3.6 STAR CITY INTERSECTION

3.6.1 Background of intersection plan and Additional F / S plan, Thilawa Access road plan

3.6.1.1 Background of intersection plan

Adjacent to Thanlyin Side of Bago Bridge, there are 3 major housing development projects, Thiri Han Thar Housing.

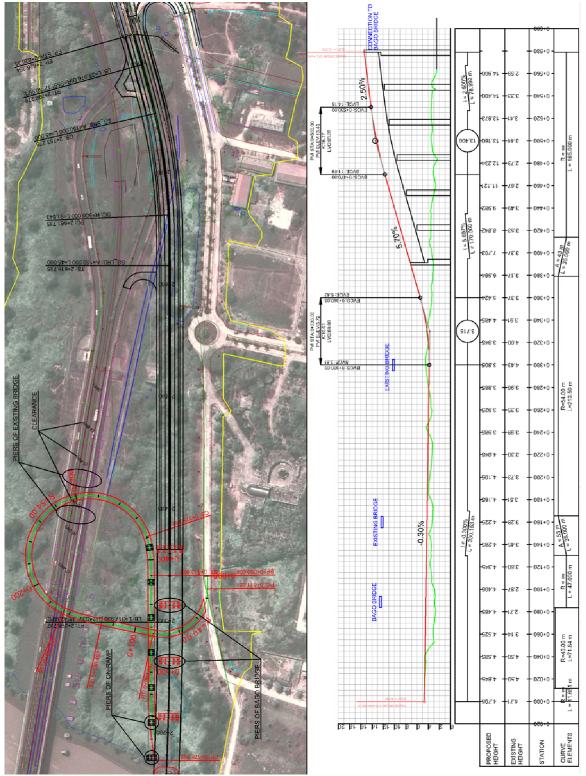
Project with 70 houses, Thanlyin Yadanar Housing Project with 350 houses and Star City Project with 9000 houses (4000 houses will be completed by 2022)

In addition to logistic traffic from Thilawa Port and Thilawa SEZ, the corresponding person trips are expected to be added to the traffic volume along Bago Bridge.

In the following sub-sections, the situations of traffic at this intersection after completion of Bago Bridge is shown.

Source: The Supplemental Survey for the Project for Construction of Bago River Bridge Figure 3.6.1 Housing Development Projects adjacent to Thanlyin Side of Bago Bridge

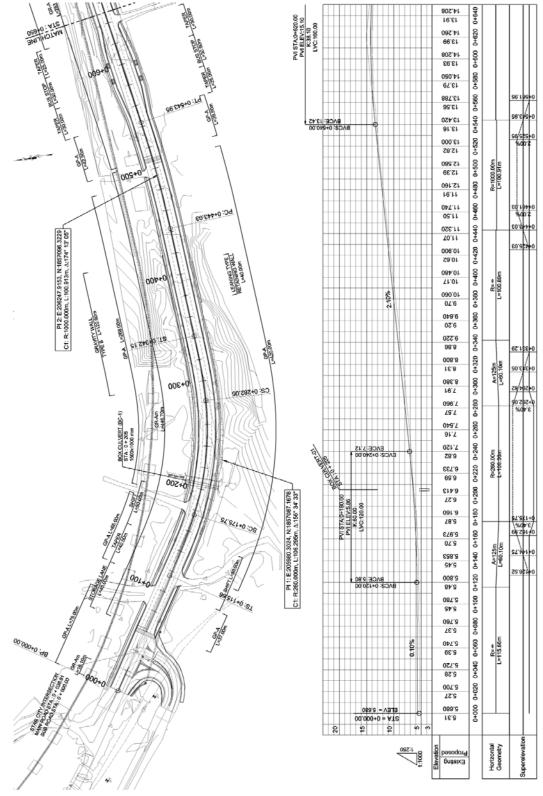
The following Figure 3.6.2 shows the intersection adjacent to the starting point of Bago Bridge.



Source: The Supplemental Survey for the Project for Construction of Bago River Bridge Figure 3.6.2 Intersection adjacent to the starting point of Bago Bridge

3.6.1.2 Additional F / S plan and Thilawa Access road plan

(1) Additional F / S plan


The plan for the additional F / S is the plan shown in Figure 3.6.3, which is consistent with the intersection plan planned in the Thilawa Access Road shown in Figure 3.6.4.

Source: The Supplemental Survey for the Project for Construction of Bago River Bridge Figure 3.6.3 Additional F / S plan

(2) Thilawa Access road plan

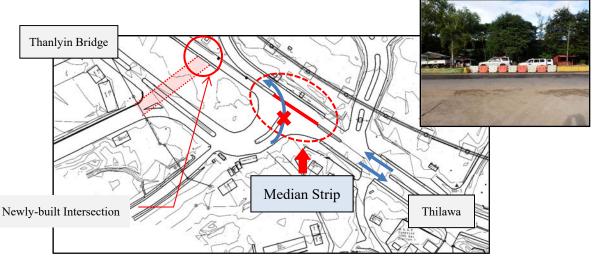
The plan of the Tillaway Access Road is the plan of Figure 3.6.4.

Source: INFRASTRUCTURE DEVELOPMENT PROJECT IN THILAWA AREA PHASE II Figure 3.6.4 Thilawa Access road plan

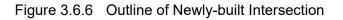
3.6.2 Proposed Solution on Newly-built Intersection

3.6.2.1 Propose of study

Around June 2016, since the Block was set up in the middle part of the main line of the T-junction road from the Thilawa Access Road, the car going from Star City to Thanlyin Bridge cannot enter the main line directly by turning left, 1 km after turning right and U-turn at the SEZ side There was inconvenience / dissatisfaction caused by going to Thanlyin Bridge.

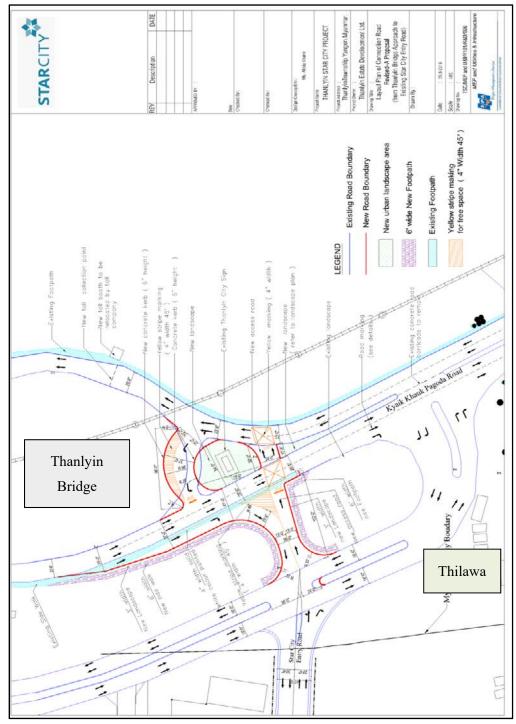

Therefore, Star City began constructing an access road to the main line in order to improve convenience. There was no plan to install traffic lights at the connection, and removal of high steel columns started and steadily proceeded with construction.

The intersection plan at the Star City side is a temporary connection to the last, and if the T-junction of the Thilawa Access Road is converted to a signal junction, the connecting road will be closed.



Source: Google

Figure 3.6.5 Location of Newly-built Intersection



Source: Google

3.6.2.2 Intersection on the Star City side Overview of the project

- Project Name: Thanlyin Star City Project
- Project Owner: Thanlyin Estate Development Ltd.
- Approved by: Yangon Divisional Gov. (Prime Minister of YDG)
- Designed by: Star City

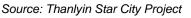
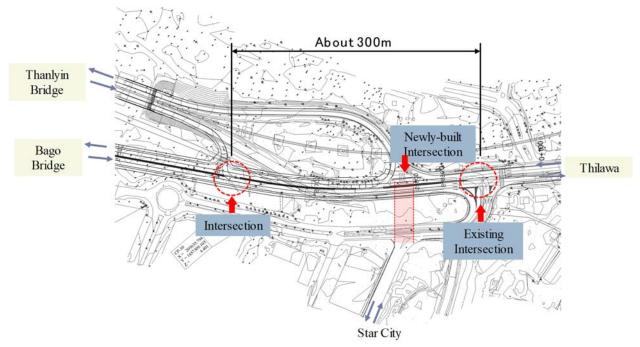
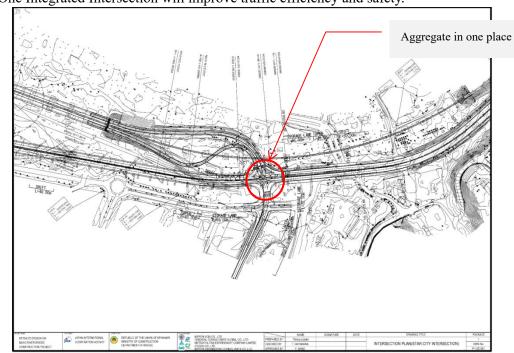


Figure 3.6.7 Intersection on the Star City side Overview of the project


Table 3.6.1 Photos of Under Construction

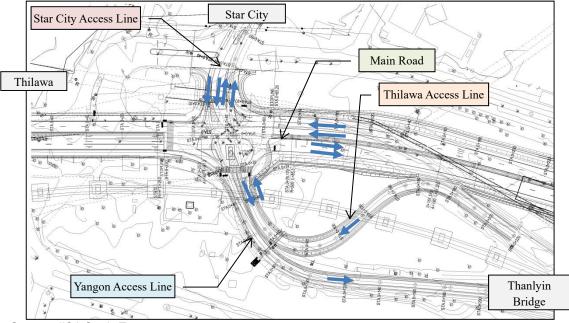
3.6.2.3 Problems of Newly-built Intersection


- Too Close to Existing Intersection and Planned Intersections.
- Conflict with Traffic from/to Thilawa and Bago Bridge.

Source: JICA Study Team

Figure 3.6.8 Problems of Newly-built Intersection

3.6.2.4 Proposed Solution



- One Integrated Intersection will improve traffic efficiency and safety.

3.6.3 Design Conditions

The name of each route is shown in Figure 3.6.10

Source: JICA Study Team

Figure 3.6.10 Name of each route

3.6.3.1 Design Criteria for the Main Road at intersection

Geometric design criteria for the main road design at intersection (STA.0 to STA.0 + 177) are shown in Table 3.6.3, which was prepared based on the ASEAN Highway Standards and Japanese Road Design Criteria.

 Table 3.6.3
 Geometric Design Criteria for the Main Road Design at intersection

I		Criteria		Adopted	D 1.
Item	Desirable	Standard	Absolute	Value	Remark
Design Speed		60 km/h		60 km/h	
Min. Horizontal Curve Radius (m)	200	150	120	500	
Min. Horizontal Curve length (m)		700/ø	100	187.743	
Min. Transition Curve Length (m)		50		51.200	
Min. Radius without Transition Curve (m)		1000	500	-	
Min. Radius without Superelevation (m)		2000		-	Straight section:2%
Max. Grade (%)		5.0	7.0	0.1	
Min. Vertical Curve Length (m)		50		240	
Min. K value (Crest)	20	14		-	
Min. K value (Sag)	15	10		92	
Max. Superelevation (%)		6.0		6.0	
Superelevation to Horizontal		6.0		-	R=270-330m
Curve (%)		5.0		-	R=330-420m
		4.0		-	R=420-560m
		3.0		-	R=560-800m
		2.0		-	R=800-2000m

Max. Ratio for Superelevation Development	1/125	1/125	
Stopping Sight Distance (m)	75	>75	

3.6.3.2 Design Criteria for the Yangon / Thilawa Access Line

Geometric design criteria for the Yangon / Thilawa Access Line design are shown in Table 3.6.4, which was prepared based on the ASEAN Highway Standards and Japanese Road Design Criteria.

As for the vicinity of the intersection, we decided to plan down at a design speed of 30 km / h by lowering the design speed by 10 to 20 km / h, since it is a linear form avoiding the piers of Myanmar Railway.

 Table 3.6.4
 Geometric Design Criteria for the Yangon / Thilawa Access Line

		Criteria		Adopted Value		
Item	Desirable	Standard	Absolute	*		Remark
				Yangon	Thilawa	
Design Speed		30 km/h		30 k	m/h	
Min. Horizontal Curve Radius (m)	65	30		45	30	
Min. Horizontal Curve length (m)		350/ø	50	52	73	
Min. Transition Curve Length (m)		25		36	30	
Min. Radius without Transition Curve (m)			130	-	-	
Min. Radius without Superelevation (m)		350		-	-	Straight section:1.5%
Max. Grade (%)		8.0		2.65	3.40	
Min. Vertical Curve Length (m)		25		25	25	
Min. K value (Crest)	4	2.5		-	-	
Min. K value (Sag)	4	2.5		10.73	9.69	
Max. Superelevation (%)		6.0		2.0	6.0	
Superelevation to Horizontal		6.0		-	-	R=60-80m
Curve (%)		5.0		-	-	R=80-110m
		4.0		-	-	R=110-150m
		3.0		-	-	R=150-220m
		2.0		-	-	R=220-500m
		1.5		-	-	R=350m
Max. Ratio for Superelevation Development		1/75		1/326	1/214	
Stopping Sight Distance (m)		30		>30	>30	

Source: JICA Study Team

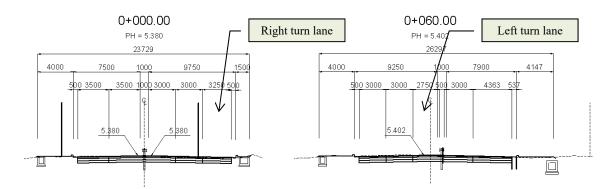
3.6.3.3 Design Criteria for the Star City Access Line

Geometric design criteria for the Star City Access Line design are shown in Table 3.6.5, which was prepared based on the ASEAN Highway Standards and Japanese Road Design Criteria.

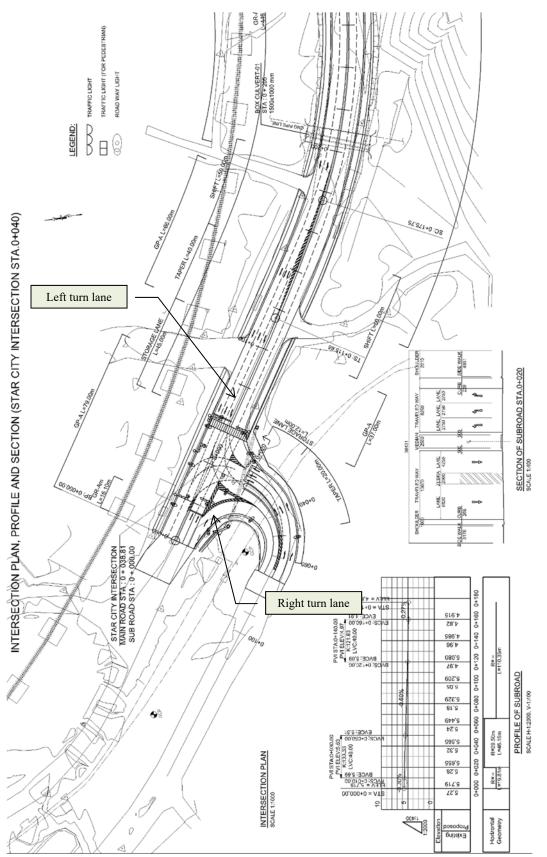
For the vicinity of the intersection, we decided to design the plan at a design speed of 40 km / h by lowering the design speed by 10 km / h.

Iterat		Criteria		Adopted	Demaile
Item	Desirable	Standard	Absolute	Value	Remark
Design Speed		40 km/h		40 km/h	
Min. Horizontal Curve Radius (m)	100	60	50	55	
Min. Horizontal Curve length (m)		500/ø	70	39.249	Site constraint
Min. Transition Curve Length (m)		35		-	
Min. Radius without Transition Curve (m)		500	250	-	
Min. Radius without Superelevation (m)		800		-	Straight section:2.0%
Max. Grade (%)		7.0	10.0	2.48	
Min. Vertical Curve Length (m)		35		35	
Min. K value (Crest)	7	4.5		14.87	
Min. K value (Sag)	7	4.5		15.38	
Max. Superelevation (%)		6.0		6.0	
Superelevation to Horizontal		6.0		-	R=270-330m
Curve (%)		5.0		-	R=330-420m
		4.0		-	R=420-560m
		3.0		-	R=560-800m
		2.0		-	R=400-600m
		1.5		-	-
Max. Ratio for Superelevation Development		1/100		1/181	
Stopping Sight Distance (m)		40		>40	

Table 3.6.5 Geometric Design Criteria for the Star City Access Line


Source: JICA Study Team

3.6.3.4 Typical Cross Section


(1) Main Road

The width of the main line's right / left turn lane was planned based on the width of the already planned Thilawa Access Road.

- Right turn lane : 3.25m
- Left turn lane : 2.75m

Source: INFRASTRUCTURE DEVELOPMENT PROJECT IN THILAWA AREA PHASE II Figure 3.6.11 Cross Section of Thilawa Access road plan

Source: INFRASTRUCTURE DEVELOPMENT PROJECT IN THILAWA AREA PHASE II Figure 3.6.12 Intersection Plan of Thilawa Access road plan

(2) Yangon / Thilawa Access Line

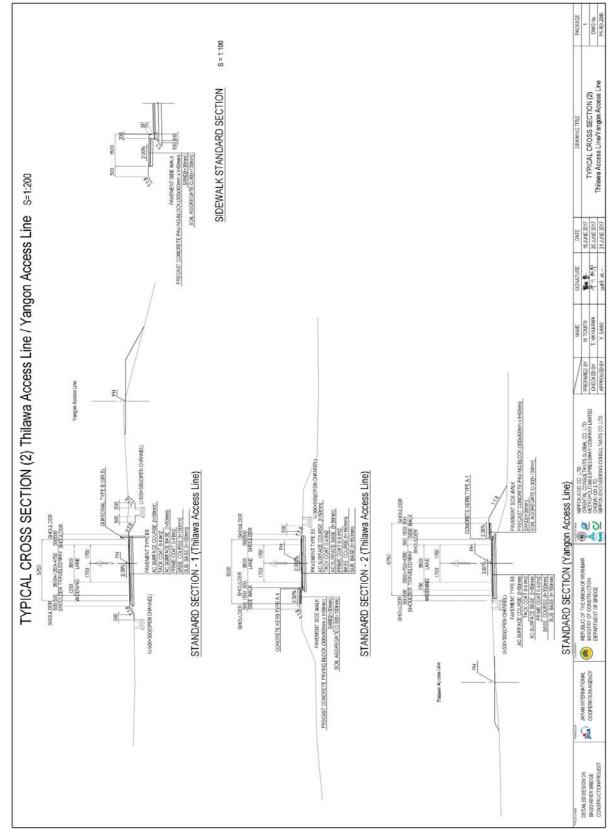
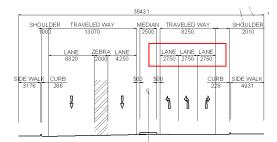

The lane width of the Yangon / Thilawa Access Line was planned with the same width as the Thanlyin Bridge, 0.5 m of road shoulder, 3.5 m of lane, 0.5 m of road shoulder and 1.5 m of sidewalk.

Figure 3.6.14 shows the standard section.

Source: JICA Study Team

Figure 3.6.13 Width of Thanlyin Bridge

Detailed Design Study on The Bago River Bridge Construction Project



(3) Star City Access Line

The lane width of the Star City Access Line was planned based on the width of the planned Thilawa Access Road.

- straight ahead, turn right, turn left lane: 2.75 m

Figure 3.6.16 shows the standard section of Star City Access Line.

Source: INFRASTRUCTURE DEVELOPMENT PROJECT IN THILAWA AREA PHASE II

Figure 3.6.15 Typical Cross Section of Thilawa Access road plan(Star City side)

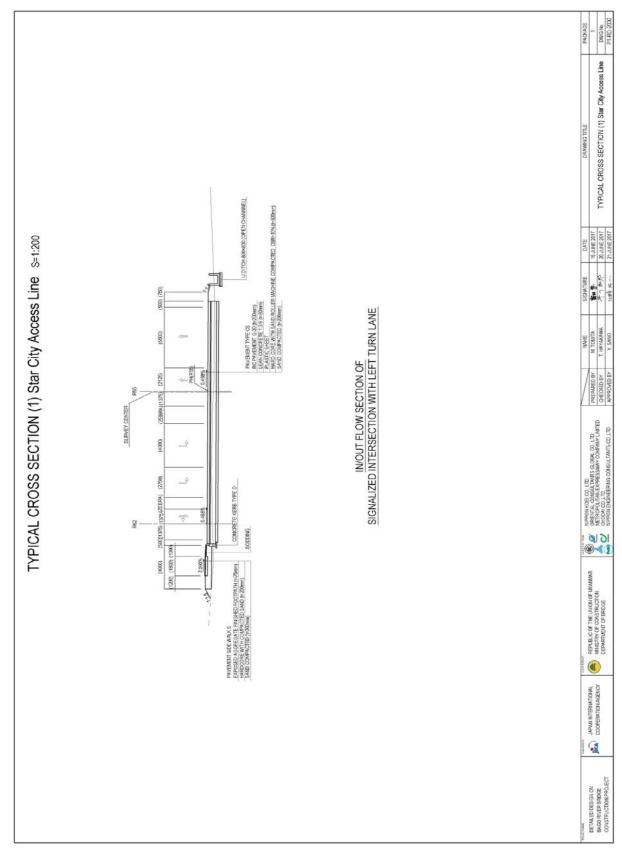
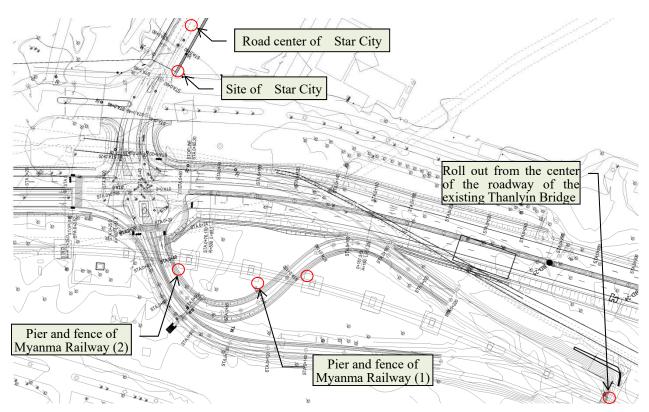
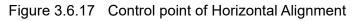


Figure 3.6.16 Typical Cross Section of Star City Access Line


3.6.4 Alignment of the Intersection


3.6.4.1 Horizontal Alignment

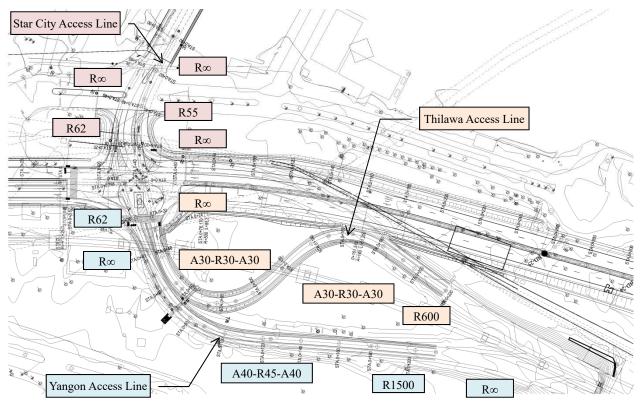

Horizontal alignment of the Intersection was determined taking into account the following conditions.

 Table 3.6.6
 Control point of Horizontal Alignment

Cont	rol Point
Roll out from the center of the roadway of the existing Thanlyin Bridge	
Pier and fence of Myanma Railway (1)	
Pier and fence of Myanma Railway (2)	
Road center of Star City	

(1) Horizontal alignment of Yangon Access Line

STA	POSITION	EAST	NORTH	ELEV.
BC 1	0+000.000	205761.768	1857238.539	5.168
KE 1-1	0+001.033	205762.185	1857239.484	5.032
No.1	0+020.000	205768.338	1857257.408	4.997
KA 2-1	0+037.628	205772.507	1857274.534	4.766
No.2	0+040.000	205773.034	1857276.847	4.732
No.3	0+060.000	205776.338	1857296.551	5.089
KE 2-1	0+073.183	205775.782	1857309.691	5.044
No.4	0+080.000	205774.121	1857316.296	5.084
KE 2-2	0+088.695	205770.591	1857324.228	5.120
No.5	0+100.000	205763.964	1857333.361	5.133
No.6	0+120.000	205749.138	1857346.743	4.993
KA 3-1	0+124.251	205745.786	1857349.356	5.033
No.7	0+140.000	205733.398	1857359.082	5.140
No.8	0+160.000	205717.816	1857371.620	5.310
EC 3	0+176.829	205704.835	1857382.329	5.487
No.9	0+180.000	205702.400	1857384.361	5.545
No.10	0+200.000	205687.044	1857397.175	5.992
EP	0+210.781	205678.767	1857404.083	6.278

 Table 3.6.7
 Horizontal Alignment of Yangon Access Line (Survey)

Source: JICA Study Team

Table 3.6.8 Horizontal Alignment of Yangon Access Line (Plan)

No.	Position	North	East	Horizontal Curve Radius	Parameters	Horizontal Curve length	Tangential Direction Angle
1	-0+00.787842	1,857,237.118390	205,763.814216	-62.000000		4.296547	16-49-40.907
2	0+03.508705	1,857,241.270741	205,764.914630	0.000000		34.118843	12-51-26.932
3	0+37.627548	1,857,274.534108	205,772.506983	0.000000	40.000000	35.555556	12-51-26.932
4	0+73.183103	1,857,309.691405	205,775.782269	-45.000000		15.511997	350-13-19.601
5	0+88.695100	1,857,324.227545	205,770.590988	-45.000000	40.000000	35.555556	330-28-17.846
6	1+24.250656	1,857,349.356460	205,745.785733	1,500.000000		52.577967	307-50-10.515
7	1+76.828622	1,857,382.329225	205,704.835076	0.000000		33.952786	309-50-40.504
8	2+10.781409	1,857,404.083024	205,678.766629				309-50-40.504

		•		(5)
STA	POSITION	EAST	NORTH	ELEV.
BP	0+000.000	205752.986	1857244.676	5.099
No.1	0+020.000	205760.737	1857263.112	5.057
KA 1-1	0+025.800	205762.985	1857268.459	4.975
No.2	0+040.000	205767.994	1857281.738	4.811
KE 1-1	0+055.800	205769.798	1857297.334	4.776
No.3	0+060.000	205769.079	1857301.469	4.755
No.4	0+080.000	205758.397	1857317.940	4.586
KE 1-2	0+090.053	205749.591	1857322.689	4.021
No.5	0+100.000	205739.834	1857324.460	4.202
No.6	0+120.000	205719.975	1857322.501	4.357
KA 2-1	0+120.053	205719.923	1857322.492	4.363
No.7	0+140.000	205700.117	1857320.519	4.232
KE 2-1	0+150.053	205690.256	1857322.295	4.319
No.8	0+160.000	205681.532	1857326.980	5.174
KE 2-2	0+062.708	205679.468	1857328.732	5.306
No.9	0+180.000	205669.930	1857343.008	5.376
EC 3	0+192.708	205665.553	1857354.934	5.586
No.10	0+200.000	205663.204	1857361.837	5.551
EP	0+220.000	205656.333	1857380.618	6.225

(2) Horizontal alignment of Thilawa Access Line

Table 3.6.9	Horizontal Alignment of Thilawa Access Line	(Survey)

Source: JICA Study Team

Table 3.6.10 Horizontal Alignment of Thilawa Access Line (Plan)

No.	Position	North	East	Horizontal Curve Radius	Parameters	Horizontal Curve length	Tangential Direction Angle
1	0+00.000000	1,857,244.675512	205,752.986039	0.000000		25.800000	22-48-12.244
2	0+25.800000	1,857,268.458988	205,762.985353	0.000000	30.000000	30.000000	22-48-12.244
3	0+55.800000	1,857,297.334289	205,769.797584	-30.000000		34.252518	354-09-19.841
4	0+90.052518	1,857,322.689346	205,749.590770	-30.000000	30.000000	30.000000	288-44-16.875
5	1+20.052518	1,857,322.492113	205,719.923437	0.000000	30.000000	30.000000	260-05-24.472
6	1+50.052518	1,857,322.294880	205,690.256105	30.000000		12.655924	288-44-16.875
7	1+62.708442	1,857,328.731740	205,679.468250	30.000000	30.000000	30.000000	312-54-32.600
8	1+92.708442	1,857,354.933818	205,665.552768	-600.000000		27.291557	341-33-25.003
9	2+19.999999	1,857,380.618386	205,656.333024				338-57-02.856

(3) Horizontal aligrument of Star City Access Line

STA	POSITION	EAST	NORTH	ELEV.
BC 1	0+000.000	205754.765	1857243.426	5.083
No.1	0+020.000	205744.947	1857226.049	4.651
No.2	0+040.000	205731.541	1857211.262	4.732
KE 1-1	0+043.763	205728.669	1857208.831	4.748
No.3	0+060.000	205715.311	1857199.626	4.534
No.4	0+080.000	205697.670	1857190.213	4.537
KA 1-1	0+083.763	205694.298	1857188.543	4.540
No.5	0+100.000	205679.743	1857181.347	4.439
No.6	0+120.000	205661.814	1857172.483	4.416
No.7	0+140.000	205643.886	1857163.618	4.392
No.8	0+160.000	205625.958	1857154.754	4.443
EP	0+180.000	205608.030	1857145.890	4.401

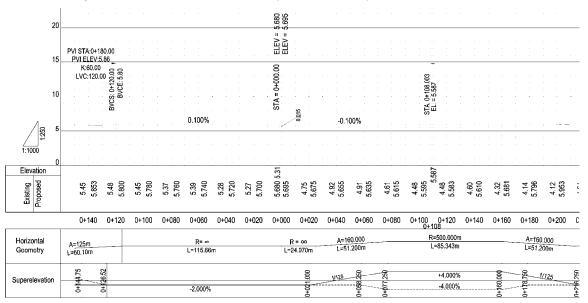
Table 3.6.11 Horizontal Alignment of Star City Access Line (Survey)

Source: JICA Study Team

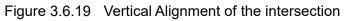
Table 3.6.12 Horizontal Alignment of Star City Access Line (Plan R55)

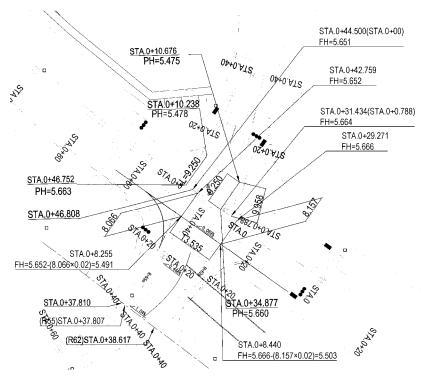
No.	Position	North	East	Horizontal Curve Radius	Parameters	Horizontal Curve length	Tangential Direction Angle
1	0+00.000000	1,857,244.675512	205,752.986039	0.000000		14.530066	202-48-12.244
2	0+14.530066	1,857,231.281114	205,747.354617	55.000000		39.249048	202-48-12.244
3	0+53.779114	1,857,203.294657	205,721.030274	0.000000		30.501544	243-41-26.741
4	0+84.280658	1,857,189.775893	205,693.688234				243-41-26.741

Source: JICA Study Team


Table 3.6.13	Horizontal Alignment	of Star City Access Line	(Plan R62)
--------------	----------------------	--------------------------	------------

No.	Position	North	East	Horizontal Curve Radius	Parameters	Horizontal Curve length	Tangential Direction Angle
1	0+00.000000	1,857,237.118390	205,763.814216	62.000000		50.710349	196-49-40.932
2	0+50.710349	1,857,199.489674	205,731.948558	0.000000		8.100885	243-41-26.744
3	0+58.811234	1,857,195.899235	205,724.686804				243-41-26.744


3.6.4.2 Vertical Alignment


Vertical alignment of the Intersection was determined taking into account the following conditions.

- Raise gradient from main road longitudinal
- Adjust to the height of the existing road
- Ensuring 5.0m of vertical clearance at Myanmar Railway

Source: JICA Study Team

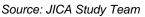
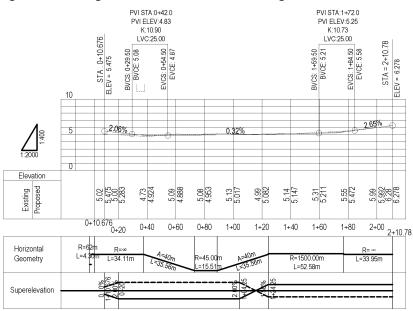
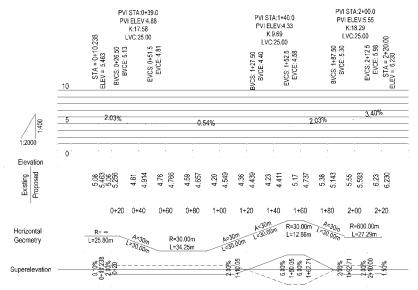



Figure 3.6.20 Raise gradient from main road longitudinal

(1) Vertical alignment of Yangon Access Line

The vertical alignment of Yangon Access Line is shown in Figure 3.6.21



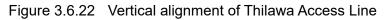
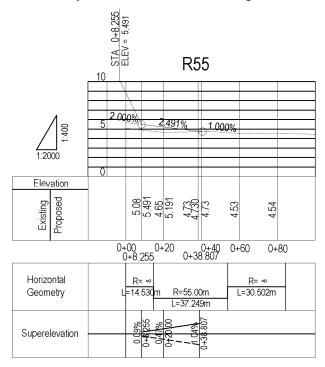
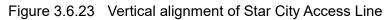

Source: JICA Study Team

Figure 3.6.21 Vertical alignment of Yangon Access Line

(2) Vertical alignment of Thilawa Access Line

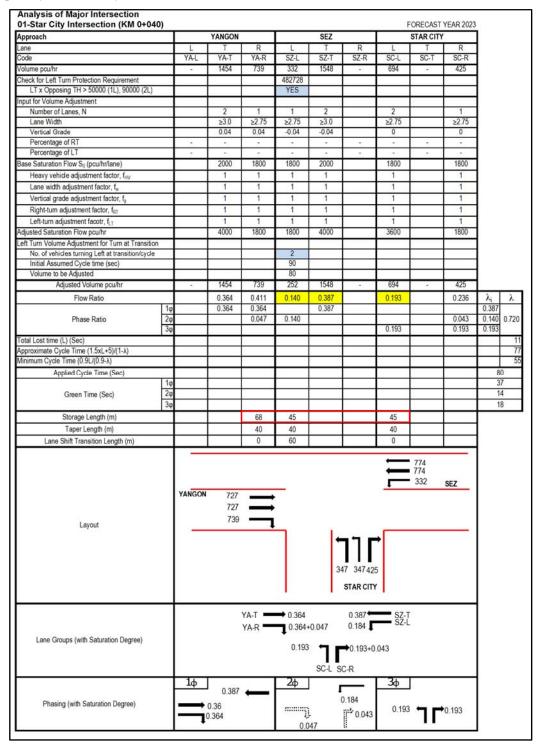

The vertical alignment of Thilawa Access Line is shown in Figure 3.6.22



(3) Vertical alignment of Star City Access Line

The vertical alignment of Star City Access Line is shown in Figure 3.6.23

Source: JICA Study Team



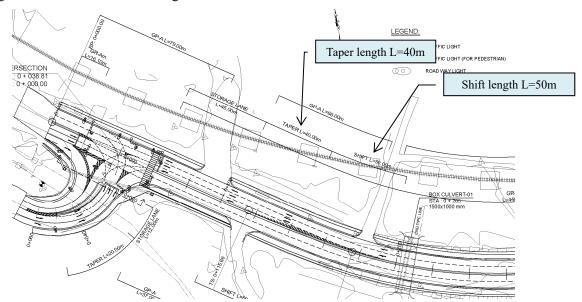
3.6.5 Storage length of Intersection

In order to plan consistency with the Thilawa Access Road, the storage length of the intersection conducted an intersection plan using the crossing analysis analyzed on the Thilaway Access Road.

Figure 3.6.24 shows the result of intersection analysis calculated by the Thilawa Access Road Plan.

The adoption year is 2023 years.

Source: INFRASTRUCTURE DEVELOPMENT PROJECT IN THILAWA AREA PHASE II


Figure 3.6.24 Major intersection analysis of Thilawa Access Road Plan

3.6.6 Intersection Design

3.6.6.1 Taper length and Shift length

(1) Main Road

The taper length of the main road and the shift length of the main road were planned to secure the taper length L = 40 m and the shift length L = 50 m in order to match with the Thilawa Access Road.

Source: INFRASTRUCTURE DEVELOPMENT PROJECT IN THILAWA AREA PHASE II

Figure 3.6.25 Thilawa Access road plan

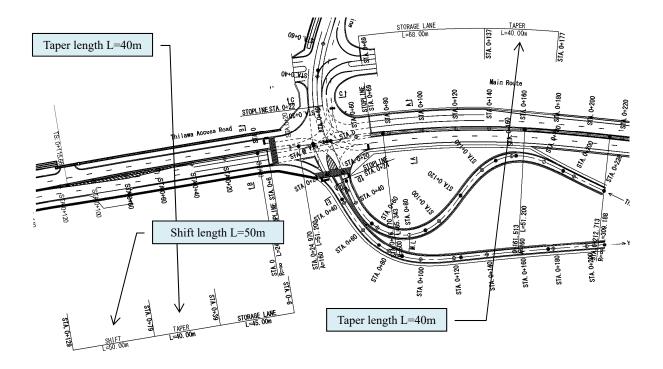
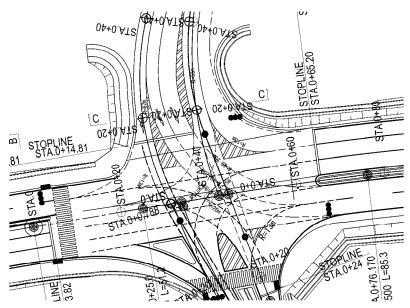


Figure 3.6.26 Intersection Plan


3.6.6.2 Channel

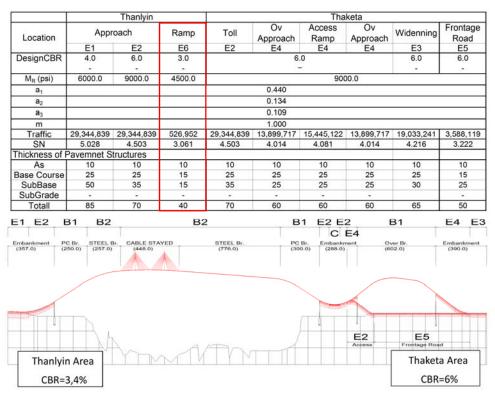
The channel planned for regular vehicle same as the Thilawa Access Road

Des Outer radiu	ign vehicle	regular vehicle
more	less	
than	than	
13	14	5. 5
14	15	
15	16	
16	17	5.0
17	19	
19	21	4.5
21	25	4.0
25	30	4.0
30	40	ч. 0
40	60	3, 5
60		0.0

Table 3.6.14Channel of regular vehicle

Source: Japan Standard

Source: JICA Study Team


Figure 3.6.27 Channel Plan

3.6.6.3 Pavement Design

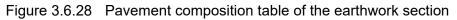

(1) Pavement Design of Yangon / Thilawa Access Line

Figure 3.6.29 shows the pavement composition table of the earthwork section.

When the Bago Bridge was constructed, there was hardly any traffic passing through the Thanlyin Bridge, so we planned with Type-E6 which is the minimum pavement thickness

Source: JICA Study Team

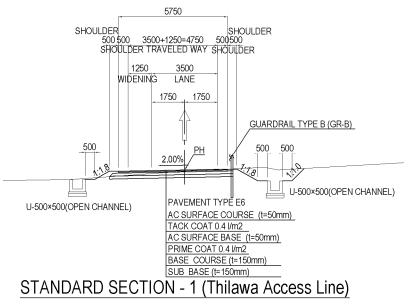
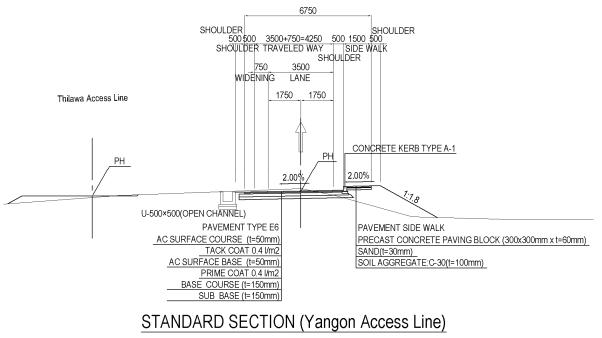
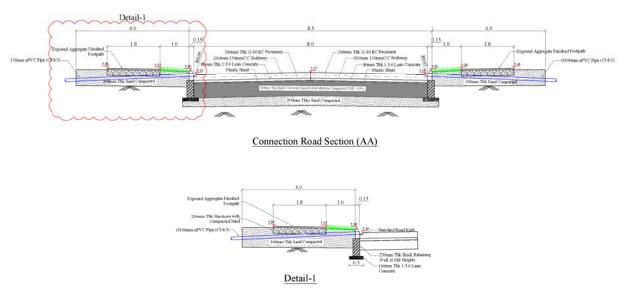



Figure 3.6.29 Pavement Design of Thilawa Access Line



(2) Pavement Design of Star City Access Line

The pavement of the Star City Access Line was planned similar to the pavement construction (RC pavement) constructed at the intersection project of Star City.

Sidewalk pavement is also the same.

Figure 3.6.32 shows the pavement constructed by the intersection project of Star City.

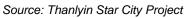
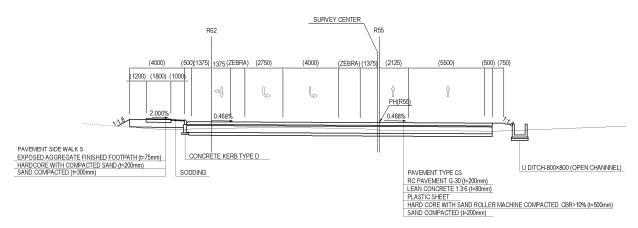



Figure 3.6.31 Intersection on the Star City side Overview of the project

(3) Classification of pavement

The division of pavement is shown in Figure 3.6.34 to Figure 3.6.36.

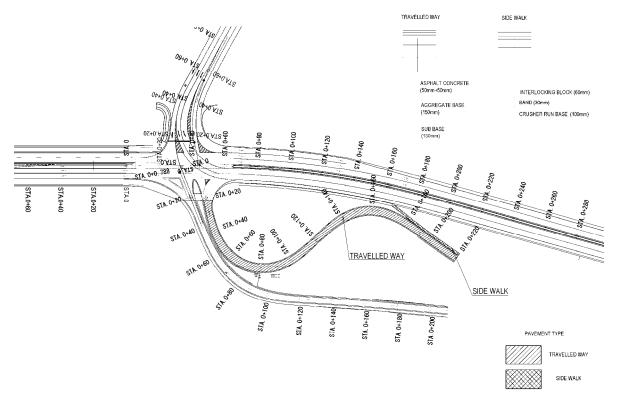
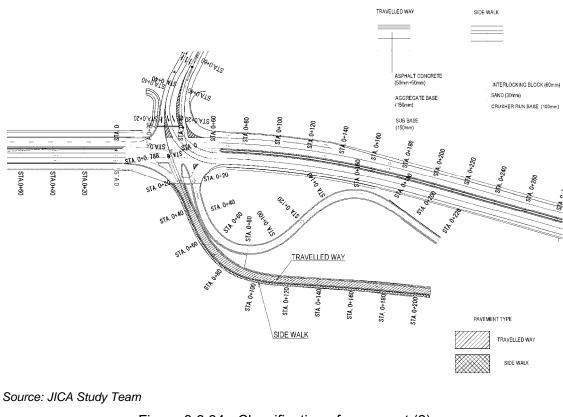
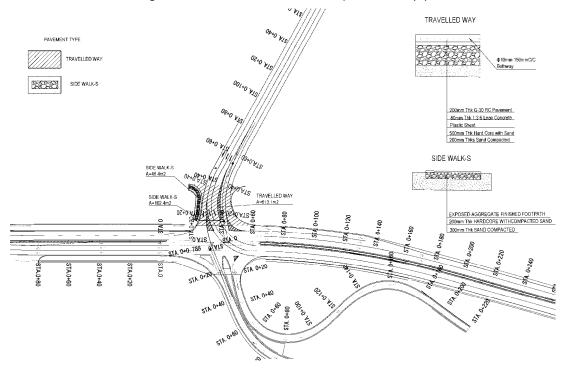




Figure 3.6.33 Classification of pavement (1)

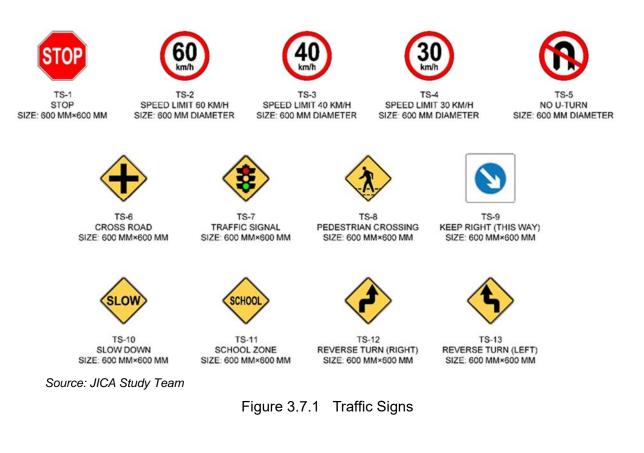
Final Report

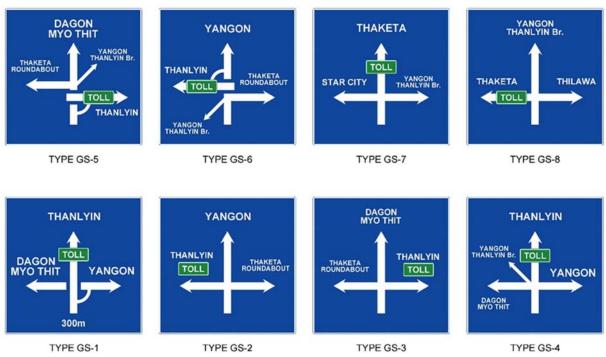
3.7 TRAFFIC SIGNS AND ROAD MARKINGS

3.7.1 Design Conditions

Traffic signs required for the Project consist of the following:

- Roadside traffic signs attached to the signboard post
- Informatory signboard to guide the road crossing layout ahead with each road's destination
- Road markings such as separation of traffic lanes, stop line, arrow marks, etc.


In addition to the above, as the Project has the toll plaza to collect the toll charge, it was considered necessary to provide drivers a signboard which will inform the toll facility ahead. Thus, the toll information was provided on informatory signboard and by road markings on the road surface.

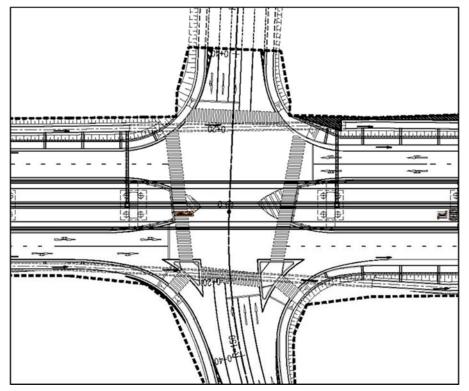

Further description of each type of traffic sign is given in the following subsections.

3.7.2 Traffic Signs

The Project will deploy traffic signs including warning signs, regulatory signs, and information signs as given in Figure 3.7.1.

In addition to the traffic signs, informatory signboards which will guide drivers on road destinations will be introduced as given in Figure 3.7.2. These signboards shall be installed at appropriate locations before the driver's entry into the major intersections.

Source: JICA Study Team

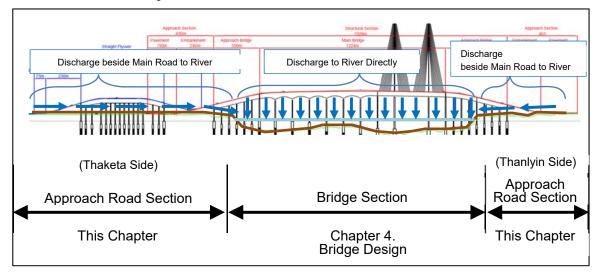

Figure 3.7.2 Informatory Signboards

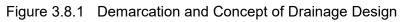
3.7.3 Road Marking

In order to establish traffic safety and secure smooth traffic flow, the following road markings, among others, will be deployed in the Project:

- Arrow mark
- Zebra zone
- Stop line
- Crosswalk lines
- Lane lines
- Holding lines
- Give way lines

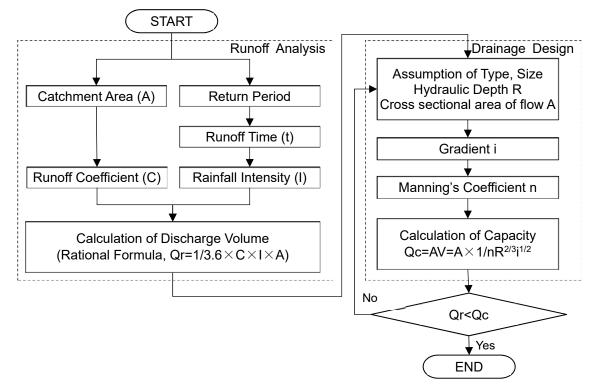
Figure 3.7.3, which is the plan drawing of Thanlyin Chin Kat Road - Yadanar Road Intersection, shows the example of road marking deployment in the Project.


Source: JICA Study Team


3.8 DRAINAGE DESIGN

3.8.1 General

Rainfall water inside the Project site will discharge to Bago River. Figure 3.8.1 shows the overall concept for drainage design. The rainfall water around approach road area will discharge through drainage structures along the Project road. In the bridge section on the river, the water will discharge directly to the river. This chapter will cover the drainage design of the approach road section only consisting of right and left river bank section and will exclude the bridge section on Bago River. Details for the drainage in bridge section will be mentioned in Chapter 4.


Source: JICA Study Team

3.8.2 Flow of Hydrological Analysis and Drainage Design

The drainage design consists of the following three components:

- i) Hydrological analysis (flood return period, runoff time and rainfall intensity)
- ii) Discharge volume estimation by Rational Formula from catchment area and runoff coefficient
- iii) Discharge capacity checking by Manning's formula as illustrated in the following drainage design flow diagram

3.8.3 Return Period and Rainfall Intensity

The flood return period (flood frequency) used to design drainage structures is determined by the type, size, location, and importance of the structure. The JICA Study Team adopted the following return periods for the design of the drainage structures of the Project.

 Table 3.8.1
 Return Period for Drainage Structure Design

Type of Drainage	Return Period	
Roadside Open Ditches	3 years	
Culverts (Pipe and Box Type)		

Source: JICA Study Team

In Section 2.4 (River and Hydrological Survey), the JICA Study Team estimated the following rainfall intensity curve with reference to Mononobe's equation in each runoff time. This curve, with three year return period, is applied to the drainage design of the Project as shown in following equation and Table 3.8.2.

 $I = R_{24} / 24 x (24/t)^m$

Where,

m = 2/3

I: Rainfall intensity (mm/hr)

R24: 24 hour rainfall

t: Runoff time (Rainfall duration) (min)

(Proł	n Period bability)	Dairy Rainfall: R ₂₄ (mm/day)	Rainfall intensity each rainfall duration (mm/hr): It = $R_{24}/24^*(24/t)^m$, m=2/3											
	ar, %) a Ave	24 hour	24	12	8	6	3	2	1.5	1	0.75	0.5	0.333	0.167
Nac	алус	1,440 min.	1,440	720	480	360	180	120	90	60	45	30	20	10
2	50.0%	112.9	4.7	7.5	9.8	11.9	18.8	24.7	29.9	39.1	47.4	62.1	81.4	129.2
3	33.3%	130.1	5.4	8.6	11.3	13.7	21.7	28.4	34.4	45.1	54.6	71.6	93.8	148.9
5	20.0%	152.1	6.3	10.1	13.2	16.0	25.4	33.2	40.2	52.7	63.9	83.7	109.7	174.1
10	10.0%	184.3	7.7	12.2	16.0	19.4	30.7	40.3	48.8	63.9	77.4	101.4	132.9	211.0
20	5.0%	220.4	9.2	14.6	19.1	23.1	36.7	48.1	58.3	76.4	92.6	121.3	158.9	252.3
25	4.0%	233.0	9.7	15.4	20.2	24.5	38.8	50.9	61.6	80.8	97.9	128.2	168.0	266.7
30	3.33%	243.7	10.2	16.1	21.1	25.6	40.6	53.2	64.5	84.5	102.3	134.1	175.7	279.0
50	2.0%	275.5	11.5	18.2	23.9	28.9	45.9	60.2	72.9	95.5	115.7	151.6	198.7	315.4
80	1.25%	307.3	12.8	20.3	26.6	32.3	51.2	67.1	81.3	106.5	129.1	169.1	221.6	351.8
100	1.0%	323.4	13.5	21.4	28.0	34.0	53.9	70.6	85.6	112.1	135.8	178.0	233.2	370.2
150	0.667%	354.1	14.8	23.4	30.7	37.2	59.0	77.3	93.7	122.8	148.7	194.9	255.4	405.3
200	0.5%	377.1	15.7	24.9	32.7	39.6	62.9	82.4	99.8	130.7	158.4	207.5	271.9	431.7
300	0.33%	411.4	17.1	27.2	35.7	43.2	68.6	89.8	108.8	142.6	172.8	226.4	296.7	470.9
400	0.25%	436.9	18.2	28.9	37.9	45.9	72.8	95.4	115.6	151.5	183.5	240.4	315.1	500.1
500	0.2%	457.5	19.1	30.3	39.7	48.0	76.3	99.9	121.0	158.6	192.1	251.8	329.9	523.7
		Calculation for	mula of Pr	ula of Probable rainfall = Generalized extreme value distribution					ution					

Table 3.8.2 Estimated Rainfall Intensity Curve

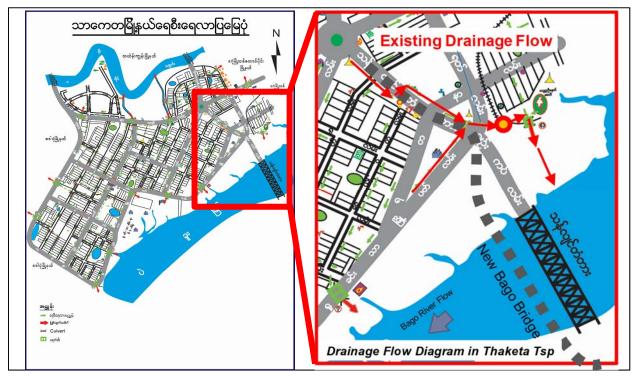
Source: JICA Study Team based on the data from DMH (See Section 2.4)

Because the calculated high water level of Bago River by the hydrological study in Section 2.4 considers the tidal effect which has dominant value, the design high water level for drainage design shall exclude the tidal effect and consider the case of mean tidal level with flood effect in three year return period rainfall.

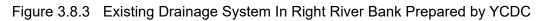
Table 3.8.3 shows the calculation result of design high water level for drainage design.

Table 3.8.3 Determined Design High Water Level for Drainage Design

No.	Category of Water Level	Water Level (m)*	Assumed Influencing Factors
I.	Probable High Water Level at Monkey Point in case of 3-year Return Period (Flooding Effect is included)	4.22	a) Highest Water Level during Spring Tide &b) Highest Increase due to Flooding Effect
II.	Highest Water Level in Ordinary Spring Tide with No Flooding Effect (Recorded on 2005/2/11 AM 6:00 at Bago River)	3.18	a) Highest Water Level during Spring Tide
III.	Determined Design High Water Level for Drainage Design (III = I - II)	1.04	b) Highest Increase due to Flooding Effect It means that This water level is the Highest Water Level during Mean Sea Level


Source: JICA Study Team (Prepared with reference to above Section 2.4 (River and Hydrological Survey))

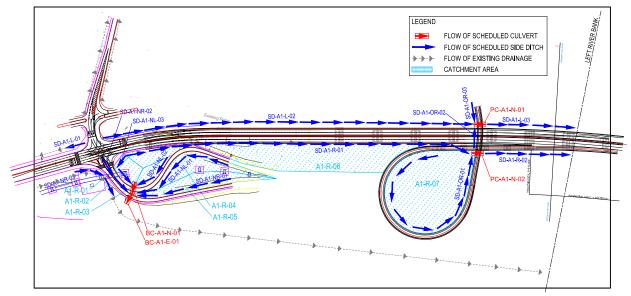
Note: * Water Level based on Mean Sea Level


3.8.4 Drainage System and Outlets

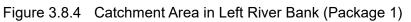
The JICA Study Team surveyed the existing drainage system by collecting related documents, conducting site inspection and topographic survey, and through interviews with engineers from YCDC and Thanlyin Township (YRDC). The existing drainage system in the right river bank is shown in Figure 3.8.3, as collected from YCDC. On the other hand, there is no data related to the existing drainage system in the left river bank authorized by Thanlyin Township, so the JICA Study Team determined the drainage flow. i.e., from and to where the drainage should discharge, based on joint site inspection with the engineers from

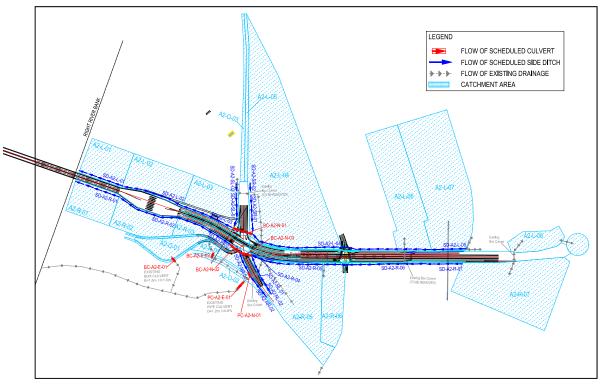
Thanlyin Township (YRDC).

Source: YCDC


Based on these survey and considerations, drainage system are simulated in the left and right river bank.

The drainage outlet in the right river bank is partly replaced to the new outlets because of insufficient capacity of the existing drainage outlet.


3.8.5 Catchment Area and Runoff (Discharge) Estimation


3.8.5.1 Catchment Area

The JICA Study Team estimated the catchment area for roadside drainage and culvert design using the existing drainage system obtained from YCDC with supplemental survey and data of topographic survey and joint site inspection with YCDC and Thanlyin Township. The estimated areas are shown in Figure 3.8.4, Figure 3.8.5, and Table 3.8.4.

Source: JICA Study Team

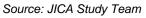


Figure 3.8.5 Catchment Area in Right River Bank (Package 2 and 3)

					· · ·
	Left River Ba	nk Side		Right River Ba	ank Side
No.	ID	Area (m ²)	No.	ID	Area (m ²)
1.	A1-R-01	1,254	1.	A2-L-01	8,384
2.	A1-R-02	956	2.	A2-L-02	10,722
3.	A1-R-03	827	3.	A2-L-03	9,613
4.	A1-R-04	2,558	4.	A2-L-04	116,343
5.	A1-R-05	2,508	5.	A2-L-05	5,079
6.	A1-R-06	8,267	6.	A2-L-06	42,161
7.	A1-R-07	10,269	7.	A2-L-07	67,980
			8.	A2-L-08	13,765
			9.	A2-R-01	15,479
			10.	A2-R-02	16,394
			11.	A2-R-03	6,507
			12.	A2-R-04	6,155
			13	A2-R-05	43,133
			14.	A2-R-06	17,946
			15.	A2-R-07	54,762
			16.	A2-O-01	9,179
			17.	A2-O-02	3,853
			18.	A2-O-03	4,865

Table 3.8.4 Catchment Area (Surrounding Area)

Source: JICA Study Team

Note: A1: Left River Bank Side, A2: Right River Bank Side

L: Left Side of Main Road, R: Right Side of Main Road, O: On-ramp Section

Table 3.8.5	Catchment Area	(Road Surface in Left River Bank Side)
-------------	----------------	--

ID of		Runoff fro	m Road Su	ırface		
Road Surface		Road		a.	Length	Area
Catchment	Road ID	Width	From	То		
Catchment		m	-	-	m	km2
SD-A1-L-01	Main Road	9.000	0+000	0+040	40	0.00036
SD-A1-L-02	Main Road	13.750	0+040	0+557	517	0.00711
SD-A1-L-03	Main Road	11.350	0+557	0+668	111	0.00126
SD-A1-R-01	Main Road	14.350	0+040	0+557	517	0.00742
SD-A1-R-02	-	-	-	-	-	0.00197
	Main Road	10.350	0+557	0+668	111	0.00115
	On-ramp	7.450	0+470	0+580	110	0.00082
SD-A1-NL-01	Main Road	6.900	0+110	0+200	90	0.00062
SD-A1-NL-02	Main Road	6.900	0+065	0+110	45	0.00031
SD-A1-NL-03	Main Road	6.900	0+010	0+065	55	0.00038
SD-A1-NR-01	Main Road	6.900	0+065	0+211	146	0.00101
SD-A1-NR-02	Main Road	6.900	0+005	0+065	60	0.00041
SD-A1-NR-03	-	-	-	-	-	0.00148
	Main Road	11.250	-0+080	0+020	100	0.00113
	Yangon Access Line	6.900	0+000	0+050	50	0.00035
SD-A1-OR-01	On-ramp	9.872	0+060	0+470	410	0.00405
SD-A1-OR-02	On-ramp	8.250	0+030	0+060	30	0.00025
SD-A1-OR-03	On-ramp	8.250	0+000	0+030	30	0.00025

Source: JICA Study Team

Note: A1: Left River Bank Side, A2: Right River Bank Side

L: Left Side of Main Road, R: Right Side of Main Road, OR: On-ramp Section

NL: Left Side of Yangon and Thanlyin Access Line, NR: Right Side of Yangon and Thanlyin Access Line

ID of	Runoff from Road Surface					
ID of Road Surface		Road	St	ta.	Length	Area
Catchment	Road ID	Width	From	То		
Catchinent		m	-	-	m	km2
SD-A2-L-01	Main Road	10.350	2+250	2+400	150	0.00155
SD-A2-L-02	Main Road	21.900	2+400	2+600	200	0.00438
SD-A2-L-03	Main Road	13.462	2+600	2+860	260	0.00350
SD-A2-L-04	Main Road	13.708	2+860	3+340	480	0.00658
SD-A2-L-05	-	-	-	-	-	0.01027
	Main Road	20.477	3+340	3+540	200	0.00410
	Thanlyin Chin Kat Road	18.700	-	-	330	0.00617
SD-A2-R-01	Main Road	10.350	2+250	2+400	150	0.00155
SD-A2-R-02	Main Road	43.100	2+400	2+600	200	0.00862
SD-A2-R-03	-	-	-	-	-	0.00649
	Main Road	22.288	2+600	2+860	260	0.00579
	Thanlyin Access Line	8.000	0+000	0+087	87	0.00070
SD-A2-R-04	Main Road	30.000	2+860	2+900	40	0.00120
SD-A2-R-05	Main Road	28.639	2+900	3+080	180	0.00516
SD-A2-R-06	Main Road	24.423	3+080	3+340	260	0.00635
SD-A2-R-07	Main Road	19.188	3+340	3+520	180	0.00345
SD-A2-NL-01	Shukhinthar Road (North)	9.300	0+220	0+300	80	0.00074
SD-A2-NL-02	Shukhinthar Road (North)	9.300	0+300	0+382	82	0.00076
SD-A2-NR-01	Shukhinthar Road (North)	9.300	0+220	0+300	80	0.00074
SD-A2-NR-02	Shukhinthar Road (North)	9.300	0+300	0+382	82	0.00076
SD-A2-SL-01	Shukhinthar Road (South)	17.800	0+040	0+170	130	0.00231
SD-A2-SL-02	Shukhinthar Road (South)	17.800	0+000	0+040	40	0.00071
SD-A2-SR-01	Shukhinthar Road (South)	17.800	0+040	0+170	130	0.00231
SD-A2-SR-02	Shukhinthar Road (South)	17.800	0+000	0+040	40	0.00071

 Table 3.8.6
 Catchment Area (Road Surface in Right River Bank Side)

Source: JICA Study Team Note: See Table 3.8.5

3.8.5.2 Runoff (Discharge Volume)

The runoff was estimated based on the following Rational Method:

$$Q=1/3.6 * C \times I \times A$$
 or $Q=1/(3.6*10^{6}) * C * I * a$

Where,

Q: Runoff (m^3/sec)

C: Rational coefficient

- I: Design rainfall intensity (mm/h)
- A: Catchment area (km²)

a: Catchment area (m²)

3.8.5.3 Runoff Time

Runoff Time (t) = Flow-in time (t1) + Flow-down time (t2)

- (If t < 10 minutes, use 10 minutes)
- i) Flow-in time
 - In case the length of inflow is equal or less than 370 m, the W.S. Kerby Method is applied as follows:

$$t_1 = 1.445 \left(\frac{N \cdot L}{\sqrt{S}}\right)^{0.467} \qquad L \leq 370 \,\mathrm{m}$$

In case the length of inflow is more than 370 m, the Kinematic Wave Method is applied as follows:

$$t_1 = 6.92 \left(\frac{n \cdot L}{\sqrt{s}} \right)^{0.6} i^{-0.4}$$

Where,

L: Length of inflow,

S: Slope

N: Roughness coefficient of W.S. Kerby

0.013:	For Asphalt & Concrete Surface	0.20:	Poor Grass, Cultivated Land
0.02:	Smooth Impervious Surfaces	0.40:	Dance Grass
0.10:	Compacted Soil Surface	0.60-0.80:	Forest
0.013:	For Asphalt & Concrete Surface	0.20:	Poor Grass, Cultivated Land

n: Manning's roughness coefficient

(n=0.013 for precast concrete products, 0.015 for cast in-place concrete)

ii) Flow-down Time (t_2)

 $t_2 = L/V$

Where,

L: Length of inflow in drainage facility

V: Average velocity (m/s)

3.8.5.4 Runoff Coefficient (C)

The runoff coefficients used in the above formula are as follows:

Table 3.8.7 Runoff Coefficients (C) by Land Use

	Land Use	Runoff Coefficient [*]	Applied for Design**
Road Surface	Paved area	0.70 - 0.95	0.90
Residential Area	Residential area with many gardens and vacant lots	0.30 - 0.50	0.50

Source: *Land Use and Runoff Coefficients from Earthworks Manual, Japan Road Association, 2009 ** Applied coefficient by the JICA Study Team for the design.

3.8.5.5 Result of Estimated Runoff (Discharge) for Open Ditches and Culverts

The catchment area and estimated runoff (discharge volume) of each side ditch and culvert are shown in the following tables.

		Estimated Runoff									
Location of			Runof	f Time	Coefficient	Rainfall	Estin				
Drainage		Area	Runon Time		Coefficient	Intensity	Intensity Runoff				
Structure	Catchment ID	Alca	Applied	t	С	Ι	Q				
Structure			Formula	t=t1+t2			Each	Total			
		km ²	Tonnula	min		mm/h	m ³ /sec	m ³ /sec			
SD-A1-L-01	SD-A1-L-01	0.00036	-	10.0	0.9	149	0.013	0.013			
SD-A1-L-02	SD-A1-L-02	0.00711	-	10.0	0.9	149	0.265	0.265			
SD-A1-L-03	SD-A1-L-02	0.00711	-	10.0	0.9	149	0.265	0.330			
	SD-A1-L-03	0.00126	-	10.0	0.9	149	0.047				
	SD-A1-OR-02	0.00025	-	10.0	0.9	149	0.009				
	SD-A1-OR-03	0.00025	-	10.0	0.9	149	0.009				
SD-A1-R-01	SD-A1-R-01	0.00742	-	10.0	0.9	149	0.276	0.387			
	A2-R-06	0.00800	Kerby	18.3	0.5	100	0.111				
SD-A1-R-02	SD-A1-R-01	0.00742	-	10.0	0.9	149	0.276	0.808			
	SD-A1-R-02	0.00197	-	10.0	0.9	149	0.073				
	SD-A1-OR-01	0.00405	-	10.0	0.9	149	0.151				
	A2-R-06	0.00800	Kerby	18.3	0.5	100	0.111				
	A2-R-07	0.01000	Kerby	10.7	0.5	142	0.197				
SD-A1-NL-01	SD-A1-NL-01	0.00062	-	10.0	0.9	149	0.023	0.085			
	A2-R-04	0.00300	Kerby	10.0	0.5	149	0.062				
SD-A1-NL-02	SD-A1-NL-02	0.00031	-	10.0	0.9	149	0.012	0.033			
	A2-R-03	0.00100	Kerby	10.0	0.5	149	0.021				
SD-A1-NL-03	SD-A1-NL-03	0.00038	-	10.0	0.9	149	0.014	0.032			
	A2-R-02	0.00100	Kerby	11.8	0.5	133	0.018				
SD-A1-NR-01	SD-A1-NL-01	0.00062	-	10.0	0.9	149	0.023	0.185			
	SD-A1-NR-01	0.00101	-	10.0	0.9	149	0.038				
	A2-R-04	0.00300	Kerby	10.0	0.5	149	0.062				
	A2-R-05	0.00300	Kerby	10.0	0.5	149	0.062				
SD-A1-NR-02	SD-A1-NR-02	0.00041	-	10.0	0.9	149	0.015	0.015			
SD-A1-NR-03	SD-A1-NR-03	0.00148	-	10.0	0.9	149	0.055	0.055			
SD-A1-OR-01	SD-A1-OR-01	0.00405	-	10.0	0.9	149	0.151	0.348			
	A2-R-07	0.01000	Kerby	10.7	0.5	142	0.197				
SD-A1-OR-02	SD-A1-OR-02	0.00025	-	10.0	0.9	149	0.009	0.009			
SD-A1-OR-03	SD-A1-OR-03	0.00025	-	10.0	0.9	149	0.009	0.009			

Table 3.8.8	Result of Estimated Runoff for Left River Bank Side (Package 1) (1/2)

Source: JICA Study Team

Note: SD=Side Ditch, PC=Pipe Culvert, BC=Box Culvert

A1= Left River Bank Side, A2=Right River Bank Side

L=Left Side of Main Road, R=Right Side of Main Road, OR=On-ramp Section

NL=Left Side of Yangon and Thanlyin Access Line (P1) / of Thanlyin Chin Kat Road (P2&3)

NR=Right Side of Yangon and Thanlyin Access Line (P1) / of Thanlyin Chin Kat Road (P2&3) N= New Culvert, E=Existing Culvert

				Estimated	Runoff			
Location of			Runoff Time C			Rainfall	ll Estimated	
Drainage		Area	Kulloi		Coefficient	Intensity	Rur	off
Structure	Catchment ID	Alca	Applied	t	С	Ι	Q	r
Structure			Formula	t=t1+t2			Each	Total
		km ²		min		mm/h	m ³ /sec	m ³ /sec
PC-A1-N-01	SD-A1-L-02	0.00711	-	10.0	0.9	149	0.265	0.283
	SD-A1-OR-02	0.00025	-	10.0	0.9	149	0.009	
	SD-A1-OR-03	0.00025	-	10.0	0.9	149	0.009	
PC-A1-N-02	SD-A1-R-01	0.00742	-	10.0	0.9	149	0.276	0.735
	SD-A1-OR-01	0.00405	-	10.0	0.9	149	0.151	
	A2-R-06	0.00800	Kerby	18.3	0.5	100	0.111	
	A2-R-07	0.01000	Kerby	10.7	0.5	142	0.197	
BC-A1-N-01	SD-A1-NL-02	0.00031	-	10.0	0.9	149	0.012	0.065
	SD-A1-NL-03	0.00038	-	10.0	0.9	149	0.014	
	A2-R-02	0.00100	Kerby	11.8	0.5	133	0.018	
	A2-R-03	0.00100	Kerby	10.0	0.5	149	0.021	
BC-A1-E-01	SD-A1-NL-01	0.00062	-	10.0	0.9	149	0.023	0.265
	SD-A1-NL-02	0.00031	-	10.0	0.9	149	0.012	
	SD-A1-NL-03	0.00038	-	10.0	0.9	149	0.014	
	SD-A1-NR-01	0.00101	-	10.0	0.9	149	0.038	
	SD-A1-NR-02	0.00041	-	10.0	0.9	149	0.015	
	A2-R-02	0.00100	Kerby	11.8	0.5	133	0.018	
	A2-R-03	0.00100	Kerby	10.0	0.5	149	0.021	
	A2-R-04	0.00300	Kerby	10.0	0.5	149	0.062	
	A2-R-05	0.00300	Kerby	10.0	0.5	149	0.062	

 Table 3.8.9
 Result of Estimated Runoff for Left River Bank Side (Package 1) (2/2)

Source: JICA Study Team Note: See Table 3.8.8.

SD-A2-L-01	Side Ditch A2-side Left No.1	SD-A2-L-01	0.00155		10.0	0.9	149	0.058	3.133
		SD-A2-L-02	0.00438	-	10.0	0.9	149	0.163	
		SD-A2-L-03	0.00350	-	10.0	0.9	149	0.130	
		SD-A2-L-04	0.00658	-	10.0	0.9	149	0.245	
		SD-A2-L-05	0.01027	-	10.0	0.9	149	0.383	
		SD-A2-SL-01	0.00231	-	10.0	0.9	149	0.086	
		SD-A2-SL-02	0.00071	-	10.0	0.9	149	0.026	
		SD-A2-SR-01	0.00231	-	10.0	0.9	149	0.086	
		SD-A2-SR-02	0.00071	-	10.0	0.9	149	0.026	
		A2-L-01	0.00800	Kerby	30.1	0.5	71	0.079	
		A2-L-02	0.01100	Kerby	31.7	0.5	69	0.105	
		A2-L-03	0.01000	Kerby	23.0	0.5	85	0.118	
		A2-L-04	0.11600	Kinematic wave	193.8	0.5	21	0.338	
		A2-L-05	0.00500	-	10.0	0.9	149	0.186	
		A2-L-06	0.04200	Kinematic wave	96.1	0.5	33	0.193	
		A2-L-07	0.06800	Kinematic wave	109.9	0.5	30	0.283	
		A2-L-08	0.01400	Kerby	24.3	0.5	82	0.159	
		A2-R-07	0.05500	Kinematic wave	82.3	0.5	37	0.283	
		A2-O-03	0.00500	-	10.0	0.9	149	0.186	
SD-A2-L-02	Side Ditch A2-side Left No.2	SD-A2-L-02	0.00438	-	10.0	0.9	149	0.163	2.996
		SD-A2-L-03	0.00350	-	10.0	0.9	149	0.130	
		SD-A2-L-04	0.00658	-	10.0	0.9	149	0.245	
		SD-A2-L-05	0.01027	-	10.0	0.9	149	0.383	
		SD-A2-SL-01	0.00231	-	10.0	0.9	149	0.086	
		SD-A2-SL-02	0.00071	-	10.0	0.9	149	0.026	
		SD-A2-SR-01	0.00231	-	10.0	0.9	149	0.086	
		SD-A2-SR-02	0.00071	-	10.0	0.9	149	0.026	
		A2-L-02	0.01100	Kerby	31.7	0.5	69	0.105	
		A2-L-03	0.01000	Kerby	23.0	0.5	85	0.118	
		A2-L-04	0.11600	Kinematic wave	193.8	0.5	21	0.338	
		A2-L-05	0.00500	-	10.0	0.9	149	0.186	
		A2-L-06	0.04200	Kinematic wave	96.1	0.5	33	0.193	
		A2-L-07	0.06800	Kinematic wave	109.9	0.5	30	0.283	
		A2-L-08	0.01400	Kerby	24.3	0.5	82	0.159	
		A2-R-07		Kinematic wave	82.3	0.5	37	0.283	
		A2-O-03	0.00500	-	10.0	0.9	149	0.186	

Table 3.8.10	Result of Estimated Runoff for	Right River Bank Side	(Package 2&3) (1/3)

Source: JICA Study Team, Note: See Table 3.8.8.

			5						
SD-A2-L-03	Side Ditch A2-side Left No.3	SD-A2-L-03	0.00350		10.0	0.9	149	0.130	2.728
		SD-A2-L-04	0.00658		10.0	0.9	149	0.245	
		SD-A2-L-05	0.01027		10.0	0.9	149	0.383	
		SD-A2-SL-01	0.00231		10.0	0.9	149	0.086	
		SD-A2-SL-02	0.00071	-	10.0	0.9	149	0.026	
		SD-A2-SR-01 SD-A2-SR-02	0.00231	-	10.0	0.9	149 149	0.086	
		A2-L-03	0.00071		23.0	0.9	85	0.020	
		A2-L-03 A2-L-04		Kinematic wave	193.8	0.5	21	0.338	
		A2-L-04 A2-L-05	0.00500		10.0	0.9	149	0.338	
		A2-L-05		- Kinematic wave	96.1	0.5	33	0.100	
		A2-L-07		Kinematic wave	109.9	0.5	30	0.283	
		A2-L-08	0.01400		24.3	0.5	82	0.159	
		A2-R-07		Kinematic wave	82.3	0.5	37	0.283	
		A2-O-03	0.00500		10.0	0.9	149	0.186	
SD-A2-L-04	Side Ditch A2-side Left No.4	SD-A2-L-04	0.00658		10.0	0.9	149	0.245	1.546
		SD-A2-L-05	0.01027		10.0	0.9	149	0.383	
		A2-L-06	0.04200	Kinematic wave	96.1	0.5	33	0.193	
		A2-L-07	0.06800	Kinematic wave	109.9	0.5	30	0.283	
		A2-L-08	0.01400	Kerby	24.3	0.5	82	0.159	
		A2-R-07		Kinematic wave	82.3	0.5	37	0.283	
SD-A2-L-05	Side Ditch A2-side Left No.5	SD-A2-L-05	0.01027		10.0	0.9	149	0.383	1.108
		A2-L-07		Kinematic wave	109.9	0.5	30	0.283	
		A2-L-08	0.01400		24.3	0.5	82	0.159	
		A2-R-07		Kinematic wave	82.3	0.5	37	0.283	
SD-A2-R-01	Side Ditch A2-side Right No.1	SD-A2-R-01	0.00155		10.0	0.9	149	0.058	2.244
		SD-A2-R-02	0.00862		10.0	0.9	149	0.321	
		SD-A2-R-03	0.00649		10.0	0.9	149	0.242	
		SD-A2-R-04	0.00120		10.0	0.9	149	0.045	
		SD-A2-R-05	0.00516		10.0	0.9	149	0.192	
		SD-A2-R-06	0.00635		10.0	0.9	149	0.237	
		SD-A2-R-07	0.00345		10.0	0.9	149	0.129	
		SD-A2-NL-01	0.00074		10.0	0.9	149	0.028	
		SD-A2-NL-02	0.00076		10.0	0.9	149	0.028	
		SD-A2-NR-01	0.00074		10.0	0.9	149	0.028	
		SD-A2-NR-02	0.00076		10.0	0.9	149	0.028	
		A2-R-01 A2-R-02			26.4 30.6	0.5	78	0.163	
		A2-R-02 A2-R-03	0.01600		24.0	0.5	83	0.158	
		A2-R-05	0.00700		41.3	0.5	58	0.081	
		A2-R-05 A2-R-06	0.04300		35.8	0.5	64	0.346	
SD-A2-R-02	Side Ditch A2-side Right No.2	SD-A2-R-02	0.01800		10.0	0.5	149	0.321	2.023
3D-Az-IX-02	Side Ditch Az-side Right No.2	SD-A2-R-02	0.00649		10.0	0.9	149	0.321	2.025
		SD-A2-R-04	0.00049		10.0	0.9	149	0.242	
		SD-A2-R-05	0.00516		10.0	0.9	149	0.192	
		SD-A2-R-06	0.00635		10.0	0.9	149	0.237	
		SD-A2-R-07	0.00345		10.0	0.9	149	0.129	
		SD-A2-NL-01	0.00074		10.0	0.9	149	0.028	
		SD-A2-NL-02	0.00076		10.0	0.9	149	0.028	
		SD-A2-NR-01	0.00074		10.0	0.9	149	0.028	
		SD-A2-NR-02	0.00076		10.0	0.9	149	0.028	
		A2-R-02	0.01600		30.6	0.5	71	0.158	
		A2-R-03	0.00700		24.0	0.5	83	0.081	
		A2-R-05	0.04300		41.3	0.5	58	0.346	
		A2-R-06	0.01800	Kerby	35.8	0.5	64	0.160	
SD-A2-R-03	Side Ditch A2-side Right No.3	SD-A2-R-03	0.00649		10.0	0.9	149	0.242	1.544
		SD-A2-R-04	0.00120		10.0	0.9	149	0.045	
		SD-A2-R-05	0.00516		10.0	0.9	149	0.192	
		SD-A2-R-06	0.00635		10.0	0.9	149	0.237	
		SD-A2-R-07	0.00345		10.0	0.9	149	0.129	
		SD-A2-NL-01	0.00074		10.0	0.9	149	0.028	
		SD-A2-NL-02	0.00076		10.0	0.9	149	0.028	
		SD-A2-NR-01	0.00074		10.0	0.9	149	0.028	
		SD-A2-NR-02	0.00076		10.0	0.9	149	0.028	
		A2-R-03	0.00700		24.0	0.5	83	0.081	
		A2-R-05	0.04300		41.3	0.5	58	0.346	
		A2-R-06	0.01800	Kerby	35.8	0.5	64	0.160	

Source: JICA Study Team, Note: See Table 3.8.8.

SD-A2-R-04	SD-A2-R-04	0.00120	-	10.0	0.9	149	0.045	1.10
	SD-A2-R-05	0.00516	-	10.0	0.9	149	0.192	
	SD-A2-R-06	0.00635		10.0	0.9	149	0.237	
	SD-A2-R-07	0.00345		10.0	0.9	149	0.129	
	A2-R-05	0.04300		41.3	0.5	58	0.346	
	A2-R-06	0.01800		35.8	0.5	64	0.160	
SD-A2-R-05	SD-A2-R-05	0.00516		10.0	0.9	149	0.192	0.71
00-72-11-00	SD-A2-R-06	0.00635		10.0	0.9	149	0.237	0.71
	SD-A2-R-07	0.00345		10.0	0.9	149	0.129	
	A2-R-06	0.00343		35.8	0.9	64	0.129	
SD-A2-R-06	SD-A2-R-06	0.01800	Kelby	10.0	0.3	149	0.100	0.36
5D-A2-R-00			-					0.30
	SD-A2-R-07	0.00345		10.0	0.9	149	0.129	0.40
SD-A2-R-07	SD-A2-R-07	0.00345		10.0	0.9	149	0.129	0.12
SD-A2-NL-01	SD-A2-NL-01	0.00074		10.0	0.9	149	0.028	0.05
	SD-A2-NL-02	0.00076		10.0	0.9	149	0.028	
SD-A2-NL-02	SD-A2-NL-02	0.00076		10.0	0.9	149	0.028	0.02
SD-A2-NR-01	SD-A2-NR-01	0.00074		10.0	0.9	149	0.028	0.05
	SD-A2-NR-02	0.00076		10.0	0.9	149	0.028	
SD-A2-NR-02	SD-A2-NR-02	0.00076		10.0	0.9	149	0.028	0.02
SD-A2-SL-01	SD-A2-SL-01	0.00231		10.0	0.9	149	0.086	0.14
	SD-A2-SL-02	0.00071	-	10.0	0.9	149	0.026	
	A2-O-03	0.00100	-	10.0	0.9	149	0.037	
SD-A2-SL-02	SD-A2-SL-02	0.00071	-	10.0	0.9	149	0.026	0.06
	A2-O-03	0.00100	-	10.0	0.9	149	0.037	
SD-A2-SR-01	SD-A2-SR-01	0.00231		10.0	0.9	149	0.086	0.1
	SD-A2-SR-02	0.00071	-	10.0	0.9	149	0.026	
SD-A2-SR-02	SD-A2-SR-02	0.00071	-	10.0	0.9	149	0.026	0.02
PC-A2-N-01	SD-A2-NR-01	0.00074		10.0	0.9	149	0.028	0.0
0721101	SD-A2-NR-02	0.00076		10.0	0.9	149	0.028	0.00
BC-A2-N-01	SD-A2-L-04	0.00658		10.0	0.9	149	0.245	2.18
00721101	SD-A2-L-05	0.01027		10.0	0.9	149	0.383	2.1
	SD-A2-SR-01	0.00231		10.0	0.9	149	0.086	
	SD-A2-SR-01	0.00231		10.0	0.9	149	0.000	
	A2-L-04		- Kinematic wave	193.8	0.9	21	0.020	
	A2-L-05	0.00500		10.0	0.9	149	0.186	
	A2-L-06		Kinematic wave	96.1	0.5	33	0.193	
	A2-L-07		Kinematic wave	109.9	0.5	30	0.283	
	A2-L-08	0.01400		24.3	0.5	82	0.159	
	A2-R-07		Kinematic wave	82.3	0.5	37	0.283	
BC-A2-N-02	SD-A2-R-04	0.00120		10.0	0.9	149	0.045	1.22
	SD-A2-R-05	0.00516		10.0	0.9	149	0.192	
	SD-A2-R-06	0.00635		10.0	0.9	149	0.237	
	SD-A2-R-07	0.00345		10.0	0.9	149	0.129	
	SD-A2-NL-01	0.00074	-	10.0	0.9	149	0.028	
	SD-A2-NL-02	0.00076	-	10.0	0.9	149	0.028	
	SD-A2-NR-01	0.00074	-	10.0	0.9	149	0.028	
	SD-A2-NR-02	0.00076	-	10.0	0.9	149	0.028	
	A2-R-05	0.04300	Kerby	41.3	0.5	58	0.346	
	A2-R-06	0.01800	Kerby	35.8	0.5	64	0.160	
BC-A2-N-03	SD-A2-R-04	0.00120		10.0	0.9	149	0.045	1.10
	SD-A2-R-05	0.00516		10.0	0.9	149	0.192	
	SD-A2-R-06	0.00635		10.0	0.9	149	0.237	
	SD-A2-R-07	0.00345		10.0	0.9	149	0.129	
	SD-A2-NL-01	0.00074		10.0	0.9	149	0.028	
	SD-A2-NL-02	0.00074		10.0	0.9	149	0.028	
	A2-R-05	0.04300		41.3	0.5	58	0.020	
	A2-R-05	0.04300		35.8			0.340	
		0.01800			0.5	64		0.44
PC-A2-E-01	A2-R-04			17.6	0.5	102	0.085	0.12
	A2-O-02	0.00400		31.9	0.5	69	0.038	~ ~ ~
BC-A2-E-01	A2-O-01	0.00900	IK OTDV	21.8	0.5	89	0.111	0.11

Table 3.8.12 Result of Estimated Runoff for Right River Bank Side (Package 2&3) (3/3)

Source: JICA Study Team, Note: See Table 3.8.8.

3.8.6 Type of Drainage Structures and Drainage Capacity Design

3.8.6.1 Type of Drainage Structures

The types of the drainage structures to be used for the Project are listed in Table 3.8.13.

T		D
Туре	Drainage Structure	Purpose
Open Ditches	Side Ditch Type U	Collection of rainfall water from
	Inside Width (mm): 300, 500, 800, 1000, 1500	gutter, sidewalk, vertical drain,
	Height (mm): 500~2500 (Vary)	culvert crossing roadway and U-
		ditch crossing sidewalk.
	U-Ditch Crossing Sidewalk	Collection of rainfall water from
	Inside Width (mm): 300	pavement surface and crossing
	Height (mm): 150~300	sidewalk
	PVC Pipe Crossing Sidewalk	Ditto
	Inside Dia. (mm): 150 mm	
Concrete Pipe	Reinforced Spun and Centrifugal RC Pipes	Crossing the roadway and
Culverts	(Class I, Precast)	Discharge rainfall water from
	Inside Dia. (mm): 300, 900	paved surface along roadway
	Protection with 360 Degree Concrete for joint	
	protection	
Concrete Box	Box Culvert Type	Crossing roadway
Culverts	Inside Width & Height (mm): 1000x1000,	
	1500x1000, 1500x1500	
Catch Basin,	Catch Pit (Rectangular Type) with Concrete or	Connection between Open
Inlet, Outlet,	Steel Grating Cover	Ditches, Concrete Pipe, Box
Manholes	Minimum Pitch: 5 m [*]	Culverts, Vertical Drains
	Maximum Pitch: 30 m*	
Vertical Drain	PVC Pipe Type	Guiding the water from the
	Inside Dia. (mm): 200 mm	roadway gutter inlet to the
	Minimum Pitch: 10 m	roadside main drainage
	U-Ditch Type	Ditto
	Inside Width (mm): 300	
	Height (mm): 300~1000	
Drainage Outlet	Flap Gate with Box Culvert Type	Preventing reverse water flow
-	Flap Gate Width and Height (mm):	from river side to upsteam of
	1000x1000, 2000x1500	drainage system; The flap gate
	Box Culvert: Inside Width and Height (mm)	shall be provided at the end of
	are the same as for Flap Gate	each drainage outlet.

Table 3.8.13 Types of Drainage Structu	res
--	-----

Source: JICA Study Team

Note: * In accordance with Earthworks Manual, Japan Road Association, 2009

3.8.6.2 Drainage Capacity and Design Methods

The capacity of drainage facilities, road side ditch, RC pipe culvert, box culvert, and gutter is computed applying the following formula:

Drainage Capacity: Q = A * V

A: Water flow area (m²), V: Average velocity (m/sec)

Manning's Equation: V = 1/n * R2/3 * I1/2

n: Manning's roughness coefficient

(n=0.013 for precast concrete products, 0.015 for cast-in-place concrete)

R: Hydraulic mean depth: A/P (m)

I: Longitudinal slope

3.8.6.3 Discharge Capacity of Structures

The following tables show the discharge capacity of the drainage structures computed using the above formula. Minimum slope is applied for each location of drainage structure to verify the necessary capacity of each location. In the calculation, the velocity of water flow is preferably controlled between 0.6 and 3.0 m/sec.

Location of Drainage	Estimated Runoff Qr	Applied Drain Type	l (Minimum)	R	A	0.8 x A	n	v	Qc*	Qr <qc< th=""></qc<>
Structure	(m3/sec)		%	m	m2	m2		m/sec	m3/sec	
SD-A1-L-01	0.013	U800x1000	0.100	0.29	0.80	0.64	0.015	0.915	0.586	OK
SD-A1-L-02	0.265	U800x800	0.170	0.27	0.64	0.51	0.015	1.140	0.584	OK
SD-A1-L-03	0.330	U1000x1000	0.100	0.33	1.00	0.80	0.015	1.013	0.810	OK
	0.330	BC1000x1000	0.100	0.33	1.00	0.80	0.015	1.013	0.810	OK
SD-A1-R-01	0.387	U800x800	0.130	0.27	0.64	0.51	0.015	0.997	0.510	OK
	0.387	PC900	0.400	0.23	0.64	0.51	0.015	1.560	0.794	OK
SD-A1-R-02	0.808	U1000x1000	0.100	0.33	1.00	0.80	0.015	1.013	0.810	OK
	0.808	BC1000x1000	0.100	0.33	1.00	0.80	0.015	1.013	0.810	OK
SD-A1-NL-01	0.085	U500x500	0.100	0.17	0.25	0.20	0.015	0.639	0.128	OK
SD-A1-NL-02	0.033	U500x500	0.100	0.17	0.25	0.20	0.015	0.639	0.128	OK
SD-A1-NL-03	0.032	U500x500	0.100	0.17	0.25	0.20	0.015	0.639	0.128	OK
SD-A1-NR-01	0.185	U500x500	0.300	0.17	0.25	0.20	0.015	1.107	0.221	OK
SD-A1-NR-02	0.015	U500x500	0.100	0.17	0.25	0.20	0.015	0.639	0.128	OK
SD-A1-NR-03	0.055	U500x850	0.100	0.19	0.43	0.34	0.015	0.704	0.239	OK
SD-A1-OR-01	0.348	U800x800	0.100	0.27	0.64	0.51	0.015	0.874	0.448	OK
SD-A1-OR-02	0.009	U800x800	0.100	0.27	0.64	0.51	0.015	0.874	0.448	OK
SD-A1-OR-03	0.009	U800x800	0.100	0.27	0.64	0.51	0.015	0.874	0.448	OK
PC-A1-N-01	0.283	PC900	0.300	0.23	0.64	0.51	0.015	1.351	0.687	OK
PC-A1-N-02	0.735	PC900	0.400	0.23	0.64	0.51	0.015	1.560	0.794	OK
BC-A1-N-01	0.065	BC1000x1000	0.500	0.33	1.00	0.80	0.015	2.265	1.812	OK
BC-A1-E-01	0.265	BC800x800	0.300	0.27	0.64	0.51	0.015	1.514	0.775	OK

Table 3.8.14 Result of Discharge Capacity for Left River Bank Side (Package 1)

* 80% of A (m2) is applied for the calculation formula of Qc (Drainage Capacity)

Source: JICA Study Team

Note: SD=Side Ditch, PC=Pipe Culvert, BC=Box Culvert,

A1= Left River Bank Side, A2=Right River Bank Side,

L=Left Side of Main Road, R=Right Side of Main Road, OR=On-ramp Section,

NL=Left Side of Yangon and Thanlyin Access Line (P1) / of Thanlyin Chin Kat Road (P2&3),

NR=Right Side of Yangon and Thanlyin Access Line (P1) / of Thanlyin Chin Kat Road (P2&3),

N= New Culvert, E=Existing Culvert,

U=Side Ditch Type U (Inner Width (mm) x Height (mm)), PC=Concrete Pipe Culvert (Inner Dia.), BC=Concrete Box Culvert (Inner Width (mm) x Height (mm))

Table 3.8.15 Result of Discharge Capacity for Right River Bank Side (Package 2&3) (1/2)

Location of Drainage	Estimated Runoff Qr	Applied Drain Type	l (Minimum)	R	А	0.8 x A	n	v	Qc*	Qr <qc< th=""></qc<>
Structure	(m3/sec)		%	m	m2	m2		m/sec	m3/sec	
SD-A2-L-01	2.984	U1500x2500	0.080	0.58	3.75	3.00	0.015	1.307	3.921	OK
	2.984	BC2000x1500	0.080	0.60	3.00	2.40	0.015	1.341	3.219	OK
SD-A2-L-02	2.847	U1500x2500	0.080	0.58	3.75	3.00	0.015	1.307	3.921	OK
SD-A2-L-03	2.579	U1500x2500	0.080	0.58	3.75	3.00	0.015	1.307	3.921	OK
SD-A2-L-04	1.546	U1500x1500	0.047	0.50	2.25	1.80	0.015	0.910	1.639	OK
	1.546	U1500x1700	0.047	0.52	2.55	2.04	0.015	0.935	1.907	OK
	1.546	BC1500x1000	0.330	0.43	1.50	1.20	0.015	2.178	2.614	OK
	1.546	BC1500x1500	0.047	0.50	2.25	1.80	0.015	0.910	1.639	OK
SD-A2-L-05	1.108	U1500x1500	0.105	0.50	2.25	1.80	0.015	1.361	2.450	OK
	1.108	U1500x1700	0.171	0.52	2.55	2.04	0.015	1.783	3.637	OK
	1.108	BC1500x1000	0.105	0.43	1.50	1.20	0.015	1.229	1.475	OK
SD-A2-R-01	2.244	U1500x2500	0.100	0.58	3.75	3.00	0.015	1.461	4.383	OK
	2.244	BC2000x1500	0.100	0.60	3.00	2.40	0.015	1.500	3.599	OK

* 80% of A (m2) is applied for the calculation formula of Qc (Drainage Capacity)

Source: JICA Study Team, Note: See Table 3.8.14

Table 3 8 16	Result of Discharge	Canacity f	or Right River	Bank Side	(Package 2&3)	(2/2)
10010 0.0.10	result of Discharge		or ragin raver	Dank Oluc	(1 a chay c 2 a c)	$(\boldsymbol{L} \boldsymbol{L})$

Location of Drainage	Estimated Runoff Qr	Applied Drain Type	l (Minimum)	R	А	0.8 x A	n	v	Qc*	Qr <qc< th=""></qc<>
Structure	(m3/sec)		%	m	m2	m2		m/sec	m3/sec	
SD-A2-R-02	2.023	U1500x2500	0.100	0.58	3.75	3.00	0.015	1.461	4.383	OK
SD-A2-R-03	1.544	U1500x2500	0.050	0.58	3.75	3.00	0.015	1.033	3.100	OK
SD-A2-R-04	1.109	U1500x1500	0.026	0.50	2.25	1.80	0.015	0.677	1.219	OK
	1.109	BC1500x1000	0.082	0.43	1.50	1.20	0.015	1.086	1.303	OK
SD-A2-R-05	0.718	U1500x1500	0.026	0.50	2.25	1.80	0.015	0.677	1.219	OK
	0.718	BC1500x1000	0.029	0.43	1.50	1.20	0.015	0.646	0.775	OK
SD-A2-R-06	0.366	U1500x1500	0.048	0.50	2.25	1.80	0.015	0.920	1.656	OK
	0.366	BC1500x1000	0.048	0.43	1.50	1.20	0.015	0.831	0.997	OK
SD-A2-R-07	0.129	U1000x1500	0.330	0.38	1.50	1.20	0.015	1.992	2.390	OK
	0.129	U1500x1500	0.064	0.50	2.25	1.80	0.015	1.062	1.912	OK
	0.129	BC1000x1000	0.190	0.33	1.00	0.80	0.015	1.396	1.117	OK
SD-A2-NL-01	0.056	U500x500	0.300	0.17	0.25	0.20	0.015	1.107	0.221	OK
SD-A2-NL-02	0.028	U500x500	0.300	0.17	0.25	0.20	0.015	1.107	0.221	OK
SD-A2-NR-01	0.056	U500x500	0.300	0.17	0.25	0.20	0.015	1.107	0.221	OK
SD-A2-NR-02	0.028	U500x500	0.300	0.17	0.25	0.20	0.015	1.107	0.221	OK
SD-A2-SL-01	0.149	U800x800	0.300	0.27	0.64	0.51	0.015	1.514	0.775	OK
SD-A2-SL-02	0.063	U800x800	0.300	0.27	0.64	0.51	0.015	1.514	0.775	OK
SD-A2-SR-01	0.112	U500x850	0.300	0.19	0.43	0.34	0.015	1.219	0.415	OK
SD-A2-SR-02	0.026	U500x850	0.300	0.19	0.43	0.34	0.015	1.219	0.415	OK
PC-A2-N-01	0.056	PC600	0.300	0.15	0.28	0.23	0.015	1.031	0.233	OK
BC-A2-N-01	2.182	BC1500x1500	0.108	0.50	2.25	1.80	0.015	1.380	2.484	OK
BC-A2-N-02	1.221	BC1500x1000	0.082	0.43	1.50	1.20	0.015	1.086	1.303	OK
BC-A2-N-03	1.165	BC1500x1000	0.082	0.43	1.50	1.20	0.015	1.086	1.303	OK
PC-A2-E-01	0.123	PC1200	0.600	0.30	1.13	0.90	0.015	2.314	2.094	OK
BC-A2-E-01	0.111	BC1500x1000	3.000	0.43	1.50	1.20	0.015	6.568	7.882	OK
BC-A2-E-02	0.085	BC1000x1000	3.000	0.33	1.00	0.80	0.015	5.548	4.438	OK

* 80% of A (m2) is applied for the calculation formula of Qc (Drainage Capacity)

Source: JICA Study Team, Note:

Note: See Table 3.8.14

3.8.6.4 Schedule of Drainage

Based on the above study, the drainage type, dimension, slope rate, and bottom elevation of each drainage structure are shown in following tables.

Package	Road	Side	Loca (ST	ation A.)	Distance (m)	Туре	Dimension	Slope rate (%)	Ű	e Bottom n (Elv. m)	Concrete Cover	Remark
			B.P. side	E.P. side	(11)		(Width x Height)	(%)	B.P. side	E.P. side	Cover	
			0+000.000	0+016.000	16.00	U	800x1000	0.125%	4.860	4.880	0	
1	Main	Left	0+060.000	0+537.000	477.00	U	800x800	-0.170%	4.274	3.463	-	Along Main Road
'	IVIDIII	Leit	0+537.000	0+547.000	10.00	PC	900	-0.300%	2.720	2.690	-	Under On-ramp Rd
			0+547.000	0+640.000	93.00	U	1000x1000	-0.100%	2.690	2.597	-	To Drainage Outlet
2	Main	Left	2+240.000	2+680.992	440.99	U	1500x2500	0.080%	1.502	1.855	0	To Drainage Outlet
2	IVIAIII	Leit	2+680.992	2+775.000	94.01	U	1500x2500	0.120%	1.855	1.968	0	Along Main Road
			2+775.000	2+840.000	65.00	BC	1500x1500	0.102%	1.968	2.034	-	Under Crossing Rd
			2+840.000	2+850.000	10.00	U	1500x1500	0.110%	2.034	2.045	-	Open
				2+850.000	2+860.000	10.00	BC	1500x1500	0.110%	2.045	2.056	-
			2+860.000	3+060.000	200.00	U	1500x1500	0.047%	2.056	2.150	-	Open
			3+060.000	3+068.000	8.00	BC	1500x1500	0.047%	2.150	2.154	-	Under Entrance
			3+068.000	3+120.000	52.00	U	1500x1500	0.047%	2.154	2.178	-	Open
			3+120.000	3+278.000	158.00	BC	1500x1500	0.047%	2.178	2.252	-	Under Crossing Rd
			3+278.000	3+289.000	11.00	BC	1500x1000	0.330%	2.252	2.289	-	Under Entrance
			3+289.000	3+300.000	11.00	BC	1500x1500	0.220%	2.289	2.313	-	Under Side-Walk
3	Main	Left	3+300.000	3+311.000	11.00	U	1500x1700	0.330%	2.313	2.349	0	Under Side-Walk
			3+311.000	3+330.000	19.00	BC	1500x1000	0.330%	2.349	2.412	-	Under Side-Walk
			3+330.000	3+378.000	48.00	U	1500x1700	0.330%	2.412	2.570	0	Under Side-Walk
			3+378.000	3+388.000	10.00	BC	1500x1000	0.330%	2.570	2.603	-	Under Entrance
			3+388.000	3+409.000	21.00	U	1500x1700	0.330%	2.603	2.673	0	Under Side-Walk
			3+409.000	3+434.000	25.00	BC	1500x1000	0.330%	2.673	2.755	-	Under Entrance
			3+434.000	3+455.000	21.00	U	1500x1700	0.169%	2.755	2.791	0	Under Side-Walk
			3+455.000	3+478.000	23.00	U	1500x1500	0.105%	2.791	2.815	-	Open
			3+478.000	3+483.000	5.00	BC	1500x1000	0.105%	2.815	2.820	-	Under Entrance
			3+483.000	3+540.000	57.00	U	1500x1500	0.105%	2.820	2.880	-	Open

 Table 3.8.17
 Schedule of Drainage (Left Side)

Source: JICA Study Team Note: U=Side Ditch Type U, PC=Pipe Culvert, BC=Box Culvert

Package	Road	Side	Loca (ST	ation A.)	Distance	Туре	Dimension	Slope rate	Drainage Elevation	e Bottom n (Elv. m)	Concrete	Remark
гаскауе	Kudu	Side	B.P. side	E.P. side	(m)	Type	(Width x Height)	(%)	B.P. side	E.P. side	Cover	Rellidik
			0+000.000	0+024.970	24.97	U	500x850	-0.577%	4.773	4.629	0	To Thanlyin Access
			0+060.000	0+165.000	105.00	U	800x800	-0.130%	4.114	3.978	0	Along Main Road
		D: 11	0+165.000	0+187.000	22.00	PC	900	-0.130%	3.978	3.949	0	Along Main Road
	Main	Right	0+187.000	0+534.000	347.00	U	800x800	-0.130%	3.949	3.498	-	Along Main Road
1			0+534.000	0+545.000	11.00	PC	900	-0.400%	2.820	2.776	-	Under On-ramp Rd
			0+545.000	0+640.000	95.00	U	1000x1000	-0.100%	2.776	2.681	-	To Drainage Outlet
			0+000.000	0+025.900	25.90	U	300x300	-0.100%	3.500	3.474	-	Along On-ramp
	On-ramp	Right	0+025.900	0+062.100	36.20	U	300x300	0.100%	3.464	3.500	-	Along On-ramp
	on tamp	rtigint	0+062.100	0+410.000	347.90	U	300x300	0.100%	3.292	3.640	-	Along On-ramp
			2+240.000	2+620.000	380.00	U	1500x2500	0.100%	1.950	2.330		
2	Main	Right	2+240.000	2+020.000	140.00	U	1500x2500	0.050%	2.330	2.330	0	To Drainage Outlet
Z	IVIAIII	Right									0	Along Main Road
			2+760.000	2+810.000	50.00	U	1500x2500	0.100%	2.400	2.450	0	Along Main Road
			2+810.000	2+860.000	50.00	BC	1500x1000	0.090%	2.450	2.495	-	Under Crossing Rd
			2+860.000	2+987.000	127.00	U	1500x1500	0.028%	2.495	2.530	-	Open
			2+987.000	2+993.000	6.00	BC	1500x1000	0.029%	2.530	2.532	-	Under Entrance
			2+993.000	3+037.000	44.00	U	1500x1500	0.029%	2.532	2.545	-	Open
			3+037.000	3+043.000	6.00	BC	1500x1000	0.029%	2.545	2.546	-	Under Entrance
			3+043.000	3+080.000	37.00	U	1500x1500	0.029%	2.546	2.557	-	Open
			3+080.000	3+088.000	8.00	BC	1500x1000	0.048%	2.557	2.561	-	Under Entrance
			3+088.000	3+127.000	39.00	U	1500x1500	0.048%	2.561	2.580	-	Open
			3+127.000	3+184.000	57.00	BC	1500x1000	0.048%	2.580	2.607	-	Under Crossing Rd
			3+184.000	3+240.000	56.00	U	1500x1500	0.048%	2.607	2.634	-	Open
3	Main	Right	3+240.000	3+247.000	7.00	BC	1500x1000	0.048%	2.634	2.637	-	Open
			3+247.000	3+301.000	54.00	U	1500x1500	0.048%	2.637	2.663	-	Open
			3+301.000	3+308.000	7.00	BC	1500x1000	0.048%	2.663	2.666	-	Open
			3+308.000	3+345.000	37.00	U	1500x1500	0.064%	2.666	2.690	-	Open
			3+345.000	3+363.000	18.00	BC	1000x1000	0.190%	2.690	2.724	-	Under Entrance
			3+363.000	3+378.000	15.00	U	1000x1500	0.330%	2.724	2.724	0	Under Side-Walk
			3+378.000	3+396.000	18.00	BC	1000x1000	0.330%	2.724	2.833	-	Under Entrance
			3+396.000	3+483.000	87.00	U	1000x1500	0.330%	2.833	3.120	0	Under Side-Walk
			3+483.000	3+499.000	16.00	BC	1000x1000	0.330%	3.120	3.173	-	Under Entrance
			3+499.000	3+517.000	18.00	U	1000x1500	0.330%	3.173	3.232	0	Under Side-Walk

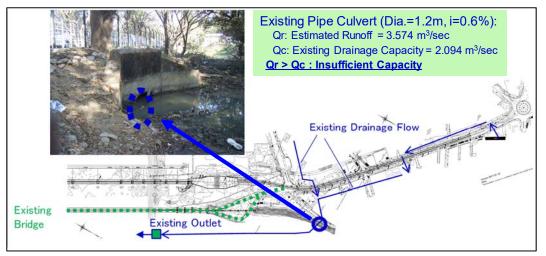
 Table 3.8.18
 Schedule of Drainage (Right Side)

Source: JICA Study Team Note: U=Side Ditch Type U, PC=Pipe Culvert, BC=Box Culvert

3.8.7 New Drainage Outlets

3.8.7.1 Necessity of Protection Against Reverse Water Flow and Installation of New Drainage Outlets

Regarding the existing drainage system, the JICA Study Team identified the following two issues based on the river and hydrological survey (see Table 3.8.3) and site investigation in addition to the discharge calculation using the same method as in Section 3.8.6.

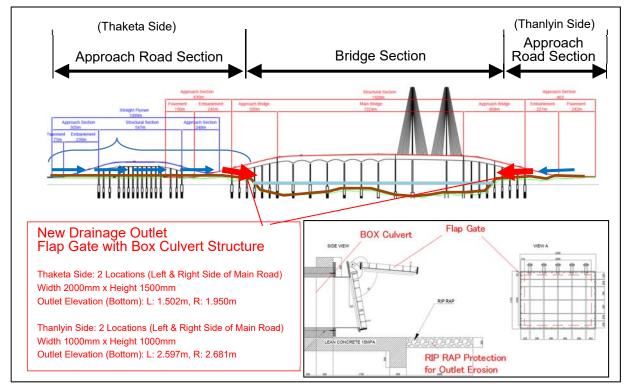

i) Bottom of Existing Drainage Height is Lower than the Probable High Water Level (=4.22 m)

The bottom height of the existing drainage system connecting to the designed drainage structures in both river banks (Thaketa and Thanlyin side) is equal to or less than 4.22 m (probable high water level in case of 3-year return period). Because of this, there is a concern on the occurrence of reverse water flow from the river side to the upstream of the drainage structures.

ii) Insufficient Capacity of Existing Drainage Outlet

The JICA Study Team identified the existing drainage flow system and calculated the capacity of the drainage discharge in the right river bank (Thaketa side) with same conditions as mentioned in Sections 3.8.5 and 3.8.6 above. The estimated runoff is $3.574 \text{ (m}^3\text{/sec)}$; however, the capacity of the existing pipe culvert (Dia.=1.2 m, Slope=0.6%) located at the existing drainage outlet is

just 2.094 m^3 /sec. Therefore, new drainage outlet shall be installed to discharge the estimated runoff water from the upstream side.



Source: JICA Study Team

3.8.7.2 New Drainage Outlets

The new drainage outlets planned to deal with the issues mentioned in Section 3.8.7.1 above are shown in Figure 3.8.7.

Source: JICA Study Team

Figure 3.8.7 New Drainage Outlets