3. Documents of Power Engineering Seminar

Data Collection Survey on Southern African Power Pool

Power Engineering Seminar

Japanese technologies for integrating African power systems

2016/10/6 @ Harare 10/10 @ Pretoria

Energy for a New Era

© 2015 JERA Co., Inc. All Rights Reserved.

Motive of JICA Survey

In Southern Africa, the development potential of countries which have natural resources such as hydropower, natural gas, coal, etc., has not been sufficiently realized, and the region has problems that are yet to be resolved, such as planned power outages implemented even in the Republic of South Africa whose power demand accounts for the majority of total power demand in the region. Also, most of the countries in the region except the Republic of South Africa need to prepare a practical plan for the development of electric power resources to supply electric power to areas of their own country that have not yet been electrified.

To address these issues, organizations such as the Southern African Development Community (SADC), the Southern African Power Pool (SAPP), and its member countries have prepared an energy master plan, and many donors such as the World Bank (WB), the United States Agency for International Development (USAID), the African Development Bank (ADB), etc. have provided cooperation to promote the master plan. However, the project has been delayed due to several constraints, such as shortage of funds for respective power development projects. In order to improve this situation, utilization of funding and technology from Japan have been increasingly desired in the region.

Motive of JICA Survey – Contd.

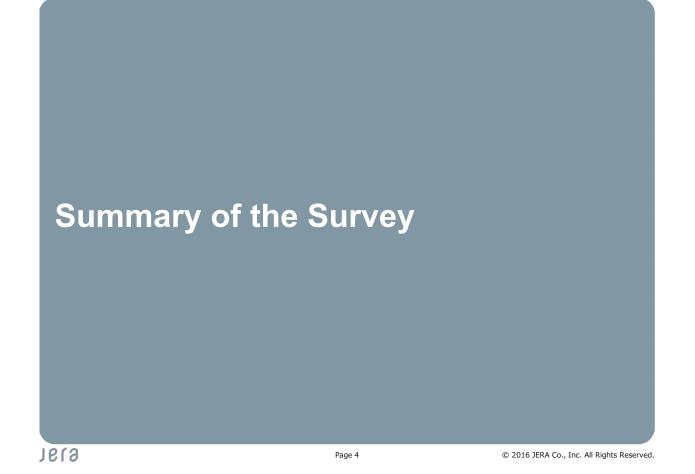
SADC Ministerial Workshop of Energy & Water Crisis

SADC Ministerial Workshop on Water and Energy was held on 20 June 2016 in Gaborone, Botswana. SADC Ministers responsible for water and energy agreed to forge closer regional collaboration in promoting water and energy security, rather than addressing solutions mainly at national level. They emphasized on the need for the region to accelerate the implementation of priority energy and water infrastructure projects in the SADC Regional Infrastructure Development Master Plan (RIDMP). The RIDMP Energy Sector Plan has identified 73 power projects that will increase generation capacity from the current 56,000 MW and ensure that the projected demand of 96,000MW is surpassed by 2027. The Water Sector Plan contains a total of 34 infrastructure projects aimed at improving access to water in the region. Ministers called on the SAPP to ensure that all countries are fully connected to the regional power grid so that countries can share surplus power across borders. Member States were encouraged to exploit renewable energy sources, which are abundant in the region. However, for this to happen, there is need for innovation in the mobilization of financial resources.

era

Page 2

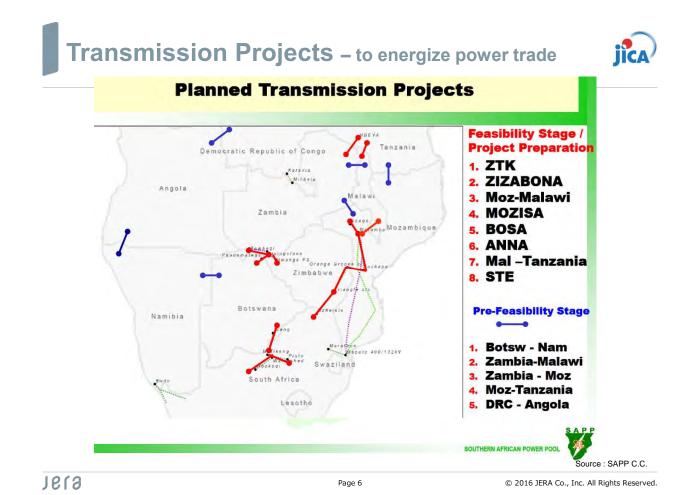
© 2016 JERA Co., Inc. All Rights Reserved.

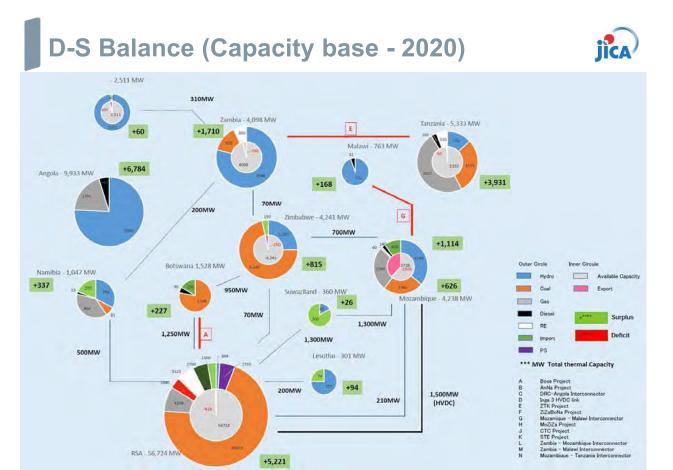

TICAD – Tokyo International Conference on African Development Sustainable cooperation to take standpoint of African.

http://www.mofa.go.jp/region/africa/ticad/index.html

Every meeting is led by Japan, and co-organised by the United Nations, United Nations Development Programme(UNDP), the World Bank and the African Union Commission (AUC). In principle, invitations to attend TICAD are extended to all African heads of state and government, as well as international organisations, donor countries, private companies and civil society organizations. Until TICAD V, the summit-level meetings were held every five years in Japan. From 2016 onwards, the TICAD will be held every three years, hosted alternately in Africa and Japan. In response to the request from the African side, we have decided to hold TICAD VI in Africa (Kenya) and in 27-28 Aug it was held.

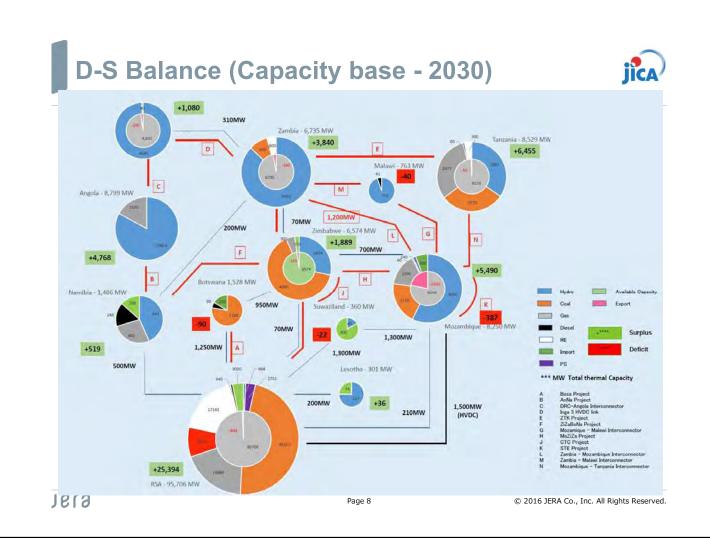
http://www.mofa.go.jp/afr/af2/page3e_000453.html

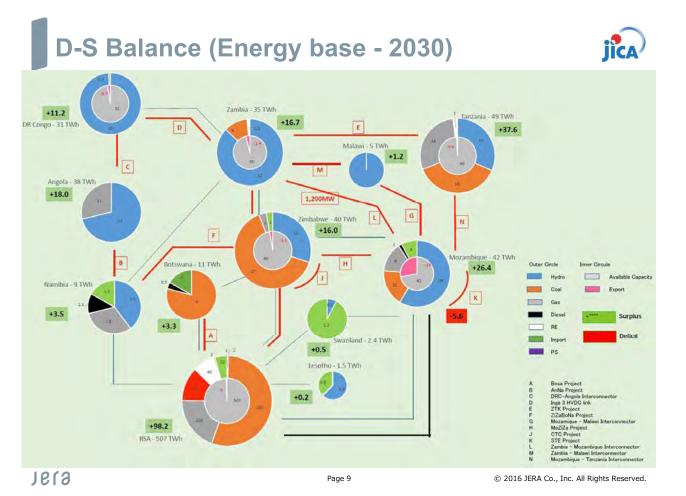


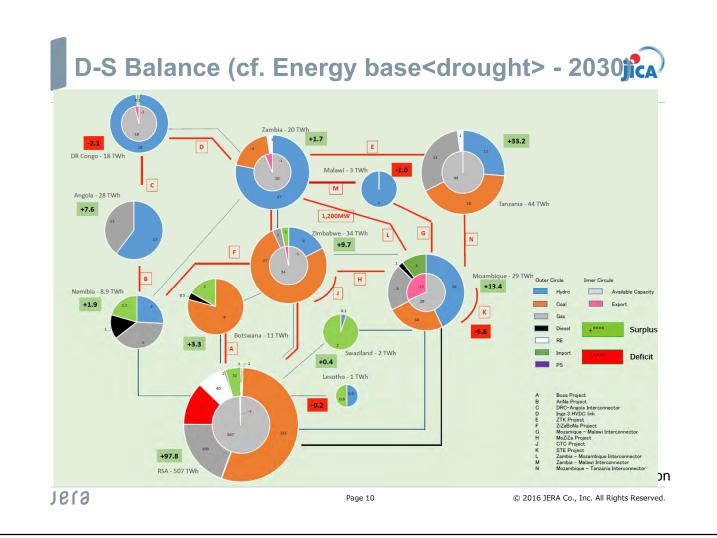


Gathering the data for analyzing each plan

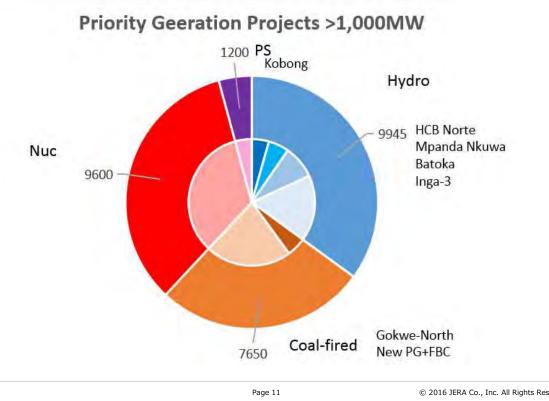
Country	Document	Remarks				
Angola	Angola Energia 2025 - Ministterio da Energia e Aguas(2015)-MINEA	Policy				
Botswana	Electricity Supply Industry in Botswana, Power Supply and Demand in Southern Africa(2013)-BPC	Hand out @ Conference				
DR Congo	Nil					
Lesotho	Nil					
Malawi	Nil					
Mozambique	Master Plan Update Project, 2012-2027 Final Master Plan Update Report(2013)-EDM					
Namibia	National Integrated Resource Plan(2011)-ECB					
RSA	-Transmission Development Plan 2015-2026(2015)-Eskom -Integrated Resource Plan for Electricity 2010-2030 Update Report 2013(2013)-DoE	New IRP underway				
Swaziland	Nil					
Tanzania	Power System Master Plan 2012 Update(2013)-MoEM	JICA Study underway				
Zambia	JICA Study "Power system"					
Zimbabwe	System Development Plan(2015)-ZETDC					
SAPP	SAPP Pool Plan(2009)-SAPP					

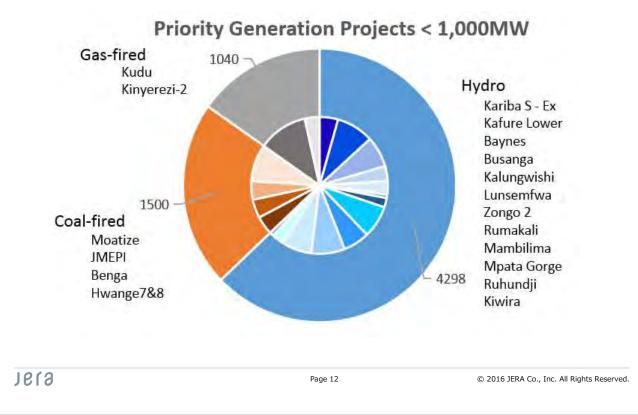




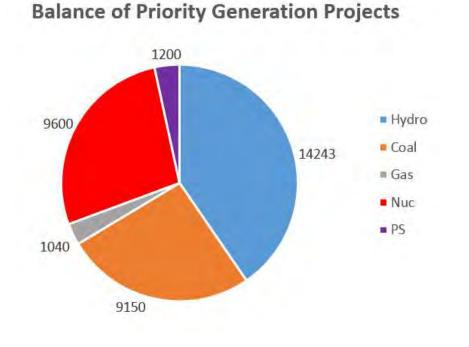

1619

69


© 2016 JERA Co., Inc. All Rights Reserved.



SAPP Priority Projects

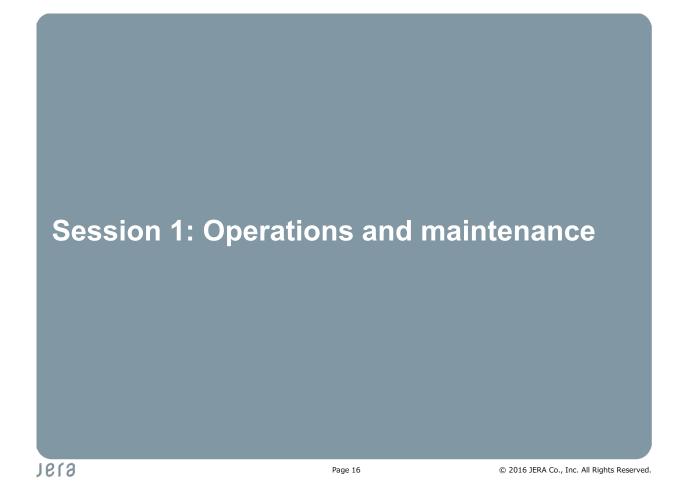

SAPP Priority Projects

Priority to develop the power pool...

Keys.....

• High reliability in consideration with Total cost (CAPEX and OPEX)

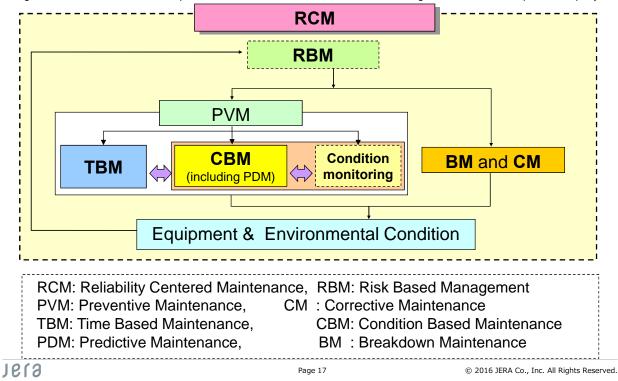
· High efficiency generating the power including environmental constrains


· Easy to operate and assist operators with their knowledge

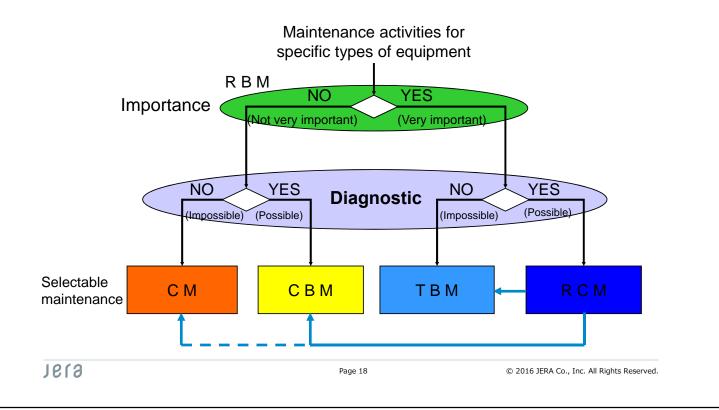
· Measures to prevent the occurrences of critical disturbances

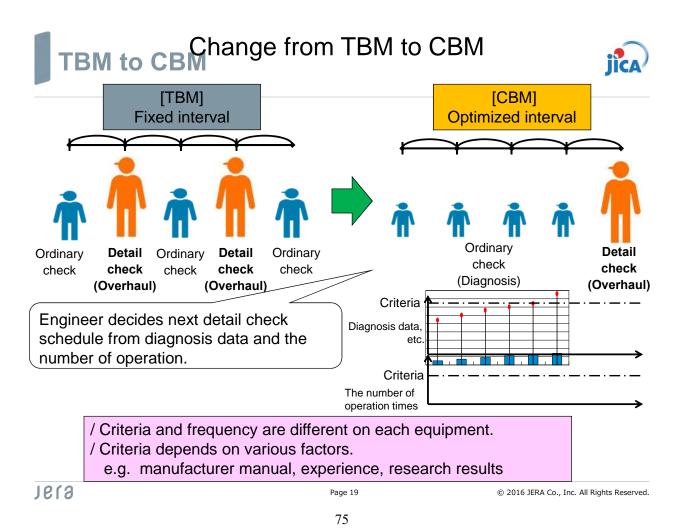
Page 14

© 2016 JERA Co., Inc. All Rights Reserved.

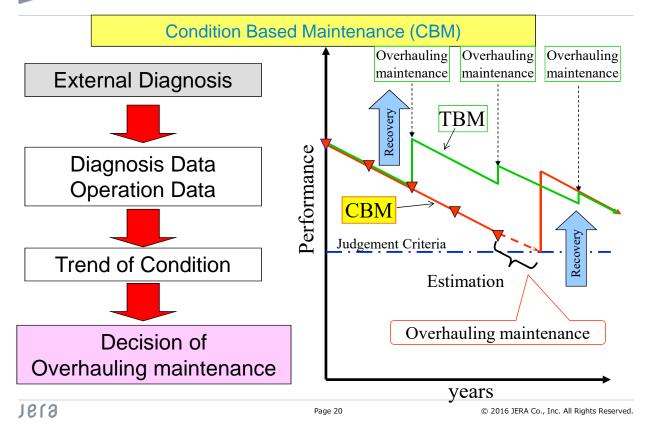


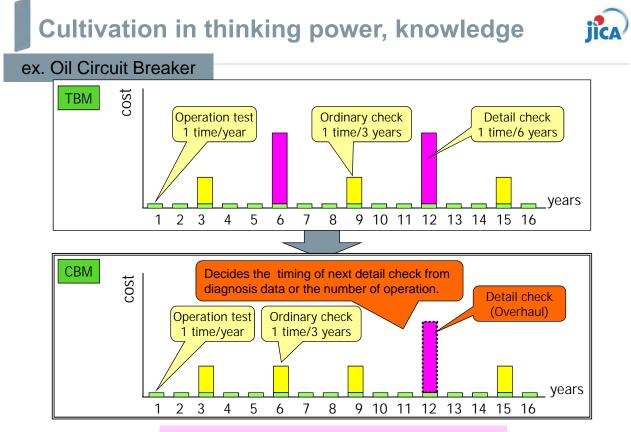
Reliability Centered Maintenance




RCM is a concept that

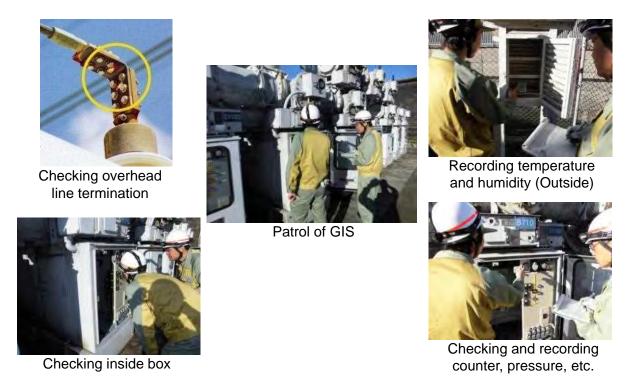
integrates all available maintenance policies to construct maintenance and asset management that suit each power company.





CBM is able to reduce the maintenance cost.

Maintenance Data Management [Fixed period] Detail check (Overhaul) Data for analysis [Inspection] Inspection Trend graph Analysis [Check] (Patrol) Correlation Quality Judgment Prospect of judgment Ordinary check detail check Data Suppor Support input Database (Maintenance Data Management System) In order to realize CBM, we need to store the inspection and check data into database. Therefore we established Maintenance Data Management System in 2001. 1619 Page 22 © 2016 JERA Co., Inc. All Rights Reserved.



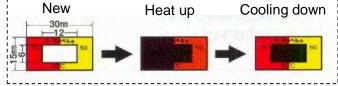
Wo	rk item	Contents								
Visual inspe- substation	ction on overall	Checking of terminal heating Checking of sound and smell Checking of fence breakage (for invader prevention)								
Visual	Transformer	Checking of surroundings Checking of oil level								
inspection	OCB	Checking for oil leakage etc								
specified to individual equipment	GIS / GCB	Checking of open/close status Checking of gas pressure Checking of driving oil pressure and leakage etc								
	VCB (indoor)	Checking of open/close status Checking of sound at connection points, etc								

One of the important work contents is the checking of terminal heating. For checking the terminal heating, "thermo-indication sticker" is useful.

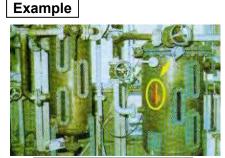
Gathering information

Jera

Page 24


© 2016 JERA Co., Inc. All Rights Reserved.

Thermo-Indication Sticker


The thermo-indication sticker is a costeffective method to roughly confirm the peak temperature and local heat history.

CHUBU widely applies this method to check the temperature condition during inspection.

75 deg-C (Non- reversible) 70 deg-C (Reversible) (Reversible) How the color changes

(Source: Website of NiGK Corporation)

Oil Chamber

Overhead line termination

Control switching board

^{© 2016} JERA Co., Inc. All Rights Reserved.

GIS (Gas Insulated Switchgear)

Definition of "Reliability"

MaF (Major Failure) :

failure of switchgear and controlgear which causes the cessation of one or more of its fundamental functions. A major failure will result in an immediate change in the system operating conditions, for example, the backup protective equipment will be required to remove the fault or will result in mandatory removal from service within 30 min. for unscheduled maintenance.

MiF (Minor Failure) :

any failure of a constructional element or a subassembly which dose not cause a major failure of the switchgear and control gear.

- IEC 62271-1

Cigre Worldwide Survey

All 29 Countries

Table 5-71: Distribution of major failure frequency in seven intervals of GIS manufacturing years - all data (absolute values within individual voltage classes)

MaF f	requency	Charles and the second s		Volta	ge class [k	[V]		
	100 CB-bay- – all data	60≤U <100 kV	100≤U <200 kV	200≤U <300 kV	300≤U <500 kV	500≤U <700 kV	≥700 kV	Total
	before 1979	0,51	1,98	0,14	4,05	0,00	0	0,89
æ	1979-1983	0,39	1,29	0,14	1,99	1,39	0	0,79
of	1984-1988	0,50	0,64	0,13	1,36	0,00	2,08	0,57
	1989-1993	0,27	0,11	0,49	0,61	0,39	0	0,30
Period	1994-1998	0,20	0,13	0,46	0,34	0,58	0	0,23
Par	1999-2003	0,08	0,08	0,40	0,31	0,19	0,00	0,13
C	2004-2007	0,40	0,33	0,22	0,58	0,00	0.00	0.36
	Total	0,31	0,24	0,33	0,88	0,50	1,18	0,37

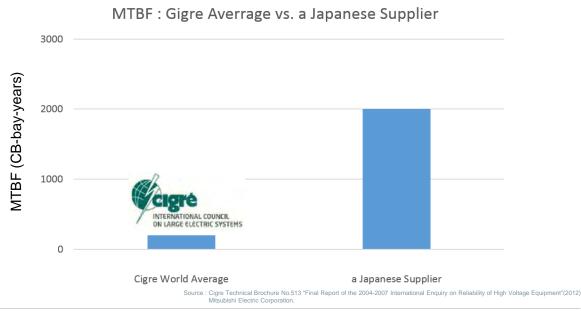
MaF Frequency = 0.37 MaF / 100CB-bay-years

Survey : 2008 - 2014

			Voltage	class [kV]				
MaF fred [MaF/10	luency IO CB-bay-years]	60≤U <200 kV	200≤U <500 kV	≥500 kV	Total			
1.01	Before 1979	0.001	0	0.001	0.002			
e	1980-1989	0.004	0.007	0.001	0.012			
Period of manufacture	1990-1999	0.005	0.001	0.001	0.007			
Perio	2000-2009	0.007	0.008	0.006	0.021			
Ē	2010-	0.002	0.002	0.002	0.007			
	Total	0.019	0.019	0.012	0.050			

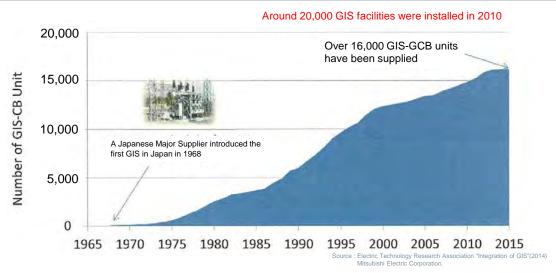
MaF Frequency = 0.050 MaF / 100CB-bay-years


Source : Cigre Technical Brochure No.513 Mitsubishi Electric Corporation. eport of the 2004-2007 International Enguiry on Reliability of High Voltage Equipment"(2012)


1619

Page 28

© 2016 JERA Co., Inc. All Rights Reserved.



GIS Substation - Trace of installation

Japan introduced GIS facilities in 1968, and these are installed mainly at "Outdoor" with tuff durability against severe environmental condition.

For 50 years experience, Japanese technologies of GIS is sure to improve the substation all over the world.

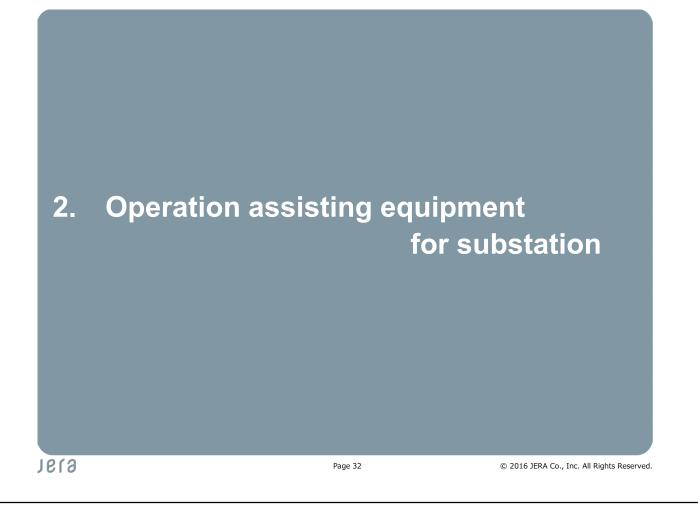
Page 30 © 2016 JERA Co., Inc. All Rights Reserved.

GIS Substation - Japanese technologies in the world

The first GIS in Japan Himeji 84kV GIS Kansai Electric Power co. (Japan)

Black Point 420kV GIS CLP Power (Hong Kong)

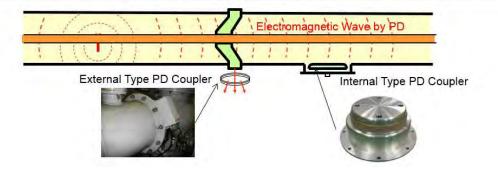
The world first 550kV Full-GIS Ohi Nuclear Power Plant (1976) Kansai Electric Power co. (Japan)



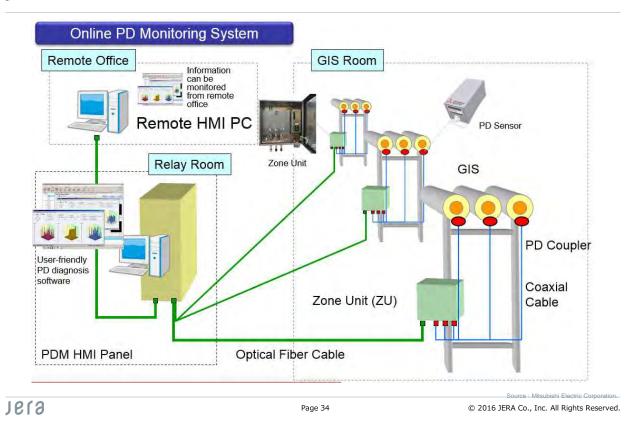
Chizu 550kV GIS Chugoku Electric Power co. (Japan)

550kV Hybrid-GIS (H-GIS) China Southern Power Grid (China)

81

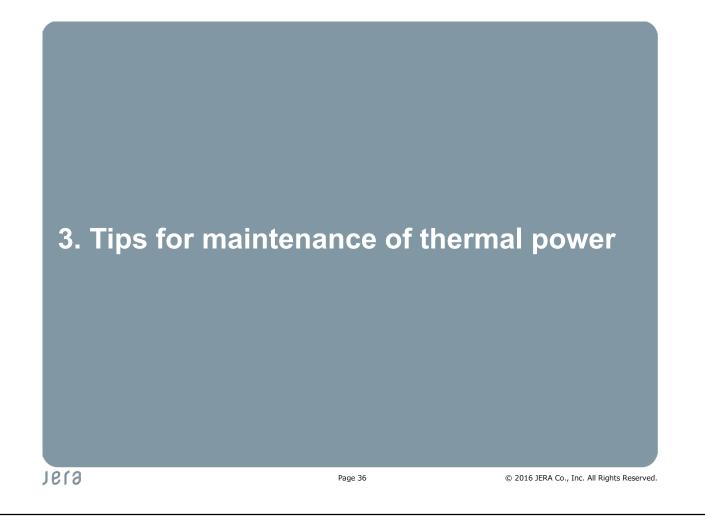


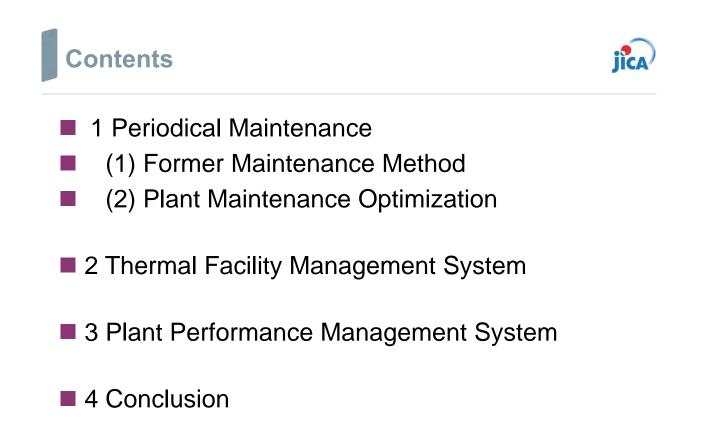
O & M for GIS - Remote sensing led to IoT



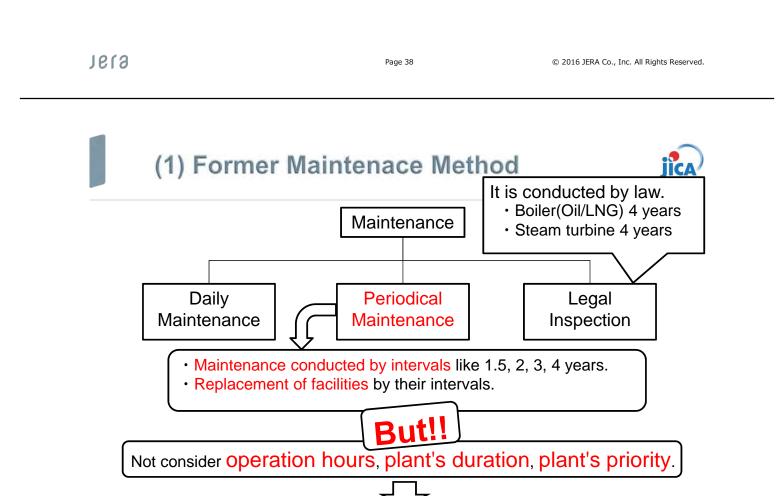
UHF Partial Discharge Sensors & Detection method

	Internal Type	External Type									
and the second	Internal Type	Permanent Type	Portable Type								
Appearance		in the second se	-								
Sensitivity	0.1pC	0.1pC	0.1pC								
Installation	Hand Hole	Spacer	Spacer								




Maintenance for Oil-filled Transformer - Gas monitoring equipmic

Feature of DGA N	lonitor	N-TCG-6CM	Hyd	dran 201Ti(GE)
 No need oil ana at laboratory (No consumptio Quick detection abnormal symp 	n of oil) of			
		N-TCG-6CM	HYDRAN 201Ti	REMARKS
		N-TCG-0CW	(GE)	REIVIARKS
	C2H2	O (0.5-500ppm)	(GE) × [8%]	
	C2H2 H2			-Monitoring TCG(*1) and 6 components gases & moisture.


To keep log life time for Transformer, comprehensive analysis are needed....

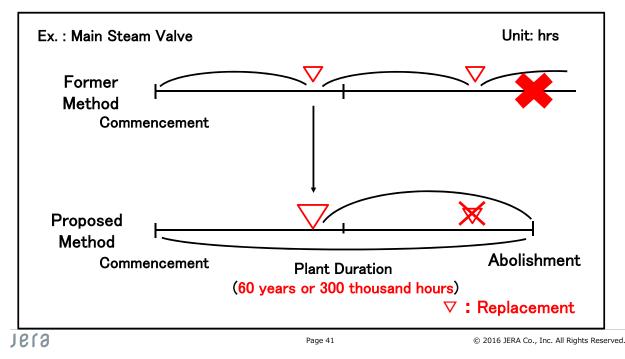
C2H2	O (0.5-500ppm)	× [8%]	and a finite second second						
H2	O (20-2000ppm)	O (0-2000ppm)	-Monitoring TCG(*1) and 6 components gases & moisture.						
CH4	O (20-2000ppm)	× [No sensitivity]	(*1):Total combustible gas						
CO	O (20-2000ppm)	× [18%]	 -High sensitivity of the C2H2 (Acetylene) for partial discharge 						
C2H4	O (10-2000ppm)	× [1.5%]	-Very quick response.						
C2H6	O (20-2000ppm)	× [No sensitivity]	-Very high reliability.						
TCG	O (20-9999ppm)	×	- Automatic operation at preset -HYDRAN report only H2 .						
	O (0-1000ppm) (0-100RH%)	×							
Condition	0	×	Trend analysis is easily						
	45 min (7~8min. Each)	Hydran detect gas only(*1).							
	H2 CH4 CO C2H4 C2H6 TCG Condition	H2 O (20-2000ppm) CH4 O (20-2000ppm) CO O (20-2000ppm) CO O (20-2000ppm) C2H4 O (10-2000ppm) C2H6 O (20-2000ppm) TCG O (20-2000ppm) O (20-2000ppm) O (20-9999ppm) CO O (0-1000ppm) (0-100RH%) O Condition O 45 min 45 min	H2 O (20-2000ppm) O (0-2000ppm) CH4 O (20-2000ppm) × [No sensitivity] CO O (20-2000ppm) × [18%] C2H4 O (10-2000ppm) × [18%] C2H4 O (10-2000ppm) × [1.5%] C2H6 O (20-2000ppm) × [1.5%] C2H6 O (20-2000ppm) × [No sensitivity] TCG O (20-9999ppm) × O (0-1000ppm) × 0 (0-100RH%) × 0 Condition O × 45 min 10min(*1) (Response time						



1 Periodical Maintenance

It cost so much!!

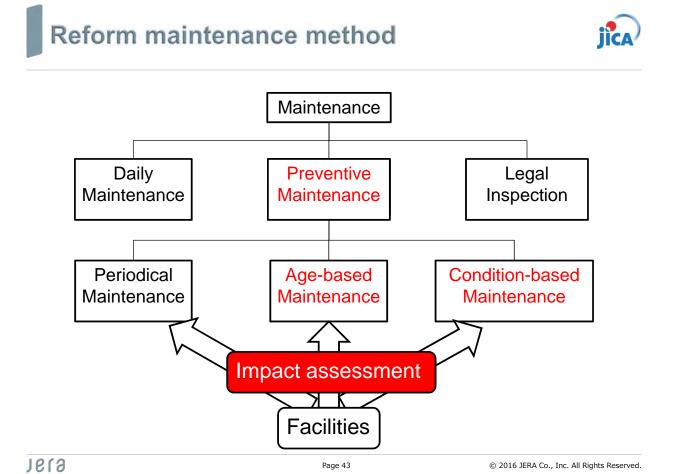

```
1619
```


Page 40

© 2016 JERA Co., Inc. All Rights Reserved.

Determination of Plant's Duration

Reduction of the Number of Replacement by the Facility's Life Extension



1619

Page 42

© 2016 JERA Co., Inc. All Rights Reserved.

Periodical Maintenance

• By intervals considering plant's duration, our knowledge, manufacturer's recommendation.

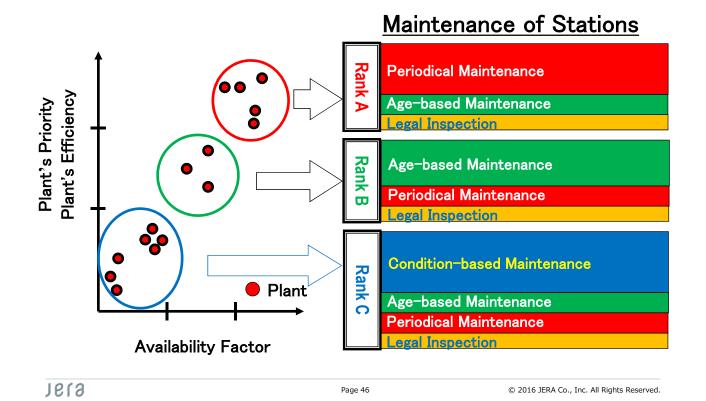
Age-based Maintenance

Based on operation hours, Plant's start- and-stop, plant's duration.

Condition-based Maintenance

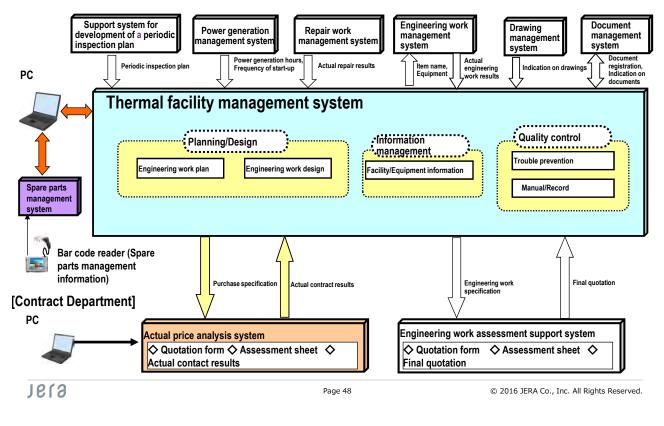
- Monitoring the state of facilities.
- Symptoms appears, we fix them.

1619 Page 44 © 2016 JERA Co., Inc. All Rights Reserved.



Determination of Plant's Duration
 Reform Maintenance Method
 Determination of Plant's Priority

Determination of Plant's Priority



2 Thermal Facility Management System

Thermal Facility Management System

[Maintenance Department]

3 Plant Performance Management System

The necessity of performance test

Performance gets lowered

Fuel consumption increases

Generating Cost increases

Find any declines in performance \rightarrow Minimize Loss

Jela

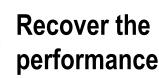
Page 50

© 2016 JERA Co., Inc. All Rights Reserved.

Plant Performance Management System

Daily performance management

Confirm the state of the equipment by a Log sheet.

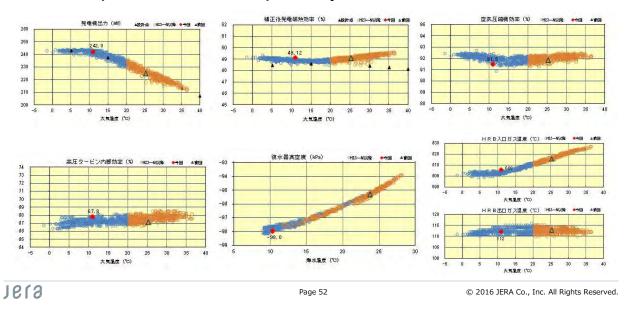

- Plant Thermal Efficiency, Generator output.
- Operating state for each equipment

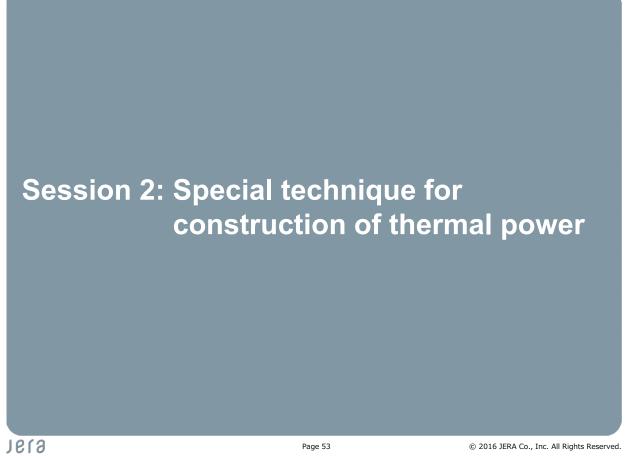
Gas turbine, Steam turbine, Heat Recovery Steam Generator

25	34	ел 42	128	5																							C)pe	rat	ion	al	Lo	g										
1	1	Out	put				G	ien	era	tor	- i				Pre	ess	ure		1		Te	emp	era	tur	e					-			F	low	v	1		-		lea		Ef	ficienc
時近転状態サ	発	.8	m	10	曲	12	91		ħ	機内力		12	回転	業任	高圧面	南庄	月熱	数任	高圧力	痛狂	高圧	所题供	低圧	部入	间. 口脏	器水	ホン	高庄	商祭	佐庄		1	10		作商	н	3		1	atio	間間	兒撒線	送雇编
別勝サイ	a	.99	The	東庄樹	h	Æ	R		*	小幸 臣力	「大臣行	时大温度	「温度	金戲戲	6	気気	M. SL	大型兒	主意気	n R	100	市気	生態気	菊庄	中田二次	中在一	トウェル	主菌氮	N.N.	王武気と	日本フラレ	ロスプレ	1	φ.	武	- 唯	送金	a a			84	「「「「「「」」」	
*	WVh X.1	Wvar) X. I	X	NWD 1 X	NV	kV X.	kA t X.		N.1.)	NPav OI	c	K	E	X. 0	EX. 0	NP IX.0	a 111.0	EX. 0	E		1		TC.		×	次	X.1	_				1/	18	Æ	Æ	1.1		2	1.2	J/k	Ð	-	X. 01
	242 742 742 742 742 742 742 742 742	30: 26: 1 26: 1 26		1 1	********	3 17 3 17 3 17		00000000	99999999999	31 31 31 31	466 466 466	0000000	000000000000000000000000000000000000000	999999999			2 20 2 20 2 20 2 20 2 20 2 20 2 20 2 20	* ************************************		* 5000000000000000000000000000000000000	37 37 37 37 37 37 37		261 261 261 261 261 261 261 261	47 46 46 46 46	*** 138 138 138 138 138	444444444444444444444444444444444444444	***********	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 200 200 200 200 200 200	President and rooks a			Transmission in					0 0 0 0 0	1777777777	6633236	7410 7408 7410 7410 7412 7412 7416	4954 4956 4957 4958 4957 4957	4851 4851 4851 4851 4851 4851

If we confirm the performance decline,

- Plan stopping it for repair (Wash GT compressor with hot water)
- Plan repair simultaneously with periodical inspection

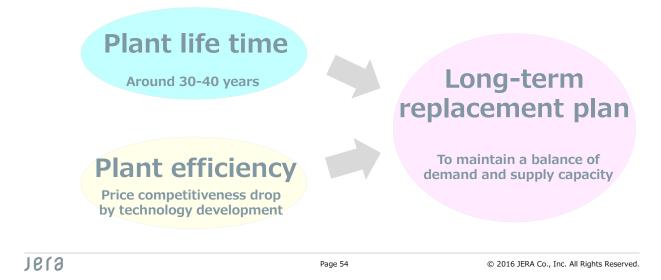




Performance test after periodical inspection

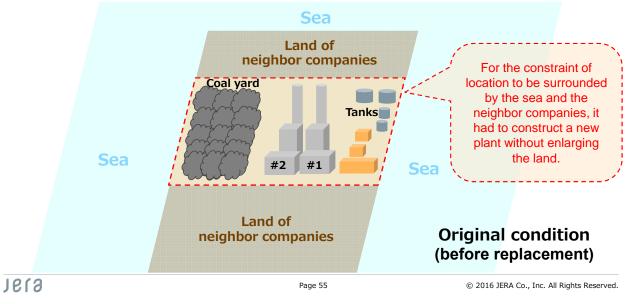
Confirm the effects of the works during periodical inspection

Compare the result with the past one year data.



1. Necessity of Plant Replacement

Generally, the life time of thermal power plant is considered to be around 30-40 years. In addition, from the point of view as price competitiveness drop by new technology development (such as plant efficiency improvement), planning the long-term plant replacement is necessary to maintain a balance of the electricity demand and supply capacity.



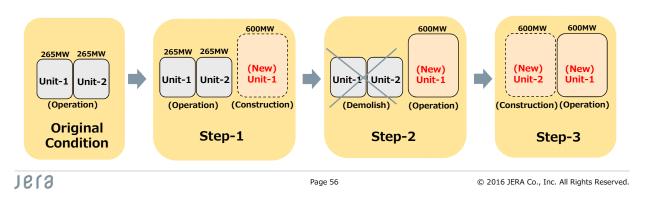
2. Introduction of Reference Case

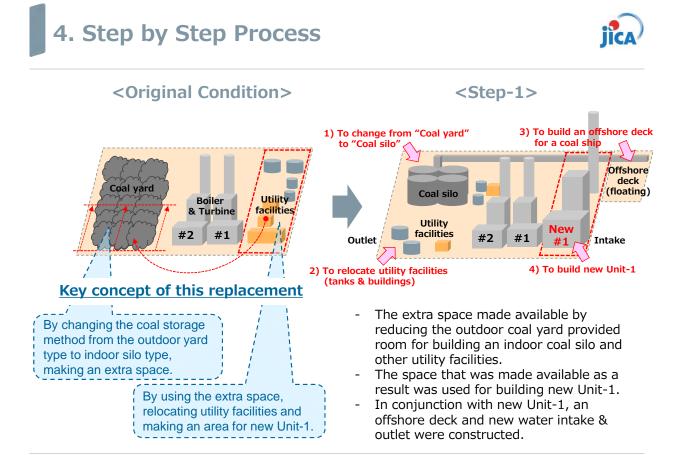
Though there are several kind of plant replacement scenarios, especially we would like to introduce one reference case that achieved plant replacement under the following two constraints.

1) To maintain power supply capacity during the construction of a new plant 2) To use only same land area for constructing a new plant

3. Outline of Replacement Process

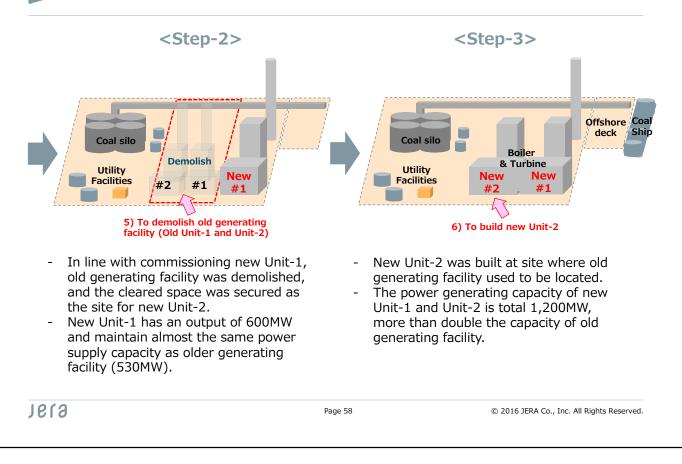
<Step-1>


To maintain the required power supply capacity during the construction of a new generating facility, it was built the new Unit-1 while operating the old generating facility.

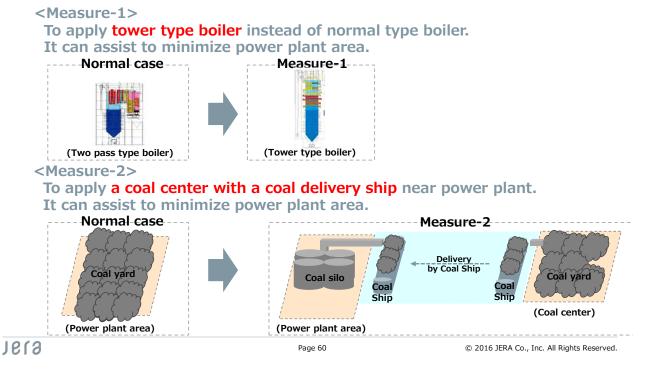

<Step-2>

After the new Unit-1 was commissioned, the old generating facility was decommissioned and demolished.

<Step-3>


Then, new Unit-2 was constructed on the site.

4. Step by Step Process



5. Maintaining Supply Capacity The required power supply capacity was being maintained during the construction of new generating facility. 600MW (Demolish) 600MW 600MW 600MW 265MW 265MW 265MW 265MW (New) (New) (New) (New) Unit-1 Unit-2 Unit-Unit-2 Unit-1 Unit-2 Unit-1 Unit-2 Unit-1 Unit-1 Original Step-1 Step-2 Step-3 Condition 1,200MW Maintain supply capacity all the time Supply Capacity (Ne 600MW Unit 530MW 530MW Unit-2 Unit-2 (Ne Ne Jnit Unit Unit-1 Unit-1 1969~ 1996~ 2002~ 2009~ (Start of new Unit-1 construction) (COD of new Unit-1) (COD of new Unit-2) 1619 Page 59 © 2016 JERA Co., Inc. All Rights Reserved.

6. Measures for minimizing plant area

Since there were two heavy constraints against this plant replacement, the following two measures were applied to minimize plant area.

The plant replacement from old units to new units was successfully done under two constraints that is using a limited land area and maintaining the original supply capacity (530MW).

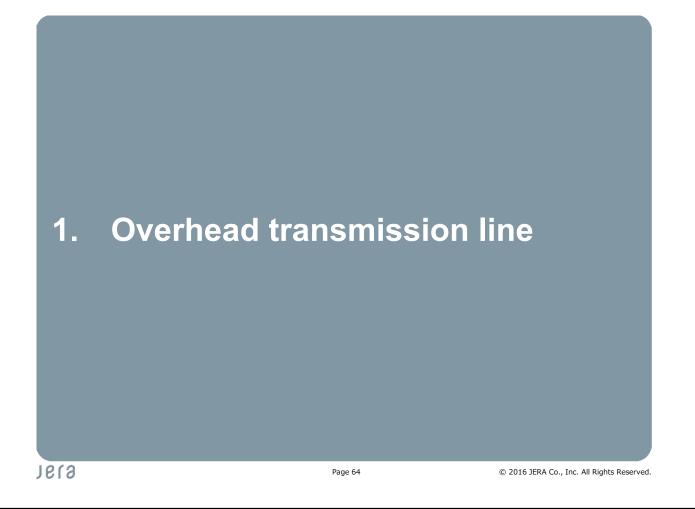
Furthermore, exhaust emission was reduced by using high performance environmental facilities (SCR, ESP and FGD) through this plant replacement.

> SCR: Selective Catalytic Reduction ESP: Electro Static Precipitator FGD: Flue gas Desulfurization

	Old Unit-1&2	New Unit-1&2
NOx	159ppm	33ppm
SOx	60ppm	30ppm
Dust	50mg/m3N	15mg/m3N

Source of data & figures in this report

-Literature (日本電気協会新聞部 火力発電カギのカギ)


-Brochure (Isogo Thermal Power Station, for public)

Jelg

Page 62

© 2016 JERA Co., Inc. All Rights Reserved.

Demand for High Temperature Low Sag Conductor

Recent situation in OHTL

- Antiquated and overworked
- Objection from inhabitants to construct New T/L
- Unexpected growth in electricity consumption due to recent economy expansion (commercial, industrial & residential)

iic/

Lineup of HTLS

Gap type conductor

The combination of the thermal resistant aluminum alloy and the Gap construction offers excellent sag and current-carrying characteristics

It was developed more than 30 years ago and used in the world include Japan

Invar core conductor

The combination of thermal resistant aluminum alloy and the aluminum-clad invar which has small thermal expansion coefficient offers excellent sag and currentcarrying capacity characteristics

It was developed more than 30 years ago and used in the world include Japan

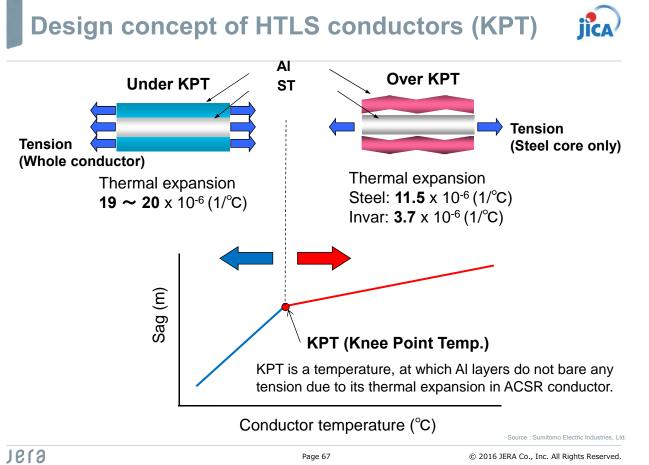
PS(Pre-stressed steel core) conductor

PS conductor has some excess length in Aluminum layers compared with steel core length

This construction offers excellent sag and current-carrying capacity characteristics It was developed more than 10 years ago and used in the world include Japan

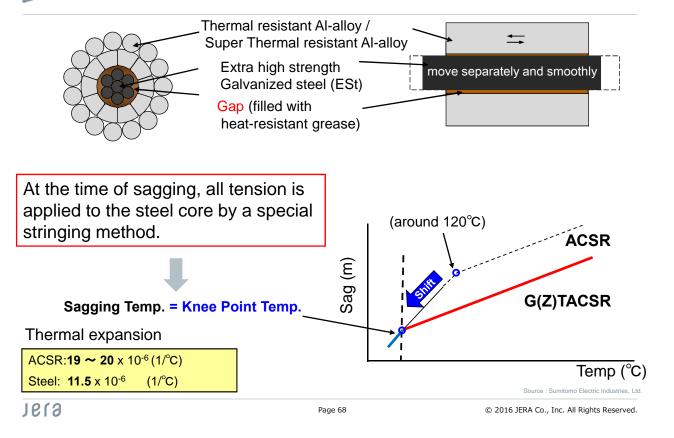
ACFR(Aluminium Conductor Fiber Reinforced)

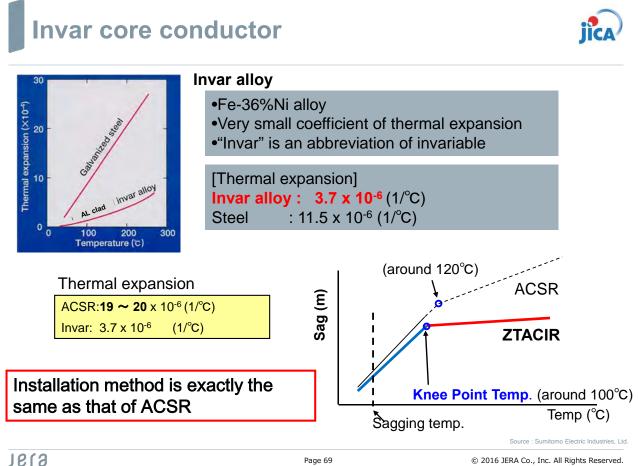
The combination of thermal resistant aluminum alloy and carbon fiber composite cable core which is light and has extremely small thermal expansion coefficient offers excellent sag and current-carrying capacity characteristics It was developed more than 10 years ago and used in the world include Japan

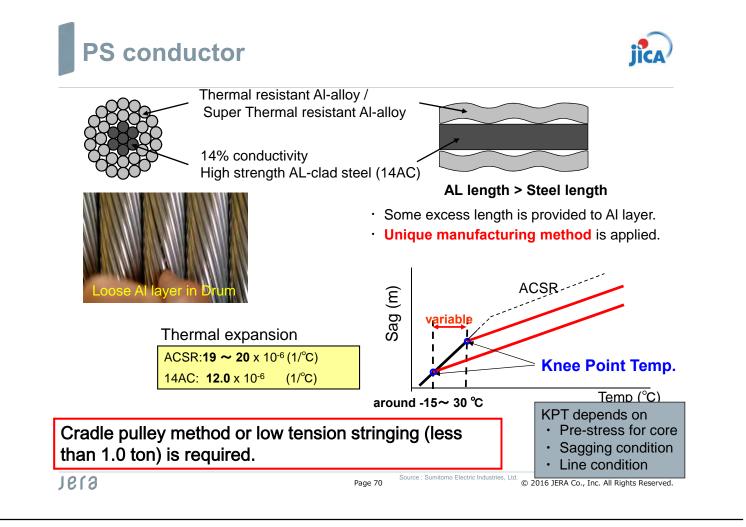


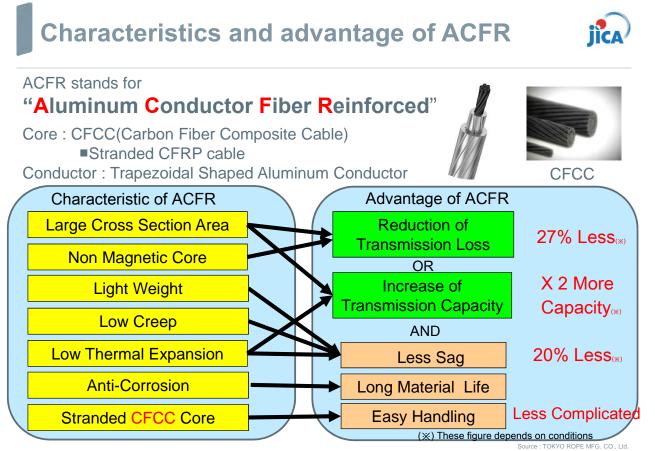
Source : Sumitomo Electric Industries, Ltd., TOKYO ROPE MFG. CO., Ltd.

© 2016 JERA Co., Inc. All Rights Reserved.



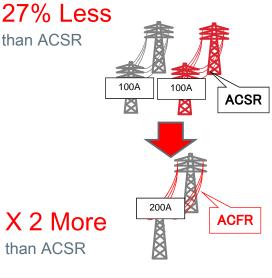

1619





© 2016 JERA Co., Inc. All Rights Reserved.

Design example of ACFR



Reduction of Transmission Loss

		ACFR 540/55	ACSR 430/55
Core		CFCC	Steel Wire
Diameter	[mm]	28.62	28.62
Electric Current	[A]	70	00
Operation Temperature	[°C]	66.55	72.8
Resistance per Length	[Ω/km]	0.0623	0.0851
Transmission Loss per	[kW/km]	91.6	125.1
Circuit Length	Ratio	0.73	1

Increase of Transmission Capacity

		ACFR 540/55	ACSR 430/55
Core		CFCC	Steel Wire
Diameter	[mm]	28.62	28.62
Electric Current	[A]	1643	729
Operation Temperature	[°C]	175	75
Resistance per Length	[Ω/km]	0.0847	0.0858

[Capacity Upgrade Image] Source : TOKYO ROPE MFG. CO., Ltd.

© 2016 JERA Co., Inc. All Rights Reserved.

1619

Benefit of ACFR using stranded CFCC core **iic** ①Core Durability/Reliability ② Flexibility ACFR can utilize the same reel and stringing CFRP Rod equipment as ACSR. Crack Grows Crack starts **CFRP Breaks** CFCC Crack starts No crack to other strand ③Installation Efficiency ACSR ACFR ACCC ACFR has compatibility to 790mm the conventional installation procedure. (111 & Better grip strength of the stranded core surface requires 3 only one additional device. Install 10 Min 30 Min 10 Min Source : TOKYO ROPE MFG. CO., Ltd. Time Page 73

Page 72

Track record of HTLS conductors

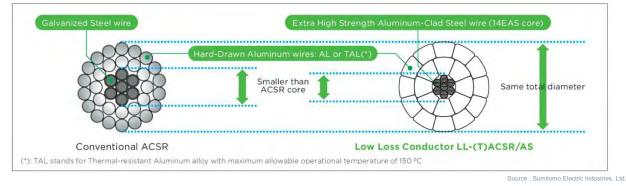
Conductor	Gap type	Invar core	PS	ACFR
Records	 Africa (1): Libya Middle east (6): Kuwait, Oman, Saudi Arabia, etc. Europe (5): UK, Ire land, Russia, etc. Asia (9): China, Vietnam, India, Japan, etc. Other countries (4): USA, Brazil, etc. 	 Africa (1): Egypt Middle east (1): UAE Europe (2): France, Italy Asia (8): China, Korea, Japan, etc. Other countries (1): USA 	● Asia (2): Vietnam, Japan	● Asia (4): Korea, China, Indonesia, Japan
	25 countries, From Japan	13 countries, From Japan	2 countries, From Japan	From Korea, From China, From Indonesia, From Japan
Developed in	1971 (Japan)	1981 (Japan)	2002 (Japan)	1997 (Japan)
				Source : Sumitomo Electric Industries, Ltd.

Jela

Page 74

© 2016 JERA Co., Inc. All Rights Reserved.

Characteristics of LL conductor



Clear advantage

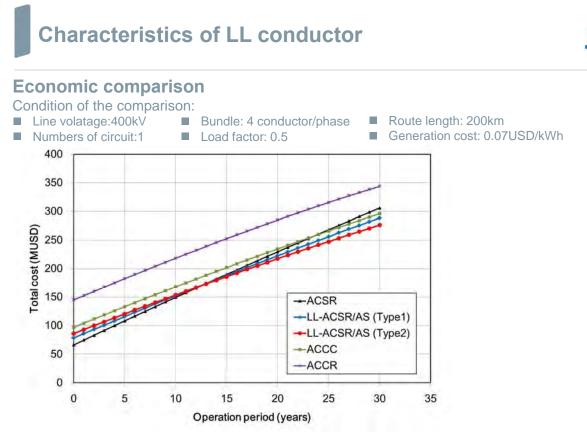
- Reduction of transmission losses in the range of 10-25%
- Almost the same tower loading as convetional ACSR (same diameter, same tensile strength)
- Same installation and maintenance procedure as conventional ACSR

Technical construction

- Adoption of trapezoidal shaped wires instead of round wires
- Adoption of 14EAS(tensile strength: 1770MPa) instead of normal galvanized steel wires(1290-1340MPa)

Characteristics of LL conductor

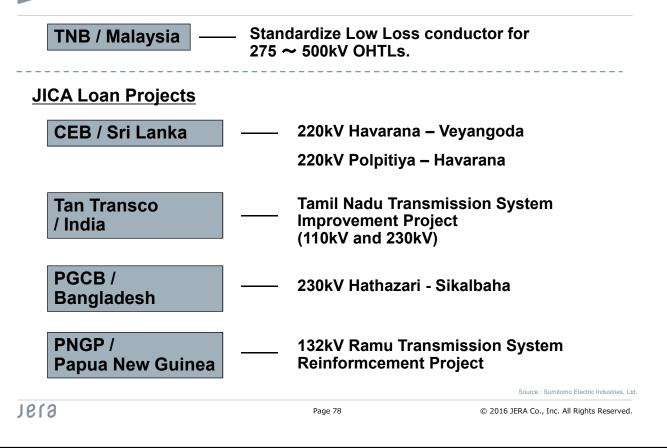
Design type


Low loss conductor can have two design types, depending on the purpose or specific project requirements.

Type 1	Туре 2
Use AL(TAL) round and trapezoidal shaped wires:	All aluminum wires are trapezoidal shaped wires:
Same diameter Same weight No tower load increase	Same diameter Have maximum aluminum area Achieve highest power saving
 Reduce power loss by roughly 10-15% No sag increase No need to reinforce nor to modify the existing towers 	 Reduce power loss by roughly 20-25% Slight sag increase (because of slight weight increase) Tower reinforcement or modification may be necessary
Recommended for re-conductoring of existing lines, or for new lines construction	Recommended for construction of new lines

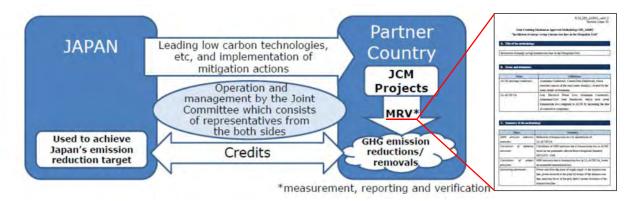
Jera

Page 76


© 2016 JERA Co., Inc. All Rights Reserved.

In this case, low loss conductor(Type 2) can recover the difference of initial cost in 15 years

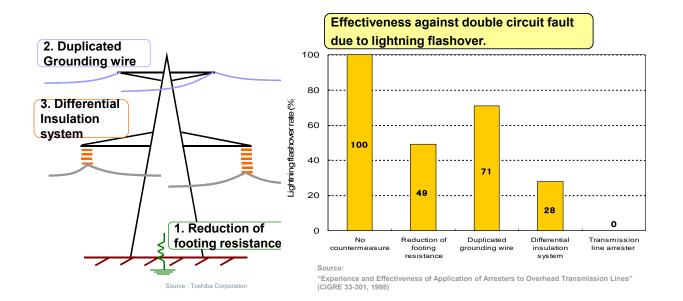
Overseas projects –LL conductor



JCM Project –LL conductor

JCM concept

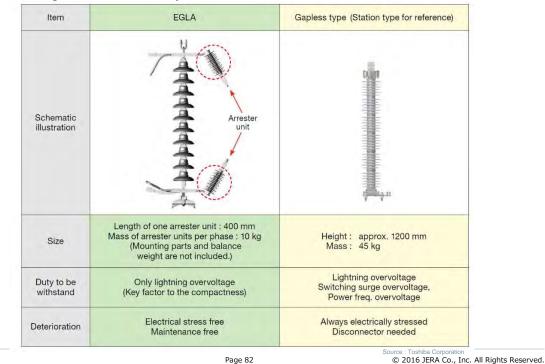
[citation: Web site of New Mechanisms Information Platform (http://www.mmechanisms.org/index.html)]



MRV about calculation of GHG emission reduction by using Low Loss conductor has been established in Mongolia.

[Title: Joint Crediting Mechanism Approved Methodology MN_AM001 "Installation of energy-saving transmission lines in the Mongolian Grid"]

105

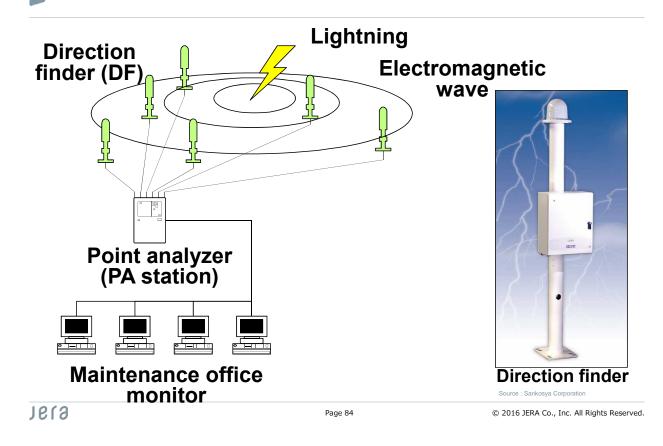


1619	Page 80	\odot 2016 JERA Co., Inc. All Rights Reserved.

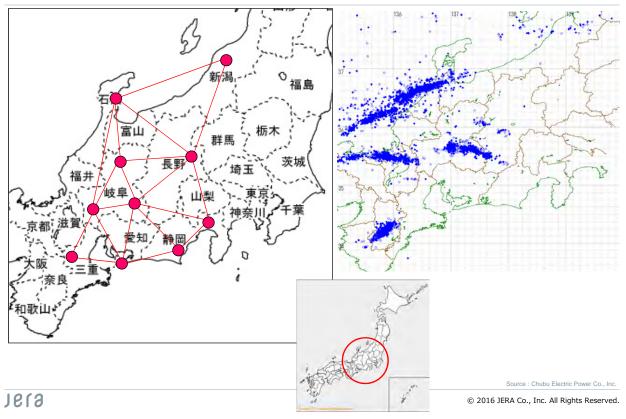
Advantage of EGLA(Externally Gapped Line arresters

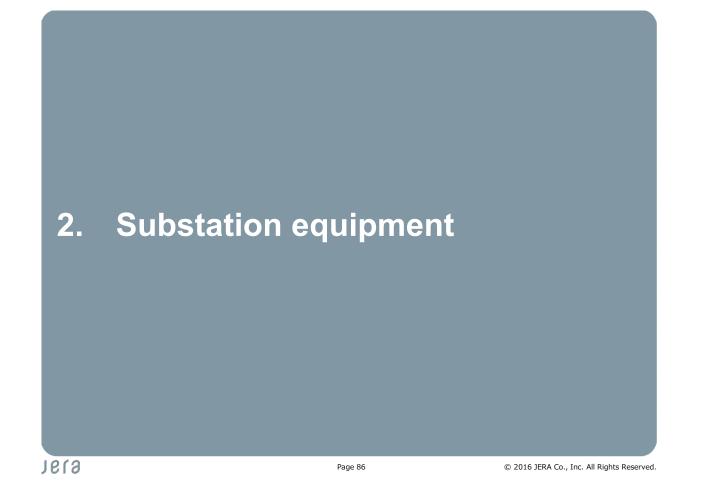
Comparison between EGLA and gapless type arresters Both for a 145kV system as an example

1619

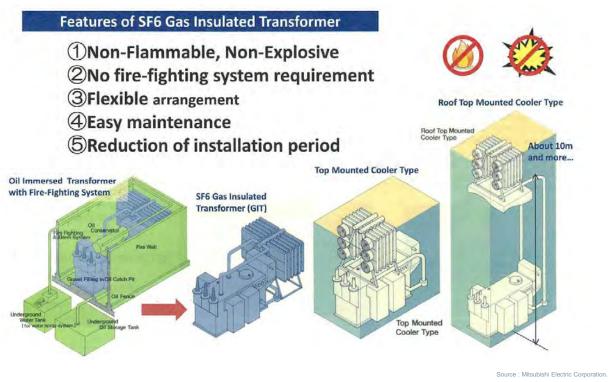

Advantage of EGLA(Externally Gapped Line arresters)

Comparison between EGLA and gapless type arresters(Image) Both for 245kV system as an example

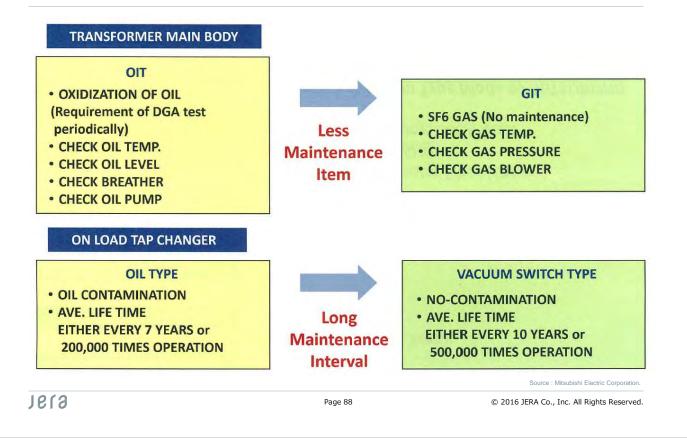



Source : Toshiba Corporation

Application of LLS(Lightning Location System) in Jap



Application of LLS(Lightning Location System) in Jap



Gas Transformer - to meet metropolitan integration

Gas Transformer - to meet metropolitan integration

Gas Transformer - to meet metropolitan integration

S/S in the building of Hong Kong besides commercial building (2000) **Relay Panel** 275kV GIS genter mitte 0.2.1 -132kV GIS they a mer minnenn. 275kV GIS -132kV GIS 1.12.7 3.347 Ha - Illins ----**Gas Insulated** 275kV 20bays TVITS. Transformer •275/11kV 60MVA x 4 +132kV 20bays 1111111 Source : Mitsubishi Electric Corporation

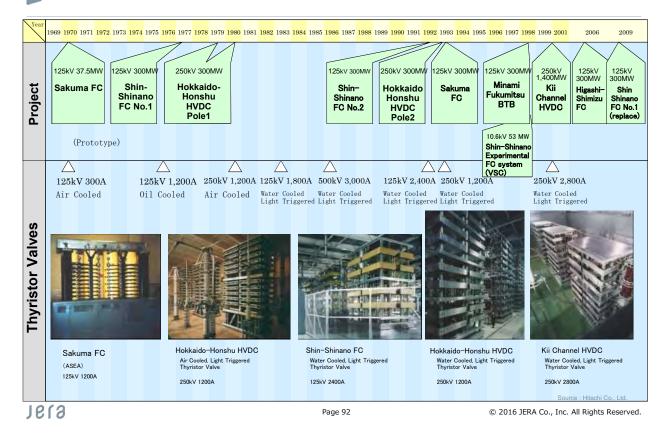
110/10.5kV 50MVA GIT FOR BEIJING ELECTRIC POWER Co.

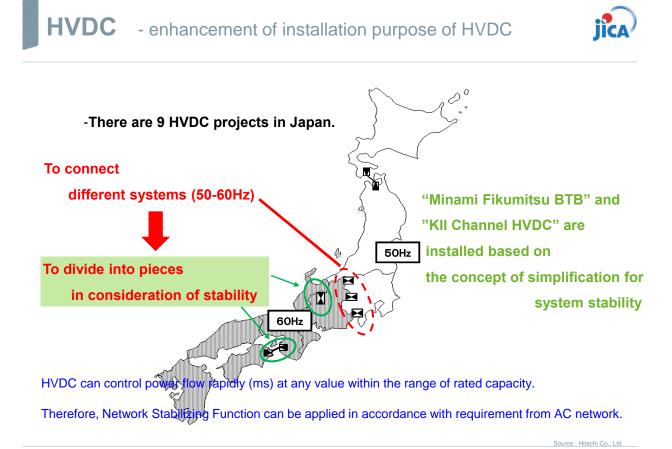
FOR UNDER GROUND SUBSTATION

Source : Mitsubishi Electric Corporation

© 2016 JERA Co., Inc. All Rights Reserved.

HVDC - experience of Japanese technologies **Italy-Montenegro HVDC** Hokkaido-Honshu Shin-Shinano 1GW ±500kVdc **DC Transmission** Frequency Converter Station Transmission System, MONITA Line 150MW - Year 1979 Croatia 300MW-Year 1977/2009 Bosnia and Herzegovina 300MW- 1980 600MW-Year 1992 600MW - 1993 Sert DC voltage: 125kV DC current: 2,400A Cepaga Koto Italy Thyristor: LTT 7.5kV-2440A Cooling: Water Insulation: Air **Kii- Channel DC** Albania **Transmission Line** Minami-Fukumitsu 60H<mark>‡</mark> 50Hz **Back to Back Converter** Station 700MW x 2 pole-Year 2000 300MW - Year 1993 (2800MW in the future) DC voltage : 250kV DC current: 2800A Sakuma Uruguaiana Back to Back Station, Thyristor: LTT 8kV-3500A **Frequency Converter** Insulation: Air Uruguay Station Cooling : Water Triggering: Direct Light 300MW-Year 1993/1965 Quadruple valve size: 6.7W-3.7D-8.75H Higashi-Shimizu Submarine cable: 50km **Converter Station** Overhead line: 50km 300MW - Year 2006 "Year" indicates Commissioning Year


Page 90


1619

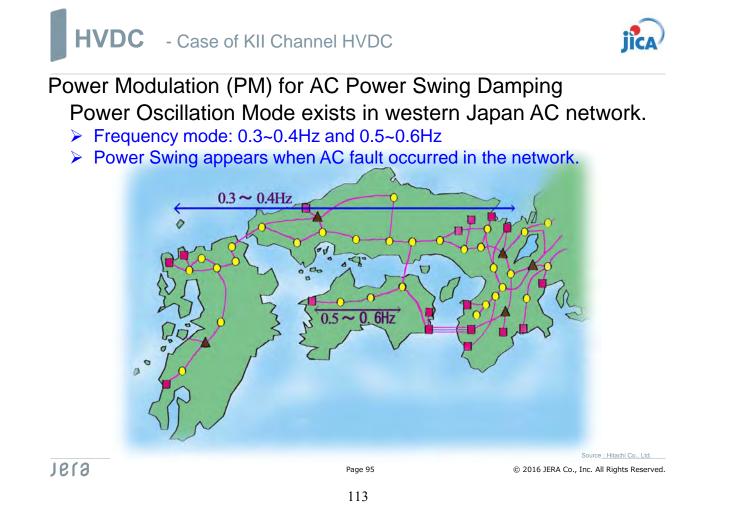
© 2016 JERA Co., Inc. All Rights Reserved.

HVDC - with technologies of thyristor valves

Advanced Control Technology applied to Kii-Channel HVDC

1) HVDC Power Modulation Control for AC power swing damping

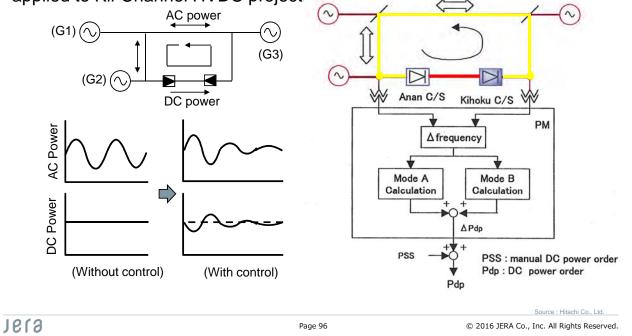
This method controls DC power with using frequency deviation between both ends of HVDC converter station.

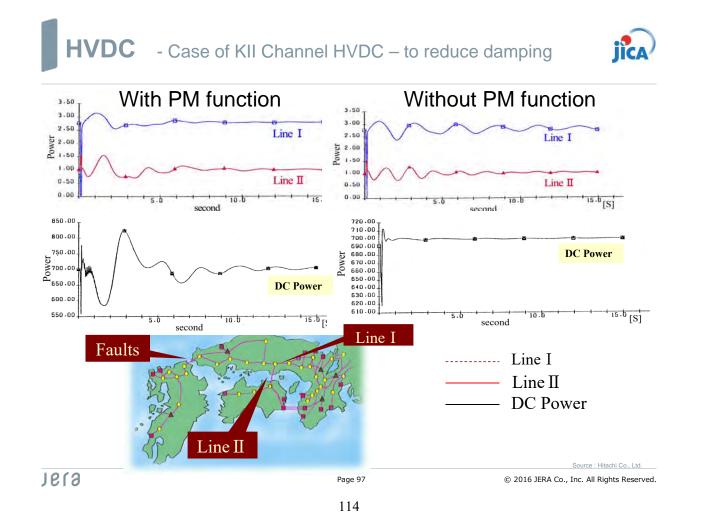

2) Emergency Frequency Control

This method controls DC power with using frequency deviation between both ends of HVDC converter station.

3) DC Continuous Operation Control during and after AC fault

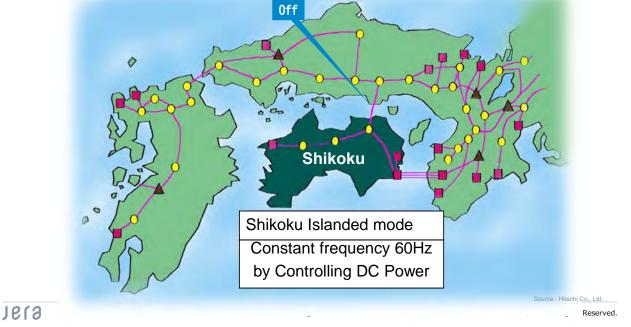
This method mitigates communication failure and recovers transport power faster during and after AC circuit fault.


Source : Hitachi Co., Ltd. 1619 © 2016 JERA Co., Inc. All Rights Reserved. Page 94



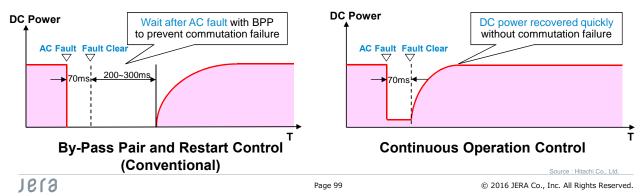
Power Modulation (PM) for AC Power Swing Damping

In order to keep network stability, **Power Modulation Control Function** was applied to Kii-Channel HVDC project

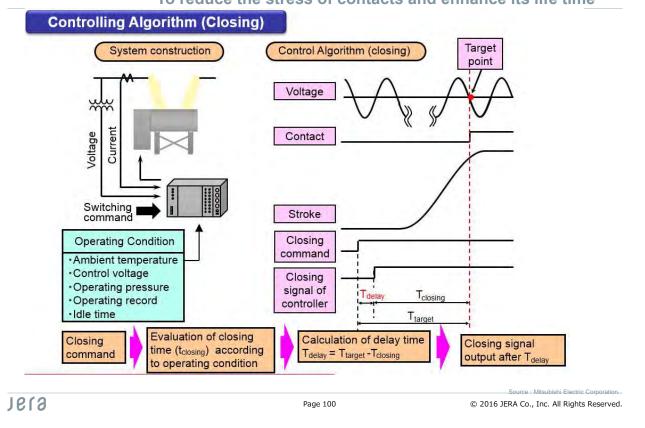


Emergency Frequency Control (EFC)

Frequency of Shikoku Island becomes unstable when AC fault occurred in interconnection line between main land. (Shikoku Islanded mode)

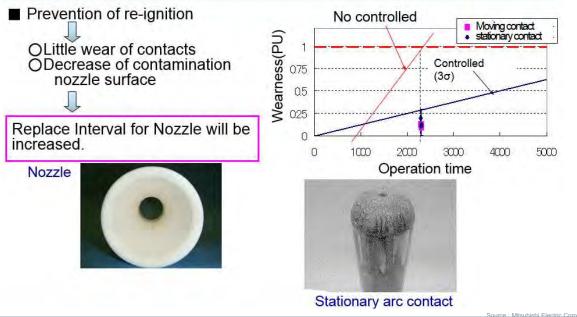


HVDC - Case of KII Channel HVDC – to smooth DC Supply



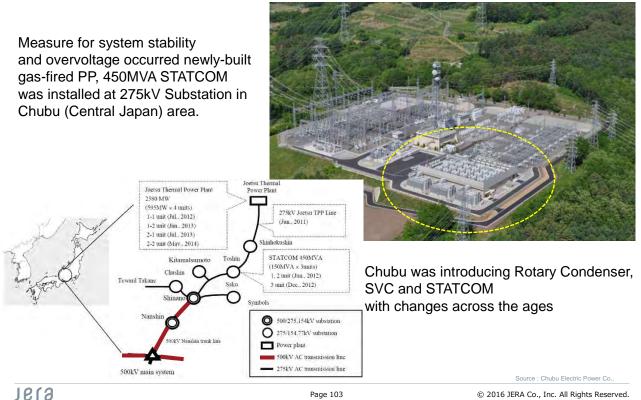
DC Continuous Operation Control during & after AC Falut

- In order to ensure stable power supply as an interconnection, HVDC system is required to be stable to AC fault without commutation failure.
- The continuous operation control makes HVDC system capable to maintain stable commutation even under AC fault close to converter station.
- The continuous operation control can;
 - prevent temporally overvoltage caused by reactive power unbalance
 - enable the AC power system to be stable caused by power unbalance

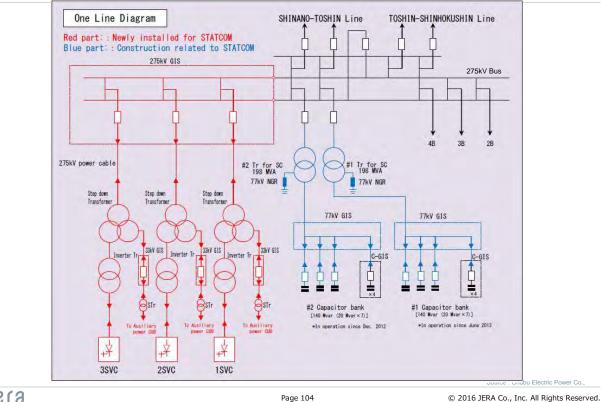

Operating equipment - Synchronous Switching GCB To reduce the stress of contacts and enhance its life time

Operating equipment - Synchronous Switching GCB To reduce the stress of contacts and enhance its life time

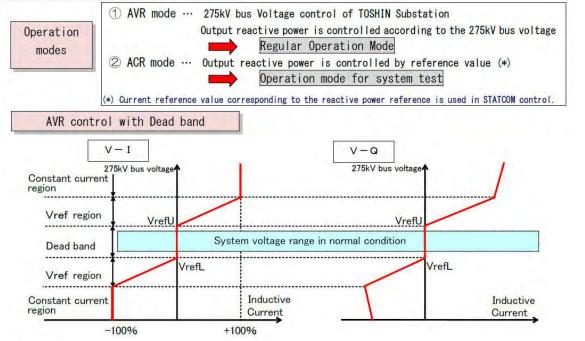
Measurement of wear of contacts and nozzles for GCB which has been operated 2300 times.



^{© 2016} JERA Co., Inc. All Rights Reserved.

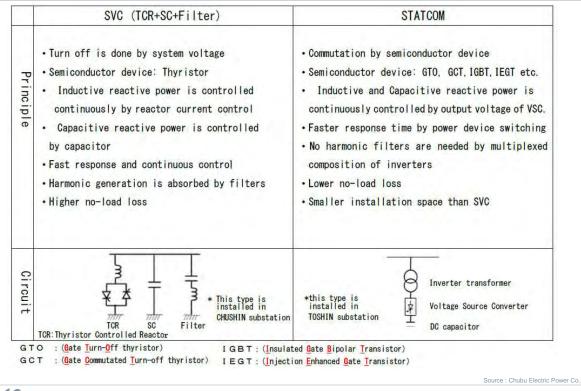


STATCOM- In Chubu Electric Power Co. , the world's largest capacity


STATCOM - Single line diagram of TOSHIN Substation (275kV)

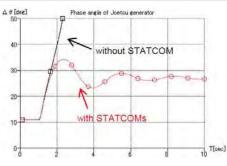
1619

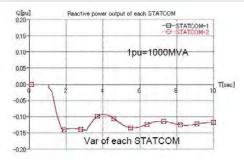
STATCOM - its feature

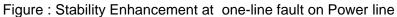


Dead band : Dead band reduces operation loss in normal voltage condition

V_{ref} Region : Output reactive power is propotional to the voltage deviation between system voltage and reference values (V_{ref}U, V_{ref}L) Source : Chubu Electric Power Co.,

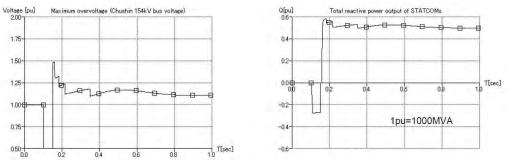


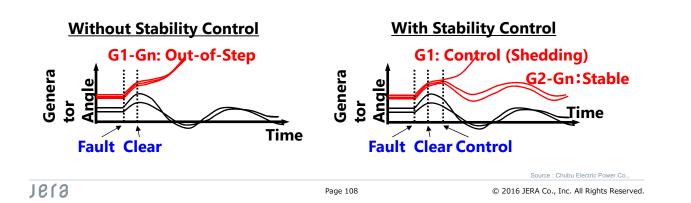

1619


Page 106

© 2016 JERA Co., Inc. All Rights Reserved.

STATCOM - track of Chubu Electric Co.,'s case to achieve instant stabilization

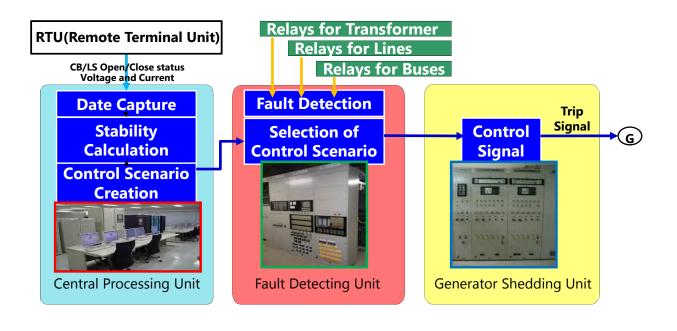



Figure : Overvoltage control by STATCOM on a route fault of 500kV trunk line

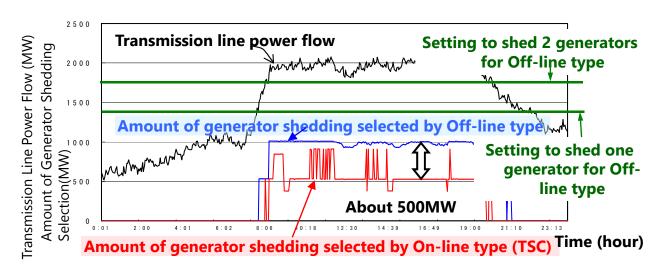
Transient Stability Control

Purpose :

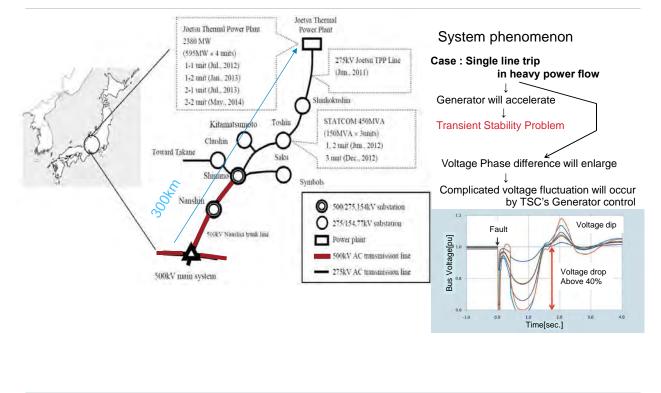
- Without stability control, G1 to Gn accelerate during the fault, an out-of-step will occur
- With stability control, provided that G1 is tripped following fault clearance, stable operation will be maintained for the remaining generators



Transient Stability Control - Overview

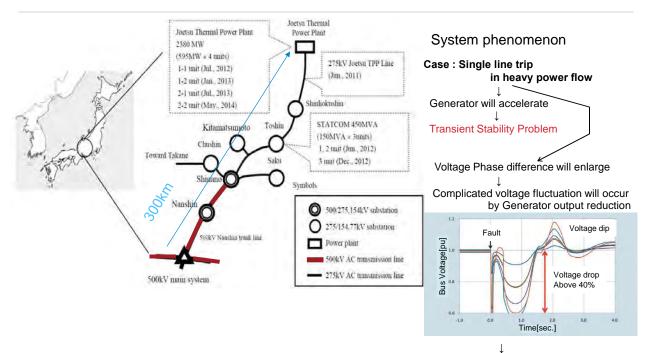

TSC system will be implemented based on the WAMS*1. 1. IEDs and PMUs*2 are added receiving function that is to receive information from upper 2. system of TSC (upper system of TSC is called "parent unit" of TSC, and developed IED + PMU is called "child unit" of TSC). 3. When the child units of TSC would find the accident, they shed the loads/generators based on the latest information from the parent unit. Protection relay Solar power generation Child unit of T Wind power generation Electric power company system Thermal power System linkage generation plant oparatus Child unit Water power/ water pumping ation plant Power drid **Transient Stability Control Communication grid** Parent Unit Substation Load *1 WAMS: Wide. Area Measurement System Child unit of TSC *2 PMU: Phasor Measurement Unit

		Source : Toshiba Corporation
1619	Page 110	© 2016 JERA Co., Inc. All Rights Reserved.


Transient Stability Control – Optimal Control

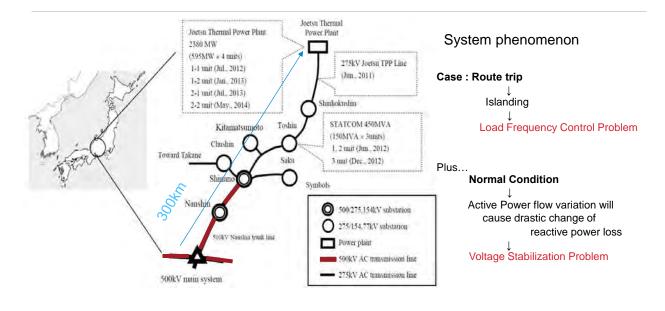
TSC enables optimal control of network operation which is changing

Integrated Stability Control - Beyond the TSC



Jera

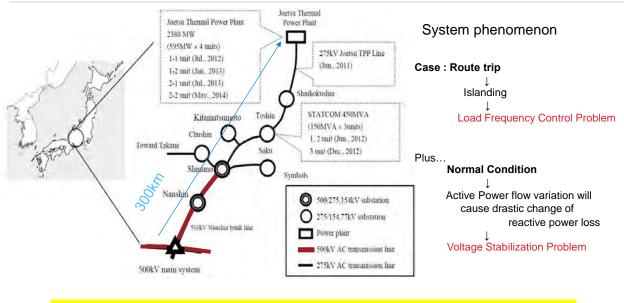
Page 112


© 2016 JERA Co., Inc. All Rights Reserved.

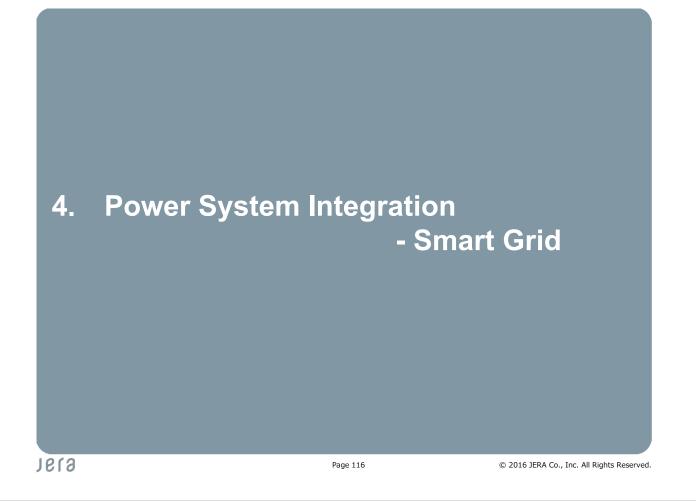
Integrated Stability Control - Beyond the TSC

Reactive Power loss Problem

Integrated Stability Control - Beyond the TSC (contd.



1619


Page 114

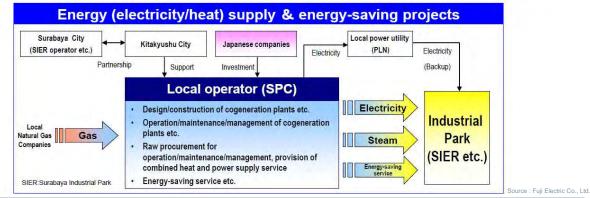
© 2016 JERA Co., Inc. All Rights Reserved.

Integrated Stability Control - Beyond the TSC (contd.

TSC + VQC(Voltage – Reactive Power(Q) Control system) drives mutually ↓
ISC(Integrated system stability control system) installed in Chubu area.

Smart Grid - case in Indonesia with Japanese technology

- Ministry of Economy, Trade and Industry (METI) implemented "Export Promotion & Investigate Program of Infrastructure System"
- METI Feasibility Study (F/S) on Smart Community Business at SIER (F/S members : 3 companies and a municipal organization in Japan)
- Utilization of the technologies and know-how of a pilot project in Japan
- Provision of energy-related services to the tenant companies of SIER
 - Supply of heat (steam)
 - Supply of electricity
 - Energy-saving services
 - Reclaimed wastewater
- Sales of surplus power to the local power utility (PLN)

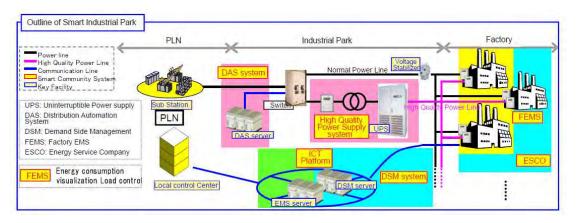

Java Islands

Sumatra

74-47

Kalimantan Island

Surabaya



Project Description

Stabilization of power supply

Optimized energy management by the linkage of DSM and FEMS Construction of smart community related basic infrastructure

Jelg

Page 118

Source : Fuji Electric Co., Ltd

 \odot 2016 JERA Co., Inc. All Rights Reserved.

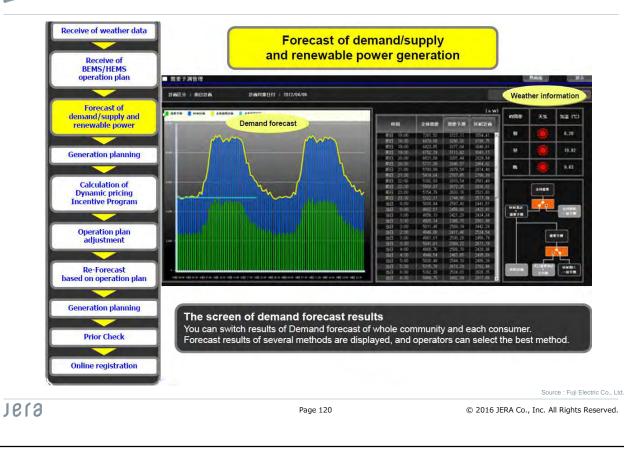
Smart Grid - Community Energy Management System(CEMS)

The Role of CEMS

New energy systems (soar and wind power) are not stable. Variation in electric power generated by the new energy systems cause the supply and demand imbalance. Demand for new energy is increasing significantly. A reverse power flow poses the voltage rise problem. CEMS plays a key role in solving these problems.

Key features

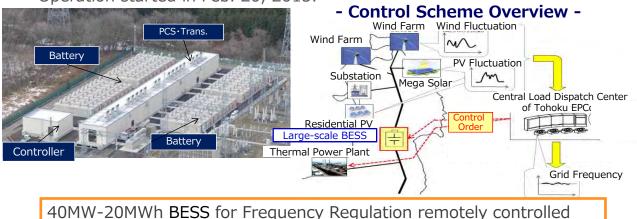
- Prediction of power generated by new energy (PV and Wind Turbine Generator)
- Optimized planning and control of supply and demand, and frequency control by utilization of storage batteries.
- Demand response service for balancing the load
- Smart meters for consumers

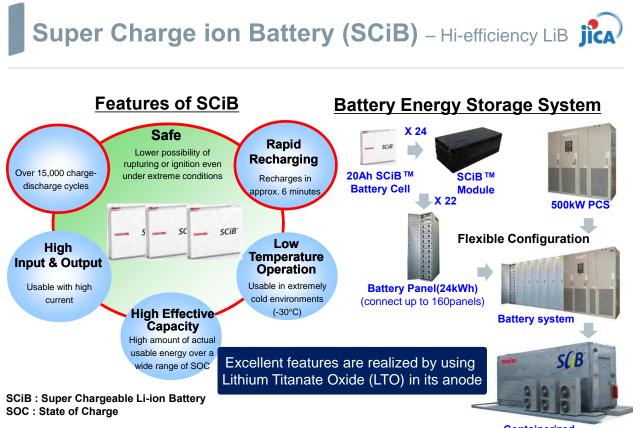


Extendibility

- Multi-languages (Japanese, English and Chinese)
- Control several regions by a single system
- All in one package

Smart Grid - Example of CEMS Surface

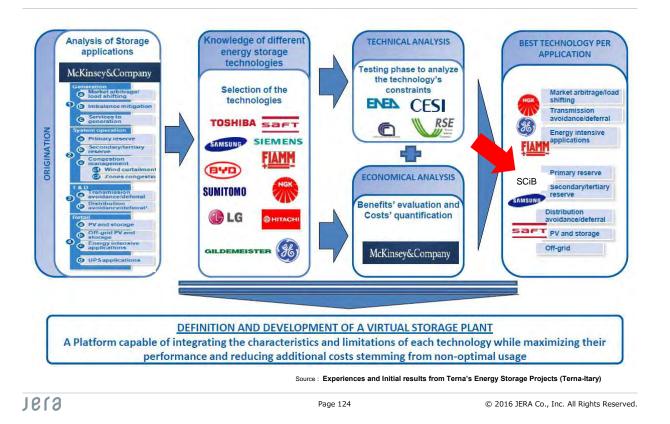



Nishi-Sendai Substation, Tohoku Electric Power Co.

- Construction started on Nov. 25, 2013
- Operation started in Feb. 20, 2015.

by central load dispatch center.

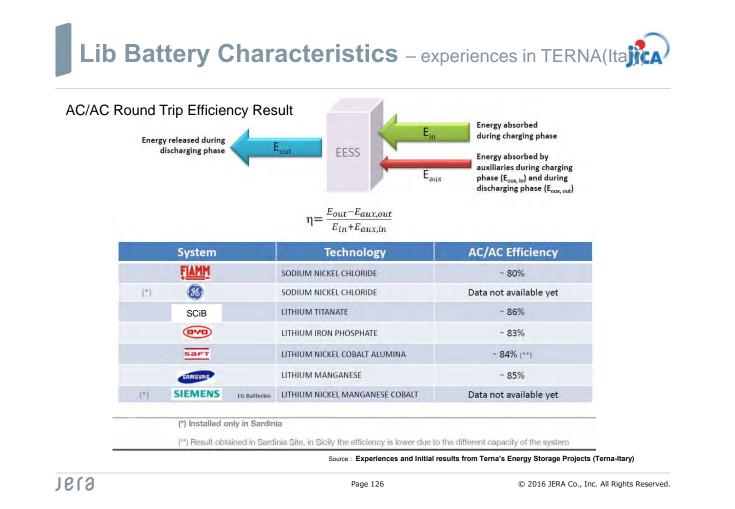
Jera



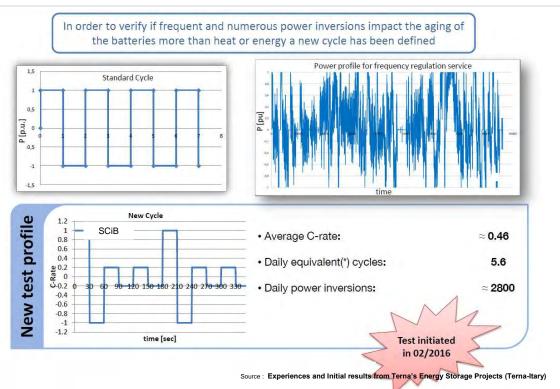
© 2016 JERA Co., Inc. All Rights Reserved.

Source : Toshiba Cooperattion

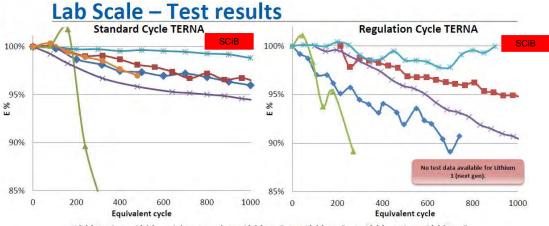
Battery Characteristics – experiences in TERNA(Italy)

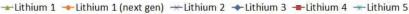


Battery Characteristics – experiences in TERNA(Italy)



	Trip Efficiency Res gy released during discharging phase	sult Eout EESS Eaux $\eta = \frac{E_{out} - E_{aux,out}}{E_{in} + E_{aux,in}}$	Energy absorbed during charging phase Energy absorbed by auxiliaries during charging phase (E _{oux, in}) and during discharging phase (E _{oux, out})
	System	Technology	AC/AC Efficiency
	FIAMM	SODIUM NICKEL CHLORIDE	~ 80%
(*)	88	SODIUM NICKEL CHLORIDE	Data not available yet
	SCiB	LITHIUM TITANATE	~ 86%
	BYD	LITHIUM IRON PHOSPHATE	~ 83%
	SAFT	LITHIUM NICKEL COBALT ALUMINA	~ 84% (**)
	SAMSUNG	LITHIUM MANGANESE	~ 85%
(*)	SIEMENS LG Batteries	LITHIUM NICKEL MANGANESE COBALT	Data not available yet
	(*) Installed only in Sardir (**) Result obtained in Sard	inia Site, in Sicily the efficiency is lower due to	the different capacity of the system sults from Terna's Energy Storage Projects (Terna-Itary)



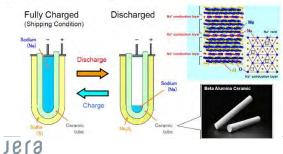

Lib Battery Characteristics – Next Aging Test

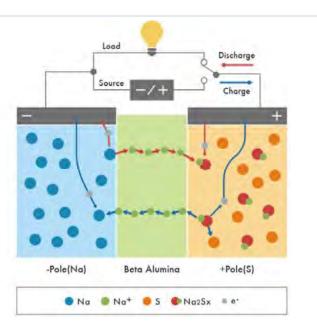
Module	Technology	Cycle	Number of cycles												
under test	recimology	cycle	100	200	300	400	500	1000	1500	2000	2500	3000	4000	5000	6000
Lithium 1	NCA	Standard Cycle Terna	100%	95%	85%	75%	-	-	1.1	-	-	-			
camium 1	INCA	Regulation Cycle Terna	98%	95%	88%	-	-	-	-	-	-	Data at Jenuary 2016			
Lithium 2	NCM	Standard Cycle Terna	99%	98%	97%	97%	96%	94%	93%	92%	91%	Dute describerty 2020			
tremum 2	NCIN	Regulation Cycle Terna	100%	100%	98%	97%	96%	90%	1.1						
Lithium 1 (next		Standard Cycle Terna	100%	99%	99%	98%	97%	-	-	-	-		-	-	
gen)	NCA	Regulation Cycle Terna	-	-		-	-		-				-		
Lithium 3	LFP	Standard Cycle Terna	100%	99%	98%	97%	97%	96%	-	-	-		-		
Litinium 3	C16	Regulation Cycle Terna	97%	95%	94%	94%	92%						~	i i en l'	
Lithium 4	LMO	Standard Cycle Terna	100%	99%	99%	99%	98%	96%	96%	94%	93%	91%	×		
Latinum 4	EMIC	Regulation Cycle Terna	100%	100%	99%	98%	97%	95%		-	÷ .	-	*	÷	-
Freeholder of the	LTO	Standard Cycle Terna	100%	100%	100%	100%	100%	99%	98%	97%	96%	96%	95%	95%	94%
Lithium 5	110	Regulation Cycle Terna	100%	100%	99%	99%	99%	99%	-				*		

1619

NAS Battery - principle

Discharge

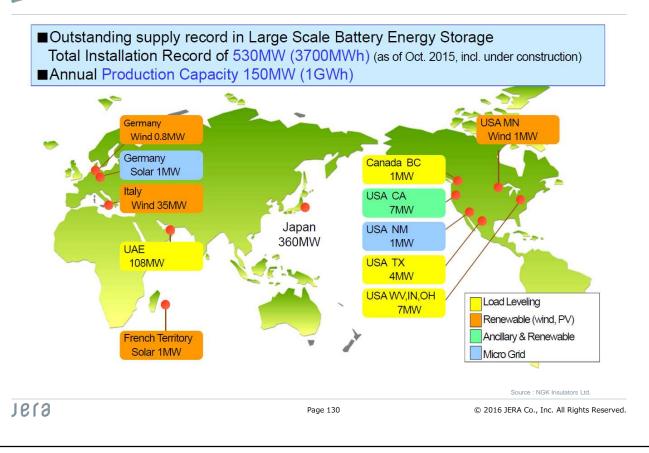

If a load is connected to terminals, electric power is discharged through the load. During the discharge, sodium ions converted from sodium in a negative electrode pass through solid electrolyte then reach to sulfur in positive electrode.


The electrons finally flow to outside circuits. The electric power is generated by such current flow.

With the progress of the discharge, sodium polysulfide is formed in positive electrode; on the contrary, sodium in negative electrode will decrease by consumption.

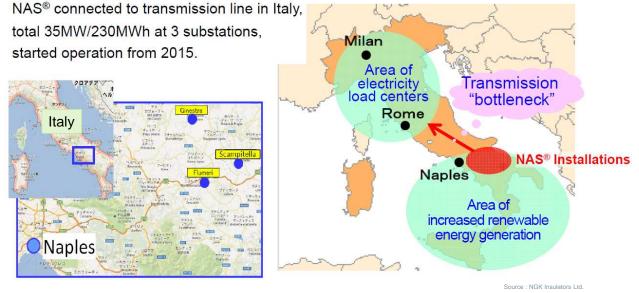
Charge

During the charge, the electric power supplied from outside form sodium in negative electrode and sulfur in positive electrode by following the reverse process of the discharge. Because of this, the energy is stored in the battery.

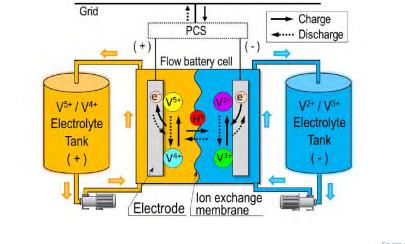


Source : NGK Insulators Ltd.

Page 129



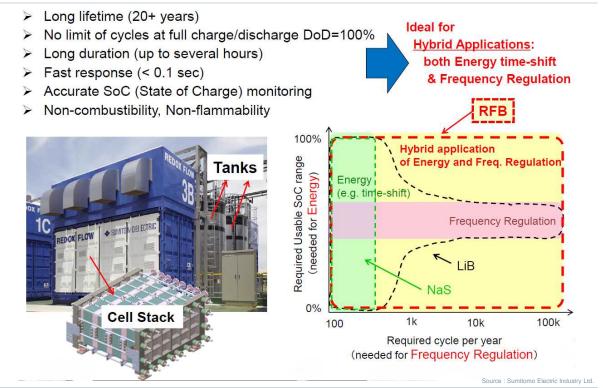
NAS Battery – footprint of NAS for multipurpose



- Fast and massive growth of renewable energy in south region could not be transmitted to electrical load center in north due to transmission bottle neck.
- NAS[®] Battery optimize integration of renewable energy and reduce transmission congestions, and allow investment deferral of new transmission line.

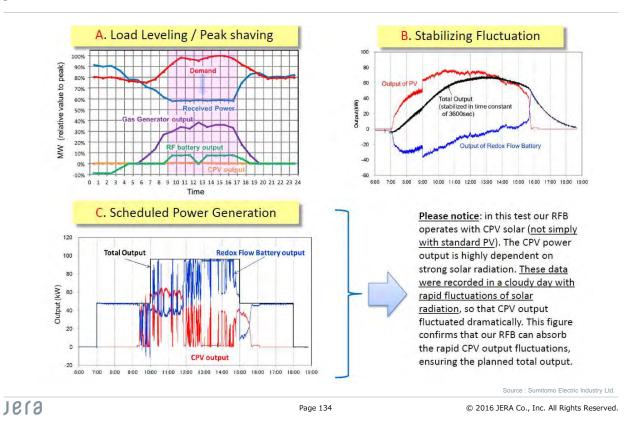
- > Using the charge-state differences of vanadium ions dissolved in sulfuric acid
- > No degradation of electrolyte occurs during charge / discharge cycle
 - \rightarrow Long Lifetime: 20+ years
 - ightarrow No limit to the Number of Cycles
- Power (MW) and Energy (MWh) separately designed
 - → Simple BMS with long duration

Page 132

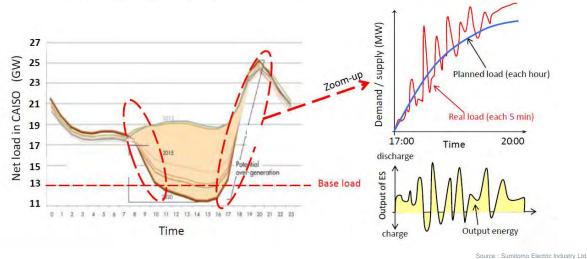

Source : Sumitomo Electric Industry Ltd.

© 2016 JERA Co., Inc. All Rights Reserved.

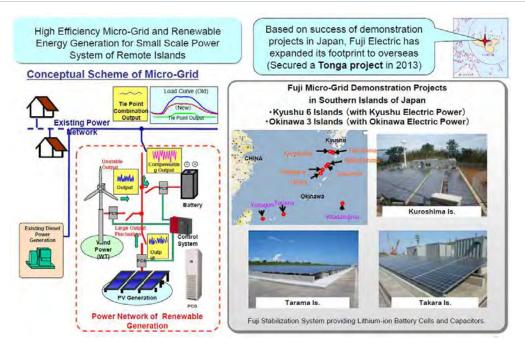
1619


Vanadium Redox Flow Battery – advantages

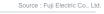
Vanadium Redox Flow Battery – Multi purpose of usage

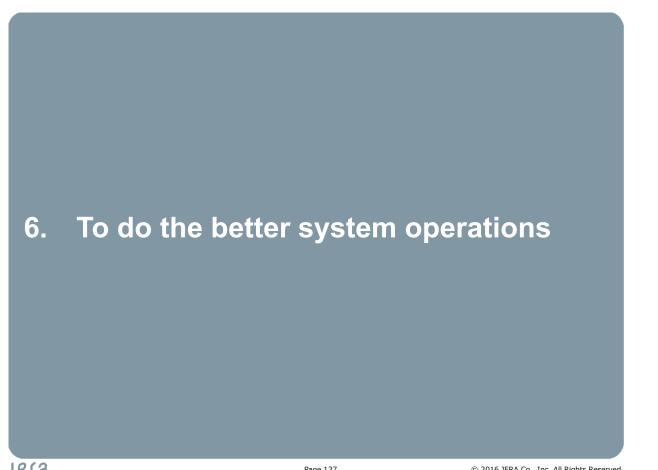


Vanadium Redox Flow Battery – highlighted in US



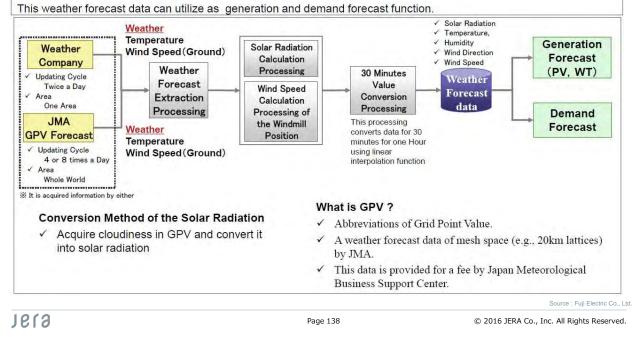
- Joint demonstration project with a utility in California
- <u>2 MW x 4h</u> system in utility's substation
- Expected to be commissioned in middle of 2016
- To demonstrate that RFB can be used for both fast response and long duration applications and it is the best solution to address issues caused by increased use of renewable energy resources

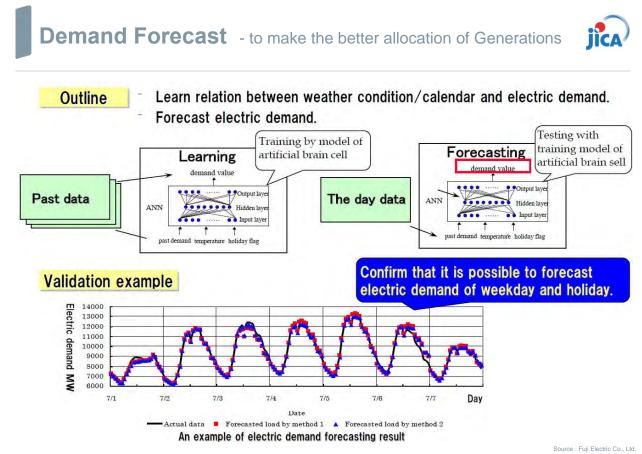

© 2016 JERA Co., Inc. All Rights Reserved.

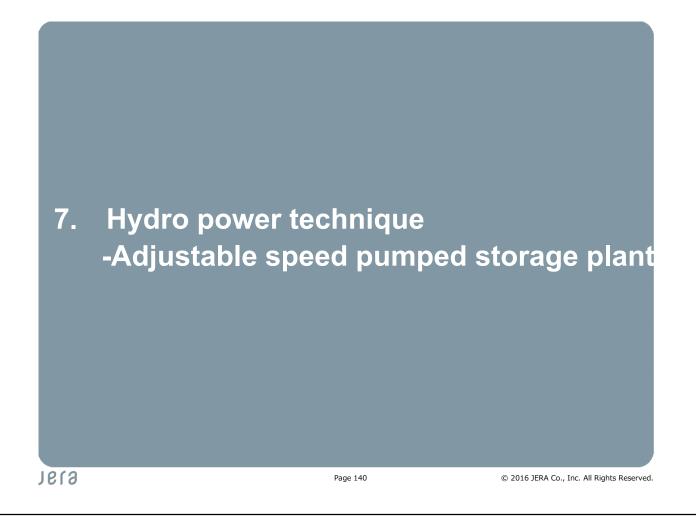

It's based on the smart grid's technology to stabilize the grid.

Page 136

© 2016 JERA Co., Inc. All Rights Reserved.


1619





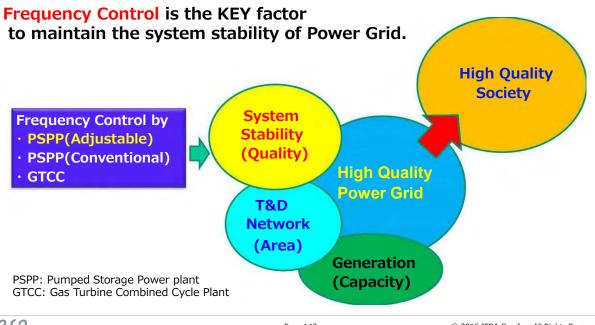
An Outline of the Function

This function can edit forecast data provided by Japan Meteorological Agency (JMA) or weather company, such as cloudiness, temperature, wind speed, as a weather forecast data format which EMS can utilize, and also, it can correct that data.

Hydropower technique

- ✓ Adjustable Speed Pumped Storage Power Plant
- \checkmark River system Development

Brief introduction for Advantages of Adjustable Speed Pumped Storage Plant


- 1. Why is the Adjustable Speed PSPP recommended?
- 2. Economical benefit for utility
- 3. Back ground of development
- 4. How to change pumping input
- 5. Operation range of pump-turbine
- 6. Summary

1. Why is the Adjustable Speed PSPP recommended?

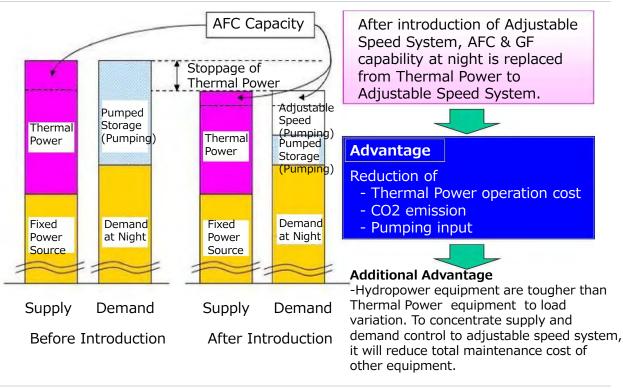
High Quality Power Grid is the foundation of High Quality Society

Comparison of Characteristic of Plant for Frequency Control

	Frequency Control Capability(*1)	Fuel Cost	O&M Cost	Emission	Erection Period
Adjustable Speed PSPP	Very Good	Good	Good	Good	Acceptable
Conventional PSPP	Acceptable	Good	Good	Good	Acceptable
GTCC	Acceptable	No Good	No Good	Acceptable	Good

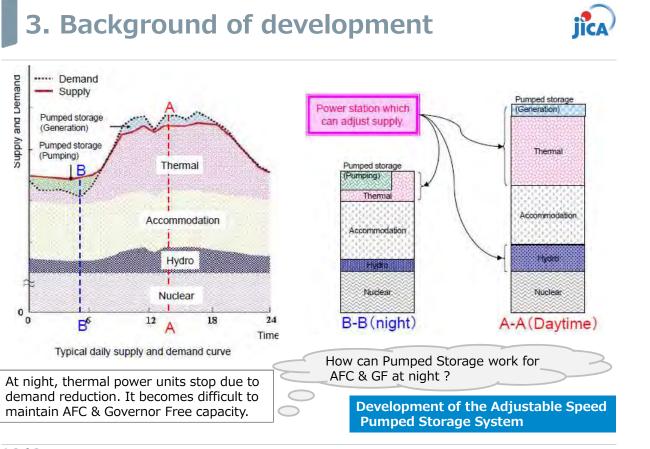
Note(*1) : Response Speed and Availability

Jera Bage 144 © 2016 JERA Co., Inc. All Rights Reserved


1. Why is the Adjustable Speed PSPP recommended?

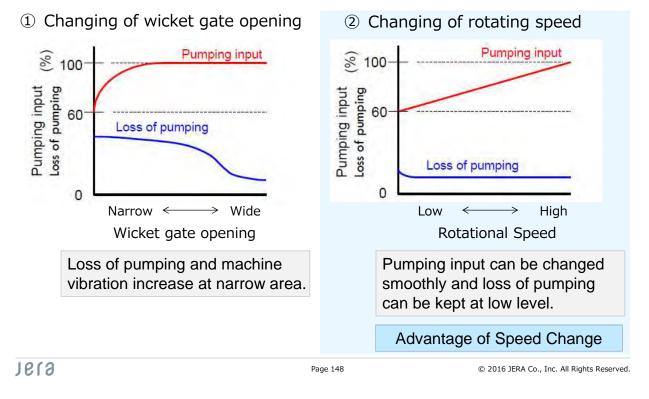
Advantages

- 1. Governor Free Operation
- 2. Wide Operation Range and High Efficiency in Partial Load Operation
- 3. Realizing Reduction of Operation Cost for Thermal Power Plant and Increase of Operation Profit for Pumped Storage Plant
- Disadvantages
 - 1. Larger size excitation system is required.
 - 2. Longer construction period (3 6 months for rotor assembling work) is required.


2. Economic benefit for utility

1619

Page 146


© 2016 JERA Co., Inc. All Rights Reserved.

4. How to change pumping input

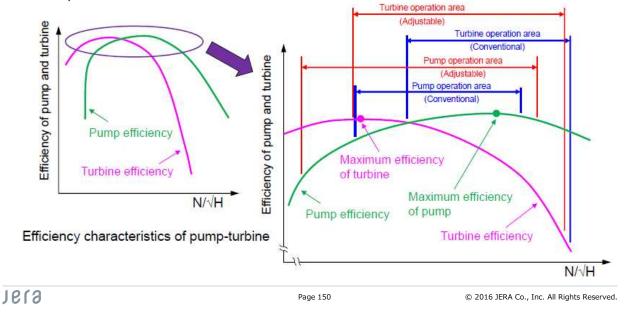
There are two methods to change pumping input.

5. Operation Range of Pump-Turbine (Pump Operation)

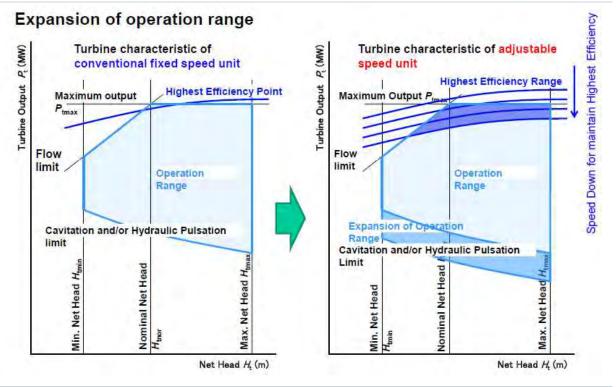
Expansion of operation range

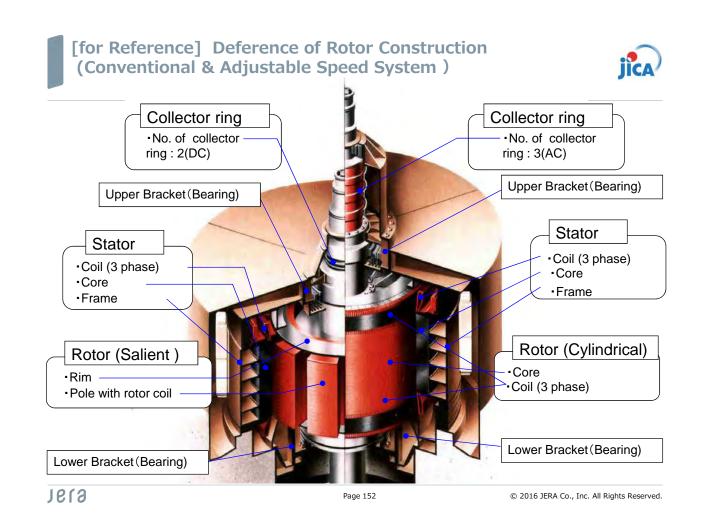
Pump characteristic of conventional Pump characteristic of adjustable Pump Input Pp (MW) Pump Input Pp (MW) fixed speed unit speed unit Max. Input Ppm Max. Input PPma Speed Up no (Synchronous speed) Pump input is fixed in each net head. Speed Down **Cavitation limit** Max. Net Head Hpma Net Head Hpmin Net Head Ha $=P_0$ Head Pump Input can be changed Net from 60~70 to 100 %. Min. Min. Max. Net Head Hp (m) Net Head Hp (m)

5. Operation Range of Pump-Turbine



Conventional System


Maximum efficiency speed of pump and turbine is not same. Pump characteristic is preceded. Actual operation speed does not provide maximum turbine efficiency.


> Adjustable Speed System

Actual operation speeds of pump and turbine can approximate to each maximum efficiency speed. These speeds provide higher efficiency.

5. Operation Range of Pump-Turbine (Turbine Operation)

[for Reference] Deference of Rotor Construction (Conventional & Adjustable Speed System)

<u>Constant Speed</u> <u>Type</u> <u>Generator-motor</u>	Collector ring	<u>Variable Speed</u> <u>Type</u> <u>Generator-motor</u>
Unit-1 Constant Speed Type	Example) Comparison of collector ring bousing Unit-2 Variable Speed Type	AC excitation @ No. of collector ring is 3 (each phase). There are much more brushes than constant type. @ Motor fan is set for carbon dust adsorbing

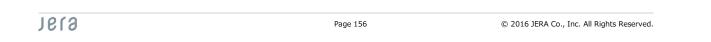
6. Summary

- AFC operation function at pumping
 - Adjustable-speed pumped storage can control pumping power by changing rotating speed, on the other hand conventional type can not.
- Quick response function
 - Adjustable-speed pumped storage can control active power instantly to convert rotational energy to electric energy with controlling AC excitation device at generating and pumping.
 - This characteristic contributes to the suppression of frequency and voltage fluctuations caused by RE.
- Improvement turbine efficiency and wide operational range
 - Adjustable rotating speed make turbine efficiency higher and operating condition better. Therefore the damage of turbine caused by cavitation is reduced and available head and output range are increased.

1619

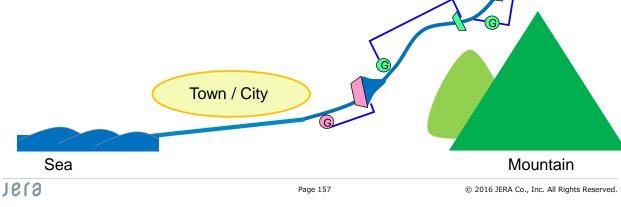
Page 154

© 2016 JERA Co., Inc. All Rights Reserved.


[for Reference] Adjustable Speed Pumped Storage System . - Commissioned Project in the World -

Owner	Power Station	Capacity*Unit	Manufacturer	COD
Tokyo Electric Power Co.	Yagisawa	80MW*1	Toshiba	1990
Hokkaido Electric Power Co.	Takami	100MW*1	HM Hydro	1993
Kansai Electric Power Co.	Okawachi	320MW*2	HM Hydro	1995
Tokyo Electric Power Co.	Shiobara	300MW*1	Toshiba	1995
Electric Power Development Co.	Okukiyosu No.2	300MW*1	Toshiba	1995
Electric Power Development Co.	Yambaru sea water	30MW*1	Toshiba	1999
Germany	Goldisthal	300MW*2	ANDRIZ	2003
Kyushu Electric Power Co.	Omarugawa	300MW*4	HM Hydro	2007
Slovenia	AVCE	200MW*1	HM Hydro	2010
Tokyo Electric Power Co.	Kazunogawa	400MW*1	Toshiba	2014
Hokkaido Electric Power Co.	Kyogoku	200MW*2	Toshiba	2015
Kansai Electric Power Co.	Okutataragi	320MW*2	HM Hydro	Under Construction

Source: JICA Study Report 2012, Study team revised



- 1. The way of development in river system in case of Japan
- 2. Optimum & safety operation
- 3. Optimization for Generation Plan
- 4. Safety Dam operation
 - a. Safety dam control at flood period
 - b. Simulation system for training
- 5. Summary

1. The way of development in river system

- One river system One developer
 - One river system had been developed by one company/ utility traditionally in Japan,
 - to use the hydro potential at the maximum, and
 - to manage the flood control safety.

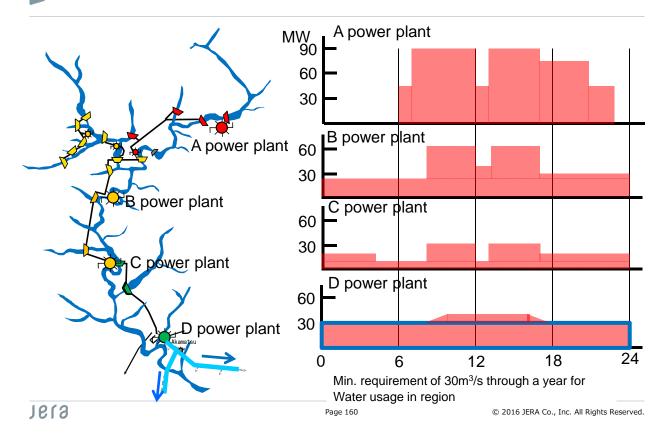
- Normal time
 - Operation controlled the guide vane according to the optimum generation plan
 - > Optimum operation
- Flood time
 - Operation controlled the spillway gate according to the law/ rule, after reaching the full capacity
 - Safety operation

6191	Page 158	$\ensuremath{}$ © 2016 JERA Co., Inc. All Rights Reserved.

3. Optimization for generation plan

- Annual Plan
 - Operational cost, Efficiency, Rule curve, Inflow volume, Downstream requirement water volume, Outage plan at each PP, Time of arrival from upper dam
- Monthly plan
 - > Breakdown of annual plan, considering the relevant information
- Daily Plan (One day before)
 - > Input the latest information
- ✓ Development of a support system for the hydropower plant operation in river system:

Calculate the operation plan at each power plant to be optimum by considering/ inputting such as operational cost and efficiency at each power plant, rain fall, inflow, reservoir conditions, and demand.



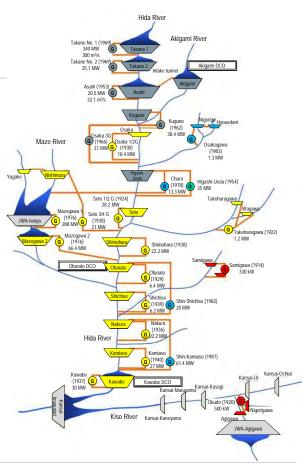
Support System PC & Server

3. Optimization for generation plan

Example

Example of Hida River

(Basic features)


- Hida River (tributary of Kiso River): L=150 km, CA=2,160 sq.km
- 22 hydropower stations
- Total generation capacity: 1,145 MW

(Stages of development)

- 1. Early days: 1910s 20s
- 2. ROR development period: 1920s 40s
- 3. Large dam development period: 1950s 70s
- 4. Re-development period: 1970s 80s

(Centralization of operation)

 Three (3) Dam Control Offices (DCOs) are operating and maintaining 22 hydropower stations.

> Maintaining of original function of river

■ Flood time

Secure of safety for downstream

Page 162

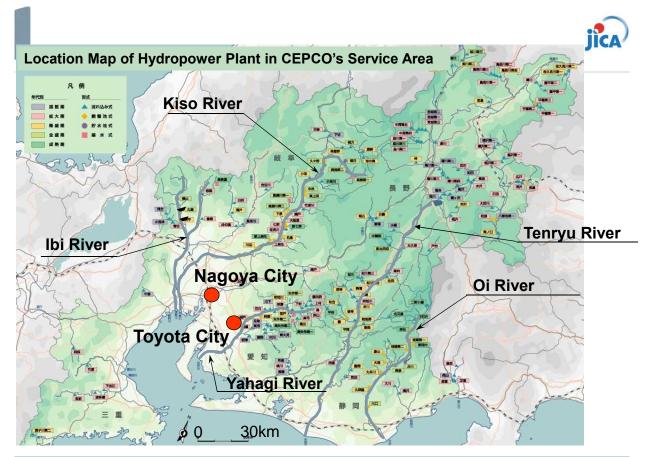
© 2016 JERA Co., Inc. All Rights Reserved.

Jera

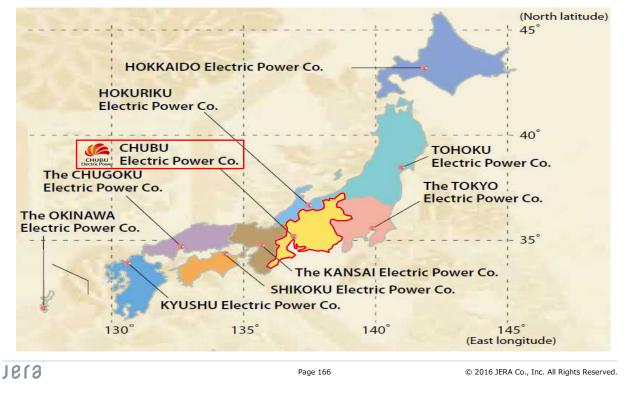
4-a. Safety dam control at flood period

- Safety first operation for downstream
- Forecast the inflow volume analyzing the precipitation and other weather conditions.
- Strictly rule for Spillway operation
 - > Limitation of increment and decrement amount of discharge
 - Notification
 - > Alert system of sirens and patrol along river

4-b. Simulation system for training


- Before working at the dam control office
- At transferring to the other dam control office
- Periodically doing training and step up the operator status

1619


Page 164

© 2016 JERA Co., Inc. All Rights Reserved.

- There are 10 electric power companies (EPCos) in Japan.
- The electric power companies own and operate generation, transmission and distribution facilities in each region.

- One river had been developed by one company/ utility traditionally in Japan,
 - to use the hydro potential at the maximum, and
 - to manage the flood control safety.

Training and education system is also important for safety and optimum operation of the Hydropower Plant.

[for Reference] Oldest Hydropower Plants of CEPCO

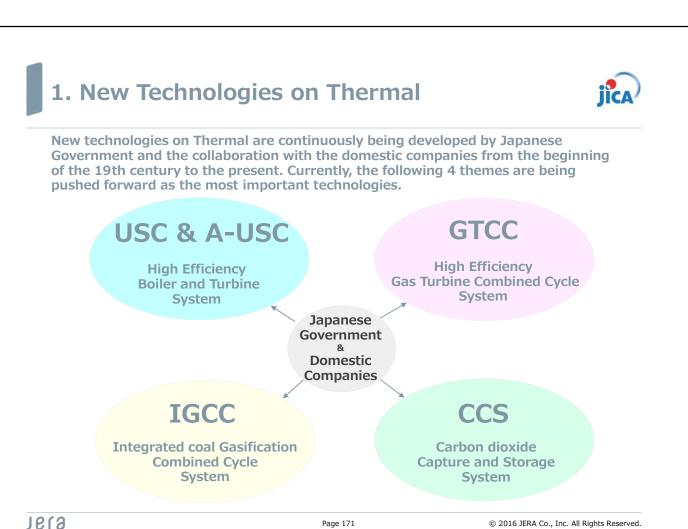
				(As of October, 2016)
Rank	Power Station	Age	COD	Capacity (kW)
1	Iwazu	119	July 1897	130
2	Susuigawa	116	Dec 1899	390
3	Kawashita	116	Sep 1900	380
4	Ochiai	115	Dec 1900	200
5	Miyagi No.1	112	Sep 1904	400

Iwazu Hydropower Plant (The oldest plant of CEPCO)

Start of operation	: 1897
Output capacity	: 140 kW
Discharge	: 0.37 m³/s
Effective head	: 51.73 m
	_

At the time of start operation

1619



1619

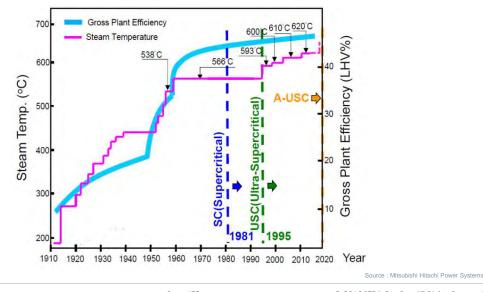
- 1. New Technologies on Thermal
- 2. USC and A-USC
- 3. GTCC
- 4. IGCC
- 5. CCS
- 6. Road Map

Page 170

© 2016 JERA Co., Inc. All Rights Reserved.

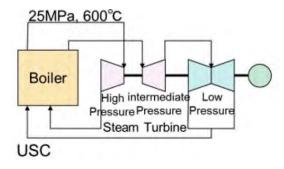
Technical overview

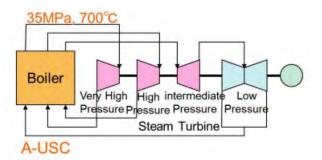
USC (Ultra Super Critical) A-USC (Advanced Ultra Super Critical)


	USC	A-USC
Outline of System	It is a high efficiency boiler and steam turbine generation system. That is making high temperature and high pressure steam (600deg.C) in the boiler, and generating electric power by rotating the steam turbine.	As the advanced-USC technology, it achieves higher efficiency than USC by using higher temperature steam (more than 700deg.C).
Year of Commercial Operation	1995 (year)	2020 (year) as target
Plant efficiency	43-45% (Gross, LHV)	48-50% (Gross, LHV)
	Coal Boiler Steam Turbine	Exhaust Gas
	USC System (Typical	
619	Page 172	© 2016 JERA Co., Inc. All Rights Reserv

2. USC & A-USC

History of plant efficiency improvement in Japan

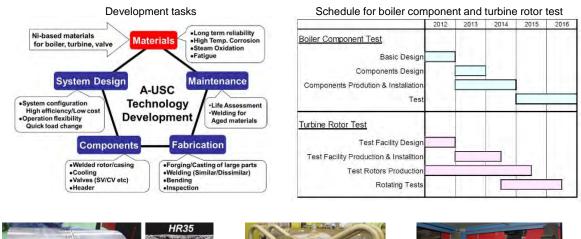

- Higher steam temperature and pressure improve thermal plant efficiency.
- In other words, USC/A-USC technology provides economical power production, _ fuel energy saving, lower carbon emission and environmental-friendly.



J

System configuration of USC & A-USC (Typical)

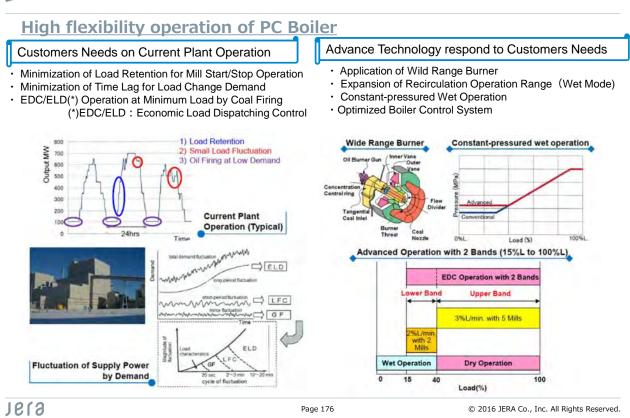
1619


Page 174

© 2016 JERA Co., Inc. All Rights Reserved.

2. USC & A-USC

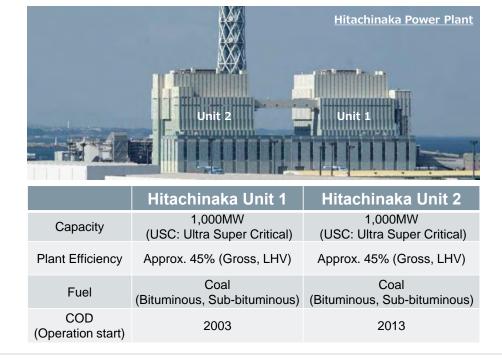
A-USC technology development plan


Boiler pipe welding test

Page 175

© 2016 JERA Co., Inc. All Rights Reserved.

2. USC & A-USC



Reference plant (in Japan)

	Unit 5	Hekinan Power Plant
	Hekinan Unit 4	Hekinan Unit 5
Capacity	1,000MWW (USC: Ultra Super Critical)	1,000MWW (USC: Ultra Super Critical)
Plant Efficiency	Approx. 44% (Gross, LHV)	Approx. 44% (Gross, LHV)
Fuel	Coal (Bituminous, Sub-bituminous)	Coal (Bituminous, Sub-bituminous)
COD (Operation start)	2001	2002

Reference plant (in Japan)

Jela

Page 178

© 2016 JERA Co., Inc. All Rights Reserved.

3. GTCC

Technical overview

	GTCC (Gas Turbine Combined Cycle)
	GTCC
Outline of System	It is the highest efficiency generation system in thermal. That is a combination of gas turbine and steam turbine system.
Year of Commercial Operation	1985 (year) as 1,100deg.C-class GTCC
Plant efficiency	1,100 deg.C-class 48-50% (Gross, LHV) 1,300 deg.C-class 54-57% (Gross, LHV) 1,500 deg.C-class 58-60% (Gross, LHV) 1,600 deg.C-class 60-62% (Gross, LHV) 1,700 deg.C-class 62-64% (Gross, LHV) as target
	Gas Gas Turbine Steam

GTCC System (Typical)

-0

Turbine

Sectional Figure

Sectional Figure of GTCC System (Typical)

Jela

Page 180

© 2016 JERA Co., Inc. All Rights Reserved.

3. GTCC

Reference plant (in Japan)

Futtsu Power Pla	LNG Terminal	oup 2 Group 3	Group 4
	Futtsu Group1 &2	Futtsu Group 3	Futtsu Group 4
Capacity	2,000MW (1,100deg.C-class GTCC x 14units)	1,520MW (1,300deg.C-class GTCC x 4 units)	1521MW (1,500deg.C-class GTCC x 3 units)
Plant Efficiency	Approx. 48% (Gross, LHV)	Approx. 56% (Gross, LHV)	Approx. 59% (Gross, LHV)
Fuel	LNG	LNG	LNG
COD (Operation start)	1985	2001	2008

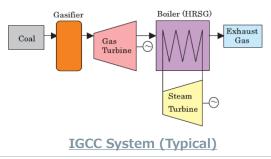
Reference plant (in Japan)

Kawasaki Power	Group 1 Group 1 Plant	
	Kawasaki Group 1	Kawasaki Group 2
Capacity	Kawasaki Group 1 2,000MW (1,500deg.C-class GTCC x 4 units)	Kawasaki Group 2 1,440MW (1,600deg.C-class GTCC x 2 units)
Capacity Plant Efficiency	2,000MW	1,440MW
	2,000MW (1,500deg.C-class GTCC x 4 units)	1,440MW (1,600deg.C-class GTCC x 2 units)

Jela

Page 182

© 2016 JERA Co., Inc. All Rights Reserved.


4. IGCC

Technical overview

IGCC (Integrated coal Gasification Combined Cycle)

	IGCC
Outline of System	It is one of GTCC system that uses gasified coal as fuel. That consists of coal gasification system and GTCC system.
Year of Commercial Operation	2013 (year) as 1,200deg.C-class IGCC
Plant efficiency	1,200 deg.C-class 46~48% (Gross, LHV) 1,500 deg.C-class 50~52% (Gross, LHV) as target 1,700 deg.C-class 54~56% (Gross, LHV) as target

Flow diagram of IGCC (Typical) GTCC Stack **Gasification System** Coal Heat Gas Treatment Heat Exchanger Recovery Steam Generator Gasifier Pulverizer Ambient Air Steam Turbine Transformer Hopper Generator Recycled Char Gas turbine Air Cooling Water Compressor Slag Hopper

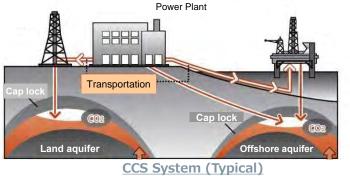
Page 184

Jelg

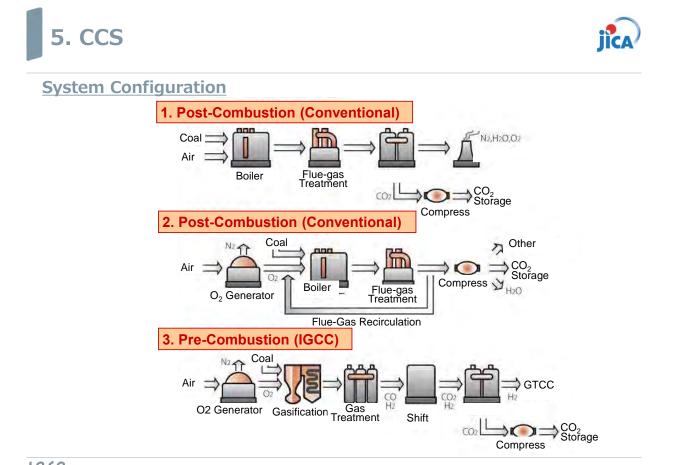
4. IGCC

© 2016 JERA Co., Inc. All Rights Reserved.

Reference plant (in Japan)


		Nakoso Power Plant Unit 10
	Nakoso Unit 10	Extension Project
Capacity	250MW (1,200deg.C-class IGCC x 1 unit)	500MW (1,500deg.C-class IGCC x 1 unit)
Plant Efficiency	Approx. 46% (Gross, LHV)	Approx. 50% (Gross, LHV)
Fuel	Coal	Coal
COD (Operation start)	2013	2020 (as target)

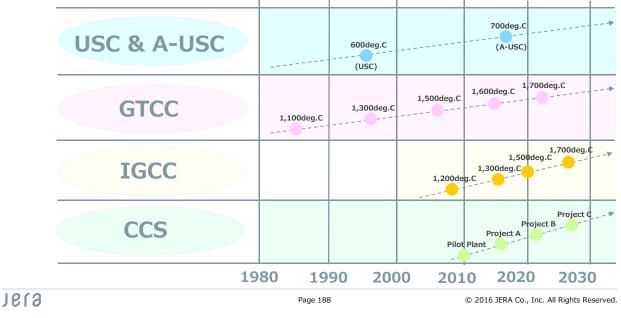
Technical overview


CCS (Carbon dioxide Capture and Storage)

	CCS
Outline of System	It is a carbon-dioxide capture and storage system from thermal power generation. Since that is much environment-friendly, early development is expected from a lot of industrial.
Year of Commercial Operation	2012~

Page 186

Jela



© 2016 JERA Co., Inc. All Rights Reserved.

The road map of Japanese new technologies on thermal

To improve plant efficiency and reduce environmental impact, more and more, Japanese government and domestic companies continues to implement further developments with best effort. We would like to share this Japanese technologies with South Africa countries to assist improvement of SAPP.

Source of data & figures in this report

-Literature (日本電気協会新聞部 火力発電カギのカギ)

-Academic journal (スマートプロセス学会誌 第3巻 先進超々臨火力発電(A-USC)技術開発)

-IHI