 -14	597.0 -15	347.0 -21	612.0 -24	556.0 -28	526.0 -31	978.0 -32	344.0 -35	803.0 -34	302.0 -34	855.0 -35	alculation 1	inding Moi	(kN·m)	ax	364.0 -4	787.0	755.9 -5	210.0 -12	534.0 -1t	796.0 -2		802.0 -3(121.0 -3(1/1.0 -3	526.0 -35	686.0 -4	532.0 -45	005.0 -54	323.0 -55	692.0 -5(080.0 -57	481.0 -58	906.0 -55
Section C:	Be	ber	M	10 51	11 710	12 93	13 116	14 144.	15 173.	16 203.	17 235.	18 268	19 301.	20 337:	21 344	22 352.	23 359.	24 367.	25 374.	Section Co	Be	her	X	36 44.	07 68	93	09 119.	10 158.	11 198	KCZ 21	13 281	14 525	15 369	16 414	17 460.	18 507	19 516.	20 525,	21 535	27	23 553
al Cross-	Elon	Nun		(09)	(09	i09 (u	(09	(09 1	(09 1	(09 1	09	<u>60</u>	09	709	60	60	60	60	nd) 602	al Cross-	1917 1917	Num) 61(61(on) 61(61(61.	19	5	10	5	[9]	61.	61	61	61	612	612	612	1) 612
Pier P10 Longitudin				(Column Top End		(Ginko Type Sectio							Pier P10						(Column Bottom Er	Pier P11 Longitudin.				(Column Top End		(Ginko Type Sectic								Pier P11							(Column Bottom Er

Table 4 2 170	P10 Pier and P11	Pier Evaluation	Results (l ongitudinal)
14010 4.2.170			Tresuits (Longituuniar)

FIELF 12 LONGILIATIO	1022-2201	JUII Calculat	TOLI INCOME				l											
	Element	Bending	Moment	AxialF	orce(kN)	Bending	Axial	Bending (N/m	Stress		Shea	rr Force (kN)		Shearing 5	Stress	Shear Reinford	cement	
	Number	(kN	(ш.		``````````````````````````````````````	Moment	Force	αc	d S	Verdict 7	1-11-11	Adol	ted	1	ta	Necessary	Reinforcement	Verdict
		Max	Min	Max	Min	$(kN \cdot m)$	(kN)	oca=15	5sa=300	1	VIAX V AI	WIIII V al Vaj	lue (N/	mm^2) (D	V/mm ²)	(cm^2)	(cm^2)	
(Column Top End)	6206	38560.8	-44448.9	-55489.6	5 -52740.0	44448.9	55489.6				21347.0	-18458.3 213	47.0					
	6207	60029.6	-69419.2	-57968.6	5 -55217.8	69419.2	57968.6				22206.6	-19083.4 222	06.6					
(Ginko Type Section)	6208	82111.4	-95218.7	-60261.4	1 -57509.6	95218.7	60261.4				22959.7	-19628.3 229.	59.7					
	6209	104737.0	-121768.0	-62424.2	2 -59671.4	121768.0	62424.2				23631.2	-20111.2 236.	31.2					
	6210	139884.0	-163184.0	-65121.8	3 -62367.8	163184.0	65121.8	2.7	24.3	0	24418.0	-20699.1 244	18.0	0.316	0.288	1.796	30.968	0
	6211	176073.0	-205999.0	-68368.2	2 -65613.0	205999.0	68368.2	3.5	43.8	0	25257.7	-21402.4 252	57.7	0.326	0.273	3.422	30.968	0
	6212	213203.0	-250040.0	-71614.6	68858.2	250040.0	71614.6	4.3	67.3	0	25993.0	-21994.5 259	93.0	0.336	0.263	4.661	30.968	0
	6213	251154.0	-295119.0	-74860.8	3 -72103.6	295119.0	74860.8	5.1	93.3	0	26624.5	-22541.6 266.	24.5	0.344	0.256	5.638	30.968	0
	6214	289841.0	-339917.0	-78107.0	0 -75349.0	339917.0	78107.0	6.0	120.4	0	27144.6	-23106.5 271	44.6	0.351	0.251	6.400	30.968	0
	6215	328923.0	-386629.0	-81353.2	2 -78594.4	386629.0	81353.2	6.8	149.6	0	27718.1	-23684.4 277	18.1	0.358	0.247	7.143	30.968	0
Pier P12	6216	369438.0	-433995.0	-84599.2	2 -81839.8	433995.0	84599.2	7.7	179.9	0	28363.5	-24240.9 283	63.5	0.367	0.244	7.892	30.968	0
	6217	410869.0	-482029.0	-87845.2	2 -85085.4	482029.0	87845.2	8.6	211.0	0	29123.1	-24736.0 291.	23.1	0.376	0.241	8.697	30.968	0
	6218	453107.0	-530784.0	-91091.(9 -88331.0	530784.0	91091.0	9.5	242.9	0	29980.2	-25187.0 299.	80.2	0.388	0.238	9.554	30.968	0
	6219	461591.0	-540664.0	-93038.6	90278.4	540664.0	93038.6	9.6	246.9	0	30551.6	-25448.3 305	51.6	0.395	0.239	10.021	30.968	0
	6220	470140.0	-550502.0	-93687.6	90927.6	550502.0	93687.6	9.8	253.4	0	30725.6	-25538.1 307.	25.6	0.397	0.238	10.192	30.968	0
	6221	478711.0	-560385.0	-94336.8	3 -91576.8	560385.0	94336.8	10.0	259.9	0	30897.6	-25626.6 308	97.6	0.399	0.238	10.360	30.968	0
	6222	487320.0	-570280.0	-94986.(92225.8	570280.0	94986.0	10.2	266.5	0	31069.7	-25716.2 310	69.7	0.402	0.237	10.527	30.968	0
(Column Bottom End)	6223	495947.0	-580222.0	-95635.2	2 -92875.0	580222.0	95635.2	10.3	273.1	0	31242.6	-25840.4 312	42.6	0.404	0.237	10.694	30.968	0
Pier P13 Longitudinal C	Jross-Sect	ion Calculat	ion Result															
	ī	Bending	Moment	-	den.	Bending	Axial	Bending	Stress		Shea	tr Force (kN)		Shearing 5	Stress	Shear Reinford	cement	
	Element	(kN	(m.	A XIAI F	orce(KIN)	Moment	Force	U/W	[]u]	Verdict -			-			Monogram	Dairformant	Verdict
	Number	Max	Min	Max	Min	(kN · m)	(kN)	oc oca=15	55 53=300	-	Aax Val	Min Val Val	pted ue (N/	T mm ²)	Ta J/mm ²)	Inecessary	Kemiorcement (cm ²)	
(Column Top End)	6310	14460.3	-36151.7	-22319.4	1 -18153.3	36151.7	22319.4				8256.8	-7907.2 82	56.8					
	6311	30931.4	-53261.4	-26960.8	3 -22792.2	53261.4	26960.8				10537.8	-10148.2 105.	37.8					
(Ginko Type Section)	6312	50144.1	-73105.3	-30751.8	3 -26581.0	73105.3	30751.8				12230.5	-11834.2 122	30.5					
	6313	71457.3	-95025.1	-33929.4	4 -29757.0	95025.1	33929.4				13511.6	-13130.4 135	11.6					
	6314	96863.2	-121035.0	-37176.(-33002.2	121035.0	37176.0	2.5	43.8	0	14689.8	-14343.8 146	89.8	0.190	0.227		30.968	0
	6315	124267.0	-148916.0	-40565.6	5 -36390.6	148916.0	40565.6	3.1	66.3	0	15796.3	-15498.4 157	96.3	0.204	0.221		30.968	0
	6316	153460.0	-178472.0	-43955.2	2 -39779.0	178472.0	43955.2	3.8	92.1	0	16835.8	-16557.5 168.	35.8	0.218	0.216	0.116	30.968	0
	6317	184452.0	-209637.0	-47344.(5 -43167.4	209637.0	47344.6	4.6	120.8	0	17949.6	-17652.8 179	49.6	0.232	0.212	1.280	30.968	0
	6318	217267.0	-242456.0	-50734.() -46556.0	242456.0	50734.0	5.4	152.2	0	19308.3	-18846.2 193	08.3	0.250	0.209	2.602	30.968	0
Pier P13	6319	251838.0	-274776.0	-54123.2	2 -49944.6	274776.0	54123.2	6.2	183.3	0	20683.7	-19993.3 206	83.7	0.268	0.207	3.886	30.968	0
	6320	285258.0	-309642.0	-57512.4	1 -53333.4	309642.0	57512.4	7.0	218.1	0	21763.5	-20856.8 217	63.5	0.282	0.205	4.914	30.968	0
	6321	291535.0	-317174.0	-59545.8	3 -55366.8	317174.0	59545.8	7.1	221.3	0	22850.3	-21589.0 228	50.3	0.296	0.205	5.791	30.968	0
	6322	298892.0	-324758.0	-60223.6	5 -56044.6	324758.0	60223.6	7.3	229.1	0	23123.8	-21770.9 231.	23.8	0.299	0.205	6.045	30.968	0
	6323	306338.0	-332424.0	-60901.4	4 -56722.2	332424.0	60901.4	7.5	237.0	0	23394.1	-21948.3 233	94.1	0.303	0.204	6.296	30.968	0
	6324	313851.0	-340197.0	-61579.2	2 -57400.0	340197.0	61579.2	7.7	245.1	0	23661.1	-22121.6 236	61.1	0.306	0.204	6.543	30.968	0
Cohunn Bottom End)	6375	321/10 0	3/18/03/2	62257 6	1 58077 8	248024.0	67757 0	0 1	753 7	C	22025 2	020 N 10000	253	0.210	10000	L0L 9	070 06	(

Table 4 2 171	P12 Pier and P13 Pier Evaluation Results ((Longitudinal)

Detailed Design Study on The Bago River Bridge Construction Project

Pier P10 Traverse Cros	ss-Section	Calculation	Result															
	Element	Bending	Moment	Axial F	orce(kN)	Bending	Axial	Bending (N/m	Stress n ²)	;	Shea	r Force (k	N)	Shearing	Stress	Shear Reinforc	tement	:
	Number	(KN	(m			Momen	r Porce	αc	αS	Verdict _	Iav Val	Min Val	Adopted	1	та	Necessary	Reinforcement	Verdict
		Max	Min	Мах	Min	$(kN \cdot m)$	(kN)	oca=15	5sa=300	+	114V A 41	TTA TITLA	Value (N/mm^2) (N/mm^2)	(cm^2)	(cm^2)	
(Column Top End)	16010	95762.7	-89533.8	-24083.6	5 -23981.8	8 95762.	7 24083.6				14516.4	-14586.6	14586.6					
	16011	121789.0	-115829.0	-28724.0) -28621.0	6 121789.	0 28724.0				16245.0	-16081.2	16245.0					
(Ginko Type Section)	16012	149606.0	-144279.0	-32514.0) -32411.0	0 149606.	0 32514.0				17560.7	-17218.9	17560.7					
	16013	178836.0	-174348.0	-35691.0) -35587.0	6 178836.	0 35691.0				18586.7	-18102.4	18586.7					
	16014	212200.0	-208915.0	-38936.8	3 -38833.0	0 212200.	0 38936.8	3.5	82.2	0	19565.9	-18935.3	19565.9	0.253	0.197	2.246	23.226	0
	16015	246965.0	-245065.0	-42326.(1 -42221.8	8 246965.	0 42326.0	4.2	106.8	0	20522.9	-19725.0	20522.9	0.265	0.194	2.863	23.226	0
	16016	283021.0	-282717.0	-45715.0) -45610.0	6 283021.	0 45715.0	4.9	133.4	0	21445.3	-20507.0	21445.3	0.277	0.192	3.439	23.226	0
	16017	320327.0	-321768.0	-49104.2	2 -48999.4	4 321768.	0 49104.2	5.7	163.5	0	22393.1	-21512.9	22393.1	0.289	0.189	4.020	23.226	0
	16018	358778.0	-362237.0	-52493.2	2 -52388.2	2 362237.	0 52493.2	6.5	195.9	0	23360.9	-22515.7	23360.9	0.302	0.188	4.598	23.226	0
Pier P10	16019	397772.0	-400379.0	-55882.2	2 -55777.0	0 400379.	0 55882.2	7.3	225.8	0	24305.9	-23482.2	24305.9	0.314	0.186	5.142	23.226	0
	16020	427466.0	-430603.0	-59271.2	2 -59165.8	8 430603.	0 59271.2	7.9	246.5	0	24479.9	-24389.9	24479.9	0.316	0.186	5.251	23.226	0
	16021	433856.0	-437549.0	-61304.4	1 -61199.2	2 437549.	0 61304.4	7.9	245.7	0	25680.8	-24923.5	25680.8	0.332	0.186	5.851	23.226	0
	16022	441611.0	-445623.0	-61982.2	2 -61877.0	0 445623.	0 61982.2	8.1	252.2	0	25846.5	-25096.3	25846.5	0.334	0.186	5.947	23.226	0
	16023	449669.0	-453764.0	-62660.() -62554.8	8 453764.	0 62660.0	8.3	258.8	0	26011.6	-25267.2	26011.6	0.336	0.186	6.043	23.226	0
	16024	457710.0	-461950.0	-63337.8	3 -63232.4	4 461950.	0 63337.8	8.4	265.5	0	26173.8	-25434.4	26173.8	0.338	0.186	6.137	23.226	0
(Column Bottom End)	16025	465796.0	-470199.0	-64015.6	5 -63910.2	2 470199.	0 64015.6	8.6	272.3	0	26332.8	-25602.3	26332.8	0.340	0.185	6.229	23.226	0
Pier P11 Traverse Cros	ss-Section	Calculation	Result					:	i									
	Ē	Bending	Moment	A viol E	(IVI)	Bending	Axial	Bending	Stress		Shea	r Force (k	(z	Shearing	Stress	Shear Reinforc	tement	
	Lement	(kN	(m.	AMALE	OICC(KIN)	Moment	: Force	(N/m	m) us	Verdict -			Adonted	ب ۲	Ta	Necessary	Reinforcement	Verdict
	TAUTON	Max	Min	Max	Min	(kN·m)	(kN)	oca=15	5sa=300	4	Max Val	Min Val	Value (N/mm^2)	N/mm ²)	(cm^2)	(cm^2)	
(Column Top End)	16106	96437.0	-88251.4	-54159.6	5 -54159.2	2 96437.	0 54159.6				12215.8	-13147.1	13147.1					
	16107	111739.0	-100879.0	-56637.8	3 -56637.4	4 111739.	0 56637.8				12530.0	-13623.7	13623.7					
(Ginko Type Section)	16108	127530.0	-113851.0	-58930.0) -58929.8	8 127530.	0 58930.0				12807.3	-14055.9	14055.9					
	16109	143778.0	-127120.0	-61092.4	4 -61092.0	0 143778.	0 61092.4				13056.8	-14456.0	14456.0					
	16110	169159.0	-147712.0	-63789.2	2 -63788.8	8 169159.	0 63789.2	2.1	10.5	0	13351.6	-14946.1	14946.1	0.193	0.288		23.226	0
	16111	195512.0	-168883.0	-67034.8	3 -67034.	4 195512.	0 67034.8	2.5	16.0	0	13674.8	-15520.4	15520.4	0.201	0.278		23.226	0
	16112	222816.0	-190605.0	-70280.6	5 -70280.	2 222816.	0 70280.6	2.8	22.8	0	13969.1	-16080.3	16080.3	0.208	0.271		23.226	0
	16113	251034.0	-214491.0	-73526.4	4 -73526.0	0 251034.	0 73526.4	3.2	31.1	0	14232.0	-16627.0	16627.0	0.215	0.264		23.226	0
	16114	280162.0	-238936.0	-76772.0	-76771.6	6 280162.	0 76772.0	3.7	40.9	0	14469.0	-17164.5	17164.5	0.222	0.259		23.226	0
	16115	310234.0	-263734.0	-80017.8	3 -80017.4	4 310234.	0 80017.8	4.1	52.1	0	14696.3	-17727.6	17727.6	0.229	0.254		23.226	0
Pier P11	16116	341271.0	-288883.0	-83263.6	5 -83263.2	2 341271.	0 83263.6	4.6	64.8	0	14914.2	-18307.5	18307.5	0.237	0.250		23.226	0
	16117	373293.0	-314342.0	-86509.2	2 -86508.8	8 373293.	0 86509.2	5.2	78.8	0	15126.5	-18888.8	18888.8	0.244	0.246		23.226	0
	16118	406287.0	-340049.0	-89755.0	9754.0	6 406287.	0 89755.0	5.7	94.1	0	15345.1	-19467.5	19467.5	0.252	0.243	0.346	23.226	0
	16119	413002.0	-345217.0	-91702.4	4 -91702.0	0 413002.	0 91702.4	5.8	94.8	0	15479.0	-19811.2	19811.2	0.256	0.244	0.512	23.226	0
	16120	419753.0	-350393.0	-92351.6	5 -92351	2 419753.	0 92351.6	5.9	98.0	0	15525.8	-19925.9	19925.9	0.258	0.243	0.595	23.226	0
	16121	426542.0	-355577.0	-93000.6	5 -93000.4	4 426542.	0 93000.6	6.0	101.3	0	15571.8	-20040.3	20040.3	0.259	0.242	0.677	23.226	0
	16122	433368.0	-360769.0	-93649.8	3 -93649.4	4 433368.	0 93649.8	6.2	104.6	0	15620.9	-20154.4	20154.4	0.261	0.242	0.759	23.226	0
(Column Bottom End)	16123	440242.0	-365969.0	-94299.(94298.0	6 440242.	0 94299.0	6.3	108.0	0	15691.4	-20268.8	20268.8	0.262	0.241	0.841	23.226	С

Table 4.2.172 P10 Pier and P11 Pier Evaluation Results (Transverse)

Source: JICA Study Team

4-384

			apport					Bendino	Stress									
	Element	Bending	Moment	AxialFc	orce(kN)	Bending	Axial	U/m	um ²)	:	She	ar Force (k	(V)	Shearing	Stress	Shear Reinfor	cement	:
	Number	(KIN	(III.)			Moment	rorce	QC	d S	Verdict	May Wal	Min Wal	Adopted	τ	ta	Necessary	Reinforcement	Verdic
		Max	Min	Мах	Min	$(kN\cdot m)$	(kN)	oca=15	σsa=300		Max v al	INIII V AI	Value ((N/mm^2) (N/mm ²)	(cm^2)	(cm^2)	
op End)	16206	104123.0	-95467.3	-54159.2	-54159.2	104123.0	54159.2				14558.9	-14919.1	14919.1					
	16207	121548.0	-110769.0	-56637.6	-56637.4	121548.0	56637.6				15020.7	-15513.8	15513.8					
Section)	16208	139583.0	-126615.0	-58929.8	-58929.6	139583.0	58929.8				15430.2	-16049.5	16049.5					
	16209	158171.0	-142941.0	-61092.0	-61091.8	158171.0	61092.0				15800.0	-16540.6	16540.6					
	16210	187273.0	-168942.0	-63788.8	-63788.6	187273.0	63788.8	2.4	15.6	0	16241.1	-17136.6	17136.6	0.222	0.278		23.226	0
	16211	217543.0	-197384.0	-67034.6	-67034.4	217543.0	67034.6	2.8	23.7	0	16772.0	-17824.6	17824.6	0.231	0.268		23.226	0
	16212	248920.0	-226641.0	-70280.2	-70280.2	248920.0	70280.2	3.2	33.8	0	17330.8	-18486.4	18486.4	0.239	0.261		23.226	0
	16213	281376.0	-256664.0	-73526.0	-73525.8	281376.0	73526.0	3.7	45.9	0	17862.2	-19124.9	19124.9	0.247	0.255		23.226	0
	16214	314854.0	-287415.0	-76771.8	-76771.6	314854.0	76771.8	4.3	59.8	0	18374.3	-19746.3	19746.3	0.255	0.250	0.225	23.226	0
-	16215	349396.0	-318928.0	-80017.4	-80017.4	349396.0	80017.4	4.9	75.5	0	18903.8	-20392.4	20392.4	0.264	0.246	0.733	23.226	0
12	16216	385020.0	-351748.0	-83263.2	-83263.0	385020.0	83263.2	5.5	92.8	0	19440.3	-21056.7	21056.7	0.272	0.242	1.227	23.226	0
*	16217	421710.0	-385467.0	-86509.0	-86508.8	421710.0	86509.0	6.1	111.5	0	19965.7	-21722.0	21722.0	0.281	0.239	1.702	23.226	0
_	16218	456654.0	-420096.0	-89754.6	-89754.6	456654.0	89754.6	6.7	129.5	0	20478.4	-22347.0	22347.0	0.289	0.236	2.126	23.226	0
	16219	461745.0	-427123.0	-91702.0	-91702.0	461745.0	91702.0	6.8	128.8	0	20771.7	-22778.0	22778.0	0.295	0.237	2.327	23.226	0
	16220	468920.0	-434193.0	-92351.2	-92351.0	468920.0	92351.2	6.9	132.6	0	20869.1	-22909.1	22909.1	0.296	0.236	2.414	23.226	0
	16221	476207.0	-441300.0	-93000.4	-93000.2	476207.0	93000.4	7.0	136.4	0	20967.0	-23039.8	23039.8	0.298	0.236	2.501	23.226	0
	16222	483586.0	-446483.0	-93649.6	-93649.4	483586.0	93649.6	7.1	140.3	0	21056.2	-23171.0	23171.0	0.300	0.235	2.589	23.226	0
tom End)	16223	491047.0	-452398.0	-94298.6	-94298.6	491047.0	94298.6	7.3	144.4	0	21151.0	-23301.6	23301.6	0.301	0.235	2.675	23.226	0
verse Cros	ss-Section	Calculation	Result															
	Flament	Bending	Moment	A vial Fc	nce(kN)	Bending	Axial	Bending	r Stress		Shea	ur Force (k	(N)	Shearing	Stress	Shear Reinfor	cement	
	Number	(kN	(. m)			Moment	Force	QC	đS	Verdict	May Val	Min Val	Adopted	4	ta	Necessary	Reinforcement	Verdic
		Max	Min	Мах	Min	$(kN \cdot m)$	(kN)	oca=15	σsa=300			IMIII V AI	Value ((N/mm ²) (N/mm ²)	(cm^2)	(cm^2)	
p End)	16310	87471.1	-81812.0	-20031.4	-20030.8	87471.1	20031.4				13308.3	-14150.0	14150.0					
	16311	113031.0	-105398.0	-24671.4	-24670.8	113031.0	24671.4				14831.5	-15803.7	15803.7					
Section)	16312	140607.0	-130846.0	-28461.0	-28460.6	140607.0	28461.0	T			16007.0	-17070.9	17070.9					
	16313	1697/0.0	-158356.0	-31637.8	-31637.4	1697/0.0	31637.8		U	(16935.5	-18070.0	18070.0				0000	0
	16315	2032/8.0	-773176.0	-34883.0	-34885.0	738367 0	34883.0	<u>4.5</u>	113.3		5 96981	-19036./	20000.8	0.240	0.194	2.088	73.776	
	16316	274941.0	-257784.0	-41661.4	-41661.0	274941.0	41661.4	4.9	140.9	c	19524.9	-20945.2	20945.2	0.271	0.189	3.278	23.226	
	16317	313007.0	-293791.0	-45050.4	-45049.8	313007.0	45050.4	5.6	170.6	c	20361.5	-21921.0	21921.0	0.283	0.187	3.860	23.226	C
-	16318	352586.0	-331160.0	-48439.2	-48438.8	352586.0	48439.2	6.4	202.2	0	21179.5	-22936.7	22936.7	0.297	0.186	4.452	23.226	0
13	16319	392174.0	-369806.0	-51828.2	-51827.6	392174.0	51828.2	7.2	234.1	0	21948.6	-23950.4	23950.4	0.310	0.184	5.030	23.226	0
	16320	422167.0	-403935.0	-55217.2	-55216.6	422167.0	55217.2	7.8	254.5	0	22321.7	-24407.8	24407.8	0.316	0.184	5.281	23.226	0
	16321	429053.0	-410682.0	-57250.4	-57250.0	429053.0	57250.4	7.9	253.6	0	23037.8	-25489.2	25489.2	0.330	0.185	5.817	23.226	0
	16322	437000.0	-418383.0	-57928.2	-57927.8	437000.0	57928.2	8.1	260.0	0	23166.6	-25679.3	25679.3	0.332	0.185	5.925	23.226	0
	16323	445104.0	-426168.0	-58606.0	-58605.6	445104.0	58606.0	8.2	266.6	0	23293.2	-25867.8	25867.8	0.334	0.184	6.031	23.226	0
	16324	453319.0	-433986.0	-59283.8	-59283.4	453319.0	59283.8	8.4	273.4	0	23417.4	-26054.2	26054.2	0.337	0.184	6.137	23.226	0
tom End)	16325	461586.0	-441787.0	-59961.6	-59961.2	461586.0	59961.6	8.6	280.2	0	23539.6	-26238.6	26238.6	0.339	0.184	6.241	23.226	0

Detailed Design Study on The Bago River Bridge Construction Project

e) Response Value of Bearing Support Section

The response value calculated by the dynamic analysis is shown in the table below.

Longitudin	al Ar	nalysis						
			Vertica	l Force	Longitudinal H	orizontal Force	Traverse Hor	izontal Force
			Max	Min	Max	Min	Max	Min
			(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
	L	Rocking Bearing	1097.5	-1009.9	0.0	0.0	0.0	0.0
Pier P10	CL	Horizontal Bearing	0.0	0.0	0.0	0.0	4.1	-4.2
	R	Rocking Bearing	1097.4	-1010.3	0.0	0.0	0.0	0.0
	L	Pin Roller Bearing	12402.7	12396.8	0.0	0.0	0.0	0.0
Pier P11	CL	Pivot Bearing	48297.4	44317.5	20067.1	-20419.4	4.7	-4.6
	R	Pin Roller Bearing	12402.7	12396.9	0.0	0.0	0.0	0.0
	L	Pin Roller Bearing	12402.3	12397.4	0.0	0.0	0.0	0.0
Pier P12	CL	Pivot Bearing	47471.8	44730.7	19234.0	-17744.9	4.1	-4.0
	R	Pin Roller Bearing	12402.1	12397.4	0.0	0.0	0.0	0.0
	L	Rocking Bearing	1212.7	-821.5	0.0	0.0	0.0	0.0
Pier P13	CL	Horizontal Bearing	0.0	0.0	0.0	0.0	2.1	-2.1
	R	Rocking Bearing	1212.0	-821.5	0.0	0.0	0.0	0.0
Traverse A	Analy	vsis						

Table 4.2.174 Bearing Support Reaction Force

			Vertica	l Force	Longitudinal H	orizontal Force	Traverse Hor	izontal Force
			Max	Min	Max	Min	Max	Min
			(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
	L	Rocking Bearing	2060.4	-1907.7	0.0	0.0	0.0	0.0
Pier P10	CL	Horizontal Bearing	0.0	0.0	0.0	0.0	6696.1	-6385.0
	R	Rocking Bearing	2082.6	-1885.5	0.0	0.0	0.0	0.0
	L	Pin Roller Bearing	20422.1	3951.1	0.0	0.0	0.0	0.0
Pier P11	CL	Pivot Bearing	46145.9	46145.5	976.6	976.2	12274.5	-11636.1
	R	Pin Roller Bearing	20848.4	4377.5	0.0	0.0	0.0	0.0
	L	Pin Roller Bearing	20764.2	3452.3	0.0	0.0	0.0	0.0
Pier P12	CL	Pivot Bearing	46145.8	46145.6	976.5	976.3	13820.4	-13692.4
	R	Pin Roller Bearing	21347.2	4035.3	0.0	0.0	0.0	0.0
	L	Rocking Bearing	2045.2	-1813.8	0.0	0.0	0.0	0.0
Pier P13	CL	Horizontal Bearing	0.0	0.0	0.0	0.0	6218.9	-6255.5
	R	Rocking Bearing	1988.6	-1870.3	0.0	0.0	0.0	0.0

Min Max Summary

		5						
			Vertica	l Force	Longitudinal H	orizontal Force	Traverse Hor	rizontal Force
			Max	Min	Max	Min	Max	Min
			(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
	L	Rocking Bearing	2060.4	-1907.7	0.0	0.0	0.0	0.0
Pier P10	CL	Horizontal Bearing	0.0	0.0	0.0	0.0	6696.1	-6385.0
	R	Rocking Bearing	2082.6	-1885.5	0.0	0.0	0.0	0.0
	L	Pin Roller Bearing	20422.1	3951.1	0.0	0.0	0.0	0.0
Pier P11	CL	Pivot Bearing	48297.4	44317.5	20067.1	-20419.4	12274.5	-11636.1
	R	Pin Roller Bearing	20848.4	4377.5	0.0	0.0	0.0	0.0
	L	Pin Roller Bearing	20764.2	3452.3	0.0	0.0	0.0	0.0
Pier P12	CL	Pivot Bearing	47471.8	44730.7	19234.0	-17744.9	13820.4	-13692.4
	R	Pin Roller Bearing	21347.2	4035.3	0.0	0.0	0.0	0.0
	L	Rocking Bearing	2045.2	-1813.8	0.0	0.0	0.0	0.0
Pier P13	CL	Horizontal Bearing	0.0	0.0	0.0	0.0	6218.9	-6255.5
	R	Rocking Bearing	1988.6	-1870.3	0.0	0.0	0.0	0.0

The displacement determined by the dynamic analysis is shown in the table below.

Table 4.2.175Bearing Support Displacement (Relative Displacement to Upper and Lower
Member)

Longitudin	al Ana	lysis				
			Longi	udinal	Trans	versal
			Diplac	ement	Displac	cement
			Max	Min	Max	Min
			(m)	(m)	(m)	(m)
Pier P10	CL	Horizontal	0.067	-0.085	0.000	0.000
Pier P13	CL	Horizontal	0.087	-0.075	0.000	0.000

Transverse Analysis

			Longi	udinal	Trans	versal
			Diplac	ement	Displac	cement
			Max	Min	Max	Min
			(kN)	(kN)	(kN)	(kN)
Pier P10	CL	Horizontal	-0.011	-0.011	0.000	0.000
Pier P13	CL	Horizontal	0.010	0.010	0.000	0.000

Source: JICA Study Team

The bearing support member was designed to have an allowable value that satisfies the design reaction force of the static analysis and the response value of the dynamic analysis.

4.2.13 Superstructure Construction Stage Analysis

4.2.13.1 Construction Stage Analysis Overview

During the construction stage of temporary structures, the superstructure section force, cable tension, and bent reaction forces will be calculated to verify the safety and understand the deformation during erection.

4.2.13.2 Analysis Condition

The analysis condition for the construction stage analysis is listed in the table below.

Item	Content
Analysis Theory	Linear structural analysis
Analysis Model	3d structure model
Considered Temporary Load	180 t considered Erection Machine W = 160 t
Analysis Stage	Movement Protection Scattolding $w = 20 t$
Source: JICA Study Team	All 24 Stages (CSU CS25)

Table 4.2.176 Analysis Condition

4.2.13.3 Construction Stage

The construction stages of the cable-stayed bridge is shown below.

For the construction stage surrounded by red dotted line in the image below, evaluation using the construction stage analysis is performed.

Source: JICA Study Team

Figure 4.2.232 Construction Steps for Cable-stayed Bridge

For the construction stage analysis, reversed order for the dismantling of temporary structure is configured as shown below.

Analysis Stage	Content	Crane Position	Bent
CS0	Competed (Front DL+Back DL+PS)	-	\uparrow
CS1	Removal of Additional Dead Load	1	\uparrow
CS2	Removal of Main Girder G27 (Closing Block)	② C 20 Anchor Position	↑
CS3	Removal of Cable C1,20	③ C19 Anchor Position	↑
CS4	Removal of Main Girder G26	③ C19 Anchor Position	\uparrow
CS5	Removal of Cable C2,19	④ C18 Anchor Position	↑ (
CS6	Removal of Main Girder G25	④ C18 Anchor Position	\uparrow
CS7	Removal of Cable C3,18	5 C 17 Anchor Position	\uparrow
CS8	Removal of Main Girder G24	5 C 17 Anchor Position	\uparrow
CS9	Removal of Cable C4,17	6 C 16 Anchor Position	Removal of Bent $\textcircled{1}$
CS10	Removal of Main Girder G23	6 C 16 Anchor Position	\uparrow
CS11	Removal of Cable C5,16	⑦ C15 Anchor Position	Removal of Bent 2
CS12	Removal of Main Girder G22	⑦ C15 Anchor Position	\uparrow
CS13	Removal of Cable C6,15	(8) C 14 Anchor Position	↑ (
CS14	Removal of Main Girder G21	8 C 14 Anchor Position	↑ (
CS15	Removal of Cable C7,14	(9) C 13 Anchor Position	Removal of Bent ③
CS16	Removal of Main Girder G20	(9) C 13 Anchor Position	Removal of Bent (4)6
CS17	Removal of Cable C8,13	10 C 12 Anchor Position	\uparrow
CS18	Removal of Main Girder G19	10 C 12 Anchor Position	Removal of Bent (5)
CS19	Removal of Cable C9,12	(1) C 11 Anchor Position	\uparrow
CS20	Removal of Main Girder G18	① C11 Anchor Position	\uparrow
CS21	Removal of Cable C10,11	12	↑
CS22	Removal of Main Girder G17	-	<u> </u>
CS23	Removal of Main Girder G16	-	Install Bent 1~6

Table 4.2.177 Dismantling Stages

*Refer to the next page for cable number and main grider numbers

Source: JICA Study Team

4.2.13.4 Dismantling Calculation Results

(1) Cross Section Evaluation

The maximum and minimum section forces and the results of the cross section evaluation are shown below.

Section Force	Bending Mon	nent (kN · m)	Shear Fo	orce (kN)	Axial Fo	rce (kN)	Evaluation
Cross-Section Position	Max	Min	Max	Min	Max	Min	Result
EJ1	4325	-3607	1783	-1839	5	-5	OK
EJ2	15761	-22478	2725	-692	7	-3877	OK
EJ3	17452	-38031	2660	-1899	5551	-7463	OK
EJ4	20533	-44936	2678	-738	5554	-10812	OK
EJ5	18926	-47299	2791	-1053	5557	-14068	OK
EJ6	14205	-43778	2562	-676	5559	-17460	OK
EJ7	7998	-37889	2541	-862	4578	-19432	OK
EJ8	4820	-33121	2432	-658	4189	-21524	OK
EJ9	916	-30976	1348	-901	2747	-23586	OK
EJ10	1488	-22578	1038	-1304	746	-25496	OK
EJ11	14232	-10746	-342	-2204	-46	-27103	OK
EJ12	22777	-2323	1444	-1089	-44	-27100	OK
EJ13	24159	-14449	2825	-227	-43	-27098	OK
EJ14	23044	-20108	1214	-2961	261	-28675	OK
EJ15	22049	-11971	2077	-1579	262	-28673	OK
EJ16	12981	-23321	1919	-1605	0	-28671	OK
EJ17	1201	-29583	1068	-1755	0	-27074	OK
EJ18	0	-35244	578	-1744	0	-25172	OK
EJ19	689	-31912	346	-1984	0	-23113	OK
EJ20	2745	-26613	259	-2173	0	-21028	OK
EJ21	2561	-28750	319	-1410	0	-19056	OK
EJ22	697	-31618	0	-1795	0	-15667	OK
EJ23	1295	-28220	0	-1909	0	-12404	OK
EJ24	6258	-18198	512	-1905	0	-9054	OK
EJ25	4093	-5388	114	-1189	0	-5708	OK
EJ26	6087	-755	0	-634	0	-2337	OK

 Table 4.2.178
 Main Girder Section Force Summary Table

Source: JICA Study Team

 Table 4.2.179
 Main Tower Section Force Summary Table

Section Force	Bending Mon	nent (kN · m)	Shear Fo	orce (kN)	Axial Fo	rce (kN)	Evaluation
Cross-Section Position	Max	Min	Max	Min	Max	Min	Result
Tower Base (Girder upper surface)	3136	-1903	31	-122	-3440	-43031	OK
J1	3098	-1913	31	-122	-3410	-43001	OK
J2	2868	-1976	31	-122	-3230	-42821	OK
J3	2614	-2045	31	-122	-3030	-42621	OK
J4	2360	-2177	31	-122	-2830	-42421	OK
J5	2105	-2367	31	-122	-2630	-42221	OK
J6	1851	-2556	31	-122	-2430	-42021	OK
J7	1596	-2745	31	-122	-2230	-41821	OK
J8	1342	-2935	31	-122	-2030	-41621	OK
J9	1087	-3124	31	-122	-1830	-41421	OK
C10	909	-3268	31	-122	-1690	-41281	OK
C9	671	-3447	71	-119	-1530	-36487	OK
C8	390	-3513	162	-140	-1370	-32040	OK
C7	173	-3425	243	-121	-1210	-28017	OK
C6	139	-3176	303	-74	-1050	-24449	OK
C5	102	-2765	341	-18	-890	-21406	OK
C4	61	-2106	332	-21	-730	-16709	OK
C3	36	-1292	407	-13	-570	-12499	OK
C2	13	-512	390	-11	-410	-8434	OK
C1	0	0	256	-7	-250	-4321	OK

Cable Number	Maximum Cable Tension (kN)	Evaluation Result	
C1	4356	OK	
C2	4975	OK	
C3	4854	OK	
C4	4812	OK	
C5	5172	OK	
C6	3277	OK	
C7	3392	OK	
C8	3503	OK	
C9	3338	OK	
C10	3110	OK	
C11	3113	OK	
C12	3357	OK	
C13	3515	OK	
C14	3430	OK	
C15	3365	OK	
C16	5014	OK	
C17	4571	OK	
C18	4581	OK	
C19	4783	OK	
C20	4359	OK	

Table 4.2.180 Maximum Cable Tension

Source: JICA Study Team

(2) Bent Reaction Force

The table of the bent reaction force for each analysis stage is shown below.

Bent Position Analysis Stage	B1	B2	В3	B4	В5	B6
CS10	2129.9	-	-	-	-	-
CS11	1952.3	-	-	-	-	-
CS12	3903.8	229.4	-	-	-	-
CS13	4306.6	189.3	-	-	-	-
CS14	2756.5	2330.6	-	-	-	-
CS15	2770.8	2659.5	-	-	-	-
CS16	2134.0	3159.5	852.0	-	-	-
CS17	2421.4	2109.1	2920.2	131.1	-	3659.8
CS18	2423.8	2100.4	2951.3	136.5	-	674.9
CS19	2381.9	2253.5	2401.4	2012.5	716.8	4369.6
CS20	2379.9	2261.0	2374.6	2110.3	466.6	1758.6
CS21	2445.9	2259.2	2380.8	2054.7	2955.6	4597.1
CS22	2444.8	2263.3	2366.4	2107.3	2810.3	2788.3
CS23	2379.3	2263.0	2367.5	2136.2	2816.9	-

Table 4.2.181 Bent Reaction Table

(3) Bending Moment Diagram

The bending moment diagrams for each analysis stage are shown below.

Final Report

Figure 4.2.236 Bending Moment Diagram (Top: CS2, Bottom: CS3)

Figure 4.2.238 Bending Moment Diagram (Top: CS6, Bottom: CS7)

Final Report

Source: JICA Study Team

Figure 4.2.240 Bending Moment Diagram (Top: CS10, Bottom: CS11)

Final Report

Final Report

Source: JICA Study Team

4.2.14 Revised Design of Side Pier (P10, P13) [Change from PC Box Girder to Steel Box Girder]

4.2.14.1 Pier Design

(1) Design Conditions

A superstructure type of the adjacent bridge at P10 was changed (from PC box girder to 3-span steel box girder), therefore revised design for the side pier was conducted.

1) Reaction Force for Substructure Design

Design reaction force (before and after) are shown in the table below.

Reaction force at P10 is larger than P13, therefore following reaction force is used as the design force for substructure of P10 and P13.

		P10 (Before)		P10 (After)			
		Cable Stayed Bridge+PC Box		Cable Stayed Bridge+3-span Steel Box			
		Rv(KN)	RH(KN)	RM(KNm)	Rv(KN)	RH(KN)	RM(KNm)
Longi. Direction	Reguler HWL	10200	450	12400	6600	0	10600
	Reguler LWL	19000	450	12400	15200	0	10600
	Temp. HWL	10100	750	12400	6500	900	10600
	Temp. LWL	19300	750	12400	15500	900	10600
	Wind	12800	0	12400	9200	0	10600
	Vessel Impact	10200	450	12400	6600	0	10600
	Seismic	12200	4350	12400	8600	3900	24250
Trans. Direction	Reguler HWL	10200	100	16800	6600	100	16700
	Reguler LWL	19000	100	16800	15200	100	16700
	Wind	12800	600	4620	9200	800	5300
	Vessel Impact	10200	100	16800	6600	100	16700
	Seismic	12800	4300	16010	9200	4100	15750

Table 4.2.182Reaction Force for Substructure Design

Source: JICA Study Team

As shown in the section 4.2.10.2, substructure design with PC box girder bridge version has already conducted. Therefore, substructure re-design based on the adobe reaction force was conducted, and some reinforcement was reduced in the revised design.

2) Effect to the Dynamic Static Analysis

As shown in the section 4.2.10.2, column axis reinforcement was decided by the dynamic analysis in transverse direction. The shared weight of the adjacent bridge is shown in the table below.

 Table 4.2.183
 Shared Weight of Adjacent Bridge

	P10 (Before)	P10 (After)		
	PC Box Girder Shared Weight	3-span Steel Box Girder Shared Weight		
Longi. Direction	13000	11760		
Trans. Direction	9000	8328		

Source: JICA Study Team

From the table, the shared weight difference in transverse direction is less than 8%. And effect to the dynamic analysis caused by the difference can be considered as a little or nothing. Therefore, the dynamic analysis was not conducted again in the revised design.

Furthermore, the column dimension and axial reinforcement were not changed and pier rigidity become same with the previous design. Therefore, it can be considered that re-calculation of the static structure analysis is not necessary.

(2) Pier Design

1) Beam Design

The cross sectional shape of the beam and arrangement of steel reinforcement are shown below.

Source: JICA Study Team

Figure 4.2.247 Cross Section of Beam
[Overview of Calculation Result]

The following table shows the calculation results for the beam.

						Vertical Direction			Horizontal Direction			
	Hei	ght	m		9.0	00		7.500				
Section			1st layer	D29	-	25nos.		D16	-	49nos.		
	Re-Bar	Main Re-bar	2nd layer	D29	-	15nos.						
		Stirrup)	D22-8	Bnos.	ctc200		D22-2nos.+	D16-	1no. ctc200		
Bridge Seat		Required Re-bar	mm2									
Corbel		Required Re-bar	mm2	23,101	≦	25,696	0	10,278	≦	19,463	0	
		Load Case		Dead Load			Seismic					
	Bending	σc	N/mm2	0.78	≦	10.00	0	0.70	≦	15.00	0	
	Evaluation	σs	N/mm2	80.3	≦	100.0	0	97.1	≦	300.0	0	
Oslavistica		Load Ca	se	Dead + Live Load					Seis	mic		
Calculation	Shear Evaluation	тm	N/mm2	0.006	≦	0.140	0	0.045	≦	0.111	0	
		Awreq < Aw	mm2									
	Evaluation for Seismic	M < My	KN∙m					7,560	≦	1no. ctc200 19,463 C smic 15.00 C 300.0 C smic 0.111 C 21,371 C 16,160 C	0	
	Performance 2	S < Ps	KN					3,217	≦	16,160	0	

Table 4.2.184 Calculation Results for Be	eam
--	-----

Source: JICA Study Team

a) Cross Section Design in Vertical Direction (as a Corbel)

The design tension force needs to be verified because the ratio of the beam height to the distance between root and loading point is more than 1.0.

Table 4.2.185	Evaluation of Amount of Steel Reinforcement

Item	Unit	Dead Load	Dead + Live Load
Load Condition		Dead Load	Regular Load
Design Tensile Force T	kN	2108.00	2754.57
Allowable Tensile Force osa	N/mm ²	100.00	180.00
Upper surface tension Re-bar Used Amount Asu Required Amount AsuReq	mm ²	Asu ≧ AsuReq OK 25696.00 21080.03	Asu ≧ AsuReq OK 25696.00 15303.17
Additional reinforcement for side surface Used Amount Ass Required Amount AssReq	mm ²	Ass ≧ AssReq OK 19462.80 10278.40	Ass ≧ AssReq OK 19462.80 10278.40

X AsuReq = 1000 · T / σ sa

% AssReq = 0.4 • Asu

b) Cross Section Design in Vertical Direction (Allowable Stress Method)

- Evaluation for Bending Moment

The evaluation for the bending moment was performed at the root of the beam.

Item	Unit	Dead Load	Dead + Live Load	
Load Consition	-	Dead Load	Regular Load	
Bending Moment M	kN.m	15790.26	20633.46	
Compressive Edge-Nutral Axis x	mm	1126	1126	
Compressive Stress σc Tensile Stress σs	N/mm ² N/mm ²	0.71 73.25	0.93 95.71	
Increase Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa	N/mm ² N/mm ²	1.00 10.00 100.00	1.00 10.00 180.00	
Minimum Reinforcement Amount as Bending Element		1.7M≦Mc	1.7M≦Mc	

Table 4.2.186 Evaluation Results for Cross Section

Note: Cracking Bending Moment Mc = 200477.52 kNm, Ultimate Bending Moment Mu = 77771.30 kNm Source: JICA Study Team

- Evaluation for Shear Force

The evaluation for the shear force was performed at the H/2 point from the beam root and bearing support position outside the H/2 point.

Item	Unit	Dead Load	Dead + Live Load				
State		Dead Load	Regular Load				
S M	kN kN.m	124.10 15.13	124.10 15.13				
d	mm	2719	2719				
Sh	kN	115.05	115.05				
α pt ce cpt	<u>%</u>	1.00 0.126 0.742 0.752	0 1.00 26 0.126 42 0.742 52 0.752				
τm τa1 τa2	N/mm ² N/mm ² N/mm ²	0.006 0.140 1.900	0.006 0.140 1.900				

Table 4.2.187 Evaluation Result for Cross Section

Sh = S - M / d · (tan β + tan γ)

$$\tau m = Sh / bd$$

c) Cross Section Design in Horizontal Direction (Allowable Stress Method)

The evaluation for the bending moment was performed at the root of the beam.

Item	Unit	Temp. Flux	Seismic		
Load Consition		Dead + Temp.	Lv1 Seismic		
Bending Moment M	kN.m	756.75	5947.88		
Compressive Edge-Nutral Axis x	mm	719	719		
Compressive Stress σc Tensile Stress σs	N/mm ² N/mm ²	0.09 12.36	0.70 97.14		
Increase Factor α Allowable Compressive Stress σca Allowable Tensile Stress σsa	N/mm ² N/mm ²	1.15 11.50 207.00	1.50 15.00 300.00		
Minimum Reinforcement Amount as Bending Element		1.7M≦Mc	1.7M≦Mc		

Table 4.2.188 Evaluation Result for Cross Section	able 4.2.188	esult for Cross Section
---	--------------	-------------------------

Note: Cracking Bending Moment Mc = 142980.53 kNm, Ultimate Bending Moment Mu = 23344.64 kNm Source: JICA Study Team

- Evaluation for Shear Force

The evaluation for the shear force was performed at the beam root and bearing support position.

Item	Unit	Temp.	Seismic
State		Dead + Temp.	Lv1 Seismic
S M	kN kN.m	250.00 756.75	2444.73 5947.88
d	mm	6980	6980
Sh	kN	250.00	2444.73
α pt ce cpt	%	1,15 0,018 0,560 0,536	1.50 0.018 0.560 0.536
τm τa1 τa2	N/mm ² N/mm ² N/mm ²	0.005 0.086 2.185	0.045 0.111 2.850

Table 4.2.189 Evaluation Result for Cross Section

d) Cross Section Design in Horizontal Direction (Evaluation for Seismic Performance 2)

The evaluation for the bending moment was performed at the root of the beam.

Item	Unit	Seismic Performance 2				
Load Condition		Type 2				
Bending Moment M	kN.m	7559.67				
Yieleding Bengind Moment My	kN.m	21370.63				

Table 4.2.190 Evaluation Result for Cross Section

Note; Cracking Bending Moment Mc = 142980.53 kNm, Ultimate Bending Moment Mu = 23344.64 kNm Source: JICA Study Team

- Evaluation for Shear Force

The evaluation for the shear force was performed at the beam root and bearing support position.

Table 4.2.191Evaluation of Shear Strength

No	Verified Point x(m)	Sc	Ss (Ps kN)	Sh
1	0.000	5975.44	10184.77	16160.21≧	3217.10
2	3.027	4021.03	10557.22	14578.25≧	1594.17

2) Design of Column

The column shall be designed as a cantilever beam by treating the joint between the footing as a fixed end. The column cross section shall be designed against the most unfavorable combination of axial force and bending moment.

Note that the steel reinforcement in the column-axial direction was set by dynamic analysis evaluation.

Source: JICA Study Team

Figure 4.2.248 Cross Section of Column

[Overview of Calculation Result]

The following table shows the calculation results for the column.

 Table 4.2.192
 Calculation Result for Column

					_ongit	udinal		-	Trans	verse	
	Hei	Height		Oval	;	12.000	×	7.500			
Se etting		Main Da han	1st layer	D32	ctc	125	*	D32	ctc	: 135 💥	Ж
Section	Re-Bar	Main Re-bar	2nd layer	D32	ctc	125	*				
	<u> </u>	Ноор		D22	ctc	150		D22	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		σc	N/mm2	7.43	≦	15.00	0	5.02	≦	15.00	0
Calculation	L1	σs	N/mm2	231.0	≦	300.0	0	108.2	≦	300.0	0
	Seismic	тт	N/mm2	0.279	>	0.171	[-]	0.258	>	0.152	-
	1	Aw_req	mm2	693.2	≦	3096.8	0	426.5	≦	2322.6	0

Note: *※* was decided by dynamic analysis Source: JICA Study Team

a) Cross Section Evaluation Results

The evaluation results for the column cross section are shown below.

Catagory	I In it	Regular Sceanrio HWL	Regular Sceanrio LWL	Temp. HWL	Temp. LWL
Category	Unit	Water Level Considered	Water Level Considered	Water Level Considered	Water Level Considered
Load Condition		Dead Load	Regular Load	Dead + Temp.	Dead+Live+Temp.
Axial Force N	kN	59485.14	68085.14	59385.14	68385.14
Bending Moment M	kN.m	11780.8	11780.8	32660.8	32660.8
Compression Edge \sim Neutral Axis x	mm	25291	28405	11507	12682
Compressive Stress oc	N/mm ²	0.86	0.96	1.08	1.19
Tensile Stress σs	N/mm ²	-9.1	-10.68	-5.84	-7.5
Increase Coefficient a		1	1	1.15	1.15
Allowable Comp. Stress σca	N/mm ²	10	10	11.5	11.5
Allowable Tens. Stress σsa	N/mm ²	-200	-200	-230	-230
Cracking Moment Mc	kN.m	249473.41	258699.84	249366.13	259021.69
Yield Moment My0	kN.m	421286.12	445005.6	421007.66	445826.88
Ultimate Bending Moment Tu	kN.m	507688.27	535206.45	507368.7	536163.01
Min. Re-bar for Bending Elem.		1.7M≦Mc	1.7M≦Mc	1.7M≦Mc	1.7M≦Mc
Min. Re-bar for Axial Elem.	mm^2	47116.9	53928.8	40902.4	47101.3
Axial Force Nu	kN	62085.14	62085.14	62085.14	62085.14
0.008A1' (Axial Force Na=N)	mm ²	47116.9	53928.8	40902.4	47101.3
0.008A2' (Axial Force Nu)	mm ²	17575.4	17575.4	17575.4	17575.4
Total Re-bar As \geq Asmin		OK	OK	OK	OK
Max. Re-bar Check (My0≦Mu)		OK	OK	OK	OK

Table 4.2.193	Examination	of Bending M	Aoment (Longitudinal)
		J	、		/

Cotocom	I La it	Wind	Vessel Impact	Seismic
Category	Unit	Water Level Considered	Water Level Considered	Water Level Considered
Load Condition		Wind	Impact	Lv1 Seismic
Axial Force N	kN	62085.14	59485.14	61485.14
Bending Moment M	kN.m	16811.33	75315.8	328881.18
Compression Edge	mm	19505	7095	2392
\sim Neutral Axis x		17505	1095	2372
Compressive Stress σc	N/mm ²	0.94	1.54	7.43
Tensile Stress σs	N/mm ²	-8.8	0.83	230.98
Increase Coefficient α		1.25	1.5	1.5
Allowable Comp. Stress σca	N/mm ²	12.5	15	15
Allowable Tens. Stress σsa	N/mm ²	-250	300	300
Cracking Moment Mc	kN.m	252262.79	249473.41	251619.09
Yield Moment My0	kN.m	428485.97	421286.12	426826.7
Ultimate Bending Moment Tu	kN.m	516041.59	507688.27	514118.48
Min. Re-bar for Bending Elem.		1.7M≦Mc	1.7M≦Mc	Mc≦Mu
Min. Re-bar for Axial Elem.	mm ²	39341.1	31411.3	32467.4
Axial Force Nu	kN	62085.14	62085.14	62085.14
0.008A1' (Axial Force Na=N)	mm ²	39341.1	31411.3	32467.4
0.008A2' (Axial Force Nu)	mm ²	17575.4	17575.4	17575.4
Total Re-bar As \geq Asmin		OK	OK	OK
Max. Re-bar Check (My0≦ Mu)		OK	OK	OK

Catagory	I In it	Regular Sceanrio HWL	Regular Sceanrio LWL	Wind
Category	Unit	Water Level Considered	Water Level Considered	Water Level Considered
Load Condition		Dead Load	Regular Load	Wind
Axial Force N	kN	59485.14	68085.14	62085.14
Bending Moment M	kN.m	19020	19020	24941.93
Compression Edge ~Neutral Axis x	mm	36601	41025	30355
Compressive Stress oc	N/mm ²	0.87	0.98	0.95
Tensile Stress σs	N/mm ²	-8.84	-10.42	-8.66
Increase Coefficient α		1	1	1.25
Allowable Comp. Stress σca	N/mm ²	10	10	12.5
Allowable Tens. Stress σsa	N/mm ²	-200	-200	-250
Cracking Moment Mc	kN.m	374152.67	387990.19	378336.11
Yield Moment My0	kN.m	544064.18	579301.5	554760.74
Ultimate Bending Moment Tu	kN.m	766885.28	807164.16	779117.38
Min. Re-bar for Bending Elem.		1.7M≦Mc	1.7M≦Mc	1.7M≦Mc
Min. Re-bar for Axial Elem.	mm ²	47116.9	53928.8	39341.1
Axial Force Nu	kN	62085.14	62085.14	62085.14
0.008A1' (Axial Force Na=N)	mm ²	47116.9	53928.8	39341.1
0.008A2' (Axial Force Nu)	mm ²	17575.4	17575.4	17575.4
Total Re-bar As \geq Asmin		ОК	ОК	ОК
Max. Re-bar Check (My0≦Mu)		ОК	ОК	ОК
	1	Vaccal Impact	Saismia	
Category	Unit	Water Level Considered	Watar Laval Considered	
Load Condition		Impost	Ly1 Sojemio	
Avial Force N	$^{\rm kN}$	50485 14	62085 14	
Axial Force IN	kN m	146000	316664 43	
Compression Edge	KIN.III	140090	510004.45	
\sim Neutral Axis x	mm	9483	4863	
Compressive Stress oc				
	N/mm ²	1.89	5.02	
Tensile Stress σs	N/mm ² N/mm ²	1.89 7.09	5.02 108.22	
Tensile Stress σs Increase Coefficient α	N/mm ² N/mm ²	1.89 7.09 1.5	5.02 108.22 1.5	
Tensile Stress σs Increase Coefficient α Allowable Comp. Stress σca	N/mm ² N/mm ² N/mm ²	1.89 7.09 1.5 15	5.02 108.22 1.5 15	
Tensile Stress σs Increase Coefficient α Allowable Comp. Stress σca Allowable Tens. Stress σsa	N/mm ² N/mm ² N/mm ² N/mm ²	1.89 7.09 1.5 15 300	5.02 108.22 1.5 15 300	
Tensile Stress σs Increase Coefficient α Allowable Comp. Stress σca Allowable Tens. Stress σsa Cracking Moment	N/mm ² N/mm ² N/mm ² N/mm ² kN.m	1.89 7.09 1.5 15 300 374152.67	5.02 108.22 1.5 15 300 378336.11	
Tensile Stress σs Increase Coefficient α Allowable Comp. Stress σca Allowable Tens. Stress σsa Cracking Moment Mc Yield Moment My0	N/mm ² N/mm ² N/mm ² N/mm ² kN.m kN.m	1.89 7.09 1.5 15 300 374152.67 544064.18	5.02 108.22 1.5 15 300 378336.11 554760.74	
Tensile Stress σs Increase Coefficient α Allowable Comp. Stress σca Allowable Tens. Stress σsa Cracking Moment Mc Yield Moment My0 Ultimate Bending Moment Tu	N/mm ² N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m	1.89 7.09 1.5 15 300 374152.67 544064.18 766885.28	5.02 108.22 1.5 15 300 378336.11 554760.74 779117.38	
Tensile Stress σs Increase Coefficient α Allowable Comp. Stress σca Allowable Tens. Stress σsa Cracking Moment Mc Yield Moment My0 Ultimate Bending Moment Tu Min. Re-bar for Bending Elem.	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m	1.89 7.09 1.5 15 300 374152.67 544064.18 766885.28 1.7M≦ Mc	5.02 108.22 1.5 15 300 378336.11 554760.74 779117.38 Mc≦Mu	
Tensile Stress σs Increase Coefficient α Allowable Comp. Stress σca Allowable Tens. Stress σsa Cracking MomentMcYield MomentMy0Ultimate Bending Moment TuMin. Re-bar for Bending Elem.Min. Re-bar for Axial Elem.	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m mm ²	$ \begin{array}{r} 1.89 \\ 7.09 \\ 1.5 \\ 15 \\ 300 \\ 374152.67 \\ 544064.18 \\ 766885.28 \\ 1.7M \leq Mc \\ 31411.3 \\ \end{array} $	5.02 108.22 1.5 15 300 378336.11 554760.74 779117.38 Mc≦Mu 32784.2	
Tensile Stress σs Increase Coefficient α Allowable Comp. Stress σca Allowable Tens. Stress σsa Cracking MomentMcYield MomentMy0Ultimate Bending Moment TuMin. Re-bar for Bending Elem.Min. Re-bar for Axial Elem.Axial Force Nu	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m mm ² kN	1.89 7.09 1.5 15 300 374152.67 544064.18 766885.28 1.7M≦ Mc 31411.3 62085.14	5.02 108.22 1.5 15 300 378336.11 554760.74 779117.38 Mc ≦ Mu 32784.2 62085.14	
Tensile Stress σs Increase Coefficient α Allowable Comp. Stress σca Allowable Tens. Stress σsa Cracking Moment Mc Yield Moment My0 Ultimate Bending Moment Tu Min. Re-bar for Bending Elem. Min. Re-bar for Axial Elem. Axial Force Nu 0.008A1' (Axial Force Na=N)	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m mm ² kN mm ²	$ \begin{array}{r} 1.89\\ 7.09\\ 1.5\\ 15\\ 300\\ 374152.67\\ 544064.18\\ 766885.28\\ 1.7M \leq Mc\\ 31411.3\\ 62085.14\\ 31411.3\\ \end{array} $	5.02 108.22 1.5 15 300 378336.11 554760.74 779117.38 $Mc \leq Mu$ 32784.2 62085.14 32784.2	
Tensile Stress σs Increase Coefficient α Allowable Comp. Stress σca Allowable Tens. Stress σsa Cracking Moment Mc Yield Moment My0 Ultimate Bending Moment Tu Min. Re-bar for Bending Elem. Min. Re-bar for Axial Elem. Axial Force Nu 0.008A1' (Axial Force Na=N) 0.008A2' (Axial Force Nu)	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m kN.m mm ² kN mm ² mm ²	$ \begin{array}{r} 1.89\\ 7.09\\ 1.5\\ 15\\ 300\\ 374152.67\\ 544064.18\\ 766885.28\\ 1.7M \leq Mc\\ 31411.3\\ 62085.14\\ 31411.3\\ 17575.4\\ \end{array} $	5.02 108.22 1.5 15 300 378336.11 554760.74 779117.38 $Mc \leq Mu$ 32784.2 62085.14 32784.2 17575.4	
Tensile Stress σs Increase Coefficient α Allowable Comp. Stress σca Allowable Tens. Stress σsa Cracking MomentMcYield MomentMy0Ultimate Bending Moment TuMin. Re-bar for Bending Elem.Min. Re-bar for Axial Elem.Axial Force Nu0.008A1' (Axial Force Na=N)0.008A2' (Axial Force Nu)Total Re-bar As \geq Asmin	N/mm ² N/mm ² N/mm ² kN.m kN.m kN.m kN.m mm ² kN mm ² mm ²	$ \begin{array}{c} 1.89\\ 7.09\\ 1.5\\ 15\\ 300\\ 374152.67\\ 544064.18\\ 766885.28\\ 1.7M \leq Mc\\ 31411.3\\ 62085.14\\ 31411.3\\ 17575.4\\ OK \end{array} $	5.02 108.22 1.5 15 300 378336.11 554760.74 779117.38 Mc≦Mu 32784.2 62085.14 32784.2 17575.4 OK	

 Table 4.2.194
 Examination of Bending Moment (Transverse)

						1 1	
Category	Unit	Regular Sceanrio HWL	Regular Sceanrio LWL	Temp. HWL	Temp. LWL	Wind	
category	Cint	Water Level Considered	Water Level Considered	Water Level Considered	Water Level Considered	Water Level Considered	
Load Conditio		Dead Load	Regular Load	Dead + Temp.	Dead+Live+Temp.	Wind	
h	mm	11147	11147	11147	11147	11147	
d	mm	6032	6032	6032	6032	6932	
u s	1 kN	0	0	900	900	264.04	
N	kn kN	50485-14	68085 14	50385 14	68385 14	62085 14	
M	kN m	11780.8	11780.8	32660.8	32660.8	16811 33	
IVI G	KIN.III	1 000	1 000	1 150	1 150	1 25	
u at	0/	0.161	0.161	0.161	0.161	0.161	
pt	70	0.101	0.101	0.101	0.101	0.101	
ce		0.561	0.561	0.561	0.561	0.561	
cpt		0.823	0.825	0.825	0.823	0.825	
CN	2	1.000	1.000	1.000	1.000	1	
τm	N/mm ²	0.000	0.000	0.012	0.012	0.003	
τa_1	N/mm ²	0.115	0.115	0.133	0.133	0.144	
τa_2	N/mm ²	1.900	1.900	2.185	2.185	2.375	
σsa	N/mm ²						
S	mm						
Sca	kN						
Sh'	kN						
AwReq	mm ²						
Aw	mm^2						
Catalogue	T I :4	Vessel Impact	Seismic				
Calegory	Unit	Water Level Considered	Water Level Considered				
Load Conditio		Impact	Lv1 Seismic	Here S : Shear Force			
b	mm	11147	11147	N : Axial Load			
d	mm	6932	6932	M : Bending Mor	nent		
S	kN	4850	21561.02	b : Sectional Widt	th of Element		
Ν	kN	59485.14	61485.14	d : Effective Heig	ht		
М	kN.m	75315.8	328881.18	α : Overdesign fa	ctor for allowable stre	ess	
α		1.5	1.5	pt : Primary tensi	on bar ratio		
pt	%	0.161	0.161	ce : Correction factor of allowable shear force for effective			
ce		0.561	0.561	cpt : Correction factor of allowable shear force for tension b			

Catagory	Unit	Vessel Impact	Seismic	
Calegory	Ullit	Water Level Considered	Water Level Considered	
Load Conditio		Impact	Lv1 Seismic	Here S : Shear Force
b	mm	11147	11147	N : Axial Load
d	mm	6932	6932	M : Bending Moment
S	kN	4850	21561.02	b : Sectional Width of Element
Ν	kN	59485.14	61485.14	d : Effective Height
М	kN.m	75315.8	328881.18	α : Overdesign factor for allowable stress
α		1.5	1.5	pt : Primary tension bar ratio
pt	%	0.161	0.161	ce : Correction factor of allowable shear force for effective height d
ce		0.561	0.561	CN - Correction factor due to langitudinal compressive load
cpt		0.823	0.823	CN : Correction factor due to longitudinal compressive load
ĊN		1	1	Tin : Average shear force
τm	N/mm ²	0.063	0.279	722 · Allowable shear force when shear reinforcement rehar
τa ₁	N/mm ²	0.171	0.171	and concrete bears shear force
τa ₂	N/mm ²	2.85	2.85	σ_{sa} : Allowable tensile stress of rebar
σsa	N/mm ²		300	s : Spacing of shear reinforcement rebar
s	mm		150	Sca : Shear force borne by concrete
Sca	kN		13204.33	Sh': Shear force borne by reinforcement rebar
Sh'	kN		8356.69	Awreq : Necessary shear reinforcement content
AwReq	mm ²		693.15	to meet condition $\tau a 1 < \tau m$
Aw	mm^2		3096.8	Aw : Shear reinforcement content

Source: JICA Study Team

Catagory	T La :+	Regular Sceanrio HWL	Regular Sceanrio LWL	Wind	Vessel Impact
Category	Unit	Water Level Considered	Water Level Considered	Water Level Considered	Water Level Considered
Load Conditio		Dead Load	Regular Load	Wind	Impact
b	mm	6991	6991	6991	6991
d	mm	11064	11064	11064	11064
S	kN	100	100	858.01	9800
Ν	kN	59485.14	68085.14	62085.14	59485.14
М	kN.m	19020	19020	24941.93	146090
α		1	1	1.25	1.5
pt	%	0.161	0.161	0.161	0.161
ce		0.5	0.5	0.5	0.5
cpt		0.822	0.822	0.822	0.822
CN		1	1	1	1
τm	N/mm ²	0.001	0.001	0.011	0.127
τa_1	N/mm ²	0.103	0.103	0.128	0.152
τa ₂	N/mm ²	1.9	1.9	2.375	2.85
σsa	N/mm ²				
s	mm				
Sca	kN				
Sh'	kN				
AwReq	mm ²				
Aw	mm^2				

Table 4.2.196	Examination	of Shear Force	(Transverse)
			· · · · · · · · · · · · · · · · · · ·

Category	Unit	Seismic Water Level Considered
Load Conditio		Lv1 Seismic
b	mm	6991
d	mm	11064
S	kN	19975.69
Ν	kN	62085.14
М	kN.m	316664.43
α		1.5
pt	%	0.161
ce		0.5
cpt		0.822
CN		1
τm	N/mm ²	0.258
τa ₁	N/mm ²	0.152
τa ₂	N/mm ²	2.85
σsa	N/mm ²	300
s	mm	150
Sca	kN	11768.5
Sh'	kN	8207.2
AwReq	mm^2	426.53
Aw	mm^2	2322.6

S : Shear Force

N : Axial Load

M : Bending Moment

b : Sectional Width of Element

d : Effective Height

 $\alpha \ : Overdesign factor for allowable stress$

pt : Primary tension bar ratio

ce : Correction factor of allowable shear force for effective height d

cpt : Correction factor of allowable shear force for tension bar ratio

CN : Correction factor due to longitudinal compressive load

 τm : Average shear force

 $\tau a1$: Allowable shear force when only concrete bears shear force

τa2 : Allowable shear force when shear reinforcement rebar and concrete bears shear force

 σ sa : Allowable tensile stress of rebar

s : Spacing of shear reinforcement rebar

Sca : Shear force borne by concrete

Sh': Shear force borne by reinforcement rebar

Awreq : Necessary shear reinforcement content

to meet condition $\tau a1 < \tau m$

Aw : Shear reinforcement content

3) Bridge Seat Design

a) Dimension of Bridge Seat Width

The distance between the bearing support edge and the top edge of the substructure was set in accordance with the Specifications for Highway Bridges IV 8.6.

[P10 Pier]

Figure 4.2.249 Bridge Seat Width

- Evaluation of edge distance for bearing support

The edge distance of bearing support was set through the following equation:

S1 = 0.2 + 0.0051

 $= 0.2 + 0.005 \times 102.800 = 0.714 \text{ m}$

Hence, the edge distance of bearing support can be set as:

 $S1 = 0.714 \text{ m} < 0.737 \quad \cdot \cdot \cdot \text{OK}$

Similarly, the edge distance of the other bearing support was set through the following equation:

$$S2 = 0.2 + 0.0051$$

 $= 0.2 + 0.005 \times 111.000 = 0.755 \text{ m}$

Hence, the edge distance of bearing support can be set as:

 $S2 = 0.755 \text{ m} < 2.323 \quad \cdot \cdot \cdot \text{OK}$

- Evaluation of length of beam placement on column

The beam placement length is configured to satisfy the following equation:

$$SEM = 0.7 + 0.0051$$
$$= 0.7 + 0.005 \times 111.000 = 1.255 \text{ m}$$

$$SE = UR + UG$$

= 0.560 + 0.555 = 1.115 m

UR = 0.560 m (0.5 times longitudinal bearing width (Specifications of Highway Bridges (p. 306))

 $UG = \varepsilon g \cdot L$ (Type III Ground)

 $= 0.00500 \times 111.000 = 0.555m$

Therefore, the length of beam placement on column is as follows:

 $SE = 1.255 \text{ m} < 3.550 \text{ m} \cdot \cdot \cdot \text{OK}$

b) Evaluation of Bridge Seat Strength

Since the bridge seat has a function to support the superstructure via bearing support, large horizontal force would act on it during an earthquake. For this reason, the bridge seat needs to be designed to have sufficient strength against design horizontal seismic force.

The resistance area of concrete against horizontal force is illustrated in the following drawings:

Source: JICA Study Team

Figure 4.2.250 Resistance Area of Concrete

Item	G2(G3)
Resistance area of concrete Ac (mm ²)	10536181.0
Bearing Stress σn (N/mm ²)	1.061
Coefficient for determining the strength borne by concrete α	0.212
Strength borne by concrete Pc (kN)	3912.714
Strength borne by reinforcement Ps (kN)	0.000
Design horizontal seismic force Ph (kN)	1050.000
Strength of bridge seat Pbs (kN)	3912.714
Judge (Ph≦Pbs)	OK

Table 4.2.197	Result of Bridge	Seat Evaluation
---------------	------------------	-----------------

4.2.14.2 Foundation Desing

The foundation shape, steel pipe size, etc. were not changed based on the revised design. Therefore, only summary of the design results are shown in the table below.

			Longitudinal			Transverse					
	Diamator(mm)			Outer Pile	;	φ1200	×	56.00	×	36nos.	
	Diameter(mm		ber (110.)	Diaphragm Pile	;	φ1200	×	52.10	×	8nos.	
Pile		Outor Dila	Top Pile			t = 14	mm	(SKY490)			
	Thickness	Outer Pile	Bottom Pile			t = 14	mm	(SKY400)			
		Diaphragm Pile				t = 14	mm	(SKY400)			
	Reguler	δ	cm	0.04	≦	5.00	0	0.06	≦	5.00	0
	(Existing River	PNmax	KN/no.	1910	≦	4100	0	1912	≦	4100	0
Coloulation	Bed)	PNmin	KN/no.	1612	≧	0	0	1610	≧	0	0
Galculation	Seismic	δ	cm	2.51	ll/	5.00	0	3.10	≦	5.00	0
	(Existing River Bed)	PNmax	KN/no.	1922	≦	6200	0	1924	≦	6200	0
		PNmin	KN/no.	1585	≧	-3600	0	1604	≧	-3600	0
Composite Stress SKY400		SKY400	N/mm2	161.0	≦	210.0	0	194.3	≦	210.0	0
(Seismic•Ex	kisting River Bed)	SKY490	N/mm2	208.5	≦	277.5	0	239.6	≦	277.5	0

Table 4.2.198 Suammary of Foundation Desing

4.2.15 Summary of Wind Tunnel Test

4.2.15.1 Introduction

This section is to summarize the conditions and the results of the wind tunnel tests to estimate the wind-resistant characteristics of the main girder and the towers of Cable-Stayed Bridge of Bago River Bridge in under-construction and after completion stages conducted by Bridge Engineering Laboratory and Structural Dynamics Laboratory, Department of Civil and Earth Resources Engineering, Kyoto University, Japan.

The Bridge is a 3-span steel cable-stayed bridge (112.0m+224.0m+112.0m) to cross Bago River in Yangon city. The pylon with a rectangular cross section of 3.0m (along bridge axis) x 2.5m has 58.0m high above the upper deck level. 10 stay cables are installed in single plane at the center of the girder. The elevation of the main girder being taken from the average water level (M.W.L.) to the upper surface level of the main girder is 14.963+2.70=17.663m.

The cross section of the main girder has 22.9m in width (B) and the fairing with 0.80m in horizontal width is installed at both ends. The fairing is partially installed in under-construction stage. Therefore, the overall width of girder is defined as 0.8+22.9+0.8=24.7m. The height of the girder (D) is chosen as 2.70m which is the distance between the lower surface of bottom flange of box girder and the upper deck surface at the center of the main girder.

4.2.15.2 Basic Condition to Evaluate Aerodynamic Stability

The wind tunnel test is to be conducted based on the following conditions:

- Elevation of main girder 17.663 m
- Girder width (B) 22.9 m
- Girder depth (D) 2.70 m (B/D = 8.48)
- Category of surface roughness: II
- Power exponent of vertical profile of wind speed 0.16
- (Longitudinal) intensity of turbulence: 17 %

At the elevation of the main girder

For after-completion stage

- Basic wind speed (U_{10}) 30 m/s

10 minute mean wind speed at 10m elevation

- Design wind speed (U_d) 32.7 m/s

At the girder elevation, the design wind speed U_d is

 $U_d = U_{10} \times E_1 = 30 \times 1.09 = 32.7$

 $(E_1: a factor based on surface roughness and elevation)$

Reference wind speed for flutter (U_{rf}) 45.1 m/s

 $U_{rf} = 1.2 \times E_{rl} \times U_d = 1.2 \times 1.15 \times 32.7 = 45.1$

 $(E_{rl}: a factor based on the variation of wind speed and natural period of the target bridge)$

The safety for flutter requires that the critical wind speed for flutter measured in wind tunnel test in smooth flow is higher than U_{rf} .

- Reference wind speed for VIV (U_{rv}) 32.7 m/s

$U_{rv} = U_d$ for heaving and torsional

The safety for VIV requires that the onset wind speed at which the maximum amplitude is measured in wind tunnel test in smooth flow is higher than U_{rv} .

- Allowable amplitude for VIV (h_{rvh} , $h_{rv\theta}$)

0.09 m for heaving

0.39 deg. for torsional

$$h_{rvh} = h_{\alpha}$$
 (for heaving), $h_{rv\theta} = \theta_a$ (for torsional)

If the onset wind speed is lower than U_{rv} , the safety for VIV requires that the maximum amplitude being measured in wind tunnel test in smooth flow is lower than the allowable amplitude h_{α} , θ_{a} . The allowable amplitude h_{α} , θ_{a} are evaluated by the following formulae:

 $h_a = 0.04/f_h$ (for heaving), $\theta_a = 2.28/(b \cdot f\theta)$

where, ha: allowable heaving amplitude (m),

 θ_{α} : allowable torsional amplitude (deg.),

 f_h : heaving natural frequency (Hz),

 f_{θ} : torsional natural frequency (Hz),

b: distance between the center of most outer road traffic or pedestrian lane to the girder center.

 $h_a = 0.04/0.446 = 0.09$ m (for heaving), $\theta_a = 2.28/(6.5 \times 0.895) = 0.39$ deg.

For under-construction stage

-	Basic wind speed (U_{10E})	22.1 m/s
	Considering limited period of construction.	
-	Design wind speed (U_{dE})	24.1 m/s
	At the girder elevation (22.1× E_1 = 24.1).	
-	Reference wind speed for flutter (U_{rfE})	33.3 m/s
	$U_{rfE} = 1.2 \times E_{r1} \times U_{dE} = 1.2 \times 1.15 \times 24.1 = 33.3$	
-	Reference wind speed for VIV (U_{rfE})	24.1 m/s
U_{rf}	$E = U_{dE}$ for heaving and torsional	
-	Allowable amplitude for VIV (h_{rvhE} , $h_{rv\theta E}$)	0.01 m for heaving
		0.14 deg. for torsional
	$ha = 0.04/3.977 = 0.01$ m (for heaving), $\theta_a = 2$	$.28/(6.5 \times 2.594) = 0.14 \text{ deg.}$

4.2.15.3 Aerodynamic phenomena to be examined

By taking the geometry of the girder into account, the dynamic stability of the following phenomena should be checked mainly in smooth and in turbulent flow:

- Vortex-induced vibration (VIV)

- Flutter

- Buffeting

Galloping is considered as one of the most destructive aerodynamic phenomena. The occurrence of galloping is not so much expected since the side ratio B/D (B: width, D: height) of the girder cross section is relatively large. Heaving response should be also measured carefully.

The above aerodynamic phenomena are to be measured by the free vibration test in wind tunnel, mainly. Stability for flutter is to be also examined by the forced vibration test.

Target modes for heaving/torsional DOF will be determined by mode shape and equivalent mass for two phases in under-construction stage and for after-completion stage.

Wind tunnel test was conducted for under-construction stage in which and for after-completion stage.

4.2.15.4 Wind Tunnel

The wind tunnel facility used for the test is the Eiffel type wind tunnel in Department of Civil and Earth Resources Engineering, Kyoto University, Japan (see Figure 4.2.251 and Figure 4.2.252). Width and

height of working section is 1.0m and 1.8m for section model test. Wind velocity in the working

section can be adjusted up to about 25m/s. Turbulent intensity in the empty working section is

less than 0.5(%).

Source: Kyoto University

Figure 4.2.251 Wind Tunnel in Department of Civil and Earth Resources Engineering,Kyoto University

Source: Kyoto University

Figure 4.2.252 Wind Tunnel

4.2.15.5 Models for Wind Tunnel Test

(1) Section model of main girder

The cross section of the model realizes the representative outer configuration of the main girder. Between the under construction stage and the after completion, main difference of the model is:

- Fairing: Installed in discrete manner for the under construction stage and installed continuously for after completion stage.
- Handrails and pavement layer: Installed only in after completion stage.

Scale ratio of the model was determined as 1/70 by taking the wind tunnel facility condition into account. The detail of the section model is shown in Figure 4.2.253 to Figure 4.2.256.

Source: JICA Study Team

Figure 4.2.253 3-D image of section model (for after-completion stage)

Figure 4.2.254 3-D image of section model (for under-completion stage) (The configuration is reproduced by taking out the top left piece from the section model.)

(2) **3-D elastic model of tower**

The 3-D elastic model is to be manufactured in order to measure the aerodynamic response of the tower. This model consists of the fully elastic tower part and the rigid girder part. The bent during the early period of the under-construction stage is also realized. Girder length is changeable and the cable can be installed when necessary. The cable is realized by steel wires which the diameter is determined so as to simulate the drag force. Tensile force in each cable is given by using a weight before fixing.

Scale ratio of the model was determined as 1/120. The detail of the section model is shown in Figure 4.2.257 to Figure 4.2.260.

Source: JICA Study Team

Figure 4.2.257 3-D image of the elastic model (for after-completion stage) (The min girder part is a rigid model.)

Figure 4.2.258 3-D image of elastic bar for the tower and rigid bar for the main girder (The supports at both ends of the model are to keep the girder as rigid.)

4.2.15.6 Free vibration test of main girder (scale ratio 1/70)

The test was conducted in or der to measure the aerodynamic response of the main girder during underconstruction stage and after-completion stage.

For the under-construction stage, the following 2 stages were focused:

- Before the lowest cable being installed and just after the first segment of the main girder was installed. (Heaving 1 degree of freedom (DOF); This condition was abbreviated as UC1, hereafter.)
- Just before the last segment of the main girder in the main span is installed. (Heaving and torsional 2 DOF, UC2)

For after-completion stage,

- the modes combination, heaving and torsional: 2 DOF (AC) was set to the model

In the following tables, 'o' means the corresponding response was not observed, and ' \times ' means the corresponding response occurred. The corresponding prototype wind speed interval Up [m/s] is shown for the vortex-induced vibration (VIV), while the prototype onset wind speed is shown for flutter and galloping.

(1) Under-construction (UC1: Before the lowest cable being installed)

In the case of UC1, the free vibration test was conducted under 3 incidence angles of wind (0, +3,and -3 [deg]) in smooth and in turbulent flow, respectively. Displacement of the model was allowed only 1 DOF along heaving (across-wind) direction, and an initial heaving vibration (disturbance) was applied to the model at several wind speed conditions in the test. The response was recorded after the response amplitude became stable.

For all of the cases in UC1, neither vortex-induced vibration (VIV) nor flutter was observed. The results are summarized in Table 4.2.199.

Flow condition	Vertical incidence angle of wind [deg]	Vortex-induced vibration	Flutter
	0	0	0
Smooth	+3	0	0
	-3	0	0
	0	0	0
Turbulent	+3	0	0
	-3	0	0

Table 4.2.199	Aerodynamic response	of the main girder in UC1	(Heaving 1 DOF)
---------------	----------------------	---------------------------	-----------------

"o" : The corresponding response was not observed. Source: JICA Study Team

(2) Under-construction (UC2: Just before the last segment of the main girder in the main span is installed)

In the case of UC2, the free vibration test was conducted under 3 incidence angles of wind (0, +3,and -3 [deg]) in smooth and in turbulent flow, respectively. Displacements being allowed in the model was 2 DOF along heaving and torsional direction. An initial heaving or torsional disturbance was applied to the model separately at several wind speed conditions in the test. The response was recorded after the response amplitude became stable.

For all of the tests, neither VIV nor flutter was observed. The results are summarized in Table 4.2.200.

Flow condition	Vertical incidence angle of wind [deg]	Vortex-induced vibration	Flutter
	0	0	0
Smooth	+3	0	0
	-3	0	0
	0	0	0
Turbulent	+3	0	0
	-3	0	0

Table 4.2.200	Aerodynamic response	of the main girder in l	UC2 (Heaving/torsional	2 DOF)
---------------	----------------------	-------------------------	------------------------	--------

"o" : The corresponding response was not observed. Source: JICA Study Team

(3) After-completion (AC, Heaving and torsional 2 DOF)

In the case of AC, the free vibration test was conducted under 3 incidence angles of wind (0, +3,and -3 [deg]) in smooth and in turbulent flow, respectively. Displacement being allowed in the model was 2 DOF along heaving and torsional direction. An initial heaving or torsional disturbance was applied to the model separately at several wind speed conditions in the test. The response was recorded after the response amplitude became stable. The results are summarized in Table 4.2.201.

In smooth flow condition, the torsional VIV was observed for all of the three incidence angles (0, +3, and -3 [deg]), while no heaving VIV was observed. The prototype wind speed Up of torsional VIV was at around 21.6 [m/s] for the incidence angle of 0 [deg], 15.4 - 17.9 [m/s] and 22.8 - 25.2 [m/s] for +3 [deg], and 15.4 - 17.9 [m/s] and 20.3 - 24.0 [m/s] for -3 [deg].

In turbulent flow, no VIV was observed for both heaving and torsional direction.

For all of the tests conducted in smooth flow and in turbulent flow, no flutter was observed.

Flow condition	Vertical incidence angle of wind [deg]	Vortex-induced vibration	Flutter
	0	× Torsional (at around 21.6 [m/s])	0
Smooth	+3	× Torsional (15.4 - 17.9 [m/s]) (22.8 - 25.2 [m/s])	0
	-3	× Torsional (15.4 - 17.9 [m/s]) (20.3 - 24.0 [m/s])	0
	0	0	0
Turbulent	+3	0	0
	-3	0	0

Table 4.2.201 Aerodynamic response of the main girder in AC (Heaving/torsional 2 DOF)

"o" : The corresponding response was not observed.

"x" : The corresponding response occurred.

4.2.15.7 Aerodynamic response of elastic tower model (scale ratio 1/120)

Aerodynamic response of the tower was tested in wind tunnel using fully elastic tower model of 1/120 scale ratio.

The target stage for wind tunnel test was chosen to be the same as those for the main girder test:

For the under-construction stage, the following 2 stages were focused:

- Before the lowest cable being installed and just after the first segment of the main girder was installed. (Heaving 1 DOF; This condition was abbreviated as UC1, hereafter.)
- Just before the last segment of the main girder in the main span is installed. (Heaving and torsional 2 DOF, UC2)

For after-completion stage, the following modes combination was set to the model.

- Heaving and torsional (2 DOF, AC)

In the following tables, the wind direction along cable plane (i.e. along bridge axis) is denoted as xdirection, while the wind direction normal to cable plane is denoted as y-direction. In addition, yawing angle 0° refers to the angle when the wind is along the bridge axis, and 90° refers to the angle when the wind blows along the lateral direction of the bridge. For the cases of 'Under construction 1 (UC1)', the yawing angle 0° and 180° is defined as shown in Fig. 4.2.253 (a) and (b), respectively.

(a) Yawing angle 0°

(b) Yawing angle 180°

Source: JICA Study Team

Figure 4.2.261 Definition of yawing angle for cases of under construction 1 (UC1) (Wind comes from the back to the model side.)

(1) Under construction 1 (UC1, Before the lowest cable being installed)

(Original tower configuration)

During the under-construction stage of UC1, the tower stands alone without any cables. In this situation, the aerodynamic sensitivity of the tower will be higher than those in the other 2 stages.

In the condition of smooth flow, y-direction (normal to cable plane) VIV was observed for yawing angle 0° and 5° (wind comes along bridge axis), while x-direction (along cable plane) VIV was observed for yawing angles 80°, 85° and 90° (wind comes normal to bridge axis). The y-direction galloping occurred for yawing angle 5°, while the x-direction galloping was observed for yawing angles 80° and 90°. The results are summarized in Table 4.2.202.

Flow condition	Yawing angle [deg]	Vortex-induced vibration	Galloping
	0	× in y-direction (16.5m/s~18.6m/s)	0
	5	× in y-direction (16.5m/s~18.6m/s)	× in y-direction (60.0m/s~)
	22.5	0	0
	45	0	0
Smooth	67.5	0	0
	80	\times in x-direction (14.2m/s~22.3m/s)	× in x-direction (58.7m/s~)
85		\times in x-direction (14.2m/s~20.3m/s)	0
	90	× in x-direction (16.2m/s~22.3m/s)	× in x-direction (43.6m/s~)

Table 4.2.202Under construction 1 (UC1, Original tower configuration (without aerodynamic
device))

"o" : The corresponding response was not observed.

"x" : The corresponding response occurred. Source: JICA Study Team

(2) Under construction 1 (UC1, Before the lowest cable being installed)

(With L-shaped aerodynamic device, length: 91.7mm)

For UC1, countermeasure to stabilize the aerodynamic vibration, VIV and Galloping should be discussed, since these phenomena were observed in smooth flow condition as described in the previous section. The L-shaped aerodynamic device as shown in Fig.4.2.254 was proposed and its stabilizing effect was tested in wind tunnel by attaching the device near the edge of the tower cross section on the front and rear surface near the top of the tower model.

In the condition of smooth flow, y-direction VIV was observed for yawing angle 0°, and x-direction VIV was observed for yawing angle 90°. In the condition of turbulence, no VIV and galloping were observed. The results are summarized in Table 4.2.203.

Table 4.2.203 Under construction 1 (UC1, With L-shaped aerodynamic device)

(Length of aerodynamic device: 91.7mm (= 11.0m for real bridge) from the top of the tower))

Flow condition	Yawing angle [deg]	Vortex-induced vibration	Galloping
Smooth	0	× in y-direction (12.6m/s~14.7m/s)	0
Smooth	90	× in x-direction (18.5m/s~20.6m/s)	0
Turbulent	80	0	0
	85	0	0
	90	0	0
	180	0	0

"o": The corresponding response was not observed. "x": The corresponding response occurred. Source: JICA Study Team

(a) For wind along bridge axis

(b) For wind normal to bridge axis

Source: JICA Study Team

Figure 4.2.262 L-shaped aerodynamic device (Model scale ratio: 1/120, unit: in mm)

(3) Under construction 2 (UC2, Before the last girder segment being installed)

(With L-shaped aerodynamic device, length: 91.7mm)

Aerodynamic vibration response of the tower was tested for the under-construction stage UC2, in which the aerodynamic device was attached with the length of 91.7mm (= 11.0m for real bridge) expecting its stabilizing effect to the wind along bridge axis (see Fig. 4.2.254).

While the y-direction VIV was observed in smooth flow for yawing angle 0°, no vibration was observed in turbulent flow condition for yawing angle 0° and 5°. The results are summarized in Table 4.2.204.

Table 4.2.204 Under construction 2 (UC2, With L-shaped aerodynamic device)

(Length of aerodynamic device: 91.7mm (= 11.0m for real bridge) from the top of the tower))

Flow condition	Yawing angle [deg]	Vortex-induced vibration	Galloping
Smooth	0	× in y-direction (11.1m/s~29.5m/s) (34.2m/s~34.2m/s)	0
	5	0	0
Turbulant	0	0	0
lurbulent	5	0	0

"o" : The corresponding response was not observed.

"x" : The corresponding response occurred.

Source: JICA Study Team

(4) After-completion (AC) (Original tower configuration)

In the condition of smooth flow, y-direction VIV was observed for yawing angles 0° and 5°. Besides, y-direction galloping occurred for yawing angel 5°. In the condition of turbulence, both of y-direction VIV and y-direction galloping were observed for yawing angle 0°. The results are summarized in Table 4.2.205.

Flow condition	Yawing angle [deg]	Vortex-induced vibration	Galloping
	0	× in y-direction (10.7m/s~30.4m/s)	0
	5	× in y-direction (10.7m/s~19.7m/s)	× in y-direction (28.6m/s~)
Smooth	10	0	0
	22.5	0	0
	45	0	0
	67.5	0	0
	90	0	0
	0	× in y-direction (17.9m/s~19.7m/s)	× in y-direction (23.3m/s~)
	5	0	0
T 1 1 .	10	0	0
Turbulent	22.5	0	0
	45	0	0
	67.5	0	0
	90	0	0

Table 4.2.205 After conpletion (AC, without L-shaped aerodynamic device)

"o" : The corresponding response was not observed.

"x" : The corresponding response occurred. Source: JICA Study Team

(5) After-completion (AC, with L-shaped aerodynamic device)

(With L-shaped aerodynamic device, length: 91.7mm)

The response was tested with the aerodynamic device attached (with the length of 91.7mm). The ydirection VIV was observed in smooth flow with yawing angle 0°. No galloping occurred in both of the smooth flow and turbulence. The results are summarized in Table 4.2.206.

Table 4.2.206 After-completion (AC, With L-shaped aerodynamic device)

(Length of aerodynamic device: 91.7mm (= 11.0m for real bridge) from the top of the tower))

Flow condition	Yawing angle [deg]	Vortex-induced vibration	Galloping
Smooth	0	× in y-direction (22.1m/s~25.8m/s)	0
	5	0	0
Turbulant	0	0	0
Turbulent	5	0	0

"o": The corresponding response was not observed.

"x" : The corresponding response occurred.

Source: JICA Study Team

(6) Determination of the length of aerodynamic device

The length of the aerodynamic device was determined based on the tower response with yawing angles 0° and 5° , in both of smooth and turbulent flow conditions. As shown in Table 4.2.205, galloping occurred in the case of smooth flow with yawing angle 5° as well as the case of turbulence with yawing angle 0° . The aerodynamic device with the length of 91.7mm could suppress the galloping for both cases.

On the other hand, the length of the aerodynamic device should be as small as possible and have enough stabilizing performance. Therefore, aerodynamic devices with different length of 41.7mm (= 5.0m for real bridge), 141.7mm (17.0m), 191.7mm (23.0m) and 233.4mm (= 28.0m)) were attached to the top of the tower.

From these results, it indicates that the length of 3 pieces is an optimal choice by taking the fact that VIV was measured in 141.7mm of the installed length in smooth flow and 0[deg] yawing angle. And this response was stabilized in turbulent flow condition. With the aerodynamic device applied, the galloping was enough suppressed as shown in Table 4.2.207.

Flow condition	Yawing angle [deg]	Length of aerodynamic device [mm]	Vortex-induced vibration	Galloping
Smooth	0	141.7	× in y-direction (15.0m/s~40.0m/s)	0
	5	141.7	0	0
		41.7	0	0
T 1 1 .		141.7	0	0
Iurbulent	0	191.7	0	0
		233.4	0	0

 Table 4.2.207
 After-completion (AC, With L-shaped aerodynamic device)

	41.7	0	о
-	141.7	0	0
5	191.7	0	0
	233.4	0	0

"o" : The corresponding response was not observed. "x" : The corresponding response occurred. Source: JICA Study Team

4.2.15.8 Conclusions on aerodynamic response of main girder and tower

Aerodynamic vibration response of the main girder and the tower of Cable-stayed Bridge of Bago River Bridge was examined by wind tunnel tests.

For the under-construction stage, the following 2 stages were focused:

- Before the lowest cable being installed and just after the first segment of the main girder was installed. Heaving 1 DOF of the main girder dominates. The tower stands in isolated condition. Hence, both bending modes along/normal to cable plane may be possible. (Abbreviated as UC1)
- Just before the last segment of the main girder in the main span is installed. Heaving and torsional 2 DOF of the main girder dominates. Sine all cables are already installed, possible bending mode of the tower is normal to cable plane only. (UC2)

For after-completion stage,

- Heaving and torsional 2 DOF of the main girder dominates. Sine all cables are already installed, possible bending mode of the tower is normal to cable plane only. (AC)

The aerodynamic response of the main girder shows stable characteristics for the above 2 underconstruction stages (UC1, UC2) in smooth and in turbulent flow conditions. Neither vortex-induced vibration (VIV) nor flutter was measured.

On the other hand, only vortex-induced vibration (VIV) of the main girder was measured in the aftercompletion stage (AC) at about 15 to 25 [m/s] for real bridge under the vertical incidence of angle 0, +3 and -3[deg.] in smooth flow condition. In case of turbulent flow condition, neither VIV nor flutter was measured.

Therefore, the main girder possesses stability to aerodynamic vibration, if turbulent flow condition is taking into account.

Vortex-induced vibration and galloping were observed in the tower for its original configuration.

For UC1 in smooth flow, VIV of bending mode normal to the cable plane (in y-direction) occurs at 16 to 19 [m/s] under wind direction of 0 [deg.] and 5 [deg.] (almost in parallel to the bridge axis), while galloping occurs from 60 [m/s] under 5 [deg.]. VIV of bending mode in parallel to the cable plane (in x-direction) was also observed in smooth flow under 80, 85 and 90 [deg.] (almost normal to bridge axis) at 14 to 23 [m/s]. Galloping occurs from 58 [m/s] for 80 [deg.] and from 43 [m/s] for 90 [deg.].

For AC in smooth flow, VIV was measured in smooth flow at 10 to 31 [m/s] for 0 [deg.] and 10 to 20 [m/s] for 5 [deg.]. For 10, 22.5, 45, 67.5 and 90 [deg.], stability for VIV was confirmed. The occurrence of galloping was confirmed from 28 [m/s] for 5 [deg.], while no galloping for other cases with different wind direction. The VIV and galloping in turbulent flow condition remains only for 0 [deg.]. VIV was observed at 17 to 20 [m/s] and galloping occurred from 23 [m/s]. The tower was stable for other wind directions, 5, 10, 22.5, 45, 67.5 and 90 [deg.].

From these results, the occurrence of galloping for the wind direction along bridge axis should be main

concern.

In order to suppress the galloping as mentioned above, the L-shaped aerodynamic device which is to be attached nearby the corner of the tower cross section was proposed.

For UC1 in smooth flow, the response characteristics were examined by installing the device along 11.0 [m] from the top of the tower. VIV was still observed at 12 to 15 [m/s] for 0 [deg.] and 18 to 21 [m/s] for 90 [deg.], although no galloping was measured for both measurement cases. The response in turbulent flow condition was examined for 80, 85, 90 and 180 [deg.]. The tower was stable for all of these wind direction conditions. (There is no big difference in the response for 0 [deg.] and 180 [deg.], since the flow around the top of tower can be almost identical and no significant influence by the upstream elongation length of the main girder. (see Fig.6.3.1))

For UC2 in smooth flow with the L-shaped device installed along 11.0 [m], VIV was measured at 11 to 32 and 34 [m/s] for 0 [deg.], whereas, stable for 5 [deg.]. The tower showed stable for 0 and 5 [deg.] in turbulent flow.

For AC in smooth flow with the L-shaped device installed along 11.0 [m], the tower was stable for 5 [deg.] but VIV occurred at 22 to 26 [m/s] for 0 [deg.]. No galloping was observed for both cases of wind direction. In turbulent flow, the tower was stable for 0 [deg.] and 5 [deg.].

Install length of the device was changed to 41.7 [mm] (= 5.0 [m] in real bridge), 141.7 [mm] (17.0 [m]), 191.7 [mm] (23.0 [m]) and 233.4 [mm] (28.0 [m]), respectively, in order to know its effect to stabilizing performance. Target wind direction was fixed to 0 [deg.] and 5 [deg.] only. In smooth flow, VIV was measured only for 0 [deg.] and the length of 141.7 [mm], while stable for 5 [deg.]. In turbulent flow, the tower showed stable response characteristics for all cases. No galloping was observed for all cases.

From these results, the response for 0 [deg.] with the length of the device 141.7 [mm] should be focused. This response was totally stabilized under turbulent flow condition. And the wind direction 0 [deg.] (along bridge axis) means the wind comes over the city of Yangon or the field in Thilawa. Moreover, this wind may be further disturbed by the existence of the cable in upstream of the tower. From these reasons, the wind resistant characteristics of the tower should be estimated under turbulent flow condition rather than in smooth flow. It was confirmed that, in turbulent flow condition, the tower is stabilized by installing the device longer than 141.7 [mm] (17.0 [m]) from the top. Therefore, it is recommended to install the device over 17.0 [m] from the top of the tower.

4.2.16 Summary of Quantities

4.2.16.1 Quantities for Superstructure

The quantities for the superstructure are shown in the table below.

It	iem s	Description	Spec	Unit	Qty Total
TowerFabrication	Material	Steelplate		ton	609.1
		Shapes		ton	5.1
		Torque share high tension bolt		ton	6.2
	Fabrication	″A1″No.ofm ajrpiece		nos	160
				ton	372.2
		"A2"No.ofm horpèce		nos	2702
				ton	226.2
		"B1"Length ofwelding form a prpiece (converted to 6mm fillet welding)		m	0
		"B2"Length ofT-pintwelding form aprpiece		m	906.6
		${}^{\!$		nos	40
		"X":Totalfabricated steelweight		ton	598.4
	Paint in factory	B asting area (pre-processing before paint)		m 2	5053.2
		Outside GEN		m 2	1380.5
		hside G E N		m 2	3158.2
Towererection	Pre-assem bling	W elding		m	906.6
	Welding in site	Length of we bling		m	17468.2
	Dead–bolting in site	Tower interior_Torque share high tension bolt.		nos	10360
	Paint in site	Outside Welding		m 2	44
		hside SPL		m 2	139.2
		hs de Bolt Head		m 2	52.4
		hside W eiding		m 2	52.9
		Connection		m 2	278.3

Table 4.2.208 Quantities for Superstructure (Tower)

	Item s	Description	Spec	Unit	uty Total
Girder Fabrication	Material	Steelplate		ton	4439.8
		Shapes		ton	540.4
		Torque share high tension bolt		ton	104.2
	Fabrication	"A1"No. ofm a jorpiece		nos	1238
				ton	2285.5
		"A 2" No. ofminorpiece		nos	53950
				ton	2440.3
		"B1"Length of welding form a prpiece (converted to 6mm fillet welding)		m	9611.5
		"B2"Length ofT-jointwelding form ajorpiece		m	7171.6
		″W 0.″₽ ercentage ofweight ofm ateria lequivalent to 570 with in total fabricated steel weight		%	0.1
		"C":Tota IN o. of pieces *P ieces connected m eanwhile being erection girder		nos	515
		"X ":Totalfabricated steelweight		ton	4980.3
		RailFor hspection Car		ton	3.8
		PL For ConnectTo Rocking Bearing	-	ton	2.7
	Paint in factory	B lasting area (pre-processing before paint)	-	m 2	86047.8
	,	O utside G EN		m 2	22135.4
		0 verg laze 0 utside G EN		m 2	641.1
		hside G E N	_	m 2	42466.7
		Surface 0 fDeck PL G EN	-	m 2	9614.8
Girder erection Main Span	Pre-assem bling	We bling form ain girder" Length of we bling form a projece (converted to 6mm fillet we bling)		m	3914
		We do ng form an giver "Length of T-bintwe ding form a brokece		m	2982.1
		Webling form etaldeck		m	2024.1
		U-rb wedding		m	0
		Welding for Fairing PL		m	0
	Erection	Welding form etaldeck		m	458
		Welding for Fairing PL		m	302.1
	Dead-bolting in site	Torque share high tension bolt		nos	41312
	Paintin site			m 2	144.6
		0 utside BoltHead		m 2	36.6
		Outside Welding		m 2	352.4
		Overgiaze Outside Wielding		m 2	0
		hside SPI		m 2	426.4
		hside Bolt Head		m 2	174.2
		hside Welding		m 2	375.8
		Surface 0 fD eck PL W elding		m 2	404.8
		Connection		m 2	1140 1
Girder erection Back Spans	Pre-assem bling	"We dring form an girder" length of we bling form a brokece (converted to 6mm fillet we bling)			5697.5
		We do no form a in grider "Length of T-bintwe doing form a broke		m	4189.5
		Welding form etaldeck		m	2885.6
		U-rb welding		m	0
		Welding for Fairing Pl		m	0
	Erection	Welding form etaldeck		m	2885.6
		Welding for Fairing PL		m	483.4
	Dead-bolting in site	Torque share high tension bolt		nos	152168
	Paintinisite	0 utside SPL		m 2	817.5
		0 utside Bolt Head		m 2	189.1
		0 utside W e bling		m 2	270.8
		- Overg bze Outside Webling		m 2	4.8
		hside SPL		m 2	1529.5
		hside Bolt Head		m 2	577.1
		hside W e bling		m 2	301.6
		Sunface 0 fD eck PL W e bling		m 2	577.1
		C onnection		m 2	4809.5
1	1		1	1	1 '

Table 4.2.209	Quantities for Superstruct	ure (Girder)
---------------	----------------------------	--------------

	Item s	Description	Spec	Unit	Qty Total
Cable staym aterial	PC strands(7S15.6)	SW PR7BL		ton	224.4
		Loss (2.0%)			0.02
	HDPE duct	<i>φ</i> 180		m	952.8
		<i>d</i> 250		m	1785.4
		Loss (3.0%)			0.03
	Adjustm entable Anchorage	37H (Girderside)		nos	20
		70H (Girderside)		nos	20
	Fixed Anchorage	37H (Towerside)		nos	20
		70H (Towerside)		nos	20
	Sliding Tube	37Н	-	nos	20
		70Н		nos	20
	HDPE JointTube	37Н		nos	20
		70Н		nos	20
	SupportR ing	37Н		nos	20
		70Н		nos	20
	Position ing Tube	37Н		nos	20
		70Н		nos	20
	Protection Tube	37Н		nos	20
		70Н		nos	20
	Buffer Device	37H (Girderside)		nos	20
		70H (Girderside)		nos	20
		37H (Towerside)		nos	20
		70H (Towerside)		nos	20
	V bration C ontro ID evice	37Н		set	20
		70H		set	20

Table 4.2.210 Quantities for Superstructure (Cable)

h	iem s	Description	Spec	Unit	Q ty Total
Bearing	Bearing For Horizon tal Force	6700kN		nos	2
	Rocking Bearing	3700kN		nos	4
	PivotBearing	57700M		000	2
	Pin Roller Bearing	2020014		1103	4
	Anabor Po H	2000/11		100	20.7
				UII	20.7
	Anchor Fram e			ton	24.2
	Pedestal Fram e			ton	65.4
Accessory & Miscellaneous work	Bridge Surface W ork	AsphatPavem ent		m 2	8028
		Concrete for Median		m 3	89.2
		Stud for Median	SD 345	kg	334
		Webded Wire Mesh for Median		m 2	1115
		W ater-ResistantCoating for Road W ay		m 2	8028
		W ater-Resistant Coating for M edian		m 2	1115
	WheelGuard & Median Strip	Concrete		m 3	354.5
		Form		m 2	877.1
		R e inforcing B ar	SD 345	kg	21815
		Stud	S D 345	kg	5237
		D ra nage P ipe	S T K R 400	kg	4068
	Com posite Barrier & Barrier For Carriage Way	Com posite Barrier		m	895
		Rein forcing Bar for Com posite Barrier	S D 345	kg	5567
		Montar for Com posite Barrier		m 3	4.76
		Barrier For Carriage W ay		m	895
		Reinforcing Bar for Barrier For Carriage Way	S D 345	kg	5567
		Montar for Barrier For Carriage Wav		m 3	4.76
	Expansion Joint	W odu le Type		m	45.8
		Paháming Bar	SD 345		800
			SD 345	ng ka	142
	1 1.41.	3 uu 1	30 340	ng	142
	L g ung			nos	
		Light-up System for lower		nos	4
		Light-up System for Pier		nos	4
	Navigation S ign & L ight	Safe W ater		nos	2
		PortHand		nos	6
		Starboard H and		nos	6
	A ircraftW aming Light			nos	2
	Lightning Conductor			nos	2
	M anho le	G irder_P o lych broprene	480x9x680	nos	6
		Tower_Polych broprene	510x10x710	nos	4
	Cable Rack (Reference)	Cable Rack Length	W =0.6m	m	448
		Cable Rack	W =0.6m L=3.0m	nos	149
		Cable Rack	L=0.5m	nos	2
		Joht		nos	148
		End C ap		nos	2
		Steady Piece		nos	203
	D ra inage	D ra nage Box		nos	140
		Bridge Surface D ra inage		nos	102
	Ladder in Main Tower			ton	3
	hspection Road			ton	38.1
	WaterPipe	Sunnart		ton	16.6
	Fairing	a abbara		ton	96.2
	Aandynam in Dowing			will to r	10.0
	A GLOUDYNAIII IC D GAICG			ωn	12.8

Table 4.2.211	Quantities for	Superstructure	(Accessories)
---------------	----------------	----------------	---------------

4.2.16.2 Quantities for Substructure

The quantities for the substructure are shown in the table below.

								Quantities					
Type of Works	Ite	me	Specification	Classification	Un i t	P10 Pier (Origin Side)	P10Pier	P11Pier	P12Pier	P13Pier	Sum	Note	
Concrete	Pier 6	Primary Construction	σ ck=30N/mm2		m3		2, 097. 4	1, 801. 1	1, 801. 1	2, 099. 4	7, 799. 0		
	Diar	Primary	Normal Form	H≦30m	m2		411.6	268.3	268.3	416.6	1, 364. 8		
Formwork		Construction	Circular Formwo	Jrk	"	Ι	526.9	514.8	514.8	526.9	2, 083. 4		
	Drainage S	teel Pipe		$\phi = 50$ mm	٤	Ι	3.0	Ι	Ι	3. 0	6.0		
		Mor+or	Mortar		m3	I	I	12.535	12. 535	Ι	25.070	Superstructure Construction	
	Dearing	MOLLAL	Non-shrinkable	Mortar	m3	1.394	0.886	2.815	2.815	0.886	8. 796	Superstructure Construction	
Bearing				$\phi = 150$ mm	٤	Ι	Ι	Ι	Ι	8.6	8.6		
Support	Form to for Anchu	r void or Bolt	Cylindrical Form	$\phi = 200$ mm	"	10.6	Ι	Ι	Ι	Ι	10.6		
				$\phi = 250$ mm	"	Ι	7.9	Ι	Ι	7.9	15.8		
	Box-out F	^c ormwork	Box-out From		m2	11.4	2.3	21.8	21.8	7.3	64.6		
				D 13	kg	Ι	Ι	Ι	Ι	Ι	Ι		
				D16 ~ D25	"	Ι	88, 526	77, 588	77, 588	88, 457	332, 159		
				D29 ~ D32	"	Ι	66, 425	6, 604	6, 604	66, 444	146, 077		
	Wei£	ght	SD345	D 35	"	Ι	Ι	Ι	Ι	Ι	Ι		
				D 38	"	Ι	Ι	Ι	Ι	Ι	Ι		
Steel				D 51	"	Ι	Ι	88, 337	88, 337	Ι	176, 674		
Reinforcement				Total	"	Ι	154, 951	172, 529	172, 529	154, 901	654, 910		
	Large D	iameter Re-ba	ar Ratio		Ι	Ι	Ι	Ι	Ι	Ι	Ι		
				D 35	Point	Ι	Ι	Ι	Ι	Ι			
	Machanica	201	CD345	D 38	"	Ι	Ι	Ι	Ι	Ι	Ι		
				D 51	"	Ι	Ι	412	412	Ι	824		
				Total	"	I	Ι	412	412	Ι	824		
		DIPE	STKADO	ϕ 34.0×2.3	k 8	Ι	93	72	72	93	330		
	1	1	00110	φ21.7×1.9	"	Ι	75	78	78	75	306		
	C+ool Woight		SS400	$65 \times 65 \times 6$	"	Ι	271	226	226	271	994		
		ā	SMADOA	t=9mm	"	I	82	56	56	82	276		
Fall	1	-		t=6mm	"	Ι	39	26	26	39	130		
Preventive			Total		"	Ι	560	458	458	560	2, 036		
Handrail		11 Bo 1+	00733	Nominal_25C	Nos.	Ι	52	36	36	52	176		
	Number of Bolts	0. 0011	00+00	Nominal_15C	"	Ι	84	72	72	84	312		
		ANC	SS400	$M16 \times 125$	"	Ι	208	144	144	208	704		
	Mass of		HD Z55		kg	Ι	392	308	308	392	1,400		
	Plating		HDZ35		"	I	271	216	216	271	974		

Table 4.2.212 Quantities for Substructure (RC Pier)

Type								Quant	ities			
of Works	Item			Classification		Unit	P10Pier	P11Pier	P12Pier	P13Pier	Sum	Note
			Length of F	Pile (Pile Diameter Ø1	200mm)	m/Nos.	70.0	74.0	65.5	63.0	I	
				Dilo Number		Nos.	36	40	40	36	152	Outside Steel Pipe Well
						"	8	8	8	8	32	Diaphragm Steel Sheet Pipe Wall
				Total		=	44	48	48	44	184	
				Total Pile Length		ε	3, 080. 0	3, 552. 0	3, 144. 0	2, 772.0	12, 548. 0	
		و_ ۲ ا	addad Danth			E	60.6	63.7	52.6	50.1	227.0	Soil Coefficient=1.00
			ваава рерги			"	1	1	1	1	1	Soil Coefficient=1.07
					t=14mm	t.	19.224	18.406	14.929	16.361	68.920	SKY400
			Weight of	φ1200	t=14mm	"	9.407		1	9.407	18.814	SKY490
		(3	Section		t=16mm	"	1	13.543	13. 543	1	27.086	SKY490
		• 0 ·		φ165.2	t=11mm	"	5.676	6.018	5. 308	5.108	22.110	STK400
		• Aə		Tip Reinforcing Band	PL t= 9mm	t	0.080	0.080	0.080	0. 080	0. 320	SS400
		qVT)		Member tor Site Circumference Welding	PL t=14mm	"	0.012	0.012	0.012	0. 012	0.048	SS400
		əd		(Backing Ring •	PL t=16mm	"	Ι	Ι	Ι	I	Ι	SS400
		id.	Weight of Attachments	Sling	PL t=22mm	"	0.052	0.052	0.052	0. 052	0. 208	SM490A
uoi		٩٩		Interlocking Toe	PL t=12mm	Pi ece	2	2	2	2	8	SS400
16b				Combined Splice Pipe		Point	2	2	2	2	8	STK400
uno				Precut		=	2	2	2	2	8	
- F					t=14mm	t	19.224	18.406	14.929	16.361	68.920	SKY400
!d	Steel Pipe		Weight of	φ1200	t=14mm	"	9.407	I	I	9.407	18.814	SKY490
təəi	Sheet Pile	(Section		t=16mm	"	1	13.543	13. 543	1	27.086	SKY490
45 €		٥•٤		φ165.2	t=11mm	"	5.676	6.020	5. 308	5.108	22.112	STK400
əd i q]əd (Tip Reinforcing Band	PL t= 9mm	t	0.080	0.080	0.080	0. 080	0.320	SS400
əa		1)		Member Tor Site Circumference Welding	PL t=14mm	"	0.012	0.012	0.012	0. 012	0.048	SS400
918		ədic		(Backing Ring •	PL t=16mm	"	Ι	Ι	Ι	Ι	Ι	SS400
		er I	Attachments	Sling	PL t=22mm	"	0.052	0.052	0.052	0. 052	0. 208	SM490A
		d		Interlocking Toe	PL t=12mm	P i ece	2	2	2	2	8	SS400
				Combined Splice Pipe		Point	2	2	2	2	8	STK400
				Precut		"	2	2	2	2	8	
					t=14mm	t	19.224	18.406	14.929	16.361	68.920	SKY400
			Weight of Steel Dine	φ1200	t=14mm	"	9.407	I	I	9.407	18.814	SKY490
			Section		t=16mm	"	Ι	13.543	13. 543		27.086	SKY490
		(Jə		φ165.2	t=11mm	"	8.514	9.030	7.962	7.662	33. 168	STK400
		dVT)		Tip Reinforcing Band	PL t= 9mm	ч	0.080	0.080	0.080	0. 080	0. 320	SS400
) əc		Member for Site Circumference Welding	PL t=14mm	"	0.012	0.012	0.012	0. 012	0.048	SS400
		liq		(Backing Ring •	PL t=16mm	"	Ι	Ι	Ι	Ι	Ι	SS400
		Per	Attachments	Sling	PL t=22mm	"	0.052	0.052	0.052	0. 052	0. 208	SM490A
				Interlocking Toe	PL t=12mm	P i ece	3	S	3	e	12	SS400
				Combined Splice Pipe		Point	3	3	3	3	12	STK400
				Precut		"	3	3	3	3	12	

Table 4.2.213 Quantities for Substructure (SPSP Foundation - 1)

Detailed Design Study on The Bago River Bridge Construction Project
e	:					:		Quanti	ties			
s	ltem			Glassification		Unit	P10Pier	P11Pier	P12Pier	P13Pier	Sum	Note
			Weight of	+1300	t=14mm	t	28.631	30. 267	26.790	25.768	111.456	SKY 400
			Steel Pipe	۵0021 mb	t=14mm	"	1	1	Ι	1	I	SKY490
		(!	Section	φ165.2	t=11mm	"	5.676	6. 020	5.308	5. 108	22.112	STK400
		9əd/		Tip Reinforcing Band	PL t= 9mm	t	0.080	0. 080	0. 080	0.080	0. 320	SS400
		(1)		Circumference Welding	PL t=14mm	"	0.012	0.012	0.012	0.012	0. 048	SS400
		ədio		(Backing Ring •	PL t=16mm	"	Ι	I	Ι	I	I	SS400
		sı b	Attachments	Sling	PL t=22mm	"	0. 052	0. 052	0.052	0. 052	0. 208	SM490A
		Ы		Interlocking Toe	PL t=12mm	Piece	2	2	2	2	8	S\$400
				Combined Splice Pipe		Point	2	2	2	2	8	STK400
				Precut		"	2	2	2	2	8	
			Weight of		t=14mm	t	28.631	30. 267	26.790	25.768	111.456	SKY400
			Steel Pipe	φ 1 200	t=14mm	"	Ι	Ι	Ι	Ι	Ι	SKY490
		(Section	φ165.2	t=11mm	"	5.678	6. 020	5.310	5. 108	22. 116	STK400
		l9q\		Tip Reinforcing Band	PL t = 9mm	t	0. 080	0. 080	0.080	0.080	0. 320	SS400
		(1)		Circumference Welding	PL t=14mm	"	0.012	0.012	0.012	0.012	0. 048	S\$400
	Steel Pipe Sheet Pile	ədio		(Backing Ring •	PL t=16mm	"	Ι	Ι	Ι	Ι	Ι	SS400
		er b	Attachments	Sling	PL t=22mm	"	0. 052	0.052	0.052	0.052	0. 208	SM490A
		Ы		Interlocking Toe	PL t=12mm	Piece	2	2	2	2	8	SS400
				Combined Splice Pipe		Point	2	2	2	2	8	STK400
				Precut		"	2	2	2	2	8	
					t=14mm	ц.	921.112	978.376	811.480	795.140	3, 506. 108	SKY400
			Veight of	φ1200	t=14mm	"	338.652	I	I	338. 652	677. 304	SKY490
			Section		t=16mm	"	I	541.720	541.720	I	1, 083. 440	SKY490
		ŗ		φ165.2	t=11mm	"	255.428	294.940	260.100	229.860	1, 040. 328	STK400
		əqui		Tip Reinforcing Band	PL t = 9mm	t	3.520	3.840	3.840	3. 520	14.720	SS400
		ו אי		Circumference Welding	PL t=14mm	"	0. 528	0.576	0.576	0. 528	2. 208	SS400
		вto		(Backing Ring •	PL t=16mm	"	Ι	I	Ι	Ι	Ι	SS400
		1	Attachments	Sling	PL t=22mm	"	2. 288	2.496	2.496	2. 288	9. 568	SM490A
				Interlocking Toe	PL t=12mm	Pi ece	6	98	98	60	376	SS400
				Combined Splice Pipe		Point	6	98	98	66	376	STK400
				Precut		"	06	98	98	06	376	

Table 4.2.214 Quantities for Substructure (SPSP Foundation - 2)

Source: JICA Study Team

Type							Quant	ities			
of Works	Item		Classification		Unit	P10Pier	P11Pier	P12Pier	P13Pier	Sum	Note
	Excavation				m3	511.0	619.3	504.0	369.7	2, 004. 0	
	inside	Pile Head			m3	90.0	92.2	69.1	58.6	309.9	
	Concrete	Infilling Concrete	σ ck=18N/m	m2	m3	338.7	470.5	470.5	338.7	1, 618.4	Correction factor = 0.04
	Filling	Pile Head			m3	12.7	13.6	13.6	12. 7	52.6	
	Cleaning inside Joint Pipe				E	2, 643. 8	3, 037. 5	2, 496. 1	2, 181. 6	10, 359.0	
	Mortar	ر سس/ MLO-10 م	Injected Length of S	plice Mortar	Е	2, 439. 0	2, 856. 7	2,440.2	2, 133. 0	9, 868. 9	Used Mortar = $2.5 \text{m}3/100 \text{m}$
	inside		Used Amount of Spl	ice Mortar	m3	64.1	75.0	64.1	56.0	259.2	Correction factor = 0.05
	Sealing		ength of Splice Water	Stop Materia	Е	493.2	548.0	548.0	493. 2	2, 082. 4	
	inside	σ ck=0. 2N/mm2	1 Amount of Splice Wat	ter Stop Mater	m3	14. 0	15.6	15.6	14. 0	59.2	
	Joint Pipe		Water Stop	Bag	Е	986.4	1, 096. 0	1, 096. 0	986.4	4, 164. 8	
	Excavation inside Well				m3	2, 031. 7	2, 556. 5	1, 992. 9	1, 386. 6	7, 967.7	
	Backfill Inside Well				m3	731.6	744. 3	229.9	173.7	1, 879. 5	
uc	Surplus Soil				m3	1, 300. 1	1, 812. 2	1, 763.0	1, 212. 9	6, 088. 2	
biteb	Footing Concrete		σ ck=24N/mm2		m3	743.6	1, 105. 0	1, 105.0	743.6	3, 697.2	Correction factor = 0.09
unoj	Bottom Slab Concrete		σ ck=21N/mm2		m3	385.6	577.7	577.7	385.6	1, 926.6	
9 i	Spread Sand				m3	88. 5	106.0	106.0	88. 5	389.0	
d l	Pile Head	Shear Connector	PL-32 × 16 × 3	3597	k g	231	231	231	231	924	
əəų	Combination	Stopper	PL-25 × 9 ×	50	=	4	4	4	4	16	
S 9q				D 13	kg	475	467	467	475	1, 884	
ŀd	Pile Head	Waight	CD 3 AF	D16 ~ D25	k ø	1, 393	I	Ι	1, 393	2, 786	
ləəj	Re-bar	שמוצוור	0.4000	D29 ~ D32	"	Ι	1,860	1, 860	Ι	3, 720	
S				Total	"	1, 868	2, 327	2, 327	1, 868	8, 390	
				D 13	k ø	Ι	I	I	Ι	I	
				D16 ~ D25	"	8, 533	11,096	11, 096	8, 533	39, 258	
				D29 ~ D32	=	8, 672	I	Ι	8, 672	17, 344	
		Weight	SD345	D 35	"	14, 264	I	Ι	14, 264	28, 528	
				D 38	"	Ι	31, 452	31, 452	Ι	62, 904	
	Ke-bar tor Top Slab			D 51	"	53, 833	84, 529	84, 529	53, 833	276, 724	
	_			Total	"	85, 302	127, 077	127, 077	85, 302	424, 758	
				D 35	Point	110	Ι	-	110	220	
		Machanical Sulica	CD3A6	D 38	"	Ι	174	174	Ι	348	
				D 51	=	214	322	322	214	1, 072	
				Total	"	324	496	496	324	1, 640	
	Connector	Block NL	umber of Welding of Do	wel	Stage	1, 080	1, 520	1, 520	1, 080	5, 200	
	Dowel)	Mass	s of Welding of Dowel		kg	10, 512	14, 406	14, 406	10, 512	49, 836	
	SPSP Cut		φ1200		Nos.	44	48	48	44	184	

Table 4.2.215 Quantities for Substructure (SPSP Foundation - 3)

Source: JICA Study Team