CHAPTER 4. Bridge Design

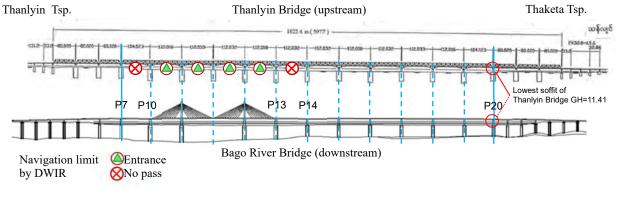
4.1 **DESIGN CONDITIONS**

4.1.1 Design Standard

The bridge design standard of the Project, including Bago River Bridge with the on-ramp bridge and flyover, complies with the JSHB. However, the calculations of the live load and the collision force were referred to the AASHTO LRFD Design Standard as a conventional bridge design load in Myanmar. Natural conditions related to the criteria such as meteorological issues were considered independently in this section.

4.1.2 Materials to be Used

Materials to be used for the Project are based on the Japanese Industrial Standard (JIS) since JSHB is based on JIS, and is applied to the design of the bridge.


However, "equivalent" materials and/or products will be allowed in the technical specifications for the international procurement.

4.1.3 Span Arrangement in River Bridge Section

In consideration of the hydrological advantage and safety for the vessel, the pier arrangement of Bago River Bridge was allocated on the line-of-sight of the existing Thanlyin Bridge. Although Bago River is relatively shallow, middle-class vessel runs through the abyss near the Thanlyin side assigned by DWIR.

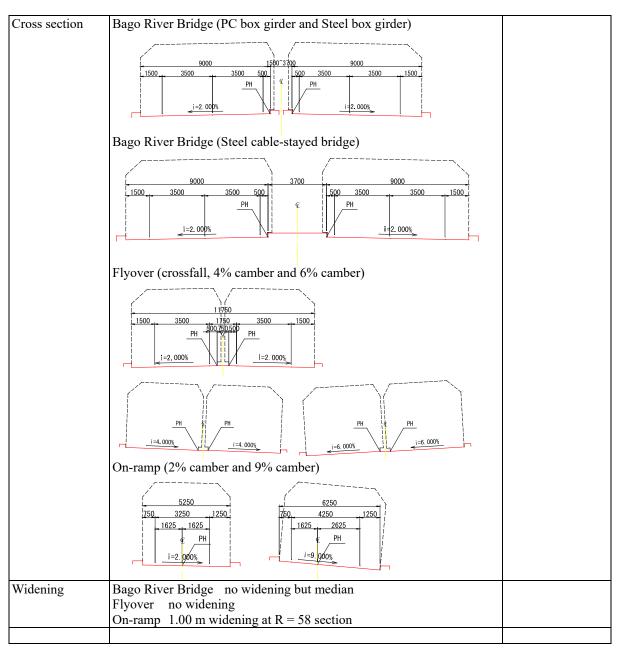
Four spans with green triangular signs indicated in Figure 4.1.1 are the current navigation route, which was designed to allocate space for the cable-stayed bridge for the new Bago River Bridge. Even though "no pass" was allocated for the other spans, the same span length is allocated for more than 100 m of the span of Thanlyin Bridge.

Navigation height is determined by the lowest soffit of Thanlyin Bridge at the P20 pier location of Bago River Bridge where the vertical alignment is lowest at navigation channel.

Source: JICA Study Team

Figure 4.1.1 Pier Arrangement of Bago River Bridge

4.1.4 **Design Conditions for the Bridge Design**


The design conditions are shown in the tables found in the next few pages.

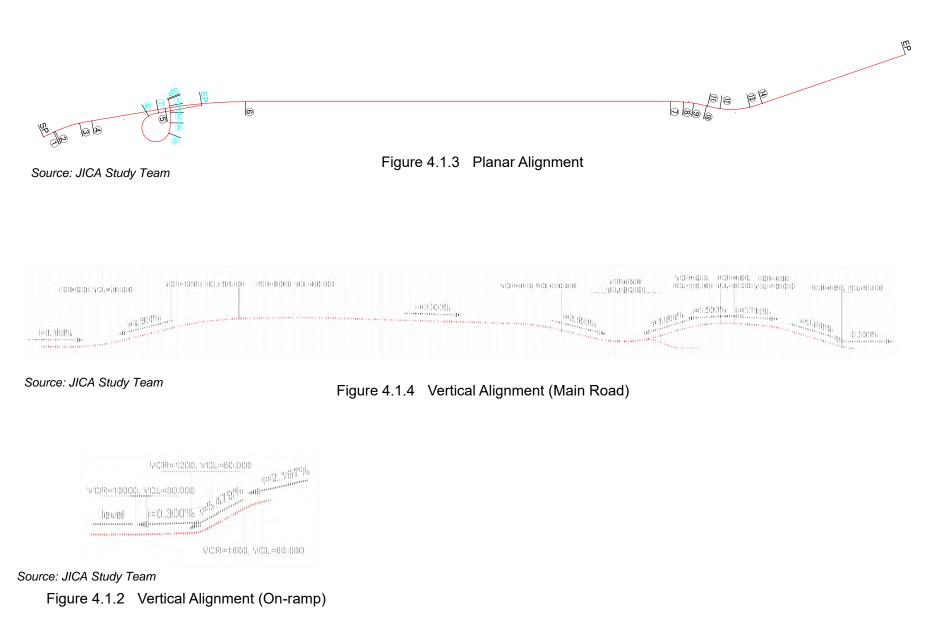

Item		Remark				
Design objective	Construction of	new bridges and	improvement of Thanlyin Chin Kat Road			
	Project length 3,644.341 m					
	River bridge	Length	2031.000 m			
		Superstructure	Steel cable-stayed bridge 448.000 m			
			Steel box girder bridge 1,033.000 m			
			(257 m, 776 m)			
			PC box girder Bridge 550.000 m			
			(250 m, 300 m)			
		Substructure	Wall pier, hammerhead pier, reverse-T abutment			
		Foundation	Steel pipe sheet pile (SPSP), cast-in-			
			situ pile			
	Flyover	Length	602.000 m			
		Superstructure	Steel box girder bridge180.000 m			
			Steel I girder bridge 122.000 m			
			PC I girder bridge 300.000 m			
		~ 1	(60 m, 180 m, 60 m)			
		Substructure	Hammerhead pier, reverse-T abutment			
		Foundation	Cast-in-situ pile			
	On-ramp	Length	115.200 m			
	bridge		PC I girder bridge 115.200 m			
		Substructure	Hammerhead pier, reverse-T abutment			
	Road	Foundation	Cast-in-situ pile			
	improvement	Approach road	357 m, Thaketa side 430 m			
	mprovement	Arterial road	834.341 m			
	Intersection		tersection, Shukinthar intersection,			
		Yadanar interse	ection			
			ooth northbound and southbound)			
Bridge name	Bago River Brid					
Line name	Thanlyin Chin K					
U			gn (Japan), June 2015, Japan Road			
standards	Association (JR					
	Edition (2011) for		ric Design of Highways and Streets, 6th			
			raffic lane width 3.5 m			
			har, Department of Highway, Ministry of			
	Construction (20					
Structural design			7th Edition (2014) for calculations of live			
standards	load and collisio					
			ge, March 2012, JRA			
	Specifications for	or Earthwork for	Road, June 2009, JRA			
		ines for Road Embankment, April 2010, JRA				
	Guidelines for R					
			nt, August 2012, JRA			
			undations, March 2015, JRA			
	Guidelines for (1997, JRA	onstruction of	Steel Pipe Pile Foundations, December			
	Other Relevant S	Standards and/or	Documents			

Table 4.1.1 General Conditions

Item			Design c	onditions			Remark
Road	Bago River	Bridge	<u> </u>		ent to Class	2-1	Based on
classification						Japanese Road	
	On-ramp Equivalent to Class C						Structure Ordinance
	Improvemen	nt of Thanly	in Chin Kat	Road Equiv	alent to Clas	s 4-1	
Design speed	Bago River	Bridge, Fly	over	60 km/h	1		
	On-ramp 30 km/h						
	Thanlyin Ch		1	40 km/h	1		
Design traffic	Bago River						Supplemental
volume			orthbound 25				survey results,
		73 vehicle/d	ay (northboı	und 2,829 v/	d, southbour	nd 3,344 v/d)	
	Flyover						Plan Case, 2035
			orthbound 12				time point
				und 1,549 v/	d, southbour	nd 2,090 v/d)	
	Bago River	Bridge to F	yover	-			
alignments	SP	1	2	3	4	5	
			0+076.170			0+521.900	
	R=∞	A=160	R=-500	A=160	R=∞	R=-2000	
	6	7	8	9	10	11	
	0+857.522		2+680.992		2+777.651	2+782.486	
	R=∞	A=150	R=-420	A=150	R=∞	A=130	
	12	13	14	EP			
	2 + 835.298	2+961.571	3+014.383	3+644.341			
	R=320	A=130	R=∞	-			
	On-ramp						
	SP	1	2	3	4	5	
	0+000.000	0+004.472	0+058.045	0+105.007	0+148.111	0+367.483	
	$R=\infty$	R=-140	R=∞	A=50	R=-58	A=50	
	6	7	EP				
	0+410.587	0+535.778	0+643.083				
	R=∞	R=-1000	-				
Profiles	Bago River	Bridge to F	yover	•	•		
	0+0.000	0+228.000	*	1+88.000	2+140.000	2+517.727	
	5.695	5.467	17.267	18.431	15.275	5.832	
	-0.100	2.500	0.300	-0.300	-2.500	3.000	
	2+830.000	2+960.000	3+160.000		3+500.000		
	15.200	15.850	14.420	4.970	4.895		
	0.500	-0.715	-3.000	-0.300	-		
	On-ramp					11	
	0+0.000	0+150.000	0.329.942	0+490.000	0+540.000		
	4.470	4.470	5.010	13.780	14.878		
	level	0.300	5.479	2.197	-		
Cant	Bago River				nber)		
			(Max. 6% ca		,		
	On-ramp 2						

Table 4.1.2 Road Design Conditions

Item			Des	sign Cond	itions				Ι	Remark	
River name	Bago River										
Navigation			ill be the na ll also be the	0					Agreem DWIR	nent	with
Clearance	Vertical h Thanlyin		nd width sha	ill be secu	red betwe	en Pie	er P7	7 to P20 a	s Agreen DWIR	ient	with
Design discharge	16,169 m ³	/s (100-	year return	period)							
Design high water		,									
level (HWL)	Loa combin		Suppos	ition	Water lev (MSL+1			er flow m/s)			
	Norn	nal	Full/low spring		+3.18/2.39	-		0			
	Win	d	Highest		+4.99			0			
	Collision navigation	on at	Full tide of tide	f spring	+3.18			0			
	Collisi side s		Maximur flow at fl 100year perio	ood of return	+2.53			1.19			
	Earthq	uake	Normal leve	water	+0.29		0.60				
	Duri constru		5year re perio		+4.34		(0.65			
Design riverbed and											
scouring depth				P6	P7	P8		P9	P10		
scouring depth	Riverbec	l haight		0.41	-3.59	-5.3		-4.82	-4.55		
	Foundati		ht	-2.48	-6.38	-6.3		-6.35	-9.10		
		2	ring depth	-3.41	-8.91	-9.4		-9.31	-11.27		
	1,10,11110		ing aspin	0111	0101		-	<i>,</i> 10 1	11.27		
	P11	P12	P13	P14	P15	P1	6	P17	P18		
	-5.41	-7.96	-8.02	-6.28	-5.09	-5.26		-6.70	-6.99		
	-9.10	-9.10	-9.10	-8.06	-8.06	-8.06		-8.06	-8.06		
	-12.13	-13.67		-11.43	-10.84	-10.3		-9.70	-10.00		
				•							
	P19	P20	P21	P22	P23	P2-	4	P25			
	-6.88	-6.55	-6.15	-4.61	-0.05	4.	.11	4.04			
	-8.06	-7.28	-7.55	-7.59	-2.39	3.	.73	3.78			
	-9.78	-9.53	-8.56	-7.48	-2.07	3.	.98	3.92			
	Half of the foundation		mum scouri	ing depth	is used for	or the	seis	smic desig	n of sub	structure	s and
Reference height	Benchman MSL = CI		y result at M 314 m	lonkey Po	int						
	All the he	ight in t	he Project w	vill be exp	ressed as tl	ne heig	ght f	from MSL			

Table 4.1.3 River Conditions

Item	Design Conditions	Remark
Temperature	39.2 to 11.3 (Celsius) at Kaba-Aye metrological station, 1991 to 2015	
Wind speed	42.9 m/s (Cyclone Nargis, 27 April 2008)	
Rainfall amount	149 mm/h (3-year return period, 10-minute rainfall intensity)	

Item	Des	Remark		
Dead load	These values are used for un	sign Conditions it self-weight of the material	s.	JSHB 2.2.1
	Materials	Unit Self-weight		
		(kN/m^3)		
	Steels	77.0		
	Cast steel	71.0		
	Aluminum	27.5		
	Reinforced concrete	24.5		
	Prestressed concrete	24.5		
	Concrete	23.0		
	Mortar, cement	21.0		
	Timber	8.0		
	Bitumen	11.0		
	Asphalt concrete	22.5		
Live load	1. AASHTO HL-93			AASHTO LRFD
	Combination of these two di	fferent types of loads is cons	idered.	Bridge design
	(1) design truck or design tar	ndem		specifications, 3.6.1
	(2) design lane load			
	V1 = 4.3 35kN 145kN	V2 = 4.3 to 9.0 m 145kN	<i></i>	
	(1)-2 Design tandem			
	1.2m 110kN 110kN (2) Design lane load			
	(3) Two design trucks for neg	gative moment		3.6.1.3
	4.3m 4.3m 35kN 145kN 145kN	15.0m 4.30m 35kN 145kN	4.3m	3.6.1.1

Table 4.1.5 Design Conditions

	Types of combination	
	(1)(1)-1+(2)	
	2)(1)-2+(2)	
	3) (3)×0.9 + (2)×0.9	
	Multiple presence factor	
	Table 3.6.1.1.2-1—Multiple Presence Factors, m	
	Multiple Presence	
	Number of Loaded Lanes Factors, m	
	1 1.20	
	2 1.00	
	3 0.85	
	>3 0.65	
	Nominal lane width shall be 3.0 m.	
		MOC direction
	2. Special vehicular load (735kN concentrated load or equivalent	
	distribution load) for main girder	
	/	
	//Ad	
	735kN	
	H	
	× · · · · · · · · · · · · · · · · · · ·	
	4500	
	(a) Concentrated load (b) Distribution load	
	()	
Design lane	The width of the design lanes should be taken as 3.0m. The number	A A SHTO 3 6 1 1 1
12 Congin Iunio	of design lanes should be determined by taking the integer part of the	
	ratio w/3.0, where w is the clear roadway width in feet between curbs	
	and/or barriers.	
	9000 5250	
	Lane1 Lane2 Lane3 Lane1 3000 3000 3000 3000	
	1500 2@3500=7000 500 1250 3250 750	
	(a) Main road (b) Onramp	
	11750	
	Lane1 Lane2 Lane3	
	1500 <u>3500 500 3500 1500</u>	
~	(c) Flyover (median is deemed as "clear roadway")	
Calculation	Calculation method of inertia force shall comply with JSHB.	JSHB V 6.3.2
method of inertia		
force		
Impact coefficient	Equivalent to L-load in JSHB.	JSHB I 2.2.3
impact coefficient		JUID I 2.2.J
	Steel bridge $i = 20/(50+L)$	
	PC bridge $i = 10/(25+L)$	
	Impact coefficients of pylon and cable of the cable-stayed bridge are	
1	applied based on the result of experiments.	
	applied based on the result of experiments.	

	pylon: $i = 0.15$, cable: $i = 0.20$	
	Reference temperature: 25 °C	
temperature	Main structure	
change	RC, PC: +10 °C to +40 °C (25 °C \pm 15 °C), relative difference	
	between members: 5 °C	
	Steel: $\pm 10 \degree$ C to $\pm 40 \degree$ C (25 °C $\pm 15 \degree$ C), relative difference between	
	members: 15 °C	
	Bearings, expansion joints	
	RC, PC: $+5 \degree$ C to $+45 \degree$ C ($25 \degree$ C $\pm 20 \degree$ C)	
	Steel: 0 °C to $+50$ °C (25 °C \pm 25 °C)	
Effect on concrete	Prestressed force, Influence of creep and drying shrinkage shall be	JSHB I 2.2.4, 2.2.5
	considered.	
Wind load	100 mph (44.7 m/s), Basic wind speed in Yangon City	MOC instruction
	(This expression is "3-second gust wind speed")	
	$U_{10}=U_{max}/G=44.7/1.51=29.6(m/s) \rightarrow 30.0 (m/s)$	
	Here, U_{10} : 10-minutes average wind speed (m/s)	
	U _{max} : 3-second gust wind speed (m/s)	
	G: Gust factor G=1+k(σ /U ₁₀)=1+3x(7.6/44.7)=1.51	
	k: Peak factor, k=3	
	σ : Standard deviation of wind speed, $\sigma = 7.6$	
Flowing water	Flowing water pressure shall be considered.	JSHB I 2.2.7
pressure		
Hydrodynamic	Hydrodynamic pressure during earthquake shall be considered.	JSHB I 2.2.7
pressure		
Collision force	Collision force by barge shall be considered.	
Effect of	Effect of earthquake shall be considered.	
earthquake	$k_h = 0.30$ at project site, $k_{hgL0} = 0.24$	
1		

Item	Design Conditions	Remark
Railings	Bago River BridgeShapesSteel railing250250250	
	Road side $H = 1,100 \text{ mm}$	
	Median side H = 900 mm \square	
	Design force:	
	more than 130 kJ (Class A)	
	Flyover250	
	Concrete barrier	
	Roadside $H = 1,000 \text{ mm}$	
	more than 160 kJ (Class Sc)	
	Median side $H = 250 \text{ mm}$ (raised median)	
	520	
	On-ramp	
	Steel railing $H = 900$ (same as Bago	
NL 1	River Bridge median)	
Noise barrier Guard fence	Not considered Not considered	
	Considered	
Lighting		
Equipment	Bago River Bridge Water pipe (φ 45 cm × 2 lanes) W = 6.0 kN/m	YCDC water
	0.7 kN/m^2 for all width is considered as future installation plan	resources
	Flyover and On-ramp bridge	department
	Not installed	aepurument
Inspection ladder	Bago River Bridge (steel girder)	
1	Installation of inspection ladder in steel box girder	
	Flyover, On-ramp bridge, PC girder of Bago River Bridge	
	Not installed	
Drainage	Steel catch pit (manufactured product) will collect surface water.	
	Discharged water will be drained directly to the river where the	
	drainage pipe is on the river, and will be gathered and drained to the	
	channel where the drainage pipe is on land.	
	Design rainfall intensity: 149 mm/h	
Pavement	Steel cable-stayed girder, steel box girder	
	Polymer-modified asphalt pavement, $t = 80 \text{ mm}$	
	PC box girder, Flyover	
Watamagafing	Normal asphalt, t = 80 mm	
Waterproofing layer	Install under pavement (liquid coating)	

Table 4.1.6 Bridge Attachments

4.2 STUDY ON CABLE-STAYED BRIDGE

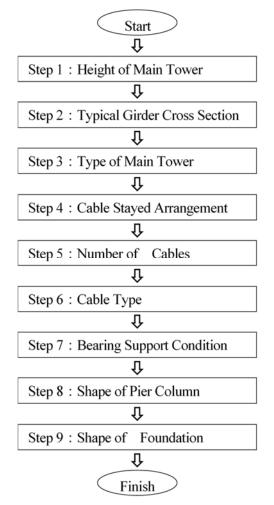
[Basic Design Stage]

4.2.1 Selection of Type of Cable-stayed Bridge

4.2.1.1 Review of the F/S Design

In the F/S, cable-stayed bridge was applied for the vessel operating route (span length = 224 m). The following table shows the applicable bridge types at each span.

Brie	Span Length (m) lge Type	Typical Cross Section	50 100 150 200 250 500 1000 10 20 30 40 1 60 70 80 90 1 110 120 130 140 1 160 170 180 190 1 234 1 1
	Simple Composite H-Girder	TERRET	
	Simple Non-composite I-Girder	1	64
	Simple Composite I-Girder	5252	69
	Simple Non-composite Box Girder		ý 92
	Simple Composite Box Girder		75
Bridg	Continuous Non-composite I-Girder	1521521	O 59
Plate Girder Bridge	Continuous Non-composite Box Girder		
Plate (Steel Plate Deck I-Girder	Sanahamana and	0 50
ĩ.	Steel Plate Deck Box Girder	Canada a name a name	0.250
Ī	Simple I-Girder (PC/Composite Slab)		
	Continuous I-Girder (PC/Composite Slab)		79.5
	Narrow Box Girder (PC/Composite Slab)		85
1	Open Box Girder		st 7
me	Rigid Frame (π-Shape)	The second secon	0 124
Rigid Frame	Rigid Frame (V-Shape)	도소 오늘	0 129
Ku	Continuous Rigid Frame		
	Simple Truss Bridge	(according)	Q 164
Truss	Continuous Truss Bridge (Gerber Truss)		0.510
	Truss Bridge (PC/Composite Slab)	A.	
	Langer	ATTIN	0 156
	Deck Langer	the dis	140
	Lohse		C 280
ch	Deck Lohse	Allow Alle	
Arch	Langered truss	AMMA	© 156
	Trussed Langer	ALLE A	0 175 J
	Nieken Lohse		
	Unstiffened Arch	the the	Co 297
able	Stayed Bridge		Classical classi
uspe	nsion Bridge	un and a start	


Table 4.2.1 Applicable Span of Steel Bridge

Based on the table, 1) Continuous Truss Bridge (Gerber Truss), 2) Nielsen Bridge, 3) Cable-stayed Bridge, and 4) Suspension Bridge can be applied for that span length. However, because of the following reasons, only the Cable-stayed Bridge can be applied in this Project:

- 1) Continuous Truss Bridge (Gerber Truss): Usually, continuous truss bridge is applied for around 100 m span length. In case of more than 100 m span, Gerber Truss will be applied, but it is not good for maintenance and construction cost will become expensive.
- 2) Nielsen Bridge: In order to construct a Nielsen Bridge, cable construction method or large block erection method should be applied. However, both of the mentioned construction methods cannot be applied at the project site.
- 4) Suspension Bridge: Anchorage (anchor block for cable) is necessary for Suspension Bridge. However, there are no space available to construct the anchorage at the project site.

4.2.1.2 Flow Chart of Basic Design for Cable-stayed Bridge

In the B/D stage, the following items were considered and the best structure type was selected for each item:

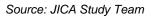
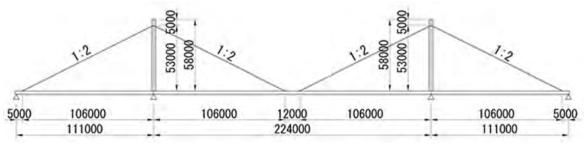



Figure 4.2.1 Flow Chart of the Basic Design for Cable-stayed Bridge

4.2.2 Superstructure of Cable-stayed Bridge

4.2.2.1 Height of the Main Tower

Generally, the most economical gradient of the top cable of cable-stayed bridge is 1:2. In this Project, side span is 112 m (girder length :111 m) and top cable is fixed at 5 m from the end of the girder at the girder side. Therefore, considering the economical cable gradient (1:2), the height of the main tower is (111-5) / 2 = 53 m. Therefore, considering the work space at the top of the main tower for cable fixing, the total height of the main tower is decided as 53 + 5 = 58 m.

Source: JICA Study Team

Figure 4.2.2 Gradient of Top Cable

4.2.2.2 Typical Girder Cross Section

(1) Typical Girder Cross Section

For the typical girder cross section, three types of cross section (Wide Box Cross Section, Conventional Box Cross Section, Narrow Box Cross Section) were compared. Based on the comparison results, <u>"Conventional Box Cross Section"</u> was selected as the best type.

(2) Type of Rib for Slab

As for the type of rib for the steel deck slab, Flat Rib and U Rib can be applied. Based on the comparison results, <u>U Rib</u> was selected as the best type (as for the rib under median and barrier, plate rib will be applied).

(3) Height of Bracket

The height of the bracket at the cable-stayed bridge was changed from 1.2 m to 1.6 m, and the bracket weight was compared. Based on the comparison results, <u>"Bracket Height = 1.3 m"</u> was selected as the best type.

(4) Block Width

In order to transport the main girder from the factory to the project site, the main girder will be divided into blocks in the longitudinal direction and transverse direction.

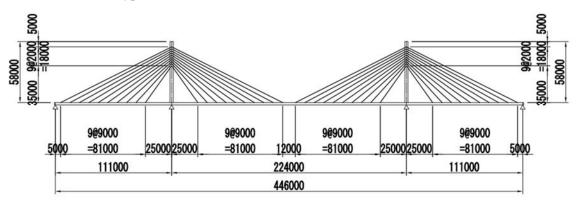
The block width in the transverse direction was studied. Based on the comparison results, <u>"Block Maximum Width = 3.06 m"</u> was selected as the best type.

(5) Diaphragm Plate Thickness

The plate thickness of intermediate diaphragm was studied. As a result, <u>"Diaphragm plate thickness = 9 mm"</u> was enough for the outer cell and inner cell.

4.2.2.3 Types of Main Tower

(1) Comparison of Main Tower Types


Three types of main tower (Single Tower, A-Shape Tower, Twin Tower) were compared. Based on the comparison results, <u>"Single Tower"</u> was selected as the best type.

(2) Pylon Width

The study of pylon width is based on the case of an anchor girder type as a typical anchor structure. The basic cross section to be studied is 2.5 m (width) x 3.0 m.

4.2.2.4 Cable-stayed Arrangement

Three types of cable-stayed arrangement (Harp Arrangement, Fan Arrangement, Semi Fan Arrangement) were compared. Based on the comparison results, <u>"Semi Fan Arrangement"</u> was selected as the best type.

Source: JICA Study Team

4.2.2.5 Number of Cables

Three types of the number of cables at the left (right) side of the pylon (11 Cables, 10 Cables, 9 Cables) were compared. Based on the comparison results, <u>"10 Cables (Total: 40 Cables)</u>" was selected as the best type.

4.2.2.6 Cable Type

(1) Comparison of Types of Cables

Three cable types (New Parallel Wire Strand Type, FUT-H Strand Type, Locked Coil Type) were compared. Based on the comparison results, <u>"FUT-H Strand Cable"</u> was selected as the best type.

(2) Anchor Study

1) Pylon Anchor Structure

Three types of pylon anchor structure (Anchor Girder, Anchor Plate, Saddle) were compared. Based on the comparison results, <u>"Anchor Girder"</u> was selected as the best type.

2) Girder Anchor Structure

Four types of girder anchor structure (Anchor Girder, Vertical Beam, Pipe Anchor, Vertical Girder) were compared. Based on the comparison results, <u>"Anchor Girder"</u> was selected as the best type.

4.2.2.7 Support Condition

Three types of support condition (M-F-M-M, M-F-F-M, E-E-E) were compared. Based on the comparison results, <u>"M-F-F-M Support"</u> was selected as the best type.

4.2.3 Substructure of Cable-stayed Bridge

4.2.3.1 Shape of Pier Column at P11 and P12

Three types of shape of pier column at the intermediate pier of cable-stayed bridge (P11, P12) (Round Shape, Oval Shape, Oval Shape without overhang section) were compared. Based on the comparison results, <u>"Oval Shape"</u> was selected as the best type.

4.2.3.2 Shape of Pier Column at P10 and P13

Three types of shape of pier column at the side pier of cable-stayed bridge (P10, P13) (Round Shape, Oval Shape, Oval Shape without overhang section) were compared. Based on the comparison results, <u>"Oval Shape"</u> was selected as the best type.

4.2.4 Foundation of Cable-stayed Bridge

4.2.4.1 Diameter of Steel Pipe Sheet Pile

(1) Study of Steel Pipe Sheet Pile Diameter (P11 and P12)

In the F/S stage, the diameter of the steel pipe sheet pile was planned to be 1000 mm. Here, a comparison of the diameters D = 1000 mm, 1200 mm and 1500 mm was conducted. Based on the comparison results, <u>" ϕ 1200 mm"</u> was selected as the best type.

(2) Study of Steel Pipe Sheet Pile Diameter (P10 and P13)

Same as for P11 and P12, a comparison of the pile diameters at P10 and P13 was conducted. Based on the comparison results, <u>" ϕ 1200 mm</u>" was selected as the best type.

4.2.4.2 Shape of Foundation at P11 and P12

In Section 4.2.4.1, pile diameter of φ 1200 mm was selected. The shape of foundation was studied and three types (Rectangular Shape, Round Shape, Oval Shape) were compared. Based on the comparison results, <u>"Oval Shape"</u> was selected as the best type.

4.2.4.3 Shape of Foundation at P10 and P13

Same as for P11 and P12, comparison of the shape of foundation at P10 and P13 was conducted. Based on the comparison results, <u>"Oval Shape"</u> was selected as the best type.

4.2.5 Bridge Accessories

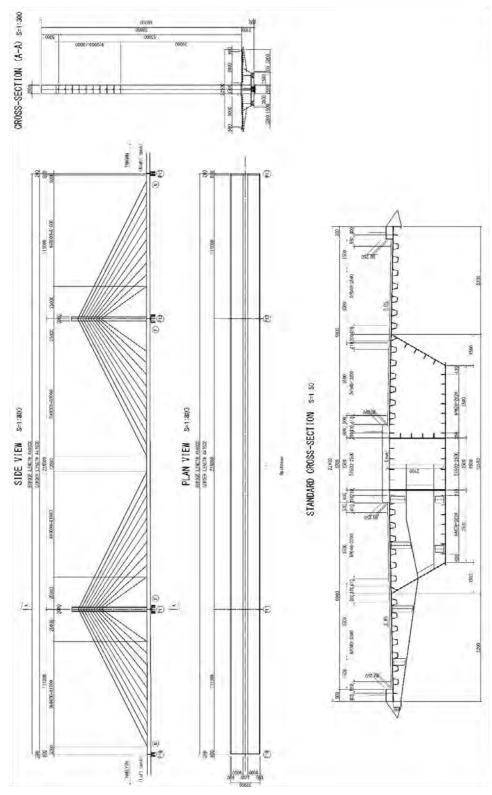
4.2.5.1 Bearing

(1) Edge Support Bearing

Structurally, since negative reaction forces normally act on the edge support points in cable-stayed bridges, a bearing structure which resist the reaction force is necessary. Also, since the edge support of the bridge needs a movable bearing due to temperature variation, a rocking bearing has generally been used for this occasion. The rocking bearing supports a vertical reaction force in both positive and negative directions, and is structured such that it can follow the movement of the girder in the longitudinal direction through a link structure provided above and below.

(2) Pylon Section Bearings

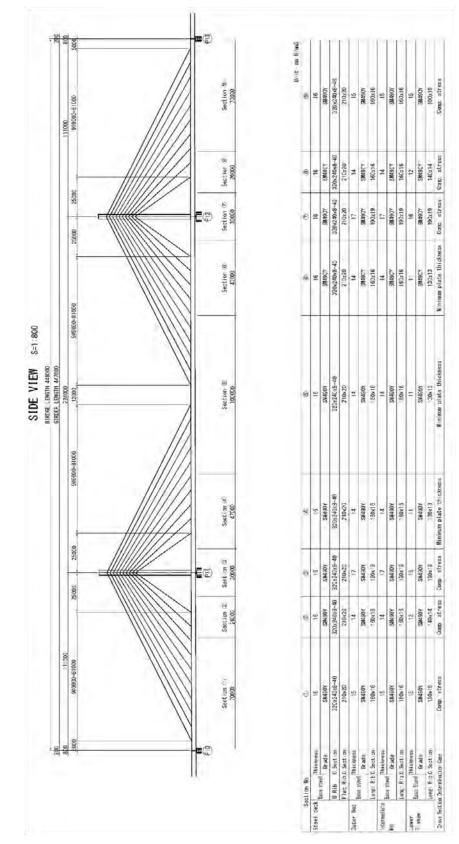
Applicable bearings under the pylon support point are shown below. The reaction forces in this point are big and the rotation movement should not be restricted, so <u>pivot bearing was selected</u>.


4.2.5.2 Expansion Joint

In long span bridges (similar to this bridge), expansion joints which can follow a big amount of expansion/contraction is necessary. The following types of expansion joints can be selected from a conventional construction record. In this bridge, based on the summary of expansion amount, <u>Modular Expansion Joint</u> was selected.

4.2.6 Basic Design Results

4.2.6.1 Superstructure Basic Design Results


(1) Superstructure

Source: JICA Study Team

Figure 4.2.4 B/D Results for Superstructure

(2) Main Girder Cross Section

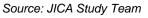
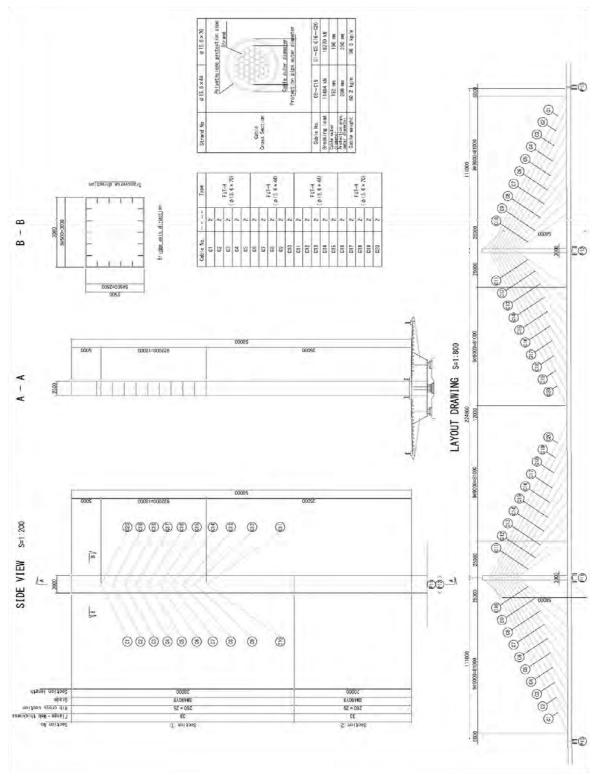
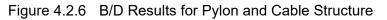
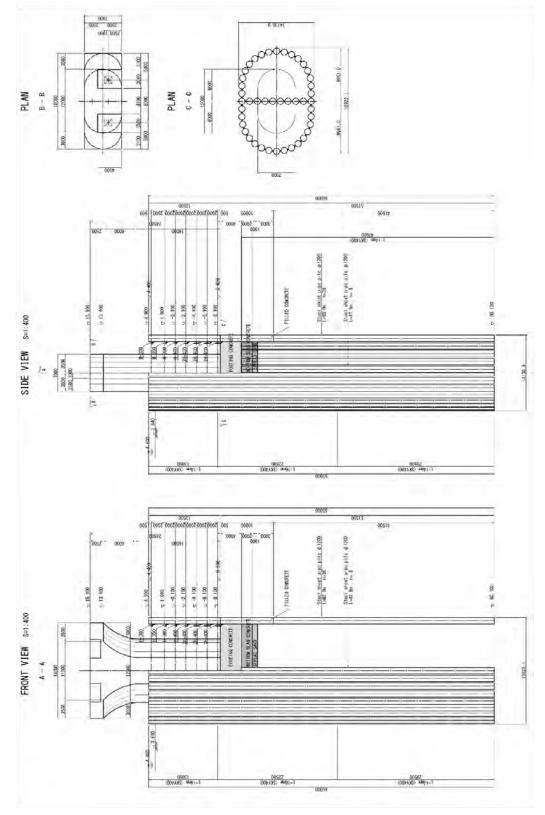
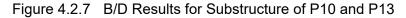




Figure 4.2.5 B/D Results for Main Girder Cross Section

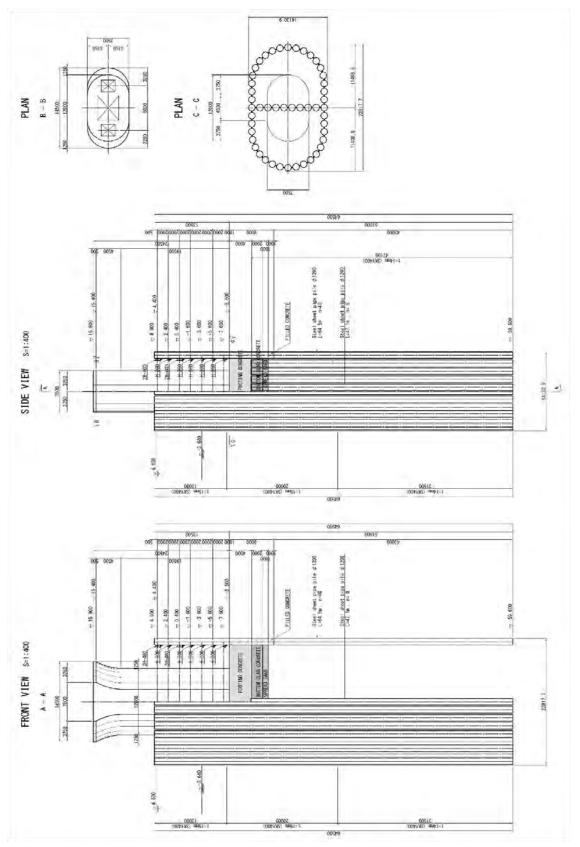
(3) Pylon and Cable Structure



Source: JICA Study Team

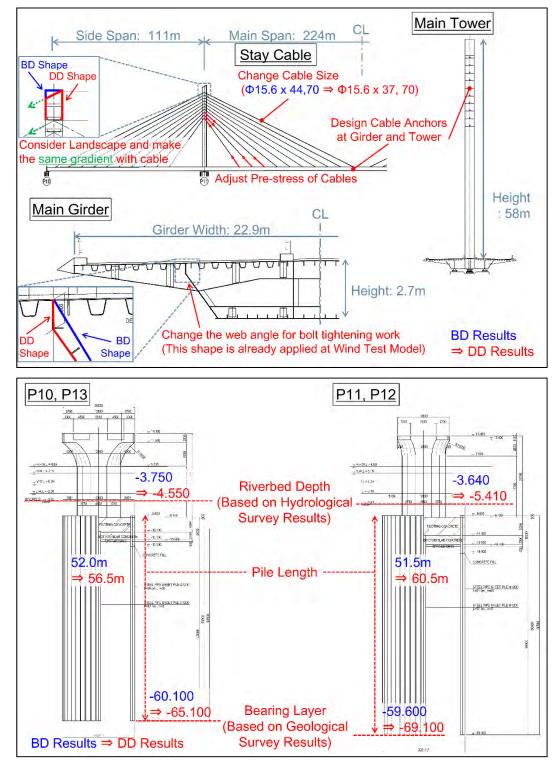


4.2.6.2 Substructure Basic Design Results

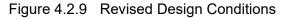

(1) P10 and P13

(2) P11 and P12

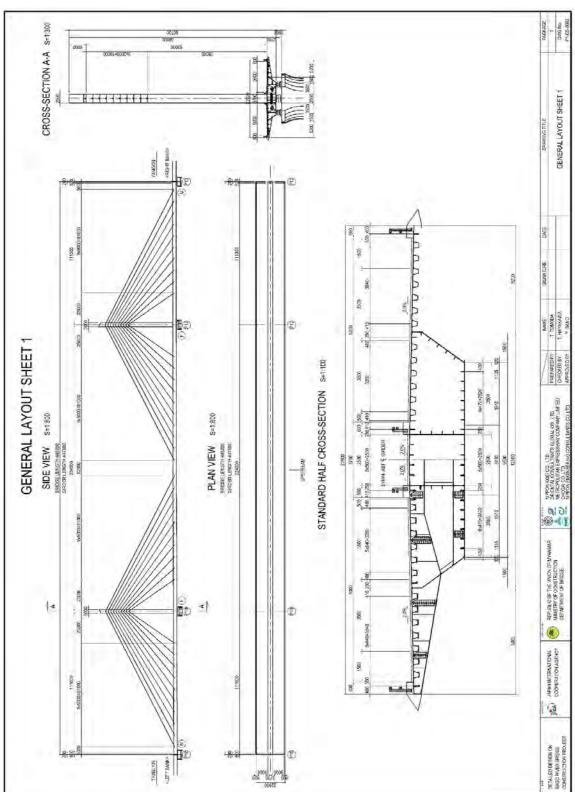
Source: JICA Study Team



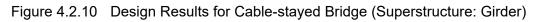
[Detailed Design Stage]

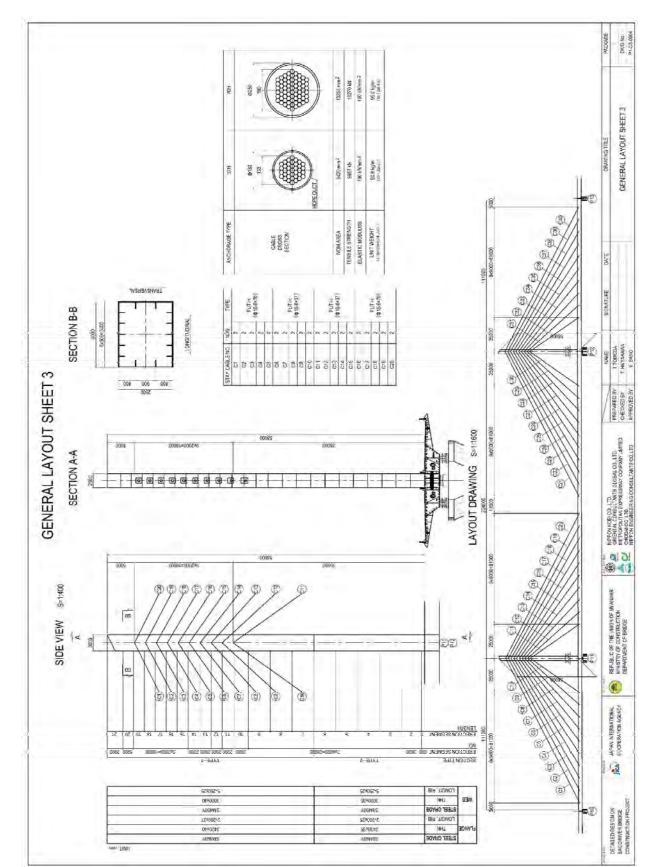

4.2.7 Summary of Detailed Design

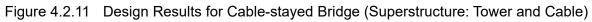
4.2.7.1 Review of Design Conditions

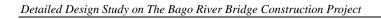

Some design conditions were revised from the B/D to the D/D as shown in the figure below.

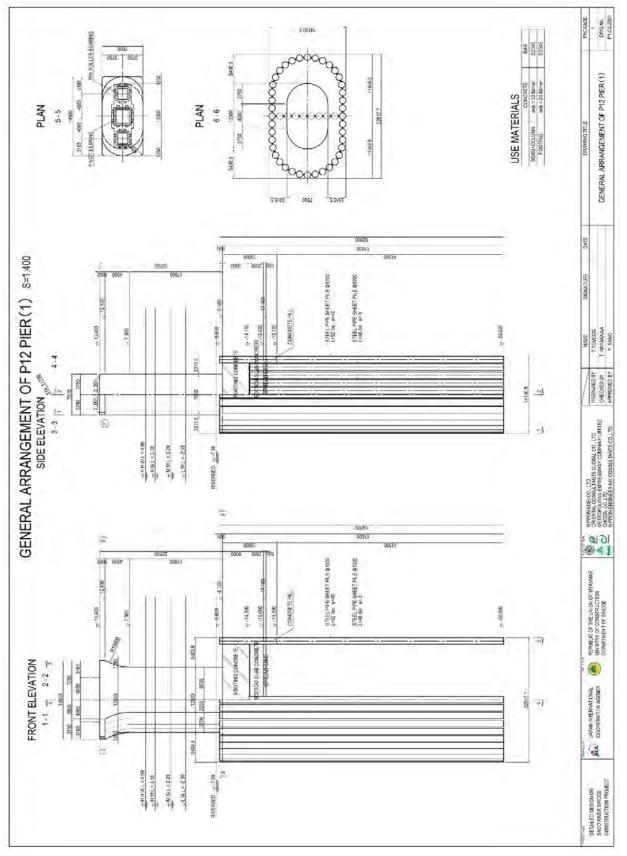
Source: JICA Study Team



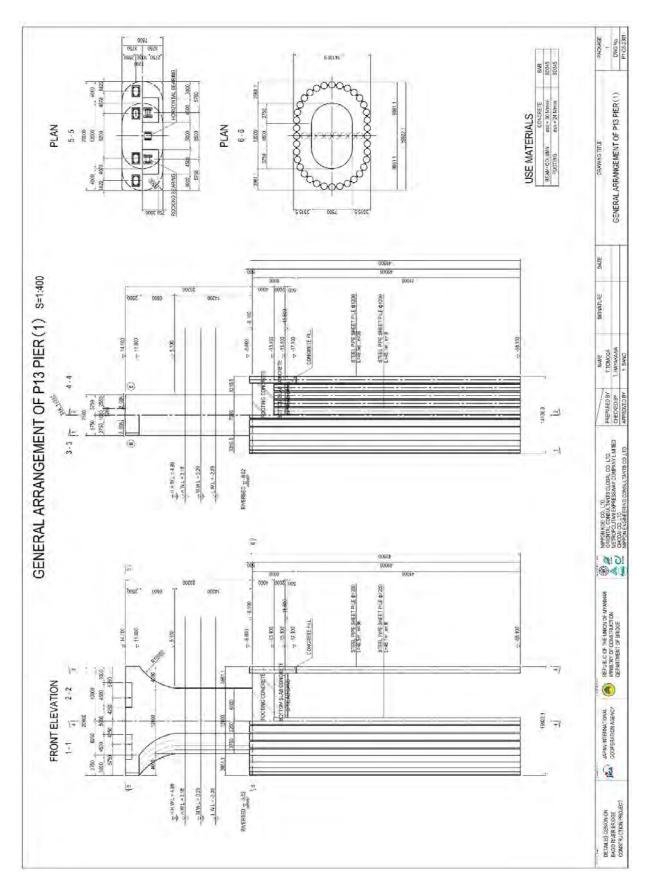

4.2.7.2 Detailed Design Results


The D/D results for the cable-stayed bridge are shown in the figure below.

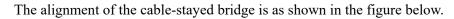

Source: JICA Study Team

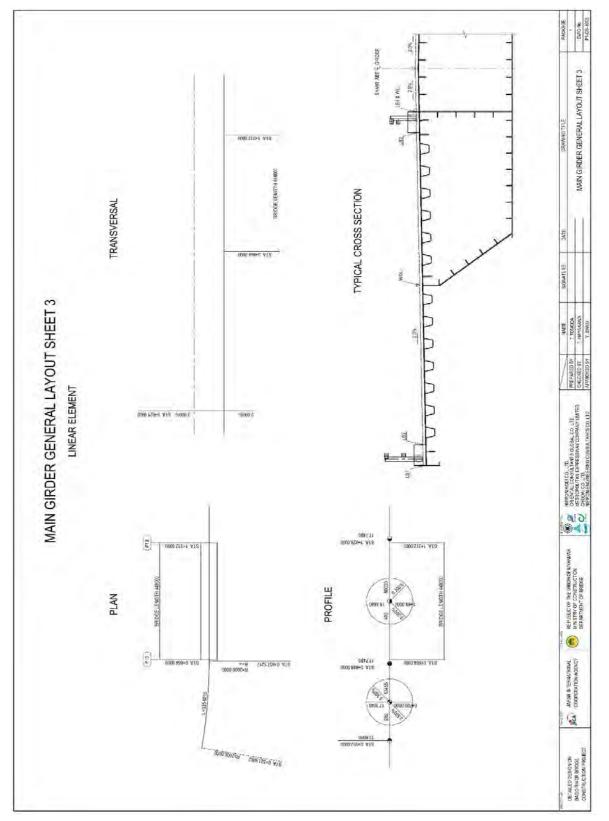


Source: JICA Study Team

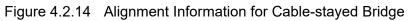


Source: JICA Study Team





4-25


Figure 4.2.13 Design Results for Cable-stayed Bridge (Substructure: P10, P13)

4.2.8 Alignment Calculation

Source: JICA Study Team

4.2.9 Summary of Superstructure Design

4.2.9.1 Design Calculation of Steel Deck

- Design Results

The cross sections of the longitudinal rib, transverse rib, brackets, and vertical side girder were decided based on the maximum stress resultants of each member. (For reference, evaluation results based on the JSHB are shown in the following tables.)

Transverse Rib (Outer web - Inner Web)			AASI	ITO	JSHB
Transv	erse Kib (Outer web -	liller web)	Design Truck	Design Tandem	B Live Load
	Deck	Thickness: t	16	16	16
Section	Bottom flange	Width x t	240 x 10	240 x 10	240 x 10
	Web	Height x t	700 x 9	700 x 9	700 x 9
	Deck		SM400	SM400	SM400
Material	Bottom flange		SM490Y	SM490Y	SM490Y
	Web		SM490Y	SM490Y	SM490Y
	Deck	Bending Stress	31	39	43
	Deck	Allowable Value	140	140	140
	D. 11 (1	Bending Stress	-56	-71	-78
	Bottom flange	Allowable Value	172	172	172
Stress	337.1	Shear Stress	26	34	49
	Web	Allowable Value	120	120	120
	Composite	Composite Stress	0.12	0.19	0.30
	Defective Part	Vertical Shear	42	54	79
		Horizontal Shear	53	68	100
	Results	()	0.78	1.02	1.2
Deformation	Allowable Value	(mm)	10.0	10.0	10.0
			4 A CI	ITO	ICUID
Trans	verse Rib(Inner Web -	Inner Web)	AASH		JSHB
Trans		,	Design Truck	Design Tandem	B Live Load
	Deck	Thickness: t	Design Truck 16	Design Tandem 16	B Live Load
Trans	Deck Bottom flange	Thickness: t Width x t	Design Truck 16 150 x 10	Design Tandem 16 150 x 10	B Live Load 16 150 x 10
	Deck Bottom flange Web	Thickness: t	Design Truck 16 150 x 10 350 x 9	Design Tandem 16 150 x 10 350 x 9	B Live Load 10 150 x 10 350 x 9
Section	Deck Bottom flange Web Deck	Thickness: t Width x t	Design Truck 16 150 x 10 350 x 9 SM400	Design Tandem 16 150 x 10 350 x 9 SM400	B Live Load 10 150 x 10 350 x 9 SM400
	Deck Bottom flange Web Deck Bottom flange	Thickness: t Width x t	Design Truck 16 150 x 10 350 x 9 SM400 SM400	Design Tandem 16 150 x 10 350 x 9 SM400 SM400	B Live Load 10 150 x 10 350 x 9 SM400 SM400
Section	Deck Bottom flange Web Deck	Thickness: t Width x t Height x t	Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400	Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400	B Live Load 10 150 x 10 350 x 9 SM400 SM400 SM400
Section	Deck Bottom flange Web Deck Bottom flange	Thickness: t Width x t Height x t Bending Stress	Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3	Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3	B Live Load 10 150 x 10 350 x 9 SM400 SM400 8 SM4
Section	Deck Bottom flange Web Deck Bottom flange Web	Thickness: t Width x t Height x t Bending Stress Allowable Value	Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140	Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140	B Live Load 10 150 x 10 350 x 9 SM400 SM400 SM400 2 140
Section	Deck Bottom flange Web Deck Bottom flange Web	Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress	Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9	Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9	B Live Load 16 150 x 10 350 x 9 SM400 SM400 8 400 8 140 -22
Section Material	Deck Bottom flange Web Deck Bottom flange Web Deck	Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value	Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131	Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131	B Live Load 16 150 x 10 350 x 9 SM400 SM400 8 140 -22 13
Section	Deck Bottom flange Web Deck Bottom flange Web Deck	Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress	Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4	Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4	B Live Load 16 150 x 10 350 x 5 SM400 SM400 SM400 8 140 -22 13 10
Section Material	Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange Web	Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress Allowable Value Shear Stress Allowable Value	Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80	Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80	B Live Load 16 150 x 10 350 x 9 SM400 SM400 8 144 -22 13 10 8
Section Material	Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange	Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress Allowable Value Composite Stress	Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01	Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01	B Live Load 10 150 x 10 350 x 9 SM400 SM400 SM400 8 144 -22 133 10 8 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
Section Material	Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange Web	Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress Allowable Value Composite Stress Vertical Shear	Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01	Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01 11	B Live Load
Section Material	Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange Web Composite Defective Part	Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress Allowable Value Composite Stress	Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 SM400 31 140 -9 131 4 80 0.01 11 4	Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01 11 4	B Live Load
Section Material	Deck Bottom flange Web Deck Bottom flange Web Deck Bottom flange Web	Thickness: t Width x t Height x t Bending Stress Allowable Value Bending Stress Allowable Value Shear Stress Allowable Value Composite Stress Vertical Shear	Design Truck 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01	Design Tandem 16 150 x 10 350 x 9 SM400 SM400 SM400 3 140 -9 131 4 80 0.01 11	

 Table 4.2.2
 Design Results for Steel Deck (Transverse Rib)

Bracket (at end)			AASH	ITO	JSHB
	Dracket (at end)		Design Truck	Design Tandem	B Live Load
	Deck	Thickness: t	16	16	16
Section	Bottom flange	Width x t	370 x 15	370 x 15	370 x 15
	Web	Height x t	1300 x 10	1300 x 10	1300 x 10
	Deck		SM400	SM400	SM400
Material	Bottom flange		SM490Y	SM490Y	SM490Y
	Web		SM490Y	SM490Y	SM490
	Deck	Bending Stress	37	43	5
	Deck	Allowable Value	140	140	14
	Dettern flames	Bending Stress	-109	-126	-14
	Bottom flange	Allowable Value	160	160	16
Stress	Web	Shear Stress	37	41	5.
	web	Allowable Value	120	120	12
	Composite	Composite Stress	0.35	0.47	0.6
	Defective Part	Vertical Shear	46	52	6
		Horizontal Shear	75	84	10
Deformation	Results	()	2.89	3.44	4.12
Deformation	Allowable Value	(mm)	17.3	17.3	17.3
			4 4 51	ITO	JSHB
	Bracket (at intermedi	iate)	AASHTO Design Truck Design Tandem		B Live Load
	Deck	Thickness: t	16	16	16
Section	Bottom flange	Width x t	240 x 15	240 x 15	240 x 1
	Web	Height x t	1300 x 9	1300 x 9	1300 x
	Deck	0	SM400	SM400	SM40
Material	Bottom flange		SM490Y	SM490Y	SM490
	Web		SM490Y	SM490Y	SM490
		Bending Stress	24	29	31
	Deck	Allowable Value	140	140	14
		Bending Stress	-89	-105	-11
	Bottom flange	Allowable Value	119	119	11
Stress		Shear Stress	28	34	4
	Web	Allowable Value	120	120	12
	Composite	Composite Stress	0.23	0.32	0.3
	composite	composite biress	0.25	0.52	0.5

Table 4.2.3	Design Results for Steel Deck (B	Bracket)
-------------	----------------------------------	----------

Deformation

Defective Part

Allowable Value

Results

	Table 4.2.4	Design Results for Steel Deck	(Longitudinal Rib)
--	-------------	-------------------------------	--------------------

35

56

2.44

17.3

43

69

2.96

17.3

51

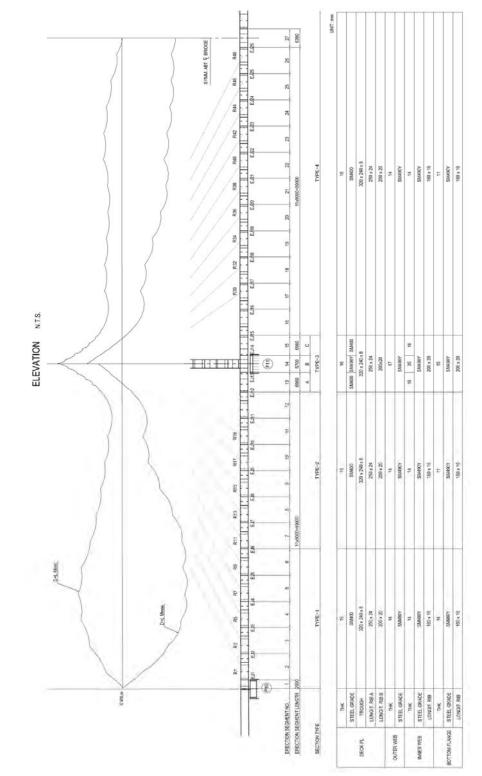
82

3.07

17.3

Vertical Shear

(mm)


Horizontal Shear

	Lauritudinal Dib		AASI	AASHTO					
	Longitudinal Rib			Design Tandem	B Live Load				
Section	Deck	Thickness: t	16	16	16				
Section	Longi. Rib	Shape	U-320x240x8	U-320x240x8	U-320x240x8				
Material	Deck		SM400	SM400	SM400				
Material	Longi. Rib		SM400	SM400	SM400				
	Deck	Bending Stress	-35	-32	-41				
	Deck	Allowable Value	140	140	140				
	Bottom Edge of	Bending Stress	89	81	105				
Stress	Longi. Rib	Allowable Value	140	140	140				
	Wahafianai Dib	Bending Stress	12	11	16				
	Web of Longi. Rib	Allowable Value	80	80	80				
	Composite		0.43	0.35	0.60				
	Results	()	2.12	2.52	3.02				
Deformation	Allowable Value	(mm)	5.0	5.0	5.0				

4.2.9.2 Design Calculation for Main Girder

- Calculation Results for Cross Section of Main Girder

The calculation results for the cross section of the main girder are shown in the figure below.

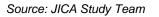
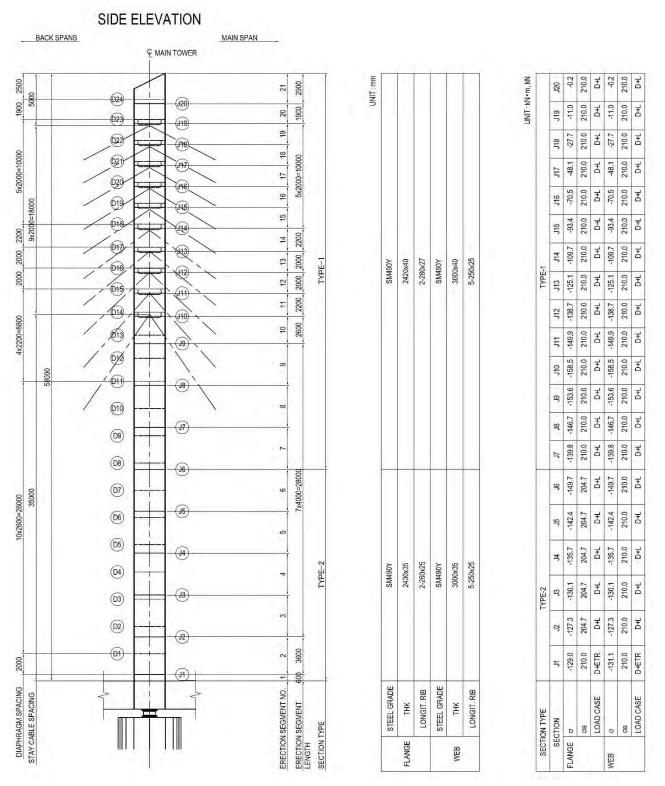



Figure 4.2.15 Cross Sectional Diagram of Main Girder

4.2.9.3 Design Calculation for Main Tower

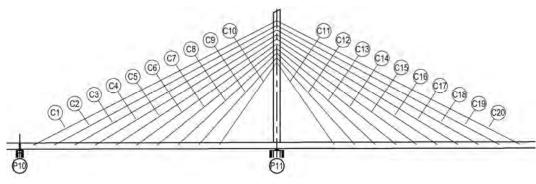
- Calculation Results for Cross Section of Main Tower

Calculation results for the cross section of the main tower are shown in the figure below.

Source: JICA Study Team

Figure 4.2.16 Calculation Results for Cross Section of Main Tower

4.2.9.4 Design Calculation for Cable


(1) Stay Cable

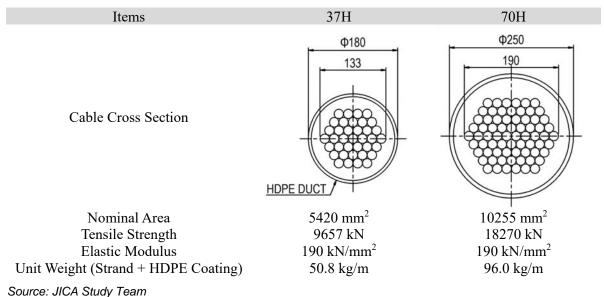
The calculated results of the cable tension and cross section of the stay cable are shown in the table below.

No.	Load	Tension (kN)	Cable Type
C1	Cable Tension max(all)	6616.6	φ15.6 * 70
C2	Cable Tension max(all)	5935.1	φ15.6 * 70
C3	Cable Tension max(all)	5322.2	φ15.6 * 70
C4	Cable Tension max(all)	5033.1	φ15.6 * 70
C5	Cable Tension max(all)	5291.6	φ15.6 * 70
C6	Cable Tension max(all)	3144.2	φ15.6 * 37
C7	Cable Tension max(all)	3457.4	φ15.6 * 37
C8	Cable Tension max(all)	3675.1	φ15.6 * 37
C9	Cable Tension max(all)	3752.1	φ15.6 * 37
C10	Cable Tension max(all)	3628.3	φ15.6 * 37
C20	Cable Tension max(all)	5622.5	φ15.6 * 70
C19	Cable Tension max(all)	5335.9	φ15.6 * 70
C18	Cable Tension max(all)	5150.0	φ15.6 * 70
C17	Cable Tension max(all)	5177.1	φ15.6 * 70
C16	Cable Tension max(all)	5488.0	φ15.6 * 70
C15	Cable Tension max(all)	3227.5	φ15.6 * 37
C14	Cable Tension max(all)	3521.6	φ15.6 * 37
C13	Cable Tension max(all)	3696.9	φ15.6 * 37
C12	Cable Tension max(all)	3738.0	φ15.6 * 37
C11	Cable Tension max(all)	3607.9	φ15.6 * 37

Table 4.2.5 Cable Tension and Cross Section

Source: JICA Study Team

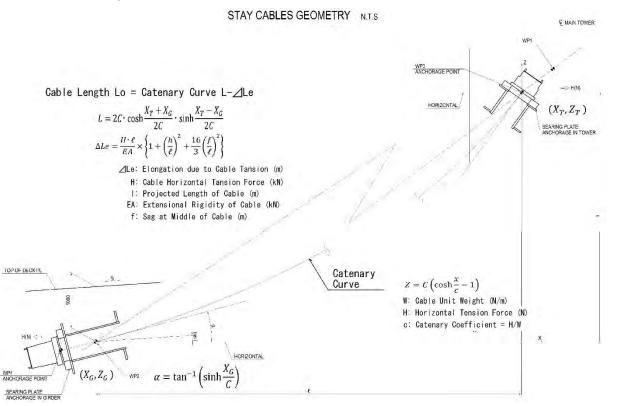
Source: JICA Study Team

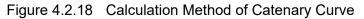

Figure 4.2.17 Cable Number

The safety ratio for the cable structure in a cable-stayed bridge is "2.5" in the JSHB. Evaluation result is as follows:

Cable No.	Max. Tension	Cable Strength	Safety Ratio
C1-C2, C16-C20 (70H)	6617 kN	18270 kN	2.76 > 2.5 (OK)
C6-C10, C11-C15 (37H)	3752 kN	9657 kN	2.57 > 2.5 (OK)
Source: JICA Study Team			

Table 4.2.6 Evaluation of Cable Tension


The selected cable cross section is as follows:


Table 4.2.7 Cross Section of Stay Cable

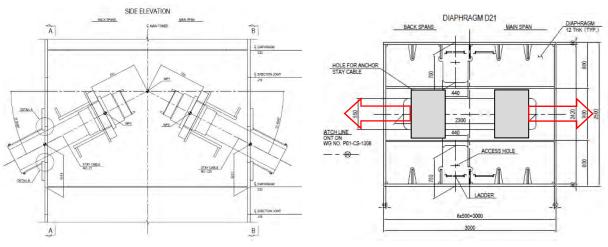
(2) Calculation of Stay Cable Length

The stay cable length is calculated by considering the "Catenary Curve". The calculation method is shown in the figure below.

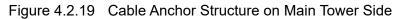
4.2.9.5 Study on Cable Pre-stressing Force

The study results are shown in the table below.

Sec	tion	Element	PS(kN)	Section	on	Element	PS(kN)	Sec	tion	Element	PS(kN)	Sec	tion	Element	PS(kN)
	Jpper	401	<u>720</u>		per	411	<u>1420</u>		per	421	<u>1420</u>		per	431	<u>720</u>
	Upj	402	<u>330</u>		[d]	412	<u>650</u>		Upj	422	<u>650</u>		Uppo	432	<u>330</u>
0		403	<u>0</u>	=		413	<u>20</u>	12		423	<u>20</u>	3		433	<u>0</u>
P1		404	<u>-170</u>			414	<u>-360</u>	PP-		424	<u>-360</u>	P1		434	<u>-170</u>
Span		405	<u>-50</u>	Span		415	<u>-400</u>	oan		425	<u>-400</u>	an		435	<u>-50</u>
		406	<u>210</u>			416	<u>-20</u>	ı Sp		426	<u>-20</u>	Sp		436	<u>210</u>
Side		407	<u>470</u>	Main		417	<u>220</u>	Main		427	<u>220</u>	Side		437	<u>470</u>
<i>S</i>		408	<u>700</u>			418	<u>470</u>	Ν	ч	428	<u>470</u>	<i>S</i>	5	438	<u>700</u>
	wer	409	<u>1010</u>		wer	419	<u>810</u>		wei	429	<u>810</u>		wer	439	<u>1010</u>
	Lo	410	<u>1450</u>	+	Го	420	<u>1300</u>		Lo	430	<u>1300</u>		Lo	440	<u>1450</u>


Table 4.2.8	Study F	Results for	^r Cable	Pre-stressing
-------------	---------	-------------	--------------------	---------------

Source: JICA Study Team


4.2.9.6 Study on Cable Anchorage Structure

(1) Anchor Structure on Main Tower

The Anchor Girder Structure, which transmits the differences of horizontal cable tensions and the vertical forces to the main tower from the anchor girder via a diaphragm and inner vertical plates, was selected.

(2) Anchor Structure on Main Girder

The Anchor Girder Structure, which transmits the cable tension to the entire main girder via inner web, was selected. Although the Anchor Girder Structure tends to require a thicker web plate thickness, its physical characteristics are simple and clear.

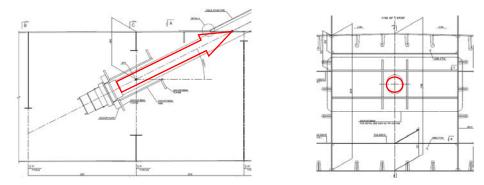


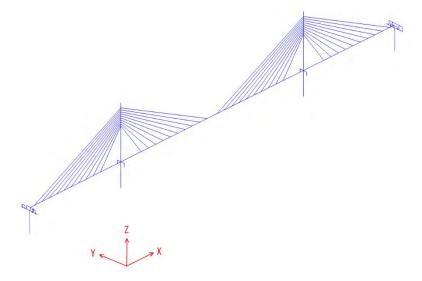
Figure 4.2.20 Cable Anchor Structure on Main Girder

(3) Evaluation Results for Web at the Main Girder and Tower

Evaluation results for the inner web where the additional stress is concerned are shown in the table below.

Output Line (Inner Web)		Stress (N/mm ²)	Allowable Value (N/mm ²)	Results
Tower	A-A Line	$50 \sim 160$	210	OK
Tower	B-B Line	$50 \sim 150$	210	OK
Cinden	A-A Line	$50 \sim 100$	143	OK
Girder	B-B Line	$50 \sim 100$	143	OK

Table 4.2.9 Stress at Inner Web


Source: JICA Study Team

In the design calculation, cross section of the web was decided by considering additional stress which was estimated by a simple calculation around the web. Furthermore, the safety performance of the web was confirmed through the FE analysis.

4.2.9.7 Static Structure Analysis

(1) Analysis Principle

The analysis model is shown in the figure below.

Figure 4.2.21 Frame Analysis Model

(2) Loading Combinations

a) Design Section Force of Superstructure

Table 4.2.10 Loading Combination (Design Stress Resultants for Superstructure)

							Wind Transverse		Seismic			
Case	Name	Increase Coefficient	Dead Load	PS	Live Load	Temperature			Longitudinal		Transverse	
		coefficient	Load				WTR \uparrow	WTR↓	$\text{ELG} {\rightarrow}$	ELG←	ETR ↑	ETR \downarrow
Dead Load	D[Db+Da+PS]: Dead Load+PS	1.00	0	0								
Normal	D+L	1.00	0	0	PICK UP							
Temperature	D+L+T	1.15	0	0	PICK UP	PICK UP						
	D+WgTR \uparrow (D+WtTR \uparrow)	1.25	0	0			0					
Wind	$D+WgTR \downarrow (D+WtTR \downarrow)$	1.25	0	0				0				
wind	D+L+WgTR \uparrow (D+L+WtTR \uparrow)	1.25	0	0	PICK UP		○x0.5					
	$D+L+WgTR \downarrow (D+L+WtTR \downarrow)$	1.25	0	0	PICK UP			○x0.5				
	$D+WgTR \uparrow +T (D+WtTR \uparrow +T)$	1.35	0	0		PICK UP	0					
Wind +	$D+WgTR \downarrow +T (D+WtTR \downarrow +T)$	1.35	0	0		PICK UP		0				
Temperature	D+L+WgTR \uparrow +T (D+L+WtTR \uparrow +T)	1.35	0	0	PICK UP	PICK UP	○x0.5					
1	$D+L+WgTR \downarrow +T (D+L+WtTR \downarrow +T)$	1.35	0	0	PICK UP	PICK UP		○x0.5				
Seismic Performance Level 1	D+ELG→	1.50	0	0					0			
	D+ELG←	1.50	0	0						0		
	D+ETR ↑	1.50	0	0							0	
	D+ETR↓	1.50	0	0								0

Source: JICA Study Team

b) Section Force for Bearing Supports

Table 4.2.11 Loading Combination (Design Stress Resultants for Bearing Support)

						Wind Transverse		Seismic			
Case	Name	Dead Load	PS	Live Load	Temperature			Longitudinal		Transverse	
		Loud				WTR \uparrow	WTR \downarrow	ELG→	ELG←	ETR ↑	ETR \downarrow
Dead Load	D[Db+Da+PS]: Dead Load+PS	0	0								
Normal	D+L	0	0	PICK UP							
Temperature	D+L+T	0	0	PICK UP	PICK UP						
	D+WgTR \uparrow (D+WtTR \uparrow)	0	0			0					
Wind	$D+WgTR \downarrow (D+WtTR \downarrow)$	0	0				0				
Wind	D+L+WgTR \uparrow (D+L+WtTR \uparrow)	0	0	PICK UP		○x0.5					
	$D+L+WgTR \downarrow (D+L+WtTR \downarrow)$	0	0	PICK UP			○x0.5				
	$D+WgTR \uparrow +T (D+WtTR \uparrow +T)$	0	0		PICK UP	0					
Wind +	$D+WgTR\downarrow +T (D+WtTR\downarrow +T)$	0	0		PICK UP		0				
Temperature	D+L+WgTR \uparrow +T (D+L+WtTR \uparrow +T)	0	0	PICK UP	PICK UP	○x0.5					
Ĩ	$D+L+WgTR \downarrow +T (D+L+WtTR \downarrow +T)$	0	0	PICK UP	PICK UP		○x0.5				
	D+ELG→	0	0					0			
Seismic Performance	D+ELG←	0	0						0		
Level 1	D+ETR ↑	0	0							0	
Leveri	D+ETR \downarrow	0	0								0
Performance	D+SELG→	0	0					○x1.5			
	D+SELG←	0	0						Ox1.5		
	D+SETR ↑	0	0							○x1.5	
	D+SETR \downarrow	0	0								Ox1.5

(3) Analysis Results

The analysis results are as follows:

Elem	Load	Force (kN)	Elem	Load	Force (kN)
401	D+L(max)	6616.58	421	D+L(max)	5622.46
402	D+L(max)	5935.07	422	D+L(max)	5335.81
403	D+L(max)	5322.17	423	D+L(max)	5149.99
404	D+L(max)	5033.07	424	D+L(max)	5177.10
405	D+L(max)	5291.65	425	D+L(max)	5488.03
406	D+L(max)	3144.18	426	D+L(max)	3227.47
407	D+L(max)	3457.40	427	D+L(max)	3521.63
408	D+L(max)	3675.10	428	D+L(max)	3696.88
409	D+L(max)	3752.13	429	D+L(max)	3738.00
410	D+L(max)	3628.30	430	D+L(max)	3607.91
411	D+L(max)	5622.50	431	D+L(max)	6616.53
412	D+L(max)	5335.85	432	D+L(max)	5935.03
413	D+L(max)	5150.02	433	D+L(max)	5322.14
414	D+L(max)	5177.12	434	D+L(max)	5033.05
415	D+L(max)	5488.04	435	D+L(max)	5291.63
416	D+L(max)	3227.47	436	D+L(max)	3144.17
417	D+L(max)	3521.63	437	D+L(max)	3457.40
418	D+L(max)	3696.88	438	D+L(max)	3675.10
419	D+L(max)	3738.00	439	D+L(max)	3752.14
420	D+L(max)	3607.90	440	D+L(max)	3628.30

Table 4.2.12 Section Force of Cables

Source: JICA Study Team

4.2.9.8 Fatigue Design

(1) Results of Fatigue Evaluation

The example of results of the fatigue evaluation is shown below.

						-			
		Po	int-1	Poi	nt-2	Po	int-3	Ро	int-4
Position	No.	Gra	de D	Gra	de E	Gra	de E	Gra	de D
1 0311011	110.	a)	b)	a)	b)	a)	b)	a)	b)
		Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$
Near	2			****	******				
P10	3	0<85		0<65		****	******	0<88	
1 10	4			****	******	0<81		0<109	
Middle	24	1<109		****	******	1<81		1<109	
od Side	25	1<109		1<81		****	******	1<109	
Span	26	1<109		****	******	1<81		1<109	
Maan	49	1<109		1<81		****	******	1<109	
Near	50	1<109		****	******	1<81		1<109	
P11	52	2<109		****	******	2<81		2<109	
Middle	104	1<84		****	******	1<62		1<84	
of	105	1<84		1<62		****	******	1<84	
Center	106	1<84		****	******	1<62		1<84	
		Po	int-5	Poi	nt-6	Po	int-7	Ро	int-8
			de E		de E		de D		de G
Position	No.	a)	b)	a)	b)	a)	b)	a)	b)
		Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$
	2	****	******	10<68		10<92		****	*****
Near	3	18<75		****	******	18<101		****	*****
P10	4	*****	*****	24<71		24<96		*****	*****
Middle	24	****	******	50<68		50<93		****	*****
od Side	25	49<68		****	******	49<91		*****	*****
Span	26	****	*****	47<69		47<94		****	*****
	49	15<81		****	******	15<109		****	*****
Near	50	*****	******	16<81		16<109		*****	*****
P11	52	****	******	19<81		19<109		19<42	
Middle	104	****	******	33<62		33<84		****	*****
of	105	32<62		*****	******	32<84		****	*****
Center	105	*****	******	33<62		33<84		****	*****
Center	100	Po	int-9		nt-10		nt-11	Poi	nt-12
			de E		de E		de E		de E
Position	No.	a)	b)	a)	b)	a)	b)		b)
		Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	Judge	$D = \Sigma Dij$	a) Judge	$D = \Sigma Dij$
	2	*****	*****	Judge	$D - 2 D_{ij}$	*****	*****	10<68	$D - 2 D_{ij}$
Near				****	******			10<08	******
P10	3 4	0<65 ****	******			18<75 ****	******		
Middle	-	****	*****	0<81		****	*****	24<71	
Middle	24			1<81	******			50<68 ****	******
od Side	25	1<81 *****	******			49<68 ****	******		
Span	26			1<81				47<69	
Near	49	1<81		****	******	15<81			******
P11	50	****	******	1<81		****	*****	16<81	
	52	****	******	2<81		****	******	19<81	
Middle	104	****	******	1<62		****	*****	33<62	
of	105	1<62		****	******	32<62		****	*****
Center	106	****	*****	1<62		****	*****	33<62	

Table 4.2.13	Example of Results of Fatigue Evaluation (1	1)
--------------	---	----

Note: a) is the simple fatigue evaluation, b) is the detailed fatigue evaluation

(2) Fatigue Evaluation of the Cable Anchorage Member

Similar to the main girder, an evaluation of fatigue is performed for the cable anchorage member.

4.2.9.9 Welding Design

(1) Calculation for Main Girder Welds

The results of the calculation for the main girder welds are listed below.

	tu	tw	Str	ess	Allowat	ole Value		Fillet	Weldin	g Size	
Section	tl	tw	τ	σ	τα	σa	S1	S2	Sreq	$\sqrt{(2 \cdot t)}$	S
	(mm)	(mm)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(mm)	(mm)	(mm)	(mm)	(mm)
EJ2	16	14	31.1	-27.7	120	210	2.57	2.36	2.57	5.66	6
	14	14	27.5	-51.5	120	210	2.27	2.12	2.27	5.29	6
EJ4	16	14	22.1	-51.2	120	210	1.82	1.71	1.82	5.66	6
	14	14	19.6	-91.8	120	210	1.62	1.61	1.62	5.29	6
EJ6	16	14	19.4	-60.5	120	210	1.60	1.51	1.60	5.66	6
	11	14	16.6	-92.2	120	210	1.37	1.36	1.37	5.29	6
EJ8	16	14	25.8	-55.2	120	210	2.13	2.00	2.13	5.66	6
	11	14	21.3	-73.3	120	210	1.76	1.69	1.76	5.29	6
EJ10	16	14	24.8	-48.9	120	210	2.05	1.91	2.05	5.66	6
	11	14	21.1	-62.0	120	210	1.74	1.65	1.74	5.29	6
EJ12	16	14	42.8	-43.8	120	210	3.53	3.28	3.53	5.66	6
	11	14	35.3	-80.5	120	210	2.91	2.84	2.91	5.29	6
EJ14	16	17	54.3	-21.6	120	210	5.44	4.99	5.44	5.83	6
	15	17	47.7	-110.9	120	210	4.78	4.98	4.98	5.83	6
EJ16	16	14	33.2	-53.2	120	210	2.74	2.57	2.74	5.66	6
	11	14	30.6	-67.1	120	210	2.52	2.41	2.52	5.29	6
EJ18	16	14	34.6	-51.8	120	210	2.85	2.67	2.85	5.66	6
	11	14	30.7	-65.3	120	210	2.53	2.41	2.53	5.29	6
EJ20	16	14	30.2	-54.5	120	210	2.49	2.34	2.49	5.66	6
	11	14	26.6	-55.0	120	210	2.19	2.06	2.19	5.29	6
EJ22	16	14	26.4	-48.3	120	210	2.18	2.03	2.18	5.66	6
	11	14	23.0	-55.4	120	210	1.90	1.78	1.90	5.29	6
EJ24	16	14	27.9	-42.9	120	210	2.30	2.14	2.30	5.66	6
	11	14	23.9	-37.9	120	210	1.97	1.82	1.97	5.29	6
EJ26	16	14	30.8	-28.4	120	210	2.54	2.34	2.54	5.66	6
	11	14	25.9	89.7	120	210	2.14	2.12	2.14	5.29	6

Table 4.2.14 Calculation Results for Fillet Welds (Outer Web)

	tu	tw	Sti	ess	Addit	tional	Com	posite	Allowat	ole Value		Fillet V	Welding	Size	
Section	tl	tw	τ1	σl	τ2	σ2	Στ	Σσ	τа	σa	S1	S2	Sreq	$\sqrt{(2 \cdot t)}$	S
	(mm)	(mm)	(N/mm^2)	(N/mm^2)	(N/mm ²)	(N/mm^2)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)	(mm)	(mm)	(mm)
EJ2	16	14	17.8	-30.6	-	-	17.8	-30.6	120	210	1.47	1.35	1.47	5.66	6
	14	14	14.4	-51.4	-	-	14.4	-51.4	120	210	1.19	1.11	1.19	5.29	6
EJ4	16	14	12.3	-55.9	-	-	12.3	-55.9	120	210	1.01	0.95	1.01	5.66	6
	14	14	10.0	-91.6	-	-	10.0	-91.6	120	210	0.82	0.82	0.82	5.29	6
EJ6	16	14	11.1	-65.6	-	-	11.1	-65.6	120	210	0.92	0.87	0.92	5.66	6
	11	14	8.5	-92.1	-	-	8.5	-92.1	120	210	0.70	0.70	0.70	5.29	6
EJ8	16	14	17.6	-58.8	-	-	17.6	-58.8	120	210	1.45	1.37	1.45	5.66	6
	11	14	13.3	-73.3	-	-	13.3	-73.3	120	210	1.10	1.06	1.10	5.29	6
EJ10	16	14	15.0	-51.1	-	-	15.0	-51.1	120	210	1.24	1.16	1.24	5.66	6
	11	14	11.4	-62.0	-	-	11.4	-62.0	120	210	0.94	0.89	0.94	5.29	6
EJ12	16	14	29.1	-44.9	-	-	29.1	-44.9	120	210	2.40	2.23	2.40	5.66	6
	11	14	22.0	-80.6	-	-	22.0	-80.6	120	210	1.81	1.77	1.81	5.29	6
EJ14	16	18	32.1	-20.2	-	-	32.1	-20.2	120	210	3.40	3.12	3.40	6.00	6
	15	18	25.9	-110.4	-	-	25.9	-110.4	120	210	2.75	2.86	2.86	6.00	6
EJ16	16	14	12.2	-55.1	-	-	12.2	-55.1	120	210	1.01	0.95	1.01	5.66	6
	11	14	9.8	-67.2		-	9.8	-67.2	120	210	0.81	0.77	0.81	5.29	6
EJ18	16	14	16.7	-54.1	-	-	16.7	-54.1	120	210	1.38	1.29	1.38	5.66	6
	11	14	13.0	-65.3	-	-	13.0	-65.3	120	210	1.07	1.02	1.07	5.29	6
EJ20	16	14	15.2	-57.9		-	15.2	-57.9	120	210	1.25	1.18	1.25	5.66	6
	11	14	11.8	-55.0		-	11.8	-55.0	120	210	0.97	0.92	0.97	5.29	6
EJ22	16	14	14.0	-50.7	-	-	14.0	-50.7	120	210	1.15	1.08	1.15	5.66	6
	11	14	10.8	-55.4	-	-	10.8	-55.4	120	210	0.89	0.84	0.89	5.29	6
EJ24	16	14	16.2	-46.4	-	-	16.2	-46.4	120	210	1.34	1.25	1.34	5.66	
	11	14	12.4	-37.9	-	-	12.4	-37.9	120	210	1.02	0.95	1.02	5.29	6
EJ26	16	14	19.3	-4.2	-	-	19.3	-4.2	120	210	1.59	1.45	1.59	5.66	
	11	14	14.6	89.4	-	-	14.6	89.4	120	210	1.20	1.19	1.20	5.29	6

Table 4.2.15	Calculation Results for Fillet Welds (Inner We	eb)
--------------	--	-----

(2) Calculation for Main Tower Welds

The results of the calculation for the main tower welds are listed below.

Table 4.2.16	Calculation Results for Fillet Welds (Inner Web)
--------------	--

	Tu ty	tw 5	Stress	Addit	tional	Comp	Composite	Allowable Value	le Value		Required Throat	Throat		~	Welds Size	ŝ			Analvsis	vsis		
Section	+	τ ₁	٥l	τ2	α2	Στ	Σσ	ta	Qa	al	a2		areq*1.5	√(2 · t)	S1' S	S1" S2	•		,		Design Throat	Throat
	(mm) (m	m) (N/mn	(mm) (mm) (N/mm^2) (N/mm^2) (N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm ²)	(mm)	(mm)	(mm)	(mm)	(um) ((mm) (n	(mm) (mm)	1	7	s	4	a(mm)	(u
J20	40	40 0	0.1 -0.2	'	1	0.1	-0.2	120	210	0.03	0.03	0.03	0.05	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
		40 0	0.1 -0.2	'	'	0.1	-0.2	120	210	0.03	0.03	0.03	0.05	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
J19		40 4	4.3 -10.7		'	4.3	-10.7	120	210	1.43	1.31	1.43	2.15	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
				'	'	4.3		120	210	1.43	1.31	1.43	2.15	8.94	10	10	9 OK	OK	OK	OK	23.4	Я
J18				24.1	-25.1	31.2	-39.8	120	210	10.40	9.64	10.40	15.60	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
			7.1 -27.2	31.6	-0.4	38.7	-27.6	120	210	12.90	11.86	12.90	19.35	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
J17			8.3 -19.7	24.1	-25.1	32.4	-44.8	120	210	10.80	10.05	10.80	16.20	8.94	10	10	9 OK	OK	OK	OK	23.4	QK
			8.3 -47.7	31.6	-0.4	39.9	-48.1	120	210	13.30	12.42	13.30	19.95	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
J16						37.2	-47.2	120	210	12.40	11.57	12.40	18.60	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
		40 8	8.3 -70.0	34.0	-12.7	42.3	-82.7	120	210	14.10	13.79	14.10	21.15	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
J15			8.1 -34.4	28.9		37.0	-55.0	120	210	12.33	11.60	12.33	18.50	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
				34.0	-12.7	42.1	-105.7	120	210	14.03	14.42	14.42	21.63	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
J14				28.9	-20.6	35.5	-60.3	120	210	11.83	11.19	11.83	17.75	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
			6.6 -109.5		-12.7	40.6	-122.2	120	210	13.53	14.58	14.58	21.87	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
J13			5.3 -46.0	17.4	-10.7	22.7	-56.7	120	210	7.57	7.13	7.57	11.36	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
			.3 -125.1		-8.7	25.0	-133.8	120	210	8.33	9.35	9.35	14.03	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
J12			.7 -53.0	17.4	-10.7	21.1	-63.7	120	210	7.03	6.68	7.03	10.55	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
			.7 -138.8	19.7	-8.7	23.4	-147.5	120	210	7.80	9.28	9.28	13.92	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
J11				19.8	-1.7	22.0	-62.5		210	7.33	6.96	7.33	11.00	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
			.2 -150.3	17.5	-20.9	19.7	-171.2	120	210	6.57	8.97	8.97	13.46	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
J10			.6 -69.2	19.8	-1.7	22.4	-70.9	120	210	7.47	7.16	7.47	11.21	8.94	10	10	9 OK	OK	OK	OK	23.4	QK
			·		-20.9	20.1	·	120	210	6.70	9.83	9.83	14.75	8.94	10	10	9 OK	OK	OK	OK	23.4	Я
96			.6 -71.2			22.4	-72.9	120	210	7.47	7.19	7.47	11.21	8.94	10	10	9 OK	OK	OK	OK	23.4	Я
			·	17.5	-20.9	20.1	-175.3	120	210	6.70	9.45	9.45	14.18	8.94	10	10	9 OK	\neg	OK	OK	23.4	Я
J8			.7 -74.1	'	'	2.7	-74.1	120	210	0.90	0.87	0.90	1.35	8.94	10	10	9 OK	OK	OK	OK	23.4	OK
	40	40 2	2.7 -147.5	'	'	2.7	<u>'</u>		210	0.90	1.07	1.07	1.61	8.94	10	10	9 OK	OK	OK	OK	23.4	Я
J7			.7 -77.3	'	'	2.7		120	210	0.90	0.87	0.90	1.35	8.94	10	10	9 OK	OK	OK	OK	23.4	Я
			·'	'	'	2.7	·'		210	0.90	1.04	1.04	1.56	8.94	10	10	9 OK	OK	OK	OK	23.4	Я
9ſ				'	'	3.2			210	0.93	0.93	0.93	1.40	8.37	6	6	9 OK	OK	OK	OK	21.7	Я
			.2 -150.7	'	'	3.2	-150.7	120	210	0.93	1.13	1.13	1.70	8.37	6	6	9 OK	OK	OK	OK	21.7	ОĶ
J5			3.2 -96.3	'	'	3.2	-96.3	120	210	0.93	0.94	0.94	1.41	8.37	6	6	9 OK	OK	OK	OK	21.7	QK
			3.2 -143.4	'	'	3.2	-143.4	120	210	0.93	1.09	1.09	1.64	8.37	6	6	9 OK	OK	OK	OK	21.7	Я
J4				'	'	3.3	-102.8	120	210	0.96	0.98	0.98	1.47	8.37	6	6	9 OK	OK	OK	OK	21.7	OK
			3.3 -136.5	'	'	3.3	-136.5	120	210	0.96	1.09	1.09	1.64	8.37	6	6	9 OK	OK	OK	OK	21.7	QK
J3			3.3 -109.6	'	'	3.3	-109.6	120	210	0.96	1.00	1.00	1.50	8.37	6	6	9 OK	OK	OK	OK	21.7	OK
			3.3 -130.2	'	'	3.3	-130.2	120	210	0.96	1.07	1.07	1.61	8.37	6	6	9 OK	OK	OK	OK	21.7	QK
J2			3.5 -116.8	'	'	3.5	-116.8	120	210	1.02	1.08	1.08	1.62	8.37	6	6	9 OK	OK	OK	OK	21.7	Я
			- 1	'	'	3.5	-126.9		210	1.02	1.12	1.12	1.68	8.37	6	6	9 OK	OK	OK	OK	21.7	Я
Iſ		35 35	3.6 -123.6	'	'	3.6			210	1.05	1.14	1.14	1.71	8.37	6	6		+	OK	OK	21.7	QK
				'	'	3.6	-127.7	120	210	1.05	1.15	1.15	1.73	8.37	6	6	9 OK	OK	OK	OK	21.7	QK

4.2.9.10 Evaluation of Ultimate Strength (1.7 x Design Loads)

(1) Evaluation Results for Girder

The evaluation results are shown in the table below. The stresses in all sections were less than the allowable value.

Sider Span-	Sectio	n 1														
Stress		M-N	Iax			M-N	Min			N-N	Iax			N-N	/lin	
(N/mm^2)	Σσ	σa	Στ	та	Σσ	σa	Στ	τa	Σσ	σa	Στ	та	Σσ	σa	Στ	та
DECK-L	-54	140	0	80	-21	140	7	80	14	140	19	80	-25	140	10	80
DECK-R	-54	140	0	80	-21	140	7	80	14	140	19	80	-25	140	10	80
WEB-1	-49	166	0	120	11	210	10	120	12	210	27	120	-14	200	15	120
WEB-2	-53	161	0	120	-95	147	10	120	-27	152	27	120	-94	146	15	120
WEB-3 WEB-4	-53 -49	161 166	0	$120 \\ 120$	-95 11	$\frac{147}{210}$	10 10	120 120	-27 12	$\frac{152}{210}$	27 27	$120 \\ 120$	-94 -14	146 200	$\frac{15}{15}$	$\frac{120}{120}$
WEB-4 WEB-L	-29	182	0	120	-96	150	10	120	-27	153	27	120	-14 -94	150	$15 \\ 15$	120
LFLG	23 57	210	0	120	-96	147	7	120	-27	147	20	120	-94	147	10	120 120
WEB-R	-29	182	0	120	-96	150	10	120	-27	153	28	120	-94	150	15	120
Side Span-S			~													
Stress	Section	M-N	/Jax			M-N	Min			N-N	lax			N-N	/lin	
(N/mm^2)	Σσ	σa	Στ	та	Σσ	σa	Στ	та	Σσ	σa	Στ	та	Σσ	σa	Στ	та
DECK-L	-59	140	2	80	-26	140	3	80	-55	140	4	80	-35	140	10	80
DECK-R	-59	140	2	80	-26	140	3	80	-55	140	4	80	-35	140	10	80
WEB-1	-53	167	3	120	-18	182	5	120	-49	167	5	120	-30	165	14	120
WEB-2	-57	162	3	120	-87	145	5	120	-54	163	5	120	-75	142	14	120
WEB-3	-57	162	3	120	-87	145	5	120	-54	163	5	120	-75	142	14	120
WEB-4	-53	167	3	120	-18	182	5	120	-49	167	5	120	-30	165	14	120
WEB-L	65	210	3	120	-87	149	5	120	64	210	5	120	-76	147	14	120
LFLG	65	210	3	120	-88	102	4	120	65	210	5	120	-76	102	12	120
WEB-R	65	210	3	120	-87	149	5	120	64	210	5	120	-76	147	14	120
Intermediat	e Pier	(at Tow	er)-Se	ection 3	5											
Intermediat Stress	e Pier	(at Tow M-N		ection 3		M-N	Ain			N-N	Iax			N-N	/lin	
	e Pier(Σσ	·		ection 3 та	Σσ	M-N σa	Min Στ	та	Σσ	N-M oa	Íax Στ	та	Σσ	N-M σa	lin Στ	та
Stress		M-N	/Iax	1				та 120	Σσ -25			та 120	Σσ 39			та 120
Stress (N/mm ²)	Σσ	M-Ν σa	Aax Στ	та	Σσ	σa	Στ			σa	Στ			σa	Στ	
Stress (N/mm ²) DECK-L	Σσ - 30	M-N oa 210	Aax Στ 17	та 120	Σσ 52	σa 210	Στ 59	120	-25	σa 210	Στ 23	120	39	σa 210	Στ 28	120
Stress (N/mm ²) DECK-L DECK-R	Σσ -30 -30 -17 -72	M-N oa 210 210 201 210	Max Στ 17 17 18 11	τa 120 120 120 120	Σσ 52 52 42 -149	σa 210 210 210 210 210	Στ 59 59 62 39	120 120 120 120	-25 -25 11 -84	σa 210 210 210 210 210	Στ 23 23 24 15	120 120 120 120	39 39 30 -130	σa 210 210 210 210 210	Στ 28 28 30 19	120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1	Σσ -30 -30 -17 -72 -72	M-N oa 210 210 201	$ \begin{array}{r} Max \\ $	τa 120 120 120 120 120	Σσ 52 52 42 -149 -149	оа 210 210 210 210 210 210	Στ 59 59 62 39 39	120 120 120 120 120	-25 -25 11 -84 -84	0a 210 210 210 210 210 210	Στ 23 23 24 15 15	120 120 120 120 120	39 39 30	σa 210 210 210 210 210 210 210 210	Στ 28 28 30 19 19	120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4	Σσ -30 -30 -17 -72 -72 -17	M-N oa 210 210 201 210 210 210	Λax Στ 17 17 18 11 18	τa 120 120 120 120 120 120	$ \Sigma \sigma $ 52 52 42 -149 -149 42 -149 -1	oa 210 210 210 210 210 210 210 210	Στ 59 62 39 39 62	120 120 120 120 120 120	-25 -25 11 -84 -84 11	oa 210 210 210 210 210 210 210 210 210 210	Στ 23 23 24 15 15 24	120 120 120 120 120 120	39 39 30 -130 -130 30	0a 210 210 210 210 210 210 210	Στ 28 28 30 19 19 30	120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-L	Σσ -30 -30 -17 -72 -72 -17 -72	M-N oa 210 201 201 210 210 201 177	$\begin{array}{c} \text{Max} \\ \Sigma \tau \\ 17 \\ 17 \\ 18 \\ 11 \\ 11 \\ 18 \\ 18 \\ 18$	та 120 120 120 120 120 120 120	Σο 52 52 -149 -149 42 -149	oa 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210	Στ 59 59 62 39 39 62 63	120 120 120 120 120 120 120	-25 -25 11 -84 -84 11 -85	oa 210 210 210 210 210 210 210 210 179	$ \begin{aligned} \Sigma\tau \\ 23 \\ 24 \\ 15 \\ 15 \\ $	120 120 120 120 120 120 120	39 39 -130 -130 30 -131	oa 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210	 Στ 28 28 30 19 19 30 30 	120 120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-L LFLG	Σσ -30 -30 -17 -72 -72 -17 -72 -72 -72	M-N oa 210 210 201 210 210 201 177 158	$\begin{array}{c} \text{Aax} \\ \hline \Sigma \tau \\ 17 \\ 17 \\ 18 \\ 11 \\ 11 \\ 18 \\ 18 \\ 15 \\ \end{array}$	та 120 120 120 120 120 120 120 120	Σο 52 52 -149 -149 42 -149 -149 -150	oa 210 210 210 210 210 210 210 10 210 180 158	Στ 59 62 39 39 62 63 63 51	120 120 120 120 120 120 120 120	-25 -25 11 -84 -84 11 -85 -85	oa 210 210 210 210 210 210 100 101 179 158	$ \begin{aligned} & \Sigma \tau \\ & 23 \\ & 24 \\ & 15 \\ & 15 \\ & 24 \\ & 24 \\ & 20 \\ \end{aligned} $	120 120 120 120 120 120 120 120	39 39 -130 -130 -130 30 -131 -131	oa 210 210 210 210 210 210 210 10 10 179 158	 Στ 28 28 30 19 19 30 30 30 25 	120 120 120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-L	Σσ -30 -30 -17 -72 -72 -17 -72	M-N oa 210 201 201 210 210 201 177	$\begin{array}{c} \text{Max} \\ \Sigma \tau \\ 17 \\ 17 \\ 18 \\ 11 \\ 11 \\ 18 \\ 18 \\ 18$	та 120 120 120 120 120 120 120	Σο 52 52 -149 -149 42 -149	oa 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210	Στ 59 59 62 39 39 62 63	120 120 120 120 120 120 120	-25 -25 11 -84 -84 11 -85	oa 210 210 210 210 210 210 210 210 179	$ \begin{aligned} \Sigma\tau \\ 23 \\ 24 \\ 15 \\ 15 \\ $	120 120 120 120 120 120 120	39 39 -130 -130 30 -131	oa 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210	 Στ 28 28 30 19 19 30 30 	120 120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-L LFLG		M-N oa 210 201 201 210 201 201 177 158 177 n4	$\begin{array}{c} \text{Max} \\ \hline \Sigma \tau \\ 17 \\ 17 \\ 18 \\ 11 \\ 11 \\ 18 \\ 18 \\ 18$	та 120 120 120 120 120 120 120 120	Σο 52 52 -149 -149 42 -149 -149 -150	σa 210 210 210 210 210 210 10 210 180 158 180	$\Sigma \tau$ 59 62 39 62 63 63 51 63	120 120 120 120 120 120 120 120	-25 -25 11 -84 -84 11 -85 -85	σa 210 210 210 210 210 210 100 210 179 158 179	$ \begin{array}{r} \Sigma\tau \\ 23 \\ 24 \\ 15 \\ 15 \\ $	120 120 120 120 120 120 120 120	39 39 -130 -130 -130 30 -131 -131	σa 210 210 210 210 210 210 10 210 179 158 179	$\frac{\Sigma \tau}{28}$ 28 30 19 19 30 30 25 30	120 120 120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-4 WEB-L LFLG WEB-R Main Span- Stress		M-M oa 210 210 201 201 201 201 201 177 158 177 n4 M-M	Aax $\Sigma \tau$ 17 17 18 11 11 18 18 15 18 Max	та 120 120 120 120 120 120 120 120 120	$\begin{array}{c} \Sigma_0 \\ 52 \\ 52 \\ 42 \\ -149 \\ -149 \\ 42 \\ -149 \\ -150 \\ -149 \\ \end{array}$	oa 210 210 210 210 210 210 210 10 210 180 158	Στ 59 59 62 39 62 63 51 63	120 120 120 120 120 120 120 120 120	-25 -25 11 -84 -84 11 -85 -85 -85	оа 210 210 210 210 210 210 179 158 179		120 120 120 120 120 120 120 120 120	39 39 30 -130 -130 30 -131 -131 -131	оа 210 210 210 210 210 210 210 179 158 179	Στ 28 28 30 19 30 25 30	120 120 120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-L LFLG WEB-R Main Span-		M-M oa 210 210 201 201 201 201 201 177 158 177 n4 M-M	Aax $\Sigma \tau$ 17 17 18 11 11 18 18 15 18 Max	та 120 120 120 120 120 120 120 120 120	Σο 52 52 -149 -149 42 -149 -149 -150	σa 210 210 210 210 210 210 10 210 180 158 180	$\Sigma \tau$ 59 62 39 62 63 63 51 63	120 120 120 120 120 120 120 120 120	-25 -25 11 -84 -84 11 -85 -85	оа 210 210 210 210 210 210 179 158 179	$ \begin{array}{r} \Sigma\tau \\ 23 \\ 24 \\ 15 \\ 15 \\ $	120 120 120 120 120 120 120 120 120	39 39 -130 -130 -130 30 -131 -131	оа 210 210 210 210 210 210 210 179 158 179	$\frac{\Sigma \tau}{28}$ 28 30 19 19 30 30 25 30	120 120 120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-4 WEB-L LFLG WEB-R Main Span- Stress (N/mm ²) DECK-L		M-N oa 210 201 210 201 210 201 177 158 177 n4 M-N oa 140	$\begin{array}{c} \text{Max} \\ \Sigma\tau \\ 17 \\ 17 \\ 18 \\ 11 \\ 11 \\ 18 \\ 18 \\ 15 \\ 18 \\ 15 \\ 18 \\ \end{array}$	та 120 120 120 120 120 120 120 120 120 120	Σο 52 52 -149 -149 -149 -149 -149 -149 -149 -149 -149 -150 -149 -150 -149	oa 210 210 210 210 210 210 180 158 180 M-N oa 140	$\frac{\Sigma \tau}{59}$ 59 62 39 62 63 51 63 <i>M</i> in $\Sigma \tau$ 11	120 120 120 120 120 120 120 120 120 120	$ \begin{array}{c} -25 \\ -25 \\ 11 \\ -84 \\ -84 \\ 11 \\ -85 \\ -85 \\ -85 \\ -85 \\ \hline \Sigma\sigma \\ -51 \\ \end{array} $	оа 210 210 210 210 210 210 210 210 179 158 179 N-М оа 140	$ \begin{array}{r} \Sigma \tau \\ 23 \\ 24 \\ 15 \\ 15 \\ $	120 120 120 120 120 120 120 120 120 120	39 39 30 -130 300 -131 -131 -131 -131 -131 -32	0a 210 210 210 210 210 210 179 158 179 N-N 0a 140	$ \Sigma τ $ 28 28 30 19 19 30 30 25 30 $ Z5 $ 30 $ Lin $ $ \Sigma τ $ 0	120 120 120 120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-4 WEB-L LFLG WEB-R Main Span- Stress (N/mm ²) DECK-L DECK-R		M-N oa 210 201 210 201 210 201 177 158 177 n4 M-N oa 140 140	$\begin{array}{c} \text{Max} \\ \hline \Sigma \tau \\ 17 \\ 17 \\ 18 \\ 11 \\ 11 \\ 18 \\ 18 \\ 15 \\ 18 \\ 15 \\ 18 \\ \hline \\ \text{Max} \\ \hline \Sigma \tau \\ 0 \\ 0 \\ \end{array}$	та 120 120 120 120 120 120 120 120 120 120	Σο 52 52 42 -149 -149 -149 -149 -149 -149 -149 -149 -149 -149 -149 -149 -149 -149 -111	оа 210 210 210 210 210 210 210 180 158 180 М-N оа 140 140	Στ 59 59 62 39 62 63 51 63 Min Στ 11 11	120 120 120 120 120 120 120 120 120 120	$ \begin{array}{r} -25 \\ -25 \\ 11 \\ -84 \\ -84 \\ 11 \\ -85 \\ -85 \\ -85 \\ -85 \\ \hline \\ \Sigma 0 \\ -51 \\ -51 \\ \end{array} $	оа 210 210 210 210 210 210 210 179 158 179 N-M оа 140 140		120 120 120 120 120 120 120 120 120 120	39 30 -130 -131 -131 -131 -131 -131 -32 -32	оа 210 210 210 210 210 210 210 179 158 179 N-N оа 140 140		120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-4 WEB-L LFLG WEB-R Main Span- Stress (N/mm ²) DECK-L DECK-R WEB-1		M-N oa 210 201 210 201 210 201 177 158 177 n4 M-N oa 140 140 174	Λax Στ 17 17 18 11 18 15 18 Δax Στ 0 0 1 1	та 120 120 120 120 120 120 120 120 120 120	Σο 52 52 42 -149 -149 -149 -149 -150 -149 -150 -149 -150 -149	оа 210 210 210 210 210 210 180 158 180 М-N оа 140 140 140	$\frac{\Sigma \tau}{59} = \frac{59}{62} = \frac{39}{39} = \frac{39}{62} = \frac{63}{51} = \frac{63}{63} = \frac{11}{11} = \frac{11}{11} = \frac{11}{16} = 1$	120 120 120 120 120 120 120 120 120 120	$ \begin{array}{c} -25 \\ -25 \\ 11 \\ -84 \\ -84 \\ 11 \\ -85 \\ $	oa 210 210 210 210 210 210 210 210 179 158 179 N-M oa 140 174	$\frac{\Sigma \tau}{23} \\ \frac{23}{24} \\ \frac{15}{15} \\ \frac{24}{24} \\ \frac{24}{20} \\ \frac{24}{24} \\ \frac{24}{7} \\ \frac{\Sigma \tau}{7} \\ \frac{7}{11} \\ \frac{11}{11} \\ \frac{\Sigma \tau}{11} \\ \frac$	120 120 120 120 120 120 120 120 120 120	39 39 30 -130 30 -131 -131 -131 -32 -32 -35	оа 210 210 210 210 210 210 210 179 158 179 N-N оа 140 140 160		120 120 120 120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-4 WEB-4 WEB-4 UFLG WEB-4 Main Span- Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2		M-N oa 210 210 201 201 201 201 201 177 158 177 n4 M-N oa 140 140 174 210	$\begin{array}{c} \text{Max} \\ \hline \Sigma \tau \\ 17 \\ 17 \\ 18 \\ 11 \\ 11 \\ 18 \\ 18 \\ 15 \\ 18 \\ 15 \\ 18 \\ \hline X \\ \Sigma \tau \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ \end{array}$	та 120 120 120 120 120 120 120 120 120 120	Σο 52 52 42 -149 42 -149 -150 -149 2 -149 -150 -149 -149 -149 -149 -149 -149 -149 -23 -92	oa 210 210 210 210 210 210 210 210 180 158 180 M-N oa 140 175 145	$\frac{\Sigma \tau}{59}$ $\frac{59}{62}$ $\frac{39}{62}$ $\frac{63}{51}$ $\frac{63}{63}$ $\frac{11}{11}$ $\frac{11}{16}$ $\frac{17}{17}$	120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} -25 \\ -25 \\ 11 \\ -84 \\ -84 \\ 11 \\ -85 \\ -$	оа 210 210 210 210 210 210 179 158 179 N-М оа 140 140 174 210	$\frac{\Sigma \tau}{23}$ 23 24 15 15 24 24 20 24 4 20 24 5 T 7 7 7 11 11	120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} 39\\ 39\\ 30\\ -130\\ -130\\ 30\\ -131\\ -131\\ -131\\ -131\\ -131\\ \hline \\ \Sigma\sigma\\ -32\\ -32\\ -32\\ -35\\ -50\\ \end{array}$	оа 210 210 210 210 210 210 179 158 179 N-N оа 140 140 140 160 139		120 120 120 120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-4 WEB-4 WEB-4 WEB-4 WEB-4 WEB-4 Main Span- Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3		M-N oa 210 201 210 201 210 201 177 158 177 n4 M-N oa 140 140 140 174 210 210	$\begin{array}{c} \text{Max} \\ \hline \Sigma \tau \\ 17 \\ 17 \\ 18 \\ 11 \\ 11 \\ 18 \\ 18 \\ 15 \\ 18 \\ 15 \\ 18 \\ \hline X \\ 15 \\ 18 \\ \hline \Sigma \tau \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	та 120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} \Sigma o \\ 52 \\ 52 \\ -149 \\ -149 \\ -149 \\ -150 \\ -110 \\ -150 \\ -110 \\ \hline \\ \Sigma o \\ -11 \\ -23 \\ -92 \\ -92 \\ -92 \\ -92 \end{array}$	oa 210 210 210 210 210 210 210 210 210 210 210 210 180 M-N oa 140 175 145	$\frac{\Sigma \tau}{59}$ $\frac{59}{62}$ $\frac{39}{62}$ $\frac{63}{51}$ $\frac{63}{63}$ $\frac{11}{11}$ $\frac{11}{16}$ $\frac{17}{17}$	120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} -25 \\ -25 \\ 11 \\ -84 \\ -84 \\ 11 \\ -85 \\ -$	оа 210 210 210 210 210 210 179 158 179 N-М оа 140 140 140 174 210 210	$\begin{array}{c} \Sigma\tau \\ 23 \\ 23 \\ 24 \\ 15 \\ 15 \\ 24 \\ 24 \\ 20 \\ 24 \\ 20 \\ 24 \\ \\ \Sigma\tau \\ 7 \\ 7 \\ 7 \\ 11 \\ 11 \\ 11 \\ 11 \end{array}$	120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} 39\\ 39\\ 30\\ -130\\ -130\\ 30\\ -131\\ -131\\ -131\\ -131\\ -131\\ \hline \\ 50\\ -32\\ -32\\ -32\\ -35\\ -50\\ -50\\ \hline \end{array}$	оа 210 210 210 210 210 210 179 158 179 N-N оа 140 140 140 160 139 139	$\frac{\Sigma \tau}{28} \\ \frac{28}{30} \\ \frac{19}{19} \\ \frac{19}{30} \\ \frac{30}{25} \\ \frac{30}{30} \\ \frac{25}{30} \\ \frac{10}{25} \\ \frac{10}{30} \\ \frac{10}{25} \\ \frac{10}{30} \\ 1$	120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-4 WEB-L LFLG WEB-R Main Span- Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4	$\begin{array}{c} \Sigma \sigma \\ -30 \\ -30 \\ -17 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -53 \\ -53 \\ -53 \\ -44 \\ 113 \\ 113 \\ -44 \end{array}$	M-N oa 210 210 201 210 201 201 177 158 177 n4 M-N oa 140 140 174 210 210 174	$\begin{array}{c} \text{Max} \\ \hline \Sigma\tau \\ 17 \\ 17 \\ 18 \\ 11 \\ 11 \\ 18 \\ 18 \\ 15 \\ 18 \\ 15 \\ 18 \\ \hline Max \\ \Sigma\tau \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	та 120 120 120 120 120 120 120 120	Σο 52 52 42 -149 -149 -149 -149 -150 -149 -150 -149 -123 -92 -23	oa 210 210 210 210 210 210 210 210 210 210 210 210 210 210 180 M-N oa 140 145 145 175	$\frac{\Sigma \tau}{59}$ $\frac{59}{62}$ $\frac{39}{62}$ $\frac{63}{51}$ $\frac{63}{63}$ $\frac{11}{11}$	120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} -25 \\ -25 \\ 11 \\ -84 \\ -84 \\ 11 \\ -85 \\ -$	оа 210 210 210 210 210 179 158 179 158 179 N-М оа 140 140 140 174 210 210 174	$\begin{array}{c} \Sigma\tau \\ 23 \\ 23 \\ 24 \\ 15 \\ 15 \\ 24 \\ 24 \\ 20 \\ 24 \\ 20 \\ 24 \\ 20 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \end{array}$	120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} 39\\ 39\\ 30\\ -130\\ -130\\ 30\\ -131\\ -131\\ -131\\ -131\\ -131\\ \hline \\ 2\sigma\\ -32\\ -32\\ -32\\ -35\\ -50\\ -50\\ -50\\ -35\\ \end{array}$	оа 210 210 210 210 210 210 179 158 179 158 179 N-N оа 140 140 140 140 139 139 160	$\begin{array}{c c} \Sigma \tau \\ 28 \\ 28 \\ 30 \\ 19 \\ 19 \\ 30 \\ 30 \\ 25 \\ 30 \\ 25 \\ 30 \\ \hline \\ \Sigma \tau \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	120 120 120 120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-4 WEB-L LFLG WEB-R Main Span- Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-L	$\begin{array}{c} \Sigma \sigma \\ -30 \\ -30 \\ -17 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -53 \\ -53 \\ -53 \\ -44 \\ 113 \\ 113 \\ -44 \\ 113 \end{array}$	M-N oa 210 210 201 210 201 201 177 158 177 158 177 n4 M-N oa 140 140 140 174 210 210 174 210	$\begin{array}{c} \text{Max} \\ \hline \Sigma\tau \\ 17 \\ 17 \\ 18 \\ 11 \\ 11 \\ 18 \\ 18 \\ 15 \\ 18 \\ 15 \\ 18 \\ \hline Max \\ \Sigma\tau \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	та 120 120 120 120 120 120 120 120	Σο 52 52 42 -149 -149 -149 -149 -150 -149 -150 -149 -120 -149 -120 -149 -120 -111 -23 -92 -23 -92 -23 -92	oa 210 210 210 210 210 210 210 210 210 210 210 210 210 210 180 M-N oa 140 145 145 175 148	$\frac{\Sigma\tau}{59}$ $\frac{59}{62}$ $\frac{39}{62}$ $\frac{63}{51}$ $\frac{63}{63}$ $\frac{11}{11}$ $\frac{11}{11}$ $\frac{16}{17}$ $\frac{16}{16}$	120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} -25 \\ -25 \\ 11 \\ -84 \\ -84 \\ 11 \\ -85 \\ -$	оа 210 210 210 210 210 179 158 179 158 179 N-М оа 140 140 140 140 174 210 210 174 210	$\begin{array}{c} \Sigma\tau \\ 23 \\ 23 \\ 24 \\ 15 \\ 15 \\ 24 \\ 24 \\ 20 \\ 24 \\ 20 \\ 24 \\ 20 \\ 24 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$	120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} 39\\ 39\\ 30\\ -130\\ -130\\ 30\\ -131\\ -131\\ -131\\ -131\\ -131\\ \hline \\ 2\sigma\\ -32\\ -32\\ -32\\ -32\\ -35\\ -50\\ \hline \\ -50\\ -50\\ \hline \\ -50\\ \hline \\ -50\\ \hline \\ -50\\ \hline \end{array}$	оа 210 210 210 210 210 179 158 179 158 179 N-N оа 140 140 140 139 139 160 145	$\begin{array}{c c} \Sigma \tau \\ 28 \\ 28 \\ 30 \\ 19 \\ 19 \\ 30 \\ 30 \\ 25 \\ 30 \\ 25 \\ 30 \\ \hline \\ & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	120 120 120 120 120 120 120 120 120 120
Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4 WEB-4 WEB-L LFLG WEB-R Main Span- Stress (N/mm ²) DECK-L DECK-R WEB-1 WEB-2 WEB-3 WEB-4	$\begin{array}{c} \Sigma \sigma \\ -30 \\ -30 \\ -17 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -72 \\ -53 \\ -53 \\ -53 \\ -44 \\ 113 \\ 113 \\ -44 \end{array}$	M-N oa 210 210 201 210 201 201 177 158 177 n4 M-N oa 140 140 174 210 210 174	$\begin{array}{c} \text{Max} \\ \hline \Sigma\tau \\ 17 \\ 17 \\ 18 \\ 11 \\ 11 \\ 18 \\ 18 \\ 15 \\ 18 \\ 15 \\ 18 \\ \hline Max \\ \Sigma\tau \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	та 120 120 120 120 120 120 120 120	Σο 52 52 42 -149 -149 -149 -149 -150 -149 -150 -149 -123 -92 -23	oa 210 210 210 210 210 210 210 210 210 210 210 210 210 210 180 M-N oa 140 145 145 175	$\frac{\Sigma \tau}{59}$ $\frac{59}{62}$ $\frac{39}{62}$ $\frac{63}{51}$ $\frac{63}{63}$ $\frac{11}{11}$	120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} -25 \\ -25 \\ 11 \\ -84 \\ -84 \\ 11 \\ -85 \\ -$	оа 210 210 210 210 210 179 158 179 158 179 N-М оа 140 140 140 174 210 210 174	$\begin{array}{c} \Sigma\tau \\ 23 \\ 23 \\ 24 \\ 15 \\ 15 \\ 24 \\ 24 \\ 20 \\ 24 \\ 20 \\ 24 \\ 20 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \end{array}$	120 120 120 120 120 120 120 120 120 120	$\begin{array}{c} 39\\ 39\\ 30\\ -130\\ -130\\ 30\\ -131\\ -131\\ -131\\ -131\\ -131\\ \hline \\ 2\sigma\\ -32\\ -32\\ -32\\ -35\\ -50\\ -50\\ -50\\ -35\\ \end{array}$	оа 210 210 210 210 210 210 179 158 179 158 179 N-N оа 140 140 140 140 139 139 160	$\begin{array}{c c} \Sigma \tau \\ 28 \\ 28 \\ 30 \\ 19 \\ 19 \\ 30 \\ 30 \\ 25 \\ 30 \\ 25 \\ 30 \\ \hline \\ \Sigma \tau \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	120 120 120 120 120 120 120 120 120 120

Table 4.2.17 Evaluation Results for Main Girder

(2) Evaluation Results for Tower

The evaluation results are shown in the table below. The stresses in all sections were less than the allowable value.

Opper Cabl	le Sect	lon														
Stress		M-N	Лах			M-N	Min			N-N	Iax			N-N	/lin	
(N/mm^2)	Σσ	σa	Στ	τa	Σσ	σa	Στ	τа	Σσ	σa	Στ	та	Σσ	σa	Στ	та
Тор	-81	210	6	120	9	210	7	120	0	210	0	120	-5	210	6	120
LWeb	-81	210	10	120	-104	210	12	120	0	210	0	120	-99	210	10	120
Rweb	-81	210	10	120	-104	210	12	120	0	210	0	120	-99	210	10	120
Bott	-1	210	6	120	-104	210	7	120	0	210	0	120	-99	210	6	120

Table 4.2.18	Evaluation	Results for	Tower
--------------	------------	-------------	-------

Lower Cable Section

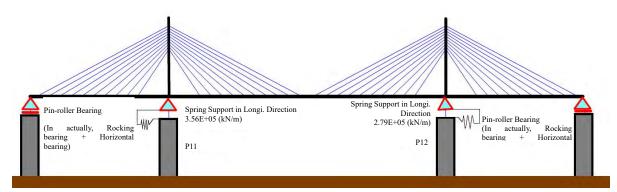
Unner Cable Section

Lo mer cuor																
Stress		M-N	Iax			M-N	Min			N-N	Iax			N-N	/lin	
(N/mm^2)	Σσ	σa	Στ	τа	Σσ	σa	Στ	τа	Σσ	σa	Στ	τа	Σσ	σa	Στ	τа
Тор	-124	210	0	120	-7	210	1	120	-87	210	5	120	-82	210	1	120
LWeb	-124	210	1	120	-149	210	2	120	-87	210	8	120	-99	210	1	120
Rweb	-124	210	1	120	-149	210	2	120	-87	210	8	120	-99	210	1	120
Bott	-18	210	0	120	-149	210	1	120	-7	210	5	120	-99	210	1	120

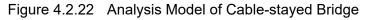
Bottom of Tower

Dottom of	10															
Stress		M-N	Iax			M-N	Min			N-N	Iax			N-N	Ain	
(N/mm^2)	Σσ	σa	Στ	τa	Σσ	σa	Στ	τα	Σσ	σa	Στ	τa	Σσ	σa	Στ	та
Top	-125	205	2	120	-53	205	3	120	-125	205	2	120	-107	205	1	120
LWeb	-125	210	4	120	-143	210	5	120	-125	210	4	120	-107	210	1	120
Rweb	-125	210	4	120	-143	210	5	120	-125	210	4	120	-107	210	1	120
Bott	-55	205	2	120	-143	205	3	120	-55	205	2	120	-101	205	1	120

Source: JICA Study Team


4.2.9.11 Structural Analysis Considering Plasticity of Superstructure

(1) Safety Investigation Using Elasto-Plastic and Finite Displacement Analysis


By using the elasto-plastic and finite displacement analysis, safety evaluation under ultimate state of the designed bridge was performed based on the load coefficient design method. As a necessary parameter, the scale factor of load (α_{max}) at which the designed bridge reaches its ultimate state considering the elasto-plasticity was determined by gradually increasing the working force.

In order to evaluate the effect of loading range to the ultimate state, four cases of different loading conditions were assumed and employed in the analysis model shown in the figure below.

Load Combination / Load Scale Factor (α)	Loading Range of Live Load					
α (D + L) + PS	L1: loading on the entire span L2: loading on the center span L3: loading on the half of center span L4: loading on the side span					
Note: α: Load scale factor, D: Dead load, L: Live load, PS: Pre-stress						

Source: JICA Study Team

(2) Analysis Result

The load scale factor when the girder, cable, and tower yielded and at the ultimate state (when the load scale factor becomes maximum) is shown below.

Load Combination	Loading Range of Live Load	Yield of Main Girder	Load Scale Yield of Cable	e Factor α Yield of Main Tower	Maximum (Ultimate State)
	L1: loading on the entire span	2.07	2.51	2.84	2.98
	L2: loading on the center span	2.35	2.47	2.15	2.66
α (D+L)+PS	L3: loading on the half of center span	2.31	2.47	2.26	2.72
	L4: loading on the side span	2.30	2.57		3.20

Table 4.2.20 Load Scale Factor α

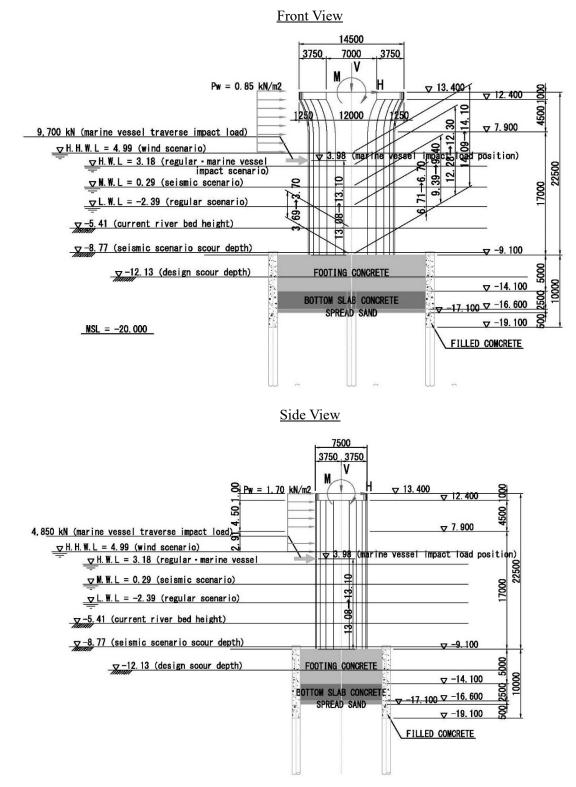
Source: JICA Study Team

From the analysis results, the following tendency was figured out regarding the process when the designed bridge reaches ultimate state.

Loading Range for Live Load	Process to Ultimate State
L1: loading on the entire span	Main girder (near the main tower) \rightarrow Cable (center)
	\rightarrow Main tower (base) \rightarrow [Ultimate state]
L2: loading on the center span	Main tower (middle) \rightarrow Main girder (near the main tower)
	\rightarrow Cable (middle) \rightarrow [Ultimate state]
L3: loading on the half of center span	Main tower (middle) \rightarrow Main girder (near the main tower)
	\rightarrow Cable (middle) \rightarrow [Ultimate state]
L4: loading on the side span	Main tower (middle) \rightarrow Cable (middle) \rightarrow [Ultimate state]
Source: JICA Study Team	

Table 4.2.21 Processes to Ultimate State

Based on the analysis results, the following conclusions can be stated:

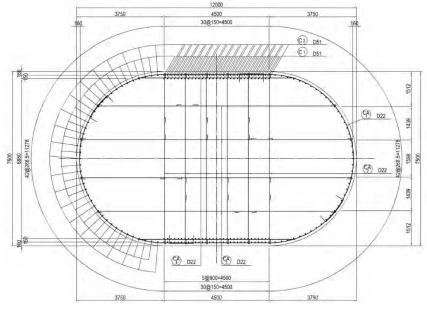

- The maximum load at ultimate state is about 2.7 times larger than D+L (dead load + live load). It means that the loading capacity of the designed bridge is high enough for the design load (D+L+PS).

- The designed bridge has sufficient loading capacity until the ultimate state. The relation between load and deflection at the center of the main girder does not change significantly even when the flange of the main girder or main tower is yielded.

4.2.10 Summary of Substructure Design

4.2.10.1 Calculation of Main Tower Pier/Foundation (P11 and P12)

(1) Figure of Design Condition



(2) Design of Pier

1) Design of Column

The column shall be designed as a cantilever beam by treating the joint between the footing as a fixed end. The column cross section shall be designed against the most unfavorable combination of axial force and bending moment.

Source: JICA Study Team

Figure 4.2.24 Design Condition

[Overview of Calculation Result]

The following table shows the calculation results for beam.

				Longitude Direction				Transverse Direction			
	Member Height m		m	Elliptical Shape	;	12.000	×	7.500			
Cross Section Rebar		Main Rebar	1st block	D51	ctc	150		D51	ctc	269	
	Rebar	Main Kebai	2nd block	D51	ctc	150					
		Lateral Tie		D22	ctc	150		D22	ctc	150	
Cross		σc	N/mm2	10.46	≦	15.00	0	8.85	≦	15.00	0
Section	L1	σs	N/mm2	274.4	≦	300.0	0	200.2	\leq	300.0	0
Calculation	Earthquake	τm	N/mm2	0.439	>	0.201	-	0.362	>	0.179	-
Calculation	-	Aw_req	mm2	1523.5	≦	3096.8	0	733.3	≦	2322.6	0

Table 4.2.22 Calculation Result for Beam

Source: JICA Study Team

2) Bridge Seat Design

a) Dimension of Bridge Seat Width

The distance between the bearing support edge and the top edge of the substructure was set in accordance with the Specifications for Highway Bridges IV 8.6.

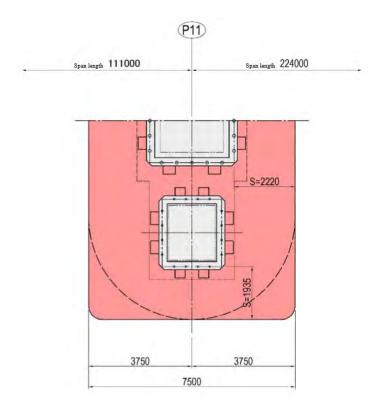
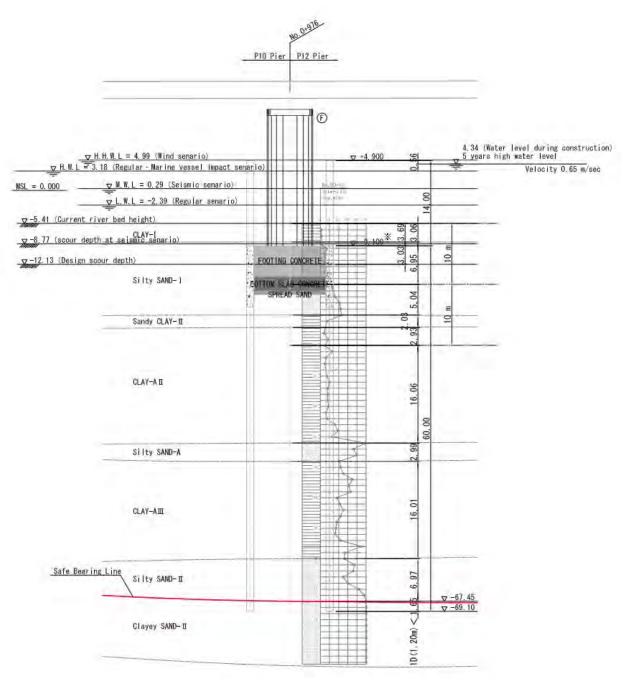


Figure 4.2.25 Bridge Seat Width

Source: JICA Study Team


b) Evaluation of Bridge Seat Strength

Since the bridge seat has a function to support the superstructure via the bearing support, large horizontal force would act on it during an earthquake. For this reason, the bridge seat needs to be designed to have sufficient strength against design horizontal seismic force.

(3) Design of Foundation

1) Ground Conditions

The following figure shows the ground condition:



Figure 4.2.26 Ground Condition

2) Foundation Shape (Steel Pile Sheet Pile Foundation)

The following figure shows the arrangement of the steel pile sheet pile foundation:

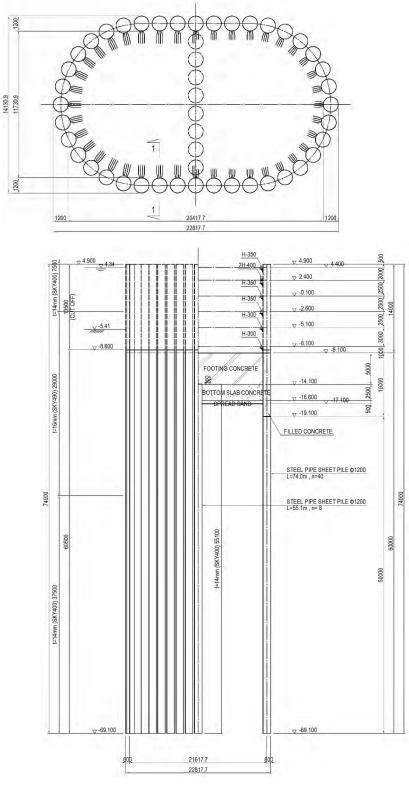
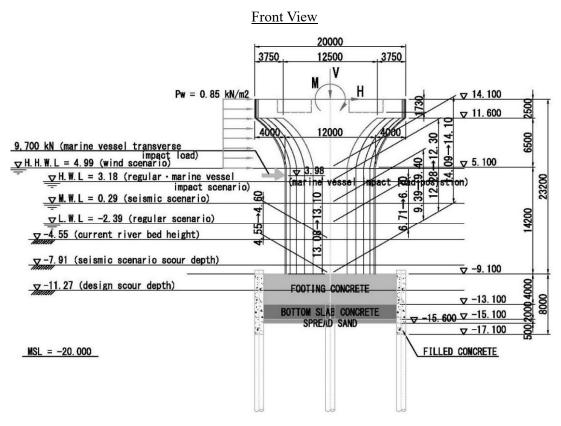
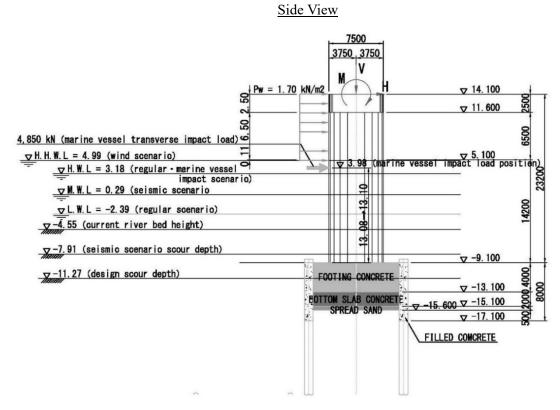


Figure 4.2.27 Dimensional Drawing of Foundation Shape

[Calculation Result Table]

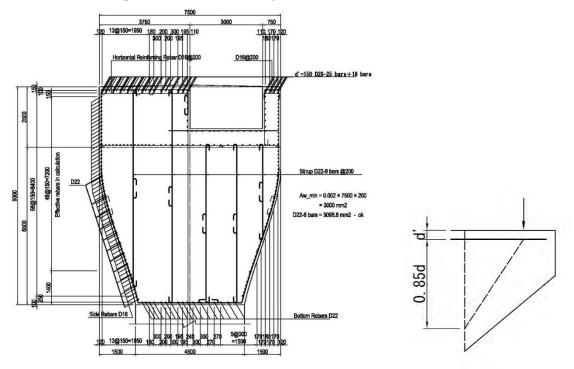

The table for the calculation results for the foundation is shown below.


				Lo	ngitudinal	Direction			Transvers	e Direction	
	Size(mm)×Length(m)×Number			Outer peripheral sheet pile	;	φ1200	×	56.00	×	36 Piles	
Pile				Partitioned sheet pile	;	φ1200	×	52.10	×	8 Piles	
		Outer	Upper Pile			t = 14	mm	(SKY490)			
	Steel Pipe Thickness	sneet nile	Lower Pile			t = 14	mm	(SKY400)			
		Partitioned sheet pile				t = 14	mm	(SKY400)			
	Regular	δ	cm	0.41	\leq	5.00	0	0.07	≦	5.00	0
	(Current	PNmax	KN/Number	2742	≦	3535	0	2740	≦	3535	0
Stability	River Bed)	PNmin	KN/Number	2389	\geq	-1865	0	2399	\geq	-1865	0
Calculation	Seismic	δ	cm	2.68	≦	5.00	0	2.26	≦	5.00	0
	(Current	PNmax	KN/Number	2607	≦	5267	0	2623	≦	5267	0
	River Bed)	PNmin	KN/Number	2293	\geq	-3092	0	2277	\geq	-3092	0
Combine	ed Stress •Current	SKY400	N/mm2	142.9	≦	210.0	0	156.4	≦	210.0	0
River		SKY490	N/mm2	244.1	≦	277.5	0	242.1	≦	277.5	0

Source: JICA Study Team

4.2.10.2 Calculation for Side Pier (P10 and P13)

(1) Figure of Design Condition


Source: JICA Study Team

(2) Pier Design

1) Beam Design

The cross sectional shape of the beam and arrangement of steel reinforcement are shown below.

Note: Side reinforcement is effective in the range of 0.85 times the effective height.

Concrete cover for main steel reinforcement d' = 192 mm

Effective height d = 8808 mm

0.85d = 7487 mm

Effective range for side steel reinforcement = 192 + 7487 = 7679 mm

[Overview of Calculation Result]

The following table shows the calculation results for the beam.

					Vertical	Direction			Horizonta	l Direction		
	Member Height		m	9.000				7.500				
Cross		Main Rebar	1st block	D29	—	25 rebars		D16	_	49本		
Section	Rebar	Ivialli Kebai	2nd block	D29	—	18 rebars						
		Stirr	up	D22	-8rebars ct	c200		D22-2rebars+D16-1rebars ctc200				
Bridge S	eat Cracking	Required rebar amount	mm2									
Cobel		Required rebar amount	mm2	25,512	≦	27,623	0	11,049	≦	19,463	0	
	Bending	Load C	Case	Dead Load					During Earthquake			
	Verification	σc	N/mm2	0.83	≦	10.00	0	0.71	≦	15.00	0	
	vermeation	σs	N/mm2	82.6	≦	100.0	0	99.5	≦	300.0	0	
Cross	Shear	Load C	Case		Dead + I	Live Load			During E	arthquake		
Section	Verification	τm	N/mm2	0.006	≦	0.143	0	0.047	≦	0.111	0	
Calculation		Awreq < Aw	mm2									
	Verification for	M < My	KN•m					8,704	≦	21,371	0	
	Earthquake Performance 2	S < Ps	KN					3,636	Ś	16,160	0	

Table 4.2.24 Calculation Results for Beam

Source: JICA Study Team

2) Design of Column

The column shall be designed as a cantilever beam by treating the joint between the footing as a fixed end. The column cross section shall be designed against the most unfavorable combination of axial force and bending moment.

Note that the steel reinforcement in the column-axial direction was set by dynamic analysis evaluation.

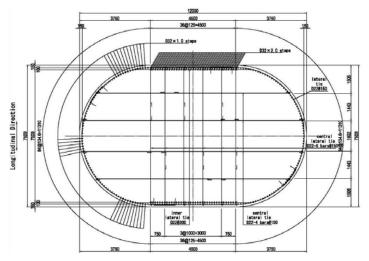


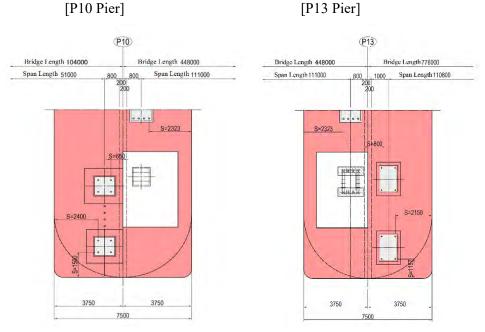
Figure 4.2.29 Cross Section of Column

[Overview of Calculation Result]

The following table shows the calculation results for the column.

			L	Longitude Direction				Transverse Direction			
	Membe	er Height	m	Elliptical Shape	;	12.000	×	7.500			
Cross Section	Rebar	Main Rebar	1st block	D32	ctc	125	*	D32	ctc	135	*
			2nd block	D32	ctc	125	*				
		Lateral Tie		D22	ctc	150		D22	ctc	150	
Cross		σc	N/mm2	7.29	i	15.00	0	4.96	<pre>Second Second Seco</pre>	15.00	0
Section	L1	σs	N/mm2	216.0	≦	300.0	0	100.3	≦	300.0	0
Calculation	Earthquake	τm	N/mm2	0.283	>	0.171	_	0.259	>	0.152	-
Calculation		Aw_req	mm2	721.6	≦	3096.8	0	431.4	≦	2322.6	0

 Table 4.2.25
 Calculation Result for Column


Note: 💥 was decided by dynamic analysis

Source: JICA Study Team

3) Bridge Seat Design

a) Dimension of Bridge Seat Width

The distance between the bearing support edge and the top edge of the substructure was set in accordance with the Specifications for Highway Bridges IV 8.6.

Source: JICA Study Team

Figure 4.2.30 Bridge Seat Width

b) Evaluation of Bridge Seat Strength

Since the bridge seat has a function to support the superstructure via bearing support, large horizontal force would act on it during an earthquake. For this reason, the bridge seat needs to be designed to have sufficient strength against design horizontal seismic force.

(3) Foundation Design

1) Ground Conditions

The following figure shows the ground condition:

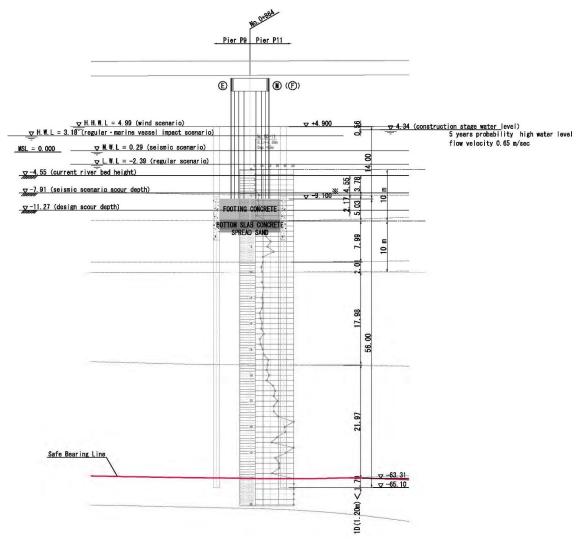


Figure 4.2.31 Ground Condition

2) Foundation Shape (Steel Pile Sheet Pile Foundation)

The following figure shows the arrangement of the steel pile sheet pile foundation:

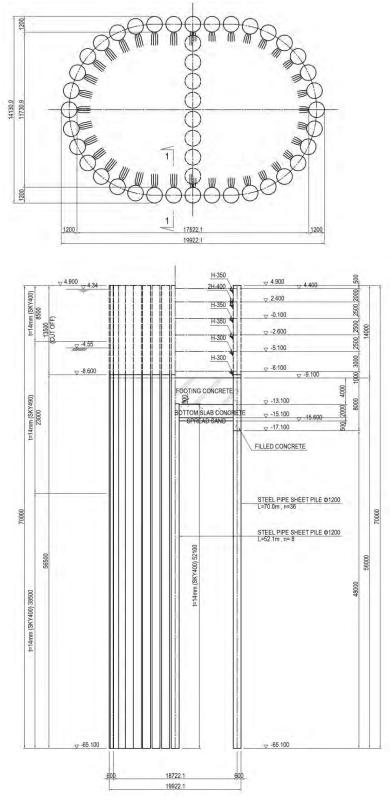


Figure 4.2.32 Dimensional Drawing of Foundation Shape

.

[Calculation Result Table]

The table of the calculation results for the foundation is shown below.

				Lo	ngitude E	Direction			Transvers	se Direction	
	Size(mm)×Length(m)×Number			Outer peripheral sheet pile	;	φ1200	×	56.00	×	36 Piles	
				Partitioned sheet pile	;	φ1200	×	52.10	×	8 Piles	
Pile		Outer peripheral	Upper Pile			t = 14	mm	(SKY490)			
	Steel Pipe Thickness	Pipe sheet nile	Lower Pile			t = 14	mm	(SKY400)			
		Partitioned sheet pile				t = 14	mm	(SKY400)			
	Regular	δ	cm	0.11	≦	5.00	0	0.06	≦	5.00	0
	(Current	PNmax	KN/Number	1991	≦	3893	0	1990	≦	3893	0
Stability	River Bed)	PNmin	KN/Number	1682	≧	-1959	0	1684	\geq	-1959	0
Calculation	Seismic	δ	cm	2.51	≦	5.00	0	3.10	≦	5.00	0
	(Current	PNmax	KN/Number	1922	≦	5839	0	1924	≦	5839	0
	River Bed)	PNmin	KN/Number	1638	≧	-3344	0	1608	\geq	-3344	0
Combine	ed Stress • Current	SKY400	N/mm2	161.0	≦	210.0	0	194.3	≦	210.0	0
River		SKY490	N/mm2	208.5	≦	277.5	0	239.6	\leq	277.5	0

	Table 4.2.26	Calculation	Results	for	Foundation
--	--------------	-------------	---------	-----	------------

Source: JICA Study Team

4.2.11 Summary of Bridge Accessories Design

Movable

4.2.11.1 Design Calculation of Rocking Bearing and Bearing Support

(1) Design Conditions

1) Support Conditions

The condition of the support in the cable-stayed bridge section is as listed in the table below.

	End Supp	port Member: F	Center Support Member: P10 · P13						
	Descripe Types	Bear	ing Conditio	on	Description Types	Bearing Condition			
	Bearing Type	Longitudinal	Transverse	Vertical	Bearing Type	Longitudinal	Transverse	Vertical	
L	Rocking Bearing	Movable	Movable	Fixed	Pin-Roller Bearing	Movable	Movable	Fixed	
С	Horizontal Bearing	Movable	Fixed	Movable	Pivot Bearing	Fixed	Fixed	Fixed	

Fixed

Pin-Roller Bearing

Movable

Movable

Fixed

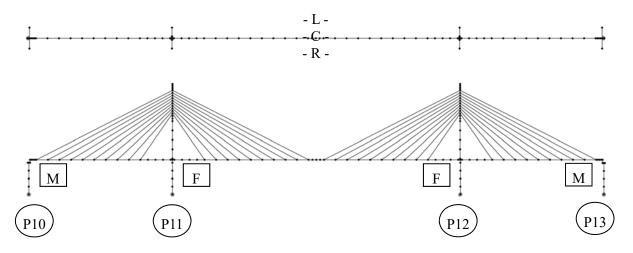

Movable

Table 4.2.27 Condition of Support

Source: JICA Study Team

Pendellosung

R

Source: JICA Study Team

Figure 4.2.33 Condition of Support

2) Structure of Bearings

The structure of the support section at each position is shown below.

a) Support Section Underneath Main Tower

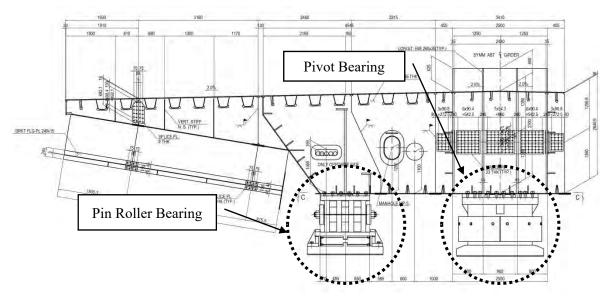
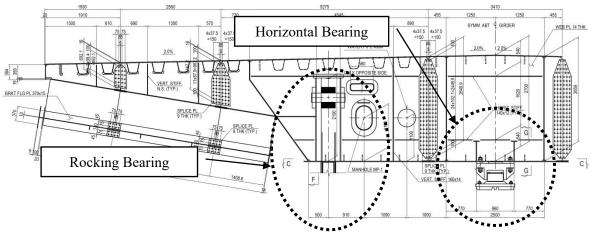



Figure 4.2.34 Bearing Support under the Main Tower

b) Bearing at Ends

Source: JICA Study Team

Figure 4.2.35 Bearing Support at Girder End

3) Design Reaction Force of Bearing Support Section

The design reaction forces of the bearing sections are listed below.

(2) Design of Pivot Bearing

The results of the pivot bearing design are listed below.

		Category		Units	Value		Allowable Value
Spherical Surface	Bearing Stress (Regular Scenario)			N/mm2	91.3	<	125.0
Section	В	earing Stress (Seismic Scenario)			97.5	<	425.0
Upper Shoe		Bearing Stress		N/mm2	404.7	<	425.0
	Shear Stress Key	Shearing Stress			51.5	<	170.0
	Bearing Stress between	Bearing Stress ((Regular Scenario)	N/mm2	16.5	<	250.0
	Supersturcutre	Bearing Stress (Seismic	Eccentricity	mm	485.3	>	381.7
		Scenario-Longitudinal)	Bearing Stress	N/mm2	28.6 <		425.0
			Tensile Stress of Set Bolt	N/mm2	5.5	<	612.0
			Shearing Stress of Set Bolt	N/mm2	313.6	<	340.0
			Combined Stress of Set Bolt	N/mm2	0.9	<	1.2
		Bearing Stress (Seismic	Eccentricity	mm	369.1	<	381.7
		Scenario-Transverse)	Bearing Stress	N/mm2	24.4	<	425.0
			Tensile Stress of Set Bolt	N/mm2	-	<	-
			Shearing Stress of Set Bolt	N/mm2	248.2	<	340.0
			Combined Stress of Set Bolt	N/mm2	-	<	-
	Bending Stress of Upper	Y1-Y1 Cross-Section (X1)	Bending Stress	N/mm2	127.9	<	153.0
	Shoe	Y2-Y2 Cross-Section (X1)	Bending Stress	N/mm2	35.7	<	78.7
Lower Shoe	Bearing Stress between		Regular Scenario)	N/mm2	10.9	<	210.0
	Substructure	Bearing Stress (Seismic	Eccentricity	mm	444.3	>	383.3
		Scenario- Longitudinal)	Bearing Stress	N/mm2	18.2	<	315.0
			Shearing Stress from Tension on Weld	N/mm2	1.5	<	153.0
			Shearing Stress from Horizontal Force on Weld	N/mm2	135.4	<	153.0
			Combined Stress of Set Bolt	N/mm2	0.8	<	1.0
			Shearing Stress from Uplift Force	N/mm2	72.5	<	153.0
		Bearing Stress (Seismic	Eccentricity	mm	338.0	<	383.3
		Scenario-Transverse)	Bearing Stress	N/mm2	16.4	<	315.0
			Shearing Stress from Tension on Weld	N/mm2	-	<	-
			Shearing Stress from Horizontal Force on Weld	N/mm2	107.0	<	153.0
			Combined Stress of Set Bolt	N/mm2	-	<	-
]	Bending Stress of Lower Sh	oe	N/mm2	74.8	<	153.0
Ring	X-X Cross-Section (32)	Tensile Be	ending Stress	N/mm2	234.6	<	289.0
		Bendi	ng Stress	N/mm2	135.7	<	289.0
	Y-Y Cross- Section(**2)	Sheari	ng Stress	N/mm2	45.2	<	170.0
		Combi	ned Stress	N/mm2	0.3	<	1.2
	C Member Bearing Stress	Beari	ng Stres	N/mm2	79.5	<	425.0
	Anchor Bolt	Tensi	le Stress	N/mm2	293.2	<	612.0
Set Bolt	Т	ensile Stress from Uplift Fo	rce	N/mm2	167.8	<	612.0

*Refer to the next page for cross-section position

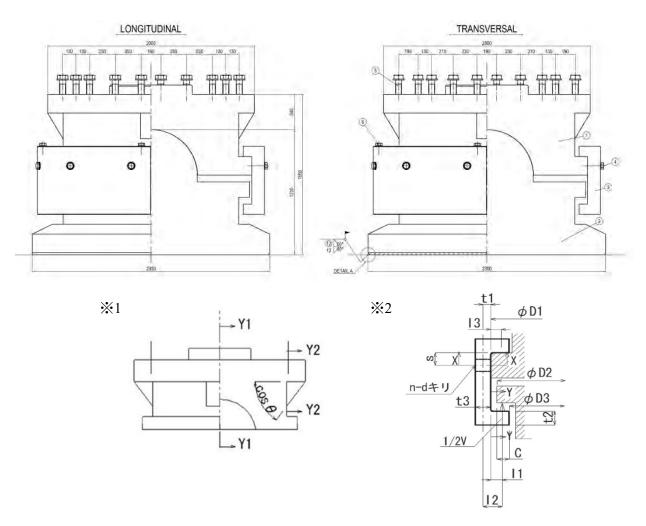
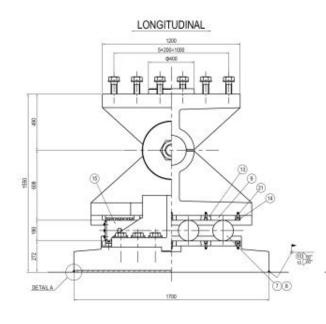
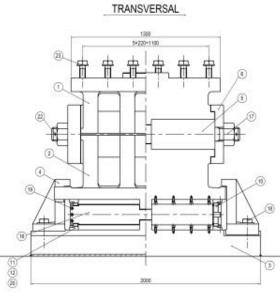


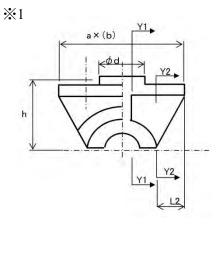
Figure 4.2.36 Pivot Bearing Overview and Cross Section Location

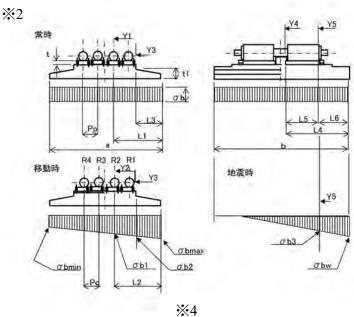
(3) Design of Pin Roller Bearing

The results of the pin roller bearing design are listed below.

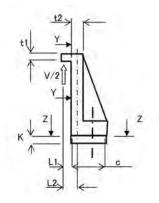

		Category		Unit	Value		Allowable value
Pin	Bearing Stress of Column Surface				72.7	<	125
	Stress by Horizontal Tensile Stress			N/mm2	278.5	<	323
	Force in Transverse	Bearing Stress		N/mm2	362.2	<	425
	Direction	Shear Stress		N/mm2	138.5	<	170
Roller	Required Length			mm	589.6	<	1040
	Stress by Horizontal	Tensile Stress at Cutout Section		N/mm2	220.1	<	510
	Force in Longitudinal Direction	Bearing Stress		N/mm	15318.3	<	25490
Upper Shoe	Projection of upper	Shear Stress Caused by Horizontal Force		N/mm2	44.6	<	170
	surface of upper shoe	Shear Stress Caused by Horizontal Force		N/mm2	350	<	425
		Regular Scenario Bearing Stress		N/mm2	14.5	<	250
			Eccentricity	mm	25.5	<	216.1
		Moving scenario bearing stress	Bearing Stress	N/mm2	12.8	<	287.5
			Eccentricity	mm	232.2	<	233.3
		Seismic Scenario Bearing Stress	Bearing Stress	N/mm2	17.1	<	425
1	Bearing Stress		Tensile Stress of Bolt	N/mm2	-	<	-
	between		Shear Stress	N/mm2	164.3	<	340
	Supersturcutre		Combined Stress	N/mm2	-	<	-
		Seismic Scenario (Transverse Direction)	Eccentricity	mm	2198	>	250
			Bearing Stress	N/mm2	92.7	<	425
			Tensile Stress of Bolt	N/mm2	549.76	<	612
			Shear Stress	N/mm2	164.3	<	340
			Combined Stress	N/mm2	1	<	1.2
		Center cross section	Bending Stress	N/mm2	149.9	<	153
	Bending stress	Y 2- Y 2 Cross section (¥1)	Bending Stress	N/mm2	60.6	<	153
	-	Cross section in transverse direction	Bending Stress	N/mm2	169.8	<	289
Lower Shoe	Bensing Stress	Center cross section	Bending Stress	N/mm2	139.3	<	153
		Stress by Horizontal Force in Transverse Direction	Bearing stress at Cutout Section	N/mm2	391.5	<	425
		Lower Shoe Bending Stress		N/mm2	176.6	<	289
		Lower Shoe Shear Stress		N/mm2	82.2	<	170
	Stopper		Bending Stress	N/mm2	71.9	<	289
		Stress by Horizontal Force in Transverse	Shear Stress	N/mm2	73.8	<	170
		Direction	Combined Stress	N/mm2	0.25	<	1.2
			Bearing Stress	N/mm2	326.3	<	425

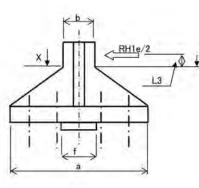

Table 4.2.29	Design Calculation Results - 1	
--------------	--------------------------------	--

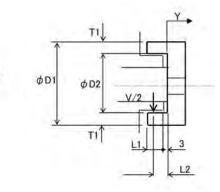

	Category			Unit	Value		Allowable value
Bottom Board		Regular Scenario Bearing Stress				<	210
		Moving scenario bearing stress		N/mm2	8.25	<	241.5
			Eccentricity	mm	587.6	>	283.3
			Bearing Stress	N/mm2	13.8	<	425
		Seismic Scenario Bearing Stress	Shear Stress Caused by Tension of Welded Section	N/mm2	11.6	<	136
	Dearline Change		Shear Stress Caused by Horizontal Force	N/mm2	43.7	<	136
	Bearing Stress between Substurcutre		Combined Stress	N/mm2	0.1	<	1
			Lift force Scenario	N/mm2	29	<	136
			Eccentricity	mm	2198	>	333.3
			Bearing Stress	N/mm2	21.7	<	357
		Seismic Scenario (Transverse Direction)	Shear Stress Caused by Tension of Welded Section	N/mm2	95.6	<	136
			Shear Stress Caused by Horizontal Force	N/mm2	43.7	<	136
			Combined Stress	N/mm2	0.6	<	1
		Y1,2-Y1,2 Cross Section (¥2)	Bending Stress	N/mm2	82.4	<	153
Bending Stre	Bending Stress	Y 3-Y 3 Cross Section (¥2)	Bending Stress	N/mm2	34.6	<	176
		Y 4,5-Y 4,5 Cross Section (32)	Bending Stress	N/mm2	146.6	<	153
Side Block	Stress of Main Body		Bending Stress	N/mm2	170.5	<	289
		Stress on Y-Y Cross Section(3)	Shear stress	N/mm2	62	<	170
			Combined Stress	N/mm2	0.48	<	1.2
		Tensile Bending Stress on X-X Cross Section(**3)			260.1	<	289
		Stress on X-X Cross Section (¥3) Stress on Z-Z Cross Section (¥3)	Bending Stress	N/mm2	88.9	<	289
			Shear Stress	N/mm2	98.8	<	170
			Combined Stress	N/mm2	0.43	<	1.2
			Bending Stress	N/mm2	280.7	<	425
			Shear Stress	N/mm2	57.8	<	170
			Tensile Stress of Bolt	N/mm2	236.3	<	612
		Verification Considering Horizontal Force in Longitudinal Direction	Shear Stress	N/mm2	273.8	<	340
	Installing Bolt	Longitudinal Direction	Combined Stress	N/mm2	0.8	<	1.2
		Verification Considering Lift Force	Tensile Stress of Bolt	N/mm2	559.2	<	612
Cap	Bearing Stress			N/mm2	163.6	<	425
		Bending Stress		N/mm2	180.5	<	425
	Stress on Y-Y Cross Section (¥4)	Shear Stress		N/mm2	91	<	161.5
	Section (¥4)	Combined Stress		N/mm2	0.71	<	1.2
Superstructure	Tensile Force Caused	by Lift Force		N/mm2	109.1	<	612
Installing Bolt	Shear Stress			N/mm2	131.8	<	340

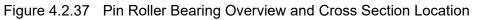

Table 4.2.30	Design	Calculation	Results	- 2
--------------	--------	-------------	----------------	-----

*See the next page for the cross-section position

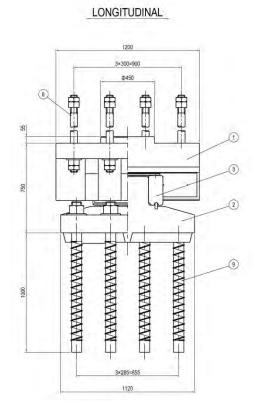


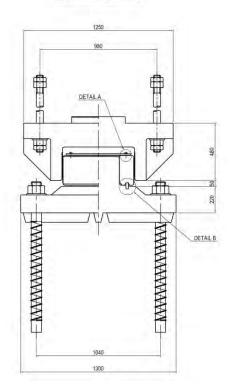




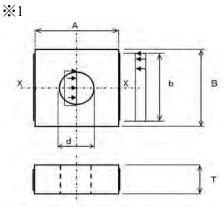

Х

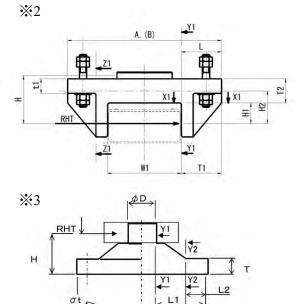
₩3


(4) Design of Horizontal Bearing


The results of the horizontal bearing design are listed below.

Category				Unit	Value		Allowable Value
Slide Slope	Bearing Stress			N/mm2	79.0	<	157.5
C 11	X-X Cross Section	Bending Stress		N/mm2	60.1	<	229.5
Collar	(※1)	Tensile Stress		N/mm2	225.2	<	229.5
	Stress at Projection	Bearing Stress		N/mm2	297.8	<	375.0
	of upper shoe	Shear Stress		N/mm2	42.1	<	150.0
		Bearing Stress	Bearing Stress	N/mm2	49.3	<	323.0
		Bearing Stress	Tensile Stress of Bolt	N/mm2	532.0	<	799.0
		VI VI C	Bending Stress	N/mm2	234.9	<	255.0
Upper Shoe		X1-X1 Cross Section (¥2)	Shear Stress	N/mm2	56.8	<	150.0
	Stress of Main Body		Combined Stress	N/mm2	1.0	<	1.0
		Y1-Y1 Cross Section (¥2)	Bending Stress	N/mm2	199.3	<	255.0
		Z1-Z1 Cross Section (*2)	Bending Stress	N/mm2	216.7	<	255.0
	Bearing Stress		N/mm2	93.4	<	375.0	
	Stress of Cylinder Section		Bending Stress	N/mm2	218.9	<	229.5
		Foundation of Cylinder Section	Shear Stress	N/mm2	69.6	<	135.0
			Combined Stress	N/mm2	1.2	<	1.2
Lower Shoe	Stress of Main Body	D	Bearing Stress	N/mm2	7.7	<	12.0
		Bearing Stress	Tensile Stress of Bolt	N/mm2	125.9 < 28		285.0
		Y1-Y1Cross Section (¥3)	Bending Stress	N/mm2	96.7	<	229.5
	Y2-Y2 Cross Section (¥3)		Bending Stress	N/mm2	57.0	<	230.0
	Shear Stress			N/mm2	147.6	<	165.0
Anchor Bolt	Bond Stress			N/mm2	2.3	<	2.4
	Combined Stress	Combined Stress			1.0	<	1.2
	Tensile Stress			N/mm2	532.0	<	799.0
Installing Girder Bolt	Shear Stress			N/mm2	296.2	<	405.0
DOIL	Combined Stress			N/mm2	1.1	<	1.2


Table 4.2.31	Design Calculation Results
--------------	----------------------------


& See the next page for the cross-section position

TRANSVERSAL

σb2

 $A(\times B)$

σb

σb1

Figure 4.2.38 Horizontal Bearing Overview and Cross Section Location

(5) Design of Rocking Bearing

The results of the rocking bearing design are listed below.

		Category		Units	Value		Allowable Value
Endlink	Spherical Surface Bearing	Bearing Pressure (Internal Diameter)			41	<	50
	Spherical Bush	Maximum Bearing Stress	at Center Cross Section	N/mm2	23	<	50
	Bearing	Tensile Stress		N/mm2	55	<	290
	Pin	Bending Stress		N/mm2	262	<	290
		Shear Stress		N/mm2	57	<	160
	Anchor Structure at	Curved Beam Calculation	Cross Section Y (¥1)	N/mm2	132	<	153
	Upper Side		Cross Section X (¥1)	N/mm2	80	<	153
		Shear Stress	·	N/mm2	37	<	90
	Anchor Structure at	Curved Beam Calculation	Cross Section Y (¥1)	N/mm2	101	<	153
	Lower Side		Cross Section X (¥1)	N/mm2	49	<	102
		Shear Stress	•	N/mm2	40	<	60
Rocking Bearing	Tie Bar	Axial Compressive Stress		N/mm2	105	<	131
	Support Beam	Stress (Compression)	συ	N/mm2	73	<	207
			σl	N/mm2	85	<	210
		Stress (Tension)	σι	N/mm2	87	<	210
			σl	N/mm2	102	<	169
	Base of Beam Post	Design as Column	Axial Compressive Stress	N/mm2	47	<	210
			Bearing Stress	N/mm2	129	<	315
		Design as Beam	σ	N/mm2	3	<	210
			τ	N/mm2	9	<	120
	Base Plate	σ	•	N/mm2	155	<	210
		τ		N/mm2	21	<	120
	Anchor Bolt	σs		N/mm2	204	<	210
	Anchor Frame	Shear Stress of Web		N/mm2	37	<	120
		Compressive Stress of Dia	aphragm	N/mm2	108	<	210
		Stress of Flange	(A), (B) Panel Combined Stress	N/mm2	96	<	210
			(C), (D) Panel Combined Stress	N/mm2	27	<	210
			(E), (F) Panel Combined Stress	N/mm2	158	<	210

Table 4.2.32	Design Calculation Results
--------------	-----------------------------------

 $\ensuremath{\overset{\scriptstyle\frown}{\times}}\xspace$ see the next page for the cross-section position



Figure 4.2.39 Rocking Bearing Overview and Cross Section Location

r = 398 (環軸半径)

4.2.11.2 Study on Cable Damping Device

(1) Design Overview

Due to the exposure to constant winds, the cables of the cable-stayed bridge are said to be subjected to aerodynamically unstable oscillations, as stated below, which may lead to problems of fatigue at the cable ends. In this study, as a countermeasure for the aerodynamically unstable oscillation [1) Vortex induced vibration, 2) Rain-wind induced vibration] of the cable, the specifications of the apparatus and its damping effects when using high damping rubber damper were investigated.

(2) Installation of Mitigation Apparatus

The mitigation apparatus was installed as shown in the figure below. The fitting metals for the rod-type vibration mitigation apparatus were attached on the girder in case of vibration after completion.

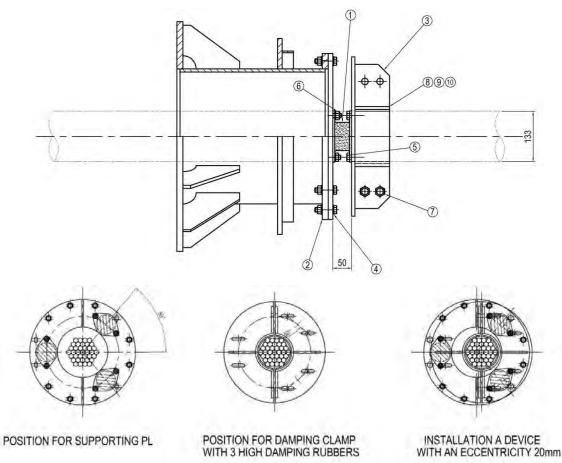
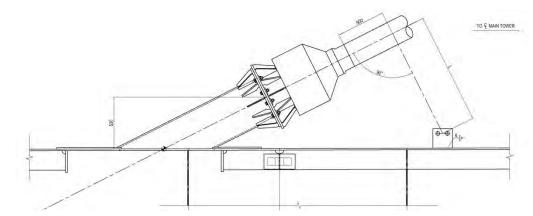
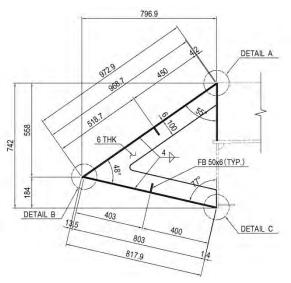



Figure 4.2.40 Installed Mitigation Apparatus

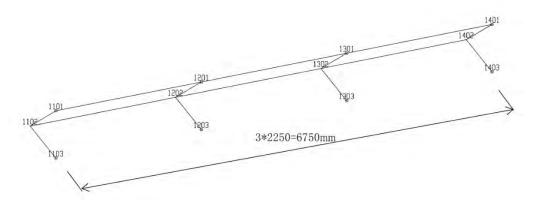

Source: JICA Study Team

4.2.11.3 Main Body Design of Fairing

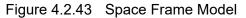
(1) Fairing Shape

The fairing is installed at the girder in order to improve the wind resistance of the bridge. The fairing shape was referred from past cases and the wind stability was checked by wind tunnel test.

Source: JICA Study Team

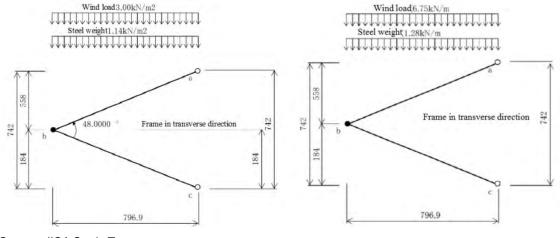

Figure 4.2.42 Fairing Shape

(2) Design Method


Design calculation is performed by applying wind and dead load.

The section force of the fairing member is calculated by applying the space frame model shown below.

By referring to past records of cable-stayed bridges, the fairing plate thickness is set to 6 mm.


Note: The interval of frame panel is 2250 mm of the maximum transverse rib interval Source: JICA Study Team

(3) Design Load

The section force used for the design of the longitudinal member is determined by loading the surface load on the upper surface (a-b) of the space frame.

The section force used for the design of the transverse member is determined by loading the line load on the transverse frame of the space frame as shown below.

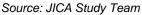


Figure 4.2.44 Space Frame Model

The overdesign factor of allowable stress is 1.25 for the steel weight + wind load.

As the section force of the member against the wind load from the side is smaller than that from the perpendicular direction, the calculation of the section force of the member against the wind load from the side is omitted.

4.2.11.4 Design of Expansion Joint

(1) Design Conditions of EJ-1 (P10)

The design conditions for the expansion joint are listed in the table below.

Table 4.2.33 Design Conditions						
Item	Left Girder (P9 side)	Right Girder (P11 side)				
Type of bridge	Steel deck slab girder	Steel deck slab girder				
Temp range	0 °C∼50 °C	0 °C∼50 °C				
Load	72.5 kN for back wheel					

Source: JICA Study Team

(2) Selection of Expansion Joint Type

The design expansion amount is determined for the regular condition as:

 ΔLj : 269 mm $\langle \Delta Lq$: 568 mm

Due to the design expansion amount, the modular type joint (maximum design movement of 640 mm) was selected.

4.2.11.5 Drainage Device

(1) Catch Basin Shape

The catch basin shape is shown in the figure below.

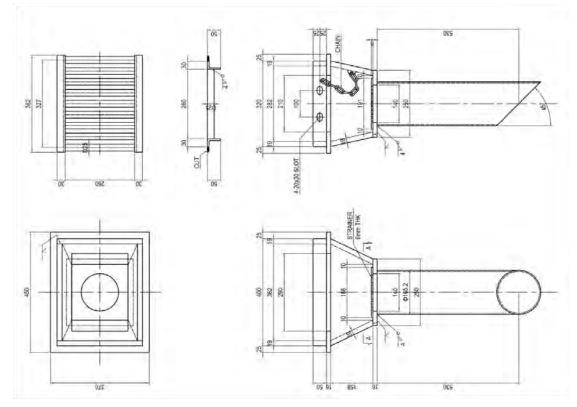
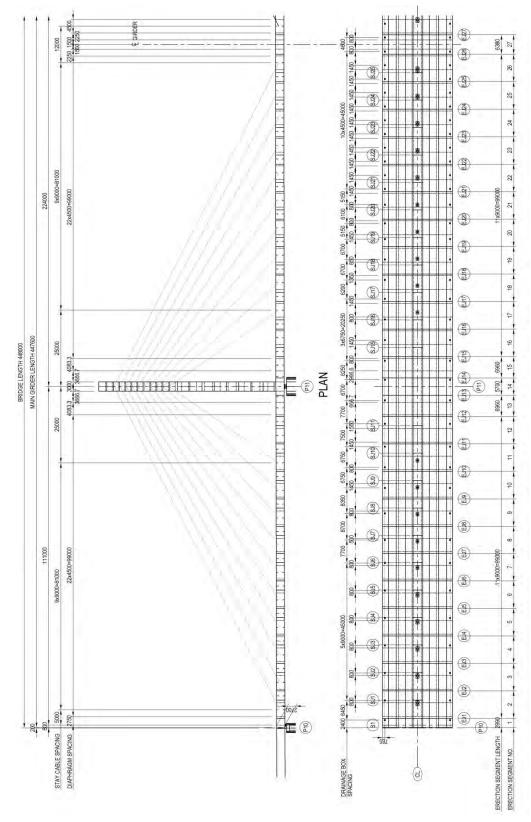



Figure 4.2.45 Catch Basin Shape

(2) Catch Basin Arrangement

The position of the catch basin is shown below:

4.2.11.6 Guardrail

(1) Specifications of Guardrail

The Type-A combination railing (steel) which is shown in the standard drawings for Ministry of Land, Infrastructure, Transport and Tourism Hokuriku Regional Development Bureau was selected. The specifications of guardrail are as follows:

: 0.9 m from bridge surface

- Post interval : 2.0 m shall be set as the standard.

(Median Side)

- Height of guardrail (Outer Side) :1.1 m from bridge surface

150 250 POST 100 MAIN BEAM □125x125x4.5 □150x100x6 20 100 Т TAPPED HOLE M16 32 15 400 500 125 100 850 TAPPED HOLE M16 8 850 LOWER BEAM 1100 00 300 30 250 **Ø8 DARAINAGE HOLE** 60 130 30 30 8 250 220 235 D25 235 80 D25 Φ225 E 412.5 187.5 FILL WITH CEMENT MORTAR 600

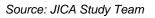
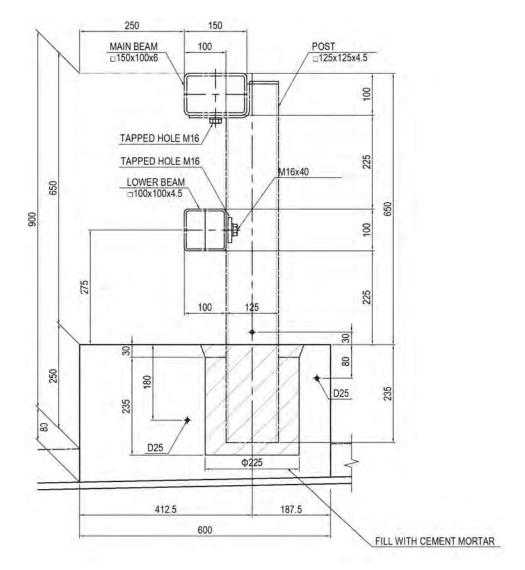
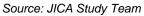
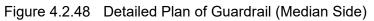
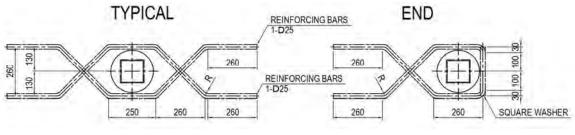






Figure 4.2.47 Detailed Plan of Guardrail (Outer Side)

4.2.11.7 Design of Base for Miscellaneous Items

(1) Base for Road Lighting Pole

The road lighting pole weight was assumed as shown below, and the design of the base was performed. The calculation results are as follows:

1) Design Load

The assumed weight of the road lighting pole is:

12 m lighting pole (assumed weight) V = 1.900 kN (about 190 kg)

2) Design of Base

 $\begin{array}{rrrrr} M &=& 1.900 & \times \ 0.270 \\ &=& 0.513 & kNm \\ S &=& 1.900 & kN \end{array}$

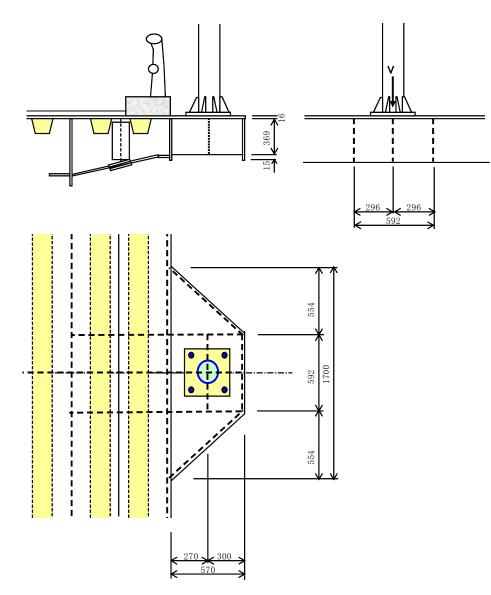
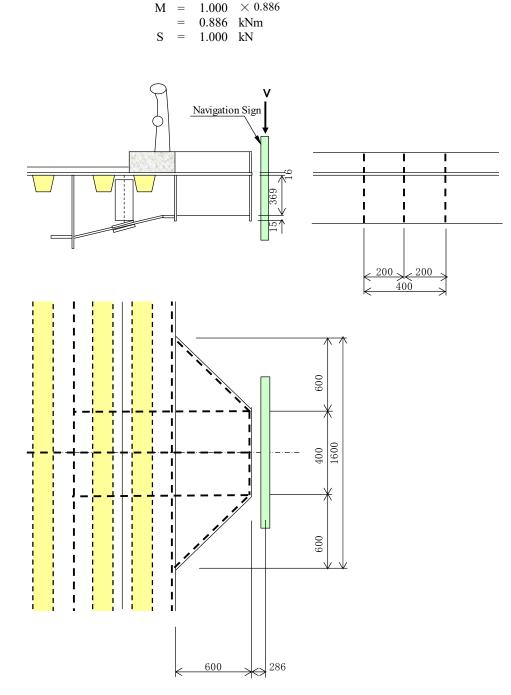
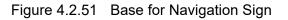


Figure 4.2.50 Base for Road Lighting Pole

(2) Base for Navigation Sign

The navigation sign weight was assumed as shown below, and the design of the base was performed. The calculation results are as follows:


1) Design Load


The assumed weight of the navigation sign is:

Navigation sign (assumed weight)

V = 1.000 kN (about 100 kg)

2) Design of Base

(3) Support for Water Pipe

The water pipe weight (full water) was assumed as shown below, and the design of the water pipe support was performed. The calculation results are as follows:

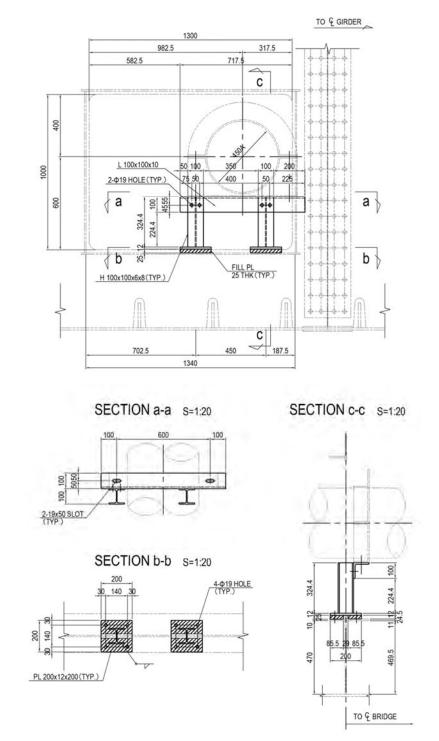
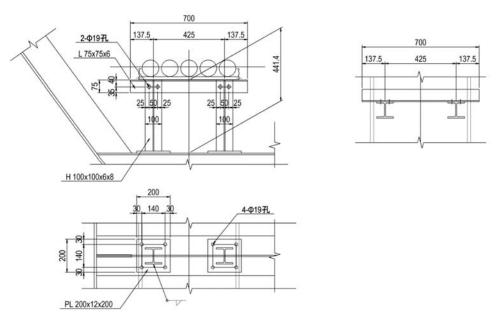



Figure 4.2.52 Water Pipe Support

(4) Support for Electrical Cables

The electrical cable weight was assumed as shown below, and the design of the electrical cable support was performed. The calculation results are as follows:

Source: JICA Study Team

4.2.11.8 Maintenance Equipment

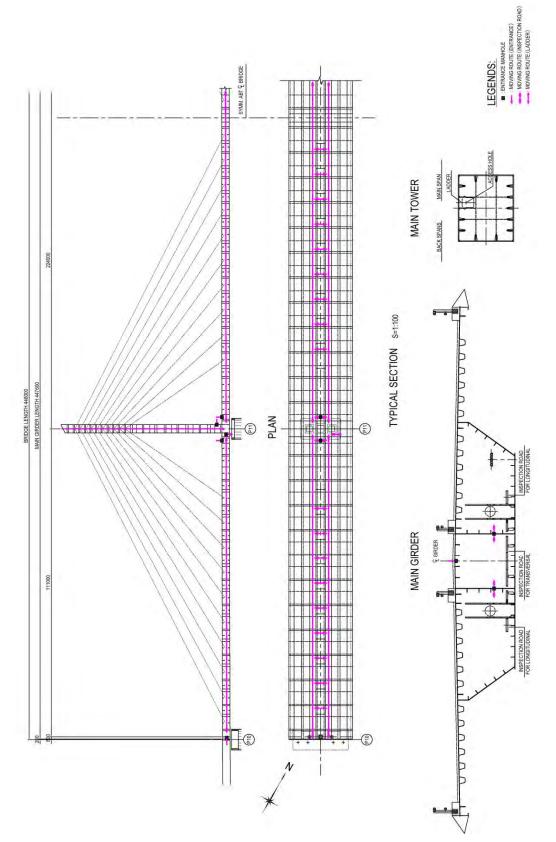
(1) Inspection Facility Plan

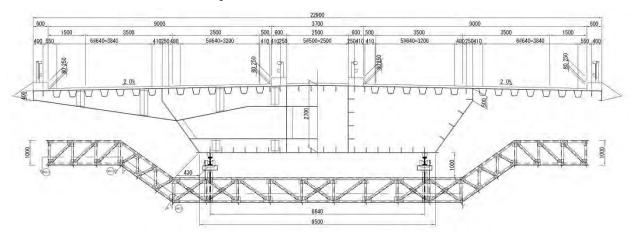
Based on the inspection facility arrangement plan listed below, the installation of the inspection facility at the necessary positions are examined.

Inspection Point	Description	Note
Girder undersurface	Install inspection car rail for inspection and maintenance using girder undersurface inspection car*. Install scaffolding mountable temporary suspenders.	* Checked with assumed load for the inspection car
Inside girder	Install inspection roads and ladders. Install manholes at necessary positions.	
Tower outer surface	Install base plates for inspection and maintenance using gondola*.	* Checked with assumed load for the gondola
Inside tower	Install ladders. Install access ladders to link the inside of the girder to the inside of the tower. Install manholes at necessary positions.	
Top of pier	Install handrails at the top of the pier. Side pier*: Install access ladders from bridge face to pier top. Tower pier: Install access ladders from girder face to pier top.	* The access ladders at the side piers shall be installed at the adjacent bridge
Source: JICA	Study Team	

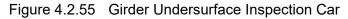
Table 4.2.34	Inspection	Facility	y Arrangement Plan

The maintenance route is shown in the figure below.




Figure 4.2.54 Maintenance Route

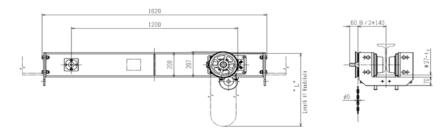
(2) Examination of Inspection Car Rail (Reference)


1) Examination Overview

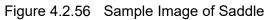
The examination of the rail for the girder undersurface inspection car was performed.

The outline for the assumed inspection car is shown below.

Source: JICA Study Team

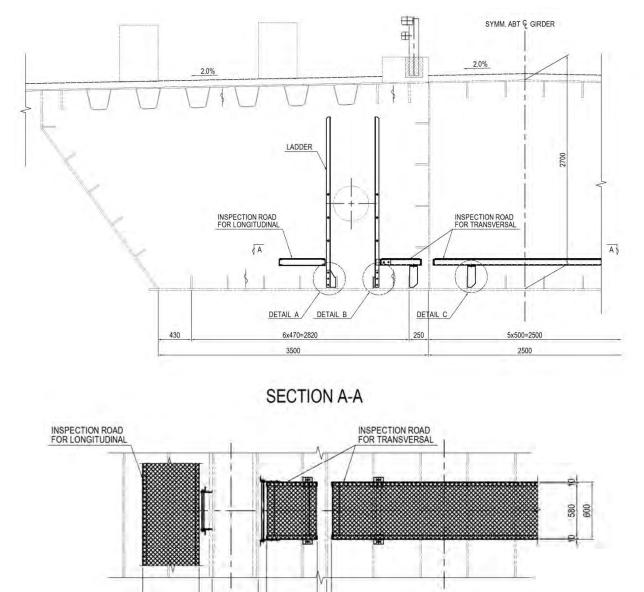


2) Design Conditions


- The self-weight of the inspection car was set by referring to the inspection car at the Thanlyin Bridge.
- > The assumptions made for the saddle of the inspection car is as listed below.

•	Number of suspension points	: 4 Points
•	Number of wheels per suspension point	: 2 wheels

- Suspension point interval Long. Direction : 1.2m
 - Trans. Direction : 8.64m
- Maximum load of one suspension point : 34.3kN (3.5t)
- Sample image of saddle



Note: The detailed figure of the saddle shall be treated as reference. Source: JICA Study Team

(3) Inspection Route inside Girder

The inspection route inside the girder is shown below.

Source: JICA Study Team

600

137

486

Figure 4.2.57 Inspection Route inside Girder

2380

537 100 50

(4) Inspection Route inside Tower

The shaft ladders inside the tower is as shown below.

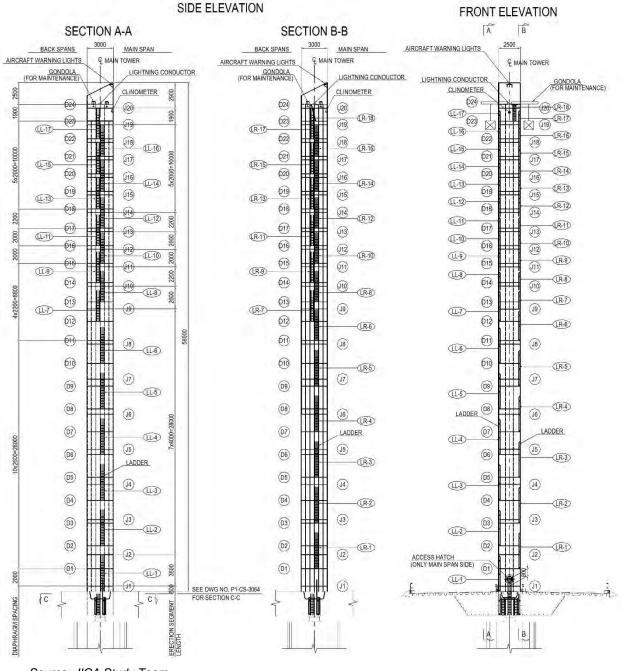
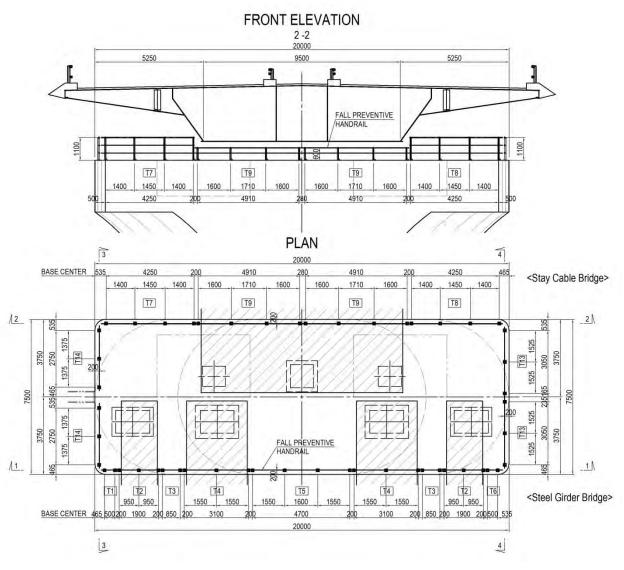
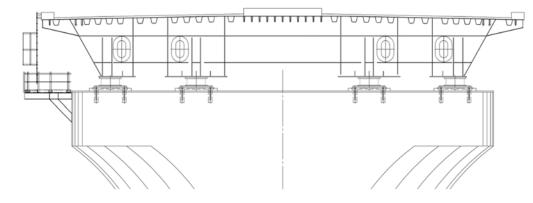


Figure 4.2.58 Shaft Ladders inside Towers

(5) Fall Preventive Handrail at Pier Top

Fall preventive handrails for inspection and maintenance of bearings and pier top are installed.




Figure 4.2.59 Fall Preventive Handrail at Pier Top

(6) Shaft Ladder

The shaft ladders to the top of the piers are installed as shown below.

1) Side Pier

The access ladders shall be installed linking the bridge face to the pier top as shown below. (The ladders shall be installed at the adjacent bridge).

Figure 4.2.60 Shaft Ladder (Side Pier)

2) Tower Pier

The access ladders shall be installed linking the inside of the girder to the pier top.

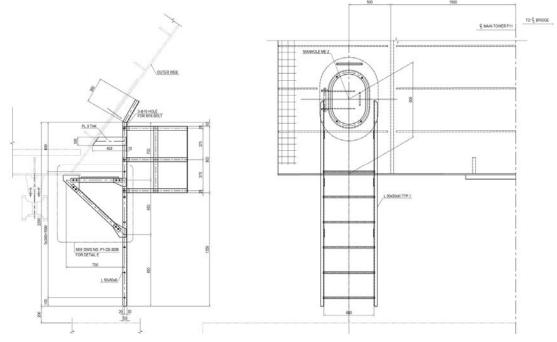


Figure 4.2.61 Shaft Ladder (Tower Pier)

4.2.12 Summary of Seismic Analysis

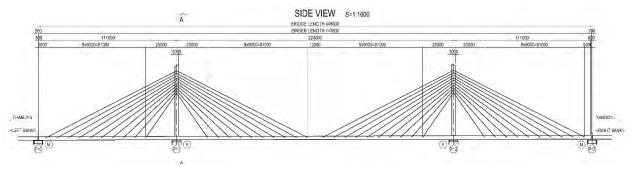
4.2.12.1 Dynamic Analysis of Overall Structure

The purpose of the analysis is to observe the behavior of the main section, i.e., the cable-stayed bridge, during an earthquake. The static analysis of seismic design is shown in "Section 4.2.9.7 Static Structure Analysis" of this report.

(1) Non-Linear Dynamic Analysis Conditions

1) Outline of Structure

- a) Structure Type
- Superstructure three-span continuous cable-stayed bridge
- Substructure Reinforced concrete single column type pier
- Foundation Type P10 Pier: Steel pipe sheet pile foundation

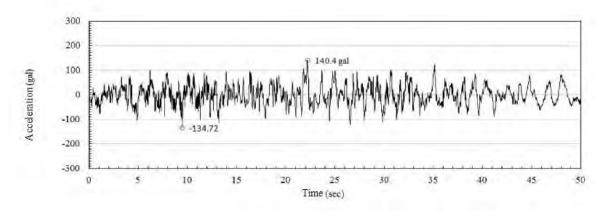

P11 Pier: Steel pipe sheet pile foundation

P12 Pier: Steel pipe sheet pile foundation

P13 Pier: Steel pipe sheet pile foundation

b) Bearing Support Condition

- P10 Pier: Movable (Fixed on transverse direction) Rocking Bearing
- P11 Pier: Fixed (Fixed on transverse direction)
- P12 Pier: Fixed (Fixed on transverse direction)
- P13 Pier: Movable (Fixed on transverse direction) Rocking Bearing
- c) Structural Plan

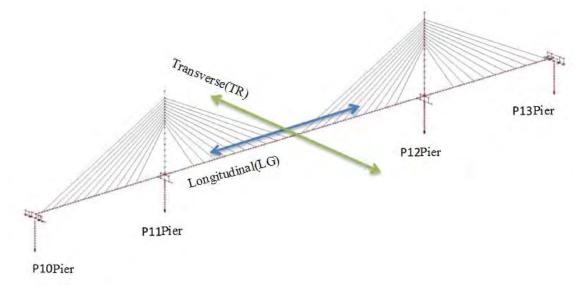


Source: JICA Study Team

Figure 4.2.62 Structural Plan of Superstructure

2) Design Seismic Wave

The design seismic wave used for the dynamic analysis shall use the waveform of the Specification of Highway Bridges Level 1 Seismic Motion (Type III Ground) corresponding to kh = 0.3 of the seismic coefficient method.



Source: JICA Study Team

Figure 4.2.63 Design Seismic Wave

3) Analysis Direction

The analysis of the bridge shall be performed in two directions, namely: the direction connecting the P10 and P13 pier, which is the Longitudinal Direction (LG), and the direction perpendicular to it, which is the Transverse Direction (TR), considering the bridge is straight.

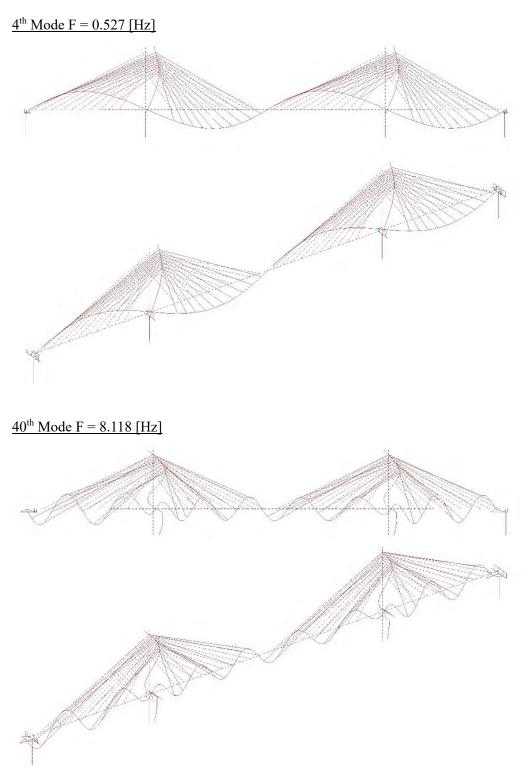
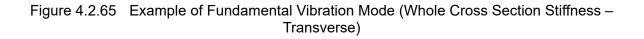

Source: JICA Study Team

Figure 4.2.64 Analysis Direction for Dynamic Analysis


(2) Analysis Result

1) Natural Value Analysis

The fundamental natural frequency mode for each analysis model is shown below. It was found that the responded stress in all the structural members are less than the allowable stress.

Source: JICA Study Team

4.2.13 Superstructure Construction Stage Analysis

4.2.13.1 Construction Stage Analysis Overview

During the construction stage of temporary structures, the superstructure section force, cable tension, and bent reaction forces will be calculated to verify the safety and understand the deformation during erection.

4.2.13.2 Analysis Condition

The analysis condition for the construction stage analysis is listed in the table below.

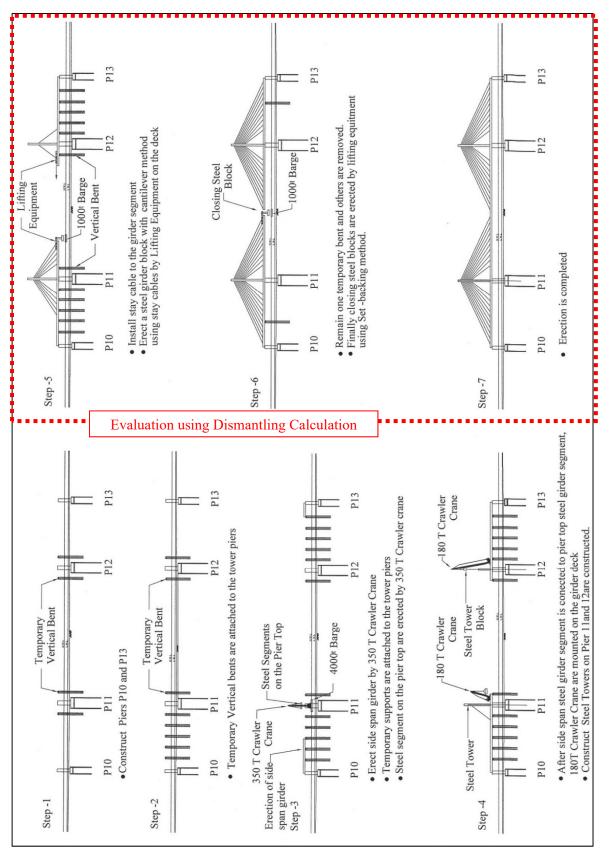
Item	Content					
Analysis Theory	Linear structural analysis					
Analysis Model	3d structure model					
Considered Temporary Load	180 t considered Erection Machine W = 160 t Movement Protection Scaffolding W = 20 t					
Analysis Stage	All 24 Stages (CS0~CS23)					
Source: JICA Study Team						

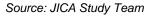
Table 4.2.35 Analysis Condition

4.2.13.3 Construction Stage

The construction stages of the cable-stayed bridge is shown below.

For the construction stage surrounded by red dotted line in the image below, evaluation using the construction stage analysis is performed.




Figure 4.2.66 Construction Steps for Cable-stayed Bridge

For the construction stage analysis, reversed order for the dismantling of temporary structure is configured as shown below.

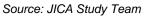

Analysis Stage	Content	Crane Position	Bent
CS0	Competed (Front DL+Back DL+PS)	-	↑
CS1	Removal of Additional Dead Load	1	Ţ
CS2	Removal of Main Girder G27 (Closing Block)	② C 20 Anchor Position	Ţ
CS3	Removal of Cable C1,20	③ C 19 Anchor Position	↑
CS4	Removal of Main Girder G26	③ C19 Anchor Position	Î
CS5	Removal of Cable C2,19	④ C18 Anchor Position	Ţ
CS6	Removal of Main Girder G25	④ C18 Anchor Position	Î
CS7	Removal of Cable C3,18	(5) C 17 Anchor Position	Ţ
CS8	Removal of Main Girder G24	(5) C 17 Anchor Position	Ţ
CS9	Removal of Cable C4,17	6 C 16 Anchor Position	Removal of Bent ①
CS10	Removal of Main Girder G23	6 C 16 Anchor Position	Ţ
CS11	Removal of Cable C5,16	⑦ C 15 Anchor Position	Removal of Bent 2
CS12	Removal of Main Girder G22	⑦ C 15 Anchor Position	Ţ
CS13	Removal of Cable C6,15	8 C 14 Anchor Position	1
CS14	Removal of Main Girder G21	8 C 14 Anchor Position	1
CS15	Removal of Cable C7,14	(9) C 13 Anchor Position	Removal of Bent ③
CS16	Removal of Main Girder G20	(9) C 13 Anchor Position	Removal of Bent 46
CS17	Removal of Cable C8,13	10 C 12 Anchor Position	\uparrow
CS18	Removal of Main Girder G19	10 C 12 Anchor Position	Removal of Bent (5)
CS19	Removal of Cable C9,12	1 C11 Anchor Position	\uparrow
CS20	Removal of Main Girder G18	1 C11 Anchor Position	↑
CS21	Removal of Cable C10,11	(12)	\uparrow
CS22	Removal of Main Girder G17	-	Ţ
CS23	Removal of Main Girder G16	-	Install Bent 1~6

Table 4.2.36 Dismantling Stages

%Refer to the next page for cable number and main grider numbers

4.2.13.4 Dismantling Calculation Results

(1) Cross Section Evaluation

The maximum and minimum section forces and the results of the cross section evaluation are shown below.

Section Force	Bending Mom	ent (kN · m)	Shear For	rce (kN)	Axial For	Evaluation	
Cross-Section Position	Max	Min	Max	Min	Max	Min	Result
EJ1	4325	-3607	1783	-1839	5	-5	OK
EJ2	15761	-22478	2725	-692	7	-3877	OK
EJ3	17452	-38031	2660	-1899	5551	-7463	OK
EJ4	20533	-44936	2678	-738	5554	-10812	OK
EJ5	18926	-47299	2791	-1053	5557	-14068	OK
EJ6	14205	-43778	2562	-676	5559	-17460	OK
EJ7	7998	-37889	2541	-862	4578	-19432	OK
EJ8	4820	-33121	2432	-658	4189	-21524	OK
EJ9	916	-30976	1348	-901	2747	-23586	OK
EJ10	1488	-22578	1038	-1304	746	-25496	OK
EJ11	14232	-10746	-342	-2204	-46	-27103	OK
EJ12	22777	-2323	1444	-1089	-44	-27100	OK
EJ13	24159	-14449	2825	-227	-43	-27098	OK
EJ14	23044	-20108	1214	-2961	261	-28675	OK
EJ15	22049	-11971	2077	-1579	262	-28673	OK
EJ16	12981	-23321	1919	-1605	0	-28671	OK
EJ17	1201	-29583	1068	-1755	0	-27074	OK
EJ18	0	-35244	578	-1744	0	-25172	OK
EJ19	689	-31912	346	-1984	0	-23113	OK
EJ20	2745	-26613	259	-2173	0	-21028	OK
EJ21	2561	-28750	319	-1410	0	-19056	OK
EJ22	697	-31618	0	-1795	0	-15667	OK
EJ23	1295	-28220	0	-1909	0	-12404	OK
EJ24	6258	-18198	512	-1905	0	-9054	OK
EJ25	4093	-5388	114	-1189	0	-5708	OK
EJ26	6087	-755	0	-634	0	-2337	OK

 Table 4.2.37
 Main Girder Section Force Summary Table

Source: JICA Study Team

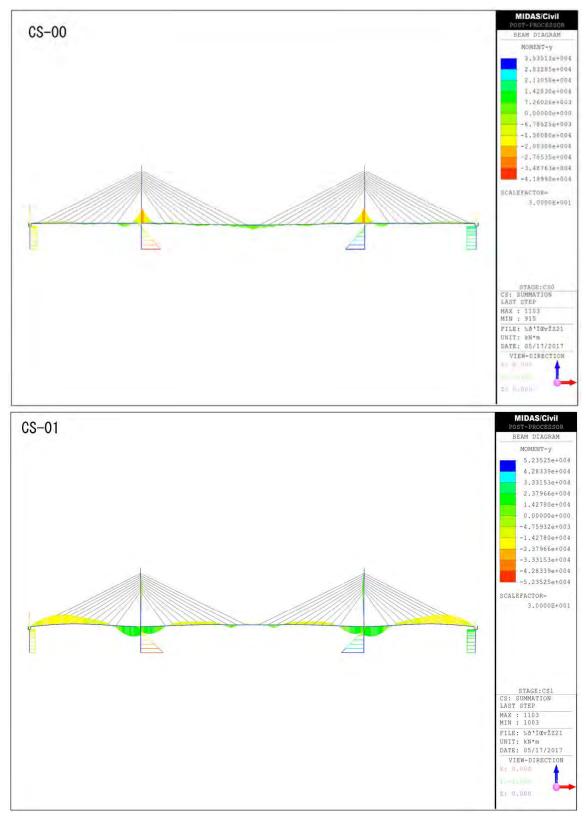
Table 4.2.38 Main Tower Section Force Summary Table

Section Force	Bending Mon	nent (kN · m)	Shear Fo	orce (kN)	Axial Fo	rce (kN)	Evaluation	
Cross-Section Position	Max	Min	Max	Min	Max	Min	Result	
Tower Base (Girder upper surface)	3136	-1903	31	-122	-3440	-43031	OK	
J1	3098	-1913	31	-122	-3410	-43001	OK	
J2	2868	-1976	31	-122	-3230	-42821	OK	
J3	2614	-2045	31	-122	-3030	-42621	OK	
J4	2360	-2177	31	-122	-2830	-42421	OK	
J5	2105	-2367	31	-122	-2630	-42221	OK	
J6	1851	-2556	31	-122	-2430	-42021	OK	
J7	1596	-2745	31	-122	-2230	-41821	OK	
J8	1342	-2935	31	-122	-2030	-41621	OK	
J9	1087	-3124	31	-122	-1830	-41421	OK	
C10	909	-3268	31	-122	-1690	-41281	OK	
С9	671	-3447	71	-119	-1530	-36487	OK	
C8	390	-3513	162	-140	-1370	-32040	OK	
C7	173	-3425	243	-121	-1210	-28017	OK	
C6	139	-3176	303	-74	-1050	-24449	OK	
C5	102	-2765	341	-18	-890	-21406	OK	
C4	61	-2106	332	-21	-730	-16709	OK	
C3	36	-1292	407	-13	-570	-12499	OK	
C2	13	-512	390	-11	-410	-8434	OK	
C1	0	0	256	-7	-250	-4321	OK	

Cable Number	Maximum Cable Tension (kN)	Evaluation Result
C1	4356	OK
C2	4975	OK
C3	4854	OK
C4	4812	OK
C5	5172	OK
C6	3277	OK
C7	3392	OK
C8	3503	OK
С9	3338	OK
C10	3110	OK
C11	3113	OK
C12	3357	OK
C13	3515	OK
C14	3430	OK
C15	3365	OK
C16	5014	OK
C17	4571	OK
C18	4581	OK
C19	4783	OK
C20	4359	OK

Source: JICA Study Team

(2) Bent Reaction Force


The table of the bent reaction force for each analysis stage is shown below.

Bent Position Analysis Stage	B1	B2	B3	B4	B5	B6
CS10	2129.9	-	-	-	-	-
CS11	1952.3	-	-	-	-	-
CS12	3903.8	229.4	-	-	-	-
CS13	4306.6	189.3	-	-	-	-
CS14	2756.5	2330.6	-	-	-	-
CS15	2770.8	2659.5	-	-	-	-
CS16	2134.0	3159.5	852.0	-	-	-
CS17	2421.4	2109.1	2920.2	131.1	-	3659.8
CS18	2423.8	2100.4	2951.3	136.5	-	674.9
CS19	2381.9	2253.5	2401.4	2012.5	716.8	4369.6
CS20	2379.9	2261.0	2374.6	2110.3	466.6	1758.6
CS21	2445.9	2259.2	2380.8	2054.7	2955.6	4597.1
CS22	2444.8	2263.3	2366.4	2107.3	2810.3	2788.3
CS23	2379.3	2263.0	2367.5	2136.2	2816.9	-

Table 4.2.40 Bent Reaction Table

(3) Bending Moment Diagram

The examples of bending moment diagrams for each analysis stage are shown below.

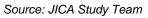


Figure 4.2.68 Examples of Bending Moment Diagram (Top: CS0, Bottom: CS1)

4.2.14 Revised Design of Side Pier (P10, P13) [Change from PC Box Girder to Steel Box Girder]

4.2.14.1 Pier Design

(1) Design Conditions

A superstructure type of the adjacent bridge at P10 was changed (from PC box girder to 3-span steel box girder), therefore revised design for the side pier was conducted.

(2) Pier Design

1) Beam Design

The cross sectional shape of the beam and arrangement of steel reinforcement are shown below.

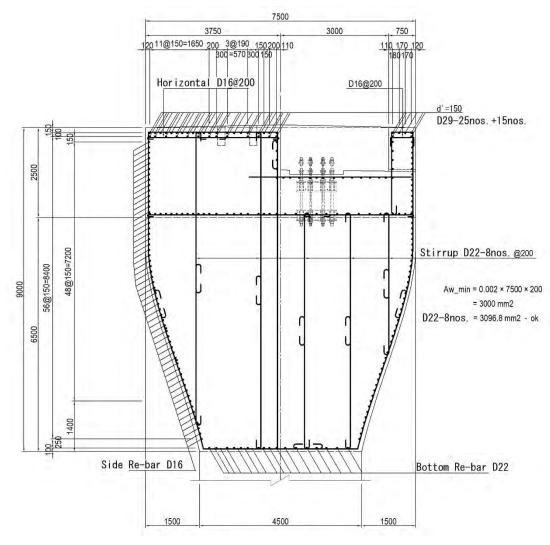
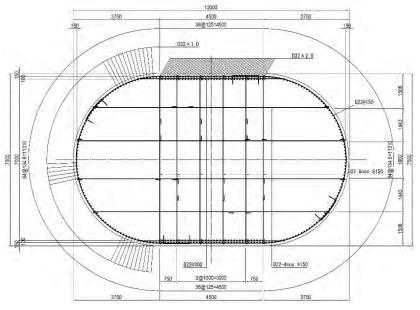


Figure 4.2.69 Cross Section of Beam

[Overview of Calculation Result]

The following table shows the calculation results for the beam.

					Vertical Direction			Horizontal Direction			
	Hei	ght	m		9.0	00		7.500			
C t		Main Re-bar	1st layer	D29	-	25nos.		D16	-	49nos.	
Section	Re-Bar	Main Re-bar	2nd layer	D29	-	15nos.					
		Stirrup		D22-8	nos.	ctc200		D22-2nos.+	D16-	1no. ctc200	
Br	idge Seat	Required Re-bar	mm2								
	Corbel	Required Re-bar	mm2	23,101	≦	25,696	0	10,278	≦	19,463	0
		Load Case		Dead Load			Seismic				
	Bending Evaluation	σc	N/mm2	0.78	≦	10.00	0	0.70	≦	15.00	0
	Lvaluation	σs	N/mm2	80.3	≦	100.0	0	97.1	≦	300.0	0
Calculation		Load Ca	Dea	ad + L	ive Load			Seis	mic		
Galculation	Shear Evaluation	тт	N/mm2	0.006	≦	0.140	0	0.045	≦	0.111	0
		Awreq < Aw	mm2								
	Evaluation for Seismic	M < My	KN∙m					7,560	≦	21,371	0
Performance 2	S < Ps	KN					3,217	≦	16,160	0	


Table 4.2.41	Calculation Results for Beam
--------------	------------------------------

Source: JICA Study Team

2) Design of Column

The column shall be designed as a cantilever beam by treating the joint between the footing as a fixed end. The column cross section shall be designed against the most unfavorable combination of axial force and bending moment.

Note that the steel reinforcement in the column-axial direction was set by dynamic analysis evaluation.

Source: JICA Study Team

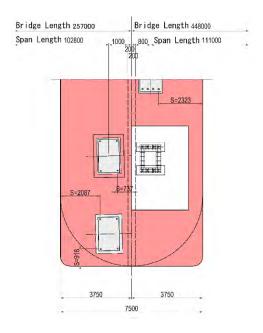
Figure 4.2.70 Cross Section of Column

[Overview of Calculation Result]

The following table shows the calculation results for the column.

			Longiti	udinal		Transverse					
Section	Hei	ght	m	Oval	;	12.000	×	7.500			
		Main Da han	1st layer	D32	ctc	125	Ж	D32	ctc	135	Ж
	Re-Bar	Main Re−bar	2nd layer	D32	ctc	125	*				
		Ноор		D22	ctc	150		D22	ctc 150	150	
Calculation		σc	N/mm2	7.43	≦	15.00	0	5.02	≦	15.00	0
	L1	σs	N/mm2	231.0	≦	300.0	0	108.2	≦	300.0	0
	Seismic	тт	N/mm2	0.279	>	0.171	- 1	0.258	>	0.152	-
		Aw_req	mm2	693.2	≦	3096.8	0	426.5	≦	2322.6	0

Table 4.2.42 Calculation Result for Column


Source: JICA Study Team

3) Bridge Seat Design

a) Dimension of Bridge Seat Width

The distance between the bearing support edge and the top edge of the substructure was set in accordance with the Specifications for Highway Bridges IV 8.6.

[P10 Pier]

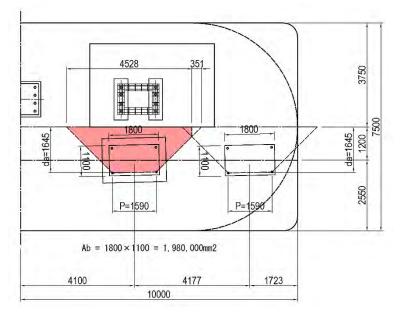

Source: JICA Study Team

Figure 4.2.71 Bridge Seat Width

b) Evaluation of Bridge Seat Strength

Since the bridge seat has a function to support the superstructure via bearing support, large horizontal force would act on it during an earthquake. For this reason, the bridge seat needs to be designed to have sufficient strength against design horizontal seismic force.

The resistance area of concrete against horizontal force is illustrated in the following drawings:

Source: JICA Study Team

Figure 4.2.72 Resistance Area of Concrete

4.2.14.2 Foundation Design

The foundation shape, steel pipe size, etc. were not changed based on the revised design. Therefore, only summary of the design results are shown in the table below.

	L	udinal		Transverse								
	Diamatar(mm))×Length(m)×Numl	Outer Pile	;	φ1200	×	56.00	×	36nos.			
Pile	Diameter(mm)		Jei (110.)	Diaphragm Pile	;	φ1200	×	52.10	52.10 × 8nos.			
		Outer Pile	Top Pile			t = 14	mm (SKY490)					
	Thickness	Outer Plie	Bottom Pile			t = 14	mm	(SKY400)				
		Diaphragm Pile				t = 14	mm	(SKY400)				
Calculation	Reguler	δ	cm	0.04	≦	5.00	0	0.06	≦	5.00	0	
	(Existing River Bed)	PNmax	KN/no.	1910	≦	4100	0	1912	≦	4100	0	
		PNmin	KN/no.	1612	≧	0	0	1610	≧	0	0	
	Seismic	δ	cm	2.51	≦	5.00	0	3.10	≦	5.00	0	
	(Existing River	PNmax	KN/no.	1922	≦	6200	0	1924	≦	6200	0	
	Bed)	PNmin	KN/no.	1585	≧	-3600	0	1604	≧	-3600	0	
Composite Stress		SKY400	N/mm2	161.0	≦	210.0	0	194.3	≦	210.0	0	
(Seismic•E>	kisting River Bed)	SKY490	N/mm2	208.5	≦	277.5	0	239.6	≦	277.5	0	

Table 4.2.43 Suammary of Foundation Desing

4.2.15 Summary of Wind Tunnel Test

4.2.15.1 Introduction

This section is to summarize the conditions and the results of the wind tunnel tests to estimate the wind-resistant characteristics of the main girder and the towers of Cable-Stayed Bridge of Bago River Bridge in under-construction and after completion stages conducted by Bridge Engineering Laboratory and Structural Dynamics Laboratory, Department of Civil and Earth Resources Engineering, Kyoto University, Japan.

4.2.15.2 Wind Tunnel

The wind tunnel facility used for the test is the Eiffel type wind tunnel in Department of Civil and Earth Resources Engineering, Kyoto University, Japan. Width and height of working section is 1.0m and 1.8m for section model test. Wind velocity in the working section can be adjusted up to about 25m/s. Turbulent intensity in the empty working section isbless than 0.5(%).

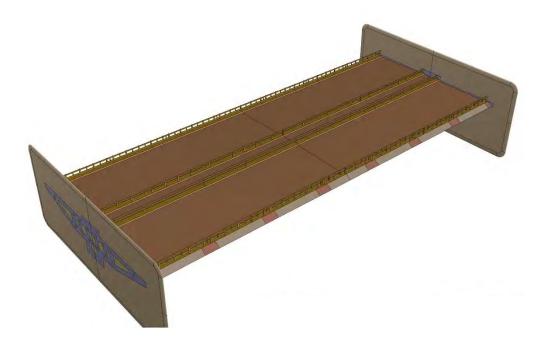
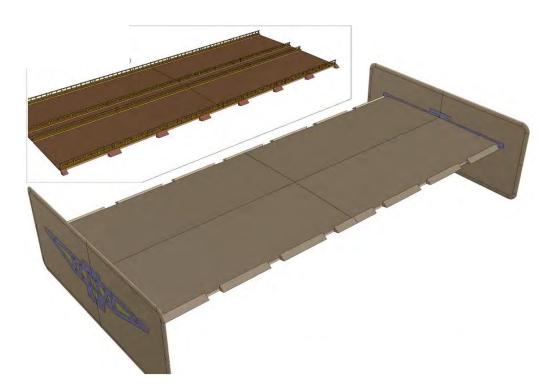

Source: Kyoto University

Figure 4.2.73 Wind Tunnel in Department of Civil and Earth Resources Engineering,Kyoto University

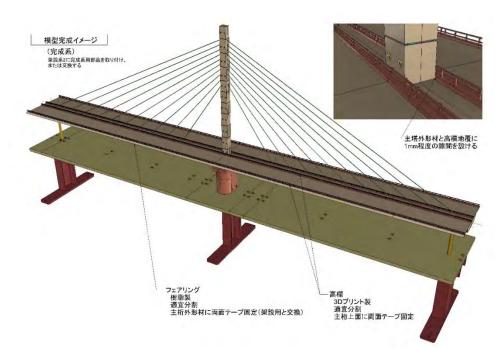
4.2.15.3 Models for Wind Tunnel Test


(1) Section model of main girder

The image of section model is shown in Figure 4.2.74 to Figure 4.2.75.

Source: JICA Study Team

Figure 4.2.74 3-D image of section model (for after-completion stage)



Source: JICA Study Team

Figure 4.2.75 3-D image of section model (for under-completion stage) (The configuration is reproduced by taking out the top left piece from the section model.)

(2) **3-D elastic model of tower**

Scale ratio of the model was determined as 1/120. The detail of the section model is shown in Figure 4.2.76.

Source: JICA Study Team

(The min girder part is a rigid model.)

4.2.15.4 Aerodynamic response of elastic tower model (scale ratio 1/120)

Aerodynamic vibration response of the main girder and the tower of Cable-stayed Bridge of Bago River Bridge was examined by wind tunnel tests.

For the under-construction stage, the following 2 stages were focused:

- Before the lowest cable being installed and just after the first segment of the main girder was installed. Heaving 1 DOF of the main girder dominates. The tower stands in isolated condition. Hence, both bending modes along/normal to cable plane may be possible. (Abbreviated as UC1)
- Just before the last segment of the main girder in the main span is installed. Heaving and torsional 2 DOF of the main girder dominates. Sine all cables are already installed, possible bending mode of the tower is normal to cable plane only. (UC2)

For after-completion stage,

- Heaving and torsional 2 DOF of the main girder dominates. Sine all cables are already installed, possible bending mode of the tower is normal to cable plane only. (AC)

The aerodynamic response of the main girder shows stable characteristics for the above 2 underconstruction stages (UC1, UC2) in smooth and in turbulent flow conditions. Neither vortex-induced vibration (VIV) nor flutter was measured.

On the other hand, only vortex-induced vibration (VIV) of the main girder was measured in the after-

completion stage (AC) at about 15 to 25 [m/s] for real bridge under the vertical incidence of angle 0, +3 and -3[deg.] in smooth flow condition. In case of turbulent flow condition, neither VIV nor flutter was measured.

Therefore, the main girder possesses stability to aerodynamic vibration, if turbulent flow condition is taking into account.

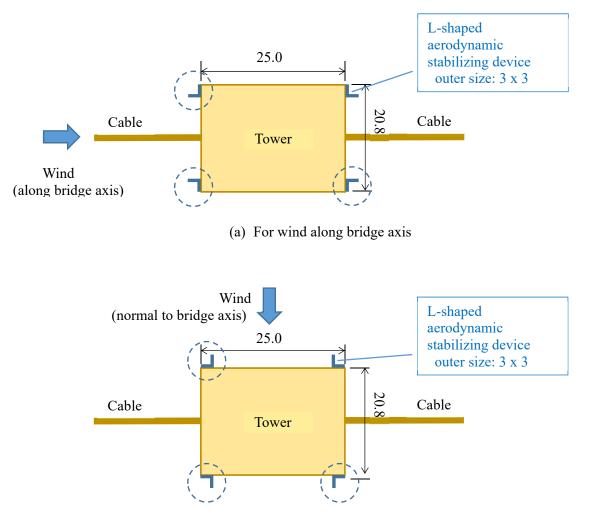
Vortex-induced vibration and galloping were observed in the tower for its original configuration.

For UC1 in smooth flow, VIV of bending mode normal to the cable plane (in y-direction) occurs at 16 to 19 [m/s] under wind direction of 0 [deg.] and 5 [deg.] (almost in parallel to the bridge axis), while galloping occurs from 60 [m/s] under 5 [deg.]. VIV of bending mode in parallel to the cable plane (in x-direction) was also observed in smooth flow under 80, 85 and 90 [deg.] (almost normal to bridge axis) at 14 to 23 [m/s]. Galloping occurs from 58 [m/s] for 80 [deg.] and from 43 [m/s] for 90 [deg.].

For AC in smooth flow, VIV was measured in smooth flow at 10 to 31 [m/s] for 0 [deg.] and 10 to 20 [m/s] for 5 [deg.]. For 10, 22.5, 45, 67.5 and 90 [deg.], stability for VIV was confirmed. The occurrence of galloping was confirmed from 28 [m/s] for 5 [deg.], while no galloping for other cases with different wind direction. The VIV and galloping in turbulent flow condition remains only for 0 [deg.]. VIV was observed at 17 to 20 [m/s] and galloping occurred from 23 [m/s]. The tower was stable for other wind directions, 5, 10, 22.5, 45, 67.5 and 90 [deg.].

From these results, the occurrence of galloping for the wind direction along bridge axis should be main concern.

In order to suppress the galloping as mentioned above, the L-shaped aerodynamic device is proposed to be attached nearby the corner of the tower cross section as shown in Figure 4.2.80.


For UC1 in smooth flow, the response characteristics were examined by installing the device along 11.0 [m] from the top of the tower. VIV was still observed at 12 to 15 [m/s] for 0 [deg.] and 18 to 21 [m/s] for 90 [deg.], although no galloping was measured for both measurement cases. The response in turbulent flow condition was examined for 80, 85, 90 and 180 [deg.]. The tower was stable for all of these wind direction conditions. (There is no big difference in the response for 0 [deg.] and 180 [deg.], since the flow around the top of tower can be almost identical and no significant influence by the upstream elongation length of the main girder.

For UC2 in smooth flow with the L-shaped device installed along 11.0 [m], VIV was measured at 11 to 32 and 34 [m/s] for 0 [deg.], whereas, stable for 5 [deg.]. The tower showed stable for 0 and 5 [deg.] in turbulent flow.

For AC in smooth flow with the L-shaped device installed along 11.0 [m], the tower was stable for 5 [deg.] but VIV occurred at 22 to 26 [m/s] for 0 [deg.]. No galloping was observed for both cases of wind direction. In turbulent flow, the tower was stable for 0 [deg.] and 5 [deg.].

Install length of the device was changed to 41.7 [mm] (= 5.0 [m] in real bridge), 141.7 [mm] (17.0 [m]), 191.7 [mm] (23.0 [m]) and 233.4 [mm] (28.0 [m]), respectively, in order to know its effect to stabilizing performance. Target wind direction was fixed to 0 [deg.] and 5 [deg.] only. In smooth flow, VIV was measured only for 0 [deg.] and the length of 141.7 [mm], while stable for 5 [deg.]. In turbulent flow, the tower showed stable response characteristics for all cases. No galloping was observed for all cases.

From these results, the response for 0 [deg.] with the length of the device 141.7 [mm] should be focused. This response was totally stabilized under turbulent flow condition. And the wind direction 0 [deg.] (along bridge axis) means the wind comes over the city of Yangon or the field in Thilawa. Moreover, this wind may be further disturbed by the existence of the cable in upstream of the tower. From these reasons, the wind resistant characteristics of the tower should be estimated under turbulent flow condition rather than in smooth flow. It was confirmed that, in turbulent flow condition, the tower is stabilized by installing the device longer than 141.7 [mm] (17.0 [m]) from the top. Therefore, it is recommended to install the device over 17.0 [m] from the top of the tower.

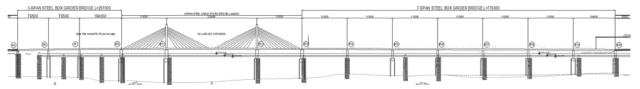
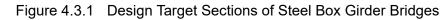
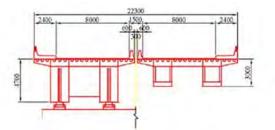

(b) For wind normal to bridge axis

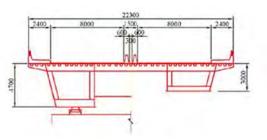
Figure 4.2.77 L-shaped aerodynamic device (Model scale ratio: 1/120, unit: in mm)


4.3 STUDY ON STEEL BOX GIRDER BRIDGE

In this section, study results on the 3-span and 7-span of steel box girder bridges, as shown in Figure below, will be presented.

It is noted that 5-span PC box girder bridge (3@51m+2@52m) was originally designed instead of 3-span bridge. However, Pier No.9 was cancelled during this JICA study as requested by MOC because a navigation channel is possibility to be widened to the section between P8 and P10 in future. After due study, 3-span bridge was determined from better structural feature.


Source: JICA Study Team



4.3.1 Basic Design for Superstructure of Steel Box Girder Bridge

4.3.1.1 Selection of Type of Steel Box Girder Bridge

In the F/S, separated bridge structure for up and down lanes was proposed taking account of the adjacent bridge structure types. In order to further reduce the construction cost and shorten the construction period, other arrangements of girders, including a combined structure type for up and down lanes was studied and compared. Items to be compared are steel weight, structural stability, construction plan (difficulty) and construction period and maintenance cost based on the structural analysis and preliminary cost estimate.

(i) F/S (up and down lanes separation structure)

(ii) Alternative in B/D (up and down lanes combined structure)

Source: JICA Study Team

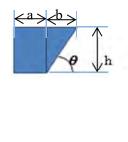
Figure 4.3.2 Type of Main Girder of Steel Box Girder with Steel Plate

(1) Structural Stability

In general, a long span bridge with perpendicular tall web plate will be easy to be oscillated by wind (Karman vortex). One of the ways to avoid this influence is to adopt an inclined web. The inclination angle of approximately 60° of the outer web is common, taking account of fabrication.

Figure 4.3.3 Image of the Karman Vortex

However, if the web height is changed into a curved form, as long as it keeps the inclination angle, width of the bottom flange will also change as shown in the figure below. This means that the diaphragm, which is an important element to ensure the accuracy of the box shape, shall have a different shape at each position, and so will increase the fabrication cost. Therefore, the girder of uniform height was decided to be more appropriate in terms of fabrication cost than the girder of changeable height planned in the F/S.


Source: JICA Study Team

Width of the Bottom Flange

Figure 4.3.4 Varying Width of Bottom Flange

The inclined web height will affect the width of the bottom flange. Therefore, web height and its inclination will be considered, taking account of its width, so that it will be possible to be transported.

Table 4.3.1 Relationship Between Girder Height and Width of the Bottom Flange

h(m)	θ°	Rad	tan θ	b(m)	a+b(m)	a(m)
2.7	70	1.222	2.747	0.98	3.00	2.02
2.7	61	1.065	1.804	1.50	3.00	1.50
2.7	60	1.047	1.732	1.56	3.00	1.44
2.7	50	0.873	1.192	2.27	3.00	0.73
3.0	70	1.222	2.747	1.09	3.00	1.91
3.0	63.5	1.108	2.006	1.50	3.00	1.50
3.0	60	1.047	1.732	1.73	3.00	1.27
3.0	50	0.873	1.192	2.52	3.00	0.48
3.3	70	1.222	2.747	1.20	3.00	1.80
3.3	65.5	1.143	2.194	1.50	3.00	1.50
3.3	60	1.047	1.732	1.91	3.00	1.09
3.3	50	0.873	1.192	2.77	3.00	0.23

Source: JICA Study Team

Considering the width of the bottom flange in the red cell above, the case where the web height is 2.7 m and web inclination is 61° was selected in the B/D as the most suitable one.

(2) Number of Main Girder and its Position

There are two options relating to the number of main girders; one is the 3-girder type and the other is the 4-girder type. Both types were compared from the following viewpoints:

- Steel Weight: This will depend on the number of web plates, and the effective total width of the bottom flange plate.
- Fabrication Cost: This depends on the number of segments and their self-weight.
- Transportation Cost: This depends on the dimension and weight that is possible to be _ transported.
- Erection Cost: This depends on the erection method and the required crane capacity and erection period.

The 4-girder type was recommended because it is superior in terms of cost and construction efficiency and there was no disadvantage found.

_		Alternative-1: 3-Girders	Alternative-2: 4-Girders (Option-1)			
	Profile	1500 1500 1000 00 00 00 00 00 00 00 00 00 00 00				
	Outer Girder					
	Steel Deck Thickness	4440mm x19mm	3240mm x 16mm			
	Bottom Flange Thickness	2940mm x 44mm	1740mm x 60mm			
	Description	Outer Girder should be spliced to 2 parts for transportation. These parts shall be checked for its matching accuracy at shop.	All girders can be transported without division to small parts. Thickness of Bottom flange of the outer girder will be needed to use thicker plate, for instance abut 60mm, because the flange width is smaller.			
Structural Aspect		To meet with requirements of stress and displacement. To be ensured durability of main girder because distance from wheel load to the web can be kept at 850mm.	To meet with requirements of stress and displacement. To be ensured durability of main girder because distance from wheel load to the web ca be kept at 400mm.			
Estimated Weight		8,954 ton (Main Girder Only)	8,855 ton (Main Girder Only)			
Construction Emclency	Fabrication Cost (1)	1.000	0.950			
8	Transportation Cost ^{*//} (2)	1.000	0.955			
2	Averaged Weight for Erection	2.7 ton/m	2.4 ton/m			
Bŀ	Lifting Weight per 25m ^{*2/}	67.5	60.0			
S I	Availability of Crane Capacity "3/	More than 250 ton C.C is required. If use 200 ton crane, the number of bent in the river should be increased.	200 ton CC is required.			
ξŀ	Erection Cost (3)	1.000	0.864			
Cost and (Total Cost = 1,+11,+111, i. Fabrication ((1) x 50%) ii. Transportation ((2) x 15%) iii. Erection ((3) x 35%)	1.000	0.920			
Maintenance Aspect		Primary maintenance items will be corrosion or dirtiness of steel plates and bolted joints.	Primary maintenance items will be corrosion or dirtiness of steel plates and bolted joint Partial Visual inspection will be possible by looking from the man-hols that are prepared main girder's web of about 25m pitch.			
		Partial Visual inspection will be possible by looking from the man-hols that are prepared at main girder's web of about 25m pitch.	Partial Visual inspection will be possible by looking from the man-hols that are prepared a			
valu	ation	Partial Visual inspection will be possible by looking from the man-hols that are prepared at main girder's web of about 25m pitch.	Partial Visual inspection will be possible by looking from the man-hols that are prepared a			
valu	ation tructural Aspect	Partial Visual inspection will be possible by looking from the man-hols that are prepared at main girder's web of about 25m pitch.	Partial Visual inspection will be possible by looking from the man-hols that are prepared a main girder's web of about 25m pitch.			
valu S	ation tructural Aspect lost and Construction Efficiency	Partial Visual inspection will be possible by looking from the man-hols that are prepared at main girder's web of about 25m pitch.	Partial Visual inspection will be possible by looking from the man-hols that are prepared a			
Aspects N 0 6	ation tructural Aspect	Partial Visual inspection will be possible by looking from the man-hols that are prepared at main girder's web of about 25m pitch.	Partial Visual inspection will be possible by looking from the man-hols that are prepared a main girder's web of about 25m pitch.			
valu S C N	ation tructural Aspect Jost and Construction Efficiency laintenance Aspect	Partial Visual inspection will be possible by looking from the man-hols that are prepared at main glirder's web of about 25m pitch.	Partial Visual inspection will be possible by looking from the man-hols that are prepared a main girder's web of about 25m pitch.			

Table 4.3.2 Comparison of the Cross Section of the Steel Box Girder

1/ Not only the number of unit but also size (volume) of one unit are affected to the transportation cost

*2/ Erection of the girders by using 3 bents for one span 112m is assumed.

*3/ Crane capacity for construction of substructure is 200 ton. Therefore, no need to mobilize another crane if the options of 4-Girders is applied.

Source: JICA Study Team

4.3.1.2 Study on the Number of Continuous Span and Supporting Condition

(1) 7-Span Bridge

To select the optimum option for the number of continuous span and support type, elastic support and fix support for the cases of 7-continuous span and 4+3 continuous span were compared in terms of the structural aspect, workability for superstructure erection and setting, economical aspect, travel comfort, and O&M. The following table shows the evaluation result.

After the evaluation, the fix support condition in a 7-continuous span bridge was selected because all items were ranked as superior.

Continues Span Transmiss Spans Bradie Transmiss Spans Bradie +: 1 Continues Spans Bradie Supper Condition Eluits Supper Condition Fin Supper Condition <th>Alternative</th> <th>Alt-A</th> <th>Alt-B</th> <th>Alt-C</th> <th>Alt-D</th>	Alternative	Alt-A	Alt-B	Alt-C	Alt-D
Elatic Support Condition Fit Support Condition Fit Support Condition Elaste Support Condition 013	Continuous Span	7 Continuous S	Spans Bridge	4+3 Continuou	s Spans Bridge
• This a moderate risk of occurring resonance terrent and bried periods resonance terrent and the period of condition of the hidge is resonance terrent and period of condition of the hidge is resonance terrent and period of condition of the hidge is resonance to the numery 1.7 • This a moderate risk of occurring resonance terrent and period of condition of the relative phage and introd for cold into distributed of alphabeturents of distributed of alphabeturents of distributed distributed of alphabeturent of distributed of alphabeturents of distributed of distributed of distributed of distributed of distributed distributed of distributed of distributed of distributed distrent of distributed distributed of distributed distributed		Elastic Support Condition	Fix Support Condition	Elastic Support Condition E E E E I E E E Met I Met P20	
Horizontal force due to temperature change and instriat force can be every by explored on alsohurcures of 10 yo and breional force due to imperature change and instructures. P1 is to P2 and and substructures. P1 is to P2 and instructures (i) and resided by both bearings and and resided by both bearings and and resided and resided by both bearings and substructures. (i) additional at P13 Herizonal force due to and resided by the both bearings and substructures. (i) additional at P13 I.Force 6.000KN at P13 7.500KN at P13 2.500KN at P13 1.319KN at P13 resided apecial attention in setting grides the collapting and resided apecial attention in setting grides in a p13 1.310KN at P13 1.319KN at P13 for collapting and incruted apecial attention in setting grides the probability due to longer continuous spans. (c) 2.500KN at P13 1.319KN at P13 for collapting and incruted apecial attention in setting grides there of applicants are probability due to longer continuous spans. (c) 3.500KN at P13 1.319KN at P13 for collapting and incruted apecial attention in setting grides 4.500KN at P13 1.319KN at P13 <	Structural Aspect/	 It has a moderate risk of occuring resonance between soft ground and bridge because natural period of oscillation of the bridge is relatively longer. namely 1.7 second. (O) 	 It has a low risk of occurring resonance between soft ground and bridge because natural period of oscillation of the bridge is relatively shorter. namely approx. 0.9 second. (^(O)) 	 It has a moderate risk of occurring resonance between soft ground and bridge because natural period of oscillation of the bridge is relatively longer, namely 1.7 second. (O) 	 It has low risk of occurring resonance between soft ground and bridge because natural period of oscillation of the bridge is relatively shorter, namely 1.0 second at P13-P17 and 0.9 second for P17-P20. (O)
6000kN at P 17 7500kN at P 19 5,960kN at P 17 1 1850k. at P 13 4,500kN at P 19 1,319kN at P 13 1 177mm at P 13 82mm at P 13 1,319kN at P 13 1 77mm at P 13 82mm at P 13 1,319kN at P 13 • Required special attention in setting griders to adjust larger accumulated error of span length due to longer continuous spans. (O) 190km at P 17 • Substructure strength can be minimized ingth due to longer continuous spans. (O) • Substructure strength and can earler fix the anchor binst and bearings to adjust larger accumulated error of span instead required large size of expansion points and bearings to accommodate with larger taced to with substructure strength can be minimized burger displecement due to temperature change and inertial force. • Substructure stee from superstructure can be supported by mainb priger size of expansion joints and coormodate with larger bendiag moment, there are of a post of the steel because change and inertial force. • More comfortable because of onb 2 • More comfortable because of onb 2 • More comfortable because of onb 2 • More comfortable because of onb 2 • More comfortable because of onb 2 • More comfortable because of onb 2 • Lower comfortable because of a borer table streads required to a commodate with larger streads required to austructure of expansion joint (©) • Lower comfortable because of a borer to expansion joint (©) • More comfortable because of onb 2 • Lower comfortable beca	Aseismicity	 Horizontal force due to temperature change and inertial force can be evenly distributed to all substructures P13 to P20 and resisted by both bearings and substructures. (⁽⁽⁾) 	 Hiorizontal force due to inertial force can be equally distributed to substructures of P14 to P19, and horizontal force due to temperature is slightly larger at P14 and P19. These forces are resisted by the substructures (O) 	 Horizontal force due to temperature change and inertial force can be evenly distributed to all substructures, and resisted by both bearings and substructures.((()) 	•Horizontal force due to temperature change and inertial force will be unevenly distributed to substructures of $P14$ to $P19$, (\triangle)
1.850k at P13 4.500kN at P19 1.319kN at P13 1.77mm at P13 8.2mm at P13 1.90mm at P13 • Required special attention in setting griders to adjust larger accumulated error of span length due to longer continuous spans. (O) • Required special attention in setting griders to adjust larger accumulated error of span length due to longer continuous spans. (O) • Required special attention in setting griders bash by non-shrinkage mortal (©) • Substructure strength can be minimized instead required length due to longer continuous spans. (O) • Smaller size of expansion joints and bash pon-shrinkage mortal (©) • Substructure strength can be minimized instead required length can be minimized instead required length area commulated error of span bust structure not bearings. Instead, required by maily larger displacement due to temperature change and instrial force. • Cost ratio 1.00- (©) • Thicker plate of grider is required to the articl view of expansion joint (O) • More controlable because of only 2 locat ratio 1.00- (©) • More controlable because of only 2 locat ratio 1.00- (O) • Lower controlable because of only 2 locat ratio 1.00- (O) • Less maintenance work because of hower nos of shoes (nos 32) and expansion joint (O) • Lower controlable because of lower nos of shoes (nos 32) and expansion joint (O) • Less maintenance work because of hower nos of shoes (nos 32) and expansion joint (O) • Lower controlable because of lower nos of shoes (nos 32) and expansion joint (O)	Max. Inertial Force	6.000kN at P17	7.500kN at P19	5.960kN at P17	8,560kN at P15
177mm at P13 82mm at P13 190mm at P17 •Required special attention in setting griders to adjust larger accumulated error of span length due to longer continuous spans. (O) 90mm at P17 •Required special attention in setting griders to adjust larger accumulated error of span length due to longer continuous spans. (O) 190mm at P17 •Substructure strength can be minimized Instead, required large size of expansion joints and instead, required large size of expansion joints and builts instead, required large size of expansion joints and instead, required large size of expansion joints and bearings. Instead, required to isother with larger bending moment, then steel veight mercase at 163 ton. -Cost ratio 1.00- (O) •More confortable because of only 2 beatoons of expansion joint (O) •Lower confortable because of 3 beations of expansion joint (O) •More confortable because of only 2 beatoons of expansion joints (nos. 2) (O) •Lower confortable because of larger interance work because of larger interance work because of larger interance work because of lower interance work	Max. Horizontal Force due to temperature change	1,850k at P13	4.500kN at P19	1,319kN at P13	5,570kN at P19
ability for ability for to adjust larger accumulated error of span begint due to knger accumulated error of span terruture structure ingth due to knger continuous spans. (O) •Required special attention in setting griders to adjust larger accumulated error of span begint due to knger continuous spans. (O) •Fasier to set the position of the griders because of smaller accumulated error of span kngh, and can earlier fix the auchor larger displacement due to knger continuous spans. (O) •Fasier to set the position of the griders beamilier of adjust larger accumulated error of span kngh, and can earlier fix the auchor larger displacement due to temperature barrays can be used because forces from larger displacement due to temperature barrays of re-bar for some parts of -Cost ratio 1.00-((i)) •Fasier to set the structure can be arrays on the structure aution in the structure can be array of re-bar for some parts of -Cost ratio 1.00-((i)) •Fasier to set the structure of the steel weight increase at 163 ton. -Cost ratio 1.00-((i)) •More confortable because of only 2 (cost ratio 1.00-((i)) •More confortable because of only 2 (cost ratio 1.00-((i)) •Lover confortable because of 3 beations of expansion joint ((i)) •More structure work because of only 2 (nos 2)((i)) •I.cover confortable because of only 2 (nos 3) and expansion joints (nos 2)((i)) •More maintenance work because of only 2 (nos 3) and expansion joints (nos 3) (0)	Max. relative displacement between super- and sub- structure	177mm at P 13	82mm at P13	190mm at P17	87mm at P13
•Substructure strength can be minimized Instand, required large size of expansion joints and bearings to accommodate with larger displacement due to temperature change and inertial force. •Smaller size of expansion is substructure can be supported by mainly substructure can be supported by mainly accommodate with larger bending moment. Image and inertial force. •Cost ratio 1.00~(©) •Cost ratio 1.00~(O) . -Cost ratio 1.00~(©) -Cost ratio 1.00~(©) . -Cost ratio 1.00~(©) -Cost ratio 1.00~(O) . -Cost ratio 1.00~(O) -Cost ratio 1.00~(O)	Workability for Superstructure	 Required special attention in setting griders to adjust larger accumulated error of span length due to longer continuous spans. (O) 	 Required special attention in setting griders to adjust larger accumulated error of span length due to longer continuous spans. (O) 	 Easier to set the position of the griders because of smaller accumulated error of span length, and can ear lier fix the anchor bolls by non-shrinkage mortal ((()) 	 Easier to set the position of the girders because of smaller accumulated error of span length, and can earlier fix the anchor bolts by non-shrinkage mortal (^(O))
•More confortable because of only 2 locations of expansion joint (◎) •More confortable because of only 2 locations of expansion joint (◎) •Lower comfortable because of 3 locations •Less maintenance work because of only 2 locations of expansion joint (◎) •More maintenance work because of lower nos. of shoes (nos.32) and expansion joints (nos.2) (◎) •More maintenance work because of lower (nos.32) and expansion joints	Cost	 Substructure strength can be minimized. Instead, required large size of expansion joints and bearings to accommodate with larger displacement due to temperature change and inertial force. 	 Smalkr size of expansion joints and bearings can be used because forces from superstructure can be supported by mainly substructure not bearings. Instead, required larger size of re-bar for some parts of substructure. <-Cost ratio 1,00> (⁽ⁱ⁾) 	 Thicker plate of girder is required to accommodate with larger bending moment, then steel weight increase at 163 ton. Cost ratio 1.02> (O) 	 Thicker plate of girder is required to accommodate with larger bending moment, then steel weight increase at 163 ton. Required large size of re-bar for some parts of substructure at P14-P16. <cost 1.03="" ratio=""> (△)</cost>
•Less maintenance work because of kwer nos. of shoes (nos.32) and expansion joints (nos. 2) (◎) •More maintenance work because of krger nos. of shoes (nos.32) and expansion joints (nos. 2) (◎) (O)	Traveling Contortability	 More confortable because of only 2 locations of expansion joint (⁽⁽⁾) 	•More comfortable because of only 2 locations of expansion joint (\bigcirc)	 Lower comfortable because of 3 locations of expansion joint (O) 	 Lower confortable because of 3 locations of expansion joint (O)
	Operation & Maintenance	-Less maintenance work because of lower nos of shoes (nos 32) and expansion joints (nos 2) (\odot)	+Less maintenance work because of lower nos. of shoes (nos.32) and expansion joints (nos.2) (\bigcirc)	 More maintenance work because of larger nos. of shoes (nos. 36) and expansion joints (nos. 3) (O) 	 More maintenance work because of larger nos. of shoes (nos.36) and expansion joints (nos.3) (O)
Evaluation Less recommended Most recommended Less recommended L	Evaluation	Less recommended	Most recommended	Less recommended	Less recommended

Table 4.3.3 Study Results on the Number of Continuous Span and Support Condition (P13-P20)

Detailed Design Study on The Bago River Bridge Construction Project

Source: JICA Study Team

Final Report (Summary)

(2) **3-Span Bridge**

A 3-continuous span is applied in terms of structural and economical aspect. As for the support condition, two alternatives, namely elastic support (Alt-A) and fix support (Alt-B), are comparatively studied. Seismic horizontal force is evenly distributed to all piers in the elastic support condition, meanwhile 60% of inertial force is concentrated to one pier in the fix support condition which might be caused by unequal span length, different pier height and substructure rigidity. Since larger dimension and higher grade of rebar and steel sheet pipe are required for substructure in the fix support condition, the cost becomes 6% higher than Alt-A.

Accordingly, Alt-A is superior in terms of aseismicity and economic aspects.

Alternative				Alt-B										
Continuous Span					3 Cc	ontinuous	is Spans Bridge							
1	Elastic Support Condition							Fix Support Condition						
Support Condition/	E E E				1	5	Move	Fix		Fix	Move			
Bearing Type			44.]			++					
	P5	P6	Р	7	I	P10	P5	P6		P7	_	P10		
	• It has a moderate risk of occurring resonance between soft ground and bridge because natural period of oscillation of the bridge is relatively longer, it is 1.60 second. (O)							a low risk o and bridge b ge is relative	because	natural per	iod of osc	illation of		
Structural Aspect/ Aseismicity	•Seismic horizontal force can be effectively distributed to all substructures P5 to P10 and resisted by both bearings and substructures. (⁽⁽⁾)						 Seismic horizontal force is concentrated to one pier (P6) among 4 piers, which rate is around 60%. It has a risk to collapse superstructure in the case that the bearing of P6 would be damaged because remaining bearings would not have enough capacity to support superstructure. Accordingly, special attention for countermeasure to prevent collapse is required. (△) 							
Max. Inertial Force (Kh0.3)	4,600	okN at P6				-	9,600kN	at P6	-					
Max. Horizontal Force due to temperature change(± 15°)	420k	N at P10					730kN	at P6,P7						
Max. relative displacement between super- and sub- structure (earthquake)	±207	mm at P13					±62mm	at P5						
Ditto (temperature change± 25°)	±44n	nm at P10					±43mm	at P10						
Economical Aspect (Cost)	 Substructure dimension can be minimized by pier thickness 3.0m using Dia.32 or Dia.38 as main rebar and normal grade of steel sheet with SKY400. Instead, required large size of expansion joints to accommodate with larger displacement due to inertial force. Rubber bearing cost is normally higher than other types such as steel/iron ones. <cost 1.00="" ratio=""> ([©])</cost> 						are normally much lower than rubber bearing. Inste larger substructure dimension is required with large of main re-ber for pier column and footing (two-sta							
Evaluation		1	Most recon	nmended			1	Le	ss reco	mmended				

 Table 4.3.4
 Study Results on the Support Condition (P5-P10)

Note: \bigcirc :Better O:Normal \triangle : Worse

4.3.1.3 Outline of the Proposed Substructure for Steel Box Girder Bridge in the B/D

Through the studies in Sections 4.3.2.3 to 4.3.2.7, the configuration of the substructures for steel box girder bridge is determined and are as shown in the table below.

Item	Description	Q
Pier Column		
Shape:	Oval shape with an overhang	
Size:	17 m width at top and 11 m at	
	bottom	0000
	Thickness is 4.0 m	[] [] [] [] [] [] [] [] [] [] [] [] [] [
Material:	Reinforced Concrete	
	Class of concrete: 30 MPa	21
	Grade of rebar: SD345	1200 1816 11000 1816 200 2472 2472 2472
Foundation		
Shape:	Oval shape	
Size:	Dimension 17.0 m x 11.3 m	99 9
	Thickness of footing 4.0 m	
	Thickness of bottom slab 2.0	
	m	
	Thickness of Sand Mat 0.5 m	<u>1200</u> <u>14631.8</u> <u>1200</u> <u>11343.8</u> <u>1200</u>
	Diameter of steel pipe 1.2 m	17031.8
	Thickness of steel pipe: 14	Bulkhead part (#1200 La37. Im Nie6. Ist.famm.SK/X400
	mm	
	Length of steel pipe: 41.5 m	00 00 00 00 00 00 00 00 00 00 00 00 00
Material	Grade of steel pipe: SKY400	
Construction	Foundation and Temporary	
Method:	Cofferdam Method	
		17031.8
		General View of the Substructure P19 Representing the Piers

Table 4.3.5	Structural Outline of the Substructure of P19 (Representing the Piers) for Steel Box
	Girder Bridge

Source: JICA Study Team

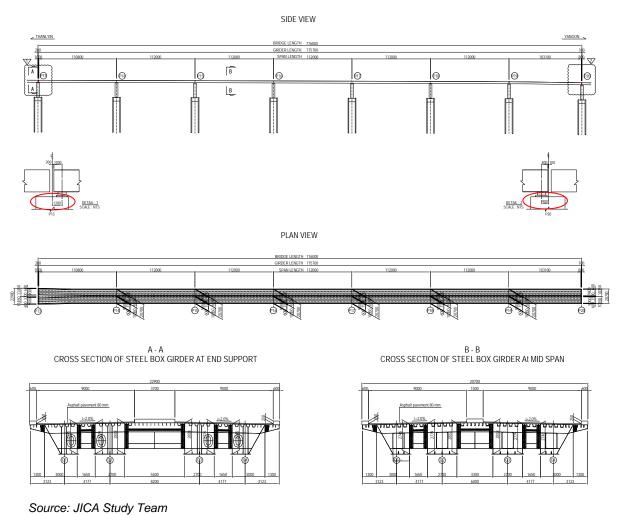
4.3.2 Detailed Design for Superstructure of the Steel Box Girder Bridge (7-Span Bridge)

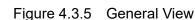
4.3.2.1 Design Condition

(1) Profile

Span Length:

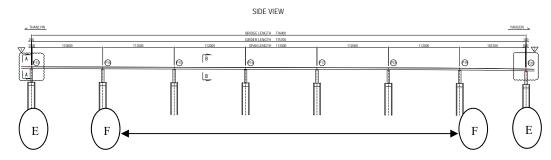
1.2 + 110.8 + 5@112.0 + 103.1 + 0.9 = 776.0 m (Bridge Length)

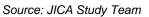

Italicized figures of 1.2 and 0.9 above show the combined length of the clearance and marginal length from the end girder to the bearing position. There has been a slight change for it is longer than the value on the B/D because of the displacement in consideration of the seismic behavior and temperature elongation.

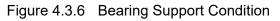

The width composition is same as the B/D.

Normal Width0.6 + 9.0 + 1.5 + 9.0 + 0.6 = 20.7 mWidened Width0.6 + 9.0 + 3.7 + 9.0 + 0.6 = 22.9 m

Italicized figures of 0.6, 1.5, and 3.7 above show the side barrier (coping) and median barrier (coping)


width.





(2) Supporting Condition

- > This bridge is supported by eight piers at the longitudinal road direction.
- Every girder has been assumed to be supported on elastic bearing that was rotatable and only longitudinally movable during the B/D.
- However, the end bearing capacity against rotation distortion due to live load was reviewed, and then it was decided that multi-fixed bearing system will be suitable in case that the substructure is built on soft foundation.
- Elasticity coefficient including flexibility of substructure on soft soil has been reviewed eventually at the design stage of substructure and bearing.

(3) Sections of Girder

Cross sections of the girder are shown in following figure.

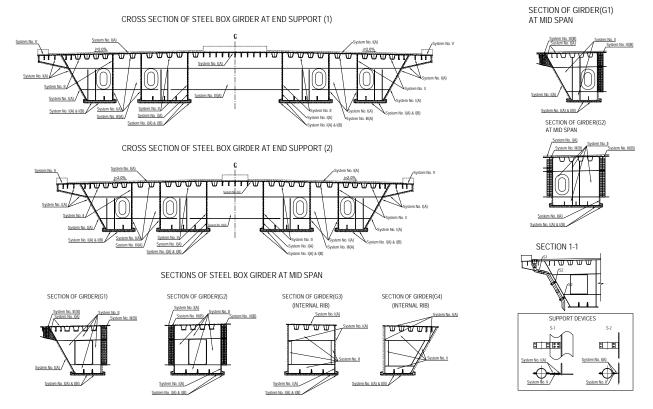
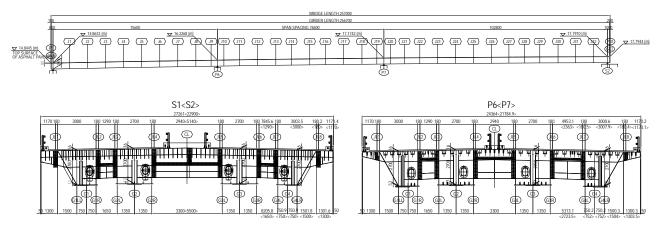


Figure 4.3.7 Sections of Girder

4.3.3 Detailed Design for Superstructure of the Steel Box Girder Bridge (3-Span Bridge)

4.3.3.1 Design Condition


(1) **Profile**

Span Length:

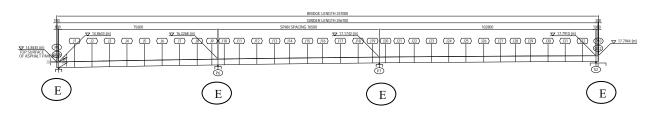
0.9 *m* + 75.6 m + 76.5 m + 102.8 + 1.2 *m* = 257.0 m (Bridge Length)

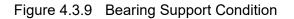
Italicized figures of 0.9 m and 1.2 m above show the combined length of the clearance and marginal length from the end girder to the bearing position.

The width composition is same as the B/D.

Source: JICA Study Team

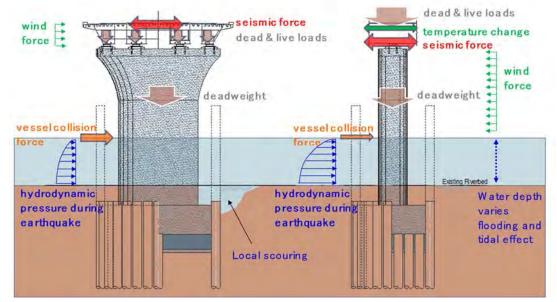
Figure 4.3.8 General View


Normal Width (S1) 0.6 + 9.0 + 1.5 + 9.0 + 0.6 = 20.7 m


Widened Width (S2) 0.6 + 9.0 + 3.7 + 9.0 + 0.6 = 22.9 m

Italicized figures of 0.6, 1.5, and 3.7 above show the side barrier (coping) and median barrier (coping) width.

(2) Supporting Condition


- > This bridge is supported by four (4) piers at the longitudinal road direction.
- Every girder has been assumed to be supported on elastic bearing that was rotatable and only longitudinally movable.
- Elasticity coefficient including flexibility of substructure on soft soil has been reviewed eventually at the design stage of substructure and bearing.

4.3.4 Detailed Design for Substructure of Steel Box Girder Bridge (7-Span Bridge)

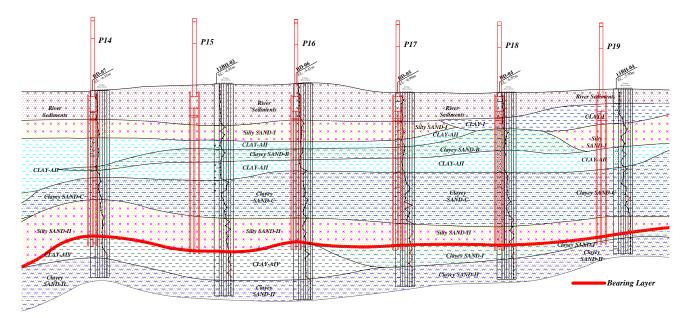
Based on the results of the B/D, which is presented in Section 4.3.2, further studies were carried out in the D/D for the piers from P14 to P19 taking into account the updated topographic, geological, and hydrologic conditions and loads from the superstructure.

Source: JICA Study Team

4.3.4.1 SPSP Foundation Design

(1) Footing Top Elevation

Setting of the footing top elevation is very important because it will affect the stability of the structure in the long term and construction cost. For the design of the SPSP, in general, deeper setting of footing below the riverbed may require a thicker steel pipe and/or higher grade pile due to larger displacement and stress during construction.


Therefore, in this Project, footing top elevation is set to more than 1 m from the lowest elevation of existing riverbed among piers as shown in the table below, and projection of the footing above the riverbed after local scouring will be allowed and finally, the stability during ordinary and earthquake conditions will be considered in the design.

Pier		Scour of	Components	Riverbed	Footing Top	Scoured	
No.	Total Scour (m)	Scour for Pier (m)	Scour for Pile Cap (m)	Contraction Scour (m)	Elevation (MSL+m)	Elevation (MSL+m)	Level (MSL+m)
P14	5.15	4.03	0.76	0.36	-6.28	-8.06	-11.43
P15	5.75	4.73	0.66	0.36	-5.09	-8.06	-10.84
P16	5.09	4.11	0.63	0.36	-5.26	-8.06	-10.36
P17	3.00	2.28	0.36	0.36	-6.70	-8.06	-9.70
P18	3.01	2.12	0.53	0.36	-6.99	-8.06	-10.00
P19	2.90	2.09	0.45	0.36	-6.88	-8.06	-9.78

Table 4.3.6 Setting of Footing Top Elevation

(2) Pile Tip Elevation

The tip of the steel pipe pile foundation of the well type in principle has to be supported by good soil ground layer, which assumes an N-value greater than 30 for sand soil and 20 for clay soil. In addition, the supporting layer must have a sufficient thickness not to be affected by the lower layers. Pile tip is set into the bearing layer to more than the length of the diameter of pile, namely, 1.2 m as shown in the figure below.

Source: JICA Study Team

Figure 4.3.11 Soil Profile and Pile Tip Position

(3) Design External Force

Design external force acting as point forces through the axis of the centroid on the center of the bottom of the footing is considered for the SPSP foundation design as shown in the figure below.

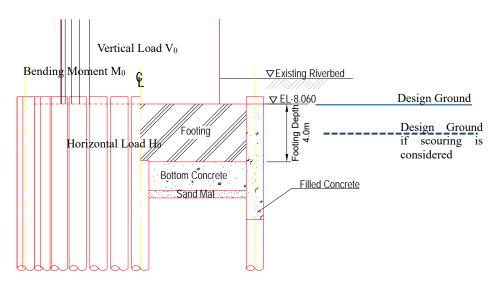


Figure 4.3.12 Point of Loading of External Forces

For critical design load combination, the combined external forces during earthquake condition (Level-1) are summarized in the table below.

Table 4.3.7	Design External Force (V_0, H_0, M_0) at the top of Footing during Earthquake
	Condition

	Load Direction	$V_0(kN)$	$H_0(kN)$	$M_0(kN.m)$
P14	Bridge axis direction	55,800	16,200	244,000
F 14	Bridge axis perpendicular direction	55,800	15,100	267,500
P15	Bridge axis direction	51,700	15,600	238,900
F13	Bridge axis perpendicular direction	51,700	13,600	233,800
P16	Bridge axis direction	52,800	15,800	241,200
P10	Bridge axis perpendicular direction	52,800	13,900	238,300
P17	Bridge axis direction	51,800	16,000	240,500
F1/	Bridge axis perpendicular direction	51,800	13,700	231,100
D10	Bridge axis direction	51,000	16,300	239,700
P18	Bridge axis perpendicular direction	51,000	13,600	223,700
- P19	Bridge axis direction	53,100	16,300	240,600
Г 19	Bridge axis perpendicular direction	53,100	14,200	236,200

Source: JICA Study Team

(4) Verification of Foundation Dimension

1) Bearing Capacity and Displacement

Stability of the SPSP foundation is verified by bearing capacity and displacement and its results are summarized in the tables below.

Bri	de Axis Direction						Unit: kN
Pier			linary Condition			hquake Conditi	
No.	Item	Vertical	Allowable	Judgement	Vertical	Allowable	Judgement
1.00	A * 1 ·	Reaction	Value	OV	Reaction	Value	OV
D14	Axial compression resistance	1,821 <	2,855	OK	1,553 <	4.259	OK
P14	Pulling-out	1,821 >	-1,043	OK	1,546 >	-1,661	OK
	resistance Axial compression	1,729 <	2,007	OK	1,496 <	3,011	OK
P15	resistance	-	-		-	-	
F13	Pulling-out resistance	1,729 >	-1,006	OK	1,375 >	-1,566	OK
	Axial compression	1,752 <	2,406	OK	1,521 <	3,609	OK
P16	resistance	1 5 5 0	001	0.17	1 400	1 5 5 0	0.17
	Pulling-out resistance	1,752 >	-991	OK	1,408 >	-1,558	OK
	Axial compression	1,693 <	1,763	OK	1,510 <	2,644	OK
P17	resistance						
117	Pulling-out resistance	1,693 >	-893	OK	1,367 >	-1,359	OK
	Axial compression	1,660 <	1,747	OK	1,491 <	2,621	OK
P18	resistance	1 ((0))	0.7.5	0.17	1.2.42	1 2 2 2	0.17
110	Pulling-out resistance	1,660 >	-875	OK	1,342 >	-1,323	OK
	Axial compression	1,724 <	1,791	OK	1,574 <	2,687	OK
P19	resistance Pulling-out	1,724 >	-850	OK	1,375 >	-1,290	OK
	resistance						

Table 4.3.8 Verification of Bearing Capacity

Brid	ge Axis Perpendicular						Unit: kN
Pier			linary Condition			thquake Condit	
No.	Item	Vertical	Allowable	Judgement	Vertical	Allowable	Judgement
1.01	A ' 1 '	Reaction	Value	OV	Reaction	Value	OV
	Axial compression	1,821 <	2,855	OK	1,801 <	4,259	OK
P14	resistance Pulling-out	1,821 >	-1,043	OK	1,299>	-1,661	OK
	resistance	1,021 -	-1,045	UK	1,299 -	-1,001	UK
	Axial compression	1,729 <	2,007	OK	1,492 <	3,011	OK
D1.5	resistance	1,725	2,007	0IX	1,192	5,011	on
P15	Pulling-out	1,729 >	-1,006	OK	-1,379 >	-1,566	OK
	resistance	,	,		,	,	
	Axial compression	1,752 <	2,406	OK	1,527 <	3,609	OK
P16	resistance						
110	Pulling-out	1,752 >	-991	OK	1,402 >	-1,558	OK
	resistance	1 (02)	1 7 ()	OV	1 401 -	2 (1 1	OV
	Axial compression	1,693 <	1,763	OK	1,481 <	2,644	OK
P17	resistance Pulling-out	1,693 >	-893	OK	1,396 >	-1,359	OK
	resistance	1,095 -	-075	OK	1,590 -	-1,559	UK
	Axial compression	1,660 <	1,747	OK	1,491 <	2,621	OK
D10	resistance	1,000	-,, , , , ,	011	1,171	_,0_1	011
P18	Pulling-out	1,660 >	-875	OK	1,342 >	-1,323	OK
	resistance	-				-	
	Axial compression	1,724 <	1,791	OK	1,528 <	2,687	OK
P19	resistance						
117	Pulling-out	1,724 >	-850	OK	1,421 >	-1,290	OK
	resistance						

Note: *1: ordinary condition at low tide in spring tide w/o local scouring

*2: earthquake condition at 1/2 of maximum local scouring

Source: JICA Study Team

Table 4.3.9 Verification of Displacement

				Unit: cm
Pier	Item	Ear		
No.	Itelli	Displacement*2	Allowable Value	Judgement
P14	Bride Axis Direction	3.3 <	5.0	OK
	Bridge axis perp. direction	3.0 <	5.0	OK
P15	Bride Axis Direction	3.2 <	5.0	OK
F13	Bridge axis perp. direction	2.5 <	5.0	OK
P16	Bride Axis Direction	2.8 <	5.0	OK
P10	Bridge axis perp. direction	2.2 <	5.0	OK
P17	Bride Axis Direction	2.6 <	5.0	OK
P1/	Bridge axis perp. direction	2.0 <	5.0	OK
P18	Bride Axis Direction	2.9 <	5.0	OK
P18	Bridge axis perp. direction	2.1 <	5.0	OK
P19	Bride Axis Direction	2.5 <	5.0	OK
F19	Bridge axis perp. direction	2.0 <	5.0	OK

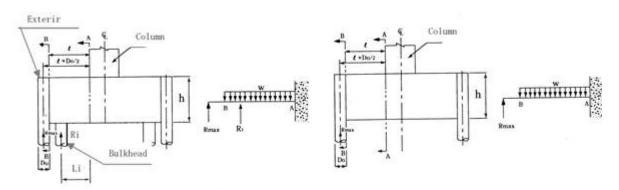
Note: *1: earthquake condition at 1/2 of maximum local scouring

*2: displacement at design ground level

Source: JICA Study Team

2) Stress of Outer Steel Pipe Sheet Piles

In a steel pipe sheet pile foundation of the type that also serves as a temporary cofferdam, the steel pipe sheet piles are used as cofferdam walls during the work execution. Therefore, cofferdam walls shall be verified to be safe against the loads acting during temporary work.


(5) Verification of Structural Members

1) Footing (Top Slab)

a) Design Sections

The footing of a steel pipe sheet pile foundation generally has a large rigidity and is rigidly connected to the steel pipe sheet piles. It can be calculated as a cantilever with the fixed end at the outer edge of the lower end of the body. Reaction by the soil under the footing inside the well will not be considered in the footing design for safety.

A verification of the sections of footing will be made at the section A-A for bending moment and section B-B for shear force as shown in figure below, and such section forces shall be calculated per unit width at the position of the steel pipe sheet pile that produces the maximum vertical reaction force.

(Bridge Axis Direction)(Bridge Axis Perpendicular Direction)Source: Design and Construction Manual Published by the Japanese Association for Steel Pipe PilesFigure 4.3.13Section Calculation Model and Design Section of Footing

b) Design Conditions

- Width of footing for design b = 100.0 cm, thickness of footing h = 400.0 cm
- Concrete design strength: 24 N/mm²
- Applied reinforcement bar: SD345 (underwater member)

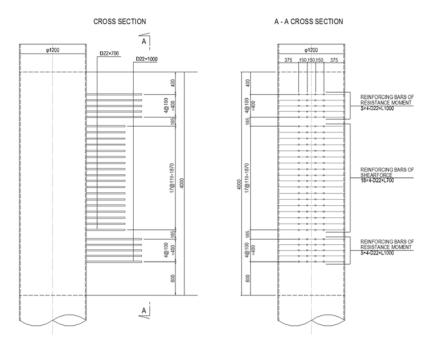
c) Rebar Arrangement

P14 and P19		P15-P18			
Bridge Axis Dire	ction	Bridge Axis Dire	Bridge Axis Direction		
Upper tension:	cover 150 mm D32@260	Upper tension:	cover 150 mm D32@260		
	cover 300 mm D32@260		cover 300 mm D32@260		
Lower tension:	cover 300 mm D51@183	Lower tension:	cover 300 mm D51@183		
	cover 500 mm D51@302		cover 500 mm D51@370		
Bridge Axis Perp	endicular Direction	Bridge Axis Perpendicular Direction			
Upper tension:	cover 118 mm D32@209	Upper tension:	cover 118 mm D32@209		
	cover 268 mm D32@408		cover 268 mm D32@408		
Lower tension:	cover 268 mm D32@408 cover 230 mm D51@209	Lower tension:	cover 268 mm D32@408 cover 230 mm D51@209		
Lower tension:	Ű	Lower tension:	Ũ		

It is noted that shear reinforcement is arranged by D22@600 at chessboard patterns, which quantity is equal to approximately 0.15%, although it is not required in the calculation.

d) Verification of Stress in Footing and Content of Rebar

Design of bending moment is verified by tensile stress and content of rebar in the section as deep beam which has a deeper depth of the footing than 1/2 of design span that is the distance from the edge of pier column to the inside surface of the outer steel sheet pile.


Design of shear force is verified so that average shear stress should be within the allowable shear stress of concrete or allowable shear stress of concrete and shear reinforcement.

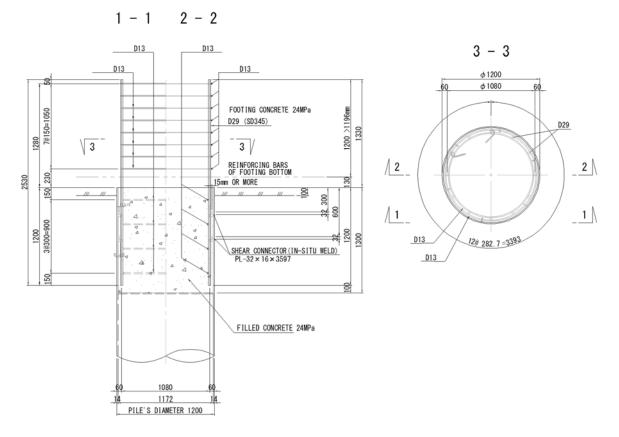
2) Connection between SPSP and Footing

The required number of moment and shear reinforcement for connection between SPSP and footing by Reinforcement Stud Method is calculated as follows:

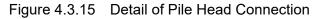
- a) Design Condition
 - Applied reinforcement bar: SD345 (underwater member), Diameter 22 mm
 - Concrete design strength: 24 N/mm²
 - Material of SPSP: SKY490
 - Joint method: Reinforcement Stud Method
- b) Required Number of Moment and Shear Reinforcement

The required number of reinforcement is 16-17 for moment and it ranges between 54 and 72 for shear. Therefore, 20 studs for moment for all piers, 72 studs for shear for P15-P19 and 76 studs for shear for P14 are arranged as shown in the figure below and it was verified by the allowable stress summarized in the table below.

Source: JICA Study Team

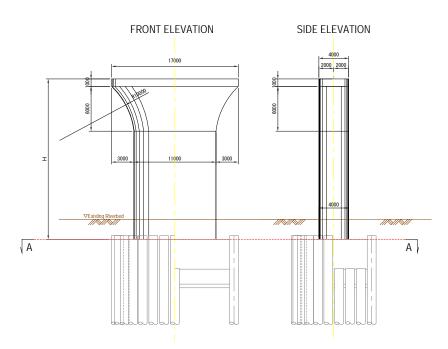

Figure 4.3.14 Layout of Reinforcement Stud

3) Connection between Footing and Pile Head of Bulkhead Piles


The pile head of the bulkhead part of the SPSP will be inserted and rigidly connected by reinforcing bars with the footing, and it has been verified in terms of stress and content of reinforcement as follows:

- a) Design Condition
 - Applied reinforcement bar: SD345 (underwater member)
 - Concrete design strength: 24 N/mm²
- b) Rebar Arrangement

Steel pile is inserted at 100 mm to the footing and it is fixed by 12 numbers of main reinforcements of φ 29 mm and filled concrete as shown in the figure below.


Source: JICA Study Team


4.3.4.2 RC Pier

- (1) Verification of RC Pier Column
- 1) Design Section

A verification of the sections of pier column will be made at the section A-A against bending moment and shear force in each bridge axis and axis perpendicular direction as shown in the figure below.

2) Rebar Arrangement

- a) Main Reinforcement
- Main reinforcement is arranged as shown in the figure below, and no deduction of the rebar is made through the pier column.

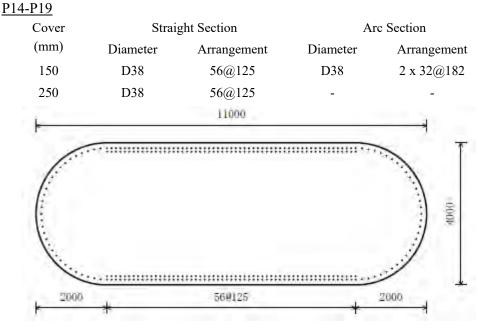
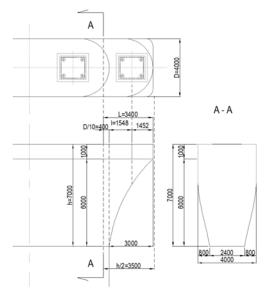


Figure 4.3.17 Rebar Arrangement (Main Reinforcement)

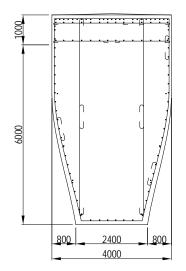

- b) Shear Reinforcement
- Lateral tie to avoid the column from buckling due to shear force: D22, double reinforcement, 150 mm pitch through the column

- Intermediate hoop to avoid the lateral tie from jutting outside: 8 nos. for bridge axis direction and 4 nos. for bridge axis perpendicular direction per cross section, 150 mm pitch through the column

(2) Verification of Beam at Pier Head

1) Design Section

Since the distance from the front of the column to the loading point (bearing), l, is smaller than the height of beam, h, namely $h/l=7000/1548=4.5\geq1.0$, this kind of beam will be designed as a corbel. And, design section (A-A) is set at 400 mm inside of column because of the oval column shape as shown in the figure below. It will be verified at A-A section in terms of bending moment and shear. The section at h/2 (=3500 mm) from A-A section is outside of the beam, so verification of shear force will be made only at A-A section.



Source: JICA Study Team

2) Rebar Arrangement

Main reinforcement and stirrup at the design section (A-A) is arranged as shown in the figure below.

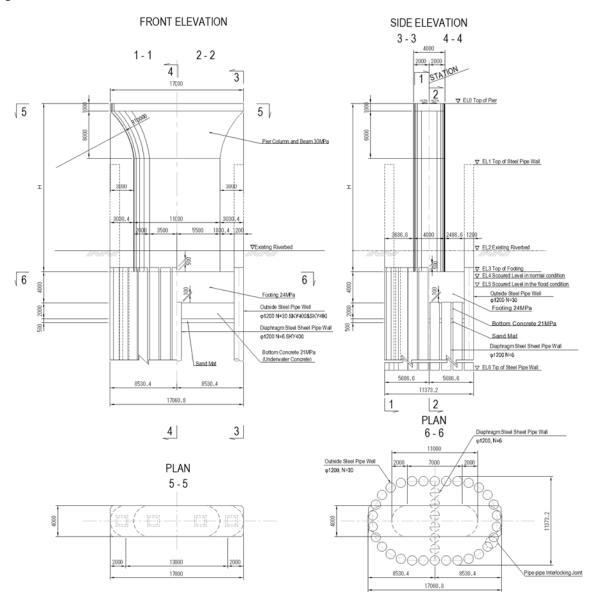

Location	Cover (mm)	Diameter	Arrangement
Upper (main	150	D32	24@155.8 in average
reinforcement)	250	D32	13@287.7 on average
Lower	150	D32	5@282 in average
Side	103	D22	(125+20@300+200) x 2 sides
Stirrup	-	D22	150mm pitch

Figure 4.3.19 Rebar Arrangement (Main Reinforcement)

4.3.4.3 Structure Drawing

Through the basic design and the detailed design presented in Sections 4.3.2 and 4.3.4, the substructure of P14-P19 is designed in terms of economical and structural aspects. The structural drawing is shown in the figure below.

PIER No.	STATION		Elevation (m)							
		EL0 (H)	EL1	EL2	EL3	EL4	EL5	EL6		
P14	1+424	+13.840m (21.9m)	+4.840m	-6.276m	-8.060m	-8.850m	-11.430m	-49.160m		
P15	1+536	+13.540m (21.6m)	+4.840m	-5.091m	-8.060m	-7.970m	-10.840m	-52.160m		
P16	1+648	+13.240m (21.3m)	+4.840m	-5.262m	-8.060m	-7.810m	-10.360m	-50.160m		
P17	1+760	+12.840m (20.9m)	+4.840m	-6.695m	-8.060m	-8.200m	-9.700m	-50.160m		
P18	1+872	+12.540m (20.6m)	+4.840m	-6.989m	-8.060m	-8.490m	-10.000m	-50.160m		
P19	1+984	+12.240m (20.3m)	+4.840m	-6.878m	-8.060m	-8.330m	-9.780m	-48.660m		

Source: JICA Study Team

Figure 4.3.20 Structure Drawing of Substructure of P14-P19

4.3.5 Detailed Design for Substructure of Steel Box Girder Bridge (3-Span Bridge)

4.3.5.1 SPSP Foundation Design

(1) Footing Top Elevation

Since it is located at the riverbank, footing top elevation is set to deeper one, of which more than 1 m from the elevation of existing riverbed or from the lowest water level (L.W.L.=-2.39m) to prevent projection of steel pipe above the water.

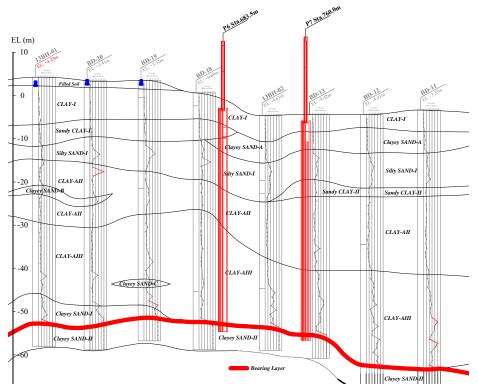

Pier		Scour of	Components	Riverbed	Footing Top	Scoured	
No.	Total	Scour for	Scour for	Contraction	Elevation	Elevation	Level
INO.	Scour (m)	Pier (m)	Pile Cap (m)	Scour (m)	(MSL+m)	(MSL+m)	(MSL+m)
P6	3.84	3.15	0.36	0.33	-1.72	-3.45	-5.56
P7	2.32	1.01	0.99	0.33	-5.35	-6.35	-7.67

Table 4.3.10	Setting of Footing	Top Elevation

Source: JICA Study Team

(2) Pile Tip Elevation

Pile tip is set into the bearing layer of Clayey Sand-II with N-value 50 (sand soil) to more than the length of the diameter of pile 1.2 m, and the pile tip elevation is EL-54.660m at P6 and EL-56.660m at P7 as shown in the figure below.



Figure 4.3.21 Soil Profile and Pile Tip Position

(3) Design External Force

For critical design load combination, the combined external forces during earthquake condition (Level-1) are summarized in the table below.

Unit: kN

	Load Direction	$V_{o}(kN)$	$H_0(kN)$	$M_0(kN.m)$
P6 -	Bridge axis direction	45,335	11,100	123,800
	Bridge axis perpendicular direction	45,335	10,800	146,600
Р7 —	Bridge axis direction	48,932	11,700	153,600
	Bridge axis perpendicular direction	48,932	13,100	219,800

Table 4.3.11	Design External Force (V_0,H_0,M_0) at the top	of footing during Earthquake
--------------	-------------------------	----------------------------	------------------------------

Source: JICA Study Team

(4) Verification of Foundation Dimension

1) Bearing Capacity and Displacement

Stability of the SPSP foundation is verified by bearing capacity and displacement and its results are summarized in the tables below.

Table 4.3.12 Verification of Bearing Capacity

Bri	de Axis Direction						Unit: kN	
Pier		Ordinary Condition ^{*1}		Ordinary Condition ^{*1} Earth			hquake Condit	ion ^{*2}
No.	Item	Vertical Reaction	Allowable Value	Judgement	Vertical Reaction	Allowable Value	Judgement	
D	Axial compression resistance	1,567<	3,946	OK	1,379<	5,919	OK	
P6	Pulling-out resistance	1,567>	-1,863	OK	1,288>	-3,196	OK	
55	Axial compression resistance	1,554<	3,273	OK	1,412<	4,909	OK	
P7	Pulling-out resistance	1,544>	-1,686	OK	1,306>	-2,855	OK	

Bridge Axis Perpendicular Direction

Dilla	Se i mub i eipenaieaiai						
Pier		Orc	linary Condition	n^{*1}	Eart	hquake Conditi	ion ^{*2}
	Item	Vertical	Allowable	Judgement	Vertical	Allowable	Judgement
No.		Reaction	Value	C	Reaction	Value	U
	Axial compression	1,567<	3,946	OK	1,388<	5,919	OK
P6	resistance						
10	Pulling-out	1,567>	-1,863	OK	1,279>	-3,196	OK
	resistance						
	Axial compression	1,554<	3,273	OK	1,390<	4,909	OK
P7	resistance						
1 /	Pulling-out	1,544>	-1,686	OK	1,328>	-2,855	OK
	resistance						

Note: *1: ordinary condition at low tide in spring tide w/o local scouring

*2: earthquake condition at 1/2 of maximum local scouring

Source: JICA Study Team

Table 4.3.13 Verification of Displacement

Pier	Itam	Earthquake Condition ^{*1}				
No.	Item	Displacement*2	Allowable Value	Judgement		
P6	Bride Axis Direction	2.2cm <	5.0cm	OK		
PO	Bridge axis perp. direction	1.6cm <	5.0cm	OK		
Р7	Bride Axis Direction	1.9cm <	5.0cm	OK		
Ρ/	Bridge axis perp. direction	1.8cm <	5.0cm	OK		

Note: *1: earthquake condition at 1/2 of maximum local scouring

*2: displacement at design ground level

Source: JICA Study Team

2) Stress of Outer Steel Pipe Sheet Piles

As explained in 7-span bridge part, cofferdam walls shall be verified to be safe against the loads acting during temporary work.

(5) Verification of Structural Members

1) Footing (Top Slab)

a) Design Sections

The same sections of footing as 7-span bridge will be verified in terms of bending moment and shear force.

- b) Design Conditions
 - Width of footing for design b = 100.0 cm, thickness of footing h = 400.0 cm
 - Concrete design strength: 24 N/mm²
 - Applied reinforcement bar: SD345 (underwater member)
- c) Rebar Arrangement

_

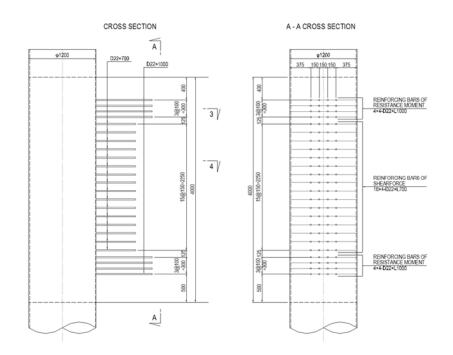
	P6		P7
Bridge Axis Dire	<u>ction</u>	Bridge Axis Dire	ection
Upper tension:	cover 150 mm D32@288	Upper tension:	cover 150 mm D29@278
Lower tension:	cover 150 mm D32@203		cover 300 mm D29@286
	cover 300 mm D32@208	Lower tension:	cover 290 mm D38@228
			cover 440 mm D38@234
Bridge Axis Perp	endicular Direction	Bridge Axis Perp	endicular Direction
Upper tension:	cover 120 mm D29@189	Upper tension:	cover 121 mm D29@198
Lower tension:	cover 118 mm D32@189		cover 271 mm D29@410
	cover 268 mm D32@201	Lower tension:	cover 236 mm D38@198
			cover 386 mm D38@212

It is noted that shear reinforcement is arranged by D22 at approximately 600mm at chessboard patterns, which quantity is equal to approximately 0.15%, although it is not required in the calculation.

d) Verification of Stress in Footing and Content of Rebar

Design of bending moment is verified by tensile stress and content of rebar in the section as deep beam which has a deeper depth of the footing than 1/2 of design span that is the distance from the edge of pier column to the inside surface of the outer steel sheet pile.

Design of shear force is verified so that average shear stress should be within the allowable shear stress of concrete or allowable shear stress of concrete and shear reinforcement.


2) Connection between SPSP and Footing

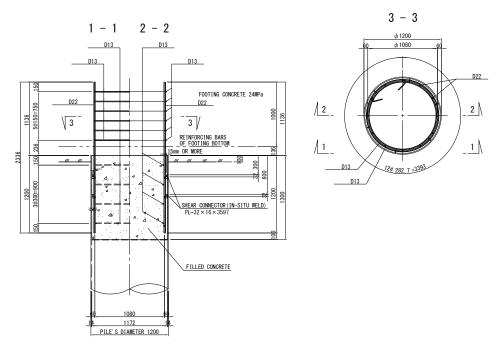
The required number of moment and shear reinforcement for connection between SPSP and footing by Reinforcement Stud Method is calculated as follows:

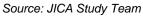
a) Design Condition

- Applied reinforcement bar: SD345 (underwater member), Diameter 22 mm
- Concrete design strength: 24 N/mm²
- Material of SPSP: SKY400
- Joint method: Reinforcement Stud Method
- b) Required Number of Moment and Shear Reinforcement

The required number of reinforcement is 12 and 13 for moment and 43 and 50 for shear, respectively at P6 and P7. Therefore, 16 studs for moment at both piers, 56 studs for shear at P6 and 64 studs for shear at P7 are arranged as shown in the figure below and it was verified by the allowable stress summarized in the table below.

Source: JICA Study Team


Figure 4.3.22 Layout of Reinforcement Stud (P7)


3) Connection between Footing and Pile Head of Bulkhead Piles

Since P7 has the bulkhead steel sheet pile, the connection of the pile head is verified in terms of stress and content of reinforcement as follows:

- a) Design Condition
 - Applied reinforcement bar: SD345 (underwater member)
 - Concrete design strength: 24 N/mm²
- b) Rebar Arrangement

Steel pile is inserted at 100 mm to the footing and it is fixed by 12 numbers of main reinforcements of φ 22 mm and filled concrete as shown in the figure below.

4.3.5.2 RC Pier

- (1) Verification of RC Pier Column
- 1) Rebar Arrangement
- a) Main Reinforcement
- Main reinforcement is arranged as shown in the figure below, and no deduction of the rebar is made through the pier column.

Cover	Strai	ght Section	А	rc Section
(mm)	Diameter	Arrangement	Diameter	Arrangement
150	D32	100@125	D32	2 x nos.19/side
250	D32	50@250	-	-
		15500		

	Strai	ght Section	A	rc Section
(mm)	Diameter	Arrangement	Diameter	Arrangement
150	D38	80@125	D38	2 x nos.19/side
250	D38	40@250	-	-
		13000		

Source: JICA Study Team

D7

Figure 4.3.24 Rebar Arrangement (Main Reinforcement)

- b) Shear Reinforcement
- Lateral tie to avoid the column from buckling due to shear force: D19 (P6) and D22 (P7), 150 mm pitch through the column
- Intermediate hoop to avoid the lateral tie from jutting outside: 15 nos.(P6) and 11 nos.(P7) for bridge axis direction and 2 nos. for bridge axis perpendicular direction per cross section, 150 mm pitch through the column

(2) Verification of Beam at Pier Head

1) Design Section

Since the distance from the front of the column to the loading point (bearing), l, is smaller than the height of beam, h, namely $h/l=7000/1215=5.8\geq1.0$, this kind of beam will be designed as a corbel. And, design section (A-A) is set at 300 mm inside of column because of the oval column shape as shown in the figure below. It will be verified at A-A section in terms of bending moment and shear. The section at h/2 (=3500 mm) from A-A section is outside of the beam, so verification of shear force will be made only at A-A section.

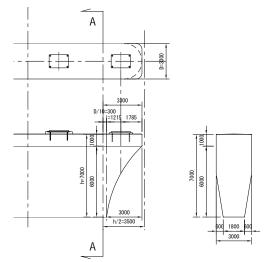
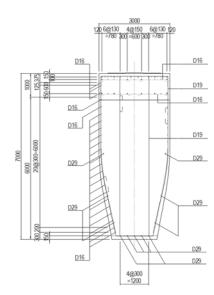
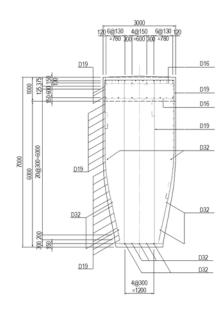



Figure 4.3.25 Design Section of Pier Head Beam

2) Rebar Arrangement


Main reinforcement and stirrup at the design section (A-A) is arranged as shown in the figure below.

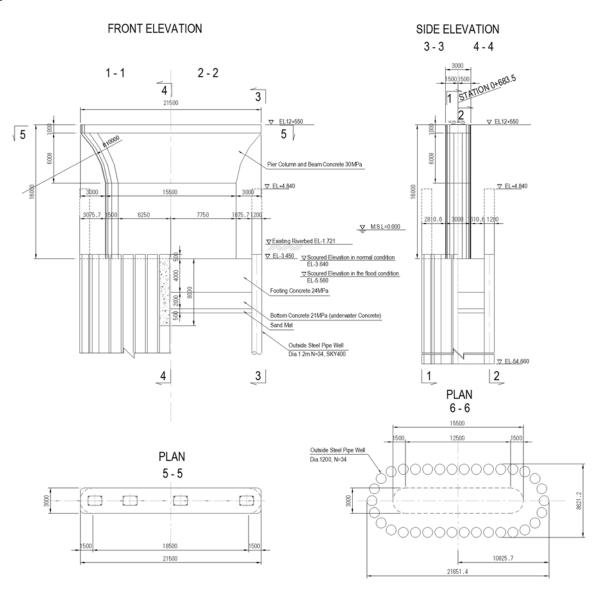
<u>P6</u>

Location	Cover (mm)	Diameter	Arrangement
Upper	150	D29	18@153 in average
(main reinforcement)	250	D29	10@276 in average
Lower	150	D29	4@300
Side	97	D16	(125+20@300+200) x 2 sides
Stirrup	-	D19	150mm pitch

P7

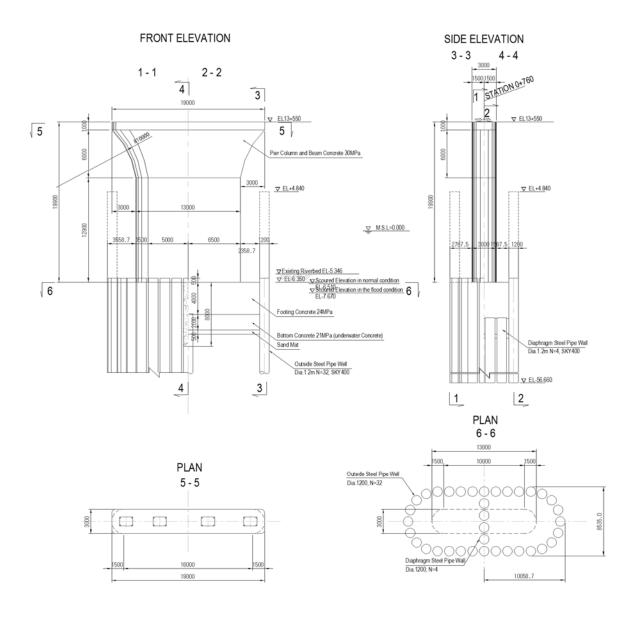
Location	Cover (mm)	Diameter	Arrangement
Upper	150	D32	18@153 in average
(main reinforcement)	250	D32	10@276 in average
Lower	150	D32	4@300
Side	103	D19	(125+20@300+200) x 2 sides
Stirrup	-	D19	150mm pitch

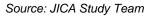
Source: JICA Study Team


Figure 4.3.26 Rebar Arrangement (Main Reinforcement)

3) Verification of Reinforcement Content (Vertical Bridge Axis Perpendicular Direction)

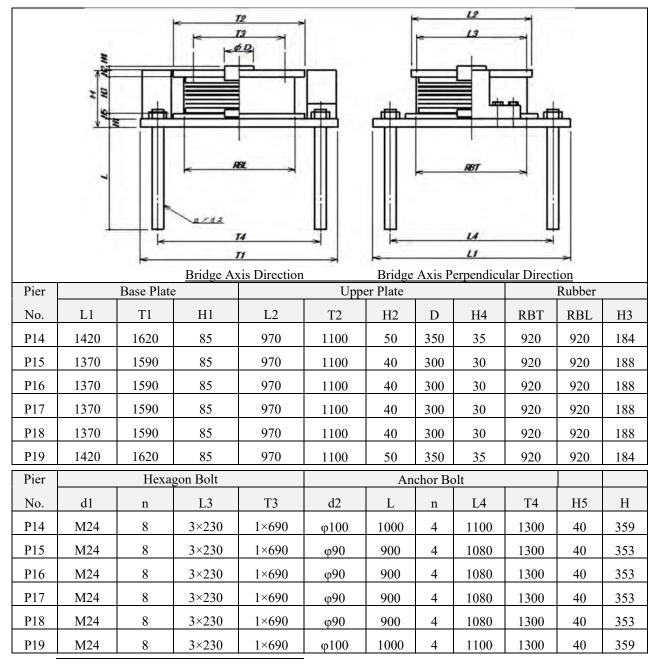
As for the section against bending moment at vertical bridge axis perpendicular direction, it is verified by the reinforcement content of tension rebar arranged at upper beam and side rebar by corbel design, and the result is summarized in the table below.


4.3.5.3 Structure Drawing


Through the basic design and the detailed design presented in Sections 4.3.2 and 4.3.6, the substructure of P6-P7 is designed in terms of economical and structural aspects. The structural drawing is shown in the figure below.

Source: JICA Study Team

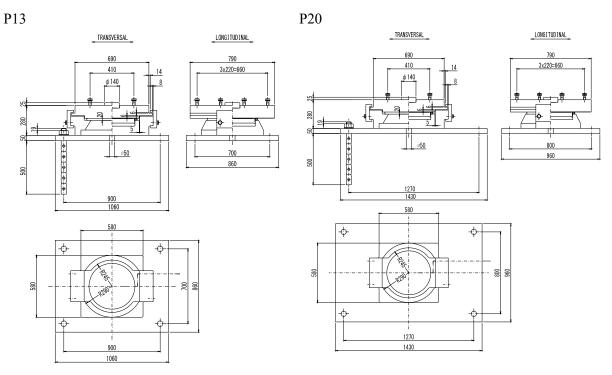
Figure 4.3.27 Structure Drawing of Substructure of P6



4.3.6 Detailed Design of Bridge Accessories

4.3.6.1 Bearings for 7-Span Bridge

(1) Dimension of Bearing


P14-P19 Fix Support (Rubber Bearing Type):

Source: JICA Study Team

Figure 4.3.29 Dimension of Bearing (Fixed Rubber Bearing Type)

P13 and P20 Movable Support (BPB Type):

4.3.6.2 Bearings for 3-Span Bridge

(1) Dimension of Bearing

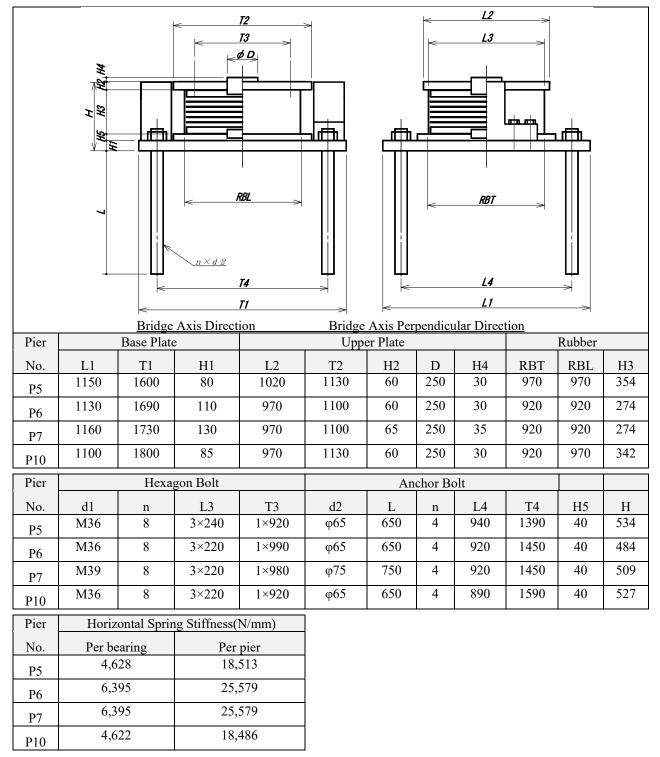


Figure 4.3.31 Dimension of Bearing

4.3.6.3 Expansion Joint for 7-Span Bridge

(1) Required Expansion/Contraction Value for the Displacement of Expansion Joint

The displacement due to seismic behavior and temperature expansion/contraction is shown in the table below.

	·					
	Item	Unit	P13	3	P	20
			Cable Stay	Steel	Steel	PC Box
			Bridge	Box	Box	
Seismic	Displacement per one side	mm	± 87	± 34	± 55	±212
Level (L1)	Maximum displacement (1)	mm	± 87			12
	Coefficient due to different natural period (2)		$\sqrt{2}$		١	2
	Margin 15mm (3)	mm	± 13	5	±	15
	Displacement $(1)x(2)+(3)$	mm	±13	8	± 3	15
	Design Value for Seismic Behavior (A)	mm	±13	8	±3	15
Normal	Creep	mm	-	-	-	-
Condition	Shrinkage due to drying	mm	-	-	-	-
Elongation/	Expanded length of the device	mm	+68	+102	+112	+68
Shrinkage	Contraction length of the device	mm	-68	-102	-112	-30
(25°C±	Basic Expansion + Contraction (1)	mm	136	204	224	98
25°C)	Margin (2)=(1) x20%, min10mm	mm	27	41	45	20
,	Expansion + Contraction $(3)=(1)+(2)$	mm	163	245	269	118
			(±82)	(±123)	(±135)	(±59)
	Design Value for Normal Behavior (B)	mm	±20	4	±1	.94
Final Design V	Value for Expansion/Contraction	mm	±20	4	±3	15
Larger amour	nt (A) or (B)					
Marginal Gap		mm	400)	3:	50

 Table 4.3.14
 Table of Displacement at Different Factor (P13,P20)

Source: JICA Study Team

(2) Selection of Expansion Type

Modular type joint was adopted since it is suitable for the large expansion and contraction of more than 200 mm. The typical modular joint is described below.

- Several edge beams with rubber sheets are placed on support beams that were on the sliding bar in anchor box. The capacity of displacement depends on the length of anchor box and its marginal space.

Source: Catalogue from manufacturer

Figure 4.3.32 Sample of Modular Expansion Joint

- The end of steel deck plate must be cut out, since this expansion joint type has about 500 mm height. So, additional deck plate was prepared from the end diaphragm to the girder end.
- After the installation of the expansion joint, the space between the expansion joint to diaphragm shall be filled by casting concrete.

4.3.6.4 Expansion Joint for 3-Span Bridge

(1) Required Expansion/Contraction Value for the Displacement of Expansion Joint

The displacement due to seismic behavior and temperature expansion/contraction is shown in the table below.

					,,	
	Item	Unit	P5 (Ma PC Box	ain line) Steel Box	P5(R PC Composite Slab	Steel Box
Seismic	Displacement per one side	mm	± 194	± 207	± 17	± 207
Level (L1)	Maximum displacement (1)	mm	± 2	207	±2	07
	Coefficient due to different natural period (2)		1	.0	1.	0
	Margin 15mm (3)	mm	±	15	±1	5
	Displacement $(1)x(2)+(3)$	mm		222	±2.	
	Design Value for Seismic Behavior (A)	mm	±2	222	±2	22
Normal	Creep	mm	-	-	-	-
Condition	Shrinkage due to drying	mm	-	-	-	-
Elongation/	Expanded length of the device	mm	+55	+41	+33	+41
Shrinkage	Contraction length of the device	mm	-25	-41	-14	-41
(25°C±	Basic Expansion + Contraction (1)	mm	80	82	47	82
25°C)	Margin (2)=(1) x20%, min10mm	mm	16	16	10	16
,	Expansion + Contraction $(3)=(1)+(2)$	mm	96	98	57	98
			(±48)	(±49)	(±29)	(±49)
	Design Value for Normal Behavior (B)	mm	±	97	±7	78
Final Design	Value for Expansion/Contraction	mm	±2	222	±2	22
Larger amou	nt (A) or (B)					
Marginal Gap		mm	3	50	25	50
	Item	Unit	Р	10		
			Steel	Cable		

Table 4.3.15 Table of Displacement at Different Factor (P5,P10)

ItemUnitP10SteelCableBoxStaySeismicDisplacement per one sidemmLevel (L1)Maximum displacement (1)mmCoefficient due to different natural period $\sqrt{2}$ (2)(2)
BoxStaySeismicDisplacement per one sidemm ± 190 ± 56 Level (L1)Maximum displacement (1)mm ± 190 Coefficient due to different natural period $\sqrt{2}$
SeismicDisplacement per one sidemm ± 190 ± 56 Level (L1)Maximum displacement (1)mm ± 190 Coefficient due to different natural period $\sqrt{2}$
Level (L1)Maximum displacement (1)mm ± 190 Coefficient due to different natural period $\sqrt{2}$
Coefficient due to different natural period $\sqrt{2}$
1
(2)
(2)
Margin 15mm (3) mm ± 15
Displacement (1)x(2)+(3) mm ± 284
Design Value for Seismic Behavior (A) mm ±284
Normal Creep mm
Condition Shrinkage due to drying mm
Elongation/ Expanded length of the device mm +44 +62
Shrinkage Contraction length of the device mm -44 -62
(25°C±25°C) Basic Expansion + Contraction (1) mm 88 124
Margin (2)=(1) x20%, min10mm mm 18 25
Expansion + Contraction $(3)=(1)+(2)$ mm 106 149
(±53) (±75)
Design Value for Normal Behavior (B) mm ±128
Final Design Value for Expansion/Contractionmm±284
Larger amount (A) or (B)
Marginal Gap mm 400
Source: JICA Study Team

(2) Selection of Expansion Type

- Modular type joint was adopted since it is suitable for the large expansion and contraction of more than 200 mm.
- Several edge beams with rubber sheets are placed on support beams that were on the sliding bar in anchor box. The capacity of displacement depends on the length of anchor box and its marginal space.
- The end of steel deck plate must be cut out, since this expansion joint type has about 500 mm height. So, additional deck plate was prepared from the end diaphragm to the girder end.
- After the installation of the expansion joint, the space between the expansion joint to diaphragm shall be filled by casting concrete.

4.4 STUDY ON PC BOX GIRDER BRIDGE

4.4.1 General

The B/D of the concrete box girder bridge was conducted based on the terms of agreement in the F/S, and the design team performed confirmation and studies of design policy, design conditions, structural types, bridge length and spanning, and other works that were necessary for this Project. The design team conducted the F/S report review work and found some outstanding issues that should be worked out prior to the subsequent detailed design stage.

Thereafter, D/D was conducted in order to ensure rationality of facilities planned at the B/D stage under some updated design conditions such as natural condition survey result (soil investigation, topographic survey, etc.) and the future ground elevation.

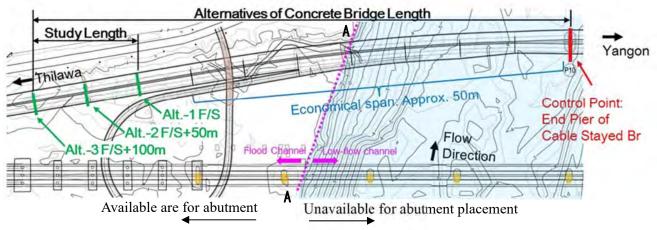
The summary of the evolution of the design is shown in Table 4.4.1.

Item	Feasibility Study		Basic Design		Detailed Design	
Bridge Width	22.300 m		20.700 m ~ 27.297 m		20.700 m	
A1 (Thilawa) Side						
			Box width	6.500 m		
Box Girders Width	Box width	7.400 m	& 8.500 m		Box width	6.500 m
& Cantilever Slab Length	Cantilever	1.800 m	Cantilever	1.650 m	Cantilever	1.650 m
			~ 3.950 m			
Bridge Length	407.0m		507.0m		250.0m	
Number of substructure	8 nos.		10 nos.		6 nos.	
Foundation Type	SPSP:	4 nos.	SPSP:	3 nos.	SPSP:	0 nos.
	Cast-In-Situ: 4 nos.		Cast-In-Situ:	7 nos.	Cast-In-Situ:	6 nos.
A2 (Yangon) Side						
Box Girders Width	Box width	7.400 m	Box width	6.500 m	Box width	6.500 m
& Cantilever Slab Length	Cantilever	1.800 m	Cantilever	1.650 m	Cantilever	1.650 m
Bridge Length	300.0 m		300.0 m		300.0 m	
Number of substructure	7 nos.		7 nos.		7 nos.	
E	SPSP:	4 nos.	SPSP:	3 nos.	SPSP:	3 nos.
Foundation Type	Cast-In-Situ:	3 nos.	Cast-In-Situ:	4 nos.	Cast-In-Situ:	4 nos.

Table 4.4.1 Summary of Design Output Evolution

Source: JICA Study Team

The basic design and detailed design of the PC box girder bridge are explained hereinafter.


4.4.2 Study on Bridge Length of PC Box Girder Bridge

4.4.2.1 Determination of Bridge Length

(1) A1 (Thilawa) Side

Available Area for Abutment Placement

On the left bank, a relatively dense grove exists and overall ground elevation is approximately MSL+4.0 m, which is nearly the same height as the normal H.W.L of Bago River. As a result of these natural circumstances, it is thought that water flow at the flood channel of the left bank is stagnated or quite small; consequently, discharge at the flood channel is nearly ignorable. Therefore, placement of abutment on the flood channel is possible without major impact on river discharge capacity. Hence, placement of abutment is possible up to the line A-A in Figure 4.4.1.

Source: JICA Study Team

- Alternatives for Bridge Length Comparison

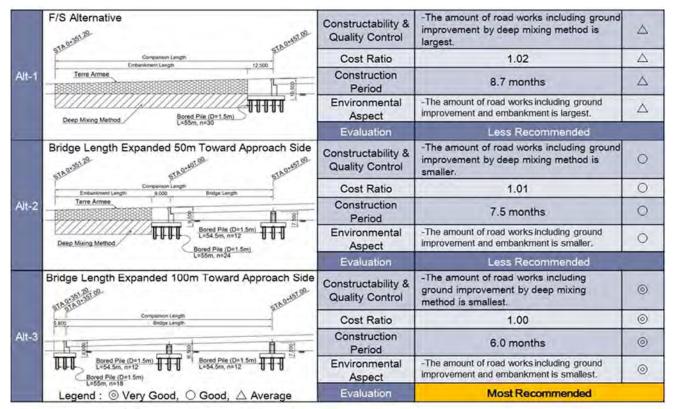
The beginning point of bridge lengths to be utilized for this comparison is "end pier of the cablestayed bridge" as shown in Figure 4-83. Piers are arranged from this control point to the inland direction at 50 m interval referring to the economical span length of this bridge. Three alternatives for the bridge length comparison are summarized as follows:

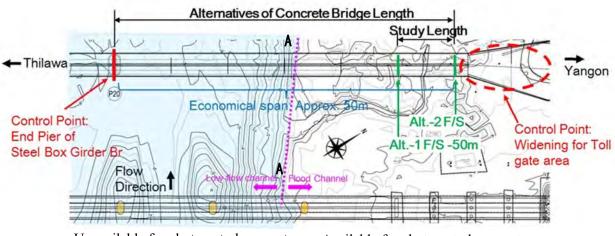
Alternative 1:	A1 Abutment at STA No. $0+457.0 \text{ m}, L = 407 \text{ m} (F/S)$
Alternative 2:	A1 Abutment at STA No. 0+407.0 m, $L = 457 \text{ m} (\text{F/S} + 50 \text{ m})$
Alternative 3:	A1 Abutment at STA No. $0+357.0 \text{ m}$, L = 507 m (F/S + 100 m)

- Comparison Result

As shown in Table 4.4.2, it is confirmed that Alternative 3: "A1 Abutment at STA No. 0+357.0 m, L = 507 m (F/S + 100 m)" is the most recommendable plan in terms of economy, workability, and construction period. Meanwhile, the abutment height for Alternative 3 is the minimum height considering a vertical space in front of the abutment, and any longer bridge length cannot be proposed.

Recommendation Alternative 3: A1 Abutment at STA No. 0+357.0 m, L = 507 m




Table 4.4.2 Comparison of Bridge Length at A1 Side

Legend: \oslash Very Good, \bigcirc Good, \triangle Average Source: JICA Study Team

(2) A2 (Yangon) Side

- Available Area for Abutment Placement

There are JEE and MOC factory buildings and a relatively dense grove on the right bank, and overall ground elevation is approximately MSL+4.0 m or higher, which is nearly the same height as the normal H.W.L of Bago River. As a result of these natural circumstances, it is thought that water flow at the flood channel of left bank is stagnated or quite small; consequently, discharge at the flood channel is nearly ignorable. Therefore, placement of abutment on the flood channel is possible without major impact on river discharge capacity. Hence, placement of abutment is possible up to the line A-A in Figure 4.4.2.

Unavailable for abutment placement

Available for abutment placement

Source: JICA Study Team

- Alternatives for Bridge Length Comparison

The beginning point of bridge lengths to be utilized for this comparison is "end pier of steel box girder bridge" as shown in Figure 4.4.2. Piers are arranged from this control point to the inland direction at 50 m interval referring to the economical span length of this bridge. Two alternatives for the bridge length comparison are summarized as follows:

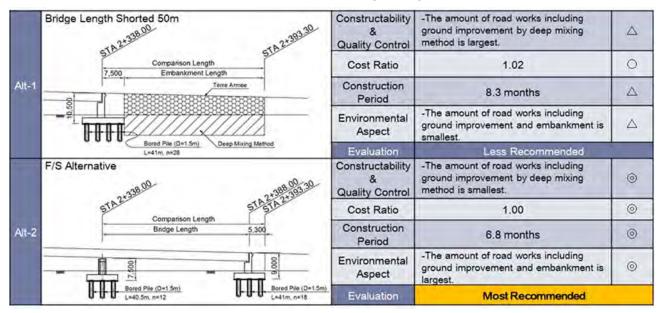
Alternative 1: A2 Abutment at STA No. 2+338.0 m, Length = 250 m (F/S-50 m)

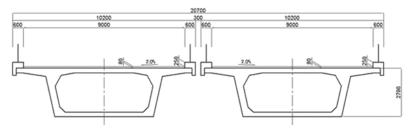
Alternative 2: A2 Abutment at STA No. 2+388.0 m, Length = 300 m (F/S)

- Comparison Result

It is confirmed that Alternative 2: "A2 Abutment at STA No. 2+388.0 m, Length = 300 m (F/S)" is the most recommendable plan in terms of economy, workability, and construction period as shown in Table 4.4.3. Meanwhile, no longer bridge length alternative is provided because the toll gate area starts just behind this abutment with a significant road widening.

Recommendation Alternative 2: A2 Abutment at STA No. 2+388.0 m, L = 300 m




Table 4.4.3 Comparison of Bridge Length at A2 Side

Legend: \bigcirc Very Good, \bigcirc Good, \triangle Average Source: JICA Study Team

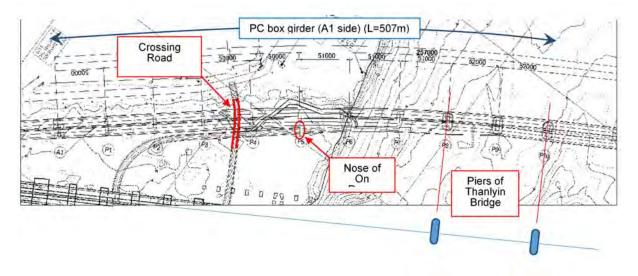
4.4.3 Study on Span Length

4.4.3.1 Basic Conditions for the Study

Approach bridges (concrete bridge section) are planned as PC box girder bridges with SBS erection. Their roadway composition and cross section are as shown in Figure 4.4.3.

Source: JICA Study Team

Figure 4.4.3 Cross Section of PC Box Girder for the Study (Standard Width)


4.4.3.2 Comparative Study

The PC box girder bridges are planned with a girder height of H = 2.7 m, which is unified with the cable-stayed bridge section and steel box girder bridge section. Comparative study has been carried out on the PC box girder of A2 side section (bridge length = 300 m). Three alternatives have been considered as shown in Figure 4.4.4, for which constant span lengths (advantageous for SBS method) can be applied. Optimum span length has been selected among these three alternatives from the viewpoints of structural aspects, cost, and applicability of the span arrangement to A1 side. These three alternatives are within applicable span lengths, and have no special problems for construction.

For A1 side, the following shall be taken into account for the determination of the pier locations:

- (1) Crossing Road (Embankment section of on-ramp)
- (2) Nose of On-ramp (End pier of on-ramp bridge)
- (3) Pier Locations of Thanlyin Bridge

In the study of span length, hence, applicability to A1 side is confirmed.

4.4.3.3 Yangon Side (A2 Side)

Result of the comparative study on span length at Yangon side (A2 side) is tabulated in Table 4.4.4.

Span length of 50 m is recommended as the optimum solution, as the girder height is adequate for the span length and reasonable design is possible, and this is the most economical option.

Table 4.4.4 Comparison of Span Arrangement of PC Box Girder (A2 Side)

	Reference Drawing	Comments	Evaluation
	5x60000=300000	Girder height: 2.7 m (Adequate height: 3.2 m)	
60m		Smaller girder height for span length, and required amount of prestressing tendons is greater.	
		Cost: Ratio = 1.04	
	6×50000=300000	Girder height: 2.7 m = adequate height	
50 m		Girder height is adequate for span length, and reasonable design is possible.	Most Recommended
		Cost: Ratio = 1.00	
	6×43000=25800042000	Girder height: 2.7 m (Adequate height: 2.3 m)	
43 m		Greater girder height for span length, and required amount of prestressing tendons is smaller.	
		Cost: Ratio = 1.08	

Source: JICA Study Team

4.4.3.4 Thilawa Side (A1 Side)

Result of the comparative study on span length at Thilawa side (A1 side) is tabulated in Table 4.4.5.

In addition to the advantages shown in the study at Yangon side (A2 side), span length of 50 m has the following advantages:

- Arrangement with same/similar span length is possible, even considering restrictions such as on-ramp nose and crossing road.
- Pier locations fit with Thanlyin bridge.

On the other hand, the other options have disadvantages such as uneven span lengths due to the restrictions, too long maximum span length (approx. 70 m for span length 60 m), or pier locations do not fit with Thanlyin bridge.

Span length 50 m is hence recommended also for Thilawa side (A1 side).

	Reference Drawing	Comments Evaluation
60 m		 Uneven span lengths (54~67 m) due to control of crossing road and on-ramp nose. Maximum span length exceeds 60 m. Position of in-river piers cannot accommodate with those of Thanlyin bridge.
50 m		 Almost even span length (50~52 m) is possible, even considering the location of crossing road and on-ramp nose. Position of in-river piers can accommodate with those of Thanlyin Bridge.
43 m		 Even span length (42.5) is possible, even considering the location of crossing road and on-ramp nose. Position of in-river piers cannot accommodate with those of Thanlyin Bridge.

Table 4.4.5 Comparison of Span Arrangement of PC Box Girder (A1 Side)

Source: JICA Study Team

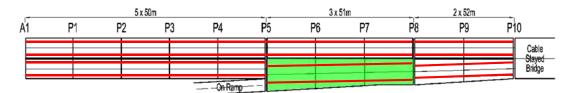
4.4.3.5 Conclusion

As a result of the study above, 50 m has been selected as the basic span length for the PC box girder bridge section because of adequate girder height to span length, lowest cost, and applicability to A1 side.

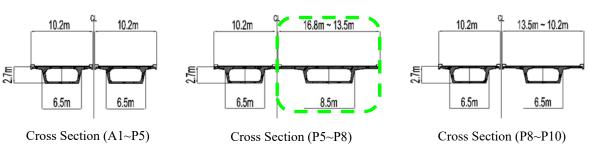
4.4.3.6 Change of Length of PC Box Girder Bridge in the D/D Stage

For Thilawa side (A1 side), according to the request for restriction of pier location in river portion from MWIR to MoC, the span arrangement of the section between P5 and P10 has been changed. To respond to this request, the bridge type of $P5 \sim P10$ section has been changed to steel box girder bridge. The detailed design of PC box girder bridge has therefore been carried out for A1 \sim P5 section in Thilawa side, and for P20 \sim A2 section in Yangon side.

4.4.4 Study on Superstructure of PC Box Girder Bridge


4.4.4.1 Superstructure of PC Box Girder Bridge

(1) Bridge Layout and Variation of Bridge Width

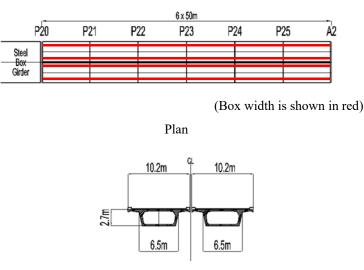

1) A1~P10

In the A1~P10 section, the bridge is divided at P5 and P8, and the bridge layout is 5 x 50 m + 3 x 51 m + 2 x 52 m.

For the box width, 6.5 m is adopted as the standard width, and 8.5 m is adopted for the especially wide section of P5~P8 (upstream).

(Box width is shown in red)

Plan


Figure 4.4.5 Bridge Layout and Box Width of the Girder (A1~P10)

- As the on-ramp is merged in the A1~P10 section (PC box girder section), bridge width is discontinuous at the ramp nose, and the width varies at the merging section.
- The superstructure shall be divided adjacent to the on-ramp nose due to the discontinuous bridge width.

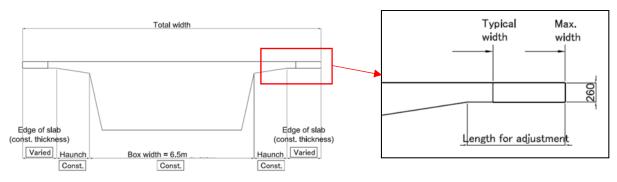
- Box width and box shape shall be basically unified for ease of fabrication of precast segments and erection by SBS method. On the other hand, the bridge width of upstream side largely varies due to merging of on-ramp (10.2 m (standard) ~ 16.8 m (at P5) ~ 10.2 m (P10)), and this large variation cannot be accommodated just by the widening of the cantilever slabs while maintaining uniform box width. Two types of box width are hence adopted (6.5 m as standard width, and 8.5 m for especially wide section (P5~P8)).
- Taking the above into account, the superstructure is divided at P5 and P8. The bridge layout between A1~P10 is $5 \times 50 \text{ m} + 3 \times 51 \text{ m} + 2 \times 52 \text{ m}$ consequently.

2) P20~A2

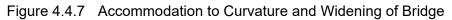
For the P20~A2 section, bridge layout is 6 x 50 m. The box width is 6.5 m (same as the standard section in A1~P10), as the bridge width is 10.2 m uniform.

Cross Section (P20~A2)




Figure 4.4.6 Bridge Layout and Box Width of the Girder (A1~P10)

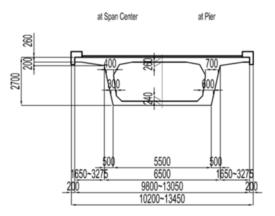
3) Change of PC Box Girder Bridge Length in the Detailed Design Stage


In the detailed design stage, bridge type of the spans of P5~P10 has been changed to steel box girder bridge. The detailed design of PC box girder bridges has therefore been carried out for the spans A1~P5 at Thilawa side, and for the spans P20~A2 at Yangon side.

(2) Accommodation to Curvature of Bridge

The approach bridge has a slightly curved alignment (R = 2000 m) in A1 side (Thilawa side). On the other hand, the box element of the girder is planned to be straight between pier tables, considering ease of prefabrication and construction by SBS method. These curvatures are hence accommodated by varying the width of slab tip (const. thickness), while arranging the box element straight between pier tables and maintaining box width and width of tapered section of slab.

Source: JICA Study Team

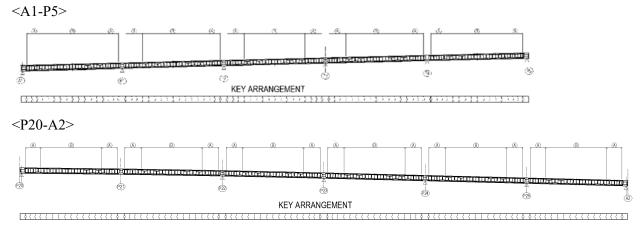

(3) Girder Height

A height of 2.7 m is adopted for the girder height of PC box girder bridges, unified with cable-stayed bridge and steel box girder bridge. The ratio of girder height to span length is $1/18.5 \sim 1/19.3$ for span length of 50 m \sim 52 m, which is within adequate range (desirable ratio for continuous PC box girder with SBS erection is $1/17 \sim 1/20$).

(4) Member Thickness

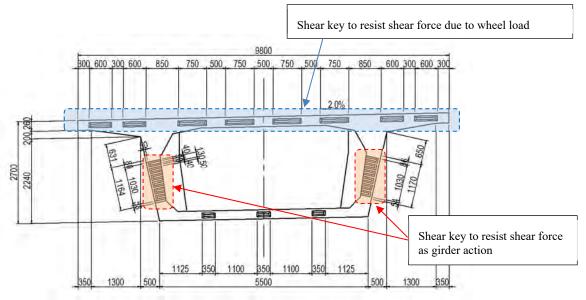
Thicknesses of girder elements are determined based on structural function as longitudinal girder and transverse box frame, and function to place prestressing tendons.

The girder cross sections and thicknesses of members are shown below.




Source: JICA Study Team


Figure 4.4.8 Girder Cross Section (Standard Section and P8~P10 Widened Section)


(5) Shear Key Arrangement

As the PC box girder bridges in this Project are constructed with precast segments by SBS method, shear keys were provided at each joint between segments in order to transfer the shear stresses adequately across joints and to avoid harmful displacement at joints. Concrete multiple shear keys were applied as the type of shear key which is reliable and commonly used in PC box girder bridges. The outline of design result is shown in Figure 4.4.9 and Figure 4.4.10



Source: JICA Study Team

(6) Prestressing Tendons

1) Longitudinal Tendons

a) External Tendons

The 19S15.2 mm has been selected for external tendons, which is reasonable for PC box girders of similar span lengths and has many experiences of application. Considering the possibility of future cable replacement, ECF (Epoxy Coated and Filled Strand) + HDPE sheath has been selected as the type of external tendon, obtaining multiple anti-corrosion function while aiming to improve the workability of cable replacement.

			~ '
	Bare Strand	ECF Strand	Semi-Prefabricated Cable
Schematic View			
Protection for Corrosion	• Grouting + HDPE sheath	• Epoxy coating on each strand + HDPE sheath	• Galvanizing or epoxy coating etc. on each strand (+ filler agent) + HDPE sheath/coating
Workability	 Strands are pushed one by one into HDPE sheath. After stressing, the sheath is grouted along all length. Larger equipment is not required as the strands are installed one by one. 	 Strands are pushed one by one into HDPE sheath. After stressing, anchor zone is grouted (sheath is not grouted). Larger equipment is not required as the strands are installed one by one. 	 Larger cranes etc. are required for installation as the strands have been prefabricated in the shape of one unit cable at factory. Grouting is required only at anchorage.
Maintenance	• Difficulties in cable replacement as the cables are grouted.	• Easier cable replacement as the cables are not grouted except anchorage zone, and each strand can be handled one by one.	• Difficulties in handling at cable replacement as the cables in the shape of unit and installed in the girder.
Evaluation		MOST RECOMMENDED	

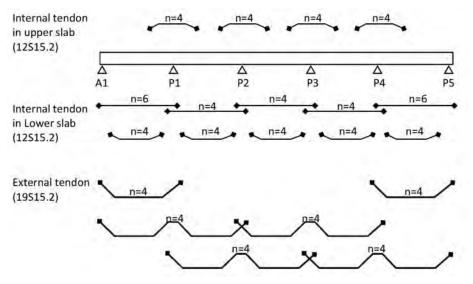
	Table 4.4.6	Comparison of External Tendon Type	è
--	-------------	------------------------------------	---

Source: JICA Study Team

b) Internal Tendons

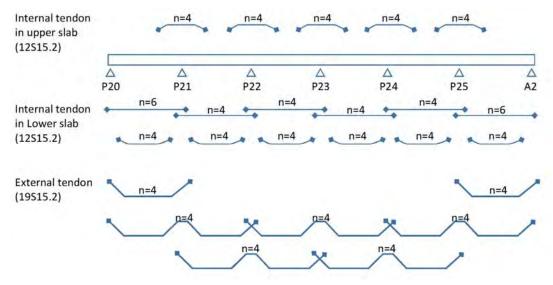
The 12S15.2 mm has been applied as internal longitudinal tendon, which has many experiences of application to PC box girders of similar span lengths, and whose anchorage can be installed within the length of precast segment. At least two internal tendons have been installed at each section in order to ensure the deformability of the girder.

c) Transverse Tendons for Deck Slab

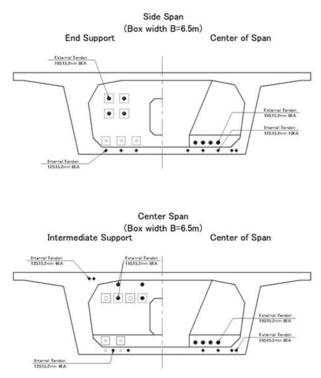

Both pre-tensioning and post-tensioning are applicable to transverse prestressing for deck slabs of precast segmental box girders. In this Project, post-tensioning method has been selected for deck slab prestressing, which is superior in geometry control of precast segments. The 3S12.7 mm has been selected as the type of tendons, as multi-strand is better in terms of procurement in Myanmar compared to large capacity single strands.

d) Tendons for Crossbeam Reinforcement

The crossbeams at pier table have functions to transfer reaction from superstructure to substructure through bearings. In addition, in this bridge, it is also a stress concentrated zone due to anchorage of external tendons. The crossbeams thus need to be reinforced by prestressing. For transverse prestressing, 4S15.2 mm has been used. For vertical prestressing, PC bars of 32 mm diameter have been applied, as the vertical tendon is short and PC bar with threaded anchorage system is advantageous than PC strands with wedge anchorages which have large loss of prestress for short tendons by pull-in of wedges.


2) Longitudinal Tendon Arrangement (External and Internal Tendon)

a) A1-P5



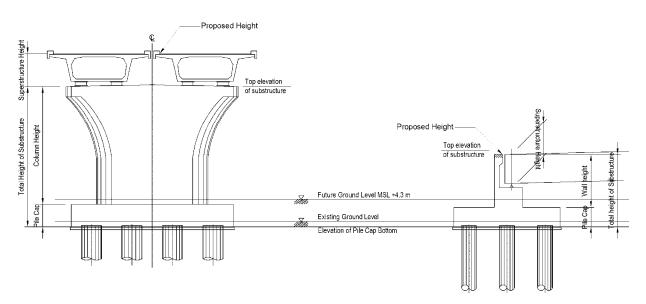
Source: JICA Study Team

b) P20-A2

3) Standard Section (Box Width 6.5 m)

Source: JICA Study Team

Figure 4.4.11 Prestressing Tendon Arrangement (Standard Section, Box Width 6.5 m)


4.4.5 Substructure of PC Box Girder Bridge

4.4.5.1 Study of Substructure Height

(1) General

Substructure height was designed referring to the proposed heights of planned road (PH), ground level (GL), and required heights related to superstructure which include height from pavement structure through bridge bearing. As a result, substructure heights were determined as round numbers by 10 cm.

Reflecting an elevation of reclamation for construction yard preparation (MSL+4.300 m), foundation level of on-land substructures was determined based on MSL+4.300 m.

Source: JICA Study Team

Figure 4.4.12 Explanatory Diagram of Substructure Height

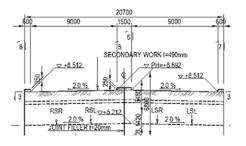
(2) Conclusion of Substructure Heights

Conclusions of the substructure heights are presented in Table 4.4.7 and Table 4.4.8.

Table 4.4.7	Summary of Substructure Heights at	A1 (Thilawa) Side
-------------	------------------------------------	-------------------

Item	Mark	Unit	A1	P1	P2	P3	P4	P5
Station Number	STA	m	357.00	407.00	457.00	507.00	557.00	607.00
Proposed height	PH	m	8.692	9.942	11.192	12.442	13.691	14.830
Top elevation of substructure	KCL	m	8.692	6.424	7.709	8.959	10.173	11.309
Existing Ground EL	GL1	m	3.223	3.254	3.025	3.156	3.260	3.149
Future Ground EL	GL	m	4.300	4.300	4.300	4.300	4.300	4.300
Pile cap thickness	FH	m	1.900	1.900	1.900	1.900	1.900	1.900
Total Substructure height	н	m	6.800	4.600	5.900	7.100	8.300	9.600
EL of Pile cap bottom	FL	m	1.892	1.824	1.809	1.859	1.873	1.709
Foundation Type	-	-	CIP Pile					

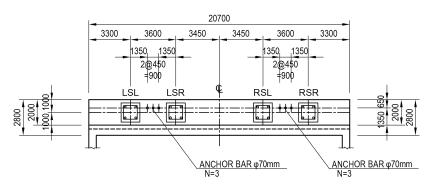
Item	Mark	Unit	P20	P21	P22	P23	P24	P25	A2
Station Number	STA	m	2088.00	2138.00	2188.00	2238.00	2288.00	2338.00	2388.00
Proposed height	PH	m	15.304	14.753	13.926	12.825	11.575	10.325	9.113
Top elevation of substructure	KCL	m	11.868	11.245	10.408	9.342	8.057	6.773	9.113
Existing Ground EL	GL1	m	-6.554	-6.155	-4.610	-0.041	4.116	4.016	4.110
Future Ground EL	GL	m	-7.490	-7.490	-7.490	0.550	4.300	4.300	4.300
Pile cap thickness	FH	m	4.000	4.000	4.000	2.200	1.900	1.900	1.900
Total Substructure height	Н	m	23.400	22.800	21.900	14.000	6.200	4.900	7.300
EL of Pile cap bottom	FL	m	-11.532	-11.555	-11.492	-4.658	1.857	1.873	1.813
Foundation Type	-	-	SPSP	SPSP	SPSP	CIP Pile	CIP Pile	CIP Pile	CIP Pile

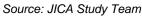

Table 4.4.8 Summary of Substructure Heights at A2 (Yangon) Side

Source: JICA Study Team

4.4.5.2 Dimensions of Abutment

(1) Width


The width at the top surface of the parapet wall shall be the same as the effective cross section of road or wider. The abutments A1 and A2 are located at a straight section of the main bridge. Therefore, constitution of cross section and width can be the same as the typical cross section of the bridge.



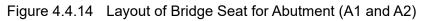
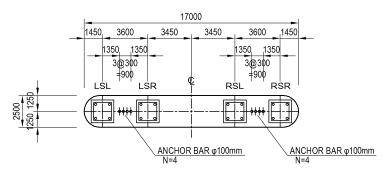
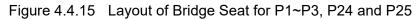
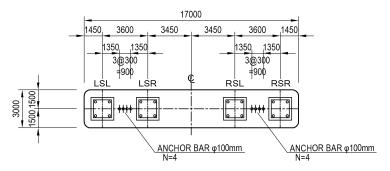

```
Source: JICA Study Team
```

Figure 4.4.13 Abutment Width

(2) Bridge Seat






4.4.5.3 Dimensions of Pier

(1) Bridge Seat

Layouts of bridge seat are displayed in Figure 4.4.15 through Figure 4.4.18.

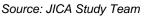
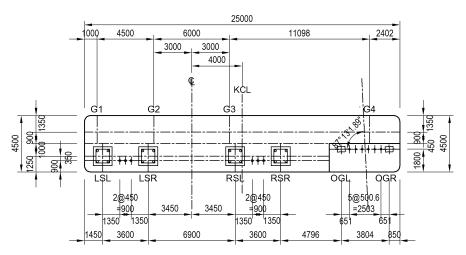



Figure 4.4.16 Layout of Bridge Seat for P4, P21~P23

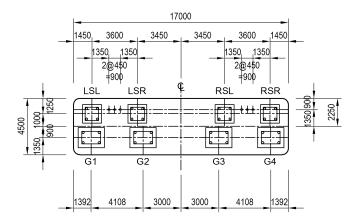



Figure 4.4.17 Layout of Bridge Seat for P5

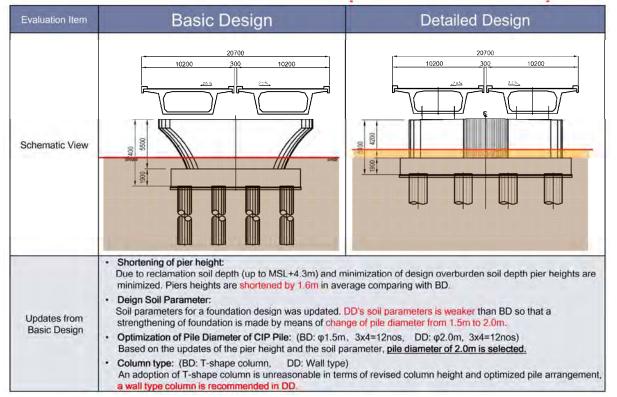

Source: JICA Study Team

Figure 4.4.18 Layout of Bridge Seat for P20

(2) Dimensions of Pier Column

A wall type column was employed for piers of P1 through P3 at Thilawa side as well as P24 and P25 at Yangon side.

Regarding piers of P4, P5 and P20 through P23, which have reasonable heights for construction of beams on the column, the ginkgo shape pier was employed as selected during B/D. Comparisons are shown in Table 4.4.9 and Table 4.4.10.

Table 1 1 0	Conoral Shana	o of Wall Type Die	r_{0} for D_{1} , D_{2}	D21 and D25 at D/D
Table 4.4.9	General Shape	s of wall type Fie	SIOLE 1~F3,	P24 and P25 at D/D

Source: JICA Study Team

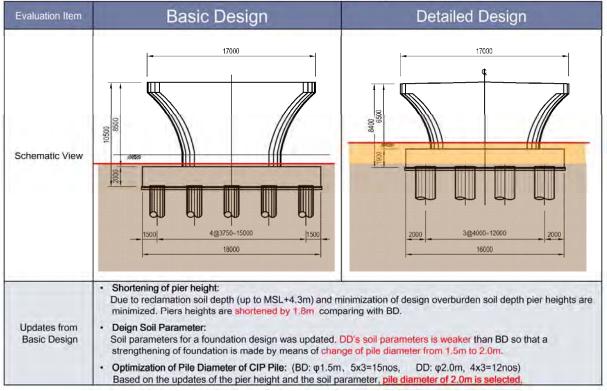


Table 4.4.10 General Shapes of Piers with Overhang Beam for P4, P5, P20~P23 at D/D

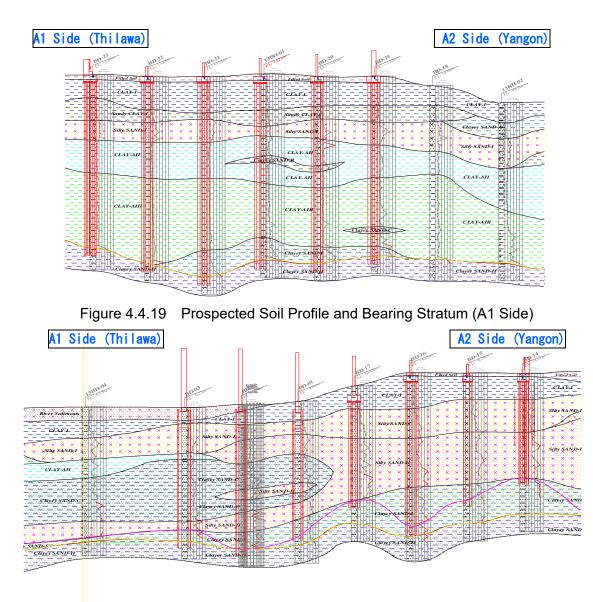
Source: JICA Study Team

The cross section of column was determined based on the stress status of column under various load conditions or minimum dimensions of bridge seat. The summary of the basis of determination is explained in Table 4.4.11.

Pier	Number	Bridge Axis Width	Transverse Direction Width	Overhang Length
	P4,	3.0 m	11.0 m	3.0 m
	P21,	Required width for a	Required width for a bridge	Landscape preference at F/S stage as
0	P22,	stress computation	seat arrangement (17.0 m) and	well as a stress computation (steel bar
Vei	P23		an overhang length (3.0 m)	arrangement: Diameter 32- 2 layer)
Overhang		4.5 m	25.0 m	3.0 m
gu	P5	Required width for a	Required width for a bridge	Ditto
bea	F3	bridge seat arrangement	seat arrangement (17.0 m) and	
beam type			an overhang length (3.0 m)	
typ		4.5 m	11.0 m	3.0 m
ĕ	P20	Required width for a	Required width for a bridge	Landscape preference at F/S stage
	F20	bridge seat arrangement	seat arrangement (17.0 m) and	
			an overhang length (3.0 m)	
	P1~P3	4.5 m	17.0 m	Non
Wall Type	P24,	Required width for a	Required width for a bridge	(no overhang beam)
111 Xe	P25	bridge seat arrangement	seat arrangement (17.0 m)	

Table 4.4.11 Summary of Basis of Determination of Cross Sectional Dimensions

4.4.6 Foundation of PC Box Girder Bridge


4.4.6.1 Selection of Bearing Stratum and Embedment Length of Foundation

(1) Selection of Bearing Stratum

The basement layer in the bridge design for this bridge site is Clayey SAND-II, which is distributed uniformly at the top surface elevation of around MSL-40.0~-60.0 m. Its firmness, represented by N-value of 50, was examined through the standard penetration test (SPT). There are no appropriate soil layers other than the basement layer with sufficient firmness and thickness to support bridge reactions at the left (Thilawa) side flood channel of Bago River. On the other hand, some parts of the Clayey SAND-I layer distributed just above the Clayey SAND-II at the right (Yangon) side flood channel are regarded as the bridge bearing stratum. Soil profile is displayed in Figure 4.4.19 and Figure 4.4.20.

111 Dide(1111 ava). $(112 Did(112 Did))$	A1 Side (Thilawa):	Clayey SAND-II layer,	MSL-50.0~-60.0 m
--	--------------------	-----------------------	------------------

A2 Side (Yangon): Clayey SAND-I and II layers, MSL-30.0~-50.0 m

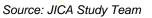


Figure 4.4.20 Prospected Soil Profile and Bearing Stratum (A2 Side)

(2) Embedment Length of Foundation

Embedment length of foundation is complied using a value recommended in the Specifications for Highway Bridges (Japan Road Associations) as follows:

Cast-In-Situ Pile Foundation: Around 1.0 D or more considering unevenness of bearing stratum Steel Pipe Sheet Pile Foundation: Around 1.0 D or more for obtaining sufficient plunging effect *Note: The "D" represent pile diameter.*

Foundation length and bearing stratum elevation determined for each substructure at D/D are summarized in Table 4.4.12 and Table 4.4.13.

Item	Mark	Unit	A1	P1	P2	P3	P4	P5
Station Number	STA	m	357.00	407.00	457.00	507.00	557.00	607.00
EL of Pile cap bottom	FL	m	1.892	1.824	1.809	1.859	1.873	1.709
EL of Bearing layer	S	m	-49.020	-53.620	-57.660	-52.770	-53.590	-51.480
Pile diameter	D	m	1.500	2.000	2.000	2.000	2.000	2.000
Minimum socket length			1.0D	1.0D	1.0D	1.0D	1.0D	1.0D
Foundation Type	-	-	CIP Pile					
Pile Length	L	m	53.000	58.000	62.000	57.000	58.000	55.500
Reference Boring No.	-	-	BD23	BD22	BD21	BH-01	BD20	BD19
Bearing Stratum	-	-	CS-II	CS-II	CS-II	CS-II	CS-II	CS-II

Table 4.4.12Summary of Foundation Length at A1 (Thilawa) Side

Source: JICA Study Team

Table 4.4.13	Summary of Foundation Length at A2 (Yangon) Side
--------------	--

Item	Mark	Unit	P20	P21	P22	P23	P24	P25	A2
Station Number	STA	m	2088.00	2138.00	2188.00	2238.00	2288.00	2338.00	2388.00
EL of Pile cap bottom	FL	m	-11.532	-11.555	-11.492	-4.658	1.857	1.873	1.813
EL of Bearing layer	S	m	-47.220	-49.450	-42.400	-34.650	-42.650	-33.760	-27.870
Pile diameter	D	m	1.200	1.200	1.200	2.000	2.000	2.000	1.500
Minimum socket length			1.5D	1.5D	3.0D	1.0D	1.0D	1.0D	1.0D
Foundation Type	-	-	SPSP	SPSP	SPSP	CIP Pile	CIP Pile	CIP Pile	CIP Pile
Pile Length	L	m	41.500	44.000	39.000	32.500	47.000	38.000	31.500
Reference Boring No.	-	-	BD3	BD2	BD1	BD17	BD16	BD15	BD14
Bearing Stratum	-	-	CS-II	CS-II	CS–I	CS–I	CS–I	CS–I	CS-I

4.4.6.2 Selection of Foundation Type

(1) Selection of Foundation Type at B/D

1) On-land (A1~P5, P24~A2)

It was confirmed that "CIP pile foundation (reverse circulation drilling method) D = 2.0 m" was the most economical foundation type for on-land piers. For abutment foundation type, it was confirmed that "CIP pile foundation (reverse circulation drilling method) D = 1.5 m" was the most preferable foundation type as it was selected at the B/D.

Piers: CIP pile foundation (reverse circulation drilling method) D = 2.0 m

Abutments: CIP pile foundation (reverse circulation drilling method) D = 1.5 m

The above review results are shown in Table 4.4.14 and Table 4.4.15.

2) In-river (Low-flow channel) (P20~P22)

The overall size of SPSP foundation is subject to dimensions of column and stability analysis of SPSP foundation. Regarding the dimensions of column for intermediate piers, 3.0 m in the bridge axis direction was sufficient under the updated conditions, whereas 3.5 m was proposed at the B/D. Consequently, it was confirmed that the overall size of SPSP could be minimized.

For the overall size of SPSP for P20 pier, dimensions of column could not be minimized because they were determined as the minimum dimension of a terminal support pier.

The above explanations are summarized in Table 4.4.16.

P20: SPSP foundation cum cofferdam 11.373 m x 17.164 m (Steel pipe diameter 1.2 m)

P21~22: SPSP foundation cum cofferdam 8.535 m x 17.222 m (Steel pipe diameter 1.2 m)

3) In-river (Riverfront) (P23)

There were no major changes in terms of construction conditions such as water level and riverbed elevations. Thus, the means of coffering, namely, steel sheet pile, was not changed from the B/D. Regarding the foundation type of P23 pier, CIP pile foundation (reverse circulation drilling method) D = 2.0 m was selected referring to the review result of on-land piers foundation type.

Piers: CIP pile foundation (reverse circulation drilling method) D = 2.0 m

Pile Diameter	neter		Cast in	Cast in Place RC Piles \$1.2m			Cast in Place RC Piles ol.5m	C Piles ¢1.5m			Cast in Place RC Piles \$\overline{0}2.0m	C)	Piles ¢2.0m
			1	ocers. beest	1021	-		approversion ap	0007 8		00001 00000 00001 00001 00001	14000	8 (F)
Outline Drawing	rawing		MULTIONER WARAULIONERY		0088 2022-008-2096 - 2023	HOLDIGHIOTYHIOTLIGHOT	0 0 0 0 0 0 0 0	000 000 000	13000 3933000-18000	THORE BERG THOMAS AND A CONT			
			a	TRANSPERSE DIRECTION		6	SIGNEL	PRANSA ENSE DIRECTION.	93		TRANSITION	TRANSFORM THE DATE OF A	
	-	1	Longindinal Direction		Transverse Direction	Longitudi	Longitudinal Direction	Transverse Direction	Direction	Longitudin	Longitudinal Direction	T	Transverse Direction
Item	mark	I	lation Seis	ituation Presistent Situat	ior Seismic Situatio	n Presistent Situatio	of Seismic Situation	Presistent Situation	Seismic Situation	Dresistent Situation	Seismic Situation Presistent Situation Seismic Situation Presistent Situation Seismic Situation Presistent Si	Presistent S	ituation
Maximum	-1	1			2,978.8	2,003.8	3,540.6	2,003.8	3,582.1	3,895.5	6,853.1	3,895.5	2
Reactions	Ra	3	3,530.0 5,516.0	5.0 3,530.0	5,516.0	4,632.0	7,294.0	4,632.0	7,294.0	6,523.0 0.60	0.403.0	0,523.0	
Decion Autount	+	mm			14.8	00	12.8	0.0	13.4	0.0	173	0.0	Г
-	10				15.0	15.0	15.0	15.0	15.0	20.0	20.0	20.0	
Displacemen		ġ.			86.0	0.00	0.85	0.00	0.89	0.00	0.86	0.00	
Stress	1	N/mm2	-17.0 211.5	5 -17.0	267.6	-14.0	184.5	-14.0	231.6	-15.5	180.5	-15.5	
of	1.1	N/mm ²	-200.0 300.0	.0 -200.0	300.0	-200.0	300.0	-200.0	300.0	-200.0	300.0	-200.0	T
a Pile	o/aa	•	0.09 0.71	1 0.09	0.89	0.07	0.61	0.07	0.77	0.08	0.60	0.08	
Maximum	Maximum Stress of a Pile	a Pile	03= 268 k	os= 268 kN/m ² <os= 300kn="" m<sup="">2 (OK</os=>	(K)		os= 232 kN/m2 <osa= (ok)<="" 300kn="" m2="" td=""><td>n= 300kN/m2 (OK)</td><td></td><td></td><td>os= 242 kN/m2<osa= (ok)<="" 300kn="" m2="" td=""><td>1= 300kN/m2 (</td><td>OK)</td></osa=></td></osa=>	n= 300kN/m2 (OK)			os= 242 kN/m2 <osa= (ok)<="" 300kn="" m2="" td=""><td>1= 300kN/m2 (</td><td>OK)</td></osa=>	1= 300kN/m2 (OK)
Constructibility	bility		The amount of number of pile is largest and thus this alternative is the most inferior one in terms of constructability.	le is largest and thus this r one in terms of	Ā	This alternative e works.	This alternative entails the smallest amount of pile works.	nount of pile	0	This alternative en	This alternative entails smaller amount of pile works	t of pile works.	
Construction Period	a Period		The amount of pile works including ground excavation is consirably smaller.	chiding ground excavatio	0	The amount of plle works is consirably the smallest.	The amount of pile works including ground excavation is consirably the smallest.	round excavation	0	The amount of pile is consirably large.	The amount of pile works including ground excevation is constrably large.	round excavation	
Environmental Aspect	al Aspect		This alternative entails the smallest amount of excavation works.	nallest amount of	0	This alternative of works.	This alternative entails small amount of excavation works.	of excavation	Þ	This alternative en works.	This afternative entails the largest amount of excavation works.	amt of excavation	
Cost Ratio	atio		1237	11			1.235				1.000		
Judge											0		

Table 4.4.14 Review of Foundation Type for On-land Piers at D/D

Detailed Design Study on The Bago River Bridge Construction Project

Source: JICA Study Team

Detailed Design Study on	The Bago River	Bridge Construction Project
Benanca Besign Sinay on	1110 2000 10100	

Outline Drawing								
	역	the standard to						inter Westworks
	-		Bridge's Longitudinal Direction	Bridge's Longh	Bridge's Longitudinal Direction	Bridge's Longitudinal Direction	dinal Direction	
Item	mark und	Presister	Seismic Situation	Presistent Situation	Seismic Situation	Presistent Situation	Seismic Situation	IJ
-	Pmax kN		1,844.6	1,605.1	2,400.7	2,404.1	3,761.0	
Maximum	Ra kN	1 2,797.0	4,400.0	3,730.0	5,916.0	5,353.0	8,603.0	
rue Keachons	o/ca -	0.43	0.42	0.43	0.41	0.45	0.44	
Design Amount	ox mm	a 5.3	13.6	4.5	13.6	4.3	14.0	
	ona mm	a 15.0	15.0	15.0	15.0	15.0	15.0	
Displacement	R .	0.35	0,90	0.30	0.91	0.29	0.94	
Stress	os N/mm ²	m ² 38.6	272.7	29.6	262.6	22.1	255.2	1
of	osa N/mm ²	m ² 160.0	300.0	160.0	300.0	160.0	300.0	1
a Pile	o/oa -	0.24	160	0.18	0.88	0.14	0.85	
Maximum Stress of a Pile	ss of a Pile	$\sigma = 273 \text{ kN/m}^2 < \sigma = 300 \text{ kN/m}^2$	$1 = 300 \text{ kN/m}^2$ (OK)	$\sigma s = 263 \text{ kN/m}^2 < \sigma s a = 300 \text{ kN/m}^2$	$= 300 \text{ kN/m}^2$ (OK)	$\sigma s = 255 \text{ kN/m}^2 < \sigma s a = 300 \text{ kN/m}^2$	= 300 kN/m ² (OK)	0
Constructability		The amount of number of pile is largest and thus this alternative is the most inferior one in terms of constructability.	pile is largest he most ∆ structability.	This alternative entails the smaller amount of pile works.	smaller	This alternative entails the smallest amount of pile works.		Ø
Construction Period		The amount of pile works including ground excavation is consirably smaller.	nchıding ably smaller.	The amount of pile works including ground excavation is consirably the smallest.	including ably the	The amount of pile works including ground excavation is consirably large.		0
Environmental Aspect		This alternative entails the smallest amount of excavation works.	s.	This alternative entails small amount of excavation works.	It amount of O	This alternative entails the largest amount of excavation works.		A
Cost Ratio		1.095	0	1.000	0	1/1/1	7	A
Overall Evaluation					0			

Table 4.4.15	Review of Foundation Type for Abutment at D/D
1001010	The view of Foundation Type for Abdition at D/D



Table 4.4.16 Comparison of Overall Size of SPSP Foundation at D/D

Source: JICA Study Team

4.4.7 Summary of Detailed Design Results for Substructure and Foundation

4.4.7.1 Computation of Columns of T-shaped Piers

The columns of T-shaped piers can be designed as cantilevers with fixed ends at the section connected to the footings. In the design process, the most adverse combination of axial forces and bending moments shall be applied.

The overhang beams of T-shaped piers can be designed as follows:

- > The overhang beams are designed as cantilevers.
- > The overhang length of the cantilever is defined as the length from the vertical section at the front surface of the column to the beam in case of rectangular column, and from the position one tenth of the column diameter inward from the front of the column to the beam end in case of an oval section column.

Computation results are shown in Table 4.4.17 through Table 4.4.22.

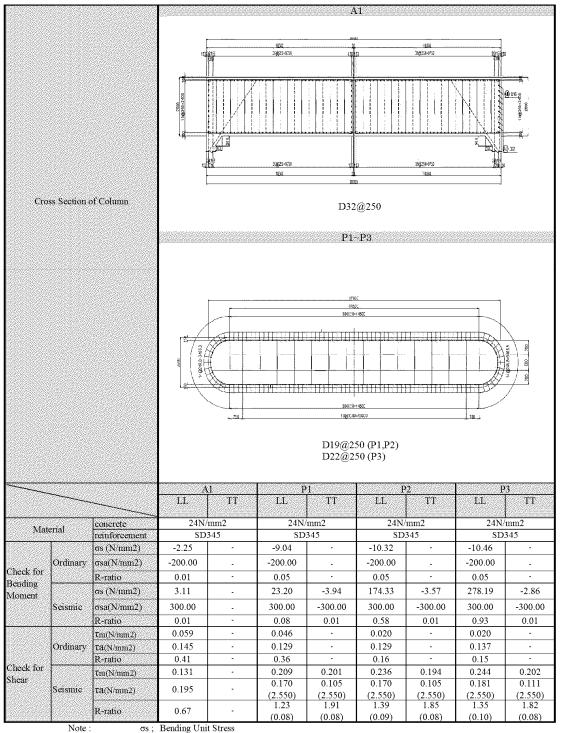


Table 4.4.17 Calculation Results for Wall and Comume (A1, P1~P3)

σs ; Bending Unit Stress σsa ; Allowable Unit Stress

τm ; Unit Share Force

τa; Allowable Unit Share Force

R-ratio; Design result / Capacity

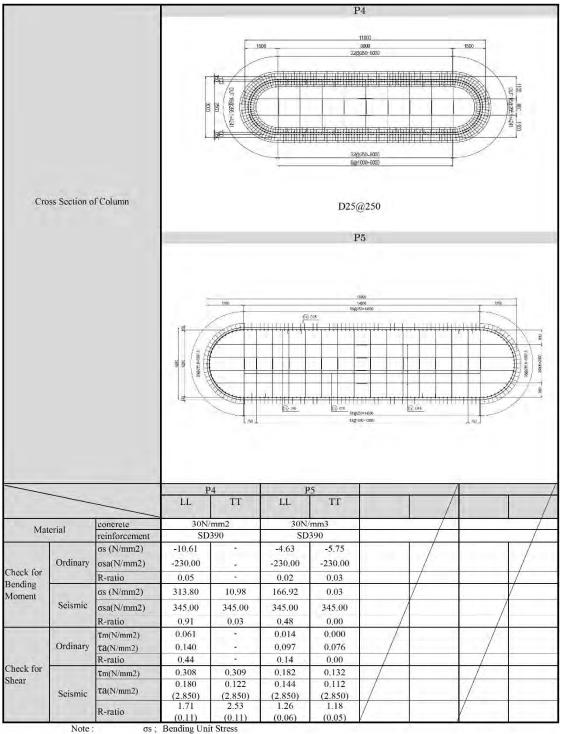


 Table 4.4.18
 Calculation Results for Wall and Columns (P4~P5)

σsa; Allowable Unit Stress

τm ; Unit Share Force

τa; Allowable Unit Share Force

R-ratio ; Design result / Capacity

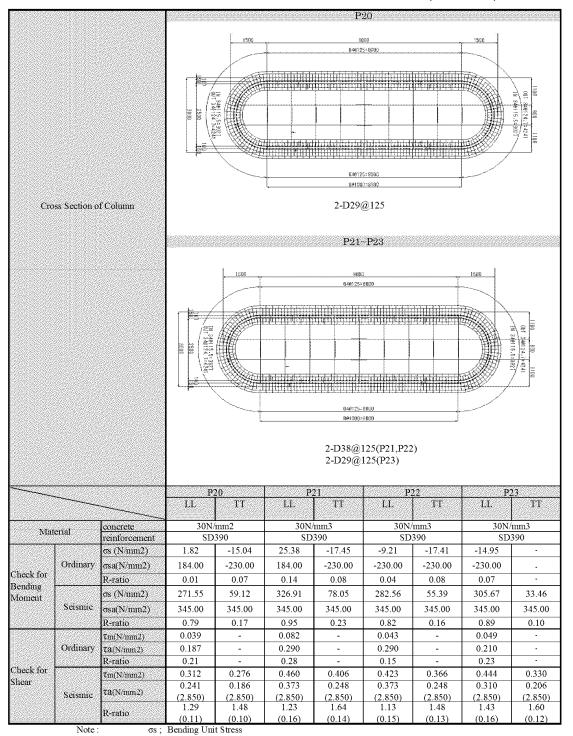


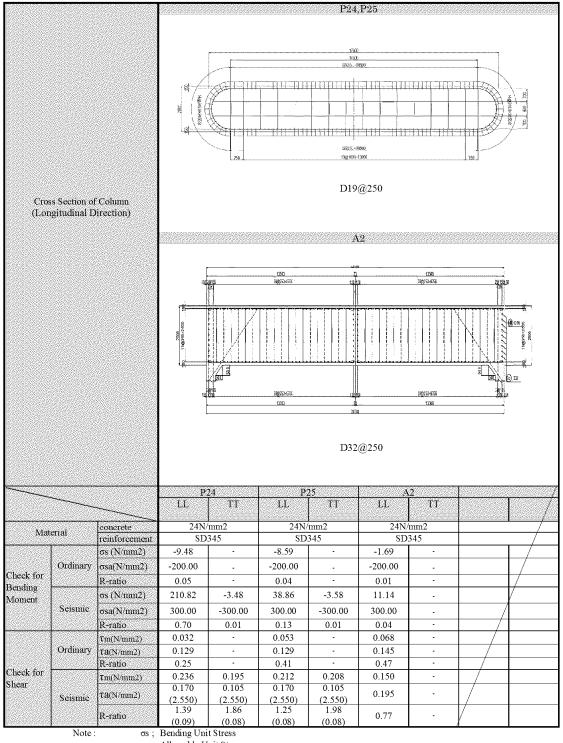
Table 4.4.19 Calculation Results for Wall and Columns (P20~P23)

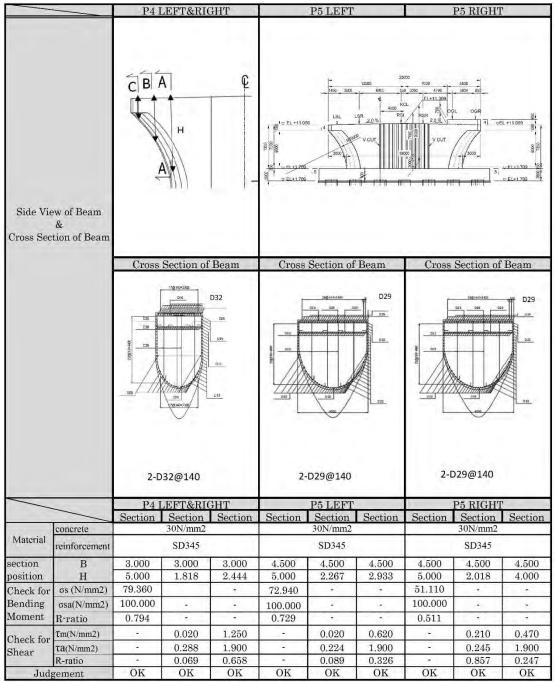
σsa; Allowable Unit Stress

 $\tau {\rm m}$; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity




Table 4.4.20 Calculation Results for Wall and Columns (P24, P25, and A2)

σsa; Allowable Unit Stress

 τm ; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

Table 4.4.21 Calculation Results for Overhang Beams (P4 and P5)

Note : σs ; Bending Unit Stress

σsa ; Allowable Unit Stress

τm ; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

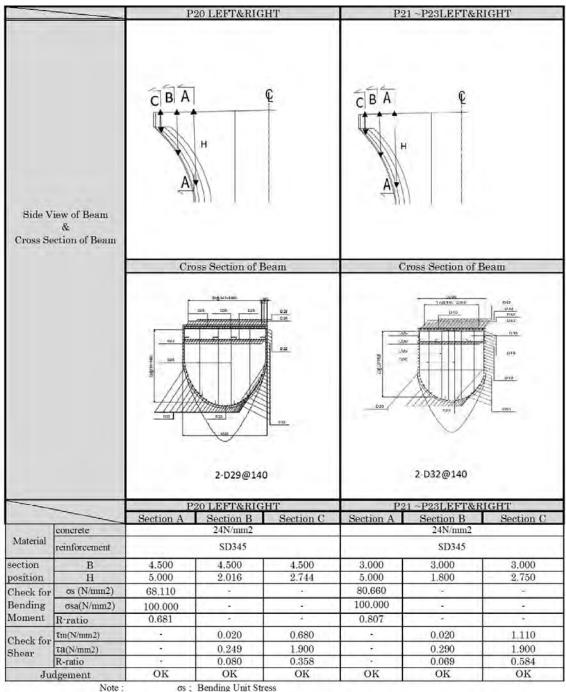


Table 4.4.22 Calculation Results for Overhang Beams (P20~P23)

os ; Bending Unit Stress

σsa : Allowable Unit Stress

tm ; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

4.4.7.2 Computation of Footings

Footing shall be designed in consideration of the most adverse load combinations among self-weights, overburden load such as soils, presence of buoyancy, subgrade reaction, and reaction from foundations. Footings may be designed as beam members and as cantilevers.

The footings shall retain thickness necessary to serve as structural members. Also, the footings shall have sufficient thickness to be regarded as rigid bodies, when they are assumed as rigid bodies in the stability analysis of the foundation.

Computation results are shown in Table 4.4.23 through Table 4.4.26.

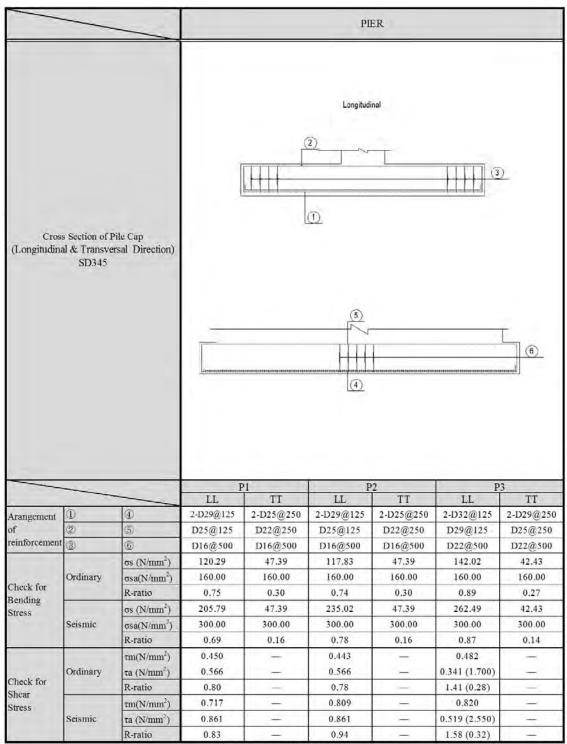
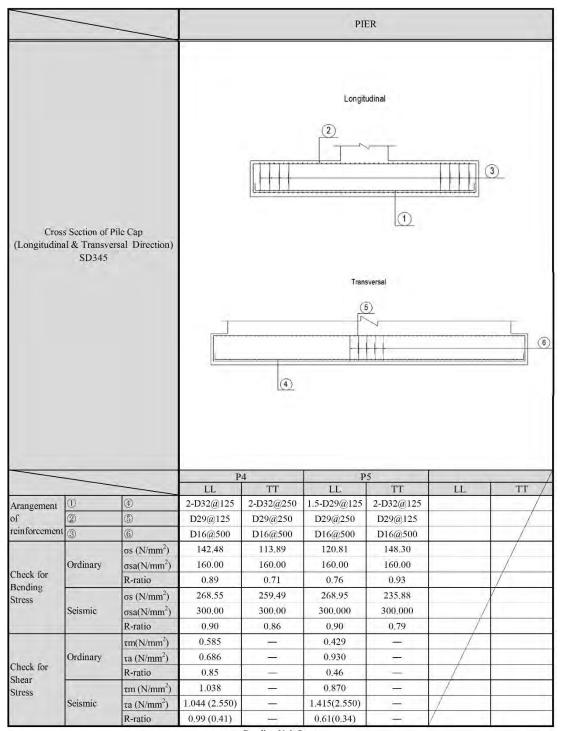


Table 4.4.23 Calculation Results for Footing of Piers (P1~P3)


 σs ; Bending Unit Stress

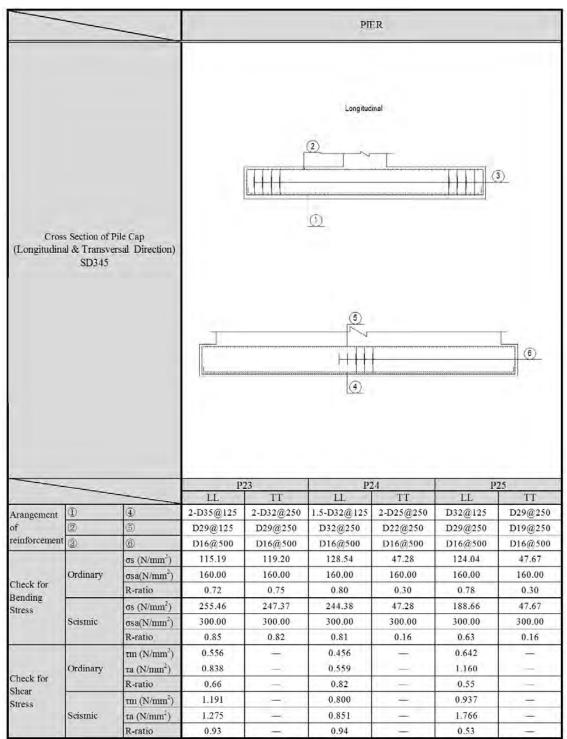
 σ sa; Allowable Unit Stress

τm ; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

Table 4.4.24 Calculation Results for Footing of Piers (P4 and P5)


σs; Bending Unit Stress

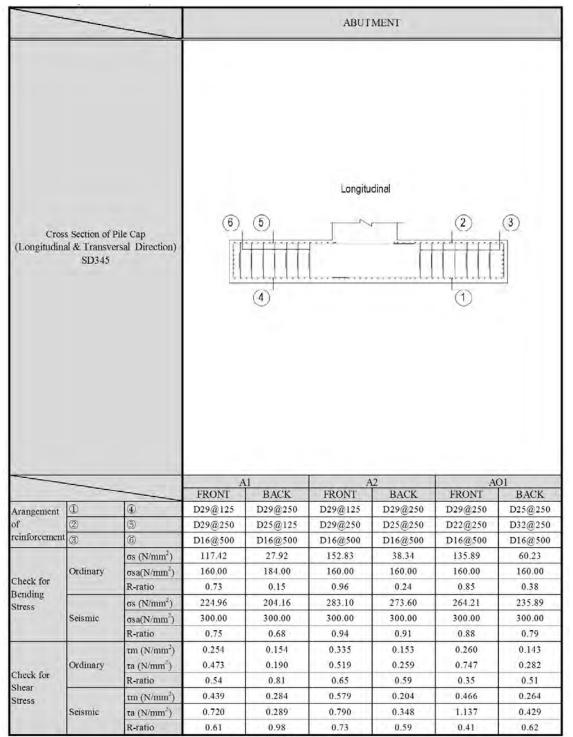
σsa; Allowable Unit Stress

 τm ; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

Table 4.4.25 Calculation Results for Footing of Piers (P23, P24 and P25)


 σs ; Bending Unit Stress

σsa; Allowable Unit Stress

τm ; Unit Share Force

τa , Allowable Unit Share Force

R-ratio ; Design result / Capacity

σs ; Bending Unit Stress

σsa; Allowable Unit Stress

 τm ; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio; Design result / Capacity

4.4.7.3 Design of Foundation

Pile foundation and SPSP foundation shall conform to the following requirements under ordinary, earthquake, and vessel collision conditions:

- The axial reaction at each pile head shall not exceed the allowable pile bearing capacity. The axial allowable bearing capacity can be estimated by dividing the ultimate bearing capacity of the pile determined from related factors such as ground conditions and construction methods by the factor of safety.
- The displacements at each pile head shall not exceed the allowable displacements in order not to leave a large residual displacement and to keep within the limit of possibility of evaluation of elastic behavior. The allowable horizontal displacement is principally determined to be 1% based on the results of many loading tests.

For a large elastic foundation with a width of 5 m or more such as SPSP foundation, the allowable displacement is determined to be 50 mm because few loading tests data are available.

For a pile foundation with a pile diameter of 1.5 m or less, the allowable displacement is 15 mm. For a pile foundation with a pile diameter of 2.0 m, the allowable displacement is 20 mm.

The allowable displacement of abutment foundation is 15 mm regardless of the foundation width because the displacement may increase with time due to the effects of creep and backfill settlement.

- The axial reaction at each pile head shall not exceed the allowable pile bearing capacity.
- > The stresses generated in members of pile foundations shall not exceed the allowable stresses specified in the relevant section of this report.

Computation results of CIP pile foundation stability are shown in Table 4.4.27 through Table 4.4.29.

The calculation results of cross sectional stress of CIP piles are shown in Table 4.4.30 through Table 4.4.32.

Also, calculation results of SPSP are summarized in through Table 4.4.33.

	Al	P1	P2	P3	
Boling Log & Pile Length (m)	& Pile Length				
Pile Information Diameter of Pile (mm)	1,500	2,000	2,000	2,000	
Number of Piles (Nos.)	28	12	12	12	
Pile Length (m)	52.9	57.9	61.9	56.9	
Bearing Resistance of Ordi	nary			C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Pile Head Reaction (kN)	1,602	4,196	4,019	4,307	
Bearing Capacity (kN)	3,730	5,531	7,140	6,320	
R-Ratio	0.430	0.759	0.563	0.681	
Horizontal Movement of O	rdinary				
Horizontal Movement (mm)	3.7	4.1	1.8	1.7	
Capacity (mm)	15.0	20.0	20.0	20.0	
R-Ratio	0.246	0.205	0.090	0.083	
Bearing Resistance of Seisn	nic				
Pile Head Reaction (kN)	2,384	5,982	6,677	6,762	
Bearing Capacity (kN)	5,916	8,920	11,372	10,087	
R-Ratio	0.403	0.671	0.587	0.670	
Horizontal Movement of Se			· · · · · · · · · · · · · · · · · · ·		
Horizontal Movement (mm)	13.5	17.5	19.3	18.2	
Capacity (mm)	15.0	20.0	20.0	20.0	
R-Ratio	0.902	0.876	0.964	0.909	
Bearing Capacity of Group			•		
Axial Compression Fordes (kN		43,606	44,962	-	
Bearing Capacity (kN)	1,053,211	949,265	1,026,902	-	
R-Ratio	0.041	0.046	0.044		
Judgement of Lateral Move					
Identifying Index Capacity	1.830 1.200	-	-		
	1.200		1		

Table 4.4.27 Calculation Results of CIP Pile Foundation Stability (A1~P3)

* We also conducted a study on the negative skin friction force, but another case became severe in all foundations, so the value of bearing resistance is ordinary case.

	P4	P5		
Boling Log & Pile Length (m)				
Pile Information				
Diameter of Pile (mm)	2,000	2,000		
Number of Piles (Nos.)	12	21		
Pile Length (m)	57.9	55.4		
Bearing Resistance of Ordinary		2 415		
Pile Head Reaction (kN)	4,506	3,415		
Bearing Capacity (kN) R-Ratio	6,511 0.692	6,127 0.557		
		0.237		
Horizontal Movement of Ordina Horizontal Movement (mm)	4.2	1.8		
Capacity (mm)	20.0	20.0		
R-Ratio	0.209	0.088		
Bearing Resistance of Seismic	0.202	0.000		
Pile Head Reaction (kN)	7,090	6,443		
Bearing Capacity (kN)	10,386	9,783		
R-Ratio	0.683	0.659		
Iorizontal Movement of Seismi	100 C			
Horizontal Movement (mm)	19.1	18.0		
Capacity (mm)	20.0	20.0		
R-Ratio	0.955	0.901		
Bearing Capacity of Group Pile				
Axial Compression Fordes (kN)	45,210	63,530		
Bearing Capacity (kN)	791,906	1,413,665		
R-Ratio	0.057	0.045		

Table 4.4.28 Calculation Results of CIP Pile Foundation Stability (P4 and P5)

* We also conducted a study on the negative skin friction force, but another case became severe in all foundations, so the valu bearing resistance is ordinary case.

	P23	P24	P25	A2				
Boling Log & Pile Length (m)								
Pile Information								
Diameter of Pile (mm)	2,000	2,000	2,000	1,500				
Number of Piles (Nos.)	12	12	8	18				
Pile Length (m)	32.4	46.9	37.9	31.4				
Bearing Resistance of Ordinary								
Pile Head Reaction (kN)	5,554	4,223	5,922	2,299				
Bearing Capacity (kN)	8,559	11,527	9,177	5,085				
R-Ratio	0.649	0.366	0.645	0.452				
Horizontal Movement of Ordina	Horizontal Movement of Ordinary							
Horizontal Movement (mm)	0.3	2.5	5.0	4.6				
Capacity (mm)	20.0	20.0	20.0	15.0				
R-Ratio	0.017	0.123	0.251	0.303				
Bearing Resistance of Seismic								
Pile Head Reaction (kN)	10352.4	6,676	7,879	3,537				
Bearing Capacity (kN)	12959.0	17,731	14,137	7,807				
R-Ratio	0.799	0.376	0.557	0.453				
Horizontal Movement of Seismic								
Horizontal Movement (mm)	13.9	16.4	17.8	14.6				
Capacity (mm)	20.0	20.0	20.0	15.0				
R-Ratio	0.695	0.819	0.892	0.971				
Bearing Capacity of Group Piles		1						
Axial Compression Fordes (kN)	65,741	45,475	_	39,934				
Bearing Capacity (kN)	460,353	812,083	-	534,902				
R-Ratio	0.143	0.056	-	0.075				
Judgement of Lateral Movement Identifying Index		[0.509				
Identifying Index Capacity		_		1.200				
* We also an duated a study of								

Table 4.4.29 Calculation Results of CIP Pile Foundation Stability (P23~P25 and A2)

* We also conducted a study on the negative skin friction force, but another case became severe in all foundations, so the value of bearing resistance is ordinary case.

	A1	P1	P2	P3
Cross Section of Pile SD345	32-D29@116 AS=205.568cm ²	19 19 19 19 19 19 19 19 19 19 19 19 19 1	44-D32@120 AS=349.448cm ²	19 19 19 19 19 19 19 19 19 19 19 19 19 1
Check for Bending Stress				
Ordinary				
$\sigma s (N/mm^2)$	37.98	2.05	_	_
σ sa (N/mm ²)	184.00	184.00		
R-ratio	0.21	0.01	—	_
Seismic				
σs (N/mm ²)	261.33	231.75	261.79	272.44
σsa (N/mm ²)	300.00	300.00	300.00	300.00
R-ratio	0.87	0.77	0.87	0.91
Check for Shear Stress				
Ordinary				
τm (N/mm ²)	0.095	0.052	0.022	0.022
τa (N/mm ²)	0.446	0.505	0.601	0.601
R-ratio	0.21	0.10	0.04	0.04
Seismic				
τ m(N/mm ²)	0.335	0.324	0.354	0.378
$\tau a (N/mm^2)$	0.445	0.324	0.399	0.399
	UTT.	0.377	0.000	0.377
R-ratio	0.75	0.81	0.89	0.95

Table 4.4.30 Calculation Results of Cross Section of CIP Pile Foundation (A1~P3)

 $\sigma s \ ; \ \ Bending \ Unit \ Stress$

 $\sigma sa \ ; \ \ Allowable \ Unit \ Stress$

 τm ; Unit Share Force

 τa ; Allowable Unit Share Force

P4 P5 Cross Section of Pile SD345 44-D35@120 44-D32@120 AS=420.904cm² AS=349.448cm² Check for Bending Stress Ordinary $\sigma s \; (N/mm^2)$ 1.24 -184.00 $\sigma sa~(N/mm^2)$ -R-ratio 0.01 Seismic σs (N/mm²) 211.74 248.61 300.00 300.00 $\sigma sa~(N/mm^2)$ R-ratio 0.71 0.83 Check for Shear Stress Ordinary $\tau m (N/mm2)$ 0.052 0.018 0.524 τa (N/mm2) 0.562 0.09 0.03 R-ratio Seismic 0.338 0.315 $\tau m(N/mm2)$ τa (N/mm2) 0.422 0.399 R-ratio 0.80 0.79

Table 4.4.31 Calculation Results of Cross Section of CIP Pile Foundation (P4 and P5)

 $\sigma s \ ; \ Bending \ Unit \ Stress$

σsa; Allowable Unit Stress

 τm ; Unit Share Force

τa ; Allowable Unit Share Force

P23 P24 P25 A2 1500 160 1180 Cross Section of Pile SD345 44-D35@120 44-D32@120 44-D35@120 32-D35@116 AS=420.904cm² AS=349.448cm² AS=420.904cm² AS=306.112cm² Check for Bending Stress Ordinary σs (N/mm2) 5.88 54.92 _ 184.00 184.00 σsa (N/mm2) _ R-ratio 0.03 0.30 Seismic 260.33 288.62 271.91 269.11 $\sigma s (N/mm2)$ σsa (N/mm2) 300.00 300.00 300.00 300.00 R-ratio 0.96 0.91 0.87 0.90 Check for Shear Stress Ordinary 0.035 0.036 0.088 0.164 τm (N/mm2) τa (N/mm2) 0.474 0.636 0.601 0.616 R-ratio 0.06 0.06 0.14 0.35 Seismic τ m(N/mm2) 0.457 0.355 0.457 0.529 τa (N/mm2) 0.422 (2.550) 0.399 0.437 (2.550) 0.508 (2.550) 1.04 (0.21) 0.89 1.05 (0.18) 1.08 (0.18) R-ratio σs; Bending Unit Stress

Table 4.4.32 Calculation Results of Cross Section of CIP Pile Foundation (P23~P25 and A2)

σsa; Allowable Unit Stress

τm ; Unit Share Force

τa; Allowable Unit Share Force

Table 4.4.33 Calculation Results for Connection Stud of SPSP Foundation

Design condition

- Type of stad bars	: SD345 (underwater)
- Design strength of concrete	: $\sigma ck = 24 (N/mm^2)$
- Material of sheet pile	: SKY490 (P20,P21), SKY400(P22)
- Diameter of sheet pile	: D = 1200.0 (mm)
- Section modulus of sheet pile	: $Z = 13081.0(P20,P21), 15184.5(P22) (cm^3)$
- Connection method	: reinforcement stud welding

Table 8.3.56-5 Design Results of connection between Top Slab and Steel Pipe Sheet Pile

	Load	σs1	σs2	σs	σsa	nb nba	τs	τsa	ns nsa
	case	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(nos/layer)	(N/mm^2)	(N/mm^2)	(nos)
P20	Ordinary	153.93	4.60	158.53	185.00	$16 \ge 14$	66.15	111.00	$76 \ge 46$
P20	Seismic	200.46	38.51	238.97	300.00	$16 \ge 13$	124.64	180.00	76 ≧ 53
P21	Ordinary	153.93	6.86	160.79	185.00	$16 \ge 14$	75.05	111.00	76 ≧ 52
P21	Seismic	200.46	38.67	239.13	300.00	16 ≧13	155.78	180.00	76 ≧66
P22	Ordinary	116.35	2.02	118.37	160.00	$16 \ge 12$	59.42	96.00	76 ≧ 48
P22	Seismic	174.52	35.52	210.04	300.00	16 ≧ 1 2	146.40	180.00	$76 \ge 62$

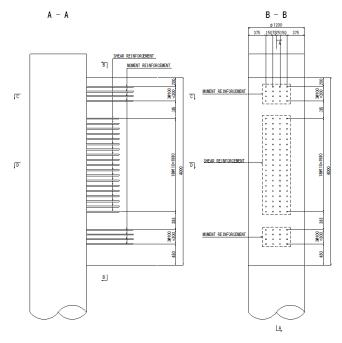
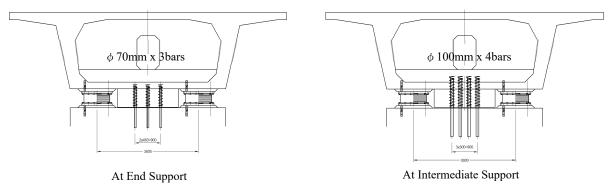


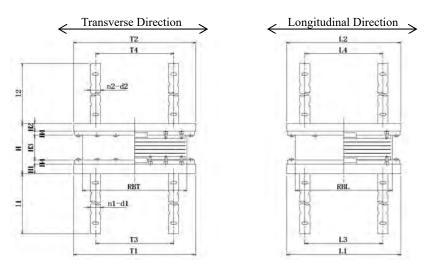
Figure : Detail for Connection between Top Slab and Steel Pipe Sheet Pile

4.4.8 Bridge Accessories


4.4.8.1 Bearings

The lengths of PC box girder bridges are L = 250 m in Thilawa side (A1 side) and L = 300 m in Yangon side (A2 side), and the effect of restraint forces is significant due to the shortening of the girder induced by creep and shrinkage as well as due to the shortening/expansion induced by temperature change. On the other hand, horizontal forces from the superstructure during earthquake must be adequately distributed to each substructure. For the support condition of the PC box girder bridges, therefore, the superstructure is planned to be elastically supported in the longitudinal direction, and elastomeric rubber bearings are adopted. The superstructure is transversally fixed, considering the connection with the on-ramp bridge

	Elastic Support	Fixed + Moveable Support
Applicable type of bearings	Elastomeric Rubber Bearing	Pot Bearing
Effect of restraint forces	• Effect of restraint force to substructures is smaller, as the superstructure is elastically supported in the longitudinal direction.	• Effect of restraint forces to substructures is larger, as the superstructure is fixed at most of the superstructures.
Transfer of seismic horizontal force	 In the longitudinal direction, horizontal forces are elastically distributed to each substructure. In the transverse direction, horizontal forces are transferred from superstructure to substructures by anchor bars. 	• Horizontal forces are transferred to the substructures through steel components of bearings. Substructures with movable supports do not contribute in resisting seismic forces.
Evaluation	RECOMMENDED	


Table 4.4.34 Comparison of Support Condition and Bearing Type

Source: JICA Study Team

Source: JICA Study Team

Figure 4.4.21 Arrangement of Bearing and Anchor Bar

	H	Base Plate		Anchor Bolt				Rubber Bearing			
	L1	T1	H1	d1	11	n1	L3	T3	RBL	RBT	H3
Al	1080	1080	60	$\phi 65$	650	4	850	850	920	920	309
P1	1420	1420	75	φ 85	850	4	1100	1100	1220	1220	293
P2	1420	1420	75	φ 85	850	4	1100	1100	1220	1220	258
P3	1420	1420	75	φ 85	850	4	1100	1100	1220	1220	258
P4	1420	1420	75	φ 85	850	4	1100	1100	1220	1220	293
P5	1080	1080	60	$\phi 65$	650	4	850	850	920	920	275

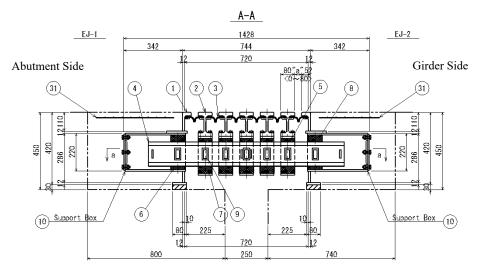
	5	Sole Plate		Anchor Bar					PL	Height
	L2	T2	H2	d2	12	n2	L4	T4	H4	Н
A1	1080	1080	60	ϕ 65	650	4	850	850	32	493
P1	1420	1420	75	$\phi 85$	850	4	1000	1000	40	523
P2	1420	1420	75	$\phi 85$	850	4	1000	1000	40	488
P3	1420	1420	75	φ 85	850	4	1000	1000	40	488
P4	1420	1420	75	$\phi 85$	850	4	1000	1000	40	523
P5	1080	1080	60	$\phi 65$	650	4	850	850	32	459

		Base Plate	e		_	Anchor B	olt		R	ubber Bea	ring
	Ll	T1	H1	d1	11	nl	L3	T3	RBL	RBT	H3
P20	1080	1080	60	ϕ 65	650	4	850	850	920	920	309
P21	1420	1420	75	$\phi 85$	850	4	1100	1100	1220	1220	293
P22	1420	1420	75	$\phi 85$	850	4	1100	1100	1220	1220	293
P23	1420	1420	75	$\phi 85$	850	4	1100	1100	1220	1220	258
P24	1420	1420	75	φ85	850	4	1100	1100	1220	1220	293
P25	1420	1420	75	$\phi 85$	850	4	1100	1100	1220	1220	327
A2	1080	1080	60	ϕ 65	650	4	850	850	920	920	323

		Sole Plate		Anchor Bar				PL	Height	
	L2	T2	H2	d2	12	n2	L4	T4	H4	Н
P20	1080	1080	60	φ65	650	4	850	850	32	493
P21	1420	1420	75	$\phi 85$	850	4	1000	1000	40	523
P22	1420	1420	75	$\phi 85$	850	4	1000	1000	40	523
P23	1420	1420	75	$\phi 85$	850	4	1000	1000	40	488
P24	1420	1420	75	$\phi 85$	850	4	1000	1000	40	523
P25	1420	1420	75	$\phi 85$	850	4	1000	1000	40	557
A2	1080	1080	60	$\phi 65$	650	4	850	850	32	507

Figure 4.4.22 Elastomeric Rubber Bearing

4.4.8.2 Expansion Joints


As the horizontal movement of PC box girder bridge during earthquake is large due to the relatively high design seismic coefficient (kh = 0.3), its expansion joints need to accommodate large displacement. As a result of the following comparative study, "modular expansion joint" has been selected, considering various aspects such as waterproofing, driving comfort, and maintenance as well as accommodation of large displacement.

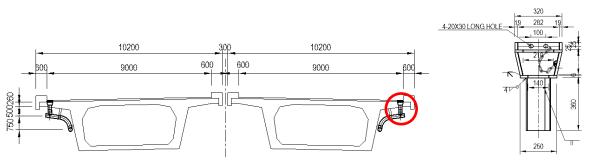
	Modular Expansion Joint	Steel Finger Joint
Schematic View		
Accommodation of large	 Can accommodate wide range of movement, and applicable especially 	• Can accommodate wide range of movement.
displacement	to large movement.	
Waterproofing	 Excellent cut-off performance against water. 	• Moderate cut-off performance against water.
Driving comfort	Good driving comfort	Good driving comfort
Maintenance	 High durability of steel components The components can be replaced relatively easily. 	• Relatively difficult to replace the components.
Evaluation	RECOMMENDED	

Table 4.4.35 Comparison of Expansion Joint Type for PC Box Girder Bridge

Source: JICA Study Team

Design Result (A1 and A2)

Source: JICA Study Team


Figure 4.4.23 Expansion Joint at A1 and A2

4.4.8.3 Bridge Railing

Steel railings have been adopted as the bridge railings, uniformly with the main bridge (with cablestayed bridge and steel box girder bridge). Class of railing is Class A in "Specifications for Highway Railings" by Japan Road Association. The heights are 0.9 m at the median side and 1.1 m at the roadside considering fall prevention of pedestrians in case of emergency.

4.4.8.4 Drainage System

Rainwater on the bridge surface is drained by catch pits installed at the shoulder of the bridge deck. As the bridge is located on land for the A1~P5 section, the rainwater from the catch pits is horizontally led to the substructures, and then vertically drained to the catch basin on the ground, which is connected to the side ditch. For the A2 side, the rainwater from the catch pits between P20~P23 (in-river section) is led under the girder by vertical drain pipes and discharged on to the river, while rainwater from those between P23~A2 (on-land section) is treated in the same manner as in the A1~P5 section.

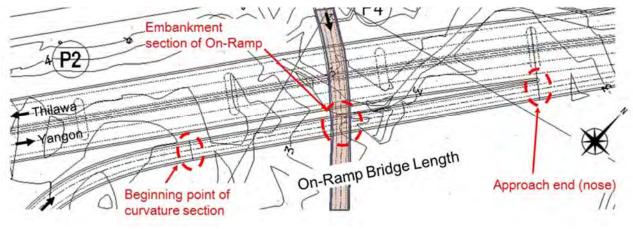
Source: JICA Study Team

Figure 4.4.24 Catch Pits Arrangement and Detail (PC Box Girder Bridge)

4.5 STUDY ON ON-RAMP BRIDGE

A summary of the evolution of design output is shown in Table 4.5.1.

Item	Feasibility Study	Basic Design	Detailed Design
Bridge Width	5.750 m	6.450 m	6.450 m
Superstructure	PC-I Girder 3 girders	PC-I Girder 2 girder	PC-I Girder 2 girder
Bridge Length	187.8 m 115.2 m		115.2 m
Number of Substructure	7 nos.	5 nos.	5 nos.
Foundation Type	Cast-In-Situ: 7 nos. Diameter: 1.0 m	Cast-In-Situ: 5 nos. Diameter: 1.5 m	Cast-In-Situ: 5 nos. Diameter: 1.5 m


Table 4.5.1 Summary of Design Outputs Evolution	Table 4.5.1	Summary	of Design	Outputs	Evolution
---	-------------	---------	-----------	---------	-----------

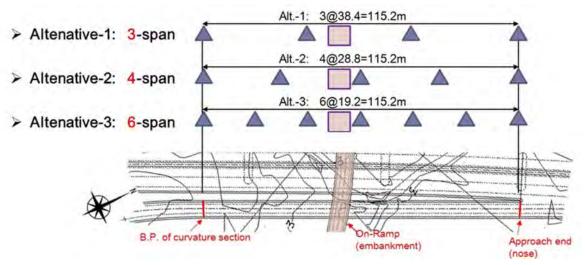
Source: JICA Study Team

4.5.1 Study on Bridge Length of On-ramp Bridge

4.5.1.1 Determination of Bridge Length and Span Arrangement

The previously mentioned study conditions are illustrated as follows:

Source: JICA Study Team

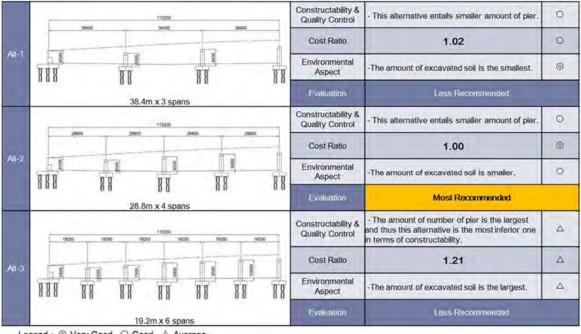

Figure 4.5.1 Control Points for Bridge Length and Shan Arra	andement
Figure 4.5.1 Control Points for Bridge Length and Span Arra	angement


Beginning Point (Abutment)	:	STA No.0+410.000 (approximate station number)
End Point (Pier)	:	STA No.0+526.000

4.5.1.2 Study on Span Arrangement

- Alternatives

There are two restrictions that control the bridge length. These are the abutment location as the beginning point of the on-ramp bridge at STA No.0+410.000 and the approach end (nose) as the end point of the on-ramp bridge at STA No.0+526.000, as displayed in Figure 4.5.1. Piers are arranged between these control points with careful attention to the embankment section of the on-ramp road as the crossing object. Span length should be close to 30 m referring to the economical span length of this bridge. After due consideration of the span arrangement, three alternatives were proposed as follows:



- Comparison Result

 $\texttt{Legend}: \circledcirc \texttt{Very} \texttt{Good}, \ \bigcirc \texttt{Good}, \ \bigtriangleup \texttt{Average}$

4.5.2 Study on Superstructure of On-ramp Bridge

4.5.2.1 Selection of Type of On-ramp Bridge

(1) Comparative Study

The study is carried out for the following three alternatives, and the optimum option is selected based on the study on workability (quality control), structural aspects, cost, and maintenance. Option-1: PC Hollow Slab Option-2: PC I Girder Option-3: Steel I Girder

Option-1: PC Hollow Slab

PC hollow slab has been widely used in ramp bridges due to its applicability to curved alignment (castin-place) and low girder height. In this case, however, soil improvement might be necessary to support conventional falsework required for construction of superstructure.

Option-2: PC I Girder

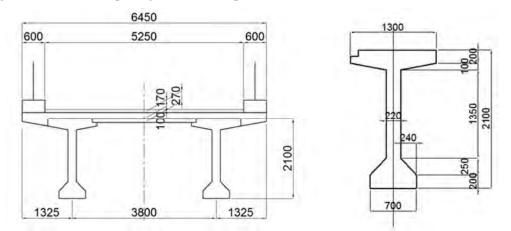
PC I girder is one of the most economical options, and can be applied to this on-ramp bridge without problem as it is planned as a straight bridge. Fabrication yard for precast girders is required.

Option-3: Steel I Girder

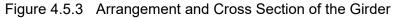
A steel girder with RC slab. Periodical re-painting for steel member is required.

	PC Hollow	PC I Girder (Plan at F/S)	Steel I Girder
Reference drawing			
Election Method	All Staging Method	Crane Erection Method	Crane Erection Method
Workability and Quality Control	 Inferior in quality control as the girder is cast-in-situ. Soil improvement might be necessary in order to support falseworks. 	control as the girders are pre-cast.No scaffolding below the girder is required.	 Pre-nabricated in factory. No special problem on erection although the
Structural Aspect	 Applicable span length: 20-30 m Heavy weight. 	 Applicable span length: 25-40 m Moderate weight. 	 Applicable span length: 25-60 m Light weight.
Cost	Ratio = 1.04	Ratio = 1.00	Ratio = 1.05
Maintenance Aspect	 Replacement of bearings and expansion joints is required. 	 Replacement of bearings and expansion joints is required. 	 Re-painting is required in addition to replacement of bearings and expansion joints.
Evaluation		Most Recommended	

 Table 4.5.3
 Comparison of Bridge Types for On-ramp Bridge

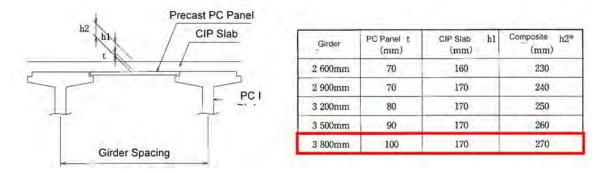

Source: JICA Study Team

As a result of the study, PC I girder has been selected as the bridge type of the on-ramp bridge because of lowest cost, without need of conventional falsework, and superior in quality control. Girder fabrication yard can be prepared adjacent to the bridge.


4.5.2.2 Superstructure of On-ramp Bridge

(1) Girder Arrangement

The girder arrangement is planned based on the policy of reducing the weight of superstructure as much as possible, in order to reduce the seismic load to substructure. As the bridge width is 6.45 m, two girders with 3.8 m spacing has been adopted.



Source: JICA Study Team



(2) Slab Thickness

Slab thickness is planned as the standard thickness related to the girder spacing. As the girder spacing is 3.8 m, total slab thickness (PC panel + CIP slab) is 270 mm.

Source: "Guidebook for design and construction of PC-I girder bridges with precast PC panel" by Japan Prestressed Concrete Contractors Association

(3) Prestressing Tendon

1) Longitudinal Tendons

The 12S12.7 mm is applied as longitudinal tendons, referring to "Guidebook for design and construction of PC-I girder bridges with precast PC panel" by Japan Prestressed Concrete Contractors Association.

2) Transverse Tendons for Precast PC Panel of Deck Slab

PC tendons for precast PC panels of deck slab are planned to be pre-tensioned. The 1S9.3 mm is applied as transverse tendons for the precast PC panels, referring to "Guidebook for design and construction of PC-I girder bridges with precast PC panel" by Japan Prestressed Concrete Contractors Association.

3) Tendons for Crossbeam Reinforcement

For transversal prestressing, PC bars with diameter of 32 mm have been applied, as the transversal tendon is short and PC bar with threaded anchorage system is advantageous than PC strands with wedge anchorages which have large loss of prestress for short tendons by pull-in of wedges.

4.5.3 Substructure of On-ramp Bridge

4.5.3.1 Study of Substructure Height

(1) General

Substructure heights were designed referring to the proposed heights of the planned road (PH), ground level (GL) and required heights related to superstructure which include the height from pavement structure through bridge bearing. As a result, substructure heights were determined and rounded to the nearest 10 cm. Refer to the schematic diagram shown in Figure 4.5.5.

Considering the elevation of reclamation for construction yard preparation (MSL+4.300 m), foundation level of on-land substructures was determined based on MSL+4.300 m.

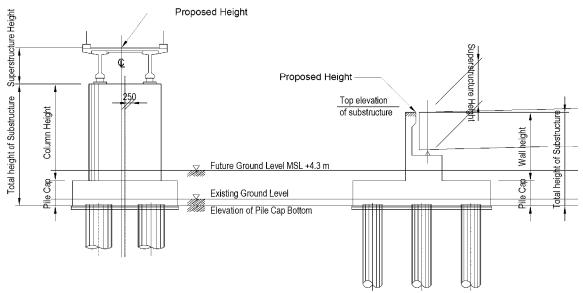


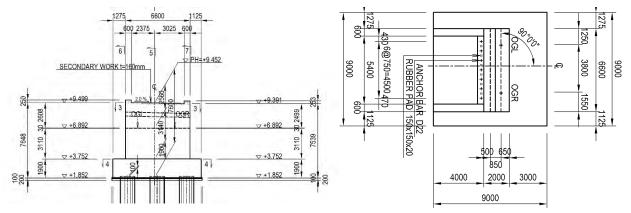
Figure 4.5.5 Explanatory Diagram of Substructure Height

(2) Conclusion of Substructure Heights

The conclusions on substructure heights are presented in Table 4.5.4.

Item	Mark	Unit	A01	PO1	PO2	PO3
Station Number	STA	m	0+411.009	0+439.809	0+468.609	0+497.409
Proposed height	PH	m	9.452	11.030	12.587	13.803
Top elevation of substructure	KCL	m	9.452	8.332	9.891	11.111
Existing Ground EL	GL1	m	3.281	2.936	2.959	3.076
Future Ground EL	GL	m	4.300	4.300	4.300	4.300
Pile cap thickness	FH	m	1.900	1.900	1.900	1.900
Total Substructure height	Н	m	7.600	6.500	8.100	9.300
EL of Pile cap bottom	FL	m	1.852	1.832	1.791	1.811
Foundation Type	-	_	CIP Pile	CIP Pile	CIP Pile	CIP Pile

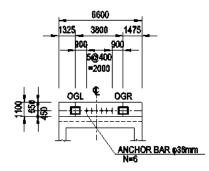
Table 4.5.4 Summary of Substructure Heights of On-ramp Bridge


Source: JICA Study Team

4.5.3.2 Dimensions of Abutment

(1) Width

The width at the top surface of the parapet wall shall be the same as the effective cross section of the road or wider. The abutment AO1 is located between a straight section and an easement (clothoid) curve section of on-ramp bridge. Thus, a certain amount of road widening is necessary for securing the prescribed effective road width.


Concretely, the intersection point of the front edge of the parapet wall and the inside surface of the left side curb concrete line should be a control point for the left side width. In the same way, the intersection point of the right side curb concrete line and the end edge of approach slab should be the control point for the right side width. As a result of the above consideration, the required distance of the widening is 150 mm.

Source: JICA Study Team

Figure 4.5.6 Abutment Width

(2) Bridge Seat

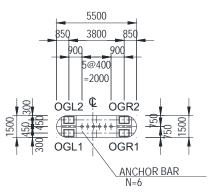

Source: JICA Study Team

Figure 4.5.7 Layout of Bridge Seat for Abutment (A1 and A2)

4.5.3.3 Dimensions of Pier

(1) Bridge Seat

The layout of the bridge seat of Piers PO1 through PO3 is shown in Figure 4.5.8.

Source: JICA Study Team

Figure 4.5.8 Layout of Bridge Seat for Piers P01 through P03

(2) Dimensions of Pier Column

The exterior view of the on-ramp substructures was based on the concept of the main bridge substructures. However, the exterior view of the main bridge substructures was revised after the review of the D/D due to the shorter height of the substructures. Consequently, the exterior view of the on-ramp substructures was demanded to be revised from an overhang beam type to a wall type referring to adjacent on-land piers.

These changes resulted in a slight increment of pier column concrete volume, whereas, quantities of reinforcement bar and timber support for the overhang beam became unnecessary. The comparison of the abovementioned general shapes of piers is summarized in Table 4.5.5.

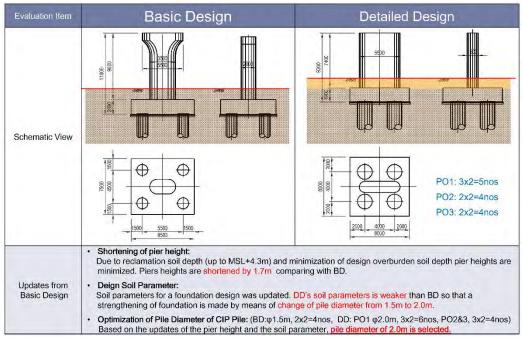


Table 4.5.5 General Shapes of Piers in D/D

The cross section of the column was determined based on the stress status of column under various load conditions or minimum dimensions of bridge seat, as summarized in Table 4.5.6.

 Table 4.5.6
 Summary of Basis of Determination of Cross Sectional Dimensions

Pier	Number	Bridge Axis Width	Transverse Direction Width	Overhang Length
Wall Type	PO1 PO2 PO3	1.5 m Required width for bridge seat arrangement	5.5 m Required width for bridge seat arrangement (5.50 m)	None (no overhang beam)

Source: JICA Study Team

4.5.4 Foundation of On-ramp Bridge

4.5.4.1 Selection of Bearing Stratum and Embedment Length of Foundation

(1) Selection of Bearing Stratum

The basement layer in the bridge design for this bridge site is Clayey Sand-II, which is distributed uniformly at the top surface elevation of around MSL- $40.0 \sim -60.0$ m. Its firmness is represented by an N-value of 50, which was examined by SPT. There are no appropriate soil layers other than the basement layer with sufficient firmness and thickness to support bridge reactions.

On-ramp Bridge: Clayey Sand-II layer, MSL-50.0~-55.0 m

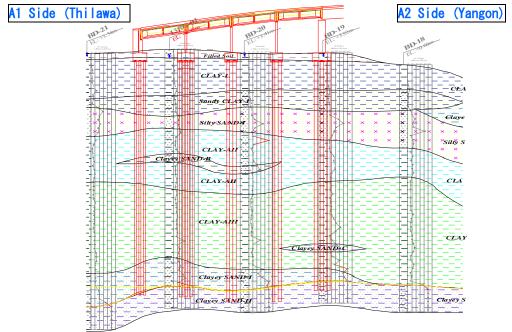


Figure 4.5.9 Prospected Soil Profile and Bearing Stratum

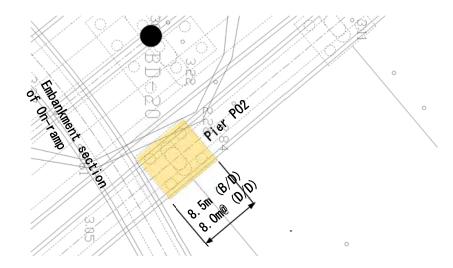
(2) Embedment Length of Foundation

Embedment length of foundation is based on the value recommended in the Specifications for Highway Bridges (Japan Road Associations) as follows:

Cast-In-Situ Pile Foundation: Around 1D or more considering unevenness of bearing stratum Note: The "D" represent pile diameter.

Item	Mark	Unit	A01	PO1	PO2	PO3
Station Number	STA	m	0+411.009	0+439.809	0+468.609	0+497.409
EL of Pile cap bottom	FL	m	1.852	1.832	1.791	1.811
EL of Bearing layer	S	m	-52.770	-52.770	-53.590	-53.590
Pile diameter	D	m	1.500	2.000	2.000	2.000
Minimum socket length			1.0D	1.0D	1.0D	1.0D
Foundation Type	-	-	CIP Pile	CIP Pile	CIP Pile	CIP Pile
Pile Length	L	m	56.500	57.000	57.500	58.000
Reference Boring No.	-	-	BH-01	BH-01	BD20	BD20
Bearing Stratum	-	-	CS-II	CS-II	CS-II	CS-II

 Table 4.5.7
 Summary of Foundation Length (On-ramp)


Source: JICA Study Team

4.5.4.2 Selection of Foundation Type

It was confirmed that the "CIP pile foundation (reverse circulation drilling method) D = 2.0 m" was the most economical foundation type for on-land piers. For abutment foundation type, it was confirmed that the "CIP pile foundation (reverse circulation drilling method) D = 1.5 m" was the most preferable foundation type as it was selected in the B/D. It should be remarked that the comparison was made taking into account the available sizes of pile cap as summarized in Table 4.5.8. Result of this review is shown in Table 4.5.9 and Table 4.5.10.

Piers: CIP pile foundation (reverse circulation drilling method) D =2.0 m

Abutments: CIP pile foundation (reverse circulation drilling method) D = 1.5 m

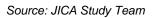


Figure 4.5.10 Crossing Point of Embankment Road of On-ramp and PO2 Pier

Pile	Pile C	ap Size
Diameter	Pile spanning 2.5D	Pile spanning 2.0D
φ1.0	<i>9.5 m</i> x 7.0 m	8.0 m x 7.0 m
	(overlap)	(lack of stability)
φ1.2	8.4 m x 8.4 m	7.2 m x 7.2 m
	(1.264)	(lack of stability)
φ1.5	<i>10.5 m</i> x 7.0 m	<i>9.0 m</i> x 7.0 m
	(overlap)	(lack of stability)
φ2.0	9.0 m x 9.0 m	8.0 m x 8.0 m
	(overlap)	(1.000)
fop Row: Size of	pile cap Bottom Row: Cost Ratio	

Table 4.5.8 Available Pile Cap Size and Costs of On-ramp Pier

Source: JICA Study Team

.

Pile Diameter	Outline Drawing		item	Maximum	Pile	-	Design Amount	Results Dimlaremen	-	Stress	of	a Pile	Maximum Stress of a Pile	Constructibility	Construction Period	Environmental Aspect	Cost Ratio	Andge
ti ti			mark unit	Pmax kN	Ra KN	o/08 -	OX IIII	OXA IDID	Я.	os N/mm ²	038 N/mm ²	c/03 -	tess of a Pile	Â,	eriod	Aspect		
				928.8	3,562.0	0.26	0.0	-	0:00		-200.0	0.05		The amount of mu alternative is the n constructability	The amount of pile v is constrably smaller.	This alternative er excavation works.		
Cast III Place b			Longitudinal Direction at Situation Seismic Situation	2,507.3	5,563.0	0.45	0.41	15.0	0.93	297.7	300.0	0,99	os= 298 kN/m ² <osa= 300kn="" m<sup="">2</osa=>	The amount of number of pile is largest and thus this alternative is the most inferior one in terms of constructability	The amount of pile works including ground excava is consirably smaller.	This alternative entails the smallest amount of excavation works.	1.216	
Cast In Place KU Place 01.2m		1	Longtudinal Direction Transverse Direction Presistent Stuation Stituation Presistent Stuation	928.8	3,562.0	0,26	0.0	15.0	0.00	-10.6	-200.0	0.05	sa= 300kN/m ² (OK)	terms of	ground excavation	mount of		
	00r8		Direction Seismic Situatic	2,300.7	5,563.0	0.41	11.8	15.0	0.79	242.0	300.0	0.81		Δ	0	0	4	
			Longitud Dresistent Situat	1,494.0	4,521.0	0.33	0.0	15.0	0.00	-10.7	-200.0	0.05		This alternative works.	The amount of pile work is constrably the smallest	This alternative works.		Unselect
Cast III Face		TRANSVERSE DIRECTION	Longitudinal Direction I ransverse Direction Presistent Stituation Seismic Stituation	3,221.7	7,126.0	0.45	14.0	15.0	0.93	247.4	300.0	0.82	os= 247 kN/m2 <o< td=""><td>This alternative entails the smallest amount of pile works.</td><td>The amount of pile works including ground excavation is constrably the smallest.</td><td>This alternative entails small amount of excavation works.</td><td>1.001</td><td>Unselect (Overlap with embankment section of On-ramp)</td></o<>	This alternative entails the smallest amount of pile works.	The amount of pile works including ground excavation is constrably the smallest.	This alternative entails small amount of excavation works.	1.001	Unselect (Overlap with embankment section of On-ramp)
Cast III Frace KU Fues 01.0II	1600 2@3750=7500 11500		Presistent Situation	1,494.0	4,521.0	0.33	0.0	15.0	0.00	-10.7	-200.0	0.05	os= 247 kN/m2 <osa= (ok)<="" 300kn="" m2="" td=""><td>mount of pile</td><td>ground excavation</td><td>t of excavation</td><td></td><td>ankment section o</td></osa=>	mount of pile	ground excavation	t of excavation		ankment section o
	00504		I ransverse Direction. at Situation Seismic Situation	3,177.3	7,126.0	0.45	14.6	15.0	0.97	186.1	300.0	0.62	0	Ó	Ø	0	0	of On-ramp)
			m Presistent Situation	2,174.6	6,253.0	0.35	0.0	20.0	0.00	-9.2	-200.0	0.05		This alternative (The amount of pile is consirably large.	This alternative e works.		
Cast m Place h			Longitudmal Direction Transverse Direction Presistent Struation Sciencic Situation	4,935.9	9,992.0	0.49	19.5	20.0	0.98	265.8	300.0	0.89	os= 266 kN/m2<01	This alternative entails smaller amount of pile works	The amount of pile works including ground excavation is constrably large.	This alternative entails the largest amount of excavation works.	1.000	
Cast in Place RC Piles \$2.0m			Transverse Direction Presistent Situation Seismic S	2,174.6	6,253.0	0.35	0.0	20.0	0.00	-9.2	-200.0	0.05	os= 266 kN/m2 <osa= (ok)<="" 300kn="" m2="" td=""><td>at of pile works.</td><td>ground excavation</td><td>jount of excavation</td><td></td><td>0</td></osa=>	at of pile works.	ground excavation	jount of excavation		0
	8000 5000 4000 5000		Direction Seismic Situat	4,544.2	9,992.0	0.45	16.7	20.0	0.83	214.6	300.0	0.72		0	0	o	0	

Source: JICA Study Team

man and and and and and and and and and a	Table Contraction (1990)	eron and and and and and and and and and an	Bridge's Longitudinal Direction			- e 0
item mark unit Maximum Pile Reactions Ra kN Amount ox mm Displacement R - Stress os N/mm ² a Pile o'ra ·	al Direction	Bridge's Longi Presistent Situation	udinal Direction			1
rtern mark und Maximum Praak kN Pile Reactions Cr/Ora KN Annourt or mun of nam Displacement R . Stress of Nimm ² a Pile of s Nimm ² a Pile of s Pile	Colomia Cimitian	Presistent Situation		Bridge's Longi	Bridge's Longitudinal Direction	
Maximum Pile Reactions Pmax Ra or or kN Annount Annount of Displacement ran - Of ox num Of ox num Stress os N/mm ² of orsa N/mm ² APile of - Annount of of a Pile ofos N/mm ² Maximum Stress of a Pile of -	Deputer ourgood		Seismic Situation	Presistent Situation	Seismic Situation	uation
Maxmuun Pile Reactions Annount of Displacement Stress of a Nimn ² a Pile Maximum Stress of a Pile	1,859.7	1,613.2	2,502.0	2,512.6	3,604.1	
rue Keacuons orda . Amount ox mm of <u>oxa mm</u> Displacement <u>R</u> . Stress <u>os N/mm²</u> of <u>ofoa</u> . Maximum Stress of a Pile	5,320.0	4,476.0	7,054.0	6,323.0	10,091.0	
Amount ox mm of oxa mm Displacement R - Stress os N/mm ² of of os N/mm ² a Pile ofora - Maximum Stress of a Pile .	0.35	0.36	0.35	0.40	0.36	
of oxa min Displacement <u>R</u> - Stress <u>os N/mm²</u> of <u>ofos N/mm²</u> a Pile <u>ofos</u> - Maximum Stress of a Pile	14.1	6.7	14.4	5.4	14.2	
ess or N/mm ² ess or N/mm ² of ors N/mm ² ile oroa - inturn Stress of a Pile	15.0	15.0	15.0	15.0	15.0	
ess or N/mm ² of orsa N/mm ² Die oroa - intun Stress of a Pile	0.94	0.45	0.96	0.36	0.95	
of <u>csa N/mm²</u> ile <u>c/ca</u> . inum Stress of a Pile	260.4	54.3	255.9	48.2	264.0	
ile a/aa - inum Stress of a Pile	300.0	160.0	300.0	160.0	300.0	
imun Stress of a Pile	0.87	0.34	0.85	0.30	0.88	
	00 kN/m ² (OK)	$\sigma s= 256 \text{ kN/m}^2 < \sigma sa = 300 \text{ kN/m}^2$	$= 300 \text{ kN/m}^2$ (OK)	$g_{S}=264 \text{ kN/m}^2 < g_{S}a = 300 \text{ kN/m}^2$	$a = 300 \text{ kN/m}^2$ (OK)	Q
constructability.	sst and thus e in terms of Δ	This alternative entails the smallest amount of pile works.	st amount of pile	This alternative entails smallest amount of pile works.	amount of pile	Ø
The amount of pile works including ground construction Period excavation is almost same as other options	ground options ©	The amount of pile works including ground excavation is almost same as other options	ng ground ar options	The amount of pile works including ground excavation is almost same as other options	ding ground her options	Ø
Environmental Aspect excavation works.	amount of ©	This alternative entails small amount of excavation works.	unt of O	This alternative entails the largest amount of excavation works.	st amount of	4
Cost Ratio 1.117	4	1.000	0	1.048		0
Overall Evaluation			0			

Table 4.5.10 Review of Foundation Type for On-ramp Abutment in the D/D

Note @: Good, O:Fair, △:Not Recommended

4.5.5 Summary of Detailed Design Results for Substructure and Foundations

4.5.5.1 Computation of Columns of T-shaped Piers

The columns of T-shaped piers can be designed as cantilevers with fixed ends at the section connected to the footings. In the design process, the most adverse combination of axial forces and bending moments shall be applied.

The overhang beams of T-shaped piers can be designed as follows:

- The overhang beams are designed as cantilevers.
- The overhang length of the cantilever is defined as the length from the vertical section at the front surface of the column to the beam in case of rectangular column, and from the position one tenth of the column diameter inward from the front of the column to the beam end in case of an oval section column.

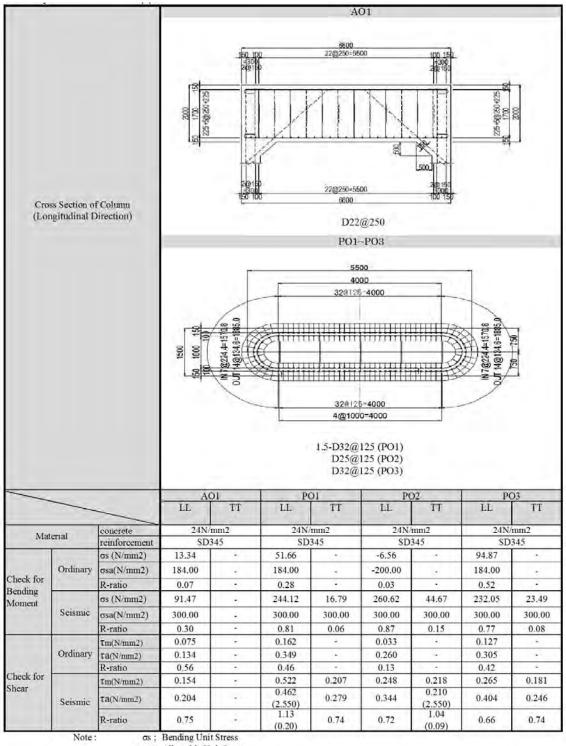
The calculation results for columns of T-shaped piers are shown in Table 4.5.11.

4.5.5.2 Computation of Reverse T-shaped Abutment

The wall of reverse T-shaped abutment can be designed as cantilever with fixed ends at the section connected to the footings.

The parapet shall be designed to carry earth pressure as well as vehicle load (T-loads) and the loads from the approach slab.

The wing wall shall be designed as slabs to receive superimposed loads due to live loads and earth pressure. The slab in this case shall be cantilever fixed on two sides to a wall and footing.


The calculation results for the wall of the reverse T-shaped abutment are shown in Table 4.5.11.

4.5.5.3 Computation of Footings

Footing shall be designed in consideration of the most adverse load combination of self-weight, overburden load such as soils, presence of buoyancy, subgrade reaction, and reaction from foundations. Footings may be designed as beam members and as cantilevers.

The footings shall retain a thickness necessary to serve as structural members. Also, the footings shall have sufficient thickness to be regarded as rigid bodies, when they are assumed as rigid bodies in the stability analysis of the foundation.

The calculation results for the footing of piers are shown in Table 4.5.12.

Table 4.5.11 Calculation Results for Wall and Columns (AO1, PO1~PO3)

σsa : Allowable Unit Stress τm ; Unit Share Force

τa : Allowable Unit Share Force

R-ratio ; Design result / Capacity

Table 4.5.12 Calculation Results for Footing of Piers(PO1~PO3)

os; Bending Unit Stress

 σ sa; Allowable Unit Stress

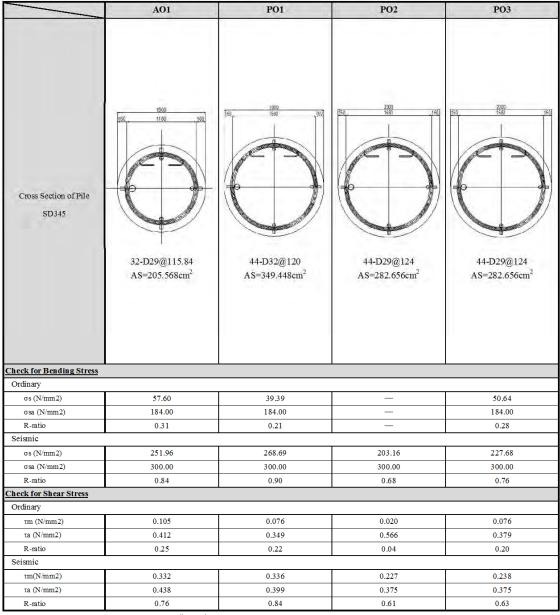
τm; Unit Share Force

τa ; Allowable Unit Share Force

R-ratio ; Design result / Capacity

4.5.5.4 Design of Foundation

The pile foundation and the SPSP foundation shall conform to the following requirements under ordinary, earthquake, and vessel collision conditions.


- The axial reaction at each pile head shall not exceed the allowable pile bearing capacity. The axial allowable bearing capacity can be estimated by dividing the ultimate bearing capacity of the pile, determined from related factors such as ground conditions and construction methods, by the factor of safety.
- The displacements at each pile head shall not exceed the allowable displacements in order not to leave a large residual displacement and to keep within the limit of possibility of evaluation of elastic behavior. The allowable horizontal displacement is principally determined to be 1% based on the results of many loading tests.
- For a large elastic foundation with a width of 5 m or more such as SPSP foundation, the allowable displacement is determined to be 50 mm because few loading tests data are available.
- For a pile foundation with a pile diameter of 1.5 m or less, the allowable displacement is 15 mm. For a pile foundation with a pile diameter of 2.0 m, the allowable displacement is 20 mm.
- The allowable displacement of abutment foundation is 15 mm regardless of the foundation width because the displacement may increase with time due to the effects of creep and backfill settlement.
- The axial reaction at each pile head shall not exceed the allowable pile bearing capacity.
- The stresses generated in the members of pile foundations shall not exceed the allowable stresses specified in the relevant section of this report.

The calculation results of the CIP pile foundation stability and cross sectional stress are shown in Table 4.5.13 and Table 4.5.14, respectively.

	AO1	PO1	PO2	PO3
Boling Log & Pile Length (m)				
Pile Information				
Diameter of Pile (mm)	1,500	2,000	2,000	2,000
Number of Piles (Nos.)	9	5	4	4
Pile Length (m)	56.4	57.0	57.5	58.0
Bearing Resistance of Ordinary				
Pile Head Reaction (kN)	1,546	3,220	2,805	3,864
Bearing Capacity (kN)	4,476	6,361	6,385	6,550
R-Ratio	0.345	0.506	0.439	0.590
Horizontal Movement of Ordina	ry		1	
Horizontal Movement (mm)	6.4	6.9	2.1	8.6
Capacity (mm)	15.0	20.0	20.0	20.0
R-Ratio	0.427	0.347	0.107	0.432
Bearing Resistance of Seismic				
Pile Head Reaction (kN)	2,512	5,330	4,733	5,088
Bearing Capacity (kN)	7,054	10,149	10,193	10,445
R-Ratio	0.356	0.525	0.464	0.487
Horizontal Movement of Seismic				
Horizontal Movement (mm)	14.2	19.8	16.4	17.7
Capacity (mm)	15.0	20.0	20.0	20.0
R-Ratio	0.949	0.992	0.818	0.887
Bearing Capacity of Group Piles	s of Ordinary			
Axial Compression Fordes (kN)	12,144	11,248	9,993	10,322
Bearing Capacity (kN)	310,198	330,692	205,404	207,765
R-Ratio	0.039	0.034	0.049	0.050
Judgement of Lateral Movement				
Identifying Index	3.569	-	-	
Capacity * We also conducted a study or	1.200			

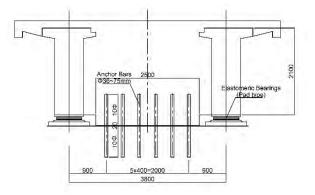
Table 4.5.13 Calculation Results of CIP Pile Foundation Stability(AO1~PO3)

* We also conducted a study on the negative skin friction force, but another case became severe in all foundations, so the value of bearing resistance is ordinary case.

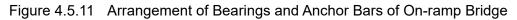
Table 4.5.14 Calculation Results of Cross Section of CIP Pile Foundation(AO1~PO3)

σs; Bending Unit Stress

 σ sa; Allowable Unit Stress


 τm ; Unit Share Force

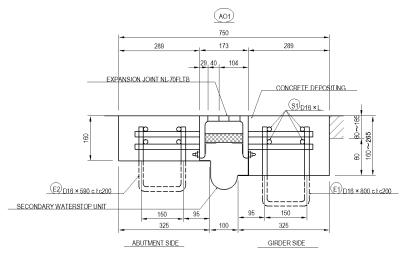
 τa ; Allowable Unit Share Force


4.5.6 Bridge Accessories

4.5.6.1 Bearings

In the on-ramp bridge, the superstructure is planned to be longitudinally fixed at intermediate supports, and movable at the end supports. The superstructure is transversally fixed, considering the connection with the approach bridge. Rubber pads are adopted for bridge bearings, and anchor bars are planned to be installed on top of the substructures for fixing.

Source: JICA Study Team



4.5.6.2 Expansion Joints

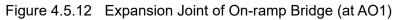
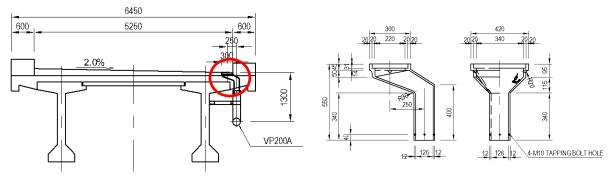

Steel joint has been selected as the type of expansion joint for the on-ramp bridge, considering better durability and maintenance.

Table 4.5	0.15	Comparison of Expansion	a Joint Type for On-ramp Bridge	

	Steel Joint	Rubber Joint
Schematic View		
Functional performance	High stiffness of steel componentHigh durability of steel components.Moderate driving comfort	 Larger deflection due to rubber components Deterioration by UV rays. Better driving comfort due to rubber surface
Construction	 Easy installation Light weight	 Easy installation Light weight
Maintenance	The components can be partially replacedLong service life	Relatively difficult to replace the components.Slightly shorter service life
Evaluation	RECOMMENDED	

Source: JICA Study Team



4.5.6.3 Bridge Railing

Steel railings have been adopted as the bridge railings, uniformly with the main bridge. Class of railing is Class A in "Specifications for Highway Railings" by Japan Road Association. The height of railing is 1.1 m, considering the conformity with the main bridge.

4.5.6.4 Drainage System

Rainwater on the bridge surface is drained by catch pits installed at the shoulder of the bridge deck. As the on-ramp bridge is located on land, the rainwater from the catch pits is horizontally led to the substructures, and then vertically drained to the catch basin on the ground, which is connected to the side ditch.

Source: JICA Study Team

Figure 4.5.13 Catch Pits Arrangement and Detail (On-ramp Bridge)

4.6 STUDY ON FLYOVER BRIDGE

4.6.1 Study on Flyover Bridge

4.6.1.1 Decision of Length of North Approach Road and Flyover Bridge

The original bridge plan in the Supplemental F/S had been reviewed prior to the commencement of the B/D, based on the updated design condition and soil investigation survey.

The summary of the review results is given in Table 4.6.1 and each review result is explained in the following sections.

Review Item	Original Plan in Supplemental F/S	Revised Plan in D/D	Reference
Flyover Length	L = 547 m	L = 602 m	4.6.1.1
Span Arrangement	34 + (40 + 60 + 33) + (7@30 m) + (33 + 64 + 40) + 33	2@30 m + (55 + 70 + 55) + 6@30 m+ 35 + 52 + 35 +2@30	4.6.1.2
Superstructure Type	 Standard Section PC-I Girder (Max. span length = 34 m) Special Sec. at Shukinthar Myopat I/S Steel-I Girder (Max. span length = 60 m) Special Sec. at Yadanar I/S Steel-I Girder (Max. span length = 64 m) 	 m) 2) Special Sec. at Shukinthar Myopat U/S 	4613
Foundation Type	Cast-in-place RC Pile (D = 1200)	Cast-in-place RC Pile ($D = 1500$)	4.6.1.4

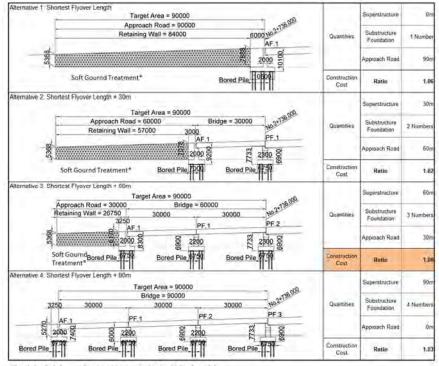
Table 4.6.1 Summary of Review Result

Source: JICA Study Team

4.6.1.2 Flyover Length

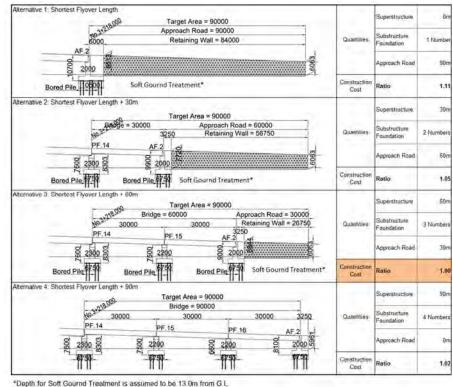
(1) Introduction

In the Supplemental F/S, the flyover length was determined by the generally applicable abutment height on soft soil ground without the technical comparative study since the available existing information was limited. Therefore, in this study, the optimum flyover length was reviewed/re-examined in terms of economical aspect through the following comparative study, taking into account the additional soil investigation and the updated design condition. The alternatives are given below.


- Alternative-1 : Shortest Flyover Length / L = 542 m (Nearly the original flyover length of 542 m in the F/S)
- Alternative-2 : Shortest Flyover Length + 30 m
- Alternative-3 : Shortest Flyover Length + 60 m
- Alternative-4 : Shortest Flyover Length + 90 m

(2) Review Result

As a result of the comparative study given in Table 4.6.2, "Alternative-3: Shortest Flyover Length + 60 m" was revealed to be the most economical option. The flyover length is 602 m.


Table 4.6.2Comparative Study on Location of Abutment 1 and Abutment 2

Abutment 1

*Depth for Soft Gournd Treatment is assumed to be 16.5m from G L

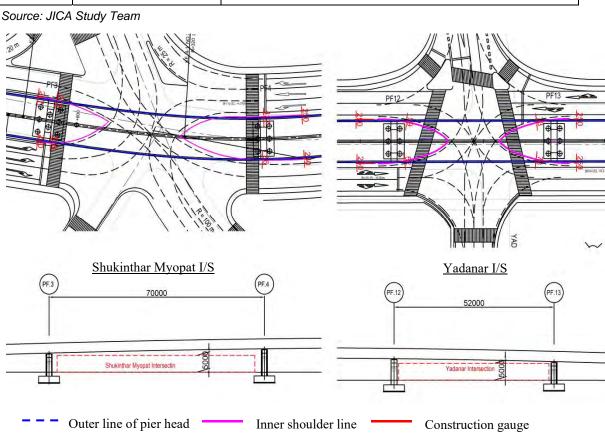
Abutment 2

"Depth for Soft Gourno Treatment is assumed to be 1.

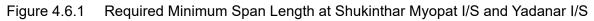
Source: JICA Study Team

4.6.1.3 Span Arrangement for Flyover

(1) Introduction

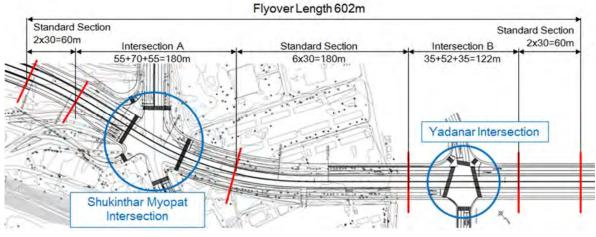

A flyover can be divided into two sections; one is the special section at intersections and the other is the standard section between/outside of the intersections as shown in Figure 4.6.1. In accordance with the revised flyover length, span arrangement was re-examined in consideration of the following points:

Required Minimum Span Length for Special Section at the Intersections 1)


Construction gauge (5.0 m) should be secured under the flyover, and the pier should be located outside of the intersection (crosswalk) for road safety in order that pedestrians can be recognized by drivers in the intersection. Accordingly, pier location/minimum span length is controlled by the construction gauge (5.0 m) and/or location of the crosswalk. The required minimum span length for each intersection is shown in Table 4.6.3.

Location	Required Min. Span Length	Remark
Shukinthar I/S	70 m	Pier location is controlled by crosswalk as shown in Figure 4.6.1
Yadanar I/S	52 m	Pier location is controlled by construction gauge as shown in Figure 4.6.1

Table 4.6.3 Required Minimum Span Length at Intersection



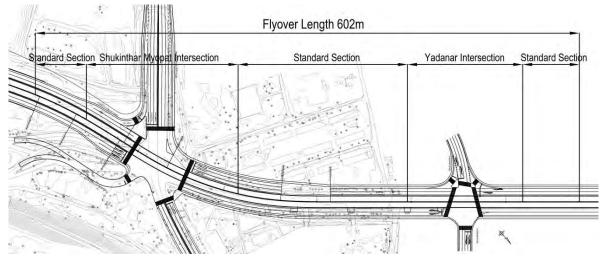
2) Economical Span Arrangement

For the special section at both intersections, the side span length can be determined by the economical span ratio between the side span length and the center span length (0.7 to 0.8:1.0). The standard section is basically divided into a 30 m span.

(2) Span Arrangement of Flyover

As a result of the review, the below span arrangement is applied to the flyover.

Source: JICA Study Team



4.6.1.4 Superstructure Type for Flyover

(1) Introduction

In accordance with the revised span arrangement in the previous section, the original superstructure type was reviewed through a comparative study. The comparative study was conducted for 1) Standard section, 2) Special section at Shukinthar Myopat I/S, and 3) Special section at Yadanar I/S. The items below are taken into account for the evaluation.

- Workability and Quality Control at the Site
- Structural Aspect
- Construction Cost
- Construction Period
- Maintenance Aspect

Source: JICA Study Team

Figure 4.6.3 Location of Shukinthar Myopat I/S, Yadanar I/S and Standard Section in Flyover

(2) Superstructure Type for Standard Section

In consideration of the applied maximum span length (30 m) in this section, the alternatives below are extracted for the comparison.

- Alternative-1 Steel-I Girder
- Alternative-2 PC-I Girder (Original plan in the Supplemental F/S)
- Alternative-3 PC Hollow Slab

As a result of the comparative study, in terms of the economical aspect, "Alternative-2 PC-I Girder" is the optimal superstructure type in the standard section as shown in Table 4.6.4.

Evaluation Item	Alt-1 Steel-I Girder		Alt-2 PC-I Girder (Plan at I	F/S)	Alt-3 PC Hollow Slab	
Schematic View			12.75 5.50 0.75 5.50 2.0% ¢ 2.0% 0 0 0 0 0 0 0 0 0 0 0 0 0			
Erection Method	Crane Erection Method		Crane Erection Method		All Staging Method	
Workability & Quality Control	 Girder blocks are prefabricated in factory so that quality control can be easier. Field work can be simplified. 	0	 Girders are pre-casted at the construction yard so that quality control can be easier. Field work can be simplified 	0	 Cast-in-situ method is inferior in quality control of girders. Field work is not simple. 	Δ
Structural Aspect	 Applicable span length : 30-60 m Light weight 	0	- Applicable span length : 20-40 m - Moderate weight	0	 Applicable span length : 20-30 m Heavy weight 	Δ
Construction Cost	Ratio = 1.18	Δ	Ratio = 1.00	0	Ratio = 1.05	0
Construction Period	5 months	0	7 months	0	11 months	Δ
Maintenance Aspect	 Re-painting is necessary in addition to replacement of bearing and expansion joints. 	Δ	 Replacement of bearings and expansion joints is necessary. 	0	- Replacement of bearings and expansion joints is necessary.	0
Evaluation	Less Recommended		Most Recommended		Less Recommended	

Table 4.6.4 Comparative Study of Superstructure Type for Standard Section

Legend : \bigcirc Very Good, \circ Good, \triangle Moderate \times Not Good

(3) Superstructure Type for Special Section at Shukinthar Myopat I/S

In consideration of the applied maximum span length (70 m) in this section, the alternatives below are extracted for comparison¹.

- Alternative-1 Steel-I Girder (Original plan in the Supplemental F/S)
- Alternative-2 Steel Box Girder

As a result of the comparative study, in terms of the economical aspect, construction schedule and structural aspect, "Alternative-2 Steel Box Girder" is the optimal superstructure type in the special section at Shukinthar MyoPat Intersection as shown in Table 4.6.5.

Evaluation Item	Alt-1 Steel-I Girder (Plan at F/S)		Alt-2 Steel Box Girder	
Schematic View			12.75 1.5 3.5 1.75 3.5 1.5 0.5 ¢ 1.5 0.5 ¢	
Erection Method	Crane Erection Method		Crane Erection Method	
Workability & Quality Control	 Girder blocks are fabricated in a factory so that quality control can be easier. Field work can be simplified. 	0	 Girder blocks are fabricated in a factory so that quality control can be easier. Field work can be simplified. 	0
Structural Aspect	 Applicable span length : 30-60 m Torsional stiffness is secured by additional lateral bracing for small radius curve section Heavy weight (956 t) 	Δ	 Applicable span length : 40-80 m Appropriate bridge type for the section where small curve radius is applied Light weight (707 t) 	0
Construction Cost	Ratio = 1.16	Δ	Ratio = 1.00	0
Construction Period	17 months	0	15 months	0
Maintenance Aspect	- Re-painting is necessary in addition to replacement of bearing and expansion joints.	0	- Re-painting is necessary in addition to replacement of bearing and expansion joints.	0
Evaluation	Less Recommended		Most Recommended	

Table 4.6.5Comparative Study of Superstructure Type for Special Section at ShukintharMyopat I/S

Legend : \bigcirc Very Good, \circ Good, \triangle Moderate \times Not Good

¹ PC (box) girder is excluded from the above alternatives since its heavy weight is a disadvantage in the erection at the intersection and economical aspect (pile numbers will be increased due to heavy weight).

(4) Superstructure Type for Special Section at Yadanar I/S

In consideration of the applied maximum span length (52 m) in this section, the alternatives below are extracted for comparison².

- Alternative-1 Steel-I Girder (Original plan at Supplemental F/S)
- Alternative-2 Steel Box Girder

As a result of the comparative study, in terms of economical aspect, construction schedule, and structural aspect, "Alternative-1 Steel-I Girder" is the optimal superstructure type in the special section at Yadanar Intersection as shown in Table 4.6.6.

Evaluation Item	Alt-1 Steel-I Girder (Plan at F/S)	Alt-2 Steel Box Girder				
Schematic View						
Erection Method	Crane Erection Method	Crane Erection Method				
Workability & Quality Control	 Girder blocks are fabricated in a factory so that quality control can be easier. Field work can be simplified. 		 Girder blocks are fabricated in a factory so that quality control can be easier. Field work can be simplified. 			
Structural Aspect	- Applicable span length : 30-60 m - Light weight (339 t)		- Applicable span length : 40-80 m - Heavy weight (364 t)	0		
Construction Cost	Ratio = 1.00		Ratio = 1.19	Δ		
Construction Period	9 months		9 months	\bigcirc		
Maintenance Aspect	 Re-painting is necessary in addition to replacement of bearing and expansion joints. 	0	- Re-painting is necessary in addition to replacement of bearing and expansion joints.	0		
Evaluation	Most Recommended	Less Recommended				

 Table 4.6.6
 Comparative Study of Superstructure Type for Special Section at Yadanar I/S

Legend : \bigcirc Very Good, \circ Good, Δ Moderate \times Not Good

 $^{^{2}}$ PC (box) girder is excluded from the above alternatives since its heavy weight is a disadvantage in the erection at the intersection and economical aspect (pile numbers will be increased due to heavy weight).

4.6.1.5 Foundation Type for Flyover

(1) Introduction

The following site conditions are taken into account for the extraction of alternatives:

- <u>Loading Level</u> : Normal (PC-I Girder/Max. span 30 m)

Large (Steel-I Girder/Max. span 52 m, Steel Box Girder/Max. span 70 m)

- <u>Construction Yard</u> : Construction yard is limited/narrow in the residential area
- <u>Vibration and Noise</u> : Low possibility of vibration and noise is desirable for construction in the residential area
- <u>Harmful Gas</u> : Low influence of harmful gas due to the construction is desirable for construction in the residential area
- <u>Soil Condition/Depth of Supporting Layer</u> : G.L -40 m to 45 m
- <u>Soil Condition/Soil Type of Supporting Layer</u> : Clay-IV (PF2 PF8)

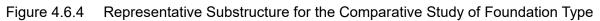
Clayey Sand II (AF1, PF1, PF9- AF2)

According to Table 4.6.7, Cast-in-place RC pile, PHC/SC Pile, Steel Pipe Pile, Diaphragm Wall Foundation and Concrete Caisson can be applied as the foundation type of flyover. However, Diaphragm Wall Foundation and Concrete Caisson are excluded from the alternatives since these foundation types are not economical if the loading level is not so large.

Hence, the three alternatives below are nominated for the comparative study of foundation type. The comparative study was conducted for 1) Standard section represented by "AF1" and "PF6", and 2) Special section represented by "PF3".


- Alternative-1 Precast PC Pile
- > Alternative-2 Cast-in-place RC Pile (Original plan in the Supplemental F/S)
- Alternative-3 Steel Pipe Pile

Applicable Foundation Type Criteria			Cast- in-place RC Pile	PHC / SC PIle	Steel Pipe Pile	Diaphragm wall	Steel pipe sheet pile	Concrete Caisson
	Construction on	Water Depth < 5 m	×	Δ	Δ	×	0	Δ
	River/Sea	Water Depth > 5 m	×	Δ	Δ	×	0	Δ
ion	Construction Yard	Narrow/Limited	Δ	Δ	Δ	Δ	×	Δ
ruct	Environment	Vibration, Noise	0	Δ	Δ	0	×	0
nst		Impact on Adjacent Structure	0	Δ	Δ	0	Δ	Δ
Co		Harmful Gas	0	0	0	0	0	0
n of	Loading Level	Small (Span < 20 m)	0	0	0	×	×	0
Condition of Construction		Normal (20 m \leq Span < 50 m)	0	0	0	0	0	0
		Large (50 m < Span)	0	Δ	0	0	0	0
		Vertical Load > Sway Load	0	0	0	Δ	Δ	Δ
		Vertical Load < Sway Load	0	0	0	0	0	0
		< 5 m	Δ	×	×	×	×	×
	Depth of Supporting Layer from Ground Level	5 ~ 15 m	0	0	0	Δ	Δ	0
Ground Condition		15 ~ 25 m	0	0	0	0	0	0
		$25 \sim 40 \text{ m}$	0	0	0	0	0	0
		$40 \sim 60 \text{ m}$	0	Δ	0	0	0	0
		≥ 60 m	Δ	×	×	Δ	Δ	Δ
	Water Level on Land	Level on Land W.L is nearly G.L			0	Δ	0	0
	Liquefaction			0	0	0	0	0
		Clay $(20 \le N)$	0	0	0	0	0	0
	Soil Type of	Sand/Gravel $(30 \le N)$	0	0	0	0	0	Δ
	Supporting Layer	Soft Rock/Hard soil	0	0	0	0	0	0
		Hard Rock	Δ	×	×	Δ	×	×


Table 4.6.7 Possible Foundation Type for Flyover

 $\label{eq:legend:omega} \text{Legend:} \circ \text{Highly applicable} \ \square \ \text{Applicable} \times \ \ \text{Inapplicable}$

Source: Prepared by the JICA Study Team based on JSHB

Source: JICA Study Team

(2) Foundation Type for Flyover

As given in Table 4.6.8 to Table 4.6.10, in terms of economical aspect, "Alternative-2 Cast-in-place RC Pile" is the optimal foundation type for the flyover section.

Evaluation Item	Alt-1 Precast PC Pile	Alt-2 Cast-in-place RC Pile (Plan at F/S)	Alt-3 Steel Pipe Pile			
Schematic View	D = 600 mm x 45 Nos (L = 41.5)	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	D = 1000 mm x 13 Nos (L=41.5 m)			
Workabilit y & Quality Control	 Inflexible to changes of pile length during construction Precast PC pile is superior in quality control 	 Flexible to changes of pile length during construction Careful quality control is necessary for cast-in-place pile 	 Inflexible to changes of pile length during construction Pre-fabricated steel pile is superior in quality control 			
Structural Aspect	 Bearing capacity/pile: Low Applicable length : 5 m - 40 m 	- Bearing capacity/pile: High - Applicable length : 5 m – 60 m	- Bearing capacity/pile: Medium - Applicable length : 5 m – 60 m			
Constructio n Cost	Ratio = 1.56 \triangle	Ratio = 1.00	Ratio = 1.34 0			
Constructio n Period	32 days / Foundation \triangle	23 days / Foundation •	14 days / Foundation			
Environme ntal Aspect	 Larger noise and vibration Disposal of excavated soil ∆ is necessary 	 Low noise and vibration Disposal of excavated soil is onecessary 	 Larger noise and vibration Disposal of excavated soil is necessary 			
Evaluation	Less Recommended	Most Recommended	Less Recommended			

 Table 4.6.8
 Comparative Study of Foundation Type for Special Section (AF1)

Legend : O Very Good, \circ Good, \bigtriangleup Moderate \times Not Good

Evaluation Item	Alt-1 Precast PC Pile		Alt-2 Cast-in-place RC Pile (Plan at F/S)		Alt-3 Steel Pipe Pile		
Schematic View	$\begin{array}{c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$		D = 1500 mm x 6 Nos (L = 3 m)	7.5	D = 1000 mm x 8 Nos (L + 37.5 m)		
Workability & Quality Control	 Inflexible to changes of pile length during construction Precast PC pile is superior in quality control 	0	 Flexible to changes of pile length during construction Careful quality control is necessary for cast-in- place pile 		 Inflexible to changes of pile length during construction Pre-fabricated steel pile is superior in quality control 	0	
Structural Aspect	- Bearing capacity/pile: Low - Applicable length : 5 m – 40 m	Δ	 Bearing capacity/pile: High Applicable length : 5 m – 60 m 	0	- Bearing capacity/pile: Medium - Applicable length : 5 m – 60 m	0	
Construction Cost	Ratio = 1.15	Δ	Ratio = 1.00		Ratio = 1.09		
Construction Period	15 days / Foundation	Δ	14 days / Foundation	0	9 days / Foundation	\bigcirc	
Environmenta l Aspect	 Larger noise and vibration Disposal of excavated soil is necessary 	Δ	 Low noise and vibration Disposal of excavated soil is necessary 		 Larger noise and vibration Disposal of excavated soil is necessary 		
Evaluation	Less Recommended		Most Recommended		Less Recommended		

Table 4.6.9 Comparative Study of Foundation Type for Special Section (PF6)

 $Legend: \ \textcircled{O} \ Very \ Good, \circ \ Good, \Delta \ Moderate \times Not \ Good$

Evaluation Item	Alt-1 Precast PC Pile		Alt-2 Cast-in-place RC Pile (Plan at F/S)	e	Alt-3 Steel Pipe Pile
Schematic View	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	$D = 1500 \times 6 \text{ Nos } (L = 40.0 \text{ f})$		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
Workability & Quality Control	 Inflexible to changes of pile length during construction Precast PC pile is superior in quality control 	0	 Flexible to changes of pile length during construction Careful quality control is necessary for cast-in- place pile 	0	 Inflexible to changes of pile length during construction Pre-fabricated steel pile is superior in quality control
Structural Aspect	- Bearing capacity/pile: Low - Applicable length : 5 m – 40 m	Δ	- Bearing capacity/pile: High - Applicable length : 5 m – 60 m	0	- Bearing capacity/pile: Medium - Applicable length : 5 m – 60 m
Construction Cost	Ratio = 1.37	Δ	Ratio = 1.00	0	Ratio = 1.85 0
Construction Period	20 days / Foundation	Δ	18 days / Foundation	0	15 days / Foundation
Environmenta l Aspect	 Larger noise and vibration Disposal of excavated soil is necessary 		 Low noise and vibration Disposal of excavated soil is necessary 		 Larger noise and vibration Disposal of excavated soil is necessary
Evaluation	Less Recommended		Most Recommended		Less Recommended

Table 4.6.10 Comparative Study of Foundation Type for Special Section (PF3)

 $Legend: \ \textcircled{O} \ Very \ Good, \circ \ Good, \Delta \ Moderate \times Not \ Good$

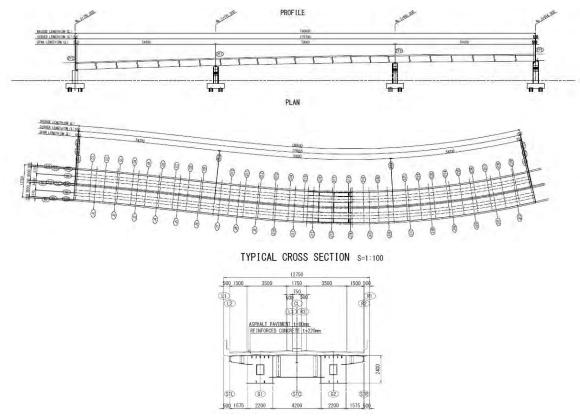
Source: JICA Study Team

(3) Optimum Diameter of Foundation Pile

In addition to the above study, the comparative studies were conducted to justify the optimum diameter of cast-in-place RC pile. As shown in Table 4.6.11, "Alternative-3 D = 1500 mm" is the most economical option.

Item		Alt-1 D = 1000 mm	Alt-2 D = 1200 mm	Alt-3 D = 1500 mm
	AF1	Ratio = 1.05	Ratio = 1.21	Ratio = 1.00
	API	(18 Nos / L = 41.5 m)	(12 Nos / L = 41.5 m)	(8 Nos / L = 41.5 m)
Construction	PF6	Ratio = 1.17	Ratio = 1.07	Ratio = 1.00
Cost	PFO	(15 Nos / L = 37.5 m)	(8 Nos / L = 37.5 m)	(6 Nos / L = 37.5 m)
	PF3	Ratio = 1.16	Ratio = 1.39	Ratio = 1.00
	FF5	(15 Nos / L = 40.0 m)	(12 Nos / L = 40.0 m)	(6 Nos / L = 40.0 m)
Evaluation		Less Recommended	Less Recommended	Most Recommended
Evaluation		Less Recommended	Less Recommended	wost Recommend

Table 4.6.11 (Comparative Study of Foundation Diameter
----------------	--


Source: JICA Study Team

4.6.2 Basic Design Results

4.6.2.1 Steel Girder Bridge

(1) Steel Box Girder Bridge

The profile, plan, and typical cross section of the steel box girder bridge in the B/D are shown in the following figure.

Source: JICA Study Team

Figure 4.6.5 Plan, Profile and Typical Cross Section of Steel Box Girder Bridge in the B/D

(2) Steel-I Girder Bridge

The profile, plan, and typical cross section of the steel-I girder bridge in the B/D are shown in the following figure.

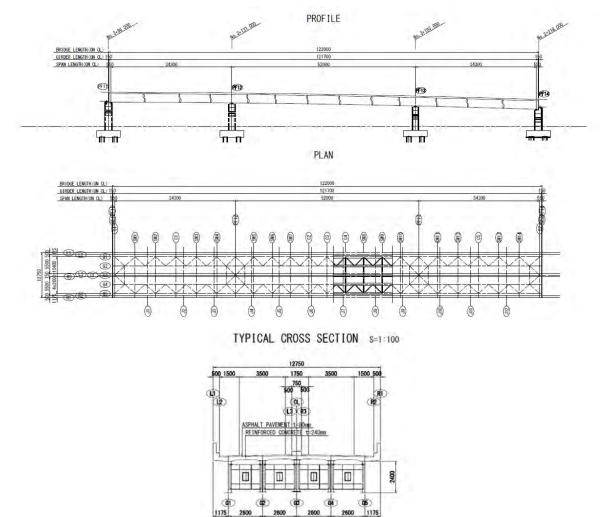
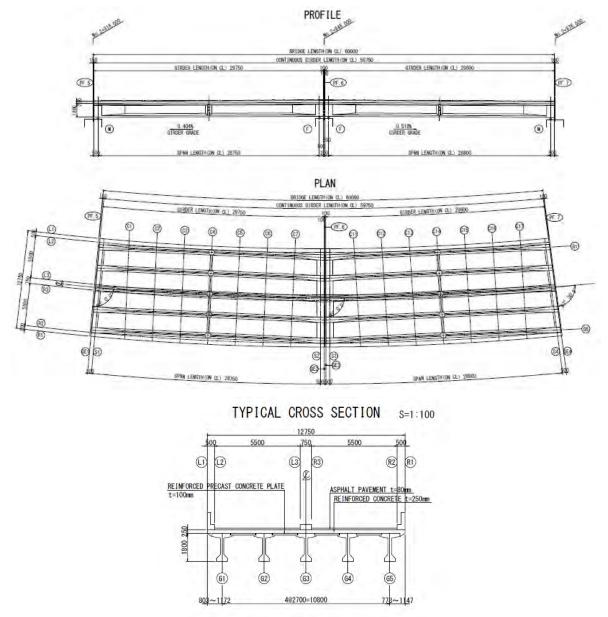
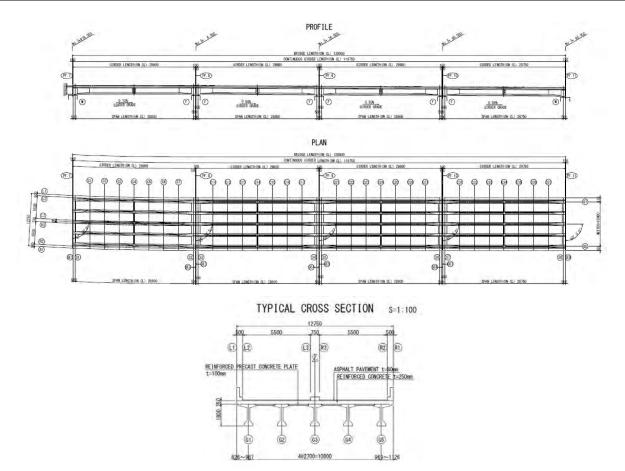



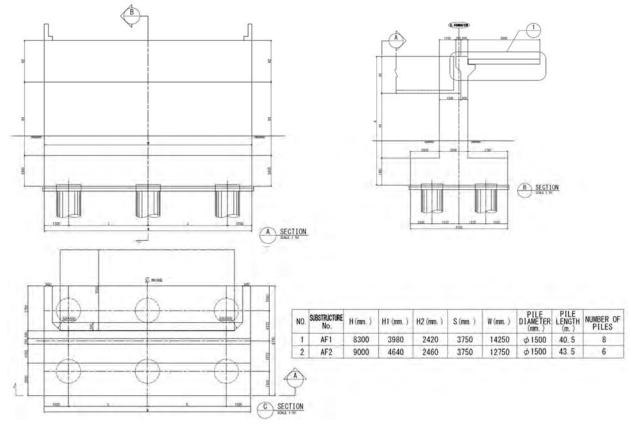
Figure 4.6.6 Plan, Profile and Typical Cross Section of Steel-I Girder Bridge in the B/D


4.6.2.2 PC-I Girder Bridge

The profile, plan, and typical cross section of the PC-I girder bridge in the B/D are shown in the following figures.

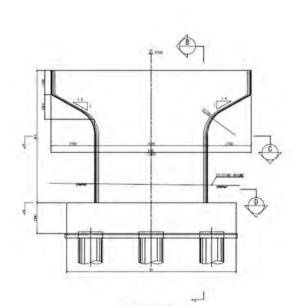
Source: JICA Study Team

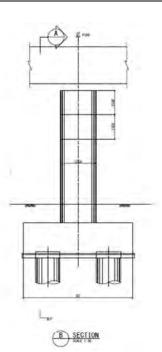
Figure 4.6.7 Plan, Profile and Typical Cross Section of PC-I Girder Bridge in the B/D (PF5-PF7)



Source: JICA Study Team

Figure 4.6.8 Plan, Profile and Typical Cross Section of PC-I Girder Bridge in the B/D (PF7-PF11)


4.6.2.3 Substructures and Foundations


The general view of the abutment and pier in the B/D is shown in the following figures.

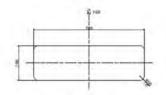
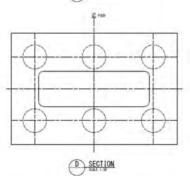
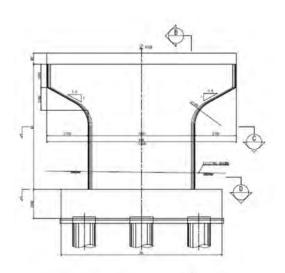

Source: JICA Study Team

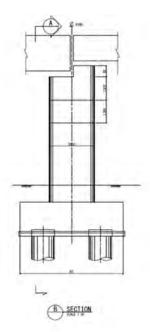
Figure 4.6.9 General View of Abutment in the B/D



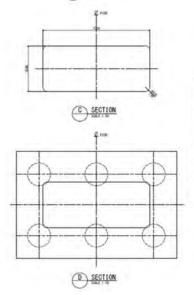
A ELEVATION

641	SECTION




NO.	SUBSTRUCTURE No.	H1 (mm.)	B1 (mm.)	B2 (mm.)	PILE DIAMETER (mm.)	PILE LENGTH (m.)	NUMBER OF PILES
1	PF1	4800	10500	6750	φ1500	41.5	6
2	PF3	6600	10500	8000	φ1500	40.0	6
3	PF4	7800	10500	7500	φ1500	41.0	6
4	PF6	8800	10500	6750	\$\$1500	37.5	6
5	PF7	8800	10500	6750	φ1500	39.0	6
6	PF8	8600	10500	7500	φ1500	39.0	6
7	PF9	8400	10500	7500	\$ 1500	39.0	6
8	PF10	8300	10500	7500	φ1500	39.0	6
9	PF12	7500	10500	6750	φ1500	40.0	6
10	PF13	6400	10500	6750	φ1500	42.0	6
11	PF15	5600	10500	6750	φ1500	43.0	6

Source: JICA Study Team


Figure 4.6.10 General V

General View of Pier (Type A) in the B/D

NO.	SUBSTRUCTURE No.	H1 (mm.)	H2 (mm.)	B1 (mm.)	B2 (mm.)	PILE DIAMETER (mm.)	PILE LENGTH (m.)	NUMBER OF PILES
1	PF2	5000	830	10500	6750	φ1500	41.5	6
2	PF5	8200	520	10500	6750	φ1500	37.5	6
3	PF11	7600	580	10500	6750	φ1500	39.5	6
4	PF14	5600	790	10500	6750	φ1500	42.5	6

Figure 4.6.11

General View of Pier (Type B) in the B/D

4.6.3 Major Updates in the Detailed Design from the Basic Design

4.6.3.1 Major Updates on Steel Girder Bridge

(1) Steel Box Girder Bridge

Nothing was updated from the B/D.

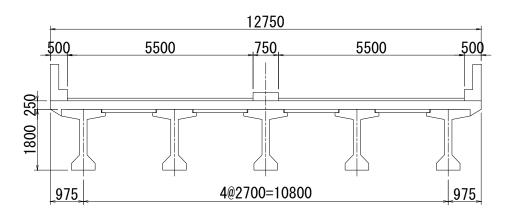
(2) Steel-I Girder Bridge

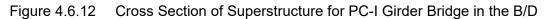
In the D/D, the flange width was optimized for cost reduction as shown in the table below.

Item		B/D	D/D
Cinter	Height	2400 mm	2400 mm
Girder	Flange Width	620 mm	590 mm
RC Deck Thickness		240 mm	240 mm

Source: JICA Study Team

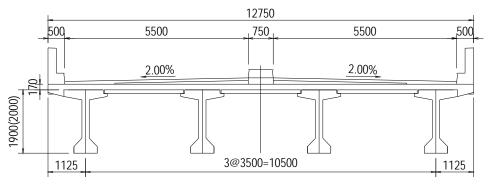
4.6.3.2 Major Updates on PC-I Girder Bridge


The updates on PC-I girder bridge are shown in the following table:


Table 4.6.13	Comparison	of PC-I	Girder
--------------	------------	---------	--------

Item B/D		D/D
Number of Girders	5 nos.	4 nos.
Girder Height	1800 mm	1900 mm
Deck Thickness	250 mm	170 mm

Source: JICA Study Team


In the B/D, the reinforced concrete deck slab had been applied in the superstructure. If the reinforced concrete deck slab is applied, the superstructure needs five main girders because the span length of the reinforced concrete deck slab is generally about 3 m between the main girders, and the overhang length of the deck slab is generally about 1.5 m from the center of the girder to the end of the deck slab. In addition, the girder height had been assumed to be 1800 mm based on conventional ratio, which is 1/17, to the average span length. The main girder on the cross section in the B/D is shown in Figure 4.6.12.

In the D/D, the composite concrete deck slab (reinforced concrete deck slab and prestressed concrete plate) was considered to be applied to the superstructure to reduce the number of main girders. The span length of the composite concrete deck slab which is located between the main girders is generally 2.6 m to 3.8 m. Hence, the main girder height increased by 10 mm from the B/D but the number of main girders was reduced. Finally, the main girder height is 1900 mm to 2000 mm and the number of main girders is four.

On the other hand, the structure type of the overhang is same as in the B/D. The overhang length of the reinforced concrete deck slab is 1.125 m. The cross section of the superstructure in the D/D is shown in Figure 4.6.13

) : PF7 to PF11

Source: JICA Study Team

(

```
Figure 4.6.13 Cross Section of Superstructure for PC-I Girder Bridge in the D/D
```

4.6.3.3 Major Updates on the Substructures and Foundations

The updates on substructures and foundations are as follows:

Geotechnical design parameters

The geotechnical design parameters determined in the B/D were reviewed and modified in the D/D, because the number of boring results used to determine the parameters was increased in the D/D. For more details of the location and coordinate of boreholes, refer to Section 4.6.4.4(1). The modulus of deformation "E" had been calculated as E = 700 N for all layers according to the worth value obtained by borehole lateral load test in the B/D. In the D/D, on the other hand, E was calculated to be E = 500 N for only "Silty Sand I" because the results of the additional tests conducted in the D/D were also considered. Additionally, the

layer distribution was reviewed and updated before the commencement of the D/D, based on the soil investigation surveys conducted in the D/D. For more details, refer to Section 4.6.4.4(1).

Table 4.6.14	Comparison of Design Soil Parameters between the B/D and D/D
--------------	--

Layer	N Average *1	Unit Weight " γ " (kN/m3)	Cohesion "c" (kN/m2)	Friction Angle "\overline" ^{*5} (°)	Modulus of Deformation "E" (kN/m2) 1300 ^{*6}		
FILLED SOIL	4	16 3	24 *4	0			
CLAY-I	4	18 *2	24 *1	0	1300 *6		
SANDY CLAY-I	6	17 *2	25 *1	0	4200 *7		
SILTY SAND-I	10	17 *2	0 *4	32	7000 *7		
SANDY SILT	9	18 "3	54 *4	0	6300 *7		
SILTY SAND-II	23	19 *3	0 *4	33	16100 *7		
CLAY-II	22	18 *3	132 *4	0	15400 *7		
CLAYEY SAND-I	41	19 *3	0 *4	33	28700 *7		
CLAY-III	35	18 "3	210 **	0	24500 *7		
CLAYEY SAND-II	50	19 *3	0 *4	37	35000 *7		
CLAY-IV	50	18 *3	300 **	0	35000 *7		

<Design Soil Parameter in D/D>

Layer	N Average *1	Unit Weight "y" (kN/m3)	Cohesion "c" (kN/m2)	Friction Angle " ϕ " *5 (°)	Modulus of Deformation "E" (kN/m2)
FILLED SOIL	4	18 *3	24 *4	0	1300 *6
CLAY-I	4	18 *2	24 *1	0	1300 *6
SILTY SAND-I	10	18 *2	0 *4	32	5000 *8
SANDY SILT	8	17 ^{*3}	48 *4	0	5600 *7
SILTY SAND-II	22	19 * ³	0 *4	33	15400 *7
CLAY-II	21	18 *3	126 *4	0	14700 *7
CLAYEY SAND-I	35	19 *3	0 *4	33	24500 *7
CLAY-III	35	18 *3	210 *4	0	24500 *7
CLAYEY SAND-II	50	19 ^{*3}	0 *4	37	35000 *7
CLAY-IV	50	18 *3	300 *4	0	35000 *7

Source: JICA Study Team

- Assessment result of soil liquefaction

The assessment of soil liquefaction was reviewed in the D/D, because the number of boring sites considered was increased. However, the result of liquefaction assessment was not changed from the B/D to the D/D; the geotechnical parameters are reduced only for the layer of the Sandy Silt up to 10 m in depth. On the other hand, it was not necessary to reduce the geotechnical parameters for the other layers. For more details of the liquefaction assessment, refer to Section 4.6.4.4(2).

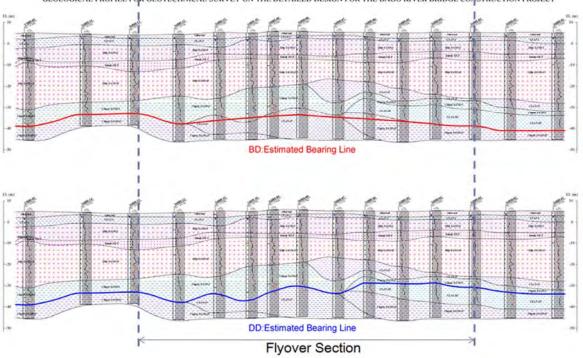
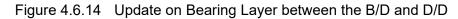
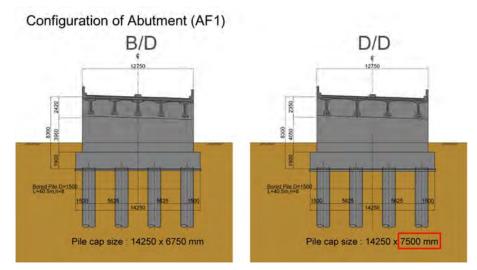

In B/	D										In D/D										
(a) 0 ≤	x≤10										(a) 0≦:	10 ≤10									
-	FL	R	FL	R	FL	R	FL	R	FL	R		FL	R	FL	R	FL.	R	FL	R	FL	R
	FILLED	SOIL	CLA	Y-1	SILTYS	SAND-I	SAND	Y SILT	SILTYS	AND-U		FILLEI	SOIL	CLA	Y-I	SILTY S	AND-I	SAND	SILT	SILTY	AND-
BH-01		-	6.766	1.465	1.086	0.274		-			BH-01			5.922	1.263	1.093	0.269		1000		
BH-02	3.771	0.689	1.910	0.433	1.093	0.308					BH-02	3.393	0.617	1.827	0.407	1.078	0.293				
BH-03			4.483	0.894	1.039	0.253	0.898	0.236			BH-03			3.953	0.780	1.044	0.247	0.910	0.231		
BH-04	2.281	0.424	2,807	0.612	2.146	0.566					BH-04	2.111	0.395	2,517	0.548	1.432	0.365				_
BH-05			0.943	0.189	1.501	0.357	0.896	0.237			BH-05			0.942	0.186	1.396	0.324	0.912	0.232		-
BH-06	-		1		1.132	0.272					BH-06		-	1	1000	1.103	0.267				
BH-07	1,130	0.200	0.979	0.189	1.203	0.305					BH-07	1.109	0.197	0.968	0.186	0.953	0.242				-
BH-08			- North		1.360	0.295	_	_			BH-08					1.425	0.315		-		_
BH-09		-	1.441	0.272	1,280	0.278		_	-		BH-09			1.433	0.269	1.207	0.264				-
BH-10		_	4/7.74	1718 1.W.	1.189	0.252		-			BH-10			_	_	1.155	0.248				
BH-11			0.922	0.192	1.138	0.261	_	_			BH-11		_	1	_	1.130	0.257				
BH-12	-	-	V.7++	0.174	3.551	0.953		_			BH-12					3.210	0.859				
		-			-		_				BH-13			10.138	2.207	6.886	1.920	-			
BH-13			11.587	2.565	7.754	2.149	_	_		-	BH-14			1.832	0.407	1.400	0.366				_
BH-14			2.213	0.464	1.453	0.377		-			BH-5(13)					0.991	0.225				
Average	2.394	0.438	3.405	0.728	1.923	0.493	0.897	0.237			ave	2.204	0.403	3.281	0.695	1.700	0,431	0.911	0.232		
DE	1		1	-	1		2	3		-	DE	1		1		1		2	/3		
(b) 10-	<x≤20< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(b) 10<</td><td>< 20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x≤20<>										(b) 10<	< 20									
	FL	R	FL	R	FL	R	FL	R	FL	R	(0) 105		R	- I	-			-	R	FL	R
	FILLED		CLA		SILTYS	and shares where	SAND			AND-II	-	FL		FL CLA	R	FL SILTY S	R	FL		SILTYS	
BH-01	10000						0.963	0.254	1.168	0 292	BH-01	FILLER	JSOIL	CLA	1-1	SILIIS	ANDA	0.975	0.250	1.163	0.25
BH-02			-	_			2.964	0.847	1 488	0.396	BH-02	-			-	-	-	2.588	0.717	1.434	0.37
BH-03							1.167	0.307	1.149	0.286	BH-03				-		_	1.034	0.266	1.147	0.28
BH-04							4.407	Mider	1 106	0.284	BH-04			-				1.054	0.200	1.076	0.27
BH-04						_	7.336	1.923	1.068	0.266	BH-05				_		-	1.409	0.362	1.071	0.26
BH-05					-	_	1.131	0.289	1.013	0.251	BH-06		-		-		_	1.089	0.285	1.021	0.25
BH-00 BH-07		_			1.884	0.494	0.994	0.289	0.962	0.234	BH-07				-	0.970	0.261	1.301	0.348	0.974	0.24
2000		_		-	La Concerta		10.000				BH-08		7		-	1.128	0.276	1.221	0.301	1.075	0.23
BH-08	-	_	-		1.300	0.321	1.270	0.307	1.073	0.256	BH-09					1.089	0.256	1.263	0.301	1.224	0.25
BH-09					1.121	0.259	1.677	0.390	1.254	0.291	BH-10		-		-	1005	0.000	1.888	0.447	1.228	0.25
BH-10	-			-	-		2.044	0.472	1.221	0.285	BH-11							1.214	0.287	1.200	0.2
BH-11		-					1,232	0,290	1.254	0.294	BH-12				-	1.010	0.278	0.995	0.268	0.854	0.2
BH-12					1.040	0.280	1.025	0.269	0.869	0.218	BH-13		-		_	1.031	0.278	1.007	0.272	1.182	0.30
BH-13					0.972	0.265	1.033	0.272	1_200	0.301	BH-14	-		-	-	L168	0.280	13.839	3.613	1.319	0.3
BH-14		-			1.248	0.324	14.509	3.683	1 3 46	0.333	BH-5(13)	-		-	-	0.851	0.201	101000	2.015	1.386	0.3
Average					1.261	0.324	2.873	0.736	1.155	0.285	ave					1.035	0.267	2.294	0.594	1.157	0.28
									_												

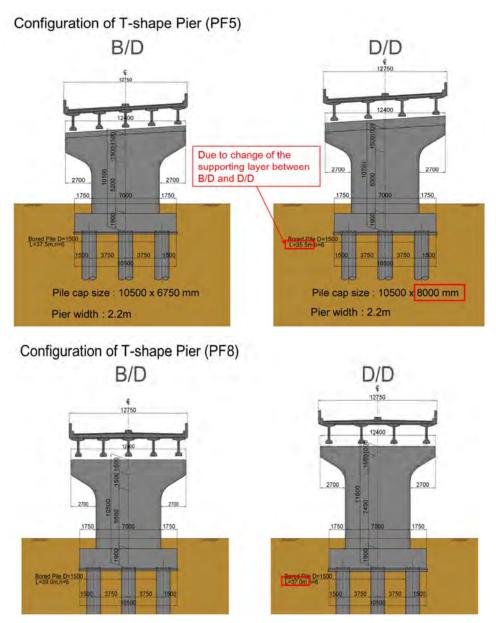
Table 4.6.15Comparison of Assessment Results of Soil Liquefaction between the B/D and D/D

Source: JICA Study Team


- Supporting layer

The supporting layer was also reviewed in the D/D because the results of the soil investigation surveys were updated in the D/D as shown in Figure 4.6.14. For more details, refer to Section 4.6.4.4(3).


GEOLOGICAL PROFILE FOR GEOTECHNICAL SURVEY ON THE DETAILED DESIGN FOR THE BAGO RIVER BRIDGE CONSTRUCTION PROJECT


Source: JICA Study Team

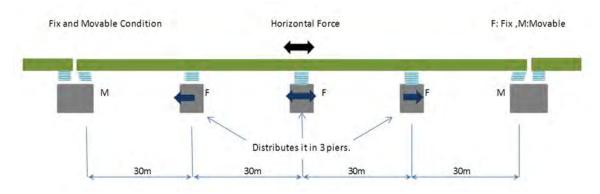
- Configuration of abutments and piers

The configuration of abutments and piers was also modified in the D/D due to the abovementioned updates. The following figure shows the configuration of the representative abutment and piers in the B/D and D/D.

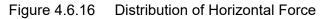
Source: JICA Study Team

Figure 4.6.15 Update on Configuration of Representative Substructures between the B/D and $$\rm D/D$$

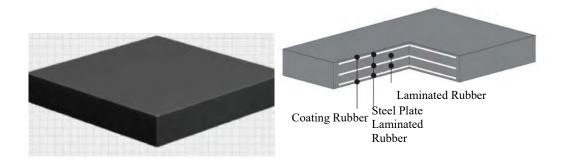
4.6.4 Bridge Accessories

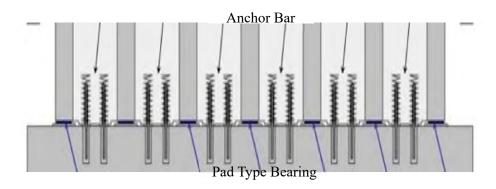

(1) Bearing Condition and Bearing

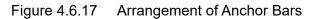
There are two types of bearing conditions; one is the "Fixed and Moveable Support" and the other is the "Elastic Support". If the "Fixed and Moveable" support conditions are applied to large-scale bridges, the horizontal force during earthquake and/or temperature load tends to be concentrated on the fixed piers, although the displacement at the girder end can be relatively small, then the size of the substructure and foundation would be too large. The "Fixed and Moveable" support condition is widely used in small-scale bridges.


Therefore, when determining the support condition and bearing type, it is necessary to consider the structural effect of the bearing conditions, such as lateral load distribution, displacement, etc.

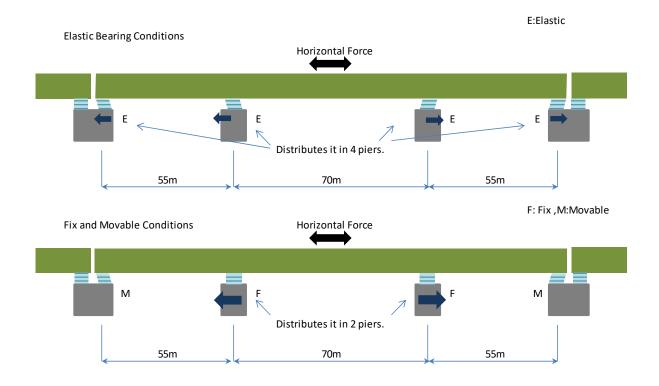
1) PC-I Girder Bridge


The lateral force under earthquake and/or temperature load may not be large even if the "Fixed and Moveable" support condition is applied to a three span PC-I girder bridge since PC-I girder bridge with span of 30 m is a small-scale bridge. Hence, the "Fixed and Moveable" support condition shall be applied to the PC-I girder bridges in the flyover section using an economical pad type rubber bearing as shown in Figure 4.6.16 and Figure 4.6.17.




Source: JICA Study Team

The lateral force and vertical force of a superstructure can be smoothly transmitted to substructures through the pad type rubber bearing which can follow the displacement of girders caused by temperature change, drying shrinkage, creep, and earthquake. In addition, the bearing is reinforced with thin steel plates to control the swelling of rubber by the compressive force. Fixed bearing condition shall be secured by anchor bars between girders as shown in Figure 4.6.17.



2) Steel Bridge

The length of the steel girder bridge (180 m) is relatively long and the maximum span is 70 m. As shown in Figure 4.6.18, in case of elastic bearing condition, the lateral force is shared by four piers. On the other hand, in case of the "Fixed and Moveable" bearing condition, the lateral force is shared only by two piers. The difference in the distributed lateral load to the substructure and displacement at the girder ends due to the bearing conditions may affect the economic viability of the overall structure. Hence, a comparative study was carried out to identify the optimum bearing conditions for steel girder bridges in the flyover section. As a result of the comparative study, in terms of economic aspect, the "Alt-1 Rubber Bearing" condition is the optimum option for the bearing condition for steel girder bridges.

Source: JICA Study Team

Figure 4.6.18 Distribution of Horizontal Force

		3 -
	Alt-1 Rubber Bearing	Alt-2 Fixed and Moveable
Schematic Picture		Fix: Move
Structural Characteristics	 Lateral earthquake load can be distributed to all the piers. Displacement can be small. 	 Lateral earthquake load is concentrated on fixed piers and size of foundation would be larger. Displacement is smallest.
Displacement at Girder End	60 mm	10 mm
Horizontal Force at Intermediate Piers	3,300 kN	4,300 kN
Cost*	<i>Ratio</i> = 1.00	<i>Ratio</i> = 1.02
Evaluation	Most Recommended	Less Recommended

Table 4.6.16 Bearing of Steel Bridges Condition

Note: Total cost including substructures, foundations, expansion joints and bearings Source: JICA Study Team

(2) Expansion Joint

The functions required for the expansion joint are the following:

- To ensure good driving conditions, even if the girder is deformed by girder temperature variations, concrete creep, concrete drying shrinkage, and loads.
- To ensure waterproofing against rainwater penetration.
- To ensure durability against vehicular traffic.
- Low noise and vibration caused by traffic.
- Easy maintenance and repair.

Expansion joints are mainly classified into rubber type and steel type. As a result of comparative study, in terms of durability and ease of maintenance, "Alt-1 Steel Type Joint" shall be applied in the flyover section.

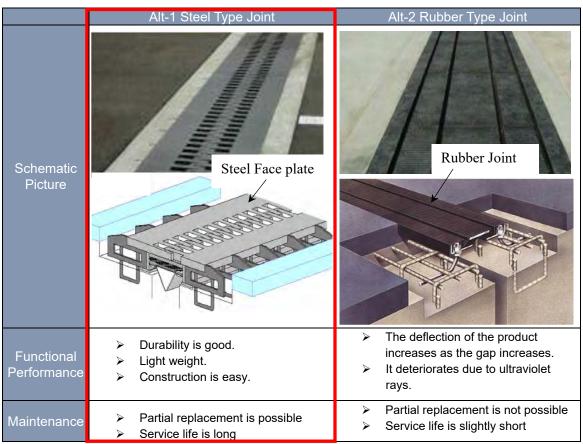
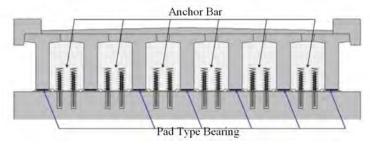
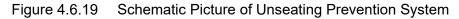


Table 4.6.17 Comparison of Expansion Joint

(3) Unseating Prevention System


The unseating prevention system consists of the seating length of the girder at the support and a structure to prevent the superstructure from unseating during an earthquake. These components are appropriately selected in accordance with the bridge type, type of bearing supports, and ground conditions.

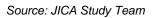
The possibility of the unseating of the superstructure from substructures during an earthquake is quite low if the superstructure is supported by four or more substructures as specified in the JSHB. On the other hand, an unseating prevention system should be installed since the possibility of unseating may be relatively high if the superstructure is supported by less than four substructures. Considering the above, the necessity of the unseating prevention system is evaluated as shown in Table 4.6.18.


As shown in Figure 4.6.19, the unseating prevention system by anchor bars shall be applied to the two span PC-I girder bridges in flyover sections.

		y	5
Bridge Type	No. of Span	No. of Substructure	Unseating Prevention System
PC-I Girder	2	3 (AF1 – PF2)	Necessary (by anchor bars)
Steel Box Girder	3	4 (PF2-PF5)	Not necessary
PC-I Girder	2	3 (PF5-PF7)	Necessary (by anchor bars)
PC-I Girder	4	5 (PF7-PF11)	Not necessary
Steel-I Girder	3	4 (PF11-PF14)	Not necessary
PC-I Girder	2	3 (PF14- AF2)	Necessary (by anchor bars)

Table 4.6.18 Necessity of Unseating Prevention System

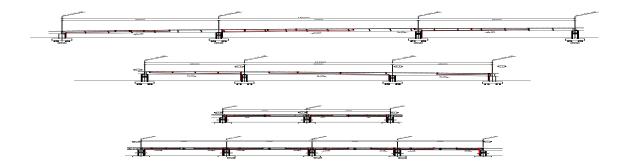
Source: JICA Study Team




(4) Drainage System

Rainwater on the bridge surface is drained by catch pits placed at an appropriate distance on the shoulder, in order to secure traffic safety. The drain pipe for each pier leads the rainwater to the catch basin, and the rainwater goes to the side ditch. The distribution diagram of the drain is shown in Figure 4.6.20 to Figure 4.6.22.

- Steel Box Girder Bridge


- Steel I-section Girder Bridge

Source: JICA Study Team

Figure 4.6.21 Drainage Distribution Diagram of Steel-I Girder Bridge

- PC-I Girder Bridge

Source: JICA Study Team

Figure 4.6.22 Drainage Distribution Diagram of PC-I Girder Bridge